CH3W HILL

March 16, 1**99**9

3011 S.W. Williston Road Gaineşvillə, FL 32608-3928 Mailing address P.Q. Box 147009 Gainesvillə, FL 32614-7009 Tel 352.335.7991 Fax 352.335.2959

Mr. Duane Watroba, UIC TAC Chairman Florida Department of Environmental Protection - Central District 3319 Maguire Boulevard Suite 232 Orlando, FL 32803-3767

Subject: Cocoa - Drilling and Testing Report for New ASR Wells

Dear Mr. Watroba:

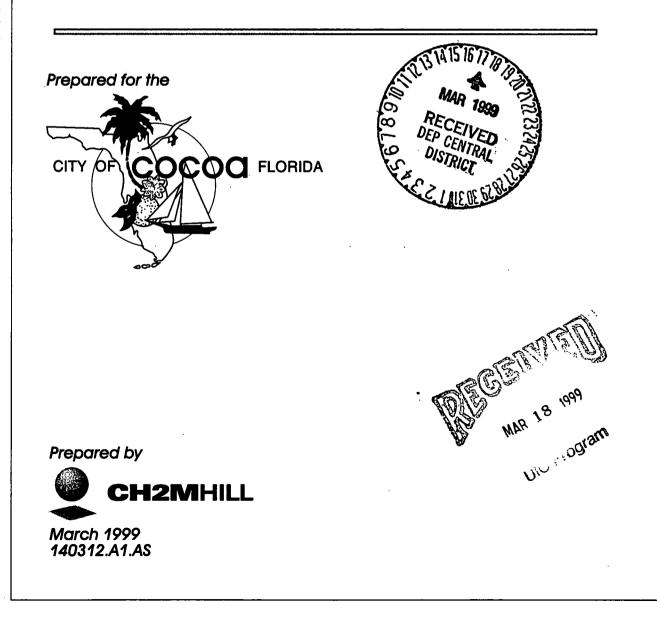
On behalf of the City of the Cocoa, we are submitting to the TAC four copies of our report entitled "Results of Aquifer Storage and Recovery Well Drilling and Testing – Wells R-7, R-8, R-9 and R-10." The report documents the construction and aquifer testing of four new ASR wells drilled under UIC permit no. UC48-294600.

As described in the report, we propose to do an initial performance acceptance test (PAT) of the four well system in June 1999, as part of the start up of the entire Dyal plant expansion project. A more extensive "Cycle Test" or "Operational Test" is proposed for October 1999.

The initial performance acceptance test, and the cycle testing to be conducted in October, will serve as the "step injection tests" described in the UIC permit. A cycle testing plan will be submitted to FDEP after completion of the PAT. Written notice will be provided to FDEP for both tests.

Please contact me if you have any questions or concerns regarding this report.

Sincerely,


CH2M HILL @ for Spint

For. D. Edward Davis, P.E. Project Manager

GNVDocument3 c: Ed Wegerif/Cocoa Carl Larrabee/Cocoa Mike Dykes/CH2M HILL Ross Sproul/CH2M HILL

Results of Aquifer Storage and Recovery Well Drilling and Testing

Wells R-7, R-8, R-9, and R-10

Contents

1.	Introdu	1-1
		cope1-1
		roject Background1-1
	1.3 L	ocation and Site Description1-1
		ocal Geology1-3
2.		acility Expansion Construction2-1
		ummary of Construction Program2-1
		ummary of Construction Methods2-1
		onstruction of Well R-72-2
		onstruction of Well R-82-2
		onstruction of Well R-92-4
	2.6 C	onstruction of Well R-102-4
3.		erformance Testing
		Pescription of Testing
		tep Pumping Tests
	3.3 C	onstant Rate Pumping Tests3-3
	3.4 G	eophysical Logging
	3.5 W	Vater Quality Testing
4.		ary and Discussion of Results4-1
		lydraulic Response of the Aquifer4-1
	4.2 W	Vater Quality Observations4-2
	4.3 A	ssessment of ASR Potential4-2
_		· · ·
5.	Recom	mendations
<i>.</i>	X AT 3	
6.	Works	Cited6-1
Exhib	its	
	~	
1-1		ASR System
2-1	-	etion Details for Well R-7
2-2	-	etion Details for Well R-8
2-3	-	etion Details for Well R-9
2-4	-	etion Details for Well R-10
3-1		ary of Six-Hour Step Test Results
3-2		ary of Calculated Aquifer Properties
3-3		owns Observed During the R-7 Constant Rate Test
3-4		owns Observed During the R-8 Constant Rate Test
3-5	Drawd	owns Observed During the R-9 Constant Rate Test

111

Exhibits, Continued

- 3-6 Drawdowns Observed During the R-10 Constant Rate Test
- 3-7 Summary of Geophysical Logs for Well R-7
- 3-8 Summary of Geophysical Logs for Well R-8
- 3-9 Summary of Geophysical Logs for Well R-9
- 3-10 Summary of Geophysical Logs for Well R-10
- 4-1 Target Recharge and Recovery Rates
- 4-2 Native Water Quality Summary

Appendixes

- A Water Quality Data
 - A-1 Water Quality Results During Drilling & Pumping Tests
 - A-2 FDEP Primary and Secondary Drinking Water Analyses
- B Well Construction and Testing Data
 - B-1 FDEP Classifications of Class V Well Construction Completion
 - B-2 Alignment and Pressure Testing Data
 - B-3 Step Test Results
 - B-4 Constant Rate Test Results
- C Geophysical Logs

Acronyms and Abbreviations

ASR	aquifer storage and recovery
AWWA	American Water Works Association
bls	below land surface
btoc	below top of casing
City	City of Cocoa
CUP	Consumptive Use Permit
DO	dissolved oxygen
FDEP	Florida Department of Environmental Protection
ft	feet
GST	ground storage tank
LSN	long-short normal
mgd	million gallons per day
mg/L	milligrams per liter
msl	mean sea level
NTU	nephelometric turbidity units
O&M	operations and maintenance
OD PVC	outside diameter polyvinyl chloride
PAT	performance acceptance test
ppm	parts per million
psi	pounds per square inch
PVC	polyvinyl chloride
SCADA	Supervisory Control and Data Acquisition
SJRWMD	St. Johns River Water Management District
WTP	water treatment plant

1. Introduction

1.1 Scope

This report documents the construction and testing of four new ASR wells at the City of Cocoa's Claude H. Dyal Water Treatment Plant (WTP). The new ASR wells, designated R-7, R-8, R-9, and R-10, were constructed under Florida Department of Environmental Protection Underground Injection Control (FDEP UIC) Permit No. UC48-294600.

1.2 Project Background

Aquifer storage and recovery (ASR) is a water management technology in which freshwater is stored in a local aquifer, and later recovered for use. Typically, storage and recovery cycles are seasonal. Water is injected into the aquifer, via the ASR wells, whenever water availability exceeds water demand. The water is recovered, via the same wells, during periods of peak demand.

The first phase of ASR development for the City of Cocoa (the City) consisted of one ASR well (R-1) at the Claude H. Dyal Water Treatment Plant (WTP) site, with a recovery capacity of approximately 1.5 million gallons per day (mgd). In 1988, FDEP permitted this well for operational use.

In 1990, the ASR system was expanded to include five additional wells (R-2, R-3, R-4, R-5, and R-6). This six-well system was permitted in 1992 for a recovery capacity of approximately 8.0 mgd, and it continues to help the City meet peak demands.

In 1993, the City obtained Consumptive Use Permit (CUP) No. 2-097-0024ANG from the St. Johns River Water Management District (SJRWMD) to develop nearby Taylor Creek Reservoir for use as a water supply. The CUP also authorized construction of four additional ASR wells (R-7, R-8, R-9, and R-10) for use in conjunction with reservoir withdrawals..

1.3 Location and Site Description

The Dyal WTP is located on State Road 520 in Orange County, Florida. The six existing ASR wells are located on the Dyal plant site. Southwest of the plant site, the City acquired a 26acre ASR parcel to accommodate the four new ASR wells. The location of the Cocoa ASR system is shown in Exhibit 1-1.

The site is located on the coastal lowlands of Florida, within the St. Johns River Valley. Surrounding topography is mostly sandy prairie and wetland marsh. Vegetation is mostly grasses, saw palmetto, palm, oak, myrtle, and cypress. The former owner, Deseret Ranches of Florida, used the 26-acre parcel for grazing cattle.

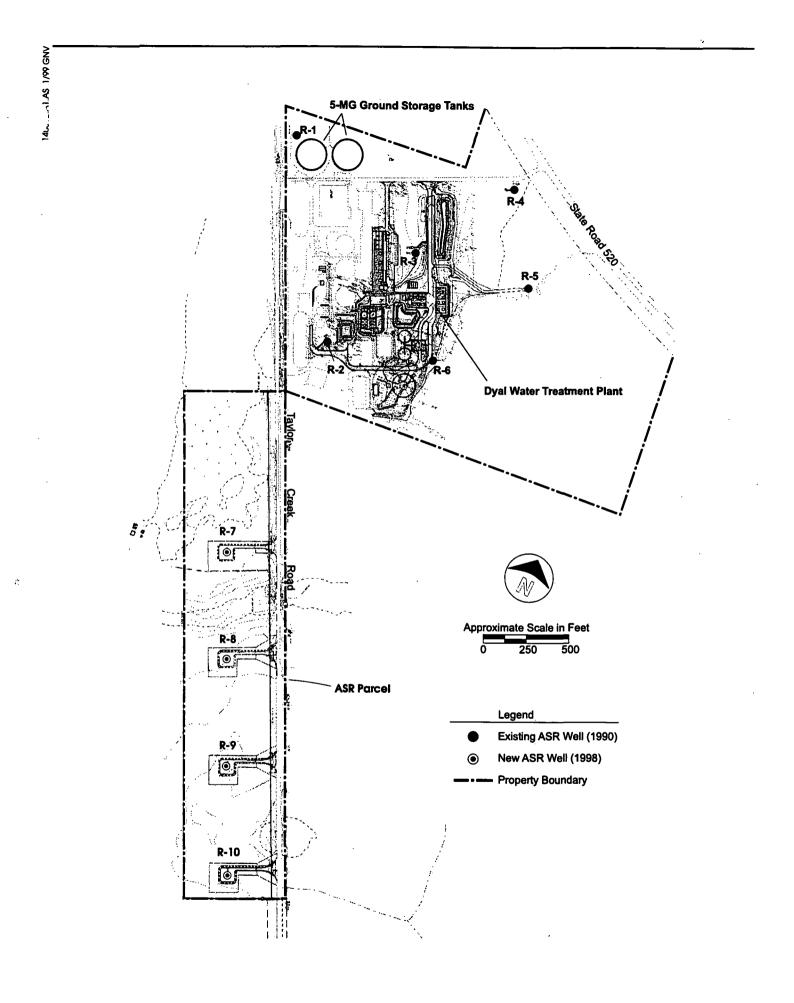


Exhibit 1-1. Cocoa ASR System.

CH2MHILL

1.4 Local Geology

The local geology beneath the Cocoa Dyal plant site was described in Aquifer Storage Recovery Feasibility Investigation – Final Report (CH2M HILL, 1988) and in Results of Aquifer Storage Recovery Well Drilling and Testing (CH2M HILL, 1990). This section briefly summarizes related information contained in these reports.

Site geology consists of Eocene-age carbonate rocks overlain by Miocene-age clay and marl, and Pleistocene to Recent unconsolidated sand and shell. The surficial sediments consist of interbedded sand, silt, shell, and clay, extending from land surface to approximately 120 feet below land surface (bls).

The Hawthorn group underlies the surficial surface, and consists of interbedded sand, clay, shell, marl, and limestone. It is characterized by abundant phosphate in both consolidated and unconsolidated deposits. It grades from dense gray-green clay to interbedded carbonates with sand and clay. It extends from approximately 120 feet bls to 250 feet bls. The Hawthorn group forms the upper confining bed of the ASR storage zone.

Below the Hawthorn group, the Ocala formation is characterized by chalky, fossiliferous limestones of the upper Eocene age. The upper part of this formation comprises the storage zone of the Cocoa ASR facility. The less pervious lower section, which was not penetrated during drilling, forms the lower confining unit for the ASR zone.

The interface between the Ocala formation and the Hawthorn group exists as an unconformity, with varying elevation across the site. The top of the Ocala formation ranges from approximately 240 to 280 feet bls, and extends to approximately 500 feet bls. Below this depth lies the porous Avon Park formation, which contains solution cavities. The Avon Park formation is the main water-producing zone in the City's raw water wellfield, located approximately 10 to 13 miles west of the Dyal WTP.

2.1 Summary of Construction Program

The four additional ASR wells were constructed as part of a major expansion of the City's Dyal WTP. The expansion includes an intake structure and raw water pump station at Taylor Creek Reservoir, a transmission pipeline, and a separate surface water treatment train on the grounds of the Dyal plant. The prime contractor for the plant expansion was the Poole and Kent Company of Miami, Florida. The subcontractor for the construction of the ASR wells was Meridith Environmental, Inc. of Orlando, Florida. On September 12, 1997, the City obtained from FDEP a UIC permit to construct the ASR wells and surface facilities. Construction activities began shortly thereafter, and all four wells were completed and tested by May 7, 1998.

2.2 Summary of Construction Methods

The mud rotary method was used to drill through the unconsolidated formations and into the upper portion of the Ocala formation. A temporary 36-inch pit casing was driven into place to seal off the first 40 feet at each borehole. Surface casing of 26-inch diameter steel with 0.312-inch wall thickness was then installed and grouted in approximately the first 120 feet of each well to stabilize the surficial formations.

After drilling had advanced to the top of the storage zone, the final casing string was installed and grouted. The final casing was approximately 300 feet of 17.4-inch outside diameter (OD) polyvinyl chloride (PVC) pipe with 1.024-inch wall thickness, manufactured by Certain-Teed Corporation. The pipe was joined with the Certa-Lok method using PVC couplings and graphite splines inserted into machined grooves in each casing joint.

Following the PVC casing's setting, cementing, and pressure testing, drilling resumed using the mud rotary method. This method continued only until enough water was produced from the borehole to sustain reverse-air drilling. The reverse-air circulation drilling method was typically started within 15 to 20 feet below the bottom of the PVC casing. During reverse-air drilling, water quality samples were obtained and then analyzed in the Cocoa WTP laboratory.

Following borehole completion, each well was acidized and then developed with air lifting. The wells were then temporarily capped until pump testing was conducted. The performance of each well was evaluated with a variable rate step test, followed by a constant rate pumping test. The pump testing is further discussed in Section 3.

Following the pumping tests, the final PVC wellheads were installed. The wellhead excavations were backfilled and compacted, and the wells were checked for plumbness and alignment in accordance with American Water Works Association (AWWA) A100. Each well was swabbed and disinfected with a chlorine solution in excess of 50 parts per million

(ppm) chlorine. The solution was allowed to remain in the well for a minimum of 12 hours before removal by pumping.

2.3 Construction of Well R-7

Construction of Well R-7 began on September 22, 1997, and was completed on November 14, 1997. Construction began with the installation of a temporary 36-inch pit casing to 38 feet. Drilling of a 97/8-inch pilot hole resumed to 122 ft bls. The pilot hole was then reamed to a diameter of 32 inches. After reaming, 120 feet of 26-inch surface casing was installed and grouted in place with 300 sacks of neat cement. The temporary pit casing was then removed. Pilot hole drilling resumed to a depth of 305 feet, and competent limestone was encountered at a depth of approximately 280 feet. The pilot hole was then reamed to a 25-inch diameter, and 300 feet of PVC casing was grouted in place. The grouting was completed in three stages of 126, 121, and 100 sacks of cement, respectively. The first stage was completed with neat cement, and the two remaining stages were completed with an 8 percent bentonite-cement blend.

After the cement plug was drilled out, the pilot hole drilling resumed at 310 feet. The pilot hole was advanced to 370 feet in soft to medium hard fossiliferous limestone and was then reamed to a 15-inch diameter. The well was developed by airlifting through the drill string. Well R-7 was then acidized with 3,000 gallons of 28 percent hydrochloric acid and redeveloped by airlifting and surging.

After pump testing and wellhead installation, the straightness and alignment test was conducted, which showed no significant deviations. Well R-7 was then disinfected and capped.

Exhibit 2-1 illustrates completion details for Well R-7.

2.4 Construction of Well R-8

Construction of Well R-8 began on November 17, 1997, and was completed on December 22, 1997. Construction began with the installation of a temporary 36-inch pit casing to 40 feet. Drilling of a 9 7/8-inch pilot hole resumed to 122 ft bls. The pilot hole was then reamed to a 32-inch diameter. After reaming, 120 feet of 26-inch surface casing was installed and grouted in place with 300 sacks of neat cement. The pilot hole was resumed to a depth of 305 feet and competent limestone was encountered at a depth of approximately 290 feet. The pilot hole was then reamed to a 25-inch diameter and 300 feet of PVC casing was grouted in place. The grouting was completed in three stages of 126, 91, and 60 sacks of cement, respectively. The first stage was completed with neat cement, and the two remaining stages were completed with an 8 percent bentonite-cement blend.

After the cement plug was drilled out, the pilot hole drilling resumed at 310 feet. At 317 feet, the well produced sufficient water to sustain reverse-air drilling. The pilot hole was advanced to 370 feet in tan to light gray, soft to medium hard fossiliferous limestone, and was then reamed to a 15-inch diameter. The well was developed by airlifting through the drill string. Well R-8 was then acidized with 3,000 gallons of 28 percent hydrochloric acid and redeveloped by airlifting and surging.

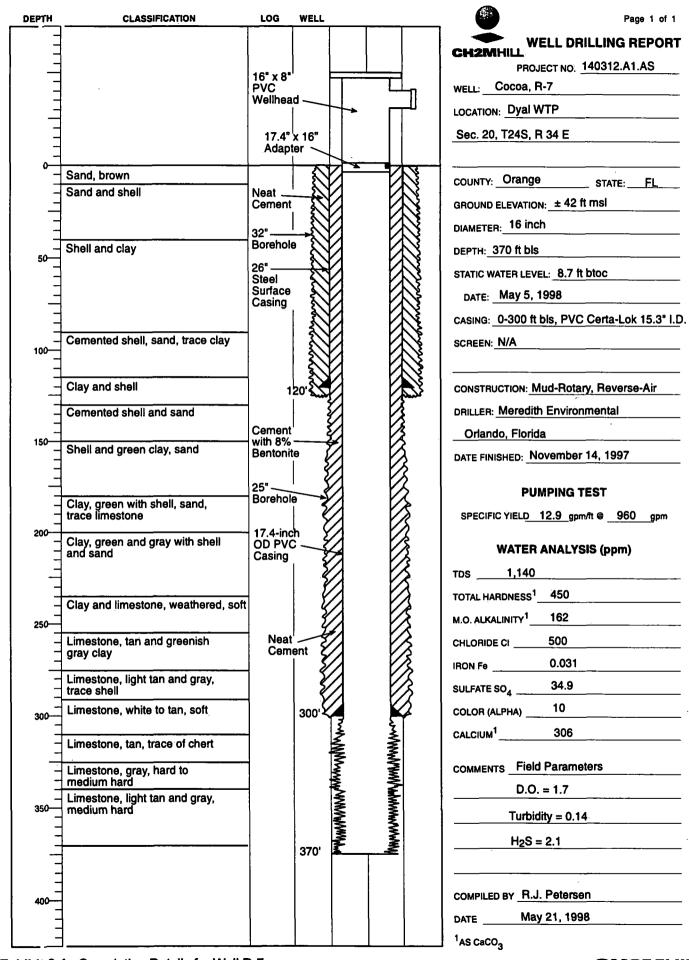


Exhibit 2-1. Completion Details for Well R-7.

CH2MHILL

After pump testing and wellhead installation, the straightness and alignment test was conducted, which showed no significant deviations. Well R-8 was then disinfected and capped.

Exhibit 2-2 illustrates completion details for Well R-8.

2.5 Construction of Well R-9

Construction of Well R-9 began on January 5, 1998, and was completed on February 29, 1998. Construction began with the installation of a temporary 36-inch pit casing to 40 feet. Drilling of a 97/8-inch pilot hole resumed to 122 ft bls. The pilot hole was then reamed to a 32-inch diameter. After reaming, 120 feet of 26-inch surface casing was installed and grouted in place with 300 sacks of neat cement. The pilot hole was resumed to a depth of 305 feet, and competent limestone was encountered at a depth of approximately 285 feet. The pilot hole was then reamed to a 25-inch diameter, and 300 feet of PVC casing was grouted in place. The grouting was completed in three stages of 126, 120, and 120 sacks of cement, respectively. The first stage was completed with neat cement, and the two remaining stages were completed with an 8 percent bentonite-cement blend.

After the cement plug was drilled out, the pilot hole drilling resumed at 310 feet. At 315 feet, the well produced sufficient water to sustain reverse-air drilling. The pilot hole was advanced to 370 feet in tan to light gray, soft to medium fossiliferous limestone and then reamed to a 15-inch diameter. The well was developed by airlifting through the drill string. Well R-9 was then acidized with 3,000 gallons of 28 percent hydrochloric acid and redeveloped by airlifting and surging.

After pump testing and wellhead installation, the straightness and alignment test was conducted and showed no significant deviations. Well R-9 was then disinfected and capped.

Exhibit 2-3 illustrates completion details for Well R-9.

2.6 Construction of Well R-10

Construction of Well R-10 began on March 20, 1998, and was completed on April 10, 1998. Construction began with the installation of a temporary 36-inch pit casing to 40 feet. Drilling of a 97/8-inch pilot hole to was resumed to 122 ft bls. The pilot hole was then reamed to a 32-inch diameter. After reaming, 120 feet of 26-inch surface casing was installed and grouted in place with 303 sacks of neat cement. The pilot hole was resumed to a depth of 305 feet, and competent limestone was encountered at a depth of approximately 290 feet. The pilot hole was then reamed to a 25-inch diameter and 300 feet of PVC casing was grouted in place. The grouting was completed in two stages of 100 and 175 sacks of cement, respectively. The first stage was completed with neat cement, and the final stage was completed with an 8 percent bentonite-cement blend.

After the cement plug was drilled out, the pilot hole drilling resumed at 310 feet. At 316 feet, the well produced sufficient water to sustain reverse-air drilling. The pilot hole was advanced to 370 feet in tan to light gray, soft to medium fossiliferous limestone and then reamed to a 15-inch diameter. The well was developed by airlifting through the drill string.

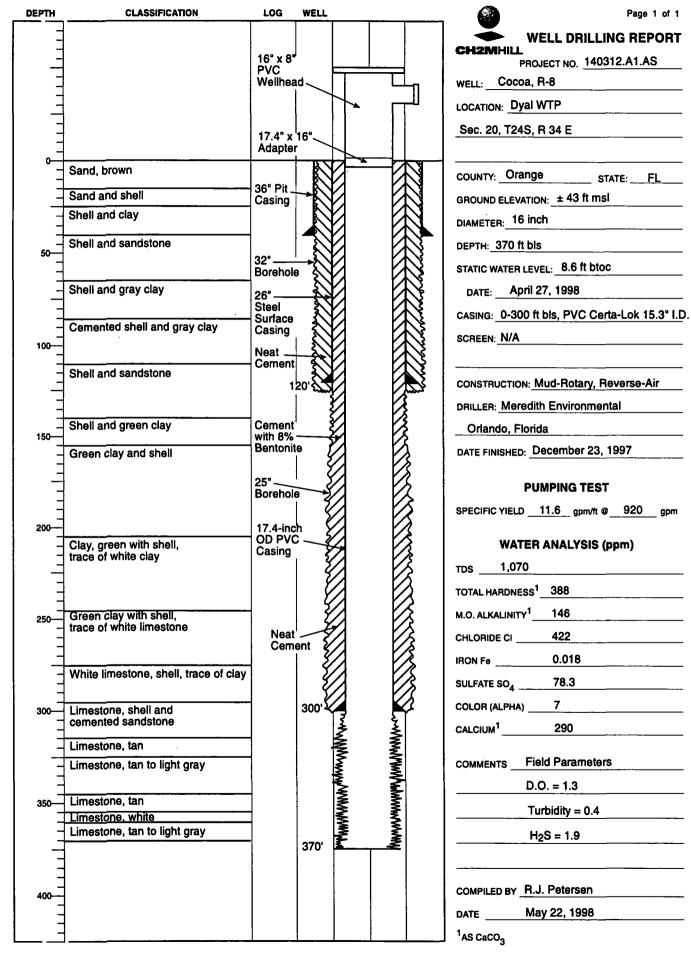


Exhibit 2-2. Completion Details for Well R-8.

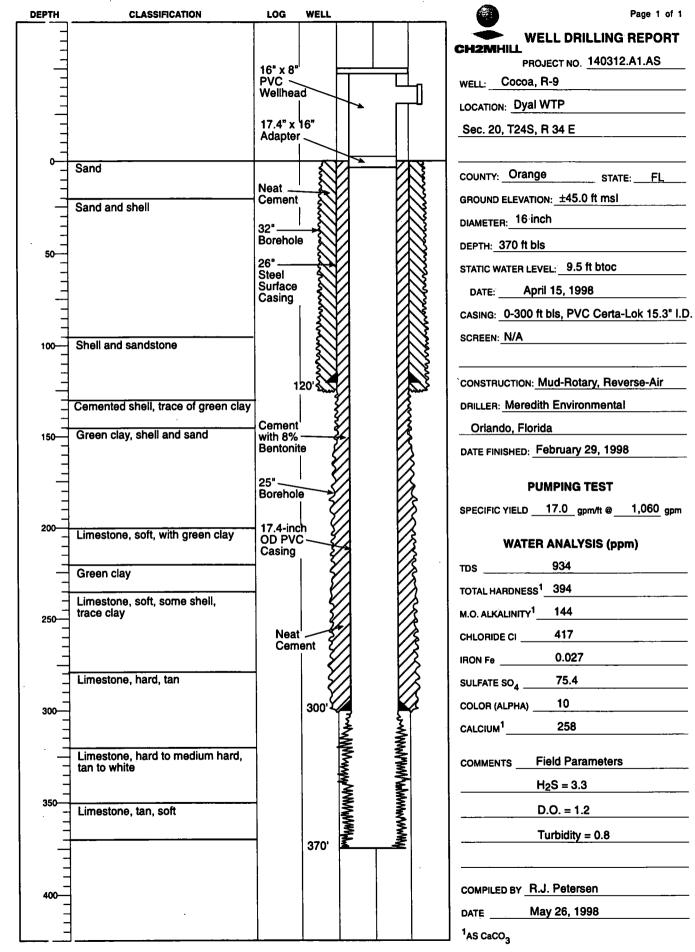


Exhibit 2-3. Completion Details for Well R-9.

CH2MHILL

Well R-10 was then acidized with 3,000 gallons of 28 percent hydrochloric acid and redeveloped by airlifting and surging.

After pump testing and wellhead installation, the straightness and alignment test was conducted, which showed no significant deviations. Well R-10 was then disinfected and capped.

Exhibit 2-4 illustrates completion details for Well R-10.

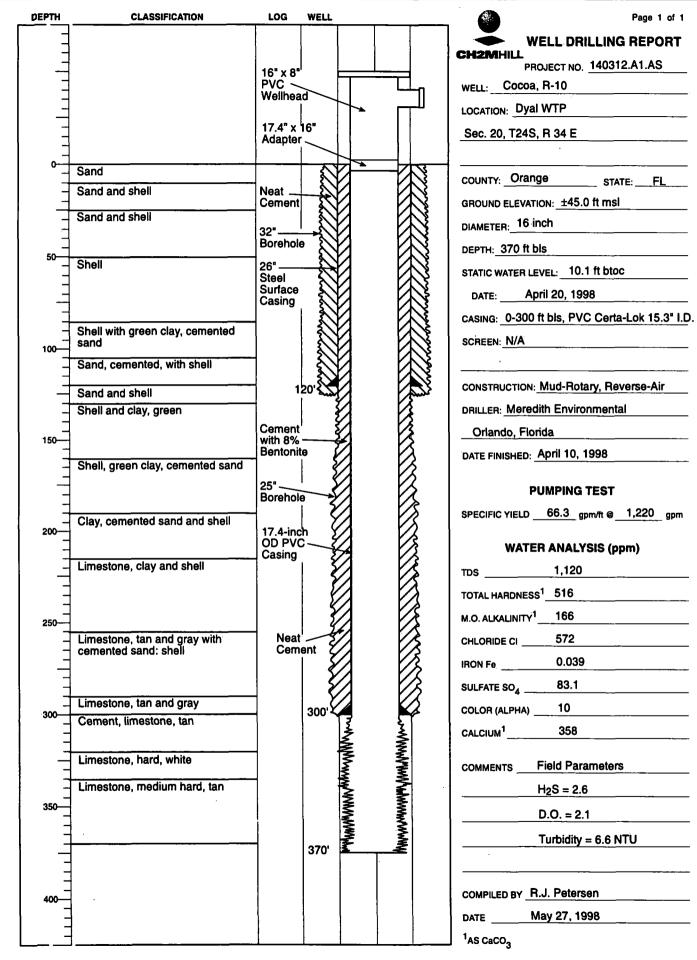


Exhibit 2-4. Completion Details for Well R-10.

3.1 Description of Testing

Well performance testing was conducted after all four wells had been acidized and developed. Each well was first tested with a variable rate pumping test, followed by a constant rate pumping test.

Step-injection tests will be conducted following installation of wellhead piping and instrumentation, now anticipated to be completed in early June, 1999. The step-injection tests will be conducted in conjunction with the system performance acceptance tests. Proposed procedures for conducting the system performance acceptance and step-injection tests are described in Section 5 of this report.

The variable rate pumping test (step pumping test) was conducted primarily to evaluate each well's drawdown characteristics. The information obtained from this type of test is used for proper sizing of each well's final pump. The constant rate testing was conducted to evaluate aquifer parameters and the hydraulic interference among the four new ASR wells. The City plans to operate these wells as a separate recharge and recovery system. For this reason, a limited amount of data was collected at the six ASR existing wells.

