

LUG PR

Ner.

SCHREUDER, INC

Completion Report

Feasibility Report Exploratory Well TW-1 Hines Energy Complex Bartow, Florida

WAGS ID # 98695

Prepared for:

Progress Energy Florida, Inc. 7700 County Road 555 Bartow, FL 33830

Prepared by:

SCHREUDER, INC. Water-Resources & Environmental Consultants 110 West Country Club Drive Tampa, FL 33612

July 26, 2004

Table of Contents

1.0 Professional Certification
2.0 Introduction
3.0 Hydrogeology
4.0 Exploratory Well Construction44.1 Casings44.2 Cementing Program44.3 Construction Summary5
5.0 Hydrogeologic Testing and Data Collection75.1 Formation Sampling75.2 Formation Fluid Sampling75.3 Geophysical Logs75.4 Hydraulic Testing85.41 Specific Capacity Testing85.42 Step-Drawdown Testing8
6.0 Mechanical Integrity Testing
7.0 Drilling and Testing Program Results
8.0 References11
9.0 Figures12
10.0 Tables
11.0 Appendices

List of Figures

- Figure 1. Location Map Hines Energy Complex
- Figure 2. Local Cross Section Map
- Figure 3. Hydrogeologic Framework
- Figure 4. Site Schematic of Exploratory Well TW-1
- Figure 5. Schematic Cross Section of Drilling Pad
- Figure 6. Exploratory Well TW-1 Schematic

List of Tables

- Table 1: Casing Summary, Exploratory Well TW-1
- Table 2. Cementing Program Summary
- Table 3. Geophysical Log Summary, Exploratory Well TW-1
- Table 4. Specific Capacity Testing During Drilling
- Table 5. Step-Drawdown Testing Information, January 13, 2004

List of Appendices

- Appendix A. Mill Certificates
- Appendix B. Cement Bond Log Evaluation
- Appendix C. Daily Activity Reports
- Appendix D. Lithologic Log
- Appendix E. Field Water Quality Data TW-1
- Appendix F. Background Water Quality Data

1.0 Professional Certification

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based upon my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

H. Cliff Harrison, P.G. Registered Professional Geologist Florida Registration No. 1926

7/23/04

Date

2.0 Introduction

2.1 Background

This report describes the construction and hydrogeologic testing of one Class V Group 8 exploratory well at the Progress Energy Hines Energy Complex (HEC) located south of Bartow in Polk County, Florida. The well was constructed and tested according to the requirement outlined in the Florida Department of Environmental Protection (FDEP) Permit Number 183519-001-UC. Figure 1 shows the HEC property boundary and the location of the exploratory well TW-1.

The exploratory well was constructed to investigate the hydrogeology of the Upper Floridan Aquifer beneath the site with respect to its ability to receive recharge water. No test injection was proposed nor permitted during the construction and hydrogeologic testing of the exploratory well.

2.2 Scope

The exploratory well TW-1 was constructed with surface and intermediate casings isolating the surficial and intermediate aquifers, respectively, from the borehole. The final inner casing setting depth was determined based upon lithologic and hydrogeologic information obtained during drilling operations.

The surface casing was constructed of 20-inch diameter black steel pressure grouted to the borehole wall with a Portland cement grout. The surface casing isolates the surficial aquifer from the remainder of the borehole. Test borings in the area indicate that waste clays and/or tailing sands may extend to at least 45 feet below land surface (ft bls). A 9 5/8-inch diameter pilot hole was drilled using the mud rotary method of drilling to determine the actual depth of the top of undisturbed materials (Hawthorn Group). The pilot hole was then reamed out for the installation of the surface casing at 64 ft bls.

The intermediate casing was constructed of 14-inch diameter black steel pressure grouted to the borehole wall with a Portland cement grout. The intermediate casing isolates the intermediate aquifer (Hawthorn Group) from the remainder of the borehole. A 9 5/8-inch pilot hole was drilled using the mud rotary method of drilling to determine the depth of the top of the Floridan Aquifer (Suwannee Limestone). The pilot hole was reamed out for the installation of the intermediate casing at 315 ft bls.

Following the installation of the intermediate casing, a 13-inch diameter pilot hole was drilled to 899 ft bls to determine the setting depth of the inner casing. The pilot hole was drilled using the reverse air method of drilling. Water quality, lithology, and the specific capacity of the borehole were used to determine the setting depth of the inner casing. The pilot hole was then be reamed out for the installation of the inner casing to a depth of 614 ft bls. The inner casing was constructed of 8-inch diameter black steel pressure grouted to the borehole wall with a Portland Cement grout.

3.0 Hydrogeology

3.1 Regional Hydrogeology

The geology/hydrogeology at the HEC site, with respect to formation contacts and aquifer descriptions, were interpreted using various regional and site-specific data that were available. Regional data included lithologic logs from nearby deep wells, while site-specific data included geophysical logs, lithologic logs, water quality, and video surveys collected during on-site drilling operations.

The hydrogeology in the vicinity of the exploratory well is characterized by three principal aquifer systems: the surficial aquifer system, the intermediate aquifer system, and the Floridan Aquifer system.

The surficial aquifer system in Polk County extends to a depth 10 to 120 ft bls, and is characterized by sands, silts, clays, phosphate, and limestone. The unit is generally referred to geologically as undifferentiated deposits of post-Miocene age. Below the surficial aquifer system lies the intermediate aquifer system consisting of sediments of the Hawthorn Group of Miocene Age. It includes all water bearing units and confining units between the overlying surficial aquifer system and the underlying Upper Floridan Aquifer system. Below the Hawthorn Group/intermediate aquifer lies the Floridan Aquifer system, an extensive aquifer system consisting of permeable carbonate rocks of the Suwannee Limestone, Ocala Limestone, and the Avon Park Formation. The Suwannee Limestone represents the top of the Upper Floridan Aquifer System. Figure 2 shows the hydrogeologic framework developed for this area of Polk County.

3.2 Site-Specific Hydrogeology

Site-specific hydrogeology was determined by using the lithology encountered from three 300 ft-deep boreholes at the HEC and the exploratory well lithologic data. Most of the sediments that comprise the surficial aquifer system at HEC have been altered or removed due to mining activities by previous property owners; these sediments range in thickness from 16 to 40 feet thick at various locations. The surficial deposits overlie the clay, mudstone, and limestone sequence of the Hawthorn Group that comprises the intermediate aquifer. This unit occurs from approximately 16 to 295 ft bls across the site. The Suwannee Limestone, the uppermost portion of the Floridan Aquifer system, was identified at 295 ft bls in the exploratory well lithologic logs and extends to a total depth of 617 ft bls. The Suwannee Limestone overlies the Ocala Limestone that extends from 617 to 831 ft bls. The deepest unit of the Floridan Aquifer system encountered during drilling operations was the Avon Park Formation beginning at 831 ft bls. Drilling terminated at 899 ft bls.

4.0 Exploratory Well Construction

The bid for the construction of the exploratory well was awarded by Progress Energy – Florida, Inc. (PEF) to Diversified Drilling Company, Inc. in September of 2003. Construction of the lined drilling pad was completed on October 10, 2003 and served to stabilize the drilling site and contain potential fuel/chemical spills and drilling fluids. Upon completion of the pad construction, the exploratory well drilling rig was mobilized on site and assembled. Three (3) shallow monitoring wells were drilled around the pad to provide a means of monitoring the surficial aquifer water quality throughout the construction of the well. Samples were collected each week from the newly installed wells and from one existing surficial aquifer monitoring well. The samples were analyzed in the field for chloride concentration, pH, temperature, conductivity, and the results were included in the weekly summary reports. Figure 3 shows a schematic site map with the monitoring well locations and Figure 4 shows a schematic crosssection of the drilling pad design.

During the initial stages of drilling, the mud-rotary method was used to a depth of 185 ft bls. Below this depth, the reverse-air drilling method was used to advance the hole. Construction details for the exploratory well TW-1 are provided in Figure 5.

4.1 Casings

The exploratory well was designed and constructed with multiple casings made of new, unused, seamless ASTM Grade B steel. All casings were set plumb and aligned, and centralized with the borehole. Each casing seat depth was selected based on data gathered during the construction program, and based on regulatory agency requirements. All casing joint ends were beveled and continuously butt-welded by certified welders. A summary of the casing used on exploratory well TW-1 is proved in Table 1. Mill certificates for each casing string are included in Appendix A.

4.2 Cementing Program

Casings were cemented in place from the casing seat depth to land surface. Cementing was accomplished using both the modified Halliburton method of pressure grouting and by tremie grouting. Only ASTM C-150, Type I Class A Portland cement was used in the grouting operations. Table 2 summarizes the cementing program for each casing stage installed for exploratory well TW-1.

The 20-inch diameter surface casing was set to a depth of 64 ft bls and was pressure grouted with 125 sacks of neat cement grout using the modified Halliburton method of pressure grouting. The 14-inch diameter intermediate casing was pressure grouted with 400 sacks of neat cement grout using the

modified Halliburton method of pressure grouting from 315 to 182 ft bls. The grout was allowed to cure before a tremie pipe was lowered into the annulus, confirm the depth of the top of the grout at 182 ft bls. Two more stages of cement were tremied into the annulus to complete the grouting operations. The second stage (350 sacks) and third stage (50 sacks) of tremie grouting was completed successfully.

The 8-inch diameter steel inner casing was set to a depth of 614 ft bls. The casing was pressure grouted with 360 sacks of neat cement grout using the modified Halliburton method of pressure grouting from 614 to 440 ft bls. The grout was allowed to cure for two days before a tremie pipe was lowered into the annulus to confirm the depth of the top of the grout at 440 ft bls. Two more stages of cement were tremied into the annulus to complete the grouting operations. The second stage (212 sacks) of tremie grouting was completed successfully.

As the driller was removing two joints of tremie pipe before continuing the process, the tremie pipe string broke; the entire length was lost down the annular space and was not able to be recovered. This incident was not interpreted as compromising the grout seal because the pipe sections that were lost down the hole were open on both ends; it was therefore expected that they filled completely with wet cement grout. Upon receiving permission to proceed from the FDEP representatives to the Technical Advisory Committee (TAC), the third stage (191 sacks) of tremie grouting was performed until grout returned to the surface. Following the completion of the well, an acoustic Cement Bond Log (CBL) was run to verify the competency of the annular grout in the zone in which the tremie pipe was lost. A detailed review of the CBL was provided to the FDEP representatives to the TAC, who accepted the results of the CBL as having provided assurance that the cement grout seal was not compromised by the presence of the open-ended tremie pipe embedded within the annular grout. Copies of the CBL printout and of the interpretation of the log are provided as Appendix B to this report.

4.3 Construction Summary

Construction of the exploratory well began following completion of site preparation and the drilling pad installation. A 20-inch diameter surface casing was installed to a depth of 64 ft bls and pressure grouted into place for the purpose of stabilizing the surficial sediments for subsequent drilling operations. A 9 5/8-inch diameter bit was then advanced to a depth of 340 ft bls to gather lithologic data for the seating depth of the 14-inch diameter intermediate casing. Next, a 19-inch diameter bit was used to ream the borehole to 317 ft bls. Upon completion of the reaming activities, a caliper log was run by to determine the volume of cement needed for grouting operations and to establish that the reamed hole was suitably stabilized for the installation of the casing. Advanced Borehole Services, Inc. (ABS) performed all geophysical logging for the

construction phase of the exploratory well. The 14-inch diameter steel casing was set to 315 ft bls and pressure grouted into place.

A 13-inch diameter hole was then advanced to determine the depth at which to set the 8-inch diameter inner casing and to collect lithologic, water quality and hydraulic data for the proposed injection zone. The data collected during drilling activities are presented in Section 5.0 - Hydrogeologic Testing and Data Collection. The 13-inch diameter borehole was advanced to a total depth of 899 ft bls. Upon completion of the borehole to the final depth, one compete set of geophysical logs was run in the borehole to determine the nature of the formations (see Section 5.3 – Geophysical Logs).

Upon completion of geophysical logging activities, a drillable bridge plug consisting of sand and cement was placed in the borehole from 694 to 614 ft bls in preparation for setting the 8-inch inner casing. The 8-inch diameter steel casing was set and cemented from surface to 614 ft bls using a combination of pressure grouting and tremie grouting techniques, following which the bridge plug was drilled out and the open borehole was cleared to 900 ft bls. A chronological summary of the construction progress on the exploratory well is provided in Appendix C – Daily Activity Reports and the construction details are shown in Figure 5.

5.0 Hydrogeologic Testing and Data Collection

Throughout construction of the exploratory well TW-1, specific information was collected to determine the hydraulic characteristics and geologic nature of the underlying formations. The data were used for the determination of casing seat depths and hydraulic characteristics of the open portion of the borehole.

5.1 Formation Sampling

R 84

Formation samples were collected at 10-foot intervals during drilling operations. Three sets of samples were collected, and upon completion of drilling were distributed to PEF, Florida Geological Survey, and Schreuder, Inc.. Samples were examined and described in a lithologic log, which is included in Appendix D.

5.2 Formation Fluid Sampling

Formation water samples were collected every 30 ft at each rod change during reverse-air drilling. Samples were field analyzed for chloride concentration, pH, temperature, and conductivity; results are provided in Appendix E. Water samples collected during drilling operations were also delivered to Severn Trent Laboratories, Inc. (STL) for analysis of total dissolved solids concentration.

After thoroughly circulating the cuttings from the open borehole and prior to performing the step-drawdown testing, a natural background water quality sample was taken from exploratory well TW-1. The sample was analyzed for primary and secondary drinking water standards, excluding asbestos, acrylamide, and epichlorohydrin. The results of the laboratory analyses reported from STL for the background water sample are included in Appendix F.

5.3 Geophysical Logs

Throughout the construction of the exploratory TW-1, geophysical logging was conducted by ABS to provide information for construction decisions. Caliper logs were run on the borehole prior to cementing the 14-inch and 8-inch diameter casings. The caliper logs were used in developing each cementing program and identify any areas that may present problems during casing runs. A cement bond log was run as part of the final mechanical integrity testing of the exploratory well.

Following completion of the borehole drilling to the total depth, a full set of geophysical logs was conducted in the borehole. The geophysical logs were performed to aid in characterizing the hydraulic and geologic properties of the various formations encountered from 315 to 900 ft bls. These logs included: caliper, gamma ray, fluid resistivity, short/long/normal formation resistivity,

temperature, full wave borehole compensated (BHC) acoustic, and static well flow logs. A summary of all logs conducted is provided in Table 3.

5.4 Hydraulic Testing

Specific capacity and step drawdown testing were conducted to characterize the hydrogeology and water quality of the formations. This information was used evaluate and identify possible injection zone intervals within the borehole.

5.41 Specific Capacity Testing

During reverse-air drilling, specific capacity testing was performed at every rod break from 341 to 899 ft bls. After the cuttings were circulated out of the borehole at the bottom of each rod, the borehole was pumped and the water level drawdown in the pumped interval was recorded. Table 4 shows the specific capacity data collected during the drilling. Increases in the observed specific capacity were noted from the 621 and 743 ft. bls tests, indicating intervals of increased hydraulic conductivity in the vicinity of these depths.

5.42 Step-Drawdown Testing

A step-drawdown test was performed on exploratory well TW-1 to determine the well efficiency and to make an estimate of transmissivity for the open-hole portion of the formation. A temporary pump was installed to a depth of 232 ft bls in the exploratory well. The well was pumped at increasing flow rates and water level measurements were taken on five-minute intervals. The water level in the well was allowed to stabilize prior to increasing the flow rate and collecting a water sample. The flow rate was increased over the five steps of the test ranging from 270 to 760 gallons per minute (gpm). Table 5 summarizes the step-drawdown test data. The data were analyzed and hydraulic parameters were estimated using the Bierschenk (1964) graphical method. The transmissivity of the interval between 315 and 899 ft bls is estimated to be 197,000 gpd/ft and laminar flow loss is estimated at approximately 33%.

6.0 Mechanical Integrity Testing

Throughout the construction, hydrogeoloigc data were collected and analyzed as described above. This data was used as a basis for construction decisions such as casing depths and the open-hole interval. The mechanical integrity of the inner casing of TW-1 was evaluated during construction operations utilizing cement bond log, pressure testing, and a video survey.

6.1 Cement Bond Logs

The Cement Bond Log (CBL) is a geophysical log used to evaluate the quality of the bond between the casing and the cement grout and between cement and formation. On January 15, 2004, a CBL was run by Advanced Borehole Services (ABS) from 97.5 to 635.0 ft bls. The log shows the inner casing was successfully grouted and no significant area exists where the grout integrity was compromised. Appendix B contains a copy of the CBL evaluation provided by ABS.

6.2 Pressure Testing

A pressure test was performed on the inner casing string of exploratory well TW-1 to verify that there were no leaks in the casing or joint welds. The pressure test was conducted by filling the grout-plugged inner casing with water and sealing the wellhead. Next, a pressure gauge and valve were fitted to the wellhead, and any air present was bled off and replaced with water. The casing was pressurized up to 100 psi and monitored for one hour. A 3.5% pressure loss occurred in one hour, which was within the allowable limits and was accepted by the FDEP members of the TAC, and drilling operations proceeded.

6.3 Video Surveys

Two video surveys were conducted by ABS. The first was performed to aid in the recovery of a length of pipe that was dropped during operations to set the 8-inch diameter production casing. The second video survey was performed from land surface to the total depth of 900 ft bls. The video survey showed that the 8-inch diameter inner casing is intact and free of visible defects, and that the casing seat area and the area where drillable bridge plug had been located were in proper condition with no loose material in the borehole.

7.0 Drilling and Testing Program Results

7.1 Discussion

The drilling and testing program was designed and executed to investigate the ability of the selected formation interval to serve as a receiving zone for the recharge of water into the Upper Floridan Aquifer.

The relatively high transmissivity estimate (197,000 gpd/ft) that was calculated from the results of the drilling and testing program indicates that the exploratory well TW-1 is suitable for use as a test injection well at rates of at least 1.1 million gallons per day (MGD), or approximately 760 gpm. At this rate, a rise in water within the well of approximately eight to ten feet above the static water level (~100 ft bls) is anticipated; this is well within accepted operational constraints. As a result, the anticipated increase in wellhead pressure equates to approximately 4.3 psi, well within permittable and safe operational limits.

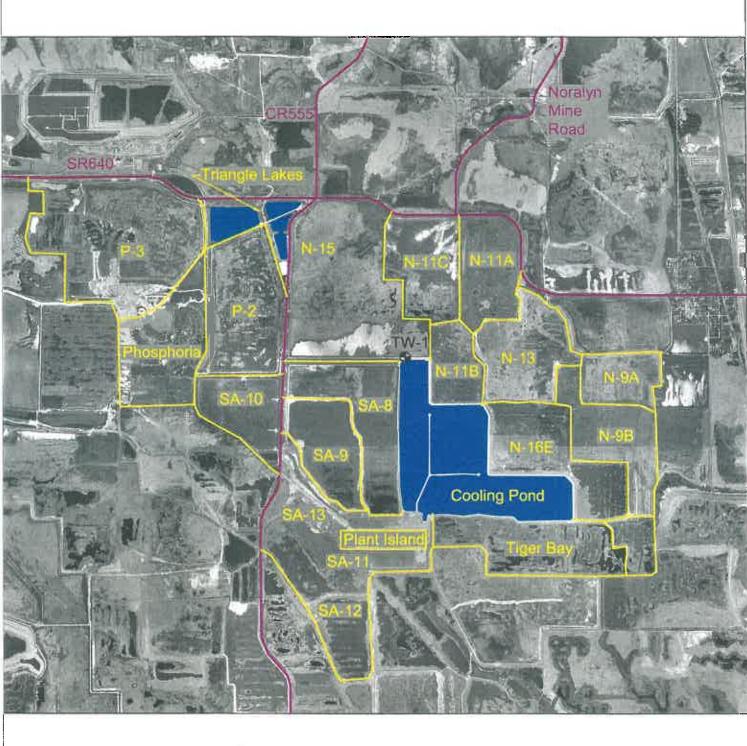
7.2 Feasibility of Use for Injection Testing

The exploratory well can be safely converted to a test injection well for the purpose of injection testing, following the completion of the permitting. There are no subsurface, geologic, or hydrologic issues that were discovered during the drilling and testing of the exploratory well that would indicate otherwise. The well is anticipated to be capable of accepting at least 1.1 MGD of injected water

Recharge test(s) will be used to determine feasible injection rates, to obtain data to assist in projecting the groundwater flow dynamics resulting from long-term recharge of water into the Upper Floridan Aquifer, and to provide data that may be used to estimate costs for a full-scale recharge project. The recharge test(s) will be conducted following the installation of monitoring wells in locations and at depths to be determined during the permitting process. The testing program may include such activities as borehole fluid movement investigations (flow logs), step- and constant-rate pumping tests, step- and constant-rate injection tests, laboratory chemical analyses of samples of groundwater and injection water, and well redevelopment.

