

with funding by the

City of Fort Lauderdale

Fiveash Water Treatment Plant Aquifer Storage and Recovery System

Fort Lauderdale Project No. 8880/P-9771

Well Construction Report

September 1998

G-2918 FMU-1

September 24, 1998

Mr. Jose L. Calas, P.E.

UIC Program Manager

Florida Department of Environmental Protection
400 North Congress Avenue

West Palm Beach, Florida 33401

SUBJECT: City of Fort Lauderdale

Fiveash WTP Aquifer Storage and Recovery System

Construction Report and Request to Proceed with Cycle Testing

FDEP Permit No. 0128340-002-UC

Fort Lauderdale Project No. 8880/P-9771

(Montgomery Watson Project No. 1324007.28090280)

Dear Mr. Calas:

On behalf of the City of Fort Lauderdale, Montgomery Watson is pleased to submit four (4) copies of this Report detailing the construction and testing of the new Class V Aquifer Storage and Recovery (ASR) well system at the Fiveash Water Treatment Plant. The Fiveash ASR system has been constructed under a Class V, Group 7 treated water well construction permit, however, the City intends to cycle test and operate the well under a raw water construction permit which is currently pending approval. A Water Quality Criteria Exemption for the constituents of color, iron and odor has been issued by the FDEP for operation of the raw water system.

This report details the methods of construction and testing of the new ASR well and presents interpretations of the collected data. Record drawings of the constructed well accompany this document. Signed and sealed as-built drawings for the remainder of the system will be forwarded to the Department according to an approved variance dated September 9, 1998.

This document is accompanied by a draft Operations and Maintenance manual, and is respectfully submitted in support of a request to proceed with operational (cycle) testing of the system using raw water. We are confident that the information contained within these documents will be sufficient for the Department to provide the City with approval for cycle testing.

Mr. Jose Calas, P.E. September 24, 1998 Page 2

Please review these reports and provide your comments regarding the request to proceed with cycle testing at your earliest convenience. If you have any questions or comments, please do not hesitate to contact us.

Very truly yours,

MONTGOMERY WATSON

Robert T. Verrastro, P.G. Senior Hydrogeologist

Anne Murray, P.G.

Project Manager

cc: TAC Members

Maurice Tobon, City of Fort Lauderdale Wayne Welch, Montgomery Watson Mr. Steven D. Anderson South Florida Water Management District 3301 Gun Club Road

West Palm Beach FL 33406

Phone Number: 561/686-8800 ext. 6853

Fax Number: 561/687-6436

Mr. Jose L. Calas, P.E. Florida Dept. of Environmental Protection Underground Injection Control Division 400 North Congress Avenue West Palm Beach FL 33401 Phone Number: 561/681-6696 Fax Number: 561/681-6760

Mr. Len Fishkin
Florida Dept. of Environmental Protection
Underground Injection Control Division
400 North Congress Avenue
West Palm Beach FL 33401
Phone Number: 561/681-6600
Fax Number: 561/681-6760

Mr. Garth Hinckle, P.E.
Broward County Department of Natural
Resource Protection
218 S.W. 1st Avenue
Ft. Lauderdale FL 33301
Phone Number: 954/519-1450
Fax Number: 954/519-1496

Mr. Scott Hoskins Compliance Enforcement USEPA, Region IV Atlanta Federal Center 100 Alabama Street, S.W. Atlanta GA 30303 Phone Number: 404/562-9450

Ms. Nancy Marsh
Permitting
USEPA, Region IV Atlanta Federal Center
100 Alabama Street, S.W.
Atlanta GA 30303
Phone Number: 404/562-8450

Phone Number: 404/562-9450 Fax Number: 404/562-9439

Fax Number: 404/562-9439

Ms. Cathy McCarty
FDEP, Bureau of Water Facility
Mail Stop 3530
2600 Blair Stone Road
Tallahassee FL 32399
Phone Number: 850/921-9412
Fax Number: 850/414-9031

Mr. Phong Nguyen Broward County Public Health Unit 2421 S.W. 6th Avenue Ft. Lauderdale FL 33315 Phone Number: 954/467-4846 Fax Number: 954/467-4898

Mr. Ron Reese U.S. Geological Survey Water Resources Division 9100 N.W. 36th Street - Suite 107 Miami FL 33178 Phone Number: 305/594-0655 Fax Number: 305/526-2881

Acknowledgments

The successful completion of this project was the result of the hard work and cooperation between many individuals and organizations involved in the design, permitting and construction of the system. Those who played significant roles in this achievement were:

The City of Fort Lauderdale

Gregory Kisela Frank Coulter Craig Canning Maurice Tobon

Department of Public Health

Pepe Menendez Tom Mueller Phong Nguyen

Florida Department of Environmental Protection

Bill Cocke Len Fishkin Al Mueller, Jr.

Montgomery Watson Americas, Inc.

Mark Abbott
Becky Fierle
Geoff Hart
Neil Johnson
Agustin Maristany
Randy Skinner
Wayne Welch

South Florida Water Management District

Steven Anderson Lou Devillon Jim Karas Jeff Rosenfeld

Youngquist Brothers, Inc.

Jimmy Brantley Ed McCullers Bill Musselwhite

City of Fort Lauderdale

Fiveash Water Treatment Plant Aquifer Storage and Recovery System Fort Lauderdale Project No. 8880/ P-9771

Well Construction Report

Submitted by
Montgomery Watson Americas, Inc.
490 Sawgrass Corporate Parkway, Suite 300
Sunrise, FL 33325

Geoff Hart, P.E.

License Number

Date

1095

Anne M. Murkay, P.G.

License Number

Date

City of Fort Lauderdale

Fiveash Water Treatment Plant Aquifer Storage and Recovery System Fort Lauderdale Project No. 8880/P-9771

Well Construction Report

Submitted by
Montgomery Watson Americas, Inc.
490 Sawgrass Corporate Parkway, Suite 300
Sunrise, Florida 33325

September 1998

Table of Contents

EXECUTIVE SUMMARY

SECTION 1 - INTRODUCTION	SE	CTI	ON	1	- IN	ITR	ODI	UC"	LION
--------------------------	----	-----	----	---	------	-----	-----	-----	------

Purpose Project Background	
SECTION 2 - SITE HYDROGEOLOGY	
Regional Geologic Setting	2-1
Local Geology	
Plio-Pleistocene Series	2-1
Miocene Series	
Oligocene Series	
Eocene Series	
Hydrogeology Description	
Surficial Aquifer System	
Intermediate Confining Unit	2-2
Upper Floridan Aquifer	
Site Development	3-1
ASR-1 Drilling Program	
Lithologic Determination	
Geophysical Logs	
Drilling Methods	
Casings	
Cementing	
ASR-1 Construction Sequence	
Hydrostatic Pressure Test	
Open Hole Drilling	3-6
Pilot Hole Plug-Back	3-7
Video Survey	3-7
Turbine Pump Development	3-7
Step-Rate Pumping Test	3-8
Constant Rate Pumping Test	3-8
Surface Completion	3-8
FMW-1 Drilling Program	3-8
Lithologic Determination	3-9
Geophysical Logs	3-9

SECTION 3- SYSTEM CONSTRUCTION CONTINUED

Drilling Methods	3-9
Casing	3-9
Cementing	
Construction Sequence	3-10
Hydrostatic Pressure Testing	
Video Survey	
Development	
Step-Rate Pumping Test	3-11
Constant-Rate Pumping Test	3-11
Final Water Sample	
Surface Completion	
SMW-1 Drilling Program	
Lithologic Determination	
Drilling Methods	3-12
Casings	3-13
Cementing	3-13
Construction Sequence	3-13
Introduction	
Pilot Hole Testing	
Core Analyses	
Water Samples During Drilling	
Geophysical Logging Interpretation Final Casing Seat Justification – ASR-1	
Final Casing Hydrostatic Pressure Test – ASR-1	
Storage Zone Depth Selection – ASR-1	
Packer Testing – FMW-1	
Monitoring Zone Depth Selection – FMW-1	
Hydrostatic Pressure Test – FMW-1	
Pumping Development and Test Analyses	
Well Development Testing	
Step-Rate Test – ASR-1	
Constant Rate Pumping Test – ASR-1	4-6
Step-Rate Pumping Test – FMW-1	4-7
Constant Rate Pumping Test – FMW-1	4-7
Water Quality	
Final Pumping Test Water Analysis	4-8
Injectate Water Quality	4-9

SECTION 5 - CYCLE TESTING PLAN

SECTION 6 - CONCLUSIONS AND RECOMMENDATIONS

APPENDIX - A	CONSTRUCTION PERMITS AND WATER QUALITY CRITERIA EXEMPTION
APPENDIX - B	LITHOLOGIC DESCRIPTIONS
APPENDIX - C	GEOPHYSICAL LOGS
APPENDIX - D	DEVIATION SURVEY
APPENDIX - E	CASING MILL CERTIFICATES
APPENDIX - F	CEMENT RECORDS
APPENDIX - G	CORE DESCRIPTIONS AND ANALYSES
APPENDIX - H	PRESSURE TEST DATA
APPENDIX - I	VIDEO SURVEY TAPE AND DESCRIPTION
APPENDIX J	WATER LEVEL DATA FROM PUMPING TESTS
APPENDIX - K	WATER QUALITY ANALYSES
APPENDIX - L	CERTIFICATION OF COMPLETION
APPENDIX - M	INJECTATE WATER QUALITY ANALYSIS
APPENDIX - N	CYCLE TESTING REPORTS
	(To be added during system testing)

LIST OF FIGURES

Figu Numl		Following Page
1-1	Project Location Map	1-1
1-2	Vicinity Map	1-1
2-1	Lithologic Summary	2-1
3-1	Site Plan	3-1
3-2	ASR-1 AS-Built Diagram	3-3
3-3	Wellhead Piping Plan	·3-8
3-4	FMW-1 As-Built Diagram	3-8
3-5	SMW-1 As-Built Diagram	3-12
4-1	ASR-1 Testing Summary	4-1
4-2	FMW-1 and ASR-1 Testing Comparison	4-1
4-3	Geophysical Log Summary	4-2

LIST OF TABLES

Table Numb		Page	
3-1	Construction and Testing Chronology	3-1	
4-1	Core Analysis Summary	4-1	
4-2	Water Quality During Drilling of ASR-1	4-2	
4-3	Packer Pumping Tests Conducted on FMW-1	4-5	
4-4	FMW-1 Packer Pumping Test Data Summary	4-5	
4-5	Step-Rate Pumping Test Summary ASR-1	4-6	
4-6	Step-Rate Pumping Test Summary FMW-1	4-7	
4-7	Final Construction Water Quality Summary	4-8	
4-8	Prospect Wellfield Raw Water Quality Summary	4-9	
5-1	Cycle Testing Plan	5-1	
5-2	Cycle Testing Water Quality Sampling	5-3	

Executive Summary

Executive Summary

This report documents the drilling and testing of ASR-1, a new Class V, Group 7 Aquifer Storage and Recovery Well for the City of Fort Lauderdale. The report has been submitted in support of a request to proceed with operational testing of the system. The well is located at the Fiveash Water Treatment Plant, on N.W. 9 Avenue, within the City limits. This report documents the results of the construction and testing of the well system, which includes new Floridan aquifer and surficial aquifer monitoring wells. Construction took place between November 1997 and June 1998. The purpose of the ASR system is to store raw groundwater from the Prospect Wellfield during times of excess and recover this water during peak, seasonal or emergency demands. The system was constructed under a Class V, Group 7 treated water well construction permit, however, a raw water construction permit for the system is anticipated shortly from the FDEP. The raw water construction permit is supported by a Water Quality Criteria Exemption dated July 27, 1998 by the FDEP for the constituents of color, iron and odor.

The information collected in this report includes lithologic logs, well construction details, geophysical logs, core data, pumping test analyses and water quality data. These data provide reasonable assurance that the system will perform as designed, and that the well has mechanical integrity.

REPORT CONCLUSIONS

The information collected during this project demonstrates the successful construction of the well system, which is now ready for testing. The following conclusions are derived from the information presented and interpreted in this report:

- The ASR well (ASR-1) was constructed with 16-inch (outer) diameter steel casing to a total depth of 1,200 feet below land surface (bls).
- The open hole of the ASR well extends from 1,055 feet bls to 1,200 feet bls.
- A Floridan aquifer monitor well (FMW-1) also was constructed at the site, consisting of 6-inch diameter steel casing installed to a depth of 1,055 feet bls; an open hole extended to 1,175 feet bls.

- A surfical aquifer monitoring well (SMW-1) was also constructed at the site, consisting of 2-inch diameter PVC casing set to 180 feet bls and a gravel packed screen set from 180 feet bls to 200 feet bls.
- The well casings have internal mechanical integrity, as determined from hydrostatic pressure tests and video surveys.
- The data demonstrate the existence of a storage zone with a transmissivity of approximately 146,000 gallons per day per foot.
- The ASR well yields water at a rate of 2,100 gallons per minute (equivalent to 3 mgd) with a pumping water level of approximately 90 feet bls. The static (non-pumping) water-level at the well as approximately 31 feet above land surface during March 1998.
- The storage zone contains ambient water with a chloride concentration of 3,500 milligrams per liter (mg/L) and a total dissolved solids concentration of 7,900 mg/L.
- Water samples collected from the storage zone did not contain concentrations of constituents exceeding any federal primary drinking water standards.
- The storage zone is overlain by low permeability confining materials comprising the Hawthorn Formation and is underlain by a clay-rich limestone of the Ocala Formation.

Surface facilities include piping, a recharge pump, electronically-actuated control valves, a bi-directional flowmeter, electric submersible pump, electrical systems, and instrumentation and control. Raw water is conveyed both to and from the ASR system via an onsite 12-inch water main. Recovered water will be pumped from the ASR well and conveyed to the head of the Fiveash WTP for treatment and distribution during the cycle testing period. Recharge and recovery rates are approximately 1,400 gallons per minute, equivalent to 2 million gallons of water per day (mgd).

Construction of the ASR system is now complete. A draft operations and maintenance (O&M) manual is included with this submittal. A final O&M manual will be prepared during the cycle testing period, as a companion document to this report. It outlines required operational, monitoring, and maintenance of the ASR system. This report is presented to FDEP in support of a request for operational testing of the system.

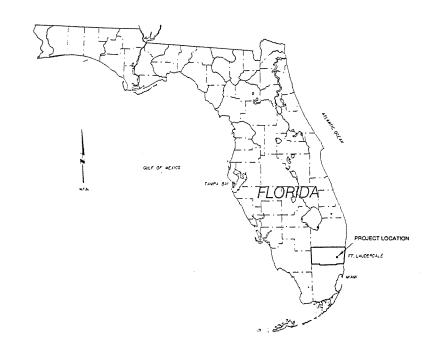
Montgomery Watson recommends that the City of Fort Lauderdale proceed with cycle testing of the new ASR well system after obtaining regulatory approval. Cycle testing should consist of a minimum of 5 cycles of injection, storage and recovery of raw groundwater. Injection and recovery can take place at rates of 1,400 gallons per minute, equivalent to 2 million gallons of water per day.

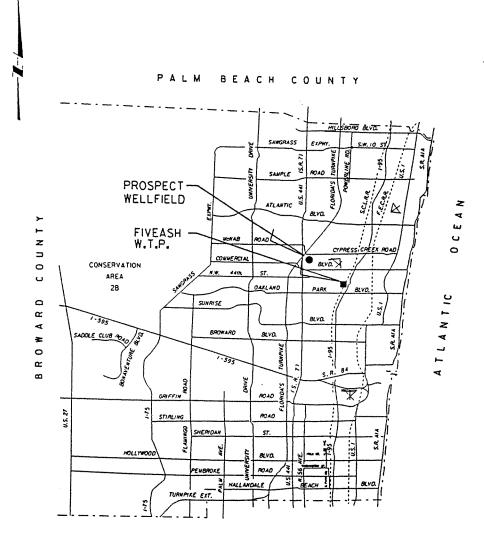
Section 1

Section 1 Introduction

PURPOSE

The purpose of this report is to provide documentation of the design, construction and testing of a new Class V Group 7 Aquifer Storage and Recovery (ASR) well system at the City of Fort Lauderdale Fiveash Water Treatment Plant (WTP). The Fiveash WTP is located in the northeast corner of Section 21 of Township 49 South and Range 42 East, in Broward County, Florida. **Figure 1-1** presents a project location map.


This report provides support for a request to proceed with operational (cycle) testing of the new ASR well system. Construction of the subject well (ASR-1) was in accordance with Construction Permit 0128340-002-UC issued by the Florida Department of Environmental Protection (FDEP) and Permit Number WC-06-297981 issued by the Broward County Health Department. **Appendix A** includes copies of the construction permits and Water Quality Criteria Exemption obtained for this project. The ASR well system design incorporates recharge (injection) and recovery of up to 2 million gallons per day (mgd) of raw water from the Prospect Wellfield.


PROJECT BACKGROUND

The location of the Fiveash WTP is at 4321 N.W. 9 Avenue in the City of Fort Lauderdale. A vicinity map is presented on **Figure 1-2**. In 1954, the Fiveash WTP consisted of an 8 million gallon per day (mgd) facility supplied by the Executive Airport Wellfield. In 1958, plant capacity doubled to 16 mgd, and further increased to 32 mgd in 1963. The Executive Airport Wellfield, consisting exclusively of Biscayne aquifer wells, underwent expansion between 1958 and 1963 to meet additional plant capacity increases.

Approximately six years after completion of the Executive Airport Wellfield, construction of the Prospect Wellfield commenced. These wells consist exclusively of Biscayne aquifer wells located near Prospect Lake. In the mid-1980's, volatile organic compounds were detected in the groundwater in the vicinity of the Executive Airport Wellfield. As a result, pumpage shifted westward to the Prospect Wellfield, which has since supplied the majority of the City's raw water. Subsequent expansions of the Prospect Wellfield took place during 1980 and 1985 that provided additional raw water supply for the Fiveash WTP. The latest plant expansion, completed in 1980, increased the Fiveash WTP treatment capacity to its current rating of 70 mgd.

On January 16, 1997, the South Florida Water Management District (SFWMD) re-issued the City of Fort Lauderdale's Water Use Permit (No. 06-00123-W) for public water

DADE COUNTY

City of Ft. Lauderdale, Florida Fiveash ASR System

Vicinity Map

Figure 1-2

Š

supply. The City's Water Use Permit provides for an average annual withdrawal of 52.4 mgd, and a maximum daily withdrawal of 64.6 mgd. The City operates two WTPs, Peele-Dixie and Fiveash, which have a combined treatment capacity of 90 mgd. The Dixie Wellfield, restricted to a maximum daily withdrawal of approximately 10 mgd, provides the Peele-Dixie WTP raw water. The raw water supply for Fiveash WTP is approximately 45 mgd from the Prospect Wellfield. By implementing use of the ASR well, the City will take advantage of surplus raw water available during low-demand months from the Prospect Wellfield. The City anticipates using the new ASR well system for daily or seasonal peaking and as an emergency supply for the system.

On October 15, 1997, the FDEP issued a construction permit to the City of Fort Lauderdale for the construction of a Class V Group 7 ASR Well. The permit allowed for the construction of one 16-inch (outer) diameter ASR well and ancillary appurtenances, equipment and systems for the injection and recovery of treated water at a rate of 1,400 gallons per minute (gpm), or 2 mgd. The permit also included construction of Floridan aquifer and surficial aquifer monitoring wells.

Opening of sealed bids received from contractors by the City occurred on January 15, 1997. Youngquist Brothers, Inc. (Youngquist) of Fort Myers, Florida was the low bidder and awarded the contract to construct the ASR well system on February 18, 1997, with a bid of \$1,297,700. Permitting issues delayed issuance of the Notice to Proceed until November 3, 1997. Youngquist mobilized to the site during late November 1997 and construction was complete by June 1998. Surface facilities are due to be completed by late October 1998.

Subsequent sections of this report present the ASR well system construction and testing program. Also presented is information on the site hydrogeology and the results of the testing. Presented in this report is a plan for cycle testing the new ASR well system; implementation of this plan will be dependent upon regulatory acceptance.

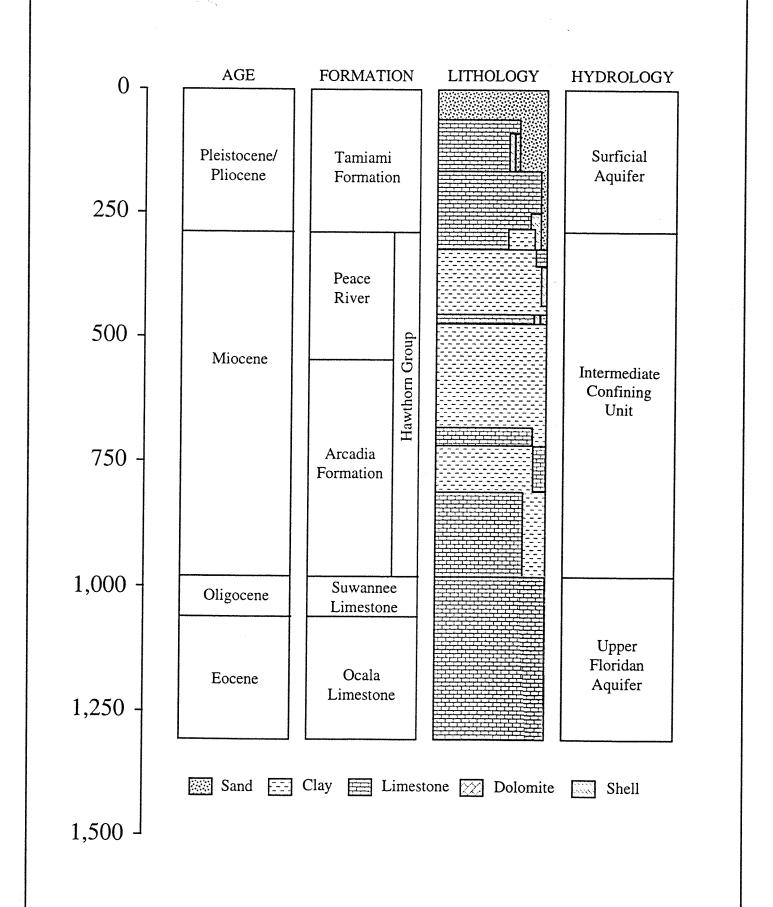
Section 2

Section 2 Hydrogeologic Setting

REGIONAL GEOLOGIC SETTING

Southern Florida is underlain by Cenozoic age rocks to a depth of approximately 5,000 feet bls, comprised primarily of sand, limestone, clay and dolomite (Meyer, 1989). Within this province, Broward County lies in a relatively stable structural area, represented by generally flat-lying sediments that accumulated in a quiet marginal-marine setting, similar to the modern-day Bahamas.

The ASR well and monitor wells penetrate sediments from land surface to a depth of 1,300 feet bls. Within these sediments are the surficial and Floridan aquifer systems. These two aquifer systems are separated by an intermediate confining unit.


LOCAL GEOLOGY

Plio-Pleistocene Series

During the drilling and testing of ASR-1 and FMW-1 Plio-Pleistocene aged limestone, sand, sandstone, clay and shells were observed from land surface to a depth of approximately 270 feet bls. **Figure 2-1** presents a summary of the lithology penetrated at the wellsite. These sediments are representative of the Pamlico Sand, Anastasia Formation and the Fort Thompson Formation, and were deposited between one to five million years ago. These sediments are light-gray colored, loosely cemented and contained abundant fossil shells. Porosity within these sediments is relatively high (between 20% to 30%). The surficial aquifer monitor well (SMW-1), was set and installed in this unit at a total depth of 200 feet below land surface.

Miocene Series

The Plio-Pleistocene sediments unconformably overly dense phosphatic clays and limey silts of the Hawthorn Group. The Hawthorn Group sediments extend from 270 feet bls to 970 feet, to a total thickness of 700 feet. From 270 feet bls to 555 feet bls, clay-rich sediments representing the Peace River Formation are present. From 555 feet bls to 970 feet bls, the limestone content increases, and is representative of the Arcadia Formation. The phosphate content of these sediments causes the gamma ray log to record high counts through this interval, as displayed on the geophysical logs to be discussed in a subsequent section.

Oligocene Series

Lying below the Hawthorn Group sediments is the Oligocene-aged Suwannee limestone, at a depth of 970 feet bls. The Suwannee limestone is comprised of white, pale orange and gray-colored fossiliferous packstones and wackestones. Numerous gastropod, pelecypod and foraminifera fossils are present within this interval. Secondary porosity in the form of solution vugs is present throughout the penetrated interval. The Suwannee limestone was present to a depth of 1,030 feet bls.

Eocene Series

The top of the Ocala limestone was encountered at a depth of 1,030 feet bls,. This formation is characterized by pale orange to brown-colored, poorly-cemented lime grainstones. The fossil content in this formation was not high, although fossil hash and red algae debris was commonly observed. The Ocala limestone was present to the total drilled depth of the pilot borehole, which was 1,300 feet bls.

HYDROGEOLOGIC DESCRIPTION

Surficial Aquifer System

The surficial aquifer system is present to a depth of 270 feet bls at the site. Within the surficial aquifer system in Broward County is the Biscayne aquifer, which is the source of most of the drinking water in southern Florida. Supply wells completed within this aquifer are typically pumped at rates of 1,000 to 1,500 gpm in this area. Water within the surficial aquifer is fresh, with chloride concentrations of between 10 mg/L and 100 mg/L. The surficial aquifer system is an unconfined aquifer, recharged by rainfall and surface water canals.

Intermediate Confining Unit

From 270 feet bls to 970 feet bls are low-permeability formations that comprise the Hawthorn Group. Fish (1988) estimated that the green clays contained within these formations exhibit a hydraulic conductivity of approximately 0.001 feet per day (equivalent to approximately 0.00000035 centimeters per second). This confining unit separates the surficial aquifer system from the Upper Floridan aquifer.

Upper Floridan Aquifer

From 970 feet bls to the total depth penetrated at the site (1,300 feet bls) is the upper Floridan aquifer. Within the upper Floridan aquifer are high permeability inter-aquifer "flow zones" separated by lower permeability units. Water within this portion of the aquifer is brackish, with chloride and total dissolved solids concentrations of approximately 3,500 mg/L and 8,000 mg/L respectively.

Section 3

Section 3 System Construction

The construction and testing program was developed to determine the hydrogeologic conditions at the site, for the proper construction of the well and optimal performance of the system. In addition, testing was performed to fulfill criteria established in the construction permits. Essentially, the construction and testing was performed to demonstrate the following:

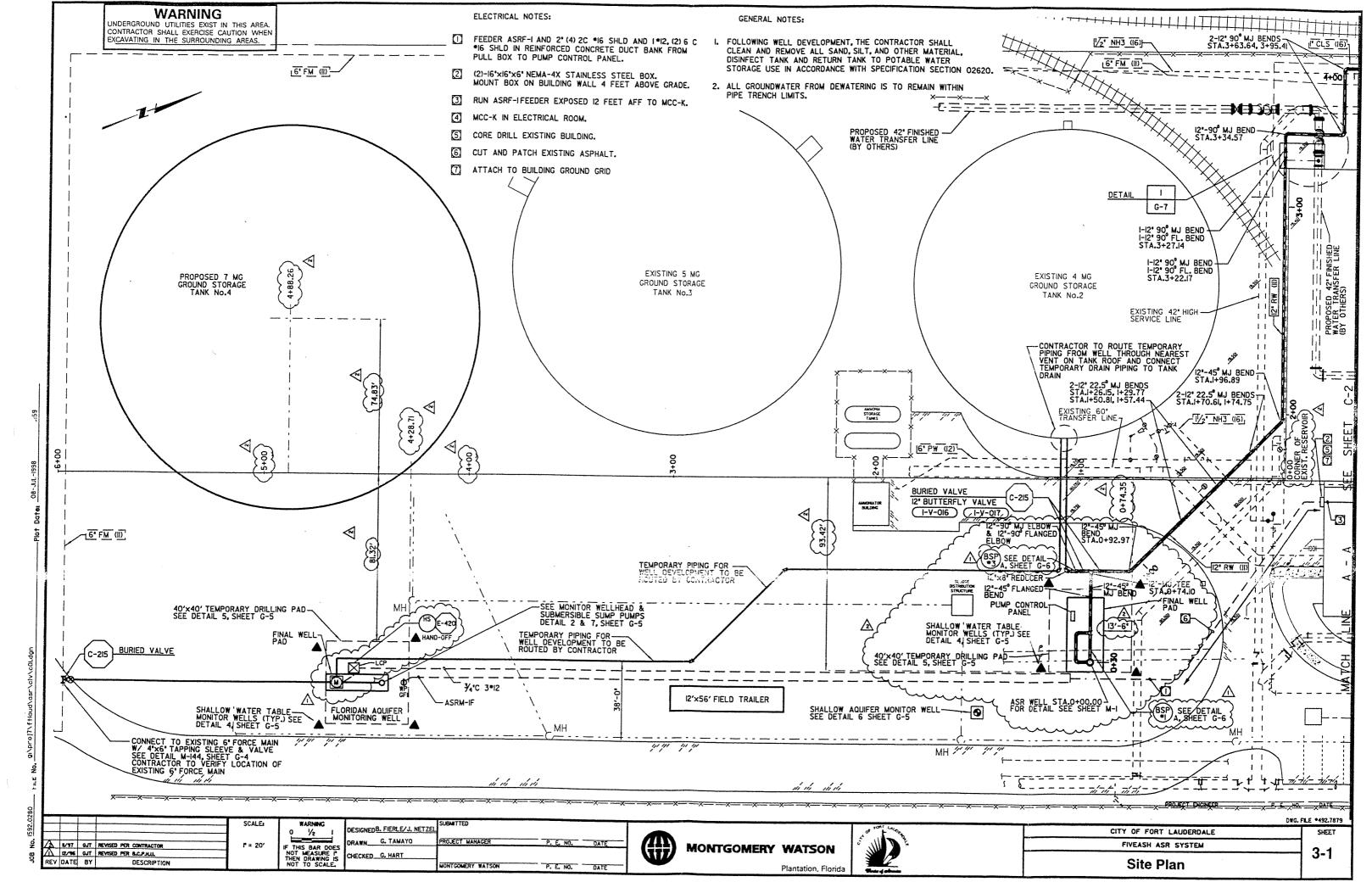
- There is a zone in the upper Floridan aquifer that will accept injection and withdrawal of water at the design rate of 2 mgd.
- Sufficient confinement exists above the injection zone to prevent upward movement (loss) of the stored water.
- The constructed well has mechanical integrity.

The construction sequence consisted of installation of ASR-1, followed by installation of FMW-1, then SMW-1. **Table 3-1** presents a construction and testing chronology.

Table 3-1
Construction and Testing Chronology

Date	ASR-1	FMW-1	SMW-1
Nov. 29, 1998	Begin drilling pilot hole.		
Nov. 30, 1997	Pilot hole TD at 471'. Geophysical logs.		
Dec. 3, 1997	Cement 26" casing to 198'.		
Dec. 8, 1997	Pilot hole TD at 1,125'. Geophysical logs.		
Dec. 18, 1997	Cement 16" casing to 1,055'.		
Dec. 19, 1997	Pressure test on 16" casing.		
Dec. 23, 1997	Pilot hole and cores TD at 1,300'.		
Dec. 24, 1997	Video survey.		
Dec. 28, 1997	Open-hole plug back to 1,200'.		
Dec. 30, 1997	Complete air development.		
Jan. 4, 1998		Begin drilling pilot hole	
Jan. 5, 1998			Begin drilling pilot hole.
Jan. 6, 1998		Cement 14" casing to 370'	
Jan. 9, 1998			Cement casing and screen to 200'.
Jan. 11, 1998		Pilot hole packer test #1	Complete air development.
Jan. 13, 1998		Pilot hole packer test #2	
Jan. 16, 1998		Pilot hole packer test #3	
Jan. 23, 1998		Cement 6" casing to 1,055'	
Jan. 29, 1998		Pressure test on 6' casing	
March 13, 1998		Geophysical logs	
March 15, 1998		Pumping development complete	
March 16, 1998		Step-rate pumping test	
March 17, 1998		Constant-rate pumping test	
March 24, 1998	Pumping development complete.		
March 25, 1998	Step-rate pumping test.		
March 30, 1998	Constant-rate pumping test.		

SITE DEVELOPMENT


Construction at the site proceeded with installation of two 40-foot by 40-foot steel reinforced concrete containment pads at the sites of ASR-1 and FMW-1. The purpose of these containment pads was to provide support for the drilling equipment. A concrete block retaining wall (approximately three feet high) surrounded the pad perimeter and was designed to contain fluid spills from the well, principally saline water, thereby protecting the surficial aquifer system. A plant schematic and location of the project staging area is shown on the site plan presented on **Figure 3-1**.

Four water-table monitoring wells were constructed at each corner of the containment pads prior to the initiation of drilling ASR-1 and FMW-1. The pad monitor wells were all constructed of Schedule 40 PVC casing and screen to 15 feet below land surface (bls), with 5 feet of 0.020-inch slot gravel-packed screen at the base of the well. The wells were cemented from the top of the screen to land surface. Water quality samples and water-level measurements were collected from each well upon completion. The water samples were analyzed for chlorides, conductivity, and total dissolved solids (TDS). This information was collected to provide baseline water quality data.

During November 1997, the water table was observed to be approximately 8 feet bls at the site. Results from the background sampling indicated that chloride concentrations in water collected from the wells averaged approximately 5 to 50 milligrams per liter (mg/L), conductivity concentrations ranged from 150 to 670 micromhos per centimeter (µmhos/cm) and TDS concentrations of approximately 100 to 400 mg/L. Results from the baseline analyses were used for comparison with water samples collected weekly during ASR-1 and FMW-1 well drilling and testing activities. The pad monitor well located at the northeast corner of the ASR-1 pad (ASR-1 PMW-3) showed elevated levels for conductivity, chloride, and TDS between January 9, 1998, and February 20, 1998. These increased levels were attributed to the accumulation of water produced from the upper Floridan aquifer around the monitor well. The western ASR-1 pad monitor well (ASR-1 PMW-2) showed elevated levels beginning February 12, 1998, and continuing through May 1998. Concentrations of the constituents did not change substantially in any of the remaining six wells over the course of the project. The water-table monitoring wells were left in place after construction for future monitoring.

ASR-1 DRILLING PROGRAM

A generalized drilling and testing sequence for ASR-1 consisted of drilling a 12-inch diameter pilot hole to the base of the surficial aquifer system. The pilot hole then was geophysically logged and subsequently reamed. Casings were installed in the predrilled borehole and cemented in place using sulfate-resistant Type II Portland neat cement (with bentonite gel added when necessary). This sequence was repeated for

each consecutive casing of smaller diameter set concentrically within the previous casing. After setting and cementing the final casing, the open-hole was drilled out to a nominal 16-inches in diameter followed by development. Once completed, the well was then pump tested and a final water sample was collected. **Figure 3-2** presents an asbuilt diagram of ASR-1.

Lithologic Determination

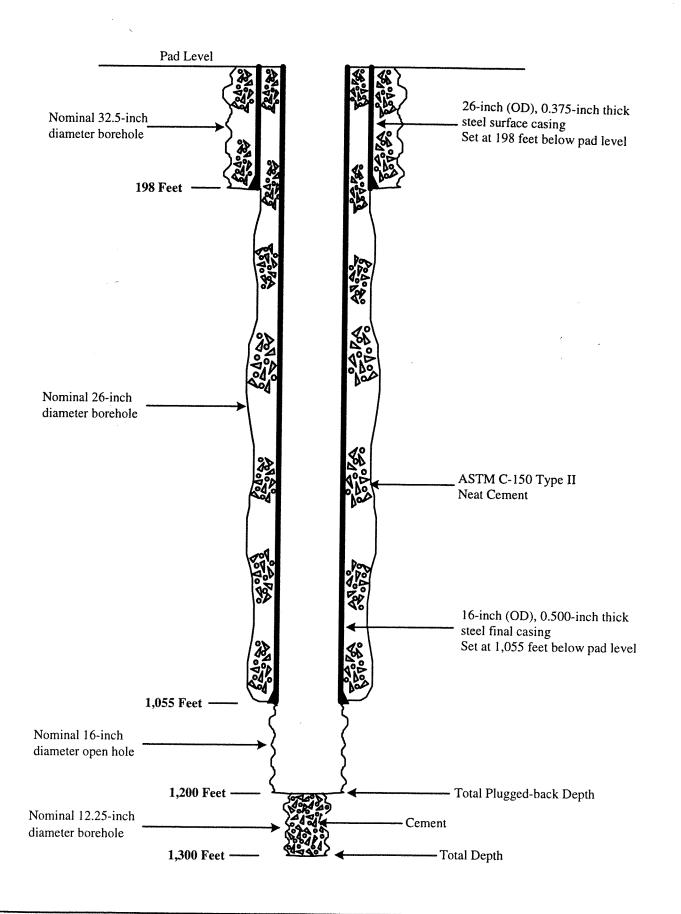
Lithologic samples were collected at 10-foot intervals during drilling. The lithologic samples were analyzed and described (using a microscope) for composition, color, texture, porosity, cementation, and secondary diagenetic fabrics. A set of samples also was sent to the Florida Geological Survey in Tallahassee. A geolograph was used on the drilling rig throughout the drilling operation to continually track the weight on bit and penetration rate.

Geophysical Logs

At various stages during the construction, geophysical logs were performed. The uses and interpretations of each of the logs is described below:

XY Caliper Log: measures the diameter of the borehole. This log is useful in identifying wash-outs, fractures and competency (mechanical strength) of the strata.

Gamma Ray Log: measures the natural gamma radiation produced by the rock, which is normally a function of the clay or phosphate content (in south Florida).


Dual Induction/Electric/SP: measures the electrical properties of the formation. The resistivity of the formation is affected by lithology, porosity, and water quality. These logs are comprised of "shallow", "medium" and "deep"-penetrating sondes, that investigate at various distances from the borehole into the formation.

Temperature Log: measures the temperature of the fluid filling the borehole or casing. It is also used to determine the elevation of emplaced cement during casing installation and provides information about the movement of fluids within drilled boreholes.

Compensated Sonic Log: measures the acoustic properties of the formation, which is a function of lithology and porosity.

Borehole Television (Video) Log: provides a visual image of the borehole and casing.

Flowmeter Log: measures the contribution of water from various sections of the drilled borehole. Useful in determining flow zones and confining units within the penetrated strata.

Cement Bond Log: measures the acoustic properties of the cemented casing, to evaluate the strength and continuity of the cement bond to the outside of the casing, and to detect potential voids in the grout sheath around the casing.

Upon completion of the pilot hole stages between 0 feet and 470 feet bls, and between 470 feet and 1,125 feet bls, the following geophysical logs were conducted:

- XY Caliper
- Gamma ray
- Spontaneous Potential (SP)
- Shallow and Deep Electric Logs

The following geophysical logs were conducted in the open-hole, below the final casing:

- XY Caliper
- Gamma ray
- SP
- Dual-Induction
- Compensated Sonic
- Temperature
- Borehole Television (Video)
- Fluid Resistivity
- Flowmeter (under pumping and non-pumping [static] conditions)

Drilling Methods

The ASR well was initially drilled using the mud rotary method to a depth above the top of the Floridan aquifer. The drilling rig then was configured for reverse air drilling, for the remainder of the drilling operation within the upper Floridan aquifer.

Casings

The two casings in ASR-1 were centralized in the borehole using strap-type centralizers welded at intervals along the pipe, at 90 degree intervals around the casing at each position. The 26-inch outer diameter surface casing was constructed from 0.375-inch wall thickness steel pipe, conforming to the standards of API 5L Grade B or ASTM A139, Grade B. Casing joints were welded. The 16-inch outer diameter final casing was constructed of 0.500-inch wall thickness seamless steel pipe, conforming to the standards of API 5L Grade B. Casing joints were welded.

The factory-beveled ends of the casings were arc welded by certified pipeline welders to standard pipeline certifications. Each weld consisted of 3 to 5 layers, with a primary

"hot pass" layer and subsequent filler passes. Each welded pass was wire-brushed cleaned and inspected, prior to the next pass.

Cementing

The annulus between each successive casing was cemented using sulfate-resistant cement. The cement used in ASR-1, FMW-1, and SMW-1 was ASTM C 150, Type II, with additives where necessary. Additives consisted only of bentonite, up to 4%, for cementing casings. Neat cement was emplaced in the lowermost 174 feet of the final casing.

Cement was emplaced in stages. The first stage was pressure-grouted through a tremie pipe located inside the fluid-filled casing, near the bottom of the open hole. Subsequent stages were emplaced using one tremie pipe placed inside the annulus between the casing and the borehole. After each stage of cementing, the top of the cement was verified by a physical tag with tremie pipe and by performance of a temperature log/gamma ray log inside the casing. The tag and logs were conducted approximately 5 hours after completion of each stage.

ASR-1 Construction Sequence

Drilling of ASR-1 commenced on the morning of November 29, 1997. A 12.25-inch diameter pilot hole was drilled by the mud rotary method to a depth of 471 feet bls. The determination for the pilot hole depth was primarily based on lithologic sample examination and analysis. Copies of the lithologic descriptions are contained in **Appendix B**.

The pilot hole then was geophysically logged using caliper, dual-induction, and gamma ray tools. Copies of the geophysical logs are contained in **Appendix C.** Following geophysical logging, the pilot hole was reamed to a nominal 32.5-inch diameter to a depth of 207 feet bls. Deviation surveys of the pilot boreholes and reamed holes were measured approximately every 60 feet to track hole straightness. A summary copy of the deviation surveys is contained in **Appendix D.** A caliper log then was performed on the reamed hole, followed by setting of the 26-inch diameter surface casing to a depth of 198 feet bls. The casing mill certificates are contained in **Appendix E.** The annular space between the borehole and the casing was pressure grouted with neat cement to 20 feet bls in one stage. Cementing records are contained in **Appendix F.**

Twenty-four hours after the completion of cementing, drilling of the 12.25-inch diameter pilot hole resumed. The pilot hole was drilled by the mud rotary method to a depth of 1,125 feet bls. During drilling of this interval, 3 conventional cores were collected at intervals between 949 feet and 1,022 feet bls. The core barrel was 20 feet long and 4 inches in diameter. The cores were described in the field for color, matrix,

depth of 1,125 feet bls. During drilling of this interval, 3 conventional cores were collected at intervals between 949 feet and 1,022 feet bls. The core barrel was 20 feet long and 4 inches in diameter. The cores were described in the field for color, matrix, cement content, porosity, hardness, and fossil content. The cores were then delivered to Ardaman & Associates, Inc. in Orlando, for analysis of moisture content, dry density, porosity, average isotropic confining stress, and coefficient of permeability. Copies of the core descriptions and laboratory analyses sheets are contained in **Appendix G.** Results of the core analysis will be discussed in a subsequent section. Caliper, dual induction, spontaneous potential and gamma ray geophysical logs then were performed.

The final casing setting depth of 1,055 feet bls was selected based on analysis of the lithologic samples and the geophysical logs. The final casing setting depth selection was approved by the FDEP on December 12, 1997. The pilot hole was then reamed to a nominal 26-inch diameter to a depth of 1,065 feet bls. The installation of the 16-inch diameter final casing took place on December 16, 1997; cementing was accomplished in one stage.

Hydrostatic Pressure Test

A hydrostatic pressure test was performed on the ASR-1 final casing on December 19, 1997, to test for internal mechanical integrity. For the test, the cement plug at the bottom of the casing was utilized as the lower seal. The initial test pressure was 173 pounds per square inch (psi). After a one-hour period, a pressure loss of 5 psi (representing a 2.8% decline) was observed, which was within the 5% decline tolerance allowed by the FDEP. The hydrostatic pressure test results, along with the pressure gauge certification are presented in **Appendix H.** This test successfully rated the well to inject at an operating wellhead pressure of 114 psi. (66% of tested pressure).

Open Hole Drilling

Upon completion of the hydrostatic pressure test of ASR-1, the drilling rig was reconfigured from the mud rotary to the reverse-air method. A 12.25-inch diameter pilot hole was drilled to a total depth of 1,300 feet bls. During drilling of this interval, 4 conventional cores were collected at intervals between 1,126 feet and 1,291 feet bls.

Upon reaching the total drilled depth, geophysical logs (including gamma ray, borehole compensated sonic, dual induction, spontaneous potential, temperature, fluid resistivity, caliper and flowmeter) were performed on the pilot hole. In addition to the geophysical logs, flowing water levels and artesian wellhead flowing rates were recorded as "specific capacity tests" in the intervals between 1,171 feet bls and 1,300 feet bls during drilling. Water samples were collected and analyzed for chlorides and conductivity in the field at each 30-foot pipe connection between 1,130 feet and 1,300

feet bls. Static and flowing water levels were also recorded during these tests, to ascertain the water yield and specific capacity of the drilled interval.

A video survey then was performed in the pilot hole, the results of which were forwarded to the FDEP under a separate report. A copy of the video survey description is contained in **Appendix I.**

Pilot Hole Plug-Back

The lithologic, hydrologic, and geophysical data collected from the pilot borehole drilled to 1,300 feet bls indicated that highly porous limestone existed to a depth of approximately 1,185 feet bls. Below this depth, the limestone contained a higher percentage of clay and silt. In addition, a flowmeter log conducted through this interval indicated that the portion of the hole from below 1,170 feet bls did not contribute significant quantities of water to the well. Based on these interpretations, it was decided that the open hole would be completed to a maximum depth of 1,200 feet bls. The pilot hole was subsequently filled with a neat cement plug installed through a tremie pipe. Following cementing, the pilot hole was reamed to a 16-inch nominal diameter to 1,200 feet bls. The well then was allowed to flow freely, and developed through air-lift pumping. Geophysical logs (including gamma ray, caliper, temperature, and fluid resistivity) then were performed. Copies of the geophysical logs are contained in Appendix C.

Video Survey

Upon completion of the geophysical logs, the borehole was flushed with fresh water and a final video survey was performed on December 24, 1997. No internal flaws in the well casing or joints were observed during the test, further confirming the internal mechanical integrity of the well.

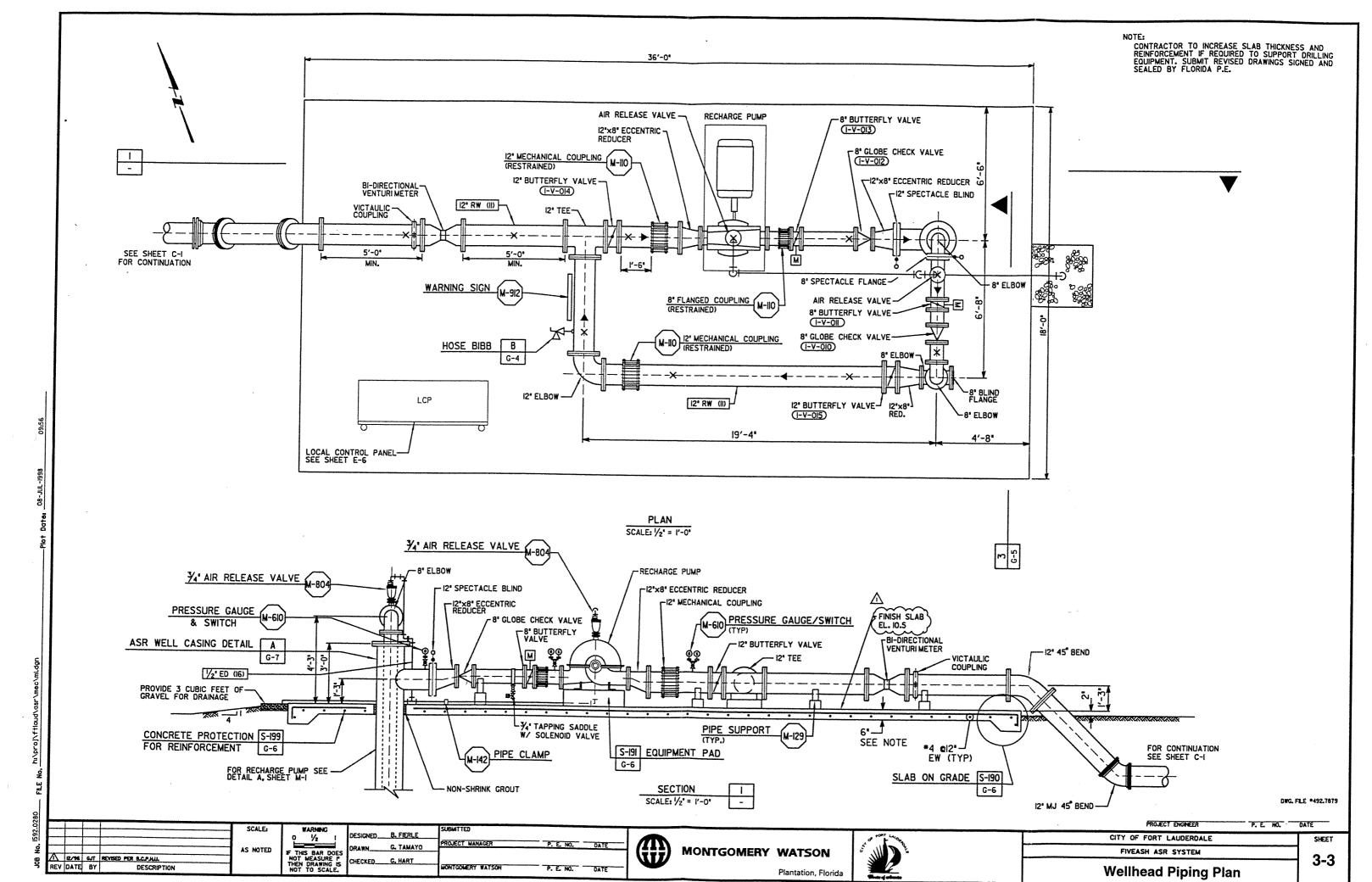
Turbine Pump Development

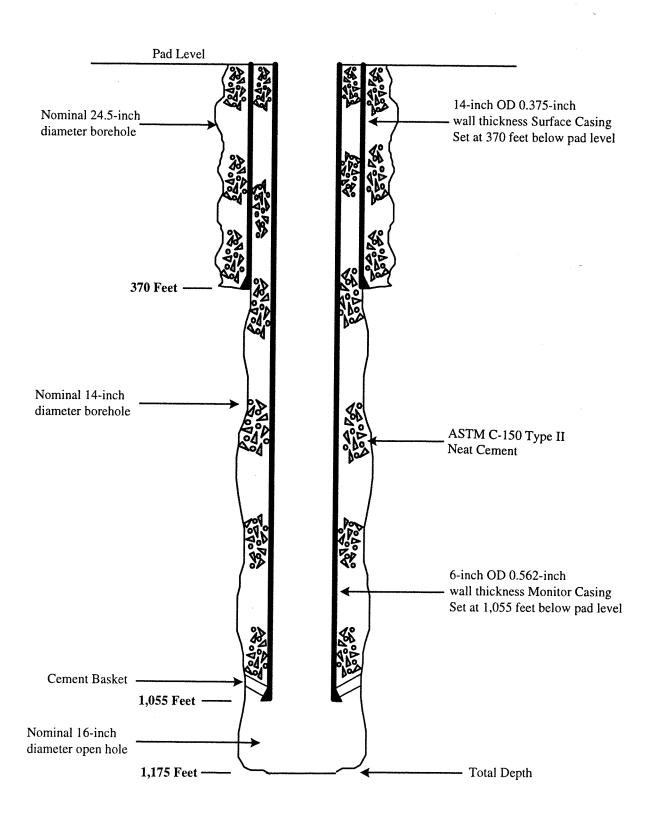
Following completion of the video survey, the ASR well was developed by installing a submersible turbine pump into the well to pump and surge. Pumping rates of approximately 800 gallons per minute (gpm) to 1,800 gpm were achieved during pump development. An in-line flowmeter (with totalizer) manufactured by Rockwell International was utilized to measure pumped flow rates. This development resulted in the removal of significant quantities of fine-grained carbonate sand. Specific capacity (as measured in gallons per minute per foot of induced drawdown [gpm/ft]) within the well was approximately 23 gpm/ft at a pumping rate of approximately 1,400 gpm, after approximately 4 days of development. Upon completion of development the static water level exhibited at the well was approximately 31 feet above land surface.

Step-Rate Pumping Test

On March 25, 1998, a step-rate pumping test was performed on the well at incremental 1-hour pumping rates of 970 gpm, 1,380 gpm, 1,850 gpm and 2,100 gpm for a cummulative period of 4 hours. Water levels were recorded with a calibrated pressure transducer and an Instrumentation Northwest multi-channel datalogger system during the test. Water level data collected from the test is summarized graphically and contained in **Appendix J**. The desired flow rate for the ASR well was 2 mgd, which equates to a pumping rate of approximately 1,400 gpm. Drawdown in the well was approximately 60 feet while pumping near this rate during the step-rate pumping test.

Constant-Rate Pumping Test


On March 30 and 31, 1998, a constant-rate pumping test was performed on the ASR well, at a rate of 2,100 gpm. Water levels during the pumping test were recorded with a calibrated pressure transducer and an Instrumentation Northwest multi-channel datalogger system. Water level data collected from the test is summarized graphically and contained in Appendix J. During the test, a maximum drawdown of approximately 120 feet was recorded in the well equating to a specific capacity of approximately 18 gpm/ft. Drawdown and recovery water levels were plotted on graph paper and an analysis was performed to estimate the formation transmissivity using the Jacob (1944) "straight-line" method.


Surface Completion

After pump testing was completed, the test pump and temporary discharge piping were removed from the well. New yard piping, pumps, and instrumentation were installed, which connected the ASR wellhead to the existing raw water main at the Fiveash WTP. **Figure 3-3** presents a wellhead piping plan. The certification of completion of construction required by the FDEP for this system is contained in **Appendix L**.