All testing was conducted with a contractor-supplied submersible pump that was powered by a portable generator. Flow rates were measured with a 6-inch propeller flowmeter. During each pumping test, electronic data loggers monitored water levels in the pumping well and in the other three new ASR wells. Water levels were also measured in selected existing ASR wells.

During each of the step tests and constant rate pumping tests, water samples were obtained for water quality analysis. The analyses included field parameters and FDEP primary and secondary drinking water scans.

3.2 Step Pumping Tests

The step pumping tests consisted of pumping each well in a series of three increasing pumping rates (steps) and measuring the resultant water level drawdown in the pumping well. Each step of the test lasted approximately two hours. Water levels in the other three new ASR wells were monitored during this time to obtain a preliminary understanding of the pumping well's effect on the local potentiometric surface. These measurements were primarily used to set up the data loggers for the constant rate tests, and are included in Appendix B.

Step test results of the four new ASR wells are presented in Exhibit 3-1. For each pumping step, drawdowns in the pumping well are reported.

Summary of Six-Hour Step Test Results

	AS	R Well R7 ^e	
_	Step Pumping Rate (gpm)	Drawdown ^b (feet)	Specific Capacity (gpm/ft)
_	330	22.4	14.7
	530	40.1	13.2
	960	73.9	13.0
Design Rate	700	53.0	13.2
	AS	R Well R8 ^c	
	Step Discharge Rate (gpm)	Drawdown (feet)	Specific Capacity (gpm/ft)
-	290	22.4	12.9
	570	45.9	12.4
	940	79.9	11.8
Design Rate	700	58.0	12.1
	AS	R Well R9 ^d	
	Step Discharge Rate (gpm)	Drawdown (feet)	Specific Capacity (gpm/ft)
-	300	14.0	21.4
	600	31.5	19.0
	1,070	58.0	18.4
Design Rate	700	34.0	20.6
	ASI	R Well R10°	
	Step Discharge Rate (gpm)	Drawdown (feet)	Specific Capacity (gpm/ft)
-	320	2.2	145.5
	590	5.9	100.0
	1,200	18.5	64.9
Design Rate	700	9.0	77.8

^bDrawdown at design rate is interpolated for each well; it does not include effects of interference.

^cApril 22, 1998; static water level was 8.33 ft below temporary MP.

^dApril 13, 1998; static water level was 9.50 ft below temporary MP.

^eApril 17, 1998; static water level was 8.75 ft below temporary MP.

MP measuring point

gallons per minute gpm

3.3 Constant Rate Pumping Tests

The constant rate pumping tests were performed to investigate the hydraulic properties of the aquifer in the vicinity of each new well. Testing involved pumping each well at a constant rate for approximately 24 hours. Test results were used to estimate the recharge and recovery rates for each well.

During each constant rate test, drawdowns were recorded for the pumping well, each new ASR well, and selected existing ASR wells. Drawdown data from the pumping well were analyzed using the Cooper and Jacob method (1946). Drawdown data from the other three new wells (used as observation wells) were analyzed using the Hantush and Jacob method (1955) for semi-confined aquifers. The results of these analyses are summarized in Exhibits 3-2 through 3-6.

The appearance of the pumping well's drawdown curves suggests that a recharge boundary was encountered soon after pumping started. This is evident by the pronounced decrease in the slope of the drawdown curves. This effect was observed in the drawdown curves of the observation wells, indicating that steady-state conditions were reached.

The aquifer's response to the pump tests indicates that an effective recharge source exists in the vicinity of the wells. The large variations in the calculated aquifer transmissivity may reflect the proximity of each well to the recharge source. The results indicate wells R-7 and R-8 have similar transmissivity values, but are much lower than wells R-9 and R-10. The calculated aquifer parameters are summarized in Exhibit 3-2. Drawdown data for each test is summarized in Exhibits 3-2 through 3-6.

3.4 Geophysical Logging

Geophysical logging provides information on the subsurface hydrogeology and documents borehole conditions before recharge and recovery operations are conducted. After acidization, geophysical logging was conducted on each ASR well before and during pumping tests. Gamma, long-short normal (LSN) electric, spontaneous potential, temperature, fluid resistivity, and caliper logs were conducted under static conditions. Temperature, fluid resistivity, and flowmeter logs were obtained under pumping conditions.

The logs indicate that most water production originates in the borehole section between the casing bottom (300 feet), approximately 330 ft bls. A summary of the logging conducted on each well is presented in Exhibits 3-7 through 3-10. Geophysical logs are presented in their entirety in Appendix C.

3.5 Water Quality Testing

Water quality samples were obtained from the four new wells during reverse-air drilling of the open hole sections. During drilling, the water samples were obtained from the drilling discharge at 10-feet-deep intervals. These samples were analyzed for standard parameters in the Cocoa Dyal WTP laboratory and are contained in Appendix A-1.

Summary of Calculated Aquifer Properties - Pump Tests of New ASR Wells

	ASR Well				
Parameter	R 7	R8	R9	R10	
Transmissivity Average gal/day/ft	19,750	26,250	70,000	175,333	
Storage Coeficient Average (Dimensionless)	0.0002	0.0001	0.0002	0.0005	
Leakance Average ft/day	0.0053	0.0053	0.0060	0.0138	

EXHIBIT 3-3

Summary of 24-Hour Constant Rate Pumping Test - ASR Well R7 (Pumping Rate 880 GPM)

Observation Point	Distance from Pumped Well (feet)	Drawdown at End of Test (feet)	Calculated Transmissivity (gal/day/ft)	Calculated Storage Coefficient	Calculated Leakance/Day
R-7	<u></u>	74.2	23,000	NC	NC
R-1	2,170	0.55	NC	NC	NC
R-2	1,210	1.03	NC	· NC	NC
R-3	1,830	0.73	NC	NC	NC
R-6	1,460	1.10	NC	NC	NC
R-8	555	5.76	31,000	0.0002	0.0034
R-9	1,110	2.09	86,000	0.0002	0.0023
[°] R-10	1,665	0.22	NC	NC	NC

NC not calculated

Water samples were also obtained during the step tests and the constant rate pumping tests. Samples were collected at selected intervals for field analysis including conductivity, chloride, pH, dissolved oxygen (DO), and turbidity. The results are also presented in Appendix A-1.

At the end of the constant rate tests, an additional sample was collected from each well to conduct an FDEP primary and secondary drinking water quality scan (excluding asbestos and primary pesticides). The results are summarized in Section 4, and copies of the complete analyses are presented in Appendix A-2.

Summary of 24-Hour Constant Rate Pumping Test - ASR Well R8 (Pumping Rate 920 GPM)

Observation Point	Distance from Pumped Well (feet)	Drawdown at End of Test (feet)	Calculated Transmissivity (gal/day/ft)	Calculated Storage Coefficient	Calculated Leakance/Day
R-8		79.50	24,000	NC	NC
R-1	2,730	0.13	NC	NC	NC
R-2	1,730	0.13	NC	NC	NC
R-3	2,320	0.14	NC	NC	NC
R-6	1,880	0.15	NC	NC	NC
R-7	555	6.37	31,000	0.0002	0.0033
R-9	555	7.57	39,000	0.0001	0.0015
R-10	1,110	0.79	180,000	0.0005	0.0095

EXHIBIT 3-5

Summary of 24-Hour Constant Rate Pumping Test - ASR Well R9 (Pumping Rate 1,060 GPM)

•

Observation Point	Distance from Pumped Well (feet)	Drawdown at End of Test (feet)	Calculated Transmissivity (gal/day/ft)	Calculated Storage Coefficient	Calculated Leakance/Day
R-9		61.9	27,000	NC	NC
R-1	3,280	0.13	NC	NC	NC
R-2	2,260	0.13	NC	NC	NC
R-3	2,820	0.14	NC	NC	NC
R-6	2,360	0.15	NC	NC	NC
R- 7	1,110	2.80	34,000	0.0002	0.0037
R-8	555	9.11	24,000	0.0001	0.0026
R-10	555	1.87	130,000	0.0004	0.014

Summary of 24-Hour Constant Rate Pumping Test - ASR Well R10 (Pumping Rate 1,220 GPM)

Observation Point	Distance from Pumped Well (feet)	Drawdown at End of Test (feet)	Calculated Transmissivity (gal/day/ft)	Calculated Storage Coefficient	Calculated Leakance/Day
R-10		18.3	181,000	NC	NĊ
R-1	NM	NM	NC	NC	NC
R-2	NM	NM	NC	NC	NC
R-3	NM	NM	NC	NC	NC
R-6	NM	NM	NC	NC	NC
R-7	1,665	0.49	25,000	0.0004	0.0110
R-8	1,110	1.4	22,000	0.0001	0.0094
R-9	555	2.33	124,000	0.0003	0.013

NM not measured

FRET	ר				RES (64N)	7	Stati
					о онм-м (
		CALIPER	_	am (NAT)	RES (16N)	TEMP	RES (FL)
;	0	INCH	400	API-GR 100	OHM-M	070 DEG F 80	0 OHM-M
							
	: .	:	5				
	:		N.				
			<u> </u>				• • • • • • • • •
•			2				
0	: .		₹				
			- S				
			1	- ::			
			- 5				
			- 3				
0.0							
							· · · · · · · · · · · · · · · · · · ·
	· · ·		·	£			
50	<u> </u>	· · · · ·	_			<u> </u>	
				<u></u>			
	<u> </u>						
			- 5	<u> </u>			
		•••		>			
00	<u> </u>			_≥			
	. :		<				
		<u> </u>	<u> </u>	<u> </u>			
			· · · :	2			
			· · · :				
50	<u>.</u> .:			×			
			1				
	: :		- F				
			A				
			_₹		li::::		
			F		· · · · · · · · · · · · · · · · · · ·	-	
00	: : :		3				
		5	- 5	12			
	· ·		- 2 7				
		2				-	<u>/</u>
		5					
350		$ \leq $	3				
		<u></u>					
		<u> </u>		<u> </u>	<u>here</u>		

Pumping

PRET	CALIPER	UFLOW	TEMP	RES (FL)
	0. INCH	100 CPS 500	70 DBG P 80	0 ohm-m 10
50				
100				
1				
150		<u> </u>		
		+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$		
200		<u>}</u>		
		<u> </u>		
250		<u> </u>		
		<u> </u>		
300				
	<u> </u>	5		<u> </u>
		2		
350				

CH2MHILL

	CALIPER	gam (nat)	0 OHM-M 60 RBS (16N)	TEMP	RES (FL)
· .	0 INCH 60			70 DBG P 80	
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
		<b>.</b>			
^	· · · · ·	~~~~			::::::::
0		2			
		e de la companya de la company			
00					
00					
		<u>کے _</u>			
				· · · · · · · · · · · · · · · · · · ·	
50					
	<u> </u>				
		Nww.			
00					
50		<u></u>			
		- W			
		3			
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
00	3				
	- 5		i i i i i i i i i i i i i i i i i i i		
	5	<u>}</u>			
		$\left \frac{2}{2} \right $			<u> </u>
	<u>├</u>				
50		1			
			<u></u>		

Exhibit 3-8 (1 of 2). Summary of Geophysical Logs for Well R-8.

CH2MHILL

140312 A1 AS 1/99 GNV

Pumping

FEET	CA	LIPER	UPLOW	TEMP	RES (FL)
	0 :	INCH 40	0 CPS 500	70 DEG 7 80	0 OHM-M 10
			· · · · · · · · · · · · · · · · · · ·		
	· ·		- · · · · · ·	· · ·	
	:				· ·
50			- 4		
50		:		· .	
					:
100					· · · · · · · · · · · · · · · · · · ·
	· · · ·				
				:	
			· · · ·	· · · · · · · · · · · · · · · · · · ·	·
	├───┼			······	
150					·
			<u></u>		
				· · · · ·	
		<u>_</u>		· · · · · · · · · · · · · · · · · · ·	
					· · · · · · · · · · · · · · · · · · ·
200		· · ·			
	:	•	<u> </u>		
	•		<u> </u>		
		•			
250			}		
			{		· · · · · · · · · · · · · · · · · · ·
			<u> </u>		· · · · · · · · · · · · · · · · · · ·
			}	· · · · · · · · · · · · · · · · · · ·	
			{		
300	<u></u>	<u>-</u>		· · · ·	<u> </u>
	·	Ę			}
				<u>├</u> ────	·····
	<u> </u>	<u></u>	<u>}</u>	<u>├}</u>	
				<u> </u>	
350	f	.			
1			<u> </u>		<u> </u>
		<u> </u>			

FEBT]				RES(64N)					Static		
		ALIPER		GAM (NAT)	0 OHM-M RES(16N)	60		TEMP	<u> </u>		RES (PL)	
	•	INCH	40			60		DEG F	800		OHM-M	
		· · · ·						· · · · ·	. : -			: :
		-	:	<u>S</u>		=		<u>}</u>		· · · ·		7: :
			-+	<u>}</u>		· :		+	<u>.</u>	: : : : .: :		
				3		•		+		· ·· ·	<u> </u>	
		 	·		· · · · · ·	<u> </u>	:			· · ·	· · ·	
0						÷ ·		<u> </u>	: :	<u>: : :</u>		<u>]:</u>
-		<u></u>		3		:						(.
		·····		<u>}</u>			· :			: : :	1.1.1	•
	1 :			Ž.						: ·		. :
				5		. :		1 1		: : .		• :
• •	: .	:		3			•	· · ·	· : [: : ·		;
.00		·		· · · · · · · · · · · · · · · · · · ·				1 : :			· · · · ·	:
				2				· · ·		: : :		. :
			··	~~~~		———————————————————————————————————————						
		·					· · ·		· ·	: : :	. : :	
		· · · · ·					· .		<u>· · ·</u> -	· : :		
50		<u> </u>	·	~~~~				·		<u> </u>	<u> </u>	:
	<u> </u>				· · · · · ·					: :		;
		: : :		<u> </u>			. <u>.</u>	<u> </u>	. :	<u>.</u>		: ;
		·										: :
			•			: :						• :
00		: .		~~~						:		
	:					: .			:	:		: :
					4			•		: :		: :
		-				:						
	:		• •							: :		: :
		· .	<u> </u>	5-5-		: .				÷ :		:
50								· · · ·		: :		<u>· ·</u>
		<u> </u>		5						• •		:
				3		• •				<u>:</u> :	· · · ·	. :
						_ <u></u>		<u> </u>	$\frac{\cdot \cdot \cdot}{\cdot \cdot}$:
		· · · · ·	· .	<u> </u>		<u> </u>	:	· :		: '		: :
00		<u> </u>				: :		<u> </u>				: :
						<u> </u>		<u> </u>				
	: :					, . 		<u> </u>		::	· · · /	: :
		5		2						÷		
	:	2	• :		6	:	· ·	· :		: :		· :
		7 :	:				: .	: :				:
850		5	<u>.</u> ;	2	<u> </u>					:		÷ ;
		<u></u>	÷		+	<u> </u>	<u> ; ·</u> .−		.	· . :	<u> </u>	<u></u> . :
		<u> </u>	•	<u></u>	Find in				<u> </u>			

Pumping

FEET	CALIPER	UPLON	TEMP	res (FL)
	0 INCH	400 CPS 500	70 DBG P 80	0 OHM-M 10
50				
1 0 0				
100				
150				· · · · · · · · · · · · · · · · · · ·
T 7 0		<u> </u>		
1				
200				
				с.
250				
300				
	5			
		ζ: : : : :		
	<u>}</u>			
		1		
350				
1				<u>t</u>

Exhibit 3-9 (2 of 2). Summary of Geophysical Logs for Well R-9.

CH2MHILL

FBET]			RES (64N)		Static
	CALIPER		GAM (NAT)	0 <u>OHM-M</u> 60 RES (16N)	TEMP	RES (FL)
-	0 INCH	400	API-GR 100			
0						
		1				
		3	. : :			
		ÌÈ	·			
- 0		E				
50	: • : : : : : : : : : : : : : : : : : :	Ę				
		1				
		. }				
		: :				
100		Š	: : :			
100						
			: :			
			\sim			
L50		. : .				
1.50			<u> </u>		:::	
			2			
			2			
200		· · ·	2			
200		;				
			· · · · · · · · · · · · · · · · · · ·			
		· · ·				
					<u> </u>	
250			· · · · ·			
			<u> </u>			
			· · · · · ·			
			<u>: : : : : :</u>			
			<u> </u>			
300			· · · · · · · ·			
	5	╧┤┋				
	<u> </u>	<u> </u>	>			
	F	<u> </u>				
		45				
350		· : ₹		<u>}</u>		
	├	44				
		: حسل :	:.: : .	<u> </u>		

Static

Pumping

PEBT	CALIPER		TEMP	RBS (FL)
	0 INCH 40		70 DBG F 80	0 OHM-M 10
50				
50				
1				
		<u> </u>		
		No		•
100		Flowmeter		
		Log Obtained		
		<u>Obtained</u>		
150				
200				
		· · · · · · · · · · · · · · · · · · ·		: : : : · · · ·
250				
250				
300				
500				
	5			
250				
3.50				
		•		

4. Summary and Discussion of Results

Four ASR wells were drilled and tested at the City of Cocoa Dyal WTP as part of its existing ASR facility expansion. Each well is complete with a final casing string of nominal 16-inchdiameter PVC casing set into the top of the Floridan aquifer. Each well is of open hole construction. The construction described in this report includes only the wells and the uppermost portion of the wellheads.

Pumping tests were conducted on each well, and aquifer parameters were calculated. In addition, water samples were obtained from each well location to determine water quality. Results from this project phase, and the step-injection tests to be conducted in June, 1999, will be used to obtain FDEP authorization for operational testing. The initial operational ASR cycle test is expected to begin in October, 1999.

4.1 Hydraulic Response of the Aquifer

The results of the testing indicate that the selected storage zone is semiconfined. Wells R-7, R-8, and R-9 generally exhibit transmissivities lower than the six existing ASR wells. The exception is Well R-10, where a higher transmissivity was observed. The minimal amount of drawdown observed in existing ASR wells R-1, R-2, R-3, and R-6 during constant rate testing indicates insignificant mutual interference between the two systems.

In the wells, pump test water level measurements were used to calculate drawdown and interference effects at design rates of recharge and recovery. These calculations were used to predict the recharge and recovery water levels in the new ASR wells, which are shown in Exhibit 4-1.

EXHIBIT 4-1

Target Recharge and Recovery Rates

Well	Estimated Recovery Rate (gpm)	Estimated Drawdown ^e (feet)	Estimated Recharge Rate ^b (gpm)	Estimated Wellhead Pressure (psi)
R-7	700	108	290	11
R-8	700	118	270	11
R-9	700	90	350	9
R-10	700	22	350	1
Total	2,800 (4.0 mgd)		1,260 (1.8 mgd)	

^aDrawdowns account for well interference; assume all wells pump at 700 gpm for 90 days.

^bActual recharge and recovery rates will vary as a result of hydraulic variations in the system.

4.2 Water Quality Observations

Native water quality in the ASR storage zone was observed to be fairly consistent at the four new well sites. Well R-10 exhibited the highest concentrations of dissolved constituents, with a chloride concentration of 572 milligrams per liter (mg/L) and a total dissolved solids concentration of 1,120 mg/L. The remaining wells exhibited water quality similar to existing ASR wells R-2 and R-3. Exhibit 4-2 presents a summary of each well's observed native water quality.

Water samples taken during the pumping tests indicate that water quality improved early in the pumping tests, reaching equilibrium before completion of pumping. This response is considered a result of a minimal acidization residual in the wells at the start of pumping tests. By test end, all acidization byproducts were purged from the wells.

The water produced from well R-10 exhibited elevated levels of turbidity during the step tests and the constant rate tests. At the end of the 24-hour test, the turbidity level measured 6.6 NTU, which exceeds the drinking water standard of 1.0 NTU. It is expected that turbidity levels in this well will reduce to acceptable standards with extended pumping.

4.3 Assessment of ASR Potential

Testing results indicate that the newly constructed wells are generally compatible with the ASR concept. The storage zone exhibits a satisfactory degree of confinement, and the overall aquifer response indicates a range of transmissivities acceptable for the intended recharge and recovery flows. The background water quality has apparently reached equilibrium at the pumping test rates, which further indicates adequate confinement of the storage zone.

The water quality and aquifer hydraulics near wells R-7, R-8, and R-9 appear similar to existing ASR wells R-3 and R-6. For this reason, potable water storage and recovery in these new wells is expected to be similar to wells R-3 and R-6. The water quality and aquifer hydraulics near well R-10 appear similar to existing well R-2. For this reason, the performance of well R-10 is expected to be similar to the performance of well R-2. Well R-10's relatively high specific capacity may require throttling of recharge and recovery flows.

EXHIBIT 4-2

Summary of Water Quality Testing of New ASR Wells

14	ASR Well					
Parameter	R-7	R-8	R-9	R-10		
pH $\hat{\gamma}$	7.33	7.97	7.65	7.09		
Total Alkalinity (as CaCo3)	162	146	144	166		
Total Hardness (as CaCo3)	450	388	394	516		
Non-Carbonate Hardness (as CaCo3)	288	242	250	350		
Turbidity (NTU)	0.14	0.4	0.8	6.6		
Chloride (mg/L)	500	422	417	572		
Sulfate (mg/L)	34.9	78.3	75.4	83.1		
Calcium (mg/L)	306	290	258	358		
Magnesium (mg/L)	144	98	136	158		
Sodium (mg/L)	240	225	232	292		
Total Dissolved Solids (mg/L)	1,140	1,070	934	1,120		
Iron (mg/L)	0.031	0.018	0.027	0.039		
Color (mg/Ĺ)	10	7	10	10		
Fluoride (mg/L)	0.6	1.0	1.1	0.9		
Conductivity (µmho/cm)	1,838	1,625	1,779	2,240		
Field Hydrogen Sulfide (mg/L)	2.1	1.9	3.3	2.6		
Field Dissolved Oxygen (mg/L)	1.7	1.3	1.2	2.1		

CaCo3 calcium carbonate micromhos per centimeter milligrams per liter nephelometric turbidity unit µmho/cm

. mg/L

NŤU

5. Recommendations

As noted previously, the four new wells are part of the Dyal WTP expansion currently under construction. Following completion of piping, pump installation, wellhead facilities, and the plantwide SCADA (Supervisory Control and Data Acquisition) system, well R-10 should be pumped to waste for one to three days to reduce turbidity levels. During this time, water quality should be frequently monitored for turbidity.

As described in CH2M HILL's *Application to Construct Four Class V, Group 7 ASR Wells – City* of Cocoa Dyal WTP (September 1996), a common piping manifold connected to Dyal plant piping will connect the four wells. The new ASR wells will use low-pressure, gravity-fed recharge flows from the available head at the ground storage tanks (GST) located on the Dyal plant site's northern side. Upon completion of these facilities, an initial system performance acceptance test (PAT) and step-injection tests of the new wells will be conducted. The system performance acceptance and step-injection testing is designed to verify overall system operation and well performance; completion will require three to five days. The tests will represent initial operation and will be designed to verify the predicted behavior of the new systems.

During testing, recharge will occur for about four hours under gravity flow from the GSTs; recovery will begin immediately after recharge. All recovered flows will be diverted to the Dyal WTP's raw water intake. Following written approval from FDEP, an initial ASR cycle testing program will be conducted.

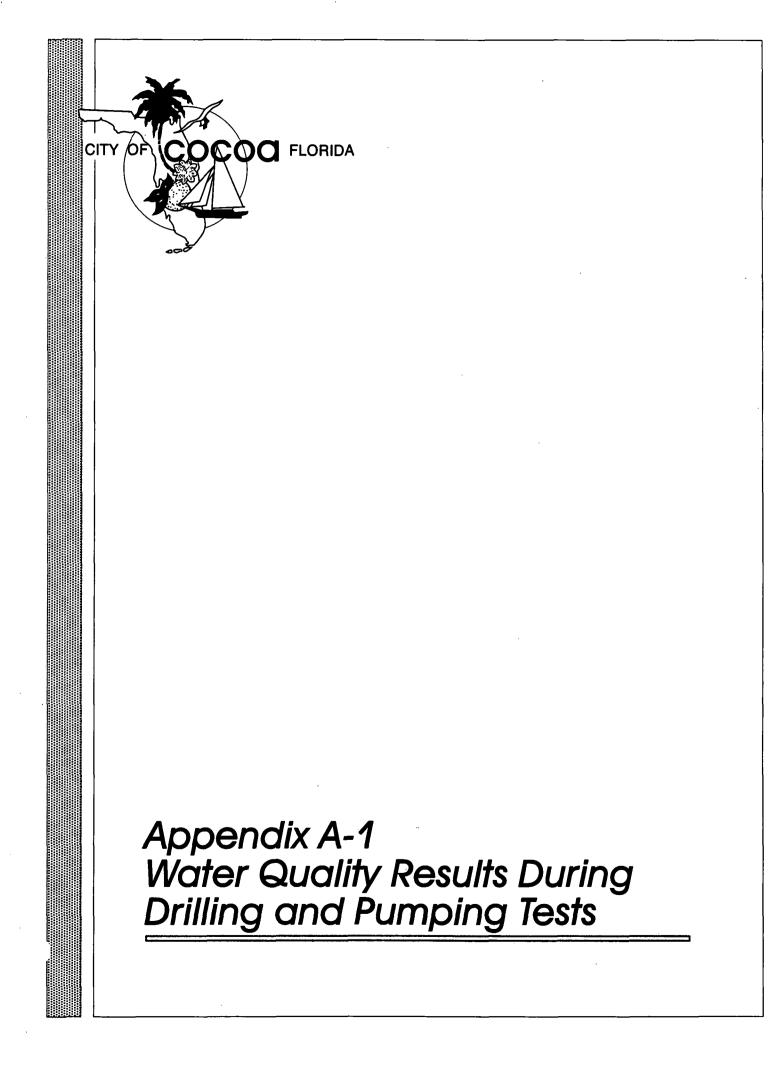
An initial target volume of potable water will be injected to establish a water quality buffer, followed by the first cycle storage volume. The injected water will be obtained from the onsite GSTs, and will be injected by gravity flow into the four new wells over a four- to five-week span. Following a few days of storage in the aquifer, the storage volume will be recovered to the Dyal WTP's raw water intake. Water quality will be monitored daily during the initial recovery cycle, until 100 percent recovery of the storage volume is reached. Estimates of buffer, storage, and recovery volumes will be developed following the completion of the PATs, and will be provided in the cycle test plan.

The test cycle will demonstrate each new ASR well's hydraulic and water quality response to recharge and recovery of potable water. During this time, adjustments may need to be made to the system hydraulics and control values within the piping system. The observed recovery water quality response for the wells will be used to finalize the operation plan for the ASR facility.

As per the UIC permit, an engineering report must be submitted to FDEP upon completion of testing. It must include a detailed analysis of all cycle testing, an operations and maintenance (O&M) section, with conclusions and recommendations and estimated ASR capacities for the wells.

Following FDEP acceptance of this report, it is anticipated that an "Authorization to Use Class V Well" will be issued to the City to allow routine operation of the new ASR wells as part of the public water supply system.

6. Works Cited


CH2M HILL. Application to Construct Four Class V, Group 7 ASR Wells – City of Cocoa Dyal WTP. September 1996.

CH2M HILL. Aquifer Storage Recovery Feasibility Investigation - Final Report. 1988.

CH2M HILL. Results of Aquifer Storage Recovery Well Drilling and Testing. 1990.

Cooper, H. H., Jr. and C.E. Jacob. A Generalized Graphical Method for Evaluating Fomation Constants and Summarizing Well Field History. *Transaction, American Geophysical Union*. Vol.27. No. 4. 1946.

Hantush, M. S. and C. E. Jacob. Non-Steady Radial Flow in an Infinite Leaky Aquifer. *Transaction, American Geophysical Union*. Vol. 35. No. 6. 1955.

R-7 D. , W.Q.

CITY OF COCOA ASR SYSTEM EXPANSION WATER QUALITY DURING DRILLING

ASR WELL R-7

.

Date	Depth	Chlorides	Conductivity	рН	Alkalinity	Total Hardness	Calcium Hardness	Sulfates
Nov-6,1997	317	444	1698	8.00	136	378	280	N/A
	327	464	1709	8.02	140	376	240	40.1
	337	460	1752	8.24	134	356	248	43.4
	347	464	1692	8.12	130	376	282	39.1
	357	464	1689	8.10	130	366	266	75.9
	370	464	1681	8.10	136	370	246	33.9

ť.

CITY OF COCOA ASR SYSTEM EXPANSION WATER QUALITY DURING DRILLING

ASR WELL R-8

.

..

Date	Depth	Chlorides	Conductivity	рН	Alkalinity	Total Hardness	Calcium Hardness	Sulfates
Dec. 12-1997	317	438	1417	9.35	48	276	220	53.2
	327	447	1553	7.84	120	360	234	44.8
	337	450	1566	7.76	130	376	238	135
	347	460	1428	7.73	138	374	206	50.5
	357	434	1407	7.75	124	352	220	46.2
	370	450	1407	8.16	138	360	238	43.1

CITY OF COCOA ASR SYSTEM EXPANSION WATER QUALITY DURING DRILLING

ASR WELL R-9

Date	Depth	Chlorides	Conductivity	рН	Alkalinity	Total Hardness	Calcium Hardness	Sulfates
2/18/98	317	442	1728	8.16	132	346	240	34.75
	327	445	1775	7.81	146	374	246	39.7
	337	432	1743	7.90	130	356	224	38.47
	347	427	1715	7.98	118	354	248	36.72
	357	432	1704	8.09	110	340	256	38.45
	370	436	1889	8.07	154	376	256	28.89

CITY OF COCOA ASR SYSTEM EXPANSION WATER QUALITY DURING DRILLING

ASR WELL R-10

.

_	Date	Depth	Chlorides	Conductivity	рН	Alkalinity	Total Hardness	Calcium Hardness	Sulfates
	4/6/98	317	530	1905	7.86	140	412	210	52.55
		327	532	1916	7.79	130	400	262	44.05
		337	530	1901	7.91	136	412	260	49.3
		347	560	1750	7.87	134	420	250	46.65
		357	540	1741	7.87	136	414	268	49.3
		370	508	1798	7.90	134	406	242	45.85

.

