PRELIMINARY CONTAMINATION ASSESSMENT REPORT

CITY OF DELRAY BEACH

: :

Prepared by

Prepared for

СНЯМНИЦ

SE24708.A8 December 1988

. 1988

PRELIMINARY CONTAMINATION ASSESSMENT REPORT

Prepared for

THE CITY OF DELRAY BEACH

Prepared by

CH2M HILL SOUTHEAST, INC.

December 1988

Ś

SEF24708.A8

Copyright e 1988 by CH2M HILL, INC. Reproduction in whole or in part is prohibited without the written consent of CH2M HILL . ·

SEF24708.A8

CONTENTS

CONT	ENTS	a	
		mFC Country (2)	Page
1 _.	Introdu 1.1 Ba 1.2 Pu	ickground 1939	1-1 1-1 1-2
2	2.1 Si 2.2 Pr	escriptions te Location revious Investigations ocal Hydrogeology	2-1 2-1 2-1 2-6
3	3.1 We 3.2 Ge 3.3 Mc 3.4 Sc 3.5 Si 3.6 Gr 3.7 Sp	Investigations all Inventory eophysical Logging onitor Well Installation oil Sampling te Survey coundwater Sampling olit Sampling te and Transport of Contaminants	3-1 3-1 3-4 3-6 3-8 3-8 3-8 3-11 3-16
4	Summary	and Conclusions	4-1
5	Referen	ces	5-1 _.
Apper	ndix A	Results of the Water Quality Sampling Program for the 20-Series Well Field	
Apper	ndix B.	Analytical Results, Private Well Samples Obtained from Palm Beach County Health Department	
	ndix C.	Geophysical Logs	
	ndix D.	Monitor Well Completion Diagrams	
	ndix E.	VOC and TOC Analyses of Soil	
Appei	ndix F.	Analytical Results, Preliminary Contaminati Assessment Monitor Wells	lon

- Analytical Results, Split Sampling with Aero-Dri Consultant, May 25, 1988 Appendix G.
- Analytical Results, Split Sampling with Aero-Dri Consultant, August 4, 1988 Appendix H.
- Appendix I. Results of the Groundwater Flow Modeling of the 20-Series Well Field

ζ.

TABLES

. •

.

		Page
2-1	Construction Data, 20-Series Wells	2-4
2-2	Summary of Pertinent Soil Sample Analyses from the Aero~Dri Site	2-5
2-3	Summary of Pertinent Groundwater Sample Analysis from the Aero-Dri Site (October 30, 1987)	2-7
3-1	Monitor Well Construction Data	3-7
3-2	Sample Containers, Preservation Techniques and Holding Times	3-9
3-3	Summary of Pertinent Groundwater Analysis	3-12
3-4	Summary of Pertinent Groundwater Analysis for Split Samples Obtained from Aero-Dri Consultant	3-15
3-5	Water Level Measurements	3-21
FIGU	RES	
2-1	Project Location	2-2
2-2	Locations of 20-Series Wells	2-3
3-1	Private Well Locations	3-2
3-2	Location of City of Delray Beach's Well Fields	3-3
3-3	Monitor Well Locations	3-5
3-4	Monitor Well Locations on the Aero-Dri Property	3-13
3-5	Location of Monitor Wells Installed by Aero-Dri	3~14
3-6	Steady State Ground Water Level Contours (CH2M HILL, 1988)	3-19
3-7	Simulated Ground Water Flow Lines (CH2M HILL, 1988)	3-20
3-8	Approximate Contaminant Plume Boundary	3-23

.

1.1 BACKGROUND

In July 1987, 3.17 parts per billion (ppb) of the volatile organic chemical tetrachloroethene were detected in the finished water at the City of Delray Beach Water Treatment Plant (WTP). A subsequent analysis of groundwater from the City's production wells revealed that Wells 21, 22, 23 and 24 of the City's 20-Series Well Field had measurable quantities of tetrachloroethene, trichloroethene and cis-1,2-dichloroethene. This incident of production well contamination prompted an investigation of local industries by the Florida Department of Environmental Regulation (FDER).

FDER conducted a hazardous waste inspection of Aero-Dri Corporation on September 30, 1987. The Aero-Dri plant is located approximately 1,000 feet southeast of the contaminated production wells. The Hazardous Waste Inspection Report cited Aero-Dri with 11 violations. As a result, a Warning Notice (No. 50-419-87-HW) was issued on November 12, 1987. Enforcement meetings were held in accordance with the terms of the Warning Notice on November 23, 1987, and December 7, 1987, between FDER, Aero-Dri, their representatives, L&J Enterprises (the property owner), and the Palm Beach County Health Department (PBCHD). A draft Consent Order was given to attorneys representing Aero-Dri and L&J Enterprises at a December 23, 1987, meeting.

Aero-Dri representatives conducted a preliminary investigation by collecting soil samples on October 22, 1987, and groundwater samples on October 30, 1987, at the site. The results of sample analyses were given to the FDER and the PBCHD on November 23, 1987. Contamination of the site resulted in a fine to Aero-Dri, and the requirement to take corrective actions according to FDER guidelines.

The City had been forced to shut down five of the six 20-Series Wells by February 1988 due to high contaminant levels. This created a water shortage of approximately 7 million gallons per day (mgd). The City imposed a moratorium on new water connections and restricted the use of water for irrigation. At the same time, the South Florida Water Management District (SFWMD) ordered the City to reduce its water consumption to 3 mgd in the South Well Field because of the potential for saltwater intrusion.

CH2M HILL was authorized by the City on March 4, 1988, to design and procure an interim treatment system for groundater from some of the 20-Series wells, alleviating the City's water shortage. CH2M HILL was also authorized to velop a plan for implementing a full scale treatment sysim for long-term, cost effective treatment of the 20-Series ill Field.

anular activated carbon (GAC) was proposed as a viable eatment alternative which could be provided on a timely isis until a full-scale treatment system could be con-:ructed. Other types of treatment systems for flow rates ver 4 mgd were not available within a short time frame. algon Carbon Corporation agreed to provide two GAC systems Ithin 1 week after entering into an agreement with the City ad a third unit 1 week later. Calgon and the City reached a agreement on March 17, 1988, and the first carbon unit rrived on March 23, 1988. The second unit arrived the folowing day. PBCHD approved the effluent water quality from oth carbon systems on March 28, 1988 and the City began sing Wells 22 and 23 that same day. The third carbon unit t Well 24 was put into operation on April 4, 1988. A fourth AC unit was eventually installed at Well 25 to meet ncreasing water demand.

the City authorized CH2M HILL to conduct a preliminary contamination assessment on May 27, 1988. This work would wide information to support the City's legal efforts gainst Aero-Dri, the alleged source of contamination.

.2 PURPOSE

The preliminary contamination assessment field activities were conducted to obtain information confirming a potential cource of production well contamination, and provide an initial estimate of the contaminant plume magnitude. The results of the assessment are contained in this report and include:

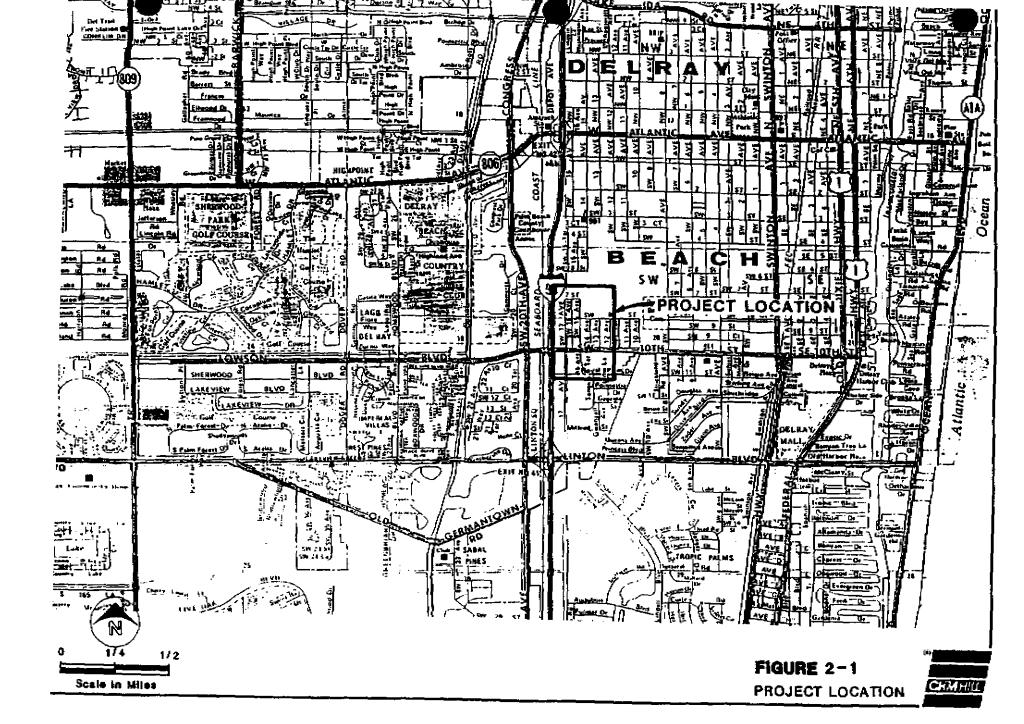
- o Private well inventory
- o Geophysical logging
- o Soil sampling
- o Monitor well installation and surveying
- o Groundwater sampling and analysis
- o Split groundwater sampling with Aero-Dri consultant

Iso included is a previously published result summary of the water quality sampling program conducted by CH2M HILL on aw water from 20-Series wells and finished water from the TP; and results of the groundwater flow modeling performed by CH2M HILL of the 20-Series and Golf Course Well Fields.

Section 2 SITE DESCRIPTION

2.1 SITE LOCATION

The City of Delray Beach 20-Series Well Field is located in south Palm Beach County between Linton Boulevard and Atlantic Avenue. Figure 2-1 shows the location of the 20-Series Well Field within the City of Delray Beach. The 20-Series Wells are about 400 feet east of I-95 just north and south of S.W. 10th Street. Well 21 is located on the north side of S.W. 8th Street between S.W. 13th and S.W. 14th Avenues. Wells 22, 23 and 24 are located on the east side of S.W. 15th Avenue between S.W. 7th Street and S.W. 10th Street. Well 25 is located about 100 feet south of S.W. 10th Street near a Florida Power and Light (FPL) transformer station. Well 26 is located just east of I-95 near the FPL transformer station. Figure 2-2 shows the locations of the 20-Series Wells. Table 2-1 summarizes construction data provided by the City on the 20-Series Wells.


Aero-Dri is located on S.W. 10th Street, about 1,000 feet east and southeast of the production wells. The area chosen for this study extends from Poinsettia Drive on the southeast to S.W. 16th Avenue on the west. Poinsettia Drive is southeast of Aero-Dri and S.W. 16th Avenue is west of the 20-Series Well Field.

2.2 PREVIOUS INVESTIGATIONS

Aero-Dri conducted a preliminary investigation in the immediate vicinity of the suspected spill site (Dames and Moore, 1987). Two monitor wells were installed on October 22, 1987 to collect groundwater samples. These wells were installed at the southwest corner of the Aero-Dri building in the area of the suspected spill. The screen intervals for the wells were set at depths of 20 to 25 feet for MW-1 and 40 to 45 feet for MW-2. Four soil samples at approximately 5-foot intervals were collected during the installation of the wells.

Groundwater and soil from the two monitor wells were analyzed using EPA Methods 601 (purgeable halocarbons) and 602 (purgeable hydrocarbons). The Method 601 analysis showed elevated levels of tetrachloroethene in the range of 26 parts per billion (ppb) in soil taken from a depth of 15 feet at MW-1, to 585,000 ppb in soil taken from near the surface at MW-2. A more detailed summary of the available soil analysis is given in Table 2-2.

Tetrachloroethene levels in groundwater were 5,600 ppb in MW-1 and 531,500 ppb in MW-2. In addition, 450 ppb and 430 ppb trichloroethene were measured in groundwater from

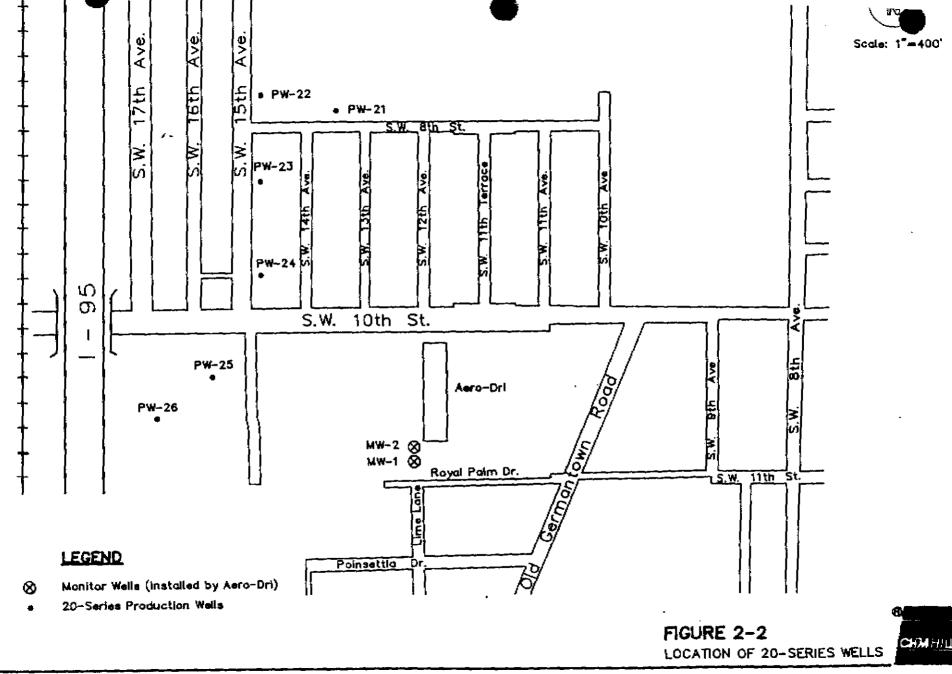


Table 2-1 CONSTRUCTION DATA, 20-SERIES WELLS

.

<

Well <u>Number</u>	Diameter <u>(inches)</u>	Approximate Cased Interval <u>(feet)</u>	Approximate Screened Interval (feet)	Rated Capacity (gpm)
21	12	0-110	110-150	900
22	12	0-110	110-150	1,000
23	12	0-100	100-140	1,000
24	12	0-110	110-150	1,000
25	12	0-110	110-150	1,000
26	12	0-110	110-150	1,000

Table 2-2 SUMMARY OF PERTINENT SOIL SAMPLE ANALYSES FROM THE AERO-DRI SITE

13 * 1

1.1

	Concentration (ppb)				
		Soil Depth			
	Surface	5	10	15	
<u>MW-1</u>					
Benzene	<0.1	5	<0.1	<0.1	
Ethylbenzene	<0.1	4	11	1	
Toluene	<0.1	8	7	12 ·	
o-Xylene	<0.1	11	35	3 *	
m-Xylene	<0.1	11	32	4	
p-Xylene	<0.1	<0.1	<0.1	<0.2	
Chloroform	6,900	<250	<250	<250	
Trichlorcethene	<250	<250	<250	<250	
Tetrachloroethene	4,030	4,469	2,274	26	
MW-2					
Benzene	<0.1	<0.1	<0.1	<0.1	
Ethylbenzene	<0.1	18	<0.1	<0.1	
Toluene	<0.1	6	<0.1	<0.1	
o-Xylene	<0.1	66	<0.1	<0.1	
m-Xylene	<0.1	30	<0.1	<0.1	
p-Xylene	<0.1	42	<0.1	<0.1	
Chloroform	<250	<250	<250	<250	
Trichloroethene	<250	<250	<250	<250	
Tetrachloroethene	585,000	480	408,000	4,600	

Source: Compiled from <u>Preliminary Contamination Assessment</u> <u>Report, Perchloroethylene Spill, Aero-Dri Corporation</u> <u>Site</u>, Dames & Moore, December 21, 1987.

ζ

MW-1 and MW-2, respectively. Table 2-3 summarizes the groundwater sample data for MW-1 and MW-2 located on the Aero-Dri property.

The Method 602 analysis indicated the presence of benzene, ethylbenzene, toluene, and xylene in soil samples from MW-1 and MW-2. Each of these compounds except toluene were also detected in the groundwater. At MW-1, as much as 5 ppb benzene, 11 ppb ethylbenzene, 12 ppb toluene, 35 ppb o-xylene and 32 ppb m-xylene were found in the soil column. Similar concentrations were detected in soil from MW-2 for some parameters. In the groundwater, 17 ppb ethylbenzene and 1 ppb o-xylene were measured in MW-1, while 14 ppb ethylbenzene, 12 ppb benzene, 4 ppb o-xylene, 6 ppb m-xylene and 3 ppb p-xylene were detected in MW-2. The presence of these compounds typically indicates contamination by petroleum products.

CH2M HILL conducted a water quality sampling program for the City between February and June 1988 (CH2M HILL, August 1988). Finished water samples from the City WTP were analyzed for SDWA parameters by EPA Method 524.2. The results of this study plus a summary of analytical results for 20-Series well samples are contained in Appendix A.

2.3 LOCAL HYDROGEOLOGY

The well fields in Delray Beach withdraw groundwater from the unconfined surficial aquifer. Most of the production wells are constructed to a total depth of 130 to 150 feet below land surface (bls). The production interval of these wells extends from approximately 100 feet bls to the total depth of the wells.

The geology of the surficial aquifer in the vicinity of Delray Beach is composed of the Pamlico Sand and Anastasia Formations. Lithologic logs from two wells in the Golf Course Well Field (under construction) show fine to medium sand to approximately 70 feet bls. Calcareous sandstone with shell fragments are found below the sand layers to approximately 200 feet bls. The bottom of the surficial aquifer is bounded by layers of clay and silt beds.

Pumping tests conducted by other City consultants on the Golf Course Well Field indicated that the portion of the aquifer tapped by the production wells responds as an unconfined aquifer. No laterally-persistent confining layers appear to be present above 200 feet bls.

Water levels in the surficial aquifer range from 8 feet above the national geodetic vertical datum (NGVD) of 1929 to less than zero feet NGVD near the City's North and South Well Fields. The direction of regional groundwater flow appears to be towards the east-southeast (Land, et al.,

Table 2-3SUMMARY OF PERTINENT GROUNDWATER SAMPLE ANALYSISFROM THE AERO-DRI SITE
(OCTOBER 30, 1987)

Compound	Concentra <u>MW-1</u>	tion (ppb) MW-2
Benzene	<0.1	12
Ethylbenzene	17	14
Toluene	<0.1	<0.1
o-Xylene	1	4
m-Xylene	<0.1	6
p-Xylene	<0.1	3
Trichloroethene	450	430
Tetrachloroethene	5,600	531,500

burce: Compiled from <u>Preliminary Contamination Assessment</u> <u>Report, Perchloroethylene Spill, Aero-Dri Corporation</u> <u>Site</u>, Dames & Moore, December 21, 1987.

Ľ

_ . . _

1973), but canals and pumping well fields tend to alter and intercept the flow patterns. The primary source of recharge to the aquifer is rainfall, however, some of the recharge is provided through canal leakage, particularly near the pumping well fields.

٤

Section 3 FIELD INVESTIGATIONS

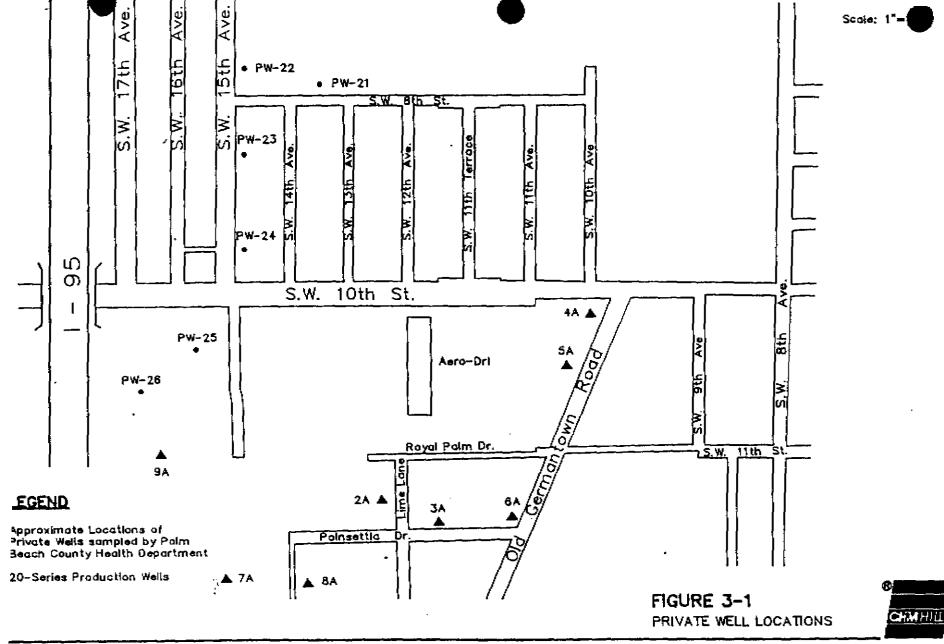
WELL INVENTORY

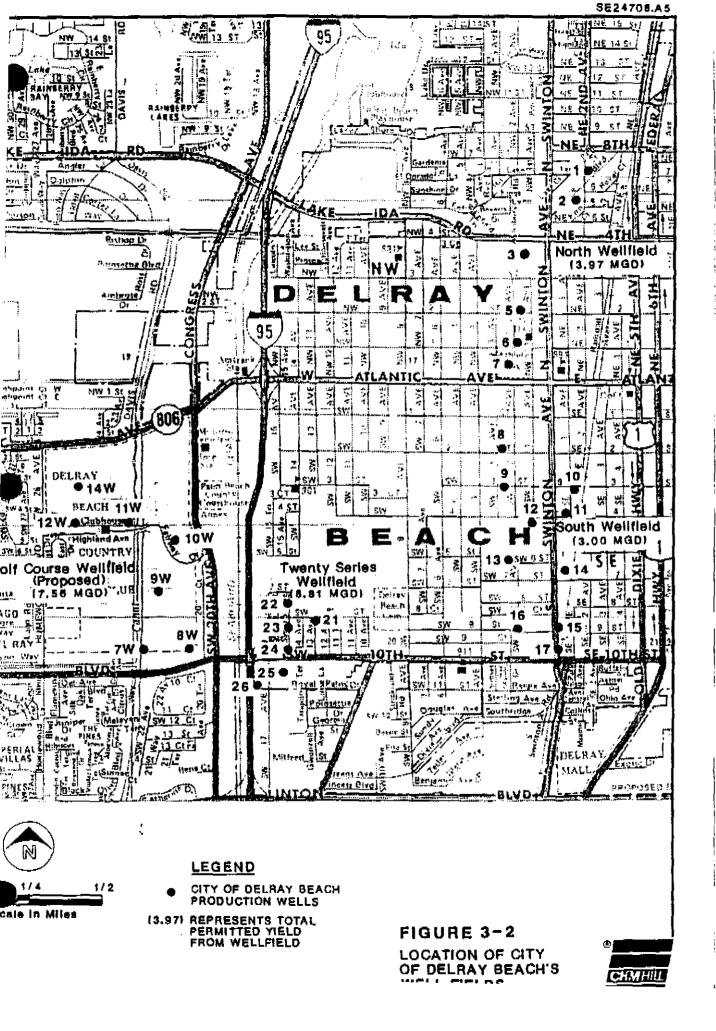
results of a private well inventory were obtained from PBCHD. This study showed that private wells are located h of S.W. 10th Street along Old Germantown Road and Poinia Drive. This area is south-southwest of the Aero-Dri erty and suspected spill site. Nine private wells were >led by PBCHD and analyzed for purgeable organics by EPA iod 624. The approximate locations of these wells are 'n in Figure 3-1. None of the contaminants detected at Aero-Dri site were observed in these samples. The anaical results of these samples are contained in Appendix B.

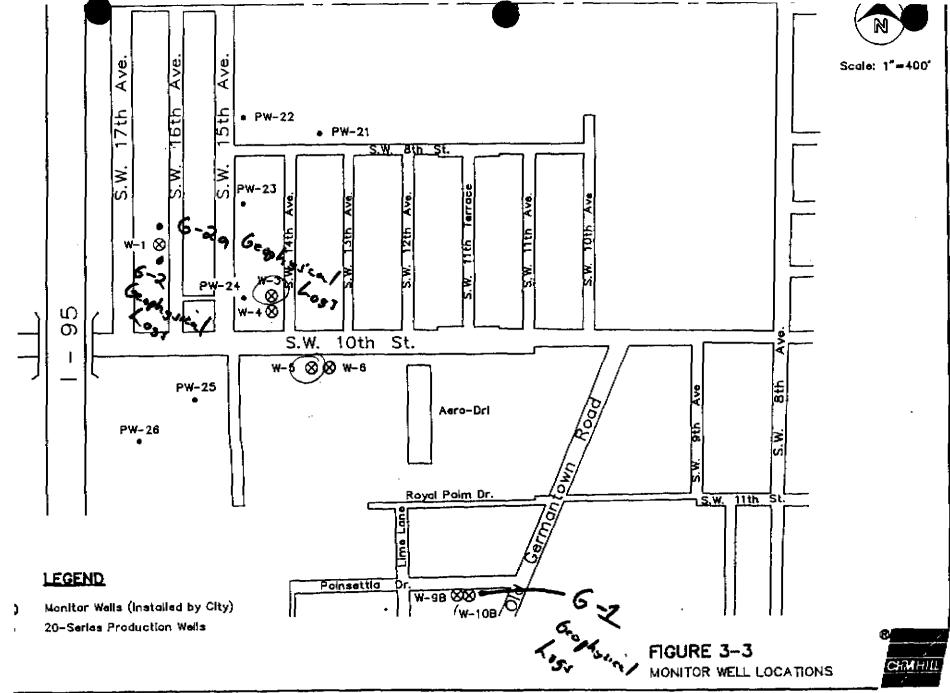
CALCER OF

7 1:**

City of Delray Beach currently operates three well 1ds, the North, South, and 20-Series Wells. A fourth 1 field is currently under construction. These well 1ds are shown in Figure 3-2. The North and South Well 1ds are located along Swinton Avenue, from N.E. 8th 1ds are located along Swinton Avenue, from N.E. 8th 1ds et to S.E. 10th Street. These two well fields consist 17 production wells with a combined capacity of approxitely 13 mgd. The City, however, has been limited on its 17 ng from some of these wells by the SFWMD because of 11 water intrusion problems. Some of the wells are out of 12 rvice due to mechanical problems. Well 16 from the South 11 Field is the closest to Aero-Dri. It is located proximately 4,000 feet east of Aero-Dri.


e Golf Course Well Field is currently under construction the Delray Beach Municipal Golf Course, which is located st of Interstate 95 and the 20-Series Well Field. This 11 field will consist of seven wells located between Atlanc Avenue and Lowson Boulevard. The Golf Course Well Field 11 have a permitted capacity of 7.5 mgd and is scheduled be in operation by early 1989. The closest of these wells Aero-Dri is 8W which is about 2,600 feet west of Aero-Dri.


2 GEOPHYSICAL LOGGING


nitor wells were installed as part of the preliminary ntamination assessment. During the drilling of the monitor lls, geophysical logging was conducted to help describe e stratigraphic conditions. Two logs were run, the natural mma ray and the single point electric. The natural gamma \neq log detects the presence of clay and silt while the sine point electric log yields qualitative changes in sediment rmeability throughout the geologic profile.

• upper sediment layers (strata) in the study area consist inly of unconsolidated sand and shell. Deeper strata may

3-1

The second site of the monitor wells and to identify poential confining layers which would affect the migration of ontamination.

eophysical logging was conducted on two test boreholes ocated near monitor well W-1 and monitor wells W-9B and -10B (Figure 3-3). Borehole G-1, located near W-9B and -10B, was drilled to a depth of 202 feet and logged to a epth of 199 feet. Difficulties occurred during construcion of test borehole G-2, which was located near W-1. This orehole was therefore abandoned and replaced with G-2a. -2a was drilled to 205 feet and logged to 202 feet. The amma ray and electric logs are presented in Appendix C.

ased on the drill cutting analysis and the geophysical logs, slight formation change was encountered between depths of 05 and 135 feet. This change represents a transformation rom the fine-grained sands of the upper 100 feet of the urficial aquifer to the coarser-grained sandstone and shell f the production zone of the well field (approximately 100 150 feet bls). No confining layers were detected, there-, a direct connection exists between the upper sands and he deeper, more permeable production zone within the study rea. Chemicals disposed of at the land surface would appear by have no geological impediment for migrating through the oper sediments to the more permeable production zone.

.3 MONITOR WELL INSTALLATION

In monitor wells were proposed in the Preliminary Contamiation Assessment Plan (PCAP) (CH2M HILL, May 1988), however, ally seven of the proposed wells were actually installed. No of the proposed monitor wells (W-7 and W-8) were to be ocated just west of the Aero-Dri property. Consultants for aro-Dri had installed monitor wells near this location; herefore, W-7 and W-8 were eliminated from the plan to yoid duplicating Aero-Dri's efforts.

No monitor wells (W-1 and W-2) were to be placed west of the 20-Series Well Field. These wells were anticipated to background wells screened from 150 to 160 feet and 190 to 0 feet, respectively. These monitor wells were to be conructed using surface casing to prevent transporting conmination downward to the deeper parts of the aquifer should ntamination be present in the upper sediment. Unexpected bsurface conditions at this location, however, would have the installation of the deeper monitor well cost proThat only one monitor well would be installed in this location. Geophysical logs were used to aid in locating the well screen in a highly transmissive zone near the 150-foot depth. This approach would help insure that the monitor well was located in the most likely path which contaminants would be transported.

Monitor wells W-9 and W-10 shown in Figure 3-1 of the PCAP were proposed to be located at the corner of Poinsetta Drive and Old Germantown Road. These two monitor wells were actually installed about 200 feet west of this intersection. The revised locations have been designated W-9B and W-10B in The proposed screen depths of these two monitor this report. wells were 60 to 70 feet and 100 to 110 feet, respectively. Information obtained after the PCAP was published indicated that Aero-Dri consultants were installing monitor wells south and southeast of the suspected spill site on the Aero-Dri property. The screen depths for their wells ranged from 40 to 90 feet. It was decided, therefore, that W-9B and W-10B should be deeper than was proposed to compliment the information obtained from the Aero-Dri monitor wells and present a more complete assessment of the vertical profile. The screen depths for W-9B and W-10B were increased to depths of 140 to 150 feet and 120 to 130 feet, respectively.

The monitor wells were installed by the mud rotary drilling technique. The wells were constructed with 2-inch Schedule 40 PVC casing and screen. The completion diagrams for the seven monitor wells are given in Appendix D. Table 3-1 summarizes the construction details for these monitor wells.

3.4 SOIL SAMPLING

Soil samples were collected during installation of two monitor wells. Soil from the first boring (B-1) was taken during the installation of monitor well W-5 and soil from the second boring (B-2) was obtained during the installation of monitor well W-3 (Figure 3-3). Two samples were obtained at each boring. The first sample was collected at 12 to 14 feet bls while the second was collected at 14 to 16 feet bls. The samples were analyzed for volatile organic compounds (VOCs) and total organic carbon (TOC). The TOC measurements will be used in subsequent discussions regarding contaminant fate and transport.

No VOCs were detected in soil samples from this shallow depth. The TOC of the soils ranged from 126 mg/kg of soil to 253 mg/kg of soil. The results of these analysis are contained in Appendix E.

Table 3-1 MONITOR WELL CONSTRUCTION DATA

į.

1 a 1

Well No.	Diameter (inches)	Estimated Cased Interval (feet)	Screened Interval (feet)	Gravel Pack Interval (feet)	Bentonite Seal (feet)	Cement Interval (feet)
W-1	2	0-145	145-155	140-155	1	0-139
W-3	2	0-110	110-120	105-120	1	0-104
W-4	2	0-140	140-150	135-150	1	0-134
₩-5	2	0-90	90-100	85-100	1	0-84
w-6	2	0-130	130-140	125-140	1	0-124
w-9B	2	0-140	140-150	135~150	1	0-134
W-10B	2	0-120	120-130	115-130	1	0-114

ί.

`

Table 3-2 SAMPLE CONTAINERS, PRESERVATION TECHNIQUES, AND HOLDING TIMES

Sample Parameter	<u>Container</u> ^a	Preservation Technique ^{b,c}	Maximum Holding Time ^d
Metals (except Chromium (VI) and Mercury]	P,G	HNO ₃ to pH <2	6 months
Chromium (VI)	P,G	Cool to 4°C	24 hours
Mercury	P,G	HNO ₃ to pH <2	28 days
Purgeable Halocarbons ^f	G, Teflon-lined septum	Cool to 4°C	14 days
Purgeable _f Aromatics	G, Teflon-lined septum	Cool to 4°C HCl to pH <2 ^g	14 days
Base/Neutral Extractables	G, Teflon-lined septum	Cool to 4°C	7 days until extraction, 40 days after extraction
Acid Extractables ^f	G, Teflon-lined septum	Cool to 4°C	7 days until extraction, 40 days after extraction
Pesticides ^h	G, Teflon-lined cap	Cool to 4°C pH 5-9	7 days until extraction, 40 days after extraction
CN ⁻	P,G	Cool to 4°C, NaOH to pH >12	14 days ⁴
EDB	G, Teflon-lined septum	Cool to 4°C	14 days

^aPolyethylene (P) or Glass (G).

^bSample preservation should be performed immediately upon sample collection. For composite chemical samples each aliquot should be preserved at the time of collection. When use of an automated sampler makes it impossible to preserve each aliquot, then chemical samples may be preserved by maintaining at 4°C until compositing and sample splitting is completed.

^CWhen any sample is to be shipped by common carrier or sent through the United States Mails, it must comply with the Department of Transportation Hazardous Materials Regulations (49 CFR Part 172). The person offering such material for transportation is responsible for ensuring such compliance. For the preservation requirements of Table 6-1, the Office of Hazardous Materials, Materials Transportation Bureau, Department of Transportation has determined that the Hazardous Materials Regulations do not apply to the following materials: hydrochloric acid (HCl) in water solutions at concentrations of 0.04% by weight or less (pH about 1.96 or greater); nitric acid (NHO₃) in water solutions at concentrations of 0.15% by weight or less (pH about 1.62 or greater); sulfuric acid (H₂SO₄) in water solutions at concentrations of 0.35% by weight or less (pH about 1.15 or greater); and sodium hydroxide (NaOH) in water solutions at concentrations of 0.080% by weight or less (pH about 12.30 or less).

^dSamples should be analyzed as soon as possible after collection. The times listed are the maximum times that samples may be held before analysis and still be considered valid. Samples may be held for longer periods only if data on file show that the specific types of samples under study are stable for the longer time, and has received a variance from the U.S. EPA Regional Administrator. Some samples may not be stable for the maximum time period given in the table. A permittee, or monitoring laboratory, is obligated to hold the sample for a shorter time if knowledge exists to show that this is necessary to maintain sample stability.

Maximum holding time is 24 hours when sulfide is present. Optionally all samples may be tested with lead acetate paper before pH adjustments in order to determine if sulfide is present. If sulfide is present, it can be removed by the addition of cadmium nitrate powder until a negative spot test is obtained. The sample is filtered and then NaOH is added to pH 12. Table 3-2 (Continued)

 f Guidance applies to samples to be analyzed by GC, LC, or GC/MS for specific compounds. ^gSample receiving no pH adjustment must be analyzed within seven days of sampling.

^hWhen the extractable analytes of concern fall within a single chemical category, the specified preservative and maximum holding times should be observed for optimum safeguard of sample integrity. When the analytes of concern fall within two or more chemical categories, the sample may be preserved by cooling to 4°C, reducing residual chlorine with 0.008% sodium thiosulfate, storing in the dark, and adjusting the pH to 6-9; samples preserved in this manner may be held for seven days before extraction and for forty days after extraction. Exceptions to this optional preservation and holding time procedure are noted in footnote e (re: the requirement for thiosulfate reduction of residual chlorine).

 $^{\rm i}$ For the analysis of diphenylnitrosamine, add 0.008% ${\rm Na}_2{\rm S}_2{\rm O}_3$ and adjust pH to 7-10 with NaOH within 24 hours of sampling.

Petrachloroethene and trichloroethene were detected in water samples from Monitor Wells W-3, W-4, W-5, and W-6. These four wells are located between the suspected spill site and the 20-Series Wells. Tetrachloroethene and trichloroethene were not detected in W-1 or in W-9B and W-10B. Monitor Well W-1 is located west of the 20-Series Well Field, whereas W-9B and W-10B are located south-southeast of Aero-Dri. These results are summarized in Table 3-3. Appendix F contains the laboratory analysis for the groundwater samples collected from the monitor wells installed for this study.

None of the pesticides contained in EPA Method 608 were detected in the samples from Monitor Wells W-3 and W-5. Priority pollutant metals were also not detected in these wells.

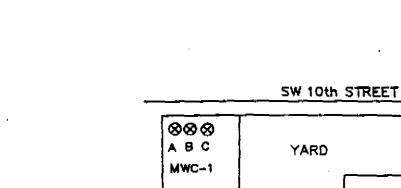
Benzene, toluene, ethylbenzene, and xylene were detected in the October 30, 1987, samples from MW-1 and MW-2 at the Aero-Dri site. None of these compounds were detected in the offsite monitor wells.

3.7 SPLIT SAMPLING

At the direction of the City, CH2M HILL obtained samples from monitor wells installed by consultants for Aero-Dri. Wo such split sampling events occurred. The first was on ay 25, 1988 and the second was on August 4, 1988. During the first split sampling activity, 14 monitor wells located on the Aero-Dri site plus Production Wells 22, 23, 24, and 25 were sampled. Seven additional monitor wells were installed after the first split sampling event. Four of these additional monitor wells were off the Aero-Dri property. Figure 3-4 shows the location of the on-site monitor wells and Figure 3-5 shows the location of off-site monitor wells installed by Aero-Dri's consultant.

.

All samples collected during the May 25, 1988 split sampling were analyzed by EPA Methods 601 and 602. In addition, the sample from MW-2 was analyzed for base neutral and acid extractable compounds (EPA Method 625) and priority pollutant metals. The highest contamination was detected in samples from MW-1 and MW-2. These samples contained 15,000 ppb and 53,000 ppb tetrachloroethene, respectively. In general, contamination was detected in monitor wells located west and northwest of the Aero-Dri building. Contamination was not detected in samples from monitor wells located south, southeast and east of the Aero-Dri building. No significant levels of base neutral, acid extractable or priority pollutant metals were detected in the sample taken from MW-2. Table 3-4 summarizes the tetrachloroethene and trichloroethene concentrations for this sampling event. Appendix G ontains the laboratory analysis for the May 25, 1988, split Sampling event.


Table 3-3 SUMMARY OF PERTINENT GROUNDWATER ANALYSIS

	<u> </u>	on (ppb)
Well No.	Tetrachloroethene	Trichloroethene
<i>₩</i> -1	BMDL	BMDL
₩ - 3	1,200	60
₩-4	47	3.2
₩-5	250	87
W-6	650	13
W-9B	BMDL	BMDL
W-10B	BMDL	BMDL

.

Note: BMDL = Below Method Detection Limit

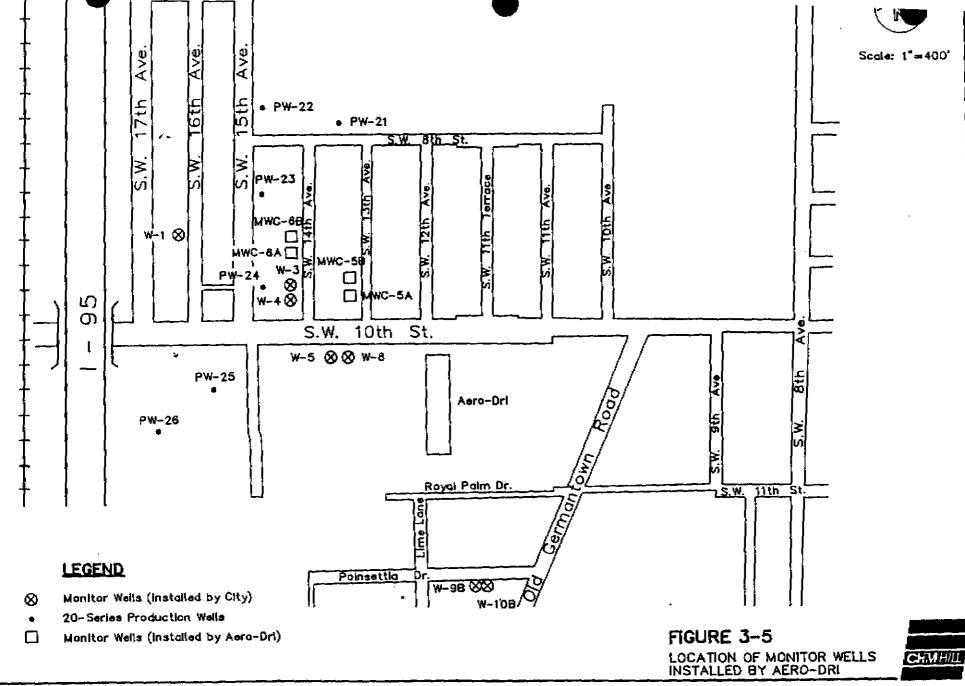
ŝ

5-88

Scole: 1"=100"

DRIVEWAY YARD ⊗ M₩-4 PARKING AREA AERO-DRI BUILDING 88 c в MWC-4 MW-6 ⊗⊗ |MW-5 $\mathbf{v} \in$ MW-2 🛇 MM-3 MW-1 🛇 8 STORA o MWC-3 STORAGE 8 A 888 DRUN MWC-2 ⊗ ⊗ ABC ORUM STORAGE 888

LEGEND


8

MONITOR WELL (Installed by Aero-Dri)

ζ

FIGURE 3-4 MONITOR WELL LOCATIONS ON

ELRAY.OWG

Table 3-4 SUMMARY OF PERTINENT GROUNDWATER ANALYSIS FOR SPLIT SAMPLES OBTAINED FROM AERO-DRI CONSULTANT

	Concentration, (ppb)			
	<u>Tetrachloroe</u>		<u>Trichlore</u>	thene
<u>Well No.</u>	5/25/88 P+M	8/4/88 pint	5/25/88 Der	8/4/88 Demtte
MW-1	15,000 430	3,700 2190	450 1.	96 123
MW - 2	53,000 59100	63,000 3180	<5,000 279	<5,000 202
MW-3	220 237	29 BMPL	220 34.7	第一29新代 152)
MW-4	NI ~t	BMDL 616	NI ~ [_]	BMDL BMDL
MW-5	NI ~F	24 597	NI ^{NI}	BMDL BMDL
MW-6	NI VI	2,800 BANDL	NI ~1	<100 1740
MWC1-A	4,100 3460	2,900 1550	<1,000 円辺	<100 3 <i>5.5</i>
MWC1-B	1,800 1370	1,100 1170	22 7.2	<100 /z.x
MWC1-C	1 6 BMDL	BMDL BMPL	BMDL GADL	BMDL BANC
MWC2-A	BMDL BMOL	BMDL . 2.6	BMDL BMOL	BMDL BMDL
MWC2-B	BMDL BMOL	1.7 4.7	BMDL 8mb-	BMDL BRPL
MWC2-C	BMDL BMDL	BMDL BMPL	BMDL PMPL	BMDL BMDL
MWC3-A	BMDL BMOL	BMDL 7.	BMDL #Mph-	BMDL BMDL
MWC3-B	BMDL 8-0L	BMDL BMDL	BMDL BADE	BMDL BMDL
MWC4-A	BMDL BMOL	3.0 4.0	BMDL #MOL	BMDL PMDL
MWC4-B	BMDL BMPL	4.1 4.5	BMDL BMOL	1.2 68
MWC4-C	BMDL 3.4	7.4 (3.)	BMDL BMPL	1.1 BMD4-
MWC-5A	NI NL	1,300 (350	NI ^{~1}	<100 z7.3
MWC-5B	NI ~r	310 ∋ ≁ 9	NI ^{NI}	<10 4.9
MWC-6A	NI 🖊 É	560 349	NI «c	<10 (m.)
MWC-6B	NI VI	7.3 3.3	NI [~] I	BMDL EMPL
PW-22	BMDL NN	BMDL BMOL	1.2 ~4	BMDL BMP4
PW-23	21 ~*	28 12.2	BMDL ~4	4.6 2.2
PW-24	190 MA	480 537	22 NA	77 69
PW-25	BMDL NA	360 303	BMDL **	39 38.1
PW-26	NA NA	BMDL BMDG	NA ~A	BMDL BMDL

Note: NI = Well not installed at the time of sampling BMDL = Below Method Detection Limit

NA = Not Analyzed

*

Table 3-4

SUMMARY OF PERTINENT GROUNDWATER ANALYSIS FOR SPLIT SAMPLES OBTAINED FROM AERO-DRI CONSULTANT

	Concentration, (ppb)			
	<u>Tetrachloro</u>	ethene		thene
<u>Well No.</u>	5/25/88 Ptrin	- 8/4/88 DIM	5/25/88 Dtmls	8/4/88 Dfr 10 10 10 10 10 10 10 10 10 10 10 10 10 1
MW - 1	15,000 -1410	3,700 Z190	450	96 ¹²³
MW-2	53,000 55100	63,000 ans	<5,000 z71	<5,000 2°2
MW – 3	220 237	29 MMDL	£220a347	1520 JS
MW-4	NI NI	BMDL 614	NI ~=	BMDL BAPL
MW - 5	NI ~r	d 24 597	NI ^{NI}	BMDLŢ₽⋪⋫∕⊾
MW - 6	NI NI	2,800 BMDL	NI ~r	₩<100 [₩] 17601
MWC1-A	4,100 3440	2,900 1550	<1,000 !!?	<100 3 <i>5</i> .5
MWC1-B	1,800 1330	1,100 1170	22 7.2	<100 h.m
MWC1-C	1.6 BMDL	BMDL SMPL	BMDL GMDL	BMDL BNDL
MWC2-A	BMDL AMOL	5 BMD101 2.6	BMDL BMDL	BMDL BMPL
MWC2-B	BMDL BMDL	1.7 4.7	BMDL Brank	BMDL BROL
MWC2-C	BMDL BMDL	BMDL BMPL	BMDL OMPL	BMDL BMDL
MWC3-A	BMDL BMDL	BMDL	BMDL BMpL	BMDL BMDL
MWC3-B	BMDL BHOL	BMDL BMDL	BMDL BMAL	BMDL BMDL
MWC4-A	BMDL BMOL	3.0 4.0	BMDL PMPL	BMDL FMDL
MWC4-B	BMDL MMPL	4.1 :4.5	BMDL BMDL	1.2 61
MWC4-C	BMDL 3.4	7.4 (3.)	BMDL PMPL	1.1 BAPL
MWC-5A	NI NI	1,300 1750	NI "I	<100 27.3
MWC-5B	NÍ ~Ľ	310 349	NI MI	<10 < 9
MWC-6A	NI NE	560 341	NI «t	× (10 19.)
MWC-6B	NI NE	7.3 3.5	NI ~±	BMDL EMPL
PW-22	BMDL ~ N	BMDL BMDL	1.2 🚧	BMDL BMDC
PW-23	21 **	28 12.2	BMDL ~4	4.6 2.2
PW-24	190 🗛	480 537	22 NA	77 69
PW-25	BMDL NA	360 303	BMDL *A	39 38.1
₽W-26	NA NA	BMDL BMDL	NA NA	BMDL BARL

Note: NI = Well not installed at the time of sampling BMDL = Below Method Detection Limit NA = Not Analyzed

× ...

<

DBT119/012

Samples collected on the August 4, 1988 split sampling activity were analyzed only by EPA Method 601 and 602. The highest contamination was measured in MW-1 and MW-2. The concentration of tetrachloroethene in these samples were 3,700 ppb and 63,000 ppb, respectively. High concentrations of tetrachloroethene were also detected in monitor wells located west and northwest of the Aero-Dri building. Low levels of tetrachloroethene were also detected in three monitor wells east of the Aero-Dri building. Monitor wells installed off-site by Aero-Dri's consultant were also sampled during this split sampling event. The results of these analyses for tetrachloroethene and trichloroethene are summarized in Table 3-4. Appendix H contains the laboratory analysis for the August 4, 1988 split sampling event.

3.8 FATE AND TRANSPORT OF CONTAMINANTS

The factors which control the movement of contaminants in the subsurface primarily include hydrodynamic, abiotic, and biotic processes. Each of these processes include parameters which promote or retard contaminant transport rates. The magnitude of each of the transport processes and consequently the contribution of each process in influencing the rate of transport is dependent on contaminant and soil/groundwater system characteristics. Hydrodynamic processes include advection and dispersion. Advection is the movement of contaminants at a rate equal to the groundwater flow. Dispersion describes the spreading of a contaminant plume as the groundwater follows a tortuous path through the pore spaces between soil particles. The contaminant concentration is diluted during the dispersion process.

Abiotic processes describe the nonbiological interactions between the contaminant and the subsurface environment. These processes include adsorption/desorption, ion exchange, solution/precipitation, oxidation/reduction, and acid-base reactions. The most important of these interactions in cases involving organic compounds is typically adsorption/ desorption.

Adsorption of organic chemicals in soil has been estimated from physical and chemical properties of the aquifer and the contaminant (Karickhoff, Brown and Scott, 1979). The sand fraction was much less efficient in adsorption studies than was the silt and clay fractions. The effectiveness of adsorption in retarding the movement of organic compounds in the subsurface can be estimated using the soil organic fraction content and the contaminant octanol/water partition coefficient. The following will discuss adsorption as a mechanism for retarding the migration of tetrachloroethene in soil at the 20-Series Well Field. Organics present in soil at a level not exceeding 60 to 70 percent of their aqueous solubility follows a linear adsorption isotherm. This relationship is given as follows:

$$X = K_{p}C$$
 (3.8a)

where:

X = sorbate concentration on the sediment (ppb)

 $K_p = partition coefficient (dimensionless)$

C = equilibrium sorbate concentration in solution (ppb)

The aqueous solubility of tetrachloroethene is approximately 200,000 ppb. All samples collected during this study contained tetrachloroethene concentrations less than 60 percent of the solubility. Therefore, Equation 3.8a should be valid for this study. The term sorbate refers to the organic chemical of interest. The partition coefficient, K, is a measure of the affinity of the individual compound for a particular aquifer material. K may therefore have a different value for each organic compound and soil system. K however, has been shown to be related to the organic content of the soil. This relationship is given as follows:

$$K_{p} = (K_{oc})(oc)/(1 \times 10^{6})$$
 (3.8b)

where:

K = organic carbon partition coefficient (dimensionless) oc = organic carbon content of soil (mg/kg soil)

The organic carbon partition coefficient, K_{OC} , is a measure of the tendency for an organic compound to partition between water and organic matter in soils. The K_C can be estimated from the octanol/water partition coefficient, K_O. The K_O is an experimentally determined parameter which is dependent on the organic compound's physical properties. The relationship between K_O and K_O given by Karickhoff, et al. (1979) is given below:

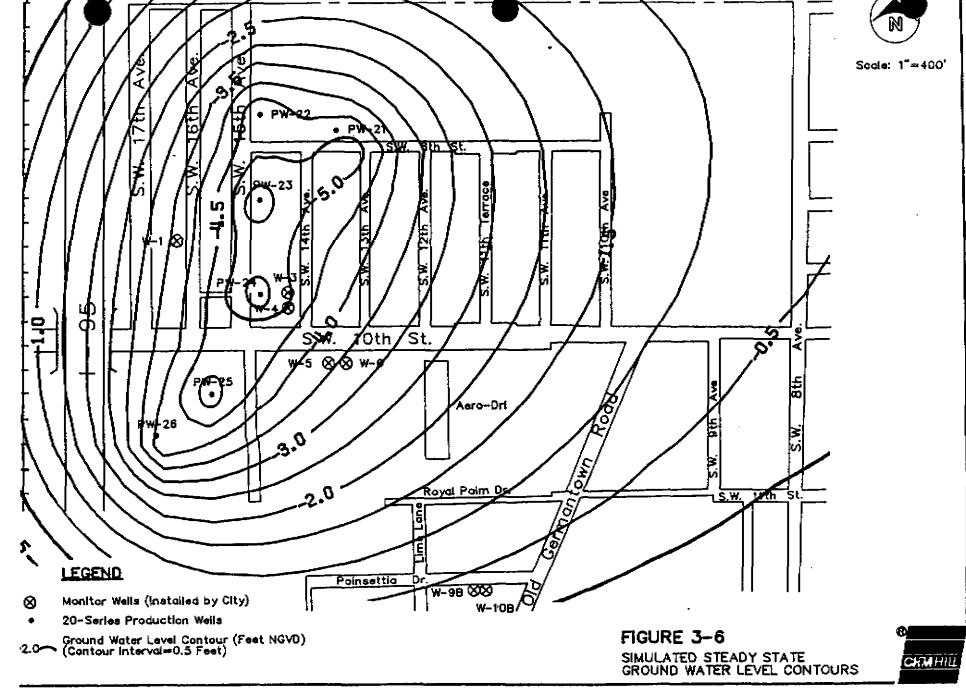
$$\log K_{oc} = \log K_{ow} - 0.21$$
 (3.8c)

where:

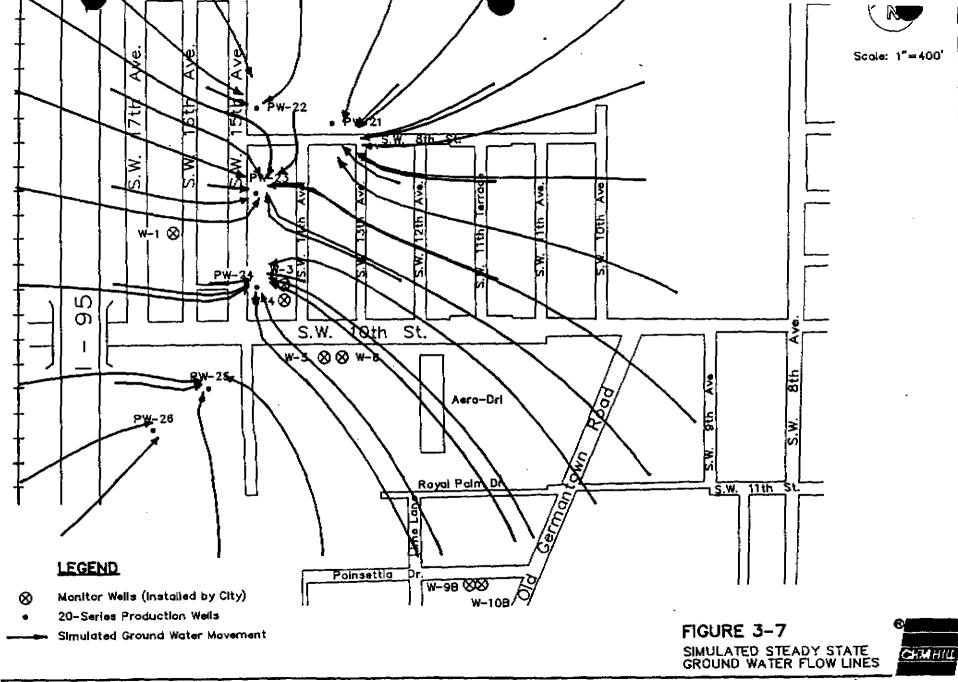
K = octanol/water partition coefficient
(dimensionless)

Using these relationships with the primary contaminant in the 20-Series Well Field, tetrachloroethene, a preliminary estimate of the adsorption characteristics in mitigating the movement of tetrachloroethene from a spill source can be determined. The log octanol/water partition for tetrachlorothene is 2.60 (Canter, Knox, and Fairchild, 1987). Substituting this value into equation 3.8c above yields a logK of 2.39 (K = 245). The mean organic carbon content of the four soil Borings was 180 milligrams (mg) organic carbon per kilogram (kg) of soil. Substituting the values of K and organic carbon into equation 3.8b yields a K equal to 0.044. In the soil system at 20-Series Well Field, therefore, only about 4 percent of the tetrachloroethene would be expected to adsorb to the aquifer material while the remainder would flow with the groundwater.