FMW-1 DRILLING PROGRAM

A generalized drilling and testing sequence for FMW-1 consisted of drilling a pilot hole to the base of the surficial aquifer system. The pilot hole then was geophysically logged with a variety of tools and reamed. Casing was installed in the pre-drilled borehole and cemented in place using sulfate-resistant Type II Portland neat cement (with bentonite gel added when necessary). This sequence was repeated for the final casing. After setting and cementing the final casing, the well was developed, pump tested, and a final water sample was collected. **Figure 3-4** presents an as-built diagram of FMW-1.

Lithologic Determination

Lithologic samples were collected at intervals of every 10 feet during the drilling operation. The lithologic samples were analyzed and described (using a microscope) for composition, color, texture, porosity, cementation, and secondary diagenetic fabrics. A set of samples also was sent to the Florida Geological Survey in Tallahassee. A geolograph was used on the drilling rig throughout the drilling operation to continually track the weight on bit and penetration rate.

Geophysical Logs

At various stages during the construction, the following geophysical logs were performed. The uses and interpretations of each of the logs is described above:

- XY Caliper Log
- Gamma Ray Log
- Dual Induction/Electric/SP
- Fluid Resistivity
- Temperature Log
- Compensated Sonic Log
- Borehole Television (Video) Log
- Flowmeter Log

Drilling Methods

Well FMW-1 was drilled using the mud rotary method.

Casings

The two casings in FMW-1 were centralized in the borehole using strap-type centralizers welded at intervals along the pipe, at 0, 90, 180, and 270 degrees around the casing at each position. The 14-inch outer diameter surface casing was constructed from 0.375-inch wall thickness steel pipe, conforming to the standards of ASTM A53, Grade B. Casing joints were welded. The 6.625-inch outer diameter final casing was constructed of 0.562-inch wall thickness seamless steel pipe, conforming to the standards of ASTM A53, Grade B. Casing joints were welded.

The factory-beveled ends of the casings were arc welded by certified pipeline welders to standard pipeline certifications. Each weld consisted of 3 to 5 layers, with a primary "hot pass" layer and subsequent filler passes. Each welded pass was wire-brushed cleaned and inspected, prior to the next pass.

Cementing

The annulus between each successive casing was cemented using sulfate-resistant cement. The cement used in FMW-1 was ASTM C 150, Type II, with additives where necessary. Additives consisted only of bentonite, up to 4%, for cementing casings. Only neat cement was used during cementing for the final casing.

Cement was emplaced in stages. The first stage was pressure-grouted through a tremie pipe located inside the fluid-filled casing, near the bottom of the open hole. Subsequent stages were emplaced using one tremie pipe placed inside the annulus between the casing and the borehole. After each stage of cementing, the top of the cement was verified by a physical tag with the tremie pipe and by performance of a temperature log/gamma ray log inside the casing. The logs were conducted approximately 5 hours after completion of each stage. The final casing of FMW-1 was cemented in place using a cement basket and the tremie method.

Construction Sequence

Drilling of FMW-1 commenced on January 5, 1998. A 12.25-inch diameter pilot hole was drilled by the mud rotary method to a depth of 400 feet bls. The determination for the pilot hole depth was primarily based on lithologic sample examination and analysis. Copies of the lithologic descriptions are contained in Appendix B.

The pilot hole then was geophysically logged using caliper, Dual-Induction, SP, and gamma ray tools. Copies of the geophysical logs are contained in Appendix C. Following geophysical logging, the pilot hole was reamed to a nominal 24.5-inch diameter to a depth of 380 feet bls. A caliper log then was performed on the reamed hole, followed by setting of the 14-inch diameter surface casing to a depth of 370 feet bls. The casing mill certificates are contained in Appendix E. The annular space between the borehole and the casing was pressure grouted with neat cement to surface in one stage. Cementing records are contained in Appendix F.

Twenty-four hours after the completion of cementing, drilling of the 12.25-inch diameter pilot hole resumed. The pilot hole was drilled by the mud rotary method to a depth of 1,180 feet bls. Caliper, Dual-Induction, spontaneous potential and gamma ray geophysical logs were then performed. A final casing setting depth of 1,055 feet bls was selected based on analysis of the lithologic samples and the geophysical logs. The final casing setting depth selection was approved by the FDEP on January 20, 1998. The pilot hole then was reamed to a nominal 13-inch diameter, to a depth of 1,175 feet bls. The installation of the 6.625-inch diameter final casing took place on January 22, 1998.

Hydrostatic Pressure Test

A hydrostatic pressure test was performed on the FMW-1 final casing on January 29, 1998. A 3-inch packer was lowered inside the 6.625-inch casing to 1,041 feet bls and was inflated to 213 psi. The initial test pressure was 125 psi. After a one-hour period, a pressure increase of 1 psi (representing a 0.8% rise) was observed, which was within the 5% tolerance allowed by the FDEP. The hydrostatic pressure test results, along with the pressure gauge certification are presented in Appendix H.

Video Survey

Upon completion of the geophysical logs, the borehole was flushed with fresh water and a final video survey was performed on March 7, 1998. No internal flaws in the well casing or joints were observed during the test, further confirming the internal mechanical integrity of the well. A copy of the video survey description is contained in Appendix I.

Development

Following completion of the video survey, FMW-1 was developed by attaching a centrifugal pump to the well to pump and surge. Pumping rates of approximately 80 - 120 gpm were achieved during pump development. An in-line flowmeter (with totalizer) manufactured by Rockwell International was utilized to measure pumped flow rates. This development resulted in the removal of significant quantities of fine-grained carbonate sand. Specific capacity (as measured in gallons per minute per foot of induced drawdown [gpm/ft]) within the well was approximately 2 gpm/ft at a pumping rate of approximately 120 gpm, after approximately 2 days of development.

Step-Rate Pumping Test

On March 16, 1998, a step-rate pumping test was performed on the well at incremental pumping rates of 100 gpm, 120 gpm, 140 gpm and 160 gpm for periods of 4 hours. Water levels were recorded with a calibrated pressure transducer and an Instrumentation Northwest multi-channel datalogger system during the test. Water level data collected during the test is summarized graphically and contained in Appendix J. The maximum drawdown in the well was approximately 45 feet during pumpage at 160 gpm during the step-rate pumping test.

Constant-Rate Pumping Test

During the period between late March 16, 1998, and March 18, 1998, a constant-rate pumping test was performed on FMW-1 at a rate of 164 gpm. This test was performed after water levels had recovered to within one foot of pre-pumping levels of the step-

rate test. Water levels during the pumping test were recorded with a calibrated pressure transducer and an Instrumentation Northwest multi-channel datalogger system. Water level data collected during the test is summarized graphically and contained in Appendix J. During the test, a maximum drawdown of approximately 50 feet was recorded in the well, equating to a specific capacity of approximately 3.3 gpm/ft. Drawdown and recovery water levels were plotted on graph paper and an analysis was performed to estimate the formation transmissivity using the Jacob (1944) "straight-line" method.

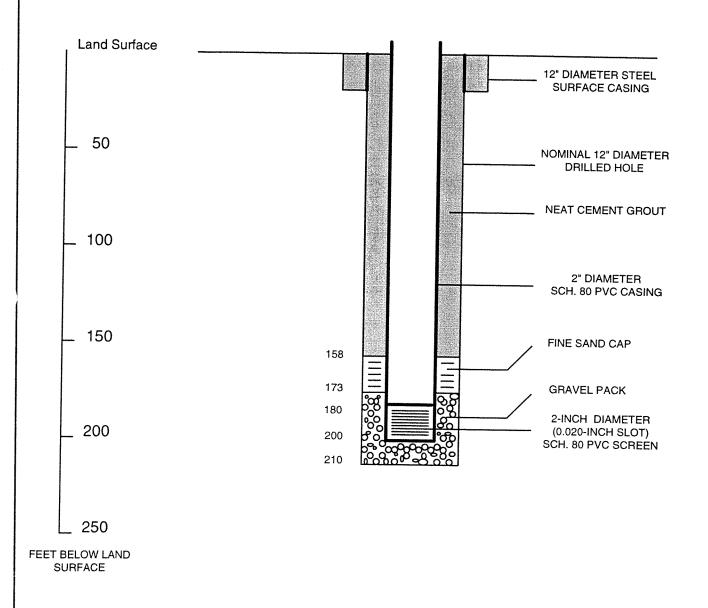
Final Water Sample

Prior to completion of the pumping portion of the constant-rate pumping test, a water sample was collected and delivered to Sanders Laboratories for analysis of primary and secondary drinking water standard constituents, as specified in the FDEP construction permit. The laboratory results for this sampling event are contained in Appendix K. The pump testing equipment was subsequently removed, and the well pad was cleaned in preparation for completion of the surface facilities and operational use.

Surface Completion

After pump testing was completed, the test pump and temporary discharge piping were removed from the well. New yard piping, pumps, and instrumentation were installed, which connected the FMW-1 wellhead to the Fiveash WTP. A certification of completion is contained in Appendix L.

SMW-1 DRILLING PROGRAM


Construction of the shallow monitor well (SMW-1) began by drilling an 8-inch diameter borehole to 210 feet bls. The well casing and screen were then installed and cemented in place to a total depth of 200 feet bls. Following cementing, the well was developed and a final water sample was taken. **Figure 3-5** presents an as-built diagram of SMW-1.

Lithologic Determination

Lithologic samples were collected at intervals of every 10 feet during the drilling operation. The lithologic samples were analyzed and described (using a microscope) for composition, color, texture, porosity, cementation, and diagenetic fabrics.

Drilling Methods

Well SMW-1 was drilled using the mud rotary method.

Casings

The casing in SMW-1 was constructed of 180 feet of 2-inch (inside diameter) flush-joint threaded Schedule 40 PVC casing and 20 feet of 0.020-inch slotted screen and a 5-foot sump. All field joints were threaded by qualified workers in accordance with the requirements of ASTM F480. Following installation of the casing, a 6-20 sieve size gravel pack was placed from the bottom of the well to 10 feet above the top of screen using the tremie method. A five-foot thick sand pack of medium size sand (passing U.S. Standard Sieve No. 35 and retained on U.S. Standard Sieve No. 60) was then placed over the gravel.

Cementing

The cement used in SMW-1 was ASTM C 150, Type II, with additives where necessary. Additives consisted only of bentonite, up to 4%. The cement was emplaced in stages through a tremie pipe located in the annular space between the casing and the borehole near the bottom of the open hole. After each stage of cementing, the top of the cement was verified by a physical tag with the tremie pipe. The final casing was cemented with three stages of pumping.

Construction Sequence

Drilling of SMW-1 commenced on January 5, 1998. The pilot hole was drilled to 210 feet bls and was reamed to a nominal 8-inch diameter. Following drilling, the 2-inch diameter casing was set to 195 feet bls. Determination of the casing setting depth was primarily based on lithologic sample examination and correlation to ASR-1 and FMW-1. Installation of the casing was performed on January 9, 1998.

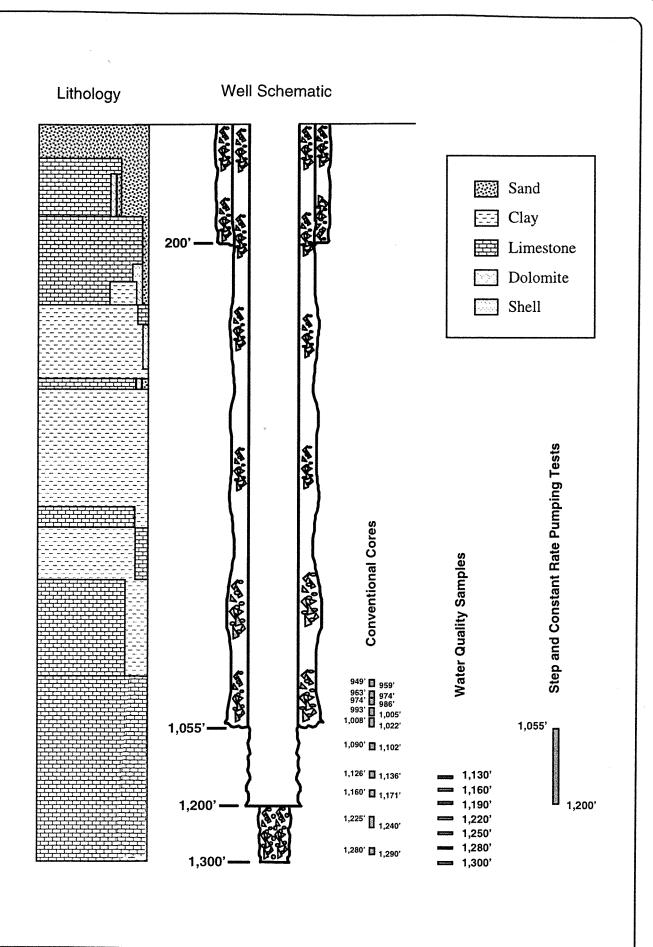
Following drilling operations, SMW-1 was developed by the air-lift method. At the completion of development, a final water sample was taken by Sanders Laboratories for analysis of primary and secondary drinking water standard constituents, as specified in the FDEP construction permit. The laboratory results for this sampling event are contained in Appendix K.

Section 4

Section 4 Well Testing

INTRODUCTION

During the construction of ASR-1, the FMW-1 and the SMW-1, extensive testing was conducted, including collection of lithologic samples, conventional cores, performance of packer pumping tests, water quality sampling, and performance of borehole geophysical logs. The testing was performed to define the hydrogeology of the upper Floridan aquifer, confirm the mechanical integrity of the final well casings, to aid in the selection of the storage and monitoring zones, and to finalize the design of the well and pump. **Figure 4-1** presents a summary of testing performed at ASR-1 and **Figure 4-2** presents the relative positions of cores and pumping tests performed in both FMW-1 and ASR-1.


PILOT HOLE TESTING

Core Analyses

A total of ten conventional cores were collected within the Suwannee and Ocala formations penetrated by the ASR-1 and FMW-1 wells. **Table 4-1** presents a summary of the cored intervals and the corresponding laboratory analyses. The uppermost three cores contained phosphatic limestones of low porosity. The lower cores (below 1050 feet) contained a higher concentration of clean limestone. The lower part of this interval was subsequently plugged back, and the final borehole of ASR-1 was completed to 1,200 feet. Detailed core descriptions and the geotechnical analyses of the cores are contained in Appendix G.

Table 4-1 Core Analysis Summary

Core	Depth Interval			Permeability
Number	(feet bls)	Lithology	Porosity	(cm/sec)
ASR-1	949-959	Limestone		
ASR-2	974-986	Limestone		
ASR-3	1008-1022	Limestone	0.24	4.7x10 ⁻³
ASR-4	1126-1136	Limestone		
ASR-5	1160-1171.5	Limestone		
ASR-6	1225-1240	Limestone	0.41	1.2x10 ⁻⁴
ASR-7	1280-1291	Limestone	0.42	9.4×10⁴
FMW-1	963-974	Limestone	0.30	5.9x10 ⁻⁵
FMW-2	993-1005	Limestone	0.40	1.2x10 ⁻³
FMW-3	1090-1102	Limestone	0.46	1.4×10 ⁻³

G-2917

6-2918

	0 0,7,7		ENW.1		
DEPTH	CORED	ASR-1 PACKER	CORED	FMW-1 PACKER	
(FEET)	INTERVAL	INTERVAL	INTERVAL	INTERVAL	
900					
İ		No Packer Tests			
920					
940					
960	949'-959'		963'-974'		
980	974'-986'				
1000			993'-1005'		
	1008'-1022'			998'-1028' 998'-1042'	
1020					
1040				base casina	
1060				1058'-1175'	
1080					
1100		<u>.</u>	1090'-1102'		
İ					
1120	1126'-1136'				
1140					
1160	1160'-1171.5'				
1180	*				
1200					
1220	1225'-1240'				
240					
260					
280	1280'-1291'				
300					
	4 m				
		į			

Water Samples During Drilling

Flowing water samples were collected from ASR-1 while pipe connections were made during reverse air drilling through the Upper Floridan aquifer. These water samples were analyzed for chlorides and conductivity in the field. **Table 4-2** presents a summary of the information collected from these analyses. Water quality remained fairly consistent throughout the entire drilled interval of the pilot hole to a total depth of 1,300 feet bls. This information indicated that upconing of poor quality water from below the storage zone (ultimately completed between 1,055 feet bls and 1,200 feet bls in ASR-1) is not likely to occur.

Table 4-2
Water Quality During Drilling of ASR-1

Depth (feet bls)	Conductivity (umhos/cm)	Chlorides (mg/L)
1,130	10,500	4,500
1,160	10,800	4,500
1,190	10,400	5,000
1,220	9,200	4,500
1,250	9,500	4,500
1,280	9,000	4,500
1,300	7,800	4,000

Geophysical Logging Interpretation

The geophysical logs conducted on the pilot hole of ASR-1 refined the lithologic descriptions and depths of formation contacts at the site. Figure 4-3 presents a geophysical log summary. The gamma ray log revealed relatively uniform counts throughout the Hawthorn Group sediments to a depth of approximately 900 feet bls. At that depth, a sharp increase in gamma counts is observed and the Dual-Induction log revealed an abrupt increase in resistivity near this same depth. This unit is the pebbly phosphatic zone which comprises the lower unit of the Hawthorn Group, which extends to a depth of approximately 970 feet bls. In the transition between the Hawthorn Group sediments and the upper Suwannee limestone, the caliper log did not indicate a change in the character of the drilled hole. The softness of these transitional sediments suggested that they were not favorable for a final casing seat for the ASR well.

Between 970 feet bls and 1,032 feet bls, the gamma ray log showed considerable variation, suggesting the presence of thinly-bedded clay and limestone layers within the

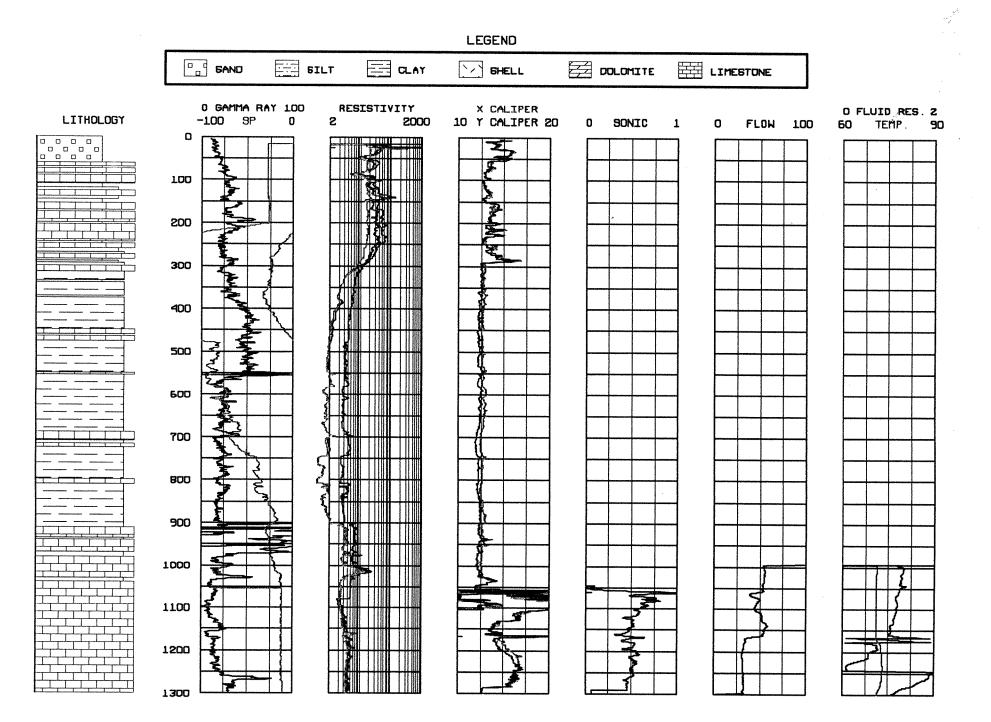


Figure 4-3

Suwannee limestone. These variations were confirmed by the lithology and drilling rate. At a depth of 1,032 feet bls, the gamma ray log revealed much lower counts, indicating a formation which was cleaner and more homogenous, typical of the more massive Ocala limestone. This formation was harder (more competent) than the overlying Suwannee limestone.

FINAL CASING SEAT JUSTIFICATION - ASR-1

Penetration to a total depth of 1,055 feet bls into the competent limestones of the Ocala Formation was proposed for the final casing seat of ASR-1. This was recommended because the transitional sediments between the Suwannee limestone and the Ocala limestone contained approximately 20% clay and drilled easily. The Ocala limestone was much more competent, contained less clay and represented a more rigid structural foundation for the cemented casing.

FINAL CASING HYDROSTATIC PRESSURE TEST - ASR-1

A hydrostatic pressure test was performed on the 16-inch diameter ASR-1 final casing on December 19, 1997, to test for internal mechanical integrity. For the test, the cement plug at the bottom of the casing was utilized as the lower seal. The initial test pressure was 173 pounds per square inch (psi). After a one-hour period, a pressure loss of 5 psi (representing a 2.8% decline) was observed, which was within the 5% decline tolerance allowed by the FDEP. The hydrostatic pressure test results, along with the pressure gauge certification are presented in Appendix H.

STORAGE ZONE DEPTH SELECTION - ASR-1

Upon completion of the drilling of the pilot hole to a depth of 1,300 feet bls, Montgomery Watson developed an interpretation of the characteristics of the open-hole interval that was based upon the following data:

- The lithologic samples, conventional cores and video survey log indicated that porous gray-colored lime grainstone was present from the base of the well casing to a depth of approximately 1,185 feet bls. Below this interval, the limestone became very fine grained and contained high percentages of chalk and clay. Particularly low porosity was observed during the video survey below 1,185 feet bls.
- The field water quality data collected indicated that water from the upper Floridan aquifer contained a chloride concentration of 4,500 milligrams per liter (mg/L) near the base of the well casing, decreasing to 4,000 mg/L at 1,300 feet bls. Conductivity concentration is also observed to decrease with increasing depth, from 10,500 micromhos per centimeter

(mmhos/cm) near the base of the casing to 7,800 mmhos/cm at 1,300 feet bls. These trends of decreasing concentrations with depth suggest improvement in water quality near the bottom of the pilot hole.

- The geophysical logs confirmed the existence of a favorable storage zone extending from the base of the well casing to approximately 1,170 feet bls.
 - The *flowmeter log* was conducted under static and dynamic (flowing) conditions, at a rate of 500 gallons per minute (gpm). The dynamic log indicates flow contribution to a depth of approximately 1,170 feet bls. Below this depth, the static and dynamic logs were nearly identical, indicating minimal flow contribution from the below 1,170 feet bls.
 - The *caliper log* indicated a large washout near the base of the well casing and somewhat fractured, uneven borehole to a depth of approximately 1,170 feet bls.
 - The *temperature log* indicated a relatively uniform water temperature of 71 degrees Fahrenheit (F) from the base of the well casing to a depth of 1,180 feet bls. Below this depth, the water temperature increased to 73 degrees F, indicating slightly lower water circulation conditions (more "stagnant" flow).

Based on this information, Montgomery Watson recommended completing the ASR well with an open hole extending from 1,055 feet bls to 1,200 feet bls. The pilot hole drilled to a total depth of 1,300 feet bls would be plugged back with neat cement grout to a depth of 1,200 feet bls. The formation penetrated below this depth did not appear to contribute to the storage zone of the well. With the plug-back depth, the water-producing interval of the storage zone would extend from the base of the well casing (at 1,055 feet bls) to approximately 1,170 feet bls, and a 30-foot long "sump" would remain at the base of the open hole (to a total depth of 1,200 feet bls).

PACKER TESTING - FMW-1

The pilot hole below the surface casing of FMW-1 was drilled by the mud rotary method to a depth of 1,180 feet bls. During the drilling of this pilot hole, geophysical logs were conducted and conventional cores were collected. In addition, several single-packer pumping tests were performed on FMW-1 to ascertain the hydraulic characteristics of the storage zone and the clayey (leaky) sediments overlying the storage zone. **Table 4-3** presents a summary of the packer tests performed on FMW-1. During these pumping tests, water levels were recorded in the pumped well (FMW-1) and also in ASR-1, which served as an observation well. The water level information was plotted on log-semi-log paper and analyzed by the Jacob 1944 "straight line" method for computation of transmissivity. The water level information and the results of the aquifer analysis are presented on **Table 4-4**.

Table 4-3
Packer Pumping Tests Conducted on FMW-1

Test #	Date	Pumped Interval (feet bls)	Pumping Rate (gpm)
1	January 12, 1998	998 – 1,028	160
2	January 13, 1998	998 –1,042	160
3	January 15, 1998	1,058 – 1,175	600

Table 4-4
FMW-1 Packer Pumping Test Data Summary

Test Number/ Pumping Rate (gpm)	Pre-Pumped Water Level (relative to land surface)	Pumping Water Level	Drawdown (feet)	Specific Capacity (gpm/ft)	Transmissivity (gpd/ft)
1/160	+31	-3	34	4.7	35,200
2/160 ସମୃଥ-।।		-1	32	5	60,340
3/600 1658 ~ 11	⁷⁵ + 33	+20	13	46	176,000

Storage

MONITORING ZONE DEPTH SELECTION – FMW-1

A final casing setting depth of 1,055 feet bls was selected for FMW-1 based on analysis of the lithologic samples, the geophysical logs and the packer pumping test data. This depth represented the top of the hard, competent limestones of the Ocala limestone. Above this interval were more clay-rich, less transmissive sediments. The open hole of FMW-1 would extend to the base of the storage zone strata penetrated by the ASR well, at a depth of 1,175 feet bls.

HYDROSTATIC PRESSURE TEST - FMW-1

A hydrostatic pressure test was performed on the FMW-1 final casing on January 29, 1998. A 3-inch packer was lowered inside the 6.625-inch casing to 1,041 feet bls and was inflated to 213 psi. The initial test pressure was 125 psi. After a one-hour period, a pressure increase of 1 psi (representing a 0.8% rise) was observed, which was within the 5% tolerance allowed by the FDEP. The hydrostatic pressure test results, along with the pressure gauge certification are presented in Appendix H.

PUMPING DEVELOPMENT AND TEST ANALYSES

Well Development Testing

Upon completion of the plug-back to 1,200 feet in the ASR-1 well, the open hole of the well was developed by air-lift surging and turbine pumping. During development, sand content was recorded by use of a Rossum sand meter. A 5 parts per million (ppm) sand content criteria was established for water withdrawn from the well at the desired flow rate (2.0 mgd). After approximately 35 hours of air lift and turbine pumping development, the sand content measured was less than the 5 ppm criteria. The FMW-1 was developed by air-lift and turbine pumping for 23 hours. During March 1998, the static water level exhibited by the wells was 31 feet above land surface. Land surface elevation at the site was approximately 10 feet NGVD.

Step-Rate Pumping Test - ASR-1

On March 25, 1998 a step-rate pumping test was performed on ASR-1. During the test, the well was pumped at four pumping periods, each period lasting one hour. Pumping rates started at 968 gpm and increased to 2,104 gpm during the test. Results of the step-rate pumping test are presented on **Table 4-5**. Water levels recorded during the step-rate pumping test summarized on graphics contained in Appendix J. During pumpage at the design rate of 2 mgd (1,377 gpm) the water level declined to approximately 30 feet below land surface.

Table 4-5
Step-rate Pumping Test Summary ASR-1

Pumping Rate	Drawdown	Specific Capacity	Sand Content
(gpm)	(ft)	(gpm/ft)	(ppm)
968	38	25.50	Nr
1,377	60	22.95	Nr
1,849	96	19.25	Nr
2,104	119	17.68	0.44

Note: "nr" signifies data not recorded.

Constant Rate Pumping Test – ASR-1

A 24-hour constant rate pumping test was performed on ASR-1 on March 30th and 31st, 1998. The pumping rate for the test was 2,100 gpm (equivalent to 3 mgd). Water levels were recorded during pumping and recovery periods and plotted for analysis. Approximately 120 feet of drawdown was induced in the pumped well during this test, which equates to a specific capacity of approximately 17.5 gallons per minute per foot of

drawdown. The graphed water-level data collected during the test is summarized on graphics contained in Appendix J. The transmissivity of the storage interval estimated from the Jacob 1944 "straight line" analysis of water-level data was approximately 146,000 gallons per day per foot. Sand content at the end of the pumping portion of the test was less than 5 ppm.

Step-Rate Pumping Test – FMW-1

On March 16, 1998 a step-rate pumping test was performed on the FMW-1 well. Results of the step-rate pumping test are presented on **Table 4-6**. Water levels recorded during the step-rate pumping test are presented on graphics contained in Appendix J. During the step-rate pumping test, flowmeter and temperature geophysical logs were performed and are contained in Appendix F. Pumping rates for these test were lower and drawdowns were proportionally greater than those measured during the pumping tests at ASR-1. This was attributed to the relatively small casing diameter at FMW-1 and higher resulting friction losses.

Table 4-6
Step-rate Pumping Test Summary FMW-1

Pumping Rate	Drawdown	Specific Capacity
(gpm)	(ft)	(gpm/ft)
100	26	3.8
120	32	3.75
140	37	3.8
160	44	3.6

Constant Rate Pumping Test – FMW-1

A 24-hour constant rate pumping test was performed on FMW-1 on March 17th and 18th 1998. The pumping rate for the test was 164 gpm. Water levels were recorded during pumping and recovery periods and plotted for analysis. Approximately 47 feet of drawdown was induced in the pumped well during this test, which equates to a specific capacity of approximately 3.5 gallons per minute per foot of drawdown. The graphed water-level data collected during the test is presented on graphics contained in Appendix J. Sand content at the end of the pumping portion of the test was less than 5 ppm.

WATER QUALITY

Final Pumping Test Water Analysis

Upon completion of the pumping portion of the constant rate pumping test on FMW-1 a final water quality sample was collected. This water sample is representative of the open hole interval from 1,050 feet bls to 1,200 feet bls. The laboratory results indicated that there were no exceedances of primary drinking water standards in water collected from the completed open hole. Laboratory analyses sheets are contained in Appendix K. Analyses of selected cations and anions indicate that the water in the Upper Floridan aquifer is brackish. **Table 4-7** a summary of the laboratory results. Water quality results area also presented for FMW-1 and SMW-1.

Table 4-7
Final Construction Water Quality Summary

Constituent	Concentration	Concentration
	FMW-1	SMW-1
Chloride	3,524 mg/L	24 mg/L
TDS	7,880 mg/L	279 mg/L
Conductivity	9,345 umhos/cm	nc
Odor	50 units	1 unit
Sulfate	725 mg/L	21 mg/L
Sodium	1,827 mg/L	15.9 mg/L
PH	7.61 units	7.74 units
Color	17 units	3 units
Iron	0.156 mg/L	0.642 mg/L
Volatile Organic Aromatics	BDL	BDL
Pesticides/PCBs	BDL	BDL
Unregulated Group I	BDL	BDL
Unregulated Group II	BDL*	BDL
Unregulated Group III	BDL	nc
Total Coliform	6 col/100ml	nc
Gross Alpha	30.7 pCi/L	10.7 pCi/L
Total THMs	0.0017 mg/L	<0.0004 mg/L
Purgeable Organics	BDL*	nc
Semivolatile Organics	0.97 ug/L diethylpthalate⊕	nc

[&]quot;*" signifies that chloroform was detected in the sample however, it was suspected present as a result of laboratory impact.

Constituents listed in bold font are those for which the water quality criteria exemption was obtained.

[&]quot; \oplus " signifies that this concentration is below the federal drinking water standard of 6 ug/L

[&]quot;nc" signifies not calculated

The water quality data collected from the ASR well and FMW-1 was consistent with data collected from other wells completed within the upper Floridan aquifer of Broward County. The aquifer contains water that is brackish, and concentrations of chloride, iron, sodium, sulfate, odor and TDS typically exceed the secondary drinking water maximum concentration limits (MCLs). None of the federal primary or other secondary MCLs were exceeded in water collected from the wells constructed during this project.

Injectate Water Quality

The water that will be injected, stored and recovery from ASR-1 will be raw water supplied to the Fiveash WTP by the Prospect Wellfield. **Table 4-8** presents a summary of water quality parameters analyzed from a composite sample of the Prospect Wellfield raw water collected on May 22, 1998. Laboratory data sheets for the analysis are contained in Appendix M.

Table 4-8
Prospect Wellfield Raw Water Quality Summary

Constituent	Concentration
Chloride	48 mg/L
TDS	506 mg/L
Conductivity	nc
Odor	2 units
Sulfate	15 mg/L
Sodium	34.4 mg/L
PH	7.35 units
Color	58 units
Iron	0.78 mg/L
Volatile Organic Aromatics	BDL
Pesticides/PCBs	BDL
Unregulated Group II	BDL
Total THMs	<0.001 mg/L

Notes: Constituents listed on bold font are those for

which the water quality criteria exemption

was obtained

Section 5

Section 5 Cycle Testing Plan

Upon FDEP and BCHD approval, cycle testing of the ASR system will commence. Cycle testing will be conducted with raw groundwater to evaluate the performance of the well during injection, storage and recovery, and to fulfill the requirements within the FDEP and BCHD construction permits. It is anticipated that recharge and recovery rates will be at 1,400 gpm, equivalent to 2 mgd. Cycle testing will include variable periods of recharge, storage and recovery, as presented in **Table 5-1**.

Table 5-1 Cycle Testing Plan

Cycle Number	Recharge** Days	Recharge Volume (mg)	Storage Days	Recovery Volume (mg)
1	10	20	0	20
2	20	40	0	*
3	20	40	0	*
4	20	40	30	*
5	60	120	30	*
6	60	120	60	*

[&]quot;*" signifies that water will be recovered until chloride concentration exceeds 100 mg/L limit specified in the BCHD permit.

During the cycle testing, recovery efficiencies (recovery volume/recharge volume) will be calculated for each cycle. It is anticipated that recovery efficiencies will progressively increase throughout each of the cycles. Cycle 1 will consist of a relatively short recharge and recovery period, to allow for a "shakedown" of the system, and to establish a baseline effect of recharge water on the storage zone. Cycles 2 and 3 will be of slightly longer duration, with no storage periods. Cycle 4 will be of a similar volume as the two previous cycles, but will include a 30 day storage period. Cycle 5 will consist of a large recharge volume, with a 30 day storage period. Cycle 6 will consist of a similar recharge volume to the previous cycle, but will include a 60 day storage period. That cycle will be utilized to observe the effects of longer-term storage on recovery efficiencies.

Total flow into (during injection) and out of (during recovery) the well will be measured daily. Average maximum and minimum daily flows also will be recorded. Wellhead pressures will be monitored continuously, and the daily average, maximum

[&]quot;**" signifies that recharge amounts may vary based upon the months which the cycles occur.

and minimum injection pressures will be recorded. Cumulative total injected and recovered water also will be recorded.

During the cycle testing period, water quality monitoring will be conducted to determine the geochemical effects of injection, storage and recovery of the raw water (injectate) and in fulfillment of the FDEP and BCHD construction permits. A water quality analysis of the raw water injectate from the Fiveash WTP is contained in **Appendix L.**

Table 5-2 presents a summary of the water sampling analyses and frequencies that will be performed during cycle testing. To reconcile differences between the frequencies specified within the BCHD and FDEP permits, the shorter frequency listed in either permit was always selected for preparation of the table. Water samples will be collected from the sampling taps located along the wellhead piping. A minimum of three (3) well volumes of water will be evacuated from the well prior to sampling for the parameters during storage.

Upon completion of each cycle period, a technical memorandum will be prepared, summarizing the data collected during that cycle (a total of 6 memorandums will be prepared). Upon completion of all of the planned cycles, a final memorandum will be submitted to the BCHD, the FDEP and the SFWMD in support of operation of the system. The final memorandum will include recommendations for normal operation of the system. **Appendix N** has been reserved within this document so that all of the technical memorandums can be inserted into this binder during cycle testing.

Table 5-2
Cycle Testing Water Quality Sampling

	Frequency							
Parameter	Continuous	Daily	Weekly	Monthly	Beginning of Injection	Storage	Beginning of Recovery	End of Recovery
Conductivity	Recovery	AFS						
Chloride	-	AFS						
Total Hardness		Α	F					
Calcium Hardness		Α	F					
Alkalinity		A	F					
Turbidity		Α	F					
pН		Α	F					
Temperature		A	F					
Color		Α	F					
Iron		Α	F					
TDS		AFS						
Sulfate			AF					
Total Nitrate			AF					
Total Nitrite			AF					
Sodium			AF					
Ammonia			AF					
Total Phosphorus			AF					
Trihalomethane			AF					
BOD			AF					
COD			AF					
Hydrogen Sulfide			AF					
Total Coliform				AF				
Gross Alpha		İ			AF	AF	AF	AF
Dissolved Oxygen	1				AF	AF	AF	AF
Iron Hydroxide					AF	AF	AF	AF
Pseudomonas				AF				

Notes:

"A" signifies Aquifer Storage and Recovery Well (ASR-1)

"F" signifies Floridan Aquifer Monitor Well (FMW-1)

"S" signifies Shallow Monitor Well (SMW-1)

Section 6

Section 6

Conclusions and Recommendations

Construction of the ASR well system at the City of Fort Lauderdale Fiveash WTP has been performed successfully. One 16-inch diameter ASR well with a steel casing set to 1,055 feet bls and an open hole extending from 1,055 feet bls to 1,200 feet bls is now ready for cycle testing at the design rate of 2 mgd. The storage zone of the well is completed within the transmissive Ocala limestone of the Upper Floridan aquifer. The storage zone is confined beneath 750 feet of low permeability clay and limestone.

The ASR well currently yields water at a rate of 2,100 gpm with a pumping water level of approximately 90 feet bls. The ambient water contained within the storage zone is brackish, and contains chloride and TDS concentrations of approximately 3,500 mg/L and 7,900 mg/L, respectively. There were no exceedances of primary drinking water standards in water collected from the storage zone.

Montgomery Watson recommends initiation of cycle testing at the Fiveash ASR well system with raw groundwater from the Prospect Wellfield. The cycle testing plan will consist of progressively longer periods of injection, storage and recovery of treated water from the ASR well. Water quality and flow information will be collected during the cycle testing period in support of the system construction permits. At the conclusion of cycle testing, a report detailing and interpreting the collected information will be prepared and submitted to the BCHD and the FDEP, in support of an application for long-term operation of the system.

Appendices

Appendix A

Construction Permits

BCHD Construction Permit

HEALTH

NOTICE OF PERMIT ISSUANCE

James T. Howell, M.D., M.P.H.
Secretary

2. 2

Lawton Chiles Governor

> Broward County - MW (Log #8845) City of Ft. Lauderdale (Fiveash) (Ft. Laud.-Fiveash/ASR Well Systom) January 22, 1997

CERTIFIED MAIL
RETURN RECEIPT REQUESTED

Gregory Kisela, Utility Director City of Ft. Lauderdale 949 N.W., 38th Street Ft. Lauderdale, FL 33309

RE: PROJECT NAME: Ft. Laud.-Fiveash/ASR Well System

PROJECT LOCATION: 949 N.W. 38th Street, Ft. Lauderdale

Dear Mr. Kisela:

Enclosed is Permit Number WC-06-297981 issued pursuant to Chapter 403, F.S.

A person whose substantial interests are affected by this permit may petition for an administrative proceeding (hearing) in accordance with Section 120.57, Florida Statutes. The petition must contain the information set forth below and must be filed (received) in the Office of Legal Counsel, DOH/BCHD, 201 West Broward Boulevard, Suite 513, Fort Lauderdale, FL 33301, within 14 days of receipt of this permit. Petitioner shall mail a copy of the petition to the applicant at the address indicated above at the time of filing. Failure to file a petition within this time period shall constitute a waiver of any right such person may have to request an administrative determination (hearing) under Section 120.57, Florida Statutes.

The petition shall contain the following information:

- (a) The name, address, and telephone number of each petitioner, the applicant's name and address, the Department Permit File Number and the county in which the project is proposed;
- (b) A statement of how and when each petitioner received notice of the Department's action or proposed action;

FROM

P. .

A statement of how each petitioner's substantial interests are affected by the Department's action or proposed action;

- 2 -

- (d) A statement of the material facts disputed by petitioner, if any;
- A statement of facts which petitioner contends warrant reversal or modification of the Department's action or proposed action;
- A statement of which rules or statutes petitioner contends (£) require reversal or modification of the Department's action or proposed action; and
- (g) A statement of the relief sought by petitioner, stating precisely the action petitioner wants the Department to take with respect to the Department's action or proposed action.
- If a petition is filed, the administrative hearing process is designed to formulate agency action. Accordingly, the Department's final action may be different from the position taken by it in this permit. Persons whose substantial interests will be affected by any decision of the Department with regard to the application have the right to petition to become a party to the proceeding. The petition must conform to the requirements specified above and be filed must conform to the requirements specified above and be filed (received) within 14 days of receipt of this notice in the Office of Legal Counsel at the above address of the Department. Failure to petition within the allowed time frame constitutes a waiver of any right such person has to request a hearing under Section 120.57, F.S., and to participate as a party to this proceeding. Any subsequent intervention will only be at the approval of the presiding officer upon motion filed pursuant to Rule 28-5.207, F.A.C.

This permit is final and effective on the data filed with the Clerk of the Department unless a petition is filed in accordance with the above paragraphs or unless a request for extension of time in which to file a petition is filed within the time specified for filing a petition and conforms to Rule 62-103.070, F.A.C. Upon timely filling of a petition or request for an extension of time, this permit will not be effective until further Order of the Department.

When the Order (Permit) is final, any party to the Order has the right to seek judicial review of the Order pursuant to Section 120.68, Florida Statutes, by the filing of a Notice of Appeal pursuant to Rule 9.110, Florida Rules and Appellate Procedure, with the Clerk of the Department in the Office of Legal Counsel, DOH/BCHD, 201 West Broward Boulevard, Suite 513, Fort Lauderdale, FL 33301, and by filing a copy of the Notice of Appeal accompanied by the applicable filing fees with the appropriate District Court of Appeal. The Notice of Appeal must be filed within 30 days from the date the Final Order is filed with the Clerk of the Department.

-3-

January 22, 1997

Р. 4

Executed in Ft. Lauderdale , Florida,

Broward County Health Department

Homes X. Museu

Thomas K. Mueller, P.E. Environmental Engineering Director

David L. Roach Senior Administrator

CERTIFICATE OF SERVICE

This undersigned duly designated deputy agency clerk hereby certifies that this NOTICE OF PERMIT ISSUANCE and all copies are mailed by certified mail before the close of business on January 23, 1997 to listed persons.

Clerk Stamp

FILING AND ACKNOWLEDGMENT

FILED, on this date, pursuant to Section 120.52(11), Florida Statutes, with the designated Department Clerk, receipt of which is hereby acknowledged.

Clerk: Aloue De Date: January 22, 1997

TKM/dn Enclosures

Copies furnished to: Geoff Hart, P.E., MW Alfred Mueller, P.E., DEP FLORIDA DEPARTMENT OF HEALTH

RECEIVED 3

1998 JAN 2 Janes Hollell 34.D., M.P.H. Secretary

Lawton Chiles Governor

WATER TREATMENT PLANT CONSTRUCTION PERMIT

AMENDED (January 15, 1998)

Broward County MW (Log #8845) City of Ft. Lauderdale (Fiveash) (Ft. Laud.-Fiveash/ASR Well System) January 22, 1997

PERMITTEE:

Gregory Kisela, Utility Director City of Ft. Lauderdale 949 N.W. 38th Street 7 Ft. Lauderdale, FL 33309

RE:

I.D. NUMBER:

4060486-02

PERMIT NUMBER:

WC-06-297981

DATE OF ISSUE:

01/22/1997

EXPIRATION DATE:

01/22/2002

PROJECT NAME:

Ft. Laud.-Fiveash/ASR Well System

PROJECT LOCATION:

949 N.W. 38th Street, Ft. Lauderdale

Dear Mr. Kisela:

Effective January 22, 1997, this permit is issued according to the provisions of Chapter 403, F.S., and Chapters 62-4, 62-550, 62-555, & 62-560, F.A.C. The above-named permittee is hereby authorized to perform the work or operate the facility shown on the approved applications, engineering plans, and other documents attached hereto or on file with Broward County Health Department (BCHD) and made a part hereof and specifically described as follows:

CONSTRUCT: One (1) 1,200-foot ASR well with a 16-inch diameter final casing (1,000 ft deep) using raw water from the Biscayne Aquifer for recharge and recovery (2.0 MGD); one (1) 1,200-foot monitoring well with a 6-inch diameter final casing (1,000 ft deep); one (1) horizontal split-case pump

(1,400 gpm) for recharge; one (1) submersible turbine pump (1,400 gpm) for recovery; one (1) bidirectional venturi meter (400-2,200 gpm); associated pipings; and all related appurtenances as shown on the engineering plans and in the specifications.

SUBJECT TO: General Conditions 1-15 and Specific Conditions 1-13.

GENERAL CONDITIONS:

- 1. The terms, conditions, requirements, limitations and restrictions set forth in this permit, are "permit conditions" and are binding and enforceable pursuant to Sections 403.141, 403.727, or 403.859 through 403.861, F.S. The permittee is placed on notice that the Department will review this permit periodically and may initiate enforcement action for any violation of these conditions.
- 2. This permit is valid only for the specific processes and operations applied for and indicated in the approved drawings or exhibits. Any unauthorized deviation from the approved drawings, exhibits, specifications, or conditions of this permit may constitute grounds for revocation and enforcement action by the Department.
- 3. As provided in Subsections 403.087(6) and 403.722(5), F.S., the issuance of this permit does not convey any vested right or any exclusive privileges. Neither does it authorize any injury to public or private property or any invasion of personal rights, nor any infringement of federal, state, or local laws or regulations. This permit is not a waiver of or approval of any other Department permit that may be required for other aspects of the total project which are not addressed in this permit.
- 4. This permit conveys no title to land or water, does not constitute State's recognition or acknowledgement of title, and does not constitute authority for the use of submerged lands unless herein provided and the necessary title or leasehold interests have been obtained from the State. Only the Trustees of the Internal Improvement Trust Fund may express State's opinion as to title.
- 5. This permit does not relieve the permittee from liability for harm or injury to human health or welfare, animal, or plant life, or property caused by the construction or operation of this permitted source, or from penalties therefore; nor does it allow the permittee to cause pollution in contravention of Florida Statutes and Department rules, unless specifically authorized by an order from the Department.
- 6. The permittee shall properly operate and maintain the facility and systems of treatment and control (and related appurtenance) that are installed and used by the permittee to achieve compliance with the conditions of this permit as required by Department rules. This provision includes the operation of backup or auxiliary facilities or similar systems when necessary to achieve compliance with the conditions of the permit and when required by Department rules.

- 7. The permittee, by accepting this permit, specifically agrees to allow authorized Department personnel, upon presentation of credentials or other documents as may be required by law and at reasonable times, access to the premises where the permitted activity is located or conducted to:
 - (a) Have access to and copy any records that must be kept under conditions of the permit;
- (b) Inspect the facility, equipment, practices, or operations regulated or required under this permit; and;
- (c) Sample or monitor any substances or parameters at any location reasonably necessary to assure compliance with this permit or Department rules. Reasonable time may depend on the nature of the concern being investigated.
- 8. If, for any reason, the permittee does not comply with or will be unable to comply with any condition or limitation specified in this permit, the permittee shall immediately provide the Department with the following information:
 - (a) A description of and cause of noncompliance; and
- (b) The period of noncompliance, including date and times; or, if not corrected, the anticipated time the noncompliance is expected to continue, and steps being taken to reduce, eliminate, and prevent recurrence of the noncompliance. The permittee shall be responsible for any and all damages which may result and may be subject to enforcement action by the Department for penalties or for revocation of this permit.
- 9. In accepting this permit, the permittee understands and agrees that all records, notes, monitoring data and other information relating to the construction or operation of this permitted source which are submitted to the Department may be used by the Department as evidence in any enforcement case involving the permitted source arising under the Florida Statutes or Department rules, except where such use is prescribed by Sections 403.111 and 403.73, F.S. Such evidence shall only be used to the extent it is consistent with the Florida Rules of Civil Procedure and appropriate evidentially rules.
- 10. This permittee agrees to comply with changes in Department rules and Florida Statutes after a reasonable time for compliance; provided, however, the permittee does not waive any other rights granted by Florida Statutes or Department rules.
- 11. This permit is transferable only upon Department approval in accordance with Rule 62-4.120 and 62-730.300, F.A.C., as applicable. The permittee shall be liable for any non-compliance of the permitted activity until the transfer is approved by the Department.
- 12. This permit or a copy thereof shall be kept at the work site of the permitted activity.
- 13. This permit also constitutes:

- (a) Determination of Best Available Control Technology (BACT)
- (b) Determination of Preventions of Significant Deterioration (PSD)
- (c) Certification of compliance with state Water Quality Standards (Section 401, PL 92-500)
- (d) Compliance with New Source Performance Standards
- 14. The permittee shall comply with the following:
- (a) Upon request, the permittee shall furnish all records and plans required under Department rules. During enforcement actions, the retention period for all records will be extended automatically unless otherwise stipulated by the Department.
- (b) The permittee shall hold at the facility or other location designated by this permit records of all monitoring information (including all calibration and maintenance records and all original strip chart recordings for continuous monitoring instrumentation) required by the permit, copies of all reports required by this permit, and records of all data used to complete the application for the permit. These materials shall be retained at least three years from the date of the sample, measurement, report, or application unless otherwise specified by Department rule.
 - (c) Records of monitoring information shall include:
 - 1. the date, exact place, and time of sampling or measurements;
 - 2. the person responsible for performing the sampling or measurements
 - 3. the date analyses were performed;
 - 4. the person responsible for performing the analyses;
 - 5. the analytical techniques or methods used;
 - 6. the results of such analyses.
- 15. When requested by the Department, the permittee shall within a reasonable time furnish any information required by law which is needed to determine compliance with the permit. If the permittee becomes aware the relevant facts were not submitted or were incorrect in the permit application or in any report to the Department, such facts or information shall be corrected promptly.

SPECIFIC CONDITIONS:

- 1. The applicant is responsible for retaining a Florida registered professional engineer as the engineer of record in the application for supervision of the construction of this project, and upon completion, the engineer shall inspect the construction for complete conformity to the plans and specifications as approved. Appropriate certification documents [a letter of certification, one (1) set of as-built drawings, a business check or cash for \$ 40.00, copies of pressure test and bacteriological clearance results (when applicable)] shall then be provided to <u>Broward County Health Department (BCHD)</u>.
- 2. Water system components which come into contact with drinking water shall be certified as being in conformance with ANSI/NSF Standard 61-1995 (Drinking Water System Components).
- 3. Show the conductivity element on the recovery piping as indicated in red on sheet M-1 of the engineering plans.
- 4. Before the start of the first test cycle, analyze the native water from the ASR well two times, four to six months apart, for primary standards, ammonia as N, total phosphorus as P, BOD, COD, secondary standards, and unregulated organic contaminants, and submit the test results to the BCHD, along with a copy of the UIC operational testing approval from DEP, and the well completion report including actual well yield, drawdown, and sand test data, and detailed well construction drawings. All new wells shall be tested, cleaned, disinfected, and bacteriologically cleared in accordance with Sections 62-550 and 62-555.515(3), F.A.C. The applicant shall notify the BCHD five days prior to the start of the first test cycle.
- 5. Analyze, for two (2) years, the recovery stream continuously for conductivity; daily for chloride, sand, total and calcium hardness; alkalinity, turbidity, pH, temperature, color, and iron; weekly for sulfate, total nitrate and nitrite, sodium, ammonia as N, total phosphorous as P, TDS, BOD, COD, and H2S; and monthly for total coliform. After two years the BCHD will evaluate the data and decide what testing may be necessary (frequency and parameters) beyond that point.
- 6. Analyze, for two (2) years, the recharge stream daily for conductivity, chloride, total and calcium hardness, alkalinity, turbidity, pH, temperature, color, and iron; weekly for sulfate, total nitrate and nitrite, sodium, ammonia as N, total phosphorous as P, TDS, BOD, and H₂S; and monthly for total coliform.
- 7. Analyze the water from the monitoring well weekly for chloride, total and calcium hardness, alkalinity, turbidity, pH, temperature, conductivity, color, iron, sulfate, total nitrate and nitrite; sodium, ammonia as N, total phosphorus as P, TDS, BOD, COD, and H₂S; and monthly for total coliform.
- 8. Submit to the BCHD data on transmissivity based on pump test information of the ASR and Floridan monitor well on an annual basis.

2 : 1: x

- 9. A monthly operating report for the ASR well shall be submitted to the BCHD by the 15th of the month for the preceding month. The report shall include daily pumpages (injection and recovery) and analytical test results for all required parameters to be monitored. The routine submittal of this report shall begin with the cycle testing demonstration project.
- 10. The entire recovery stream from the ASR well shall be pumped to the head of the plant and be fully treated along with the raw water from the Biscayne Aquifer.
- 11. Provide a control system to automatically shut down the recovery stream upon reaching 225 mg/l concentration of chloride. Telephone or fax notification shall be provided to the BCHD prior to the start-up and termination of ASR well recovery.
- 12. Written approval, in accordance with the requirements of Chapter 403, F.S., and Chapter 62-4, 62-550, 62-555, and 62-560, F.A.C., from the BCHD shall be required before the ASR well can be put into operation on a routine basis.
- 12. Provide to the BCHD copy and proof of distribution of a public notice educating customers on the use of ASR recovered water.
- 13. This permit does not indicate a waiver or approval of any permits required by this agency for other aspects of the project.

Executed in Fort Lauderdale, Florida,

Broward County Health Department

an X. Muelle

Thomas K. Mueller, P.E.

