	· · · · · · · · · · · · · · · · · · ·	·
nfrastructure, environment, facilities		2081 Vista Barkway
100 A.		Most Balm Bosch
ransmittal Letter		
		Fionda 33411
D :	Conies	Tel 561.697.7000
lames Alexander, P.G.	David Rhodes – EDEP	Fax 561.697.7751
DEP. UIC Program	Art Deere EGUA	· ·
2600 Blair Stone Road, MS 3530	All Dacie - FOUA	
		Florida License Numbers
850) 245-8655-		Engineering
0007240-0000	9	EB00007917
		Geology
rom:	Date:	GB564
Rod Miller	November 20. 2008	Landscape Architecture
		LC26000269
Subject:	ARCADIS Project No.	
Solden Gate Injection Well System	WF004200.G015	Surveying
Construction and Testing Report		LB/U62
		8
Ve are sending you:	200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200	
🗋 Attached	der Separate Cover Via the Following Items:	
Chher		A Reports
Copies Date Drawing No. Pou	neerintion	Action
Copies Date Drawing No. Rev.		Action*
Copies Date Drawing No. Rev. 1 11/20/08	Description Construction and Testing Summary Report	Action*
Copies Date Drawing No. Rev. 1 11/20/08 1 1 1 11/20/08 1 1	Description Construction and Testing Summary Report Borehole Televiewer Log (IW1)	Action* F F
Copies Date Drawing No. Rev. 1 11/20/08	Description Construction and Testing Summary Report Borehole Televiewer Log (IW1)	Action* F F
Copies Date Drawing No. Rev. 1 11/20/08	Description Construction and Testing Summary Report Borehole Televiewer Log (IW1) Volume II MW1 and IW1 Geophysical Logs	Action* F F F
Copies Date Drawing No. Rev. 1 11/20/08	Description Construction and Testing Summary Report Borehole Televiewer Log (IW1) Volume II MW1 and IW1 Geophysical Logs RECEIVED	Action* F F F
Copies Date Drawing No. Rev. 1 11/20/08	Description Construction and Testing Summary Report Borehole Televiewer Log (IW1) Volume II MW1 and IW1 Geophysical Logs RECEIVED	Action* F F F
Copies Date Drawing No. Rev. 1 11/20/08	Description Construction and Testing Summary Report Borehole Televiewer Log (IW1) Volume II: MW1 and IW1 Geophysical Logs RECEIVED	Action* F F F
Copies Date Drawing No. Rev. 1 11/20/08	Description Construction and Testing Summary Report Borehole Televiewer Log (IW1) Volume III MW1 and IW1 Geophysical Logs RECEIVED	Action* F F F
Copies Date Drawing No. Rev. 1 11/20/08	Description Construction and Testing Summary Report Borehole Televiewer Log (IW1) Volume III MW1 and IW1 Geophysical Logs RECEIVED	Action* F F F
Copies Date Drawing No. Rev. 1 11/20/08	Description Construction and Testing Summary Report Borehole Televiewer Log (IW1) Volume II: MW1 and IW1 Geophysical Logs RECEIVED NOV 2:5 2008	Action* F F
Copies Date Drawing No. Rev. 1 11/20/08 7 1 11/20/08 7 1 11/20/08 7 1 11/20/08 7 1 11/20/08 7	Description Construction and Testing Summary Report Borehole Televiewer Log (IW1) Volume III MW1 and IW1 Geophysical Logs RECEIVED NOV 2.5 2008 UIC PROGRAM	Action ⁴ F F
Copies Date Drawing No. Rev. 1 11/20/08 7 <t< td=""><td>Description Construction and Testing Summary Report Borehole Televiewer Log (IW1) Volume II MW1 and IW1 Geophysical Logs RECEIVED NOV 2 5 2008 UIC PROGRAM</td><td>Action⁴ F F</td></t<>	Description Construction and Testing Summary Report Borehole Televiewer Log (IW1) Volume II MW1 and IW1 Geophysical Logs RECEIVED NOV 2 5 2008 UIC PROGRAM	Action ⁴ F F
Copies Date Drawing No. Rev. 1 11/20/08 7 <t< td=""><td>Description Construction and Testing Summary Report Borehole Televiewer Log (IW1) Volume II MW1 and IW1 Geophysical Logs RECEIVED NOV 2:5 2008 UIC PROGRAM</td><td>Action⁴ F F</td></t<>	Description Construction and Testing Summary Report Borehole Televiewer Log (IW1) Volume II MW1 and IW1 Geophysical Logs RECEIVED NOV 2:5 2008 UIC PROGRAM	Action ⁴ F F
Copies Date Drawing No. Rev. 1 11/20/08	Description Construction and Testing Summary Report Borehole Televiewer Log (IW1) Volume II MW1 and IW1 Geophysical Logs RECEIVED N0 V 2 5 2008 UIC PROGRAM CR Correct and Resubmit	Action' F F F
Copies Date Drawing No. Rev. 1 11/20/08	Description Construction and Testing Summary Report Borehole Televiewer Log (IW1) Volume II MW1 and IW1 Geophysical Logs RECEIVED NOV 2.5 2008 UIC PROGRAM S F File	Action F F F esubmit Copies
Copies Date Drawing No. Rev. 1 11/20/08	Description Construction and Testing Summary Report Borehole Televiewer Log (IW1) Volume II MW1 and IW1 Geophysical Logs RECEIVED NOV 2.5 2008 UIC PROGRAM CR Correct and Resubmit F File FA For Approval	Action' F F F F Copies etumCopies eview and Comment
Copies Date Drawing No. Rev. 1 11/20/08 1	Description Construction and Testing Summary Report Borehole Televiewer Log (IW1) Volume II MW1 and IW1 Geophysical Logs RECEIVED NOV 2:5 2008 UIC PROGRAM CR Correct and Resubmit F File FA For Approval	Action' F F F Copies esubmit Copies eview and Comment
Copies Date Drawing No. Rev. 1 11/20/08	Description Construction and Testing Summary Report Borehole Televiewer Log (IW1) Volume II MW1 and IW1 Geophysical Logs RECEIVED NOV 2.5 2008 UIC PROGRAM I F File I F File I FA For Approval	Action F F F esubmit Copies eturn Copies eview and Comment
Copies Date Drawing No. Rev. 1 11/20/08	Description Construction and Testing Summary Report Borehole Televiewer Log (IW1) Volume III MW1 and IW1 Geophysical Logs RECEIVED NOV 2.5 2008 UIC PROGRAM I F File I Re	Action* F F F F F Copies eturn Copies eview and Comment
Copies Date Drawing No. Rev. 1 11/20/08	Description Construction and Testing Summary Report Borehole Televiewer Log (IW1) Volume III MW1 and IW1 Geophysical Logs RECEIVED NOV 2:5 2008 UIC PROGRAM CR Correct and Resubmit F File F File Re FA For Approval Image: FedEx Priority Overnight	Action* F F F F F F F F F F F F F F F F F F F
Copies Date Drawing No. Rev. 1 11/20/08	Description Construction and Testing Summary Report Borehole Televiewer Log (IW1) Volume III MW1 and IW1 Geophysical Logs RECEIVED NOV 2.5 2008 UIC PROGRAM CR Correct and Resubmit F File F File FA For Approval MD Delivery FedEx Priority Overnight Service (UPS) FedEx Standard Overnight	Action ⁴ F F F F F F F F F F F F F F F F F F F
Copies Date Drawing No. Rev. 1 11/20/08	Description Construction and Testing Summary Report Borehole Televiewer Log (IW1) Volume III MW1 and IW1 Geophysical Logs RECEIVED NOV 2.5 2008 UIC PROGRAM CR Correct and Resubmit F File F File FA For Approval MD Delivery FedEx Priority Overnight Service (UPS) FedEx Standard Overnight	Action F F F F F Copies esubmitCopies eturnCopies eturnCopies eturnCopies eturnCopies eturnCopies eturnCopies eturnCopies eturnCopies eturnCopies eturnCopies eturnCopies eturnCopies
Copies Date Drawing No. Rev. 1 11/20/08 1 1 1 1 1 Approved 1 1 As Requested 1	Description Construction and Testing Summary Report Borehole Televiewer Log (IW1) Volume III MW1 and IW1 Geophysical Logs RECEIVED NOV 2:5 2008 UIC PROGRAM CR Correct and Resubmit F File F File Re FA For Approval MD Delivery FedEx Priority Overnight Service (UPS) FedEx Standard Overnight	Action ⁴ F F F F F F F F F F F F F F F F F F F
Copies Date Drawing No. Rev. 1 11/20/08 1 1 1 1 1 1 1 1 Approved 1 1 As Requested 1	Description Construction and Testing Summary Report Borehole Televiewer Log (IW1) Volume III MW1 and IW1 Geophysical Logs RECEIVED NOV 2:5 2008 UIC PROGRAM CR Correct and Resubmit F File FA For Approval MD Delivery FedEx Priority Overnight Service (UPS) FedEx Standard Overnight	Action* F F F F F F F F F F F F F F F F F F F
Copies Date Drawing No. Rev. 1 11/20/08 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Description Construction and Testing Summary Report Borehole Televiewer Log (IW1) Volume III MW1 and IW1 Geophysical Logs RECEIVED NOV 2:5 2008 UIC PROGRAM CR Correct and Resubmit F File FA For Approval Image: FedEx Priority Overnight sel Service (UPS) FedEx Standard Overnight	Action ⁴ F F F F F F F F F F F F F F F F F F F
Copies Date Drawing No. Rev. 1 11/20/08 1 1 11/20/08 1 1 11/20/08 1 1 11/20/08 1 1 11/20/08 1 1 11/20/08 1 1 11/20/08 1 1 11/20/08 1 1 11/20/08 1 1 11/20/08 1 1 11/20/08 1 1 11/20/08 1 1 11/20/08 1 1 11/20/08 1 1 11/20/08 1 1 11/20/08 1 1 11/20/08 1 Approved 1 1 Approved As Noted 1 As As Requested 1 Other: 1 Iailing Method 1 Vis. Postal Service 1 st Class 1 Other: 1 Other: 1 Other: 1 Othe	Description Construction and Testing Summary Report Borehole Televiewer Log (IW1) Volume III MW1 and IW1 Geophysical Logs RECEIVED NOV 2:5 2008 UIC PROGRAM CR Correct and Resubmit F File FA For Approval Image: Service (UPS) FedEx Priority Overnight Service (UPS) FedEx Standard Overnight	Action ⁴ F F F F F F F F F F F F F F F F F F F
Copies Date Drawing No. Rev. 1 11/20/08 1 1 11/20/08 1 1 11/20/08 1 1 11/20/08 1 1 11/20/08 1 1 11/20/08 1 1 11/20/08 1 1 11/20/08 1 1 11/20/08 1 1 11/20/08 1 1 11/20/08 1 1 11/20/08 1 1 11/20/08 1 1 11/20/08 1 1 11/20/08 1 1 11/20/08 1 1 11/20/08 1 Approved 1 1 A Approved 1 1 A Approved As Noted 1 1 A S As Requested 1 1 Other: 1 1 1 ailling Method 1 1 1 Other: 1 1 1 1 <td>Description Construction and Testing Summary Report Borehole Televiewer Log (IW1) Volume III MW1 and IW1 Geophysical Logs RECEIVED NOV 2:5 2008 UIC PROGRAM CR Correct and Resubmit F File FA For Approval Image: Service (UPS) Image: FedEx Standard Overnight</td> <td>Action* F F F F F F F F F F F F F F F F F F F</td>	Description Construction and Testing Summary Report Borehole Televiewer Log (IW1) Volume III MW1 and IW1 Geophysical Logs RECEIVED NOV 2:5 2008 UIC PROGRAM CR Correct and Resubmit F File FA For Approval Image: Service (UPS) Image: FedEx Standard Overnight	Action* F F F F F F F F F F F F F F F F F F F
Copies Date Drawing No. Rev. 1 11/20/08 1 11/20/08 1 1 11/20/08 1 11/20/08 1 1 11/20/08 1 1 1 1 11/20/08 1 1 1 1 11/20/08 1 1 1 1 11/20/08 1 1 1 ction* 1 1 1 1 1 An Approved 1 1 1 1 1 AN Approved As Noted 1 1 1 1 1 AS As Requested 1 1 1 1 1 1 Other: 1 1 1 1 1 1 1 1 JOther: 1<	Description Construction and Testing Summary Report Borehole Televiewer Log (IW1) Volume III MW1 and IW1 Geophysical Logs RECEIVED NOV 2.5 2008 UIC PROGRAM CR Correct and Resubmit F File FA For Approval Image: Service (UPS) FedEx Priority Overnight Service (UPS) FedEx Standard Overnight	Action ⁴ F F F F F F F F F F F F F F F F F F F
Copies Date Drawing No. Rev. 1 11/20/08 1 1 11/20/08 1 1 11/20/08 1 1 11/20/08 1 1 11/20/08 1 1 11/20/08 1 1 11/20/08 1 1 11/20/08 1 1 11/20/08 1 1 11/20/08 1 1 11/20/08 1 1 11/20/08 1 1 11/20/08 1 1 11/20/08 1 1 11/20/08 1 1 11/20/08 1 1 11/20/08 1 1 Approved 1 A Approved As Noted 1 As As Requested 1 Other: 1 ailing Method 1 VS. Postal Service 1 st Class 1 Other: 1 Domments 1	Description Construction and Testing Summary Report Borehole Televiewer Log (IW1) Volume II MW1 and IW1 Geophysical Logs RECEIVED NOV 2.5 2008 UIC PROGRAM CR Correct and Resubmit F File FA For Approval Image: Service (UPS) FedEx Priority Overnight Service (UPS) FedEx Standard Overnight	Action* F F F F F F F F F F F F F F F F F F F
Copies Date Drawing No. Rev. 1 11/20/08 1 11/20/08 1 1 11/20/08 1 11/20/08 1 1 11/20/08 1 11/20/08 1 1 11/20/08 1 1 1 1 11/20/08 1 1 1 1 11/20/08 1 1 1 1 11/20/08 1 1 1 1 11/20/08 1 1 1 1 11/20/08 1 1 1 1 11/20/08 1 1 1 1 11/20/08 1 1 1 1 11/20/08 1 1 1 1 Approved 1 1 1 1 As Requested 1 1 1 1 Other: 1 1 1 1 1 Other: 1 1 1 1 1 1 Other: 1 1 </td <td>Description Construction and Testing Summary Report Borehole Televiewer Log (IW1) Volume II MW1 and IW1 Geophysical Logs RECEIVED NOV 2.5 2008 UIC PROGRAM CR Correct and Resubmit F File FA For Approval CR FedEx Priority Overnight FedEx Standard Overnight FedEx Standard Overnight FedEx Standard Overnight CR Service (UPS) FedEx Standard Overnight</td> <td>Action* F F F F F F F F F F F F F F F F F F F</td>	Description Construction and Testing Summary Report Borehole Televiewer Log (IW1) Volume II MW1 and IW1 Geophysical Logs RECEIVED NOV 2.5 2008 UIC PROGRAM CR Correct and Resubmit F File FA For Approval CR FedEx Priority Overnight FedEx Standard Overnight FedEx Standard Overnight FedEx Standard Overnight CR Service (UPS) FedEx Standard Overnight	Action* F F F F F F F F F F F F F F F F F F F

Sala di salatas

P-1

r. h 7.3

Imagine the result

CONSTRUCTION AND TESTING SUMMARY REPORT

Class I Injection Well System

Golden Gate Wastewater Treatment Facility

November 2008

David K. Smith Principal Hydrogeologist

Rodney J. Miller, PG Hydrogeologist

Construction and Testing Summary Report

Class I Injection Well System, Golden Gate WWTF

Prepared for:

1:

Florida Governmental Utility Authority

Prepared by:

ARCADIS 2081 Vista Parkway West Palm Beach Florida 33411 Tel 561.697.7000 Fax 561.697.7751

Our Ref.: WF004200.G015

Date:

November 2008

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

Summary

Findings

Data Collection Methods and Results

Pilot-Hole Construction and Testing Lithology and Penetration Rate

Pilot Hole Water Quality

Geophysical Logging

Core Collection

Packer Testing

Well Construction and Testing

Surficial Aquifer Pad Monitor Wells

Inclination Surveys

Hydrostatic Pressure Tests

Cement-Top Temperature Logs

Video Surveys

Cement Bond Logging

High Resolution Temperature Log

Radioactive Tracer Survey (RTS)

MW1 and IW1 Final Water Quality Results

Injection Testing

Geology and Hydrogeology

Undifferentiated Sediments and Surficial Aquifer System

Miocene Series (Hawthorn Group) and Intermediate Aquifer System

Geology of the Floridan Aquifer System

Suwannee and Ocala Limestones

Avon Park Formation

Oldsmar Formation

2

2

3

3

3

8

9

10

10

11

12

13

13

13

13

14

14

14

15

15

ARCADIS

....,

Hydroge	ology o	f the	Floridan	Aquifer	System
		•			

Upper Floridan Aquifer (UFA)

Floridan Aquifer Confining Units

Floridan Aquifer, "Boulder Zone"

Tables

1:

3

4

5

6

8

9

10.·

11

1

2

3

Λ

5

6

200.g015 - g

Summary of Construction and Testing Activities

Summary of Reverse-Air Discharge Water Quality Results

Summary of Geophysical Logs Performed in Deep Monitor Well MW1

Summary of Geophysical Logs Performed in Injection Well IW1

Summary of Hydraulic Conductivities from Core Analyses for Injection Well IW1

Summary of Packer-Pumping Test, Final Water Sample Results

Summary of Packer-Pumping Test Data and Estimated Hydraulic Conductivities

Summary of Inclination Survey Results for Deep Monitor Well MW1 Summary of inclination Survey Results for Injection Well IW1

Cementing Summary for Deep Monitor Well MW1

Cementing Summary for Injection Well IW1

Figures

Site Location Map

Site Layout Map

Construction Details for MW1 with Geologic and Hydrogeologic Columns

Construction Details for IW1 with Geologic and Hydrogeologic Columns.

Coring and Packer Test Intervals

Sec. 1

North-South Hydro-stratigraphic Cross Section

West-East Hydro-stratigraphic Cross Section

Table of Contents

Appendices

в

C D

Е

F

G

Geologic Logs, Penetration Rate Chart and Core Description and Analysis Report
Packer Test Summaries and Charts
Casing Mill Certificates and FRP Product Sheets
Surficial Aquifer Pad Monitor Well Data and Charts; Technical Memorandum with Mechanical Integrity Results
Injection Test Data
Electronic Files of:
-Weekly Construction Reports
-Geophysical Logs
- Packer Test Raw Data and Analytical Reports
-MW1 Monitor Zones and IW1 Injection Zone WQ Analytical Reports
-Injection Test Source WQ Analytical Report

-Injection Test Raw Data

Construction Permit

Enclosures

Volume II: MW1 and IW1 Geophysical Logs and Video Surveys

Construction and Testing Summary Report

Class I Injection Well System, Golden Gate WWTF

Summary

This document provides the construction and testing results of the Class I injection well (IW1) and associated Floridan-aquifer, dual-zone deep monitor well (MW1) at the Golden Gate Wastewater Treatment Facility (WWTF) in Collier County, Florida. A site location map and a site layout map showing the location of the injection well system are presented as **Figure 1 and 2**, respectively.

Secondarily-treated domestic wastewater effluent from the Golden Gate WWTF and potable water treatment by-product (reject/brine) will be disposed by deep well (Class I) injection as the primary disposal method. The injection well system has been designed and constructed to accept a volume of approximately 5.03 million gallons per day (mgd).

MW1 was constructed to monitor for potential upward migration of fluids injected into IW1. The upper monitor zone (from 1,078 feet to 1,128 feet below pad level [bpl]) was installed at the lowermost regional Underground Source of Drinking Water (USDW), the interface defined by the depth at which the total dissolved solids (TDS) concentration of the formation water exceeds 10,000 milligrams per liter (mg/L). At the project site this interface is located at 1,110 feet bpl. The lower monitor zone (from 1,498 feet to 1,550 feet bpl) was installed in a sufficiently transmissive interval below the USDW. The MW1 construction detail (with geologic and hydrogeologic columns) is presented as **Figure 3**.

IW1 was constructed as a "tube and packer" well, with an 18-inch outside diameter (O.D.), 0.500-inch wall thickness, seamless-steel final casing installed to a depth of 2,468 feet bpl, and a 11.97-inch inside diameter (I.D.), 0.66-inch wall thickness, Fiberglass Reinforcement Plastic (FRP) injection tubing installed to 2,448 feet. The total pilot-hole depth of IW1 was 3,200 feet bpl, and the total completed depth (18-inch diameter) is 3,010 feet bpl. The construction detail for IW1 (with geologic and hydrogeologic columns) is presented as **Figure 4**. Construction and testing of the wells were performed in accordance with Chapter 62-528, Florida Administrative Code (FAC), and the provisions of Florida Department of Environmental Protection (FDEP) Construction Permit No. 263889-001-UC/11. A copy of the construction permit is provided in **Appendix A**.

Youngquist Brothers, Inc. (Contractor) began construction of MW1 in December 2007 and completed construction in March 2008. The Contractor then mobilized to the IW1 location. Construction of IW1 began in March 2008. The construction and testing of

Construction and Testing Summary Report

Class I Injection Well System, Golden Gate WWTF

ARCADIS

both IW1 and MW1 were completed in September 2008. A summary of the construction and testing activities is presented as **Table 1**.

Findings

The results of the construction and testing of MW1 and IW1 led to the following conclusions:

- The base of the lowermost USDW is located at a depth of approximately 1,110 feet bpl.
- Various degrees of confinement are present between 1,545 feet and 2,470 feet bpl. The primary confining units above the injection zone (that provide the greatest degree of confinement) occur between 1,590 feet and 2,290 feet bpl.
- Results from core samples taken from the primary confining units indicate median horizontal and vertical hydraulic conductivities of approximately 6.6x10⁻⁶, and 1.7x10⁻⁶ centimeters per second (cm/sec), respectively. Hydraulic conductivities determined from seven packer tests located within the confining units indicate slightly higher permeability's with a median horizontal conductivity of 7.95x10⁻⁵ cm/sec. However, non-equilibrium data were obtained from the packer tests, and the large volume of test water within the packer test assembly means reliable analysis is difficult. Hydraulic conductivities are therefore likely to be one order-of magnitude less, i.e. comparable to the core results.
- The specific injectivity of the injection zone penetrated by the open hole (from 2,470 feet to 3,010 feet bpl) is 263 gallons per day per pounds per square inch pressure (gpd/psi), with an approximate transmissivity estimated to be at least 1,900 feet squared per day (ft²/d).
- The injection zone is sufficiently transmissive to accept combined effluent at the anticipated buildout volume of 5 mgd.

Data Collection Methods and Results

004200.g015 - gold

During well construction, data were collected and interpreted to determine the geologic and hydrogeologic characteristics of the strata intercepted by the borehole. These data were used to determine the optimal subsurface design of MW1 and IW1. Data also were collected to ensure both wells were being constructed in accordance with the technical specifications and that regulatory requirements were met. Data-collection methods and results are described below. Daily construction and testing activities

Construction and Testing Summary Report

Class | Injection Well System, Golden Gate WWTF

were recorded in daily logs and compiled by onsite field personnel during the majority of the construction period. As required by the construction permit, weekly construction progress reports were prepared (by ARCADIS) and submitted to FDEP and Technical Advisory Committee (TAC) members. A summary of the events described in the construction progress reports is provided in **Table 1**. Weekly construction reports submitted to FDEP and TAC members are included electronically in **Appendix G**.

Pilot-Hole Construction and Testing

Pilot holes were constructed when drilling MW1 and IW, and the data collected during the drilling and testing of the pilot holes provided information that assisted with the final design of the wells. Methods used to collect data during pilot-hole construction and testing and the results obtained are described below.

Lithology and Penetration Rate

During pilot-hole drilling for both MW1 and IW1, cuttings were collected at 10-foot depth intervals and described by an onsite (ARCADIS) geologist in a lithologic summary. Included with the lithologic descriptions are drilling conditions such as revolutions per minute (RPM) of the drill bit and the weight on the bit (WOB). A penetration rate chart of IW1 was created during pilot-hole drilling using the digital data obtained from the Electric Rig. More conventional geolographs were obtained from the pilot hole during drilling of MW-1. The penetration rate charts provide the rate of penetration through the formation during the duration of drilling. The lithologic summaries (Geologic Log) for MW1 and IW1 and the penetration rate charts are provided in **Appendix B**. A description of the major geologic and hydrogeologic units encountered during pilot-hole drilling is described in this report under the section titled "Geology and Hydrogeology". The units also are shown in **Figures 3 and 4**.

Pilot Hole Water Quality

Pilot-hole water quality sampling of the reverse-air discharge was initiated in MW1 at 578 feet bpl and in IW1 at 735 feet bpl. Sampling was performed at each drill rod connection for both MW1 (40-foot intervals) and IW1 (45-foot intervals). The lowermost sampling depth was performed in IW1 at 2,748 feet where there was reasonable assurance that the "Boulder Zone" was penetrated (based on drilling conditions). Each sample was field analyzed for childroide, conductivity and temperature. Pilot-hole water quality reflects a mixture of re-circulated drilling fluids that consist of formation fluids from the open pilot hole and fresh water from the drilling-

Construction and Testing Summary Report

Class I Injection Well System, Golden Gate WWTF

fluid storage tanks. This generally results in muted changes in pilot-hole water quality with depth. The reverse-air discharge water-quality summary for MW1 and IW1 is presented as **Table 2**. Associated chloride and conductivity plots for both MW1 and IW1 are presented as **Table 2A**.

In general, the results from MW1 and IW1 show an increasing salinity trend between 578 feet and 1,635 feet bpl as measured by conductivity. Between 1,635 feet and 1,680 feet bpl, a sharp increase in salinity occurred (as seen in IW1), and salinity remained relatively high to 1,800 feet bpl. Below 1,800 feet bpl salinity decreased and then remained relatively lower to approximately 2,208 feet bpl. It should be noted that four rock cores were collected in IW1 between 1,650 feet and 2,149 feet bpl. During the coring process, fresh water was mixed with clay-based drilling-fluid additives and pumped into the well to suppress the artesian head to below pad level. Below 2,149 feet to 2,568 feet bpl, an increasing salinity trend is observed. Salinity remained relatively stable between 2,568 feet and 2,748 feet bpl.

Geophysical Logging

Geophysical logging was performed in the pilot-hole intervals of both MW1 and IW1 wells to correlate drill cuttings and core samples collected during drilling, to correlate vertical offsets between IW-1 and MW-1, and to obtain other specific geologic and hydrogeologic data pertaining to the subsurface formations. These data were used to assist in the selection of the optimum casing setting depths, determine packer-testing intervals and identify transmissive and confining intervals. Reamed-hole caliper logs were performed prior to casing installation to confirm appropriate casing setting depths and provide data for use in calculating theoretical casing-cementing volumes.

Summaries of the geophysical logs performed in MW1 and IWW1 are provided as **Table 3** and **Table 4**, respectively. Copies of the geophysical logs are included in **Volume II** of this report. Detailed interpretations of the geophysical logs previously were provided in the documents listed below. Electronic copies of these logs also are included in **Appendix G** of this report.

Construction and Testing Summary Report

Class I Injection Well System, Golden Gate WWTF

Document Title	Date Submitted	Well & Depth Intervals Logged		
Dual Zone Monitor Well (MW1) Monitor Zones Recommendation	01/31/08	MW1: 490 – 1,618 feet bpl		
28-inch Diameter, Intermediate Casing Seat Recommendation	04/14/08	IW1: 940 - 1,635 feet bpl		
Request for Approval Final-Casing Setting Depth of Proposed Injection Well IW1	06/30/08	IW1: 1,635 – 3,006 feet bpl		
Injection Test Request	8/28/08	IW1: 0 – 3,108 feet bpl		

Core Collection

2,150

Four rock cores were collected between 1,650 feet and 1,665 feet bpl during pilot-hole drilling. The rock-core intervals were selected by the onsite geologist based on evaluation of the drill cutting samples. The rock cores were first described onsite and then select sections of the rock cores were sent to Ardaman & Associates, Inc. - Geotechnical Testing Laboratory for horizontal and vertical hydraulic conductivity estimates. Core descriptions and core-analysis reports are included in Appendix B. A summary of the results from the rock-core analyses is provided as Table 5.

The core analytical data (with packer-pumping test data) were utilized to assess the potential degree and extent of confinement between the injection zone (at 2,470 feet bpl) and the regional USDW (at 1,110 feet bpl). The rock-core analyses indicate that the lowest hydraulic conductivity values were obtained between 2,140.7 feet and 2,141.3 feet bpl. As determined by core analyses, the median horizontal and vertical hydraulic conductivities of the primary confining interval (between 1,590 feet and 2,290 feet bpl) are 6.6×10^{-6} centimeters per second (cm/sec) and 1.7×10^{-6} cm/sec, respectively.

Packer Testing

Four packer tests were conducted between 1,013 feet and 1,554 feet bpl in the pilot hole of MW1, and seven packer tests were conducted between 1,554 feet and 2,285 feet bpl in the pilot hole of IW1. These tests were performed to determine the water quality and hydrologic properties of the test intervals. Prior to conducting each packer test, a straddle-packer assembly was installed to the selected interval. The one exception was packer test no. 1 in MW1 where only a single packer was installed to

Construction and Testing Summary Report

Class I Injection Well System, Golden Gate WWTF

1,512 feet bpl. Each interval then was pumped (developed) until the field-measured water quality stabilized (conductivity, temperature and chloride concentrations). After development, the water level was allowed to recover to the approximate static water level.

Following the stabilization of the water level after development, the pumping portion of each packer test was conducted at a constant pumping rate. During testing, water levels and field water quality were measured. In general, the pumping portion of each test was considered complete when the water quality and water level had stabilized. Just prior to terminating the pumping portion of each test, a final water sample was collected for laboratory analysis, and a 2-gallon water sample was collected for submittal to Florida State University Department of Geological Sciences. The recovery portion of each test began when the pump was shut off. Water levels were measured during the recovery portion of each test until the water level stabilized to approximately the static level.

Water-level drawdown (pumping portion data) and recovery data were used to estimate the horizontal hydraulic conductivity and transmissivity of each test interval. The horizontal hydraulic conductivity and transmissivity estimates assisted in establishing the boundaries of the confining unit and injection zone. Final water samples were analyzed in a state certified lab for chloride, TDS, specific conductance, sulfate, total phosphorus and ammonia-nitrogen to verify the USDW boundary and to establish the background water quality of each test interval. A summary of the water-sample analytical results from packer testing is presented as **Table 6**. A summary of the hydraulic conductivity estimates from packer testing is presented as **Table 7**. Packer test water-quality summaries and charts are included in **Appendix C**. Electronic transducer data are and laboratory reports for each test are included in **Appendix G**.

Well Construction and Testing

Data were collected during the construction and testing of both MW1 and IW1 to ensure that both wells were being constructed in accordance with the technical specifications and FAC regulatory requirements.

The well construction details, including the type, diameter, and setting depth of each casing (or tubing) string for MW1 and IW1 are presented as **Figure 3** and **Figure 4**, respectively. The casing mill certificates for MW1 and IW1, with FRP tubing-product product sheets for both MW1 and IW1 are included in **Appendix D**. The data-collection

6

Construction and Testing Summary Report

Class | Injection Well System, Golden Gate WWTF

methods used during the construction and testing of both wells, and the results obtained are described below.

Surficial Aquifer Pad Monitor Wells

Six Surficial Aquifer pad monitor wells were installed near each of the four corners of the reinforced-steel drilling pads of MW1 and IW1 to monitor for spillage to groundwater during construction. Each of the wells was constructed to a depth of approximately 15 feet below land surface with 5 feet of 2-inch diameter, Schedule 40 polyvinyl chloride (PVC) casing attached to 10 feet of 2-inch diameter, 0.020-inch slot, threaded PVC screen. Following installation of the monitor wells, samples were collected from each well and analyzed to establish background water quality prior to beginning construction of MW1 and continued during construction of MW1 and IW1. The results of the monitor-well water sampling were included in each Weekly Construction Progress Report (Reports 1 through 40). A summary of the pad monitor well water quality data including plots of conductivity and chloride concentrations are included in Appendix E. Concentrations remained stable throughout the duration of construction indicating that no significant spills occurred. The one exception is noted in pad monitor well PMW1 on August 1, 2008. Approximately 50-100 gallons of formation water from the MW1 lower monitor zone leaked outside of the containment. As discussed in Weekly Report 33, PMW1 was developed until water-guality parameters were restored back to near background levels.

Inclination Surveys

Inclination surveys were performed by the Contractor on MW1 and IW1 at 90-foot intervals during pilot-hole drilling and reaming operations. Inclination surveys were performed to ensure that all casing could be set to the required depths with sufficient annular space for proper cementing. The maximum allowable inclination from vertical at any portion of a hole was 1.0 degree. The maximum allowable difference between any two successive survey points was 0.5 degree:

During construction of MW1 and IW1, all inclination surveys met the above criteria. The maximum deviation (0.8 degree) was observed in IW1. The maximum difference between any two successive survey points (0.40 degree) also was observed in IW1. Summaries of inclination survey results for ROIW1 and ROMW1 are presented in **Tables 8 and 9**, respectively.

Hydrostatic Pressure Tests

The Contractor performed hydrostatic pressure tests on the MW1 lower monitor-zone FRP tubing, IW1 final casing (18-inch O.D.) and IW1 FRP injection tubing (12-inch I.D.). Pressure tests were performed to demonstrate mechanical integrity.

The hydrostatic pressure test for the lower monitor-zone tubing of MW1 was performed using a permanently-set inflatable packer ("California" packer) attached to the base of the tubing string. The California packer included a plug at the base which was still intact after the tubing string was cemented in place. This allowed the Contractor to successfully pressurize the inside of the tubing.

The hydrostatic pressure test for the final casing of IW1 was performed by installing a removable inflatable packer inside and near the base of the casing after it was cemented in place. The inflatable packer was then inflated which allowed the Contractor to successfully pressurize the inside of the final casing.

The hydrostatic pressure test for the injection tubing (and the "YBI" positive seal packer) was performed by pressurizing the annulus between the injection tubing and the final casing. The exterior packer mandrel, attached to the base of the FRP injection casing, was set inside the interior packer mandrel, which is attached to the inside and near the base of the final casing, creating a positive seal. This allowed the Contractor to successfully pressure test the injection tubing, packer seal and the final casing.

Each pressure test was considered successful if the pressure did not change more than 5% from its original pressure. After the completion of each test, the pressure was relieved and the volume of water discharged was measured.

The pressure changes during each pressure test for IW1 and MW1 (three tests in total) were within the 5% allowable limit. The hydrostatic pressure-test results for the MW1 lower monitor-zone tubing, the IW1 injection casing and IW1 injection tubing (and the associated pressure-gauge calibration certificates) are included in **Appendix E**. Further discussion of the hydrostatic pressure tests is included in the Technical Memorandum included in **Appendix E**. This Technical Memorandum also was included in the Injection Test Request letter dated August 28, 2008.

(004200.g015 - golden gate injection well/su

Construction and Testing Summary Report

Class I Injection Well System, Golden Gate WWTF

Construction and Testing Summary Report

Class | Injection Well System, Golden Gate WWTF

Cement-Top Temperature Logs

Temperature logs were performed after each casing cementing stage (where more than 28 cubic feet was installed and where cement returns were not observed at surface). The top of the cement for each stage was estimated from the results of each temperature log (temperature increases indicate the heat released from curing cement). The top of cement also was physically tagged after each cementing stage using steel work pipe inserted inside the annulus. The estimated depth of the top of cement from the temperature log was compared to the physical tag depth (for each stage) to ensure that the formation did not collapse and fall on top of the cement (resulting in cement voids or un-cemented annular sections).

There was a good correlation between the tagged depth for the top of cement and the estimated depth of the top of cement as inferred from the temperature log of each cement stage for MW1 and IW1. "Cement top" temperature logs for both wells are provided in **Volume II** of this report, and electronic copies are included in **Appendix G**. Summaries of the cement stages for MW1 and IW1 are presented as **Tables 10 and 11**, respectively.

Video Surveys

Television surveys were conducted on the MW1 lower monitor-zone FRP tubing, the IW1 final casing and the IW1 FRP injection tubing of IW1. The television surveys were performed to visually inspect the casing/tubing for any damage that may have occurred during or after installation. Prior to performing the video surveys, water was pumped out of the wells to remove suspended sediments and improve the picture clarity. The video camera then was lowered inside the casing/tubing and the open holes. No damage was observed during any of the surveys. The surveys were recorded onto DVD and are provided in **Volume II** of this report.

Cement Bond Logging

In MW1 the lower monitor-zone tubing was cemented between the base of the upper monitor zone and the top of the lower monitor zone (between 1,128 feet and 1,498 feet bpl) to isolate the two intervals. A cement-bond log (CBL) with a variable-density log (VDL) display was performed on the tubing before and after the Contractor cemented the tubing in place. The amplitude of the signal is greatly reduced on the postcementing CBL in the interval from 1,128 feet to 1,494 feet bpl compared to the same interval on the pre-cementing CBL. The reduced signal amplitude indicates presence

Construction and Testing Summary Report

Class I Injection Well System, Golden Gate WWTF

10

of cement with likely good bonding of cement to casing. Additionally, the reduced signal return on the variable-density log (VDL) display confirms the cement-to-casing bond and indicates that there is good cement to formation bond. It should be noted that FRP sections within the open hole between approximately 1,138 feet and 1,495 feet bpl had a sand-impregnated rough coat surface to enhance the cement-to-tubing bond.

The Contractor installed and cemented in place the IW1, 18-inch O.D. final casing to a depth of 2,472 feet bpl. The uppermost 472 feet of the casing was not cemented until after the completion of the CBL (with VDL display) to allow the logging tool to be calibrated to the free-pipe signal of the un-cemented portion of the casing. In general the log indicates lower signal amplitude below the uppermost 472 feet of un-cemented casing which indicates the presence of cement. Several intervals displayed higher signal amplitude than the majority of the cemented interval (i.e., 1,110 feet, 1,305 feet, 1,515 feet and 1,916 feet bpl). However, the VDL display indicates the cement is bonded to the casing and the formation within these intervals. Copies of the cement bond logs (CBLs) performed on the final tubing of MW1 and the final casing of IW1 are provided in **Volume II** of this report, and electronic copies are provided in **Appendix G**.

High Resolution Temperature Log

A high-resolution temperature log was conducted in IW1 to demonstrate mechanical integrity. The temperature parameter inside the injection tubing (and outer casing) is a function of a combination of factors, including the water temperature of the formation, the number, diameter and wall thickness of casings that penetrate the formation, the density and quality of the cement slurry used during casing cementing and the concentration of a corrosion inhibitor that fills the annulus between injection casing and injection tubing.

The data collected from the high-resolution temperature log indicated that IW1 has mechanical integrity. A copy of the high-resolution temperature log is provided in **Volume II** of this report, and an electronic copy is provided in **Appendix G**. Further discussion of the high-resolution temperature log is included in the Technical Memorandum in **Appendix E**.

Radioactive Tracer Survey (RTS)

004200.g015 - golden gate inj

20

A RTS was performed to determine whether IW1 had external mechanical integrity (including the integrity of the cement sheath and adjacent formation). The RTS logging,

Construction and Testing Summary Report

Class I Injection Well System, Golden Gate WWTF

tool used for the survey consisted of three gamma-ray detectors: one near the top (GRT), the middle (GRM) and bottom (GRB) of the tool. The RTS logging-tool ejector port is located between the GRT and the GRM. For the RTS test, the tool was loaded with 5.0 millicuries (mCi) of lodine 131. A magnetic casing-collar locator (CCL), attached to the base of the RTS logging tool, indicated that the base of the 18-inch O.D. final casing was located at a depth of approximately 2,472 feet bpl.

A RTS consists of background gamma-ray logging, dynamic monitoring, out-of-position logging and final gamma-ray logging. During dynamic monitoring, potable water pumped down the well forced the lodine 131 tracer material downward where it was detected by the GRM and GRB (located below the ejector). The GRT can detect the lodine 131 if the lodine 131 moves upward outside the injection casing (due to spaces between the cement and casing or the cement and formation, or if fractures exist in the formation near the well).

The primary purpose of the "out-of-position" logs and the final gamma-ray log was to determine the extent (if any) of upward migration of Iodine 131 through the formation or through annuli adjacent to the well bore or casing. Because the recorded readings of all three detectors from each "out-of-position" log and the final gamma-ray log resembled the recorded readings of the background gamma-ray log, and because the GRT did not record any elevated readings after ejection during either dynamic monitoring tests, we conclude that the cement sheath around the injection casing is intact and an adequate bond is present between the cement and the formation, as well as between the casing and the cement. Further discussion of the RTS test is included in the Technical Memorandum in **Appendix E**.

MW1 and IW1 Final Water Quality Results

Water quality samples were collected in the upper and lower monitor zones of MW1 on February 27, 2008. Approximately 4 well volumes were purged in the upper zone and 10 volumes were purged in the lower zone prior to collecting the samples. The samples were analyzed for parameters listed as Florida Primary and Secondary Drinking Water Standards and "municipal minimum-criteria" parameters, and an electronic copy of the analytical report for each zone is included in **Appendix G**.

A water quality sample was collected in IW1 on July 7, 2008. IW1 was developed by pumping from the well until field parameters stabilized prior to collecting the final sample. The sample was analyzed for parameters listed as Florida Primary and Secondary Drinking Water Standards and "municipal minimum-criteria" parameters,

Construction and Testing Summary Report

Class I Injection Well System, Golden Gate WWTF

and an electronic copy of the analytical report for each zone is included in **Appendix G**.

Injection Testing

Following completion of construction and mechanical integrity testing of IW1, an injection test was performed to demonstrate the ability of the injection well to accept fluid and to test the effectiveness of the confining units between the injection zone and the monitoring zones.

Surface water from the adjacent freshwater canal located at the site boundary was the water source for the injection test of IW1. The Contractor was issued a General Use Permit by the South Florida Water Management District (SFWMD) on August 12, 2008 to withdraw up to 2.6 million gallons from the canal. A copy of the permit was included in the Injection Test Request dated August 28, 2008. The Contractor retained an analytical laboratory to collect a water sample from the canal on June 11, 2008. The sample was analyzed for parameters listed as Florida Primary and Secondary Drinking Water Standards and "municipal minimum-criteria" parameters. An electronic copy of the analytical report is included in **Appendix G**.

Prior to beginning the injection test, the wellhead pressures of MW1 (upper and lower zones) and IW1 were monitored for approximately 60 hours to gather background data. After background data were collected, water from a canal located north and adjacent to the Golden Gate WWTF was pumped into IW1 at an average rate of 3,495 gallons per minute (gpm) for approximately 12 hours while the monitoring of MW1 and IW1 wellhead pressures continued. Following injection, wellhead pressure monitoring for MW1 and IW1 continued for approximately 36 more hours. Simultaneously with pressure well data, site barometric and tidal area data were collected before, during and after the injection portion of the test.

Only minor changes were observed in the pressure data in the upper and lower monitor zones of MW1 throughout the monitoring period, and these pressure changes correlate with tidal fluctuations. Based on the injection test results, the injection of more than 5 mgd does not affect the pressures of the MW1 monitoring zones. This supports the interpretation that the monitor zones are isolated from the injection zone by one or more suitable, overlying confining intervals. The results also demonstrate that the section of the injection zone tapped by the open hole of IW1 (from 2,472 feet to 3,110 feet bpl) is sufficiently transmissive to accept the anticipated buildout volume of 5

Construction and Testing Summary Report

Class I Injection Well System, Golden Gate WWTF

ARCADIS

mgd. Wellhead pressure data, plots of the data, and transducer calibration sheets are presented in **Appendix F**.

Geology and Hydrogeology

A summary of the geologic and hydrogeologic settings of the area surrounding the Golden Gate WWTF is provided below. A general stratigraphic summary with hydrogeologic units encountered during construction and testing is included in Figures 3 and 4. A regional geologic and hydrogeologic setting is illustrated on a north-south hydro-stratigraphic cross section in Figure 6 and a west-east hydrostratigraphic cross section in Figure 7.

Undifferentiated Sediments and Surficial Aquifer System

The Surficial Aquifer System is composed mainly of unconsolidated sand, silt and shell with varying amounts of limestone. This system is divided into two aquifers, the Water-Table (or Upper Tamiami) Aquifer and the Lower Tamiami Aquifer. The two aquifers are separated by a leaky confining interval, referred to as the Tamiami Confining Beds. At the project site the base of the Surficial Aquifer System is located at a depth of approximately 180 feet bpl.

Miocene Series (Hawthorn Group) and Intermediate Aquifer System

Underlying the Surficial Aquifer is the Hawthorn Group generally form a confining sequence between the Surficial Aquifer and the Oligocene to Eocene limestones and dolomites of the Floridan Aquifer. The Hawthorn Group is a relatively thick sequence of clayey silts interbeded with beds of limestone and phosphatic sands. At the project site, the base of the Hawthorn Group and the Intermediate Aquifer System is located at a depth of 675 feet bpl.

Geology of the Floridan Aquifer System

The Floridan Aquifer underlies all of Florida and southern Georgia and includes parts or all of the Suwannee Limestone (where present), Ocala Group, Avon Park Formation and Oldsmar Formation.

Construction and Testing Summary Report

Class I Injection Well System, Golden Gate WWTF

Suwannee and Ocala Limestones

Underlying the Hawthorn Group are limestones of Oligocene and Upper Eocene age referred to as Suwannee Limestones and the Ocala Group. The Suwannee Limestones are typically difficult to distinguish between the Upper Eocene Ocala Group limestones without adequate cores and diagnostic fossil assemblages. The lithology in this sequence typically is a cream to white, fine-grained, poorly indurated, fossiliferous limestone. At the project site, the base of the Suwannee Limestones and Ocala Group sequence is located at a depth of approximately 1,770 feet bpl.

Avon Park Formation

Underlying the Ocala Limestones are the Upper to Middle Eocene age limestones and dolostones referred to as the Avon Park Formation. This formation predominantly consists of yellowish brown limestones and orange to brown dolostones. The uppermost Avon Park Formation contains brown fossiliferous limestone and fine crystalline dolostone. At the project site, the base of the Avon Park Formation is located at a depth of approximately 2,480 feet bpl.

Oldsmar Formation

Underlying the Avon Park Formation is the Lower Eocene age limestones and dolostones referred to as the Oldsmar Formation. The Oldsmar Formation primarily consists of a dark brownish, fine crystalline dolostone. At the project site, the total depth of the pilot hole (3,200 feet bpl) did not intercept the base of the formation.

Hydrogeology of the Floridan Aquifer System

The Floridan Aquifer System serves as a regionally significant water-yielding unit under confined conditions. The principal recharge areas for the artesian Floridan Aquifer in southern Florida are centered in Polk and Pasco Counties. The potentiometric surface of the aquifer slopes gently toward the east-northeast and southeast, except where locally affected by withdrawals.

Water quality in the Floridan Aquifer is poor in comparison to the Surficial Aquifer. Water from the Floridan Aquifer in the area contains TDS concentrations that exceed drinking water standards. Although the desalination treatment required results in higher consumer costs, use of Floridan Aquifer water has become an established necessity in south Florida in order to both mitigate potential impacts to environmentally

Construction and Testing Summary Report

Class I Injection Well System, Golden Gate WWTF

sensitive wetlands and to reduce the potential for saltwater intrusion in the Surficial Aquifer System. For purposes of this application, the hydrogeologic units of the Floridan Aquifer System are divided into the Upper Floridan Aquifer (UFA), confining units and the "Boulder Zone".

Upper Floridan Aquifer (UFA)

The UFA is located directly below the Hawthorn Group clays. At the project site, the top of the UFA is located at approximately 675 feet below land surface. The UFA generally increases in salinity with increased depth. Production wells in South Florida that withdraw from the Floridan Aquifer typically only extend to the uppermost producing zones in the UFA where higher quality (less saline) water is present. However, potentially usable sources of underground drinking water (referred to as USDWs) are defined as waters containing concentrations of TDS less than 10,000 mg/L. At the project site, the depth at which formation waters exceed TDS concentrations of 10,000 mg/L is approximately 1,110 feet bpl.

Floridan Aquifer Confining Units

Underlying the UFA and the lowermost USDW are strata within the lower Avon Park Formation and upper Oldsmar Formation that are primarily un-fractured limestones and dolostones that have low-permeability. These low-permeability formation intervals will serve as a barrier between the fluids injected in the "Boulder Zone" and the lowermost USDW. Based on the data collected during construction and testing of the injection well system, there appears to be sufficient confining units present at the project site between approximately 1,600 feet and 2,285 feet bpl.

Floridan Aquifer "Boulder Zone"

Underlying the confining units within the Floridan Aquifer, is a highly transmissive karst zone known in south Florida as the "Boulder Zone". The absence of a USDW, the overlying confining units and the high transmissivity provides an ideal formation for underground disposal and storage. The top of the "Boulder Zone" and the top of the injection zone for IW1 is at a depth of 2,472 feet bpl.

		Monitor Well MW1
Weekly Report #	Date	Description
Bro Bonorto	01/09/07	Contractor installed six water table monitor wells
Fre-Reports		Contractor installed 62-inch diameter steel pit casing to 8 feet bls at the MW1 and IW1 locations
	12/18/07	Contractor began drilling borehole at MW1 with a 40.5-inch bit using mud-rotary drilling method
		Contractor extended borehole to 52 feet bpl
1	12/20/07	Contractor installed 34-inch O.D. (0.375-inch thick) pit casing to 52 feet bpl and cemented pit casing in place from base of casing to 11 feet bpl
	12/22/07	Contractor began drilling pilot hole using 12.25-inch drill bit from top of cement plug (47 feet bpl)
		Contractor extended pilot hole to 550 feet bpl
2	12/28/07	Contractor conducted geophysical logging (XY caliper, gamma and dual induction) of pilot hole
	12/29/07	Contractor began reaming borehole using 32.5-inch drill bit
3	01/05/08	Contractor extended borehole to 500 feet bol
• • •	01102100	Contractor conducted geophysical logging (XX caliner and gamma ray logs) on 32-inch diameter open hole
4	01/08/08	Contractor installed and compared 24 inch Q.D. stool ensing at 400 feet bel
	01/1 4/00	Contractor instaned and cemented 24-inch O.D. steel casing at 490 feet opi
6	01/14/08	
5	01/19/08	Contractor extended pilot hole to 1618 feet bpl
	01/20/08	Contractor performed geophysical logging of pilot hole under static and pumping conditions
	01/21/08	Contractor began straddle-packer pumping test (Packer Test No. 1) from 1,512 to 1554.4 feet bpl
. 6	01/23/08	Contractor completed Packer Test No. 1; began Packer Test No. 2 from 1,102.5 to 1,130.1 feet bpl
	01/25/08	Contractor completed Packer Test No. 2; began Packer Test No. 3 from 1,222.6 to 1,250 feet bpl
	01/28/08	Contractor completed Packer Test No. 3; began Packer Test No. 4 from 1,013 to 1,045 feet bpl
7	01/29/08	Contractor completed Packer Test No. 4
,	02/01/08	Contractor filled pilot interval with cement from 1,618 feet to 1,550 feet bpl
	02/02/08	Contractor placed gravel in LMZ section of pilot hole from 1,550 feet to 1,493 feet bpl
	02/04/08	Contractor began reaming pilot with a 22-inch drill bit from 490 feet bpl
8	02/05/08	Contractor extended rearned hole to 1,080 feet bpl
-	02/07/08	Contractor performed caliper and gamma-ray logging from 490 feet to 1,080 feet bpl
	02/10/08	Contractor installed and cemented in place 16-inch O.D. UMZ casing from 1,078 feet to pad level
	02/11/08	Contractor began reaming pilot hole with 14.75-inch dnll bit from base of UMZ casing
	02/12/08	Contractor completed reaming with 12.25 inch bit to 1,490 and began reaming with a 12.25-inch bit
9	02/15/08	Contractor completed rearing with 12:20-inch bit to 1,000 reet bpi
	0210/00	Contractor installed 6 625 inch ERP tubing to 1 498 feet bol / M7 interval: 1 498 feet to 1 550 feet bol)
	02/16/08	Contractor performed background CBL inside FRP tubing
·····	02/19/08	Contractor completed cementing FRP tubing in place from the top of the LMZ to the base of the UMZ in 4 cement stages (UMZ Interval; 1.078 feet to 1.128 feet bpl)
10		Contractor performed CBL inside FRP tubing
	02/21/08	Contractor performed pressure test in FRP tubing at 120.5 psi for 1 hour (psi decrease of 2.5% observed)
- 11	02/27/08	Contractor collected final water samples of the UMZ and LMZ for primary and secondary drinking water standards and municipal minimum parameters (after sufficient development of the zones occurred)
	03/01/08	Contractor performed TV survey of LMZ tubing and open hole (open hole obstructed at 1,539 feet bpl with fine rock fragments)
	7/30/08	Contractor mobilized back to the site to perform cleaning of the Lower Monitor Zone in the MW1. Set-up containment pad.
31, 32, 33	7/31/08	Contractor cleaned MW1 Lower Monitor Zone with air-lifting and jetting method.
	8/1/08	Contractor performed video survey of the MW1 Lower Monitor Zone to confirm cleaning effectiveness: bottom observed at 1547.9 ft bpl.

Table 1. Summary of Construction and Testing ActivitiesGolden Gate WWTF Injection Well System

		Injection Well/W/1				
Weekly	Date	Description				
Report #						
	03/03/08	Contractor began demobilizing from MW1 to IW1 location				
	02/77/08	Contractor completed mobilization to IW1				
12, 13, 14	03/22/08	Contractor began drilling borehole with a 56-inch drill bit from pad level				
	02/22/09	Contractor completed drilling borehole with 56-inch drill bit to 56 bpl				
	03/23/08	Contractor set and cemented 48-inch O.D. steel casing to 55 feet bpl.				
	03/25/08	Contractor began drilling borehole with a 46.5-inch bit from 55 feet bpl				
15	03/29/08	Contractor completed borehole with 46.5-inch bit to 494 feet bpl				
	03/30/08	Contractor performed geophysical logging of the borehole				
	03/31/08	Contractor set and cemented a 36-inch O.D. casng to 490 feet bpl				
	04/01/08	Contractor began drilling pilot hole with a 12.25-inch drill bit from 490 feet bpl				
	04/04/08	Contractor completed pilot hole to 1,635 feet bpl				
16	04/05/08	Contractor performed geophysical logging of the pilot hole				
	04/06/08	Contractor completed Packer Test No. 5 between 1.554 feet and 1.635 feet bpl				
	04/10/08	Contractor completed Packer Test No. 6 between 1.559 feet and 1.577 feet bpl				
47	04/11/08	Contractor cemented back the pilot hole from 1,635 feet to 572 feet bpl by pumping a total of 1920 cubic feet in two				
17	0-11/08	cement stages.				
· · ·	04/11/08	Contractor began reaming the cemented pilot hole using a 34.5-inch diameter drill bit				
18	04/18/08	Contractor completed borehole with 34.5-inch bit to 1,584 feet bpl				
	04/19/08	Contractor performed geophysical logging of the borehole				
19	04/23/08	Contractor set and cemented 28-inch O.D. steel casing to 1,580 feet bpl				
	04/25/08	Contractor began drilling pilot hole with a 12.25-inch drill bit from 1,635 feet bpl				
20	05/04/08	Contractor extended pilot hole to 2,705. A total of 4 cores were collected during drilling				
21	05/11/08	Contractor completed pilot hole to 3,205 feet bpl				
	05/15/08	Contractor completed static geophysical logging				
22	05/16/08	Contractor set bridge plug at approximately 2,478 feet bpl				
	05/19/08	Contractor completed backer test #7 and began development for backer test #8				
	05/19/08					
23	05/24/08	Contractor performed packer tests #8 - #11				
	05/25/08	Contractor began cementing back pilot hole				
	05/26/08	Contractor completed cementing back pilot hole to 1611 ft bpl, 31 feet below 28-inch diameter casing seat.				
24	05/27/08	Contractor began reaming the comented pilot hole using a 26 5-inch diameter drill hit				
	06/01/08	Contractor completed borehole with 26.5-inch bit to 2.468 feet bpl				
	06/03/08	Contractor began reaming 12-inch diameter pilot hole using an 18-inch diameter drill bit				
25	06/08/08	Contractor extended 18-inch borehole to 2,720 ft bpl.				
.26	06/15/08	Contractor extended 18-inch borehole to 2,827 ft bpl.				
27	06/22/08	Contractor completed nominal 18-inch diameter borehole to 3110 ft bpl. And began final wiper trip.				
	06/24/08	Contractor performed geophysical logging of the borehole and began 18-inch diameter injection casing installation				
· 28	06/26/08	Contractor set 18-inch O.D. steel casing to 2,472 feet bpl and began cementing.				
	06/29/08	Contractor cemented injection casing to 476 ft bpl and performed CBL log.				
	00.2700	Contractor completed cementing of the injection casing to the surface.				

Table 1. Summary of Construction and Testing ActivitiesGolden Gate WWTF Injection Well System

		Injection Well IW/1
Weekly	Date	Description
Report #		
	07/01/08	Contractor performed pressure test in 18-inch casing at 155.8 psi for 1 hour (3.2 psi decrease observed)
		Contractor conducted TV survey of the injection casing and casing seat (surface to 2473 ft bpl).
- 29	07/04/08	Contractor completed FRP tubing installation. Set FRP tubing at 2461 ft bpl confirmed by a camera view. Contractor pumped 12,000 gals of 1.1% Baracor mix in the FRP tubing annulus.
		Contractor performed video survey of the completed well from surface to the bottom (3110 ft bpl).
· _	07/06/08	Contractor began well (injection zone) development.
30	07/07/08	Contractor completed well development and collected final water sample. Contractor begin demobilizing from the site.
	8/18/08	Contractor mobilized to the site and began injecting fresh water into IW1 in preparation for RTS test.
24 25 26	8/19/08	Contractor completed fresh water injection into IW1. Total of 60,000 gallons injected.
34, 30, 30	0/20/00	Contractor performed RTS test.
	0/20/00	Contractor conducted 1 hr annular pressure test (0.25 psi decrease of 0.2% observed).
37, 38, 39		The Contractor constructed MW1 and IW1 containment pads and laid down pipeline for the injection test between IW1 and the canal.
40	09/15/08	The Contractor conducted 12 hr injection test. Average injection rate was 3495 gpm, annular pressure approximately 45.9 psi. After completion of the test the Contractor collected post-test data for at least 24 hrs.

Table 1. Summary of Construction and Testing ActivitiesGolden Gate WWTF Injection Well System

Date	Depth Sampled	Field Parameters					
	(ft below pad level)	Temp.	Conductivity	Chloride			
		(°C)	(μS/cm)	(mg/L)			
		MONITOR WELL 1					
1/14/2008	578	22.6	1,198	80			
1/14/2008	618	23.4	1,266	80			
1/14/2008	658	23.8	1,304	. 80			
1/14/2008	698	23.9	1,341	80			
1/14/2008	738	22.6	1,328	120			
1/15/2008	778	21.5	1,365	260			
1/15/2008	818	21.7	1,400	280			
1/15/2008	858	21.8	1,433	300			
1/15/2008	898	21.9	1,515	340			
1/15/2008	938	22.3	1,535	360			
1/15/2008	978	22.4	1,578	400			
1/15/2008	1,018	22.4	1,680	480			
1/16/2008	1,058	22.5	2,720	1,000			
1/16/2008	1,098	23.2	3,170	1,140			
1/16/2008	1,138	24.1	3,750	1,500			
1/16/2008	1,178	24.4	3,640	1,500			
1/16/2008	1,218	21.8	4,830	2,000			
1/16/2008	1,258	21.9	4,580	2,500			
1/16/2008	1,298	23.0	6,800	3,000			
1/16/2008	1,338	22.7	7,750	3,500			
1/17/2008	1,378	22.8	6,850	3,000			
1/17/2008	1,378	23.5	6,990	2,500			
1/17/2008	1,418	22.3	6,890	2,500			
1/17/2008	1,450	22.6	7,790	3,000			
1/17/2008	1,458	22.8	7,920	3,000			
1/17/2008	1,498	23.7	8,410	3,500			
1/18/2008	1,538	22.8	8,530	3,500			
1/18/2008	1,578	23.5	7,240	3,000			
1/18/2008	1,618	23.8	7,440	3,500			
		INJECTION WELL 1					
4/2/2008	735	25.6	2,770	800			
4/2/2008	780	25.7	2,640				
4/3/2008	825	26.0	2,380	620			
4/3/2008	870	25.9	2,420	680			
4/3/2008	915	25.8	2,480	700			
4/3/2008	960	25.9	4,590	1,020			
4/3/2008	1,005	26.2	2,370	700			
4/3/2008	1,050	25.7	2,570	/60			
4/3/2008	1,095	26.4	2,920	880			
4/3/2008	1,140	27.0	2,950	900			
4/3/2008	1,185	27.2	3,530	1,000			
4/3/2008	1,230	24.0	3,570	1,140			
4/3/2008	1,275	26.7	3,810	1,500			
4/3/2008	1,320	26.7	6,530	2,000			
4/4/2008	1,365	26.6	4,390	1,500			
4/4/2008	1,410	20.5	4,920	1,200			
4/4/2008	1,455	20.3	3,270	2,000			

Table 2. Summary of Reverse-Air Discharge Water-Quality Results Golden Gate WWTF Injection Well System

G:AProjects/WR/WF PROJECTS/WF004200.G015 - Golden Gate Injection Well/Submitted (Final) Reports/FINAL CONSTRUCTION & TESTING REPORT/Tables/T02 PilotHoleWQ.xts/CI & TDS Chart

Date	Geophysical Survey Performed	Casing Depth (feet bpl)	Open Hole Depth (feet bpl)	Casing/Drilled Hole Diameter (inches)
12/28/2007	XY Caliper, Gamma Ray	52	550	12.3
12/28/2007	Dual Induction, LL2/SP	52	550	12.25
1/8/2008	XY Caliper, Gamma Ray	52	500	32.50
1/20/2008	XY Caliper, Gamma Ray	490	1618	12.25
1/20/2008	Fluid Conductivity, Temperature (Static and Dynamic)	490	1618	12.25
1/20/2008	Dual Induction, LL3/SP	490	1618	12.25
1/20/2008	Flowmeter (Static and Dynamic)	490	1618	12.25
1/20/2008	Borehole Compensated Sonic with VDL&Log Derived TDS	490	1618	12.25
2/7/2008	XY Caliper, Gamma Ray	490	1080	22.00
2/10/2008	Cement Top Temperature (Stages 1-3)	1078	1082	16.00
2/15/2008	XY Caliper, Gamma Ray	1078	1550	12.25/14.75
2/16/2008	Cement Bond Log with VDL(6.625 FRP before cementing)	1498	1550	6.625
2/19/2008	Cement Top Temperature (6.625" FRP, Stages 1-4)	1498	1550	6.625
2/21/2008	Cement Bond Log with VDL (6.625 FRP after cementing)	1498	1550	6.625
3/1/2008	6.625" FRP Final Video Survey (MW1)	1498	1550***	6.625

Table 3. Summary of Geophysical Logs Performed in Deep Monitor Well MW1Golden Gate WWTF Injection Well System

"bpl" denotes below (drilling) pad level.

"LL3/SP" denotes lateral resistivity and spontaneous potential logs

"VDL" denotes a variable density log display.