Biological processes can also affect the fate of organic compounds in the subsurface environment. At the Aero-Dri site, tetrachloroethene and trichloroethene were detected in the groundwater. Analysis of water from the production wells indicate the presence of cis-1,2,-dichloroethene and trans-1,2,-dichloroethene in addition to tetrachloroethene and trichloroethene. The two dichloroethene isomers have been shown to be degradation products of tetrachloroethene and trichloroethene in other studies (Wood, Russell and Payan, 1981; and Wilson, Smith and Rees, 1986). The presence of cis-1,2,-dichloroethene and trans-1,2,-dichloroethene in the 20-Series Well Field samples are likely the result of biological degradation of tetrachloroethene and trichloroethene.

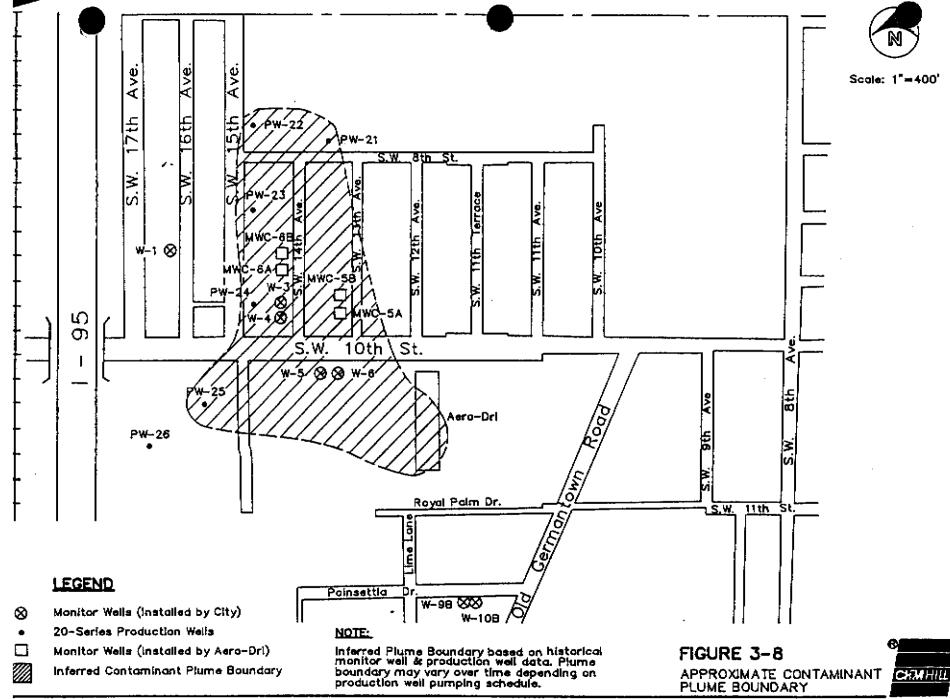

CH2M HILL conducted an evaluation of the groundwater flow in the vicinity of the 20-Series Well Field (CH2M HILL, September 1988). The results of this study are contained in Appendix I. The results of this groundwater flow modeling simulation indicated that the zone of influence of the 20-Series Well Field included the Aero-Dri property and the suspected spill site. Chemicals spilled at the site would therefore be drawn to the production wells with the groundwater flow particularly since no silty or clayey layers were detected during the monitor well drilling which would retard the movement of contaminants into the transmissive production zone. Figure 3-6 shows the simulated steady state groundwater contours and Figure 3-7 shows the associated groundwater flow lines from the modeling study. The actual pumping scenario varies depending on the operation of the WTP. The actual pumping scenario also influences the movement of the contaminant plume. For example, if Well 24 was shut down, the contamination would be expected to be drawn toward Wells 25 and 23. This simulation assumed Wells 21, 22, 23, 24, and 25 were pumping. Actual groundwater elevations may vary from the simulated values depending on among other things the City pumping schedule.

Depth-to-water measurements were collected at the time the monitor wells were sampled. By using the casing elevation determined during the site survey, the water level elevations in each monitor well could be determined (Table 3-5). The water level elevations showed that the groundwater flows


Table 3-5 WATER LEVEL MEASUREMENTS (SEPTEMBER 1, 1988)

<u>Well No.</u>	Casing Elevation (feet_NGVD)	Depth-to-Water (feet)	Water Elevation (feet NGVD)
W-1	14.60	17.14	-2.54
W-3	12.92	16.85	-3.93
W-4	12.55	16.63	-4.08
W- 5	14.04	15.85	-1.81
W-6	14.45	16.57	-2.02
W-9B	15.78	14.42	1.36
W-10B	15.91	14.38	1.53

ί


Y.DWG

RAY.OWG

west-northwest from W-9B and W-10B to W-3 and W-4. In addition, groundwater flows east from W-1. These data indicated that the pumping from the 20-Series Well Field controls the flow of groundwater between and including the suspected spill site. The actual water level measurements were slightly less than the simulated steady state groundwater levels. However, the direction of groundwater flow as indicated by the actual water level measurements agreed with the simulated groundwater modeling results. The groundwater flow modeling results plus the monitor well and production well analytical results were used to develop the estimated location of the contaminant plume (Figure 3-8).

. . .

Section 4 SUMMARY AND CONCLUSIONS

The summary and conclusions listed below are made based on the information presented in this study:

- 1. Geophysical logs indicated that soils in the vicinity of the 20-Series Well Field contained fine-grained sands in the upper 100 feet of the surficial aquifer and coarser-grained, more-permeable sandstone and shell between 100 and 200 feet. No confining layers were detected that would significantly impede the migration of contamination along the vertical soil profile.
- 2. Groundwater analysis from monitor wells installed in the vicinity of the 20-Series Well Field indicated that contamination was present between Well 24 and the Aero-Dri property. Contamination was not detected in monitor wells southeast of the Aero-Dri property or in the monitor well west of Well 24. Private wells sampled by PBCHD that are located south-southeast of the suspected spill site were not contaminated with compounds detected at the Aero-Dri site.
- 3. Samples obtained during two split sampling events indicated that severe contamination existed on the Aero-Dri site. The contamination appeared to be limited to areas west and northwest of the Aero-Dri building.
- 4. Based on an estimate of the contamination fate and transport aspects, adsorption of tetrachloroethene is minimal in the soil at the 20-Series Well Field. Tetrachloroethene, therefore, remains in solution and may migrate with the flow of groundwater. A previous study conducted by CH2M HILL that simulated groundwater flow indicates that the influence zone of the 20-Series Well Field includes the Aero-Dri property. Water level measurements taken from the monitor wells confirmed the results of the computer simulation model. Tetrachloroethene contamination at the Aero-Dri site, therefore, would migrate to the 20-Series Wells.

Section 5 REFERENCES

Canter, Larry W., Robert C. Knox, and Deborah M. Fairchild. <u>Ground Water Quality Protection</u>. Lewis Publishers, Inc. Chelsea, Michigan. 1987.

CH2M HILL. Ground Water Flow Modeling of the 20-Series Well Field. September 1988.

CH2M HILL. <u>Preliminary Contamination Assessment Plan</u>. Prepared for the City of Delray Beach. May 1988.

CH2M HILL. Quality Assurance Project Plan. Prepared for the City of Delray Beach. April 1988.

CH2M HILL. Water Quality Sampling Program for the 20-Series Well Field. August 1988.

Dames and Moore. <u>Preliminary Contamination Assessment</u> <u>Report, Perchloroethylene Spill, Aero-Dri Corporation Site</u>. 1987.

Karickhoff, Samuel W., David S. Brown, and Trudy A. Scott. "Sorption of Hydrophobic Pollutants on Natural Sediments". Water Research, 13, 241-248. 1979.

Land, L. F., H. G. Rodis, and J. J. Schneider. <u>Appraisal of</u> the Water Resources of Eastern Palm Beach County, Florida. Florida Bureau of Geology Report of Investigation 67. 1973.

Wilson, Barbara H., Smith, Garmon B., and Rees, John F. Biotransformations of Selected Alkylbenzenes and Halogenated Aliphatic Hydrocarbons in Methanogenic Aquifer Material: A Microcosm Study," <u>Env. Sci. and Tech., 20</u>, 997-1002. 1986.

Wood, P. R., Long, R. F., and Payan, I. L. <u>Anaerobic Trans-</u> formation, Transport, and Removal of Volatile Chlorinated <u>Organics in Groundwater</u>. Drinking Water Research Center, School of Technology, Florida International University. 1981.

ŝ,

1

Appendix A Results of the Water Quality Sampling Program for the 20-Series Well Field

.

t

TECHNICAL MEMORANDUM

СКМНІЦ

PREPARED BY: CH2M HILL SOUTHEAST, INC.

DATE: August 9, 1988

SUBJECT: Sampling and Analysis of Raw Water from the 20-Series Well Field and Finished Water from the Water Treatment Plant

PROJECT: SEF24708.A2.98

INTRODUCTION

CH2M HILL performed water quality sampling and analysis of raw water from the 20-Series Well Field and finished water from the water treatment plant (WTP) during the period of February 26 to June 17, 1988. This technical memorandum describes the sampling activities and analytical results of this task.

On February 23, 1988, a meeting was held between the City of Delray Beach, Florida Department of Environmental Regulation DER), Palm Beach County Health Department (PBCHD), and South Florida Water Management District (SFWMD). FDER requested that the City analyze water samples from the 20-Series Well Field and the water treatment plant using a proposed a "500-Series" method of analysis. The 500-Series analytical methods are recognized under EPA's Safe Drinking Water Act (SDWA), amended in 1986. EPA Method 524.2 is one of the SDWA-accepted analytical methods utilizing purge and trap cappillary column gas chromotography and mass spectrometry.

On February 25, 1988, the City requested that CH2M HILL begin sampling the 20-Series wells and finished water from the WTP. The 20-Series wells and finished water samples were collected and shipped the following day to CH2M HILL's laboratory in Montgomery, Alabama, where they were analyzed by EPA Method 524.2. Four months of bi-weekly sampling and analysis have been completed since then.

SAMPLING PROTOCOL

Groundwater and finished water sampling, handling, and analysis are conducted according to the procedures specified in the CH2M HILL Quality Assurance Project Plan (QAPP) for the ty of Delray Beach. The QAPP was prepared and submitted FDER in April 1988.

DBT085/066

TECHNICAL MEMORANDUM Page 2 August 9, 1988 SEF24708.A2.98

Sample bottles and containers were prepared according to procedures outlined in <u>Standard Operating Procedures for the</u> <u>Handling and Collection of Groundwater and Surface Water</u> <u>Samples (FDER, 1981).</u> Borosilicate glass bottles were washed with Alconox detergent followed by a liberal tap water and deionized water rinse.

Groundwater samples were collected by the following procedure:

1. Each well was purged prior to sample collection.

- Once the specific conductance, pH, and temperature had stabilized, the purging was completed. A three- to five-well volume purge was usually adequate.
- 3. Samples collected for VOC measurement were completely filled to eliminate air bubbles within the bottle.

The number of field quality control samples was approximately 15 percent of the total number of field samples collected. Field quality control samples consisted of:

- o Travel blanks o Equipment bla
 - o Equipment blanks
 - o Blind duplicate samples
 - o Blind blanks
 - o Blind spikes
 - o Preservation blanks

A description of the required types of containers, preservation techniques, and holding times for handling the environmental samples after collection and prior to analyses is presented in the October 26, 1984, issue of the Federal Register (49 FR 43260, Table II). The information applicable to this project is listed in Table 6-1 of the QAPP. CH2M HILL field personnel labeled the appropriate sample containers indicating the parameter to be analyzed and other information necessary for effective sample tracking. They also added the necessary preservative to each sample vial prior to sampling. Groundwater samples were stored in containers and preserved according to guidelines outlined in the October 26, 1984, Federal Register (49 FR 43260, Table II). TECHNICAL MEMORANDUM Page 3 August 9, 1988 EF24708.A2.98

When samples were shipped by common carrier, they were prepared for shipment in accordance with U.S. Department of Transportation hazardous materials regulations (49 CFR Part 172). All samples were individually wrapped in bubblepack and placed in a cooler with ice packs. Chain-of-custody procedures for sample shipment as described in Section 7 of the QAPP were followed. The maximum holding times presented in Table 6-1 of the QAPP were considered when shipping samples to the laboratory.

DATA COLLECTION AND ANALYSIS

In accordance with the above sampling protocol, CH2M HILL has collected samples from the City's 20-Series Well Field and the WTP for 4 months. The sampling and analysis that have been completed to date are described below.

February 26, 1988--CH2M HILL collected raw water samples from each of the 20-Series wells and from the finished water at the WTP. Samples were analyzed using EPA Method 524.2.

<u>March 4, 1988--CH2M HILL received analytical results from</u> the laboratory via telephone conversation. CH2M HILL relayed information to the City of Delray Beach.

<u>March 7, 1988</u>--CH2M HILL received written analytical results of water quality sampling that was conducted on February 26, 1988. Copies of the analytical results are included in Appendix A.

<u>March 11, 1988--CH2M HILL collected raw water samples from</u> each of the 20-Series wells and from the finished water at the WTP. Samples were analyzed using EPA Method 524.2.

<u>March 14, 1988</u>--Lou DeVillon/FDER, after meeting with the City of Delray Beach, called CH2M HILL and suggested that only the finished water at the WTP be analyzed with the EPA 524.2 Method. CH2M HILL concurred and agreed to continue biweekly sample collection of the City's finished water.

 $t^{\frac{1}{2}} \in \phi$

March 24, 1988--CH2M HILL collected samples from the finished water at the WTP and from the seven golf course wells. EPA Method 524.2 was used to analyze the finished water, and EPA Methods 601 and 602 were selected for the golf course wells samples.

DBT085/066

TECHNICAL MEMORANDUM Bage 4 Sugust 9, 1988 SEF24708.A2.98

April 6, 1988--CH2M HILL received analytical results of water quality sampling conducted on March 11, 1988. Copies of the analytical results are included in Appendix A.

<u>April 8, 1988</u>--CH2M HILL collected a water quality sample of the finished water from the WTP and submitted the sample to CH2M HILL's laboratory for EPA Method 524.2 analysis.

<u>April 20, 1988--CH2M HILL received analytical results of water quality sampling that was conducted on March 24, 1988.</u> Copies of the analytical results are included in Appendix A.

April 22, 1988--CH2M HILL collected samples of raw water from PW-24 in the 20-Series well field and from PW-12W from the Golf Course well field, and finished water from the WTP. PW-12W was resampled and analyzed as per the City's request. A raw water sample from PW-24 was analyzed for pesticides, PCB's using EPA Method 608, and for volatile organic compounds using EPA Method 601. A raw water sample from W-12W was reanalyzed for EPA Method 601/602 compounds, and finished water sample from the WTP was analyzed using EPA Method 524.2.

May 6, 1988--CH2M HILL collected samples from PW-24 and the WTP. Raw water from PW-24 was analyzed for ethylene dibromide (EDB), acid compounds, base/neutral compounds, pesticides, PCBs, and EPA Methods 601 and 602 compounds to aid in determining possible treatment alternatives for the well field. Finished water from the WTP was analyzed for EPA Method 524.2 compounds.

May 12, 1988--CH2M HILL received analytical results of water quality sampling that was conducted on April 8, 1988. Copies of the analytical results are included in Appendix A.

May 20, 1988--CH2M HILL collected a finished water sample from the WTP and submitted the sample for analysis using EPA Method 524.2.

May 25-26, 1988--CH2M HILL, at the request of the City, split samples with Aero-Dri's consultant, Dames and Moore, from PW-22, PW-23, PW-24, PW-25, and from 13 of their onsite monitor wells. All samples were analyzed for EPA Method 601 and 602 compounds, and one sample from one of the monitor wells mas analyzed by EPA Methods 625 (Base Neutral) and 624 colatile Organic Compounds), and for priority pollutant metals.

DBT085/066

TECHNICAL MEMORANDUM Page 5 August 9, 1988 F24708.A2.98

May 31, 1988--CH2M HILL collected a raw water sample from PW-24 to determine the presence of mercury. This analysis was performed after it was made known by Aero-Dri's consultant that mercury was present on the site.

June 1, 1988--CH2M HILL received analytical results of water quality sampling that was conducted on April 22, 1988. The analytical results are included in Appendix A.

June 3, 1988--CH2M HILL collected a finished water sample from the WTP for EPA Method 524.2 analysis.

June 6, 1988--CH2M HILL received analytical results of water quality sampling that was conducted on May 6, 1988. The analytical results are included in Appendix A.

June 13, 1988---CH2M HILL received analytical results of water quality sampling that was conducted on May 20, 1988. The analytical results are included in Appendix A.

June 17, 1988--CH2M HILL collected a finished water sample for the WTP for EPA Method 524.2 analysis.

June 20, 1988---CH2M HILL received analytical results of water quality sampling that was conducted on May 25 and 26, 1988. The analytical results are included in Appendix A.

June 24, 1988--CH2M HILL received analytical results of water quality sampling that was conducted on June 3, 1988. The analytical results are included in Appendix A.

July 6, 1988--CH2M HILL received analytical results of water quality sampling that was conducted on May 31 and June 17, 1988. The analytical results are included in Appendix A.

RESULTS AND CONCLUSIONS

CH2M HILL has compiled a summary of the water quality analytical results from the 20-Series Well Field. The summary is included in Appendix B. In addition to the above-mentioned analytical results, results from Broward Testing's Laboratory weekly sampling activities have been included. TECHNICAL MEMORANDUM Page 6 gust 9, 1988 F24708.A2.98

CH2M HILL has completed the work items as outlined in Task 2 of Addendum 1, and compiled the water quality results from the 20-Series Well Field and water treatment plant into a data base format. We intend to continue to maintain this data base for additional project sample results.

ŝ

INENTY SERIES WELL FIELD

				I				·			
	68/22/87 BROMADD	8/28/87 1ec#					12/05/07 0800AR0	01/25/68 #ROWARD	02/26/ 88 CH2N HILL	03/11/08 CH2N #111	8 8570778 . CH2M HIL
NCL											
										A . A	a <1.
								••-			
									· · ·		
÷ ·											
иE	<1.0	<1.0									
NE	<1.8	<1.0									
NÉ	<1.0	<1.0									
HE	<1.0	<1.0									
HE	<1.0	<1.0	<1.0		<1.0						
NE	<1.0	<1.0	<1.0		<1.0						
NE	<1.0	<1.0	<1.0		<1.0						
NE	<1.0	<1.0	<1.0	<1.0	<1.0						
NĒ	<1.0	<1.0	<1.0	<1.0	<1.0						
NE.	<1.0	<1.0	<1.0	<1.0	<1.0						
HE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0				
3.0	<t.0< td=""><td><1.0</td><td><1.0</td><td><1.0</td><td><1.0</td><td><1.0</td><td></td><td></td><td></td><td></td><td></td></t.0<>	<1.0	<1.0	<1.0	<1.0	<1.0					
7.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0					
HE	<1.0	<1.0	<1.0	<1.0	<1.0						
NE	<1.0	<1.0	<1.0	<1.0	<1.0						
NE	<1.0	<1.0	<1.0	<1.0	<1.0						
NE	<1.0	<1.0	<1.0	<1.0	<1.0						
NE	<1.0	<1.0	<1.0	<1.0	<1.0						
NE	<1.0	<1.0	<1.0	<1.0	<1.0						
ME	<1.0	<1.0	<1.0	. <1.0	<1.0						
3.0	35	3.6	35	0.05	29	58.7	64.8	30.3	22		
		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
							<1.0	<1.0	<1.0	<1.0) <1.
) 1
	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NCL NE <1.0 NE <1.0	NCL IECK NE <1.0	BROWARD TECH BROWARD NCL	NCL NCL NE <1.0	NCL NCL NE <1.0	NCL NCL NE <1.0	BROWARD TECH BROWARD MCGINNES BROWARD SAGUARD GROWARD NCL	NGL DECMADD DECMADD MCGINNES DROWADD SACUARD BROWARD BROWARD <thb< td=""><td>NCL NCL NE <1.0</td> <1.0</thb<>	NCL NCL NE <1.0	NCL NCL NE <1.0

.

•

.

NOTES: UNITS = UG/L OR PPB EPA METHOD = 601 NA = NOT ANALYZED NE = NOT ESTABLISHED NS = NOT ESTABLISHED

.

.

SAMPLING DATE: AMALYTICAL LABORATORY:		08/22/87 BROMARD	8/28/87 Broward	9/21/87 Broward	9/25/87 MCGENNES	10/3/87 BROWARD	10/30/87 BROWARD	12/5/87 Broward	1/25/88 Broward	2/26/88 CH2M H1LL	3/11/88 CH2N HILL	5/7/88 CH2M XILL	7/31/86 BROWARD
PARAMETER	NCL												
BRONCO I CHLOROMETHANE	NE.	<1.0	<1.0	<1.0		<1.0	<1.0	<1.0	<1.0	<1.0	<1,0	<1.0	<1.0
BRONOFORM	NE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.6
BROHORETHANE	NE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	4.1
CARBON TETRACHLORIDE	3.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
CHLOROBENZENE	NE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
CHLOROETHANE	NE	<1.0	<1.0	<1.0		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2-CHLOROETNYLVLNYL ETHER	MĘ	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
CHLOROFORM	NE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
CHLOROMETHANE	NE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
D [BROHOCKLOROHE] HANE	NE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-DICHLOROBENZENE	NE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,3-DICHLOROBENZENE	μE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,4-DICHLOROBENZENE	HE .	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
DICHLORODIFLUOROMETHANE	HE.	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-01CHLORDETHANE	NE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-OICHLORDETHANE	3.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-DICHLOROETHENE	7.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
CIS-1, 2-DICHLOROETHENE	NE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
TRANS-1,2-DICHLOROETHENE	NE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	24	<1.0
1,2-DICHLOROPROPANE	NE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
CIS-1,3-DICHLOROPROPENE	WE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
TRANS-1, 3-DICHLOROPROPENE	WE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
NETWYLENE CHLORIDE	NE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	5.9	<1.0	<1.0
1,1,2,2-TETRACHLOROETNANE	NE	<1.0	<1.0	0.65	0.65	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	140	<1.0
TÊTŘAČIHLOROETHENE	3.0	35	3.6	35	0.05	29	58.7	64.8	30.3	22	2.9	110	<1,0
1,1,1-TRICHLOROETHANE	200.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	57	<1.0
1,1,2-TRICHLOROETHANE	NE	<1.0	<1.0	<1.0		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
TRICHLOROETHENE	3.0	<1.0	0.5	0.51	0.51	<1.0	<1.0	<1.0	1.3		<1.0	14	<1.0
TRICHLOROFLUOROHETHANE	NE	<1.0	<1.0	<1.0		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
VINYL CHLORIDE	1.0	<1.0	<1.0	<1.0		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0

.

.

•

.

NOTES: UNITS = UG/L OR PPB EPA METHOD = 601 NA = NOT ANALYZED NE = NOT ESTABLISHED NS = NGT SAMPLED

,

TWENTY SERIES WELL FIELD PRODUCTION ELL 22 Sampling Thte: Analyfical Laboratory:		05/22/87 8806880	8/28/87 Tech	16/03/87 BROWARD	10/30/87 BROWARD	12705/87 BROMARD		2/1/88 9800480	2/7/88 BROWARD	2/16/88 BROWARD	2/21/88 BROWARD	02/26/88 CH2M H1tL	2/20/68 (BROWARD (
PARAMETER	MCL													
BRONOD I CHLORONE THANE	×	<1.0 <1.0	<0.01 <0.02	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<5.0 <5.0	<1.0 <1.0	<0.5 <0.5
BRONDFORM	NACE NO.				<1.0	4.0	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	<1.0	40.5
BRONONE THANE	, ME	<1.0 <1.0	<0.02 <0.05	<1.0 <1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	1.0	<0.5
CARBON TETRACHLORIDE	3.0 Ne	<1.0 <1.0	<0.05	d.0	<1.0	<1.0	<1.0	(1.8	<1.0	<1.0	<1.0	\$.0	1.0	<0.5
CHLOROGENZENE	NE NE	<1.0	40.05	<1.0	<1.0	<1.0	<1.0	4.0	<1.0	<1.0	<1.0	<5.0	<1.0	<0.5
CHLOROETHANE 2-Chloroethylvinyl Ether"	NE	<1.0	<0.02	<1.0	<1.0	<1.0	<1.0	(1.0	<1.0	<1.0	<1.0	<10.0	<1.0	NA
CHLOROFORM	NE	<1.0	<0.05	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	<1.0	<0.5
CHLOROPORM	NE	<1.0	<0.02	<1.0	<1.0	<1.0	<1.0	(1.0	<1.0	<1.0	<1.0	<5.0	<1.0	<0.5
DISCONCELORONETHANE	NE	<1.0	<0.01	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	<1.0	<0.5
1.2-BICHLOROBENZENE	NE	<1.0	<0.02	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	NA	<1.0	<0.5
1.3-DICHLOROBENZENE	HE.	<1.0	<0.02	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	HA	<1.0	- <0.S
1.4-DICHLOROBENZENE	NE	<1.0	<0.02	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	HA	<1.0	<0.5
DICHLORODIFLUOROMETHANE	NE	<1.0	<0.01	<1.0	<1.0	<1.0	<t.0< th=""><th><1.0</th><th><1.0</th><th><1.0</th><th><1.0</th><th>NA</th><th><1.0</th><th><0.5</th></t.0<>	<1.0	<1.0	<1.0	<1.0	NA	<1.0	<0.5
1, 1-DICHLOROETHANE	KE	<1.0	<0.0\$	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	<1.0	<0.5
1,2-DICHLOROETHANE	3.0	<1.0	<0.05	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	<1.0	<0.5
1 1-DICHLOROETHENE	7.0	<1.0	<0.05	1.53	1.49	1.08	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	<1.0	<0.5
CIS-1, 2-DICHLOROETHENE	NE	4.63	NA	8.45	4.95	<u>1.n</u>	3.44	MA	3.05	2.31	2.49	NA	, HÅ	. ?
TAANS-1, 2-DICHLOROETHENE	NE	<1.0	<0.05	2.87	3,41	2.35	1.8	(1.0	3.33	<1.0	1.62	<5.0 <5.0	<1.0 <1.0	1.9 <0.5
1, 2-DICHLOROPROPANE	HE	<1.0	<0.01	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	<1.0	NA
CIS-1, 3-DICHLOROPHOPENE	X	<1.0	<0.05	<1.0	4.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0 <1.0	<5.0	<1.0	NA.
TAANS-1, 3-DICHLOROPROPENE	×	٩.0	40.01	<1.0	<1.0	<1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	1.27 <1.0	<1.0	5.0	<1.0	0.3
NETHYLEHE CHLORIDE	N.	<1.0	<0.05 <0.05	<1.0	<1.0 <1.0	<1.0 <1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	(1.0	<0.5
1,1,2,2-TETRACHLOROETHANE	KE	41.0	<0.05	<1.0 <1.0	<1.0	<1.0	4.56	4.82	7.16	12.7	12.11	19	<1.0	<0.5
TÉ TĂ A CHLOLOETHENE	3.0	26.9	<0.05	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<\$.0	<1.0	<0.5
1, 1, 1- TAICHLOROETHANE	200.0	<1.0 <1.0	<0.01	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	<1.0	<0.5
1, 1, 2-TRICHLOROETHAHE	NE 7 A	6.02	1.4	2.41	2.67	2.65	3.37	(1.0	3.29	2.68	2.57	1.1	<1.0	2.2
IRICAL CROETHENE	3.0	<1.0	<0.01	<1.0	<1.0	<1.0	<1.0	(1.0	<1.0	<1.0	<1.0	<5.0	<1.0	<0.5
INICHLOROFLUOROMETHANE	NE 1.0	<1.0	<0.05	<1.0	<1.0	<1.0	<1.0	(1.0	<1.0	<1.0	<1.0	<5.0	<1.0	<0.5
VINYL CHLORIDE	1.0	<1.0	<0.05	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		<5.0	<1.0	<0.5
VINYL CHLORIDE	1.0	NI.U	·U.U3	NI.U	-1.0	11.0								

+-

NOTES: UNITS & UG/E OR PPB

EPA NETHOD = 601 NA = NOT ANALYZED NE = NOT ESTABLISHED NS = NOT SAMPLED NS = NOT SAMPLED

_

ERIES WELL FIELD INE:

PROFILE ON WELL 22													
SAMPLING DATE: ANALYTICAL LABORATORY:		4/05/88 EROMARD	4/10/85 BROWARD	4/17/88 BROWARD	4/23/88 BROMARD	05/07/88 BROWARD	5708/88 BROMARD	5/31/88 BROWARD	6/5/88 BROWARD	6/12/88 BROWARD	6/19/88 Bacuard	6/26/88 Broward	7/10/88 Broward
PARAMETER	HCL.												
BRONOD I CHLORONET HANE	NE NE	4.0 4.8	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0
	#5. #E	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	(1.0	<1.0	<1.0	<1.0	<1.0
BRONONE I NANE Carbon: Tetrachlor Ide	3.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	<1.0	<1.0	<1.0	41.0
CHLORONENZENE	NE.	<1.0	<1.0	<1.0	41.0	<1.0	<1.0	<1.0	(1.0	41.0	<1.0	41.0	<1.0
	14	<1.0	<1.0	<1.0	<1.0	<1.0	(1.0	<1.0	(1.0	<i.0< td=""><td><1.0</td><td><1.0</td><td><1.0</td></i.0<>	<1.0	<1.0	<1.0
2-CHLOROETNYLVINYL ETHER		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<i.0< td=""><td><1.0</td><td><1.0</td><td><1.0</td></i.0<>	<1.0	<1.0	<1.0
CALOROFORM	KE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
CHLOROMETHANE	KE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
DERGHOCHLOROMETHANE	ŇĒ	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1.2-DICHLONGBENZENE	ŃĚ	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1.3-DICHLOROBENZENE	NE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1.4-DICHLOROBENZENE	NE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
DICHLOROD LFLUCRONETHANE	NE	<1.8	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1.1-DICHLOROETHANE	NE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1.2-DICHLORGETHANE	3.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1 1-DICHLORGETHENE	7.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	41.0
cis-1,2-DICHLOROETNENE	NE	2.97	5.88	3.32	4.23	4.19	2.79	2.66	<1.0	2.95	3.63	3.17	3.22
TAANS-1,2-DICHLOROETHENE	ME	3.04	1.02	<1.0	1.97	3.04	2,58	2.23	1.65	1. n	2.16	3.59	5.38
1,2-DICHLOROPROPANE	NE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
CIS-1, 3-DICHLOROPROPENE	NE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
TRANS-1, 3-DICHLOROPROPENE	HE	<1.0	<1.0	2.14	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
METHYLENE CHLORIDE	NE	<1.0	<1.0	4.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	+1.0	<1.0 <1.0	<1.0 <1.0
1,1,2,2-TETRACHLORGETHANE	HE	<u><1.0</u>	4.0		<1.0	<1.0	<1.0	<1.0	-1.4	et.0	<1.0 <1.0	<1.0	<1.0
TETRACINLORGETHENE	3.0	3,11	1,99	1.1	<1.0	<1.0	<1.0	<1.0	1,17	<1.0	<1.0	<1.0	<1.0
1,1,1-TRICHLOROETNANE	200.0	<1.4	<1.0	d'ù	<1.0	<1.0	<1.0	4.0	41.0	(1.0		<1.0	4.0
1,1,2-TRICKLONDETHANE	NE	4.0	<1.0	<1.0	<1.0	4.0	<1.0	<1.0	41.0	<1.0	41.0	1.65	3.42
I A I CILLOROETHENE	3.0	1.99	6.07	1.91	1.27	2.22	1.74	1.75	2.31	1.49	1.74	(1.0)	3.4£ <[.0
IN I CHLOROFLUOROMETHANE	NE	4.4	<1.0	<1.0	<1.0	<1.0	41.0	<1.0	<1.0	<1.0	41.0		
VINYL CHLORIDE	1.0	्र । व	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	(1.0	<1.0 <1.0	<1.0 <1.0
VINYL CHLORIDE	1.0	<1.0	<1.0		<1.0	<1.0	<1.0	<1.0	41.0	<1.0	<1.0	\$1.0	41.4

•

.

.

NOTES: UNITS = UG/L OR PPB EPA METHOD = 601 NA = NOT ANALYZED NE = NOT ESTABLISHED NS = NOT SAMPLED NS = NOT SAMPLED

•

raye J									
TWENTY SERVICE WELL FIELD						\bullet			
SAMPLING DATE: ANALYTICAL LABORATORY:		7/31/88 BROWARD	8/7/88 Broward	8/15/88 Broward	8/21/88 Broward	8/28/88 Broward	9/3/88 BROWARD	9/10/88 8ROWARD	9/24/88 BROWARD
PARAMETER	NCL								
BRONDD I CHLOROMETHANE	NE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
BRONDFORN	NE	<1.6	<1.6	<1.6	<1.6	<1.6	<1.6	<1.6	<1.6
BRONONETHANE CARBON TETRACHLORIDE	жЕ 3.0	<1.1 <1.0	<1.1 <1.0	<1.1 <1.0	<1.1 <1.0	<1.1 <1.0	<1.1 <1.0	4.1	<1.1
CHLOROBENZENE		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
CHLOROETHANE	WE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0 <1.0	<1.0 <1.0
2-CHLOROETHYLVINYL ETHER	NE	4.0	<1.0	<1.0	<1.0	<1.0	1.0	<1.0	<1.0
CHLOROFORM	NË	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0
CHLORONETHANE	ŇĒ	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
D I BRONOCHLOROMET NAME	NE	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
1.2-DICHLOROBENZENE	ŃĒ	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1.3-DICHLOROBENZENE	NE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1.4-DICHLOROBENZENE	NE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
DICHLORODIFLUORONETHANE	NE	<1.0	<1.0	<1.0	<t.0< th=""><th><1.0</th><th><1.0</th><th><1.0</th><th><1.0</th></t.0<>	<1.0	<1.0	<1.0	<1.0
1,1-D1CWLORGETHANE	NE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-DICHLOROETHANE	3.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-DICHLORGETHENE	7.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
CIS-1,2-DICHLOROETHENE	¥E	<1.0	<1.0	<1.0	3.55	2, 13	3,59	1.22	<1.0
TRANS-1,2-DICHLOROETHENE	WE	<1.0	<1.0	<1.0	2.64	3,54	2,30	<1.0	<1.0
1,2-0ECHLOROPROPANE	NE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
CIS-1, 3-DICHLOROPROPENE	WE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
TRANS-1,3-OICHLOROPROPENE	ME	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
HETHYLENE CHLORIDE	NE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2,2-TETRACHLOROETHANE	HE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
TETRACHLOROETNENE	3.0	<1.0	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,1-TRICHLOROETNAME	200.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2-TRICHLOROETHANE TRICKLOROETHENE	NÉ 3.0	<1.0 2.21	<1.0 <1.0	<1.0 <1.0	<1.0	<1.0	<1.0	<1.0	<1.0
TRICHLOROFLUORONETHANE	NE.	<1.0	<1.0	<1.0	<1.0 <1.0	<1.0	2.84	2.65	<1.0
VINYL CHLORIDE	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
ATHIF AURANAE	1.9	2110	1.0	2110	\$1.0	<1.8	<1.0	<1.0	<1.0

.

NOTES: UNITS = UG/L OR PPB EPA METHOD = 601 NA = NOT ANALYZED NE = NOT ESTABLISHED NS = NOT SAMPLED

TWENTY SERVES WELL FIELD PRODUCTION AND ALL 23

PRODUCT I														
SAMPLING DATE: ANALYTICAL LABORATORY:		08/22/87 BROWARD	0/28/87 TECH		09/25/87 MCGINNES	10709787 BROLARD	10/30/87 BROWARD	12/05/87 BROWARD		12/11/87 EROMARD	12/14/87 BROWARD	01/25/88 BROWARD	02/20 CH2M Hitse	03/11/88 CH2N WILL
PARANETER	MCL													
BRONOD I CHLORONE THANE	μE	<1.0	<0.01	<1.0	<0.01	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0 <1.0	<1.0 <1.0	<5.0 <5.0	<0.5 <0.5
BECHOFORM		<1.0	<0.02	<1.0	<0.62	્વ.૦	<1.0	<1.0	<1.0	<1.0	41.0	<1.0	<5.0	<0.5
BRONOMETHANE	WE	<1.0	<0.02	4.0	<0.02	્ય.0	<1.0	<1.0	<1.0	<1.0 <1.0	41.0	<1.0	<5.0	«0.5
CARBON TETRACHLORIDE	3.0	<1.0	4.05	4.0	4.05	4.0	<1.0	4.0	<1.0 <1.0	41.0	<1.0	<1.0	<5.0	(0.5
CHLORODENZENE	NE.	41.0	40.05	<1.0	<0.05	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0	<1.0	41.0	<1.0	<5.0	<0.5
CHLOROETHANE	WE	<1.0	<0.05	<1.0	<0.05 <0.02	<1.0 <1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10.0	
2-CHLOROETNYLVENYL ETNER	HE .	<1.0	<0.02	<1.0		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	(5,0	<0.5
CHLOROFORM	ME	<1.0	4.05	4.0	40.05	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	5.0	<0.5
CHLOROHETHANE	HE	<1.0	40.02	<1.0	<0.02	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	5.0	<0.5
D 1 BROHOCHLOROME THANE	HE .	9.0	40.01	<1.0	<0.01 <0.02	<1.0	<1.0	<1.8	<1.0	<1.0	<1.0	<1.0	NA NA	<0.5
1,2-DICHLOROGENZENE	NE.	4.0	<0.02 <0.02	<1.0 <1.0	<0.02	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	HA	<0.5
1,3-01CHLCROBENZENE	業	<1.0	<0.02	1.0	<0.02	41.0	<1.0	4.0	4.0	<1.0	<1.0	<1.0	NA	<0.5
1,4-DICHLOROBENZENE	WE	<1.0 <1.0	<0.02 <0.01	d.0	<0.01	<1.0	<1.0	41.0	<1.0	<1.0	<1.0	<1.0	KA	<0.5
DI CHLOROD I FLUCRONETHANE	NË MË	<1.0	40.05	<1.0	<0.05	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	-0.5
1, 1-DICHLOROETHANE	3.0	4.0	<0.05	<1.0	<0.05	<1.0	4.0	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	<0.5
1,2-DICHLOROETHANE	7.0	<1.0	<0.05	<1.0	4.05	4.0	1.44	<1.0	<1.0	(1.0	<1.0	<1.0	5.0	<0.5
1.1-DICHLOROETHENE		2.59	10.00 111	(1.0		NA.	NA.	HĂ	<1.0	in a	NA.	Ж.	NÅ	<0.5
CIS-1,2-DICHLOROETHENE	NE NE	<1.0	4.65	<1.0	<0.05	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	5. 0	<0.5
TAANS-1,2-BICHLOROETHERE	HE HE	41.0	40.01	<1.0	<0.01	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	<0.5
1, 2-DICHLOROPROPANE		<1.0	<0.05	<1.0	<0.05	<1.0	41.0	<1.0	41.0	<1.0	<1.0	<1.0	-5.0	NA
CIS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE		<1.0	<0.01	<1.0	<0.01	41.0	<1.0	<1.0	(1.0	<1.0	<1.0	<1.0	5.0	MA.
NETHYLENE CHLORIDE	ME	<1.0	<0.05	1.0	40.05	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	11
1, 1, 2, 2-TETRACHLOROETNANE	WE	<1.0	<0.02	1.75	1.75	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	<0.5
1.1.2.2"TETRACALCALOR TAXAL	3.0	12.1	2.5	12.1	-0.05	6.99	1.2	16.85	12.5	1.47	1	12.4	43	1.5
1,1,1-TRICHLOROETNAME	200.0	<1.0	5.5	1.0	0.05	(1.0	<1.0	<1.0	(1.0	<1.0	<1.0	<1.0	<5.0	<0.5
1, 1, 2-TAICHLOROETHANE	NE	<1.0	<0.01	<1.0	<0.01	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	<0.5
In I CIAL OROETHENE	3.0	1.61	1.4	1.44	1.44	<1.0	<1.0	<1.0	0.4	<1.0	<1.0	1.59	3.7	0.6
TELCHLOROFLUOROMETHANE	HE	41.0	<0.01	<1.0	<0.01	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-5.0	-0.5
VINTL CHLORIDE	1.0	<1.0	<0.05	41.0	<0.05	<1.0	<1.0	<1.0	<1.0	41.0	<1.0	<1.O	<5.0	<0,5

•

····--

NOTES: UNITS = UG/L OR PP8 EPA NETHOD = 601 NA = NOT ANALYZED NE = NOT ESTABLISHED NS = NOT SAMPLED

•

.

THENTY	IES.	HELL	FIELO
PRODU	L LEI	L 23	

TWENTY TRAES WELL FIELD PRODUCTION WELL 23														
SAMPLING DATE: AMALYTICAL LAGORATORY:		4/05/88 BROMARD	4/10/88 \$ROWARD	4/17/88 BROMARD	4/23/88 BROWARD	5/08/88 \$ROWARD	5/16/88 BROWARD	5/22/88 SROWARD	5/31/88 BROMARD	6/5/68 BROWARD	6/12/86 BROWARD	6/19/88 Broward	6/26/60 BROWARD	7/10/88 BROWARD
PARAMETER	NCL													
GRONCO I CHILORONE THANE	ME	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
BRCNOFCRII	NE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	41.0	<1.0	<1.0	<1.0
ARCHICKETHAKE	NE	<1.0	<1.0	<1.0	<1.0	- 4.Q	<1.0	4.0	<1.0	<1.0	<1.0	<1.0	<1.0 <1.0	<1.0
CARBON TETRACHLORIDE	3.0	<1.0		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0 <1.0	<1.0 <1.0	<1.0	<1.0 <1.0
CHLOROBENZENE	ME	<1.0	4.0	<1.0	<1.0	<1.0	4.0	<1.0	<1.0 <1.0	<1.0 <1.0	<1.0	<1.0	<1.0	<1.0
CHLOROETHANE	HE	4.0	<1.0	<1.0	<1.0	<1.0	<1.0 <1.0	<1.0 <1.0	<1.0	<1.0	<1.0	4.0	<1.0	<1.0
2-CHLORDETHTLVIHYL ETHER	KE	<1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	<1.0
CHLOROFORM	KE	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
CHLORONETHANE	WÉ	<1.0	<1.0	<1.0	41.0	1.0	<1.0	(1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
O IBRONOCHLORONETHANE		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-DICHLOROBENZENE 1,3-DICHLOROBENZENE		<1.0	<1.0	<1.0	4.0	<1.0	41.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1.4-bickLokoBENZENE		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
DICHLOROD FLUCRONETHANE		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1.1-DICHLOROETHANE	al E	41.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1.2-DICHLOROETHANE	3.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1.1-DICHLOHOETHENE	7.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
CIS-1, 2-DICHLOROETHENE	μĒ	MÅ.	A K	KA,	KÅ.	<1.0	<1.0	•1.0	2.04	<1.0	<1.0	<1.0	<1.0	<1.0
TRANS-1,2-DICHLOROETNENE	NÉ	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1	1,93	<1.0	<1.0	<1.0	<1.0
1.2-DICHLOROPBOPANE	HE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
CIS-1,3-DICHLOROPROPENE	NË	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	4.0	<1.0	<1.0	<1.0	<l.0< th=""></l.0<>
TRANS-1, 3-0 ICHLOROPHOPENE	iii E	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<4.0	<1.0	<1.0	4.0	<1.0
NETNYLENE CHLORIDE	NE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	4.0	<1.0	<1.0	<1.0	<1.0
1,1,2,2-TETRACHLOROETHANE	純	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	4.0	<u>si a</u>	<1.0	<1.0	<1.0		<1.0
TÊ TŘAČKLOROETKÉNE	3.0	66.7	79	56.8	44.2	25	24.5	15.9	66.7	15.4	13.4	11.2	1.39	15
1,1,1-TRICHLOROETNANE	200.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-1.0	<1.0	<1.0 <1.0	<1.0 <1.0
1, 1, 2-TRICHLOBOETHANE	LIE .	<1.0	4.0	<1.0	<1.0	<1.0	<1.0	4.0	<1.0	<1.0	<1.0	<1.0	<1.0	3.6
TŘ J ČHLOROETHENE	3.0	1.96	2.07	1.66	2.05	1.97	2.08	2.58	14	2.82	2.81	2.91	<1.0	<1.0
TRECHLOROFLUORONETHANE	36	4.0	<1.0		- 41.Q	- 1. 0	<1.0	<1.0	41.0	<1.0	<1.0 <1.0	<1.0 <1.0	<1.0	<1.0
VINYL CHLORIDE	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	•1.0	×1.0	NI+U	1.9

• .

NOTES: UNITS = LG/L OR PPB EPA NETHOD = 401 NA = NOT ANALYZED NE = NOT ESTABLISHED NS = NOT ESTABLISHED

SAMPLING DATE: ANALYFICAL LABORATORY:		BROMARD 7/31/88	BROWARD 8/7/88	BROMARD 8/15/88	8ROMARD 8/21/58	BROWARD 8/28/68	BROMARD 9/3/88	8ROWARD 9/10/88	BROWARD 9/24/88
PARAMETER	NCL								
BRONCOLCHLOROMETHANE	WE	<1.0	<1.0	4.0	4.0	<1.0	<1.0	<1.0	<1.0
BRCHOFORM	NE	1.6	<1.6	<1.6	4.6	<1.6	<1.6	<1.6	<1.6
BRONONETHANE	HE	<1.6	<1.6	<1.6	41.6	<1.6	<1.6	<1.6	<1.6
CARBON TETRACHLORIDE	3.0	<1.0	<1.0	<1.0	4.0	<1.0	<1.0	<1.0	<1.0
CHLOROGENZENE	NE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
CHLOROETHANE	ME	<1.0	<1.0	<1.0	4.0	<1.0	<1.0	<1.0	4.0
2-CHLOROETHYLVENYL ETHER	NE	<1.0	<1.0	<1.0	<1.0	<1.0	4.0	<1.0	<1.0
CHLOROFORM CHLOROMETHANE	NE	<1.0 <1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
DISRONOCHLORONETHANE	ME	<2.0	<1.0	<1.0	<1.0	<1.0	4.0	4.0	<1.0
	NE		<2.0	<2.0	<2.0	<2.0	Q.0	<2.0	<2.0
1, 2-DICHLOROBENZENE	NE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	4.0	<1.0
1,3-DICHLOROBENZENE	ME	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,4-91CHLOROBENZENE DICHLOROD1FLVOROMETHANE	NE Ne	<1.0 <1.0	<1.0 <1.0	<1.0	<1.0	<1.0	4.0	4.0	<1.0
1,1-DICHLOROETHANE	NE	<1.0	<1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0	<1.0	<1.0
1.2-DICHLOROETHANE	3.0	<1.0	<1.0	<1.0	<1.0	<1.0	석.0 〈1.0	<1.0	<1.0
1,1-DICHLOROETHENE	7.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
CIS-1.2-DICHLOROETHENE	NE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0 <1.0	<1.0
TRANS-1,2-DICHLOROETHENE	WE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0 <1.0
1.2-DICHLOROPROPANE	WE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
CIS-1.3-DICHLOROPROPENE	WE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
TRANS-1,3-DICHLOROPROPENE	NE	<1.0	<1.0	4.0	<1.0	<1.0	<1.0	<1.0	<1.0
NETHYLENE CHLORIDE	NE	<1.0	<1.0	<1.0	(1.0	<1.0	<1.0	<1.0	<1.0
1,1,2,2-TETRACHLOROETHANE	NE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
TETRACULOROETHENE	3.0	24.8	20.6	11.6	12.2	11.7	4.56	7.59	3.78
1,1,1-TRICHLOROETHANE	200.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1, 1, 2 TRICHLOROETHANE	NE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
TŘÍČHLOROETHENE	3.0	4.58	4.60	3.17	4.89	5.17	5.80	6.63	5.30
TRICHLOROFLUORONETHANE	NE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
VENYL CHLORIDE	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0

.

.

.

NOTES: UNITS = UG/L OR PPB EPA NETHOD = 601 NA = NOT ANALYZED NE = NOT ESTABLISHED NS = NOT SAMPLED

		FEELD
--	--	-------

PRODUCT E														
SAMPLING DATE: ANALYTICAL LABORATORY:		08/22/87 8806A80	8/28/87 Tech		09/25/87 NCGINNES	10/03/87 \$ROMAD	10/30/87 BROMARO	12/05/87 880WARD	12/09/87 BROWARD	12/11/87 BROWARD	12/14/87 BROWARD	01/25/88 880WARD	02/26/88 CH2M HILL	
PARAMETER	HCL													
BRONCO I CHLORONE THANE	HE	<1.0	<0.01	(1.0		<1.0	<1.0		<1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<5.0 <5.0	<0.5 <0.5
BRENDFORM	NE	<1.0	<0.02	<1.0	<0.02	<1.0	<1.0	<1.0	<1.0 <1.0	<1.0	<1.0	<1.0	<5.0	<0.5
BRONCHETHANE	, ME	<1.0	<0.02	<1.0	<0.02	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0	<1.0	<1.0	<1.0	<5.0	<0.5
CARBON TETRACHLORIDE	3.0	4.0	<0.05	<1.0	40.05 40.05	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	<0.5
CHLOROBENZENE	NE	<1.0 <1.8	<0.05 <0.05	<1.0 <1.0	<0.05	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	<0.5
CHLOROETHANE	ĸ	<1.0	<0.02	<1.0	<0.02	<1.0	<1.0	<1.0	41.0	<1.0	41.0	(1.0	<10.0	
2-CHLOROETHYLVINYL ETHER	HE I	<1.0	<0.05	<1.0	5.12	<1.0	<1.0	<1.0	<1.0	1.0	<1.0	(1.0	<5.0	·0.5
CHLOROFORM Chloronethane	WE NE	<1.0	<0.02	<1.0	-0.02	<1.0	<1.0	<1.0	<1.0	(1.0	1.0	<1.0	<5.0	0.5
DIBRONDCHLORONETHANE	NE	(1.0	<0.01	<1.0	-0.01	<1.0	<1.0	(1.0	<1.0	<1.0	<1.0	<1.0	<5.0	-0.5
1.2-01CHLOROBENZEKE	KE	<1.0	<0.02	<1.0	<0.02	<1.0	<1.0	1.0	<1.0	<1.0	<1.0	41.0	NA	<0.5
1.3-DICHLOROBENZENE	KĒ	d.0	<0.02	<1.0	-0.02	<1.0	<1.0	<1.0	<1.0	(1.0	<1.0	<1.0	NA	<0.5
1. 6-01CHLONOBENZENE	NÊ	<1.0	<0.02	<1.0	<0.02	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	NA	<0.5
A I CHLOROO I FLUOROMET HANE	NE	<1.0	<0.01	<1.0	<0.01	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	NA	<0.5
1.1-DICHLOROETHANE	NE	<1.0	<0.05	<1.0	<0.05	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	<0.5
1.2-DICHLORDETHANE	3.0	<1.0	<0.05	<1.0	<0.05	<1.0	<i.0< td=""><td><1.0</td><td><1.0</td><td><1.0</td><td><1.0</td><td>×1.0</td><td><\$.0</td><td><0.5</td></i.0<>	<1.0	<1.0	<1.0	<1.0	×1.0	<\$.0	<0.5
I. 1-DICHLOROETHENE	7.0	<1.0	<0.05	41.0	<0.05	<1.0	1.35	<1.0	<1.0	<1.0	<1.0	•1.0	-5.0	<0.5
CIS-1,2-OICHLOROETHENE	NE	23.8	HÅ	<1.0	ji A	26.9	NA.	19.2	22.7	2.89	NA.	NA	HA	6
TRANS 1, 2-DICHLOROETHENE	NE	<1.0	<0.05	<t.0< td=""><td><0.05</td><td><1.0</td><td><1.0</td><td><1.0</td><td><1.0</td><td><1.0</td><td><1.0</td><td>4.0</td><td><<u>.</u>0</td><td>40.5</td></t.0<>	<0.05	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	4.0	< <u>.</u> 0	40.5
1.2-BICHLOROPROPARE	NE	<1.0	<0.01	<1.0	<0.01	<1.0	<1.0	<1.0	4.0	<1.0	<1.0	<1.0	< <u>s</u> .0	40.5
CIS-1,3-DICILOROPROPENE	NE	<1.0	<0.05	<1.0	<0.05	<1.0	25.0	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	HA
TRANS-1, 3-DICHLOROPROPENE	NE	<1.0	-0.01	<1.0	-0.01	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	NA
METHYLENE CHLORIDE	NÉ	<1.0	<0.05	<1.0	<0.05	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	. 11
1,1,2,2-TETRACULOROETNANE	NE	<1.0	2.1	0.67	0.67	<1.0	<1.0	<1.0	<1.0	<1.0	(1.0	<1.0	<5.0	<0.5
1 É TÉACHLOROETHENE	3.0	51	10	99.6	<0.05	99.6	87.6	57.6	43.6	12.17	5,15	6.19	130	65
1, 1, 1 - TRICKLORGETHANE	200.0	<1.0	4.4	<1.0	<0.05	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	<0.5
1,1,2-1RICHLOROETHANE	NĒ	<1.0	<0.01	<1.0	<0.01	<1.0	<1.Q	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	-0.5
FR I CHLORDETNENE	3.0	11.4	3.1	1,63	1.43	30.1	16.8	18.8	9.67	2.06	<1.0	. 1	20	13
INICHLOROFLUORONETHANE	NE	41.0	<0.01	<1.0	<0.01	<1.0	4.0	<1.0	<1.0	<1.0	1.0	<1.0	<.0 6.0	2.3 40.5
VINYL CHLORIDE	1.0	<1.0	<0.05	<1.0	40.05	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	·u.3

1

.

.

NOTES: UNITS = UG/L OR PPB EPA NETHOD = 601 NA = NOT ANALYZED NE = NOT ESTABLISHED NS = NOT SAMPLED

THENTY SEALES HELL FIELD PRODUCTION 24														
SAMPLING DATE: ANALYTICAL LABORATORY:		4/05/88 BROWARD	4/10/68 BROWARD	4/17/88 BROWARD	4/23/68 BROWARD	05/07/88 \$800,000	5/08/88 Brownad	5/16/88 BROWARD	5/22/88 BROMARD	6/5/88 BROMARD	6/12/88 BROWARD	6/19/88 BROWARD	6/26/88 BROWARD	7/10/68 BROUARD
PARAMETER	HCL													
BRONOD L CHLOROME THANE	ME	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
BRCHOFORN	34	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
PRONONETHANE	HE .	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.q	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
CARBON TETRACHLORIDE	3.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
CHLOROBENZENE	HE.	<1.8	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
CHLOROETHANE	HÉ	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2-CHLOROETHYLVINYL ETHER	KE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
CHLOROFORM	ME	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
CHLOBONETHANE	¥Ē.	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
DI BRONDCHLORONE THANE	HE.	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1.2-DICHLOROBENZENE	WE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1.3-DZCHLOROBENZENE	HE.	<1.0	<1.0	<1.0	<1.0	<1.0	-1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1.4-DECHLORODENZENE	iii E	<1.0	<1.0	<1.0	<1.0	<1.8	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
DI CHLOROD I FLUCBONGTHANE	HE.	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.8	<1.0
1, 1-DICHLORCETHANE	ME	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-DICHLOROETNAME	3.0	<1.0	4.0	₹1.0	<1.0	<. i	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1, 1-DICHLOROETHENE	7.0	4. 0	<1.0	<1.0	<u><1.0</u>	<1.0	<1.0	41.0	<1.0	4.0	<1.0	4.0	<1.0	<1.0
cts-1,2-otculonolTheme	NE	22.9	32.7	27.9	26.6	27.1	22.6	21.4	19.6		d.0	41.1	54.7	37.5
TRANS-1, 2-DECHLORCETHENE	ME	3,12	<1.0	<1.0	- 4.0	<1.0	<1.0	<1.0	<1.0	4.0	4.0	<1.0	<1.0 <1.0	<1.0 <1.0
1,2-DICHLOROPROPANE	NE.	<1.0	4.0	<1.0	્ ન. ૦	4.0	4.0	<1.0	1.0	<1.0	<1.0	<1.0 <1.0	<1.0	<1.0
CIE-1, 5-DICHLOROPROPENE	ME	<1.0	<1.0	<1.0	<1.0	- <u>4.</u>	<1.0	<1.0	<1.0	<1.0	<1.0 <1.0	<1.0	<t.0< th=""><th>41.0</th></t.0<>	41.0
TEANS-1, 3-DICHLOROPROPENE	¥£	<1.0	el . 6	9.0	<1.8	4.0	<1.0	<1.0	<1.0 <1.0	<1.0 <1.0	<1.0	<1.0	<1.0	<1.0
METHYLENE CHLORIDE	¥	<1.0	4.0	41.0	<1.0	<1.0 <1.0	<1.0	<1.0 <1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2,2-TETRACILOROETHANE	<u>HE</u>	<1.0	<1.0	<1.0	<1.0		<1.0 114	174	168	136	15.5	261	366	239
161RACHLOROETHENE	3.0	110	163	149	155 <1.0	132 <1.0	<1.0	<1.0	<1.0	4.0	(1.0	<1.0	41.0	<1.0
1, 1, 1-TRICHLORDETHANE	200.0	41.4	<1.0	<1.0				<1.0	<1.0	<1.0	41.0	52.7	<1.0	<1.0
1,1,2-TRICHLOROEFMANE	, ME	<1.8	<1.0	<1.0	<1.0	<1.0	<1.0	36.6	25.9	20.1	3. 18	<1.0	56.3	49.9
TRICKLOROETHENE	3.0	29.9	40.3	30.6	29.4	31.2	26.3					<1.0	<1.0	<1.0
TRICHLOROFLUOROMETHANE	NE	<1.0	<1.0	<1.0	<1.0	4.0	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
AINAT CHFORIDE	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	41.4	×1.0	×1.U

• . .