Well R-7

Step Test - May 5, 1998

Hours Pumping	Chlorides (mg/l)	Conductivity (umhos)	Turbidity (ntu)	<u>р</u> Н
2	780	2570	4.9	6.7
4	760	2440	8.7	6.7
6	592	2232	1.7	6.7

24 Hour Constant Rate Test - May 5-6, 1998

Hours Pumping	Chlorides (mg/l)	Conductivity (umhos)	Turbidity (ntu)	рН	D.O.
2	580	2262	3.3	6.7	
6	562	1916	0.88	6.8	
12	534	1826	6.5	7.0	
18	508	1782	8.9	7.1	
22	518	1756	1.65	7.1	
24	524	1838	0.14	7.2	1.7

Well R-8

}

Step Test - April 22, 1998

Hours Pumping	Chlorides (mg/l)	Conductivity (umhos)	Turbidity (ntu)	pH
2	616	2690	3.9	6.7
4	554	2360	2	6.8
6	532	2150	0.44	6.9

24 Hour Constant Rate Test - April 27-28, 1998

Hours Pumping	Chlorides (mg/l)	Conductivity (umhos)	Turbidity (ntu)	pН	D.O.
6	496	1828	0.34	7.2	
12	480	1767	0.72	7.2	
18	480	1729	5.47	7.3	
22	476	1700	0.18	7.4	
24	458	1625	0.4	7.5	1.3

.

Well R-9

Step Test - April 13, 1998

Hours Pumping	Chlorides (mg/l)	Conductivity (umhos)	Turbidity (ntu)
2	680	2900	3.4
4	662	2450	2.9
5	628	2200	1.6

24 Hour Constant Rate Test - April 14-15, 1998

Hours Pumping	Chlorides (mg/l)	Conductivity (umhos)	Turbidity (ntu)	рН	D.O.
6	492	2050	0.8	7.1	
12	476	1860	0.8	7.2	
18	460	1828	1.1		
22	462	1782	0.9		
24	462	1779	0.8	7.4	1.2

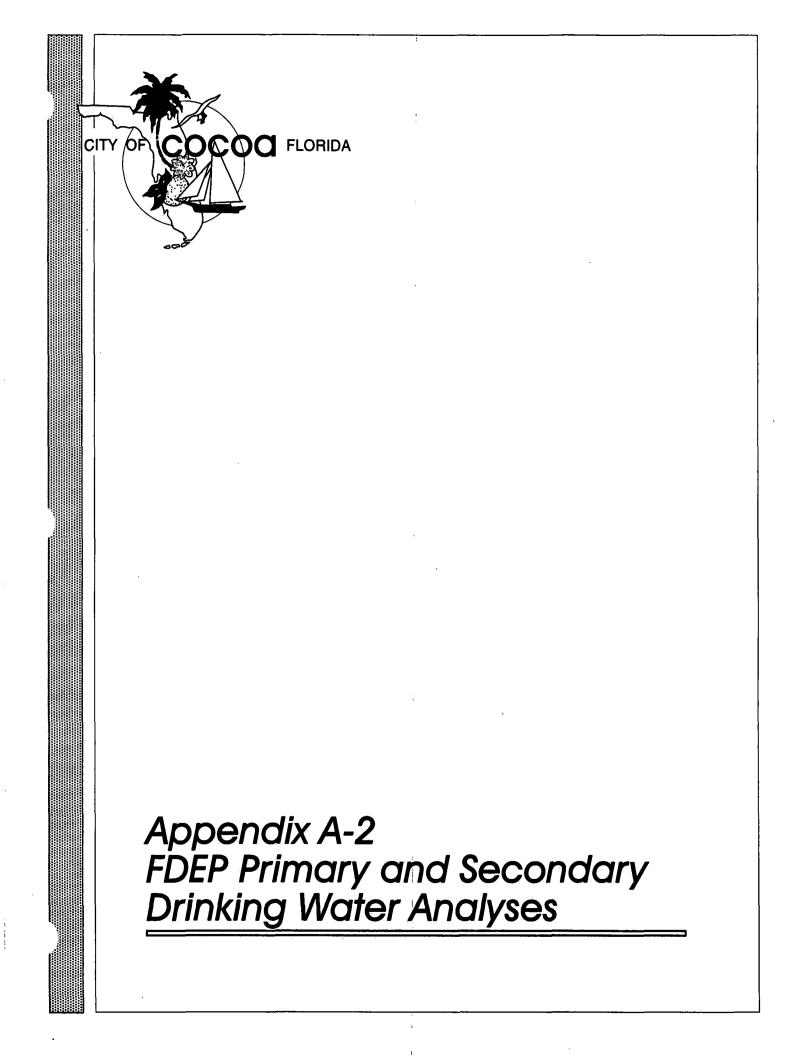
I

Well R-10

Step Test - April 17, 1998

Hours Pumping	Chlorides (mg/l)	Conductivity (umhos)	Turbidity (ntu)
2	836	3040	478
4	942	3190	39
6	850	3120	105

24 Hour Constant Rate Test - April 20-21, 1998


Hours Pumping	Chlorides (mg/l)	Conductivity (umhos)	Turbidity (ntu)	pН	D.O
8	630	2516	19	6.7	
12	624	2504	6.6	6.9	
16	597	2376	17.4	7.1	
20	578	NA	NA	7.1	
22	576	. NA	5.2	NA	X
23	586	2280	5.8	NA	
24	610	2240	6.6	7.1	2.1

İ

i i

.

I.

LAB FORMAT FOR REPORTING DRINKING WATER ANALYSES

PUBLIC	WATER SYST	EM INFORMATION	(to be complet	ed by system or	lab)				
System N	lame:	CITY OF COCA					I.D. #:	3050223	
A .		600 SCHOOL ST, CO	DCOA, FL 329	22			Phone #: 568	3-5867	
Туре	(check one)	(X) Community		() Nontransi	ent Noncomm	unity		() Noncommunity	
SAMPLI	E INFORMATI	ON (to be completed b	y sampler)						
Sample I	Date (MMDDYY):05/()7/98	<u> </u>	Sample 7	fime: 0845			
Sample L	ocation (be spec	ific):)	·	<u> </u>				
Sampler	Name and Phone	: <u>MA</u>	RY KRALJ	7/		<u> </u>		•	
Sampler	s Signature:		Mary C	Saf-			Title: La	aboratory Te	chnician
Check Ty	vpes(s)	() Distribution() Clearance() Distrib entry	pt	() Recheck (() Thm Max (X) Raw	of MCL Res Time	() Composi	() Plant Tap	of Lab Invalidated Sa Attach a format for each	-
LABOR	ATORY CERTI	FICATION INFORM	ATION (to be	completed by la	b) – attach H	RS Analyte S	Sheet *		
Lab Nam	e: BIONO	MICS LABORATORY	, 		н	I RS# : <u>83331</u>	Expi	ration Date: 06/30/9	<u> </u>
Address:	4310 E.	Anderson Rd., Orland	o, FL 32812		P	hone: 851-256	50		
Sv' '''	acted Lab HRS#	83141			-ATTACH HRS	S ANALYTE SI	HEET FOR SUBCO	NTRACTED LAB, TOO)*
ANau Y	SIS INFORMA	FION: (to be complete	d by lab)			Work C	Order Number:	B805110-01	
Date San	nple(s) Received:	05/07/98	G	roup(s) Analyzed	i & Results ati	tached for con	npliance with 62-5	50, F.A.C.:	
(_)	Nitrate Only		() Nitrite Oni	ly		() Asbesto	os Only	() Trihalon	lethanes
	Inorganics-		Volatile (Organics		Secondari	ies	Pestic	ide/PCBs
()	Áll 17 (X)	Partial	(X) All 21	() Partial		() All	(X) Partial	() All 30	(X) Partial
c	Group I Unregula	teds-	Group II Ur	regulateds	G	iroup III Unre	gulateds		chemicals-
()	All 13 () Partial	() All 23	() Partial		() All	() Partial	(X) Single Sa () Qtrly Co	
					**Provide rad	iochemical sa	mple dates & loca	tions for each quarter	-
	I,	MARK RUSLER	\cap	do HEE	FRY CEPTH	TV that all atta	ached analytical da	to are correct	
		MARK RUSLER	Kil	, do mer				na are correct.	
	Signature	10100	TWIN	<u>/</u>	···				
	Title:	CHEMIST			-	<u> </u>	I	Date: 6/1/98	
COMPL	LANCE INFOR	MATION (to be com	pleted by State))					
Sample (Collection Satisfa	ctory:	·		Sample A	nalysis Satisfa	actory:		
Resamol	e Requested For				Reason:				
P	otified to resamp	e:	-		Date Noti	ified:		<u></u>	
DEP/HR	S Reviewing Of	ficial:							

*All HRS lab #s and their HRS Analyte Sheet for labs performing the attached water analyses must be provided. Failure to do so will result in rejection of the analyses and possible enforcement against the public water system for failure to sample.

4310 E. A Orlando, F DHRS/DEP	MICS LABORA Inderson Rd. 2 32812 9 #83331; E83012 -2560 FAX:(407)	:	3	For Lab Use Only Date Received: 05/07/98 Time Received: 0955 Signature of Lab Official:					Ter.
				~		L			
BA	CTERIOLOGI		NALYSI	5					
System Name:	CITY OF COCOA	·			System ID #: 3050)223	System P	hone#: <u>(407)</u>	568-5867
Address:	600 SCHOOL ST	•			County:		DEP Dist	rict:	
Collector:	MARY KRALJ					<u> </u>	Collector P	hone#: <u>(407)</u>	568-5867
Sample Site (loc	ality or subdivision	ı): <u> </u>	R-7		•				
Date and Time (Collected:		05/7/98@	0845	5		_		
Type of Supply: Type of Sample: (circle one) Remarks:	Private we	Repeat	r system Swimming Replac (checl [] Th [] Th [] Th	pool cemei k box NTC c)	Other pu	ll Survey	ncommunity system Other: (spec	
di NJ.									
					1	TO BE COMPLE	TED BY LA	AB:	
BE COMPL	ETED BY COLLECT	TOR OF S	AMPLE	D	ate & time of analys		8 @ 1759 MTE	by:	
	ample Point	СІ		┢	Analysis Me	Non	MTF	MMO-MUC Confirm	Confirm
	cific Address)	Res	рН	┝	Sample Number:	Coliform	*Total	Total	Fecal
R-7		$\left \right $		В	805110-01		A		<u>.</u>
		$\left\{ \begin{array}{c} \\ \end{array} \right\}$		┝		┼───┼─			
	<u> </u>	╏───┤	———		<u> </u>	<u>├</u>			
	<u> </u>	┼──┤	———		<u> </u>	<u>├───</u>			 -
confirmation on al	column are preliminary Il types of water syst - Coliforms are prese	ems will fo	blow in 24-4	8 houi	o on community and no rs. nt growth			and total colifo of gas or acid	<u>. </u>
	- Coliforms are abser				numerous to count				
CITY 600 COC	ng Address of Pers 7 OF COCOA SCHOOL ST. COA, FL 32922 N: MARY KRALJ					[] [] Satisfact [] Incomple [] Repeat s	ete collectio	on information es	n
					Title	:			
								COC	UDITU.ALS

INORGANIC ANALYSIS 62-550-310(1)

1

(PWS030)

-

Γ		T	Sample	Analysis		Analysis	Analysis		Lab
D	Name	(MCL mg/L)	Number	Result(mg/L)	Q	Method	Date	MDL(mg/L)	D
1005	Arsenic	(0.05)	B805 110-01	< 0.0034	U	200.9	5/11/98	0.0034	83331
1010	Barium	(2)	B805110-01	0.05		200.7	5/11/98	0.002	83331
1015	Cadmium	(.005)	B805110-01	< 0.0001		200.9	5/11/98	0.0001	83331
1020	Chromium	(0.1)	B805110-01	< 0.0002	U	200.9	5/11/98	0.0002	83331
1024	Cyanide	(0.2)	B805110-01	< 0.006	U	SM4500CN E	5/11/98	0.006	83331
1025	Fluoride	(4)	B805110-01	0.606		SM 4500F C	5/7/98	0.027	83331
1030	Lead	(0.015)	B805110-01	< 0.001	U	200.9	5/11/98	0.001	83331
1035	Mercury	(0.002)	B805110-01	< 0.00005		245.1	5/12/98	0.00005	83331
1036	Nickel	(0.1)	B805110-01	< 0.012	U	200.7	5/12/98	0.012	83331
1040	Nitrate	(10)	B805110-01	< 0.006	U	300.0A	5/7/98	0.006	83331
1041	Nitrite	(1)	B805110-01	< 0.004	U	300.0A	5/7/98	0.004	83331
1045	Selenium	(0.05)	B805 110-01	< 0.002	U	200.9	5/11/98	0.002	83331
1052	Sodium	(160)	B805110-01	240		200.7	5/12/98	0.1	83331
1074	Antimony	(0.006)	B805110-01	0.002	I	200.9	5/12/98	0.0017	83331
1075	Beryllium	(0.004)	B805110-01	0.0013		200.7	5/11/98	0.0003	83331
1085	Thallium	(0.002)	B805110-01	< 0.0006	U	200.9	5/12/98	0.0006	83331
1094	Asbestos	(7 MFL)				NA			

SECONDARY CHEMICAL ANALYSIS

62-550.320

(PWS031)

			Sample	Analysis		Analysis	Analysis		Lab
D	Name	(MCL mg/L)	Number	Result(mg/L)	Q	Method	Date	MDL(mg/L)	ID
1002	Aluminum	(0.2)	B805110-01	< 0.036	ប	200.7	5/11/98	0.036	83331
1017	Chloride	(250)	B805110-01	500		300.0A	5/7/98	0.074	83331
1022	Copper	(1)	B805110-01	< 0.004	U	200.7	5/12/98	0.004	83331
1025	Fluoride	(2.0)	B805110-01	0.606		SM 4500F C	5/7/98	0.027	83331
1028	Iron	(0.3)	B805110-01	0.031		200.7	5/12/98	0.006	83331
1032	Manganese	(0.05)	B805110-01	< 0.002	U	200.7	5/12/98	0.002	83331
1050	Silver	(0.1)	B805110-01	< 0.009	U	200.7	5/11/98	0.009	83331
1055	Sulfate	(250)	B805110-01	34.9		300.0A	5/7/98	0.03	83331
1095	Zinc	(5)	B805110-01	0.006	I	200.7	5/12/98	0.006	83331
1905	Color	(15color units)	B805110-01	10		SM2120B	5/7/98	· 5	83331
1920	Odor	(3 T.O.N.)	B805110-01	> 32		SM2150B	5/7/98	1	83331
1925	рН	(6.5-8.5)	B805110-01	7.33		150.1	5/7/98		83331
19*	Total Dissolved Solids	(500)	B805110-01	1140		SM2540C	5/12/98	4.41	83331
2:	Foaming Agents	(0.5)	B805110-01	< 0.02	U	SM5540C	5/9/98	0.02	83331

י ן

TRIHALOMETHANE ANALYSIS

62-550-310(a)

(PWS027)

		Sample	CL	Analysis	Analysis	Analysis		Lab
n.	Name	Number	Resid	Result(mg/L) Q	Method	Date	MDL(mg/L)	ID
2950	Total THMs				524.2		0.0011	

RADIOCHEMICAL ANALYSIS*

62-550.310(5)

(PWS033)

D	Name	Sample Number	Analysis Result(pCi/l)	Analysis Method	Analysis Date	Error	Lab ID
4000	Gross Alpha	B805110-01	4.4	900.0	5/14/98	±2.7	83141
4012	Photon Emitters						
4020	Radium-226	B805110-01	1.1	903.1	5/18/98	±0.2	83141
4030	Radium-228	B805110-01	< 0.9	RA-5	5/18/98	±0.6	83141
4101	Man-made beta						

*(Gross alpha generally only requirement, see 62-550.519,(FAC)

VOLATILE ORGANIC ANALYSIS

62-550.310(2)(b)

(PWS028)

			Sample	Analysis		Analysis	Analysis		`Lab
r	Name	(MCL ug/L)	Number	Result(µg/L)	Q	Method	Date	MDL(µg/L)	D
2370	1,2,4-Trichlorobenzene	(70)	B805110-01	< 0.22	υ	524.2	5/7/98	0.22	83331
2380	Cis-1,2-dichlorethylene	(70)	B805110-01	< 0.03	υ	524.2	5/7/98	0.03	83331
2955	Xylenes (total)	(10000)	B805110-01	< 0.24	U	524.2	5/7/98	0.24	83331
2964	Dichloromethane	(5)	B805110-01	< 0.31	U	524.2	5/7/98	0.31	83331
2968	O-dichlorobenzene	(600)	B805110-01	< 0.05	U	524.2	5/7/98	0.05	83331
2969	Para-dichlorobenzene	(75)	B805110-01	< 0.02	U	524.2	5/7/98	0.02	83331
2976	Vinyl Chloride	(1)	B805110-01	< 0.29	U	524.2	5/7/98	0.29	83331
2977	1,1-dichloroethylene	(7)	B805110-01	< 0.02	U	524.2	5/7/98	0.02	83331
2979	Trans-1,2-dichloroethylene	(100)	B805110-01	< 0.12	U	524.2	5/7/98	0.12	83331
2980	1,2-dichloroethane	(3)	B805110-01	< 0.02	U	524.2	5/7/98	0.02	83331
2981	1,1,1-trichloroethane	(200)	B805110-01	< 0.21	U	524.2	5/7/98	0.21	83331
2982	Carbon tetrachloride	(3)	B805110-01	< 0.29	U	524.2	5/7/98	0.29	83331
2983	1,2-dichloropropane	(5)	B805 110-01	< 0.33	U	524.2	5/7/98	0.33	83331
2984	Trichloroethylene	(3)	B805110-01	< 0.02	U	524.2	5/7/98	0.02	83331
2985	1,1,2-trichloroethane	(5)	B805 110-01	< 0.23	U	524.2	5/7/98	0.23	83331
2987	Tetrachloroethylene	(3)	B805110-01	< 0.21	U	524.2	5/7/98	0.21	83331
2989	Monochlorobenzene	(100)	B805 110-01	< 0.23	U	524.2	5/7/98	0.23	83331
2990	Benzene	(1)	B805110-01	< 0.05	U	524.2	5/7/98	0.05	83331
2991	Toluene	(1000)	B805110-01	< 0.41	U	524.2	5/7/98	0.41	83331
:	Ethylbenzene	(700)	B805 110-01	< 0.47	U	524.2	5/7/98	0.47	83331
2990	Styrene	(100)	B805110-01	< 0.2	U	524.2	5/7/98	0.2	83331

PESTICIDE/PCB CHEMICAL ANALYSIS

62-550-310(2)(c)

(PWS029)

			Sample	Analysis		Analysis	Analysis		Lab
ľ	Name	(MCL ug/L)	Number	Result(µg/L)	Q	Method	Date	MDL(µg/L)	D
2005	Endrin	(2)				508		0.002	
2010	Lindane	(.2)				508		0.002	
2015	Methoxychlor	(40)				508		0.052	
2020	Toxaphene	(3)				508		0.309	
2031	Dalapon	(200)				515.1		0.036	
2032	Diquat	(20)				549.1		0.26	
2033	Endothall	(100)				548.1		15.4	
2034	Glyphosate	(700)				547		9.44	
2035	Di(2-ethylhexyl)adipate	(400)				525.2		0.71	
2036	Oxamyl (Vydate)	(200)		1		531.1		2.57	
2037	Simazine	(4)				507		0.078	
2039	Di(2-ethylhexyl)phthalate	(6)				525.2		1.15	
2040	Picloram	(500)				515.1		0.029	
2041	Dinoseb	(7)				515.1		0.055	
2042	Hexachlorocyclopentadiene	(50)				525.2		0.292	
2046	Carbofuran	(40)				531.1		7.04	
2050	Atrazine	(3)				507		0.035	
2051	Alachlor	(2)				507		0.012	
2063	2,3,7,8-TCDD(Dioxin)	(.00003)							
2065	Heptachlor	(.4)				508		0.004	
2067	Heptachlor Epoxide	(.2)				508		0.002	
210-	2,4-D	(70)				515.1		0.026	
2	2,4,5-TP (Silvex)	(50)				515.1		0.017	
2274	Hexachlorobenzene	(1)				508		0.008	
2306	Benzo(a)pyrene	(.2)				550.1		0.013	
2326	Pentachlorophenol	(1)				515.1 ·		0.007	
2383	РСВ	(.5)	B805110-01	< 0.1	U	508	5/27/98	0.1	83331
2931	Dibromochloropropane	(.2)				504.1		0.004	
2946	Ethylene Dibromide	(.02)	1			504. 1		0.006	
2959	Chlordane	(2)		l.		508		0.446	
		1		<u> </u>	_				

UNREGULATED GROUP I ANALYSIS

62-550.405

(PWS035)

		Sample	Analysis		Analysis	Analysis		Lab
D	Name	Number	Result(µg/L)	Q	Method	Date	MDL(µg/L)	ID
2021	Carbaryl	Ì			531.1		3.89	
2022.	Methomyl				531.1		3.20	
2043	Aldicarb Sulfoxide				531.1		1.88	
2044	Aldicarb Sulfone				531.1		5.57	
2045	Metolachior				507		0.108	
2047	Aldicarb				531.1		5.95	
2066	3-Hydroxycarbofuran				531.1		3.35	
20**	Butachlor				507		0.021	
2	Propachlor				508		0.110	
2350	Aldrin			l	508		0.003	
2364	Dieldrin				508		0.002	
2440	Dicamba				515.1	· ·	0.005	
2595	Metribuzin				507		0.024	

:

COCOSI 10.XLS

LAB FORMAT FOR REPORTING DRINKING WATER ANALYSES

•

PUBLIC WATER SYS	IEM INFORMATION (to be con	npleted by system or lai	b)		
Syst - Name:	CITY OF COCA			I.D. #:	3050223
Α	600 SCHOOL ST, COCOA, FL	32922		Phone #:	407-568-5867
Type (check one)	(X) Community	() Nontransien	t Noncommunity		() Noncommunity
SAMPLE INFORMATI	ION (to be completed by sample	;)			
Sample Date (MMDDY)	(): <u>04/28/98</u>		Sample Time: 1120		
Sample Location (be spec	cific):				
Sampler Name and Phon	e: <u>MARY KRAI</u>	J			
Sampler's Signature:	Nia	willel.		Title: <u>L</u>	<u>aboratory Technic</u> ian
Check Types(s)	() Distribution	() Recheck of	MCL	() Resample	of Lab Invalidated Sample
	() Clearance	() Thm Max R	les Time	() Plant Tap)
	() Distrib entry pt	(X) Raw	() Composi	te of Multiple Sites	-Attach a format for each site
LABORATORY CERT	IFICATION INFORMATION (o be completed by lab)	- attach HRS Analyte S	iheet *	
Lab Name: BIONO	MICS LABORATORY		HRS#: 83331	Exp	iration Date: 06/30/98
Address: 4310 E	Anderson Rd., Orlando, FL 328	12	Phone: 851-256	60	
St acted Lab HRS#	*: <u>83141</u>	A'	TTACH HRS ANALYTE SH		ONTRACTED LAB, TOO *
ANALYSIS INFORMA	TION: (to be completed by lab)		Work C	order Number:	B804622-01
Date Sample(s) Received	: 04/28/98	Group(s) Analyzed &	k Results attached for com	npliance with 62-	550, F.A.C.:
() Nitrate Only	() Nitrit	e Only	() Asbesto	os Only	() Trihalomethanes
Inorganics-	- Vola	uile Organics	Secondari	es	Pesticide/PCBs
() Ali 17 (X) Partial (X) All 2	1 () Partial	() All	(X) Partial	() All 30 (X) Parti
Group I Unregula	ateds Group	II Unregulateds	Group III Unreg	gulateds	Radiochemicals-
() All 13 () Partial () All 2	3 () Partial	() All	() Partial	(X) Single Sample
		**]	Provide radiochemical sar	nple dates & loca	() Qtrly Composite ** ations for each quarter
-				-	-
I,	MARK RUSLER		BY CERTIFY that all atta	iched analytical d	ana are correct.
Signature	Tar pu				
Title:	CHEMIST				Date:5/18/98
COMPLIANCE INFO	RMATION (to be completed by S	State)			
Sample Collection Satisf	actory:	·····	Sample Analysis Satisfa	ictory:	·
Remain the Requested For	:	<u> </u>	Reason:		
otified to resam	ple:		Date Notified:		
DEP/HRS Reviewing Of	ficial:				

*All HRS lab #s and their HRS Analyte Sheet for labs performing the attached water analyses must be provided. Failure to do so will result in rejection of the analyses and possible enforcement against the public water system for failure to sample.

INORGANIC ANALYSIS

62-550-310(1)

(PWS030)

Γ			Sample	Analysis		Analysis	Analysis		Lab
D	Name	(MCL mg/L)	Number	Result(mg/L)	Q	Method	Date	MDL(mg/L)	ID
1005	Arsenic	(0.05)	B804622-01	< 0.0034	U	200.9	5/5/98	0.0034	83331
1010	Barium	(2)	B804622-01	0.403		200.7	4/30/98	0.002	83331
1015	Cadmium	(.005)	B804622-01	< 0.0001		200.9	5/4/98	0.0001	83331
1020	Chromium	(0.1)	B804622-01	< 0,0002	U	200.9	5/4/98	0.0002	83331
1024	Cyanide	(0.2)	B804622-01	< 0.006	U	SM4500CN E	4/30/98	0.006	83331
1025	Fluoride	(4)	B804622-01	1		SM 4500F C	5/5/98	0.027	83331
1030	Lead	(0.015)	B804622-01	< 0.001	U	200.9	5/4/98	0.001	83331
1035	Mercury	(0.002)	B804622-01	< 0.00005		245.1	4/30/98	0.00005	83331
1036	Nickel	(0.1)	B804622-01	< 0.012	U	200.7	5/1/98	0.012	83331
1040	Nitrate	(10)	B804622-01	< 0.006	U	300.0A	4/29/98	0.006	83331
1041	Nitrite	(1)	B804622-01	< 0.004	U	300.0A	4/29/98	0.004	83331
1045	Selenium	(0.05)	B804622-01	0.003	I.	200,9	5/5/98	0.002	83331
1052	Sodium	(160)	B804622-01	225		200.7	5/1/98	0.1	83331
1074	Antimony	(0.006)	B804622-01	0.002	.1	200.9	5/5/98	0.0017	83331
1075	Beryllium	(0.004)	B804622-01	0.0012		200.7	5/4/98	0.0003	83331
1085	Thallium	(0.002)	B804622-01	< 0.0006	U	200.9	5/5/98	0.0006	83331
1094	Asbestos	(7 MFL)				NA			

SECONDARY CHEMICAL ANALYSIS

62-550.320 (PWS031)

			Sample	Analysis		Analysis	Analysis		Lab
Ð	Name	(MCL mg/L)	Number	Result(mg/L)	Q	Method	Date	MDL(mg/L)	D
1002	Aluminum	(0.2)	B804622-01	< 0.036	U	200.7	5/4/98	0.036	83331
1017	Chloride	(250)	B804622-01	422		300.0A	4/29/98	0.074	83331
1022	Copper	(1)	B804622-01	< 0.004	U	200.7	5/1/98	0.004	83331
1025	Fluoride	(2.0)	B804622-01	1		SM 4500F C	5/5/98	0.027	83331
1028	Iron	(0.3)	B804622-01	0.018	I	200.7	5/1/98	0.006	83331
1032	Manganese	(0.05)	B804622-01	< 0.002	U	200.7	5/1/98	0.002	83331
1050	Silver	(0.1)	B804622-01	0.04		200.7	4/30/98	0.009	83331
1055	Sulfate	(250)	B804622-01	78.3		300.0A	4/29/98	0.03	83331
1095	Zinc	(5)	B804622-01	< 0.006	U	200.7	5/1/98	0.006	83331
1905	Color	(15color units)	B804622-01	7		SM2120B	4/28/98	5	83331
1920	Odor	(3 T.O.N.)	B804622-01	> 32		SM2150B	4/28/98	1	83331
1925	рН	(6.5-8.5)	B804622-01	7.97		150.1	4/28/98		83331
1	Total Dissolved Solids	(500)	B804622-01	1070		SM2540C	5/1/98	4.41	83331
2.	Foaming Agents	(0.5) -	B804622-01	< 0.02	J3	SM5540C	4/30/98	0.02	83331
		I							

TRIHALOMETHANE ANALYSIS

62-550-310(a)

(PWS027)

		Sample	CL	Analysis	Analysis	Analysis		Lab
ĨĿ	Name	Number	Resid	Result(mg/L) Q	Method	Date	MDL(mg/L)	ID
2950	Total THMs				524.2		0.0011	

RADIOCHEMICAL ANALYSIS*

62-550.310(5)

(PWS033)

		Sample	Analysis	Analysis	Analysis		Lab
D	Name	Number	Result(pCi/l)	Method	Date	Error	ID
4000	Gross Alpha	B804622-01	4.2	900.0	4/30/98	±2.1	83141
4012	Photon Emitters						
4020	Radium-226	B804622-01	1.1	903.1	5/5/98	±0.2	83141
4030	Radium-228	B804622-01	< 0.9	RA-5	5/5/98	±0.5	83141
4101	Man-made beta						

*(Gross alpha generally only requirement, see 62-550.519,(FAC)

VOLATILE ORGANIC ANALYSIS

62-550.310(2)(b)

(PWS028)