*** Total depth of the MW1 (Lower Monitor Zone) at the time of Survey was 1539 feet bpl.

Date	Geophysical Survey Performed	Casing Depth (feet bpl)	Open Hole Depth (feet bpl)	Casing/Drilled Hole Diameter (inches)
3/30/2008	XY Caliper, Gamma Ray	54	494	46.50
3/30/2008	Dual Induction, LL3/SP	54	494	46.50
4/5/2008	XY Caliper, Gamma Ray	490	1634	12.25
4/5/2008	Fluid Conductivity, Temperature (Static and Dynamic)	490	1634	12.25
4/5/2008	Dual Induction, LL3/SP	490	1634	12.25
4/5/2008	Flowmeter (Static and Dynamic)	490	1634	12.25
4/5/2008	Borehole Compensated Sonic with VDL&Log Derived TDS	490	1634	12.25
4/5/2008	Borehole Televiewer Survey	490	1634	12.25
4/19/2008	XY Caliper, Gamma Ray	490	.1585	34.50
4/21/2008	28" Casing Cement Top (Stages 1-4)	1580	1585	28.00
5/15/2008	XY Caliper, Gamma Ray	1580	3205*	12.25
5/15/2008	Dual Induction, LL3/SP	1580	3205*	12.25
5/15/2008	Borehole Compensated Sonic/ VDL	1580	3205*	12.25
5/15/2008	Fluid Resistivity, Temperature (Static and Dynamic)	1580	3205*	12.25
5/15/2008	Flowmeter (Static and Dynamic)	1580	3205*	12.25
5/15/2008	IW1 Pilot Hole Video Survey	2472	3205*	12.25
6/24/2008	XY Caliper, Gamma Ray	2472	3110	18.00
6/29/2008	18" Final Casing Cement Top Temperature (Stages 1-4)	2472	3110	18.00
6/30/2008	18" Final Casing Cement Bond Log w/ VDL	2472	3110	18.00
7/1/2008	Final Casing Video Survey	2472	3110	18.00
7/4/2008	IW1 Final Video Survey	2472	3110	18.00
8/20/2008	High Resolution Temperature Log	2472	3110**	18.00
8/20/2008	Radioactive Tracer Survey	2472	3110**	18.00

Table 4. Summary of Geophysical Logs Performed in Injection Well IW1 **Golden Gate WWTF Injection Well System**

"bpl" denotes below (drilling) pad level.

* Pilot Hole logging limited to a depth of 3,006 ft bpl due to obstruction.

** logging limited to a depth of 2,870 ft bpl due to obstruction. **L3/SP* denotes lateral resistivity and spontaneous potential logs

"VDL" denotes a variable density log display.

Table 5. Summary of Hydraulic Conductivities from Core Analyses of Injection Well IW1 Golden Gate WWTF Injection Well System

Coré Númber	Cored Interval	Core Sample Interval	Horizontal Hydraulic Conductivity	Vertical Hydraulic Conductivity
	(feet bpl)	(feet bpl)	(cm/sec)	(cm/sec)
1	1,650-1,665	1,652:3-1,652.7;	2.0 x 10 ⁻⁵	1.7 x 10 ⁻⁵
	1 975 1 920	1825.7-1826.4	6.7.x 10 ^{.6}	1.6 x 10 ⁻⁶
-	1,023-1,037	1830.65-1831.1	2.1 x 10 ⁻⁵	4.4 x 10 ⁻⁵
	1 000 2 005	, 1995 :15-1995.5	2.9 x 10⁻⁶	1.1 x 10 ⁻⁶
	1,990-2,000	2000.7-2001.5	8.7 x-10 ⁻⁶	6.6 x 10 ⁻⁶
	2 12 <i>6</i> 2 149 6	2136.5-2136.95	2.0 x 10 ⁻⁶	1.4 x 10 ⁻⁶
•	2,130.3-2,148.3	2140.65-2141.3	1.3 x 10 ⁻⁶ *	1.7 x 10 ⁻⁶

"bpl" denotes below pad level

"cm/sec" denotes hydraulic conductivity in centimeters per second

G:VAProjects/WRWF: PROJECTS/WF004200.G015 - Golden Gate Injection Well/Submitted (Final) Reports/FINAL CONSTRUCTION & TESTING REPORT/Tables/

Test Number	Test Date	Packer Pumping-Test Depth Interval (feet below pad level)	Ammonia Nitrogen (mg/L)	Specific Conductance (µmhos/cm)	Chloride (mg/L)	Total Phosphorus (mg/L)	Sulfate (mg/L)	Total Dissolved Solids (mg/L)	Total Kjeldahl Nitrogen (mg/L)	pH (pH units)
					MW1		I			
1	23-Jan-08	1512-1554	0.05	44,600	15,800	n/a	2,300	24,900	0.15	7.47
2	25-Jan-08	1103-1130	0.53	17,500	6,300	n/a	800	10,000	0.91	7.48
3	26-Jan-08	1223-1250	0.44	30,100	11,000	n/a	1,420	18,300	0.86	7.31
4	29-Jan-08	1013-1045	0.46	9,320	2,600	n/a	701	5,120	0.59	7.38
					名341W1道326	ifter and the first state			F COLUMN TO A	
5	6-Apr-08	1554-1635	0.05	51,900	20,500	7.11**	2,580	32,000	0.59	7.32
6	10-Apr-08	1559-1577	0.34	61,700	19,200	0.025	2,420	33,400	0.17	7.2
7*	18-May-08	1619-1637	0.08	55,200	20,800	0.074	3,420	34,200	0.41	6.2
8*	20-May-08	1705-1723	0.24	51,900	19,700	0.025	2,870	33,500	0.31	6.36
9*	22-May-08	1814-1832	0.23	49,000	18,800	0.068	2,830	32,700	0.38	6.19
10*	23-May-08	2139-2157	0.34	46,500	17,800	0.068	2,730	. 31,600	0.44	5.96
11	24-May-08	2267-2285	0.09	47,900	18,500	0.064	2,860	31,000	0.33	7.46

Table 6. Summary of Packer-Pumping Test, Final Water Sample Results, Golden Gate WWTF Injection Well System

"n/a" denotes analyte not analyzed

"n/d" denotes analyte not detected

"mg/L" denotes concentration in units of milligrams per liter.

"µmhos/cm" denotes specific conductance in units of micromos per centimeter.

Values in Italics Indicate that results are less than the noted method detection limit

Packer pumping-test depth intervals are measured from inflation-element centerlines.

" * " Samples collected from test intervals #7-10 are not representative because formation did not yield enough water to purge one work-pipe storage volume.

"**" The analyte was detected in both the sample and the associated method blank.

(x,y) = (x,y) + (x,y

Table 7. Summary of Packer Test Data and Horizontal Hydraulic Conductivity Estimates Golden Gate WWTF Injection Well System

Packer Test	Date	Well	Depth Interval	Tested Aquifer Thickness	Pumping Rate	Specific Capacity	Estimated Transmissivity		Estimated Horizontal Hydraulic Conductivity		Estimated Horizontal Hydraulic Conductivity		Method of Interpretation
			(feet bpl)	(feet)	(gpm)	(gpm/ft)	(gp	d/ft)	(gpd/sq ft)		(cm/sec)		
							Drawdown	Recovery	Drawdown	Recovery	Drawdown	Recovery	
1	1/23/08	MW1	1,512-1,554	43	84.5	11.1							Turcan (1963)
2	1/25/08	MWI	1,103-1,130	27	89	1.71	2,993	2,993	111	111	0.01	0.01	Turcan (1963)
-	1/25/00							447		17		0.00	Cooper-Jacob (1946)
3	1/26/08		1,223-1,250	27	65.2	0.61	1,068	1,068	39.6	39.6	1.87E-03	1.87E-03	Turcan (1963)
	1/20/08	101 00 1					298.0	217	11.0	8.0	5.21E-04	3.79E-04	Cooper-Jacob (1946)
4	1/29/08	MWI	1,013-1,045	28	89.5	2.02	3,535	3,535	126.3	126.3	5.95E-03	5.95E-03	Turcan (1963)
								· 544 .0	0.0	19.4		9.16E-04	Cooper-Jacob (1946)
							455	455	5.6	5.6	2.65E-04	2.65E-04	Turcan (1963)
5	4/6/08	IWI	1,554-1,635	81	36.3	0.26	478		5.9		2.78E-04		Papadopulos-Cooper (1967)
							95	112	1.2	1.4	5.53E-05	6.52E-05	Cooper-Jacob (1946)
6	4/10/08	1W1	1 550-1 577	18	16.5	0.1	175	175	9.7	9.7	4.59E-04	4.59E-04	Turcan (1963)
	10/08		1,009-1,077	10	10,5	0.1	39.6	38.0	2.2	2.1	1.04E-04	9.96E-05	Cooper-Jacob (1946)
7	5/18/08	IWI	1,619-1,637	18	0.67	<0.008	16		0.9		4.19E-05		Turcan (1963)
8	5/20/08	IWI	1,705-1,723	18	0.81	<0.006	12		0.7	机制度	3.14E-05		Turcan (1963)
9	5/22/08	IWI	1,814-1,833	18	0.67	<0.01	20		1.1		5.24E-05		Turcan (1963)
10	5/23/08	IW1	1,559-1,577	18	0.77	<0.01	20		1.1		5.24E-05		Turcan (1963)
11 -	5/24/08	IW1	2,267-2,285	18	14.75	0.15	300		16.7		7.86E-04		Turcan (1963)

bpl denotes below pad level.

gpm denotes gallons per minute.

gpm/ft denotes specific capacity in units of "gallons per minute per feet of drawdown".

gpd/ft denotes transmissivity in units of "gallons per day per foot", and is estimated using a method by Cooper-Jacob, Turcan and/or Papadopulous-Cooper.

gpd/sq ft denotes horizontal hydraulic conductivity in "gallons per day per square foot".

cm/sec denotes hydraulic conductivity in units of "centimeters per second".

Note: The estimated horizontal hydraulic conductivity value was calculated by assuming that the packer interval was the effective aquifer thickness. Thus, the estimated horizontal hydraulic conductivity reported represent probable "maximum" horizontal hydraulic coductivity for each interval tested.

	Open Hole	Inclination	Survey Result (degrees)			
Date	Diameter (inches)	Survey Depth (ft)	Deviation Total	Deviation Change		
12/26/2007	12	90	0.80	0.80 (Repeated 12/28/07)		
12/27/2007	12	180	0.50	0.30		
12/27/2007	12	270	0.50	0.00		
12/27/2007	12	360	0.50	0.00		
12/27/2007	12	450	0.50	0.00		
12/28/2007	12	540	0.40	0.10		
12/28/2007	12	90	0.30	0.30		
12/31/2007	32	90	0.50	n/a		
1/1/2008	32	180	0.60	0.10		
1/2/2008	32	270	0.60	0.00		
1/2/2008	32	360	0.70	0.10		
1/5/2008	32	450	0.50	0.20		
1/14/2008	12	630	0.30	0.10		
1/14/2008	12	720	0.20	0.10		
1/15/2008	12	810	0.40	0.20		
1/15/2008	12	900	0.20	0.20		
1/15/2008	12	990	0.30	0.10		
1/16/2008	12	1080	0.30	0.00		
1/16/2008	12	1170	0.50	0.20		
1/16/2008	12	1260	0.50	0.00		
1/17/2008	12	1350	0.50	0.00		
1/17/2008	12	1440	0.50	0.00		
1/19/2008	.12	1530	0.50	0.00		
1/20/2008	12	1618	0.60	0.10		
2/4/2008	24	540	0.40	0.10		
2/4/2008	24	630	0.50	0.10		
2/5/2008	24	720	0.50	0.00		
2/5/2008	24	810	0.50	0.00		
2/5/2008	24	900	0.40	0.10		
2/5/2008	24	990	0.50	0.10		
2/5/2008	24	1080	0.40	0.10		
2/11/2008	16	1170	0.50	0.10		
2/11/2008	16	1260	0.60	0.10		
2/11/2008	16	1350	0.60	0.00		
2/12/2008	16	1440	0.60	0.00		

Table 8. Summary of Inclination Survey Results in Deep Monitor Well MW1Golden Gate WWTF Injection Well System

The maximum allowable deviation from the vertical of any survey point is 1 degree

The maximum allowable difference between any two successive survey points is 0.5 degree.

"bpl "denotes below pad level

. . . .

	Open Hole	Inclination	Survey Result (degrees)				
Date	Diameter (inches)	Survey Depth (ft)	Deviation Total	Deviation Change			
3/26/2008	48	90	0.00	0.00			
3/26/2008	48	180	0.20	0.20			
3/28/2008	48	270	0.00	0.20			
3/28/2008	48	360	0.10	0.10			
3/29/2008	48	450	0.00	0.10			
4/2/2008	12	540	0.00	0.00			
4/2/2008	. 12	630	0.00	0.00			
4/2/2008	12	720	0.00	0.00			
4/3/2008	12	810	0.00	0.00			
4/3/2008	12	900	0.00	0.00			
4/3/2008	12		0.00	0.00			
4/3/2008	12	1080	0.00	0.00			
4/3/2008	12	1170	0.00	0.00			
4/3/2008	12	1260	0.00	0.00			
4/4/2008	12	1350	0.00	0.00			
4/4/2008	12	1440	0.00	0.00			
4/4/2008	12	1530	0.00	0.00			
4/7/2008	12	1620	0.00	0.00			
4/12/2008	36	580	0.50	0.00			
4/13/2008	36	670	0.25	0.25			
4/13/2008	36	760	0.50	0.25			
4/13/2008	36	850	0.50	0.25			
4/15/2008	36	940	0.50	0.00			
4/15/2008	36	1030	0.25	0.25			
4/15/2008	36	1120	0.40	0.15			
4/16/2008	36	1210	0.80	0.40			
4/17/2008	36	1300	0.40	0.40			
4/17/2008	36	1390	0.50	0.10			
4/18/2008	36	1480	0.50	0.00			
4/18/2008	36	1570	0.30	0.20			
4/24/2008	12	1670	0.10	0.00			
4/28/2008	12	1760	0.40	0.30			
4/30/2008	12	1850	0.60	0.20			
4/30/2008	12	1940	0.20	0.40			
4/30/2008	12	2030	0.50	0.30			
5/2/2008	12	2120	0.70	0.20			
5/2/2008	12	2210	0.70	0.00			
5/2/2008	12	2300	0.40	0.30			
5/3/2008	12	2390	0.60	0.20			
5/3/2008	12	2480	0.30	0.30			
5/4/2008	12	2570	0.20	0.10			
5/5/2008		2660	0.50	0.30			
5/5/2008	12	2750	0.20	0.30			
5/28/2008	28	1670	0.50	0.00			
5/28/2008	28	1760	0.50	0.00			
5/29/2008	28	1850	0.20	0.30			
5/29/2008		1940	0.40	0.40			
5/31/2008	28	2030	0.80	0.40			
5/31/2008	28	2120	0.70	0.10			
6/1/2008	28	2210	0.70	0.00			
6/1/2008	28	2300	0.60	0.10			
6/1/2008	28	2390	0.80	0.20			

Table 9. Summary of Inclination Survey Results in Injection Well IW1Golden Gate WWTF Injection Well System

The maximum allowable deviation from the vertical of any survey point is 1 degree

The maximum allowable difference between any two successive survey points is 0.5 degree.

bpl denotes below pad level

Table 10. Cementing Summary of Deep Monitor Well MW1, Golden Gate WWTF Injection Well System

Casing String	Outside Diameter (inches)	Inside Diameter (inches)	Casing Wall Thickness (inches)	Casing Depth (feet bpl)	Date	Cement Stage	Type of Cement	Quantity of Cement (cubic feet)	Remarks
Conductor	34	33.25	0.375	52	12/20/2007	1	Neat	377	Pressure grout, cement returns to surface.
Surface	24	23.25	0.375	490	1/8/2008	1	6% bentonite	1,264	Pressure arout Cement returns to surface
Surface							Neat	686	
		15	0.5	1078.5	2/9/2008	1	Neat	28	Packer at 1080 ft bpl.
Unner					2/9/2008	2	Neat	118	Tagged compatition at 1 025 feet hal. Tremied in place
Monitor Zone	16						6% bentonite	966	ragged cement top at 1,025 leet bpl. Themled in place.
Casing					2/10/2008	3	6% bentonite	562	Tagged cement top at 840 feet bpl. Tremied in place.
					2/10/2008	4	6% bentonite	910	Tagged cement at 507 feet bpl, cemented to the surface.
		25 5.605	0.51	1,498	2/17/2008	1	Neat	281	Tagged packer at 1498 ft bpl. Tremied in place.
T awar					2/18/2008	2	Neat	337	Tagged cement top at 1,387 feet bpl. Tremied in place.
Monitor Zone	6.625				2/18/2008	3	Neat	112	Tagged cement top at 1,1200 feet bpl. Tremied in place.
FKP Tubing					2/19/2008	4	Neat	51	Tagged cement top at 1,160 feet bpl. Tremied in place.
					2/20/2008	•	-	-	Tagged cement top at 1,128 feet bpl. Cementing completed.
· · · · · · · · · · · · · · · · · · ·							Total (ft ³):	5,692	

"bpl" denotes beolow pad level

Neat cement refers to Portland Type I/II cement with no additives

6% bentonite refers to Portland Type I/II cement with a 6% (by weight) bentonite additive

Table 11. Cementing Summary of Injection Well IW1, Golden Gate WWTF Injection Well System

Casing String	Outside Diameter (inches)	Inside Diameter (inches)	Casing Wall Thickness (inches)	Casing Depth (feet bpl)	Date	Cement Stage	Type of Cement	Quantity of Cement (cubic feet)	Remarks		
Conductor	48	47.25	0.375	54.5	3/23/2008	1	neat	607	Borehole depth: 56 feet bpl.		
Surface	36	35.25	0.375	494	3/30/2008	1	bentonite mix	-2,248	Pressure grout. Cement returns observed on surface.		
Surface							neat	528			
			0.375	1580	4/20/2008	20/2008 1 6% bentonite 1,113 Pressure g Neat 84	Pressure grout. Bottom well tagged at 1584 ft bpl				
i							Neat	84			
		27.25			4/21/2008	2	6% bentonite	1,405	Tagged cement top at 1348 feet bpl. Tremied in place.		
Intermediate	28				4/22/2008	3	6% bentonite	1,501	Tagged cement top at 1021 feet bpl. Tremied in place.		
i					4/23/2008	4	6% bentonite	197	Tagged cement top at 670 feet bpl. Tremied in place.		
					4/23/2008	5	6% bentonite	1,821	Tagged cement top at 575 feet bpl. Tremied in place. Observe cement return on surface.		
					6/27/2008	1	neat	703	Tagged top of plug at 2,448 feet bpl. Tremied in place.		
		17	0.500	2,472	6/27/2008	2	6% bentonite	2,248	Tagged cement top at 2,249 feet bpl		
Final	19				(20,200)	3	6% bentonite	337			
FINXI	10				0/20/2008		12% bentonite	1,349	Tagged cement top at 1,056 reet opt. Trenned in place.		
	:				6/29/2008	4	12% bentonite	1,236	Tagged cement top at 984 feet bpl. Tremied in place.		
					6/30/2008	5	12% bentonite	1,214	Tagged cement top at 472 feet bpl. Tremied in place. Observed cement return on surface.		
FRP Injection Tubing	12	13.375	0.68	2,461	7/4/2008		Not Cemente	d	Fluid Filled Annulus/Corrosion Inhibitor		
							Total (ft ³) [:]	16,591			

"bpl" denotes beolow pad level

Neat cement refers to Portland Type I/II cement with no additives

6% bentonite refers to Portland Type I/II cement with a 6% (by weight) bentonite additive

12% bentonite refers to Portland Type I/II cement with a 12% (by weight) bentonite additive

Octs/Jāme : Jue, 11 Nov 2003 Poth/Manue - C'AProdects/WDV

d Version : R17.1s (UKS Tech)

GOLDEN GATE, FLORIDA

106, 13 0.7 AD. -

8

W.LYNCH

GOLDEN GATE, FLORIDA

24.20		
i		
,	₩ E Δ	ST
YDROGEOLOGIC	INO.	
	≥ ⁻I ¯	0
		500
	-	
	-	1,000
	1	
	-	1,500 🔒
		це (јес
IDAN AQUIFER IFINING UNIT		2.000
,600-2,285)	-	_,
		2,500
LORIDAN AQUIFER		
ection Zone at 2,472)	-	3,000
	•	3 500
		3,500
1		
References:	ociation City	of Sanibel Injection
Well IW-1 Request to Start Operational Testing	", March 200	0.
 Water Resource Solutions, "Well Completion F Volume I, Collier County", N. Collier Water R 	ceport for IW-	I and DZMW, cility, 2004.
3. CH2MHill, "Lee County Utilities, Ft. Myers Be	each WWTP E	Deep Injection Well
4. CH2MHill, "Application to Construct a Deep In	njection Well	and Single Zone
Monitor Well", March 2000. 5. Bennett, Michael W., "Hydrologic Investigation	n of the Florid	a Aquifer System at
the I-75 Canal Site, Collier County, Florida. Te	echnical Publi	cation NS-7, 2001.
	ŕ	
· · · ·		PF001090.0G18
1	ŀ	Drawing Date

11nov08 Figure

7

ARCADIS

Appendix A

Construction Permit

Florida Department of Environmental Protection

Charlie Crist Governor

Jeff Kottkamp Lt. Governor

Michael W. Sole Secretary

SENT VIA ELECTRONIC MAIL:

In the Matter of an Application for Permit by:

June 27, 2007

Charles L. Sweat, Director of Operations Florida Governmental Utility Authority 280 Wekiva Springs Road, Suite 2000 Longwood, Florida 32779 Email: <u>csweat@govmserv.com</u> CollierCounty - UIC File Number: 263889-001-UC/11 FGUA Golden Gate WWTP Class 1 Injection Well Construction

NOTICE OF PERMIT ISSUANCE

Enclosed is Permit Number 263889-001-UC/11 to operate a Class I Injection Well (IW-1) system, issued pursuant to Section(s) 403.087, Florida Statutes.

Any party to this Order (permit) has the right to seek judicial review of the permit pursuant to Section 120.68, Florida Statutes, by the filing of a Notice of Appeal pursuant to Rule 9.110, Florida Rules of Appellate Procedure, with the Clerk of the Department in the Office of General Counsel, 3900 Commonwealth Boulevard, Mail Station 35, Tallahassee, Florida 32399-3000; and by filing a copy of the Notice of appeal accompanied by the applicable filing fees with the appropriate District Court of Appeal. The Notice of Appeal must be filed within 30 days from the date this Notice is filed with the Clerk of the Department.

Executed in Lee County, Florida.

STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION

Jon M. Iglehart Director of District Management

CERTIFICATE OF SERVICE

The undersigned designated clerk hereby certifies that this PERMIT and all copies were mailed before the close of business on June 27, 2007 to the listed persons.

Clerk Stamp

FILING AND ACKNOWLEDGMENT

FILED, on this date, pursuant to Section 120.52, Florida Statutes, with the designated Department Clerk, receipt of which is hereby acknowledged.

Clerk

6/27/07

Date

julios to men

JMI/DR/jgh

Enclosure

<u>, 1</u>

Cc Nancy Marsh, EPA (<u>marsh.nancy@epa.gov</u>) Steve Anderson, SFWMD (<u>sanderso@sfwmd.gov</u>) Ron Reese, USGS (<u>rsreese@usgs.gov</u>) Joe Haberfeld, FDEP (joe.haberfeld@dep.state.fl.us) James T. Macon, P.E., (<u>imacon@arcadis-us.com</u>)

Florida Department of Environmental Protection

Charlie Crist Governor

Jeff Kottkamp Lt. Governor

Michael W. Sole Secretary

PERMIT

PERMITTEE:

Charles L. Sweat, Director of Operations Florida Governmental Utility Authority 280 Wekiva Springs Road, Suite 2000 Longwood, Florida 32779 Email: <u>csweat@govmserv.com</u> Collier County - UIC File Number: 263889-001-UC/11 Date of Issue: June 27, 2007 Expiration Date: June 26, 2012 Latitude: 26.0° 10.0' 13.00" N Longitude: - 81.0° 42.0' 09.00" W FGUA Golden Gate WWTP Class 1 Injection Well Construction

This permit is issued under the provisions of Chapter 403, Florida Statutes (F.S.), and Florida Administrative Code (F.A.C.) Rules 62-4, 62-520, 62-528, 62-550, 62-600, 62-601, 62-620 and 62-660. The above named permittee is hereby authorized to perform the work or operate the facility shown on the application and approved drawing(s), plans, and other documents, attached hereto or on file with the Department and made a part hereof and specifically described as follows:

Construct one (1) nominal eighteen-inch (18) inch diameter steel casing Class I injection well (IW-1), with cemented eighteen-inch (18) steel casing to approximately 2750 feet below land surface (bls) and 11.97-inch ID FRP injection tubing and packer assembly placed to approximately 2730 feet bls and a total depth of approximately 3450 feet bls. The annular space will be fluid filled with Halliburton Baracor 100 or equivalent and water solution. Injection will be into the Oldsmar Formation for the primary means of disposal of non-hazardous reverse osmosis concentrate from the Golden Gate WTP and non-hazardous secondary treated domestic wastewater from the Golden Gate WWTP at a maximum injection rate of 10 feet per second, (fps), in the 11.97-inch ID FRP injection tubing or 3510 GPM (gallons per minute). In no case shall the maximum disposal volume of 5.0 million gallons per day (MGD) be exceeded. The dual zone monitoring well (DZMW-1) will be completed approximately from 950 to 1000 feet bls and approximately from 1250 to 1300 feet bls.

The Application to Construct/Operate/Abandon Class I, III, or V Injection well System, DEP Form 62-528.900(1), was received April 7, 2006, with supporting documents and additional information last received January 8, 2007. The Certificate of Demonstration of Financial Responsibility was approved July 27, 2006. The project is located at the 32nd Avenue S.W. at Goldén Gate City, Florida, Collier County, Florida.

Subject to Specific Conditions 1-14.

Page 1 of 13

1. GENERAL CRITERIA

- a. Any permit noncompliance constitutes a violation of the Safe Drinking Water Act and is grounds for enforcement action; for permit termination, revocation and reissuance, or modification; or for denial of a permit renewal application.
- b. It shall not be a defense for a permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of this permit.
- c. The permittee shall take all reasonable steps to minimize or correct any adverse impact on the environment resulting from noncompliance with this permit.
- d. Proper operation and maintenance includes effective performance, adequate funding, adequate operator staffing and training, and adequate laboratory and process controls, including appropriate quality assurance procedures.
- e. This permit may be modified, revoked and reissued, or terminated for cause. The filing of a request by the permittee for a permit modification, revocation or reissuance, or termination, or a notification of planned changes or anticipated noncompliance, does not stay any permit condition.
- f. When requested by the Department, the permittee shall furnish, within the time specified, any information needed to determine whether cause exists for modifying, revoking and reissuing, or terminating this permit, or to determine compliance with this permit.
- g. Signatories and Certification Requirements
 - (1) All reports and other submittals required to comply with this permit shall be signed by a person authorized under Rules 62-528.340(1) or (2), F.A.C.
 - (2) In accordance with Rule 62-528.340(4), F.A.C., all reports shall contain the following certification:

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based upon my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

- h. The permittee shall notify the Department and obtain approval prior to any physical alterations or additions to the injection or monitor well, including removal of the well head.
- i. The permittee shall give advance notice to the Department of any planned changes in the permitted facility or injection activity that may result in noncompliance with permit requirements.
- j. The permittee shall report any noncompliance that may endanger health or the environment, including:

Page 2 of 13

Permit/Cert No.: 263889-001-UC/11 Date of Issue: June 27, 2007 Expiration Date: June 26, 2012

- (1) Any monitoring or other information which indicates that any contaminant may cause an endangerment to an underground source of drinking water; or
- (2) Any noncompliance with a permit condition or malfunction of the injection system, which may cause fluid migration into or between underground sources of drinking water.
- (3) Any information shall be provided orally within 24 hours from the time the permittee becomes aware of the circumstances. A written submission shall also be provided within 5 days of the time the permittee becomes aware of the circumstances. The written submission shall contain a description of the noncompliance and its cause, the period of noncompliance, including exact dates and times, and if the noncompliance has not been corrected, the anticipated time it is expected to continue; and the steps taken or planned to reduce, eliminate, and prevent reoccurrence of the noncompliance.
- k. No underground injection is allowed that causes or allows movement of fluid into an underground source of drinking water.
- 1. The permittee shall retain all records of all monitoring information concerning the nature and composition of injected fluid until five years after completion of any plugging and abandonment procedures specified under Rule 62-528.435, F.A.C. The permittee shall deliver the records to the Department office that issued the permit at the conclusion of the retention period unless the permittee elects to continue retention of the records.
- m. If injection is to continue beyond the expiration date of this permit the permittee shall apply for, and obtain an operation permit. If necessary to complete the two-year operational testing period, the permittee shall apply for renewal of the construction permit at least 60 days prior to the expiration date of this permit.

2. <u>SITE REQUIREMENTS</u>

- a. A drilling pad shall be provided to collect spillage of contaminants and to support the heaviest load that will be encountered during drilling.
- b. The disposal of drilling fluids, cuttings, formation water or waste shall be in a sound environmental manner that avoids violation of surface and ground water quality standards. The disposal method shall be approved by the Department prior to start of construction.
- c. Specific drilling pad dimensions and design details shall be provided to and approved by the Department prior to commencing construction (and shortly after selection of drilling contractor).
- d. The water table monitoring wells surrounding the injection well and monitor well pads shall be sampled and analyzed prior to drilling this injection well and then weekly thereafter. Sampling shall include specific conductance, pH, chloride, temperature and water level.
- e. Pursuant to Rule 62-528.455(1)(c)6., F.A.C., a survey indicating the exact location in metes and bounds of all wells authorized by this permit shall be provided prior to issuance of an operating permit.

Permit/Cert No.: 263889-001-UC/11 Date of Issue: June 27, 2007 Expiration Date: June 26, 2012

3. CONSTRUCTION AND TESTING REQUIREMENTS

- a. The permittee shall contact the Technical Advisory Committee (TAC) chairman so that he may schedule progress review meetings at appropriate times with the TAC and permittee for the purpose of reviewing the results of tests, geophysical logging, surveys, drilling records and construction problems.
- b. All drilling shall be inside a blow out preventer upon penetration of the Floridan Aquifer.
- c. Mechanical integrity testing is a two-part demonstration which includes a pressure test to demonstrate that no leaks are present in the casing, tubing or packer and a temperature or noise log and radioactive tracer survey to demonstrate the absence of leaks behind the casing. Verification of pressure gauge calibration must be provided at the scheduled tests.
- d. Department approval and Technical Advisory Committee (TAC) review pursuant to F.A.C. Rule 62-528 is required for the following stages of construction:
 - (1) Intermediate casing seat selection for injection and monitor wells.
 - (2) Final casing seat selection for injection and monitor wells.
 - (3) Prior to conducting the short term injection test. A revised testing plan for the short-term injection test must be submitted and approved prior to running the test.
 - (4) Prior to operational (long term) testing with effluent.
 - (5) The permittee shall submit all necessary supporting documentation/data, with interpretation, to the TAC for review.
- e. The cementing program for the final injection well casing, as required in Section 62-528.410(5), Florida Administrative Code, shall be submitted to the Department and the Technical Advisory Committee for review. Cementing shall not commence prior to approval being granted.
- f. All temperature surveys (except for mechanical integrity demonstration) shall be run within 48 hours after cementing.
- g. TAC meetings are scheduled on the 1st Tuesday of each month subject to a 5 working day prior notice and timely receipt of critical data by all TAC members. Emergency meetings may be arranged when justified to avoid undue construction delay.
- h. The Permittee shall insure that safe internal pressures are maintained during the cementing of all casings and tubings.
- i. The injection zone and monitoring zones shall be sampled for background water quality prior to commencement of any injection testing. Parameters to be measured are the primary and secondary drinking water standards (except asbestos, dioxin, epichlorhydrin, and acrylamide) and the minimum criteria for municipal effluent.
- j. The injection and monitor well(s) at the site shall be abandoned when no longer usable for their intended purpose, or when posing potential threat to the quality of the waters of the State. Within 180 days of well

Page 4 of 13

Permit/Cert No.: 263889-001-UC/11 Date of Issue: June 27, 2007 Expiration Date: June 26, 2012

abandonment, the permittee shall submit to the Department and the TAC the proposed plugging method, pursuant to Rule 62-528.435, F.A.C.

- k. All salt used in well drilling shall be stored in an environmentally sound manner. Accurate records shall be kept on the amount of salt used.
- 1. All dual induction, sonic and caliper geophysical logs run on the pilot holes of the injection well and monitor wells shall be submitted with scales of one inch equals one hundred feet (1"=100'), two inches equals one hundred feet (2"=100'), and five inches equals one hundred feet (5"=100')
- m. An engineering drawing showing the drill pad construction (including material used) and locations of the injection well, dual zone monitor well, and the water table monitor wells shall be provided for Department approval prior to pad construction and well construction.

4. **QUALITY ASSURANCE/QUALITY CONTROL REQUIREMENTS**

- a. This permit approval is based upon evaluation of the data contained in the application dated August 2005 and the plans and/or specifications submitted in support of the application. Any proposed modifications to this permit shall be submitted in writing to the Underground Injection Control program manager, the TAC for review and clearance prior to implementation. Changes of negligible impact to the environment and staff time will be reviewed by the program manager, cleared when appropriate and incorporated into this permit. Changes or modifications other than those described above will require submission of a completed application and appropriate processing fee as per Rule 62-4.050, F.A.C.
- b. A professional engineer registered pursuant to Chapter 471, Florida Statutes shall be retained throughout the construction period to be responsible for the construction operation and to certify the application, specifications, completion report and other related documents. The Department shall be notified immediately of any change of engineer.
- c. Where required by Chapter 471 (P.E.) or Chapter 492 (P.G.) F.S., applicable portions of permit applications and supporting documents that are submitted to the Department for public record shall be signed and sealed by the professional(s) who approved or prepared them.
- d. The Department shall be notified immediately of any problems that may seriously hinder compliance with this permit, construction progress, or good construction practice. The Department may require a detailed written report describing the problem, remedial measures taken to assure compliance and measures taken to prevent recurrence of the problem.
- e. Issuance of a Class I Test/Injection well construction and testing permit does not obligate the Department to authorize operation of the injection well system, unless the wells qualify for an operation permit applied for by the permittee and issued by the Department.

5. <u>REPORTING REQUIREMENTS</u>

a. All reports and surveys required by this permit must be submitted concurrently to all the members of the TAC. The TAC consists of representatives from these agencies:

Florida Department of Environmental Protection South District P.O. Box 2549 Fort Myers, FL 33902-2549

Florida Department of Environmental Protection Bureau of Water Facilities Regulation UIC Program, MS 3530 2600 Blair Stone Rd. Tallahassee, FL 32399-2400

South Florida Water Management District P.O. Box 24860 West Palm Beach, FL 33416-4860

United States Geological Survey 9100 NW 36th Street, Suite 107 Miami, FL 33178

- b. Members of the TAC shall receive a weekly summary of the daily log kept by the contractor. The reporting period shall run for seven (7) days and reports shall be mailed or emailed within 48 hours of the last day of the reporting period. The report shall include but is not limited to the following:
 - (1) Description of daily footage drilled by diameter of bit or size of hole opener or reamer being used;
 - (2) Description of formation and depth encountered; and specific conductance of water samples collected during drilling. Description of work during installation and cementing of casings; include amounts of casing and actual cement used versus calculated volume required.
 - (3) Lithological description of drill cuttings collected every ten (10) feet or at every change in formation. Description of work and type of testing accomplished, geophysical logging, pumping tests, deviation survey results, and coring results.
 - (4) Description of any construction problems that develop and their status to include a description of what is being done or has been done to correct the problem.
 - (5) Description of the amount of salt used.
 - (6) Results of any water quality analyses performed as required by this permit, including pad monitor wells.
 - (7) Copies of the driller's log are to be submitted with the weekly summary.
- c. The Department must be notified seventy-two (72) hours prior to all testing for mechanical integrity on the injection well. Testing should begin during daylight hours Monday through Friday.

Permit/Cert No.: 263889-001-UC/11 Date of Issue: June 27, 2007 Expiration Date: June 26, 2012

- d. Annotated copies of geophysical logs, lithologic descriptions and logs and water quality data (from drilling and packer tests) must be submitted to TAC, with interpretation, for intermediate and final casing seat selection approvals by the Department.
- e. An interpretation of all test results must be submitted with all test data and geophysical logs.
- f. After completion of construction and testing, a final report, certified by a P.E. and P.G., shall be submitted to the Department and the TAC. The report shall include, but not be limited to, all information and data collected under Rule 62-528.450(2) and Rule 62-528.450(3), F.A.C., with appropriate interpretations. Mill certificates for the casing(s) shall be included in this report. To the extent possible, the transmissivity of the injection zone and maximum injection rate within safe pressure limits shall be estimated.
- 6. The construction permit includes a period of temporary injection operation for the purposes of long term testing. Prior to commencement of operational testing:
 - a. Construction of the injection well shall be complete and the permittee shall submit a notice of completion of construction certified by a P.E. to the Department.
 - b. Each well shall first be tested for integrity of construction, and shall be followed by a short-term injection test of such duration to allow for the prediction of the operating pressure.
 - c. The permittee shall submit the following information to each member of the Technical Advisory Committee:
 - (1) A copy of the borehole television survey(s)
 - (2) Geophysical logs
 - (3) Mechanical integrity test data
 - (4) Data obtained during the short term injection testing conducted pursuant to Rules 62-528.405(3)(a) and 62-528.410(7)(e), and 62-528.450(3)(a)2., F.A.C.
 - (5) Confining zone data
 - (6) Background water quality data for the injection and monitor zones
 - (7) Waste stream analysis
 - (8) As-built well construction specifications
 - (9) Draft operation and maintenance manual with emergency procedures
 - (10) Other data obtained during well construction needed by the Department to evaluate whether the well will operate in compliance with Department rules.
 - d. The emergency discharge method shall be fully operational and no emergency discharge shall occur until the permittee has obtained all necessary permits.

Page 7 of 13

Permit/Cert No.: 263889-001-UC/11 Date of Issue: June 27, 2007 Expiration Date: June 26, 2012

- e. Any corrective action required under Rule 62-528.300(5)(c)2., F.A.C., has been completed.
- f. Written authorization shall be obtained from the Department. Authorization shall be for up to two years or the expiration date of the construction permit, whichever is less, and is nonrenewable. The authorization shall specify the conditions under which operational testing is approved. The authorization shall include:
 - (1) Injection pressure limitation
 - (2) Injection flow rate limitation
 - (3) Monthly specific injectivity testing
 - (4) Reporting requirements, and
 - (5) An expiration date for the operational testing period not to exceed two years.
- g. Before authorizing operational testing the Department shall conduct an inspection of the facility to determine if the conditions of the permit have been met.

7. OPERATIONAL TESTING REQUIREMENTS

- a. Operational Testing Conditions Injection Well System
 - (1) The injection system shall be monitored in accordance with rule 62-528.425(1)(g) and 62-528.430(2), F.A.C.
 - (2) The following injection well performance data shall be recorded and reported at the frequency indicated from the injection well instrumentation in the Monthly Operating Report as indicated below. Samples and measurements taken for the purpose of monitoring shall be representative of the monitored activity.

The permittee shall use continuous indicating and recording devices to monitor injection flow rate, annular pressure, and injection pressure. In the case of operational failure of any of these instruments for a period of more than 48 hours, the permittee shall report to the Department in writing the remedial action to be taken and the date when the failure will be corrected.

INJECTION WELL IW-1. The proposed specifications for the injection well are as follows:

Casing Diameter and Type	Depth (bls) Cased	Open Hole (bls)
48" Steel	50'	
36" Steel	500'	
28" Steel	1350'	
18" Steel	2750'	
11.97" ID FRP	2730'	
		from 2750 to 3450

Permit/Cert No.: 263889-001-UC/11 Date of Issue: June 27, 2007 Expiration Date: June 26, 2012

Parameters	Reporting Frequency
Injection Pressure (psi)	Daily/Monthly
Maximum Injection Pressure	Daily/Monthly
Minimum Injection Pressure	Daily/Monthly
Average Injection Pressure	Daily/Monthly
Annular Pressure (psi)	Daily/Monthly
Maximum Annular Pressure	Daily/Monthly
Minimum Annular Pressure	Daily/Monthly
Average Annular Pressure	Daily/Monthly
Fluid added to/removed from Annulus (gallons)	Daily/Monthly
Pressure added to/removed from Annulus (psi)	Daily/Monthly
Flow Rate (gpm)	Daily/Monthly
Maximum Flow Rate	Daily/Monthly
Minimum Flow Rate	Daily/Monthly
Average Flow Rate	Daily/Monthly
Total Volume WRF Effluent Injected (gallons)	Daily/Monthly
Total Volume WTP Concentrate Injected (gallons)	Daily/Monthly

Injectate Water Quality

WRF Effluent Water Quality

Parameters	Reporting Frequency
Ammonia (mg/l)	Monthly
Total Kjeldahl Nitrogen (TKN) (mg/L)	Monthly
Nitrate + Nitrite as N (mg/l)	Monthly

WTP Concentrate Water Quality

Parameters	Reporting Frequency
Specific Conductivity (µmhos/cm)	Monthly
Total Dissolved Solids (mg/L)	Monthly
pH (std. units)	Monthly
Chloride (mg/L)	Monthly
Sulfate (mg/L)	Monthly
Field Temperature (°C)	Monthly
Total Kjeldahl Nitrogen (TKN) (mg/L)	Monthly
Sodium (mg/L)	Monthly
Calcium (mg/L)	Monthly
Potassium (mg/L)	Monthly

Permit/Cert No.: 263889-001-UC/11 Date of Issue: June 27, 2007 Expiration Date: June 26, 2012

Magnesium (mg/L)	Monthly
Iron (mg/L)	Monthiy
Bicarbonate (mg/L)	Monthly
Radium 226 (pCi/L)	Monthly
Radium 228 (pCi/L)	Monthly
Gross Alpha (pCi/L)	Monthly

- b. Operational Testing Conditions Monitor Well System.
 - (1) The monitor well system will consist of one Dual Zone Monitor Well, (DZMW-1) as described below:

Well Name	Casing Diameter and Type	Depth Cased (bls)/Total (bls)
DZMW-1	24" Steel	500'
DZMW-1 (Upper)	16" Steel	950'
DZMW-1 (Upper)		from 950 to 1000
DZMW-1 (Lower)	6.625" FRP	1250'
DZMW-1 (Lower)		from 1250 to 1300

(2) All monitor wells shall be monitored in accordance with rule 62-528.425 and 62-528.430, F.A.C. The following monitor well performance data shall be recorded and reported at the frequency indicated from the monitor well instrumentation in the Monthly Operating Report as indicated below. Samples and measurements taken for the purpose of monitoring shall be representative of the monitored activity. The permittee shall use continuous indicating and recording devices to monitor the monitor zone pressures or water levels. In the case of operational failure of any of these instruments for a period of more than 48 hours, the permittee shall report to the Department in writing the remedial action to be taken and the date when the failure will be corrected.

DZMW-1

Parameters	Reporting Frequency
Maximum Water Level/Pressure (Ft NAVD or psi)	Daily/Monthly
Minimum Water Level/Pressure (Ft NAVD or psi)	Daily/Monthly
Average Water Level/Pressure	Monthly

Water Quality

Parameters	Reporting Frequency
Specific Conductivity (µmhos/cm)	Weekly
Total Dissolved Solids (mg/L)	Weekly
pH (std. units)	Weekly
Chloride (mg/L)	Weekly
Sulfate (mg/L)	Weekly
Field Temperature (°C)	Weekly
Ammonia (mg/l)	Weekly
Total Kjeldahl Nitrogen (TKN) (mg/L)	Weekly
Sodium (mg/L)	Monthly

Calcium (mg/L)	Monthly
Potassium (mg/L)	Monthly
Magnesium (mg/L)	Monthly
Iron (mg/L)	Monthly
Bicarbonate (mg/L)	Monthly
Gross Alpha (pCi/L) **	Monthly
Radium 226 (pCi/L) **	Monthly
Radium 228 (pCi/L) **	Monthly

** Deep zone monitor well only.

- (3) Water quality data may be reduced to monthly analyses after a minimum six months of data if the conditions of Rule 62-528.450(3)(d), F.A.C., have been met and with Department approval.
- c. The permittee shall calibrate all pressure gauge(s), flow meter(s), chart recorder(s), and other related equipment associated with the injection well system on a semi-annual basis. The permittee shall maintain all monitoring equipment and shall ensure that the monitoring equipment is calibrated and in proper operating condition at all times. Laboratory equipment, methods, and quality control will follow EPA guidelines as expressed in Standard Methods for the Examination of Water and Wastewater. The pressure gauge(s), flow meter(s), and chart recorder(s) shall be calibrated using standard engineering methods.
- d. The permittee shall submit monthly to the Department the results of all injection well and monitor well data required by this permit no later than the last day of the month immediately following the month of record. The results shall be sent to the Department of Environmental Protection, P.O. Box 2549, Fort Myers, Florida 33902-2549. A copy of this report shall also be sent to the Department of Environmental Protection, Underground Injection Control Program, MS 3530, 2600 Blair Stone Road, Tallahassee, Florida 32399-2400.
- e. The Engineer of Record or designated qualified representative must be present for the start-up operations and the Department must be notified in writing of the date operational testing commenced for the well.

8. <u>ABNORMAL EVENTS</u>

- a. In the event the permittee is temporarily unable to comply with any conditions of this permit due to breakdown of equipment, power outages, destruction by hazard of fire, wind, or by other cause, the permittee shall notify the Department. Notification shall be made in person, by telephone or by electronic mail within 24 hours of breakdown or malfunction to the UIC Program staff, South District office.
- b. A written report of any noncompliance referenced in 1) above shall be submitted to the South District office within five days after its occurrence. The report shall describe the nature and cause of the breakdown or malfunction, the steps being taken or planned to be taken to correct the problem and prevent its reoccurrence, emergency procedures in use pending correction of the problem, and the time when the facility will again be operating in accordance with permit conditions.

9. EMERGENCY DISPOSAL

a. All applicable federal, state and local permits must be in place to allow for any alternate discharges due to emergency or planned outage conditions.

Permit/Cert No.: 263889-001-UC/11 Date of Issue: June 27, 2007 Expiration Date: June 26, 2012

- b. Any changes in emergency disposal methods must be submitted for Technical Advisory Committee (TAC) review and Department approval.
- c. The permittee shall notify the Department within 24 hours whenever an emergency discharge has occurred (Rule 62-528.415(4)(c)1., F.A.C.). Written notification shall be provided to the Department within 5 days after each occurrence. The Permittee shall indicate the location and duration of the discharge and the volume of fluid discharged.

10. FINANCIAL RESPONSIBILITY

- a. The permittee shall maintain separately the financial resources necessary to close, plug, and abandon the injection and associated monitor wells, at all times in accordance with Rule 62-528.435(9), F.A.C.
- b. The permittee shall update annually the plugging and abandonment cost estimate. A certified (By Professional Geologist or Professional Engineer) copy of the annual update shall be submitted to the Department's UIC Program each year within 60 days after the anniversary date of issuance of this permit to the following addresses:

Underground Injection Control Program Bureau of Water Facilities Regulation Department of Environmental Protection 2600 Blair Stone Road, Mail Station #3530 Tallahassee, FL 32399-2400 Underground Injection Control Program Department of Environmental Protection South District Office 2295 Victoria Avenue, Ste 364 Ft Myers, FL 33902-2549

- c. Upon the occurrence of the annual plugging and abandonment cost estimate exceeding, by 10 percent or more, (Section b. previously), the cost estimate upon which the <u>current</u> financial responsibility is based; the permittee shall submit to the Department <u>certified</u> financial documentation necessary to amend, renew, or otherwise replace the existing financial responsibility pursuant to Rule 62-528.435(9), F.A.C. and the conditions of this permit. Local governments shall include an updated *Certificate of Financial Responsibility* form and the comprehensive annual financial report for the latest completed fiscal year of that local entity.
- d. In the event that the mechanism used to demonstrate financial responsibility should become insufficient or invalid for any reason, the permittee shall notify the Department of Environmental Protection in writing within 14 days of such insufficiency or invalidation. The permittee shall within 30 days of said notification submit to the Department for approval new financial documentation certifying either the remedy of current financial insufficiency or resolution of the financial instrument invalidation in order to comply with Rule 62-528.435(9), F.A.C., and the conditions of this permit.

11. MECHANICAL INTEGRITY

i

- a. Injection is prohibited until the permittee affirmatively demonstrates that the well has mechanical integrity. Prior to operational testing the permittee shall establish, and thereafter maintain, mechanical integrity of the well at all times.
- b. If the Department determines that the injection well lacks mechanical integrity, written notice shall be given to the permittee.

Permit/Cert No.: 263889-001-UC/11 Date of Issue: June 27, 2007 Expiration Date: June 26, 2012

- c. Unless the Department requires the immediate cessation of injection, within 48 hours of receiving written notice from the department that the well lacks mechanical integrity the permittee shall cease injection into the well unless the Department allows continued injection pursuant to (d) below.
- I. The Department may allow the permittee to continue operation of a well that lacks mechanical integrity if the permittee demonstrates that fluid movement into or between underground sources of drinking water is not occurring.
- 12. The permittee is reminded of the necessity to comply with the pertinent regulations of any other regulatory agency, as well as any county, municipal, and federal regulations applicable to the project. These regulations may include, but not limited to, those of the Federal Emergency Management Agency in implementing flood control measures. This permit should not be construed to imply compliance with the rules and regulations of other regulatory agencies.
- 13. The permittee shall be aware of and operate under the general conditions in Rule 62-528.307(1)(a) through (x) and Rule 62-528.307(2)(a) through (f), F.A.C. These general conditions are binding upon the permittee and enforceable pursuant to Chaper 403 of the Florida Statutes.

Note: In the event of an emergency the permittee shall contact the Department by calling (850) 488-1320. During normal business hours, the permittee shall call (239) 332-6975.

Issued this 27 day of June 2007.

STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION

Jon M. Iglehart Director of District Management

JMI/DR/jgh

Page 13 of 13

ARCADIS

.

. · · · .

.

Appendix B

Geologic Logs, Penetration Rate Chart and Core Description and Analysis Report

ARCADIS

LITHOLOGICAL DESCRIPTION	DRILLING COMMENTS	DEPTH INTERVAL	THICKNESS
Fill: sand, limerock and clay.		0-4	4.0
LIMESTONE AND SAND: Limestone, 60%, light olive gray (5Y 5/2), grainstone, soft to moderately hard, poorly cemented; Sand, 40%, quartz, some calcareous, clear to yellowish gray (5Y 8/1), fine grained, sub-rounded; Shell, trace, small (0.1-inch) fragments.	WOB=3-4K, RPM=6-10 ROP=10-12min/ft	4-10	6.0
CAP ROCK; LIMESTONE WITH LITTLE SAND; Limestone, 90%, yellowish gray (5Y 8/1), grainstone, hard, moderately well cemented; Sand, 10%, mostly yellowish gray, calcareous, little quartz, clear, very fine- to fine- grained, sub-angular.	WOB=3-4K, RPM=6-10 ROP=10-12min/ft	10-18	8.0
CALCAREOUS SAND, LITTLE SHELL AND LIMESTONE; Sand, 80%, very light gray (N6), calcareous, little quartz, clear, very fine- to fine- grained, sub-angular; Shell, 10%, white (N9), small tests; Limestone, 10%, light olive gray (5Y 6/1), grainstone, very soft to soft, poorly cemented; Phosphate, trace, black, grains <1mm.	WOB=3-4K, RPM=6-10 ROP=1min/ft	18-30	12
SHELL WITH SOME SAND AND LIMESTONE; Shell, 60%, white (N9) to medium gray (N5), tests to 0.4-inch, molhusks; Sand, 20%, very light gray (N6), calcareous, little quartz, clear, very fine- to fine grained, sub-angular; Limestone, 20%, light olive gray (5Y 6/1), grainstone, very soft to soft, poorly cemented.	WOB=3-4K, RPM=6-10 ROP=3-5min/ft	30-46	16
FOSSILIFEROUS LIMESTONE WITH LITTLE SAND AND SHELL; Limestone, 80%, light olive gray (5Y 6/1), very fossiliferous (coquina), with shell intraclasts (mollusks, corals), moderately hard, moderately well cemented, vuggy; Sand, 10%, very light gray (N6), calcareous, very little quartz, clear, very fine- to fine- grained, sub-angular; Shell,10%, white (N9) to medium gray (N5), tests to 0.4-inch, mollusks; Phosphate, trace, black, grains <1mm.	WOB=3-4K, RPM=6-10 ROP=7-10min/ft	46-52	6
SAND; Sand, 100%, yellowish gray (5Y 8/1) to very pale orange (10YR 8/2), calcareous, very fine- to fine- grained, sub- angular; Clay, trace, yellowish gray, calcareous, chalky, very soft, non- plastic; Phosphate, trace, black, very soft, grains <1mm.	WOB=5K RPM=15 ROP=<1min/ft	52-70	18

GEOLOGIC LOG

			10
SAND AND LITTLE LIMESTONE; Sand, 85%,	WOB=5K	70-80	10
yellowish gray (5Y $8/1$) to very pale orange (10YR $8/2$),	RPM=25	,	
calcareous, little quartz, clear, very fine- to fine- grained,	ROP=<1min/ft		
sub-angular; Limestone, 15%, yellowish gray (5Y 8/1) to			
very pale orange (10YR 8/2), fossiliferous grainstone, very			
soft to soft, poorly cemented, vuggy; Clay, trace, yellowish			
gray, calcareous, chalky, very soft, non-plastic. Phosphate,			
trace, black, very soft.			
SAND, SOME LIMESTONE AND LITTLE SHELL;	WOB=5K	80-100	20
Sand, 70%, vellowish grav (5Y 8/1) to very pale orange	RPM=25		· :
(10YR 8/2), calcareous, little quartz, clear, very fine- to	ROP=3-5min/ft		
fine-grained, sub-angular; Limestone, 20%, vellowish	· · ·	19	
grav (5Y 8/1) to very pale orange (10YR 8/2), fossiliferous			
grainstone, trace of forams, very soft to soft, poorly			
cemented vugov Shell 10% very nale orange (10YR			
8/2) small tests to 0.2-inch mollusks: Phosphate trace			
black very soft			
L BARRETONE WITH SOME SAND AND SHELL	WOD-SV	100 110	10
LIMESTONE WITH SOME SAND AND SHELL;		100-110	10
Limestone, 60%, yellowish gray (5 Y 8/1) to light gray	KPM=25		4
(N/), very fossiliterous (coquina), mollusks, trace of	ROP=1-2min/ft		
forams, some quartz grains, fine grained, soft, mostly			
poorly cemented, vuggy; Sand, 20%, yellowish gray (5Y			
8/1) to very pale orange (10YR 8/2), calcareous, some			
quartz, clear, very fine- to fine- grained, sub-angular;			
Shell, 20%, very pale orange (10YR 8/2), small tests to			
0.2-inch, mollusks; Phosphate, trace, black, very soft.			
SAND; Sand, 100%, yellowish gray (5Y 8/1) to very pale	WOB=2-3K	110-130	20
orange (10YR 8/2), calcareous, very little quartz, clear,	RPM=90		
very fine- to fine- grained, sub- angular; Shell, trace, very	ROP=<1min/ft		
pale orange (10YR 8/2), very small tests to 0.1-inch;	,		
Phosphate, trace, black, very soft.			
LIMESTONE WITH LITTLE SAND AND SHELL:	WOB=2-3K	130-140	10
Limestone, 80%, vellowish grav (5Y 8/1) to light grav	RPM=90		
(N7), fossiliferous (coquina), some grainstone, mollusks	ROP=3-5min/ft		
shells fragments, rare quartz grains, fine grained.			· · · ·
moderately hard to soft moderately well- to poorly-			
cemented vuggy: Sand 10% vellowish grav (5V 8/1) to			
very nale orange (10VR 8/2) calcareous some quartz			
clear very fine to fine grained sub-angular. Shell 10%			
very note orange (10VR 8/2) tests to 0.3 inch mollusks			
CAND, COME I DESTONE AND I FFT E CHELL.		140.160	20
SAND, SOME LIMESTONE AND LITTLE SHELL;	WUD=1-3K	140-160	20
Sand, 70%, quartz, clear, very nne- to nne- grained, sub-	RPM=90		1
rounded, some calcareous, yenowish gray (5 Y 8/1) to Very	KOr=2-JIIII/II		
pare orange (10 Y K $\delta/2$); Limestone, 20%, yellowish gray			
$(5 \times 5/1)$ to very pale orange (10 Y K $3/2$), iossimilerous			
grainstone (coquina), son, poorly cemented, vuggy; Shell,			
10%, very pale orange (10YR 8/2), small tests to 0.2-inch,			.*
mollusks; Phosphate, trace, black, very soft, grains <1mm.			