NOTES: LINITS = WG/L OR PPB EPA METHOD = 601 MA = NOT AMALYZED ME = NOT ESTABLISHED MS = NOT SAMPLED

· •

SAMPLING DATE: ANALYTICAL LABORATORY:		BROWARD 7/31/88	BROMARD 8/7/68	BROWARD 8/15/88	880WARD 8/21/88	BROMARD 8/28/88	BROMARD 9/3/88	BROWARD 9/10/88	880MARD 9/24/88
PARAMETER	HCL.								
BRONOD I CHLOROMETHANE	NE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
BROMOFORM	HE.	<1.6	<1.6	<1.6	<1.6	<1.6	<1.6	<1.6	<1.6
BROMOMETNAME	HE	<1.6	<1.6	<1.6	<1.6	<1.6	- <1.6	<1.6	<1.6
CARSON TETRACHLORIDE	` 3.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
CINLOROBENZENE	HE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
CINLOROETHANE	NE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2-CHLOROETHYLYINYL ETHER	NE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
CHLOROFORM	NÉ	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
CHLOROMETHANE	ŃE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
DIBROHOCHLOROMETHANE	ME	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
1,2-DICHLOROBENZENE	NÉ	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,3-DICHLOROBENZENE	NE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,4-DICHLOROBENZENE	NE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
DICHLORODIFLUOROHETHANE	NË	<1.0	<1.0	<t.0< td=""><td><1.0</td><td><1.0</td><td><1.0</td><td><1.0</td><td><1.0</td></t.0<>	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-DICHLOROETHANE	NE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-DICHLOROETHANE	3.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-DICHLORGETHENE	7.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
CIS-1, 2-DICHLOROETHENE	HE.	30.97	<1.0	78.4	62.8	65.6	- 43	41.9	22.5
TRANS-1,2-DICHLOROETHENE	NE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-DICKLOROPROPANE	NE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
CIS-1,3-DICHLOROPROPENE	HE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
TRANS-1,3-DICHLOROPROPENE	NE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
METNYLENE CHLORIDE	ME	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2,2-TETRACHLOROETHANE	NE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	4.0
TÉTRACHLOROETHENE	3.0	63.8	237	221	669	692	445	451	470
1,1,1-TRICHLOROETHANE	200.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2-TRICHLOROETHANE	NE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
TRICHLOROETNENE	3.0	15.6	52.9	87.9	103	93.9	80.5	81.6	60.0
TRICHLOROFLUOROMETHANE	ЖE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
ALMAN CHIOUJDE	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0

.

.

NOTES: UNITS = UG/L OR PP8 EPA METHOD = 601 NA = NOT ANALYZED NE = NOT ESTABLISHED NS = NOT SAMPLED

.

THENTY	SEI	tles	11	FIELD	
PRODUTI	ÛŅ.	HE E			

MANPLING DATE: WALTICAL LABORATORY:

ACHOD | CHLORONETHANE

-CHLORGETNYLVENTL ETHER

2.5

.

HARANETER *

SCHOFORH ACHONETKANE ARION TETRACHLORIDE HLOBORENZENE HLOROETHANE

AL DROFORM HI OBOMETHANE I RECINCENLORGHETHANE 2-01CHLOROBENZENE 3-DICHLOROBENZENE 4-BICHLOROBENZENE

	06/22/87 BROWND	1/10/88 \$R04489	1/17/88 BROWARD	01/25/88 #ROWARD		03/11/88 CH2N #ILL	5/08/88 BROWARD	5716788 BROWARD	5/22/86 BROWARD	6/5/88 BROWARD	6/12/88 BROWARD	6/19/88 BROWARD	6/26/66 BROWARD	7/10/6 BROWAR
MCL														
NE	<1.0	<1.0	<1.0	<1.0	ح .0	-0.5	<1.0	<1.0	<1.0	<1,0	<1.0	<1.0	<1.0	4.
HE.	<1.0	<1.0	<1.0	<1.0	<.0	<0.5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.Q	्युत
NE HE 3.0	<1.0	<1.0	<1.0		4.Q		<1.0	<1.0	<1.0	41.0	<1.0	4.0	41.0	< 1 .
3.0	<1.0	<1.0	<1.0		<u>ج.</u> و		4.0	<1.0	<1.0	<1.0	<1.0	<1.0	-1.0	<u>1.</u>
N.C.	<1.0	-1.0	d.0				<1.0	4.0	<1.0	<1.0	4.0	<1.0	4.0	<1.1
- NE	<1.0	<1.0	<1.0				4.0	<1.0	<1.0	4.0	4.0	<1.0	41.0	
WE .	<1.0	<1.0	<1.0	<1.0	<10.0		<1.0	<1.0	<1.0	4.0	(1.0	<1.0	<1.0	41.(41.(
KE	<1.0	- 4.Q	<1.0		್.0		<1.0	<1.0	<1.0	<1.4	<1.0	<1.0	<1.0	4.0
ŇE	<1.0	<1.0	<1.0				<1.0	<1.0	<1.0	<1.0	<1.0	4.0	41.0	4.0
NE NE	4.0	<1.0	<1.0		4.0		<1.0	<1.0	<1.0	4.0	<1.0	4.0	<1.0	4.) •
NE.	<1.0	<1.0	<1.0			<0.5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	4.0
NE	<1.0	<1.0	<1.0			<0.5	4.0	<1.0	4.0	<1.0	<1.0	<1.0	<1.0	4.6
H.E.	<1.0	<1.0	<1.0			<0.5	4.0	4.0	<1.0	1.0	<1.0	4.0	<1.0	
NE IE	<1.0	<1.0	<1.0		_ KA	<0.5	4.0	<1.0	<1.0	<1.0	41.0	<1.0	<1.0	<t.0< td=""></t.0<>
	<1.0	<1.0	<1.0	<1.0	ৰ.০		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	4.0	<1.0
3 6	e1 0		41.A	<1.0		<0.5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<i.0< td=""></i.0<>

. .

.

<1.0

14.8 41.0

<1.0

<1.0

<1.à

<1.0

<1.0 190

<1.0 <1.0

20.7

<1.0

<1.0

CMLOROD FLUORONETHANE	純	<1.0	<1.0	<1.0	<1.0	il A	<0.5	<1.0	<1.0	4.0	<1.0	4.0	<1.9	<].U
1-DECILOROE THANE	idž	<1.0	<1.0	<1.0	<1.0		<0.5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2-DICHLORDE FRAME	3.0	<1.0	(1.0	<1.0	<1.0	S. 0	<0.5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.Q
1-DICHLOROE THENE	7.0	<1.8	<1.0	<1.0	<1.0	<5.0	-4,5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
S-1.2-DICHLORGETHENE	HE.	<1.0	NÅ.	KA	KA	ШĄ,	1.3	<1.0	<1.0	<1.0	<1.0	<1.0	3.63	<1.0
ANS-1,2-DICHLORGETHENE	HE	<1.0	<1.0	<1.0	<1.0	<.0	<0.5	<1.0	<1.0	<1.0	<1.0	<1.0	2.14	<1.0
2-DICHLOROPROPANE	¥.	<1.0	<1.0	<1.0	<1.0	4.0	40.5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
S-1, S-DICHLOROPROPENE		<1.0	<1.0	<1.0	<1.0		KA	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.d
ANT-1.3-DICHLOROPEOPENE		<1.0	<1.0	<1.0	<1.0		MA	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
THTLENE CHLORIDE	¥.E	<1.0	<1.0	<1.0	<1.0	6.0	8.01	<1.0	<1.0	<1.0	<t.0< th=""><th><1.0</th><th><1.0</th><th><1.0</th></t.0<>	<1.0	<1.0	<1.0
1.2.2-TETRACHLOROETNANE	NE	4.0	41.0	<1.0	<1.0	5.0	<0.5	(1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
IRACHLOBOETHERE	3.0	<1.0	<1.0	<1.0	20.0	11	17	1.07	<1.0	<1.0	1.17	<1.0	9.65	14.4
1.1-TRICHLOROETHANE	200.0	<1.0	<1.0	<1.0	<1.0	4.0	-0.5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-TRICHLOROETHANE	HE	<1.0	<1.0	<1.0	<1.0	-5.0	<0.5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
I CALCHOETNENE	3.0	-1.0	<1.0	<1.0	4.64	EAR	3.1	<1.0	<1.0	<1.0	2.31	<1.0	<1.0	<1.0
ICHLONOFLUGBONETHANE	NE	<1.0	<1.0	<1.0	<1.0	<5.0	2.2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
NYL CHLORIDE	1.0	<1.0	<1.0	<1.0	<1.0	<5.0	<0.5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
WIT PREASING														

.

TES: UNITS = UG/L OR PP& EPA NETHOD = 601 HA = HOT ANALYZED HE + NOT ESTABLISHED HS = NOT SAMPLED

.

SAMPLING DATE: ANALYTICAL LABORATORY;		BROMARD 7/31/88	880WARD 8/7/88	8ROMARD 8/15/88	BROWARD 8/21/88	BROWARD 8/28/88	BROWARD 9/3/88	BROWARD 9/10/68	8806480 9/24/88
PARAMETER	NCL								
BROMOD 1 CHLOROME THANE	NE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
BROHOFORM	NE	<1.6	<1.6	<1.6	<1.6	<1.6	<1.6	<1.6	<1.6
SROHONETHANE	NE	<1.6	<1.6	<1.6	<1.6	<1.6	<1.6	<1.6	<1.6
CARBON TETRACHLORIDE	• 3.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
CHLOROBENZENE	NE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
CHLOROETHANE	NE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2-CHLOROETHYLYINYL ETHER	NE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
CHLOROFORM	NE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
CHLOROHETHANE	NE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
DIBROHOCHLOROMETHANE	NE	<2.0	<2.0	<2.0	<2.0	<2.0	Q.0	<2.0	<2.0
1,2-DICHLOROBENZENE	NE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1, 3-DICHLOROGENZENE	NE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1,0
1,4-DICHLOROBENZENE	NE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
9 I CHLOROD & FLUOROMETHANE	NE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-DICHLOROETHANE	NE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-DICHLOROETHANE	3.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-DICHLORGETHENE	7.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
CIS-1,2-DICHLOROETHENE	NE	40.3	21.2	<1.0	<1.0	<1.0	<1.0	<1.0	1.17
TRANS-1, 2-DICHLOROETHENE	NE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-DICHLOROPROPANE	NE	<1.0	<1.0	<1.0	<1.0	<t.0< td=""><td><1.0</td><td><1.0</td><td><1.0</td></t.0<>	<1.0	<1.0	<1.0
CLS-1, 3-DICHLOROPROPENE	NÉ	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
TRANS-1,3-DICHLOROPROPENE	NE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
METHYLENE CHLORIDE	NÉ	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2,2-TETRACHLORGETHANE	NE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	56.5	<1.0
TETRACHLOROETHENE	3.0	291	186	131	65.3	68.7	95.4	<1.0	112
1,1,1-TRICHLOROETHANE	200.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1, 1, 2-TRICHLOROETHANE	NE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
TĂ I CHLOROETKENE	3.0	43.3	19.4	2.19	<1.0	<1.0	<1.0	<1.0	2.73
TRICHLOROFLUOROMETHANE	NE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
VINYL CHLORIDE	1.0	<1.0	<1,0	4.0	<1.0	<1.0	<1.0	<1.0	<1.0

.

-

NOTES: UNITS = UG/L OR PP8 EPA METHOD = 601 HA = NOT AKALYZED NE = NOT ESTABLISHED HS = NOT SAMPLED

THENTY SEE WELL FIELD														
SAMPLING DATE: ANALYTIC/L LABORATORY:		08/22/87 #AQUARD	12/28/87 BROWARD	1/02/66 BROMARD	1/10/88 880WARD	1/17/88 BROWND	01/25/88 BROMARD	2/1/50 PROUARD	2/7/88 BROWARD	2/16/88 BAOJARD		02/26/88 CH2M HILL	2/28/88 0 BROWARD C	
PARAMETER	NCL													
BRONOD ECI LORONETIANIE	WE	4.Q	<1.0	<1.0	<1.0	<1.0	4.0	∢1.0 ∢1.0	<1.0	<1.0 <1.0	<1.0 <1.0	<5.0 <5.0	<1.0 <1.0	<0.5 <0.5
BRONDFORM	ИE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		<1.0				<1.0	<0.5
BRCHONE THANE	_NE	<1.0	<i.0< th=""><th><1.0</th><th>1.0</th><th>4.0</th><th><1.0</th><th><1.0 <1.0</th><th><1.0</th><th><1.0 <1.0</th><th><1.0 <1.0</th><th><\$.0 <\$.0</th><th>41.0</th><th><0.5</th></i.0<>	<1.0	1.0	4.0	<1.0	<1.0 <1.0	<1.0	<1.0 <1.0	<1.0 <1.0	<\$.0 <\$.0	41.0	<0.5
CARBON TETRACHLORIDE	3.0	- <u>1.0</u>	<1.0	<1.0	<1.0 <1.0	4.0 41.0	<1.0 <1.0	<1.0	<1.0 <1.0	<1.0	<1.0	<5.0 <5.0	<1.0	<0.5
CHEOROBEN ZENE	<u>NE</u>	<1.0	<1.0	<1.0 <1.0	<1.0	4.0	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0 <5.0	<1.0	40.5
CNLONCEINAUR	NE.	<1.0	4.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10.0	<1.0	
2-CHLOROETHYLVIWYL ETHER	純	<1.0	<1.0 <1.0	<1.0	<1.0 <1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	<1.0	<0.5
CHLOROFORM	NE .	4.0 4.0		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	<1.0	40.5
CHLORCHETHANE	KE	4.0 4.1	<1.0 <1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	<1.0	<0.5
DI BRONOCH LOROMETKAME	NE	4.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	<1.0	<1.0	NA	<1.0	4.5
1,2-DICHLOROBENZENE	KE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	NA.	<1.0	40.5
1,3-DICH OROBENZENE	NE			<1.0	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	NA	<1.0	40.5
1,4-DICHLOROBENZENE	NE	41.0	4.0	4.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	NA	<1.0	<0.5
DI CHLORODI FLUOROHETHANE	ME	<1.0	4.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	(1.0	<5.0	<1.0	40.5
1, 1-DICHLOROETHANE	, ME	<1.0	4.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	<1.0	<0.5
1,2-DICHIOROETHANE	3.0	<1.0	4.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	5.0	<1.0	<0.5
1, 1-D1CM OROETHENE	7.0	<1.0	<1.0				NA NA	1.U MA	<1.0	HA	NA		5.71	<0.5
CIS-1,2-LICHLOROETHENE	ME	<1.0	iii i	A LE	, KA		<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	5.36	<0.5
TRANS-1,2-DICHLOROETNENE	HE.	<1.0	<1.0	<1.0	4.0	- 4.0		<1.0	<1.0	<1.0	<1.0	<5.0	<1.0	0.5
1,2-81CHLOROPROPANE	HE	4.0	<1.0	<1.0	4.0	<1.0	<1.0	<1.0		<1.0	<1.0	<5.0	<1.0	NA.
CIS-1, 3-0 ICHLOROPROPENE	ME	<1.0	<1.0	<1.0	4.0	<1.0	<1.0 <1.0	<1.0	<1.0 <1.0	<1.0	<1.0	<5.0	<1.0	NA.
TRAKS-1, 3-DICHLOROPROPENE	NE	્વ.૦	<1.0	<1.0	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	<1.0	2.8
NETWYLENE CHLORIDE	ME	<1.0	<1.0	4.0	<1.0	<1.0			(1.0	<1.0	<1.0	<5.0	<1.0	<0.5
1,1,2,2-16TRACHLOROETHANE	NE	<1.0	<1.0	<1.0	41.0	<1.0	<1.0	<1.0		<1.0	<1.0	<5.0	<1.0	1.5
TETRACILLCADETNENE	3.0	<1.0	4.0	4.0	<1.0	4.0	(1.0	4.0	<1.0	<1.0	<1.0	<5.0	<1.0	<0.5
1, 1, 1-TRICHLONOETHANE	200.0	<1.0	<1.0	<1.0	<1.0	4.0	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	<1.0	<0.5
1,1,2-TRICKLOROETHANE	_ #E	<1.0	<1.0	<1.0	4.0	<1.0	<1.0	(1.0	<1.0		<1.0	<5.0	1.91	<0.5
FRICHLORCETNENE	3.0	<1.0	<1.0	<1.0	4.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0 <5.0	<1.0	<0.5
IN I CHLORC FLUOROMETHANE	HE.	<1.0	<1.0	<1.0	4.0	41.0	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	<1.0	<0.5
VINYL CHIORIDE	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	\$1.0	13.0	\$1.0	74.9

HOLES: INITS - UG/L OR PPB EPA NETHOD = 601

NA + NOT ANALYZED

NE = NOT ESTABLISHED NS = NOT SAMPLED

TWENTY STATES WELL FIELD PRODUCT IN SELL 26														•
SANPLING DATE: ARALYTIC::L LÅBORATORY:		3/14/68 Broward	3/20/88 8404480	3/27/88 BROWARD	4/05/68 \$ROMARD	4/10/86 \$ROMARD	4/17/68 8200ARD	4/23/88 BROMARD	5/08/88 BROMARO	5/16/88 Broward	5/22/88 BROWARD	5/31/88 BROWARD	675788 BROWARD	6/12/68 BROWARD
PARAMETER	MCL													
		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
SKONCFORM	ĤĒ	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
BRUNCHETHANE	NE	4.4	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
CARBON TETRACHLORIDE	3.0	4.6	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	41.0	<1.0	<1.0	<1.0
CHLOROGENZENE	NE	(1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
CHLOROETNANE	NE NE	4.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2-CHLOROETHYLVINYL ETHER	NE.	4.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	KÉ	41.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
CHLOROFORM		41.4	<1.0	<d.0< td=""><td><1.0</td><td><1.0</td><td><1.0</td><td><1.0</td><td><1.0</td><td><1.0</td><td><1.0</td><td><1.0</td><td><1.0</td><td><1.0</td></d.0<>	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
CHLOROMETHANE		<1.0	<1.0	4.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
O I BRONOCIAL ORONE FILANE	HE.	(1.0	<1.0	d.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-DICHLOROBENZENE	HE	<1.0	<1.0		<1.0	41.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1, 3-DICHLOROBENZENE	HE	<1.0	<1.0	<1.0	<1.0	41.0	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	41.0	<1.0
1, 4-DICHLORODINZENE	NE		<1.0	(1.0	<1.0	4.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
DICHLOROUTPLUORONETHANE	NE	41.0	<1.0	41.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1, 1-DICHI OROETNANE	, NĘ	4.0 4.0	<1.0	4.0	<1.0	4.0	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-DICHLOROETHANE	3.0		<1.0	<1.0	<1.0	<1.0	4.0	<1.0	<1.0	41.0	<1.0	<1.0	<1.0	<1.0
1,1-DICHLOROETHENE	7.0	<1.0			NA	1.0		H.	<1.0	41.0	<1.0	<1.0	<1.0	<1.0
CIS-1,2-DICHLOROETWENE	KE	NA.		AA .	<1.0	<1.0	4.0	<1.0	<1.0	4.0	<1.0	<1.0	1.85	<1.0
TRANS-1,2-DICHLOROETWENE	ME	<1.0	<1.0	<1.0		<1.0	41.0	<1.0	<1.0	4.0	41.0	<1.0	<1.0	<1.0
1,2-DICHIOROPROPANE	HE.	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0	<1.0	<1.0	d.0	<1.0	<1.0	<1.0
CIS-1, 3-DICHLOROPEOPENE	HÉ.	<1.0	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
TRANS-1, 3-DICHLOROPROPENE	HE .	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0			<1.0	<1.0	<1.0	<1.0	<1.0
NETHYLENI: CHLORIDE	HE .	<1.0	<1.0	<1.0	<1.0	4.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1.1.2.2-YETRACHLOROETHANE	HE	<1.0	<1.8	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		2.19	<1.0	2.05	<1.0
TETRACHLINGETHENE	3.0	2.21	2.25	2.87	2.45	2.62	1,55	1.07	<1.0	<1.0			<1.0	<1.0
1,1,1-TAICHLOROETHANE	200.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1, 1, 2-THICHLOROETHANE	NE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		
TAICHLOROETHENE	3.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	41.0
TRICALOR OF LUOR DHET NAME	NE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	<1.0	<1.0	<1.0	<1.0	<1.0
VINTL CHLORIDE	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
AINIT PUTOKING	1+4													

•

NOTES: UNITS = UG/L OR PPB EPA NETWOD = 601

NA = NOT ANALYZED NE = NOT ESTABLISHED NS = NOT SAMPLED

THENTY PRIES WELL FIELD

PRODUCT REFERENCE				
SANPLING DATE:		6/19/58	6/26/68	7/10/88
ANALYTICAL LABORATORY:		\$ROUGHD	BROWARD	BROMARD
PARAMETER	HCL			
BRONOD Chill ORGMET NAKE	WE	<1.0	<1.0	<1.0
BRONDFORM	NE	d.0		<1.0
BRONCNETHAME	HE	<1.0		<1.0
CARDON TETRACHLORIOE	3.0	<1.0		
CHLOROGENZEHE	ME	<1.0		
CMLOBOETHANE /-	KE	<1.0		<1.0
2-CHLORGETHYLVINYL ETHER	HE.	<1.0	<1.0	<1.0
CHLOROFOEN	¥E	<1.0	<1.0	<1.0
CHLOROMETHANE	HE	<1.0	<1.0	<1.0
D 1 BRONOCHLORONE THANE	NE		<1.0	4.0
1,2-DICHLOROBENZENE	HE	<1.0	<1.0	<1.0
1, 3-DI CHI OROBENZENE	NE	4.0		<1.0
1.4-DICHIOROBENZENE	HE	<1.0		
DICHLOROC IFLUORONETHANE	NE	-1.0		4.0
1,1-DICHLOROETNAME	. NE	<1.0		
1,2-DICHLOROETHANE	3.0	<1.0		
1, 1-DICHIOROETHEHE	7.0	<1.0		
CIS-1, 2-D ICHLOROETWENE	NE NE	41.0 41.0		
TAANS-1,2-DICHLOROETHENE	E E	<1.0		
1,2-BICAL DROPROPANE	L.	<1.0		
CIS-1,3-DICHLOROPROPENE	WE	<1.0	<1.0	
TRANS-1,3-DICHLOROPROPENE NETHYLENE CHLORIDE	WE.	<1.0		
1.1.2.2-16TRACHLOROETHANE		<1.0		
TETRACIN CROETWENE	3.6	41.0		
1.1.1-TAICHLOROETWANE	200.0	(1.0		
1.1.2-IRICHLOROETHANE	200.0	<1.0		
TRICHLORGETHENE	3.0	<1.0		
THE CALORICE FREES	3.0		21.0	

<1.0

1.0

NE

1.0

<1.0

41.0

<1.0

<1.0

NOTES: LWITS = UG/L OR PP8 EPA METHOD = 601 HA = NOT ANALYZED NE = NOT ESTABLISHED HS = NOT SAMPLED

٠

TE1CHLOROFLUORONETHANE

VENTL CHLORIDE

LING DATE: YTICAL LABORATORY:		6/19/88 BROWARD	6/26/88 Broward	7/10/88 BROWARD	BROMARD 7/31/88	BROWARD 8/7/88	BROMARD 8/21/88	8ROUARD 8/28/88	8RCMARD 9/3/86	880MARD 9/10/88	BROWARD 9/24/88
HETER	HCL										
CD CHLORONETHANE	HE	<1.0	<1.0	<1.0	4.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
OFORM	¥E.	<1.0	4.0	<1.0	<1.5	<1.6	<1.6	<1.6	<1.6	<1.6	<1.6
CINETHANE	, ME	<1.0	<1.0	<1.0	<1.6	<1.6	<1.6	<1.6	<1.6	<1.6	<1.6
ON TETRACHLORIDE	3.0	<1.0	<1.0	<1.0	<1.0	4.0	<1.0	<1.0	<1.0	<1.0	<1.0
ROBENZENE	NE Ne	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	4.0	<1.0	<1.0	<1.0
ROETHANE Loroethylvinyl ether	NE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
ROFORN		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
RONETHANE	NE	<1.0 <1.0	<1.0 <1.0	<1.0	<1.0	4.0	<1.0	<1.0	<1.0	<1.0	4.0
DIOCHLORONETHANE	NE	<1.0		<1.0	4.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
DICHLOROBENZENE	NE	<1.0	<1.0 <1.0	<1.0 <1.0	<2.0	<2.0	<2.0	<2.0	<2.0	4.0	<2.0
DICHLOROBENZENE	NE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
DICHLOROBENZENE	NE	<1.0	<1.0	<1.0	<1.0 <1.0	<1.0	<1.0	4.0	<1.0	<1.0	<1.0
LORODIFLUOROMETHANE	NE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
DICHLOROETHANE	NE	<1.0	<1.0	<1.0	<1.0	<1.0 <1.0	<1.0	<1.0	<1.0	<1.0	41.0
DICHLOROETWANE	3.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0 <1.0	<1.0 <1.0	<1.0	<1.0	<1.0
DICHLOROETHENE	7.0	<1.0	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0	<1.0	<1.0
1,2-DICNLOROETHENE	NE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0 <1.0	<1.0	<1.0	<1.0	<1.0
S-1,2-DICHLOROETHENE	NE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	41.0
DICHLOROPROPANE	NE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0 <1.0	<1.0 <1.0	<1.0
1.3-DICHLOROPROPENE	NE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
S-1.3-DICHLOROPROPENE	NE	<1.0	<1.0	4.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0 <1.0
YLENE CHLORIDE	NE	<1.0	<1.0	<1.0	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2.2-TETRACHLOROETHANE	NE.	<1.0	<1.0	<1.0	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
ACHLOROETHENE	3.0	<1.0	<1.0	<1.0	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1-TRLCHLORDETHANE	200.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2-TR CHLOROETHANE	HE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
HLOROETHENE	3.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
HLOROFLUOROMETHANE	NE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
L CHLORIĐE	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0

• .

S: UNITS = WG/L OR PPS EPA HETHOD = 601 NA = NOT ANALYZED NE = NOT ESTABLISHED NS = NOT SAMPLED

Appendix B Analytical Results Private Well Samples Obtained from the Palm Beach County Health Department

Service of the servic

ζ.

3 176	D: 1 		ics esults by		: אחי,	LAB # 87-12-228	
LE	ID <u>MR. RUBY F</u>		ION <u>O2A</u> ½ Time Co		CODE <u>PURCE</u> 1 <u>12/29/87 0</u> 9	NAME <u>PURGEABLES</u> P: <u>30:00</u> Category <u>43 3</u>	
		Pt	JRGEABLES	ву ер	A 624		
		<u> </u>	NJECTED	<u>017047</u> 0	38	VERTFIED BY SAA	
朴	CAS #	CONPOUND	RESULT	₽₽ #	CAS #	םאטם קוקסס	RESUL
Ŷ	107-02-8	acrolein	<u>BDL</u> :	387	100-41-4	ethylbenzene _	
ý.	107-13-1	acrylonitrile	BDL :	449	75-09-2	methylene chloride	
V	71-43-2	benreñe	<u> </u>	457	74-97-3	methyl chloride	RDL
V	56-23-5	carbon tetrachloride		45∨	74~83-9	methyl bromide .	BDL
V I	108-90-7	chlorobenzene		479	75-25-2	- bromoform	
۰V	107-06-2	1,2-dichleroethane		48V	75-274	dichlorobromomethane _	<u>RDL</u>
V	71-55-5	1,1,1-trichloroethane	BDL :	497	75-69-4	trichlorofluoromethane	BDL_

					· - ·			
V	56-23-5	carbon tetrachloride	<u>BDL</u>	t	4 <u>5</u> V	74-93-9	methyl bromide	<u>BDŁ</u>
Ŷ	108-90-7	chlorobenzene	<u> </u>	1	479	75-25-2	mrotomord -	BDL
Ŷ	107-06-2	1,2-dichloroethane	BDL	1	40V	75-27-4	dichlorobromomethane	RDL.
v	71-55-5	1,1,1-trichloroethane	BDL	1	499	75-69-4	trichlorofluoromethane	BDL
Ŷ	75-34-3	1,1-dichloroethane	B DL	1	50V	75-71-8	dichlorodifluoromethane	<u> </u>
Ý	79-00-5	1,1,2-trichloroethane	BDL	1	51V	124-48-1	chlorodibromomethane	ADL
ý	79-34-5	1, 1, 2, 2-tetrachloroethane	<u>BDL</u>	t	857	127-18-4	tetrachloroethylene	PD4
Ŷ	75-00-3	chloroethane	BDL	ł	86V	108-38-3	toisene	
Ŷ	110-75-8	2-chlorosthylvinyl ether	<u>BDL</u>	1	87V	79-01-5	trichluroethylene	
Y	67-65-3	chloroform	<u>10 E</u>	1	837	75-01-4	vingl chloride	BDL
V	75-35-4	1,1-dichloroethylene	<u>BDL</u>	1		67-64-1	acetone	NS
V	155-60-5	1,2-trans-dichloroethylene	<u> </u>	1		78-93-3	2-butanone	<u>N</u> £
V		1.2-dichloropropane	<u> </u>	1		75-15-0	carbondisulfide	<u> </u>
V	10051-02-5	trans-1,3-dichloropropene	<u> </u>	1		519-78-6	2-hexanone	<u>NS</u>
	10061-02-05	cis-1.3-dichloropropene	BDL	I.		109-10-1	4~methyl-2-pentasone	NS
						100-42-5	styrene	<u>BDL</u>
		•				108-05-4	vingl acetate	<u>NS</u>
						1330-20-7	total xylenes	

ALL RESULTS REPORTED IN ug/L BDL = BELOW DETECTION LEVEL T = TRACE DETECTED BUT NOT GUANTITATED NS = COMPOUND NOT SCREENED

: 4 -::!V{	EU: 100/8		vus esults by		'UI())	1.88 # 877127228 (
. 1 1 1		<i>J1</i> 1.		de la construcción de la constru			-
4 6	ID UNITED	CRANE/TREATED FRACT	ION 03A	TEST	CODE PURGE	NAME PURGEABLES	
	IN NHILFN				the second s		
		D976 -	8 LTWR CO	1150250	1 <u>2/29/87 0</u>	<u>9:50:00</u> Category <u>43 3</u>	
		P	URGEABLES	AV FPA	A 24		
		· ·	OUGCUDERA	U 1 4 5 7			
	ANALYST	CC DATE	INJECTED	01/04/8	18	VERIFIED BY SAA	
	י שי ו שרוויורו	<u> </u>				a t km − * k k	
뷖	CAS #	COMPOUND	RESULT	PP #	CAS #	CONPOUND	RESUL
							<u>.</u>
!¥	107-02-8	acrolain		387	100-41-4	ethylbenzens	
19	107-13-1	acrylonitrile		447	75-09-2	mathylene chloride	<u>NDL</u>
14	71-43-2	peureus		457	74-37-3	methyl chloride	<u>. 106</u>
, ∨	54-23-5	carbon tetrachloride		45V	74-93-9	methyl bromide	<u></u>
עי	108-90-7	chlorobenzane		477	75-25-2	arofomurd 🦷	
īΨ	107-05-2	1,2-dichloroethane	<u> </u>	4 <u>9</u> V	75-27-4	dichlorobromomethane	<u> </u>
v	71-55-6	1,1,1-trichloroethane	BDL	479	75-69-4	trichlorofluoromethane	<u>BDL</u>
ιŴ.	75-34-3	1.1-dichloroethane	<u> </u>	50V	75-71-9	dichlorodifluoromethane	
.V.	77-00-5	1,1,2-trichloroethane	BDL :	51V	124-49-1	chlorodibromomethane	<u> </u>
iV.	77-34-5	1,1,2,2-tetrachloroethane	BDL 1	857	127-13-4	tetrachloroethylene	- priv
ιV.	75-00-3	chloroethane	BOL :	867	106-36-3	tojuene	
ΰŲ.	110-75-8	2-chloroethylvinyl ether	<u> </u>	87V	79-01-5	trichloroethylene	<u>FEDL</u>
NV I	67-66-3	chloroform		88V	75-01-4	vinyl chlaride	<u>BDL</u>
iγ	75-35-4	1,1-dichloroethylene			57-64-1	acetone	- <u>NS</u>
λ¥.	- +	1,2-trans-dichloroethylene			78-93-3	2-hutanone	<u>N</u> ,
	100 00 0				76 16-0	ستراده ويرمشه سيطعم م	Nh I

ALL RESULTS REPORTED IN Ug/L BDL = BELOW DETECTION LEVEL T = TRACE DETECTED BUT NOT QUANTITATED NS = COMPOUND NOT SCREENED

BOL I

BDL :

BDL |

1,2-dichloropropane

trans-1,3-dichloropropene

cis-1,3-dichloropropene

99

79-87-5

W 10061-02-6

10061-02-05

75-15-0

519-78-6

108-10-1

100-42-5

108-05-4

1330-20-7

carbondisulfide

vinul acetate

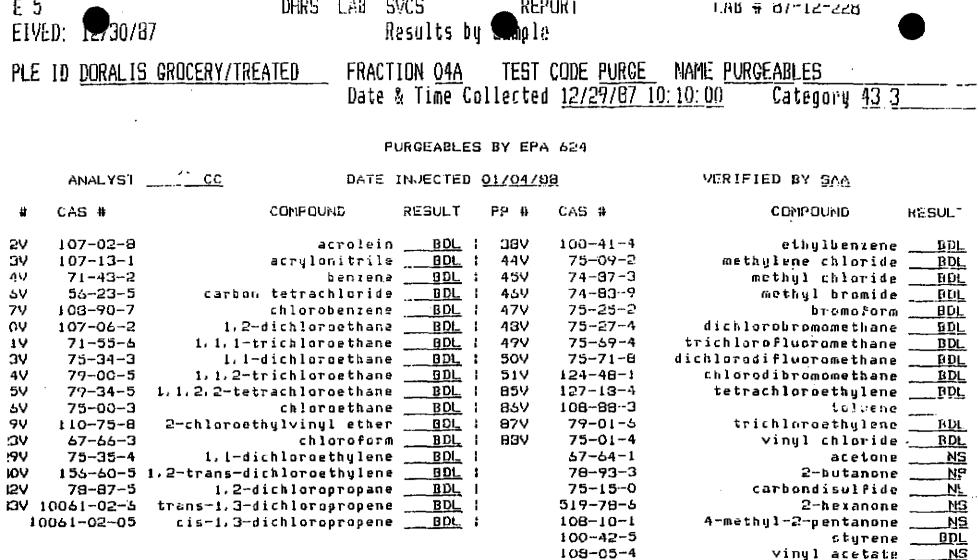
total xylenes

4-methyl-2-pentanone

2-hexanone

styrene

NL

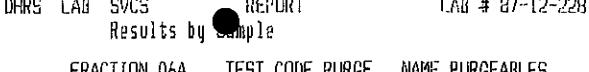

NS

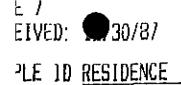
NS

MS

RDI_

RDI_


1330-20-7 total xylenes BDL


ALL RESULTS REPORTED IN Ug/L BDL = BELOW DETECTION LEVEL T = TRACE DETECTED BUT NOT QUANTITATED NS = COMPOUND NOT SCREEMED

I	/ED: 100/8	7 8	esults	by O npi	.8	(
LE	E ID <u>ROGERS</u>		ION <u>054</u>		CODE <u>PURCE</u>				
		Date	W LIME	COLLECTS	d <u>12/29/87 1</u>	<u>10:25:00</u> Category <u>43-3</u>			
PURGEABLES BY EPA 624									
	ANALYST	<u> </u>	INJECTE	D <u>01/04/</u>	<u>99</u>	VERIFIED BY <u>SAA</u>			
栟	CAS #	COMPOUND	RESULT	· PP #	CAS #	CONFOUND	RESUL [*]		
9	107-02-3	acrolain	<u> G DL</u>	. I 33V	100-41-4	ethylbeszene	_ld ri		
:V	107-13-1	acrylonitrile	BDL		75-09-2	methylene chloride	<u>nd</u>		
V.	71-43-2	benzene	<u>B DI</u>	1 45V	74~87-3	methyl chloride			
ιV.	55-23-5	carbon tetrachloride	BDL	1 46V	74-83-9	methyl bromide	<u>ADL</u>		
'V.	108-90-7	chlorobenzene	<u> O D L</u>	. 1 479	75-25-2	arofomard .			
÷Υ	107-06-2	1,2-dichloroethane	<u> O D</u> L	. 1 4 9 V	75-27-4	dichlorobromomethane			
V	71-55-6	1.1.1-trichloroethane	<u> 9 DL</u>	. I 49V	75-69-4	trichlorofluoromethane	RDI_		
W.	75-34-3	1,1-dichloroethane	BDL	. 1 50V	75-71-8	dichlorodifluoromethane	BDL		
ΙÝ.	79-00-5	1,1,2-trichloroethane			124-48-1	chlorodibromomethane	BDL		
jŲ	79-34-5	1,1,2,2-tetrachloroethane	<u>100 </u>		127-18-4	tetrach]oroethy]ene	BDI.		
ŝΥ	75-00-3	chloroethane	<u>100</u>		109-69-3	toluene			
9V	110-75-8	2-chloroethylvinyl ether	ទ្ធាប		79-01-5	trichloroethylene	<u> </u>		
¥Υ	67-66-3	chloreform		·	75-01-4	vingl chloride			
7V	75-35-4	1,1-dichloraethylene	<u>BDL</u>		57-64-1	acetone	<u>NS</u>		
QΥ		1,2-trans-dichloroethylene			78-93-3	2-hutanone	<u>N</u> ;		
2 V	78-87-5	1.2-dichloropropane			75-15-0	carbondisulfide			
ЗV		trans-1.3-dichloropropene			519-78-6	2-hexanone	<u>NS</u>		
1	10061-02-05	cis-1.3-dichloropropene	BDL		108-10-1	4-methyl-2-pentanone	<u>NS</u>		
					100-42-5	styrene			
					100-05-4	vinyl acetate	<u>NS</u>		
					1000-20-7	. total sylenes			

ALL RESULTS REPORTED IN Dg/L BDL = BELOW DETECTION LEVEL T = TRACE DETECTED BUT NOT QUANTITATED NS = COMPOUND NOT SCREENED

٠.

FRACTION <u>06A</u> TEST CODE <u>PURGE</u> NAME <u>PURGEABLES</u> Date & Time Collected <u>12/29/87 10:35:00</u> Category <u>43</u> 3

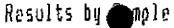
PURCEABLES BY EPA 624

	AMALYST	RS DATE	INJECTED	<u>01/05/</u>	<u>09</u>	VERIFIED BY SAA	
ŧ	CAS #	COMPOUND	RESULT	የዮ #	CAS #	COMPOUND	RESULT
××××××××××××××××××××××××××××××××××××××	107-02-8 107-13-1 71-43-2 56-23-5 109-90-7 107-06-2 71-55-6 75-34-3 79-00-5 79-34-5 75-00-3 110-75-8 67-46-3 75-35-4	acrolain acrylonitrile benzeng carbon tetrachloride chlorobenzene 1, 2-dichloroethane 1, 1, 1-trichloroethane 1, 1, 2-trichloroethane 1, 1, 2-trichloroethane 1, 1, 2, 2-tetrachloroethane chloroethane 2-chloroethylvinyl ether chloroform 1, 1-dichloroethylene 1, 2-trans-dichloroethylene 1, 2-dichloropropane	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL		100-41-4 75-09-2 74-87-3 74-83-9 75-25-2 75-27-4 75-71-8 124-48-1 127-18-4 108-88-3 79-01-6 75-01-4 67-64-1 78-93-3 75-15-0	ethylbenzene methylene chloride methyl chloride methyl chloride bromoform dichlorobromomethane trichlorofluoromethane dichlorodifluoromethane chlorodibromomethane tetrachloroethylene trichluroethylene vingl chloride acetone 2-butanone carbondisulfide	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL
37	10061-02-6 10061-02-05	trans-1, 3-dichloropropene cis-1, 3-dichloropropene	BDL	; ;	519-79-5 108-10-1 100-42-5 108-05-4 1330-20-7	2-bexanone 4-methyl-2-pentanone styrene vinyl acetate total xylenes	NS NS NDL NS BDL

ALL RESULTS REPORTED IN Ug/L BDL = BELOW DETECTION LEVEL T = TRACE DETECTED BUT NOT QUANTITATED NS = COMPOUND NOT SCREEMED Results by Sele

(VED: 12**0**)/87

E ID LINTON CENTRE/TREATED


7

FRACTION 07ATEST CODE PURCENAME PURCEABLESDate & Time Collected 12/29/87 10:45:00Category 43 3

PURGEABLES BY EPA 624

AMALYST	DATE	INJECTED	01/05/	<u>60</u>	VERIFIED BY <u>SAA</u>	
CAS #	COMPOUND	RESULT	PP #	CAS #	COMPOUND	RESUL
 107-02-0 107-10-1 71-43-2 56-23-5 100-90-7 107-06-2 71-55-6 75-34-3 79-00-5 79-34-5 75-00-3	acrolein acrolein acrylonitrila benzena carbon tetrachlorida chlorobenzena 1, 2-dichloroethana 1, 1-dichloroethana 1, 1, 2-trichloroethana 1, 1, 2-tetrachloroethana chloroethana	BDI_ BDI_	1 38V 1 44V 1 45V 1 45V 1 45V 1 47V 1 43V 1 47V 1 50V 1 50V 1 51V 1 85V 1 85V	100-41-4 75-09-2 74-87-3 74-83-9 75-25-2 75-27-4 75-39-4 75-71-8 124-48-1 127-18-4 108-88-3	ethylbenzene methylene chloride methyl chloride methyl bromide bromoform dichlorobromomethane trichlorofluoromethane dichlorodifluoromethane chlorodibromomethane tetrachloroethylene toluene	BDL BDL BDL BDL BDL BDL BDL BDL
110-75-8 47-66-3 75-35-4 156-60-5 78-87-5 10061-02-5 10061-02-05	2-chloroethylvinyl ether chloroford 1,i-dichloroethylend 1,2-trans-dichloroethylend 1,2-dichloropropand trans-1,3-dichloropropend cis-1,3-dichloropropend	n <u>BDL</u> 9 <u>BDL</u> 9 <u>BDL</u> 9 <u>BDL</u> 9 <u>BDL</u>	1 87V 1 83V 1 1 1	79-01-5 75-01-4 67-64-1 78-93-3 75-15-0 519-78-5 108-10-1 100-42-5 108-05-4	trichloroethylene vinyl chloride acetone 2-butanone carbondisulfide 2-hexanone 4-methyl-2-pentanone styrene vinyl acetate	NS N: NS NS NS
				1300-20-7	total xylenes	<u>BDI</u>

ALL RESULTS REPORTED IN 097L BDL = BELOW DETECTION LEVEL T = TRACE DETECTED BUT NOT QUANTITATED NS = COMPOUND NOT SCREENED

Kesults

EIVED: 930/87

PLE ID ORKIN CHEMICAL/RAW

PURGEABLES BY EPA 624

FRACTION OBA TEST CODE PURCE NAME PURCEABLES

Date & Time Collected 12/29/87 11:05:00 Category 43 3

VERIFIED BY SAA

DATE INJECTED 01/05/98

<u>2</u>

・相	CAS #	COMPOUND	RESULT	PP ()	CAS #	COMPDUMB	RESUL!
27	107-02-8	acrolein	<u>BDI</u>	vec 1	100-41-9	ethylbenzene	ទ្ធា
37	107-13-1	acrylonitrile	<u> </u>	1 447	75-09-2	methylene chloride	<u> </u>
44	71-43-2	benzene	<u>100</u>	1 45V	74-37-3	methyl chloride	BDI_
6V		carbon tetrachloride	<u>BDL</u>	1 46V	74-83-9	methyl bromide	BDI.
77		chlorobenzene	<u>. 100</u>	1 47V	75-25-2	browe form	uni
104		1,2-dichloroethane	BDL_	¦ 48∨	75-27-4	dichlorobromomethane	BDL
117		1,1,1-trichloroethane		l 49V	75-59-4	trichlorofluoromethane	BDL
137		1,1-dichloroethane		1 50V	75-71-8	dichlorodifluoromethane	BDL
14V		1,1,2-trichloroethane	<u>BDL</u>	51V	124-49-1	chlorodibromomethane	BDL
15V		1, 1, 2, 2-tetrachloroethane		: 857	127-18-4	tetrachloroethylene	BDL
159		chloroethane		; 85V	108-38-3	tuluene	
190		2-chloroethylvinyl ether	BDL	1 87V	79-01-6	trichloroethylene	<u>[iii_</u>
237		chloroform	9 DL	: 837	75-01-4	vinyl chloride	ADL
29V	75-35-4	1,1-dichloroethylene	BDL.	1	67-64-1	acetone	NS
304				ł	78-93-3	2-butanone	NS
327		1.2-dichloropropane	BDL	1	75-15-0	carbondisulfide	NL
33V		trans-1.3-dichloropropene		1	519-78-5	2-bexanone	NS
_	10051-02-05	cis-1.3-dichloropropene		1	108-10-1	4-methyl-2-pentanone	
					100-42-5	styrene	
					108-05-4	vingl acetate	
					1330-20-7	total xylenes	

ALL RESULTS REPORTED IN ug/L BDL = BELOW DETECTION LEVEL T = TRACE DETECTED BUT NOT QUANTITATED NS = COMPOUND NOT SCREENED

ĒIVē	-		esults b		UNT	1.:10 17 UT 12 CZA	
-176		J) []	5201/3 0	iy O mpla		•	
ĽΕ	ID PARK TE	EN WAREHOUSES/RAW FRACT	ION 09A	TEST	CODE PURCE	NAME PURGEADLES	
		Dave	V LINE C	ollected	12/29/87 11	<u>1:05:00</u> Category <u>43</u> 3	
		P	URGEABLE	S BY EPA	624		
	AMALYST	<u>^ RS</u> DATE	INJECTED	01/05/3	9	VERIFIED BY SAA	
#	CAS #	COMPOUND	RESULT	IF 49	CAS #	CONFOUND	RESUL
54.1			~ ~.				
27	107-02-0	acrolein			100-41-4	ethylbenzene	<u></u>
34	107-13-1	acrylonitrile	<u>90L</u>	: 44V	75-09-2	methylene chloride	HDI
12	71-43-2	benzaae		1 45V	74-97-3	methyl chloride	
ŝΥ	56-23-5	carbon tetrachloride		: 467	74-99-9	methyl bromide	UDI.
70	108-90-7	chlorobenzene		: 47∨	75-25-2	bromo form	<u> 1001.</u>
)V	107-06-2	1,2-dichloroethane	a state of the state of the	: 487	75-27-4	dichlorobromomethane	អ្នប
١V	71-55-5	1,1,1-trichloroethane		t 49V	75-69-4	trichlorofluoromethane	BDI.
37	75-34-3	1,1-dichloroethane		: 507	75-71-8	dichlorodifluoromethane	BDL
ŧΥ	77-00-5	1,1,2-trichloroethane		1 517	124-48-1	chlorodibromomethane	IIDL.
ΞV	79-34-5	1,1,2,2-tetrachloroethane		I 85V	127-18-4	tetrachlorsethylene	
5¥	75-00-3	chloroethane		1 867	108-38-3	loivene	
9¥	110-75-8			1 877	79-01-5	trichloroethylene	ենլ
¥Υ	67-66-3			1 837	75-01-4	vinyl chlaride	
77	75-35-4	1.1-dichloroethylene		:	67-64-1	acetone	NS
2 V	154-60-5	1,2-trans-dichloroethylene	BDL	:	78-93-3	2-butanone	<u></u>
27	70-87-5	1.2-dichloropropane	BDL	t	75-15-0	carbondisulfide	
- 3V - 1	10021-05-2	trans-1,3-dichloropropene	<u>001.</u>	1	519-79-3	2-hexanone	NS
10	0061~02-05	cis-1.3-dichloropropene	_10.0	t	108-10-1	4-methyl-2-pentanoue	
		• •			100-42-5	styrene	
					108-05-4	vinyl acetate	NS
					14:00 00 7		

total aglenes BDL

ALL RESULTS REPORTED IN UG/L BDL = BELOW DETECTION LEVEL T = TRACE DETECTED BUT NOT QUANTITATED NS = COMPOUND NOT SCREENED

1330-20-7

.