			Sample	Analysis		Analysis	Analysis		Lab
I.	Name	(MCL ug/L)	Number	Result(µg/L)	Q	Method	Date	MDL(µg/L)	ID.
2378	1,2,4-Trichlorobenzene	(70)	B804622-01	< 0.22	U	524.2	4/30/98	0.22	83331
2380	Cis-1,2-dichlorethylene	(70)	B804622-01	< 0.03	U	524.2	4/30/98	0.03	83331
2955	Xylenes (total)	(10000)	B804622-01	< 0.24	U	524.2	4/30/98	0.24	83331
2964	Dichloromethane	(5)	B804622-01	< 0.31	U	524.2	4/30/98	0.31	83331
2968	O-dichlorobenzene	(600)	B804622-01	< 0.05	U	524.2	4/30/98	0.05	83331
2969	Para-dichlorobenzene	(75)	B804622-01	< 0.02	U	524.2	4/30/98	0.02	83331
2976	Vinyl Chloride	(1)	B804622-01	< 0.29	U	524.2	4/30/98	0.29	83331
2977	1,1-dichloroethylene	(7)	B804622-01	< 0.02	U	524.2	4/30/98	0.02	83331
2979	Trans-1,2-dichloroethylene	(100)	B804622-01	< 0.12	U	524.2	4/30/98	0.12	83331
2980	1,2-dichloroethane	(3)	B804622-01	< 0.02	U	524.2	4/30/98	0.02	83331
2981	1,1,1-trichloroethane	(200)	B804622-0 1	< 0.21	U	524.2	4/30/98	0.21	83331
2982	Carbon tetrachloride	(3)	B804622-0 1	< 0.29	U	524.2	4/30/98	0.29	83331
2983	1,2-dichloropropane	(5)	B804622- 01	< 0.33	U	524.2	4/30/98	0.33	83331
2984	Trichloroethylene	(3)	B804622-01	< 0.02	U	524.2	4/30/98	0.02	83331
2985	1,1,2-trichloroethane	(5)	B804622-0 1	< 0.23	U	524.2	4/30/98	0.23	83331
2987	Tetrachloroethylene	(3)	B804622-01	< 0.21	U	524.2	4/30/98	0.21	83331
2989	Monochlorobenzene	(100)	B804622- 01	< 0.23	U	524.2	4/30/98	0.23	83331
2990	Benzene	(1)	B804622-01	< 0.05	U	524.2	4/30/98	0.05	83331
2°	Toluene	(1000)	B804622-01	< 0.41	U	524.2	4/30/98	0.41	83331
,	Ethylbenzene	(700)	B804622-01	< 0.47	U	524.2	4/30/98	0.47	83331
2996	Styrene	(100)	B804622-01	< 0.2	U	524.2	4/30/98	0.2	83331

•••

PESTICIDE/PCB CHEMICAL ANALYSIS

62-550-310(2)(c) [°]

(PWS029)

<u>_</u>			Sample	Analysis		Analysis	Analysis		Lab
г	Name	(MCL ug/L)	Number	Result($\mu g/L$)	Q	Method	Date	MDL(µg/L)	ID
Γ									
2005	Endrin	(2)				508		0.002	
2010	Lindane	(.2)				508		0.002	
2015	Methoxychlor	(40)				508		0.052	
2020	Toxaphene	(3)				508		0.309	
2031	Dalapon	(200)				515.1		0.036	
2032	Diquat	(20)				549.1		0.26	
2033	Endothall	(100)				548.1		15.4	
2034	Glyphosate	(700)		ļ		547		9.44	
2035	Di(2-ethylhexyl)adipate	(400)				525.2		0.71	
2036	Oxamyl (Vydate)	(200)				531.1		2.57	
2037	Simazine	(4)				507		0.078	
2039	Di(2-ethylhexyl)phthalate	(6)				525.2		1.15	
2040	Picloram	(500)				515.1		0.029	
2041	Dinoseb	(7)				515.1		0.055	2
2042	Hexachlorocyclopentadiene	(50)				525.2		0.292	
2046	Carbofuran	(40)				531.1		7.04	
2050	Atrazine	(3)				507		0.035	
2051	Alachlor	(2)				507		0.012	
2063	2,3,7,8-TCDD(Dioxin)	(.00003)							
2065	Heptachlor	(.4)				508		0.004	
2067	Heptachlor Epoxide	(.2)				508		0.002	
2	2,4-D	(70)			i	515.1		0.026	
2	2,4,5-TP (Silvex)	(50)				515.1		0.017	
2274	Hexachlorobenzene	(1)				508		0.008	
2306	Benzo(a)pyrene	(.2)				550.1		0.013	
2326	Pentachlorophenol	(1)				515.1		0.007	
2383	РСВ	(.5)	B804622-01	< 0.1	U	508	5/8/98	0.1	83331
2931	Dibromochloropropane	(.2)		ł		504.1		0.004	
2946	Ethylene Dibromide	(.02)	4			504.1		0.006	
2959	Chlordane	(2)	[1		508		0.446	
			1						

UNREGULATED GROUP I ANALYSIS

62-550.405

(PWS	035)	
-			

		Sample	Analysis	_	Analysis	Analysis		Lab
Ð	Name	Number	Result($\mu g/L$)	Q	Method	Date	MDL(µg/L)	D
2021	Carbaryl				531.1		3.89	
2022	Methomyl				531.1		3.20	
2043	Aldicarb Sulfoxide		1		531.1		1.88	
2044	Aldicarb Sulfone				531.1		5.57	
2045	Metolachlor				507		0.108	
2047	Aldicarb				531.1		5.95	
2066	3-Hydroxycarbofuran				531.1		3.35	
ŀ.	Butachior		ļ		507		0.021	
i.	Propachlor				508		0.110	
2356	Aldrin				508		0.003	
2364	Dieldrin			1	508		0.002	
2440	Dicamba				515.1		0.005	
2595	Metribuzin		_		. 507		0.024	

ī.

COCO4622.XLS

Order # B8-04-622 05/11/98 09:02

• • •

CASE NARRATIVE

WE ARE EXPERIENCING A PROBLEM WITH THE RECOVERY OF THE THE STANDARDS (CCVs) FOR MBAS. THE STOCK STANDARD USED TO MAKE THE WORKING STANDARD MAY HAVE BEEN CONTAMINATED OR HAS GONE BAD. THE RESULTS REPORTED HAVE BEEN QUALIFIED WITH A "J3" INDICATING THE ASSOCIATED QC FAILS TO MEET ESTABLISHED CRITERIA. THE REPORTED RESULTS MAY BE LOWER THAN ANTICIPATED.

THE CORRECTIVE ACTION, ALREADY IN PLACE, IS THE USE OF A NEW MBAS STOCK SOLUTION AND TO GENERATE A NEW 10 POINT CURVE. WE FEEL THESE MEASURES WILL ELIMINATE ANY FURTHER PROBLEMS.

NOTE: RADIOCHEMICAL ANALYSIS SUBCONTRACTED TO FL DW LAB ID #83141

4310 E. A Orlando, F DHRS/DEP	9 #83331; E83012 -2560 FAX:(407) 8	356-0886				m	· .	Jules
BA	DRINKING CTERIOLOGI						////	
System Name:	CITY OF COCOA				0223	System Pl	none#: <u>(407</u>	1568-5867
Address:	600 SCHOOL ST.			County:		DEP Dist		<u>/</u>
Collector:	MARY KRALJ	<u> </u>					none#: (407)568-5867
	ality or subdivision)	:	R-8	· · · · · · · · · · · · · · · · · · ·				
Date and Time (-		04/28/98 @	1120				
Type of Supply:	Private wel	I	r system I Swimming po	Noncommunity water s bol Bottled water		ntransient-noi public water s	-	water sys.
Type of Sample: (circle one) Remarks:	: Compliance (check box) [] Distributior [] Raw	Repeat 1	Replace (check {] TN [] Tur	box) FC or C	rance V	Vell Survey	Other: (spec	cify)
	/				TO BE COMP	LETED BY LA	В:	
TO BE COMPL	ETED BY COLLECT	OR OF S	AMPLE	Date & time of analy	sis: 04/28/	98 @ 1750	by:	LH
				Analysis M		MTF	MMO-MU	
	mple Point cific Address)	Cl Res	pН	Sample Number:	Non Coliform	*Total	Confirm Total	Confirm Fecal
R-8				B804622-01		Р	P	A
				-				
	olumn are preliminary. Il types of water syste			L ation on community and n hours.	Difference of the second secon	vater systems a	nd total colifc	l
	 Coliforms are preser Coliforms are absent 			fluent growth Too numerous to count	TA - Tu	rbid, Absence	of gas or acid	
Name and Maille	ng Address of Perso			REMARKS BY PROGR		R		
	OF COCOA	- -			[] Repeat	actory plete collectio t samples ement sample		n
coc	OA, FL 32922 N: MARY KRALJ				iewing Officia			
	·			Title			COC	 C04622.XLS

LAB FORMAT FOR REPORTING DRINKING WATER ANALYSES

PUBL	IC WATER SYS	TEM INFORMATIO	ON (to be compl	eted by system or	lab)		
Syst~	Name:	CITY OF COCA				I.D. #:	050223
Ň	•	600 SCHOOL ST,	COCOA, FL 32	.922		Phone #: 568-	5867
Туре	(check one)	(X) Communi	ty	() Nontransi	ent Noncommunity	() Noncommunity
SAMP	LE INFORMAT	ION (to be complete	d by sampler)				
Sample	Date (MMDDY)	r): <u>(</u>	4/15/98		Sample Time: 0900		
Sample	Location (be spe	cific):	1-9				
Sample	r Name and Phon	e: <u>1</u>	ARY KRALJ		<u> </u>		
Sample	r's Signature:		Mary ;	Staf	•	Title: Lab	oratory Technician
Check '	Types(s)	() Distribution		() Recheck	of MCL a Res Time	() Resample of () Plant Tap	Lab Invalidated Sample
		() Distrib en		(X) Raw			ttach a format for each site
LABO	RATORY CERT	IFICATION INFO	RMATION (to b	e completed by la	b) attach HRS Analyte S	Sheet *	
Lab Na	me: <u>BIONC</u>	MICS LABORATO	RY		HRS#: 83331	Expira	tion Date: 06/30/98
Addres	s: <u>4310 E</u>	. Anderson Rd., Orla	undo, FL 32812		Phone: 851-25	60	
Su'	cted Lab HRS	f: <u>83141</u>			-ATTACH HRS ANALYTE S	HEET FOR SUBCON	TRACTED LAB, TOO *
Α ι.	YSIS INFORMA	TION: (to be compl	eted by lab)		Work (Order Number:	B804357-01
Date Sa	ample(s) Received	. 04/15/98		Group(s) Analyzed	& Results attached for con	npliance with 62-55	D, F.A.C.:
() Nitrate Only		() Nitrite O	nly	() Asbeste	os Only	() Trihalomethanes
	Inorganics-	-	Volatile	Organics	Secondar	ies	Pesticide/PCBs-
() All 17 (X) Partial	(X) A∐ 21	() Partial	(X) All	() Partial	() All 30 (X) Partial
	Group I Unregula	ateds-	Group II U	Inregulateds	Group III Unre	gulateds	Radiochemicals
() All 13 () Partial	() All 23	() Partial	() All	() Partial	(X) Single Sample
				•	**Provide radiochemical sa	mple dates & locatio	() Qtrly Composite ** ons for each quarter
	I,	MARK RUSLER) . do HER	EBY CERTIFY that all atta	ached analytical data	are correct.
	Signature	man	R KI	sler			
	Title:	CHEMIST				 Da	te: 6/2/98
COM		· · ·		->			
	Collection Satisf	RMATION (to be co actory:	mpierea dy Stât	5)	Sample Analysis Satisfa	actory:	
-	⁻¹ e Requested For	· •			Reason:		
F	utified to resam	-	-		Date Notified:		
DEP/H	IRS Reviewing Of	- fficial:				- <u></u>	

*All HRS lab #s and their HRS Analyte Sheet for labs performing the attached water analyses must be provided. Failure to do so will result in rejection of the analyses and possible enforcement against the public water system for failure to sample.

INORGANIC ANALYSIS

62-550-310(1)

.

(PWS030)

Γ	f		Sample	Analysis		Analysis	Analysis		Lab
D	Name	(MCL mg/L)	Number	Result(mg/L)	Q	Method	Date	MDL(mg/L)	D
1005	Arsenic	(0.05)	B804357-01	< 0.0034	υ	200.9 ·	4/17/98	0.0034	83331
1010	Barium	(2)	B804357-01	0.014		200.7	4/21/98	0.002	83331
1015	Cadmium	(.005)	B804357-01	< 0.0001	U	200.9	4/20/98	0.0001	83331
1020	Chromium	(0.1)	B804357-01	< 0.0002	U	200.9	4/20/98	0.0002	83331
1024	Cyanide	(0.2)	B804357-01	< 0.006	U	SM4500CN E	4/24/98	0.006	83331
1025	Fluoride	(4)	B804357-01	1.1		SM 4500F C	4/20/98	0.027	83331
1030	Lead	(0.015)	B804357-01	< 0.001	U	200.9	4/20/98	0.001	83331
1035	Mercury	(0.002)	B804357-01	< 0.00005	U	245.1	4/22/98	0.00005	83331
1036	Nickel	(0.1)	B804357-01	< 0.012	U	200.7	4/20/98	0.012	83331
1040	Nitrate	(10)	B804357-01	< 0.006	U	300.0A	4/15/98	0.006	83331
1041	Nitrite	(1)	B804357-01	< 0.004	U	300.0A	4/15/98	0.004	83331
1045	Selenium	(0.05)	B804357-01	0.003	Ι	200.9	4/17/98	0.002	83331
1052	Sodium	(160)	B804357-01	232		200.7	4/20/98	0.1	83331
1074	Antimony	(0.006)	B804357-01	< 0.0017	U	200.9	4/27/98	0.0017	83331
1075	Beryllium	(0.004)	B804357-01	< 0.0003	U	200.7	4/21/98	0.0003	83331
1085	Thallium	(0.002)	B804357-01	< 0.0006	ប	200.9	4/17/98	0.0006	83331
1094	Asbestos	(7 MFL)				NA			

SECONDARY CHEMICAL ANALYSIS

62-550.320 (PWS031)

			Sample	Analysis		Analysis	Analysis		Lab
Ď	Name	(MCL mg/L)	Number	Result(mg/L)	Q	Method	Date	MDL(mg/L)	<u>ID</u>
1002	Aluminum	(0.2)	B804357-01	< 0.036	U	200.7	4/21/98	0.036	83331
1017	Chloride	(250)	B804357-01	417		300.0A	4/15/98	0.074	83331
1022	Copper	(1)	B804357-01	< 0.004	U	-200.7	4/20/98	0.004	83331
1025	Fluoride	(2.0)	B804357-01	1.1		SM 4500F C	4/20/98	0.027	83331
1028	Iron	(0.3)	B804357-01	0.027	I	200.7	4/20/98	0.006	83331
1032	Manganese	(0.05)	B804357-01	< 0.002	U	200.7	4/20/98	0.002	83331
1050	Silver	(0.1)	B804357-01	< 0.009	U	200.7	4/21/98	0.009	83331
1055	Sulfate	(250)	B804357-01	75.4		300.0A	4/15/98	0.03	83331
1095	Zinc	(5)	B804357-01	0.026		200.7	4/20/98	0.006	83331
1905	Color	(15color units)	B804357-01	10		SM2120B	4/15/98	5	83331
1920	Odor	(3 T.O.N.)	B804357-01	32		SM2150B	4/15/98	1	83331
1925	рН	(6.5-8.5)	B804357-01	7.65		150.1	4/15/98		83331
1	Total Dissolved Solids	(500)	B804357-01	934		SM2540C	4/20/98	4.41	83331
2	Foaming Agents	(0.5)	B804357-0 1	0.02	I	SM5540C	4/16/98	0.02	83331

.

TRIHALOMETHANE ANALYSIS

62-550-310(a)

(PWS027)

		Sample	CL	Analysis	Analysis	Analysis		Lab
Ľ _	Name	Number	Resid	Result(mg/L) Q	Method	Date	MDL(mg/L)	D
2950	Total THMs				524.2		0.0011	

RADIOCHEMICAL ANALYSIS*

62-550.310(5)

(PWS033)

		Sample	Analysis	Analysis	Analysis		Lab
D	Name	Number	Result(pCi/l)	Method	Date	Error	ID
4000	Gross Alpha	B804357-01	< 4.6	900.0	4/21/98	±2.9	83141
4012	Photon Emitters						
4020	Radium-226	B804357-01	1.9	903.1	4/21/98	±0.3	83141
4030	Radium-228	B804357-01	< 0.9	RA-5	4/21/98	±0.6	83141
4101	Man-made beta						

*(Gross alpha generally only requirement, see 62-550.519,(FAC)

VOLATILE ORGANIC ANALYSIS

62-550.310(2)(b)

(PWS028)

	; · _ · · ·		Sample	Analysis		Analysis	Analysis		Lab
r	Name	(MCL ug/L)	Number	Result($\mu g/L$)	Q	Method	Date	$MDL(\mu g/L)$	ID
2_	1,2,4-Trichlorobenzene	(70)	B804357-01	< 0.22	U	524.2	4/20/98	0.22	83331
2380	Cis-1,2-dichlorethylene	(70)	B804357-01	< 0.03	U	524.2	4/20/98	0.03	83331
2955	Xylenes (total)	(10000)	B804357-01	< 0.24	U	524.2	4/20/98	0.24	83331
2964	Dichloromethane	(5)	B804357-01	< 0.31	U	524.2	4/20/98	0.31	83331
2968	O-dichlorobenzene	(600)	B804357-01	< 0.05	U	524.2	4/20/98	0.05	83331
2969	Para-dichlorobenzene	(75)	B804357-01	< 0.02	U	524.2	4/20/98	0.02	83331
2976	Vinyl Chloride	(1)	B804357-01	< 0.29	U	524.2	4/20/98	0.29	83331
2977	1,1-dichloroethylene	(7)	B804357-01	< 0.02	U	524.2	4/20/98	0.02	83331
2979	Trans-1,2-dichloroethylene	(100)	B804357-01	< 0.12	U	524.2	4/20/98	0.12	83331
2980	1,2-dichloroethane	(3)	B804357-01	< 0.02	U	524.2	4/20/98	0.02	83331
2981	1,1,1-trichloroethane	(200)	B804357-01	< 0.21	U	524.2	4/20/98	0.21	83331
2982	Carbon tetrachloride	(3)	B804357-01	< 0.29	U	524.2	4/20/98	0.29	83331
2983	1,2-dichloropropane	(5)	B804357-01	< 0.33	U	524.2	4/20/98	0.33	83331
2984	Trichloroethylene	(3)	B804357-01	< 0.02	U	524.2	4/20/98	0.02	83331
2985	1,1,2-trichloroethane	(5)	B804357-01	< 0.23	U	524.2	4/20/98	0.23	83331
2987	Tetrachloroethylene	(3)	B804357-01	< 0.21	U	524.2	4/20/98	0.21	83331
2989	Monochlorobenzene	(100)	B804357-01	< 0.23	U	524.2	4/20/98	0.23	83331
2990	Benzene	(1)	B804357-0 1	< 0.05	U	524.2	4/20/98	0.05	83331
2991	Toluene	(1000)	B804357-01	< 0.41	U	524.2	4/20/98	0.41	83331
2	Ethylbenzene	(700)	B804357-01	< 0.47	U	524.2	4/20/98	0.47	83331
25.0	Styrene	(100)	B804357-01	< 0.2	U	524.2	4/20/98	0.2	83331

PESTICIDE/PCB CHEMICAL ANALYSIS 62-550-310(2)(c) (PWS029)

•

krin dane thoxychlor taphene apon uat lothall phosate 2-ethylhexyl)adipate umyl (Vydate) azine	(MCL ug/L) (2) (40) (3) (200) (200) (200) (100) (700) (400) (200) (4)	Number	Result(µg/L)	Q	Method 508 508 508 508 515.1 549.1 548.1	Date	MDL(µg/L) 0.002 0.002 0.052 0.309 0.036 0.26 15.4	ID
dane thoxychlor taphene apon uat tothall phosate 2-ethylhexyl)adipate unyl (Vydate) azine	 (.2) (40) (3) (200) (20) (100) (700) (400) (200) 				508 508 508 515.1 549.1 548.1		0.002 0.052 0.309 0.036 0.26	
dane thoxychlor taphene apon uat tothall phosate 2-ethylhexyl)adipate unyl (Vydate) azine	 (.2) (40) (3) (200) (20) (100) (700) (400) (200) 				508 508 508 515.1 549.1 548.1		0.002 0.052 0.309 0.036 0.26	
thoxychlor aphene apon uat lothall phosate 2-ethylhexyl)adipate umyl (Vydate) azine	(40) (3) (200) (20) (100) (700) (400) (200)	-			508 508 515.1 549.1 548.1		0.052 0.309 0.036 0.26	
caphene apon uat lothall phosate 2-ethylhexyl)adipate umyl (Vydate) azine	(3) (200) (20) (100) (700) (400) (200)				508 515.1 549.1 548.1		0.309 0.036 0.26	
apon uat lothall phosate 2-ethylhexyl)adipate myl (Vydate) azine	(200) (20) (100) (700) (400) (200)				515.1 549.1 548.1		0.036 0.26	
uat lothall phosate 2-ethylhexyl)adipate umyl (Vydate) azine	(20) (100) (700) (400) (200)				549.1 548.1		0.26	
othall phosate 2-ethylhexyl)adipate unyl (Vydate) azine	(100) (700) (400) (200)				548.1		1 1	
phosate 2-ethylhexyl)adipate myl (Vydate) azine	(700) (400) (200)						15.4	1
2-ethylhexyl)adipate myl (Vydate) azine	(400) (200)				1			
myl (Vydate) azine	(200)				547		9.44	
azine					525.2		0.71	
	(4)				531.1		2.57	
	11.7				507		0.078	
2-ethylhexyl)phthalate	(6)				525.2		1.15	
oram	(500)				515.1		0.029	
oșeb	(7)	1			515.1		0.055	
achlorocyclopentadiene	(50)				525.2		0.292	
bofuran	(40)				531.1		7.04	
zine	(3)				507		0.035	
chlor	(2)	J			507		0.012	
7,8-TCDD(Dioxin)	(.00003)							
tachlor	(.4)	1			508		0.004	
tachlor Epoxide	(.2)				508		0.002	!
D	(70)				515.1		0.026	
5-TP (Silvex)	(50)	ł			515.1		0.017	I
achlorobenzene	(1)				508		0.008	:
zo(a)pyrene	(.2)				550.1		0.013	
tachlorophenol	(1)				515.1		0.007	
3	(.5)	B804357-01	< 0.1	U	508	4/25/98	0.1	83331
romochloroperato	(.2)				504.1		0.004	
romocinoropropane	(.02)		1		504.1		0.006	
	(2)				508		0.446	
ia zo ta 3	chlorobenzene o(a)pyrene chlorophenol omochloropropane	chlorobenzene (1) (a)pyrene (.2) chlorophenol (1) (.5) omochloropropane (.2) ene Dibromide (.02)	chlorobenzene: (1) (a)pyrene (.2) chlorophenol (1) (.5) B804357-01 (.2) ene Dibromide (.02)	chlorobenzene(1)(a)pyrene(.2)(chlorophenol(1)(.5)B804357-01(.5)chloropropane(.2)(.2)ene Dibromide(.02)	chlorobenzene (1) (a)pyrene (.2) chlorophenol (1) (.5) B804357-01 < 0.1 U pmochloropropane (.2) ene Dibromide (.02)	chlorobenzene (1) 508 o(a)pyrene (.2) 550.1 chlorophenol (1) 515.1 (.5) B804357-01 < 0.1	chlorobenzene (1) 508 o(a)pyrene (.2) 550.1 chlorophenol (1) 515.1 (.5) B804357-01 < 0.1	chlorobenzene (1) 508 0.008 o(a)pyrene (.2) 550.1 0.013 chlorophenol (1) 515.1 0.007 (.5) B804357-01 < 0.1

UNREGULATED GROUP I ANALYSIS

62-550.405 (PWS035)

		Sample	Analysis		Analysis	Analysis		Lab
D	Name	Number	Result(µg/L)	Q	Method	Date	MDL(µg/L)	D
2021	Carbaryl				531.1		3.89	
2022	Methomyl				531.1		3.20	
2043	Aldicarb Sulfoxide		ľ		531.1		1.88	
2044	Aldicarb Sulfone				531.1		5.57	
2045	Metolachlor				507		0.108	
2047	Aldicarb				531.1		5.95	
2066	3-Hydroxycarbofuran		1		531.1		3.35	
2°.	Butachior				507		0.021	
:	Propachlor				508		0.110	
ەدد2	Aldrin				508		0.003	
2364	Dieldrin		ļ		508		0.002	
2440	Dicamba				515,1		0.005	
2595	Metribuzin		I		507		0.024	

.

COC04357.XLS

.

	ICS LABORA	TORY			For	Lab Use O	nly	
Orlando, F					Date Received:	04/15/98	3	
	#83331; E83012				Time Received:	1005		
(407) 851	-2560 FAX:(407)	856-088	6		Signature of			
					Lab Official:			
	DRINKING	S WAT	ER					
BA	CTERIOLOGI		NALYS	S	L			
System Name:	CITY OF COCOA	·	. <u>-</u> .	System ID #: 305	0223	System P	hone#: <u>(407)</u>	568-5867
Address:	600 SCHOOL ST	•		County:		DEP Dist	rict:	
Collector:	MARY KRALJ			· · · · · · · · · · · · · · · · · · ·	C	Collector P	hone#: <u>(407)</u>	568-5867
Sample Site (loc	ality or subdivision	ı): <u> </u>	R-9	·····				
Date and Time (Collected:		04/15/98 (<u>୭ ୦୨୦୦</u>		_		
Type of Supply:	Commu	nitv wate	r system	Noncommunity water s	vstem Nontra	ansient-no	ncommunity	water svs.
· ,po or capp.,.	Private we	-	Swimming		Other pub			
			· · · · · · · · · · · · · · · · · · ·	,			,	
Type of Sample	: Compliance	Repeat	Repla	cement Main Clea	rance Well	Survey	Other:	
(circle one)	(check box)		•	k box)			(spec	ify)
	[] Distributio	n		NTC or C				
Remarks:	[] Raw		[]T	urbia				
							-	
					TO BE COMPLET	TED BY LA	B:	
	ETED BY COLLECT			Date & time of analy	sis: 4/15/98 (a 1058	b	
	ETED BY COLLECT			Analysis M		MTF	by: MMO-MUG	
Sa	mple Point	С			Non		Confirm	Confirm
	cific Address)	Res	ρH	Sample Number:	Coliform	*Total	Total	Fecal
R-9				B804357-01		A		
					+	· · · ·		
}							1	
	<u>-</u>		<u> </u>	, 	 			
· · ·								
* Results in this c	olumn are preliminary	y. Fecal co	liform confirm	mation on community and n	oncommunity wate	er systems a	and total colifo	rm
confirmation on a	ll types of water syst	ems will fo	ollow in 24-4	8 hours.				
P	- Coliforms are prese	unt	C . C	nfluent growth	TA - Turbic	1 Absence	of gas or acid	
	 Coliforms are abser 			- Too numerous to count			or yes or acia	
<u></u>								
				- REMARKS BY PROGR	AM REVIEWER			
Name and Maili	ng Address of Pers	on/Firm t	o Receive F	leport:				
				—	[] Satisfacto	-	n information	•
1.							n information	1
	OF COCOA	-		1	[] Repeat sa	imples lent sampl	86	
				Box	iewing Official:	en sampi	ça	
	OA, FL 32922 N: MARY KRALJ			Nev	ewing orneidi:		<u> </u>	<u> </u>
L								
					1			
				Title				04357.XLS

ı.

LAB FORMAT FOR REPORTING DRINKING WATER ANALYSES

.

PUBLIC WATER SY	STEM INFORMA	TION (to be co	impleted by system or	lab)		
System Name:	CITY OF COC	A			I.D. #:3	050223
Αc	600 SCHOOL	ST, COCOA, F	L_32922		Phone #:4	07-568-5867
Type (check one)	(X) Comm	unity	() Nontransie	ent Noncommunity	() Noncommunity
SAMPLE INFORMA	TION (to be comp	leted by sample	2r)			
Sample Date (MMDD)	YY):	04/21/98		Sample Time: 1000		
Sample Location (be s	pecific):	(R-10)				
Sampler Name and Ph	one:	MARY KRA				
Sampler's Signature:		Man	hur Mar		Title: Lab	ooratory Technician
Check Types(s)	() Distrib () Cleara		() Recheck of () Thm Max	of MCL Res Time	() Resample of () Plant Tap	f Lab Invalidated Sample
	() Distrib	entry pt	(X) Raw	() Compo	site of Multiple Sites-A	attach a format for each site
LABORATORY CEP	RTIFICATION INF	ORMATION (to be completed by lab) – attach HRS Analyte	Sheet *	
Lab Name: BIO	NOMICS LABORA	TORY		HRS#: 83331	Expira	tion Date: 06/30/98
Address: 4310	E. Anderson Rd., (Orlando, FL 32	812	Phone: 851-25	560	
Sut incred Lab HR	S#: 83141			ATTACH HRS ANALYTE S	SHEET FOR SUBCON	TRACTED LAB, TOO *
ANAL SIS INFORM	IATION: (to be con	npleted by lab)	I	Work	Order Number:	B804478-01
Date Sample(s) Receiv	red: 04/21/5	98	Group(s) Analyzed	& Results attached for co	mpliance with 62-55	0, F.A.C.:
() Nitrate Only		() Nitr	ite Only	() Asbest	tos Only	() Trihalomethanes
Inorganic			atile Organics-	Secondar		Pesticide/PCBs
() All 17	(X) Partial	(X) All 2	21 () Partial	() All	(X) Partial	() All 30 (X) Partiai
Group I Unreg		-	II Unregulateds-	Group III Unr	egulateds-	Radiochemicals
() All 13 (() Partial	() All 2	23 () Partial	() All	() Partial	(X) Single Sample() Qtrly Composite **
			•	Provide radiochemical sa	ample dates & locatio	
I,	MARK RUSLE		, do HER	EBY CERTIFY that all att	tached analytical data	a are correct.
Signature	Mart	& Kur	Don			
Title:	CHEMIST	V			Da	ute: 5/18/98
COMPLIANCE INFO	ORMATION (to be	completed by	State)			-
Sample Collection Sati				Sample Analysis Satisf	factory:	· · · · · · · · · · · · · · · · · · ·
Recomme Requested F	for:			Reason:		·····
Pe. dified to resa	mple:			Date Notified:		

*All HRS lab #s and their HRS Analyte Sheet for labs performing the attached water analyses must be provided. Failure to do so will result in rejection of the analyses and possible enforcement against the public water system for failure to sample.

