

FPL-DZMW4

McNabb Hydrogeologic Consulting, Inc.

601 Heritage Drive, Suite 110 Jupiter, Florida 33458 Phone: 561-891-0763 Fax: 561-623-5469

Transmittal

To:

Mr. Joseph May, P.G.

From:

David McNabb

Florida Department of Environmental

Protection

400 N. Congress Ave, Suite 200

Date:

February 16, 2009

West Palm Beach, FL 33401

Re: Florida Power & Light Company West County Energy Center Dual-Zone Monitor Well Construction and Testing Report

Please see the attached:

Quantity	Description
Ī	Original Report on the Construction and Testing of Dual-Zone Monitor Well DZMW-1 at the Florida Power & Light Company West County Energy Center
1	Copy of the Report on the Construction and Testing of Dual-Zone Monitor Well DZMW-1 at the Florida Power & Light Company West County Energy Center

Remarks:

Joe,

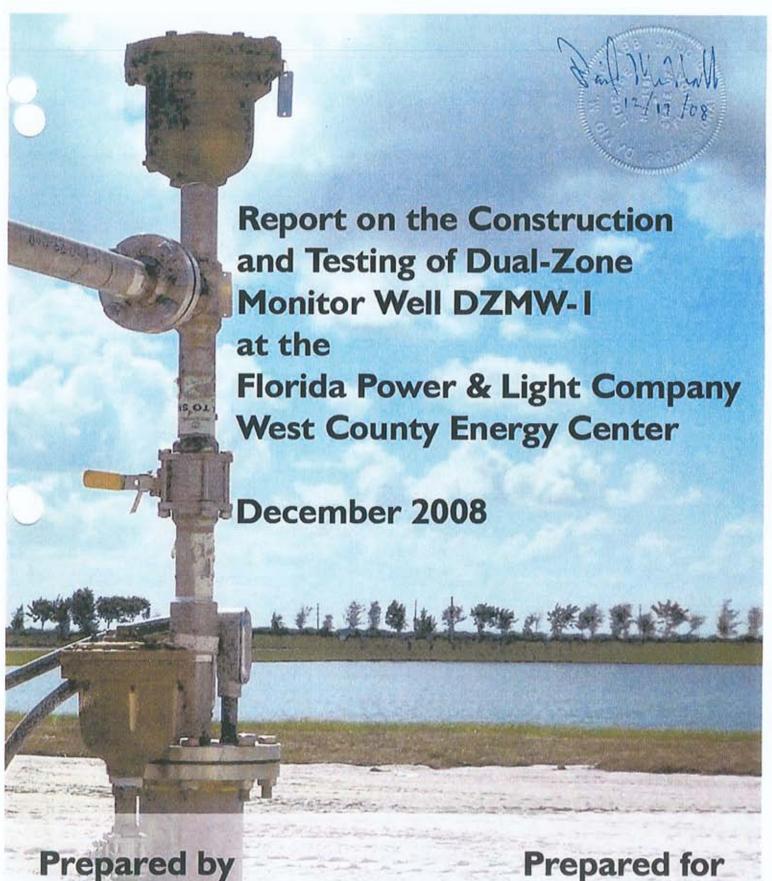
The Report on the Construction and Testing of Dual-Zone Monitor Well DZMW-1 at the Florida Power & Light Company West County Energy Center is hereby submitted on behalf of Florida Power & Light Company. This submittal includes the signed and sealed original and one copy of the report.

Sincerely

David McNabb, McNabb Hydrogeologic Consulting, Inc.

Cc:

Cathleen McCarty/FDEP-Tallahassee (1 copy)


Barbara Linkiewicz/FPL (1 original, 2 copies)

Tom Young/FPL (3 copies)

Terry Apple/B&Z (1 original)

Steve Anderson/SFWMD (1 copy)

Ron Reese/USGS (1 copy)

McNabb

Hydrogeologic Consulting, Inc.

West County Power Partners

McNabb Hydrogeologic Consulting, Inc.

601 Heritage Drive, Suite 110 Jupiter, Florida 33458

Phone: 561-891-0763 Fax: 561-623-5469

RE: Florida Power & Light West County Energy Center

Dual-Zone Monitor Well Construction Permit; 0247895-006-UC

Construction and Testing Report Certification

The following Certification is provided for the Florida Power & Light Company West County Energy Center Dual-Zone Monitor Well Construction and Testing Report.

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Sincerely,

McNabb Hydrogeologic Consulting, Inc.

David McNabb, P.G.

11/1/10

Black & Veatch Corporation

Terry L. Kratochvil, P.E.

Florida P. E. License No. 68635

Black & Veatch Corporation

11401 Lamar Avenue

Overland Park, Kansas 66211

Certificate of Authorization No. 00008132

2/9/09

Table of Contents

	Page
Introduction	1
Background	1
Project Description	2
Construction Phase	3
Pad Monitor Wells	3
Dual Zone Monitor Well DZMW-1	4
Geologic and Hydrogeologic Data Collection and Framework	9
Drill Cutting Samples	9
Geophysical Logging	9
Site Geology and Hydrogeology	10
Hydrogeologic Testing During Construction	13
Pad Monitor Well Data	13
Pilot Hole Water Quality Data	13
Packer Tests	14
Background Monitor Zone Sampling	16
Mechanical Integrity Testing	17
Casing Pressure Tests	17
DZMW-1 Well Video Surveys	18
Geophysical Logging	18
Summary and Conclusions	20

Figures

1	Site Location Map
2	DZMW-1 and IW-1 Well Locations
3	Pad Monitor Well Diagram
4	DZMW-1 Completion Diagram
5	Monitor Wellhead Completion Diagram
6	Geologic and Hydrogeologic Column
7	Pilot Hole Water Quality Data
8	Packer Test #1 Water Level Drawdown Data
9	Packer Test #2 Water Level Drawdown Data
10	Packer Test #3 Water Level Drawdown Data
11	Packer Test #4 Water Level Drawdown Data

Tables

1	Pad Monitor Well Top of Casing Elevations
2	Geophysical Logging Schedule
3	Straddle Packer Test Performance Data Summary
4	Straddle Packer Test Water Quality Data Summary

Attachments

Attachment A	FDEP Class V Exploratory Well Construction Permit #247895-006-UC
Attachment B	DZMW-1 Construction Summary
Attachment C	Weekly Construction Summaries
Attachment D	SFWMD Pad Monitor Well Completion Reports
Attachment E	Deviation Survey Summary Sheet
Attachment F	Cementing and Casing Summary Sheet
Attachment G	Casing Mill Certificates and FRP Cut-Sheet
Attachment H	As-Built Drawings, As-built survey, Certification of Surface
	Equipment and Certification of Completion
Attachment I	Cementing Stage Summary Sheets
Attachment J	DZMW-1 Lithologic Log
Attachment K	Geophysical Logs
Attachment L	Pad Monitor Wells Data Summary Sheets
Attachment M	Pilot Hole Water Quality Data Summary
Attachment N	Packer Test Sample Laboratory Reports
Attachment O	Upper and Lower Monitor Zone Recommendations
Attachment P	Monitor Zones Background Water Quality Laboratory Report
Attachment Q	Pressure Tests Summary Sheets and Pressure Gauge Calibration Sheet
Attachment R	Completed Well Video Summary Sheet

Report on the Construction and Testing of Dual-Zone Monitor Well DZMW-1 at the Florida Power & Light Company West County Energy Center

INTRODUCTION

This report summarizes the construction and testing of the Dual-Zone Monitor Well DZMW-1 at the Florida Power & Light Company (FPL) West County Energy Center (WCEC) located in western Palm Beach County, Florida. Well construction and testing was performed in accordance with Rule 62-528, Florida Administrative Code (FAC), the recommendations of the Florida Department of Environmental Protection (FDEP) Technical Advisory Committee (TAC), provisions of FDEP construction permit 247895-006-UC and the well construction Contract Documents.

Background

FPL is in the process of constructing the WCEC in western Palm Beach County, Florida at 20505 State Road 80. Please see the Site Location Map and Proposed Facility Layout provided in Figures 1 and 2, respectively. The facility will consist of 3 units for a total of 3,800-megawatts of combined-cycle electric generating capacity. Two units are currently under construction. The wastewater disposal requirements for all three units are anticipated to total approximately 7 million gallons per day (mgd). The facility will utilize groundwater from the Upper Floridan aquifer and surface water from the L10/L12 Canal in the power generation process. A deep injection well system is proposed for disposal of the non-hazardous wastewater from the power generation facility. The deep injection well system will consist of two deep injection wells, one dual-zone monitor well and associated instrumentation.

Dual-Zone Monitor Well DZMW-1 was constructed to serve as an integral part of the deep injection well system and will monitor two discreet intervals for indications of upward fluid migration associated with operation of the proposed deep injection well system. DZMW-1

was constructed to well standards set forth in Rule 62-528, FAC. Prior to beginning construction of DZMW-1, Golder Associates, Inc. assisted FPL with permitting of DZMW-1. FDEP dual-zone monitor well construction permit no. 247895-006-UC was issued on May 29, 2007. A copy of the FDEP permit to construct a dual-zone monitor well is provided in Attachment A. Construction of DZMW-1 began on March 5, 2008, and was completed on May 19, 2008 with the completion of the final video survey of the well.

Project Description

This project included the construction of one dual-zone monitor well constructed to Class I deep injection well system monitoring well standards set forth in Rule 62-528, FAC. The well was constructed to a total depth of 2,166 feet below pad level (bpl) with an upper monitor zone from 1,890 to 1,911 feet bpl and a lower monitor zone from 2,132 to 2,166 feet bpl. The well was constructed by Youngquist Brothers, Inc. Resident observation during well construction was provided by McNabb Hydrogeologic Consulting, Inc. (MHC). Black & Veatch Corporation served as the Engineer of Record for construction of DZMW-1.

Construction activities at the project site included installation of a temporary drilling pad and shallow pad monitor wells, drilling and testing of Dual-Zone Monitor Well DZMW-1, and the installation of surface equipment and instrumentation.

The FDEP TAC coordinated the actions of local, state, and federal agencies, including FDEP's state and local representatives, the South Florida Water Management District (SFWMD), the U.S. Environmental Protection Agency (EPA), and the United States Geological Survey (USGS). A tabulated summary of well construction activities for DZMW-1 and weekly summaries of the construction progress are presented in Attachments B and C, respectively.

CONSTRUCTION PHASE

The following describes the construction and data collection associated with the construction of the dual-zone monitor well DZMW-1 and the associated pad monitoring wells.

Pad Monitor Wells

The construction permit required the installation of pad monitor wells at the northeast, southeast, southwest and northwest corners of the DZMW-1 construction pad to monitor for groundwater impacts related to leakage of drilling fluids from the temporary drilling pad or spillage of construction fluids. The wells were constructed to a depth of 35 feet bpl with 2-inch diameter schedule 40 polyvinyl chloride (PVC) casing and a 10-foot long, 2-inch diameter 10-slot PVC screen. Each pad monitor well was labeled with its identification upon completion. The elevation of top of casing for each of the pad monitor wells was measured relative to the North American Vertical Datum of 1988 (NAVD 88) to allow determination of the elevation of the water table. The wells were completed with a steel enclosure to protect the wells from damage during construction of DZMW-1. Table 1 provides the pad monitor well top of casing elevations.

Table 1. Pad Monitor Well Top of Casing Elevations

Well Name	Elevation (feet above NAVD 88)
PMW-NE	24.12
PMW-NW	24.60
PMW-SE	24.76
PMW-SW	24.70

Water table elevation data and groundwater samples were collected from each pad monitor well and analyzed by Florida-Spectrum Environmental Services, Inc. (Florida Environmental) for conductivity, chlorides, total dissolved solids (TDS), pH, and temperature to establish background water quality data prior to beginning construction of DZMW-1. Florida Environmental continued to collect weekly groundwater samples from

the pad monitor wells throughout the well construction period and analyze for conductivity, chlorides, TDS, pH, and temperature throughout the construction period. Water level measurements were also taken just prior to each sample collection. Figure 3 provides a diagram of a typical pad monitor well. A copy of the pad monitor well completion reports submitted to the SFWMD is provided in Attachment D.

Dual-Zone Monitor Well DZMW-1

Construction of dual-zone monitor well DZMW-1 began on March 5, 2008. Prior to beginning drilling operations, an elevation survey identified the pad elevation at the top of the 44-inch diameter pit pipe at 23.14 feet NAVD 88. All measurements during construction and testing of DZMW-1 were taken relative to the pad elevation at the top of the 44-inch diameter pit pipe. Mud rotary drilling was used to drill the interval from land surface to 950 feet bpl. A closed circulation, reverse air system was used to drill the interval from 950 to 2,198 feet bpl to allow collection of pilot hole water samples. A stripping head was utilized for blowout-prevention while drilling in the Floridan Aquifer. A total of 12,000 pounds of barite, a dense barium sulfate (BaSO₄) mineral commonly used as a density controlling agent during drilling, were used to control the artesian head while drilling in artesian zones. Salt was not used for control of artesian head.

Deviation surveys were performed at 90-foot intervals on pilot and reamed holes to monitor the boreholes for deviation from vertical. A copy of the deviation survey summary sheet is provided in Attachment E. Deviation survey data indicate the boreholes were no greater than 0.25 degrees from vertical throughout the project.

Formation samples (drill cuttings) were collected at 5-foot intervals and described at 10-foot intervals during the drilling of the pilot hole. Additional data collected during pilot hole drilling included water samples collected at 30-foot intervals during reverse air drilling, packer tests pumping data and water samples, and geophysical logging. These data were interpreted to provide geologic and hydrogeologic information for the site and to assist in selection of the casing setting depths and monitoring intervals. Geophysical logging was performed in conformance with the geophysical logging program provided in the DZMW-1 construction permit application supporting information and the requirements of the DZMW-1 construction permit. Following completion of pilot hole data collection, the pilot

hole was reamed to the appropriate diameter for casing installation. Reamed holes were conditioned by making several wiper passes to enable unobstructed installation of casings and conditions for optimum bonding of cement to casing and cement to formation, and to prevent channeling during cementing operations. MHC, Inc. prepared and submitted casing setting depth recommendations for FDEP approval prior to installation of each casing string of DZMW-1. All pilot holes below a depth of 950 feet were backplugged with cement prior to reaming to eliminate the possibility of an open conduit resulting from the reamed hole tracking off of the pilot hole during drilling.

Dual-Zone Monitor Well DZMW-1 was constructed with new and unused 44-, 34-, 24-, and 16-inch outside diameter steel casings and nominal 6.625-inch diameter fiberglass reinforced pipe (FRP) casing designed for the life expectancy of the well. The 44-, 34-, and 24-inch diameter casings have a wall thickness of 0.375-inch and conform to ASTM A-139, Grade B specifications. The 16-inch diameter casing has a 0.50-inch wall thickness, is seamless, and conforms to American Petroleum Institute (API) 5L specifications. The FRP (Red Box 1500) nominal 6.625-inch diameter casing has an outside diameter of 6.10-inches, a wall thickness of 0.34-inches, and conforms to ASTM D 2996-01 specifications.

Each casing, with the exception of the nominal 6.625-inch diameter FRP casing, was fully cemented with American Society of Testing and Materials (ASTM) type II cement from the base of the casing to land surface to prevent movement of fluids into or between Underground Sources of Drinking Water (USDW), maintain groundwater quality in aquifers, and protect casings from corrosion. All cementing of casing was in accordance with American Water Works Association (AWWA) Standard for Water Wells, A100-90, 1990. When appropriate, casings were pressurized during cementing to prevent against casing collapse. All casings were centralized to ensure the presence of an adequate annulus around the casing. Casing depths and the types and quantities of cement used for the construction of DZMW-1 are summarized in Attachment F. Casing mill certificates for each of the steel casings used during construction of DZMW-1 and a cut-sheet for the FRP casing are presented in Attachment G.

Prior to beginning construction of DZMW-1, the contractor vibrated a 44-inch diameter steel pit pipe to a depth of 58 feet bpl and constructed a steel construction pad for containment of

fluids used during construction and produced from the well during construction.

Construction of DZMW-1 began with drilling a nominal 12-inch diameter borehole to a depth of 250 feet bpl. A caliper and gamma ray log was then performed on the pilot hole before reaming the pilot hole to a depth of 250 feet bpl using a 40.5-inch diameter drill bit. A caliper and gamma ray log was then performed on the reamed hole. The geophysical log and lithologic data were used to select a casing setting depth of 245 feet bpl. The 34-inch-diameter casing was installed to a depth of 245 feet bpl and cemented to land surface.

Below the base of the 34-inch-diameter casing, a nominal 12-inch diameter pilot hole was drilled to a depth of 950 feet bpl. The pilot hole then underwent geophysical logging, which included performance of caliper, gamma ray, and dual induction logs. MHC, Inc. prepared and submitted, and FDEP subsequently approved, a casing seat recommendation for setting the 24-inch diameter casing to a depth of 920 feet bpl.

The pilot hole was then reamed using a 32.5-inch diameter drill bit to a depth of 925 feet bpl. A caliper and gamma ray log was then performed on the reamed hole. The 24-inch diameter casing was installed to a depth of 920 feet bpl and cemented to land surface

A nominal 12-inch diameter drill bit was then used to drill a pilot hole to a depth of 2,198 feet bpl. The open hole interval then underwent pilot hole geophysical logging. Logging performed include caliper, gamma ray, spontaneous potential, dual induction, borehole compensated sonic, temperature, fluid conductivity, and flowmeter, Geophysical log data were used to select four intervals for drill stem packer testing. These intervals include 1,916 to 1,949, 1,950 to 1,983, 2,062 to 2,095, and 2,132 to 2,165 feet bpl. Packer testing was performed to identify the depth of the base of the USDW and to evaluate the characteristics of the test intervals to select the upper and lower monitor zones.

Based on interpretation of the results of packer testing, geophysical logging, and formation sample data, a 16-inch diameter, 0.50-inch wall thickness, seamless steel casing setting depth of 1,892 feet bpl and a 6.625-inch-diameter, FRP casing setting depth of 2,132 feet bpl was recommended to and approved by the FDEP and TAC. The interval from 2,198 to 1,881 feet bpl was then filled with gravel prior to backplugging the pilot hole over the interval from 1,881 to 1,073 feet bpl with 12% bentonite cement blend. The backplugged pilot hole was then reamed with a 22.5-inch diameter drill bit to a depth of 1,892 feet bpl. A caliper and

gamma ray log was then performed on the reamed hole in preparation for installing the 16-inch diameter intermediate casing. The 16-inch diameter casing was then installed to a depth of 1,890 feet bpl and cemented to a depth of 245 feet bpl prior to performing a successful pressure test, video survey and cement bond log on the 16-inch diameter casing. The interval from 245 to land surface was cemented following performance of the cement bond log. The 16-inch diameter casing was installed two feet above the FDEP approved depth of 1,892 feet bpl since caliper logging indicated the hole had filled in two feet after reaming had taken place.

Reaming of the backplugged pilot hole then resumed from the base of the 16-inch diameter casing using a 14.75-inch diameter reaming bit. The pilot hole was reamed form the base of the 16-inch diameter casing at 1,890 feet bpl to a depth of 2,132 feet bpl. A 12.25-inch diameter bit was then used to clean out the interval from 2,132 to 2,198 feet bpl. A caliper and gamma ray log was then performed on the hole in preparation for cementing back the interval from 2,198 to 2,166 feet bpl and installation of the 6.625-inch diameter FRP casing. The interval from 2,198 to 2,187 feet bpl was found to have filled in when tremie line was installed in the well for cementing back the interval.

A total of 3 barrels of neat cement were pumped to backplug the interval form 2,187 to 2,166 feet bpl. The interval from 2,166 to 2,132 feet bpl was then filled with gravel prior to installing the 6.625-inch diameter FRP casing to a depth of 2,132 feet bpl. The FRP casing underwent a successful pressure test prior to cementing the casing from the base of casing to a depth of 1,911 feet bpl. Most of the gravel was then developed from the open hole interval of 2,132 to 2,166 feet bpl. Gravel was unable to be developed from the interval from 2,155 to 2,166 feet bpl due to low productivity of the formation between 2,155 and 2,166 feet bpl. The gravel that remains in the well will not impact sampling of the lower monitor zone since most of the water produced from the monitor zone comes from the upper portion of the fractured interval between 2,132 and 2,155 feet bpl.

Temperature, cement bond, and video logging were performed on the completed well. The open hole interval of 2,132 to 2,166 feet bpl will serve as the lower monitoring zone of DZMW-1. The interval of 1,890 to 1,911 feet bpl will serve as the upper monitoring zone of DZMW-1.

The completed well was then developed and background monitor zone water sampling took place. Figure 4 provides a completion diagram of DZMW-1. A diagram of the permanent wellhead installed on DZMW-1 is provided in Figure 5. A final site survey was performed at the completion of construction to provide precise well location and elevation data. A copy of the certified as-built survey, Certification of Monitor Well Completion, and signed and sealed as-built drawings of DZMW-1 are provided in Attachment H. Cementing summary sheets for each of the casing cement stages is provided in Attachment I.

GEOLOGIC AND HYDROGEOLOGIC DATA COLLECTION AND FRAMEWORK

The geologic and hydrogeologic characteristics of the site were interpreted from physical (drill cutting samples), hydraulic (packer tests) and electronic data (geophysical logs). These data help identify the geologic formations and hydrogeologic units penetrated by the well bore.

Drill Cutting Samples

Drill cutting samples from DZMW-1 were collected at 5-foot intervals from land surface to 2,198 feet bpl. The samples were described for rock type, color, grain size, consolidation, porosity, and fossils. These data were useful for determining the geologic formations penetrated by the well bore. At the completion of construction, one set of samples was sent to the Florida State Geologic Survey. A detailed lithologic log of drill cutting samples from DZMW-1 is provided in Attachment J.

Geophysical Logging

Geophysical logging was performed in the pilot hole of DZMW-1 to correlate drill cutting samples, to identify formation and hydrogeologic boundaries, to aid in the selection of straddle packer testing intervals and casing setting depths, assist in the identification of the USDW, and to obtain specific data pertaining to the subsurface formations. A copy of the geophysical log prints performed during construction of the well are provided in Attachment K. Table 2 provides a summary of the geophysical logs performed during construction of DZMW-1.

Table 2. Geophysical Logging Schedule

Logging Event	Date	Logged Interval (feet bpl)	Logs Performed
Logging Event		(reer opr)	Logs renormed
1	March 6, 2008	0 to 250	GR and C
2	March 9, 2008	0 to 250	GR and C
3	March 13, 2008	250 to 950	GR, C, DI, and SP
4	March 19, 2008	150 to 921	GR and C
5	March 20, 2008	0 to 920	CT
6	April 2-4, 2008	900 to 2,190	C, GR, DI, SP, BCS, FC, T and FM

7	April 23, 2008	800 to 1,891	GR and C
8	April 25, 2008	0 to 1,895	CT
9	May 4, 2008	0 to 2,198	C, GR and CBL
10	May 10, 2008	0 to 2,130	CT
11	May 13, 2008	0 to 2,145	CBL and T
12	May 19, 2008	0 to 2,155	V

GR = gamma ray; C = caliper; DI = dual induction; SP = spontaneous potential; BCS = borehole compensated sonic; FC = fluid conductivity; T = temperature; CT = cement top temperature; FM = flowmeter; CBL = cement bond log, V = video;

Site Geology and Hydrogeology

A stratigraphic profile of the site was derived from the correlation of formation samples with geophysical logs performed during pilot hole drilling. Strata encountered during construction of the exploratory well ranged from Holocene to Eocene Age deposits. The stratigraphic units and their respective ages are as follows: Pamlico Sands of Holocene Age, Anastasia and Fort Thompson Formations of Pleistocene Age, Tamiami Formation of Pliocene Age, the Hawthorn Group of formations of Miocene and Late Oligocene Ages, the Suwannee Limestone of Early Oligocene Age, and the Ocala and Avon Park Formations of the Eocene Age. Figure 6 provides a generalized hydrogeologic column of the lithologic and geophysical log data for DZMW-1. Lithostratigraphic and hydrogeologic descriptions of the strata penetrated by the DZMW-1 borehole are provided below.

Lithostratigraphic and Hydrogeologic Descriptions

Panlico Sand

The Pamlico Sand of the Holocene Age is present at the project site from land surface to a depth of approximately 44 feet bpl. It consists primarily of unconsolidated shells and light gray quartz sand and has high porosity. The Pamlico Sand comprises a portion of the Surficial aquifer. The upper most portion of the Pamlico Sand at this site was previously disturbed due to backfilling related to previous mining at the site by Palm Beach Aggregates.

Anastasia, Ft. Thompson, and Tamiami Formations

The Anastasia, Ft. Thompson, and Tamiami Formations of the Pliocene and Pleistocene Ages make up a layer of undifferentiated sand, shell, coquina, and sandstone at this site. This layer is present from a depth of approximately 44 to 185 feet bpl. Unconsolidated

shells and fine to coarse sand with a trace of phosphate make up this interval. This interval is only moderately permeable due to the fine nature of a portion of the sand. The layer is characterized geophysically by moderate gamma ray activity. Fluids within this interval are slightly brackish and make up a portion of the Surficial Aquifer.

Hawthorn Group

The Hawthorn group of the Miocene and Late Oligocene Age constitutes the confining interval between the Surficial Aquifer and the Floridan Aquifer System. It is present at the site from a depth of approximately 185 to 910 feet bpl. The Hawthorn Group sediments consist primarily of light olive gray to greenish gray, slightly sandy, phosphatic clay. The lower portion of the Hawthorn Group is primarily phosphatic limestone and sandstone. It is characterized geophysically by high gamma ray activity and low resistivity. The high gamma ray activity of the formation is a result of the high phosphate content of the sediments. The low resistivity is indicative of the highly mineralized clay.

Suwannee Limestone

The Suwannee Limestone of the Oligocene Age occurs from a depth of approximately 910 to 950 feet bpl and generally consists of yellowish-gray, very fine grained sand, well consolidated limestone with a trace of phosphate. It is characterized by low to moderate gamma ray activity and moderate resistivity. The Suwannee Limestone is part of the upper Floridan Aquifer System, is under artesian pressure and contains brackish water.

Ocala Formation

The Ocala Formation of the Eocene Age occurs from a depth of 950 to 970 feet bpl at the site. This layer generally consists of yellowish gray, very fine grained, moderately porous limestone. The Ocala Limestone is part of the upper Floridan Aquifer System, and is under artesian pressure. It is characterized geophysically by low gamma ray activity and moderate resistivity. Water produced from the Ocala Limestone is brackish.

Avon Park Formation

The Avon Park Formation of the Eocene Age occurs from a depth of 970 to 2,198 feet bpl. The Avon Park Formation consists primarily of interbedded yellowish gray to very pale orange, very fine to fine grained, limestone interbedded with intervals of yellowish brown to dark yellowish brown, very fine grained dolomite. The Avon Park Formation is

characterized by low gamma ray activity, highly variable resistivity, and variable, but generally moderate to short sonic travel time. The upper portion of the Avon Park Formation (970 to 1,910 feet bpl) is part of the upper Floridan Aquifer. Relatively confining intervals within permeable intervals of the Avon Park Formation prevent intra-aquifer mixing of fluids of differing quality. The lower portion (1,910 to 2,198) of the formation serves as the upper portion of the primary confinement below the base of the USDW and prevents fluids of differing quality from migrating between more permeable zones above and below this confining interval. There are discreet productive zones within the confining lower portion of the Avon Park Formation. The formation is under artesian pressure, with the upper portions serving as a source of brackish water in South Florida. The lower portions of the formation contain saline fluids.

HYDROGEOLOGIC TESTING DURING CONSTRUCTION

Hydrogeologic testing during construction of DZMW-1 included collection of pad monitor well samples, pilot hole water samples during reverse air drilling, packer testing, and background sampling of the upper and lower monitor zones.

Pad Monitor Well Data

Prior to beginning construction of DZMW-1, a groundwater sample and water table level data were collected from the pad monitor wells to establish background conditions. Weekly sampling took place during construction and testing of DZMW-1. A final sampling event took place following completion of construction and testing of DZMW-1. Water level relative to NAVD 88 was recorded for each pad monitor well prior to purging the wells for groundwater sample collection. Samples were analyzed for conductivity, TDS, chlorides, pH and temperature. Water level measurements, sample collection and field analyses were performed by Florida Environmental Services, Inc. for the period from initial background sampling through May 22, 2008.

Review of the pad monitor well water level data indicates that, water table levels at the site fluctuated over time, however, showed an overall decrease at the conclusion of construction of DZMW-1. Background water table levels ranged from 9.40 to 10.33 feet NAVD 88. Water table elevations ranged from 8.47 to 9.28 feet NAVD 88 after completion of construction and testing of DZMW-1. Water table level fluctuations throughout the project are related to rainfall at the site.

Water quality at each of the pad monitor wells was stable throughout the construction of DZMW-1. Pad monitor well data summary sheets are provided in Attachment L.

Pilot Hole Water Quality Data

Pilot hole water samples were collected at 30-foot intervals during reverse air drilling. Samples collected at 30-foot intervals were field analyzed for chlorides, TDS, conductivity and pH. The pilot hole water quality data were used to gain information related to the location of the base of the USDW and obtain a generalized profile of water quality changes with respect to depth.

It should be noted that DZMW-1 was drilled using a closed circulation system. Therefore, pilot hole water samples do not provide a true representation of the water quality at the depth of collection, but instead represent a composite of the relatively fresh drilling fluids introduced to initiate reverse air drilling and fluids from the entire open hole interval. Fresh water was introduced to the closed circulation system at the beginning of pilot hole reverse air drilling. The introduction of the fresh water in the drilling fluid resulted in pilot hole water samples that are less saline than is the native groundwater at the sample depths.

A table summarizing the pilot hole water quality analytical results is provided in Attachment M. Figure 7 provides a graph of pilot hole water quality relative to sample depth. A large increase in conductivity, TDS, and chloride concentration is apparent at a depth of 2,005 feet bpl. The increase in these parameters is related to an increase in these parameters in the native groundwater.

Packer Tests

A total of four straddle packer tests were performed on the DZMW-1 pilot hole. These intervals include 2,132 to 2,165, 2,062 to 2,095, 1,917 to 1,950, and 1,892 to 1,925 feet bpl. The purpose of straddle packer testing was to identify the base of the USDW and evaluate productivity of potential monitoring intervals. Geophysical log data were used to select packer testing intervals that were interpreted to be productive and located near the base of the USDW and within, but near the top of the primary confining interval. Packer testing took place by first inflating the packers at the test interval, developing the test interval until it was free of solids, allowing the water level to recover, pumping the test interval until water level had stabilized, then shutting off the pump and allowing water level in the test interval to recover. Water level data was collected and recorded during each test using a submerged pressure transducer and a Hermit 3000 data logger. Water samples were also collected at the end of pumping after establishing that water quality of water produced from the test interval had stabilized. Samples were sent to a state certified lab (Florida Environmental) for Primary and Secondary Drinking Water Standards analyses. A copy of the lab report for each of the packer tests is provided in Attachment N.

Table 3 provides a summary of packer test pumping rate and water level drawdown data for packer tests performed on DZMW-1. Figures 8, 9, 10, and 11 provide an interpreted

graph of water level drawdown data for each of the packer tests. The specific capacity of the test intervals ranged from 0.042 gpm/foot to 55.6 gpm/foot.

Table 3. Straddle Packer Test Performance Data Summary

Test #	Test Interval (ft. bpl)	Pumping Rate (gpm)	Drawdown (feet)	Specific Capacity (gpm/foot)
1	2,132 - 2,165	85	2.6	32.7
2	2,062 - 2,095	100	1.8	55.6
3	1,917 – 1,950	6.5	154	0.042
4	1,892 – 1,925	113	9.8	11.5

Table 4 provides a summary of water sample laboratory analytical results for selected parameters for each of the packer tests.

Table 4. Straddle Packer Test Water Quality Data Summary

Parameter	Units	Test #1 2,132	Test #2 2,062 -	Test #3 1,917 -	Test #4 1,892 -
		- 2,165 feet bpl	2,095 feet bpl	1,950 feet bpl	1,925 feet bpl
Conductivity	umhos/cm	53,000	53,400	14,860	13,400
TDS	mg/L	34,000	35,000	9,600	7,900
Chloride	mg/L	20,500	21,100	4,890	4,280
Nitrate	mg/L	U	U	U	U
Nitrite	mg/L	U	U	U	U
Ammonia	mg/L	U	U	U	บ
Total Kjeldahl	mg/L	Ü	ប	3.74	0.49
Nitrogen					
Total Organic	mg/L	U	U	3.2	0.13
Nitrogen					
Total	mg/L	0.072	U	0.128	0.081
Phosphorus					
Sulfate	mg/L	2,910	2,920	558	753
Iron	mg/L	1.369	1.293	1.68	0.87
Sodium	mg/L	11,281	10,356	2,506	2,220
pH	Standard units	7.38	7.42	7.53	7.88
Temperature	Celsius	23.4	NM	23.6	NM
Gross Alpha	pCi/L	33 +/- 1	30 +/- 2	29 +/- 1	9.4 +/- 0.7
Radium-226	pCi/L	7.5 +/- 0.5	8.9 +/- 0.5	8.0 +/- 0.5	2.4 +/- 0.3
Radium-228	pCi/L	U	IJ	U	U

mg/L = milligrams per liter; pCi/L = picocuries per liter; U = undetected; NM = not measured

Based on the packer tests water quality summarized above, the base of the lowermost USDW is located between 1,950 and 2,062 feet bpl. Additional interpretation of testing data is provided in the Upper and Lower Monitor Zone Recommendations submitted to the TAC

on April 14, 2008. A copy of the text portion of the recommendations submittal is provided in Attachment O.

Background Monitor Zone Sampling

Following completion of construction of DZMW-1, the well was fully developed.

Development of the lower monitor zone took place at a rate of approximately 350 gpm for a period of approximately 7.3 hours. A total volume of 154,000 gallons was developed from the lower monitor zone prior to sample collection. The upper monitor zone was developed at a rate of 50 gpm for 17.5 hours. Florida Environmental collected a groundwater sample from both of the monitor zones following completion of development. The sample was analyzed for Primary and Secondary Drinking Water Standards and municipal wastewater indicator parameters for groundwater monitoring. The results of monitor zone background water quality are presented in Attachment P. Review of the background data indicates the TDS concentration of the upper and lower monitor zones is 4,752 mg/L and 28,620 mg/L, respectively, at the time of background sampling.

MECHANICAL INTEGRITY TESTING

Mechanical integrity testing (MIT) of dual zone monitor well DZMW-1 consisted of cement bond logging, pressure testing and video logging of both the 16-inch diameter steel casing and the 6.625-inch diameter FRP casing. Results of testing demonstrated mechanical integrity of both the 16-inch and 6.625-inch diameter casing of DZMW-1.

Casing Pressure Tests

Both the 16-inch and 6.625-inch diameter casings underwent pressure testing to demonstrate mechanical integrity. On April 28, 2008, a casing pressure test was successfully conducted on the 16-inch-diameter casing of DZMW-1. The pressure test was conducted against the top of a cement plug inside the base of the casing at a depth of 1,888 feet bpl. The casing was pressurized and pre-tested to allow any air introduced during pressurizing of the casing to rise to the surface. Precaution was taken to release a small portion of the pressure to ensure no air was trapped inside the casing before starting the 60-minute pressure test. The casing pressure at the start of the test was 150.0 psi. The pressure was monitored for a 60-minute period with a 200-psi calibrated pressure gauge. Pressure readings were recorded throughout the 60-minute test at 5-minute intervals. At the conclusion of the test, the casing pressure was 143.75 psi. The 6.25 psi loss in pressure is within the 5 percent limit (7.5 psi) specified Rule 62-528.300(6)(e), FAC. Sally Durall, (MHC), observed the casing pressure test. A total of 11 gallons of water were drained to the containment pad when the pressure was released from the casing.

The 6.625-inch final casing underwent pressure testing on May 8, 2008. An inflatable packer was installed to a depth of 2,109 feet bpl in preparation for pressure testing. The same procedure as described above was utilized for the 60-minute pressure test. The casing pressure at the start of the test was 151.5 psi. The pressure was monitored for a 60-minute period with a 200-psi calibrated pressure gauge. Pressure readings were recorded throughout the 60-minute test at 5-minute intervals. At the conclusion of the test, the casing pressure was 150.0 psi. The 1.5 psi loss in pressure is within the 5 percent limit (7.5 psi) specified Rule 62-528.300(6)(e), FAC. The pressure test was witnessed by David McNabb, P.G., (MHC). A total of 3 gallons of water were drained to the containment pad when the

pressure was released from the casing. A copy of the pressure gauge calibration certificate for the pressure gauge used for both pressure tests and a summary sheet for both of the casing pressure tests is provided in Attachment Q.

DZMW-1 Well Video Surveys

Video surveys were performed to inspect the 16-inch diameter steel casing and the 6.625-inch diameter FRP casing of DZMW-1. For each video survey, the color camera assembly was equipped with centralizers to keep it centered in the well, and its elevation was "zeroed" at pad level. On May 5, 2008, video logging of the 16-inch diameter steel casing and open hole interval from land to a depth of 2,196 feet bpl was conducted. The video survey indicated the base of the 16-inch diameter casing was located at a depth of 1,890 feet bpl. Casing joints were visible and the casing appeared to be in good condition. The survey indicated that the borehole was generally a gauged borehole to the total depth of 2,196 feet bpl with occasional cavities, bedding planes and some fracturing. A flow zone was evident at approximately 1,909 feet bpl.

On May 19, 2008, a video survey of the 6.625-inch diameter FRP final casing was performed. The survey showed no inconsistencies, and the casing appeared in good condition. The base of the final casing was observed at a depth of 2,134 feet bpl. The cement seal around the base of the casing appeared to be in good condition. The open hole is generally fractured to 2,152 feet bpl and becomes cavernous at 2,152 feet to 2,153 feet bpl. The top of the gravel inside the open hole is visible at a depth of 2,155 feet bpl. A copy of both video survey DVDs with a summary of each video survey is provided in Attachment R.

Geophysical Logging

A cement bond log (CBL) was performed on the 16-inch and 6.625-inch diameter casings of DZMW-1 on May 4, 2008 and May 13, 2008, respectively. The CBLs were conducted to assess the quality of the cement-to-casing bond of the upper and lower monitor zone casings of DZMW-1. The CBL for the 16-inch diameter casing was performed prior to cementing the upper 245 feet of casing to land surface to allow the tool to be calibrated to uncemented casing (above 245 feet bpl) and cemented casing (below 245 feet bpl). The CBL performed on the 16-inch diameter casing shows the presence of cement behind the 16-inch diameter

casing below a depth of 245 feet bpl. The interval from 245 to land surface was cemented following completion of logging.

A CBL was performed on the 6.625-inch diameter final casing after cementing the final casing over the interval from 2,132 to 1,911 feet bpl. The CBL demonstrates a good cement bond around the final 6.625-inch-diameter casing from 1,912 feet bpl to the base of the 6.625-inch diameter casing at 2,132 feet bpl. Above a depth of 1,912 feet bpl, the cement bond log shows that the casing is uncemented and casing joints are clearly recognizable at 30-foot intervals. A copy of both CBL logs is provided in Attachment K.

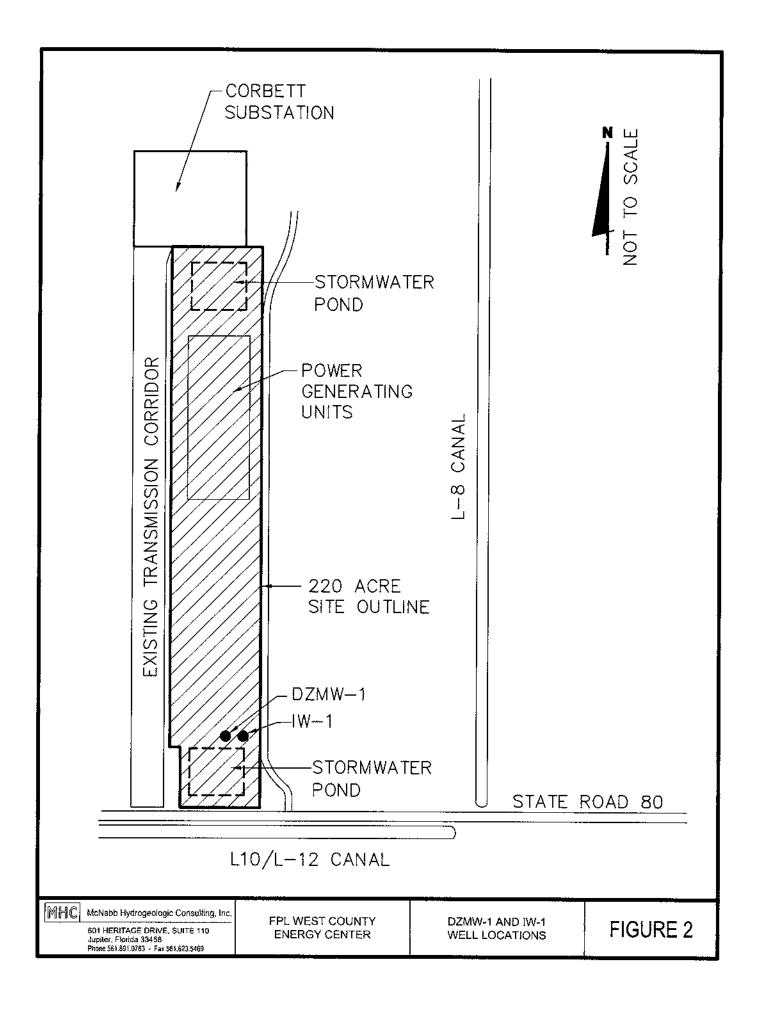
SUMMARY AND CONCLUSIONS

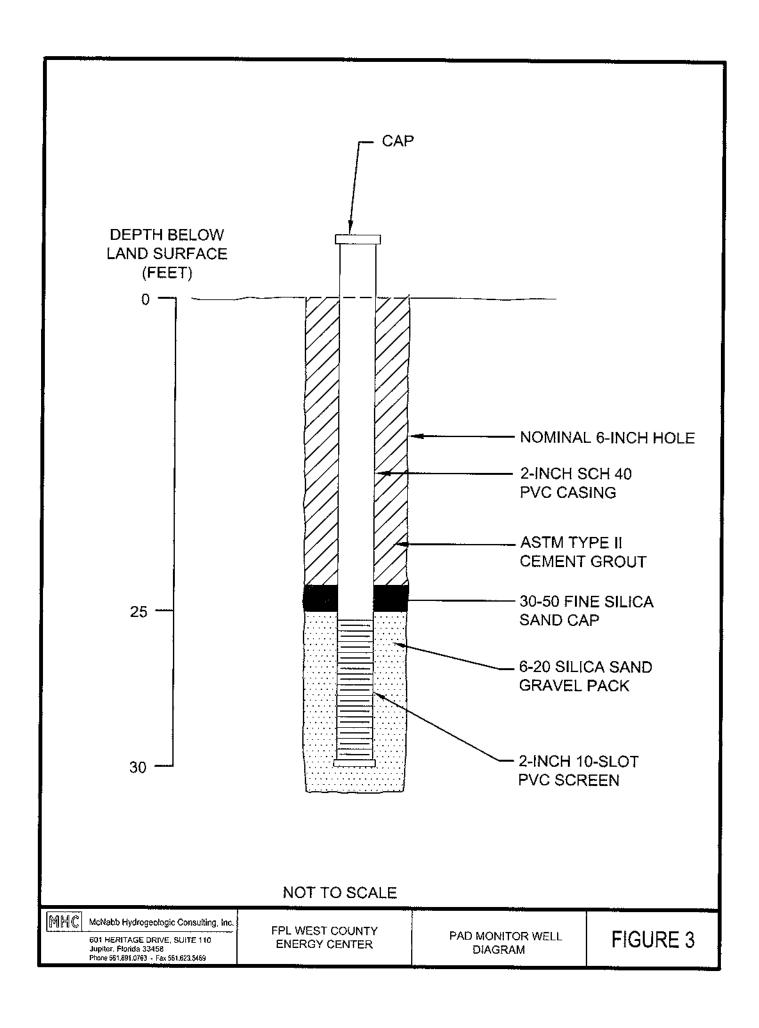
Dual zone monitor well DZMW-1 was constructed at the FPL West County Energy Center in western Palm Beach County, Florida. The well was constructed to Class I deep injection well system monitoring well standards to monitor for upward migration of fluids that will be injected into the injection zone of the deep injection well system. The well was constructed to monitor an interval just above the base of the USDW at 1,890 to 1,911 feet bpl and an interval below the base of the USDW at 2,132 to 2,166 feet bpl. Testing performed during and after construction of DZMW-1 demonstrated the well has mechanical integrity.

Testing during construction of DZMW-1 identified the base of the USDW between the depths of 1,950 and 2,062 feet bpl through interpretation of packer tests water quality data. Analysis of geophysical log data suggests the base of the USDW at a depth of 1,960 feet bpl.

DZMW-1 was constructed to meet the requirements of Chapter 62-528, FAC. The well was constructed 145 feet to the west of Class I deep injection well IW-1. It is recommended that DZMW-1 serve as a dual-zone monitor well for the FPL West County Energy Center Class I deep injection well system to be used for disposal of non-hazardous wastewater from the power generation facility.

Figures


MHC McNabb Hydrogeologic Consulting, Inc.


601 HERITAGE DRIVE, SUITE 110 Jupiter, Florida 33458 Phone 561.891.0763 + Fax 561.623.5464

FPL WEST COUNTY **ENERGY CENTER**

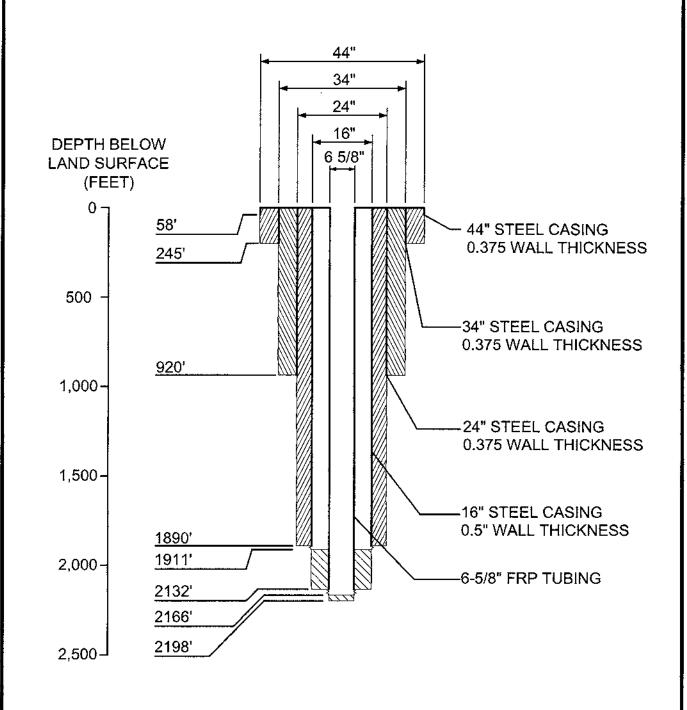
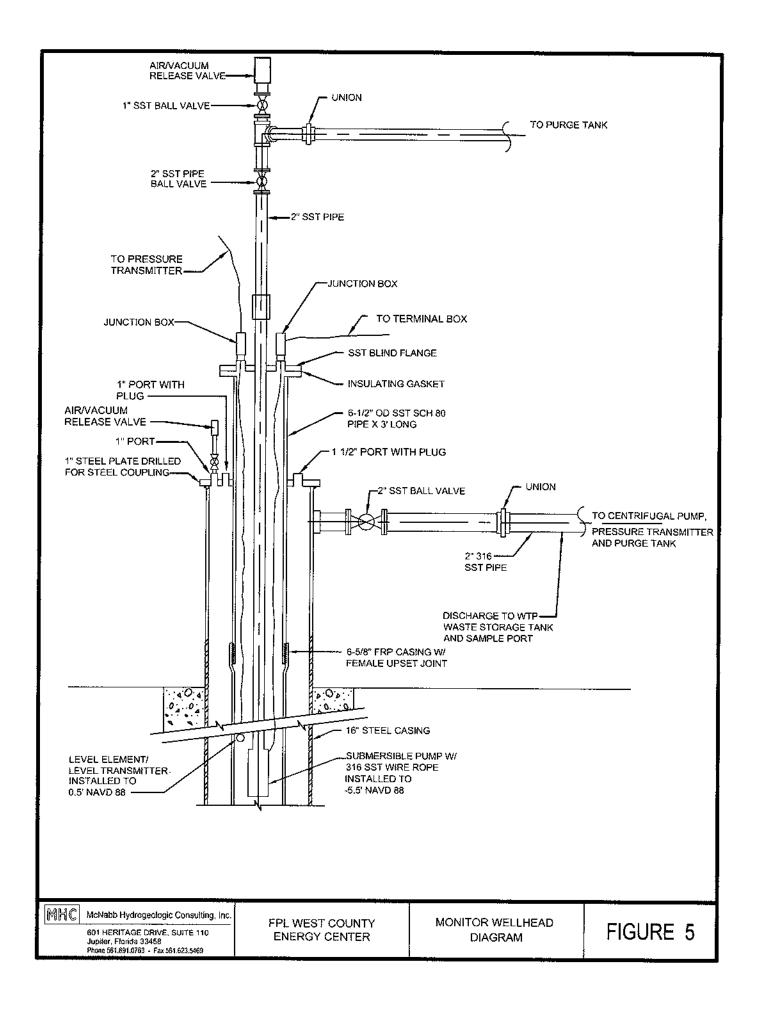

SITE LOCATION MAP

FIGURE 1

DUAL-ZONE MONITOR WELL



MHC

McNabb Hydrogeologic Consulting, Inc.

601 HERITAGE DRIVE, SUITE 110 Jupiter, Florida 33458 Phone 561.891.0763 - Fax 561.623.5469 FPL WEST COUNTY ENERGY CENTER DZMW-1 COMPLETION DIAGRAM

FIGURE 4

	Geologic C	lalumn		Hydro	geologic	: Column	
DEPTH (FEET)	Geologic Age	Geologic Unit	Description	Hydrogeologic Unit		Hydrogeologic Characteristics	
	Pleistocene Holocene to Pilocene	Pamlico Sand Ft. Thompson, Tamiami Formations	Shells, Sand and Sandstone	Surficial Aquifer		Moderately Transmissive	
500 —	Miocene	Hawthorn Group	Clay, Phosphatic Limestone and Sandstone	Upper Confining Unit		Confining	
	Oligocene	Suwannee Limestone –	Fine Grained Limestone				
1000 —		Ocala Formation	Fine grained Limestone				
1500	Eocene	Avon Park Formation	Fine groined Limestone and Dolomite	Upper Floridan Aquifer	Floridan Aquifer System	Transmissive	
2000 —		Oldsmar Formation	Dolomite with some Limestone	Middle Floridan Confining Unit		Confining	
601 HERITAGE Jupiter, Florida 3	geologic Consulting, Inc. DRIVE, SUITE 110 33458 3 - Fax 561.623.5469	FPL WEST CO ENERGY CE		GEOLOGIC AND HYDROGEOLOGIC COLUMN		FIGUR	E 6

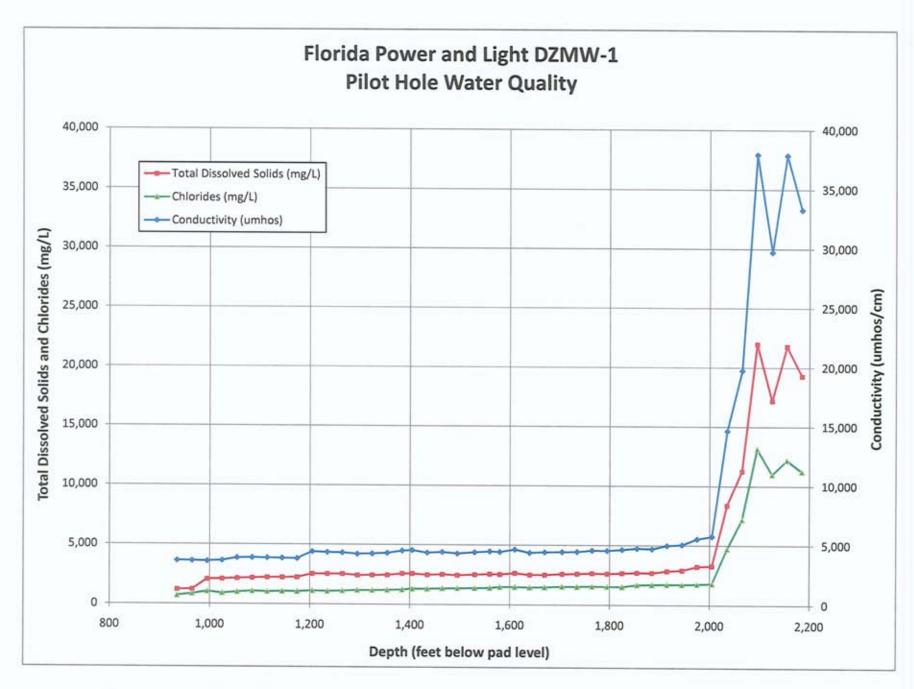


Figure 7. DZMW-1 Pilot Hole Water Quality Data

FPL West County Energy Center DZMW-1 Packer Test #1 (2,132 - 2,165 feet bpl)

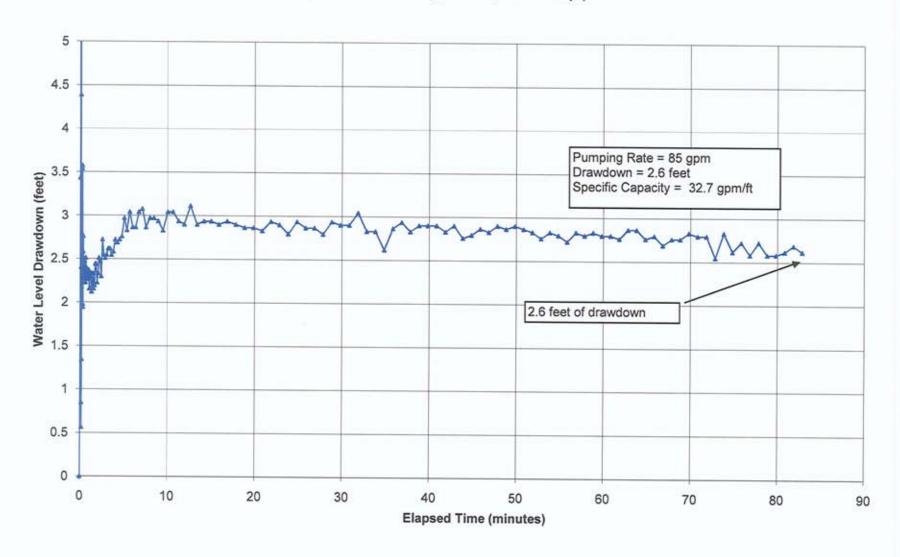


Figure 8. Packer Test #1 Water Level Drawdown Data.

FPL West County Energy Center DZMW-1 Packer Test #2 (2,062 - 2,095 feet bpl)

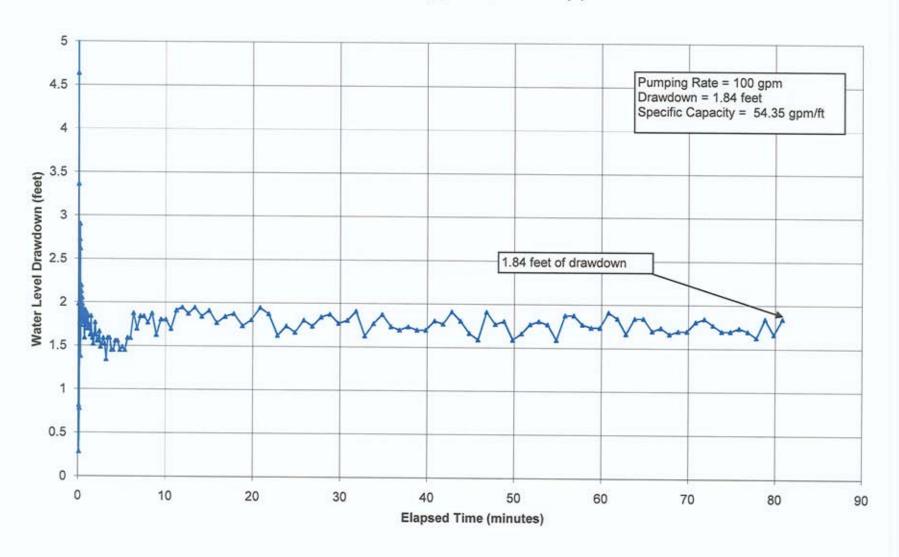


Figure 9. Packer Test #2 Water Level Drawdown Data.

FPL West County Energy Center DZMW-1 Packer Test #3 (1,917 - 1,950 feet bpl)

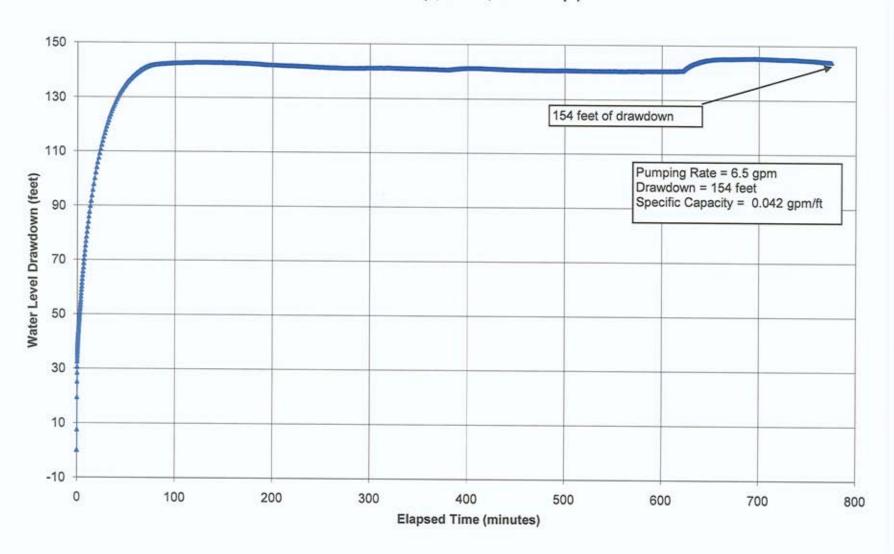


Figure 10. Packer Test #3 Water Level Drawdown Data.

FPL West County Energy Center DZMW-1 Packer Test #4 (1,887 - 1,920 feet bpl)

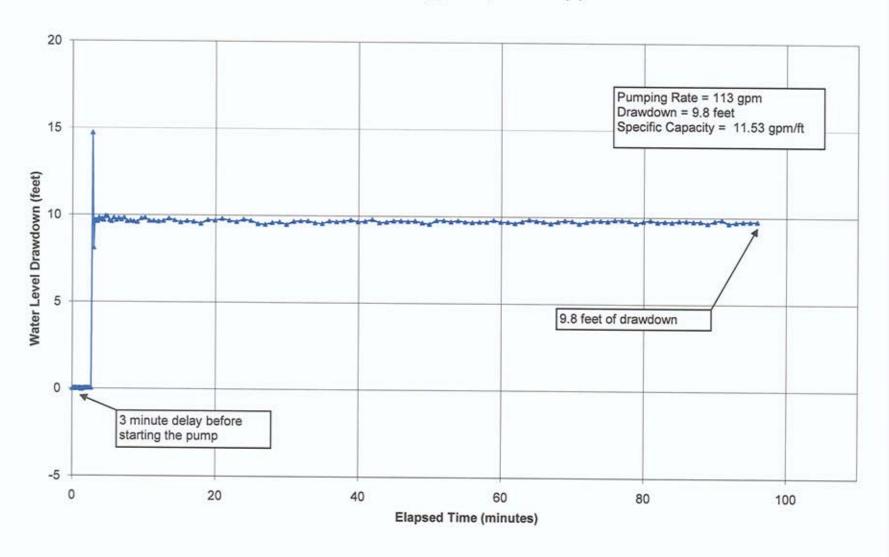


Figure 11. Packer Test #4 Water Level Drawdown Data.

Attachment A FDEP Construction Permit #247895-006-UC

Department of Environmental Protection

Southeast District 400 N. Congress Avenue — Suite 200 West Palm Beach, Florida 33401 Charlie Crist Governor

Jeff Kottkamp Lt. Governor

Michael W. Sole Secretary

ELECTRONIC MAIL

NOTICE OF PERMIT

Mr. Randall LaBauve, Vice President FPL 700 Universe Blvd. Juno Beach FL 33408 FPL West County Energy Center DZMW-1 UIC – FPL West County Energy Center, FPL West County Energy Center DZMW-1 File: 247895-006-UC

Dear Mr. LaBauve:

Enclosed is Permit Number 247895-006-UC, to construct a dual zone monitoring well (DZMW-1) to be located at the FPL West County Energy Center (WCEC) near the intersection of Southern Blvd. (SR 80) and the L-8 Canal in Loxahatchee, Palm Beach County. This permit is issued pursuant to Section(s) 403.087, Florida Statutes and Florida Administrative Codes 62-4, 62-520, 62-528 and 62-550.

Any party to this Order (permit) has the right to seek judicial review of the permit pursuant to Section 120.68, Florida Statutes, by the filing of a Notice of Appeal pursuant to Rule 9.110, Florida Rules of Appellate Procedure, with the Clerk of the Department in the Office of General Counsel, Mail Stop 35, 3900 Commonwealth Blvd., Tallahassee, Florida 32399-3000; and by filing a copy of the Notice of Appeal accompanied by the applicable filing fees with the appropriate District Court of Appeal. The Notice of Appeal must be filed within 30 days from the date this Notice is filed with the Clerk of the Department.

Should you have any questions, please contact Joseph May, P.G., of this office, telephone (561) 681-6691.

STATE OF FLORIDA
DEPARTMENT OF ENVIRONMENTAL PROTECTION

STATE OF FLORIDA
DEPARTMENT OF ENVIRONMENTAL PROTECTION

SOUTH ACK Long
District Director
Southeast District

JL/LAB/JRM/jrm

cc: Richard Deuerling, FDEP/TLH
Robert Renken, USGS/FLL
Nancy Marsh, USEPA/Reg IV
Barbara Linkiewicz, FPL-Juno Beach
Dave McNabb, McNabb Hydrogeological Consulting
Mike Halpin, SCA

Cathy McCarty, FDEP/TLH UIC Permitting File, FDEP/WPB Steve Anderson, SFWMD John Gnecco. FPL-Juno Beach Marister Ruiz, FPL-Juno Beach Jonathan Shaw, Golder Assoc.

CERTIFICATE OF SERVICE

This is to certify that this NOTICE OF PERMIT a	nd all copies were mailed before the close of business on persons.
Clerk Stamp	F
FILING AND ACKNOWLEDGMENT FILED, on to designated Department Clerk, receipt of which is	his date, pursuant to the §120.52, Florida Statutes, with the hereby acknowledged.
Clerk	Date

Department of Environmental Protection

Charlie Crist Governor

Jeff Kottkamp Lt. Governor

Michael W. Sole Secretary

Southeast District 400 N. Congress Avenue — Suite 200 West Palm Beach, Florida 33401

PERMITTEE: Mr. Randall LaBauve, Vice President FPL 700 Universe Blvd. Juno Beach FL 33408 PERMIT/CERTIFICATION NUMBER: 247895-006-UC DATE OF ISSUANCE: EXPIRATION DATE: COUNTY: Palm Beach POSITION: 26° 41' 19" N / 80° 22' 28" W

PROJECT: FPL West County Energy
Center DZMW-1

PROJECT: Construction and testing of a dual zone monitoring well DZMW-1

This permit is issued under the provisions of Chapter 403.087, Florida Statutes, and Florida Administrative Code (F.A.C.) Rules 62-4, 62-520, 62-522, 62-528 and 62-550. The above named permittee is hereby authorized to perform the work or operate the facility shown on the application and approved drawing(s), plans, and other documents attached hereto or on file with the Department and made a part hereof and specifically described as follows:

TO CONSTRUCT AND TEST: The dual zone monitoring well, DZMW-1, shall be constructed to accommodate anticipated Class I injection well monitoring should Class I injection prove feasible at the location of the Class V exploratory injection well EW-2. The upper monitoring zone will be positioned at or near the base of the Underground Source of Drinking Water (USDW) and the lower zone will be placed below the upper zone but above the primary confining unit above the injection zone. This well will be of a telescoped design using steel casings with a fiberglass reinforced pipe (FRP) final casing.

The proposed design and approximate depths are: 34-inch steel surface casing from 0-200 feet bpl, 24-inch steel first intermediate casing from 0-935 feet below pad level (bpl), 16-inch steel second intermediate casing from 0-1940 feet bpl which provides the top of the upper monitoring interval, 6^{5/8}-inch FRP final casing from 0-2180 feet bpl, and a nominal 9-inch open interval to provide the lower monitoring interval. All casings are to have neat cement with up to 12% bentonite filled annuli. Casing setting depths and monitoring intervals are approximations for descriptive as well as planning purposes. Final determinations are to be made upon review of the Final Report of EW-2 and field results within the bore of DZMW-1. Monitoring zones will have an interval of 20 feet to 50 feet, contingent upon water flow to the bore. The upper monitoring zone is anticipated to be 1955-1975 feet below land bpl and the lower monitoring zone is anticipated to be 2160-2180 feet below pad level.

IN ACCORDANCE WITH: Application for a dual zone monitoring well construction and testing permit, received March 2, 2007 deemed complete as of April 30, 2007.

LOCATED AT: Adjacent to the FPL Corbett Substation. The facility is located at 20505 State Road 80, Loxahatchee, near the intersection of Southern Blvd. (i.e., SR 80) and the L-8 Canal (slightly east of Twenty Mile Bend on State Road 80) in Loxahatchee, Palm Beach County, Florida.

TO SERVE: FPL West County Energy Center.

SUBJECT TO: General Conditions 1-24 and Specific Conditions 1-8.

Mr. Randall LaBauve, Vice President FPL – West County Energy Center DZMW-1 Page 2 of 14

File #: 247895-006-UC Date issue: Date Expiration:

GENERAL CONDITIONS:

The following General Conditions are referenced in Florida Administrative Code Rule 62-528,307.

- 1. The terms, conditions, requirements, limitations and restrictions set forth in this permit are "permit conditions" and are binding and enforceable pursuant to Section 403.141, F.S.
- This permit is valid only for the specific processes and operations applied for and indicated in the approved drawings or exhibits. Any unauthorized deviation from the approved drawings, exhibits, specifications, or conditions of this permit may constitute grounds for revocation and enforcement action.
- 3. As provided in Subsection 403.087(7), F.S., the issuance of this permit does not convey any vested rights or exclusive privileges. Neither does it authorize any injury to public or private property or any invasion of personal rights, nor infringement of federal, state, or local laws or regulations. This permit is not a waiver of or approval of any other Department permit that may be required for other aspects of the total project which are not addressed in this permit.
- 4. This permit conveys no title to land, water, does not constitute State recognition or acknowledgment of title, and does not constitute authority for the use of submerged lands unless herein provided and the necessary title or leasehold interests have been obtained from the State. Only the Trustees of the Internal Improvement Trust Fund may express State opinion as to title.
- 5. This permit does not relieve the permittee from liability for harm to human health or welfare, animal, or plant life, or property caused by the construction or operation of this permitted source, or from penalties there from; nor does it allow the permittee to cause pollution in contravention of Florida Statutes and Department rules, unless specifically authorized by an order from the Department.
- 6. The permittee shall properly operate and maintain the facility and systems of treatment and control (and related appurtenances) that are installed and used by the permittee to achieve compliance with the conditions of this permit, or are required by Department rules. This provision includes the operation of backup or auxiliary facilities or similar systems when necessary to achieve compliance with the conditions of the permit and when required by Department rules.
- 7. The permittee, by accepting this permit, specifically agrees to allow authorized Department personnel, upon presentation of credentials or other documents as may be required by law and at reasonable times, access to the premises where the permitted activity is located or conducted to:
 - a. Have access to and copy any records that must be kept under conditions of this permit;
 - b. Inspect the facility, equipment, practices, or operations regulated or required under this permit; and
 - c. Sample or monitor any substances or parameters at any location reasonably necessary to assure compliance with this permit or Department rules.

Reasonable time will depend on the nature of the concern being investigated.

- 8. If, for any reason, the permittee does not comply with or will be unable to comply with any condition or limitation specified in this permit, the permittee shall immediately provide the Department with the following information:
 - a. A description of and cause of noncompliance; and
 - b. The period of noncompliance, including dates and times; or, if not corrected the anticipated time the noncompliance is expected to continue, and steps being taken to reduce, eliminate, and prevent the

Mr. Randall LaBauve, Vice President FPL – West County Energy Center DZMW-1 Page 3 of 14

File #: 247895-006-UC Date Issue: Date Expiration:

recurrence of the noncompliance. The permittee shall be responsible for any and all damages which may result and may be subject to enforcement action by the Department for penalties or for revocation of this permit.

- 9. In accepting this permit, the permittee understands and agrees that all records, notes, monitoring data and other information relating to the construction or operation of this permitted source which are submitted to the Department may be used by the Department as evidence in any enforcement case involving the permitted source arising under the Florida Statutes or Department rules, except where such use is proscribed by Sections 403.111 and 403.73, F.S. Such evidence shall only be used to the extent it is consistent with the Florida Rules of Civil Procedure and appropriate evidentiary rules.
- 10. The permittee agrees to comply with changes in Department rules and Florida Statutes after a reasonable time for compliance; provided, however, the permittee does not waive any other rights granted by Florida Statutes or Department rules.
- 11. This permit is transferable only upon Department approval in accordance with Rules 62-4.120 and 62-528.350, F.A.C. The permittee shall be liable for any non-compliance of the permitted activity until the transfer is approved by the Department.
- 12. This permit or a copy thereof shall be kept at the work site of the permitted activity.
- 13. The permittee shall comply with the following:
 - a. Upon request, the permittee shall furnish all records and plans required under Department rules. During enforcement actions, the retention period for all records shall be extended automatically unless the Department determines that the records are no longer required.
 - b. The permittee shall hold at the facility or other location designated by this permit records of all monitoring information (including calibration and maintenance records and all original strip chart recordings for continuous monitoring instrumentation) required by the permit, copies of all reports required by this permit, and records of all data used to complete the application for this permit. These materials shall be retained at least three years from the date of the sample, measurement, report, or application unless otherwise specified by Department rule. Since there is no facility at this site for the purposes of this permit then these records may be kept at the permittee's office in Juno Beach, FL or the Site office.
 - c. Records of monitoring information shall include:
 - 1) the date, exact place, and time of sampling or measurements;
 - 2) the person responsible for performing the sampling or measurements;
 - 3) the dates analyses were performed;
 - 4) the person responsible for performing the analyses;
 - 5) the analytical techniques or methods used
 - 6) the results of such analyses
 - d. The permittee shall furnish to the Department, within the time requested in writing, any information which the Department requests to determine whether cause exists for modifying, revoking and reissuing, or terminating this permit, or to determine compliance with this permit.
 - e. If the permittee becomes aware that relevant facts were not submitted or were incorrect in the permit application or in any report to the Department, such facts or information shall be corrected promptly.
- All applications, reports, or information required by the Department shall be certified as being true, accurate, and complete.

Mr. Randall LaBauve, Vice President FPL – West County Energy Center DZMW-1 Page 4 of 14

File #: 247895-006-UC Date Issue: Date Expiration:

- 15. Reports of compliance or noncompliance with, or any progress reports on, requirements contained in any compliance schedule of this permit shall be submitted no later than 14 days following each scheduled date.
- 16. Any permit noncompliance constitutes a violation of the Safe Drinking Water Act and is grounds for enforcement action; for permit termination, revocation and reissuance, or modification; or for denial of a permit renewal application.
- 17. It shall not be a defense for a permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of this permit.
- 18. The permittee shall take all reasonable steps to minimize or correct any adverse impact on the environment resulting from noncompliance with this permit.
- 19. This permit may be modified, revoked and reissued, or terminated for cause, as provided in 40 C.F.R. Sections 144.39(a), 144.40(a), and 144.41 (1998). The filing of a request by the permittee for a permit modification, revocation or reissuance, or termination, or a notification of planned changes or anticipated noncompliance, does not stay any permit condition.
- 20. The permittee shall retain all records of all monitoring information concerning the construction of the well until five years after completion of any plugging and abandonment procedures specified under Rule 62-528.435, F.A.C. The permittee shall deliver the records to the Department office that issued the permit at the conclusion of the retention period unless the permittee elects to continue retention of the records.
- 21. All reports and other submittals required to comply with this permit shall be signed by a person authorized under Rules 62-528.340(1) or (2), F.A.C. All reports shall contain the certification required in Rule 62-528.340(4), F.A.C.
- 22. The permittee shall notify the Department as soon as possible of any planned physical alterations or additions to the permitted facility. In addition, prior approval is required for activities described in Rule 62-528.410(1)(h).
- 23. The permittee shall give advance notice to the Department of any planned changes in the permitted facility or injection activity that may result in noncompliance with permit requirements.
- 24. The permittee shall report any noncompliance which may endanger health or the environment including:
 - a. Any monitoring or other information which indicates that any contaminant may cause an endangerment to an underground source of drinking water; or
 - b. Any noncompliance with a permit condition or malfunction of the injection system which may cause fluid migration into or between underground sources of drinking water.

Any information shall be provided orally within 24 hours from the time the permittee becomes aware of the circumstances. A written submission shall also be provided within 5 days of the time the permittee becomes aware of the circumstances. The written submission shall contain a description of the noncompliance and its cause, the period of noncompliance, including exact dates and times, and if the noncompliance has not been corrected, the anticipated time it is expected to continue; and the steps taken or planned to reduce, eliminate, and prevent reoccurrence of the noncompliance.