ĒIV	Ed: 0 30/81	7	R	esults b	y 🍎 np 1 a)		
PLE	ID <u>SECURIT</u>	Y STORAGE	FRACT Date			CODE <u>purce</u> 12/29/87	NAME <u>PURGEABLES</u> Category <u>42</u>	3
		pit, tor	P	URGEABLE	S BY EP#	624		
	ANALYST _	<u> </u>	DATE	інјестер	01/05/5	18	VERIFIED BY SAA	
#	CAS #	1	COMPOUND	RESULT	PP #	CAS #	CONPOUND	RESULT
27	107-02-8		acrolein		1 387	100-41-4	ethylbenze	
34	107-13-1		acrylonitrile		I 44V	75092	methylene chlori	de <u>PDL</u>
47	71-43-2		benzene		1 45V	74-87-0	methyl chlori	
5V -	56-23-5	carbon	tetrachloride		: 45V	74-83-9	methyl bromi	de <u>BDL</u>

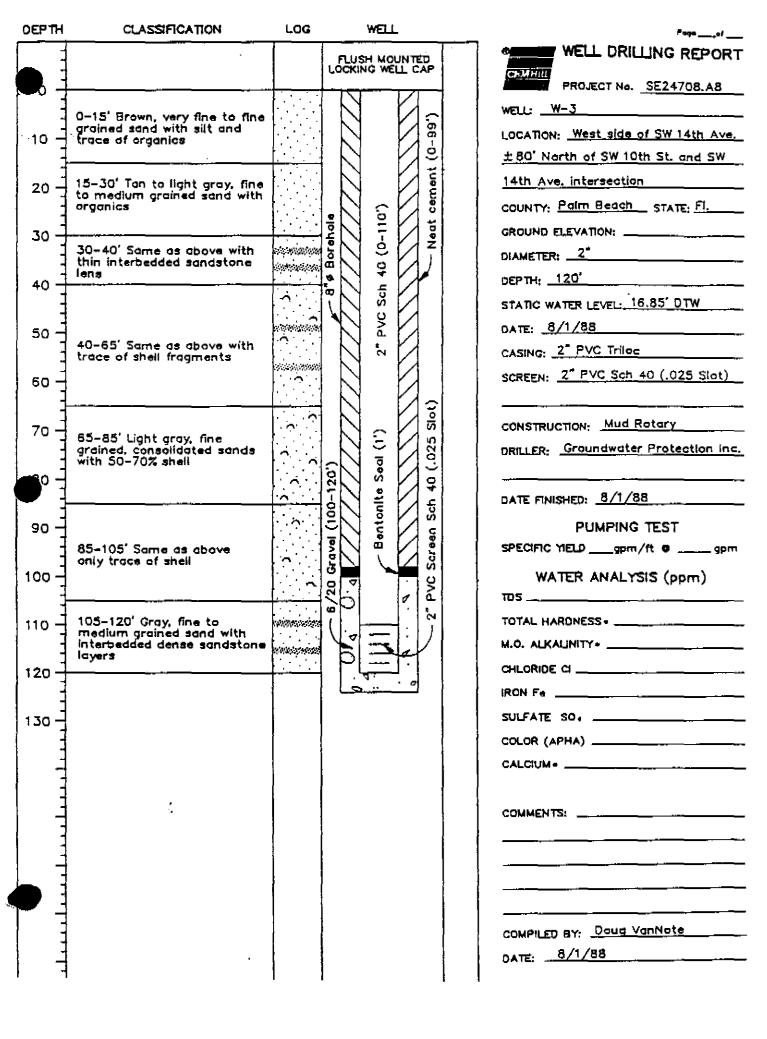
and the communication of the second second

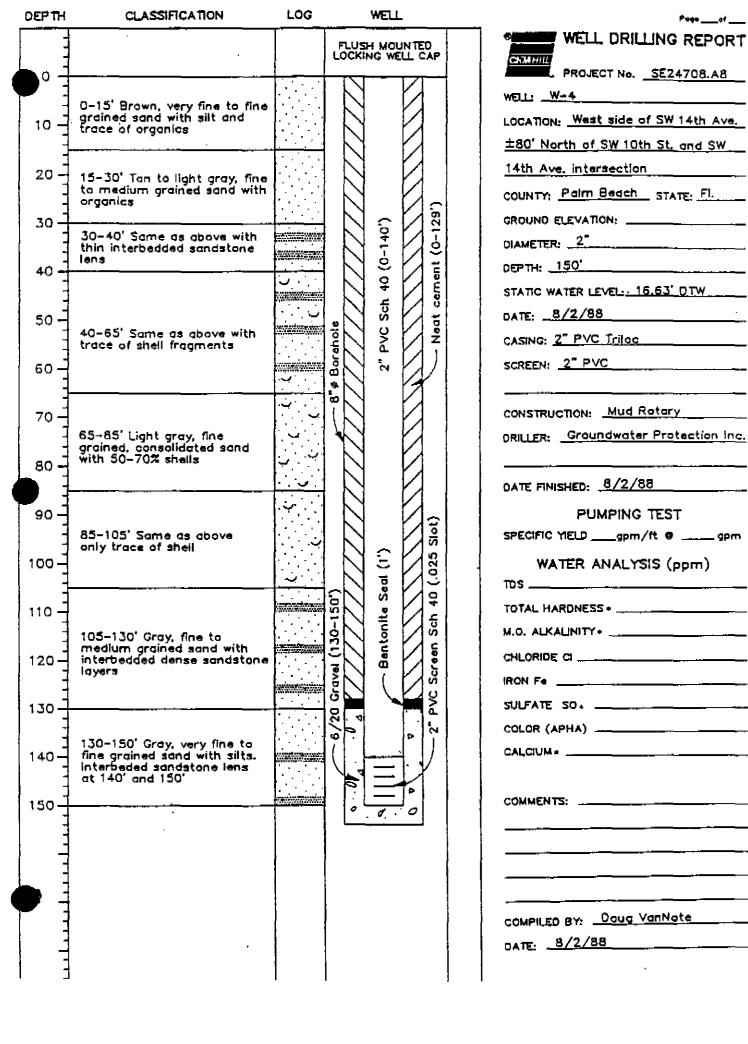
29	107-02-8	acrolein	<u> </u>	387	100-41-4	ethylbenzene	<u>BDL</u>
9V	107-13-1	acrylonitrile	<u>BDI</u> I	44V	75-09-2	methylene chloride	FDL
47	71-43-2	benzene	BDL	45V	74-87-3	methyl chloride	
5V	56-23-5	carbon tetrachloride	<u>ODL</u> :	45V	74-83-9	methyl bromide	<u> </u>
- 7V	108-90-7	chlorobenzene	<u> 601</u> :	479	75-25-2	broma form	Ţ
09	107-06-2	′1,2-dichloroethane	ODL 1	437	75-27-4	dichlorobromomethane [.]	17_3
17	71-55-6	1,1.1-trichloroethane		477	75-59-4	trichlorofluoromethane	
39	75-34-3	1.1-dicbloroethane	BDL :	50V	75-71-B	dichlorodifluoromethane	PDL
49	77-00-5	1,1,2-trichloroethane	<u> </u>	51V	124-48-1	chlorodibromomethane	5, 70
5V	79-34-5	1, 1, 2, 2-tetrachloroethane		85V	127-19-4	tetrachloroethylene	BDL
6V	75-00-3	chloroethane	BDI, I	85V	108-88-3	tolovne	
97	110-75-8	2-chloroethylvinyl ether	<u>BDL</u>	97V	79-01-6	trichlornethylene	
:3V	67-66-3	chloroform	<u>43.8</u> I	93V	75-01-4	vingl chloride	. <u> </u>
:9V	75-35-4	1,1-dichloroethylene	BDL I		67-64-1	acotone	NS
V0	156-60-5	1,2-trans-dichloroethylene	Ţ ;		78-93-3	2-butanone	<u>N</u> ?
127	78-87-5	1,2-dichloropropane	<u> 9DL</u> ;		75-15-0	carbondisulfide	<u> </u>
137	10061-02-5	trans-1,3-dichloropropene	<u>BDL</u>		519-78-6	2~hexanone	<u>NS</u>
	10061-02-05	cis-1,3-dichloropropene	BDL I		108-10-1	4∽methyl-2-pentanone	NS
		1			100-42-5	styrene	BDL
					109-05-4	vingl acetate	NS
					1330-20-7	total sylenes	<u>EDL</u>

ALL RESULTS REPORTED IN ug/L BDL = BELOW DETECTION LEVEL T = TRACE DETECTED BUT NOT QUANTITATED

NS = COMPOUND NOT SCREEMED

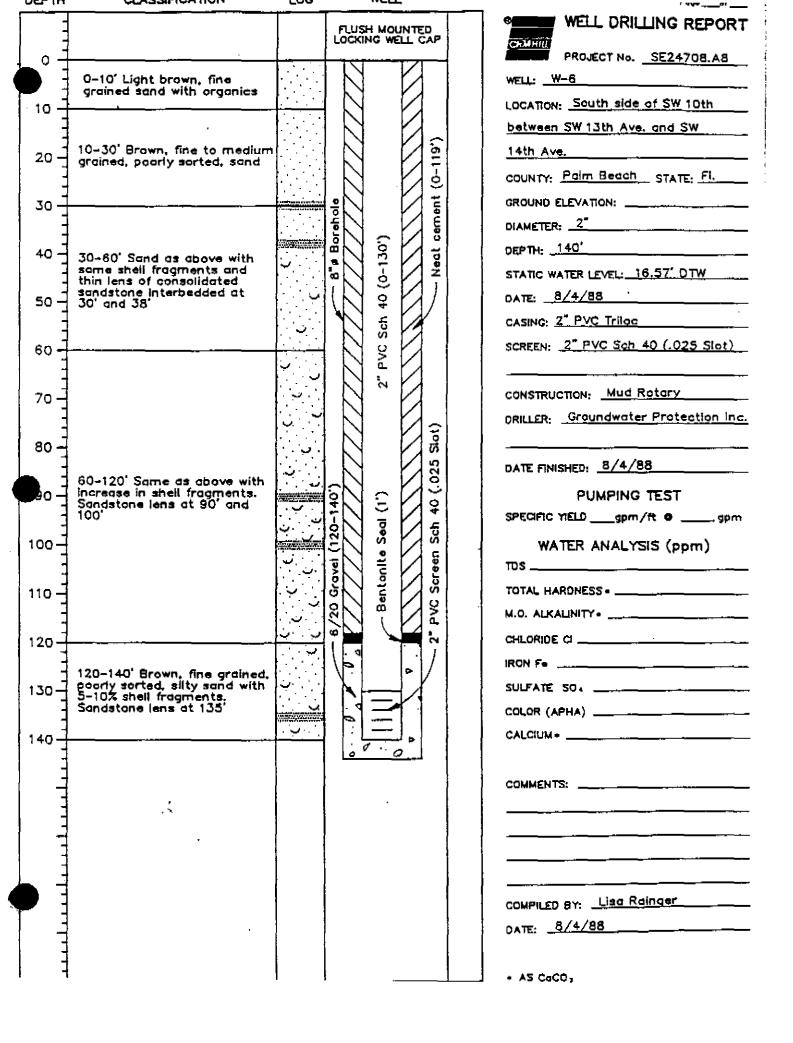
Appendix C Geophysical Logs

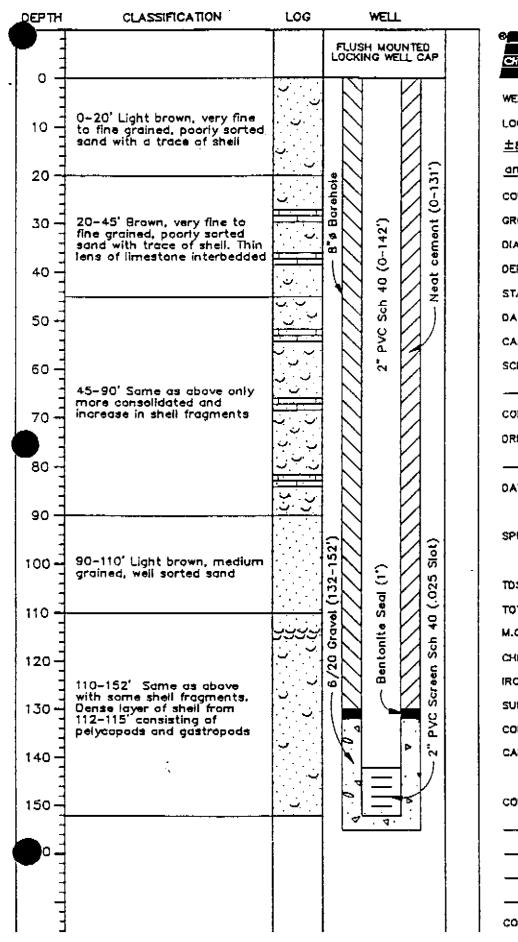

ŝ


h.

Appendix D Monitor Well Completion Diagrams

\$


DEPTH	CLASSIFICATION	LOG	WELL	Pageaf
			FLUSH MOUNTED	WELL DRILLING REPORT
	0-5' Dark brown, very fine to fine grained sand w/organics		NH	WELL:
10-	•			LOCATION: <u>West side of SW 16th Ave.</u> ± 800' North of SW 10th St. and SW
20-	5–30' Light brown, fine to medium grained, moderately sorted, silty sand w/organics			16th Ave. Intersection COUNTY: Palm Beach STATE: FI.
30-				GROUND ELEVATION:
40-	i	<u>ر</u>		DIAMETER: _2" DEPTH: _155'
50-		ء د	(0-145)	STATIC WATER LEVEL: 17.14' DTW DATE: 8/22/88
60-1	30–85' Same as above with shell fragments. Dense consolidated sandstone lens throughout formation	د -	ehole ich 40 1ent (CASING: <u>2" PVC Triloc</u> SCREEN: <u>2" PVC Sch 40 (.025 Slot)</u>
70-	lens throughout formation		2" PVC	CONSTRUCTION: Mud Retery
1 1 80-1		د ع		ORILLER: Groundwater Protection Inc.
				DATE FINISHED: 8/22/88
90-	85–105' Light brown, fine to medium grained, well sorted, sand with increase in shell			PUMPING TEST SPECIFIC MELDgpm/ft • gpm
100-	magments, interpedded	د م	Slot)	WATER ANALYSIS (ppm)
110			-155') Seal (1''	TOTAL HARDNESS
120-	105–145' Light brown, fine to medium grained, moderately			M.O. ALKALINITY.
130-		2	3 9 3	IRON F
140-	formation [*]		20/30	COLOR (APHA)
	145~200' Same as above	د	5	
150	with abundant amounts of consolidated sandstone. Some 1/4" diameter gravel appearing at 150'.	ა.ი ა.ა.		COMMENTS:
160	5–15% shell fragments		المعنجا	
				COMPILED BY: Lise Reinger
				DATE: 8/22/88


Page ____of ____

		7		
			FLUSH MOUNTED LOCKING WELL CAP	
0				PROJĘCT No. <u>SE24708.A8</u>
	0+10' Light brown, fine graind sand with organics			WELL: W-5
10			Borehold (0-90') nt (0-79	LOCATION: Southside of SW 10th
				between SW 13th Ave. and SW
20-	10–30' Brown, fine to medium grained, poorly sorted, sand		- 8° ¢ B	14th Ave.
				COUNTY: Palm Beach STATE: FL
30-			PVC S	GROUND ELEVATION:
				DIAMETER: _2"
40 -	30–60' Sand as above with			DEPTH: 100'
	some shell fragments and thin lens of consolidated			STATIC WATER LEVEL: 15.85' DTW
50~	sandstone interbedded at 30' and 38'	(· · ·		DATE: 8/3/88
		.		CASING: 2" PVC Triloc
60-		·		SCREEN: 2" PVC Sch 40 (.025 Siot)
		.	Sch Sch	
70-		_		CONSTRUCTION: Mud Rotary
		.	INN T MURI	ORILLER: Groundwater Protection inc.
	60–100' Same as above with increase in shell fragments.	ب ب	9 B D D D D D D D D D D D D D D D D D D	
80-	Sandstone lens at 90' and 100'	^ن . را		
		س ^ن ن ا		
		<u> </u>		SPECIFIC YIELDgpm/ft • gpm
100-			0	WATER ANALYSIS (ppm)
				TDS
		ł		TOTAL HARONESS -
4				M.O. ALKALINITY+
-]				CHLORIDË CI
				IRON F.
				SULFATE SO4
				COLOR (APHA)
_1				CALCIUM#
		1		
				COMMENTS:
			,	COMPILED BY: Doug VanNote
				DATE: 8/3/88
		•		· · · · · · · · · · · · · · · · · · ·

	CLASSIFICATION	LOG	WELL
			FLUSH MOUNTED LOCKING WELL CAP
	0–20' Light brown, very fine to fine grained, paorly sorted sand with a trace of shell		
20	20–45' Brown, very fine to fine grained, poorly sorted sand with trace of shell. Thin lens of limestone interbedded		8"# Borehole 2" PVC Sch 40 (0-123') 1 Neat cement (0-112'
50 -	·····		C Sch 40
50 -			2° PW
70 -	45–90' Same as above only more consolidated and increase in shell fragments		
•			(113-133) edl (1') (.025 Slot)
90	90–110' Light brown, medium grained, well sorted sand		6/20 Gravel Bentonite S een Sch 40
110	110–133' Same as above with some shell fragments. Dense layer of shell from 112–115' consisting of pelycopods and gastropods		2" PVC Sci
130-			

Page of
WELL DRILLING REPORT
PROJECT No. SE24708.A8
WELL: W-98
LOCATION: South side of Poinsettia Dr.
±800' West of Old Germontown Rd.
and Poinsettla Dr. intersection
COUNTY: Palm Beach STATE: FI.
GROUND ELEVATION:
DIAMETER: _2"
DEPTH: _133'
STATIC WATER LEVEL: 14.42' DTW
DATE: <u>7/27/88</u>
CASING: 2 PVC Trilac
SCREEN: 2" PVC Sch 40 (.025 Slot)
CONSTRUCTION: Mud Rotary
ORILLER: Groundwater Protection Inc.
DATE FINISHED: 7/27/88
PUMPING TEST
SPECIFIC MELDgpm/ft 🕈 gpm
WATER ANALYSIS (ppm)
τος
TOTAL HARONESS .
M.O. ALKALINITY-
CHLORIDE CI
IRON Fe
COLOR (APHA)
CALCIUM *
COMMENTS:
··
COMPILED BY: Tim Sharp
DATE 7/27/88

Page
WELL DRILLING REPORT
Childu PROJECT No. SE24708.A8
WELL: W-108
LOCATION: South side of Poinsettia Dr.
±800' West of Old Germontown Rd.
and Poinsettla Dr. intersection
COUNTY: Palm Beach STATE: FL
GROUND ELEVATION:
DIAMETER:
0EPTH: _152'
STATIC WATER LEVEL: 14.38' DTW
DATE: 7/28/88
CASING: 2" PVC Trilac
SCREEN: 2" PVC Sch 40 (.025 Siot)
CONSTRUCTION: Mud Rotary
ORILIER: Groundwater Protection Inc.
DATE FINISHED: 7/28/88
PUMPING TEST
SPECIFIC YIELDgpm/ft •gpm
WATER ANALYSIS (ppm)
TDS
TOTAL HARDNESS -
M.O. ALKAUNITY+
IRON Fe
SULFATE SO.
COLOR (APHA)
CALCIUM+
COMMENTS:
COMPILED BY: Liss Rainger

Appendix E VOC and TOC Analyses of Soil

.

.

.

.

Engineers Planners MHIII. Economists Scientists

REPORT OF ANALYSIS

AAA057 07/29/88 Page 1 of 1 Sample Kos: 56081 - 56084

Florida Certification: 82112; E82124

City of Delray	CH2M H111
Attention: Tim Sharp	Project No: SEF24708.A8
Address: DFB	Received: 07/22/88
Copies to: Lisa Rainger/DFB	Reported: 07/29/88

Collected: 07/19/88 by Lisa Rainger Type: soil

SAMPLE NUMBER	56081	56082	, 56083	56084
SAMPLE DESCRIPTIONS	B-1 12*-14* 12:00	B-2 14'- 16' 13:30	B-1 14'- 16' 12:30	8-2 12'- 14' 13:00
GENERAL ORGANICS			<u></u>	
TOC - Salid	197	126	145	253
SOLIDS				
% Salids	90	86	B6	87
		1		
			ļ	
				}
		ł		
)	1	
	ſ	1		
			- {	-

OTE: VALUES ARE NG/KG, DRY WEIGHT.

Respectfully	submitted,

<u>Than C.E.</u>

Thomas C. Esenhiser, Laboratory Manager

n/r = not requested

NOTE: This report contains test data and no interpretation is intended or implied.

7201 N.W. 11th Place.

REPORT OF ANALYSIS

AAAOS7 07/29/88 Page 1 of 1 Sample Nos: 56081 - 56084

Engineers Planners Economists Scientists

Florida Certification: 82112; E82124

City of Delray	CH2M Hill
Attention: Tim Sharp	Project No: SEF24708.A8
Address: DFB	Received: 07/22/88
Copies to: Lisa Rainger/DFB	Reported: 07/29/88

Collected: 07/19/88 by Lisa Rainger Type: soil

SAMPLE NUMBER	56081	56082	26082	56084
SAMPLE DESCRIPTIONS	B-1 12'-14' 12:00	8-2 14'- 16' 13130	B-1 14'- 16' 12:30	B-2 12'- 14' 13:00
GENERAL DREANICS				
TOC - Solid	197	126	145	253
SOLIDS]			
% Solids	90	86	86	87
			1	
	(1	

DTE: VALUES ARE MG/KG, DRY WEIGHT.

Respectfully submitted,

Thomas C. Emenhiser, Laboratory Manager

n/r = not requested

NOTE: This report contains test data and no interpretation is intended or implied.

loromethane omomethane chlorodifluoromethane cyl chloride	56082 B-2	54083 B-1 (14'-16') <0.1 <0.1	
CONSTITUENT loromethane momethane chlorodifluoromethane cyl chloride	56082 B-2 (141-161) <0.1 <0.1	B-1 (14'-16') <0.1	
loromethane pmomethane chlorodifluoromethane cyl chloride	B-2 (14'-16') <0.1 <0.1	B-1 (14'-16') <0.1	
loromethane pmomethane chlorodifluoromethane cyl chloride	(14'-16') <0.1 <0.1	(14'-16') <0.1	
loromethane pmomethane chlorodifluoromethane cyl chloride	<0.1		
momethane chlorodifluoromethane syl chloride	<0.1		
chlorodifluoromethane byl chloride		<0.1	
yl chloride	<0.1		
		<0.2	
	$< 0 \pm 1$	<0.1	
ioroethane	<0.1	< 0.1	
hylene chloride	<0.5	<0.5	
ichlorofluoromethane	<0.1	<0.1	
-Dichloroethene	<0.1	<0.1	
<u>-D</u> ichloroethane	<0.1	<0.1	
	<0.1	<0.1	-
loroform	<0.1	<0.1	
2-Dichloroethane	<0.1	<0.1	
1,1-Trichloroethane	<0.1	<0.1	
bon Tetrachloride	<0.1	<0.1	
omodichloromethane	<0.1	<0.1	
2-Dichloropropane	<0.1	<0.1	
	<0.1	<0.1	· · ·
chloroethene	<0.1	<0.1	
promochloromethane	<0.1	<0.1	
.,2-Trichloroethane	<0.1	<0.1	,
ans-1,3-Dichloropropene	<0.1	<0.1	
	<0.1	<0.1	
1,2,2-Tetrachloroethane	<0.1	<0.1	
rachloroethene	<0.1	<0.1	
lorobenzene	<0.1	<0.1	
Dichlorobenzene	<0.1	<0.1	
2-Dichlorobenzene	<0.1	<0.1	
-Dichlorobenzene	<0.1	<0 . 1	
e Analyzed	7-30-88	7-30-88	
MENTS: Results in millig			
2-Chloroethylviny		-	
information shown on thi			
Alysis or interpretation	on is inte	ended or <u>im</u> p	
		\sim	Alla lla
ALYST: (140 A Joula	APPRON	/ED BY:	TTULL CLY

•

e

.

Ţ

CH2M HILL ENVIRONMENTAL LABORATORY 2218 RAILROAD AVENUE REDDING, CA 96001 916-243-5831

EPORT TO: CH2M HILL/GNV SEF24708.AB

· .

TTENTION: DON HASH AMFLE DESCRIPTION: SOIL-CITY OF DELRAY ATE OF SAMPLE: 7-19-88

۴.

REFERENCE NUMBER: 20619 PAGE 18 OF 19 DATE: 8~3-88 PHONE: SAMPLED BY: LISA RAINGER DATE RECEIVED: 7-23-88

EST METHODS: EPA-602-8020 XTRACTION METHOD: EPA 5030

CONSTITUENT	56082 8-2 (141161)	56083 B-1 (141161)	
eniene	<0.1	<0.1	
oluene	<0.1	< Ö. t	
http://benzene	<0.1	<0.1	
(ylene	<0.1	<0.1	
hlorobenzene	<0.1	<0 . 1	
	<0.1	<0.1	
, <u>3-</u> Dichlorobenzene	<0.1	<0.1	· · ·
Dichlorobenzene	<0.1	<0,1	
ate Analyzed	7-30-88	7-30-68	

COMMENTS: Results are in milligrams per kilogram.

he information shown on this sheet is test data only and to interpretation is intended or implied.

SHawley. MALYST: Gegan A. Jona APPROVED

Appendix F Analytical Results Preliminary Contamination Assessment Monitor Wells

> / ``

.

CH2M HILL ENVIRONMENTAL LABORATORIES 7201 N.W. 11th Place, P.O. Box 1647 Gainesville, Florida 32602 904/377-2442 State of Florida Certification No.: 82112, E82124

REPORT OF ANALYSIS

Page 1 of 3

Sample Nos. 57455-57462 Number of Samples: 8

Date Completed: 09/12/88

Date Reported: 09/16/88

Client:	City of Delray	Project No.	SEF24708.A8.00
Attention:	Mark Morris, Dawn Sanders	Received:	09/03/88
Address:	CH2M HILL Deerfield Beach Office		

Description of Sample: Water

> Collected on 09/01/88 by Greg Ford Samples were iced and chemically preserved

	#57455 Travel	#57456 Bailer	#57457	# \$7458
	Blank	Blank	Duplicate	W-108+
EPA Method 601	(dqq)	<u>(ppb)</u>	(dgg)	(dqq)
Chloromethane	BMDL	BMDL,	<10	BMDL
Bromomethane	BMDL	BMDL	<10	BMDL
Vinyl Chloride	BMDL	BMDL	<10	BMDL
Chloroethane	BMDI,	BMDL	<10	BMDL
Dichloromethane	BMDL	BMDL	<10	BMDL
1,1-Dichlorcethene	BMDL	BMDL	<10	BMDL
1,1-Dichloroethane	BMDL	BMDL	<10	BMDL
Trans-1,2-Dichloroethene	SMDL	BMDI,	<10	BMDL
Chloroform	BMDL	BMDL	<10	BMDL
1,2-Dichloroethane	BMDL,	BMDL	· <10	BMDL
1,1,1-Trichloroethane	BMDI.	BMDL ·	2.7 (F)	BMDL
Carbon Tetrachloride	BMDL	8MDL	<10	BMDL
Dichlorobromomethane 1,2-Dichloropropane and	BMDL	BMDL	<10	BMDL
Cis-1,3-Dichloropropene	BMDL	BMDL	<10	BMDL
Trichloroethene Dibromochloromethane and 1,1,2-Trichloroethane and	BMDL	BMDL	3.9 (F)	BMDL
Trans-1,3,-Dichloropropene	BMDL	BMDL	<10	BMDL
Bromoform Tetrachloroethene and	BMDL	BMDL	<10	BMDL
1,1,2,2-Tetrachlorcethane	BMDL	BMDL	- 94	BMDL

NOTE: (F) Presence indicated but less than stated Method Detection Limit of ppb (Dilution Factor: 1:) Method Detection Limit = 1 ppb unless specified otherwise ppb = Parts per billion BMDL = Below Method Detection Limit

Respectfully submitted,

Laboratory Manager

The information shown on this sheet is test data only and no interpretation of this data is intended or implied.

REPORT OF ANALYSIS

EPA Method 602	#57455 Travel Blank (ppb)	#S7456 Bailer Blank (ppb)	#57457 Duplicate (pob)	#57458 W-108+ (ppb)
Tert-Butyl Methyl Ether	5MDL	BMDL	<10	BMDL
Benzene	BMDL	BMDL	<10	BMDL
Toluene	BMDL	BMDL	<10	BMDI.
Chlorobenzene	BMDL	BMDL	<10	SMDL
Ethyl Benzene	BMDL	BMDL	<10	BMDL
o-,m- and p-Xylene	BMDL	BMDL	<10	BMDL
1,3-Dichlorobenzane	BMDL	BMDL	<10	BMDL
1,2-Dichlorobenzene	EMDL	BMDL	<10	BMDL
1,4-Dichlorobenzene	BMDL	BMDI.	<10	BMD L
Tetrachloroethene (P)	BMDL	BMDL	62	BMDL

NOTE: (P) From Photo Ionization Detector Method Detection Limit = 1 ppb unless specified otherwise ppb = Parts per billion BMDL = Below Method Detection Limit

1

Respectfully submitted,

Eh.

Laboratory Manager

The information shown on this sheet is test data only and no interpretation of this data is intended or implied.

,

PORT OF ANALYSIS

$\frac{1}{2}$.	#57459 ₩-9B+	#57460 ₩-1	#57461 ₩-4	#57462
EDA Markad 601	(ppb)	1 -w (dqq)		₩-6 (→-)
EPA Method 601	(000)	(1990)	(ppb)	(dqq)_
Chloromethane	BMDL	SMDL	BMDL	<10
Bromomethane	BMDL	BMDL	BMDL	<10
Vinyl Chloride	BMDL	BMDL	BMDL	<10
Chloroethane	BMDL	BMDL	BMDL	<10
Dichloromethane	BMDL	BMDL	BMDL	<10
1,1-Dichloroethene	BMDL	BMDL	BMDL	<10
1,1-Dichloroethane	BMDL.	BMDL	BMDL	<10
Trans-1,2-Dichloroethene	BMDL	BMDL	BMDL	<i0< td=""></i0<>
Chloroform	BMDL	BMDL	BMDL	<10
1,2-Dichloroethane	BMDL	BMDL	BMDL	<10
1,1,1-Trichloroethane	BMDL	BMDL	BMDL	<10
Carbon Tetrachloride	BMDL	BMDL	BMDL	<10
Dichlorobromomethane	BMDL	AMDL	EMDL	<10
1,2-Dichloropropane and				
Cis-1,3-Dickloropropene	BMDL	BMDL	BMDL	<10
Trichloroethene	BMDL	BMDL	3.2	13
Dibromochloromethane and				
1,1,2-Trichloroethane and				
Frans-1,3,-Dichloropropene	BMDL	BMDL	BMDL	<10
romoform	BMDL	AMDL	BMDL	<10
Tetrachloroethene and				
1,1,2,2-Tetrachloroethane	BMDL	BMDL	63	930
EPA Method 602				<u>.</u>
Tert-Butyl Methyl Ether	BMDL.	BMDL	BMDL	<10
Benzene	BMDL	BMDL	BMDL	<10
Toluene	BMDL	BMDL	BMDL	<10
Chlorobenzene	BMDL	BMDL	BMDL	<10
Ethyl Benzene	BMDL	BMDL	BMDL	<10
o-,m- and p-Xylene	BMDL	BMDL	BMDL	<10
1,3-Dichlorobenzene	BMDL	BMDL	BMDL	<10
1,2-Dichlorobenzene	BMDL	BMDL	BMDL	<10
1,4-Dichlorobenzene	BMDL	BMDL	BMÖL	<10
Tetrachloroethene (P)	BMDL	BMDL	47	650

NOTE: (P) From Photo Ionization Detector Method Detection Limit = 1 ppb unless specified otherwise ppb = Parts per billion BMDL = Below Method Detection Limit

.

Respectfully submitted,

<u>ee</u>li -2

Laboratory Manager

The information shown on this sheet is test data only and no interpretation of his data is intended or implied.

Engineers Planners Mitter Economists Scientists

ORGANICS ANALYSIS DATA SHEET

cory Name:	<u>CH2M_HILL/M6M_</u>	Concentration:	<u>LOW</u>	Date Extracted:	****
sple ID:	11856001	Sample Matrix:	MATER	Date Analyzed:	09/15/88
Sample ID:	<u>W3 57463 1335</u>	Percent Moisture:		Dilution Factor:	1.0

VOLATILE COMPOUNDS

	i	u <u>g/</u> l		CAS Number		ug/	L
Chloromethane	•	10	Ü	79-00-5	1,1,2-Trichloroethane	5	U
Bromomethane		10	U	71-43-2	Benzene	5	U
Vinyl Chloride		10	U	10061-02-6	trans-1,3-Dichloropropene	5	U
Chloroethane		10	U	110-75-8	2-Chloroethylvinylether .	10	U
Hethylene Chloride		8	9J	75-25-2	Bronoform	5	BU
•		43		591-78-6	2-Hexanone	10	BU
		5	U	108-10-1	4-Methyl-2-Pentanone	10	U
Trichlorofluoromethane .		5	8	127-18-4	Tetrachloroethene	1200	
		5	U I	79-34-5	1.1.2.2-Tetrachloroethane	10	80
		5	U	108-88-3	• •	5	U
-		5	U	108-90-7	Chlorobenzene	5	U
•		5	8U	100-41-4		5	U
		S	U	100-42-5		5	U
•		10	U	1330-20-7	•	5	U
		5	U	341-73-1	*	5	U
		5	U	106-46-7	-	5	U
Vinvl Acetate		10	U	95-50-i	•	5	U
•		5	Ŭ			-	
		5	Ū		Toluene-d8 - SS	110	
		5	Ū				
		_	-		•	100	
		5	U		-,		
	Bromomethane	Chloromethane	Chloromethane10Bromomethane10Vinyl Chloride10Chloroethane10Methylene Chloride10Methylene Chloride8Acetone43Carbon Disulfide5Trichlorofluoromethane51,1-Dichloroethene51,2-Dichloroethene51,2-Dichloroethane52-Butanone101,1,1-Trichloroethane5Carbon Tetrachloride51,2-Dichloromethane52-Butanone101,1,2-Dichloromethane5Carbon Tetrachloride5Vinyl Acetate10Bromodichloromethane51,2-Dichloropropane51,2-Dichloropropane51,2-Dichloropropane51,2-Dichloropropane51,2-Dichloropropane51,2-Dichloropropane51,2-Dichloropropane51,2-Dichloropropane51,2-Dichloropropane51,2-Dichloropropane5	Bromomethane10Vinyl Chloride10UUChloroethane10Wethylene Chloride8BJAcetone43Carbon Disulfide5UTrichlorofluoromethane1.1-Dichloroethene5U1,1-Dichloroethene1.2-Dichloroethene5U1,2-Dichloroethane1.2-Dichloroethane5U1,2-Dichloroethane1.1.1-Trichloroethane5U1,1.1-Trichloroethane1.1.2-Dichloroethane5U1,2-Dichloroethane1.1.1-Trichloroethane5UU1.2-Dichloromethane5U1,2-Dichloroethane1.1.1-Trichloroethane5U1,2-Dichloromethane1.1.1-Trichloroethane5U1,2-Dichloropropane1.2-Dichloropropane5U1,2-Dichloropropane1.3-Dichloropropane5U1,1-Dichloroethene1.3-Dichloropropane5U1,2-Dichloropropane1.3-Dichloropropane5U1,2-Dichloropropane1.3-Dichloropropane51.3-Dichloropropane51.3-Dichloropropane51.3-Dichloropropane51.3-Dichloropropane51.3-Dichloropropane51.3-Dichloropropane51.3-Dichloropropane51.3-Dichloropropane51.3-Dichloropropane51.3-	Chloromethane 10 U 79-00-5 Bromomethane 10 U 71-43-2 Vinyl Chloride 10 U 10061-02-6 Chloroethane 10 U 10075-8 Methylene Chloride 8 BJ 75-25-2 Acetone . . 43 591+78-6 Carbon Disulfide . . 5 U 108-10-1 Trichlorofluoromethane . . 5 U 108-10-1 Trichloroethane . . 5 U 108-10-1 Trichloroethane . . 5 U 108-88-3 1,2-Dichloroethane . . . 108-90-7 Chlorofore U 1,2-Dichloroethane . .	Chloromethane 10 U 79-00-5 1,1,2-Trichloroethane Bromomethane 10 U 71-43-2 Benzene . Vinyl Chloride 10 U 10061-02-6 trans-1,3-Dichloropropene Chloroethane 10 U 10061-02-6 trans-1,3-Dichloropropene Chloroethane 10 U 110-75-8 2-Chloroethylvinylether Methylene Chloride 8 BJ 75-25-2 Bromonform . Acetone . . 43 591-78-6 2-Hexanone . . Carbon Disulfide . . 5 U 108-10-1 4-Methyl-2-Pentanone . Trichlorofluoromethane . . 5 U 108-10-1 4-Methyl-2-Pentanone . 1,1-Dichloroethane . . 5 U 108-10-1 4-Methyl-2-Pentanone . 1,2-Dichloroethane . . 5 U 108-80-3 Toluene . . 1,2-Dichloroethane . . 5 U 108-90-7	Chloroaethane 10 U 79-00-5 1,1,2-Trichloroethane 5 Bromomethane 10 U 71-43-2 Benzene 5 Vinyl Chloride 10 U 10061-02-6 trans-1,3-0ichloropropene 5 Chloroethane 10 U 10061-02-6 trans-1,3-0ichloropropene 5 Chloroethane 10 U 100-75-8 2-Chloroethylvinylether 10 Methylene Chloroethane 10 U 100-75-8 2-Chloroethylvinylether 10 Methylene Chloroethane 10 U 100-75-8 2-Chloroethylvinylether 10 Acetone . . 43 591-78-6 2-Hexanone . . 10 Carbon Disulfide . . 5 U 108-10-1 4-Methyl-2-Pentanone . 10 I.i-Dichloroethene . . 5 U 108-88-3 Toluene

Compound analyzed for but not detected. Compound was detected in QC blank. Reported value less than quantitation limit. Surrogate Standard reported as percent recovery.

Fore [

Eng	ineers	
Plan	ners	
KM Econ	omists	
* Scien	tists	
atory Name:	CH2H HILL/H6H	
Not	V11856	

| Sample Number | | W3_57463_1335 |

TENTATIVELY IDENTIFIED COMPOUNDS (Page 4)

CAS	Compound Name	Frac Scan	Estimated
Number		tion Num	Conc ug/L
	IDENTIFIED compounds found.	VCA .	70 J

Estimated compound concentration using RF=1.

page 1A for complete definitions of the data orting qualifiers.

. .

Fora I

Ľ.

ORGANICS ANALYSIS DATA SHEET

itory Name:	<u>CH2N HILL/NGM</u>	Concentration:	LOW	Date Extracted:	
apit ID:	11856002	Sample Matrix:	WATER		09/15/88
: Sample ID:	H5 57464 1500	Percent Moisture:		Dilution Factor:	1.0

VOLATILE COMPOUNDS

usber.		ug/	<u> </u>	<u>CAŞ Number</u>		ug/	<u>L</u>
•3	Chloromethane	10	U	79-00-5	1,1,2-Trichloroethane	5	U
.9	Bromomethane	10	U	71-43-2	Benzene	5	U
- 4	Visyl Chloride	10	U	10061-02-6	trans-1.3-Dichloropropene	5	U
• 3	Chloroethane	10	U	110-75-8	2-Chloroethylvinylether	10	U
٠z	Methylene Chloride	7	8J	75-25-2	Bromoform	5	BU
- 1		27		591-78-6	2-Hexanone	10	8U
-0	Carbon Disulfide	5	U	108-10-1	4-Methyl-2-Pentanone	10	U
- 4	Trichlorofluoromethane	5	U.	127-18-4	Tetrachloroethene	250	
- 4	1,1-Dichloroethene	5	U	79-34-5	1,1,2,2-Tetrachioroethane	10	8U
- 3	1,1-Dichloroethane	5	U	108-88-3	Toluene	5	U
2-0	1,2-Dichloroethene (total)	5	U	108-90-7	Chlorabenzene	5	U
- 3	Chioroform	5	BU	100-41-4	Ethylbenzene	5	U
,-Z	1,2-Dichloroethane	5	U	100-42-5	Styrene	5	U
• 3	Z-Butanone	10	ß	1330-20-7	Xylenes (total)	5	U
- 6	1,1,1-Trichloroethane	5	U	541-73-1	1.3-Dichlorobenzene	5	U
•5	Carbon Tetrachloride	5	U	106-46-7	1,4-Dichlorobenzene	5	U
	Vinyl Acetate	10	U	9 3 -30-1	1,2-Dichlorobenzene	5	U
	Bromodichloromethane	5	U		, 		
-5	1,2-Dichloropropane	5	U		Toluene-d8 - SS	110	
01-5	cis-1,3-Dichloropropene	5	U		1,4-Bromofluorobenzene - SS	110	
- 6	Trichloroethene	87			1,2-Dichloroethane-d4 - SS	110	
8-1	Dibromochloromethane	5	Ų		·		

Compound analyzed for but not detected.

- Compound was detected in GC blank.

4

Reported value less than quantitation limit.

Surrogate Standard reported as percent recovery.

Fors L

CH2M HILL

Engineers Planners Economists Scientists	
Name: CH2M HILL/MGM	Sample Number W5_57464_1300
TENTATIVELY IDENTIFIED COMPOUNDS	└ _{┷┶} ┉ _┉ ╕╕╤╼┓┓┓┓╻

TENTATIVELY	IDENTIFIED	COMPOUNDS
	(Page 4)	

CAS Nueber	Compound Name	Frac Scan <u>tion Num</u>	Estisat Conc_uç		_
	IDENTIFIED compounds found.	-VOA	51	J	
timated comp	ound concentration using RF≠1.				:

ige 1A for complete definitions of the data ing qualifiers.

Form I

CH2M HILL

Montgomery Emissionental I shorebook

ζ,

2567 Feirlane Orive, P.O. Box 230548. Montoomery, Alabama 35116

205.271.1444

ORGANICS ANALYSIS DATA SHEET

ery Name:	<u>CH2M_HILL/MGM_</u>	Concentration:	<u>Low</u>	Date Extracted:	<u>09/08/88</u>
	11856001			Date Analyzed:	09/13/88
sample ID:	WELL 3 57463	Percent Moisture:	·	Dilution Factor:	<u> </u>

SEMIVOLATILE COMPOUNDS

<u>187</u>		ug/	L	CAS Number	,	uq/	<u>L</u>
	N-Nitrosodimethylaming	10	U	51-28-5	2,4-Dinitrophenol	50	ບື
Z	Phenol	10	U	100-02-7	4-Nitrophenol	50	U
	Aniline	10	U	132-64-9	Dibenzofuran	10	U
4	bis(2-Chloroethyl)Ether .	10	ម	121-14-2	2,4-Dinitrotoluene	10	U
	Z-Chlorophenol	10	U	84-66-2	Diethylphthalate	10	U
1	1,3-Dichlorobenzene	10	ប	7005-72-3	4-Chlorophenyl-phenylether	10	U
7	1.4-Dichlorobenzene	10	U	86-73-7	Fluorene	10	U
6	Benzyl Alcohol	10	U	100-01-6	4-Nitroaniline	50	U
	1.2-Dichlorobenzene	10	U	534-52-1	4,6-Dimitro-2-methylphenol	20	U
	2-Methylphenol	10	ų.	86-30-6	N-Nitrosodiphenylamine (1)	10	U
1	bis(2-Chloroisopropyl)Ether	10	U	122-66-7	1,2-Diphenylhydrazine	10	Ð
5	4-Methylphenol	10	U	101-55-3	4-Bromophenyl-phenylether	10	U
2	N-Nitroso-Di-n-Propylamine	10	U	118-74-1	Hexachlorobenzene	10	U
	Hexachloroethane	10	ប	87-86-5	Pentachlorophenol	10	U
	Nitrobenzene	10	U	85-01-8	Phenanthrené	10	Ų
	Isophorone	10	U	120-12-7	Anthracene	10	U
	2-Nitrophenol	10	U	84-74-2	Di-n-Butylphthalate	10	U
9	2,4-Dimethylphenol	10	U	206-44-0	Fluoranthene	10	U
	Benzoic Acid	50	U	129-00-0	Pyrene	10	U
1	bis(2-Chloroethoxy)Methane	10	U	85-68-7	Butylbenzylphthalate	10	U
2	2,4-Dichlarophenol	10	U	71-94-1	3,3'-Dichlorobenzidine	20	U
1	1,2,4-Trichlorabenzene	10	U	56-55-3	Benzo(a)anthracene	10	U
	Naphthalene	10	U	218-01-9	Chrysene	_10	U
8	4-Chloroaniline	10	U	117-81-7	bis(2-Ethylhexyl)Phthalate	34	
	Hexachlorobutadiene	10	ម	117-84-0	Di-s-octylphthalate	10	U
	4-Chloro-3-methylphenol .	10	U	205-99-2	Benzo(b)fluoranthene	10	U
	2-Methylnaphthalene	10	U	207-08-9	Benzo(k)fluoranthene	10	U
	Hexachlorocyclopentadiene	10	ម	50-32-8	Benzo(a)pyrene	10	ប
	2,4,6-Trichlorophenol	10	U	193-39-5	Indens(1,2,3-cd)Pyrene	10	U
	2,4,5-Trichlorophenol	50	U	53-70-3	Dibenz(a,h)Anthracene	10	U
	2-Chloronaphthalene	10	ป	191-24-2	Benzo(g,h,i)perylene	10	U
	2-Nitroaniline	50	U				
2	Dimethyl Phthalate	10	U		Nitrobenzene-d3 - SS	110	
8	Acenaphthylene	10	ប		2-Fluorobiphenyl - SS	86	
2	2,6-Dinitratoluene	10	U		Terphenyl-d14 - SS	110	
	3-Nitroaniline	50	U		Phenol-d5 - 55	۵ 5	
	Acenaphthene	10	U		2-Fluorophenol - SS	91	
_					2,4,6-Tribrosophenol - 85	77	

Cannot be separated from diphenylamine. Compound analyzed for but not detected. Compound was detected in GC blank. Penarted value lock than quantitation limit. Engineers

Planners

100 Economists Scientists

GREANICE ANALYSIS DATA SHEET

tory Name:	<u>CH2M_HILL/M6M_</u>	Concentration:	LOW	Date Extracted:	<u>09/08/88</u>
apie ID:	<u>11856002</u>	Sample Matrix:	WATER	Date Analyzed:	09/13/88
Sample (D:	<u>WELL 5 57464</u>	Percent Moisture:	<u> </u>	Dilution Factor:	1.0

SEMIVOLATILE COMPOUNDS

ber		_uq/		<u>CAS Number</u>		<u>uq/</u>	L
	N-Nitrosodimethylamine	10	U	51-28-5	2,4-Dinitrophenol	50	Ü
2	Phenol	10	U	100-02-7	4-Nitrophenol	50	U
	Aniline	10	U	132-64-9	Dibenzofuran	10	U
4	bis(2-Chloroethyl)Ether .	10	U	121-14-2	2,4-Dinitrotoluene	10	U
	2-Chlorophenol	10	U	84-66-2	Diethylphthalate	10	U
i	1,3-Dichlorobenzene	10	U	7005-72-3	4-Chlorophenyl-phenylether	10	U
7	1,4-Dichlorobenzene	10	U	86-73-7	Fluorene	10	ų
6	Benzyi Alcohol	10	U	100-01-6	4-Nitroaniline	50	U
	1.2-Dichlarobenzene	10	U	534-52-1	4,6-Dinitro-2-methylphenol	50	ι
	2-Methylphenol	10	U	86-30-6	N-Nitrosodiphenylanine (1)	10	U
i	bis(2-Chloroisopropyl)Ether	10	U	122-66-7	1.2-Diphenylhydrazine	10	Ų
5	4-Hethylphenol	10	U	101-55-3	4-Brosophenyl-phenylether	10	U
r	N-Nitroso-Di-n-Propylamine	10	U	118-74-1	Hexachlorobenzene	10	t
	Hexachloroethane	10	U	87-86-5	Pentachlorophenol	10	٤
	Nitrobenzene	10	U	85-01-8	Phenanthrene	10	t
	Isophorone	10	U	120-12-7	Anthracene	10	l
	2-Nitrophenol	10	U	84-74-2	Di-n-Butylphthalate	10	l
	2,4-Dimethylphenol	10	U	206-44-0	Fluoranthene	10	I
	Benzoic Acid	50	U	129-00-0	Pyrene	10	Į
	bis(2-Chloroethoxy)Methane	10	Ū	85-68-7	Butylbenzylphthalate	10	l
	2,4-Dichlorophenol	10	Ū	91-94-1	3,3'-Dichlorobenzidine	20	l
	1,2,4-Trichlorobenzene	10	Ū	56-55-3	Benzo(a)anthracene	10	l
	Naphthalene	10	Ŭ	218-01-9	Chrysene	10	l
	4-Chloroaniline	10	Ð	117-81-7	bis(2-Ethylhexyl)Phthalate	10	i
	Hexachiorobutadiene	10	U	117-84-0	Di-m-octylphthalate	10	t
	4-Chloro-3-methylphenol .	10	Ū	205-99-2	Benzo(b)fluoranthene	10	ι
	2-Methylnaphthalene	10	Ū.	207-08-9	Benzo(k)fluoranthene	10	ι
	Hexachlorocyclopentadiene	10	Ð	50-32-8	Benzo(a)pyrene	10	l
	2,4,6-Trichlorophenal	10	บ่	193-39-5	Indeno(1,2,3-cd)Pyrene	10	I
	2,4,5-Trichlorophenol	50	บ	53-70-3	Dibenz(a,h)Anthracene	10	l
	2-Chloronaphthalene	10	บิ	191-24-2	Benzo(g,h,i)perylane	10	1
	2-Nitroaniling	50	Ŭ			• -	
	Dimethyl Phthalate	10	ย		Nitrobenzene-d5 - SS	78	
}	Acenaphthylene	10	ŭ		Z-Fluorobiphenyl - SS	01	
•	2,6-Dinitrotoluene	10	บ		Terphenyl-d14 - SS	100	
	3-Nitroaniline	50	Ū		Phenol-d5 - 55	-	
	Acenaphthene	10	Ŭ		2-Fluorophenol - SS	87	
		• •	-		2,4,6-Tribromophenol - SS	75	

- Cannot be separated from diphenylamine. Poepound analyzed for but not detected. Apound was detected in QC blank. Reported value less than quantitation limit. Surrogate Standard reported as percent recovery.

CHORA UN F

Engineers Planners Economists Scientists

REPORT OF ANALYSIS

AAA202 10/12/88 Page 1 of L Sample Nos: 57463 - 57464

Florida Certification: 82112; EB2124

City of Delray	CHŻM Hill
Attention: Mark Morris Address: DFB	Project No: SEF24708.A8.00 Received: 07/03/88
Copies to: Dawn Sanders/DFB	Reported: 10/12/89

Collected: 09/01/88 by Greg Ford Type: water, grab

SAMPLE NUMBER	57463	\$7464
SAMPLE DESCRIPTIONS	' ₩#11 #3	: Xell 45
METALS		
Antimony - FU	(0.2	(0.2
Arsenic - FU	<0.005	(0.005
Beryllius - FL	<0.01	(0.01
Cadmium - FL	0.0003	(0.0002
Chromium, Tot - FL	<0.05	(0,05
Capper - FL	<0.02	(0.02
Lead - FL	<0.002	(0.002
Mercury - CV	<0.0002	<0.0002
Nickel - FL	<0.05	(0.05
Selenium	<0.001	<0.001
Silver - FL	<0.02	(0.0Z
Thallium - FL	(0.5	<0.5
Zinc - FL	0.04	(0.01
		1

NOTE: Values are eq/1 as substance unless otherwise stated.

Respectfully submitted,

Thomas C. Emenhiser, Laboratory Manager

n/r = not requested NOTE: This report contains test data and no interpretation is intended or implied.

Rory Name:	CH2M HILL
t	11856

t

٠							÷
ţ	S	ai	60	1 😦	Nu	ober	١
ł	1	18	35	60(11		t
ŧ		_					+

- . . .

ORGANICS ANALYSIS DATA SHEET

PESTICIDE / PCB COMPOUNDS

antrati Ext <u>r</u> ac Analyz	ted/Prepared:	LON 09/08/88 09/18/88			Alumina CleanupYes <u>X</u> No Separatory Funnel ExtractionYes Continuous Liquid-Liquid Extraction <u>X</u> Yes
/Dil Fa		1			
ent Moi	sture: (Decan	ted)			·
Number			<u>06/L</u>		
84-6	alpha-BHC .	· · · · · ·	0.01	U	
85-7	beta-BHC		0.02	U	
84-8	delta-BHC .		0.01	U	
9-9	gamma-BHC (Li	ndane)	0.01	Ų	
4-8	Heptachlor .		0.01	U	
00-2	Aldrin		0.01	U	
-57-3	Heptachior Ep	oxide	0.01	8	
98-8	Endosulfan I		0.02	U	
	Dieldrin		0.02	U	
	4,4 -DDE		0.02	U	
0-8	Endrin .		0.02	U	
3-65-9	Endosulfan II		0.02	U	
4-8	4,4'-BD0		0,02	U	
-07-8	Endosulfan Su		0.02	U	
9-3	4,4'-007		0.02	ų.	
3-5	Hethoxychior		0.04	Ų	
4-70-5	Endrin Ketone		0.02	U	
9-03-6	Chlordane .		0.1	U	
-35-2	Toxaphene .		0.5	U	
4-11-2	Aroclar-1016		0.8	U	
4-28-2	Aroclor-1221		2	ឋ	
1-16-5	Aroclor-1232		2	U	
9-21-9	Aroclor-1242		0.8	U	
2-29-6	Aroclor-1248		0.4	U	
7-69-1	Arocior-1254		0.Z	U	
6-02-5	Arcclor-1260		0.2	U	
8 - Co	mpound analyze epound was det	ected in QC	blank.		. gus

- 8 Compound was detected in QC blank.
- J Reported value less than quantitation limit.
- C Confirmed by SC/HS.

۰.

- E Concentration exceeds instrument calibration range.
- <u>a</u> Secondary dilution result.

Form I

•

<u>CH2N HILL</u> tory Name: 11956

+-		+
ł	Sample	Nuebert
;	1185600	2 1
+-		+

ORGANICS ANALYSIS DATA SHEET

PESTICIDE / PCB COMPOUNDS

entration:			Alumina Cleanup <u>Y</u> es <u>X</u> No
Extracted/Prepared:	09/08/88		Separatory Funnel Extraction Yes
Analyzed:	09/18/88	-	Continuous Liquid-Liquid Extraction <u>X</u> Yes
/Dil Factor:	1		
ent Moisture: (Decan	ted)		
Number		17L	
84-6 alpha-BHC .		01 U	
85-7 beta-BHC .	0.	02 U	
86-B delta-8HC .	0.	01 U	
9-9 gamma-BHC (Li	ndane) 0.	01 U	
4-8 Heptachlor .	0.	OI U	
00-2 Aldrin	0.	01 8	
-57-3 Heptachlor Ep	axide 0.	01 U	
98-8 Endasulfan I		02 U	
7 <u>-</u> 1 Dieldrin	0.	02 U	,
4,4'-DDE	0.	02 U	
0-8 Endrin		02 U	
3-65-9 Endosulfan II		02 U	
4-8 4,4'-DDD	0.	02 U	
-07-8 Endosulfan Su		02 U	
9-3 4.4'-007		02 U	
3-5 Methaxychlor	0.	04 U	
4-70-5 Endrin Ketone		02 U	
9-03-6 Chlordane	0	.i U	
-35-2 Toxaphene .	0	.5 U	
4-11-2 Aroclor-1016		.8 U	
4-28-2 Aroclor-1221		2 U	
1-16-5 Aroclor-1232		2 U	
7-21-9 Aroclor-1242		.8 U	
2-29-6 Aroclor-1248		.4 U	
7-69-1 Aroclor-1254		.2 U	
5-82-5 Aroclor-1260		.z U	- 1 <i>N</i> -
			. Hus
			Yu -
U - Compound analyze	d for but not de	tected	. (/
9 - Compound was det			Ŧ
J - Reported value 1			limit.
C - Confirmed by 8C/			
E - Concentration ex		calib	ration range.
D - Secondary diluti		_	-
· · · · · · · · · · · · · · · · · · ·	-		
T			

Appendix G Analytical Results Split Sampling with Aero-Dri Consultant May 25, 1988

2

Sample Nos. 54398-54419 CH2M HILL ENVIRONMENTAL LABORATORIES 201 N.W. 11th Place, P.O. Box 1647 Number of Samples: 22 Date Completed: 06/13/88 ainesville, Florida 32602 904/377-2442 Date Reported: 06/29/88 State of Florida Certification No.: 82112, E82124

REPORT OF ANALYSIS

Page 1 of 5

Client:	City of Delray	Project No.	SEF24708.A4
Attention:	Bob Wright	Received:	05/31/88
Address:	CH2M HILL Deerfield Beach Office		

Description of Sample: Water Samples

> Collected on 05/25/88 by Derrik Williams Samples were iced and chemically preserved

EFA Method 601	#54398 PW-24 (ppb)	#54399 PW-23 (ppb)	#54400 PW-22 (ppb)	#54401 PW-25 (ppb)	#54402 MWC4-A (ppb)	#54403 MWC4-В (ppb)
Chloromethane	<10	BMDL	BMDL	BMDL	BMDL	BMDL
Bromomethane	<10	BMDL	BMDL	BMDL	BMDL	BMDL
Vinyl Chloride	<10	BMDL	BMDL	BMDL	BMDL	BMDL
Chloroethane	<10	BMDL	BMDL	BMDL	BMDL	BMDL
Dichloromethane	<10	BMDL	BMDL	BMDL	BMDL	BMDL
1,1-Dichloroethene	<10	BMDL	BMDL	BMDL	BMDL	BMDL
,1-Dichloroethane	<10	BMDL	BMDL	BMDL	BMDL	BMDL
rans-1,2-Dichloroethene	40	2.7	11	BMDL	BMDL	BMDL
Chloroform	<10	BMDL	BMDL	BMDL	BMDL	BMDL
1,2-Dichloroethane	<10	BMDL	BMDL	BMDL	BMDL	BMDL
1,1,1-Trichloroethane	<10	BMDL	BMDL	BMDL	BMDL	BMDL
Carbon Tetrachloride	<10	BMDL	BMDL	BMDL	BMDL	BMDL
Dichlorobromomethane	<10	BMDL	BMDL	BMDL	BMDL	BMDL
1,2-Dichloropropane	<10	BMDL	BMDL	BMDL	BMDL	BMDL
Cis-1,3-Dichloropropene	<10	BMDL	BMDL	BMDL	BMDL	BMDL
Trichloroethene	22	BMDL	1.2	BMDL	BMDI.	BMDL
Dibromochloromethane and 1,1,2-Trichloroethane and						
Trans-1,3,-Dichloropropene	<10	BMDL	BMDL	BMDL	BMDL	BMDL
Bromoform Tetrachloroethene and	<10	BMDL	BMDL	BMDL	BMDL	BMDL
1,1,2,2-Tetrachloroethane	270	20	BMDL	BMDL	BMDL	BMDL

NOTE: Method Detection Limit = 1 ppb unless specified otherwise ppb = Parts per billion BMDL = Below Method Detection Limit

Respectfully submitted,

mc C. Empier Laboratory Manager

The information shown on this sheet is test data only and no interpretation of this data is intended or implied.

EPA Method 602	#54398 PW-24 (ppb)	#54399 PW-23 (ppb)	₩-22 ₩-22 (ppb)	#54401 PW-25 (ppb)	#54402 MWC4-A (ppb)	#54403 MWC4-B (ppb)
Tert-Butyl Methyl Ether	<10	BMDL	BMDL	BMDL	2.2	BMDL
Benzene	<10	BMDL	BMDL	BMDL	BMDL	BMDL
Toluene	<10	BMDL	BMDL	BMDL	BMDL	BMDL
Chlorobenzene	<10	BMDL	BMDL	BMDL	BMDL ·	BMDL
Ethyl Benzene	<10	BMDL	BMDL	BMDL	BMDL	BMDL
o-,m- and p-Xylene	<10	BMDL	BMDL	BMDL	BMDL	BMDL
1,3-Dichlorobenzene	<10	BMDL	BMDL	BMDL	BMDL	BMDL
1,2-Dichlorobenzene	<10	BMD L	8MDL	BMD L	BMDL	BMDL
1,4-Dichlorobenzene	<10	BMDL	BMDL	BMDĹ	BMDL	BMDL
Tetrachloroethene*	190	21	BMDL	BMDL	BMDL	BMDL

NOTE: *From Photo Ionization Detector Method Detection Limit = 1 ppb unless specified otherwise ppb = Parts per billion BMDL = Below Method Detection Limit

Respectfully submitted,

2

Laboratory Manager

The information shown on this sheet is test data only and no interpretation of this data is intended or implied.