INORGANIC ANALYSIS 62-550-310(1)

..

•

(PWS030)

Γ	· · · · · · · · · · · · · · · · · · ·		Sample	Analysis		Analysis	Analysis		Lab
D	Name	(MCL mg/L)	Number	Result(mg/L)	Q	Method	Date	MDL(mg/L)	ID
1005	Arsenic	(0.05)	B804478-01	< 0.0034	U	200.9	4/22/98	0.0034	83331
1010	Barium	(2)	B804478-0 1	0.104		200.7	4/30/98	0.002	83331
1015	Cadmium	(.005)	B804478-01	< 0.0001		200.9	4/27/98	0.0001	83331
1020	Chromium	(0.1)	B804478-0 1	< 0.0002	U	200.9	4/27/98	0.0002	83331
1024	Cyanide	(0.2)	B804478-01	< 0.006	U	SM4500CN E	4/24/98	0.006	83331
1025	Fluoride	(4)	B804478-0 1	0.878		SM 4500F C	4/28/98	0.027	83331
1030	Lead	(0.015)	B804478-0 1	< 0.001	U	200.9	4/27/98	0.001	83331
1035	Mercury	(0.002)	B804478-01	< 0.00005		245.1	4/30/98	0.00005	83331
1036	Nickel	(0.1)	B804478-01	< 0.012	U	200.7	5/1/98	0.012	83331
1040	Nitrate	(10)	B804478-01	< 0.006	U	300.0A	4/22/98	0.006	83331
1041	Nitrite	(1)	B804478-01	< 0.004	U	SM4500NO2B	4/22/98	0.004	83331
1045	Selenium	(0.05)	B804478-01	0.003	I	200.9	4/22/98	0.002	83331
1052	Sodium	(160)	B804478-01	292		200.7	5/1/98	0.1	83331
1074	Antimony	(0.006)	B804478-01	< 0.0017	U	200.9	4/27/98	0.0017	83331
1075	Beryllium	(0.004)	B804478-01	0.0004	I	200.7	4/28/98	0.0003	83331
1085	Thallium	(0.002)	B804478-01	0.0006	Ι	200.9	4/27/98	0.0006	83331
1094	Asbestos	(7 MFL)				NA			

SECONDARY CHEMICAL ANALYSIS

62-550.320

(PWS031)

			Sample	Analysis		Analysis	Analysis		Lab
Ð	Name	(MCL mg/L)	Number	Result(mg/L)	Q	Method	Date	MDL(mg/L)	ID
1002	Aluminum	(0.2)	B804478-01	< 0.036	υ	200.7	4/28/98	0.036	83331
1017	Chloride	(250)	B804478-01	572		300.0A	4/22/98	0.074	83331
1022	Copper	(1)	B804478-01	< 0.004	U	200.7	5/1/98	0.004	83331
1025	Fluoride	(2.0)	B804478-01	0.878		SM 4500F C	4/28/98	0.027	83331
1028	Iron	(0.3)	B804478-01	0.039		200.7	5/1/98	0.006	83331
1032	Manganese	(0.05)	B804478-01	0.005	I	200.7	5/1/98	0.002	83331
1050	Silver	(0.1)	B804478-01	< 0.009	U	200.7	4/30/98	0.009	83331
1055	Sulfate	(250)	B804478-01	83.1		300.0A	4/22/98	0.03	83331
1095	Zinc	(5)	B804478-01	0.01	Ι	200.7	5/1/98	0.006	83331
1905	Color	(15color units)	B804478-01	10		SM2120B	4/21/98	5	83331
1920	Odor	(3 T.O.N.)	B804478-01	> 32		SM2150B	4/21/98	1	83331
1925	рН	(6.5-8.5)	B804478-01	7.09		1 50 .1	4/21/98		83331
. 1°	Total Dissolved Solids	(500)	B804478-01	1120		SM2540C	4/22/98	4.41	83331
2.	Foaming Agents	(0.5)	B804478-01	< 0.02	J3	SM5540C	4/30/98	0.02	83331

TRIHALOMETHANE ANALYSIS

62-550-310(a)

(PWS027)

		Sample	CL	Analysis	Analysis	Analysis		Lab
n.	Name	Number	Resid	Result(mg/L) Q	Method	Date	MDL(mg/L)	ID
2950	Total THMs				524.2		0.0011	

RADIOCHEMICAL ANALYSIS*

62-550.310(5)

(PWS033)

ID	Name	Sample Number	Analysis Result(pCi/l)	Analysis Method	Analysis Date	Error	Lab ID
4000	Gross Alpha	B804478-01	< 4.9	900.0	4/26/98	±2.9	83141
4012	Photon Emitters						
4020	Radium-226	B804478-01	2.2	903.1	4/30/98	±0.3	83141
4030	Radium-228	B804478-01	1.1	RA-5	4/30/98	±2.9	83141
4101	Man-made beta	·					

*(Gross alpha generally only requirement, see 62-550.519,(FAC)

.

.

.

VOLATILE ORGANIC ANALYSIS

62-550.310(2)(b)

(PWS028)

			Sample	Analysis		Analysis	Analysis		Lab
ந	Name	(MCL ug/L)	Number	Result(µg/L)	Q	Method	Date	MDL(µg/L)	ID
23	1,2,4-Trichlorobenzene	(70)	B804478-01	< 0.22	U	524.2	4/24/98	0.22	83331
2380	Cis-1,2-dichlorethylene	(70)	B804478-01	< 0.03	U	524.2	4/24/98	0.03	83331
2955	Xylenes (total)	(10000)	B804478-01	< 0.24	U	524.2	4/24/98	0.24	83331
2964	Dichloromethane	(5)	B804478-01	< 0.31	U	524.2	4/24/98	0.31	83331
2968	O-dichlorobenzene	(600)	B804478-01	< 0.05	U	524.2	4/24/98	0.05	83331
2969	Para-dichlorobenzene	(75)	B804478-01	< 0.02	U	524.2	4/24/98	0.02	83331
2976	Vinyl Chloride	(1)	B804478-01	< 0.29	U	524.2	4/24/98	0.29	83331
2977	1,1-dichloroethylene	(7)	B804478-01	< 0.02	U	524.2	4/24/98	0.02	83331
2979	Trans-1,2-dichloroethylene	(100)	B804478-01	< 0.12	U	524.2	4/24/98	0.12	83331
2980	1,2-dichloroethane	(3)	B804478-01	< 0.02	U	524.2	4/24/98	0.02	83331
2981	1,1,1-trichloroethane	(200)	B804478-01	< 0.21	U	524.2	4/24/98	0.21	83331
2982	Carbon tetrachloride	(3)	B804478-01	< 0.29	U	524.2	4/24/98	0.29	83331
2983	1,2-dichloropropane	(5)	B804478- 01	< 0.33	U	524.2	4/24/98	0.33	83331
2984	Trichloroethylene	(3)	B804478-01	< 0.02	U	524.2	4/24/98	0.02	83331
2985	1,1,2-trichloroethane	(5)	B804478-01	< 0.23	U	524.2	4/24/98	0.23	83331
2987	Tetrachloroethylene	(3)	B804478-01	< 0.21	U	524.2	4/24/98	0.21	83331
2989	Monochlorobenzene	(100)	B804478-01	< 0.23	U	524.2	4/24/98	0.23	83331
2990	Benzene	(1)	B804478-01	< 0.05	U	524.2	4/24/98	0.05	83331
2991	Toluene	(1000)	B804478-01	< 0.41	U	524.2	4/24/98	0.41	83331
2	Ethylbenzene	(700)	B804478-01	< 0.47	U	524.2	4/24/98	0.47	83331
25	Styrene	(100)	B804478-01	< 0.2	U	524.2	4/24/98	0.2	83331

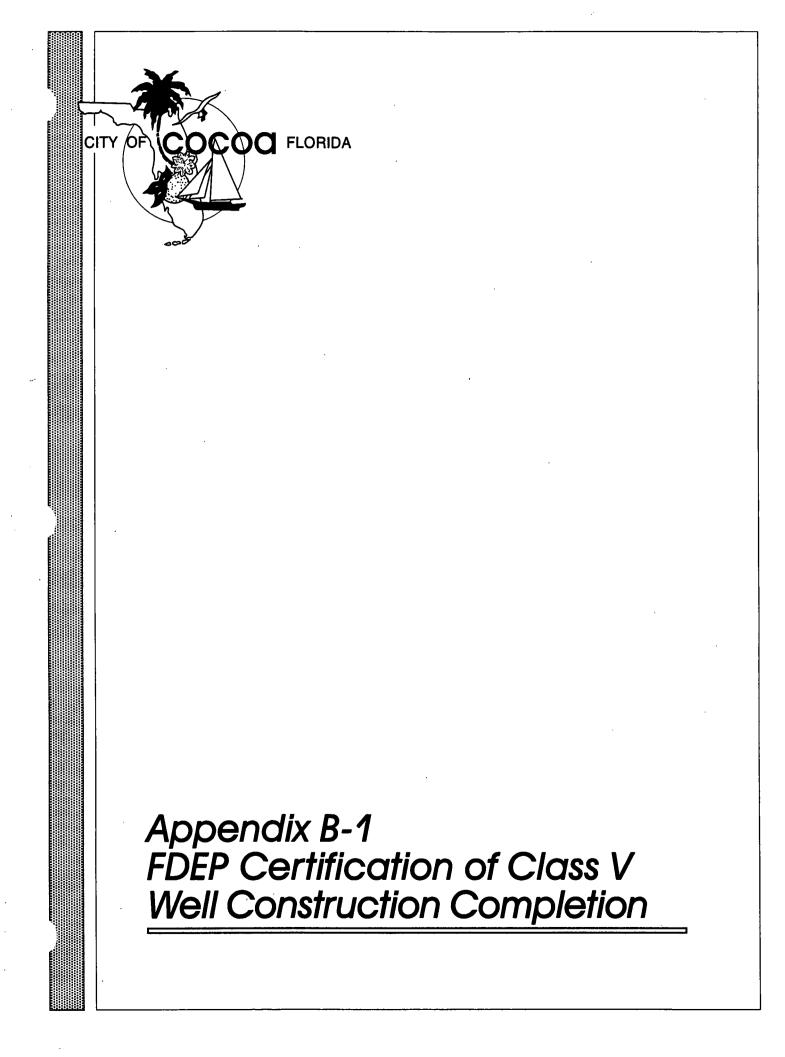
PESTICIDE/PCB CHEMICAL ANALYSIS

.

62-550-310(2)(c) (PWS029)

,

			Sample	Analysis		Analysis	Analysis		Lab
E	Name	(MCL ug/L)	Number	Result(µg/L)	Q	Method	Date	MDL(µg/L)	D
2005	Endrin	(2)				508		0.002	
2010	Lindane	(.2)				508		0.002	
2015	Methoxychlor	(40)				508		0.052	
2020	Toxaphene	(3)				508		0.309	
2031	Dalapon	(200)				515.1		0.036	
2032	Diquat	(20)				549.1		0.26	
2033	Endothall	(100)				548.1		15.4	
2034	Glyphosate	(700)				547		9.44	
2035	Di(2-ethylhexyl)adipate	(400)				525.2		0.71	
2036	Oxamyl (Vydate)	(200)				531.1		2.57	
2037	Simazine	(4)				507		0.078	
2039	Di(2-ethylhexyl)phthalate	(6)				525.2		1.15	
2040	Picloram	(500)				515.1		0.029	
2041	Dinoseb	0				515.1		0.055	
2042	Hexachlorocyclopentadiene	(50)				525.2		0.292	
2046	Carbofuran	(40)				531.1		7.04	
2050	Atrazine	(3)				507		0.035	
2051	Alachlor	(2)				507		0.012	
2063	2,3,7,8-TCDD(Dioxin)	(.00003)							
2065	Heptachlor	(.4)				508		0.004	
2067	Heptachlor Epoxide	(.2)				508		0.002	
2 ⁻	2,4-D	(70)				515.1		0.026	
2.	2,4,5-TP (Silvex)	(50)				515.1		0.017	
2274	Hexachlorobenzene	(1)				508		0.008	
2306	Benzo(a)pyrene	(.2)				550.1		0.013	
2326	Pentachlorophenol	(1)				515.1		0.007	
2383	РСВ	(.5)	B804478-01	< 0.1	U	508	4/25/98	0.1	83331
2931	Dibromochloropropane	(.2)				504.1		0.004	
2946	Ethylene Dibromide	(.02)	1			504.1		0.006	
2959	Chlordane	(2)				508		0.446	


UNREGULATED GROUP I ANALYSIS

62-550.405 (PWS035)

		Sample	Analysis		Analysis	Analysis		Lab
D	Name	Number	Result(µg/L)	Q	Method	Date	MDL(µg/L)	D
					ea		2.00	
2021	Carbaryl		•		531.1		3.89	
2022	Methomyl				531.1		3.20	
2043	Aldicarb Sulfoxide				531.1		1.88	
2044	Aldicarb Sulfone				531.1		5.57	
2045	Metolachlor				507		0.108	
2047	Aldicarb				531.1		5.95	
2066	3-Hydroxycarbofuran				531 .1		3.35	
2	Butachlor				507		0.021	
2	Propachior	-			508		0.110	
2356	Aldrin				508		0.003	
2364	Dieldrin				508	1 ·	0.002	
2440	Dicamba				515.1		0.005	
2595	Metribuzin	· · ·	1		507		0.024	

COCO4478.XLS

BIONOMICS LABORATORY 4310 E. Anderson Rd. Oriando, FL 32812 DHRS/DEP #83331; E83012 (407) 851-2560 FAX:(407) 856-0886					For Lab Use Only Date Received: 04/21/98 Time Received: 1107 Signature of Lab Official:				Purla
	DRINKING	WAT	ER				· <u>- / / / / / / / / / / / / / / / / / / </u>		
B	ACTERIOLOGI	CAL A	NALYS	IS					
System Name:	CITY OF COCOA			;	System ID #: <u>305(</u>	0223	System Pl	none#: <u>(407)</u>	568-5867
Address: 600 SCHOOL ST.			County: DEP District:						
Collector: MARY KRALJ					Collector Pl	none#: (407)	568-5867		
Sample Site (Io	cality or subdivision):	R-10						
Date and Time	Collected:		04/21/98 (@ 1000)				
Type of Supply Type of Sampl (circle one)	Private we e: Compliance (check box)	Repeat	(chec	pool Icement ik box)		Other	ontransient-noi public water s Well Survey	-	
	[] Distributio	n	[]]	NTC or urbid	C				
Remarks:									
						TO BE COM	PLETED BY LA	B:	
SE COMP	LETED BY COLLECT	OR OF S	AMPLE	Dat	te & time of analy	sis: 04/21	/98 @ 1225	by:	LH
					Analysis Me		MTF	MMO-MUC	
	Sample Point ecific Address)	Cl Res	рН		Sample Number:	Non Coliform	*Total	Confirm Total	Confirm Fecal
R-10				B8	04478-01		A		
	·					<u>}</u>			
	column are preliminary all types of water syste					incommunity v	water systems a	I colifo	 rm
	P - Coliforms are prese A - Coliforms are abser			onfluent : - Too n	growth umerous to count	ΤΑ - Τ	urbid, Absence	of gas or acid	
·····					ARKS BY PROGRA		R	<u> </u>	
ـــــــــــــــــــــــــــــــــــــ	ling Address of Pers Y OF COCOA 0 SCHOOL ST. COA, FL 32922	on/Firm te	o Receive F	Report:	Bavi	[] Repea	nplete collectio at samples cement sample		n
	TN: MARY KRALJ				, nev	ewing offici			
					Title				
								coc	04778.XLS

June 4, 1998

3011 S.W. Williston Road Gainesville. FL 32608-3928 Mailing address: P.O. Box 147009 Gainesville, FL 32614-7009 Tel 352.335.7991 Fax 352.335.2959

Duane Watroba, TAC Chairman Florida Department of Environmental Protection Central District 3319 Maguire Boulevard Suite 232 Orlando, Fl 32803-3767

Subject: Cocoa ASR Facility – UIC Permit UC48-294600

Dear Mr. Watroba:

In accordance with Specific Condition E, page 7, of the City of Cocoa's UIC permit, we are submitting the Certification of Class V Well Construction Completion and SJRWMD well construction permits and well completion reports for the four newly completed ASR wells – R-7, R-8, R-9, and R-10. At this time, no wellhead facilities have been constructed. Final construction of the Dyal Water Treatment Plant expansion, including the wellhead facilities and the SCADA system are expected to be complete in the next 12-18 months.

As we recently discussed on the telephone, we are requesting that signed and sealed as-built drawings be submitted when wellhead facilities are completed and operational cycle testing of the four new wells has been conducted. This is in accordance with UIC permit specific condition D(3), page 10.

Please call if you have any questions.

Sincerely,

CH2M HILL

Michael B. Dupe-

Michael B. Dykes, P.E. Project Manager

GNV\Document2 c: Ed Wegerif, City of Cocoa Ed Davis, CH2M HILL CH2M HILL

Department of **Environmental Protection**

DEP Form No.: Certification of Class V Form Title: Well Construction Completion

Effective Date: DEP Application No.:

(Filled in by DEP)

62-528.900(4)

CERTIFICATION OF CLASS V WELL CONSTRUCTION COMPLETION

INSTRUCTIONS: Submit this certification to the Department along with a signed copy of the Well Completion Report from the appropriate Water Management District.					
DEP Construction Permit No. <u>UC48-294600</u> , issued on <u>9/12/97</u> . County <u>Orange</u> (Date)					
Owner's Name <u>City of Cocoa</u>					
Owner's Address <u>6</u> Code)	00 School Stree (Street)	et, Cocoa, FL 32922 (City)	(State) (Zip		
Well Contractor's Na	ame <u>Meridith F</u>	Invironmental(Title)	No.: 2200 (State License No.)		
Well Contractor's Address <u>5654 N. Apopka Vineland, Orlando, FL 32858-5648</u> (Street) (City) (State) (Zip Code)					
Well Location <u>Well R-7. Dyal Water Treatment Plant</u> Deviations from the application and plans approved by the Department:					
None_Noted					
Actual Dimensions: Diameter	16	inches			
Well depth	370' BLS	feet			
Casing depth	300' BLS	feet			

This is to certify that, with the exception of the deviations noted above, the construction of this well has been completed in accordance with the plans authorized by Construction Permit No. 3-095-0820-AWG, dated 7/13/97.

Date: May 28, 1998

1, chau (Contractor's Signature)

(Engineer's Signature)

		· · · · · · · · · · · · · · · · · · ·		
		STATE OF FLOR . PERMIT APPLICATION TO CONSTRUCT,	Permit No. 3-025-0820 AUG	
		REPAIR, MODIFY, OR ABANDON A WELL		
	[3	Florida Unique I.D.		
		THIS FORM MUST BE FILLED OUT COMPLETELY.	Permit Stipulations Required (See attached)	
	6	X St. Johns River St. Johns River The water well contractor is responsible for completing this form and forwarding the permit to the appropriate delegated		
		South Florida Suwannee River	62-524 well	
		CHECK BOX FOR APPROPRIATE DISTRICT, ADDRESS ON BACK OF PERMIT FORM	WUP Application No.	
l			ABOVE THIS LINE FOR OFFICIAL USE ONLY	
		City of Cocoa 155 North Wilson Avenue Cocoa 32	922 352-639-7651	
	1.	Owner, Legal Name of Entity if Corporation Address City	Zip Telephone Number	
			· ····································	
2. Claude H. Dyal Water Treatment Plant 28400 S.R. 520 Orange County Well Location — Address, Road Name or Number, City				
		Meridith Environmental Services, Inc. 2200	407-291-4755	
dow b	J.,			
al ad		Well Drilling Contractor License No. P.O. Box 585648 4 NTE 44 of NTE	Telephone No. NW NE	
er te Boge		4. <u>IVE</u> 1/4 01 <u>IVW</u>	_ 1/4 of Section _20	
DY OC		Address (smallest) (biggest	(Indicate Well on Chart)	
25		Orlando, FL 32858-5648		
ha n	0	City State Zip 5. Township 24		
d ef 1 stbk		Orange i		
59		County Subdivision Name Lot Block	Unit SW SE	
1	-			
	7.	Number of proposed wells Check the use of well: (See back of permit for additional choices) Dome	stic Monitor (type)	
		Irrigation (type) Public Water Supply (type) ASR (communitys) Other		
		(See Back) (See Back)		
		Distance from septic system $\underline{n/a}$ ft. Description of facility $\underline{R7}$ Estimated start of	f construction date 7-23-97	
	0	Application for: XX New Construction Repair/Modify Abandonment	A PERSON	
	0.	Application for Reason to Reason to Reason to Reason to	Abandonment Abandonment	
	9.	Estimated: Well Depth 370 Casing Depth 300 Bate 1015, Screen Interview	al from	
	l	Casing Material: XBik Streek/Sud / PVC Casing Diameter 16" Seal Material	JUN 25 1997	
		If applicable: Proposed From 300 to 0 seal Material neat cement grout		
	· ·	If applicable: Proposed From <u>300</u> to <u>0</u> Seal Material <u>neat cement</u> grout Grouting Interval From <u>500</u> to <u>500</u> Seal Material	200	
		From to Seal Matérial Draw a map of u	vell location and indicate well stort the boundity known	
		roads and landn	narks; provide distances between with and later parks.	
	111.	Telescope Casing or Liner (check one) Diameter	North	
]	Blk-Steel / Galvanized / PVC Other (specify:	N	
	12.	Method of Construction: X Rotary A Cable Tool Combination	X	
		AugerOther (specify:))	· · · ·	
	13.	. Indicate total No. of wells on site $\underline{n/a}$ List number of unused wells on site	m	
•	14.	. Is this well or any other well or water withdrawal on the owner's contiguous property covered	East	
		under a Consumptive/Water Use Permit (CUP/WUP) or CUP/WUP Application?NoYes		
		(If yes, complete the following) CUP/WUP No. 0048294600		
		District well I.D. No. 3048M05271 2-095-000-5AUGMR		
		Latitude 28 [°] 23'00"N Longitude 81 [°] 56'00"W		
		Data obtained from GPS or map or survey (map datum NAD 27 NAD 83)	South	
	15.	. I hereby certify that I will comply with the applicable rules of Title 40, Florida Administrative Code, I certify that I am the owner of the property, th	at the information provided is accurate, and that I am aware of my	
		I hereby certify that I will comply with the applicable rules of Tide 40, Ronda Administrative Code, and that a water use permit or artificial recharge permit, if needed, has been or will be obtained prior to commencement of well construction. I further certify that all information provided on this application is accurate and that it will obtain necessary approval from other federal, state, or local governments, if applicable, hegree to provide a well completion report to the District within 30 days after drilling or the permit expiration, whichever occurs first.	at the information provided is accurate, and that I am eware of my abutes, to maintain or property abandon this well; or, I certify that I am rovided is accurate, and that I have informed the owner of his re-	
		application is accurate and that I will obtain necessary approval from other Bideral, state, or local sponsabilities as stated above. Owner consent governments, if applicable, legree to provide a well completion report to the District within 30 days	is to personnel of the WMD or a representative access to the well site.	
0	\square		MA 6-24-97	
	\vdash	Signature of Contractor License No.	ers et égent's Signature Date	
		DO NOT WRITE BELOW THIS LINE - FOR OFFICIAL USE O		
		2 1 1 1 2 et 1/5 9	N.	
		Approval Granted By: 8 Ap. 2 - Cherry Control Issue Date: 11-	L2 - Hydrologist Approval	
		Owner Number: Fee Received: \$ _/20.00 Receipt No.: _2/	022 Check No.: 15465	
		•	-	

THIS PERMIT NOT VALID UNTIL PROPERLY SIGNED BY AN AUTHORIZED OFFICER OR REPRESENTATIVE OF THE WMD. IT SHALL BE AVAILABLE AT THE WELL SITE DURING ALL DRILLING OPERATIONS. This permit is valid for 90 days from date of issue.

Palatiu I c

WELL COMPLETION REPORT (Press col	mplex in black ink or type.)	OWNER'S NAME City of Cocoa R-7
PERMIT #	#DID #	COMPLETION DATE Florida Unique 1.D
Number of wells drilled /WU	P#	
Indicate remaining wells to be cancelled		WELL USE: DEP/Public X Irrigation Domestic Monitor
(All wells drillen need an individual complet	ion repen)	ASR
WATER WELLCONTRACTOR'S		HRS Limited 62-524 Other
SIGNATURE	Apprend 2200	
I certify that the information provided with	erperi () occurate and irae)	DRILL METHOD 🙀 Rotary 🗌 Cable Tool 🗌 Combination
		🗍 Jet 🔄 Auger Other
Grout No. of Bags	From (ft.) To (ft.)	
Neat Cement: 438	26", 0-120 16", 300-0	Measured Static Water Level 8 Measured Pumping Water Level 78
Bentonite: 270		After _24_ Hours at _880 G.P.M. Measuring Pt. (Describe):
		Which is Ft. Above Below Land Surface
WELL LOCATION: Site Address 2840	0 SR 520 County_Orange	Casing: Black Steel Galv. K PVC Other
Otr: Otr: Sec:2	20 Twp: 24 Rge: 34	
Latitude	Longitude	Copen Hole Depth DRILL CUTTINGS LOG Examine cuttings
·····		Screen 300 (FL) 370 every 20 ft. or at formation changes. Give
DATE STAMP	Sketch of well location on property N	Casing Diameter color, grain size, and type of material. Note
		& Depth (Ft.) From To cavities, depth to producing zones.
	1 1	Diameter
		From <u>120</u>
1 1		To
		Diameter 16"
		From 0
		то 300
Official Use Only		see attached
CHEMICAL ANALYSIS		
	1	Casing
Iron: ppm Sulfate: ppm	1 1	Diameter
Chlorides:ppm	i I	From
[] Lab Test [] Field Test Kit		
Pump Type Give distances from septic tank and house		
	or other reference points	
[] Turbine		
Horsepower Capacity G.P. Pump Depth Ft. Intake Depth	M	Driller's Name:
rump Depth Ft. Intake Depth	Fl.	(print or type) David Adkins

•

.

MERIDITH ENVIRONMENTAL SERVICES, INC.