8.0 References

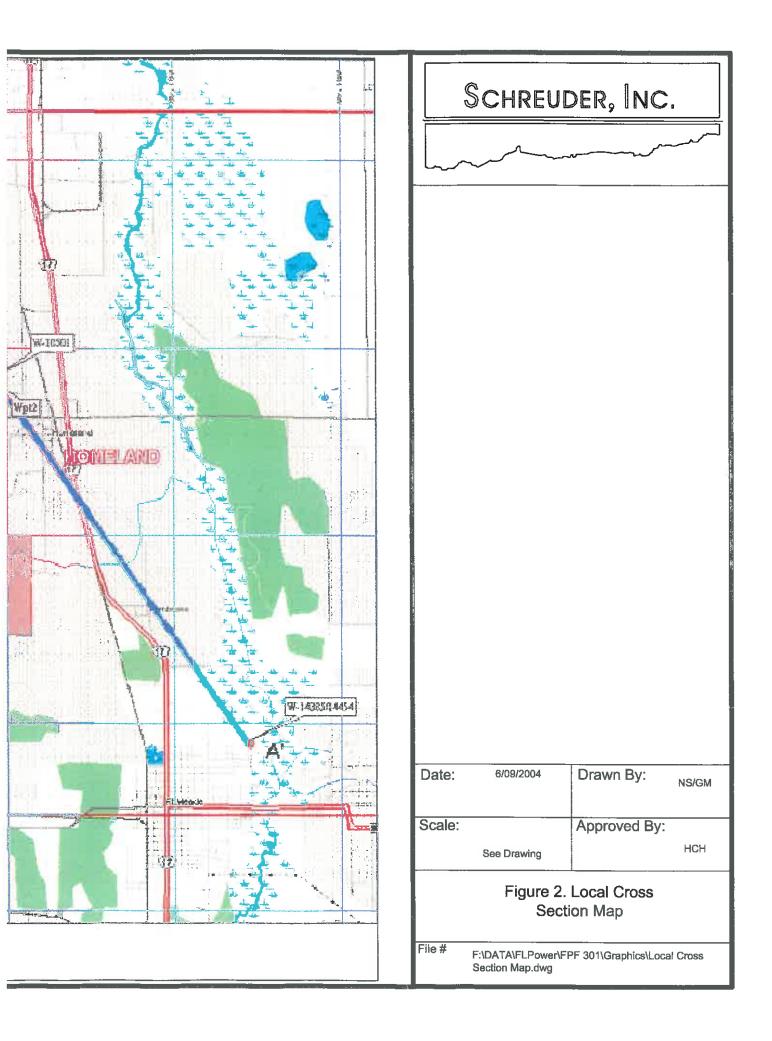
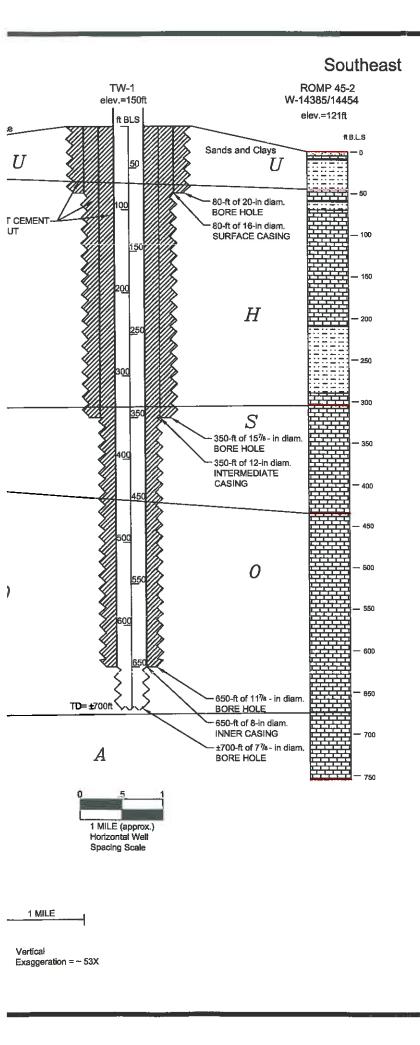
Florida Power Corporation. 2002. Hines Energy Complex Power Block 3 Supplemental Site Certification Application.


Driscoll, F.G. 1989. Groundwater and Wells. Second Edition. Johnson Filtration Systems, Inc., St. Paul Minnesota.

9.0 Figures

.

Feasibility Report July 26, 2004 - Schreuder, Inc.

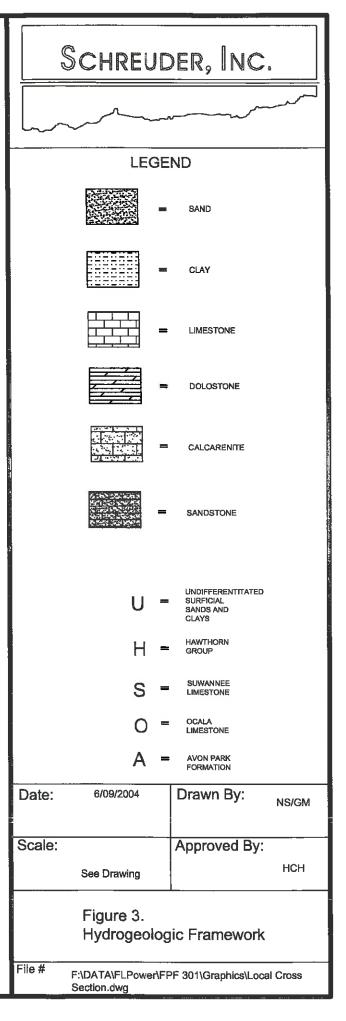
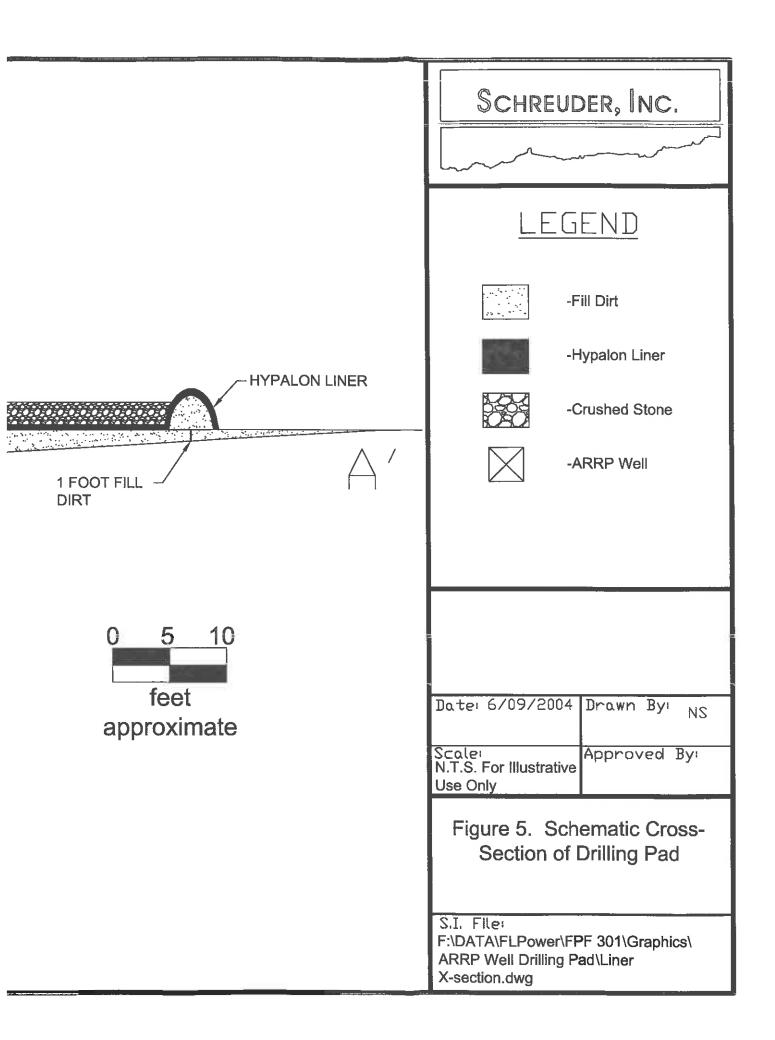
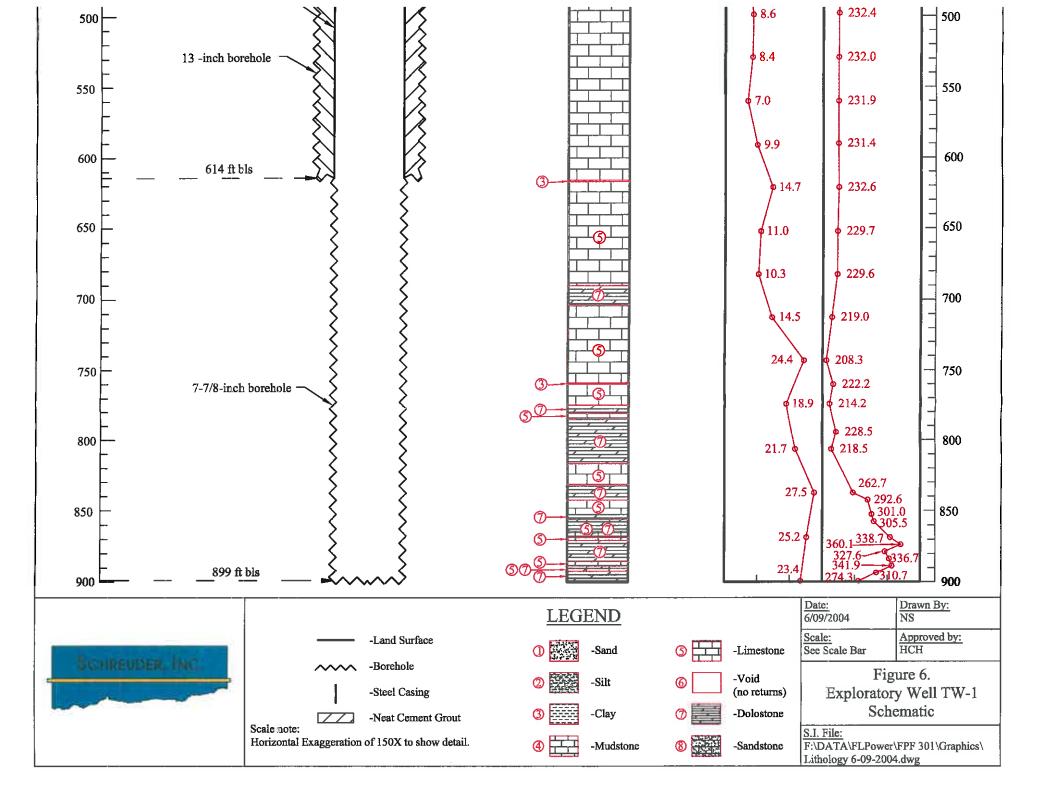


Figure 1. Location Map Hines Energy Complex


Date- 5/11/2004	Drawn By- NS
<u>Scale-</u> See Scale Bar	Approved By-
S. I. File- Fig. 1 Hines ARRP Aer	Power\FPF 301\Graphics ial Site-Map.dwg



5 10 feet proximate		Schreuder, Inc.
JUXIMALE		<u>LEGEND</u>
	UNPAVED ROAD	
ise)x	\rangle	Date: 6/09/2004 Drawn By: NS Scale: Approved By:
	\rangle	N.T.S. For Illustrative Use Only
	$\langle \rangle$	Figure 4. Site Schematic of Exploratory Well TW-1
	\langle	S.I. File: F:\DATA\FLPower\FPF 301\Graphics\ ARRP Well Drilling Pad\ARRP Well Drilling Pad Skematic as built.dwg

10.0 Tables

Feasibility Report July 26, 2004 - Schreuder, Inc.

19 🕤

Outside Diameter (inches)	Wall Thickness (inches)	Total Depth (feet bis)
_16 2 0	0.375	64
14	0.375	315
8.625	0.322	614

Table 1. Casing Summary, Exploratory Well TW-1.

Table 2. Cementing Program Summary.

Cementing Stage	Date Time	Cement Volume (sacks)	Tag Depth (ft bls)											
	20-inch Diameter Surface Casing													
1	11/11/03 1815	125	0											
14-inch Diameter Intermediate Casing														
1	11/26/03 1308	400	182											
2	12/01/03 1200	350	48											
3	12/02/03 0920	50	0											
	8-inch Diamete	er Inner Casin	ıg											
1	12/31/03 1300	360	440											
2	01/05/04 1415	212	356											
3	01/05/04 1700	191	0											

Log Run	Date	Depth Interval of Log (feet bis)	Purpose
Caliper-Volume	11/25/03	1.00 - 317.60	To determine diameter of borehole for cement volume calculations for 14-inch intermediate casing
Gamma Ray (API)- Caliper	12/10/03	1.25 - 900.50	To determine diameter of borehole for cement volume calculations for 8-in inner casing
Static Water Quality	12/10/03	301.75 - 896.50	To determine water quality parameters of the formation fluids
Flow-Static Well	12/10/03	1.25 – 900.50	To determine flow zones within the formation
Full Wave BHC Acoustic	12/10/03	297.50 - 893.75	Indicates porosity and lithology of borehole
Gamma Ray- Resistivity (16-64)	12/10/03	301.75 – 896.50	To determine the natural radioactivity and lithologic characteristics
BHC Acoustic – Discrete AMP	01/05/04	97.50 - 635.00	To show the quality of the cement seal around the 8-inch casing

Table 3. Geophysical Log Summary – Exploratory Well TW-1.

Depth Interval (feet bls)	Specific Capacity (gal/min/ft)
341	1.6
373	2.6
404	8.0
435	7.0
467	7.4
499	8.6
529	8.4
560	7.0
591	9.9
621	14.7
652	11.0
682	10.3
712	14.5
743	24.4
774	18.9
806	21.7
837	27.5
868	25.2
899	23.4

Table 4. Specific Capacity Testing During Drilling.

Depth Interval (feet bls)	Time	Static Water Level (feet bmp)	Pumping Water Level (feet bmp)	Drawdown (feet)	Discharge (gpm)	Specific Capacity (gpm/ft)
614 - 901	1140	98.6	100.17	1.57	270	171.97
614 - 901	1240	98.6	101.39	2.79	400	143.37
614 - 901	1340	98.6	102.49	3.89	500	129.87
614 - 901	1440	98.6	103.91	5.31	610	114.88
614 - 901	1540	98.6	106.12	7.52	760	98.45

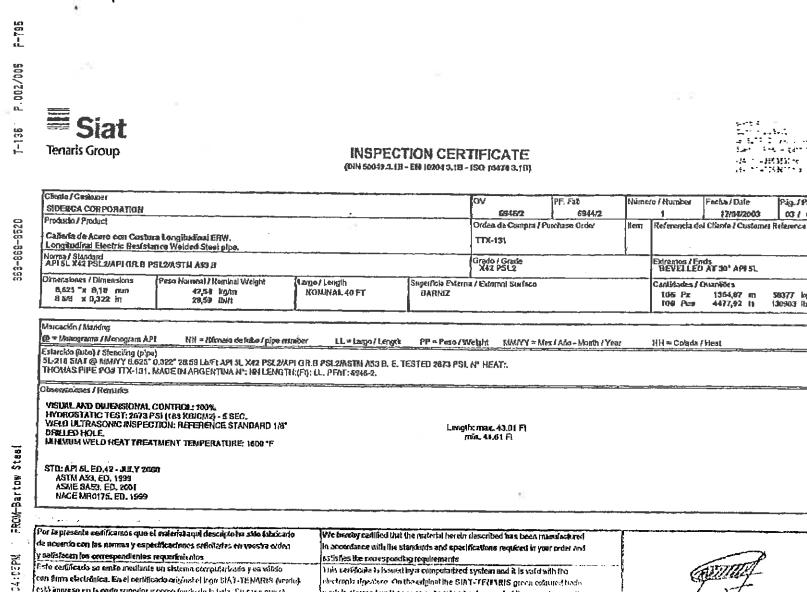
Table 5. Step-Drawdown Testing Information, January 13, 2004.

11.0 Appendices

Feasibility Report July 26, 2004 - Schreuder, Inc.

Appendix A

Mill Certificates


Feasibility Report July 26, 2004 - Schreuder, Inc.

8-inch Diameter Steel Casing

Mill Certificate

ŵ.

छ य य

This certificate is issued by a computatized system and it is valid with the

a brant of the CDC Cale released a rapy, he must after the coolourity in the

(Riperator difference and the automatic **dig of this restificate**, play a states, the area

Any alk a data that for the Miner we will be studyed to the law

Constitutes a constitution of the course.

electronic digestator. On the original the SIAT-FEFERIS green origined trade-

work is strapped on the appendent and as trackground of the page, in cose the

religibility to be the second of the second where the any understative religible of a

2012 2000.04.2 a 517 2 and 5 and 2 Suen i Ans e gennis -24 C - 285 352 re a

Pag. /Paga

03/ 03

\$8377 kg

130903 lb

Trave & Poplacing Departure

A color lagenterbade represen-

(1) AB nO C. LOBBERT

FAX:813 985 6636

~ જે

PAGE

ID:DDC_CORPORATE 04 17:02 01/09 68.1 9 ЪÌ

Ł.

7003-00-0

listo cardificado se emite mediante un sistema computarizado y es válido

està impreso en la garte superior y como feado de la tella. Est rase que es

processor entropy and copia del mismo, and as i populater la contractual

Streastin a segme in actualized at the estimated state of a spectral services.

Curvator alteraction what a sufficient in estad and the history

SILLAR, COURT, COMPASSION OF COMPANY

con Sima electrónica. En el certificado originat el logir STA3-TE NARIS (unidu)

con charloloni, bursineace responsable pre carrighter a collegal e Indentea.

863-859-8520

2

Siat

٠

Tenaris Group

INSPECTION CERTIFICATE (BIN 50049.2.18 - EN 10204.3.18 - ISO 19474.3.18)

al de la mais ser a la ser a l ingenerations States - Patrix - Patrix States - Patrix - Patrix 14-1 (14-14-2-1) 14-11-2 (2-14-1)

Clierze / Contomer SIDERCA CORPORATION				0√ 6946/2	9F, Fab 6943/2	ક્લાદે[]	na i Rumber	Fecha / Date 17/04/2003	Pág. / Page 02. 03
Producto/Anduct				Ozden da Compra / No	whase Order	Nem	Reletencia de	Ciente / Customer	Release
Caferia de Acere con Costu Longitudinal Electric Resista				T YX- 151					
Vinura / Standard API 5LX(2 PSL2/API GR.8 P				Grade X42 PSI 2			ENERGY ELLE	ids 3 AT 30* API 61.	
Dimensiones / Dimensions 8,625 °x 8,18 mm 8 S/8 x 0,322 in	ffeso Nominal / Nominal Weight 42,54 kg/m 28,59 lb/R	Largo / Length NONIMAL, 40 FT	Superficie Enterna BARNIZ	/External Surface			Cantidades / 106 Pz 106 Pcs	Quantilies 1364,87 m - 4477,92 ft	59377 kg 130903 ku

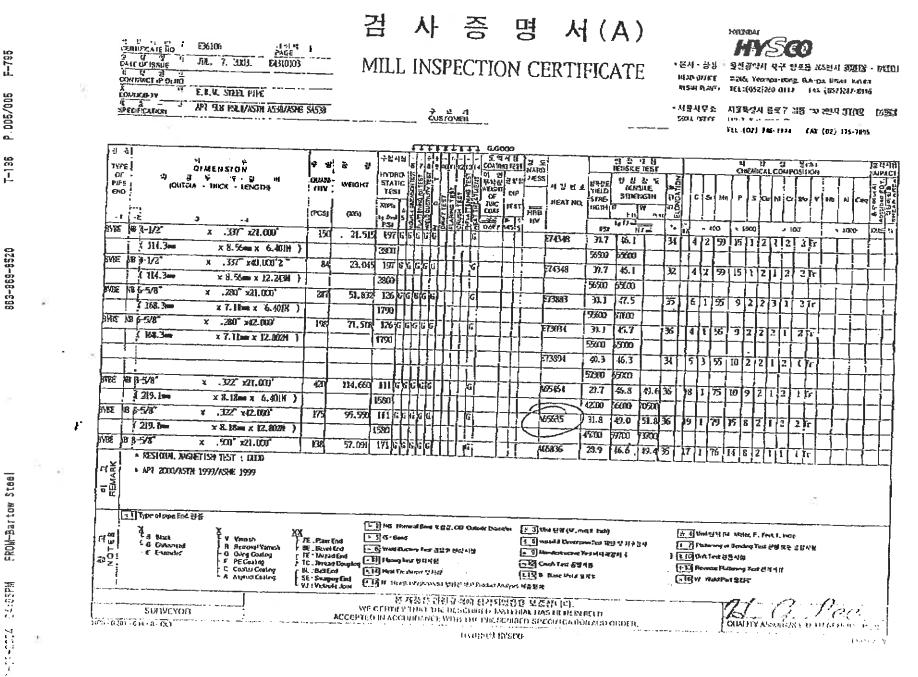
ANÁLISIS QUÍMICOS DE PRODUCTO / PRODUCT CHEMICAL ANALYSES

8.0	Je517a														6									_					67	1
9	imp?e	C	Ma	P	5	SI.	Al	CI	Bi	Ma	¥.	Gu	Sn	₩b.	_11	Co	6	Ca	ይካነ	fim2	£lm3	Ceqt	CEQ2		Supl	SumZ	Struct	81	82	[R.
Тьбо Кре	Colada Ment	۲ ۱۳۹۱	الا 100	X 1001	N 1000	ж 1 ход	¥ 1000	x 100	_£ 101	ж 200	x (0)	100	X 103	1000	10C0 X	X 100-	NOCCO K) 10000	x	x	X	X (0	к (01	100	ж 100	1 10)	100			L
kilax hilm		12	120	25	15			43	-0	153	4	40										6			11					L
1 21 14 (45888 (46842 (46842 (46842	225(0) 226(0) 226(0) 226(0) 226(0) 226(0) 226(0) 226(0)	45 14 19 11 17 15	11.8 1037 117 1055 1046 107	13 14 14 16 14 17	1	20 13 21 19 19 19	****	2 2 2 2 2 2 2 2	1	5 6 8 9 9	\$	1	P 4 2 4	2		1	3	2/ 23				36 10 17 15 16 16 16			4					
Notes / Not	Plotes / Notes: Ever (Sciento / Eletrent Ceq: Carbono equivalente - Equivalent Carbono Sum: Sum: Sum: Sum: Sum: Sum: Sum: Sum:															· · · · ·]											
*Corresp flint =									£1n2=]	[Umite							-			1
	161/61 (Grilla	eviti n	())) ()) ())) ())	115		• •		}	176.20										1	(Dan)		4							1	l
Sugar Links	i-V+11		•••		•	•		1	Shint								• •		1	(* 116 I						· · · · · · · · · · · · · · · · · · ·			ł	
RT								t	1112 1	· · ·				 	·····	a arran (). 1949 - 1			ł	8. t · ·		• • • •								ł
	Automorphics .							*** - ***	•••		1.5	112			•••••								and					12		÷.