Mr. Randall LaBauve, Vice President FPL – West County Energy Center DZMW-1 Page 5 of 14 File #: 247895-006-UC Date Issue: Date Expiration:

Specific Conditions

- The terms, conditions, requirements, limitations and restrictions set forth in this permit are "permit conditions" and are binding and enforceable pursuant to Section 403.141, F.S.
 - a. This permit is to construct and test a dual zone monitoring well, referred herein as DZMW-1.
 - b. This permit approval is based upon evaluation of the data contained in the application and the plans and specifications submitted in support of the application. Any changes, except as provided elsewhere in this permit, must be approved by the Department before implementation.
 - c. The permittee shall be subject to all requirements and regulations of Palm Beach County and the South Florida Water Management District regarding the construction and testing of this dual-zone monitoring well.
 - d. Four surficial aquifer monitor wells, identified as Pad Monitor Wells (PMWs), shall be located near the corners of the pad to be constructed for the dual-zone monitoring well, and shall be identified by location number and pad location, i.e. DZMW-NW, DZMW-NE, DZMW-SW, and DZMW-SE. If located in a traffic area the well head(s) must be protected by traffic bearing enclosure(s) and cover(s). Each well must be specifically marked to identify the well and its purpose. The PMWs shall be sampled as follows:
 - During the construction, the PMWs shall be sampled weekly for chlorides (mg/L), specific conductance (μmho/cm or μS/cm), total dissolved solids, temperature and water level (relative to the North American Vertical Datum of 1988 [NAVD 88]).
 - Initial PMW water quality analysis results shall be submitted prior to the onset of drilling activities.

The results of the PMW analyses shall be submitted to the Department within 30 days of the completion of the activity. A summary sheet from the FDEP Southeast District is attached for your use when reporting the above information. The PMWs shall be retained in service throughout the construction phase of the project.

- e. No fluid shall be injected.
- f. If historical or archaeological artifacts, such as Indian canoes, are discovered at any time within the project site, the permittee shall notify the FDEP SED office in West Palm Beach and the Bureau of Historic Preservation, Division of Archives, History and Records Management, R. A. Gray Building, Tallahassee, Florida 32301, telephone number 850-487-2073.

Construction and Testing Requirements

a. Prior to the commencement of any work, the name of the Florida-licensed water well contractors supervising the drilling operations and the water well contractors' registration number shall be submitted to the Department. The permittee or the engineer of record shall provide the Department with copies of all required federal, state or local permits prior to spudding the dual-zone monitoring well. Mr. Randáll LaBauve, Vice President FPL – West County Energy Center DZMW-1 Page 6 of 14

- A Department approved blow-out prevention device shall be installed on the well prior to penetration of the Floridan Aquifer.
- c. The measurement points for drilling and logging operations shall be surveyed and referenced to the NAVD 88 prior to the onset of drilling activities for the dual-zone monitoring well.
- d. No drilling operations shall begin without an approved disposal site for drilling fluids, cuttings, or waste. It shall be the permittee's responsibility to obtain any necessary Department and local agency approvals for disposal prior to the start of construction. Any formation waters discharged to surface or surficial aquifer waters during an aquifer performance test shall require an Industrial Wastewater permit from the Department, unless otherwise authorized.
- The Department shall be notified within forty-eight (48) hours after work has commenced.
- f. Hurricane Preparedness Upon the issuance of a "Hurricane Watch" by the National Weather Service, the preparations to be made include but are not necessarily limited to the following:
 - Secure all on-site salt and stockpiled additive materials to prevent surface and/or groundwater contamination.
 - 2) Properly secure drilling equipment and rig(s) to prevent damage to well(s) and on-site treatment process equipment.
- g. Waters spilled during construction or testing of the dual-zone monitoring well shall be contained and properly disposed.
- Department approval and UIC-TAC review is required prior to the following stages of construction:
 - 1) Spud date for the well
 - 2) Each casing landing
 - Monitoring zone interval determination.
- The drilling and geophysical logging program, during the drilling of the dual-zone monitoring well, shall at a minimum include:
 - Install a 44-inch steel pit casing from approximately 0-40 feet bpl.
 - Ream a nominal 44-inch diameter hole using the mud rotary method from the landing of the pit
 casing to approximately 200 feet bpl, conducting inclination surveys every 90 feet. Perform the
 following logging techniques prior to reaming:
 - X-Y caliper
 - Natural gamma ray
 - Install and cement in place 34-inch diameter steel casing. Run temperature log after each lift.

- 4) Drill a nominal 12-inch diameter pilot hole using the mud rotary method from approximately 200 feet bpl to approximately 935 feet bpl. Conduct inclination surveys every 90 feet and perform the following logging techniques:
 - X-Y caliper
 - Natural gamma ray
 - Dual-induction
- 5) Install and cement in place 24-inch steel casing to approximately 935 feet bpl. Conduct temperature survey after each lift.
- 6) Drill a nominal 12-inch diameter pilot hole by the reverse-air circulation method to approximately 2160 feet bpl. Drill a 9-inch diameter borehole from 2160 to 2180 feet bpl. Conduct inclination surveys every 90 feet and perform the following logging techniques:
 - X-Y caliper
 - Dual-induction
 - Borehole-Compensated Sonic VDL
 - Gamma ray
 - Temperature/Differential temperature
 - Fluid resistivity
 - Flowmeter
 - Temperature/Differential temperature (dynamic conditions)
 - Fluid resistivity (dynamic conditions)
 - Flowmeter (dynamic conditions)
- 7) Ream a nominal 24-inch diameter borehole by the reverse-air circulation method from the bottom of the 24-inch diameter casing to the top of the upper monitoring zone at approximately 1955 feet bpl. Conduct inclination surveys at 90-foot intervals during reaming.
- 8) Install and cement in place a 16-inch, steel casing to the top of the upper monitoring zone at approximately 1955 feet bpl. Conduct a temperature log after each lift.
- 9) Conduct a pressure test on the 16-inch diameter casing.
- 10) Ream a nominal 16-inch diameter borehole by the reverse-air circulation method from 1955 to 2160 feet bpl. Clean out the 9-inch diameter borehole from 2160 to 2180 feet bpl. Conduct inclination surveys every 90 feet and perform the following logging techniques:
 - X-Y caliper
 - Gamma ray
- 11) Set 6⁵/₈ -inch FRP tubing with external casing packer to the top of the lower monitoring zone at approximately 2160 feet bpl. Place cement from approximately 1975 feet to 2160 feet bpl. Run a temperature log after each lift, and a CBL-VDL and video survey after cementing.
- 12) Conduct a pressure test on 65/8 -inch FRP tubing.

Mr. Randall LaBauve, Vice President FPL – West County Energy Center DZMW-1 Page 8 of 14

- 13) Develop the monitoring well.
- j. The depth of the USDW and background water quality shall be determined during drilling and testing. This determination shall be accomplished, analyzed, and interpreted using, at least, the following information:
 - 1) Water sample analysis results from packer testing
 - 2) Packer test hydraulic testing data.
 - Geophysical logging data.
- k. Packer testing shall be accomplished to assist in identifying the base of the USDW as well in each proposed monitoring interval, for a minimum of three tests. Water quality sampling shall also be incorporated.
- I. Testing:
 - 1) Injection is prohibited as this is a dual-zone monitoring well.
 - 2) The Department shall be notified at least seventy-two (72) hours prior to all testing.
- m. UIC-TAC meetings are scheduled on the 2nd and 4th Tuesday of each month subject to a five working day prior notice and timely receipt of critical data by all UIC-TAC members. Emergency meetings may be arranged when justified to avoid undue construction delays.
- n. Department approval at a scheduled UIC–TAC meeting shall be based on the permittee's presentation that shows compliance with Department rules and this permit.
- No fluids shall be injected with the exception of fluids used while drilling operations are under way.
- 3. Quality Assurance/Quality Control Requirements
 - a. The permittee shall ensure that the construction of this facility shall be as described in the application and supporting documents. Any proposed modifications to this permit shall be submitted in writing to the Underground Injection Control program manager for review and clearance prior to implementation. Changes of negligible impact to the environment and staff time will be reviewed by the program manager, cleared when appropriate and incorporated into this permit. Changes or modifications other than those described above will require submission of a completed application and appropriate processing fee as per Rule 62-4.050, F.A.C.
 - b. A Florida registered professional engineer, pursuant to Chapter 471, Florida Statutes (F.S.), shall be retained throughout the construction period and operational testing to be responsible for the construction and operation and to certify the application, specifications and completion report and other related documents, pursuant to Rule 62-528.440(5), F.A.C. A professional engineer or professional geologist, pursuant to Chapter 492, F.S., shall provide monitoring of the drilling and testing operation. The permittee shall notify the Department immediately of any change of the Engineer of Record or Geologist of Record.

Mr. Randall LaBauve, Vice President FPL – West County Energy Center DZMW-1 Page 9 of 14 File #: 247895-006-UC Date Issue: Date Expiration:

- c. In accordance with Chapter 492, Florida Statutes, all documents prepared for the geological/hydrogeological evaluation of the dual-zone monitor well shall be signed and sealed by a Florida Licensed Professional Geologist or qualified Florida Licensed Professional Engineer.
- d. All water quality samples required in this permit shall be collected and analyzed in accordance with Department Standard Operating Procedures (SOP), pursuant to the FDEP Quality Assurance, Chapter 62-160, F.A.C. The various components of the collection of the FDEP SOPs are found in DEP-SOP-001/01 (Field Procedures) and DEP-SOP-002/-1 (Laboratory Procedures).
- e. Continuous on-site supervision by qualified personnel (engineer or geologist) is required during all drilling, testing, geophysical logging and cementing operations.
- f. The permittee shall calibrate all pressure gauge(s), flow meter(s) and other related measurement equipment associated with the injection well system on a semi-annual basis. The permittee shall maintain all monitoring equipment and shall ensure that the monitoring equipment is calibrated and in proper operating condition at all times. Laboratory equipment, methods, and quality control will follow EPA guidelines as expressed in Standard Methods for the Examination of Water and Wastewater. The pressure gauge(s), flow meter(s) and other related measurement equipment associated with the injection well system shall be calibrated using standard engineering methods.
- g. Proper operation and maintenance includes effective performance, adequate funding, adequate operator staffing and training, and adequate laboratory and process controls, including appropriate quality assurance procedures.

4. Reporting Requirements

- a. This project shall be monitored by the Department of the TAC, which consists of representatives of the following agencies:
 - Department of Environmental Protection, West Palm Beach
 - Department of Environmental Protection, Tallahassee
 - · South Florida Water Management District (SFWMD), West Paim Beach
 - USGS-Fort Lauderdale office, Final Report only
- b. The permittee shall provide copies of all correspondence relative to this permit to each member of the UIC-TAC. Such correspondence includes but is not limited to reports, schedules, analyses and geophysical logs required by the Department under the terms of this permit. The permittee is not required to provide specific correspondence to any TAC member who submits to the permittee a written request to be omitted as a recipient of specific correspondence.
- c. Throughout the construction period allowed by this permit, daily progress reports shall be submitted to the Department, and the TAC each week. The reporting period shall run Friday through Thursday and reports shall be mailed on Friday of each week. The weekly progress reports, certified by a Florida Licensed Professional Geologist or qualified Florida Licensed Professional Engineer, pursuant to S.C.s 3.b. and 7.a., and shall include at a minimum the following information:
 - A cover letter summarizing each week's activities and a projection of activities for the next reporting period;
 - 2) Description of daily footage drilled by diameter of bit or size of hole opener or reamer being used;

Mr. Randall LaBauve, Vice President FPL – West County Energy Center DZMW-1 Page 10 of 14 File #: 247895-006-UC Date Issue: Date Expiration:

- 3) Description of work during installation and cementing of casing, including amounts of casing and cement used. Details of cementing operations shall include the number of cementing stages, and the following information for each stage of cementing: cement slurry composition, specific gravity, pumping rate, volume of cement pumped, theoretical fill depth, and actual tag depth. From both the physical tag and the geophysical logs, a percent fill shall be calculated. An explanation of any deviation between actual versus theoretical fill shall be provided;
- Daily engineers report and driller's log with detailed descriptions of all drilling progress, cementing, testing, logging, and casing installation activities;
- 5) Lithologic log with cuttings description, formation and depth encountered;
- 6) Collection of drilling cuttings at least every 10 feet and at every formation change;
- 7) Well development records;
- Water quality analyses, including but not limited to the weekly water quality analysis and water levels for the four PMWs;
- Description of work and type of testing accomplished including geophysical and video logs and pumping tests;
- Description of any construction problems that developed during the reporting period and current status;
- 11) Copies of the driller's log;
- 12) Description of any deviation survey conducted;
- 13) Details of any packer tests, pump tests and core analyses; and
- 14) Details of the additions of salt or other materials to suppress well flow, and include the date, depth and amount of material used.
- d. If any problem develops that may seriously hinder compliance with this permit, construction progress or good construction practice, the Department shall be notified immediately. The Department may require a detailed written report describing what problems have occurred, the remedial measures applied to assure compliance and the measures taken to prevent recurrence of the problem.

e. Abnormal Events

1) In the event the permittee is temporarily unable to comply with any conditions of this permit due to breakdown of equipment, power outages, destruction by hazard of fire, wind or by other cause, the permittee shall notify the Department. Notification shall be made in person, by telephone or by electronic mail within 24 hours of breakdown or malfunction to the UIC Program staff, SED office in West Palm Beach. Mr. Randall LaBauve, Vice President FPL – West County Energy Center DZMW-1 Page 11 of 14

- 2) A written report of any noncompliance referenced in Specific Condition (S.C.) 4.e above shall be submitted to the SED office within five days after discovery of the occurrence. The report shall describe the nature and cause of the breakdown or malfunction, the steps being taken or planned to be taken to correct the problem and prevent its reoccurrence, emergency procedures in use pending correction of the problem, and the time when the facility will again be operating in accordance with permit conditions.
- f. An interpretation of all test results must be submitted with all submittals.
- g. Within 30 days of well completion of DZMW-1, the permittee or the authorized representative shall submit to the Department the following information:
 - 1) Certification of Monitor Well Completion, DEP Form 62-528.900(10);
- h. Upon completion of construction of the well, a complete set of as-built engineering drawings (Florida registered P.E. signed and sealed) shall be submitted to the Department's SED office in West Palm Beach and Tallahassee UIC Program.
- i. After completion of construction and testing of the well, the following requirements shall apply:
 - 1) A final engineering report shall be submitted to the Department, the UIC-TAC. The report shall include, but not be limited to, all information and data collected under Rules 62-528.605, 62-528.615, and 62-528.635, F.A.C., with appropriate interpretations. Mill certificates for the casings shall be included in the report. This report shall also be signed and sealed by a Florida licensed professional engineer and professional geologist. At this time, a recommendation to properly plug and abandon the pad monitoring wells may be made.
 - The permittee shall contact the UIC Section of the Department of Environmental Protection in Tallahassee to arrange for the transfer, at the permittee's expense, of the following items to the State Geologist at the Florida Geological Survey, 903 West Tennessee Street, Tallahassee, Florida 32304-7707:
 - a) Cuttings obtained during well construction;
 - b) Any cores obtained during well construction when no longer needed by the permittee;
 - Any water samples collected during packer testing and final background water sampling;
 - d) Any geophysical logs run during well construction; and
 - e) A copy of the final report described in S.C. 4.i.1) above.
 - Surface equipment completion certification or certification of interim completion for the purposes of testing;
 - 4) Signed and sealed record (as-built) engineering drawings of all well construction, subsurface and surface equipment, and appurtenances. The drawings shall include but not be limited to the wellhead, subsurface well components;

Mr. Randall LaBauve, Vice President FPL – West County Energy Center DZMW-1 Page 12 of 14 File #: 247895-006-UC Date Issue: Date Expiration:

- 5) All other applicable permits;
- j. The Department shall conduct an inspection of the facility to determine if the conditions of this permit have been met. FPL shall contact the Underground Injection Control Section of the Department, SED, to arrange for the site inspection. The inspection will determine if all equipment necessary for DZMW-1 is in compliance with the permit and Department rules. During the inspection, reporting requirements shall be reviewed.
 - A minimum of three well volumes of fluid shall be evacuated prior to sampling for water quality parameters. A State-certified laboratory shall analyze all samples. Sufficient purging shall have occurred when either of the following have occurred:
 - pH, specific conductance and temperature when sampled, upon purging the third or subsequent well volume, each vary less than 5% from that sampled upon purging the previous well volume; or
 - b) upon purging the fifth well volume.
 - Alternative sampling methodology may be proposed for Departmental review and approval prior to actual sampling.
 - 3) All well system data submittals shall be clearly identified on each page with: facility name, I.D. Number, permit number, date of sampling/recording, and type of data.

5. Surface Equipment

- a. The integrity of the sampling system shall be maintained at all times. Sampling line(s) shall be clearly and unambiguously identified at the point at which samples are drawn. All reasonable and prudent precautions shall be taken to ensure that samples are properly identified and that samples obtained are representative. Sampling lines and equipment shall be kept free of contamination with independent discharges and no interconnections with any other lines.
- b. The surface equipment for the well system shall maintain access for logging and testing, and reliability and flexibility in the event of damage to the well and piping. A regular program of exercising the valves integral to the wellhead shall be instituted. At a minimum, all valves integral to the wellhead shall be exercised at the time of each cycle change.
- c. The well surface equipment and piping shall be kept free of corrosion at all times.
- d. Spillage onto the well pad during construction activities, and any waters spilled during testing, other maintenance, testing or repairs to the system shall be contained by an impermeable structure around the edge of the pad and disposed of via approved and permitted methods.
- e. The four surficial aquifer monitor wells installed at the corners of the well pad shall be secured, maintained, and retained in service throughout the construction phase of the project. The permittee may submit a request to the Department for cessation of sampling followed by capping, or plugging and abandonment of these wells.

Mr. Randall LaBauve, Vice President FPL – West County Energy Center DZMW-1 Page 13 of 14 File #: 247895-006-UC Date Issue: Date Expiration:

- 6. Plugging and Abandonment and Alternate Use Plans
 - Permittees who are unable to operate the well to meet its intended purpose shall within 180 days of FDEP notification:
 - 1) Submit a plugging and abandonment permit application in accordance with Rules 62-528.625 and 62-528.645, F.A.C., or
 - Submit an alternate use plan for the well. Alternate use may commence after the plan has been approved by the Department, including any necessary permit or permit modifications as required by the Department or any other agency, or
 - 3) Implement the plugging and abandonment plan.

7. Signatories

- All reports and other submittals required to comply with this permit shall be signed by a person authorized under Rules 62-528.340(1) or (2), F.A.C.
- b. In accordance with Rule 62-528.340(4), F.A.C., all reports and submittals shall contain the following certification signed by a person authorized under Rules 62-528.340(1) or (2), F.A.C. or be included under such certification as may have been previously provided (i.e., responses to a Request for Information (RFI) which are simple clarifications are thereby certified):

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

[space intentionally blank]

Mr. Randall LaBauve, Vice President FPL - West County Energy Center DZMW-1 Page 14 of 14 File #: 247895-006-UC Date Issue: Date Expiration:

- 8. Permit Extension(s) and Renewal(s)
 - a. Pursuant to Rule 62-4.080(3), a permittee may request that a permit be extended as a modification of an existing permit. A request for an extension is the responsibility of the permittee and shall be submitted to the Department before the expiration of the permit. In accordance with Rule 62-4.070(4), F.A.C., a permit cannot be extended beyond the maximum 5-year statutory limit.

Issued this day of	, 2007
STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL PRO	DTECTION
Jack Long	

Jack Long
District Director
Southeast District

Attachment B DZMW-1 Construction Summary

Florida Power & Light Company West County Energy Center Dual-Zone Monitor Well DZMW-1 Construction Summary

Construction Summary	
Date	Milestone
3/5/2008	
	Began drilling DZMW-1. Drilled 12.25-inch diameter pilot hole to a depth of 250 feet below pad level (bpl).
3/6/2008	Performed caliper and gamma ray logging on the pilot hole. Began reaming the pilot hole using a 40,5-inch
	diameter reaming bit.
3/7/2008	Began reaming the pilot hole using a 40.5-inch diameter reaming bit.
3/8/2008	Completed reaming the pilot hole to a depth of 250 feet bpl using a 40.5-inch diameter reaming bit. Performed
	caliper and gamma ray logging on the reamed hole.
3/9/2008	Installed 34-inch diameter casing to a depth of 245 feet bpl and cemented it in place.
3/10/2008	Began pilot hole drilling with a 12.25-inch diameter bit from the base of the 34-inch casing.
3/12/2008	Completed pilot hole drilling to a depth of 950 feet bpl.
3/13/2008	Performed caliper, gamma ray and dual induction logging on the pilot hole. Began reaming the pilot hole using
	a 32.5-inch diameter rearning bit.
3/17/2008	Completed reaming the pilot hole to a depth of 925 feet bpl using a 32.5-inch diameter reaming bit.
3/19/2008	Performed caliper and gamma ray logging on the reamed hole. Installed 24-inch diameter casing to a depth of
2/24/2000	920 feet bpl and cemented it in place.
3/24/2008	Began pilot hole drilling with a 12.25-inch diameter bit from the base of the 24-inch casing.
3/31/2008 4/1/2008	Completed pilot hole drilling to a depth of 2,185 feet bpl. Began caliper, gamma ray, dual induction, sonic, fluid resistivity, temperature, flowmeter, logging over the
4/1/2006	interval from the base of the 24-inch diameter casing to 2,185 feet bpl. Three attempts to keep the borehole
	open to complete the logging. The hole was advanced to 2,197 feet to compensate for backfilling of
	sediments.
4/4/2008	Completed caliper, gamma ray, dual induction, sonic, fluid resistivity, temperature, flowmeter, logging over
47-7/2000	the interval from the base of the 24-inch diameter casing to 2,197 feet bpl.
4/7/2008	Begin packer testing on the interval from 2,132 to 2,165 feet bpi (Packer Test #1).
4/8/2008	Complete Packer Test #1
4/9/2008	Perform packer testing on the interval from 2,062 to 2,095 feet bpl (Packer Test #2).
4/9/2008	Begin packer testing on the interval from 1,917 to 1,950 feet bpl (Packer Test #3).
4/10/2008	Complete Packer Test #3
4/11/2008	Perform packer testing on the interval from 1,887 to 1,920 feet bpl (Packer Test #4).
4/12/2008	Began backplugging the pilot hole with gravel bridge plug to approximately 1,880 feet bpl and then cement to
	near the base of the 24-inch casing.
4/16/2008	Completed backplugging the pilot hole with cement.
4/17/2008	Began reaming from the base of the 24-inch diameter casing using a 22.5-inch drill bit.
4/22/2008	
	Completed rearning using a 22.5-inch diameter bit to a depth of 1,895 feet bpl. Complete XY caliper logging.
4/23/2008	
(/n./n.o.o.o.	Began installation of the 16-inch diameter casing.
4/24/2008	Completed installation of the 16-inch diameter easing to a depth of 1,890 feet bpl.
4/24/2008	Began cementing the 16-inch diameter casing in place.
	Completed cementing the 16-inch diameter easing in place to 245 feet bpl (to allow for calibration of the
4/27/2008	cement bond logging tool).
<u> </u>	
4/28/2008	Performed a pressure test and cement bond logging on the 16-inch diameter casing.
4/29/2008	Began reaming from the base of the 16-inch diameter casing using a 14.75-inch drill bit.
5/2/2008	Completed reaming with the 14.75-inch diameter bit to a depth of 2,132 feet bpl.
5/3/2008	Began cleaning out the gravel from 2,132 feet bpl using a 12.25-inch drill bit.
5/4/2008	Completed cleaning out the gravel with the 12.25-inch diameter bit to a depth of 2,198 feet bpl.
5/4/2008	Began video, cement bond, caliper and gamma ray logging on the reamed hole.
5/5/2008	Completed the geophysical logging.
	Back plug open hole with cement from 2,198 feet to 2,166 feet bpl. Installed gravel and fine sand in the open
5/6/2008	hole to 2,132 feet bpl.
5/7/2008	Installed 6 5/8 -inch diameter FRP casing to a depth of 2,132 feet bpl.

Florida Power & Light Company West County Energy Center Dual-Zone Monitor Well DZMW-1 Construction Summary

Date	Milestone
5/8/2008	Performed a pressure test 6 5/8-inch diameter FRP casing.
5/9/2008	Began cementing the 6 5/8-inch diameter FRP casing in place (2,132 feet to 1,914 feet bpl).
5/10/2008	Complete cementing the 6 5/8-inch diameter FRP casing in place to 1,911 feet bpl.
5/12/2008	Begin developing the gravel and sand from the open hole (2,132 feet to 2,166 feet bpl).
5/13/2008	Complete temperature and cement bond logging. Continue to develop gravel from the borehole. Gravel was tagged at 2,144 feet bis with the logging tool.
5/20/2008	Complete development of the upper and lower monitor zones. Collect P&SDWS groundwater samples from the upper and lower monitor zones.
5/21/2008	Begin to demobilize.
pl = below pad level	

Attachment C Weekly Construction Summaries

WEEKLY CONSTRUCTION SUMMARY

MHC

McNabb Hydrogeologic Consulting, Inc.

601 Heritage Drive, Suite 110 Jupiter, Florida 33458 Phone: 561-891-0763 Fax: 561-623-5469

March 7, 2008

Mr. Joe May, P.G. Florida Department of Environmental Protection 400 N. Congress Ave, Suite 200 West Palm Beach, FL 33401

RE: FPL Dual-Zone Monitor Well DZMW-1 Weekly Construction Summary #1 FDEP Permit #247895-006-UC

Dear Mr. May:

This is the first weekly construction summary for the above referenced project. Construction of dual-zone monitor well DZMW-1 began on Wednesday, March 5, 2008. The reporting period for this weekly construction summary ended at 7:00 AM, Thursday, March 6, 2008.

Construction of DZMW-1 began with drilling a nominal 12-¼ inch diameter pilot hole to a depth of 245 feet below pad level (bpl) using the mud rotary drilling method.

The pad monitoring wells were sampled on February 27 in accordance with general requirement 1. d. of the construction permit. Pad monitor well data summary sheets providing background data are attached. A lithologic description of drill cutting samples for strata penetrated during this reporting period, a copy of the driller's log, deviation survey summary table, geologist's daily report, and Certification are attached for your records.

During the next reporting period, it is anticipated the Contractor will perfom geophysical logging on the 12 ¹/₄-inch pilot hole, ream the pilot hole to a nominal 44-inch diameter to approximately 240 feet bpl, and perform caliper and gamma ray logging on the reamed borehole. It also is anticipated that the 34-inch diameter steel casing will be installed and cemented in place, and drilling the pilot hole from the base of the 34-inch casing to approximately 950 feet bpl will begin during the next reporting period.

Should you have any questions regarding the above weekly construction summary, please contact me at (561) 891-0763.

Sincerely,

McNabb Hydrogeologic Consulting, Inc.

David McNabb, P.G.

Cc: Richard Deuerling/FDEP-Tallahassee

Steve Anderson/SFWMD Barbara Linkiewicz/FPL

Tom Young/FPL Girma Mergia/B&V Larry Payne/FPL
Janet Kirwin/FPL
Potsy Scoville/FPL
Tom Magdanz/WCPP
Terry Apple/B&V

WEEKLY CONSTRUCTION SUMMARY

MHC

McNabb Hydrogeologic Consulting, Inc.

601 Heritage Drive, Suite 110 Jupiter, Florida 33458 Phone: 561-891-0763 Fax: 561-623-5469

March 13, 2008

Mr. Joe May, P.G. Florida Department of Environmental Protection 400 N. Congress Ave, Suite 200 West Palm Beach, FL 33401

RE: FPL Dual-Zone Monitor Well DZMW-1 Weekly Construction Summary #2 FDEP Permit #247895-006-UC

Dear Mr. May:

This is the second weekly construction summary for the FPL West County Energy Center dual-zone monitor well DZMW-1 construction project. The reporting period for this weekly construction summary began at 7:00 AM, Thursday, March 6, 2008 and ended at 7:00 AM, Thursday, March 13, 2008.

Youngquist Brothers, Inc. (Contractor) drilled a 12-1/4 inch diameter pilot hole to a depth of 250 feet below pad level (bpl) during the previous reporting period. During this reporting period the pilot hole underwent caliper and gamma ray logging, and the pilot hole was then reamed to a nominal 40 ½ inch diameter to a depth of 250 feet bpl. Caliper and gamma ray logging of the reamed hole was performed prior to installing the 34-inch diameter casing to a depth of 245 feet bpl. Copies of the geophysical logs are attached. A total of 56 barrels of neat cement and 100 barrels of cement with 4% bentonite were used to cement the 34-inch casing to land surface in one stage. A copy of the cement stage summary sheet is attached. The remainder of the week was spent drilling the pilot hole from the base of the 34-inch casing to approximately 950 feet bpl.

The pad monitoring wells were sampled March 7, 2008 in accordance with general requirement 1. d. of the construction permit. Pad monitor well data summary sheets providing background data are attached. A lithologic description of drill cutting samples for strata penetrated during this reporting period, a copy of the driller's log, deviation survey summary table, geologist's daily report, and Certification are attached for your records.

During the next reporting period, it is anticipated the Contractor will perfom geophysical logging on the 12 ¼-inch pilot hole, ream the pilot hole to a nominal 24-inch diameter to approximately 950 feet bpl, and perform caliper and gamma ray logging on the reamed borehole. It also is anticipated that the Contractor will begin installing the 24-inch diameter steel casing pending FDEP approval during the next reporting period.

Should you have any questions regarding the above weekly construction summary, please contact me at (561) 891-0763.

Sincerely,

McNabb Nydrogeologic Consulting, Inc.

David McNabb, P.G.

Cc: Richard Deuerling/FDEP-Tallahassee Steve Anderson/SFWMD Barbara Linkiewicz/FPL

Tom Young/FPL Girma Mergia/B&V Larry Payne/FPL Janet Kirwin/FPL Potsy Scoville/FPL Tom Magdanz/WCPP Terry Apple/B&V

WEEKLY CONSTRUCTION SUMMARY

McNabb Hydrogeologic Consulting, Inc.

601 Heritage Drive, Suite 110 Jupiter, Florida 33458 Phone: 561-891-0763 Fax: 561-623-5469

March 21, 2008

Mr. Joe May, P.G. Florida Department of Environmental Protection 400 N. Congress Ave, Suite 200 West Palm Beach, FL 33401

RE: FPL Dual-Zone Monitor Well DZMW-1 Weekly Construction Summary #3 FDEP Permit #247895-006-UC

Dear Mr. May:

This is the third weekly construction summary for the FPL West County Energy Center dual-zone monitor well DZMW-1 construction project. The reporting period for this weekly construction summary began at 7:00 AM, Thursday, March 13, 2008 and ended at 7:00 AM, Thursday, March 20, 2008.

Youngquist Brothers, Inc. (Contractor) reamed a $12\frac{14}{4}$ -inch diameter pilot hole using a $40\frac{14}{2}$ -inch diameter bit via mud-rotary drilling method to a depth of 250 feet below pad level (bpl), performed geophysical logging of the reamed borehole, installed the 34-inch diameter steel casing to a depth of 245 feet bpl, and drilled a $12\frac{14}{4}$ -inch pilot hole form the base of the 34-inch casing to 950 feet bpl during the previous reporting period.

During this reporting period, the Contractor performed XY caliper, gamma-ray and dual-induction logging of the pilot hole, and then reamed the pilot hole using a 32 ½-inch bit to a total depth of 925 feet bpl. Following the completion of the reamed borehole, XY caliper and gamma ray logging was performed. The 24-inch casing was installed to 920 feet bpl and cementing Stage #1 was performed. A total of 105 barrels of neat cement and 398 barrels of cement with 12% bentonite were used to cement the 24-inch casing in the first stage. A copy of the cement stage summary and geophysical logs is attached.

The pad monitoring wells were sampled on March 13, 2008 in accordance with general requirement 1. d. of the construction permit. A copy of the pad monitor wells data, driller's log, deviation survey summary table, geologist's daily report and Certification are attached for your records.

During the next reporting period, it is anticipated the Contractor will complete cementing the 24-inch casing to surface. Once cement has cured for a period of 24 hours, the

Contractor will rig up reverse-air rotary drilling. The Contractor will then begin drilling a $12\frac{1}{2}$ -inch diameter pilot hole from the base of the 24-inch steel casing.

Should you have any questions regarding the above weekly construction summary, please contact me at (561) 891-0763.

Sincerely,

- McNabb Hydrogeologic Consulting, Inc.

David McNabb, P.G.

Cc: Richard Deuerling/FDEP-Tallahassee

Steve Anderson/SFWMD
Barbara Linkiewicz/FPL
Tom Young/FPI

Tom Young/FPL Girma Mergia/B&V Larry Payne/FPL
Janet Kirwan/FPL
Potsy Scoville/FPL
Tom Magdanz/WCPP
Terry Apple/B&V

WEEKLY CONSTRUCTION SUMMARY

McNabb Hydrogeologic Consulting, Inc.

601 Heritage Drive, Suite 110 Jupiter, Florida 33458 Phone: 561-891-0763 Fax: 561-623-5469

March 28, 2008

Mr. Joe May, P.G. Florida Department of Environmental Protection 400 N. Congress Ave, Suite 200 West Palm Beach, FL 33401

RE: FPL Dual-Zone Monitor Well DZMW-1 Weekly Construction Summary #4 FDEP Permit #247895-006-UC

Dear Mr. May:

This is the fourth weekly construction summary for the FPL West County Energy Center dual-zone monitor well DZMW-1 construction project. The reporting period for this weekly construction summary began at 7:00 AM, Thursday, March 20, 2008 and ended at 7:00 AM, Thursday, March 27, 2008.

The Contractor has installed the 24-inch diameter casing to the FDEP approved depth of 920 feet bpl and began cementing the 24-inch diameter casing in place (1st stage) during the previous reporting period. During this reporting period, a cement-top temperature log was performed after first cementing stage. The 24-inch casing was cemented to land surface during the second stage of cementing using a total of 57 barrels of 12% bentonite blend cement. Copies of the temperature log and the cementing stage summary sheet are attached. The Contractor set up for reverse air drilling and began drilling the pilot hole using a 12.25-inch diameter bit from the base of the 24-inch casing and began to collect water quality samples every 30 feet. The pilot hole was drilled from 950 feet to 1,808 feet bpl. The lithologic log and the summary of the pilot hole water quality data are attached.

The pad monitoring wells were sampled on March 20, 2008 in accordance with general requirement 1. d. of the construction permit. The laboratory data for the pad monitor wells is not yet available and will be included in the next weekly construction summary. A copy of the driller's log, deviation survey summary table, geologist's daily report, and Certification are attached for your records.

During the next reporting period, it is anticipated the Contractor will complete the pilot hole to total depth, perform static and dynamic geophysical logging on the pilot hole, and perform up to 4 packer tests on selected intervals.

Should you have any questions regarding the above weekly construction summary, please contact me at $(501)\,891\text{-}0763$

Sincerela,

, McNabb Flydrogeologic Consulting, Inc.

David No Nabb. P.C.

Ce: Richard Deuerling/FDEP-Tallahassoe Steve Anderson/SFWMD Barbara Linkiewicz/FPL Tom Young/FPL Girma Mergia/B&N Larry Pavne/FPL Janet Kirwan/FPL Potsy Scoville/FPL Tom Magdanz/WCPP Terry Apple/B&V

WEEKLY CONSTRUCTION SUMMARY

McNabb Hydrogeologic Consulting, Inc.

601 Heritage Drive, Suite 110 Jupiter, Florida 33458 Phone: 561-891-0763 Fax: 561-623-5469

April 4, 2008

Mr. Joe May, P.G. Florida Department of Environmental Protection 400 N. Congress Ave, Suite 200 West Palm Beach, FL 33401

RE: FPL Dual-Zone Monitor Well DZMW-1 Weekly Construction Summary #5 FDEP Permit #247895-006-UC

Dear Mr. May:

This is the fifth weekly construction summary for the FPL West County Energy Center dual-zone monitor well DZMW-1 construction project. The reporting period for this weekly construction summary began at 7:00 AM, Thursday, March 27, 2008 and ended at 7:00 AM, Thursday, April 3, 2008.

The Contractor drilled a pilot hole using a 12 ¼-inch drilling bit via reverse air drilling method from 950 feet to 1,808 feet bls during the previous reporting period. During this reporting period, the Contractor completed the pilot hole to the total depth of 2,185 feet bpl. Water quality samples were collected every 30 feet and field analyzed for pH, conductivity, total dissolved solids (TDS), and chlorides. The lithologic log and the summary of the pilot hole water quality data are attached. Upon completion of the pilot hole, the Contractror began to perform geophysical logging of the pilot hole. The first attempt was not successful due to the borehole had filled back in to approximately 2,157 feet bpl. The hole was cleaned by performing wiper trips and circulating the bottom of the borehole. A second attempt of logging was ceased upon lowering the flowmeter logging tool to the base of the hole because the hole had backfilled to approximately 2,158 feet bpl. The Contractor spent the remaining portion of the reporting period cleaning out the borehole.

The pad monitoring wells were sampled on March 28, 2008 in accordance with general requirement 1. d. of the construction permit. The laboratory data for the pad monitor wells is not yet available and will be included in the next weekly construction summary. Pad monitor well summary sheets that include the previous week's sampling results are attached. A copy of the driller's log, deviation survey summary table, geologist's daily report, and Certification are attached for your records.

During the next reporting period, it is anticipated the Contractor will complete the static and dynamic geophysical logging on the pilot hole, and perform up to 4 packer tests on selected intervals.

Should you have any questions regarding the above weekly construction summary, please contact me at (561) 891-0763.

Sincerely,

McNabb Hydrogeologic Consulting, Inc.

David McNabb, P.G.

Cc: Richard Deuerling/FDEP-Tallahassee Steve Anderson/SFWMD Barbara Linkiewicz/FPL Tom Young/FPL Girma Mergia/B&V

Larry Payne/FPL Janet Kirwan/FPL Potsy Scoville/FPL Tom Magdanz/WCPP Terry Apple/B&V

WEEKLY CONSTRUCTION SUMMARY

McNabb Hydrogeologic Consulting, Inc.

601 Heritage Drive, Suite 110 Jupiter, Florida 33458 Phone: 561-891-0763 Fax: 561-623-5469

April 11, 2008

Mr. Joe May, P.G. Florida Department of Environmental Protection 400 N. Congress Ave, Suite 200 West Palm Beach, FL 33401

RE: FPL Dual-Zone Monitor Well DZMW-1 Weekly Construction Summary #6 FDEP Permit #247895-006-UC

Dear Mr. May:

This is the sixth weekly construction summary for the FPL West County Energy Center dual-zone monitor well DZMW-1 construction project. The reporting period for this weekly construction summary began at 7:00 AM, Thursday, April 10, 2008 and ended at 7:00 AM, Thursday, April 10, 2008.

The Contractor completed a pilot hole using a $12 \, \text{\psi}$ -inch drilling bit via reverse air drilling method 2,185 feet below pad level (bpl) and was unable to keep the bottom portion of the borehole from filling in to successfully perform the geophysical logging during the previous reporting period.

During this reporting period, the Contractor extended the pilot hole to 2,197 feet bpl to compensate for the amount of backfill that occurred on the 2 previous attempts to clean out the borehole. Upon completion of the pilot hole, the Contractor performed geophysical logging of the pilot hole. The logging performed include caliper, gamma ray, spontaneous potential, dual induction, borehole compensated sonic, temperature, fluid conductivity, and flowmeter. Upon completion of the geophysical logging, four straddle packer test intervals were selected. The Contractor has completed packer testing the intervals from 2,132 feet to 2,165 feet bpl and 2,062 feet to 2,095 feet bpl by the end of the reporting period. The third packer test from 1,917 feet to 1,950 feet bpl was in progress by the end of the reporting period. A summary of the results of the packer testing and copy of the geophysical logs will be provided in the upper and lower monitoring zone request.

The pad monitoring wells were sampled on April 4, 2008 in accordance with general requirement 1. d. of the construction permit. The laboratory data for the pad monitor wells is not yet available and will be included in the next weekly construction summary. A copy of the driller's log, lithologic log for strata penetrated this reporting period, geologist's daily report, and Certification are attached for your records.

During the next reporting period, it is anticipated the Contractor will complete the packer testing, install a bridge plug, back plug the pilot hole, and begin reaming a 24-inch borehole from the base of the 24-inch steel casing.

Should you have any questions regarding the above weekly construction summary, please contact me at (561) 891-0763.

Sincerely,

McNabb Hydrogeologic Consulting, Inc.

David McNabb, P.G.

Cc: Richard Deuerling/FDEP-Tallahassee

Steve Anderson/SFWMD Barbara Linkiewicz/FPL Tom Young/FPL

Tom Young/FPL Girma Mergia/B&V Larry Payne/FPL
Janet Kirwan/FPL
Potsy Scoville/FPL
Tom Magdanz/WCPP
Terry Apple/B&V

WEEKLY CONSTRUCTION SUMMARY

MHC

McNabb Hydrogeologic Consulting, Inc.

601 Heritage Drive, Suite 110 Jupiter, Florida 33458 Phone: 561-891-0763 Fax: 561-623-5469

April 18, 2008

Mr. Joe May, P.G. Florida Department of Environmental Protection 400 N. Congress Ave, Suite 200 West Palm Beach, FL 33401

RE: FPL Dual-Zone Monitor Well DZMW-1 Weekly Construction Summary #7 FDEP Permit #247895-006-UC

Dear Mr. May:

This is the seventh weekly construction summary for the FPL West County Energy Center dual-zone monitor well DZMW-1 construction project. The reporting period for this weekly construction summary began at 7:00 AM, Thursday, April 10, 2008 and ended at 7:00 AM, Thursday, April 17, 2008.

Youngquist Brothers, Inc. (the Contractor) had completed two of the four selected straddle packer testing intervals with the third packer test in progress during the previous reporting period. During this reporting period, the Contractor completed the testing for the third and fourth packer intervals. The four straddle packer testing intervals were the following:

- 1) 2,132 feet to 2,165 feet below pad level (bpl)
- 2) 2,062 feet to 2,095 feet bpl
- 3) 1,917 feet to 1,950 feet bpl
- 4) 1,887 feet t0 1,920 feet bpl

The results of packer testing were provided in the Upper and Lower Monitor Zones Recommendation submitted to the Department on April 14, 2008. Upon completion of packer testing, the Contractor backfilled the pilot hole with gravel to 1,881 feet bpl. The Contractor then backplugged the pilot hole from the top of the gravel to 1,073 feet bpl. A total of 609 barrels of cement with 12% bentonite were pumped in four stages during pilot hole backplugging. Cement stage sheets are attached.

The pad monitoring wells were sampled on April 10, 2008 in accordance with general requirement 1. d. of the construction permit. The laboratory data for the pad monitor wells is not yet available and will be included in the next weekly construction summary. A copy

of the driller's log, pad monitor well data sheets providing last week's data, geologist's daily reports, and Certification are attached for your records.

During the next reporting period, it is anticipated the Contractor will complete reaming a 22-inch diameter borehole from the base of the 24-inch steel casing to the base of the FDEP approved upper monitor zone depth of 1,917 feet bpl.

Should you have any questions regarding the above weekly construction summary, please contact me at (561) 891-0763.

Sincerely,

McNabb Hydrogeologic Consulting, Inc.

David McNabt, P.G.

Cc: Richard Deuerling/FDEP-Tallahassee

Steve Anderson/SFWMD
Barbara Linkiewicz/FPL
Tom Young /FBI

Tom Young/FPL Girma Mergia/B&V Larry Payne/FPL
Janet Kirwan/FPL
Potsy Scoville/FPL
Tom Magdanz/WCPP
Terry Apple/B&V

WEEKLY CONSTRUCTION SUMMARY

McNabb Hydrogeologic Consulting, Inc.

601 Heritage Drive, Suite 110 Jupiter, Florida 33458 Phone: 561-891-0763 Fax: 561-623-5469

April 25, 2008

Mr. Joe May, P.G. Florida Department of Environmental Protection 400 N. Congress Ave, Suite 200 West Palm Beach, FL 33401

RE: FPL Dual-Zone Monitor Well DZMW-1 Weekly Construction Summary #8 FDEP Permit #247895-006-UC

Dear Mr. May:

This is the eighth weekly construction summary for the FPL West County Energy Center dual-zone monitor well DZMW-1 construction project. The reporting period for this weekly construction summary began at 7:00 AM, Thursday, April 17, 2008 and ended at 7:00 AM, Thursday, April 24, 2008.

Youngquist Brothers, Inc. (the Contractor) completed backplugging the pilot hole to a depth of 1,073 feet below pad level (bpl) during the previous reporting period. During this reporting period, the Contractor reamed the backplugged pilot hole via reverse air drilling method using a 22 ½ -inch drilling bit from the base of the 24-inch diameter casing (920 feet bpl) to the top of the FDEP approved upper monitor zone depth of 1,892 feet bpl. Upon completion of reaming, the Contractor performed XY caliper and gamma ray logging and began installing the 16-inch steel casing. Installation of the 16-inch diameter casing had reached a depth of 1,410 feet bpl by the end of the reporting period. A copy of the reamed hole caliper and gamma ray log is attached.

The pad monitoring wells were sampled on April 18, 2008 in accordance with general requirement 1. d. of the construction permit. A copy of the driller's log, pad monitor wells data summary, deviation survey summary table, geologist's daily report, and Certification are attached for your records.

During the next reporting period, it is anticipated the Contractor will complete the installation of the 16-inch steel casing and cementing to surface. The Contractor will then conduct a pressure test on the 16-inch diameter casing, ream the pilot hole from the base of the 16-inch casing to the top of the FDEP approved lower monitor zone, and begin installing the 6 5/8 –inch diameter FRP tubing.

Should you have any questions regarding the above weekly construction summary, please contact me at (561) 891-0763.

Sincerely,

McNabb Hydrogeologic Consulting, Inc.

David McNabb, P.G.

Cc: Richard Deuerling/FDEP-Tallahassee

Steve Anderson/SFWMD
Barbara Linkiewicz/FPL

Tom Young/FPL Girma Mergia/B&V Larry Payne/FPL Janet Kirwan/FPL Potsy Scoville/FPL Tom Magdanz/WCPP Terry Apple/B&V

WEEKLY CONSTRUCTION SUMMARY

MHC

McNabb Hydrogeologic Consulting, Inc.

601 Heritage Drive, Suite 110 Jupiter, Florida 33458 Phone: 561-891-0763 Fax: 561-623-5469

May 2, 2008

Mr. Joe May, P.G. Florida Department of Environmental Protection 400 N. Congress Ave, Suite 200 West Palm Beach, FL 33401

RE: FPL Dual-Zone Monitor Well DZMW-1 Weekly Construction Summary #9 FDEP Permit #247895-006-UC

Dear Mr. May:

This is the ninth weekly construction summary for the FPL West County Energy Center dual-zone monitor well DZMW-1 construction project. The reporting period for this weekly construction summary began at 7:00 AM, Thursday, April 24, 2008 and ended at 7:00 AM, Thursday, May 1, 2008.

Youngquist Brothers, Inc. (the Contractor) reamed the pilot hole to the top of the FDEP approved upper monitor zone depth of 1, 892 feet below pad level (bpl) and began installing the 16-inch diameter steel casing during the previous reporting period. During this reporting period, the Contractor completed the installation of the 16-inch diameter casing to 1,890 feet bpl. A total of 655 barrels of 12% bentonite blend and 50 barrels of neat cement were pumped in six stages to cement the 16-inch diameter casing from 1,890 to 245 feet bpl. A composite of the temperature logs performed on the 16-inch diameter casing is attached. The Contractor performed a successful pressure test on the 16-inch casing after allowing the cement to cool. The casing was pressured up to 150 pounds per square inch (psi) and there was a 6.25 psi decrease in pressure during the 1 hour pressure test which is within the 5 %allowable change in pressure. A summary of the pressure test results and a copy of the calibration certificate for the pressure gauge are attached. The Contractor then began to ream the backplugged pilot hole below the base of the 16-inch casing to the top of the FDEP approved lower monitor zone (2,132 feet bpl) using a 14 ¾-inch drilling bit via air-rotary drilling method. Reaming had reached a depth of 2,038 feet bpl by the end of the reporting period.

The pad monitoring wells were sampled on April 24, 2008 in accordance with general requirement 1. d. of the construction permit. The laboratory data for the pad monitor wells is not yet available and will be included in the next weekly construction summary. Pad monitor well summary sheets providing previous sampling results, driller's daily logs,

deviation survey summary table, geologist's daily report, and Certification are attached for your records.

During the next reporting period, it is anticipated the Contractor will complete reaming the backplugged pilot hole to a depth of 2,132 feet bpl, drill out the gravel over the interval from 2,132 to 2,198 feet bpl using a 12 $\frac{1}{4}$ -inch diameter drill bit, install the 6 $\frac{5}{8}$ -inch diameter fiberglass reinforced plastic (FRP) tubing, cement the interval from 2,165 to 2,198 feet bpl, cement the FRP casing in place and perform a pressure test on the FRP tubing.

Should you have any questions regarding the above weekly construction summary, please contact me at (561) 891-0763.

Sincerely,

McNabb Hydrogeologic Consulting, Inc.

David McNabb, P.G.

Cct

Richard Deuerling/FDEP-Tallahassee Steve Anderson/SFWMD Barbara Linkiewicz/FPL Tom Young/FPL Girma Mergia/B&V

Larry Payne/FPL
Janet Kirwan/FPL
Potsy Scoville/FPL
Tom Magdanz/WCPP
Terry Apple/B&V

WEEKLY CONSTRUCTION SUMMARY

McNabb Hydrogeologic Consulting, Inc.

601 Heritage Drive, Suite 110 Jupiter, Florida 33458 Phone: 561-891-0763 Fax: 561-623-5469

May 9, 2008

Mr. Joe May, P.G. Florida Department of Environmental Protection 400 N. Congress Ave, Suite 200 West Palm Beach, FL 33401

RE: FPL Dual-Zone Monitor Well DZMW-1 Weekly Construction Summary #10 FDEP Permit #247895-006-UC

Dear Mr. May:

This is the tenth weekly construction summary for the FPL West County Energy Center dual-zone monitor well DZMW-1 construction project. The reporting period for this weekly construction summary began at 7:00 AM, Thursday, May 1, 2008 and ended at 7:00 AM, Thursday, May 8, 2008.

Youngquist Brothers, Inc. (the Contractor) completed the installation of the 16-inch diameter casing to 1,890 feet bpl, cemented the casing in place, performed a successful pressure test of the casing and began reaming the hole below the 16-inch casing during the last reporting period. During this reporting period the Contractor completed reaming the hole using a 14-34-inch diameter reaming bit to a depth of 2,132 feet below pad level (bpl). They then removed previously installed gravel from the hole over the interval form 2,132 to 2,198 feet bpl using a 12 ¼-inch diameter bit. The well then underwent geophysical logging. Cement bond, caliper and video logs were performed. The borehole was then backplugged with neat cement over the interval from 2,198 to 2,166 feet bpl and the 6 5/8-inch diameter FRP casing was installed to a depth of 2,132 feet bpl.

The pad monitoring wells were sampled on May 1, 2008 in accordance with general requirement 1. d. of the construction permit. Pad monitor well summary sheets, driller's daily logs, deviation survey summary table, geologist's daily report, copies of the cement bond and caliper logs, and Certification are attached for your records. A copy of the video survey performed this week will be provided as an attachment to the report summarizing the construction and testing of DZMW-1.

During the next reporting period, it is anticipated the Contractor will cement the FRP casing in place, perform a pressure test on the FRP casing, conduct final geophysical logging, develop and collect background water samples from both monitoring intervals of DZMW-1.

Should you have any questions regarding the above weekly construction summary, please contact me at (561) 891-0763.

Sincerely,

McNabb Hydrogeologic Consulting, Inc.

David McNabb, P.G.

Cc: Richard Deuerling/FDEP-Tallahassee Steve Anderson/SFWMD Barbara Linkiewicz/FPL Tom Young/FPL Girma Mergia/B&V

Larry Payne/FPL
Janet Kirwan/FPL
Potsy Scoville/FPL
Tom Magdanz/WCPP
Terry Apple/B&V

WEEKLY CONSTRUCTION SUMMARY

McNabb Hydrogeologic Consulting, Inc.

601 Heritage Drive, Suite 110 Jupiter, Florida 33458 Phone: 561-891-0763 Fax: 561-623-5469

May 16, 2008

Mr. Joe May, P.G. Florida Department of Environmental Protection 400 N. Congress Ave, Suite 200 West Palm Beach, FL 33401

RE: FPL Dual-Zone Monitor Well DZMW-1 Weekly Construction Summary #11 FDEP Permit #247895-006-UC

Dear Mr. May:

This is the eleventh weekly construction summary for the FPL West County Energy Center dual-zone monitor well DZMW-1 construction project. The reporting period for this weekly construction summary began at 7:00 AM, Thursday, May 8, 2008 and ended at 7:00 AM, Thursday, May 15, 2008.

Youngquist Brothers, Inc. (the Contractor) completed installation of the 6 5/8-inch diameter final casing of DZMW-1 to a depth of 2,132 feet below pad level (bpl) during the previous reporting period. During this reporting period, the Contractor performed a successful pressure test of the 6 5/8-inch diameter final casing and cemented the casing in place over the interval from 2,132 to 1,911 feet bpl using a total of 166 barrels of neat cement. Cement top temperature logs were performed after each cement stage. The Contractor then developed the sand and gravel from the lower monitor zone interval (2,132 to 2,155 feet bpl) prior to conducting temperature and cement bond logging.

The pad monitoring wells were sampled on May 8, 2008 in accordance with general requirement 1. d. of the construction permit. A copy of the pad monitor wells summary sheets, Geologist's daily logs, Contractor's daily logs, a copy of the pressure test summary sheet, copies of the geophysical logs, and Certification are attached for your records.

During the next reporting period, it is anticipated the Contractor will complete the development of the remaining 10 feet of gravel and sand from the bottom of the lower monitor zone and conduct a video survey of the well. The Contractor will then begin development of the upper and lower monitor zones and the wellhead construction.

Should you have any questions regarding the above weekly construction summary, please contact me at (561) 891-0763.

Sincerely,

McNabb Hydgogeologic Consulting, Inc.

David McNabb, P.G.

Cc: Richard Deuerling/FDEP-Tallahassee

Steve Anderson/SFWMD
Barbara Linkiewicz/FPL

Tom Young/FPL Girma Mergia/B&V Larry Payne/FPL
Janet Kirwan/FPL
Potsy Scoville/FPL
Tom Magdanz/WCPP
Terry Apple/B&V

WEEKLY CONSTRUCTION SUMMARY

McNabb Hydrogeologic Consulting, Inc.

601 Heritage Drive, Suite 110 Jupiter, Florida 33458 Phone: 561-891-0763 Fax: 561-623-5469

May 23, 2008

Mr. Joe May, P.G. Florida Department of Environmental Protection 400 N. Congress Ave, Suite 200 West Palm Beach, FL 33401

RE: FPL Dual-Zone Monitor Well DZMW-1 Weekly Construction Summary #12 FDEP Permit #247895-006-UC

Dear Mr. May:

This is the twelfth weekly construction summary for the FPL West County Energy Center dual-zone monitor well DZMW-1 construction project. The reporting period for this weekly construction summary began at 7:00 AM, Thursday, May 15, 2008 and ended at 7:00 AM, Thursday, May 22, 2008.

Youngquist Brothers, Inc. (the Contractor) completed a successful pressure test of the final casing, and conducted a temperature and cement bond log during the previous reporting period. During this reporting period, the Contractor continued several unsuccessful attempts to clean out the remaining 11 feet of gravel at the base of the lower monitor zone. A decision was made to leave the remaining gravel in the hole was made since the majority of the flow is coming from the upper portion of the monitor zone. A video survey of DZMW-1 was completed from surface to 2,155 feet bpl (top of gravel). The Contractor then developed the upper and lower monitor zones. Upon completion of development, a background sample from each zone was collected for analysis. The groundwater samples were collected by Florida Environmental Laboratories. A sample from each zone also was collected in a 5-gallon bucket to be shipped to FDEP in Tallahassee. The Contractor spent the remaining portion of this reporting period moving the drilling rig over to the EW-2 location in preparation for converting EW-2 to IW-1. This is the last weekly construction summary for DZMW-1.

The pad monitoring wells were sampled on May 15, 2008 in accordance with general requirement 1. d. of the construction permit. Pad monitor well data summary sheets providing a summary of sampling results are attached. Geologist's daily logs, Contractor's daily logs, and Certification are attached for your records.

Should you have any questions regarding the above weekly construction summary, please contact me at (561) 891-0763.

Sincerely,

McNabb Hydrogeologic Consulting, Inc.

5/13/63 David McNabb, P.G.

Cc: Richard Deuerling/FDEP-Tallahassee Steve Anderson/SFWMD

Barbara Linkiewicz/FPL

Tom Young/FPL. Girma Mergia/B&V Larry Payne/FPL
Janet Kirwan/FPL
Potsy Scoville/FPL
Tom Magdanz/WCPP
Terry Apple/B&V

Attachment D Pad Monitor Well Completion Reports

WELL COMPLETION REPORT FORM 0124 Rev. 11/90

ORIDA POWER & LIGHT	700 UNIVERSE						_ F	Ĺ	334	(08
Manual Microsoft	/509 2-	8-2008 Completion D			²⁵			3:	 5 [′]	DZPMW-1
00.00		CO-right sign Di	eup		Casing	0 0000		Tot	at Depth	Well =
TYPE OF WORK: Construct 1 Repair	f()Abandon()_			Grout		ing 8 deen	Dept	h fitj	DRILL CUTT:	*** **** ** **
WELL USE: Domestic Well () Public Irrigation () Fire Well () Other			Thick- ness & Depth	3.6	meter Desen	From	Υc	or at formation Give cofor, graype of materia Note cavities, procuping sor	Bin sizer, and El denth to
METHOD: Rotary with MUD (or Air Casing Driven (), Other		}		2"4	,	ING		22	SAND	
STATIC WATER LEVEL 10 Ft. 60	slaw too of casino		75	2=	2"	<u> </u>		2 8	SAND 4	LOOSE KOCK
PUMPING WATER LEVELFL		6581		<u> </u>	0'	25	28	35	SAND	
PUMP SIZEH.P. CAPA	CITY GPM	0 (14)			 			<u> </u>	<u> </u>	
PUMP TYPEINTAKE DE	PTH			 -	2"	EEN	ļ	<u> </u>		
	From top of ground								ļ <u>.</u>	·
LOCATION					7.5	-35		 -		
LOCATION SR	80				┼─-	 -				
OXAHATCHEE	97 X							-	<u> </u>	
County PALM BEACH					 -				<u> </u>	· · · · · · · · · · · · · · · · · · ·
				Number of bacs		<u> </u>				
NNW 29 43 4	6		300	ment		 		 	 	·
% Section Township	Range			SAI EIVI				_	 	
Latitude-Longitude				Casina	. Di	de Char				
cassocie (ouginore				Cashing	. Diac	y Siee	9 () \f ∕	Galv.	() PVC (Fiberglass ()
Cuttings sent to District? ()	yes L			Screen	. Iyyyt ∡o∧ifee	~	25	Si	ot size <u>O. (</u> ft.) to 3 .	510
(1)		TION		Tune	f ara	/*** 	04. act.	(ditives:		MENT / 20/30 5
Note: PWS Wells attach a site	map if well location is	different		Water	Clear	it willt	oloro	J1 ()	Sulphus (Salty () Iron (
from site location on pe	mit application.	****		Condu	ctivity	, , , ,	Oluie	ບ () ດາໄ	Joddan Joddan) Salty () Iron (mg/l
				Solida	CHUSLY			On	HOITOES	mg/l

;

WELL COMPLETION REPORT FORM 0124 Rev. 11/80

Agrand fraging 1509 2-8-2008 Somraph spitting Lidense No. Completion Cate	Cit	22	i 	\$	ت ^{يي} ح	2'	DZPMW -2
Compression Case		Casing 0	eptk		Ten	Depth	We'll <
TYPE OF WORK: Construct (Repair () Abandon ()	Grout	Casi:		Dept	n (ft)	DRILL CUT Examine cut	dines every 20 ft.
WSLL USE: Domestic Well () Public () Monitor (L) Test () Irrigation () Fire Well () Other	Finick- cess & Depth	Disn 3 Di		From	Ye	or at formati Give color, o type of mate Note cavities producing at	pain size, and nal s. depth to
METHOD: Rotary with MUD (Lafor Air (), Cable Tool (), Jet ()		CAS	ING,	0	20		& SHELL
Casing Driven (), Other	22	2"		20		SAND	LOSE ROCK
PUMPING WATER LEVEL Ft, after Hrs, at GPM	<u> </u>	0' -	- 22	25	32	SAND	
DIBID 9176 U.S. CARACIENT CONT.	<u> </u>	ScR	またし しょうしょう		<u> </u> 		
FUMP TYPE INTAKE DEPTH From top of ground		2"					
		22'-	321				····
LOCATION Located Near 20505 SR 80							
OXAHATCHEE /	ļ						
County PALM SEACH	tvomper	 			<u> </u>		
W NW 29 42 40	3				 		······
	CEMENT						
						<u> </u>	
Letitude-Langkude	Screen	r Diaci	Sies D	% () **	Gaiv.	t size <u>O</u>	(V)Fiberglass ()
Cuttings sent to District? () Yes	Screen	e iype ed fro		22	, 5K	ot size	2(ft.)
LOCATE IN SECTION	Type o	f arous	t with	% ari	—— i ditimo	NEAT C	EMENT / 20/30
Note: PWS Wells attach a site map if well location is different	Water:	Clear	() (olore	d t	Sulphur) Salty () Iron
from site location on permit application.	Condu	ctivity	` , •		- የ / - የ	ioridee	mg/l

;

WELL COMPLETION REPORT FORM 0124 Fev. 11/90

EGRIDA POWER & LIGHT 700 UNIVERSE BLVD. 3				F	L	33468
Son 2-8-2008 Completion Date License Na. Completion Date	-	^{Chy} 2		·—.	3:	
0000	ـــــــ		ng Death		Teta	Il Depih Well #
TYPE OF WORK: Construct 1/ Repair () Abandon ()	Gro	ei	Casing & Screen	Dep	17 (\$1.)	DRILL CUTTINGS LOG Examine curtings every 20 ft. or at formation changes
WELL USE: Domestic Well () Public () Monitor (L) Test () Irrigation () Fire Well () Other	Thic nes & Des	3	Dismeter & Depth	From	Тс	Give color, grain size, and type of material Note carries, depth to
METHOD: Rotary with MUD () or Air (), Cable Tool (), Jet ()	L		SING	6	20	SAND & SHEW
Casing Driven (), Other	25		P		26	
STATIC WATER LEVEL Pt. below top of casing PUMPING WATER LEVEL Ft. after Hrs. at GPM	<u> </u>	0	+25	26	35	SAND
PUMP SIZEH.P. CAPACITY GPM	<u> </u>		01	 	<u> </u>	
PUMP TYPEINTAKE DEPTH		2	REEN	 	 	
From 100 of ground	-		-35		-	
LOCATION .					 	
Located Near 20505 SR 80,	<u> </u>		_			
OXAHATCHEE	ļ			<u> </u>	<u> </u>	
County PALM BEACH	Nom			 	 	
W NW 29 42 40	3	205	- 	├─	<u> </u> 	
3 % Section Township Range	CEMEN	7		 -	 	
Letigde-Longitace	Casi	na: Bi	ack Ste	elf)	Galv	() PVC (Fiberglass ()
	Scre	en: T۱	/pef	'VC	\$16	ot size O. 010"
Cuttings sent to District? () Yes	Scre	ened	from 📖	<u> 45.</u>	{	ft.) to 35 (ft.)
Note: PWS Wells attach a site map if well location is different	Type	ofgr	out with	% ad	ditives	NEAT CEMENT / 20130 S
from site location on permit application.	Wate	er: Cíe	:ar()(Colore	ٽر (َ)	Sulphur () Salty () Iron (
• • • • • • • • • • • • • • • • • • • •	ÇÜM	uuctiv	11.y		Ch	londes mg/l

7

WELL COMPLETION REPORT FORM 0124 Rev. 11/80

ORIDA POWER & LIGHT 700 UNIVERSE BLUD. JU	no Be	1cH	_	F	<u>L</u>	33	408
Syner Johnson Johnson Johnson Companies Des	City	25	. [S	:::3:	5 '	DZPMW-4
Completion Date	C	i gniasi	263£		Teu	il Deprh	Well #
YPE OF WORK: Construct () Repair () Abandon () VELLUSE: Domestic Well () Public () Monitor () Test () Irrigation () Fire Well () Other	Grout Thick- ness & Depth	Sc Dis	sing & reen moter Depth	Dept From	n (11) Te	Give color, of type of mate Note cavities	tings every 20 m. On chenges grain side, and intal s. Depth to
METHOD: Rotary with MUD (Let Tor Air (), Cable Tool (), Jet ()		CAS	ING.	0	20	SAND /	SHELL
Casing Driven (). Other	25'	2"		20			Loose Rock
TATIC WATER LEVEL 19 Ft. below top of casing		o' .	+25'	26	35	SAND	
PUMPING WATER LEVELFt_ afterHrs, atGPM PUMP SIZEH.P. CAPACITYGPM PUMP TYPEINTAKE DEPTHFrom top of ground		2"	36'				
ocated Near 20505 SR 80, OXAHATCHEE County Palm BEACH	Number						
N NW 29 43 40	3		 	 	 	-	<u> </u>
4 Section Township Range	EMENT			į			
Cuttings sent to District? () Yes () No LOCATE IN SECTION Note: PWS Wells attach a site map if well location is different from site location on permit application.	Screen: Screene Type of Water:	: Typ: ed fro grou Clear	e Pom Aut with	VC. 25 % ad colore	\$10 (i ditive: :d ()	ot size Orit.) to 30 NEAT C	(V)Fiberglass () 5 (ft) EMENT / 20/30 () Salty () Iron (mg/l

ī

Attachment E Deviation Survey Summary Sheet

Florida Power & Light Company West County Energy Center Dual-Zone Monitor Well DZMW-1 Deviation Survey Summary

	Pilot Hole			Reamed Hole	
Date	Depth (feet bpl)	Inclination (degrees)	Date	Depth (feet bpl)	Inclination (degrees)
3/6/2008	90	1/4	3/8/2008	90	1/4
3/6/2008	180	1/4	3/8/2008	180	1/4
3/11/2008	270	1/4	3/14/2008	270	1/4
3/11/2008	360	1/4	3/14/2008	324	1/4
3/11/2008	450	1/4	3/15/2008	450	1/4
3/12/2008	540	1/4	3/15/2008	540	1/4
3/12/2008	630	1/4	3/15/2008	630	1/4
3/12/2008	720	1/4	3/16/2008	720	1/4
3/12/2008	810	1/4	3/16/2008	810	1/4
3/12/2008	900	1/4	3/18/2008	900	1/4
3/24/2008	990	1/4	4/17/2008	1,010	1/4
3/25/2008	1,080	1/4	4/17/2008	1,100	1/4
3/25/2008	1,070	1/4	4/18/2008	1,190	1/4
3/25/2008	1,260	1/4	4/18/2008	1,280	1/4
3/25/2008	1,350	1/4	4/18/2008	1,370	1/4
3/26/2008	1,440	1/4	4/18/2008	1,460	1/4
3/26/2008	1,530	1/4	4/19/2008	1,550	1/10
3/26/2008	1,620	1/4	4/19/2008	1,640	1/10
3/27/2008	1,710	1/4	4/21/2008	1,730	1/4
3/27/2008	1,800	1/4	4/21/2008	1,820	1/4
3/27/2008	1,890	1/4	5/1/2008	1,979	1/4
3/28/2008	1,980	1/4	5/2/2008	2,069	1/4
3/29/2008	2,070	1/4	5/4/2008	2,159	1/4
3/31/2008	2,160	1/4			
bpl = below pad lev	rel				

Attachment F Cementing and Casing Summary Sheet

Florida Power & Light Company West County Energy Center Dual-Zone Monitor Well DZMW-1

Summary of Casing Setting Depths and Cement Quantities

	[Outside	Inside	Casing	Casing		1		Quantity	
	Casing	Diameter	Diameter	Thickness	Depth		Cement	Type of	of Cement	1
Casing	Material	(inches)	(inches)	(inches)	(feet bpl)	Date	Stage	Cement	(barreis)	Remarks
Pit Pipe	Steel	44.00	43.25	0.375	58		315	Comen	(barrets)	Vibrated in place
										violated in place
Surface Casing	Steel	34.00	33.25	0.375	245	3/9/2008	#1	neat	56	Procure court from L. H
<u> </u>							#1	4%	100	Pressure grout from bottom of casing
			*					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	100	
Intermediate Casing	Steel	24.00	23.25	0.375	920	3/20/2008	#1	neat	105	Pressure grout from base of casing
							#1	12%	398	1 tossure grout from base of casing
						3/20/2008	#2	12%	57	Tremie into annulus from 119 feet bpl
**										Towns and annual from 119 feet by
Upper Monitor Zone Casing	Steel	16.00	15.00	0.500	1890	4/24/2008	#1	neat	100	Pressure grout from bottom of casing
								12%	50	Brown obttoth of cashing
						4/25/2008	#2	12%	130	Tremie into annulus from 1,576 feet bpl
						4/26/2008	#3	12%	130	Tremie into annulus from 1,287 feet bpl
						4/26/2008	#4	12%	100	Tremie into annulus from 1,116 feet bpl
· · · · · · · · · · · · · · · · · · ·						4/27/2008	#5	12%	150	Tremie into annulus from 937 feet bpl
	··					4/27/2008	#6	12%		Tremie into annulus from 394 feet bpl
					- i	5/13/2008	#7	12%		Tremie into annulus from 245 feet bpl
Lower Monitor Zone Casing										
Lower Monitor Zone Casing			— —			5/9/2008	#1	neat	37	Tremie into annulus from 2,130 feet bpl
						5/9/2008	#2	neat	32	Tremie into annulus from 2,090 feet bpl
						5/9/2008	#3	neat	27	Tremie into annulus from 2,068 feet bpl
	 +					5/10/2008	#4	neat	26	Tremie into annulus from 2,130 feet bp!
	 -					5/10/2008	#5	neat		Tremie into annulus from 2,062 feet bpl
		· · · · · · · · · · · · · · · · · · ·				5/10/2008	#6	neat		Tremie into annulus from 2,019 feet bpl
						5/10/2008	#7	neat	5	Tremie into annulus from 1,941 feet bpl

bpl = below pad level

1 barrel = 42 gallons

Attachment G Casing Mill Certificates and FRP Cut-Sheet

THE PROPERTY SHOPE TO THE es a saw Tos Shoo Lawrences Wite Wite

COMMODITY: CARBON STEEL PIPE PER SALES CONTRACT

NO. SEUSPP6C02TD3 DATED DECEMBER 11, 2006.

CUSTOMER:

OZONE INDUSTRIES CORPORATION

15465 PINE RIDGE ROAD FORT MYERS, FL 33908

The CARBON STEEL PIPES are tested according to ASTM A139 GR.B

This is to certify that in accordance with the relevant specifications and contracts. The CARBON STREE, PIPPS manufactured ware torted and smallers to

DATE OF ISSUE:4/29/2007

Invoice No. SEUSFP6C02TD3

LC NUMBER .: 5279996

	1		_	Size	3			<u></u>	ty Control De	T	<u> </u>					<u> </u>		TOTAL:	746 PCS / 298	40FT/176	9.619M
ipes No.	Heat Numbers	Steel	0.0	W.T.	Length]	Quantit	У	Cimensional	,}-					ESTING I	RESULTS					7
	•				Cargan				1	1	CHEMIC	AL PROP	ZERTIES(%)	PHYS	ICAL PRO	PERTIES	Wakking	Hydrostalic Test	Flattening	UT Tes
205	047905	Grade.	l in	ję1	n	Pcs	ft	MT	Inspection	-	Si	Mn	p	Т- =				properties	Holding time:10s	Į	1
206		8	42	0.375	40	2	80	5.056	OK	0.18	0.23		- :	S	os(Mpa)	ob(Mpa	δ5(%)	σÞ	P=Psi	Total (B)	Test (8
	047703	B	42	0.375	40	5	200	15.137	OK OK	0.15	+	0.46			315	430	33	OK	500	OK	OK
207	047702		42	0.375	40	2	80	6.056	ОК		6.19	0.42	0.008		310	420	32	ОK	500	OK	ОК
208	047701	В	42	0.375	40	2	80	8 .056	OK	0.19	6.27	0.47	0.0ts	0.032	300	425	31	ОК	500	OK	OK
909	125906	ß	42	0.375	40	3	120	9.083		0.15	0.15	0.41	0.012	0.029	310	420	32.5	OΚ	500	OK	OK
10	054200	5	42	0.375	40	2	80	6,056	OK	0.13	0.25	0.50	6.012	0.028	325	440	33	OK	500	σк	
11	175904	8	42	0.375	40	3	120	9.083	OK	0.18	0.24	0.49	0.013	0.030	320	435	32,5	ΟX	500	OK OK	OK.
12	208801	8	44	0,375	40	2	80		CK C	0.18	0.20	0.44	0.012	0.031	300	425	31.5	ОК	500		OK
13	238602	В	44	0.375	40	- 2	80	5.345	OK OK	0.16	0.20	3.43	0.013	0.029	305	425	32	OK OK	500	OK	OK
14	235503	В	44	0.375	40	3	120	6.348	OK	0.18	0.21	0.44	0.011	0.031	3f5	425	32	OK		OK	OX
15	238804	В	44	0.375	40	2		9.521	_ ок	0.18	0.25	0.45	0.014	0.032	310	425	32	OK	500	OK	OK _
6	238684	В	44	0.375	40		89	6.346	OK	0.16	0.24	0.42	0.012	0.027	306	420	32		500	_ок	OK
7	238603	В	44	0.375	40	2	80	6.346	OX	0.17	0.24	0.46	0.013	0.030	315	420	31.5	OK	500	ox	OK
B	238806	В	44	0.375		2	80	B.346	OX	0.19	0.26	0.47		0.033	320	430		OK	500	CX	OΚ
9	175708	В		0.375	40	2	80	6.346	ок	0.18	0.23	0.40		9.027	305		31.5	ок	500	OK	OK
	239002	8			40	3	120	9.521	OK	0.18	0.24	0.46		0.031	320	420	32.5	OK	500	OK	OX
╌┞╾╌	088403	В		0.375	40	2	80	6.346	OK	8,17	9.21	0.46		0.030		435	31.5	OK	500	ok	OK
<u>-1. '</u>		-	44	9.375	40	4	f60	12.693	ох	0.18	0.20	0.44			275	425	30.5	OK	500	OK	ОК
												- J	0.012	0.031	295	42 5	31	ОК	500	CK	ОК

YIEH CORFORATION LIMITED

* 44" Casing Mill Certificate

DATE:2007-12-12

COMMODITY:

CARBON STEEL PIPE PER PURCHASE CONTRACT 0Z110707001

COST AND FREIGHT MIAMI, FLORIDA USA

CUSTOMER:

OZONE INDUSTRIES CORPORATION

15465 PINE RIDGE ROAD

ECDT MOTOR DE 22000

Invoice No.SEUSFP7B01TD3

Certificate No.: PSCNJN7B01TC5

185 Record - 1710 Shou Unavenue

			L	(Size)										1	'EST RESU	ILTS					
Pipes No.	Heat Numbers	Steal Grade	O.D.	w.t.	lenth		Quanti	by 	Dimensional		CHEMICA	AL PROP	ERTIES(%)	PHYSIC	AL PROP	ERTIES	Welding properties	Hydrostatic Test Holding time:10s	Flattening	UT Test
			in	in	Ħ	(Pcs)	(我)	(M1)	Inspection	С	Si	Mn	Р	\$	ов(Мре)	ob(Mpa)	ō5(%)	сb	P = Psi	Test (B)	Test (B)
1	R7303773	8	34	0.375	39	104	4056	248.137	ок	0.13	0,14	0.39	0.025	0.031	365	425	31.5	ОK	505	ОК	ОК
2	R7303774	₿	44	0.375	39	52	2028	160.967	ОК	0.14	0.16	0.39	0.013	0.034	365	425	31.5	ок	505	ОК	OK
3	R7303760	В	54	0.375	39	51	1989	194.058	OK	0.16	0.16	0.42	0.018	0.031	355	420	32.5	OK	505	ОК	ок
					-																
							,,,,			-										<u> </u>	
<u> </u>																					
TOTAL	<u> </u>					207	8073	603.160			[

Remark:

The CARBON STEEL PIPES are tested according to ASTM A139 GR.B

This is to certify that in accordance with the relevant specifications and contracts.