Environmental Engineering Director

David L. Roach

Senior Administrator

TKM/dn

Copies furnished to:

Geoff Hart, P.E., MW
John Morra, P.E., DEP Southeast District
City of Ft. Lauderdale Building Department

FDEP Construction Permit

Department of **Environmental Protection**

Lawton Chiles Governor

Southeast District P.O. Box 15425 West Palm Beach, Florida 33416

NOTICE OF PERMIT

Virginia B. Wetherell Secretary

CERTIFIED MAIL REQUESTED

Mr. Gregory A. Kisela, PE Public Services Director City of Fort Lauderdale 949 N.W. 38th Street Lauderdale, FL 33309

BROWARD COUNTY UIC - City of Fort Lauderdale Fiveash Water Treat Plant

Permit No.: 0128340-002-UC; Weil ASR-1 Fort (formerlyUC-06-296564)

Dear Mr. Kisela:

Enclosed is Permit Number 0128340-002-UC (previously UC-06-296564), to construct one Class V Aquifer Storage and Recovery well (ASR-1) system at the City of Fort Lauderdale Fiveash Water Treatment Plant (WTP), issued pursuant to Section(s) 403.087, Florida Statutes and Florida Administrative Codes 62-3, 62-4, 62-520, 62-528 and 62-550.

Any party to this Order (permit) has the right to seek judicial review of the permit pursuant to Section 120.68, Florida Statutes, by the filing of a Notice of Appeal pursuant to Rule 9.110. Florida Rules of Appellate Procedure, with the Clerk of the Department in the Office of General Counsel, 3900 Commonwealth Blvd., Mail Station No. 35, Tallahassee, Florida 32399-3000; and by filing a copy of the Notice of Appeal accompanied by the applicable filing fees with the appropriate District Court of Appeal. The Notice of Appeal must be filed within thirty (30) days from the date this Notice is filed with the Clerk of the Department.

Should you have any questions, please contact William W. Cocke, P.G. at (561) 681-6691 or Len Fishkin, P.G., at (561) 681-6742, of this office.

Beach, Florida. OCT 2 V 1997

STATE OF FLORIDA

DEPARTMENT OF ENVIRONMENTAL PROTECTION

MONTGOMERY WATSON PALM BEACH COUNTY OFFICE

Callos Rivero-deAguilar Director of District Management

Southeast District

cc: Scott Hoskins, USEPA/ATL Richard Deuerling, DEP/TAL Len Fishkin, FDEP/ WPB Garth Hinckle, BCDNRP/FTL Nancy Marsh, USEPA/ATL Bill Cocke, FDEP/WPB Steven Anderson, SFWMD/WPB Anne Murray, MWA/PLN

Ron Reese, USGS/MIA Cathy McCarty, FDEP/TLH Phong Nguyen, BCPHU Bob Verrastro, MWA/LW

CERTIFICATE OF SERVICE

ERMIT and all copies were The undersigned duly designated deputy clerk hereby certifies that this NOTICE O mailed before the close of business on to the listed persons by

FILING AND ACKNOWLEDGMENT EILED, on this date, pursuant to the §120.52, Florida Statutes, with the designated Department Clerk/receipt of which is hereby acknowledged.

"Protect, Conserve and Manage Florida's Environment and Natural Resources"

Department of Environmental Protection

Lawton Chiles Governor Southeast District P.O. Box 15425 West Palm Beach, Florida 33416

Virginia B. Wetherell Secretary

PERMITTEE:

Mr. Gregory A. Kisela, P.E. Assistant Director of Utilities City of Fort Lauderdale 43211 N.W. 9th Avenue Fort Lauderdale, FL 33325 ID NUMBER: 5006P98283

PERMIT/CERTIFICATION NO: 0128340-002-UC

(formerly: UC-06-296564)

DATE OF ISSUE: OCT 1 5 1997 EXPIRATION DATE: OCT 1 5 2002

COUNTY: Broward County

LATITUDE/LONGITUDE: 26°10'30"/N/80°09'15"W
PROJECT: City of Fort Lauderdale Fiveash WTP
Class V Aquifer Storage and Recovery

Well (ASR-1) System

This permit is issued under the provisions of Chapter 403.087, Florida Statutes (FS), and Florida Administrative Code (FAC) Rules 62-3, 62-4, 62-520, 62-528 and 62-550. The above named Permittee is hereby authorized to perform the work or operate the facility shown on the application and approved drawing(s), plans, and other documents attached hereto or on file with the Department and made a part hereof and specifically described as follows:

PROJECT: Construction permit for Aquifer Storage and Recovery (ASR) Well ASR-1, Floridan aquifer monitor well, FMW-1, and shallow monitoring well, SMW-1.

CONSTRUCT: A Class V Group 7 sixteen (16)-inch outside diameter (OD) Aquifer Storage and Recovery Well, ...R-1, with casing extending to a depth of approximately 1,000 feet below land surface (bls) and the borehole extending to a depth of approximately 1,200 feet (bls). Final depths will be determined during construction and field testing. The proposed injection fluid is treated potable water from the Fiveash Water Treatment Plant (WTP). During continuous injection and recovery, flow rates will be maintained at approximately 1,400 gallons per minute (gpm). ASR-1 is part of the proposed Aquifer Storage and Recovery System (ASR) at the Fiveash site. A Floridan aquifer test/monitor well, FMW-1, will be constructed with an open-hole completion designed to monitor water quality within the storage zone of ASR-1 from approximately 1,000 feet to 1,200 feet below land surface. Construction of FMW-1 is planned prior to ASR-1 to provide hydrogeologic information. To accommodate operation of the system with untreated Biscayne aquifer water if that system is permitted, a two (2)-inch diameter shallow monitor well, SMW-1, shall be installed and will include a screened interval in the overlying zone of the USDW.

IN ACCORDANCE WITH: Pre-application Meeting held on August 7, 1996; Draft Permit Application and Predesign Report received on September 6, 1996; Pre-application meeting held on September 10, 1996; Application to Construct a Class V Group 7 Aquifer Storage and Recovery System received October 25, 1996; Request for Information (RFI) sent on January 7, 1997; RFI meeting on January 10, 1997; Received RFI Response dated January 29, 1997 on January 31, 1997; Public Notice of Draft Permit published in the Fort Lauderdale Sun Sentinel on June 30, 1997, and in consideration of public comment received as a result of the public meeting held on August 4, 1997 at 10:00 a.m.; Public Notice of Intent to Issue Permit published in the Fort Lauderdale Sun Sentinel on September 13, 1997.

LOCATED AT: City of Fort Lauderdale Fiveash Water Treatment Plant, Fort Lauderdale, Broward County, Florida.

SERVE: City of Fort Lauderdale.

SUBJECT TO: General Conditions 1-17 and Specific Conditions 1-7.

"Protect, Conserve and Manage Fronted's Environment and Natural Resources"

ID NUMBER: 5006P98283
PERMIT/CERTIFICATION NO: 0128340-002UC; (formerly UC-06-296564)

DATE OF ISSUE: OCT 1 5 1937 EXPIRATION DATE OCT 1 5 2002

ENERAL CONDITIONS:

The following General Conditions are referenced in Florida Administrative Code Rule 62-4.160.

- 1. The terms, conditions, requirements, limitations and restrictions set forth in this permit, are "permit conditions" and are binding and enforceable pursuant to Sections 403.141, 403.727, or 403.859 through 403.861, FS. The Permittee is placed on notice that the Department will review this permit periodically and may initiate enforcement action for any violation of these conditions.
- This permit is valid only for the specific processes and operations applied for and indicated in the approved drawings or exhibits. Any unauthorized deviation from the approved drawings, exhibits, specifications, or conditions of this permit may constitute grounds for revocation and enforcement action by the Department.
- 3. As provided in subsections 403.087(6) and 403.722(5), FS, the issuance of this permit does not convey any vested rights or any exclusive privileges. Neither does it authorize any injury to public nor private property nor any invasion of personal rights, nor any infringement of federal, state, or local laws or regulations. This permit is not a waiver of, or approval of, any other Department permit that may be required for other aspects of the total project that are not addressed in this permit.
- 4. This permit conveys no title to land or water, does not constitute State recognition or acknowledgment of title and does not constitute authority for the use of submerged lands unless herein provided and the necessary title or leasehold interests have been obtained from the State. Only the Trustees of the Internal Improvement Trust Fund may express State opinion as to title.
- 5. This permit does not relieve the Permittee from liability for harm or injury to human health or welfare, animal, or plant life, or property caused by the construction or operation of this permitted source, or from penalties therefore; nor does it allow the Permittee to cause pollution in contravention of Florida Statutes and Department rules, unless specifically authorized by an order from the Department.
- 6. The Permittee shall properly operate and maintain the facility and systems of treatment and control (and related appurtenances) that are installed and used by the Permittee to achieve compliance with the conditions of this permit, are required by Department rules. This provision includes the operation of backup or auxiliary facilities or similar systems when necessary to achieve compliance with the conditions of the permit and when required by Department rules.
- 7. The Permittee, by accepting this permit, specifically agrees to allow authorized Department personnel, upon presentation of credentials or other documents as may be required by law and at reasonable times, access to the premises where the permitted activity is located or conducted to:
 - (a) Have access to and copy any records that must be kept under conditions of the permit;
 - (b) Inspect facility, equipment, practices, or operations regulated or required under this permit;
 - (c) Sample or monitor any substances or parameters at any location reasonable necessary to assure compliance with this permit or Department rules. Reasonable time may depend on the nature of the concern being investigated.
- 8. If, for any reason, Permittee does not comply with or will be unable to comply with any condition or limitation specified in the permit, Permittee shall immediately provide the Department with the following:
 - (a) A description of and cause of noncompliance; and

ID NUMBER: 5006P98283

PERMIT/CERTIFICATION NO: 0128340-002UC; (formerly UC-06-296564)
DATE OF ISSUE: 0 CT 1 5 1997

EXPIRATION DATE OF 1 5 2000

(b) The period of noncompliance, including dates and times; or, if not corrected, the anticipated time the noncompliance is expected to continue, and steps being taken to reduce, eliminate, and prevent recurrence of the noncompliance. The Permittee shall be responsible for any and all damages that may result and may be subject to enforcement action by the Department for penalties or for revocation of this permit.

- 9. In accepting this permit, Permittee understands and agrees that all records, notes, monitoring data and other information relating to the construction or operation of this permitted source, which are submitted to the Department, may be used by the Department as evidence in any enforcement case involving the permitted source arising under the Florida Statutes or Department rules, except where such use is prescribed by Section 403.111 and 403.73, FS. Such evidence shall only be used to the extent it is consistent with the Florida Rules of Civil Procedure and appropriate evidentiary rules.
- 10. The Permittee agrees to comply with changes in Department rules and Florida Statutes after a reasonable time for compliance; provided, however, the Permittee does not waive any other rights granted by Florida Statutes or Department rules. A reasonable time for compliance with a new or amended surface water quality standard, other than those standards addressed in Rule 62-302.500, shall include a reasonable time to obtain or be denied a mixing zone for the new or amended standard.
- 11. This permit is transferable only upon Department approval in accordance with Rule 62-4.120 and 62-730.300 FAC, as applicable. The Permittee shall be liable for any non-compliance of the permitted activity until the transfer is approved by the Department.

This permit or a copy thereof shall be kept at the work site of the permitted activity.

- 13. This permit also constitutes:
 - (a) Determination of Best Available Control Technology (BACT);
 - (b) Determination of Prevention of Significant Deterioration (PSD);
 - (c) Certification of compliance with state Water Quality Standards (Section 401, PL 92-500);
 - (d) Compliance with New Source Performance Standards.
- 14. The Permittee shall comply with the following:
 - (a) Upon request, the Permittee shall furnish all records and plans required under Department rules. During enforcement actions, the retention period for all records will be extended automatically unless otherwise stipulated by the Department.
 - (b) The Permittee shall hold at the facility or other location designated by this permit records of all monitoring information (including all calibration and maintenance records and all original strip chart recordings for continuous monitoring instrumentation) required by the permit, copies of all reports required by this permit, and records of all data used to complete the application for this permit. These materials shall be retained at least three years from the date of the sample, measurement, report, or application unless otherwise specified by Department rule.

{This space was intentionally left blank.}

ID NUMBER: 5006P98283 PERMIT/CERTIFICATION NO: 0128340-002UC; (formerly UC-06-296564) DATE OF ISSUE: OCT 1 5 1997 EXPIRATION DATE OCT 1 5 2562

- (c) Records of monitoring information shall include:
 - 1. the date, exact place, and time of sampling or measurements;
 - 2. the person responsible for performing the sampling or measurements;
 - 3. the dates analyses were performed;
 - 4. the person responsible for performing the analyses;
 - 5. the analytical techniques or methods;
 - 6. the results of such analyses.
- 15. When requested by the Department, the Permittee shall within a reasonable time furnish any information required by law which is needed to determine compliance with the permit. If the Permittee becomes aware the relevant facts were not submitted or were incorrect in the permit application or in any report to the Department, such facts or information shall be corrected promptly.
- 16. In the case of an underground injection control permit, the following permit conditions also shall apply:
 - (a) All reports or information required by the Department shall be certified as being true, accurate and
 - (b) Reports of compliance or noncompliance with, or any progress reports on, requirements contained in any compliance schedule of this permit shall be submitted no later than fourteen (14) days following each
 - (c) Notification of any noncompliance, which may endanger health or the environment, shall be reported verbally to the Department within twenty-four (24) hours and again within seventy-two (72) hours, and a final written report provided within two (2) weeks.
 - 1. The verbal reports shall contain any monitoring or other information which indicate that any contaminant may endanger an underground source of drinking water and any noncompliance with a permit condition or malfunction of the injection system which may cause fluid migration into or between underground sources of drinking water.
 - 2. The written submission shall contain a description of and a discussion of the cause of the noncompliance and, if it has not been corrected, the anticipated time the noncompliance is expected to continue, the steps being taken to reduce, eliminate, and prevent recurrence of the noncompliance and all information required by Rule 62-528.230(4)(b), FAC.
 - (d) The Department shall be notified at least one hundred eighty (180) days before conversion or abandonment of an injection well, unless abandonment within a lesser period of time is necessary to protect waters of the state.
- 17. The following conditions also shall apply to a hazardous waste facility permit.
 - (a) The following reports shall be submitted to the Department:
 - 1. Manifest discrepancy report. If a significant discrepancy in a manifest is discovered, the Permittee shall attempt to rectify the discrepancy. If not resolved within fifteen (15) days after the waste is received, the Permittee shall immediately submit a letter report, including a copy of the manifest.
 - 2. Unmanifested waste report. Permittee shall submit an unmanifested waste report to the Department within fifteen (15) days of receipt of unmanifested waste.

ID NUMBER: 5006P98283
PERMIT/CERTIFICATION NO: 0128340-002UC; (formerly UC-06-296564)
DATE OF ISSUE: 001 1 5 1997
EXPIRATION DATE: 001 1 5 2007

- 3. Biennial report. A biennial report covering facility activities during previous calendar year shall be submitted by March 1 of each even numbered year pursuant to Chapter 62-730, FAC.
- (b) Notification of any noncompliance which may endanger health or the environment, including the release of any hazardous waste that may endanger public drinking water supplies or the occurrence of a fire or explosion from the facility which could threaten the environment or human health outside the facility, shall be reported verbally to the Department within twenty-four (24) hours, and a written report shall be provided within five (5) days. The verbal report shall include the name, address, identification number, and telephone number of the facility, its owner or operator, the name and quantity of materials involved, the extent of any injuries, an assessment of actual or potential hazards, and the estimated quantity and disposition of recovered material. The written submission shall contain:
 - 1. A description and cause of the noncompliance; and
 - 2. If not corrected, the expected time of correction, and the steps being taken to reduce, eliminate, and prevent recurrence of the noncompliance.
- c) Reports of compliance or noncompliance with, or any progress reports on, requirements in any compliance schedule shall be submitted no later than fourteen (14) days after each schedule date.
- (d) All reports or information required by the Department by a hazardous waste Permittee shall be signed by a person authorized to sign a permit application.

{This space was intentionally left blank.}

ID NUMBER: 5006P98283

PERMIT/CERTIFICATION NO: 0128340-002UC; (formerly UC-06-296564)

DATE OF ISSUE: OCT 1 5 1987 EXPIRATION DATE: OCT 1 5 CO2

SPECIFIC CONDITIONS:

1. General Requirements

- a. This permit is to construct and operationally test with treated water, the City of Fort Lauderdale Fiveash WTP Class V, Group 7 ASR Weil ASR-1, and if needed, an associated Floridan aquifer monitor well, FMW-1, and a shallow aquifer monitor well, SMW-1. This permit does not authorize the construction or operational testing of any other well or wells associated the City of Fort Lauderdale Fiveash WTP ASR well system. Pad Monitor Wells shall be used to monitor during the construction of the system with untreated Biscayne aquifer water, if that system is permitted.
- b. The measurement points for drilling and logging operations shall be surveyed and referenced to the National Geodetic Vertical Datum (NGVD) of 1929 before the onset of drilling activities for this ASR well.
- c. The Permittee shall be subject to all requirements and regulations of Broward County, and the South Florida Water Management District regarding the construction, testing and operation of this ASR well.
- d. Hurricane Preparedness Upon the issuance of a "Hurricane Watch" by the National Weather Service, the preparations to be made include but are not limited to the following:
 - 1) Secure all on-site salt, chemicals, and other stockpiled additive materials to prevent surface and/or groundwater contamination.
 - Properly secure drilling equipment and rig(s) to prevent damage to well(s) and any on-site treatment process equipment as well as public property.
- e. The surface monitoring well equipment and piping shall be kept free of corrosion at all times.
- f. Waters spilled during drilling of the system shall be contained and properly disposed.
- g. Pad Monitor Wells (PMWs) shall be installed to accommodate operation of the system with untreated Biscayne water, if that system is permitted. Four (4) permanent surficial aquifer monitor wells identified as Pad Monitor Wells shall be located at the corners of the drilling pad and identified by ASR well number, location number, and pad location, i.e. NW, NE, SW, and SE. These wells shall be sampled and analyzed prior to the onset of drilling for chlorides (mg/l), conductivity (umhos), total dissolved solids, and water level (relative to NGVD). Initial analyses must be submitted prior to the initiation of work on the Class V, Group 7, potable water ASR well. These wells are to be retained in service, sampled weekly for the above parameters, during the construction phase and quarterly thereafter. If located in a traffic area, the well heads must be protected by a traffic bearing enclosure and cover. Individual covers must be specifically marked to identify the well and its purpose. A copy of the FDEP Southeast District Summary Sheet is attached for your use when reporting the above information.

{This space was intentionally left blank.}

2. C 'ity Assurance/Quality Control Requirements

- a. The Engineer of Record shall certify all documents related to the completion all well construction. The Department shall be notified immediately of any change of the Engineer of Record.
- b. All documents prepared for the geological/hydrogeological evaluation of this project shall be signed and sealed by a Florida Licensed Professional Geologist or qualified Florida Licensed Professional Engineer.
- c. Continuous on-site supervision by qualified personnel (engineer and/or geologist) is required during all geophysical logging operations, coring, aquifer testing, casing installation, and cementing operations.

3. Construction Testing Requirements

- a. Blow-out preventers shall be installed on the wells prior to penetration of the Floridan Aquifer System.
- b. The Department shall be notified within forty-eight (48) hours after work has commenced.
- c. Department approval and Underground Injection Control Technical Advisory Committee (UIC-TAC) review is required prior to the following stages of construction:
 - 1) Contract documents approval and spud date;
 - 2) Monitor zone & storage zone selections and final ASR & monitor well casing seats;
 - 3) Plugging back pilot hole at base of storage zone; and
 - 4) Method(s) of flow control during recharge of the ASR well during operation and operational testing.
- d. The geophysical logging program, as defined in the Design Report (dated October 25, 1996) and in the response to a RFI (dated January 29, 1997), during drilling of the ASR well, shall at a minimum, include:
 - 1) Pilot hole to approximately four hundred (400) feet below land surface (bls):

Caliper

Natural gamma;

Spontaneous potential; and

Long and short normal electric.

2) Reamed hole to approximately four hundred (400) feet bis:

Caliper.

3) Cased hole to approximately four hundred (400) feet bls:

Temperature log after each stage of cementing unless the cement returns are observed at land surface; and

Gamma ray log, if needed.

4) Pilot hole to the top of the storage zone at approximately one thousand (1,000) feet bls:

Caliper;

Natural gamma;

Spontaneous potential; and

Long and short normal electric.

ID NUMBER: 5006P98283
PERMIT/CERTIFICATION NO: 0128340-002UC; (formerly UC-06-296564)
DATE OF ISSUE: 0 1 5 1997
EXPIRATION DATE: 0 1 5 2552

5) During testing of the uppermost interval of the Floridan aquifer (from 900 to 1,100 feet bls):

Fluid resistivity;

Temperature;

Caliper; and

Flow meter (while pumping at a rate sufficient to stress the aquifer).

6) Reamed hole to the top of the storage zone at approximately one thousand (1,000) feet bls: Caliper.

7) Cased hole to the top of the Floridan Aquifer approximately one thousand (1,000) feet bls:

Temperature log after each stage of cementing unless cement returns seen at land surfaces. Cement bond log.

8) During pumping tests during drilling:

Fluid resistivity:

Temperature;

Caliper; and

Flowmeter (with a minimum rate of 250 gpm).

9) Sixteen (16)-inch open hole below the final casing to approximately 1,300 feet bls:

Caliper;

Natural gamma;

Dual induction;

Spontaneous potential;

Borehole compensated sonic with VDL display;

Temperature (static and dynamic);

Electric (long and short normal);

Downhole television survey; and

Flowmeter (static and dynamic) with a minimum rate of 500 gpm.

10) Completed well:

Downhole television survey;

Temperature (static and dynamic);

Flowmeter (static and dynamic);

Cement Bond Log; and

Caliper.

11) During the twenty-four (24) pump testing:

Temperature;

Fluid resistivity;

Caliper; and

Flowmeter.

- e. Interval tests shall be performed in the storage zone after thorough development of the borehole, to conduct geophysical logging, determine water quality characteristics (chloride, TDS conductivity, temperature and pH) and to provide a better definition of the quantitative characteristics (permeability values) of the zone. Packer testing of the uppermost Floridan aquifer will be used to: 1.) evaluate the hydraulic or confining characteristics of the zone, 2.) perform geophysical logs, and 3.) collect water samples to be analyzed for chlorides, conductivity, total dissolved solids, pH, temperature bicarbonate, calcium, potassium, sodium, and magnesium. A five (5) gallon sample of formation fluid shall be collected at the end of the all packer and/or interval tests for which a background sample unaffected by injection can be obtained and has not already been acquired. Samples should be labeled as to well number, depth, type of sample and shipped to the Underground Injection Control Program of the Department of Environmental Protection, M.S. 3530, 2600 Blair Stone Road, Tallahassee FL 32399-2400.
- f. The Department shall be notified at least seventy-two (72) hours prior to all testing for mechanical integrity.

ID NUMBER: 5006P98283

PERMIT/CERTIFICATION NO: 0128340-002UC; (formerly UC-06-296564)
DATE OF ISSUE: 001 1 5 1997
EXPIRATION DATE: 001 1 5 2862

g. All testing for mechanical integrity must be initiated during normal business hours, Monday through Thursday.

- h. Pressure gages and flow meters shall be installed on the ASR well prior to initiating ASR activities at the site.
- i. The pressure test for the final casing will be accepted if tested with a fluid-filled casing at one-and-a-half (1.5) times the expected operating pressure with a test tolerance of plus (+) or minus (-) five (5)%. Verification of pressure gage calibration within six (6) months of test date must be provided with the test reports.
- j. No drilling operations shall begin without an approved disposal site for drilling fluids, cuttings, or waste. It shall be the Permittee's responsibility to obtain the necessary approval(s) for disposal prior to the start of construction.
- k. UIC-TAC meetings are scheduled on the second (2nd) and fourth (4th) Tuesday of each month subject to a five (5) working day prior notice and timely receipt of critical data by all UIC-TAC members. Department approval at a scheduled UIC-TAC meeting shall be based on the Permittee's presentation that shows compliance with Department rules and this permit. Emergency meetings may be arranged when justified, to avoid undue construction delays.
- 1. Upon approval by the Department, the monitor zone of each monitor well will be positioned in a transmissive interval. The monitor zone in each monitor well must have sufficient yield for collection of a representative sample.
- m. Department or Department-delegated local program potable water construction permits must be issued for all surface piping and appurtenances upstream of the ASR well-head. Bacteriological clearances must be performed prior to operational testing of the ASR well system.

4. Reporting Requirements

a. All reports and surveys required by this permit shall be submitted concurrently to all the members of the UIC-TAC. The UIC-TAC shall consist of representatives from these agencies:

Department of Environmental Protection, West Palm Beach and Tallahassee: United States Environmental Protection Agency, Region IV, Atlanta; United States Geological Survey (USGS), Miami; South Florida Water Management District (SFWMD), West Palm Beach; Broward County Department of Natural Resources Protection (BCDNRP), Fort Lauderdale; and Broward County Public Health Unit (BCPHU), Fort Lauderdale.

b. The Department and other applicable agencies must be notified immediately, within twenty-four hours (24), of any unusual events occurring during construction activities (e.g. on-site spills, artesian flows, large volumes of circulation losses, equipment damage due to: fire, wind, and drilling difficulties, etc.) A written report describing the incident shall also be given to the Department within seventy-two (72) hours of the start of the event. In addition, a final written report shall be sent to the Department within two (2) weeks of the event. The final report shall contain a complete description of the occurrence, a discussion of its cause(s), and the steps being taken to reduce, eliminate, and prevent recurrence of the event and all other information deemed necessary by the Department.

ID NUMBER: 5006P98283

EXPIRATION DATE: OCT 1 5 2002

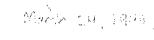
A drilling and construction schedule shall be submitted to the Department and UIC-TAC prior to site preparation for the ASR well system.

- d. Weekly progress reports shall be submitted throughout the construction and cycle testing periods, and shall include at a minimum the following information:
 - 1) A cover letter summary of the daily engineer report, driller's log and a projection for activities in the next reporting period;
 - 2) Daily engineers report and driller's log with detailed descriptions of all drilling progress, cementing, testing, logging, and casing installation activities;
 - Lithologic and geophysical logs and water quality test results;
 - 4) Detailed description of any unusual construction-related events that occur during the reporting period;
 - 5) Weekly water quality analysis and water levels for the monitor wells; and
 - 6) Current status and progress of cycle testing.
- e. An interpretation of all test results and geophysical logs must be provided with all submittals.
- f. All final casing seat requests, for the ASR well and monitor well shall be accompanied by technical justification, including but not limited to, geophysical logs with interpretations, and water quality data. Monitor well final casing seat request shall address the monitoring of movement of exempted parameters into the uppermost zone of the Floridan aquifer and monitoring of this zone, if needed.
- q. Upon completion of analysis of cores and sample cuttings, the Permittee shall contact the Underground Injection Control Section of the Department of Environmental Protection in Tallahassee to arrange their transfer to the Florida State Geologic Survey.
- h. The submittal for the request for approval to plug back the pilot hole to modify the storage zone, shall include:
 - 1) withdrawal test data and interpretations;
 - 2) water quality reports;
 - 3) geophysical log interpretations including flow analysis;
 - 4) identification of storage zone boundaries and characteristics; and
 - 5) demonstration of confinement and evaluation of potential for upconing of poorer quality water.
- i. Upon completion of construction and the cycle testing phase of operational testing, a final report shall be submitted to the Department and TAC. The report shall include, but not be limited to, all information and data collected under Rules 62-528.605, 62-528.615, and 62-528.635, FAC, with appropriate interpretations. To the extent possible, the report should include:
 - 1) the transmissivity of the storage zone;
 - 2) the maximum ASR capacity within safe and economical pressure limits;
 - detailed results and analysis of cycle testing;
 - 4) the maximum lateral extent of the storage zone, if the well will be used for storage and recovery of untreated Biscayne aquifer water;
 - 5) operation and maintenance manual:
 - 6) record (or As-Built) drawings, of the ASR well, surface equipment, instrumentation and appurtenances, sealed by the Engineer of Record:
 - summary of all water quality, water level and well performance data collected, with conclusions and recommendations;

ID NUMBER: 5006P98283 PERMIT/CERTIFICATION NO: 0128340-002UC; (formerly UC-06-296564) EXPIRATION DATE OCT 1 5 1937 OCT 1 5 2002

- 8) well location must be surveyed relative to permanent reference points by a Florida registered land surveyor, and located on a site plan by latitude and longitude; and
- 9) mill certificates for all casing.
- j. Pursuant to Rule 62-4.080(3), a Permittee may request that a permit be extended as a modification of an existing permit. A request for an extension is the responsibility of the Permittee and shall be submitted to the Department before the expiration of the permit. In accordance with Rule 62-4.070(4) FAC, a permit cannot be extended beyond the maximum five (5) year statutory limit. Should operational testing need to continue beyond the five (5) years of this permit, the Permittee must renew this construction permit.
- k. A request for authorization to use the ASR well shall be submitted at least sixty (60) days prior to the expiration of this permit.
- I. Operational testing of this ASR well shall cease upon expiration of this permit, unless authorization is issued by the Department, or a timely renewal application (Rule 62-4.090, FAC) for this construction permit has been submitted to the Department.
- m. In the event the ASR well must be plugged and abandoned, the Permittee shall obtain an FDEP permit, as required by Rule 62-528.645, FAC.

5. Operational Testing Requirements


- a. Operational testing shall not commence without written authorization from the Department.
- b. Prior to operational testing, the following items must be submitted for TAC review and Department approval:
 - 1) a draft operation and maintenance manual with emergency procedures;
 - 2) borehole television survey of the ASR well and the final casing of the well;
 - 3) lithologic and geophysical logs with interpretations;
 - 4) certification of mechanical integrity and interpreted test data;
 - 5) aquifer test data, analysis and interpretation;
 - 6) detailed cycle testing plan including the number of cycles and duration of cycles;
 - 7) background water quality results from the storage zone for primary and secondary drinking water standards (62-550, FAC) and minimum criteria parameters (62-520 FAC), as attached;
 - 8) water quality results of the injectant for primary, and secondary standards and minimum criteria, excluding asbestos, acrylamide, epichlorohydrin and the primary pesticide scan, including dissolved oxygen and total trihalomethanes;
 - 9) surface equipment completion certification or certification of interim completion for the purposes
 - 10) signed and sealed record (or As-Built) engineering drawings of As-Built conditions of all subsurface, surface equipment and appurtenances; and
 - 11) flow control plan.

[This space intentionally left blank]

ID NUMBER: 5006P98283

PERMIT/CERTIFICATION NO: 0128340-002UC; (formerly UC-06-296564)

DATE OF ISSUE: 0 CT 1 5 2007 EXPIRATION DATE: 0 CT 1 5 2002

- c. The Permittee shall calibrate all pressure gages, flowmeters, chart recorders, and other related equipment associated with the ASR well system on a semi-annual basis. The Permittee shall maintain all monitoring equipment and shall ensure that the monitoring equipment is calibrated and in proper operating condition at all times. Laboratory equipment, methods, and quality control will follow EPA guidelines as expressed in Standard Methods for the Examination of Water and Wastewater. The pressure gages, flow meter, and chart records shall be calibrated using standard engineering methods.
- d. Department or Department delegated local program potable water construction permits must be issued for all surface piping and appurtenances upstream of the ASR wellhead. Bacteriological clearance must be performed prior to operational testing of the ASR system.

Operational Testing Conditions

- a. Upon receipt of written authorization from the Department, the operational testing of the ASR well is subject to the following conditions:
 - 1) A qualified representative of the Engineer of Record must be present for the start-up operations.
 - 2) Flows to the ASR well shall be monitored and controlled at all times to ensure the maximum injection rate does not exceed that rate at which the well was tested.
 - 3) Any failure of the ASR well monitoring and recording equipment for a period of more than forty-eight (48) hours shall be reported immediately to the Department. A written report describing the incident shall also be given to the Department within seventy-two (72) hours of the start of the event. In addition, a final written report shall be sent to the Department within two (2) weeks of the event. The final report shall contain a complete description of the occurrence, discuss its cause(s) and the steps being taken to reduce, eliminate, and prevent recurrence of the event, and all other information deemed necessary by the Department.
 - 4) The following data shall be collected and reported to the Department in Monthly Operating Reports (MORs), no later than the fifteenth (15th) day of the month immediately following the end of the sampling period. The results shall be sent to the Department of Environmental Protection, Southeast District Office, PO Box 15425, West Palm Beach, Florida, 33416. Copies of the results shall also be sent to the Underground Injection Control Section, Bureau of Drinking Water and Ground Water Resources, Department of Environmental Protection, 2600 Blair Stone Road, Tallahassee, FL 32399-2400.
 - a) ASR well performance:
 - * total daily flow to/from the well (mg);
 - * daily average, maximum and minimum injection pressure at the well (psig);
 - * average maximum and minimum daily flow to/from the well (gpm); and
 - * cumulative total volume injected and recovered from the well (gal).
 - b) Cycle Testing: The ASR well shall be monitored during each injection, storage, and recovery cycle, in accordance with the parameters and frequency listed below.

[This space intentionally left blank]

ID NUMBER: 5006P98283

PERMIT/CERTIFICATION NO: 0128340-002UC; (formerly UC-06-296564)

DATE OF ISSUE: UCT 1 5 1997 EXPIRATION DATE: CT 1 5 202

		OPERATIONAL TESTING								
		CYCLETESTING NORMAL OPER			PERAT	IONS				
							STOR	AGE	RECC	VERY
	DAILY	WEEKLY	BEGINNING OF INJECTION	STORAGE	BEGINNING OF RECOVERY	END OF RECOVERY	MONTHLY	QUARTERLY	MONTHLY	QUARTERLY
Chloride (mg/l)	AFS						AFS		AFS	
Conductivity (umhos/cm)	AFS						AFS		AFS	
TDS (mg/l)	AFS						AFS		AFS	
Total Trihalomethanes (mg/l)		AF					AF	AF	AF	AF
Temperature (^O C)		AF					AF		AF	
pH (std units)		AF					AF		AF	
Turbidity (NTU)		AF					AF		AF	
Total Iron (mg/l)		AF					AF		AF	
Total Alkalinity (mg/l)		AF					AF		AF	
Sulfate (mg/l)		AF					AF		AF	
Gross Alpha (pCi/l)			AF	AF	AF	AF		Α		Α
Dissolved Oxygen (mg/l)			AF	AF	AF	AF				
Iron Hydroxide (mg/l)			AF	AF	AF	AF				
Primary, Secondary and										
Minimum Criteria		- [} ;			Α		A

A:ASR-1

F:FMW-1

S:SMW-1 (if constructed)

- c) TKN and ammonia shall be sampled if background water quality data show significant differences when compared with the results of the injectant.
- d) The Department may require the monitoring of additional parameters if water quality monitoring of the Biscayne aquifer or the injection fluid indicates any of the following:
 - (i) quality of the injectant is deteriorating;
 - (ii) results of the sampling indicate significant differences in water quality during consecutive sampling events; and
 - (iii) a source of contamination to the ASR storage zone is discovered that was not addressed in the permit.
- 5) A minimum of three (3) well volumes of fluid shall be evacuated from the well prior to sampling for the chemical parameters listed above.

ID NUMBER: 5006P98283

PERMIT/CERTIFICATION NO: 0128340-002UC; (formerly UC-06-296564)

DATE OF ISSUE: OCT 1 5 1997 EXPIRATION DATE: OCT 1 5 2892

6) All data submissions, including MOR's, shall be clearly identified on each page with facility name, identification number, date of sampling/recording, operator's name, license and telephone number, and type of data shown. The lead plant operator or higher official must sign and date each submittal. A copy of the Southeast District, UIC Section, MOR summary sheet is attached for your use.

- b. No fluids shall be injected without prior written authorization from the Department.
- c. The only source of injectant shall be water meeting all Primary and Secondary drinking water quality standards and minimum criteria unless otherwise exempted.

7. Signatories

- a. All reports and other submittals required to comply with this permit shall be signed by a person authorized under Rules 62-528.340(1) or (2), FAC.
- b. In accordance with Rule 62-528.340(4), FAC, all reports shall contain the following certification:

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fines and imprisonment for knowing violations."

Issued this 15th day of October 1997

STATE OF FLORIDA
DEPARTMENT OF ENVIRONMENTAL PROTECTION

Carlos Rivero-de Aguilar

Director of District Management

Southeast District

ID NUMBER: 5006P98283

PERMIT/CERTIFICATION NO: 0128340-002UC; (formerly UC-06-296564) DATE OF ISSUE: UC 1 5 1637

EXPIRATION DATE: 907 1 5 2002

PRIMARY DRINKING WATER STANDARDS

Updated January 1996

PARAMETER

Alachlor Aldicarb

Aldicarb sulfoxide Aldicarb sulfone

Aroclors (Polychlorinated Biphenyls or PCB's)

Alpha, Gross Antimony Arsenic Asbestos Atrazine Barium

Benzene Benzo(a)pyrene

Beryllium

Bis(2-ethylhexyl) adipate (Di(2-ethylhexyl)

adipate)

Bis(2-ethylhexyi) phthalate (Di(2-ethylhexyi)

phthalate) Cadmium Carbofuran

Carbon Tetrachloride (Tetrachloromethane)

Chlordane Chlor

nzene (Monochlorobenzene) inylene (Vinyl Chloride)

Chlo Chromium

Coliforms, Total Cyanide

2,4-D (2,4-Dichlorophenoxyacetic acid) Dalapon (2,2-Dichloropropionic acid)

Dibromochloropropane (DBCP)

1,2-Dibromoethane (EDB, Ethylene Dibromide)

1,2-Dichlorobenzene (o-Dichlorobenzene)

1,4-Dichlorobenzene (p-Dichlorobenzene or Para

Dichlorobenzene)

1,2-Dichloroethane (Ethylene dichloride) 1,1-Dichloroethylene (Vinylidene chloride) cis-1,2-Dichloroethylene (1,2-Dichlorethylene) trans-1,2-Dichloroethylene (1,2-Dichlorethylene)

Dichloromethane (Methylene chloride)

1,2-Dichloropropane

Di(2-ethylhexyi) adipate (Bis(2-ethylhexyl)

adipate)

Di(2-ethylhexyl) phthalate (Bis(2-ethylhexyl)

phthalate) Dinoseb Diquat

EDB (Ethylene dibromide, 1,2-Dibromoethane)

Endothail Endrin Ethy zene Ethylene dichloride (1,2-Dichloroethane)

Fluoride

Glyphosate (Roundup)

Gross Alpha Heptachlor

Heptachlor Epoxide Hexachlorobenzene (HCB)

gamma-Hexachlorocyclohexane (Lindane)

Hexachiorocyclopentadiene

Lead

Lindane (gamma-Hexachlorocyclohexane)

Mercury Methoxychior

Methylene chloride (Dichloromethane) Monochlorobenzene (Chlorobenzene)

Nickel Nitrate (as N) Nitrite (as N)

Total Nitrate + Nitrite (as N)

Oxamyl

Pentachlorophenol

Perchloroethylene (Tetrachloroethylene)

Picloram

Polychlorinated biphenyl (PCB or Aroclors)

Radium

Roundup (Glyphosate

Selenium Silver

Silvex (2,4,5-TP)

Simazine Sodium

Styrene (Vinyl benzene)

Tetrachloroethylene (Perchloroethylene) Tetrachloromethane (Carbon Tetrachloride)

Thallium Toluene Toxaphene 2,4,5-TP (Silvex) 1,2,4-Trichlorobenzene 1,1,1-Trichloroethane 1,1,2-Trichloroethane

Trichloroethylene (Trichloroethene, TCE)

Trihalomethanes, Total

Vinyl Chloride (Chloroethylene)

Xylenes (totai)

ID NUMBER: 5006P98283

SECONDARY DRINKING WATER STANDARDS

Aluminum Chloride Color Copper Corrosivity Ethylbenzene Fluoride

Foaming Agents (MBAS)

Iron

Manganese

Odor pН Silver Sulfate Toluene

Total Dissolved Solids (TDS)

Xvlenes Zinc

MUNICIPAL WASTEWATER MINIMUM CRITERIA **GROUND WATER MONITORING PARAMETERS**

INORGANICS

Ammonia

Nitrogen (organic)

Orthophosphate (soluble)

Phosphorus

Total Kjeldahl Nitrogen

VOLATILE ORGANICS

Chloroethane

Chloroform

para-Dichlorobenzene

1,2-Dichloroethylene (cis-1,2-Dichloroethylene or trans-1,2-Dichloroethylene)

Base/Neutral Organics

Anthracene

Butylbenzylphthaliate Dimethylphthallate Naphalene Phenanthrene

PESTICIDES AND PCBs

Aldrin Dieldrin Dioxin

Acid Extractables

2-chlorophenol

Phenol

2,4,6-trichlorophenol

Other

Conductivity

Biological Oxygen Demand

Temperature

Water Quality Criteria Exemption

TUL Y

BEFORE THE STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION

IN RE:)					
)					
Petition for Water Quality)	OGC File No. 98-0411				
Exemptions by)	Broward County				
City of Fort Lauderdale	Ì	-				

FINAL ORDER

BY THE DEPARTMENT:

On November 6, 1996, the Department received from the City of Fort Lauderdale (Petitioner) a petition for exemptions, pursuant to rule 62-520.500 of the Florida Administrative Code. The Petitioner requested relief from rule 62-520.420 of the Florida Administrative Code (standards for Class G-I and Class G-II ground water), for an installation that will discharge into a Class G-II ground water. The exemptions are color (exemption request 100 color units, maximum contaminant level (MCL) 15 color units), odor (exemption request 8 odor threshold number, MCL 3 odor threshold number), and iron (exemption request 6.0 mg/L, MCL 0.30 mg/L). The installation is the City of Fort Lauderdale Fiveash Water Treatment Plant (WTP) aquifer storage and recovery (ASR) facility, which is to be located at 4321 N.W. 9 Avenue, Fort Lauderdale (latitude 26°10'30" north and longitude 80°09'15" west) in Broward County, Florida.

After reviewing the petition, the Department has concluded that the requirements and criteria set forth in rule 62-520.500

of the Florida Administrative Code have been satisfied. A copy of the Department's Intent to Grant is attached as Exhibit I.

The letter with the Notice of Intent, notified the petitioner of the Department's proposed agency action and advised it of its right to a hearing pursuant to sections 120.569 and 120.57 of the Florida Statutes. On May 13, 1998, notice was given in the <u>Sun Sentinel</u>, Fort Lauderdale, Florida, and on May 8, 1998, notice was published in the <u>Florida Administrative Weekly</u>, informing the public of the Department's intended action and offering an opportunity for hearing pursuant to sections 120.569 and 120.57 of the Florida Statutes. A copy of these notices are attached as Exhibits II and III, respectively.

The petitioner and interested parties having been advised of their rights under chapter 120 of the Florida Statutes, and having failed or declined to file a petition pursuant to sections 120.569 and 120.57 of the Florida Statutes are hereby deemed to have waived those rights.

IT IS THEREFORE ORDERED that the petition of the City of Fort Lauderdale requesting exemptions under rule 62-520.500 of the Florida Administrative Code from the color, odor, and iron water quality criteria set forth in rule 62-520.420 of the Florida Administrative Code for the ground waters specified herein is hereby GRANTED, subject to the conditions:

(a) The exemptions are granted for the duration of the Fort
Lauderdale Fiveash WTP raw water ASR Class V well
construction permit, 0128340-003-UC. Future exemptions must

- be petitioned for by the applicant in conjunction with an operation permit for any ASR project at this site.
- (b) The exemptions provide relief only from the color, odor, and iron standards contained in rule 62-550.320 of the Florida Administrative Code, as referenced in rule 62-520.420 of the Florida Administrative Code at the approved alternative levels of 100 color units, 8 odor threshold number, and 6.0 mg/L, respectively. All other ground water quality standards, including the primary drinking water standards contained in rule 62-550.310 of the Florida Administrative Code, and the minimum criteria contained in rule 62-520.400 of the Florida Administrative Code, apply to this ASR project.
- (c) The petitioner shall monitor water quality in accordance with the specific conditions of construction permit 0128340-003-UC and any authorization for operational testing issued under that permit.
- (d) If any of the conditions in 1. and 2. below occur because of injection at the Fort Lauderdale Fiveash WTP Raw Water Aquifer Storage and Recovery Facility, injection into the ASR well shall cease until a water quality criteria exemption that addresses any additional parameters exceeding water quality standards, or an aquifer exemption pursuant to rule 62-528.300(3) of the Florida Administrative Code, as appropriate, has been obtained.
 - 1. Surficial Aquifer Monitor Well

- a. The MCL is exceeded for any parameter contained in the primary drinking water standards; or
- b. The MCL or natural background level (whichever is poorer) is exceeded for any parameter contained in the secondary drinking water standards or minimum criteria.

2. Storage Zone Monitor Well

- a. The MCL is exceeded for any parameter contained in the primary drinking water standards; or
- b. The MCL or natural background level (whichever is poorer) is exceeded for any parameter contained in the secondary drinking water standards or minimum criteria except color, odor, or iron; or
- c. Color, odor, or iron exceed the approved alternative level of 100 color units, 8 odor threshold number, and 6.0 mg/L, respectively.
- (e) The permittee shall use the data obtained during operational testing to assess the distance from the ASR well that the color, odor, and iron standard would be exceeded. Based on the reassessment, the permittee shall determine if additional monitoring is necessary to protect underground sources of drinking water prior to obtaining an operation permit.

These exemptions, unless otherwise ordered, shall be valid for the duration of the Fiveash WTP ASR project Class V well construction permit. Additionally, the applicant must petition the Department for exemptions in conjunction with an operation permit for any ASR project at this site.

Any party to this order has the right to seek judicial review of the order pursuant to section 120.68 of the Florida Statutes by the filing of a Notice of Appeal pursuant to rule 9.110 of the Florida Rules of Appellate Procedure, with the Clerk of the Department in the Office of General Counsel, 3900 Commonwealth Boulevard, Mail Station #35, Tallahassee, Florida 32399-3000; and by filing a copy of the Notice of Appeal, accompanied by the applicable filing fees, with the appropriate District Court of Appeal. The Notice of Appeal must be filed within 30 days from the date this Order is filed with the Clerk of the Department.

DONE AND ORDERED this 27 day of July 1998 in Tallahassee, Florida.

STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION

VIRGINIA B. WETHERELL

Secretary

3900 Commonwealth Boulevard Tallahassee, Florida

Telephone: (904)488-1554

Copies furnished to:

Carlos Rivero-deAguilar, DEP/West Palm Beach Richard Drew
Al Mueller, DEP/West Palm Beach
Bill Cocke, DEP/West Palm Beach
Richard J. Deuerling
Cynthia Christen
Cathy McCarty
Nancy Marsh, EPA/Atlanta
Anne Murray, Montgomery Watson/Plantation

- (b) A statement of how and when each petitioner received notice of the Department's action or proposed action;
- A statement of how each petitioner's substantial interests ifected by the Department's action or proposed action;
- (d) A statement of the material facts disputed by Petitioner, if any;
- (e) A statement of facts which petitioner contends warrant reversal or modification of the Department's action or proposed action;
- (f) A statement of which rules or statutes petitioner contends require reversal or modification of the Department's action or proposed action; and
- (g) A statement of the relief sought by petitioner, stating precisely the action petitioner wants the Department to take with respect to the Department's action or proposed action.

A petition that does not dispute the material facts on which the Department's action is based shall state that no such facts are in dispute and otherwise shall contain the same information as set forth above, as required by rule 28-106.301 of the Florida Administrative Code,

Because the administrative hearing process is designed to formulate final agency action, the filing of a petition means that the Department's final action may be different from the position taken by it in this order. Persons whose substantial interests will be affected by any such final decision of the Department on the application have the right to petition to become a party to the proceeding, in accordance with the re ements set forth above.

Mediation under section 120.573 of the Florida Statutes is not available for this proceeding.

The application is available for public inspection during normal business hours, 8:00 a.m. - 5:00 p.m., Monday through Friday, except legal holidays, at the Tallahassee Office, 2600 Blair Stone Road, Room 212E, Tallahassee, Florida 32399-2400.

NOTICE OF AVAILABILITY FLORIDA FINDING OF NO SIGNIFICANT IMPACT VOLUSIA COUNTY, FLORIDA TREATMENT & REUSE FACILITIES

The Florida Department of Environmental Protection has determined that the proposed Volusia County's Wastewater Treatment Facilities will not have a significant adverse effect on the environment. The top project cost is estimated at \$10,476,000 consisting \$2,346,000 for Phase I, and \$7,930,000 for Phase II The project is expected to qualify for a State Revolving Fund loan composed of Federal and State matching funds A full copy of the Florida Finding of No Significant Impact can be obtained by writing. Troy Mullis, of Water Facilities Funding, Department of Environmental Protection, 2600 Blair Stone Road, MS 13505, Tahahassee, Florida 32399-2400.

STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION

In the Matter of an)
Petition for Water Quality)
Exemptions,)
City of Fort Lauderdale)
Fiveash Water Treatment Plant)

OGC File No. 98-0411 Broward County

INTENT TO GRANT

The Department of Environmental Protection gives notice of its intent to grant water quality criteria exemptions to the City of Fort Lauderdale's Fiveash Water Treatment Plant, Mr. Gregory A. Kisela, Public Services Director, 949 N.W. 38 Street, Fort Lauderdale, Florida, 33309 for the proposed project as detailed in the petition specified above. The Department is issuing this Intent to Grant for the reasons stated below.

On September 9, 1996, the Department received a petition from the applicant, City of Fort Lauderdale (City), for the exemptions for installations discharging into Class G-II ground water pursuant to rule 62-520.500 of the Florida Administrative Code. The City requested exemptions from ground water standards contained in rule 62-520.420(1) of the Florida Administrative Code. Specifically, the petition requested exemptions from three secondary drinking water standards, color, odor, and iron, which are incorporated as ground water standards. The exemption request for color is 100 color units and the maximum contaminant level (MCL) for color contained in the secondary drinking water

EXHIBIT I

standards is 15 color units. The exemption request for odor is 8 odor threshold number and the MCL for odor contained in the secondary drinking water standards is 3 odor threshold number. The exemption request for iron is 6.0 mg/L and the MCL for iron contained in the secondary drinking water standards is 0.30 mg/L. As secondary drinking water standards, these standards are aesthetically based and do not pose a health threat at the requested levels. The installation is the Fiveash Water Treatment Plant (FWTP) Aquifer Storage and Recovery (ASR) Facility which is located at 4321 N.W. 9 Avenue, Fort Lauderdale, Florida, in Broward County. The water to be used for this ASR project is raw ground water from the Prospect Wellfield. The source of the raw ground water for the Prospect Wellfield is the Biscayne aquifer. The receiving aquifer is the upper Floridan aquifer.

The Department also has permitting jurisdiction under chapter 403 of the Florida Statutes. The project is not exempt from permitting procedures. The Department has determined that in addition to the exemptions, a construction permit is required for the facility.

The Department has reviewed the above petition for the exemptions under the requirements of rule 62-520.500 of the Florida Administrative Code, and hereby gives notice of its intent to grant the exemptions to FWTP for its aquifer storage and recovery facility based on the following findings:

(1) Granting these exemptions is clearly in the public interest.

Storing excess water of good quality by ASR projects for future use meets the public demand for a reliable supply of water at a reasonable cost, while not adversely affecting the environment. The water to be used for this ASR operation has a total dissolved solids (TDS) concentration that ranges between 270 mg/L and 545 mg/L. The secondary drinking water standard for TDS is 500 mg/L. The receiving aquifer has TDS concentration estimated to be between approximately 1,000 to 5,000 mg/L. Since the injected fluid will have a lower concentration of TDS than the ground water in the injection zone, and it meets all of the primary drinking water standards, storing excess water of good quality using ASR technology for future use meets the public demand for a reliable supply of water at a reasonable cost, while not adversely affecting the environment. Granting the water quality criteria exemptions for color, odor, and iron will provide a cost effective method of storing excess raw water during the wet season to be used after treatment for potable water needs when the demand is high and the supply is low during the dry season. ASR can minimize salt water intrusion by reducing the impacts of wellfield pumping during the dry season.

(2) Compliance with presently specified criteria is unnecessary for the protection of present and future potable water supplies. The storage zone water of the upper Floridan aquifer system is classified as Class G-II ground water (TDS concentration of less than 10,000 mg/L), but is not potable without significant treatment. When water from this aquifer is withdrawn for potable use, it is typically treated by reverse osmosis technology which would reduce the color, odor, and iron concentrations to below the drinking water standards.

(3) Granting the exemptions will not interfere with existing uses or the designated use of the waters or of contiguous water.

A well inventory and water use survey was conducted within the FWTP area. There are no existing uses of the Floridan aquifer within a one mile radius of the ASR well and no future wells are anticipated. Existing uses of the Floridan aquifer in the vicinity of the FWTP beyond a one-mile radius from the ASR site are for other ASR facilities, ambient monitoring, and Class I injection well monitoring.

(4) The economic, environmental, and social costs of compliance with existing criteria outweigh the economic, environmental, and social benefits of compliance.

Compliance with the criteria would mean that the recharge water would have to be treated before being injected. The treatment method used by the FWTP is lime softening. The operational costs for providing the additional treatment

necessary for the removal of color, odor, and iron to the secondary drinking water standard MCLs prior to injection is estimated to be \$0.45 per 1000 gallons of water by lime softening treatment. Granting a water quality criteria exemption for color, odor, and iron would provide a cost effective method of storing raw water for potable water needs when the demand is high and the supply is low, thereby offsetting the use of ground water.

The exemption for color, odor, and iron will not result in any adverse environmental impact to either the receiving aquifer or to any existing or anticipated future use of the aquifer, since the water in the receiving aquifer is brackish and can not be used without treatment. The ASR operation will improve the water quality of the storage zone by reducing the TDS concentration.

(5) An adequate monitoring program approved by the Department has been established to ascertain the location of the stored water, to detect any leakage of the stored water to other aquifers or surface waters, and to detect any adverse effect on underground geologic formations or waters.

This program has been designed to meet the requirements set forth in rule 62-528.615 of the Florida Administrative Code. Two monitoring wells will be constructed, one within the ASR storage zone, and another in the surficial aquifer system

overlying the ASR storage zone. Monitoring will include recharge water quality, recovered water quality, quality of water in the overlying surficial aquifer system, and effects of the storage plume on the ambient water quality and geologic formation within the storage zone aquifer. These monitoring data will be reported and reviewed on a monthly basis.