SAND, LIMESTONE AND SHELL; Sand, 50%, quartz, clear, very fine- to fine- grained, often poorly cemented, little calcareous; Limestone, 30%, light gray (N7) to yellowish gray (5Y 8/1), fossiliferous grainstone, with quartz grains and shell intraclasts, soft, poorly cemented, vuggy; Shell, 20%, yellowish gray (5Y 8/1) to very pale orange (10YR 8/2), small tests to 0.2-inch, mollusks; Phosphate, trace, black, very soft.	WOB=1-3K RPM=90 ROP=<1min/ft	160-175	15
CLAY; Clay, 100%, greenish gray (5GY 6/1), slightly calcareous and sandy (up to 10% clear, fine quartz grains), very soft, cohesive, non plastic, phosphatic (soft, fine, black grains).	WOB=12-13K RPM=90 ROP=<1min/ft	175-190	15
LIMESTONE WITH LITTLE CLAY AND SAND; Limestone, 80%, yellowish gray (5Y 8/1) to medium gray (N5), fossiliferous grainstone with quartz grains and shell intraclasts, soft to moderately hard, mostly poorly cemented, vuggy; Clay, 10%, greenish gray (5GY 6/1), slightly sandy (up to 10% clear, fine quartz grains), very soft, cohesive, non plastic; Sand, 10%, very pale orange (5Y 8/2), calcareous, little quartz and clear, very fine- to fine- grained, sub-angular.	WOB=14-16K RPM=90 ROP=<1min/ft	190-200	10
CLAY; Clay, 100%, greenish gray (5GY 6/1), slightly calcareous and sandy (up to 10% clear, fine quartz grains), very soft, cohesive, non plastic, phosphatic (soft, fine, black grains).	WOB=14-16K RPM=90 ROP=<1min/ft	200-230	30
CLAY AND SOME LIMESTONE; Clay, 70%, greenish gray (5GY 6/1) to yellowish gray (5Y 8/1), calcareous and sandy (up to 10% clear, fine quartz grains), very soft, cohesive, non plastic, phosphatic (soft, fine, black grains); Limestone, 30%, yellowish gray (5Y 8/1) to medium gray (N5), fossiliferous grainstone, with quartz grains and shell intraclasts, soft to moderately hard, mostly poorly cemented, vuggy.	WOB=14-16K RPM=90 ROP=<1min/ft	230-280	50
SANDY CLAY; Clay, 60%, greenish gray (5GY 6/1), slightly calcareous, very soft, very phosphatic (up to 10%), cohesive, non-plastic; Sand, 40%, quartz and calcareous, clear to very pale orange (10YR 8/2), very fine- to fine - grained.	WOB=14-16K RPM=90 ROP=<1min/ft	280-290	10
SANDY CLAY AND SOME LIMESTONE; Clay, 50%, pale olive (10Y 6/2), little dusky green (5G 3/2), calcareous, very soft, cohesive, non plastic, phosphatic (soft, fine, black grains); Sand, 30%, quartz and calcareous, clear to very pale orange (10YR 8/2), very fine- to medium- grained, sub-angular; Limestone, 20%, yellowish gray (5Y 8/1) to medium gray (N5), fossiliferous grainstone with quartz grains and shell intraclasts, soft to moderately hard, mostly poorly cemented, vuggy.	WOB=14-16K RPM=90 ROP=<1min/ft	290-300	10

SANDY CLAY; Clay, 70%, dark greenish gray (5G 4/1), slightly calcareous, very soft, phosphatic, cohesive, non- plastic; Sand, 30%, quartz and calcareous, clear to very pale orange (10YR 8/2), very fine- to fine- grained; Limestone, trace, yellowish gray (5Y 8/1) to medium gray	WOB=14-16K RPM=90 ROP=<1min/ft	300-310	10
(N5), rare fragments to 0.2-inch.			
SANDY CLAY AND LIMESTONE; Clay, 40%, pale olive (10Y 6/2), dusky green (5G 3/2) and little white(N9), calcareous, very soft, cohesive, non plastic, very phosphatic (soft, fine, black grains); Sand, 30%, quartz and calcareous, clear to very pale orange (10YR 8/2), very fine- to medium- grained, sub-angular; Limestone, 30%, yellowish gray (5Y 8/1) to medium gray (N6), fossiliferous grainstone with shell intraclasts, soft to moderately hard, mostly poorly cemented, vuggy.	WOB=14-16K RPM=90 ROP=<1min/ft	310-330	20
LIMESTONE; Limestone, 100%, yellowish gray (5Y 8/1) to medium gray (N5), fossiliferous grainstone with shell intraclasts, moderately hard, moderately well cemented, vuggy; Sand, trace, calcareous, very pale orange (10YR 8/2), very fine- to medium- grained, sub-angular; Clay, trace, pale olive (10Y 6/2), calcareous, very soft, cohesive, non plastic.	WOB=15-17K RPM=90 ROP=<1min/ft	330-340	10
LIMESTONE WITH LITTLE SAND AND CLAY; Limestone, 80%, yellowish gray (5Y 8/1) to very pale orange (10YR 8/2), fossiliferous grainstone with shell intraclasts, soft to moderately hard, poorly- to moderately well- cemented, vuggy; Sand, 10%, calcareous, very pale orange (10YR 8/2), very fine- to medium- grained, sub- angular; Clay, 10%, pale olive (10Y 6/2) to yellowish gray (5Y 8/1), calcareous, very soft, cohesive, non plastic.	WOB=15-17K RPM=90 ROP=<1min/ft	340-370	30
LIMESTONE; Limestone, 100%, yellowish gray (5Y 8/1) to medium light gray (N6), fossiliferous grainstone with shell intraclasts, phosphatic, moderately hard, moderately well cemented, vuggy; Sand, trace, calcareous, very pale orange (10YR 8/2), very fine- to medium- grained, sub-angular; Clay, trace, pale olive (10Y 6/2) to greenish gray (5G 6/1),calcareous, very soft, cohesive, non plastic.	WOB=15-17K RPM=90 ROP=<1min/ft	370-380	10
SANDY CLAY AND LIMESTONE; Clay, 40%, pale olive (10Y 6/2), dusky green (5G 3/2) and little white(N9), calcareous, very soft, cohesive, non plastic, very phosphatic (soft, fine, black grains); Sand, 30%, quartz and calcareous, clear to very pale orange (10YR 8/2), very fine to medium grained, sub-angular; Limestone, 30%, yellowish gray (5Y 8/1) to medium gray (N5), fossiliferous grainstone with shell intraclasts, soft to moderately hard, mostly poorly cemented, vuggy.	WOB=15-17K RPM=90 ROP=<1min/ft	380-390	10

ARCADIS

FGUA Golden Gate WWTF Injection Well System Monitor Well MW1

LIMESTONE; Limestone, 100%, yellowish gray (5Y 8/1) to medium light gray (N6), fossiliferous grainstone with shell intraclasts, phosphatic, moderately hard, moderately well cemented, vuggy; Sand, trace, calcareous, very pale orange (10YR 8/2), very fine- to medium- grained, sub- angular; Clay, trace, pale olive (10Y 6/2) to greenish gray (5G 6/1),calcareous, very soft, cohesive, non plastic.	WOB=15-17K RPM=90 ROP=<1min/ft	390-400	10
LIMESTONE, SOME SAND AND LITTLE CLAY; Limestone, 70%, yellowish gray (5Y 8/1) to very pale orange (10YR 8/2), fossiliferous grainstone with shell intraclasts, soft, poorly cemented, vuggy; Sand, 20%, calcareous, very pale orange (10YR 8/2), very fine- to medium- grained, sub-angular; Clay, 10%, pale olive (10Y 6/2) to yellowish gray (5Y 8/1), calcareous, very soft, cohesive, non plastic.	WOB=15-17K RPM=90 ROP=<1min/ft	400-410	10
LIMESTONE, SAND AND CLAY; Limestone, 40%, yellowish gray (5Y 8/1) to very pale orange (10YR 8/2), fossiliferous grainstone, calcitic with shell intraclasts, very soft to soft, poorly cemented, vuggy; Sand, 30%, calcareous, very pale orange (10YR 8/2), very fine- to medium- grained, sub-angular; Clay, 30%, pale olive (10Y 6/2) to yellowish gray (5Y 8/1), calcareous, very phosphatic, very soft, cohesive, non plastic.	WOB=16-18K RPM=90 ROP=<1min/ft	410-420	10
SANDY CLAY; Clay, 50%, pale olive (10Y 6/2) on top, than mostly yellowish gray (5Y 7/2), calcareous, very soft, cohesive, non plastic, very phosphatic; Sand, 50%, calcareous, very pale orange (10YR 8/2), very fine to medium grained, sub-angular; Limestone, trace, yellowish gray (5Y 8/1), very soft, poorly cemented.	WOB=16-18K RPM=90 ROP=<1min/ft	420-440	20
SANDY CLAY (MARL) AND VERY LITTLE LIMESTONE; Clay, 50%, yellowish gray (5Y 7/2), trace of white (N9), calcareous (marl), very soft, cohesive, non plastic, phosphatic; Sand, 45%, calcareous, very pale orange (10YR 8/2), very fine- to medium- grained, sub- angular; Limestone, 5%, yellowish gray (5Y 8/1), very soft, poorly cemented.	WOB=16-18K RPM=90 ROP=<1min/ft	440-460	20
CLAY WITH LITTLE SAND AND VERY LITTLE LIMESTONE; Clay, 85%, pale olive (10Y 6/2), to light olive gray (5Y 3/2), very slightly calcareous, very soft, cohesive, non plastic, slightly phosphatic; Sand, 10%, very pale orange (10YR 8/2), calcareous, very fine- to medium- grained, sub-angular; Limestone, 5%, yellowish gray (5Y 8/1), fossiliferous grainstone, very soft, poorly cemented, vuggy.	WOB=16-18K RPM=90 ROP=3-5min/ft	460-470	10

QNAProjectsWRWF PROJECTSWF004200.G015 - Golden Gate Injection WellSubmitted (Final) ReportsFRNAL CONSTRUCTION & TESTING REPORT/opendicadAppendix B01 MW1 Geologic Log.doc

LIMESTONE, SAND AND CLAY (MARL); Limestone, 40%, yellowish gray (5Y 8/1) to very pale orange (10YR 8/2), fossiliferous grainstone, calcitic with shell intraclasts, very soft to soft, poorly cemented, vuggy; Sand, 30%, calcareous, very pale orange (10YR 8/2), very fine- to medium- grained, sub-angular; Clay, 30%, yellowish gray (5Y 8/1) with white (N9) smudges, calcareous (marl), phosphatic, very soft, cohesive, non plastic.	WOB=16-18K RPM=90 ROP=<1min/ft	470-490	20
LIMESTONE, SOME SAND AND LITTLE CLAT; Limestone, 60%, yellowish gray (5Y 8/1) to very pale orange (10YR 8/2), fossiliferous grainstone with shell intraclasts, soft to moderately hard, poorly- to moderately well- cemented, vuggy; Sand, 30%, very pale orange (10YR 8/2), calcareous, very fine- to medium- grained, sub-angular; Clay, 10%, pale olive (10Y 6/2) to yellowish gray (5Y 8/1), calcareous (marl), very soft, cohesive, non plastic.	RPM=90 ROP=1-5min/ft	490-300	10
LIMESTONE, SAND AND CLAY; Limestone, 40%, yellowish gray (5Y 8/1) to very pale orange (10YR 8/2), fossiliferous grainstone, calcitic with shell intraclasts, very soft to soft, poorly cemented, vuggy; Sand, 30%, calcareous, very pale orange (10YR 8/2), very fine- to medium- grained, sub-angular; Clay, 30%, dusky yellow green (5GY 5/2) to yellowish gray (5Y 8/1), some calcareous (marl), phosphatic, very soft, cohesive, non plastic.	WOB=18-20K RPM=95 ROP=3-5min/ft	500-510	10
LIMESTONE, SOME SAND AND LITTLE CLAY; Limestone, 60%, yellowish gray (5Y 8/1) to very pale orange (10YR 8/2), fossiliferous grainstone with shell intraclasts, soft to moderately hard, poorly- to moderately well- cemented, vuggy; Sand, 30%, calcareous, very pale orange (10YR 8/2), very fine- to medium- grained, sub- angular; Clay, 10%, pale olive (10Y 6/2) to yellowish gray (5Y 8/1), mostly calcareous (marl), very soft, cohesive, non plastic.	WOB=18-20K RPM=95 ROP=3-5min/ft	510-520	10
LIMESTONE, SAND AND CLAY (MARL); Limestone, 40%, yellowish gray (5Y 8/1) to very pale orange (10YR 8/2), fossiliferous grainstone, calcitic with shell intraclasts, very soft to soft, poorly cemented, vuggy; Sand, 30%, calcareous, very pale orange (10YR 8/2), very fine- to medium- grained, sub-angular; Clay, 30%, yellowish gray (5Y 8/1) with smudges of dusky yellow green (5GY 5/2), calcareous (marl), phosphatic, very soft, cohesive, non plastic.	WOB=18-20K RPM=95 ROP=3-5min/ft	520-550	30

ARCADIS

GEOLOGIC LOG

FGUA Golden Gate WWIF Injection Well System Monitor Well MW1

			· · · · · · · · · · · · · · · · · · ·
LIMESTONE; Limestone, 100%, very light gray (N8) to medium light gray (N6) and some light olive gray (5Y 6/1), mudstone, fossiliferous with shell intraclasts, very fine grained, slightly vuggy, phosphatic, moderately hard, moderately well- to well- cemented; Shell, trace, yellowish gray (5Y 8/1), fragments to 0.5-inch. CLAY WITH SOME LIMESTONE; Clay, 80%,	WOB=18-20K RPM=95 ROP=3-5min/ft Numerous cement fragments. WOB=18-20K	550-560 560-570	10
yellowish gray (5Y 8/1) to dark greenish gray (5GY 4/1), mostly calcareous (marl), sandy (up to 20% of fine calcareous sand), soft, medium plasticity; Limestone, 20%, very light gray (N8) to medium light gray (N6), moderately hard, moderately well cemented, slightly vuggy.	RPM=95 ROP=3-5min/ft Numerous cement fragments.		
LIMESTONE WITH LITTLE CLAY (MARL); Limestone, 90%, yellowish gray (5Y 5/2), little light gray (N7), oolitic grainstone, fossiliferous, small, up to 2-mm shell fragments, slightly phosphatic, very fine grained, soft to moderately hard, moderately well cemented, slightly vuggy; Clay, 10%, yellowish gray (5Y 8/1), calcareous (marl), very soft, cohesive, low plasticity.	WOB=18-20K RPM=95 ROP=1-2min/ft Numerous cement fragments.	570-590	20
LIMESTONE AND CLAY (MARL); Limestone, 60%, yellowish gray (5Y 5/2), oolitic grainstone, fossiliferous, small, up to 2-mm shell fragments, slightly phosphatic, very fine grained, soft to moderately hard, moderately well cemented, slightly vuggy; Clay, 40%, yellowish gray (5Y 8/1), calcareous (marl), very soft, low plasticity.	WOB=20-22K RPM=95 ROP=1-2min/ft Numerous cement fragments.	590-600	10
LIMESTONE WITH VERY LITTLE CLAY (MARL); Limestone, 95%, yellowish gray (5Y 5/2), little light gray (N7), oolitic grainstone, fossiliferous, small, up to 2-mm shell fragments, slightly phosphatic, very fine grained, soft to moderately hard, moderately well cemented, slightly vuggy; Clay, 5%, yellowish gray (5Y 8/1), calcareous (marl), very soft, cohesive, low plasticity.	WOB=20-22K RPM=95 ROP=1-2min/ft Abundant (50-60%) Cement cuttings.	600-620	20
LIMESTONE WITH SOME CLAY (MARL); Limestone, 80%, yellowish gray (5Y 5/2), grainstone, oolitic, slightly fossiliferous, small, up to 2-mm shell fragments, phosphatic, very fine grained, soft, poorly cemented, slightly vuggy; Clay, 20%, yellowish gray (5Y 8/1), calcareous (marl), very soft, cohesive, low plasticity.	WOB=20-22K RPM=95 ROP=1-2min/ft Numerous cement fragments.	620-630	10
CLAY (MARL) WITH SOME LIMESTONE; Clay, 80%, light olive gray (5Y 6/1), calcareous (marl), slightly sandy (up to 10% of fine- to medium- grained calcareous sand), very soft, low plasticity; Limestone, 20%, yellowish gray (5Y 5/2), oolitic grainstone, slightly fossiliferous, small, up to 2-mm shell fragments, phosphatic, very fine grained, soft, poorly cemented, slightly vuggy.	WOB=20-22K RPM=95 ROP=1-2min/ft Few cement fragments.	630-650	

۰،

Page: 7/14

CLAY (MARL); Clay, 100%, light olive gray (5Y 6/1),	WOB=20-22K	650-660	10
calcareous (marl), very soft, cohesive, low plasticity, trace	RPM=95		
of calcareous sand; Limestone, trace, yellowish gray (5Y	ROP=1-2min/ft		· · · ·
5/2), grainstone, slightly fossiliferous, slightly phosphatic,	Few cement fragments.		
very fine grained, soft.			
LIMESTONE AND CLAY (MARL); Limestone, 60%,	WOB=20-22K	660-670	10
yellowish gray (5Y 5/2), oolitic grainstone, fossiliferous,	RPM=95		
small, up to 2-mm shell fragments, slightly phosphatic,	ROP=1-2min/ft		
fine grained, soft, poorly cemented, slightly vuggy; Clay,			
40%, yellowish gray (5Y 8/1), calcareous (mari), very soft,			
low plasticity to non plastic.			
CLAY WITH LIMESTONE; Clay, 50%, dark greenish	WOB=20-22K	670-680	10 .
gray (5GY 4/1), slightly calcareous, , very soft, cohesive,	RPM=95		
non plastic; Limestone, 50%, yellowish gray (5Y 5/2),	ROP=1-2min/ft		
oolitic grainstone, fossiliferous, slightly phosphatic, very			
fine grained, soft, poorly cemented, slightly vuggy.			
LIMESTONE AND SOME CLAY; Limestone, 70%,	WOB=20-22K	680-690	10
yellowish gray (5Y 5/2), mostly (90%) oolitic grainstone,	RPM=95	·	,
fossiliferous, phosphatic, little dolomitic limestone, very	ROP=1-2min/ft		·
fine grained, soft to moderately hard, poorly- to			
moderately well- cemented; Clay, 30%, medium light gray			
(N6), slightly calcareous, soft, cohesive, low plasticity.	•	· ·	
CLAY (MARL) AND LITTLE LIMESTONE; Clay, 90%,	WOB=20-22K	6 90 -700	10
yellowish gray (5 Y 5/2), calcareous (marl), soft to	RPM=95		
moderately hard, medium plasticity; Limestone, 10%,	ROP=1-2min/ft		
yellowish gray (5Y 5/2), oolitic grainstone, soft, poorly			
cemented.			· · · · · · · · · · · · · · · · · · ·
LIMESTONE AND CLAY (MARL); Limestone, 60%,	WOB=20-22K	700-710	10
mostly medium gray (N5), dolomitic, slightly phosphatic,	RPM=95		
fine crystalline, some yellowish gray (5Y 5/2), packstone,	ROP=1-2min/ft		
oolitic, moderately hard, moderately well cemented,			
slightly vuggy; Clay, 40%, yellowish gray (5Y 5/2),			
calcareous (marl), soft and cohesive to moderately hard,			
low plasticity to non plastic.			
LIMESTONE AND LITTLE CLAY (MARL); Limestone,	WOB=20-22K	710-720	_ 10
90%, yellowish gray (5Y 5/2), mostly (90%) oolitic	RPM=95		
grainstone, fossiliferous, 10% dolomitic limestone,	ROP=1-2min/ft		
medium gray (N5), crystalline, phosphatic, soft to			
moderately hard, poorly- to moderately well- cemented;		· .	
Clay, 10%, yellowish gray (5Y 5/2), calcareous (marl),			
very soft to soft, low plasticity to non plastic.			
LIMESTONE; Limestone, 100%, yellowish gray (5Y 5/2),	WOB=20-22K	720-730	10
oolitic grainstone, trace of fossils, rare medium gray (N5)	RPM=95		at in the second second
dolomitic, slightly phosphatic, fine grained, very soft to	KOP=1-2min/ft	\cdot i_{i} i_{i} \ldots \cdot	
son, poorly cemented, slightly vuggy; Clay, trace,			
yellowish gray (5 Y 5/2), calcareous (mari), very soft,		· · · · · · · · · · · · · · · · · · ·	
conesive, non plastic.			

GEOLOGIC LOG

DOLOSTONE AND LIMESTONE; Dolostone, 50%, light olive gray (5Y 6/1), crystalline, very fine grained, hard, well cemented, vuggy; Limestone, 50%, yellowish gray (5Y 7/2), ooilitic grainstone, fossiliferous with shell intraclasts, partly dolomitic, soft to moderately hard, moderately well cemented, slightly vuggy.	WOB=20-22K RPM=95 ROP=1-2min/ft	730-740	10
DOLOSTONE; Dolostone, 100%, yellowish gray (5Y 7/2), microcrystalline, hard, brittle, with few vugs.	WOB=3K RPM=95 ROP=<1-1min/ft	740-750	10
LIMESTONE WITH SOME DOLOSTONE; Limestone, 80%, yellowish gray (5Y 7/2), ooilitic grainstone, fossiliferous with shell intraclasts, partly dolomitic, soft to moderately hard, moderately well cemented, slightly vuggy; Dolostone, 20%, light olive gray (5Y 6/1) and yellowish gray (5Y 7/2), very fine- to micro-crystalline, hard, brittle, with few vugs.	WOB=3K RPM=95 ROP=<1-1min/ft	750-770	20
LIMESTONE WITH LITTLE DOLOSTONE; Limestone, 90%, yellowish gray (5Y 7/2), ooilitic grainstone, fossiliferous with shell intraclasts, mollusks and corals, very slightly dolomitic, soft to moderately hard, poorly- to moderately well- cemented, slightly vuggy; Dolostone, 10%, yellowish gray (5Y 7/2), microcrystalline, brittle, moderately hard.	WOB=3K RPM=95 ROP=<1-1min/ft	770-790	20
DOLOSTONE AND LIMESTONE; Dolostone, 50%, light olive gray (5Y 6/1), fine crystalline, hard, well cemented, vuggy; Limestone, 50%, yellowish gray (5Y 7/2), ooilitic grainstone, fossiliferous with shell intraclasts, partly dolomitic, soft to moderately hard, moderately well cemented, slightly vuggy; Clay, trace, yellowish gray (5Y7/2), calcareous, very soft, non plastic.	WOB=3K RPM=95 ROP=<1-1min/ft	790-800	10
CLAY (MARL), LIMESTONE AND LITTLE DOLOSTONE; Clay, 60%, very light gray (N8) to white (N9), calcareous (marl), chalky, cohesive, soft, low- to medium- plasticity; Limestone, 30%, yellowish gray (5Y 7/2), ooilitic grainstone, fossiliferous with shell intraclasts, very soft to soft, poorly cemented; Dolostone, 10%, light olive gray (5Y 6/1), crystalline, very fine grained, hard, well cemented, slightly vuggy.	WOB=3K RPM=95 ROP=<1-1min/ft	800-810	10
LIMESTONE AND LITTLE DOLOSTONE; Limestone, 90%, yellowish gray (5Y 7/2), ooilitic grainstone, fossiliferous, dolomitic, fine grained, soft to moderately hard, poorly cemented, vuggy; Dolostone, 10%, light gray (N7), crystalline; moderately hard, moderately well cemented; Clay, trace, yellowish gray (5Y7/2), calcareous, very soft, non plastic.	WOB=3K RPM=95 ROP=<1-1min/ft	810-820	10 Anna an an anna anna Anna an Anna anna a

CLAY (MARL), LIMESTONE AND DOLOSTONE; Clay, 50%, very light gray (N8), calcareous (marl), chalky, very soft, COHESIVE, non plastic; Limestone, 30%, yellowish gray (5Y 7/2), ooilitic grainstone, fossiliferous with shell intraclasts, very soft to soft, poorly cemented; Dolostone, 20%, light olive gray (5Y 6/1), crystalline, very fine grained, moderately hard, moderately well cemented.	WOB=3K RPM=95 ROP=<1-1min/ft	820-830	10
DOLOSTONE; Dolostone, 100%, yellowish gray (5Y 7/2), fine crystalline, very soft, disintegrating, mostly in a form of dolomitic sand, few moderately hard fragments.	WOB=3K RPM=95 ROP=<1-1min/ft	830-840	10
LIMESTONE AND VERY LITTLE DOLOSTONE; Limestone, 95%, yellowish gray (5Y 7/2), ooilitic grainstone, fossiliferous with shell intraclasts, very soft to soft, poorly cemented; Dolostone, 5%, medium light gray (N6), crystalline, very fine grained, moderately hard, moderately well cemented.	WOB=3K RPM=95 ROP=<1-1min/ft	840-850	10
CLAY (MARL); Clay, 100%, yellowish gray (5Y7/2), calcareous (marl), moderately hard, cohesive, low plasticity.	WOB=3K RPM=95 ROP=<1-1min/ft	850-860	10
LIMESTONE; Limestone, 100%, yellowish gray (5Y 7/2), ooilitic grainstone, slightly dolomitic, few fossils, very soft to soft, poorly cemented, vuggy; Dolostone, trace, medium light gray (N6), crystalline, very fine grained, moderately hard, moderately well cemented.	WOB=3K RPM=95 ROP=<1-1min/ft	860-870	10
LIMESTONE AND LITTLE DOLOSTONE; Limestone, 90%, yellowish gray (5Y 8/1), ooilitic grainstone and packstone, dolomitic, trace of fossils, very soft to soft, poorly cemented, vuggy; Dolostone10%, medium light gray (N6) to yellowish gray (5Y 8/1), fine- and micro- crystalline, moderately hard, moderately well cemented.	WOB=3K RPM=95 ROP=<1-1min/ft	870-890	20
LIMESTONE AND VERY LITTLE DOLOSTONE; Limestone, 95%, yellowish gray (5Y 7/2), ooilitic grainstone, trace of fossils, very soft to soft, poorly cemented; Dolostone, 5%, medium light gray (N6), fine crystalline, moderately hard, moderately well cemented.	WOB=3K RPM=95 ROP=<1-1min/ft	890-900	10
CLAY, LIMESTONE AND DOLOSTONE; Clay, 50%, light olive gray (5Y 6/1), slightly calcareous, very soft, cohesive, non plastic; Limestone, 30%, yellowish gray (5Y 7/2), ooilitic grainstone, fossiliferous with shell intraclasts, very soft to soft, poorly cemented; Dolostone, 20%, medium light gray (N6), fine crystalline, moderately hard, moderately well cemented.	WOB=3K RPM=95 ROP=<1-1min/ft	900-910	10

G:AProjectsWRWF PROJECTSWF001200.G015 - Golden Galo Injection WellSubmitted (Final) ReportsFINAL CONSTRUCTION & TESTING REPORT/AppendixsAppendix B01 MW1 Geologic Log.doc

LIMESTONE AND VERY LITTLE DOLOSTONE; Limestone, 95%, yellowish gray (5Y 7/2), ooilitic grainstone, trace of fossils, dolomitic, very soft to soft, poorly cemented; Dolostone, 5%, medium light gray (N6), very fine crystalline, moderately hard, moderately well cemented.	WOB=3K RPM=95 ROP=<1-1min/ft	910-930	20
LIMESTONE; Limestone, 100%, yellowish gray (5Y 7/2), ooilitic grainstone, trace of fossils, very soft to soft, poorly cemented; Dolostone, trace, medium light gray (N6), very fine crystalline, moderately hard, moderately well cemented.	WOB=3K RPM=95 ROP=<1-1min/ft	930-940	10
DOLOSTONE AND VERY LITTLE CLAY (MARL); Dolostone, 95%, pale yellowish brown (10YR 6/2), fine crystalline, mostly in a form of dolomitic sand, very soft, poorly cemented; Clay, 5%, pale yellowish brown (10YR 6/2), calcareous (marl), soft to moderately hard, non plastic.	WOB=5K RPM=95 ROP=<1-1min/ft	940-950	10
LIMESTONE AND SOME CLAY (MARL); Limestone, 70%, yellowish gray (5Y 7/2), ooilitic grainstone, trace of fossils, very soft to soft, poorly cemented; Clay, 30%, yellowish gray (5Y 7/2), calcareous, phosphatic, very soft, cohesive, non plastic; Dolostone, trace, medium light gray (N6), crystalline, very fine grained, moderately hard, moderately well cemented	WOB=7K RPM=95 ROP=<1-1min/ft	950-960	10
LIMESTONE AND CLAY (MARL); Limestone, 50%, yellowish gray (5Y 7/2), ooilitic grainstone, trace of fossils, very soft to soft, poorly cemented; Clay, 50%, yellowish gray (5Y 8/1), calcareous (marl), phosphatic, very soft, cohesive, non plastic; Dolostone, trace, medium light gray (N6), very fine crystalline, moderately hard, moderately well cemented.	WOB=7K RPM=95 ROP=<1-1min/ft	960-980	20
DOLOSTONE AND VERY LITTLE CLAY (MARL) AND LIMESTONE; Dolostone, 90%, pale yellowish brown (10YR 6/2), fine crystalline, little (up to 10%) of microcrystalline, mostly in a form of dolomitic sand, very soft to moderately hard, poorly cemented; Clay, 5%, pale yellowish brown (10YR 6/2), calcareous (marl), soft to moderately hard, non plastic; Limestone, 5%, yellowish gray (5Y 7/2), oolitic grainstone, trace of fossils, very soft to soft, poorly cemented.	WOB=9K RPM=95 ROP=<1-1min/ft	980-1000	20
LIMESTONE; Limestone, 100%, yellowish gray (5Y 8/1), grainstone, very fine grained, trace of fossils, slightly phosphatic, soft to moderately hard, moderately well cemented, few vugs.	WOB=8K RPM=95 ROP=1min/ft	1000-1020	20

and the second second

LIMESTONE AND SOME CLAY (MARL); Limestone, 80%, yellowish gray (5Y 8/1), grainstone, very fine grained, trace of fossils, slightly phosphatic, soft to moderately hard, moderately well cemented, few vugs; Clay, 20%, yellowish gray (5Y 7/2), calcareous, very soft, non plastic.	WOB=8K RPM=95 ROP=1min/ft	1020-1030	10
LIMESTONE; Limestone, 100%, yellowish gray, (5Y 8/1), grainstone, very fine grained, partly oolitic, fossiliferous (shell fragments to 2-mm), soft, poorly cemented, vuggy.	WOB=8K RPM=95 ROP=1min/ft	1030-1040	10
LIMESTONE; Limestone, 100%, light olive gray (5Y 5/2), mostly dolomitic and fine crystalline, some (30%) oolitic grainstone, yellowish gray (5Y 7/2), with fossils, fine grained, vuggy, very soft, poorly cemented.	WOB=8K RPM=95 ROP=1min/ft	1040-1060	20
LIMESTONE; Limestone, 100%, yellowish gray (5Y 8/1), grainstone, very fine grained, trace of fossils, slightly phosphatic, soft to moderately hard, moderately well cemented, few vugs.	WOB=8K RPM=95 ROP=1min/ft	1060-1070	10
LIMESTONE; Limestone, 100%, light olive gray (5Y 5/2), dolomitic, fine crystalline, little (10%) oolitic grainstone, yellowish gray (5Y 7/2), with fossils, fine grained, vuggy, very soft, poorly cemented.	WOB=8K RPM=95 ROP=1min/ft	1070-1080	10
LIMESTONE AND SOME DOLOSTONE; Limestone, 80%, yellowish gray (5Y 8/1), grainstone, very fine grained, trace of fossils, slightly phosphatic, soft to moderately hard, moderately well cemented, few vugs; Dolostone, 20%, light olive gray (5Y 6/1), microcrystalline, hard.	WOB=8K RPM=95 ROP=1min/ft	1080-1090	10
LIMESTONE; Limestone, 100%, light olive gray (5Y 5/2), dolomitic, fine crystalline, fossiliferous, vuggy, very soft, poorly cemented, mostly in a form of fine sand.	WOB=8K RPM=95 ROP=1min/ft	1090-1100	10
LIMESTONE; Limestone, 100%, yellowish gray (5Y 8/1), grainstone, very fine grained, trace of fossils, slightly phosphatic, soft to moderately hard, poorly- to moderately well- cemented, few vugs.	WOB=8K RPM=95 ROP=1min/ft	1100-1110	10
LIMESTONE AND SOME DOLOSTONE; Limestone, 70%, yellowish gray (5Y 7/2), packstone and grainstone, fossiliferous, fine grained, , soft, poorly cemented, few vugs; Dolostone, 30%, yellowish gray (5Y 8/1), microcrystalline, moderately hard.	WOB=8K RPM=95 ROP=1min/ft	1110-1130	20
LIMESTONE; Limestone, 100%, yellowish gray (5Y 8/1), oolitic grainstone, fine grained, fossiliferous, very soft to soft, poorly cemented, few vugs.	WOB=8K RPM=95 ROP=1min/ft	1130-1190	60

WOB=8K RPM=95 ROP=1min/ft	1190-1200	10
WOB=8K RPM=95 ROP=1min/ft	1200-1260	60
WOB=5K RPM=60 ROP=1min/ft	1260-1280	20
	1280-1290	10
WOB=5K RPM=60 ROP=1min/ft	1290-1320	30
WOB=6K RPM=55 ROP=1min/ft	1320-1350	30
WOB=6K RPM=60 ROP=1min/ft	1350-1370	20
WOB=6K RPM=60 ROP=1min/ft	1370-1410	40
WOB=6K RPM=60 ROP=1min/ft	1410-1420	10
WOB=6K RPM=60 ROP=1min/ft	1420-1480	60
	WOB=8K RPM=95 ROP=1min/ft WOB=8K RPM=95 ROP=1min/ft WOB=5K RPM=60 ROP=1min/ft WOB=6K RPM=55 ROP=1min/ft WOB=6K RPM=60 ROP=1min/ft WOB=6K RPM=60 ROP=1min/ft WOB=6K RPM=60 ROP=1min/ft WOB=6K RPM=60 ROP=1min/ft	WOB=8K RPM=95 ROP=1min/ft 1190-1200 WOB=8K RPM=95 ROP=1min/ft 1200-1260 WOB=5K RPM=60 ROP=1min/ft 1260-1280 WOB=5K RPM=60 ROP=1min/ft 1280-1290 WOB=5K RPM=60 ROP=1min/ft 1290-1320 WOB=6K RPM=55 ROP=1min/ft 1320-1350 WOB=6K RPM=60 ROP=1min/ft 1350-1370 WOB=6K RPM=60 ROP=1min/ft 1370-1410 WOB=6K RPM=60 ROP=1min/ft 1410-1420 WOB=6K RPM=60 ROP=1min/ft 1420-1480

,

GAProjectsWRWF PROJECTSWF004200.0015 - Gottlen Gate Injection Weißschnitted (Final) ReportsFINAL CONSTRUCTION & TESTING REPORTAgeondicesAppendix BD1 MW1 Geologic Logadoc
GEOLOGIC LOG

FGUA Golden Gate WWTF Injection Well System **Monitor Well MW1**

LIMESTONE; Limestone, 100%, yellowish gray (5Y 7/2) oolitic grainstone, fossiliferous, little very light gray, dolomitic, fine grained, very soft to soft, poorly cemented, trace phosphatic, sandy.	WOB=2K RPM=60 ROP=1min/ft Bit plugging-off	1480-1530	50
SANDSTONE AND SOME LIMESTONE; Sandstone, 70%, medium gray (N5), quartz with calcareous matrix, moderately hard, moderately well cemented, vuggy; Limestone, 70%, yellowish gray (5Y 8/1), lightly fossiliferous oolitic grainstone and some very light gray (N8) dolomitic limestone, fine grained to micro crystalline, fossiliferous, soft, poorly cemented.	WOB=2K RPM=60 ROP=1min/ft Bit plugging-off	1530-1540	10
LIMESTONE; Limestone, 100%, yellowish gray (5Y 7/2) oolitic grainstone, fossiliferous, with up to 10% of very light gray, dolomitic, fine grained limestone, soft to moderately hard, poorly- to moderately well- cemented, trace phosphatic, sandy.	WOB=2K RPM=40 ROP=1min/ft Bit plugging-off	1540-1550	10
LIMESTONE, 100%, light gray (N7) to very light gray (N8), dolomitic to slightly dolomitic with up to 10% of yellowish gray (5Y 8/1), oolitic grainstone, crystalline, fine grained, trace of fossils (fragments to 0.1-inch), moderately hard to soft, moderately well cemented, small vugs.	WOB=2K RPM=40 ROP=1min/ft Bit plugging-off	1550-1560	10
LIMESTONE, 100%, very pale orange (10YR 8/2) to very light gray (N8), wackstone, slightly dolomitic with little grainstone, fossiliferous, soft to moderately hard, poorly- to moderately well- cemented, slightly vuggy, rare black phosphate grains.	WOB=2K RPM=40 ROP=2-3min/ft	1560-1570	10
LIMESTONE, 100%, light gray (N7) to very light gray (N8), dolomitic to slightly dolomitic with up to 40% of yellowish gray (5Y 8/1) of fossiliferous grainstone, micro crystalline to fine grained, slightly phosphatic, moderately hard to soft, moderately well cemented, small vugs.	WOB=5K RPM=40 ROP=2-3min/ft	1570-1590	20
LIMESTONE, 100%, very pale orange (10YR 8/2) to yellowish gray (5Y 8/1), grainstone and wackstone, with trace of slightly dolomitic, very light gray (N8) fine crystalline limestone, soft to moderately hard, poorly- to moderately well-cemented, slightly vuggy.	WOB=5K RPM=40 ROP=2-3min/ft	1590-1600	10
LIMESTONE, 100%, very pale orange (10YR 8/2), fossiliferous grainstone and wackstone, with trace of dolomitic, very light gray (N8) fine crystalline limestone, soft, poorly cemented, slightly vuggy, oolitic grainstone, fossiliferous, soft to moderately hard, poorly cemented, slightly vuggy.	WOB=6K RPM=40 ROP=2-3min/ft	1600-1618	18

"RPM" denotes rotation speed in "revolutions per minute". "WOB" denotes "weight on the bit" in thousands of pounds per square inch.

LITHOLOGICAL DESCRIPTION	DRILLING COMMENTS	DEPTH INTERVAL	THICKNESS
Fill, and limanak and alay		0.4	4.0
Fin: sand, innerock and clay:		0-4	4.0
SAND: Sand 100%, very light gray (N6), little yellowish gray (5Y	WOB=4-5K,		
8/1), 90% calcareous, 10% quartz, clear to yellowish gray (5Y 8/1),	RPM=6- 7	4-10	6.0
nne- to measure grained, angular to sub-rounded; Snell, trace, very small (< 0.1 -inch) fragments			
CAP ROCK: LIMESTONE WITH LITTLE SAND: Limestone	WOB=8-9K		
90%, yellowish gray (5Y 8/1), some light gray (N5), grainstone,	RPM=6-7	10-18	8.0
hard, well cemented; Sand, 10%, mostly yellowish gray, calcareous,			
little quartz, clear, very fine- to fine- grained, sub-angular.			
CALCAREOUS SAND, LITTLE SHELL AND LIMESTONE;	WOB=5-6K,		
Sand, 80%, very light gray (N6), calcareous, little quartz, clear, very	RPM=6-7	18-30	12
fine to fine grained, sub-angular; Shell, 10%, light olive gray (5Y			
6/1), tests to 1-inch; Limestone, 10%, light olive gray (5Y 6/1),			
Phosphate trace black very fine grains			
SHELL WITH LITTLE SAND AND LIMESTONE: Shell 80%	WOB=8-10K		
mostly medium gray (N5), 10% white (N9), few large tests to 1-	RPM=6-7	30-40	10
inch, mollusks; Sand, 10%, very light gray (N6), calcareous, little			
quartz, clear, very fine- to fine- grained, sub-angular, Limestone,			
10%, light olive gray (5Y 6/1), grainstone, fine grained, very soft to			
soft, poorly cemented.			
FOSSILIFEROUS LIMESTONE, LITTLE SAND AND SHELL;	WOB=8-10K,	40.57	16
Limestone, 80%, light olive gray (5 Y o/1) to yellowish gray (5 Y 8/1) way fossiliformus (coquine), with shall introducts (mollucka	KP!M=0-/	40-50	10
orals) moderately hard moderately well comented vugay. Sand			
10%, very light gray (N6), calcareous, very little guartz, clear, very			
fine- to fine- grained, sub-angular; Shell, 10%, white (N9) to			
medium gray (N5), tests to 0.4-inch, mollusks; Phosphate, trace,			
black, very fine grains.			
LIMESTONE ; Limestone, 100%, yellowish gray (5Y 8/1) to very	WOB=10-12K	56-70	14
light gray (N8), oolitic grainstone, very fine- to fine- grained, with	RPM=5-6		
little fossils (shell fragments to 0.2-inch), very soft (mostly in form			
trace vellowish gray calcareous challey very soft non- plastic:			
Phosphate, trace, black, very soft, fine grains.			
FOSSILIFEROUS LIMESTONE WITH LITTLE SAND AND	WOB=12-14K	70-90	20
SHELL; Limestone, 80%, yellowish gray (5Y 8/1) to light gray	RPM=6-7		
(N7), fossiliferous (coquina), some grainstone, mollusks, rare			
quartz, clear grains, slightly phosphatic, fine grained, moderately			
hard to hard, moderately well- to well- cemented, vuggy; Sand,			
10%, yellowish gray (5Y 8/1) to very pale orange (10YR 8/2),			
calcareous, some quartz, clear, very fine- to fine- grained, sub-			
mollusks			

G:WProjectsSMRWF PROJECTSSMF004200 G915 - Gotton Gete Injection WetRoloniking (Fine) ReportsFDNAL CONSTRUCTION & TESTING REPORTAcpendicesAppendix B02 MM Geologic Log.doc

	DRILLING	DEPTH	THICKNESS
LITHOLOGICAL DESCRIPTION	COMMENTS	INTERVAL	
		· · · · · · · · · · · · · · · · · · ·	
FOSSILIFEROUS LIMESTONE WITH SOME SAND AND	WOB=12-14K	90-100	10
LITTLE SHELL; Limestone, 60%, yellowish gray (5Y 7/2) to very	RPM=6-7		
light gray (N8), colitic, fossiliferous (coquina), mollusks, few quartz			
grains, fine grained, moderately hard to soft, poorly- to moderately-	• .		
well cemented, vuggy; Sand, 30%, yellowish gray (5Y 8/1) to very			
pale orange (10YR 8/2), calcareous, some quartz, clear, very fine- to			
fine- grained, sub-angular; Shell, 10%, very pale orange (10YR 8/2),			
small tests to 0.2-inch, mollusks; Phosphate, trace, black, very soft,	· · ·		•
fine grains.	· · ·		
SAND AND SOME LIMESTONE; Sand, 70%, yellowish gray (5Y	WOB=12-14K	100-120	20
7/2) to very light gray (N8), calcareous, little quartz, clear, slightly	RPM=6-7		
phosphatic, very fine- to fine- grained, sub-rounded; Limestone,			
30%, yellowish gray (5Y 7/2) to very light gray (N8), colitic			-
grainstone, trace of fossils (shell fragments to 0.1-inch), soft, poorly			
cemented, vuggy; Shell, trace, very pale orange (10YR 8/2), small			
tests to 0.1-inch, mollusks.			
LIMESTONE AND SAND; Limestone, 60%, light gray (N7) to	WOB=12-14K	120-130	10
medium gray (N5) and little (15%) yellowish gray (5Y 7/2),	RPM=6-7		
mudstone, very fine grained, soft to moderately hard, poorly	•		
cemented; Sand, 40%, yellowish gray (5Y 8/1), calcareous and	ч		
quartz (clear), fine- to medium- grained, sub-angular to sub-			
rounded; Shell, trace, very pale orange (10YR 8/2), very small tests			
to 0.1-inch; Phosphate, trace, black, very soft, fine grains.			
SAND; Sand, 100%, quartz, clear, very fine- to fine- grained, sub-	WOB=12-14K	130-140	10
rounded, occasionally cemented, little, up to 10%, calcareous,	RPM=6-7		
vellowish grav (5Y 8/1) to very pale orange (10YR 8/2); Phosphate.			
trace, black, very soft, fine grains.			
SAND, SOME LIMESTONE AND LITTLE SHELL; Sand, 60%,	WOB=20-25K	140-150	10
quartz, clear, very fine- to fine- grained, partly very poorly	RPM=16-19		
cemented, little calcareous; Limestone, 30%, light grav (N7) to			
vellowish grav (5Y 8/1), fossiliferous grainstone, with quartz grains			
and shell intraclasts, soft, poorly cemented, yuggy; Shell, 10%,			
vellowish grav (5Y 8/1) to very pale orange (10YR 8/2), small tests			
to 0.2-inch, mollusks; Phosphate, trace, black, very soft, fine grains.			
SAND: Sand, 100%, quartz, clear, very fine- to fine- grained, sub-	WOB=20-25K	150-160	10
rounded, trace of calcareous, vellowish grav (5Y 8/1), slightly	RPM=16-19		
phosphatic: Limestone, trace, light grav (N7) to vellowish grav (5Y	· ·		
8/1), fossiliferous grainstone, with quartz grains and shell			
intraclasts, soft, poorly cemented, vuggy: Shell, trace, vellowish			
gray (5Y 8/1) to very pale orange (10YR 8/2), small tests to 0.2-			
inch, mollusks.			

SAND AND SOME LIMESTONE ; Sand, 70%, quartz, clear, and calcareous, yellowish gray (5Y 7/2) very fine- to medium- grained, partly poorly cemented; Limestone, 30%, light gray (N7) to	WOB=20-25K RPM=16-19	160-180	20
vellowish grav (5Y 8/1), oolitic grainstone, with quartz grains and			
few shell intraclasts, very soft, poorly cemented, vuggy; Shell, trace,			
yellowish gray (5Y 8/1) to very pale orange (10YR 8/2), small tests			
to 0.1-inch; Phosphate, trace, black, very soft, fine grains.			
SANDY CLAY; Clay, 50%, dusky yellow green (5GY 5/2), very	WOB=20-25K	180-200	20
slightly calcareous, soft, low plasticity, trace of black phosphate;	RPM=16-19		
Sand, 50%, quartz, clear, very fine to fine grained, sub-rounded.			
SANDY CLAY; Clay, 70%, dusky yellow green (5GY 5/2), very	WOB=20-25K	200-210	10
slightly calcareous, very soft, cohesive, medium plasticity, trace of	RPM=16-19		
black phosphate; Sand, 30%, quartz, clear, very fine- to fine-			
grained, sub-rounded; Shell, trace, very pale orange (10YR 8/2),			
small tests to 0.1-inch; Limestone, trace, yellowish gray (5Y 8/1),			
small fragments to 0.2-inch.			· · ·
SANDY CLAY WITH VERY LITTLE LIMESTONE; Clay, 50%,	WOB=20-25K	210-220	10
dusky yellow green (5GY 5/2), very slightly calcareous, soft, low	RPM=16-19		
plasticity to non-plastic, trace of phosphate; Sand, 45%, clear,			
quartz, fine- to coarse- grained, sub-rounded to sub-angular;		, .	
Limestone, 5%, yellowish gray (5Y 8/1), small fragments to 0.2-			
inch; Shell, trace, very pale orange (10YR 8/2), small tests to 0.1-			
inch.			
CLAY AND LITTLE SAND; Clay, 90%, greenish gray (5GY 6/1),	WOB=20-25K	220-230	10
soft, cohesive, medium to high plasticity, slightly phosphatic with	RPM=16-19		
up to 10% of clear, quartz sand, very fine grained, sub-rounded;			
Limestone, trace, yellowish gray (5Y 8/1), small fragments to 0.1-			
inch; Shell, trace, very pale orange (10YR 8/2), small tests to 0.1-			
inch.			
LIMESTONE WITH SAND AND SOME CLAY; Limestone, 50%,	WOB=20-23K	230-240	10
yellowish gray (5Y 8/1) to very pale orange (10YR 8/2), mostly	RPM=5-6		
oolitic grainstone with shell intraclasts, little mudstone, fine grained,			
soft, poorly cemented, vuggy; Sand, 30%, clear, quartz,, fine- to			
medium- grained, sub-rounded; Clay, 20%, pale olive (10Y 6/2),			
soft, conesive, low plasticity; Phosphate, trace, black, very soft, fine			
grains.	WOD-20 22K	240.250	10
CLAY, LIMESTONE AND SHELL; Clay, 50%, greenish gray	WUB=20-23K	240-250	10
(SGY 6/1), slignily calcareous and sandy (up to 10% clear, fine	KPM=2-0		
quartz grains), very soit, conesive, non plasuc, phosphauc (soit,			
medium gray (NS) fossiliferous grainstone with guarta grains and			
shell introducts fine grained soft to moderately hard mostly nearly		-	
sment in a classis, the granica, soft to inouclately hard, mostly poorly compared up gov. Shell 20% vellowish grav (SV 9/1) mostly			
fragments few whole shells to 0 Linch mollusks			
nagments, few whole shens to v.T-men, monusas.		l .	· · ·

GEOLOGIC LOG

	•	· · ·	
CLAY AND LITTLE LIMESTONE; Clay, 90%, pale olive (10Y	WOB=21-23K	250-260	10
6/2) to yellowish gray (5Y 8/1), sandy (up to 10% of calcareous and	RPM=5-6		2
quartz), very soft, cohesive, non plastic, phosphatic; Limestone,		· · ·	
10%, yellowish gray (5Y 8/1) to medium gray (N5), oolitic,			
fossiliferous grainstone, with quartz grains and shell intraclasts, soft,			
mostly poorly cemented, vuggy.			
LIMESTONE WITH SOME SHELL AND LITTLE CLAY;	WOB=21-23K	260-270	10
Limestone, 70%, yellowish gray (5Y 8/1) to medium gray (N5),	RPM=5-6	-	
fossiliferous grainstone with quartz grains and shell intraclasts, very			
soft, poorly cemented, vuggy; Shell, 20%, yellowish gray (5Y 8/1),			
small fragments to 0.2-inch, mollusks; Clay, 10%, greenish gray			2
(5GY 6/1), slightly sandy, very soft, cohesive, non plastic; Sand,		· .	
trace, very pale orange (5Y 8/2), calcareous, little quartz and clear,			· ·
very fine- to fine- grained, sub-angular.			,
SANDY, PHOSPHATIC CLAY; Clay, 70%, dark greenish gray	WOB=21-23K	270-290	20
(5G 4/1), slightly calcareous, very soft, phosphatic, cohesive, non-	RPM=5-6		
plastic; Sand, 20%, quartz and calcareous, clear to very pale orange			
(10YR 8/2), very fine- to fine- grained; Phosphate, 10%, black, very			
fine, sub-rounded grains; Limestone, trace, yellowish gray (5Y 8/1)			
to medium gray (N5), rare fragments to 0.2-inch			1
LIMESTONE, SHELL AND LITTLE SAND; Limestone, 50%,	WOB=19-21K	290-330	40
yellowish gray (5Y 8/1) to medium gray (N5), very fossiliferous	RPM=17-21		
grainstone with shell intraclasts, phosphatic, soft, poorly cemented,			
vuggy; Shell, 40%, very pale orange (10YR 8/2) to yellowish gray			
(5Y 8/1), small tests to 0.2-inch, mollusks; Sand, 10%, yellowish			
gray (5Y 8/1) to very pale orange (10YR 8/2), calcareous, very fine-			
to medium- grained, sub-angular; Clay, trace, pale olive (10Y 6/2),			
calcareous, very soft, cohesive, non-plastic.			
SHELL AND LIMESTONE; Shell, 60%, very pale orange (10YR	WOB=7-9K	330-360	30
8/2) to yellowish gray (5Y 8/1), mostly small tests to 0.2-inch, few	RPM=12-17		
large fragments to 1.5-inch; Limestone, 40%, yellowish gray (5Y			
8/1) to medium light gray (N6), fossiliferous grainstone with shell			
intraclasts, phosphatic, soft, poorly cemented, vuggy; Sand, trace,		-	1
calcareous, very pale orange (10YR 8/2), very fine- to medium-			
grained, sub-angular; Clay, trace, pale olive (10Y 6/2) to greenish	· · ·		
gray (5G 6/1), calcareous, very soft, cohesive, non plastic			
LIMESTONE, SHELL AND LITTLE CLAY; Limestone, 60%,	WOB=7-9K	360-370	10
yellowish gray (5Y 8/1), little medium gray (N5), fossiliferous	RPM=12-17		
oolitic grainstone with shell intraclasts, trace of phosphate, soft,			
poorly cemented, vuggy; Shell, 30%, very pale orange (10YR 8/2)			· ·
to yellowish gray (5Y 8/1), mostly small tests to 0.2-inch, few large			
fragments to 1-inch, mollusks; Clay, 10%, pale olive (10Y 6/2),		· ·	
slightly calcareous, very soft, cohesive, non plastic; Sand, trace,]	
yellowish gray (5Y 8/2) to very pale orange (10YR 8/2), calcareous,			
very fine- to medium- grained, sub-angular.			

÷ .

:

SHELL, LIMESTONE AND LITTLE CLAY; Shell, 60%, very pale	WOB=7-9K	370-380	10
orange (10YR 8/2) to yellowish gray (5Y 8/1), mostly small tests to	RPM =12-17		
0.2-inch, numerous large fragments to 2-inch; Limestone, 30%,			
yellowish gray (5Y 8/1) to medium light gray (N6), fossiliferous			
oolitic grainstone with shell intraclasts, trace of black phosphate,			
soft, poorly cemented, vuggy; Clay, 10%, pale olive (10Y 6/2) to			
greenish gray (5G 6/1), slightly calcareous, very soft, cohesive, non			
plastic; Sand, trace, calcareous, very pale orange (10YR 8/2), very			
fine- to medium- grained, sub-angular.			
LIMESTONE, SOME SHELL AND LITTLE CLAY; Limestone,	WOB=7-9K	380-410	30
70%, yellowish gray (5Y 8/1), little medium gray (N5),	RPM=12-17		
fossiliferous oolitic grainstone with shell intraclasts, trace of			
phosphate, soft, poorly cemented, vuggy; Shell, 20%, very pale			
orange (10YR 8/2 to yellowish gray (5Y 8/1), mostly small tests to			
0.2-inch, few fragments to 0.5-inch, mollusks; Clay, 10%, pale olive			
(10Y 6/2), slightly calcareous, very soft, cohesive, non plastic; Sand,			
trace, yellowish gray (5Y 8/1) to very pale orange (10YR 8/2),			
calcareous, very fine- to medium- grained, sub-angular.			
LIMESTONE AND SOME CLAY; Limestone, 80%, yellowish	WOB=7-9K	410-420	10
gray (5Y 8/1) to very pale orange (10YR 8/2), oolitic grainstone	RPM=12-17		
with occasional shell intraclasts, very phosphatic, very fine- to fine-			
grained, very soft, poorly cemented; Clay, 20%, yellowish gray (5Y			
8/1), very soft, cohesive, non plastic.			
LIMESTONE WITH SOME SHELL; Limestone, 80%, yellowish	WOB=7-9K	420-430	10
gray (5Y 7/2), fossiliferous oolitic grainstone, phosphatic, mostly	RPM=12-17		
very soft to soft, poorly cemented, some larger (to 0.5-inch)			
fragments, moderately hard, moderately-well cemented; Shell, 20%,			
very pale orange (10YR 8/2) to yellowish gray (5Y 7/2), small tests			
to 0.2-inch.			
LIMESTONE AND SOME SHELL; Limestone, 70%, yellowish	WOB=16-18K	430-440	10
gray (5Y 8/1), fossiliferous oolitic grainstone with shell intraclasts,	RPM=17-19		
phosphatic, soft to moderately hard and hard, poorly- to moderately-			
well cemented, slightly vuggy; Shell, 30%, very pale orange (10YR			
8/2) to yellowish gray (5Y 8/1), mostly small tests to 0.2-inch,			
frequent large fragments to 1.5-inch, mollusks; Clay, trace,			
yellowish gray (5Y 7/2), calcareous, very soft, cohesive, non plastic.			
CLAY, SAND AND LITTLE LIMESTONE ; Clay, 50%, yellowish	WOB=7-9K	440-450	10
gray (5Y 7/2), slightly calcareous, very phosphatic, very soft, lightly	RPM=12-17		
cohesive, low plasticity to non plastic; Sand, 40%, calcareous,			
yellowish gray (5Y 8/1), very fine- to- medium grained, sub-			
angular; Limestone, 10%, yellowish gray (5Y 8/1) to very pale			
orange (10YR 8/2), fossiliferous grainstone, very soft to soft,			
poorly cemented; Shell, trace, very pale orange (10YR 8/2) to			
yellowish gray (5Y 8/1), mostly small tests to 0.2-inch.			

GEOLOGIC LOG

LIMESTONE SOME SAND AND CLAY (MARL); Limestone,	WOB=7-9K	450-460	10
40%, yellowish gray (5Y 8/1) to very pale orange (10YR 8/2),	RPM=12-17		
fossiliferous grainstone with shell intraclasts, very soft to soft,			
poorly cemented; Sand, 30%, very pale orange (10YR 8/2),	,		
calcareous, very fine- to medium- grained, sub-angular; Clay, 30%,			
pale olive (10Y 6/2) to yellowish gray (5Y 8/1) with white			
smudges, calcareous, chalky, very phosphatic, very soft, non plastic;			
Shell, very pale orange (10YR 8/2) to yellowish gray (5Y 8/1),			
mostly small tests to 0.2-inch.			
FOSSILIFEROUS LIMESTONE AND LITTLE CLAY (MARL):	WOB=26-28K	460-470	10
Limestone, 90%, vellowish grav (5Y 7/2) fossiliferous grainstone	RPM=12-17		
with numerous shell intraclasts, phosphatic, very fine to fine			
grained, vugov few fragments of dark grav (N3) massive limestone.			
very fine- to fine- grained, moderately hard to hard, mostly well			
cemented: Clay 10% pale olive (10Y 6/2) calcareous (marl)			
nhosphatic very soft cohesive non plastic			
LIMESTONE AND LITTLE CLAY(MARL): Limestone 85%	WOB=8-10K	470-520	50
vellowish grow (SV 7/2) to very note orange (10VR 8/2)	RPM=5_6	470-520	50
fossilifernus politic grainstone with some shell intraclests	Few cement		
nhosphatic very fine to fine grained moderately hard moderately	fragments		
well computed varger: Clay 15% note alive (10V 6/2) to vellowish	naginents		
grav (SV 8/1) calcareous (marl) phosphatic very soft cohesive			
gray (51 6/1), calcaleous (mail), phosphalic, very soit, conesive,			
IDATESTONE 100% collegist and (51/7/2) free existentia		520 520	10
LIVIES I ONE, 100%, yellowish gray (54 1/2), the crystalline,	WUD-0-IUN	520-550	10
party control, signify prosphane, very nne- to nne grained,	KPM= 5-0		
moderately hard, moderately well cemented, vuggy	rew cement		
	Tragments	<u> </u>	
LIMESTONE AND LITTLE CLAY (MARL); Limestone, 80%,	WOB=8-10K	530-550	20
mostly (10%) yellowish gray (5Y $1/2$), fine crystalline, moderately	KPM=5-6		
hard, moderately well cemented, some (20%) light gray (N/),	Numerous		
oolitic grainstone, tossiliterous, very fine grained, soft, poorly	cement		
cemented, slightly vuggy; Clay, 20%, pale yellow (5Y 8/4),	tragments		
calcareous (mari), very soft, non plastic.			
LIMESTONE WITH LITTLE CLAY (MARL); Limestone, 90%,	WOB=8-10K	550-560	10
yellowish gray (5Y 7/2) to medium dark gray (N4), mostly (80%)	RPM=5-6		
fine crystalline, fossiliferous with shell intraclasts, very phosphatic,	Abundant		<i>.</i>
very fine grained, moderately hard, moderately well cemented, little	cement cuttings		
(20%) oolitic grainstone, fossiliferous, small, up to 0.1-inch shell			
fragments, slightly phosphatic, fine- to very fine- grained, soft,			
poorly cemented, slightly vuggy; Clay, 10%, pale yellow (5Y 7/4),			
calcareous (marl), soft, low plasticity.			
LIMESTONE AND LITTLE CLAY (MARL); Limestone, 85%,	WOB=8-10K	560-580	20
yellowish gray (5Y 7/2), little light gray (N7), oolitic grainstone,	RPM=5-6		
fossiliferous, very fine- to fine grained, very soft to moderately hard,	Numerous		
poorly cemented, slightly vuggy; Clay, 20%, yellowish gray (5Y	cement		
8/1), calcareous (marl), very soft, cohesive, low plasticity.	fragments		

LIMESTONE AND VERY LITTLE CLAY, Limestone, 95%.	WOB=8-10K	580-600	20
vellowish grav (5Y 7/2), little light grav (N7), oolitic grainstone.	RPM=5-6		
fossiliferous, very fine- to fine- grained, very soft to moderately	Few cement		
hard, poorly cemented, slightly yuggy; Clay, 5%, yellowish gray,	fragments		
(5Y 7/2), low plasticity, calcareous (marl)			
CLAY (MARL) WITH SOME LIMESTONE: Clay, 80%, light	WOB=8-10K	600-610	10
olive grav (5Y 7/3), calcareous (marl), slightly sandy (<10% fine- to	RPM=5-6		
medium- grained calcareous sand), very soft, low plasticity:			
Limestone, 20%, vellowish grav (SY 7/2), oolitic grainstone, very			
fine grained, soft, poorly cemented, slightly vuggy.			
LIMESTONE WITH SOME SAND: Limestone, 70%, vellowish	WOB=8-10K	610-620	10
grav (5Y 7/2), oolitic grainstone, very fine- to fine- grained, soft.	RPM=5-6	j	
poorly cemented, slightly yuggy; Sand, 30%, yellowish gray (5Y			
7/2), poorly cemented, very fine grained, sub-angular.	1		
LIMESTONE WITH SOME CLAY (MARL): Limestone, 80%	WOB=8-10K	620-630	10
vellowish grav (SY 7/2), colitic grainstone, little fossils, up to 0, 1-	RPM=5-6		
inch shell fragments, phosphatic, very fine grained, soft, poorly			
cemented slightly vuggy: Clay, 20%, nale vellow (5Y 8/3).			
calcareous, very soft, low plasticity.			
CLAY (MARL): Clay, 100%, pale olive (5Y 6/4), calcareous	WOB=8-10K	630-640	10
(marl), very soft, low plasticity, trace calcareous sand: Limestone.	RPM=5-6		
trace, vellowish grav (SY 7/2), grainstone, very soft, noorly			
cemented.			
LIMESTONE AND CLAY (MARL): Limestone, 60%, vellowish	WOB=8-10K	640-660	20
grav (5Y 7/2), colitic grainstone, fossiliferous, up to 0, 1-inch shell	RPM=5-6		
fragments, phosphatic, fine grained, soft, poorly cemented, slightly			
vuggy: Clay, 40%, pale vellow (5Y 7/3), calcareous (marl), very			
soft, cohesive, low plasticity to non plastic.			
CLAY (MARL) AND VERY LITTLE LIMESTONE: Clay, 95%	WOB=8-10K	660-670	10
olive gray (5Y 5/2), calcareous (marl), very soft, cohesive, low	RPM=5-6		
plasticity to non plastic: Limestone, 5%, vellowish gray (5Y 7/2).			
oolitic grainstone, soft, poorly cemented.			
CLAY (MARL) AND LIMESTONE: Clay, 50%, nale olive (10Y	WOB=8-10K	670-680	10
6/2), calcareous (marl), very soft, cohesive, non plastic: Limestone.	RPM=5-6		
50% vellowish grav (5Y 7/2), grainstone, fossiliferous, phosphatic,			
very soft, noorly cemented: trace dolomitic limestone, dark gray			
(N3), very fine grained, moderately hard, moderately well cemented.			
LIMESTONE AND SOME CLAY (MARL): Limestone 70%	WOB=8-10K	680-700	20
vellowish grav (SY 7/2) politic grainstone fossiliferous	RPM=5-6		
nhosnhatic very fine grained soft to moderately hard moderately			
well cemented: Clav 30% nate olive (10V 6/2) calcareous very			
soft, cohesive, non plastic.			
LIMESTONE: Limestone, 100%: 80% medium grav (N5) fine	WOB=8-10K	700-710	10
crystalline, very phosphatic, very fine grained hard well cemented	RPM=5-6		••
slightly vuggy: 20%, yellowish grav (5Y 7/2) politic grainstone			
fossiliferous, soft, poorly cemented, slightly vigov			
 6/2), calcareous (marl), very soft, cohesive, non plastic; Limestone, 50%, yellowish gray (5Y 7/2), grainstone, fossiliferous, phosphatic, very soft, poorly cemented; trace dolomitic limestone, dark gray (N3), very fine grained, moderately hard, moderately well cemented. LIMESTONE AND SOME CLAY (MARL); Limestone, 70%, yellowish gray (5Y 7/2), oolitic grainstone, fossiliferous, phosphatic, very fine grained, soft to moderately hard, moderately well cemented; Clay, 30%, pale olive (10Y 6/2), calcareous, very soft, cohesive, non plastic. LIMESTONE; Limestone, 100%; 80%, medium gray (N5), fine crystalline, very phosphatic, very fine grained, hard, well cemented, slightly vuggy; 20%, yellowish gray (5Y 7/2), oolitic grainstone, fossiliferous, soft, poorly cemented, slightly vuggy. 	RPM=5-6 WOB=8-10K RPM=5-6 WOB=8-10K RPM=5-6	680-700 700-710	20 10

GEOLOGIC LOG

LIMESTONE AND LITTLE CLAY (MARL); Limestone, 90%,	WOB=8-10K	710-720	10
yellowish gray (5Y 7/2), oolitic grainstone, fossiliferous,	RPM=5-6		. · ·
phosphatic, trace of slightly dolomitic limestone, fine crystalline,			
very fine grained, soft to moderately hard, poorly- to moderately			l , .
well- cemented; Clay, 10%, very light gray (N8), calcareous (marl),	х	•	
very soft, low plasticity to non plastic.			
LIMESTONE; Limestone, 100%; 70% medium gray (N5), fine	WOB=8-10K	720-730	10
crystalline, slightly dolomitic, very phosphatic, fossiliferous, with	RPM=5-6		
few shell intraclasts, very fine grained, moderately hard, well			
cemented, slightly vuggy; 30%, yellowish gray (5Y 7/2), oolitic			
grainstone, very fossiliferous (frequent shell intraclasts), slightly			
phosphatic, soft, poorly cemented, vuggy.			
DOLOSTONE AND LITTLE LIMESTONE; Dolostone, 90%,	WOB=8-10K	730-740	10
light olive gray (5Y 6/1), fine crystalline, with trace of phosphate,	RPM=5-6		· · ·
slightly vuggy, moderately hard, brittle, well cemented; Limestone,			
10%, yellowish gray (5Y 7/2), mostly oolitic, fossiliferous			
grainstone, fine grained, little fine crystalline, dolomitic, soft to		· .	
moderately hard, poorly- to moderately-well cemented.			
LIMESTONE AND VERY LITTLE DOLOSTONE; Limestone,	WOB=8-10K	740-750	10
95%, yellowish gray (5Y 7/2), fine crystalline, dolomitic, little	RPM=5-6		
oolitic grainstone, fossiliferous with shell intraclasts, slightly			N
phosphatic, soft to moderately hard, moderately well cemented;			
Dolostone, 5%, light olive gray (5Y 6/1), fine crystalline, slightly			
vuggy, moderately hard, brittle, well cemented.			
LIMESTONE AND SOME DOLOSTONE: Limestone, 80%,	WOB=1-2K	750-760	10
yellowish gray (5Y 7/2), fine crystalline, dolomitic, little oolitic	RPM=35-39		
grainstone, fossiliferous with shell intraclasts, slightly phosphatic,			
soft to moderately hard, moderately well cemented; Dolostone,			
20%, light olive gray (5Y 6/1), fine crystalline, moderately hard,			
brittle, well cemented, slightly vuggy.			
LIMESTONE AND LITTLE DOLOSTONE; Limestone, 90%,	WOB=1-2K	760-780	20
yellowish gray (5Y 7/2), some light gray (N7), fine crystalline,	RPM=35-39		
dolomitic, little oolitic grainstone, fossiliferous with shell			
intraclasts, trace of phosphate, soft to moderately hard, moderately			
well cemented; Dolostone, 10%, light olive gray (5Y 6/1), fine			· · ·
crystalline, moderately hard, brittle, well cemented, slightly vuggy.			
DOLOSTONE; Dolostone, 100%, pale yellowish brown (10YR	WOB=1-2K	780-790	10
6/2), very fine crystalline, moderately hard, brittle, well cemented,	RPM=35-39		
slightly vuggy; Limestone, trace, yellowish gray (5Y 7/2), yellowish			
gray (5Y 7/2), oolitic grainstone, fossiliferous, soft, poorly			
cemented.	<i>**</i>		
SANDSTONE; Sandstone, 100%, light olive gray (5Y 6/1). clear.	WOB=1-2K	790-800	10
quartz, very fine grained, moderately hard to hard, moderately well-	RPM=35-39	· · · · ·	
to well cemented; Limestone, trace, yellowish gray (5Y 7/2), oolitic			· .
grainstone, fossiliferous, soft, poorly cemented.			