The CARBON STEEL PIPES manufactured were tested and qualified by our Quality Control Department.

* 34" Casing Mill Certificate

NO 6, E-DARD,

O TOWNSHIP KAOHSIUNG COUNTY YANCHAO,

TAIWAN

TEL:886-7-615-1000

FAX:886-7-615-3000

COMMODITY:

CARBON STEEL PIPES AS PER ASTM A139 GR.B SPIRAL WELDED, NORMAL MILL BLACK LACQUER FOR

RUST PROTECTION, ONE END OF THE PIPE SHALL HAVE A BEVEL OF 30 DEGREES WITH A TOLERANCE

PLUS FIVE, MINUS ZERO DEGREES. THE OTHER END OF THE PIPE WILL BE PLAIN, RIGHT AND ANGLE

CUT. ALL BURRS REMOVED.

CUSTOMER:

OZONE INDUSTRIES CORPORATION

15465 PINE RIDGE ROAD FORT MYERS, FL 33908

The CARBON STEEL PIPES are tested according to ASTM A139 GR.B

This is to certify that in accordance with the relevant specifications and contracts.

The CARBON STEEL PIPES manufactured were tested and qualified by our Quality Control Department

CERTIFICATE NO:PSCNIN7601TC5-3 DATE OF ISSUE:10/23/2007

> Invoice No. SEUSFP7601TD3-3 LC NUMBER.: 64405427

Pipes No.	Heal Number	Steel	0,0,	W.T.	lenth		Quantity		Dimensional	۰ (HEMICA	L PROPE	RTIES(%	6)	PHYSK	CAL PROF	ERTIES	Welding properties	Hydrostatic Test Holding tinte:10s	Flattening	UT Tes
·		Grade	ĬΠ	in	ft	根(Pcs)	英尺 (ft)	PE(MT)	Inspection	С	Si	Mn	P	S.	os(Mpa)	ob(Mpa)	ŏ5(%)	0,0	P = Psi	Test (B)	Test (B)
. 1	1-9160	В	52	0.375	40	1	40	3.757	ОК	0.16	0.19	0.48	0.029	0.029	330	460	30	OK .		·····	
2	1-9160	B	42	0.375	40	20	800	60.555	OK	0.16	0.19	0.48							505	OK	ОК
. 3	1-9160	В	36	0.375	40									0.029	330	450	30	OK	505	OK	OK
 -						21	840	54.418	ОК	0.16	0.19	0.48	0.029	0.029	330	460	30	OK	505	ОК	OX
4	7-C03099	B	28	0.375	40	27	1080	54.254	QΚ	0.16	0.19	0.33	0.018	0.027	325	455	33	ОΚ	525	OK .	ОК
5	7-C03099	В	26	0.375	40	22	880	41.007	ОK	0.16	0.19	0.33	0.016	0.027	325	455					
6	7-C03099	Б	24	0.375	40	71	2840								****	435	33	ОК	525	OK	OK
		— <u>-</u>					2040	122.01	OΚ	0.16	0.19	0.33	819.0	0.027	325	455	33	ок [525	OK	OK
	7-C03099	R	20	0.375	40	27	1080	38.543	ок [0.16	0.19	0.33	0.018	0.027	325	455	33	ОК	525	ОК	OK
8	1-7588	В	16	0.500	40	82	3280	123.268	OK	0.15	0.16	0.42	0.023	0.022	000					~~~	
TOTAL						271	10840	497.812				U.42	0.023	0.022	330	465	31.5	OK	525	OK	ok

24" away Nell Certificate

YIEH CORPORATION LIMITED

NO 6, E-DA RD, YA D TOWNSHIP, OAIDNAY YTUUO DOUIZHOAN

TAIWAN

TEL:886-7-615-1000

FAX:886-7-615-3000

COMMODITY:

CARBON STEEL PIPES AS PER ASTM A139 GR.B SPIRAL WELDED, NORMAL MILL BLACK LACQUER FOR

RUST PROTECTION, ONE END OF THE PIPE SHALL HAVE A BEVEL OF 30 DEGREES WITH A TOLERANCE

PLUS FIVE, MINUS ZERO DEGREES. THE OTHER END OF THE PIPE WILL BE PLAIN, RIGHT AND ANGLE

CUT. ALL BURRS REMOVED.

CUSTOMER:

OZONE INDUSTRIES CORPORATION

15465 PINE RIDGE ROAD FORT MYERS, FL 33908

The CARBON STEEL PIPES are tested according to ASTM A139 GR.B.

This is to certify that in accordance with the relevant specifications and contracts.

The CARBON STEEL PIPES manufactured were tested and qualified by our Quality Control Department.

CERTIFICATE NO:PSCNJN7601TC5-3

DATE OF ISSUE:10/23/2007

THE GLOTHER SECTION OF THE SECTION O

Invoice No. SEUSFP7601TD3-3

LC NUMBER.: 64405427

Pipes No.	ipes No. Heat Number	Steel	O,D.	W.T.	lenth		Quantity	•	Dimensional	٠ (CHEMICA	L PROPE	RTIES(%)	PHYSIC	CAL PROP	ERTIES	Welding properties	Hydrostatic Test Holding time: 10s	Flattening	UTTes
		Grade	in	ŧπ	ft	根(Pcs)	英尺 (ft)	PE(MT)	Inspection	C	Si	Mn	P	s	os(Moa)	ob(Mpa)	55(%)	άþ	P = Psi	Test (B)	Test (B)
11	1-9160	8	52	0.375	40	1	40	3.757	OK	0.16	0.19	0.48	0.029	0.029	330	460	30	OK	505		
2	1-9160	В	42	0.375	40	20	800	60.555	ОК	0.16	0.19	0.48		0.029	330	460	30	OK .		ОК	ОK
3	1-9160	В	36	0.375	40	21	840	54.418	OK	0.18	0.19	0.48		0.029	330				505	ок	ok
4	7-C03099	8	28	0.375	40	27	1080	54.254	OK	0.16	0.19	<u> </u>				460	30	OK	50 5	OK	OK
5	7-C03099	e	26	0.375	40	22	880	41.007	OK OK			0.33		0.027	325	455	33	OK	525	OK	OK
6	7-003089	-	24	0.375			 			0.16	0.19	0.33	0.018	0.027	325	455	33	0K	525	OK	OK
					40	71	2840	122.01	OK	G.16	0.19	0.33	0.018	0.027	325	455	33	OK	625	ОК	ОК
	7-C03099	В	20	0.375	40	27	1080	38.543	OX	0.16	0.19	0.33	0.018	0.027	325	455	33	ОК	525	OK :	OK
8	1-7588	B	16	0.500	40	82	3280	123.268	ОК	0.15	0.16	0.42	0.023	0.022	330	465	31.5	ок	525	OK OK	
TOTAL						271	10840	497.612										~~	020		OK

* 16" Cary Mill Certificate

YIEH CORPORATION LIMITED

g-u-

FUTURE PIPE INDUSTRIES

Complete Pipe System Solutions

RED BOX 1500

FIBERGLASS TUBING, CASING, AND LINERS AROMATIC AMINE CURED EPOXY RESIN

DIMENSIONAL SPECIFICATIONS

February 2005

	Nominal	Nomina!	Minimum	Nominal	Nominal	Pin Upset	Max Box			February 2005
	Size	LD.	Drift Dia	O.D.	Wall	0.0.	00*	Nomia	al Weight	Connection Type
1	(knohes)	(inches)	(inches)	(inches)	(inches)	(inches)	(inches)	(lbs/ft)	In- es	API 5B, Table 14*, 7**, 6***
1	2-3/8	2.00	1.91	2.26	0.13	2.69	3.45	0.8	(lbs/jt)	Fourteenth Edition August 98
	2.7/8	2.47	2.37	2.77	0.15	3.19			25	2-3/8" 8Rd EUE Long*IJ
	3-1/2	3.00	2.90	3.37			3.95	1.2	35	2-7/8" 8Rd EUE Long*IJ
- 1					0.19	3.85	4.84	1:8	53	3-1/2" 8Ad EUE Long*Li
- 1	4	3.33	3.24	3.75	0.21	4.35	5.26	2.3	70	4" 8Rd EUE Long* TC
- 1	4-1/2	3.98	3.89	4.48	0.25	4.85	5.77	3.0	90	4-1/2" 8Rd EUE Long*IJ
	5-1/2	4.42	4.33	4.96	0.27	5.60	6.71	3.8	115	5-1/2" 8Rd Csg Long"U
>	6-5/8	5.43	5.33	6.10	0.34	6.73	8.00	5.7	171	
1	7	6.21	6.11	6.97	0.38	7.10	8.61			6-5/8" 8Rd Csg Long****
ľ	7-5/8	6.21	6.11	6.97				6.9	208	7° 8Rd Csg Long**Ll
ŀ	9-5/8				0.38	7.73	9.38	7.6	227	7-5/8" 8Rd Csg Long" IJ
ŀ		7.84	7.75	8.80	0.48	9.73	11.84	12.0	361	9-5/8" 8Rd Csg*** IJ
Į	10-3/4	8.85	8.76	9.94	0.54	10.85	13.15	15.3	459	10-3/4" 8Rd Csg""IJ
ı	11-3/4	10.72	10.62	11.90	0.59	12.61	14.70	21.1	632	
- 1	13-3/8	11.97	11.87	13.29	0.66	13.48	15.65	24.0		11-3/4 8/6Rd L Csg TC
ſ	16	14.48	14.39	16.08	0.80	16.20	19.20		721	13-3/8" 8/6Rd Csg***TC
ı	18	16.60	16.50	18.43	0.92			35.1	1,054	16" 6Rd Csg TC
ŀ	20	17.98				18.71	23.10	47.7	1,432	18* 6Rd Csg TC
Ļ			17.89	19.97	1.00	20.06	24.80	54.9	1,648	20" 6Rd Csg TC

Depending on the application, smaller maximum box diameters are available.

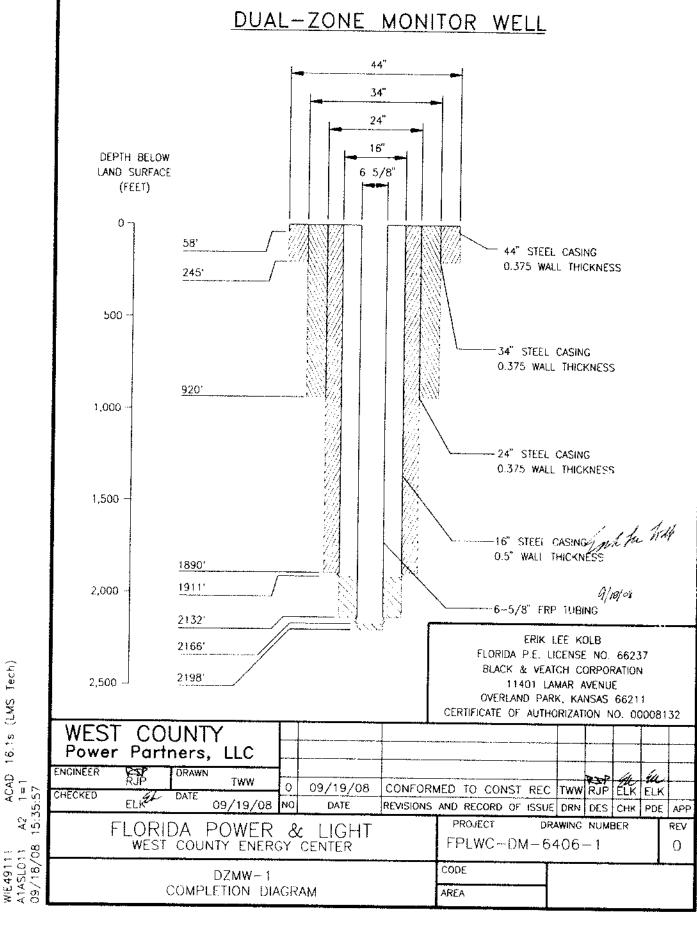
Thread lengths may exceed API L4

PERFORM	ANCE AND RATIN	GS (-60 deg F to +21			30 ft Standard Joint Length
Nominal Size	Internal Pressure Rating (psi)	Mili Test Pressure (psi)	Collapse Rating (psi)	Axial Tension Rating (fbs)	Stretch vs Tension-Over-Pipe Wil Stretch (fi) = Coeff. x P x L
2-3/8	1,500	1,850	1,200	13,000	0.363
2-7/8	1,500	1,850	1,000	19,000	0.266
3-1/2	1,500	1,850	1,100	28,000	
4	1,500	1,850	1,100	35,000	0.178
4-1/2	1,500	1,850	1,100	46,500	0.138
5-1/2	1,500	1,850	1,000	55,500	0.098
6-5/8	1,500	1,850	1,100	72,500	0.084
7	1,500	1,850	1,000	76,500	0.054
7-5/8	1,500	1,850	1,000	86.500	0.042
9-5/8	1,500	1.850	1,000	140,500	0.042
10-3/4	1,500	1,850	1,000		0.027
11-3/4	1,500	1,850	750	161,500	0.021
13-3/8	1,500	1,850	750	126,500	0.024
16	1,500	1,850		136,000	0.019
18	1,500		750	167,000	0.013
20	1,500	1,850	750	194,000	0.010
20	1,500	1,850	750	208,000	0.008

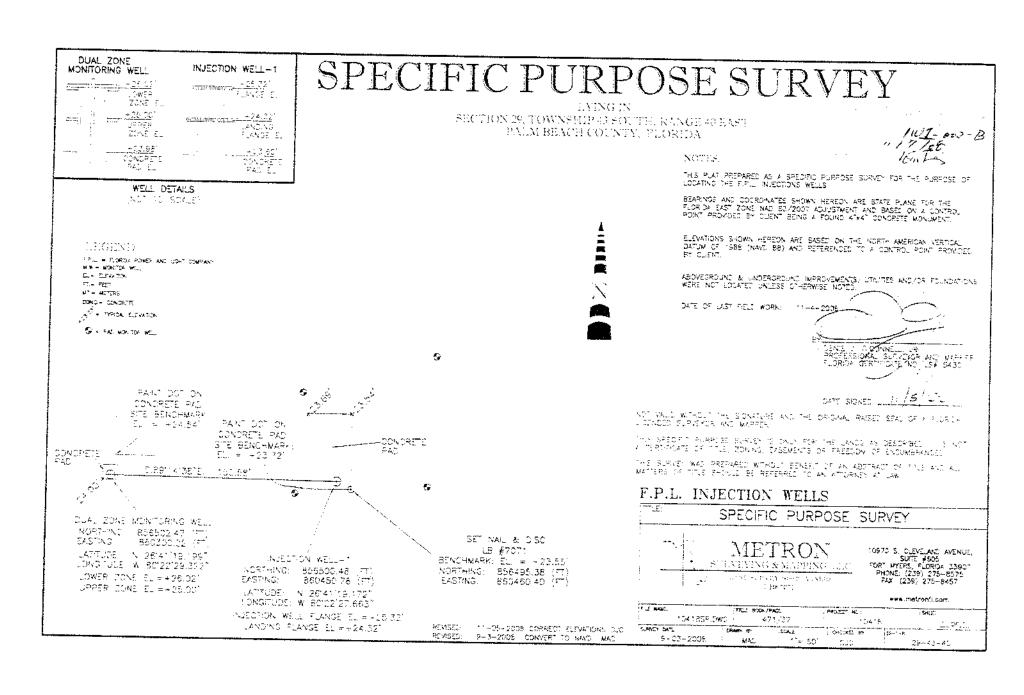
MECHANICAL AND PHYSICAL PROPERTIES

Where: P = Tensile Load (1,000 lbs)

L = String Length (1 000 m)


TUBING/CASING BODY PROPERTIES		= = onling congue (7,000 ft)		
TOOMOTONS MODEL PROPERTIES	UNIT	VALUE	VALUE	TEST METHOD
		2-3/8 - 10-3/4	\$1-3/4 - 20	
Tensile Strength, Hoop	psi	31,300	31,300	ASTM D1599
Tensile Strength, Axial	psi	30,000	12,000	ASTM D2105
Modulus of Elasticity, Axial	10E+06 psi	3.0	2.0	ASTM D2105
Specific Gravity		1.9	1.9	ASTM D792
Density	lbs/in ³	0.07	0.07	ASTM 0792
Thermal Conductivity	Btu/hr/tt²/in/degF	2.4	2.4	
Thermal Expansion Coefficient (Linear)	10E-05in/in/deaF	1.1	1.2	ASTM C177
Flow Factor		150		ASTM D696
		1	150	Hazen Williams

11811 Proctor Road · Houston, Texas 77038 · Phone: (281) 847-2987 · Fax: (281) 847-1931 Email: houston@future-pipe.com · website: www.futurepipe.com



Attachment H As-Built Drawings, As-Built Survey, and Certification of Monitor Well Completion

Wit49111 ACAD 16.1s (LMS Tech)

A1ASL011 A2 1=1 09/18/08 16:12:41

Florida Department of Environmental Protection

Twin Towers Office Bldg., 2600 Blair Stone Road, Tallahassee, Florida 32399-2400 LESP Fragm News Energy Filtlers 60-128.900.10. sofificed income Modelson Well Completion

effective Date: 1921 Application 30.;;

Protes in my 188.

CERTIFICATION OF MONITOR WELL COMPLETION

Facility Name	: Florida Power	& Light West	. County Energy	Center DZMW~1	
Owners Name:	Florida Power	& Light Comon.	6y		
Address: 20	505 State Road B	()			
City: Loxah	atchee	State:	Florida	Zip:	33470-000 0
	or's Name: Your				
Title: Tim Y	(eunggrist		State Line	nse No.: 2172	
	165 Pine Riose R				
City: Etc. My	/OYS	State:	Florida	Zip:	33909-0000
					th, 860278.66 East
970 Construct	ion Parmit Numbe	r: <u>247895-3</u> 0) North 1201	Date lasued:	05/29/07
	ourposer (fill) H				
X On-	aite montto: wei	it associated	with injection	Well No(s). 1	&2
	Single Zone	·	X Multizo	Tr.)	
	iona, monitor we				
Oth	ear manaitor well	(specity)			
MI WALL I					
Momiter Well 1	odation:				
Lat. Ptwic	:/Example admi				
iversation	Relative to in	ection Wellie	4; 1		
which uppro	t the menisor we	ll is associa : and direct	ded. For regi ion from a s	onai menitor wel pecified beint	njection well for is please indicate at the injection
<u> </u>	Zone Monitorin,	Well, DZMW-1	, is located t	io.O leet Wost o	Cinjection
₩w.::,	Wellow tipe We	st County Ebc	rgy Center pro	per sire.	
Not that Discount	r-Cass a				
Brameter		6 Inches	Monitoring Inn	orval(s) <u>1490-</u>	1911, 2132-2166
Well Dep	th <u>2,156</u>	1644	Casing depth	2,132 to	÷1.

The other New York of the Company of

	- 2.288 TA Py 1EP
Herviarions from the application and powns approved by the De	pertment:
Certification by Professional Engineer	
I certify that the scribor well has been completed substance approved plans and openitivations, or that deviations will rise functioning in compliance with rise requirements of properly operated and scriptured. These determinations observation, or well construction, scheduled or conduct representative under my direct supervision, for the purposeded in compliance with plans and specifications and appropriate	I not provent the monitor well. Thorter 62-528, F.A.C., when have been based upon en-site ed by so by a project
Aták ben Kojb	

Attachment I Cementing Stage Summary Sheets

Florida Power & Light West County Energy Center Dual-Zone Monitor Well DZMW-1 34-inch Diameter Casing - Stage #1

Cement Plan: Pressure cement a total of 156 bbls of cement (100 bbls 4% bentonite cement followed by 56 bbls of neat cement). Cement tubing placed at 243 feet bbl.

Type of Cement(s) used: Type II neat cement and type II neat cement with a 4% bentonite blend.

Date	Time	Cement Density (lb./gal)	Pumping Rate (Barrels/min.)	Total Pumped (Barrels)	Wellhead Pressure (p.s.i.)	Comments
3/9/2008	1819			<u>-</u> -		Pre-flushed 10 bbls of water.
3/9/2008	1822			····	 .	End pre-flush.
3/9/2008	1828					Begin cement stage #1.
3/9/2008	1830	14,2	6.1		2	
3/9/2008	1834				11	Lost radio communication with comenter.
3/9/2008	1837	14.2	6.1	54	22	
3/9/2008	1840	14.2	6.1	75	30	Stop pumping to pull 60 feet of tremie.
3/9/2008	1845	14.2	6,1	100	40	Begin pumping neat cement.
3/9/2008	1850	15.6	6.t	135		
3/9/2008	1852	15.6	6.1	156	48	
3/9/2008	1853					Displace cement inside easing by pumping 5 bbls of fresh water.
3/9/2008	1855					Finished pumping. Good cement returns to surface. Leave cement to cure for 24 hours.

^{* 1} Barrel = 42 gallons

Florida Power & Light West County Energy Center Dual-Zone Monitor Well DZMW-1 24-inch Diameter Casing - Stage #1

Cement Plan: Pressure cement a total of 444 bbls of cement (398 bbls 12% bentonite cement followed by 46 bbls of neat cement). Cement tubing placed at 917 feet bpl.

Type of Cement(s) used: Type II neat cement and type II neat cement with a 12% bentonite blend.

Date	Time	Cement Density (Ib./gal)	Pumping Rate (Barrels/min.)	Total Pumped (Barrels)	Wellhead Pressure (p.s.i.)	Comments
3/20/2008	0255					Begin preflush (7 barrels total). The base of the cement tremie pipe is approximately 917 feet bpl.
3/20/2008	0302					Begin cementing stage #1.
3/20/2008	0307	12.6	5.0	22	26	
3/20/2008	0312	12.6	5.0	55	44	
3/20/2008	0322	12.6	5.0	97	64	
3/20/2008	0330	12.6	6.0	136		
3/20/2008	0335	12.6	6.0	166	98	
3/20/2008	0340	12.8	6.0	204		
3/20/2008	0347	12.6	6,0	238	110	
3/20/2008	0352	12.7	6.0	267	119	
3/20/2008	0357	12.6	6.1	304	120	
3/20/2008	0402	12.6	6.0	334	125	
3/20/2008	0408	12.6	5.0	370	132	
3/20/2008	0412	12.6	5.0	398	137	Start pumping neat after 398 barrels of 12% bentonite cement.
3/20/2008	0414	15.6	5.0	405		
3/20/2008	0420	15.7	5.0	434	180	
3/20/2008	0426	15.6	5.0	457	190	
3/20/2008	0428				200	
3/20/2008	0430	15.6	5.0	480		
3/20/2008	0435			503		No cement returns. Stop pumping cement and chase with 5 barrels of fresh water.

^{* 1} Barrel = 42 gallons

Florida Power & Light West County Energy Center Dual-Zone Monitor Well DZMW-1 24-inch Diameter Casing - Stage #2

Cement Plan: Tremie 60 bbls 12% bentonite cement from top of stage #1 cement tag of 119 feet bpl.

Type of Cement(s) used: Type II neat cement with a 12% bentonite blend.

Date	Time	Cement Density (lb./gal)	Pumping Rate (Barrels/min.)	Pumped	Wellhead Pressure (p.s.i.)	Comments
3/20/2008	1731					Begin preflush.
3/20/2008	1733	12,6				Complete proflush with 7 barrels of fresh water. Begin cementing stage #2.
3/20/2008	1743	12.6	5.2	57		Cement returns at the surface. Stop pumping cement.

^{* 1} Barrel = 42 gallons

Florida Power & Light West County Energy Center Dual-Zone Monitor Well DZMW-1 16-inch Diameter Casing - Stage #1

Cement Plan: Pressure grout a total of 150 bbls of cement (100 bbls 12% bentonite cement followed by 50 bbls of neat cement). Cement tubing placed at 1,887 feet bpl.

Type of Cement(s) used: Type II neat cement and type II neat cement with a 12% bentonite blend.

Date	Time	Cement Density (lb./gal)	Pumping Rate (Barrels/min.)	Total Pumped (Barrels)	Wellhead Pressure (p.s.i.)	Comments
4/24/2008	2200					Begin preflush
4/24/2008	2202				,	Completed preflush (7 barrels water). Mix coment (12% bentonite)
4/24/2008	2206		<u></u>			Start pumping 12% bentonite blend cement.
4/24/2008	2208					
4/24/2008	2210	12,6	5.6	20	······	
4/24/2008	2212				24	
4/24/2008	2213	12.6	5.4	40	30	
4/24/2008	2217	12.6	5.4	60	42	
4/24/2008	2221	12.6	5.4	80	58	
4/24/2008	2225			100	67	Stop pumping 12% bentonite blend and mix neat cement
4/24/2008	2228		*			Begin pumping neat cement
4/24/2008	2232	15.6	4.9	120	82	
4/24/2008	2234	15.6	5.4	130	95	
4/24/2008	2238			150	114	Stop pumping neat cement and start water chase
4/24/2008	2240					Completed water chase (8 barrels of water)
				-		
+				-		
		· · · · · · · · · · · · · · · · · · ·				

^{* 1} Barrel = 42 gallons

Cement Plan: Tremmie in the annulus using a total of 131bbls of 12% bentonite cement. Cement tubing placed at 1,572 feet bpl. Top of cement for stage #1 tagged at 1,576 feet bpl. Theoretical lift is 1,180.

Type of Cement(s) used: Type II neat cement with a 12% bentonite blend.

Date	Time	Cement Density (lb./gal)	Pumping Rate (Barrels/min.)	Total Pumped (Barrels)	Wellhead Pressure (p.s.i.)	
4/25/2008	2330					Begin preflush.
4/26/2008	2400		~			Completed preflush (7 barrels water). Mix coment (12% bentonite).
4/26/2008	0004					Start pumping 12% bentonite blend cement.
4/26/2008	0008	12.7	5.0	20) L	
4/26/2008	0014	12.7	5.0	53		
4/26/2008	0019	12.6	4.8	75	.,	
4/26/2008	0022			90	• •	Stop cementing. Pull 2 tremmie pipe stands (~120 feet).
4/26/2008	0031		77.0	****		Resume cementing
4/26/2008	0033			100		Stop cementing. Cement pipe beginning to get sticky. Pull 3 additional cement tremmie pipe stands (~180 feet).
4/26/2008	0042					Resume cementing
4/26/2008	0048	•		130		End cementing stage #2. Chase with 6 barrels of fresh water.
4/26/2008	0050					Complete chase. Pull an additional 7cement tremmie pipe stands.
4/26/2008	0106					Reflush with an additional 7 barrels of fresh water.
4/26/2008	0108					Complete reflush
Ť				~		
			<u> </u>			
<u></u> L	<u></u>					

^{* 1} Barrel = 42 gallons

Cement Plan: Tremmie in the annulus using a total of 130 bbls of 12% bentonite cement. Cement tubing placed at 1,283 feet bpl. Top of cement for stage #2 tagged at 1,287 feet bpl. Theoretical lift is 900 feet bpl.

Type of Cement(s) used: Type II neat cement with a 12% bentonite blend.

Time	Cement Density (lb./gal)	Pumping Rate (Barrels/min.)	Total Pumped (Barrels)	Wellhead Pressure (p.s.i.)	Comments
1054					Begin preflush.
1055					Completed preflush (6 barrels water). Mix cement (12% bentonite).
1059				·	Start pumping 12% bentonite blend cement.
1105	12.7	5.0	30		Stop pumping cement. Remove 2 fremmie pipe stands.
1113					Resume cementing.
1116	12.6	5.1	40	***	
1120	12.6	5.1	60	, ,	7,00
1126	12.6	5.1	90	····	
1128			100	-	Stop pumping cement. Remove 1 tremmie pipe stand.
1132					Resume cementing.
1140			130		End cementing of stage #3. Chase with 5 barrels of fresh water.
1141					End chase. Remove an additional 5 tremmie pipe stands.
1156					Reflush with 5 additional bbls of fresh water.
	1				7- A
			-		
				i	
					
	1054 1055 1059 1105 1113 1116 1120 1126 1128 1132 1140	Time Density (lb./gal) 1054 1055 1059 1105 12.7 1113 1116 12.6 1120 12.6 1128 1132 1140 1141	Time Density (lb./gal) Pumping Rate (Barrels/min.) 1054 1055 1059 1105 12.7 5.0 1113 1116 12.6 5.1 1120 12.6 5.1 1128 1132 1140 1141	Time Density (lb./gal) Pumping Rate (Barrels/min.) Pumped (Barrels) 1054	Time Density (lb./gal) Pumping Rate (Barrels) Pumped (Barrels) Pressure (p.s.i.) 1054 1055 1059 1105 12.7 5.0 30 1113 1116 12.6 5.1 40 1120 12.6 5.1 90 1128 100 1132 1140 1130

^{*} i Barrel = 42 gallons

Coment Plan: Tremmie in the annulus using a total of 100 bbls of 12% bentonite cement. Cement tubing placed at 1,111 feet bpl. Top of cement for stage #3 tagged at 1,116 feet bpl. Theoretical lift is \$10 feet bpl.

Type of Cement(s) used: Type II neat cement with a 12% bentonite blend.

Date	Time	Cement Density (lb./gal)	Pumping Rate (Barrels/min.)	Total Pumped (Barrels)	Wellhead Pressure (p.s.i.)	Comments
4/26/2008	2021	ļ				Begin preflush.
4/26/2008	2022					Completed preflush (7 barrels water). Mix cement (12% bentonite).
4/26/2008	2028				-	Start pumping 12% bentonite blend cement.
4/26/2008	2032	12,6	5.1	22		
4/26/2008	2036	12.6	5,2	40		
4/26/2008	2040	12.7	5.2	61		
4/26/2008	2044	12.6	5,2	80		
4/26/2008	2047			100		End cementing of stage #4. Chase with 5 barrels of fresh water.
4/26/2008	2048					End chase. Remove 6 tremmie pipc stands.
4/26/2008	2105					Reflush with 5 additional bbls of fresh water.
		·				
			<u></u>			
						
		1				

^{*} I Barrel = 42 gallons

Cement Plan: Tremmie in the annulus using a total of 150 bbls of 12% bentonite cement. Cement tubing placed at 932 feet bpl. Top of cement for stage #4 tagged at 937 feet bpl. Theoretical lift is 437 feet bpl.

Type of Cement(s) used: Type II neat cement with a 12% bentonite blend.

Date	Time	Cement Density (lb./gal)	Pumping Rate (Barrels/min.)	Total Pumped (Barrels)	Wellhead Pressure (p.s.i.)	Comments
4/27/2008	0710					Begin preflush.
4/27/2008	0711	ĺ				Completed preflush (6 barrels water). Mix cement (12% bentonite).
4/27/2008	0716					Start pumping 12% bentonite blend cement
4/27/2008	0721	12.6	5.4	26	-	
4/27/2008	0725	12.6	5.0	50	-	
4/27/2008	0730	12.6	5.0	75	inw.	7.00
4/27/2008	0734	12.7	5.1	100		
4/27/2008	0739	12.6	5.3	125		
4/27/2008	0744			150		End cementing of stage #5. Chase with 5 barrels of fresh water.
4/27/2008	0745	·				End chase. Remove 10 tremmie pipe stands.
4/27/2008	0805					Reflush with 5 additional bbls of fresh water.
	f					

^{*} I Barrel = 42 gallons

Cement Plan: Tremmie in the annulus using a total of 45 bbls of 12% bentonite cement. Top of cement for stage #5 tagged at 394 feet bpl. Theoretical lift is 394 feet bpl.

Type of Cement(s) used: Type II neat cement with a 12% bentonite blend.

Date	Time	Cement Density (lb./gal)	Pumping Rate (Barrels/min.)	Total Pumped (Barrels)	Wellhead Pressure (p.s.i.)	Comments
4/27/2008	1634					Begin proflush.
4/27/2008	1635					Completed preflush (6 barrels water). Mix cement (12% bentonite).
4/27/2008	1639		,			Start pumping 12% bentonite blend cement.
4/27/2008	1641	12.6	5.4	15	-	
4/27/2008	1644	12.6	5.4	30		
4/27/2008	1647		"	45		End cementing of stage #6. Chase with 3 barrels of fresh water.
4/27/2008	1648					End chase. Remove remaining 6 tremmie pipe stands.
		"				
				,,,		
						
			<u> </u>			
					<u>-</u> _	

^{* 1} Barrel = 42 gallons

16-inch Diameter Casing - Stage #7

Cement Plan: Tremmie in the annulus using a total of 65 bbls of 12% bentonite cement. Top off the cement to surface.

Type of Cement(s) used: Type II neat cement with a 12% bentonite blend.

Date	Time	Coment Density (lb./gal)	Pumping Rate (Barrels/min.)	Total Pumped (Barrels)	Wellhead Pressure (p.s.i.)	Comments
5/13/2008	14:00					Begin preflush.
5/13/2008	14:02					Completed preflush (6 barrels water). Mix cement (12% bentonite).
5/13/2008	14:09					Start pumping 12% bontonite blend cement.
5/13/2008	14:14	12.6	5.4	22		
5/13/2008	14:18	12.6	5.4	40		
5/13/2008	14:23		,,,	55	<u>: </u>	Stop pumping.
5/13/2008	14:25					Resume cementing.
5/13/2008	14:27			67		End cementing. Chase with 8 barrels of fresh water.
5/13/2008	14:28	:				End chase,
						ANNAL THEM TO THE TOTAL TH
						110000000000000000000000000000000000000

^{*} I Barrel = 42 gallons

Florida Power & Light West County Energy Center Dual-Zone Monitor Well DZMW-1

6 5/8 -inch FRP Casing - Stage #1

Cement Plan: Sand has been installed to a depth of 2,130 inside and outside the FRP casing. The plan is to pump 37 barrels of neat cement. Theoretical depth to 1,950 feet bpl.

Date	Time	Cement Density (lb./gal)	Pumping Rate (Barrels/min.)	Total Pumped (Barrels)	Wellhead Pressure (p.s.i.)	Comments
5/9/2008	0643					Preflush with 7 barrels of fresh water.
5/9/2008	0646					End preflush. Mixing cement.
5/9/2008	0648				****	Begin cement stage #1.
5/9/2008	0653	15.6	3.5	20		
5/9/2008	0658	15.6	3.5	30		
5/9/2008	0700			37		End cement stage #1. Chase with 8 barrels of fresh water.
		_				
					·	
		··· <u>··</u>				

^{* 1} Barrel = 42 gallons

6 5/8 -inch FRP Casing - Stage #2

Cement Plan: Cement tag was at 2,090 feet bpl. Cement plan is to pump 32 barrels of neat cement. Theoretical depth to 1,950 feet bpl.

Date	Time	Cement Density (lb./gal)	Pumping Rate (Barrels/min.)	Total Pumped (Barrels)	Wellhead Pressure (p.s.i.)	Comments
5/9/2008	14:02					Proflush with 6.5 barrels of fresh water.
5/9/2008	14:19	,				End preflush. Mixing cement.
5/9/2008	14:21					Begin cement stage #2.
5/9/2008	14:25	15.6	4.4	15		
5/9/2008	14:27	15.6	4.5	28		
5/9/2008	14:29			32		End cement stage #2. Chase with 8 barrels of fresh water.
5/9/2008	14:32					Remove 1 single and 5 double stands.
5/9/2008	14:45			-		Reflush with 6 barrels of fresh water.
					:	
~~						

^{* 1} Barrel = 42 gallons

Cement Plan: Top of cement was tagged at 2,068 feet bpl. The plan is to pump 27 barrels of neat cement. Theoretical depth to 1,950 feet bpl.

Date	Time	Cement Density (lb./gal)	Pumping Rate (Barrels/min.)	Total Pumped (Barrels)	Wellhead Pressure (p.s.i.)	Comments
5/9/2008	2054					Preflush with 6 barrels of fresh water.
5/9/2008	2056					End preflush. Mixing cement.
5/9/2008	2059					Begin cement stage #3.
5/9/2008	2101	15.6	4.7	10		
5/9/2008	2104	15.6	6.8	22	~	
5/9/2008	2105			27		End cement stage #3. Chase with 8 barrels of fresh water.
					•	
			<u></u>			
						
		···				

^{*} I Barrel = 42 gallons

Cement Plan: Top of cement was tagged at 2,062 feet bpl. The plan is to pump 26 barrels of neat cement. Theoretical depth to 1,950 feet bpl.

Date	Time	Cement Density (lb./gal)	Pumping Rate (Barrels/min.)	Total Pumped (Barrels)	Wellhead Pressure (p.s.i.)	Comments
5/10/2008	0541			····		Preflush with 6 barrels of fresh water.
5/10/2008	0542					End preflush. Mixing cement.
5/10/2008	0544			7-1		Begin cement stage #4.
5/10/2008	0547	15,6	4.9	13		
5/10/2008	0550			26	· · · ·	End coment stage #4. Chase with 8 barrels of fresh water.
<u> </u>						
	,					
	<u></u>					

^{*} I Barrel = 42 gallons

Cement Plan: Top of cement was tagged at 2,032 feet bpl. The plan is to pump 20 barrels of neat cement. Theoretical depth to 1,950 feet bpl.

Date	Time	Cement Density (lb./gal)	Pumping Rate (Barrels/min.)	Total Pumped (Barrels)	Wellhead Pressure (p.s.i.)	Comments
5/10/2008	1242			,		Preflush with 6 barrels of fresh water.
5/10/2008	1244					End preflush. Mixing cement.
5/10/2008	1252					Begin cement stage #5.
5/10/2008	1256	15,6	4.4	10		
5/10/2008	1258			20		End cement stage #5. Chase with 8 barrels of fresh water.

^{* 1} Barrel = 42 gallons

6 5/8 -inch FRP Casing - Stage #6

Cement Plan: Top of cement was tagged at 2,019 feet bpl. The plan is to pump 19 barrels of neat cement. Theoretical depth to 1,950 feet bpl.

Date	Time	Cement Density (lb./gal)	Pumping Rate (Barrels/min.)	Total Pumped (Barrels)	Wellhead Pressure (p.s.i.)	Comments
5/10/2008	1705			···		Preflush with 5.5 barrels of fresh water.
5/10/2008	1706	1			<u> </u>	End preflush. Mixing cement.
5/10/2008	1707					Begin cement stage #6.
5/10/2008	1710	15.6	4.4	10		
5/10/2008	1712			19		End cement stage #6. Chase with 8 barrels of fresh water.
5/10/2008	1715					Completed 8 barrel water chase.
			Ì			

^{* 1} Barrel = 42 gallons

Cement Plan: Top of cement was tagged at 1,941 feet bpl. The plan is to pump 5 barrels of neat cement. Theoretical depth to 1,917 feet bpl.

Date	Time	Cement Density (lb./gal)	Pumping Rate (Barrels/min.)	Total Pumped (Barrels)	Wellhead Pressure (p.s.i.)	Comments
5/10/2008	2122					Preflush with 5 barrels of fresh water.
5/10/2008	2123			-		End preflush. Mixing cement.
5/10/2008	2126			**		Begin cement stage #7.
5/10/2008	2129			5		End cement stage #7. Chase with 8 barrels of fresh water.
5/10/2008	2130					Completed 8 barrel water chase.
İ			·			
	1					

^{* 1} Barrel = 42 gallons

Attachment J DZMW-1 Lithologic Log

	Depth	(ft. bpl)	
Date	From	То	Observer's Description
3/5/2008	0	10	Sand 50%/Shells 50%, light gray (N7), mostly quartz, with some calcareous and phosphatic sands, fine to medium grain size, sub-angular; shells and shell fragments, yellowish gray (5Y 7/2), to ~5mm, unconsolidated; fair porosity, very good permeability.
3/5/2008	10	20	Sand 80%, light gray (N7), mostly quartz, with some calcareous and phosphatic sands fine to medium grain size, sub-angular, fair porosity, very good permeability; shell fragments 20%, yellowish gray (5Y 7/2) to medium gray (N5), to ~10mm, unconsolidated coral and shell fragments; fair porosity, very good permeability
3/5/2008	20	30	Sand, light gray (N7), mostly quartz, with some calcareous and phosphatic sands, fine to medium grain size, sub-angular, fair porosity, very good permeability, trace of shell fragments
3/5/2008	30	40	Same as above
3/5/2008	40	50	Sand, light gray (N7) to medium gray (N5), mostly quartz, with some calcareous and phosphatic sands, fine to medium grain size, sub-angular, fair porosity, very good permeability, trace of shell fragments
3/5/2008	50	60	Same as above
3/5/2008	60	70	Same as above
3/5/2008	70	80	Same as above
3/6/2008	80	90	Sand 80%, yellowish gray (5Y 7/2), mostly quartz, with some calcareous and phosphatic sands, fine to medium grain size, sub-angular, fair porosity, very good permeability; shell fragments 20%, yellowish gray (5Y 7/2) to medium gray (N5), to ~10mm, unconsolidated coral and shell fragments; fair porosity, very good
3/6/2008	90	100	Same as above
3/6/2008	100	110	Same as above
3/6/2008	110	120	Same as above
3/6/2008	120	130	Same as above
3/6/2008	130	140	Sandstone, yellowish gray (5Y 7/2), mostly quartz, with some calcareous and phosphatic grains, fine to medium grain size, sub-angular, low porosity, low permeability
3/6/2008	140	150	Same as above
3/6/2008	150	160	Sand, yellowish gray (5Y 7/2), mostly quartz, with some calcareous and phosphatic sands, fine grain size, sub-angular, fair porosity, very good permeability, trace of shell fragments
3/6/2008	160	170	Shells 50%, yellowish gray (5Y 7/2) to medium gray (N5), to ~10mm, unconsolidated coral and shell fragments; Sand 50%, light gray (N7), mostly quartz, and calcareous with some phosphatic sands, fine to medium grain size, sub-angular, fair porosity, very good permeability.
3/6/2008	170	180	Same as above
3/6/2008	180	190	Sand, light olive gray (5Y 6/1) to greenish gray (5GY 6/1), quartz and calcareous with some phosphatic sands, fine grain size, trace of silt, fair to good porosity, moderate permeability.

	Depth	(ft. bpl)	
Date	From	To	Observer's Description
3/6/2008	190	200	Clay 40%, light olive gray (5Y 6/1) to greenish gray (5GY 6/1), very soft, sandy clay Shells 35%, yellowish gray (5Y 7/2), fragments and whole shells to ~15mm.; Sand 25%, light olive gray (5Y 6/1) to greenish gray (5GY 6/1), quartz and calcareous wit some phosphatic sands, fine to medium grain size, sub-angular; good porosity, fair to good permeability.
3/6/2008	200	210	Same as above
3/6/2008	210	220	Same as above
3/6/2008	220	230	Calcareous Sand 80%, light olive gray (5Y 6/1) to greenish gray (5GY 6/1), fine grained sand with some phosphatic; Shells 20%, yellowish gray (5Y 7/2), 1mm shell fragments.
3/6/2008	230	240	Clay 90%, greenish gray (5 GY 4/1), very soft and pliable; shell fragments 10%, up to 5mm in diameter
3/6/2008	240	250	Same as above
3/6/2008	250	255	Same as above
3/11/2008	255	260	Clay, grayish olive (10Y 4/2 to light olive gray (5Y 6/1), soft and pliable, very low permeability
3/11/2008	260	270	Same as above
3/11/2008	270	275	Same as above
3/11/2008	275	280	Clay 80%, grayish olive (10Y 4/2 to light olive gray (5Y 6/1), soft and pliable, very low permeability; shell fragments 20%, up to 30mm in diameter, unconsolidated
3/11/2008	280	285	Same as above
3/11/2008	285	290	Clay 90%, grayish olive (10Y 4/2 to light olive gray (5Y 6/1), soft and pliable, very low permeability; shell fragments 10%, up to 10mm in diameter, unconsolidated
3/11/2008	290	300	Same as above
3/11/2008	300	310	Clay, dark greenish gray (5GY 4/1), soft and pliable, very low permeability
3/11/2008	310	320	Same as above
3/11/2008	320	330	Same as above
3/11/2008	330	340	Same as above
3/11/2008	340	350	Same as above
3/11/2008	360	370	Same as above
3/11/2008	370	380	Same as above
3/11/2008	380	390	Same as above
3/11/2008	390	400	Same as above
3/11/2008	400 410	410 420	Same as above
3/11/2008			Same as above
3/11/2008	420 430	430 440	Same as above
7/11/2006	430	440	Same as above
3/11/2008	440	450	Clay 90%, grayish olive (10Y 4/2), soft and pliable, very low permeability; siltstone 10%, grayish olive (10Y 4/2), low porosity, moderately well consolidated
3/11/2008	450	455	Same as above
3/11/2008	455	460	Clay, greenish gray (5GY 6/1), soft and pliable, very low permeability
3/11/2008	460	465	Same as above
3/11/2008	465	470	Clay 90%, grayish olive (10Y 4/2), soft and pliable, very low permeability; siltstone 10%, grayish olive (10Y 4/2), low porosity, moderately well consolidated

	Depth	(ft. bpl)	
Date	From	То	Observer's Description
3/11/2008	470	475	Same as above
3/11/2008	175	400	Clay 95%, pale olive (10Y 6/2), soft and pliable, very low permeability; limestone 5%
3/11/2008	475	480	very fine grained, low porosity, well consolidated
3/11/2008	480	490	Same as above
3/11/2008	490	500	Same as above
3/11/2008	500	505	Same as above
3/11/2008	505	510	Clay 80%, pale olive (10Y 6/2), soft and pliable, very low permeability; limestone 20%, pale olive (10Y 6/2), very fine grained, trace of phosphate, low porosity, poorly consolidated
3/11/2008	510	520	Same as above
	520	525	Same as above
3/11/2008	525	530	Clay, pale olive (10Y 6/2) to grayish olive (10Y 4/2), soft and pliable, very low permeability
3/11/2008	530	540	Same as above
3/11/2008	540	550	Same as above
3/11/2008	550	560	Same as above
3/11/2008	560	570	Clay, grayish olive (10Y 4/2), soft and pliable, very low permeability
3/11/2008	570	575	Same as above
3/11/2008	575	580	Clay 80%, pale olive (10Y 6/2), soft and pliable, very low permeability; limestone 20%, pale olive (10Y 6/2), very fine grained, trace of phosphate, low porosity, poorly consolidated
3/11/2008	580	590	Same as above
3/11/2008	590	600	Clay 90%, dusky yellow green (5GY 5/2), soft and pliable, very low permeability; siltstone 10%, greenish olive (10Y 4/2), low porosity, poorly consolidated
3/11/2008	600	610	Clay 90%, pale olive (10Y 6/2), soft and pliable, trace of phosphate, very low permeability; siltstone 10%, greenish olive (10Y 4/2), low porosity, poorly consolidated
3/11/2008	610	615	Clay 90%, pale olive (10Y 6/2), soft and pliable, trace of phosphate, very low permeability; siltstone 10%, greenish olive (10Y 4/2), low porosity, poorly consolidated
3/11/2008	615	620	Clay, yellowish gray (5Y 7/2), soft and pliable, trace of phosphate, very low permeability
3/11/2008	620	630	Same as above
3/11/2008	630	640	Same as above
3/12/2008	640	650	Same as above
3/12/2008	650	655	Clay, pale olive (10Y 6/2) to grayish olive (10Y 4/2), soft and pliable, trace of phosphate, very low permeability
3/12/2008	655	660	Clay, pale olive (10Y 6/2), soft and pliable, trace of phosphate, very low permeability
3/12/2008	660	670	Same as above
3/12/2008	670	675	Same as above
3/12/2008	675	680	Same as above
3/12/2008	680	690	Same as above

	Depth	(ft. bpl)		
Date	From	To	Observer's Description	
3/12/2008	690	700	Clay, yellowish gray (5Y 7/2), soft and pliable, trace of phosphate, very low permeability	
3/12/2008	700	710	Same as above	
3/12/2008	710	720	Same as above	
3/12/2008	720	730	Same as above	
3/12/2008	730	740	Same as above	
3/12/2008	740	755	Clay, pale olive (10Y 6/2), soft and pliable, trace of phosphate, very low permeability	
3/12/2008	755	760	Clay (80%), yellowish gray (5Y 7/2), soft and pliable, trace of phosphate, very low permeability; limestone (20%), pale olive (10Y 6/2), fine grained, phosphatic, moderate porosity, well consolidated	
3/12/2008	760	770	Clay, yellowish gray (5Y 7/2), soft and pliable, trace of phosphate, very low permeability	
3/12/2008	770	780	Clay, yellowish gray (5Y 7/2), soft and pliable, trace of phosphate, very low permeability	
3/12/2008	780	785	Same as above	
3/12/2008	785	790	Clay (90%), yellowish gray (5Y 7/2), soft and pliable, trace of phosphate, very low permeability; shell fragments (10%), up to 10mm in diameter, unconsolidated	
3/12/2008	790	795	Same as above	
3/12/2008	795	800	Sandy Limestone (70%), light olive gray (5Y 6/1), very fine quartz sand grains, trace of phosphate, moderate porosity, moderately well consolidated; clay (25%), yellowish gray (5Y 7/2), soft and pliable, trace of phosphate, very low permeability; shell fragments (5%), up to 5mm in diameter	
3/12/2008	800	810	Clay (80%), yellowish gray (5Y 7/2), soft and pliable, trace of phosphate, very low permeability; sandy limestone (20%), light olive gray (5Y 6/1), fine sand quartz grains, trace of phosphate, moderate porosity, moderately well consolidated	
3/12/2008	810	820	Clay (70%), yellowish gray (5Y 7/2), soft and pliable, trace of phosphate, very low permeability; sandstone (20%), light olive gray (5Y 6/1), very fine quartz grains, trace of phosphate, moderate porosity, moderately well consolidated; shell fragments (10%), up to 10mm in diameter, unconsolidated	
3/12/2008	820	830	Same as above	
3/12/2008	830	835	Clay (80%), yellowish gray (5Y 7/2), soft and pliable, trace of phosphate, very low permeability; sandstone (20%), light olive gray (5Y 6/1), very fine quartz grains, trace of phosphate, moderate porosity, moderately well consolidated	
3/12/2008	835	840	Phosphatic Limestone, light olive gray (5Y 6/1), very fine grained, quartz sand grains, low porosity, moderately well consolidated	
3/12/2008	840	850	Same as above	
3/12/2008	860	870	Limestone (80%), light olive gray (5Y 6/1), very fine grained, low porosity, well consolidated; clay (10%), yellowish gray (5Y 7/2), soft and pliable, very low permeability; shells and shell fragments (10%), up to 20mm in diameter, unconsolidated	
3/13/2008	870	880	Limestone, light gray (N7), very fine grained, trace of phosphate, low porosity, well consolidated	

	Depth	(ft. bpl)	
Date	From	То	Observer's Description
3/13/2008	880	890	Limestone, light gray (N7), very fine grained, trace of phosphate, low porosity, well
3/13/2008	000	890	consolidated
3/13/2008	890	900	Sandstone, dark greenish gray (5GY 4/1), very fine grained, trace of phosphate, low
3/13/2008	070	900	porosity, poorly consolidated
			Sandstone (90%), dark greenish gray (5GY 4/1), very fine grained, trace of phosphate
3/13/2008	900	910	low porosity, poorly consolidated; clay, grayish olive (10Y 4/2), soft and pliable, very
		<u> </u>	low permeability
3/13/2008	910	915	Same as above
3/13/2008	915	920	Limestone, yellowish gray (5Y 7/2), very fine grained, trace of phosphate, low
·		<u> </u>	porosity, well consolidated
3/13/2008	920	930	Same as above
3/13/2008	930	940	Same as above
		1	Limestone (90%), yellowish gray (5Y 7/2), very fine grained, trace of phosphate, low
3/13/2008	940	950	porosity, well consolidated; clay (10%), light olive gray (5Y 5/2) soft and pliable, very
			low porosity
3/24/2008	950	960	Limestone, light gray (N7) to yellowish gray (5Y 8/1), very fine grained, moderate
	,	900	porosity, well consolidated
3/24/2008	960	970	Same as above
3/24/2008	970	980	Limestone, yellowish gray (5Y 8/1), very fine grained, moderate to high porosity, well
3/24/2008 9/0	270	0 960	consolidated
3/24/2008	980	990	Limestone, white (N9) to yellowish gray (5Y 8/1), very fine grained to micritic, low to
3/24/2000		770	high porosity, well consolidated
3/24/2008	990	1000	Same as above
3/24/2008	1000	1005	Same as above
3/24/2008	1005	1010	Limestone, yellowish gray (5Y 7/2), micritic, very low porosity, well consolidated
3/24/2008	1010	1020	Same as above
3/24/2008	1020	1030	Same as above
3/24/2008	1030	1035	Same as above
3/24/2008	1035	1040	Limestone yellowish gray (5Y 8/1), fine sand grained, moderate to high porosity,
3/24/2008	1033	1040	poorly consolidated
3/24/2008	1040	1050	Same as above
3/24/2008	1050	1060	Same as above
3/24/2008	1060	1070	Limestone, yellowish gray (5Y 7/2), micritic, low porosity, well consolidated
]			Limestone (60%), pale yellowish brown (10YR 6/2), microcrystalline, very low
3/24/2008	1070	1080	porosity, well consolidated; limestone (40%), yellowish gay (5Y 8/1), very fine
			grained, moderate to high porosity, poorly consolidated
			Limestone (80%), medium light gray (N6), microcrystalline, very low porosity, well
3/24/2008	1080	1090	consolidated; limestone (20%), yellowish gay (5Y 8/1), very fine grained, moderate to
			high porosity, poorly consolidated
2/24/2009	1000	1100	Limestone, yellowish gray (5Y 8/1), fine grained, trace of phosphate, low to moderate
3/24/2008	1090	1100	porosity, poorly consolidated, some forams present
3/24/2008	1100	1110	Same as above
2/24/2000			Limestone, yellowish gray (5Y 8/1), fine grained, low to moderate porosity,
3/24/2008	1110	1120	moderately consolidated

	Depth	(ft. bpl)			
Date	From	То	Observer's Description		
3/24/2008	1120	1130	Same as above		
3/24/2008	1130	1140	Same as above		
3/24/2008	1140	1150	Same as above		
3/24/2008	1150	1160	Same as above		
3/24/2008	1160	1170	Same as above		
3/24/2008	1170	1180	Same as above		
3/24/2008	1180	1190	Same as above		
3/25/2008	1190	1195	Same as above		
3/25/2008	1195	1200	Limestone (60%), yellowish gray (5Y 8/1), micritic, low porosity, well consolidated; limestone (40%), yellowish gray (5Y 7/2), fine grained, moderate to high porosity, poorly consolidated		
3/25/2008	1200	1210	Same as above		
3/25/2008	1210	1220	Same as above		
3/25/2008	1220	1225	Same as above		
3/25/2008	1225	1230	Limestone (80%), yellowish gray (5Y 7/2), fine grained, moderate to high porosity, poorly consolidated; limestone (20%), yellowish gray (5Y 8/1), micritic, low porosity, well consolidated		
3/25/2008	1230	1235	Same as above		
3/25/2008	1235	1240	Limestone (70%), yellowish gray (5Y 7/2), fine grained, moderate to high porosity, poorly consolidated; dolomitic limestone (30%), medium gray (N5), micritic, low porosity, well consolidated		
3/25/2008	1240	1250	Same as above		
3/25/2008	1250	1260	Limestone (90%), yellowish gray (5Y 7/2), fine grained, moderate to high porosity, poorly consolidated; dolomitic limestone (10%), medium gray (N5), micritic, low porosity, well consolidated		
3/25/2008	1260	1270	Limestone (80%), yellowish gray (5Y 8/1), micritic, low porosity, well consolidated; limestone (20%), yellowish gray (5Y 7/2), fine grained, moderate to high porosity, poorly consolidated		
3/25/2008	1270	1280	Limestone, yellowish gray (5Y 8/1), micritic, low porosity, well consolidated		
3/25/2008	1280	1290	Limestone (60%), yellowish gray (5Y 7/2), fine grained, moderate to high porosity, poorly to moderately consolidated; limestone (40%), yellowish gray (5Y 8/1), micritic, low porosity, well consolidated		
3/25/2008	1290	1295	Same as above		
3/25/2008	1295	1300	Limestone, very pale orange (10YR 8/2), fine sand grained, moderate to high porosity, well consolidated		
3/25/2008	1300	1305	Same as above		
3/25/2008	1305	1310	Limestone (80%), very pale orange (10YR 8/2), fine sand grained, moderate to high porosity, moderately to well consolidated; limestone (20%), very pale orange (10YR 8/2) to light olive gray (5Y 6/1), micritic, low porosity, well consolidated		
3/25/2008	31310	1320	Same as above		
3/25/2008	1320	1325	Limestone (80%), very pale orange (10YR 8/2), fine sand grained, moderate to high porosity, poorly consolidated; limestone (20%), very pale orange (10YR 8/2) to light olive gray (5Y 6/1), micritic, low porosity, well consolidated		

	Depth	(ft. bpl)	
Date	From To		Observer's Description
			Limestone (90%), very pale orange (10YR 8/2), fine sand grained, moderate to high
3/25/2008	1325	1330	porosity, poorly consolidated; limestone (10%), very pale orange (10YR 8/2) to light
			olive gray (5Y 6/1), micritic, low porosity, well consolidated
3/25/2008	1330	1335	Same as above
			Limestone (90%), very pale orange (10YR 8/2), very fine grained, low porosity, well
3/25/2008	1335	1340	consolidated; limestone (10%), white (N9) to very light gray (N8), micritic, low
			porosity, well consolidated
3/25/2008	1340	1350	Same as above
			Limestone (70%), yellowish gray (5Y 8/1), fine grained, low porosity, poorly
3/25/2008	1350	1360	consolidated; clay (30%), dark greenish gray (5GY 4/1), soft and pliable
3/25/2008	1360	1370	Limestone, yellowish gray (5Y 8/1), micritic, low porosity, well consolidated
			Limestone, yellowish gray (5Y 8/1) to medium light gray (N6), micritic, low porosity
3/25/2008	1370	1380	well consolidated
			Limestone (80%), very pale orange (10YR 8/2), fine sand grained, moderate porosity,
3/25/2008	1380	1390	well consolidated; limestone (20%), yellowish gray (5YR 8/1), micritic, low porosity
]			well consolidated
		 	Limestone (80%), very pale orange (10YR 8/2), fine sand grained, moderate to high
3/25/2008	1390	1400	porosity, poorly to moderately consolidated; dolomitic limestone (20%), dark
	1370		yellowish brown (10YR 4/2), microcrystalline, low porosity, well consolidated
3/25/2008	1400	1405	Same as above
3/25/2008	1405	1410	Limestone, yellowish gray (5Y 8/1), micritic, low porosity, well consolidated
3/25/2008	1410	1420	Limestone, yellowish gray (5 V 8/1), micritic, low porosity, well consolidated
3/25/2008	1420	1430	Limestone, yellowish gray (5Y 8/1), micritic, low porosity, well consolidated
3/25/2008	1430	1440	Limestone, yellowish gray (5Y 8/1), micritic, low porosity, well consolidated Limestone, yellowish gray (5Y 8/1), micritic, low porosity, well consolidated
3/25/2008	1440	1450	Limestone, yellowish gray (5Y 8/1), migritic, low porosity, well consolidated
		1400	Limestone, yellowish gray (5Y 8/1), micritic, low porosity, well consolidated
3/25/2008	1450	1460	Limestone, light gray (N7) to yellowish gray (5Y 8/1), micritic, low porosity, well consolidated
3/25/2008	1460	1470	Limestone, medium light gray (N6), micritic, low porosity, well consolidated
3/25/2008	1470	1480	Limestone, medium light gray (N6), micritic, low porosity, well consolidated
3/25/2008	1480	1490	Limestone, medium light gray (N6) to yellowish gray (5Y 8/1), micritic, low porosity, well consolidated
3/25/2008	1490	1500	Limestone, yellowish gray (5Y 8/1), very fine grained, low porosity, moderately consolidated
3/25/2008	1500	1510	Same as above
3/25/2008	1510	1520	Same as above
3/25/2008	1520	1530	Same as above
3/25/2008	1530	1540	Same as above
3/25/2008	1540	1550	Same as above
3/25/2008	1550	1560	Limestone (90%), yellowish gray (5Y 8/1), very fine grained, low porosity, moderatel consolidated; limestone (10%), light gray (N7), micritic, low porosity, well consolidated
3/25/2008	1560	1565	Same as above
		1000	
3/25/2008	1565	1570	Limestone, yellowish gray (5Y 8/1), very fine grained, low porosity, moderately consolidated

:	Depth	(ft. bpl)	
Date	From	To	Observer's Description
3/25/2008	1570	1580	Same as above
3/25/2008	1580	1590	Same as above
3/25/2008	1590	1600	Same as above
3/25/2008	1600	1610	Same as above
3/25/2008	1610	1615	Same as above
3/26/2008	1615	1620	Limestone (95%), yellowish gray (5Y 8/1), fine grained, moderate to high porosity, moderately consolidated; limestone (5%), light gray (N7), micritic, low porosity, well consolidated
3/26/2008	1620	1630	Same as above
3/26/2008	1630	1640	Limestone, yellowish gray (5Y 8/1), fine grained, low to moderate porosity, moderately consolidated
3/26/2008	1640	1650	Same as above
3/26/2008	1650	1660	Same as above
3/26/2008	1660	1665	Same as above
3/26/2008	1665	1670	Limestone (90%), yellowish gray (5Y 8/1), fine grained, moderate porosity, moderately consolidated; dolomite (10%), dark yellowish brown (10YR 4/2), microcrystalline, low porosity, well consolidated
3/26/2008	1670	1680	Dolomite, dark yellowish brown (10YR 4/2), microcrystalline, low porosity, well consolidated
3/26/2008	1680	1690	Dolomite, dark yellowish brown (10YR 4/2), microcrystalline, low porosity, well consolidated
3/26/2008	1690	1695	Dolomite (95%), dark yellowish brown (10YR 4/2), microcrystalline, low porosity, well consolidated; limestone (5%), yellowish gray (5Y 8/1), very fine grained, low porosity, poorly to moderately consolidated
3/26/2008	1695	1700	Dolomite (50%), dark yellowish brown (10YR 4/2), microcrystalline, low porosity, well consolidated; dolomite (50%), moderate yellowish brown (10YR 5/4), fine sand grained, sucrosic, high porosity, well consolidated
3/26/2008	1700	1705	Same as above
3/27/2008	1705	1710	Dolomite (70%), dark yellowish brown (10YR 4/2), microcrystalline, low porosity, well consolidated; limestone (20%), very pale orange (10YR 8/2), fine sand grained, moderate to high porosity, poorly consolidated; dolomite (10%), moderate yellowish brown (10YR 5/4), fine sand grained, sucrosic, high porosity, poorly consolidated
3/27/2008	1710	1715	Same as above
3/27/2008	1715	1720	Limestone (90%), very pale orange (10YR 8/2), fine sand grained, moderate to high porosity, poorly consolidated; dolomite (10%), dark yellowish brown (10YR 4/2), microcrystalline, low porosity, well consolidated
3/27/2008	1720	1725	Same as above
3/27/2008	1725	1730	Limestone, very pale orange (10YR 8/2), fine sand grained, moderate to high porosity, poorly consolidated
3/27/2008	1730	1740	Same as above
3/27/2008	1740	1750	Limestone, very pale orange (10YR 8/2), fine sand grained, moderate to high porosity, poorly consolidated
3/27/2008	1750	1760	Same as above

•	Depth	(ft. bpl)	
Date	From	То	Observer's Description
3/27/2008	1760	1770	Same as above
]		Limestone (80%), very pale orange (10YR 8/2), fine sand grained, moderate to high
3/27/2008	1770	1780	porosity, poorly consolidated; dolomite (20%), dark yellowish brown (10YR 4/2),
			microcrystalline, low porosity, well consolidated
			Limestone (95%), very pale orange (10YR 8/2), fine sand grained, moderate to high
3/27/2008	1780	1790	porosity, poorly consolidated; dolomite (5%), dark yellowish brown (10YR 4/2).
			microcrystalline, low porosity, well consolidated
	:		Limestone (95%), very pale orange (10YR 8/2), fine sand grained, moderate to high
3/27/2008	1790	1800	porosity, poorly consolidated; dolomite (5%), dark yellowish brown (10YR 4/2).
		<u> </u>	microcrystalline, low porosity, well consolidated
3/27/2008	1800	1810	Limestone, very pale orange (10YR 8/2), fine sand grained, moderate to high porosity
			poorly consolidated
3/27/2008	1810	1815	Same as above
3/27/2008	1815	1820	Limestone, very pale orange (10YR 8/2), fine sand grained, moderate to high porosity
2/27/2000			moderately consolidated, trace of dolomite
3/27/2008	1820	1830	Same as above
3/27/2008	1830	1840	Limestone, very pale orange (10YR 8/2), fine sand grained, moderate to high porosity
			Imoderately consolidated, trace of dolomite
3/03/0000	1010	1850	Limestone (60%), very pale orange (10YR 8/2), fine sand grained, moderate to high
3/27/2008	1840		porosity, moderately to well consolidated; dolomite (40%), dark yellowish brown
			(10YR 4/2), microcrystalline, low porosity, well consolidated
3/27/2008	1850	1860	Limestone, very pale orange (10YR 8/2), fine sand grained, moderate to high porosity
			poorly to moderately consolidated
3/27/2008	1860	1870	Limestone, very pale orange (10YR 8/2), fine sand grained, moderate to high porosity.
			poorly to moderately consolidated
3/27/2008	1870	1880	Limestone, very pale orange (10YR 8/2), fine sand grained, moderate to high porosity,
		<u></u>	poorly to moderately consolidated
3/27/2008	1880	1890	Limestone, very pale orange (10YR 8/2), fine sand grained, moderate to high porosity,
	···		poorly to moderately consolidated
3/27/2008	1890	1900	Dolomite (90%), dark yellowish brown (10YR 4/2), fine to medium sand grained,
			sucrosic, moderate porosity, poorly to moderately consolidated
3/27/2008	1900	1910	Dolomite, pale yellowish brown (10YR 6/2) to light olive gray (5Y 6/1),
			microcrystalline, low porosity, well consolidated
2/27/2000			Dolomite (70%), moderate yellowish brown (10YR 5/4), fine sand grained, sucrosic,
3/27/2008	1910	1920	high porosity, poorly to moderately consolidated; limestone (30%), very pale orange
			(10YR 8/2), fine sand grained, high porosity, poorly consolidated
3/28/2008	1920	1925	Same as above
			Dolomite (60%), pale yellowish brown (10YR 6/2), microcrystalline, low porosity,
3/28/2008	1925	1930	well consolidated; limestone (40%), very pale orange (10YR 8/2), fine sand grained.
A (0.0 (0			high porosity, poorly consolidated
3/28/2008	1930	1935	Same as above
3/28/2008	1935	1940	Dolomite, grayish orange (10YR 7/4) to pale yellowish brown (10YR 6/2),
			microcrystalline to very fine grained, low porosity, well consolidated
3/28/2008	1940	1950	Same as above

	Depth	(ft. bpl)	
Date	From	То	Observer's Description
			Dolomite (70%), pale yellowish brown (10YR 6/2), very fine grained, low porosity,
3/28/2008	1950	1960	well consolidated; limestone (30%), yellowish gray (5Y 8/1), very fine grained,
		<u> </u>	moderate porosity, poorly consolidated, a few forams present
3/28/2008	1960	1970	Same as above
3/28/2008	1970	1980	Dolomite, pale yellowish brown (10YR 6/2) to light olive gray (5Y 6/1), very fine
3/20/2008	1970	1980	grained, moderate porosity, moderately consolidated
3/28/2008	1980	1990	Dolomite, pale yellowish brown (10YR 6/2) to light olive gray (5Y 6/1), very fine
3/20/2000	1700	1,770	grained, moderate porosity, moderately consolidated
3/28/2008	1990	2000	Dolomite, pale yellowish brown (10YR 6/2) to light olive gray (5Y 6/1), very fine
5,20,2000	1770	2000	grained, moderate porosity, moderately consolidated
3/28/2008	2000	2010	Dolomite, pale yellowish brown (10YR 6/2) to medium gray (N5), very fine grained to
			microcrystalline, moderate porosity, well consolidated
	2010	2020	Same as above
3/28/2008	2020	2025	Limestone, yellowish gray (5Y 8/1), very fine grained, high porosity, poorly
			consolidated, a few forams present
3/28/2008	2025	2035	Dolomite, moderate yellowish brown (10YR 5/4) to dark gray (N3), very fine grained,
			low porosity, well consolidated
3/28/2008	2035	2050	Dolomite, yellowish gray (5Y 8/1), very fine grained, low to moderate porosity, well
			consolidated
3/29/2008	2050	2055	Dolomite, medium light gray (N6) to light brownish gray (5YR 6/1), very fine grained
			low porosity, well consolidated
3/29/2008	2055	2000	Dolomite, moderate yellowish brown (10YR 5/4) to pale yellowish brown (10YR 6/2)
3/24/2006	2033	2060	very fine grained to microcrystalline, low porosity, moderately to well consolidated
3/29/2008	2060	2070	Same as above
5.23.2000	2000	2070	Limestone (95%), yellowish gray (5Y 7/2), fine to coarse sand grained, moderate
			porosity, moderately consolidated; dolomite (5%), moderate yellowish brown (10YR
3/29/2008	2070	2080	5/4) to pale yellowish brown (10YR 6/2), very fine grained to microcrystalline, low
į			porosity, moderately to well consolidated
			Dolomite (80%), dark yellowish brown (10YR 4/2) to medium gray (N5), very fine
3/29/2008	2080	2090	grained, low porosity, well consolidated; limestone (20%), yellowish gray (5Y 7/2),
!	+		fine to coarse sand grained, moderate porosity, moderately consolidated
2/20/2000	2000		Dolomite, pale yellowish brown (10YR 6/2), very fine grained to microcrystalline, low
3/29/2008	2090	2100	porosity, well consolidated
3/29/2008	2100	2110	Same as above
		···	Dolomite, pale yellowish brown (10YR 6/2) to dark yellowish brown (10YR 4/2), very
3/29/2008	2110	2120	fine grained to microcrystalline, low porosity, moderately consolidated, trace of
			limestone
			Dolomite (90%), pale yellowish brown (10YR 6/2) to dark yellowish brown (10YR
3/31/2008	2120	2130	4/2), very fine grained to microcrystalline, low porosity, moderately consolidated;
313112000			limestone, yellowish gray (5Y 7/2), fine to coarse sand grained, moderate porosity,
			moderately consolidated

	Depth	(ft. bpl)			
Date	From	То	Observer's Description		
3/31/2008	2130	2140	Dolomite (70%), moderate yellowish brown (10YR 5/6), fine to medium sand grained sucrosic, high porosity, moderately consolidated; Limestone (30%), yellowish gray (5Y 7/2), fine to medium sand grained, low to moderate porosity, moderately consolidated		
3/31/2008	2140	2145	Same as above		
3/31/2008	2145	2155	Dolomite, moderate yellowish brown (10YR 5/6) and dark yellowish brown (10YR 4/2), fine to medium sand grained, sucrosic, high porosity, moderately consolidated		
3/31/2008	2155	2165	Same as above		
3/31/2008	2165	2175	Dolomite (70%), moderate yellowish brown (10YR 5/6), fine to medium sand grained sucrosic, high porosity, moderately consolidated; limestone (30%), yellowish gray (5Y 8/1), medium to coarse sand grained, friable, low porosity, poorly to moderately consolidated		
3/31/2008	2175	2180	Same as above		
3/31/2008	2180	2185	Limestone, yellowish gray (5Y 8/1), fine to coarse sand grained, moderate porosity, moderately consolidated, numerous forams present		
4/4/2008	2185	2195	Same as above		
4/4/2008	2195	2197	Same as above		
t. bpl = feet be	elow pad lev	/el			

Attachment K Geophysical Logs

For Geophysical Logs Please see Volume 2

Attachment L Pad Monitor Wells Data Summary Sheets

FPL West County Energy Center

Palm Beach County, Florida

Dual-Zone Monitor Well Pad Monitor Wells

DZMW-1 Pad Monitoring Well Water Quality Data Northwest Pad Monitoring Well

Date	Time (hours)	Depth to Water (ft. bloc)	Water Elevation (ft. NAVD 88)	Conductivity (umhos/cm)	Chloride (mg/L)	TD\$ (mg/L)	pΉ	Temperature (degrees C)	Remarks	Sampled By
2/14/2008	1342	15.20	9.40	2,708	169	2,364	7.1	25.6	Initial background sampling.	Bevin Morris
2/22/2008	1240	15.00	9.60	2,615	139	2,260	7.1	25,5	,	Bevin Morris
2/27/2008	1158	15.00	9,60	2,567	126	2,308	6.8	24.6		Bevin Morris
3/7/2008	1224	15.08	9.52	2,636	106	2,400	7.0	25.4		Bevin Morris
3/13/2008	1332	14,57	10.03	2,519	137	2,160	7.1	25.3	i	Bevin Morris
3/20/2008	1050	15.40	9.20	2,570	102	2,156	7.0	25.3		Bevin Morris
3/28/2008	1241	15.29	9.31	3,030	104	2,300	7.0	24.9		Bevin Morris
4/3/2008	1303	15.10	9.50	2,523	106	2,364	70	25.5	1	Bevin Morris
4/10/2008	1403	14.92	9.68	2,607	90	2,300	7.1	25.3		Bevin Morris
4/18/2008	1357	14.97	9.63	2,810	84	2,240	7.8	25.0		Bevin Morris
4/24/2008	1058	15.33	9.27	2,860	131	2,220	8.0	25.9		Rosalio Gameno
5/1/2008	0011	15.62	8.98	2,550	86	2,380	7.3	25,2		Bevin Morris
5/9/2008	1027	16.10	8.50	2,790	138	2,200	7.7	26.0		Rosalio Gameno
5/15/2008	1312	16.12	8.48	2,579	85	2,284	70	25.5	j	Bevin Morris
]					Ì		
			[ļ		1
	i]							
	l i									ļ
				1						
	[1						
	1									

ft. btoc: feet below top of casing

TOC: Top of Casing

ft. NAVD 88 North American Vertical Datum of 1988

umhos/cm: micromhos per centimeter mg/L: milligrams per liter

C: Celsius

Note: TOC elevation is: 24.60 feet NAVD 88 Samples collected and analyzed by Florida Environmental Services, Inc.