(6) The exemptions will not present a danger to the public health, safety, or welfare.

The recharge water is raw water from the Biscayne aquifer used to supply the FWTP and meets all primary drinking water standards. Color, odor, and iron are regulated as secondary drinking water standards. Secondary drinking water standards, by definition, are aesthetically based.

Exceedence of the secondary drinking water standards for color, odor, and iron at the alternative levels requested should have no adverse effects upon the health or safety of persons or on the Floridan or Biscayne aquifer systems.

If water from the upper Floridan aquifer system in the vicinity of the FWTP were to be used for a potable water supply in the future, an advanced form of water treatment, such as reverse osmosis, would be required because of the elevated TDS levels. This method of water treatment would

also remove the slightly elevated concentrations of color, odor, and iron in the raw water.

The Department intends to grant these exemptions subject to the following conditions:

- (a) The exemptions are granted for the duration of the Fort

 Lauderdale Fiveash Water Treatment Plant raw water ASR

 Class V well construction permit, 0128340-003-UC. Future

 exemptions must be petitioned for by the applicant in

 conjunction with an operation permit for any ASR project at
 this site.
- (b) The exemptions provide relief only from the color, odor, and iron standards contained in rule 62-550.320 of the Florida Administrative Code, as referenced in rule 62-520.420 of the Florida Administrative Code at the approved alternative levels of 100 color units, 8 odor threshold number, and 6.0 mg/L, respectively. All other ground water quality standards, including the primary drinking water standards contained in rule 62-550.310 of the Florida Administrative Code, and the minimum criteria contained in rule 62-520.400 of the Florida Administrative Code, apply to this ASR project.
- (c) The permittee shall monitor water quality in accordance with the specific conditions of construction permit 0128340-003-UC

and any authorization for operational testing issued under that permit.

(d) If any of the conditions in 1. and 2. below occur because of injection at the Fort Lauderdale Fiveash Water Treatment Plant Raw Water Aquifer Storage and Recovery Facility, injection into the ASR well shall cease until a water quality criteria exemption that addresses any additional parameters exceeding water quality standards, or an aquifer exemption pursuant to rule 62-528.300(3) of the Florida Administrative Code, as appropriate, has been obtained.

1. Surficial Aquifer Monitor Well

- a. The MCL is exceeded for any parameter contained in the primary drinking water standards; or
- b. The MCL or natural background level (whichever is poorer) is exceeded for any parameter contained in the secondary drinking water standards or minimum criteria.

2. Storage Zone Monitor Well

a. The MCL is exceeded for any parameter contained in the primary drinking water standards; or

- b. The MCL or natural background level (whichever is poorer) is exceeded for any parameter contained in the secondary drinking water standards or minimum criteria except color, odor, or iron; or
- c. Color, odor, or iron exceed the approved alternative level of 100 color units, 8 odor threshold number, and 6.0 mg/L, respectively.
- (e) The permittee shall use the data obtained during operational testing to assess the distance from the ASR well that the color, odor, and iron standard would be exceeded. Based on the reassessment, the permittee shall determine if additional monitoring is necessary to protect underground sources of drinking water prior to obtaining an operation permit.

Pursuant to section 403.815 of the Florida Statutes, and DEP rule 62-103.150 of the Florida Administrative Code, you (the applicant) are required to publish at your own expense the enclosed Notice of Intent to Grant the Water Quality Exemption. The notice shall be published one time only within 30 days, in the legal ad section of a newspaper of general circulation in the area affected. For the purpose of this rule, "publication in a newspaper of general circulation in the area affected" means publication in a newspaper meeting the requirements of sections 50.011 and 50.031 of the Florida Statutes, in the county where the activity is to take place. The applicant shall provide an

original copy of the proof of publication to Mr. Richard
Deuerling of the Department, at 2600 Blair Stone Road, Twin
Towers Office Building, Mail Station 3530, Tallahassee, Florida
32399-2400, within seven days of publication. Failure to publish
the notice and provide proof of publication within the allotted
time may result in the denial of the exemption.

The Department will grant the exemption unless a petition for an administrative proceeding (hearing) is filed pursuant to the provisions of sections 120.569 and 120.57 of the Florida Statutes.

A person whose substantial interests are affected by the Department's proposed exemption decision may petition for an administrative proceeding (hearing) in accordance with sections 120.569 and 120.57 of the Florida Statutes. The petition must contain the information set forth below and must be filed (received) in the Office of General Counsel of the Department at 3900 Commonwealth Boulevard, Mail Station #35, Tallahassee, Florida 32399-3000. Petitions filed by the exemption applicant and the parties listed below must be filed within 21 days of receipt of this intent. Petitions filed by other persons must be filed within 21 days of publication of the public notice or within 21 days of their receipt of this intent, whichever first occurs. Under section 120.60(3) of the Florida Statutes, however, any person who asked the Department for notice of agency action may file a petition within 21 days of receipt of such notice, regardless of the date of publication. The petitioner must mail a copy of the petition to the applicant at the address

indicated above, at the time of filing. The failure of any person to file a petition within the time period shall constitute a waiver of that person's right to request an administrative determination (hearing) under sections 120.569 and 120.57 of the Florida Statutes, or to intervene in this proceeding and participate as a party to it. Any subsequent intervention (in a proceeding initiated by another party) will only be at the discretion of the presiding officer upon the filing of a motion in compliance with rule 28-106.205 of the Florida Administrative Code.

A petition that disputes the material facts on which the Department's action is based must contain the following information:

- (a) The name, address, and telephone number of each petitioner, the applicant's name and address, the Department File Number and the county in which the project is proposed;
- (b) A statement of how and when each petitioner received notice of the Department's action or proposed action;
- (c) A statement of how each petitioner's substantial interests are affected by the Department's action or proposed action;
- (d) A statement of the material facts disputed by Petitioner, if any;
- (e) A statement of facts which petitioner contends warrant reversal or modification of the Department's action or proposed action;

- (f) A statement of which rules or statutes petitioner contends require reversal or modification of the Department's action or proposed action; and
- (g) A statement of the relief sought by petitioner, stating precisely the action petitioner wants the Department to take with respect to the Department's action or proposed action.

A petition that does not dispute the material facts on which the Department's action is based shall state that no such facts are in dispute and otherwise shall contain the same information as set forth above, as required by rule 28-106.301 of the Florida Administrative Code.

Because the administrative hearing process is designed to formulate final agency action, the filing of a petition means that the Department's final action may be different from the position taken by it in this notice. Persons whose substantial interests will be affected by any such final decision of the Department on the application have the right to petition to become a party to the proceeding, in accordance with the requirements set forth above.

Mediation under section 120.573 of the Florida Statutes is not available for this proceeding.

Any party to this order has the right to seek judicial review of it under section 120.68 of the Florida Statutes, by filing a notice of appeal under rule 9.110 of the Florida Rules of Appellate Procedure with the clerk of the Department in the office of General Counsel, Mail Station 35, 3900 Commonwealth Boulevard, Tallahassee, Florida 32399-3000, and by filing a copy

of the notice of appeal accompanied by the applicable filing fees with the appropriate district court of appeal. The notice of appeal must be filed within 30 days after this order is filed with the clerk of the Department.

DONE AND ENTERED this 2014 day of April 1998 in Tallahassee, Florida.

(Virginia B. Wetherell Secretary

State of Florida Department of Environmental Protection The Douglas Building 3900 Commonwealth Boulevard Tallahassee, Florida 32399-3000

Copies furnished to:

Carlos Rivero-deAguilar, DEP/WPB
Richard Drew
Al Mueller, DEP/WPB
Richard Deuerling, P.G.
William Cocke, P.G., DEP/WPB
Cynthia Christen
Nancy Marsh, EPA/Atlanta
Cathy McCarty, P.G.
Anne Murray, P.G., Montgomery Watson/Plantation

		→ 15
	DEPARTMENT OF ENVIRONMENTAL PROTECTION	= €
	NOTICE OF INTENT TO GRANT WATER OUALITY CRITERIA EXEMPTIONS The Department of Environmental Protection to the Control of Environmental Protection to the Control of Environmental Protection to the Control of Environmental Protection to the Control of Environmental Protection to the Control of Environmental Protection to the Control of Environmental Protection to the Control of Environmental Protection The Department OF Environmental Protection To GRANT WATER OUALITY CRITERIA EXEMPTIONS The Department OF Environmental Protection To GRANT WATER OUALITY CRITERIA EXEMPTIONS	8
	The Department of Environmental Projection gives no tice of its intent to great varieties and projection gives no	a la
	to the City of East Cauderdale's City on the la exemptions	3
	NW 38 Street Fort Laurendale Storida 22200 1-15	3 } ~
	The Department is issuing this Intent to Come they	8
	On Sentember 9, 1995, the Deservior	18
	tion from the applicant. City of Fort Lauderdale (City), for the exemptions for installations discharging into Class G-II ground water pursuant to rule 62-520,500 of the Figrida Administrative Code. The City requested was	.
	Administrative Code. The City requested exemptions from ground water standards contained to the Samptions from	•
	the Florida Administrative Code. Specifically, the cetition	E
	ter standards, color, odor, and iron, which are incorporat-	ļ _E
	color is 100 color units and the maximum contaminant level (MCL) for color contained in the secondariament	<u> </u>
	level (MCL) for color contained in the secondary drinking water standard is 15 color units. The exemption request for odor is 8 odor threshold number and the MCL for odor contained in the secondary dripking water standard	ļ ,
•	oder threshold gumber The	
	drinking water standards in Contained in the secondary	•
	ly based and do not pose a health threat at the requested	
	levels. The installation is the Fiveash Water Treatment Plant (FWTP) Aguifer Storage and Recovery (ASH) Facility which is located at 4321 NW 9 Avenue, Fort Lauderdale, Florida, in Broward County. The water to be used for this ASR groject is raw ground water from the Prespect Mail	
	Florida, in Broward County. The water to be used for this	
	Held. The source of the annual state of the second	
	the upper Floridan noutres the receiving aquiter is	
	Department's proposed water quality exemption decision	•
	with sections 120,569 and 120,57 of the Florida Statutes	
	and must be filed (received) in the Department's Office of	· · · · · · · · · · · · · · · · · · ·
	and must be filed (received) in the Department's Office of a General Counsel, 3900 Commonwealth Soulevard, Mail Station 35, Tallahassee, Florida, 32399-3000, Pelitions must be filed within fourteen (14) days of publication of this public notice or within fourteen (14) days of publication of this public notice or within fourteen (14) days of publication of this public notice or within fourteen (14) days of publication of this public notice or within fourteen (14) days of publication of this public notice or within fourteen (14) days of publication of this public notice or within fourteen (14) days of publication of this public notice or within fourteen (14) days of publication of this public notice or within fourteen (14) days of publication of this public notice or within fourteen (14) days of publication of this public notice or within fourteen (14) days of publication of this public notice or within fourteen (14) days of publication of this public notice or within fourteen (14) days of publication of this public notice or within fourteen (14) days of publication of this public notice or within fourteen (14) days of publication of this public notice or within fourteen (14) days of publication of this public notice or within fourteen (14) days of publication of this public notice or within fourteen (14) days of publication of this public notice or within fourteen (14) days of publication of this public notice or within fourteen (14) days of publication of this public notice or within fourteen (14) days of public notice or within fourteen (14) days of public notice or within fourteen (14) days of public notice or within fourteen (14) days of public notice or within fourteen (14) days of public notice or within fourteen (14) days of public notice or within fourteen (14) days of public notice or within fourteen (14) days of public notice or within fourteen (14) days of public notice or within fourteen (14) days of public notice or within fourteen (14) days of public notice or within fourteen (14) days of public no	
	notice of intent subjections assessed to the state of the	
	indicated shove at the time of the address	· · · ————————————————————————————————
	shall constitute a waive of the appropriate time deriod	
	120,569 and 120 57 of the state (learning) under Sections -	
	Subsequent intervention of the subsequent to it. Any	
	with rule on the sac the many of a motion in compliance if	
	name address and the first the last the	
	County in which it - 177 to training (30-0411) and the it	
	notice of the Department's action of petitioner received	
	henartment's cation will me eats are affected by the it	
	disputed by the petitioner, if any, (B) a statement of facts that the petitioner contends warrant reversal or modification of the Department's action; (f) a statement of which trules or statutes the petitioner services.	
	rules or statutes the petitioner contends require reversal or	
	ment of the relief sought by the petitioner, staling precisely the action that the petitioner wants the Department to take.	
	Because the administrative bases	
	to tormulate final agency action, the filing of a petition in means that the Department's final action may be different	
	means that the Department's final action may be different from the position taken by it in this notice of Intent. Per- it sons whose substantial interests will be affected by any such final decision of the Department of	
	have the right to politica to be application	
	above.	
	Mediation under section 120.573 of the Florida Statutes is not available for the proceeding.	
	lic inspection during normal, business hours, 8:00 am to	
	the Department of Environmental Protection, Southeast	
	the Department of Environmental Protection, Southeast District office, 400 North Congress Avenue, West Palm Beach, Florida 33401, Please contact Bill Gocke at (561) 681-6691 or Len Fishkin at (561) 681-6742 for artistical	
	681-6691 or Len Fishkin at (561) 681-6742 for additional information or to obtain a copy of the Notice of Intent to Lucy Masilah	
<u> </u>	City Clerk	
· ·	May 13, 1998	<u></u>
<u></u>		

872 Denial, addition of 8 nursing home beds, Palm Beack County/Subdistrict 4, Health Care and Retirement Corporation of America d/b/a Heartland Health Care and Rehabilitation Center—Boca Raton, (PRH) same as applicant

8974 Aenial, addition of up to 8 nursing home beds, Palm Beach County/Subdistrict 4, Mariner Health Care of Lake Worth, Inc., (PRH) same as applicant

8976 Denial addition of 4 hospital based skilled nursing care beds through the conversion of 4 acute care beds, Broward County, AMISUB (North Ridge Hospital), Inc. d/b/a North Ridge Medical Center, (PRH) same as applicant

8977 Denial, addition of 6 hospital based skilled nursing unit beds, Broward County, University Mospital, Ltd. d/b/a Columbia University Mospital and Medical Center, (PRH) same as applicant

8978 Denial, addition of 11 hospital based skilled nursing beds, Broward County, North Broward Hospital District, (PRH) same as applicant

8981 Denial, establish an S bed hospital based skilled nursing unit, Dade County/Subdistrict 1, Larkin Community Hospital, Inc. d/b/a Larkin Community Hospital, (PRH) same as applicant

8981 Supports denial, establish an 8 bed hospital based skilled nursing unit Dade County/Subdistrict 1, Larkin Community Hospital, Inc. d/b/a Larkin Community Hospital, (PRH) South Miarki Hospital, Inc.

8982 Denial, addition of 12 hospital based skilled nursing beds, Dade County/Subdistrict 1, South Miamn Hospital, Inc., (PRH) same as applicant

8983 Approval, establish a 17 bed hospital based skilled nursing unit, Dade County/Subdistrict 1, Tenet HeathSystem North Shore, Inc., (PRH) Larkin Community Hospital, Inc. d/b/a Jarkin Community Hospital

8987 Approval, establish a 17 bed hospital based skilled nusing unit, Dade County/Subdistrict 1, Tenet HealthSystem both Shore, Inc., (PRH) South Miami Hospital, Inc.

DEPARTMENT OF BUSINESS AND PROFESSIONAL REGULATION

NOTICE OF QUOTA LIQUOR LICENSE DRAWINGS
The Division of Alcoholic Beverages and Tobacco,
Department of Basiness and Professional Regulation
announces Quota Liquer License Deavings to which all
persons are invited for the following counties: BAY (1),
BREVARD (2), BROWARD (3), CHARLOTTE (1), CLAY
(1), COLLIER (1), DADE (3), ESCAMBIA (1), FLAGLER
(1), HILLSBOROUGH (2), INDIAN RIVER (1), LEE (2),
LEON (1), MANATEL (1), MARION (1), OKALOOSA (1),
ORANGE U (4), OSCEOLA (1), PALM BEACH (5), PASCO
(2), PINELLAS (2), POLK (2), ST. JOHNS (1), ST. LUCIE
(1), SARASOTA (1), SEMINOLE (2), VOLUSIA (2),
DATE AND TIME: May 8, 1998, 9:00 a.m. (EST)

PLACE. Department of Business and Professional Regulation, The Johns Bunding, Conference Room, Room 259, 725 South Bronough Street, Tallahossee, FL

PURPOSE: To conduct double rendom drawings from the pool of qualified applicants for new quota liquor licenses in each county and establish each qualified applicant's standing to receive one of the new licenses.

DEPARTMENT OF ENVIRONMENTAL PROTECTION

NOTICE OF INTENT TO GRANT WATER QUALITY EXEMPTION

The Department of Environmental Protection gives notice of its intent to grant water quality exemptions for the aesthetically based secondary drinking water standards for color (standard 15 color units, exemption limit 100 color units), odor (standard 3 odor threshold number, exemption limit 8 odor threshold number), and iron (standard 0.30 mg/L, exemption limit 6.0 mg/L) to the City of Fort Lauderdale, Gregory A. Kisela, Public Service Director. The water quality exemption is for the raw water aquifer storage and recovery (ASR) demonstration project at the City of Fort Lauderdale's Fiveash Water Treatment Plant (FWTP). The exemptions are granted for the duration of the FWTP raw water ASR Class V well construction permit. Future exemptions must be petitioned for by the applicant in conjunction with an operation permit for any ASR project at this site. The raw water ASR well is located at the Fiveash Water Treatment Plant on 4321 N. W. 9 Avenue. Fort Lauderdale, Florida, in Broward County.

A person whose substantial interests are affected by the Department's proposed exemption decision may petition for an administrative proceeding (hearing) in accordance with sections 120,569 and 120,57 of the Florida Statutes. The petition must contain the information set forth below and must be filed (received) in the Office of General Counsel of the Department, 3900 Commonwealth Boulevard, Mail Station #35, Tallahassee, Florida 32399-3000, within 21 days of publication of this notice. The petitioner must mail a copy of the petition to the applicant Mr. Gregory A. Kisela, Public Service Director, City of Fort Lauderdale, 949 N. W. 38 Street, Fort Lauderdale, FL 33309, at the time of filing. The failure of any person to file a petition within the time period shall constitute a waiver of any right of that person's right to request an administrative determination (hearing) under sections 120.569 and 120.57 of the Florida Statutes, or to intervene in this proceeding and participate as a party to it. Any subsequent intervention (in a proceeding initiated by another party) will only be at the discretion of the presiding officer upon the filing of a motion in compliance with rule 28-106.205 of the Florida Administrative Code.

The Petition shall contain the following information;

(a) The name, address and telephone number of each petitioner, the applicant's name and address, the Department File Number and the county in which the project is proposed;

CERTIFICATE OF SERVICE

I HEREBY CERTIFY that a true and correct copy of the foregoing FINAL ORDER has been furnished by the United States Mail to Mr. Gregory A. Kisela, Fort Lauderdale Public Services Director, 949 N.W. 38 Street, Fort Lauderdale, Florida, 33309, this 28 day of 1998.

Cynthia K. Christen

Assistant General Counsel 3900 Commonwealth Boulevard

Mail Station 35

Tallahassee, Florida 32399-3000

Telephone: (904) 488-9730

FILING AND ACKNOWLEDGMENT

FILED, on this date, pursuant to §120.52, Florida Statutes, with the designated Department Clerk, receipt of which is hereby acknowledged.

Clerk

pate/

Appendix B

Lithologic Descriptions for ASR-1

LITHOLOGIC DESCRIPTION

Date

:12-10-97

Contractor

: Youngquist Brothers.

Location

: **5-ASH** ASR

Well

: ASR-1

- 0'-30' Sand 100%, white to light tan and brown, coarse grained, well rounded and well sorted, unimodal, quarts based with trace lithics-heavies-and feldspar. Sand is mostly clean but has been mixed with drilling mud and fill material.
- 30'-60' Sand 100%, white to light tan, fine grained, well rounded and well sorted, unimodal, quarts based with trace lithics-heavies-and feldspar. Sand is mostly clean.
- 60'-90' Limestone 75%, medium to light gray, wackestone packstone, contains carbonate sand-quarts sand, recrystalized (clear tan rhombs), well—cemented, intergranular porosity is present. Rock is recrystalized calcite. Contains fragments of plecypoda, and gastropoda.
 - Sand 25%, white to light tan and brown, fine grained, well rounded and well sorted, unimodal, quarts based with trace lithics-heavies-and feldspar. Sand is mostly clean.
- 90'-170' Limestone 65%, light gray to white, fine grained wackestone packstone, contains carbonate sand- abundant bioclast fragments- and trace quarts and lithics, poorly cemented, porosity is present.

Sand 30%, white to light tan, fine grained, well rounded and well sorted, unimodal, quarts based with trace lithics-heavies-and feldspar. Sand is mostly clean but has been mixed with drilling mud.

Shell 5%, tan opaque, recrystalized and low Mg calcite constituents, some are etched, breakage is common (possibly secondary), hash like in zones. Fossils including gastropods and plecypods.

- 170'-200 Limestone 95%, medium to light gray, wackestone-packstone, contains carbonate sand-quarts sand, recrystalized (clear tan rhombs), well cemented, intergranular and moldic porosity is present. Rock is recrystalized calcite. Contains fragments of plecypoda, and gastropoda.
 - Sand 5%, white to light tan and brown, fine grained, well rounded and well sorted, unimodal, quarts based with trace lithics-heavies-and feldspar. Sand is mostly clean.
- 200-250 Limestone, 95%, medium to dark gray, wackestone to recrystalized packstone, contains carbonate sand- bioclasts- and trace quarts and lithics, possible Mn, recrystalized (clear tan rhombus, can make up as much as 25% of total volume), cemented with abundant pore filling calcite spar cement (white), moderately cemented, porosity is intergranular with some primary forms remaining, biotics include diverse molluses and bryzoans.

Observer	
Page	of

Sand 5%, white to light tan and brown, fine grained, well rounded and well sorted, unimodal, quarts based with trace lithics-heavies-and feldspar. Sand is mostly clean.

250-270 Limestone, 85%, medium to dark gray, wackestone to sandy packstone, contains carbonate sand- bioclasts- and trace quarts and lithics, possible Mn, recrystalized (clear tan rhombus, can make up as much as 25% of total volume), cemented with abundant pore filling calcite spar cement (white), moderately cemented, porosity is intergranular with some primary forms remaining, biotics include diverse molluses and bryzoans.

Sand 5%, white to light tan and brown, fine grained, well rounded and well sorted, unimodal, quarts based with trace lithics-heavies-and feldspar. Sand is mostly clean.

Shell 10%, tan opaque, recrystalized and low Mg calcite constituents, some are etched, breakage is common (possibly secondary), hash like in zones. Fossils including gastropods and plecypods.

270-310 Limestone, 65%, medium gray to light green, wackestone, contains carbonate sand-bioclasts- and trace quarts and lithics, possible Mn, recrystalized (clear tan rhombus, can make up as much as 25% of total volume), cemented with abundant pore filling calcite spar cement (white), moderately cemented, porosity is intergranular with some primary forms remaining, biotics include diverse molluscs and bryzoans.

Yellowish gray to olive clay, 20%, The clay is plastic, and interbedded with minor light olive gray to white limestone. The clay contains quartz sand, silt, and minor plecypoda material, and calcite and dolomite cement. Contains isolated occurrences of plecypods. Clay is dominantly montmorillonite.

Sand 5%, white to light tan and brown, fine grained, well rounded and well sorted, unimodal, quarts based with trace lithics-heavies-and feldspar. Sand is mostly clean.

Shell 5%, tan opaque, recrystalized and low Mg calcite constituents, some are etched, breakage is common (possibly secondary), hash like in zones. Fossils including gastropods and plecypods.

310-350 Clay, 90%, Yellowish gray to olive ,The clay is nodular, and interbedded with minor light olive gray to white limestone. The clay contains quartz sand, silt, and minor plecypoda material, and calcite and dolomite cement. Contains isolated occurrences of plecypods. Clay is dominantly montmorillonite.

Limestone 10%, light gray to white, fine grained wackestone - packstone, contains carbonate sand- abundant bioclast fragments- and trace quarts and lithics, poorly cemented, porosity is present.

350-425 Clay, 95%, Yellowish gray to olive ,The clay is nodular,and interbedded with minor light olive gray to white limestone. The clay contains quartz sand, silt, and minor plecypoda material, and calcite and dolomite cement. Contains isolated occurrences of

Observer	
Page	of

plecypods. Clay is dominantly montmorillonite.

Shell 5%, tan opaque, recrystalized and low Mg calcite constituents, some are etched, breakage is common (possibly secondary), hash like in zones. Fossils including gastropods and plecypods.

- 425-450 Clay, 100%, light green to dark olive, the clay is plastic, and is interbedded with minor amounts of light olive gray to white limestone. The clay contains quartz sand, silt, and minor plecypoda material (fragmented), and calcite and dolomite cement. Porosity and, permeability are absent due to plastic nature of clay.
- 450-470 Limestone, 65%, medium gray to light green, wackestone, contains carbonate sand-bioclasts- and trace quarts and lithics, possible Mn, recrystalized (clear tan rhombus, can make up as much as 25% of total volume), cemented with abundant pore filling calcite spar cement (white), moderately cemented, porosity is

Yellowish gray to olive clay, 20%, The clay is plastic, and interbedded with minor light olive gray to white limestone. The clay contains quartz sand, silt, and minorplecypoda material, and calcite and dolomite cement. Contains isolated occurrences of plecypods. Clay is dominantly montmorillonite.

Sand 5%, white to light tan and brown, fine grained, well rounded and well sorted, unimodal, quarts based with trace lithics-heavies-and feldspar. Sand is mostly clean.

Shell 5%, tan opaque, recrystalized and low Mg calcite constituents, some are etched, breakage is common (possibly secondary), hash like in zones. Fossils including gastropods and plecypods.

- 470-550 Clay, 100%, dark olive, the clay is plastic, and is interbedded with minor amounts of light olive gray to white limestone. The clay contains quartz sand, silt, and minor plecypoda material (fragmented), and calcite and dolomite cement. Porosity and, permeability are absent due to plastic nature of clay.
- 550-555 Limestone 100% Complexly interbedded, argillaceous limestone. Limestone is generally light gray to white, poor to moderately indurated, mudstones and wackestones. Porosity is low. Grains include minor fossil debris, and peloids.
- 555-690 Clay, 100%, light green to gray, the clay is plastic, and is interbedded with minor amounts of light olive gray to white limestone. The clay contains quartz sand, silt, and minor plecypoda material (fragmented), and calcite and dolomite cement. Porosity and, permeability are absent due to plastic nature of clay.
- 690-720 Limestone 90% Complexly interbedded, argillaceous limestone. Limestone is generally light gray to white, poor to moderately indurated, mudstones and wackestones. Porosity is low. Grains include minor fossil debris, and peloids.

Observer.		
Page	of	

Clay, 10%, light green to gray, the clay is plastic, and is interbedded with minor amounts of light olive gray to white limestone. The clay contains quartz sand, silt, and minor plecypoda material (fragmented), and calcite and dolomite cement. Porosity and, permeability are absent due to plastic nature of clay.

720-910 Clay, 90%, light green to gray, the clay is plastic, and is interbedded with minor amounts of light olive gray to white limestone. The clay contains quartz sand, silt, and minor plecypoda material (fragmented), and calcite and dolomite cement. Porosity and, permeability are absent due to plastic nature of clay.

Limestone 10% Complexly interbedded, argillaceous limestone. Limestone is generally light gray to white, poor to moderately indurated, mudstones and wackestones. Porosity is low. Grains include minor fossil debris, and peloids.

910-970 Clay, 20%, light green to gray, the clay is plastic, and is interbedded with minor amounts of light olive gray to white limestone. The clay contains quartz sand, silt, and minor plecypoda material (fragmented), and calcite and dolomite cement. Porosity and, permeability are absent due to plastic nature of clay.

Limestone80% Complexly interbedded, argillaceous limestone. Limestone is generally medium gray to white, poor to moderately indurated, mudstones and wackestones. Porosity is low.Grains include minor fossil debris, and peloids, abundant quartz and phosphate sand is present, poorly sorted, rounded to angular.

970-1030 Limestone, 90% white to medium gray, moderately indurated boundstones to wackstones, locally grades to packstone and grainstone. Contains phosphate nodules. Some bioclasts are represented as moldic porosity, and high secondary porosity and permeability are present (intergranular, interparticle and moldic). Locally the rock is recrystalized. Well indurated, and contains coarse spar cement (reducing). Biotics include reef fauna assemblage (diverse mollusk, foram, bryozoan, corals).

Clay, 10%, light green to gray, the clay is plastic, and is interbedded with minor amounts of light olive gray to white limestone. The clay contains quartz sand, silt, and minor plecypoda material (fragmented), and calcite and dolomite cement. Porosity and, permeability are absent due to plastic nature of clay.

1030-1050 Limestone, 80%, Moderately soft, highly fossiliferous, very pale orange to tan, pelletal, wackestones, and packstones, with 5% to 10% intergranular porosity. Locally, the unit is composed of thin layers of very hard micrite, of low porosity and permeability. Abundant foraminifera, and echinoids.

Clay, 20%, light green to gray, the clay is plastic, and is interbedded with minor amounts of light olive gray to white limestone. The clay contains quartz sand, silt, and minor plecypoda material (fragmented), and calcite and dolomite cement. Porosity and, permeability are absent due to plastic nature of clay.

Observer_	
Page	of

wackestones is composed	, and packstones, v	vith 15% to 40% in very hard micrite	atergranular porosi	range to tan, pelletal, ity. Locally, the unit y and permeability.
			Observer Page	of

Lithologic Descriptions for FMW-1

LITHOLOGIC DESCRIPTION

Date : 1-20-98

Contractor : Youngquist Brothers.

Location : <u>5-ASH ASR</u>
Well : <u>FMW-1</u>

- 0'-30' Sand 100%, white to light tan and brown, coarse grained, well rounded and well sorted, unimodal, quarts based with trace lithics-heavies-and feldspar. Sand is mostly clean but has been mixed with drilling mud and fill material.
- 30'-60' Sand 100%, white to light tan, fine grained, well rounded and well sorted, unimodal, quarts based with trace lithics-heavies-and feldspar. Sand is mostly clean.
- 60'-90' Limestone 75%, medium to light gray, wackestone packstone, contains carbonate sand-quarts sand, recrystalized (clear tan rhombs), well cemented, intergranular porosity is present. Rock is recrystalized calcite. Contains fragments of plecypoda, and gastropoda.
 - Sand 25%, white to light tan and brown, fine grained, well rounded and well sorted, unimodal, quarts based with trace lithics-heavies-and feldspar. Sand is mostly clean.
- 90'-170' Limestone 65%, light gray to white, fine grained wackestone packstone, contains carbonate sand- abundant bioclast fragments- and trace quarts and lithics, poorly cemented, porosity is present.

Sand 30%, white to light tan, fine grained, well rounded and well sorted, unimodal, quarts based with trace lithics-heavies-and feldspar. Sand is mostly clean but has been mixed with drilling mud.

Shell 5%, tan opaque, recrystalized and low Mg calcite constituents, some are etched, breakage is common (possibly secondary), hash like in zones. Fossils including gastropods and plecypods.

- 170'-200 Limestone 95%, medium to light gray, wackestone-packstone, contains carbonate sand-quarts sand, recrystalized (clear tan rhombs), well—cemented, intergranular and moldic porosity is present. Rock is recrystalized calcite. Contains fragments of plecypoda, and gastropoda.
 - Sand 5%, white to light tan and brown, fine grained, well rounded and well sorted, unimodal, quarts based with trace lithics-heavies-and feldspar. Sand is mostly clean.
- 200-250 Limestone, 95%, medium to dark gray, wackestone to recrystalized packstone, contains carbonate sand- bioclasts- and trace quarts and lithics, possible Mn, recrystalized (clear tan rhombus, can make up as much as 25% of total volume), cemented with abundant pore filling calcite spar cement (white), moderately cemented, porosity is intergranular with some primary forms remaining, biotics include diverse molluscs and bryzoans.

Observer_	
Page _	of

Sand 5%, white to light tan and brown, fine grained, well rounded and well sorted, unimodal, quarts based with trace lithics-heavies-and feldspar. Sand is mostly clean.

250-270 Limestone, 85%, medium to dark gray, wackestone to sandy packstone, contains carbonate sand- bioclasts- and trace quarts and lithics, possible Mn, recrystalized (clear tan rhombus, can make up as much as 25% of total volume), cemented with abundant pore filling calcite spar cement (white), moderately cemented, porosity is intergranular with some primary forms remaining, biotics include diverse molluscs and bryzoans.

Sand 5%, white to light tan and brown, fine grained, well rounded and well sorted, unimodal, quarts based with trace lithics-heavies-and feldspar. Sand is mostly clean.

Shell 10%, tan opaque, recrystalized and low Mg calcite constituents, some are etched, breakage is common (possibly secondary), hash like in zones. Fossils including gastropods and plecypods.

270-310 Limestone, 65%, medium gray to light green, wackestone, contains carbonate sand-bioclasts- and trace quarts and lithics, possible Mn, recrystalized (clear tan rhombus, can make up as much as 25% of total volume), cemented with abundant pore filling calcite spar cement (white), moderately cemented, porosity is intergranular with some primary forms remaining, biotics include diverse molluscs and bryzoans.

Yellowish gray to olive clay, 20%, The clay is plastic, and interbedded with minor light olive gray to white limestone. The clay contains quartz sand, silt, and minor plecypoda material, and calcite and dolomite cement. Contains isolated occurrences of plecypods. Clay is dominantly montmorillonite.

Sand 5%, white to light tan and brown, fine grained, well rounded and well sorted, unimodal, quarts based with trace lithics-heavies-and feldspar. Sand is mostly clean.

Shell 5%, tan opaque, recrystalized and low Mg calcite constituents, some are etched, breakage is common (possibly secondary), hash like in zones. Fossils including gastropods and plecypods.

310-350 Clay, 90%, Yellowish gray to olive ,The clay is nodular, and interbedded with minor light olive gray to white limestone. The clay contains quartz sand, silt, and minor plecypoda material, and calcite and dolomite cement. Contains isolated occurrences of plecypods. Clay is dominantly montmorillonite.

Limestone 10%, light gray to white, fine grained wackestone - packstone, contains carbonate sand- abundant bioclast fragments- and trace quarts and lithics, poorly cemented, porosity is present.

350-425 Clay, 95%, Yellowish gray to olive ,The clay is nodular, and interbedded with minor light olive gray to white limestone. The clay contains quartz sand, silt, and minor

Observer_	
Page _	of

plecypoda material, and calcite and dolomite cement. Contains isolated occurrences of plecypods. Clay is dominantly montmorillonite.

Shell 5%, tan opaque, recrystalized and low Mg calcite constituents, some are etched, breakage is common (possibly secondary), hash like in zones. Fossils including gastropods and plecypods.

- 425-450 Clay, 100%, light green to dark olive, the clay is plastic, and is interbedded with minor amounts of light olive gray to white limestone. The clay contains quartz sand, silt, and minor plecypoda material (fragmented), and calcite and dolomite cement. Porosity and, permeability are absent due to plastic nature of clay.
- 450-470 Limestone, 65%, medium gray to light green, wackestone, contains carbonate sand-bioclasts- and trace quarts and lithics, possible Mn, recrystalized (clear tan rhombus, can make up as much as 25% of total volume), cemented with abundant pore filling calcite spar cement (white), moderately cemented, porosity is

Clay, 20%, yellowish gray to olive clay is plastic, and interbedded with minor light olive gray to white limestone. The clay contains quartz sand, silt, and minorplecypoda material, and calcite and dolomite cement. Contains isolated occurrences of plecypods. Clay is dominantly montmorillonite.

Sand 5%, white to light tan and brown, fine grained, well rounded and well sorted, unimodal, quarts based with trace lithics-heavies-and feldspar. Sand is mostly clean.

Shell 5%, tan opaque, recrystalized and low Mg calcite constituents, some are etched, breakage is common (possibly secondary), hash like in zones. Fossils including gastropods and plecypods.

- 470-550 Clay, 100%, dark olive, the clay is plastic, and is interbedded with minor amounts of light olive gray to white limestone. The clay contains quartz sand, silt, and minor plecypoda material (fragmented), and calcite and dolomite cement. Porosity and, permeability are absent due to plastic nature of clay.
- 550-555 Limestone 100% Complexly interbedded, argillaceous limestone. Limestone is generally light gray to white, poor to moderately indurated, mudstones and wackestones. Porosity is low. Grains include minor fossil debris, and peloids.
- 555-690 Clay, 100%, light green to gray, the clay is plastic, and is interbedded with minor amounts of light olive gray to white limestone. The clay contains quartz sand, silt, and minor plecypoda material (fragmented), and calcite and dolomite cement. Porosity and, permeability are absent due to plastic nature of clay.
- 690-720 Limestone 90% Complexly interbedded, argillaceous limestone. Limestone is generally light gray to white, poor to moderately indurated, mudstones and wackestones. Porosity is low. Grains include minor fossil debris, and peloids.

Observer	
Page	of

Clay, 10%, light green to gray, the clay is plastic, and is interbedded with minor amounts of light olive gray to white limestone. The clay contains quartz sand, silt, and minor plecypoda material (fragmented), and calcite and dolomite cement. Porosity and, permeability are absent due to plastic nature of clay.

720-910 Clay, 90%, light green to gray, the clay is plastic, and is interbedded with minor amounts of light olive gray to white limestone. The clay contains quartz sand, silt, and minor plecypoda material (fragmented), and calcite and dolomite cement. Porosity and, permeability are absent due to plastic nature of clay.

Limestone 10% Complexly interbedded, argillaceous limestone. Limestone is generally light gray to white, poor to moderately indurated, mudstones and wackestones. Porosity is low. Grains include minor fossil debris, and peloids.

910-970 Clay, 20%, light green to gray, the clay is plastic, and is interbedded with minor amounts of light olive gray to white limestone. The clay contains quartz sand, silt, and minor plecypoda material (fragmented), and calcite and dolomite cement. Porosity and, permeability are absent due to plastic nature of clay.

Limestone 80% Complexly interbedded, argillaceous limestone. Limestone is generally medium gray to white, poor to moderately indurated, mudstones and wackestones. Porosity is low. Grains include minor fossil debris, and peloids, abundant quartz and phosphate sand is present, poorly sorted, rounded to angular.

970-1030 Limestone, 90% white to medium gray, moderately indurated boundstones to wackstones, locally grades to packstone and grainstone. Contains phosphate nodules. Some bioclasts are represented as moldic porosity, and high secondary porosity and permeability are present (intergranular, interparticle and moldic). Locally the rock is recrystalized. Well indurated, and contains coarse spar cement (reducing). Biotics include reef fauna assemblage (diverse mollusk, foram, bryozoan, corals).

Clay, 10%, light green to gray, the clay is plastic, and is interbedded with minor amounts of light olive gray to white limestone. The clay contains quartz sand, silt, and minor plecypoda material (fragmented), and calcite and dolomite cement. Porosity and, permeability are absent due to plastic nature of clay.

1030-1050 Limestone, 80%, Moderately soft, highly fossiliferous, very pale orange to tan, pelletal, wackestones, and packstones, with 5% to 10% intergranular porosity. Locally, the unit is composed of thin layers of very hard micrite, of low porosity and permeability. Abundant foraminifera, and echinoids.

Clay, 20%, light green to gray, the clay is plastic, and is interbedded with minor amounts of light olive gray to white limestone. The clay contains quartz sand, silt, and minor

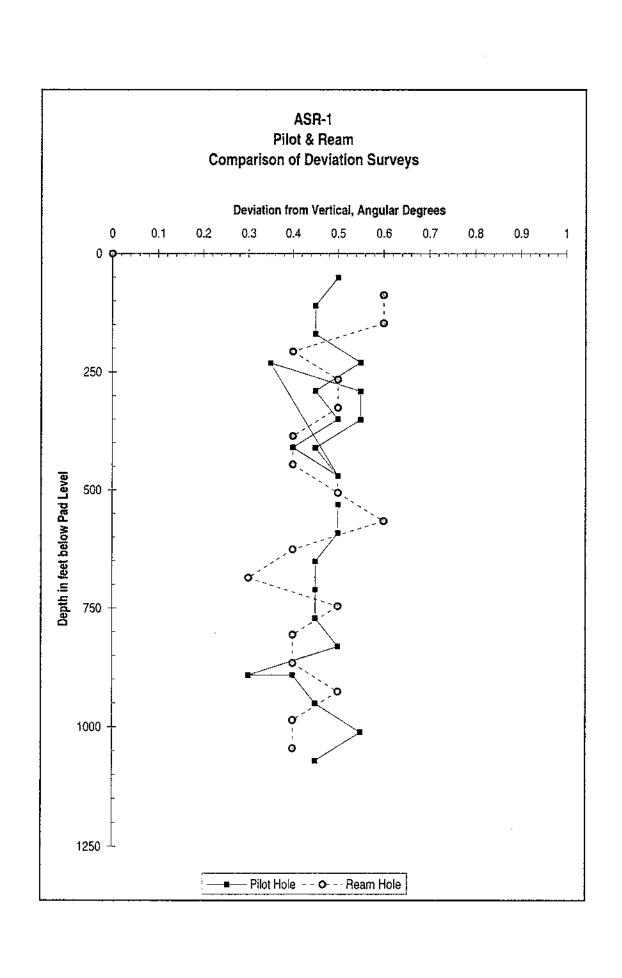
Observer	
Page	of

plecypoda material (fragmented), and calcite and dolomite cement. Porosity and, permeability are absent due to plastic nature of clay.

1050-1175 Limestone, 80%, Moderately soft, highly fossiliferous, very pale orange to tan, pelletal, wackestones, and packstones, with 15% to 40% intergranular porosity. Locally, the unit is composed of thin layers of very hard micrite, of low porosity and permeability. Abundant foraminifera, and echinoids.

Observer	
Page	of

Appendix C


Geophysical Logs

Geophysical Logs in Volume 2

Appendix D

Deviation Survey

Appendix E

Casing Mill Certificates

COUNTING OF TRANSPORTED TO THE CONTING OF THE COUNTING OF THE	DEPENDABLE SOURCE YOU CAN COUNT ON A - NY 11501 - TEL: \$16,741,8398 - FAX: \$16,741,8210 RECEIVED
MORR WITH OTHER TRADES AND SATISFACTORY	DEC 2 1996

LABORATORY REPORT AND MILL TEST CERTIFICATE

DATE Nov. 22/96 CUSTOMER

SPECIFICATION is Accordance with A1392 CUSTOMER'S P.C

DIA, & WALL 26" C.D. X .375 WI PHOENIX REF.S

HYDROTEST 810 PSI FOR 2 Miss

PHYSICAL PROPERTIES

HEAT NO.	PIPE NO.	LONGITU YIELD	IDINAL TEST	ELONGATION	TRANSVERSE	BREAK
73495	1	43900	69300		WELD TENSILE	LOCATIO
73508	6	44600	69500	40.0	,72800	PM
		-	47300	40.0	73100	PM
		T				
. 1						
						
			. 1			

LADLE ANALYSIS CHEMICAL COMPOSITION

HEAT NO	C	MN	S	8	-	•				•
73495	.18	1.02	-009		<u> </u>	CR	NI	CU	_ MO	AL
73505	-18	1.04		.008	.23	.02	01	.02	01	
			-010	.007	.23	.03	-02	.01		
									.01	.034
				\neg	7					
<u> </u>		}					-			
	$\overline{}$							1	T	
X							Γ			
क गाईकांब	l Usted	on this.					-			_

The material listed on this report has been tested in accordance with the specification

Authorized Approval

Aulikil 40' -5"

Set to 190' 615.

V. P. SALES BARTOW STEEL, INC. 1-800-237-86 FAX 941-619-8779

FAX 941-619-8779 DATE: 05/08/97 REPORT NO. 97- 8009- 1 MAPA PIPE CORPORATION CERTIFIED REPORT OF MECHANICAL PROPERTIES AND/OR CHEMICAL ANALYSIS OF PIPE 1029 Kalser Road Napa, CA. 94558 M.O. 27780 JOS# 8009 SPEC API 5L GRADE X42 0.3750 WALL x 24.000 G.D. DOUBLE SUBMERGED ARC WELDED (707) 257-5000 C.E.= C+Mn/6+(Cr+Mo+V)/5+(Cu+Ni)/15 P.O. # 192120 CUSTOMER **TRIS CERTIFICATE COMPLIES WITH API SRIS REQUIREMENTS** ADDRESS TENSILE ELONG HAT.OF 3EX0 YIELO 1/1 CHEMICAL ANALYSIS --IN 2" FRACT** RATIO TEST *** С 8 HEAT / SLAB MARK* (P\$1) (PSI) An. S s1 Ni Cb ΑL Cr Χо 7. Ca C.E. Cu 383470 CS-2 39 0.79 .07 0.47 .002 .005 .10 .025 .05 .04 .000 .0072 .0045 19 TS 55030 69290 L .24 .29 .000 .000 LOT#; 80090000 TV 73410 DOM OK C 80. 0.48 .002 .004 .23 .28 - 10 .000 .000 .026 .05 .04 .000 .0065 .0034 20 CZ | .07 0.48 .002 .004 .23 .29 .000 .000 .025 .05 .04 .000 .0065 .0033 19 . 10 "BOOY CHARPY" TRANSITION ENERGY - ft. lbs. % SHEAR TRANSITION *DROP VEIGHT* "WELD CHARPY" ENERGY-ft. 1bg ENERGY-It. 1bs. I SHEAR et MATERIAL 100% MELTED & MANUFACTURED IN THE U.S.A. *ZONE CHARPY* NAPA PIPE CERTIFIES THAT PIPE SHOWN ON THIS TEST REPORT COMPLIES WITH API 5% GRADE B and GRADE X42. EMERGY - ft. 1bs 34 9 THIS IS A CERTIFICATION OF HEAT# 383470 аt * LS - LONGITUDINAL STEEL *** L - LADLE ANALYSIS HYDRO TEST PRESSURE 1150 PS1 API 5L 41st EDITION APR 1-95 I centify the above information to be correct TS . TRANSVERSE STEEL C - CHECK ANALYSIS KOLD TIME 10 sec Fig 4 Transverse Strip Specimen as contained in the records of the company. CZ - CHECK ANALYSIS TH - TRANSVERSE WELD ** COU - OUT OF WELD This order was nondestructively RTR Penetrameters: 15 APL EOM . EDGE OF WELD tested using uttrasonic and End X-Ray Penetrameters: 7 APL UT Reference Standard: 1/16 DRILLED HOLE ITW - IN THE WELD radiological methods.

API NS NOTCHES

JOE H. FORTSON V. P. SALES BARTOW STEEL, INC. 1-800-237-8669 FAX 941-619-8779

1025 Kalser Road

NAPA PIPE CORPORATION

CERTIFIED REPORT OF MECHANICAL PROPERTIES ANO/OR CHEMICAL ANALYSIS OF PIPE

DATE: 05/08/97 REPORT NO. 97- 8009-

Нара, СА. 94558 (707) 257-5000

M.G. 27780 JOB# 8009 SPEC API 5L

GRADE X42

0.3750 MALL x 26.000 0.0. DOUBLE SUBMERCED ARC WELDED

CUSTOMER ADDRESS

P.O. # 192120

C.E. # C+HrV6+(Cr+Ho+Y)/S+(Cu+N1)/15 **THIS CERTIFICATE COMPELES WITH API SRIS REQUIREMENTS**

		ALECD		ELONG	HAT.OF	1/1	BEND							·	,	- CHE	HEAL A	AXALYS	15						
	HARK*	(PSI)	(PSI)	1N 2m	FRACT**	RATIG	TEST	***	c	Νп	P	5	Si	Cu	Ní	٧	Cb	AL	£r.	Χo	Τſ	N2	Ca	8	c
83474 E7-2	T\$	57170	70770	35		0.80		L	.08	0.49	.004	.006	. 24	.27	.10	.000	.000	.030	.06	.04	.000	.0078	.0014		7
HEAT / SLAB 83474	עד		74720		00U		ок	С	.09	0,48	.003	.005	. 25	.26	.10	.000	.000	.927	.05	.04	.000	.0074	.0014		2
								C2	.08	0.49	.003	.005	.26	.27	.10	.000	.000	.025	.05	.04	.000	.0073	.0010		
				<u></u>																<u> </u>					+-
					,														<u> </u>	<u> </u>					†
				ļ		· ·													ļ						†
																									┼┈
T	*BOOY	CHARPY*	<u> </u>	!	\ 	· · · · · · · · · · · · · · · · · · ·	\vdash			- -	L , ,			1	L	<u>. </u>			10	ANSII	100	<u> </u>			<u></u>
	ENERGY	-ft.lbs.								_		 -	-						<u> </u>	A4211		<u> </u>			
	X S	HEAR	<u> </u>																						
*UEID CHARRY	*0.000	WE1GHT*	 _	·				· · · · · · · · · · · · · · · · · · ·			·								·						
	 -		- 						. <u> </u>					·······					TR	AHSIT	RO1	}			
	ļ	-ft.lbs.	-{													}						1			
		SHEAR							·		··	· · · · · · · · · · · · · · · · · · ·	<u></u>												
ZONE CHARPY	_{		MATERIA: NAPA PII	L 100% PE CER	HELTED (HANUF KAT PIP	ACTUR: E SHO	ED IN	THE &	J.S.A. Test Ri	EPORT (COMPLE	FC U1	* W]			
ENERGY-ft.1bs			API 5L (GRADE	B and GRU	WE X42	•						,,	• 13											
at			1312 IS	A CER	TIFICATIO	ON OF H	EAT# 1	383474														}			

* LS - LONGITUDINAL STEEL *** L - LADLE ANALYSIS

HYDRO TEST PRESSURE 1150 PSI API 5t 41st EDITION APR 1-95

TS - TRANSVERSE STEEL TW - TRANSVERSE WELD

C . CHECK ANALYSIS CZ - CHECK ANALYSIS

HOLD TIME 10 sec Fig 4 Transverse Strlp Specimen

I certify the above information to be correct es contained in the records of the company.

** OOW - OUT OF WELD

End X-Ray Penetrameters: 7 API

RTR Penetrameters: 15 API

UT Reference Standard: 1/16 DRILLED HOLE

API N5 NOTCHES

ECH - EDGE OF WELD ITW - IN THE WELD

This order was nondestructively tested using ultrasonic and radiological methods.

검 MILL INSPECTION CER ICATE

म्बल्य : 2

P C P CUSTAMER

E4702800

-4 x

STADISTR

MANOORY

CK TATION

#377

16:44

ი 19

TE OF BINE
HE DE BINE
HUISHCT 12/0 HO

5-7-03-372

APR. 3. 1997.