LIMESTONE AND SOME CLAY (MARL), Limestone, 70%, pale	WOB=1-2K	800-810	10
yellowish brown (10YR 6/2), mostly dolomitic, fine crystalline,	RPM=35-39		
some oolitic, slightly fossiliferous, moderately hard to soft,	· · · ·		
moderately well-to poorly- cemented, vuggy, sometimes porous;	3		,
Clay, 30%, pale yellowish brown (10YR 6/2), calcareous (marl),			
very soft, cohesive, low plasticity.			
LIMESTONE; Limestone, 100%, yellowish gray (5Y 7/2), oolitic	WOB=1-2K	810-840	30
grainstone, mostly in a form of calcareous sand, rare larger (to 0.5-	RPM=35-39		
inch) fragments, calcitic, few fossils, trace of black phosphate, very			
soft to soft, poorly cemented, yuggy.	· · ·		
LIMESTONE: Limestone, 100%, vellowish grav (5Y8/1), oolitic	WOB=1-2K	840-890	50
grainstone, very fossiliferous with forams, trace of black phosphate.	RPM=35-39		
very soft to soft poorly- to moderately-well cemented vuggy		. •	
LIMESTONE: Limestone 100% vellowish grav (SV 7/2) to pale	WOB=2-5K	890-970	80
vellowish brown (10VR 6/2) onlitic grainstone mostly in a form of	RPM=30_47	070-770	
calcareous sand rare larger (to 0.5-inch) fragments calcutic faw	NI MI-39-42		
fossile trace of black phoenhote years and to and poorly compared			
issues, indee of black phosphale, very soft to soft, poorly cemented,			
vuggy, up to 20% of medium light gray (140), the crystalline,			
ID (ESTONE AND DOL OSTONE) Limestone (0)(sullenish	WOD-2 SK	070.090	10
LIMESTONE AND DOLOSTONE; Limestone, 60%, yellowish	WUD-2-3K	970-980	10
gray (5 Y //2), colitic grainstone, mostly in the form of calcareous	KPM=39-42		
sand, soft, poorly cemented, vuggy; Dolostone, 40%, medium light			
gray (N6), very fine grained, moderately hard, slightly vuggy.			
LIMESTONE AND LITTLE DOLOSTONE; Limestone, 90%,	WOB=2-5K	980-990	10
dusky yellow (5Y 6/4), colitic grainstone, mostly in the form of	RPM=39-42		
calcareous sand, soft, poorly cemented, vuggy; Dolostone, 10%,			
light gray (N7), very fine grained, moderately hard, slightly vuggy.			
LIMESTONE; Limestone, 100%, yellowish gray (5Y 7/2), oolitic	WOB=2-5K	990-1060	70
grainstone, fine grained, fossiliferous, very soft to soft, poorly	RPM=39-42	i	
cemented, slightly vuggy.			
LIMESTONE; Limestone, 100%, yellowish gray (5Y 7/2),	WOB=2-5K	1060-1110	50
dolomitic, fine crystalline, little oolitic grainstone, with fossils, fine	RPM=39-42		,
grained, poorly cemented, vuggy, soft.			
LIMESTONE; Limestone, 100%, yellowish gray (5Y 7/2), slightly	WOB=2-5K	1110-1170	60
dolomitic, fine crystalline, little oolitic grainstone, with fossils to	RPM=39-42		
0.2-inch, trace phosphatic, fine grained, poorly cemented, slightly			
vuggy, soft.			
LIMESTONE: Limestone, 100%, vellowish gray (5Y 7/2), oolitic	WOB=2-5K	1170-1180	10
grainstone, slightly phosphatic, fine grained, poorly cemented,	RPM=39-42		
vuggy, soft.			
LIMESTONE: Limestone. 100%: 80% vellowish grav (5Y 7/2).	WOB=2-5K	1180-1230	50
oolitic grainstone, trace of fossils, trace of phosphate very fine to	RPM=39-42		
fine grained, very soft, poorly cemented (mostly in a form of			
calcareous sand) moderately vugov 20% light grav (N7) dolomitic			
fine crystalline moderately hard moderately well cemented slightly			
Viloov			

	·		
CALCAREOUS SAND; Sand, 100%, yellowish gray (5Y 7/2),	WOB=2-5K	1230-1250	20
product of poorly cemented, weathered oolitic limestone, trace of	RPM=39-42		
fossils (sporadic forams), trace of phosphate, fine- to medium-	1		
grained, trace of light gray (N7) dolomitic limestone; Clay, trace,	,		
yellowish gray (5Y 7/2), calcareous (marl), very soft, non plastic.		· · · ·	
CALCAREOUS SAND AND SOME CLAY (MARL); Sand, 80%,	WOB=2-5K	1250-1270	20
yellowish gray (5Y 7/2), product of poorly cemented, weathered	RPM=39-42		•
oolitic limestone, trace of fossils (sporadic forams), trace of			
phosphate, fine- to medium- grained, trace of light gray (N7)			
dolomitic limestone; Clay, 20%, yellowish gray (5Y 7/2), light olive			
gray (5Y 6/1) to very light gray (N8), calcareous (marl), phosphatic,			
very soft, low plasticity.			· · · ·
SAND; Sand, 100%; 70% yellowish gray (5Y 7/2), product of	WOB=2-5K	1270-1280	10
poorly cemented, weathered oolitic limestone, trace of fossils	RPM=39-42		
(sporadic forams), trace of phosphate, fine to medium grained, 30%,			۰.
quartz, clear, fine grained, sub-rounded; Clay, trace, yellowish gray		• •	
(5Y 7/2), calcareous (marl), very soft, non plastic.		·	, · · .
LIMESTONE AND SAND; Limestone, 60%; 60% medium light	WOB=2-5K	1280-1290	· 10
gray (N6), dolomitic, fine crystalline, soft to moderately hard,	RPM=39-42	· · ·	
moderately well cemented; 40%, yellowish gray (5Y 7/2), colitic		•	
grainstone, trace of fossils, trace of phosphate, very fine- to fine-		-	
grained, very soft, poorly cemented, up to 50% in a form of			
calcareous sand, yellowish gray (5Y 7/2), product of poorly			•
cemented, weathered oolitic limestone, some quartz, clear, fine			
grained, sub-rounded; Clay, trace, yellowish gray (5Y 7/2),			
calcareous (marl), very soft, non plastic.	· · · · ·		
LIMESTONE; Limestone, 100%; 90% yellowish gray (5Y 7/2),	WOB=2-5K	1290-1300	10
oolitic grainstone, fossiliferous (forams), slightly phosphatic, very	RPM=39-42		
fine- to fine- grained, very soft to moderately hard, poorly- to			
moderately- well cemented (mostly in a form of calcareous sand),			
moderately vuggy; 10% light gray (N7), dolomitic, fine crystalline,			
moderately hard, moderately well cemented, slightly vuggy.		·	
LIMESTONE; Limestone, 100%, mostly yellowish gray (5Y 7/2)),	WOB=2-5K	1300-1310	10
oolitic grainstone, fossiliferous, some very pale orange (10YR 8/2)	RPM=39-42		
and white (N9), chalky, trace of phosphate, very fine- to fine-	· · · ·		
grained, very soft to moderately hard, poorly- to moderately- well		,	· · ·
cemented, slightly vuggy.			·
LIMESTONE; Limestone, 100%, medium gray (5N) to very light	WOB=2-5K	1310-1340	30
gray (N8), oolitic, fossiliferous, with numerous shell intraclasts,	RPM=39-42		
slightly dolomitic, phosphatic, vuggy, trace to 10% of yellowish			
gray (5Y 7/2)), oolitic grainstone, soft to moderately hard,		-	
moderately well cemented; Shell, trace, white, small tests to 0.1-			
inch.		1	

ć

.

;

ţ

4

; '

• • •

LIMESTONE; Limestone, 100%; 90% yellowish gray (5Y 7/2),	WOB=2-5K	1340-1370	30
oolitic grainstone, fossiliferous, trace of phosphate, very fine- to	RPM=39-42		
fine-grained, very soft to soft, few fragments to 1-inch, poorly			
cemented (mostly in a form of calcareous sand), moderately vuggy;	х		
10% light gray (N7), dolomitic, fine crystalline, moderately hard,			
moderately well cemented, slightly vuggy.			
LIMESTONE; Limestone, 100%; 60% yellowish gray (5Y 7/2),	WOB=2-5K	1370-1400	30
oolitic grainstone, fossiliferous, trace of phosphate, very fine- to	RPM=39-42		
fine- grained, very soft to soft, few fragments to 1-inch, poorly]	
cemented (mostly in a form of calcareous sand), moderately vuggy;			1
40% light gray (N7), dolomitic, fine crystalline, moderately hard,			
moderately well cemented, slightly vuggy.			
LIMESTONE; Limestone, 100%, yellowish gray (5Y 7/2), oolitic	WOB=2-5K	1400-1450	50
grainstone, few fossils (shell fragments to 0.1-inch), calcitic, trace of	RPM=39-42		
phosphate, very fine- to fine- grained, very soft to soft, poorly			
cemented (mostly in a form of calcareous sand), slightly vuggy;	•		
trace of light gray (N7), dolomitic, fine crystalline, moderately hard,			
moderately well cemented, slightly vuggy.			
LIMESTONE; Limestone, 100%, yellowish gray (5Y 7/2), oolitic	WOB=2-5K	1450-1470	20
grainstone, only trace of fossils, calcitic, slightly phosphatic, very	RPM=39-42		
fine- to fine- grained, very soft to moderately hard, few fragments to			
0.5-inch, poorly- to moderately- well cemented, up to 5% of light	_		
gray (N7), dolomitic, fine crystalline, moderately hard, moderately	-		
well cemented, slightly vuggy.			
CALCAREOUS SAND; Sand, 100%, yellowish gray (5Y 7/2),	WOB=2-5K	1470-1510	40
product of poorly cemented, weathered oolitic limestone, single	RPM=39-42		
fragments to 0.4-inch, calcitic and little quartz, trace of phosphate,			
fine- to medium- grained, trace of light gray (N7) small fragments of			
dolomitic limestone.		1010 1000	
DOLOSTONE AND LIMESTONE; Dolostone, 70%, moderate	WOB=2-5K	1510-1520	10
olive brown (5Y 4/4), fine crystalline, moderately hard, moderately	RPM=39-42		
well cemented, slightly vuggy; Limestone, 30%, yellowish gray (5Y			
1/2), slightly tossiliterous, colitic grainstone; trace of very light gray			
(N8) dolomitic linestone, fine grained to fine crystalline,			
moderately hard, moderately well cemented.		1620 1640	
LIMES I ONE; Limestone, 100%; 60%, medium gray (NS), very	WUB=2-3K	1520-1540	20
light gray (N8) to light olive gray (5 Y 5/2), dolomitic, the	KPM=39-42		
crystalline, moderately hard, moderately well cemented, vuggy;			
40%, yenowish gray (5 Y //2), contic grainstone, tossimerous, very			
trace phoenhetic north in a form of colornous and			
I IMESTONE: Limestone 100%: 50% light any (\$17) to your light	WOR=2.5K	1540 1590	40
arey (NS) dolomitic very fine argined moderately herd to hard	RDM=20_17	13-0-1300	TU .
gray (130), unionitie, very fille granieu, niouerately haid to hard,	INE 1₩1-J <i>7-</i> 44		·
(SV 7/2) collitic grainstone fossiliferous very fine to fine grained			
very soft to soft noorly comented trace of phosphate partly in a			
form of calcareous sand			
		l	Lł

LIMESTONE; Limestone, 100%, yellowish gray (5Y 7/2), oolitic	WOB=2-5K	1580-1630	· 50
grainstone, trace of fossils and phosphate, very soft to moderately	RPM=39-42		
hard, poorly- to moderately- well cemented, frequent fragments to			
0.3-0.5-inch, some in the form of calcareous sand, trace of very light			
gray (N8), dolomitic, very fine grained.			
LIMESTONE; Limestone, 100%, very pale orange (10YR 8/2),	WOB=2-5K	1630 - 1650	20
grainstone, trace of fossils and phosphate, soft to moderately hard,	RPM=39-42		
moderately well cemented, frequent fragments to 1-2 mm, single		`	
fragments to 10 mm, some shell fragments (1-2 mm).			
LIMESTONE: Limestone 100%, yellowish gray (5Y 8/1), very fine	Core #1 (~4.3 ft	1650-1665	15
grained, no visible bedding planes, soft, massive, no apparent	of recovery)		
macro-porosity (see core description for more details)			
LIMESTONE: Limestone 100%, yellowish gray (5Y 8/1), very fine		1660-1690	30
to fine grained, fossiliferous, partially oolitic, soft, poorly cemented,	-		
trace amount of black specs (phosphate).	WOD. Detries		• •
LIMESTONE: Limestone, 100%, yellowish gray (5Y 8/1), similar	WOB: Between	1690-1710	20
lithology as above except slightly more consolidated.	3-01		
LIMESTONE: Limestone, 100%, yellowish gray (5Y 8/1), very fine	:	1710-1730	20
grained, soft, poorly- to moderately well- cemented, fossiliferous.			
LIMESTONE: Limestone, 100%, yellowish gray (5Y 8/1), very fine	WOB: 15K	1730-1740	10
grained, soft, poorly cemented; Clay, trace, yellowish gray (5Y 7/2),	RPM=18-19		
very soft, non plastic.			
LIMESTONE: Limestone, 100%, yellowish gray (5Y 7/2), very fine		1740-1770	30
grained, soft, poorly- to moderately well- cemented, oolitic;			
Dolomite, trace, moderate yellowish brown (10YR 5/4), fine			
crystalline.			
DOLOSTONE AND SOME LIMESTONE: Dolostone, 80%,		1770-1780	10
moderate yellowish brown (10YR 5/4), fine crystalline, moderately			
hard, well cemented with limestone and fossil intraclasts;			
Limestone, 20%, yellowish gray (5Y 7/2), oolitic, fossiliferous		· .	
grainstone, soft, poorly cemented.	WOB: 10K,		
DOLOMITIC LIMESTONE: Limestone, 70%, pale yellowish	Penetration Rate	1780-1810	30
brown (10YR 6/2), very fine grained, oolitic, fossiliferous, poorly-	2-3 min/ft		
to moderately well- cemented; Dolostone, 30%, moderate yellowish			
brown (10YR 5/4), very fine grained, moderately hard, moderately			
well cemented (dolomite crystals within the limestone).			
DOLOSTONE AND LIMESTONE: Dolostone, 60%, pale		1810-1825	15
yellowish brown (10YR 6/2) and moderate yellowish brown (10YR			
5/4), fine crystalline, moderately hard, moderately well cemented,			
fossil intraclasts; Limestone, 40%, yellowish gray (5Y 8/1), oolitic			
grainstone, very fine grained, soft, moderately well cemented.	·		
LIMESTONE: Limestone, 100%, yellowish gray (5Y 7/2) to pale	Core #2 in the	1825-1830	5
yellowish brown (10 YR 6/2), mudstone, few fossils, very fine	interval 1825-		
grained, hard, well cemented, occasional diagonally fractured,	1839 ft bpl.		
competent rock.	-		

. -

LIMESTONE: Limestone, 100%, yellowish gray (5Y 7/2) to pale	Core #2 in the	1830-1840	·10
yellowish brown (10 YR 6/2), grainstone, fossiliferous with shell	interval 1825-		
intraclasts and forams, very fine- to fine- grained, vuggy (increasing	1839 ft bpl.		
porosity and fossils with depth), moderately hard and moderately			
well cemented, deeper (from approx. 1835 ft bpl) becoming softer		1	
and disintegrating.			
LIMESTONE: Limestone, 100%, yellowish gray (5Y 7/2), oolitic	WOB=18-20K	1840-1850	10
grainstone, slightly fossiliferous, fine grained, soft, poorly	RPM=18-19		
cemented,			
DOLOSTONE AND SOME LIMESTONE: Dolostone, 70%, dark	WOB=18-20K	1850-1860	10
yellowish brown (10YR 4/2), very fine- to fine- crystalline,	RPM=18-19		
moderately hard; Limestone, 30%, very pale orange (10YR 8/2),			
oolitic grainstone, soft, poorly cemented.	· · ·		
CLAYEY LIMESTONE: Limestone, 100%, primarily yellowish	WOB=18-20K	1860-1870	10
gray (5Y 7/2) with some very pale orange (10YR 8/2), wackstone	RPM=18-19		
(primarily calcareous clay, soft, low plasticity), very fine grained,			
trace amount of dolomitic crystals.			
LIMESTONE: Limestone, 100%, yellowish gray (5Y 7/2),	WOB=18-20K	1870-1940	70
grainstone, very fine grained, soft, poorly cemented, trace amount of	RPM=18-19		· .
clayey limestone between 1870-1880 ft bpl, trace of fossils,			
increasingly crystalline with depth.	3		
LIMESTONE AND LITTLE DOLOSTONE: Limestone, 90%,	WOB=18-20K	1940-1970	30
yellowish gray (5Y 7/2), fine grained, grainstone, primarily	RPM=18-19		
crystalline, poorly- to moderately well- cemented; Dolostone, 10%,			
moderate yellowish brown (10YR 5/4) to dark yellowish brown			
(10YR 4/2), fine crystalline, hard, amount of dolostone slightly			
decreases with depth.			
LIMESTONE AND SOME CLAY (MARL): Limestone, 80%, pale	WOB=18-20K	1 970-1983	13
yellowish brown (10YR 6/2), grainstone, very fine- to fine- grained,	RPM=18-19		
trace of fossils, trace of phosphate, very soft, poorly cemented			
(crumbling into a sand); Clay (marl), 20%, medium gray (N5) to			
medium dark gray (N4), calcareous, soft, non-plastic, to low			
plasticity.		<u></u>	
LIMESTONE: Limestone, 100%, yellowish gray (5Y 8/1),	WOB=18-20K	1983-1990	7
mudstone, very fine grained, trace of fossils, soft to moderately	RPM=18-19	•	
hard, poorly- to moderately well- cemented.			
LIMESTONE: Limestone, 100%, yellowish gray (5Y 8/1),	Core No. 3	1990-2010	20
grainstone, fine crystalline, partly colitic, very fine grained, slightly	interval from		
phosphatic, trace of fossils (shells intraclasts), hard, well cemented,	1990 to 2005 ft		
few shallow vugs, thin, occasional horizontal smudges of black	bpi.	:	
material (phosphate concentrations), isolated diagonal fractures.			
LIMESTONE: Limestone, 100%, pale yellowish brown (10YR 6/2),	WOB=15-20K	2010-2070	60
oolitic grainstone, fine grained, very calcitic (light brown grains of	KPM=19-20		
calcite), slightly phosphatic, very soft, poorly cemented (crumbling			
into a sand), tew small tragments (3-5 mm) of moderately hard;			
Clay (Mari), trace, pale yellowish brown (10YR 6/2), calcareous,			
very soft, non plastic.			

LIMESTONE AND LITTLE CLAY (MARL): Limestone, 90%,	WOB=15-20K	2070-2090	20
pale yellowish brown (10YR 6/2), oolitic grainstone, fine grained,	RPM=19-20		
calcitic, slightly phosphatic, very soft, poorly cemented, mostly in a			
form of sand, few small fragments (3-5 mm) moderately hard; Clay,			
10%, yellowish gray (5Y 7/2), calcareous, very soft, non plastic.			
LIMESTONE: Limestone, 100%, yellowish gray (5Y 7/2), oolitic	WOB=15-20K	2090-2110	20
grainstone, fine grained, calcitic, slightly phosphatic, seldom light	RPM=19-20		
gray (N7) and micritic, soft to moderately hard, poorly cemented			
(calcareous sand) to moderately well cemented; Clay (Marl), trace,			
very light gray (N8), calcareous, chalky, very soft, non plastic.		,	
LIMESTONE: Limestone, 100%, yellowish gray (5Y 7/2), oolitic	WOB=15-20K	2110-2135	25
grainstone, some wackstone, fine grained, slightly dolomitic, trace	RPM=19-20	•	
of fossils, slightly phosphatic, seldom light gray (N7) and micritic,			
soft to hard, poorly- (calcareous sand) to moderately well-	•	-	
cemented.			
LIMESTONE: Limestone, 100%, yellowish gray (5Y 7/2), mostly	Core No. 4	2135-2143	8
wackstone, little grainstone, very fine- to fine- grained, trace of	interval from		
fossils, trace of phosphate, moderately hard to hard, well cemented,	2136.5 to2148.5		
competent, few diagonal fractures, very slightly vuggy, abundant	ft bpl.		
worm burrows, moderately well- to well- cemented.	- 		
LIMESTONE: Limestone, 100%, yellowish gray (5Y 7/2),	Core No. 4	2143-2150	7
mudstone, with frequent horizontal, irregular laminas of black	interval from		
material (phosphate), very fine grained, trace of fossils, moderately	2136.5 to2148.5		
hard to hard, well cemented, massive, isolated diagonal fracturing.	ft bpl.		
LIMESTONE: Limestone, 100%, yellowish gray (5Y 7/2), mostly	WOB=19-20K	2150-2170	20
grainstone, partly oolitic, fine grained, trace of fossils, slightly	RPM=19-20		
phosphatic, trace of light gray (N7), fine crystalline, soft to			
moderately hard, poorly- to moderately well- cemented.			
LIMESTONE: Limestone, 100%, light olive gray (5Y 5/2),	WOB=19-20K	2170-2210	40
grainstone, fine grained, trace of fossils and phosphate, little light	RPM=19-20		
gray (N7), crystalline, soft, poorly cemented (calcareous sand).	· · · · · · · · · · · · · · · · · · ·		
LIMESTONE: Limestone, 100%, yellowish gray (5Y 7/2), oolitic	WOB=19-20K	2210-2220	10
grainstone, fine grained, trace of fossils and phosphate, trace of light	RPM=19-20		
gray (N7), fine crystalline, soft, poorly cemented.	·	· · · · · · · · · · · · · · · · · · ·	
DOLOSTONE AND SOME LIMESTONE: Dolostone, 80%, olive	WOB=19-20K	2220-2230	10
gray (5Y 3/2), fine crystalline, vuggy, moderately hard, moderately	RPM=19-20		
well cemented; Limestone, 20%, yellowish gray (5Y 7/2), oolitic			
grainstone, fine grained, trace of fossils and phosphate, trace of light			
gray (N7), fine crystalline, soft, poorly cemented.			
LIMESTONE: Limestone, 100%, yellowish gray (5Y 7/2), oolitic	WOB=19-20K	2230-2240	10
grainstone, fine grained, trace of fossils and phosphate, trace of light	RPM=19-20		
gray (N7), fine crystalline, soft, poorly cemented; Dolostone, trace,			
olive gray (5Y 3/2), fine crystalline, vuggy, hard, well cemented.			
LIMESTONE: Limestone, 100%, yellowish gray (5Y 7/2), oolitic	WOB=19-20K	2240-2310	70
grainstone, fine grained, trace of fossils and phosphate, trace of light	RPM=19-20		
gray (N7), fine crystalline, soft, poorly cemented, only few better			
cemented fragments 0.2 x 0.5-inch size.			

LIMESTONE AND SOME DOLOSTONE: Limestone, 70%,	WOB=19-20K	2310-2340	30
yellowish gray (5Y 7/2), colitic grainstone, fine grained, moderately	RPM=19-20		
well cemented; Dolostone, 30%, olive gray (5Y 3/2), fine			
crystalline, moderately hard, moderately well cemented; Phosphate,		•	
Trace, black, the grained;.	WOD-10 201/	2240 2250	10
LIMESTONE AND SOME DOLOSTONE: Limestone, 80%,	WUB=19-20K	2340-2350	10
yellowish gray (5 Y //2), colluc grainstone, the grained, moderately	KPM=19-20		
Mard, moderately well cemented; Dolostone, 20%, medium gray			
(NS) to medium dark gray (N4), the crystalline, hard; Phosphale,			
DOLOSTONIE AND LINESTONIE: Delogtone 50% modium dark	WOR-10 20K	2250-2260	10
grav (NA) finely crystalline saccharoidal hard: Limestone 50%	RPM=10-20	2550-2500	10
yellowish gray (5V 7/2) colitic grainstone fine grained trace	IXI IVI-19-20		
phosphate sandy soft to moderately hard poorly, to moderately			
well- cemented			
LIMESTONE AND SOME DOLOSTONE: Limestone 80%	WOB=19-20K	2360-2370	10
vellowish grav (5Y 7/2), oplitic grainstone, fine grained, moderately	RPM=19-20	2500 2570	
hard to soft, moderately well cemented, slightly phosphatic:			
Dolostone, 20%, medium dark grav (N4), hard, fine crystalline.			
some saccharoidal.			
DOLOSTONE AND LIMESTONE: Dolostone, 50%, medium dark	WOB=19-20K	2370-2380	10
gray (N4), hard, fine crystalline, some saccharoidal; Limestone,	RPM=19-20		
50%, yellowish gray (5Y 7/2), oolitic grainstone, fine grained, soft			
to moderately hard, poorly- to moderately well- cemented;			
Phosphate, trace, black, fine grained.			
DOLOSTONE AND SOME LIMESTONE: Dolostone, 80%,	WOB=19-20K	2380-2400	20
medium dark gray (N4) to dark gray (N3) with little light olive	RPM=19-20		
brown (5Y 5/6), fine crystalline, little saccharoidal, hard, vuggy,			
fragments to 1-inch diameter; Limestone, 20%, yellowish gray (5Y			
7/2), oolitic grainstone, fine grained, very soft, poorly cemented,			
mostly in a the form of calcareous sand; Phosphate, trace, black,			
fine grained.			
LIMESTONE AND VERY LITTLE DOLOSTONE: Limestone,	WOB=19-20K	2400-2420	20
95%, yellowish gray (5Y 7/2), oolitic grainstone, fine grained, soft	RPM=19-20		
to moderately hard, moderately well cemented; Dolostone, 5%,			
medium gray (N5), fine crystalline, hard; Phosphate, trace, black,		1	
the grained		0.400 0.400	10
LIMESTONE AND DOLOSTONE: Limestone, 60%, yellowish	WOB=19-20K	2420-2430	10
gray (5 Y //2), collic grainstone, fine grained, soft, moderately well	KPM=19-20		
cemented; Dolostone, 40%, medium dark gray (N4) with light olive			
to 1 inch diameter Dhombata trace black fine grained			
I INTERTONIE AND SOME DOLOSTONIE, L'instance 90%	WOD-10 20K	2420 2440	10
Vellowish any (SV 7/2) politic animatons fine animal soft	PDM = 10.20	2430-2440	10
moderately well computed. Dologtone 20% medium dark grow (NA)	INT IVI-17-20		
and light alive brown (SV S/6) fine arestalline some sacchemidel		· ·	
hand fragments to 1-inch diameter vugay. Phoenhate trace black			
fine grained.			Í
	L		

GNAProjects/WRW/PIPROJECTS/WF00A200.6015 - Golden Gate trajection WelkSubmitted (Final) Reports/FINAL CONSTRUCTION & TESTING REPORTAgeondics/Appendic

I IMECTONE AND VERY LITTLE DOLOCTONE. L'mortene	WOR-15 20K	2440 2478	20
05% vellowish grow (SV 7/2) colitic grainstone fine grained soft	DDM=15-10	2440-2470	20
to moderately hard moderately well comented: Doloctone 5%	NI IVI-13-13		
medium gray (NS) microcrystalline hard yuggy: Phosphate trace			,
hlack fine orgined	· ·	· · ·	
DOLOSTONE: Dolostone 100% brownish black (SVR 2/1) to	WOB=15-20K	2478-2490	12
brownish gray (SVR 4/1) fine crystalline, some saccharoidal hard	RPM=15-19	2-1/0-2-1/0	. 12
well cemented vugov: Limestone trace vellowish grav (5Y 7/2)		· · ·	
oolitic grainstone fine grained: Phosphate trace black small grains.			
LIMESTONE AND LITTLE DOLOSTONE: Limestone, 90%	WOB=15-20K	2490-2500	10
vellowish grav (5Y 7/2), oolitic grainstone, fine grained, little light	RPM=15-19		
grav (N7) to medium grav (N5), microcrystalline, very soft to soft.			
poorly cemented (mostly calcareous sand): Dolostone, 10%.			
brownish black (SYR 2/1) to brownish grav (SYR 4/1), fine			
crystalline, little saccharoidal, moderately hard, moderately well			
cemented, vuggy; Clay (Marl), trace, white (N9), calcareous, very			
soft, non plastic; Phosphate, trace, black, fine grained.			
LIMESTONE AND DOLOSTONE: Limestone, 60%, yellowish	WOB=15-20K	2500-2520	20
gray (5Y 7/2), oolitic grainstone, fine grained, little light gray (N7)	RPM=15-19		
to medium gray (N5), microcrystalline, very soft to soft, poorly			
cemented (mostly calcareous sand); Dolostone, 40%, moderate			
yellowish brown (10YR 4/2) to brownish black (5YR 2/1), fine			
crystalline, some saccharoidal, moderately hard, moderately well			
cemented, very vuggy; Phosphate, trace, black, soft, fine grained.			
DOLOSTONE: Dolostone, 100%, brownish black (5YR 2/1) to	WOB=15-20K	2520-2530	10
brownish gray (5YR 4/1), fine crystalline, some saccharoidal,	RPM=15-19		
mostly soft, little moderately hard, poorly cemented (mostly in a			
form of dolomitic sand), vuggy; Limestone, trace, yellowish gray			
(5Y 7/2), oolitic grainstone, fine grained, soft, poorly cemented;			
Phosphate, trace, black, soft.			
LIMESTONE AND DOLOSTONE: Limestone, 60%, yellowish	WOB=15-20K	2530-2540	10
gray (5Y 7/2), oolitic grainstone, fine grained, light gray (N7) to	RPM=15-19		
medium gray (N5), microcrystalline, dolomitic, with trace of			
phosphate, very soft to soft, poorly cemented (mostly calcareous			
sand); Dolostone, 40%, moderate yellowish brown (10YR 4/2) to			
brownish black (5YR 2/1), fine crystalline, some saccharoidal, soft,			
poorly cemented, very vuggy; Phosphate, trace, black, fine grained.			
DOLOSTONE: Dolostone, 100%, brownish black (5YR 2/1) to	WOB=15-20K	2540-2550	10
brownish gray (5YR 4/1), fine crystalline, some saccharoidal, soft,	RPM=15-19		
little moderately hard, poorly cemented (mostly dolomitic sand),			
vuggy; Limestone, trace, yellowish gray (5Y 7/2), oolitic grainstone,	· ·		
tine grained, soft, poorly cemented, slightly phosphatic.		00000000	10
DOLOMITIC SAND: Dolostone, 100%, moderate brown (5YR	WOB=15-20K	2550-2560	10
4/4), mostly in a form of medium grained sand, poorly sorted, sub-	KPM=15-19		
rounded, little dusky brown (5YK 2/2)/1), fine crystalline,			
moderately hard, vuggy.		•	

@WProjectsINRW/F PROJECT31WF004209.G915 - Golden Gate Injection Well/Submitted (Fine) Reports/FIVAL CONSTRUCTION & TESTING REPORT/Appendices/Appendix BM2 (W1 Geologie Log.dz

DOLOSTONIC Deletere 1000/ hoursich bleck (SVD 2/1) to	WOD-15 20V	2560 2590	20
DOLOSIONE: Dolostone, 100%, brownish black (SYR 2/1) to	WUB=15-20K	2300-2380	20
moderate orown (5 f K 4/4), the crystalline, some saccharoidal,	KPIM=15+19		
in a form of dolor into cond) to well computed recent			
In a form of dolomitic sand) to well cemented, vuggy.	WOD-16 20K	2580.2500	10
DULUSIONE AND VERY LITTLE LIMESTONE: DOIOSTONE,	WUB=15-20K	2380-2390	10
95%, pale yellowish brown (10Y K 6/2) to dark yellowish brown	KPM=15-19		
(10 Y K 4/2), fine crystalline, some saccharoidal, hard to very hard,			
moderately well- to well- cemented; Limestone, 5%, yellowish gray			
(5Y 1/2), collitic grainstone, fine grained, soft to very soft.	· · · ·	0500 0610	20
DOLOSTONE: Dolostone, 100%; 70% olive gray (5Y 4/1) tine- to		2590-2610	20
micro-crystalline; 30% brownish black (5YR 2/1) saccharoidal, hard	WOB=31-32K,		
to very hard, well cemented, little vugs, up to 20% of dolomitic	KPM=18-19		
sand (occasional cavities up to 1 ft wide, filled with loose material);			
Limestone, trace, yellowish gray (5Y 7/2), oolitic grainstone, fine			
grained, soft to very soft.			
DOLOSIONE: Dolostone, 100%, olive gray (5Y 4/1) to pale brown	WOB=32-33K,	2610-2620	10
(5YR 5/2), fine- to micro-crystalline, hard to very hard, brittle, well	RPM 17-18 .		
cemented.	·· · · · · · · · · · · · · · · · · · ·		
DOLOSTONE: Dolostone, 100%; 80% brownish black (5YR 2/1)		2620-2630	10
saccharoidal and fine crystalline; 20% olive gray (5Y 4/1) fine- to	WOB=32-33K,		
micro-crystalline, hard to very hard, well cemented, few vugs;	RPM=19-20		
Limestone, trace, yellowish gray (5Y 7/2), oolitic grainstone, fine			
grained, soft to very soft.			
DOLOSTONE: Dolostone, 100%; 90% olive gray (5Y 4/1) fine- to		2630-2640	10
micro-crystalline; 10% brownish black (5YR 2/1), saccharoidal,	WOB=32-33K,		
hard, brittle, well cemented, few vugs; Limestone, trace, yellowish	RPM=19-20		
gray (5Y 7/2), oolitic grainstone, fine grained, soft to very soft.			
DOLOSTONE: Dolostone, 100%; 80% brownish black (5YR 2/1),		2640-2660	20
20% olive gray (5Y 4/1), fine- to micro-crystalline, hard to very	WOB=32-33K,		
hard, brittle, well cemented; Limestone, trace, yellowish gray (5Y	RPM=19-20		
7/2), oolitic grainstone, fine grained, soft to very soft.			
DOLOSTONE: Dolostone, 100%; 90% olive gray (5Y 4/1) fine- to	WOB=32-33K,	2660-2670	10
micro-crystalline, 10% brownish black (5YR 2/1), saccharoidal,	RPM=19-20		
hard, brittle, well cemented, few vugs; Limestone, trace, yellowish			
gray (5Y 7/2), colitic grainstone, fine grained, soft to very soft.			
DOLOSTONE: Dolostone, 100%; 70% brownish black (5YR 2/1),	WOB=32-33K,	2670-2700	30
30% olive gray (5Y 4/1), fine- to micro-crystalline, hard to very	RPM=19-20		
hard, brittle, well cemented; Limestone, trace, yellowish gray (5Y			
7/2), oolitic grainstone, fine grained, soft to very soft.			
DOLOSTONE AND LITTLE LIMESTONE: Dolostone, 80%; 70%	WOB=32-33K,	2700-2710	10
moderate olive brown (5Y 4/4), 30% medium gray (N4), fine- to	RPM=19-20		
micro-crystalline, hard to very hard, brittle, well cemented;			
Limestone, 20%, yellowish gray (5Y 7/2), oolitic grainstone, fine			
grained, soft, poorly cemented; Clay, trace, brownish black (5YR			
2/1), low plasticity, cohesive, very soft.			

GEOLOGIC LOG

DOLOSTONE AND LITTLE LIMESTONE: Dolostone, 80%; 70%	WOB=27-34K	2710-2720	10
moderate olive brown (5Y 4/4), 30% medium gray (N4), fine- to	RPM=20-25		
micro-crystalline, hard to very hard, brittle, well cemented;			
Limestone, 20%, yellowish gray (5Y 7/2), oolitic grainstone, fine			
grained, soft.	,	:	·
DOLOSTONE AND LITTLE LIMESTONE: Dolostone, 90%; 70%	WOB=27-34K	2720-2730	10
moderate olive brown (5Y 4/4), 30% dark gray (N3), fine- to micro-	RPM=20-25		· ·
crystalline, hard to very hard, brittle, well cemented; Limestone,			
10%, yellowish gray (5Y 7/2), oolitic grainstone, fine grained, soft,			
poorly cemented.			
DOLOSTONE: Dolostone, 100%; 70% brownish black (5YR 2/1),	WOB=27-34K	2730-2750	20
30% olive gray (5Y 4/1), fine- to micro-crystalline, hard to very	RPM=20-25		
hard, brittle, poorly cemented (up to 60% in a form of dolomitic			
sand); Limestone, trace, yellowish gray (5Y 7/2), oolitic grainstone,			
fine grained, soft to very soft, poorly cemented.			
LIMESTONE AND SOME DOLOSTONE: Limestone, 75%, light	WOB=27-34K	2750-2760	10
olive brown (5Y 5/6), grainstone, fine grained, soft to moderately	RPM=20-25		
hard, poorly cemented, some in a form of calcareous sand;			
Dolostone, 25%, brownish gray (5YR 4/1), hard to very hard,			
saccharoidal.			
DOLOSTONE: Dolostone, 100%; 70% brownish black (5YR 2/1),	WOB=27-34K	2760-2770	10
30% olive gray (5Y 4/1), fine- to micro-crystalline, hard to very	RPM=20-25		
hard, brittle, up to 20% poorly cemented (dolomitic sand);			
Limestone, trace, yellowish gray (5Y 7/2), oolitic grainstone, fine			
grained, soft, poorly cemented.			
DOLOSTONE: Dolostone, 100%, olive gray (5Y 4/1) with 20%	WOB=27-34K	2770-2780	10
moderate yellowish brown (10YR 5/4), fine- to micro-crystalline,	RPM=20-25		
hard to very hard, saccharoidal, few cavities.			
DOLOSTONE: Dolostone, 100%, olive gray (5Y 4/1), fine- to	WOB=27-34K	2780-2790	10
micro-crystalline, hard to very hard, brittle.	RPM=20-25		
DOLOSTONE: Dolostone, 100%; 80% brownish black (5YR 2/1),	WOB=15-20K	2790-2800	10
20% olive gray (5Y 4/1), fine- to micro-crystalline, hard to very	RPM=19-20		
hard, brittle, poorly cemented (up to 70% in the form of dolomitic			
sand); Limestone, trace, yellowish gray (5Y 7/2), oolitic grainstone,			
fine grained, soft to very soft, poorly cemented.			
DOLOSTONE: Dolostone, 100%; 80% brownish black (5YR 2/1)	WOB=15-20K	2800-2820	-20
with 20% dark gray (N3), fine- to micro-crystalline, hard to very	RPM=19-20		
hard, brittle, moderately well cemented, little dolomitic sand, fine to			
medium grained.			
DOLOSTONE: Dolostone, 100%; 70% brownish black (5YR 2/1),	WOB=15-20K	2820-2830	10
30% olive gray (5Y 4/1), fine- to micro-crystalline, hard to very	RPM=19-20	<u>.</u>	
hard, brittle, poorly cemented (mostly in the form of dolomitic			
sand); Limestone, trace, yellowish gray (5Y 7/2), oolitic grainstone,			
fine grained, soft to very soft, poorly cemented.			

DOLOSTONE: Dolostone, 100%: 80% brownish black (5YR 2/1)	WOB=15-20K	2830-2840	10
20% olive gray (5Y 4/1), fine- to micro-crystalline, hard to very	RPM=19-20		
hard, brittle, poorly cemented (mostly in the form of dolomitic			
sand): Limestone, trace, vellowish grav (5Y 7/2), oolitic grainstone.			
fine grained, soft to very soft, poorly cemented.			
DOLOSTONE: Dolostone, 100%: 80 % olive gray (5Y 4/1).	WOB=10-12K,	2840-2860	20
microcrystalline, hard to very hard, brittle, well cemented, 20%	RPM=29-30		
vellowish grav (5Y 7/2), fine crystalline, soft, poorly cemented (in a			
form of dolomitic sand).			
DOLOSTONE: Dolostone, 100%, light olive gray (5Y 6/1) to	WOB=10-12K,	2860-2880	20
yellowish gray (5Y 7/2), soft, mostly in the form of fine- to coarse-	RPM=29-30		
grained dolomitic sand causing fall-outs and dredging, approx. 20%		<i>,</i>	
of fine crystalline, better cemented fragments.			
DOLOSTONE: Dolostone, 100%; 80 % olive gray (5Y 4/1),	WOB=10-12K,	2880-2900	20
microcrystalline, hard to very hard, brittle, well cemented, 20%	RPM=29-30		
yellowish gray (5Y 7/2), fine crystalline, soft, poorly cemented			
(some in a form of dolomitic sand).			
DOLOSTONE: Dolostone, 100%, light olive gray (5Y 6/1) to	WOB=10-12K,	2900-2910	10
yellowish gray (5Y 7/2), micro- to fine- crystalline, hard, brittle,	RPM=29-30		
well cemented, trace of dolomitic sand.			
DOLOSTONE: Dolostone, 100%, olive gray (5Y 3/2) to light olive	WOB=30-32K,	2910-2930	20
gray (5Y 6/1), fine crystalline, hard, brittle, well cemented, approx.	RPM=29-30		
20% in a form of fine- to coarse- grained dolomitic sand.			
DOLOSTONE: Dolostone, 100%, olive gray (5Y 3/2), light olive	WOB=32-34K,	2930-2940	10
gray (5Y 6/1), little yellowish gray (5Y 7/2, micro- and fine-	RPM=29-30		
crystalline, hard, brittle, well cemented, trace of dolomitic sand.			
DOLOSTONE: Dolostone, 100%, olive gray (5Y 3/2), light olive	WOB=32-34K,	2940-2950	10
gray (5Y 6/1) and little yellowish gray (5Y 7/2), microcrystalline,	RPM=29-30		
hard, brittle, well cemented, approx. 30% in a form of fine- to			
coarse- grained dolomitic sand.			
DOLOSTONE: Dolostone, 100%, olive gray (5Y 3/2) to light olive	WOB=13-15K,	2950-2960	10
gray (5Y 6/1), microcrystalline, hard, brittle, well cemented, trace of	RPM=30-33		
dolomitic sand.			
DOLOSTONE: Dolostone, 100%; 80% in a form of light olive gray	WOB=13-15K,	2960-2970	10
(5Y 3/2) dolomitic sand, medium- to coarse- grained, interbeded	RPM=30-33		
with layers of olive gray (5Y 3/2), olive black (5Y 2/1) and light		.:	
olive gray (5Y 6/1) microcrystalline dolomite, hard, well cemented,			
brittle.			
DOLOSTONE: Dolostone, 100%; 80% olive gray (5Y 3/2), 20%	WOB=34-35K,	2970-2980	10
medium gray (N5) and yellowish gray (5Y 7/2), microcrystalline,	RPM=33-36		
hard to very hard, well cemented, some brittle; up to 20 % in a form			
of fine- to coarse- grained dolomitic sand.			
DOLOSTONE: Dolostone, 100%; 80% in a form of yellowish gray	WOB=34-35K,	2980-3000	20
(5Y 7/2) dolomitic sand, fine- to coarse- grained; 20% olive gray	RPM=33-36		
(5Y 3/2) and light olive gray (5Y 6/1) microcrystalline dolostone,			
hard, well cemented, brittle.			

DOLOSTONE: Dolostone, 100%, moderate yellowish brown	WOB=34-35K,	3000-3010	10
(10YR 5/4), little dark yellowish brown (10YR 4/2) and dusky	RPM=33-36		
yellowish brown (10YR 2/2), fine crystalline, hard, few vugs.			
DOLOSTONE: Dolostone, 100%; 60% moderate yellowish brown	WOB=34-35K,	3010-3020	10
(10YR 5/4) in a form of fine- to coarse- grained dolomitic sand with	RPM=33-36	••	· · · · · ·
trace of very light gray (N8), calcareous; 40% moderate yellowish			
brown (10YR 5/4), little dark yellowish brown (10YR 4/2) and			
dusky yellowish brown (10YR 2/2), fine crystalline, hard, few vugs.		·	
DOLOSTONE: Dolostone, 100%; 80% pale yellowish brown	WOB=34-35K,	3020-3060	40
(10YR 6/2), in a form of fine- to coarse- grained dolomitic sand	RPM=33-36		
with trace of very light gray (N8) calcareous grains; 20% moderate			
yellowish brown (10YR 5/4), little dark yellowish brown (10YR			
4/2) and dusky yellowish brown (10YR 2/2) fine- to medium-			
crystalline, saccharoidal, moderately hard, brittle.			
DOLOSTONE: Dolostone, 100%, mostly olive black (5Y 2/1) and	WOB=34-35K,	3060-3080	20
dusky brown (5YR 2/2), some pale yellowish brown (10YR 6/2),	RPM=33-36		
fine crystalline, hard, trace of vugs.			
DOLOSTONE: Dolostone, 100%, moderate yellowish brown	WOB=34-35K,	3080-3100	20
(10YR 5/4) to pale yellowish brown (10YR 6/2), little dark	RPM=33-36		
yellowish brown (10YR 4/2) and dusky yellowish brown (10YR		N	
2/2) fine crystalline, hard, some brittle, slightly vuggy.			
DOLOSTONE: Dolostone, 100%, olive gray (5Y 4/1) fine	WOB=34-35K,	3100-3120	20
crystalline, hard, brittle; Limestone, trace, very light gray (N8),	RPM=33-36		
dolomitic, fine crystalline.	·	1	
DOLOSTONE: Dolostone, 100%, pale yellowish brown (10YR	WOB=34-35K,	3120-3130	10
6/2), little medium light gray (N6), fine crystalline, hard, approx.	RPM=33-36		
10% in a form of fine- to coarse- grained dolomitic sand.			
DOLOSTONE: Dolostone, 100%, medium dark gray (N5), trace of	WOB=34-35K,	3130-3140	10
light olive gray (5Y 6/1), fine- to micro-crystalline, hard, brittle.	RPM=33-36		
DOLOSTONE: Dolostone, 100%, pale yellowish brown (10YR6/2)	WOB=34-35K,	3140-1360	20
to dark yellowish brown (10YR 4/2), little dusky yellowish brown	RPM=33-36		
(10YR 2/2), fine crystalline, hard, some brittle, approx. 20% in a			
form of fine- to coarse- grained dolomitic sand.		• •	
DOLOSTONE: Dolostone, 100%, dark yellowish gray (10YR 4/2)	WOB=34-35K,	3160-3180	20
to pale yellowish brown (10YR 6/2), fine crystalline, hard, some	RPM=33-36	•	
brittle, approx. 20% in a form of fine- to coarse- grained dolomitic			
sand.	• .	· · · ·	
DOLOSTONE: Dolostone, 100%, pale yellowish brown (10YR	WOB=34-35K,	3180-3200	20
6/2), some dusky yellowish brown (10YR 2/2), little medium dark	RPM=33-36		
gray (N5), fine crystalline, hard, some brittle, approx. 30% in a form		· · ·	
of fine- to coarse- grained dolomitic sand.			

G: AProjects/WRWF PROJECTS/WF004208 GBIS-Galden Gele Injector WellShamilied (Final) Reports/FINAL CONSTRUCTION & TESTING REPORT Appendix Might Bold Will Geologic Log. doc

Penetration Rate & Weight on Bit Golden Gate WWTF Injection Well IW1 450 - 1,550 Feet BPL

Date

Penetration Rate & Weight on Bit Golden Gate WWTF Injection Well IW1 1,500 - 3,200 Feet BPL

Date

2

Core Samples for Laboratory Analysis FGUA Golden Gate WWTP Injection Well System Golden Gate, Florida

Injection Well IW1 Summary of Core Samples for Laboratory Analysis

Core Number	Cored Interval (feet bpl)	Total Core Length (feet)	Percent of Recovery	Core Sample Interval (feet bpl)	Core Sample Length (feet)	Description
	· · · · · · · · · · · · · · · · · · ·			1650.20-1650.5	0.30	Limestone, solid, hard, well indurated.
1	1650-1665	4.5	30.0	1652.3-1652.7	0.40	Limestone, solid, vuggy, mod.well cem.
·			· · · · · · · · · · · · · · · · · · ·	1652.7-1653.15	0.45	Limestone, solid, sl.vuggy, mod.well cem.
	·····			1825.7-1826.4	0.70	Limestone, massive, hard
2	1825-1839	··· 9.6	67.1	1828.5-1829.1	0.60	Limestone, massive, hard, few vugs
	·			1830.65-1831.1	0.45	Limestone, massive, hard
				1990.0-1990.4	0.40	Limestone, massive, hard
3	1990-2005	11.5	76.7	1995.15-1995.5	0.35	Limestone, massive, hard
			2000.7-2001.5	0.80	Limestone, massive, hard	
				2136.5-2136.95	0.45	Limestone, massive, hard
- 4	2136.5-2148.5	9.0	75.0	2140.65-2141.3	0.65	Limestone, solid, hard w/trace of fracture
				2142.8-2143.45	0.65	Limestone, massive, hard

"bpf" denotes "below pad level"

pad level is 4.0 feet below rig floor

Core Barrel is 6.75 inches outside diameter (4-inch inside diameter)

CORE LOG SUMMARY

Golden Gate WWTP Injection Well System

Golden Gate, Florida

Injection Well- IW-1 Core Sample No. 1

otal Depth Drilled:	1650-1665 feet	Date:	4/26/2008
Core Barrel Length:	30 feet	Sampling Interval:	1,650 to 1,665 feet l
Core Barrel Diameter ID:	4-inches	Hole Diameter:	12 inches
Drilling Fluid Used:	water		

	Depth	Interval	WOB	RPM	Pressure	
fe	eet bpl	Length				
From	То	feet	x 1000 lbs		(PSI)	
1650	1651	1	4.5	10.5	17	
1651	1652	1	5	10.5	17	
1652	1653	1	5	10.5	17	
1653	1654	1	5.5	10.5	23	
1654	1655	1	5.5	10.5	21	
1655	1656	1	5.5	10.5	22.4	
1656	1657	1	5.5	10.5	22.4	LIMESTONE: Limestone, 100%, yellowish gray (5 Y 8/1), very fine grained, no visible bedding
1657	1658	1	5.5	10.5	35	3 pieces of core are at or just greater than 10 cm; in some portions limestone broke down into a
1658	1659	1	5.5	10.5	32	calcareous soft mud
1659	1660	1	5.5	10.5	32	
1660	1661	1	5.5	10.5	23.2	
1661	1662	1	5.5	10.6	60	
1662	1663	1	5.5	10.6	41	
1663	1664	1	4.9	10.8	66	
1664	1665	1	4.6	10.7	38	
Т	Total Cored (feet):	15.0				

"bpl" denotes below pad level

"RPM" denotes rate per minute of coring barrel

"WOB" denotes weight on coring barrel

"lbs" denotes pounds

C:\Documents and Settings\Golden Gate\GG IW1 final csg request\Append-B CoreData\Core Descriptions & Analysis Reports\Core #1\Core #1\Core#1 description

CORE LOG SUMMARY

Golden Gate WWTP Injection Well System Golden Gate, Florida

Injection Well IW1 Core Sample No. 1

tal Depth Drilled:	1650-1665 feet	Date:	4/26/2008
ore Barrel Length:	30 feet	Sampling Interval:	1,650 to 1,665 feet bpl
Core Barrel Diameter ID:	4-inches	Core Recovery (%):	30
Drilling Fluid Used:	water	Hole Diameter:	12 inches

D	epth et bpl	Core Length	Core Description
From	То	feet	
1650.00	1650.2	0.2	Multiple small fragments 1-3-inches.
1650.20	1650.5	0.3	Solid, massive core.
1650.50	1651.5	1	Horizontaly broken fragments, 1-2.5-inches long, 4-inches in diameter.
1651.50	1652.3	0.8	Numerous, irregular fragments up 1-4-inches long.
1652.30	1652.7	0.40	Solid core, vuggy.
1652.70	1653.15	0.45	Solid fragment, but uneven bottom.
1653.15	1654.40	1.35	Numerous, irregular fragments up 1-4-inches long.
Tota	I Recovery (feet):	4.5	

"bpl" denotes below pad level

Bold letters indicate core fragments suitable for lab. Analysis.

CORE LOG DESCRIPTION

Golden Gate WWTP Injection Well System

Golden Gate, Florida

InjectionWell IW 1 Core Sample No. 2

al Depth Drilled:	1824.7-1839 feet	Date:	4/27/2008
re Barrel Length:	30 feet	Coring Interval Length:	14.3
ore Barrel Diameter ID:	4-inches	Core Recovery (%):	67.1
Drilling Fluid Used:	water	Hole Diameter:	12 inches

Der feet	p th t bpl	Interval Length	RPM	WOB	Pressure	Core Description
From	То	feet	<u> </u>	x 1000 lbs	(PSI)	-
1824.74	1825.74	1	14.7	17	17	
1825.74	1826.74	1	14.7	28	28	I IMESTONE: Limestone 100% vellowish grav ((SY 7/2) to nale vellowish
1826.74	1827.74	1	14.8	32	32	LIVIES FORE. Ennestone, 10070, yenowish gray ((51 772) to pare yenowish
1827.74	1828.74	1	14.9	31	31	brown (10 1 K 0/2), muusione, iew iossiis, very inie grameu, naiu, wen
1828.74	1829.74	1	14.9	31	31	cemented, occasional diagonally fractured, competent rock.
1829.74	1830.74	1	14.9	33	33	
1830.74	1831.74	1	14.9	31	31	
1831.74	1833.24	1.5	14.8	30	30] I IMESTONE: Limestone, 100%, vellowish grav (5X 7/2) to pale vellowish
1833.24	1834.24	1	14.8	29	29	LIMESTONE. LIMESTONE, 100%, yellowish gray (31 //2) to pare yellowish
1834.24	1836.74	2.5	14.8	28	28	DIOWII (10 TR 0/2), yidinsione, iossilleious with shell initialiasis and iorans,
1836.74	1837.74	1	14.8	29	29	mederately hard and moderately well compared, deeper (from approx, 1835
1837.74	1838.74		14.8	. 27	27	thoughailely hard and moderately well comented, deeper (norm approx. roos
1838.74	1838.94	0.2	14.8	29	29	
1838.94	1839.04	0.1	14.8	29	29	
Tota	I Cored (feet):	14.3				

.

"bpl" denotes below pad level

"RPM" denotes rate per minute of coring barrel

"WOB" denotes weight on coring barrel

C:\Documents and Settings\Golden Gate\GG IW1 final csg request\Append-B CoreData\Core Descriptions & Analysis Reports\Core # 2.xlsCore # 2.xlsCore#2description11:11 AM

CORE LOG SUMMARY

Golden Gate WWTP Injection Well System

Golden Gate, Florida

Injection Well IW1 Core Sample No. 2

Total Depth Core Barrel Core Barrel Drilling Flui	Drilled: Length: Dlameter ID: d Used:	1824.7-1839 feet 30 feet 4-inches water	Date:4/27/2008Coring Interval Length:14.3Core Recovery (%):67.1Hole Diameter:12 inches
C	Depth	Core	Core Description
fe	et bpl	Length	
From	То	feet	
1825.00	1825.35	0.35	Solid, massive, hard, well cemented.
1825.35	1825.7	0.35	Solid, massive, hard, well cemented.
1825.70	1826.4	0.7	Solid, massive, hard, well cemented.
1826.40	1826.65	0.25	Solid, massive, hard, well cemented.
1826.65	1827.00	0.35	Solid, massive, hard, well cemented.
1827.00	1827.40	0.40	Solid, massive, hard, well cemented.
1827.40	1827.90	0.50	Solid, massive, hard, well cemented.
1827.90	1828.50	0.60	Solid but diagonally fractured.
1828.50	1829.10	0.60	Solid, massive, hard, well cemented.
1829.10	1829.50	0.40	Solid, massive, hard, well cemented with 2 smaller pieces 2x3 inches
1829.50	1829.90	0.40	Solid, hard, well cemented but with increasing amount of vugs.
1829.90	1830.40	0.50	Solid, hard, well cemented but with Increasing amount of vugs.
1830.40	1830.65	0.25	Solid, hard, well cemented but with increasing amount of vugs.
1830.65	1831.10	0.45	Solid, hard, well cemented but with increasing amount of vugs.
1831.10	1831.40	0.30	Solid, hard, well cemented but with increasing amount of vugs.
1831.40	1831.50	0.10	Solid, but vuggy, poorer cemented, crumbling.
1831.50	1832.00	0.50	Solid, but vuggy, poorer cemented, crumbling, diagonaly fractured.
1832.00	1832.50	0.50	Solid, but vuggy, poorer cemented, crumbling, diagonaly fractured.
1832.50	1833.10	0.60	Solid, but vuggy, poorer cemented, crumbling, diagonaly fractured.
1833.10	1833.60	0.50	Solid, but vuggy, poorer cemented, crumbling, diagonaly fractured.
1833.60	1834.60	1.00	Very soft, poorly cemented, disintegrating, very vuggy, irregular fragments 3-4 inches.
	Total Recovery:	9.6	

"bpl" denotes below pad level

CORE LOG DESCRIPTION

Golden Gate WWTP Injection Well System

Golden Gate, Florida

Injection Well IW 1 Core Sample No. 3

Drilled:	1990-2005 ft bpl	Date:	4/29/2008
Length:	30 feet	Coring Interval Length:	15 feet
rrel Diameter ID:	4-inches	Core Recovery (%):	76.7
Fluid Used:	water	Hole Diameter:	12 inches

Di fe	epth et bpl	interval Length	WOB	RPM	Pressure	Core Description
From	То	feet	x 1000 lbs		(PSI)	
	Start	0	3.2	11.8	24.5	
1990	. 1991	1	3.2-3.8	11.7-11.9	37-53	
1991	1992	1	3.2-3.8	11.7-11.9	37-63	
1992	1993	1	3.2-3.8	11.7-11.9	36-57	
1993	1994	1	3.8-4.2	11.7-11.9	39-57	
1994	1995	1	3.4-4.4	11.7-11.9	44-71	LIMESTONE: Limestone 100% vellowish grav (5X 8/1) grainstone
1995	1996	1	3.5-4.5	11.7-11.9	32-49	northy politic yery fine grained slightly phosphatic trace of fossile (shells
1996	1997	1	3.7-4.4	11.7-11.9	32-56	party control, very the granieu, sugnity phosphatic, trace of tossis (sheris
1997	1998	1	4.0-4.5	11.7-11.9	32-54	intraciasis), locally frequent worm burrows, nard, well cemented, few
1998	1999	1	3.2-4.6	11.7-11.9	35-52	shallow vugs, thin, occasional horizontal laminas of black material
1999	2000	1	3.5-4.4	11.7-11.9	30-51	(phosphate concentrations), isolated diagonal fractures.
2000	2001	1	3.1-4.1	11.7-11.9	31-50	
2001	2002	1	2.6-3.4	11.7-11:9	28-49	
2002	2003	1	3.8-4.4	11.7-11.9	27-52	
2003	2004	1	3.5-4.2	11.7-11.9	29-51	
2004	2005	1	1.4-3.0	11.7-11.9	31-45	
Т	otal Cored (feet):	15.0				

-

.

"bpl" denotes below pad level

"RPM" denotes rate per minute of coring barrel

"WOB" denotes weight on coring barrel

2000.7

2001.5

Total Recovery:

CORE LOG SUMMARY

Golden Gate WWTP Injection Well System

Golden Gate, Florida

Injection Well IW1 Core Sample No. 3

- - -

Total Depth	Drilled:	1990-2005 ft bpl		Date:	4/29/2008
Core Barrel	Length:	30 feet		Coring Interval Length:	15 feet
Core Barre	Diameter ID:	4-inches		Core Recovery (%):	76.7
Drilling Flui	d Used:	water	Ī	Hole Diameter:	12 inches
	Depth	Core		Core Description	
f	eet bol	Length			
From	То	feet			
1990.00	1990.4	0.4	Solid, massive.		
1990.4	1990.8	0.4	Solid, massive.		
1990.8	1991.1	0.3	Solid, massive.		
1991.1	1991.4	0.3	Massive, but diagonally cut.		
1991.4	1991.65	0.2	Massive, but diagonally cut.		
1991.65	1992.00	0.35	Massive, but diagonally cut.		
1992.00	1992.5	0.5	Solid, massive.		
1992.5	1993.4	0.9	Solid, massive.		
1993.4	1993.8	0.4	Uneven cut.		
1993.8	1994.05	0.3	Solid, massive.	· · · · · · · · · · · · · · · · · · ·	
1994.05	1994.5	0.4	Solid, massive.		
1994.5	1994.70	0.2	Diagonal cut (fracture) on top.		
1994.70	1995.15	0.5	Uneven cuts on top and bottom.	#	·
1995.15	1995.5	0.35	Solid, massive.		
1995.51	1997.55	2.05	Solid, massive.		
1997.55	1998.5	0.94	Solid, massive. Diagonal cut (fracture) on the bottom	l	
1998.5	1999.20	0.7	Solid, massive. Diagonal cut (fracture) on top.		
1999.20	1999.8	0.6	1/3 cut.		
1999.8	2000.1	0.3	Solid, massive.		
2000.1	2000.7	0.55	1/3 cut.		

Solid, massive.

0.80

11.5

CORE LOG DESCRIPTION

Golden Gate WWTP Injection Well System

Golden Gate, Florida

Injection Well IW 1 Core Sample No. 4

Depth Drilled:	2136.5-2148.5	Date:	5/1/200
e Barrel Length:	30 feet	Coring Interval Length:	12.0 fee
e Barrel Diameter ID:	4-inches	Core Recovery (%):	75.0
rilling Fluid Used:	water	Hole Diameter:	12 inche

Do fee	epth et bpl	Interval Length	WOB	RPM	Pressure	Core Description
From	То	feet	x 1000 lbs		(PSI)	
	Start	0	4.5	12		· ·
2136.5	2137	0.5	5.3	11.9	27.4	LINESTONE: Limestone, 100%, vollewich grov (EV 7/2), mostly weekstone
2137	2138	1	5.3	11.9	27-36	Livies rone. Limestone, 100%, yenowish gray (51 7/2), mostly wackstone,
2138	2139	1	4.8-5.5	11.9	30-51.6	inde grainstone, very line to line grained, trace of lossis, trace of
2139	2140	1	5.1-5.4	11. 9 -12.1	34-51	phosphale, moderately hard to hard, well cemented, competent, lew
2140	2141	1	3.8-4.2	11. 9 -12	32-60	diagonal fractures, very slightly vuggy, abundant worm burrows, moderately-
2141	2142	1	4.9-5.5	11.9-12.0	26-56	iwell to - well cemented.
2142	2143	1	3.8-4.1	. 11.9	28-41	
2143	2144	1	4.2-4.8	11.9-12.0	29-50	
2144	2145	1	3.7-5.5	11.0-12.0	25-37	LIMESTONE: Limestone, 100%, yellowish gray (5Y 7/2), mudstone, with
2145	2146	1	5.0-5.4	11. 9 -12.0	35-49	frequent, horizontal, irregular laminas of black material (phosphate), very
2146	2147	1	4.1-5.0	11.9-12.0	21-46	fine grained, trace of fossils, moderately hard to hard, well cemented,
2147	2148	1	4.1-4.6	11.9-12.0	23-37	massive, isolated diagonal fracturing.
2148	2148.5	0.5	4.1-4.8	11.9-12.0	23-42	
2148.5	Stop					
T	otal Cored (feet):	12.0				

"bpl" denotes below pad level

"RPM" denotes rate per minute of coring barrel

"WOB" denotes weight on coring barrel

C:\Documents and Settings\Golden Gate\GG IW1 final csg request\Append-B CoreData\Core Descriptions & Analysis Reports\Core #4\Core #4.xlsCore#4description11:12 AM

CORE LOG SUMMARY

Golden Gate WWTP Injection Well System

Golden Gate, Florida

Injection Well IW1 Core Sample No. 4

epth Drilled:	2136.5-2148.5	Date:	5/1/2008
re Barrel Length:	30 feet	Coring Interval Length:	12.0 feet
re Barrel Diameter ID:	4-inches	Core Recovery (%):	75.0
illing Fluid Used:	water	Hole Diameter:	12 inches

	Depth feet bol	Core	Core Description
From	То	feet	
2136.5	2136.95	0.4	Solid, massive.
2136.95	2137.25	0.3	Fragments 1x3 to 2x5 inches.
2137.25	2137.9	0.65	Solid, massive.
2137.9	2139.2	1.3	Solid, massive.
2139.2	2139.95	0.75	Massive but with partial, cemented diagonal fracture.
2139.95	2140.65	0.70	Massive but with partial, cemented diagonal fracture.
2140.65	2141.3	0.65	Massive but with partial, cemented diagonal fracture.
2141.3	2142.0	0.7	Solid, massive.
2142.0	2142.8	0.8	Massive but with uneven breaks on the top and bottom.
2142.8	2143.45	0.6	Massive but with uneven breaks on the top and bottom.
2143.45	2143.85	0.40	Half core vertical break.
2143.85	2144.3	0.45	2/3 of the core vertically broken.
2144.3	2145.05	0.75	Massive but with uneven breaks on the top and bottom and long diagonal fracture.
2145.05	2145.5	0.45	Multiple fragments up to 2x3 inches.
То	tal Recovery (feet):	9.0	

"bpi" denotes below pad level

Boid letters indicate core fragments suitable for lab. analysis.

Ardaman & Associates, Inc.

Geotechnical, Environmental and Materials Consultants

August 19, 2008 File Number 08-113

RECEIVED AUG 2 1 2008

Youngquist Brothers, Inc. 15465 Pine Ridge Road Ft. Myers, FL 33908

Attention: Wu Fei

Subject: Rock Core Testing, Golden Gates Injection Well

Ms. Fei:

As requested, vertical and horizontal permeability, unconfined compression and specific gravity tests have been completed on limestone rock cores provided for testing by your firm. The samples were received on 06/10/08. The designations of the 12 samples are listed below.