FPL West County Energy Center

Palm Beach County, Florida

Dual-Zone Monitor Well Pad Monitor Wells

DZMW-1 Pad Monitoring Well Water Quality Data Southeast Pad Monitoring Well

Date	Time (hours)	Depth to Water (ft. btoc)	Water Elevation (ft. NAVD 88)	Conductivity (umhos/cm)	Chloride (mg/L)	TDS (mg/L)	ρΉ	Temperature (degrees C)	Remarks	Sampled By
2/14/2008 2/22/2008 2/27/2008	1237 1342 1305	15.20 15.05 15.05	9.56 9.71 9.71	3,317 3,198 2,925	239 254 192	2,856 2,730 2,648	7,1 7.0 7.1	25.3 25.4 24.2	Initial background sampling.	Bevin Morris Bevin Morris
3/7/2008 3/13/2008	1327 1427	15.17 15.22	9.59 9.54	3,369 3,336	220 203	2,870 2,830	7.0 7.0	25.2 25,0		Bevin Morris Bevin Morris Bevin Morris
3/20/2008 3/28/2008 4/3/2008	1142 1151 1410	15.30 15.45 15.15	9.46 9.31 9.61	3,512 4,070 3,723	261 283 345	2,776 3,000 3,120	7.0 7.0 6.9	25.0 24.3 25.2		Bevin Morris Bevin Morris Bevin Morris
4/10/2008 4/18/2008 4/24/2008	1510 1457 1151	14,95 14,99 15,37	9.81 9.77 9.39	3,627 3,670 3,730	320 267 265	3,000 2,948 2,916	7.1 7.8 7.8	25.1 25.0 24.5		Bevin Morris Bevin Morris Rosalio Gameno
5/1/2008 5/9/2008 5/15/2008	1246 1127 1420	15.50 16.12 16.18	9.26 8.64 8.58	3,342 3,400 3,178	242 200 187	2,916 2,650 2,328	7 2 7.7 7.0	24.8 25.5 25.3		Bevin Morris Rosalio Gameno
0,10,2,10	, , ,		0.50	3,170	107	. 2,220	7.0	23.3		Bevin Morris
-									1	
]						
	Ì			1						

ft. btoc:

feet below top of casing

TOC: Top of Casing

ft. NAVD 88: North American Vertical Datum of 1988

umhos/cm: micromhos per centimeter

mg/L: milligrams per liter

C: Celsius

Note: TOC elevation is: 24

24 76 feet NAVD 88

Samples collected and analyzed by Florida Environmental Services, Inc.

FPL West County Energy Center

Palm Beach County, Florida

Dual-Zone Monitor Well Pad Monitor Wells

DZMW-1 Pad Monitoring Well Water Quality Data Northeast Pad Monitoring Well

Date	Time (hours)	Depth to Water (ft. btoc)	Water Elevation (ft. NAVD 88)	Conductivity ((umhos/cm)	Chloride (mg/L)	TDS (mg/L)	pН	Temperature (degrees C)	Remarks	Sampled By
2/14/2008 2/22/2008 2/27/2008 3/7/2008 3/13/2008 3/20/2008 3/28/2008 4/3/2008 4/10/2008 4/18/2008 4/24/2008 5/1/2008 5/1/2008	1308 1417 1354 1358 1305 1215 1221 1436 1330 1327 1027 1320 0957 1235	14.65 14.50 14.55 14.55 14.55 14.60 14.95 14.82 14.64 14.40 14.47 14.85 15.15 15.59 15.65	9.47 9.62 9.57 9.57 9.52 9.17 9.30 9.48 9.72 9.65 9.27 8.97 8.53 8.47	2,564 2,565 2,387 2,594 2,569 2,570 2,930 2,552 2,516 2,780 2,740 2,543 2,730 2,515	(mg/L) 85 89 65 60 63 58 58 59 55 43 57 60 63 67	(mg/L) 2,468 2,550 2,472 2,500 2,420 2,452 2,400 2,456 2,400 2,456 2,400 2,376 2,456 2,300 2,448	PH 7.1 7.1 7.2 7.0 7.0 7.1 7.0 7.1 7.8 7.8 7.8 7.2 7.7 7.1		Remarks Initial background sampling.	Bevin Morris Rosalio Gameno Bevin Morris

ft. btoc:

feet below top of casing

TOC: Top of Casing

ft. NAVD 88: North American Vertical Datum of 1988

umhos/cm: micromhos per centimeter mg/L. milligrams per liter

C: Celsius

Note: TOC elevation is:

24.12 feet NAVD 88

Samples collected and analyzed by Florida Environmental Services, Inc.

FPL West County Energy Center

Palm Beach County, Florida

Dual-Zone Monitor Well Pad Monitor Wells

DZMW-1 Pad Monitoring Well Water Quality Data Southwest Pad Monitoring Well

Date	Time (hours)	Depth to Water (ft. btoc)	Water Elevation (ft. NAVD 88)	Conductivity (umhos/cm)	Chloride (mg/L)	TDS (mg/L)	pН	Temperature (degrees C)		Sampled By
2/14/2008	1205	14.37	10.33	2,915	144	2,716	7.0	24.6	Initial background sampling.	Bevin Morris
2/22/2008	1313	14.32	10,38	2,882	153	2,670	7.1	24.7		Bevin Morris
2/27/2008	1227	14.35	10.35	2,795	149	2,596	7.1	24.1		Bevin Morris
3/7/2008	1255	14.42	10.28	2,910	153	2,570	6.9	24.4		Bevin Morris
3/13/2008	1400	14.42	10.28	2,859	204	2,409	6.7	24.6		Bevin Morris
3/20/2008	1120	14,50	10.20	2,914	156	2,436	6.9	24.3		Bevin Morris
3/28/2008	1121	14.49	10.21	3,410	161	2,600	7.0	24.1		Bevin Morris
4/3/2008	1338	14.40	10.30	2,925	175	2,740	6.9	24.4		Bevin Morris
4/10/2008	1435	14.15	10.55	2,906	180	2,500	7.0	24.6	İ	Bevin Morris
4/18/2008	1427	14.25	10.45	3,150	174	2,460	7.8	25.0	·	Bevin Morris
4/24/2008	1126	14.58	10.12	3,140	167	2,476	8.0	23.8	!	Rosalio Gameno
5/1/2008	1215	14 90	9.80	2,814	153	2,556	7.3	24.2	<u> </u>	Bevin Morris
5/9/2008	1052	15.35	9,35	3,000	171	2,470	7.7	24.9		Rosalio Gameno
5/15/2008	1346	15.42	9,28	2,740	140	2,464	7.0	24.5		Bevin Morris

ft. btoc: feet below top of casing

TOC: Top of Casing

ft. NAVD 88: North American Vertical Datum of 1988

umhos/cm: micromhos per centimeter mg/L: milligrams per liter

C: Celsius

Note: TOC elevation is: 24.70 feet NAVD 88

Samples collected and analyzed by Florida Environmental Services, Inc.

Attachment M Pilot Hole Water Quality Data Summary

Florida Power & Light West County Energy Center Dual-Zone Moniitor Well DZMW-1 Pilot Hole Water Quality

Sample	i .	Date of Depth of Drill Conductivity Total Dissolved			Chlorides	pH	Comments					
Date	Analysis	String (ft bpl)	(umhos)	Solids (mg/L)	(mg/L)	<u> </u>						
3/24/2008	3/24/2008	935	3,635	1,210	700	8.1	Field analysis performed by Sally Durall.					
3/24/2008	3/24/2008	965	3,618	1,220	848	8.0	Field analysis performed by Sally Durall					
3/24/2008	3/24/2008	995	3,602	2,080	1,043	7.8	Field analysis performed by Sally Durall.					
3/24/2008	3/24/2008	1,025	3,645	2,110	903	7.9	Field analysis performed by Sally Durall.					
3/24/2008	3/24/2008	1,055	3,866	2,160	998	8.9	Field analysis performed by Sally Durall.					
3/25/2008	3/25/2008	1,085	3,885	2,200	1,075	8.9	Field analysis performed by Sally Durall.					
3/25/2008	3/25/2008	1,115	3,870	2,230	1,035	8.7	Field analysis performed by Sally Durall.					
3/25/2008	3/25/2008	1,145	3,842	2,230	1,065	8.6	Field analysis performed by Sally Durall.					
3/25/2008	3/25/2008	1,175	3,818	2,250	1,050	8.7	Field analysis performed by Sally Durall.					
3/25/2008	3/25/2008	1,205	4,405	2,540	1,118	8.8	Field analysis performed by Sally Durall.					
3/25/2008	3/25/2008	1,235	4,352	2,545	1,080	8.7	Field analysis performed by Sally Durall.					
3/25/2008	3/25/2008	1,265	4,316	2,550	1,118	8.7	Field analysis performed by Sally Durall.					
3/25/2008	3/25/2008	1,295	4,221	2,440	1,170	9,2	Field analysis performed by Sally Durall.					
3/25/2008	3/25/2008	1,325	4,250	2,450	1,173	8.7	Field analysis performed by Sally Durall.					
3/25/2008	3/26/2008	1,355	4,305	2,470	1,200	8.3	Field analysis performed by Sally Durall.					
3/25/2008	3/26/2008	1,385	4,493	2,580	1,230	8.6	Field analysis performed by Sally Durall.					
3/25/2008	3/26/2008	1,405	4,543	2,590	1,310	8.5	Field analysis performed by Sally Durall.					
/25/2008	3/26/2008	1,435	4,341	2,500	1,310	8.6	Field analysis performed by Sally Durall.					
/26/2008	3/26/2008	1,465	4,395	2,530	1,340	8.4	Field analysis performed by Sally Durail.					
/26/2008	3/26/2008	1,495	4,281	2,470	1,370	8.4	Field analysis performed by Sally Durall.					
3/26/2008	3/26/2008	1,530	4,386	2,520	1,380	8.4	Field analysis performed by Sally Durall,					
3/26/2008	3/26/2008	1,560	4,459	2,570	1,410	8.3	Field analysis performed by Sally Durall.					
3/26/2008	3/26/2008	1,580	4,431	2,540	1,490	8.3	Field analysis performed by Sally Durall.					
3/26/2008	3/26/2008	1,610	4,629	2,650	1,490	8.2	Field analysis performed by Sally Durall.					
/26/2008	3/26/2008	1,640	4,365	2,520	1,460	8.2	Field analysis performed by Sally Durali.					
/26/2008	3/26/2008	1,670	4,415	2,520	1,480	8.3	Field analysis performed by Sally Durall.					
/26/2008	3/27/2008	1,705	4,433	2,600	1,540	8.2	Field analysis performed by Sally Durali.					
/27/2008	3/27/2008	1,735	4,457	2,610	1,530	8.2	Field analysis performed by Sally Durali.					
/27/2008	3/27/2008	1,765	4,572	2,660	1,560	8.2	Field analysis performed by Sally Durall.					
/27/2008	3/27/2008	1,795	4,554	2,630	1,540	8.2	Field analysis performed by Sally Durall.					
/27/2008	3/27/2008	1,825	4,645	2,670	1,530	8.2	Field analysis performed by Sally Durall.					
/27/2008	3/27/2008	1,855	4,750	2,720	1,690	8.2	Field analysis performed by Sally Durall.					
/27/2008	3/27/2008	1,885	4,710	2,700	1,710	8.2	Field analysis performed by Sally Durall.					
/27/2008	3/28/2008	1,915	4,990	2,860	1,730	8.2	Field analysis performed by Sally Durall.					
/28/2008	3/28/2008	1,945	5,060	2,920	1,730	8.2	Field analysis performed by Sally Durali					
/28/2008	3/28/2008	1,975	5,560	3,230	1,760	8.2	Field analysis performed by Sally Durall.					
/28/2008	3/28/2008	2,005	5,780	3,280	1,810	8.3	Field analysis performed by Sally Durall.					
/28/2008	3/28/2008	2,035	14,650	8,380	4,725	7,5	Field analysis performed by Sally Durall.					
/29/2008	3/29/2008	2.065	19,750	11,270	7,200	7.7	Field analysis performed by Sally Durall.					
/29/2008	3/29/2008	2,095	37,930	22,000	13,150	7.9	Field analysis performed by Sally Durall.					
/31/2008	3/31/2008	2,125	29,730	17,200	11,000	7.8						
/31/2008	3/31/2008	2,155	37,860	21,800	12,200	7.9	Field analysis performed by Sally Durall.					
/31/2008	3/31/2008	2,185	33,290	19,300	11,250	7.9	Field analysis performed by Sally Durall. Field analysis performed by Sally Durall.					

ft. bpl = feet below pad level

All analytical data based on field measurements. Conductivity determined using a calibrated conductivity meter (Standard Method #2510), chloride determined via titration (Standard Method #18-4500-CI-B), pH determined via pH meter (Standard Method #4500), total dissolved solids measured via a calibrated TDS meter (Standard Method #1040).

Attachment N Packer Test Sample Laboratory Reports

CHAIN OF

- ☐ 1460 W. McNab Road Ft Laud, FL 33309 ☐ 630 Indian Street Savannah, GA 31401
- ☐ 528 Gooch Road Fort Meade FT 33841

_	220	COOC	H KOZU P	on Meade, PL	. 33641
	415	B SW	Park St.	Okeechobee,	FL 34972

JSTODY RECORD

Tel: (954) 978-6400 Tel: (912) 238-5050

Tel: (863) 285-8145

Fax: (954) 978-2233 Fax: (912) 234-4815 Fax: (863) 285-7030

DUE DATE Requ

RUSH RESERVATION #

GSM assigned	E nvironment	□ 4	15 B SW Par						. ,	63-3336			3) 763-15						1
Report to:			Original-Re	turu y/rep	ort 💸 🤻				File Co	py	, , , I	lak-Sau	pler Cop	V (1)	Rı	sh Surc	harges	аррlу	
(company name) 100	WEQUIST BROT			····				ss: /3	465	PINE R	10G6 N	v. FT.	MYEA	3 FZ.	3320	B			
Invoice to: (company name) 10UHC PUIST BROTHERS III Purchase (company name) 10UHC PUIST BROTHERS Order # Project Name UPEST COUNTY POWER PROTINCES and/or Number FFT SITE LAXAHATCHEL FL.							Invoice Addre	Invoice to Address: 15445 PINE RIDGE RD, Fr. MYERS FL. 33908											
Project Name WEST COWING FOURT PARTIES							Site											_	
Project PHILLIP SHAND Phone: 39-560-4430							Fax:	<u> </u>		<i>j</i>	0, 20	.,,,,,,,,,					r Ł	<u>i)</u>	
Sampler Name							Samp	Sampler A							goungquest brothers, com				
(printed) PHIL	LIP SHAND			T-50-			Signa	ture	43										
ORDER#	Sample	Date Sampled	Time Sampled	Matrix	Boti &		Numb Conta	iners		A	naly:	sis Re	quire	ed		Fi	eld	Tes	ts
	ID		} .	DW SW GW WW	Рге	s.	Recei	ved LAC	PNI	HANG WATE:	1560	DADAR	4			Ŧ	P	C	C H
Shided Areas Ler Euborators Use Only				S SED HW BIO	Com	bo	Let Suffi	ter	DALA	WING	ひれた	A SAI	בשומח			M	- 1	N	î o
				SEA OIL X AIR	Cod	les		A-?	DZ	mw	*/	Deprel	2/33	-Z143		°C P		D d	R
· #9x92		4/08/08	13.4.5				28									23.4	7.04	69	259
2	PACKER TEST I									1		 					- 	/ 	[4]
3 185 9 33 34						+				 	 	 							
* 2223	12MH 1			 			5 (4 %) A	3 7 E		 	-	 							
5	2133-2165				\vdash	+				 			ļ.——						
	_																		
6																			
7 3											[
8						~													
9 5 6			-			+	VIII O	5 4		 	 -	†	 						
10	1			 						 			1						
12			L	<u> </u>					202300	LODGE THE WA	X150000 XXX	Compositions	1010 CYCSA	ATURES :	Saurenes		******	ment and	****
Special Comments:							10		1	Relinquis	hed by:		enough dada	<u>.cokes≈</u> 	BIA DESTANDA		- 1		
"I waive NELAC protoc Deliverables:	ol" (sign here) >	OA/OC Rea	port Needed?	Yes	No	(add	litional ch	arge)	1	Received	by:	7 10					100	00	1500
		Bottle Type	Kina manaka	ē P			38.0 ± 0.2 ± 0.	0812283 0	2	Relinguis	bed by:		5	7		48	108		.70
Sample Cartudy & Fish	A-liter ami	er		Asscorbi	seld .	P-H							/		۷	1/8	108		
Temp as receivedY	7 C B-Bacteria 7 p F-500 mil	bag/bottle O-125 ml		C HCL Co-CuSO	4	J-N	2804 •28203		2	Received	by:		<u> </u>		9	<u> </u>	103		
RIFI'D TIME	L-Hier bott S4-4 az sól		soll jár	H-HNO3 M-MCAB	32.31 APROXI		apreserv AOH	ભો	3	Relinquis	hed by:								
	1 1-250 ml			Zezine are		the second	4NH4CI		3	Received	by:		· · · · ·						
	brs V-40 ml vis W-wide un	oth .								www.f	lenvir	o.com	· · · · · · · · · · · · · · · · · · ·	C	OC Pa	ze	Z_{0}	$\mathbf{r} \mathcal{I}$	
Misc Charges	N-other 1-800-988-5327 N503.	TEDETed)	WYAN FEETS OUT				F18123393		L							/		7	397100597

Page 1 of 18 Report Printed: 04/23/08 Submission # 804000233 Order # 59892

Project: Matrix:

FPL Site, Loxahatchee, FL Site Location: State Road 80, Loxabatchee, FL

Water

Sample I.D.: Packer Test#1 (2132-2165) Collected: 04/08/08 13:45 Received: 04/08/08 17:00 Collected by: Phillip Shand

LABORATORY ANALYSIS REPORT

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Biochemical Oxygen Demand	U	U	mg/L	2.0	6.0	405.1	04/09 15:44		+
Coliform-Total (E-Coli)	P(A)	+-	F41		-	92238		04/14 13:44	RAV
Specific Conductance (grab)	53000	- 	uS/cm	0.1	0.3	120.1	04/08 17:25	04/09 17:25	RAV
рН	7.38	Q	units	0.1	0.3	150.1	04/09 15:09	04/09 15:09	DGK
tal Dissolved Solids (TDS)	34000	-	mg/L	1.00	3.00		04/09 17:33	04/09 17:33	IMA
Chloride	20500	 - -	mg/L	62.00	 -	EPA 160.1	04/15 14:21	04/16 14:21	RPV
Fluoride	1.42	 		 -	186.00	300.0	04/09 17:42	04/09 17:42	DGK
Nitrate (as N)		 	mg/L	0,400	1.200	300.0	04/09 17:42	04/09 17:42	DGK
	U	U	mg/L	0.005	0.015	300.0	04/09 17:42	04/09 17:42	DGK
Nitrite (as N)	ΰ	Ū	mg/L	0.006	0.018	300.0	04/09 17:42	04/09 17:42	DGK
Ortho-Phosphate (as P)	Ū	U	mg/L	0.840	0.120	300.0	04/09 17:42	04/09 17:42	DGK
Sulfate	2910		mg/L	8.00	24.00	300.0	04/09 17:42	04/09 17:42	
Cyanide, Total	υ	U	mg/L	0.004	0.012	335.3	04/16 11:26	04/16 14:39	DGK
Vitrogen (Ammonia) as N	U	U	mg/L	0.01	0.03	350.1			MSG
litrogen (Kjeldahl) as "N"	υ	บ	mg/L	0.045	0.135	351.2	04/11 15:36	04/11 14:10	MSG
itrogen (Total Organic)	U	U	mg/L	 				04/18 12:45	MG/RPV
hosphorus, Total as "P"	0.072	ı			0.135	351.2	04/18 12:44	04/18 12:44	MG/RPV
hemical Oxygen Demand	- 		mg/L	0.031	0.093	365.4	04/18 14:51	04/18 14:51	MG/MEC
······································	2350		mg/L	40.90	122.70	410.4	04/09 10:43	04/09 10:43	IMA
BAS Surfactants (LAS Mol.Wt. 340)	0.02	1	mg/L	0.01	0.03	425.1	04/10 18:24	04/10 18:24	IMA
		۱		- 7					

Florida-Spectrum Environmental Services, Inc. 1460 W. McNab Road, Fort Lauderdale, FL 33309

Pembroke Laboratory 528 Gooch Rd. Fort Mead, FL 33841

Big Lake Laboratory 415 B SW Park St. Okeechobee, FL 34972 www.flenviro.com

Spectrum Laboratories 630 Indian St. Savannah, GA 31401

Page 2 of 18 Report Printed: 04/23/08 Submission # 804000233 Order # 59892

Project: FPL Site, Loxahatchee, FL State Road 80, Loxahatchee, FL Water

Sample I.D.: Packer Test#1 (2132-2165) Collected: 04/08/08 13:45 Received: 04/08/08 17:00

Received: 04/08/08 1 Collected by: Phillip Shand

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Odor (Lab)	1		TON	0.1	0.3	SM2150B	04/09 17:16	04/09 17:16	IMA
Color (Lab)	100		Pt-Co	2.0	6.0	SM2120B	04/09 17:15	04/09 17:15	IMA
Langelier Index (Corrosivity)(Water) (0	-0.514					SM 2330B	04/09	04/22	MG
Aluminum	υ	ŭ	mg/L	0.005	0.015	200.7	04/09	04/09 13:30	IMN
תע	1.369		mg/L	0.001	0.003	200.7	04/09	04/09 13:30	IMN
Sodium	11281		mg/L	30.000	90.000	200.7	04/09	04/09 18:44	IMN
Zinc	U	U	mg/L	0.00004	0.00012	200.7	04/09	04/09 13:30	IMN
200.8 DW-10 Metals in Drinking Water	er 62-550.310	ì	1	Dilution	Factor = 1	10		:	
Arsenic	υ	v	mg/L	0.00120	0.00360	4.1.3/200.8	04/09 10:00	04/09 15:18	IMN
Barium	0.034		mg/L	0.0037	0.0111	4.1.3/200.8	04/09 10:00	04/09 15:18	DMN
Cadmium	U	υ	mg/L	0.00430	0.01290	4.1.3/200.8	04/09 10:00	04/09 15:18	IMN
Chromium	บ	υ	mg/L	0.00080	0.00240	4.1.3/200.8	04/09 10:00	04/09 15:18	IMN
Lead	υ	บ	mg/L	0.00010	0.00030	4.1.3/200.8	04/09 10:00	04/09 15:18	IMN
Nickel	υ	U	mg/L	0.00300	0.00900	4.1.3/200.8	04/09 10:00	04/09 15:18	IMN
Selenium	U	บ	mg/L	0.00300	0.00900	4.1.3/200.8	04/09 10:00	04/09 15:18	IMN
Antimony	บ	Ū	mg/L	0.00400	0.01200	4.1.3/200.8	04/09 10:00	04/09 15:18	IMN
Beryllium	U	U	mg/L	0.00200	0.00600	4.1.3/200.8	04/09 10:00	04/09 15:18	IMN
Thallium	U	U	mg/L	0.00020	0.00060	4.1.3/200.8	04/09 10:00	04/09 15:18	IMN

Page 3 of 18 Report Printed: 04/23/08 Submission # 804000233 Order # 59892

Project: FPL Site, Loxahatchee, FL State Road 80, Loxahatchee, FL Water

Sample I.D.: Packer Test#1 (2132-2165)
Collected: 04/08/08 13:45
Received: 04/08/08 17:00
Collected by: Phillip Shand

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYS?
Соррег	ប	U	mg/L	0.00080	0.00240	200.8	04/09	04/09 15:18	IMN
Manganese	0.077		mg/L	0.00100	0.00300	200.8	04/09	04/09 15:18	IMN
Silver	υ	U	mg/L	0.00010	0.00030	200.8	04/09	04/09 15:18	IMN
Мегсигу	Ţ	ט	mg/L	0.00002	0.00006	245.1	04/10	04/10 13:16	EN
4.1 EDB, DBCP: 62-550.310(4)(b)	i ·	1	1	Dilution	Factor =	1			
1,2-Dibromo-3-Chloropropane (DBCP)	U	U	ug/L	0.02	0.06	BPA 504.1 EC	D 04/1511:54	04/15 21:54	AC
Ethylene Dibromide (BDB)	U	U	ug/L	0.02	0.06	EPA 504.1 EC	D 04/1511:54	04/15 21:54	AC
508 Pesticides & PCBs: 62-550.310(4)	(b)	1	'	Dilutien	Factor =	<u></u>			
Hexachlorocyclopentadiene	บ	υ	ug/L	0.03	0.09	508	04/11 14:19	04/11 22:31	AC
Hexachlorobenzene	υ	U	ug/L	0.026	0.078	508	04/11 14:19	04/11 22:31	AC
v-BHC (Lindane)	ŭ	บ	ug/L	0.023	0.069	508	04/11 14:19	04/11 22:31	AC
Heptachlor	υ	U	ug/L	0.002	0.006	508	04/11 14:19	04/11 22:31	AC
Heptachlor Epoxide	υ	U	ug/L	0.002	0.006	508	04/11 14:19	04/11 22:31	AC
Endrin	U	ū	ug/L	0.012	0.036	508	04/11 14:19	04/11 22:31	AC
Methoxychlor	υ	υ	ug/L	0.012	0.036	508	04/11 14:19	04/11 22:31	AC
Arochlor 1016	U	υ	ug/L	0.10	0.30	508	04/11 14:19	04/11 22:31	AC
Arochlor 1221	U	U	ug/L	0.10	0.30	508	04/11 14:19	04/11 22:31	AC
Arochlor 1232	บ	υ	ug/L	0.10	0.30	508	04/11 14:19	04/11 22:31	AC

Page 4 of 18 Report Printed: 04/23/08 Submission # 804000233 Order # 59892

Project: FPL Site, Loxahatchee, FL Site Location: State Road 80, Loxahatchee, FL Water

Sample I.D.: Packer Test#1 (2132-2165)
Collected: 04/08/08 13:45
Received: 04/08/08 17:00
Collected by: Phillip Shand

PARAMETER	RESULT	QC	UNITS	MOL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Arochlor 1242	U	U	ug/L	0.10	0.30	508	04/11 14:19	04/11 22:31	AC
Arochlor 1248	ับ	U	սց/Ն	0.10	0.30	508	04/11 14:19	04/11 22:31	AC
Arochlor 1254	ប	U	ug/L	0.10	0.30	508	04/11 14:19	04/11 22:31	AC
Arochlor 1260	υ	Ü	ug/L	0.10	0.30	508	04/11 14:19	04/11 22:31	AC
l'oxaphene	U	U	ug/L	0.06	0.18	508	04/11 14:19	04/11 22:31	AC
Chlordane	υ	υ	ug/L	0.01	0.03	508	04/11 14:19	04/11 22:31	AC
515.3 Chlorophenoxy Herbicides: 62-5	50.310(4)(ъ)	1	1	Dilution	Factor =	1		· · · · · · · · · · · · · · · · · · ·	
Dalapon	U	U	ug/L	0,14	0.42	515.3	04/15 11:49	04/15 21:49	AC
2,4-D	U	υ	ug/L	0.19	0.57	515.3	04/15 11:49	04/15 21:49	AC
Pentachlorophenol	U	บ	ug/L	0.02	0.06	515.3	04/15 11:49	04/15 21:49	AC
2,4,5-TP (silvex)	U	U	ug/L	0.052	0.156	515.3	04/15 11:49	04/15 21:49	AC
Dinoseb	υ	U	ug/L	0.18	0.54	515.3	04/15 11:49	04/15 21:49	AC
Picloram	υ	U	ug/L	0.14	0.42	515.3	04/15 11:49	04/15 21:49	AC
524.2 Volatile Organics: 62-550.310(4)	(a)	† ·	[Dilution	Factor =	1			
Vinyl Chloride	บ	υ	ug/L	0.34	1.02	524.2	04/10 08:59	04/12 12:56	AC
1.1-Dichloroethylene	υ .	ប	ug/L	0.43	1.29	524.2	04/10 08:59	04/12 12:56	AC
Dichloromethane (Methylene Chloride)	υ	U	ug/L	2.00	6.00	524.2	04/10 08:59	04/12 12:56	AC
Trans-1,2-Dichloroethylene	U	ŭ	ug/L	0.50	1.50	524.2	04/10 08:59	04/12 12:56	AC

Page 5 of 18 Report Printed: 04/23/08 Submission # 804000233 Order # 59892

Project: FPL Site, Loxahatchee, FL State Road 80, Loxahatchee, FL

Matrix:

Water

Sample I.D.: Packer Test#1 (2132-2165)
Collected: 04/08/08 13:45
Received: 04/08/08 17:00
Collected by: Phillip Shand

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Cis-1,2-Dichloroethylene	υ	บ	ug/L	0.11	0.33	524.2	04/10 08:59	04/12 12:56	AC
1.1.1-Trichloroethane	ט	U	ug/L	0.25	0.75	524.2	04/10 08:59	04/12 12:56	AC
Carbon Tetrachloride	υ	U	ug/L	0.19	0.57	524.2	04/10 08:59	04/12 12:56	AC
Benzene	U	υ	ug/L	0.09	0.27	524.2	04/10 08:59	04/12 12:56	AC
1,2-Dichloroethane	υ	U	ug/L	0.24	0.72	524.2	04/10 08:59	04/12 12:56	AC
Trichloroethylene	υ	U	ug/L	0.09	0.27	524.2	04/10 08:59	04/12 12:56	AC
1,2-Dichloropropane	υ	บ	ug/L	0.20	0.60	524.2	04/10 08:59	04/12 12:56	AC
Toluene	U	ប	ug/L	0.14	0.42	524.2	04/10 08:59	04/12 12:56	AC
1,1,2-Trichloroethane	υ	υ	ug/Ľ	0.36	1.08	524.2	04/10 08:59	04/12 12:56	AC
Tetrachloroethylene	υ	ŭ	ug/L	0.11	0.33	524. 2	04/10 08:59	04/12 12:56	AÇ
Chlorobenzene	υ	υ	ug/L	0.09	0.27	524.2	04/10 08:59	04/12 12:56	AC
Ethylbenzene	υ	ט	ug/L	0.13	0.39	524.2	04/10 08:59	04/12 12:56	AC
Xylenes (Total)	υ	Ü	ug/L	0.21	0.63	524.2	04/10 08:59	04/12 12:56	AC
Styrene	υ	U	ug/L	0.17	0.51	524.2	04/10 08:59	04/12 12:56	AC
1,4-Dichlorobenzene (para)	υ	ប	ug/L	0.14	0.42	524.2	04/10 08:59	04/12 12:56	AC
1,2-Dichlorobenzene (ortho)	U	υ	ug/L	0.48	1.44	524.2	04/10 08:59	04/12 12:56	AC
1,2,4-Trichlorobenzene	υ	U	ug/L	0.82	2.46	524.2	04/10 08:59	04/12 12:56	AC
25.2 Semivolatile Organics: 62-550.310	(4)(b)	·	 	Dilution	Factor = 1				

Page 6 of 18 Report Printed: 04/23/08 Submission # 804000233 Order # 59892

Project: FPL Site, Loxahatchee, FL Site Location: State Road 80, Loxahatchee, FL Water

Sample I.D.: Collected: Received: Sample I.D.: Packer Test#1 (2132-2165)
Collected: 04/08/08 13:45
Received: 04/08/08 17:00
Collected by: Phillip Shand

PARAMETER	RESULT	QC	UNITS	MODIL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Di(2-Bihylhexyl)phthalate	U	Ü	ug/L	0.36	1.08	525.2	04/11 08:43	04/11 20:45	DS
Di(2-Ethylhexyl)adipate	Ţ	U	ug/L	0.36	1.08	525.2	04/11 08:43	04/11 20:45	DS
Велго(а)ругеле	U	U	ug/L	0.017	0.051	525.2	04/11 08:43	04/11 20:45	DS
Pentachlorophenol	U	ָט	ug/L	0.02	0.06	525.2	04/11 08:43	04/11 20:45	DS
Alachlor	U	v	ug/L	0.20	0.60	525.2	04/11 08:43	04/11 20:45	DS
Atrazine	U	U	ug/L	0.20	0.60	525.2	04/11 08:43	04/11 20:45	DS
Simazine	ប	U	ug/L	0.20	0.60	525.2	04/11 08:43	04/11 20:45	DS
608 Chlorinated Pesticides & PCI	s in WATER	 	 	Dilutier	Factor =	<u>†</u> 1			
а-ВНС	υ	U	ug/L	0.005	0.015	BPA 608	04/09 13:43	04/09 22:44	AC
b-BHC	ט	U	ug/L	0.005	0.015	EPA 608	04/09 13:43	04/09 22:44	AC
g-BHC (lindane)	Ü	U	ug/L	0.004	0.012	EPA 608	04/09 13:43	04/09 22:44	AC
d-BHC	บ	U	ug/L	0.005	0.015	EPA 608	04/09 13:43	04/09 22:44	AC
Heptachlor	U	ប	ug/L	0.005	0.015	EPA 608	04/09 13:43	04/09 22:44	AC
Aldrin	U	ט	ug/L	0.017	0.051	EPA 608	04/09 13:43	04/09 22:44	AC
Heptachlor Epoxide	υ	υ	ug/L	0.008	0.024	EPA 608	04/09 13:43	04/09 22:44	AC
Endosulfan I	U	U	ug/L	0.006	0.018	EPA 608	04/09 13:43	04/09 22:44	AC
Dieldrin	υ	U	ug/L	0.006	0.018	BPA 608		04/09 22:44	AC
4,4-DDE	υ	ប	ug/L	0.39	1.17	EPA 608		04/09 22:44	AC

Page 7 of 18 Report Printed: 04/23/08 Submission # 804000233 Order # 59892

Project: FPL Site, Loxahatchee, FL State Road 80, Loxahatchee, FL Water

Sample I.D.: Packer Test#1 (2132-2165)
Collected: 04/08/08 13:45
Received: 04/08/08 17:00
Collected by: Phillip Shand

PARAMETER	RESULT	QC	UNITS	MOL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Endrin	ט	บ	ug/L	0.005	0.015	EPA 608	04/09 13:43	04/09 22:44	AC
Bndosulfan II	บ	U	ug/L	0.006	0.018	EPA 608	04/09 13:43	04/09 22:44	AC
4,4-DDD	U	U	ug/L	0.60	1.80	EPA 608	04/09 [3:43	04/09 22:44	AC
Endrin Aldehyde	U	U	ug/L	0.010	0.030	EPA 608	04/09 13:43	04/09 22:44	AC
Indosulfan Sulfate	U	บ	ug/L	0.007	0.021	EPA 608	04/09 13:43	04/09 22:44	AC
4,4-DDT	U	υ	ug/L	0.69	2.07	EPA 608	04/09 13:43	04/09 22:44	AC
Methoxychlor	υ	υ	ug/L	0.007	0.021	EPA 608	04/09 13:43	04/09 22:44	AC
Arecler 1016	υ	Ų	ug/L	0.27	0.81	EPA 608	04/09 13:43	04/09 22:44	AÇ
Aroclor 1221	U	บ	ug/L	0.15	0.45	BPA 608	04/09 13:43	04/09 22:44	AC
Aroclor 1232	บ	U	ug/L	0.35	1.05	EPA 608	04/09 13:43	04/09 22:44	AC
Aroclor 1242	U	ט	ug/L	0.24	0.72	EPA 608	04/09 13:43	04/09 22:44	AC
Aroclor 1248	ប	υ	ug/L	0.09	0.27	EPA 608	04/09 13:43	04/09 22:44	AC
Aroclor 1254	ט	υ	ug/L	0.06	0.18	BPA 608	04/09 13:43	04/09 22:44	AC
Aroclor 1260	U	U	ug/L	0.18	0.54	EPA 608	04/09 13:43	04/09 22:44	AC
Toxaphene	ט	Ü	ug/L	0.40	1.20	EPA 608	04/09 13:43	04/09 22:44	AC
Chlordane	υ	υ	ug/L	0.10	0.30	EPA 608	04/09 13:43	04/09 22:44	AC
260B Volatile Organics in Wa	ter by GC/MS	*****	 	Dilution	Factor =1	·			
Acetone	U	U	ug/L	10.00	30.00	5030/8260B	04/09 19:16	04/09 19:16	MMD

Page 8 of 18 Report Printed: 04/23/08 Submission # 804000233 Order # 59892

Project: FPL Site, Loxahatchee, FL Site Location: State Road 80, Loxahatchee, FL Water

 Sample I.D.:
 Packer Test#1 (2132-2165)

 Collected:
 04/08/08
 13:45

 Received:
 04/08/08
 17:00

 Collected by:
 Phillip Shand

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Acrolein	ប	υ	ug/L	0.75	2.25	5030/8260B	04/09 19:16	04/09 19:16	MMD
Acrylonitrile	υ	U	ug/L	0.41	1.23	5030/8260B	04/09 19:16	04/09 19:16	MMD
Methyl Ethyl Ketone	υ	U	ug/L	0.75	2.25	5030/8260B	04/09 19:16	04/09 19:16	MMD
Dichlorodifluoromethane	U	U	ug/L	0.13	0.39	5030/8260B	04/09 19:16	04/09 19:16	MMD
Chloromethane	ប	บ	ug/L	0.35	1.05	5030/8260B	04/09 19:16	04/09 19:16	MMD
Vinyl Chloride	U	U	ug/L	0.34	1.02	5030/8260B	04/09 19:16	04/09 19:16	MMD
Bromomethane	ט	Ū	ug/L	0.41	1.23	5030/8260B	04/09 19:16	04/09 19:16	MMD
Chloroethane	U	υ	ug/L	0.17	0.51	5030/8260B	04/09 19:16	04/09 19:16	MMD
Trichlorofluoromethane	υ	บ	ug/L	0.47	1.41	5030/8260B	04/09 19:16	04/09 19:16	MMD
1,1-Dichloroethene	U	U	ug/L	0.52	1.56	5030/8260B	04/09 19:16	04/09 19:16	MMD
Methylene Chloride	ט	U	ug/L	0.99	2.97	5030/8260B	04/09 19:16	04/09 19:16	MMD
Trans-1,2-Dichloroethene	U	υ	ug/L	0.50	1.50	5030/8260B	04/09 19:16	04/09 19:16	MMD
Methyl-Tert-Butyl Ether	U	υ	ug/L	0.50	1.50	5030/8260B	04/09 19:16	04/09 19:16	MMD
1,1-Dichloroethane	υ	Ü	ug/L	0.53	1.59	5030/8260B	04/09 19:16	04/09 19:16	MMD
2,2-Dichloropropane	υ	υ	ug/L	0.31	0.93	5030/8260B		04/09 19:16	MMD
Cis-1,2-Dichloroethene	U	บ	ug/L	0.11	0.33	5030/8260B		04/09 19:16	MMD
Chloroform	U	U	ug/L	0.80	2.40	5030/8260B		04/09 19:16	MMD
Bromochloromethane	υ	U	ug/L	0.55	1.65	5030/8260B		04/09 19:16	MMD

Matrix:

Page 9 of 18 Report Printed: 04/23/08 Submission # 804000233 Order # 59892

Project: FPL Site, Loxahatchee, FL Site Location: State Road 80, Loxahatchee, FL

Water

Sample I.D.: Packer Test#1 (2132-2165)
Collected: 04/08/08 13:45
Received: 04/08/08 17:00
Collected by: Phillip Shand

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
1,1,1-Trichloroethane	U	U	ug/L	0.25	0.75	5030/8260B	04/09 19:16	04/09 19:16	MMD
1,1-Dichloropropene	υ	U	ug/L	0.07	0.21	5030/8260B	04/09 19:16	04/09 19:16	MMD
Carbon Tetrachloride	U	ŭ	ug/L	0.19	0.57	5030/8260B	04/09 19:16	04/09 19:16	MMD
Benzene	U	Ū	ug/L	0.09	0.27	5030/8260B	04/09 19:16	04/09 19:16	MMD
1,2-Dichloroethane	U	U	ug/L	0.24	0.72	5030/8260B	04/09 19:16	04/09 19:16	MMD
Trichloroethene	U	υ	ug/L	0.09	0.27	5030/8260B	04/09 19:16	04/09 19:16	MMD
1,2-Dichloropropane	υ	U	ug/L	0.20	0.60	5030/8260B	04/09 19:16	04/09 19:16	MMD
Bromodichloromethane	U	υ	ug/L	0.24	0.72	5030/8260B	04/09 19:16	04/09 19:16	MMD
2-Chloroethylvinyl Ether	υ	U	ug/L	1.00	3.00	5030/8260B	04/09 19:16	04/09 19:16	MMD
Dibromomethane	U	U	ug/L	0.42	1.26	5030/8260B	04/09 19:16	04/09 19:16	MMD
Cis-1,3-Dichloropropene	U	บ	ug/L	0.38	1.14	5030/8260B	04/09 19:16	04/09 19:16	MMD
Toluene	ט	U	ug/L	0.14	0.42	5030/8260B	04/09 19:16	04/09 19:16	MMD
Trans-1,3-Dichloropropene	U	บ	ug/L	0.50	1.50	5030/8260B	04/09 19:16	04/09 19:16	MMD
1,1,2-Trichloroethane	U	ט	ug/L	0.36	1.08	5030/8260B	04/09 19:16	04/09 19:16	MMD
1,3-Dichloropropane	U	U	ug/L	 	1.14	5030/8260B	04/09 19:16	04/09 19:16	
l'etrachloroethene	U	υ	ug/L	 	0.33	5030/8260B		04/09 19:16	MMD
Dibromochloromethane	U	Ü	ug/L		1.17			04/09 19:16	MMD
,2-Dibromoethane (EDB)	บ	บ	ug/L	L	1.20			04/09 19:16	MMD MMD

Page 10 of 18 Report Printed: 04/23/08 Submission # 804000233 Order # 59892

Project: FPL Site, Loxahatchee, FL State Road 80, Loxahatchee, FL Matrix: Water

Sample I.D.: Packer Test#1 (2132-2165) Collected: 04/08/08 13:45 Received: 04/08/08 17:00

Collected by: Phillip Shand

PARAMETER	RESULT	QC	UNITS	MOL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Bromobenzene	υ	ט	ug/L	0.46	1.38	5030/8260B	04/09 19:16	04/09 19:16	MMD
Chlorobenzene	ប	U	ug/L	0.09	0.27	5030/8260B	04/09 19:16	04/09 19:16	MMD
Ethylbenzene	U	υ	ug/L	9.13	0.39	5030/8260B	04/09 19:16	04/09 19:16	MMD
1.1,1,2-Tetrachioroethane	U	U	ug/L	0.37	1.17	5030/8260B	04/09 19:16	04/09 19:16	MMD
m & p-Xylene	บ	U	ug/L	0.19	0.57	5030/8260B	04/09 19:16	04/09 19:16	MMD
o-Xylene	U	U	ug/L	0.19	0.57	5030/8260B	04/09 19:16	04/09 19:16	MMD
Styrene	U	U	ug/L	0.17	0.51	5030/8260B	04/09 19:16	04/09 19:16	MMD
Isopropylbenzene	U	U	ug/L	0.50	1.50	5030/8260B	04/09 19:16	04/09 19:16	MMD
Bromoform	ט	U	ug/L	0.38	1.14	5030/8260B	04/09 19:16	04/09 19:16	MMD
1,1,2,2-Tetrachioroethane	υ	υ	ug/L	0.29	0.87	5030/8260B	04/09 19:16	04/09 19:16	MMD
1,2,3-Trichloropropane	U	U	ug/L	0.23	0.69	5030/8260B	04/09 19:16	04/09 19:16	MMD
1,3,5-Trimethylbenzene	ับ	ช	ug/L	0.11	0.33	5030/8260B	04/09 19:16	04/09 19:16	MMD
2-Chlorotoluene	U	U	ug/L	0.13	0.39	5030/8260B	04/09 19:16	04/09 19:16	MMD
4-Chlorotoluene	U	U	ug/L	0.16	0.48	5030/8260B	04/09 19:16	04/09 19:16	MMD
Tert-Butylbenzene	U	U	ug/L	0.16	0.48	5030/8260B	04/09 19:16	04/09 19:16	MMD
1,2,4-Trimethylbenzene	υ	U	ug/L	0.11	0.33	5030/8260B	04/09 19:16	04/09 19:16	MMD
Sec-Burylbenzene	υ	U	ug/L	 	0.51	5030/8260B		04/09 19:16	MMD
P-Isopropyltoluene	U	U	ug/L		0.33	·			
		·	·			2030102000	04/09 19:10	04/09 19:16	MMD

Page 11 of 18 Report Printed: 04/23/08 Submission # 804000233 Order # 59892

Project: FPL Site, Loxahatchee, FL Site Location: State Road 80, Loxahatchee, FL

Matrix: Water

 Sample I.D.:
 Packer Test#1 (2132-2165)

 Collected:
 04/08/08
 13:45

 Received:
 04/08/08
 17:00

 Collected by:
 Phillip Shand

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
I,3-Dichlorobenzene	U	U	ug/L	0.20	0.60	5030/8260B	04/09 19:16	04/09 19:16	MMD
1,4-Dichlorobenzene	υ	U	ug/L	0.14	0.42	5030/8260B	04/09 19:16	04/09 19:16	MMD
n-Butylbenzene	υ	U	ug/L	0.21	0.63	5030/8260B	04/09 19:16	04/09 19:16	MMD
n-PropylBenzene	υ	U	ug/L	0.17	0.51	5030/8260B	04/09 19:16	04/09 19:16	ммо
1,2-Dichlorobenzene	υ	บ	ug/L	0.48	1.44	5030/8260B	04/09 19:16	04/09 19:16	MMD
1,2-Dibromo-3-Chloropropane (DBCP)	U	υ	ug/L	8.30	0.90	5030/8260B	04/09 19:16	04/09 19:16	MMD
1,2,4-Trichlorobenzene	υ	U	ug/L	0.82	2.46	5030/8260B	04/09 19:16	04/09 19:16	MMD
Hexachlorobutadiene	U	U	ug/L	0.57	1,71	5030/8260B	04/09 19:16	04/09 19:16	MMD
Naphthalens	ប	U	ug/L	0.015	0.045	5030/8260B	04/09 19:16	04/09 19:16	MMD
1,2,3-Trichlorobenzene	υ	U	սց/Ն	1.27	3.81	5030/8260B	04/09 19:16	04/09 19:16	MMD
8270C Semivolatile Organics in Water by	GC/MS	1	f 	Dilution	Factor =	Į			
N-Nitrosodimethylamine	υ	υ	ug/L	0.50	1.50	3510/8270C	04/09 14:44	04/10 10:18	DS
Phenol	υ	υ	ug/L	0.38	1.14	3510/8270C	04/09 14:44	04/10 10:18	DS
Bis (2-Chloroethyl) Ether	Ū	υ	ug/L	0.85	2.55	3510/8270C	04/09 14:44	04/10 10:18	DS
2-Chlorophenol	ซ	υ	ug/L	0.45	1.35	3510/8270C	04/09 14:44	04/10 10:18	DS
1,3-Dichlorobenzene	υ	ប	ug/L	0.20	0.60	3510/8270C	04/09 14:44	64/10 10:18	DS
I.4-Dichlorobenzene	U	υ	ug/L	0.14	0.42	3510/8270C	04/09 14:44	04/10 10:18	DS
Benzyl Alcohol	ប	บ	ug/L	0.75	2.25	3510/8270C	04/09 14:44	04/10 10:18	DS

Page 12 of 18 Report Printed: 04/23/08 Submission # 804000233 Order # 59892

Project: FPL Site, Loxahatchee, FL State Road 80, Loxahatchee, FL Matrix: Vater

Sample I.D.: Packer Test#1 (2132-2165)
Collected: 04/08/08 13:45
Received: 04/08/08 17:00
Collected by: Phillip Shand

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
1,2-Dichlorobenzene	U	U	ug/L	0.48	1.44	3510/8270C	04/09 14:44	04/10 10:18	DS
Bis (2-Chloroisopropyl) Ether	U	U	ug/L	0.85	2.55	3510/8270C	04/09 14:44	04/10 10:18	DS
N-Nitrosodi-N-Propylamine	υ	υ	ug/L	1.14	3.42	3510/8270C	04/09 14:44	04/10 10:18	DS
Hexachloroethane	U	U	ug/L	2.31	6.93	3510/8270C	04/09 14:44	04/10 10:18	DS
Nitrobenzene	υ	U	ug/L	0.66	1.98	3510/8270C	04/09 14:44	04/10 10:18	DS
Isophorone	U	Ü	ug/L	1.56	4.68	3510/8270C	04/09 14:44	04/10 10:18	DS
2-Nitrophenol	Ü	U	ug/L	1.09	3.27	3510/8270C	04/09 14:44	04/10 10:18	DS
2,4-Dimethylphenol	U	U	ug/L	0.62	1.86	3510/8270C	04/09 14:44	04/10 10:18	DS
Bis (2-Chloroethoxy)methane	ט	Ü	ug/L	1.89	5.67	3510/8270C	04/09 14:44	04/10 10:18	DS
2,4-Dichlorophenol	υ	U	ug/L	1.11	3.33	3510/8270C	04/09 14:44	04/10 10:18	DS
1,2,3-Trichlorobenzene	υ	υ	ug/L	2.00	6.00	3510/8270C	04/09 14:44	04/10 10:18	DS
1,2,4-Trichlorobenzene	U	บ	ug/L	0.82	2.46	3510/8270C	04/09 14:44	04/10 10:18	DS
Naphthalene	Ū	υ	ug/L	0.015	0.045	3510/8270C	04/09 14:44	04/10 10:18	D\$
Hexachlorobutzdiene	ט	υ	ug/L	0.57	1.71	3510/8270C	04/09 14:44	04/10 10:18	DS
4-Chloro-3-Methylphenol	U	ប	ug/L	0.67	2.01	3510/8270C	04/09 14:44	04/10 10:18	D\$
i-Methylnaphthalene	υ	U	ug/L	0.36	1.08	3510/8270C	04/09 14:44	04/10 10:18	DS
2-Methylnaphthalene	U	U	ug/L	0.024	0.072	3510/8270C	04/09 14:44	04/10 10:18	DS
2-Methylphenol (o-cresol)	U	υ	ug/L	1.0	3.0	3510/8270C		04/10 10:18	D\$

Page 13 of 18 Report Printed: 04/23/08 Submission # 804000233 Order # 59892

Project: FPL Site, Loxahatchee, FL State Road 80, Loxahatchee, FL

Matrix:

Water

Sample I.D.: Packer Test#1 (2132-2165) Collected: 04/08/08 13:45 Received: 04/08/08 17:00

Collected by: Phillip Shand

PARAMETER	RESULT	бс	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Hexachlorocyclopentadiene	υ	ប	ug/L	0.42	1.26	3510/8270C	04/09 14:44	04/10 10:18	DS
3-MethylPhenoi (m-cresol)	U	υ	ug/L	0.84	2.52	3510/8270C	04/09 14:44	04/10 10:18	DS
4-Methylphenol (p-cresol)	Ü	U	ug/L	1.16	3.48	3510/8270C	04/09 14:44	04/10 10:18	DS
2,3,6-Trichlorophenol	U	U	ug/L	1.2	3.6	3510/8270C	04/09 14:44	04/10 10:18	DS
2,4,5-Trichtorophenol	U	U	ug/L	0.81	2.43	3510/8270C	04/09 14:44	04/10 10:18	DS
2,4,6-Trichlorophenol	υ	υ	ug/L	0.78	2.34	3510/8270C	04/09 14:44	04/10 10:18	DS
2-Chioronaphthalene	U	U	ug/L	1.16	3.48	3510/8270C	04/09 14:44	04/10 10:18	DS
Dimethyl Phthalate	υ	U	ug/L	3.7	11.1	3510/8270C	04/09 14:44	04/10 10:18	DS
Acenaphthylene	υ	ซ	ug/L	0.015	0.045	3510/8270C	04/09 14:44	04/10 10:18	DS
2,6-Dinitrotoluene	U	U	ug/L	0.54	1.62	3510/8270C	04/09 14:44	04/10 10:18	DS
Acenaphthene	U	U	ug/L	0.017	0.051	3510/8270C	04/09 14:44	04/10 10:18	D\$
2,4-Dinitrophenol	ט	U	ug/L	1.0	3.0	3510/8270C	04/09 14:44	04/10 10:18	DS
2,4-Dinitrotoluene	U	U	ug/L	1.17	3.51	3510/8270C	04/09 14:44	04/10 10:18	DS
4-Nitrophenol	υ	υ	ug/L	1.0	3.0	3510/8270C	04/09 14:44	04/10 10:18	DS
Diethyl Phthalate	U	U	ug/L	3.4	10.2	3510/8270C	04/09 14:44	04/10 10:18	DS
Fluorene	υ	U	ug/L	0.012	0.036	3510/8270C	04/09 14:44	04/10 10:18	DS
4-Chlorophenyl Phenyl Ether	U	υ	ug/L	0.87	2.61	3510/8270C	04/09 14:44	04/10 10:18	DS
4,6-Dinitro-2-Methylphenol	U	υ	ng/L	1.4	4.2	3510/8270C	04/09 14:44	04/10 10:18	DS

Page 14 of 18 Report Printed: 04/23/08 Submission # 804000233 Order # 59892

Project: FPL Site, Loxahatchee, FL Site Location: State Road 80, Loxahatchee, FL Water

 Sample I.D.:
 Packer Test#1 (2132-2165)

 Collected:
 04/08/08
 13:45

 Received:
 04/08/08
 17:00

 Collected by:
 Phillip Shand

PARAMÈTER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
N-Nitrosodiphenylamine	υ	U	ug/L	3.42	10.26	3510/8270C	04/09 14:44	04/10 10:18	DS
4-Bromophenyl Phenyl Ether	U	υ	ug/L	1.44	4.32	3510/8270C	04/09 14:44	04/10 10:18	DS
Hexachlorobenzene	υ	U	ug/L	0.42	1.26	3510/8270C	04/09 14:44	04/10 10:18	DS
Pentachlorophenol	บ	υ	ug/L	1.14	3.42	3510/8270C	04/09 14:44	04/10 10:18	DS
Phenanthrene	U	U	ug/L	0.028	0.084	3510/8270C	04/09 14:44	04/10 10:18	DS
Anthracene	υ	บ	ug/L	0.049	0.147	3510/8270C	04/09 14:44	04/10 10:18	DS
Di-N-Butyl Phthalate	U	U	ug/L	1.2	3.6	3510/8270C	04/09 14:44	04/10 10:18	DS
Fluoranthene	U	U	ug/L	0.025	0.075	3510/8270C	04/09 14:44	04/10 10:18	DS
Benzidine "	υ	U	ug/L	4.0	12.0	3510/8270C	04/09 14:44	04/10 10:18	DS
Ругепе	σ	บ	ug/L	0.017	0.051	3510/8270C	04/09 14:44	04/10 10:18	DŞ
Butyl Benzyl Phthalate	U	U	ug/L	1.44	4.32	3510/8270C	04/09 14:44	04/10 10:18	DS
Benzo(A)Anthracene	U	U	ug/L	0.017	0.051	3510/8270C	04/09 14:44	04/10 10:18	DS
3,3-Dichlorobenzidine	υ	U	ug/L	2.0	6.0	3510/8270C	04/09 14:44	04/10 10:18	DS
Chrysene	U	υ	ug/L	0.75	2.25	3510/8270C	04/09 14:44	04/10 10:18	DS
Bis (2 Ethylhexyl) Phthalate	υ	U	ug/L	2.37	7.11	3510/8270C	04/09 14:44	04/10 10:18	DS
Di-N-Octyl Phthalate	Ū	υ	ug/L	1.4	4.2	3510/8270C	04/09 14:44	04/10 10:18	DŞ
Benzo(B)Fluoranthene	U	U	ug/L	0.029	0.087	3510/8270C	04/09 14:44	04/10 10:18	DS
Benzo(K)Fluoranthene	U	U	ug/L	0.025	0.075	3510/8270C	04/09 14:44	04/10 10:18	DS

Page 15 of 18 Report Printed: 04/23/08 Submission # 804000233 Order # 59892

Project: FPL Site, Loxahatchee, FL Site Location: State Road 80, Loxahatchee, FL Water

 Sample I.D.:
 Packer Test#1 (2132-2165)

 Collected:
 04/08/08
 13:45

 Received:
 04/08/08
 17:00

 Collected by:
 Phillip Shand

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Benzo(A)Pyrene	U	U	ug/L	0.017	0.051	3510/8270C	04/09 14:44	04/10 10:18	DS
Indeno(1,2,3-CD)Pyrene	U	U	ug/L	0.93	2.79	3510/8270C	04/09 14:44	04/10 10:18	DS
Dibenzo(A,H,)Anthracene	υ	U	ug/L	0.029	0.087	3510/8270C	04/09 14:44	04/10 10:18	DS
Benzo(G,H,I)Perylene	U	U	ug/L	0,017	0.051	3510/8270C	04/09 14:44	04/10 10:18	DS
Bis-2-ethylhexyl Adipate	U	U	ug/L	0.36	1.08	3510/8270C	04/09 14:44	04/10 10:18	DS
Aldrin ~	υ	υ	ug/L	0.017	0.051	3510/8270C	04/09 14:44	04/10 10:18	DS
alpha-BHC *	U	U	ug/L	0.005	0.015	3510/8270C	04/09 14:44	04/10 10:18	DS
beta-BHC -	U	U	ug/L	0.005	0.015	3510/8270C	04/09 14:44	04/10 10:18	DS
delta-BHC ~	Ū	U	ug/L	0.005	0.015	3510/8270C	04/09 14:44	04/10 10:18	DS
gamma-BHC (Lindane)	υ	U	ug/L	0.004	0.012	3510/8270C	04/09 14:44	04/10 10:18	D\$
Chiordane (Screen)	U	U	ug/L	0.10	0.30	3510/8270C	04/09 14:44	04/10 10:18	DS
4,4'-DDD -	U	U	ug/L	0.60	1.80	3510/8270C	04/09 14:44	04/10 10:18	DS
4,4'-DDE "	U	U	ug/L	0.39	1.17	3510/8270C	04/09 14:44	04/10 10:18	DS
4,4'-DDT ~	υ	U	ug/L	0.69	2.07	3510/8270C	04/09 14:44	04/10 10:18	DS
Dieldrin ~	U	υ	ug/L	0.006	0.018	3510/8270C	04/09 14:44	04/10 10:18	DS
Endosulfan I	υ	υ	ug/L	0.006	0.018	3510/8270C	04/09 14:44	04/10 10:18	D\$
Endosulfan II ~	Ü	ซ	ug/L	0,006	0.018	3510/8270C	04/09 14:44	04/10 10:18	DS
Eudosulfan Sulfate -	U	U	ug/L	0.007	0.021	3510/8270C	04/09 14:44	04/10 10:18	DS

Page 16 of 18 Report Printed: 04/23/08 Submission # 804000233 Order # 59892

Project: FPL Site, Loxahatchee, FL State Road 80, Loxahatchee, FL Water

Sample I.D.: Packer Test#1 (2132-2165)
Collected: 04/08/08 13:45
Received: 04/08/08 17:00
Collected by: Phillip Shand

PARAMETER	RESULT	QC	UNITS	MIDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Endrin ~	U	ប	ug/L	0.005	0.015	3510/8270C	04/09 14:44	04/10 10:18	DS
Endrin Aldehyde	υ	υ	ug/L.	0.010	0.030	3510/8270C	04/09 14:44	04/10 10:18	DS
Heptachlor	U	U	ug/L	0.005	0.015	3510/8270C	04/09 14:44	04/10 10:18	DS
Heptachlor Epoxide	U	U	ug/L	0.008	0.024	3510/8270C	04/09 14:44	04/10 10:18	DS
Toxaphene	υ	ט	ug/L	0.40	1.20	3510/8270C	04/09 14:44	04/10 10:18	DŞ
PCB-1016 -	U	U	ug/L	0.10	0.30	3510/8270C	04/09 14:44	04/10 10:18	DŞ
PCB-1221 -	U	U	ug/L	0.10	0.30	3510/8270C	04/09 14:44	04/10 10:18	DS
PCB-1232 -	U	U	ug/L	0.10	0.30	3510/8270C	04/09 14:44	04/10 10:18	DS
PCB-1242 ~	บ	บ	ug/L	0.10	0.30	3510/8270C	04/09 14:44	04/10 10:18	DS
PCB-1248 ~	υ	U	ug/L	0.10	0.30	3510/8270C	04/09 14:44	04/10 10:18	DS
PCB-1254 ~	U	U	ug/L	0.10	0.30	3510/8270C	04/09 14:44	04/10 10:18	DS
PCB-1260 -	U	U	ug/Ł	0.10	0.30	3510/8270C	04/09 14:44	04/10 10:18	DS
Dioxin (screen)	υ	U	ug/L	0.03	0.09	3510/8270C	04/09 14:44	04/10 10:18	DS
Azobenzene -	υ	บ	ug/L	0.75	2.25	3510/8270C	04/09 14:44	04/10 10:18	DS
Methoxychlor *	U	U	ug/L	0.007	0.021	3510/8270C	04/09 14:44	04/10 10:18	DS
Benzoic Acid	U	υ	ug/L	0.84	2.52	3510/8270C	04/09 14:44	04/10 10:18	DS
Aniline	U	บ	ug/L	0.50	1.50	3510/8270C		04/10 10:18	DS
4-Chloroaniline	U	U	ug/L	0.65	1.95	3510/8270C		04/10 10:18	DS

Page 17 of 18 Report Printed: 04/23/08 Submission # 804000233 Order # 59892

Project: FPL Site, Loxahatchee, FL State Road 80, Loxahatchee, FL Matrix: Water

Sample I.D.: Packer Test#1 (2132-2165)
Collected: 04/08/08 13:45
Received: 04/08/08 17:00
Collected by: Phillip Shand

PARAMETER	RESULT	QC	UNITS	MOL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Dibenzofuran	υ	υ	กลิ\เ	0.66	1.98	3510/8270C	04/09 14:44	04/10 10:18	DS
2-Nitroaniline	υ	U	ug/L	0.58	1.74	3510/8270C	04/09 14:44	04/10 10:18	DS
3-Nitroaniline	Ü	U	ug/L	0.50	1.50	3510/8270C	04/09 14:44	04/10 10:18	DS
4-Nitroaniline	υ	U	ug/L	0.84	2.52	3510/8270C	04/09 14:44	04/10 10:18	DS
Carbazole *	ū	υ	ug/L	0.68	2.04	3510/8270C	04/09 14:44	04/10 10:18	DS
2,6-Dichlorophenoi	U	U	ug/L	0.89	2.67	3510/8270C	04/09 14:44	04/10 10:18	DS
Pyridine	υ	υ	ug/L	0.99	2.97	3510/8270C	04/09 14:44	64/10 10:18	DS
2,3,4,6-Tetrachlorophenol	U	ט	ug/L	1.00	3.00	3510/8270C	04/09 14:44	04/10 10:18	DS
2,3,5,6-Tetrachlorophenol	υ	U	ug/L	0.80	2.48	3510/8270C	04/09 14:44	04/10 10:18	DS
SUB 531 Carbamate Pesticides: 62	2-550.310(4)(b			Dilution	a Factor =	1			
Carbofuran	υ	υ	ug/L	0.54	1.62	531.1	04/16 14:25	04/17 11:55	E84809
Oxamyl (vydate)	υ	U	ug/L	0.55	1.65	531.1	04/16 14:25	04/17 11:55	E84809
Glyphosate	U	υ	ug/L	6.00	18.00	547.1	04/14 09:30	04/14 13:22	E84809
Endothall	υ	U	mg/L	0.0046	0.0138	548.1	04/15 17:54	04/21 14:02	E84809
SUB 549 Diquat : 62-550.310(4)(t	»)	 -	 	Dilution	Factor =	i			
Diquat	U	U	mg/L	0.0003	0.0009	549.2	04/15 17:12	04/21 10:54	E84809
Gross Alpha	33 ± 1		pCi/L	0.4	1.2	EPA 00-02	04/21	04/21 08:00	E84025
Radium-226	7.5 ± 0.5		pCi/L	0.2	0.6	EPA 903.1	04/21	04/21 14:24	E84025

Page 18 of 18 Report Printed: 04/23/08 Submission # 804000233 Order # 59892

Project:

FPL Site, Loxahatchee, FL Site Location: State Road 80, Loxahatchee, FL. Matrix: Water

Sample I.D.: Packer Test#1 (2132-2165) Collected: 04/08/08 13:45 Received: 04/08/08 17:00

Collected by: Phillip Shand

LABORATORY ANALYSIS REPORT

PARAMETER	RESULT	QС	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Radium-228	ប	ប	pCi/L	1.0	3.0	EPA Ra-05	04/18	04/18 11:00	E84025

QC=Qualifier Codes as defined by DEP 62-160
Unless indicated, soil results are reported based on actual (wet) weight basis.
Analytes not currently NELAC certified denoted by ".

"It performed by outside (subcontract) labs denoted by Cert.ID in Analyst Field. aits relate only to this sample.

Authorized CSM Signature (954) 578-6400 Piorida-Spectrum Environmental Services, Inc. Certification # E86006

Data Qualifier Codes

- A Value reported is the mean (average) of two or more determinations.
- B Results based upon colony counts outside the acceptable range. The code is to be used if the colony count is generated from a plate in which the total number of Coliform colonies exceeds the method indicated ideal ranges, which are:

Total Coliforms: 20-80 colonies Fecal Coliforms: 20-60 colonies

- C Result-was confirmed by a separate analysis of the sample.
- D Measurement was made in the field (i.e. in situ). This applies to any value (ex. pH, specific conductance, etc.) that was obtained under field conditions using approved analytical methods.
- H Value based on field kit determination; results may not be accurate.
- I The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
- J Estimated value; value not accurate. This code shall be used in the following instances:
 - 1. surrogate recovery limits have been exceeded.
 - 2. no known quality control criteria exists for the component
 - 3. the reported value failed to meet the established quality control criteria for either precision or accuracy.
 - 4. the sample matrix interfered with the ability to make any accurate determination; or
 - if the data is questionable because of improper laboratory or field protocols (e.g. composite sample was collected instead of a grab sample).

The second secon

- N Presumptive evidence of presence of material. This qualifier shall be used if:
 - 1. the component has been tentatively identified based on mass spectral library search a
 - 2. there is an indication that the analyte is present, but quality control requirements for confirmation were not met
- O Sampled, but analysis lost or not performed; sample compromised.
- Q Sample held beyond accepted holding time. This code shall be used if the value is derived from a sample that was prepared or analyzed after the approved holding time restrictions for sample preparation or analysis.
- R Significant rain in the past 48 hours. This code shall be used when the rainfall might contribute to a lower than normal value.
- T Value reported is less than the laboratory method detection limit
- U Indicated that the compound was analyzed for but not detected. This shall be used to indicate that the specified component was not detected. The value associated with the qualifier shall be the laboratory method detection limit
- V Indicated that the analyte was detected in both the sample and the associated method blank. Note: the value in the blank shall not be subtracted from associated samples.
- Y The laboratory analysis was from an unpreserved or improperly preserved sample. The data may not be accurate.
- Z Too many colonies were present (TNTC), the numeric value represents the filtration volume.
- ? Data is rejected and should not be used. Some of all of the quality control data for the analyte were outside criteria, and the presence or absence of the analyte cannot be determined from the data.
- Not analyzed due to interference.

- ! Data deviates from historically established concentration ranges.
- Analysis performed outside NELAP program. (e.g. State of Georgia, UCMR, ICR or other certification.)

Project Name WES and/or Number FPd Project Contact: Project Sampler Name:	L SITE LORGHA	Phone	← L	lab Road Ft reet Savanna pad Fort Me rk St., Okee dura w/kep	Laud, FL 3 hh, GA 314 ade, FL 33 chobee, FI	841 T - 34972 T - Xellow La	el: (954 el: (912 el: (863 el: (863 b) 101e	1) 978-6400 2) 238-5050 3) 285-8145 3) 763-3336 6000	P 16 R18 18 98 6	Fax: (9: Fax: (9: Fax: (8: Fax: (8: Tink: San	›. FT.	15 30 34 34 MYEE	RUS)	H RES	TE Req	TION	
(printed) (c) (c) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	S HAMEY			1 ~2	· · · · ·	Signature	حما	Hanas	4				- 				
UKUEK# LNG Gordrol Number	Sample ID	Date Sampled	Time Sampled	Matrix	Bottle &	Number of Containers		يتنف كالمستثلا		is Re	quire	d		P.	eld:	Tac	te
Shaded Areas Car Laboratory Vie Cras		-		DW SW GW WW S SED HW BIO SEA OIL X AIR	Pres. Combo Codes	Received & NELAC					Eco4)			T M P ℃	P H	C O N D	C H L O R
2 6 0075	PACKER TEST 2	04.09.08	04.55			_axI		ſ.	 		ER S					~	
	DZKW 1].								<u> </u>	EK S	BHYLE	S				
3	2062 - 2095								<u></u>								
4	2002 29 95					1000		 									
5			· · · · · · · · · · · · · · · · · · ·			1000											
6			···········								<u>. </u>						
7		<u> </u>															
8 8 9 9 9 9 9 9 9													<u></u>				
9													~ 	~		·	
			1						-	·		-					
to see a second	× · · · · · · · · · · · · · · · · · · ·	· · ·/ · · ·/															
Special Comments:	<u> </u>	<u></u>	· · · · · · · · · · · · · · · · · · ·	!J		Total	SAMI	PLE CUSTO	DYANDS	FRANCE	D SICNA	CTTO WELL	3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	i istolikasek	Esperar st -		
"I waive NELAC protoc	ol" (sign here) >						1	Relinquish	ied by:	Lun	o chal	Y KEST					
Deliverables:		QA/QC Repo	ort Needed?	Yes I	No (ad	ditional charge)	1	Received b	y:	7		······································		40	1/28	10.	1420
Sample Costody & Field	<u>Loronesti</u> A-lifer am)	Bottle Lype			servatives		2	Relinquish	ed by:			<u>z</u>	4/0	1/0	<u> </u>	17-	
Temp as received	C B Bacterie	bag/bottle		A-ascorbic C-HCL	\$-1	13P04 12804	2	Received b	v:			/ 4	49/	80		حدره	3
FIELD TIME:	Lellter bott			Co-CoSO4 B-HNO3	5 7 200 2	Na2S2O3-H2O Hopreserved	3	Relinquish		//			1/2/0	8	14	3	
Sampling		(jar758-8 oz s	oli jar	M-MCAB Z-zine neeti	n.	NaOH (4-NH4CL			•			·					
PickUp	hrs V⊆lfmiyia Weride mo						3	Received b	y: 	i							
Misc. Charges or from NEBS COSTEM prints	A-other ng service 1-800-888-6327 NESS	TRD=Talls	Alr Beg					www.fl	enviro.	com		CO	C Page	-/	of .	7	
•	· ·			_										-t	710	5 15:0N IS	597 1605 97

Page 1 of 18 Report Printed: 04/25/08 Submission # 804000272 Order # 60075

Matrix:

Water

Project: FPL Site Loxahatchee
Site Location: State Road 80, Loxahatchee, FL

Sample I.D.: Packer Test#2 (2062-2095) Collected: 04/09/08 04:55

Received: Collected by: Les Hancy

04/09/08

16:30

LABORATORY ANALYSIS REPORT

PARAMETER	RESULT		UNITS		PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Biochemical Oxygen Demand	υ	U	mg/L	2.0	6.8	405.1			
Coliform-Total (E-Coli)	P(A)					- 	04/09 17:00		
Specific Conductance (grab)	53400	_	uS/cm	0.1	0.3	9223B	04/09 17:00		RAV
рH	7.42	Q	units	 {		120.1	04/11 16:26	04/11 16:26	DGK
rtal Dissolved Solids (TDS)	35000	 ` -		0.1	0.3	150.1	04/10 10:18	04/10 10:18	IMA
Chloride		 -	mg/L	1.00	3.00	EPA 160.1	04/16 14:27	04/16 14:27	RPV
Pluoride	21100	 	mg/L	77.50	232.50	300.0	04/10 17:21	04/10 17:21	DGK
	0.90		mg/L	0.040	0.120	300.0	04/10 17:21	04/10 17:21	DGK
Vitrate (as N)	ប	ប	mg/L	0.005	0.015	300.0	04/10 17:21	04/10 17:21	DGK
litrite (as N)	U	U	tng/L	0.006	0.018	300.0	04/10 17:21	04/10 17:21	
rtho-Phosphate (2s P)	U	U	mg/L	0.040	0.120	300.0		 	DGK
lifate	2920	 	mg/L	10.00	30.00		04/10 17:21	04/10 17:21	DGK
/anide, Total	U	υ	mg/L	-		300.0	04/10 [7:21	04/10 17:21	DGK
trogen (Ammonia) as N	U	u		0.004	0.012	335.3	04/16 11:26	04/16 14:39	MSG
trogen (Kjeidahi) as "N"	-	<u> </u>	mg/L	0.01	0.03	350.1	04/11 15:44	04/11 14:10	MSG
	Ŭ	ប	mg/L	0.045	0.135	351.2	04/18 12:50	04/18 12:50	MG/RPV
rogen (Total Organic)	U	U	mg/L	0.045	0.135	351.2	04/18 12:50	04/18 12:50	MG/RPV
sphorus, Total as "P"	บ	U	mg/L	0.031	0.093	365.4		04/18 14:52	MG/MEC
emical Oxygen Demand	7592		mg/L	81.80	245.40				
AS Surfactants (LAS Mol. Wt. 340)	0.03		mg/L	0.01	0.03			04/22 15:09	IMA
	1	-			-	74.7.1	14/10 18:24	04/10 18:24	IMA.