E.R.V. STEEL PIPE

APT SLBVASTH ASSB

대 강 판 주 식 회 사 *본 사·경 정 경험 중산시 중구 영요용 35번지 (\$ET) · 현존한

ULSAN PLANT : # 265, PAMPO DONG JUNG-KU ULSAN, KOREA 1EL : 81-2101 P - FAX : (0522) 87 - 3915 TEX : HOP PE & 53716

#시 형사 위소 서울폭발시 중구 무교통 77번째 - IIII지() - 正点页 SCOUL OFFICE: \$77,MUNYO-DONG JUNG-SU SECUL YORKA TEL: 773 -0522 FAX 1775 - 2015

				TCX : HDP#	PE & 24656, K 22956
· · · · · · · · · · · · · · · · · · ·		6009. 0. [] [] []			
\$ E 41 →	수월 중 원	구입시점 등 7 8 19 10 10 12 13 10 24 19 1 EST	TEHBILE TEST	है: ENICAT (देसका	는 (2) 중심시회 5) 의 (1,074c)
OTMERSEUN 日 名 東 本 ネ A () - GUIDNA THRON, LEBRITO	CIEA CLEASES	#1030 전 전 3 문학자 5 TATE 등	HEAT HO. SIEM 5-RENGTH AIR	C & Nu P 5 Co A	R Sept and A Sept ARK Sept A
1 1 1 1 1 1 1 1 1 1 1	iPC S: (KQ)	Mar TEST T	213 3 W 215 25 25 25 25 25 25 25 25 25 25 25 25 25	6 100 1000	· 100 av.1 12
			MOTT31 30.9 48.4 51.8 40	17 Tr 73 19 10 6	1210
			44000 68800 73700		
			NOT781 31.8 50.5 53.1 38	16 1 75 14 7 6 1	2 177
			45200 71800 78500		
B 00 16° x .500° x42.000°	20 31,567	92 6 6 6 6 6	A01670 34.8 49.1 52.5 34	18 1 78 15 8 6 1	2 1 17
(408.4mm x12.70mm x 12.602N)	j	1310	40500 69800 74700		
			A04753) 32.9 51.9 54.0 40	17 Tr 74 17 8 6 1	1 2 1 Tr
			48800 73800 78800		
B 00 18" × .375° ×42.000°	115 154,302	02 G G G G G	A04638 30.8 49.1 52.5 38	18 1 31 19 8 5 1	1 . 2 1 Te
(457.0mm x 9.53mm x 12.802N)		880	43500 59800 74700		
	<u> </u>		104640 33.4 48.7 51.7 39	17 Tr 72 16 5 6	1 21 7
			47500 69300 73500		
			A05012 33.5 50.5 53.1 38	17 1 7917 9 6 1	1210
			47600 71800 75500		
			107232 33.1 49.8 52.2 41	16 3, 78 16 6 6 1	1 2 1 7n
			44200 70500 74200		
B 00 18" x .500" x42.600'	30 69,500	32 6 G C G G	·† · · - ·- 	17,Tr 72,18 5 6 1	2.100
(457.0mm x12.70mm x)2.302H)		1170	47500 89300 73500		
28 00 24" × .375" ×40,000"	80 137,344	48 6 6 6 6 6	A08792 31.7 49.3 52.7 38	16 1 77 13 8 6 1	2 1 Tr
(610.0mm × 9.53mm × 12.1929)		850	45100 70100 75000		
2—HOTES (출발) Type of pice End 상품		문 강 보면 : Horman Bere호설립, 00 : Omsies (C BH (D)	F3 Cu Edim: wa	
PEB Back Plan End Square and TIPE Galvanard Plan PEB Back Plan End Bevelod OPEB Galvanard Plan PEB Back Plan End Bevelod OPEB Galvanard		[4] [And [] [] [] [] [] [] [] [] [] []	(14년 14년		ess Toat육인 및 취수립사 esk 용설로 연설시설
FC : Stack Threscard & Complete GTO : Gates used The	wasted & Cacpfed	Fig. Mandware over Test 비지의설시	는 N Con Tone 중동시점	📶 Fbung Test 🖽	4.4.4
7J Black Velouis Jon GYJ Galvantend Vol IC Engagelet They and A Con Ment	uuld John		II Peccesa Falsaniy Test전계시킬 IV II: Host (Lasks) Assiyas 임명본니 (P.) P	a: Sees Notal 5	한 대부 -
Separate Friday as is (1981)		본 내통문 원린규칙에 입각되었음 본 내통문 원린규칙에 입각되었음			
	in al	_		1.	131 /
SURVEYOR 3 fixeling 19 - 9UT	, diri	TO A CONTRACT ALM THE MESSAGE S	SCUTTATION AND GROSS.		DISPECTION MANAGER'
5 n.m.n. (V)3 = Q(_)		A HYLINDAL SIPE CO	LTD		1250 - 730:

11/19/97 09:47

#377 F. 62767

10:43

ONIE CHESSUE SERTEU 전 SERTEU 전	#93 10	014		검 INSE	사 PECTIO	증 SO CE	명 (기기)	서 CATE
주 문 법 호: (KL) - MQ.	PC 004 J15X			L				J.11. D
계 의 변 및 . 2000년 2000년 10	1816-3039	G	~~~~					

DONGBU STEEL CO. LTD

																PCC	Hent:	r calls Trudte Dy th	. IM	****	160	e jud elfice :	korok Lipet :) has trub pl	9464 10 4	made th the	end t	Poled Prine A	jn ts						_;	-13	A NA	Car II	S DE	- 	Later	*;	CON	TROL		
H) RE	KAR!	W.B.: WELD CUCTRUTY (資質學可以) W.O.2: WEIGHT OF ZINC C.S.: COPPZE SALPHATE (報告長息以, OPPS) MARKS #2:28.0						e. s.	1.5	SALI	DL É	DE YE	왕기	51 ·마 	ane Anni	 :इ न		4 8 4	- B		12169	:34					5	urvey	01 1	نب	26	11	5 6	050		+	<u> -</u>	+-	<u></u>	<u> </u>			#			
*(3 : G	000	FLT BMD W. IS	: (LA)	CHANG		دون ر				AL	,K	ALF	MIN.	ľΥ	型(数)				_	i	<u> </u>	جئملي حرج ه		М	N	35,0	90	50.	000	#	 		\dashv	+	+	+		+	+	+	-	#	-		\dagger
														-																							1,									
===	-:		LIMEL							. 5 =	=======================================					= 6 =		83,; ==::				3		;	1	f 30	==:	5 7 3	=======================================	## #	5 6 33	===	-	F = F	=[:	==	= ====		==	====	= = =		=	===	 	
3.5)IP(<u>: 11</u>	12-3/ 14°X0 16°X0	. 500)*X4)*X4	0' 10'				.		 ņ	33 91 27 151	1	.6	201 401 801	11	39.; 03.; 40.;	378 586	9A 131	06	0.46		129 129	765	<u>.</u>	5 5.	513	74,	527 385 527	32 33 32			4	1 (591	4 6	1		-						
	-				ROEI		SIZE		<u></u>		P				1 1.81	O) VGTH	W.	ElGH.	T	NAPAL NaPAL Na / co	PSI	1	1100		EAT	NO.	Y. 5	1.7	\$1. hg	- 5	연신] 토 L ※	113	, L		3i A 106	4	P S	4_	M C	700	bν	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		93 2 2 2 10 mm	# 2 # IC/GH IM/IH IM/IH	R. Wied
	E.	1	Ŧ		ž.		첫		÷		Ĭ-					(T(T)				ATORI ATORI	DST -	4 1	기계 사항 보, 1	*	강성			TEN	SAE	۱۱ ۲es	Γ	34	V 1 4 2 5 1		•	t) 1960)			DOM ()			1 C	inc Cating	TEST	LOWER	at T
된 5년(EKA.	TION	4:		153	GR.	١.	AP I	51	1		à	SLI	-43		_	3)	B M A: DAEVOO CORP.												e MCHEO: e ŒUSAN					: 72	44 - 4	3N 40 6, Han	K 174MK	14 P	CHEA CHEAN						
COM	eODI1		R :		.∦.				ρ	Pf								æ :#013		지 :	Q.A	LRT.	O¥	\$ 11	11															: 12 54	ZIX OF ECSIII	PVU-C	DONG.	. GLDRC	J.GU.	
i Ku	y m	<u>е</u> :	A :	1	816	-30	<u> 39</u>	_	c		•	7																												- 5	EOLU	100	۱ <u>-</u> ۱۸۷	L JUNE O. KOR	AT 4	

#8%

15132

STEEL

증

MILL INSPECTION CERTIFICATE

े ले स म भ भ जे आहरताहमा

THE OF ISSUE

MULOUTY

ম্বান ১৯৫ : 1

24702300

5-7-04-225 APR. 30, 1997.

E.A.V. STEPL PIPE

HYUNDAI PIPE CO.,LTD.
+본사·경 경험 출산시 중구 영포동 265번지 (제표대)-대편한 ULSAN PLANT: 및 785,YOHPO DOME, JUNG-KU,ULTAU,KOREA TEL: DY-2101~9 FAX: (0522) 37-3916

TEX : HOPIPE (53/76

FEATION PI SIBNASTH ASSE		수 교 <u>00</u> 5700	7 UER							<u> </u>			_			5.E	OUAL DE	FACE	: # 73 TEL	, MUI . 72:	(YC-D)~D3	ong,. 12	UNG (KU, 586UI Tax : 71	(1782) - [] aorla 5 - 7095
			,	161	1 }- 	[] . 		0 10e	50 50 II	25	,				. —									22556	
학 후 OILIENSTON 와 중 또투 박·결 아 OUTONA, * TRICK, * LENGYH;	Ç ∰ OHAN DTY :PGSi	(KD) (KD)	HOROS STATI TEST Most Local	c c	LATICAGE OR 131 -	100	1959 1431 421 421 421 421 421 421 421 421 421 42		DEST		제강 달 호 HEAT NO.	USH SINEX HEND AERE	1545 \$176) 8 \$14 \$1/4	#US #GPH 발문 발문 발문	A STANSATION		ži li	1	s	6	X.	o w	,	#수에(4 ^{X)} 전환 ENEHIY 전환되면함 전환되면함	ВЕМАЯК В
20 14° x .375° x21.000′	95	10 110			GG		7 - 0	4 32.50	Ves 5	 	IAMANA	PS Trace	<u> </u>	Kire:	1 · · · · · · ·		100		1006	╄-	_	X0	┰┷╃	Af j. 40.	<u>.</u>
	180	49,416			99	1	++-			ļ	A08610	34.8				17	- -	76 l	10	6	-1 .	2 1	12		
(355.6mm x 9.53mm x 8.401H)	 - 		1120	╌┼╌╂	╂	╁	+	 		 	14444	49600		_	+-1	-	⊢-		-	┞	┝	- -			
			_	++	++	-{{	+		+-		A08613	34.3	48.0	51.0	++	17	1	74 7	8	6	4	<u> 2 1</u>	교		
00'14"	000	100 010			╬	- -	++	 	+	ļ		48800			!				+		Ц		 	\perp	
00 14" × .375" x42.000'	97	100,913			old.	Ģ - -	- -		-	<u> </u>	A08610	34,9	50.0		1	17	1	78 1	10	6	1	2 1	TT		
(1.355.6mm x 9.53mm x 12.5029()			1120		++	╌╁╌╁╴	┥ 	<u> </u>		<u> </u>	ļ	42600	71 100		+				1		Ц		1		
					+		- -	ļ .	<u> </u>		A08813	34.3	48.9	51.0	38	17	1	74 1	8	6	1	1	12		
	.		L	-11	41	11	<u> </u>	<u> </u>	1.1			48800	39800	T2500				. [.	\perp			. l			
00 15" x ,500" x42,000"	322	50,508	92	GG	<u> </u>	G	\bot	<u> </u>	$\coprod \ell$	1	A001163	49.7	47.5	50.1	40	17	1	76 2X	7 (6	1 2	1	Tr		
1 408. 4mm x12.70mm x 12.302H)	1_1		1310					l		1/3		1 2200	87600	71300				\top	Т				П		
					ŢŢ				TT	7	A00870	30.7	49.Q	52.4	30	19	4	77 1	8	6		, T	口		
					П	\prod	TT	1	IT	1		43700	39700	74500		1		-	1	Ť		-	†*†		
09:20° x .500° x42.000°	3	5,857	74	6 6	o G	G C	1	1 -			A05753	31.2	48.5	51.2	+	78	Ī	75 1	, ,	†_	╗	2 1		\dashv	
(506, 0mg x12, 70mm x 12, 802f)			1050		11		11		1	\vdash	1	44400	59100	72800	r r	+	+	-	+	<u>: 0.</u>		4	T	\dashv	
A second of the second of			1.20		11	++	++		╬┪		Morrise	1				+		<u> </u>	+	H	- -	+	\vdash	-+-	
	1-				╁	++	╁┼		┼┼	-	H07216	32.0	49.3	52.7		120	1	76 12	1 8	6	1	<u>} 1</u>	庇	-	
	 	· · · - · · · · ·	-	-}-	╼╂╌├╌		┪╂		+-+	ļ	 	45500	70100	75000		4-	<u> </u>		╁-	H	\dashv	_	14		 -
TUTAL ->	227	208,794			┩	-}-	┪┽╴		 	ļ	 	ļ				4			_		4	丄	Ц		
	 			_	4	44	44-	<u> </u>		ļ	<u> </u>								1			\perp	Ш		
	<u> </u> -			_ _	4		┦	ļ	$\bot \bot$										\perp	Ц		\perp	\coprod		
					11	Ш	Ш	<u> </u>	$\perp \downarrow$							1					-				
### Care of the second of the	en End Bi isadoù J	Coupled Cou		Dek Fyll Nand Gist	ESIN Histori H	は:は は る exvs に 数名	leter. Heding Test	보장, 60 F : Feo Tasi 원 비타[제]	: 1 : h	100d) E ⊋1		<u> e: </u> ence#j		osi 연중시 1시회				V year Marie Florid B 1 S	Disor Per Te	Tierar idy 51 S Mate	iiiiis Tast Yejj	용합부 발	라인 영	시 :: 사 :: 기 :: 수 :: 1	V
				*	明春 6	Er 47	(j ii	2석에 1	발각하		를 보증합니 -										.		4.5	*	Ki,
SURVEYOR		500 ties	0CW /	COTT	TY 19		TIN' I	0.7 00 7		אחר חיצ	C.FE.A.								L		_ .				

MILL INSPECTION CERTIFICATE

-1/J N

APR. 30. 1997.

E.R.Y. STEEL PIPE

E-7-04-225

백이지

E4702800

P108 : 1

P. 677.83

SERFERENCE NO

0+16 OF 15 SUE

계 약 번 호. CONTRACTIPIOING

*본 사·공 장 집답 육산시 중구 결모등 201년자 3000대 - Q포장 URSAM PLANT : # 345, YUMPO-CONG, JUNG-XU, ULSAN, KOREA TEL : 87 - 2101 - 9 FAX : :0522187 - 8916

TUX CHOPTER & 5377\$

PI SIBVASTH ASSB	9 2	75 31E 4		 -	SEOUR OFFICE: \$7	[독발시 중구 무고등 77번지 17,XXXXO-DONG, JUNG XU \$10U 1 : 773 - 0822 1AX : 77 1 : HOPIPE # 24655, 3, 22953	L XOREA
		्राप्ता । स्टिक्स	[]]] U 10500 Haralet = 30 2 2 2				
# · 수 라 나를 # S i 의 N 와 당 ^ 등 시 · 같 이 'CUTCYA. · THICK › LENGTH'	는 중 등 다 OUAN 'XEIGHT PER 'XEIGHT	MACHINE RESIDENCE TO STATE OF THE STATE OF T	CONTROL CONTRO	Ary G W		S 4 INO BANG TOMPOSITION INFACT INFAC	기 고 FEMARK
¥2: 53 64		\$1/6 3 2 2 2 2 2 2 2 2 2	200 2	· · · · · · · · · · · · · · · · · · ·	× 150 €1150		
00 14" x .375" x21,600'	95 19,1				36 17 1 26 14 10) 6 12 1 Tr	
(335.80m x 9.53mm x 6.401N	· -	1!20	- Ì·┞╎ ╂┈┈┡┈┝╽ ╌╌ <mark></mark>	49800 71100 75000			
	 	 	╢╟╌		38 17 1 74 15 8	3 5 1 2 1 Tr	
00; 14" x .375" x42.000'	97 100.91	3 79 C C C C C	╁╂┼╼┊┼╭	48800 68800 72500 488810 34.9 50.0 53.4		+++++	·
(335, Sepa x 9,53-m x 12,602)(_ 	1120	- ┤ ┤ ┼┼╼═╂┈┤ ╏ ┎┈╏	408610 34.9 56.0 53.4 , 49800 71100 78000	35 17 1 76 14 10) 6 1 2 1 Tr	
	<u> </u>				38 17 1 74 18 8	561213	\$ 0 % T 1 1 1 1 1 1 1 1 1
	·			48800 69600 77500			老白一只
60 16" x .500" x42.000'	32 50.50	8 92 0 0 G C C			40 17 1 75 20 7	6 12 1 12	िडेंस हैं हैं।
(408.4mm x12.70mm x 12.50ZH	<u> </u>	1310		42200 67900 71300		TITE SE	इड्डिडा हि
	<u> </u>	<u> </u>		A09070) 30.7 49.0 52.4	39 19 1 77 15 8	6 1 2 177	三至多的"上层
		╟╼┩┼╣╇		43700 69700 74500		11111111111	3 3 50 6 7
00-20" x .500" x42.000"	3 5,90	╸ ┡══ ╶╸ ╁═┼╴┟┈╉═┩═			37, 16 7, 75 17 8	1 5 1 2 1 7 -	PER E
(506,0mm x12,70mm x 12,802H		1050	┟╉╋╂┾╸╼┾╍┾╬╼╌┆	44400 59100 72800			0301 1
		╀	╏╂╂┠╬╶╌╬╌┥╂╌╍┤		38 18 Tr. 78 18 8		28611 28
		┇	╎ ┩ ╏╏┋ ╼═┋	45500 70100 75000		11 11 28	8 - 2 3 1 1
TUTAL ->	227 306.79	 	╏┦┇ ╢╬╼═╏╶╡╧╸╏				333 L
							美工工工 [1]
		┿┈┼┼┼┼	┡ ╏ ┇╏				THE STATE
			상 Brea 호텔 등 Od : Outside Dar				
	Phin End Squareron		CKnow, Fired, Clock.	->ze: 		(M) and 1 (bob) Describe Called A 11合語	新疆·普里斯人斯曼
BI Black Plain End Seveled OPEB (Gazzati and District Plants Throadest & Graphed 11TC (Galvani ret		E Pathwell	: Brimbing Tips: 현실 또는 급립시 No. Fast 벡리계경사 좋답시설 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전		He We'r Out of the Court of the	acay Test 용접부 원심시합 Test 감작사람 s bet의 2 0 부	
		는 대통원	관련규칙이 합리되었음을	보증합니다.	T		- Vonc
SURVEYOR B XX1-012-GLT	1	THE IN ACCIDIANT		NEXE THE WAS REFU CIP CATERN AND OXOGR.		INSPECTION MAI	NAGER

#377 P.05/07

10145

					YPE B - IN		DANCE WI	TH ISO 1047	4/201020	4/DIN 500	46;			·	·				
WITT D.	TIEN NO.		SHIPPES	15 NU	, -	יי פפלי	U. NEW DEF	`				-							
DM.		<u> </u>					00.				10	(nval Y	total 1						in jen
MATERIAL COND:	A5-ROLLED						1	4.000	355.6	00)					5 (9	.52	5)		m, 141.
			T		Ţ—.			 -			CHARPY VINC	OTCH IM							
PRÚ IDENTE	IDUCT FICATION	F£ AT	AFNO	GRAIN BIZE	COLLA	PS=	Dta	TEST	TELAP	SIZE	COND.	<u> </u> -	F 2	1.[69	DAM I	ļ	7 7	RAPH	ANG
120,111							}		· 	J		 -	 * -	 	1				~~
844950		DΚ					1	· 		T	T		1	1	 				
R44951		CDK .			1								1				<u> </u>		
W 1 1 2 2 1				×× F	NO OF	DATA	THIS	SHEET	××		1			ĺ]	1]		
					100	D 1111	'"-	5				-		İ	1	!			
										İ					}	ŀ			
			į							1					1				
LEGEND	E-LONGITUE	HNAL		Î · TPAI	YSVERSE		P - 60	DY		W - WELD			HAZ ->	SEAT AFF	ECTED &	ME			<u> </u>
						17	ESTNO / P	EPECTION H	(FORMATK	H	·····								
	TEST / N	SPECTION			YES						RESULTS /	COMME	NTS_						
FULL LENGT	TH VISUAL				Х														
FULL LENG!					X		00	<u> X</u>	00/10		<u> </u>		_דע						
FULL LENG	TH MPI																		
FULL LENG							CD .		00/10		ι		L/T		~				
END AREA	INSPECTION (A	AN END					MPi		UT			· · · · · ·							
SPECIAL EN	ID AREA (SEA)	INSF.			!		M a si		IJĪ				ä						
FULL LENG	TH DAIFT				i			T MANDRE											
FULL	ENGTH UT	OF WEL	D		X		00		007	(0 X	T X							··-,	
								LAL NOTES/C											
	TURING TO																		
•	IDS ARE AD	DED TO	THE S	STEEL /	AL DINE	. ME	ROURY	BEARI	NG €D	JIPMEN	T IS PR	OTE	CTEC	BY	JOG A	JBLE	BOU	NDAR	Y
OF CONT	MINMENT.																		

THIS IS TO CEPTIFY THAT THE PROCLICT DESCRIBED HEREW WAS MANUFACTURED, SAMPLED. TESTED AND/OR INSPECTED IN ACCORDANCE WITH THE SPECIFICATION AND DUCTILES THE RECUIPEMENTS IN SUCH RESPECTS.

PREPARED BY THE OFFICE OF F.J. MIKULSKI MGF. MET. & C.A. USS TUBULAR ERODUCTS

DOTE __ E9/05/97

	π	YPE 8 - T E ACCOMBANCE WITH 18 0 18474	/EM10*^*/BIX50949)		
MOLL C: ITEMANO.	SHIPPEASNO	P.O. NUMBER	HECUE ID		
DM20648 01		17709			- {
SOLD TO AD	ORESS	MAIL TO M	DOMEGS	YENDOR .	\neg
BARTOW STEEL INC P D BOX 1789 SARTOW FL 33836-1789		BARTOW STEEL INC P O BOX 1789 BARTOW FL 33830-17	789	USS TUBULAR PRODUCTS 301 FOURTH AVE. MCKEESPORT, PA 15132	
		EPECIFICATION AND G	BADE		

PIPE CARBON EW STO PIPE API 5L-x41ST EDITION DTD 4/1/95 GRADE B/X42 AND ASTM A53-x96 GRADE B TRIPLE STENCIL ASME SA53-x1995 EDITION 1996 ADDENDUM GRADE B BLK REG MILL COAT PE BEV 30 DEG

PROOLET	ENSIL		, I	LIKOTE .		YIELD	PSI	EXT 4		TENSL PS		Y	15		NO 5		5 (19.	MW HYDRO PSI	DMELLISED
PRODUCT EDENTIFICATION	TEST TYPE: OREMIARON	i les	10. W	- 1	ADI:	4	2000) 	MIN:	6	0000	M	XX:		litt	MIN:		1911	3 11
44550	STRIPZTZ	B AR		IN	MAX:	43	960	.58	MAX:	50	3690	-	.71		28. 39.	E MAX	<u> </u>	1911	<u>, </u>
R44951	STRIP/T/			500			9650				1480		.70		42.			1916	
			*x EN	- 4	. DV			SHE	į.		1,00	"	.,,		16.			, , , ,	' ''
				[i				• • •											
LEGENO: L'-LO	MOSTUDINAL SET	T - TRAN			OI.	OUEN	CHEO &	TEMPER:	20	Ai	R - AS A	OLLED			- BODY		 	M · MEID	
PRODUCT DENTFICATION	TYPE	С	THA	Р	s	SI	CU	N	CΠ	ΝO	AL.	N	٧	е	Ti .	CE	ω		CE.
R44950	TASH	20	89	109 8	707	158	201	231	29		Ø32		207					1	1
R44950	LPROD	19		10 8				202	204	2003	Ø25		2003		 				
R44950	!PROG	1:19		109 8				£Z	204	3008	Ø26		2003					1 1	ŀ
	HEAT	28	:89 8	109	307	159	Ø1	\$2	£14	Ø03	3 333		100B		1:		1: 1		ĺ
R44951	['""]		1.	amen le	ורמג	145	791	- <u>₹</u> 32	₹04	1007	1027		600		;	1:	+: $+$		
	PROU	19	39	וכטי	207 J														

JOE H. FORTSON V. P. SALES BARTOW STEEL, INC. 1-800-237-8669 FAXT941-619-8779

NORTH STAR STEEL

HEAT NO .: SLN	K50420		eamless T	CUSTOME		······································	CERTIFIED TEST REPOR
PRODUCT DESCRIPTI				- COSTOME	к :		NSSO MILL ORDER NO.: 0-0037831-6
გ.625 OD Q.5 SEA	MIESS NOT SOL		PEB DAL	CUSTOME	R ORDER N	in ·	
GRADE :AFI 5L X42	YE REV. APRIL	- 1,1995		i	192640		NSSH W/O NO.:
ECHANICAL PROPERTIES:				CUSTOME!	R SPEC.:		NSSH LOT NO.:
SPECIMEN CROSS S		iL	-	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		1
	ECTION ;			NGTH	ELONG	ATION	77.
MIOTH (IX) ! THICK (IN) !	AREA (SQIN)	ė		SI)	! !		COMMENTS Melted & Manufactured in the USA
1.468 0.575	0.8456 :	!	1 47.3	TENSILE	1 GAGE LENGTH	; I ELONG	This pipe is also manufactured to:
;	:	:	7/.3	75.3	2.0	31.8	ASTA A106B/E Rev. 95 ASTW ASTR Day of
	:	:		•			ASKE SALOSS/C Rev.95 ASKE SALSE Rev.
: :	•					: 1	
<u> </u>	1	1		,	i	:	
; C ! HEAT ; 0.21 !0 PRODUCT #1 ; 0.21 :0	Mo ; P ; S	Si Cu 0.25 0.22	! Ni : Cr ! 0.12 0.07	! Mo ! S	in ; Cb ;	V ; A1	1 and Transverse notices. 1 Ca ! B ! Ti ! N ! CE 2.0033 ! (9.0005) (0.005 to most to H
FRODUCT #2 : 0.20 : 0	hn ; P ; S	Si Cu 0.25 0.22	! Ni : Cr ! 0.12 0.07	! Mo ! S	in ; Cb ;	V ; A1	! Ca ! B ! Ti ! N ! CE
PRODUCT #2 0.20 0	hn ; P ; S	Si Cu 0.24 0.22 0.27 0.21 0.27 0.21 0.21	! Ni : Cr ! 0.12 0.07	: Ma : S : 0.03 : 0.0 : 0.03 : 0.0	in ; Cb ;	V ; A1	! Ca ! B ! Ti ! N ! CE
PRODUCT #2 0.20 0 DROSTATIC TEST (psi): SUPPLEMENTAL	Mo ; P ; S 0.92	Si Cu 0.24 0.22 0.27 0.21 0.27 0.21 0.21	: Ni : Cr : 0.12	: Mc : S : 0.93 : 0.0 : 0.03 : 6.0 : 0.03 : 6.0	in ; Cb ; 13 ; (0,003;0 13 ; (0,003;0 12 ; (0,003;0 ; ; ;	V A1 0.003 (0.030 0.000 (0.038 0.000 (0.935 	Ca
PRODUCT #2 : 0.20 : 0 DROSTATIC TEST (psi): SUPPLEMENTAL	hn (P : S 1.92	Si Cu (0.26 0.22 (0.27 0.21 (0.27 0.21 (0.27 0.21 (0.27 0.21 (0.27 0.21	: Ni : Cr : 0.12	MG: S: 0.03	6m ; Cb ; 13 ; (0.903; 0 15 ; (0.903; 0 12 ; (0.903; 0 12 ; (0.903; 0 13 ; (0.903; 0 14 ; (0.903; 0 15 ; (0.903; 0 16 ; (0.903; 0 17 ; (0.903; 0 18 ; (0.903; 0 18 ; (0.903; 0 18 ; (0.903; 0 18 ; (0.903; 0 18 ; (0.903; 0	U : A1 0.003 (0.030 0.000 (0.036 0.000 (0.935 :	D.0033 (0.0005; (0.005 (0.0093 10.41 0.0029 (0.0005; (0.005 (0.0100 10.41 0.0029 (0.0005; (0.005 (0.005 (0.0100 10.41 0.0029 (0.0005) (0.005 (
PRODUCT #2 : 0.20 : 0 DROSTATIC TEST (psi): SUPPLEMENTAL REGUIREMENTS : YE	Mn (P : S 1.92	Si Cu (0.26 0.22 (0.27 0.21 (0.27 0.21 (0.27 0.21 (0.27 0.21 (0.27 0.21 (0.27 0.21 (0.27 0.21	! Ni : Cr ! 0.12 0.07 ! 0.10 0.09 ! 0.10 0.09 !	This material has the requirements hated below. We representative of the Any modification of Steel without the steel wit	basen produced and tended approaches specific that the certification as conference as the conference of the certification as conference on the certification as conference on the certification as conference on the certification as	J. 003 (0.030 0.000 (0.036 0.000 (0.935 0.000 (0.935 0.000 (0.935 0.000 (0.935 0.000 (0.935 0.000 (0.935 0.000 (0.935 0.	Ca
PRODUCT #2 : 0.20 : 0 DROSTATIC TEST (psi): SUPPLEMENTAL REGUIREMENTS : YE HARDNESS ; X CHARPY IMPCT TST	Mn (P : S 1.92	Si Cu (0.26 0.22 (0.27 0.21 (0.27 0.21	! Ni : Cr ! 0.12 0.07 ! 0.10 0.09 ! 0.10 0.09 !	This material has the requirements listed below. We registed below. We registed the without line onegates the without line onegates the without line onegates the without line onegates the without North Star Steel	baen produced and te- of approaches specifical harmony certify that the house contained in the in	D. 003 (0.030 0.000 (0.036 0.000 (0.935 0.000 br>0.000 (0.935 0.935 0.000 (0.935 0.935 0.000 (0.935 0.935 0.000 (0.935 0.935 0.000 (0.935 0	Ca B Ti N CE D.0033 (0.0005) (0.005 0.0093 0.41 0.0029 (0.0005) (0.005 0.0100 0.41 0.0029 (0.0005) (0.005 0.0100 0.41 0.0029 (0.0005) (0.005 0.0100 0.41 0.0029 (0.0005) (0.005 0.0100 0.41 0.41 0.0029 (0.0005) (0.005 0.0100 0.41 0.41 0.0029 (0.0005) (0.005 0.0100 0.41
PRODUCT #2 : 0.20 : 0 DROSTATIC TEST (psi): SUPPLEMENTAL REGUIREMENTS : YE HARDNESS ; X CHARPY IMPCT TST	Mn (P : S 1.92	Si Cu (0.26 0.22 (0.27 0.21 (0.27 0.21	! Ni : Cr ! 0.12 0.07 ! 0.10 0.09 ! 0.10 0.09 !	This material has the requirements listed below. We registed below. We registed the without line onegates the without line onegates the without line onegates the without line onegates the without North Star Steel	baen produced and te- of a poincable specification in the to this continuous continuous of the total continuous of the total continuous of this testification as a propressed written continuous of this testification is of this testification is of the continuous of this testification is of this testification is of this testification.	D. 003 (0.030 0.000 (0.036 0.000 (0.935 0.000 br>0.000 (0.935 0.935 0.000 (0.935 0.935 0.000 (0.935 0.935 0.000 (0.935 0.935 0.000 (0.935 0	Ca

APPROVAL:

V. P. SALES BARTOW STEEL, INC. 1-800-237-8669 TEAX 941-619-8779

NO. H STAR STEEL

	Seamless I	ubular Products	CERTIFIED TEST REPORT
PRODUCT DESCRIPTION:		:CUSTOMER :	!NSSO MILL ORDER NO.:: 0-0036432-0
6.625 OD 0.562 WALL 36.35 SEANLESS HOT ROLL	ED	CUSTOMER ORDER NO.:	: NSSH W/O NO.:
GRADE : API 5L X42/B REV. APRIL	1,1995	CUSTOMER SPEC.:	INSSH LOT NO.:
ECHANICAL PROPERTIES: LENGITUDINAL			
SPECIMEN CROSS SECTION :		NGTH ! ELONGATION	COMMENTS
(MIES) ASAA : (M) MOINT : (M) HIGH		SI) :	Helted & Manufactured in the USA
1.483 0.550 0.8157	: YIELD : YIELD : 51.1	TEROTEE SHOE EEROIR 1 ELUNG	This pipe is also menufactured to:
1	, , , , , , , , , , , , , , , , , , , ,	B0.4 ! 2.0 38.5	ASTH ALOGB/C Rev. 94a ASTH ASSB Rev. 9
			ASME SAION-B/C Rev.93 ASME SASSE Rev.5
	: :		
	:	l ()	
HEMICAL ANALYSIS: NS68 Electronic		· · · · · · · · · · · · · · · · · · ·	
	nezic inspected. Heference Stand:	ard was a test joint with 101 00 Longitudi	nal and Transverse notches.
1 C ! Nn ! P ! S	! Si : Cu ! Ni : Cr	! Mo ! Sn ! Cb ! Y ! A	1 1 7 1 7 1 7 1 7 1 1 1 1 1 1 1 1 1 1 1
1 1177 1 1177 1 01011	. 4.14 . 4.11 . 4.15 . 4.19	7 V-V3	7 0035 1 /0 00054 0 007 10 0007
FRODUCT #1 10.24 10.89 10.009 10.002	10-29 0.16 0.11 0.13	1 0.02 1 0.010 1 (0.003 1 0.002 10.03	10 B 0057 1 /0 0005 /0 005 40 0000 +0 +0
FRODUCT #2 0.22 10.90 10.010 0.002	0.19 0.16 0.13 0.15	0.03 (0.511 (0.003; 0.003 (0.02	2 p. 6035 (0.0005; (0.005 ; 10.42
	<u>: : : : : : : : : : : : : : : : : : : </u>		
PDROSTATIC TEST (psi): Z600 for	5 seconds minimum		
SUPFLEMENTAL	· · · · · · · · · · · · · · · · · · ·		
REQUIREMENTS : YES: NO :	REMARKS	This material has been produced and tested in accorda	INCE WITH
	NEDHARS	the requirements of applicable specifications untest of listed below. We nevely certify that the above test re-	oults are
HARDNESS : X : ! RB AV	6 84	representative of those contained in the fecords of the c Any modification to this certification as provided by N	COMPANY. SWORN AND SHASCHIED TO REPORE
CHARPY IMPCT TST : :		Steel without the expressed written consent of North S	Star Steel
		negates the validity of this test report. North Star Steel is not responsible for the inability	THISDAY
		material to meet apecific applications.	
FLATTENING TEST; X : : PASSE	D	A D A	, Notary Public
ACE TEST : X :		SIGNED A. F. Willmit	MY COMMISSION EXPIRES
OMINY HARDEN			m1 COMMISSION EXPIRES
GRAIN SIZE ;		DATE 1-27-97	THIS CERTIFICATE IS NOTORIZED ONLY
OTHER : ! Satis	fies NACE MR-01-75	DATE	WHEN REQUESTED
		APPROVAL.	· · · · · ·

V. P. SALES BARTOW STEEL, INC. 1-800-237-8669 FAX-941-619-8779

NORTH 'AR STEEL Seamless Tubular Products

CERTIFIED TEST DEBORT

	, Ocamicas ii	ingial Linguitte	OFILLIATED (ED) MERON
HEAT NO.: SLN J90207		CUSTOMER :	NSSO MILL ORDER NO.: 0-0034545-0
PRODUCT DESCRIPTION:	•		1
6.625 OD 0.562 WALL 36.0 SEAMLESS HOT RO		CUSTOMER ORDER NO.: 187680	NSSH W/O NO.:
GRADE :AFI 5L X42/B REV. APRI		CUSTOMER SPEC.:	NSSH LOT NO.:
			1
ECHANICAL PROPERTIES: LONGITUDIN	AL		
SPECIMEN CROSS SECTION :	: STREN	GTH : ELONGATION	COMMENTS
	(KS		
WIDTH (IN) : THICK (IN) : AREA (SQIN) :	: YIELD !	TENSILE ; GAGE LENGTH ; I ELBNG	This pipe is also manufactured to:
1.459 ; 0.555 ; 0.8097 ;	51.7	77.7 : 2.0 : 34.9	ASTN A106B/C Rev_94a ASTN A53B Rev.9
1 440 1 01000 1 010077 1	1 1 1	, , , , , , , , , , , , , , , , , , , ,	ASME SAIGE-B/C Rev. 93 ASME SASSB Rev.
1 1		; ;	MARK BRIDE DIG RET. 13 MORK BRADE RET.
: : :	: :	: : !	N-31-3 3 M f1
		1 1	Melted and Manufactured in the USA.
; ; ;	; ;	;	
C	004 (0.2)	: Mg : Sn : Cb : V : Al : 0.02 : 0.013 : (0.003 : 0.002 : (0.038 : 0.02 : 0.016 : 0.003 : 0.001 : (0.036 : 0.02 : 0.016 : 0.003 : 0.002 : (0.035 :	p.6032 (0.0005; (0.005 t0.0067 t0.41 p.6017 (0.0005; (0.005 t0.0073 t0.43
/DROSTATIC TEST (psi): 3000 4	or 5 seconds minimum	-	
SUPPLEMENTAL		This material has been produced and tested in accordant	
REQUIREMENTS : YES! NO !	REMARKS	the repartments of applicable specifications whiese oth listed below. We necesy certify that the above test resu	die are
		representative of those contained in the records of the cor	menny SWORN AND SUBSCRIBED TO BEFOR
	AVG 82	Any modification to this certification as provided by Nor Steel without the expressed written consent of North Sta	r Steel
CHARPY IMPCT TST : :		negates the validity of this lest report.	THISDAY
		North Star Steel is not responsible for the inability	of this
; ; ;		material to meet specific applications	
LATTENING TEST! X : PAS	SED	11101	Notary Public
NACE TEST X		SIGNED Gell Schult	MY COMMISSION EXPIRES
JOMINY HARDEN		7/1/	
GRAIN SIZE		100	THIS CERTIFICATE IS NOTORIZED ON
	tisfies NACE MR-01-75	DATE 9-24.96	WHEN REQUESTED
		—	
		APPROVAL	

Appendix F

Cement Records for ASR-1

ASR-1 CEMENTING RECORD

CITY OF FORT LAUDERDALE

FIVEASH WTP ASR WELL SYSTEM

JOB NUMBER	1324007.28090290

CONTRACTOR: Youngquist Brothers, Inc.

BID ITEM:

CASING SIZE: 26-inch, 16-inch, and plug-back

ATTACH ALL CALCULATION SHEETS

Α	В	С	D	Е	F	G	Н	1	J	К	L	М
DATE	STAGE	CEMENT	YIELD	QUANTITY PUMPED		THEORETICAL FILL		ACTUA FILL	L	PERCENT FILLED	CUMULATIVE TOTAL	INSPECTOR'S
<u></u>	NO.	(ADDITIVES, BLENDS, MIXTURES)	(FT/SK)	(FTP)	INTERVAL	FOOTAGE	PAD LEVEL	INTERVAL	FOOTAGE	J/G x 100	(FT)	
12/3/97	1	Neat none	1.18	539	198-0	198	20	198-20	178	90	539	NAJ
12/16/97	1	4% Gel / Neat	1.52/1.18	1,168 / 730	1,065-0	1,065		1,065-			1,898	NAJ
12/18/97	_2	4% Gel	1.52	112	-0			-0			2,010	
12/27/97	1	Neat none	1.18	129	1,300-1,200	100	1,226	1,300-1,226	74	74	129	NAJ
12/28/97	2	Neat none	1.18	45	1,226-1,200	26	1,183	1,226-1,183	43	165	174	LAN
												·

ASR-1 CEMENT PUMPING DATA

DATE(S): 12/3/97

CITY OF FORT LAUDERDALE

FIVEASH WTP ASR WELL SYSTEM

JOB NUMBER 1324007.28090290

CONTRACTOR: Youngquist Brothers, Inc.

PROJECT MANAGER: Anne M. Murray

COUNTY: Broward DESCRIPTION OF OPERATIO Cement 26-inch casing

OWNER: City of Ft. Lauderdale

CONTRACTOR: FCI INITIAL READINGS: (

START TIME: 11:05 (HEADER PRESSURE)

FINISH TIME: 11:38

STAGE NUMBER: 1 THEORETICAL PRESSURES:

(CEMENT/ COLLAPSE)

	TOTAL	HEADER			TOTAL	TOTAL	
TIME	MINUTES	PRESSURE	LBS/ GAL	BAR/ MIN	BARRELS	FT3	COMMENTS
11:05	0				0		Begin cementing
11:13	0:08	22	15.4	2.75	25	140.4	Neat
11:15	0:10	28	15.6	2.9	41	230.2	
11:18	0:13	36	15.6	2.9	49	275.1	
11:20	0:15	40	15.4	2.9	56	314.4	
11:22	0:17	44	,—,,,,, <u>,</u> ,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			Air leaking at connection
11:24	0:19	46	15.3	2.9	68	381.8	
11:25	0:20	48					Leak stopped
11:26	0:21	50					Mud returns
11:28	0:23	52	15.6	2.9	80	449.2,	
11:31	0:26	54	15	2.9	89	499.7	
11:32	0:27				90	505.3	Emptying hopper
11:33	0:28	48					Flushing hose onto pad
11:36	0:31	48		0	96		End cementing
11:36	0:31		8.8	3.8	96	539.0	Begin chase

Observer's	initials	NAJ
Observers	HUUGIS	INMU

WRTC009 (REV 06/29/94)

PAGE 1 OF 2

	TOTAL	HEADER			TOTAL	TOTAL	
TIME	MINUTES	PRESSURE	LBS/ GAL	BAR/ MIN	BARRELS	FT ³	COMMENTS
11:37	0:32				98.5	553.0	End chase - 2.5 bbl
11:38	0:33	47					No cement returns will tag
							at 1600 hours
					7.7111		
				:			
				r			7
					- 8 W. W-1		
					···		
	,,,,,,						
				<u> </u>			

11:37	0:32	<u> </u>			98.5	553.0	End chase - 2.5 bbl
11:38	0:33	47					No cement returns will tag
							at 1600 hours
	<u> </u>						
							1. NO
		:					
i			····				
							······································
				, <u></u>			
]	444_8444
					-		
						-	
	···						
			i				
	•						

Observer's initials	NAJ	
PAGE _	<u>2</u> OF _	2_

WRTC009 (REV 06/29/94)

ASR-1 CEMENT PUMPING DATA

16/97
į

CITY OF FORT LAUDERDALE

FIVEASH WTP ASR WELL SYSTEM

JOB NUMBER 1324007.28090290

CONTRACTOR: Youngquist Brothers, Inc.

PROJECT MANAGER: Anne M. Murray

COUNTY:

Broward

DESCRIPTION OF OPERATIO Cement 16-inch casing

OWNER:

City of Ft. Lauderdale

2-3/8-inch cement tubing to 1031 feet (17 stands)

CONTRACTOR:

INITIAL READINGS:

START TIME: FINISH TIME:

21:43

(HEADER PRESSURE)

STAGE NUMBER:

23:08

THEORETICAL PRESSURES: (CEMENT/ COLLAPSE)

	TOTAL	HEADER		([TOTAL	TOTAL	
TIME	MINUTES	PRESSURE	LBS/ GAL	BAR/ MIN	BARRELS	FT ³	COMMENTS
21:25							Pre-flush with 15 bbl water
21:43	****						Begin flush 5 barrel
21:47	0	0					Begin cementing 4%
21:50	0:03	10					
21:54	0:07	10	14	5			
21:56	0:09	20	14.2	4.5			
21:59	0:12	30					
22:02	0:15	50	14.2	5	61	342.5	
22:04	0:17						
22:06	0:19	70	14.2	4.75	80	449.2	
22:11	0:24	90	14.1	4.75	98	550.2	1
22:18	0:31	130	14.3	4.75	130	729.9	
22:21	0:34	150	14.2	5	150	842.2	
22:25	0:38	170	14,2	5.	170	954.5	
22:29	0:42	180	14.1	5	188	1055.5	-

Observer's	initials	NAJ

WRTC009 (REV 06/29/94)

PAGE 1 OF 2

1

1 {	TOTAL	HEADER			TOTAL	TOTAL	
TIME	MINUTES	PRESSURE	LBS/ GAL	BAR/ MIN	BARRELS	FT ³	COMMENTS
22:30	0:43	190	14.2	5	197	1106.1	
22:31	0:44	200			208	1167.8	Switch from 4% to neat
22:37	0:50	230	15.6	4	227	1274.5	
22:39	0:52	240	15.7	4	239	1341.9	
22:41	0:54	250	15.7	4	249	1398.0	
22:43	0:56	260	15.6	4	256	1437.3	
22:45	0:58	270	15.6	4	265	1487.9	
22:47	1:00	280	15.6	4	274	1538.4	
22:50	1:03	290	15.6	4	285	1600.2	
22:54	1:07	300	15.6	4	300	1684.4	
22:58	1:11	310	15.6	4	310	1740.5	
22:59	1:12	311	15.6	4	320	1796.7	
23:01	1:14	320	15.6	4	330	1852.8	
23:03	1:16						•
23:05	1:18	330			338	1897.7	Stop cement shut-in = 280 psi
23:07	1:20	240					
23:08	1:21				343	1925.8	Chase 5.2 barrel
23:24	1:37	215					
23:32	1:45	205					
<u></u>							
				_,			1% 208 bbl 1166 ft ³ 767 sacks
						r	neat 135 bbl 757 ft ³ 641 sacks

Observer'	s initials	<u> </u>	NAJ		
		2	\sim E	\sim	

WRTC009 (REV 06/29/94)

ASR-1 CEMENT PUMPING DATA

DATE(S):	12/27/97
DATE(S).	12203

CITY OF FORT LAUDERDALE

FIVEASH WTP ASR WELL SYSTEM

JOB NUMBER 1324007.28090290

CONTRACTOR: Youngquist Brothers, Inc.

PROJECT MANAGER: Anne M. Murray

COUNTY:

Broward

OWNER:

City of Ft. Lauderdale

DESCRIPTION OF OPERATIO Plug-back pilot hole from 1,300 to 1,200

CONTRACTOR:

FCI

INITIAL READINGS:

N/A

START TIME:

12:55

(HEADER PRESSURE)

FINISH TIME:

STAGE NUMBER:

13:00

THEORETICAL PRESSURES:

(CEMENT/ COLLAPSE)

TIME	TOTAL	HEADER	1.00/.041	D & D/ 14/1	TOTAL	TOTAL	
THAIL	MINOTES	PRESSURE	LDS/ GAL	BAH/ WIIN	BARRELS	FT³	COMMENTS
12:40	0	N/A					Flushing Line
12:48		N/A		- 123.42	5		Flushing Tubing
12:55	0	N/A	15.6		0		Begin Pumping Neat
12:56	1	N/A	15.6	5	5		Raising and Lowering Tremie
12:57	2	N/A	15.6	5	10		Raising and Lowering Tremie
13:00	5	N/A	15.6	5	23		End Pumping Cement
13:01	6	N/A	15.6				Begin Chase
13:03	8	N/A	15.6			~~~~	End Chase 5.5 bbl

ļ							7
~ <u>-</u>							711.

000014013	, ii ittiai3		
	PAGE	OF	

WRTC009 (REV 06/29/94)

STAGE NUMBER:

ASR-1 CEMENT PUMPING DATA

CITY OF FORT LAU	DERDALE	DATE:	
JOB NUMBER	1324007.28090290	•	
CONTRACTOR:	Youngquist Brothers	ş, İnc.	
PROJECT MANAGER;	Anne M. Murray		
COUNTY: OWNER:	Broward City of Ft. Lauderda	DESCRIPTION OF OPERATIONS:	Plug-back pilot hole from 1,226 to 1,200
CONTRACTOR: START TIME: FINISH TIME:	FCI 11:52 11:54	INITIAL READINGS: N/A (HEADER PRESSURE)	

THEORETICAL PRESSURES: (CEMENT/ COLLAPSE)

	TOTAL	HEADER			TOTAL	70744	
TIME					TOTAL	TOTAL	
1 11ALE	MINOTES	PRESSURE	LBS/ GAL	BAH/ MIN	BARRELS	FT ³	COMMENTS
11:48	0	N/A					Begin Pre-flush
11:52	0	N/A	15.6	5	0	0	Begin Pumping Neat
11:54	2	N/A	15.6	5	8	44.9	End Pumping Cement
11:54					- W.		Begin Chase
11:55	·						End Chase 5.5 bbl
·					, <u>,,</u>		
						'"	
			-				
							
			*			***	<u> </u>

	·			
Observer's i	nitials_			
		PAGE _	_ c)F

Cement Records for FMW-1

FMW-1 CEMENT PUMPING DATA

ATE(S):	1/7/98

CITY OF FORT LAUDERDALE

FIVEASH WTP ASR WELL SYSTEM

JOB NUMBER 1324007.28090290

CONTRACTOR: Youngquist Brothers, Inc.

PROJECT MANAGER: Anne M. Murray

COUNTY:

Broward

DESCRIPTION OF OPERATIO Cement 14-inch casing

OWNER:

City of Ft. Lauderdale

from 370 ft bpl to surface (T=1,100 ft³ = 196 bbl)

CONTRACTOR:

FCI

INITIAL READINGS:

START TIME:

1:19

(HEADER PRESSURE)

FINISH TIME:

STAGE NUMBER:

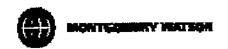
1:58

THEORETICAL PRESSURES:

(CEMENT/ COLLAPSE)

	TOTAL	HEADER			TOTAL	TOTAL	
TIME	MINUTES	PRESSURE	LBS/ GAL	BAR/ MIN	BARRELS	FT³	COMMENTS
01:10	o	o.		7 PV. 12 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0		Pre-flush with 16 bbl water
01:18	. 0	0			16		End Pre-flush
01:19	0	0			0		Begin cementing 4%
01:21	0:02	0	14.2	5	6		
01:24	0:05	3.5	14.2	5.	25		
01:27	0:08	10					
01:28	0:09	15	14.2	6	47		
01:29	0:10	20					
01:32	0:13	30	14.2	6	68		
01:34	0:15	40	;				
01:36	0:17	45			90		End 4% - Switching to Neat
01:38	0:19	50					
01:40	0:21	60	15.7	4.25	109		,
01:43	0:24	70	15.7	4.25	124		
01:46	0:27	80	15.7	3.5	137		

Observer's	initials	NAJ
CM301101 3	KHUMIS	11770


WRTC009 (REV 06/29/94)

PAGE 1 OF 2

	TOTAL	HEADER			TOTAL	TOTAL	
TIME		PRESSURE	LBS/ GAL	BAR/ MIN		FT ³	COMMENTS
01:52	0:33	90	15.7	4.25	152	853.4	
01:55	0:36	100	15.7	4	167	937.6	
01:58	0:39	105	15.7	,,	186	1044.3	Cement Returns/End Cementing
01:58	0:39	105			0	0.0	Begin Chase
02:00	0:41	110			5	28.1	End Chase/Shut-in
						:	
				:			

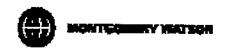
		w					
<u></u>							
							······································

Observer's initials	NAJ
PAGE_	

WRTC009 (REV 06/29/94)

FMW-1 CEMENT PUMPING DATA

DATE(S):	/22/9
----------	-------


CITY OF FORT LAUDERDALE

FIVEASH WTP ASR WELL SYSTEM

JOB NUMBER	1324007.28090290		
CONTRACTOR:	Youngquist Brothers	s, Inc.	
PROJECT MANAGER:	Anne M. Murray	-	
COUNTY:	Broward	DESCRIPTION OF OPERATIO	Cement 6-inch casing
OWNER:	City of Ft. Lauderdal	e cement basket w/	tremie
CONTRACTOR: START TIME:	FCI	INITIAL READINGS: (HEADER PRESSURE)	0
FINISH TIME:	****	(1.2.021.1.1.20001.2)	

	TOTAL	HEADER			TOTAL	TOTAL	
TIME	MINUTES	PRESSURE	LBS/ GAL	BAR/ MIN	BARRELS	FT ³	COMMENTS
17:20	5		15.6		1	5.6	Neat
					{		
					1		
				ļ	<u> </u>		
					İ		
	1			<u> </u>		· . 	
						<u></u>	
				!			
			***			****	
•••	-						
***	 		<u></u>	-			
<u></u>				 	<u> </u>		1
					ļ		

		MRS	
	-		
PAGE	1	OF_	1

STAGE NUMBER: 2

FMW-1 CEMENT PUMPING DATA

THEORETICAL PRESSURES:

			DATE(S):	1/23/9
CITY OF FORT LAU	DERDALE	FIVEASH WTP ASR WELL SYSTEM		
JOB NUMBER	1324007.28090290	_		
CONTRACTOR:	Youngquist Brothers	s, Inc.		
PROJECT MANAGER:	Anne M. Murray	-		
COUNTY: OWNER:	Broward City of Ft. Lauderda	DESCRIPTION OF OPERATIO le initial tag at 1,030 ft b.	Cement 6-inch casing	
CONTRACTOR: START TIME: FINISH TIME:	FC! 8:40	INITIAL READINGS: (HEADER PRESSURE)	0	

(CEMENT/ COLLAPSE)

TIME	TOTAL	HEADER PRESSURE	LRS/GAL	DAD/ MIN	TOTAL	TOTAL FT³		
	1	112000112	LDO, UAL	DALA MILLA	DAUVETS	F1°	COMMENT	5
08:40			15.6		10	56.1	Neat	
08:44					4		Chase	-
								
				-				
								·
		~~-						72.2
		·			· 			
		···						
		-		.				
					İ			

		MRS	
PAGE	1	OF _1_	

FMW-1 CEMENT PUMPING DATA

DATE(S):	1/22/98

CITY OF FORT LAUDERDALE

FIVEASH WTP ASR WELL SYSTEM

JOB NUMBER 1324007.28090290

CONTRACTOR: Youngquist Brothers, Inc.

PROJECT MANAGER: Anne M. Murray

COUNTY:

Broward

DESCRIPTION OF OPERATIO

Cement 6-inch casing

OWNER:

City of Ft. Lauderdale

tag = 924 cement top log = 960

CONTRACTOR:

FÇ1

INITIAL READINGS:

START TIME:

15:54

(HEADER PRESSURE)

FINISH TIME:

16:50 STAGE NUMBER:

THEORETICAL PRESSURES:

(CEMENT/ COLLAPSE)

	TOTAL	HEADER			TOTAL	TOTAL	
TIME	1	PRESSURE	LBS/ GAL	BAR/ MIN	: I	FT ³	COMMENTS
15:54					0	0	Begin pumping Neat
16:00	00:06		15.7	4.9	24	134,7	
16:04	00:10		15.7	5	48	269.5	
16:05	00:11			 	48	269.5	Pulling 4 stands tremie pipe
16:15	00:21		·· -		48	269.5	Resume pumping cement
16:17	00:23		15.8	4.9	52	292.0	
16:24	00:30		15.7	4.9	105	589.5	
16:45	00:51		15.7	4.9	144	808.5	End cement - Begin chase

	MR\$
PAGE 1	OF 1

Appendix G

Core Descriptions and Analyses

WELL # ASR-1 CORE DESCRIPTION

DATE(S):	12/6/97

CITY OF FORT LAUDERDALE - FIVEASH

WTP ASR WELL

JOB NUMBER 1324007 COST CODE 28090290

CONTRACTOR: Youngquist

TOTAL DEPTH: 959 feet

COUNTY: Broward

OWNER: City of Fort Lauderdale

DRILLING METHOD: Carbide Aggressive Drilling

DRILLER(S): Ronnie Thames

DATUM POINT: Pad level

DATUM POINT 8.0 NGVD

ELEVATION: 8.0 NGVL

HYDROLOGIC UNITS: Upper Floridan

% RECOVERY 10 %

CORED INTERVAL 949 - 959

	EPT below	H / pad)	DEPTH INTERVAL	DESCRIPTION	DRILLING COMMENTS
949	to	950	1	Limestone, argillaceous, Limestone is medium gray to white, poor to moderately indurated, succrosic mudstones and wackestones. Porosity is inter-granular and low, Grains include trace fossil debris, and peloids, abundant phosphate is present.	Penetration rate = 2 minute/foot. Weight on bit = 2 K. RPM of kelly = 30. Pump pressure held at a constant of 65 psi.
950	to	959	9	NO RECOVERY	Penetration rate = 30 seconds/foot. Weight on bit = 0 K. RPM of kelly = 30. Pump pressure held at a constant of 85 psi.