Core	Depth (feet)
_1	1650.2-1650.5
1	1652.3-1652.7
1	1652.7-1653.15
2	1825.7-1826.4
2	1828.5-1829.1
2	1830.65-1831.1
3	1990.0-1990.4
3	1995.15-1995.5
3	2000.5-2001.7
4	2136.5-2136.95
4	2140.65-2141.3
4	2142.8-2143.45

The permeability tests were performed in general accordance with ASTM Standard D 5084 "Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter" using the constant head test method (Method A). The permeability test results are presented on the attached hydraulic conductivity test reports.

The unconfined compression tests were performed in general accordance with ASTM Standard D 7012 "Compressive Strength and Elastic Moduli of Intact Rock Core Specimens under Varying States of Stress and Temperatures" using the unconfined test method (Method C). The unconfined compression test results are presented on the attached test reports.

The measured mineral specific gravities are presented on the attached test reports. The specific gravity tests were performed in general accordance with ASTM Standard D 854 "Specific Gravity of Soil Solids by Water Pycnometer" using 55 to 75 gram specimens ground to pass the U.S. Standard No. 40 sieve.

8008 S. Orange Avenue 32809, Post Office Box 593003, Orlando, Florida 32859-3003 Phone (407) 855-3860 FAX (407) 859-8121 Louisiana: Alexandria: Bator Rouge, Monroe, New Orleans, Shreveport

Florida: Bartow, Cocoa, Fort Myers, Miami, Orlando, Port Charlotte, Port St. Lucie, Sarasota, Tallahassee, Tampa, West Palm Beach

Youngquist Brothers, Inc. File Number 08-113

The specimens were reported to be from the samples designated herein. The test results are indicative of only the specimens that were actually tested. The test results presented are based upon accepted industry practice as well as test method(s) listed. Ardaman & Associates, Inc. neither accepts responsibility for, nor makes claims to the final use and purpose of the material.

Archie's cementation exponent and coefficient tests are in-progress. The test results will be submitted as the tests are completed.

Please contact us if you have any questions about the test results or require additional information.

Very truly yours, ARDAMAN & ASSOCIATES, INC.

Thomas S. Ingra, P.E. Laboratory Director Florida License No. 31987

TSI/ed

C:\Documents and Settings\jan.wildman\Documents\Projects\08\08-113\report01.wpd

ARDAMAN & ASSOCIATES, INC. GEOTECHNICAL TESTING LABORATORY INTACT ROCK CORE UNCONFINED COMPRESSION TEST REPORT

CLIENT: Youngquist Brothers, Inc. PROJECT: Golden Gates Injection Well FILE NO.: 08-113

INCOMING SAMPLE NO.: Core 1 BORING - SAMPLE -

Injection Well BORING -

DATE SAMPLE RECEIVED: 06/10/08

DATE TEST SET-UP: 07/13/08 DATE REPORTED: 08/19/08 DEPTH 1652.7-1653.15 @ ft; mild m LABORATORY IDENTIFICATION NO.: 08113/C1 SAMPLE DESCRIPTION: Light Brown Limestone

ARDAMAN & ASSOCIATES, INC. GEOTECHNICAL TESTING LABORATORY INTACT ROCK CORE UNCONFINED COMPRESSION TEST REPORT

CLIENT: <u>Youngquist Brothers, Inc.</u> PROJECT: Golden Gates Injection Well

FILE NO.: 08-113

DATE SAMPLE RECEIVED: 06/10/08 DATE TEST SET-UP: 07/13/08 DATE REPORTED: 08/19/08

INCOMING SAMPLE NO .: Core 2

BORING - SAMPLE -

١ Specimen Dimensions **Initial Conditions** Unconfined Rate of Loading Time to Young's Compressive Modulus, E Failure Strength, o (uit) n н w. (%) Y₄ (lb/ft³) S Ê Ê H/D (minutes) (lb/in²) (lb/in²) (cm) (cm) (%) (cm/minute) (%/minute) 10.15 5.04 2.01 7.1 110.9 2.1x10⁵ at 50% σ_{*} (ult) 36 0.013 0.13 5.5 1121 TEST PROCEDURES BASTM Standard D 7012, Method C Air Temperature (°C): 21.0 1.2 Capping Material: D None D Sulfur 1.0 Comments: Tested on Instron 4206 with 10,000 lb load cell Axial Stress, _{0a} (ksi) 0.8 SPECIMEN PREPARATION 0.6 Original Core Diameter (inch): 4 Specimen Sub-Cored for Testing: 0.4 . 🛛 Yes 2.73 Assumed G.: _ 0.2 Measured **FAILURE SKETCH** 0.0 0.0 0.2 0.4 0.6 0.8 1.0 Axial Strain, (%) ì The test data and all associated project information presented hereon shall be held in confidence and disclosed to other parties only with the authorization of the Client or Ardaman & Associates, Inc. Physical and electronic records of each project are kept for a minimum of 7 years, Test samples are kept in storage for at least 10 working days after mailing of the test report, prior to being discarded, unless a longer storage period is requested in writing and accepted by Ardaman & Associates, Inc. Where: H = Specimen height; D = Specimen diameter; w, = Moisture content (ASTM D 2216); y, = Dry density; S = Saturation; & = Vertical displacement rate; and G, = Specific gravity.

Date: 08/19

Checked By:

and Settingstian.wildman\Documents\Projects\08\08-113\UC tests.wpd
ARDAMAN & ASSOCIATES, INC. GEOTECHNICAL TESTING LABORATORY INTACT ROCK CORE UNCONFINED COMPRESSION TEST REPORT

CLIENT: Youngquist Brothers, Inc. PROJECT: Golden Gates Injection Well

DATE SAMPLE RECEIVED: 06/10/08

FILE NO.: 08-113

INCOMING SAMPLE NO .: Core 3

BORING - SAMPLE -

DEPTH 1990.0-1990.4

⊠ ft; □ m

LABORATORY IDENTIFICATION NO.: 08113/C3 SAMPLE DESCRIPTION: Light Brown Limestone

ARDAMAN & ASSOCIATES, INC. GEOTECHNICAL TESTING LABORATORY INTACT ROCK CORE UNCONFINED COMPRESSION TEST REPORT

CLIENT: Youngquist Brothers, Inc. PROJECT: Golden Gates Injection Well

FILE NO.: 08-113

INCOMING SAMPLE NO .: Core 4

DEPTH 2142.8-2143.45

BORING - SAMPLE -

≊ft⊡m

LABORATORY IDENTIFICATION NO.: 08113/C4 SAMPLE DESCRIPTION: Light Brown Limestone

DATE SAMPLE RECEIVED: 06/10/08 DATE TEST SET-UP: 07/13/08 DATE REPORTED: 08/19/08

. (

1 .5

ų .

CLIENT: Youngquist Brothers, Inc.		INCOMING LABORATORY SAMPLE NO.: Core 1, 1652.3-1652.7'								
PROJECT: Golden Gates Injection	Well	LABORATORY IDENTIFICATION NO.: 081131V								
FILE NO.: 08-113	······································	SAMPLE DESCRIPTION: Light Brown Limestone								
DATE SAMPLE RECEIVED: 06/10	/08SET UP: <u>07/14/08</u>									
DATE REPORTED: 08/19/08				<u></u>						
ASTM D 5084 TEST METHOD: A - Constan B - Failing H C - Failing H F - Constan	t Head lead; Constant Taliwater lead; Rising Tailwater t Volume; Falling Head - Rising Tailwater	SPECIMEN DATA: As-Received Diameter (inch): <u>4</u> As-Received Length (inch): <u>4.5/3.1*</u> TEST SPECIMEN ORIENTATION:	Diameter Trimmed: Length Trimmed: Vertical	□ Yes s No ≊ Yes □ No □ Horizontal						
B-FACTOR: 70 (stable) %	Beginning of Test; End of Test	SPECIFIC GRAVITY, G _e : <u>2.74</u>	 Assumed Measured (ASTM 	D 854)						
	Δσ _c (psi): <u>21, 28, 37</u>	PERMEANT:	© Other							

		Initi	al Condition				Test Conditions Final Conditions								
H (cm)	D (cm)	V (cm³)	w. (%)	Y _d (pcf)	n	S (%)	ð _c (psi)	u _b (psi)	iang	Q (cm³)	t (days)	WDS (g)	Wc (%)	S (%)	k ₂₀ (cm/sec)
7.76	9.58	559.14	18.1	104.9	0.386	79	30	160	36	2.5	1 -	940.12	19.9	87	1.7 x 10-5
COMMEN water from First leng The test of & Associa the test re	COMMENTS: (1) Core sample selected for permeability testing was cut to length, air-dried, dealred under vacuum for a minimum of 24 hours, and then saturated with dealred tap water from the bottom up while still under vacuum. (2) Final w from horizontal permeability test specimen. WDS calculated from measured wet weight and final w. * First length is total sample length. Second length is useable length at full core diameter. The test data and all associated project information presented hereon shall be held in confidence and disclosed to other parties only with the authorization of the Client or Ardaman & Associates, Inc. Physical and electronic records of each project are kept for a minimum of 7 years. Test samples are kept in storage for at least 10 working days after mailing of the tenore to project to the record is requested in writing and accepted by Ardaman & Associates, Inc.														
Where: H c a	he test report, prior to being discarded, unless a longer storage period is requested in writing and accepted by Ardaman & Associates, Inc. Where: H = Specimen height; D = Specimen diameter; V = Volume; WDS = Dry mass; w _c = Molsture content (ASTM D 2216); γ _d = Dry density; S = Saturation; ở _c = Isotropic effective confining stress; u _b = Back-pressure; I _{avg} = Average hydraulic gradient; Q = Flow volume; t = Test duration; k ₂₀ = Saturated hydraulic conductivity at 20°C; n = Total porosity; and G. = Specific gravity.														
Checked	d By:	Thy				Date	: <u>08/1</u>	9/08			C:\Documents	and Settings\ian.v	wildman/Docume	mts/Projects/0	8\08-113\k- iests.wpd

ι

• •

7 .5

CLIENT: Youngquist Brothers, Inc.		INCOMING LABORATORY SAMPLE NO.: Core 1, 1652.3-1652.7'								
PROJECT: Golden Gates Injection	Well	LABORATORY IDENTIFICATION NO.: 081131V								
FILE NO.: 08-113	<u>د بر المحمد المحمد</u>	SAMPLE DESCRIPTION: Light Brown Limestone								
DATE SAMPLE RECEIVED: 06/10	/08 SET UP: <u>07/14/08</u>			<u> </u>						
DATE REPORTED: 08/19/08		·		<u> </u>						
ASTM D 5084 TEST METHOD: A - Constan B - Failing H C - Failing H G F - Constan	t Head Iead; Constant Tailwater Iead; Rising Tailwater t Volume; Falling Head - Rising Tailwater	SPECIMEN DATA: As-Received Diameter (inch): <u>4</u> As-Received Length (inch): <u>4.5/3.1*</u> TEST SPECIMEN ORIENTATION:	Diameter Trimmed: Length Trimmed: Vertical	□ Yes ☎ No ☞ Yes □ No □ Horizontal						
B-FACTOR: 70 (stable)%	Beginning of Test; End of Test	SPECIFIC GRAVITY, G _s : <u>2,74</u>	 Assumed Measured (ASTM 	D 854)						
	Δσ _c (psl): <u>21,28,37</u>	PERMEANT: Deaired Tap Water Other								

		Initi	al Condition	18			Test Conditions Final Conditions								Hydraulic Conductivity
H (cm)	D (cm)	V (cm³)	w. (%)	Ya (pcf)	n	S (%)	ð _c (psi)	u _b (psi)	i _{ang}	Q (cm³)	t (days)	WDS (g)	W _c (%)	S (%)	(cm/sec)
7.76	9.58	559.14	18.1	104.9	0.386	79	30	160	36	2.5	1	940.12	19.9	87	1.7 x 10-5
water from First leng The test of & Association	COMMENTS: (1) Core sample selected for permeability testing was cut to length, air-dried, dealerd under vacuum for a minimum of 24 hours, and then saturated with dealerd tap vater from the bottom up while still under vacuum. (2) Final we from horizontal permeability test specimen. WDS calculated from measured wet weight and final we. 'First length is total sample length. Second length is useable length at full core diameter. The test data and all associated project information presented hereon shall be held in confidence and disclosed to other parties only with the authorization of the Client or Ardaman & Associates, Inc. Physical and electronic records of each project are kept for a minimum of 7 years. Test samples are kept in storage for at least 10 working days after mailing of the test of a core to being discorded by Ardeman & Associates, Inc.														
Where: H c a	f = Specime onfining str nd G, = Sp	en height; D ess; u _b = Ba ecífic gravity	= Specime lick-pressum /.	n diameter; e; i _{avg} = Ave	V = Volum rage hydra	e; WDS = ulic gradie	Dry mass; ent; Q = Flo	w _c = Moistu w volume; 1	re content (t = Test dur	(ASTM D 22 ation; k ₂₀ = 1	216); $\gamma_d = Dry Saturated hy$	v density; S draulic conc	= Saturatio Juctivity at	n; ð _c = Iso 20°C; n =	tropic effective Total porosity;
Checked	d By:	Thy				Date	: <u>08/1</u>	9/08	-		C:\Documents	and Settings\jan.v	wildman\Docum	ents\Projects\C	8108-1131k- lests.wpd

:

э.,

 $i \in \{$

()

ί.

í.

. 2

CLIENT: Youngquist Brothers, Inc.		INCOMING LABORATORY SAMPLE	NO.: Core 1, 1652.3-1652.7'
PROJECT: Golden Gates Injection	ı Well	LABORATORY IDENTIFICATION NO	.: <u>081131H</u>
FILE NO.: 08-113	··	SAMPLE DESCRIPTION: Light Brown	1 Limestone
DATE SAMPLE RECEIVED: 06/10	/08SET UP: 07/23/08		·
DATE REPORTED: 08/19/08		. <u></u>	
ASTM D 5084 TEST METHOD:	it Head Iead; Constant Tailwater Iead; Rising Tailwater t Volume; Failing Head - Rising Tailwater	SPECIMEN DATA: As-Received Diameter (inch): <u>4</u> As-Received Length (inch): <u>4.5/3.1*</u> TEST SPECIMEN ORIENTATION:	Diameter Trimmed: ⊠Yes □No Length Trimmed: ⊠Yes □No □Vertical ⊠Horizontal
B-FACTOR: 75 (stable) %	Beginning of Test; End of Test	SPECIFIC GRAVITY, G ₃ : <u>2.74</u>	□ Assumed Measured (ASTM D 854)
	Δσ _c (psi): <u>21, 31, 39</u>	PERMEANT: Deaired Tap Water	Other

		Initi	al Conditio	ns			Test Conditions Final Conditions								
H (cm)	D (cm)	V (cm³)	w _c (%)	Y₀ (pcf)	n	S (%)	ā _c (psi)	u, (psi)	lavg	Q (cm³)	t (days)	WDS (g)	w _c (%)	S (%)	(cm/sec)
7.10	5.03	141.12	17.6	105.8	0.381	78	30 -	160	27	1.7	1	239.34	19.9	89	2.0 x 10-5
* First len The test of & Associa the test re	gth is total data and al ates, Inc. F eport, prior	sample leng associated hysical and to being disc	project info electronic carded, uni	d length is u prmation pr records of less a longe	esented he each proje	igth at full ireon shall ct are kept period is re	be held in for a minin quested in	ter. confidence num of 7 ye writing and	and disclosers. Test staccepted	sed to other samples are by Ardamar	parties only kept in store & Associate	with the aut age for at lease, inc.	horization ast 10 worl	of the Clicking days	ent or Ardaman after malling of
Where: H C a	H = Specim confining stu and G ₂ = Sp	en height; D ress; u _b = Ba recific gravity	= Specime ck-pressur /.	n diameter e; i _{evg} = Ave	; V = Volum erage hydra	ne; WDS = aulic gradie	Dry mass; ant; Q = Flo	w _e = Moistu w volume; l	ure content t = Test dui	(ASTM D 22 ration; k ₂₀ =	216); γ _d = Dŋ Saturated hy	y density; S vdraulic conc	= Saturatio luctivity at	n; ð _e = iso 20°C; n =	tropic effective Total porosity;
Checker Form SR-	d By: 2B: Rev. (, TM				Date	: 08/	9/08	<u></u>		C:\Documents	and Settings\jan.v	vildman\Docum	ents\Projects\L	18108-1131k- tests.wpd

a la contra de la

- 1

· .

CLIENT: Youngquist Brothers, Inc.		INCOMING LABORATORY SAMPLE	NO.: Core 1, 1652.3-1652.7'
PROJECT: Golden Gates Injection	Well	LABORATORY IDENTIFICATION NO	.: <u>081131H</u>
FILE NO.: 08-113	·	SAMPLE DESCRIPTION: Light Brown	Limestone
DATE SAMPLE RECEIVED: 06/10	/08 SET UP: 07/23/08	<u></u>	
DATE REPORTED: 08/19/08			
ASTM D 5084 TEST METHOD: A - Constar B - Falling F C - Falling F F - Constan	t Head lead; Constant Tailwater lead; Rising Tailwater t Volume; Failing Head - Rising Tailwater	SPECIMEN DATA: As-Received Diameter (inch): 4 As-Received Length (inch): 4.5/3.1*_ TEST SPECIMEN ORIENTATION:	Diameter Trimmed: ≅ Yes □ No Length Trimmed: ≊ Yes □ No □ Vertical ≊ Horizontal
β-FACTOR: <u>75 (stable)</u> %	Beginning of Test; □ End of Test	SPECIFIC GRAVITY, G _a : <u>2.74</u>	 Assumed Measured (ASTM D 854)
	Δσ _c (psi): <u>21, 31, 39</u>	PERMEANT: Ø Deaired Tap Water	D Other

	Initial Conditions							Test Conditions Final Conditions							
H (cm)	D (cm)	V (cm³)	₩ _c (%)	Ya (pcf)	n	S (%)	ở _c (psi)	ц, (psi)	levg	Q (cm³)	t (days)	WDS (g)	w _c (%)	S (%)	(cm/sec)
7.10	5.03	141.12	17.6	105.8	0.381	78	30	160	27	1.7	1	239.34	19.9	89	2.0 x 10-5
The test (& Association the test n	data and all ates, Inc. F eport, prior	associated hysical and to being disc	project info electronic carded, uni	prmation pro records of (ess a longe	esented he each projec r storage p	reon shall It are kept Veriod is re	be held in for a minim quested in	confidence rum of 7 ye writing and	and disclos ars. Test s accepted t	ed to other amples are by Ardaman	parties only kept in store & Associate	with the aut age for at lease, lnc.	horization ast 10 worl	of the Clic king days	ent or Ardaman after mailing of
Where: f	I = Specime confining str and G ₆ = Sp	en height; D ess; u _b = Ba ecific gravity	= Specime ck-pressur /.	n diameter; e; i _{ave} = Ave	V = Voium rage hydra	e; WDS = ulic gradie	Dry mass; int; Q = Flo	w₀ = Moistu w volume; t	ire content (t = Test dur	(ASTM D 22 ation; $k_{20} =$	216); γ _d ≕ Drj Saturated hy	/ density; S = /draulic conc	= Saturatio luctivity at	n; ð _c = lso 20°C; n =	tropic effective Total porosity
Checker	d By:	TM				Date	: <u>08/1</u>	9/08			C\Documents	and Settings\jan.w	rädman/Docum	ents/Projects/	18108-1134-tests.wpd

CLIENT: Youngquist Brothers; Inc.	INCOMING LABORATORY SAMPLE NO .: Core 2. 1825.7-1826.4
PROJECT: Golden Gates Injection Well	LABORATORY IDENTIFICATION NO : 081132V1826
FILE NO. <u>: 08-113</u>	SAMPLE DESCRIPTION: Light Brown Limestone
DATE SAMPLE RECEIVED: 06/10/08 SET UP: 07/16/08	
DATE REPORTED: 08/19/08	
ASTM D 5084 TEST METHOD:	SPECIMEN DATA: As-Received Diameter (inch): <u>4</u> Diameter Trimmed: □ Yes a

- **Constant Head**
- B Falling Head; Constant Tailwater
- C Failing Head; Rising Tailwater
- □ F Constant Volume: Falling Head Rising Tailwater

B-FACTOR: 92 (stable) %

Beginning of Test; End of Test

Δσ. (psi): 30; 36; 4

As-Received Length (inch): 8.0/4.1*

TEST SPECIMEN ORIENTATION:

SPECIFIC GRAVITY, G.: 2.74

Diameter i rimmed Length Trimmed: Yes O No Horizontal Vertical ····

ي. د زيد

Assumed Measured (ASTM D 854)

	·	Initi	al Conditions				Те	est Conditio	ns	- Eu.	. Fin	\$	Hydraulic, Conductivity	
H (cm)	D (cm)	۷ (cm³)	Wc (%) (Ya n (pcf)	S (%)	д, (psi)	u, (psi)	i _{eng}	Q (cm³)	t (days)	WDS (g)	₩ _c (%)	S (%)	k ₂₀ (cm/sec)
10.26	9.94	795.60	17.3 1	15.1 0.327	98	30	160	28	0.6	1	1468.0	17.3	98	1.6 x 10-6
COMMEN	TS :(1) Cor	e sample si	elected for perm	neability testing v	vas cut to le	ength, air-dr	ied, dealred	lunder vac	uum for a n	ninimum of 2	4 hours, an	d then satu	ated with	1 dealred tap

water from the bottom up while still under vacuum. (2) Final w from horizontal permeability test specimen. WDS calculated from measured First length is total sample length. Second length is useable length at full core diameter.

The test data and all associated project information presented hereon shall be held in confidence and disclosed to other parties only with the authorization of the Client or Ardaman & Associates, Inc. Physical and electronic records of each project are kept for a minimum of 7 years. Test samples are kept in storage for at least 10 working days after mailing of the test report, prior to being discarded, unless a longer storage period is requested in writing and accepted by Ardaman & Associates, Inc.

Where: H = Specimen height; D = Specimen diameter; V = Volume; WDS = Dry mase; we = Molsture content (ASTM D 2216); ye = Dry density; S = Saturation; de = Isotropic effective confining stress; up = Back-pressure; Im = Average hydraulic gradient; Q = Flow volume; t = Test duration; k20 = Saturated hydraulic conductivity at 20°C; n = Total porosity; and G. = Specific gravity.

Date: 08/14

Checked By: Form CD 28. Bay A

nts and Settingslyan.wildman\Documents\Projects\08\08-113\k-lests.wo

Contraction of the second s

£.

. .

.

1

CLIENT: Youngquist Brothers, Inc	<u>1 </u>	INCOMING LABORATORY SAMPLE	NO.: Core 2, 1825.7	1826.4'							
PROJECT: Golden Gates Injection	n Well	LABORATORY IDENTIFICATION NO).: <u>081132H1826</u>								
FILE NO.: 08-113		SAMPLE DESCRIPTION: Light Brown Limestone									
DATE SAMPLE RECEIVED: 06/10	0/08SET UP: <u>07/22/08</u>	······································									
DATE REPORTED: 08/19/08											
ASTM D 5084 TEST METHOD: ■ A - Constan □ B - Falling □ C - Falling □ F - Constan	nt Head Head; Constant Tailwater Head; Rising Tailwater nt Volume; Falling Head - Rising Tailwater	SPECIMEN DATA: As-Received Diameter (inch): <u>4</u> As-Received Length (inch): <u>8.0/4.1*</u> TEST SPECIMEN ORIENTATION:	Diameter Trimmed: Length Trimmed:	⊠ Yes □ No ⊠ Yes □ No ⊠ Horizontal							
B-FACTOR: <u>93 (stable)</u> %	Beginning of Test; End of Test	SPECIFIC GRAVITY, G ₃ : <u>2.74</u>	 Assumed Measured (ASTM) 	D 854)							
	Δσ _c (psi) <u>: 11:17</u>	PERMEANT: Deaired Tap Water	Other								

	Initial Conditions							Test Conditions Final Conditions							
H (cm)	D (cm)	V (cm³)	w _c (%)	Y₄ (pcf)	n	S (%)	ō, (psi)	u _s (psi)	İavg	Q (cm ^s)	t (days)	WDS (g)	w _c (%)	S (%)	(cm/sec)
7.64	5.03	151.71	17.2	114.7	0.329	96	30	160	39	1.0	1	278.84	17.3	96	6.7 x 10-6
The test & Associ	First length is total sample length. Second length is useable length at full core diameter. The test data and all associated project information presented hereon shall be held in confidence and disclosed to other parties only with the authorization of the Client or Ardaman & Associates, Inc. Physical and electronic records of each project are kept for a minimum of 7 years. Test samples are kept in storage for at least 10 working days after mailing of the test report, prior to being discarded, unless a longer storage period is requested in writing and accepted by Ardaman & Associates, Inc.														
Where: I	H = Specime confining str	en height; D ess; u _b = Ba	= Specime	n diameter; e; i _{eve} = Ave	V = Volum rage hydra	e; WDS = ulic gradie	Dry mass; int; Q = Flo	w _c = Moistu w volume; t	re content	(ASTM D 22 ration; $k_{20} = 3$	(16); $\gamma_d = Dry Saturated hy$	y density; S : /draulic cond	= Saturatio luctivity at	n; ð _o = lso 20°C; n =	tropic effective Total porosity;
Checke	d By:	M	<u></u>		i	Date	: 08/1	9/08			C:\Documents	and Sattinos\ian.v	ildman\Docum	ents\Projects\U	19108-1131k- tests word

 $\mathcal{F} \left(\left(-\frac{1}{2} \right) + \frac{1}{2} \right) = \left(\left(\left(-\frac{1}{2} \right) \right) + \left(\left(\left(-\frac{1}{2} \right) \right) + \left(\left(-\frac{1}{2} \right) \right) \right) \right) + \left(\left(-\frac{1}{2} \right) \right) + \left(-\frac{1}{2} \right) + \left(\left(-\frac{1}{2} \right) \right) + \left(-\frac{1}{2} \right$

; ,

CLIENT: Youngquist Brothers, Inc.	·	INCOMING LABORATORY SAMPLE NO.: <u>Core 2, 1830.65-1831.1'</u> LABORATORY IDENTIFICATION NO.: <u>081132V1831</u>								
PROJECT: Golden Gates Injection	ı Well									
FILE NO.: 08-113	· · ·	SAMPLE DESCRIPTION: Light Brown Limestone with solution cracks and								
DATE SAMPLE RECEIVED: 06/10	/08 SET UP: <u>07/17/08</u>	some small vugs	·							
DATE REPORTED: 08/19/08	······································									
ASTM D 5084 TEST METHOD: A - Constar B - Falling I C - Falling I F - Constan	it Head Iead; Constant Tailwater Iead; Rising Tailwater t Volume; Falling Head - Rising Tailwater	SPECIMEN DATA: As-Received Diameter (inch): <u>4</u> As-Received Length (inch): <u>5.0/4.0*</u> TEST SPECIMEN ORIENTATION:	Diameter Trimmed: □ Yes ☎ No Length Trimmed: ☎ Yes □ No ☎ Vertical □ Horizontal							
B-FACTOR: <u>94 (stable)</u> %	 Beginning of Test; End of Test 	SPECIFIC GRAVITY, G _s : <u>2.72</u>	□ Assumed ଛ Measured (ASTM D 854)							
	Δσ _c (psi) <u>: 12; 19; 27; 36</u>	PERMEANT: 🛛 Deaired Tap Water	Other							

		Initi	al Condition	າອ			\$	Т	est Conditio	ons		Fin	Hydraulic Conductivity		
H (cm)	D (cm)	V (cm³)	w _c (%)	Y₀ (pcf)	n	S (%)	σ _c (psi)	u, (psi)	, l _{avg}	Q (cm³)	t (days)	WDS (g)	₩ _c (%)	S (%)	(cm/sec)
8.33	9.76	622.83	17.2	113.0	0.334	93	30	160	20	2.9	1	1127.8	17.7	96	4.4 x 10-5
COMMEN water from * First leng The test of & Associa	OMMENTS: (1) Core sample selected for permeability testing was cut to length, air-dried, deaired under vacuum for a minimum of 24 hours, and then saturated with deaired tap ater from the bottom up while still under vacuum. (2) w from initial total weight after saturation and assuming WDS equals initial air-dry weight. First length is total sample length. Second length is useable length at full core diameter.														
the test r	eport, prior	to being dis	carded, uni	ess a longe	r storage p	eriod is re	quested in	writing and	accepted b	y Ardaman	& Associate	es, inc.			
Where: H c a	I = Specime onfining str ind G, = Sp	en height; D ess; Ա = Ba ecific:gravity	= Specime ck-pressur /.	n diameter; s; i _{evg} = Ave	V = Volum rage hydra	e; WDS = ulic gradie	Dry mass; ent; Q = Flo	w _c = Moistu w volume; t	re content (= Test dun	ASTM D 22 ation; $k_{20} = 3$	(16); $\gamma_d = Dry$ Saturated hy	density; S draulic cond	= Saturatio luctivity at	n; ð _c = iso 20°C; n =	tropic effective Total porosity;
Checked	d By:	1m				Date	: 08/1	a/08							
Form SR-2	2B: Rev. 0						-7-	7	_		C:\Documents	and Settings\jan.v	rädman\Docume	nts\Projects\0	8\08-113\k- tasts.wpd

1 · · · ·

2

INCOMING LABORATORY SAMPLE NO.; Core 3, 1995,15-1995,5'								
LABORATORY IDENTIFICATION NO.: 081133V1995								
SAMPLE DESCRIPTION: Light Brown Limestone								
SPECIMEN DATA: As-Received Diameter (inch): <u>4</u> Diameter Trimmed: □ Yes								
SPECIFIC GRAVITY, G _s : <u>2.72</u> DAssumed Measured (ASTM D 854)								
PERMEANT: Deaired Tap Water Other								

	Initial Conditions							T	est Conditio	ons		Fin	Hydraulic Conductivity		
H (cm)	D (cm)	V (cm³)	Wc (%)	Ya (pcf)	n	S (%)	д _с (psi)	u _o (psi)	i j _{avg}	Q (cm³)	t (days)	WDS (g)	w _c (%)	S (%)	k ₂₀ (cm/sec)
7.15	9.84	543.86	15.9	114.7	0.324	90	30	160	102	1.5	1	999.83	16.6	94	1.1 x 10-6
COMMEN water from • First leng The test d	COMMENTS:(1) Core sample selected for permeability testing was cut to length, air-dried, dealerd under vacuum for a minimum of 24 hours, and then saturated with dealerd tap water from the bottom up while still under vacuum. (2) Final we from horizontal permeability test specimen. WDS calculated from measured wet weight and final we. First length is total sample length. Second length is useable length at full core diameter.														
& Associa the test re	ates, Inc. P eport, prior t	hysical and o being disc	electronic i carded, unio	ecords of e ess a longe	ach projec r storage p	t are kept eriod is re	for a minim quested in	ium of 7 ye writing and	ars. Test se accepted b	amples are ly Ardaman	kept in stora & Associate	ige for at lea is, inc.	ast 10 work	ing days	after mailing of
Where: H ci ai	Where: H = Specimen height; D = Specimen diameter; V = Volume; WDS = Dry mass; w _c = Moisture content (ASTM D 2216); γ _d = Dry density; S = Saturation; δ _c = Isotropic effective contining stress; u _b = Back-pressure; i _{avg} = Average hydraulic gradient; Q = Flow volume; t = Test duration; k ₂₀ = Saturated hydraulic conductivity at 20°C; n = Total porosity; and G _b = Specific gravity.														
Checked	Bv:	ÎN/I				Date	: 08/1	9/08							· ·

1 6

1 2 3

· {

¥ ;

, ;

1 1 2

3 1

CLIENT: Youngquist Brothers, Inc.	INCOMING LABORATORY SAMPLE NO.: Core 2, 1830.65-1831,1									
PROJECT: Golden Gates Injection Well	_ LABORATORY IDENTIFICATION NO.: 081132H1831									
FILE NO.: 08-113	SAMPLE DESCRIPTION: Light Brown Limestone with solution cracks and									
DATE SAMPLE RECEIVED: 06/10/08 SET UP: 07/23/08	some small vugs									
DATE REPORTED: 08/19/08	·									
ASTM D 5084 TEST METHOD: A - Constant Head B - Falling Head; Constant Tailwater C - Falling Head; Rising Tailwater F - Constant Volume; Falling Head - Rising Tailwater	SPECIMEN DATA: As-Received Diameter (inch): 1 Diameter Trimmed: 2 As-Received Length (inch): 5.0/4.0* Length Trimmed: 2 Yes No TEST SPECIMEN ORIENTATION: 2 Vertical 2									
B-FACTOR: <u>96</u> % Beginning of Test; □ End of Test	SPECIFIC GRAVITY, G _s : <u>2.72</u> □ Assumed Measured (ASTM D 854)									
Δσ _c (psi <u>) 13</u>	PERMEANT: Deaired Tap Water Other									

	Initial Conditions							T	est Conditi	ons		Fin	Hydraulic Conductivity		
H (cm)	D (cm)	V (cm³)	₩ _c (%)	Yd (pcf)	n	S (%)	τς (psi)	u, (psi)	i _{ang}	Q (cm ³)	t (days)	WDS (g)	w. (%)	S (%)	(cm/sec)
6.02	5.02	119.30	16.9	114.4	0.326	95	30	160	46	0.9	1	218.76	17.3	98	2.1 x 10-5
The test of & Association the test re	data and all ates, Inc. F eport, prior	associated Physical and to being disc	project info electronic arded, uni	ormation pro records of ess a longe	esented he each projecter storage p	reon shall t are kept period is re	be held in a for a minim	confidence turn of 7 ye writing and	and disclos ars. Test s accepted l	sed to other amples are by Ardaman	parties only kept in store & Associate	with the aul age for at lea as, Inc.	thorization ast 10 work	of the Cile dng days	ent or Ardaman after mailing of
Where: H c a	I = Specime confining str and G, = Sp	en height; D ess; u _b = Ba ecific gravity	= Specime ck-pressur	n diameter; e; i _{ave} = Ave	V = Volum rage hydra	e; WDS = ulic gradie	Dry mass; ant; Q = Flo	w _c = Moistu w volume; t	re content (= Test dur	(ASTM D 22 ation; $k_{20} = 1$	216); $\gamma_d = Dry$ Saturated hy	/ density; S = draulic conc	= Saturatio Juctivity at	n; ð _c = iso 20°C; n =	tropic effective Total porosity
hecker	d By:	M				Date	: 08/	ialos	 		C:\Documents a	and SettingsVen.w	//////////////////////////////////////	ents/Projects/0	8\08-113\k-tests.wod

CLIENT: Youngquist Brothers, Inc.		INCOMING LABORATORY SAMPLE NO.: Core 3, 1995.15-1995.5'								
PROJECT: Golden Gates Injection	Well	LABORATORY IDENTIFICATION NO.: 081133H1995								
FILE NO.: 08-113		SAMPLE DESCRIPTION: Light Brown Limestone								
DATE SAMPLE RECEIVED: 06/10	/08SET UP: 07/22/08	••••••••••••••••••••••••••••••••••••••								
DATE REPORTED: 08/19/08		<u> </u>								
ASTM D 5084 TEST METHOD: A - Constan B - Falling H C - Falling H F - Constan	t Head lead; Constant Tailwater lead; Rising Tailwater t Volume; Falling Head - Rising Tailwater	SPECIMEN DATA: As-Received Diameter (Inch): <u>4</u> As-Received Length (Inch): <u>4.3/2.8*</u> TEST SPECIMEN ORIENTATION:	Diameter Trimmed: ≊ Yes □ No Length Trimmed: ≊ Yes □ No □ Vertical							
B-FACTOR: 89 (stable) %	 Beginning of Test; End of Test 	SPECIFIC GRAVITY, G _s : <u>2.72</u>	□ Assumed Measured (ASTM D 854)							
	Δσ _c (psi): <u>11, 17</u>	PERMEANT: 🛛 Deaired Tap Water	© Other							

		Initi	al Condition	18				т	est Conditio	ons		Fin	Hydraulic Conductivity		
H (cm)	D (cm)	V (cm³)	w _c (%)	¥₃ (pcf)	n	S (%)	ō _c (psi)	u, (psi)	İ _{avg}	Q (cm³)	t (days)	WDS (g)	₩ _c (%)	S (%)	(cm/sec)
7.13	5.03	141.74	16.0	115.4	0.320	92	30	160	49	1.0	1	262.18	16.6	96	2.9 x 10-6
COMMEN * First leng	DMMENTS: (1) Horizontal permeability test specimen was cross-cored from the corresponding vertical test specimen. First length is total sample length. Second length is useable length at full core diameter.														
The test of & Associa the test re	data and all ates, Inc. P eport, prior 1	associated hysical and to being dis	project info electronic carded, unlo	rmation pre records of e ess a longe	esented he bach projec r storage p	reon shall It are kept period is re	be held in o for a minim quested in	confidence num of 7 yes writing and	and disclos ars. Test s accepted b	ed to other amples are by Ardaman	parties only kept in stora & Associate	with the aut ige for at lea is, Inc.	horization ast 10 work	of the Clie ling days a	nt or Ardaman after mailing of
Where: H c a	Where: H = Specimen height; D = Specimen diameter; V = Volume; WDS = Dry mass; w _c = Moisture content (ASTM D 2216); Y _d = Dry density; S = Saturation; ∂ _c = Isotropic effective confining stress; u _b = Back-pressure; i _{mg} = Average hydraulic gradient; Q = Flow volume; t = Test duration; k ₂₀ = Saturated hydraulic conductivity at 20°C; n = Total porosity; and G _b = Specific gravity.														
Checker	d By: 2B: Rev. 0	Thy				Date	: <u>08/</u> 1	9/08			C:\Documents	ind Settings\jan.v	vildman\Docume	ents\Projects\0	8\08-113\k- testa.wpd

CLIENT: Youngquist Brothers, Inc. PROJECT: Golden Gates Injection Fill E NO: 08-113	Weil	INCOMING LABORATORY SAMPLE NO.: Core 3, 2000.5-2001,7' LABORATORY IDENTIFICATION NO.: 081133V2001 SAMPLE DESCRIPTION: Light Brown Limestone								
DATE SAMPLE RECEIVED: 06/10 DATE REPORTED: 08/19/08	08SET UP: <u>07/17/08</u>									
ASTM D 5084 TEST METHOD: A - Constan B - Falling H C - Falling H F - Constan	t Head lead; Constant Tailwater lead; Rising Tailwater t Volume; Falling Head - Rising Tailwater	SPECIMEN DATA: As-Received Diameter (inch): 4 As-Received Length (inch):10.0/6.0* TEST SPECIMEN ORIENTATION:	Diameter Trimmed: Length Trimmed: Vertical	□ Yes ≅ No ⊠ Yes □ No □ Horizontal						
B-FACTOR: 91 (stable) %	 Beginning of Test; End of Test 	SPECIFIC GRAVITY, G ₃ : <u>2.71</u>	□ Assumed Measured (ASTM	D 854)						
	Δσ _c (psi): <u>12: 19; 27; 36</u>	PERMEANT: Deaired Tap Water	D Other							

		Initi	al Condition	18	····			Т	est Conditio	ons		Fin	Hydraulic Conductivity		
H (cm)	D (cm)	V (cm³)	w _c (%)	Y₄ (pcf)	n	S (%)	ඊ _ය (psi)	u _b (psl)	levg	Q (cm³)	t (days)	WDS (g)	₩ ₆ (%)	S (%)	k ₂₀ (cm/sec)
10.08	9.81	762.42	16.9	114.1	0.326	95	30	160	20	0.8	1	1393.3	17.1	96	6.6,x 10-6
COMMEN water from • First leng	COMMENTS: (1) Core sample selected for permeability testing was cut to length, air-dried, deaired under vacuum for a minimum of 24 hours, and then saturated with deaired tap water from the bottom up while still under vacuum. (2) Final we from horizontal permeability test specimen. WDS calculated from measured wet weight and final we.														
The test d & Associa the test re	lata and all ites, Inc. P iport, prior f	associated hysical and to being dise	project info electronic carded, uni	rmation pre records of e ess a longe	esented he each project r storage p	reon shall It are kept Deriod is re	be held in o for a minim quested in	confidence ium of 7 yea writing and	and disclos ars. Test se accepted b	ed to other amples are ly Ardaman	parties only kept in stora & Associate	with the aut ge for at lea is, Inc.	horization o Ist 10 work	of the Clie ing days a	nt or Ardaman after mailing of
Where: H cc ar	Where: H = Specimen height; D = Specimen diameter; V = Volume; WDS = Dry mass; w _c = Moisture content (ASTM D 2216); γ _d = Dry density; S = Saturation; ö _c = Isotropic effective confining stress; u _b = Back-pressure; l _{avg} = Average hydraulic gradient; Q = Flow volume; t = Test duration; k ₂₀ = Saturated hydraulic conductivity at 20°C; n = Total porosity; and G _a = Specific gravity.														
Checked	Bv:	Th	۸			Date	: D8/	19/08	-			-			

....

Checked Bv:

CLIENT: Youngquist Brothe	r <mark>s, Inc.</mark>	INCOMING LABORATORY SAMPLE NO.: Core 3, 2000.5-2001.7' LABORATORY IDENTIFICATION NO.: 081133H2001								
PROJECT: Golden Gates Ir	lection Well									
FILE NO.: 08-113		SAMPLE DESCRIPTION: Light Brown Limestone								
DATE SAMPLE RECEIVED	06/10/08 SET UP: 07/23/08	<u> </u>								
DATE REPORTED: 08/19/0	<u> </u>	• <u></u>								
ASTM D 5084 TEST METH(■ A - C □ B - F □ C - F □ F - C	DD: onstant Head alling Head; Constant Tailwater alling Head; Rising Tailwater onstant Volume; Falling Head - Rising Tailwater	SPECIMEN DATA: As-Received Diameter (inch): <u>4</u> As-Received Length (inch): <u>10.0/6.0*</u> TEST SPECIMEN ORIENTATION:	Diameter Trimmed: ⊠ Yes □ No Length Trimmed: ⊠ Yes □ No □ Vertical ⊠ Horizontal							
B-FACTOR: <u>92% (stable)</u>	% ■ Beginning of Test; □ End of Test	SPECIFIC GRAVITY, G _s : <u>2.71</u>	□ Assumed Measured (ASTM D 854)							
	Δσ _c (psi): <u>21: 31: 39</u>	PERMEANT: Deaired Tap Water	D Other							
	·									

	initial Conditions							T	est Conditi	ons	Fin	Hydraulic Conductivity			
H (cm)	D (cm)	V (cm³)	W _c (%)	Y₄ (pcf)	<u>,</u> и	S (%)	д _с (psi)	u _b (psi)	i _{avg}	Q (cm ³)	t (days)	WDS (g)	W _c (%)	S (%)	(cm/sec)
6.74	5.03	133.68	16.3	115.9	0.315	96	30	160	36	1.0	1	248.22	17.0	100	8.7 x 10-6
The test (& Association the test rest rest rest rest rest rest res	data and al ates, Inc. F aport, prior	associated Physical and to being disc	project Info electronic carded, uni	ormation pro records of less a longe	esented he each projec er storage p	reon shali st are kept period is re	be held in for a minin equested in	confidence num of 7 ye writing and	and disclos ars. Test s accepted l	sed to other amples are by Ardaman	parties only kept in store & Associate	with the au age for at le es, Inc.	thorization ast 10 worl	of the Clicking days	int or Ardaman after mailing of
Where: H	I = Specim confining stu ind G _i = Sp	en height; D ess; u _b = Ba ecific gravity	= Specime ck-pressur /.	en diameter; e; i _{avg} = Ave	V = Volum rage hydra	ie; WDS = iulic gradie	Dry mass; ant; Q = Flo	w _c = Moistu w volume; 1	ire content t = Test dur	(ASTM D 22 ation; k ₂₀ =	216); $\gamma_d = Dry Saturated hy$	y density; S /draulic con	= Saturatio ductivity at	n; ō _c = 180 20°C; n =	tropic effective Total porosity;
Checker	d By: 2B: Rev. (, Tu			··	Date	: 08/	19/08	-		C:\Documents	and Settings\ian.u	widman/Docum	ents\Projects\0	1308-1130k- tests.wood

C:\Documents and Settings\jan.wildman\Documents\Projects\08\08-113\k- tests.wpd

CLIENT: Youngquist Brothers, Inc. PROJECT:Golden Gates Injection	Well	INCOMING LABORATORY SAMPLE	NO.: <u>Core 4, 2136.5-2136.95'</u>
FILE NO.: 08-113		SAMPLE DESCRIPTION: Light Brown	Limestone
DATE SAMPLE RECEIVED: 06/10	/08 SET UP: 07/16/08		
DATE REPORTED: 08/19/08	•	• <u> </u>	
ASTM D 5084 TEST METHOD: A - Constar B - Falling F C - Falling F F - Constan	t Head lead; Constant Tailwater lead; Rising Tailwater t Volume; Falling Head - Rising Tailwater	SPECIMEN DATA: As-Received Diameter (inch): <u>4</u> As-Received Length (inch): <u>4.5/4.0*</u> TEST SPECIMEN ORIENTATION:	Diameter Trimmed: □ Yes ⊠ No Length Trimmed: ⊠ Yes □ No ⊠ Vertical □ Horizontal
B-FACTOR: <u>93 (stable)</u> %	 Beginning of Test; End of Test 	SPECIFIC GRAVITY, G _a : <u>2.70</u>	 Assumed Measured (ASTM D 854)
	Δσ _c (psi) <u>: 30; 36; 43</u>	PERMEANT: 🛛 Deaired Tap Water	D Other

Initial Conditions							Test Conditions					Final Conditions			
H (cm)	D (cm)	V (cm³)	w _c (%)	Y₀ (pcf)	n	S (%)	σ _c (psi)	ц, (psi)	l _{avg}	Q (cm³)	t (days)	WDS (g)	w _c (%)	S (%)	(cm/sec)
9.79	9.15	644.46	15.0	118.8	0.295	97	30	160	45	3.5	1	1227.4	15.0	97	1.4 x 10-6
water from * First leng The test of & Association the test references of the test references of	a the bottom gth is total a data and all ates, Inc. F sport, prior	associated hysical and to being disc	till under va th. Second project info electronic carded, uni	ormation pro records of c ess a longe	Final w _c from seable len esented he each project ir storage p	om horizon gth at full o reon shail st are kept veriod is re	tal permea core diame be held in for a minim quested in	bility test sp ter. confidence turn of 7 ye writing and	and disclos ars. Test s accepted l	VDS calcula sed to other amples are by Ardaman	parties only kept in stora & Associate	with the autage for at leases, inc.	weight and thorization ast 10 work	of the Clic cing days	int or Ardaman after mailing of
Where: H c a	$H = Specimeconfining strand G_x = Sp$	en height; D ess; պ = Ba ecific gravity	= Specime ck-pressur	n diameter; e; l _{avg} = Ave	V = Volum rage hydra	e; WDS = ulic gradie	Dry mass; nt; Q = Flo	w _c = Moistu w volume; t	re content = Test dur	(ASTM D 22 ation; k ₂₀ = 1	216); γ _d = Dr Saturated hy	/ density; S : /draulic conc	= Saturatio Juctivity at	n; & = Iso 20°C; n =	tropic effective Total porosity;
Checked	d By:	Du				Date	: 08/	'19/08						, <u>, , , , , , , , , , , , , , , , , , </u>	

PROJECT: Golden Gates Injection Well LABORATORY IDENTIFICATION NO.: 081134H2136 FILE NO.: 08-113 SAMPLE DESCRIPTION: Light Brown Limestone DATE SAMPLE RECEIVED: 06/10/08 SET UP: 07/22/08
FILE NO.: 08-113 SAMPLE DESCRIPTION: Light Brown Limestone DATE SAMPLE RECEIVED: 06/10/08 SET UP: 07/22/08 DATE REPORTED: 08/19/08 SET UP: 07/22/08
DATE SAMPLE RECEIVED: 06/10/08 SET UP: 07/22/08
ASTM D 5084 TEST METHOD: ASTM D 5084 TEST METHOD: A - Constant Head B - Falling Head; Constant Tallwater C - Falling Head; Rising Tallwater F - Constant Volume; Falling Head - Rising Tailwater B - Falling Head - Rising Tailwater B - Constant Volume; Falling Head - Rising Tailwater B - Constant Volume; Falling Head - Rising Tailwater B - Constant Volume; Falling Head - Rising Tailwater B - Constant Volume; Falling Head - Rising Tailwater B - Constant Volume; Falling Head - Rising Tailwater B - Constant Volume; Falling Head - Rising Tailwater C - Constant Volume; Falling Head - Rising Tailwater B - Constant Volume; Falling Head - Rising Tailwater B - Constant Volume; Falling Head - Rising Tailwater B - Constant Volume; Falling Head - Rising Tailwater C - C - C - C - C - C - C - C - C - C -
B-FACTOR: <u>89 (stable)</u> % Beginning of Test; SPECIFIC GRAVITY, G _s : <u>2.70</u> □ Assumed □ End of Test □ End of Test □ End of Test
Δσ _c (psi): <u>11; 17</u> PERMEANT: ^{III} Deaired Tap Water ^{III} Other

Initial Conditions							Test Conditions					Final Conditions			
H (cm)	D (cm)	V (cm³)	w _c (%)	Y₄ (pcf)	n	S (%)	д _с (psi)	பூ (psi)	l _{avg}	Q (cm³)	t (days)	WDS (g)	w _c (%)	S (%)	(cm/sec)
6.47	5.03	128.58	15.0	119.9	0.288	100	30	160	38	1.4	_ 1	247.11	15.0	100	2.0 x 10-6
The test of & Association	gth is total : data and all ates, Inc. F eport, prior	sample leng associated Physical and to being disc	project info electronic carded, uni	rmation pro records of e ess a longe	esented he bach project or storage p	gth at full reon shall ct are kept period is re	be held in (for a minin quested in	ter. confidence ium of 7 ye writing and	and disclos ars. Test s accepted t	ed to other amples are by Ardamar	parties only kept in store & Associate	with the autage for at leases, Inc.	ihorization ast 10 work	of the Cile king days	nt or Ardaman after mailing of
Where: F c a	H = Specime confining str and G _e = Sp	en height; D ess; u, = Ba ecific gravity	= Specime ck-pressur /.	n diameter; e; i _{avg} = Ave	V = Volum rage hydra	e; WDS = ulic gradie	Dry mass; ent; Q = Flo	w _c = Moistu w volume; t	re content (= Test dun	(ASTM D 22 ation; $k_{20} = 1$	216); $\gamma_d = Dr_1$ Saturated hy	/ density; S /draulic conc	= Saturatio ductivity at	n; ð _c = Iso 20°C; n =	tropic effective Total porosity;
Checker	d By: 2B: Rev. 0	, I M		<u> </u>		Date	: <u>08/</u>	9/08	_		C:\Documents	and Settings\jan.v	wildman\Docum	ants/Projects/C	8\08-113\k- tests.wpd

DATA: d Diameter (inch): <u>4</u> Diameter Trimmed: □ Yes ⊠ No d Length (inch): <u>8.0/6.0*</u> Length Trimmed: ⊠ Yes □ No d Length (inch): ® Vertical □ Horizontal
RAVITY, G _s : <u>2.71</u> □ Assumed

Initial Conditions							т	est Conditie	ons		Fin	al Condition	Conditions Hydraut				
H (cm)	D (cm)	V (cm³)	w. (%)	Y₄ (pcf)	n	S (%)	Ъ _с (psi)	u, (psi)	i _{avg}	Q (cm ³)	t (days)	WDS (g)	₩ _c (%)	S (%)	(cm/sec)		
10.03	9.94	778.33	13.6	123.2	0.271	99	30	160	31	1.0	1	1536.9	13.6	99	1.7 x 10-6		
COMMEN water from * First leng The test c & Associa the test re	TS: (1) Con the bottom gth is total s iata and all ates, Inc. P oport, prior	re sample son nup while so sample leng associated hysical and to being disc	elected for p till under va th. Second project info electronic carded, unl	permeabilit cuum. (2) l length Is u rmation pre records of e ass a longe	y testing w Final w _c from seable len essented he each project or storage p	as cut to le om horizor gth at full (reon shail et are kept period is re	angth, air-d ital permea core diame be held in a for a minim quested in	ried, dealred bility test sp ter. confidence in hum of 7 year writing and	d under vac becimen. V and disclos ars. Test s accepted b	ed to other amples are oy Ardaman	ninimum of a ted from me parties only kept in store & Associate	24 hours, ar pasured wet with the aut age for at le as, Inc.	nd then sati weight and horization (ast 10 work	urated wit I final w _c . of the Clie ling days	h deaired tap nt or Ardaman after mailing of		
Where: H Ci a	I = Specime onfining str nd G _a = Sp	en helght; D ess; u _b = Ba ecific gravity	= Specime ck-pressun /.	n diameter; e; i _{avg} = Ave	V = Volum rage hydra	ie; WDS = ulic gradie	Dry mass; nt; Q = Flo	w _c = Moistu w volume; t	re content (= Test dura	ASTM D 22 ation; $k_{20} = S$:16); γ _d = Dry Saturated hy	density; S draulic cond	= Saturation luctivity at 2	n; ð _c = lso 20°C; n =	tropic effective Total porosity;		
Checked I	Ву:	M				Date:	08/1	9/08			Cillionante	and Rottings\ion y	John and Doou and	ates Breigete M	2108-1128h- tests word		

CLIENT: Youngquist &	Brothers, Inc.		INCOMING LABORATORY SAMPLE	NO.: Core 4, 2140.65	i-2141.3'
PROJECT: Golden Ga	ates Injection	Well	LABORATORY IDENTIFICATION NO	.: <u>081134H2141</u>	
FILE NO.: 08-113		· *******	SAMPLE DESCRIPTION: Light Brown	n Limestone	· · · · - <u></u> · <u>-</u>
DATE SAMPLE RECE	IVED: 06/10	/08 SET UP: <u>07/21/08</u>			
DATE REPORTED: 00	3/19/08	10-0-14-14-1-0-14-14-1			
ASTM D 5084 TEST N a a a a	IETHOD: A - Constan B - Falling I C - Falling I F - Constan	t Head lead; Constant Tailwater lead; Rising Tailwater t Volume; Falling Head - Rising Tailwater	SPECIMEN DATA: As-Received Diameter (inch): <u>4</u> As-Received Length (inch): <u>8.0/6.0*</u> TEST SPECIMEN ORIENTATION:	Diameter Trimmed: Length Trimmed:	⊠ Yes □ No ≅ Yes □ No ⊠ Horizontal
B-FACTOR: 93 (stable)%	 Beginning of Test; End of Test 	SPECIFIC GRAVITY, G _a : <u>2.71</u>	□ Assumed Measured (ASTM	D 854)
		Δσ _c (psi): <u>12: 19</u>	PERMEANT: Deaired Tap Water	© Other	<u></u>
				۰,	

Initial Conditions							Т	est Conditi		Final Conditions			Hydraulic Conductivity		
H (cm)	D (cm)	V (cm³)	w _c (%)	Ya (pcf)	л	S (%)	Ъ _с (psi)	u _b (psi)	l _{avg}	Q (cm³)	t (days)	WDS (g)	w _c (%)	S (%)	(cm/sec)
6:9 9	5.03	138.84	13.7	123.4	0.270	100	30	160	26	0.8	1	274.53	13.7	100	1.3 x 10-6
COMMEN * First len The test (& Associates the test of	NTS: (1) Ho gth is total s data and all ates, Inc. P	rizontal pen sample leng associated Physical and	project info electronic	st specime t length is u prmation pro- records of (n was cros iseable len esented he each projec	s-cored fro gth at full of reon shall at are kept	om the corr core diame be held in o for a minim	esponding ter. confidence num of 7 ye	vertical tes and disclos ars. Test s	t specimen. sed to other amples are	parties only kept in store	with the aut age for at lea	horization ast 10 work	of the Clic dng days	ent or Ardaman after mailing of
Where: H	H = Specime confining str and G _x = Sp	en height; D ess; u _b = Ba ecific gravity	= Specime ick-pressul /:	n dlameter; e; i _{ng} = Ave	V = Volum arage hydra	e; WDS =	Dry mass; ant; Q = Flo	w _c = Moistu w volume; t	re content = Test dur	(ASTM D 22 ation; k ₂₀ = \$	(16); $\gamma_d = D \eta$ Saturated hy	y density; S rdraulic conc	= Saturatio luctivity at	n; ð _c = lso 20°C; n =	tropic effective Total porosity;
Checked	Bv:	The				Date:	09/1	9/08	· · ·		• • •	· ·			· .

Form SR-2B: Rev. 0

Ardaman & Associates, Inc.

Geotechnical, Environmental and Materials Consultants

September 18, 2008 File Number 08-113

Youngquist Brothers, Inc. 15465 Pine Ridge Road Ft. Myers, FL 33908

Attention: Wu Fei

Subject: Rock Core Testing, Golden Gates Injection Well

Dear Fei:

As requested, Archie's formation factor and cementation exponent have been measured on four limestone rock cores provided for testing by your firm. The tests were subcontracted to New England Research, Inc. The designations of the four samples are listed below.

Core	Depth
1	1650.2-1650.5
2	1825.7-1826.4
3	2000.7-2001.5
4	2140.65-2141.3

The report from New England Research, Inc. is attached.

The specimens were reported to be from the samples designated herein. The test results are indicative of only the specimens that were actually tested. The test results presented are based upon accepted industry practice as well as test method(s) listed. Ardaman & Associates, Inc. neither accepts responsibility for, nor makes claims to the final use and purpose of the material.

If you have any questions about the test results or require additional information, please contact us. We will forward additional test results as the tests are completed.

Very truly yours, ARDAMAN & ASSOCIATES, INC.

Thomas S. Ingra.

Laboratory Director Florida License No. 31987

TSI/ed

C:\Documents and Settings\Jan.wildman\Documents\Projects\08\08-113\report02-ner.wpd

8008 S. Orange Avenue 32809, Post Office Box 593003, Orlando, Florida 32859-3003 Phone (407) 855-3860 FAX (407) 859-8121 Louisiana: Alexandria, Baton Rouge, Monroe, New Orleans, Shreveport

Florida: Bartow, Cocoa, Fort Myers, Miami, Orlando, Port Charlotte, Port St. Lucie, Sarasota, Tallahassee, Tampa, West Palm Beach

Resistivity of Golden Gate Carbonates

Report prepared for Ardaman and Associates, Inc. September 10, 2008

by

New England Research, Inc. 331 Olcott Drive, Ste L1 White River Junction, VT 05001

Summary

Ardaman and Associates, Inc. delivered four whole core samples of carbonate for measurement of resistivity. The samples were cored from the Golden Gate site in a depth range of 1650.2 ft to 2141.3 ft.

Four cylindrical samples were sub-cored from the whole core and were approximately 38 mm in diameter and 46 mm to 54 mm in length. The samples were very high porosity chalky carbonate. The grain densities averaged 2.72 g/cc. Sample porosity as a volume fraction ranged from 0.28 to 0.38.

All samples were saturated with brine containing 35 grams of sodium chloride per liter of water. Complex impedance of each sample was measured over a frequency range of 0.1 Hz to 100 kHz.

Temperature corrections were applied to the brine conductivity. The frequency response of the samples' impedance was uniform over the frequency range of 0.1 to 100,000 Hz. No cable corrections were applied.

The cementation coefficients for these very high porosity rocks are clustered around 2 and show little variation with porosity. The resistivity of these samples was quite low. Low resistivity generally indicates good pore space connectivity and high permeability.

Resistivity of Golden Gate Carbonates

SUMMARY	i
INTRODUCTION	1
PROCEDURES AND TECHNIQUES	
Sample Description	1
Sample Preparation	1
Petrophysical Data	1
Resistivity Tests	2
Formation Factor and Cementation Coefficient	2
DISCUSSION	
Resistivity Data	3
CONCLUSIONS	4
REFERENCES	5
SECTION II: DATA	6

Resistivity of Golden Gate Carbonates

Introduction

Ardaman and Associates, Inc. delivered four whole core samples of carbonate for measurement of resistivity. The samples were cored from the Golden Gate sites. Four of the samples were cored from the Golden Gate site in a depth range of 1650.2 ft. to 2141.3

Procedures and Techniques

Sample Description

The samples are fine grained "chalky" carbonates and fairly homogeneous.

Sample Preparation

Four cylindrical samples were sub-cored from the whole core supplied by Ardaman. The diameter of the sub-cored plugs was 38 mm. The length of the plug samples varied from 45 mm to 54 mm. The ends of the plugs were ground smooth and parallel to within 0.001 inches.

The sample plugs were dried in an oven at 80 degrees centigrade for 48 hours. Sample dimensions and mass were measured and the dry bulk density was computed. The samples were vacuum saturated for 24 hours in brine containing 35 grams of NaCl per liter of distilled water. The grain density of the samples was determined using an Archimedes technique. The porosity was determined from the dry bulk density and average grain density using the formula $\phi=1-(\rho_{dry-bulk}/\rho_{grain})$.

Petrophysical Data

1

The average grain density of the samples ranged from 2.72 to 2.73 g/cc and was within 1 per cent of the grain density of calcite, 2.71 g/cc, the major component of carbonate rocks.

Sample porosity was generally high, ranging from 28.8% to 37.8%. All sample mass and volumetric data is reported in Table 1.

Resistivity Tests

Four electrode complex electrical impedance measurements were performed on the samples in the AutoLab 1000 system. The saturated sample was jacketed in a viton sleeve and mounted in the four-electrode core holder. Figure 1 diagrams the coreholder used in the four-electrode measurement. The core holder is inserted in the pressure vessel of the AutoLab 1000.

Figure 1. Four-electrode resistivity coreholder

A function generator is used to apply a sinusoidal current across the sample and a reference resistor. The current varied in frequency from 0.1 Hz to 100,000 Hz. The amplitude and phase of the voltage drop across the sample is compared to the amplitude and phase of the voltage drop across the reference resistor, and the values are used to compute the complex impedance at a given frequency.

The samples were confined at a pressure consistent with their depth, assuming an overburden gradient of approximately 1.0 psi/ft and a normal hydrostatic fluid pressure gradient of approximately 0.46 psi/ft. As an example, sample Golden Gate Core 1 had an

applied confining pressure of 1650 psi (11.4 MPa) and a pore pressure of 759 psi (5.2 MPa).

Formation Factor and Cementation Coefficient

A cementation factor can be calculated from Archie's empirical formation factorporosity relationship (Archie, 1942),

$$\mathbf{F} = \boldsymbol{\alpha} \ast \boldsymbol{\phi}^{-\mathbf{m}}.$$

F is the formation factor, that is, the ratio of the conductivity of the saturating fluid to the conductivity of the rock-fluid system. α is the tortuosity parameter, ϕ is the porosity and m is the cementation factor. If we assume that the α parameter is 1 (an assumption often made for carbonates) the cementation factor can be computed from the measured porosity and formation factor. Cementation factors are reported in Table 1.

Discussion

Resistivity Data

Resistivity data, formation factors and cementation factors for each sample are compiled in the Table I in the Data Section II.

The frequency response of complex resistivity data for these samples was flat over the frequency range. No cable correction was applied since the parasitic impedances were virtually non-existent over the frequency range of 0.1 to 100,000.0 Hz. A temperature correction was applied to the brine conductivity.

The formation factor at a frequency of 20,000 Hz was used to calculate the cementation coefficient. The frequency of 20,000 Hz was chosen to be consistent with past practice; however, any frequency may be used.

The cementation coefficients for these very high porosity rocks are close to 2.0 and show little variation with porosity. For rocks with moldic porosity the cementation coefficient tends to increase with porosity and with overburden pressure, whereas for lime and dolomitic grainstones the cementation coefficient is little affected by the overburden. The overburden pressure variation for the Golden Gate samples was approximately four MPa. The data for these rocks are consistent with a carbonate grainstone interpretation.

Conclusions

Complex impedance was measured on four samples of carbonate. The frequency response of the impedance was flat for the samples over the measured frequency range. Consequently, no cable corrections were applied.