Florida-Spectrum Environmental Services, Inc. 1460 W. McNab Road, Fort Lauderdale, FL 33309

Pembroke Laboratory 528 Gooch Rd. Fort Mead, FL 33841

Big Lake Laboratory 415 B SW Park St. Okeachobee, FL 34972 www.flenviro.com

Spectrum Laboratories 630 Indian St Savannah, GA 31401

Page 2 of 18 Report Printed: 04/25/08 Submission # 804000272 Order # 60075

Project: FPL Site Loxabatchee
Site Location: State Road 80, Loxabatchee, PL
Matrix: Water

Sample I.D.: Packer Test#2 (2062-2095) Collected: 04/09/08 04:55 Received: 04/09/08 16:30

Collected by: Les Haney

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Odor (Lab)	1		TON	0.1	0.3	SM2150B	04/10 11:04	04/10 11:04	IMA
Color (Lab)	80.0		Pt-Co	2.0	6.0	SM2120B	04/10 10:21	04/10 10:21	IMA
Langeller Index (Corrosivity)(Water) (0	-0.0437					SM 2330B	04/10	04/22	MG
Aluminum	0.084		mg/L	0.005	0.015	200.7	04/09	04/09 19:36	IMN
Iron	1.293		mg/L	0.001	0.003	200.7	04/09	04/09 19:36	IMN
Sodium	10356		mg/L	30,000	90.000	200.7	04/09	04/09 20:10	IMN
Zinc	υ	U	mg/L	0.00004	0.00012	200.7	04/09	04/09 19:36	IMN
200.8 DW-10 Metals in Drinking Wate	er 62-550.310	 	•	Dilution	Factor =	10			
Arsenic	υ	U	mg/L	0.00120	0.00360	4.1.3/200.8	04/09 16:30	04/09 17:43	IMN
Barium	0.330		mg/L	0.0037	0.0111	4.1.3/200.8	04/09 16:30	04/09 17:43	IMN
Cadmaum	U	υ	mg/L	0.80430	0.01290	4.1.3/200.8	04/09 16:30	04/09 17:43	IMN
Chromium	U	U	mg/L	0.00080	6.00240	4.1.3/200.8	04/09 16:30	04/09 17:43	IMN
Lead	υ	U	mg/L	0.00010	0.00030	4.1.3/200.8	04/09 16:30	04/09 17:43	imn
Nickel	ប	บ	mg/L	0.00300	0.00900	4.1.3/200.8	04/09 16:30	04/09 17:43	IMN
Selenium	υ	υ	mg/L	0.00300	0-00900	4.1.3/200.8	04/09 16:30	04/09 17:43	IMN
Antimony	Ų	U	mg/L	0.00400	0.01200	4.1.3/200.8	04/09 16:30	04/09 17:43	IMN
Beryllium	บ	U	mg/L	0.00200	0.00600	4.1.3/200.8	04/09 16:30	04/09 17:43	IMN
Thallium	U	U	mg/L	0.00020	0.00060	4.1.3/200.8	04/09 16:30	04/09 17:43	IMN

Page 3 of 18 Report Printed: 04/25/08 Submission # 804000272 Order # 60075

Project: FPL Site Loxahatchee
Site Location: State Road 80, Loxahatchee, FL
Matrix: Water

Sample I.D.: Packer Test#2 (2062-2095) Collected: 04/09/08 04:55 Received: 04/09/08 16:30

Collected by: Les Haney

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Copper	υ	u	mg/L	0.00080	0.00240	200.8	04/09	04/09 17:43	IMN
Manganese	0.048		mg/L	0.00100	0.00300	200.8	04/09	04/09 17:43	IMN
Silver	υ	U	mg/L	0.00010	0.00030	200.8	04/09	04/09 17:43	IMN
Mercury	Ū	U	mg/L	0.00002	0.00006	245.1	04/10	04/10 13:12	EN ·
504.1 EDB, DBCP: 62-550.310(4)(b))	1	1	Dilution	Factor =	1		·	
1,2-Dibromo-3-Chloropropane (DBCP)	υ	U	ug/L	0.02	0.06	EPA 504.1 EC	D 04/1511:55	04/15 22:18	AC
Ethylene Dibromide (EDB)	U	U	ug/I,	0.02	0.06	EPA 504.1 EC	D 04/1511:55	04/15 22:18	AC
508 Pesticides & PCBs: 62-550.310(4)	(b)	' ''' 	1	Dibution	Factor =	!	···		
Hexachlorocyclopentadiene	บ	U	ug/L	0.03	0.09	508	04/11 14:25	04/11 23:52	AC
Hexachlorobenzene	ប	U	ug/L	0.026	0.078	508	04/11 14:25	04/[1 23:52	AC
v-BHC (Lindane)	υ	U	ug/L	0.023	0.069	508	04/11 14:25	04/11 23:52	AC
Heptachlor	υ	Ū	ug/L	0.002	0.006	508	04/11 14:25	04/11 23:52	AC
Heptachlor Epoxide	U	U	ug/L	0.002	0.006	508	04/11 14:25	04/11 23:52	AC
Endrin	υ	υ	ug/L	0.012	0.036	508	04/11 14:25	04/11 23:52	AC
Methoxychlor	U	Ų	п8/Г	0.012	0.036	508	04/11 14:25	04/11 23:52	AC
Arochlor 1016	ប	υ	ug/L	0.10	0.30	508	04/11 14:25	04/11 23:52	AC
Arochior 1221	U	υ	ug/L	0.10	0.30	508	04/11 14:25	04/11 23:52	AC
Arochlor 1232	v	υ	ug/L	0.10	0.30	508	04/11 14:25	04/11 23:52	AC

Page 4 of 18 Report Printed: 04/25/08 Submission #804000272 Order #60075

Project: FPL Site Loxahatchee
Site Location: State Road 80, Loxahatchee, PL
Matrix: Water

Matrix:

Sample I.D.: Packer Test#2 (2062-2095) Collected: 04/09/08 04:55 Received: 04/09/08 16:30

Collected by: Les Haney

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Arochior 1242	U	U	ug/L	0.10	0.30	508	04/11 14:25	04/11 23:52	AC
Arochlor 1248	บ	ប	ug/L	0.10	0.30	508	04/11 14:25	04/11 23:52	AC
Arochlor 1254	v	U	ug/L	0.10	0.30	508	04/11 14:25	04/11 23:52	AC .
Arochlor 1260	υ	υ	ug/L	0.10	0.30	508	04/11 14:25	04/11 23:52	AC
Toxaphene	U	บ	ug/L	0.06	0.18	508	04/11 14:25	04/11 23:52	AC
Chlordane	U	U	ug/L	0.01	0.03	508	04/11 14:25	04/11 23:52	AC
515.3 Chlorophenoxy Herbicides: 62-5	50.310(4)(b)	T	!	Dilution	Factor =	1			
Dalapon	υ	บ	ug/L	0.14	0.42	515.3	04/15 11:50	04/15 22:50	AC
2,4-D	บ	U	ug/L	0.19	0.57	515.3	04/15 11:50	04/15 22:50	AC
Pentachlorophenol	Ū	υ	ug/L	0.02	0.06	515.3	04/15 11:50	04/15 22:50	AC
2,4,5-TP (silvex)	υ	U	ng/L	0.052	0.156	515.3	04/15 11:50	04/15 22:50	AC
Dinoseb	U	U	ug/L	0.1B	0.54	515.3	04/15 11:50	04/15 22:50	AC
Picloram	U	U	ug/L	0.14	0.42	515.3	04/15 11:50	04/15 22:50	AC
524.2 Volatile Organics: 62-550.310(4)	(a)	1	· · · · · · · · · · · · · · · · · · ·	Dilution	Factor =	1			
Vinyl Chloride	υ	ប	ug/L	0.34	1.02	524.2	04/10 14:38	04/11 14:38	AC
1,1-Dichlorgethylene	U	U	ug/L	0.43	1.29	524.2	04/10 14:38	04/11 14:38	AC
Dichtoromethane (Methylene Chloride)	υ	υ	ug/L	2.00	6.00	524.2	04/10 14:38	04/11 14:38	AC
Trans-1,2-Dichloroethylene	ប	υ	ug/L	0.50	1.50	524.2	04/10 14:38	04/11 14:38	AC

Page 5 of 18 Report Printed: 04/25/08 Submission #804000272 Order #60075

Project: FPL Site Loxahatchee
Site Location: State Road 80, Loxahatchee, FL

Matrix:

Water

Sample I.D.: Packer Test#2 (2062-2095) Collected: 04/09/08 04:55 Received: 04/09/08 16:30

Received: 04/09/08 Collected by: Les Haney

PARAMETER	RESULT	QC	UNITS	MDL	PQL	МЕТНОР	DATE EXT.	DATE ANALY.	ANALYST
Cis-1,2-Dichloroethylene	U	U	ug/L	0.11	0.33	524.2	04/10 14:38	04/11 14:38	AC
1,1,1-Trichloroethane	U	U	ug/L	0.25	0.75	524.2	04/10 14:38	04/11 [4:38	AC
Carbon Tetrachloride	υ	U	ug/L	0.19	0.57	524.2	04/10 14:38	04/11 14:38	AC
Benzene	U	U	ug/L	0.09	0.27	524.2	04/10 14:38	04/11 14:38	AC
1,2-Dichioroethane	υ	υ	ug/L	0.24	0.72	524.2	04/10 14:38	04/11 14:38	AC
Trichloroethylene	U	U	ug/L	0.09	0.27	524.2	04/10 14:38	04/11 14:38	AC
1,2-Dichtoropropage	U	υ	ug/L	0.20	0.60	524.2	04/10 14:38	04/11 14:38	AC
Toluene	n	U	ng/L	0.14	0.42	524.2	04/10 14:38	04/11 14:38	AC
1,1,2-Trichloroethane	U	ប	ng/L	0.36	1.08	524.2	04/10 14:38	04/11 14:38	AC
Tetrachloroethylene	U	U	ug/L	0.11	0.33	524.2	04/10 14:38	04/11 14:38	AC
Chlorobenzene	υ	υ	ug/L	0.09	0.27	524.2	04/10 14:38	04/11 14:38	AC
Ethylbenzene	U	υ	ug/L	0.13	0.39	524.2	04/10 14:38	04/11 14:38	AC
Xylenes (Total)	U	U	ug/L	0.21	0.63	524.2	04/10 14:38	04/11 14:38	AC
Styrene	υ	ט	ug/L	0.17	0.51	524.2	04/10 14:38	04/11 14:38	AC
1,4-Dichlorobenzene (para)	U	U	ug/L	0.14	0.42	524.2	04/10 14:38	04/11 14:38	AC
1,2-Dichlorobenzene (ortho)	υ	υ	ug/L	0.48	1.44	524.2	04/10 14:38	04/11 14:38	AC
1,2,4-Trichlorobenzene	υ	U	ug/L	0.82	2.46	524.2	04/10 14:38	04/11 14:38	AC
5.2 Semivolatile Organics: 62-550.31	0(4)(ъ)			Dilution	Factor =1				

Page 6 of 18 Report Printed: 04/25/08 Submission # 804000272 Order # 60075

Project: FPL Site Loxahatchee
Site Location: State Road 80, Loxahatchee, FL
Matrix: Water

 Sample I.D.:
 Packer Test#2 (2062-2095)

 Collected:
 04/09/08
 04:55

 Received:
 04/09/08
 16:30

Collected by: Les Haney

PARAMETER	RESULT	ОС	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Di(2-Ethylhexyl)phthalate	Ü	Ū	ug/L	0.36	1.08	525.2	04/11 08:44	04/11 21:54	DS
Di(2-Ethylhexyl)adipate	υ	Ū	ug/L	0.36	1.08	525.2	04/11 08:44	04/11 21:54	DS
Benzo(a)pyrene	υ	U	ug/L	0.017	0.051	525.2	04/11 08:44	04/11 21:54	DS
Pentachiorophenol	U	υ	ug/L	0.02	0.06	525.2	04/11 08:44	04/11 21:54	DS
Alachlor	บ	υ	ug/L	0.20	0.60	525.2	04/11 08:44	04/11 21:54	DS
Atrazine	U	υ	ug/L	0.20	0.60	525.2	04/11 08:44	04/11 21:54	DS
Simazine	U	υ	ug/L	0.20	0.60	525.2	04/11 08:44	04/11 21:54	DS
508 Chlorinated Pesticides & Pe	CBs in WATER	1	Dilution	Factor =	1				
а-ВНС	ช	U	ug/L	0.005	0.015	EPA 608	04/10 10:22	04/11 10:22	AC
b- В НС	υ	U	ug/L	0.005	0.015	EPA 608	04/10 10:22	04/11 10:22	AC
g-BHC (lindane)	ŭ	U	ug/L	0.004	0.012	EPA 608	04/10 10:22	04/11 10:22	AC
d-BHC	υ	U	ug/L	0.005	0.015	EPA 608	04/10 10:22	04/11 10:22	AC
Heptachlor	U	U	ug/L	0.005	0.015	EPA 608	04/10 10:22	04/11 10:22	AC
Aldrin	U	บ	ug/L	0.017	0.051	EPA 608	04/10 10:22	04/11 10:22	AC
Heptachlor Epoxide	U	U	ug/L	0.008	0.024	EPA 608	04/10 10:22	04/11 10:22	AC
Endosulfan I	U	υ	ug/L	0.006	0.018	EPA 608	04/10 10:22	04/11 10:22	AC
Dieldrin	υ	U	ug/L	0.006	0.018	EPA 608	04/10 10:22	04/11 10:22	AC
4,4-DDE	U	U	ug/L	0.39	1.17	EPA 608	04/10 10:22	04/11 10:22	AC

Page 7 of 18 Report Printed: 04/25/08 Submission # 804000272 Order # 60075

Matrix:

Water

Project: FPL Site Loxahatchee
Site Location: State Road 80, Loxahatchee, FL

Sample I.D.: Packer Test#2 (2062-2095) Collected: 04/09/08 04:55 Received: 04/09/08 16:30

Received: 04/09/08 Collected by: Les Haney

PARAMETER	RESULT	QC	UNITS	MDL	PQL,	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Endria	υ	U	ug/L	0.005	0.015	EPA 608	04/10 10:22	04/11 10:22	AC
Endosulfan II	Ū	υ	ug/L	0.006	0.018	EPA 608	04/10 10:22	04/11 10:22	AC
4,4·DDD	U	U	ug/L	0.60	1.80	EPA 608	04/10 10:22	04/11 10:22	AC
Endrin Aldehyde	U	U	ug/L	0.010	0.030	EPA 608	04/10 10:22	04/11 10:22	AC
Endosulfan Sulfate	U	U	ug/L	0.007	0.021	EPA 608	04/10 10:22	04/11 10:22	AC
4,4-DDT	U	U	ug/L	0.69	2.07	BPA 608	04/10 10:22	04/11 10:22	AC
Methoxychlor	U	U	ug/L	0.007	0.021	EPA 608	04/10 10:22	04/11 10:22	AC
Arctior 1016	ט	U	ug/L	0.27	0.81	EPA 608	04/10 10:22	04/11 10:22	AC
Aroctor 1221	U	υ	ug/L	0.15	0.45	EPA 608	04/10 10:22	04/11 10:22	AC
Aroclor 1232	U	U	ug/L	0.35	1.05	BPA 608	04/10 10:22	04/11 10:22	AC
Arocior 1242	U	U	ug/L	0.24	0.72	EPA 608	04/10 10:22	04/11 10:22	AC
Aroclor 1248	U	U	ug/L	0.89	0.27	EPA 608	04/10 10:22	04/11 10:22	AC
Aroclor 1254	υ	U	ug/L	0.06	0.18	EPA 608	04/10 10:22	04/11 10:22	AC
Arocior 1260	U	v	ug/L	0.18	0.54	EPA 608	04/10 10:22	04/11 10:22	AC
Toxaphene	U	υ	ug/L	0.40	1.20	EPA 608	04/18 10:22	04/11 10:22	AC
Chlordane *	U	U	ug/L	0.10	0.30	EPA 608	04/10 10:22	04/11 10:22	AC
8260B Volatile Organics in Water by	y GC/MS			Dilution	Pactor = 1				
Асетопе	ט	Ų	ug/L	10.00	30.00	5030/8260B	04/10 14:40	04/11 14:40	AC

Page 8 of 18 Report Printed: 04/25/08 Submission # 804000272 Order # 60075

Project: FPL Site Loxahatchee Site Location: State Road 80, Loxahatchee, FL

Matrix:

Water

Sample I.D.: Packer Test#2 (2062-2095) Collected: 04/09/08 04:55 Received: 04/09/08 16:30

Collected by: Les Haney

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Acrolein	U	U	ug/L	0.75	2.25	5030/8260B	04/10 14:40	04/11 14:40	AC
Acrylonitrile	U	U	ug/L	0.41	1.23	5030/8260B	04/10 14:40	04/11 14:40	AC
Methyl Ethyl Ketone	υ	υ	ug/L	0.75	2.25	5030/8260B	04/10 14:40	04/11 14:40	AC
Dichloredifluoromethane	υ	U	ug/L	0.13	0.39	5030/8260B	04/10 14:40	04/11 14:40	AC
Chloromethane	υ	υ	ug/L	0.35	1.05	5030/8260B	04/10 14:40	04/11 14:40	AC
Vinyl Chloride	ŭ	υ	ug/L	0.34	1.02	5030/8260B	04/10 14:40	04/11 14:40	AC
Bromomethane	υ	U	ug/L	0.41	1.23	5030/8260B	04/10 14:40	04/11 14:40	AC
Chloroethane	U	U	ug/L	0.17	0.51	5030/8260B	04/10 14:40	04/11 14:40	AC
Trichlorofluoromethane	υ	U	ug/L	0.47	1.41	5030/8260В	04/10 14:40	04/11 14:40	AC
I, I-Dichloroethene	U	U	ug/L	0.52	1.56	5030/8260B	04/10 14:40	04/11 14:40	AC
Methylene Chloride	U	ប	ug/L	0.99	2.97	5030/8260B	04/10 14:40	04/11 14:40	AC
Trans-1,2-Dichloroethene	U	υ	ug/L	0.50	1.50	5030/8260B	04/10 14:40	04/11 14:40	AC
Methyl-Tert-Butyl Ether	υ	υ	ug/L	0.50	1.50	5030/8260B	04/10 14:40	04/11 14:40	AC
1, I-Dichloroethane	U	U	ug/L	0.53	1.59	5030/8260B	04/10 14:40	04/11 14:40	AC
2,2-Dichleropropane	U	U	ug/L	0.31	0.93	5030/8260B	04/10 14:40	04/11 14:40	AC
Cis-1,2-Dichloroethene	ט	ប	ug/L	0.11	0.33	5030/8260B	04/10 14:40	04/11 14:40	AC
Chloroform	U	U	ug/L	0.80	2.40	5030/8260B		04/11 14:40	AC
Bromochloromethane	U	ŭ	ug/L	0.55	1.65	5030/8260B		04/11 14:40	AC

Page 9 of 18 Report Printed: 04/25/08 Submission # 804000272 Order # 60075

Project: FPL Site Loxahatchee
Site Location: State Road 80, Loxahatchee, FL
Matrix: Water

Sample I.D.: Packer Test#2 (2062-2095) Collected: 04/09/08 04:55 Received: 04/09/08 16:30

Received:

Collected by: Les Haney

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
1,1,1-Trichloroethane	U	U	ug/L	0.25	0.75	5030/8260B	04/10 14:40	04/11 14:40	AC
1,1-Dichloropropene	U	U	ug/L	0.07	0.21	5030/8260B	04/10 14:40	04/11 14:40	AC
Carbon Tetrachloride	U	U	ug/L	0.19	0.57	5030/8260B	04/10 14:40	04/11 14:40	AC
Велие	U	ט	ug/L	0.09	0.27	5030/8260B	04/10 14:40	04/11 14:40	AC
1,2-Dichloroethane	υ	U	ug/L	0.24	0.72	5030/8260B	04/10 14:40	04/11 14:40	AC
Trichloroethene	U	บ	ug/L	0.09	0.27	5030/8260B	04/10 14:40	04/11 14:40	AC
1,2-Dichloropropane	U	υ	ug/L	0.20	0.60	5030/8260B	04/10 14:40	04/11 14:40	AC
Bromodichloromethane	υ	U	ug/L	0.24	0.72	5030/8260B	04/10 14:40	04/11 14:40	AC
2-Chloroethylvinyl Ether	U	U	ug/L	1.00	3.00	5030/8260B	04/10 14:40	04/11 14:40	AC
Dibromomethane	υ	υ	ug/L	0.42	1.26	5030/8260B	04/10 14:40	04/11 14:40	AC
Cis-1,3-Dichloropropene	U	U	ug/L	0.38	1.14	5030/8260B	04/10 14:40	04/11 14:40	AC
Toluene	U	U	ug/L	0.14	0.42	5030/8260B	04/10 14:40	04/11 14:40	AC
Trans-1,3-Dichloropropene	U	U	ug/L	0.50	1.50	5030/8260B	04/10 14:40	04/11 14:40	AC
1,1,2-Trichloroethane	U	ט	ug/L	0.36	1.08	5030/8260B	04/10 14:40	04/11 14:40	AC
1,3-Dichleropropane	υ	บ	ug/L	0.38	1.14	5030/8260B	04/10 14:40	04/11 14:40	AC
Tetrachloroethene	U	U	ug/L	0.11	0.33	5030/8260B	04/10 14:40	04/11 14:40	AC
Dibromochloromethane	υ	บ	ug/L	0.39	1.17	5030/8260B		04/11 14:40	AC
1,2-Dibromoethane (EDB)	U	U	ug/L	0.40	1.20	5030/8260B	04/10 14:40	04/11 14:40	AC

Page 10 of 18 Report Printed: 04/25/08 Submission # 804000272 Order # 60075

Sample I.D.: Packer Test#2 (2062-2095) Collected: 04/09/08 04:55 Received: 04/09/08 16:30

Collected by: Les Haney

Project: FPL Site Loxahatchee
Site Location: State Road 80, Loxahatchee, FL
Matrix: Water

PARAMETER	RESULT	QC	UNITS	MDI,	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Bromobenzene	บ	υ	ug/L	0.46	1.38	5030/8260B	04/10 14:40	04/11 14:40	AC
Chlorobenzene	U	U	ug/L	0.09	0.27	5030/8260B	04/10 14:40	04/11 14:40	AC
Ethylbenzene	υ	U	ug/L	0.13	0.39	5030/8260B	04/10 14:40	04/11 14:40	AC
1,1,1,2-Tetrachloroethane	U	U	ug/L	0.37	1.11	5030/8260B	04/10 14:40	04/11 14:40	AC
m & p-Xylene	U	U	ug/L	0.19	0.57	5030/8260B	04/10 14:40	04/11 14:40	AC
o-Xylene	U	U	ug/L	0.19	0.57	5030/8260B	04/10 14:40	04/11 14:40	AC
Styrene	υ	U	ug/L	0.17	0.51	5030/8260B	04/10 14:40	04/11 14:40	AC
Isopropylbenzene	υ	U	ug/L	0.50	1.50	5030/8260B	04/10 14:40	04/11 14:40	AC
Bromoform	U	υ	ug/L	0.38	1.14	5030/8260B	04/10 14:40	04/11 14:40	AC
1,1,2,2-Tetrachloroethane	U	U	ug/L	0.29	0.87	5030/8260B	04/10 14:40	04/11 14:40	AC
1,2,3-Trichloropropane	υ	ប	ug/L	0.23	0.69	5030/8260B	04/10 14:40	04/11 14:40	AC
1,3,5-Trimethylbenzene	υ	Ų	ug/L	0.11	0.33	5030/8260B	04/10 14:40	04/11 14:40	AC
2-Chiorotoluene	U	ប	ug/L	0.13	0.39	5030/82603	04/10 14:40	04/11 14:40	AC
4-Chlorotoluene	U	υ	ug/L	0.16	0.48	5030/8260B	04/10 14:40	04/11 14:40	AC
Tert-Butylbenzene	υ	ប	ug/L	0.16	0.48	5030/8260B	04/10 14:40	04/11 14:40	AC
1,2,4-Trimethylbenzene	U	υ	ug/L	0.11	0.33	5030/8260B	04/10 14:40	04/11 14:40	AC
S∞-Butylbenzene	ט	U	ug/L	0.17	0.51	5030/8260B	04/10 14:40	04/11 14:40	AC
P-Isopropyltoluene	υ	U	ug/L	0.11	0.33	5030/8260B	04/10 14:40	04/11 14:40	AC

Page 11 of 18 Report Printed: 04/25/08 Submission # 804000272 Order # 60075

Project: FPL Site Loxahatchee
Site Location: State Road 80, Loxahatchee, FL

Matrix:

Water

Sample I.D.: Packer Test#2 (2062-2095) Collected: 04/09/08 04:55 Received: 04/09/08 16:30

Collected by: Les Haney

PARAMETER	RESULT	бс	UNITS	MIDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
1,3-Dichlorobenzene	υ	Ü	ug/L	0.20	0.60	5030/8260B	04/10 14:40	04/11 14:40	AC
1,4-Dichlorobenzene	U	U	ug/L	D.14	0.42	5030/8260B	04/10 14:40	04/11 14:40	AC
n-Butylbenzene	υ	U	ug/L	0.21	0.63	5039/8260B	04/10 14:40	04/11 14:40	AC
n-PropyIBenzene	U	U	ug/L	0.17	0.51	5030/8260B	04/10 14:40	04/11 14:40	AC
1,2-Dichlorobenzene	υ	U	ug/L	0.48	1.44	5030/8260B	04/10 14:40	04/11 14:40	AC
1,2-Dibromo-3-Chloropropane (DBCP)	U	U	ug/L	0.30	0.90	5030/8260B	04/10 14:40	04/11 14:40	AC
1,2,4-Trichlorobenzene	U	U	ug/L	0.82	2.46	5030/8260B	04/10 14:40	04/11 14:40	AC
Hexachlorobutadiene	Ü	ט	ug/L	0.57	1.71	5030/8260B	04/10 14:40	04/11 14:40	AC
Naphthalene	ប	ប	ug/L	0.015	0.045	5030/8260B	04/10 14:40	04/11 14:40	AC
1,2,3-Trichlorobenzene	υ	υ	ug/L	1.27	3.81	5030/8260B	04/10 14:40	04/11 14:40	AC
8270C Semivolatile Organics in Water b	y GC/MS	1		Dilution	Factor =	1			
N-Nitrosodimethylamine	υ	U	ug/L	0.50	1.50	3510/8270C	04/10 15:01	04/11 14:02	DS
Phenol	υ	U	ug/L	0.38	1.14	3510/8270C	04/10 15:01	04/11 14:02	DS
Bis (2-Chloroethyl) Ether	U	υ	ug/L	0.85	2.55	3510/8270C	04/10 15:01	04/11 14:02	DS
2-Chlorophenol	U	U	ug/L	0.45	1.35	3510/8270C	04/10 15:01	04/11 14:02	DS
1,3-Dichlorobenzene	υ	υ	ug/L	0.20	0.60	3510/8270C	04/10 15:01	04/11 14:02	DS
1,4-Dichtorobenzene	U	υ	ug/L	0.14	0.42	3510/8270C	04/10 15:01	04/11 14:02	DS
Benzyl Alcohol	U	v	ug/L	0.75	2.25	3510/8270C	04/10 15:01	04/11 14:02	DS

Page 12 of 18 Report Printed: 04/25/08 Submission # 804000272 Order # 60075

Project: FPL Site Loxahatchee State Road 80, Loxahatchee, FL

Matrix:

Water

Sample I.D.: Packer Test#2 (2062-2095) Collected: 04/09/08 04:55 Received: 04/09/08 16:30

Collected by: Les Haney

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
1,2-Dichlorobenzene	ប	U	ug/L	0.48	1.44	3510/8270C	04/10 15:01	04/11 14:02	DS
Bis (2-Chloroisopropyl) Ether	υ	U	ug/L	0.85	2.55	3510/8270C	04/10 15:01	04/11 14:02	DS
N-Nitrosodi-N-Propylamine	U	U	ug/L	1.14	3.42	3510/8270C	04/10 15:01	04/11 14:02	DS
Hexachloroethane	U	υ	ug/L	2.31	6.93	3510/8270C	04/10 15:01	04/11 14:02	DS
Nitrobenzene	U	U	ug/L	0.66	1.98	3510/8270C	04/10 15:01	04/11 14:02	DS
Isophorone	υ	υ	ug/L	1.56	4.68	3510/8270C	04/10 15:01	04/11 14:02	DS
2-Nitrophenol	Ų	U	ug/L	1.09	3.27	3510/8270C	04/10 15:01	04/11 14:02	DS
2,4-Dimethylphenol	υ	υ	ug/L	0.62	1.86	3510/8270C	04/10 15:01	04/11 14:02	DS
Bis (2-Chloroethoxy)methane	U	υ	ug/L	1.89	5.67	3510/8270C	04/10 15:01	04/11 14:02	DS
2,4-Dichlarophenol	U	υ	ug/L	1.11	3.33	3510/8270C	04/10 15:01	04/11 14:02	DS
1,2,3-Trichlorobenzene	U	υ	ug/L	2.00	6.00	3510/8270C	04/10 15:01	04/11 14:02	DS
1,2,4-Trichlorobenzene	U	U	ug/L	0.82	2.46	3510/8270C	04/10 15:01	04/11 14:02	DS
Naphthalene	U	υ	ug/L	0.015	0.045	3510/8270C	04/10 15:01	04/11 14:02	DS
Hexachlorobutadiene	υ	U	ng/L	0.57	1.71	3510/8270C	04/10 15:01	04/11 14:02	DS
4-Chioro-3-Methylphenol	U	U	ug/L	0.67	2.01	3510/8270C	04/10 15:01	04/11 14:02	DS
I-Methylnaphthalene	U	υ	ug/L	0.36	1.08	3510/8270C		04/11 14:02	DS
2-Methylnaphthalene	U	υ	ug/L	0.024	0.072	3510/8270C	····	04/11 14:02	DS
2-Methylphenol (o-cresol)	บ	Ü ;	ug/L	1.0	3.0	3510/8270C		04/11 14:02	DS DS

Page 13 of 18 Report Printed: 04/25/08 Submission # 804000272 Order # 60075

Project: FPL Site Loxahatchee
Site Location: State Road 80, Loxahatchee, FL

Matrix:

Water

Sample I.D.: Packer Test#2 (2062-2095) Collected: 04/09/08 04:55 Received: 04/09/08 16:30

Collected by: Les Haney

PARAMETER	RESULT	QC	UNITS	MOL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Hexachlorocyclopentadiene	U	U	ug/L	0.42	1.26	3510/8270C	04/10 15:01	04/11 14:02	DS
3-MethylPhenol (m-cresol)	U	υ	ug/L	0.84	2.52	3510/8270C	04/10 15:01	04/11 14:02	DS
4-Methylphenol (p-cresol)	U	ū	ug/L	1.16	3.48	3510/8270C	04/10 15:01	04/11 14:02	DS
2,3,6-Trichlorophenol	Ų	υ	ug/L	1.2	3.6	3510/8270C	04/10 15:01	04/11 14:02	DS
2,4,5-Trichlorophenol	U	U	ug/L	0.81	2.43	3510/8270C	04/10 15:01	04/11 14:02	DS
2,4,6-Trichlorophenol	ប	U	ug/L	0.78	2.34	3510/8270C	04/10 15:01	04/11 14:02	DS
2-Chloronaphthalene	U	υ	ug/L	1.16	3.48	3510/8270C	04/10 15:01	04/11 14:02	DS
Dimethyl Phthalate	U	U	ug/L	3.7	11.1	3510/8270C	04/10 15:01	04/11 14:02	DS
Acenaphthylene	ប	U	ug/L	0,015	0.045	3510/8270C	04/10 15:01	04/11 14:02	DS
2,6-Dinitrotoluene	U	U	ug/L	0.54	1.62	3510/8270C	04/10 15:01	04/11 14:02	DS
Acenaphthene	υ	υ	ug/L	0.017	0.051	3510/8270C	04/10 15:01	04/11 14:02	D\$
2,4-Dinitrophenol	υ	U	ug/L	1.0	3.0	3510/8270C	04/10 15:01	04/11 14:02	DS
2,4-Dinitrotoluene	υ	U	บg/L	1.17	3.51	3510/8270C	04/10 15:01	04/11 14:02	D\$
4-Nitrophenol	υ	ŭ	ug/L	1.0	3.0	3510/8270C	04/10 15:01	04/11 14:02	D\$
Diethyl Phthalate	U	U	ug/L	3.4	10.2	3510/8270C	04/10 15:01	04/11 14:02	DS
Fluorene	υ	U	ug/L	0.012	0.036	3510/8270C	04/10 15:01	04/11 14:02	DS
4-Chlorophenyl Phenyl Ether	υ	U	ug/L	0.87	2.61	3510/8270C	04/10 15:01	04/11 14:02	DS
4,6-Dinitro-2-Methylphenol	U	U	ug/L	1,4	4.2	3510/8270C	04/10 15:01	04/11 14:02	DS

Page 14 of 18 Report Printed: 04/25/08 Submission # 804000272 Order # 60075

Matrix:

Water

Project: FPL Site Loxahatchee Site Location: State Road 80, Loxahatchee, FL

Sample I.D.: Packer Test#2 (2062-2095)
Collected: 04/09/08 04:55
Received: 04/09/08 16:30

Collected by: Les Haney

RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
U	U	ug/L	3.42	10.26	3510/8270C	04/10 15:01	04/11 14:02	DS
U	υ	ug/L	1.44	4.32	3510/8270C	04/10 15:01	04/11 14:02	DS
υ	υ	ug/L	0.42	1.26	3510/8270C	- 	04/11 14:02	DS
υ	U	ug/L	1.14	3.42	3510/8270C	 	- }	DS
U	U	ug/L	0.028	0.084	3510/8270C	04/10 15:01		DS
U	υ	ug/L	0.049	0.147	3510/8270C	04/10 15:01	<u> </u>	DS
U	U	ug/L	1.2	3.6	3510/8270C	04/10 15:01		DS
U	U	ug/L	0.025	0.075	3510/8270℃	04/10 15:01	ļ	DS
ט	U	ug/L	4.0	12.0	3510/8270C	04/10 15:01		DS
ט	υ	ug/L	0.017	0.051	3510/8270C	04/10 15:01	-	DS
U	Ū	ug/L	1.44	4.32	3510/8270C	04/10 15:01		DS
n	U	ug/L	0.017	0.051	3510/8270C			DS
ט	u	ug/L	2.0	6.0	3510/8270C	<u> </u>		DS
U	Ü	ug/L	0.75	2.25	3510/8270C		! 	DS
U	บ	ug/L	2.37	7.11	3510/8270C			DS
ט	U	ug/L	1.4	4.2	3510/8270C		····	DS
υ	ŭ	ug/L	0.029	0.087	3510/8270C			DS
U	ŭ	пбұт	0.025	0.075	3510/8270C			DS
	U U U U U U U U U U U U U U U U U U U	D D D D D D D D D D D D D D D D D D D	U U ug/L U U ug/L	U	U U ug/L 1.44 4.32 U U ug/L 0.42 1.26 U U ug/L 1.14 3.42 U U ug/L 0.028 0.084 U U ug/L 0.049 0.147 U U ug/L 0.049 0.147 U U ug/L 0.025 0.075 U U ug/L 0.025 0.075 U U ug/L 0.017 0.051 U U ug/L 0.075 2.25 U U ug/L 0.75 2.25 U U ug/L 1.4 4.2 U U ug/L 0.029 0.087	U	U U Ug/L 3.42 10.26 3510/8270C 04/10 15:01 U U U Ug/L 1.44 4.32 3510/8270C 04/10 15:01 U U Ug/L 0.42 1.26 3510/8270C 04/10 15:01 U U Ug/L 0.42 1.26 3510/8270C 04/10 15:01 U U Ug/L 0.028 0.084 3510/8270C 04/10 15:01 U U Ug/L 0.049 0.147 3510/8270C 04/10 15:01 U U Ug/L 0.049 0.147 3510/8270C 04/10 15:01 U U Ug/L 0.025 0.075 3510/8270C 04/10 15:01 U U Ug/L 4.0 12.0 3510/8270C 04/10 15:01 U U Ug/L 0.017 0.051 3510/8270C 04/10 15:01 U U Ug/L 0.017 0.051 3510/8270C 04/10 15:01 U	U U ug/L 3.42 10.26 3510/8270C 04/10 15:01 04/11 14:02 U U ug/L 1.44 4.32 3510/8270C 04/10 15:01 04/11 14:02 U U ug/L 0.42 1.26 3510/8270C 04/10 15:01 04/11 14:02 U U ug/L 1.14 3.42 3510/8270C 04/10 15:01 04/11 14:02 U U ug/L 0.028 0.084 3510/8270C 04/10 15:01 04/11 14:02 U U ug/L 0.049 0.147 3510/8270C 04/10 15:01 04/11 14:02 U U ug/L 1.2 3.6 3510/8270C 04/10 15:01 04/11 14:02 U U ug/L 0.025 0.075 3510/8270C 04/10 15:01 04/11 14:02 U U ug/L 0.017 0.051 3510/8270C 04/10 15:01 04/11 14:02 U U ug/L 0.017 0.051 3510/8270C 0

Page 15 of 18 Report Printed: 04/25/08 Submission #804000272 Order #60075

Project: FPL Site Loxahatchee Site Location: State Road 80, Loxahatchee, FL Matrix: Water

Sample I.D.: Packer Test#2 (2062-2095)
Collected: 04/09/08 04:55
Received: 04/09/08 16:30

Collected by: Les Haney

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYSI
Benzo(A)Pyrene	U	U	ug/Ľ	0.017	0.051	3510/8270C	04/10 15:01	04/I1 [4:02	DS
Indeno(1,2,3-CD)Pyrene	U	υ	ug/L	0.93	2.79	3510/8270C	04/10 15:01	04/11 14:02	DS
Dibenzo(A,H,)Anthracene	υ	υ	ug/L	0.029	0.087	3510/8270C	04/10 15:01	04/11 14:02	DS
Benzo(G,H,I)Perylene	υ	U	ug/L	0.017	0.051	3510/8270C	04/10 15:01	04/11 14:02	DS
Bis-2-ethylhexyl Adipate	U	U	ug/L	0.36	1.08	3510/8270C	04/10 15:01	04/11 14:02	DS
Aldrin -	υ	U	ug/L	0.017	0.051	3510/8270C	04/10 15:01	04/11 14:02	DS
alpha-BHC *	υ	Ü	ug/L	0.005	0.015	3510/8270C	04/10 15:01	04/11 14:02	DS
beta-BHC	U	U	ug/L	0.005	0.015	3510/8270C	04/10 15:01	04/11 14:02	DS
delta-BHC -	U	บ	ug/L	0.005	0.015	3510/8270C	04/10 15:01	04/11 14:02	DS
gamma-BHC (Lindane) ~	U	U	ug/L	0.004	0.012	3510/8270C	04/10 15:01	04/11 14:02	DS
Chlordane (Screen)	U	Ų	ug/L	0.10	0.30	3510/8270C	04/10 15:01	04/11 14:02	DS
4,4'-DDD ~	υ	U	ug/L	0.60	1.80	3510/8270C	04/10 15:01	04/11 14:02	DS
4,4'-DDE ~	U	ប	ug/L	0.39	1.17	3510/8270C	04/10 15:01	04/11 14:02	DS
4,4'-DDT -	υ	υ	ug/L	0.69	2.07	3510/8270C	04/10 15:01	04/11 14:02	DS
Dieldrin "	Ų	U	ug/L	0.006	0.018	3510/8270C	04/10 15:01	04/11 14:02	DS
Endosulfan I *	U	U	ug/L	0.006	0.018	3510/8270C	04/10 15:01	04/11 14:02	DS
3ndosulfan ∏ ¯	υ	υ	ug/L	0.006	0.018	3510/8270C	04/10 15:01	04/11 14:02	DS
endosulfan Sulfate	U	U	ug/L.	0.007	0.021	3510/8270C		04/11 14:02	DS

Page 16 of 18 Report Printed: 04/25/08 Submission # 804000272 Order # 60075

Matrix: Water

Project: FPL Site Loxahatchee Site Location: State Road 80, Loxahatchee, FL

Sample I.D.: Packer Test#2 (2062-2095) Collected: 04/09/08 04:55 Received: 04/09/08 16:30

Collected by: Les Haney

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Endrin *	v	U	ug/L	0.005	0.015	3510/8270C	04/10 15:01	04/11 14:02	DS
Endrin Aldehyde -	υ	U	ug/L	0.010	0.030	3510/8270C	04/10 15:01	04/11 14:02	DS
Heptachlor	υ	υ	ug/L	0.005	0.015	3510/8270C	04/10 15:01	04/11 14:02	DS
Heptachlor Epoxide	υ	U	ug/L	0.008	0.024	3510/8270C	04/10 15:01	04/11 14:02	DS
Toxaphene ~	U	U	ug/L	0.40	1.20	3510/8270C	04/10 15:01	04/11 14:02	DS
PCB-1016 -	υ	υ	ug/L	0.10	0.30	3510/8270C	04/10 15:01	04/11 14:02	DS
PCB-1221 "	U	U	ug/L	0.10	0.30	3510/8270C	04/10 15:01	04/11 14:02	DS
PCB-1232 -	υ	v	ug/L	0.10	0.38	3510/8270C	04/10 15:01	04/11 14:02	DS
PCB-1242 ~	υ	υ	ug/L	0.10	0.30	3510/8270C	04/10 15:01	04/11 14:02	DS
PCB-1248 ~	U	U	ug/L	0.10	0.30	3510/8270C	04/10 15:01	04/11 14:02	DS
PCB-1254 -	Ū	U	ug/L	0.10	0.30	3510/8270C	04/10 15:01	04/11 14:02	DS
PCB-1260 "	υ	บ	ug/L	0.10	0.30	3510/8270C	04/10 15:01	04/11 14:02	DS
Dioxin (screen)	U	U	ug/L	0.03	0.09	3510/8270C	04/10 15:01	04/11 14:02	DS
Azobenzene *	บ	U	ug/L	0.75	2.25	3510/8270C	04/10 15:01	04/11 14:02	DS
Methoxychlor	U	U	ug/L	0.807	0.021	3510/8270C	04/10 15:01	04/11 14:02	DS
Benzoic Acid	Ü	ט	ug/L	0.84	2.52	3510/8270C	04/10 15:01	04/11 14:02	DS
Aniline	U	บ	ug/L	0.50	1.50	3510/8270C	04/10 15:01	04/11 14:02	DS
4-Chloroaniline	ט	U	ug/L	0.65	1.95	3510/8270C	04/10 15:01	04/11 14:02	DS
	1	····	 	· · · · · · · · · · · · · · · · · · ·	-				

Page 17 of 18 Report Printed: 04/25/08 Submission # 804000272 Order # 60075

Project: FPL Site Loxabatchee
Site Location: State Road 80, Loxabatchee, FL
Matrix: Water

 Sample I.D.:
 Packer Test#2 (2062-2095)

 Collected:
 04/09/08
 04:55

 Received:
 04/09/08
 16:30

Collected by: Les Haney

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Dibenzofuran	U	Ū	ug/L	0.66	1.98	3510/8270C	04/10 15:01	04/11 14:02	DS
2-Nitroaniline	υ	U	ug/L	0.58	1.74	3510/8270C	04/10 15:01	04/11 14:02	DS
3-Nitroaniline	υ	υ	ug/L	0.50	1,50	3510/8270C	04/10 15:01	04/11 14:02	DS
4-Nitroaniline	U	บ	ug/L	0.84	2.52	3510/8270C	04/10 15:01	04/11 14:02	DS
Carbazole '	U	บ	ug/L	0.68	2.04	3510/8270C	04/10 15:01	04/11 14:02	D\$
2,6-Dichlorophenol	ט	U	ug/L	0.89	2.67	3510/8270C	04/10 15:01	04/11 -14:02	DS
Pyridine	U	ט	ug/L	0.99	2.97	3510/8270C	04/10 15:01	04/11 14:02	DS
2,3,4,6-Tetrachlorophenol	U	U	ug/L	1.00	3.00	3510/8270C	04/10 15:01	04/11 14:02	DS
2,3,5,6-Tetrachlorophenol	υ	U	ug/L	0.80	2.40	3510/8270C	04/10 15:01	04/11 14:02	DS
SUB 531 Carbamate Pesticides: 62-5	50.310(4)(b	1	· · · · · · · · · · · · · · · · · · ·	Dilution	Factor =	1			
Carbofuran	υ	U	ug/L	0.54	1.62	531.1	04/16 14:25	04/17 11:55	E84809
Oxamyl (vydate)	U	U	ug/L	0.55	1.65	531.1	04/16 14:25	04/17 11:55	E84809
Glyphosate	U	υ	нg/L	6.0	18.0	547.1	04/14 09:30	04/14 13:22	E84809
Endethall	U	U	mg/L	0.0046	0.0138	548.1	04/15 17:54	04/21 14:02	B84809
SUB 549 Diquat : 62-550.310(4)(b)	1	T	1	Dilution	Factor =	1			
Diquat	U	U	mg/L	0.0003	0.0009	549.2	04/15 17:12	04/21 10:54	E84809
Gross Alpha	30 ± 2		pCi/L	0.5	1.5	БРА 00-02	04/24	04/24 08:00	E84025
Radium-226	8.9± 0.5		pCi/L	0.20	0.60	EPA 903.1	04/23	04/23 12:54	E84025

Page 18 of 18 Report Printed: 04/25/08 Submission # 804000272 Order # 60075

Project: FPL Site Loxahatchee
Site Location: State Road 80, Loxahatchee, FL

Matrix:

Sample I.D.: Packer Test#2 (2062-2095)
Collected: 04/09/08 04:55
Received: 04/09/08 16:30

Collected by: Les Hancy

LABORATORY ANALYSIS REPORT

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Radium-228	ប	υ	pCi/L	1.00	3.00	EPA Ra-05	04/23	04/23 08:45	E84025
								<u> </u>	

QC=Qualifier Codes as defined by DBP 62-160
Unless indicated, soil results are reported based on actual (wet) weight basis.
natytes not currently NELAC certified denoted by .
ork performed by outside (subcontract) labs denoted by Cert.ID in Analyst Field.
kesults relate only to this sample.

Authorized CSM Signature (954) 978-6400 Florida-Spectrum Environmental Services, Inc. Certification # E86006

Data Qualifier Codes

- A. Value reported is the mean (average) of two or more determinations.
- B Results based upon colony counts outside the acceptable range. The code is to be used if the colony count is generated from a plate in which the total number of Coliforn colonies exceeds the method indicated ideal ranges, which are:

Total Coliforms: 20-80 colonies Fecal Coliforms: 20-60 colonies

- -C Resultavas confirmed by a separate analysis of the sample.
- Measurement was made in the field (i.e. is situ). This applies to any value (ex. pH, specific conductance, etc.) that was obtained under field conditions using approved analytical methods.
- H Value based on field kit determination; results may not be accurate.
- The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
- J Estimated value; value not accurate. This code shall be used in the following instances:
 - 1. surrogate recovery limits have been exceeded.
 - 2. no known quality control criteria exists for the component
 - 3. the reported value failed to meet the established quality control criteria for either precision or accuracy.
 - 4. the sample matrix interfered with the ability to make any accurate determination; or
 - if the data is questionable because of improper laboratory or field protocols (e.g. composite sample was collected instead of a grab sample).

- N Presumptive evidence of presence of material. This qualifier shall be used if:
 - 1. the component has been tentatively identified based on mass spectral library search a
 - 2. there is an indication that the analyte is present, but quality control requirements for confirmation were not met
- Sampled, but analysis lost or not performed; sample compromised.
 - Q Sample held beyond accepted holding time. This code shall be used if the value is derived from a sample that was prepared or analyzed after the approved holding time restrictions for sample preparation or analysis.
 - R Significant rain in the past 48 hours. This code shall be used when the rainfall might contribute to a lower than normal value.
 - T Value reported is less than the laboratory method detection limit
- Indicated that the compound was analyzed for but not detected. This shall be used to indicate that the specified component was not detected. The value associated with the qualifier shall be the laboratory method detection limit
- V Indicated that the analyte was detected in both the sample and the associated method blank. Note: the value in the blank shall not be subtracted from associated samples.
- Y The laboratory analysis was from an unpreserved or improperly preserved sample. The data may not be accurate.
- Z Too many colonies were present (TNTC), the numeric value represents the filtration volume.
- ? Data is rejected and should not be used. Some of all of the quality control data for the analyte were outside criteria, and the presence or absence of the analyte cannot be determined from the data.
- Not analyzed due to interference.
- ! Data deviates from historically established concentration ranges.
- Analysis performed outside NELAP program. (e.g. State of Georgia, UCMR, ICR or other certification.)

SUBN SION #
SUBN SION #
Logged in LIMS by H
Log-In Reviewed by

CHAIN OF CUSTODY RECORD

1 1460 W. McNab Road Ft Laud, FL 33309

940 Alt. 27 South Babson Park, FL 33827

630 Indian Street Savannah, GA 31401
 528 Gooch Road Fort Meade, FL 33841

aud. FL 33309 Tel: (954) 978-6400 Tel: (863) 638-3255 GA 31401 Tel: (912) 238-5050

Tel: (863) 285-8145

Fax: (954) 978-2233 Fax: (863) 638-3637

Fax: (863) 638-3637 Fax: (912) 234-4815 Fax: (863) 285-7030 DUE DATE Requested

4 16 08

RUSH RESERVATION #

Original-Return w/report Yellow- Lab File Copy Pink-Sampler Copy Report to: Report to PIMERBLERD.FTHYERS FL 33908 Address: 15465 Invoice to: Purchase Invoice to Order# Address: SAME AS ABOVE Project Name and/or Number BLACIC & VERTCH Site 20505 STRD 80 LOXAHATCHEE FL 33470 Location: Project Phone: Email: RIG 248 Q TOULGOUIST BROS Mgr: 239.360.4630 Sampler Name: Sampler LESHAMEY (printed) · Con. Signature ORDER# Sample Date Time Matrix Bottle Number of Analysis Required Field Tests Lab Control Number Sampled Sampled Containers & \mathbf{m} DW SW Received Pres. CR) WW C & NELAC Shaded Areas For S SED 0 Ħ Letter Laboratory Use Only М HW BIO Combo N L Suffixes SEA OIL P D Codes A-? X ٠C DEWM-1 0320 10 THE INFORMED FORM & EWIL PROSENT Special Comments: SAMPLE CUSTODY AND TRANSFER SIGNATURES Total DATE/TIME Relinquished by: "I waive NELAC protocol" (sign here) > QA/QC Report Needed? Deliverables: Yes No (additional charge) 1 Received by: Sample Custody & Field Comments Bottle Type Preservatives | Relinquished by: A-liter amber A-ascorbic acid P-H3PO4 Temp as received B-Bacteria bag/bottle C-HCL S-H2SQ4 Received by: F-500 ml O-125 ml Cu-CuSO4 T-Na2S2O3-H2O Custody Scals? L-liter bottle H-HNO3 U-Unpreserved Relinguished by: \$4-4 oz soil jar / \$8-8 oz soil jar M-MCAB P-H3PO4 Billable Field Time hrs T-250 ml N-NaOH Z-zinc acetate Received by: V-40 ml vial NH4-NH4CL W-wide month Misc. Charges www.flenviro.com COC Page X-other

Page 1 of 19

Report Printed: 05/07/08 Submission # 804000355

Order # 60495

Project: Black & Veatch DZMW-I Site Location: 20505 State Road 80, Loxahatchee, FL

Matrix:

Water

Sample I.D.: Packer #3 (1917-1950) Collected: 04/11/08 15:20

Received: 04/11/08

16:50

Collected by: Les Haney

LABORATORY ANALYSIS REPORT

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Biochemical Oxygen Demand	5.1	I	mg/L	2.0	6.0	405.1	04/11 17:31	04/16 13:31	RAV
Coliform-Total (E-Coli)	P(P)					9223B	04/11 17:35	04/12 17:35	RAV
рĦ	7.53	Q	units	0.1	0.3	150.1	04/12 12:21	04/12 12:21	DGK
Total Dissolved Solids (TDS)	9600	<u> </u>	mg/L	1.00	3.00	EPA 160.1	04/16 15:04	04/16 15:04	RPV
hloride	4890		mg/L	0.31	0.93	300.0	04/12 11:44	04/12 11:44	DGK
Fluoride	0.44		mg/L	0.040	0.120	300.0	04/12 11:44	04/12 11:44	DGK
Nitrate (as N)	U	U	mg/L	0.005	0.015	300.0	04/12 11:44	04/12 11:44	DGK
Nitrate + Nitrite (as N)	U	บ	mg/L	0.006	0.018	300.0	04/12 11:44	04/12 11:44	DGK
Nitrite (as N)	υ	U	mg/L	0.006	0.018	300.0	04/12 11:44	04/12 11:44	DGK
Sulfate	558	† 	mg/L	4.00	12.00	300.0	04/12 11:44	04/12 11:44	DGK
Cyanide, Total	U	บ	mg/L	0.004	0.012	335.3	04/16 11:26	04/16 14:39	MSG
Nitrogen (Ammonia) as N	0.58		mg/L	0.01	0.03	350.1	04/16 10:40	04/16 10:40	MSG
Nitrogen (Kjeldahl) as "N"	3.74		mg/L	0.045	0.135	351.2	04/18 16:07	04/18 16:07	MG/MEC
Nitrogen (Total Organic)	3.2		mg/L	0.045	0.135	351/350	04/22 12:26	04/22 12:26	MSG
Phosphorus, Total as "P"	0.128		mg/L	0.031	0.093	365.4	04/18 15:04	04/18 15:04	MG/MEC
Chemical Oxygen Demand	178		mg/L	4.09	12.27	410.4		04/22 15:09	
MBAS Surfactants (LAS Mol. Wt. 340)	0.03		mg/L	0.01	0.03	425.I			IMA
Odor (Lab)	1.0		TON	0.1	0.3	SM2150B		04/12 13:11	DGK
	 -		-	-		24451300	04/12 12:26	04/12 12:26	DGK

Florida-Spectrum Environmental Services, Inc. 1460 W. McNab Road, Fort Lauderdale, FL 33309

Pembroke Laboratory 528 Gooch Rd. Fort Mead, FL 33841

Big Lake Laboratory 415 B SW Park St. Okeechobee, FL 34972 www.flenviro.com

Spectrum Laboratories 630 Indian St. Savannah, GA 31401

Page 2 of 19 Report Printed: 05/07/08 Submission # 804000355 Order # 60495

Black & Veatch DZMW-1

Project: Black & Veatch DZMW-1 Site Location: 20505 State Road 80, Loxahatchee, FL

Matrix:

Water

Sample I.D.: Packer #3 (1917-1950) Collected: 04/11/08 15:20 Received: 04/11/08 16:50

Collected by: Les Haney

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Color (Lab)	100		Pt-Co	2.0	6.0	SM2120B	04/12 12:23	04/12 12:23	DGK
Aluminum	0.016		mg/L	0.005	0.015	200.7	04/14	04/14 12:55	IMN
Iron	1.68		mg/L	0.001	0.003	200.7	04/14	04/14 12:55	IMN
Sodium	2506		mg/L	30.000	90.000	200.7	04/14	04/14 12:51	IMN
Zinc	ប	Ų	mg/L	0.00004	0.00012	200.7	04/14	04/14 12:55	IMN
200.8 DW-10 Metals in Drinki	ng Water 62-550.310	1	1	Dilution	Factor =	10			
Arsenic	U	U	mg/L	0.00120	0.00360	4.1.3/200.8	04/17 09:00	04/17 16:54	IMN
Barium	0.119		mg/L	0.0037	0.0111	4.1.3/200.8	04/17 09:00	04/17 16:54	IMN
Cadmium	ប	۲.	mg/L	0.00430	0,01290	4.1.3/200.8	04/17 09:00	04/17 16:54	IMN
Chromium	υ	U	mg/L	0.00080	0.00240	4.1.3/200.8	04/17 09:00	04/17 16:54	IMN
Lead	υ	บ	mg/L	0.00010	0.00030	4.1.3/200.8	04/17 09:00	04/17 16:54	IMN
Nickel	υ	υ	mg/L	0.00300	0.00900	4.1.3/200.8	04/17 09:00	04/17 16:54	IMN
Selenium	0.013		mg/L	0.00300	0.00900	4.1.3/200.8	04/17 09:00	04/17 16:54	IMN
Antimony	U	U	mg/L	0.00400	0.01200	4.1.3/200.8	04/17 09:00	04/17 16:54	IMN
Beryllium	υ	U	mg/L	0.00200	0.00600	4.1.3/200.8	04/17 09:00	04/17 16:54	IMN
Thallium	U	U	mg/L	0.00020	0.00060	4.1.3/200.8	04/17 09:00	04/17 16:54	IMN
Copper	U	U	mg/L	0.00080	0.00240	200.8	04/17	04/17 16:54	IMN
Manganese	0.146		mg/L	0.00100	0.00300	200.8	04/17	04/17 16:54	IMN

Page 3 of 19 Report Printed: 05/07/08 Submission #804000355 Order #60495

Project: Black & Veatch DZMW-1 Site Location: 20505 State Road 80, Loxahatchee, FL Matrix: Water

Sample I.D.: Packer #3 (1917-1950) Collected: 04/11/08 15:20 16:50

Received: 04/11/08 Collected by: Les Haney

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Silver	υ	v	mg/L	0.00010	0.00030	200.8	04/17	04/17 16:54	IMN
Mercury	υ	U	mg/L	0.00002	0.00006	245.1	04/16	04/16 14:03	BN
504.1 EDB, DBCP: 62-550.310(4)(b)	1	1	1	Dilution	Factor =				
1,2-Dibromo-3-Chloropropane (DBCP)	υ	υ	ug/L	0.02	0.06	EPA 504.1 EC	D 04/1511:56	04/15 23:04	AC
Ethylene Dibromide (BDB)	υ	ט	ug/L	0.02	0.06	EPA 504.1 EC	D 04/1511:56	04/15 23:04	AC
508 Pesticides & PCBs: 62-550.310(4)	(b)	1	<u>t</u>	Dilution	Factor =	[
Hexachlorocyclopemadiene	ប	U	ug/L	0.03	0.09	508	04/16 10:28	04/17 17:16	AC
Hexachlorobenzene	U	U	ug/L	0.026	0.078	508	04/16 10:28	04/17 17:16	AC
v-BřiC (Lindane)	υ	ប	ug/L	0.023	0.069	508	04/16 10:28	04/17 17:16	AC
Heptachlor	U	U	ug/L	0.032	0.006	508	04/16 10:28	04/17 17:16	AC
Heptachlor Epoxide	U	ប	ug/L	0.002	0.006	508	04/16 10:28	04/17 17:16	AC
Endrin	U	U	ug/L	0.012	0.036	508	04/16 10:28	04/17 17:16	AC
Methoxychlor	U	U	ug/L	0.012	0.036	508	04/16 10:28	04/17 17:16	AC
Arochlor 1016	ប	U	ug/L	0.10	0.30	508	04/16 10:28	04/17 17:16	AC
Arochior 1221	U	U	ug/I,	0.10	0.30	508	04/16 10:28	04/17 17:16	AC
Arochlor 1232	υ	U	ug/L	0.10	0.30	508	04/16 10:28	04/17 17:16	AC
Arachior 1242	υ	U	ug/L	0.10	0.30	508	04/16 10:28	04/17 17:16	AC
Arochior 1248	υ	υ	ug/L	0.10	0.30	508	04/16 10:28	04/17 17:16	AC

Page 4 of 19 Report Printed: 05/07/08 Submission # 804000355 Order # 60495

Project: Black & Veatch DZMW-1 Site Location: 20505 State Road 80, Loxabatchee, PL Matrix: Water

Sample I.D.: Packer #3 (1917-1950)
Collected: 04/11/08 15:20
Received: 04/11/08 16:50
Collected by: Les Haney

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYSI
Arechlor 1254	U	U	ug/L	0.10	0.30	508	04/16 10:28	04/17 17:16	AC
Arochlor 1260	U	υ	ug/L	0.10	0.30	508	04/16 10:28	04/17 17:16	AC
Toxaphene	υ	Ų	ug/L	0.06	0.18	508	04/16 10:28	04/17 17:16	AC
Chlordane	υ	U	ug/L	0.01	0.03	508	04/16 10:28	04/17 17:16	AC
515.3 Chlorophenoxy Herbicides: 62-	550.310(4)(b)	i ı	1	Dilution	Factor =	l			
Dalapon	υ	บ	ug/L	0.14	0.42	515.3	04/15 11:51	04/15 23:35	AC
2,4-D	U	U	ug/L	0.19	0.57	515.3	04/15 11:51	04/15 23:35	AC
Pentachlorophenol	v	U	ug/L	0.02	0.06	515.3	04/15 [1:51	04/15 23:35	AC
2,4,5-TP (silvex)	U	υ	ug/L	0.052	0.156	515.3	04/15 11:51	04/15 23:35	AC
Dinoseb	U	υ	ug/Ł	0.18	0.54	515.3	04/15 11:51	04/15 23:35	AC
Picloram	υ	υ	ug/L	0.14	0.42	515.3	04/15 11:51	04/15 23:35	AC
524.2 Trihalomethanes: 62-550.310(3	THMs	,	" 	Dilution	Factor =	L			
Bromodichioromethane	U	U	ug/L	0.24	0.72	524.2	04/16 19:10	04/16 19:10	MMD
Dibromochloromethane	U	U	ug/L	0.39	1.17	524.2	04/16 19:10	04/16 19:10	MMD
Tribromomethane (Bromoform)	U	U	ug/L	0.38	1.14	524.2	04/16 19:10	04/16 19:10	MMD
Trichioromethane (Chloroform)	U	Ų	ug/L	0.80	2,40	524.2	04/16 19:10	04/16 19:10	MMD
TOTAL Trihalomethanes	υ	U	ug/L	2.0	6.8	524.2	04/16 19:10	04/16 19:10	MMD
524.2 Volatile Organics: 62-550.310(4)(a)	1		Dilutio	n Factor =	l			

Page 5 of 19 Report Printed: 05/07/08 Submission #804000355 Order #60495

Project: Black & Veatch DZMW-1 Site Location: 20505 State Road 80, Loxahatchee, FL Matrix: Water

Sample I.D.: Packer #3 (1917-1950) Collected: 04/11/08 15:20 Received: 04/11/08 Collected by: Les Haney 16:50

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Vinyl Chloride	U	U	ug/L	0.34	1.02	524.2	04/16 19:10	04/16 19:10	MMD
1.1-Dichioroethylene	υ	U	ug/L	0.43	1.29	524.2	04/16 19:10	04/16 19:10	MMD
Dichloromethane (Methylene Chloride)	บ	ט	ug/L	2.00	6.00	524.2	04/16 19:10	04/16 19:10	MMD
Trans-1,2-Dichloroethylene	U	U	ug/L	0.50	1.50	524.2	04/16 19:10	04/16 19:10	MMD
Cis-1,2-Dichloroethylene	υ	υ	ug/L	0.11	0.33	524.2	04/16 19:10	04/16 19:10	MMD
1,1,1-Trichloroethane	υ	บ	ug/L	0.25	0.75	524.2	04/16 19:10	04/16 19:10	MMD
Carbon Tetrachforide	U	υ	ug/L	0.19	0.57	524.2	04/16 19:10	04/16 19:10	MMD
Benzene	υ	υ	ug/L	0.09	0.27	524.2	04/16 19:10	04/16 19:10	MMD
1,2-Dichloroethane	U	υ	ug/L	0.24	0.72	524.2	04/16 19:10	04/16 19:10	MMD
Trichloroethylene	บ	U	ug/L	0.09	0.27	524.2	04/16 19:10	04/16 19:10	MMD
1,2-Dichloropropane	U	U	ug/L	0.20	0.60	524.2	04/16 19:10	04/16 19:10	MMD
Toluene	υ	υ	ug/L	0.14	0.42	524.2	04/16 19:10	04/16 19:10	MMD
1,1,2-Trichloroethane	ប	บ	ug/L	0.36	1.08	524.2	04/16 19:10	04/16 19:10	MMD
Tetrachioroethylene	U	υ	ug/L	0.11	0.33	524.2	04/16 19:10	04/16 19:10	MMD
Chiorobenzene	บ	υ	ug/L	0.09	0.27	524.2	04/16 19:10	04/16 19:10	MMD
Ethylbenzene	ប	υ	ug/L	0.13	0.39	524.2	04/16 19:10	04/16 19:10	ммр
Xylenes (Total)	υ	υ	ug/L	0.21	0.63	524.2	04/16 19:10	04/16 19:10	MMD
Styrene	U	U	ug/L	0.17	0.51	524.2	04/16 19:10	04/16 19:10	MMD

Page 6 of 19 Report Printed: 05/07/08 Submission # 804000355 Order # 60495

Project: Black & Veatch DZMW-1 Site Location: 20505 State Road 80, Loxahatchee, FL Matrix: Water

Sample I.D.: Packer #3 (1917-1950) Collected: 04/11/08 15:20 Received: 04/11/08 16:50

Collected by: Les Haney

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
1,4-Dichlorobenzene (para)	υ	ซ	ng/L	0.14	0.42	524.2	04/16 19:10	04/16 19:10	MMD
1,2-Dichlorobenzene (ortho)	υ	Ų	ug/L	0.48	1.44	524.2	04/16 19:10	04/16 19:10	MMD
1,2,4-Trichlorobenzene	U	U	ug/L	0.82	2.46	524.2	04/16 19:10	04/16 19:10	MMD
725.2 Semivolatile Organics: 62-550.3	10(4)(b)	1		Dilution	Factor =	1 1			
Di(2-Ethylhexyl)phthalate	U	Ū	ug/L	0.36	1.08	525.2	04/16 10:08	04/16 19:43	DS
Di(2-Ethylhexyl)adipate	U	U	ug/L	0.36	1.08	525.2	04/16 10:08	04/16 19:43	DS
Benzo(a)pyrene	U	U	ug/L	0.017	0.051	525.2	04/16 10:08	04/16 19:43	DS
Pentachlorophenol	υ	υ	ug/L	0.02	0.06	525.2	04/16 10:08	04/16 19:43	DS
Alachlor	U	U	ug/L	0.20	0.60	525.2	04/16 10:08	04/16 19:43	DS
Atrazine	υ	U	ug/L	0.20	0.60	525.2	04/16 10:08	04/16 19:43	DS
Simazine	U	U	ug/L	0.20	0.60	52 5.2	04/16 10:08	04/16 19:43	DS
552.2 Haloacetic Acids : 62-550.310(3)	:	1	1	Dilution	Factor =	1		} 	
Monochloroscetic Acid	v	Ų	ug/L	1.81	5.43	552.2	04/17 08:52	04/17 13:52	AC
Dichloroacetic Acid	ช	U	ug/L	1.48	4.44	552.2	04/17 08:52	04/17 13:52	AC
Trichloroacetic Acid	U	U	ug/L	1.68	5.04	552.2	04/17 08:52	04/17 13:52	AC
Monobromoacetic Acid	υ	U	ug/L	1.48	4.44	552.2	04/17 08:52	04/17 13:52	AC
Dibromoacetic Acid	2.81	1	ug/L	1.86	5.58	552.2	04/17 08:52	04/17 13:52	AC
Total Haloacetic Acids (HAAS)	U	υ	ug/L	9.0	27.0	552.2	04/17 08:52	04/17 13:52	AC

Page 7 of 19 Report Printed: 05/07/08 Submission # 804000355 Order # 60495

Project: Black & Veatch DZMW-1 Site Location: 20505 State Road 80, Loxahatchee, FL Matrix: Water

Sample I.D.: Packer #3 (1917-1950) Collected: 04/11/08 15:20 Received: 04/11/08 16:50

Collected by: Les Haney

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
608 Chlorinated Pesticides & PCBs i	n WATER	1	1	Dilutio	n Factor ==	1			
а-ВНС	U	U	ug/L	0.005	0.015	EPA 608	04/14 16:36	04/15 16:36	AC
ь-внс	Ų	Ų	ug/L	0.005	0.015	EPA 608	04/14 16:36	04/15 16:36	AC
g-BHC (lindane)	ט	U	ug/L	0.004	0.012	EPA 608	04/14 16:36	04/15 16:36	AC
J-BHC	U	U	ug/L	0.005	0.015	EPA 608	04/14 16:36	04/15 16:36	AC
Heptachlor	U	U	ug/L	0.005	0.015	EPA 608	04/14 16:36	04/15 16:36	AC
Aldrin	υ	U	ug/L	0.017	0.051	EPA 608	04/14 16:36	04/15 16:36	AC
Heptachlor Epoxide	U	υ	ug/L	0.008	0.024	BPA 608	04/14 16:36	04/15 16:36	AC
Endosulfan I	υ	U	ug/L	0.006	0.018	EPA 608	04/14 16:36	04/15 16:36	AC
Dieldrin	U	υ	ug/L	0.006	0.018	EPA 608	04/14 16:36	04/15 16:36	AC
4,4-DDE	ប	ប	ug/L	0.39	1.17	EPA 608	04/14 16:36	04/15 16:36	AC
Endrin	υ	U	ug/L	0.005	0.015	EPA 608	04/14 16:36	04/15 16:36	AC
Endosulfan II	ប	Ų	ug/L	0.006	0.018	EPA 608	04/14 16:36	04/15 16:36	AC
4,4-DDD	υ	υ	ug/L	0.60	1.80	EPA 608	04/14 16:36	04/15 16:36	AC
Endrin Aldehyde	U	ប	ug/L	0.010	0.030	BPA 608	04/14 16:36	04/15 16:36	AC
Endosulfan Sulfate	υ	υ	ug/L	0.007	0.021	EPA 608	04/14 16:36	04/15 16:36	AC
4,4-DDT	U	U	ug/L	0.69	2.07	EPA 608	04/14 16:36	04/15 16:36	AC
Methoxychlor	บ	υ	ug/L	0.007	0.021	EPA 608	04/14 16:36	04/15 16:36	AC

Page 8 of 19 Report Printed: 05/07/08 Submission # 804000355 Order # 60495

Matrix:

Project: Black & Veatch DZMW-I Site Location: 20505 State Road 80, Loxahatchee, FL Water

Sample I.D.: Packer #3 (1917-1950) Collected: 04/11/08 15:20 Received: 04/11/08 16:50 Collected by: Les Haney

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Arcelor 1016	ប	U	ug/L	0.27	0.81	BPA 608	04/14 16:36	04/15 16:36	AC
Aroclor 1221	U	ש	ug/L	0.15	0.45	EPA 608	04/14 16:36	04/15 16:36	AC
Arocler 1232	Ų	υ	ug/L	0.35	1.05	EPA 608	04/14 16:36	04/15 16:36	AC
Aroclor 1242	υ	U	ug/L	0.24	0.72	EPA 608	04/14 16:36	04/15 16:36	AC
Aroclor 1248	U	บ	ug/L	0.09	0.27	EPA 608	04/14 16:36	04/15 16:36	AC
Aroclor 1254	U	U	ug/L	0.06	0.18	EPA 608	04/14 16:36	04/15 16:36	AC
Aroclor 1260	U	υ	ug/L	0.18	0.54	EPA 608	04/14 16:36	04/15 16:36	AC
Toxaphene	U	ប	ug/L	0.40	1.20	EPA 608	04/14 16:36	04/15 16:36	AC
Chlordane -	U	υ	ug/L	0.10	0.30	EPA 608	04/14 16:36	04/15 16:36	AC
8260B Volatile Organics in Water b	y GC/MS	·	1	Dilution	Pactor =	1			
Acetone	υ	U	ug/L	10.00	30,00	5030/8260B	04/16 19:41	04/16 19:41	MMD
Acrolein	U	U	ng/L	0.75	2.25	5030/8260B	04/16 19:41	04/16 19:41	MMD
Acrylonitrile	U	υ	ug/L	0.41	1.23	5030/8260B	04/16 19:41	04/16 19:41	MMD
Methyl Ethyl Ketone	ប	U	ug/L	0.75	2.25	5030/8260B	04/16 19:41	04/16 19:41	MMD
Dichlorodifluoromethane	U	U	ug/L	0.13	0.39	5030/826019	04/16 19:41	04/16 19:41	MMD
Chloromethane	U	U	ug/L	0.35	1.05	5030/8260B	04/16 19:41	04/16 19:41	MMD
Vinyl Chloride	υ	υ	ug/L	0.34	1.02	5030/8260B	04/16 19:41	04/16 19:41	MMD
Bromomethane	υ	U	ug/L	0.41	1.23	5030/8260B	04/16 19:41	04/16 19:41	MMD

Page 9 of 19 Report Printed: 05/07/08 Submission # 804000355 Order # 60495

Black & Veatch DZMW-I

Water Matrix:

Project: Black & Veatch DZMW-I Site Location: 20505 State Road 80, Loxahatchee, FL

Sample I.D.: Packer #3 (1917-1950) Collected: 04/11/08 15:20 Received: 04/11/08 16:50

Received: 04/11/08 Collected by: Les Haney

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Chloroethane	υ	ט	ug/L	0.17	0.51	5030/8260B	04/16 19:41	04/16 19:41	MMD
Trichlorofluoromethane	U	U	ug/L	0.47	1.41	5030/8260B	04/16 19:41	04/16 19:41	MMD
1,1-Dichloroethene	ט	U	ug/L	0.52	1.56	5030/8260B	04/16 19:41	04/16 19:41	MMD
Methylene Chloride	U	ŭ	ug/L	0.99	2.97	5030/8260B	04/16 19:41	04/16 19:41	MMD
Trans-1,2-Dichloroethene	υ	U	ug/L	0.50	1.50	5030/8260B	04/16 19:41	04/16 19:41	MMD
Methyl-Tert-Butyl Ether	υ	Ų	ug/L	0.50	1.50	5030/8260B	04/16 19:41	04/16 19:41	MMD
1,1-Dichtoroethane	U	U	ug/L	0.53	1.59	5030/8260B	04/16 19:41	04/16 19:41	MMD
2,2-Dichloropropane	U	U	ug/L	0.31	0.93	5030/8260B	04/16 19:41	04/16 19:41	MMD
Cis-1,2-Dichlorocthene	U	U	ug/L	0.11	0.33	5030/8260B	04/16 19:41	04/16 19:41	MMD
Chloroform	υ	U	ug/L	0.80	2.40	5030/8260B	04/16 19:41	04/16 19:41	MMD
Bromochloromethane	ń	U	ug/L	0.55	1.65	5030/8260B	04/16 19:41	04/16 19:41	MMD
1,1,I-Trichloroethane	ับ	υ	ug/L	0.25	0.75	5030/8260B	04/16 19:41	04/16 19:41	MMD
1,1-Dichloropropene	U	υ	ug/L	0.07	0.21	5030/8260B	04/16 19:41	04/16 19:41	MMD
Carbon Tetrachloride	υ	U	ug/L	0.19	0.57	5030/8260B	04/16 19:41	04/16 19:41	MMD
Benzene	υ	U	ug/L	0.09	0.27	5030/8260B	04/16 19:41	04/16 19:41	MMD
1,2-Dichloroethane	ប	U	ug/L	0.24	0.72	5030/8260B	04/16 19:41	04/16 19:41	MMD
Trichlomethene	υ	u	ug/L	0.09	0.27	5030/8260B	04/16 19:41	04/16 19:41	MMD
1,2-Dichloropropane	ŭ	υ	ug/L	0.20	0.60	5030/8260B	04/16 19:41	04/16 19:41	MMD