PAGE 1 of 1

CORED INTERVAL

WELL # ASR-1 CORE DESCRIPTION

			DATE(S):	12/7/97
CITY OF FORT LAUDERDAL	E - FIVEASH	WTP ASR WELL		
JOB NUMBER 1324007 COST CODE 28090290				
CONTRACTOR: Youngquist				
TOTAL DEPTH:	986	feet		
COUNTY:	Broward	•		
OWNER:	City of Fort Lauderdale	•		
DRILLING METHOD:	Carbide Aggressive Drilling			
DRILLER(S):	Ronnie Thames			
DATUM POINT:	Pad level			
DATUM POINT	8.0 NGVD			
ELEVATION:				
HYDROLOGIC UNITS:	Upper Floridan			
% RECOVERY	10 %			

974-986 ASR-2 x

1	DEPT below		DEPTH INTERVAL	DESCRIPTION	DRILLING COMMENTS
974	to	975	ļ	Limestone, limestone is light gray to white, well indurated, mudstone to wackestone. Porosity is inter-granular and moldic. Permeability is low. Grains include fossil debris, and peloids, minor phosphate is present.	Penetration rate = 5 minute/foot. Weight on bit = 2 K. RPM of kelly = 30. Pump pressure held at a constant of 70 psi.
975	to	986	9	NO RECOVERY	Penetration rate = 30 seconds/foot. Weight on bit = 0 K. RPM of kelly = 30. Pump pressure held at a constant of 85 psi.

85 %

1008 - 1022

% RECOVERY

CORED INTERVAL

WELL # ASR-1 CORE DESCRIPTION

DATE(S):

			DATE(S):	12/8/97
CITY OF FORT LAUDERDAI	LE - FIVEASH	WTP ASR WELL		
JOB NUMBER 1324007 COST CODE 28090290				
CONTRACTOR: Youngquist				
TOTAL DEPTH:	1022	feet		
COUNTY:	Broward			
OWNER:	City of Fort Lauderdale	•		
DRILLING METHOD:	Carbide Aggressive Drilling	•		
DRILLER(S):	Ronnie Thames	•		
DATUM POINT:	Pad level			
DATUM POINT	8.0 NGVD			
ELEVATION:				
HYDROLOGIC UNITS:	Upper Floridan			

ASR-3

	DEPT belov	PTH DEPTH INTERVAL		DESCRIPTION	DRILLING COMMENTS		
1008	to	1017	8	Limestone, white to medium gray, moderately indurated boundstones to wackstones, locally grades to packstone and grainstone. Contains phosphate nodules. Some bioclasts are represented as moldic porosity, and high secondary porosity and permeability are present (intergranular, interparticle and moldic). Locally the rock is recrystalized. Well indurated, and contains coarse spar cement (reducing). Biotics include reef fauna assemblage (diverse mollusk, foram, bryozoan, corals).	Penetration rate = 5 minute/foot. Weight on bit = 2-4 K. RPM of kelly = 30. Pump pressure held at a constant of 70 psi.		
1017	to	1022	5	NO RECOVERY	Penetration rate = 30 seconds/foot. Weight on bit = 0 K. RPM of kelly = 30. Pump pressure held at a constant of 85 psi.		

WELL # FMW-1 CORE DESCRIPTION

DATE(S):	1/19/98

CITY OF FORT LAUDERDALE - FIVEASH

WTP ASR WELL

JOB NUMBER COST CODE

1324007 28090290

CONTRACTOR: Youngquist

TOTAL DEPTH:

1102

feet

COUNTY:

Broward

OWNER: **DRILLING METHOD:**

City of Fort Lauderdale

DRILLER(S):

Diamond Drilling

DATUM POINT:

Jay Swartzentruber Pad level

DATUM POINT

8.0 NGVD

ELEVATION: HYDROLOGIC UNITS:

Upper Floridan

% RECOVERY

75 %

CORED INTERVAL

1090-1102 FMW-3 /

DEPTH (feet below pad)			DEPTH INTERVAL	DESCRIPTION	DRILLING COMMENTS			
1090	to	1097.5	7.5	LIMESTONE: Color: very pale orange, Texture: packstone, Grains: minor quartz sand - mollusca and foraminifera. Cement/Matrix: calcite with recrystallized limemud matrix, poorly cemented. Porosity: moderate. Permeability: moderate. Hardness: moderately soft. Fossils: abundant forams, all are recrystallized and filled with cement.	Penetration rate = 5 minute/foot. Weight on bit = 2-4 K. RPM of kelly = 30. Pump pressure held at a constant of 70 psi.			
1097.5	to	1100	2.5	NO RECOVERY	Penetration rate = 30 seconds/foot. Weight on bit = 0 K. RPM of kelly = 30. Pump pressure held at a constant of 85 psi.			

WELL # ASR-1 CORE DESCRIPTION

DATE(S):	1/19/98

CITY OF FORT LAUDERDALE - FIVEASH

WTP ASR WELL

JOB NUMBER COST CODE

1324007 28090290

CONTRACTOR: Youngquist

TOTAL DEPTH:

1136

feet

COUNTY: OWNER:

Broward

DRILLING METHOD:

City of Fort Lauderdale Carbide Aggressive Drilling

DRILLER(S):

Ronnie Thames

DATUM POINT:

DATUM POINT

Pad level

ELEVATION:

8.0 NGVD

HYDROLOGIC UNITS:

Upper Floridan

% RECOVERY

40 %

CORED INTERVAL

1126 - 1136 ASR-4 ×

	DEPT below	H / pad)	DEPTH INTERVAL	DESCRIPTION	DRILLING COMMENTS		
1126	to	1130	4	LIMESTONE: Color: very pale orange, Texture: wackestone, Grains: minor quartz sand and foraminifera. Cement/Matrix: calcite with recrystallized limemud matrix, poorly cemented. Porosity: moderate. Permeability: moderate. Hardness: moderately soft. Fossils: abundant forams, all are recrystallized and filled with cement.	Penetration rate = 5 minute/foot. Weight on bit = 2-4 K. RPM of kelly = 30. Pump pressure held at a constant of 70 psi.		
1130	to	1136	6	NO RECOVERY	Penetration rate = 30 seconds/foot. Weight on bit = 0 K. RPM of kelly = 30. Pump pressure held at a constant of 85 psi.		

WELL # FMW-1 CORE DESCRIPTION

DATE(S):	1/19/98

CITY OF FORT LAUDERDALE - FIVEASH

WTP ASR WELL

JOB NUMBER COST CODE

1324007

28090290

CONTRACTOR: Youngquist

TOTAL DEPTH:

1005

feet

COUNTY: OWNER:

Broward 5 8 1

City of Fort Lauderdale

DRILLING METHOD:

Diamond Drilling

DRILLER(S):

DATUM POINT:

Jay Swartzentruber

DATUM POINT

Pad level

8.0 NGVD

ELEVATION: HYDROLOGIC UNITS:

Upper Floridan

% RECOVERY

55 %

CORED INTERVAL

993-1005 PMU-2V

	DEPT belov	H v pad)	DEPTH INTERVAL	DESCRIPTION	DRILLING COMMENTS			
993	to	995	2.0	SANDY LIMESTONE: Color: white matrix with clear to black grains, Matrix is recrystalized lime mud, Grains: sand size grains of quarts and phosphate, Fossils: porities - finger to stag horn, Porosity is interparticulate, Permeability is low. Unit is poorly indurated. Unit contains large rip-ups of above unit (Walthers Law).	Penetration rate = 5 minute/foot. Weight on bit = 2-4 K. RPM of kelly = 30. Pump pressure held at a constant of 70 psi.			
995	to	998.5	3.5	LIMESTONE, white to medium gray, moderately indurated boundstones to wackstones, locally grades to packstone and grainstone. Contains phosphate nodules. Some bioclasts are represented as moldic porosity, and high secondary porosity and permeability are present (intergranular, interparticle and moldic). Locally the rock is recrystalized. Well indurated, and contains coarse spar cement (reducing). Biotics include reef fauna assemblage (diverse mollusk, foram, bryozoan, corals).	Penetration rate = 5 minute/foot. Weight on bit = 2-4 K. RPM of kelly = 30. Pump pressure held at a constant of 70 psi.			
998.5	to	1003	4.5	NO RECOVERY	Penetration rate = 30 seconds/foot. Weight on bit = 0 K. RPM of kelly = 30. Pump pressure held at a constant of 85 psi.			

WELL # FMW-1 CORE DESCRIPTION

DATE(S):	1/19/98

CITY OF FORT LAUDERDALE - FIVEASH

WTP ASR WELL

feet

JOB NUMBER

COST CODE

1324007 28090290

CONTRACTOR: Youngquist

TOTAL DEPTH:

COUNTY: OWNER:

DRILLING METHOD:

DRILLER(S): **DATUM POINT:**

DATUM POINT

ELEVATION:

HYDROLOGIC UNITS:

% RECOVERY

CORED INTERVAL

974

Broward

City of Fort Lauderdale

Diamond Drilling

Jay Swartzentruber

Pad level

8.0 NGVD

Upper Floridan

55 %

963-974 EMW-1 W

1	DEPT below	H r pad)	DEPTH INTERVAL	DESCRIPTION	DRILLING COMMENTS		
963	to	963.5	0.5	SANDY LIMESTONE: Color: white matrix with clear to black grains, Matrix is recrystalized lime mud, Grains: sand size grains of quarts and phosphate, Fossils: porities - finger to stag horn, Porosity is interparticulate, Permeability is low. Unit is poorly indurated.	Penetration rate = 5 minute/foot. Weight on bit = 2-4 K. RPM of kelly = 30. Pump pressure held at a constant of 70 psi.		
963.5	to	963.8	0.3	LIMESTONE: Color: very pale orange, Framestone - colonial antillophyllia, septa have been reduced by dissolution, porosity is integranular, solution enhanced and sediment filled. Permebility is low, moderately hard.	Penetration rate = 2 minuet/foot. Weight on bit = 2 K. RPM of kelly = 30. Pump pressure held at a constant of 85 psi.		
963.8	to	966	2.2	LIMESTONE: Grainstone, Color: white, unit is recrystalized. Porosity is moderate and highly altered - precipitation of dog-tooth is present, Permeability: is low to moderate, Moderately hard, unit contains mollusca - cnidarians -kuphus - and bryzoans.	Penetration rate = 3 minuets/foot. Weight on bit = 2 K. RPM of kelly = 30. Pump pressure held at a constant of 85 psi.		
966	66 to 967 1.0 I		1.0	LIMESTONE: Color: very pale orange, Texture: wackestone. Grains: minor quartz sand and foraminifera. Cement/Matrix: calcite with recrystallized limemud matrix, poorly cemented. Porosity: moderate. Permeability: moderate. Hardness: moderately soft. Fossils: abundant mollusca, all are recrystallized and filled with cement.	Penetration rate = 2 minuets/foot. Weight on bit = 2 K. RPM of kelly = 30. Pump pressure held at a constant of 85 psi.		

967	to	968.5	1.5	LIMESTONE: Color: very gray to tan, Texture: packstone, Grains: minor quartz sand, lithic fragments, and mollusca. Cement/Matrix: calcite with recrystallized limemud matrix, poorly cemented. Porosity: low - moldic. Permeability: low. Hardness: very hard. Fossils: abundant mollusca, kuphus all are recrystallized some filled with sediment.	Penetration rate = 4-5 minuets/foot. Weight on bit = 2 K. RPM of kelly = 30. Pump pressure held at a constant of 85 psi.
968.5	to	973	4.5	NO RECOVERY	Penetration rate = 30 seconds/foot. Weight on bit = 0 K. RPM of kelly = 30. Pump pressure held at a constant of 85 psi.

٠..

May 18, 1998 File Number 98-050

Youngquist Brothers, Inc. 15465 Pine Ridge Road Fort Myers, Florida 33908

Attention: Mr. JAY SWARTZENTRUBER

Drilling Superintendent

RECEIVED MAY 2 0 1998

Subject: Laboratory Test Results on Rock Core Specimens, Fort Lauderdale Five-Ash ASR Well

and Floridan Monitor Well

Gentlemen:

Permeability, unconfined compression and specific gravity tests have been completed on seven rock core samples provided by your firm from the Fort Lauderdale Five-Ash ASR Well and Floridan Monitor Well. The permeability tests were performed in general accordance with ASTM Standard D 5084 "Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible-Wall Permeameter" using the constant-head (Method A) and falling-head with increasing tailwater level (Method C) test methods. The unconfined compression tests were performed in general accordance with ASTM Standard D 2938 "Unconfined Compressive Strength of Intact Rock Core Specimens". The specific gravity was determined in general accordance with ASTM Standard D 854 "Specific Gravity of Soils". Due to the irregular shape and short length of the samples, each of the requested tests (i.e., vertical permeability test, horizontal permeability test and unconfined compression test) could not be performed on each sample.

Permeability Tests

FURE PORCHES AN MODERNING AND GROWN AND A

Maria Carlo

The permeability test results are presented in Table 1. The core samples provided for testing were too short to obtain separate vertically and horizontally oriented specimens. Accordingly, the vertical permeability tests were performed first on specimens maintained at the as-received diameter and cut to lengths of 7.6 to 15.3 cm. After completing the vertical permeability tests, horizontal permeability specimens were obtained by coring 5.1 cm diameter cylinders from the vertical specimens. The horizontal specimens were then trimmed to lengths of 6.6 to 7.8 cm to provide flat, parallel ends. Since the vertical permeability test specimens were cored upon completion of testing to obtain horizontal permeability test specimens, the final moisture contents of the vertical specimens were not measured. The dry densities and degrees of saturation of the vertical permeability specimens, therefore, were estimated using the final moisture contents from the corresponding horizontal permeability specimens.

The permeability test specimens were air-dried, deaired under vacuum, and then saturated with deaired tap water from the bottom upward while still under vacuum. Each specimen was then mounted in a triaxial-type permeameter and encased within a latex membrane. The specimens were confined using an average isotropic effective confining stress of 20 lb/in² and permeated with deaired tap water under back-pressures of 80 to 170 lb/in². Satisfactory saturation was verified by a B-factor equal to or greater than 95%, or a B-factor that remained relatively constant for two consecutive increments of applied cell pressure. The inflow to and outflow from each specimen were monitored with time, and the hydraulic conductivity was calculated for each recorded flow increment. The tests were continued until steady-state flow conditions were obtained, as evidenced by an outflow/inflow ratio between 0.75 and 1.25, and until stable values of hydraulic

the probability of the second

conductivity were measured. The final degree of saturation was calculated upon completion of testing using the final dry mass, moisture content and volume, and the measured specific gravity. Although some of the calculated final degrees of saturation are low, the B-factors indicate satisfactory saturation. The calculated final degrees of saturation are potentially affected by occluded voids within the specimens, surface irregularities, and the use of final moisture contents for the vertical permeability specimens from the corresponding horizontal permeability specimens.

Specific Gravity Tests

The specific gravity of each sample was determined on a representative approximately 100 gram specimen ground to pass the U.S. Standard No. 40 sieve. The specific gravity measured on each sample is presented in Table 1.

Porosity

The porosity, n, of each permeability test specimen was calculated using the measured dry density, γ_d , and measured specific gravity, G_s , from the equation: $n = 1 - (\gamma_d/(G_s)(\gamma_w))$ where $\gamma_w =$ unit weight of water. The calculated porosities are presented in Table 1.

Unconfined Compression Tests

Unconfined compression tests were performed on three samples. The tests were performed on specimens cored to diameters of 3.3 to 5.1 cm and trimmed to lengths of 7.5 to 10.4 cm to provide a length to diameter ratio of approximately 2, and then capped with a sulfur capping compound. The specimens were loaded at a constant rate of deformation of 0.0076 cm/minute to achieve a time to failure between 2 and 15 minutes. The compressive strengths and Young's modulus determined from the unconfined compression tests are summarized in Table 2. The stress-strain curves are presented in Figures 1 through 3.

If you have any questions or require additional testing services, please contact us.

Very truly yours,

ARDAMAN & ASSOCIATES, INC.

Shawkat Ali, Ph.D., P.E. Geotechnical Engineer

Thomas S. Ingra, P.E. Senior Project Engineer

Florida Registration No. 31987

SA/TSI/jo

cc: Montgomery Watson M. Randal Skinner (FAX 561-586-8834)

D:\ALI\98-050 YOUNG.001,wpd

Youngquist _ others, Inc. File Number 98-050 May 18, 1998

Table 1

PERMEABILITY TEST RESULTS

FORT LAUDERDALE FIVE-ASH ASR WELL AND FLORIDAN MONITOR WELL

Core	Test Specimen Orientation	D-5084		Initial Conditions						11.	В	Average	Fina	I Conditio	Hydraulic	
Depth (feet)		Test Method*	G,	Length (cm)	Diameter (cm)	w _c (%)	Ya (lb/ft³)	n	σ̄ _ε (lb/in²)	(lb/in ²)	Factor (%)	Hydraulic Gradient	w _c (%)	Y _d (lb/ft ³)	S (%)	Conductivity, k ₂₀ (cm/sec)
ASR-3 1014	Vertical Horizontal	A A	2.72	8,86 7,84	10.04 5.11	9.1 9.1	128.8 128.7	0.24 0.24	20 20	70 80	95 89*	0.2 10.5	9.9† 9.9	128.8 128.7	85 85	4.7x10 ⁻³ 5.1x10 ⁻⁵
ASR-6 1238	Vertical Horizontal	CC	2,69	8.85 6.59	8.71 4.98	25.1 25.1	98.5 99.8	0.41 0.41	20 20	80 80	98 96	2.1 2.7	25.1† 25.1	98.5 99.8	96 99	1.2x10 ⁻⁴ 9.6x10 ⁻⁵
ASR-7 1285	Vertical Horizontal	CC	2.70	15.32 6.58	9.32 4.95	25.7 25.7	97.7 97.2	0.42 0.42	20 20	80 80	85* 95	1.1 2.8	25.7† 25.7	97.7 97.2	96 95	9.4x10 ⁻⁴ 1.6x10 ⁻³
FMW-1 965	Vertical Horizontal	A A	2.71	8.83 7.05	9.97 5.10	13.7 13.8	118.6 120.1	0.30 0.29	20 20	170 80	91* 97	7.5 14.8	13.8† 13.8	118.6 120.1	88 91	5.9x10 ⁻⁵ 3.6x10 ⁻⁵
FMW-2 998	Vertical Horizontal	C	2.69	7.64 7.19	9.78 5.04	22.1 22.1	102.1 98.9	0,39 0.41	20 20	80 80	92* 98	2.1 2.4	22.1† 22.1	102.1 98.9	92 85	5.1x10 ⁻⁴ 1.5x10 ⁻³
FMW-2 999	Vertical Horizontal	o o	2.70	12.53 7.23	9.69 4.97	22.1 22.1	101.6 98.3	0.40 0.42	20 20	80 80	95 100	1.3 2.5	22.1† 22.1	101.6 98.3	91 83	1.2x10 ⁻³ 1.2x10 ⁻³
FMW-3 1095	Vertical Horizontal	00	2.69	9.78 7.48	9,93 4.97	25.6 26.1	90.8 90.2	0.46 0.46	20 20	80 80	91* 97	1.7 2,5	26.1† 26.1	90.8 90.2	83 81	1.4x10 ⁻³ 1.8x10 ⁻³

Where: w_c = Moisture content; γ_d = Dry density; G_s = Specific gravity; n = Porosity; σ̄_c = Average isotropic effective confining stress; u_b = Back-pressure; S = Calculated degree of saturation using measured specific gravity; and k₂₀ = Hydrautic conductivity at 20°C.

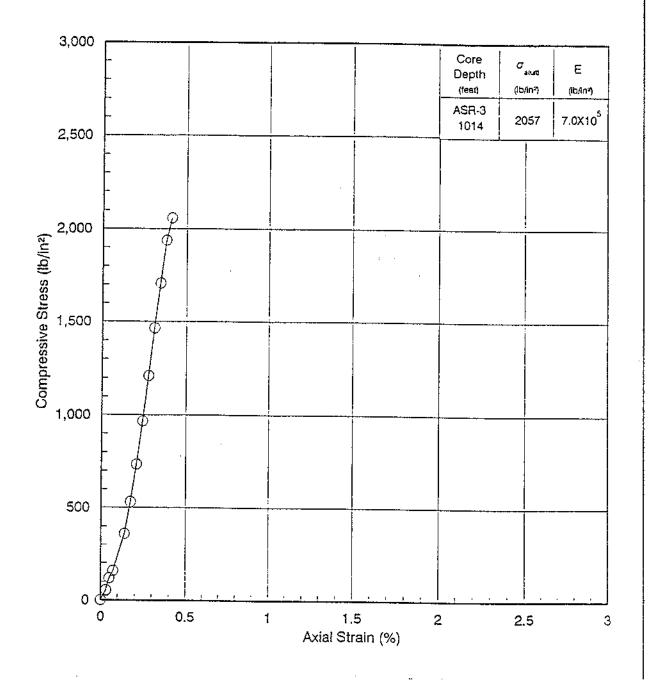
D:WL198-050 YOUNG.001.wpd

Method A = Constant-head test; Method C = Falling-head test with increasing tailwater level.

^{**} B-Factor remained relatively constant for two consecutive increments of applied cell pressure.

[†] Vertical permeability test specimen was cored upon completion of testing to obtain horizontal permeability test specimen. The final moisture content of the vertical test specimen was not measured, and was assumed to be the same as the horizontal test specimen.

igquist Brothers, Inc. File Number 98-050 May 18, 1998

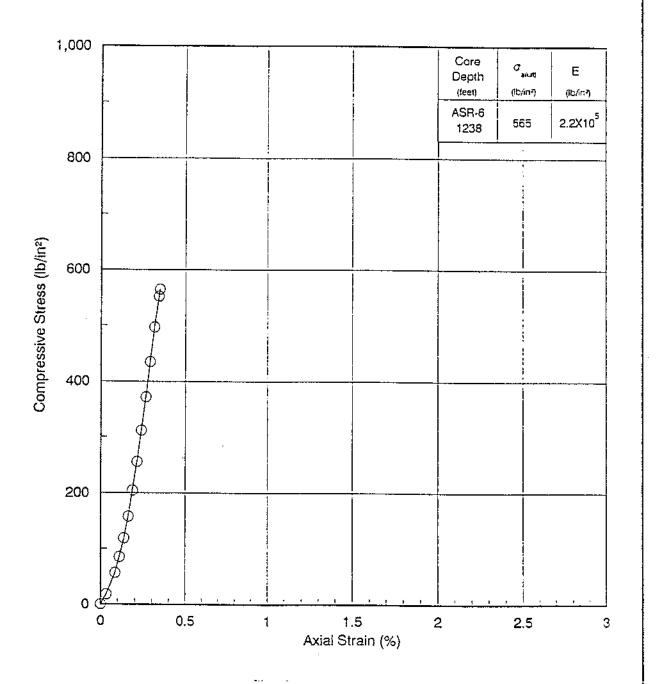

Table 2 **UNCONFINED COMPRESSION TEST RESULTS** FORT LAUDERDALE FIVE-ASH ASR WELL AND FLORIDAN MONITOR WELL

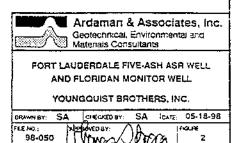
Соге	Specimen Dimensions		w.	Ya	Loading	t.		nconfined Compressive Strength σ _a (ult) (lb/in²)			
Depth (feet)	Length L (cm)	Diameter D (cm)	L/D	(%)	(lb/ft³)	Rate (cm/min)	(min)	(min)	Measured	Corrected*	Modulus E(ib/in²)**
ASR-3 1014	7.48	3.27	2.29	1.1	130.3	.0.0076	4.1	2057	2089	7.0x10 ⁵	
ASR-6 1238	9.95	5.10	1.95	11.8	100.5	0.0076	4.6	565	563	2.2x10 ⁵	
FMW-3 1095	10.43	5.07	2.06	13.8	100.3	0.0076	4.0	343	344	1.3x10 ⁵	

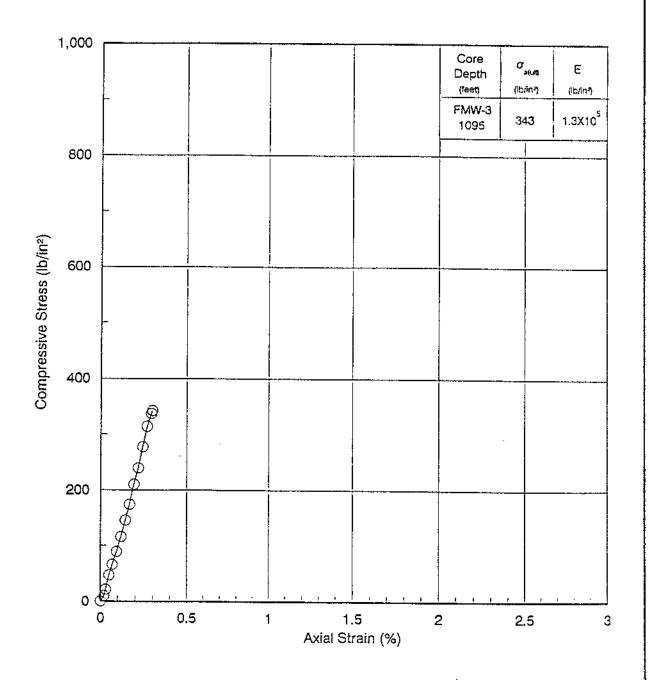
Where: $w_c = Moisture content$; $y_d = Dry density$; and $t_f = Time to failure$.

^{*} Unconfined compressive strength corrected to L/D ratio of 2 in accordance with ASTM Standard D 2938-86.

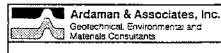
^{**} Young's modulus calculated from the slope of the straight-line portion of the stress-strain curve.


UNCONFINED COMPRESSION TEST


FORT LAUDERDALE FIVE-ASH ASR WELL AND FLORIDAN MONITOR WELL


YOUNGQUIST BROTHERS, INC.

FILE NO: UPPOSED BY: SA | DATE: 05-18-98



UNCONFINED COMPRESSION TEST

UNCONFINED COMPRESSION TEST

FORT LAUDERDALE FIVE-ASH ASR WELL AND FLORIDAN MONITOR WELL

YOUNGQUIST BROTHERS, INC.

DRAWNBY: SA CHECKEBBY: SA CATE C5-18-98
FRENO: NUMBER OF THE NO. 100 PM

Appendix H

Pressure Test Data for ASR-1

ASR-1 PRESSURE TEST DATA

CITY OF FORT LAUDERDALE

WTP ASR WELL SYSTEM

DATE(S): 12/19/97	DATE(S):	12/19/97
-------------------	----------	----------

JOBNUMBER	1324007.28090290	_		
CONTRACTOR:	Youngquist Brothers, Inc.	_		
PROJECT MANAGER:	Anne Murray	_		
COUNTY: OWNER:	Broward City of Ft. Lauderdale	DESCRIPTION OF OPERATIONS:	Pressure Test 16-inch casing	
START TIME: FINISH TIME: CASING SIZE: GAGE SERIAL NUMBER:	715 815 16-inch BA0483	INITIAL PRESSURE:	173 psi	

TIME	TOTAL MINUTES	PRESSURE	COMMENTS
7:15	0:00	173	
7:25	0:10	172.5	
7:32	0:17	172	
7:35	0:20	172	
7:40	0:25	171.5	
7:48	0:33	171	
7:50	0:35	171	
7:55	0:40	170.5	
8:00	0:45	170	
8:05	0:50	169.75	
8:11	0:56	169	
8:15	1:00	168	
8:20		168	Began bleeding pressure
		60	5.0 gal recovered
8:23			8.0 gal recovered
		<u></u>	

Certificate of Calibration

Customer:

YOUNGQUIST BROTHERS, INC.

Certificate #

0000046029

Manufacturer:

MCDANIEL

Model Number: 300 PSI

Nomenclature: PRESSURE TEST GAUGE

Serial/I.D. #

BA0483

Specifications:

+/-.25%

Cal. Procedure: MP03/C1-NAV

KELI Control # BAR-37617

The accuracy and calibration of this instrument is traceable to the National Institute of Standards and Technology through certified standards maintained in the laboratories of KELI Inc. or derived by the ratio type of self-calibration techniques and is guaranteed to meet published specifications. The metrology procedures utilized satisfy the requirements set forth in ANSI/NCSL Z540-1.

In Tolerance When Received? Y

Cal. Tech: 055

Relative Humidity: 50% Temperature: 73 Deg. F

In-House Y Cal. Cycle: 12 Mos. | Calibration Date: 11/07/1997

Calibration Due: 11/07/1998

Remarks: ROUTINE CALIBRATION/CERTIFICATION/PREVENTIVE MAINTENANCE.

I.D. #

Standards Used

331

AMETEK T-150 DEAD WEIGHT TESTER

Cal. Date

Cal. Due

07/22/1997

07/22/1999

YOUNGQUIST BROTHERS, INC.

Certificate Of Test # 154480 KELI Control # BAR-37617

				4,4,,		
Manufacturer: Model:	MCDANIEL 300 PSI	READING	DEADING	Serial / I.D; Description:	8A0483 PRESSURE	TEST GAUGE
RANGE	RANGE APPLIED	PRE-CAL	READING POST-CAL	LOW LIMIT	HIGH LIMIT SPECIFICATION	
300 PS!	50 100 150 200 300	50.25 100.00 150.00 200.00 300.00	50.25 100.00 150.00 200.00 300.00	49.25 99.25 149.25 199.25 299.25	50.75 100.75 150.75 200.75 300.75	+/25% of FS

In tolerance when received? YES

Remarks: ROUTINE CALIBRATION /CERTIFICATION AND PREVENTIVE MAINTENANCE.

R.H. 50 %

10# STANDARDS USED 331 AMETEK T-150 DEAD WEIGHT TESTER

<u>CAL DATE</u> 07/22/97

CAL. DUE 07/22/99

Procedure Used: MP03/C1-NAV

Accuracy: MANUFACTURERS

The accuracy & calibration of this instrument is traceable to the National Institute of Standards and Technology through certified standards maintained in the laboratories of KELI Inc. and is guaranteed to meet published specifications. The metrology procedures utilized satisfy the

Calibration Date: 11/07/97

Cal. Tech: 055

Calibration Due: 11/07/98

No. Add

Pressure Test Data for FMW-1

FMW-1 PRESSURE TEST DATA

CITY OF FOR	T LAUDERDALE	WTP ASR WELL SYSTEM	DATE(S): 1/29/98	
311 OF 1 OR	LAGUERDALE	WIT ASH WELL STSIEM		
JOBNUMBER	1324007.28090290	-		
CONTRACTOR:	Youngquist Brothers, Inc.	•		
PROJECT MANAGER:	Anne Murray	•		
COUNTY: OWNER:	Broward City of Ft. Lauderdale	DESCRIPTION OF OPERATIONS	Pressure Test 6-inch casing	<u> </u>
		Shell packe	at 1,041 it bpt 230 psi	
START TIME:	5:45	INITIAL PRESSURE:	125 psi	
FINISH TIME:	6:45			
CASING SIZE:	6-inch			
GAGE SERIAL NUMBER:	BA0483			

TIME .	TOTAL MINUTES	PRESSURE	COMMENTS
05:45	0:00	125	COMMENTS
05:50	0:05	125	
05:55	0:10	125	
06:00	0:15	125	
06:05	0:20	125	
06:20	0:35	125.5	
06:25	0:40	125.5	
06:33	0:48	125.5	
06:40	0:55	126	
06:45	1:00	126	End test
06:48	1:03	126	Bleeding off pressure into 5-gal bucket
06:49	1:04	0	-3/4 gal water recovered
			packer pressure still 230 psi

Kimball Electronic Laboratory, Inc.

Precision Measurement Equipment Specialists

Certificate of Calibration

Customer:

YOUNGQUIST BROTHERS, INC.

Certificate #

Manufacturer:

0000047881 MCDANIEL.

Model Number: 300 PSI

Nomenclature: PRESSURE TEST GAUGE

Serial/I.D. #

BA0483

Specifications: +/-,25%

Cal. Procedure: MP03/C1-NAV

KELI Control # BAR-37617

The accuracy and calibration of this instrument is traceable to the National Institute of Standards and Technology through certified standards maintained in the laboratories of KELI Inc. or derived by the ratio type of self-calibration techniques and is guaranteed to meet published specifications. The metrology procedures utilized satisfy the requirements set forth in ANSI/NCSL Z540-1.

In Tolerance When Received? Y

Cal. Tech:048

Relative Humidity: 52% Temperature: 72 Deg. F

In-House Y

Cal. Cycle: 12 Mos.

Calibration Date: 01/08/1998

Calibration Due: 01/08/1999

Remarks: ROUTINE CALIBRATION/CERTIFICATION/PREVENTIVE MAINTENANCE.

I.D. #

Standards Used

331

AMETEK T-150 DEAD WEIGHT TESTER

Cal. Date

Cal. Due

07/22/1997

07/22/1999

This report may not be reproduced, except in full, unless permission for the publication of an approved abstract is obtained in writing from KELI Labs.. Inc.

Kimball Electronic Laboratory, Inc.

Precision Measurement Equipment Specialists

YOUNGQUIST BROTHERS, INC.

Certificate Of Test # 157214 KELI Control # BAR-37617

Manufacturer Model:	MCDANIEL 300 PSI			Serial / I.D: Description:	BA0483 PRESSURE	TEST GAUGE
RANGE	APPLIED	READING PRE-CAL	READING POST-CAL	LOW LIMIT	HIGH LIMIT	SPECIFICATIONS
300 PSI	50	50.05	50.05	49.25	50.75	+/25% of Full Scale
	100	100.10	100.10	99.25	100.75	
	150	150.00	150.00	149.25	150.75	
	200	200.00	200.00	199.25	200.75	
	300	300.10	300.10	299.25	300.75	

In tolerance when received? YES Temperature:72 Deg. F Remarks: PERFORMED ROUTINE CERTIFICATION AND PREVENTIVE MAINTENANCE

R.H. 52

10.# STANDARDS USED 331 AMETEK T-150 DEAD WEIGHT TESTER CAL DATE July 1997 CAL DUE July 1999

Procedure Used: MP03/C1-NAV

Accuracy: MANUFACTURERS

The accuracy & calibration of this instrument is traceable to the National Institute of Standards and Technology through certified standards maintained in the laboratories of KELI Inc. and is guaranteed to meet published specifications. The metrology procedures utilized satisfy the requirements set forth in ANSI/NCSL Z540-1.

Calibration Date: 01/08/98

Cal. Tech: 048

Calibration Due: 01/08/99

approved By

genipage 1/98

Kimball Electronic Laboratory, Inc.

Precision Measurement Equipment Specialists

YOUNGQUIST BROTHERS, INC.

Certificate Of Test # 157214 KELI Control # BAR-37617

Manufacturer Model:	MCDANIEL 300 PSI			Serial / 1.D: Description:	BA0483 PRESSURE	TEST GAUGE
RANGE	APPLIED	READING PRE-CAL	READING POST-CAL	LOW LIMIT	HIGH LIMIT	SPECIFICATIONS
300 PSI	50	50.05	50.05	49.25	50.75	+/25% of Full Scale
	100	100.10	100.10	99.25	100.75	
	150	150.00	150.00	149.25	150.75	
	200	200.00	200.00	199.25	200.75	
	300	300.10	300.10	299.25	300.75	

R.H. 52

In tolerance when received? YES Temperature:72 Deg. F Remarks: PERFORMED ROUTINE CERTIFICATION AND PREVENTIVE MAINTENANCE

STANDARDS USED

AMETEK T-150 DEAD WEIGHT TESTER

CAL. DATE July 1997

CAL DUE July 1999

Procedure Used: MP03/C1-NAV

Accuracy: MANUFACTURERS

The accuracy & calibration of this instrument is traceable to the National Institute of Standards and Technology through certified standards maintained in the laboratories of KELI Inc. and is guaranteed to meet published specifications. The metrology procedures utilized satisfy the requirements set forth in ANSI/NCSL Z540-1.

Calibration Date: 01/08/98

Cal. Tech: 048

Calibration Due: 01/08/99

Appendix I

Video Survey Descriptions For ASR-1

ASR-1 VIDEO SURVEY

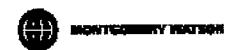
DATE(S):	12/24/97

FIVEASH ASR WELL SYSTEM

JOB NUMBER: 1324007.28090290

CONTRACTOR: Youngquist Brothers, Inc.

PROJECT MANAGER: Anne Murray


COUNTY: Broward
OWNER: ty of Fort Lauderdale

VIDEO CONTRACTOR:FGLDESCRIPTION OF OPERATIONS:Video Log ASR-1TOTAL DEPTH:1,272

DEPTH	IN FEET	REEL C	DUNTER	
From	То	From	To	OBSERVATIONS
70				Weld
112				Weld
155				Weld
194				Weld
233				Weld
272				Weld
313				Weld
349				Weld
392				Weld
405				Very silty, stop at 07:52
				Resume log at 08:30
432				Weld
474				Weld
516				Weld
556				Weld
598				Weld
641				Weld
683				Weld
725				Weld
753				Stop at 08:45 getting silty

DEPTH	IN FEET	REEL CO	DUNTER	
From	То	From	То	OBSERVATIONS
753				Resume at 09:20 Clear
767				Weld vertical striations
809				Weld
851			:	Weld
1,020				Weld
1,057				Bottom of casing
1,060				Cavernous washout
1,066	1,082			Boulders in hole Cement
1,082				Porous LS, oblate hole, end boulders
1,110				Hole closer to gauge, still porous LS
1,118	1,122			Popouts
1,122				Same as above
1,129				Bedding plane?
1,139	1,141			Loose zone to 1,141
1,141				Porous LS, becomes gradually less porous
1,152				Much less porosity
1,155				Porous LS
1,158	1,168			Very porous LS
1,165				Cavernous, porous to 1,168
1,168				Porous
1,185				Lower porosity gauge hole
1,200				Walls mostly smooth
1,211	1,214			Fractured to 1,214
1,216				Smoother hole w/ popouts
1,227				Low porosity
1,272				Stop log Bottom of hole is silted up, end log at 10:00

Vide Survey Descriptions for FMW-1

FMW-1 VIDEO SURVEY

DATE(S):	3/7/98

FIVEASH ASR WELL SYSTEM

JOB NUMBER: 1324007.28090290

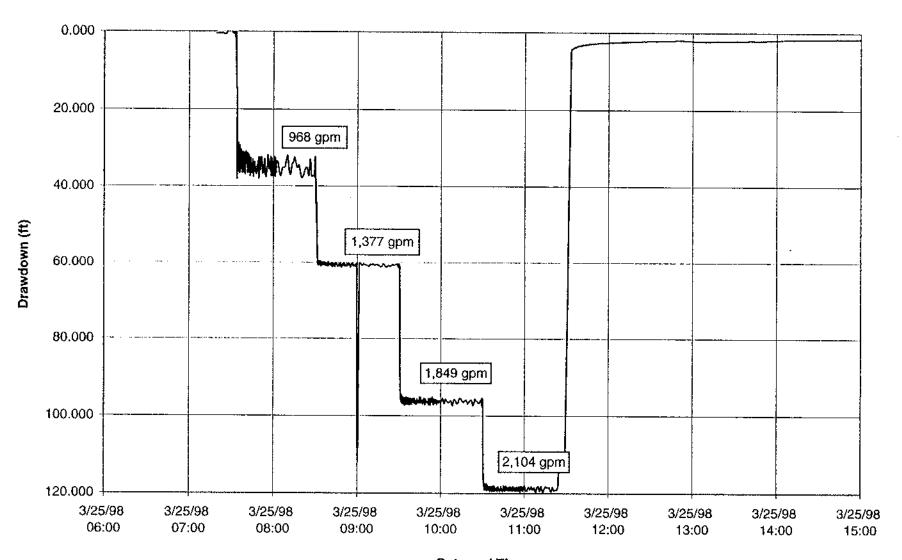
CONTRACTOR: Youngquist Brothers, Inc.

PROJECT MANAGER: Anne Murray

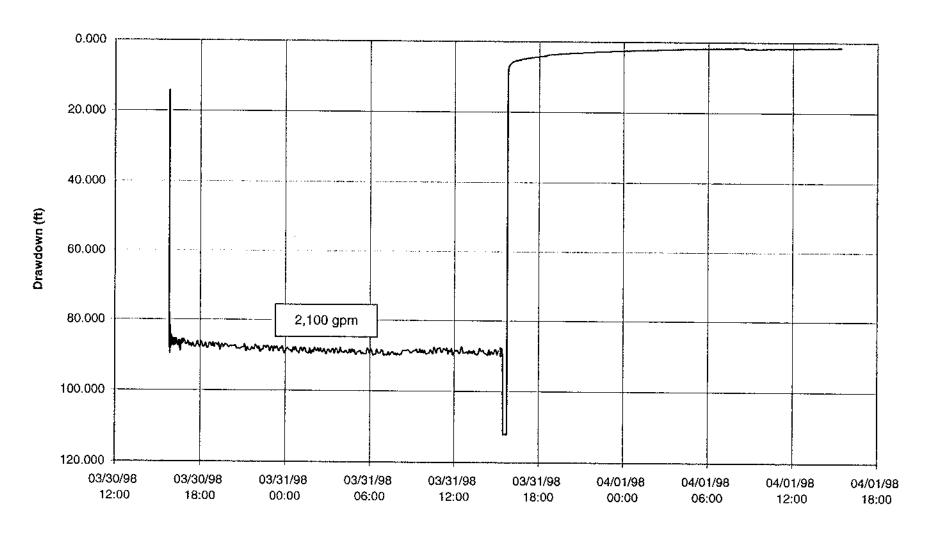
COUNTY:	Broward
OWNER:	ty of Fort Lauderdale

VIDEO CONTRACTOR:FGLDESCRIPTION OF OPERATIONS:Video Log FMW-1TOTAL DEPTH:1,166

From	To	REEL CC	То	OBSERVATIONS
34			•	Weld
77				Weld
121		_		Weld
163				Weld
205				Weld
248				Weld
292				Weld
336				Weld
379				Weld
423				Weld
467				Weld
511				Weld
555				Weld
599				Weld
643				Weld
686				Weld
729				Weid
772				Weid
816				Weld
859				Weld

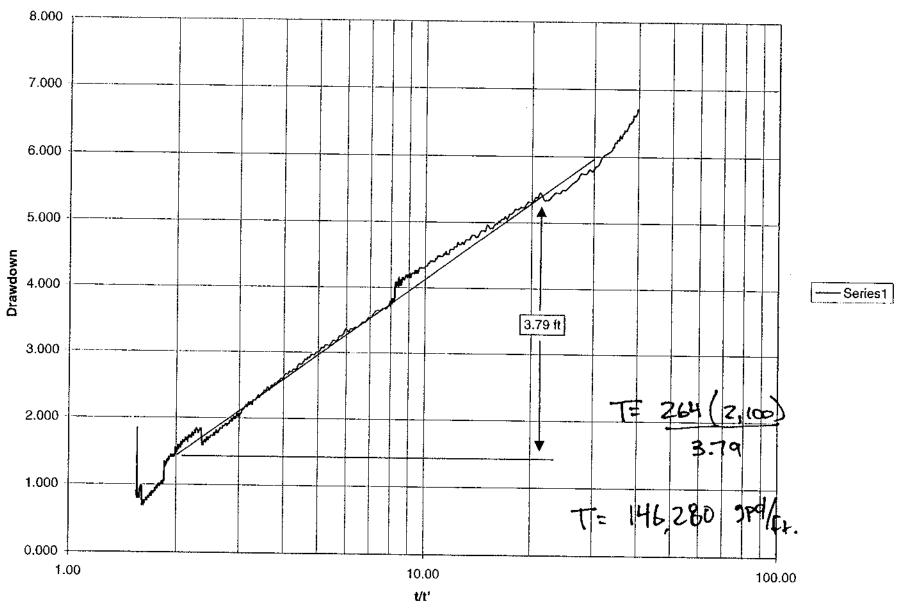

DEPTH	IN FEET	REEL C	OUNTER	
From	То	From	То	OBSERVATIONS
892				Weld
935				Weld
979				Weld
1,021				Weld
1,053				Weld
1,053	1,105			Smooth borehole some mudcake, v. tight formation
1,105				Bedding plane more mudcake
1,113				Bedding plane possible flow zone
1,122				Bedding plane vugs
1,129	1,131			Vugs
1,151				Bedding plane rougher borehole
1,160				Lost visibility - no flow
1,166	_r -			Stopped lowering camera material on light head TD
		<u>-</u>		

Appendix J

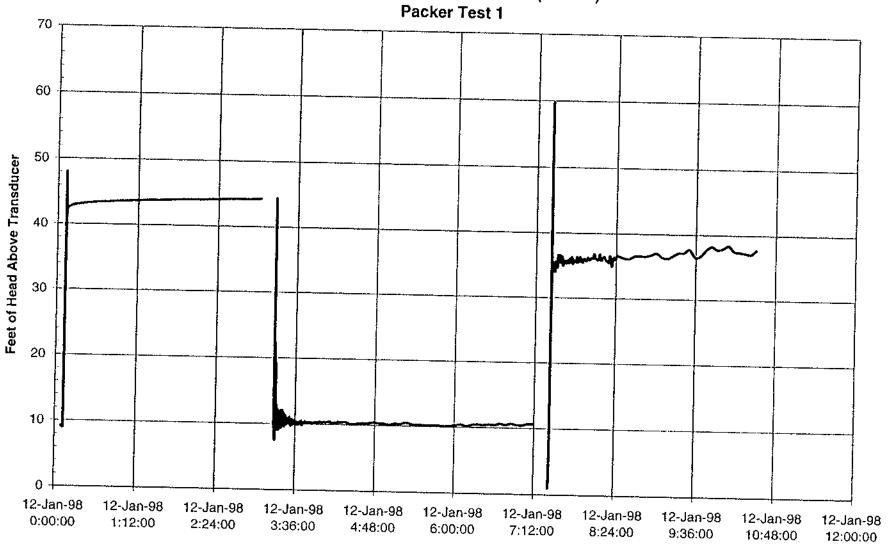

Water Level Pumping Data Tests for ASR-1

ASR-1 Step Rate Pump Test Drawdown

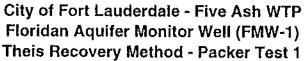
Date and Time

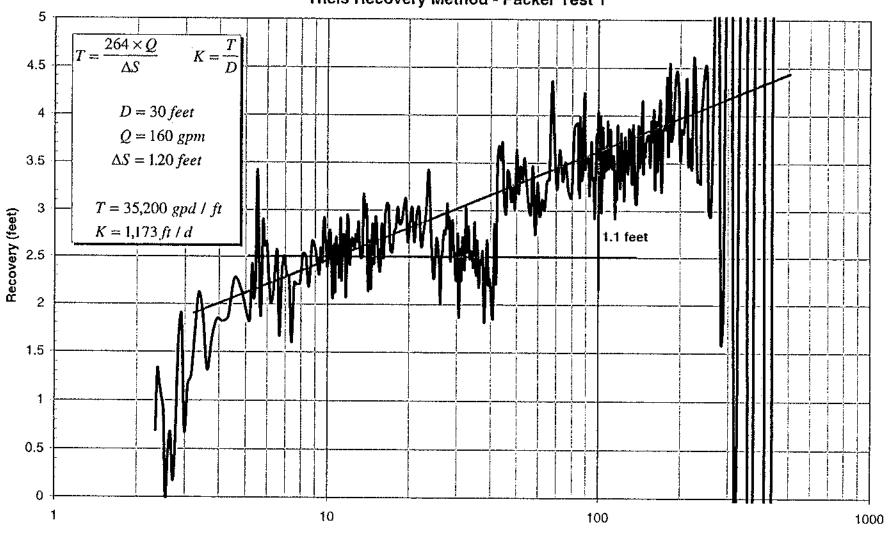

ASR-1 Constant-Rate Pumping Test

Date and Time

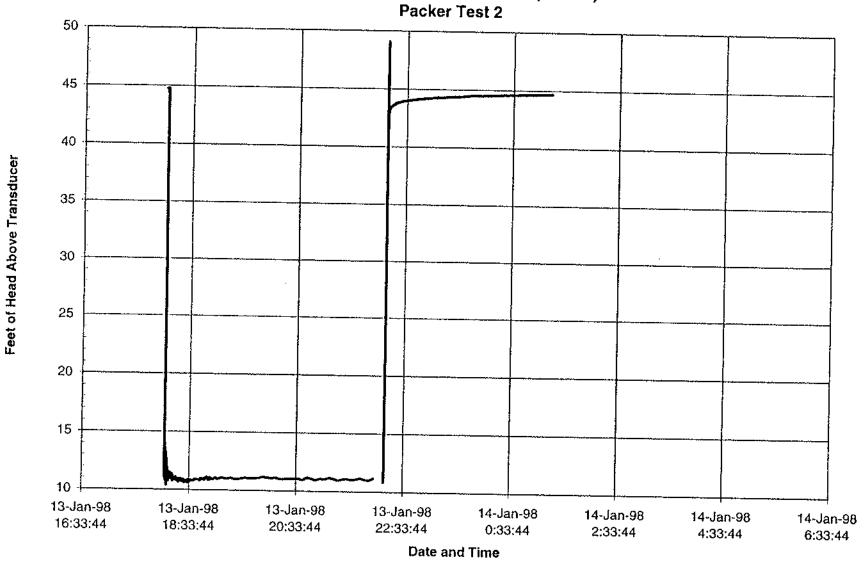

PUMPED WELL RECOVER DATA

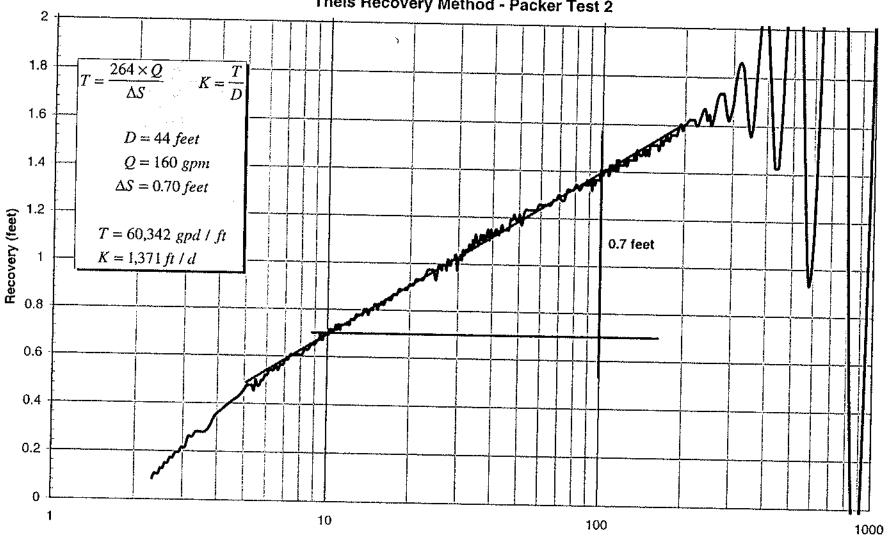
GE 2,100 JAM




Water Level Pumping Data Tests for FMW-1

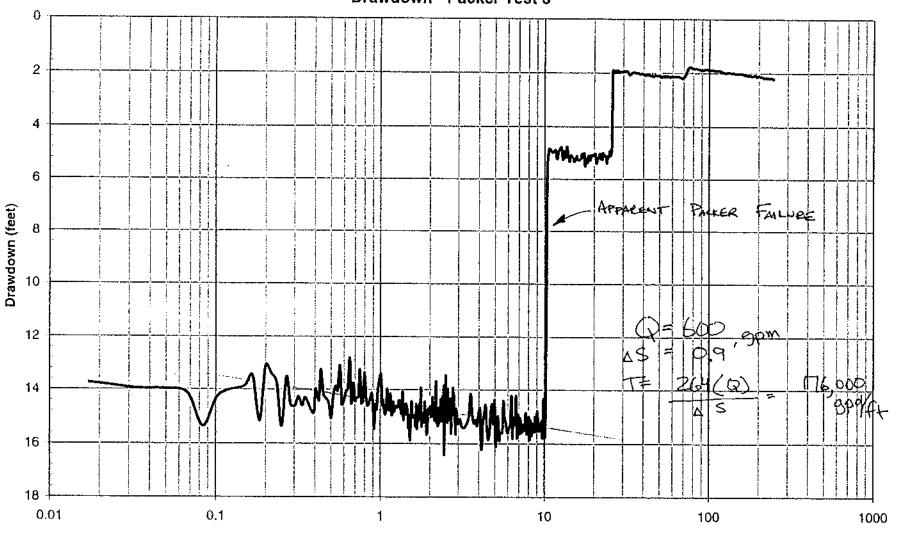
City of Fort Lauderdale - Five Ash WTP Floridan Aquifer Monitor Well (FMW-1)


Date and Time

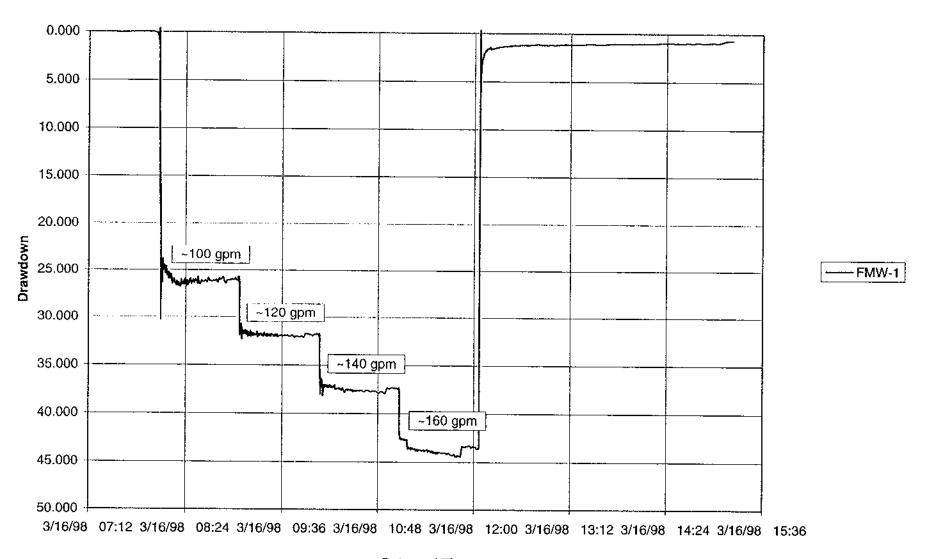


Elapsed Time (minutes)