ID:DDC_CORPORATE TILE No. 289 01/09 '04 17:03

		30	í.																									
			iat								INIS	SPE(-1	10N (-FA71	FICA	re.								3.5	14.144		.u	
	(ene	aris G	loub								(BIN 500			43.18-	ISO 1047	43,18)				9						÷		
		/ Custo													OV 6	946/2	2F. Fab	69442	2	Normer	o / Hum 1	ber	Fecha/ 17	Uuke KN47200		R£g.∤Pi _01/	-	
	Produce	lo / Pud	um con C	achie	a Lengiti	udžael El	₩ .									Compta / Put	_	_		ර්ෂයා	Referen	લ્લા હતા	Cleate	/Cuslo	mer Rei	enence		
Longitus III Anno Control Children (Children Steel pipe. Norma J Standard ANI 61, XA2 PSLI/API OR 61 PSLI/ASTM ASD 8											(V		Grado / C X42 P								AT 30		L					
Ofmensiones / Dimensions Pero Korrival / Korminal Weight B,625 "x 0,10 mm 42,54 kg/m 8.678 x 0,322 in 28,59 lb/fil										a/lengt CXXIXAL			Superfix		1							Cantidades / Quantifies 106 P.4. 1369,67 m 53377 lig 106 Fes 4477,92 R 13680 lb						
										SAYC)S ME	CAN	COS	/ MEC	THAN	ICAL TE	STS											
Muestra Ensayo de Flacción Samba Tensite Test												Band Yest Suitado		iza / Han Ipe: HV1	iness O	Postción Location		bsarbe	d Enan		гру ⊻	Sheat	r Area			DVVIT Shear Area		
	Lote	Sam Juba	Colada			eld		Be	dy	FL	Cara Face	Roli Rool	Max	Min	-Мәж рі	D- t- tile		2	1	Â¥ġ	1	2	3	Avg		2	Avg	
	Lot	Pipe	Heat	Max Min	6910	<u>(</u>	113,0 60,0	450 42.0	Slatico 0,50	21	race		243			Body Min Weld Min HAZ Min	io R.fb	10 B.Ib	10 A.Tb	11	54	~5	36	- 75	- 95	75	*	
		3	155057 282057		iksi P2 II	**	iks) B4,1	Hs) 5325	069	- <u>%</u> 38			218	163	23	Boog	NC8	1/5	13	97	108	-cov	100	100				
		21 21 115 149	255039 266019 266049 266099		43,6 64,7		я <i>л</i> 315	901 144	0,15 Q187	29 26			216	, 165 180	21 31	Bady Pady	808 29	810 74	ь л	101 24	100 103	180 180	160 103	100 100				
																											ł	
					-																							
	Flatteni Chistipi Fomper Probete Ulicasi Ensaya Probete	log and V Kofe A Spece Bri / Spece Dy Fran A / Spece	ation Rep / Tensile		<u>61 - 11</u>	ANSVER IOM VILL SPECIM	<u>(p</u>								YS: Yesk EU: Exan Babo; Y: Max: Mi Max: Mi Max: Uf: Ava: Arc	inste terriñe si 15 e agth - Lio 54 (15 a atro - A 64 (15 a atro - A 64 (15 a atro - A 64 (16 a atro - A 74 (16 atro - A 74 (16 atro - A 74 (16 atro - A 74 (16 atro - A 75 (1	vite da l Innento Jelacion (110) (11) (11) (12) (12) (13) (13) (13) (13) (13) (13) (13) (13	Beensia (Linio 2 Buzasti Dilora	n 1) Mahaa Miraal		Note -	HeMa:						
		o Sine	reatilion		1 1/2*	NEBSA			Į																			

-


FAX:813 985 6636

 \sim

ல்

PAGE

FILE No.189 01/09 '04 17:03 ID:DDC_CORPORATE

ID:DDC_CORPORATE

L~~

ൾ

PAGE

6636

FAX:813 985

TLE No.189 01/09 '04 17:03

۰,

B.

Ø ઝે

PAGE

FAX:813 985 6636

<u>582--</u>

INSPECTION CERTIFICATE (01N 50049.3.18 - EH 102043.18 - ISO (0474 3.18)

ov

694672

PF. Fab

6944/2

thimera / Nuraber

1

sinst Sinstaalist alistaja asis mela 3.64 - 2.64, 4 gamma -Bernarden en Bernarden es

Pag./Paga

01/03

Fecha /Dale

17/94/2003

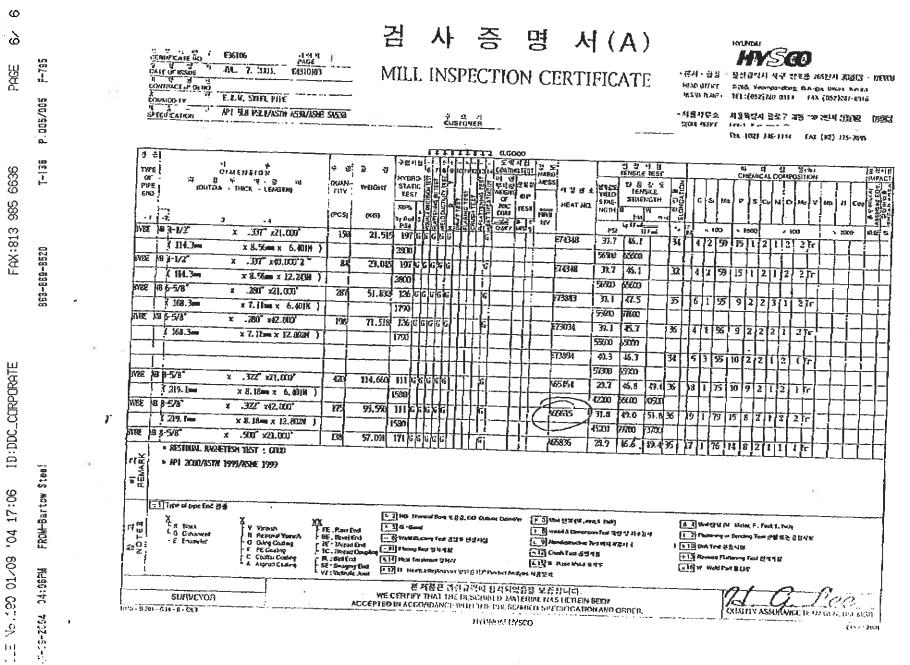
Producto / Product			Orden	de Cumpra / Purchase Order	से लाग	Referencia del C	Cliente / Custame	s Refusence				
Cañeda de Acero con Costura Longitudinal Electric Resistar	rce Welded Steel pipe.		דח?-	131								
Norma/ Standard AFISL X42 PSL2/APIGR.8 PS	SL2/ASTU A13 B		Gradu X42	/Grade PSL2		Evinences / Ends BEVELLEO XT 30" API 51.						
Dimensiones / Olimensions 8,625 "x 8,18 mm 8,5/8 x 0,322 in	Peso Naminal / Kominal Weight 42,54 kg/m 28,59 Dift	Largo / Laogh NONINAL 40 FT	Superficia Esterna / Este DARIAZ		Canlifades/Qu 106 Pz 196 Pes	unides 1364,87 ur 4477,92 (1	69377 kg 190903 kb					
Maxcackin / Mariding @ = Monograma / Monogram API	N 11 = Nilmara de hiko í pipe sum	ber LL = Largo / Léngth	PP - Peso / Weight	እየአዲዮርሃ = Ries / Asa - Month / Y		HH = Colada / H	leat					
Estandoo (Wto) / Stenciing (pipo) 5L-210 SIAT @ MM//YY 8.625* (THORIAS PIPE POH VTX-131. N) 3.322° 28.69 LbFt API 51, X12 PSL 8/API 4AOE IN ARGENTINA N°: 194 LENG TH	OR.B PSL2/ASTM A53 B. E. 7 (Fg: LL, PF/17: 6948-2	E8TED 2673 PSJ. N" HE	ΔT).			<u> </u>					
DRILLED HOLE,	si (185 Külcia?) - 5 Sec. Jion: Reperence standard 1/8" Iment temperature: 1600 %		Length: mar min, 41,									
(n	l कर्यालांग्री aqui descripto ha sido fabricado											
de acterido con las normes y espé- y selectecte los oprespondientes. Este cadificado se emba mediante con tima electrónica. En el cadime está impreso en la pada superior y posendo entregos una coporte da con el objinal, harábateo e region con el objinal, harábateo e region	cificationes schelledas en vuestra orden requerimientos sun cistema computarizado y es válido actu original el lego STAT-TENARIS (verdu recens fonde de la legis. En caso que rá Samo, debené garanteso la conformidant ende por consiguiero es negal e indebido es o estada antera o la leg.	In accordance with the si satisfies the parespondi 1 his certificate is issued electronic signature. On work is stanged on the concert of the certificate re concert of the certificate re concerts of the certificate re conc	tendents and operification by requirements by a competatized system the original the BIAT-1177 upper path and as trackground elease the copy, he must at	Attis green commettuate and other page to case the lest is confernipticture agranization concelligization dict is a			ephasening Dupond	20.				

a. maire

LAN-05-2004 04:05PM FROM-Bartow Steel

	529																													
Tana	Siat			INSPECTION CERTIFICATE															ుల్లో చట్రాపాడ వహరం శోరంటున్ చూరంగార శ్రుతి ప్రాథాలా పి											
i Ci Suj	n group									(- UL J & F HI 37,115												96-7 2]2	942 fe 4 93 k		
	Cusiomer			04										ær,	fab		t I	น้ำกระด	/ Numb	xer b	Fecha / Oate 17/84/2003			P391/P29						
SIDERCA CORPORATION																6946/2 6944/2 Orden de Compra / Pouchase Onder				ern R	efezeni	(য ৰ্বল)	Ciente / Customer R			ه ن ن ن ا ب				
Carleria	·	TTK-181																												
Norma / Standaod API SL X42 PSL2/API GR.B PSL2/ASTH A53 B																	Gardo / Grade X42 PSL2						e	xbero ØEVE	s/End	ids D'AT 30° API 61.				
8,625	Dimensiones / Dimensions 8,625 "X 8,10 mm 8 5/8 x 0,322 /n					Peso Homisal / Nominui Weight 42,54 kg/m 28,59 ju/h						Largo / League Superficie Externa NOMINAL 49 FT BARINEZ						a / Estecnal Surface					6	antiita 1 80) 1 80	Pz -	Duantilies 1357,87 m 4477,92 II		59 15	59077 % 136903 (b	
					A	NÁI	ISIS	QU	ÍMIC	OS	DEI	RO	DUC	TO	/ PR	ODL	JCT	CHE	MIC	AL /	ANA	LYS	ES							
1	duestra Somole	c	Min	P	5	SI	A	Cr.	-	Ma	V	CI	Sn	80	% म	Co	B	[LA]	(का)	flm2	Eka3	Ceql	ઉદ્યર	Pen	Sim	Sumt	Sum 3	81	R2	- -
fito Kpe	Co'ada Heal	E KO	29 100	1008	¥ 1000	х 100	x 10,0	100	A 1001	X 1000	X ION	1 (0)	X 100	¥ Ю00	¥ 1000	X	X 10000	X	I	×	x	× 100	1160	X 100	× 100	X 103	103			1
hilax Mun		12	VAR	25	35			43	e0	155	۵	40										10			11					Ì
3 1) 141 146888 (46867 (46867 (46867	246(0) 246(0) 246(06 246(06 246(06 246(06) 246(06) 246(06) 246(06) 246(07) 246	15 14 18 37 18	118 105 117 125 165 907	11 54 93 16 16 17	1 2 1 2 2 2	20 19 21 21 21 21 21 21 21 22	น ห ม ม ม	2 7 2 2 2 2	1 1	47.50	\$ 4 5 4 8		8 4 1 3 2 4	2 1 1 2 1	1 7 7 7 7 2	1	3	17 13 24				10 11 12 15 16 16 16 17 16 16 16 16 16 17 16 16 16 17 16 16 17 16 17 16 17 16 17 17 16 17 17 17 17 17 17 17 17 17 17 17 17 17			1 4 5 4 4 4					
																				-										
- Holas / Koues: Elec (Semento / Bernent Ceg: Carbono equivalente - Equivalent Carbon Sum Sum -														R: A.S.I			<u> </u>				1 1									
flat .	and and the second s									The second secon										((m] =										1
	LEANGALLO	vysii	di Cui	ПŠ				- 11	Ceij2											knt ×							مر به مربو مربو استان ال)
Sumi and	199 <u>1</u>						;	1	58:a? v										(ະ Emu		- 6-2-2-10-2-1-2 Awara at a a								ſ
111								,	li2 =											R) =	·									

TILE No.190 01/09 '04 17:06 ID:DDC_CURPURATE


ဖ 4

PAGE

FAX:813 985 6636

6	55		•	1																									
	E-795																												
	P.004/005		-	÷.																									
	1-138	Siat Tenaris Group									INSPECTION CERTIFICATE (011) 52049.3.1B - EN 10204.3.1B - ISO 10474.3.1B)																		
	_	Cliente / Custorer SIDERCA CORPORATION Producto / Product								d¥ 27. Fab									Міят	ero / Ha	amber	Fecha/Dule Pág./P2							
	863-859-8520	Callerta de Acero con Costura Longitudinal Entit. Longitudinal Electric Resistence Wolds & Card								4)						694672 694672 Orden de Compez / Punchese Okider TTX-131					1 Bele	iencia o		Trickr2003 01 / 03 el Ciente / Customer Reference					
	86.2=85 86.2	AFT	a, X42	dad PSLIZAPIA Ofmunsions	GA.B)	PSL2/AS	714 A53	8			<u> </u>					- Grado X42	/Grade PSL2					Extre	Velt	nds 1 AT 2	ant det	56	<u> </u>		
		Dimensiones/Okounsions B625 'x 8,18 rms 8578 x 0,322 in 28,59 byt								BARHIZ							n / Exiemal Surface						Cantidades/Quantities 106 Pz, 1254,67 m 58377 bg 106 Pies 4477,92 ft 130503 b						
		Muestra Ensayo de Tracción Sample Zantin Zantin Zantin								ENSAYOS MECÁNICOS / MEC								ESTS	ŝ									<u>بم</u>	
		Lote Lot	7ubo Pipe	Colada Heyt			/eld	Tensile	Test 8	Plegado Guiado Body Cara Ratz					Fipo/Type: HV10 Max Min Alax			Poskión location Absorbed Enerci						ar Ansa		5	DWTT bear Ar		
					htax Min	614	<u>a</u>	1146 1446	420 420	Ratio 0,93	_EL7	Face	Roat	246		Dif	Body Min Weld Min HAZ Min	10	10	0	Arg 15		2	1	Avg		2	Avg	
			3	365057 186007	1-	151 151	*	hsi	ksi		<u>%</u>			118	12)	13	TACE MILL	<u>R</u> h	d.b	ħιδ.	12.6	24	**	*	2	-75	X	- 7%	
	<u>,</u>		ม ม 111	286019 286019 286019 286699		H,L		64,1 17,1	51,4 50,1	699 615	28 79			416	, 163	22	Body Body	(GE ICE	105	13	512	100	103	101	101				
2 e 2			191	205C20		NE,1		M,S	D)	Q.112	ac			211	r BQ.	3r	Body	10	71.	83 77	نة) كم	120) 30(3)	100 100	903 1973	KQ KQ				
FD014-a-tom Ctorl																													
ŭ	- P	iattenin	tilento y	duc viidad stilibu texte		APJ 51,										188-1101		{}											
N490:20 20		Plattening and ductility tests Chairly V. Rokor Tests 16 mperature 32 m Products / Spourner Ubization / Space 10 Ubization / Space 10 Entry of Strattlon / Sense feat													EL: Elong Xatio, YS Lias: Ma Lin: Minj	tule tensile sin Storngth - Linit ance - Atargam VIS danu - Rek umons - Mahmo num - Miglino A Direven dilgre		Note - I	lota:			-	Property of the						
2002-00-	E O	iasz ityj maticu Renout		ntation		ព ាលក នា 1.122 1.1228		2	ł							ANDER 19981	age strongerin Followed anno												

File No.190 01/09 '04 17:06 ID:DDC_CURPURATE

ID:DDC_CORPORATE

[]

3

14-inch Diameter Steel Casing

.

8.1

Mill Certificate

		Siat	 •					1	c		- 16 - 16							25								
17871		Group	-						\mathcal{Y}	, (DIN	INSPE 50049,3.	CTIOI (B - En 1	N CE.	RTIFIC	ATE (0474 3.1B)								د. (ا ان	linnes (ine i	
/077	(fente/f.)	SION N'																	÷.					54) 11 4 54) 81 4		
P 002/025														ov	0948/7	PF	Fab		Hùn	ncio / h	lumbar	fee	hi/Dal		Car	
	Cafleria de Longitudio	Aceio con al Electric I indard	Cosi: Resist	ura Long Janca We	itudinal Ided Si	ERW,									n de Compra / I	Purcha:	094 Re Circler	1/5	llem	r Refi		del Clier	25/04/2	2000 storper		
T-143	API SL X42	PSL2/API (AR,D J	PSL2/AS	TM A53	0						<u> </u>	<u> </u>				<u> </u>									•
	Dimensiones	/ Dimensions 9,53 mm		_	ominal/	Nominal	Weight		argo / Ler			-1	<u> </u>		/Grade PSL2					Extra		nds D AT 1	10° API			-
	14 x	0,375 In			01,33 54,65	l Ag/m 5 No/11			NOMIN	AL 40 FT		Super/ BA	icie Eale: NNIZ	ma / Exter	nal Surface					Can	idades ,					-
		2						 		06.14	Frank									1 5	3 Pz 3 Pcs	6	84,29 145,05		56217 123937	
868-889-8520	- Mue 5an	stra Iple	Τ		Ē	isayo de	l racción		VSAY	US M Guided	LCAN Hend Te:		<u>/ M</u>	CHA	NICAL T	EST	5			-						
-608	Lote Tubo Lot Plue	Colada Heat	1-		/eld	Tenski		lody		Plegat	do Gulado Italz	Tipo / 1	eza / 11: Type: 11	110 110	Posición Location		Absorb	ed Ener	Cha	тру V				<u> </u>	DW1	ī
			Мах	<u>uis</u>	EL	110.0	~!	Ratio		<u>face</u>	Hool	Max	Mín	Max Dif	Body Min	1-1-	12	3	Avg	1	2	It Area	Aw		hear A	i. J
			<u>Mio</u>	60,p ksi	%	60,0 ksi	42.0 ksi	c0,0	- 73 %			248			Webi Min JIAZ Min	10	10	19	13							
	-127	285000 766010		550							<u> </u>	109				11.16	(t, b	11.lb	R.IP	*/0	%	%	<u>%</u>	탱		
		286035 285035		8G,9		75,1 78,0	59,6 68,7	0,78	36			201	178	21	Body	49	40	47	•	[0]	100	100				
	215 214	286037 286037 230318		85,7		78,A	57,0	D,76 0,75	38 40			183	175	19	Body	72.	63	69	70	F0(1	100	100	pat teo			
	734 290	286038 2860385		87,6		38.5	81,9	0,81	40			109	179	12	Body	46	88	63	55	100	100	100	100			
	290	246002		81,7		ז,נז	67A	0,78	31			101	. (73	18	Body	72	ы	n	71	100	100	tal	100	-		
		·						ļ							Body	40	- 46	4	45	103	100	100	100			
	plastamiento y c attening and du	Alibu tanata	٨	PI 5L	l.			<u>l</u>		l				(Fredding									ļ			
S te	harpy V-Norch 1 emperatura / Tel obeta / Specime	esi	3	PI3E 2 *F											ate tensile stre trength - Limite loos - Alargame			e rotura	N	ále - Ni	ola:		·	 l_]	
Ö	bración / Localk	מר		3 TRAN	SVERSA A WELD	NL.									nco - Alargam ITS flatko - Kela num - Máximo		o = 2 *) Iencia/m	dura								
- in -	obeta/Specime.	n (60019 (5 11 (60019 (5												din: Minim	wa - Minimo aximun dilerer											
8	niaño / Size ienlación / Orien		1	TAIP SP: 1/2*											ge - Promedia Mected zone -								25			
				IANSVE	HSAL									,		4 M M 6	necraod	1								
12:04FM																						_				q:s
						"1	to m	L.				9 4					50							1971	Ki y 4)	
2003						•	4							ST REF	PORTS AP	۲LY	U						-			
NUV-20-2003											YOU	R P.O.	#	<u> </u>	<u>YUCX</u>	01	\overline{a}_{2}	•								
NUV-						- 80					BAF	TOW	STEEL	REF. 4	200	<u>, 11</u>	10	•								

01 Ja

А.