Page 10 of 19 Report Printed: 05/07/08 Submission #804000355 Order #60495

Project: Black & Veatch DZMW-I Site Location: 20505 State Road 80, Loxahatchee, FL

Matrix:

Water

Sample I.D.: Packer #3 (1917-1950) Collected: 04/11/08 15:20 Received: 04/11/08 16:50

Received: 04/11/08 Collected by: Les Haney

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Bromodichloromethane	U	Ü	ug/L	0.24	0.72	5030/826 0 B	04/16 19:41	04/16 19:41	MMD
2-Chloroethylvinyl Ether	ט	υ	ug/L	1.00	3.00	5030/8260B	04/16 19:41	04/16 19:41	MMD
Dibromomethane	υ	υ	ug/L	0.42	1.26	5030/8260B	04/16 19:41	04/16 19:41	MMD
Cis-1,3-Dichloropropene	U	v	ug/L	0.38	1.14	5030/8260B	04/16 19:41	04/16 19:41	MMD
Toluene	U	υ	ug/L	0.14	0.42	5030/8260B	04/16 19:41	04/16 19:41	MMD
Trans-1,3-Dichloropropene	บ	U	ug/L	0.50	1,50	5030/8260B	04/16 19:41	04/16 19:41	MMD
1,1,2-Trichloroethane	U	υ	ug/L	0.36	1.08	5030/8260B	04/16 19:41	04/16 19:41	MMD
1,3-Dichloropropane	ט	υ	ug/L	0.38	1.14	5030/8260B	04/16 19:41	04/16 19:41	MMD
Tetrachloroethene	บ	U	ug/L	0.11	0.33	5030/8260B	04/16 19:41	04/16 19:41	MMD
Dibromochloromethane	υ	ซ	ug/L	0.39	1.17	5030/8260B	04/16 19:41	04/16 19:41	MMD
1,2-Dibromoethane (EDB)	บ	ซ	ug/L	0.40	1.20	5030/8260B	04/16 19:41	04/16 19:41	MMD
Bromobenzene	υ	U	ug/L	0.46	1.38	5030/8260B	04/16 19:41	04/16 19:41	MMD
Chlorobenzene	υ	U	ug/L	0.09	0.27	5030/8260B	04/16 19:41	04/16 19:41	MMD
Ethylbenzene	บ	U	ug/L	0.13	0.39	5030/8260B	04/16 19:41	04/16 19:41	MMD
1,1,1,2-Tetrachloroethane	U	υ	ug/L	0.37	1.11	5039/8260B	04/16 19:41	04/16 19:41	MMD
m & p-Xylene	U	U	ug/L	0.19	0.57	5030/8260B	04/16 19:41	04/16 19:41	MMD
o-Xylene	ប	U	ug/L	0.19	0.57	5030/8260B	04/16 19:41	04/16 19:41	MMD
Styrene	υ	υ	ug/L	0.17	0.51	5030/8260B	04/16 19:41	04/16 19:41	MMD

Page 11 of 19 Report Printed: 05/07/08 Submission # 804000355 Order # 60495

Project: Black & Veatch DZMW-1 Site Location: 20505 State Road 80, Loxahatchee, FL Matrix: Water

Sample I.D.: Packer #3 (1917-1950) Collected: 04/11/08 15:20 Received: 04/11/08 16:50

Collected by: Les Haney

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Isopropylbenzene	U	U	ug/L	0.50	1.50	5030/8260B	04/16 19:41	04/16 19:41	MMD
Bromoform	ប	U	ug/L	0.38	1.14	5030/8260B	04/16 19:41	04/16 19:41	MMD
1,1,2,2-Tetrachloroethane	U	Ü	ug/L	0.29	0.87	5030/8260B	04/16 19:41	04/16 19:41	MMD
1,2,3-Trichloropropane	U	U	ug/L	0.23	0.69	5030/8260B	04/16 19:41	04/16 19:41	MMD
1,3,5-Trimethylbenzene	U	Ų	ug/L	0,11	0.33	5030/8260B	04/16 19:41	04/16 19:41	MMD
2-Chiorotoluene	υ	υ	ug/L	0.13	0.39	5030/8260B	04/16 19:41	04/16 19:41	MMD
4-Chlorotoluene	ប	υ	ug/L	0.16	0.48	5030/8260B	04/16 19:41	04/16 19:41	MMD
Tert-Butylbenzene	U	U	ug/L	0.16	0.48	5030/8260B	04/16 19:41	04/16 19:41	MMD
1,2,4-Trimethylbenzene	U	υ	ug/L	0.11	0.33	5030/8260B	04/16 19:41	04/16 19:41	MMD
Sec-Butylbenzene	U	U	ug/L	0.17	0.51	5030/8260B	04/16 19:41	04/16 19:41	MMD
P-Isopropyltoluene	U	υ	ug/L	0.11	0.33	5030/82603	04/16 19:41	04/16 19:41	MMD
1,3-Dichlorobenzene	U	U	ug/L	0.20	0.60	5030/8260B	04/16 19:41	04/16 19:41	MMD
1,4-Dichlorobenzene	U	U	ug/L	0.14	0.42	5030/8260B	04/16 19:41	04/16 19:41	MMD
n-Butylbenzene	U	U	ug/L	0.21	0.63	5030/8260B	04/16 19:41	04/16 19:41	MMD
n-PropylBenzene	ប	Ų	ug/L	0.17	0.51	5030/8260B	04/16 19:41	04/16 19:41	MMD
1,2-Dichlorobenzene	U	U	ug/L	0.48	1.44	5030/8260B	04/16 19:41	04/16 19:41	MMD
1,2-Dibromo-3-Chloropropane (DBCP)	U	Ŭ	ug/L	0.30	0.90	5030/8260B	04/16 19:41	04/16 19:41	MMD
1,2,4-Trichlorobenzene	U	Ū	ug/L	0.82	2.46	5030/8260B	04/16 19:41	04/16 19:41	MMD

Page 12 of 19 Report Printed: 05/07/08 Submission # 804000355 Order # 60495

Project: Black & Veatch DZMW-1 Site Location: 20505 State Road 80, Loxahatchee, FL Matrix: Water

Sample I.D.: Packer #3 (1917-1950) Collected: 04/11/08 15:20 Received: 04/11/08 16:50

Collected by: Les Haney

PARAMETER	RESULT	бс	UNITS	MOL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Hexachlorobutadiene	U	Ū	ug/L	0.57	1.71	5030/8260B	04/16 19:41	04/16 19:41	MMD
Naphthalene	ט	υ	ug/L	0.015	0.045	5030/8260B	04/16 19:41	04/16 19:41	MMD
1,2,3-Trichlorobenzene	υ	υ	ug/L	1.27	3.81	5030/8260B	04/16 19:41	04/16 19:41	MMD
8270C Semivolatile Organics in Wa	iter by GC/MS	1	1	Dilutio	n Factor =	i			
N-Nitrosodimethylamine	U	U	ug/L	0.50	1.50	3510/8270C	04/16 10:21	04/17 02:51	D\$
Phenol	U	U	ug/L	0.38	1.14	3510/8270C	04/16 10:21	04/17 02:51	DS
Bis (2-Chloroethyl) Ether	U	υ	ug/L	0.85	2.55	3510/8270C	04/16 10:21	04/17 02:51	DS
2-Chlorophenol	υ	Ū	ug/L	0.45	1.35	3510/8270C	04/16 10:21	04/17 02:51	DS
1,3-Dichlorobenzene	U	Ū	ug/L	0.20	0.60	3510/8270C	04/16 10:21	04/17 02:51	DS
1,4-Dichlorobenzene	υ	U	ug/L	0.14	0.42	3510/8270C	04/16 10:21	04/17 02:51	D\$
Benzyl Alcohol	ប	υ	ug/L	0.75	2.25	3510/8270C	04/16 10:21	04/17 02:51	DS
1,2-Dichlorobenzene	ט	υ	ug/L	0.48	1.44	3510/8270C	04/16 10:21	04/17 02:51	DS
Bis (2-Chloroisopropyl) Ether	U	U	ug/L	0.85	2.55	3510/8270C	04/16 10:21	04/17 02:51	DS
N-Nitrosodi-N-Propylamine	U	U	ug/L	1.14	3.42	3510/8270C	04/16 10:21	04/17 02:51	DS
Hexachloroethane	U	υ	ug/L	2.31	6.93	3510/8270C	04/16 10:21	04/17 02:51	DS
Nitrobenzene	U	บ	ug/L	0.66	1.98	3510/8270C	04/16 10:21	04/17 02:51	DS
Isophorone	U	Ų	ug/L	1.56	4.68	3510/8270C	04/16 10:21	04/17 02:51	DS
2-Nitrophenol	Ū	υ	ug/L	1.09	3.27	3510/8270C	04/16 10:21	04/17 02:51	DS

Page 13 of 19 Report Printed: 05/07/08 Submission # 804000355 Order # 60495

Project: Black & Veatch DZMW-1 Site Location: 20505 State Road 80, Loxahatchee, FL Matrix: Water

Sample I.D.: Packer #3 (1917-1950) Collected: 04/11/08 15:20 Received: 04/11/08 16:50 Collected by: Les Haney

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
2,4-Dimethylphenol	U	U	ug/L	0.62	1.86	3510/8270C	04/16 10:21	04/17 02:51	DS
Bis (2-Chloroethoxy)methane	U	υ	ug/L	1.89	5.67	3510/8270C	04/16 10:21	04/17 02:51	DS
2,4-Dichlorophenol	U	U	ug/L	1.11	3.33	3510/8270C	04/16 10:21	04/17 02:51	DS
1,2,3-Trichlorobenzene	υ	υ	ug/L	2.00	6.00	3510/8270C	04/16 10:21	04/17 02:51	DS
1,2,4-Trichlorobenzene	υ	υ	ng/L	0.82	2.46	3510/8270C	04/16 10:21	04/17 02:51	DS
Naphthalene	U	U	ug/L	0.015	0.045	3510/8270C	04/16 10:21	04/17 02:51	D\$
Hexachlorobutadiene	U	U	ug/L	0.57	1,71	3510/8270C	04/16 10:21	04/17 02:51	ÐS
4-Chloro-3-Methylphenol	υ	ŭ	ug/L	0.67	2.01	3510/8270C	04/16 10:21	04/17 02:51	DS
1-Methylnaphthalene	U	υ	ug/L	0.36	1.08	3510/8270C	04/16 10:21	04/17 02:51	DS
2-Methylnaphthalene	U	υ	ug/L	0.024	0.072	3510/8270C	04/16 10:21	04/17 02:51	DS
2-Methylphenol (o-cresol)	U	U	ug/L	1.0	3.0	3510/8270C	04/16 10:21	04/17 02:51	DS
Hexachiorocyclopentadiene	υ	บ	ug/L	0.42	1.26	3510/8270C	04/16 10:21	04/17 02:51	DS
3-MethytPhenol (m-cresol)	U	ប	ug/L	0.84	2.52	3510/8270C	04/16 10:21	04/17 02:51	DŞ
4-Methylphenol (p-cresol)	υ	บ	ug/L	1.16	3.48	3510/8270C	04/16 10:21	04/17 02:51	DS
2,3,6-Trichlorophenol	υ	U	ug/L	1.2	3.6	3510/8270C	04/16 10:21	04/17 02:51	D8
2,4,5-Trichlorophenol	U	U	ug/L	0.81	2.43	3510/8270C	04/16 10:21	04/17 02:51	DS
2,4,6-Trichiorophenol	U	U	ug/L	0.78	2.34	3510/8270C	04/16 10:21	04/17 02:51	DS
2-Chloronaphthalene	U	υ	ug/L	1.16	3.48	3510/8270C	04/16 10:21	04/17 02:51	DS

Page 14 of 19 Report Printed: 05/07/08 Submission # 804000355 Order # 60495

Project: Black & Veatch DZMW-1 Site Location: 20505 State Road 80, Loxahatchee, FL Matrix: Water

Sample I.D.: Packer #3 (1917-1950) Collected: 04/11/08 15:20 Received: 04/11/08 16:50

Collected by: Les Haney

PARAMETER	RESULT	Q¢	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Dimethyl Phthalate	U	ט	ug/L	3.7	11.1	3510/8270C	04/16 10:21	04/17 02:51	DS
Acenaphthylene	U	υ	ug/L	0.015	0.045	3510/8270C	04/16 10:21	04/17 02:51	DS
2,6-Dinitrotoluene	U	υ	ug/L	0.54	1.62	3510/8270C	04/16 10:21	04/17 02:51	DS
Acenaphthene	V	υ	ug/L	0.017	0.051	3510/8270C	04/16 10:21	04/17 02:51	DS
2,4-Dinitrophenol	U	U	ug/L	1.0	3.0	3510/8270C	04/16 10:21	04/17 02:51	DS
2,4-Dinitrotoluene	U	υ	ug/L	1.17	3.51	3510/8270C	04/16 10:21	04/17 02:51	DS
4-Nitrophenol	U	U	ug/L	1.0	3.0	3510/8270C	04/16 10:21	04/17 02:51	DS
Diethyl Phthalate	U	U	ug/L	3.4	10.2	3510/8270C	04/16 10:21	04/17 02:51	DS
Fluorene	τ	บ	ug/L	0.012	0.036	3510/8270C	04/16 10:21	04/17 02:51	DS
4-Chlorophenyl Phenyl Ether	υ	ប	ug/L	0.87	2.61	3510/8270C	04/16 10:21	04/17 02:51	DS
4.6-Dinitro-2-Methylphenol	U	U	ug/L	1.4	4.2	3510/8270C	04/16 10:21	04/17 02:51	DS
N-Nitrosodiphenylamine	υ	ប	ug/L	3.42	10.26	3510/8270C	04/16 10:21	04/17 02:51	DS
4-Bromophenyl Phenyl Ether	υ	Ü	ug/L	1.44	4.32	3510/8270C	04/16 10:21	04/17 02:51	DS
Hexachlorobenzene	U	U	ug/L	0.42	1.26	3510/8270C	04/16 10:21	04/17 02:51	DS
Pentachlorophenol	υ	U	กลิ\Г	1.14	3.42	3510/8270C	04/16 10:21	04/17 02:51	DS
Phenanthrene	U	IJ	ug/L	0.028	0.084	3510/8270C	04/16 10:21	04/17 02:51	DS
Anthracene	υ	U	ug/L	0.049	0.147	3510/8270C	04/IG 10:21	04/17 02:51	DS
Di-N-Butyl Phthalate	υ	ŧ	ug/L	1.2	3.6	3510/8270C	04/16 10:21	04/17 02:51	DS

Page 15 of 19 Report Printed: 05/07/08 Submission # 804000355 Order # 60495

Project: Black & Veatch DZMW-1 Site Location: 20505 State Road 80, Loxahatchee, FL

Matrix:

Water

Sample I.D.: Packer #3 (1917-1950) Collected: 04/11/08 15:20 16:50

Received:

04/11/08

Collected by: Les Haney

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Fhioranthene	U	ប	ug/L	0.025	0.075	3510/8270C	04/16 10:21	04/17 02:51	DS
Benzidine ~	Ū	U	ug/L	4.0	12.0	3510/8270C	04/16 10:21	04/17 02:51	DS
Pyrene	υ	ប	ug/L	0.017	0.051	3510/8270C	04/16 10:21	04/17 02:51	DS
Butyl Benzyl Phthalate	U	Ū	ug/L	1.44	4.32	3510/8270C	04/16 10:21	04/17 02:51	DS
Senzo(A)Anthracene	U	บ	ug/L	0.017	0.051	3510/8270C	04/16 10:21	04/17 02:51	DS
3,3-Dichlorobenzidine	U	υ	ug/L	2.0	6.0	3510/8270C	04/16 10:21	04/17 02:51	DS
Chrysene	U	υ	ug/L	0.75	2.25	3510/8270C	04/16 10:21	04/17 02:51	DS
Bis (2 Ethylhexyl) Phthalate	U	Ü	ug/L	2.37	7.11	3510/8270C	04/16 10:21	04/17 02:51	DS
Di-N-Octy! Phthalate	Ū	υ	ug/L	1.4	4.2	3510/8270C	04/16 10:21	04/17 02:51	DS
Benzo(B)Fluoranthene	U	U	ug/L	0.029	0.087	3510/8270C	04/16 10:21	04/17 02:51	DS
Benzo(K)Fluoranthene	U	U	ug/L	0.025	0.075	3510/8270C	04/16 10:21	04/17 02:51	DS
Benzo(A)Pyrene	U	Ū	ug/L	0.017	0.051	3510/8270C	04/16 10:21	04/17 02:51	DS
Indeno(1,2,3-CD)Pyrene	ប	U	ug/L	0.93	2.79	3510/8270C	04/16 10:21	04/17 02:51	DS
Dibenzo(A,H,)Anthracene	Ü	υ	ug/L	0.029	0.087	3510/8270C	04/16 10:21	04/17 02:51	DS
Benzo(G,H,I)Perylene	U	Ü	ug/L	0.017	0.051	3510/8270C	04/16 10:21	04/17 02:51	DS
Bis-2-ethylhexyl Adipate	U	υ	ug/L	0.36	1.08	3510/8270C	04/16 10:21	04/17 02:51	DS
Aldrin ~	υ	ט	ug/L	0,017	0.051	3510/8270C	04/16 10:21	04/17 02:51	DS
alpha-BHC ~	U	U	ug/L	D.005	0.015	3510/8270C	04/16 10:21	04/17 02:51	DS

Page 16 of 19 Report Printed: 05/07/08 Submission # 804000355 Order # 60495

Project: Black & Veatch DZMW-1 Site Location: 20505 State Road 80, Loxahatchee, FL Matrix: Water

Sample I.D.: Packer #3 (1917-1950) Collected: 04/11/08 15:20 Received: 04/11/08 16:50 Collected by: Les Haney

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
beia-BHC ~	Ţ	υ	ug/L	0.005	0.015	3510/8270C	04/16 10:21	94/17 02:51	DS
delta-BHC	U	υ	ug/L	0.005	0.015	3510/8270C	04/16 10:21	04/17 02:51	DS
gamma-BHC (Lindane) ~	U	υ	ug/L	0.004	0.812	3510/8270C	04/16 10:21	04/17 02:51	DS
Chlordane (Screen)	υ	υ	ug/L	0.10	0.30	3510/8270C	04/16 10:21	04/17 02:51	DS
4,4'-DDD ~	U	υ	ug/L	0.60	1.80	3510/8270C	04/16 10:21	04/17 02:51	DS
4,4'-DDE "	υ	U	ug/L	0.39	1.17	3510/8270C	04/16 10:21	04/17 02:51	DS
4,4'-DDT ~	υ	υ	ug/L	0.69	2.07	3510/8270C	04/16 10:21	04/17 02:51	DS
Dieldrin *	U	Ų	ug/L	0.006	0.018	3510/8270C	04/16 10:21	04/17 02:51	DS
Endosulfan I	Ü	U	ug/L	0.006	0.018	3510/8270C	04/16 19:21	04/17 02:51	DS
Endosulfan II	U	υ	ug/L	0.006	0.018	3510/8270C	04/16 10:21	04/17 02:51	DS
Endosulfan Sulfate	υ	บ	ug/L	0.007	0.021	3510/8270C	04/16 19:21	04/17 02:51	DS
Endrin "	υ	U	ug/L	0.005	G.015	3510/8270C	04/16 10:21	04/17 02:51	DS
Endrin Aldehyde	บ	U	ug/L	0.010	6.030	3510/8270C	04/16 10:21	04/17 02:51	DS
Heptachier -	៥	U	ug/L	0.005	0.015	3510/8270C	04/16 10:21	04/17 02:51	DS
Heptachlor Epoxide	Ų	υ	ug/L	0.008	0.024	3510/8270C	04/16 10:21	04/17 02:51	D\$
Toxaphene ~	Ū	υ	ug/L	0.40	1.20	3510/8270C	04/16 10:21	04/17 02:51	DS
PCB-1016 -	ט	υ	ug/L	0.10	0.30	3510/8270C	04/16 10:21	04/17 02:51	DS
PCB-1221 -	ט	υ	ug/L	0.10	0.30	3510/8270C	04/16 10:21	04/17 02:51	D\$

Page 17 of 19 Report Printed: 05/07/08 Submission #804000355 Order #60495

Project: Black & Veatch DZMW-1 Site Location: 20505 State Road 80, Loxahatchee, FL

Matrix:

Water

 Sample I.D.:
 Packer #3 (1917-1950)

 Collected:
 04/11/08
 15:20

 Received:
 04/11/08
 16:50

Collected by: Les Haney

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
PCB-1232 ~	Ü	υ	ug/L	0.10	0.30	3510/8270C	04/16 10:21	04/17 02:51	DS
PCB-1242 ~	U	υ	ug/L	0.10	0.30	3510/8270C	04/16 10:21	04/17 02:51	D\$
PCB-1248 ~	U	υ	ug/L	0.10	0.30	3510/8270C	04/16 10:21	04/17 02:51	DS
PCB-1254 ⁻	υ	U	ug/L	0.10	0.30	3510/8270C	04/16 10:21	04/17 02:51	DS
PCB-1260 ⁻	U	U	ug/L	0.10	0.30	3510/8270C	04/16 10:21	04/17 02:51	DS
Dioxin (screen)	υ	U	ug/L	0.03	0.09	3510/8270C	04/16 10:21	04/17 02:51	DS
Azobenzene	U	U	ug/L	0.75	2.25	3510/8270C	04/16 10:21	04/17 02:51	DS
Methoxychlor ~	U	U	ug/L	0.007	0.021	3510/8270C	04/16 10:21	04/17 02:51	DS
Benzoic Acid	U	U	ug/L	0.84	2.52	3510/8270C	04/16 10:21	04/17 02:51	DS
Aniline	U	υ	ug/L	0.50	1.50	3510/8270C	04/16 10:21	04/17 02:51	DS
4-Chloroaniline	υ	บ	ug/L	0.65	1.95	3510/8270C	04/16 10:21	04/17 02:51	DS
Dibenzofuran	U	υ	ug/L	0.66	1.98	3510/8270C	04/16 10:21	04/17 02:51	DS
2-Nitroaniline	U	U	ug/L	0.58	1.74	3510/8270C	04/16 10:21	04/17 02:51	DS
3-Nitroaniline	U	ប	ug/L	0.50	1.50	3510/8270C	94/16 10:21	04/17 02:51	DS
4-Nitroaniline	U	U	ug/L	0.84	2.52	3510/8270C	04/16 10:21	04/17 02:51	DS
Carbazole -	U	U	ug/L	0.68	2.04	3510/8270C	04/16 10:21	04/17 02:51	DS
2,6-Dichlorophenol	Ū	υ	ug/L	0.89	2.67	3510/8270C	04/16 10:21	04/17 02:51	DS
Pyridine	U	υ	ug/L	0.99	2.97	3510/8270C	04/16 10:21	04/17 02:51	DS

Page 18 of 19 Report Printed: 05/07/08 Submission # 804000355 Order # 60495

Sample I.D.: Packer #3 (1917-1950) Collected: 04/11/08 15:20

16:50

Project: Black & Veatch DZMW-1 Site Location: 20505 State Road 80, Loxahatchee, FL Matrix: Water

Received: 04/11/08 Collected by: Les Haney

PARAMETER	RESULT	QC	UNITS	MIDIL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
2,3,4,6-Tetrachlerophenel	υ	U	ug/L	1.00	3.00	3510/8270C	04/16 10:21	04/17 02:51	DS
2,3,5,6-Tetrachiorophenol	U	U	ug/L	0.80	2.40	3510/8270C	04/16 10:21	04/17 02:51	DS
SUB 300.1 Chlorite & Bromate (Co	mbo Part B)	1	1	Dilutio	n Factor =	1			
Chlorite	υ	บ	ug/L	130	390	EPA 300.1	04/21 10:47	04/24 23:40	E83079
Bromate	υ	U	ug/L	59	177	EPA 300.1	04/21 10:47	04/24 23:40	E83079
SUB 531 Carbamate Pesticides: 62-	550.310(4)(b	1	1	Dilution	a Factor =	i 1 i			
Carbofuran	U	U	ug/L	0.54	1.62	531.1	04/16 14:25	04/17 12:33	E84809
Oxamyl (vydate)	υ	υ	ug/L	0.55	1.65	531.1	04/16 14:25	04/17 12:33	E84809
Glyphosate	U	U	ug/L	6.0	18.0	547.1	04/18 12:00	04/18 15:47	E84809
Endothall	บ	υ	mg/L	0.0046	0.0138	548.1	04/18 18:30	04/21 14:43	E84809
SUB 549 Diquat : 62-550.310(4)(b)	· ·	1	1	Dilution	Factor =	<u>i</u>			
Diquat	ט	υ	mg/L	0.0003	0.0009	549.2	04/18 15:45	04/21 11:47	E84809
Gross Alpha	29 ± 1		pCl/L	0.4	1.2	EPA 00-02	04/29	04/29 08:00	E84025
Radium-226	8.0 ± 0.5		pCi/L	0.20	0.60	EPA 903.1	04/28	04/28 14:34	E84025
Radium-228	U	υ	pCi/L	1.00	3.00	EPA Ra-05	04/25	04/25 09:00	E84025
Strontium-90	U	υ	pCi/L	1.00	3.00	EPA 905.0	05/06 07:40	05/06 07:40	E84025

Page 19 of 19 Report Printed: 05/07/08 Submission #804000355

Order # 60495

Project: Black & Veatch DZMW-1 Site Location: 20505 State Road 80, Loxahatchee, FL

Matrix:

Water

Sample I.D.: Packer #3 (1917-1950) Collected: 04/11/08 15:20

16:50

Received: 04/11/08 Collected by: Les Haney

LABORATORY ANALYSIS REPORT

PARAMETER	RESULT	QC	UNITS	MDL	PQL	МЕТНОО	DATE EXT.	DATE ANALY.	ANALYST
Chlorine Dioxide	U	QU	mg/L	0.089	0.267	\$M4500CLO2	04/24	04/24 17:38	E83079
									·

QC = Qualifier Codes as defined by DEP 62-160
Unless indicated, soil results are reported based on actual (wet) weight basis.
Analytes not currently NELAC certified denoted by .

Tork performed by outside (subcontract) labs denoted by Cert.ID in Analyst Field. suits relate only to this sample.

Authorized CSM Signature (954) 978-6400
Florida-Spectrum Environmental Services, Inc.
Certification # E86006

Data Qualifier Codes

- A Value reported is the mean (average) of two or more determinations.
- B Results based upon colony counts outside the acceptable range. The code is to be used if the colony count is generated from a plate in which the total number of Coliform colonies exceeds the method indicated ideal ranges, which are:

Total Coliforms: 20-80 colonies Fecal Coliforms: 20-60 colonies

- C Result was confirmed by a separate analysis of the sample.
- D Measurement was made in the field (i.e. in situ). This applies to any value (ex. pH, specific conductance, etc.) that was obtained under field conditions using approved analytical methods.
- H Value based on field kit determination; results may not be accurate.
- I The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
- J Estimated value; value not accurate. This code shall be used in the following instances:
 - 1. surrogate recovery limits have been exceeded.
 - 2. no known quality control criteria exists for the component
 - 3. the reported value failed to meet the established quality control criteria for either precision or accuracy.
 - 4. the sample matrix interfered with the ability to make any accurate determination; or
 - 5. if the data is questionable because of improper laboratory or field protocols (e.g. composite sample was collected instead of a grab sample).
- N Presumptive evidence of presence of material. This qualifier shall be used if:
 - 1. the component has been tentatively identified based on mass spectral library search.a
 - 2. there is an indication that the analyte is present, but quality control requirements for confirmation were not met
- Sampled, but analysis lost or not performed; sample compromised.
- Q Sample held beyond accepted holding time. This code shall be used if the value is derived from a sample that was prepared or analyzed after the approved holding time restrictions for sample preparation or analysis.
- R Significant rain in the past 48 hours. This code shall be used when the rainfall might contribute to a lower than normal value.
- T Value reported is less than the laboratory method detection limit
- U Indicated that the compound was analyzed for but not detected. This shall be used to indicate that the specified component was not detected. The value associated with the qualifier shall be the laboratory method detection limit
- Indicated that the analyte was detected in both the sample and the associated method blank. Note: the value in the blank shall not be subtracted from associated samples.
- Y The laboratory analysis was from an unpreserved or improperly preserved sample. The data may not be accurate,
- Z Too many colonies were present (TNTC), the numeric value represents the filtration volume.
- Patta is rejected and should not be used. Some of all of the quality control data for the analyte were outside criteria, and the presence or absence of the analyte cannot be determined from the data.
- Not analyzed due to interference.
- ! Data deviates from historically established concentration ranges.
- ~ Analysis performed outside NELAP program. (e.g. State of Georgia, UCMR, ICR or other certification.)

SUBMISSION# SOC SACC Logsedulinssy CSM. assured

CHAIN OF USTODY RECORD

1460 W. McNab Road Ft Laud. FL 33305 G30 Indian Street Savannah, GA 31401

☐ 528 Gooch Road Fort Meade, FL 33841 ☐ 415 B SW Park St., Okeechobee, FL 34972 Tel: (912) 238-5050 Tel: (863) 285-8145

Tel: (954) 978-6400

Fax: (954) 978-2233 Fax: (912) 234-4815 Fax: (863) 285-7030

RUSH RESERVATION #

DUE DATE Re-

Tel: (863) 763-3336 Fax: (863) 763-1544 Original Return w/report Xellow-List/Fife-Copy Pink-Sampler Copy Report to: Rush Surcharges apply (company name) YOUNG QUIST BROS !. Report to PLUE ROSE RD. FT HYERS, FL. 33908 Invoice to: Address: 1546 % Purchase (company name) Tous Invoice to Order # Project Name Address: and/or Number BLACIC & VEATCH DZML13 Site Project Location: Contact: Juine Suns 80. LOXAHATCHEE FL 33470 Phone: Fax: Email: RIG Z480 BONGQUIST BES. 239.560.4630 Sampler Name: 1.239.489.4545 PHILLIP SHALLS Sampler (printed) . Com. Signature ORDER# Sample Date Time Matrix Bottle Number of Analysis Required Lab Control Number Sampled Sampled Field Tests m & Containers DW SW Received Pres. GW WW Shaded Areas Lor & NELAC С S SED E 0 Ħ Laboratore Use Onle Letter HW BIO Combo M N L Suffixes SEA OIL Codes Peinary ALID P D 0 SECOLHARY X AIR A-? °C R 04.11.0818.5 G Demond ILLATER STANDARDS SEE ATTAKHED LIST Client said so ahead and SAMPLE CUSTODY AND TRANSFER SIGNATURES DATE / TIME Total Relinquished by P.S. "I waive NELAC protocol" (sign kere) > Deliverables: OA/QC Report Needed? (additional charge) Received by: Sample Custody & Field Comments Bottle Type Preservatives
A ascorbic acid PRESPO4 Hottle Lyp.
A liter amber
H-Bacteria bag/bottle Relinquished by: Temp as received. 9-H2SO4 T-Na2S2O3-H2O C-HCL-Received by: Custody Seals? F-509 ml -- O-125 ml Cu-CuSO4 FIELD PIME Laliter boffle H-HNO3 U-Unpreserved Relinquished by: Sampling 84-4;02 soll jar/58-8 nz soil jar M-MCAR N-NaOH T-250 ml Z-zine acetate NH4-NH4CL Received by: V 40 m) yial W wide mouth www.flenviro.com Keother TED-Tedlar Air Bag COC Page. Recorder From NEBS CUST 6-M printing service 1:800-885-8327 NEBS, no. Grozon, AM 01477 vovexpension

List attached to 4/11/08 18:50 younguist sample COC.

ATTACHMENT A

PRIMARY STANDARDS DRINKING WATER STANDARDS

PARAMETER

Alachior (Polychlorinated biphenyl or PCB)**

Aldicarb

Aldicarb Sulfoxide

Aldicarb Sulfone (Sulfone aldoxycarb)

Alpha, Gross

Antimony

Arsenic

Atrazine

Barium

Benzene

Benzo(a)pyrene

Beryllium

Bis(2-ethylhexyl) adipate (Di(2-ethylhexyl) adipate)

Bis(2-ethylhexyl) phthalate (Di(2-ethylhexyl) phthalate)

Bromate

Cadmium

Carbofuran

Carbon Tetrachloride (Tetrachloromethane)

Chlordane

Chlorine

Chlorine Dioxide

Chlorite

Chlorobenzene (Monochlorobenzene)

Chloroethylene (Vinyl Chloride)

Chromium

Coliforms, Total

Cyanide

2,4-D (2,4-Dichlorophenoxyacetic acid)

Dalapon (2,2-Dichloropropionic acid)

Dibromochloropropane (DBCP)

1,2-Dibromoethane (EDB, Ethylene Dibromide)

1,2-Dichlorobenzene (o-Dichlorobenzene)

1,4-Dichlorobenzene (p-Dichlorobenzene or Para Dichlorobenzene)

1,2-Dichloroethane (Ethylene dichloride)

1,1-Dichloroethylene (Vinylidene chloride)

1,2-Dichlorethylene (cis-1,2-Dichloroethylene or trans-1,2-Dichloroethylene)

cis-1,2-Dichloroethylene (1,2-Dichlorethylene)

trans-1,2-Dichloroethylene (1,2-Dichlorethylene)

Dichloromethane (Methylene chloride)

1,2-Dichloropropane

Di(2-ethylhexyl) adipate (Bis(2-ethylhexyl) adipate)

Di(2-ethylhexyl) phthalate (Bis(2-ethylhexyl) phthalate)

Dinoseb

Diquat

EDB (Ethylene dibromide, 1,2-Dibromoethane)

Endothall

PRIMARY STANDARDS DRINKING WATER STANDARDS (Continued)

PARAMETER

Endrin

Ethylbenzene

Ethylene dichloride (1,2-Dichloroethane)

Fluoride

Glyphosate (Roundup)

Gross Alpha

Haloacetic Acids (HAA5)

Heptachlor

Heptachlor Epoxide

Hexachlorobenzene (HCB)

gamma-Hexachlorocyclohexane (Lindane)

Hexachlorocyclopentadiene

Lead

Lindane (gamma-Hexachlorocyclohexane)

Mercury

Methoxychlor

Methylene chloride (Dichloromethane)

Monochlorobenzene (Chlorobenzene)

Nickel

Nitrate (as N)

Nitrite (as N)

Total Nitrate + Nitrite (as N)

Oxamyi

p-Dichlorobenzene or Para Dichlorobenzene (1,4-Dichlorobenzene)

Pentachlorophenol

Perchloroethylene (Tetrachioroethylene)

Picloram

Polychlorinated biphenyl (PCB or Aroclors)

---Radium

Roundup (Glyphosate)

Selenium

Silver

Silvex (2,4,5-TP)

Simazine

Sodium

- Strontium-90

Styrene (Vinyl benzene)

Tetrachioroethylene (Perchloroethylene)

Tetrachloromethane (Carbon Tetrachloride)

Thallium

Toluene

Toxaphene

2,4,5-TP (Silvex)

1,2,4-Trichiorobenzene

1,1,1-Trichloroethane

1,1,2-Trichloroethane

Trichloroethylene (Trichloroethene, TCE)

Trihalomethanes, Total

Vinyl Chloride (Chloroethylene)

Xylenes (total)

SECONDARY DRINKING WATER STANDARDS

PARAMETER

Aluminum

Chloride

Color

Copper Ethylbenzene Fluoride

Foaming Agents (MBAS) -

iron

Manganese

Odor---

рΗ

Silver

Sulfate

Toluene

Total Dissolved Solids (TDS)

Xylenes

Zinc

MUNICIPAL WASTEWATER INDICATOR PARAMETERS FOR GROUND WATER MONITORING

Inorganics

Ammonia Nitrogen (organic) Total Kjeldahl Nitrogen Total Phosphorus (phosphate)

Volatile Organics

Chloroethane
Chloroform
para-Dichlorobenzene (1,4 Dichlorobenzene)
1,2-Dichloroethylene (cis-1,2-Dichloroethylene or trans-1,2-Dichloroethylene)

Base/Neutral Organics

Anthracene Butylbenzylphthallate Dimethylphthallate Naphthalene Phenanthrene

Pesticides and PCBs

Aldrin Dieldrin Dioxin (first time background sample)

Acid Extractables

2-chlorophenol Phenol 2,4,6-trichlorophenol

Other

Specific Conductance Biochemical Oxygen Demand Chemical Oxygen Demand Temperature

*Revised February 1, 2007

^{**} If parameter name is in parentheses there is another name by which it may be listed

Page 1 of 19 Report Printed: 05/08/08

Submission # 804000364

Order # 60540

Project: Black & Veatch DZMW-1 Site Location: 20505 State Road 80, Loxahatchee, FL

Matrix:

Water

Sample I.D.: PackerTest #4 (1887-1920)

Collected: Received:

04/11/08

04/14/08 Collected by: Phillip Shand

18:50 12:50

LABORATORY ANALYSIS REPORT

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Biochemical Oxygen Demand	υ	Qΰ	mg/L	2.0	6.0	405.1	04/14	04/19	RAV
Coliform-Total (E-Coli)	P(A)	Q				9223B	04/14	04/15	RAV
Specific Conductance (grab)	13400		uS/cm	0.1	0.3	120.1	04/16	04/16	DGK
pH	7.88	Q	units	0.1	0.3	150.I	04/14	04/14	RPV
Total Dissolved Solids (TDS)	7900		mg/L	1.00	3.00	EPA 160.1	04/16	04/16	RPV
Chloride	4280		mg/L	15.50	46.50	300.0	04/15	04/15 940	DGK
Fluoride	0.86		mg/L	0.040	0.120	300.0	04/15	04/15	DGK
Nitrate (as N)	υ	QU	mg/L	0.005	0.015	300.0	04/15	04/15	DGK
Nitrate + Nitrite (as N)	υ	ט	mg/L	0.006	0.018	300.0	04/15	04/15	DGK
Nitrite (as N)	U	QU	mg/L	0.006	0.018	300.0	04/15	04/15	DGK
Sulfate	753		mg/L	2.00	6.00	300.0	04/15	04/15	DGK
Cyanide, Total	υ	υ	mg/L	0.004	0.012	335.3	04/16	04/16	MSG
Nitrogen (Ammonia) as N	0.36		mg/L	0.01	0.03	350.1	04/16	04/16	MSG
Nitrogen (Kjeldahl) as "N"	0.49		mg/L	0.045	0.135	351.2	04/18	04/18	MG/MEC
Nitrogen (Total Organic)	0.13	I	mg/L	0.045	0.135	351/350	04/22	04/22	MSG
Phosphorus, Total as 'P"	0.081	I	mg/L	0.031	0.093	365.4	04/18	04/18	MG/MEC
Chemical Oxygen Demand	169		mg/L	4.09	12.27	410.4	04/22	04/22	IMA
MBAS Surfactants (LAS Mol.Wt. 340)	0.04	Q	mg/L	0.01	0.03	425.1	04/15	04/15	DGK
		· · · · · · · · · · · · · · · · · · ·	1	· ·	·				

Florida-Spectrum Environmental Services, Inc. 1460 W. McNab Road, Fort Lauderdale, FL 33309

Pembroke Laboratory 528 Gooch Rd. Fort Mead, FL 33841

Big Lake Laboratory 415 B SW Park St. Okeechobee, FL 34972 www.flenviro.com

Spectrum Laboratories 630 Indian St. Savannah, GA 31401

Page 2 of 19 Report Printed: 05/08/08 Submission # 804000364 Order # 60540

Project: Black & Veatch DZMW-1 Site Location: 20505 State Road 80, Loxahatchee, FL

Matrix:

Water

Sample I.D.: Packer Test #4 (1887-1920)
Collected: 04/11/08 18:50
Received: 04/14/08 12:50 Received: 04/14/08 1 Collected by: Phillip Shand

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Odor (Lab)	1		TON	0.1	0.3	SM2150B	04/14	04/14	IMA
Color (Lab)	40.0	Q	Pt-Co	1.0	3.0	SM2120B	04/14	04/14	IMA
Aluminum	0.026		mg/L	0.005	0.015	200.7	04/14	04/14	IMN
Tron	0.87		mg/L	0.001	0.003	200.7	04/14	04/14	IMN
ođium	2220		mg/L	30.000	90.000	200.7	04/14	04/14	IMN
Zinc	U	U	mg/L	0.00004	0.00012	200.7	04/14	04/14	IMN
200.8 DW-10 Metals in Dr	inking Water 62-550.310	1	1	Dilution	Factor =	10			
Arsenic	0.008		mg/L	0.00120	0.00360	4.1.3/200.8	04/17	04/17	IMN
Barium	0.108		mg/L	0.0037	0.0111	4.1.3/200.8	04/17	04/17	MMI
Cadmium	ប	υ	mg/L	0.00430	0.01290	4.1.3/200.8	04/17	04/17	IMN
Chromium	U	υ	mg/L	0.00080	0.00240	4.1.3/200.8	04/17	04/17	IMN
Lead	υ	U	mg/L	0.00010	0.00030	4.1.3/200.8	04/17	04/17	IMN
Nickel	U	Ų	mg/L	0.00300	0.00900	4.1.3/200.8	04/17	04/17	IMN
Selenium	0.011		mg/L	0.00300	0.00900	4.1.3/200.8	04/17	04/17	IMN
Antimony	U	ប	mg/L	0.00400	0.01200	4.1.3/200.8	04/17	04/17	IMN
Beryllium	U	υ	mg/L	0.00200	0.00600	4.1.3/200.8	04/17	04/17	IMN
Thallium	υ	U	mg/L	0.00020	0.00060	4.1.3/200.8	04/17	04/17	IMN
opper	υ	U	mg/L	0.00080	0.00240	200.8	04/17	04/17	IMN

Page 3 of 19 Report Printed: 05/08/08 Submission # 804000364 Order # 60540

Project: Black & Veatch DZMW-1 Site Location: 20505 State Road 80, Loxahatchee, FL

Water Matrix:

 Sample I.D.:
 PackerTest #4 (1887-1920)

 Collected:
 04/11/08 18:50

 Received:
 04/14/08 12:50

 Collected by:
 Phillip Shand

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Manganese	0.276		mg/L	0.00100	0.00300	200.8	04/17	04/17	IMN
Silver	U	Ū	mg/L	0.00010	0.00030	200.8	04/17	04/17	IMN
Mercury	U	ט	mg/L	0.00002	0.00006	245.1	04/16	04/16	EN
504.1 EDB, DBCP: 62-550.310(4)(b)		1	1	Dikation	Factor =	1			
1,2-Dibronю-3-Chlогоргорапе (DBCP)	ប	Ū	ug/L	0.02	0.06	EPA 504.1 BC	D 04/15	04/15	AC
Ethylene Dibromide (EDB)	U	U	ug/L	0.02	0.06	EPA 504.1 EC	D 04/15	04/15	AC
508 Pesticides & PCBs: 62-550.310(4)	(b)	·	1	Dilution	Factor =	1			
Hexachlorocyclopentadiene	U	U	ug/L	0.028	0.084	508	04/16	04/17	AC
Hexachlorobenzene	U	U	ug/L	0.026	0.078	508	04/16	04/17	AC
v-BHC (Lindane)	ប	บ	ug/L	0.023	0.069	508	04/16	04/17	AC
Heptachlor	บ	U	ug/L	0.002	0.006	508	04/16	04/17	AC
Heptachlor Epoxide	ប	ט	ug/L	0.002	0.006	508	04/16	04/17	AC
Endrin	U	υ	ug/L	0.012	0.036	<i>5</i> 08	04/16	04/17	AC
Methoxychlor	ប	ប	ug/L	0.012	0.036	508	04/16	04/17	AC
Arochlor 1016	ប	U	ug/L	0.10	0.30	508	04/16	04/17	AC
Arochlor 1221	υ	U	ug/L	0.10	0.30	508	04/16	04/17	AC
Arochlor 1232	υ	U	ug/L	0.10	0.30	508	04/16	04/17	AC
Arochior 1242	U	U	ug/L	0.10	0.30	508	04/16	04/17	AC

Page 4 of 19 Report Printed: 05/08/08 Submission # 804000364 Order # 60540

Project: Black & Veatch DZMW-1
Site Location: 20505 State Road 80, Loxahatchee,
Water

	Collected:	PackerTest #4 (1887-1920) 04/11/08 18:50	
e, FL	Received:	04/14/08 12:50	

Collected by: Phillip Shand

		LABO	RATORY	ANAL	YSIS RI	EPORT .			
PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Arochlor 1248	υ	U	ug/L	0.10	0.30	508	04/16	04/17	AC
Arochlor 1254	บ	บ	ug/L	0.10	0.30	508	04/16	04/17	AC
Arochlor 1260	ប	υ	ug/L	0.10	0.30	508	04/16	04/17	AC
Toxaphene	Ų	U	ug/L	0.06	0.18	508	04/16	04/17	AC
Chlordane	U	U	ug/L	0.01	0.03	508	04/16	04/17	AC
515.3 Chlorophenoxy Herbicides: 62-	550.310(4)(b)	1	1	Dilutio	n Factor =	1			
Dalapon	υ	U	ug/L	0.146	0.420	515.3	04/15	04/16	AC
2,4-D	U	υ	ug/L	0.190	0.570	\$15.3	04/15	04/16	AC
Penrachlorophenol	υ	บ	ug/L	0.051	0.153	515.3	04/15	04/16	AC
2,4,5-TP (silvex)	υ	υ	ug/L	0.052	0.156	515.3	04/15	04/16	AC
Dinoseb	U	υ	ug/L	0.780	0.540	515.3	04/15	04/16	AC
Picloram	Ų	U	ug/L	0.140	0.420	515.3	04/15	04/16	AC
524.2 Trihalomethanes: 62-550.310(3)	THMs	1	 	Dilution	Factor =	1			
Bromodichloromethane	υ	υ	ug/L	0.24	0.72	524.2	04/16	04/16	MMD
Dibromochloromethane	ט	U	ug/L	0.39	1.17	524.2	04/16	04/16	MMD
Tribromomethane (Bromoform)	υ	U	ug/L	0.38	1.14	524.2	04/16	04/16	MMD
Trichloromethane (Chloroform)	U	υ	ug/L	0.80	2.40	524.2	04/16	04/16	MMD
TOTAL Trihalomethanes	U	υ	ug/L	2.0	6.0	524.2	04/16	04/16	MMD

Page 5 of 19 Report Printed: 05/08/08 Submission # 804000364 Order # 60540

Project: Black & Veatch DZMW-1 Site Location: 20505 State Road 80, Loxahatchee, FL Matrix: Water

Sample I.D.: PackerTest #4 (1887-1920) Collected: 04/11/08 18:50 Received: 04/14/08 12:50 Received: 04/14/08 I Collected by: Phillip Shand

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
524.2 Volatile Organics: 62-550.310(4)	(a)	f	1	Dilution	Factor =	i			
Vinyi Chloride	U	υ	ug/L	0.34	1.02	524.2	04/16	04/16	MMD
1,1-Dichloroethylene	U	U	ug/L	0.43	1.29	524.2	04/16	04/16	MMD
Dichloromethane (Methylene Chloride)	U	U	ug/L	2.00	6.00	524.2	04/16	04/16	MMD
Trans-1,2-Dichloroethylene	U	υ	ug/L	0.50	1.50	524.2	04/16	04/16	MMD
Cis-I,2-Dichloroethylene	U	บ	ug/L	0.11	0.33	524.2	04/16	04/16	MMD
1,1,1-Trichloroethane	U	U	ug/L	0.25	0.75	524.2	04/16	04/16	MMD
Carbon Tetrachloride	U	U	ug/L	0.19	0.57	524.2	04/16	04/16	MMD
Benzene	U	υ	ug/Ľ	0.09	0.27	524.2	04/16	04/16	MMD
1,2-Dichloroethane	υ	U	ug/L	0.24	0.72	524.2	04/16	04/16	MMD
Trichioroethylene	U	บ	ug/L	0.09	0,27	524.2	04/16	04/16	MMD
1,2-Dichloropropane	υ	U	ug/L	0.20	0.60	524.2	04/16	04/16	MMD
Toluene	U	U	ug/L	0.14	0.42	524.2	04/16	04/16	MMD
1,1,2-Trichloroethane	U	υ	ug/L	0.36	1.08	524.2	04/16	04/16	MMD
Terrachloroethylene	υ	ឋ	ug/L	0.11	0.33	524.2	04/16	04/16	MMD
Chlorobenzene	U	U	ug/L	0.09	0,27	524.2	04/16	04/16	MMD
Bthylbenzene	υ	U	ug/L	0.13	0.39	524.2	04/16	04/16	MMD
Xylenes (Total)	υ	U	ug/L	0.21	0.63	524.2	04/16	04/16	MMD

Page 6 of 19 Report Printed: 05/08/08 Submission # 804000364 Order # 60540

Project: Black & Veatch DZMW-1 Site Location: 20505 State Road 80, Loxahatchee, FL Matrix: Water

 Sample I.D.:
 PackerTest #4 (1887-1920)

 Collected:
 04/11/08 18:50

 Received:
 04/14/08 12:50

 Collected by:
 Phillip Shand

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Styrene	υ	ט	ng/L	0.17	0.51	524.2	04/16	04/16	MMD
1,4-Dichlorobenzene (para)	υ	υ	ug/L	0.14	0.42	524.2	04/16	04/16	MMD
1,2-Dichlorobenzene (ortho)	υ	U	ug/L	0.48	1.44	524.2	04/16	04/16	MMD
1,2,4-Trichlorobenzene	U	υ	ug/L	0.82	2.46	524.2	04/16	04/16	MMD
525.2 Semivolatile Organics: 62-550.31	0(4)(b)		-	Dilutio	n Factor =	1			
Di(2-Ethylhexyl)phthalate	U	Ų	ug/L	0.36	1.08	525.2	04/16	04/16	DS
Di(2-Ethylhexyl)adipate	υ	U	ug/L	0.36	1.08	525.2	04/16	04/16	DS
Benzo(2)pyrene	ប	U	սց/ւ	0.017	0.051	525.2	04/16	04/16	DS
Pentachlorophenol	υ	U	ug/L	0.02	0.06	525.2	04/16	04/16	DS
Alachlor	υ	บ	ug/L	0.20	0.60	525.2	04/16	04/16	DS
Atrazine	U	U	ug/L	0.20	0.60	525.2	04/16	04/16	DS
Simazine	U	บ	ug/L	0.20	0.60	525.2	04/16	04/16	DS
852.2 Haloacetic Acids : 62-550.310(3)	 		 	Dilutio	n Factor =	1			
Monochloroacetic Acid	U	U	ug/L	1.81	5.43	552.2	04/17	04/17	AC
Dichloroacetic Acid	U	ט	ug/L	1.48	4.44	552.2	04/17	04/17	AC
Trichloroacetic Acid	υ	U	ug/L	1.68	5.04	552.2	04/17	04/17	AC
Monobromozcetic Acid	υ	υ	ug/L	1.48	4.44	552.2	04/17	04/17	AC
Dibromoacetic Ackl	U	υ	ug/L	1.86	5.58	552.2	04/17	04/17	AC

Page 7 of 19 Report Printed: 05/08/08 Submission # 804000364 Order # 60540

Project: Black & Veatch DZMW-1 Site Location: 20505 State Road 80, Loxahatchee, FL Matrix: Water

Sample I.D.: Packer Test #4 (1887-1920) Collected: 04/11/08 18:50 Received: 04/14/08 12:50

Collected by: Phillip Shand

PARAMETER	RESULT	QС	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Total Haloacetic Acids (HAA5)	υ	U	ug/L	9.0	27.0	552.2	04/17	04/17	AC
608 Chlorinated Pesticides & PCB	s in WATER	1.		Dilutio	n Factor ==	1			
a-BHC	υ	υ	ug/L	0.005	0.015	EPA 608	04/16	04/17	AC
b-ВНС	ט	υ	ug/L	0.005	0.015	EPA 608	04/16	04/17	AC
g-BHC (lindane)	U	ซ	ug/L	0.004	0.012	EPA 608	04/16	04/17	AC
d-BHC	υ	Ų	ug/L	0.005	0.015	EPA 608	04/16	04/17	AC
Heptachlor	ប	ប	ug/L	0.005	0.015	EPA 608	04/16	04/17	AC
Aldrin	υ	υ	ug/L	0.017	0.051	BPA 608	04/16	04/17	AC
Heptachlor Epoxide	ប	Ü	ug/L	0.008	0.024	EPA 608	04/16	04/17	AC
Endosulfan I	υ	υ	ug/L	0.006	0.018	EPA 608	04/16	04/17	AC
Dieldrin	υ	U	ug/L	0.006	0.018	EPA 608	04/16	04/17	AC
4,4-DDE	U	U	ug/L	0.39	1.17	EPA 608	04/16	04/17	AC
Endrin	υ	U	ug/L	0.005	0.015	EPA 608	04/16	04/17	AC
Endosulfan II	U	U	ug/L	0.006	0.018	EPA 608	04/16	04/17	AC
4,4-DDD	υ	υ	ug/L	0.60	1.80	EPA 608	04/16	04/17	AC
Bndrin Aldehyde	U	Ü	ug/L	0.010	0.030	EPA 608	04/16	04/17	AC
Endosulfan Sulfate	ប	υ	ug/L	0.007	0.021	EPA 608	04/16	04/17	AC
4,4-DDT	Ū	υ	ug/L	0.69	2.07	EPA 608	04/16	04/17	AC

Page 8 of 19 Report Printed: 05/08/08 Submission # 804000364 Order # 60540

Project: Black & Veatch DZMW-1 Site Location: 20505 State Road 80, Loxahatchee, FL

Water Matrix:

Sample I.D.: PackerTest #4 (1887-1920)
Collected: 04/11/08 18:50
Received: 04/14/08 12:50
Collected by: Phillip Shand

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Methoxychlor	U	U	ug/L	0.007	0.021	EPA 608	04/16	04/17	AC
Aroclor 1016	Ū	U	ug/L	0.27	0.81	EPA 608	04/16	04/17	AC
Aroclor 1221	υ	U	ug/L	0.15	0.45	EPA 608	04/16	04/17	AC
Aroclor 1232	υ	υ	ug/L	0.35	1.05	EPA 608	04/16	04/17	AC
Aroclor 1242	υ	υ	ug/L	0.24	0.72	EPA 608	04/16	04/17	AC
Arocior 1248	ប	U	ug/L	0.09	0.27	EPA 608	04/16	04/17	AC
Aroclor 1254	U	U	ug/L	0.06	0.18	EPA 608	04/16	04/17	AC
Arcetor 1260	υ	υ	ug/L	0.18	0.54	EPA 608	04/16	04/17	AC
Тохарьеле	U	U	ug/L	0.40	1.20	EPA 608	04/16	04/17	AC
Chlordane	U	U	ug/L	0.10	0.30	BPA 608	04/16	04/17	AC
8260B Volatile Organics in Water l	by GC/MS	1	1	Dilution	Factor =	1			
Acetone	υ	บ	ug/L	10,90	30.00	5030/8260B	04/16	04/16	MMD
Acrolein	U	บ	ug/L	0.75	2.25	5030/8260B	04/16	04/16	MMD
Acrylonitrile	U	U	ug/L	0.41	1.23	5030/8260B	04/16	04/16	MMD
Methyl Ethyl Ketone	บ	Ū	ug/L	0.75	2.25	5030/8260B	04/16	04/16	MMD
Dichlorodifluoromethane	U	ប	ug/L	0.13	0.39	5030/8260B	04/16	04/16	MMD
Chloromethane	v	บ	ug/L	0.35	1.05	5030/8260B	04/16	04/16	MMD
Vinyl Chloride	U	υ	ug/L	0.34	1.02	5030/8260B	04/16	04/16	MMD

Page 9 of 19 Report Printed: 05/08/08 Submission # 804000364 Order # 60540

Project: Black & Veatch DZMW-1 Site Location: 20505 State Road 80, Loxahatchee, FL Matrix: Water

Sample I.D.: PackerTest #4 (1887-1920) Collected: 04/11/08 18:50 Received: 04/14/08 12:50

Collected by: Phillip Shand

PARAMETER	RESULT	QC	UNITS	MOL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Bromomethane	ប	υ	ug/L	0.41	1.23	5030/8260B	04/16	04/16	MMD
Chloroethane	Ū	U	ug/L	0.17	0.51	5030/8260B	04/16	04/16	MMD
Trichlorofiuoromethane	v	U	ug/L	0.47	1.41	5030/8260B	04/16	04/16	MMD
1,1-Dichloroethene	υ	Ū	ug/L	0.52	1.56	5030/8260B	04/16	04/16	MMD
Methylene Chloride	υ	U	ug/L	0.99	2.97	5030/8260B	04/16	04/16	MMD
Trans-1,2-Dichloroethene	U	U	ug/L	0.50	1.50	5030/8260B	04/16	04/16	MMD
Methyl-Tert-Butyl Biher	U	υ	ug/L	0.50	1.50	5030/8260B	04/16	04/16	MMD
1,1-Dichloroethane	U	U	ug/L	0.53	1.59	5030/8260B	04/16	04/16	MMD
2,2-Dichloropropane	υ	U	ug/L	0.31	0.93	5030/8260B	04/16	04/16	MMD
Cis-1,2-Dichloraethene	U	Ţ	ug/L	0.11	0.33	5030/8260B	04/16	04/16	MMD
Chloroform	υ	U	ug/L	0.80	2.40	5030/8260B	04/16	04/16	MMD
Bromochloromethane	U	U	ug/L	0.55	1.65	5030/8260B	04/16	04/16	MMD
1,1,1-Trichlorcethane	υ	U	ug/L	0.25	0.75	5030/8260B	04/16	04/16	MMD
1,1-Dichloropropene	υ	U	ug/L	0.07	0.21	5030/8260B	04/16	04/16	MMD
Carbon Tetrachloride	U	υ	ug/L	0.19	0.57	5030/8260B	04/16	04/16	MMD
Benzene	U	U	ug/L	0.89	0.27	5030/8260B	04/16	04/16	MMD
1,2-Dichloroethane	υ	U	ug/L	0.24	0.72	5030/8260B	04/16	04/16	MMD
Trichloroethene	U	Ū	ug/L	0.09	0.27	5030/8260B	04/16	04/16	MMD
			 	 				ļ	

Page 10 of 19 Report Printed: 05/08/08 Submission# 804000364 Order # 60540

Project: Black & Veatch DZMW-1 Site Location: 20505 State Road 80, Loxahatchee, FL Matrix: Water

Sample I.D.: PackerTest #4 (1887-1920)
Collected: 04/11/08 18:50
Received: 04/14/08 12:50
Collected by: Phillip Shand

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
1,2-Dichloropropane	U	บ	ug/L	0.20	0.60	5030/8260B	04/16	04/16	MMD
Bromodichloromethane	ប	Ū	ug/L	0.24	0.72	5030/8260B	04/16	04/16	MMD
2-Chloroethylvinyl Ether	U	υ	ug/L	1.00	3.00	5030/8260B	04/16	04/16	MMD
Dibromomethane	υ	Ų	ug/L	0.42	1.26	5030/8260B	04/16	04/16	MMD
Cis-1,3-Dichloropropene	U	υ	ug/L	0.38	1.14	5030/8260B	04/16	04/16	MMD
Toluene	U	U	ug/L	0.14	0.42	5030/8260B	04/16	04/16	MMD
Trans-1,3-Dichloropropene	υ	ט	ug/L	0.50	1.50	5030/8260B	04/16	04/16	MMD
1,1,2-Trichloroethane	υ	υ	ng/L	0.36	1.08	5030/8260B	04/16	04/16	MMD
1,3-Dichloropropane	U	บ	n&\I`	0.38	1.14	5030/8260B	04/16	04/16	MMD
Tetrachloroethene	v	υ	ug/L	0.11	0.33	5030/8260B	04/16	04/16	MMD
Dibromochloromethane	บ	U	ug/L	0.39	1.17	5030/8260B	04/16	04/16	MMD
1,2-Dibromoethane (EDB)	υ	U	ug/L	0.40	1.20	5030/8260B	04/16	04/16	MMD
Bromobenzene	U	υ	ug/L	0.46	1.38	5030/8260B	04/16	04/16	MMD
Chlorobenzene	υ	υ	ug/L	0.09	0.27	5030/8260B	04/16	04/16	MMD
Ethylbenzene	U	Ų	ug/L	0.13	0.39	5030/8260B	04/16	04/16	MMD
1,1,1,2-Tetrachloroethane	U	u	ug/L	0.37	1.11	5030/8260B	04/16	04/16	MMD
m & p-Xylene	U	υ	ug/L	0.19	0.57	5030/8260B	04/16	04/16	ммо
o-Xylene	U	U	ug/L	0.19	0.57	5030/8260B	04/16	04/16	MMD

Page 11 of 19 Report Printed: 05/08/08 Submission # 804000364 Order # 60540

Project: Black & Veatch DZMW-I Site Location: 20505 State Road 80, Loxahatchee, FL

Matrix:

Water

Sample I.D.: PackerTest #4 (1887-1920) Collected: 04/11/08 18:50 Received: 04/14/08 12:50 Received: 04/14/08 1 Collected by: Phillip Shand

PARAMETER	RESULT	бс	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Styrene	U	Ū	ug/L	0.17	0.51	5030/8260B	04/16	04/16	MMD
Isopropylbenzene	ប	U	ug/L	0.50	1,50	5030/8260B	04/16	04/16	MMD
Bromoform	U	ט	ug/L	0.38	1.14	5030/8260B	04/16	04/16	MMD
1,1,2,2-Tetrachloroethane	υ	U	ug/L	0.29	0.87	5030/8260B	04/16	04/16	MMD
1,2,3-Trichloropropane	U	U	ug/L	0.23	0.69	5030/8260B	04/16	04/16	MMD
1,3,5-Trimethylbenzene	U	υ	ug/L	0.11	0.33	5030/8260B	04/16	04/16	MMD
2-Chilorotoluene	υ	ט	ug/L	0.13	0.39	5030/8260B	04/16	04/16	MMD
4-Chlorotoluene	υ	υ	ug/L	0.16	0.48	5030/8260B	04/16	04/16	MMD
Tert-Burylbenzene	Ų	U	ug/L	0.16	0.48	5030/8260B	04/16	04/16	MMD
1,2,4-Trimethylbenzene	υ	υ	ug/L	0.11	0.33	5030/8260B	04/16	04/16	MMD
Sec-Butylbenzene	U	บ	ug/L	0.17	0.51	5030/8260B	04/16	04/16	MMD
P-Isopropyltoluene	U	U	ug/L	0.11	0.33	5030/8260B	04/16	04/16	MMD
1,3-Dichlorobenzene	U	U	ug/L	0.20	0,60	5030/8260B	04/16	04/16	MMD
1,4-Dichlorobenzene	บ	U	ug/L	0.14	0.42	5030/8260B	04/16	04/16	MMD
n-Butylbenzene	υ	U	ug/L	0.21	0.63	5030/8260B	04/16	04/16	MMD
n-PropyiBenzene	ប	บ	ug/L	0.17	0.51	5030/8260B	04/16	04/16	MMD
1,2-Dichlorobenzene	υ	Ų	ug/L	0.48	1.44	5930/8260B	04/16	04/16	MMD
1,2-Dibromo-3-Chloropropane (DBCP)	U	υ	ng/L	0.30	0.90	5030/8260B	04/16	04/16	MMD

Page 12 of 19 Report Printed: 05/08/08 Submission # 804000364

Order # 60540

Project: Black & Veatch DZMW-1 Site Location: 20505 State Road 80, Loxahatchee, FL

Water Matrix:

 Sample I.D.:
 PackerTest #4 (1887-1920)

 Collected:
 04/11/08 18:50

 Received:
 04/14/08 12:50

 Collected by:
 Phillip Shand

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
1,2,4-Trichlorobenzene	U	บ	ug/L	0,82	2.46	5030/8260B	04/16	04/16	MMD
Hexachlorobutadiene	U	υ	ug/L	0.57	1.71	5030/8260B	04/16	04/16	MMD
Naphthalene	υ	ט	ug/L	0.015	0.045	5030/8260B	04/16	04/16	MMD
I.2.3-Trichlorobenzene	υ	U	ug/L	1.27	3.81	5030/8260B	04/16	04/16	MMD
سلامير 70C Semivolatile Organics in Wa	ter by GC/MS	1	1	Dilution	n Factor =	1			
N-Nitrosodimethylamine	U	U	ug/L	0.50	1.50	3510/8270C	04/16	04/17	DS
Phenoi	U	υ	ug/L	0.38	1.14	3510/8270C	04/16	04/17	DS
Bis (2-Chloroethyl) Ether	U	U	ug/L	0.85	2.55	3510/8270C	04/16	04/17	DS
2-Chlorophenol	U	υ	ug/L	0.45	1.35	3510/8270C	04/16	04/17	DS
t,3-Dichlorobenzene	ប	ប	ug/L	0.80	2.40	3510/8270C	04/16	04/17	DS
I,4-Dichlorobenzene	ប	ŭ	ug/L	0.14	0.42	3510/8270C	04/16	04/17	DS
Benzyl Alcohol	U	υ	ug/L	0.75	2.25	3510/8270C	04/16	04/17	DS
1,2-Dichlorobenzene	U	U	ug/L	0.48	1.44	3510/8270C	04/16	04/17	DS
Bis (2-Chloroisopropyl) Ether	U	υ	ug/L	0.85	2.55	3510/8270C	04/16	04/17	DS
N-Nitrosodi-N-Propylamine	υ	υ	ug/L	1.14	3.42	3510/8270C	04/16	04/17	DS
Hexachioroethane	υ	U	ug/L	2.31	6.93	3510/8270C	04/16	04/17	D§
Nitrobenzene	U	U	ug/L	0.66	1.98	3510/8270C	04/16	04/17	DS
Isophorone	ט	U	ug/L	1.56	4.68	3510/8270C	04/16	04/17	DS

Page 13 of 19 Report Printed: 05/08/08 Submission # 804000364 Order # 60540

Project: Black & Veatch DZMW-1
Site Location: 20505 State Road 80, Loxahatchee, PL
Water

Sample I.D.: PackerTest #4 (1887-1920) Collected: 04/11/08 18:50 Received: 04/14/08 12:50

Collected by: Phillip Shand

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
2-Nitrophenol	υ	U	ug/L	1.09	3.27	3510/8270C	04/16	04/17	D\$
2,4-Dimethylphenol	U	บ	ug/L	0.62	1.86	3510/8270C	04/16	04/17	DS
Bis (2-Chloroethoxy)methane	Ū	υ	ug/L	1.89	5.67	3510/8270C	04/16	04/17	DS
2,4-Dichlorophenol	U	υ	ug/L	1.11	3.33	3510/8270C	04/16	04/17	DS
1,2,3-Trichlorobenzene	ប	υ	ug/L	2.00	6.00	3510/8270C	04/16	04/17	DS
1,2,4-Trichlorobenzene	υ	ប	ug/L	0.82	2.46	3510/8270C	04/16	04/17	DS
Naphthalene	U	U	ug/L	0.02	0.06	3510/8270C	04/16	04/17	D\$
Hexachlorobutadiene	U	υ	ug/L	0.57	1.71	3510/8270C	04/16	04/17	DS
4-Chloro-3-Methylphenol	U	υ	ug/L	0.67	2.01	3510/8270C	04/16	04/17	DS
i -Methylnaphthalene	υ	υ	ug/L	0.36	1.08	3510/8270C	04/16	04/17	DS
2-Methylnaphthalene	U	υ	ug/L	0.02	0.06	3510/8270C	04/16	04/17	DS
2-Methylphenol (o-cresol)	Ū	U	ug/L	1.00	3.00	3510/8270C	04/16	04/17	DS
Hexachlorocyclopentadiene	U	Ū	ug/L	0.42	1.26	3510/8270C	04/16	04/17	DS
3-MethylPhenol (m-cresol)	U	υ	ug/L	0.84	2.52	3510/8270C	04/16	04/17	DS
4-Methylphenol (p-cresol)	U	U	ug/L	1-16	3.48	3510/8270C	04/16	04/17	DS
2,3,6-Trichlorophenol	υ	υ	ug/L	1.2	3.6	3510/8270C	04/16	04/17	DS
2,4,5-Trichlorophenol	U	U	ug/L	0.81	2.43	3510/8270C	04/16	04/17	DS
2,4,6-Trichlorophenol	U	ט	ug/L	0.78	2.34	3510/8270C	04/16	04/17	DS

Page 14 of 19 Report Printed: 05/08/08 Submission # 804000364 Order # 60540

Project: Black & Veatch DZMW-1 Site Location: 20505 State Road 80, Loxahatchee, FL

Matrix: Water

Sample I.D.: PackerTest #4 (1887-1920) Collected: 04/11/08 18:50 Received: 04/14/08 12:50 Received: 04/14/08 1 Collected by: Phillip Shand

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
2-Chloronaphthalene	ט	ប	ug/L	1.16	3.48	3510/8270C	04/16	04/17	DS
Dimethyl Phthalate	ប	บ	ug/L	3.70	11.18	3510/8270C	04/16	04/17	DS
Acenaphthylene	U	U	ug/L	0.02	0.06	3510/8270C	04/16	04/17	DS
2,6-Dinitrotoluene	υ	υ	ug/L	0.54	1.62	3510/8270C	04/16	04/17	DS
Acenaphthene	U	U	ug/L	0.02	0.06	3510/8270C	04/16	04/17	DS
2,4-Dinitrophenol	U	υ	ug/L	1.0	3.0	3510/8270C	04/16	04/17	DS
2,4-Dinitrotoluene	U	U	ug/L	1.17	3.51	3510/8270C	04/16	04/17	DS
4-Nitrophenoi	U	υ	ug/L	1.0	3.0	3510/8270C	04/16	04/17	DS
Diethyl Phthalate	U	U	ug/L	3.40	10.20	3510/8270C	04/16	04/17	DS
Pluorene	บ	U	ug/L	0.01	0.03	3510/8270C	04/16	04/17	DS
4-Chlorophenyl Phenyl Ether	U	บ	ug/L	0.87	2.61	3510/8270C	04/16	04/17	DS
4,6-Dinitro-2-Methylphenol	บ	υ	ug/L	1.40	4.20	3510/8270C	04/16	04/17	DS
N-Nitrosodiphenylamine	ŭ	υ	ug/L	3.42	10.26	3510/8270C	04/16	04/17	DS
4-Bromophenyl Phenyl Ether	U	U	ug/L	1.44	4.32	3510/8270C	04/16	04/17	DS
Hexachlorobenzene	U	υ	ug/L	0.42	1.26	3510/8270C	04/16	04/17	DS
Pentachlorophenol	υ	υ	ug/L	1.14	3.42	3510/8270C	04/16	04/17	DS
Phenanthrene	บ	บ	ug/L	0.028	0.084	3510/8270C	04/16	04/17	DS
Anthracene	U	U	ug/L	0.049	0.147	3510/8270C	04/16	04/17	DS

Page 15 of 19 Report Printed: 05/08/08 Submission # 804000364 Order # 60540

Project: Black & Veatch DZMW-1 Site Location: 20505 State Road 80, Loxabatchee, FL Matrix: Water

Sample I.D.: PackerTest #4 (1887-1920)
Collected: 04/11/08 18:50
Received: 04/14/08 12:50
Collected by: Phillip Shand

PARAMETER	RESULT	QC	UNITS	MDL	PQL	МЕТНОВ	DATE EXT.	DATE ANALY.	ANALYST
Di-N-Buryl Phthalate	U	υ	ug/L	1.200	3.600	3510/8270C	04/16	04/17	DS
Fluoranthene	υ	U	ug/L	0.025	0.075	3519/8270C	04/16	04/17	DS
Benzidine -	U	U	ug/L	4.00	12.00	3510/8270C	04/16	04/17	DS
Pyrene	U	U	ug/L	0.017	0.051	3510/8270C	04/16	04/17	DS
artyl Benzyl Phthalate	U	U	ug/L	1.44	4.32	3510/8270C	04/16	04/17	DS
Benzo(A)Anthracene	υ	U	ug/L	0.017	0.051	3510/8270C	04/16	04/17	DS
3,3-Dichlorobenzidine	U	υ	ug/L	2.00	6.00	3510/8270C	04/16	04/17	DS
Chrysene	U	U	ug/L	0.75	2.25	3510/8270C	04/16	04/17	DS
Bis (2 Ethylhexyl) Phthalate	U	υ	ug/L	2.37	7.11	3510/8270C	04/16	04/17	DS
Di-N-Octyl Phthalate	υ	Ų	ug/L	1.40	4.20	3510/8270C	04/16	04/17	DS
Benzo(B)Fluoranthene	U	บ	ug/L	0.029	0.087	3510/8270C	04/16	04/17	DS
Benzo(K)Fluoranthene	U	U	ug/L	0.025	0.075	3510/8270C	04/16	04/17	DS
Benzo(A)Pyrene	U	Ū	ug/L	0.017	0.051	3510/8270C	04/16	04/17	DS
Indeno(1,2,3-CD)Pyrene	υ	υ	ug/L	0.93	2.79	3510/8270C	04/16	04/17	DS
Dibenzo(A,H,)Anthracene	U	υ	ug/L	0.029	0.087	3510/8270C	04/16	04/17	DS
Benzo(G,H,I)Perylene	U	υ	ug/L	0.017	0.051	3510/8270C	04/16	04/17	DS
Bis-2-ethylhexyl Adipate	บ	ប	ug/L	 	1.08	3510/8270C	04/16	04/17	DS
Aldrin	U	U	ug/L	<u>-</u>	0.051	3510/8270C	04/16	04/17	DS

Page 16 of 19 Report Printed: 05/08/08 Submission # 804000364 Order # 60540

Project: Black & Veatch DZMW-1 Site Location: 20505 State Road 80, Loxahatchee, FL Matrix: Water

Sample I.D.: PackerTest #4 (1887-1920)
Collected: 04/11/08 18:50
Received: 04/14/08 12:50

Collected by: Phillip Shand

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
alpha-BHC ~	U	U	ug/L	0.005	0.015	3510/8270C	04/16	04/17	DS
beta-BHC	υ	U	ug/L	0.005	0.015	3510/8270C	04/16	04/17	DS
delta-BHC *	บ	U	ug/L	0.005	0-015	3510/8270C	04/16	04/17	DS
gamına-BHC (Lindane)	U	υ	ug/L	0.004	0.012	3510/8270C	04/16	04/17	DS
Chlordane (Screen)	v	U	ug/L	0.10	0.30	3510/8270C	04/16	04/17	DS
4,4'-DDD "	U	Ū	ng/L	0.60	1.80	3510/ 8270 C	04/16	04/17	DS
4,4'-DDE ~	U	U	ug/L	0.39	1.17	3510/8270C	04/16	04/17	DS
4,4'-DDT -	U	υ	ug/L	0.69	2.07	3510/8270C	04/16	04/17	DS
Diekkrin -	Ų	υ	ug/L	0.006	0.018	3510/8270C	04/16	04/17	DS
Endosulfan I ~	U	U	ug/L	0.006	0.018	3510/8270C	04/16	04/17	DS
Endosulfan II	U	ប	ug/L	0.006	0.018	3510/8270C	04/16	04/17	DS
Endosulfan Sulfate	U	ט	ug/L	0.007	0.021	3510/8270C	04/16	04/17	DS
Endrin -	U	υ	ug/L	0.005	0.015	3510/8270C	04/16	04/17	DS
Endrin Aldehyde	U	υ	ug/L	0.010	0.030	3510/8270C	04/16	04/17	DS
Heptachlor *	Ü	U	ug/L	0.005	0.015	3510/8270C	04/16	04/17	D S
Heptachlor Epoxide	υ	U	սք/Ն	0.008	0.024	3510/8270C	04/16	04/17	DS
Toxaphene -	U	U	ug/L	0.40	1.20	3510/8270C	04/16	04/17	DS
PCB-1016 °	υ	บ	ug/L	0.10	0.30	3510/8270C	04/16	04/17	DS

Page 17 of 19 Report Printed: 05/08/08 Submission # 804000364 Order # 60540

Project: Black & Veatch DZMW-1 Site Location: 20505 State Road 80, Loxahatchee, FL Matrix: Water

Sample I.D.: PackerTest #4 (1887-1920)
Collected: 04/11/08 18:50
Received: 04/14/08 12:50
Collected by: Phillip Shand

PARAMETER	RESULT	6c	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
PCB-1221 ~	U	ט	ug/L	0.10	0.30	3510/8270C	04/16	04/17	DS
PCB-1232 ~	U	υ	ug/L	0.10	0.30	3510/8270C	04/16	04/17	DS
PCB-1242 ~	Ų	U	ug/L	0.10	0.30	3510/8270C	04/16	04/17	DS
PCB-1248 ~	U	U	ug/L	0.10	0.30	3510/8270C	04/16	04/17	DS
'CB-1254 ⁻	U	U	ug/L	0.10	0.30	3510/8270C	04/16	04/17	DS
PCB-1260 -	U	U	ug/L	0.10	0.30	3510/8270C	04/16	04/17	DS
Dioxin (screen)	υ	U	ug/L	0.03	0.09	3510/8270C	04/16	04/17	DS
Azobenzene -	U	U	ug/L	0.75	2.25	3510/8270C	04/16	04/17	DS
Methoxychlor	U	บ	ug/L	0.007	0.021	3510/8270C	04/16	04/17	DS
Benzoic Acid	U	U	ug/L	0.84	2.52	3510/8270C	04/16	04/17	DS
Aniline	ט	υ	ug/L	0.50	1.50	3510/82 7 0C	04/16	04/17	DS
4-Chloroaniline	υ	Ų	ug/L	0.65	1.95	3510/8270C	04/16	04/17	DS
Dibenzofuran	υ	Ū	ug/L,	0.66	1.98	3510/8270□	04/16	04/17	DS
2-Nitroaniline	υ	U	ug/L	0.58	1.74	3510/8270C	04/16	04/17	DS
3-Nitroaniline	U	ŭ	ug/L	0.50	1.50	3510/8270C	04/16	04/17	DS
1-Nitroaniline	U	U	ug/L	0.84	2.52	3510/8270C	04/16	04/17	DS
Carbazole -	υ	υ	ug/L	0.68	2.04	3510/8270C	04/16	04/17	DS
.6-Dichlorophenol	Ü	υ	ug/L	0.89	2.67	3510/8270C	04/16	04/17	DS

Page 18 of 19 Report Printed: 05/08/08 Submission # 804000364 Order # 60540

Project: Black & Veatch DZMW-1 Site Location: 20505 State Road 80, Loxahatchee, FL Matrix: Water

Sample I.D.: PackerTest #4 (1887-1920)
Collected: 04/11/08 18:50
Received: 04/14/08 12:50
Collected by: Phillip Shand

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Pyridine	ט	υ	ug/L	0.99	2.97	3510/8270C	04/16	04/17	DS
2,3,4,6-Tetrachlorophenol	U	U	ug/Ľ	1.00	3.00	3510/8270C	04/16	04/17	DS
2,3,5,6-Tetrachlorophenol	U	U	ug/L	0.80	2.40	3510/8270C	04/16	04/17	DS
SUB 300.1 Chlorite & Bromate (Combo Part B)	-1	- 	Dilutio	n Factor =	 			
Intorite	υ	U	mg/L	130	390	EPA 300.1	04/21	04/25	E83079
Bromate	U	υ	mg/L	59	177	BPA 300.1	04/21	04/25	E83079
SUB 531 Carbamate Pesticides: 6	2-550.310(4)(ь	- 	-1	Dilutio	n Factor =	1			
Carbofuran	U	υ	ug/L	0.54	1.62	531.1	04/16	04/17	E84809
Oxamyi (vydate)	U	U	ug/L	0.55	1.65	531.1	04/16	04/17	E84809
3lyphosate	U	U	ug/L	6.0	18.0	547.1	04/18	04/18	E84809
Endothall	υ	U	mg/L	0.0046	0.0138	548.1	04/18	04/21	E84809
SUB 549 Diquat : 62-550.310(4)(b)	! ··-	 	Dilution	Factor =	1			
Diquat	υ	บ	mg/L	0.0003	0.0009	549.2	04/18	04/21	E84809
iross Alpha	9.4 ± 0.7		pCi/L	0.3	0.9	EPA 00-02	04/29	04/29	E84025
adium-226	2.4 ± 0.3		pCi/L	0.20	0.60	EPA 903.1	04/28	04/28	E84025
adium-228	U	υ	рСі/L	1.00	3.00	EPA Ra-05	04/25	04/25	E84025
trontium-90	U	ט	pCi/L	1.00	3.00	BPA 905.0	05/06	05/06	E84025

Page 19 of 19

Report Printed: 05/08/08 Submission #804000364

Order # 60540

Matrix:

Water

Project: Black & Veatch DZMW-1 Site Location: 20505 State Road 80, Loxahatchee, FL

Received:

PackerTest #4 (1887-1920)

Sample I.D.: Collected:

04/11/08

18:50 12:50

Collected by:

04/14/08

Phillip Shand

LABORATORY ANALYSIS REPORT

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Chlorine Dioxide	0.30	i .	i	0.089	0.267	SM4500CLO2	04/24	04/24	E83079
			ł				-		

QC = Qualifier Codes as defined by DEP 62-160
Unless indicated, soil results are reported based on actual (wet) weight basis.