The resistivity of these high porosity samples was quite low and the cementation coefficients were approximately 2. There was no significant variation of the cementation factor with porosity. Low resistivity generally indicates good pore space connectivity and high permeability.

References

1-1

. . . Archie, G. E. "The electrical resistivity log as an aid in determining some reservoir characteristics." Trans., AIME, (1942), 146, p 54.

Focke, J. W. and Munn D., "Cementation Exponents in Middle Eastern Carbonates," SPE Formation Evaluation 2 (1987), p 155-167.

Lucia, F.J., Carbonate Reservoir Characterization, Springer-Verlag, Berlin, 1999.

.,

9 12

nj g

'n.

and the second

,

н. 1³⁴

6.5

Section II: Data

Table 1 Data Summary Golden Gate

9 33

	Core	•	Bulk	PreTest	PreTest Dry Bulk	PreTest	PreTest Sat. Bulk	Archimedes	Average Grain	<i></i>
	Depth	Length	Diameter Volume	Dry Mass	Density	Sat. Mass	Density	Mass	Density	* Porosity
	Feet		(cm) (cm ³)	(g)	. (g/cm ³)		(g/cm ³)	(g)	(g/cm ³)	Vol. Fraction
GG Core 1	1650.2-1650.5	5.40	3.79 61.06	103.23	1.69	125.94	2.06	63.895	2.72	0.378
GG Core 2	1825.7-1826.4	4.68	3.81 53.24	94.18	1.77	112.07	2.11	58.470	2.73	0.352
GG Core 3	2000.7-2001.5	4.48	3.80 50.64	91.92	1.82	108.32	2.14	57.061	2.73	0.335
GG Core 4	2140.65-2141.3	5.16	3.80 58.54	115.19	1.97	131.06	2.24	71:361	2.72	0.277
		·· ,							· · · · · · · · · · · · · · · · · · ·	
ب	,	<u>+</u>	Corrected	· · · · ·		Formation	Formation	Formation		Cementation
	Core Depth Feet	Brine Concentration	Corrected Brine Resistivit Conductivity at 100 H (mS/cm) (ohm-m	y Resistivity z at 1000 Hz) (ohm-m)	Resistivity at 20 kHz (ohm-m)	Formation Factor at 100 Hz	Formation Factor at 1000 Hz	Formation Factor at 20 kHz		Cementation Factor at 20 kHz
GG Core 1	Core Depth Feet	Brine Concentration (g/liter)	Corrected Brine Resistivit Conductivity at 100 H (mS/cm) ohm-m	y Resistivity. z at 1000 Hz (ohm-m)	Resistivity at 20 kHz (ohm-m)	Formation Factor at 100 Hz	Formation Factor at 1000 Hz	Formation Factor at 20 kHz		Cementation Factor at 20 kHz
GG Core 1 GG Core 2	Core Depth Feet 1650.2-1650.5 1825.7-1826.4	Brine Concentration (g/liter)	Corrected Brine Resistivit Conductivity at 100 H (mS/cm) (ohm-m 64.8 1.27 51.9 1.52	ty Resistivity. z at 1000 Hz (ohm-m)	Resistivity at 20 kHz (ohm-m)	Formation Factor at 100 Hz	Formation Factor at 1000 Hz 8.21 7.90	Formation Factor at 20 kHz 8.19 7.88		Cementation Factor at 20 kHz 2.16
GG Core 1 GG Core 2 GG Core 3	Core Depth Feet 1650.2-1650.5 1825.7-1826.4 2000.7-2001.5	Brine Concentration (g/liter) 35 35 35	Corrected Brine Resistivit Conductivity at 100 H (mS/cm) (ohm-m 64.8 1.27 51.9 1.52 51.6 1.60	ty Resistivity. z at 1000 Hz (ohm-m) 1.27 1.52	Resistivity at 20 kHz (ohm-m) 1.26 1.52 1.60	Formation Factor at 100 Hz 8.22 7.92 8.27	Formation Factor at 1000 Hz 8.21 7.90 8.27	Formation Factor at 20 kHz 8.19 7.88 8.25		Cementation Factor at 20 kHz 2.16 1.98 1.93

7

.:.

Sample and Experiment Information for File Golden_Gate_Core_1									
Well:	Golden Gate Core 1	Organization:	Ardaman						
Depth:	503.0 m								
Formation:	Carbonate	Rock type:	Limestone						
Dry bulk density:	1.69	Porosity:	37.8%						
Sat. bulk density:	2.06	Pore fluids:	NaCl Brine						
Diameter:	37.90 mm	Entered Length:	54.00 mm						

Comments:	User: ner on elk at Thur Aug 28 1:35 EDT 2008
Expt name:	1220987119
Expt date:	Thu Aug 28 13:39:35 2008
Print date:	Fri Sep 12 14:56:57 2008
A2D File:	Golden_Gate_Core_1.a2d

	Pressure Information for File Golden_Gate_Core_1						
Event	System	Conf	Pore	Diff	Temp		
· .		MPa	MPa	kN	°C		
0	zmeter4	11.4	5.2	••••••	24.8		

Resistivity for File Golden_Gate_Core_1								
	Requested	Actual	Imp	bedance				
Event	Frequency	Frequency	R	Х	С	Ccorrected	F	
	Hz	Hz	Ωm	Ωm	μS/cm	μS/cm		
0	1.00	0.720	1.26	0.00769	6.51e+04	6.48e+04	8.171	
0	10.0	10.0	1.27	0.00254	6.51e+04	6.48e+04	8.243	
0	100.	72.0	1.27	-0.00203	6.51e+04	6.48e+04	8.223	
0	1.00e+03	1.00e+03	1.27	-0.00177	6.51e+04	6.48e+04	8.210	
0	1.00e+04	7.20e+03	1.27	-0.00633	6.51e+04	6.48e+04	8.204	
0	2.00e+04	1.39e+04	1.26	-0.00999	6.51e+04	6.48e+04	8.191	

Sample and Experiment Information for File Golden_Gate_Core_2					
Well:	Golden Gate Core 2	Organization:	Ardaman		
Depth:	556.5 m	_			
Formation:	Carbonate	Rock type:	Limestone		
Dry bulk density:	1.77	Porosity:	35.2%		
Sat. bulk density:	2.11	Pore fluids:	NaCl Brine		
Diameter:	38.10 mm	Entered Length:	46.80 mm		

Comments:	User: ner on elk at Wed Aug 27 11:15EDT 2008
Expt name:	1220471265
Expt date:	Wed Aug 27 11:16:15 2008
Print date:	Thu Sep 11 16:31:52 2008
A2D File:	Golden_Gate_Core_2.a2d

Pressure Information for File Golden_Gate_Core_2							
Event	System	Conf	Pore	Diff	Temp		
	·	MPa	MPa	kN	°C		
0	zmeter4	12.6	5.6	_	24.1		

Resistivity for File Golden_Gate_Core_2								
	Requested	Actual	Im	pedance				
Event	Frequency	Frequency	R	X	С	Ccorrected	F	
	Hz	Hz	Ωm	Ωm	μS/cm	μS/cm		
0	1.00	0.720	1.52	-0.00823	5.29e+04	5.19e+04	7.904	
0	10.0	10.0	1.53	0.00183	5.29e+04	5.19e+04	7.920	
0	100.	72.0	1.52	-0.00107	5.29e+04	5.19e+04	7.915	
0	1.00 e+ 03	1.00e+03	1.52	-0.00198	5.29e+04	5.19e+04	7.904	
0	1.00e+04	7.20e+03	1.52	-0.00624	5.29e+04	5.19e+04	7.894	
0	2.00e+04	1.39e+04	1.52	-0.0100	5.29e+04	5.19e+04	7.884	

Sample and Experiment Information for File Golden_Gate_Core_3					
Golden Gate Core 3	Organization:	Ardaman			
609.8 m					
Carbonate	Rock type:	Limestone			
1.82	Porosity:	33.5%			
2.14	Pore fluids:	NaCl Brine			
38.00 mm	Entered Length:	44.80 mm			
	Golden Gate Core 3 609.8 m Carbonate 1.82 2.14 38.00 mm	Golden Gate Core 3Organization:609.8 mRock type:1.82Porosity:2.14Pore fluids:38.00 mmEntered Length:			

Comments:User: ner on elk at Wed Aug 27 2:00 EDT 2008Expt name:Golden Gate Core 3Expt date:Wed Aug 27 14:02:55 2008Print date:Thu Sep 11 16:07:06 2008A2D File:Golden_Gate_Core_3.a2d

	Pressure Information for File Golden_Gate_Core_3						
Event	System	Conf	Pore	Diff	Temp		
		MPa	MPa	kN	°C		
0	zmeter4	13.7	6.1		24.0		

Resistivity for File Golden_Gate_Core_3								
	Requested	Actual	Imp	pedance				
Event	Frequency	Frequency	R	Х	. C	Ccorrected	F	
	Hz	Hz	Ωm	Ωm	μS/cm	μS/cm		
0	1.00	0.720	1.64	-0.0278	5.28e+04	5.16e+04	8.452	
0	10.0	10.0	1.61	-0.00643	5.28e+04	5.16e+04	8.292	
0	100.	72.0	1.60	-0.00224	5.28e+04	5.16e+04	8.271	
0	1.00e+03	1.00e+03	1.60	-0.00192	5.28e+04	5.16e+04	8.266	
·0	1.00e+04	7.20e+03	1.60	-0.00576	5.28e+04	5.16e+04	8.256	
0	2.00e+04	1.39e+04	1.60	-0.00911	5.28e+04	5.16e+04	8.246	

Sample and Experiment Information for File Golden_Gate_Core_4					
Well:	Golden Gate Core 4	Organization:	Ardaman		
Depth:	652.7 m				
Formation:	Carbonate	Rock type:	Linmestone		
Dry bulk density:	1. 97	Porosity:	27.7%		
Sat. bulk density:	2.24	Pore fluids:	NaCl Brine		
Diameter:	38.00 mm	Entered Length:	51.60 mm		

Comments:User: ner on elk at Thur Aug 28 2:30 EDT 2008Expt name:1220984765Expt date:Thu Aug 28 14:29:35 2008Print date:Thu Sep 11 16:09:49 2008A2D File:Golden_Gate_Core_4.a2d

	Pressure Information for File Golden_Gate_Core_4						
Event	System	Conf	Pore	Diff	Temp		
	1	MPa	MPa	kN	°C		
0	zmeter4	14.6	6.6		24.1		

Resistivity for File Golden_Gate_Core_4									
	Requested	Actual	Im	pedance					
Event	Frequency	Frequency	R X		С	Ccorrected	F ·		
	Hz Hz		Ωm	Ωm	μS/cm	μS/cm			
0	1.00	0.720	2.18	-0.0107	6.15e+04	6.03e+04	13.15		
0	10.0	10.0	2.16	-0.0143	6.15e+04	6.03e+04	13.02		
0	100.	72.0	2.15	-0.00644	6.15e+04	6.03e+04	12.95		
0	1.00e+03	1.00e+03	2.14	-0.00514	6.15e+04	6.03e+04	12.92		
0	1.00e+04	7.20e+03	2.14	-0.0175	6.15e+04	6.03e+04	12.89		
0	2.00e+04	1.39e+04	2.13	-0.0295	6.15e+04	6.03e+04	12.87		

ARCADIS

Appendix C

Packer Test Summaries and Charts

ARCADIS

PACKER TEST WATER QUALITY SUMMARY

FGUA Golden Gate WWTP Injection Well System

Golden Gate, Florida

MW1

Packer Test No. 1

30	art gate:	1/22/2000							
E	nd date:	1/23/2008		فنصا يبعدننا ويصناك		ببيناويونناك الببرر			
Flowmeter Total-Start (gal) : 340860			-	Open Hole Total Depth (feet bpl) : 1,618					
Flowmet	er Total-	End (gal) :		364680	-	Packer	Depth Interv	/al (feet bpl)	1512-1554.4
Average Test Pumping Rate (gpm) : 84.5			-	Pump Setting Depth (feet bpl):			168.7		
Develop	ment Dur	ration (min)	:	649	-	Transdu		feet bpl):	158.7
Static DT	W Befor	e Test (feet	.api):	9.67		Pipe and open hole volume:			2200+700= 2900 gals.
Date	Time	Elapsed	Pump	Total	Water	Temp.	Cond.	Chlorides	Comments
l '	l	Time	Rate	Volume	Level				· · · · ·
	<u> </u>	(min)	(gpm)	(gal)	(feet apl)	<u>(°C)</u>	(mS/cm)	(mg/L)	
1/21/09	16:55		T		.		elopment	, 	Start air lifting development
1/21/08	10.00	50	-250	12 000	<u> </u>	264	29.400	10 500	
1/21/00	40.45	30	-200	12,000	÷	20.4	23,400	0,500	
1/21/06	18:15	80	~300	21,000		25.3	25,700	9,500	
1/21/08	18:45	110	~300	31,500	÷	26.2	32,100	10,500	
1/21/08	18:55	120	~300	34,500	ļ	26.6	32,400	11,000	
1/21/08	19:00	125	~300	36,000	<u> </u>	26.9	32,700	11,000	
1/21/08	19:01	126	<u>l</u>			' تتقديدان	<u></u>		Complete air lifting development (pits are full).
1/22/08	10:22		107	173.43 ft s	tatic transdu	lcer readir	ng (14.73 ft a	ipi)	Start dev. wth submersible pump (fl. mtr. tot. 292170).
1/22/08	10:55	159	107	39,831	6.21	27.1	34,200	12,500	8.52 ft of drawdown
1/22/08	11:25	189	107	43,041	6.01	27.8	35,200	13,000	8.32 ft of drawdown
1/22/08	11:55	219	101	46,071	5.65	27.9	35,800	13,500	41.60 ft in annulus
1/22/08	12:25	249	102	49,131	5.60	28.1	36,600	14,000	41.78 ft in annulus
1/22/08	12:55	279	105	52,281	n/m	18.2	37,200	14,000	42.03 ft in annulus
1/22/08	13:25	309	104	55,401	5.42	28.3	37,900	14,500	
1/22/08	13:55	339	104	58.521	n/m	28.5	38.400	15.000	
1/22/08	14:25	369	103	61.611	5.20	28.6	38.800	15.500	9.53 ft drawdown
1/22/08	14:55	396	102	64.671		28.6	39,100	15,500	
1/22/08	15.25	429	102	67 731	<u> </u>	28.7	39 400	15 500	
4/22/08	15.55	450	102	70 821	5 20	29.8	20 700	16,000	0 60 8 dourdouro
1/22/00	10.00	405	100	72 921	5.20 E 42		40.100	10,000	
1/22/00	10:20	403	100	70,704	J. 13	+	40,100	10,000	
1/22/00	10:55	519		10,191	4.83	28.0	40,300	16,000	9.90 R drawdown
1/22/08	17:25	549	96	79,6/1	4.82	28.8	40,500	16,500	9.91 ft drawdown
1/22/08	17:55	579	92	82,431	4.85	28.8	40,700	16,500	9.88 ft drawdown
1/22/08	18:25	609	92	85,191	<u> </u>	28.9	41,000	16,500	
1/22/08	18:59	643	92	87,951	<u> </u>	28.4	41,200	16,500	
1/22/08	19:05	649	92	90,711					Pre-set pump rate to 85 gpm. Pump-off. End development.
			1	,					Totalizer = 340860; Approx. 90,700 gals, removed during development

•

PACKER TEST WATER QUALITY SUMMARY

FGUA Golden Gate WWTP Injection Well System

Golden Gate, Florida

MW1 Packer Test No. 1

Start date: 1/22/2008

Flowmeter Total-Start (gal) :	340860	Open Hole Total Depth (feet bpl) : 1,618	
Flowmeter Total- End (gal) :	364680	Packer Depth Interval (feet bpl): 1512-1554.4	
Average Test Pumping Rate (gpm) :	84.5	Pump Setting Depth (feet bpl): 168.7	
Development Duration (min):	649	Transducer Depth (feet bpi): 158.7	
Static DTW Before Test (feet api):	9.67	Pipe and open hole volume: 2200+700= 2900 gals.	

Date	Time	Elapsed	Pump	Total	Water	Temp.	Cond.	Chlorides	Comments	
		Time	Rate	Volume	Level					
4		(min)	(gpm)	(gal)	(feet api)	(°C)	(mS/cm)	(mg/L)		
Pumping Test										
1/23/08	7:31	0	97	0	9.67				Start test: pump-on	
1/23/08	8:01	30	85	2,910	5.79	27.0	38,300	15,000		
1/23/08	8:43	72	86	6,522	4.99	27.8	39,700	16,000	Packer pressure = 340 psi	
1/23/08	9:30	119	86	8,326	4.44	28.4	40,900	16,500	···	
1/23/08	10:05	154	85	11,336	4.24	28.4	41,500	16,500	Packer pressure = 355 psi; pH = 6.89	
1/23/08	10:45	194	84	14,696	3.99	28.7	41,800	16,500	pH = 6.84	
1/23/08	11:20	229	84	17,636	3.97	29.1	42,200	16,500	Packer pressure = 368 psi; pH = 7.26	
1/23/08	L1:55	264	85	20,611	3.77	29.1	42,500	16,500	Collect lab. sample.	
1/23/08	12:10	279	84	23,586	3.82	29.1	42,600	16,500	pH = 7.27	
1/23/08	12:13	282	84	23,820			·		End pump test, start recovery test	
1/23/08	16:00			1.	8.67					
1/23/08	16:13				8.67				End of recovery, retrieve data.	
	-						_		· · · · · · · · · · · · · · · · · · ·	
<i>.</i>							, ,			

"gal" denotes gallons.

"gpm" denotes gallons per minute.

"min" denotes minutes.

"feet bp?' denotes feet below pad level.

"feet apl" denotes feet above pad level.

"°C" denotes degrees celcius.

"mS/cm" denotes milliSiemans per cenitmeter.

"mg/L" denotes milligrams per liter. "ps/" denotes pressure in pounds per square inch.

"rva" denotes data not available.

"NM" denotes not measured.

1000

Static depth to water (DTW) was measured just prior to pumping test startup.

G:WProjects/WR/WF PROJECTS/WF004200.G015 - Golden Gate Injection Well/Submitted (Final) Reports/Letter Submittals to FDEP/Monitoring Zones Recomm/Appendices/ Page 2 of 2

G: AProjects: WRWF PROJECTS: WF004200.G015 - Golden Gate Injection Well/Construction Oversight/Field Forms & Data/Forms MWPacker Tests/Packer Test

G:\AProjects\WR\WF PROJECTS\WF004200.G015 - Golden Gate Injection Well\Construction Oversight\Field Forms & Data\Forms MWPacker Tests\Packer Test 01\PT1REC.xts\PT1REC.xts

ARCADIS

PACKER TEST WATER QUALITY SUMMARY

FGUA Golden Gate WWTP Injection Well System

Golden Gate, Florida

MW1 Packer Test No. 2

Start date: 1/25/2008 Bad dates 4/98/9000

373700	Open Hole Total Depth (feet bpl) :	1,618
396860	Packer Depth Interval (feet bpl):	1102.6-1130.1
89.0	Pump Setting Depth (feet bpi):	168.7
597	Transducer Depth (feet bpl):	158.7
20.07	Ptpe and open hole volume: 160)0+480= 2080 gais
	373700 396860 89.0 597 20.07	373700Open Hole Total Depth (feet bpl) :396860Packer Depth Interval (feet bpl):89.0Pump Setting Depth (feet bpl):597Transducer Depth (feet bpl):20.07Ptpe and open hole volume:164

Date	Time	Elapsed	Pump	Total	Water	Temp.	Cond.	Chiorides	Comments
		Time	Rate	Volume	Level				
		(min)	(gpm)	(gal)	(feet apl)	(°C)	(mS/cm)	(mg/L)	
1/24/08	10:30	0		L				ļ	Start air lifting development.
1/24/08	11:50	80	~100	8,000		27.3	18,510	7,500	
1/24/08	12:50	140	~100	14,000		26.9	18,950	7,500	
1/24/08	13:40	190	~100	19,000		26.8	18,860	7,500	
1/24/08	15:00	270	~100	27,000		26.9	18,900	7,500	
1/24/08	15:20	290	<u></u> ~100	29,000					Complete air lifting development.
1/24/08	16:30	290	96.0	29,000					Start dev. with submersible pump (flow.tot. 364680).
1/24/08	17:00	320	96.0	31,880		28.0	19,200	8,000	
1/24/08	17:30	350	94.0	34,760					Lower development rate to 10 gpm (free flow)
1/24/08	20:55	555	10.0	36,810	5.77	26.6	19,200	8,000	
1/24/08	21:35	585	10.0	37,110	5.64	26.5	19,250	8,000	
1/24/08	21:47	597	10.0	37,230					Pump-off; begin pre-test recovery.
								[37230 gailons pumped during development.
							a		
						Pi	Imping Te	st	
1/25/08	0.09	0	95.0	0	19.53				Start test: pump-on
1/25/08	0:40	31	90.0	2,790	30.17 bpl	27.7	19,260	8,000	· · · · · · · · · · · · · · · · · · ·
1/25/08	1:19	70	90.0	6,300	30.29 bpi	27.5	19,290	8,000	Packer pressure = 325 psi
1/25/08	1:49	100.0	90.0	9,000	30.37 bpl	27.8	19,310	8,000	Adjust (increase) rate to 94 gpm.
1/25/08	2:19	130.0	92.0	11,760	32.53 bpl	27.7	19,240	8,000	Packer pressure = 325 psi; pH = 6.99
1/25/08	2:49	160.0	92.0	11,760	32.47 bpl	27.7	19,230	8,000	pH = 7.01
1/25/08	3:19	190.0	92.0	11,760	32.43 bpl	27.6	19,220	8,000	Packer pressure = 368 psi; pH = 7.26
1/25/08	3:49	220.0	92.0	11,760	32.69 bpl	27.5	19,200	8,000	
1/25/08	4:19	250.0	90.0	22,740	32.20 bpl	27.4	19,160	8,000	pH = 7.27
1/25/08	4:25	256.0	90.0	23,280					Collect lab. sample.
1/25/08	4:29	260.0	90.00	23,640					End pump test, start recovery test
· · · · · · · · · · · · · · · · · · ·						1		1	

notes gallons.

- Tank

.

"gaf" denotes galions. "gpm" denotes galions per minute. "min" denotes minutes. "test bpl" denotes feet below pad level. "C" denotes feet above pad level. "C" denotes degrees celcius. "mS/cm" denotes milliStemans per centimeter. "mg/L" denotes pressure in pounds per square inch. "Va" denotes data not available. "N/M" denotes not measured. Static depth to water (DTW) was measured just prior to pumping test startup.

G:VAProjects/WR/WF PROJECTS/WF004200.G015 - Golden Gate Injection Well/Construction Oversight/Field Forms & Data/Forms MWPacker Tests/Packer Tests 02/Test 02 WQ.uts/Ragie 1 of 1

G: AProjects/WR/WF PROJECTS/WF004200.G015 - Golden Gate Injection Well/Construction Oversight/Field Forms & Data/Forms MWAPacker Tests/Packer Test 02/PT2 DD.xts

.

G: AProjects/WR/WF PROJECTS/WF004200.G015 - Golden Gete Injection Well/Construction Oversight/Field Forms & Data/Forms MWPecker Tests/Packer Test 02/PT2 REC.xls

ARCADIS

PACKER TEST WATER QUALITY SUMMARY

FGUA Golden Gate WWTP Injection Well System Golden Gate, Florida

MW1 Packer Test No. 3

Start date: 1/26/2008 End date: 1/26/2008

Flowmeter Total-Start (gal) :	413360	Open Hole Total Depth (feet bpl) :	1,618	
Flowmster Total- End (gal) :	429130	Packer Depth Interval (feet bpi):	1222.8-1250.1	
Average Test Pumping Rate (gpm) :	65.2	Pump Setting Depth (feet bpi):	168.7	
Development Duration (min):	392	Transducer Depth (feet bpl):	168.7	
Static DTW Before Test (feet api):	13.99	Pipe and open hole volume: 177	0+390= 2160 gals.	

Date	Time	Elapsed	Pumping	Total	Water	Temp.	Cond.	Chlorides	Comments
	1	Time	Rate	Volume	Level		-		
i. 1	1	(min)	(gpm)	(gal)	(feet bpl)	(°C)	(mS/cm)	(mg/L)	
			·····		······································	D	evelopme	nt	
1/25/08	16:25	0							Start air lifting development.
1/25/08	18:30	125	~30	~3750		25.3	23,600	10,000	Stop air lifting, water clear. Packer pr. 325 psi.
1/25/08	19:05	125	23	3,750					Start dev. with submersible pump (flow.tot. 396760).
1/25/08	20:00	178	23	5,000	~10 bpl				Stop- replace pump with a bigger one
1/25/08	20:50	178	90	5,000					Resume development. Packer pr. 305 psi.
1/25/08	21:10	188	76	6,600		27.3	26,800	11000	
1/25/08	21:40	218	78	8,940	111.62	27.3	28,800	11,500	
1/25/08	22:10	248	75	11,190	112.20	27.1	29,700	12,000	
1/25/08	22:40	278	75	13,440	111.75	27.0	30,900	12,500	Packer press. Down to 200 psl. Add pressure to 310 psi.
1/25/08	23:10	308	76	15,730	112.10	27.3	31,100	12,500	Packer pressure: 305 psi.
1/25/08	23:40	338	76	18,010	112.42	27.9	31,300	12,500	
1/26/08	0:10	368	75	20,260	112.20	28.0	31,400	12,500	Packer pressure 300 psi
1/26/08	0:34	392	75	22,060					Pump-off, start pre-test recovery.
			[·				<u> </u>		Approx. 22,100 gals. Were removed during development.
						P	umping Te	ist	
1/26/08	3:03	0	80	0	13.99 apl	1			Start test: pump-on; packer press. 300-340 psi.
1/26/08	3:35	32	68	2,244	88.48	27.4	31,200	12,500	
1/26/08	4:05	62	62	4,104	89.43	27.7	31,600	12,500	Adjust rate to 66 gpm
1/26/08	4:35	92	65	4,104	89.55	27.6	31,700	12,500	
1/26/08	5:05	122	62	5,964	89.26	27.6	31,900	12,000	Adjust rate again to 66 gpm.
1/26/08	5:35	152	62	7,824	93.19	27.7	32,300	12,500	
1/26/08	6:05	182	62	9,684	93.20	27.7	32,400	12,500	
1/26/08	6:35	212	62	11,544	93.15	27.8	32,300	12,500	
1/26/08	6:65	232	63	14,750	93.16	27.7	32,200	12,500	
1/26/08	7:00	237	63	15,100					Collect lab. Sample.
1/26/08	7:05	242	63	15,400					End pump test, start recovery

"gef" denotes gallons. "gpm" denotes gallons per minute. "min" denotes minutes. "feet bpl" denotes feet below pad level. "feet apl" denotes feet above pad level.

"C" denotes decrees celcius. "mS/cm" denotes milliSiernans per cenitmeter. "mg/L" denotes milligrams per liter.

"psi" denotes pressure in pounds per square inch.

"N/#" denotes data not available. "N/M" denotes not measured. Static depth to water (DTW) was measured just prior to pumping test startup.

G1AProjects1WRIWF PROJECTS1WF004200.G015 - Golden Gete Injection Well/Construction Oversight/Field Forms & Data/Forms MWPacker Tests1Packer Test 03/ Test 03 WQ.ds

G:AProjects/WR/WF PROJECTS/WF004200.G015 - Golden Gete Injection Well/Construction Oversight/Field Forms & Data/Forms MWPacker Tests/Packer Test 03/PT3drawd.xfs

G:AProjects/WR/WF PROJECTS/WF004200.G015 - Golden Gate Injection Well/Construction Oversight/Field Forms & Data/Forms MW/Packer Tests/Packer Test 03/PT3rec.uts

••••

ARCADIS

-----..... 4.5

ŧ.,.5

100

1915

1

PACKER TEST WATER QUALITY SUMMARY

والمراجع والمراجعة والمحافظ المرورة المراجع والمردين المراجع والمراجع والمراجع والمراجع والمراجع

FGUA Golden Gate WWTP Injection Well System Golden Gate, Florida

MW1 Packer Test No. 4

Start date: 1/28/2008 End date: 1/29/2008

	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
Flowmster Total-Start (gal) :	438168	Open Hole Total Depth (feet bpl) :	1,618
Flowmeter Total- End (gal) :	459910	Packer Depth Interval (feet bpi):	1012.6-1045
Average Test Pumping Rate (gpm) :	89.5	Pump Setting Depth (feet bpi):	168.7
Development Duration (min):	220	Transducer Depth (feet bpl):	158.7
Static DTW Before Test (feet apl):	23.82	Pipe and open hole volume: 14	180+540= 2020 gais.

Date	Time	Elapsed	Pumping	Total	Water	Temp.	Cond.	Chlorides	Comments
		Time	Rate	Volume	Level				
		(min)	(gpm)	(gal)	(feet bpl)	(୦୦)	(mS/cm)	(mg/L)	
						D	evelopme	nt	
1/28/08	14:45	0	1						Start air lifting development.
1/28/08	15:45	60	~40	~2400		26.5	9,240	3,500	
1/28/08	16:45	120	~40	~4800		27	9,300	3,500	
1/28/08	16:55	130	~40	~5250					Stop air lifting, water clear. Packer pr. 350 psl. Stable.
1/28/08	18:30	130	~105	5,250					Start dev. with submersible pump (flow.tot. 429130).
1/28/08	18:38	138	101	5,250	~23	27.3	9,240	3,500	Packer pressure 350 psi.
1/28/08	19:00	160	98	5,250	28.65	27.1	9,240	3,500	
1/28/08	19:25	185	100	7,750	26.88	27.3	9,260	3,500	
1/28/08	19:50	210	100	10,250	27.04	27.4	9,260	3,500	
1/28/08	20:00	220	100	14,214					Pump-off, start pre-test recovery.
						-			`
					··.	Pi	umping Te	st	
1/28/08	22:16	0	93	0	23.82 ft apl				Start test: pump-on; packer press. 345 psl. Ann. 32.77
1/28/08	22:40	24	89	2,136	19.81	27.3	9,260	3,500	Annulus; 32.81ft
1/28/08	23:05	49	89	4,381	20.22	27.6	9,240	3,500	
1/28/08	23:30	74	88	6,561	20.32	27.9	9,230	3,500	Annulus: 32.21
1/28/08	23:55	99	89	8,786	20.42	27.8	9,240	3,500	
1/29/08	0:20	124	87	10,961	20.50	27.8	9,240	3,500	Annulus: 32.21, pH=8.94
1/29/08	0:45	149	90	13,211	20.55	27.7	9,230	3,500	,
1/29/08	1:10	174	90	15,461	20.61	27.6	9,220	3,500	
1/29/08	1:35	199	89	17,686	20.64	27.8	9,240	3,500	Annutus: 33.90
1/29/08	2:00	224	90	19,936	20.54	27.7	9,230	3,500	
1/29/08	2:15	239	91	22,211	20.39	27.7	9,240	3,500	Collect lab. Sample.
1/29/08	2:19	243	91	22,575					End pump test, start recovery

"gal" denotes gallons.

"gom" denotes gallons per minute.

XU-R O

in Cha

"min" denotas minutas. "feet bpi" denotas feet below pad level. "feet api" denotas feet above pad level.

°C" denotes degrees celcius. "mS/cm" denotes milliSiemans per cenitmeter.

"mg/L" denotes milligrams per liter.

"myL" centres milligrams per inter. "psi" denotes pressure in pounds per square inch. "n/a" denotes data not avaitable. "N/M" denotes not measured. Static depth to water (DTW) was measured just prior to pumping test startup.

G: AProjects/WR/WF PROJECTS/WF004200.G015 - Golden Gete Injection WethConstruction Oversight/Field Forms & Data/Forms M/WPecker Tests/Packer Test 04/ Test 04 WQ xls

G: AProjects/WR/WF PROJECTS/WF004200.G015 - Golden Gate Injection Well/Construction Oversight/Field Forms & Data/Forms MWPacker Tests/Packer Test 04/ PT4drawd.xls

. . .

G:AProjects/WR/WF PROJECTS/WF004200.G015 - Golden Gate Injection WelhConstruction Oversight/Field Forms & Data/Forms MWPacker Tests/Packer Test 04/PT4rec.xls

.

PACKER TEST WATER QUALITY SUMMARY

FGUA Golden Gate WWTP Injection Well System

Golden Gate, Florida

IW1 Packer Test No. 5 (single packer) Tostad interval 4554 4625 4 hal

Start date: 4/6/2008 End date: 4/6/2008		Tested Interval. 1554-1655 It bpi						
Flowmeter Total-Start (gal) :	10165	Open Hole Total Depth (feet bpl) :	1,635					
Flowmeter Total- End (gal) :	18920	Packer Depth Interval (feet bpl):	1,554					
Average Test Pumping Rate (gpm) :	36.3	Pump Setting Depth (feet bpl):	183					
Development Duration (min):	547	Transducer Depth (feet bpi):	166.42					
Static DTW Before Test (feet apl):	3.07	Pipe and open hole volume:	2278+572=2850 gais					

Date	emiT	Elapsed	Pumping	Total	Water	Temp.	Cond.	Chlorides	Comments
		Time	Rate	Volume	Level			, ,	
:		(min)	(gpm)	(gal)	(feet bpl)	(°C)	(mS/cm)	(mg/L)	
				sa shusara					
4/6/08	2:05	0	~20	0	n/a	n/a	n/a	n/a	Start air lifting development. Packer press. 365 psl.
4/6/08	6:45	280	~50	~14000	n/a	23.8	47,900	16,000	· · · · · · · · · · · · · · · · · · ·
4/6/08	7:55	350	~50	~17500	n/a	27.2	49,800	17,500	
4/6/08	8:00	355	~50	~17750	n/a	n/a	n/a	n/a	Stop air lifting, water clearing. Packer pr.325psi.
4/6/08	9:45	355	45	17,750	n/a	n/a	n/a	n/a	Start dev. with submersible pump (flowmtr.tot. 3260).
4/6/08	10:35	405	36	19,550	32.00	28.6	49,900	17,500	Packer pressure 365 psi.
4/6/08	11:20	450	36	21,170	n/a	28.8	50,600	18,500	
4/6/08	12:00	490	36	22,610	n/a	28.9	50,500	18,500	
4/6/08	12:45	535	36	24,230	n/a	29.0	50,500	18,500	Annular space reading: 27.80ft above tramsducer.
4/6/08	12:57	547	36	26,660	n/a	n/a	n/a	r/a	Pump-off, start pre-test recovery. pH=7.07
;			· · · · · ·			P	umping Te	est	
4/6/08	16:08	0	43	0	3.07	n/a	n/a	n/a	Pump-on, begin pumping rate test.
4/6/08	16:58	50	37	1,800	136.03	29.4	51,400	18,000	Annular space reading: 28.97 ft above tramsducer.
4/6/08	17:28	80	36	2,880	137.31	29.6	50,500	18,000	1 volume purged.
4/6/08	18:18	130	36	4,680	138.12	29.7	51,000	18,500	Annular space reading: 30.96 ft above tramsducer.
4/6/08	19:08	180	36	6,480	138.35	28.8	51,000	18,500	Water lab. sample collected at 19:20 by YBI
4/6/08	19:50	222	36	7,992	136.41	29.9	51,000	18,500	pH=7.43, water-level is bouncing back.
4/6/08	20:09	241	36	8,676	136.26	n/a	n/a	n/a	Pump-off, begin recovery.

"gal" denotes gallons. "gpm" denotes gallons per minute.

"min" denotes minutes.

"Tiet bp" denotes fielt below pad level. "Teet ap" denotes feet above pad level. "C" denotes decrees celclus. "mS/cm" denotes milliSiemans per centimeter. "mg/L" denotes milligrams per liter.

"psi" denotes pressure in pounds per square inch. "n/a" denotes data not available.

"NM" denotes not measured. Static depth to water (DTW) was measured just prior to pumping test startup.

1 1

.

.

)

N 2 1

PACKER TEST WATER QUALITY SUMMARY

FGUA Golden Gate WWTP Injection Well System

Golden Gate, Florida

IW1 Packer Test No. 6 (straddle packer)

Tested interval:1558.6-1576.5 ft bol

St	Start date: 4/9/2008 Tested interval:1558.6-1576.5 ft bpl									
E	nd date:	4/10/2008								
Flowmet	er Total-	Start (gal) :		21780		Open He	ole Total Dep	oth (feet bpi): 1,635	
Flowmeter Total- End (gal) : 26490					Packer	Depth Interv	al (feet bpl):	1558.6-1576.5		
Average	Test Pun	nping Rate	(gpm) :	16.5		Pump S	etting Depth	(feet bpi):	183	
Develop	nent Dur	ation (min):		386		Transdu	icer Depth (f	eet bpl):	166.67	
Static DT	W Befor	e Tøst (feet	api):	0.23		Pipe and	d open hole	volume:	2290+150=2240 gais	
			···· ·					, ati		
Date	Time	Elapsed	Pumping	Total	Water	Temp.	Cond.	Chlorides	Comments	
		Time	Rate	Volume	Level					
		(min)	(gpm)	(gai)	(feet bpl)	(°C)	(mS/cm)	(mg/L)	· · · · · · · · · · · · · · · · · · ·	
						<u></u> D	evelopme	nt		
4/9/08	13:55	0	n/a	0	n/a	n/a	n/a	n/a	Start air lifting development. Packer press. 285 psi.	
4/9/08	15:00	65	~15	n/a	n/a	n/a	п/а	n/a	v. turbid, milky, full of sediments	
4/9/08	17:25	210	~15	~3150	n/a	26.9	49,400	19,000	clearing, slightly turbid.	
4/9/08	17:30	215	~15	~3225	n/a	n/a	r/a	n/a	Stop air lifting. Packer press. 335 psi.	
4/9/08	18:45	215	rı/a	~3225	n/a	n/a	n/a	n/a	Start dev. with submersible pump (flowmtr.tot. 18,920).	
4/9/08	19:35	265	16	4,240	153.02	28.8	50,600	19,500		
4/9/08	20:15	305	16	4,880	153.31	28.7	50,700	19,500		
4/9/08	20:55	345	16	5,520	153.61	28.8	50,700	19,500		
4/9/08	21:25	375	16	6,000	153.41	28.9	50,700	19,500	Packer pressure 300 psi. Annular reading: 41.26 feet.	
4/9/08	21:36	386	16	6,180	153.38	n/a	n/a	n/a	Pump-off, start pre-test recovery. pH=7.20	
						Pı	umping Te	est		
4/10/08	0:01	0	31	0	0.23 apl	n/a	n/a	n/a	Pump-on, packer test #6.	
4/10/08	0:45	44	17	860	151.61	28.8	50,800	19,500	Annular space reading: 41.23 ft above tramsducer.	
4/10/08	1:30	89	17	1,625	152.88	28.7	50,800	19,500	Packer pressure:302psi. Annulus:41.35 feet a.tr.	
4/10/08	2:15	135	16	2,345	152.91	28.6	50,900	19,500	Annular space reading: 41.47 ft above tramsducer.	
4/10/08	3:01	180	16	3,065	153.34	28.8	50,900	19,500	Annular space reading: 41.60 ft above tramsducer.	
4/10/08	3:31	210	16	3,545	153.50	n/a	n/a	n/a		
4/10/08	4:01	240	16	4,025	153.48	28.7	50,900	19,500	Collect Lab. Sample. pH=7.38	
4/10/08	4:45	284	16	4,730	153.45	n/a	n/a	n/a	Water levels bouncing back since 04:20.	
4/10/08	4:47	286	16	4,760	n/a	n/a	n/a	n/a	Pump-off; begin rcovery.	

"gal" denotes gallons.

"gpm" denotes gallons per minute.

"min" denotes minutes.

"feet bpi" denotes feet below pad level. "feet api" denotes feet above pad level.

"°C" denotes degrees celcius. "mS/cm" denotes milliSiemans per cenitmeter.

"mg/L" denotes milligrams per liter.

"psi" denotes pressure in pounds per square inch.

"n/a" denotes data not available.

"NM" denotes not measured. Static depth to water (DTW) was measured just prior to pumping test startup.

the second second second second second second second second second second second second second second second s

PACKER TEST WATER QUALITY SUMMARY

FGUA Golden Gate WWTP Injection Well System

Golden Gate, Florida

IW1 Packer Test No. 7 Tested interval:1618.6-1628.5 ft bpi

Start date: 5/17/2008

E	ind date:	5/19/2008	i						
Flowmet	er Total-	Start (gal) :	n/a			Open H	ole Total De	pth (feet bp/	i) : 3007 (obstruction)
Flowmet	er Total-	End (gal) :	n/a		_	Packer	Depth Interv	/al (feet bpl):	: 1618.6-1636.5
Average	Test Pur	nping Rate	(gpm) :	0.67		Pump S	etting Depth	ı (feet bpl):	178
Developr	ment Dur	ation (min)	/: 	252		Transdr	ucer Depth (f	feet bpi):	166
Static DTW Before Test (feet bpi): 5.56						Pipe an	d open hole	volume:	2360+240=2600 gais
-					·			·	
Date	Time	Elapsed	Pumping	Total	Water	Temp.	Cond.	Chlorides	Comments
- 1	1	Time	Rate		Level	1 '	1		
L	 '	(min)	(gpm)	(gai)	(feet bpl)	<u>(</u>	(mS/cm)	(mg/L)	
			-				evelopme	<u>mt</u>	
5/17/08	19:05	0	n/a		n/a n/a				Start alr lifting development. Packer press. 320 psi.
5/17/08	19:55	50	4	~50	nva p/a	25.5	72,100	23,000	cloudy
5/1//00	20.00	110		<110 <115	1V8	20	1V4	11/0	Citaling, seguing wood.
0/1//00	21:00	GIT		<110	199	I IVA	- IVa		סנסף צוו ווווווק. דאנאנק איפשא אייי אייי
5/17/08	23:08	115	15	<115	~90	n/a	n/a	n/a	Start dev.with pump (measurements in calibrated container)
5/17/08	23:35	142	0.86	~170	127.30	27.2	55,500	17,500	Pumping rate stabilized.
5/18/09	0:05	172	0.82	195	131.89	29.0	56,200	18,000	Water clear. Annulus: 12.32 ft.
5/18/09	0:35	202	0.82	220	133.55	27.9	56,700	18,000	
5/18/09	1:05	232	0.90	247	142.13	28.9	57,300	18,000	Packer pressure 315 psl. Annular reading: 12.43 feet.
5/18/09	1:25	252	0.85	263	∩/a	rı/a	n/a	n/a	Pump-off, start pre-test recovery.
1						P	umping T	est	
5/18/08	13:52	0	0	0	5.56	п/а	n/a	n/a	Pump-on, begin packer test # 7. Adjust pump rate.
5/18/08	13:56	4	0.78	~6	n/a	n/a	n/a	n/a	Pump rate stable.
5/18/08	14:22	30	0.75	26	23.12	28.3	56,500	18,000	Annulus: 12.79 ft.
5/18/08	14:52	60	0.70	47	33.49	27.9	58,700	18,500	
5/18/08	15:22	90	0.69	68	44.32	27.8	58,700	18,500	
5/18/08	15:52	120	0.67	88	54.10	27.6	58,400	18,500	
5/18/08	16:22	150	0.65	88	62.18	27.9	58,700	18,500	Annulus: 12.92 ft.
5/18/08	16:52	180	0.64	127	69.09	28.1	59,000	18,500	
5/18/08	17:22	210	0.64	146	75.29	28	59,100	18,500	Annuals: 12.80 ft.
5/18/08	17:52	240	0.63	146	80.07	27.9	58,900	18,500	
¥18/08	18:22	270	0.61	164	85.14	28	58.600	18,500	Drillers collect lab. Sample. Ann:=12.72

118/08 18:54

5/18/08

al" denotes gallons.

18:52

, om" denotes gallons per minute. "min" denotes minutes.

"et apl' denotes feet below pad level. ret apl' denotes feet above pad level.

" dentes decress celcius S/cm" denotes milliSiemans per cenitmeter.

300

302

"mg/L" denotes milligrams per liter.

"psi" denotes pressure in pounds per square inch.

/a" denotes data not available. I/M" denotes not measured.

atic depth to water (DTW) wass measured just prior to pumping test startup.

0.60

n/a

89.01

n/a

182

183

27.8

n/a

58,400

n/a

18,500

n/a

Pump-off, begin recovery.

C:\Documents and Settings\Golden Gata\GG (W1 final czg request\Append-C- Packer Test WQ data\/W1 Packer Tests\PT #7\PT #7 Tables and Charta\ PT #7 DD.ds

C:\Documents and Settings\Golden Gate\GG IW1 final csg request\Append-C- Packer Test WQ data\IW1 Packer Tests\PT #7\PT #7 Tables and Charts\ PT #7 Rec.xls

PACKER TEST WATER QUALITY SUMMARY

FGUA Golden Gate WWTP Injection Well System

Golden Gate, Florida

IW1 Packer Test No. 8 (straddle packer) Tested interval:1704.6-1722.5 ft bpl

Start date: 5/19/2008 End date: 5/20/2008

Flowmeter Total-Start (gal) : n/a		Open Hole Total Depth (feet bpl) :	3007 (obstruction)
Flowmster Total- End (gal) : n/a		Packer Depth Interval (feet bpl):	1704.6-1722.5
Average Test Pumping Rate (gpm) :	0.81	Pump Setting Depth (feet bpl):	178
Development Duration (min):	486	Transducer Depth (feet bpl):	166.1
Static DTW Before Test (feet bpi):	1.4 apl	Pipe and open hole volume:	2470+240=2710 gais

Date	Time	Elapsed	Pumping	Total	Water	Temp.	Cond.	Chiorides	Comments
		Time	Rate	Volume	Lovel		i		-
		(min)	(gpm)	(gal)	(feet bpl)	(୦୦)	(mS/cm)	(mg/L)	
						De	velopmen	t	
5/19/2008	6:20	0	1.0	0	n/a	n/a	n√a	n/a	Start development with a pump.
5/19/2008	6:45	25	~15	15	151.00	n/a	n/a	n/a	Pump-on for the 1 st surge.
5/19/2008	0 :51	31	~30	~200	145.40	28.7	57,200	19,000	Pump-off.
5/19/2008	8:33	133	~10	~200	94.50	n/a	n/a	n/a	Pump-on for 2nd surge.
5/19/2008	8:38	138	~10	270	147.10	28	57,000	19,000	Pump-off.
5/19/2008	10:47	267	~8	270	94.90	n/a	n/a	n/a	Pump-on for 3rd surge.
5/19/2008	10:51	271		245	146.50	28.1	58,400	19,000	Pump-on.
5/19/2008	12:41	381	1.1	245	100.20	nva	nva	nva	Pump-on for rate adjustment. Annuus=12.7 n.
5/19/2008	12:50	390	0.87	203	124.60	70.9	FR 700	10.500	Rate abjusted, monitor drawdown.
5/18/2006	14.20	400	0.0/	330	124.00	D.	moing Ter	19,000	reate statue, pranip on, begut pre-test recuvery.
5000000	40:00	0	0.99	0	1.4*		mping rec	a h	Ruma on basin nactor test # 8 Packer ot = 300
5/20/2008	10.00		0.00		1.4	tva	198	(va	
5/20/2008	10:11	11	0.91	10	nva	nva	n/a	rva	
5/20/2008	10:20	20	0.88	18	na	na	na	na	
5/20/2008	10:31	31	.0.90	28	19.60	28.2	58500	20,500	Annulus = 12.828, Packer=300 psi
5/20/2008	10:57	60	0.87	53	34.00	28.4	58400	20,500	Annutus=12.837, Packer=300 psi
5/20/2008	11:30	90	0.66	79	49.52	28.5	58900	21,500	Annutus=12.843, Packer=300 psi
5/20/2008	11:58	118	0.83	102	61.34	28.9	59400	22,500	Annutus=12.844, Packer=300 psi
5/20/2008	12:30	149	0.81	127	71.68	28.8	59300	22,500	Annuius=12.841, Packer=300 psi
5/20/2008	13:00	179	0.80	151	82.98	29.1	59600	20,000	Annulus=12.841, Packer=300 psi
5/20/2008	13:31	211	0.78	176	90.82	28.5	59400	20,000	Annutus=12.841, Packer=300 psl, re-adjust pump rate to 0.82 gpm
5/20/2008	14:01	241	0.80	200	100.14	29.2	59600	21,500	Annutus=12.841, Packer=300 psi
5/20/2008	14:29	269	0.78	222	107.26	n/a	n/a	n/a	Annulus=12.836, Packer=300psi, re-adjust pump rate
5/20/2008	14:34	274	0.85	226	108.50	29.3	59700	19,500	Annutus=12.838, Packer=300psi
5/20/2008	15:01	301	0.82	248	114.54	29.5	59900	21,000	Annutus=12.830, Packer=300 psi
5/20/2008	15:31	331	0.80	272	120.67	29.5	59900	21,000	Annulus=12.812, Packer=300 psi
5/20/2008	15:58	358	0.79	294	125.41	n/a	n/a	n/a	Annutus=12.794, Packer=300 psi - Adjust pump rate
5/20/2008	16:05	365	0.85	300	127.241	29.6	59600	20,000	Annulus=12.788, Packer=300 psi
5/20/2008	16:31	391	0.82	321	131.012	29.7	59800	19,500	Annutus=12.773, Packer=300 psi
5/20/2008	16:59	419	0.77	343	135.637	n/a	n/a	n/a	Annulus=12.773, Packer=300 psi
5/20/2008	17:05	428	0.81	348	136.608	29.9	59900	20,500	Annutus=12.773, Packer=300 psi
5/20/2008	17:29	449	0.79	366	139.30	29.9	60000	20,500	Annulus 12.713, Packer=295 psi, Pump-off, begin recovery.

"gal" denotes gallons.

"gpm" denotes galione per minute.

"min" denotes minutes.

"feet bpl" denotes feet below pad level.

°C" denotes degrees celcius.

"mS/cm" denotes milliSlemans per cenitmeter.

"mg/L" denotes milligrams per liter.

"psi" denotes pressure in pounds per square inch.

"n/a" denotes data not available.

"N/M" denotes not measured.

Static depth to water (DTW) wass measured just prior to pumping test startup.

* Denotes water level above pad level (feet).

C\Documents and Settings\Golden Gete\GG IW1 final cag request\Append-C- Packer Test WQ deta\W1 Packer Tests\PT#8\Tables & Charts\ PT# 8 DD.xis

PACKER TEST WATER QUALITY SUMMARY

FGUA Golden Gate WWTP Injection Well System Golden Gate, Florida

W1 Packer Test No. 9 (straddle packer) Tested interval:1813.6 -1832.5 ft bpl

Start date: 5/21/2008 End date: 5/22/2008

1	Flowmet	er Total-I	Start (gal) :	n/a			Open H	ole Total Der	pth (feet bpi	i): 3007 (obstruction)
ľ)	Flowmet	er Total-	End (gal) :	n/a		- .	Packer	Depth Interv	al (feet bpl):	: 1813.6-1832.5
	Average	Test Pur	mping Rate	(gpm) :	0.67	· ·	Pump S	ietting Depth	(feet bpi):	178
ец. Е.,	Davelop	mont Dur	retion (min)		468		Transd	weer Depth (f	laat hol);	168.1
N, i	Static D1	W Refor	Tast feel	<u>.</u>	22.90		Pine an	d open hole	volume:	2670+240=2910 ask
<i>91,</i> 1				- Lingersyn						74/4-844-84 14 Bars
77	Date	Time	Elansed	Pumping	Total	Water	Temp.	Cond	Chiorides	Comments
¥.	/ ł	, .	Time	Rate	Volume	Lovel	1			
43	1 1	i I	(min)	(000)	(nal)	(feet bol)	1 in	(mS/cm)	(ma/1)	
_	ليتسبيه		(man)	Ghun		(ICCL UP)		avelonme	(119/-) at	<u> </u>
Ŵ	5/21/08	7.34		00	0	6.09		n/a	n/a	Start development with pump. #5=160.012. Surge 1
阆	5/21/08	7:40	8	29.08	174.5	146.51	28.4	56.300	19.500	Pump off will allow to recover
	5/21/08	9:23	109	0.0	174.5	130.46	n/a	n/a	n/a	Resume development with pump. Surge 2
A)	5/21/08	9:24	110	26.5	201	147.08	27.5	54.800	19.000	Pump off. will allow to recover. Annulus=17.959
譋	5/21/08	11:25	229	0.0	201	124.19	n/a	n/a	n/a	recoverying, Annulus=17.947, packer = 300 psi
щ	5/21/08	12:43	307	0.0	201	111.19	n/a	n/a,	n/a	
-	5/21/08	12:46	310	0.0	203	115.66	15.66 n/a n/a F		n/a	Pump on, Start establishing flow rate
橌	5/21/08	13:07	331	0.62	216	118.23	n/a	n/a	n/a	
Ľ	5/21/08	13:34	358	0.60	232	126.36	n/a	Na	n/a	
	5/21/08	14:07	391	0.57	251	134.59	28.8	59,400	20,500	
Ð	5/21/08	14:34	418	0.55	268	140.60	28.9	60,100	21,500	Annutus = 18.044, Packer = 300 psi
ł,	5/21/08	14:58	442	0.53	279	* 145.83	28.8	57,000	18,500	
"]	5/21/08	15:24	468	0.53	292	150.43	n/a	n/a	n/a	Stop development, start pro-test recovery
m ⁱ	(10.04				1	P	umping Te	ist	
ĥ	5/22/08	12:28	0	0.00	. 0	22.88	n/a	n/a	i n/a	Pump-on, begin packer test #9; annutus=17.98
192	5/22/08	12:30	2	0.70	1	n/a	n/a	n/a	n/a	Packers press.=295 psi.
C)	5/22/08	12:34	6	0.70	4	: n/a	n/a	ก/ล	n/a	, , , , , , , , , , , , , , , , , , , ,
	5/22/08	12:58	30	0.67	17	42.63	28.6	58,200	18,500	
11	5/22/08	13:28	60	0.66	37	55,32	28.5	58,500	18,500	, <u> </u>
ni))	5/22/08	13:58	90	0.65	56	68.04	28.6	58,300	18,500	· · · · · · · · · · · · · · · · · · ·
	5/22/08	14:28	120	0.65	76	80.30	28.7	59	18,500	
Ĩ	5/22/08	14:30	122	n/a	n/a	n/a .	n/a	n/a ·	n/a	Pump-off, begin recovery. Annulus level: 18.01

gal" denotes gallons.

gpm" denotes gallons per minute. imin" denotes minutes.

Teet bpl" denotes feet below pad level. "feet apl" denotes feet above pad level.

°C" denotes degrees celclus.

"mS/cm" denotes milliSiemans per cenitmeter.

mg/l." denotes milligrams per liter.

"rys" denotes pressure in pounds per square inch. "rya" denotes data not available.

"N/M" denotes not measured.

Th.

Ų

static depth to water (DTW) was measured just prior to pumping test startup.

CADocuments and Settings\Golden Gsta\GG IW1 final csg request\Append-C- Packer Test WQ data\IW1 Packer Tests\PTW9\Test data and charts\ PT W9 DD.xds

ł

-

)

. .

FGUA Golden Gate WWTP Injection Well System

Golden Gate, Florida

iW1 Packer Test No. 10 Tested interval: 2138.6-2157.5 ft bpl

Start date: 5/23/2008 End date: 5/23/2008

C

Flowmeter Total-Start (gal) : n/a	96	Open Hole Total Depth (feet bpl) :	3007 (obstruction)
Flowmeter Total- End (gai) : n/a	188	Packer Depth Interval (feet bpl):	2138.6-2157.5
Average Test Pumping Rate (gpm) :	0.77	Pump Setting Depth (feet bpi):	178
Development Duration (min):	277	Transducer Depth (feet bpi):	166.1
Static DTW Before Test (feet bpl):	12.86	Pipe and open hole volume:	3150+240=3390 gais

Date	Time	Elapsed	Pumping	Total	Water	Temp.	Cond.	Chlorides	os Comments						
		Time	Rate	Volume	Level										
		(min)	(gpm)	(gal)	(feet bpl)	(୦୦)	(mS/cm)	(mg/L)							
						D	evelopme	nt							
5/23/08	0:10	0	35	0	3.40	n/a	n/a	n/a	Start development with pump.Surge # 1. Annulus:12.65 ft.						
5/23/08	0:16	6	33	175	140.70	27.7	54,300	18,500	Pump off.						
5/23/08	1:49	99	27.0	175	105.75	n/a	n/a	n/a	Pump- on for surge # 2.						
5/23/08	1:52	102	27.0	230	146.10	27.6	54,600	18,500	Pump-off.						
5/23/08	3:16	186	0.0	230	111.90	n/a	n/a	n/a	Pump-on, adjusting rate for pump test. Annutus: 12.56 ft.						
5/23/08	3:25	195	2.0	248	122.00	n/a	n/a	n/a							
5/23/08	3:37	207	2.0	272	133.50	n/a	n/a	n/a	Lower pumping rate to 1 gpm.						
5/23/08	4:15	245	1.00	310	144.30	27.5	54,200	18500	Lower pumping rate to 0.85 gpm.						
5/23/08	4:18	248	0.85	312	144.10	n/a	n/a	n/a	Pump-off.						
5/23/08	4:40	270	0.00	312	134.74	n/a	n/a	n/a	Pump-on for last check.						
5/23/08	4:47	277	0.75	317	135.45	27.7	53,900	18,500	Pump-off, begin pre-test recovery.						
						P	umping Te	st							
5/23/08	15:46	· O	0.00	0	12.86	n/a	n/a	n/a	Packers: 300 psi, annulus: 12.86 ft.						
5/23/08	15:48	0	0.81	0	n/a	n/a	n/a	n/a	Pump-on, begin packer test #10 with pre-set rate.						
5/23/08	16:18	30	0.80	24	27.18	27.9	54,100	18,500							
5/23/08	16:48	60	0.78	46.5	40.33	28	54,000	18,500							
1/23/08	17:18	90	0.77	69	52.00	28.1	53,800	18,500							
¥23/08	17:46	118	0.76	0.76 91 62.99 28.1 53,500		18,500	Annutus: 12.81 ft. Packers pressure: 300 psi.								
5/23/08	17:48	120	n/a	92	n/a	n⁄a	n/a	n/a	Pump-off, begin recovery.						

Notes:

jal denotas galions.

Int denotes galons per minute. "min" denotes allores, "tet bpl" denotes feet below pad level, set apl" denotes feet above pad level.

>" denotes degrees celcius.

...S/cm" denotes milliSiemans per cenitmeter.

"mg/l." denotes milligrams per liter.

"Bi" danotes pressure in pounds per square inch. /a" denotes data not available.

VM" denotes not measured.

٦

ŧ

. .

- -

.

Ci\Documents and Sattings\Golden Gata\GG IW1 final csg request\Append-C- Packer Test WQ dsta\IW1 Packer Tests\PT#10\Tables and charts\ PT #10 DD_xis

.

-- -

1

C\Documents and Settings\Golden Gate\GG IW1 final cag request\Append-C-Packer Test WQ data\IW1 Packer Tests\PT#10\Tables and charts\ PT#10 Rec.xls

Start date: 5/24/2008

PACKER TEST WATER QUALITY SUMMARY FGUA Golden Gate WWTP Injection Well System

Golden Gate, Florida

IW1 Packer Test No. 11 (straddle packer) Tested interval: 2266.6-2284.5 ft bpl

_	E	nd date:	5/24/2008														
_	lowmet	er Total-S	Start (gai) :	n/a	87710	•	Open Hole Total Depth (feet bpl) : 3007 (obstacle)										
	lowmet	er Total-	End (gal) :	n/a	91545		Packer	Depth Interv	ai (feet bpi):	2266.6-2284.5							
-	verage	Test Pun	noing Rate	(gpm) :	14.75	•	Pump S	etting Depth	(feet bpl):	178							
-	Developr	nent Dur	ation (min)	:	250		Transde	icer Depth (f	eet bpi):	166.1							
	static DT	W Befor	e Test (feel	ອງເ):	5.28	•	Pipe an	d open hole	volume:	3330+300=3660 gais							
							-										
_	Date Time Elapsed Pumpin Time Time Rate (min) (gpm) 5/24/08 23:48 0 40			Pumping	Total	Water	Temp.	Cond.	Chlorides	Comments							
			Time	Rate	Volume	Level											
			(min)	(gpm)	(gal)	(feet bpl)	(୯୦)	(mS/cm)	(mg/L)								
-								evelopme	nt								
5/24/08 23:48 0 40 5/24/08 0:14 26 19 5/24/08 0:36 48 19.4			40	0	6.63 apl	n/a	n/a	n/a	Pump-on, start development. Annulus: 13.32								
L	5/24/08	24/08 23:48 0 40 24/08 0:14 26 19 24/08 0:36 48 19.4 24/08 1:11 83 18.9 24/08 1:48 120 18.8	19	810	128.10	26.8	49,900	17,000	Packers: 320 psi. Annulus: 12.00 ft.								
1	5/24/08	0:36	48	19.4	1410	129.33	n/a	n/a	n/a								
d and a second s	5/24/08	1:11	83	18.9	2060	129.90	27.4	49,200	16,500	Annulus 12.05 ft							
Υ.	5/24/08	1:48	120	18.8	2190	130.81	28.3	48,900	16,500	Annutus 12.12 ft.							
ļ	5/24/08	1.10 1.20 1.00 18 2:38 170 18.8 18 3:18 210 19.1 18 3:48 240 19.0	18.8	3125	130.26	28.1	54,300	18,500	Water cloudy; annulus: 12.23 ft.								
-	5/24/08		19.1	3890	130.32	28.3	54,600	18,500	Water clear, annulus: 12.3 ft.								
	5/24/08	724/08 3:18 210 19.1 724/08 3:48 240 19.0 724/08 3:48 240 19.0		19.0	4460	130.46	28.2	54,700	18,500	Adjust rate to 1/ gpm.							
ŀ	5/24/08	3:58	250	17.0	4620	r/a		n/a	i n/a	Pump-on, stan pre-test recovery.							
	5/24/08 3:58 250 17.0			,			P	umping Te	<u>st</u>								
	5/24/08	11:40	0	16.5	0	5.28 apl	n/a	n/a	n/a	Pump-on, start test. Annulus: 13.71 ft.							
L	5/24/08	11:45	5	15.2	80	83.64	28.3	54,800	18,500	Annulus: 12.91ft.							
	5/24/08	12:13	33	15.1	505	83.64	28.3	54,800	18,500	Annukus: 12.91ft.							
	5/24/08	12:50	70	14.8	1,055	84.65	28.4	55,000	18,500	Annutus: 12.84ft.							
	5/24/08	13:20	100	14.6	1,500	84.70	n/a	n/a	r/a	Annutus: 12.88ft.							
ľ	5/24/08	13:50	130	14.3	1,930	84.76	28.1	54,200	18,000	Increase rate. Water slightly cloudy.							
	5/24/08	14:05	145	15.1	2,155	93.80	n/a	n/a	n/a	Water clear.							
1	5/24/08 14:05 145 15.1 5/24/08 14:35 175 14.8		14.8	2,600	96.14	28.3	54,100	18,000	Annulus:12.85 ft.								
ľ	5/24/08 14:35 175 14.8 5/24/08 15:10 210 14.6			14.6	3,110	96.33	n/a	n/a	n/a								
	5/24/08 3:58 250 1 5/24/08 11:40 0 10 5/24/08 11:45 5 11 5/24/08 11:45 5 11 5/24/08 12:13 33 11 5/24/08 12:50 70 14 5/24/08 13:20 100 14 5/24/08 13:50 130 14 5/24/08 13:50 130 14 5/24/08 13:50 145 11 5/24/08 14:05 145 11 5/24/08 15:10 210 14 5/24/08 15:40 240 14 5/24/08 15:56 256 14 5/24/08 15:56 256 14 5/24/08 16:00 260 14		14.6	3,545	96.39	n/a	n/a	n/a	Annutus:12.89 ft.								
1	5/24/08 23:48 0 5/24/08 0:14 26 5/24/08 0:38 48 5/24/08 1:11 83 5/24/08 1:48 120 5/24/08 1:48 120 5/24/08 1:48 120 5/24/08 2:38 170 5/24/08 3:18 210 5/24/08 3:18 240 5/24/08 3:58 250 5/24/08 11:40 0 5/24/08 11:45 5 5/24/08 12:13 33 5/24/08 12:50 70 5/24/08 13:20 100 5/24/08 13:50 130 5/24/08 14:05 145 5/24/08 14:35 175 5/24/08 15:10 210 5/24/08 15:40 240 5/24/08 15:56 256 5/24/08 16:00 260			14.6	3,780	96.39	n/a	54,000	18,000	Collect lab. Sample.							
F	5/24/08	16:00	260	14.6	3,835	n/a	n/a	n/a	n/a	Pump-off, begin recovery.							