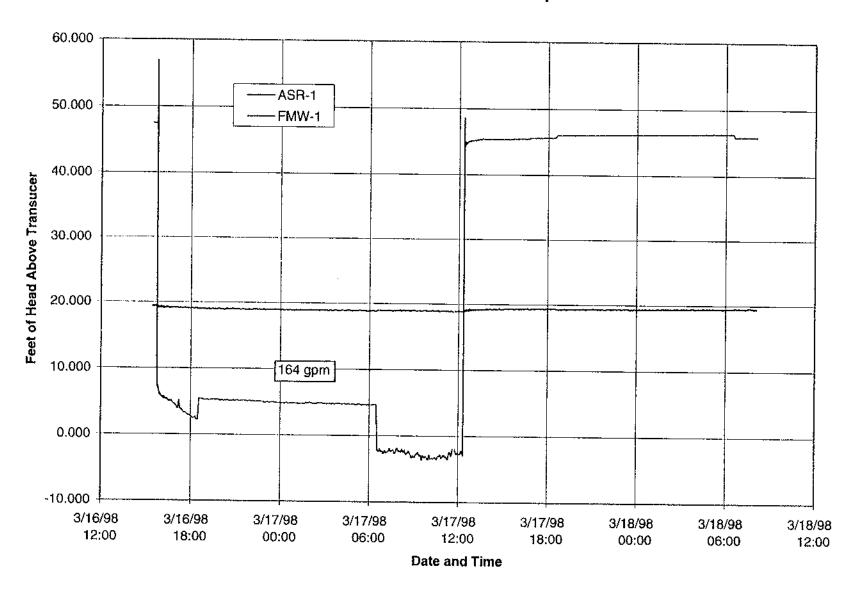
City of Fort Lauderdale - Five Ash WTP Floridan Aquifer Monitor Well (FMW-1)



City of Fort Lauderdale - Five Ash WTP Floridan Aquifer Monitor Well (FMW-1) Theis Recovery Method - Packer Test 2


Elapsed Time (minutes)

City of Fort Lauderdale - Five Ash WTP Floridan Aquifer Monitor Well (FMW-1) Drawdown - Packer Test 3


Elapsed Time (minutes)

FMW-1 Step-Rate Pump Test

Date and Time

FMW-1 Constant-Rate Pump Test

Appendix K

Water Quality Analyses for FMW-1

INTAKE #: 512936

Sanders .aboratories **Environmental Testing Services**

Date 16-Apr-98

Project Name: Five Ash/Drinking Water

Project Location: FMW - 1

Sample Supply: Water

> Collector: Tim Case

Sample Received Date/Time:

3/17/98

15:00

RECEIVED

Youngquist Brothers, Inc. 15465 Pine Ridge Road

APR 3 0 1998

MONTGOMERY WATSON

RECEIVED APR 1 7 1998

Fort Myers, FL 33908-

Parameter ID) Air	aiyele	Sample ID	Result	Unit	Method	Analysis Date/Time	D. L.	LabID	Analyst
			In	organic A 62-550.310 PWS030	0(1)		•	-		
1005	Arsenic	(0.05)	N981883	<0.0022	mg/L	EPA 206.2	3/20/98	0.0022	84352	ua
1010	Barium	(2)	N981883	1.506	mg/L	EPA 208.2	3/26/98	0.290	84352	ua
1015	Cadmium	(0.005)	N981883	< 0.003	mg/L	EPA 213.1	3/19/98	0.003	84352	ua
1020	Chromium	(0.1)	N981883	<0.020	mg/L	EPA 218.1	3/19/98	0.020	84352	ua
1024	Cyanide	(0.2)	N981883	<0.006	mg/L	SM 4500CNE	3/21/98	0.006	84352	ua
.5	Fluoride	(4)	N981883	1.44	mg/L	EPA 340.2	3/19/98	0.2	84352	ua
1030	Lead	(0.015)	N981883	<0.001	mg/L	EPA 239.2	3/19/98	0.001	84352	ua
1035	Mercury	(0.002)	N981883	<0.601	mg/L	EPA 245.1 -	3/21/98	0.001	84352	นล
1036	Nickel	(0.1)	N981883	<0.010	mg/L	EPA 249.1	3/20/98	0.010	84352	ua
1040	Nitrate	(10)	N981883	<0.01	mg/L	EPA 353.2	3/26/98	0.01	84352	ua
1041	Nitrite	(1)	N981883	<0.01	mg/L	EPA 354.1	3/17/98	0.01	84352	ua
1045	Selenium	(0.05)	N981883	<0.004	mg/L	EPA 270.2	3/23/98	0.004	84352	ua
1052	Sodium	(160)	N981883	1,827	mg/L	EPA 273.1	3/24/98	0.003	84352	ua
1074	Antimony	(0.006)	N981883	<0.0017	mg/L	EPA 200.9	3/23/98	0.0017	84352	ua
1075	Beryllium	(0.004)	N981883	<0.0003	mg/L	EPA 200.7	3/24/98	0.0003	84352	ua
1085	Thailium	(0.002)	N981883	<0.0006	mg/L	EPA 200.9	3/23/98	0.0006	84352	иа
			Seconda	ıry Chemi	cal Ana	lysis				
				62-550.32 PWS031						
1002	Aluminum	(0.0)	NOOLOO			504.000 c	A 111 a 11 a 11 a 11 a 11 a 11 a 11 a 1			
1017	Aluminum	• •	N981883	<0.2	mg/L	EPA 202.1	3/23/98	0.2	84352	иа
	Chloride	(250)	N981883	3,524	mg/L	SM4500CI-B	3/24/98	5	84352	ua
1022		(1.0)	N981883	0.011	mg/L	EPA 220.2	3/20/98	0.001	84352	ua
1025	Fluoride	(2.0)	N981883	1.44	mg/L	EPA 340.2	3/19/98	0.2	84352	ua

0.014 mg/L HRS Certification#'s 84352 and E84380(Nokomis) 85449 and E85457(Ft. Myers)

0.156

mg/L

EPA 236.1

EPA 243.1

3/23/98

3/23/98

N981883

N981883

0.015

0.005

84352

84352

uа

ua

Iron

(0.3)

Manganese (0.05)

1028

2

Parameter II) Au	nalysis	Sample ID	Result	Unit	Method	Analysis Date/Time	D. L.	LabID	Analyst
1050	Silver	(0.1)	N981883	<0.010	mg/L	EPA 272.1	3/24/98	0.010	84352	va
1055	Sulfate	(250)	N981883	725	rng/L	EPA 375.4	3/21/98	5	84352	ua
5	Zinc	(5.0)	N981883	<0.005	mg/L,	EPA 289.1	3/21/98	0.005	84352	ขอ
₃ಫ್∪5	Color	(15.0)	N981883	17	PtCo units	EPA 110,3	3/17/98	1	84352	ยล
1920	Odor	(3.0)	N981883	50	TON	EPA 140.1	3/17/98	1	84352	ua
1925	p∺	(6.5-8.5)	N981883	7.61	std units	EPA 150.1	3/17/98	nJa	84352	ua
₋ 1930	Total Dis	solved Solids (500)	N981883	7,880	тул.	EPA 160.1	3/17/98	7	84352	ua
2905	Foaming	Agents (1.5)	N981883	0.04	mg/L	SM 5540C	3/19/98	0.02	84352	ua
			Tulk a	I 4T	- 4 7	•				
				lomethan	•	SIS		Fmw-1		
				62-550.310(PWS021				, , , ,		
				F W SUZ.	/ 					
2950	Total THI	V's (0.10)	N981883	0.0017	mg/L	EPA 524.2	3/19/98	0.00036	83331	ua
			Volati	le Organi	c Analy:	sis				
				62-550.310(•					
				PWS028	3					
2378	1,2,4-Tric	hlorobenzene (70)	N981883	<0.22	ug/L	EPA 524.2	3/19/98	0.22	83331	ua
2380	Cis-1,2-D	ichloroethylene (70)	N981883	<0.03	ug/L	EPA 524.2	3/19/98	0.03	83331	บอ
2955	Xylenes (Total) (10,000)	N981883	<0.24	ug/L	EPA 524.2	3/19/98	0.24	83331	ua
2964	Dichlorom	nethane (5)	N981883	<0.05	ug/L	EPA 524.2	3/19/98	0.05	83331	ua
2968	Q-Dichlor	obenzene (600)	N981883	< 0.05	ug/L	EPA 524.2	3/19/98	0.05	83331	ua
^~~9	Para-Dich	lorobenzene (75)	N981883	<0.02	ug/L	EPA 524.2	3/19/98	0.02	83331	va
6 ، د ۵	Vinyl Chlo	oride (1)	N981883	<0.29	ug/L	EPA 524.2	3/19/98	0.29	83331	ua
2977	1,1-Dichlo	roethylene (7)	N981883	<0.02	ug/L	EPA 524.2	3/19/98	0.02	83331	ua
2979	Trans-1,2	-Dichloroethylene(100)	N981883	<0.12	ug/L	EPA 524.2	3/19/98	0.12	83331	ua
2980	1,2-Dichio	roethane (3)	N981883	<0.02	ug/L	EPA 524.2	3/19/98	0.02	83331	ua
2981	1,1,1-Trick	nloroethane (200)	N981883	<0.21	ug/L	EPA 524.2	3/19/98	0.21	83331	ua
2982	Carbon Te	etrachloride (3)	N981883	<0.29	ug/L	EPA 524.2	3/19/98	0.29	83331	ua
2983	1,2-Dichlo	ropropane (5)	N981883	< 0.33	ug/L	EPA 524.2	3/19/98	0.33	83331	ua
2984	Trichloroe	thylene (3)	N981883	<0.02	ug/L	EPA 524.2	3/19/98	0.02	83331	ua
2985	1,1,2-Tric	hlorcethane (5)	N981883	< 0.23	ug/L	EPA 524.2	3/19/98	0.23	83331	ua
2987	Tetrachlor	oethylene (3)	N981883	<0.21	ug/L	EPA 524.2	3/19/98	0.21	83331	ua
2989	Monochlor	robenzene (100)	N981883	<0.23	ug/L	EPA 524.2	3/19/98	0.23	83331	ua
2990	Benzene	(1)	N981883	<0.05	ug/L	EPA 524.2	3/19/98	0.05	83331	ua
2991	Toluene	(1000)	N981883	<0.41	ug/L	EPA 524.2	3/19/98	0.41	83331	ųа
2992	Ethylbenze	ene (700)	N981883	< 0.47	ug/L	EPA 524.2	3/19/98	0.47	83331	ua
2996	Styrene	(100)	N981883	<0.2	ug/L	EPA 524.2	3/19/98	0.2	83331	ua
	Dioxin - 2,	3,7,8-TCDD	N981883	<5.4	pg/L	EPA 1613	4/9/98	5.4	87424	ua

Parameter	ID Analysis	Sample ID	Result	Unit	Method	Analysis Date/Time	D. Ĺ	LabID	Analyst
		Pesticide.	PCB C	emical	Analysis	···			
			62-550.3				FMW	- 1	
			PWS	029	····		_		
2005	Endrin (2)	N981883	<0.0	02 ug/L	EPA 508	3/26/98	0.002	83331	ua
2010	Lindane (0.2)	N981883	<0.0	02 ug/L	EPA 508	3/26/98	0.002	83331	-
2015	Methoxychior (40)	N981883	<0.0	52 ug/L	EPA 508	3/26/98	0.052	83331	
2020	Toxaphene (3)	N981883	<0.30)9 ug/L	EPA 508	3/26/98	0.309	83331	
2031	Dalapon (200)	N981883	<0.00	35 ug/L	EPA 515.1	4/10/98	0.035	83331	ua
2032	Diquat (20)	N981883	<0.2	26 ug/L	EPA 549.1	3/30/98	0.26	83331	
2033	Endothall (100)	N981883	<15	.4 ug/L	EPA 548	4/1/98	15.4	83331	
2034	Glyphosate (700)	N981883	<9.4	4 ug/L	EPA 547	3/31/98	9.44	83331	ua
2035	Di(2-ethylhexyl) adipate (400)	N981883	<0.7	f ug/L	EPA 525.2	4/5/98	0.71	83331	ua
2036	Oxamyl (Vydate) (200)	N981883	<2.5	7 ug/L	EPA 531.1	3/26/98	2.57	83331	ua
2037	Simazine (4)	N981883	<0.07	8 ug/L	EPA 507	3/26/98	0.078	83331	ua
2039	Di(2-ethylhexyl) phthalate (6)	N981883	<1.1	5 ug/L	EPA 525.2	4/5/98	1.15	83331	ua
2040	Picioram (500)	N981883	< 0.025	9 ug/L	EPA 515.1	4/10/98	0.029	83331	ua
2041	Dinoseb (7)	N981883	< 0.05	5 ug/L	EPA 515.1	4/10/98	0.055		ua
2042	Hexachlorocyclopentadiene(50)	N981883	<0.0	Jug/L	EPA 508	3/26/98	0.035	83331	ua
2046	Carbofuran (40)	N981883	<7.04	l ug/L	EPA 531.1	3/26/98	7.04	83331	ua
2050	Atrazine (3)	N981883	< 0.035	ug/L	EPA 507	3/26/98	0.035	83331	ua
2051	Alachlor (2)	N981883	< 0.012	ug/L	EPA 507	3/26/98		83331	па
2065	Heptachlor (0.4)	N981883	< 0.004	-	EPA 508	3/26/98	0.012	83331	ua
2067	Heptachior Epoxide (0.2)	N981883	<0.002	•	EPA 508	3/26/98	0.004	83331	ua
2105	2,4-D (70)	N981883	<0.026		EPA 515.1	4/10/98	0.002	83331	ua Su
2110	2,4,5-TP (Silvex) (50)	N981883	<0.017		EPA 515.1	4/10/98	0.026	83331	ua
2274	Hexachlorobenzene (1)	N981883	<0.008	ug/L	EPA 508	3/26/98	0.017	83331	ua
2306	Benzo(a)pyrene (.2)	N981883	< 0.013	_	EPA 550	4/3/98	0.008	83331	ta
2326	Pentachlorophenol (1)	N981883	<0.007		EPA 515.1	4/10/98	0.013	83331	ua
2383	PCB (0.5)	N981883	<0.1	ug/L	EPA 508	3/26/98	0.007	83331	ยล
2931	Dibromochloropropane (.2)	N981883	<0.004	ug/L	EPA 504	3/30/98	0.1	83331	ua
2946	Ethylene Dibromide (0.02)	N981883	<0.006	ug/t_	EPA 504	3/30/98	0.004	83331	ua
2959	Chlordane (2)	N981883	<0.446	ug/L	EPA 508	3/26/98	0.006 0.446	83331 83331	ua ua
		Unregulat	ed Grou	ıp I Ana	ılvsis				
	•		62-550.40		,				
			PWS035	i					
021 (Carbaryl	N981883	<3.89	υg/L	EPA 531.1	3/26/98	200	02224	
022 A	dethomyf	N981883	<3.2	ug/L	EPA 531.1	3/26/98	3.89		ųa.
043 A	Aldicarb Sulfoxide	N981883	<1.88	ug/L	EPA 531.1	3/26/98	3.2		ua
044 A	ldicarb Sulfone	N981883	<5.57	ug/L	EPA 531.1		1.88		ua
045 N	fetolach/or	N981883	<0.108	ug/L	EPA 507	3/26/98 3/26/98	5.57		иа
)47 A	idicarb	N981883		•			0.108		ua
66 3	-Hydroxycarbofuran			•					ua
		N981883 N981883		ug/L ug/L	EPA 531.1 EPA 531.1	3/26/98 3/26/98	5.95 3.35	83331 83331	,

Parameter ID	Analysis	Sample ID	Result	Unit	Method	Analysis Date/Time	D. L.	LabiD	Analyst
2077	Propachior	N981883	<5	ug/L	EPA 508	3/26/98	5	83331	ua
-2356	Aldrin	N981883	<0.005	ug/L	EPA 508	3/26/98	0.005	83331	ขอ
	Dieldrin	N981883	<0.02	ug/L	EPA 508	3/26/98	0.02	83331	ua
2440	Dicamba	N981883	<0.005	ug/L	EPA 515.1	4/10/98	0.005	83331	ua
2595	Metribuzin	N981883	<0.024	ug/L	EPA 507	3/26/98	0.024	83331	ua
2076	Butachlor	N981883	<0.021	ug/L	EPA 507	3/26/98	0.021	83331	ua
				•	2, 1, 22,		•		
		Unregula		-	nalysis				
			62-550.4				Fmw - 1		
			PWS034	ļ			· · · · · · · · · · · · · · · · · · ·		
2210	Chloromethane	N981883	< 0.35	ug/L	EPA 524.2	3/19/98	0.35	83331	uа
2212	Dichlorodiffouromethane	N981883	<0.26	ug/L	EPA 524.2	3/19/98	0.26	83331	นล
2214	Bromomethane	N981883	<0.29	ug/L	EPA 524.2	3/19/98	0.29	83331	ua
2216	Chloroethane	N981883	<0.29	ug/t.	EPA 524.2	3/19/98	0.29	83331	ua
2218	Trichlorofluoromethane	N981883	<0.28	ug/L	EPA 524.2	3/19/98	0.28	83331	ua
2251	Methyl-Tert-Sutyl-Ether	N981883	<0.27	ug/L	EPA 524.2	3/19/98	0.27	83331	ua
2408	Dibromomethane	N981883	<0.03	ug/L	EPA 524.2	3/19/98	0.03	83331	ua
2410	1,1-Dichloropropylene	N981883	<0.06	ug/L	EPA 524.2	3/19/98	0.06	83331	ua
2412	1,3-Dichloropropane	N981883	<0.05	ug/L	EPA 524.2	3/19/98	0.05	83331	ua
2413	1,3-Dichloropropene	N981883	<0.21	ug/L	EPA 524.2	3/19/98	0.21	83331	ua
2414	1,2,3-Trichloropropane	N981883	<0.39	ug/L	EPA 524.2	3/19/98	0.39	83331	ua
2416	2,2-Dichloropropane	N981883	<0.38	ug/L	EPA 524.2	3/19/98	0.38	83331	ua
~~·4	Chloroform	N981883	1.7	nê/L	EPA 524.2	3/19/98	0.16	83331	ua
2072	Bromoform	N981883	<0.31	ug/L	EPA 524.2	3/19/98	0.31	83331	ua
2943	Bromodichloromethane	N981883	<0.36	ug/L	EPA 524.2	3/19/98	0.36	83331	ua
2944	Dibromochloromethane	N981883	<0.27	ug/L	EPA 524.2	3/19/98	0.27	83331	ua
2965	O-Chlorotoluene	N981883	<0.33	ug/L	EPA 524,2	3/19/98	0.33	83331	ua
2966	P-Chiorotoluene	N981883	<0.29	ug/L	EPA 524.2	3/19/98	0.29	8333 1	ua
2967	M-Dichlorobenzene	N981883	<0.2	ug/L	EPA 524.2	3/19/98	0.2	83331	ua
2978	1,1-Dichloroethane	N981883	<0.1	ug/L	EPA 524.2	3/19/98	0.1	83331	ua
2986	1,1,1,2-Tetrachloroethane	N981883	<0.13	ug/L	EPA 524.2	3/19/98	0.13	83331	ua
2988	1,1,2,2-Tetrachlorcethane	N981883	<0.33	n3.gr	EPA 524.2	3/19/98	0.33	83331	G2
2993	Bromobenzene	N981883	<0.05	ug/L	EPA 524.2	3/19/98	0.05	83331	на
		Unregulat	-	•	nalysis				
			62-550.41						
]	PWS036 &	037	·····				
2262	Isophorone	N981883	<7.26	ug/L	EPA 625	3/23/98	7.26	83331	ua
2270	2,4-Dinitrotoluene	N981883	<4.78	ug/L	EPA 625	3/23/98	4.78	83331	ua
2282	Dimethylphthalate	N981883	<9.47	ug/L	EPA 625	3/23/98	9.47	83331	ua
2284	Diethylphthalate	N981883	<4.3	ug/L	EPA 625	3/23/98	4.3	83331	ua
2290	Di-n-Butylphthalate	N981883	<4.01	ug/L	EPA 625	3/23/98	4.01	83331	ua
2294	Butyl benzyl phthalate	N981883	<2.55	ug/L	EPA 625	3/23/98	2.55	83331	ua
)	Di-n-octylphthatate	N981883	<2.43	ug/L	EPA 625	3/23/98	2.43	83331	ua
									

Paramete	r ID Analysis	Sample ID	Result	Unit	Method	Analysis Date/Time	D. L.	LabiD	Analys
80	2-Chlorophenol	N981883	<4.1	ng/t.	EPA 625	3/23/98	4.1	83331	ua
1112	2-Methyl-4,6-dinitophenol	N981883	<4	ug/L	EPA 625	3/23/98	4	83331	ца
) .	Phenol	N981883	<2.6	ug/L	EPA 625	3/23/98	2.6	83331	ua
) so	2,4,6-Trichlorophenol	N981883	<4.66	ug/L	EPA 625	3/23/98	4.66	83331	ua
							Fmw-1		
	Total Coliform	N981883	6	∞l/100mi	SM9222B	3/17/98	15:20 1	84352	ua
	Fecal Coliform	N981883	4	coV100mi	SM9222D	3/17/98	15:20 1	 84352	ua
	Fecal Strep	N981883	1	coi/100ml	SM9230C	3/17/98	15:20 1	84352	ua
	P	A 608 - Organ	ochlorine	Pesticio	tes and PC	2			
								·····	
	A-BHC	N981883	<0.01	ug/L	EPA 8080	3/23/98	0.01	E84207	
	A-BHC B-BHC	N981883 N981883	<0.01 <0.01	ug/L ug/L	EPA 8080 EPA 8080	3/23/98 3/23/98	0.01	E84207	' ua
	A-BHC B-BHC D-BHC	N981883 N981883 N981883	<0.01 <0.01 <0.01	ug/L ug/L ug/L	EPA 8080 EPA 8080 EPA 8080	3/23/98 3/23/98 3/23/98	0.01 0.01	E84207 E84207	' ua ' ua
	A-BHC B-BHC D-BHC G-BHC (Lindane)	N981883 N981883 N981883 N981883	<0.01 <0.01 <0.01 <0.01	ug/L ug/L ug/L ug/L	EPA 8080 EPA 8080 EPA 8080 EPA 8080	3/23/98 3/23/98 3/23/98 3/23/98	0.01 0.01 0.01	E84207 E84207 E84207	ua ua ua
	A-BHC B-BHC D-BHC G-BHC (Lindane) Heptachior	N981883 N981883 N981883 N981883 N981883	<0.01 <0.01 <0.01 <0.01 <0.05	ug/L ug/L ug/L ug/L	EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080	3/23/98 3/23/98 3/23/98 3/23/98 3/23/98	0.01 0.01 0.01 0.05	E84207 E84207 E84207 E84207	'ua 'ua 'ua
	A-BHC B-BHC D-BHC G-BHC (Lindane) Heptachtor Aldrin	N981883 N981883 N981883 N981883 N981883 N981883	<0.01 <0.01 <0.01 <0.01 <0.05 <0.01	ug/L ug/L ug/L ug/L ug/L	EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080	3/23/98 3/23/98 3/23/98 3/23/98 3/23/98	0.01 0.01 0.01 0.05 0.01	E84207 E84207 E84207 E84207 E84207	'ua 'ua 'ua 'ua
	A-BHC B-BHC D-BHC G-BHC (Lindane) Heptachlor Aldrin Heptachlor Epoxide	N981883 N981883 N981883 N981883 N981883 N981883	<0.01 <0.01 <0.01 <0.01 <0.05 <0.01	ug/L ug/L ug/L ug/L ug/L	EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080	3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98	0.01 0.01 0.01 0.05 0.01	E84207 E84207 E84207 E84207 E84207	'ua 'ua 'ua 'ua 'ua
	A-BHC B-BHC D-BHC G-BHC (Lindane) Heptachlor Aldrin Heptachlor Epoxide Endosulfan t	N981883 N981883 N981883 N981883 N981883 N981883 N981883	<0.01 <0.01 <0.01 <0.01 <0.05 <0.01 <0.01	ug/L ug/L ug/L ug/L ug/L ug/L	EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080	3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98	0.01 0.01 0.05 0.05 0.01 0.01	E84207 E84207 E84207 E84207 E84207 E84207	va vua vua vua vua vua vua
	A-BHC B-BHC D-BHC G-BHC (Lindane) Heptachlor Aldrin Heptachlor Epoxide Endosulfan t 4,4-DDE	N981883 N981883 N981883 N981883 N981883 N981883 N981883	<0.01 <0.01 <0.01 <0.05 <0.01 <0.01 <0.01	ug/L ug/L ug/L ug/L ug/L ug/L	EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080	3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98	0.01 0.01 0.05 0.01 0.01 0.01 0.01	E84207 E84207 E84207 E84207 E84207 E84207 E84207	ua ua ua ua ua ua ua
	A-BHC B-BHC D-BHC G-BHC (Lindane) Heptachlor Aldrin Heptachlor Epoxide Endosulfan t 4,4-DDE Dieldrin	N981883 N981883 N981883 N981883 N981883 N981883 N981883 N981883	<0.01 <0.01 <0.01 <0.05 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080	3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98	0.01 0.01 0.05 0.01 0.01 0.01 0.01	E84207 E84207 E84207 E84207 E84207 E84207 E84207 E84207	' ua ' ua ' ua ' ua ' ua ' ua ' ua ' ua
	A-BHC B-BHC D-BHC G-BHC (Lindane) Heptachior Aldrin Heptachior Epoxide Endosulfan I 4,4-DDE Dieldrin Endrin	N981883 N981883 N981883 N981883 N981883 N981883 N981883 N981883 N981883	<0.01 <0.01 <0.01 <0.05 <0.01 <0.01 <0.01 <0.01 <0.01	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080	3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98	0.01 0.01 0.05 0.01 0.01 0.01 0.01 0.01	E84207 E84207 E84207 E84207 E84207 E84207 E84207 E84207 E84207	vaa vua vua vua vua vua vua vua vua
	A-BHC B-BHC D-BHC G-BHC (Lindane) Heptachlor Aldrin Heptachlor Epoxide Endosulfan t 4,4-DDE Dieldrin Endrin 4,4-DDD	N981883 N981883 N981883 N981883 N981883 N981883 N981883 N981883 N981883 N981883	<0.01 <0.01 <0.01 <0.05 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	ug/L ug/L ug/L ug/L ug/L	EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080	3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98	0.01 0.01 0.05 0.01 0.01 0.01 0.01 0.01	E84207 E84207 E84207 E84207 E84207 E84207 E84207 E84207	y ua y ua y ua y ua y ua y ua y ua y ua
	A-BHC B-BHC D-BHC G-BHC (Lindane) Heptachior Aldrin Heptachior Epoxide Endosulfan i 4,4-DDE Dieldrin Endrin 4,4-DDD Endosulfan iI	N981883 N981883 N981883 N981883 N981883 N981883 N981883 N981883 N981883 N981883 N981883	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080	3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98	0.01 0.01 0.05 0.01 0.01 0.01 0.01 0.01	E84207 E84207 E84207 E84207 E84207 E84207 E84207 E84207 E84207	vaa vua vua vua vua vua vua vua vua vua
	A-BHC B-BHC D-BHC G-BHC (Lindane) Heptachlor Aldrin Heptachlor Epoxide Endosulfan i 4,4-DDE Dieldrin Endrin 4,4-DDD Endosulfan iI 4,4-DDT	N981883 N981883 N981883 N981883 N981883 N981883 N981883 N981883 N981883 N981883	<0.01 <0.01 <0.01 <0.05 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080	3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98	0.01 0.01 0.05 0.01 0.01 0.01 0.01 0.01	E84207 E84207 E84207 E84207 E84207 E84207 E84207 E84207 E84207 E84207	ua ua ua ua ua ua ua ua ua ua ua
	A-BHC B-BHC D-BHC G-BHC (Lindane) Heptachior Aldrin Heptachior Epoxide Endosulfan i 4,4-DDE Dieldrin Endrin 4,4-DDD Endosulfan iI	N981883 N981883 N981883 N981883 N981883 N981883 N981883 N981883 N981883 N981883 N981883 N981883	<0.01 <0.01 <0.01 <0.05 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080	3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98	0.01 0.01 0.05 0.01 0.01 0.01 0.01 0.01	E84207 E84207 E84207 E84207 E84207 E84207 E84207 E84207 E84207 E84207	ua ua ua ua ua ua ua ua ua ua ua ua ua u
	A-BHC B-BHC D-BHC G-BHC (Lindane) Heptachior Aldrin Heptachior Epoxide Endosulfan i 4,4-DDE Dieldrin Endrin 4,4-DDD Endosulfan iI 4,4-DDT Endrin Aldehyde	N981883 N981883 N981883 N981883 N981883 N981883 N981883 N981883 N981883 N981883 N981883 N981883	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080	3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98	0.01 0.01 0.05 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	E84207 E84207 E84207 E84207 E84207 E84207 E84207 E84207 E84207 E84207 E84207	ua ua ua ua ua ua ua ua ua ua ua ua ua u
	A-BHC B-BHC D-BHC G-BHC (Lindane) Heptachior Aldrin Heptachior Epoxide Endosulfan i 4,4-DDE Dieldrin Endrin 4,4-DDD Endosulfan iI 4,4-DDT Endrin Aldehyde Endosulfan Sulfate Chlordane	N981883 N981883 N981883 N981883 N981883 N981883 N981883 N981883 N981883 N981883 N981883 N981883 N981883 N981883	<0.01 <0.01 <0.01 <0.05 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080	3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98	0.01 0.01 0.05 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.07 0.01	E84207 E84207 E84207 E84207 E84207 E84207 E84207 E84207 E84207 E84207 E84207 E84207	ua ua ua ua ua ua ua ua ua ua ua ua ua u
	A-BHC B-BHC D-BHC G-BHC (Lindane) Heptachior Aldrin Heptachior Epoxide Endosulfan i 4,4-DDE Dieldrin Endrin 4,4-DDD Endosulfan iI 4,4-DDT Endrin Aldehyde Endosulfan Sulfate	N981883 N981883 N981883 N981883 N981883 N981883 N981883 N981883 N981883 N981883 N981883 N981883 N981883 N981883	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080 EPA 8080	3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98	0.01 0.01 0.05 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.07 0.01 0.01	E84207 E84207 E84207 E84207 E84207 E84207 E84207 E84207 E84207 E84207 E84207 E84207 E84207	ta tua tua tua tua tua tua tua tua tua t
	A-BHC B-BHC D-BHC G-BHC (Lindane) Heptachior Aldrin Heptachior Epoxide Endosulfan i 4,4-DDE Dieldrin Endrin 4,4-DDD Endosulfan iI 4,4-DDT Endrin Aldehyde Endosulfan Sulfate Chlordane Toxaphene	N981883 N981883 N981883 N981883 N981883 N981883 N981883 N981883 N981883 N981883 N981883 N981883 N981883 N981883 N981883 N981883 N981883 N981883 N981883	<0.01 <0.01 <0.01 <0.05 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	EPA 8080 EPA 8080	3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98 3/23/98	0.01 0.01 0.05 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.07 0.01 0.01 0.01	E84207 E84207 E84207 E84207 E84207 E84207 E84207 E84207 E84207 E84207 E84207 E84207 E84207 E84207	ua ua ua ua ua ua ua ua ua ua ua ua ua u

Parameter ID	Analysis	Sample ID	Result	Unit	Method	Analysis Date/Time	Đ. L.	LabID Analyst
PC	CB-1242	N981883	<0.59	ug/L	EPA 8080	3/23/98	0.59	E84207 ua
PC	C8-1248	N981883	<0.55	ug/L	EPA 8080	3/23/98	0.55	E84207 ua
PC	CB-1254	N981883	<0.44	ug/L	EPA 8080	3/23/98	0.44	E84207 ua
PC	CB-1260	N981883	<0.65	ug/L	EPA 8080	3/23/98	0.65	E84207 ua
Mo	ethoxychlor	N981883	<0.1	ug/L	EPA 8080	3/23/98	0.1	E84207 ua

EPA 624 - Purgeable Organics

FMW-1

Chloromethane	N981883	<0.52	ug/L	EPA 8240	3/18/98	0.52	E84207	Uâ
Vinyl Chloride	N981883	<0.47	ug/L	EPA 8240	3/18/98	0.47	E84207	ua
Bromomethane	N981883	<1.0	ug/L	EPA 8240	3/18/98	1.0	E84207	ua
Chloroethane	N981883	<0.53	ug/L	EPA 8240	3/18/98	0.53	E84207	ua
Trichlorofluoromethane	N981883	<1.3	ug/L	EPA 8240	3/18/98	1.3	E84207	Ųá
1,1-Dichloroethene	N981883	<0.60	ug/L	EPA 8240	3/18/98	0.60	E84207	Uá
Methylene Chloride	N981883	<1.0	ug/L	EPA 8240	3/18/98	1.0	E84207	u
Trans-1,2-Dichloroethéne	N981883	<0.38	ug/L	EPA 8240	3/18/98	0.38	E84207	ų,
1,1-Dichtoroethane	N981883	<0.74	ug/L	EPA 8240	3/18/98	0.74	E84207	ua
Chloroform	N981883	1.1	υg/L	EPA 8240	3/18/98	1.0	E84207	U;
1,1,1-Trichloroethane	N981883	<0.36	ug/L	EPA 8240	3/18/98	0.36	E84207	u:
Carbon Tetrachloride	N981883	<0.42	ug/L	EPA 8240	3/18/98	0.42	E84207	u
1,2-Dichloroethane	N981883	<0.27	ug/L	EPA 8240	3/18/98	0.27	E84207	U
Benzene	N981883	<0.34	ug/L	EPA 8240	3/18/98	0.34	E84207	Ų
Trichloroethene	N981883	< 0.83	ug/L	EPA 8240	3/18/98	0.83	E84207	U
1,2-Dichtoropropane	N981883	<0.36	ug/L	EPA 8240	3/18/98	0.36	E84207	បូរ
Bromodichloromethane	N981883	<0.26	ug/L	EPA 8240	3/18/98	0.26	E84207	U
2-Chlorcethylvinyl Ether	N981883	< 0.59	ug/L	EPA 8240	3/18/98	0.59	E84207	U
Cis-1,3-dichloropropene	N981883	<0.29	ug/L	EPA 8240	3/18/98	0.29	E84207	ų.
Foluene	N981883	<0.38	กติงูร	EPA 8240	3/18/98	0.38	E84207	ų
Frans-1,3-Dichloropropene	N981883	<0.89	ug/L	EPA 8240	3/18/98	0.89	E84207	u
1,1,2-Trichloroethane	N981883	<0.48	ug/L	EPA 8240	3/18/98	0.48	E84207	U
Tetrachioroethene	N981883	<0.36	ug/L	EPA 8240	3/18/98	0.36	E84207	U
Dibromochloromethane	N981883	<0.63	ug/L	EPA 8240	3/18/98	0.63	E84207	U
Chlorobenzane	N981883	<0.34	ug/L	EPA 8240	3/18/98	0.34	E84207	Ų.
ihylbenzene	N981883	<0.41	μ ÿ /L	EPA 8240	3/18/98	0.41	E84207	Ų.
Bromoform	N981883	<0.66	ug/L	EPA 8240	3/18/98	0.56	E84207	Ų
,1,2,2-Tetrachioroethane	N981883	<0.31	ug/L	EPA 8240	3/18/98	0.31	E84207	U
,3-Dichlorobenzene	N981883	<0.77	ug/L	EPA 8240	3/18/98	0.77	E84207	u
,4-Dichlorobenzene	N981883	<0.50	ugit	EPA 8240	3/18/98	0.50	E84207	u
,2-Dichlorobenzene	N981883	< 0.42	ug/L	EPA 8240	3/18/98	0.42	E84207	U

EPA 625 - Semivolatile Organics

Parameter ID	Analysis	Sample ID	Result	Unit	Method	Analysis Date/Time	D. L.	LabiD An	ialyst
	N-Nitrosodimethylamine	N981883	<1.0	ug/L	EPA 8270	3/21/98	1.0	E84207	uа
	Phenol ·	N981883	<1.3	ug/L	EPA 8270	3/21/98	1.3	E84207	ua
	Bis(2-Chloroethyl)Ether	N981883	<0.50	ug/L	EPA 8270	3/21/98	0.50	E84207	uа
	2-Chlorophenol	N981883	<0.42	ug/L	EPA 8270	3/21/98	0.42	E84207	ua
	1,3-Dichlorobenzene	N981883	<0.50	υg/L	EPA 8270	3/21/98	0.50	E84207	ยล
	1,4-Dichlorobenzene	N981883	<0.55	ug/L	EPA 8270	3/21/98	0.55	E84207	ua
	1,2-Dichlorobenzene	N981883	<1.0	ug/L	EPA 8270	3/21/98	1.0	E84207	ua
	Bis(2-Chloroisopropyl)ether	N981883	<0.35	ug/L	EPA 8270	3/21/98	0.35	E84207	ua
	N-Nitroso-di-n-propylamine	N981883	< 0.34	ug/L	EPA 8270	3/21/98	0.34	E84207 (ua
	Hexachloroethane .	N981883	<0.71	ug/L	EPA 8270	3/21/98	0.71	E84207	иа
	Nitrobenzene	N981883	<2.8	ag/L	EPA 8270	3/21/98	2.8	E84207 a	ขล
	2-Nitrophenol	N981883	< 0.63	ug/L	EPA 8270	3/21/98	0.63	E84207 (ua
	2,4-Dimethylphenol	N981883	<0.85	ug/L	EPA 8270	3/21/98	0.85	E84207 1	ua
	Bis(2-Chloroethoxy)Methane	N981883	<0.28	ug/L	EPA 8270	3/21/98	0.28	E84207	ua
	2,4-Dichlorophenol	N981883	<0.22	ug/L	EPA 8270	3/21/98	0.22	E84207 1	บล
	1,2,4-Trichlorobenzene	N981883	<0.43	ug/L	EPA 8270	3/21/98	0.43	E84207	ua
	Naphthalene	N981883	<0.59	ug/L	EPA 8270	3/21/98	0.59	E84207 t	ua
	Hexachlorobutadiene	N981883	<0.67	ug/L	EPA 8270	3/21/98	0.67	E84207 i	ua
	4-Chloro-3-Methylphenol	N981883	<0.52	ug/L	EPA 8270	3/21/98	0.52	E84207 (ua
	2-Methylnaphthalene	N981883	<0.52	υg/L	EPA 8270	3/21/98	0.52	E84207 t	บล
	1-Methylnaphthalene	N981883	<0.48	ug/L	EPA 8270	3/21/98	0.48	E84207 (ua
	Hexachiorocyclopentadiene	N981883	<1.6	սցչէ	EPA 8270	3/21/98	1.6	E84207 (ua
	2,4,6-Trichlorophenol	N981883	<0.70	ug/L	EPA 8270	3/21/98	0.70	E84207 ı	ua
	2-Chloronaphthalene	N981883	< 0.48	ug/L	EPA 8270	3/21/98	0.48	E84207 (ua
	Dimethylphthalate	N981883	< 0.22	ug/L	EPA 8270	3/21/98	0.22	E84207 ı	ua
	Acenaphthene	N981883	< 0.39	ug/L	EPA 8270	3/21/98	0.39	E84207 (uа
	Acenaphthylene	N981883	<0.39	ug/L	EPA 8270	3/21/98	0.39	E84207 (ua
	2,4-Dinitrophenol	N981883	<1.4	ug/L	EPA 8270	3/21/98	1.4	E84207 u	ua
	4-Nitrophenol	N981883	<0.97	ug/L	EPA 8270	3/21/98	0.97	E84207 (ua
	2,4-Dinitrotoluene	N981883	< 0.50	ug/L	EPA 8270	3/21/98	0.50	E84207 (ua
	2,6-Dinitrotoluene	N981883	<0.68	ug/L	EPA 8270	3/21/98	0.68	E84207 t	ua
	Diethylphthalate	N981883	0.97	ug/L	EPA 8270	3/21/98	0.28	E84207 t	иа
	4-Chlorophenyl-phenyl ether	N981883	<0.37	ug/L	EPA 8270	3/21/98	0.37	E84207 t	ua
	Fluorene	N981883	<0.31	υgΛ.	EPA 8270	3/21/98	0.31	E84207 t	ua
	4,6-Dinitro-2-Methylphenol	N981883	<0.21	ug/L	EPA 8270	3/21/98	0.21	E84207 (ua
•	N-Nitrosodiphenylamine	N981883	<0.52	ug/L	EPA 8270	3/21/98	0.52	E84207 t	ua
	4-Bromophenyl-phenyl ether	N981883	<0.31	ug/L	EPA 8270	3/21/98	0.31	E84207 (ua
	Hexachlorobenzene	N981883	<0.48	ug/L	EPA 8270	3/21/98	0.48	E84207 (ua
	B-8HC	N981883	< 0.01	ug/L	EPA 8080	3/23/98	0.01	E84207 t	иа
;	Pentachlorophenol	N981883	<0.21	ug/L	EPA 8270	3/21/98	0.21	E84207 t	ชอ
}	Phenanthrene	N981883	<0.45	ug/L	EPA 8270	3/21/98	0.45	E84207 t	ua
	Anthracene	N981883	<0.28	ug/L	EPA 8270	3/21/98	0.28	E84207 i	ua
1	D-8HC	N981883	<0.01	ug/L	EPA 8080	3/23/98	0.01	E84207 ı	ua
I	Heptachlor	N981883	<0.05	ug/L	EPA 8080	3/23/98	0.05	E84207 (ua

HRS Certification#'s 84352 and E84380(Nokomis) 85449 and E85457(Ft. Myers)

r ID	Analysis	Sample ID	Result	Unit	Method	Analysis Date/Time	D. L	LabiD	Anaiys
	Di-n-Butylphthalate	N981883	<0.22	ug/L	EPA 8270	3/21/98	0.22	E84207	ua
	Aldrin	N981883	<0.01	ug/t.	EPA 8080	3/23/98	0.01	E84207	ua .
	Heptachior Epoxide	N981883	<0.01	ug/L	EPA 8080	3/23/98	0.01	E84207	' ua
	Fluoranthene	N981883	<0.56	ugA.	EPA 8270	3/21/98	0.56	E84207	ua
	Benzidine	N981883	<2.8	ug/L	EPA 8270	3/21/98	2.8	E84207	' ua
	Pyrene	N981883	<0.51	ug/L	EPA 8270	3/21/98	0.51	E84207	ua
	Endosulfan I	N981883	<0.01	ug/L	EPA 8080	3/23/98	0.01	E84207	' ua
	4,4-DDE	N981883	<0.01	ug/L	EPA 8080	3/23/98	0.01	E84207	ua .
1	Dieldrin	N981883	<0.01	ug/L	EPA 8080	3/23/98	0.01	E84207	ua
	Endrin	N981883	<0.01	ug/L	EPA 8080	3/23/98	0.01	E84207	ua
	4,4-DD0	N981883	<0.01	ug/L	EPA 8080	3/23/98	0.01	E84207	
ı	Endosulfan II	N981883	<0.01	ug/L	EPA 8080	3/23/98	0.01	E84207	
ı	Butylbenzylphthalate	N981883	<0.20	ug/L	EPA 8270	3/21/98	0.20	E84207	
4	4,4-0DT	N981883	<0.08	ug/L	EPA 8080	3/23/98	80.0	E84207	ша
í	Endosulfan Sulfate	N981883	<0.07	ug/L	EPA 8080	3/23/98	0.07	E84207	ua
3	3,3-Dichlorobenzidine	N981883	<0.53	ug/L	EPA 8270	3/21/98	0.53	E84207	
ě	Benzo(a)Anthracene	N981883	<0.58	ug/L	EPA 8270	3/21/98	0.58	E84207	ua
E	Bis(2-Ethylhexyl)Phthalate	N981883	<0.81	ug/L	EPA 8270	3/21/98	0.81	E84207	
(Chrysene	N981883	<0.56	ug/L	EPA 8270	3/21/98	0.56	E84207	
Ĉ	Di-n-octylophthalate	N981883	<1.0	ug/L	EPA 8270	3/21/98	1.0	E84207	
E	Benzo(d)Fluoranthene	N981883	<2.1	ug/L	EPA 8270	3/21/98	2.1	E84207	
E	Benzo(k)Fluoranthene	N981883	<1.1	ug/L	EPA 8270	3/21/98	1.1	E84207	ua
E	Benzo(a)Pyrene	N981883	<0.43	ug/L	EPA 8270	3/21/98	0.43	E84207	
ti	ndeno(1,2,3-cd)Pyrene	N981883	<0.38	ug/L	EPA 8270	3/21/98	0.38	E84207	ua
	Dibenzo(a,h)Anthracene	N981883	<0.36	ug/L	EPA 8270	3/21/98	0.36	E84207	
8	Benzo(g,h,i)Perylene	N981883	<0.59	ug/L	EPA 8270	3/21/98	0.59	E84207	
C	Chlordane	N981883	<0.99	ug/L	EPA 8080	3/23/98	0.99	E84207	ua
Ę	Endrin Aldehyde	N981883	<0.01	ug/L	EPA 8080	3/23/98	0.01	E84207	va
ls	sophorone	N981883	<0.20	ย g/ L	EPA 8270	3/21/98	0.20	E84207	υа
T	oxaphene	N981883	<1.2	ug/L	EPA 8080	3/23/98	1.2	E84207	ua
P	PCB 1016	N981883	<0.44	ug/L	EPA 8080	3/23/98	0.44	E84207	uа
P	PCB 1221	N981883	<1.1	ug/L	EPA 8080	3/23/98	1.1	E84207	ua
P	PCB 1232	N981883	<0.70	ug/L	EPA 8080	3/23/98	0.70	E84207	ua
P	PCB 1242	N981883	<0.59	ug/L	EPA 8080	3/23/98	0.59	E84207	ua
P	PCB 1248	N981883	<0.55	ug/L	CPA 8080	3/23/98	0.55	E84207	ua
P	PCB 1254	N981883	< 0.44	ug/L	EPA 8080	3/23/98	0.44	E84207	ua
P	PCB 1260	N981883	<0.65	ug/L	EPA 8080	3/23/98	0.65	E84207	ua
						Fmi	N~l		
	sbestos	N981883	<1.882	mg/L	EPA 100.2	4/10/98	1.882	25304	ua

Parameter IC) Analysis	Sample ID	Result	Unit	Method	Analysis Date/Time	D. L.	LabiD	Analyst
		Radi	ochemical 62-550,310 PWS033	0(5)	sis		Fmw-	(
4000	Gross Alpha	N981883		pCVL	EPA 900.1	3/25/98	+\-14.0	83141	ua
4020	Radium 226	N981883	3.4	ρC l/L	EPA 903.1	3/25/98	+1-0.4	83141	ua
4030	Radium 228	N981883	1,0	PCIAL	Brks/Blchrd	3/25/98	+1-0.7	83141	ua

Approved by:

Approved by:

Comments:

Debra Sanders Laboratory Director

La

Patrick N. Sterling Laboratory Manager

28090290/

INTAKE #: 511442

Project Name: Yo

Youngquist/FMW Well 1

Project Location:

Five Ash, Broward County

Job ID:

Sample Supply:

Ground Water

FMW-1

Collector:

Client

Sample Received

Date/Time:

1/15/98

15:10

15465 Pine Ridge Road Fort Myers, FL 33908-

Youngquist Brothers, Inc.