Siat
Tenaris Group

•

INSPECTION CERTIFICATE (01N 50049.3, 18 - EN 10204 3.18 - 190 10474 3.18)

Nat 5 A Guadenaalas 50 G (R1822A22) (ca. Ruenes Guer, c. (54) 114 (ca. 95) (54) 114 (ca. 95) (54) 114 (ca. 95)

.003/022		Customer							_				<u> </u>	·	<u> </u>		0	/			PT, Fab			Núme	07.Niu	ulwa	teda/	Ab etc.		
ő.		of Dundard	1011															01	946/7			9041/5			1			04/200	1	15.6g * 102.7
<u> </u>																	- Ch	den de	יניאיזסי	a Z Pun	have ()	ickir		lu-ni	llelene	n i del				
5 T	1 LUDDI	a de Acero co udinal Electric Standard	Resta	lanes	Waldar	J Cloub	1910 0 . 1910-	. <u> </u>									<u>п</u>	X-131												
1-143		Standard X42 PSL2/API		_														42 PS							Exliem	os / End	ÅT 30*	API 5L		
	14,00	10"x 9,53 m	13 10	Fes	o Nomir n	1,33	minal W koón	Veight			lleng				Superl,	cle Exte	rna / Ex	ternal	Surface							ides / Qi				- <u></u>
	14	x 0,075 in			5	4,65	Wit			100	MINAL	40 FT			DAI	IHIZ									53 53	Pz	684,	- 29 m ,05 ft		217 3937
	·		-1			/	ANÁ	LISIS	5 QU	IMI	COS	DE	PRC	DU	сто	7 PR	OD	UCT	`CŀI	EMI	CAL	AN								
3		Muesha Samo'e		1	-1	-1										Ж														
Ť	- cekit	Coluda	<u></u>	kin x		- <u>- s</u>	<u>- 51</u>	N	Cr	Mi	Mo	<u>v</u>	Cu	Sn	Rb	Ĩí	Cu	₿	Ca	Elm	1 EknZ	Elm3	Cegl	Ceq2	Pen	Sumi	Sum2	SumB	RI	li,
10	Pipe	Heat	110	1.10		1100		X txxt	K Idati	8	X	к 101	×	144	A BIRKI	X 1001	X 10	X \$48.8M	X	*	X	X	×	X	×	x	×	×		<u> </u>
0700-000-000	Atax Mai		. 72	120	25	15			<0	40	1£0	B	40		1	1.447		31444) incire				49 45		1121	133	10.0	ion		
	127	286030 208036	14	100	9		16	32	2	7	9			0	·]		<u>-</u> -	Е	26	 		<u> </u>			<u> </u>					
	215	286037	14 15	97 102	11	J	20	32 6.C	2		0 4			4	1 :	1		э	24	Į			32 32		1				- 1	
	234 290	281038 286032	15 15	103 101	- 13	3	10	29	2	ī	6	4	i	L L		2		1	20	1	1		03. 14		1			- 1		
	146961	280030 1	15	100		5	17	31 34	2	1	8		1	8	2	2	1	3	21	}			33							
	146971 146958	286002 * 286035 *	15 18	10) 63		4	18	31	2	1	B		i.	1.		2			1	[83 33						- 1	
	148993	226037 *	17	105	13	2	20 18	32 36	2		8	- 1	' . .	- 5		2		'	(1	58				- 1		- 1	
	146958	286038 *	15	105	12	s	17	28	2	1	ġ			11 5	1 2	2	- 1						36	(- 1	
		1	1						- 1	- I						.	- 1						34							
								· [•				Í	8
				Í				- 1		- · [Í											I	{		- 1		- 1	
											l																_ }	1		
	otas / Not "Corrasp	es: l onde a muestra	kn: Ele: Len Ma	menio teria P	/ Elsine		moles	î	eq: Ca w male	ibono (quivale	ale - E	quivale	nt Carl	- NOT				Sum: Su	unia - S	um		F	Ratio						
S tee							TIPUBE	mom ra																· · · · ·						
artow	191 = CH	Vn/6+(Cr+klo+	V176+(N	Recini	/15				l and	_ws =										ĺ	£1m3 =									
a. a			10.11					!	Ľ	eqZ≃				<u> </u>							Pcm =									- 14
ROM-B	ml =Nb	WAN							S	um2 ≈]	I	Sum3 =									
04	=								h,	2 =										l	1) =									-
S.		2																												
N250121		30																		÷5									4571	141
2															0.0															
ູ່ມີມີຮູ							8.	•			TH	ESE I	MILL	TES	TRE	PORT	IS AF	PLY	TO											
2ú−2	9.										YO	UR P.	0,#	<u> è</u>	14	25														
_k 0 _v -26-2065							70				BAI	NOTE	Y ST	EEL	REF.	#	200	54	193	3										

22 F-541

-

	b-+				(*)					1980
Ciat	2 a									
JId(<u>4</u>								
Tenaris Group							~	541 S.A		
80		INSPE	ECTION CER	TERATE				「#1235#330 【バコルフノス	ala suus Manna	
-		(DIN 50049,:	1,18 - EN 10204 3.18					it many a	Aur .	
Cliente / Customes		EC		100 (04/4 0.10)		1		(*************************************		-
SIDERCA CORPORATION	·							P-97-19-4	1474 m	
Producto / Product				vo	PF, Fab	IN LANS				
Calteria da Acaro con Costu Longitudinal Electric Resisto	to Longitudie et merce			6946/7	6941/5	PARIN	ro / Number	Fecha / Dale	Pager	
Longitudinal Electric Resiste Norma / Standard	ince Welded Steel place			Orden de Compra / P	urchase Order	llem	Reletancia d	25/04/2003	03/	
Norma / Standard API 5L X42 PSL2/API GR.B P	CI DIADTIA A STATU			TTX-131				el Cliente / Custome	r Refetaur	
Dimensiones / Dimensions			s	Grado / Grada		<u> </u>	l			
14,000"x 9,53 mm	Peso Nominal / Nominal Weight	Lavgo / Lengih		Grado / Grado X42 PSL2			Extremos / Er	AT 30° API 5L		
14 x 0,375 In	61,33 kg/m 54,65 lb/n	NOMINAL 40 FT	Super/icie Externa	/ External Surface			DEVELLED	AT 30° API 5L		11
	E BARTE		BAHNIZ				Canildades / (53 Pz			
Marcación / Marking							53 Pcs		56217 :	
. C = Monograma / Monogram API									123937	2
-Fstarcido (tubo) / Stencing (pipe)	here de luba / p/pe	number LL = Lamo / Lengt	hPP = Pesa / We	alabt Battons						~
HOMAS PIPE PON TTX-11/ 1	0.375* 54.65 Lb/FLAPI 5L X42 PSI	2/API GD B BSI SHOTH		Alea Merry - Mea	/Afla - Month / Year	/	ili = Colada / I	Heat		
	ADE IN ARGENTINA N'; NN LENG	IH:(FILL PEAT, CALL AS) B. E	- TESTED 2133 Beili	Nin Lutton w						
		······································		IN HEVIL						
VISUAL AND DIMENSIONAL C HYDROSTATIC TEST: 2133 PS WELD ULTRASONIC INSPECT	IN THUR KG/GM2) - 5 SEC.		Longin; r	max, 43.01 Fi	THEOR		TEAT DED			đ.
VISUAL AND DIMENSIONAL C HYDROSTATIC TEST: 2133 PS WELD ULTRASONIC INSPECT DRILLED HOLE. MINIMUM WELD HEAT TREATM STD: API 5L ED.42 - JULY 2000 ASTM A53. ED. 1999 ASTM 5545 ED. 0001	ONTROL: 100% 11 (150 KG/CM2) - 5 SEC. 10N: REFERENCE STANDARD 1/8 MENT TEMPERATURE: 1600 °F		Longin; r		YOUR P	.0.#.	242	ORTS APPLY		2 2
VISUAL AND DIMENSIONAL C HYDROSTATIC TEST: 2133 PS WELD ULTRASONIC INSPECTI DRILLED HOLE. MINIMUM WELD HEAT TREATA STD: API SL ED. 42 - JULY 2000 ASTM 451 ED. 400	ONTROL: 100% 11 (150 KG/CM2) - 5 SEC. 10N: REFERENCE STANDARD 1/8 MENT TEMPERATURE: 1600 °F		Longin; r	max, 43.01 Fi	YOUR P	.0.#.	242	ORTS APPLY		2 2
VISUAL AND DIMENSIONAL C HYDROSTATIC TEST: 2133 PS WELD ULTRASONIC INSPECTI DRILLED HOLE. MINIMUM WELD HEAT TREATA STD: API 5L ED.42 - JULY 2000 ASTM A53. ED. 1999 ASTM A53. ED. 2001 NACE MR0176. ED. 1999	ONTROL: 100% 11 (150 KG/CM2) - 5 SEC. ION: REFERENCE STANDARD 1/8 MENT TEMPERATURE: 1600 °F		Longin; r	max, 43.01 Fi	YOUR P	.0.#.	242	156		2
VISUAL AND DIMENSIONAL C HYDROSTATIC TEST: 2133 PS WELD ULTRASONIC INSPECTI DRILLED HOLE. MINIMUM WELD HEAT TREATA STD: API 5L ED.42 - JULY 2000 ASTM A53. ED. 1999 ASTM A53. ED. 2001 NACE MR0176. ED. 1999	ONTROL: 100% 11 (150 KG/CM2) - 5 SEC. ION: REFERENCE STANDARD 1/8 MENT TEMPERATURE: 1600 °F		Length: r տin	тах. 43,01 Fi . 41,01 Fi	YOUR P BARTO	.0.#.	242	156		ă X
VISUAL AND DIMENSIONAL C HYDROSTATIC TEST: 2133 PS WELD ULTRASONIC INSPECTI DRILLED HOLE. MINIMUM WELD HEAT TREATA STD: API 5L ED.42 - JULY 2000 ASTM A53. ED. 1999 ASTM A53. ED. 2001 NACE MR0176. ED. 1999 Via presenta cettificamos que el m acuerdo con las normas vacendo	ONTROL: 100% II (150 KG/CM2) - 5 SEC. ION: REFERENCE STANDARD 1/8" MENT TEMPERATURE: 1600 °F MENT TEMPERATURE: 1600 °F	We hereby carbinet that	Lengih: r min	max. 43,01 Fi 41,01 Fi	YOUR P BARTO	.0.#.	242	156		A X
VISUAL AND DIMENSIONAL C HYDROSTATIC TEST: 2133 PS WELD ULTRASCONIC INSPECTI DRILLED HOLE. MINIMUM WELD HEAT TREATA STD: APT 5L ED.42 - JULY 2000 ASTM A53. ED. 2001 ASTM A53. ED. 2001 NACE MR0176. ED. 1999 v la presenta certificamos que el m acuerdo con las normas y especific allafacen los cortespondientes regi	ONTROL: 100% II (150 KG/CM2) - 5 SEC. ION: REFERENCE STANDARD 1/8 MENT TEMPERATURE: 1600 °F MENT TEMPERATURE: 1600 °F MENT TEMPERATURE: 1600 °F MENT TEMPERATURE: 1600 °F Jerlal aqui descripto ha sido fabricado Saciones soficiladas en vuestra orden Jerlanentos	We herely certified that i In accordance with the sta	Length: r min he maierial herein desc	max. 43,01 Fi 41,01 Fi	YOUR P BARTO	.0.#.	242	156		
VISUAL AND DIMENSIONAL C HYDROSTATIC TEST: 2133 PS WELD ULTRASCONIC INSPECTI DRILLED HOLE. MINIMUM WELD HEAT TREATA STD: APT 5L ED.42 - JULY 2000 ASTM A53. ED. 1999 ASTM SA53. ED. 2001 NACE MR0176. ED. 1999 via presenta certificamos que el ma acuerdo con las normas y especilita allafacen los cortespondientes regi le certificado es emito mediante un a firma efectrópica. En al no via	ONTROL: 100% II (150 KG/CM2) - 5 SEC. ION: REFERENCE STANDARD 1/8 MENT TEMPERATURE: 1600 °F MENT TEMPERATURE: 1600 °F MENT TEMPERATURE: 1600 °F Jerlal aqui descripto ha sido fubricado Saciones soficiladas en vuestra orden Jerlanentos efalerna computarizado y es válido	We herely cartified that it in accordance with the sta salisfies the corresponde	Longih: r min ho maierial herein desc andarte and apochicali	max. 43,01 Ft . 41.01 Ft ribed has been manu/o one required to your op	YOUR P BARTON	.0.#.	242	156		X
VISUAL AND DIMENSIONAL C HYDROSTATIC TEST: 2133 PS WELD ULTRASCONIC INSPECTI DRILLED HOLE. MINIMUM WELD HEAT TREATA STD: API 5L ED.42 - JULY 2000 ASTM A53. ED. 1999 ASME SA53, ED. 2001 NACE MR0175. ED. 1999 NACE MR0175. ED. 1999 NACE MR0175. ED. 1999 INACE MR0175. ED. 1999 I	ONTROL: 100% II (150 KG/CM2) - 5 SEC. ION: REFERENCE STANDARD 1/8 VENT TEMPERATURE: 1600 °F VENT TEMPERATURE: 1600 °F	 We hereby certified that it in accordance with the statistics with the statistics with the statistics of the correspondent This certificate as issued to be detropide after a transmitting to the statistics. 	Longin: r min min in maieriel herein desc andarde and apocificali g requirements y a computerized spale	max. 43,01 F4 , 41,01 F1 milled has been manufa one required to your on em and it is vaid with th	YOUR P BARTON	.0.#.	242	156		X X
VISUAL AND DIMENSIONAL C HYDROSTATIC TEST: 2133 PS WELD ULTRASCONIC INSPECTI DRILLED HOLE. MINIMUM WELD HEAT TREATA STD: API 5L ED.42 - JULY 2000 ASTM A53. ED. 1999 ASTM A53. ED. 1999 ASTM A53. ED. 2001 NACE MR0175. ED. 1999 NACE MR0175. ED. 1999 NACE MR0175. ED. 1999 INACE	ONTROL: 100% II (150 KG/CM2) - 5 SEC. ION: REFERENCE STANDARD 1/8 VENT TEMPERATURE: 1600 °F VENT TEMPERATURE: 1600 °F	 We herely certified that it in accordance with the sta satisfies the correspondy. This certificate is issued to effectionic signature. On the mark is stamature. On the mark is stamature. 	Longin: r min. Ine maierial herein desc andards and apochicali g requirements by a computerized syste to cliginal the SIAT-TE.	max. 43,01 F4 , 41,01 F1 milled has been manufa one required to your on em and it is vaid with th NARUS green onformed	YOUR P BARTON actured Mar and Mar and	.0.#.	242	156		
VISUAL AND DIMENSIONAL C HYDROSTATIC TEST: 2133 PS WELD ULTRASONIC INSPECTI DRILLED HOLE. MINIMUM WELD HEAT TREATM STD: API 5L ED.42 - JULY 2000 ASTM A53. ED. 1999 ASTM A53. ED. 2001 NACE MR0175. ED. 1999 w la presente certificamos que el m acuerdo con las normas y especific atisfacen los correspondientes requ le certificado e e emile mediante un o firma electrónica. En el certificado à Impreso en la parta superior y con eedor entregue una copia del mism el orkinat lascideces con el organica del mism	ONTROL: 100% il (150 KG/CM2) - 5 SEC. ION: REFERENCE STANDARD 1/8 MENT TEMPERATURE: 1600 °F MENT TEMPERATURE: 1600 °F Jerinia enfoltadaa en vuesina orden Jerimientos elatema computarizado y es válido original el logo SIAT-TENARIS (verd no fondo de la hoja. En caso que el io, deberá garantizar la conformitidad	 We herely cartified that it in accordance with the sta satisfies the correspondin This certificate is issued to effectionic signature. On the mark to stamped on the up owner of the certificate action 	Longin: r min min he material herein desc andarda and apachicali g requirementa by a computarized syste to oliginal the SIAT-TE par part ant as backgr	max. 43,01 F4 , 41,01 F1 stilled has been manufo one required to your or em and it is va%d with th NARUS green enformed round of the page. In ce	YOUR P BARTON actured dar and frade	.0.#.	242	156		
VISUAL AND DIMENSIONAL C HYDROSTATIC TEST: 2133 PS WELD ULTRASONIC INSPECTI DRILLED HOLE. MINIMUM WELD HEAT TREATM STD: API 5L ED.42 - JULY 2000 ASTM A53. ED. 1999 ASTM A53. ED. 2001 NACE MR0175. ED. 1999 w la presente certificamos que el m acuerdo con las normas y especific atisfacen los correspondientes requ le certificado e e emile mediante un o firma electrónica. En el certificado à Impreso en la parta superior y con eedor entregue una copla del mism ef orkylnal, haciándoso responsabile liquer alteración y o falero.	ONTROL: 100% II (150 KG/CM2) - 5 SEC. ION: REFERENCE STANDARD 1/8 VENT TEMPERATURE: 1600 °F VENT T	 We herely cartified that it in accordance with the sta satisfies the correspondy. This certificate is issued to effective state of the cartificate relation mark to stateped on the up owner of the certificate rela- cificitia, taking more thread. 	Longin: r min min he material barefu desc andarts and apochicali g requivoments by a computerized syste to olganal the SIAT-TE sper part and as backgr passed a copy, he must a	max. 43,01 F4 . 41,01 Ft stilled has been manufo one regulted to your or one regulted to your or em and it is vaid with th NARIS green enformited round of the page. In ce allest he conformity (of	YOUR P BARTON actured dar and frade	.0.#.	242 EL REF. #	156		
VISUAL AND DIMENSIONAL C HYDROSTATIC TEST: 2133 PS WELD ULTRASONIC INSPECTI DRILLED HOLE. MINIMUM WELD HEAT TREATM STD: API 5L ED.42 - JULY 2000 ASTM A53. ED. 1999 ASME SA53. ED. 2001 NACE MR0175. ED. 1999 NACE MR0175. ED. 1999 NACE MR0175. ED. 1999 INACE MR0175. ED. 1999 IN	ONTROL: 100% II (150 KG/CM2) - 5 SEC. ION: REFERENCE STANDARD 1/8 VENT TEMPERATURE: 1600 °F VENT T	 We herely cartified that it in accordance with the statistics with the statistics is listed by the correspondent of the correspondent of the correspondent of the correspondent is the statistic of the correspondent is the correspondent of the corres	Longin: r min min in maierial barein desc andarts and apochicali g requirements by a computerized spele to olginal the SIAT-TE sper part and as backgr eased a copy, he must a if the responsibility for	max. 43,01 F4 . 41,01 F1 one required to your or one required to your or em and it is vaid with th NARUS green onformed round of the page. In co allest the conformity for eny unlawful or not allo	YOUR P BARTON BARTON Indured Mar and Irade Isea the Web Use	.0.#.	242	156	<u>1</u> 93	
VISUAL AND DIMENSIONAL C HYDROSTATIC TEST: 2133 PS WELD ULTRASONIC INSPECTI DRILLED HOLE. MINIMUM WELD HEAT TREATM STD: API 5L ED.42 - JULY 2000 ASTM A53. ED. 1999 ASTM A53. ED. 2001 NACE MR0175. ED. 1999 w la presente certificamos que el m acuerdo con las normas y especific atisfacen los correspondientes requ le certificado e e emile mediante un o firma electrónica. En el certificado à Impreso en la parta superior y con eedor entregue una copia del mism el orkinat lascideces con el organica del mism	ONTROL: 100% II (150 KG/CM2) - 5 SEC. ION: REFERENCE STANDARD 1/8 VENT TEMPERATURE: 1600 °F VENT T	 We herely cartified that it in accordance with the ata satisfies the correspondy. This cartificate is issued to efectronic signature. On the mark to stamped on the up owner of the cartificate rela- original, taking upon himse Any alteration and / or failal if you need to assure the or 	Longin: r min min in maierial barein desc andarts and apochicali g requirements by a computarized spale to olginal the SIAT-TE sper part and as backgr assed a copy, he must a if the responsibility for fication will be subject to	max. 43,01 F4 . 41,01 F1 one required to your or one required to your or em and it is vaid with ti NARIS green onformity fo tound of the page. In ca allest its conformity fo eny unlawful or not allo to the taw.	YOUR P BARTON BARTON Indured Mar and Irade Isea the Web Use	:0. # _ V STE	2 42 EL REF. #	2009 2009		
VISUAL AND DIMENSIONAL C HYDROSTATIC TEST: 2133 PS WELD ULTRASONIC INSPECTI DRILLED HOLE. MINIMUM WELD HEAT TREATM STD: API 5L ED.42 - JULY 2000 ASTM A53. ED. 1999 ASME SA53. ED. 2001 NACE MR0175. ED. 1999 NACE MR0175. ED. 1999 NACE MR0175. ED. 1999 INACE MR0175. ED. 1999 IN	ONTROL: 100% II (150 KG/CM2) - 5 SEC. ION: REFERENCE STANDARD 1/8 VENT TEMPERATURE: 1600 °F VENT T	 We herely cartified that it in accordance with the sta satisfies the correspondy. This certificate is issued to effective state of the cartificate relation mark to stateped on the up owner of the certificate rela- cificitia, taking more thread. 	Longin: r min min in maierial barein desc andarts and apochicali g requirements by a computarized spale to olginal the SIAT-TE sper part and as backgr assed a copy, he must a if the responsibility for fication will be subject to	max. 43,01 F4 . 41,01 F1 one required to your or one required to your or em and it is vaid with ti NARIS green onformity fo tound of the page. In ca allest its conformity fo eny unlawful or not allo to the taw.	YOUR P BARTON BARTON Indured Mar and Irade Isea the Web Use	:0. # _ V STE	2 42 EL REF. #	2009 2009	<u>1</u> 93	
VISUAL AND DIMENSIONAL C HYDROSTATIC TEST: 2133 PS WELD ULTRASONIC INSPECTI DRILLED HOLE. MINIMUM WELD HEAT TREATM STD: API 5L ED.42 - JULY 2000 ASTM A53. ED. 1999 ASME SA53. ED. 2001 NACE MR0175. ED. 1999 NACE MR0175. ED. 1999 NACE MR0175. ED. 1999 INACE MR0175. ED. 1999 IN	ONTROL: 100% II (150 KG/CM2) - 5 SEC. ION: REFERENCE STANDARD 1/8' VENT TEMPERATURE: 1600 °F VENT TEMPERATURE: 1600 °F VEN	 We herely cartified that it in accordance with the ata satisfies the correspondy. This cartificate is issued to efectronic signature. On the mark to stamped on the up owner of the cartificate rela- original, taking upon himse Any alteration and / or failal if you need to assure the or 	Longih: r min. min. in mininial herein desc andards and apacifically g requirements by a computerized syste to citying the SIAT-TE: oper part and as hadge eased a copy, he must if the responsibility for fication will be subject to uthersticity of this certific commast g stat. com. ar	max. 43,01 F4 . 41,01 F1 one required to your or one required to your or em and it is vaid with ti NARIS green onformity fo tound of the page. In ca allest its conformity fo eny unlawful or not allo to the taw.	YOUR P BARTON BARTON Indured Mar and Irade Isea the Web Use	:0. # _ V STE	2 42 EL REF. #	2009 2009	<u>1</u> 93	
VISUAL AND DIMENSIONAL C HYDROSTATIC TEST: 2133 PS WELD ULTRASONIC INSPECTI DRILLED HOLE. MINIMUM WELD HEAT TREATM STD: API 5L ED.42 - JULY 2000 ASTM A53. ED. 1999 ASME SA53. ED. 2001 NACE MR0175. ED. 1999 NACE MR0175. ED. 1999 NACE MR0175. ED. 1999 INACE MR0175. ED. 1999 IN	ONTROL: 100% II (150 KG/CM2) - 5 SEC. ION: REFERENCE STANDARD 1/8 VENT TEMPERATURE: 1600 °F VENT T	 We herely cartified that it in accordance with the ata satisfies the correspondy. This cartificate is issued to efectronic signature. On the mark to stamped on the up owner of the cartificate rela- original, taking upon himse Any alteration and / or failal if you need to assure the or 	Longin: r min min in maierial barein desc andarts and apochicali g requirements by a computarized spale to olginal the SIAT-TE sper part and as backgr assed a copy, he must a if the responsibility for fication will be subject to	max. 43,01 F4 . 41,01 F1 one required to your or one required to your or em and it is vaid with ti NARIS green onformity fo tound of the page. In ca allest its conformity fo eny unlawful or not allo to the taw.	YOUR P BARTON BARTON Indured Mar and Irade Isea the Web Use	:0. # _ V STE	2 42 EL REF. #	2009 2009	<u>1</u> 93	
VISUAL AND DIMENSIONAL C HYDROSTATIC TEST: 2133 PS WELD ULTRASONIC INSPECTI DRILLED HOLE. MINIMUM WELD HEAT TREATM STD: API 5L ED.42 - JULY 2000 ASTM A53. ED. 1999 ASME SA53. ED. 2001 NACE MR0175. ED. 1999 w la presente certificamos que el m acuendo con las normas y especific atlisfacen los correspondientes requ la correspondientes requ la firma electrónica. En el certificado à Impreso en la parta superior y con ecdor entregue una copia del mism el orkyinal, hactóndoso responsabile liquéer alteración y / o falsificación e ecostia asecurar la autente bida de	ONTROL: 100% II (150 KG/CM2) - 5 SEC. ION: REFERENCE STANDARD 1/8' VENT TEMPERATURE: 1600 °F VENT TEMPERATURE: 1600 °F VEN	 We herely cartified that it in accordance with the ata satisfies the correspondy. This cartificate is issued to efectronic signature. On the mark to stamped on the up owner of the cartificate rela- original, taking upon himse Any alteration and / or failal if you need to assure the or 	Longih: r min. min. in mininial herein desc andards and apacifically g requirements by a computerized syste to citying the SIAT-TE: oper part and as hadge eased a copy, he must if the responsibility for fication will be subject to uthersticity of this certific commast g stat. com. ar	max. 43,01 F4 . 41,01 F1 one required to your or one required to your or em and it is vaid with ti NARIS green onformity fo tound of the page. In ca allest its conformity fo eny unlawful or not allo to the taw.	YOUR P BARTON BARTON Indured Mar and Irade Isea the Web Use	:0. # _ V STE	2 42 EL REF. #	2009 2009	<u>1</u> 93	
VISUAL AND DIMENSIONAL C HYDROSTATIC TEST: 2133 PS WELD ULTRASONIC INSPECTI DRILLED HOLE. MINIMUM WELD HEAT TREATM STD: API 5L ED.42 - JULY 2000 ASTM A53. ED. 1999 ASME SA53. ED. 2001 NACE MR0175. ED. 1999 w la presente certificamos que el m acuendo con las normas y especific atlisfacen los correspondientes requ la correspondientes requ la firma electrónica. En el certificado à Impreso en la parta superior y con ecdor entregue una copia del mism el orkyinal, hactóndoso responsabile liquéer alteración y / o falsificación e ecostia asecurar la autente bida de	ONTROL: 100% II (150 KG/CM2) - 5 SEC. ION: REFERENCE STANDARD 1/8 VENT TEMPERATURE: 1600 °F VENT T	 We herely cartified that it in accordance with the ata satisfies the correspondy. This cartificate is issued to efectronic signature. On the mark to stamped on the up owner of the cartificate rela- original, taking upon himse Any alteration and / or failal if you need to assure the or 	Longih: r min. min. in mininial herein desc andards and apacifically g requirements by a computerized syste to citying the SIAT-TE: oper part and as hadge eased a copy, he must if the responsibility for fication will be subject to uthersticity of this certific commast g stat. com. ar	max. 43,01 F4 . 41,01 F1 one required to your or one required to your or em and it is vaid with ti NARIS green onformity fo tound of the page. In ca allest its conformity fo eny unlawful or not allo to the taw.	YOUR P BARTON BARTON Indured Mar and Irade Isea the Web Use	20. # _	2 42 EL REF. #	2009 2009	<u>1</u> 93	
VISUAL AND DIMENSIONAL C HYDROSTATIC TEST: 2133 PS WELD ULTRASONIC INSPECTI DRILLED HOLE. MINIMUM WELD HEAT TREATM STD: API 5L ED.42 - JULY 2000 ASTM A53. ED. 1999 ASME SA53. ED. 2001 NACE MR0175. ED. 1999 w la presente certificamos que el m acuendo con las normas y especific atlisfacen los correspondientes requ la correspondientes requ la firma electrónica. En el certificado à Impreso en la parta superior y con ecdor entregue una copia del mism el orkyinal, hactóndoso responsabile liquéer alteración y / o falsificación e ecostia asecurar la autente bida de	ONTROL: 100% II (150 KG/CM2) - 5 SEC. ION: REFERENCE STANDARD 1/8 VENT TEMPERATURE: 1600 °F VENT T	 We herely cartified that it in accordance with the ata satisfies the correspondy. This cartificate is issued to efectronic signature. On the mark to stamped on the up owner of the cartificate rela- original, taking upon himse Any alteration and / or failal if you need to assure the or 	Longih: r min. min. in mininial herein desc andards and apacifically g requirements by a computerized syste to citying the SIAT-TE: oper part and as hadge eased a copy, he must if the responsibility for fication will be subject to uthersticity of this certific commast g stat. com. ar	max. 43,01 F4 . 41,01 F1 one required to your or one required to your or em and it is vaid with ti NARIS green onformity fo tound of the page. In ca allest its conformity fo eny unlawful or not allo to the taw.	YOUR P BARTON BARTON Indured Mar and Irade Isea the Web Use	20. # _	2 42 EL REF. #	2009 2009	<u>1</u> 93	