JOB NAME:PO	OLE AND KENT	P.O.#8188			
JOB LOCATION:	WELL R-7CO	MPLETED 11-14-98			
DIAMETER OF C	ASINGS:9 5/8"	STATIC WATER LEVEL:6'5"			
TOTAL DEPTH C	OF WELL: 370'	TOTAL DEPTH OF CASING: 300' OF 16" PVC			
FROM FEET	TO FEET	TYPE MATERIAL ENCOUNTERED			
0	10	SAND			
10	12	WHITE CLAY			
12	18	SAND, SHELL			
18	40	CEMENT, SHELL			
40	90	SHELL, CLAY			
90	92	ROCK			
92	114	SHELL, SAND, LITTLE CLAY			
114	126	CLAY, SHELL			
126	140	SHELL, CEMENT			
140	145	SHELL, CEMENT, CEMENTED SANDSTONE			
145	170	SHELL, CEMENT, TRACES GREEN CLAY, CEMENTED SANDSTONE			
170	175	SHELL, GREEN CLAY, CEMENTED SANDSTONE			
175	185	SHELL, GREEN CLAY, CEMENTED SANDSTONE, TRACES OF WHITE			
185	195	SHELL, GREEN CLAY, CEMENTED SANDSTONE, TRACES WHITE & GRAY			
195	205	GREEN & GRAY CLAY, CEMENTED SANDSTONE, SOME SHELL			
205	215	GREEN & GRAY CLAY, TRACES OF WHITE CLAY, CEMENTED SANDSTONE, SOME SHELL			

COLLA R-7

215	220	GRAY & WHITE CLAY, SOME GREEN, CEMENTED SANDSTONE, SOME SHELL
220	235	WHITE LIME ROCK, GRAY SANDSTONE, SOME WHITISH CLAY, SOME SHELL
235	245	GRAYISH WHITE SANDSTONE, SOME WHITISH TAN CLAY, GRAY LIMESTONE, SOME SHELL
245	255	LIGHT TAN & GRAY LIMESTONE, GREENISH GRAY CLAY, WHITISH GRAY SANDSTONE, SHELL
255	260	LIGHT TAN & GRAY LIMESTONE, GRAY SANDSTONE, GREENISH GRAY CLAY, TRACE OF BROWN
260	270	LIGHT TAN & GRAY LIMESTONE, GRAY SANDSTONE, GREENISH GRAY CLAY, GRAYISH WHITE CLAY, SHELL
270	280	LIGHT TAN & GRAY LIMESTONE, GRAY SANDSTONE, GRAYISH WHITE CLAY, SHELL
280	285	LIGHT TAN & GRAY LIMESTONE, GRAYISH WHITE SANDSTONE, SHELL, BROWN LIMESTONE
285	305	SOFT WHITE TO LIGHT TAN LIMESTONE, GRAYISH SANDSTONE, SHELL
305	310	SOFT LIGHT TAN LIMESTONE
310	320	SOFT LIGHT TAN LIMESTONE, TRACES OF CHIRT
320	325	HARD LIGHT TAN LIMESTONE
325	330	MEDIUM HARD LIGHT GRAY LIMESTONE, TRACES OF LIGHT TAN
330	335	MEDIUM HARD LIGHT TAN LIME, TRACES OF LIGHT GRAY
335	340	MEDIUM HARD LIGHT TAN AND LIGHT GRAY LIMESTONE
340	345	MEDIUM HARD LIGHT TAN AND GRAY LIMESTONE

COLOR R.7

345	355	MEDIUM HARD LIGHT GRAY TO TAN LIMESTONE
355	360	MEDIUM HARD WHITE LIME, TRACES OF LIGHT GRAY AND TAN
360	370	MEDIUM HARD TAN, LIGHT TAN, LIGHT GRAY LIMESTONE
·		
<u> </u>		

~

Department of Environmental Protection

DEP Form No.: Form Title:

Effective Date: DEP Application No.: 62-528.900(4) Certification of Class V Well Construction Completion

(Filled in by DEP)

CERTIFICATION OF CLASS V WELL CONSTRUCTION COMPLETION

			ent along with a signed riate Water Management
DEP Construction Pe	rmit No. <u>UC48-29</u>	<u>4600</u> , issued on <u>9/12/</u> (Dat	/97 . County <u>Orange</u> ce)
Owner's Name <u>City</u>	of Cocoa		
Owner's Address <u>6</u>	00 School Stree (Street)	<mark>et, Cocoa, FL 32922</mark> (City)	(State) (Zip
Code)			
Well Contractor's N	ame <u>Meridith</u>	Environmental (Title)	No.: 2200 (State License No.)
Well Contractor's A			Orlando, FL 32858-5648 ty) (State)(Zip Code)
Well Location	Well R-8, Dyal	Water Treatment Plan	nt
Deviations from the	application and	l plans approved by the	e Department:
None Noted			
Actual Dimensions: Diameter	16	_ inches	<u> </u>
Well depth	370' BLS	feet	
Casing depth	300' BLS	feet	
	is well has be	en completed in acco	ations noted above, the plans of the plane o

Date: <u>May 28, 1998</u>

Mid (Contract s_Signature)

(Engineer's Signature)

	CAEVI CA	STATE OF FLOR IRMIT APPLICATION TO CONSTRUCT REPAIR, MODIFY, OR ABANDON A WELL Permit No. <u>9-095-0819AUG</u> Southwest THIS FORM MUST BE FILLED OUT COMPLETELY. Northwest THIS FORM MUST BE FILLED OUT COMPLETELY. Northwest The water well contractor is responsible for completing this form and forwarding the permit to the appropriate delegated county where applicable. Suwannee River Suwannee River CHECK BOX FOR APPROPRIATE DISTRICT. ADDRESS ON BACK OF PERMIT FORM.						
thet eddress pe window	2. 3.	City of Cocoa 155 North Wilson Avenue Cocoa 32922 352-639-7651 Dwner, Legal Name of Entity if Corporation Address City Zip Telephone Number Claude H. Dyal Water Treatement Plant 28400 S.R. 520 Orange County Well Location Address, Road Name or Number, City Meridith Environmental Services, Inc. 2200 407-291-4755 Well Drilling Contractor License No. Telephone No. NW NE P.O. Box 585648 4. NE 1/4 of Section 20 1/4 of Section						
Fold at this the In order (Is visible through envelop		Address 4						
	County Subdivision Number Lot Dick Out 7. Number of proposed wells 1 Check the use of well: (See back of permit for additional choices) Domestic Monitor (type)							
	9.	Application for: X New Construction Repair/Modify Abandonment						
		Grouting Interval From to Seal Material From to Seal Material From to Seal Material Draw a map of well location and indicate well site with site of the seal well seal well site of the seal well seal						
	14.	Indicate total No. of wells on site <u>1/a</u> List number of unused wells on site Is this well or any other well or water withdrawal on the owner's contiguous property covered under a Consumptive/Water Use Permit (CUP/WUP) or CUP/WUP Application?NoYes (If yes, complete the following) CUP/WUP No. <u>U048294600</u> District well I.D. No. <u>3048M05271</u> Latitude <u>28°23'00"N</u> Longitude <u>81° 56'00C**</u> W						
	15.	Data obtained from GPS or map or survey (map datum NAD 27 NAD 83) South I hereby certify that I will comply with the applicable rules of Tide 40, Florida Administrative Code, and that a water use permit or artificial recharge permit, if needed, has been or will be obtained prior to commencement of well construction. I lumiter certify that all information provided in the owner of the property. The owner, that the information provided is accurate, and that I am aware of my responsibilities under Chapter 373, Florida Statutas, to maintain or property abandon this well; or, I certify that I am the agent for the owner, that the information provided is accurate, and that I have informed the owner of his re- sponsibilities as stated above. Owner consents to personnel of the WMD or a representative access to the well site. There well and the applicable, I agree to provide a well completion report to the District within 30 days is						
•		Approval Granted By: Vere Received: \$ 120 Vere Received: \$ 120 Contractor Contractor Contractor Contractor Advant's Signature Date Contractor Contractor Contractor Advant's Signature Date Contractor Contractor Con						

THIS PERMIT NOT VALID UNTIL PROPERLY SIGNED BY AN AUTHORIZED OFFICER OR REPRESENTATIVE OF THE WMD. IT SHALL BE AVAILABLE AT THE WELL SITE DURING ALL DRILLING OPERATIONS. This permit is valid for 90 days from date of issue.

Palatha Printing Co., Inc

- - - - -- ---

•

	City of Comp. D. 9
WELL COMPLETION REPORT (Please complete in black ink or type.)	OWNER'S NAME City of Cocoa R-8
PERMIT #	COMPLETION DATE <u>1-25-98</u> Florida Unique I.D.
Indicate remaining walls to be concelled	WELL USE: DEP/PublicASR X Irrigation Domestic Monitor
(All wells driller need an individual completion report)	
(All wells drilled field an individual compension report) WATER WELL CONTRACTOR S SIGNATURE	HRS Limited 62-524 Other
I certify that the information privated in this report incurrate and true)	DRILL METHOD 🕅 Rotary 📋 Cable Tool 🛛 Combination
	Det Auger Other
Grout No. of Bags From (ft.) To (ft.) Neat Cement: 437 26 ¹¹ 0–120 16 ¹¹ 300–0	Measured Static Water Level Measured Pumping Water Level
Neat Cement: 437 26", 0-120 16", 300-0 Bentonite: 240	After _24_ Hours at 920_ G.P.M. Measuring Pt. (Describe):
	Which is Ft. Above Below Land Surface
WELL LOCATION: Site Address 28400 SR 520 County Orange Qtr:	Casing: Black Steel Galv. & PVC Other
Latitude Vii Sec: Longitude	Open Hole Depthone DRILL CUTTINGS LOG Examine cuttings
······································	Screen 300 (FL) 370 every 20 ft. or at formation changes. Give
DATE STAMP Sketch of well location on property N	Casing Diameter color, grain size, and type of material. Note & Depth (Ft.) From To cavities, depth to producing zones.
	& Depth (Ft.) From To cavities, depth to producing zones.
	From
	To
	Diameter 16"
	From 0
Official Use Only	To300
CHEMICAL ANALYSIS	Liner 🗍 or See attached
Iron: ppm Sulfate: ppm Chlorides:ppm	Diameter
[] Lab Test [] Field Test Kit	From
Pump Type Give distances from septic tank and house	
[] Centrifugal [] Jet [] Submersible or other reference points [] Turbine	
Horsepower Capacity G.P.M Pump Depth Ft. Intake Depth Ft.	Driller's Name: David Adkins
	(print or type)

MERIDITH ENVIRONMENTAL SERVICES, INC.

1

(

JOB NAME: POOLE AND KENT	P.O.#	
Well #8 JOB LOCATION: COCOA COMPLETED	·	

DIAMETER OF CASINGS: __9" PILOT HOLE _____ STATIC WATER LEVEL: ____

TOTAL DEPTH OF WELL:_____ TOTAL DEPTH OF CASING: 40'

8188

FROM FEET	TO FEET	TYPE MATERIAL ENCOUNTERED
0	5	BROWN SAND & BARK
5	10	BROWN SANDSTONE & BARK
10	15	BROWN SANDSTONE
15	20	BROWN SANDSTONE & SOME SHELL
20	25	SHELL & SOME CLAY
25	30	SHELL & SOME CLAY
30	35	SHELL & SOME CLAY
35	40	SHELL & SOME CLAY
40	45	SHELL, SOME CLAY & SANDSTONE
45	50	SHELL & TRACES OF SANDSTONE
50	55	SHELL & TRACES OF SANDSTONE
55	60	SHELL & TRACES OF SANDSTONE
60	65	SHELL & TRACES OF SANDSTONE
65	70	SHELL, SANDSTONE, TRACES OF CLAY
70	75	SHELL & GRAY CLAY
75	80	SHELL & GRAY CLAY
80	85	SHELL & GRAY CLAY
85	90	SHELL, SANDSTONE & GRAY CLAY
90	95	SHELL, SANDSTONE & GRAY CLAY

COOM R-8

i

95	100	SHELL, SANDSTONE & GRAY CLAY
100	105	SHELL, SANDSTONE, & SOME GRAY CLAY
105	110	SHELL, SANDSTONE, & SOME GRAY CLAY
110	115	SHELL & SANDSTONE
115	120	SHELL & CEMENTED SANDSTONE
120	125	SHELL & CEMENTED SANDSTONE
125	128	SHELL & CEMENTED SANDSTONE
······		· · · · · · · · · · · · · · · · · · ·

?

MERIDITH ENVIRONMENTAL SERVICES, INC.

JOB NAME:PO	OLE AND KENT	P.O.#8188
JOB LOCATION:	WELL R-8CO	OMPLETED 12-10-97
DIAMETER OF C	ASINGS:9 5/8"	STATIC WATER LEVEL:0
TOTAL DEPTH C	OF WELL:	TOTAL DEPTH OF CASING: 300' OF 16" PVC
FROM FEET	TO FEET	TYPE MATERIAL ENCOUNTERED
125	130	CEMENT, SHELL, CEMENTED SANDSTONE
130	135	CEMENT, SHELL, CEMENTED SANDSTONE
135	140	DIRT, CEMENT, SHELL, CEMENTED SANDSTONE
140	155	SHELL, GREEN CLAY, CEMENTED SANDSTONE, CEMENT
155	160	GREEN CLAY, SHELL, CEMENTED SANDSTONE
160	190	SHELL, GREEN CLAY, CEMENTED SANDSTONE
190	205	GREEN CLAY, SOME SHELL AND CEMENTED SANDSTONE
205	240	GREEN CLAY, SOME SHELL AND CEMENTED SANDSTONE, TRACES OF WHITE CLAY
240	250	GREEN CLAY, SOME SHELL AND CEMENTED SANDSTONE, TRACES OF WHITE LIMESTONE
250	260	GREEN CLAY, SHELL AND CEMENTED SANDSTONE, TRACE OF WHITE LIMESTONE
260	275	SHELL, GREEN CLAY, CEMENTED SANDSTONE, SOME WHITE LIMESTONE
275	285	SHELL, SANDSTONE, SOME WHITE LIMESTONE

CocoA R-8

285	290	SHELL, WHITE LIMESTONE, CEMENTED SANDSTONE, GREEN AND GRAY CLAY
290	295	SHELL, WHITE LIMESTONE, CEMENTED SANDSTONE, TRACES OF GREENISH CLAY
295	305	WHITE LIMESTONE, SHELL AND CEMENTED SANDSTONE
305	315	TAN LIMESTONE AND CEMENT
315	325	TAN LIMESTONE
325	330	TAN AND LIGHT GRAY LIMESTONE
330	345	WHITE AND LIGHT GRAY LIMESTONE
345	350	TAN AND LIGHT GRAY LIMESTONE WITH SOME WHITE LIMESTONE
350	355	TAN AND LIGHT GRAY LIMESTONE
355	360	WHITE LIMESTONE
360	370	TAN AND LIGHT GRAY LIMESTONE
·		
		· · · · · · · · · · · · · · · · · · ·
L		

Department of **Environmental Protection**

..

DEP Form No.: Form Title:

Effective Date: DEP Application No.:.

62-528.900(4) Certification of Class V Well Construction Completion

(Filled in by DEP)

CERTIFICATION OF CLASS V WELL CONSTRUCTION COMPLETION

		cation to the Department port from the appropria	
DEP Construction Pe	rmit No. <u>UC48-29</u>	4600, issued on <u>9/12/97</u> (Date)	County <u>Orange</u>
Owner's Name <u>City</u>	of Cocoa	<u> </u>	- <u></u>
Owner's Address <u>6</u>		et, Cocoa, FL 32922	
Code)	(Street)	(City)	(State)(Zip
Well Contractor's No	ame <u>Meridith</u>	Environmental	No.: 2200
		(Title)	(State License No.)
Well Contractor's A	ddress <u>5654</u> (St	N. Apopka Vineland, Or reet) (City	lando, FL 32858-5648) (State)(Zip Code)
Well Location <u>R-9</u>	, Dyal Water T	reatment Plant	
Deviations from the	application and	l plans approved by the D	epartment:
None_Noted			
Actual Dimensions: Diameter	16	_ inches	
Well depth	370' BLS	feet	
Casing depth	300' BLS	feet	
		exception of the deviati en completed in accords a. 3-095-0817-AWG	

Date: <u>May 28, 1998</u>

authorized by Construction Permit No.

dated id ntractor's ature)

(Engineer's Signature)

	CALLAR CO	STATE OF FLORID STATE OF FLORID Southwest Northwest St. Johns River South Florida Suwannee River CHECK BOX FOR APPROPRIATE DISTRICT. ADDRESS ON BACK OF PERMIT FORM.				Florida Unique I.D Florida Unique I.D Permit Stipulations R his ated 62-524 well CUP/ Application No	Permit No. <u>3-095-08/7A345</u> Florida Unique I.D Permit Stipulations Required (See attached) 62-524 well CUP/ WUP Application No ABOVE THIS LIKE FOR OFFICIAL USE ONLY		
order that address envelope window	2. 3.	Owner, Legal Name of Entity i Claude H Dy Well Location — Address, Row Meridith En Well Drilling Contractor P.O. Box 58 Address	f Corporation al Water Tre ad Name or Number, City vironmental 5648	orth Wilson Av Address eatment Plant Services, Inc License No.	Ch 28400 S.R. . 2200	y z 520 Orange	ip Telephone Number e' County 755 No. NW NE 		
Fold al this line i lis visible through	6.	City Stat Orange L County		Zip	- 5. Township _2 i Lot Blo	24 Range 34			
-	8. 9.	(See Back) Distance from septic system Application for: <u>XX</u> New Estimated: Well Depth Casing Material: If applicable: Proposed for Grouting Interval for Telescope Casing or Blk-Steel / Galvanized / PVC Method of Construction:	Public Water Supply n_n/at. Description y Construction	y (type) <u>ASR (commu</u> (See Back) otion of facility <u>R9</u> Repair/Modify <u>Aba</u> Casing Depth <u>300-</u> Casing Diameter <u>16"</u> <u>9</u> Seal Material <u>neat</u> Seal Material <u></u> Diameter <u></u>	List OtherEstimated andonment(Ro Screen Seal M Seal M Seal M	start of construction date _ eason for Abandonment) D Interval from to fill aterial to	7-23-97 Clebalson L JUN 25 1997 DUN 25 1997 PDS PDS PDS PDS PDS PDS PDS PDS PDS PDS		
	14.	(If yes, complete the following District well I.D. No304 Latitude _28° 23'00 Data obtained from GPS	n site, a List nu If or water withdrawal on r Use Permit (CUP/WUP) g) CUP/WUP No $\underline{8M05271}$ $\overline{2}$ - $\underline{11N}$ Longitude or map or survey	the owner's contiguous pro- or CUP/WUP Application? 10482946000 10482946000 10482946000000000000000000000000000000000000	Imperty covered Imperty covered Yes Imperty Covered Imperty Covered	South	n Sci accurate, and that I am eware of my abandon this well; or, I certify that I am have informed the owner of his re-		
\langle		I hereby certify that I will comply with a and that a water use permit or artificia prior to commencemental well of governments, il applientle I agree to an origination is accurate and that I will o governments, il applientle I agree to an origination of the permit application, a Signetifier of Contractor Approval Granted By:	ban the	License No. RITE BELOW THIS LINE	nobilities as stated above. Owner	v consents to personnel of the WMD or Conserts or Agent's Signature USE ON LY 30/97 Hydro	a representative access to the well scia. 24-97 Date Diogist Approval		

THIS PERMIT NOT VALID UNTIL PROPERLY SIGNED BY AN AUTHORIZED OFFICER OR REPRESENTATIVE OF THE WMD. IT SHALL BE AVAILABLE AT THE WELL SITE DURING ALL DRILLING OPERATIONS. This permit is valid for 90 days from date of issue.

Name Protong Co., Inc.

WELL COMPLETION REPORT	We save complete po black rok or type (OWNER'S NAME _		r of C	locoa_K-	9
PERMIT	17WGDID #	COMPLETION DAT	E 3_18	8-98	Florida Unique	e I.D
rummer of wells drilled <u></u>	_/WUPA				t for the bringer	
Indicate remaining wells to be cancelle (All wells drilled needen individual co	cd	WELL USE: DEPAR	blic X	Irrigation	Domesti	ic Monnor
(All wells drilled need an individual co	Charles and the second					
WATER WELL CONTRACTORY	2200	KR\$ La	nited	62-524	Other	
Innih in the and	and an App Appendix and	DRILL METHOD	Rotary		Cable Tool	Combination
	$\langle \rangle$	•				
		-	🚺 Jei		Auger	Other
Grow No. of E Neat Cement: 441	To (fr.)					
Bentonite: 187		Measured Static Wate	r Level <u>9</u>	M	easured Pumping	Water Level 71
Demonte [0]	l	After 24 Hours	1060 g	i.P.M. Mezs	uring Pt. (Describe	:):
78	400 SR 520 Crumy_Orange	Which is Ft. [Below Land	Surface	
WELL LOUATION: Site Address 400	20 SK JZV Crunty UZallige	Casing: Black Str	×ା (၂୯୬	IV. XIP	VC Other	
Ull Ull Sec	20 Twp: 24 Rge: 34		7 700 5			IGS LOG Examine cutio
		De Open Hole			20.0 0	of formation changes G
DATE STAMP		Screen		ዋ። 370 ክ) T	every 20 ft. or	at formation changes. Gi
	Sketch of well location on property N	Casing Diameter		£.)	every 20 ft. or color, grain size,	at formation changes. Go, and type of material. No
		Casing Diameter	From_		every 20 ft. or color, grain size,	at formation changes. G , and type of material. No producing panes.
		Casing Diameter A Depth (Ft.) Diameter 26 ¹⁷	From_	£.)	every 20 ft. or color, grain size,	at formation changes. G
		Casing Diameter A Depth (Ft.) Diameter 26 ¹⁷ From	From_	£.)	every 20 ft. or color, grain size,	at formation changes. G , and type of material. N
		Casing Diameter A Depth (Ft.) Diameter 26 ¹⁷	From_	£.)	every 20 ft. or color, grain size,	at formation changes. G , and type of material. N
		Casing Diameter <u>A</u> Depth (Ft.) Diameter <u>25¹⁷</u> From <u>0</u> To <u>120</u>	From (£.)	every 20 ft. or color, grain size,	at formation changes. G , and type of material. N
		Casing Diameter <u>A</u> Depth (Ft.) Diameter <u>26¹¹</u> From <u>0</u> To <u>120</u> Diameter <u>16¹¹</u> From <u>0</u>	From (£.)	every 20 ft. or color, grain size,	at formation changes. G , and type of material. N
DATE STAMP		Casing Diameter <u>A</u> Depth (Ft.) Diameter <u>26¹¹</u> From <u>0</u> To <u>120</u> Diameter <u>16¹¹</u> From <u>0</u>	From (£.)	every 20 ft. or color, grain size, cavities, depth to	at formation changes. G , and type of material. N producing panes.
DATE STAMP		Screen Casing Diameter A Depth (Fi.) Diameter Diameter 26 ^W From 0 To 120 Diameter 16 ^W From 0 To 120 Diameter 16 ^W Froon 0 To 300	From (£.)	every 20 ft. or color, grain size, cavities, depth to	at formation changes. G , and type of material. N
DATE STAMP		Casing Diameter <u>A</u> Depth (Ft.) Diameter <u>26¹¹</u> From <u>0</u> To <u>120</u> Diameter <u>16¹¹</u> From <u>0</u>	From (£.)	every 20 ft. or color, grain size, cavities, depth to	at formation changes. G , and type of material. N producing panes.
DATE STAMP Official Use Only CHEMICAL ANALYSIS		Casing Diameter <u>A Depth (Fi.)</u> Diameter <u>26¹¹</u> From <u>0</u> To <u>120</u> Diameter <u>16¹¹</u> From <u>0</u> To <u>300</u> Liner <u>1</u> or Casing 0		£.)	every 20 ft. or color, grain size, cavities, depth to	at formation changes. G , and type of material. N producing panes.
DATE STAMP DIfficial Lise Only CHEMICAL ANALYSIS		Casing Diameter <u>A Depth (Fi.)</u> Diameter <u>26¹¹</u> From <u>0</u> To <u>120</u> Diameter <u>16¹¹</u> Froen <u>0</u> To <u>300</u> Liner <u>1</u> or Casing <u>0</u> Diameter <u></u>		£.)	every 20 ft. or color, grain size, cavities, depth to	at formation changes. G , and type of material. N producing panes.
DATE STAMP DIfficial Use Only CHEMICAL ANALYSIS Chorides:ppm		Casing Diameter <u>A Depth (Fi.)</u> Diameter <u>26¹¹</u> From <u>0</u> To <u>120</u> Diameter <u>16¹¹</u> Froen <u>0</u> To <u>300</u> Liner <u>1</u> or Casing <u>0</u> Diameter <u></u>		£.)	every 20 ft. or color, grain size, cavities, depth to	at formation changes. G , and type of material. N producing panes.
DATE STAMP DIfficial Lise Only CHEMICAL ANALYSIS	Sketch of well location on property N	Casing Diameter <u>A Depth (Fi.)</u> Diameter <u>26¹¹</u> From <u>0</u> To <u>120</u> Diameter <u>16¹¹</u> From <u>0</u> To <u>300</u> Liner <u>1</u> or Casing <u>0</u> Diameter <u></u> From <u>0</u>		£.)	every 20 ft. or color, grain size, cavities, depth to	at formation changes. G , and type of material. N producing panes.
DATE STAMP DATE STAMP Official Use Only CHEMICAL ANALYSIS tron:ppm Sulfate:ppm Chlorides:ppm Lab Tess Field Tess Kia Pump Type	Sketch of well location on property N	Casing Diameter <u>A Depth (Fi.)</u> Diameter <u>26¹¹</u> From <u>0</u> To <u>120</u> Diameter <u>16¹¹</u> Froen <u>0</u> To <u>300</u> Liner <u>1</u> or Casing <u>0</u> Diameter <u></u>		£.)	every 20 ft. or color, grain size, cavities, depth to	at formation changes. G , and type of material. N producing proces.
DATE STAMP DATE STAMP Official Lise Only CHEMICAL ANALYSIS Chemical ppm Sulfate: ppm Chiorides: ppm { Lab Test { } Field Test Kit	Sketch of well location on property N	Casing Diameter <u>A Depth (Fi.)</u> Diameter <u>26¹¹</u> From <u>0</u> To <u>120</u> Diameter <u>16¹¹</u> From <u>0</u> To <u>300</u> Liner <u>1</u> or Casing <u>0</u> Diameter <u></u> From <u>0</u>		£.)	every 20 ft. or color, grain size, cavities, depth to	at formation changes. G , and type of material. N producing panes.

3 14:05 P.02

Jun 4'98

Meridith Environmental Services, Inc. P.O. Box 585468 Orlando, FL 32858-5648

JOB NAME:	Poole and Kent	P.O.#	8188
JOB LOCATION:_	Claude Dyal Water Tre	atment Plant R	9
DIAMETER OF CA	ASINGS:ST.	ATIC WATER LEVEL:	
TOTAL DEPTH O	FWELL TOTAL D	EPTH OF CASING	

(

FROM FEET	TO FEET	TYPE MATERIAL ENCOUNTERED
0	20	SAND
20	30	SHELL
30	95	SHELL
95	130	SHELL AND SANDSTONE
130	145	CEMENT, SHELL, SANDSTONE, TRACES OF GREEN CLAY
145	150	CEMENT, GREEN CLAY, SHELL, AND SANDSTONE
150	155	GREEN CLAY, SHELL, SANDSTONE
155	200	GREEN CLAY AND SANDSTONE
200	215	SANDSTONE, SOFT LIMESTONE, CLAY
215	230	GREEN CLAY, SANDSTONE, LIMESTONE
230	245	SANDSTONE, SOFT LIMESTONE
245	250	LIMESTONE AND SANDSTONE
250	280	LIMESTONE, SANDSTONE AND SHELL
280	285	SANDSTONE AND SOFT LIMESTONE
285	310	LIMESTONE
		· ·

Meridith Environmental Services, Inc. P.O. Box 585468 Orlando, FL 32858 5648

JOB NAME:City of Cocoa / Poole and Kent	P.O.#8188
JOB LOCATION:R-9 Claude Dyal WTP	······································
DIAMETER OF CASINGS: STATIC WATER	R LEVEL:5'2"
TOTAL DEPTH OF WELL:370' TOTAL DEPTH OF	CASING:300'

FROM FEET	TO FEET	TYPE MATERIAL ENCOUNTERED
310	320	CEMENT, TAN LIME
320	330	HARD WHITE LIME
330	350	MEDIUM HARD TAN LIME
350	370	SOFT TAN LIME
· ·		
		<u> </u>

Department of Environmental Protection

DEP Form No.: Form Title:

Effective Date: DEP Application No.: 62-528.900(4) Certification of Class V Well Construction Completion

(Filled in by DEP)

CERTIFICATION OF CLASS V WELL CONSTRUCTION COMPLETION

			ent along with a signed riate Water Management
DEP Construction Pe	ermit No. <u>UC48-29</u>	4600, issued on 9/12/ (Dat	97 County <u>Orange</u> e)
Owner's Name <u>City</u>	of Cocoa		
Owner's Address <u>6</u>		et, Cocoa, FL 32922	
Code)	(Street)	(City)	(State) (Zip
Well Contractor's N	ame <u>Meridith</u>	Environmental	
		(Title)	(State License No.)
Well Contractor's A	ddress 5654 I	N. Apopka Vineland,	Orlando, FL 32858-5648
	(St	reet) (Ci	ty) (State) (Zip Code)
Well Location	. Well R-10, Dya	al Water Treatment P	lant
Deviations from the	application and	plans approved by the	e Department:
None Noted			
Actual Dimensions: Diameter	16	inches	
	370' BLS		
Casing depth	300' BLS	feet	

This is to certify that, with the exception of the deviations noted above, the construction of this well has been completed in accordance with the plans authorized by Construction Permit No. $\frac{3-095-0818-AWG}{2}$, dated $\frac{9/30/97}{2}$.

Date: <u>May 28, 1998</u>

ha Signature) ractor

(Engineer' Signature)

• .	CALAT CO	REDORED	Southwest Northwest St. Johns River South Florida Suwannee River	ERMIT APPLICATIO ABANDON A WELL THIS FORM MUST BE FIL The water well contractor is form and forwarding the pe county where applicable. TRICT. ADDRESS ON BACK OF PER	LED OUT COMPLETE responsible for comp mit to the appropriate	LY. Dieting this	Florida Unique I.D Permit Stipulations Requ 62-524 well cupy Application No ABOVETHIS LINE FO	IR OFFICIAL USE ONLY
	2.	Owner, Legal Name of Entity Claude H. Dya Well Location — Address, Ro	r if Corporation 1 Water Treatme Dad Name or Number, City		s S.R. 520,	City	32922 Zip County, FL	352-639- 7651 Telephone Number
the In order that address ough envelope window		Well Drilling Contractor P.O. BOX 58 Address		Services, In License No.		(biggest)	Telephone No. /4 of Section <u>20</u> (Indicate Well on Cha	
Fold et this the ls visible throug	6.	City Sta Orange I County	- 4	Zip	— 5. Townsh ii	ipl	_ Range _34 Unit	
	8. 9. 11.	If applicable: Proposed Grouting Interval Telescope Casing on Bik-Steel / Galvanized / PVC Method of Construction: Auger	Public Water Supply em	y (type) XX COMMU ASR (See Beck) ption of facility Repair/Modify A Casing Depth300~ 2 Casing Diameter16 Seal Material Seal Material Diameter Cable Tool Cor	nity List Off	her nated start of c (Reason for A Screen Interval f Seal Material grout		
	14.	Indicate total No. of wells of Is this well or any other we under a Consumptive/Wate (If yes, complete the followin District well I.D. No30 Latitude28° 23' 00'' Data obtained from GPS I hereby certify that I will comply with and that a water use permit or artificial prior to commercement of well const application is accurate and that I will commercement of well const approximations, if application, we	eli or water withdrawal on er Use Permit (CUP/WUP) 1g) CUP/WUP No 48M05271 M Longitude _81 or map or survey the applicable rules of Tible 40, Rord al recharge permit, if needed, has b	or CUP/WUP Application: - ひももこうももの ころら 1 00 11 W	NO Yes NO Yes ALGMAC NAD 83) writing that I am the owner a count or the owner, that	er 373, Florida Statut the Information prov	o personnel of the WMD or & rep	rate, and that I am aware of my den this well or, I certify that I am informed the owner of his re- reservative access to the well site. -4' - 97
		Signature of Contractor Signature of Contractor Approval Granted By: Owner Number:	DO NOT W	License No. ITITE BELOW THIS LIN E: L Fee Received: \$ /2	issue Date: _	IAL USE ONI	s or Agent's Signature	Date

THIS PERMIT NOT VALID UNTIL PROPERLY SIGNED BY AN AUTHORIZED OFFICER OR REPRESENTATIVE OF THE WMD. IT SHALL BE AVAILABLE AT THE WELL SITE DURING ALL DRILLING OPERATIONS. This permit is valid for 90 days from date of issue.