Date: 20-Jan-98

Lab ID Sample ID Type Sample Date/Fime

Апа	llysis			Method	Result	D. L.	Unit	Analysis Date/Time	LabiD:
1980177	well 1	GRB	1/15/98	8:30					
Chlo	oride			SM 4500 CI-B	3,549	5	mg/L	1/16/98	E84380
Con	ductivity			EPA 120.1	9,345	1.0	umhos/cm	1/15/98	E84380
ρΗ,	Lab			EPA 150.1	7.35	n/a	std units	1/15/98	E84380
Tota	l Dissolved S	Solids		EPA 160.1	6,840	7	mg/L	1/15/98	E84380
Sulf	ate			EPA 375.4	715	5	mg/L	1/15/98	E84380
Calc	ium			EPA 215.1	200	0.022	mg/L	1/16/98	E84380
Pota	ssium			EPA 258.1	59.8	0.003	mg/L	1/19/98	E84380
Bica	rbonate, HC(D3		4500-CO2-D	0.273		mg/L	1/16/98	E84380
Sodi	ит			EPA 273.1	1,925	0.003	mg/L	1/19/98	E84380
Mag	nesium			EPA 242.1	257	0.0008	mg/L	1/16/98	E84380

Approved by:

Comments:

Debra Sanders

Laboratory Director

RECEIVED JAN 2 2 1998

HRS Certification#'s 84352 and E84380(Nokomis) 85449 and E85457(Ft. Myers)

dooratories				. Pac et
witonimental Testing Services	, Report To:	ite		DKINKING Water
Client Jaugguet Brothers Well De	elling Bill To:			
Address			Field Report #:	
	Project Name	weAsh SAM	Kil #	
Phone Fax Sampled By (PRINT)	Project Location:	TUCAS WEST	REQUESTED (DUE DATE: 4/1/91
Tim Casp		PRESERVATIVES ANALYS REQUE	SES ST ST SE	TNN 1/1/27
Sampler Signature	CI-	MTAINE	/ <i>X</i> 6/¥/.X	
SAMPLE DESCRIPTION / LOCATION JOB	Sample DATE TIME TYPE			
		S E E E		LAB NUMBER
1 AS monitoring Well	3/17/11/100 61	<u> </u>	XXXXXX	XXX 198 1483
(FAM W)				
SHIPMENT METHOD				
OUT/DATE RETURNED/DATE VIA	RELINGUISHED	BY AFFILIATION DATE	TIME ACCEPTED BY	Y/AFFILIATION DATE TIME
		3/17/9	150 leson	Par: 3/17 1500
Cond. 9530 cooler#		7		77777
RH. 7.61				
-				

1050 Endeavor Ct., Nokomis, FL 34275-3623 • (941) 488-8103 • FAX 484-6774 16880 Gator Road, Fort Myers, FL 33912 • (941) 590-0337 • FAX (941) 590-0536

Sanders	CHAIN-OF-CUSTODT RECORD	FORM# 5/17/9 C
Laboratories		Sample Supply: GW/ 510
Environmental Testing Services	Report To:	Sample Supply: (TW/ 514)
client Young quist Brothers	Bill To:	Customer Type:
Address	P.O. #	Field Report #:
	Project Location: Brown of	REQUESTED DUE DATE: 1.17_9 8
Phone Fax		REQUESTED DUE DATE: /// / //
Sampled By (PRINT)	PRESERVATIVES ANALYSES (
Sampler Signature	Sample Sample TYPE TYPE TYPE SAME PRESERVATIVES REQUEST TO TO TO TO TO TO TO TO TO TO TO TO TO T	LAB NUMBER
SAMPLE DESCRIPTION / LOCATION JOB	DATE TIME TYPE SETE TO THE	LAB NUMBER
1 Five ASH FOR 11 2	1.15498 0830 Cg 4 XXX	XXXXX N980177
·		
		
	 	
	┟╼╼╼╌╂╌┈╌╂╌╢╌╂╌╂╌╂╌╂╌╂╌╂╌╂	╀╌╀╌╀╌┼╌┼╌┼╌┼
SHIPMENT METHOD	ITEM RELINQUISHED BY / AFFILIATION DATE TIME	ACCEPTED BY / AFFILIATION DATE TIME
OUT / DATE RETURNED / DATE VIA	1959 5	6 Cl Back 150 50
COMMENTS: COOLER # -		
6014M		

Water Quality Analyses for SMW-1

INTAKE #: 511421

Date: 09-Feb-98

Youngquist Brothers, Inc. 15465 Pine Ridge Road Fort Myers, FL 33908Project Name:

Youngquist/ASR Well

Project Location:

Five Ash, Broward County

Sample Supply:

Ground Water

Collector:

Date/Time:

Tim Case

Sample Received

1/15/98

3:00

Etracian Aquifer Monitor Well -

Parame	ter ID Analysis	Sample ID	Result Uni	it Method	Analysis Date/Time	, ю. L.	LabiD	Analys
	Dioxin Screen	N980148	<5.0 pg/L	EPA 1613A	2/3/98	5.0	87424	ua
						· · · · · · · · · · · · · · · · · · ·		
		Trih	alomethane A	-				
			62-550.310(2)(a)				
		· .	PWS027			· ·· · · · · · · · · · · · · · · · · ·		
2950	Total THM's (0.10)	N980148	<0.0004 mg/L	EPA 524.2	1/19/98	0.0004	83331	ua
		Vola	tile Organic A	Analysis				
			62-550.310(2)(b	-				
			PWS028					
2378	1,2,4-Trichlorobenzene (70)	N980148	<0.22 ug/L	EPA 524.2	1/19/98	0.22	83331	ua
2380	Cis-1,2-Dichloroethylene (70)	N980148	<0.03 ug/L	EPA 524.2	1/19/98	0.03	83331	ua
2955	Xylenes (Total) (10,000)	N980148	<0.24 ug/L	EPA 524.2	1/19/98	0.24	83331	ua
2964	Dichloromethane (5)	N980148	<0.31 ug/L	EPA 524.2	1/19/98	0.31	83331	ua
2968	O-Dichlorobenzene (600)	N980148	<0.05 ug/L	EPA 524.2	1/19/98	0.05	83331	ua
2969	Para-Dichlorobenzene (75)	N980148	<0.02 ug/L	EPA 524.2	1/19/98	0.02	83331	บอ
2976	Vinyl Chloride (1)	N980148	<0.29 ug/L	EPA 524.2	1/19/98	0.29	83331	บอ
2977	1,1-Dichloroethylene (7)	N980148	<0.02 ug/L	EPA 524.2	1/19/98	0.02	83331	ua
2979	Trans-1,2-Dichloroethylene(10	N980148	<0.12 ug/L	EPA 524.2	1/19/98	0.12	83331	ua
2980	1,2-Dichloroethane (3)	N980148	<0.02 ug/L	EPA 524.2	1/19/98	0.02	83331	ua
2981	1,1,1-Trichloroethane (200)	N980148	<0.21 ug/L	EPA 524.2	1/19/98	0.21	83331	ψa

HRS Certification#'s 84352 and E84380(Nokomis) 85449 and E85457(Ft. Myers)

Page /

. Parametei	r ID Analysis	Sample ID	Result Unit	Method	Analysis Date/Time	D. L .	LabiD	Anaiyst		
2982	Carbon Tetrachloride (3)	N980148	<0.29 ug/L	EPA 524.2	1/19/98	0.29	83331	uа		
2983	1,2-Dichloropropane (5)	N980148	<0.33 ug/L	EPA 524.2	1/19/98	0.33	83331	uа		
29Ն	Trichloroethylene (3)	N980148	<0.02 ug/L	EPA 524.2	1/19/98	0.02	83331	ua		
2985	1,1,2-Trichloroethane (5)	N980148	<0.23 ug/L	EPA 524.2	1/19/98	0.23	83331	ua		
2987	Tetrachioroethylene (3)	N980148	<0.21 ug/L	EPA 524.2	1/19/98	0.21	83331	ua		
2989	Monochlorobenzene (100)	N980148	<0.23 ug/L	EPA 524.2	1/19/98	0.23	83331	ua		
2990	Benzene (1)	N980148	<0.05 ug/L	EPA 524.2	1/19/98	0.05	83331	ua		
2991	Taluene (1000)	N980148	<0.41 ug/L	EPA 524.2	1/19/98	0.41	83331	ua		
2992	Ethylbenzene (700)	N980148	<0.47 ug/L	EPA 524.2	1/19/98	0.47	83331	ua		
2996	Styrene (100)	N980148	<0.2 ug/L	EPA 524.2	1/19/98	0.2	83331	ua		
Pesticide/PCB Chemical Analysis 62-550.310(2)(c)										

PWS029

			1 113022					
2005	Endrin (2)	N980148	<0.002 ug/L	EPA 508	1/22/98	0.002	83331	ua
2010	Lindane (0.2)	N980148	<0.002 ug/L	EPA 508	1/22/98	0.002	83331	ua
2015	Methoxychlor (40)	N980148	<0.052 ug/L	EPA 508	1/22/98	0.052	83331	ua
2020	Toxaphene (3)	N980148	<0.309 ug/L	EPA 508	1/22/98	0.309	83331	ua
2021	Dalapon (200)	N980148	<0.036 ug/L	EPA 515.1	1/26/98	0.036	83331	ບລ
20	Diquat (20)	N980148	<0.26 ug/L	EPA 549.1	1/29/98	0.26	83331	ua
2033	Endothall (100)	N980148	<15.4 ug/L	EPA 548	1/27/98	15.4	83331	ua
2034	Glyphosate (700)	N980148	<9.44 ug/L	EPA 547	1/29/98	9.44	83331	ua
2035	Di(2-ethylhexyl) adipate (400)	N980148	<0.71 ug/L	EPA 525.2	1/26/98	0.71	83331	นล
2036	Oxamyl (Vydate) (200)	N980148	<2.57 ug/L	EPA 531.1	2/3/98	2.57	83331	ua
2037	Simazine (4)	N980148	<0.078 ug/L	EPA 507	1/22/98	0.078	83331	ua
2039	Di(2-ethylhexyl) phthalate (6)	N980148	<1.15 ug/L	EPA 525.2	1/26/98	1.15	33331	ua
2040	Picloram (500)	N980148	<0.029 ug/L	EPA 515.1	1/26/98	0.029	83331	ศล
2041	Dinoseb (7)	N980148	<0.055 ug/L	EPA 515.1	1/26/98	0.055	83331	ua
2042	Hexachlorocyclopentadiene(50	N980148	<0.01 ug/L	EPA 508	1/22/98	0.01	83331	вų
2046	Carbofuran (40)	N980148	<7.04 ug/L	EPA 531.1	2/3/98	7.04	83331	џа
2050	Atrazine (3)	N980148	<0.035 ug/L	EPA 507	1/22/98	0.035	83331	ពន
2051	Alachlor (2)	N980148	<0.012 ug/L	EPA 507	1/22/98	0.012	83331	ua
2065	Heptachlor (0.4)	N980148	<0.004 ug/L	EPA 508	1/22/98	0.004	83331	υa
2067	Heptachlor Epoxide (0.2)	N980148	<0.002 ug/L	EPA 508	1/22/98	0.002	83331	ua
2105	2,4-D (70)	N980148	<0.026 ug/L	EPA 515.1	1/26/98	0.025	83331	ua

HRS Certification#'s 84352 and E84380(Nokomis) 85449 and E85457(Ft. Myers)

Paramete	er ID Analysis	Sample ID	Result	Unit	Method	Analysis Date/Time	D. L.	LabiD	Analyst
2110	2,4,5-TP (Silvex) (50)	N980148	<0.017 u	g/L	EPA 515.1	1/26/98	0.017	83331	ua
2274	Hexachlorobenzene (1)	N980148	<0.008 u	g/L	EPA 508	1/22/98	0.008	83331	иa
2.	Benzo(a)pyrene (.2)	N980148	<0.013 บ	g/L	EPA 550	1/28/98	0.013	83331	ua
2326	Pentachlorophenol (1)	N980148	<0.007 u	g/L	EPA 515.1	1/26/98	0.007	83331	uа
2383	PCB (0.5)	N980148	<0.1 u	g/L	EPA 508	1/22/98	0.1	83331	ua
2931	Dibromochloropropane (.2)	N980148	<0.004 u	g/L	EPA 504	1/20/98	0.004	83331	ua
2946	Ethylene Dibromide (0.02)	N980148	<0.006 ug	g/L	EPA 504	1/20/98	0.006	83331	ua
2959	Chiordane (2)	N980148	<0.446 u	g/L	EPA 508	1/22/98	0.446	83331	ua
		Unregul	lated Gro	up [A	nalysis			<u> </u>	<u> </u>
•			62-550.40	05					
			PWS03	35					
2021	Carbaryl	N980148	<3.89 ug	g/L	EPA 531.1	2/3/98	3.89	83331	ua
2022	Methomyl	N980148	<3.2 ug	g/L	EPA 531.1	2/3/98	3.2	83331	ua
2043	Aldicarb Sulfoxide	N980148	<1.88 uç	g/L	EPA 531.1	2/3/98	1.88	83331	ua
2044	Aldicarb Sulfone	N980148	<5.57 ug	g/L	EPA 531.1	2/3/98	5.57	83331	ua
2045	Metolachlor	N980148	<0.108 ug	g/L	EPA 507	1/22/98	0.108	83331	ua
2047	Aldicarb	N980148	<5.95 ug	g/L	EPA 531,1	2/3/98	5.95	83331	ua
2066	3-Hydroxycarbofuran	N980148	<3.35 ug	g/L	EPA 531.1	2/3/98	3.35	83331	ψa
2 6.	Propachior	N980148	<5 vg]/L	EPA 508	1/22/98	5	83331	ua
2356	Aldrin	N980148	<0.005 ug	7 /∟	EPA 508	1/22/98	0.005	83331	ua
2364	Dieldrin	N980148	<0.02 ug	; /L	EPA 508	1/22/98	0.02	83331	ua
2440	Dicamba	N980148	<0.005 ug	J/L	EPA 515.1	1/26/98	0.005	83331	ua
2595	Metribuzin	N980148	<0.024 ug	/ L	EPA 507	1/22/98	0.024	83331	ua
2076	Butachlor	N980148	<0.021 ug	/L	EPA 507	1/22/98	0.021	83331	ua
		Unregula	ited Grou	ıp II A	nalysis			······	
			62-550.41	0				-	-
			PWS03	4					
2210	Chloromethane	N980148	<0.35 ug	/L	EPA 524.2	1/19/98	0.35	83331	ца
2212	Dichlorodiflouromethane	N980148	<0.26 ug	/L	EPA 524.2	1/19/98	0.26	83331	ua
2214	Bromomethane	N980148	<0.29 ug	/L	EPA 524.2	1/19/98	0.29	83331	ua
2216	Chioroethane	N980148	<0.29 ug	/L	EPA 524.2	1/19/98	0.29	83331	ua
2218	Trichlorofluoromethane	N980148	<0.28 ugi	/L	EPA 524.2	1/19/98	0.28	83331	ua
2251	Methyl-Tert-Butyl-Ether	N980148	<0.27 ug/	/t.	EPA 524.2	1/19/98	0.27	83331	ua
2408	Dibromomethane	N980148	<0.03 ug/	/L	EPA 524.2	1/19/98	0.03	83331	ua

loropropylene loropropane loropropane chloropropane loropropane rm rm chloromethane chloromethane otoluene otoluene orobenzene loroethane Tetrachloroethane	N980148 N980148 N980148 N980148 N980148 N980148 N980148 N980148 N980148 N980148 N980148	<0.06 ug/L <0.05 ug/L <0.21 ug/L <0.39 ug/L <0.38 ug/L <0.36 ug/L <0.31 ug/L <0.36 ug/L <0.27 ug/L <0.33 ug/L <0.27 ug/L <0.29 ug/L <0.2 ug/L	EPA 524.2 EPA 524.2 EPA 524.2 EPA 524.2 EPA 524.2 EPA 524.2 EPA 524.2 EPA 524.2 EPA 524.2 EPA 524.2 EPA 524.2 EPA 524.2 EPA 524.2	1/19/98 1/19/98 1/19/98 1/19/98 1/19/98 1/19/98 1/19/98 1/19/98 1/19/98	0.06 0.05 0.21 0.39 0.38 0.16 0.31 0.36 0.27 0.33	83331 83331 83331 83331 83331 83331 83331 83331	ua ua ua ua ua ua ua ua ua ua ua
chioropropene chioropropane loropropane rm rm chioromethane chioromethane otoluene otoluene otoluene orobenzene loroethane	N980148 N980148 N980148 N980148 N980148 N980148 N980148 N980148	<0.21 ug/L <0.39 ug/L <0.38 ug/L <0.16 ug/L <0.31 ug/L <0.36 ug/L <0.27 ug/L <0.23 ug/L <0.22 ug/L <0.29 ug/L <0.2 ug/L	EPA 524.2 EPA 524.2 EPA 524.2 EPA 524.2 EPA 524.2 EPA 524.2 EPA 524.2 EPA 524.2 EPA 524.2	1/19/98 1/19/98 1/19/98 1/19/98 1/19/98 1/19/98 1/19/98	0.21 0.39 0.38 0.16 0.31 0.36 0.27	83331 83331 83331 83331 83331 83331	ua ua ua ua ua ua
chloropropane loropropane rm rm chloromethane chloromethane otoluene otoluene otoluene otoluene otoluene otoluene	N980148 N980148 N980148 N980148 N980148 N980148 N980148 N980148	<0.39 ug/L <0.38 ug/L <0.16 ug/L <0.31 ug/L <0.36 ug/L <0.27 ug/L <0.33 ug/L <0.29 ug/L <0.29 ug/L	EPA 524.2 EPA 524.2 EPA 524.2 EPA 524.2 EPA 524.2 EPA 524.2 EPA 524.2 EPA 524.2	1/19/98 1/19/98 1/19/98 1/19/98 1/19/98 1/19/98	0.39 0.38 0.16 0.31 0.36 0.27	83331 83331 83331 83331 83331	ua ua ua ua ua
loropropane rm chloromethane chloromethane otoluene otoluene orobenzene loroethane	N980148 N980148 N980148 N980148 N980148 N980148 N980148	<0.38 ug/L <0.16 ug/L <0.31 ug/L <0.36 ug/L <0.27 ug/L <0.33 ug/L <0.29 ug/L <0.29 ug/L	EPA 524.2 EPA 524.2 EPA 524.2 EPA 524.2 EPA 524.2 EPA 524.2	1/19/98 1/19/98 1/19/98 1/19/98 1/19/98 1/19/98	0.38 0.16 0.31 0.36 0.27 0.33	83331 83331 83331 83331 83331	ua ua ua ua ua
rm chloromethane chloromethane otoluene otoluene orobenzene loroethane	N980148 N980148 N980148 N980148 N980148 N980148	<0.16 ug/L <0.31 ug/L <0.36 ug/L <0.27 ug/L <0.33 ug/L <0.29 ug/L <0.2 ug/L	EPA 524.2 EPA 524.2 EPA 524.2 EPA 524.2 EPA 524.2 EPA 524.2	1/19/98 1/19/98 1/19/98 1/19/98 1/19/98	0.16 0.31 0.36 0.27 0.33	83331 83331 83331 83331	ua ua ua
rm chloromethane chloromethane otoluene otoluene orobenzene loroethane	N980148 N980148 N980148 N980148 N980148	<0.31 ug/L <0.36 ug/L <0.27 ug/L <0.33 ug/L <0.29 ug/L <0.2 ug/L	EPA 524.2 EPA 524.2 EPA 524.2 EPA 524.2 EPA 524.2	1/19/98 1/19/98 1/19/98 1/19/98	0.31 0.36 0.27 0.33	83331 83331 83331	ua ua
chloromethane chloromethane otoluene otoluene orobenzene loroethane	N980148 N980148 N980148 N980148 N980148	<0.36 ug/L <0.27 ug/L <0.33 ug/L <0.29 ug/L <0.2 ug/L	EPA 524.2 EPA 524.2 EPA 524.2 EPA 524.2	1/19/98 1/19/98 1/19/98	0.36 0.27 0.33	83331 83331	ua
chloromethane otoluene otoluene orobenzene loroethane	N980148 N980148 N980148 N980148	<0.27 ug/L <0.33 ug/L <0.29 ug/L <0.2 ug/L	EPA 524.2 EPA 524.2 EPA 524.2	1/19/98 1/19/98	0.27 0.33	83331	na
otoluene otoluene orobenzene loroethane	N980148 N980148 N980148	<0.33 ug/L <0.29 ug/L <0.2 ug/L	EPA 524.2 EPA 524.2	1/19/98	0.33		
otoluene probenzene loroethane	พ980148 พ980148	<0.29 ug/L <0.2 ug/L	EPA 524.2			83331	ua
orobenzene loroethane	N980148	<0.2 ug/L		1/19/98	0.29		
ioroethane			EPA 524.2		- · · · · ·	83331	ua
	N980148	.0.4		1/19/98	0.2	83331	ua
Fetrachloroethane		<0.1 ug/L	EPA 524.2	1/19/98	0.1	83331	ua
	N980148	<0.13 ug/L	EPA 524.2	1/19/98	0.13	83331	ца
Tetrachioroethane	N980148	<0.33 ug/L	EPA 524.2	1/19/98	0.33	83331	ua
enzene	N980148	<0.05 ug/L	EPA 524.2	1/19/98	0.05	83331	ua
	Unregula	ited Group II	II Analysis				
	_	62-550.415					
		PWS036 & 037	7				
one	N980148	<7.26 ug/L	EPA 625	2/3/98	7.26	83331	ua
rotoluene	N980148	<4.78 ug/L	EPA 625	2/3/98	4.78	83331	ບຣ
lphthalate	N980148	<9.47 ug/L	EPA 625	2/3/98	9.47	83331	นฮ
hthalate	N980148	<4.3 ug/L	EPA 625	2/3/98	4.3	83331	ua
yiphthalate	N980148	<4.01 ug/L	EPA 625	2/3/98	4.01	83331	ua
nzyl phthalate	N980148	<2.55 ug/L	EPA 625	2/3/98	2.55	83331	ua
yiphthalate	N980148	<2.43 ug/L	EPA 625	2/3/98	2.43	83331	ua
phenol	N980148	<4.1 ug/L	EPA 625	2/3/98	4.1	83331	ua
l-4,6-dinitophenol	N980148	<4.0 ug/L	EPA 625	2/3/98	4.0	83331	ua
•	N980148	<2.6 ug/L	EPA 625	2/3/98	2.6	83331	ua
	N980148	<4.66 ug/L	EPA 625	2/3/98	4.66	83331	ua
1	nthalate viphthalate nzyl phthalate viphthalate phenol	nthalate N980148 yiphthalate N980148 nzyl phthalate N980148 riphthalate N980148 phenol N980148 -4,6-dinitophenol N980148 N980148	nthalate N980148 <4.3 ug/L yiphthalate N980148 <4.01 ug/L nzyl phthalate N980148 <2.55 ug/L riphthalate N980148 <2.43 ug/L phenol N980148 <4.1 ug/L -4,6-dinitophenol N980148 <4.0 ug/L N980148 <2.6 ug/L	hthalate N980148 <4.3 ug/L EPA 625 yiphthalate N980148 <4.01 ug/L EPA 625 hzyl phthalate N980148 <2.55 ug/L EPA 625 hiphthalate N980148 <2.43 ug/L EPA 625 phenol N980148 <4.1 ug/L EPA 625 h-4,6-dinitophenol N980148 <4.0 ug/L EPA 625 N980148 <2.6 ug/L EPA 625	hthalate N980148 <4.3 ug/L EPA 625 2/3/98 yiphthalate N980148 <4.01 ug/L EPA 625 2/3/98 hzyl phthalate N980148 <2.55 ug/L EPA 625 2/3/98 hzyl phthalate N980148 <2.43 ug/L EPA 625 2/3/98 hiphthalate N980148 <2.43 ug/L EPA 625 2/3/98 hhenol N980148 <4.1 ug/L EPA 625 2/3/98 -4,6-dinitophenol N980148 <4.0 ug/L EPA 625 2/3/98 N980148 <2.6 ug/L EPA 625 2/3/98	hthalate N980148 <4.3 ug/L EPA 625 2/3/98 4.3 yiphthalate N980148 <4.01 ug/L EPA 625 2/3/98 4.01 http://distribution.com/restriction/distribution/restriction/re	nthalate N980148 <4.3 ug/L EPA 625 2/3/98 4.3 83331 yiphthalate N980148 <4.01 ug/L EPA 625 2/3/98 4.01 83331 nzyl phthalate N980148 <2.55 ug/L EPA 625 2/3/98 2.55 83331 nzyl phthalate N980148 <2.43 ug/L EPA 625 2/3/98 2.43 83331 phenol N980148 <4.1 ug/L EPA 625 2/3/98 4.1 83331 nzyl phthalate N980148 <4.0 ug/L EPA 625 2/3/98 4.1 83331 nzyl phthalate N980148 <4.0 ug/L EPA 625 2/3/98 4.0 83331 nzyl phenol N980148 <4.0 ug/L EPA 625 2/3/98 4.0 83331 nzyl phenol N980148 <4.0 ug/L EPA 625 2/3/98 4.0 83331 nzyl phthalate N980148 4.0 ug/L EPA 625 2/3/98 4.0 83331 nzyl phenol N980148 4.0 ug/L EPA 625 2/3/98 2.6 83331 nzyl phenol N980148 4.0 ug/L EPA 625 2/3/98 2.6 83331 nzyl phenol N980148 4.0 ug/L EPA 625 2/3/98 2.6 83331 nzyl phenol N980148 4.0 ug/L EPA 625 2/3/98 2.6 83331 nzyl phenol N980148 4.0 ug/L EPA 625 2/3/98 2.6 83331 nzyl phenol N980148 4.0 ug/L EPA 625 2/3/98 2.6 83331 nzyl phenol N980148 4.0 ug/L EPA 625 2/3/98 2.6 83331 nzyl phenol nz

Radiochemical Analysis

62-550.310(5)

PWS033

								
4000	Gross Alpha	N980148	10.7 pCi/L	EPA 900.1	1/21/98	+\-3.0	83141	ua
4. 4								

HRS Certification#'s 84352 and E84380(Nokomis) 85449 and E85457(Ft. Myers)

Paran	meter ID A	nalysis	Sample ID	Result	Unit	Method	Analysis Date/Time	D. L.	LabID	Analyst
4020	Radium :	226	N980148	3.4	pCi/L	EPA 903.1	1/27/98	+\-0.3	83141	ua
4030	Radium 2	228	N980148	<1.0	OCVL.	Brks/Blchrd	1/27/98	+\-0.6	83141	ua
			I	norganic .	Апају	sis				
				62-550.31	(1)0					
		····		PWS0	30	_				
1005	✓ Arsenic	(0.05)	N980148	<0.0022	ng/L	EPA 206.2	1/15/98	0.0022	84352	ua
1010	▶ Barium	(2)	N980148	1.12	ng/L	EPA 208.2	1/19/98	0.200	84352	ua
1015	Cadmium	(0.005)	N980148	<0.003 #	ng/L	EPA 213.1	1/27/98	0.003	84352	ua
1020	Chromiun	п (0.1)	N980148	<0.020 л	ng/L	EPA 218.1	1/27/98	0.020	84352	ua
1024	Cyanide	(0.2)	N980148	<0.006 m	ng/L	SM 4500CN	1/19/98	0.006	83331	ua
1025	Fluoride	(4)	N980148	0.36 π	ng/L	EPA 340.2	1/16/98	0.2	84352	ua
1030	Lead	(0.015)	N980148	0.004 п	ıg/L	EPA 239.2	1/16/98	0.001	84352	ua
1035	Mercury	(0.002)	N980148	<0.001 m	tg/L	EPA 245.1	1/16/98	0.001	84352	ua
1036	Nickel	(0.1)	N980148	<0.010 m	ıg/L	EPA 249.1	1/28/98	0.010	84352	ua
1040	Nitrate	(10)	N980148	<0.01 m	ıg/L	EPA 353.2	1/16/98	0.01	84352	ua
1041	Nitrite	(1)	N980148	<0.01 m	ig/L	EPA 354.1	1/15/98	0.01	84352	ua
1045	Selenium	(0.05)	N980148	<0.004 m	g/L	EPA 270.2	1/20/98	0.004	84352	ua
1052	Sodium	(160)	N980148	15.9 m	g/L	EPA 273.1	1/19/98	0.003	84352	ua
1.	Antimony	(0.006)	N980148	-<0.0017 m	g/L	EPA 204,2	1/26/98	0.0017	83331	ua
1075	✓ Beryllium	(0.004)	N980148	<0.0003 m	g/L	EPA 200.9	1/21/98	0.0003	83331	ua
1085	Thallium	(0.002)	N980148	<0.0006 m	g/L	EPA 200.7	1/26/98	0.0006	83331	ua
			Seconda	ary Chem	ical A	nalysis				
				62-550.32	.0					
	4			PWS03	1					
1002	Aluminum	(0.2)	N980148	3.44 mg	g/L	EPA 200.9	1/19/98	0.2	84352	ua
1017	Chloride	(250)	N980148	24 mg	y/L	SM4500ÇI-B	1/20/98	5	84352	ua
1022	Copper ((1.0)	N980148	0.008 mg] /L	EPA 220.2	1/28/98	0.001	84352	ua
1025	Fluoride	(4.0)	N980148	0.36 mg	_I /L	EPA 340.2	1/16/98	0.2	84352	ua
1028	Iron	(0.3)	N980148	0.642 mg	/L	EPA 236.1	1/19/98	0.015	84352	ua
1032	Manganese	(0.05)	N980148	0.049 mg	r/L	EPA 243.1	1/28/98	0.005	84352	ua
1050	Silver	(0.1)	N980148	<0.010 mg	/L	EPA 272.1	1/20/98	0.010	84352	ua
1055	Suifate	(250)	N980148	21 mg	Æ	EPA 375.4	1/15/98	5	84352	ua
1095	Zinc	(5.0)	N980148	0.011 mg	/L	EPA 289.1	1/27/98	0.005	84352	นล
1905	Color	(15.0)	N980148	3 PtC	Co units	EPA 110.3	1/15/98	1	84352	иа

Parameter	ai	Analysis	Sample ID	Result	Unit	Method	Analysis Date/Time	D. L.	LabiD	Analyst
1920	Odor	(3.0)	N980148	1.0	TON	EPA 140.1	1/15/98	1	84352	ua
1925	ρН	(6.5-8.5)	N980148	7.74	std units	EPA 150,1	1/16/98	n/a	84352	นล
193(Total C	issolved Solids (500)	N980148	279	mg/L	EPA 160.1	1/15/98	7	84352	ua
2905	Foamir	ng Agents (1.5)	N980148	<0.02	mg/L	SM 5540C	1/19/98	0.02	83331	ua
	Total C	Caliform	N980148B	<1	യി/100ml	SM9222B	1/22/98 14:	OO 1	84352	ua
								·		

Fecal Coliform	N980148B	<1 col/100ml	SM9222D	1/22/98	14:00 1	84352	ua

d by:

Approved by:

Comments:

Debra Sanders

Laboratory Director

Patrick N. Sterling Laboratory Manager

TRANSMISSION ELECTRON MICROSCOPY ANALYSIS

Project: Youngquist Bros. Five Ash Date: 1/30/98

Method Used: ANALYTICAL METHOD FOR DETERMINATION OF

ASBESTOS IN WATER 100.2

Sample Date: 1/15/98 SAMPLE TIME: 08:00

SAMPLE ID NO.	N980148A
TYPE OF Matrix	Water
DETECTION LIMIT MSL	0.1882
RESULT	<0.1882
S ASBESTOS PRESENT?	NO

Sanders 🚄											1.0	UHIV	11 14	1	ا ز	<u> </u>	_/	<i></i>	<u>/</u>	
aboratories																		P	age(DI
Chvironmental Testing Services	Re	port To: _								-	S	ampl	e Sı	ıpaly	r: .G	, <u>, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,</u>	<u>)/</u>	/ 7	<u> </u>	
Client Lawy quest Brothers	Bill	To:						<u></u>		-										
Address	P.C). # <u>.</u>								_	Fi	eld F	Repo	ort#:						
	Pro	iect Nam	<u>,/</u>	11.6	,	<u> </u>	البة <u>.</u> ح			-	¹ Ki	i1 # ~		<u>-</u>	<u>-</u>					
Phone Fax	Pro	ject Loca	ilion: –	Ges	26.12	10 1 S				-	В	EQU	EST	ED	DUE	,DA1	TE: -	; 	12713	<u>;, </u>
Sampled By (PRINT)				1 1					ALYSI	is/	<i>[</i> :/	/	/ \ X	13		77	7/	<i>7</i>	737	,
Sampler Signature		ample		OF CONTA	RESERVE SO.	SERVATI OSI		1 4			X	X		Y T			/9	X		
THE SAMPLE DESCRIPTION LOCATION				ğ	Šï	Ž	2	\$	7	17	Ź	Ž		\$\frac{1}{2}	<i>y</i> 1	<u> </u>	Ž -	1	EABN	LINEER !
1 Kown, But well ASRWELL	1/70;	9 ₅₀	2		_			X)	\leq	$\langle \! \rangle \! $	X	X	X	\geq	X	X.	\boxtimes	×	No-4-0	144
					_		ļ	_	_ _									X	963 <u>(</u> .	13 fg
	<u> </u>		<u> </u>		\bot				 											
											:									:
]										******	-
							+		_	_					-					
			<u> </u>		+		\top				 								·	
		 		\vdash	-	╂╌╂╌	+	ऻऻॱ		+				 						
	 	 		H		╂╂	+	╁		+	-			ļ		_				
SHIPMENT METHOD OUT DATE RETURNED/ DATE VIA	PRITEMP PAR		HEJER	1	100 P	Vere:	} V	i l) 7 34) 37(57)2		 	y po di	1 17.23	 सम्ब	इनक्	The state of	725	2023 Care	A Blockberr
OUT/DATE HETURNED/DATE		1	7))	//				1.21		- الاستان الاستان			CER						PAYE	- /
	<u> </u>			<u> </u>			0	7	Z_{jo}^{*}				2	112	<u>- </u>	2	<u>کیک</u>	<u></u>	1/3	140
COMMENTS: CodeER#		1 /	· · · · · · · · · · · · · · · · · · ·				_{	//5	79	14	2)				·	.,			65 //	<u> </u>
ravote HSK Will		<u> </u>							r 											
# 3547 (Includes Sampling)																				

625 UNIT I, North Tomiami Trait, Nokomis, FL 34275 • (941) 488-8103 • FRX 484-6774 16880 Gator Road, Fart Milers, FL 33912 • (941) 590-0337 251 N.W. 151st Street, Suite 36, Milomi Lakes, FL 33014 • (305) 886-9422

Appendix L

Certificate of Completion

City of Fort Lauderdale

Fiveash Water Treatment Plant Aquifer Storage and Recovery System Fort Lauderdale Project No. 8880/ P-9771

Well Construction Report

Certification of Completion

We certify under penalty of law that the above-referenced system was constructed to completion under our supervision in accordance with the construction permits and supporting documents, to those dimensions indicated in the as-built drawings. Based on our inquiry of the individuals who have prepared these documents, the information submitted is, to the best of our knowledge and belief, true, accurate and complete.

(to be replaced with signed/sealed copy upon system completion).

Project Engineer	Date
Project Hydrogeologist	Date

Appendix M

Injectate Water Quality Analysis

CITY OF FORT LAUDERDALE PUBLIC SERVICES ENVIRONMENTAL LABORATORY LAB CERTIFICATION NO: DHRS #56034 & E56084 DER COM QAP #87247G

SAMPLE ID NUMBER:98-1165-RCI SAMPLE DATE:06/22/98

SAMPLER:JC

ANALYST: JB, EM, KH, TB

SAMPLE LOCATION: Fiveash Raw Composite I

PARAMET ID	ER NAME (MCL mg/L)	ANALYTICAL METHOD	ANALYSIS DATE	RESULT mg/L*	DET. LT. mg/L*
	GANIC ANALYSIS 550.310(1) (PWS030)			
0100 1005 1010 1015 1020 1024 1025 1030 1035 1040 1041 1045 1052 1074 1075 1085	Turbidity (NTU) Arsenic (.05) Barium (2) Cadmium (.005) Chromium (0.1) Cyanide (0.2) Fluoride (4) Lead (0.015) Mercury (0.002) Nickel (0.1) Nitrate (10) Nitrite (1) Selenium (0.05) Sodium (160) Antimony (0.006) Beryllium (0.002)	EPA180.1 SM3113-B SM3113-B SM3113-B SM3113-B SM4500CN-E SM4500F-C SM3113-B EPA245.1 SM3111-B EPA353.2 EPA354.1 SM3113-B SM3113-B SM3113-B SM3113-B SM3113-B	06/22/98 07/17/98 07/16/98 07/17/98 07/20/98 06/30/98 06/24/98 07/15/98 07/17/98 07/16/98 06/25/98 06/22/98 07/17/98 07/23/98 07/23/98 07/23/98 07/21/98 07/22/98	2.82 <0.001 0.036 <0.0001 <0.005 0.328 0.0028 <0.0002 <0.001 <0.01 <0.01 <0.001 <0.001 <0.005 <0.005 <0.005 <0.005 <0.005	0.1 0.001 0.008 0.0001 0.001 0.005 0.1 0.001 0.002 0.001 0.01 0.001 0.001 0.002 0.005 0.005 0.0005
	ONDARY CHEMICAL ANAI -550.320 (PWS031)	LYSIS			
1002 1017 1022 1025 1028 1032 1050 1055 1095 1905 1920 1925 1930	Aluminum (0.2) Chloride (250) Copper (1) Fluoride (2.0) Iron (0.3) Manganese (0.05) Silver (0.1) Sulfate (250) Zinc (5) Color (15 Color Ut Odor (3 TON) pH (6.5-8.5) Total Dissolved Solids (300)	SM3113-B SM4500Cl-D SM3113-B SM4500F-C SM3111-B SM3111-B SM3113-B EPA375.4 SM3111-B SM3111-B SM2120-B SM2150-B EPA150.1 SM2540-C	07/27/98 06/23/98 07/22/98 06/24/98 07/30/98 07/31/98 07/23/98 06/25/98 06/25/98 06/22/98 06/22/98 06/22/98	0.024 48 0.019 0.328 0.78 <0.01 <0.0002 15 0.009 58 2 7.35 506	0.005 2 0.001 0.1 0.02 0.01 0.0002 1 0.001 1 0.1 10
2905	Foaming Agents (0.	5) SM5540-C	06/23/98	<0.025	0.025

^{*} Except denoted

CITY OF FORT LAUDERDALE
JBLIC SERVICES
ENVIRONMENTAL LABORATORY
LAB CERTIFICATION NO:
DHRS #56034 & E56084
DER COM QAP #87247G

SAMPLE ID NUMBER:98-1165-RC1 SAMPLE DATE:06/22/98 EXTRACTION DATE:6/24-7/6/98

> SAMPLER:JC ANALYST:PB,ML,*

SAMPLE LOCATION: Fiveash Raw Composite I

PESTICIDE/PCB CHEMICAL ANALYSIS 62-550.310(2)(c) (PWS029)

PARAMETER ID NAME (MCL ug/L)		ANALYTICAL METHOD	ANALYSIS DATE	RESULT ug/L	DET. LT. ug/L
2005	Endrin (2)	EPAS08	06/25/98	<0.1	0.1
2010	Lindane (.2)	EPA508	06/25/98	<0.1	0.1
2015	Methoxychlor (40)	EPA508	06/25/98	<0.8	0.8
2020	Toxaphene (40)	EPA525.2	07/07/98	<3.0	3.0
2031	Dalapon (200)	EPA515.1	07/01/98	<0.9	0.9
2032	Diquat (20)	EPA549.1	06/27/98	<0.5 *	0.5
2033	Endothal (100)	EPA548.1	06/27/98	<10.0 *	10.0
2034	Glyphosate (700)	EPA547.1	06/27/98	<10.0 *	10.0
2035	Di(2-ethylhexyl)adipate (400)	EPA525.2	07/07/98	<2.0	2.0
2036	Oxamyl (Vydate) (200)	EPA531.1	06/30/98	<50.0 *	50.0
037	Simazine (4)	EPA525.2	07/07/98	<1.0	1.0
∠039	Di(2-ethylhexyl)- phthalate (6)	EPA525.2	07/07/98	<2.3	2.3
2040	Picloram (500)	EPA515.1	07/01/98	<0.2	0.2
2041	Dinoseb (7)	EPAS15.1	07/01/98	<0.4	0.4
2042	Hexachlorocyclopentadiene (50)	EPA525.2	07/07/98	<1.0	1.0
2046	Carbofuran (40)	EPA531.1	06/30/98	<10.0 *	10.0
2050	Atrazine (3)	EPA507	06/25/98	<2.0	2.0
2051	Alachlor (2)	EPA507	06/25/98	< 0.4	0.4
2063	Dioxin (0.00003) (Screen		07/07/98	<0.00003	0.00003
2065	Heptachlor (.4)	EPA508	06/25/98	<0.1	0.1
2067	Heptachlor epoxide (.2)	EPA508	06/25/98	< 0.1	0.1
2105	2,4-D (70)	EPA515.1	07/01/98	<0.9	0.9
2110	2,4,5-TP (Silvex) (50)	EPA515.1	07/01/98	<0.2	0.2
2274	Hexachlorobenzene (1)	EPA525.2	07/07/98	<0.2	0.2
2306	Benzo(a)pyrene (.2)	EPA525.2	07/07/98	<0.2	0.2
2326	Pentachlorophenol (1)	EPA515.1	07/01/98	<0.1	0.1
2383	PCBs (.5)	EPA508	07/05/98	<0.2	0.2
2931	Dibromochloropropane(.2)	EPA504.1	07/06/98	<0.007	0.007
2946	Ethylene dibromide (.02)	EPA504.1	07/06/98	<0.009	0.009
2959	Chlordane (2)	EPA508	06/26/98	< 0.7	0.7

COMMENTS:

^{*} Analyzed by contract lab, Precision Lab, see separate reports. Reagent blank results all below detection limits.

CITY OF FORT LAUDERDALE
"BLIC SERVICES
_NVIRONMENTAL LABORATORY
LAB CERTIFICATION NO:
DHRS #56034 & E56084
DER COM QAP #87247G

SAMPLE ID NUMBER:98-1165-RC1 SAMPLE DATE:06/22/98

SAMPLER:JC ANALYST:RB

3500

SAMPLE LOCATION: Fiveash Raw Composite I

TRIHALOMETHANE ANALYSIS 62-550.310(2)(a) (PWS027)

PARAME	ETER	ANALYTICAL	ANALYSIS	RESULT		MCL
ID	NAME	METHOD	DATE	mg/L		mg/L
2950	Total THMs	EPA502.2	06/24/98	<0.001	0.001	0.1

VOLATILE ORGANIC ANALYSIS 62-550.310(2)(b) (PWS028)

PARAME	ETER	ANALYTICAL	ANALYSIS	RESULT	DET. LT	. MCL
ID	MAME	METHOD	DATE	ug/L	ug/L	ug/L
2378 2378 2380 55 2964 2968 2977 2977 2980 2981 2983 2984 2985 2987 2989 2989 2999 2999 2996	1,2,4-Trichlorobenzene Cis-1,2-Dichloroethylene Xylenes (total) Dichloromethane o-Dichlorobenzene para-Dichlorobenzene Vinyl Chloride 1,1-Dichloroethylene trans-1,2-Dichloroethylene 1,2-Dichloroethane 1,1,1-Trichloroethane Carbon tetrachloride 1,2-Dichloropropane Trichloroethylene 1,1,2-Trichloroethane Tetrachloroethylene 1,1,2-Trichloroethane Tetrachloroethylene Monochlorobenzene Benzene Toluene Ethylbenzene Styrene	EPA502.2 EPA502.2 EPA502.2	06/24/98 06/24/98	<3.0 <3.0 <3.0 <3.0 <3.0 <1.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	70 70 10000 5 600 75 1 7 100 3 200 3 5 3 5 3 100 1

COMMENTS:

Trip and reagent blank results all below detection limits.

CITY OF FORT LAUDERDALE
LIC SERVICES
LICVIRONMENTAL LABORATORY
LAB CERTIFICATION NO:
DHRS #56034 & E56084
DER COM QAP #87247G

SAMPLE ID NUMBER:98-1165-RC1 SAMPLE DATE:06/22/98 SAMPLER:JC

SAMPLER:JC ANALYST:RB

SAMPLE LOCATION: Fiveash Raw Composite I

PARAMETER ID NAME		ANALYTICAL METHOD	ANALYSIS DATE	RESULT ug/L	DET. LT. ug/L
	EGULATED GROUP II PURGEABLE -550.410 (PWS034)	E ANALYSIS			
2210	Chloromethane	EPA502.2	06/24/98	<3.0	3.0
2212	Dichlorodifluoromethane	EPA502.2	06/24/98	<3.0	3.0
2214	Bromomethane	EPA502.2	06/24/98	<3.0	3.0
2216	Chloroethane	EPA502.2	06/24/98	<3.0	3.0
2218	Trichlorofluoromethane	EPA502.2	06/24/98	<3.0	3.0
2251	Methyl-tert-butyl-ether	EPA502.2	06/24/98	<3.0	3.0
2408	Dibromomethane	EPA502.2	06/24/98	<3.0	3.0
2110	1,1-Dichloropropene	EPA502.2	06/24/98	<3.0	3.0
<u>.</u> 2	1,3-Dichloropropane	EPA502.2	06/24/98	<3.0	3.0
2413	1,3-Dichloropropene	EPA502.2	06/24/98	<3.0	3.0
2414	1,2,3-Trichloropropane	EPA502.2	06/24/98	<3.0	3.0
2416	2,2-Dichloropropane	EPA502.2	06/24/98	<3.0	3.0
2941	Chloroform	EPA502.2	06/24/98	<1.0	1.0
2942	Bromoform	EPA502.2	06/24/98	<1.0	1.0
2943	Bromodichloromethane	EPA502.2	06/24/98	<1.0	1.0
2944	Dibromochloromethane	EPA502.2	06/24/98	<1.0	1.0
2965	o-Chlorotoluene	EPA502.2	06/24/98	<3.0	3.0
2966	p-Chlorotoluene	EPA502.2	06/24/98	<3.0	3.0
2967	m-Dichlorobenzene	EPA502.2	06/24/98	<3.0	3.0
2978	1,1-Dichloroethane	EPA502.2	06/24/98	<3.0	3.0
2986	1,1,1,2-Tetrachloroethane	EPA502.2	06/24/98	<3.0	3.0
2988	1,1,2,2-Tetrachloroethane	EPA502.2	06/24/98	<3.0	3.0
2993	Bromobenzene	EPA502.2	06/24/98	<3.0	3.0

COMMENTS:

Trip and reagent blank results all below detection limits.

CITY OF FORT LAUDERDALE
PUBLIC SERVICES
ENVIRONMENTAL LABORATORY
LAB CERTIFICATION NO:
DHRS #56034 & E56084
DER COM QAP #87247G

SAMPLE ID NUMBER:98-1165-RC2 SAMPLE DATE:06/22/98

SAMPLER:JC

ANALYST: JB, EM, KH, TB

SAMPLE LOCATION: Fiveash Raw Composite II

PARAMET ID	ER NAME (MCL mg/L)	ANALYTICAL METHOD	ANALYSIS DATE	RESULT mg/L*	
	GANIC ANALYSIS 550.310(1) (PWS030))			
1005 1010 1015 1020 1024 1025 1030 1035 1036	Turbidity (NTU) Arsenic (.05) Barium (2) Cadmium (.005) Chromium (0.1) Cyanide (0.2) Fluoride (4) Lead (0.015) Mercury (0.002) Nickel (0.1) Nitrate (10) Nitrite (1) Selenium (0.05) Sodium (160) Antimony (0.006) Beryllium (0.002)	EPA180.1 SM3113-B SM3113-B SM3113-B SM4500CN-E SM4500F-C SM3113-B EPA245.1 SM3111-B EPA353.2 EPA354.1 SM3113-B SM3113-B SM3113-B SM3113-B SM3113-B	06/22/98 07/17/98 07/16/98 07/17/98 07/20/98 06/29/98 06/24/98 07/15/98 07/17/98 07/16/98 06/25/98 06/22/98 07/17/98 07/23/98 07/15/98 07/23/98 07/21/98 07/22/98	1.44 0.0014 0.033 <0.0001 <0.005 0.312 0.0029 <0.0002 <0.001 <0.001 <0.001 <0.001 <0.005 <0.005 <0.005 <0.0005	0.1 0.001 0.008 0.0001 0.001 0.005 0.1 0.001 0.002 0.001 0.001 0.001 0.002 0.005 0.005 0.0005
	ONDARY CHEMICAL ANA -550.320 (PWS031)	LYSIS			
1002 1017 1022 1025 1028 1032 1050 1055 1095 1905 1920 1925 1930	Aluminum (0.2) Chloride (250) Copper (1) Fluoride (2.0) Iron (0.3) Manganese (0.05) Silver (0.1) Sulfate (250) Zinc (5) Color (15 Color Ut Odor (3 TON) pH (6.5-8.5) Total Dissolved Solids (300)	SM3113-B SM4500C1-D SM3113-B SM4500F-C SM3111-B SM3111-B SM3113-B EPA375.4 SM3111-B SM3111-B SM2120-B SM2150-B EPA150.1 SM2540-C	07/27/98 06/23/98 07/22/98 06/24/98 07/30/98 07/31/98 07/23/98 06/25/98 06/25/98 06/22/98 06/22/98 06/22/98 06/24/98	0.016 56 0.0065 0.312 0.71 <0.01 <0.0002 9 0.008 56 3 7:4 564	0.005 2 0.001 0.1 0.02 0.01 0.002 1 0.001 1 1
2905	Foaming Agents (0.	5) SM5540-C	06/23/98	0.054	0.025

^{*} Except denoted

CITY OF FORT LAUDERDALE
3LIC SERVICES
L..VIRONMENTAL LABORATORY
LAB CERTIFICATION NO:
DHRS #56034 & E56084
DER COM QAP #87247G

SAMPLE ID NUMBER:98-1165-RC2 SAMPLE DATE:06/22/98 EXTRACTION DATE:6/24-7/6/98

SAMPLER:JC ANALYST:PB,ML,*

SAMPLE LOCATION: Fiveash Raw Composite II

PESTICIDE/PCB CHEMICAL ANALYSIS 62-550.310(2)(c) (PWS029)

PARAME ID	TER NAME (MCL ug/L)	NALYTICAL METHOD	ANALYSIS DATE	RESULT ug/L	DET. LT. ug/L
2005	Endrin (2)	EPA508	06/25/98	<0.1	0.1
2010	Lindane (.2)	EPA508	06/25/98	< 0.1	0.1
2015	Methoxychlor (40)	EPA508	06/25/98	<0.8	0.8
2020	Toxaphene (40)	EPA525.2	07/07/98	<3.0	3.0
2031	Dalapon (200)	EPAS15.1	07/01/98	<0.9	0.9
2032	Diquat (20)	EPA549.1	06/30/98	<0.5 *	0.5
2033	Endothal (100)	EPA548.1	06/27/98	<10.0 *	10.0
2034	Glyphosate (700)	EPA547.1	06/27/98	<10.0 *	10.0
2035	Di(2-ethylhexyl)adipate (400)	EPA525.2	07/07/98	<2.0	2.0
2036	Oxamyl (Vydate) (200)	EPA531.1	06/30/98	<50.0 *	50.0
2037	Simazine (4)	EPA525.2	07/07/98	<1.0	1.0
39	Di(2-ethylhexyl)- phthalate (6)	EPA525.2	07/07/98	<2.3	2.3
2040	Picloram (500)	EPA515.1	07/01/98	<0.2	0.2
2041	Dinoseb (7)	EPA515.1	07/01/98	.<0.4	0.4
2042	Hexachlorocyclopentadiene		07/07/98	<1.0	1.0
	(50)			71.0	1.0
2046	Carbofuran (40)	EPA531.1	06/30/98	<10.0 *	10.0
2050	Atrazine (3)	EPA507	06/25/98	<2.0	2.0
2051	Alachlor (2)	EPA507	06/25/98	< 0.4	0.4
2063	Dioxin (0.00003) (Screen)		07/07/98	<0.00003	0.00003
2065	Heptachlor (.4)	EPA508	06/25/98	<0.1	0.1
2067	Heptachlor epoxide (.2)	EPA508	06/25/98	<0.1	0.1
2105	2,4-D (70)	EPA515.1	07/01/98	<0.9	0.9
2110	2,4,5-TP (Silvex) (50)	EPA515.1	07/01/98	<0.2	0.2
2274	Hexachlorobenzene (1)	EPA525.2	07/07/98	<0.2	0.2
2306	Benzo(a)pyrene (.2)	EPA525.2	07/07/98	<0.2	0.2
2326	Pentachlorophenol (1)	EPA515.1	07/01/98	< 0.1	0.1
2383	PCBs (.5)	EPA508	07/05/98	<0.2	0.2
2931	Dibromochloropropane(.2)	EPA504.1	07/06/98	<0.007	0.007
2946	Ethylene dibromide (.02)	EPA504.1	07/06/98	<0.009	0.009
2959	Chlordane (2)	EPA508	06/26/98	<0.7	0.7

COMMENTS:

^{*} Analyzed by contract lab, Precision Lab, see separate reports. Reagent blank results all below detection limits.

CITY OF FORT LAUDERDALE PUBLIC SERVICES ENVIRONMENTAL LABORATORY LAB CERTIFICATION NO: DHRS #56034 & E56084 DER COM QAP #87247G

SAMPLE ID NUMBER:98-1165-RC2 SAMPLE DATE:06/22/98

SAMPLER:JC ANALYST:RB

SAMPLE LOCATION: Fiveash Raw Composite II

TRIHALOMETHANE ANALYSIS 62-550.310(2)(a) (PWS027)

PARAMETER		ANALYTICAL	ANALYSIS	RESULT	DET. LT.	MCL
ID	NAME	METHOD	DATE	mg/L	mg/L	mg/L
2950	Total THMs	EPA502.2	06/25/98			0.1

VOLATILE ORGANIC ANALYSIS 62-550.310(2)(b) (PWS028)

PARAMETER ID MAME		ANALYTICAL METHOD	ANALYSIS DATE	RESULT ug/L	DET. LT.	MCL ug/L
2270	1 2 4 5 6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mbagoo o	06/05/00			
2378	1,2,4-Trichlorobenzene	EPA502.2	06/25/98	<3.0	3.0	70
2380	Cis-1,2-Dichloroethylene	EPA502.2	06/25/98	<3.0	3.0	70
2955	Xylenes (total)	EPA502.2	06/25/98	<3.0	3.0	10000
2964	Dichloromethane	EPA502.2	06/25/98	<3.0	3.0	5
2968	o-Dichlorobenzene	EPA502.2	06/25/98	<3.0	3.0	600
2969	para-Dichlorobenzene	EPA502.2	06/25/98	<3.0	3.0	75
2976	Vinyl Chloride	EPA502.2	06/25/98	<1.0	1.0	1
2977	1,1-Dichloroethylene	EPA502.2	06/25/98	<3.0	3.0	7
2979	trans-1,2-Dichloroethylene	EPA502.2	06/25/98	<3.0	3.0	1.00
2980	1,2-Dichloroethane	EPA502.2	06/25/98	<3.0	3.0	3
2981	1,1,1-Trichloroethane	EPA502.2	06/25/98	<3.0	3.0	200
2982	Carbon tetrachloride	EPA502.2	06/25/98	<3.0	3.0	3
2983	1,2-Dichloropropane	EPA502.2	06/25/98	<3.0	3.0	5
2984	Trichloroethylene	EPA502.2	06/25/98	<3.0	3.0	3
2985	1,1,2-Trichloroethane	EPA502.2	06/25/98	<3.0	3.0	5
2987	Tetrachloroethylene	EPA502.2	06/25/98	<3.0	3.0	3
2989	Monochlorobenzene	EPA502.2	06/25/98	<3.0	3.0	100
2990	Benzene	EPA502.2	06/25/98	<1.0	1.0	1
2991	Toluene `	EPA502.2	06/25/98	<3.0	3.0	1000
2992	Ethylbenzene	EPA502.2	06/25/98	<3.0	3.0	700
2996	Styrene	EPA502.2	06/25/98	<3.0	3.0	100

COMMENTS:

Trip and reagent blank results all below detection limits.

CITY OF FORT LAUDERDALE
"JBLIC SERVICES
_NVIRONMENTAL LABORATORY
LAB CERTIFICATION NO:
DHRS #56034 & E56084
DER COM QAP #87247G

SAMPLE ID NUMBER:98-1165-RC2 SAMPLE DATE:06/22/98

SAMPLER:JC ANALYST:RB ¥

SAMPLE LOCATION: Fiveash Raw Composite II

PARAM ID	ETER NAME	ANALYTICAL METHOD	ANALYSIS DATE	RESULT ug/L	DET. LT. ug/L
UN1 6:	REGULATED GROUP II PURGEABL 2-550.410 (PWS034)	E ANALYSIS			
2210 2212 2214 2216 2218 2251 2408 2410 2413 2414 2416 2941 2943 2944 2965 2967 2978 2986 2988 2988 2988	Chloromethane Dichlorodifluoromethane Bromomethane Chloroethane Trichlorofluoromethane Methyl-tert-butyl-ether Dibromomethane 1,1-Dichloropropene 1,3-Dichloropropane 1,3-Dichloropropane 1,2,3-Trichloropropane 2,2-Dichloropropane Chloroform Bromodichloromethane Dibromochloromethane O-Chlorotoluene p-Chlorotoluene m-Dichlorobenzene 1,1-Dichloroethane 1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane Bromobenzene	EPA502.2 EPA502.2	06/25/98 06/25/98 06/25/98 06/25/98 06/25/98 06/25/98 06/25/98 06/25/98 06/25/98 06/25/98 06/25/98 06/25/98 06/25/98 06/25/98 06/25/98 06/25/98 06/25/98 06/25/98	<3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 1.0 1.0 1.0 3.0 3.0 3.0
			06/25/98	<3.0	3.0

COMMENTS:

Trip and reagent blank results all below detection limits.

CITY OF FORT LAUDERDALE PUBLIC SERVICES DEPARTMENT

CHAIN OF CUSTODY RECORD

SAMPLE ID NUMBER

				·			·						
S	11	Project S		.			•			$-(\lambda$	N.U.	la.	l –
L	+	1 uca	sh F	inished	. 7	<u>u</u>	Ice e	_ه'	,		,- ,- ,- ,		
S	ample T	ype	□ Comp	🛛 Grab	Γ0			Ai	nalyses	Requ	ired	7 1	
	Matrix	κ	□ Water	☐ Solid	T A								
s	Sampled By:			#									
JAMOS CRONFORS Jans & Cru (Print) (Sign)			hs & Crenfort (Sign)	CONT	ļ								
1	Samp	ling	Sample Loca	ition/Description	A I N								
EM #	Date	Time	- Campio 2000	ample Location/Description			of cor	l ntainer:	l s subm	I itted fo	r each	l analy	sis
[1/22	-1)30 0760	Flueash	Finished	s								
2			Lourand (oup I									
3	1	1	Lucash	Comp 2									
4				· 									
5					:								
6													
7													
C	omment oruf	エー む	5,26,27,	28,30,36,3	39,	40,4	4/	<u>. </u>	<u>. </u>	ł <u> </u>			
<u>ا</u>	one o	2 - h	12,43,44	145,46,47	, 4	8,4	9						
	linquish) and 1	Oate/Time	Re	linquish	red By	;				D	ate/Time
	トービン CR (Print)	√ 50β ≤	Jans Culset (Sign)	1371		Print)					/C'\		
	ceived	Ву:	,,,,,,	Date/Time		ceived I	By:				(Sign)		ate/Time
/	I Mide	Syrid .	Robertsyn	५ प्रियम्			•					-	
	(Print)	J	(Sign)	1:11 PM	, ,	Printl					(Sign)		f

Appendix N

Cycle Testing Reports