	THESE MIL YOU'R P.O. # BARTOW STE	55 51 52 54 54 54 54 54 55 55 55 55 55	+·		Slignts/Customer Producto: Cafferi Diffuetro: 14,000 Product 1 Longin 14,000 * Outsids	Tenaris Siat	2 65 =
		258 42 42 42 42 42 42 42 42 42 42 42 42 42	412,442,442,442,442,442,442,442,442,442,	no Lergo Tength Ft	Clients/Custemert, SIDERCA COSPORATION Producto: Cafaria du Acero con Costu Primetro: 14,000 * x Espessio.175 . Product 1 Longtrudinal Electric Read 14,000 * Outsids Dismardar x 0.375 . u	Iris Siat 2400-Vilentin Aurus 1800-Vilentin Aurus 1905-09 11 4365 9671	
*	EST REPORTS APPLY TO	2285 2341 2341 2341 2342 2342 2342 2342 2342		1 1 1	Clients/Custemert, SIDERCA CGREORATION OC/PD: P. Producto: Caferia da Acero con Costura Longitudinal EnW. Pidmetro: 14,000 * x Espessito, 175 . Calidad: APIX1 FSL2/AFI B P Product 1 Longitudinal Electric Recistance Welded Steel Pipe. 14,000 * Outside Diamatar x 0.375 * Wall Thicknoss. AFIX12 PSL2/AFI 14,000 * Outside Diamatar x 0.375 * Wall Thicknoss. AFIX12 PSL2/AFI	LISTA PA	
	69 tubea/pipes 2872,74 Feet. 159010 Pounds.	68 71171-7 68 71171-7 68 71171-7 68 71171-7 68 71171-7 69 71171-7 69 71171-7 60 71171-7 60 71171-7 60 71171-7 60 71171-7 60 71171-7 7171-7 7		Tubo P.F. Clienta Fab. Pipe 2.F. Cuscomer Nº	B N O	TA DE EMPAQUE PACKING LIST	
59	ភេទ 🗤		50 51 52 52 52 53 54 52 54 52 54 52 54 52 54 52 52 52 52 52 52 52 52 52 52 52 52 52	Tubo Largo Intarno Ft Pipe Length Internel Ft	NO: 18329 / Thomas Pol 1181 2/ASIM A53 3 PEL2/ASIM A53 3 P	<u></u> 	: त मी
1	CLAUDIO G. TUMARAS. 7 do Ingeniería da Proceso SIAT S.A.	2244 2244 2245 2245 2245 2245 2245 2245	18	Velght Co			म (5 प्र प्र

÷.

995 []

...

ar ng

	2		с.	1. 22.							ş	YOU	R P.O. /	#	242	DRTS APP						-					3
2		С	Ten	ar	İS		2.	36)				ា	spectio 10204 3.18	on Ce	rtificate	200°	1/20	5		5 172		\		נ ה נו רב	aal 5 A. aaat mia Ra&2253 Rawics A S-0 13 -0 S-0 13 -0	(2) Vala- 111 v, Ar 165 9570	র । শ্ব ট্রি
ã.		SI D EN C	A CORPORATIO										ov 1177/1		PF, F45 7177/7				H	úrzec <i>i (</i> i	យោងer		icha / Dai VBIV240			Pågåna 1 01.7.04	(Page
		Cafferia	de Actro con	Costura	Longitudia	d CRW7 La	ngituxinal	Sector Res	lstance Wel	ded Sleel pi	ipė		Orden de P.O. NO. 1	Campta/ 4329/36	Purchase Druk omini POJ 111	и Ц			lte			Rı	ferencia	del Cilen	(e / Custa	I'MI Sele	tisple
		API SL X	Standard 42 PS12/API G 										Grado / Gr X42 PSL2										Vernas / VELLEØ /	Ends AY JQ* AP	151		
			"K 9,53 m 4 0,175 in	n n		Schedida	•	Pein Ho 81,33 k 54,65 //		ilisəf Yitelgh	d		Congikud/ HOMINAL	Cength 44 FT		Supe BARA	rficie Ense az	ma/£st	ernat Suul	400		44	Pa	7 Quamili 875,61 m 2872,74	i ≦2.	7 176 kg 594 10 /b	
	<u> </u>	Mue		1			froays de 1			E		S Mec			<u>hanica</u>											241010	
•	Lale	- Samj	ofa Colada		1	/eld	Teralle	Detl			Plega	fo Gulada		ureza <i>s</i> filo 20: 16V10		Pasidón Location		Absorb	ed Entroy		<u>1.168 ∧</u>	Shea	Ares .			OWIT	
	Lot	Ире	fleas		UIS W	EL	1715	Y5	Fiatio	EL	Cara Faca	Rair Reat	Max	Min	Mag Dil			1	7	Arg		2	1	Avg	1	Shear Ar	I Avg
	···	 		Min .	60,0 (kil	. %	110.0 60.0		6,93	28			248			Body Min Wald Min HAT Min	10	10	Te	53		İ					
-	·	- 2.	371780		81,2				<u> </u>				216	191	25		<u>l(lb</u>	/LID	115	filb	15	11	36	*	55	- 16	- 16
		\$4 14 26	371280 371280 382340		88.9		77,9 80,8	ā),6 61,5	0,79 4,76	42 38		·-	212	196	16	Gady Body	49 45	57 50	48 54	- 49							
		26 31	187140 187140 181190		· 87,0		26,7	58,2	Q, 36	36			207 217	185		Bochy	34	38	78	37						i	
	1	→1 51	382390 371781 371781		85,2		62,4	64.0	0,78	37		1	210	191 191	(1) 	Body -	75	54	97	45		- 1			·		
		58 - 58	380957		85,5 88,0		26,7 77,6	60,0 - 60,6	0,78 0,78	40 40			215	19)	32	Dody	48	53	48	45	-		ĺ				
		77 77 85	381716 341716		63,4	· · ·	35,4	59,0	0,78	м	i		193	180	19	filosly Body	41	72	68 51	69 45		1					
		- 15	382390 . 362390		88,9		78,6	63,7	0,60	37			217	185	32	Body	53	40	41	45			1		·		
		dianto y duc g and ducti			API SL			Ī							UTS: Ultimat	e tensile strengil	h-Limite c	le rotura	- <u> </u>		lete - Mol	/					
0 10 10 10	harpy V engeral robeta / blceción	Hotch Test Line / Tempe Specimen / Location Test 18n / 1	ira bure		API SE D2 "F 2/3 TRAFM 90" FROM	-					ð				D.: Elongatio Ratio: YSAT(S Max: Maximu Max: Minimus	n - Minima	o (Le e 2*) i fivencia/i	otura ·							4	L .	
Pr 11 Ea	obeia /s po / Type maña / S	ipediman . V		53	STRIP SPEC 1 1/2" TRANSVER	-									Ауд: Алегади	imum di lecenca - Promedio ectad zona - Zon			a								

151 144. 0-1 601

P.006/022 F-541

9

T-143

853-352-5520

FRUNTDAFLUN . LUBI

-5

į 14 111

		2	Ten	ar	is		R						pectio 10204 3.10		lificate 74 3, 38}		THE: YOUI BART	7 P.O	.#	$\underline{\partial}^{c}$	124	<u>54</u>	'	93	ыс S А (Milerca (3827А) церох Й (4) [1 4]	(la 140-d 177) Vosoa Vares, Aug 165 9500 365 9673) Tel
_			Customer CORPORATIO	ผ									0V 11717		Pf, Fab 717777				No 1	intero / Nu	npet		dha / (Da) / 04/2001			řágina / 02 / 04	Page
			de Azero con C	înstur a l	.ongiludisa	d DRIV/La	egituetrat E	lectric Reck	itanse Weld	led Steel pi	ps.				rdisie Orde nas POJ 110				[ie	m					le/Custo	umer Refe	STERICE.
			Standard & PSEZVAPI GI	ta psiz	Astni Ast	in a							Grada / Gra X42, PSL2					·					remat /	finds AT 36" AP			
_			алы/Оттельк "ж 9,53 m э 0,375 m	11y		Schwchule		. Pero Nov 01,33 kg 54,65 (b)		fnal Vyelgh	t 		Longitud / I NOFANAL A			Superikda Externa / External Surface C BARDAZ 6							nticlacies Pa	/ Quantit 875,41 m 2672,74 (les 7	72126 hg	
						<u> </u>				Ē	insayos	: Mecá	inicos /	/ Mec	hanical	Tests			1.1								
		Nue Semi				- 1	nsayo da T Tenille I				1	Band Test		unta / Har	daets	Posteion					apγV				1	דועים	
T	ote	Tubo	Calada	1	N	Yeld	I EUTH&		ody		Cara	o Gulada Rate	Пра / Тур Маа	in: INTO 1.Ma	Мья	Location.	+	Abissibi	d Energy	r Avg		Shea	r Anea	1		Sheer Ar	-
┝	Lat	<u>tipe</u>	llest	Maa. Min	UTS 60,0	<u> </u>	UTS 110,0 50,0	YS 65,0 42,0	Hatlo 1993	<u> </u>	110	Root	248		Dif	Body Min Weld Min	10	10	10	13		·[3	Avg		2	Avi
F					kul	H	kil	hal		- 28						ItAz Mią	(L.IL	- filb	filb -	111							
		182 183 260 260	367340 382340 370978 370978		85,4 • 26,6		78,4 76,9	ái,1 57,9	0,75	36 40			264 214	182 885	27 28	Body Body	37 51	40 48)7 41	38 46							
			2			5 						£5	0	Ξ	-												
latt Char Teng Teng	eniny py V- penib eta / :	lento y duc Prof ducti Notich Terl Ura / Temp Spectmen	ity terts		API 5L API 5L 12 'F 2/3 TRAU			· ·		Ł				-	YX: Yield Stri EL: Mongatik Ratio: YS/DR	i tentile strangij ingth - Minita de in - Alargamianto i Hatio - Relación i Tatio - Relación	i livencia o (Lo = 2°)		22	ii	io14 - No	[te:		. <u></u>	[,
nday rohi ipo / inna	yo da ata / S A Type a No / S	Pecimen 1	Tansile Tast	0	90" FROM STRIP SPE 1 1/2" TRANSVE	OMEN		÷							VBa: Mirumu Vax Dif: Max Vg: Average	n - Minimo Inum difeter ce			J						0.9		

.

663-869-8520

10-1

77n/1nn-4

[-|45

FROM-Bartow Steel NOV-20-2003 12:05PM

•

121

10

151 Ary 0-14/01

	Ten	ar	is			-					5.	l	Insp Insp Insp Insp Insp Insp Insp Insp	ectio M 3.18	n Cer - Iso 104	tifica 174 3,10	ate)				D. _ STE	0	いつ いっしょう	ORTS 54 R	0		9 4 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		r Valinan Hužičký V Store	einne 368
	illente / Customer IDERCA CORPORATI	011				2								v 17112		PF. Fal 7177/7						Ruinne	ta i Num	iber		1/Date		P	igina / P	
	adocto / Prodoct Aderia de Acero mo	Costara (.congitud	inal ERIV	/ Congit	udinul (1	ectric Re	lat ance §	Velded S	itel plp	•				ompea / P 329 / The	urchase (Drifer -		<u>-</u>	,		kem					i Glerite I		3 / 04 er Refen	TICE
M	Standard PI SL X42 PS12/API					·							G	lado/Gra AtesLa						•·· _						mos / Em	ເພີ່ 3-34° AP1 51			
- 14	Amendiones / Dimens 4,600 * x - 9,53 14 - x - 9,975 - 2	TRATE .		Schede	de		Pein II 81,333 54,651	sminal /) g/m is/ft	ilominal	V/eight				ongkod / L Diffikiaj, 4				۲۰ اللا	iperlîde LAJSZ	Externa	/ Externa	151rface	;	-		didn/Q	347 APT 20 344 APT 20	711	26 kg	
		r						Aná	lisis	Quí	nicos	de de	Prod	lucto	/ Pro	duct	Che	mica	An	alyse	s		R.							
	- Sample	6	Klą.	P	5	51	AI	G	NI	Mo	v	<u>с</u> и	50	NB	% 11	Ca	н	6	fimi	10ml	ElmJ	Cant	/ Ceg2	100	Sum1	Sumt				
Tuba Flps	Colsda	ж 100	*	# 1000	× 8000	100	N .1000	a tpa	N 100	* 1000	H 100	× 104	100	x 1000	X 1000	л 100	x 10000	*	X	×		K 100	×	*	R	н	*	<u></u> <u>A1</u>	Rž	+-'
Alex Min		22	120	23	13			40	40	15		40		1004		100	30040				<u> </u>	41	100	100	100	100	100			┢
2 84 26 31 51 54 77 85 462 260 14934 14934 149345	371780 371780 382340 881390 371781 363957 381746 392399 182340 370970 370970 370970 370970 370970 3717814 386957 3647464	14 14 53 14 14 15 14 14 15 53 15 14	98 98 98 98 98 98 97 101 98 97 99 101 98 97 99 101 93 103	10 10 15 13 18 12 8 12 8 13 10 13 10 13 9	1 1 4 1 2 1 3 1 3 2	19 19 20 21 18 17 16 20 20 17 16 17 17 18 18 18	25 25 33 10 25 26 39 39 11 24 46 26 27 29	2 2 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 2 2 2	9 10 10 9 8 9 11 8 9 10 8 9 10 8 9		1 1 1 2 2 1 3 2 2 2 2 1 2 2 2 2 2 2 2 2	1 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1		3	25 24 22 17 24 27 22 17 22 17 22 19	•	56		10 12 12 12 12 12 14 14 14 14 14 14 14 14 14 14 14 14 14		J0 20 19 21 9 20 19 21 30 19 21 21 20	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4					
Las / Notes *Correspo	u Konde a muertra en l	lm: Eleme Usteria Pr			es frons i	Filmi Intelia	Jula	eq; Carbo	xio edal	vaiente	i quivala	al Carb	c-1				3	ium: Sum	a / Sturet				L: Aatjo						<u> </u>	
	1 <u>Mm51(0+Mo1V)5</u> 65V011	ı(№15Сьў)	15						н 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						· · · · · · · · · · · · · · · · · · ·			רבייי ר' ר'	4] 4 5	= [m] = 	<u>C</u> ışv30				101May19	51 \97 LQ + S	B			2

111 Arr 0-12/01

18

 \overline{t}

175-3 P.008/022 04

T-143

253-859-8520

FROM-Dartow Steel 40V-20-2003 12:00PM

ŝ,

 \mathbb{R}^{2}

Clente / Customer	lms แห	piection Certificat 10204 3.14 - Ko 16474 3.18) :	le e	541	ւս, թ. է Աշտ լուվ	en de Hernen Hernelen Holden Synchraft - Strand Holden Synchraft - Strander Holden Andersten Holden Strand Strand Holden Andersten
SIDERCA CORPORATION		OV PF. Fab 717777 717777	•	Número I Number 1	Fecha / Date 23/08/2001	Página / Page 64 / 64
Producto / Product Coñecia de Asero con Castura Longitudinai ERW / Longitudinai Electric Resistance 1	Welded Steel pipe	Orden de compra/Purchase Ord P.O. HO. 18329 / Thornas POJ 11		jtein .	Beferenda del Qierrie.	/ Customes Reference
Norma / Standard AM SL XA2 PS(2/AP) GR B PS(2/ASTM AS3 B		Grada / Grade XA2 PSL2	<u> </u>		Extremos / Cods ELVELATO AT 30° API 3	
14,000 °x 9,53 mont 81,33 kg/m 14 x 0,375 kn \$4,65 lb/ft	Noninal Weight	i anglud / Length ROMINAC 40 FT,	Superficie Externa BAR482	/ Enternal Surface	Cantidades / Quantitie 41 Pr 8/5,61 m 41 Pr 21/2,7444	
Marcadèn / Marking P = Monograme / Monogram API NN = Reimero de Jubo freine durater						
B = Monogram # Monogram API NH = Rúmero en tabo / pápe number (starddo (tubo) / Stenciling (pápe)	LL = Lorgo / Length	P2 = Peso / Weight	MM/YY = Met / Año - Mont	HIL=Cal	ada / Heat	
SL-210 SIAT O MNYYY 14.000° 0.375° SAGA 15/51 API 51, X42 PALVAPI GR B FSLVASTM AS 2133 PSL N° MEAT: THOMAS PIPE PO FIBI, MADE IN ARGENTINA N°, NN LENGULGU, LL,	13 BYASME I ASJ <i>AL</i> ACE NACE MAD)75. PFAIT: 7177-7.	F, 1(31ED				
VISUAL AND DIMENSIONAL CONTROL: 100% HYDROSTATIC TEST: 2133 PST (150 KG/CR2) - 5 SEC. WEED VE TRALONIC INSPECTION; REFERENCE STANDARD 1/8*	2 D (14)	lenth: mar. 42		- 2 ¹²		•
	° ₽	Leng(կ; թուտ, 43 տուռ, 41.01-1	n Th YO	IESE MILL TEST RE PUR P.O. # <u>24</u> ス RTOW STEEL REF. A	154	
HYDROSTATIC TELE: 2233 PF14(150 KG/CR/2) - 5 SEC. WETO LATRADONIC INSPECTION: REFERENCE STANDARD 1/8" DRILLED IND(6. AUNIBULA WELD HEAT TREATMENT TEMPERATURE: 6600 °F STD: API SL ED A2 - JULY 2000 ASIM ASI. ED. 2000 ASIM ASI. ED. 2001			n Th YO	UR P.O. #	154	

T-143 P.008/022 F-541

•

٠

863-369-8520

FROM-Sartow Steel 1.0V-20-2003 12:08PM

.