EPORT OF ANALYSIS

Page 3 of 5

Sample Nos. 54398-54419

EPA Method 601	#54404 MWC4-C (ppb)	#\$4405 MWC2-A (ppb)	#54406 мWC2-В (ppb)	#54407 MWC2-C (ppb)	#54408 B.B. (ppb)	#54409 Dup #1 (ppb)
Chloromethane	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Bromomethane	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Vinyl Chloride	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Chloroethane	BMDL	BMDL	BMDL	BMDL	BMOL	BMDL
Dichloromethane	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
1,1-Dichloroethene	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
1,1-Dichloroethane	BMDL	BMDL	BMDL	BMDL	BMDL .	BMDL
Trans-1,2-Dichloroethene	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Chloroform	8.1	BMDL	BMDL	BMDL	2.1	BMDL
1,2-Dichloroethane	BMDL	BMD L	BMDL	BMDL	BMDL	BMDL
1,1,1-Trichloroethane	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Carbon Tetrachloride	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Dichlorobromomethane	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
1,2-Dichloropropane	BMDL	BMDL	BMDL	BMDL	BMOL	BMDL
Cis-1,3-Dichloropropene	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Trichloroethene	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Dibromochloromethane and						
1,2-Trichloroethane and						
kans-1,3,-Dichloropropene	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Bromoform	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Tetrachloroethene and						
1,1,2,2-Tetrachloroethane	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
EPA Method 602						
Tert-Butyl Methyl Ether	BMDL	BMDL	BMDL	BMDL	BMDL	8MDL
Benzene	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Toluene	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Chlorobenzene	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Ethyl Benzene	BMDL	BMDL	BMDL	BMDL	BMDL	8MDL
o-,m- and p-Xylene	BMDL	BMDL	BMDL	BMDL	BMDL	SMDL
1,3-Dichlorobenzene	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
1,2-Dichlorobenzene	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
1,4-Dichlorobenzene	BMDL	BMDL	BMDL	BMDL	AMDL	BMDL
Tetrachloroethene*	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL

NOTE: *From Photo Ionization Detector Method Detection Limit = 1 ppb unless specified otherwise ppb = Parts per billion BMDL = Below Method Detection Limit

Respectfully submitted,

<u>-hi</u>er 2. E.

Laboratory Manager

he information shown on this sheet is test data only and no interpretation of this data is intended or implied.

	~~		
REPORT	OF.	ANALYSIS	

· · ·	≑54410 xWC3-A	#54411 MWC3-8	#54412 MW-3	#54413 MWC1-B	#54414 MWC1-A
EPA Method 601	(ppb)	(gpb)	(ppb)	(ppb)	(ppb)
Chloromethane	BMDL	BMDL	<10	<50	<100
Bromomethane	BMDL	BMDL	<10	< 50	<100
Vinyl Chloride	BMDL	BMDL	<10	< 50	<100
Chloroethane	BMDL	BMDL	<10	<50	<100
Dichloromethane	BMDL	BMDL	<10	< 50	<100
1,1-Dichloroethene	BMDL	BMDL	<10	< 50	<100
1,1-Dichloroethane	BMDL	BMDL	<10	<\$0	• <100
Trans-1,2-Dichloroethene	BMDL	BMDL	<10	< 50	<100
Chloroform	BMDL	8MD L	<10	< 50	<100
1,2-Dichloroethane	BMDL	BMDL	<10	< 50	<100
1,1,1-Trichloroethane	BMDL	BMDL	<10	< 50	<100
Carbon Tetrachloride	BMDL	BMDL	<10	< 50	<100
Dichlorobromomethane	BMDL	BMDL	<10	< 50	<100
1,2-Dichloropropane	BMDL	BMDL	<10	< 50	<100
Cis-1,3-Dichloropropene	BMDL	BMDL	<10	< 50	<100
Trichloroethene	BMDL	BMDL	32	22*	<100
Dibromochloromethane and					
1,2-Trichloroethane and					
rrans-1,3,-Dichloropropene	BMDL	BMDL	<10	< 50	<100
Bromoform	BMDL	BMDL.	<10	< 50	<100
Tetrachloroethene and					
1,1,2,2-Tetrachloroethane	BMDL	BMDL	330	2,600	6,300
EPA Method 602			-		
Tert-Butyl Methyl Ether	BMDL	BMDL	<10	<50	<100
Benzene	BMDL	BMDL	<10	< 50	<100
Toluene	BMDL	BMDL	<10	< 50	<100
Chlorobenzene	BMDL	SMDL	<10	<50	<100
Ethyl Benzene	BMDL	BMDL	<10	<50	<100
o-,m- and p-Xylene	BMDL	BMDL	<10	<50	<100
1,3-Dichlorobenzene	BMDL	BMDL	<10	< 50	<100
1,2-Dichlorobenzene	BMDL	BMDL	<10	< 50	<100
l,4-Dichlorobenzene	BMDL	BMDL	<10	<50	<100
Tetrachloroethene**	BMDL	SMDL	220	1,800	4,100

NOTE: *Presence indicated but less than stated Method Detection Limit of 50 ppb (Dilution Factor: 1:50)

**From Photo Ionization Detector Method Detection Limit = 1 ppb unless specified otherwise ppb = Parts per billion BMDL = Below Method Detection Limit

Respectfully submitted,

C. Em

Laboratory Manager

The information shown on this sheet is test data only and no interpretation of this data is intended or implied.

REPORT OF ANALYSIS

	#54415 MWC1-C	#54416 MW-2>	#54417 MW−1	#54418 Dup.	#54419 Т.В.
EPA Method 601	(ppb)	(ppb)	(ppb)	(dqq)	(ppb)
Chloromethane	BMDL	<5,000	< 500	<10	BMDL
Bromomethane	BMDL	<5,000	< 500	<10	BMDL
Vinyl Chloride	BMDL	<5,000	< 500	<10	BMDL
Chloroethane	BMDL	<5,000	< 500	<10	BMDL
Dichloromethane	BMDL	<5,000	< 500	<10	BMDL
1,1-Dichloroethene	BMDL	<5,000	< 500	<10	BMDL
1,1-Dichloroethane	BMDL	<5,000	<500	<10 '	BMDL
Trans-1,2-Dichloroethene	BMDL	<5,000	< 500	<10	BMDL
Chloroform	1.1	<5,000	<500	<10	BMDL
1,2-Dichloroethane	BMDL	<5,000	< 500	<10	BMDL
1,1,1-Trichloroethane	BMDL	<5,000	<500	<10	BMDL
Carbon Tetrachloride	BMDL	<5,000	< 500	<10	BMD L
Dichlorobromomethane	BMDL	<5,000	<500	<10	BMDL
1,2-Dichloropropane	BMDL	<5,000	< 500	<10	BMDL
Cis-1,3-Dichloropropene	BMDL	<5,000	< 500	<10	BMDL
Trichloroethene	SMDL	<5,000	450*	32	BMDL
Dibromochloromethane and					
1,1,2-Trichloroethane and					
Trans-1,3,-Dichloropropene	BMDL	<5,000	<500	<10	BMDL
Bromoform	BMDL	<5,000	< 500	<10	BMDL
Tetrachloroethene and					
1,1,2,2-Tetrachloroethane	2.0	62,000	23,000	270	BMDL
EPA Method 602					
Tert-Butyl Methyl Ether	BMDL	<5,000	< 500	` 10	BMDL
Benzene	BMDL	<5,000	<500	<10	BMDL
Тоluеле	BMDL	<5,000	< 500	<10	BMDL
Chlorobenzene	BMD L	<5,000	< 500	<10	BMDL
Ethyl Benzene	BMDL	<s,000< td=""><td>< 500</td><td><10</td><td>BMDI,</td></s,000<>	< 500	<10	BMDI,
o-,m- and p-Xylene	BMDL	<5,000	< 500	<10	BMDL
1,3-Dichlorobenzene	BMDL	<5,000	< 500	<10	BMDL
1,2-Dichlorobenzene	BMDL	<5,000	< 500	<10	BMDL
1,4-Dichlorobenzene	BMDL	<5,000	< 500	<10	BMDL
Tetrachloroethene**	1.6	53,000	15,000	210	BMDL

NOTE: *Presence indicated but less than stated Method Detection Limit of 500 ppb (Dilution Factor: 1:500)

**From Photo Ionization Detector Method Detection Limit = 1 ppb unless specified otherwise ppb = Parts per billion BMDL = Below Method Detection Limit

Respectfully submitted,

Laboratory Manager

The information shown on this sheet is test data only and no interpretation of this data is intended or implied.

f	
1 Sample Number	· F
li327001	1
6	1

L

ORGANICS ANALYSIS DATA SHEET (Page 2)

<u>\$11327</u>

SEMIVOLATILE COMPOUNDS

ration: LOW tracted/Prepared: 06/07/88 alyzed: 06/22/88 I Factor: 1. Moisture: (Decanted)				Separato	nup :es _i_ Ho rv Funnel Extraction Yes us Liquid-Liquid Extraction _	4	es.
<u>ber</u>		<u>ua</u> /	<u> </u>	CAS Number		<u>_ua/</u>	í_
2	Phenol	10	ū	79-0 9-0	3-Hitroaniline	50	Ų
	Aniline	19	ŧ.	83-32-9	Acenaphthene	ťů	ម
4	bis(2-Chloroethyl)Ether	10	U	5t-28-5	2.4-Ginitrophenol	50	U
	2-Chlorophenol	10	U	100-02-7	4-Nitrophenol	50	U
ï	1.3-Dichlorabenzene	01	U	132-64-9	Dibencoforan	10	ij
/	1,4-Dichlorobenzene	10	υ	121-14-2	2,4-Disitrotoluene	10	IJ
5	Benzyl Alcohol	10	IJ	84-65-2	Diethyl Phthalate	10	U.
	i,2-Dichlorobenzene	10	U	7005-72-3	4-Chloropnenyl-phenylether	10	U
	2-Methylphenol	10	U	86-73-7	Fluorene	10	ų
$\mathbb{C}=\Theta_1$	bis(2~Chloroisopropyi)Ether	10	Ų	100-10-6	4-Nitroaniline	50	Ū.
3	4-Methylphenol	10	U	534-52-1	4.5-Dinitro-2-Methylphenol	50	IJ
<u>ک</u>	N-Nitroso-Di-n-Propylamine	10	U	86-30-5	N-Nitrosodiphenylamine (1)	10	U
	Hexachloroethane	10	Ü	101-55-3	4-Bromophenyl-phenylether	10	U.
	Nitrobenzene	10	11	118-74-1	Hexachlorobenzene	10	U
	Isophorone	10	U	87-86-3	Pentachlorophenol	10	U
i	2-Nitrophenol	10	U	85-01-8	Phenanthrene	10	0
. Ģ	2.4-Dimethylphenal	10	U	120-12-7	Anthracene	10	Ц
ł	Benzaic Acid	50	U	84-74-2	Oi-n-Butylphthalate	10	U
1	bis(2-Chloroethoxy)Methane	10	U	206-44-0	Fluoranthene	10	អ្
-2	2,4-Dichlorophenol	10	Ŭ	129-00-0	Pyrene	10	(I
• 1	1.2.4-Trichlorobenzene	10	Ų	85-68-7	Butylbenzylphthalate	10	U
	Naphthalene	2	J	1746-01-6	Tetrachlorodibenzo-p-dioxin	10	U
8	4-Chloroaniline	10	U	91-94-1	3,3'-Dichlorobenzidine	20	IJ
	Hexachiorobutadiene	10	U	56-55∽3	Benzo(a)Anthracene	10	U
	4-Chioro-3-Methylphenoi .	10	U	117-81-7	bis(2-Ethylhexyl)Phthalate	140	
,	2-Methylnaphthalene	9	J	218-01-9	Chrvsene	10	u
;	Hesachlorocyclopentadiene	10	U	117-84-0	Di-n-Octyl Phthalate	10	ย
	2.4.6-Trichlorophenol	10	U	205-99-2	Benzo(b)Fluoranthene	10	U
ļ	2.4.5-Trichlorophenol	50	Ų	207-02-7	Benzo(k)Fluoranthene	10	IJ
r i	2-Chloronaphthaiene	10	Ų	50-32-8	Benzols)Pyrene	10	U
;	2-Nitroaniline	50	U	173-37-5	Indena(1,2,3-cd)Pyrene	19	U
3	Dimethyl Phthalate	10	Ų	53-70-3	Dibenz(a,h)Anthracene	10	Ų
6	Acecaphthylene	10	U	191-24-2	Benzo(g,h.i)Perylene	10	U
- 2	2.6-Dinitrotoluene	10	U				

Compound analyzed for but not detected. Apound was detected in OC blank. Peparted value less than quantitation limit.

ory Mame: .CH2M HILL/MGM

,

CH2H HILL ENVIRONMENTAL LABORATORIES 7201 NN ELEVENTH PLACE P.O. DRANER 1647 GAINESVILLE. FLORIDA 32602 CERTIFICATION HUMBERS: 82112; E02124

PAGE 1

07/06/88

REPORT OF ANALYSIS Sample

Sample No. 54416

Client:	CITY OF DELRAY	Project No.	SEF24708.A4
Attention:	BOB WRIGHT	Received:	05/31/88
Address:	DFB OFFICE		

Description of Sample:

HILL

WATER Collected on 05/26/88 by DERRICK WILLIAMS

54416

	HW 2
PARAMETER	
METALS	
Antimony	<0.2
Arsenic	<0.002 +
Beryllium	<0.01
Cadmium	0.0005
Chromium, Total	<0.05
Copper	0.025
Lead, Total	0.005
Nickel	<0.05
Selenium	<0.001
Silver	(0.02
Thallium	<0.5
Zinc	<0.01

NOTE: Values are mg/l as substance unless otherwise stated.

+ Analyzed by Method of Standard Addition.

Analyses performed in accordance with methods approved by the USEPA

Respectfully submitted,

Appendix H Analytical Results Split Sampling with Aero-Dri Consultant August 4, 1988

÷

- --

_

•

.

.

.

H2M HILL ENVIRONMENTAL LABORATORIES 201 N.W. 11th Place, P.O. Box 164 Gainesville, Florida 32602 904/377-2442 State of Florida Certification No.: 82112, E82124 Sample Nos. 56439-56467 Number of Samples: 29 Date Completed: 08/17/88 Date Reported: 8/19/88

REPORT OF ANALYSIS

Page 1 of 6

Client: City of Delray Attention: Mark Morris, Dawn Sanders Address: CH2M HILL Deerfield Beach Office Project No. SEF24708.A9.04 Received: 08/06/88

Address: CH2M HILL Deerfield Beach Office Description of Sample: Water

> Location: Collected on 08/04/88 by Greg Ford Samples were iced and chemically preserved

	#56439 MWC-4A	#\$6440 MWC-4B	#56441 MWC-4C	#56442 MWC-2C	#56443 MWC-2B	#56444 MWC-2A
EPA Method 601	(ppb)	(dqq)	(ppb)	(dqq)	(ppb)	(ppb)
Chloromethane	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Bromomethane	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Vinyl Chloride	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Chloroethane	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
M ichloromethane	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
,1-Dichloroethene	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
1,1-Dichloroethane	BMDL	BMDL	EMDL.	BMDL	BMDL	BMDL
Trans-1,2-Dichloroethene	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Chloroform	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
1,2-Dichloroethane	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
1,1,1-Trichloroethane	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Carbon Tetrachloride	BMDL	BMDL	BMDL	BMDL	BMPL	BMDL
Dichlorobromomethane	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
1,2-Dichloropropane and						
Cis-1,3-Dichloropropene	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Trichloroethene	BMDI.	1.2	1.1	BMDL	BMDL	BMDL
Dibromochloromethane and						
1,1,2-Trichloroethane and						
Trans-1,3,-Dichloropropene	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Bromoform	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Tetrachloroethene and						
1,1,2,2-Tetrachloroethane	3.3	5.0	8.5	BMDL	1.7	BMDL

NOTE: Method Detection Limit = 1 ppb unless specified otherwise ppb = Parts per billion BMDL = Below Method Detection Limit

Respectfully submitted,

Laboratory Manager

PORT OF ANALYSIS

EPA Method 602	#56439 MWC-4A (ppb)	#56440 MWC-4B (ppb)	#56441 MWC-4C <u>(ppb)</u>	#56442 MWC-2C (ppb)	#56443 MWC-2B (ppb)	#56444 MWC-2A (ppb)
Tert-Butyl Methyl Ether	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Benzene	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Toluene	8MDL	BMDL	BMDL	BMDL	BMDL	BMDL
Chlorobenzene	BMDL	BMDL	BMDL	BMDL	BMDL .	BMDL
Ethyl Benzene	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
o-,m- and p-Xylene	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
1,3-Dichlorobenzene	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
1,2-Dichlorobenzene	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
1,4-Dichlorobenzene	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Tetrachloroethene*	3.0	4.1	7.4	BMDL	1.7	BMDL

NOTE: *From Photo Ionization Detector Method Detection Limit = 1 ppb unless specified otherwise ppb = Parts per billion BMDL = Below Method Detection Limit

Respectfully submitted,

Lie 0.8 Laboratory Manager

Page 3 of 6

EPA Method 601	#56445 E.B. (ppb)	#56446 MWC-1A (ppb)	#56447 MWC-18 (ppb)	#56448 MWC-1C (ppb)	#56449 мW-3 (ppb)	#56450 MW-4 (ppb)
Chloromethane	BMDL	<100	<100	BMDL	BMDL	BMDL
Bromomethane	BMDL	<100	<100	BMDL	BMDL	BMDL
Vinyl Chloride	BMDL	<100	<100	BMDL	BMDL	BMDL
Chloroethane	BMDL	<100	<100	BMDL	BMDL	BMDL
Dichloromethane	BMDL	<100	<100	BMDL	BMDL	BMDL
1,1-Dichloroethene	BMDL	<100	<100	BMDL	BMDL .	BMDL
1,1-Dichloroethane	BMDL	<100	<100	BMDL	BMDL	BMDL
Trans-1,2-Dichloroethene	BMDL	<100	<100	BMDL	9.3*	BMDL
Chloroform	BMDL	<100	<100	1.5	BMDL	1.0
1,2-Dichloroethane	BMDL	<100	<100	BMDL	BMDL	BMDL
1,1,1-Trichloroethane	BMDL	<100	<100	BMDL	BMDL	BMDL
Carbon Tetrachloride	BMDL	<100	<100	BMDL	BMDL	BMDL
Dichlorobromomethane	BMDL	<100	<100	BMDL	BMDL	BMDL
1,2-Dichloropropane and						
Cis-1,3-Dichloropropene	BMDL	<100	<100	BMDL	BMDL	BMDL
Trichloroethene	BMDL	<100	<100	BMDL	29	BMDL
Dibromochloromethane and						
1,2-Trichloroethane and						
Trans-1,3,-Dichloropropene	BMDL	<100	<100	BMDL	BMDL	BMDL
Bromoform	BMDL	<100	<100	BMDL	BMDL	BMDL
Tetrachloroethene and						
1,1,2,2-Tetrachloroethane	SMDL	3000	1100	BMDL	30	BMDL
EPA Method 602						
Tert-Butyl Methyl Ether	BMDL -	<100	<100	BMDL	BMDL	BMDL
Benzene	BMDL	<100	<100	BMDL	BMDL	BMDL
Toluene	BMDL	<100	<100	BMDL	BMDL	BMDL
Chlorobenzene	BMDL	<100	<100	BMDL	BMDL	BMDL
Ethyl Benzene	BMDL	<100	<100	BMDL	BMDL	BMDL
o-,m- and p-Xylene	BMDL	<100	<100	BMDL	BMDL	BMDL
1,3-Dichlorobenzene	BMDL	<100	<100	BMDL	BMDL	BMDL
1,2-Dichlorobenzene	BMDL	<100	<100	BMDL	BMDL	BMDL
1,4-Dichlorobenzene	BMDL	<100	<100	BMDL	BMDL	BMDL
Tetrachloroethene**	BMDL	2900	1100	BMDL	29	BMDL

NOTE: *Data suggests presence of mixed CIS and Trans isomers. Quanitation based on Trans isomers.

**From Photo Ionization Detector Method Detection Limit = 1 ppb unless specified otherwise ppb = Parts per billion SMDL = Below Method Detection Limit

Respectfully submitted,

i.

Laboratory Manager

EPA Method 601	#56451 E.B. (ppb)	#56452 MW-1 (ppb)	#56453 M₩-2 (ppb)	#56454 MWC-3A (ppb)	#56455 MWC-3B (ppb)	#56456 MW-5 (ppb)
Chloromethane	BMDL	<100	<5000	BMDL	BMDL	BMDL
Bromomethane	BMDL	<100	<5000	BMDL	BMDL	BMDL
Vinyl Chloride	BMDL	<100	<5000	BMDL	BMDL	BMDL
Chloroethane	BMDL	<100	<5000	BMDL	BMDL	BMDL
Dichloromethane	BMDL	<100	< 5000	BMDL	BMDL	BMDL
1,1-Dichloroethene	BMDL	<100	<5000	BMDL	BMDL	BMDL
1,1-Dichloroethane	BMDI.	<100	< 5000	BMDL	BMDL	BMDL
Trans-1,2-Dichloroethene	BMDL	<100	< 5000	BMDL	BMDL	BMDL
Chloroform	BMDL	<100	< 5000	BMDL	BMDL	BMDL
1,2-Dichloroethane	BMDL	<100	<5000	BMDL	BMDL	BMDL
1,1,1-Trichloroethane	BMDL	<100	<5000	BMDL	BMDL	BMDL
Carbon Tetrachloride	BMDL	<100	<5000	BMDL	BMDL	BMDL
Dichlorobromomethane	BMDL	<100	<5000	BMDL	BMDL	BMDL
1,2-Dichloropropane and						
Cis-1,3-Dichloropropene	BMDL	<100	< 5000	BMDL	BMDL	BMDL
Trichloroethene	BMDL	96*	<5000	BMDL	BMDL	BMDL
Dibromochloromethane and						
1,1,2-Trichloroethane and						
Trans-1,3,-Dichloropropene	BMDL	<100	<5000	BMDL	BMDL	BMDL
Bromoform	BMDL	<100	<5000	BMDL	BMDL	BMDL
Tetrachloroethene and						
1,1,2,2-Tetrachloroethane	BMDL	3900	66,000	BMDL	BMDL	25
EPA Method 602		T	•			
Tert-Butyl Methyl Ether	BMDL	<100	<5000	BMDL	BMDL	BMDL
Benzene	BMDL	<100	<5000	BMDL	BMDL	BMDL
Toluene	BMDL	<100	<\$000	BMDL	BMDL	12
Chlorobenzene	BMDL	<100	<5000	BMDL	BMDL	BMDL
Ethyl Benzene	BMDL	<100	< 5000	BMDL	BMDL	3.7
o-,m- and p-Xylene	BMDL	<100	<5000	BMDL	BMDL	17
1,3-Dichlorobenzene	BMDL	<100	<5000	BMDL	BMDL	BMDL
1,2-Dichlorobenzene	BMDL	<100	<\$000	BMDL	BMDL	BMDL
1,4-Dichlorobenzene	BMDL	<100	< 5000	BMDL	BMDL	BMDL
Tetrachloroethene**	BMDL	3700	63,000	BMDL	BMDL	24

NOTE: *Presence indicated but less than stated Method Detection Limit of 100 ppb (Dilution Factor: 1:100) **From Photo Ionization Detector Method Detection Limit = 1 ppb Respectfully submitted, unless specified otherwise ppb = Parts per billion BMDL = Below Method Detection Limit

Laboratory Manager

REPORT OF ANALYSIS

Page 5 of 6

EFA Method 601	#56457 MW-6 (ppb)	#56458 MWC-5A (ppb)	#56459 MWC-58 (ppb)	#56460 E.B. (ppb)	#56461 ₽₩-25 (ppb)	#56462 ₽₩-22 (ppb)
Chloromethane	<100	<100	<10	BMDL	<10	BMDL
Bromomethane	<100	<100	<10	BMDL	<10	BMDL
Vinyl Chloride	<100	<100	<10	BMDL	<10	BMDL
Chloroethane	<100	<100	<10	BMDL	<10	BMDL
Dichloromethane	<100	<100	<10	BMDL	<10	BMDL
1,1-Dichloroethene	<100	<100	<10	BMDL	<10	BMDL
1,1-Dichloroethane	<100	<100	<10	BMDL	<10	BMDL
Frans-1,2-Dichloroethene	<100	<100	<10	BMDL	80**	11**
Chloroform	<100	<100	<10	BMDL	<10	BMDL
1,2-Dichloroethane	<100	<100	<10	BMDL	<10	BMDL
1,1,1-Trichloroethane	<100	<100	<10	BMDL	<10	BMDL
Carbon Tetrachloride	<100	<100	<10	BMDL	<10	BMDL
Dichlorobromomethane	<100	<100	<10	BMDL	<10	BMDL
1,2-Dichloropropane and						
Cis-1,3-Dichloropropene	<100	<100	<10	BMDL	<10	BMDL
Trichloroethene	<100	<100	<10	BMDL	39	BMDL
Dibromochloromethane and						
,1,2-Trichloroethane and						
Frans-1,3,-Dichloropropene	<100	<100	<10	BMDL	<10	SMDL
Bromoform	<100	<100	<10	BMDL	<10	BMDL
Tetrachloroethene and						
1,1,2,2-Tetrachloroethane	2700	1300	310	BMDL.	340	BMDL
EPA Method 602			•			
Tert-Butyl Methyl Ether	<100 ·	<100	<10	BMDL	<10	BMDL.
Benzene	<100	<100	<10	BMDL	<10	BMDL
Toluene	<100	<100	<10	BMDL	<10	BMDL
Chlorobenzene	<100	<100	<10	BMDL	<10	BMDL
Ethyl,Benzene	<100	<100	<10	BMDL	<10	BMDL
o-,m- and p-Xylene	<100	<100	<10	BMDL	<10	BMDL
1,3-Dichlorobenzene	<100	<100	<10	BMDL	<10	BMDL
1,2-Dichlorobenzene	<100	<100	<10	BMDL	<10	BMDL
1,4-Dichlorobenzene	<100	<100	<10	BMDL	<10	BMDL
Tetrachlorcethene*	2800	1300	310	BMDL	360	BMDL

NOTE: *From Photo Ionization Detector **Data suggests presence of mixed CIS and trans isomers. Quanitation based on trans isomers. Method Detection Limit = 1 ppb Respectfully submitted, unless specified otherwise •ppb = Parts per billion BMDL = Below Method Detection Limit

e.E.her Laboratory Manager

EPA Method 601	#56463 PW-26 (ppb)	#56464 PW-23 (ppb)	#56465 Т.В. (ррь)	#56466 MWC-6A (ppb)	#\$6467 MWC-68 (ppb)
Chloromethane	BMDL	BMDL	BMDL	<10	BMDL
Bromomethane	BMDL	BMDL	BMDL	<10	BMDL
Vinyl Chloride	BMDL	BMDL	BMDL	<10	BMDL
Chloroethane	BMDL	BMDL	BMDL	<10	BMDL
Dichloromethane	BMDL	BMDL	BMDL	<10	BMDL
1,1-Dichloroethene	BMDL	BMDL	BMDL	<10	BMDL
l,1-Dichloroethane	BMDL	BMDL	BMDL	<10 .	BMDL
Trans-1,2-Dichloroethene	BMDL	1.2**	BMDL	<10	BMOL
Chloroform	BMDL	BMDL	BMDL	<10	BMDL
1,2-Dichloroethane	BMDL	BMDL	BMDL	<10	BMDL
1,1,1-Trichloroethane	BMDL	BMDL	BMDL	<10	8MDL
Carbon Tetrachloride	BMDL	BMDL	BMDL	<10	8MDL
Dichlorobromomethane	BMDL	BMDL	BMDL	<10	BMDL
1,2-Dichloropropane and					
Cis-1,3-Dichloropropene	BMDL	BMDL	BMDL	<10	BMDL
Trichloroethene	BMDL	4.6	BMDL	<10	BMDL
Dibromochloromethane and					
1,1,2-Trichloroethane and					
rans-1,3,-Dichloropropene	BMDL	BMDL	BMDL	<10	BMDL
Bromoform	BMDL	BMDL	BMDL	<10	BMDL
Tetrachloroethene and					
I, 1, 2, 2-Tetrachloroethane	BMDL	26	BMDL	520	8.0
EPA Method 602					
Tert-Butyl Methyl Ether	BMDL	BMDL	BMDL	<10	BMDL
Benzene	BMDL	BMDL	BMDL	<10	BMDL
Toluene	BMDL	BMDL	BMDL	<10	BMDL
Chlorobenzene	BMDL	BMDL	BMDL	<10	BMDL
Ethyl Benzene	BMDL	BMDL	BMDL	<10	BMDL
o-,m- and p-Xylene	BMDL	BMDL	BMDL	<10	BMDL
1,3-Dichlorobenzene	BMDL	BMDL	BMDL	<10	BMDL
1,2-Dichlorobenzene	BMDL	BMDL	SMDL	<10	BMDL
l,4-Dichlorobenzene	BMDL	BMDL	BMDL	<10	BMDL
Tetrachloroethene*	BMDL	28	BMDL	560	7.3

NOTE: *From Photo Ionization Detector **Data suggests presence of mixed CIS and trans isomers. Quanitation based on trans isomers. Method Detection Limit = 1 ppb unless specified otherwise ppb = Parts per billion BMDL = Below Method Detection Limit

Respectfully submitted,

me E

Laboratory Manager

CH2M HILL ENVIRONMENTAL L 7201 N.W. 11th Place, P.O Gainesville, Florida 326 904/377-2442 State of Florida Certific REPORT OF ANALYSIS	. Box 1647	Sample Nos. 56542-56543 Number of Samples: 2 Date Completed: 08/19/88 Date Reported: 08/24/38 Page 1 of 2	
	ay Dawn Sanders/DFB erfield Beach Office -	Project No. SEF24708.A9 Received: 08/10/88	
Description of Sample; REVISED	Water Samples Location: Collected on 08/10/88 by Ric Samples were iced and chemic		
10/04/88 MWS	*56542	#56543	
	Product	• =	
	Well 2		
EPA Method 601	(ppb)	(ppb)	
			_
Chloromethane		.00 BMDL	
Bromomethane		.00 BMDL	
Vinyl Chloride	. (1	.00 - BMDL	
Chloroethane		00 BMDL	
Dichloromethane		.00 BMDL	
1,1-Dichloroethene		00 BMDL	
1,1-Dichloroethane	<1	.00 BMDL	
Trans-1,2-Dichloroethene		93 (F), (T) BMDL	
Chloroform		.00 BMDL	
1,2-Dichloroethane		.00 BMDL	
1,1,1-Trichloroethane		.00 BMDL	
Carbon Tetrachloride Dichlorobromomethane		.00 - BMDL	
		.00 BMDL	
1,2-Dichloropropane and Cis-1,3-Dichloropropene	(1)	.00 BMDL	
Trichloroethene	``	77 (F) BMDL	
Dibromochloromethane and			
1,1,2-Trichloroethane and		-	
Trans-1,3,-Dichloropropen		.00 BMDL	
Bromoform		.00 - BMDL	
Tetrachloroethene and			
1,1,2,2-Tetrachloroethane		70 BMDL	

NOTE :

(F) Presence indicated but less than stated Method Detection Limit of ppb (Dilution Factor: 1:)

(T) Data suggests presence of mixed CIS and Trans isomers. Quanitation based on Trans isomers. Method Detection Limit = 1 ppb Respectfully submitted, unless specified otherwise ppb = Parts per billion BMDL = Below Method Detection Limit

P Laboratory Manager

REPORT OF ANALYSIS

REVISED 4

<u>10/04/38 mws</u> EPA Method 602	#56542 Production Well 24 (ppb)	#56543 Travel Blank (ppb)
Tert-Butyl Methyl Ether	<100	BMDL
Benzene	<100	BMDL
Toluene	<100	1.0
Chlorobenzene	<100	BMDL
Ethyl Benzene	<100	' BMDL
o-,m- and p-Xylene	<100	BMDL
1,3-Dichlorobenzene	<100	BMDL
1,2-Dichlorobenzene	<100	BMDL
1,4-Dichlorobenzene	<100	BMOL
Tetrachloroethene (P)	480	BMDL

NOTE: (P)	From Photo Ionization Detector
	Method Detection Limit = 1 ppb
	unless specified otherwise
	ppb = Parts per billion
	BMDL - Below Method Detection Limit

Respectfully submitted,

him C.E Laboratory Manager

Appendix I Results of the Groundwater Flow Modeling of the 20-Series Well Field ł

•

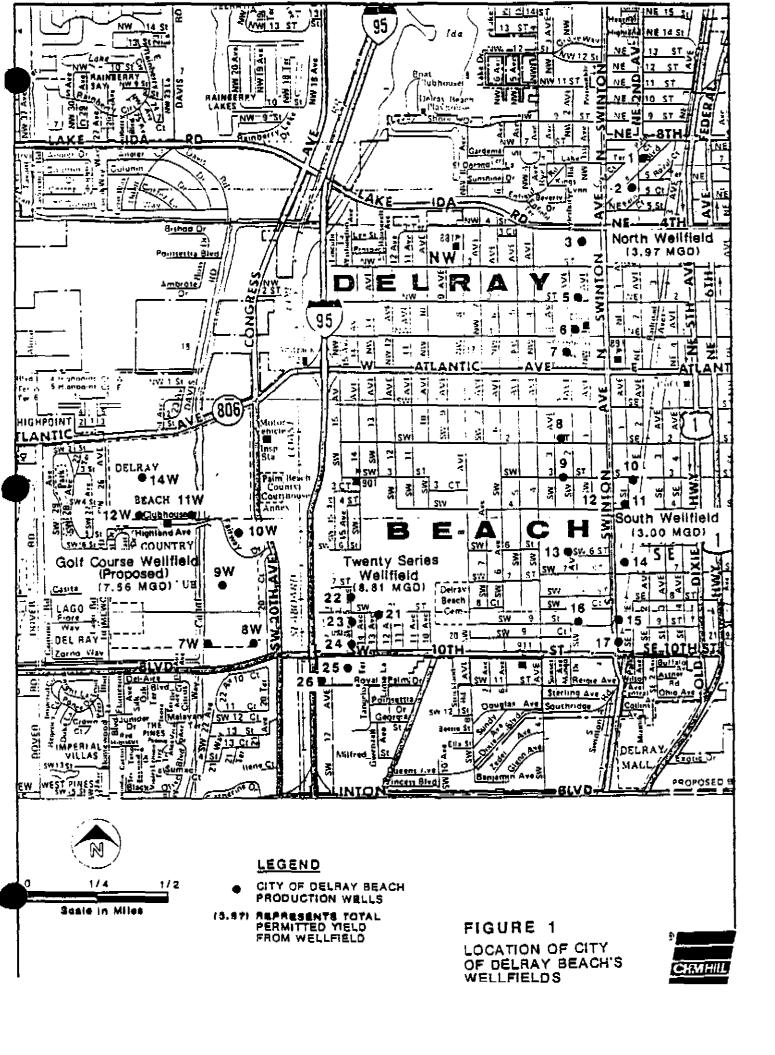
GROUNDWATER FLOW MODELING OF THE 20-SERIES WELL FIELD FOR THE CITY OF DELRAY BEACH

INTRODUCTION

LOCATION

The City of Delray Beach is located in southeastern Palm Beach County. The City currently maintains three well fields, the North, the South, and the 20-Series (Figure 1). The North and South Well Fields consist of 17 production wells along Swinton Avenue, from N.E. 8th Street south to 10th Street. Both of these well fields currently have a permitted capacity of approximately 7.0 million gallons per day (mgd). The 20-Series Well Field is the City's largest capacity well field and is permitted to pump (8.8 mgd). The well field consists of six production wells (FW-21 through FW-26) located along S.W. 15th Avenue between S.W. 7th Street and Royal Palm Drive.

A fourth well field (Figure 1) is under construction within the property boundaries of the Delray Beach Municipal Golf Course. This well field is referred to as the Golf Course Well Field and comprises seven wells between Atlantic Avenue to the north, Lowson Boulevard to the South, Congress Avenue to the east, and Homewood Boulevard (S.W. 26th Avenue) to the west. The well field is scheduled to be in operation by the fall of 1988, and will have a permitted capacity of 7.5 mgd.


For purposes of this report, the study area encompassed all of the well fields; however, the 20-Series and Golf Course Well Fields were emphasized.

BACKGROUND

- - - .

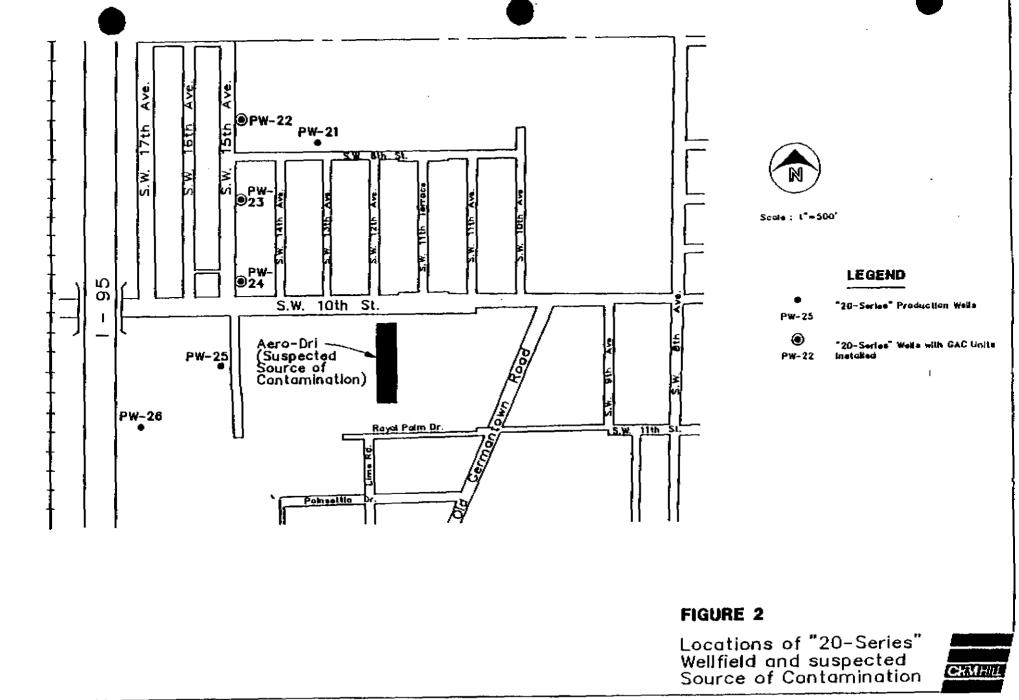
The City of Delray Beach 20-Series Well Field was found to be contaminated with the volatile organic solvents tetrachloroethene (PCE) and trichloroethene (TCE) in July 1987. Before this discovery, this well field had provided a steady source of water since its installation in the late 1970s.

After the discovery of contamination in the 20-Series Well Field, five of the six wells were shut down. Production Well 26 (PW-26) has continued operating, since levels of contamination in this well have been below the State of Florida established maximum contaminant level (MCL). Four of the wells were recently equipped with granulated activated carbon (GAC) units to remedy the contamination and provide a safe water supply. PW-21 has not been equipped with a GAC

unit and has therefore remained out of service. Figure 2 depicts the 20-Series Well Field and the production wells with GAC units installed.

The Florida Department of Environmental Regulation (FDER) has identified Aero-Dri, a division of Davie Compressor, as the suspected source of contamination. Aero-Dri overhauls compressors and related equipment and is located approximately 1,000 feet southeast of the 20-Series Well Field (Figure 2).

During a meeting between the South Florida Water Management District (SFWMD) and the City on February 10, 1988, SFWMD expressed concern about the possibility of known contaminants within the bounds of the 20-Series Well Field migrating towards the Golf Course Well Field once it becomes operational. They stated that before operation of the Golf Course Well Field would be allowed, the City must demonstrate that contamination in the 20-Series Well Field would not migrate towards the operating Golf Course Well Field.


One method of estimating the ability of the 20-Series Well Field to contain the known extent of the contaminant plume and prevent it from migrating towards the City's other well fields is through groundwater flow and contaminant transport modeling. However, the necessary information to accurately perform contaminant transport modeling, are unavailable. The data required include: (1) the time when the contaminant discharge occurred, (2) the magnitude of the discharge, (3) the length of time for which the discharge occurred, and (4) the concentration of the constituents that made up the discharge material. Without these data, contaminant transport models are ineffective.

As an alternative, a groundwater flow model was used in conjunction with a particle tracking routine to trace the movement of groundwater towards the well fields over time. The particle tracking routine uses the water levels simulated by the groundwater flow model to determine the velocity field of the resulting groundwater flow patterns. Although unable to estimate contaminant concentrations, this routine can clearly illustrate the simulated movement of groundwater and contaminants in the well field areas.

PURPOSE

CH2M HILL conducted the groundwater flow modeling effort to:

 Simulate the groundwater behavior within the study area and the effects of the well fields on the groundwater flow.

- Trace the path of water particles during the period preceding the discovery of contamination in the 20-Series Well Field.
- 3. Trace the path of water in the 20-Series Well Field during the period after the discovery of contamination when production wells were turned on and off.
- 4. Evaluate operation of the 20-Series Well Field and estimate the necessary pumpage to prevent the contaminant plume from migrating towards the Golf Course Well Field.
- Make recommendations regarding the operation of the 20-Series and Golf Course Well Fields, and the establishment of an early-warning monitor well network.

HYDROGEOLOGY

The well fields in Delray Beach withdraw groundwater from the unconfined surficial aquifer. Most of the production wells are constructed to a total depth of 130 to 150 feet below land surface (bls). The production interval of these wells extends from approximately 100 feet bls to the total depth of the wells.

The geology of the surficial aquifer in the vicinity of Delray Beach is composed of the Pamlico Sand and Anastasia formations. Lithologic logs from two wells in the Golf Course Well Field show fine to medium sand to approximately 70 feet bls. Calcareous sandstone with shell fragments are found below the sand layers to approximately 200 feet bls. The bottom of the surficial aquifer is bounded by layers of clay and silt beds.

Pumping tests conducted by other City consultants on the Golf Course Well Field indicated that the portion of the aquifer tapped by the production wells responds as an unconfined aquifer. No laterally-persistent confining layers appear to be present above 200 feet bls.

Water levels in the surficial aquifer range from 8 feet above the national geodetic vertical datum (NGVD) to less than zero feet NGVD near the City's North and South Well Fields. The direction of regional groundwater flow appears to be towards the east-southeast (Land et al., 1973), but canals and pumping well fields tend to alter and intercept the flow patterns. The primary source of recharge to the aquifer is rainfall; however, some of the recharge is provided through canal leakage, particularly near the pumping well fields.

MODEL DESCRIPTION

Groundwater conditions were simulated by using a computer code developed by the U.S. Geological Survey (McDonald and Harbaugh, 1984). The code, MODFLOW, simulates threedimensional transient or steady-state groundwater flow for confined or unconfined aquifers by applying a numerical solution technique to solve groundwater flow equations. To adequately simulate groundwater flow, aquifer characteristics and other effects on the groundwater must be estimated and entered into the computer program during the model setup and calibration.

The particle tracking routine uses the water level distributions in the aquifer provided by the groundwater flow model to determine the velocity field of the resulting groundwater flow. It then releases an imaginary water particle at the center of each computational cell in the model grid and tracks it until it is either captured by a pumping well or terminates along the model grid boundary. The tracks of these particles outline the areas of the grid that contribute flow to each of the wells.

The particle tracking maps were superimposed on a base map showing the estimated contaminated areas. By showing the approximate particle flow lines along with the estimated contaminated areas, potential migration of the contaminant plume was evaluated for various pumping periods.

MODEL SETUP

An appropriate modeled area was chosen to include hydrologic factors that may significantly affect water levels in the areas of interest. The surface water bodies surrounding the City of Delray Beach provided convenient hydrologic boundaries for the model. The northern, southern, and western boundaries were delineated by canals that are controlled by the Lake Worth Drainage District. The Intracoastal Waterway provided the eastern boundary.

The model grid was constructed over the modeled area and encompassed all significant hydrologic boundaries and the North, South, 20-Series, and Golf Course Well Fields. By reducing the grid spacing in the area of the 20-Series and Golf Course Well Fields, a focused and more accurate estimate of the groundwater movement in these areas was obtained. A larger grid spacing was used around the North and South Well Fields because their influences were considered remote from the areas of concern (i.e., the 20-Series and Golf Course Well Fields). Initial estimates of the areal hydrologic characteristics were derived from several sources of information. The hydraulic conductivity, specific yield, and thickness of the aquifer were obtained from published values (Russel and Axon, 1984; Schroeder et al., 1958) and compared with other models that have been used in the area (Palm Beach County Well Field Protection Ordinance, 1987). The effects of canals on groundwater levels were estimated from publications (Miller, 1984), communication with SFWMD, and data from the Lake Worth Drainage District.

MODEL CALIBRATION

Initial estimates of the model parameters were adjusted in the calibration process to ensure an accurate simulation of observed hydrologic conditions. Groundwater levels were measured in non-pumping wells at the North, South, 20-Series, and Golf Course Well Fields on April 1, 1988. Water level measurements were also collected from a series of U.S. Geological Survey monitor wells. All measurements were made in reference to NGVD.

The goal of the calibration phase was to recreate the hydrologic conditions leading up to April 1, 1988, and match the observed and simulated groundwater levels as closely as possible. Calibration runs of the model included distinct time frames representing nine pumping periods preceding April 1, 1988, in the City's operational well fields. The pumping data was based on information originating from the City's water treatment plant (WTP).

SENSITIVITY ANALYSIS

Groundwater flow is affected by many hydrologic factors, the significance of which may vary. A sensitivity analysis was therefore performed to observe which hydrologic characteristics have the greatest effect on the groundwater flow in the area. The analysis involved changing certain variable parameters and observing the changes in water level distribution across the modeled area. This is an important procedure for those characteristics, such as canal conductance, evapotranspiration, and recharge, which cannot or have not been accurately measured. The results of the analysis showed that aquifer tranmissivity and hydrologic conductance between the canals and groundwater in the well field areas had the most significant effects on groundwater levels.

After completion of calibration and the sensitivity analysis, the model was used to simulate past, present, and future conditions of the aquifer.

HISTORICAL SIMULATIONS

Since the detection of contamination in the 20-Series Well Field in July 1987, a number of the production wells have been operated intermittently. To demonstrate how the contaminant plume traveled in the well field during the period from the initial detection of contamination to when contamination had been detected in all six 20-Series wells, a series of transient groundwater flow simulations were run. These runs depicted changes in the pumping scheme of the 20-Series Well Field and the associated groundwater level distributions. With the aid of the particle tracking program, flow lines were generated and capture zones for each well were delineated. Three scenarios were developed to illustrate major changes in well field pumpage schemes, and also to reveal how the contaminant plume was spread throughout the well field.

Since the full horizontal extent of the contaminant plume has not been clearly defined, the contaminant plume can only be delineated around the production wells that have revealed contamination. The contaminant plume depicted in the figures contained in this report is for illustration only and does not reflect the contamination outside the bounds of the production wells.

PERIOD 1--PRIOR TO SEPTEMBER 31, 1987 (STEADY STATE)

This initial pumping period was modeled as a steady-state pumping condition to simulate groundwater flow in the aquifer when all wells were pumping at their historical flow rates. Information obtained from well field pumpage records indicated that all 20-Series wells were pumping before September 31, 1987.

By September 31, 1987, contamination had been detected in PW-21, PW-23, and PW-24. Figure 3 depicts the simulated steady-state groundwater levels generated by MODFLOW and the approximate extent of the known contaminant plume at that time. Contamination above the MCL had not yet been detected in PW-25 or PW-26. Some contamination was found in PW-22 on August 27, 1987, but later analytical results indicated that no contamination was present in PW-22 at the time of this simulation.

The groundwater level contours depicted in Figure 3 represent groundwater elevations in reference to NGVD. Groundwater flow is caused by changes in groundwater elevations over a horizontal distance, and the direction of flow is usually perpendicular to the groundwater level contours. In this case, Figure 3 depicts groundwater flow as converging towards the 20-Series Well Field. Dissolved contaminants in the

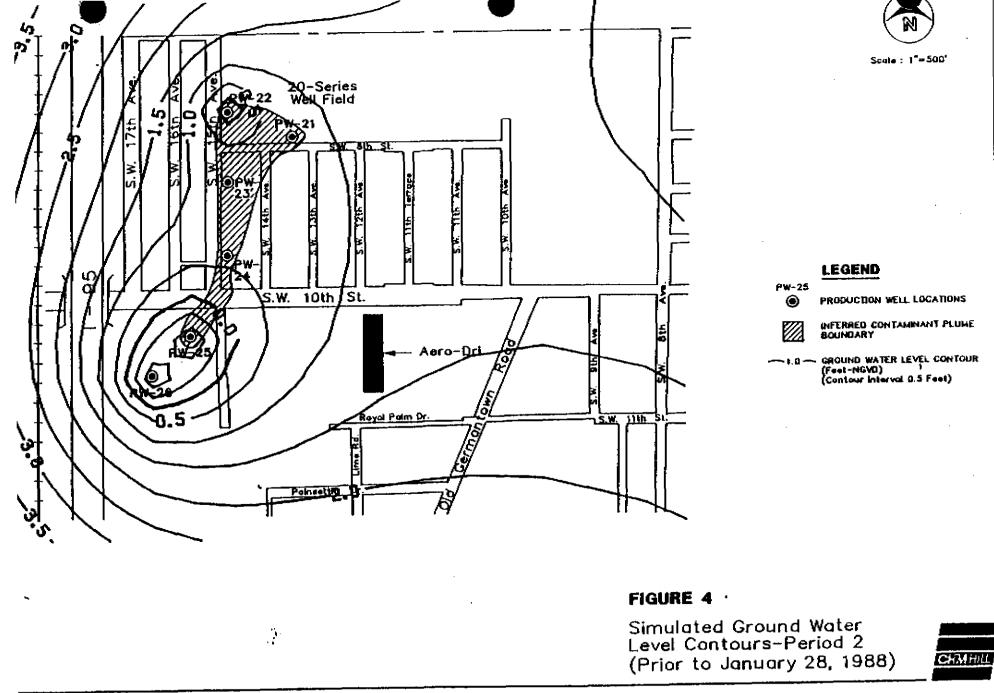
....

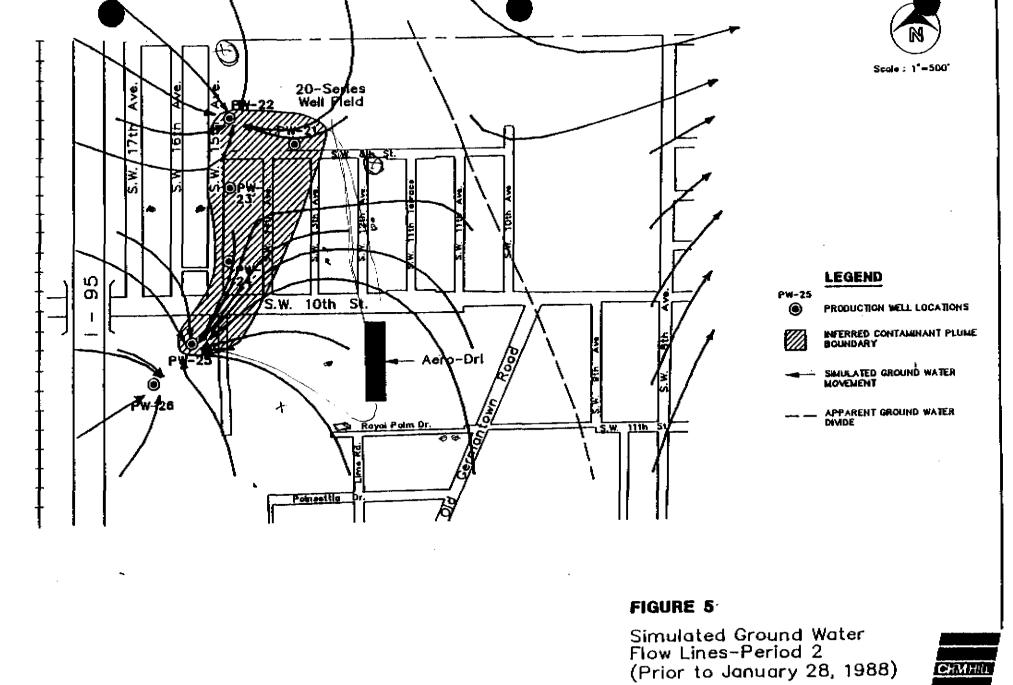
groundwater generally follow the flow paths of the groundwater and would therefore be converging towards the well field also.

PERIOD 2--FROM OCTOBER 1, 1987 TO JANUARY 28, 1988

After contamination was confirmed to be above the MCL in PW-21, PW-23, and PW-24, these wells were taken out of service to prevent contamination from entering the finished water at the WTP. During this period, mechanical failures in the pumps forced shutdown of PW-25 and PW-26. PW-25 was restored to service by December 21, 1987, and and PW-26 by January 6, 1988. During the last 22 days of this time period, PW-22, PW-25, and PW-26 were operational, and PW-21, PW-23, and PW-24 were out of service.

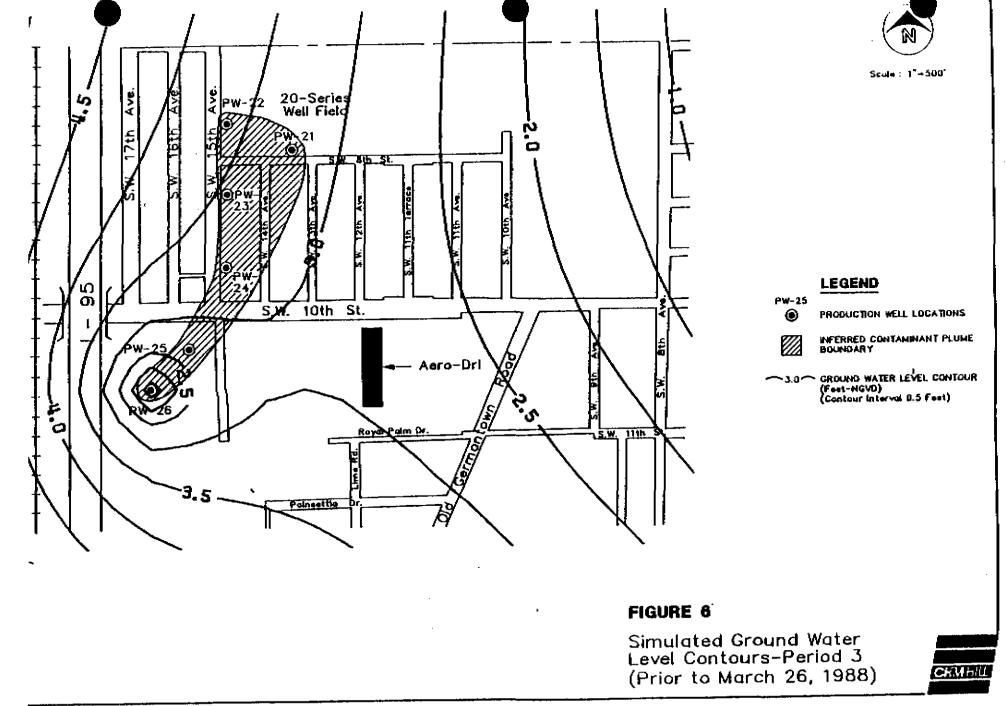
By January 28, 1988, contamination exceeding the MCL was found in PW-22 and PW-25. No contamination had yet been detected in FW-26. Figure 4 depicts the simulated groundwater level distribution in the aquifer and the estimated contaminant plume boundary at the end of this pumping period.

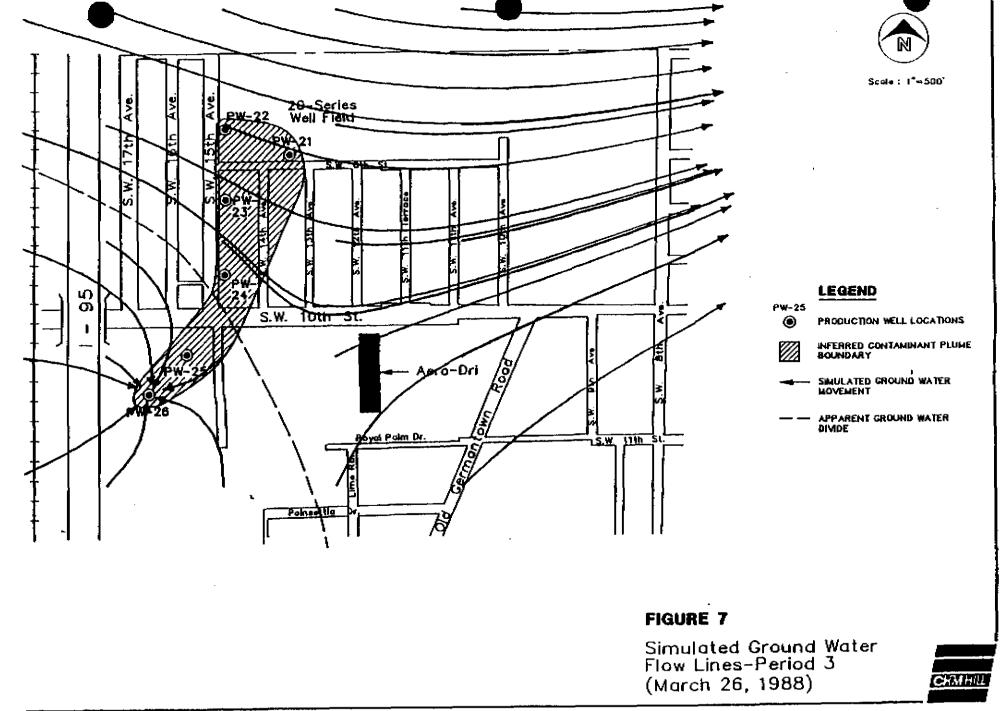

Figure 5 depicts the flow lines generated by the particle tracking routine. The flow lines help illustrate how the contaminant plume spread from the area surrounding PW-21, PW-23, and PW-24 to the areas surrounding PW-22 and PW-25. Also note that an apparent groundwater divide occurs east of the 20-Series Well Field. A groundwater divide is a ground-water mound where water flow is split into two opposite directions, perpendicular to the divide.