Analytes not currently NELAC certified denoted by ^.

*k performed by outside (subcontract) labs denoted by Cert.ID in Analyst Field.

ilts relate only to this sample.

Authorized CSM Signature (959) 978-6400 Plorida-Spectrum Environmental Services, Inc. Certification # E86006

Data Qualifier Codes

- A Value reported is the mean (average) of two or more determinations.
- B Results based upon colony counts outside the acceptable range. The code is to be used if the colony count is generated from a plate in which the total number of Coliform colonies exceeds the method indicated ideal ranges, which are:

Total Coliforms: 20-80 colonies Fecal Coliforms: 20-60 colonies

- C Result was confirmed by a separate analysis of the sample.
- D Measurement was made in the field (i.e. in situ). This applies to any value (ex. pH, specific conductance, etc.) that was obtained under field conditions using approved analytical methods.
- H Value based on field kit determination; results may not be accurate.
- I The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
- J Estimated value; value not accurate. This code shall be used in the following instances:
 - 1. surrogate recovery limits have been exceeded.
 - 2. no known quality control criteria exists for the component
 - 3. the reported value failed to meet the established quality control criteria for either precision or accuracy.
 - 4. the sample matrix interfered with the ability to make any accurate determination; or
 - if the data is questionable because of improper laboratory or field protocols (e.g. composite sample was collected instead of a grab sample).
- N Presumptive evidence of presence of material. This qualifier shall be used if:
 - 1. the component has been tentatively identified based on mass spectral library search a
 - 2. there is an indication that the analyte is present, but quality control requirements for confirmation were not met
- Sampled, but analysis lost or not performed; sample compromised.
- Q Sample held beyond accepted holding time. This code shall be used if the value is derived from a sample that was prepared or analyzed after the approved holding time restrictions for sample preparation or analysis.
- R Significant rain in the past 48 hours. This code shall be used when the rainfall might contribute to a lower than normal value.
- T Value reported is less than the laboratory method detection limit
- U Indicated that the compound was analyzed for but not detected. This shall be used to indicate that the specified component was not detected. The value associated with the qualifier shall be the laboratory method detection limit
- V Indicated that the analyte was detected in both the sample and the associated method blank. Note: the value in the blank shall not be subtracted from associated samples.
- Y The laboratory analysis was from an unpreserved or improperly preserved sample. The data may not be accurate.
- Z Too many colonies were present (TNTC), the numeric value represents the filtration volume.
- ? Data is rejected and should not be used. Some of all of the quality control data for the analyte were outside criteria, and the presence or absence of the analyte cannot be determined from the data.
- * Not analyzed due to interference.
- ! Data deviates from historically established concentration ranges.
- ~ Analysis performed outside NELAP program. (e.g. State of Georgia, UCMR, ICR or other certification.)

Attachment O Upper and Lower Monitor Zone Recommendations

McNabb Hydrogeologic Consulting, Inc.

601 Heritage Drive, Suite 110 Jupiter, Florida 33458 Phone: 561-891-0763 Fax: 561-623-5469

April 14, 2008

Mr. Joe May, P.G. Florida Department of Environmental Protection 400 N. Congress Ave, Suite 200 West Palm Beach, FL 33401

RE: Florida Power & Light West County Energy Center

Dual-Zone Monitor Well DZMW-1 Construction Permit; 0247895-006-UC Upper and Lower Monitor Zone Recommendations and 16-Inch and 6-Inch Diameter Casing Seat Recommendations

Dear Mr. May:

The information presented herein is provided in support of the upper and lower monitor zones recommendations and associated casing seat recommendations for the Florida Power & Light West County Energy Center dual zone monitor well DZMW-1. The interpreted data presented below is provided to justify a recommendation to set the 16-inch casing of DZMW-1 to a depth of 1,892 feet bpl and establish an upper monitor zone of 1,892 to 1,917 feet bpl. The interpreted data presented herein also supports a 6-5/8-inch diameter final casing setting depth recommendation of 2,130 feet bpl and the establishment of a lower monitoring zone of 2,130 to 2,150 feet bpl. These recommendations are provided for your review and Technical Advisory Committee (TAC) approval.

Background

Construction of dual zone monitor well DZMW-1 began on March 5, 2008. A 44-inch diameter pit casing and 34-inch diameter outer casing have been installed to depths of 58 and 245 feet below pad level (bpl), respectively. The 24-inch casing was installed through the Hawthorn Group to the top of the upper Floridan aquifer at a depth of 920 feet bpl. The Contractor then drilled a 12 ¼-inch diameter pilot hole from 920 to 2,197 feet bpl using the reverse-air drilling method.

Data

Formation samples were collected at 5-foot intervals during pilot hole drilling. Samples were described and compiled to develop a lithologic log of the DZMW-1 borehole. Caliper, gamma ray, dual-induction, spontaneous potential, borehole compensated sonic, temperature, fluid conductivity, and flowmeter logs were performed on the pilot hole. Four straddle packer tests were performed to gain water quality and hydraulic information for the strata penetrated. An interpretation of the data is provided below in support of the above recommended monitoring zone and casing seat depths.

Drill Cutting Samples

The drill cuttings from pilot hole drilling below the 24-inch casing consist primarily of limestone and dolomite. Table I provides a summary of the drill cuttings description. A detailed lithologic log of the drill cuttings below the 24-inch diameter casing is provided in Attachment A.

Table 1. Generalized Lithologic Description of Drill Cuttings

Interval (feet bpl)	Generalized Description
920 - 1,670	Fine grained, yellowish gray to very pale orange, moderately well to well consolidated limestone with low to moderate porosity
1,670 - 1,715	Microcrystalline, dark yellowish brown, well consolidated dolomite with low porosity
1,715 - 1,890	Fine grained, very pale orange, well consolidated, porous limestone
1,890 - 2,197	Very fine to medium grained, pale yellowish brown, well consolidated, hard dolomite with low porosity with a minor amount of limestone

In general, the drill cuttings consist of limestone and dolomite, which is consistent with the Floridan Aquifer.

Pilot Hole Water Quality Data

Pilot hole water samples were collected at 30-foot intervals during reverse air drilling. Each of the pilot hole water quality samples were field analyzed for conductivity, total dissolved solids (TDS), chlorides and pH. It should be noted that DZMW-1 is being drilled using a closed circulation system. Therefore, pilot hole water samples are not likely to be a true representation of the water quality at the depth of collection.

A table summarizing the pilot hole water quality field analytical results is provided in Attachment B. Figure 1 provides a graph of pilot hole water quality relative to sample depth. A large increase in conductivity, TDS, and chloride concentration is apparent at a depth of 2,005 feet bpl. The increase in these parameters is related to an increase in these parameters in the native groundwater.

Geophysical Logs

Geophysical logging of the interval from the base of the 24-inch casing (920 feet bpl) to 2,197 feet bpl was conducted to provide geologic and hydrogeologic data for the DZMW-I site. There were a few failed attempts at logging the pilot hole due to the lower portion of the borehole filling in during the logging process. The pilot hole was initially drilled to 2,185 feet bpl, but filled in to a depth of approximately 2,170 feet bpl during logging. The pilot hole was therefore extended to a depth of 2,197 feet bpl to account for a small amount of fill-up that was anticipated during the logging process. The lowermost portion of the borehole logs are shown on the Repeat Pass of the logs. Caliper, gamma ray, dual induction, spontaneous potential, borehole compensated sonic, temperature, fluid conductivity, and flowmeter logging was performed on the pilot hole under static conditions. The temperature, fluid conductivity, and flowmeter logs were also performed under dynamic conditions (flow rate of 270 gpm). A copy of the geophysical logs is provided in Attachment C.

The interval from 920 to 2,197 feet bpl can be divided into four intervals. The interval from 920 to 1,656 feet bpl is characterized by a relatively large diameter, washed out (up to 41 inches) borehole, low gamma ray activity, a moderate and very stable resistivity, and long to moderate sonic travel

time. The borehole compensated sonic log gives no indication of significant fracturing in this interval. Review of the fluid conductivity, temperature, and flowmeter logs suggests there are productive zones at depths of approximately 1,350 and 1,470 feet bpl. Interpretation of the geophysical logs suggests this interval consists primarily of soft, porous, unfractured limestone. Fluids in this interval have a TDS concentration of less than 10,000 mg/L.

The interval from 1,656 to 1,700 feet bpl is characterized by a gauge hole, higher gamma ray activity than the interval above, a high and unstable resistivity (dual-induction log), and a very short sonic travel time. The fluid conductivity and temperature logs suggest this interval is non-productive with the possible exception of some flow from the base of this interval. Interpretation of the geophysical logs suggests this interval consists of a hard, unfractured dolomite with very little porosity and is confining in nature.

The interval from 1,700 to 1,895 feet bpl is characterized by a large diameter, washed out (up to 22 inches) borehole, low gamma ray activity, a moderate and relatively stable resistivity and a moderate sonic travel time. Review of the fluid conductivity, temperature and flowmeter logs suggests there may be production from a depth of approximately 1,760 feet bpl, but it does not appear to be significant. This interval is interpreted to consist primarily of soft limestone with little fluid production. This interval is located above the base of the lowermost USDW.

The interval from 1,895 to the base of the logged interval at 2,197 feet bpl is characterized by a gauge borehole diameter with the exception of large washout or fractured interval at 2,134 to 2,150 feet bpl, a slightly higher gamma ray activity when compared to the interval above, a very unstable dual induction log with generally decreasing resistivity with depth, and a very short sonic travel time. The flowmeter and fluid conductivity logs suggest there is significant flow coming from depths of approximately 1,905, 2,150 and 2,085 feet bpl. This interval is interpreted to consist of a very hard, dense dolomite with a few discreet fractures from which flow is produced. The trend of decreasing resistivity in this interval on the dual induction log represents the transition from relatively high resistivity brackish pore fluids to strata containing relatively low resistivity saline pore fluids. The log-derived TDS plot provided with the sonic log print suggests the base of the USDW is located at a depth of approximately 1,960 feet bpl. Groundwater above 1,960 feet bpl within this interval is brackish while that below 1,960 feet bpl is saline.

The geophysical log data indicate the base of the USDW is located at a depth of approximately 1,960 feet bpl and is located within an interval of low production with the exception of several discreet production zones located both above and below this zone. The production zones identified through geophysical logging are likely to serve as effective monitoring zones for the deep injection well system

Packer Testing

A total of four straddle packer tests were performed on the DZMW-1 pilot hole. These intervals include 2,132 to 2,165, 2,062 to 2,095, 1,917 to 1,950, and 1,892 to 1,925 feet bpl. The purpose of straddle packer testing was to identify the base of the USDW and evaluate productivity of potential monitoring intervals. Packer testing took place by first inflating the packers at the test interval, developing the test interval, allowing the water level to recover, pumping the test interval until water level had stabilized, then shutting off the pump and allowing water level in the test interval to recover. Water level data was collected during each test. Water samples were also collected at the end of pumping after establishing that water quality of water produced from the test interval had stabilized. Water samples were field analyzed for TDS, chlorides, conductivity, and pH. Samples were also sent to a state certified lab for primary and secondary drinking water standards analyses. A copy of the lab report for the two packer tests is not yet available and will be provided to the Department upon receipt of the laboratory reports.

Table 2 provides a summary of packer test pumping rate and water level drawdown data for packer tests performed on DZMW-1. Figures 2, 3, 4, and 5 provide an interpreted graph of water level drawdown data for the packer tests.

Table 2. Straddle Packer Test Performance Data Summary

Test #	Test Interval (ft. bpl)	Pumping Rate (gpm)	Drawdown (feet)	Specific Capacity (gpm/foot)
1	2,132 - 2,165	85	2.6	32.7
2	2,062 – 2,095	100	1.8	55.6
3	1,917 - 1,950	6.5	154	0.042
4	1,892 - 1,925	113	9.8	11.5

Based on interpretation of the packer test performance data, the packer tests performed below a depth of 2,000 feet bpl were performed on intervals that are confining in nature.

Table 3 provides a summary of field water sample field analytical results for each of the packer tests. Water samples have been submitted to a state certified laboratory for analysis.

Table 3. Straddle Packer Test Water Quality Data Summary

Test #	Test Interval (ft. bpl)	TDS (mg/L)	Chloride (mg/L)	Conductivity (umhos/cm)	pН
1	2,132 - 2,165	29,300	19,500	50,900	7.0
2	2,062 2,095	29,200	18,500	51,200	7.5
3	1,917 - 1,950	8,390	5,010	14,830	7.6
4	1,892 - 1,925	7,300		12,700	7.6

Based on the packer tests water quality summarized above, the base of the lowermost USDW is located between 1,950 and 2,062 feet bpl.

Summary and Recommendation

Interpretation of packer testing data indicates the location of the base of the USDW at between 1,950 and 2,062 feet bpl. Interpretation of geophysical log data confirms the location for the base of the USDW at approximately 1,960 feet bpl. Based on interpretation of the data collected and presented herein, it is the recommendation of McNabb Hydrogeologic Consulting, Inc. to set the 16-inch casing of DZMW-I to a depth of 1,892 feet bpl and establish an upper monitor zone of 1,892 to 1,917 feet bpl. This will result in an upper monitoring zone that is located near the base of the USDW and

within a productive zone to effectively monitor for impacts to the USDW resulting from operation of the deep injection well system.

The interpreted data presented herein also supports a 6-5/8-inch diameter final casing setting depth recommendation of 2,130 feet bpl and the establishment of a lower monitoring zone of 2,130 to 2,150 feet bpl. Packer testing results presented above demonstrate the proposed interval is located below the base of the USDW and in a productive interval. The resulting lower monitor zone will effectively serve as an early warning of impacts related to operation of the deep injection system prior to impacting the USDW. Analysis of the sonic log data indicate the formation at each of the recommended setting depths is mechanically sound and will serve to allow a good seal at the base of the casing string.

Should you have any questions regarding the above recommendations of the data presented herein, please contact me at 561-891-0763.

Sincerely,

McNabb Hydrogeologic Consulting, Inc.

David McNabb, P.G.

cc: Richard Deuerling/FDEP-Tallahassee Larry Payne/FPL

Steve Anderson/SFWMD Barbara Linkiewicz/FPL

Tom Young/FPL Girma Mergia/B&V

Janet Kirwan/FPL Potsy Scoville/FPL Tom Magdanz/WCPP Terry Apple/B&V

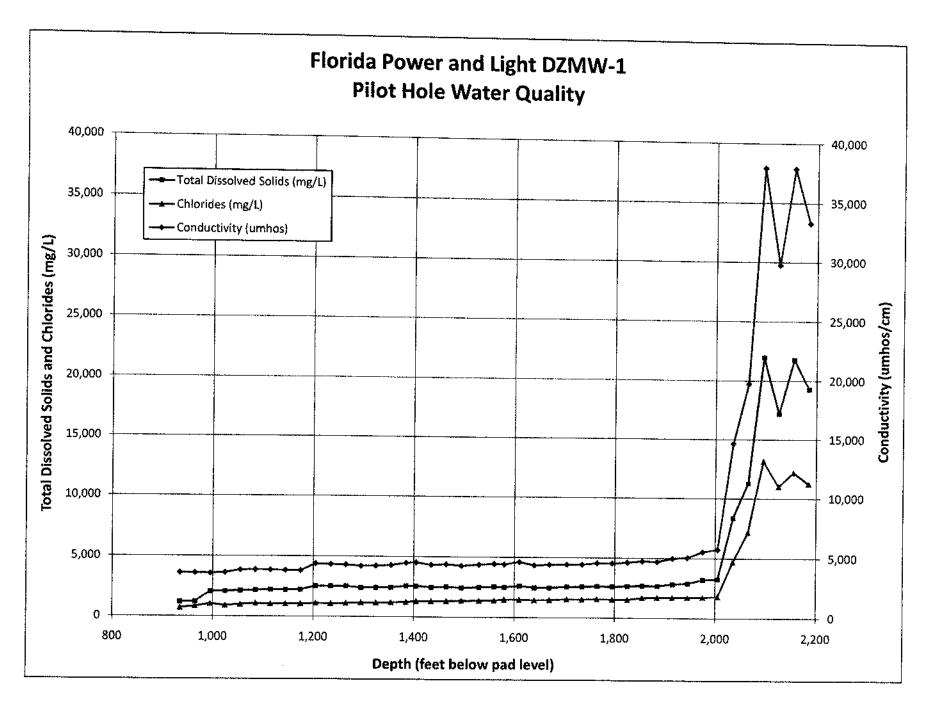


Figure 1. DZMW-1 Pilot Hole Water Quality Data

FPL West County Energy Center DZMW-1 Packer Test #1 (2,132 - 2,165 feet bpl)

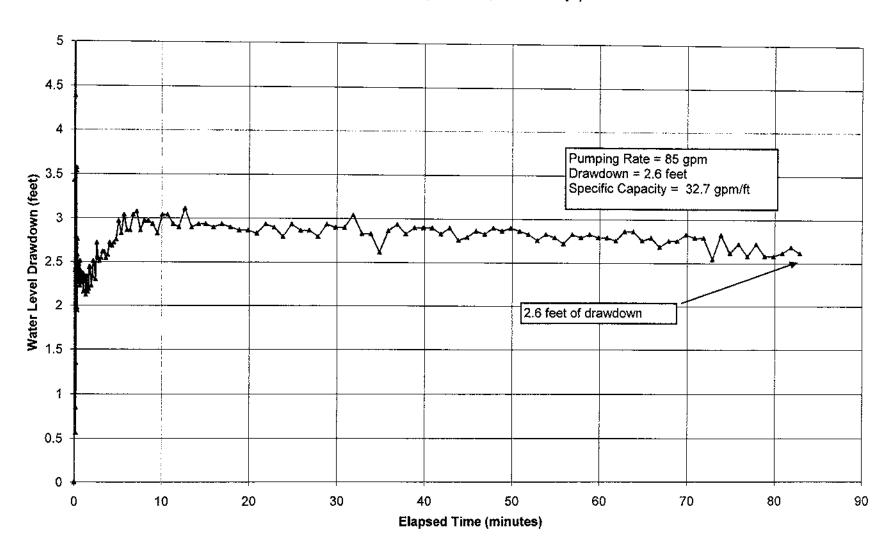


Figure 2. Packer Test #1 Water Level Drawdown Data.

FPL West County Energy Center DZMW-1 Packer Test #2 (2,062 - 2,095 feet bpl)

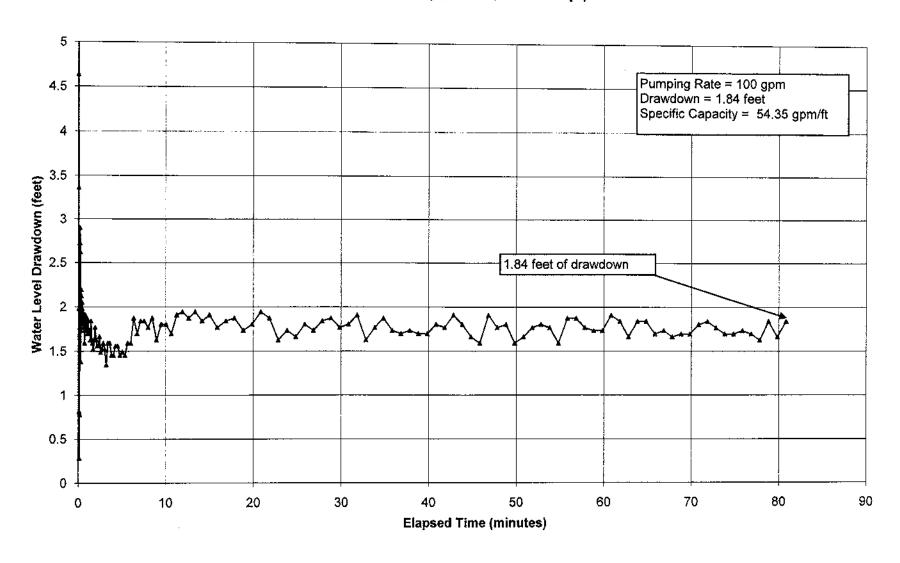


Figure 3. Packer Test #2 Water Level Drawdown Data.

FPL West County Energy Center DZMW-1 Packer Test #3 (1,917 - 1,950 feet bpl)

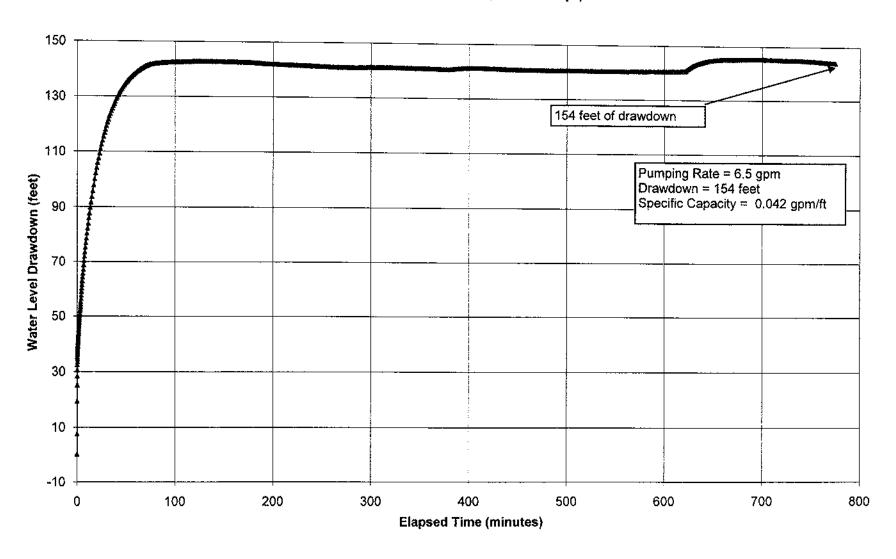


Figure 4. Packer Test #3 Water Level Drawdown Data.

FPL West County Energy Center DZMW-1 Packer Test #4 (1,887 - 1,920 feet bpl)

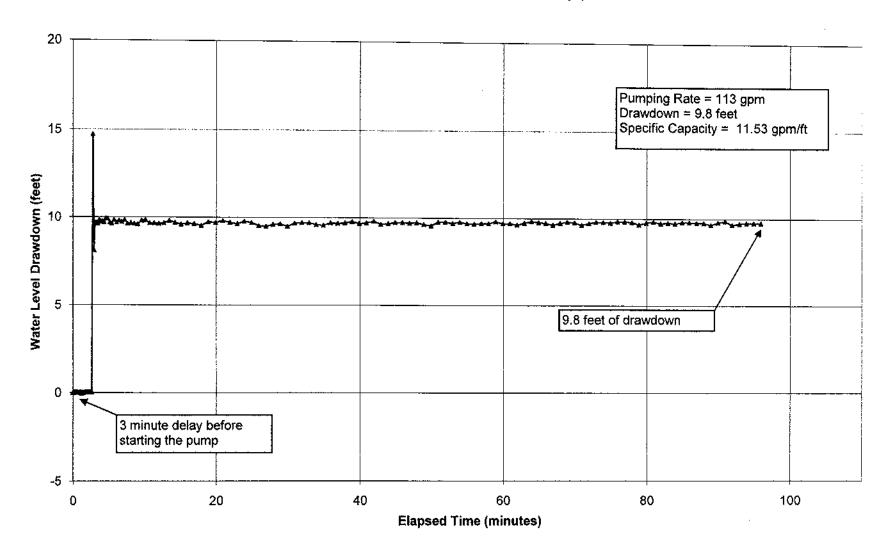


Figure 5. Packer Test #4 Water Level Drawdown Data.

Monitor Zones Background Water Quality Laboratory Reports

SUBMISSION				CH	AIN (OF C	ŪST	'OD'	Y REC	ORD		ī	DUE DAT	E Reg	nested	
SUS 53 Logged in LIMS by CSM assigned	7 9 1 1 Y	lorida :	 □ 1460 W. McN □ 630 Indian Str □ 528 Gooch Ro □ 1112 NW Park 	eet Savanna ad Fort Mea (St., Okeeol	h, GA 314 ide, FL 33 hobee, FL	01 841 34972	Te Tel	1: (912) : 1: (863) : 1: (863) 7	978-6400 238-5050 285-8145 763-3336	Fax: Fax:	(954) 978-223. (912) 234-481 (863) 285-703 (863) 763-154	5 R	USH RES		•	
Report to:			Original-Re	turn w/rep	ort			b File C		Pink-	Sampler Copy		Rush Sur			
(company name) 10	UNGQUIS	Bnos				Repor Addr	rt to ess: 🖊	1546	5 PINE	RIDGE	RU. FT. RU. FT THATCHE	KyEns	R	ŝ 39.	08	
Invoice to: (company name)	4160 2459	· Bec	Purchase Order #			Invoid	ce to	546	- Donie	Pines	ON TH	01.000	Ti.	270	c2	
	KACK & U					Site	(33. /	روس از مدری مید در سدی	= 1200	2 /200	7 - 4	100gas	, 1 -,	<u> </u>		
and/or Number Project Contact: PHO		Pa	ione: 239-56	0-463		Fax:	ion: -	3/20/0	5 /CO .6	2047	Email:	- / · C				\dashv
Sampler Name: (printed)	Boun 1			<u> </u>		Samj Sign:	pler ature		5		<u> </u>		· ····		· • • • • • • • • • • • • • • • • • • •	_
ORDER#	Sample	Date	Time	Matrîx	Bottle	Num	ber of		Αn	alvsis	Require	1			Test	
Lab Control Number Shaded Areus For Laboratory Use Only	ID	Sample	d Sampled	DW SW GW WW S SED HW BIO SEA OIL X AIR	& Pres. Combo Codes	Reco & NI Le Suf	ainers eived ELAC tter fixes A-?	Primare P.	411469512				T E M P	P H	C O N D	C H L O R
65191	UPPER ZO	NE 500	08/2:50	GW		25		¥					30.1	8,1	9020	\neg
65192	LOWER Z	ne 570	08 13.76	GW		źs	8600) 80042	1					29.7	7.7	54,60	
•																
5						2 3 3 3 2 2 3 3 3 2 3 3 3 3 3										
																_
7						\$70 mm										
*						9/2 /	27.3									
10						12 × 74 13.7 %			1							
Special Comments:				· · · · · · · · · · · · · · · · · · ·	<u></u>	Te	otal				SFER SIGNAT	URES				
"I waive NELAC protoc	oi" (sign here) >							1	Relinguishe				. 5/20	2/46	- 16.	10
Deliverables:		QA/QC	Report Needed?	Yes	No (a	dditional c	horge)	1	Received by		100		120K	5	- 16	10
Sample Custody & Fjeld	/ A	<u>Bottle Ty</u> liter ámber		Pr A-ascorbio	eservatives acid P	H3PO4	jä kii	2	Relinquishe	d bý:			_			_
Temp as receivedY Custody Seals? Y	/ N F-	Bacteria bag/bottle 500 ml O-125 n		C-HCL Cu-CuSO-	1	H2SO4 Na2S2O3		2	Received by							
FIELD TIME: Sampling	hrs S4	liter bottle – 4 oz soll jar / S8– :	Boz soil jar	H-HNO3 M-MCAB	h	-Unpreser NaOH		3	Relinquishe	d by:						
Pick-Up	hrs V	250 mi 40 mi vial		Z-zinc ace	tate N	H4-NH4C	L	3	Received by						/	
Misc. Charges	*	-wide mouth -other TED=	Tedlar Air Bag			# 15 % # <u>Ver 17 d</u> e			www.fle	nviro.con	n	COC	Page	01	f	_]

Page 1 of 38 Report Printed: 06/10/08 Submission # 805000531

Order # 65191

Project:

Black & Veatch

Site Location: State Road 80, Loxahatchee, FL

Matrix:

Water

Sample I.D.:

Collected:

Upper Zone 05/20/08

12:50 16:10

Received:

05/20/08

Collected by: Bevin Morris

LABORATORY ANALYSIS REPORT

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Biochemical Oxygen Demand	U	υ	mg/L	2.0	6.0	405.1	05/21 15:32	05/26 13:32	RAV
Coliform-Total (E-Coli)	P(A)					9223B	05/20 16:50	05/21 16:50	RAV
Specific Conductance (Field)(grab)	9020		uS/cm	0.2	0.6	120.1	05/20 12:50	05/20 12:50	ВМ
pH (field)	8.1		units	0.1	0.3	150.1	05/20 12:50	05/20 12:50	ВМ
otal Dissolved Solids (TDS)	4752		mg/L	1.00	3,00	EPA 160.1	05/22 11:37	05/23 11:37	ĎΑ
Chloride	2490		mg/L	15.50	46.50	300.0	05/21 16:54	05/21 16:54	DGK
Fluoride	2.16		mg/L	0,400	1.200	300.0	05/21 16:54	05/21 16:54	DGK
Nitrate (as N)	1.42		mg/L	0.050	0.150	300.0	05/21 16:54	05/21 16:54	DGK
Nitrate + Nitrite (as N)	1.42		mg/L	0.060	0.180	300.0	05/21 16:54	05/21 16:54	DGK
Nitrite (as N)	U	U	mg/L	0,060	0.180	300.0	05/21 16:54	05/21 16:54	DGK
Sulfate	469		mg/L	0.40	1.20	300.0	05/21 16:54	05/21 16:54	DGK
Cyanide, Total	υ	υ	mg/L	0.004	0.012	335.3	05/21 11:00	05/21 15:01	MSG
Nitrogen (Ammonia) as N	0.46		mg/L	0.01	0.03	350.1	05/23 13:01	05/23 13:01	MSG
Nitrogen (Kjeldalıl) as "N"	0.71		mg/L	0.045	0.135	351.2	05/23 12:30	05/27 10:53	MSG
Nitrogen (Total Organic)	0.25		mg/L	0.045	0.135	351/350	05/27 17:53	05/27 17:53	MSG
Phosphorus, Total as "P"	0.045	I	mg/L	0.031	0.093	365.4	05/23 12:30	05/27 10:53	MSG
Chemical Oxygen Demand	56.5		nig/L	4.09	12.27	410.4	05/27 15:59	05/27 15:59	IMA
MBAS Surfactants (LAS Mol.Wt. 340)	0.04		mg/L	0.01	0.03	425.1	05/21 16:21	05/21 16:21	IMA

Florida-Spectrum Environmental Services, inc. 1460 W. McNab Road, Fort Lauderdale, FL 33309

Pembroke Laboratory 528 Gooch Rd. Fort Mead, FL 33841

Big Lake Laboratory 415 B SW Park St. Okeechobee, FL 34972 www.flenviro.com

Spectrum Laboratories 630 Indian St. Savannah, GA 31401

Page 2 of 38 Report Printed: 06/10/08 Submission # 805000531 Order # 65191

Project: Black & Veatch
Site Location: State Road 80, Loxaliatchee, FL
Matrix: Water

12:50 16:10

Sample I.D.: Upper Zone
Collected: 05/20/08 1
Received: 05/20/08 1
Collected by: Bevin Morris

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Color (Lab)	15.0		Pt-Co	1.0	3.0	SM2120B	05/21 09:31	05/21 09:31	DGK
Odor (Lab)	1.0		TON	0.1	0.3	SM2150B	05/21 09:59	05/21 09:59	DGK
Aluminum	0.072		mg/L	0.0017	0.0051	200.7	05/20	05/21 09:34	IMN
Iron	0.400		ing/L	0.0007	0.0021	200.7	05/20	05/21 09:34	IMN
Annibe	1270		mg/L	1.100	3.300	200.7	05/20	05/21 09:59	IMN
Zinc	υ	บ	mg/L	0,0003	0.0009	200.7	05/20	05/21 09:34	IMN
200.8 DW-10 Metals in Drinking Wa	ter 62-550.310	†	ī	Dilution	Factor =	10			
Arsenic	υ	U	ing/L	0.00120	0.00360	4.1.3/200.8	05/21 09:00	05/21 13:22	IMN
Barium	0.043		mg/L	8.0037	0.0111	4.1.3/200.8	05/21 09:00	05/21 13:22	IMN
Cadmium	υ	υ	nig/L	0.00430	0.01290	4.1.3/200.8	05/21 09:00	05/21 13:22	IMN
Chromiun	ប	U	mg/L	0.00080	0.00240	4.1.3/200.8	05/21 09:00	05/21 13:22	IMN
Lead	U	U	ing/L	0.00010	0.00030	4.1.3/200.8	05/21 09:00	05/21 13:22	IMN
Nickel	υ	U	mg/L	0.00300	0.00900	4.1.3/200.8	05/21 09:00	05/21 13:22	IMN
Selenium	υ	U	mg/L	0.00300	0.00900	4.1.3/200,8	05/21 09:00	05/21 13:22	IMN
Antimony	บ	U	mg/L	0.00400	0.01200	4.1.3/200.8	05/21 09:00	05/21 13:22	IMN
Beryllium	υ	υ	ing/L	0.00200	0.00600	4.1.3/200.8	05/21 09:00	05/21 13:22	IMN
Thallium	u	U	mg/L	0.00020	0.00066	4.1.3/200.8	05/21 09:00	05/21 13:22	IMN
Соррег	υ˙.	υ	mg/L	0.00410	0.01230	200.8	05/21	05/21 13:22	IMN

Page 3 of 38 Report Printed: 06/10/08 Submission # 805000531 Order # 65191

Project: Black & Veatch Site Location: State Road 80, Loxahatchee, FL

Matrix:

Water

Sample I.D.: Upper Zone
Collected: 05/20/08 1
Received: 05/20/08 1
Collected by: Bevin Morris

12:50

16:10

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Manganese	0.004		mg/L	0.00080	0.00240	200.8	05/21	05/21 13:22	IMN
Silver	U	ប	mg/L	0.00005	0.00015	200.8	05/21	05/21 13:22	IMN
Mercury	υ	υ	nig/L	0.00002	0.00006	245.1	05/23	05/23 16:00	EN
504.1 EDB, DBCP: 62-559.319(4)(b)	-	·	1	Dilution	Factor =	<u>I</u>			
1,2-Dibromo-3-Chloropropane (DBCP)	υ	υ	ug/L	0.02	0.06	EPA 504.1 BC	D 05/2107:32	05/21 15:55	D\$
Ethylene Dibromide (EDB)	U	υ	ug/L	0.02	0.06	EPA 504.1 EC	05/2107:32	05/21 15:55	DS
508 Pesticides & PCBs: 62-550.310(4)	(b)	†	f	Dilution	Factor =	I			
Hexachlorocyclopentadiene	U	ប	ug/L	0.03	0.09	508	05/22 14:38	05/23 02:59	D\$
Hexachlorobenzene	υ	บ	ug/L	0.026	0.078	508	05/22 14:38	05/23 02:59	DS
v-BHC (Lindane)	บ	ប	ug/L	0.023	0.069	508	05/22 14:38	05/23 02:59	DS
Heptachlor	U	U	ug/L	0.002	0.006	508	05/22 14:38	05/23 02:59	DS
Heptachior Epoxide	υ	υ	ug/L	0.002	0.006	508	05/22 14:38	05/23 02:59	DS
Bodrin	U	ប	ug/L	0.012	0.036	508	05/22 14:38	05/23 02:59	DS
Methoxychłor	บ	υ	ug/L	0.012	0.036	508	05/22 14:38	05/23 02:59	DS
Arochior 1016	υ	U	ug/L	0.10	0.30	508	05/22 14:38	05/23 02:59	DS
Arochlor 1221	υ	υ	ug/L	0.10	0.30	508	05/22 14:38	05/23 02:59	DS
Arochlor 1232	ט	υ	ug/L	0.10	0.30	508	05/22 14:38	05/23 02:59	DS
Arochlor 1242	U	U	ug/L	0.10	0.30	508	05/22 14:38	05/23 02:59	DS

Page 4 of 38 Report Printed: 06/10/08 Submission # 805000531 Order # 65191

Black & Veatch

Project: Black & Veatch
Site Location: State Road 80, Loxahatchee, FL

Matrix: Water

Sample I.D.: Upper Zone Collected: 05/20/08 Received: 05/20/08 12:50 16:10

Received: 05/20/08 1 Collected by: Bevin Morris

PARAMETER	RESULT	QC	UNITS	MDL	FQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Arochior 1248	U	U	ug/L	0,10	0.30	508	05/22 14:38	05/23 82:59	DS
Arachier 1254	U	U	ug/L	0.10	0.30	508	05/22 14:38	05/23 02:59	DS
Arochlor 1260	U	U	ug/L	0.10	0.30	508	05/22 14:38	05/23 02:59	DS
Toxapliene	บ	U	ug/L	0.06	0.18	508	05/22 14:38	05/23 02:59	DS
Chlordane	U	υ	ug/L	0.01	0.03	508	05/22 14:38	05/23 02:59	DS
515.3 Chlorophenoxy Herbicides: 62-59	50.310(4)(b)	 	 	Dilution	Factor =	i.			
Dalapon	ប	บ	ug/L	0.14	0.42	515.3	05/20 12:33	05/29 12:33	AC
2,4-D	U	υ	ug/L	0.19	0.57	515.3	05/20 12:33	05/29 12:33	AC
Pentachlorophenol	U	υ	ug/L	0.02	0.06	515.3	05/20 12:33	05/29 12:33	AC
2,4,5-TP (silvex)	υ	υ	ug/L	0.052	0.156	515.3	05/20 12:33	05/29 12:33	AC
Dinoseb	υ	U	ug/L	0.18	0.54	515.3	05/20 12:33	05/29 12:33	AC
Picloram	υ	U	ug/L	0.14	0.42	515.3	05/20 12:33	05/29 12:33	AC
524.2 Trihalomethanes: 62-550.310(3)	THMs		 	Dilution	Pactor =	1			
Bromodichloromethane	U	Ū	ug/L	0.08	0.24	524.2	05/28 06:22	05/28 06:22	MMD
Dibromochloromethane	υ	υ	ug/L	0.06	0.18	524.2	05/28 06:22	05/28 06:22	MMD
Tribromomethane (Bromoform)	U	U	սք/Լ	0.08	0.24	524.2	05/28 06:22	05/28 06:22	ммр
Trichloromethane (Chloroform)	υ	υ	ug/L	0.07	0.21	524.2	05/28 06:22	05/28 06:22	MMD
TOTAL Tribalomethanes	ប		ug/L			524.2	05/28 06:22	05/28 06:22	MMD
	 	 	 	1	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	†		Τ

Page 5 of 38 Report Printed: 06/10/08 Submission # 805000531 Order # 65191

Project: Black & Veatch
Site Location: State Road 80, Loxahatchee, FL
Matrix: Water

Sample I.D.: Upper Zone Collected: 05/20/08

Received:

05/20/08

12:50 16:10

Collected by: Bevin Morris

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
524.2 Valatile Organics: 62-550.310(4)(n)	1	1	Dilution	Factor =	1			
Vinyl Chloride	U	U	ug/L	0.08	0.24	524.2	05/28 06:22	05/28 06:22	MMD
1,1-Dichloroethylene	U	U	ug/L	0.06	0.18	524.2	05/28 06:22	05/28 06:22	MMD
Dichloromethane (Methylene Chloride)	U	U	ug/L	0.14	0.42	524.2	05/28 06:22	05/28 06:22	MMD
Trans-1,2-Dichloroethylene	U	U	ug/L	0.09	0.27	524.2	05/28 06:22	05/28 06:22	MMD
Cis-1,2-Dichloroethylenc	υ	U	ug/L	0.12	0.36	524.2	05/28 06:22	05/28 06:22	MMD
I,1,1-Trichloroethane	υ	U	ug/L	0.10	0.30	524.2	05/28 06:22	05/28 06:22	MMD
Carbon Tetrachloride	υ	U	ug/L	0.10	0.30	524.2	05/28 66:22	05/28 06:22	MMD
Benzene	U	U	ug/L	0.06	0.18	524.2	05/28 06:22	05/28 06:22	MMD
1,2-Dichloroethane	U	U	ug/L	0.12	0.36	524.2	05/28 06:22	05/28 06:22	MMD
Trichloroethylene	U	ប	ug/L	0.18	0.54	524.2	05/28 06:22	05/28 06:22	MMD
1,2-Dichloropropane	U	U	ug/L	0.06	0.18	524.2	05/28 06:22	05/28 06:22	MMD
Toluene	v	ับ	ug/L	0.06	0.18	524.2	05/28 06:22	05/28 06:22	MMD
1,1,2-Trichloroethane	U	U	ug/L	0.13	0.39	524.2	05/28 06:22	05/28 06:22	MMD
Tetrachkoroethylene	0.63	ļ	ug/L	0.14	0.42	524.2	05/28 06:22	05/28 06:22	MMD
Chlorobenzene	ប	U	ug/L	0.06	0.18	524.2	05/28 06:22	05/28 06:22	MMD
Ethylbenzene	U	U	ug/L	0.07	0.21	524.2	05/28 06:22	05/28 06:22	MMD
Xylenes (Total)	ט	ប	ug/L	0.16	0.48	524.2	05/28 06:22	05/28 06:22	MMD
<u> </u>	ļ	 	 	+	†	ł — — — — — — — — — — — — — — — — — — —	1	T	1

Page 6 of 38 Report Printed: 06/10/08 Submission # 805000531 Order # 65191

Project: Black & Veatch
Site Location: State Road 80, Loxahatchee, FL
Matrix: Water

12:50 16:10

Sample I.D.: Upper Zone
Collected: 05/20/08 1
Received: 05/20/08 1
Collected by: Bevin Morris

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Styrene	υ	υ	ug/L	0.08	0.24	524.2	05/28 06:22	05/28 06:22	MMD
1,4-Dichlorobenzene (para)	U	υ	ug/L	0.09	0.27	524.2	05/28 06:22	05/28 06:22	MMD
1,2-Dichlorobenzene (ortho)	U	υ	ug/L	0.07	0.21	524.2	05/28 06:22	05/28 06:22	MMD
1,2,4-Trichlorobenzene	Ū	U	ug/L	0.12	0.36	524.2	05/28 06:22	05/28 06:22	MMD
525.2 Semivolatile Organics: 62-550.3	(0(4)(b)	;	1	Dilution	Factor =	I			
Di(2-Ethyihexyl)phthalate	U	U	ug/L	0.36	1.08	525.2	05/27 12:39	05/28 12:39	AC
Di(2-Ethylhexyl)adipate	υ	U	ug/L	0.36	1.08	525.2	05/27 12:39	05/28 12:39	AC
Benzo(a)pyrene	U	U	ug/L	0.017	0.051	525.2	05/27 12:39	05/28 12:39	AC
Pentachlorophenol	υ	U	ug/L	0.02	0.06	525.2	05/27 12:39	05/28 12:39	AC
Alachlor	U	U	ug/L	0.20	0.60	525.2	05/27 12:39	05/28 12:39	AC
Atrazine	ប	U	ug/L	0.20	0.60	525.2	05/27 12:39	05/28 12:39	AC
Simazine	U	U	ug/L	0.20	0.60	525.2	05/27 12:39	05/28 12:39	AC
552.2 Haloacetic Acids : 62-550.310(3)	1	-	1	Dilution	Factor =	1		·	
Monochloroacetic Acid	13.1		ug/L	1.81	5.43	552.2	05/27 15:19	05/28 14:48	DS
Dichloroacetic Acid	υ	υ	ug/L	1.48	4.44	552.2	05/27 15:19	05/28 14:48	D\$
Trichloroacetic Acid	U	U	ug/L	1.68	5.04	552.2	05/27 15:19	05/28 14:48	DS
Monobromoacetic Acid	U	υ	ug/L	1.48	4.44	552.2	05/27 15:19	05/28 14:48	DS
Dibromoacetic Acid	U	บ	ug/L	1.86	5.58	552.2	05/27 15:19	05/28 14:48	DS

Page 7 of 38 Report Printed: 06/10/08 Submission # 805000531 Order # 65191

Project:

Black & Veatch

Site Location: State Road 80, Loxaliatchee, FL Matrix: Water

Sample I.D.: Upper Zone Collected: 05/20/08 12:50 Received: 05/20/08 16:10

Collected by: Bevin Morris

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Total Haloacetic Acids (HAA5)	13.1		ug/L			552.2	05/27 15:19	05/28 14:48	DS
608 Chlorinated Posticides & PCBs i	n WATER	ı	1	Dilutio	n Factor =	1			
a-BHC	υ	U	ug/L	0.005	0.015	EPA 608	05/23 10:59	05/23 19:11	DS
b-BHC	υ	U	ug/L	0.005	0.015	EPA 608	05/23 10:59	05/23 19:11	DS
g-BHC (lindane)	U	U	ug/L	0.004	0.012	EPA 608	05/23 10:59	05/23 19:11	DS
d-BHC	υ	υ	ug/L	0.005	0.015	BPA 608	05/23 10:59	05/23 19:11	DS
Heptachlor	U	ប	ug/L	0.005	0.015	EPA 608	05/23 10:59	05/23 19:11	DS
Akirin	υ	υ	ug/L	0.017	0.051	EPA 608	05/23 10:59	05/23 19:11	DS
Heprachlor Epoxide	υ	ŧ	ug/L	0.008	0.024	EPA 608	05/23 10:59	05/23 19:11	DS
Endosulfan I	U	U	ug/L	0.006	0.018	EPA 608	05/23 10:59	05/23 19:11	D\$
Dieldrin	υ	υ	ug/L	0.006	0.018	EPA 608	05/23 10:59	05/23 19:11	DS
4,4-DDE	υ	บ	ug/L	0.39	1.17	EPA 608	05/23 10:59	05/23 19:11	DS
Badrio	υ	υ	ug/L	0.005	0.015	EPA 608	05/23 10:59	05/23 19:11	DS
Endosuffan II	U	ט	ug/L	0.006	0.018	EPA 608	05/23 10:59	05/23 19:11	DS
4,4-DDD	U	U	ug/L	0.60	1.80	EPA 608	05/23 10:59	05/23 19:11	DS
Endrin Aldehyde	υ	U	ug/L	0.010	0.030	EPA 608	05/23 10:59	05/23 19:11	DS
Endosulfan Sulfate	u	U	ug/L	0.007	0.021	EPA 608	05/23 10:59	05/23 19:11	DS
4,4-DDT	U	υ	ug/i_	0.69	2.07	EPA 608	05/23 10:59	05/23 19:11	DS

Page 8 of 38 Report Printed: 06/10/08 Submission # 805000531 Order # 65191

Sample I.D.: Upper Zone Collected: 05/20/08 Received: 05/20/08

12:50 16:10

Received: 05/20/08 1 Collected by: Bevin Morris

Project: Black & Veatch
Site Location: State Road 80, Loxahatchee, FL
Matrix: Water

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Methoxychler	U	ט	ug/L	0.007	0.021	EPA 608	05/23 10:59	05/23 19:11	DS
Arocior 1016	U	U	ug/L	0.27	0.81	EPA 608	05/23 10:59	05/23 19:11	DS
Aroclor 1221	U	υ	ug/L	0.15	0.45	EPA 608	05/23 10:59	05/23 19:11	DS
Aroclor 1232	U	υ	ug/L	0.35	1.05	EPA 608	05/23 10:59	05/23 19:11	DS
Areclor 1242	U	U	41g/L	0.24	0.72	EPA 608	05/23 10:59	05/23 19:11	DS
Aroclor 1248	Ū	U	ug/L	0.09	0.27	EPA 608	05/23 10:59	05/23 19:11	D\$
Arcelor 1254	U	ŧ	ug/L	0.06	0.18	EPA 608	05/23 10:59	05/23 19:11	DS
Arocior 1260	Ū	U	ug/Ł	0.18	0.54	EPA 608	05/23 10:59	05/23 19:11	DS
Toxaphene	Ü	U	ug/L	0.40	1.20	EPA 608	05/23 10:59	05/23 19:11	DS
Chlordane	U	U	ug/L	0.10	0.30	EPA 608	05/23 10:59	05/23 19:11	DS
8260B Volatile Organics in Wat	er by GC/MS	·	1	Dilution	Factor =	1			
Acetone	U	U	ug/L	10.00	30.00	5030/8260B	05/22 04:25	05/22 04:25	MMD
Acrolein	U	υ	ug/L	0.75	2.25	5030/8260B	05/22 04:25	05/22 04:25	MMD
Acrylonitrile	U	υ	ug/L	0.41	1.23	5030/8260B	05/22 04:25	05/22 04:25	MMD
Methyl Ethyl Ketone	U	U	ug/L	0.75	2.25	5030/8260B	05/22 04:25	05/22 04:25	MMD
Dichlorodifluoromethane	U	U	ug/L	0.13	0.39	5030/8260B	05/22 04:25	05/22 04:25	MMD
Cirloromethane	U	υ	ug/L	0.35	1.05	5030/8260B	05/22 04:25	05/22 04:25	MMD
Vinyl Chloride	U	υ	ug/L	0.34	1.02	5030/8260B	05/22 04:25	05/22 04:25	MMD

Page 9 of 38 Report Printed: 06/10/08 Submission # 805000531 Order # 65191

Project: Black & Veatch Site Location: State Road 80, Loxahatchee, FL

Matrix:

Water

Sample 1.D.: Upper Zone Collected: 05/20/08

12:50 16:10

Received:

05/20/08

Collected by: Bevin Morris

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Bromomethane	ט	ប	ug/L	0.41	1.23	5030/8260B	05/22 04:25	05/22 04:25	MMD
Chloroethane	U	Ų	ug/L	0.17	0.51	5030/8260B	05/22 04:25	05/22 04:25	MMD
Trichlorofluoromethane	U	บ	ug/L	0.47	1.41	5030/826013	05/22 04:25	05/22 04:25	MMD
1,1-Dichloroethene	U	ឋ	ug/L	0.52	1.56	5030/8260B	05/22 04:25	05/22 04:25	MMD
Methylene Chloride	υ	U	ug/L	0.99	2.97	5030/8260В	05/22 04:25	05/22 04:25	MMD
Trans-1,2-Dichloroethene	υ	υ	ug/L	0.50	1.50	5030/8260B	05/22 04:25	05/22 04:25	MMD
Methyl-Tort-Butyl Ether	U	U	ug/L	0.50	1.50	5030/8260B	05/22 04:25	05/22 04:25	MMD
1,1-Dichloroethane	U	υ	ug/L	0.53	1.59	5030/8260B	05/22 04:25	05/22 04:25	MMD
2,2-Dichloropropane	υ	บ	ug/L	0.31	0.93	5030/8260B	05/22 04:25	05/22 04:25	MMD
Cis-1,2-Dichloroethene	U	υ	ug/L	0.11	0.33	5030/8260B	05/22 04:25	05/22 04:25	MMD
Chloroform	υ	U	ug/L	0.80	2.40	5030/8260B	05/22 04:25	05/22 04:25	ММО
Bromochloromethane	υ	U	ug/L	0.55	1.65	5030/8260B	05/22 04:25	05/22 04:25	MMD
1,1,1-Trichloroethane	U	บ	ug/L	0.25	0.75	5030/8260B	05/22 04:25	05/22 04:25	MMD
1,1-Dichloropropene	U	υ	ug/L	0.07	0.21	5030/8260B	05/22 04:25	05/22 04:25	MMD
Carbon Tetrachloride	υ	U	ug/L	0.19	0.57	5030/8260B	05/22 04:25	05/22 04:25	MMD
Benzene	υ	U	ug/L	0.09	0.27	5030/8260B	05/22 04:25	05/22 04:25	MMD
1,2-Dichloroethane	U	U	ug/L	0.24	0.72	5030/8260B	05/22 04:25	05/22 04:25	MMD
Trichloroethene	υ	U	ug/L	0.09	0.27	5030/82608	05/22 04:25	05/22 04:25	MMD

Page 10 of 38 Report Printed: 06/10/08 Submission # 805000531 Order # 65191

Project: Black & Veatch
Site Location: State Road 80, Loxahatchee, FL
Matrix: Water

Sample I.D.: Upper Zone Collected: 05/20/08 Received: 05/20/08 12:50 16:10

Collected by: Bevin Morris

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
1,2-Dichloropropane	U	U	ug/L	0.20	0.60	5030/8260B	05/22 04:25	05/22 04:25	MMD
Bromodichioromethane	υ	U	ug/L	0.24	0.72	5030/8260В	05/22 04:25	05/22 04:25	MMD
2-Chleroethylvinyl Ether	υ	U	ug/Ł	1.00	3.00	5030/8260B	05/22 04:25	05/22 04:25	MMD
Dibromomethane	υ	U	ug/L	0.42	1.26	5030/8260B	05/22 04:25	05/22 04:25	MMD
Cis-1,3-Dichloropropene	U	U	ug/L	0.38	1.14	5030/8260B	05/22 04:25	05/22 04:25	MMD
Toluene	U	υ	ug/L	0.14	0.42	5030/8260B	05/22 04:25	05/22 04:25	MMD
Trans-1,3-Dichloropropene	Ū	U	ug/L	0.50	1.50	5030/8260B	05/22 04:25	05/22 04:25	MMD
1,1,2-Trichloroethane	ט	U	ug/L	0.36	1.08	5030/8260B	05/22 04:25	05/22 04:25	MMD
1,3-Dichloropropane	ŭ	υ	ug/L	0.38	1.14	5030/8260B	05/22 04:25	05/22 04:25	MMD
Tetrachloroethene	U	υ	ug/L	0.11	0.33	5030/8260B	05/22 04:25	05/22 04:25	MMD
Dibromochloromethane	IJ	υ	ug/L	0.39	1.17	5030/8260B	05/22 04:25	05/22 04:25	MMD
1,2-Dibromoethane (EDB)	υ	U	ug/I,	0.40	1.20	5030/8260B	05/22 04:25	05/22 04:25	MMD
Bromobenzene	U	IJ	ug/L	0.46	1.38	5030/8260B	05/22 04:25	05/22 04:25	MMD
Chlorobenzene	บ	U	ug/L	0.09	0.27	5030/8260B	05/22 04:25	05/22 04:25	MMD
Ethylbenzene	U	υ	ug/L	0.13	0.39	5030/8260B	05/22 04:25	05/22 04:25	MMD
1,1,1,2-Tetrachloroethane	บ	Ü	ug/L	0.37	1.11	5030/8260B	05/22 04:25	05/22 04:25	MMD
nı & p-Xylene	U	U	ug/L	0.19	0.57	5030/8260B	05/22 04:25	05/22 04:25	MMD
o-Xylene	U	υ	ug/L	0.19	0.57	5030/8260B	05/22 04:25	05/22 04:25	MMD

Page 11 of 38 Report Printed: 06/10/08 Submission # 805000531 Order # 65191

Project:

Black & Veatch

Site Location: State Road 80, Loxabatchee, FL

Matrix:

Water

12:50 16:10

Sample I.D.: Upper Zone Collected: 05/20/08 Received: 05/20/08

Collected by: Bevin Morris

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Styrene	υ	IJ	ug/L	0.17	0.51	5030/8260B	05/22 04:25	05/22 04:25	MMD
Isopropylbenzene	U	U	ug/L	0.50	1.50	S030/8260B	05/22 04:25	05/22 04:25	MMD
Bromoform	บ	U	ug/L	0.38	1.14	5030/8260B	05/22 04:25	05/22 04:25	MMD
1,1,2,2-Tetrachloroethane	U	U	ug/L	0.29	0.87	5030/8260B	05/22 04:25	05/22 04:25	MMD
1,2,3-Trichloropropune	υ	U	ug/L	0.23	0.69	5030/8260B	05/22 04:25	05/22 04:25	ммо
1,3,5-Trimethythenzene	บ	υ	ug/L	0.11	0.33	5030/8260B	05/22 04:25	05/22 04:25	ммр
2-Chlorotoluene	υ	U	ug/L	0.13	0.39	5030/8260B	05/22 04:25	05/22 04:25	MMD
4-Chlarotoluene	ប	υ	ug/L	0.16	0.48	5030/8260B	05/22 04:25	05/22 04:25	MMD
Tert-Butylbenzene	U	υ	ug/L	0.16	0.48	5030/8260B	05/22 04:25	05/22 04:25	MMD
1,2,4-Trimethylbenzene	บ	ប	ug/[.	0.11	0.33	5030/8260B	05/22 04:25	05/22 04:25	MMD
Sec-Butylbenzene	บ	บ	ug/L	0.17	0.51	5030/8260B	05/22 04:25	05/22 04:25	MMD
P-Isopropyltoluene	υ	U	ug/L	0.11	0.33	5030/8260B	05/22 04:25	05/22 04:25	MMD
1,3-Dichlorobenzene	ט	U	ug/L	0.20	0.60	5030/8260B	05/22 04:25	05/22 04:25	MMD
1,4-Dichlorobenzene	ប	υ	ug/L	0.14	0.42	5030/8260B	05/22 04:25	05/22 04:25	MMD
n-Rutylbonzene	υ	U	ug/L	0.21	0.63	5030/8260B	05/22 04:25	05/22 04:25	MMD
n-PropylBenzene	υ	υ	ug/L	0.17	0.51	5030/8260B	05/22 04:25	05/22 04:25	MMD
1,2-Dichlerobenzene	υ	U	ug/L	0.48	1.44	5030/8260B	05/22 04:25	05/22 04:25	MMD
1,2-Dibromo-3-Chloropropane (DBCP)	ប	U	ug/L	0.30	0.90	5030/8260B	05/22 04:25	05/22 04:25	MMD

Page 12 of 38 Report Printed: 06/10/08 Submission # 805000531 Order # 65191

Project: Black & Veatch
Site Location: State Road 80, Loxahatchee, FL
Matrix: Water

12:50

Sample I.D.: Upper Zone Collected: 05/20/08 Received: 05/20/08

Collected by: Bevin Morris

16:10

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
1,2,4-Trichlorobenzene	U	υ	ug/L	0.82	2.46	5030/8260B	05/22 04:25	05/22 04:25	MMD
Hexachlorobutadiene	U	U	ng/L	0.57	1.71	5030/8260B	05/22 04:25	05/22 04:25	MMD
Naphthalene	υ	υ	ng/L	0.015	0.045	5030/8260B	05/22 04:25	05/22 04:25	MMD
1,2,3-Trichlorobenzene	υ	U	ug/L	1.27	3.81	5030/8260B	05/22 04:25	05/22 04:25	MMD
8270C Semivolatile Organics in Wa	ter by GC/MS	- 	1	Dilution	Factor =	1			
N-Nitrosodimethylamine	υ	ū	ug/L	0.50	1.50	3510/8270C	05/23 14:27	05/23 23:07	AC
Phenol	U	U	ug/L	0.38	1.14	3510/8270C	05/23 14:27	05/23 23:07	AC
Bis (2-Chloroethyl) Ether	U	U	ug/L	0.85	2.55	3510/8270C	05/23 14:27	05/23 23:07	ΛC
2-Chlorophenol	U	υ	ug/Ľ	0.45	1.35	3510/8270C	05/23 14:27	05/23 23:07	AC
1,3-Dichlorobenzene	υ	U	ug/L	0.20	0.60	3510/8270C	05/23 14:27	05/23 23:07	AC
1,4-Dichlorobenzene	U	U	ug/L	0.14	0.42	3510/8270C	05/23 14:27	05/23 23:07	AC
Benzyl Aicohol	U	U	ug/L	0.75	2.25	3510/8270C	05/23 14:27	05/23 23:07	AC
1,2-Dichlorobenzene	U	U	ug/L	0.48	1.44	3510/8270C	05/23 14:27	05/23 23:07	AC
Bis (2-Chloroisopropyl) Ether	U	υ	ug/L	0.85	2.55	3510/82 7 0C	05/23 14:27	05/23 23:07	AC
N-Nitrosodi-N-Propylamine	υ	U	ug/L	1.14	3.42	3510/8270C	05/23 14:27	05/23 23:07	AC
Hexachloroethane	U	υ	ug/L	2.31	6.93	3510/8270C	05/23 14:27	05/23 23:07	AC
Nitrobenzene	υ	U	ug/L	0.66	1.98	3510/8270C	05/23 14:27	05/23 23:07	AC
Isophorone	Ų	U	ug/L	1.56	4.68	3510/8270C	05/23 14:27	05/23 23:07	AC

Page 13 of 38 Report Printed: 06/10/08 Submission # 805000531 Order # 65191

Project:

Black & Veatch

Site Location: State Road 80, Loxahatchee, FL

Matrix:

Water

Sample I.D.: Upper Zone Collected: 05/20/08 Received: 05/20/08

12:50

Received:

16:10

Collected by: Bevin Morris

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
2-Nitrophenol	ŭ	U	ug/L	1.09	3.27	3510/8270C	05/23 14:27	05/23 23:07	AC
2,4-Dimethylphenol	U	U	ug/L	0.62	1.86	3510/8270C	05/23 14:27	05/23 23:07	AC
Bis (2-Chloroethoxy)methane	υ	U	ug/L	1.89	5.67	3510/8270C	05/23 14:27	05/23 23:07	AC
2,4-Dichlorophenol	υ	U	ug/L	1.11	3,33	3510/8270C	05/23 14:27	05/23 23:07	AC
1,2,3-Trichlorobenzene	U	υ	ug/L	2.00	6.00	3510/8270C	05/23 14:27	05/23 23:07	AC
1,2,4-Trichlorobenzene	υ	U	ug/L	28.0	2.46	3510/8270C	05/23 14:27	05/23 23:07	AC
Naphthalene	υ	υ	ug/L	0.015	0.045	3510/8270C	05/23 14:27	05/23 23:07	AC
Hexachlorobutadiene	U	u	ug/L	0.57	1.71	3510/8270C	05/23 14:27	05/23 23:07	AC
4-Chloro-3-Methylphenol	U	U	ug/L	0.67	2.01	3510/8270C	05/23 14:27	05/23 23:07	AC
1-Methylnaphthalene	U	U	ug/L	0.36	1.08	3510/8270C	05/23 14:27	05/23 23:07	AC
2-Methylnaphthalene	U	υ	ug/L	0.024	0.072	3510/8270C	05/23 14:27	05/23 23:07	AC
2-Methylphenol (o-cresol)	υ	υ	ug/L	1.0	3.0	3510/8270C	05/23 14:27	05/23 23:07	AC
Hexachlorocyclopentadicue	ប	U	ug/L	0.42	1.26	3510/8270C	05/23 14:27	05/23 23:07	AC
3-MethyiPhenol (m-cresol)	U	U	ug/L	0.84	2.52	3510/8270C	05/23 14:27	05/23 23:07	AC
4-Methylphenol (p-cresol)	Ū	U	ug/L	1,16	3.48	3510/8270C	05/23 14:27	05/23 23:07	AC
2,3,6-Trichtorophenol	U	บ	ขg/L	1.2	3.6	3510/8270C	05/23 14:27	05/23 23:07	AC
2,4,5-Trichlorophenol	υ	U	ug/L	0.81	2.43	3510/8270C	05/23 14:27	05/23 23:07	AC
2,4,6-Trichlorophenol	U	U	ug/L	0.78	2.34	3510/8270C	05/23 14:27	05/23 23:07	AC

Page 14 of 38 Report Printed: 06/10/08 Submission # 805000531 Order # 65191

Sample I.D.: Upper Zone Collected: 05/20/08 Received: 05/20/08

Received: 05/20/08 1 Collected by: Bevin Morris

12:50

16:10

Matrix: Water

Project: Black & Veatch Site Location: State Road 80, Loxahatchee, FL

PARAMETER	RESULT	QC	UNITS	MIDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
2-Chloronaphthalene	υ	U	ug/L	1.16	3.48	3510/8270C	05/23 14:27	05/23 23:07	AC
Dimethyi Phthalate	U	υ	ug/L	3.7	11.1	3510/8270C	05/23 14:27	05/23 23:07	AC
Acenapithylene	υ	บ	ug/L	0.015	0.045	3510/8270C	05/23 14:27	05/23 23:07	AC
2,6-Dinitrotoluene	U	υ	ug/L	0.54	1.62	3510/8270C	05/23 14:27	05/23 23:07	AC
Acenaphthene	υ	Ū	ug/L	0.017	0.051	3510/8270C	05/23 14:27	05/23 23:07	AC
2,4-Dinitrophenol	υ	U	ug/L	1.0	3.0	3510/8270C	05/23 14:27	05/23 23:07	AC
2,4-Dinitrotoluene	U	U	ug/L	1.17	3.51	3510/8270C	05/23 14:27	05/23 23:07	AC
4-Nitrophenol	υ	υ	ug/L	1.0	3.0	3510/8270C	05/23 14:27	05/23 23:07	AC
Diethyl Phthalate	U	U	ug/L	3.4	10.2	3510/8270C	05/23 14:27	05/23 23:07	AC
Fluorene	υ	U	ug/L	0.012	0.036	3510/8270C	05/23 14:27	05/23 23:07	AC
4-Chlorophenyi Phenyl Ether	υ	U	ug/L	0.87	2.61	3510/8270C	05/23 14:27	05/23 23:07	AC
4,6-Dinitro-2-Methylphenol	U	υ	ug/L	1.4	4.2	3510/8270C	05/23 14:27	05/23 23:07	AC
N-Nitrosodiphenylamine	U	υ	ug/L	3.42	10.26	3510/8270C	05/23 14:27	05/23 23:07	AC
4-Bromophenyl Phenyl Ether	ប	υ	ng/L	1.44	4.32	3510/8270C	05/23 14:27	05/23 23:07	АC
Hexachlorobenzene	υ	U	ug/L	0.42	1.26	3510/8270C	05/23 14:27	05/23 23:07	AC
Pentachlorophenol	U	U	ug/L	1.14	3.42	3510/8270C	05/23 14:27	05/23 23:07	AC
Phonanthrene	U	U	ug/L	0.028	0.084	3510/8270C	05/23 14:27	05/23 23:07	AC
Anthracene	U	U	ug/L	0.049	0.147	3510/8270C	05/23 14:27	05/23 23:07	AC
		1	1	1	 		l		ţ

Page 15 of 38 Report Printed: 06/10/08 Submission # 805000531 Order # 65191

Black & Veatch

Project: Black & Veatch Site Location: State Road 80, Loxahatchee, FL

Matrix:

Water

Sample I.D.: Upper Zone Collected: 05/20/08 Received:

12:50 05/20/08 16:10

Collected by: Bevin Morris

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Di-N-Butyl Phthalate	ט	U	ug/L	1,2	3.6	3510/8270C	05/23 14:27	05/23 23:07	AC
Fluoranthene	U	U	ug/L	0.025	0.075	3510/8270C	05/23 14:27	05/23 23:07	AC
Benzidine *	U	U	ug/L	4.0	12.0	3510/8270C	05/23 14:27	05/23 23:07	ΛC
Pyrene	υ	υ	ug/L	0.017	0.051	3510/8270C	05/23 14:27	05/23 23:07	AC
Butyl Benzyl Phthalate	υ	U	ug/L	1.44	4.32	3510/8270C	05/23 14:27	05/23 23:07	AC
Benzo(A)Anthracene	U	U	սց/Լ	0.017	0.051	3510/8270C	05/23 14:27	05/23 23:07	AC
3,3-Dichtorobenzidine	U	υ	ug/L	2.0	6.0	3510/8270C	05/23 14:27	05/23 23:07	AC
Chrysene	υ	U	ug/L	0.75	2.25	3510/8270C	05/23 14:27	05/23 23:07	AC
Bis (2 Ethylhexyl) Phthalate	U	U	ug/L	2.37	7.11	3510/8270C	05/23 14:27	05/23 23:07	AC
Di-N-Octyl Phthalate	U	υ	ug/L	1_4	4.2	3510/8270C	05/23 14:27	05/23 23:07	AC
Benzo(B)Fluoranthene	υ	U	ug/L	0.029	0.087	3510/8270C	05/23 14:27	05/23 23:07	AC
Benzo(K)Fluoranthene	U	υ	ug/L	0.025	0.075	3510/8270C	05/23 14:27	05/23 23:07	AC
Benzo(A)Pyrene	U	U	ug/L	0.017	0.051	3510/8270C	05/23 14:27	05/23 23:07	AC
Indeno(1,2,3-CD)Pyrene	U	υ	ug/L	0.93	2.79	3510/8270C	05/23 14:27	05/23 23:07	AC
Dibenzo(A,H,)Anthracene	บ	Ŭ	ug/L	0.029	0.087	3510/8270C	05/23 14:27	05/23 23:07	AC
Benzo(G,H,1)Perylene	υ	υ	ug/L	0-017	0.051	3510/8270C	05/23 14:27	05/23 23:07	AC
Bis-2-ethylhexyl Adipate	υ	U	ug/L	0.36	1.08	3510/8270C	05/23 14:27	05/23 23:07	AC
Aldrin -	U	u	ug/L	0.017	0.051	3510/8270C	05/23 14:27	05/23 23:07	AC
		 	1	 			1	T	· · · · · ·

Page 16 of 38 Report Printed: 06/10/08 Submission # 805000531 Order # 65191

Project: Black & Veatch
Site Location: State Road 80, Loxahatchee, FL

Matrix:

Water

Sample I.D.: Upper Zone Collected: 05/20/08 Received: 05/20/08

12:50 16:10

Collected by: Bevin Morris

PARAMETER	RESULT	QC	UNITS	MDL	ΓQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
alpha-BHC -	υ	U	ng/L	0.005	0.015	3510/8270C	05/23 14:27	05/23 23:07	AC
beta-BHC ~	U	υ	ug/L	0.005	0.015	3510/8270C	05/23 14:27	05/23 23:07	AC
delta-BHC ~	υ	U	ug/L	0.005	0.015	3510/8270C	05/23 14:27	05/23 23:07	AC
gamma-BHC (Lindane) ~	U	U	ug/L	0.004	0.012	3510/8270C	05/23 14:27	05/23 23:07	AC
Chlordane (Screen)	υ	υ	ug/L	0.10	0.30	3510/8270C	05/23 14:27	05/23 23:07	ΛC
4,4'-DDD ⁻	U	υ	ug/L	0.60	1.80	3510/8270C	05/23 14:27	05/23 23:07	AC
4,4*-DDE *	U	U	ug/L	0.39	1.17	3510/8270C	05/23 14:27	05/23 23:07	AC
4,4'-DDT' -	U	υ	ug/L	0.69	2.07	3510/8270C	05/23 14:27	05/23 23:07	AC
Dieldrin ~	U	U	ug/L	0.006	0.018	3510/8270C	05/23 14:27	05/23 23:07	AC
Endosulfan I	U	U	ug/L	0.006	0.018	3510/8270C	05/23 14:27	05/23 23:07	AC
Endosulfan II ~	Ü	บ	ug/L	0.006	0.018	3510/8270C	05/23 14:27	05/23 23:07	AC
Endosulfan Sulfate ~	υ	U	ug/L	0.007	0.021	3510/8270C	05/23 14:27	05/23 23:07	AC
Endrin -	υ	U	ug/L	0.005	0.015	3510/8270C	05/23 14:27	05/23 23:07	AC
Endrin Aldehyde -	U	U	ug/L	0.010	0.030	3510/8270C	05/23 14:27	05/23 23:07	AC
Heptachlor -	U	υ	ug/L	0.005	0.015	3510/8270C	05/23 14:27	05/23 23:07	AC
Heptachtor Epoxide *	U	υ	ug/L	0.008	0.024	3510/8270C	05/23 14:27	05/23 23:07	AC
Toxaphene -	U	U	ug/L	0.40	1.20	3510/8270C	05/23 14:27	05/23 23:07	AC
PCB-1016 -	U	U	ug/L	0.10	0.30	3510/8270C	05/23 14:27	05/23 23:07	AC

Page 17 of 38 Report Printed: 06/10/08 Submission # 805000531 Order # 65191

Sample I.D.: Upper Zone Collected: 05/20/08 Received: 05/20/08 Project: Black & Veatch
Site Location: State Road 80, Loxahatchee, FL
Matrix: Water 12:50 16:10

Collected by: Bevin Morris

PARAMETER	RESULT	QC	UNITS	MDL	PQI.	метнор	DATE EXT.	DATE ANALY.	ANALYST
							 		
PCB-1221	U	U	ug/L	0.10	0,30	3510/8270C	05/23 14:27	05/23 23:07	AC
PCB-1232	υ	บ	ug/L	0.10	0.30	3510/8270C	05/23 14:27	05/23 23:07	AC
PCB-1242 *	U	U	ug/],	0.10	0.39	3510/8270C	05/23 14:27	05/23 23:07	AC
PCB-1248 ⁻	υ	U	ug/L	0.10	0.30	3510/8270C	05/23 14:27	05/23 23:07	AC
PCB-1254 ~	υ	υ	ug/L	0.10	0.30	3510/8270C	05/23 14:27	05/23 23:07	AC
PCB-1260 ~	U	U	ug/L	0.10	0.30	3510/8270C	05/23 14:27	05/23 23:07	AC
Dioxin (screen)	υ	υ	ug/L	0.03	0.09	3510/8270C	05/23 14:27	05/23 23:07	AC
Azobenzene *	U	U	ug/L	0.75	2.25	3510/8270C	05/23 14:27	05/23 23:07	AC
Methoxychlor -	U	U	ug/L	0.007	0.021	3510/8270C	05/23 14:27	05/23 23:07	AC
Benzoic Acid	U	υ	ug/L	0.84	2.52	3510/8270C	05/23 14:27	05/23 23:07	AC
Aniline	U	U	ug/L	0.50	1.50	3510/8270C	05/23 14:27	05/23 23:07	AC
4-Chloroaniline	U	U	ug/L	0.65	1.95	3510/8270C	05/23 14:27	05/23 23:07	AC
Dibenzofuran	U	υ	ug/L	0.66	1.98	3510/8270C	05/23 14:27	05/23 23:07	AC
2-Nîtroanifine	υ	U	ug/L	0.58	1.74	3510/8270C	05/23 14:27	05/23 23:07	AC
3-Nitroaniline	υ	U	ug/L	0.50	1.50	3510/8270C	05/23 14:27	05/23 23:07	AC
4-Nitroaniline	ប	υ	ug/L	0.84	2.52	3510/8270C	05/23 14:27	05/23 23:07	AC
Carbazole ~	U	U	ug/L	0.68	2.04	3510/8270C	05/23 14:27	05/23 23:07	AC
2.6-Dichlorophenol	υ	ប	ug/L	0.89	2.67	3510/8270C	05/23 14:27	05/23 23:07	AC
		 	1	 				1	· · · · · · · · · · · · · · · · · · ·

Page 18 of 38 Report Printed: 06/10/08 Submission # 805000531 Order # 65191

Project:

Black & Veatch

Site Location: State Road 80, Loxahatchee, FL Matrix: Water

Sample I.D.: Upper Zone Collected: 05/20/08 Received: 05/20/08

12:50 16:10

Collected by: Bevin Morris

PARAMETER	RESULT	QC	UNITS	MDI.	PQL	METHOD	DATE EXT'.	DATE ANALY.	ANALYST
Pyridine	υ	U	ug/L	0.99	2.97	3510/8270C	05/23 14:27	05/23 23:07	AC
2,3,4,6-Tetrachlorophenol	υ	υ	ng/L	1.00	3.00	3510/8270C	05/23 14:27	05/23 23:07	AC
2,3,5,6-Tetrachlorophenol	U	U	ug/L	0.80	2.40	3510/8270C	05/23 14:27	05/23 23:07	AC
"UB 300.1 Chlorite & Bromate (Co	mbo Part B)	1	1	Dilutio	n Factor =	50			
Chlorite	υ	ט	ug/L	30.00	90.00	EPA 300.1	05/23 15:09	05/28 16:38	E83079
Bromate	U	U	ug/L	66.00	198.00	BPA 300.1	05/23 15:09	05/28 16:38	E83079
SUB 531 Carbamate Pesticides: 62-	550.310(4)(b	1	1	Dilution	n Factor =	1			
Carbofuran	U	U	ug/L	0.54	1.62	531.1	05/29 07:00	05/29 19:11	E84809
Oxamyl (vydate)	บ	υ	ug/L	0.55	1.65	531.1	05/29 07:00	05/29 19:11	E84809
Glyphosate	υ	υ	ug/L	6.0	18.0	547	05/27 10:20	05/27 13:32	E84809
Endothall	U	U	mg/L	0.0046	0.0138	548.1	05/27 19:30	06/04 11:05	E84809
SUB 549 Diquat ; 62-550.310(4)(b)	1	1	·	Dilution	Factor =	1			
Diquat	U	IJ	mg/L	0.0003	0.0009	549.2	05/27 17:30	05/29 13:31	E84809
Gross Alpha	7.0 ± 0.9		pCi/L	0.3	0.9	EPA 00-02	05/29	05/29 08:00	E84025
Radium-226	3.6 ± 0.3		pCi/L	0.20	0.60	EPA 903.1	06/03	06/03 14:24	E84025
Radium-228	υ	υ	pCi/L	1.00	3.00	EPA Ra-05	05/31	05/31 09:30	E84025
Strontium-90	υ	υ	pCi/L	1.00	3.00	EPA 905.0	06/05 10:47	06/05 10:47	E84025

Project:

Matrix:

Page 19 of 38 Report Printed: 06/10/08 Submission # 805000531

Order # 65191

Sample I.D.: Collected:

Upper Zone 05/20/08

12:50 16:10

Received:

05/20/08

Collected by: Bevin Morris

Black & Veatch

Water

Site Location: State Road 80, Loxahatchee, FL

LABORATORY ANALYSIS REPORT

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Chtorine Dioxide	υ	QU	mg/L	0.089	0.267	SM4500CLO2	06/02	06/02 15:07	E83079
		I		<u></u>					<u></u>

QC=Qualifier Codes as defined by DEP 62-160

**aless indicated, soil results are reported based on actual (wet) weight basis, alytes not currently NELAC certified denoted by *.

ork performed by outside (subcontract) labs denoted by Cert.ID in Analyst Field. Results relate only to this sample.