.

.

151 Per 0-12/01-

[22 F-54]	Ten		Group		28 X				;	,, , , , , , , , , , , , , , , , , , ,	U I	NSPEC	TION 1 - EN 10	CER 204 3.11	TIFIC/ 1-150 10	ДТЕ 1474 з.1п)	3		2	1		-		64 04 04 64	1574 - depud 1977-07 - depud 1919-1 1919-1 2019-1	12 p - 11 114 - 12 112, 112
P.010/022	SIDE	RCAC	ORPOHAT	ION .							·				υv		PF.F			Núrn	a10/N	wher	fech	a/Dale		Bigz
	Caffe Long	пиала	Acaro con (I Electrio A	esist	anco Wa	aldozi Siz	of plan					6	0		Oiden TTX-1	8940/7 de Compra / J' 131	uchase	6941 Qidei	/5	ltem	1 Neler	encla d		25/04/2 ile / Cus		<u>0)</u> i la-lerene i
[-143			ard PSL2/API G	A.0									•		Grado /	/ Grade PSL2				.I	- Extre	rnos / Er	nds D AT 1	10• APJ	51	
	14,0	000"x	Dimensions 9,53 mm 0,375 ln		Peso N	lom'nal/ 01,33 54,65	Norolnat V I kg/m i lla/11	Veight		rgo / Leng NOMINA			Super/k BA	cie Extern ANIZ	na / Extern	al Sulace					Canli 63	dades/ Pz	Quanti			56217
	×				· · · ·				 FN	JSAY(Ες ΔΝΙ		1 ME	CHAI	VICAL TI	сте				53	Pcs	22	45,05	lt	123937
603-809-6520	Lole	Mues Sam Tubo			1		isayo de Tensile				Guided	Bend Tesi	Duv	vpe: HV	rdness	Posición Location			ed Ener	Cha	npy V					bwn
1-80 0 0 0 0 0 0 0	tot	Pipe	Ieat		UIS	Neld EL	UIS	YS .	ody listko	EL	Cara Face	Rafz Root	Мах	Min	hfax Dil	Body Min		2	3	۸vg		Shea Z	ir Area 3	٨٧٩	1	5hPar Ar
10				Max <u>Min</u>			110,0 60,0 ks	<u>85.0</u> 42.0 ksi	0,93	28			246			Weld Min HAZ Min	10	10	60	13						
	-2	7 12 <i>1</i> 7127	2060302			1	1			70			809	178	21		(1,1b	(Llíp	dLf	ft.lb	%	4/6	%	%	7%	%
		207	286038 266038		86,0 86,9		78,1 78,0	57,6 58,7	0,78 0,75	35 36			BOR	(78	2]	Body	49	46	47	47	100	100	160	160		
		216 215 234	29603/ 29603/ 296038		85,3		78,4	57,0	0,75	40			185	178	11.	Body Body	12	88 £R	99 63	70 58	100 100	801	100	103		
12		204 290	286039 286032		87,0		78,6	B1,9 ·	Ø,81	40			150	178	17	Bady	12	ви	n	71	100	100 103	100	100		
	ń.	290	284002		81,7		73,7	67,4	0,78	38			- 191	. 173	18	Body	46	41	4	ıs	100	100	IOQ			
	plastami	ento y i	ductilldad		API 5L																					
RUM-SELTON STEEL	attening harpy V- imperatu obeta / S ocación	and du Notch 1 Specime / Locati Traccio Specime Size	iclifity tests lest imperature en ion no / fensile 1	esl	API 51 32 °F 2/3 THA 50 ° FRO STHIP S	NSVERS OM WEL PECIME /ERSAL	<u> </u>								YS: Yield : EL: Elonga Ilaho; YS/i Max: Miak Min: Miak Max Dil; N Ayo: Aven	nate tensile stre Strength – Umil Stion – Alargam UES Ratio – Rel, Imum – Maxim Maximum ditere age – Promedio attected zone	e de flu Iento (L Ieción flu Ience - D	ierzla o = 2*) iercia/j ilerenci	' olura la máxio		Yole - N	ola:		1	<u>-</u>	
NUV-20-2003 2:07PM		-		а Ц		5		 yH7=y x+	⊃ ¥ ₽		1	-	*	YO	UR P.C	ILL TEST). # STEEL RE	125	5φ	' .		_			£	11	7.64.5

. .

10.00

104

	C:
	Sial
Tena	ris Group

٠

172-1

2

INSPECTION CERTIFICATE (DIN 50049,3,18 - EN 10204 3,18 - 150 10474 3,18) Siats & Galabensala (197 (01022677) (c.a. Romons Arces, c.a. (54) (114 0.5 m, c.a. (54) (114 0.5 m, c.a.)

1/02	Clente	Customer ICA CORPOR																	· · · · · · · ·											
5	Fundad	a/Posfix1	ATION													-		VCI A	048/7		l¥, Jab			Núme	no / Mu	เสรา	frehi	/I.ble		Cog +
T-143 P		la de Acero co udinel Electri Standard X42 PSL2/AP																bakvarak ITX-131	Court	ra Z Duz	(lener ()	8941/5 Ider		lina	i Reten	ix ia do	25 [{,li nda	-/ ()).log	3	1 02 /
Ļ	Dimensi	ones / Dimensio	115		o Nomi	ial / No	minal V	Veight	10) (1)	larg	o/Leng	uh			Stinet	licle Ext	- 1	irado / C X42 PS External		- <u> </u>				L	Extrem	os/En	45 AT 304	APJ 5L		
	14	ж 0,375 in			5	4,65	IWII	Lick		NC	MINAL	. 40 F 1			BA	RNIZ									Canik). 53 53	Pz	vantilis 684, 2245	29 m ,05 fr		5217 3937
520		Muestra	1-				AINA	LISE	QU	<u>IIMI</u>	COS	DE	PRO	DU	СТС	<u>1976</u>	100	UCT	CH	EMI	CAL	AN	ALY.	SES				114		
869-8520	rubo	Sample Coluda	- C X	Mn x		5	SI ×	Al	C(l Ji X	λlo	V	Cu	Sn		(9	C		Ca	Elm1		Eluna			Z Pem					
863-8	Min	Heat	11kt 22	4# 20]	85 ZS	10.0	10	thee	100	191	X 11.6.43 150	х 10к) в	8 891 40	<u>х</u> 11лг	я 1107		к (0]) // 112-ы,	X ausaut	×	×	×	X 100	X K	X IUA	X 11.02	1 <u>5um2</u> 3	Sum3 X Iuu	_81	<u></u>
0	127	286030 734036	14	100	9	3	16	32	2	2						<u> </u>				Ľ.			43			15				
	215 201 260 146801	286037 28693 3 28693 3 286032 286030 *	15 15 15	102 103 100	11 12 13 11	2 2 3 5	20 15 10 17	02 38 29 04	2 2 2 2		8 8 9	4		4 12 6				1 0 0	26 24 20 25		· ·		02 02 03 03 04			4			-	
	446971 48968 48993 48993	286032 * 285032 * 286032 * 286033 *	15 15 18 17 15	100 99 101 105 105	9 10 13 53 12	5 4 2 3	18 18 20 18	34 01 32 38	2 2 2 2		9 9 8 9			0 2 7 5 11	2 1 1 2	1 2 2 2 2		3	21				25 35 35 36							0
						0	17	28	2	L	9	- 4	'	5	2	2							38 34							
															·										•					
Stael	olas / Nol Correspo	es: f ande a muestra	im: Ele I en Ma	mento, itería P	/ Elemei Vuna.		mples i) In mon	leg: Ca Winalo	rbono e	quivale	nle - E	quivaler	nt Carb	on				รับกา: รับ	 ma - Si			l	l: Ratio	[
										bm2 ==											ក្រា								<u> </u>	_
c f h	$\frac{q_1 = C+N}{m} = Nb + Nb + Mb + Mb + Mb + Mb + Mb + Mb +$	An/6+(Cr+).lo+	VINSIA	/I+Cul/	15				<u>[</u>]	eq2 ⇒					_					-	cm =									_
R -	-								*	lxm2 ⇔										3	um .3 =									
3] 	<u>[R</u>]	2 =										R	=									
12:07	5							'n.	É											0			_	: 2				-	PSJ III.	
5							ाः भ	9							1															

THESE MILL TEST REPORTS APPLY TO YOUR P.O. # 24254 BARTOW STEEL DEE # 200919-

.

Siat
Tenaris Group

INSPECTION CERTIFICATE (BIN 50049.3.10 - EN 10204 3.18 - ISO 10474 3.18)

-

· · · · · · · · · · · · · · · · · · ·		10111 00043.3.12	0 - EN 10204 3.1B	- 130 10474 3.18)					-Flutz rea
Cliente / Customer								C-4 14	4155.76
SIDERCA CORPONATION			•1	lov					
Producto / Product				6945/7	PF. Fab	Νύπι	ro / Number	Fecha / Date	Pág /
Cañería de Acero con Costura Longiludinal Electric Bastatan	Lunninghast East			Orden de Compra / Pu	6941/5	_	1	25/04/2003	1 02 1
Longiludinel Electric Resistant	ce Wolded Steel nice			TIX-131	Incurate Otdel	Nem	Referencia d	el Cliente / Custon	ner Referetiv
Norma / Standard API 5L X42 PSL2/API GR.B PSI				UN-UI		}	· ·		
				Grade / Grade					
Olmensiones / Dimensions 14,000 x 9,53 mm	Peso Nominal / Nominal Weight	lana II		A42 P312			Extremos / Er	ds AT 30* API 5L	
14 x 0,375 ln	61,33 kp/m	Largo / Length NOMINAL 40 FT	Superficie Extern	a / External Surface					
	54,65 Ibnt	I TOMINAL 40 FI	BAHNIZ		25		Cantidades / (
Advisor II.		I			0		53 Pz 53 Pcs	604,29 m	56217 :
Marcaclón / Marking						_		2245,05 11	123937
. @ = Monograma / Monogram AP!	NN = Número de Isbo / pipe nun					· · ·			
-Estarcido (tubo) / Stencillag (pipe)		anger tengul	PP = Paso / W	elght MMVYY = Mes	/ Año - Month / Year				
HOMAS PIPE PO# ITX.12 MA	.375° 54.65 Lb/FI API 51, X42 PSL 2/AI DE IN ARGENTINA N°: NN LENGTH	PIGR R PSI 2/45TH Aco D P			inotion 160		HH = Colada /	Heat	
CI CI CI CI CI CI CI CI CI CI CI CI CI C	THE IN ARGENTINA N": NN LENGTH	(FQ): LL. PF/IF: 6946-7.	rested 2100 psi	. Nº HEAT:					
Observaciones / Remarks									
VISUAL AND DIMENSIONAL CO	MEBOL: these								
HYDROSIATIC TEST: 2133 PSI WELD ULTRASONIC INSPECTIC	(150 KG/CM2) . 5 SEC								
DAILLED HOLE	ALL REPERCINCE STANDARD UN								
MINIMUM WELD HEAT TREATM			Length	mpx. 43.01 Ft	Thursday				
	ENT TEMPENATURE: 1600 F		E I I	n. 41.01 Fl	THESE	MILL .	fest hep	ORTS APPLY	' TO
STD: API 5L ED.42 - JULY 2000						່ມ	242	1570	
ADIM 853 FD (000									
ASME SA59 ED 2001					DADTO	NOTE		2009	197
NACE MR0175. ED, 1999					DARIO	N SIE	EL HER. #.	acuti	- $ -$
					14				
	2.								
or la presente certificamos que el mat a acuerdo con las normas u especielos	erial aqui descripto ha sido tabricado	Mun Brown						0	
		We hereby certified that the In secondance with the stand	matarial herein der	scribed has been manufe	clured		_	6	
				tions required in your on	der und			20	
ste certificado se smite mediante un el	leterna computarizado y se válido								
		This cartificate is issued by electronic standure. On the	a computarized sys	tem and it is valid with th	H9			Part of the second seco	
Lá Impreso en la parte superior y coma sector entregue luna popla del mismo	o fondo de la boja. En caso que el						a la	ellet-	
							7	to	
		owner of the certificate release	eod e copy, he mus	Lattest its conformity to I	lha				
alquier elleración y / o faisilicación es	lard sujeta a la key.				Wed Use			V	
necesita asegurar la autenticidad de e I S.A., e-meti: clommasi@siat.com.ar	sis carblicado, confactarse con	Any alteration and / or falalific	alion will be subjec	t to the law,			D -1	e	
- than clougnasi@siat.com.ar		if you need to assume the mult to contact Stat S.A., e-mail ci	renucity of this cert.	lficate, please do not tree	lista		Process Engl	eering Departmen	nt
		lo contact Stat S.A., e-may c	ommen(gelal.com	dr			Sector Ingen	ierla da Procesos	

1

.

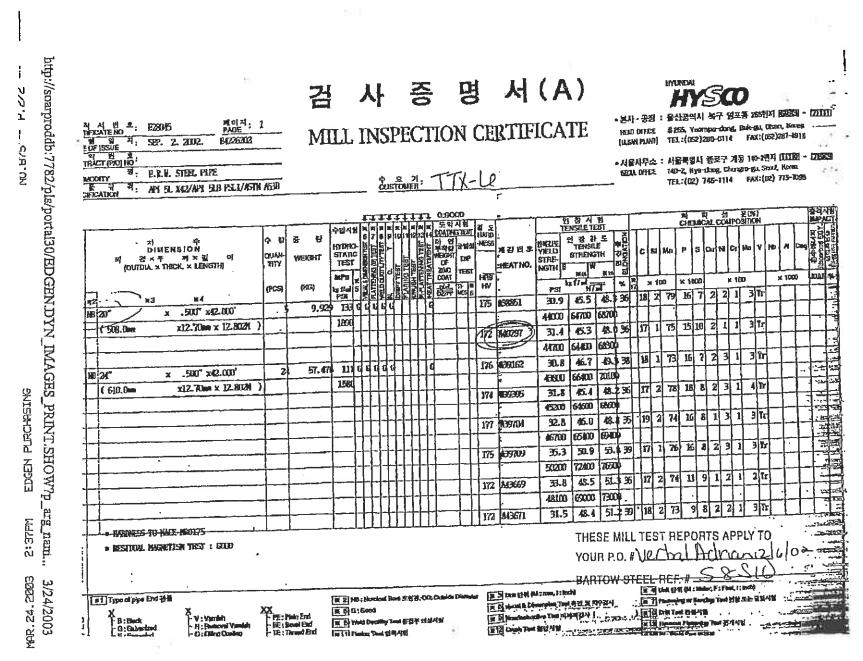
732 Rov 1

Sul SA Giblenali Mus 1018/2027) 93

finities. One.

CLAUDIO G. TOMMASI

-#T#


24

1.14

٠

20-inch Diameter Steel Casing

Mill Certificate

1259-698-598

1-054

F.607/007

F-747

검 사 증 명 서 (A)

CERTIFICATE NO : EZAI53

A 001, 25, 2002.

8 : E.R.W. STEEL PIPE

DATE OF ISSUE

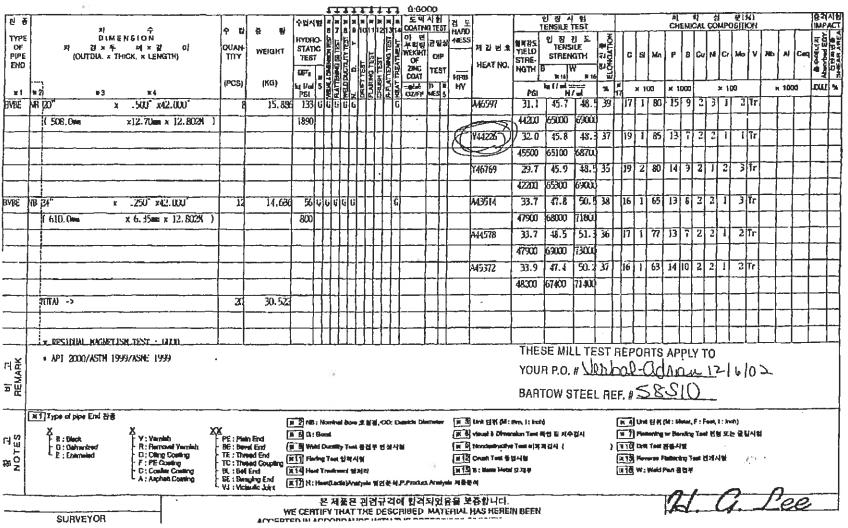
COMMODITY

R B R

PAGE 1

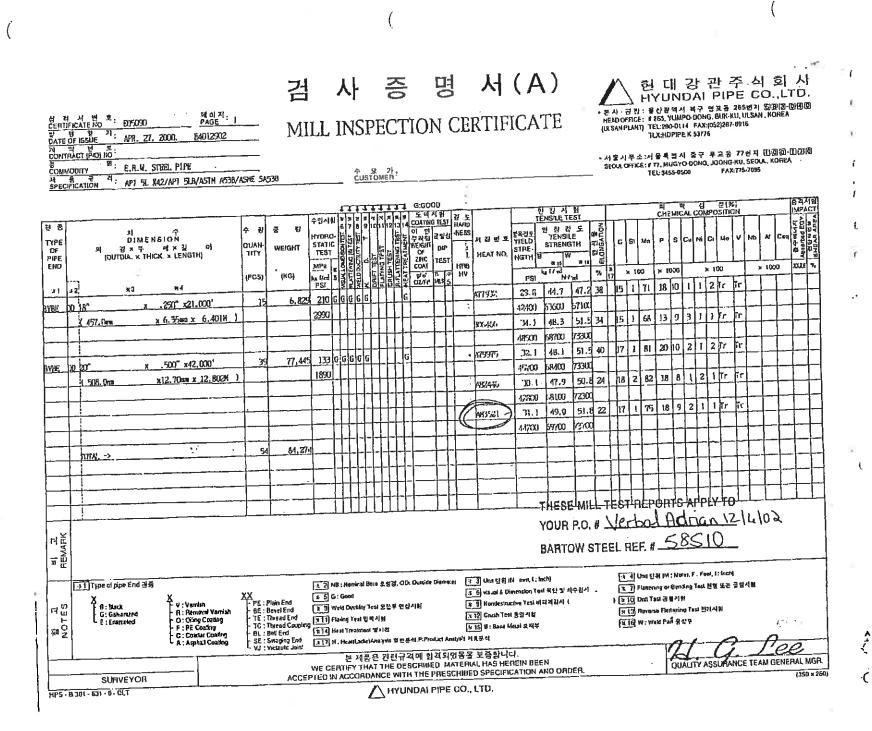
E4242800

4 : API 5L X42/API 5L8 PSI.1/ASTM A538/ASME 5/638

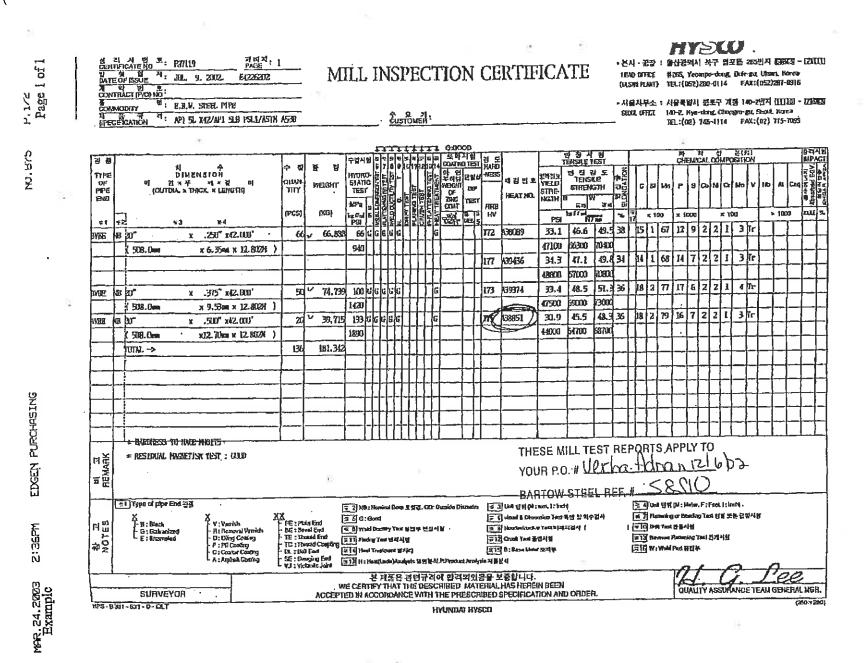

MILL INSPECTION CERTIFICATE

CUSTOMER

- 분사·공강: 음신광리시 북구 영포동 265번지 188558 - [21113] NDA9 OFTKE 유전도, Yeomportking, Duk-ga, Ulsan, Korea (ULSAK PLANT) TEL:(052)280-0114 FAX:(052)287-8916