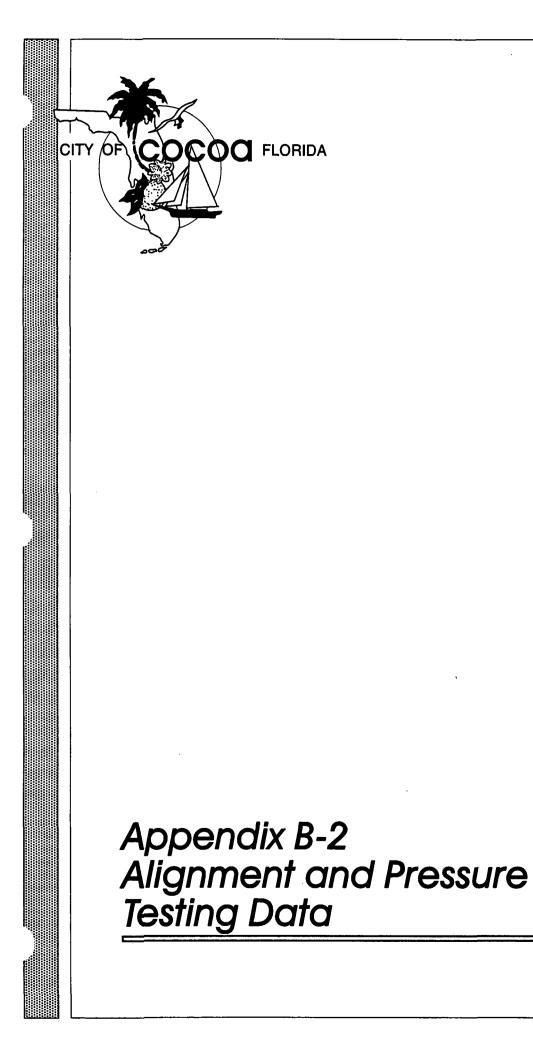
Patatha Printing Co., Inc.

WELL COMPLETION REPORT (Press co	,	OWNER'S NAME	City	of Coa	oa R-10	
	#DID #					D
All wells defined an interview of the cancelled (All wells defined need an interview of the complete WATER WEAL CONTRACTION S SIGNATURE		WELL USE: DEP/P	ublic <u>X</u> ASR	Irrigation		Monitor
SIGNATURE	License #	DRILL METHOD	X Rotary		Cable Tool	
Grout No. of Bags Neat Cement: 437	From (ft.) To (ft.)	No. of Control Water	Jet		Auger	Other
Bentonite: 157 WELL LOCATION: Site Address 2840	26", 0-120 16", 300-0	After <u>24</u> Hours Which is <u>Ft.</u> Casing: Black St	at 1220 G	.P.M. Measu Below Land S	ring Pt. (Describe): Surface	ter Level _28
Qtr: Qtr' Sec:2	<u>0 Twp: 24 Rge: 34 </u>	Screen	300 De	i) 370	every 20 ft. or at	LOG Examine cuttings formation changes. Give
DATE STAMP	Sketch of well location on property N	Casing Diameter & Depth (Ft.) Diameter _26 ¹¹ From0	From		color, grain size, ai cavities, depth to pro	nd type of material. Note oducing zones.
	Ĩ,	To <u>120</u> Diameter <u>16¹¹</u> From 0	·			
Official Use Only CHEMICAL ANALYSIS]]	To <u>300</u> Liner or			see attach	ed
Iron: ppm Sulfate: ppm Chlorides:ppm [] Lab Test [] Field Test Kit		Casing Diameter				
[] Turbine	Give distances from septic tank and house or other reference points					
Horsepower Capacity G.P. Pump Depth Ft. Intake Depth	M Ft.	Driller's Name: (print or type)	David	Adkins	·	

•

•.

•


Meridith Environmental Services, Inc. P.O. Box 585468 Orlando, FL 32858-5648

JOB NAME:Poole and Kent	P.O.#8188
JOB LOCATION:Claude Dyal Water Treatment Pl	antR-10
DIAMETER OF CASINGS: STATIC WA	TER LEVEL:
TOTAL DEPTH OF WELL: TOTAL DEPTH OF	F CASING:

FROM FEET	TO FEET	TYPE MATERIAL ENCOUNTERED
0	10	SAND
10	20	SAND AND SHELL STRINGERS
20	25	SHELL WITH SAND STRINGERS
25	50	SHELL WITH CEMENTED SAND STRINGERS
50	80	SHELL
80	85	SHELL WITH SANDSTONE STRINGERS
85	90	SHELL WITH GREEN CLAY STRINGERS AND CEMENTED SAND STRINGERS
90	105	SHELL STRINGERS, GREEN CLAY, CEMENTED SAND STRINGERS
105	120	GRAY CEMENTED SAND AND SOME SHELL
120	125	CEMENT, CLAY
125	130	SANDSTONE, SHELL, CEMENT
130	160	SANDSTONE, SHELL, CLAY
160	165	CEMENT, SHELL, CLAY, CEMENTED SANDSTONE
165	190	SHELL, CLAY, CEMENTED SANDSTONE
190	215	CLAY, CEMENTED SANDSTONE, SHELL

Cucon R-10

SHELL235245SANDSTONE, CLAY, SHELL, LIMESTONE245255LIMESTONE, CLAY, SANDSTONE, SHELL255290TAN AND GRAY LIMESTONE, TAN AND GRAY SANDSTONE, SHELL290305TAN AND GRAY LIMESTONE, TAN AND GRAY SANDSTONE305320CEMENT, TAN LIME320330HARD WHITE LIME330350MEDIUM HARD TAN LIME			
245255LIMESTONE, CLAY, SANDSTONE, SHELL255290TAN AND GRAY LIMESTONE, TAN AND GRAY SANDSTONE, SHELL290305TAN AND GRAY LIMESTONE, TAN AND GRAY SANDSTONE305320CEMENT, TAN LIME320330HARD WHITE LIME330350MEDIUM HARD TAN LIME350370SOFT TAN LIME	215	235	
255290TAN AND GRAY LIMESTONE, TAN AND GRAY SANDSTONE, SHELL290305TAN AND GRAY LIMESTONE, TAN AND GRAY SANDSTONE305320CEMENT, TAN LIME320330HARD WHITE LIME330350MEDIUM HARD TAN LIME350370SOFT TAN LIME	235	245	SANDSTONE, CLAY, SHELL, LIMESTONE
GRAY SANDSTONE, SHELL290305TAN AND GRAY LIMESTONE, TAN AND GRAY SANDSTONE305320CEMENT, TAN LIME320330HARD WHITE LIME330350MEDIUM HARD TAN LIME350370SOFT TAN LIME	245	255	LIMESTONE, CLAY, SANDSTONE, SHELL
GRAY SANDSTONE305320320320320330HARD WHITE LIME330350MEDIUM HARD TAN LIME350370	255	290	
320330HARD WHITE LIME330350MEDIUM HARD TAN LIME350370SOFT TAN LIME	290	305	
330 350 MEDIUM HARD TAN LIME 350 370 SOFT TAN LIME	305	320	CEMENT, TAN LIME
350 370 SOFT TAN LIME	320	330	HARD WHITE LIME
	330	350	MEDIUM HARD TAN LIME
	350	370	SOFT TAN LIME
			^

.

MERIDITH ENVIRONMENTAL SERVICES, INC.

DEPTH PLUMBNESS 10' CENTER 20' CENTER 30' CENTER 40' CENTER 50° CENTER 60' 0" X 1/4" EAST 70' 0" X 1/4" EAST 80. 0" X 1/2" EAST 90' 0" X 3/4" EAST 100 0" X 3/4" EAST 110' 0" X 3/4" EAST 120' 0" X 3/4" EAST 130' 0" X 3/4" EAST 140' 0" X 7/8" EAST 150' 0" X 1" EAST

Meridith Enviro Serves Fax:407–578–8649

ı

MERIDITH ENVIRONMENTAL SERVICES, INC.

DEPTH	PLUMBNESS
10'	CENTER
20'	CENTER
30'	CENTER
40'	CENTER
50'	CENTER
60'	CENTER
70'	CENTER
80'	CENTER
90'	CENTER
100	1/2" SOUTH X 0"
110'	1/2" SOUTH X 0"
120'	1/2" SOUTH X 1/4" WEST
130'	3/4" SOUTH X 1/4" WEST
140'	7/8" SOUTH X 1/2" WEST
150'	1" SOUTH X 1/2" WEST

MERIDITH ENVIRONMENTAL SERVICES, INC.

DEPTH	PLUMBNESS	
10'	CENTER	
20'	CENTER	
30'	1/2" NORTH X 0"	
40'	1/2" NORTH X 0"	
50'	1/2" NORTH X 0"	
60'	1/2" NORTH X 0"	
70'	1/2" NORTH X 0"	
80'	1/2" NORTH X 0"	
90'	1/2" NORTH X 0"	
100	1/2" NORTH X 0"	
110'	1/2" NORTH X 0"	
120'	1/2" NORTH X 0"	
130'	3/4" NORTH X 0"	
140'	1/2" NORTH X 0"	
150'	1/2" NORTH X 0"	

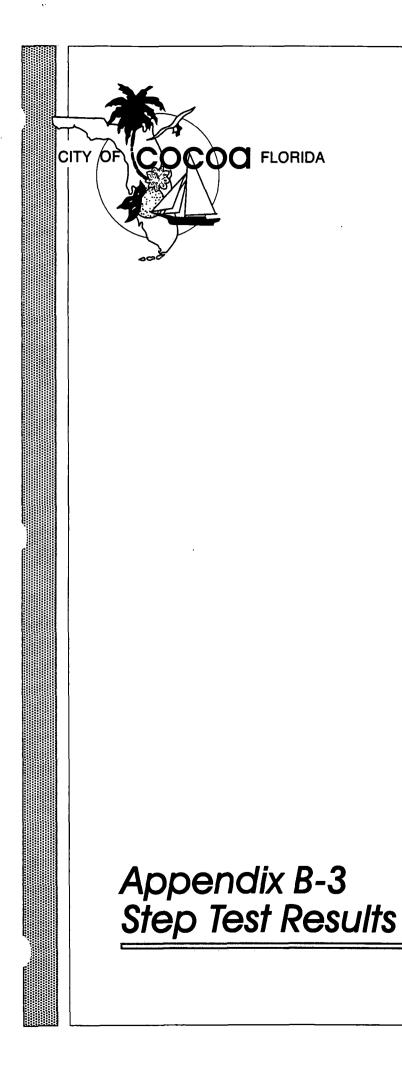
MERIDITH ENVIRONMENTAL SERVICES, INC.

DEPTH	PLUMBNESS
10'	CENTER
20'	CENTER
30'	1/4" EAST X 1/4" SOUTH
40'	1/4" EAST X 1/4" SOUTH
50'	1/2" EAST X 1/2" SOUTH
60'	1/2" EAST X 1/2" SOUTH
70'	3/8" EAST X 3/8" SOUTH
80'	1/4" EAST X 3/8" SOUTH
90'	1/4" EAST X 1/4" SOUTH
100	0" X 1/2" SOUTH
110'	1/4" EAST X 1/2" SOUTH
120'	1/4" EAST X 1/2" SOUTH
130'.	1/2" EAST X 1/2" SOUTH
140'	1/2" EAST X 1/4" SOUTH
150'	3/4" EAST X 1/4" SOUTH

Well R-7 Date of Test: Nov. 3, 1997

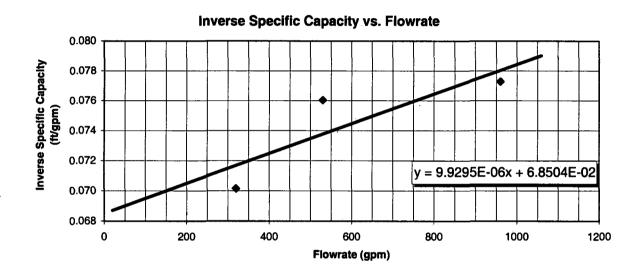
Time (mins.	Casing Pressure (psi)	,0°,10°,10°,
0 10 20 30 40 50 60	77 75 73 71 71 71 71 70	aile shout

Well R-9 Date of Test: Feb. 16, 1998


Time (mins.	Casing Pressure (psi)	
0 10	75 75	
20 30	74 72	20° 10
30 40	71	ັ
50	70	
60	70	

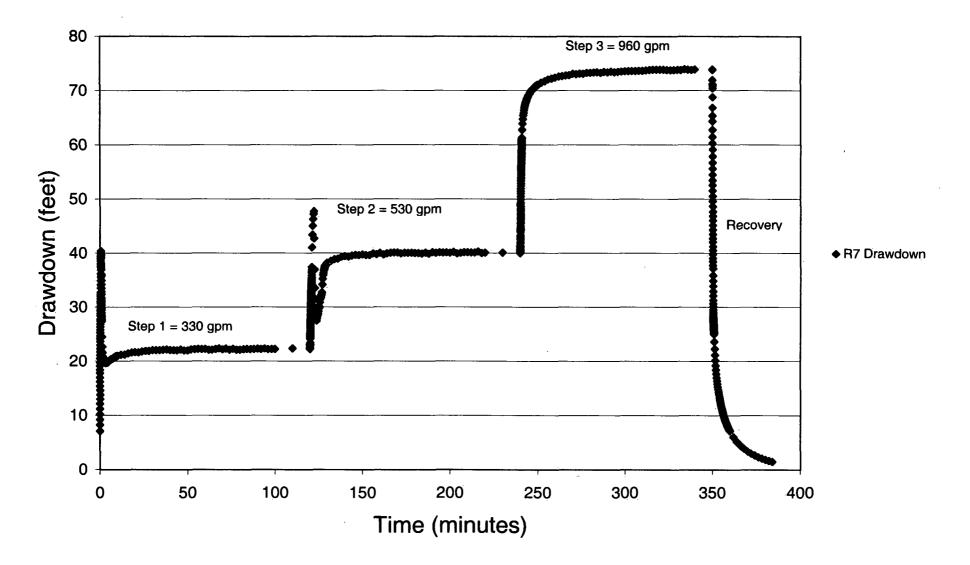
Well R-8 Date of Test: Dec. 15, 1997

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Time (mins.	Casing Pressure (psi)	
60 71	10 20 30 40 50	75 74 72 72 72	v. colo


Well R-10 Date of Test: April 2, 1998

Time (mins.	Casing Pressure (psi)	Ŵ
0 10 20 30 40 50 60	78 75 73 73 72 71 71	5- 4 2 1 V

New ASR Well R-7 Step-Drawdown Test Test Performed May 5, 1998


Step	Pumping Rate, Q (gpm)	Observed Drawdown, s (ft.)	Specific Capacity (gpm/ft)	1/Specific Capacity (ft/gpm)
1	320	22.5	14.3	0.0702
2	530	40.3	13.2	0.0760
3	960	74.2	12.9	0.0773

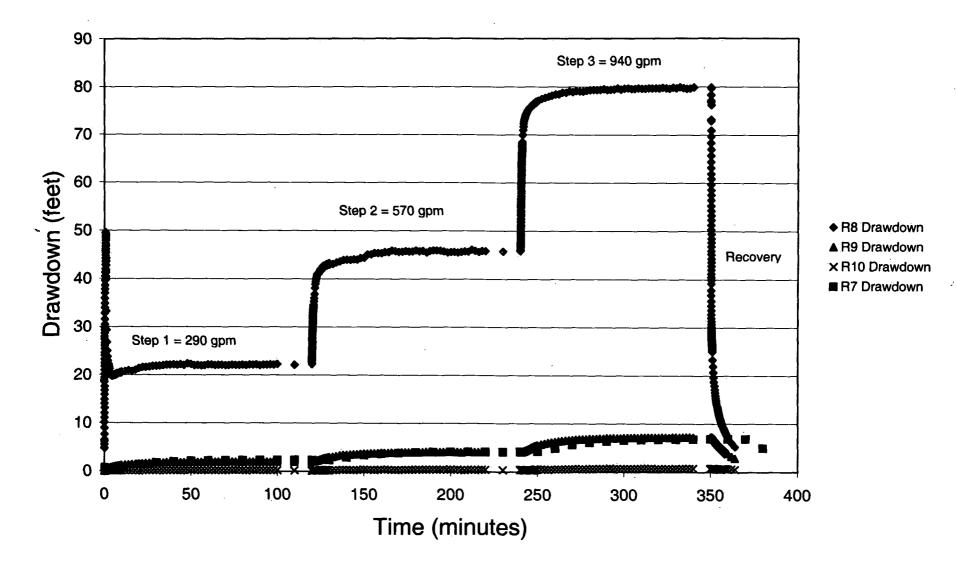
From Inverse Specific Capacity	vs. Flowr	ate chart (above):
Turbulent Drawdown Coefficient,	C=	9.93 (10 ⁻⁶) ft/gpm ²
Laminar Drawdown Coefficient,	B=	.0685 ft/gpm

Step	'Turbulent Component of Drawdown, CQ ² (ft)	² Laminar Component of Drawdown, BQ (ft)	Percent of Drawdown Attributable of Laminar Flow 100% X BQ/(CQ ² + BQ)
1	1.02	21.9	95.6%
2	2.79	36.3	92.9%
3	9,15	65.8	87.8%

Note 1 This is the Well Loss term of Jacob (1946) where drawdown = $CQ^2 + BQ$ Note 2 This is the Laminar term of Jacob (1946) where drawdown = $CQ^2 + BQ$ **ASR R7 Step Test**

New ASR Well R-8 Step-Drawdown Test Test Performed April 22, 1998

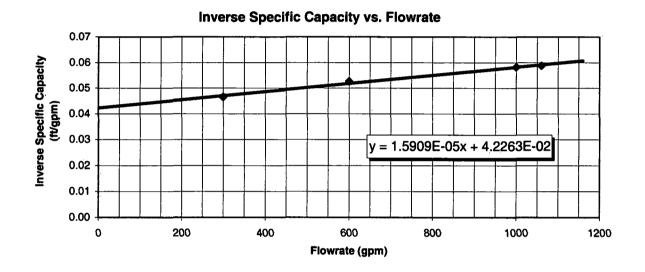
Step	Pumping Rate, Q (gpm)	Observed Drawdown, s (ft.)	Specific Capacity (gpm/ft)	1/Specific Capacity (ft/gpm)
1	290	22.5	12.9	0.0776
2	570	46.1	12.4	0.0809
3	940	80.2	11.7	0.0853


Inverse Specific Capacity vs. Flowrate 0.088 0.086 Inverse Specific Capacity (ft/gpm) 0.084 0.082 0.080 0.078 y = 1.1902E-05x + 7.4119E-020.076 0.074 0.072 -800 1000 1200 0 200 400 600 Flowrate (gpm)

From Inverse Specific Capacity		
Turbulent Drawdown Coefficient,	C=	1.19 (10 ⁻⁵) ft/gpm ²
Laminar Drawdown Coefficient,	B=	.0741 ft/gpm

Step	¹ Turbulent Component of Drawdown, CQ ² (ft)	² Laminar Component of Drawdown, BQ (ft)	Percent of Drawdown Attributable of Laminar Flow 100% X BQ/(CQ ² + BQ)
1	1.0	21.5	95.6%
2	3.9	42.2	91.6%
3	10.5	69.7	86.9%

Note 1 This is the Well Loss term of Jacob (1946) where drawdown = $CQ^2 + BQ$ Note 2 This is the Laminar term of Jacob (1946) where drawdown = $CQ^2 + BQ$

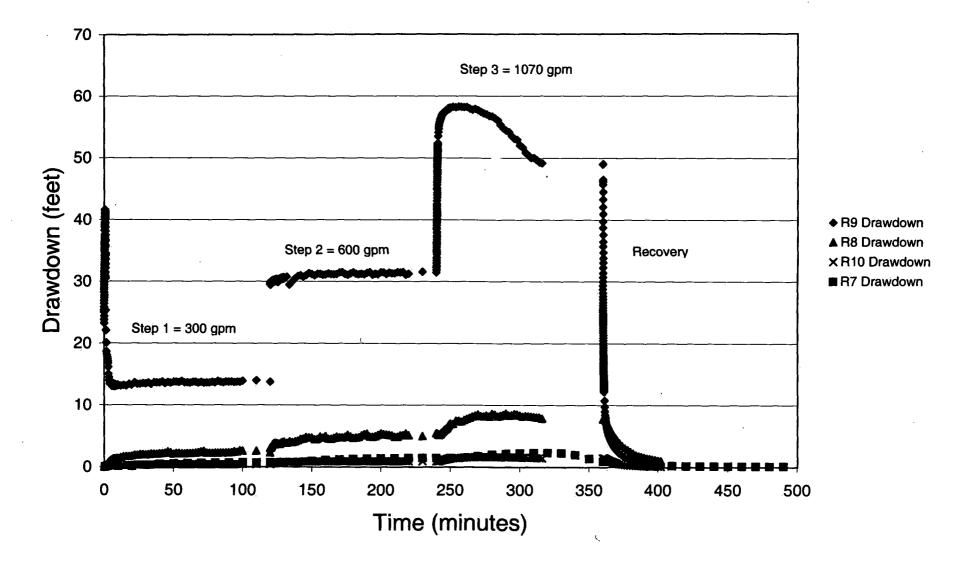

ASR R8 Step Test

New ASR Well R-9 Step-Drawdown Test Test Performed April 4, 1998

Step	Pumping Rate, Q (gpm)	Observed Drawdown, s (ft.)	Specific Capacity (gpm/ft)	1/Specific Capacity (ft/gpm)	
1	300	14.0	21.5	0.0465	
2	600	31,6	19.0	0.0526	
3	1000	58.2	17.2	0.0582	
4 ^A	1060	62.3	17.0	0.0588	

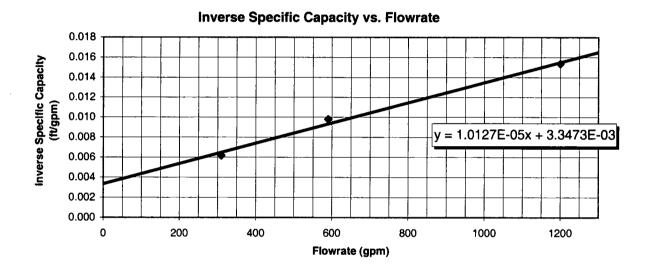
Note A: Drawdown from constant-rate test substituted for 4th step of the step-test

From Inverse Specific Capacity vs. Flowrate chart (above): Turbulent Drawdown Coefficient, C= $1.59 (10^{-5}) \text{ ft/gpm}^2$ Laminar Drawdown Coefficient, B= .0423 ft/gpm


_

1_

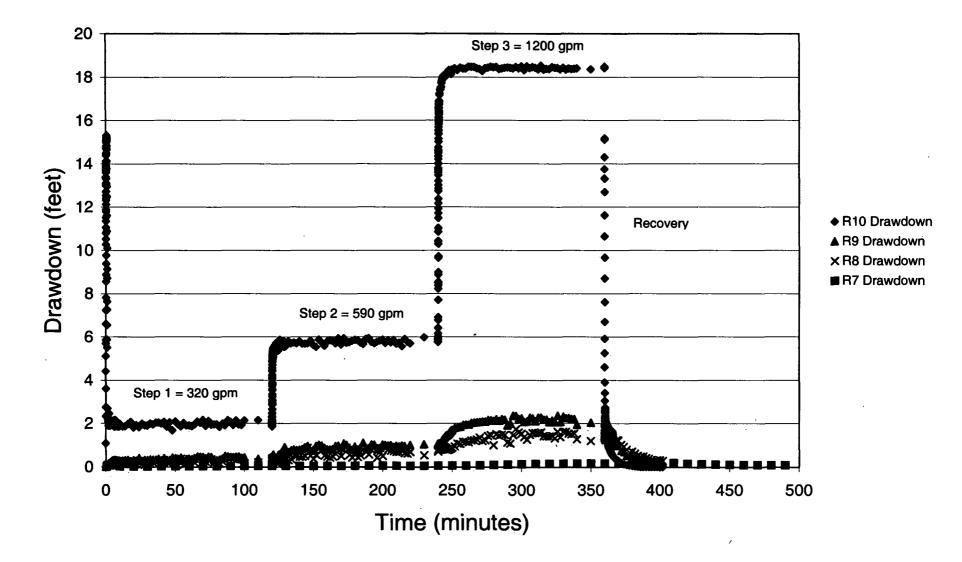
Step	'Turbulent Component of Drawdown, CQ ² (ft)	² Laminar Component of Drawdown, BQ (ft)	Percent of Drawdown Attributable of Laminar Flow 100% X BQ/(CQ ² + BQ)
1	1.4	12.7	89.9%
2	5.7	25.4	81.6%
3	15.9	42.3	72.7%
4 ^A	17.9	44.8	71.5%

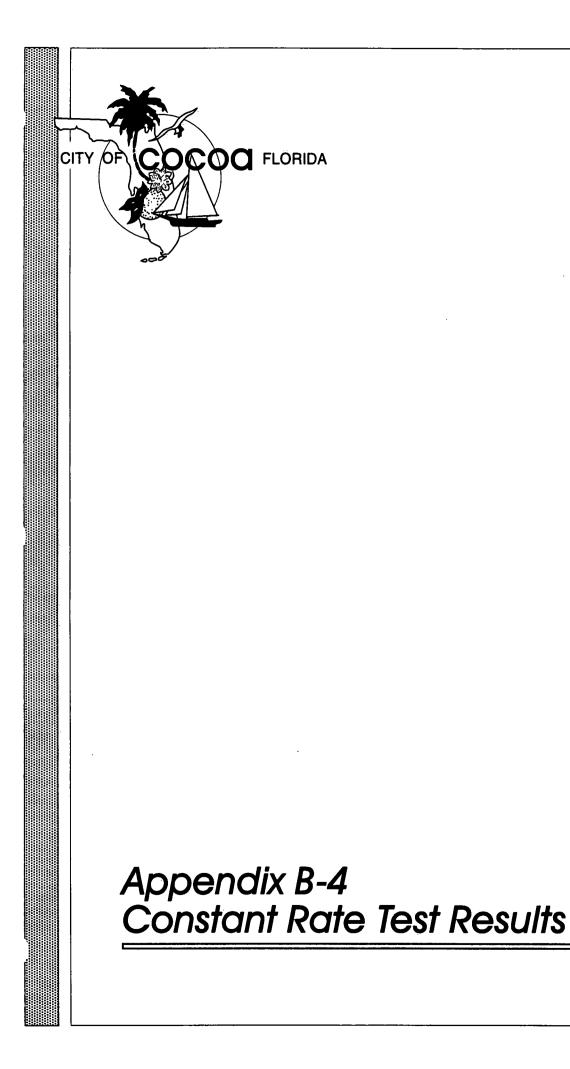

Note 1 This is the Well Loss term of Jacob (1946) where drawdown = $CQ^2 + BQ$ Note 2 This is the Laminar term of Jacob (1946) where drawdown = $CQ^2 + BQ$

ASR R9 Step Test

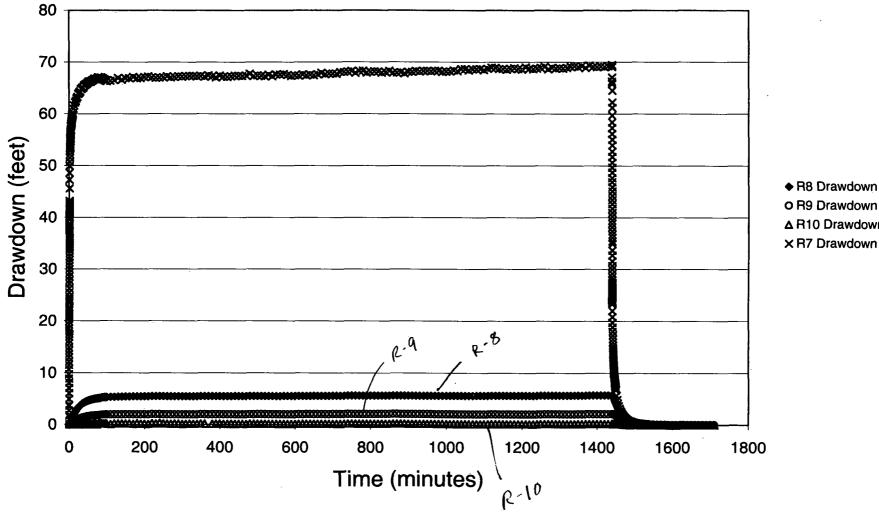
New ASR Well R-10 Step-Drawdown Test Test Performed April 17, 1998

Step	Pumping Rate, Q (gpm)	Observed Drawdown, s (ft.)	Specific Capacity (gpm/ft)	1/Specific Capacity (ft/gpm)
1	310	1.9	162.3	0.0062
2	590	5.8	102.1	0.0098
3	1200	18.4	65.1	0.0154



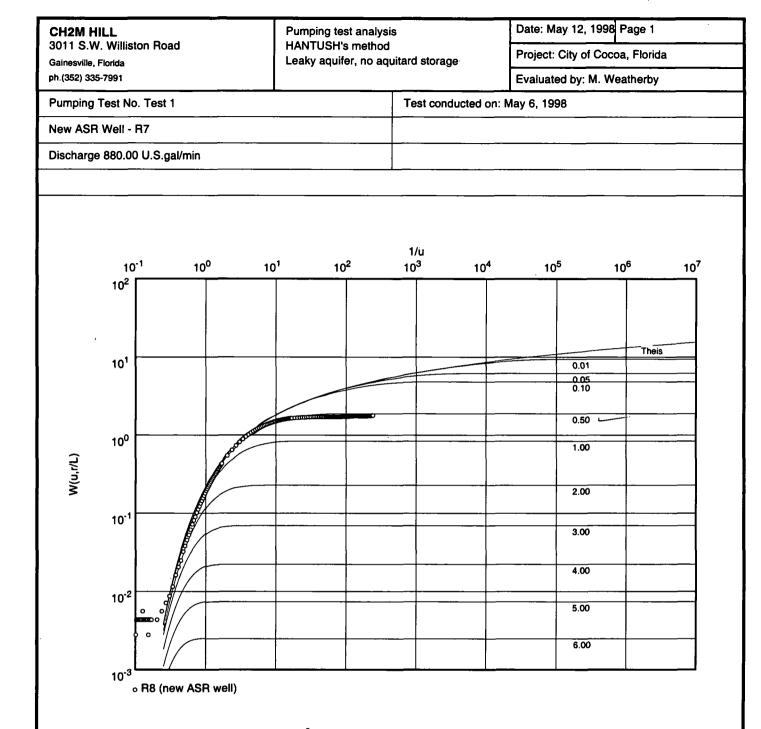

From Inverse Specific Capacity v	s. Flowr	ate chart (above):
Turbulent Drawdown Coefficient,	C=	1.01 (10 ⁻⁵) ft/gpm ²
Laminar Drawdown Coefficient, I	B=	.00335 ft/gpm