Authorized CSM Signature (954) 978-6400 Florida-Spectrum Environmental Services, Inc. Certification # E86006

Page 20 of 38 Report Printed: 06/10/08 Submission # 805000531 Order # 65192

Project: Black & Veatch
Site Location: State Road 80, Loxaliatchee, FL
Matrix: Water

Sample I.D.: Lower Zone Collected: 05/20/08

Received:

05/20/08

13:26 16:10

Collected by: Bevin Morris

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Biochemical Oxygen Demand	υ	u	mg/L	2.0	6.0	405.1	05/21 15:33	05/26 13:33	RAV
Coliform-Total (E-Coli)	P(A)					9223B	05/20 16:50	05/21 16:50	RAV
Specific Conductance (Field)(grab)	54600		uS/cm	0.2	0.6	120.1	05/20 13:26	05/20 13:26	ВМ
nH (field)	7.7		units	0.1	0.3	150.1	05/20 13:26	05/20 13:26	ВМ
Potat Dissolved Solids (TDS)	28620		mg/L	1.00	3.00	EPA 160.1	05/22 11:37	05/23 11:37	DA
Chloride	20400		mg/L	77.50	232.50	300.0	05/21 16:54	05/21 16:54	DGK
Fluoride	2.06		mg/L	0.400	1.200	300.0	05/21 16:54	05/21 16:54	DGK
Nitrate (as N)	t.45		mg/L	0.050	9.150	300.0	05/21 16:54	05/21 16:54	DGK
Nitrate + Nitrite (as N)	1.45		mg/L	0.060	0.180	300.0	05/21 16:54	05/21 16:54	DGK
Nitrite (as N)	υ	υ	mg/L	0.060	0.180	300.0	05/21 16:54	05/21 16:54	DGK
Sulfate	2690		mg/L	10.00	30.00	300.0	05/21 16:54	05/21 16:54	DGK
Cyanide, Total	υ	υ	ing/L	0.004	0.012	335.3	05/21 11:00	05/21 15:01	MSG
Nitrogen (Ammonis) as N	U	U	mg/L	0.01	0.03	350.1	05/23 13:01	05/23 13:01	MSG
Nitrogen (Kjeldahl) as "N"	υ	U	mg/L	0.045	0.135	351.2	05/23 12:30	05/27 10:53	MSG
Nitrogen (Total Organic)	U	U	mg/L	0.045	0.135	351/350	05/27 17:53	05/27 17:53	MSG
Phosphorus, Total as "P"	0.14		ing/L	0.031	0.093	365.4	05/23 12:30	05/27 10:53	MSG
Chemical Oxygen Demand	2178		ing/L	8.18	24.54	410.4	05/27 15:59	05/27 15:59	IMA
MBAS Surfactants (LAS Mot. Wt. 340)	0.01		mg/L	0.01	6.03	425.1	05/21 16:22	05/21 16:22	IMA

Page 21 of 38 Report Printed: 06/10/08 Submission # 805000531 Order # 65192

Project: Black & Veatch Site Location: State Road 80, Loxahatchee, FL

Matrix:

Water

Sample I.D.: Lower Zone Collected: 05/20/08

Received:

13:26 05/20/08 16:10

Collected by: Bevin Morris

PARAMETER	RESULT	QC	UNITS	MDL	FQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Color (Lab)	20.0		PI-Co	1.0	3.0	SM2120B	05/21 09;31	05/21 09:31	DGK
Odor (Lab)	1.0		TON	0.1	0.3	SM2150B	05/21 09:59	05/21 09:59	DGK
Aluminum	0.161		mg/L	0.0017	0.0051	200.7	05/20	05/21 09:39	IMN
Iron	0.203		mg/L	0.0007	0.0021	200.7	05/20	05/21 09:39	IMN
odium	10626		mg/L	1.100	3.300	200.7	05/20	05/21 10:03	IMN
Zinc	U	υ	ing/L	0.0003	0.0009	200.7	05/20	05/21 09:39	IMN
200.8 DW-10 Metals in Dris	aking Water 62-550.310	1	1	Dilution	Factor =	10			
Arsenic	U	U	nig/L	0.00120	0.00360	4.1.3/200.8	05/21 09:00	05/21 13:26	IMN
9arium -	0.204		mg/L	0.0037	0.0111	4.1.3/200.8	05/21 09:00	05/21 13:26	IMN
Cadmium	บ	Ü	mg/L	0.00430	0.01290	4.1.3/200.8	05/21 09:00	05/21 13:26	IMN
Chromium	U	U	mg/L	0.00080	0.00240	4.1.3/200.8	05/21 09:00	05/21 13:26	IMN
Lend	0.016		mg/L	0.00010	0.00030	4.1.3/200.8	05/21 09:00	05/21 13:26	IMN
Nickel	U	U	mg/L	0.00300	B.00900	4.1.3/200.8	05/21 09:00	05/21 13:26	IMN
Selenium	ប	υ	ing/L	0.00300	0.00900	4-1.3/200.8	05/21 09:00	05/21 13:26	IMN
Antimony	Ü	U	mg/L	0.00400	D.01200	4.1.3/200.8	05/21 09:00	05/21 13:26	IMN
Beryllium	U	บ	mg/L	0.00200	0.00600	4.1.3/200.8	05/21 09:00	05/21 13:26	IMN
Thallium	U	Ü	ing/L	0.00020	0.00060	4.1.3/200.8	05/21 09:00	05/21 13:26	IMN
Соррег	U	บ	mg/L	0.00410	0.01230	200.8	05/21	05/21 13:26	IMN

Page 22 of 38 Report Printed: 06/10/08 Submission # 805000531 Order # 65192

Project: Black & Veatch Site Location: State Road 80, Loxahatchee, PL

Matrix:

Water

Sample I.D.: Lower Zone Collected: 05/20/08

13:26 16:10

Received: Collected by: Bevin Morris

05/20/08

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Manganese	0.024		mg/L	0.00080	0.00240	200.8	05/21	05/21 13:26	IMN
Silver	U	υ	mg/L	0.00050	0.00150	200.8	05/21	05/21 13:26	IMN
Mercury	υ	U	mg/L	0,00002	0.00006	245.1	05/23	05/23 16:02	EN
504.1 EDB, DBCP: 62-550.310(4)(b)	1	1)	Diluttor	Factor =	1			
.,2-Dibromo-3-Chloropropane (DBCP)	U	U	ug/L	0.02	0.06	EPA 504.1 EC	D 05/2107:32	05/21 16:28	DS
Ethylene Dibromide (EDB)	v	υ	ug/L	0.02	0.06	EPA 504.1 EC	05/2107:32	05/21 16:28	DS
508 Pesticides & PCBs: 62-550.310(4)	(b)	1	1	Dilution	Factor = 1				
Hexachlorocyclopentadiene	บ	U	ug/L	0.03	0.09	508	05/22 14:38	05/23 03:40	D\$
Hexachlorobenzene	U	ប	ug/L	0.026	0.078	508	05/22 14:38	05/23 03:40	DS
v-BHC (Lindane)	U	U	ug/L	0.023	0.069	508	05/22 14:38	05/23 03:40	DS
Heptachior	υ	υ	ug/L	0.002	0.006	508	05/22 14:38	05/23 03:40	DS
Heptachlor Epoxide	U	U	ug/L	0.002	0.006	508	05/22 14:38	05/23 03:40	DS
Endrin	U	U	ug/L	0.012	0.036	508	05/22 14:38	05/23 03:40	DS
Methoxychlor	υ	U	ug/L	0.012	0.036	508	05/22 14:38	05/23 03:40	DS
Arochlor 1016	υ	U	ug/L	0.10	0.30	508	05/22 14:38	05/23 03:40	D\$
Arochlor 1221	υ	U	ug/L	0.10	0.30	508	05/22 14:38	05/23 03:40	DS
Arochlor 1232	IJ	υ	ug/L	0.10	0.30	508	05/22 14:38	05/23 03:40	DS
Arochior 1242	U	ប	ug/L	0.10	0.30	508	05/22 14:38	05/23 03:40	DS

Page 23 of 38 Report Printed: 06/10/08 Submission # 805000531 Order # 65192

Project: Black & Veatch
Site Location: State Road 80, Loxahatchee, FL
Matrix: Water

Sample I.D.: Lower Zone Collected: 05/20/08 1 Received: 05/20/08 1 Collected by: Bevin Morris 13:26 16:10

PARAMETER	RESULT	QC	UNITS	MDL	PQL	метнор	DATE EXT.	DATE ANALY.	ANALYST
Arochlor 1248	U	υ	ug/L	0.10	0.30	508	05/22 14:38	05/23 03:40	DS
Arochlor 1254	U	υ	ug/L	0.10	0.30	508	05/22 14:38	05/23 03:40	DS
Arochlor 1260	U	บ	ug/L	0.10	0.30	508	05/22 14:38	05/23 03:40	DS
Тохирћене	U	υ	ug/L	0.06	0.18	508	05/22 14:38	05/23 03:40	DS
Chlordane	U	ប	ug/L	0.01	0.03	508	05/22 14:38	05/23 03:40	DS
515.3 Chlorophenoxy Herbicides: 6	2-550.310(4)(b)	1	!	Dilution	Factor =	1 (
Dalapon	U	U	ng/L	0.14	0.42	515.3	05/20 12:33	05/29 12:33	AC
2,4-D	υ	υ	ug/I.	0.19	0.57	515.3	05/20 12:33	05/29 12:33	AC
Pentachlorophenol	υ	n	ug/L	50.02	0.06	515.3	05/20 12:33	05/29 12:33	ΛC
2,4,5-TP (silvex)	U	υ	ug/L	0.052	0.156	515.3	05/20 12:33	05/29 12:33	ΛC
Dinoseb	IJ	U	ug/L	0.18	0.54	515.3	05/20 12:33	05/29 12:33	AC
Picloram	U	U	ug/L	0.14	0.42	515.3	05/20 12:33	05/29 12:33	AC
524.2 Trihalomethanes: 62-550.310((3) THMs	1	1	Dilution	Factor =	<u>1</u>			1
Bromodichtoromethane	U	U	ug/L	0.08	0.24	524.2	05/28 06:53	05/28 06:53	MMD
Dibromochloromethane	U	υ	ug/L	0.06	0.18	524.2	05/28 06:53	05/28 06:53	MMD
Tribromomethane (Bromoform)	U	U	ug/L	0.08	0.24	524.2	05/28 06:53	05/28 06:53	MMD
Trichloromethane (Chloroform)	U	U	ug/L	0.07	0.21	524.2	05/28 06:53	05/28 06:53	MMD
TOTAL Trihalomethanes	U		ug/L			524.2	05/28 06:53	05/28 06:53	MMD

Page 24 of 38 Report Printed: 06/10/08 Submission # 805000531 Order # 65192

Project: Black & Veatch
Site Location: State Road 80, Loxahatchee, FL
Matrix: Water

Sample I.D.: Lower Zone Collected: 05/20/08 Received: 05/20/08

13:26 16:10

Collected by: Bevin Morris

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
524.2 Volatile Organics: 62-550.310(4	()(a)	1	~	Dilutio	n Factor =	 			
Vinyl Chloride	U	U	ug/L	0.08	0.24	524.2	05/28 06:53	05/28 06:53	MMD
1,1-Dichtoroethylene	υ	U	ug/L	0.06	0.18	524.2	05/28 06:53	05/28 06:53	MMD
Dichloromethane (Methylene Chloride)	Ū	U	ug/L	0.14	0.42	524.2	05/28 06:53	05/28 06:53	MMD
rans-1,2-Dichtoroethylene	U	U	ug/L	0.09	0.27	524.2	05/28 06:53	05/28 06:53	MMD
Cis-1,2-Dichloroethylene	U	U	ug/L	0.12	0.36	524.2	05/28 06:53	05/28 06:53	MMD
1,1,1-Trichloroethane	U	บ	ug/L	0.10	0.30	524.2	05/28 06:53	05/28 06:53	MMD
Carbon Tetrachloride	U	U	ug/L	0.10	0.30	524.2	05/28 06:53	05/28 06:53	MMD
Benzene	υ	U	ug/L	0.06	0.18	524.2	05/28 06:53	05/28 06:53	MMD
1,2-Dichloroethane	U	υ	ug/L	0.12	0.36	524.2	05/28 06:53	05/28 06:53	MMD
Trichloroethylene	U	υ	ug/L	0.18	0.54	524.2	05/28 06:53	05/28 06:53	MMD
1,2-Dichloropropane	U	U	ug/L	0.06	0.18	524.2	05/28 06:53	05/28 06:53	MMD
Tokiene	υ	ប	ug/L	0.06	0.18	524.2	05/28 06:53	05/28 06:53	MMD
1,1,2-Trichloroethane	U	U	ug/L	0.13	0.39	524.2	05/28 06:53	05/28 06:53	MMD
Tetrachloroethylene	U	υ	ug/L	0.14	0.42	524.2	05/28 06:53	05/28 06:53	MMD
Chlorobenzene	บ	ប	ug/L	0.06	0.18	524.2	05/28 06:53	05/28 06:53	MMD
Ethylbenzone	U	U	ug/L	0.07	0.21	524.2		05/28 06:53	MMD
Xylenes (Total)	U	บ	ug/L	0.16	0.48			05/28 06:53	MMD

Page 25 of 38 Report Printed: 06/10/08 Submission # 805000531 Order # 65192

Project: Black & Veatch
Site Location: State Road 80, Loxahatchee, PL
Matrix: Water

Sample I.D.: Lower Zone Collected: 05/20/08 Received: 05/20/08

13:26 16:10

Received: 05/20/08 Collected by: Bevin Morris

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Styrene	υ	U	ug/L	0.08	0.24	524.2	05/28 06:53	05/28 06:53	MMD
1,4-Dichlorobenzene (para)	U	υ	ug/L	0.09	0.27	524.2	05/28 06:53	05/28 06:53	MMD
1,2-Dichlorobenzene (ortho)	U	U	ng/L	0.07	0.21	524.2	05/28 06:53	05/28 06:53	MMD
1,2,4-Trichlorobenzene	U	υ	ug/L	0.12	0.36	524.2	05/28 06:53	05/28 06:53	MMD
25.2 Semivolatile Organics: 62-5	50.310(4)(b)	1	···	Dilutio	n Factor =	1			
Di(2-Ethylhexyl)phthalate	υ	ซ	ug/L	0.36	1,08	525.2	05/27 12:43	05/28 12:43	AC
Di(2-Ethylhexyl)adipate	υ	U	ug/L	0.36	1.08	525.2	05/27 12:43	05/28 12:43	AC
Benzo(a)pyrene	U	U	ug/L	0.017	0.051	525.2	05/27 12:43	05/28 12:43	AC
Pentachlorophenol	U	U	ug/L	0.02	0.06	525.2	05/27 12:43	05/28 12:43	AC
Alachlar	υ	U	ug/L	0.20	0.60	525.2	05/27 12:43	05/28 12:43	AC
Atrazine	U	U	ug/L	0.20	0.60	525.2	05/27 12:43	05/28 12:43	AC
Simazine	U	U	ug/L	0.20	0.60	525.2	05/27 12:43	05/28 12:43	AC
552.2 Ifaloacette Acids : 62-550.31	0(3)	 	1	Dilution	Factor = 1				
Monochloroacetic Acid	U	U	ug/L	1.81	5.43	552.2	05/27 15:19	05/28 14:48	DS
Dichloroacetic Acid	U	ti	ug/L	1.48	4.44	552.2	05/27 15:19	05/28 14:48	DS
Trichloroacetic Acid	U	ប	ug/L	1.68	5.04	552.2	05/27 15:19	05/28 14:48	DS
Monobromoacetic Acid	U	U	ug/Ł	1.48	4.44	552.2	05/27 15:19	05/28 14:48	D\$
Dibromoacetic Acid	ย	บ	ug/L	1.86	5.58	552.2	05/27 15:19	05/28 14:48	DS

Page 26 of 38 Report Printed: 06/10/08 Submission # 805000531 Order # 65192

Project: Black & Veatch
Site Location: State Road 80, Loxahatchee, FL
Matrix: Water

Sample I.D.: Lower Zone Collected: 05/20/08 Received: 05/20/08

16:10 Collected by: Bevin Morris

13:26

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Total Haloacetic Acids (HAA5)	U		ug/L			552.2	05/27 15:19	05/28 14:48	DS
608 Chiorinated Pesticides & PCBs	in WATER	1	1	Dilutio	n Factor ==	1 1			
а-ВНС	ប	U	ug/L	0.005	0.015	EPA 608	05/23 10:59	05/23 19:52	DS
ь-внс	υ	υ	ug/L	0,005	0.015	EPA 608	05/23 10:59	05/23 19:52	DS
g-BHC (lindane)	υ	U	ug/L	0.004	0.012	BPA 608	05/23 10:59	05/23 19:52	DS
d-BHC	υ	U	ug/L	0.005	0.015	EPA 608	05/23 10:59	05/23 19:52	DS
Heptachlor	U	U	ug/L	0.005	0.015	EPA 608	05/23 10:59	05/23 19:52	DS
Aldrín	υ	U	ug/L	0.017	0.051	EPA 608	05/23 10:59	05/23 19:52	DŞ
Heptachlor Epoxide	υ	U	ug/L	0.008	0.024	EPA 608	05/23 10:59	05/23 19:52	DS
Endosnifan I	υ	U	ug/L	0.006	0.018	EPA 608	05/23 10:59	05/23 19:52	DS
Dieldrin	υ	u	ug/L	0,006	0.018	EPA 608	05/23 10:59	05/23 19:52	DS
4,4-DDE	ษ	U	ug/L	0.39	1.17	EPA 608	05/23 10:59	05/23 19:52	DŞ
Endrin	U	υ	ug/L	0.005	0.015	EPA 608	05/23 10:59	05/23 19:52	DS
Endosulfan II	U	U	ug/L	0.006	0.018	EPA 608	05/23 10:59	05/23 19:52	DS
4,4-DDD	v	υ	ug/L	0.60	1.80	EPA 608	05/23 10:59	05/23 19:52	DS
Endrin Aldehyde	υ	U	ug/L	0.010	0.030	EPA 608	05/23 10:59	05/23 19:52	DS
Endosulfan Sulfate	U	U	ug/L	0.007	0.021	EPA 608	05/23 10:59	05/23 19:52	DS
4.4-DDT	บ	U	ug/L	0.69	2.07	EPA 608	05/23 10:59	05/23 19:52	DS

Page 27 of 38 Report Printed: 06/10/08 Submission # 805000531 Order # 65192

Project: Black & Veatch Site Location: State Road 80, Loxahatchee, FL

Water Matrix:

Sample I.D.: Lower Zone Collected: 05/20/08

13:26 05/20/08 16:10

Received: Collected by: Bevin Morris

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Methoxychlor	U	υ	ug/L	0.007	0.021	EPA 608	05/23 10:59	05/23 19:52	DS
Aroclor 1016	U	U	ug/L	0.27	0.81	BPA 608	05/23 10:59	05/23 19:52	DS
Aroclor 1221	U	υ	ug/L	0.15	0.45	EPA 608	05/23 10:59	05/23 19:52	DS
Aroclor 1232	υ	U	ug/L	0.35	1.05	BPA 608	05/23 10:59	05/23 19:52	D S
Aroclor 1242	U	U	ug/L	0.24	0.72	EPA 608	05/23 10:59	05/23 19:52	DS
Aroclor 1248	υ	U	ug/L	0.09	0.27	EPA 608	05/23 10:59	05/23 19:52	DS
Areclor 1254	U	U	ug/L	0.06	0.18	EPA 608	05/23 10:59	05/23 19:52	D\$
Aroclor 1260	U	U	ug/L	0.18	0.54	EPA 608	05/23 10:59	05/23 19:52	DS
Toxaphene	U	U	ug/L	0.40	1.20	BPA 608	05/23 10:59	05/23 19:52	DS
Chlordane	υ	U	ug/L	0.10	0.30	EPA 608	05/23 10:59	05/23 19:52	D S
8260B Volatile Organics in Water by	GC/MS		1	Dilution	Factor =	1			
Acctone	Ū	U	ug/L	10.00	30.00	5030/8260B	05/22 04:55	05/22 04:55	MMD
Acrolein	U	ប	ug/L	0.75	2,25	5030/8260B	05/22 04:55	05/22 04:55	MMD
Acrylonitrile	U	U	ug/L	0.41	1.23	5030/82603	05/22 04:55	05/22 04:55	MMD
Methyl Ethyl Ketone	υ	U	ug/L	0.75	2.25	5030/8260B	05/22 04:55	05/22 04:55	MMD
Dichforodiffuoromethane	บ	U	ug/L	0.13	0.39	5030/8260B	05/22 04:55	05/22 04:55	MMD
Chioromethane	υ	υ	ug/L	0.35	1.05	5030/8260B	05/22 04:55	05/22 04:55	MMD
Vinyl Chloride	υ	υ	ug/L	0.34	1.02	5030/8260B	05/22 04:55	05/22 04:55	MMD

Page 28 of 38 Report Printed: 06/10/08 Submission # 805000531 Order # 65192

Black & Veatch

Project: Black & Veatch
Site Location: State Road 80, Loxahatchee, FL

Matrix:

Water

Sample I.D.: Lower Zone Collected: 05/20/08

13:26 05/20/08 16:10

Received: Collected by: Bevin Morris

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Bromomethane	U	υ	ug/L	0.41	1.23	5030/8260В	05/22 04:55	05/22 04:55	MMD
Chloroethane	Ū	U	ug/L	0.17	0.51	5030/8260B	05/22 04:55	05/22 04:55	MMD
Trichlorofluoromethane	υ	υ	ug/L	0.47	1.41	5030/8260B	05/22 04:55	05/22 04:55	MMD
1, i -Dichloroethene	υ	U	ug/L	0.52	1.56	5030/8260B	05/22 04:55	05/22 04:55	MMD
Methylene Chloride	U	U	ug/L	0.99	2.97	5030/8260B	05/22 04:55	05/22 04:55	MMD
Trans-1,2-Dichloroethene	U	U	ug/L	0.50	1.50	5030/8260B	05/22 04:55	05/22 04:55	MMD
Methyl-Tert-Butyl Ether	n	U	ug/L	0.50	1.50	5030/8260Đ	05/22 04:55	05/22 04:55	MMD
1,1-Dichloroethane	U	U	ug/L	0.53	1.59	5030/8260B	05/22 04:55	05/22 04:55	MMD
2,2-Dichloropropane	U	U	ug/L	0.31	0.93	5030/8260B	05/22 04:55	05/22 04:55	MMD
Cis-1,2-Dichloroethene	n	U	ug/L	0.11	0.33	5030/8260B	05/22 04:55	05/22 04:55	MMD
Chloroform	U	υ	tig/L	0.80	2.40	5030/8260B	05/22 04:55	05/22 04:55	MMD
Bromochloromethane	υ	U	ug/L	0.55	1.65	5030/8260B	05/22 04:55	05/22 04:55	MMD
1,1,1-Trichloroethane	U	Ų	ug/L	0.25	0.75	5030/8260B	05/22 04:55	05/22 04:55	MMD
1,1-Dichloropropene	บ	U	ng/L	0.07	0.21	5030/8260B	05/22 04:55	05/22 04:55	MMD
Carbon Tetrachloride	U	U	ug/L	0.19	0.57	5030/8260B	05/22 04:55	05/22 04:55	MMD
Benzene	U	U	ug/L	0.09	0.27	5030/8260B	05/22 04:55	05/22 04:55	MMD
1,2-Dichloroethane	U	U	ug/L	0.24	ò.72	5030/8260B	05/22 04:55	05/22 04:55	MMD
Trichloroethene	U	บ	ug/L	0.09	0.27	5030/8260B	05/22 04:55	05/22 04:55	MMD

Page 29 of 38 Report Printed: 06/10/08 Submission # 805000531 Order # 65192

Project: Black & Veatch Site Location: State Road 80, Loxahatchee, FL

Matrix:

Water

Sample I.D.: Lower Zone Collected: 05/20/08 Received: 05/20/08

13:26 16:10

Collected by: Bevin Morris

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
1,2-Dichleropropane	υ	U	ug/L	0.20	0.60	5030/8260B	05/22 04:55	05/22 04:55	MMD
Bromodichloromethane	U	υ	ug/L	0.24	0.72	5030/8260B	05/22 04:55	05/22 04:55	MMD
2-Chloroethylvinyl Ether	U	U	ug/L	1.00	3.00	5030/8260B	05/22 04:55	05/22 04:55	MMD
Dibromomethane	U	υ	ug/L	0.42	1.26	5030/8260B	05/22 04:55	05/22 04:55	MMD
Cis-1,3-Dichloropropene	U	υ	ug/L	0.38	1.14	5030/8260B	05/22 04:55	05/22 04:55	MMD
Toluene	U	U	ug/L	0.14	0.42	5030/8260B	05/22 04:55	05/22 04:55	MMD
Trans-1,3-Dichtoropropene	υ	υ	ug/L	0.50	1.50	5030/8260B	05/22 04:55	05/22 04:55	MMD
1, i, 2-Trichloroethane	υ	บ	ug/L	0.36	1.08	5030/8260B	05/22 04:55	05/22 04:55	MMD
1,3-Dichloropropane	U	U	ug/L	0.38	1.14	5030/8260B	05/22 04:55	05/22 04:55	MMD
Tetrachloroethene	U	U	ug/L	0.11	0.33	5030/8260B	05/22 04:55	05/22 04:55	MMD
Dibromochloromethane	U	U	ug/L,	0.39	1.17	5030/8260B	05/22 04:55	05/22 04:55	MMD
1,2-Dibromoethane (EDB)	บ	Ū	ug/L	0.40	1.20	5030/8260B	05/22 04:55	05/22 04:55	MMD
Bromobenzene	U	U	ug/L	0.46	1.38	5030/8260B	05/22 04:55	05/22 04:55	MMD
Chlorobenzene	υ	ບ	ug/L	0.09	0.27	5030/8260B	05/22 04:55	05/22 04:55	MMD
Pthylbenzene	U	υ	ug/L	0.13	0.39	5030/8260B	05/22 04:55	05/22 04:55	MMD
I,I,I,2-Tetrachloroethane	U	U	ug/L	0.37	1.11	5030/8260B	05/22 04:55	05/22 04:55	MMD
m & p-Xylene	U	ŭ	ug/L	0.19	0.57	5030/8260B	05/22 04:55	05/22 04:55	MMD
o-Xylene	υ	U	ng/L	0.19	0.57	5030/8260B	05/22 04:55	05/22 04:55	MMD

Page 30 of 38 Report Printed: 06/10/08 Submission # 805000531 Order # 65192

Project: Black & Veatch
Site Location: State Road 80, Loxahatchee, FL
Matrix: Water

Sample I.D.: Lower Zone Collected: 05/20/08 Received: 05/20/08 13:26 16:10

Collected by: Bevin Morris

PARAMETER	RESULT	QC	UNITS	MDI.	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Styrone	ט	υ	ug/L	0.17	0.51	5030/8260B	05/22 04:55	05/22 04:55	MMD
Isopropylbenzene	ū	U	ug/L	0.50	1.50	5030/8 2 60B	05/22 04:55	05/22 04:55	MMD
Bromoform	ប	U	ug/L	0.38	1.14	5030/8260B	05/22 04:55	05/22 04:55	MMD
1,1,2,2-Tetrachloroethane	υ	υ	ug/L	0.29	0.87	5030/8260B	05/22 04:55	05/22 04:55	MMD
1,2,3-Trichloropropane	U	U	ug/L	0.23	0.69	5030/8260B	05/22 04:55	05/22 04:55	MMD
1,3,5-Trimethylbenzene	υ	υ	ug/L	0.11	0.33	5030/8260B	05/22 04:55	05/22 04:55	MMD
2-Chlorotoluene	U	U	ug/L	0,13	0.39	5030/8260B	05/22 04:55	05/22 04:55	MMD
4-Chlorotolitene	U	U	ug/L	0.16	0.48	5030/8260B	05/22 04:55	05/22 04:55	MMD
Tert-Burylbenzene	υ	υ	ug/L	0.16	0.48	5030/8260B	05/22 04:55	05/22 04:55	MMD
1,2,4-Trimethylbenzene	U	U	ug/L	0.11	0.33	5030/8260B	05/22 04:55	05/22 04:55	MMD
Sec-Butylhenzenc	ប	U	ug/L	0.17	0.51	5030/8260B	05/22 04:55	05/22 04:55	MMD
P-Isopropyltoluene	υ	Ū	ug/L	0.11	0.33	5030/8260B	05/22 04:55	05/22 04:55	MMD
1,3-Dichlorobenzene	ט	U	ug/L	0.20	0.60	5030/8260B	05/22 04:55	05/22 04:55	MMD
1,4-Dichlorobenzene	υ	U	ug/L	0.14	0.42	5030/8260B	05/22 04:55	05/22 04:55	ммр
n-Butylbenzene	U	บ	ug/L	0.21	0.63	5030/8260B	05/22 04:55	05/22 04:55	MMD
n-PropylBenzene	υ	U	ug/L	0.17	0.51	5030/8260B	05/22 04:55	05/22 04:55	MMD
1,2-Dichlorobenzene	บ	U	ug/L	0.48	1.44	5030/8260B	05/22 04:55	05/22 04:55	MMD
1,2-Dibronto-3-Chloropropane (DBCP)	υ	U	ug/L	0.30	0.90	5030/8260B	05/22 04:55	05/22 04:55	MMD

Page 31 of 38 Report Printed: 06/10/08 Submission # 805000531 Order # 65192

Project: Black & Veatch
Site Location: State Road 80, Loxahatchee, FL
Matrix: Water

Sample I.D.: Lower Zone Collected: 05/20/08

13:26

05/20/08 16:10

Received: 05/20/08 1 Collected by: Bevin Morris

PARAMETER	RESULT	QC	UNITS	MDL	PQL	метнор	DATE EXT.	DATE ANALY.	ANALYST
1,2,4-Trichlorobenzene	U	U	ug/L	0.82	2.46	5030/8260B	05/22 04:55	05/22 04:55	MMD
Hexachlorobutadiene	U	U	ug/L	0.57	1.71	5030/8260B	05/22 04:55	05/22 04:55	MMD
Naphthalene	บ	U	ug/L	0.015	0.045	5030/8260B	05/22 04:55	05/22 04:55	MMD
1,2,3-Trichlorobenzene	U	υ	ug/L	1.27	3.81	5030/8260B	05/22 04:55	05/22 04:55	MMD
a270C Semivolatile Organics in Water b	y GC/MS	1		Dilution	Factor =	L			
N-Nitrosodimethylamine	υ	υ	ug/L	0.50	1.50	3510/8270C	05/23 14:56	05/24 14:56	AC
Phenoi	ប	U	ug/L	0.38	1.14	3510/8270C	05/23 14:56	05/24 14:56	AC
Bis (2-Chloroethyl) Ether	U	U	ug/L	0.85	2.55	3510/8270C	05/23 14:56	05/24 14:56	AC
2-Chlorophenal	บ	U	ug/L	0.45	1.35	3510/8270C	05/23 14:56	05/24 14:56	AC
1,3-Dichlorobenzene	U	ט	ug/L	0.20	0.60	3510/8270C	05/23 14:56	05/24 14:56	AC
1,4-Dichlorobenzene	υ	u	ug/L	0.14	0.42	3510/8270C	05/23 14:56	05/24 14:56	AC
Benzyl Alcohol	U	U	ug/L	0.75	2.25	3510/8270C	05/23 14:56	05/24 14:56	AC
1,2-Dichlorobenzene	ប	บ	ug/L	0.48	1.44	3510/8270C	05/23 14:56	05/24 14:56	AC
Bis (2-Chloroisopropyl) Ether	υ	บ	ug/L	0.85	2.55	3510/8270C	05/23 14:56	05/24 14:56	AC
N-Nitrosodi-N-Propylamine	ប	U	บg/L	1.14	3.42	3510/8270C	05/23 14:56	05/24 14:56	AC
Hexachloroethaue	U	ប	ug/L	2.31	6.93	3510/8270C	05/23 14:56	05/24 14:56	AC
Nitrobenzene	U	บ	ug/L	0.66	1.98	3510/8270C	05/23 14:56	05/24 14:56	AC
Isophorone	ប	υ	ug/L	1.56	4.68	3510/8270C	05/23 14:56	05/24 14:56	ΛC

Page 32 of 38 Report Printed: 06/10/08 Submission # 805000531 Order # 65192

Project: Black & Veatch
Site Location: State Road 80, Loxahatchee, FL
Matrix: Water

Sample I.D.: Lower Zone Collected: 05/20/08 13:26 05/20/08 16:10

Received:

Collected by: Bevin Morris

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
2-Nitrophenol	U	บ	ug/L	1.09	3.27	3510/8270C	05/23 14:56	05/24 14:56	AC
2,4-Dimethylphenol	บ	υ	ug/L	0.62	1.86	3510/8270C	05/23 14:56	05/24 14:56	AC
Bis (2-Chloroethoxy)methane	υ	U	ug/L	1.89	5.67	3510/8270C	05/23 14:56	05/24 14:56	AC
2,4-Dichlorophenol	U	υ	ug/L	1.11	3.33	3510/8270C	05/23 14:56	05/24 14:56	AC
1,2,3-Trichlorobenzene	Ŋ	υ	ug/L	2.00	6.00	3510/8270C	05/23 14:56	05/24 14:56	AC
1,2,4-Trichlorobenzene	U	υ	ng/L	0,82	2.46	3510/8270C	05/23 14:56	05/24 14:56	AC
Naphthalene	υ	υ	ug/L	0.015	0.045	3510/8270C	05/23 14:56	05/24 14:56	AC
Hexachlorobutadiene	ซ	U	ug/L	0.57	1.71	3510/8270C	05/23 14:56	05/24 14:56	AC
4-Chloro-3-Methylphenol	U	υ	ug/L	0.67	2.01	3510/8270C	05/23 14:56	05/24 14:56	AC
t-Methylnaphthalene	U	U	ug/L	0.36	1.08	3510/8270C	05/23 14:56	05/24 14:56	AC
2-Methylmaphthalene	υ	Ü	ug/L	0.024	0.072	3510/8270C	05/23 14:56	05/24 14:56	AC
2-Methylphenol (o-cresol)	U	U	ug/L	1.0	3.0	3510/8270C	05/23 14:56	05/24 14:56	AC
Hexachlorocyclopentadiene	υ	U	ug/L	0.42	1.26	3510/8270C	05/23 14:56	05/24 14:56	AC
3-MethylPhenoi (m-cresol)	U	บ	ug/L	0.84	2.52	3510/8270C	05/23 14:56	05/24 14:56	AC
4-Methylphenol (p-crosol)	υ	U	ug/L	1.16	3.48	3510/8270C	05/23 14:56	05/24 14:56	AC
2,3,6-Tricklorophenol	U	U	ug/L	1.2	3.6	3510/8270C	05/23 14:56	05/24 14:56	AC
2,4,5-Trichtorophenol	υ	υ	ug/L	0.81	2.43	3510/8270C	05/23 14:56	05/24 14:56	ΛC
2,4,6-Trichlorophenol	U	υ	ug/L	0.78	2.34	3510/8270C	05/23 14:56	05/24 14:56	AC

Page 33 of 38 Report Printed: 06/10/08 Submission # 805000531 Order # 65192

Sample I.D.: Lower Zone Collected: 05/20/08 Received: 05/20/08

Collected by: Bevin Morris

13:26

16:10

Project:

Black & Veatch

Matrix:

Water

Site Location: State Road 80, Loxahatchee, FL

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
2-Chloronaphthalene	U	U	ng/L	1.16	3.48	3510/8270C	05/23 14:56	05/24 14:56	AC
Dimethyl Phthalate	υ	U	ug/L	3.7	11.1	3510/8270C	05/23 14:56	05/24 14:56	AC
Accaaphthylene	U	บ	ug/L	0.015	0.045	3510/8270C	05/23 14:56	05/24 14:56	AC
2,6-Dinitrotaluene	U	บ	ug/L	0.54	1.62	3510/8270C	05/23 14:56	05/24 14:56	AC
Acenaphthene	U	U	ug/L	0.017	0.051	3510/8270C	05/23 14:56	05/24 14:56	AC
2,4-Dinitrophenol	U	υ	ug/L	1.0	3.0	3510/8270C	05/23 14:56	05/24 14:56	AC
2,4-Dinitrotolucue	υ	υ	ug/L	1.17	3.51	3510/8270C	05/23 14:56	05/24 14:56	AC
4-Nitrophenol	U	U	ug/L	1.8	3.0	3510/8270C	05/23 14:56	05/24 14:56	AC
Diethyl Phthalate	U	U	ng/L	3.4	10.2	3510/8270C	05/23 14:56	05/24 14:56	AC
Pluorene	υ	υ	ug/L	0.012	0.036	3510/8270C	05/23 14:56	05/24 14:56	AC
4-Chlorophenyl Phenyl Ether	U	υ	ug/L	0.87	2.61	3510/8270C	05/23 14:56	05/24 14:56	AC
4,6-Dinitro-2-Methylphenal	υ	υ	ug/L	1.4	4.2	3510/8270C	05/23 14:56	05/24 14:56	AC
N-Nitrosodiphenylamine	U	บ	ug/L	3.42	10.26	3510/8270C	05/23 14:56	05/24 14:56	AC
4-Bromophenyl Phenyl Ether	υ	U	ug/L	1.44	4.32	3510/8270C	05/23 14:56	05/24 14:56	AC
Hexachlorobenzene	Ū	υ	ug/L	0.42	1.26	3510/8270C	05/23 14:56	05/24 14:56	AC
Pentachlorophenol	U	U	ug/L	1.14	3.42	3510/8270C	05/23 14:56	05/24 14:56	ΛC
Phonanthrene	ับ	U	ug/L	0.028	0.084	3510/8270C	05/23 14:56	05/24 14:56	AC
Anthracene	U	บ	ug/i.	0.049	0.147	3510/8270C	05/23 14:56	05/24 14:56	AC

Page 34 of 38 Report Printed: 06/10/08 Submission # 805000531 Order # 65192

Project: Black & Veatch
Site Location: State Road 80, Loxahatchee, FL
Matrix: Water

Sample I.D.: Lower Zone Collected: 05/20/08

13:26 05/20/08 Received: 16:10 Collected by: Bevin Morris

PARAMETER	RESULT	QC	UNITS	MDL	JQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Di-N-Butyl Phthalate	U	υ	ug/L	1.2	3.6	3510/8270C	05/23 14:56	05/24 14:56	АC
Fluoranthene	υ	υ	ug/L	0.025	0.075	3510/8270C	05/23 14:56	05/24 14:56	AC
Benzidine ~	U	υ	ng/L	4.0	12.0	3510/8270C	05/23 14:56	05/24 14:56	AC
Ругене	U	U	ug/L	0.017	0.051	3510/8270C	05/23 14:56	05/24 14:56	AC
Butyl Benzyl Phthalate	υ	U	ug/L	1.44	4.32	3510/8270C	05/23 14:56	05/24 14:56	AC
Benzo(A)Anthracene	U	U	ug/L	0.017	0.051	3510/8270C	05/23 14:56	05/24 [4:56	AC
3,3-Dichlorobenzidine	U	U	ug/L	2.0	6.0	3510/8270C	05/23 14:56	05/24 14:56	AC
Chrysone	บ	U	ug/L	0.75	2.25	3510/8270C	05/23 14:56	05/24 14:56	AC
Bis (2 Ethylhexyl) Phthalate	U	U	ug/L	2.37	7.11	3510/8270C	05/23 14:56	05/24 14:56	AC
Di-N-Octyl Phthalate	υ	υ	ug/L	1.4	4.2	3510/8270C	05/23 14:56	05/24 14:56	AC
Benzo(B)Fluoranthene	U	U	ug/L	0.029	0.087	3510/8270C	05/23 14:56	05/24 14:56	AC
Benzo(K)Fluorantheno	υ	บ	ug/L	0.025	0.075	3510/8270C	05/23 14:56	05/24 14:56	AC
Benzo(A)Pyrene	ម	U	ug/L	0.017	0.051	3510/8270C	05/23 14:56	05/24 14:56	AC
Indeno(1,2,3-CD)Pyrene	υ	U	ug/L	0.93	2.79	3510/8270C	05/23 14:56	05/24 14:56	AC
Dibenzo(A,H,)Anthracene	U	υ	ug/L	0.029	0.087	3510/8270C	05/23 14:56	05/24 14:56	AC
Benzo(G,H,I)Perylene	υ	U	ug/L	0.017	0.051	3510/8270C	05/23 14:56	05/24 14:56	AC
Bis-2-ethylhexyl Adipate	U	U	ug/L	0.36	1.08	3510/8270C	05/23 14:56	05/24 14:56	AC
Aldrin ~	U	U	ug/L	8.017	0.051	3510/8270C	05/23 14:56	05/24 14:56	AC

Page 35 of 38 Report Printed: 06/10/08 Submission # 805000531 Order # 65192

Project: Black & Veatch
Site Location: State Road 80, Loxahatchee, FL
Matrix: Water

Sample I.D.: Lower Zone Collected: 05/20/08 Received: 05/20/08

13:26 16:10

Collected by: Bevin Morris

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
alpha-BHC ~	υ	υ	ug/L	0.005	0.015	3510/8270C	05/23 14:56	05/24 14:56	AC
beta-BHC -	υ	υ	ug/L	0.005	0.015	3510/8270C	05/23 14:56	05/24 14:56	AC
deita-BHC	U	บ	ug/L	0.005	0.015	3510/8270C	05/23 14:56	05/24 14:56	AC
gamma-BHC (Lindane)	υ	U	ug/L	0.004	0.012	3510/8270C	05/23 14:56	05/24 14:56	AC
Chlordane (Screen)	U	บ	ug/L	0.10	0.30	3510/8270C	05/23 14:56	05/24 14:56	ΛC
4,4'-DDD -	U	U	ug/L	0.60	1.80	3510/8270C	05/23 14:56	05/24 14:56	AC
4,4'-DDE -	ט	υ	ug/L	0.39	1.17	3510/8270C	05/23 14:56	05/24 14:56	AC
4,4'-DDT -	U	υ	ug/L	0.69	2.07	3510/8270C	05/23 14:56	05/24 14:56	AC
Dieldrin -	υ	U	ug/L	0.006	0.018	3510/8270C	05/23 14:56	05/24 14:56	AC
Endosulfan 1	U	U	ug/L	0.006	0.018	3510/8270C	05/23 14:56	05/24 14:56	AC
Endosulfan II	U	U	ug/L	0.006	0.018	3510/8270C	05/23 14:56	05/24 14:56	AC
Endosulfan Sulfate ~	U	U	ug/L	0.007	0.021	3510/8270C	05/23 14:56	05/24 14:56	AC
Endrin -	U	U	ug/L	0.005	0.015	3510/8270C	05/23 14:56	05/24 14:56	AC
Endrin Aldehyde	U	U	ug/L	0.010	0.030	3510/8270C	05/23 14:56	05/24 14:56	AC
Heptachlor *	U	U	ug/L	0.005	0.015	3519/8270C	05/23 14:56	05/24 14:56	AC
Heptachlor Epoxide	υ	υ	ug/L	0.008	0.024	3510/8270C	05/23 14:56	05/24 14:56	AC
Toxaphene -	U	บ	ug/L	0.40	1.20	3510/8270C	05/23 14:56	05/24 14:56	AC
PCB-1016 '	U	u	ug/L	0,10	0.30	3510/8270C	05/23 14:56	05/24 14:56	AC

Page 36 of 38 Report Printed: 06/10/08 Submission # 805000531 Order # 65192

Project: Black & Veatch Site Location: State Road 80, Loxahatchee, FL

Matrix:

Water

Sample I.D.: Lower Zone Collected: 05/20/08

13:26 05/20/08 16:10

Received: Collected by: Bevin Morris

PARAMISTICR	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
PCB-1221	υ	υ	ug/L	0.10	0.30	3510/8270C	05/23 14:56	05/24 14:56	AC
PCB-1232 ~	υ	U	ug/L	0.10	0.30	3510/8270C	05/23 14:56	05/24 14:56	AC
PCB-1242 -	U	U	ug/L	9.10	0.30	3510/8270C	05/23 14:56	05/24 14:56	AC
PCB-1248 -	U	υ	ug/L	0.10	0.30	3510/8270C	05/23 14:56	05/24 14:56	AC
/CB-1254	υ	U	ng/L	0.10	0.30	3510/8270C	05/23 14:56	05/24 14:56	AC
PCB-1260 -	U	U	ug/L	0.10	0.30	3510/8270C	05/23 14:56	05/24 14:56	AC
Dioxin (screen)	บ	υ	ug/L	0.03	0.09	3510/8270C	05/23 14:56	05/24 14:56	AC
Azobenzene `	Ū	U	ug/L	0.75	2.25	3510/8270C	05/23 14:56	05/24 14:56	AC
Methoxychlor	U	U	ug/L	0.007	0.021	3510/8270C	05/23 14:56	05/24 14:56	AC
Benzoic Acid	υ	υ	ug/L	0.84	2.52	3510/8270C	05/23 14:56	05/24 14:56	AC
Aniline	υ	υ	ug/L	0.50	1.50	3510/8270C	05/23 14:56	05/24 14:56	AC
4-Chloroaniline	U	υ	ug/L	0.65	1.95	3510/8270C	05/23 14:56	05/24 14:56	AC
Dibenzofuran	Ü	U	ug/L	0.66	1.98	3510/8270C	05/23 14:56	05/24 14:56	AC
2-Nitroauiline	U	υ	ug/L	0.58	1.74	3510/8270C	05/23 14:56	05/24 14:56	AC
3-Nitroaniline	υ	U	ug/L	0.50	1.50	3510/8270C	05/23 14:56	05/24 14:56	AC
4-Nitroaviline	U	U	ug/L	0.84	2.52	3510/8270C	05/23 14:56	05/24 14:56	AC
Carbazole `	U	υ	ug/L	0.68	2.04	3510/8270C	05/23 14:56	05/24 14:56	AC
2,6-Dichlorophenol	U	υ	ug/L	0.89	2.67	3510/8270C	05/23 14:56	05/24 14:56	AC

Page 37 of 38 Report Printed: 06/10/08 Submission # 805000531 Order # 65192

Matrix: Water

Project: Black & Veatch
Site Location: State Road 80, Loxahatchee, FL

Sample I.D.: Lower Zone Collected: 05/20/08 Received: 05/20/08 13:26 16:10

Collected by: Bevin Morris

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Pyridine	U	U	ug/L	0.99	2.97	3510/8270C	05/23 14:56	05/24 14:56	AC
2,3,4,6-Tetrachilorophenol	บ	υ	ug/L	1.00	3.00	3510/8270C	05/23 14:56	05/24 14:56	AC
2,3,5,6-Tetrachlorophenol	υ	U	ug/L	0.80	2.40	3510/8270C	05/23 14:56	05/24 14:56	AC
SUB 300.1 Chlorite & Bromate (C	ombo Part B)	1	1	Dilution	Factor =	200			
Chlorite	υ	U	ug/L	1.000	3.000	BPA 300.1	05/23 15:09	05/29 14:28	E83079
Bromate	U	U	ug/L	1.000	3.000	EPA 300.1	05/23 15:09	05/29 14:28	E83079
SUB 531 Carbamate Pesticides: 62	-550.310(4)(b	1		Dilution	Factor =	I I			
Carbofuran	υ	U	ug/L	0.54	1.62	531.1	05/29 07:00	05/29 19:11	E84809
Oxamyi (vydate)	υ	υ	ug/L	0.55	1.65	531.1	05/29 07:00	05/29 19:11	E84809
Glyphosate	U	U	ug/L	6.0	18.0	547	05/27 10:20	05/27 13:32	E84809
Endothali	U	υ	mg/L	0.0046	0.0138	548.1	05/27 19:30	06/64 11:05	E84809
SUB 549 Diquat : 62-550,310(4)(b),	 		Dilution	Factor =	i			
Diquat	ŭ	U	ıng/L	0.0003	0,0009	549.2	05/27 17:30	05/29 13:31	E84809
Gross Alpha	15.5 ± 1.3		pCi/L	0.3	0.9	EPA 00-02	05/29	05/29 08:00	E84025
Radium-226	8.6 ± 0.5		pCi/L	0.20	0.60	EPA 903.1	06/03	06/03 14:24	E84025
Radium-228	U	U	pCI/L	1.00	3,00	EPA Ra-05	05/31	05/31 09:30	E84025
Strontium-90	1.7 ± 1.9	I	pCi/L	1.00	3.00	EPA 905.0	06/05	06/05 10:47	E84025

Page 38 of 38 Report Printed: 06/10/08 Submission # 805000531 Order # 65192

Matrix:

Water

Project: Black & Veatch
Site Location: State Road 80, Loxaliatchee, FL

Sample I.D.: Lower Zone

Collected: Received:

05/20/08

13:26 05/20/08 16:10

Collected by: Bevin Morris

LABORATORY ANALYSIS REPORT

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY,	ANALYST
Chlorine Dioxide	υ	Qu	mg/L	0.089	0.267	SM4500CLO2	06/02	06/02 15:03	E83079

QC—Qualifier Codes as defined by DEP 62-160
Unless indicated, soil results are reported based on actual (wet) weight basis.
Analytes not currently NELAC certified denoted by *.

*k performed by outside (subcontract) labs denoted by Cert.ID in Analyst Field, alts relate only to this sample.

Authorized CSM Signature (954) 978-6400 Florida-Spectrum Environmental Solvices, Inc. Certification # E86006

Attachment Q Pressure Tests Summary Sheets and Pressure Gauge Calibration Sheet

Florida Power & Light Company West County Energy Center Dual-Zone Monitor Well DZMW-1

16-Inch Diameter Casing Pressure Test

Client:

Florida Power & Light Company

Well Name:

DZMW-1

Date:

8-May-08

Observer:

D. McNabb

Base of Casing:

2,132 feet bpl

Packer Depth:

2,109 feet bpl

	Lapse Time	Casing Pressure	
<u>Time</u>	(minutes)	(psi)	Comment
1550	0	151.50	Start Test
1555	5	151.50	
1600	10	152.00	
1605	15	152.50	
1610	20	152.50	
1615	25	152.20	
1620	30	152.50	
1625	35	152.00	~···
1630	40	151.50	·
1635	45	151.50	
1640	50	151.00	
1645	55	150.50	
1650	60	150.00	End Test

Note: 3 gallons of water were released during pressure bleed-off. feet bpl = feet below pad level

Florida Power & Light Company West County Energy Center Dual-Zone Monitor Well DZMW-1 16-Inch Diameter Casing Pressure Test

Client:

Florida Power & Light Company

Well Name:

DZMW-1

Date:

28-Apr-08

Observer:

S. Durall

Base of Casing:

1890 feet below pad level

Packer Depth:

Not applicable - Tested against cement plug at 1,888 feet bpl.

<u>Time</u>	Lapse Time (minutes)	Casing Pressure (psi)	Comments
	*******	741	Committee
1115	0	150.00	Start Test
1120	5	150.00	
1125	10	149.75	
1130	15	149.50	
1135	20	149.25	
1140	25	148.50	
1145	30	148.00	
1150	35	147.25	
1155	40	146.50	
1200	45	145.75	
1205	50	145.25	
1210	55	144.50	
1215	60	143.75	End Test

Note: 11 gallons of water were released during pressure bleed-off.

feet bpl = feet below pad level

Certificate of Calibration # KELC-46429

Kimball Electroni: Laboratory, Inc. Precision Measurement | quipment Specialists

Calibration Performed By:

KIMBALL ELECTRONIC LABORATORY, INC

8081 W 21 LANE

HIALEAH, FL. 33016

Equipment Information KELI I.D.: KEL-125012

FT MYERS

For:

FL 33908

Description: BLUE RIBBON 300 PSI PRESSURE GAUGE

Manufacturer -**BLUE RIBBON** Model Number: 300 PSI

Part Number: N/A

Range: 0-300 PSI

Serial Number: 04105-1

Customer I.D. N/A

Cust. Barcode: N/A

Cust. Location: N/A

Specifications:

+/- .25 % FS

Purchase Order # N/A

YOU410

15465 PINE RIDGE ROAD

YOUNGQUIST BROTHERS, INC.

Cal Date: 21-Apr-08 Cal. Due Date: 21-Apr-09

Cal. Interval: 12 MONTHS

Received: IN TOLERANCE

Calibration Result: PASS

Environmental Conditions: 72 DEG F / 50 % RH

Performed By: ELIU

LAGO

Procedure: SYN54

This is to certify that the above listed instrument meets or exceeds all specifications as stated in the referenced procedure at the points tested (unless otherwise noted). It has been calibrated using measurement standards traceable to the National Fix litute of Standards and Technology (NIST), or to NIST accepted intrinsic standards of measurement, or derived by the ratio type of self-calibration techniques. This calibration is in accordance with Kimball Electonic Laboratory, Inc Quality Assurance Manual. KELI's Quality system is A2LA-Accredited to ISO/IEC-17025 and compliant with MIL-STD-45662A and ANSI/NCSL Z540-1-1994. TURS when applicable are greater than or equal to 4.1; with expanded ertainty used to calculate the Test Uncertainty Ratio, with a coverage factor of K=2 at a confidence level of approximately 95%, unless otherwise noted. number of factors may cause the calibration item to drift out of calibration before the recommended interval has expired

Calibration Remarks

THIS UNIT WAS FOUND TO BE IN TOLERANCE AT THE TIME OF CALIBRATION. PERFORMED ROUTINE CALIBRATION/CERTIFICATION

Standards Used To Calibrate Equipment

Company

LD.

Description

Last Cal.

Cal. Due Date

KIM001

391

EATON UPS 3000BAA PRESSURE INDICATOR

20-Nov-07

30-Nov-09

Signatures:

Certified by:

ELIU

21-Apr-08

4:08:57 PM

Approved By:

JAVIER

BALCEIRO

21-Apr-08

4:09:51 PM

report may not be reproduced, except in full, unless permission for the publication of an approved abstract is obtained in writing from KELI Labs., Inc.

Kimball Electronic Laboratory, Inc. - 8081 W. 21st Lane - Hialeah, FL. 33016 Tel: 305-822-5792 - Toll Free: 800-393-1094 - Fax: 305-362-3125 - Web: www.kelilabs.com

Date of issue: 21-Apr-)3

Page 1 of 1

8081 W. 21 LANE HIALEAH, FL. 33016 PH # 305-822-5792 FAX # 305-362-3125 CONTROL #: KEL-125012

CUSTOMER: YOU410

CALIBRATION DATA FORM

MFR:	BLUE RIBBON	DESCRIPTION:	PRESSURE GAUGE
MODEL#:	300 PSI	TECHNICIAN:	098
SERIAL#;	04105-1	CAL DATE:	21-APR-08
ID#;	N/A	DUE DATE :	21-APR-09

^{*} IF NO "AS LEFT" READING IS SHOWN ON THIS CHART, IT MEANS THE UNIT WAS IN TOLERANCE AND THERE WERE NO ADJUSTMENTS MADE TO IT.

RANGE	NOMINAL	AS FOUND	AS LEFT *	LOW LIMIT	HIGH LIMIT
700 DCI			 		
300 PSI	50	50.2	50.0	49.25	50.75
	100	80.0			
	100	99.8	100.0	99.25	100.75
	150	150.6	150.0	1.70.05	
	130	130.0	150.0	149.25	150.75
	200	200.4	200.0	199.25	200.75
	200	200.4	200.0	199.23	200.75
	300	302.0	300,6	299.25	300.75
			500,0	1 299.21	300.73
		**************************************			<u>-</u>
		,			
				:	
		12.141			
					·
	<u> </u>				
	<u> </u>				
	1				
	<u> </u>				
		· · · · · · · · · · · · · · · · · · ·			
		<u></u>			

Attachment R Video Survey DVDs and Summary Sheets

Florida Power & Light Company West County Energy Center Dual-Zone Monitor Well DZMW-1

16-inch Diameter Final Casing Video Survey Summary

Date: 5-May-08

Observer: David McNabb (MHC)

Depth in feet	below pad level	Observations
From	То	
0	100	Base of drill pipe at 54 feet bpl. Casing joint at 69 feet bpl.
100	200	Casing joints at 109, 149, and 189 feet bpl.
200	300	Casing joints at 229 and 270 feet bpl.
300	400	Casing joints at 310, 350, and 390 feet bpl.
400	500	Casing joints at 440 and 470 feet bpl.
500	600	Casing joints at 511, 551, and 591 feet bpl.
600	700	Casing joints at 631 and 672 feet bpl.
700	800	Casing joints at 712, 752, and 792 feet bpl.
800	900	Casing joints at 832 and 872 feet bpl.
900	1,000	Casing joints at 913, 953, and 993 feet bpl.
1,000	1,100	Casing joints at 1,033 and 1,073 feet bpl,.
1,100	1,200	Casing joints at 1,113, 1,154, and 1,194 feet bpl.
1,200	1,300	Casing joints at 1,234 and 1,274 feet bpl.
1,300	1,400	Casing joints at 1,313, 1,354, and 1,395 feet bpl.
1,400	1,500	Casing joints at 1,435 and 1,475 feet bpl.
1,500	1,600	Casing joints at 1,515, 1,555, and 1,595 feet bpl.
1,600	1,700	Casing joints at 1,635 and 1,676 feet bpl.
1,700	1,800	Casing joints at 1,716, 1,757, and 1,796 feet bpl.
1,800	1,900	Casing joints at 1,836 and 1,877 feet bpl. Base of casing at 1,890 feet bpl.
1,900	2,196	Generally a gauge borehole with occasional cavities. Flow zone observed at 1 feet bpl. Some fracturing and bedding planes present in the interval from 2,07 2,095 feet bpl. Fracturing also noted at 2,139 to 2,141 feet bpl and 2,156 to 2 feet bpl.

Florida Power & Light Company West County Energy Center Dual-Zone Monitor Well DZMW-1

6 5/8 -inch Diameter Final Casing Video Survey Summary

Date: 5/19/2008 Observer: Sally Durall

Fiberglass reinforced pipe (FRP) casing joints observed at 8, 38, 68, and 97 bpl. FRP casing joints observed at 127, 158, and 187 feet bpl. FRP casing joints observed at 217, 246, and 276 feet bpl. FRP casing joints observed at 305, 335, 364, and 394 feet bpl. FRP casing joints observed at 424, 453, and 483 feet bpl. FRP casing joints observed at 512, 542, and 572 feet bpl. FRP casing joints observed at 600, 630, 659, and 689 feet bpl. FRP casing joints observed at 718, 747, and 777 feet bpl. FRP casing joints observed at 807, 837, 866, and 895 feet bpl. FRP casing joints observed at 925, 954, and 984 feet bpl. FRP casing joints observed at 1,013, 1,043, and 1,073 feet bpl. FRP casing joints observed at 1,102, 1,132, 1,161, and 1,191 feet bpl.
FRP casing joints observed at 127, 158, and 187 feet bpl. FRP casing joints observed at 217, 246, and 276 feet bpl. FRP casing joints observed at 305, 335, 364, and 394 feet bpl. FRP casing joints observed at 424, 453, and 483 feet bpl. FRP casing joints observed at 512, 542, and 572 feet bpl. FRP casing joints observed at 600, 630, 659, and 689 feet bpl. FRP casing joints observed at 718, 747, and 777 feet bpl. FRP casing joints observed at 807, 837, 866, and 895 feet bpl. FRP casing joints observed at 925, 954, and 984 feet bpl. FRP casing joints observed at 1,013, 1,043, and 1,073 feet bpl.
FRP casing joints observed at 217, 246, and 276 feet bpl. FRP casing joints observed at 305, 335, 364, and 394 feet bpl. FRP casing joints observed at 424, 453, and 483 feet bpl. FRP casing joints observed at 512, 542, and 572 feet bpl. FRP casing joints observed at 600, 630, 659, and 689 feet bpl. FRP casing joints observed at 718, 747, and 777 feet bpl. FRP casing joints observed at 807, 837, 866, and 895 feet bpl. FRP casing joints observed at 925, 954, and 984 feet bpl. FRP casing joints observed at 1,013, 1,043, and 1,073 feet bpl.
FRP casing joints observed at 217, 246, and 276 feet bpl. FRP casing joints observed at 305, 335, 364, and 394 feet bpl. FRP casing joints observed at 424, 453, and 483 feet bpl. FRP casing joints observed at 512, 542, and 572 feet bpl. FRP casing joints observed at 600, 630, 659, and 689 feet bpl. FRP casing joints observed at 718, 747, and 777 feet bpl. FRP casing joints observed at 807, 837, 866, and 895 feet bpl. FRP casing joints observed at 925, 954, and 984 feet bpl. FRP casing joints observed at 1,013, 1,043, and 1,073 feet bpl.
FRP casing joints observed at 305, 335, 364, and 394 feet bpl. FRP casing joints observed at 424, 453, and 483 feet bpl. FRP casing joints observed at 512, 542, and 572 feet bpl. FRP casing joints observed at 600, 630, 659, and 689 feet bpl. FRP casing joints observed at 718, 747, and 777 feet bpl. FRP casing joints observed at 807, 837, 866, and 895 feet bpl. FRP casing joints observed at 925, 954, and 984 feet bpl. FRP casing joints observed at 1,013, 1,043, and 1,073 feet bpl.
FRP casing joints observed at 424, 453, and 483 feet bpl. FRP casing joints observed at 512, 542, and 572 feet bpl. FRP casing joints observed at 600, 630, 659, and 689 feet bpl. FRP casing joints observed at 718, 747, and 777 feet bpl. FRP casing joints observed at 807, 837, 866, and 895 feet bpl. FRP casing joints observed at 925, 954, and 984 feet bpl. FRP casing joints observed at 1,013, 1,043, and 1,073 feet bpl.
FRP casing joints observed at 512, 542, and 572 feet bpl. FRP casing joints observed at 600, 630, 659, and 689 feet bpl. FRP casing joints observed at 718, 747, and 777 feet bpl. FRP casing joints observed at 807, 837, 866, and 895 feet bpl. FRP casing joints observed at 925, 954, and 984 feet bpl. FRP casing joints observed at 1,013, 1,043, and 1,073 feet bpl.
FRP casing joints observed at 600, 630, 659, and 689 feet bpl. FRP casing joints observed at 718, 747, and 777 feet bpl. FRP casing joints observed at 807, 837, 866, and 895 feet bpl. FRP casing joints observed at 925, 954, and 984 feet bpl. FRP casing joints observed at 1,013, 1,043, and 1,073 feet bpl.
FRP casing joints observed at 718, ,747, and 777 feet bpl. FRP casing joints observed at 807, 837, 866, and 895 feet bpl. FRP casing joints observed at 925, 954, and 984 feet bpl. FRP casing joints observed at 1,013, 1,043, and 1,073 feet bpl.
FRP casing joints observed at 807, 837, 866, and 895 feet bpl. FRP casing joints observed at 925, 954, and 984 feet bpl. FRP casing joints observed at 1,013, 1,043, and 1,073 feet bpl.
FRP casing joints observed at 925, 954, and 984 feet bpl. FRP casing joints observed at 1,013, 1,043, and 1,073 feet bpl.
FRP casing joints observed at 1,013, 1,043, and 1,073 feet bpl.
FRP casing joints observed at 1,220, 1,250 and 1,280 feet bpl.
FRP casing joints observed at 1,309, 1,339, 1,368, and 1,398 feet bpl.
FRP casing joints observed at 1,427, 1,457, and 1,486 feet bpl.
FRP casing joints observed at 1,515, 1,545, and 1,575 feet bpl.
FRP casing joints observed at 1,604, 1,634, 1,663, and 1,693 feet bpl.
FRP casing joints observed at 1,722, 1,752, and 1,781 feet bpl.
FRP casing joints observed at 1,900, 1,929, 1,959 and 1,988 feet bpl.
FRP casing joints observed at 2,106. The base of the casing is located at 2.13
)