HYUNDAI

• 서名사무소: 시물특별시 종도구 재동 140-2번지 (DDDQ) ~ [Z22833] SCUL OFFICE 140-Z, Nys-dong, Chongro-ga, Seoud, Kores TEL:(02) 746-1114 FAX:(02) 735-1095


Stee

863-869-8520

MAR-24-2003 03:33PM FROM-Bartow Steel

863-869-8520

명 서(A) 증 검

MILL INSPECTION CERTIFICATE

수 요 가 CUSTOMER

비의지: PAG6

E4242800

71; API 51, X42/AVI 51.8 PSI.1/ASTN A538/ASHE SA538

CENTIFICATE NO *: E2A153

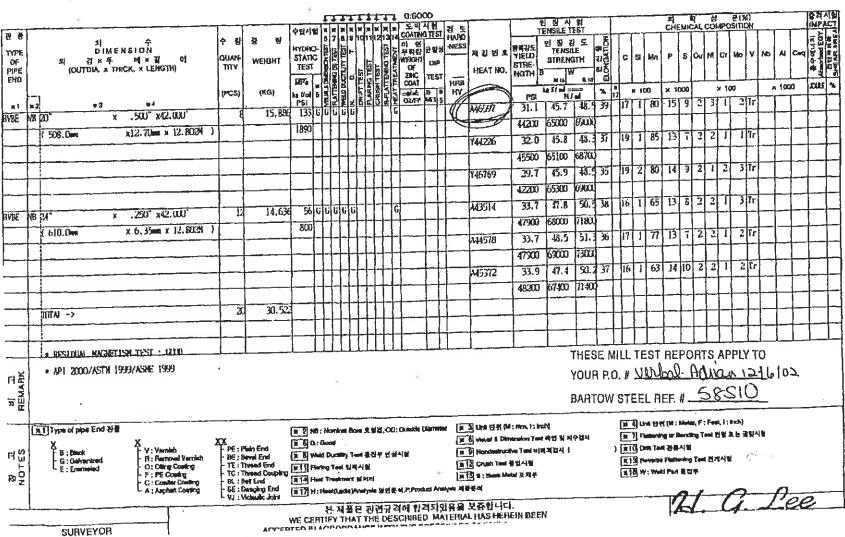
OCT. 25. 202.

8 E.R.W. STEEL PHY

이 자 DATE OF IBSUE

A R W & CONTRACT (PAO) NO

DOMMODITY


A A T

유분사·고장: 음산광역시 부구 업포트 25번지 분위업 - 27(13)

HYUNDAI

HEAD OFFICE: #265. Yeornoo-donal Bus-gal Ulson, Korea (U.SAN PLANT) TEL:(052)280-0114 FAX:(052)287-8910

■ 서울사무소 : 서울특별시 중로구 개동 140-2번지 (1000전 - 2013)203 550U OFFX0E 140-2, Kye-cong, Changro-ga, Secut, Kotea TEL:(02) 745-1114 PAX:(02) 775-7095

MAR-24-2003 D3:30PM FROM-Bartow Steel

1-654

ິ - ເປັນລ່າ ມີນ ເ

٦

Þ

검 사 증 명 서(A)

MILL INSPECTION CERTIFICATE

CUSTOMER

CERTIFICATE NO *: E2A153 DATE OF ISSUE *: OCT. 25. 2112. A R L.

8.

COMMONITY

N A SPECIFICATION

E.R.W. STEEL PIPE

북이지: 1 PAGE

54242800

4 : API SL XAZ/API SLB PSI.I/ASTH AS38/ASHE SAS38

HYSO

~ 분사·공장: 음신광역시 복구 왕포동 265번지 88813 - 2011년 HEAD OFFKE # 265, Yaompo-dong, Buh-gr. Ulsan, Horaz (ULSAN PLANT) TEL:(052)280-0114 FAX:(052)287-8916

·서울사우소 : 서울특별시 중로구 계동 140-2번자 (DCDD) - [Z66]31 SEOUL OFFICE 140-2, Kye-dong, Changro-pa, Seoul, Hores TEL:(02) 745-1114 FAX:(02) 715-7095