Step	¹ Turbulent Component of Drawdown, CQ ² (ft)	² Laminar Component of Drawdown, BQ (ft)	Percent of Drawdown Attributable of Laminar Flow 100% X BQ/(CQ ² + BQ)
1	0.973	1.04	51.6%
2	3.53	1.97	35.9%
3	14.6	4.02	21.6%


Note 1 This is the Well Loss term of Jacob (1946) where drawdown = $CQ^2 + BQ$ Note 2 This is the Laminar term of Jacob (1946) where drawdown = $CQ^2 + BQ$

ASR R10 Step Test

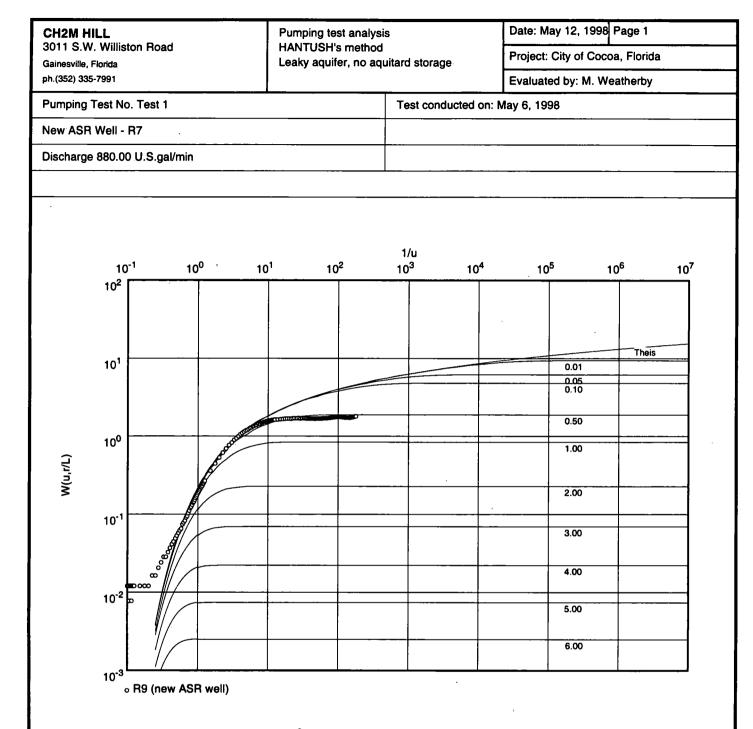
ASR R7 Pump Test


♦ R8 Drawdown O R9 Drawdown ▲ R10 Drawdown

CH2M HILLPumping test analys3011 S.W. Williston RoadTime-Drawdown-meGainesville, FloridaCOOPER & JACOBph.(352) 335-7991Confined aquifer				Date: May	Date: May 12, 1998 Page 1 Project: City of Cocoa, Florida			
				Time-Drawdown-method after COOPER & JACOB				
					Evaluated by: M. Weatherby			
Pumping Test No. Test 1		Test conducted on: May 6, 1998						
New ASR Well - R7								
Discharge 880.00 U.S.gal/min								
				L				
	10	⁻³ 10 ⁻²	10 ⁻¹ 10	t [min] ⁰ 10 ¹	10 ²	10 ³	10 ⁴	
	0.00							
			ให้ผู่ เเหม					
	7.00				TIIII I			
	14.00							
	21.00							
	28.00		IIIII I KUIII					
s [Ħ]	05.00							
S	35.00							
	42.00	┝╍═╾┝╼╺┝╼┝┥┥┥┥┥			<u>++++++</u>	└┟┟╽╽║┦		
				。				
	49.00	┝──╊─╉╄╄╫╢┅──╂╶╂╍		<u></u>	++++++	-++++++++	<u>i </u>	
	56.00		┼┼┼┼┼		+++++++	┝╶┼╌┼┼┼╫┨╴╌┄╴	+ + + + + + + + + + + + + + + + + + + +	
	56.00							
	63.00				+++++++			
					The state of the s			
					· · · · · · · · · · · · · · · · · · ·			

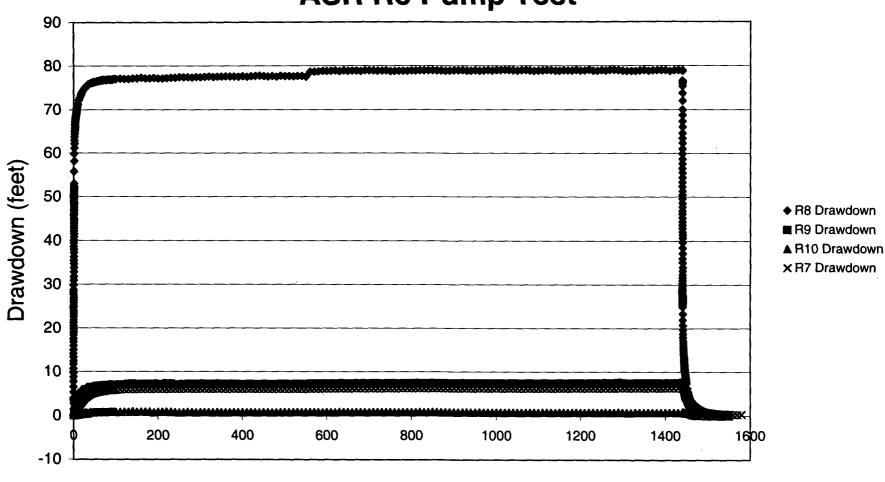
Transmissivity [ft²/min]: 2.13 x 10⁰

Storativity: 1.49 x 10⁻⁴

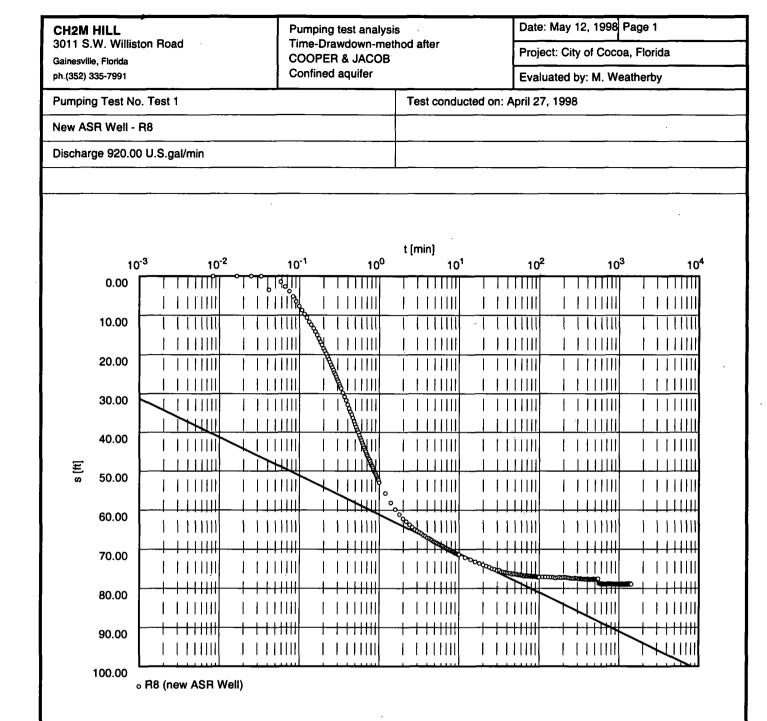

Transmissivity [gpd/ft]: 22,942

Transmissivity [ft²/min]: 2.90 x 10⁰

Storativity: 2.21 x 10⁻⁴

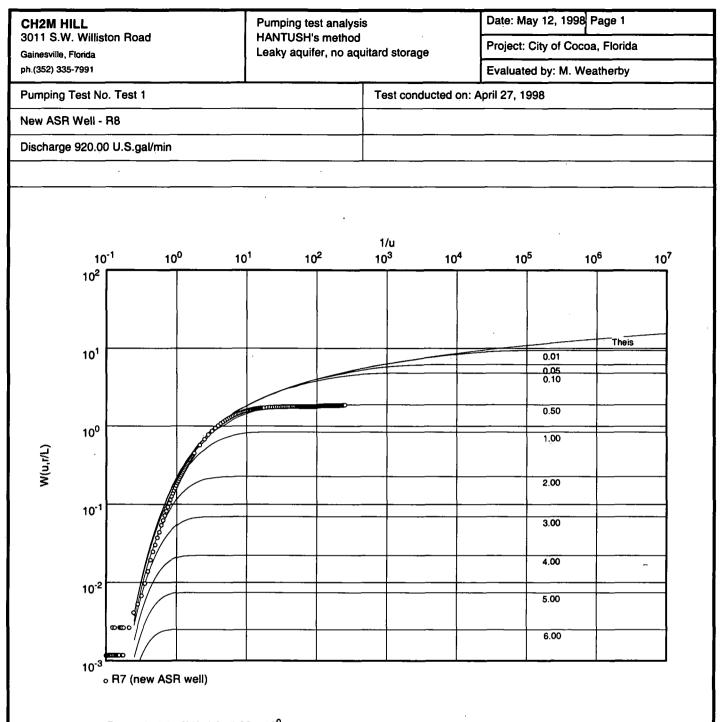

Transmissivity [gpd/ft]: 31,236

Transmissivity [ft²/min]: 8.02 x 10⁰


Storativity: 2.07 x 10⁻⁴

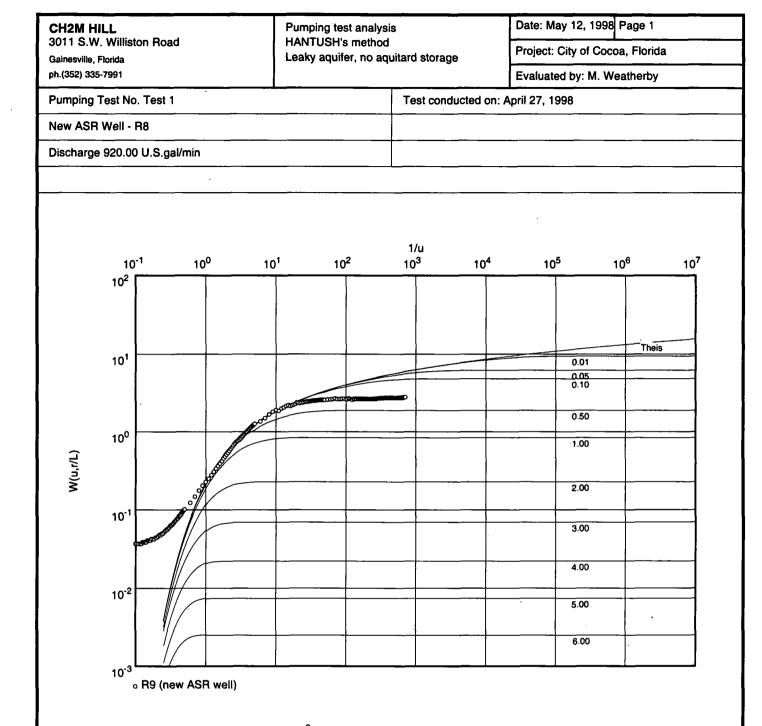
Transmissivity [gpd/ft]: 86,385

ASR R8 Pump Test


Time (minutes)

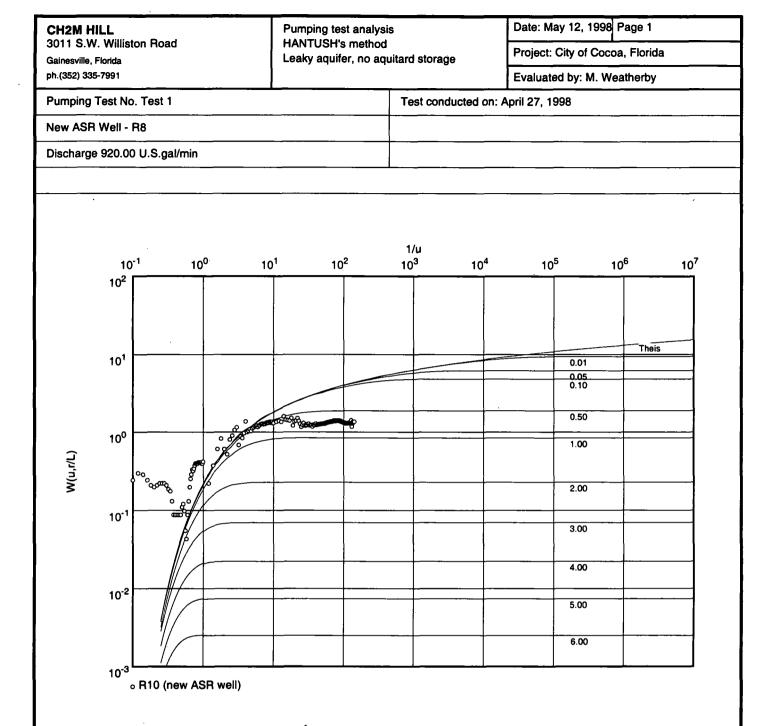
Transmissivity [ft2/min]: 2.26 x 100

Storativity: 9.39 x 10⁻⁶


Transmissivity [gpd/ft]: 24,343

Transmissivity [ft²/min]: 2.86 x 10⁰

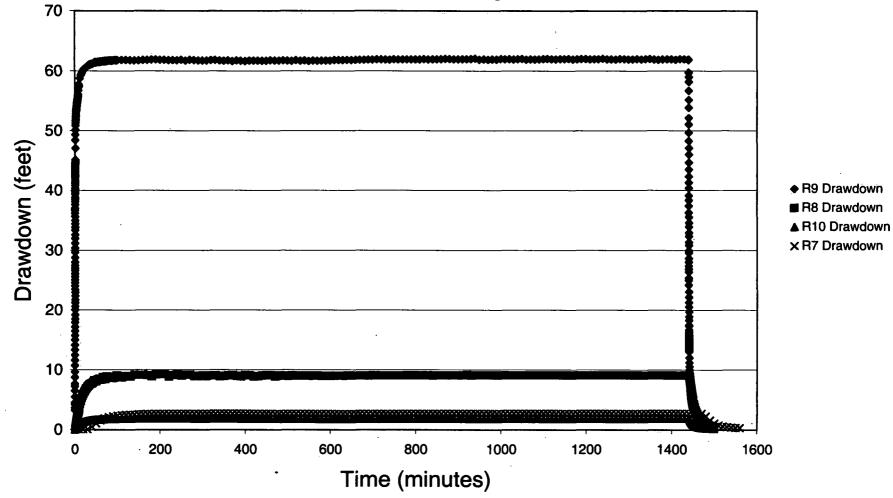
Storativity: 2.09 x 10⁻⁴


Transmissivity [gpd/ft]: 30,806

Transmissivity [ft²/min]: 3.60 x 10⁰

Storativity: 9.34 x 10⁻⁵

Transmissivity [gpd/ft]: 38,776



Transmissivity [ft²/min]: 1.67 x 10¹

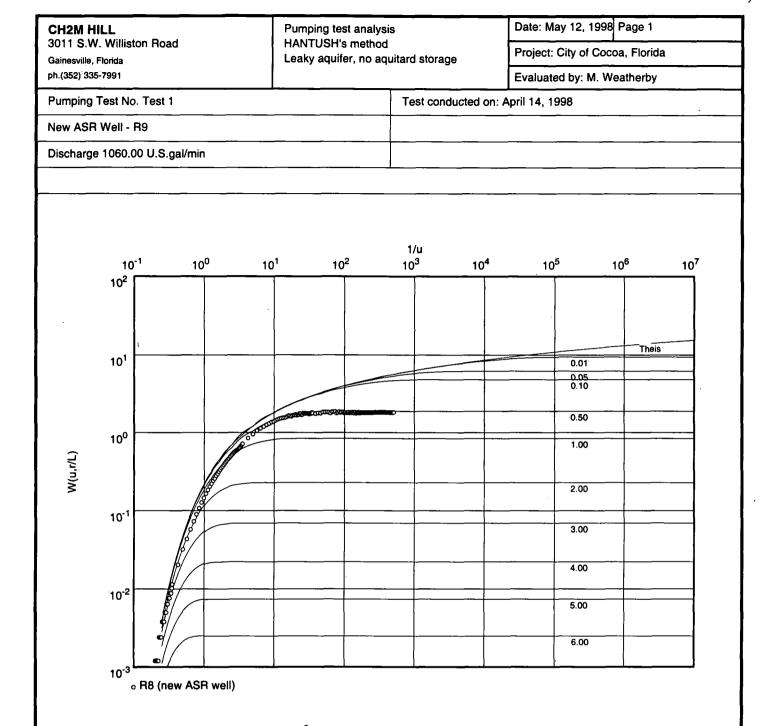
Storativity: 5.43 x 10⁻⁴

Transmissivity [gpd/ft]: 179,879

ASR R9 Pump Test

CH2M HILL	Pumping test analy		Date: May 12, 1998 Page 1	
3011 S.W. Williston Road Gainesville, Florida	Time-Drawdown-method after COOPER & JACOB Confined aquifer		Project: City of Cocoa, Florida	
ph.(352) 335-7991			Evaluated by: M. Weatherby	
Pumping Test No. Test 1		Test conducted on: April 14, 1998		
New ASR Well - R9	· · · · · · · · · · · · · · · · · · ·			
Discharge 1060.00 U.S.gal/min				

		-		-	t [min]				
	10	-3 10	² 10 ⁻¹	10 ⁰	10 ¹	10 ²	10 ³	10 ⁴	
[ti] s	0.00							ТПП	
	7.00								
			<u> </u>						
	14.00		۶ ۱						
			<u> </u>	<u>& </u>	<u> </u>				
	21.00								
	28.00								
	35.00								
	42.00						┟╷╷╷╷╷		
					i i i i i i i i i i i i i i i i i i i			11111	
	49.00			++++++++++++++++++++++++++++++++++++	╞╴┼┼┼┼╫╬╸╌┼	-+ + + + + + + + - + - + - + - + - + -	┞╺┽╪┥┽╢╢───┼──┼╌	+++++	
						1 1 1 1 1 1			
	56.00			-++ +++++++++++++++			┝╶┫┼╿╿╿╢╴───╂╌	++++++	
	63.00			<u></u>	<u>⊦ ⊦ + + + + + + </u>			+++++++	
						111111			
	70.00	R9 (new ASR v		<u> </u>		<u>_</u>	<u></u>	لستخي	

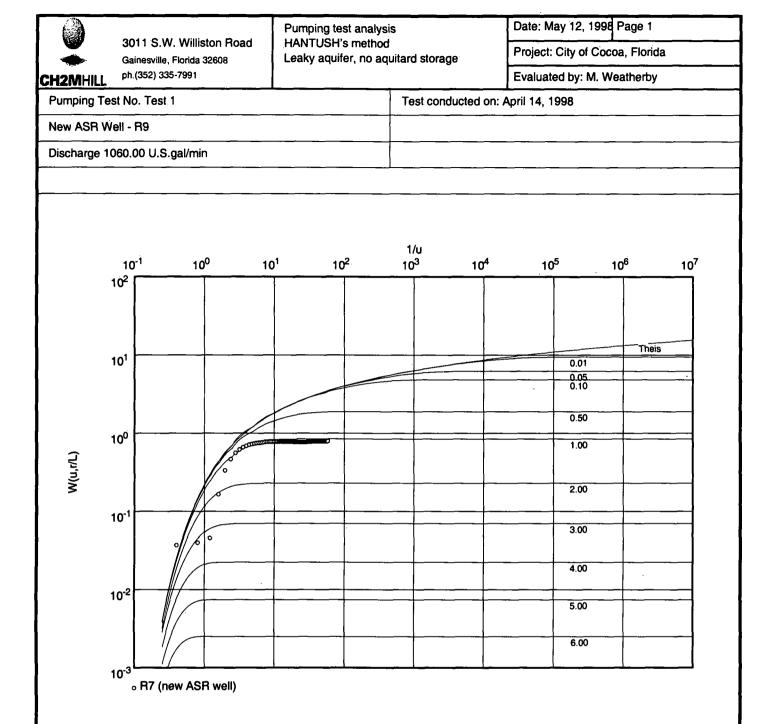

Transmissivity [ft²/min]: 2.50 x 10⁰

Storativity: 3.79 x 10⁻⁴

.

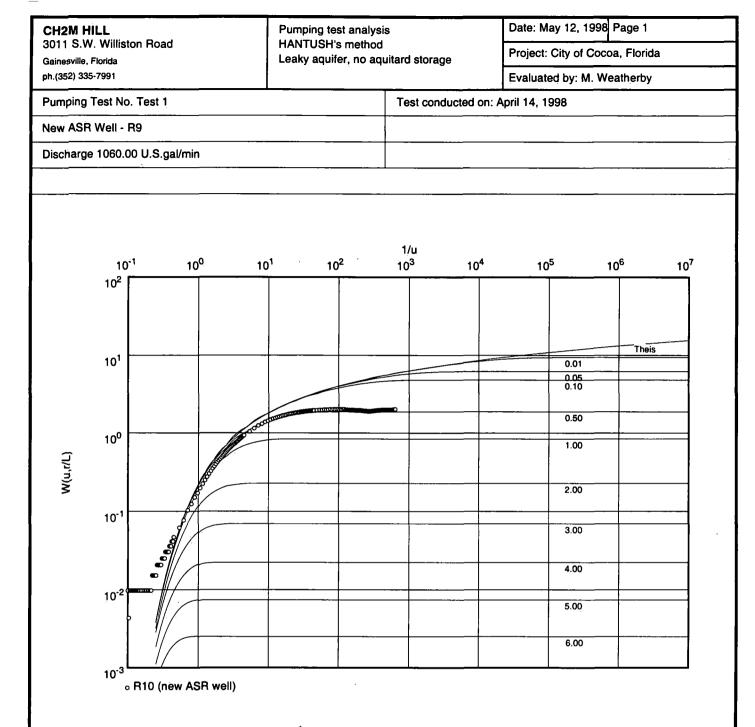
ζ

Transmissivity [gpd/ft]: 26,928



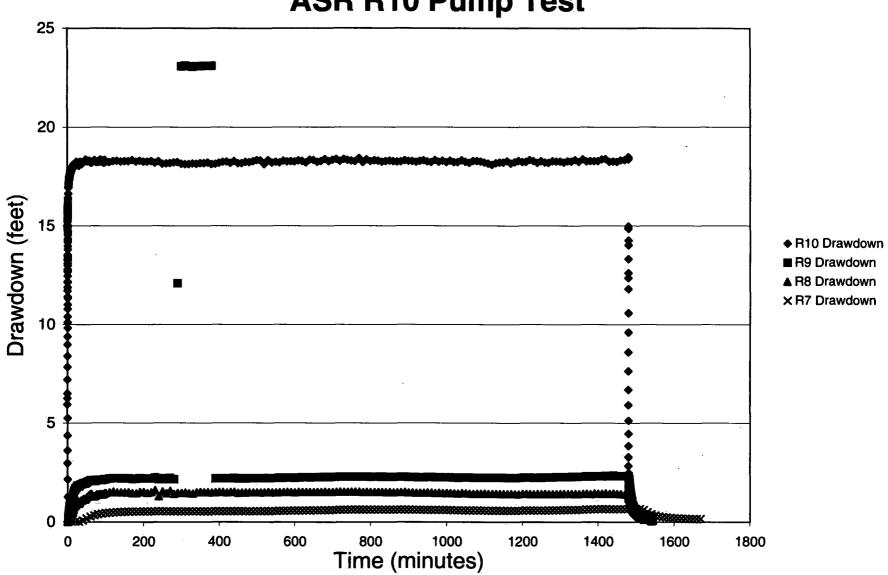
Transmissivity [ft²/min]: 2.24 x 10⁰

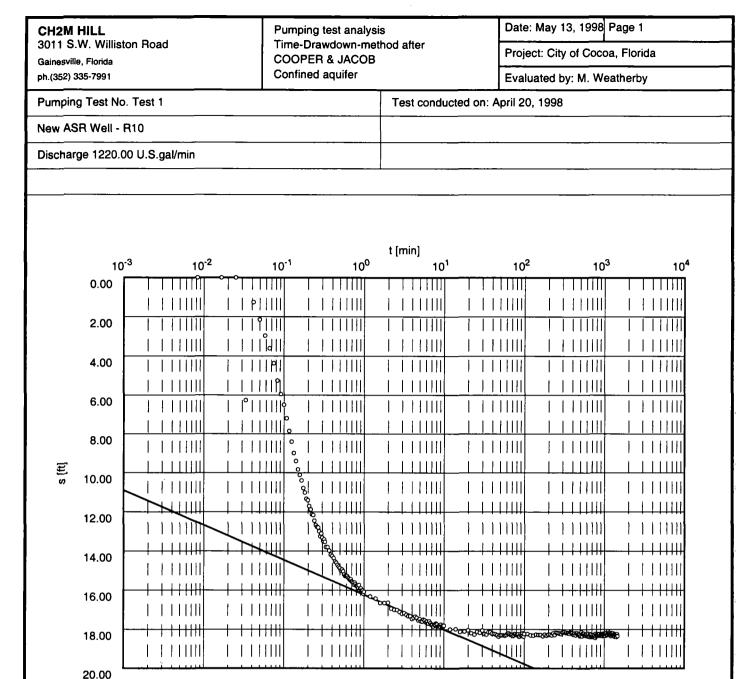
Storativity: 8.23 x 10⁻⁵


l

Transmissivity [gpd/ft]: 24,127

Transmissivity [ft²/min]: $3.17 \times 10^{\circ}$ Storativity: $2.59 \times 10^{\circ4}$

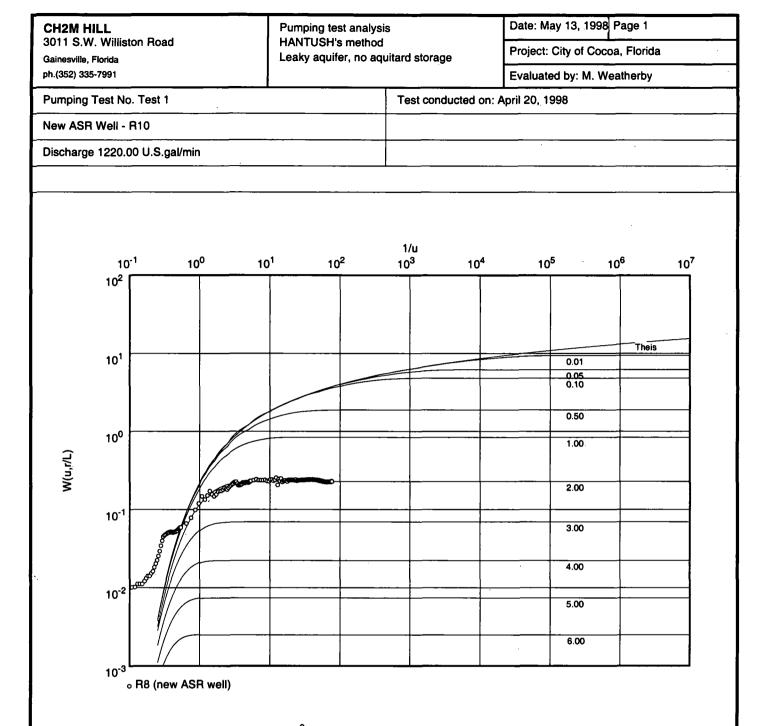

Transmissivity [gpd/ft]: 34,144


Transmissivity [ft²/min]: 1.21 x 101

Storativity: 3.53 x 10⁻⁴

Transmissivity [gpd/ft]: 130,331

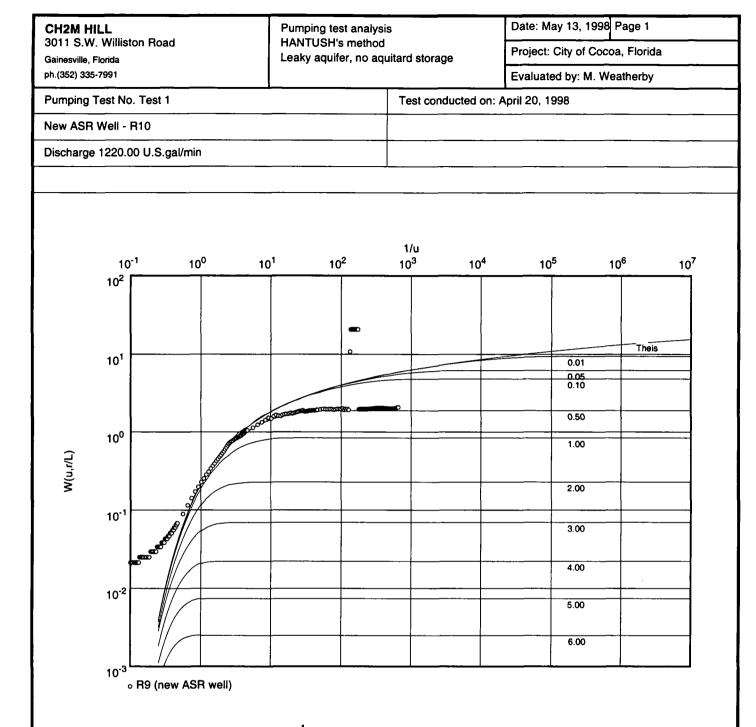
ASR R10 Pump Test



R10 (new ASR well)

Transmissivity [ft2/min]: 1.68 x 101

Storativity: 7.17 x 10⁻⁸


Transmissivity [gpd/ft]: 180,956

Transmissivity [ft²/min]: 2.05 x 10⁰

Storativity: 1.23 x 10⁻⁴

Transmissivity [gpd/ft]: 22,081

Transmissivity [ft²/min]: 1.15 x 10¹

Storativity: 3.23 x 10⁻⁴

Transmissivity [gpd/ft]: 123,869

The logs that came with this document are to be filed in OCULUS as follows:

Catalog Underground Injection Control Profile Permitting_Authorization County BREVARD District CD Facility-Site ID 16670 - CITY OF COCOA, CLAUDE H. DYAL (ASR) Document Date 03-16-1999 Received Date 03-17-1999 Document Type ENGINEERING REPORTS Contractor ID PSD Number Permit Type CONSTRUCTION Facility Type CLASS V - ASR Application Number Permit Number

>

Document Subject Log Type LOG ID Log Date Eng RPT ASR Wells 1999