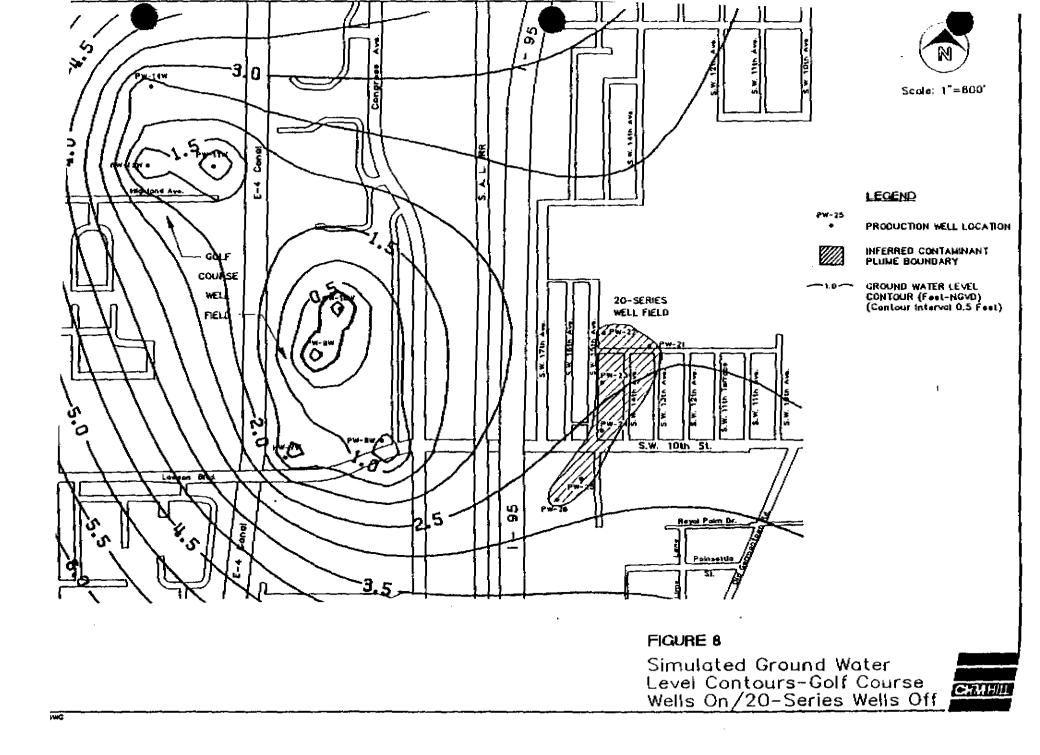

PERIOD 3--JANUARY 29 TO MARCH 26, 1988

When contamination in PW-22 and PW-25 exceeded the MCL, the City shut down these wells. During this period, GAC units were being installed on PW-22, PW-23, and PW-24. Only the North and South Well Fields and PW-26 were available to meet the City's raw water demand.

Although installation and startup of the GAC units on PW-22, PW-23, and PW-24 were completed within 3 weeks, contamination was found in PW-26, the City's remaining, previously uncontaminated 20-Series production well. Although contamination levels increased during the 3 weeks preceding GAC installation, MCLs were never exceeded.


Figure 6 depicts the simulated water level distribution in the aquifer and the approximated contaminant plume boundary at the end of this transient pumping period. Figure 7 depicts the flow lines generated by the particle tracking routine.



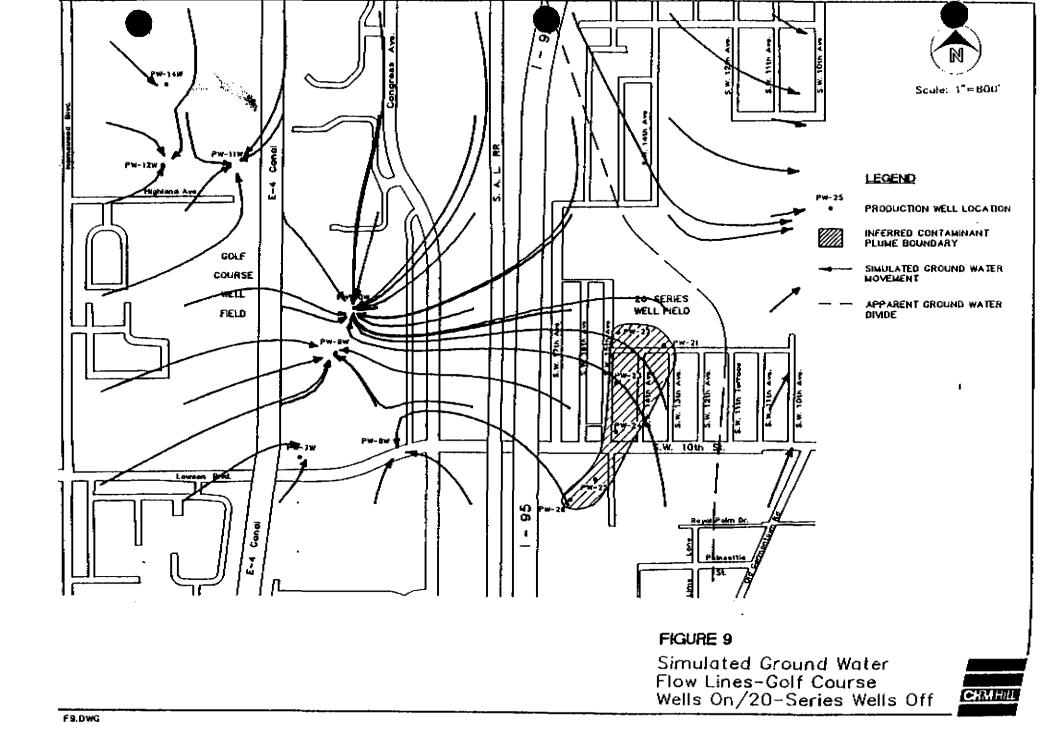


DWG

The flow lines show how the contaminant plume spread from the area surrounding PW-21, through PW-25, and to the area surrounding PW-26.

The sequence of pumping periods and the changing approximated plume boundaries reflect the mobility of contaminants within the influence of the pumping wells, and substantiate the importance of maintaining a consistent pumping schedule within the well field. The groundwater flow model, which has provided insight into the past movements of the contaminants, can also predict future paths of contaminants once the Golf Course Well Field becomes operational.

PREDICTIVE SIMULATIONS


Predictive simulations were performed to estimate the future impact of the Golf Course Well Field on groundwater levels in the area, especially near the contaminated 20-Series Well Field. Before the well field is put into service, groundwater effects of the production wells must be evaluated with respect to the movement of contamination from the 20-Series Well Field toward the Golf Course Well Field. The Golf Course Well Field is expected to be operational by the fall of 1988.

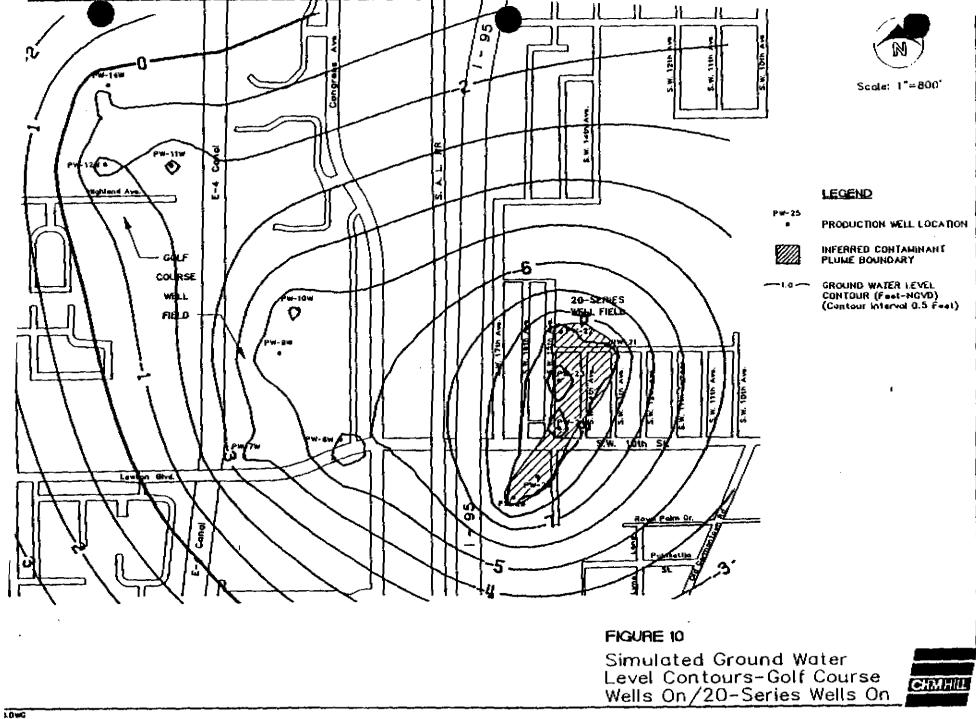

After the Golf Course Well Field is put into service, potential risks can be evaluated by analyzing best case and worst case scenarios. The greatest risk to the Golf Course Well Field occurs if the 20-Series Well Field becomes inoperative. The resulting groundwater flow pattern would provide the most likely scenario for contaminant migration towards the Golf Course wells. The safest scenario would be when all 20-Series wells are pumping. Both scenarios were simulated with MODFLOW and the particle tracking routine.

Figure 8 shows the predicted groundwater levels when the Golf Course wells are operating at their permitted capacity (7.5 mgd) and the 20-Series wells are not operating. Without the 20-Series wells pumping, the Golf Course wells appear to influence the groundwater surrounding the 20-Series Well Field. Figure 9 shows the predicted paths the groundwater and contaminants could follow under this pumping scenario. The simulation predicts that contaminated groundwater within the 20-Series Well Field area could eventually be drawn towards PW-8W, PW-9W, and PW-10W in the Golf Course Well Field. In addition, the flow lines in Figure 9 show that contaminated groundwater may also migrate to the east, toward the City's South Well Field.

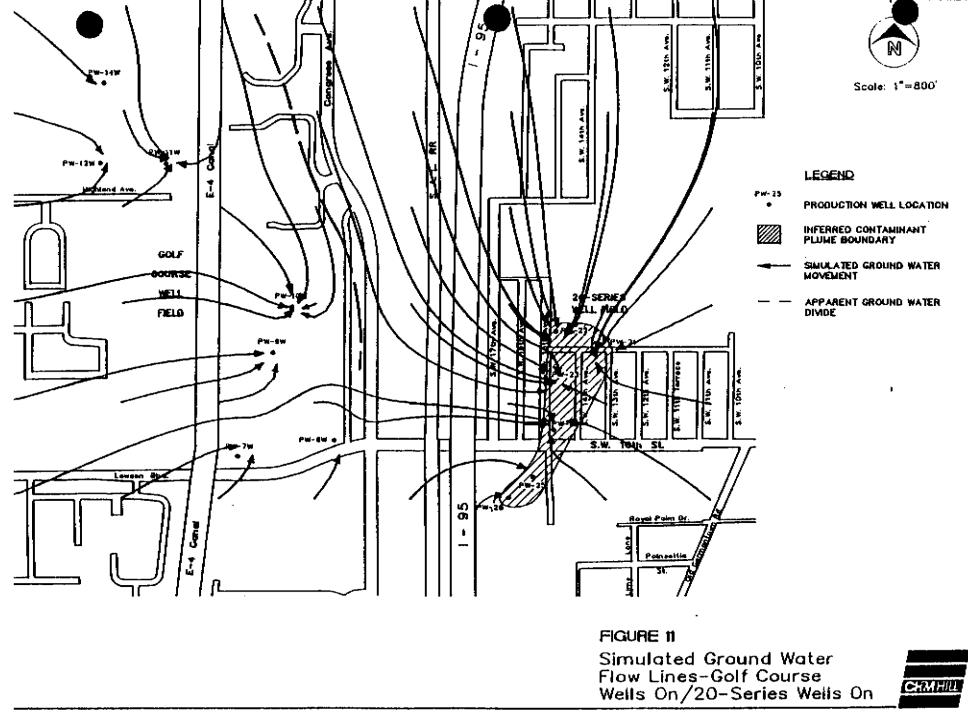
Figure 10 shows the predicted groundwater levels that would occur when all wells in the Golf Course and 20-Series Well Fields are operational. Influences from the 20-Series wells extend approximately 1,600 feet to the west and buffer the

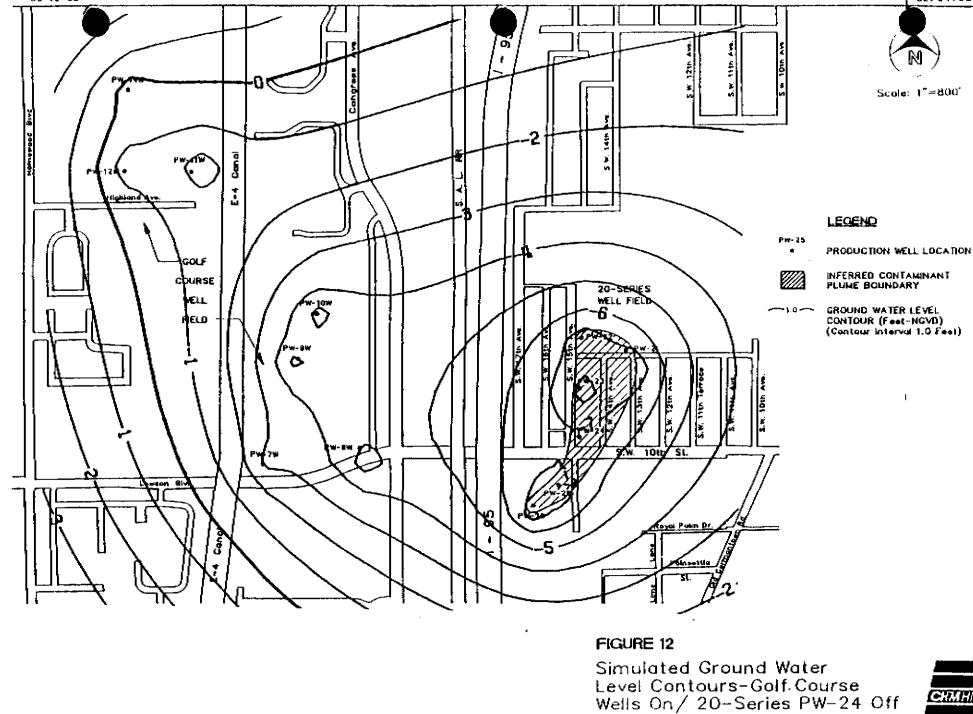
DBT085/094

effects of the Golf Course Well Field on the contaminated area. This is shown in Figure 11 with the flow lines and by the presence of a groundwater divide just to the west of Congress Avenue. The presence of the groundwater divide is important in preventing the Golf Course Well Field from influencing contaminated groundwater from the 20-Series Well Field area.

It is likely that at least one well in the 20-Series Well Field will become inoperative for a period of time. For this scenario, PW-24 was chosen to be simulated as inoperative because it is centrally located in the well field and is expected to be an effective deterrent to the encroaching influences of the Golf Course Well Field. Figure 12 shows the predicted groundwater levels, and Figure 13 illustrates the predicted groundwater flow paths for this scenario. Little change is evident in the flow paths between these two figures and Figures 10 and 11. Note that the location of the groundwater divide also remains unchanged.

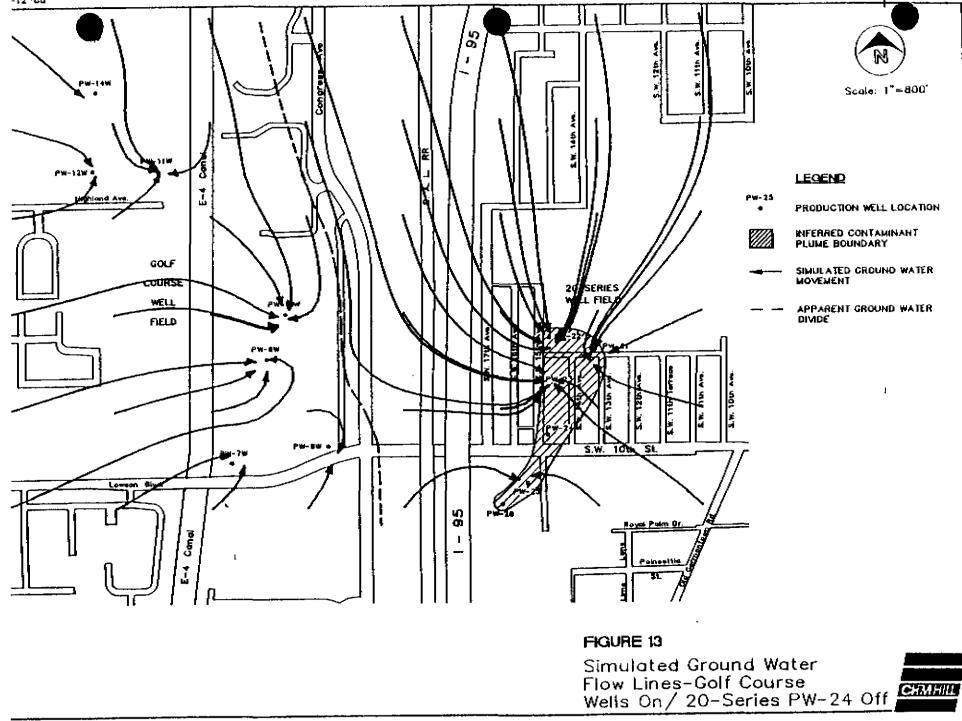
The absence of one well in the 20-Series Well Field apparently has minimal impact on the eastern extent of the Golf Course Well Field influence; however, removing more than one 20-Series production well from service would possibly cause the protective groundwater divide to move further east. This would shift the influence of the Golf Course well field further east also, and increase the chances of drawing contamination towards the production wells as was predicted in Figures 8 and 9.


CONCLUSIONS AND RECOMMENDATIONS


The City of Delray Beach has three operational well fields-the North, South, and 20-Series--and one well field under construction (the Golf Course Well Field). These well fields tap the unconfined surficial aquifer and are vulnerable to above-ground sources of contamination.

The 20-Series Well Field was found to be contaminated in July 1987 with solvent-type volatile organic compounds, PCE and TCE. The alleged source of the contamination is a compressor rebuilder, Aero-Dri Corp., a division of Davie Compressor. Aero-Dri is located approximately 1,000 feet southeast of the 20-Series Well Field, the City's largest capacity well field.

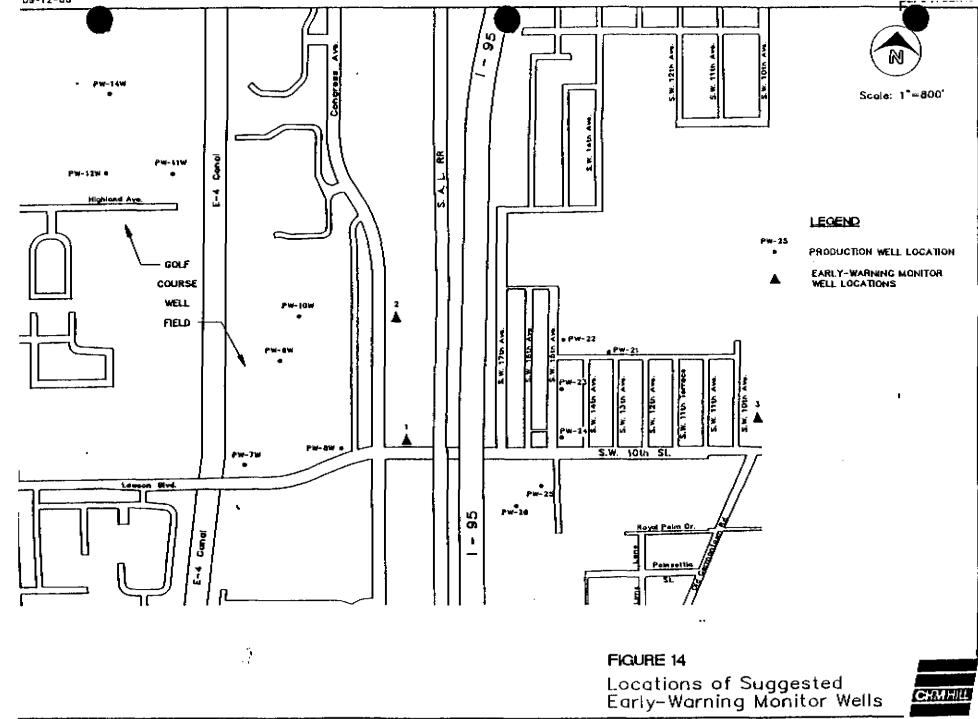
The Golf Course Well Field, located approximately 2,000 feet west of the contaminated 20-Series Well Field, is expected to be operational by the fall of 1988. Because of the proximity of the Golf Course Well Field to the known area of contamination, the City must demonstrate to SFWMD that the contaminant plume is likely to be contained within the area


DDMODE /001

F12 DWG

Скинш

of the 20-Series Well Field. Groundwater and contaminant plume movement was estimated by using a flow model and particle tracking routine.


The results of the groundwater flow modeling and particle tracking predicted that if the Golf Course Well Field becomes operational, the 20-Series Well Field must also be operated. If all the 20-Series wells are turned off, the modeling projected that the influence of the Golf Course Well Field would extend to the east and possibly permit contaminant migration towards PW-8W, PW-9W, and PW-10W. The modeling also suggested that without pumping the 20-Series wells, the influence of the South Well Field wells and the natural groundwater gradient may allow contamination to migrate towards the South Well Field.

The results of the simulations also predicted that if all production wells in the 20-Series Well Field are operational while the Golf Course wells are pumping, the known extent of the groundwater contamination_should not migrate from the influence of the 20-Series wells. This assumes that the area of contamination does not extend beyond what is depicted as the inferred plume boundary in previous figures.

In the event that a production well in the 20-Series Well Field becomes inoperative, the modeling predicted that the remaining five wells should be able to contain the contaminant plume. If more than one production well were out of service, the flow from PW-8W, PW-9W, and PW-10W in the Golf Course Well Field probably should be reduced by 50 percent until at least five 20-Series wells were again operational. It is also recommended that the City make repairs to the nonoperational well(s) as soon as possible.

An early-warning monitor well network would be helpful in protecting the Golf Course and South Well Fields. Regular groundwater sampling and analysis from the early-warning monitor wells would permit the City to track the movement of contaminants towards these well fields. Recommended locations of early-warning monitor wells are shown in Figure 14. Proposed Monitor Wells 1 and 2 would be used to monitor contaminant movement towards the Golf Course Well Field, and Monitor Well 3 would be used to monitor any movement of contamination towards the South Well Field. The monitor wells should be constructed into the 100- to 150-foot-bls production interval.

Once the early-warning monitor wells are installed, water samples should be collected and analyzed for the same volatile organic compounds detected in the 20-Series Well Field. These analytical results will provide baseline water quality data for comparison with subsequent sampling and analyses.

The initial samples are collected and analyzed, quarrly sampling is recommended for the first year and semiannual sampling thereafter.

í

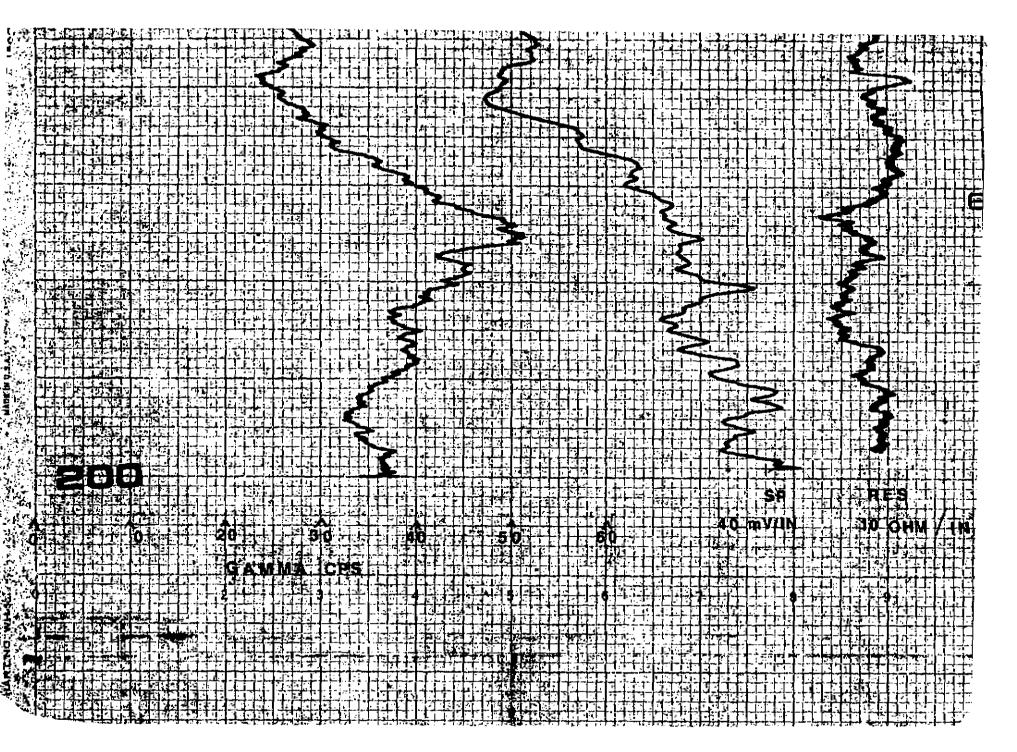
Land, L. F., H. G. Rodis, and J. J. Schneider. <u>Appraisal of</u> the Water Resources of Eastern Palm Beach County, Florida. Florida Bureau of Geology Report of Investigation 67. 1973.

Miller, W. L. <u>Effects of Bottom Sediments on Infiltration</u> from the Miami and Tributary Canals to the Biscayne Aquifer, <u>Dade County, Florida</u>. U. S. Geological Survey, Water Resources Investigation Report 79-36. 1978.

Russel and Axon. <u>Interim Golf Course Well Field Study</u>. Prepared for the City of Delray Beach. 1984.

Schroeder, M. C., D. L. Milliken, and S. K. Love. <u>Water</u> <u>Resources of Palm Beach County, Florida</u>. U.S. Geological Survey Report of Investigations No. 13. 1954

Water Resources Management Advisory Board. <u>Report of the</u> <u>Well Field Protection Ordinance Subcommittee</u>. Palm Beach County, Florida. 1987.


CLIENT City of Delray Beach Date July 20, 1988 Well No. G-2 Project No. SEP24708.A8 Location: State Florida County Palm Beach	GEOPHYSICA Electric 16" Normal 64" Normal	L WELL SURVEY
%_% SecT46 □ N R43 ■ E ■ S □ D W	□ Single Point □ S.P.	Gamma Ray D Temperature
Logged by P. Kwiatkowski Observer L. Rainger	Log Scal	·
Owner <u>City of Delray Beach</u> Well: <u>G-2</u>	Electric Log SP <u>40</u> millivolts/inch	Fluid Resisvitivy
Driller: Ground Water Protection Date Drilled: JULY 1988 Surface Elevation: h. D Estimated Above MSL D Measured D	Res. 20 ohm-meters/inch Res ohms/inch	@°F
T.D. Logged 113' T.D. Driller 115'	Gamma Ray Log	Fluid Velocity
Hole Diato 115'	Counts/sec/inch	Counts/min/inch
Casing Dia. <u>N/A</u>	Time Constant 4 sec.	FPM (Continuous)
Finish: Open hole Screen Gravel O Other	Logging speed 25 FPM	Q = gpm
Water Level:t. □ Above MP, <u>AT</u> □ Above ■ Land Surface ■ Below □ Pad Surface Yield: Flow <u>n/A</u> gpm Pumpgpm	Temperature °F to°F	Caliper inches to inches
Drawdown: <u>N/A</u> ft. after hours pumping @ gpm	Logging speed FPM	Logging speed FPM
Use: Dom, Stock PS ind. Irr. Test Heating or cooling Drainage Disposal Obs.	Water Samples Depths sampled:	
Water Quality: N/A Drilling Mud Temp. "F; Sp.Cond. ; Iron mg/L Cl' mg/L; SO [#] mg/L; Total Hardness mg/L Color Odor Tasle mg/L Remarks: Tasle Tasle Tasle	P.O. Box 1647	Fort Myers Office The Financial Center 1550 College Parkway, Suite 307 Fort Myers, Florida 33907 813/275-3121 Tampa Office Rocky Point Centre 3030 North Rocky Point Oriye, West
	350 Fairway Drive, Suite 210 Deertield Beach, Florida, 33441 Palm Beach County305/395-3800	Suita 350 Tampa Florida 33607 Hillsborough County—813/888-6777 Pinellas County—813/536-9454

-

Well No. G-2 Project No READ NO Location: State Fillerada County Pater Brach 14 14 Sec. T. 46 DIN B 43 B 14 14 Sec. T. 46 DIN B 43 B	Electric D 16" Norma D 64" Norma B Single Poin	nt 🛛 🖓 Fluid Velocity nt 🖓 Gamma Ray
Logged by P., Ewhat sowski Observer T. Pittigen	■ S P. Log S	O Temperature Scales
Owner: <u>City of Detroy Baach</u> Well, <u>G-2</u>	Electric Log SP <u>40</u> millivolts/inch	Fluid Resisvitivy
Onlier Ground Watter Protection Date Date Dated U112 1988 Surface Elevation. It Estimated Above MSL Q Measured	Res ohm-meters/inch Res ohms/inch	(ā) °F
T.D. Logged113* T.D. Driller115* Hole Dia2** to115*	Gamma Bay Log <u>10</u> Counts/sec/inch Time Constant <u>1</u> sec. Logging speed <u>21</u> FPM	Fluid Velocity Counts/min/inch FPM (Continuous) Q gpm
Water Level: 2 It D Above MP, Att D Above It Above	Temperature PF to PF Logging speed FPM Water Samples	Caliper inches to incl Logging speed FPM
Water Quality N_A_Drithing_Nun Temp. ^F; Sp Cond	Depths sampled CH2M HILL Water Resources Division P.O. Box 1647 Gainesville, Florida 12620 904/377-2442	Fort Myers Office The Financial Center 1550 College Parkway, Smle 307 Fort Myers, Flonda, 33907 613/275-3121
Remarks	Deerfield Beach Office Hillsboro Executive Center North 350 Farway Drive Sorte 210 Deerfield Beach, Flooda 33441 Falm Beach County - 305/395-3800 Broward County - 305-426-4008	Tampa Office Rocky Point Centre (003) North Rocky Prant Orive, We Suite 350 Tampa Florida, 33607 Hallsborough County-, 814 988-64 Pinellas County-, 8137 36 9454

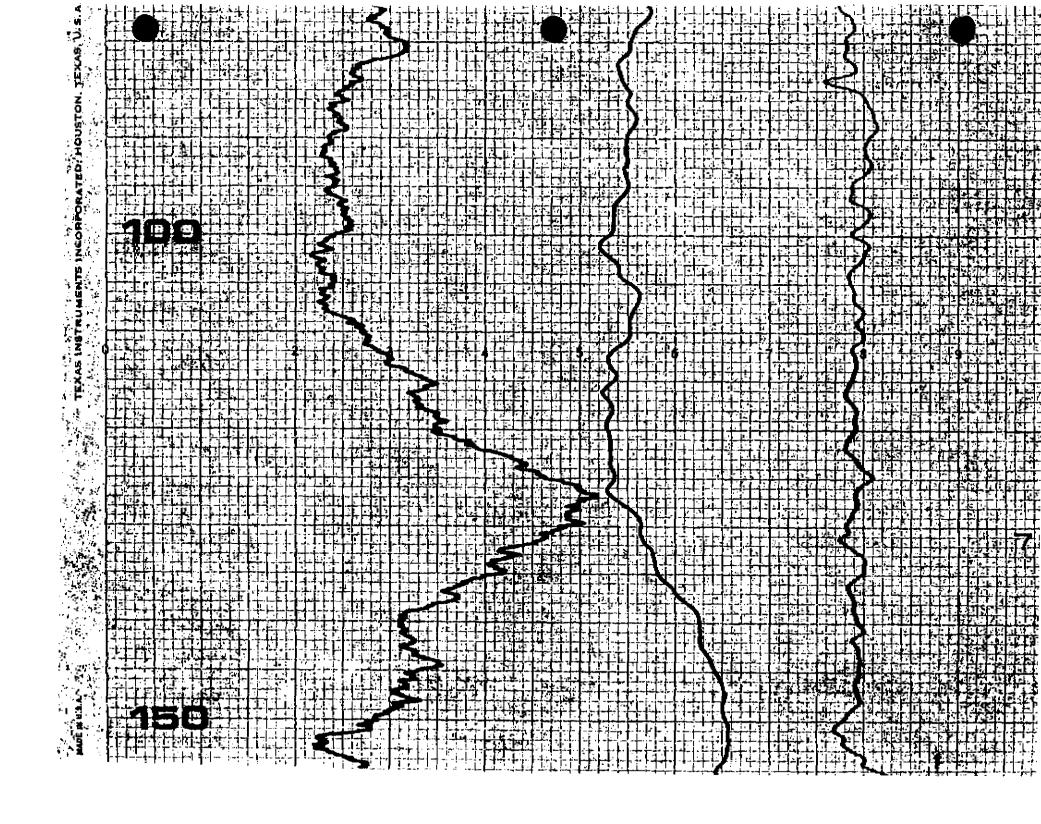
1 採 ۲r 1 ╏╤┥┫╌╁╼╽ ╽╶┱╴┩╶╁╼╽ £ . Hr i-i-1.1. Tr kr a L H.C. - 5 المحمد الم

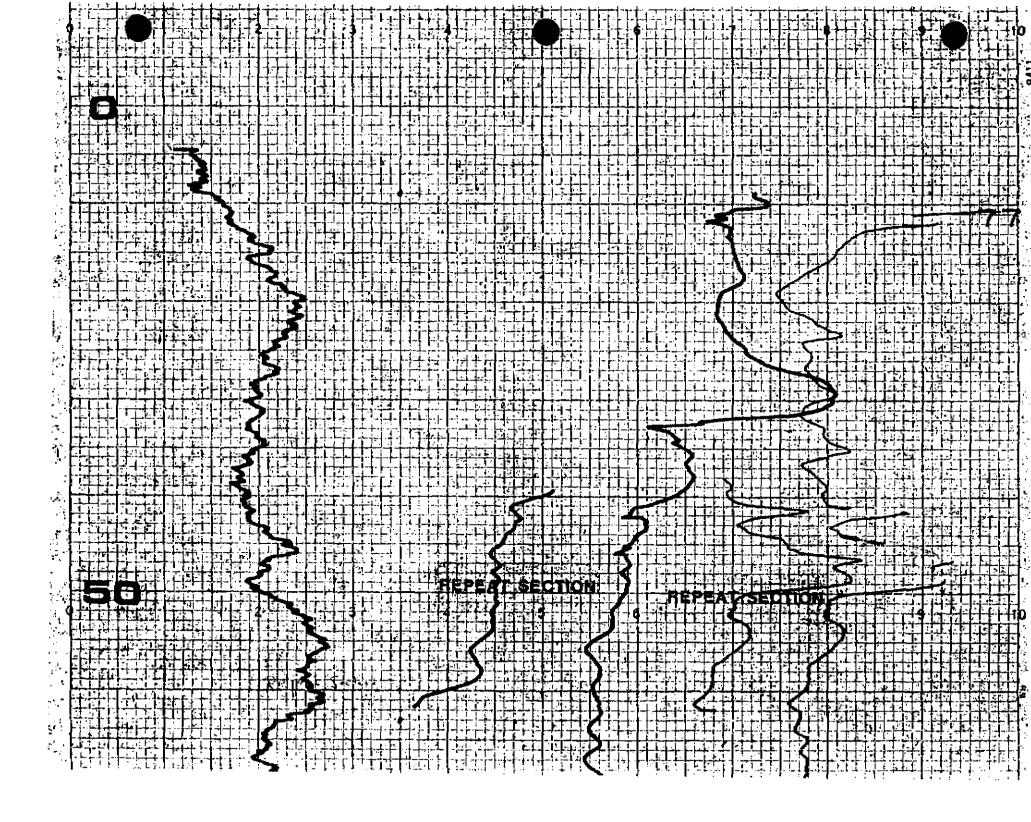
-रहे-_ि⊡ि **H** t₁ •+-+ +_-Ť. \mathbf{T} 14 Ţ, Ê 1 4 -The second se ارا 1 11 14 191 k +|∔ 10 中 Н 1 1 μ >---111 T T -717 Б 11 7.1 <u>Li</u> 1 Ъ. 1 ι. ΪĽ ÷ † -1-1 ***** 7 Ð 4 Η 4.17 Ţ ų, -**(**‡;)-17

CLIENT City of hetrog Beach Date August 19, 1988 VellNo. G-2A ProjectNo. SEU04T08.A8		CAL WELL SURVI
Location: State Provide County Pedra Deach N. N. Sec. T. 46 D.N. R. 15 ME Logged by P. Kwiattkowski Observer J., Rainger	□ 16" Norma □ 64" Norma ■ Single Poi ■ S.P.	al Eluid Velocity
	Log S	Scales
SwnerÇi <u>tir orf norg</u> Beswilk VeltG-2Δ	Electric Log SP40millevolts/inch	Fluid Resisvitivy
Onlier Groundwateen Protect i on Date Onlied August 1, 1988 Surface Elevation 11 C Estimated Above MSL D Measured	Res ohm-meters/inch Res III ohms/inch	(ئا °F
D Logged 2021 T D Driffer 2021	Gainina Ray Log 10 Counts/sec/inch	Fluid Velocity
Casing Dia <u>17 A</u> Inish El Open hole El Screen El Gravel El Olher	Time Constant 4 sec	Q gpm
Vater Level. U It B Above MP <u>A'</u> L U Above ■ Land Surface ■ Below U Below C Pad Surface field Flow N A gpm Pump gpm	Temperature "Fito "F	Caliper inches to inche
Nawdown NZA it afterhours purping or gpin	Logging speed	Logging speed FPM
Ise C Dom ⊡ Stock CLPS D Ind C fir ■ Lest O Heating or cooling D Dranage C Disposat D Obs	Water Samples Depths sampled	
Vater Quality (17,5) (19,1) (19,1) (19,1)		
Temp F. Sp Cond tron mg/L CF mg/L, SO ⁺ ₃ mg/L, Total Haroness mg/L Color Orlor Taste	CH2M HILL Water Resources Division P.O. Box 1647 Gainesville, Florida 32620 904/377-2442	Fort Myers Office The Financial Center 1550 College Parkway, Suite 307 Furt Myers, Florida, 33907 813/275-3121
lemarks	Deertleid Beach Office Hillsboro Evacutor: Center North 350 Farway Orive, Suite 210 Deerheid Beach Floreta 33444 Palm Beach County 305/395 3800 Broward County 305/426-4008	Tampa Office Rocky Point Centre 3030 Niarth Rocky Point Drive, We Snite 350 Lampa Florida, 33607 Mustkarough County - 813/888-67 Proefias County - 813/536-9454

。 1999年,如果如此,如此是我们的学校,这些这些人,也是我们的人,也是不是我们的想要是我们的是我们的是我们的我们的是我们的问题是我们的,我们就是我们的,我们就不能不可能。 1999年,我们们们就是我们的,我们就是你们的,我们就是我们的人,我们没有回答我们就是我们的我们就是我们的我们就是我们的说道是我们的,我们就是不是不是不是不是不是


CLIENT City of Definity Beach Date Unity 20, 108B WellNo g=1 ProjectNo. SEI:24708.AB	GEOPHYSIC	AL WELL SURV
Location. State Florid County Palm Beach (* * * Sec T. 16 ^{CIN} R 4) ^B E S CIW Logged by P. Swiatkowska Observer A. Ruinger	Electric D 16" Normal D 64" Normal Single Point ® S P.	C Temperature
	Log Sc.	ales
Owner_City_of_Delray_seach	Electric Log	Fluid Resisvitivy
Well <u></u>	SP 40 millwolts.uch	ohm meters/in
Doller, Ground Water Prosection DateDated Jaly 1988	Res ohm meters moh	
Surface Elevation (I) Estimated Above MSL	Res. 241 ohus/inch	@^F
C Measured T.D. Logged1991 T D. Doller2021	Gamma Bay Log	Fluid Velocity
Hole Dia 3" to 2021	LB Counts seconds	Counts/movinch
Casing DiaN //	Time Constant 🧃 🔄 sec	FPM (Continuous
Finish. U Open hole 🛛 Screen 💭 Gravel 🖓 Other	Logging speed FPM	Q ·gpm
Water Level <u>11'</u> ft ^{ET} Above MP, <u>AT</u> D Above ■ Land Surface 31 B elow D Pad Surface V Yield Flow <u>11 A</u> gpm Pump gpm	Temperature F to PF	Caliper inches to inc
Drawdown. புத்த ft alter bours pumping ம்	Eogging speedFPM	Logging speed FPM
Use. IF Dom IC Stock ILLPS IC Ind ID for III Test I Heating or cooling IC Dramage III Disposal ID Obs.	Water Samples Depths sampled	
Water Ouality. NXA Dr i Li trag and	· · · · · · · · · · · · · · · · · · ·	
Temp °F Sp Cond. Bron nig/L	CH2M HILL	Fort Myers Office
Cl [*] mg/L, SO [*] mg/L, Total Hardness mg/L	Water Resources Division P.O. Box 1647 Galnesville, Florida D2620	The Financial Center 1550 College Parkway, Suite 307 Fort Myers, Florida, 33907
Color Odor Tasle	904/377-2442	813 275-3121
Aemarks	Deertield Beach Office Hillshoro Executive Center North 350 Lanway Dove, Sude 210 Overfield Beach, Florida 33441 Patho Beach County - 305 426 4008	Tampa Office Rocky Point Centre 3030 North Rocky Point Drive. We Suite 350 Tampa Flouria 33607 Hillsborough County - 813/888 61 Prinellas County - 813 156-941-3


Į	- 4	ТĚ,		Ĺ	Ļį.	Ļ	P	1	11	1	ł		רי		Π	Ŧ		J	ſ		-	Ţ	ł	÷-1-		1				t i		Ĥ	4	.			ŀ	1	7 1 1 1	}	늰	Ļ	ļ	ŀ	1		5	H	÷,		_		Ļ		1	11	13	5	-	ij	F‡		41	11			
l	31	ीष			1	Ī	Γ	Ì	Ŀ	_		1		Ť.			Ħ	11	2.	-	1	1	Ŀ	h i	j.	1	E			님			Ċ,	1	Ŀ†	Ì	h	l	Ł	t	÷	Ľ		t	Ľ	Ŀj.	Ť				١,	'n	-	4	Ł		1.1	\mathbf{r}	÷	Ð	h	r +	-	τi	<u> </u>	-	1
ŀ	44	۽ به		- <u>1</u>		}		4-	-İ-d		-		Н	4-	-		- -	Q	+	4-3	-+	ł-	-	L.,	÷	- -	-		-		-	1.	-	-	H	Į.			1-1	_	4-1	Ŀŀ	÷.,	_	1-1				.Τ	Ľ	Ĩ.	<u> </u>		Ę	H	1	4		-		4	1.	1.)	0	1	Ĵ	l
ł	\dot{T}				Ϋ́	Ц	1	\uparrow	rh i		ΪÌ		17	┽	t t	4-	-ŀ	11	1	-	-	t	'n	-+	+	ŀ	† i	- F	÷			П				5-	ł÷	r ¦-	╓┼	-1-	+		-+-	1	ł-	L ₋₁ ,		1-1	-	-		+			÷	·	11	H		ŀł	H	4	H	14	9	-	ł
ļ	-			Ē		řΓ		T	17	4					r.			L	Ţ,			Z		Ĩ!	4	1	Γ,		į.		-					1	U	1		-	tj	<u>i</u>			Τi	_	Ŧ	Lt	+		نل :			Ŧ	11	j	$^{+5}$	亡	1	ij	i۳ť	ቷ	Ľ	2	طنة	1	ļ
ŀ	÷ł	11	4-	hi:	۴Ļ	┝┟	<u>ः</u> ।	-1-	┨┥	÷+-		÷	i-t	÷	Ьŀ		4	14	-ŀ÷	ł	- {	Ł	44	H	1.	•	łł	-1	Š.	H		-	L		H	<u>.</u> 1-		Щ.	ŧ.	÷]-	-i	1-1-	<u> </u>	4.	Ŀ	-	- + -	Ľ	Ę		-		ŪŤ		Ei	Ţ	11	F	Ŧ	71		Ι		Ē	Ţ		ļ
t	Ξ.	. j	T		T	Ľ	2.24		ť		11	2	t t		Ť	Ť.	T	1 I	-			-17	11	Ľ	Ť	t		-i	$^+$	t		Ξ	ΕĒ	Ē		1	11		†	- [-	11	ŀŀ		<u>'</u> -'			1	Į-i	÷	اندن. مستر	4	ι.			1	۴Ĥ	+	台	宁	i (l h	ъE	Ð		2	2	Í
ſ		- d - ÷	+	4		[14	-[4		1-1		IJ	Ļ	T I	Ξ.	-	11		μ			Ţ		Τ.	Į.	П	1	E	Π		H	_		r]	1	1]	ļ		1	T		4	F	Ļ						1	1	t		17	ľ			1	11	5		Σ	Ē	1		
ł.	11	-		×	눈	H:		1	1-1 1-1	. †.	<u>.</u>	:	÷	+	┝┥			- 1		÷	+	+	Ļ		1	╞	H	+	÷	\mathbf{F}		T		÷				+	H	+-	-	L!	-	Ļ.	÷	-4.	-	ļļ	-		-	-	Ļ	<u>-</u>	Ļ	÷	+	ДŤ	1		Ą	4	Ŧ.	FI	-	-	ļ
ſ	11		Ĺ.	<u> </u>				1	U	7	1_1			1	Ē			1			يني. نواسط		م م		-4- - 1-			2	1.	L	÷k.					Ť	Ľİ								-			-				+		+	H	Ŧ	H	l t	31 ⁻⁷	ε,			1	Εi	4	-	l
ŀ	÷4	44	41	~ i.,		÷÷				4	1-1	-		ł	4		-	Ļ₿	1	L.	-	4	┣~	-	4	1	E	4.	£	L		4	Ξ.	Ŀ		Ĩ.	ĽÏ	T.		-	1	П	ΞĹ.	F	Ļļ	_	1	1		_		1	ĽL.	1	[]	. L.	11	εŤ	Ŧ	Ц	Д	T		J.	4	ž	ļ
1	1			Ĵ	Ţ	ť.	T^{-}	 T	1-		i i	÷	H	٠ †	1		-7	H	+	r		╋	7	2		+	R.	가지 못한 책임을	+	ł		+	F	F	7	ŧ	÷	-	Ľ	-1-	Η	ŀ		\mathbf{h}	+		十	屵	÷.	}	-+-	+i	-	· .		÷		-1	Ŀ	-	4	÷	-	H	4	-	
E	[]	81 83			<u> </u>	11		1		4	1		11	Ł		11		5.	1	1	\mathbb{T}	1		1			Н	a).	Г		<u>, 1</u>					Ť.	İΤ	٦T.	F	1	†1		ندامه نرار	1	-			tt	-		T	Ť-		+-		÷			÷.	- 1		<u>:</u> †:	-	łł	Ē	ċ	
ľ	74	100	11	+		F-i	14		+-			-	14		Чł		-1-	11			4	÷	2	2	G.	ŕ	ć.	24	Ļ	14		19	Ч		4	-	C	1	<u>ار ا</u>		44		Ţ.	1	Ŀ		4.	11	4	Ξļ	T	1	5	-	Γ.	÷Į.		Ľ.		1]	Ē	2		F	T	_]
t	11		T	Ť	÷	11		ť			i -		11	Ť	t t	-	1	-	÷¦÷	t i	Ľ.	t	î.	È.	÷	Ŧ	Ľ	Υ.	1-	ti	-þ	ΪH	ĥΪ	۳,	┝╇	1	Εt	Ŧ	11	2	1	Ŀ-	-1-	-	+ 1	ŀ		łł	-⊧	i, i		÷			ŀ	÷		÷ŀ	÷È	C	5	4	1	μ	금	-	Ī
Ľ			23	. · · ·		-		4		÷	i.	Ξ.	14		Ľį.		—		1			-	Γ		1.	T	Γ		ľ	Γ		Т		-	t t	T	Lī	t	<u>1-1</u>	1	υ	2			t		-	Ľİ	T		-1-	1	ΓĽ	1	17		1	ſŦ	-1-			ΞŤ		Ľ	Ĵ,	ī.	ł
E			44	77	13-	-	63	1	ŀ	-1-	<u>+</u>		Τń	+	Ļ.	<u>- í -</u> 31	4		[_	÷	÷	-ŀ-	i I	i-†	+	ł	ł		÷Ľ.	[-	÷.	4	H	+		÷	-	-	11	÷	-1	4	4	1	Ľ	<u> </u>	٠ŀ	Н	4	- 1	4	Ļ			[]	-	4	FT	-		Ē	н. Т	Ŧ	П	7		
L	11		11	Τ.	T.		1-1			1					1.1	1		11	Ĺ.	1		Ľ			j 	J.	È I	1	Ť,	t	Ť		H			ΪĽ	枯	t	L		t	ŀŀ	+		П		Ъ	11				to		t-	┝┥	1		† ŧ	4	:FI	1	8	đ-	Н	ΗF		ļ
ŀ	łŦ	+	- -	÷-	Ļ.,	<u>-</u>	Ľ	- -	-	4	4-4			4	ĻĮ	11	Ļ.	1_	-!-	┝╍┤	┝╼┫╴	÷	<u> </u> _	Ц,	Ļ,] .	F		-			Ĵ,		.		1.	L		Ι.	Ц.			Т	F	\Box	F.F.	1	D		ŢIJ	Ţ,	Ι.,	Ļ.	Ţ,			11	<u>[]</u>	1		11	1	1	5	L.		ļ
ľ	ΞĒ	h4	:[-i	لي . د ا	L		10	÷	H	्र			1 i			$\overline{1}$	1	÷.	-1-	<u>+</u> -			-	┢╍╋	Ť	t	÷ -		÷	t		+-	+	त्रीच्र	H	+-	1-1			-	┿┥		÷		Η		+	┦┸	- P		+	+	-	4	ł	žĻ,	-1-1	┡╬				-+-	₽	님	i-t	_	ŗ
ŀ	Ļ.	4.1	-11		4	1		-	H	7			1.1		L.].	4			- È	1-			Ť.	L,	-L	1		L.	1	Ţ		. .	· L	Ξŧ,		1	Ľ	1	11	31.	11	C I	1	11	7		Ľ	11	-1					2	Ľ	Ĺ		1 T	<u> </u>					H	-f		1
ŀ	+					┝-┝	+ I	- -	+			┝╺┝	÷ł		\rightarrow		- 44	15	+	1	L				-]4	4-	÷		4	ŀ		- 1	H		Ľ١	u‡=-	H	4	4-	<u>- ا</u> -		Ļļ		-		_		-		1	+	1-	1 .	-	14	Ľ,	44	4	зŀ		4	Ęμ	нC?	4	İ		ļ
ľ	_		1	17	H.	LT.	11	<u>-</u> :	1		11		j	· - · ·	[]	_	ĽÞ			1	1	Ľ	17	Γŗ	-	T	· ·	-		-	C	Г		âč	L1	÷	f	ĩ	11		†-i	-1	Ŧ	-	τi	i-t-		۲ı	-i	<u>+</u> -		╀╴	-	-	1-1		Ŧ	Æ	S	15	۶Ť		τN	łć	٢Ť	2	ł
1	1-1	÷[÷	-1-1	1	-1	H.	44	- -	┤┦	+	÷	ĿĮ.	1 İ	4	1	÷r-;			· ÷·	2			1		4	4.	17	-	Į.	Γ		Ϊì	Π		Ŧ	Ţ	9	Ŧ		Т.	1.1	- [T		i I	П	1	П	-Ĩ	П			-	7	Ēī	Ē		iΤ	7	Г	L i	ΞŢ	. 1. 1				ļ
t	11		1		1			1	+	~ { ·	Τ	-		<u>-</u> i	t;	+	1-1- 	-	Ť		-1.	ϯ	17	-+	÷	ł	\mathbf{H}	Ĥ.	1	ŀ	H	+		÷	H	╧	H	1	H	-1	H	÷.	╶┾		\mathbf{H}	┝┼	•	łi			+	1.	H	- - -	Łi	- di	귀	Н	사	Ы	ξŧ	÷Ł	ينا.	13	đ	÷	Ì
ŗ	11	귀		Τ.	īΤ								14	1	17		1		٦ſ.			Г	1_		T	T	1		T	Γ		1.						1			Ċ.			_	4 - 1 4 - 1	ь., Г.	T	ΤÌ	1	Ū	1	T	Ľ	1	t i	İ		9	Q.	Ð.	Ш	ĽĽ	tt	Ľ	Н	_	
ł	24			4-	1	H	41	+	+	-	+	┙╉╸	÷ł	-	÷÷	—	<u> </u>	-1			-	÷		Ψţ	÷	╬	14	-	+-	F	i li		4	÷	\mathbf{H}	4	Ļļ	+	┨	_Į-	÷H		4	4-	+ !		-	1-1	-	44	-	f.	Ľ	-İ-	μ	-+	Ļ	H	+	F	1	4	Æ	Li	Ц.	-	1
Å.	11	ď	đ.	12			11			-	t	4	Ъ	<u>i</u>		T	1			15	Ĵ	1-	Ľ	İ_	1	1			Ţ.	Ŀ	<u>[</u>];			1		:†	11	Ť	Ŧi	1	E	H	-	-	H	1	-l	ti	- <u>+</u> .	÷	-(-	+	行行	1	1	1		ŀť	-	H	11	Æ	13	11	H	7	ļ
ľ	-	البعاد	+-	4.	<u>ب</u> ا	11	Ц.				-		14	-, i	÷		1	4	+	1-			-	-	÷	7-	į.,		-	-						1	1	-		7	П			T,	Д	4		4	1		4		<u> </u>	1	-	.I		Ц	Ŧ	1.4	П	1	Ľ	ΞÌ		7	ļ
t	11	- #4	- -i	-+-	<u>-</u>	ŀť		- Ha		-+			++	+	Į.,	+-		-	-i-	4	-+	•			÷	╉	i-l	H	÷	ŀ	i	늰	ŀ	17	┢┯╞		ŀ	╬	ΗĻ	-1	į.i	┝╴┢	÷ŀ	1-	+		tin al	-	4	+	+	╄	H	÷₽∙	┝┥	\vdash	4-	ŀ	+	+-	++	r-ŀ-	÷⊢	Н	-4	ŕ	ł
ſ	П	77	3	5		i -	- I i				Ц	1	٩.	٦ï,	П				Ţ	5	Ĩ	T	1	<u>t</u>	1	T	, I		÷	Π	Ī.Ē	ť	1			1	t	1		1		Ē,	1	t	T		Ē	11		الغنية . المحل		÷-	đ	+	ti	T	H	Ц	Ť	T	H	Ť	١.	r f	t	-	ļ
ŀ	1	-	누		-1	{ 	14	+	ŀ	4	÷	-	P	-ŀ-	1-1	-	┞┢	┥┦	·+·	ł-	- 1	ł-		¦ t	- -	-		5	ł	ŀ	. .	-		-	$\left - \right $	F	H	4	1		1	μ.		1	<u>j</u> 41	È jí	ب	H	s de	E	ł	2		i fi	μ_1^*	1	4	4	ф.	T	H	-	÷		1	ŕ	2
ł	-H			÷1*	-			بې <u>ل</u> مى	1-	*	1	-	1-	17	Ħ		Ť	тi	-		ſ	1-	1		÷		-	┝╼┡╸	Ť	ŀ			H	-1-14	۲	╈	┞┨	+	+1	•	44	_ . - .	-11	4	+!	6	+	Fł	+	Н	+	÷	-		J-ł	H	+	H	+	ŀŀ	ŀŀ	r F	لبلا	μĻ	гł	-	ļ
	1	-				μĮ		7	Ļ	T	Г	Ц	11	Γ	Ļ	1	T	1	1	Ļ		1	ŕ		T	1	i.		-	Γ		1	ΓL	<u> </u>	1	T	11	Ť	Î.		Ľ	Ť			Ц	1	Ŀ	1	1		Ţ,		11	ť		1	11	<u></u>		ti	亡		4-1	凸	Ľ		ļ
ł	Ŧ	(+}		L.		H	+	÷		╞	┢	-∤-	╬	÷ł-	łł	╺┢╌┙	L	÷		-	ų.	÷ŀ	-	H	نا ان	4	÷,	벁	÷	 -	! -	H	H	44	-	ł	H	4	41	-	H	ЧĨ	4-	÷	H		Ę.	F		H	Ţ	F	1	무	4	4	41	17	4	f f	1	Т,	÷	11	H	÷	1
Ľ	1	4				Ľ	Ť.	1	Ľ	Ċ.			Е		-			ţ.]	1			T.	1	t	1	1	1	<u> </u>	- F	1-	Ŀ†:	<u>j</u> l	Ы	15	Ŀ†	1-	H	+	\mathbf{H}	÷	Ϋ́		Ŧ	t		H	1-]+	+	÷	1		ŀŧ	÷.	h	÷ť	+	H	뷡	j l	! î	ŕł	÷÷]
Ł	11	\Box		ī Ľ	CΤ.	L	Ĺ	1	\Box						ĽŤ		ΓĒ	TI	T			1	1.	Γ"	17	1	Ĩ٦	7	7.	Ī.					71	-	1	Ť	T	۳r	1-1	T T	Т	17	П	T.		17	-1-	11	+	Ť	τŤ	- - -	t t	- -	11	C1	4	4-1	1.1.	<u>.</u> 1-	<u>*</u> -'	i İ		í.	ļ


.