Notes:

"gal" denotes gallons.

"rom" denotes gallons per minute.

nin" denotes minutes. set bpl" denotes feet below pad level.

set api" denotes feet above pad level.

""C." denotes decrees calches "mS/cm" denotes milliSiemans per cenitmeter.

ng/L" denotes milligrams per istar. ng/L" denotes milligrams per istar. si" denotes pressure in pounds per square inch. /a" denotes data not available. TV/M" denotes not measured.

C:\Documents and Settings\Golden Gate\GG IW1 final cag request\Append-C- Packer Test WQ data\IW1 Packer Tests\PT#11\Tables and charts\ PT # 11 DD.xis

Ci\Documents and Settings\Golden Gate\GG iW1 final csg request\Append-C- Packer Test WQ data\JW1 Packer Tests\PT#11\Tables and charts\ PT# 11 Recuds

ARCADIS

Appendix D

Casing Mill Certificates and FRP Product Sheets

GOLDEN GATE WASTEWATER TREATMENT FACILITY CLASS I INJECTION WELL SYSTEM

MILL CERTIFICATIONS

MONITOR WELL MW1

24-INCH O.D., 0.375-INCH WALL THICKNESS, STEEL CASING

YOUNGOUIST BROTHERS, INC. Has Received This Shop Drawing/Subnittel (Bi/Section Not 11350-030 A Date: 1/04/06 Signature: 10, Le

COMMODITY: CARBON STEEL PIPE PER SALES CONTRACT

NO. SEUSFP6C02TD3 DATED DECEMBER 11, 2006.

CUSTOMER: OZONE INDUSTRIES CORPORATION

15465 PINE RIDGE ROAD

FORT MYERS, FL 33908

YIEH CORPORATION LIMITED

The CARBON STEEL PIPES are tested according to ASTM A139 GR.B

This is to certify that in accordance with the relevant specifications and contracts.

The CARBON STEEL PIPES manufactured were tested and qualified by our Quality Control Department.

CERTIFICATE NO:PSCNJN6C01TC5 DATE OF ISSUE:4/29/2007

Invoice No. SEUSFP6C02TD3 LC NUMBER : 5279996

TOTAL: 746 PCS/29840FT/1769.619MT

		í.		Size																		
Pipes No.	Heat Numbers	Sleei	O.D.	WT,	Length		Quantity		Dimensional	Ċ	Hemica	L PROPE	RI ES(%)	PHYSIC	CAL PROP	ERTIES	Walding Hydrostatic Test properties Holding Unectos		Flattening	UT Test	
	·	Grade	្ឋា	h	ft	Pas	<u>A</u>	MT	aoiloaqeni	C	Si	Mn	P	S	σs(Mpa)	ob(Mpa)	35(%)	σb	P = Psi	Test (B)	Test (B)	
18	238404	8	20	0.375	40	5	200	7.138	OK	0.19	0.21	0.40	0.014	0.029	310	425	31	OK	678	OK	OK	
19	238403	8	20	0.376	40	5	200	7.138	OK	0.17	0.25	0.44	0.013	0.030	\$10	425	32	OK	878	OK	OK	
20	175702	B	20	0.375	40	4	160	5.710	OK	0.10	0.26	0.45	0.018	0.033	900	420	31.5	OK	678	OK	OK	
21	176807	B	20	0.376	40	5	200	7.138	OK	0.18	0.18	0.39	0.008	0.030	315	435	81	OX	876	OK	OK	
22	176501	8	20	0.375	40	2	80	2.854	ОК	0.15	0,19	0,38	0.009	0.028	315	425	31.6	OK	876	OK	ОК	
23	010505 V	B	24	0,375	40	4	180	6.874	OK	0.19	0.26	0.46	0.073	0.033	305	420	31.6	OX	563	OK	OX	
24	010508Y	B	24	0.375	40	4	160	6.874	ОК	0.17	0.23	0.45	0.014	0.027	295	420	32	OK .	563	OK	OK	
25	012602	B	24	0.375	40	4	160	8.874	OK	0.18	0.22	0.43	0.013	0.028	315	430	31.5	ОК	583	OK	OK	
26	013201 V	B	24	0.375	40	4	180	8.874	OK	0.18	0.24	0.48	0.011	0.033	320	425	32.5	OK	583	OK	ОК	
27	012005	B	24	0.375	40	4	180	8.874	OK	0.17	0.26	0.44	0.012	0.032	315	420	32	ОК	563	OK	OK	
28	DH 2804 V	B	24	0.375	40	4	180	6.874	OK	0.16	0.19	0.40	0.011	0.030	310	420	31.5	OK	563	CK	ОК	
29	011705	B	24	0.378	40	4	160	6.874	OK	0.17	0.21	0.44	0.013	0.031	315	420	32	OK	563	OK	OK	
30	011701	8	24	0.375	40	4	160	6.874	OK	0.17	0.25	0.43	0.013	0.092	315	425	30.5	OK	563	OK	OK	
31	011505	В	24	0.375	40	4	160	8.874	ОК	.0.18	0.21	0.42	0.012	0.030	310	425	32	OK	563	OK	OK	
32	011702	B	24	0.375	40	4	160	8.874	ОК	0.18	0.24	0.46	0.010	0.033	305	420	32.5	OK	663	OK	ОК	
33	011504	В	24	0.375	40	4	180	0.874	OK	0.17	0.23	0.44	0.012	0.031	320	425	31.5	OK	663	OK	OX	
34	015001	8	24	0.375	40	4	160	8.674	OK	0.17	0.22	0.43	0.011	0 032	305	425	32	OK	663	OK	OX	

MEET CURPOHAUXON HIMPTEL

MILL CERTIFICATE

GOLDEN GATE WASTEWATER TREATMENT FACILITY CLASS I INJECTION WELL SYSTEM MILL CERTIFICATIONS

it. T

5

1

Υ.

 $: \Sigma_{i}$

1

MONITOR WELL MW1

16-INCH O.D., 0.375-INCH WALL THICKNESS, STEEL CASING

성직서 번호 CERTIFICATE NO. 발행일 자 DATE OF ISSUE. 개익번호 CONTRACT(P/O) NO. 품명 COMMODITY 체육규리	: 6A02409 : 2007/01/22 : 58699 : E.R.W. STEEL PIPE	며이지 PAGE 200002548	1 of 2	MILL CUSTOMER		B DN CE # 3.1 8-18	서(A) RTIFICATE	HYUNDA 변사·공장 (ULSAN PLANT) 서울사무소 (SEOUL OFFICE)	물산광역시 #265 YUM TEL:82-52 서율시 강능 LANDMARI	현대하이스코주식회사 HYUNDAI HYSCO 역구 업포동 265번지 683-040 PO-DONG, BUK-KU, VLSAN, KOREA -280-014, FAX:82-52-287-8916 -7 역상동 837-36, YEOKSAM-DONG, TOWER 837-36, YEOKSAM-DONG,
신원규격 SPECIFICATION	API 5L X42/API \$LB PSL1/ASTM A53B/ASME BA53B			COSTOMER				(SEOUL OFFICE)	LANDMARI GANGNAM TEL:82-2-	KTOWER 837-36, YEOKSAM-DONG, -KU, SEOUL, KOREA 2112-8114, FAX:82-2-775-7095

240	ļ				ŀ		수입시 HYDR STAT	UNA DRO- ATIC		. ଗ (ପ	Baga L	TENS: ength :	le test 2 Inch)								CHE	HQ MICAI	박상 문 L CON	(%) APOS(TION								S IMP	ACT TEST (°C)		ATING EST		1.
TYPE OF PIPE END	(01	Dim 외경 * JTDiA × T	친수 ENSIO 두和 × HICK :	N 같이 K LENGTH)	QUAN QUAN -TITY	중당 WEIGHT	STA TE	TIC ST	제강변호 HEAT NO.	알목 Yiế	2) 5 1 D	ଥିବି TENS STAEN	YS ILE IGTH	년 신 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		c	si	Mn	ρ	5	Cu	NE	Cr	Мо	v	Π	Nb			AI	CEQ	NESS	등 수 에너지 ABSOF	BE DBE SHEAR	아연 부착왕 WEIGHT	a: D	141 19	Ki⊒ REM- ARK
							PSI	¥5		STRE	NGTH	ж7 8	ж7 ₩	E.L												{					ar A		ENERG	IY AREA	COAT		\$1	j
#1	m 2	R.	3	厳4	(PCS)	(KG)				₩8		Mpa/P	51 ·	%	¥8		× 100	× 100		1000					×10	י				*1	000	HV	JOUL	E %	g/n*	TI- MES	× 5	
EB BE	NB	14" X	.375"	X 42.000'	110	114,160	1,910	G	5852384		300	464	486	36		18 ·	1	76	13	10	2	2	1	ī	TR	TR	TR]						11				i
{						ł					4.00		71,100		÷										ł			:										
1					27	28,021	1,910	a	SB52387	1	298	453	472	37	. :	17	2	^י דר	15	7	2	2	1	1	TR	TR	ี โล	1				ļ .			1	1.		l
					1	1	Į. –				4.00	a as.400	F4.200			l			l .]				1	Ĩ.		l				']			1			ł
EB 8E	NB	14° X	.500"	X 42.000'	76	104,474	2,550	a	8852230		315	484	509	37-,	(19	2	86	14	6	2	1	2	1.1	TA	TR	TA							1	Į,			
											45.50	0 68.700	72,900						Ì	1	ļ																	l.
1					1	1,375	2,550	G	SR18481		326	477	501	36		17	2	86	12	3	2	2	1	י	TR	. TR	TR					ŀ		1				Ĺ.
											4.8	0 69,700	72,500								l]		ł							Į.	ł		Ì				(_ ·
EB BE	NBE				165	260,426	2,230) G		Ψ	340	5 474	496	38		16	3	75	15	9	2	2	1	'	TA	TR	TR				1	ļ .	[
						1				{	49,70	0 66,200	72 500		l					_			.							l		ľ						
							2.20		C033979	1	300		401	37		15	3	80	14	ľ	2	ľ	1	1'	1 "	. "						ł	· ·					
							2.23		C824349		29	452	471	. 38]	, ₈	,	76	, ,	ļ.,],],	Ι,	,														ľ
	انـــــا ۱	IEAT		VISU	AL 8		FLA	TTENI	IG, BEND,	<u> </u>	, A	FLATTE	NING		Ļ,	FLAR	<u> </u>		<u> </u>	NON	DESTR		UE TE	<u>і </u>					1	ļ		1.7597						
	TRE	ATMENT		DIMENSI	ON TEST		GUI	DED 8	END TEST	-	, 	TEST	·			TEST RID (U.T) RID H.M., RIV CAUSTICESI R																						
NOTE	1 11	Type of p	ре Ел	<u> </u>		1		3000	#2 h	Nort	liminal	Bore E	1 3,0). D:Dula	ilde D	amele	ı	<u> </u>			600	U 13 Un	il 9¢	(Mîm) m, l:ir	ich)			<u> </u>		M	4 Unit E	FI (M:Me	ter, F:Feel, I	Inch)	.		
EB:E	RWA	광(말반) 조훈된	RG:	SAW측관(밀) SAW맥본(밀)	4) TC 4) RC	Thread C	oupling			3:600	D II actor	Anaka	- 91 OL 2		·Prod	uci An	ahala	1175 E	1. AT U	- -) Iri Dra	#8 L:L	.ongil	udinel	입면 1 미보 12	20.1 Alexa	i:Trans T	verse	원주방	8	×	7 8:8ase	Metal S	2双부, W:Wei (Ni+Cu)/16+	d Part 음정 (Cressions)()	부 /5 요가:	848	
EG:E	RW P	광(밀변) 다시관	AS: PE:	SAW스파이윌 Pieln End	뷛 VC PC	Victaulic	Groavi d + Cou	ng befai	×10	Heal T	freatm	ent 121 X	2				aiyaiq	~ 0 2			. 1	a 11 V	loual	B Dier	~ ກອກສະ	on Ter	ສອ	몇치	수업사			12 Flatte	ning/Be	nd/Quided B	and Test B	8/85	/굽힘/	시험
ED E	RW 4	다사용	BE	Bevel End	Pe	Plain End	d + Bev	el End	¥13	:Ravats :Reeich	ae Rai Mei Me	taning T opeliam	eet 전기 Teel 지	148 875	1 0	w 17:	Ciush	Teel	6 0) 1		1	14 F # 18 ∩	iailng Mi Ta	Tetl'	압옥시 문시 허	연					10 11	15 Nond	ออนบรแห ค. Teel ส	e Teal 비미고 프레지시아	검사			
					100	INOTE 2	• SPE	YEA	R - API 2004/	ASTM	2004/	ASME 2	504																				1		··	·	_	
1								.		······		<u> </u>	<u> </u>			·																		4	1 1	29	N/	ſ
	YOU	INGQU	IST	BROTHE	RS, IN	Ç .	WE	HERE	BY CERTIFY T	HAT M	ATER	AL DES	CRIBED	HEAE	체물은 BN HA	S BEE	귀격이 NAC	(합격 CEPT	되었년 D IN	ACCO	중합니 IRDAN	ICH. ICE W	атн т	HE PF	RESCF	BED	SPECI				ADER		1	21	y. 2	معي)	71	-
flas I	evi											4 8 2 3				л 82 			и, ел	~ 68	A 4.	824	· ~ · · · ·	A 41:				¥ ↔ :		ч. 				INSF	ECTION M	NAGE	R	•
Tra-	əed aml	non dy Nai No		1017310	Oate:	125	-									Hì	UNI	IAC	-NS	co														•		· /	44(21	0×297)
Sign	atu	n//	ĪB	e																																		
	-		مر	Cg																							•											
		<u> </u>					수압사형 HYD80-	· ·	민장시 (Gage	e TENSI Length :	LE TEST 2 INCH	5						СНЕ	회 역 MICAL	성분(COM	%) POSITI	DN							홍격 IMPAC (1	시험 TTEST C)	도약 CO/	부사임 ATING EST						
-------------------	--------	-----------------------	---------------------------------	-------------------------	---------------------	------------------------	-----------------------	------------------	---------------------------	-----------------------------	--------------------	-------------	------------------	--------------	------------	----------------	---------	---------------	--------------------	-------------------	----------------------	------------------	--------------	------------	--------	-------	------------	----------------------	-----------------------------	--------------------------	--------------------------------	---------------------						
OF PIPE END	(01	Di sazi× хартах	첫수 AENSIO 두제 × [HICK :	N 2101 4 LENGTH)	수립 QUAN -TITY	문망 WEIGHT	STATIC TEST	청광업효 HEAT NO.	합복강도 YIELD STRENGT	인정 TENS STREE	NS SILE IOTH	연 건 건 문		c t	1 M	n P	5	Cu	NI	CI	мо	v	τι ι	.ь		AI	D3C	려도 HARD NESS	음 수 에너지 ABSOR- BED	경 단 파면율 BHEAR	다면 부착당 WEIGHT OF ZINC	₽¥¢ DIP TEST						
#1	哖2	3	3	K 4	(PCS)	(KG)	PS: #5		×6	B Mpa/P	W W	E.L %	¥8	×1			1000				,	100				× 10		HV	JOULE	35	COAT	TI-						
	Ī	<u> </u>			\vdash			·		600 AL.400	64,200		$\left \right $		T	-	T	+-				T	Т									MES						
							2,230 G	C624250	30	5 460	485	37		16	2 8	0 , 15	9	2	2	1	1	TR	7A 1	na l				ļ	ļ									
								Detter		000 66,000 15 455	71 100 477	37		16	2 7	18 (11	6	2	2	1	1	TA 11	TR	ra						ŀ								
		•							5	500 63.490	\$\$.705																											
										60 474	497	38		15	2 8	10 15 -	6	2	2	1	1	TR	TA '	rr (ł											
		TOTAL -	•		379	508.459										۱. ۱					1																	
														ŀ																								
]																										
					ļ																			; [ŀ									
		EAT	F	VISUA			FLATTENI	G. BEND.			NING			ARING	-			DEST		E TES	T			<u>. </u>	+	1				<u> </u>								
	TRE/	D	R11	DIMENSIC	IN TEST	#12	GUIDED 8	END TEST	#13	TEST		₹14		TEST				(GOO	U.T) D			× 16	GOO	D.		/ C		1 1681	118 D	HIPT 1881	9 19	FLANG						
NOTE EB:EI	WA:	Type of 문(임민)	RB:	1 2 0 AW옥왕(일반) <u>T</u> C	Thread C	oupling	#21 #50	B:Norlmina B:GOOD	l Bore E	8김.이	D:Ouls	ide Ola	meter				i	(3 UA) ×6 L:L(TER(ongilue	M:mm, dinat E	Linch 연방법) , T:T/	115və15		112	¥.	4 Unit E 7 B:8asi	위(M:Meler e Meta) 오제	, F:Feet, I: ₽, W:Wei	inch) d Part 용접 I	루 ¹						
EGE	RW4	2(일년) 1시원	RS: PE:	SAWADG	e VG PC	Viciaulic Plain Enc	Grooving + Coupled		i:Heal(Laal Heal Treat	e) Anelys meni 엷 치	6 명연(리	£44, P:	Produc	d Analy	sis XI (통문석,	NP:W	eld Pro I	duciA 111 Via	nelysid Buel &	8 월경부 Diema	N 제품! nsion 1	분석 Fest 원	1만 말 치	수검사		QL I M	9 CEQ=0 12 Fialte	C+Mn/8+(Ni aning/Band/	+Cu)/15+('Guided Be	Cr+Ma+V)/	5 중기탑성 명/밴드/공						
ED:E	AW BAL	가사원 관광비계	BE: TE:	Bevel End Intead End	PB BD	Pialn End	+ Bevel End	¥13 ×16	Residual M	attening T Ingnotism	est 전기 Teat 진	방사형 유자장	사람	5 17:Cn	nh Te	st 중압/	4 원	1	= 14 Fk = 18:Dr	uing 1 ill Tes	iest 말 il 광통/	역시역 시영		•			الا الا	15 Nond 19:Flang	iestructive T po Teat 登記	Test 비파과 지시험	검사							
			• •			NOTE 2	• SPEC YEA	1 - APi 2004	ASTM 2004	ASME 2	004												*						Ţ,	al	α α	100						
1	ou	NGQU	IST E	ROTHER	is, inc		WE HERE	Y CERTIFY 1	HAT MATE	RIAL DES	CRIBED	E) KERE	지금은 IN HAS	광연 규 BEEN	ACCE	격되었 PTED IN	ACC	2종합니 ORDAN	CI. ICE WI	TH TH	E PRE	CRIBE	D SP	ECIFICA	TION A	ND OR	10EA			н). 2	لال						
Has Re	evie	wed ti	ls St	top Draw	hig/Su	bmitte	<u> </u>	은 김사영영지		14827	A165A	<u>ଅଟ</u> ଷ	1 (E M)	발생범	<u>ቀ 있</u>	으며, 강	N 89 12	에 위, 	면소시	사분서	1 1 1 2 6	E (29 U; 1	시철 보	[파일 수	있읍니	u.			· ·	INSP	ECTION MA	NAGER						

	성적서 ERTIF 방영일: DATE (실약번 CONTF 을명 COMM 성용규 SPECI		TEN SUE (P/C Y	D.)) NK	: 6 : 2 : 2 : 2 : 1 : 1	1800 2008 5869 E.R. 1 API 51	326 - 11- 0 9 W. STE L X42/A	6 EL PI PI 5L8	PE PSL1/	ASTM 4	53B/A	SME B	퍼(0)지 PAGE 200003	i 1 2540	of 1	로 고		Ą	시 MILI : 렌드	L INS				X	人	+ (A	.)	王 () 人 ()	HYU A사·관 ULSA	NDAI 5장 N PLA 무소 FL OFF	NT) ICE)		신왕 265 EL:82 음시 ANDI EL:82	역시 * YUMP 2-52- I 강남 WARK NAM- 2-2-2	한 - - - - - - - - - - - - - - - - - -	HM HM HM HA.F HS 83 ER 83 EOUL 1114.	けのビ 285ビス 301K- KU, AX:82-5 87-38世ジ 7-38, YE , KOREA FAX:82-	2-775-7 2-775-7	() () () () () () () () () (登人 〇 A 4 135 G,	- 080
- 1							i	Ť			÷:	신영		6	장시험 Sece La	TENSI	LE TES	τ n			•			 C	HEMIC	화학성(CAL CO	E(%)										84 MPAC	시험 T TEST	å	막 시1 DATIN	1	T
	관광 TYPE OF FIPE END	. (0	រ សារ	[] * [2] * A *	칫수 MENS 두꺼 THIC	10N * 72 K = L	0 Ength	,	₩ NAN TTT	ər Weigh	HM	ATIC EST	제강번호 HEAT NO.	ga yie stre	상도 LD HTDN	인상 TENS STREM	RE SILE IGTH M	연 신 물 EL		с	51	Ma	P		21 N	u . a	Mo	v	Π	NB			AI	CEQ ¥9	NESS	ABS BI ENE	수지유요	C) 작단 파인용 SHEAR AREA	아인 부학명 WEIGH OF ZIN COAT	TEST	9일성 DIP TEST	
	¥1	¥2			K 3		114		PC9)	(KG)		R	- 	36	<u> </u>	Mpa/P	31	*	¥8	1	= 100		= 1000	, †-				# 100	.– v	L	<u>ii</u>		× 10	00	HV		VLE	*	g/ m	TI	s 🛪	
	EB 81								7 3	11.049 4,735	2.23	0 0	SILESI		317 44.400 299	489 71,100 456	510 12,607 483	37 38		18 17	2 2	39 39	14	0	2	2 1	1	TR TR	TR TR	TR TR												
	EB BC	NB		24*	X .25	0" X -	42.000		18	21,954	790	G	8Q91572		44,800 300 44,000	88,400 454 81,405	62,700 475 63,700	38		15	TR	87	15	,	2	2 1	-	TR	1R	TR												
					•				28	37,73																								-			-	- - -				
	¥ 10	T	HEA	T	*	11	DIMEN	BUAL &	EST	₩12	FL/ GU	IDED	NG, BEND, BEND TEST	₩13	R 1	LATTE	NING	3 14	5	FLARIN TEST	•	报15	NC	DNDES	(U.T)	TME T	E9T	<u>*</u> 1	6	RM.	т	H 17	CF	RUBH	TEBT	X 1	8 DF	aft test	¥18	R.	ANGE	TEST
	20000000000000000000000000000000000000	GC I W RW RW RW RW ERW		에 이 (신) 관 민만) 문 문	olge F F	End B.SA O.SA E.FA E.Fa E.Fa	GOO PA WAR!! WAR!! WAR! WAR! In End In End re! End	10 일반] 일반] 문 관 d	TC: RQ VQ PC: PB: BD	Thread Poll Gr Victouli Pisin Gr Pisin Er Bell En	Couplin ovice : Grooy d + Co d + Be	GOOI Ing Uphed Wei En	2 	NB:Norf G:GOOI H:Heat(1:Haat T 1:Revers 5:Residu	minat 8) Lodle) restma a fistis	iore 오 Anatysi nt 열차 sning T netism	방경. O : 일연! 리 est 편/ Test 판] D:Quế 분석, P 내시험 유자정	ide Di :Produ	iameter uct Ana 217:C	iyela X Grush T	역출 분 석 Fest 중 f	. WP:\	GC Neld F	次00 第3日 第6日 でのduc 第11 第14 第18:	Jult 2 Longi t Analy Visual Flaring	위(M:m tudina) sis 용 & Dier Test est 관년	/m, I:Ind 암연방 업부 제 mension 양박시! 동시험	GC ch) 양, T: 금분석 n Test 입	Tranan Rega	ا ۲ همه جار لا	금주방험 검사	¥)#44)#27)#68)#61)#61]#61	Unit E B:Bas CEQ= 2 Ratu 5 Nond 9:Flan	e Metal c+Mn/l ening/B lestruct ge Test	Meter, 1 도지에 6+(NH+ Bend/G tive Te 1 플 렌지	F:Feet, L1 F, W:Weld Cu)/15+((Ruided Be et 비파고) (시입	i I Part 용접 Cr+Mo+V/ nd Teat 원 방사	무 5 동기 황/빈호	왕소명 나군임	시험
	asi	YO	UN	SQL ता	IIST	BR		ERS	, INC	NOTE	WE	HERE	NR - API 2004 BY CERTIFY 본 검사용명4	That M Ini 92	2004/A ATERIA 원 규격	SME 20 L DESC 용도의	2004 2RIBED 사용시	본 HERE 안전성	제품은 IN HAI 문제:	관련 두 S 8551 가 발생	격에 (ACC) 방 수 5	활격되었 EPTED 있으며,	in ACC 검사중	보증할 20RD/ 명서 4	·니다. ANCE 1 귀,번조	WTH 1 시 사문	'HE PR 서 위2	ESCRII	BED 8 이익읍	PECIF 당하소	TICATIO 시 수 있	N ANG	D ORD	ER			9	<i>Ч. 5</i>	1. I	(2	ЭV.	1
1	asi	evi	ew	đ	IJ£,	Sho	p Dra	iwin	/Su	mitt	4		본 철사용명/	에 명기	원규격	용도의	사용시	만편심	운제:	가발생	¥ 수 9	있으며.	검사중	844	위,번조.	시사문	서 위3	토로 불(이익읍	884	수있	우니다				-		INSPE	CTION MA	NAGE	R	_

GOLDEN GATE WASTEWATER TREATMENT FACILITY CLASS I INJECTION WELL SYSTEM PRODUCT SHEET

MONITOR WELL MW1

NOMINAL 65/8-INCH DIAMETER FRP TUBING

W.,

FUTURE PIPE INDUSTRIES Complete Pipe System Solutions .

RED BOX 1750

FIBERGLASS TUBING, CASING, AND LINERS AROMATIC AMINE CURED EPOXY RESIN

Nominal	Nominat	Minimum	Nominat	Nominal	Pin Ucset	Max Box			Conception Type
Size	10.	Odl Ofe	0.0.	Wall	0.0.	00*		s wegs	API 58. Table 14", 7", 6""
(inches)	(inches)	(inches)	(inches)	(Inches)	(Inches)	(inches)	(405/11)	(ba/i)	Fourteenth Edition August 98
2-3/8	2.00	1,91	2.29	0.15	2.69	3.45	0.9	27	2-3/8" BHd EUE Long"LI
2-7/8	2.47	2.37	2.83	0.18	3.19	3.95	1.4	41	2-7/8" SRd EUE Long"U
3-1/2	3.00	2.90	3.44	0.22	3.85	4.84	2.0	61	3-1/2" BRI EUE Long IJ
4	3.33	3.24	3.81	0.24	4.35	5.30	2.5	78	4" BRd EUE Long" TC
4-1/2	3.98	3.89	4.57	0.29	4,85	5.95	3.5	105	4-1/2" SRIE EUE Long'N
5-1/2	4.42	4.33	5.06	0.82	5.60	6.74	4.4	131	5-1/2" 8Rd Cap Long" U
6-5/8	5.43	5.33	6.21	0.39	6.73	6.02	6.6	197	6-5/8" SRd Ceg Long" IJ
7	6.21	6.11	7.11	0.45	7.10	8.61	8.1	243	7" 8Rd Csg Long""U
7-5/8	6.21	6.11	7.11	0.45	7.73	9.40	8.7	262	7-5/8" 8Rd Ceg Long" IJ
9-6/8	7.84	7.75	8.98	0.57	9.73	11.88	14.0	419	9-5/8" 8Rd Ceg*** N
10-3/4	8.85	8.76	10.12	0.64	10.85	13.50	17.5	526	10-3/4" 8Rd Csg***1J
11-3/4	10.72	10.62	12.11	0.70	12.61	15.20	24.1	724	11-3/4 8/6Rd L Cag TC
13-3/8	11.97	11.87	13.53	0.78	14.06	17.35	30.4	919	13-3/8 8/6Rd L Ceg TC
16	14.48	14.39	16.37	0.95	16.96	22.20	45.8	1,374	16 6Rd Cag L TC
18	16.60	16.50	18.76	1.08	19.40	26.70	61.7	1,851	18 6Rd Cagi. TC
20	17.99	17.89	20.33	1.17	21.00	30.00	74.0	2,220	20 6Rd Csg L TC
Depending of	on the applica	tion, emeller	maximum bo	t diameters a	vo svailsble.			TI	bread lengths may exceed APLL
PERFOR	JANCE A	ND RATIN	GS (-60 de	ng F to +21	0 deg F)				30 It Standard Joint Lengt
Nonital	biens.	Pressure *	Lange Contraction	Test	Com	ipes	Auto	lencio n	Stretch ve Tension-Over-Pipe-W
See	Ratio	((66)	Press	re (ps))	Rating	7 (pei)	Ratin	g (ibs)	Siteich (t) = Cost, x P xL
2-3/8	1,7	750	2,1	00	1,6	00	15	000	0.993
2-7/8	1,7	/50	2,1	00	1.6	00	22,	500	0.217
3-1/2	1,7	50	2,1	00	1.6	00	32	000	0_148
4 .	1,7	50	2,1	00	1,5	00	40	000	0.126
4-1/2	1,7	50	2,1	00	1,6	00	46,	500	0.084
5-1/2	1,7	750	2,1	00	1,5	00	55	500	0.072
6-5/8	1,7	50	2,1	00	1,6	00	72,	500	0,047
7	1,7	750	2,1	00	1,6	00	76,	500	0.035
7-5/8	1,7	750	2,1	00	1,6	00	86,	500	0.035
9-5/8	1,7	750	2,1	00	1,6	00	140	,500	0.022
10-3/4	1,7	50	21	00	1,5	00	161	,500	0.018
11-3/4	1.7	750	2,1	00	1,2	00	127	,194	0.020
13-3/8	1,7	50	2,1	00	1,2	00	158	,000,	0,016
16	1.7	50	2,1	ω 	1.2	<u>w</u>	197	,000	0.011
18	1,7	50	2.1	00	1,2	<u></u>	226	,000	0.008
20	1,7	100	2.	w	1,2	~	245	,000	0.007
			1 BBODE	THE				Wh	ere: r' = 100600 L000 (1,000 106)
MEUNAN		PILITON A	L TRUPE	UTIES			1/A)		L = Siring Lingia (1,000 ft
	UBRIGICA		HUNCHIES		UN	84	VALUE	VALUE	IEST METHOD
A		_					04 AAA	75-14-11	
I ensile Str	engen, Hoo	2			P4	54 	31,300	31,300	ASTHED1589
I ensile Str	engin, Axia				<u>P</u>		30,000	12,000	ASTM 02105
MOOULUS OF	Clasticity,	NCA			102+4	হ বিশ্ব ব	3.0	2.0	ASTN 02105
Specific Gr	avity						1.9	1.9	ASTN 0792
Vensity					ibs	in The second se	0.07	70.0	ASTM 0782
Thermal C	onductivity				Bturne/It	nvdegF	2.4	2,4	ASTM C177
Thermal Ex	mansion Co	peflicient (LI	near)		10E-05in	ATVORGF	1.1	1.2	ASTM D696
HOW Facto	T					•	150	150	Hazen Williams

. . .

150 9001

4

11811 Proctor Road • Houston, Texas 77038 • Phone: (281) 847-2967 • Fax: (281) 847-1991 Email: houston@future-pipe.com • website: www.futurepipe.com

•

•

�=

FUTURE PIPE INDUSTRIES

Inspection Certificate

Job No: 110000074

January 15, 2008

Purchaser: Youngquist

SO #: 62L000413

Destination: Golden Gate, Florida

Product: 6 5/8" RB 1750

Quantity: 1180 Ft

We hereby certify that the materials & fittings supplied have been tested and comply with API 15 HR spec's.

Material Certificate

Material: 6 5/8" RB 1750

Test pressure: 2100 psi

Certificate Number: FPI-2007-39

Customer: Youngquist

Sales Order: 62L000413

Produced By: Future Pipe Industries, Inc. - Houston, TX

FPI Order Number: 110000074

Pipe System: Aromatic Amine heat cured epoxy

YOUNGQUIST BROTHERS, NO Has Received This Shop Errawing Schmitter YBI/Section No#_________ Date:___________ Signature: A Quit 0

Raw Material Specifications:

Resin type- Epoxy Curing Agent- Aromatic Amine Glass Fiber- E-Type

Non Destructive Tests:

Dimensional Exam - ASTM D 3567 Visual Standards – API 15 HR Table 2

We hereby certify that the materials described above have been tested and comply with API 15 HR.

Certificate of conformity Statement:

All items delivered under this certificate number were manufactured in accordance with API 15 HR specifications:

We hereby certify that the materials described above have been tested and comply API 15 HR.

QC Supervisor Future Pipe Industries 11811 Proctor Rd Houston TX, 77038

FUTURE PIPE INDUSTRIES

Inspection Certificate

<u>Job No: 100000135</u>

Purchaser: Youngquist

February 11, 2008

S<u>O #</u>: 62L000648

Destination: Golden Gate, Florida

Product: 6 5/8" RB 2500 T&C

Quantity: 360 Ft

We hereby certify that the materials & fittings supplied have been tested and comply with API 15 HR spec's.

Material Certificate

Material: 6 5/8" RB 2500

Test pressure: 2850 psi

Certificate Number: FPI-2007-42

Customer: Youngquist

Sales Order: 62L000648

Produced By: Future Pipe Industries, Inc. - Houston, TX

FPI-Order-Number: 100000135

Pipe System: Aromatic Amine heat cured epoxy

YOUNGQUIST BROTHERS, INC Has Received This Shop Drawing/Submittal rSI/Section No# /1360-022-A Date: 2/12/68 Signature: 26 66

Raw Material Specifications:

Resin type- Epoxy Curing Agent- Aromatic Amine Glass Fiber- E-Type

Non Destructive Tests:

5

112

Dimensional Exam - ASTM D 3567 Visual Standards - API 15 HR Table 2

We hereby certify that the materials described above have been tested and comply with API 15 HR.

Certificate of conformity Statement:

All items delivered under this certificate number were manufactured in accordance with API 15 HR specifications:

We hereby certify that the materials described above have been tested and comply API 15 HR.

__Raymond Jones QC Supervisor Future Pipe Industries 11811 Proctor Rd Houston TX, 77038 GOLDEN GATE WASTEWATER TREATMENT FACILITY CLASS I INJECTION WELL SYSTEM MILL CERTIFICATIONS

die.

10.00

3

4.9

INJECTION WELL IW1

48-INCH O.D., 0.375-INCH WALL THICKNESS, STEEL CASING

Golden Gate (

CERTIFICATE NO:PSCNJN7601TC5

DATE OF ISSUE:9/13/2007

Invoice No. SEUSFP7601TD3

TOTAL: 112 PCS / 4368 FT / 330.631 MT

LC NUMBER.: 64405427

YOUNGQUIST BROTHERS, INC Has Received This Shop Drawing/Submitter YEVSaction Not 1/360-008 A Date: 3/2//08 Signature: Wr.Te.

MILL CERTIFICATE

COMMODITY: CARBON STEEL PIPES AS PER ASTM A139 GR.B SPIRAL WELDED, NORMAL MILL BLACK LACQUER FOR RUST PROTECTION, ONE END OF THE PIPE SHALL HAVE A BEVEL OF 30 DEGREES WITH A TOLERANCE PLUS FIVE, MINUS ZERO DEGREES. THE OTHER END OF THE PIPE WILL BE PLAIN, RIGHT AND ANGLE CUT. ALL BURRS REMOVED.

CUSTOMER: OZONE INDUSTRIES CORPORATION 15465 PINE RIDGE ROAD FORT MYERS, FL 33908

The CARBON STEEL PIPES are tested according to ASTM A139 GR.B

This is to certify that in accordance with the relevant specifications and contracts.

The CARBON STEEL PIPES manufactured were tested and qualified by our Quality Control Department.

Size TESTING RESULTS Steel Quantity Dimensional Flattening UT Test Pipes Heat Welding Hydrostatic Test PHYSICAL PROPERTIES 0.D. W.T. Length CHEMICAL PROPERTIES(%) No. Numbers properties Holding time:10s Grade In P = Psi Test (B) ln ft Pcs ft MT os(Mpa) ob(Mpa) õ5(%) Test (B) Inspection С SI Mn Р S σb в 52 0.375 14 30 OK OK 1 1-9160 39 546 51.258 OK 0.16 0.19 0.48 0.029 0.029 330 460 505 OK в 50 2 1-9161 0.375 39 14 548 49.272 0.030 0.038 325 33 OK 505 **OK** OK OK 0.17 0.19 0.47 455 в 48 0.375 33 OK 3 1-9161 39 14 546 47.286 OK 0.17 0.19 0.47 0.030 0.038 325 455 OK 505 OK в 42 0.375 ок ØΚ OK 1-9161 39 28 1092 82.658 ок 0.17 0.19 0.47 0.030 0.038 325 455 33 505 4 в 36 0.375 39 28 1092 70.743 OK 0.029 0.029 330 460 30 0K 505 OK OK 5 1-9160 0.16 0.19 0.48 OK 6 1-9161 В 30 0.375 39 14 546 29.414 OK 0.17 0.19 0.47 0.030 0.038 325 455 33 OK 522 OK 112 330.631 TOTAL 4368

YIEH CORPORATION LIMITED

14. gas

GOLDEN GATE WASTEWATER TREATMENT FACILITY CLASS I INJECTION WELL SYSTEM MILL CERTIFICATIONS

INJECTION WELL IW1

36-INCH O.D., 0.375-INCH WALL THICKNESS, STEEL CASING

YOUNGQUIST BROTHERS, NC Has Received This Shop Drawing/Submitter (BI/Section Not 11260-008-A Date:______3127_J.C.B Signature:_____Warter:

MILL CERTIFICATE

COMMODITY: CARBON STEEL PIPES AS PER ASTM A139 GR.B SPIRAL WELDED, NORMAL MILL BLACK LACQUER FOR RUST PROTECTION, ONE END OF THE PIPE SHALL HAVE A BEVEL OF 30 DEGREES WITH A TOLERANCE PLUS FIVE, MINUS ZERO DEGREES. THE OTHER END OF THE PIPE WILL BE PLAIN, RIGHT AND ANGLE CUT. ALL BURRS REMOVED. CERTIFICATE NO PSCNJN7601TC5 DATE OF ISSUE:9/13/2007

Invoice No. SEUSFP7601TD3

TOTAL: 112 PCS / 4368 FT / 330.631 MT

LC NUMBER .: 64405427

CUSTOMER: OZONE INDUSTRIES CORPORATION 15465 PINE RIDGE ROAD FORT MYERS, FL 33908

The CARBON STEEL PIPES are tested according to ASTM A139 GR.B This is to certify that in accordance with the relevant specifications and contracts.

The CARBON STEEL PIPES manufactured were tested and qualified by our Quality Control Department.

Size TESTING RESULTS Steel Flattening UT Test Quantity Dimensional Pipes Heat Welding Hydrostatic Test O.D. PHYSICAL PROPERTIES W.T. CHEMICAL PROPERTIES(%) Length No. Numbers properties Holding time:109 Grade In in С Si Ρ os(Mpa) ob(Mpa) ō5(%) P = Psl Test (B) Test (B) ft Pcs MT Inspection Mn S ft σb 1 1-9160 в 52 0.375 39 14 546 51,258 OK 0.16 0.19 0.48 0.029 0.029 OK 505 OK OK 330 460 30 2 1-9161 в 60 0.375 39 14 546 49.272 OK 0.17 0.47 0.030 0.038 325 465 OK OK ОК 0.19 33 505 3 1-9161 В 48 0.375 39 14 546 47.286 OK 0.17 0.19 0.47 0.030 0.038 325 455 33 ΟK 505 OK OK B OK 4 1-9161 42 0.375 39 28 1092 82,658 OK 0.17 0.19 0.47 0.030 0.038 325 455 33 OK 505 OK Ë 5 в 36 0.375 OK OK 1-9160 39 28 1092 70.743 OK 0.16 0.19 0.48 0.029 0.029 330 460 30 OK 505 1-9161 В 30 0.375 39 OK 0.47 0.030 0.038 522 OK OK 6 14 546 29.414 0.17 0.19 325 455 33 OK 112 4388 330,831 TOTAL 7 Jul

YIEH CORPORATION LIMITED

- un

MILL CERTIFICATE

COMMODITY: CARBON STEEL PIPE PER SALES CONTRACT

NO. SEUSFP6CD2TD3 DATED DECEMBER 11, 2006.

CUSTOMER:

OZONE INDUSTRIES CORPORATION (5465 PINE RIDOB ROAD

PORT MYERS, FL 33908

The CARBON STEEL PIPES are tested according to ASTM A139 OR.B

This is to certify that in accordance with the relevant specifications and contracts.

The CARBON STEEL PIPES manufactured were tested and qualified by our Quality Control Department.

1.

					Size		·			[T	ESTING P	ESULTS		· · · · · · · · · · · · · · · · ·			
	Pipea No.	Haat Numbera	Steel	0.0.	W.T,	Length	 	Quanti	У	Diatensional		CHEMICA	L PROPE	RTIES(%	5)	PHYS	CAL PROP	ERTIES	Walding properties	Hydraetalle Tast Halding Umec 10s	Fistlening	UT Test
ļ			Grade	In	in	â	Pca	n.	МТ	Inspection	C	SI	Mn .	P	8	os(Mps)	ab(Mps)	55(%)	ob	P = Psi	Teat (B)	Teet (B)
	171	058823	В	38	0.376	40	3	120	7.774	OK	0.14	0.14	0.35	0.018	0.029	305	425	82	OK	600	OK	ок
	172	112002	8	30	0.375	40	2	80	5.183	OK	0.17	0.26	0.48	0.012	0.038	320	430	31.5	OK	600	OK	OK
	173	010103	8	38	0.875	40	3	120	7.774	OK	0,15	0,19	0.37	0.009	0.028	305	425	31.5	OK	800	OK	OK
	174	014402	B	36	0.375	40	3	120	7.774	OK	0.17	0.22	0.44	0.014	0.032	315	420	32	OK	003	OX	OK
	175	014401	B	38	0.378	40	2	60	5.183	OK	0.18	0.21	0.41	0.012	0.029	280	420	31.5	ОК	500	OK	OK
	170	012201	8	38	0.375	40	3	120	7.774	OK	0.18	0.25	0.45	0.015	0.032	285	420	32	OK	500	OK	OK
	177	056002	B	38	0.375	40	8	120	7.774	QX	0.17	0.24	0.47	D.011	0.031	320	430	31.5	OK	800	OK	OK
	178	048307	8	36	0.376	40	2	80	6,183	OK	0.16	0.19	0.42	0.010	0.028	300	425	.31	OK	500	OK	OK
	179	048305	B	36	0.378	40	3	120	7,774	OK	0.14	0.17	0.30	800.0	0.000	306	428	32.6	QK	600 ·	OK	OK
	100	053604	8	38	0.378	40	Э	120	7,774	OK	0.18	0.24	0.43	0.012	0.092	300	420	32.5	OK	600	OK	OK
2	181	055405	B	38	0.376	40	3	120	7.774	OK	0.15	0.22	0.38	0.012	0.029	300	425	31	OK	500	OK	OK
	182	048701	8	38	0.376	40	2	80	8,183	OK	0.17	0.22	0.40	0.011	0.031	305	428	32	OK	500	OK	OK
ſ	183	047804	В	38	0.375	40	2	80	5,183	OK	0.18	0.10	0.41	800.0	0.028	310	428	31	OK	600	OK	OK
- [184	238201	0	36	0.376	40	5	200	12,961	OK	0.18	0.24	0.45	0.013	0.033	320	436	32.5	ОК	800	OK	OK
-[185	238402	8	38	0.378	40	2	60	6,183	OK	0.17	0.17	0.42	0.010	0.030	815	450	31	OK	500	OK	OK
Ī	180	235202	B	36	0.876	40	3	120	7.774	OK	0.16	0.19	0.35	0.009	0.028	315	420	31.6	ÖK	800	OK	OK
Ĩ	187	238002	8	90 ·	0.376	40	3	120	7.174	OK	0.10	0.23	0.45	0.016	0.032	285	420	32	ОК	£00	- 0K	OK

YIEH CORPORATION LIMITED

you

CERTIFICATE NO:PSCNIN6C01TC3

Invoice No. SEUSFP6C02TD3 6155768 LC NUMBER .: 5279996

TOTAL : 746 PCS / 29840FT / 1769.619MT

YIEH. OOR

PAR

11/16

6/29/2007

GOLDEN GATE WASTEWATER TREATMENT FACILITY CLASS I INJECTION WELL SYSTEM MILL CERTIFICATIONS

INJECTION WELL IW1

28-INCH O.D., 0.375-INCH WALL THICKNESS, STEEL CASING

MILL CERTIFICATE

COMMODITY:

CARBON STEEL PIPES AS PER ASTM A139 GR.B SPIRAL WELDED, NORMAL MILL BLACK LACOUER FOR RUST PROTECTION, ONE END OF THE PIPE SHALL HAVE A BEVEL OF 30 DEGREES WITH A TOLERANCE PLUS FIVE, MINUS ZERO DEGREES. THE OTHER END OF THE PIPE WILL BE PLAIN, RIGHT AND ANGLE CUT. ALL BURRS REMOVED.

CUSTOMER:

OZONE INDUSTRIES CORPORATION 15465 PINE RIDGE ROAD FORT MYERS, FL 33908

The CARBON STEEL PIPES are tested according to ASTM A139 GR.B

This is to certify that in accordance with the relevant specifications and contracts:

The CARBON STEEL PIPES manufactured were tested and qualified by our Quality Control Department.

Pipes I	0. Heat Numbér	Steel	0.D.	W.T.	lenth		Quantity	· · ·	Dimensional	Ċ	HEMICA	L PROPE	RTIES(%)	PHYSIC	CAL PROF	PERTIES	Welding properties	Hydrostatic Test Holding time:10s	Flattening	UT Test
		Grade	in	្រា	ft	根(Pcs)	英尺 (ft)	吨(MT)	Inspection	С	SI	Mn	P	S	os(Mpa)	ob(Mpa)	ð5(%)	op	P = Psi	Test (B)	Test (B)
1	1-9160	В	52	0.375	40	1	40	3.757	ОК	0.16	0.19	0.48	0.029	0.029	330	460	30	OK	505	OK	ОК
2	1-9160	В	42	0.375	40	20	800	60.555	ОК	0.16	0.19	0.48	0.029	0.029	330	460	30	ОК	505	OK	ок
. 3	1-9160	В	36	0.375	40	21	840	54.418	ОК	0.16	0.19	0.48	0.029	0.029	330	480	30	ОК	505	OK	ок
4	7-C03099	В	28	0.375	40	27	1080	54.254	ОК	-0.16	0.19	0.33	0.018	0.027	325	455	33	ОК	525	ОК	OK
5	7-C03099	B	26	0.375	40	22	880	41.007	ОК	0.16	0.19	0.33	0.018	0.027	325	455	33	ОК	525	OK	ок
6	7-C03099	В	24	0.375	40	71	2840	122.01	ОК	0.16	0.19	0.33	0.018	0.027	325	455	33	ОК	525	ОК	ок
7	7-C03099	8	20	0.375	40	27	1080	38.643	ОК	0.16	0.19	0.33	0.018	0.027	325	455	33	ОК	525	ОК	OK
8	1-7588	В	· 16	0.500	40	82	3280	123.268	ОК	0.15	0.16	0.42	0.023	0.022	330	465	31.5	ОК	525	ОК	ок
TOTA		· · .		ľ	:	271	10840	497.812													

Invoice No. SEUSFP7601TD3-3 LC NUMBER.: 64405427

TOTAL: 271 PCS / 10840 FT / 497.812 MT

NO 6. E-DA RD. YA AO TOWNSHIP KAOHSIUNG COUNTY YANCHAO, TAIWAN TEL:886-7-615-1000

FAX:886-7-615-3000

CERTIFICATE NO:PSCNJN7601TC5-3 DATE OF ISSUE:10/23/2007

YOUNGOUIST BROTHERS, INC. Has Received This Shop Drawing/Subnitte! YBI/Section No#_11360 -010 - B Date: 5/13/08 Signature:

YIEH CORPORATION LIMITED

MILL CERTIFICATE

COMMODITY: CARBON STEEL PIPE PER SALES CONTRACT

NO. SEUSFP6C02TD3 DATED DECEMBER 11, 2006.

- CUSTOMER: OZONB INDUSTRIES CORPORATION
 - 15465 PINE RIDGE ROAD FORT MYERS, FL 33908

The CARBON STEEL PIPES are tested according to ASTM A139 GR.B

This is to certify that in accordance with the relevant specifications and contracts.

The CARBON STEEL PIPES manufactured were tested and qualified by our Quality Control Department.

			ľ.	Size										TE	ESTING R	ESULTS					
Pipes No.	Heat Numbers	Steel	0,D.	WLT.	Length		Quantity	/	Dimensional	· .	Chemiça	l prope	RTIES(%)	PHYSIC	CAL PROP	ERTIES	Welding properties	Hydrostatic Test Holding time: 10s	Flatlening	UT Test
L		Grade	in	in	ft	Pcs	A	MT	Inspection	С	S1	Mn	P	5	os(Mpa)	ab(Mpa)	ŏ5(%)	ob	P = Psl	Test (B)	Tesl (B)
35	011703	В	24	0.375	40	_2	60	3.435	OK	0.16	0.20	0.40	0.010	0.029	310	425	31	CK	563	OK	OK
36	011703	B	28	0.375	40	2	80	3.727	ОК	0.17	0.25	0.42	0.013	0.030	305	425	32	OK	519	OK	OK
37	012204	8	26	0.375	40	3	120	5.592	ОК	0.18	0.21	0.44	0.011	0.031	305	420	32	OX	519	OK	ОК
38	011103	B	28	0.375	40	4	160	7.456	ОК	D.18	0.22	0.45	0.014	0.032	315	425	32	OK	519	OK	OK
39	012004	8	28	0.375	40	4	160	7.458	OK	0.16	0.24	0.47	0.012	0.031	310	425	32	· OK	51 9	OK	· OK
40	008304	8	26	0.375	40	3	120	5.592	OK	0.17	0.24	0.46	0.013	0.032	315	420	31.5	OX.	519	OK	OK
41	012606	B	26	0.375	40	4	160	7.458	ОК	0,17	0.26	0.47	0.011	0.031	320	430	31.5	OK	519	OK	OK
42	015003	B	28	0.375	4D	3	120	6.028	ОК	0.17	0.25	0.45	0.015	0.033	325	435	32.5	OK	500	OK	OK
43	008503	В	28	0.375	40	4	189	8.038	OK	0.18	0.21	0,42	0.012	0.030	300	426	31	OK	580	0%	OK
44	011704	B	28	0.375	40	3	120	6.028	ОК	0.17	0.26	0.43	0.016	0.031	305	420	31.5	ОК	500	OX	OK
/ 45	012208	8	28	0.375	40	3	120	6.028	OK	0.14	0.17	0.35	0.011	0.026	310	420	31.5	OK	500	OK	OK
48	008304	В	28	0.375	40	4	160	8.098	OK	0.19	0.27	0.46	0.014	0.030	295	425	31.5	OK	600	ОК	ОК
47	008502	В	28	0.375	40	3	120	6.028	OK	0.16	0.20	0.40	0.014	0.028	300	425	31.5	OK	500	OK	OK
48	011805	В	28	0.375	40	4	160	8.038	OK	0.17	0.22	0,44	0.011	0.032	305	435	31	OK	500	OK	OK
49	010502	8	28	0.375	40	3	120	6.028	OK	D.15	0.16	0.34	0.013	0.029	305	425	31.5	OK	500	ок	ОК
. 50	016606	В	28	0.376	40	. 4	160	8.038	OK	0.19	0.25	0.46	0.014	0.033	295	425	32	OK	500	ОК	ок
- 51	012603	В	28	0.375	40	3	120	6.028	OK	0.17	0.18	0.40	0.009	0.030	310	420	32.5	OK	500	OK	OK

YIEH CORPORATION LIMITED

Y 2019 COULST BROTHERS, INC. 1946 Received This Shop Drawing/Submittal 1975 Section Not 1960 - 010 - B Date: ________ Signature Mr-Ten

CERTIFICATE NO:PSCNIN6C01TC5 DATE OF ISSUE:4/29/2007

> Invoice No. SEUSFP6C02TD3 LC NUMBER.: 5279996

TOTAL: 746 PCS / 29840FT / 1769.619MT

GOLDEN GATE WASTEWATER TREATMENT FACILITY CLASS I INJECTION WELL SYSTEM MILL CERTIFICATIONS

INJECTION WELL IW1 18-INCH O.D., 0.500-INCH WALL THICKNESS, SEAMLESS-STEEL CASING

			Sign	au <i>no:</i>	Wo Tes	· ·			
ø	Huta "BATORY" S UL. Dynksyins 6 41-506 Choradw POLAND	.A.	ŚWIAI Certyfi Abnahm	DECTW(CAT DE R EPROFZEU) ODBIC ECEPTION JONIS C	RU NO INSPEC EPTUQUI , acc.to E	1111/ TION C AT N 1020	EXP/I CERTIFI 4/3.1.B	R/02 Cati
Zamawlaja	Fy :	STALEXI	PORT S.A	KATOWICE	· · · · · · · · · · · · · · · · · · ·			() 1/0110/7(
Le client-Ordete	by-Bes(allor-Janesyn						<u> </u>		
Admiss-Address	Versendedreesse-Aas	C DO AVIETONE					, ,		
Nr i data za	mówienia klien	ta N	r zlecenia		Nr awlzu		Ĩ	ir wago	H
No et d	tis la commande	- M	Ordre No		Avis No Advice No		•	Car No)
No und D	tum der Bestellung		Aunna No	•	Alsterpussel	10		Wagon No	
Ngu	HANO SAMESE		Ng Hupyma		No Kaballenika	<u> </u>		No Barok	t
PL/2719363	61/22/1041	422853	0/02						
Wyszczegó	nienie zamówie	nia:			· · ·		10		
Specyfication de	la commande-Order S	edfloation-Sph	stilication der Best	ilung-Creunden	WEEDER BEREER			· · · · · · · · · · · · · · · · · · ·	r –
(stan obr (stan obr L'objet et l'exe (tem and spec	. Termicz, mech.) oution (palement them i'usings) Section (Heat and med	hanicai	ymiar lub ry Dimensions ou de Dimensions or der	sunek	Narka Marka Marquo mal tres	Wytop Coules	Sztuk Piéces	mb. n	F
Gagenstand und	areament etc.) Ausfillinging (therm und Scarbeiting usw.)	Ab mechan.	Passer yaptor	obnung K	Marko Mapua	Abstich Rassics	Sruak Lihya	a. mir. 1, M.	Ċ
Предмет на	ополнению (состояние	теры	•	\mathbf{x}		-	•	nor. M	
Scamics stee API 5L - PSLI ASTM - A104 ASME SA 104 Diameter tolers Bevelled ends Outside surface	pipes spe.to /2000/ , /A 53/99/ 5/01/ SA 53/98. ances +}- 0,75 %. Acc .td API - 5L a double lacquared. ;		18" x 0,500 (457 x 12,7 k 36 - 44 ft (10,97 - 13,41	B/C	:/ 3612 . 81	18648		325,9 (99,34)	304 (138
	:	, <u>)</u>						a. 	
Kontrolę te podano nise Le controla teor The technicole Pr Die technicole Pr Textuscensus (co 1. SKLAD XUMMAR	CDDICZDĄ POWYŻ oj. ilgas do k ćić sztouja j restigacion of this order rufing objęct Bestaliuń Hripani ownożynowawy CHEMICZNY - CKWŻ COCTAB	szego zahnó nar lo Service de has bem skowi g wirde yon de oro zanasz mpo ANALYSE CI	Wienis przep : Congrole, Les res ted by the Works C r Fabrikationskont wasen Otzep Taxi HMIQUE – CHEM	prowadził C ultets des estalt conrol. Results rollo durchgadył wszeckoro Kam AICAL COMPO	ngigziai 1'80) cont indiqués ci- of tests are as fo rt, Dia Ergobnia pont, Penyanar 281710N - CHE	ninizia) X Aprés. 10085. 16 der Probén i Manaramin ag Mischie, Zus	ind nachski Ragradnen AMMENS	hend anget Hibboa BTZUNO	llut.
Wytop Coule Hen	· · · ·	•						201	
Abslich Naenne		МЦ	51	· .	ō			44 4	
818648	0,19	-1,00	0,41	0,017	0,006	0,12	d	,14	0
	1. 80.	XZ		T	Nb	Ce			1

1 .:

:

1 : :

NOV. 21. 2006 3:21PM

::

:,

::

17

Ł

2. BADANI	A MECHANICZNE	- BESAIS MEC	ANIQUES -	MECHANICA	L TESTS - >	AECHANISCHE UNTERSUCH	IUNCEN
Nr wytop Inb próby No de la coutée De l'oprouver Heat No Or, Teste No Abstieth Oder Probe N Ng пларян вин, пробы	B Stan obróbki B Termicznej Traichent themique Heat scatement Them. Bestochung Tephusz, cópaforma	Re pai (MPa)	Rm psl (MPa)	A 2" %	, Z %	Ŭ.	Twardość Durch Hardness Harta Tecpanory,
818648/143	69 Hardnes Im't Higher than 12 HRc.Pipes in strondance to NACE Mik 01-75 Tipst frankeren Type E	53229 (367)	84847 (585)	44,7			
2. BADANI PROFUNO	A TECHNOLOGIC2	NE - ESSAIS	TECHNOLO	OLQUES - TE	CHNOLOGI	CAL TESTS - TECHNOLOOIS	СНВ
4. BADANIA UNTERSUCT	METALOGRAFICZ	NE - ESSAIS DATECKAE	METALLOG	raphiques 1	- MBTALLO	oraphic tests – metallo	DORAPHISCHE
•			· .			· •	
5. INNE BAI	ANIA - AUTRES ESSA	18-OTHER 7	ESTS - AND	ERB LINTER	BUCHLINGS	N ДРУГИВ ИСПЫТАНИЯ	·
Each pipes	hydrostatically test	ed by press	ure 1980	pat - poi	itive resul	its time 5 s	
6, UWAGI D	DDATKOWE - ADD	TIONAL REM	ARKS – AUT	RESOBSERV	ations - Ai	NDERB BEMERUNGEN	
Powlerzchinią Oberfilaho und A	l wyndary zhadano mesunen gepriñ su 1001	w 100% - 60 6 - Happeraudi	ofices et dime statistic H Di	nsiens ant fils (posepica valke	nontrolés et li petalé apotos	00% - Surfuce and dimensions to Specific p 100%	sped at 100%
Material ozh Mill's symbo	sciono-La material est 1 . Seamless. Acc.to Sizè in inches	marqué Mater API S L/ B /, S. Heat puin	rial marked – X42/ PSL. (tiber-	Des Material I / A106/ /B	wurde bezein / C/ A53/ I	chnet — Метерици обошечен 3/ S A106/ В / С/ SA53 /)	- ²⁵
Na podstawi According to the Hernstramit oper	wyże przeprowadz caried out essa the mate Ref rog dia.	onych prół dal releved – t	7 materia) Unacouchung	zwolniona a wurde dar	— Bur la bas Mazerial Au	e des essais si-derrus le materi lgegoben – Ha ocuessimm sym	а) сы défivré енискозанных
Ko Con Con Pat Text	strola Jakości oblada Pabrication rol of Mánisfacture rikationskontrolle rucoksil kontrona		Dyrek Directio Works Hütten <u>Aupon</u>	cja Huty a de l'Usipe Management • Direktion pus Sabean	·····		
SEDICITY	TE CHANCENYCH	112	····	•		- •	
Ŧ	OCHUIBOP	C JOB D	، م معاون			dn. 25.06. 2002	r.