٠

Kenning

MED HOUSTON 1.1 in. tı ini i Tari ÷. ·→→ ·→→ **-** 1 <u>f</u>H-INCORPORTY 13ir -H 1 \mathbf{T} 11: 2 7-7 STRUME INSTRUME ╡ ┙ ┿ μi. ↓ ↓ ↓ ↓ + REPEAT BECTION + 17 -----6.5 ┍<u>┥</u>┥ ╺┎┥ ┿╻╋┪ ┷┙╼┝┥ ╺╆┥╄ - L - T -1-17 71 11 ╺┶╍┥╍┍

4 H 1 11 ΠŢ 1 i i $^{\circ}3^{\circ}1$ ₽. |-|-1.54 1.1.1 Ϊ. ++++ Ť ----12 . + -7 $+_{i}+_{i}$ 4 ī' • 42 휘 7 ⊷i⊷i⊂ → → → → → → → → → → → → → → → → → → - i - i H: 1 ļ‡ļ H-i 141 **F** ېت. ┵╢╤┩╼┡ ╍┨╍╻╼╎ - t-t-÷ L -------1**H** 41 ÷ ÷. Π. 117 t r ĒΕ . **1**... **** 1 τŦ-2 \mathfrak{D} - T ί± ____ 1777 11 -1-TT 臣 - $\Gamma \Gamma F$ - 1 Тİ $\{\cdot\}$ HH Ž, Ť 1 中岸 ++1.1<u>```D</u> 77 íų) ** ╞ ΞI 1 1.1 ŵ. ╺┡╵╋╋

CLEENTCity of Delray Beach Date July 20, 1988 WellNo G-2 ProjectNo SEF24708.A8		CAL WELL SU
Location: State Plorida County Palm Brach <u>M</u>	□ 16" Norm □ 64" Norm □ Single Por □ S.P.	al O Fluid Ri al O Fluid W
	Log	Scales
Owner_City of Dolray Beach	Electric Log	Fluid Resisvitivy
Well <u>G-2</u> Driker Ground Water Protection DateDalled JULY 1988	SP 40 millivolts/inch Res. 20 ohm-meters/inch	ohm me
Surface Elevation: II.	Res ohms/inch	(i) "F
T.D. Logged 113' T.D. Driller 115'	Gamma Ray Log	Fluid Velocity
Hole Dia. 2" to 115'	10 Counts/sec/inch	Counts/min/
Casing Dia. <u>N/A</u>	Time Constant 1 sec.	EPM (Contin
Finish: Open hole OScreen OGravel OOther	Logging speed 25 FPM	Q gpm
Water Level: <u>2</u> It. □ Above MP, <u>AT</u> □ Above ■ Land Surface ■ Below □ Pad Surface Yield: Flow <u>n/A</u> gpm Pump gpm	Temperature °F 10°F	Caliper
Drawdown: <u>N/A</u> It. after hours pumping @ gpm	Logging speed FPM	Logging speed
Use. D Dom. D Stock D PS D ind. D Irr. Ø Test D Heating or cooling D Drainage D Disposal D Obs.	Water Samples Depths sampled	
Water Quality: N/A Drilling Mud	·-····	<u> </u>
Temp. °F; Sp. Cond. ; Iron mg/L; CI* mg/L; SO [#] mg/L; Total Hardness mg/L;	CH2M HILL Water Resources Division P.O. Bax 1647 Gainesville, Fiorida 32620	Fort Myers Office The Financial Center 1550 College Parkway, Suit Fort Myers, Flonda, 33907
Color Odor Taste	904/377-2442	813/275-3121
Remarks:	Deertield Beach Office Hillsboro Executive Center North 350 Fairway Drive, Suite 210 Deertield Beach, Florida 3344)	Tampa Office Rocky Point Centre 3030 North Rocky Point Dri Suite 350 Tampa Florida, 33607

May 19, 1989

۰.

SEF24708.D0

Herbert W. A. Thiele, Esq. City Attorney 310 S.E. 1st Street, Suite 4 Delray Beach, Florida 33483

Dear Herb:

Subject: Data Comparison and Summary, 20-Series Well Field

Attached is a short report summarizing the data collected from the Aero-Dri monitor wells and City monitor wells installed in the vicinty of the 20-Series Production Wells. This information is also being submitted to Crowell and Moring for their use.

If you have any questions regarding this information, please call me.

Sincerely,

Mark S. Monio

Mark S. Morris, Ph.D., P.E. Project Manager

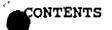
dbt012/014.50 Attachment cc: Ridgeway M. Hall/Crowell & Moring Gregory T. McIntyre/CH2M HILL Robert Wright II/CH2M HILL

•

i

•

5 1 1


Į

DATA COMPARISON AND SUMMARY

Prepared for THE CITY OF DELRAY BEACH

Prepared by CH2M HILL SOUTHEAST, INC.

> MAY 1989 SEF24708.D0

۸.

.

4

ł

i 4

3

ł

1

_		<u>Page</u>
1	Introduction	1-1
2	Data Summary	2-1
3	Summary and Conclusions	4-1
4	References	5-1
TABL	ES	
1-1	Summary of Pertinent Soil Sample Analyses from the Aero-Dri Site	1-2
1-2	Summary of Pertinent Groundwater Sample Analyses from the Aero-Dri Site	1-3
2-1	Summary of Tetrachloroethene Analysis by CH2M HILL and Dames & Moore for Split Samples (May 1988)	2-2
2-2	Summary of Tetrachloroethene Analysis by CH2M HILL, PCBHD, and Dames & Moore for Split Samples (August 1988)	2-3
2-3	Summary of Groundwater Analysis for Monitor Wells Installed by CH2M HILL in the Vicinity of the 20-Series Well Field	2-4
FIGU	RES	
2-1	Monitor Well Locations	2-6
2-2	Tetrachloroethene Concentration Along Cross- Section A'-A'	2-7
2-3	Tetrachloroethene Concentration Along Cross- Section B'-B'	2-8
2-4	Tetrachloroethene Concentration Along Cross- Section C'-C'	2-9
2-5	Monitor Well and Soil Boring Locations on the Aero-Dri Property	2-11

dbt012\015.50

1.1 BACKGROUND

The City of Delray Beach 20-Series Well Field is located in South Palm Beach County between Linton Boulevard and Atlantic Avenue. The 20-Series Wells are about 400 feet east of I-95 on both sides of S.W. 10th Street. Tetrachloroethene (3.17 ppb) (also called perchloroethylene or perc) was detected in the finished water at the City of Delray Beach Water Treatment Plant in July. A subsequent analysis of groundwater from the City's production wells revealed that Wells 21, 22, 23 and 24 had measureable quantities of tetrachloroethene, trichloroethene and cis-1,2-dichloroethene. This initial indication of production well contamination prompted an investigation of local industries by the Florida Department of Environmental Regulation (FDER).

FDER conducted a hazardous waste inspection of Aero-Dri Corporation on September 30, 1987. Aero-Dri, a division of Davie Compressor, overhauls and refurbishes air compressors and related equipment. Aero-Dri is located approximately 1,000 feet southeast of the contaminated production wells. The resulting Hazardous Waste Inspection Report cited Aero-Dri with 11 violations of hazardous waste regulations. As a result, a Warning Notice (No. 50-419-87-HW) was issued on November 12, 1987. In accordance with the terms of the Warning Notice, enforcement meetings were held November 23, 1987, and December 7, 1987, between FDER, Aero-Dri, their representatives, L&J Enterprises (the property owner), and the Palm Beach County Health Department (PBCHD). - A draft Consent Order was given to attorneys representing Aero-Dri and L&J Enterprises, at a December 23 meeting.

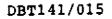
Aero-Dri installed two monitor wells labeled MW-1 and MW-2 on October 22, 1987, in an area of a tetrachloroethene spill. Tetrachloroethene levels in groundwater were 5,600 parts per billion (ppb) in MW-1 and 531,500 ppb in MW-2. Monitor Well MW-1 is screened from 20 to 25 feet and MW-2 is screened from 40 to 45 feet. In addition, 450 ppb and 430 ppb trichloroethene were measured in groundwater from MW-1 and MW-2, respectively. Soil samples collected during the monitor well installation contained as much as 585,000 ppb tetrachloroethene. The 585,000 ppb reading was detected at a depth of 0 to 2 feet. These results were summarized in the December 21, 1987, Preliminary Contamination Assessment Report (PCAR) (Dames & Moore, 1987). Tables 1-1 and 1-2 summarize these results.

Dames & Moore, Aero-Dri's engineering consultant, prepared a Contamination Assessment Plan (CAP) (Dames & Moore, 1987) dated December 21, 1987. The CAP described tasks to further investigate the migration of contaminants spilled at the Aero-Dri facility.

4

.....

Table 1-1 SUMMARY OF PERTINENT SOIL SAMPLE ANALYSES FROM THE AERO-DRI SITE


			tion (ppb)	
		Soil Dept		
	Surface	5	10	15
<u>MW-1</u>				
Benzene	<0.1	5	<0.1	<0.1
Ethylbenzene	<0.1	4	11	1
Toluene	<0.1	8	7	12
o-Xylene	<0.1	11	35	3
m-Xylene	<0.1	11	32	4
p-Xylene	<0.1	<0.1	<0.1	<0.2
Chloroform	6,900	<250	<250	<250
Trichloroethene	<250	<250	<250	<250
Tetrachloroethene	4,030	4,469	2,274	26
M₩-2				
Benzene	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	<0.1	18	<0.1	<0.1
Toluene	<0.1	6	<0.1	<0.1
o-Xylene	<0.1	6 6	<0.1	<0.1
m-Xylene	<0.1	30	<0.1	<0.1
p-Xylene	<0.1	42	<0.1	<0.1
Chloroform	<250	<250	<250	<250
Trichloroethene	<250	<250	<250	<250
Tetrachloroethene	585,000	480	408,000	4,600

Source: Compiled from <u>Preliminary Contamination Assessment</u> <u>Report, Perchloroethylene Spill, Aero-Dri Corporation</u> <u>Site</u>, Dames & Moore, December 21, 1987.

Table 1-2 SUMMARY OF PERTINENT GROUNDWATER SAMPLE ANALYSES FROM THE AERO-DRI SITE (OCTOBER 30, 1987)

	Concentra	
Compound	1	<u>MW - 2</u>
Benzene	<0.1	12
Ethylbenzene	17	14
Toluene	<0.1	<0.1
o-Xylene	1	4
m-Xylene	<0.1	6
p-Xylene	<0.1	3
Trichloroethene	450	430
Tetrachloroethene	5,600	531,500

Source: Compiled from <u>Preliminary Contamination Assessment</u> Report, Perchloroethylene Spill, Aero-Dri Corporation <u>Site</u>, Dames & Moore, December 21, 1987.

The CAP was revised to incorporate comments from FDER and resubmitted as a revised Contamination Assessment Plan (Dames & Moore, 1988). The results of the contamination assessment activities conducted by Aero-Dri were summarized in the Contamination Assessment Report (CAR) (Dames & Moore, 1988).

During the Aero-Dri contamination assessment activities, 19 additional wells were installed. Fifteen of the wells were installed on the Aero-Dri and L&J Enterprise property, while the remaining 4 wells were installed between the Aero-Dri facility and the City's 20-Series Well Field. The Aero-Dri monitor wells were sampled in May and August 1988. Thirty-two soil borings were also conducted onsite. Of these, 14 borings were placed on the immediate vicinity of the trench area which is located southwest of the Aero-Dri building.

On May 27, 1988, the City of Delray Beach authorized CH2M HILL to conduct a preliminary contamination assessment in the vicinity of the 20-Series Well Field. During this effort, 7 monitor wells were installed. Two monitor wells (W-9B and W-10B) were located southeast of the Aero-Dri facility along Poinsettia Drive. One monitor well (MW-1) was installed west of the City Production Well 24 adjacent to S.W. 16th Avenue. The remaining 4 monitor wells were placed between Aero-Dri and Production Well 24. The results of this study are summarized in the Preliminary Contamination Assessment Report (PCAR) (CH2M HILL, 1988).

1.2 PURPOSE

The purpose of this report is to summarize and combine data from the Dames & Moore CAR and the CH2M HILL PCAR.

At the direction of the City, CH2M HILL obtained samples from monitor wells installed by Aero-Dri. Two such sampling events occurred. The first began on May 25, 1988 and the second started on August 4, 1988. During the first split sampling activity, 14 monitor wells located on the Aero-Dri site plus Production Wells 22, 23, 24 and 25 were sampled. Seven additional monitor wells were installed by Aero-Dri after the first split sampling event. Four of the additional monitor wells were off the Aero-Dri property. The Palm Beach County Health Department (PBCHD) also split samples with the Aero-Dri consultant.

Table 2-1 summarizes the split sampling results for tetrachloroethene analyzed by Dames & Moore and CH2M HILL during the May 1988 sampling event. Much of the data is similar, however, there are a few notable exceptions. For monitor well MW-1, CH2M HILL detected 15,000 ppb tetrachloroethene, whereas, Dames & Moore measured only 1,430 ppb. Dames & Moore either did not analyze samples from the City production wells or did not report the results.

Table 2-2 summarizes the August 1988 split sampling tetrachloroethene analysis reported by CH2M HILL, Dames & Moore, and PBCHD. The CH2M HILL and PBCHD data were similar for all wells except possibly monitor well MW-2. CH2M HILL reported 63,000 ppb tetrachloroethene, while 24,919 ppb tetrachloroethene was detected by PBCHD. Comparison of the Dames & Moore data with the CH2M HILL and PBCHD indicates numerous inconsistencies. CH2M HILL and PBCHD detected 63,000 ppb and 24,191 ppb tetrachloroethene, respectively, in MW-2, however, Dames & Moore reported 3,180 ppb for the same monitor well. CH2M HILL and PBCHD did not detect tetrachloroethene contamination in the sample from monitor well MW-4, whereas, Dames & Moore reported 616 ppb tetrachloroethene in a sample from the same well. CH2M HILL and PBCHD measured 24 ppb and 7.41 ppb tetrachloroethene, respectively, in the sample from MW-5. Dames & Moore reported 537 ppb in this sample. In MW-6, CH2M HILL measured 2,800 ppb while PBCHD reported 1,996 ppb. Dames & Moore, however, did not detect tetrachloroethene contamination in a sample from the same well.

The monitor wells installed by CH2M HILL during the Preliminary Contamination Assessment activities were sampled on September 1, 1988, and November 21, 1988 (Table 2-3). This data indicates tetrachloroethene and trichloroethene contamination in the monitor wells located between Aero-Dri and Production Well 24. Monitor well W-1 did not contain tetrachloroethene or trichloroethene in the September or November samples. Monitor wells W-9B and W-10B did not contain tetrachloroethene or trichloroethene in the September sample. In the November sample, 2.2 ppb tetrachloroethene was detected in W-9B; and 6.2 ppb tetrachloroethene was

dbt012/018.50

Table 2-1 SUMMARY OF TETRACHLOROETHENE ANALYSIS BY CH2M HILL AND DAMES & MOORE FOR SPLIT SAMPLES (MAY 1988)

Well	Tetrachloroethene	Concentration (ppb)
Number	CH2M HILL	Dames & Moore
		_
MW-1	15,000	1,430
MW-2	53,000	55,200
MW 3	220	237
MW-4	Not Installed	Not Installed
MW 5	Not Installed	Not Installed
M W- 6	Not Installed	Not Installed
MWC1-A	4,100	3,660
MWC1-B	1,800	1,330
MWC1-C	1.6	BMDL
MWC2-A	BMDL	BMDL
MWC2-B	BMDL	BMDL
MWC2-C	BMDL	BMDL
MWC3-A	BMDL	BMDL
MWC3-B	BMDL	BMDL
MWC4-A	BMDL	BMDL
MWC4-B	BMDL	BMDL
MWC4-C	BMDL	3.4
MWC-5A	Not Installed	Not Installed
MWC-5B	Not Installed	Not Installed
MWC-6A	Not Installed	Not Installed
MWC-6B	Not Installed	Not Installed
PW-22	BMDL	Not Reported
PW-23	21	Not Reported
PW-24	190	Not Reported
PW-25	BMDL	Not Reported
PW-26	Not Sampled	Not Sampled

BMDL = Below Method Detection Limit

DBT141/003

٠

Table 2-2 SUMMARY OF TETRACHLOROETHENE ANALYSIS BY CH2M HILL, PBCHD, AND DAMES & MOORE FOR SPLIT SAMPLES (AUGUST 1988)

Well		proethene Concent:	ration (ppb)
Number	CH2M HILL	PBCHD	Dames & Moore
MW-1	2 700	2 411	2 200
	3,700	3,411	2,290
MW-2	63,000	24,919	3,180 /
MW-3	29	27	BMDL
MW-4	BMDL	BMDL	616 V
MW-5	24	7.41	5 37 v
MW6	2,800	1,996	BMDL 🖌
MWC1-A	2,900	3,069	1,550
MWC1-B	1,100	1,580	1,170
MWC1-C	BMDL	BMDL	BMDL
MWC2-A	BMDL	BMDL	2.6
MWC2-B	1.7	BMDL	4.7
MWC2-C	BMDI.	BMDL	BMDL
MWC3-A	BMDL	BMDL	9.1
MWC3-B	BMDL	BMDL	BMDL
MWC4-A	3.0	1.40	4.0
MWC4-B	4.1	2.75	16.5
MWC4-C	7.4	3.56	13.1
MWC-5A	1,300	1,458	1,350
MWC-5B	310	236.8	349
MWC-6A	560	394.8	349
MWC-6B	7.3	3.19	3.8
PW-22	BMDL	BMDL	BMDL
PW-23	28	17.56	12.2
PW-24	480	294.9	537
PW-25	360	269.5	303
PW-26	BMDL		
F#=20	putr	BMDL	BMDL

BMDL = Below Method Detection Limit

•

Table 2-3

SUMMARY OF GROUNDWATER ANALYSIS FOR MONITOR WELLS INSTALLED BY CH2M HILL IN THE VICINITY OF THE 20-SERIES WELL FIELD

		Concentrati	
Well		September	November
Number	Constituent	1988	1988
W-1	Tetrachloroethene	BMDL	BMDL
	Trichlorcethene	BMDL	BMDL
	1,2-Dichloroethane	BMDL	1.1
W-3 ^a	Tetrachloroethane Trichloroethene	1,200 ^b 60 ^b 43 ^b	980 ≤100
	Acetone	43	NA
	bis (2-Ethylhexyl) Phthalate	34 ^C	NA
W-4	Tetrachloroethene	47	5 5
	Trichloroethene	3.2	5.1
W-5ª	Tetrachloroethene	250b	3,600 V
	Trichloroethene Acetone	87b 27 ^b	110 NA
W-6	Tetrachloroethene	650	990 V
	Trichloroethene	13	150 V
W-9B	Tetrachloroethene	BMDL	2.2
	Trichloroethene	BMDL	BMDL
W-10B	Tetrachloroethene	BMDL	6.2
	Trichloroethene	BMDL	BMDL

^aPriority pollutant metals and pesticides analyzed for September sample but not detected.

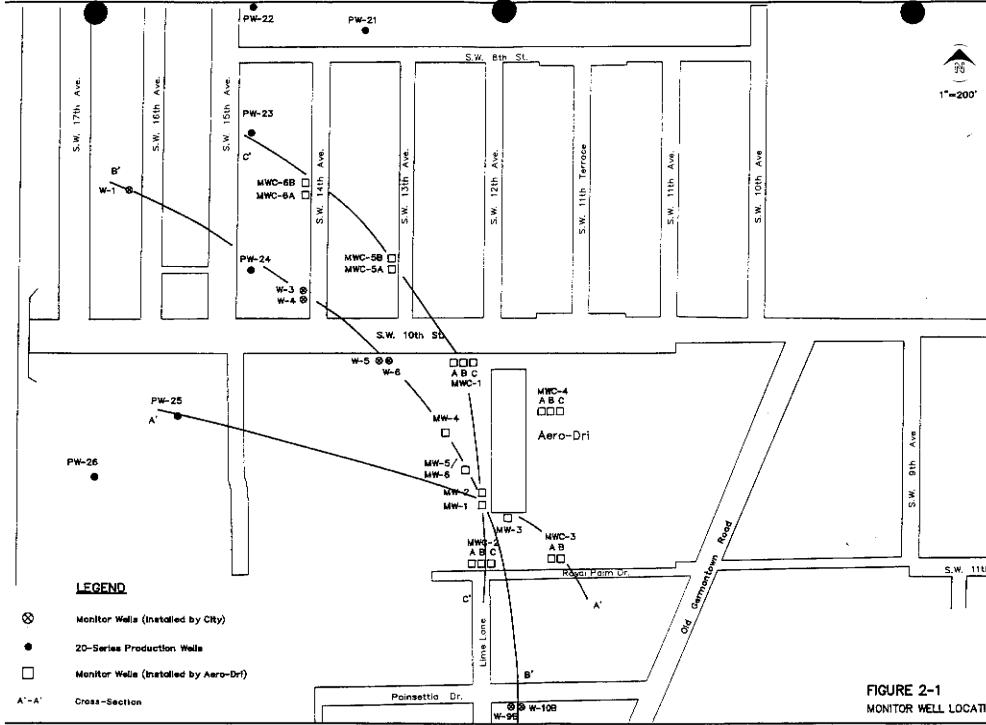
^bAnalyzed by EPA Method 624.

^CAnalyzed by EPA Method 625.

- Note: Summary does not include compounds detected in Quality Control blank. Samples analyzed by EPA Methods 601/602 unless otherwise indicated.
- BMDL = Below Method Detection Limit NA = Not Analyzed

measured in W-10B. Trichloroethene was not detected in the November samples from W-9B and W-10B.

During the September sampling event, groundwater from W-3 and W-5 were analyzed for volatiles by EPA Method 624, semivolatiles by EPA Method 625, priority pollutant metals, and pesticides. EPA Methods 624 and 625 use gas chromatography plus mass spectrometry. All other samples were analyzed for volatile organic compounds by EPA Methods 601/602. These methods use only gas chromatography.


The EPA Method 624 analysis detected 43 ppb acetone in W-3 and 27 ppb in W-5 during the September sample. Acetone is not detected by the EPA Method 601/602 analysis. Acetone, therefore, may be present in other samples but remain undetected. Acetone is a component of #7 Lacquer Thinner and #10 Laquer Thinner. These compounds were used at the Aero-Dri facility according to Material Safety Data Sheets (MSDS) provided for review. Additional analysis by EPA 624 may be necessary to confirm if acetone is contained in groundwater from other monitor wells.

EPA Method 625 analysis for semivolatile compounds detected 34 ppb bis (2-ethylhexyl) phthalate in groundwater from monitor well W-3. This compound was not detected in W-5. An additional sample may be necessary to confirm the presence of this compound.

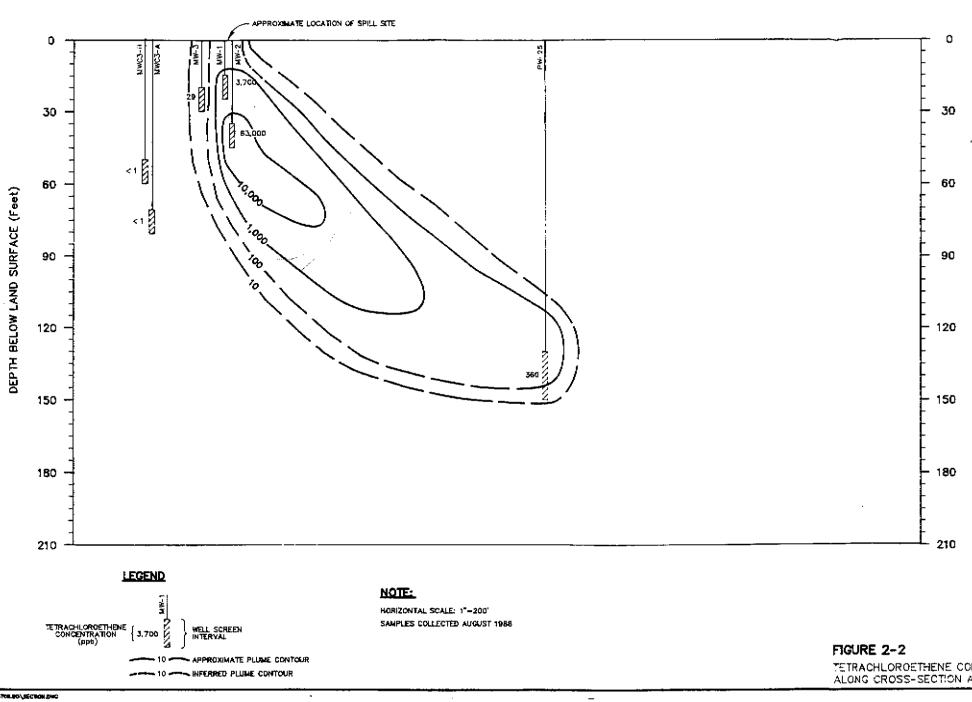
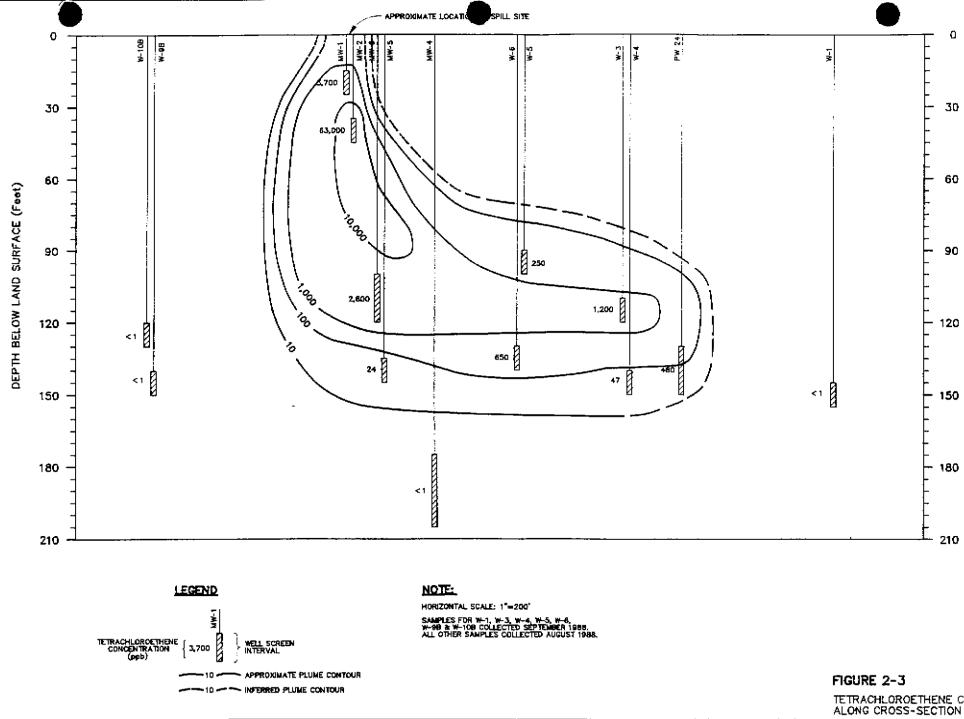
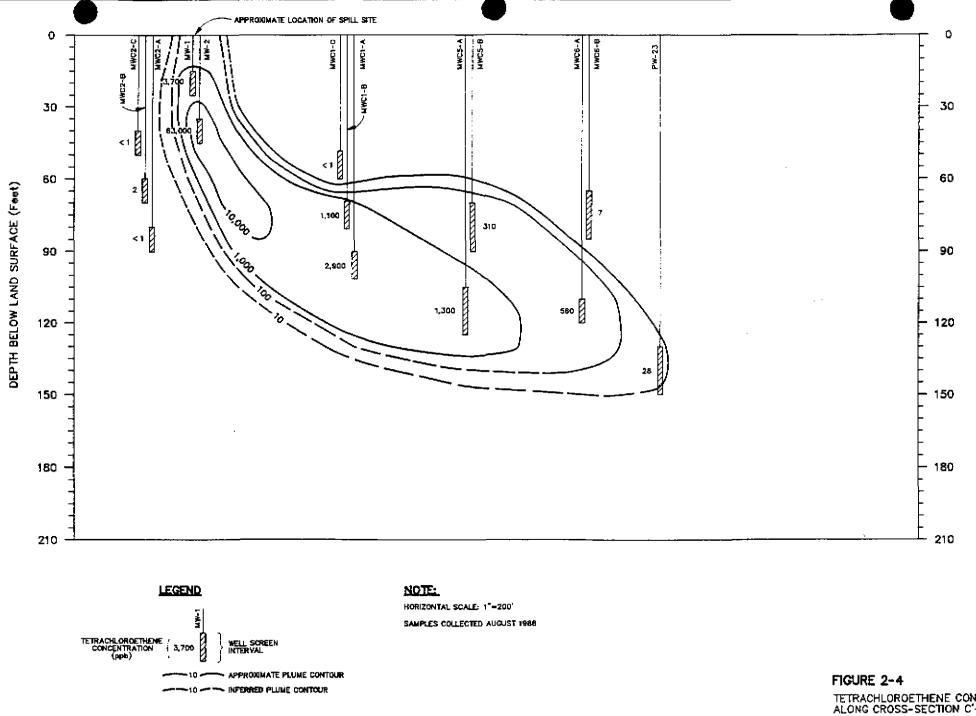

There has been no single sampling event which included the monitor wells installed by Dames & Moore and those installed by CH2M HILL. An approximate plume map can be constructed, however, from the data collected from the August, 1988 split sampling and the September 1988 sampling of the CH2M HILL monitor wells. These two sets of data were selected for construction of the plume maps because the samples were collected within 1 month.

Figure 2-1 shows the location of three cross-sections constructed across the contamination site. Cross-section A'-A' includes monitor wells MWC3-A, MWC3-B, MW-3, MW-1, MW-2, and Production Well 25. Cross-section B'-B' includes monitor wells W-9B, W-10B, MW-1, MW-2, MW-5, MW-6, MW-4, W-5, W-6, W-3, W-4, W-1, and Production Well 24. Cross- section C'-C' includes monitor wells MWC2-A, MWC2-B, MWC2-C, MW-1, MW-2, MWC1-A, MWC1-B, MWC1-C, MWC-5A, MWC-5B, MWC-6A, MWC-6B and Production Well 23.


Figures 2-2 through 2-4 show the profiles for the three crosssections. The tetrachloroethene concentrations reflect the CH2M HILL data from the August, 1988 split sampling event and the September, 1988 results from the monitor wells installed during the preliminary contamination assessment for the well field. The CH2M HILL data was used rather than the Dames & Moore data because of the close agreement between the CH2M HILL and PBCHD data for the August split sampling event.

0734708.00\/1.04C



24TOLEO\SECTION DWG

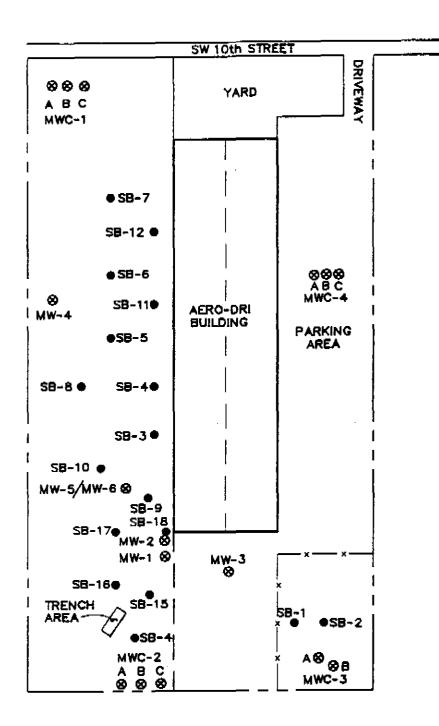
-

\SEF14706.00\SECTION.DWG

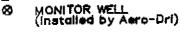
-

-

Each of the cross-sections reveal contamination between Aero-Dri and the production wells. Monitor wells MWC3-A, MWC3-B, W-9B, W-10B, MWC2-A, MWC2-B, and MWC2-C proved to be background wells. Each of these wells is located south-southeast of the Aero-Dri facility. The contamination is highest in the vicinity of the suspected spill site as indicated by the analytical results for monitor wells MW-1 and MW-2. From this location, the contamination appears to move vertically down in the aquifer as it is drawn horizontally toward the production wells.


Only one monitor well, W-1, has been installed west of the production wells. This well did not indicate contamination during the September sampling event. This area may be a background area, however, more sampling is necessary to confirm the absence of tetrachloroethene. W-1 is screened from 145 to 155 feet.

Soil borings conducted on the Aero-Dri site provide limited information regarding the extent of contamination. Figure 2-5 shows the locations for soil borings on the Aero-Dri property. Laboratory analysis of soil samples taken from the saturated zone may be useful for detecting contaminants which adsorb to the soil. In this situation, groundwater samples from monitor wells may underestimate the level of contamination. Only a low level of tetrachloroethene would be expected to adsorb to a sandy soil which contains low amounts of naturally occurring organics. Groundwater samples, therefore, will provide a representative level of contamination in the aquifer. The soil boring information has not been emphazised in this report since groundwater data is available.


Based on the data available thus far, tetrachloroethene contamination in City Production Wells 23, 24, and 25 is linked to tetrachloroethene contamination beneath the Aero-Dri property. The original samples collected by Dames & Moore from MW-1 and MW-2 in October 1987 indicated severe VOC contamination in the surface soils and shallow groundwater. More recent analysis reveals that groundwater from these wells is still highly contaminated. Tetrachloroethene was detected in most of the monitor wells between the Aero-Dri building and the City Production Wells. Little if any contamination was detected in monitor wells south, southeast, and east of the Aero-Dri building. This pattern is consistent with the observed groundwater gradient in this area. The groundwater gradient under the influence of the 20-Series Production Wells is north/northwest from Aero-Dri. The single monitor well west of Production Well 24 did not indicate tetrachloroethene contamination. The contamination, therefore, appears to be limited to the area between Aero-Dri and the 20-Series Wells based on the data available. Additional data, however, needs to be collected to further evaluate the condition of the aquifer west of the 20-Series Well Field and to provide more recent analytical results for all monitor wells installed in the vicinity of Aero-Dri and the production wells.

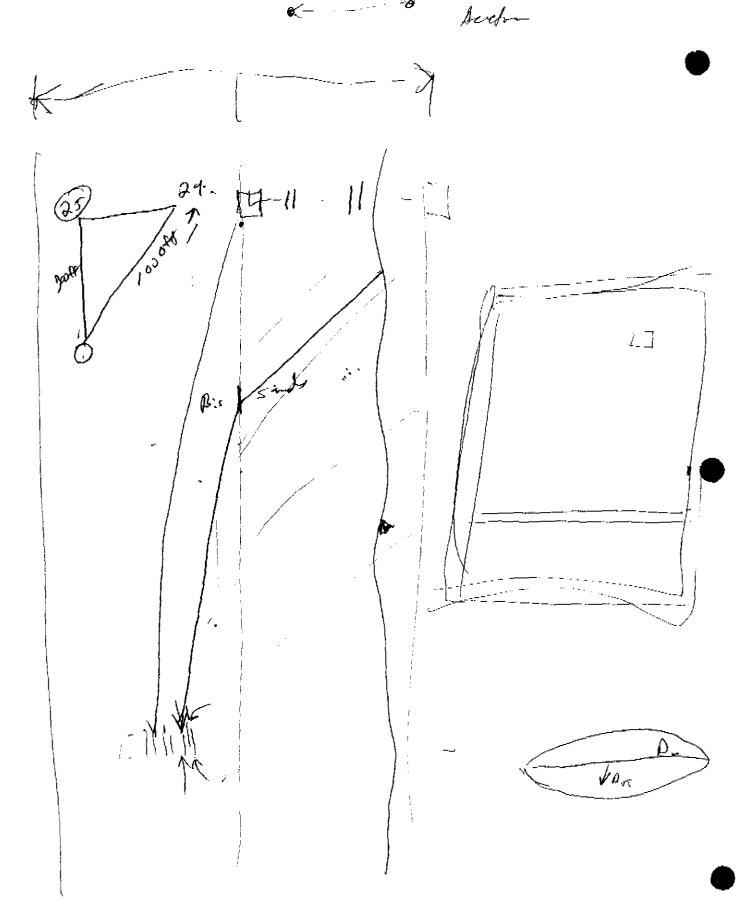
Scale: 1"=100'

SOIL BORING

FIGURE 2-5 MONITOR WELL AND SOIL BORING LOCATIONS ON THE AERO-DRI PROPERTY

Section 3 SUMMARY AND CONCLUSIONS

The data indicates that only a low level of contamination is present in monitor wells south-southeast and east of the Aero-Dri facility. This area can be considered background. Contamination present at the Aero-Dri facility and in the production wells did not originate from these areas.


Monitor well W-1, located west of Production Well 24, did not indicate contamination of the types and levels shown in the production wells. Only one volatile organic, 1,2-dichloroethene (1.1 ppb) was detected in the November 1988 sample. This trace level may be a laboratory artifact. This data suggests that contamination present in Production Well 24 is not entering the well from the western direction. Monitor well W-1 is screened within the screen interval of Production Well 24; therefore, contamination entering Well 24 from the west should also be present in W-1. Since W-1 does not contain any of the contaminants found in Well 24, it is unlikely that Well 24 contamination originated from the western direction. Additional monitor wells located west of the City Production Wells may be necessary to further characterize the condition of the aquifer in this region.

A consistent pattern of contamination can be traced from the source at the southwest corner of the Aero-Dri facility to the 20-Series Production Wells. This conclusion is based on CH2M HILL data collected during the August 1988 split sampling event with PBCHD and Dames & Moore; and the September 1988 data from wells installed by CH2M HILL. The CH2M HILL data from the split sampling event was used because of close agreement with the PBCHD data. The two monitor wells installed by Dames & Moore during their preliminary contamination assessment activities continue to show the highest levels of contamination since this was the area of contaminant spills. The concentration decreases as the plume is drawn toward the City production wells. The highly contaminated areas near MW-1 and MW-2, however, continue to provide a source of production well contamination.

dbt012/019.50

Section 4 REFERENCES

- 1. Dames and Moore, <u>Preliminary Contamination Assessment</u> <u>Report</u>. December 21, 1987.
- 2. Dames and Moore, <u>Contamination Assessment Plan</u>. December 21, 1987.
- 3. Dames and Moore, <u>Revised Contamination Assessment Plan</u>. February 1988.
- 4. CH2M HILL, <u>Prelminary Contamination Assessment Report</u>. December, 1988.

PRELIMINARY CONTAMINATION ASSESSMENT PLAN

...

Prepared for CITY OF DELRAY BEACH

.

Prepared by

CH2M HILL SOUTHEAST, INC.

May 1988

SEF24708.A3

CONTENTS

.

1	Introduction 1.1 Background 1.2 Location 1.3 Purpose	1-1 1-1 1-2 1-2
2	Summary of Existing Data 2.1 Previous Site Investigations 2.2 Water Quality Data 2.3 Site Geology	2-1 2-1 2-1 2-4
3	Proposed Field Investigation 3.1 Site Inventory 3.2 Monitor Well Installation 3.3 Geophysical Logging 3.4 Soil Sampling 3.5 Site Survey 3.6 Groundwater Sampling 3.7 Site Safety	3-1 3-1 3-5 3-6 3-6 3-6 3-9
4	Data Evaluations	4-1
5	Schedule	5-1

Page

. •

TABL	\mathbf{ES}
------	---------------

		<u>Page</u>
1-1	Data Sheet, 20-Series Wells	1-6
2-1	Summary of Pertinent Soil Sample Analysis from the Aero-Dri Site	2-2
2-2	Summary of Pertinent Groundwater Sample Analysis from the Aero-Dri Site	2-3
2-3	Summary of Pertinent Groundwater Sample Analysis from the 20-Series Well Field	2-5
3-1	Proposed Monitor Well Data Sheet	3-3
3-2	Sample Containers, Preservation Techniques, and Holding Times	3-7
FIGU	RES	
1-1	Project Location	1-4
1-2	Location of the 20-Series Well Field in Delray Beach	1-5
3-1	Proposed Monitor Well Locations	3-2
3-2	Typical Monitor Well Construction Diagram	3-4
5-1	Preliminary Contamination Assessment Plan Schedule	5-2

7

.

Section 1 INTRODUCTION

1.1 BACKGROUND

In July 1987, 3.17 parts per billion (ppb) of the volatile organic chemical (VOC) tetrachloroethene were detected in the finished water at the City of Delray Beach Water Treatment Plant. A subsequent analysis of groundwater from the City's production wells revealed that Wells 21, 22, 23, and 24 had measurable quantities of tetrachloroethene, trichloroethene, and cis-1,2-dichloroethene. This initial indication of production well contamination prompted an investigation of local industries by the Florida Department of Environmental Regulation (FDER).

On September 30, 1987, FDER conducted a hazardous waste inspection of Aero-Dri Corporation, which is located approximately 1,000 feet southeast of the contaminated production wells. The resulting Hazardous Waste Inspection Report cited Aero-Dri with 11 violations of hazardous waste regulations, and a Warning Notice (No. 50-419-87-HW) was issued on November 12, 1987. In accordance with the terms of the Warning Notice, meetings were held November 23, 1987, and December 7, 1987, between FDER, Aero-Dri and Aero-Dri representatives, L&J Enterprises (the property owner), and the Palm Beach County Health Department (PBCHD). FDER proposed a draft Consent Order to Aero-Dri and L&J Enterprises at a December 23 meeting.

Aero-Dri representatives conducted a preliminary investigation at the site by collecting soil samples on October 22, 1987, and groundwater samples on October 30, 1987. The results of these analyses, which indicated contamination, were given to FDER and PBCHD on November 23, 1987. Aero-Dri was fined and required to take corrective actions according to FDER guidelines.

By February 1988, the City was forced to shut down five of the six 20-Series wells because of high contaminant levels. This created a water shortage of approximately 4 million to 5 million gallons per day (mgd). The City imposed a moratorium restricting the use of water for irrigation and nonessential uses. At the same time, the South Florida Water Management District (SFWMD) ordered the City to reduce its water consumption from 6 mgd to 3 mgd in the North and South Well Fields because of the potential for saltwater intrusion.

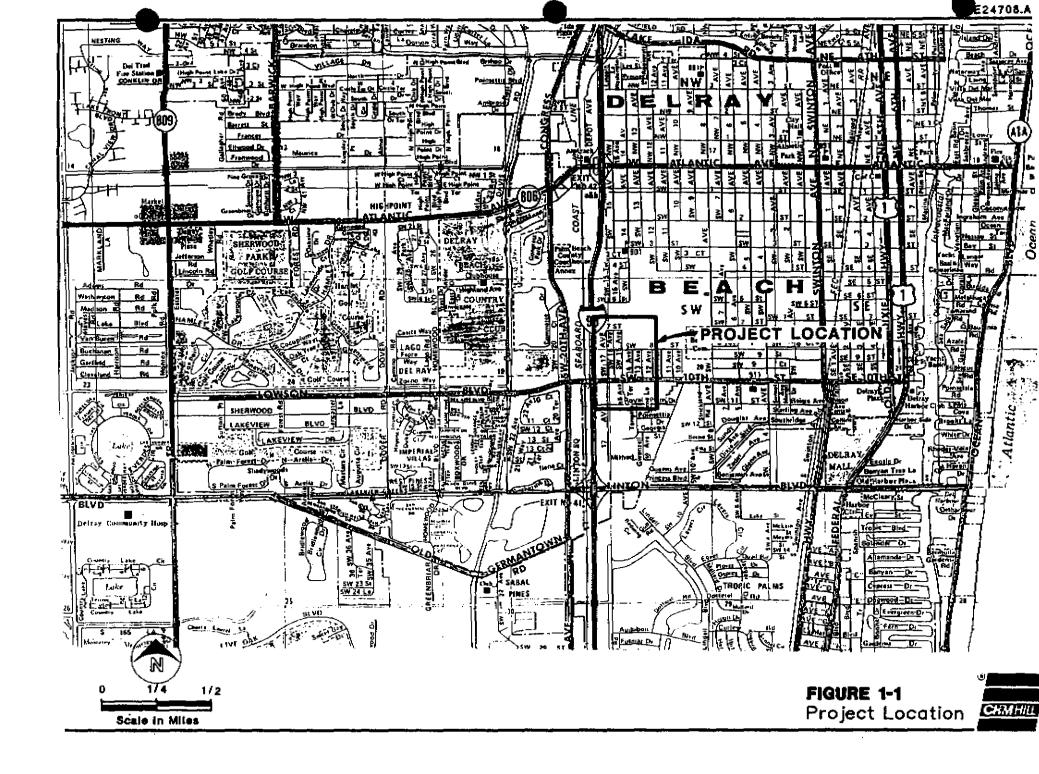
CH2M HILL was authorized by the City to design and procure an interim treatment system. This action allowed three of the 20-Series wells to be restarted, thus alleviating the City's water shortage.

DBT085/021

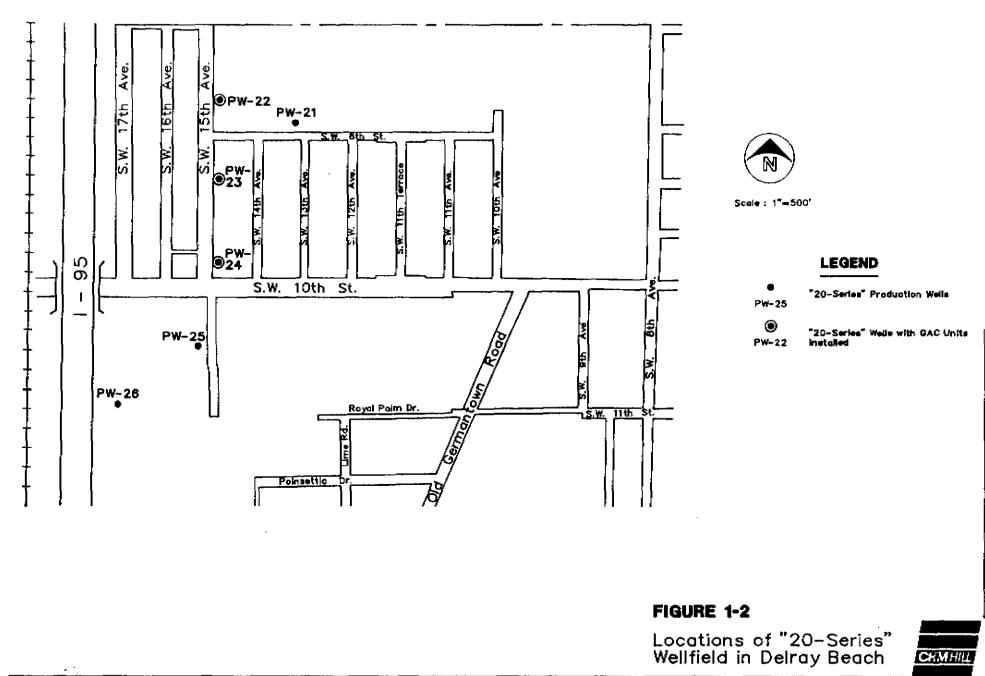
Granular activated carbon (GAC) was proposed as the only viable treatment alternative that could be provided on a timely basis. Other types of treatment systems to produce flow rates exceeding 4 mgd were not available within a short time frame. Calgon Carbon Corporation agreed to provide two GAC systems within one week after entering into an agreement with the City and a third unit one week later. The first carbon unit arrived on March 23, and the second unit arrived the following day. PBCHD approved the effluent from each carbon system on March 28, and the City began using Wells 22 and 23 that same day. The third carbon unit at Well 24 was put into operation on April 4.

1.2 LOCATION

The City of Delray Beach 20-Series Well Field is located in south Palm Beach County between Linton Boulevard and Atlantic Avenue. Figures 1-1 and 1-2 show the location of these wells. The 20-Series wells are about 400 feet east of Interstate 95 on both sides of S.W. 10th Street. Well 21 is located on the north side of S.W. 8th Street between 12th and 13th Avenues. Wells 22, 23, and 24 are located on the east side of S.W. 15th Avenue between S.W. 7th Street and S.W. 10th Street. Well 25 is located about 100 feet south of S.W. 10th Street near a Florida Power & Light (FPL) transformer station. Well 26 is located just east of Interstate 95 near the FPL transformer station. Table 1-1 summarizes construction data provided by the City for the 20-Series wells.


1.3 PURPOSE

The purpose of this preliminary contamination assessment plan (PCAP) is to obtain information confirming a potential source of production well contamination and provide an initial estimate of the magnitude of the contaminant plume. The study is designed to determine is there is a association between the one identified potential responsible party and the production well contamination, and does not include an investigation of other potential contamination sources. The PCAP will also determine whether chemical constituents other than volatile organics are present in or near the production wells.


⋇

The tasks described in this PCAP are based on FDER guidelines for conducting preliminary contamination assessment actions. The field investigations include a site inventory and groundwater sampling. The results of this study will be used to prepare the preliminary contamination assessment report (PCAR) and define the tasks necessary to prepare a more detailed contamination assessment plan (CAP). A detailed summary of existing data and specific work elements to be completed in the preliminary contamination assessment are described in this PCAP.

DBT085/021

Table 1-1 DATA SHEET, 20-SERIES WELLS

Well <u>Number</u>	Diameter (inches)	Approximate Cased Interval (feet)	Approximate Screened Interval (feet)	Rated Capacity (gpm)
21	12	0-110	110-150	900
22	12	0-110	110-150	1,000
23	12	0-100	100-140	1,000
24	12	0-110	110-150	1,000
25	12	0-110	110-150	1,000
26	12	0-110	110-150	1,000

. ,

Section 2 SUMMARY OF EXISTING DATA

2.1 PREVIOUS SITE INVESTIGATIONS

Aero-Dri conducted preliminary sampling of the contamination in the immediate vicinity of the suspected dumping. This data is summarized in <u>Preliminary Contamination Assessment</u> <u>Report, Perchloroethylene Spill, Aero-Dri Corporation Site</u> (Dames & Moore, 1987). On October 22, 1987, two monitor wells (MW) were installed next to Aero Dri's building to collect groundwater samples. The screen intervals for MW-1 and MW-2 were 20-25 feet and 40-45 feet, respectively. Four soil samples were collected at approximately 5-foot intervals during the installation of the wells, at which time a gross measurement of organic vapor was also conducted.

Groundwater and soil from MW-1 and MW-2 were analyzed by EPA Methods 601 (purgeable halocarbons) and 602 (purgeable hydrocarbons). The Method 601 analysis showed elevated levels of tetrachloroethene in the range of 26 ppb in soil taken from a depth of 15 feet at MW-1, to 585,000 ppb in soil taken from near the surface at MW-2. A more detailed summary of the available soil analysis is given in Table 2-1.

Tetrachloroethene levels in groundwater were 5,600 ppb in MW-1 and 531,500 ppb in MW-2. In addition, 450 ppb and 430 ppb of trichloroethene were measured in groundwater from MW-1 and MW-2, respectively. Table 2-2 summarizes the available groundwater sample data for the two Aero-Dri monitor wells.

The Method 602 analysis indicated the presence of benzene, ethylbenzene, toluene, and xylene in soil samples from MW-1 and MW-2. Each of these compounds, except toluene, was also detected in the groundwater. At MW-1, 5 ppb benzene, 11 ppb ethylbenzene, 7 ppb toluene, 35 ppb o-xylene, and 32 ppb m-xylene were found at a depth of 10 feet in the soil column. Similar concentrations were detected in soil from MW-2. In the groundwater, 17 ppb ethylbenzene and 1 ppb o-xylene were measured at MW-1, while 14 ppb ethylbenzene, 12 ppb benzene, 4 ppb o-xylene, 6 ppb xylene, and 3 ppb p-xylene were detected in MW-2. The presence of these compounds typically indicates contamination by petroleum products.

2.2 WATER QUALITY DATA

The City sampled groundwater from the 20-Series wells, and analysis was performed by Broward Testing Laboratory, Inc. The study indicated contamination by tetrachloroethene in

Table 2-1 SUMMARY OF PERTINENT SOIL SAMPLE ANALYSIS FROM THE AERO-DRI SITE

	Concentration (ppb)									
		Soil Depth								
	Surface	5	10	15						
<u>MW-1</u>										
Benzene	<0.1	5	<0.1	<0.1						
Ethylbenzene	<0.1	4	11	1						
Toluene	<0.1	8	7	12						
o-Xylene	<0.1	11	35	3						
m-Xylene	<0.1	11	32	4						
p-Xylene	<0.1	<0.1	<0.1	<0.2						
Chloroform	6,900	<250	<250	<250						
Trichloroethene	<250	<250	<250	<250						
Tetrachloroethene	4,030	4,469	2,274	26						
MW-2										
Benzene	<0.1	<0.1	<0.1	<0.1						
Ethylbenzene	<0.1	18	<0.1	<0.1						
Toluene	<0.1	6	<0.1	<0.1						
o-Xylene	<0.1	66	<0.1	<0.1						
m-Xylene	<0.1	30	<0.1	<0.1						
p-Xylene	<0.1	42	<0.1	<0.1						
Chloroform	<250	<250	<250	<250						
Trichloroethene	<250	<250	<250	<250						
Tetrachloroethene	585,000	480	408,000	4,600						

Source: Compiled from <u>Preliminary Contamination Assessment</u> Report, Perchloroethylene Spill, Aero-Dri Corporation Site, Dames & Moore, December 21, 1987.