Ī) TIANGE	苏讷	戈德 邻 NGDE STEE	的管股(L TUBE SHARE		_{見公司} RIG	IN	AL	产	品 MILL	质 , CI	量 ERTI	证 FIC	明 ATE	+	5			江 苏 1 CHEN TEL: 0	省 GDE R 514-652	0AD, 9011	都市 JIANGOI , 652901	诚德 J CITY JI 2 FAX。	影路: ANGSU 0514-6	1. 号 PROVINCE i520240
J 角 PURC 产品	单位 HARSEF 名称	2: C	DZONE IN	DUSTRIES	CORPORA 无缝钢	TION /	YOUNGQ	UIST BR	OTHERS	合 Orc 	同 与 ler No:	WXI	DX-200	70110	签: Date	发日期 Of Issue 准	⁹ . 2007	年3 ——	<u> </u>	· 總号 No:	، 	48514 創 造	F 方法	bage:1	/1 热轧
Pro A	duct / 捆数 Total			CA 总 支 Total I	RBON STEE C 数 Pieces	L PIPE 22	-	总重 (Short ⁻¹ Total W	盘 Fon) eight	Steel Gi	4. 848	GK, D	rst 1 交 〔	货 状 Delivery	Speci 态	fication	正火 Normaliz	л. 	101-2000 热 He	处理温(at Ten	ዊ ነp	Making	Method	Hot	; Rolled
			ie ebs						-					-			力学性能	T	ensile To	est		·			<u> </u>
序	规力	8 . ·	15.95	御度卡号	冶炼	批号	掴数	支数	量度					Ing	冲击试 pact Te	設 ast(J)	(AKV)								37 69 4 5 /ch
号 No.	Size (IN)	-)	(FT)	Production No.	Heat No	Lot No.	Bundle	es Plece:	Weight (Short Ton)	田服 Y.S MPa	抗拉 T.S 迎a	俳长 LL 多	8	常温		o ' t	低搵		压扁 Flatteni	ng	# Expa	nsion	冷魂 Bendi	f ng F	가려고가 Ung Tensile Test
1	18 [#] * 0.	б "	751. 77		070166	4533		22	34. 848	315 305	445 450	30. 0 30. 5							合格 Good				合格 Good	F L	<u></u>
12		i		.		金	•	相		Metallo	graphy					• ••••••			硬度	45 X	38	·		,	
77 号 No	显微组 Vilcrostri	l #9 ucture	晶粒度 GrainSta	a B 分野 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日	(mm) 内盤	魏氏组织 Veistructu	re Zona	状组织 Istructure			非 Non-a	金周夹杂 aepallic	物(级 Inclu) sion			低倍档 Macr	·脸 0-	Hard-	尺 Visu		涡流探 Eddy	街」超月	■波探伤 U.T	HFX LEAS Ilydrostati Teat
			(級)	OutSide	inSide	(61)		(81)	A18	入细	BAE	<u>B</u> 细	<u>C粗</u>	C釦	<u>D积</u>	D £	struct	ire		Dimen 合律	sion 쓝	·		合格	合格
	·		l				<u> </u>			ا مرو		<u> </u>		L						Goo	a	L.:		6004	L. GOOD
ア学	~						A.			<u>988</u>	和 4	<u>%</u>		10mical	Compos	Sition	1 Ac	Ť	80	Dh	T		Sh	8	T
1	0.22		53 0		0.009				13		~	<u> </u>	<u>+</u>	<u>'</u>				+		r 0	+		~		+
友盼	V. 440												1				†				1				1
备注	许可 Lice	证与 anse					· · · · · · · · · · · · · · · · · · ·																		
Note	5L	0369																							
			·																						•

签发人: 网维齐 Signed by:

审 核 人: Previewed by:

盖 軰; Seal:

RCH/	ARSER: 0	ZONE INDUS	STRIES/YC	DUNGQUIS1	r Brothe	RS			合 同 Order 御母(級)	No:	WXDX-2	2007011(° 0 1	≵及口 ate Of Is	1 别) isue: 油	2007年6, 	月5日	No;	48724 创建	Pag 方法	9:1/1 	
Prod AB T	uct 捆数 otal		Sear 总支 Total F	Liess steel E	tubes 68		息重 (Short Total W	援 Ton) eight	Steel Gr.	3. 531	GR. B 1	PSL 1 	: 状 livery	Specific 态	ation	正火 Teck Yormalize	PI5L-2000 热 He	处理温度 pat Temp	Making	Method	Hot Rol	iled
	, in the second s	16 ft	1			494									2	力学性能	Tensile T	est				
_	. 胡 按	TK BL	调度	冶在县	*	御数	* 海	宜豆					ې Inpa	中击试验 act Test	(J)	(AKV)		1		÷.		
Р Ч No.	Size (IN)	(FT)	卡马 Producti on No.	Heat No.	Lot No.	Bundi es	Pleces	Weight (ShortT on)	屈服 Y.S IPa	抗拉 T.S MPa	伸长率 E.L %		常温		rc	低溫	压扇 Platteni	ing Ex	ず口 pansion	冷雪 Beadiag	环日 Ring	関拉伸 Tenslie Fest
1	18° +0. 5"	1762. 99		070561	5103		68	83. 531	330 320	430 495	32. 0 32. 5						合格 Good			合格 Good		<u> </u>
		1 2 2 4			A		相		Metall	ography						1 42 44 44	硬度	外观&		(he +1) -1= 2		水压试
0.	Microstructu	GrainSize	<u>息脱碳层</u> 外壁	内壁W	或氏斑 eistructur	e Zonal	に組約 structun			Non-n	在周天乐。 lepallic	Inclus:	ion	1		低倍检验 Macro-	Hard-	尺寸 Visual&	Eddy	יייק שאר ועזי ער ער	T Hyd	irostat
<u>.</u>	<u>_</u>		OutSide	InSide	(120)	- <u> </u> '	(62()	<u>A祖</u>		<u>B粗</u>	B#	<u>C粗</u>	<u>C</u> 釦	D粗	D 细	STRUCTURE		Dimensio 合格 Good	<u> </u>		格 od	合格 Good
号				······		·		······	熔	东成分	%	Ch	emical	Composi	tion					·····		
lo. : 1	C 0.21 0	Min SI . 54 0. 1	S 7 0.009	P 0.009	0.05	N1	2 0.	03 M	10	AI	V	וד		Nb	W	As	Sn	.Pb	В	Sb	BI	<u> </u>
L脸 计注 ote	许可证 Licens 51-036	F 5			1													<u> </u>	İ.			
			<u> </u>									Li		*****				· · · · · · · · · · · · · · · · · · ·			103 24	

河北省沧州市盐山地南任业民人

产品质量证明书

MILL CERTIFICATE

沧州乾成钢管有限公司

CANGZHOU QIANCHENG STEEL PIPE CO., LTD

TEL: 86-317-6322101 FAX: 86-317-6320919

DATE:2008 01 29

	រា cu	货单位 STOMER			COR	OZONE PORATI BR	ANDUSTI ON/YOU OTHERS	RIES	产日 PRC	品名和 DDUC	ћ :Т	CAI	ES RBON	新祝 STEE	LPIPE	ום	ELIVI	交货状态 TRY CON	DITION	1	正火 NORMALIZE
	y Pur	。贵单位 CHASER	_		COR	OZONE PORATI BR	INDUSTI ION/YOUI IOTHERS	RIES NGQUIST	合 ī CONTI	司母和 RACI	马 [NO.		0Z 11	0 707 0	03		CE	质保书号 RTIFICAT	ION	I	306CQ801012
	SPEC	标准 IFICATION				AP	I 512000	•	f STEEI	利级 LGR	ADE		GR.	B PSL			Re la constante	支数 (支 () () () () () () () () () () () () ()	ES		56
			INH B	** 6		格 ZE		数量 QUANTITY	1.		CHE	MIÇAL	化学	成分素 OSITI	ON/4:	1007	2	附	PHYSICA	机械 L PROI	生能 PEFTIES
	序号 NO.		HEAT NO.	LOT NO.	直径 00 IN	·登序 WI NI	支数 PIECES	长度 LENGTR FT	重量 WEIGHT MT	破 c	鐵	硫 S	词 P	保 Su	倍 Cr	钥 V	名 Al	方式 方式 一 式 、 S. Mpa	度 伸长 E.L %	卒 ·	屈服强度 Y.S. Xpa
	ĩ		456741	80	24**	0. 5**	23	575	32. 68	22	54	1.2	1.3	2.5	2.5			430	31		335
	2		254613	60	18"	0.5"	8	240	10, 18	21	63		12	2.0	3.0			435	35		340
	3		458742	80	24"	0, 5"	25	625	35. 52	28		首存,	J/P	\$ 5	2.5			430	31		335
		Tot	ग				56	1440	78.	<u>Z</u> W	an		<u>тч</u> <i>қ</i> у	T							
超声波探伤 U.T	涡轮探伤 E.T	硬度 HARDNE	志 SS 热	处理工艺 H.T	表面 DIME	前和尺寸 NSIONA	L M	显微组 CROSTRU	#R ICTURE	11-6		SIZE SIZE	聵	ATTE	P NING	H	水压i /DRC	式验)TEST	冷雪 BENDI	NG	冲击试验 IMPACT TEST AK
合格 GOOD	1.	1		1	G	合格 OOD		1			1	-		合格 GOOI	>		合 (GO(格 DD	合格 (000]	, ,	合格 GCOD
注释 NOTE	兹证明本表 We here cert specification	所列产品, ify that mat s and purchs	均依标准就 erial ,herein use order, an	L定制造。 I described ad the requir	文样,试 has bee	。 他和检 m manu	验,并将fi factured, s	合标准及 f ampled, te	全同要求 sted and l	inspec	eşte Te Can	- Atta	之 成 n nian	"钢"	管 ^中	F限 	公 (CO	Egbeve Ltd	检验员: INSPECT 许可证号 LICENCE	OR:	张遮劳 APISL-0006
	<u>l'</u>			•								2 Sund	彭	5		政				÷	

- 		O I			tin the second		án tri chu chu chu chu chu chu chu chu chu chu	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		.(e étré a									e mitani	(
		1.25.4.1 4.05.503		 13.,41466	0.8-TD	j J		质配		IF FIC	明 AT	E				ія Те	小省; L: 86	仓州市主 317-632	盐山坝 2101	t南工 FAX:	2.纪文 86317-632	
			LIR POIS			(CORP	ZONET ORATIO BRO	NDUST N. SOU THERS	RIES NOOUISI	ja PR		6 CT		tai Me	ite SS PIP	ĒD	\$ ELIVER	食状态 Y CONDA	ITTON		OR VAL	
			线武华位 PURCHASER			CORP	ZONE II ORATIO BRO	NDUST NAYOU ITHERS	IVES INGQUIST	tont	何与 RAC	월 T NO.	0	21107	07003		厚 CFRI	保书号 IFICATIO	N		102 (30)	
Ì		SI	決定 PECIFICATION		•		APIS	512000	0	STEI-	朝愛 1. GR	ADF.		ur.b i	'SLI	ļ	息支 101/	数(文) M.RIECE	s		56	1. A.
: . [· .				規相 51.2	4		<u></u> 知道 DUANTITY			CHI	MICAL	化学》	或分% あ」TLC	IN (+1	00)	s 1. •	PIJ	ML YSICAL P	REERS .	8
3		序号 ND.		HEAT NO.	JUCS LOT NO.	直行 UD IN	些厚 TT.F	支数 TECES	KE LENGIH	重量 WEIGHT NT	。 。 C	昭	康 S	る為 P	保 Su	器 Cr	机化	日 日 日 日 日 王 5 日 王 5 日 王 5 日	惑度 5. e	仲設室 E.L. S	F. S	
			1 1 1 1 1 1 1 1 1	872087. ⁴	(75 - 80 	24* *18*	0.6"	23 'F	575 240	32.68	22	54 54	1.2	1.1	2.4	2. B		44	5 0	32 31	33	12915
		3 Total		1872055	80	24**	Ú 5"	25 56	1440.	35. 52 78.38	22	54	1.2	1.3	2.4	2.5		43	D	31	31	
		词轮探伤 EJ	硬度 HARDNESS	热处理 HT	Ż.	表面和尺 IME _{NSIO}	NAL	MICR		Rhi		SIZ,	E -	HE LATT) P ENTN	G I	水話 IYDRO	32 TEST	BEN	a Dinci		RAGE S
	CAR MINOD		1	1		合格 GOOD	-		Y.		- <u>1</u> 1	r		fat GO(₩ DD		- 合和 GOO	D] ≜ 60	gD €		「「「「「「「「「」」」
Ser. Y	HE NOTE		KMP*Ch. DR fy that inaterial and purchase of	handlin desc there and the	nijed hu regulrener	teen (88 113	nafactore	FAX 1, sam,	建及合同里 d.st. tested	and Insp	ected	bi act	tordan(e with	ttie R	quirce	nents of	1 1 1 1 1	的时间 INSPAC IT可证 LICENE	10ie 7: 253	. Mar	
					u hitero	- - 									्र स्वा सार्ग			交日	贤日期		1.20080 	

.

;

.

GOLDEN GATE WASTEWATER TREATMENT FACILITY CLASS I INJECTION WELL SYSTEM PRODUCT SHEET

, jê

1. 德

127

ļ.,

Â.

Ą

INJECTION WELL IW1

11.97-INCH INSIDE DIAMETER FRP TUBING

and the second state

۱<u>.</u>

FUTURE PIPE INDUSTRIES Complete Pipe System Solutions

RED BOX 1500

1.1.1

÷

*****-

FIBERGLASS TUBING, CASING, AND LINERS AROMATIC AMINE CURED SPOXY RESIN

DIMENSI	DNAL SPI		ONS					:	Februari	
Nominal	Nominal	Minimum	Nominal	Nominat	Pin Upset	· Max Box	Numè	المحمد المحم	Connection Type	
Site	LO.	Onto Cita	0.0	Wall	00.	00	PED-14		API 58, Table 14", 7", 0"	
(inches)	(Inches)	(riches)	(Anches)	(ACINES)	(inches)	(inches)	((05/4)	/(0:40	Fourteenin Edition August 9	
2-3/8	2.00	1.91	226	0.13	2.69	8.45	0.8	25	2-SRF BRId EUE Long U	
2-1/8	2.47	23/	211	0.18	3.19	3.80	1 12	35	2-mr end EUE Long u	
3-1/2	3.00	2.90	3.37	0.19	3.85	4.84	1.8	53	3-1/2" BRI EUE Long/U	
4	3.33	3.24	3.75	0.21	4.85	5.26	2.3	70	4" BRI EUE Long" TC	
4-1/2	8.98	8.89	4.48	0.25	4.85	5.77	3.0	90	4-1/2" SRI EUE Long"U	
5-1/2	4.42	4.33	4.95	0.27	5.60	6.71	3.8	115	5-1/2" 8Rd Csg Long""L	
8-5/8	5.43	5.33	6.10	0.94	6.73	8.00	5.7	171	6-5/8" BRI Cag Long "D	
7	6.21	6.11	6.97	0,38	7.10	8.61	6.9	208	7" 8Rd Csg Long"U	
7-5/8	6.21	6,11	6.97	0.38	7.79	9.38	7.6	227	7-5/8" BRd Cag Long "U	
9-5/8	7.84	7.75	8.80	0.48	9.73	11.84	12.0	361	9-5/8" 8Rd Cag"" U	
10-3/4	8.85	8.76	9.94	0.54	10.85	13.15	15.3	459	10-5/4" 8Rd Cog""LJ	
11-3/4	10.72	10.62	11.90	0.59	12.61	14.70	21.1	632	11-34 8/8Rd L Cag TC	
13-3/8	11.97	11.87	13.29	0.66	13.48	15.65	24.0	721	13-3/6" 8/6Rd.Cag TC	
16	14.48	14,39	16.08	0.80	16.20	19,20	35.1	1,054	10" GRd Cog TC	
18	16.60	16.50	18.43	0.92	18.71	23,10	47.7	1,432	18" GRd Cag TC	
20	17.98	17.89	19.97	1.00	20.06	24.80	54.9	1,548	20" 6Rd Cap TC	
ERFOR	MANCE A	ND RATIN	GS (-60 de	g F to +2	10 deg F)			مانند با معرب م	30 R Standard Joint Lor	
Notoinat	Internal Pressure		Mat Test		Ridio tota		Avial Tension		Statch vs Tension Over Pice	
2.9/8	1500 1850		1,200		13 000		0.989			
2.70	1500 1.85		50	1	100	10	000	0.266		
3.10	1 500		1,850		1	00	28,000		0.178	
4		500	1.850		1,100		35.000		0.138	
4.1/2		500	1.850			00	1	500	0.098	
5.1/2		500	1,850		1,000		55,500		0.084	
6.6/9		500	1,850		1,100		72	500	0.054	
7	1	500	1.850		1.0	1,000		500	0.042	
7.5/8		500	1,850		1.000		86	500	0.042	
0.6/0		500	1,050		1.000		140,500		0.027	
10.3/4		500	1,050		1.000		161.500		0.027	
11.9/4		Enn	1,500		750		126 600		0.024	
19.9/9		5000 EAN			760		136,000		0.018	
16		Kan		150	750		167.000		0.019	
10		500	<u> </u>	160	750		194,000		0.010	
20		500		50	750		208.000		0.009	
- 20			1	~~				Wh	ore: P - Totels Logd /1 000 B	
ECHAN	ICAL AND	PHYSICA	PROPE	RTIES					L = Sking Longia (1 000	
	TURINGATA	SING PODY	PROPERTIES	3	15	ar.		VALUE	TEST METHOD	
				-			2-95-10-54	11-34 - 40		
nella Ci-	naith Line		فسخب جسمة			el	31 300	91.900	ASTN DISO	
Concillo Stremath: A-Jul				ļ	ed	30,000	12.000	A9714 D9405		
Control Control And					06 oci	30	20	ACTH 00100		
AUGULUS OF EISEOCRY, AVIA				100041	no hoi	0.0	2.0	AGINEUEIUD		
	avay	<u></u>						<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	A01M 0752	
ensay					RDS	(III)	0.07	0.07	ASIM U792	
nermai C	onductivity		<u> </u>		Bturnin	/IN/degF	2.4	. 24	ASTN C177	
ermai E	pansion C	oeniciem (L	inear)		10E-05in	www.ceg-	1,1	1.2	ASTM Dese	
IOW F BCtO	Fector					-	1 150	150	Hazen Williams	

11811 Proctor Road · Houston, Texas 77038 · Phone: (281) 847-2987 · Fax: (281) 847-1931 Email: houston@future-pipe.com · website: www.futurepipe.com

Inspection Certificate

Job No: 110000070

÷.,

1

ក្តី។

5

....

12

1

Purchaser: Ozone

S<u>O #: 621000413</u>

July 2, 2008

Destination: Fort Myers, Florida

Product: 13 3/8" RB 1500

Quantity: 2790' Ft

We hereby certify that the materials & fittings supplied have been tested and comply with API 15 HR spec's.

Material Certificate

Material: 13 3/8" RB-1500

Test pressure: 1850 psi

Certificate Number: FPI-2008-08

Customer: Ozone

Sales Order: 62L000413

Produced By: Future Pipe Industries, Inc. - Houston, TX

FPI Order Number: 110000070

Pipe System: Aromatic Amine heat cured epoxy

Raw Material Specifications:

Resin type- Epoxy Curing Agent- Aromatic Amine Glass Fiber- E-Type

Non Destructive Tests:

Dimensional Exam - ASTM D 3567 Visual Standards - API 15 HR Table 2

We hereby certify that the materials described above have been tested and comply with API 15 HR.

Certificate of conformity Statement:

All items delivered under this certificate number were manufactured in accordance with API 15 HR specifications:

We hereby certify that the materials described above have been tested and comply API 15 HR.

Raymond Jones Raymond from

QC Supervisor Future Pipe Industries 11811 Proctor Rd Houston TX, 77038

ARCADIS

Appendix E

Surficial Aquifer Pad Monitor Well Data and Charts; Technical Memorandum with Mechanical Integrity Results

Well Location	TOC Elevation	Date	Depth to Water	Water Level	Temperature	Conductivity	Chloride	pН
	(feet msl)		(feet b.t.o.c.)	(feet msl)	ര്വ	(uS/cm)	(mg/L)	
PMW-1	10.92	11/28/07	5.93	4.99	26.7	1133	180	7.15
T.D.: 14.5	12.15	12/13/07	5.86	5.06	26.4	1148	180	7.09
(feet btoc)		12/20/07	5.78	5.14	24.8	1128	180	7.02
` ´		12/27/07	5.83	5.09	25.2	1110	180	7.03
		01/03/08	5.93	4.99	22.6	1107	180	7.09
		01/09/08	5.92	5.00	24.2	1118	180	7.11
		01/17/08	6.01	4.91	23.8	1120	180	7.27
		01/24/08	5.98	4.94	23.9	1124	180	7.15
		01/30/08	6.04	4.88	24.3	1139	180	7.17
·		02/08/08	6.24	4.68	25.4	1164	160	7.08
•		02/14/08	6.02	4.90	23.5	1151	160	6.99
		02/19/08	5.80	5.12	24.2	1163	180	6.89
		02/27/08	5.83	5.09	23.3	1150	180	7.17
		03/06/08	6.02	4.90	24.8	1168	160	7.11
		03/22/08	6.37	4.55	24.1	1164	160	7.10
		03/28/08	6.43	4.49	24.7	1160	160	7.15
		04/03/08	6.22	4.70	26.3	1068	160	6.62
		04/09/08	6.56	4.36	25.5	1151	180	7.07
		07/07/08	5.44	5.48	26.7	1189	200	7.15
		08/01/08	5.89	5.03	28.3	3350	1340	6.84
		08/06/08	5.72	5.20	28.3	1310	280	6.69
	•	08/20/08	3.32	7.60	27.5	724	100	6.78
		09/12/08	5.76	6.39	28.6	1127	140	6.70
		09/15/08	6.33	5.82	28.4	1204	160	6.73
PMW-2	(11.49)	11/28/07	5.99	5.50	26.4	1063	200	7.21
T.D.: 13.6	9.48	12/13/07	5.93	5.56	26.2	1072	180	7.13
(feet btoc)	12.9	12/20/07	5.83	5.66	25.4	1106	180	7.06
		12/27/07	5.92	5.57	25.2	1012	200	7.13
		01/03/08	5.99	5.50	23.4	1121	200	7.08
		01/09/08	5.98	5.51	23.8	1136	180	7.12
		01/17/08	6.10	5.39	23.4	1124	180	7.12
		01/24/08	6.03	5.46	23.7	1113	180	7.08
		01/30/08	6.10	5.39	24.1	1149	200	7.14
		02/08/08	6.32	5.17	24.4	1159	180	7.14
		02/14/08	6.08	5.41	23.2	1157	160	7.07
		02/19/08	5.87	5.62	23.7	1143	180	7.15
		02/27/08	5.91	5.58	23.2	1157	180	7.18
		03/06/08	6.10	5.39	24.6	1149	160	7.20
		03/22/08	4.81	4.67	23.2	1105	140	7.12
		03/28/08	5.10	4.38	24.1	1148	180	7.18
		04/03/08	4.84	4.64	24.5	1138	180	6.66
		04/09/08	5.12	4.36	25.0	1179	160	7.20
		04/17/08	4.38	5.10	25.0	1166	160	7.06
		04/23/08	4.58	4.90	24.9	1198	160	6.89

Table 1. Summary of Water Table Monitor, Water Quality DataFGUA Golden Gate WWTP Injection Well System

G:NProjects/WRWF PROJECTS/WF004200_G015 - Golden Gate Injection Well/Submitted (Final) Reports/Weekly Reports/Week 37,38,398.40 Aug25-Sept2108A PMW WQ Summary.xts

Page 1 of 4

Well Location	TOC Elevation	Date	Depth to Water	Water Level Elevation	Temperature	Conductivity	Chloride	рH
	(feet msl)		(feet b.t.o.c.)	(feet msl)	(°C)	(µS/cm)	(mg/L)	
PMW-2	(11.49)	05/01/08	4.65	4.83	24.7	1149	180	7.08
T.D.: 13.6	9.48	05/08/08	4.88	4.60	25.2	1251	180	6.85
(feet btoc)	12.9	05/14/08	5.08	4.40	25.5	1318	180	6.83
		05/22/08	5.40	4.08	26.8	1315	160	6.91
		05/28/08	5.65	3.83	25.9	1303	180	6.88
		06/04/08	5.62	3.86	25.3	1280	200	6.85
		06/11/08	5.29	4.19	26.0	1295	180	6.98
		06/17/08	4.62	4.86	26.1	1310	200	6.63
		06/26/08	4.37	5.11	26.2	1420	220	6.70
		07/03/08	4.05	5.43	26.3	1498	240	6.62
		07/07/08	4.02	5.46	27.5	1389	220	7.01
1		08/01/08	4.43	5.05	28.8	1471	320	6.79
		08/06/08	4.28	5.20	28.8	1520	280	6.82
		08/20/08	2.06	7.42	27.0	1328	120	7.14
		09/12/08 ·	6.48	6.42	28.8	1422	220	6.74
		09/15/08	7.11	5.79	28.6	1342	200	7.00
PMW-3	11.44	11/28/07	6.46	4.98	26.4	1102	200	7.13
T.D.: 13.4	12.76	12/13/07	6.39	5.05	26.1	1027	180	7.11
(feet btoc)		12/20/07	6.28	5.16	25.0	1140	200	6.85
		12/27/07	6.31	5.13	25.3	1182	200	7.07
		01/03/08	6.45	4.99	22.8	1167	180	7.03
		01/09/08	6.43	5.01	23.8	1147	220	6.89
		01/17/08	6.55	4.89	23.7	1160	180	7.06
		01/24/08	6.49	4.95	23.8	1180	180	6.85
		01/30/08	6.56	4.88	24.1	1275	200	6.85
		02/08/08	6.78	4.66	24.2	1221	180	7.09
		02/14/08	6.55	4.89	23.0	1217	180	7.13
		02/19/08	6.32	5.12	23.8	1213	180	7.19
		02/27/08	6.38	5.06	23.4	1228	180	7.14
		03/06/08	6.54	4.90	24.1	1233	180	7.12
		03/22/08	6.86	4.58	22.7	1181	180	7.13
		03/28/08	7.04	4.40	23.8	1228	200	7.15
	ļ	04/03/08	6.77	4.67	24.4	1159	180	6.87
		04/09/08	7.02	4.42	24.1	1179	160	7.19
		04/17/08	6.32	5.12	24.0	1254	160	7.12
		04/23/08	6.51	4.93	24.9	1217	160	7.10
		05/01/08	6.60	4.84	24.8	1249	220	6.77
	•	05/08/08	6.81	4.63	25.4	1299	180	7.05
		05/14/08	7.00	4.44	25.3	1374	220	7.08
		05/22/08	7.35	4.09	26.3	1360	180	6.97
		05/28/08	7:59	3.85	26.5	1347	180	7.10
		06/04/08	7.57	3.87	25.8	1265	200	7.06
		06/11/08	7.25	4.19	25.5	1280	200	7.08
		06/17/08	6.57	4.87	26.0	1285	200	6.68
		06/26/08	6.31	5.13	25.8	1125	140	6.96
		07/03/08	5.98	5.46	25.9	1185	160	7.02
		07/07/08	5.97	5.47	27.4	1141	160	6.64
		08/01/08	n/s	n/s	<u>n/s</u>	n/s	n/s	n/s
		08/06/08	6.22	5.22	28.5	1210	160	7.03
		08/20/08	3.92	7.52	27.4	920	100	6.55
		09/12/08	6.31	6.45	28.7	1116	120	6.85
		09/15/08	6.98	5.78	28.3	1127	140	7.13

G:\AProjects\WR\WF PROJECTS\WF004200.G015 - Golden Gate Injection Well\Submitted (Final) Reports\Weekly Reports\Week 37,38,39840 Aug25-Sept2108\
PMW WQ Summary.xts

Page 2 of 4

Well Location	TOC Elevation	Date	Depth to Water	Water Level Elevation	Temperature	Conductivity	Chloride	рН
	(feet msl)		(feet b.t.o.c.)	(feet msl)	<u>(°C)</u>	(µS/cm)	(mg/L)	
PMW-4	(8.82)	11/28/07	3.98	4.84	26.5	686	80	7.03
T.D.: 13.7	8.93	12/13/07	3.93	4.89	26.3	1045	160	7.06
(feet btoc)	11.75	12/20/07	3.81	5.01	24.5	994	140	6.99
		12/27/07	3.89	4.93	25.2	918	120	7.12
		01/03/08	3.97	4.85	22.6	992	140	7.08
		01/09/08	3.97	4.85	24.2	985	160	7.21
• •		01/17/08	4.07	4.75	24.5	1032	140	7.25
		01/24/08	N/M	N/M	N/M	N/M	N/M	N/M
		01/30/08	N/M	N/M	N/M	N/M	N/M	<u>N/M</u>
		02/08/08	3.54	5.28	24.3	1210	180	7.20
		02/14/08	3.50	5.32	23.8	1234	180	7.12
		02/19/08	3.82	5.00	23.9	1102	160	7.10
		02/27/08	3.88	4.94	23.3	1176	180	7.22
		03/06/08	4.07	4.75	24.6	1200	180	7.18
		03/22/08	4.34	4.59	24.1	1130	180	7.13
1		03/28/08	4.52	4.41	24.6	1054	140	7.20
		04/03/08	4.26	4.67	25.0	1269	180	6.88
		04/09/08	4.59	4.34	24.7	1175	160	7.15
!		07/07/08	3.54	5.39	27.0	1277	160	7.08
		08/01/08			Not sampled- acces	s blocked		
		08/06/08			Not sampled- acces	s blocked.		
		08/20/08	1.37	7.56	27.1	1205	160	6.97
I		09/12/08	5.12	6.63	28.7	1521	220	6.79
		09/15/08	5.94	5.81	28.4	1557	220	6.46
PMW-5	(11.11)	11/28/07	6.12	4.99	26.4	1001	200	7.05
T.D.: 11.90	9.51	12/13/07	6.08	5.03	26.2	990	180	7.02
(feet btoc)	12.83	12/20/07	5.98	5.13	25.4	1006	180	7.02
		12/27/07	6.05	5.06	25.4	1014	160	7.11
		01/03/08	6.14	4.97	22.8	993	<u>160</u>	7.09
		01/09/08	6.12	4.99	24.2	1022	180	7.05
		01/17/08	6.23	4.88	23.5	1002	180	7.06
		01/24/08	6.18	4.93	23.5	1024	180	7.16
•		01/30/08	6.24	4.87	23.4	1047	160	7.04
		02/08/08	6.47	4.64	24.0	1059	140	7.10
		02/14/08	6.23	4.88	22.8	1113	140	7.02
		02/19/08	6.01	5.10	23.5	1091	160	7.06
		02/27/08	6.07	5.04	23.0	1089	160	7.17
		03/06/08	6.23	4.88	24.6	1181	160	7.23
		03/22/08	4.95	4.56	23.1	1102	140	6.94
		03/28/08	5.12	4.39	24.3	1028	140	7.23
		04/03/08	4.84	4.67	25.4	1008	140	6.85
		04/09/08	5.14	4.37	23.9	966	120	7.14
		04/17/08	4.40	5.11	24.1	1093	140	7.14
		04/23/08	4.48	5.03	25.3	1080	140.	7.05
		05/01/08	4.68	4.83	24.7	1055	180	6.97
1		05/08/08	4.90	4.61	24.9	1081	140	7.06
		05/14/08	5.10	4.41	24.8	1168	140	6.97
		05/22/08	5.41	4.10	26.1	1207	160	6.94
		05/28/08	5.65	3.86	25.9	1223	160	6.86
		06/04/08	5.64	3.87	25,2	1158	180	6.84
		06/11/08	5.28	4.23	25.8	1175	180	7.03
<u> </u>		06/17/08	4.64	4.87	25.8	1255	160	6.76

G:\AProjects\WR\WF PRQJECTS\WF004200.G015 - Goldan Gate Injection Well\Submitted (Final) Reports\Weekly Reports\Week 37,38,39840 Aug25-Sept2108\
PMW WQ Summary.sts

.

Well Location	TOC	Date	Depth to	Water Level	Temperature	Conductivity	Chloride	pН
	Elevation		Water	Elevation				
<u></u>	(feet msl)		(feet b.t.o.c.)	(feet msl)	(°C)	(µS/cm)	(mg/L)	
PMW-5	(11.11)	06/26/08	4.40	5.11	26.1	1310	180	6.84
T.D.: 11.90	9.51	07/03/08	4.08	5.43	26.3	1325	180	6.88
(feet btoc)	12.83	07/07/08	4.06	5.45	27.1	1137	160	6.99
		08/01/08	4.46	5.05	28.6	1181	200	6.54
		08/06/08	4.29	5.22	28.7	1195	200	6.75
		08/20/08	2.17	7.34	27.0	1191	160	7.16
		09/12/08	6.38	6.45	28.6	1116	140	6.72
		09/15/08	7.02	5.81	28.2	1108	140	7.02
PMW-6	(11.17)	11/28/07	6.16	5.01	26.6	1017	260	7.09
T.D.: 12.30	9.44	12/13/07	6.10	5.07	26.1	1012	160	7.07
(feet btoc)	12.85	12/20/07	6.00	5.17	25.0	985	140	6.80
		12/27/07	6.08	5.09	24.9	1011	160	7.09
		01/03/08	6.17	5.00	23.0	1027	140	6.99
		01/09/08	6.14	5.03	23.6	1046	160	6.94
		01/17/08	6.26	4.91	23.0	1064	180	7.02
		01/24/08	6.20	4.97	22.9	1034	160	6.98
		01/30/08	6.26	4.91	23.2	1049	160	6.97
		02/08/08	6.49	4.68	23.4	1069	140	7.09
		02/14/08	6.24	4.93	22.5	966	120	7.14
	· ·	02/19/08	6.04	5.13	22.9	1033	140	7.08
		02/27/08	6.08	5.09	22.7	1040	120	7.11
		03/06/08	6.25	4.92	23.6	1046	120	7.13
		03/22/08	4.90	4.54	22.5	1094	140	6.96
		03/28/08	5.06	4.38	23.8	1082	140	7.03
		04/03/08	4.80	4.64	24.5	978	120	6.91
		04/09/08	5.04	4.40	23.9	1003	120	7.13
	{	04/17/08	4.35	5.09	23.3	1140	160	7.13
		04/23/08	4.54	4.90	24.1	1170	160	7.12
		05/01/08	4.68	4.76	23.9	1051	160	6.79
		05/08/08	4.83	4.61	24.6	1150	140	7.01
		05/14/08	5.04	4.40	25.0	1292	160	7.00
4		05/22/08	5.38	4.06	26.1	1255	160	6.88
		05/28/08	5.63	3.81	26.3	1228	140	6.94
		06/04/08	5.59	3.85	25.3	1110	140	6.90
		06/11/08	5.27	4.17	25.1	1050	140	6.83
		06/17/08	4.59	4.85	25.7	1165	160	6.86
		06/26/08	4.34	5.10	25.6	960	120	7.02
		07/03/08	4.02	5.42	26.1	770	120	7.04
		07/07/08	3.99	5.45	27.2	958	120	6.88
		08/06/08	4.30	5.14	28.9	1080	120	6.79
		08/20/08	2.01	7.43	27.2	1034	120	6.94
		09/12/08	6.39	6.46	28.6	1038	100	6.38
		09/15/08	7.06	5.79	28.4	1059	100	7.01

Note: casing on wells PMW-2, PMW-5 and PMW-6 was cut down prior to 03/22/08 sampling event. Wells were resurveyed on April 3, 2008.

Top of casing data was recalculated back. Values in parenthesis show original TOC values.

Note: casing on all wells were modified and resurveyed prior to 09/12//08 sampling event. New TOC values are in bold letters.

"btoc" denotes "below top of casing"

"feet msl" denotes feet relative to mean sea level

"C" denotes degrees Celsius

µS/cm denotes microSiemens per centimeter

"mg/L" denotes milligrams per Liter

Only wells adjacent to the IW1 drilling pad were sampled after April 9, 2008

G: AProjects/WR/WF PROJECTS/WF004200. G015 - Golden Gate Injection Well/Submitted (Final) Reports/Weekly

Demonstration of Mechanical Integrity

GOLDEN GATE WWTF INJECTION WELL SYSTEM

MW1 FRP (LOWER MONITOR ZONE) HYDROSTATIC PRESSURE TEST

On February 21, 2008 the Contractor performed a pressure test of the FRP tubing in MW1. The tubing was pressurized to 120.5 pounds per square inch (psi). It should be noted that the removable plug at the bottom of the "California" packer was still in place. After 60 minutes, the pressure inside the FRP tubing decreased 3.0 psi, to 117.5 psi (decrease of 2.5%) and testing was terminated with the FRP tubing successfully passing the test. The pressure from the tubing was gradually released and the volume of water removed during this procedure was measured. A volume of 14 gallons of water were collected during pressure release. A pressure test data table and pressure gauge calibration certificate are attached. The Contractor then re-pressurized the FRP tubing in order to remove the stainless steel plug from the bottom of the "California" packer. The plug was successfully removed when pressure inside the tubing reached 185 psi.

IW1 18-INCH O.D. FINAL CASING HYDROSTATIC PRESSURE TEST

On June 26, 2008, the Contractor installed the 18-inch outside diameter (O.D.), seamless-steel final casing to 2,472 feet below pad level (bpl). Prior to cementing the casing in place, the Contractor installed an inflatable packer at 2,446 feet bpl and performed a hydrostatic pressure test. The casing was pressurized to 155 psi. After one hour, the pressure decreased 0.5 psi to 154.5 psi (a decrease of 0.3%).

On June 30, 2008, (after cementing the final casing in place) the Contractor installed an inflatable packer to 2,440 feet bpl and inflated it to 480 psi in preparation to perform the permit required hydrostatic pressure of the cemented final casing. On July 1, 2008, the final casing was pressurized to 155.8 psi, and the pressure was monitored for 1 hour. Within the 1-hour period, the pressure increased by 3.2 psi representing a pressure change of 2.1%. Because the pressure change was less than 5%, the test was considered successful. The pressure then was released and 17 gallons of water was removed from the well. Mr. James Harcourt (FDEP South District Representative) was onsite to witness the test. A pressure test data table and pressure gauge calibration certificate are attached.

IW1 ANNULAR HYDROSTATIC PRESSURE TEST

On July 4, 2008, the Contractor installed the FRP injection tubing string (11.97-inch inside diameter [I.D.] and 13.29-inch O.D.) in IW1 to just above the internal packer mandrel attached to the 18-inch O.D. final casing wall. The Contractor then pumped 12,000 gallons of a 1.1% corrosion inhibitor solution (Baracor 100) in the annular space. After the corrosion inhibitor was installed, the Contractor seated the external packer mandrel (attached to the base of the FRP tubing) into the internal packer mandrel. A TV survey then was performed in ensure a proper seat.

On August 20, 2008, the Contractor installed a calibrated pressure gauge to monitor the annular space between the FRP injection tubing and the final casing. The annulus then was pressurized
with potable water. A pressure gauge, with the capacity to measure pressures up to 200 psi, graduated in increments of 1 psi, was connected for the hydrostatic pressure test. The Contractor then performed a one-hour hydrostatic-pressure test of the annulus at an initial pressure of 150.0 psi. The test was witnessed by Lech Kwapinski (ARCADIS) and David Rhodes, P.G., (FDEP, Southwest District office). There was a minimal loss of pressure (0.25 psi) within the first 15 minutes the test, and for the reminder of testing no further deviation occurred. These results demonstrate that the final casing and injection tubing have internal mechanical integrity. The hydrostatic pressure-test results and the pressure-gauge calibration certificates are included in **Appendix B**.

HIGH-RESOLUTION TEMPERATURE LOG

Prior to undertaking the RTS logging, the Contractor injected approximately 60,000 gallons of tap water (more than 4 injection well volumes) into the well to establish a fresh water "bubble" below injection casing seat. A high-resolution temperature log was performed on August 20, 2008. The Contractor conducted a temperature log in IW1 from pad level to approximately 2,870 feet bpl. The survey tool could not pass below 2,870 feet bpl due to a large cavity at this depth. The temperature inside the injection casing is a function of a combination of factors, including the water temperature of the formation, and the diameter and wall thickness of the casings.

The temperature log plot shows a starting temperature of 84.8 degrees Fahrenheit (°F) at pad level, increasing to approximately 86.0 °F at 22 feet bpl. Between 22 feet and 2,410 feet bpl the temperature gradually increased to 97 degrees (increase of 11 degrees). The temperature then began to decrease from 97 degrees to 95 degrees to a depth of 2,510 feet bpl. For the remainder of the survey, the temperature remained between 95 and 96 degrees. Based on the temperature log, there is no indication that IW1 lacks mechanical integrity. The high-resolution temperature log is enclosed.

RADIOACTIVE TRACER SURVEY

A RTS was performed to determine whether IW1 had external mechanical integrity (including the integrity of the cement sheath and adjacent formation). The RTS logging tool used for the survey consisted of three gamma-ray detectors: one near the top (GRT), the middle (GRM) and bottom (GRB) of the tool. Readings from the detectors are reported in GAPI units (Note: GAPI units are standard American Petroleum Institute units; 16.5 GAPI units are equivalent to 1 microgram ra-eq/ton). The RTS logging-tool ejector port is located between the GRT and the GRM. A tool diagram is included in the enclosed RTS log plot. A magnetic casing-collar locator (CCL), attached to the base of the RTS logging tool, indicated that the base of the 18-inch O.D. final casing was located at a depth of approximately 2,472 feet bpl.

Background Gamma-Ray Log

Following completion of the high-resolution temperature log a gamma-ray log was performed as an "out-of-position" background log on the upward pass. The background gamma-ray log serves as a means of comparison for each of the subsequent "out-of-position" log passes. An "out-of-position" log pass refers to the RTS tool traveling up the well at a nearly constant speed of 33 feet per minute

while recording. The background gamma-ray log was conducted from 2,870 feet bpl to pad level. During "out-of-position" logging, readings were collected from each of the detectors (GRT, GRM and GRB).

Monitoring Test #1: Dynamic Monitoring

Starting from the bottom section of the RTS log plot, the various surveys are discussed in the same sequence as they were performed. Following the background log, the RTS tool ejector port was loaded with 5.0 millicuries (mCi) of lodine 131. The lodine 131 assay label is included in **Appendix B**. For (dynamic) Monitoring Test #1, the Contractor set the ejector of the RTS tool at a depth of 2,467 feet bpl, approximately 5 feet above the base of the injection casing (as recorded by the CCL), and established a constant injection flow rate of 30 gallons per minute (gpm) using potable water. The flowmeter calibration certificate is included in **Appendix B**. During dynamic ('time-drive') monitoring, the RTS tool remained stationary, and "time-drive logging" was shown on the log plot. The vertical segments of the time-drive log indicate time in 20-second intervals and the horizontal segments (for each detector) indicate the change in GAPI units. For other RTS survey logs (background, out-of-position and final gamma-ray logs), the vertical segments of the log plot indicate a change in depth.

After setting the RTS tool and monitoring for 1 minute, the Contractor ejected a 1.0 mCi slug of lodine 131 and continued "time-drive monitoring" of gamma-ray levels for 60 minutes after the release. The time at which the tracer slug was ejected is noted on the log. Each standard division represents 20 seconds on the time-drive log. The lodine 131 was first detected by the GRM within approximately 25 seconds after the ejection began (1.0 mCi of lodine 131 takes approximately 7.0 seconds to eject). The maximum reading (2,649 GAPI) at the GRM occurred within 40 seconds after initial detection. Approximately 5.5 minutes after ejection, the readings at the GRM decreased to approximately 34 GAPI. Approximately 2.5 minutes after ejection, the tracer was detected in the GRB and reached a maximum level of 2,026 GAPI after 3 minutes since ejection. After 15 minutes, the GRM readings decreased to near background levels (less than 20 GAPI). Readings at the GRB decreased gradually until 24 minutes after ejection and remained stable at low levels (30-40 GAPI) for the remainder of (dynamic) Monitoring Test #1. The tracer was not detected in the GRT during Monitoring Test #1.

Monitoring Test #1: Out-of-Position Log and Log After Flush

After 60 minutes of dynamic logging, the Contractor performed an "out-of-position" log (labeled "LOP Test # 1" on the log plot for Log Out of Position) from the base of the final casing to a depth of 2,270 feet bpl. The Contractor performed the "out-of-position" log at an uphole rate of approximate 30 feet per minute. The injection flow rate during the "out-of-position" log remained at approximately 30 gpm. Except for the elevated reading near the bottom of the injection casing, at 2,458 feet bpl, the recorded readings from the GRT and GRM detectors closely resemble the recorded readings from the background gamma-ray log. This was most likely caused by tracer remnant at the ejector lost during RTS tool sudden move during lifting. This "staining" is not present after the flush with potable water.

After conducting the "out-of-position" log, the Contractor flushed IW1 using potable water to flush any excess lodine 131 off the RTS tool and the inside of the casing. The injection flow rate was approximately 105 gpm. The Contractor then lowered the RTS tool back to 2,467 feet bpl (original ejector depth). After approximately 3,100 gallons of water were pumped down the well, the Contractor returned the flow rate of the potable water to approximately 30 gpm. To monitor for residual lodine 131 on the RTS tool or casing, the Contractor again performed logging up to 2,560 feet bpl (labeled "LAF # 1" on the log plot for Log After Flush). From 2,470 feet to 2,270 feet bpl, the recorded readings from all three detectors closely resemble the recorded readings from the background gamma-ray log.

Monitoring Test #2: Dynamic Monitoring

For Monitoring Test #2, the Contractor again set the RTS tool with the ejector at a depth of 2,467 feet bpl and established an injection flow rate of approximately 30 gpm. The Contractor then monitored gamma-ray levels for one minute before ejecting a 1.5 mCi slug of lodine 131, and monitored levels for 60 minutes after release. The lodine 131 was first detected by the GRM within approximately 45 seconds after the ejection began. A high GRM reading (2649 GAPI units) occurred 40 seconds after the initial detection. Approximately 30 minutes after ejection the readings at the GRM decreased to approximately 34 GAPI units, and after 37 minutes decreased to background levels. Approximately 2.5 minutes after ejection, tracer was detected in the GRB and reached maximum level of 2,027 GAPI after 3 minutes since detection. Readings at the GRB decreased gradually until 37 minutes after ejection and remained stable at low levels (20-30 GAPI units) for the remainder of (dynamic) Monitor Test #1. As during the previous test, tracer was not detected in the GRT.

Monitoring Test #2: Out-of-Position Log

After dynamic logging, the Contractor performed an "out-of-position" log (LOP #2) up to 2,270 feet bpl at an approximate travel rate of 30 feet per minute. The injection flow rate during the "out-of-position" log remained at 30 gpm. The readings from the GRT, GRM and GRB closely resemble the recorded readings from the background gamma-ray log.

Final Gamma-Ray Log

After conducting the "out-of-position" log, IW1 was flushed using potable water to remove any excess lodine 131 from the RTS tool and the inside of the casing. The injection flow rate was approximately 105 gpm. The tool was then lowered to 2,870 feet bpl and the remaining 2.5 mCi of lodine 131 was ejected. The Contractor then performed gamma-ray logging from 2,870 to pad level.

Between 2,570 feet and 2,520 feet bpl, elevated readings were observed in all three detectors. This indicates the shallowest major flow zone below the base of casing, and is labeled "Point of Injection" on the log plot. Above this interval, the readings from all three detectors closely resemble the recorded readings from the background gamma-ray log. Slightly elevated readings were observed between 1,810 feet and 1,670 feet bpl in the final gamma-ray log plot compared to the background plot (an increase of approximately 10 to 12 GAPI). However the signatures between the

background plot and final plot are nearly identical (minor "peaks" and "dips" are the same for both plots). If a compromise of well integrity is present, the elevated readings in the final plot would not match this closely to the background plot; and therefore these elevated readings do not indicate a lack of mechanical integrity.

RTS Interpretation

During dynamic monitoring, potable water pumped down the well forced the lodine 131 tracer material downward where it was detected by the GRM and GRB (located below the ejector). The GRT can detect the lodine 131 if the lodine 131 moves upward outside the injection casing (due to spaces between the cement and casing or the cement and formation, or if fractures exist in the formation near the well).

The primary purpose of the "out-of-position" logs and the final gamma-ray log was to determine the extent (if any) of upward migration of lodine 131 through the formation or through annuli adjacent to the well bore or casing. Because the recorded readings of all three detectors from each "out-of-position" log and the final gamma-ray log resembled the recorded readings of the background gamma-ray log, and because the GRT did not record any elevated readings after ejection during either dynamic monitoring tests, we conclude that the cement sheath around the injection casing is intact and an adequate bond is present between the cement and the formation, as well as between the casing and the cement.

RY#999140	
i – 181 Liquid	
Youngquist Brothers Inc.	
	X#222148 MATERIALS
	181 Liquid
08/18/2008 14:00) mCi Dieta 00116/2008
Box: 12:00 – 2	EDICINAL GRADE
MedTech Diag. Services/Triad	(289) 277 - 0990 (800) 690 - 90
1840 Boy Scout Drive, Unit A RX#222149	Fort Myers, FL 88907
Account Name: Youngquist Broth	ers inc.
Patient MEDICINAL GRAD	E
Procedure: Pipe Leak Test	RATIVITIU
Physician :: Clay Ferguson Ordered Amount: 10 mCl Quentily: 1	Ini. Amt: mCi
Cal Date/Time: 08/18/2008 14:00 Actual Amount: 11:062 mCi Quantity:	1. Volume: 10.00 ml. (1.11 mCVmi)
Exp Date/Time -: 08/29/2008 18:00	
Lot #(s): 1071908D 0.057 Notest Blue, Na Thio. Final 18CC. Medicinal	ORADE
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

WATER METER ACCURACY TEST REPORT

		r		1		ר
ا پر ا	MANE					1
Ħ	WAKE	SERIAL #	I FLOW	INT.FLOW	FLOW	1
1	2"	6205001	99.2	100.0	100.5	1
2	USG		_			
3	MJ					1
4	METERS			·		1
5		· · ·				1
6		······································				4
				9 CDM	PO CDM	4
<u> </u>				OGFINI	OU GFIN	4
<u>0</u>					· .	4
9		USAGE				4
10	<u></u>	1687300	_		<u> </u>	<u>.</u>
11				-		1
12						1
13			1			1
14						1
15			- <u>-</u>			
				╂────┨		
10				<u>↓ · · ↓</u>		-
1/				<u> </u>		
18			- <u> </u>			TEST DA
19						TEST
20						
21			1		•	NOTE:
22						Accuracy limi
22				+		AWWA C708-
20	·····	<u> </u>		+	<u>.</u>	
쓹						+ 070/ 4000/
23				┨─────┫		" 9/% - 103%
26						4
27				İ		_* 98.5% - 101.
28						and High Flov
29			1	1		
30		····				1* Accuracy lin
31			1		······································	from service
3			+	╉────┤		Table 5-1
얽				1		
33				<u> </u>		
34				Į]		_]⁼80% - 104.0%
35						1
36				1 1		*96% - 102.0%
37						and High Flov
38			1	1	· -	1
20		<u> </u>				1
39	·	· · · · · ·			<u>.</u> .	4
40						{
41	·					4
42]
43						j
44						1
45			1	1 1]
<u>1</u>	ł		+	<u> </u>		1
끍		<u></u>		<u> </u>	· · · ·	1
4/				┨╾╾╾╾╍╉		4
48				1		J

HYDROSTATIC PRESSURE TEST RESULTS

HYDROSTATIC PRESSURE-TEST DATA FGUA GOLDEN GATE WASTEWATER TREATMENT PLANT **INJECTION WELL SYSTEM DEEP MONITOR WELL MW1 COLLIER COUNTY, FLORIDA**

Hydrostatic pressure test on nominal 6-inch FRP Tubing (6⁵/₈-inch-size Red Box[™] 1750 and 2500, manufactured by Future Pipe Industries)

Date:

February 21, 2008

Project Site:

Golden Gate Wastewater Treatment Plant

ARCADIS Proj. No.

WF004200.G015

<u> Time (hours)</u>	<u>Delta Time (min.)</u>	Pressure (psi)	
13:10	0	120.5	
13:15	5	120.9	
13:20	10	119.7	
13:25	15	119.5	
13:30	20	119.3	
13:35	25	119.1	
13:40	30	118.9	
13:45	35	118.7	
13:50	40	118.4	
13:55	45	118.2	
14:00	50	118.0	
14:05	55	117.8	
14:10	60	117.5	

The 0 - 300 pound-per-square-inch, McDaniel-brand pressure gauge (Serial No.06806-2) was calibrated on October 12, 2007.

I, Lech Kwapinski, certify that the above data is true and accurate.

· · · C ·

Lech Kwapinski, P. G.

CAPE

	$\mathbf{B}_{\mathbf{R}}$
1	

Blue Ribbon / GP: 50 2770 Long Road Grand Island, NY 14072-0297 (716) 773-9300 FAX: (716) 773-5019 Internet: http://www.gp50.com

CERTIFICATE OF COMPLIANCE AND CALIBRATION

Customer: 10	NGQUIST	BROTHERS Work	Order Number: <u>N</u> /A	
Equipment Serie	al Number: O	<u>60806-</u> 2 Insul	lation Check: <u>N/A</u>	_
Pressure Referen	nce ID: 1190	<u>10-401</u> Refer	rence Meter ID: NA	
Equipment Press	sure Range:	0-300 PS1	Barometric Pressure: <u>N</u> /	A PSIA
Target Pressure	Step %	Linearity	Hysteresis	Non-Repeatability
0	0	0	1	1
60	20%	60		
120	40%	121		
180	60%	180		
240	80%	240		
300	100%	300		V
FSO				
Shunt]		

Technician Initial:

Date: 10/12/2007

This certificate will certify that your equipment authorized for calibration on your Purchase Order VERBAL-Ted, tested this date, and is in calibration. The equipment tested is identified as a 6.0^{4} , GAUGE 300PS 1.

This gauge was tested on a Mensor Indicator Model 11900-401 Serial Number 040613; Calibration expires on August 14, 2008 and is to be accurate to within +/-.25%, traceable to NIST standards.

The subject gauge performed to within +/-1.5% accuracy.

Blue Ribbon is a GP: 50 Company.

1

Certificate expires 1 year from date issue.

N:\Aerospace\AeroFinalCalCards\1AAA_MasterCalCards\Final Calibration Datasheet.doc

HYDROSTATIC PRESSURE-TEST DATA FGUA GOLDEN GATE WASTEWATER TREATMENT PLANT INJECTION WELL SYSTEM DEEP MONITOR WELL MW1 COLLIER COUNTY, FLORIDA

Hydrostatic pressure test on nominal 18-inch outside-diameter injection casing.

July 1, 2008

Project Site: *

Date:

÷.,

े. टब्द

Golden Gate Wastewater Treatment Plant

ARCADIS Project No.

WF004200.G015

<u> Fime</u>	(hours)	Delta Time (min.)	<u>Pressure (psi)</u>
•	16:40	O	155 8
	16:45	5	155.9
	16:51	11	156.2
	16:56	. 16	156.8
	17:00	11 A. M. 19 20	157.0
·.	17:06	26	157.2
	17:12	32	157.5
•	17:16	36	157.9
· , ·	17:20	40	158.1
	17:25	45	158.2
••	17:32	52	158.5
	17:36	56	158.8
	17:40	60	159.0

The 0 - 300 pound-per-square-inch, 6-inch Blue Ribbon Corp . brand pressure gauge (Serial No. 101504-3) was calibrated on February 22,2008.

d (Final) Reports/Weekly Reports/Week 29-June30-July7/Pressure Test Form Injection Co

Blue Ribbon Sales & Services 1940 Howell Branch Rd. Winter Park, FL 32792

Phone: (877) 677-8899 Fax: (407) 657-6622 www.blueribboncorp.com

CALIBRATION CERTIFICATE 2/22/08

Youngquist Brothers, Inc 15465 Pine Ridge Rd. Fort Myers, FL 33908

BLUE

RIBBON

P.O. 27877

S/N: 101504-3

This certificate will certify that your gauge authorized for calibration on your Purchase Order 27877, tested this date, and is in calibration. The gauge tested is identified as a 6", Blue Ribbon Corp gauge 0-300 PSI.

This gauge was tested on a Mansfield & Green Deadweight Tester model T-100 Serial Number 11353, certified by GP:50 Mfg., Calibration expires on December 14, 2008 and is to be accurate to within +/-.25%, traceable to NIST standards.

The subject gauge performed to within +/-1.5% accuracy.

Sincerely,

n Nova

ARCADIS

HYDROSTATIC PRESSURE-TEST DATA FGUA GOLDEN GATE WASTEWATER TREATMENT PLANT INJECTION WELL SYSTEM INJECTION WELL IW1 COLLIER COUNTY, FLORIDA

Annular Pressure Test

Date: August 20, 2008

Project Site: Golden Gate Wastewater Treatment Plant

ARCADIS Project No. : WF004200.G015

<u>Time (hours)</u>	Delta Time (min.)	Pressure (psi)
16:22	0	150.0
16:27	5	150.0
16:33	11	149.9
16:37	15	149.8
16:42	20	149.75
16:47	25	149.75
16:52	30	149.75
16:57	35	149.75
17:02	40	149.75
17:07	45	149.75
17:12	50	149.75
17:17	55	149.75
17:22	60	149.75

The 0 - 200 pound-per-square-inch, 6-inch Kimball Electronic Laboratory, Inc. brand pressure gauge (Serial No.KEL-127528) was calibrated on July 9,2008.

Certificate of Calibration # KELC-51714

Kimball Electronic Laboratory, Inc. Precision Measurement Equipment Specialists

			Purchase Order # 0288	349	Martin Martin Martin Martin Martin Martin
Calibration Pe	formed By;		For:4441YOU410		
KIMBALL ELEC	TRONIC LABORATO	RY, INC	YOUNGQUIST BROTH	IERS, INC.	
8081 W 21 LAN	IE		15465 PINE RIDGE RO	DAD	
HIALEAH, FL. 3	3016				
Equipment Info	rmation KELI I.D.:	KEL-127528	FT MYERS	FL 33908	
Description:	PRESSURE GAUGE	E	0.10.4.	00.1.1.00	
Manufacturer:			Cal Date:	09-001-08	
Model Number.	200 PSI N/A	2	Cal Interval	3 MONTHS	
Rance	0.200 PSI	· · · · ·	Pocoived:		
Nanye.	0-2001 31	• • • •	Calibration Result	PASS	
Serial Number:	040605-2		Environmental Conditions:	72 DEG F / 50	% RH
Customer I.D.:	N/A	۰	Performed By:	ELIU	
Cust. Barcode:		•	-	LAGO	
Cust. Location:	11/A 1/0 25% E S		Procedure:	SYN54	
This is to certify that the been calibrated using m derived by the ratio type A2LA-Accredited to ISO uncertainty used to calc Any number of factors n	above listed instrument meets (easurement standards traceabl of self-calibration techniques.] //IEC-17025 and compliant with ulate the Test Uncertainty Ratio nay cause the calibration item to	or exceeds all specifications as to the National Institute of Sta This calibration is in accordance MIL-STD-45662A and ANSI/N(, with a coverage factor of K=2 o drift out of calibration before the	stated in the referenced procedure at the indards and Technology (NIST), or to Ni with Kimball Electonic Laboratory, Inc (SSL 2540-1-1994. TURS when applicab at a confidence level of approximately 9 he recommended interval has expired.	e points lested (unless other IST accepted Intrinsic standa Quality Assurance Manual. K le are greater than or equal t 5%, unless otherwise noted.	wise noted). It has rds of measurement, or ELI's Quality system is o 4:1; with _j expanded
Calibration Ren THIS UNIT WAS F PERFORMED RO	OUND TO BE INTOL	ERANCE AT THE TIME ERTIFICATION	OF CALIBRATION.	·	
			•		
		·	s a		
Standards Used	To Calibrate Equipr	nent 🔄 👘			
Company I.	D. Description			Last Cal.	Cal. Due Date
KIM001 3	91 EATON UPS	3000BAA PRESSURE	INDICATOR	20-Nov-07	30-Nov-09
			· · · ·		
• Signatures: //		an an an an an an an an an an an an an a		alarik antana katu	
	y: F		Approved By: JAVIER	apr-	>
LACO	0.00-11-0.0	- 6.44.11 PM	BALCEIRO	10-Jul-08 4:54:	17 PM

This report may not be reproduced, except in full, unless permission for the publication of an approved abstract is obtained in writing from KELI Labs., Inc.

Kimball Electronic Laboratory, Inc. - 8081 W. 21st Lane - Hialeah, FL. 33016

Tel: 305-822-5792 - Toll Free: 800-393-1094 - Fax: 305-362-3125 - Web: www.kelilabs.com

Date of Issue: 10-Jul-08

CUSTOMER : YOU410

8081 W. 21 LANE HIALEAH, FL. 33016 PH # 305-822-5792 FAX # 305-362-3125

CALIBRATION DATA FORM

MFR:	MCDANIEL	DESCRIPTION :	PRESSURE GAUGE
MODEL # :	200 PSI .25%	TECHNICIAN :	098
SERIAL # :	040605-2	CAL DATE :	09-JUL-2008
CUST ID #:	N/A	DUE DATE :	09-JUL-2009

* IF NO "AS LEFT" READING IS SHOWN ON THIS CHART, IT MEANS THE UNIT WAS IN TOLERANCE AND THERE WERE NO ADJUSTMENTS MADE TO IT.

	• •	\mathbf{N} . The second se			
RANGE	NOMINAL	AS FOUND	AS LEFT *	LOW LIMIT	HIGH LIMIT
0 - 200 PSI					
	40	40.0		39.5	40.5
		•			
	80	80.0		79.5	80.5
			-		
	120	120.2		119.5	120.5
			· ·		
	160	160.2 * "		159.5	160.5
(
	200	200.2	•	199.5	· 200.5
	- 48 m	•.•			

, ,

. . .

Appendix F

Injection Test Data

• •

12 hr Injection Test FGUA Golden Gate WWTF Injection Well System Golden Gate, Florida Date: 09/15/08

1

Static IW1 \	Well Head Pres	sure (PSI):	24.5			Totalizer Reading (sta	rt):	22,751,000	
Static Uppe	r Zone Pressur	e (PSI):	4.7			Totalizer Reading (fini	sh):	25,277,800	
Static Lowe	r Zone Pressur	e (PSI):	n/a			Average pumping ra	te (gpm)	3,495	
Time	Elapsed Time	Flow Rate	IW1 Well-Head Pressure	Upper Zone Pressure	Lower Zone Pressure*	Totalizer	Temp.	Static Annular PSI:	Comments
	(minutes)	(GPM)	(PSI)	(PSI)	(PSI)	(gallons)	(F)		
7:23	0	4,900	66.0	n/a	n/a	22,751,000	68.8	45.0	Start injection test
7:31	8	4,300	55.0	4.8	n/a	n/a		46.0	Lowering rate
7:36	13	3,850	51.0	n/a	n/a	n/a	n/a	44.7	Lowering rate
7:43	20	3,800	51.0	4.9	n/a	n/a [*]		n/a	Lowering rate
7:49	26	3,470	46.5	5.0	n/a	n/a	80.0	40.5	Rate stabilized
7:55	32	3,480	46.5	5.0	n/a	n/a	80.0	39.3	
8:12	49	3,510	46.5	5.2	• n/a	22,933,000	80.0	n/a	· ·
8:32	69	3,490	45.8	5.5	n/a	23,003,000	81.0	34.3	
8:52	89	3,480	45.8	5.6	n/a	23,072,000	81.0	32.0	
9:32	120	3,490	45.8	5.5	n/a	n/a	81.0	29.5	-
10:07	165	3,490	. 45.8	5.4	n/a	23,334,000	82.0	26.8	
10:43	200	3,500	45.6	5.3	n/a	23,460,000	82.0	28.0	
11:23	240	3,500	45.8	5.3	n/a	23,600,000	82.0	24.8	
11:54	271	3,490	45.6	5.3	n/a	23,708,000	82.5	24.8	
12:23	300	3,490	45.6	5.3	n/a	23,809,500	82.5	24.6	
12:53	330	3,500	45.6	5.3	n/a	23,914,600	83:0	24.5	
13:23	360	3,490	45.5	5.3	n/a	24,018,700	83.0	24.3	· · · · · · · · · · · · · · · · · · ·
13:53	390	3,490	45.5	5.3	n/a	241,232,000	83.0	25.5	
14:27	424	3,490	45.6	5.3	n/a	24,241,400	84.0	26.0	· · ·
14:54	451	3,500	45.6	5.2	n/a	24,332,800	85.0	27.3	· · ·
15:23	480	3,490	45.8	5.2	n/a	24,436,100	85.0	28.0	······
15:54	511	3,480	45.9	5.2	n/a	24,543,800	75.0	28.2	· · · · · · · · · · · · · · · · · · ·

.

1 1

Static IW1 Well Head Pressure (PSI):	24.5	Totalizer Reading (start): 22,751,000
Static Upper Zone Pressure (PSI):	4.7	Totalizer Reading (finish): 25,277,800
Static Lower Zone Pressure (PSI):	n/a	Average pumping rate (gpm) 3,495

Time	Elapsed Time	Flow Rate	IW1 Well-Head Pressure	Upper Zone Pressure	Lower Zone Pressure*	Totalizer	Temp.	Static Annular PSI:	Comments
	(minutes)	(GPM)	(PSI)	(PSI)	(PSI)	(gallons)	(F)		
16:23	540	3,490	46.0	5.2	n/a	24,644,400	79.0	28.5	
16:53	570	3,490	45.9	5.2	n/a	24,748,900	79.0	33.4	
17:23	600	3,480	45.8	5.2	n/a .	24,854,500	80.0	38.7	
17:53	630	3,480	45.8	5.1	n/a	24,956,200	80.0	38.7	· · · ·
18:23	660	3,480	45.8	5.1	n/a	25,060,000	80.0	38.7	· · · · · · · · · · · · · · · · · · ·
18:53	690	3,470	45.9	5.0	n/a	25,163,500	83.0	38.0	
19:18	715	3,470	46.0	4.9	n/a	25,250,200	83.0	38.0	· · · · · · · · · · · · · · · · · · ·
19:25	722	n/a	n/a	n/a	n/a	n/a	80.0	n/a	
19:26	723	n/a	n/a	n/a	n/a	25,277,900	78.0	n/a	Pump-off, end of test
			,		Recovery	· · · · ·			
19:28	2	0	26.5	4.8	n/a	n/a	82.0	34	
19:32	6	0	26.3	4.8	n/a	n/a	82.0	34	
19:40	14	0	26.3	4.8	n/a	n/a	82.0	34	End of field data

Upper Monitor Zone Transducers and pressure gauge were set approximately 3.2 feet above pad level.

Lower Monitor Zone Transducers were set approximately 10 feet below pad level.

1W Transducers and pressure gauge were set approximately 6.1 feet above pad level.

* Water level was below ground surface. No gauge was installed on the LMZ wellhead

1

.

g:aproject\reesemacon\pf001152.0004\Op. Testing Request\Injection Test\Combined Data.xlsx\3-12-3 Chart

Appendix G

Electronic Files of:

-Weekly Construction Reports

-Geophysical Logs

- Packer Test Raw Data and Analytical Reports

-MW1 Monitor Zones and IW1 Injection Zone WQ Analytical Reports

-Injection Test Source WQ Analytical Report

-Injection Test Raw Data