··

Table 2-2 SUMMARY OF PERTINENT GROUNDWATER SAMPLE ANALYSIS FROM THE AERO-DRI SITE

Compound	Concentra MW-1	ation (ppb) MW-2
Benzene	<0.1	12
Ethylbenzene	17	14
Toluene	<0.1	<0.1
o-Xylene	1	4
m-Xylene	<0.1	6
p-Xylene	<0.1	3
Trichloroethene	450	430
Tetrachloroethene	5,600	531,500

Source: Compiled from <u>Preliminary Contamination Assessment</u> <u>Report, Perchloroethylene Spill, Aero-Dri Corporation</u> <u>Site</u>, Dames & Moore, December 21, 1987. all wells. In many cases, trichloroethene and 1,2-dichloroethene were also detected. The available groundwater test results are summarized in Table 2-3.

The tetrachloroethene concentration reported in the groundwater sample from MW-2 was approximately 531 ppm. Because the solubility of tetrachloroethene is 200 ppm at 20°C, a non-aqueous tetrachloroethene phase could be present in the aquifer. In addition, the density of tetrachloroethene (1.63 g/cc) could result in non-aqueous tetrachloroethene sinking to the bottom of the aquifer and forming a pool of solvent. This pool could serve as a continuing contamination source of dissolved solute that would move with the groundwater head gradients.

2.3 SITE GEOLOGY

The geology of the surficial aquifer in the vicinity of Delray Beach is composed of the Pamlico Sand and Anastasia Formation. Lithologic logs from two wells in the Golf Course Well Field show fine to medium sand down to about 70 feet below land surface (bls). Calcareous sandstone with shell fragments are found below the sand layers to a depth of 180 feet bls. The bottom of the surficial aquifer is bounded by layers of clay and silt beds, although the lithologic logs at the golf course wells do not extend to the expected depth of those layers between 200 and 250 feet.

Table 2-3							
SUMMARY	\mathbf{OF}	PERTINEN'	GROUN	DWATER	SAMPLE	ANALYSIS	
		FROM 20.	SERIES	WELL I	FIELD		

Well	Sample	Co	ncentration (ppb)	
Number	Date	Tetrachloroethene	Trichloroethene	1,2-Dichloroethene
21	0 8/ 22/87	35.0	<1.0	<1.0
	10/03/87	29.0	<1.0	NA
	10/30/87	58.7	<1.0	60.5
	01/25/88	30.3	NA	NA
	02/26/88	22.0	<5.0	<5.0
	03/11/88	2.9	0.5	0.5
22	08/22/87	24.9	4.0	4.8
	10/03/87	<1.0	2.4	8.5
	10/30/87	<1.0	2.7	5.0
	01/25/88	4.6	NA	NA
	02/26/88	19.0	3.3	2.6
	03/11/88	<0.5	2.2	6.9
23	08/22/87	12.0	1.6	2.6
	10/03/87	9.0	<1.0	<1.0
	10/30/87	1.2	1.0	NA
	12/09/87	12.5	0.4	NA
	12/11/87	1.5	<1.0	NA
	12/14/87	1.0	<1.0	NA
	01/25/88	12.4	NA	NA
	02/26/88	43.0	3.7	<5.0
	03/11/88	1.5	0.6	<0.5
24	08/28/87	51.0	11.8	23.8
	10/03/87	99.6	30.1	26.9
	10/30/87	87.6	16.8	NA
	12/09/87	43.6	9.7	22.7
	12/11/87	12.8	2.1	2.9
	12/14/87	5.2	<1.0	NA
	01/25/88	6.2	NA	NA
	02/26/88	130.0	20.0	<5.0
	03/14/88	65.0	13.0	13.0
25	01/25/88	20.8	NA	NA
	02/26/88	11.0	1.9	<5.0
	03/11/88	17.0	3.1	1.3
26	01/25/88	0	NA	NA
	02/26/88	<5.0	<5.0	<5.0
	03/11/88	1.5	<0.5	<0.5

NA = Not analyzed

DBT085/025

.

.

•

Note: Sampled by City of Delray Beach and analyzed by Broward Testing Laboratory, Inc.

Section 3 PROPOSED FIELD INVESTIGATION

3.1 SITE INVENTORY

A visual site survey will be conducted to locate surface waters and public and private water supply wells within a one-half mile radius of the 20-Series Well Field. The local geology and hydrogeology that potentially affect the movement of subsurface contaminants will be determined from previous well installation records and other available information.

3.2 MONITOR WELL INSTALLATION

Ten monitor wells will be installed in the vicinity of the Aero-Dri site and the 20-Series Well Field. Six of the monitor wells will be placed between Aero-Dri and the 20-Series wells, while the remaining wells will be located east of Aero-Dri and west of the well field. These ten wells will be located at five sites with two wells placed at each site. The proposed locations of these wells are shown in Figure 3-1. The depths of the monitor wells will vary depending on the distance from the suspected source of contamination and the anticipated depth of the contamination within the aquifer. The monitor well locations and depths have been proposed by interpolating between the contaminated Aero-Dri monitor wells (MW-1 and MW-2) and the most contaminated City production well (PW-24) Construction details for the monitor wells are shown in Table 3-1. The exact depth of each monitor well will be determined in the field as dictated by the site geology.

Wells will be installed by the mud rotary drilling technique. The wells will be constructed with 2-inch Schedule 40 PVC casing and screen. Figure 3-2 shows the monitor well construction details. The PVC casing sections will be flushjoined by either threaded and coupled joints, integral mechanical couplings designed for PVC pipe, or slip-on coupling using stainless steel set-screws. To avoid potential contamination after construction, no solvent-welded joints will be used in the monitor well construction. The well screens will have an approximately 0.02-inch slot size.

The drilling equipment will be decontaminated by steam cleaning before arrival onsite. Sand blasting of equipment will be performed if necessary. Decontamination by steam cleaning of down-hole tools will be done between each monitor well installation.

Gravel pack consisting of 6/20 graded silica sand will be placed around the PVC well screen. The gravel pack material

DBT085/027

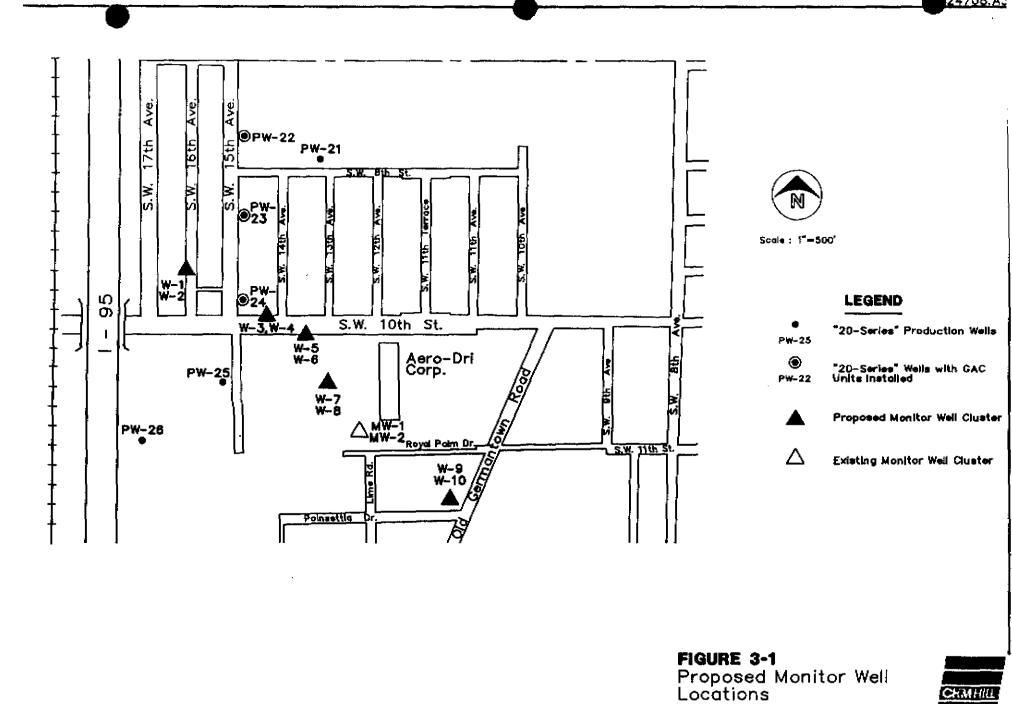
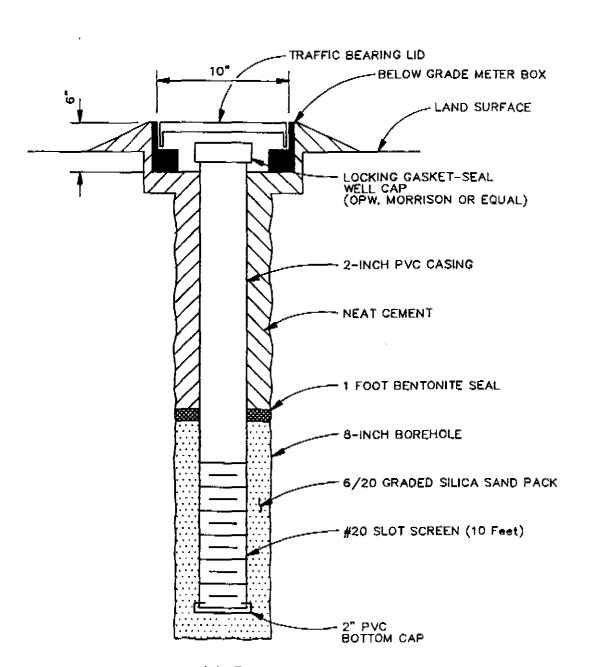



Table 3-1 PROPOSED MONITOR WELL DATA SHEET

Well <u>Number</u>	Diameter <u>(inches)</u>	Approximate Cased Interval (feet)	Approximate Screened Interval (feet)
W-1	2	0-150	150-160
W-2	2	0-190	190-200
W-3	2	0-110	110-120
W-4	2	0-140	140-150
W-5	2	0-90	90- 100
W-6	2 2	0-130	130-140
W-7	2	0-60	60-70
W-8	2	0-100	100-110
W-9	2	0-60	60-70
W-10	2	0-100	100-110

DBT085/028

.

N.T.S.

FIGURE 3-2

Typical Monitor Well Construction Diagram

will be tremied in place with a 1.5-inch PVC pipe that extends to the bottom of the borehole. The gravel pack material will be placed approximately 5 feet above the well screen.

A bentonite mixture will be placed above the gravel pack to seal the annular space. The seal will be at least 1 foot thick to prevent unconsolidated material above the screen from sloughing into the gravel pack.

Cement grouting will be placed above the bentonite seal to ensure a water-tight seal around the well casing and prevent surface contamination from seeping into the well. The cement grouting will fill the space between the bentonite seal and the ground surface.

A locking cap and flush-mounted cover will be placed over each well. The cover will have a permanent marker that clearly identifies each monitor well. Each monitoring well will be surveyed to determine top of casing elevation and horizontal location.

Each well will be developed by surging and pumping until clear, sand-free formation water is produced. Development time is estimated to be from 30 minutes to 1 hour for each well. Water used in developing the wells will be pumped into the sanitary sewer.

Drill cuttings and drilling muds will be containerized and transported to a staging area. A composite sample from this material will be analyzed for VOC contamination. Background soil will also be sampled and analyzed for VOC contamination. The background sample may or may not contain trace quantities of contamination from surface runoff or the atmosphere. If the VOC concentrations in the drilling material are less than or equal to the background sample, the cuttings and muds will be disposed at an appropriate location by the City. If the VOC concentration in the drill material is significantly greater than background, the drill material will be disposed by the City according to methods specified by FDER.

3.3 GEOPHYSICAL LOGGING

During the drilling of three monitor wells, gamma ray and electrical logs will be conducted to describe stratigraphic conditions. The upper sediment layers (strata) in the study area consist mainly of unconsolidated sands, silts, and shells. These materials are generally very permeable; however, deeper sediments may contain less permeable horizons, characterized by the presence of silts and clays. These soils can act as barriers to water movement. The gamma ray log detects clay and silt while the electric log yields qualitative changes in sediment permeability through the soil profile.

3.4 SOIL SAMPLING

Soil samples in the saturated zone will be collected during the installation of at least two of the monitor wells. The samples will be analyzed for volatile organic compounds and total organic carbon (TOC).

3.5 SITE SURVEY

Each monitor well will be surveyed to establish vertical elevations to within ±0.01 feet and horizontal locations to within ±1.0 feet.

3.6 GROUNDWATER SAMPLING

Samples will be collected from each of the monitor wells. At least one week will be allowed between well development and sampling to help ensure that the samples are representative of the groundwater. Groundwater sampling, handling, and analysis will be conducted according to the procedures outlined in the CH2M HILL Quality Assurance Project Plan (QAPP) for the City of Delray Beach.

Sample bottles and containers will be prepared according to procedures outlined in <u>Standard Operating Procedures for the</u> <u>Handling and Collection of Groundwater and Surface Water</u> <u>Samples (FDER, 1981)</u>. Borosilicate glass bottles will be washed with alconox detergent followed by a liberal tap water and deionized water rinse. All sampling materials will be dried for 60 minutes at 105°C.

Groundwater samples will be collected by the following techniques. Each well will be purged prior to sample collection. Specific conductance, pH, and temperature will be measured during the purging operation. Once the readings for these parameters have stabilized, the purging will be complete. A three- to five-well volume purge is anticipated. Two bailers of well water will then be collected and discarded. A third bailer of well water will be collected and transferred to the appropriate sample containers. Samples collected for VOC measurement will be completely filled to eliminate air bubbles within the bottle after capping.

Groundwater samples will be stored in containers and preserved according to guidelines outlined in the October 26, 1984, Federal Register (49 FR 43260, Table II). The information applicable to this PCAP is summarized in Table 3-2. Table 3-2 SAMPLE CONTAINERS, PRESERVATION TECHNIQUES, AND HOLDING TIMES

Sample Parameter	Container ^a	Preservation Technique ^{b,C}	Maximum Holding Time ^d
Metals [except Chromium (VI) and Mercury]	P,G	HNO ₃ to pH <2	6 months
Chromium (VI)	P,G	Cool to 4°C	24 hours
Mercury	P,G	HNO ₃ to pH <2	28 days
Purgeable Halocarbons ^f	G, Teflon-lined septum	Cool to 4°C	14 days
Purgeable _f Aromatics ^f	G, Teflon-lined septum	Cool to 4°C HCl to pH <2 ^g	14 days
Base/Neutral Extractables	G, Teflon-lined septum	Cool to 4°C	7 days until extraction, 40 days after extraction
Acid Extractables ^f	G, Teflon-lined septum	Cool to 4°C	7 days until extraction, 40 days after extraction
Pesticides ^h	G, Taflon-lined cap	Cool to \$°C pH 5-9 ¹	7 days until extraction, 40 days after extraction
CN ⁻	P,G	Cool to 4°C, NaOH to pH >12	14 days ^e
EDB	G, Teflon-lined septum	Cool to 4°C	14 days

^aPolyethylene (P) or Glass (G).

^bSample preservation should be performed immediately upon sample collection. For composite chemical samples each aliquot should be preserved at the time of collection. When use of an automated sampler makes it impossible to preserve each aliquot, then chemical samples may be preserved by maintaining at 4°C until compositing and sample splitting is completed.

^CWhen any sample is to be shipped by common carrier or sent through the United States Mails, it must comply with the Department of Transportation Hazardous Materials Regulations (49 CFR Part 172). The person offering such material for transportation is responsible for ensuring such compliance. For the preservation requirements of Table 6-1, the Office of Hazardous Materials, Materials Transportation Bureau, Department of Transportation has determined that the Hazardous Materials Regulations do not apply to the following materials: hydrochloric acid (HCl) in water solutions at concentrations of 0.04% by weight or less (pH about 1.96 or greater); nitric acid (NHO₃) in water solutions at concentrations of 0.15% by weight or less (pH about 1.62 or greater); sulfuric acid (H₂SO₄) in water solutions at concentrations of 0.35% by weight or less (pH about 1.15 or greater); and sodium hydroxide (NaOH) in water solutions at concentrations of 0.080% by weight or less (pH about 12.30 or less).

^dSamples should be analyzed as soon as possible after collection. The times listed are the maximum times that samples may be held before analysis and still be considered valid. Samples may be held for longer periods only if data on file shows that the specific types of samples under study are stable for the longer time, and has received a variance from the U.S. EPA Regional Administrator. Some samples may not be stable for the maximum time period given in the table. A permittee, or monitoring laboratory, is obligated to hold the sample for a shorter time if knowledge exists to show that this is necessary to maintain sample stability.

^eMaximum holding time is 24 hours when sulfide is present. Optionally all samples may be tested with lead acetate paper before pH adjustments in order to determine if sulfide is present. If sulfide is present, it can be removed by the addition of cadmium nitrate powder until a negative spot test is obtained. The sample is filtered and then NaOH is added to pH 12. Table 3-2 (Continued)

 $^{\mathrm{f}}$ Guidance applies to samples to be analyzed by GC, LC, or GC/MS for specific compounds.

⁹Sample receiving no pH adjustment must be analyzed within seven days of sampling.

^hWhen the extractable analytes of concern fall within a single chemical category, the specified preservative and maximum holding times should be observed for optimum safeguard of sample integrity. When the analytes of concern fall within two or more chemical categories, the sample may be preserved by cooling to 4°C, reducing residual chlorine with 0.008% sodium thiosulfate, storing in the dark, and adjusting the pH to 6-9; samples preserved in this manner may be held for seven days before extraction and for forty days after extraction. Exceptions to this optional preservation and holding time procedure are noted in footnote e (re: the requirement for thiosulfate reduction of residual chlorine).

 1For the analysis of diphenylnitrosamine, add 0.008% $\rm Na_2S_2O_3$ and adjust pH to 7-10 with NaOH within 24 hours of sampling.

A sample from each of the monitor wells will be screened for tetrachloroethene and trichloroethene by a portable photoionization gas chromatograph. The two samples with the highest VOC concentrations will be analyzed for purgeable organics (EPA Method 624), base neutral and acid extractable compounds (EPA Method 625), and priority pollutant metals and pesticides (EPA Method 608). The remaining eight samples, plus travel and bailer blanks and duplicates, will be analyzed for only purgeable organics with EPA Methods 601 and 602. These methods will be used in lieu of Method 624 to minimize costs. Methods 601 and 602 use only gas chromatography, whereas Method 624 uses gas chromatography and mass spectrometry.

Water level measurements will be determined for each well before purging through the wetted-tape method. Depth to water will be measured from top of casing. The tape will be rinsed with deionized water, wiped with a fresh paper towel soaked in isopropanol, and air-dried between consecutive water level measurements.

3.7 SITE SAFETY

Health and safety considerations necessary for implementing this PCAP are described in <u>Site Safety for Field Investiga-</u><u>tions</u> (CH2M HILL, in progress).

Section 4 DATA EVALUATIONS

Analytical results from the field investigations will be used to evaluate the suspected source of contamination and the potential impact on nearby surface and groundwater supplies. Water level measurements from the monitoring wells will be evaluated along with regional and local hydrogeological data. This information will be used to analyze local groundwater flow patterns and the potential for migration of contamination from the suspected source to the 20-Series Well Field.

The results of the preliminary contamination assessment will be summarized in a preliminary contamination assessment report. The PCAR will present the results of all tasks outlined in the PCAP, and will determine the course of action for subsequent contamination assessment. The schedule for the preliminary contamination assessment and preparation of the PCAR is shown in Figure 5-1. Field investigations will begin within one week after this PCAP and the QAPP have been approved. The draft PCAR will be submitted within 3 weeks after completion of the field work and laboratory analysis. This schedule assumes that the PCAP and QAPP are approved at about the same time. The schedule also assumes a 2-week client and FDER review of the draft PCAR before the final PCAR is produced.

Task Description			<u> </u>				eeks							<u>_</u>
		1	2	3	 5	6		8	9	10	11	12	13	14
PCAP Approval ¹	•													
QAPP Approval ¹	•													
Inventory Site														
Install Monitoring Wells														
Sample Ground- water														
Analyze Samples														
Prepare PCAR								<u> </u>						
Submit PCAR					 						•		<u> </u>	

- Deliverable
 - _ Client and FDER Review
- ¹Assumes PCAP and QAPP Approved At The Same Time

FIGURE 5-1 Preliminary Contamination Assessment Plan Schedule

1.

an an ann an tha ann an tha ann an tha ann an tha ann an tha ann an tha ann an tha ann an tha ann an tha ann a Mar an tharaighte an tharaighte ann an tharaighte ann an tharaighte ann an tha ann an tharaighte ann an tharaig Tharaighte an tharaighte an tharaighte an tharaighte an tharaighte an tharaighte an tharaighte an tharaighte an

GROUNDWATER FLOW MODELING OF THE 20-SERIES WELL FIELD ADDENDUM TO THE SEPTEMBER 1988 REPORT JULY 1989

INTRODUCTION

A computer simulation of the groundwater flow in the Delray Beach area was completed and submitted to the City in September 1988 (CH2M HILL, September 1988). The study focused on the groundwater flow near the City of Delray Beach's 20-Series Well Field. Based on the results of the computer model, inferences were made about the direction and velocity of groundwater or contaminants. Historical simulations, presented in the 1988 modeling report, showed how various pumping scenarios may have influenced the distribution of contaminants in the aquifer.

Subsequent contamination assessments near the 20-Series Well Field have increased our understanding of the area's hydrogeology (Dames & Moore, 1988; CH2M HILL, December 1988). Both studies included additional monitoring wells, soil borings, and slug tests which provided more information on the hydrogeologic characteristics of the surficial aquifer.

One significant conclusion from the Dames & Moore contamination assessment was that two distinct hydrogeologic layers may exist within the surficial aquifer. Based on the information available at the time, the original groundwater flow model (CH2M HILL, September 1988) assumed one distinct geologic layer (hydrostratiographic unit) through which groundwater flow was occurring. Depending on the degree of hydraulic communication between the layers, a multi-layered system may have a different groundwater flow pattern than a system which is represented as a single layer. This could potentially affect the migration of contaminants.

Before amending the original groundwater flow model, CH2M HILL conducted a pumping test and slug tests to gather additional hydrogeologic information. A 72-hour pumping and recovery test was performed at the City of Delray Beach's Golf Course Well Field. Slug tests were also conducted at various monitoring wells at the golf course. All tests were conducted, and data analyzed, to better understand the hydrogeologic characteristics of the area before updating the groundwater flow model.

<u>PURPOSE</u>

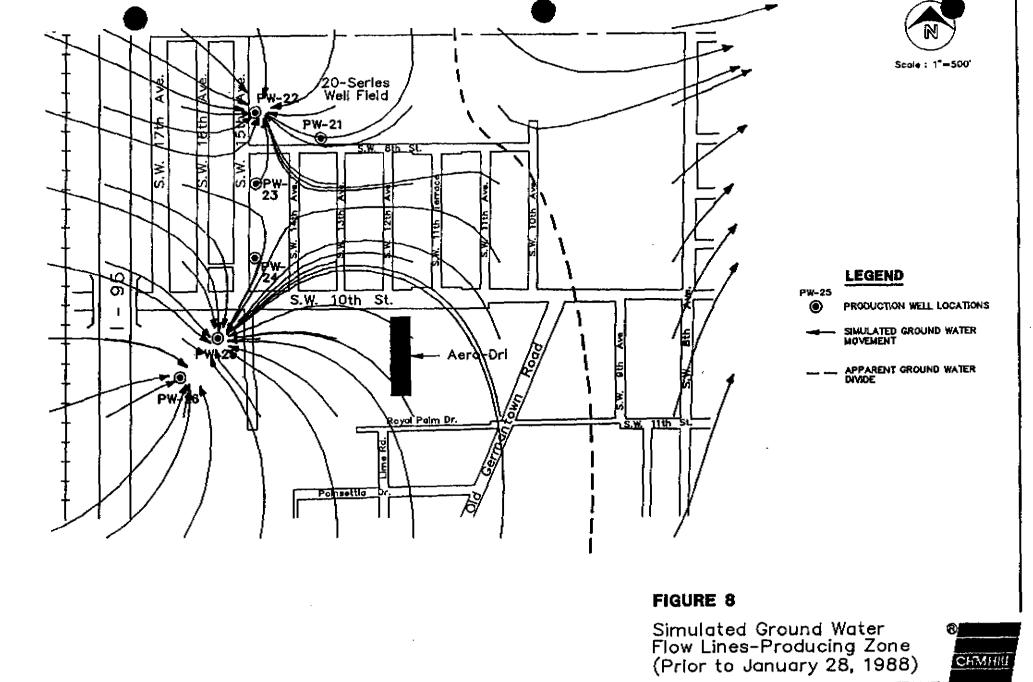
The purpose of this addendum is to report on the modification of the original groundwater flow model to include two distinct

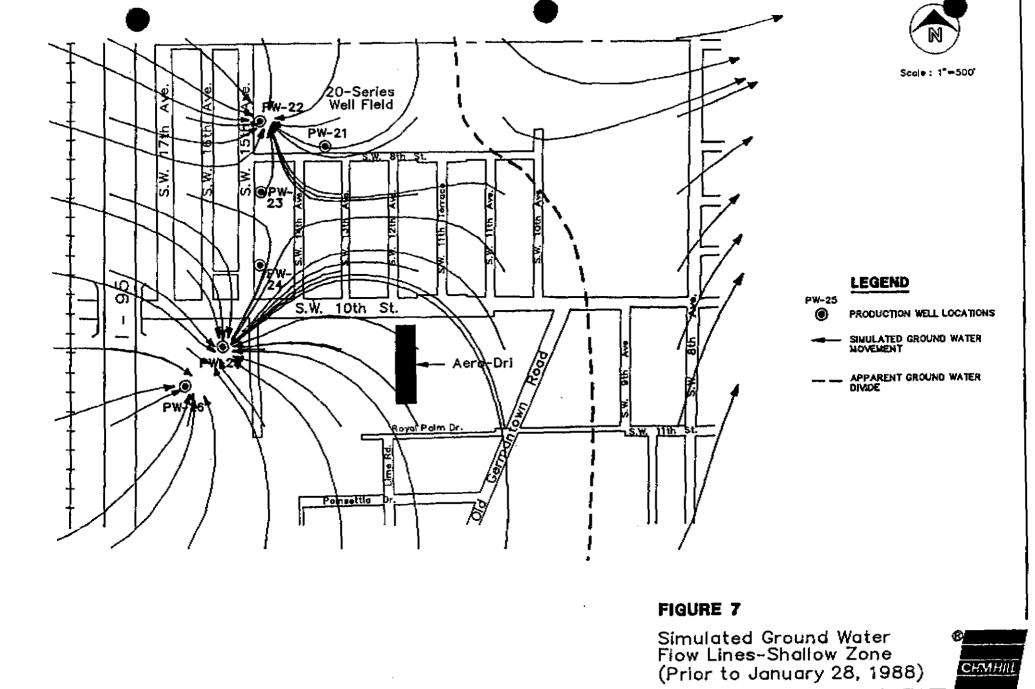
dbt012/028.50

hydrostratiographic layers. Significant differences or similarities between the original one-layer model and the modified twolayer model are outlined in this report as they relate to the movement of groundwater and contaminants.

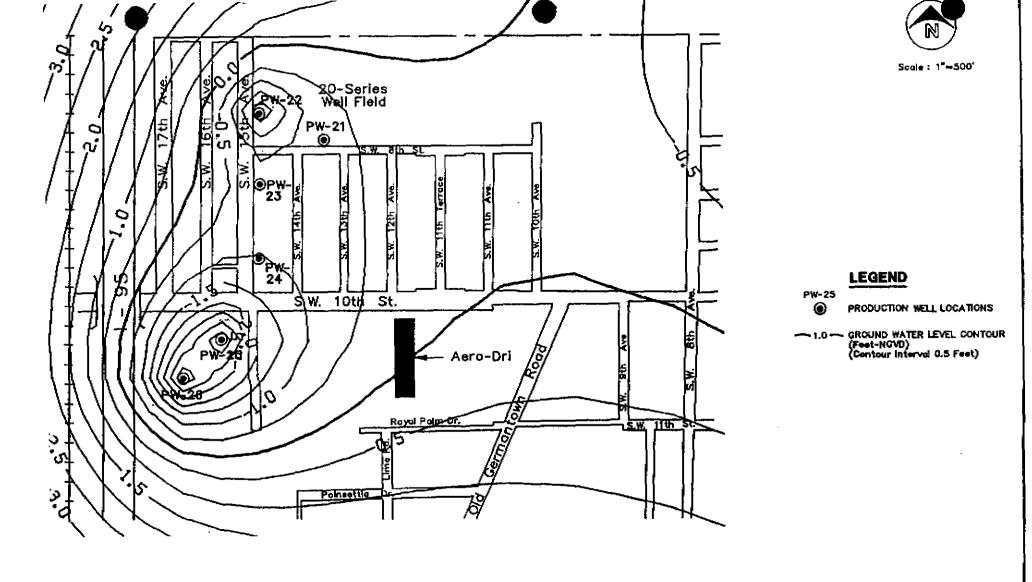
HYDROGEOLOGICAL TESTS

Results from slug tests at shallow monitor wells near the 20-Series Well Field (Dames & Moore, 1988) indicated that the hydraulic conductivity of the shallow sands (zero to 50 feet below land surface [bls]) within the surficial aquifer was approximately an order of magnitude lower than the producing zone (greater than 50 feet bls). The producing zone of the surficial aquifer is loosely defined in this report as the section of the aquifer which yields the majority of groundwater to the 20-Series Well Field. Because the 20-Series wells are pumping from a depth of 110 to 150 feet bls, depths greater than 50 feet bls in the surficial aquifer are termed the producing zone.


CH2M HILL conducted additional aquifer tests to evaluate whether two distinct layers exist. A pumping and recovery test were performed at the City of Delray Beach's Municipal Golf Course. The tests were conducted by stressing the middle section of the aquifer (80 to 130 feet bls). These tests primarily yielded information on the hydraulic characteristics of the producing zone of the aquifer. From the test, the approximate aquifer transmissivity for the producing zone was 200,000 gallons per day per foot (gpd/ft). Assuming a producing zone thickness of 250 feet (Water Resources Management Advisory Board, 1987), the hydraulic conductivity of the producing zone of the aquifer is 107 feet per day (ft/day).

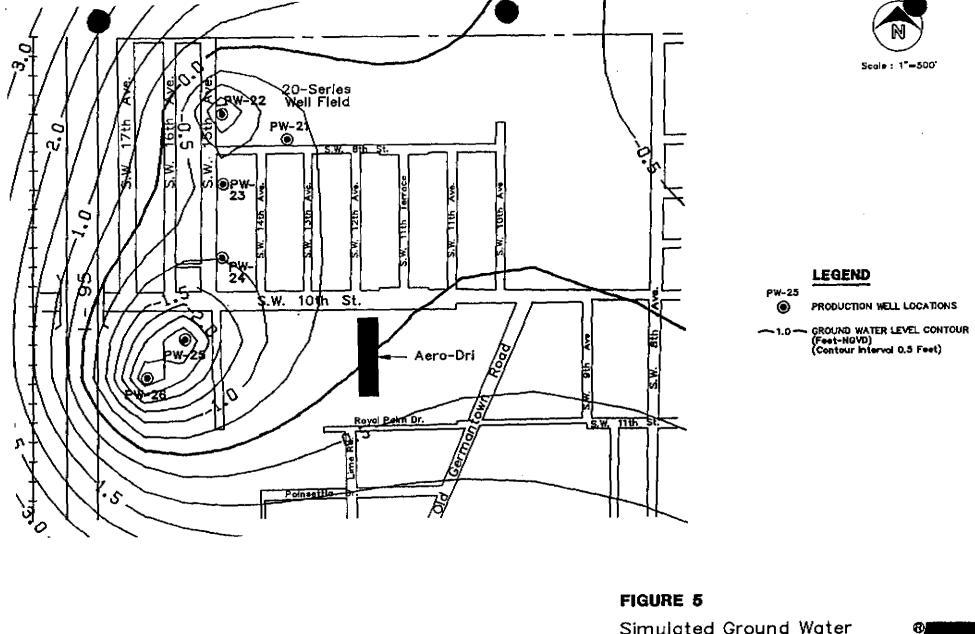

Slug tests were also conducted on shallow monitoring wells at the City golf course to provide an estimate of the hydraulic conductivity of the shallow sands (15 to 30 feet bls). The average hydraulic conductivity from the slug tests was 12 ft/day. Estimated hydraulic conductivity from the Dames & Moore tests (Dames & Moore, 1988) was 7 ft/day. These results from the tests on the shallow sands were compared with the results from the pumping and recovery tests on the producing zone (107 ft/day). Comparison of the tests indicate that two distinct hydrostratiographic layers may exist.

MODEL CALIBRATION


ncorporation of two distinct layers into the model required the recalibration of the groundwater flow model. Predicted

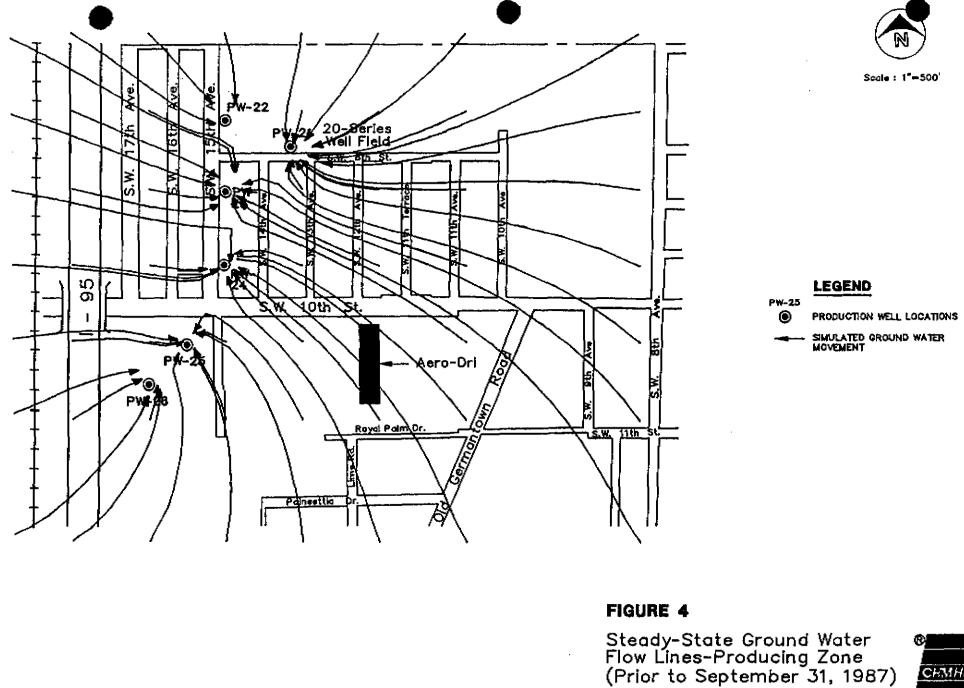
dbt012/028.50

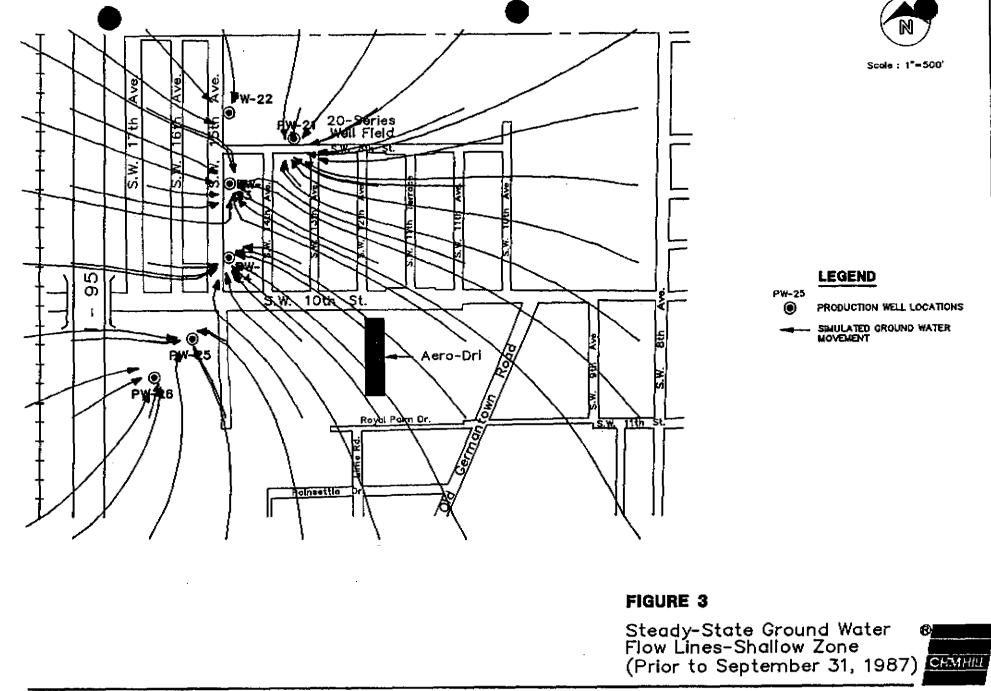
5219708.A6\F-7.DWG

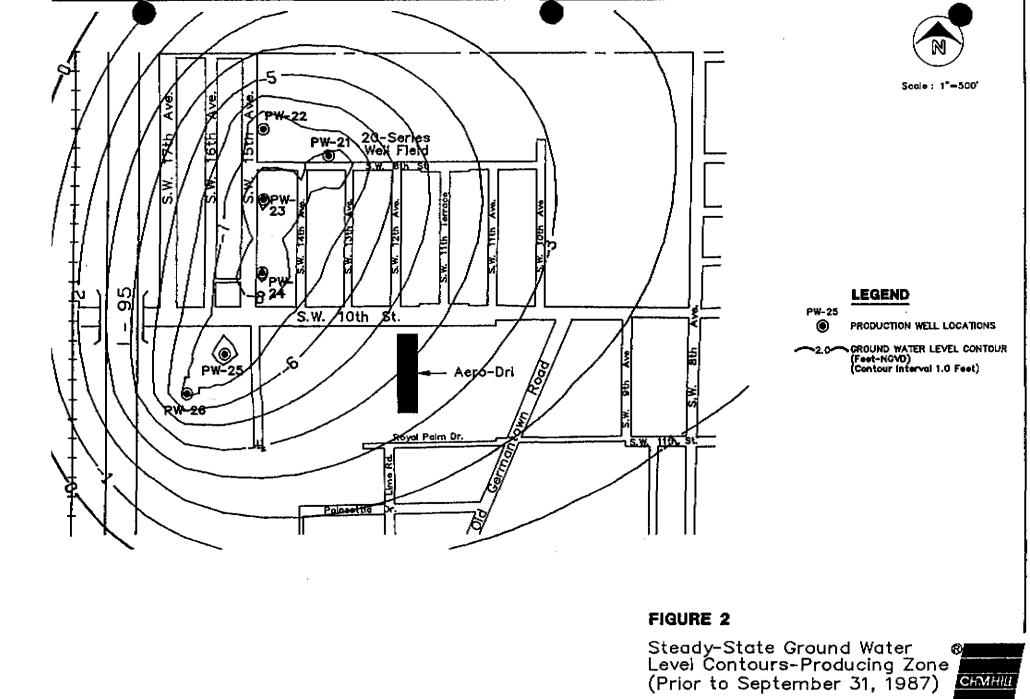

Simulated Ground Water Level Contours-Producing Zone (Prior to January 28, 1988)

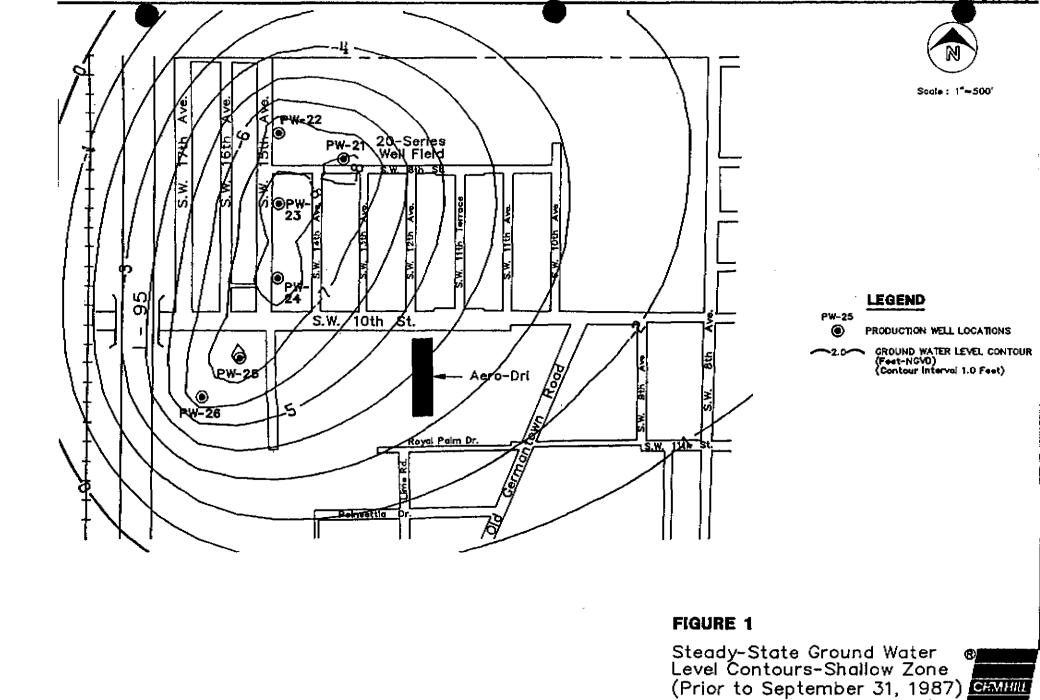
\SE24708.A6\F-6.DWG

Т


.




Simulated Ground Water Level Contours-Shallow Zone (Prior to January 28, 1988)



SE24708.A6\F-5.DWG

Groundwater level contours and flow lines prior to September 31, 1987, for the shallow and producing zones are shown in Figure 1 through Figure 4. Groundwater levels in the shallow and producing zones are shown in Figures 1 and 2. The resulting direction of groundwater flow in the shallow and producing zones is shown in Figures 3 and 4. Comparison of Figure 1 with Figure 2 and Figure 3 with Figure 4 shows that there is no significant difference between the shallow and producing zones. This result indicates good hydraulic communication between the shallow sands and producing zone. Good hydraulic communication between two distinct layers infers that no hydraulic barrier or confining layer exists between the distinct layers which would impede the flow of water. This result is important because the lack of a confining layer indicates that pumping from the producing zone will similarly affect the shallow zone. Groundwater flow and contaminant movement, therefore, will be similar.

Comparison of Figure 1 and Figure 2 of this addendum with Figure 3 of the September 1988 report illustrates two points. First, the configuration of groundwater level contours and groundwater flow direction is very similar between the one- and two-layer models. Second, the two-layer model predicts slightly lower water levels around the well field than the one-layer model. The difference in water levels may be attributed to different calibration processes between the one- and two-layer models and does not change the direction of groundwater movement in the well field.

Contaminant migration is primarily toward Production Well PW-24 during Period 1 for both the one- and two-layer models. This can be seen by noticing the groundwater flow directions depicted in Figures 3 and 4. Production wells PW-23 and PW-25 would be less affected by the contamination.

PERIOD 2--OCTOBER 1, 1987, TO JANUARY 28, 1988

Pumping Period No. 2 occurred during the initial discovery of contamination at the 20-Series Well Field. Production Wells PW-21, PW-23, and PW-24 were taken out of service during this period to prevent contamination from entering the finished water at the Water Treatment Plant. Production Wells PW-22, PW-25, and PW-26 were assumed to be pumping during this period.

Groundwater level contours and flow lines from October 1, 1987, to January 28, 1988, for the shallow and producing zones are shown in Figure 5 through Figure 8. Groundwater levels in the shallow and producing zones are shown in Figures 5 and 6 respectively. Direction of groundwater flow in the shallow and producing zones is shown in Figures 7 and 8. There are no significant

dbt012/028.50

groundwater levels from the model were compared with observed groundwater levels in numerous wells that monitor both the shallow and producing zones of the aquifer.

Other information was needed to properly calibrate and update the two-layer flow model. Estimates of the hydraulic characteristics of the shallow and producing zone from the most recent pumping and slug tests were included. Pumping records for the City of Delray Beach's production wells were collected for a period preceding and including the calibration date (March 16, 1989). Canal E-4 (El Rio Canal) stage data were gathered for the calibration period.

Following the collection of essential information, the two-layer groundwater model was calibrated to closely match the measured groundwater levels in both the shallow and producing zones of the aquifer. The calibrated two-layer model was then used to run historical simulations identical to those reported by CH2M HILL in the September 1988 report.

HISTORICAL SIMULATIONS

In the September 1988 modeling report, groundwater flow simulations were conducted for various pumping scenarios which preceded and followed the discovery of contamination at the well field. Three historical simulations included the pumping scenarios (1) for a "steady-state" period prior to September 31, 1987; (2) from October 1, 1987, through January 28, 1988; and (3) from January 29, 1988, through March 26, 1988. These pumping scenarios were logical breaks or changes in the pumping schemes of the 20-Series Well Field and helped to explain how contaminants may have moved throughout the well field during these time periods.

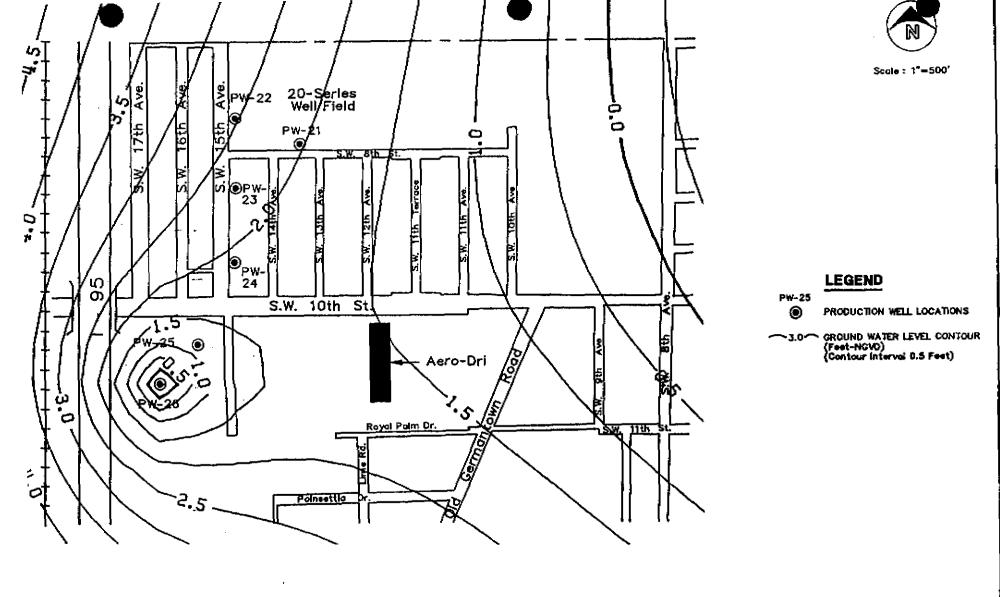
For this addendum, results from the two-layer groundwater flow model are presented for the same historical pumping periods and were compared with the original one-layer results. Following calibration of the two-layer model, predicted groundwater levels were generated for the shallow sands and producing zone for each historical time period.

PERIOD 1--PRIOR TO SEPTEMBER 31, 1987 (STEADY STATE)

Pumping Period No. 1 represents the time prior to the alteration of the 20-Series Well Field operation due to contamination. Before the change in well field operation, all six 20-Series wells were operated consistently over a long period of time (steady fate). differences in groundwater levels (or flow lines) between the shallow sands and producing zones of the surficial aquifer. Therefore, direction of groundwater movement in the shallow sands and the producing zone is similar.

Predicted groundwater levels and flowlines of the one- and twolayer models for this pumping scenario are also similar. Groundwater contours from the two-layer model (Figures 5 and 6) are similar to Figure 4 of the September 1988 report. Subsequently, no significant differences exist between the flow lines predicted by the one-layer model in the September 1988 report (Figure 5) and the flow lines from the two-layer model reported in this addendum (Figures 7 and 8). In general, the simulated groundwater flow in the one- and two-layer models is very similar.

Contaminant migration during Period No. 2 is toward the operating production wells (PW-22, PW-25, and PW-26) as depicted in Figures 7 and 8. This pattern, which is the same for both the oneand two-layer models, caused an increased distribution of contaminants throughout the well field.


PERIOD 3--JANUARY 29, 1988, TO MARCH 26, 1988

Production Wells PW-21, PW-23, and PW-24 had been previously taken out of service due to contamination (Period No. 2). When contamination of Production Wells PW-22 and PW-25 was detected, Production Well PW-26 was the only 20-Series well continuing to pump during Period No. 3.

Groundwater level contours and flow lines from January 29, 1988, to March 26, 1988, are shown in Figure 9 through Figure 12. Water level contours and flow lines for the shallow aquifer are depicted in Figures 9 and 11. Water level contours and flow lines for the producing zone are depicted in Figures 10 and 12. Similar to the results from Periods 1 and 2, there are no significant differences in groundwater levels (or flow lines) between the shallow and producing zones. Therefore, direction of groundwater movement in the shallow sands and the producing zone is similar.

Predicted groundwater levels and flowlines of the one- and twolayer models for this pumping scenario are similar. Groundwater contours from the two-layer model (Figure 9 and 10) are similar to Figure 6 of the September 1988 report. Subsequently, no significant differences exist between the flow lines predicted by the one-layer model in the September 1988 report (Figure 7) and flow lines from the two-layer model reported in this addendum Figures 11 and 12). In general, the simulated groundwater flow in the one- and two-layer models is similar.

dbt012/028.50

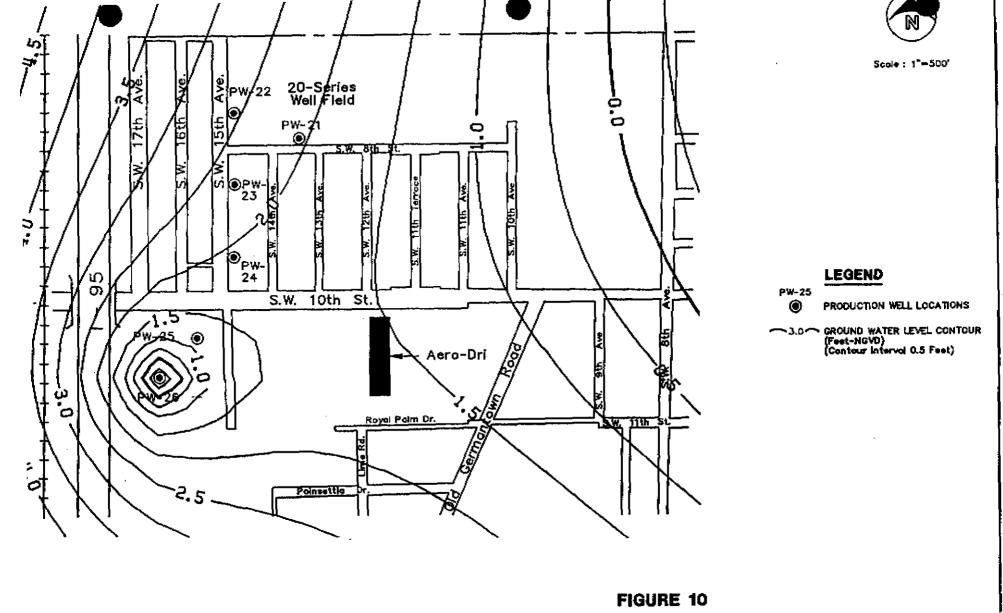
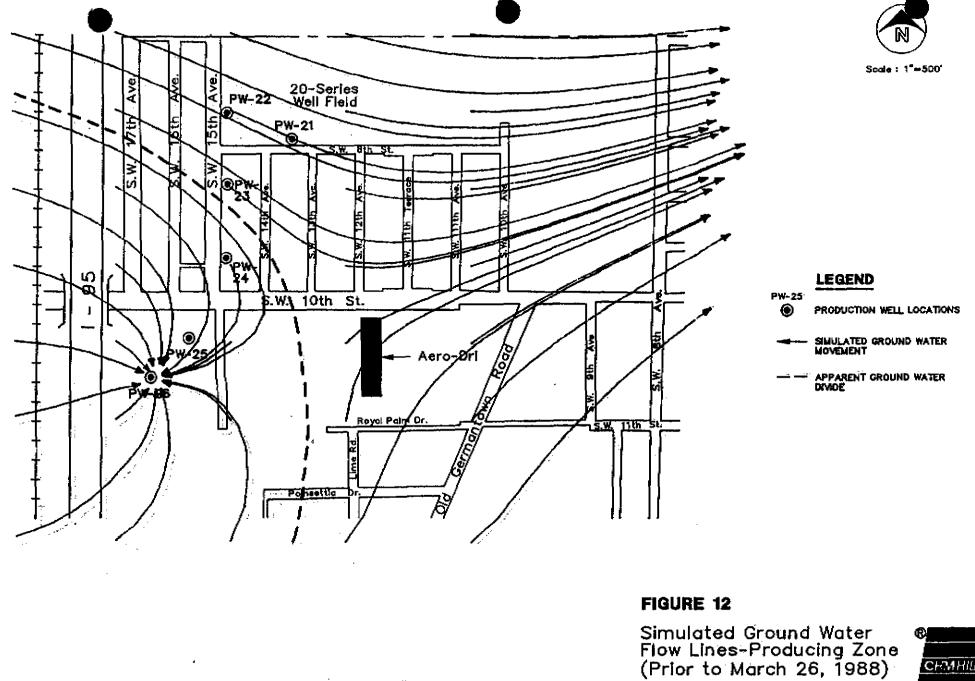


FIGURE 9

Simulated Ground Water Level Contours-Shallow Zone (Prior to March 26, 1988)


\S1824408.A6\F-9.DWG

Simulated Ground Water Level Contours-Producing Zone (Prior to March 26, 1988)


3924708.A6\F-10.DWG

\SE24708.A6\F-11.DWG

Simulated Ground Water Flow Lines-Shallow Zone (Prior to March 26, 1988)

СЕМНШ

\SE24708.#6\F-12.DWG

÷.

Contaminant migration during Period 3 is toward the only operating well (PW-26). This result is the same for both the one- and two-layer models.

CONCLUSIONS

The purpose of this addendum to the <u>Groundwater Flow Modeling of</u> <u>the 20-Series Well Field</u> was to simulate the effects of a twolayer aquifer near the 20-Series Well Field. Simulation of the groundwater flow using a two-layer model was necessary because some evidence showed that two distinct layers existed in the area of the well field. This may have altered previous conclusions from the original report, which used a one-layer model to represent the aquifer. The results of the two-layer model were compared with the original one-layer model and any notable changes or similarities were made.

Conclusions from the two-layer model are:

- 1. Hydraulic heads (groundwater levels) in the shallow and producing zones are nearly identical. The implication of this result is that the layers, although distinct, appear to have good hydraulic communication and no significant confinement. Groundwater flow direction and contaminant flow direction, therefore, would be similar between the two layers.
- 2. The configuration of groundwater level contours is similar between the one- and two-layer models. The predicted direction of groundwater and contaminant flow, therefore, is nearly identical for the one- and two-layer models.
- 3. Results from the two-layer groundwater flow model did not alter conclusions from the original one-layer flow model presented in September 1988.
- 4. Because the conclusions were not altered as a result of the two-layer groundwater flow model, recommendations based on the one-layer model have not changed. The previous recommendations included pumping at least five 20-Series production wells to prevent migration to the City Golf Course Well Field. If less than five wells were operational, the flow should be reduced from the Golf Course Well Field.

REFERENCES

CH2M HILL. <u>Ground Water Flow Modeling of the 20-Series Well</u> Field. September 1988.

CH2M HILL. <u>Preliminary Contamination Assessment Report</u>. December 1988.

Dames & Moore. <u>Contamination Assessment Report. Delray Beach.</u> Florida. November 1988.

Water Resources Management Advisory Board. <u>Report of the</u> Wellfield Protection Ordinance Subcommittee. January 1987.

dbt012/028.50