						F	2-1-		1-1-		G:GO	00																			
관충	*	¢	कि श्व	ड स	수업시	H K				T	도학	시 11 시 11 1 IF ST	<u>,</u> <u></u>	£	1	인 정 TENSILE	4 12		T			<u>با</u>		ų	성	₽ (vosn	(%)			182	শন
of Pipe End	위 경 **	4 ENSIOŃ ĕ ≫i⊭ 2ù 0) THKCK.,× LENGTH)		WEIGHT	ANDRO STATE TEST ADPic In Val PSI 1351	Percentary of	O IN TEST	-	1921		가 면 부탁망 1961대 OF	27 W &	HAR NES	S - 제강번 또 HEAT NO.	범석경도 Yield Stre-	ମ ହା ହା TEKS STREE	ซ.ร Sile Ngth			o s	Ma	Τ					Τ	ND	N G		PAC
~~~~	#2 ¥3	<b>X4</b>	(PCS)	(KG)	la Pic la Val	5						TEGT	HINE		NGTH	ie vi Ier (f. ed.	W	N N				ļ.,			 × 1		$\Box$				
IVBE	NR 20"	x .500" x42,000'	8	15,896	135		56	r V SI			<u></u>	100		M65.97	<u>PSI</u> 31.1	T 15.7	17 ml   48.				-	15		2	11		l îr	× 1	000	201	1
	( 506, 0ms	x12.70 x 12.802H )			1890	╧╋	╉╋	╈		╆┼╸	$\overline{\cdot}$	-+-		<u> </u>	44200	65000	690						┝╴┦			<u> </u>				+	┦─
						11	11	††	11	┼┼	-+			144226	32.0	45.8	48.	37	-	1	85	13	┥┥	2	$\frac{1}{1}$	┢┐	76	-	-		┢
						$\top$	$\uparrow \uparrow$								45500	65100	6870	1		┢	<u> </u>		┞╼┟		+	<u> </u>	$\left  \cdot \right $	- -	-	+	╀─
_						$\Pi$	Π		1.			- -	A	¥46769	29.7	45.9	48.	9 35	-119	2	80	14	9	2/7	2	3	Tr		+		⊢
BE N	B 24"						$\square$	Π	$\square$				1		42200	65300	6900	d	╈	$\uparrow$				- -	Η	$\square$				1-1	<u> </u>
	1610 0m	.250° x42.000	12	14,636	· .	G	ilili			G				A43514	33.7	47.8	50.	1 X 1	16	Π	65	13	8	2 2	1	3	Tr	+-	+		-
		x 6.35m x 12.8029 }			800		$\square$								47900	68000	7180		1	Π			1	┢	Π				+		
			┟┈┟				-		Ш	Ц_	_			AH1778	33.7	48.5	1	36	17	ग	$\pi$	13	7	2 3	1	2	Îr				
+							┟┟	Ц.				-14			_	63000	7300	1 1													
		·····	-				╎╌┟╌	$  _{\sim}$		1		4		445372	33.9	47.4		37	16	П	63	14	10	22	T	-2	Tr				1
	TUTAL ->		21	30, 523			$  \cdot  $		- -						48200	67400	71400										7				
						- -			╺┠┥			┥╋										$\square$									
-			┝──┼╸						-{-}			╂╂╴							$\square$		_		1		_	_				_	
	<u>in residual marati</u> • APT 2000/Asth 15		L			-1.1			11	<u> </u>					JEGE							PIY						1			-
HEMARK											1			Y	HESE OUR P	.0.#	Ier	mÕ	_	P	νü	1	12	16	l Dè	<u>-</u>					
Ë														B	ARTO	N STE	EL F	REF.	, #	5	83	51	0	_							
NOTES	Yype of pipe End 235 X F 6 : Block G : Gehentred E : Eneroeled	- F: PE Coulting - C: Coulter Counting - A: Auphalt Counting	PË : Plain BE : David TE : These TC : These DL : Bed E SE : Divid VJ : Viciou	End A End A d End M d Coupling M rd M	2 NS; H G G; Gc Web3 Flatting Heating Heating	od Duc <b>ele</b> Tool ( rookty	y Teal 임약시 4개 연/	문건의 영 어디	변원	411	0			Chill (2) 45 (Mil) (Mil) Micrologia (Micrologia Norstantiscolve ( Cruss Yout & Y. S : Clean Matal ()	rr. (z Inch) Ion Tael al <del>i</del> Iour. 14(31) 2(: 141)	만 왜 치수?		] [ ] ( ]		Unit ( Pasta Crist 1 Passa	i el (la ning o iant aj na fia	r : Mar	nr, F : Ang To f f Tuur	Foot, He 21	[ <b>2</b> <del>];</del>	~ h) : 광립/	사망				
	SURVEYOR			WE	CERTIF	FY TH	-IAT 1	THE	DESC	CALOE	ED MU	ATER	음 보 IAL H	출합니다. IAS HEREIN	BEEN							2	L		7	<b>}</b>	2	<u>n</u> e	e		-

MAR-24-2003 03:28PM FRUM-bartow Steel



Appendix B

**Cement Bond Log** 

Feasibility Report July 26, 2004 - Schreuder, Inc.

# Advanced Borehole Services

16406 East Course Dr., Tampa, Fl 33624 813.962.7558 813.269.8404 fax 813.727.7881 cell

January 28, 2004

Mr. Paul Petrey Diversified Drilling 8801 Maslin Drive Tampa, Florida 33637

## Subject: Evaluation of Cement Bond Log Progress Energy Well RW-1 Bartow, Florida

Dear Mr. Petrey:

I have been asked to review the cement bond log, run by Art Benson, P.G. of ABS on the above named well, January 15, 2004.

It is my understanding that the question has been asked, "are there any significant voids in the cement grout seal outside of the 8-inch steel casing, particularly in the interval above the first cement stage (440-615 BOC) and below the bottom of the surface casing, approximately 310 feet below land surface?" It was in this interval (310-440) that a steel tremie pipe was lost and grouted in place.

The first stage of cement had already "hard-set prior to grouting the section above 440 feet. The cement presence and integrity is not being questioned below 440 feet to the bottom of the casing (615 feet).

In order to evaluate the presence of cement and quality of the cement to the steel pipe and formation of a borehole compensated (BMC) acoustic tool was used with receiver spacings at 2 and 3 feet from the transmitter. In addition to the full wave form log, a computer program was used to generate a bond log selectively recording the first arrival amplitude signals, recorded in millivolts (0.2500 mv). Other logs generated include the arrival times of the signal at the near (N) and far (F) receivers, BHC-Delta and the natural gamma log.

C:\WINDOWS\TEMP\PETREY LTR DTD 01282004.DOC\28-JAN-04\TLH

After careful review of the section casing and annular space, which may contain the encased tremie pipe (310-440 feet), it is my professional opinion that there are no section of the casing that have not been satisfactorily grouted or significant area where the grout integrity has been compromised (voids in the cement). In fact, the quality of the cement bond to the casing and formation is one of the best examples of cement bonding I've seen in a well of this diameter.

If you have any further questions, or require additional information, please do not hesitate to contact me at (850) 574-3197, extension 521.

Sincerely,

Thomas Kurder

Thomas Kwader, Ph.D., P.G. Vice President Senior Consulting Hydrogeologist Florida Professional Geologist No. 254 Certified Well Log Analyst (SPWLA) No. 5158 Florida Licensed Water Well Contractor No. 2444





# LETTER OF TRANSMITTAL

Our strengths go deep.

TOSchreuder,_Inc.____ __110_W. Country_Club_Dr.____ ____Tampa, FL.33612_____ __Attn: H. Cliff Harrison, P.G.  RE _____ 

NO. OF COPIES	DRAWING NO.	LAST DATED	CODE	DESCRIPTION
1				Letter of evaluation of cement bond log
		<u> </u>		
				,
			+	

#### THESE ARE TRANSMITTED

For approval

For your use

As requested

For review and comment

- Resubmit ____ Copies for review Submit _____ copies for distribution

Return _____ corrected prints

- Q _____. _____
- No exceptions taken (NE)
- Make corrections noted (MCN)
- Amend and resubmit (AR)

PLEASE NOTE: ______

CC:	
<del></del>	

DIVERSIFIED DRILLING CORPORATION

Per Paul Petrey

P.O. Box 585648, Orlando, FL 32818 • 407/291-4755 • FAX 407/578-8649 formerly MERIDITH ENVIRONMENTAL SERVICES 17174 Jean Street, Fort Myers, FL 33912 • 941/267-1020 • FAX 941/267-0440 formerly WELL WATER SYSTEMS Post Office Box 290699 • Tampa, FL 33687-0699 • Phone 813/988-1132 813/821-6763 • FAX 813/985-6636



Appendix C

**Daily Activity Log** 

Feasibility Report July 26, 2004 - Schreuder, Inc.

SI Project No: FPF-301 Location: Hines Energy Complex Well Number ID: TW-1 Completed by: Matt Vasapolli Date: 10/15/03 Drilling Contractor: Diversified Drilling Corp. Drilling Method: N/A

Time	Activity Description
1155	Arrived at HEC. Signed in at guard station and at office building.
1200	Waited at HEC entrance for DDC to arrive.
1300	Met Bruce, Jimmy, and Rambo of DDC. All signed in, escorted them to the drilling site via County Road 555.
1320	Diversified representatives began unloading a water tank/pump, and a storage unit at well location.
1322	Took a depth to water reading in monitoring well MW-1 (along northern edge of drilling pad). DTW= 4.05 ft bmp. Began recording drill pad dimensions for as-built drawing.
1350	Talked with DDC employees about future plans on and around pad.
1400	DDC off-site.
1400	Finished taking drill pad measurements.
1440	Signed out at HEC office.

Total Daily On-Site Man Hours SI 4.5 DDC 1

ЧP,

SI Project No: FPF-301 Location: Hines Energy Complex Well Number ID: TW-1 Completed by: Matt Vasapolli

Date: 10/16-20/03 Drilling Contractor: Diversified Drilling Corp. Drilling Method: N/A

Time	Activity Description
	Off-site equipment preparation. DDC and SI off-site.

Total Daily On-Site Man Hours SI_0_ DDC_0

SI Project No: FPF-301 Location: Hines Energy Complex Well Number ID: TW-1 Completed by: Matt Vasapolli

Date: 10/21/03 Drilling Contractor: Diversified Drilling Corp. Drilling Method: N/A

Time	Activity Description
1240	Depart SI office (Tampa) for Hines Energy Complex
1410	Arrived at HEC. Signed in at guard station and at office building.
1420	Waited at HEC entrance for DDC drillers to arrive.
1605	Met Bruce and Jason and front entrance to HEC
1615	Drove Bruce and Jason of DDC to drilling pad and unloaded pump.
1640	Took a depth to water reading in monitoring well MW-1 (along northern edge of drilling pad). DTW = 4.03 ft bmp. Finished recording drill pad dimensions for as-built drawing.
1650	Second truck arrived. Unloaded pipe trailer. Met Sean.
1705	Bruce, Jason, and Sean left site.
1715	Locked gate #1 and signed out of HEC.
1720	Left HEC for SI.

Total Daily On-Site Man Hours SI 6.25 DDC 1

SI Project No: FPF-301 Location: Hines Energy Complex Well Number ID: TW-1 Completed by: Jack Breland

Date: 10/23/03 Drilling Contractor: Diversified Drilling Corp. Drilling Method: N/A

Time	Activity Description
1200	Jack Breland on-site waiting for DDC.
1230	DDC on-site with rig and pump trailer.
1330	DDC off-site. Returning with rig.
1400	SI off-site.
1630	Cliff Harrison (SI) and Jeff Stephens (PEF) on-site for field safety meeting.
1730	Jeff off-site.
1800	Rig on-site. Safety meeting with Bruce and four helpers (DDC).
1900	Jack, Cliff, and DDC crew off-site.

Total Daily On-Site Man Hours: SI_6_ DDC_4

SI Project No: FPF-301 Location: Hines Energy Complex Well Number ID: TW-1 Completed by: Jack Breland Date: 10/24/03 Drilling Contractor: Diversified Drilling Corp. Drilling Method: N/A

Time	Activity Description
1000	Jack Breland on-site waiting for DDC.
1030	DDC driver on-site with tractor truck.
1230	Bruce from DDC and four helpers on-site setting up rig. Positioned rig over well location.
1300	Jack B., Bruce, and crew off-site. All checked out with security.

Total Daily On-Site Man Hours SI 3.0 DDC 2.5

10

SI Project No: FPF-301 Location: Hines Energy Complex Well Number ID: TW-1 Completed by: Matt Vasapolli Date: 10/25-26/03 Drilling Contractor: Diversified Drilling Corp. Drilling Method: N/A

Time	Activity Description
	SI and DDC off-site for weekend.
<u></u> ,	

Total Daily On-Site Man Hours SI_0_DDC_0

SI Project No: FPF-301 Location: Hines Energy Complex Well Number ID: TW-1 Completed by: Jack Breland Date: 10/27/03 Drilling Contractor: Diversified Drilling Corp. Drilling Method: N/A

Time	Activity Description
0800	Jack B. on-site. Checked in with security
0900	Bruce (DDS) and two helpers on-site. DDS signed in at guardhouse for safety training.
1000	Two more crew (DDS) on-site. Sent them to safety training. Bruce and helpers on-site.
1130	Placed seven feet of 30-inch diameter conductor casing over hole. DDS crew still on site moving equipment, 5 total personnel. Dana G. (SI) on-site for weekly sampling event.
1300	SI off-site
1400	DDS back on-site.
1500	Unloaded mud pump and set in place. Matt and Holly (SI) unloaded table.
1600	Unloaded and set pipe rack. Jeff (PEF) on-site for safety inspection.
1630	Jeff off-site.
1700	Unloaded and set the mud/cutting separator (goose).
1800	SI off-site

Total Daily On-Site Man Hours SI 9.0 DDC 8.0

SI Project No: FPF-301 Location: Hines Energy Complex Well Number ID: TW-1 Completed by: Jack Breland Date: 10/28/03 Drilling Contractor: Diversified Drilling Corp. Drilling Method: N/A

Time	Activity Description
0700	Drillers had security unlock gate.
0730	Jack B. (SI) and DDC on-site.
0830	Delivered sign-in sheet.
0930	Safety meeting with Jeff and Nathan (PEF).
1100	Safety meeting completed. Drillers setting up mud system. Jeff and Nathan off-site.
1200	DDC off-site for lunch.
1300	DDC on-site. Dana (SI) on-site.
1430	Dana off-site.
1500	Peter S. (SI) on-site.
1600	Peter S. talked with Randy M. (PEF) by phone and discussed monitoring well locations.
1630	Peter S. off-site. DDC are working on digging a hole for the mud pump.
1730	Jack B. and DDC off-site. Called security to check out. Locked gate.

Total Daily On-Site Man Hours SI <u>9.0</u> DDC <u>9.0</u>

SI Project No: FPF-301 Location: Hines Energy Complex Well Number ID: TW-1 Completed by: Jack Breland Date: 10/29/03 Drilling Contractor: Diversified Drilling Corp. Drilling Method: N/A

Activity Description
Security unlocked gate.
Jack B. (SI) on-site. Bruce H (DDC) and two helpers on-site. Delivered sign in sheet to security trailer.
DDC is working on mud system. DDC had to run to Tampa for plumbing materials.
Waste Management on-site and delivered Port-a-Potty.
Waste Management on-site and delivered two dumpsters. One for trash and the other one for collecting drilling fluid and drill cuttings.
Nick and Matt (SI) on-site. Delivered office trailer.
SI and DDC lunch break.
DDC are working on the water line. Robert (DDC welder) on site.
Nick and Matt (SI) off-site. Jeff, Nathan, and Stacey (PE) on site for safety training of welder.
Called Cliff H. (SI) about pad integrity.
Safety officers off site. Cliff called and said there will be a meeting at 0900 tomorrow to correct pad issues.
DDC welding stair railing.
Jack B. and DDC off-site. Called security to check out. Locked gate.

Total Daily On-Site Man Hours SI 9.0 DDC 9.0

SI Project No: FPF-301 Location: Hines Energy Complex Well Number ID: TW-1 Completed by: Jack Breland

Date: 10/30/03 Drilling Contractor: Diversified Drilling Corp. Drilling Method: N/A

Time	Activity Description
0730	Checked in at security trailer. Delivered sign-in sheet.
0800	Johnson Brothers on-site to check on pad.
0830	Peter (SI) on site for pad issues meeting. Drillers are working on water supply line. Vince and Jeff of (PEF), Paul (DDC), and Peter and Jack (SI) discussing drill pad issues.
1030	Drilling pad meeting over.
1100	Jeff, Vince, and Paul off-site. Talked with Cliff (SI) via phone. Discussed drill pad meeting with him.
1200	Jack and DDC off-site for lunch.
1300	Verified pad dimensions.
1430	DDC started welding handrails.
1730	Jack and DDC off-site. Checked out with security. Locked gate.

Total Daily On-Site Man Hours SI 9.0 DDC 9.0

SI Project No: FPF-301 Location: Hines Energy Complex Well Number ID: TW-1 Completed by: Jack Breland Date: 10/31/03 Drilling Contractor: Diversified Drilling Corp. Drilling Method: N/A

Time	Activity Description
0730	Checked in with security. Bruce and two helpers on site (DDC).
0800	DDC driver on-site. Drillers are de-mobilizing around cans.
0900	SI working on office trailer.
1100	Matt V. (SI) on-site with office building materials.
1200	Drillers pulled back gravel and fill material to expose liner around cans. DDC off site for lunch.
1300	Jeff (PEF) called for update. Stressed that the diesel tank must be off- site today. Also stressed that liner must be patched before the end of the day.
1315	Drillers on-site.
1430	Matt V. off-site.
1500	Drillers securing rig area for the weekend.
1600	Checked out with security. Locked gate. DDC and Jack B. off-site.

Total Daily On-Site Man Hours SI 8.5 DDC 7.5

SI Project No: FPF-301 Location: Hines Energy Complex Well Number ID: TW-1 Completed by: Matt Vasapolli

Date: 11/1-2/03 Drilling Contractor: Diversified Drilling Corp. Drilling Method: N/A

Time	Activity Description
	SI and DDC off-site for weekend.
· · · · · · · · · · · · · · · · · · ·	

Total Daily On-Site Man Hours SI_0_ DDC_0

SI Project No: FPF-301 Location: Hines Energy Complex Well Number ID: TW-1 Completed by: Jack Breland

Date: 11/3/03 Drilling Contractor: Diversified Drilling Corp. Drilling Method: N/A

Time	Activity Description
0800	Meeting with Randy Melton (PEF) on drill pad and other issues. Peter, Cliff, and Jack (SI) on site for meeting.
1200	Everyone off-site. Checked out with security and locked gate.

Total Daily On-Site Man Hours SI <u>4</u> DDC <u>0</u>

SI Project No: FPF-301 Location: Hines Energy Complex Well Number ID: TW-1 Completed by: Matt Vasapolli

Date: 11/4/03 Drilling Contractor: Diversified Drilling Corp. Drilling Method: N/A

Time	Activity Description	·
	No work due to pad problems. DDC off-site.	
<u> </u>		

Total Daily On-Site Man Hours SI 0 DDC 0

SI Project No: FPF-301 Location: Hines Energy Complex Well Number ID: TW-1 Completed by: Jack Breland

Date: 11/5/03 Drilling Contractor: Diversified Drilling Corp. Drilling Method: N/A

Time	Activity Description
0930	Jack B. on-site. Checked in with security.
0945	Jeff and Nathan (PEF) on-site for site visit and to check on schedule of DDC. DDC driver on-site and dropped off trailer with 20 inch steel casing and two pallets of bentonite.
1115	Matt and Dana on-site. Working on FRF-202 project. DDC driver off-site.
1145	Johnson Brothers on-site. Reworking pad area.
1215	Secured office building using hurricane ties.
1330	Lunch.
1415	Matt and Dana off-site.
1515	DDC drillers back with doghouse.
1530	Bruce DDC on-site with two helpers.
1600	Raining
1630	Covered in area around cans with fill material. Rain. Checked out with security and locked gate. Off-site.

Total Daily On-Site Man Hours SI <u>6.5</u> DDC <u>2.75</u>

SI Project No: FPF-301 Location: Hines Energy Complex Well Number ID: TW-1 Completed by: Jack Breland Date: 11/6/03 Drilling Contractor: Diversified Drilling Corp. Drilling Method: N/A

Time	Activity Description
0730	Jack B. on-site. Bruce (DDC) and two helpers on-site. Delivered sign-in sheet to guard house.
0800	DDC setting up rig platform. Jimmy (DDC) on-site to install one wood retaining fence adjacent to drilling pad.
0900	DDC welder on-site. Johnson brothers on-site to install second wood retaining fence.
1100	DDC finished hooking up discharge pipe from mud pump to the designated discharge area over the dam into SA-8 retention area.
1200	Johnson brothers placed gravel in between fences and pad berm.
1200	Lunch
1400	Working on flow line to the rig.
1530	Welder finished welding conduit pipe between the pit casing and sump.
1600	DDC concentrating on area around rig platform.
1730	Jack B. and DDC off-site. Locked gate. Checked out with security.

Total Daily On-Site Man Hours SI 9.0 DDC 9.0

SI Project No: FPF-301 Location: Hines Energy Complex Well Number ID: TW-1 Completed by: Jack Breland

Date: 11/7/03 Drilling Contractor: Diversified Drilling Corp. Drilling Method: N/A

Time	Activity Description
0730	Jack B. on-site. Bruce (DDC) and two helpers on-site. Checked in with security.
0800	Rig floor set. Installing water line.
1000	Derrick up and leveled.
1100	Jeff and Jamie (PEF) on-site for an update and left.
1200	Connected 6-inch flow line to mud pump. Safety chained all high- pressure hoses. Matt V. (SI) on-site with office equipment.
1230	Collected well construction info for pad monitoring well MW–1. Construction data entered into field data form, along with water quality data.
1300	DDC and SI off-site.

Total Daily On-Site Man Hours: SI <u>5.5</u> DDC <u>5.5</u>

SI Project No: FPF-301 Location: Hines Energy Complex Well Number ID: TW-1 Completed by: Matt Vasapolli Date: 11/8-9/03 Drilling Contractor: Diversified Drilling Corp. Drilling Method: N/A

Time	Activity Description
	SI and DDC off-site for weekend.

Total Daily On-Site Man Hours: SI 0 DDC 0

SI Project No: FPF-301 Location: Hines Energy Complex Well Number ID: TW-1 Completed by: Jack Breland Date: 11/10/03 Drilling Contractor: Diversified Drilling Corp. Drilling Method: N/A

Time	Activity Description
0800	Jack B. on-site. Checked in with security. Waiting on drillers.
0830	DDC welder and one helper on-site.
0900	Driller Bruce and one helper on-site.
0930	Called Jeff and informed him of the lock on the electric panel. He informed Jack B. that he would find someone to unlock the panel.
1000	PE security on-site. Opened electric panel for electrician. Drillers working on mud/cuttings separator (goose).
1100	Electrician on-site.
1200	Lunch
1300	Still working on flow line to the goose. Bruce handed Jack list of all chemical quantities DDC has on-site. Electrician powered up shed. Left site.
1500	DDC still fixing problem associated with the goose.
1630	Preparing to mix drilling fluid and check drilling mud system.
1730	SI and DDC off-site. Checked out with security. Locked gate.

Total Daily On-Site Man Hours: SI 8.5 DDC 8.0

SI Project No: FPF-301 Location: Hines Energy Complex Well Number ID: TW-1 Completed by Jack Breland Date: 11/11/03 Drilling Contractor: Diversified Drilling Corp. Drilling Method: Mud Rotary

PILC	PILOT HOLE, REAMING, CASING INSTALLATION, AND CEMENTING.	
Time	Activity Description	
0730	Jack Breland (SI) on-site. Bruce Harmon (DDC) on-site with two helpers (Shaun and Jason). Mixing drilling fluid. Preparing to start drilling pilot hole.	
0800	Spudded well. Bit diameter: 9 5/8-inches. BHA length (bit + sub): 1.5 feet. Kelly travel: 32 ft. Called Security and informed then of on-site personnel.	
0830	Kelly down at the depth of 32 ft below land surface (bls). Circulating up cuttings.	
0845	Adding DP#1 (31.00 ft) to kelly.	
0900	Rig down. Fuel filters collapsed. Changing filters while circulating.	
1000	Working on rig. Fuel problems.	
1100	On bottom drilling at the depth of 32 ft bls.	
1128	Kelly down at the depth of 62 ft bls. Encountered light olive gray confining clay at the depth of 56 ft bls. Circulating hole.	
1130	Preparing to ream borehole to the diameter of 24 inches using a stage bit. Matt V. and Dana G. (SI) on-site.	
1200	Connected stage bit (3.5 ft length) to Kelly. Paul P. (DDC) on-site.	
1210	Reaming nominal 24-inch diameter hole at the depth of 6 ft bls.	
1256	Kelly down and circulating up cuttings. Jimmy and Rambo (DDC) on- site with cement truck.	
1400	Reamed 24-inch diameter hole to the depth of 64 ft bls. The crew is getting ready for setting 20-inch diameter surface casing.	
1500	Circulated up cuttings. Cleaned nominal 24-inch diameter borehole by running bit sting up and down. Tripping out of the hole. Matt and Dana (SI) off-site. Setting 20-inch diameter steel casing inside borehole.	

PILOT HOLE, REAMING, CASING INSTALLATION, AND CEMENTING.	
Time	Activity Description
1610	Placed first steel casing joint (21.61 ft) up in the air.
1625	Lowered Casing #1 into hole and added centralizers halfway down the casing.
1635	Raised casing #2 (42.00 ft) in the air. Welding casing #1 to casing #2.
1655	Adding 3 ft cementing sub to casing string. Total length of casing string is 63.61 ft bls.
1720	Lowered 2 ¹ / ₄ -inch diameter cement pipe inside casing to the depth of 60 ft bls. And sealed casing head flange.
1745	Attached cement hoses to cement pump. Preparing to pre-flush line.
1755	Flushed line with 80 gallons (2 brls) of fresh water.
1815	Cementing annulus between 24-inch diameter borehole and 20-inch diameter steel casing. Theoretical volume = 0.8727 sacks/ft = 55.5 sacks.
1835	Pumped 125 sacks of cement into annulus using the pressure grout method. (225% of theoretical volume). Cement returns to surface.
1845	Flushed line with 30 gallons (0.71 brls) of fresh water.
1855	Pumped 57 sacks of cement around conductor cans and pad area.
1900	Cleaned up site. Jack B. and crew off-site. Called security and informed them of our departure.

Total Daily On-Site Man Hours: SI_12_ DDC_12

____

SI Project No: FPF-301 Location: Hines Energy Complex Well Number ID: TW-1 Completed by Jack Breland Date: 11/12/03 Drilling Contractor: Diversified Drilling Corp. Drilling Method: Mud Rotary

PILOT HOLE BELOW SURFACE CASING	
Time	Activity Description
0700	Jack B. (SI) on-site. Bruce Harmon (DDC) on-site with two helpers (Shaun and Jason). Mixing drilling fluid. Waiting on 17-inch center punch bit.
0800	Called Security and informed then of on-site personnel. DDC said it would be around noon before they could get started. The crew is cleaning up the site.
0900	Called Cliff Harrison (SI) and informed him of the days proceedings. The crew is pumping cuttings into discharge area. Jack B. off-site.
1000	Jack B. on-site. Crew is cutting off top of wellhead. Preparing to drill out cement inside casing with a 17-inch diameter center punch bit.
1130	Rig down. Starter has to be replaced. Matt V. (SI) on-site. DDC are cementing annulus with cement slurry. Tagged annulus at 12 ft bls.
1245	Rig back on line. Small DDC drilling rig on-site to place in three monitoring wells around drill pad. Jose (driller) and two helpers.
1330	Preparing to drill out cement with 17-inch diameter bit to the depth of 65 ft bls.
1400	Tagged cement inside casing at the depth of 52 ft bls. Matt is overseeing monitoring well placements.
1437	Kelly down and circulating up cement cuttings. Pumped cuttings over the berm and into discharge area.
1530	Tripped out 17-inch diameter center punch stage bit.
1540	Tripped in hole with 9 5/8-inch (1.0 ft) diameter pilot hole bit.
1545	Added DP#1 (29.76 ft) to bit. Total string length: 30.76 ft.
1550	Added Sub (0.48 ft) and DP#2 (31.00 ft) to drill string. Total length of string: 62.21 ft.
1650	Kelly down and circulating at the depth of 93.21 ft bls.
1703	Added DP#3 (30.50 ft) to drill string. Total string length: 92.71 ft.

PILOT HOLE BELOW SURFACE CASING	
Time	Activity Description
1710	On bottom drilling at the depth of 93.21 ft bls.
1740	Kelly down and circulating at the depth of 125.21 ft bls.
1750	Driller is shutting down for the day. Pulling up inside the surface casing.
1800	SI and DDC off-site. Locked gate and notified security of our departure.

Total Daily On-Site Man Hours SI 12 DDC 12

SI Project No: FPF-301 Location: Hines Energy Complex Well Number ID: TW-1 Completed by Jack Breland Date: 11/13/03 Drilling Contractor: Diversified Drilling Corp. Drilling Method: Mud Rotary 0-185 ft bls Reverse Air 185-192 ft bls

	PILOT HOLE BELOW SURFACE CASING	
Time	Activity Description	
0700	Jack Breland (SI) on site. Bruce Harmon (DDC) on site with two helpers (Shaun and Jason). Mixing drilling fluid.	
0800	Called Security and informed then of on-site personnel. Circulating while mixing drilling fluid.	
0815	Added DP#4 (30.41 ft) to drill string. Total string length: 123.12 ft.	
0845	Kelly down and circulating at the depth of 155.12 ft bls.	
0905	Added DP#5 (30.50 ft) to drill string. Total string length: 153.62 ft.	
0950	Drill string dropped three feet while drilling at the depth between 182 to 185 ft bls. Kelly is down at the depth of 185.62 ft bls.	
1000	Called Cliff H. (SI) to inform him that the driller (Bruce) wants to switch over to reverse air and finish the pilot hole.	
1030	Cliff H. called back and said that we have verbal approval from Judy Richtar of the FDEP to switch over to reverse air.	
1100	Matt V. and Dana G. (SI) on-site. Matt V. is working in the field office. Dana G. is working on the FRF-202 project.	
1300	DDC welder on-site. Drilling crew is switching over to reverse-air drilling. Dana off-site.	
1430	Matt V. off-site. The drilling crew is waiting on the welder to finish before they can proceed with their work.	
1545	Started reverse air circulation method of drilling. Pumping approximately 80 gallons per minute from the formation.	
1600	Kelly down and circulating at the depth of 185.62 ft.	
1630	Added DP#6 (30.50 feet). Total string length 184.12 ft.	
1730	Drilled to 192 ft bls. Stopped for the day. Jack B. and DDC off-site. Checked out with security and locked gate.	

Total Daily On-Site Man Hours: SI 9.5 DDC 9.5

SI Project No: FPF-301 Location: Hines Energy Complex Well Number ID: TW-1 Completed by Jack Breland Date: 11/14/03 Drilling Contractor: Diversified Drilling Corp. Drilling Method: Mud Rotary 0-185 ft bls Reverse Air 185-247 ft bls

	PILOT HOLE BELOW SURFACE CASING	
Time	Activity Description	
0700	Jack Breland on-site. Bruce Harmon (DDC) on-site with two helpers (Shawn and Jason).	
0800	Called security and informed them of on-site personnel. On bottom drilling at a depth of 192 ft bls. Dredge approximately five feet of fill.	
0845	Kelly down and circulating at the depth of 216.12 feet.	
0905	Added DP#7 (31.00 ft) to drill string. Total string length: 215.12 ft. On bottom drilling.	
1030	Plugged off drill string with clay cuttings. Unplugged line by pouring water into the top of the string and rotating drill string.	
1045	On bottom drilling at a depth of 225 ft bls.	
1135	Kelly down and circulating at a depth of 247.12 ft bls.	
1200	DDC stop activities for the weekend.	
1230	Drillers secured site. Raised drill string 60 ft from the bottom. Performed tailgate safety meeting. DDC left site.	
1300	Matt V. (SI) on-site. Completing weekly reports.	
1400	Jack and Matt off-site. Checked out with security and locked gate.	

Total Daily On-Site Man Hours: SI_7.0 DDC_5.0

SI Project No: FPF-301 Location: Hines Energy Complex Well Number ID: TW-1 Completed by Jack Breland

1

Date: 11/15-16/03 Drilling Contractor: Diversified Drilling Corp. Drilling Method: Mud Rotary 0-185 ft bls Reverse Air 185-247 ft bls

11

Total Daily On-site Man Hours: SI 0 DDC 0

SI Project No: FPF-301 Location: Hines Energy Complex Well Number ID: TW-1 Completed by Jack Breland

Г

Date: 11/15-16/03 Drilling Contractor: Diversified Drilling Corp. Drilling Method: Mud Rotary 0-185 ft bls Reverse Air 185-247 ft bls

Time	Activity Description
	SI and DDC off-site for weekend.

Total Daily On-Site Man Hours: SI_0_DDC_0_

SI Project No: FPF-301 Location: Hines Energy Complex Well Number ID: TW-1 Completed by: Jack Breland

Date: 11/17/03 Drilling Contractor: Diversified Drilling Corp. Drilling Method: Mud Rotary: 0 –192 ft. bls Reverse-air: 192 – 340 ft bls

	Reverse-Air Pilot Hole Drilling below Surface Casing	
Time	Activity Description	
0700	Jack Breland (SI) on-site. Preparing office and field equipment for the days drilling activities.	
0800	Called security and informed them of on-site personnel. Paul (DDC) called, the driller and his crew will be on-site around noon.	
1000	SI bagged drill cuttings from grab samples taken from borehole. Three sets of samples are bagged from the depths: 60 – 240 ft bls.	
1200	Marked sample bags from 250 to 350 ft. Updated lithology logs from grab samples taken from 190 to present depth of 247 ft bls.	
1200-1300	Off-site for lunch.	
1300	DDC and SI on-site. Adding air line inside drill pipe. Preparing to send drill string to the bottom of the borehole.	
1330	Added DP#8 (31.80 ft) to drill string. Total length of string: 246.92 ft. Drilling at the depth of 247.12 ft bls.	
1508	Kelly down and circulating at the depth of 278.12 ft bls.	
1535	Added DP#9 (31.00 ft) to drill string. Total length of string: 278.12 ft.	
1600	Kelly down and circulating at the depth of 310.12 ft. Encountered the top of the Suwannee Limestone at the depth of 295 ft bls.	
1610	Added DP#10 (30.50 ft) to drill string. Total length of string. 308.62 ft. Collected reverse-air water sample. Sample #142.	
1709	Kelly down and circulating at the depth of 340.62 feet bls.	
1745	Tripped out of the borehole with 9 5/8-inch diameter bit.	
1800	DDC shut down for the day. Called security to inform them of our departure. Locked gate #1. DDC and SI off-site.	

Total Daily On-Site Man Hours SI 10.0 DDC 5.0

SI Project No: FPF-301 Location: Hines Energy Complex Well Number ID: TW-1 Completed by Jack Breland Date: 11/18/03 Drilling Contractor: Diversified Drilling Corp. Drilling Method: Mud Rotary 0-185 ft bls Reverse Air 247-350 ft bls

	Reaming for Intermediate Casing	
Time	Activity Description	
0700	Jack Breland on-site. Bruce Harmon (DDC) on-site with two helpers (Shawn and Jason).	
0800	Called security and informed them of on-site personnel. The crew is placing 19-inch diameter stage bit (5.68 ft) onto DP#1 (29.80 ft). Total Length: 39.78ft.	
0845	Added 2 nd 19-inch diameter bit and sub (4.3 ft) onto the top of DP#1. Total Length: 38.76 ft.	
0905	Reamed out cement (17-inches to 19-inches) inside casing between 58 and 64 ft bls. Kelly down at the depth of 70.76 ft bls. Driller is drilling dry. He hopes to pick up enough water to evacuate the cuttings from the borehole within a rod or two.	
1012	Added DP#2 (31.00 ft) to drill string. Total string length: 69.76 ft. On bottom dry reaming at the depth of 71.00 ft bls. No water is being added.	
1030	DDC welder (Robert) on-site. Dana (SI) on-site. She is collecting data for FPF-202 study.	
1050	Kelly down at the depth of 101.76 ft bls. No returns. Reamed cuttings are falling down the borehole.	
1105	Added DP#3 (30.50 ft) to drill string. Total string length: 100.26 ft. On bottom dry reaming at the depth of 102 ft bls. Driller will ream 10 ft, raise drill string, and repeat this process as he advances the hole.	
1130	Kelly down at the depth of 133.76 ft bls. No returns. Cuttings are falling down the borehole.	
1135	Shut down. Working on rig. Lunch break.	
1235	Added DP#4 (30.41 ft) to drill string. Total string length: 130.41 ft. On bottom dry reaming at the depth of 130.0 ft bls.	
1332	Kelly down at the depth of 165.76 ft bls. No returns. Reamed cuttings are falling down the borehole.	
1344	Added DP#5(30.50 ft) to drill string. Total string length: 160.91 ft. On bottom dry reaming at the depth of 166.0 ft bls.	

	Reaming for Intermediate Casing	
Time	Activity Description	
1400	Stopped at the depth of 185 ft bls. Switched over to reverse air drilling in order to ream the rest of the open hole. Dana (SI) off-site.	
1500	Dredging up cuttings as driller is slowly advancing borehole. Driller will pump drilling fluid into hole at different intervals. Currently dredging at the depth of 166 ft bls. Welder (DDC) off-site.	
1600	Dredging at the depth of 170 ft bls. Pumping fluid often. Slow rate of formation flow. Driller may tie into the filtration water system if flow does not increase.	
1630	Dredging at the depth of 174 ft bls. Driller dry reamed the borehole to the depth of 185 ft bls. Bruce (driller) seems to think that he will not need any makeup water.	
1730	Dredging at the depth of 178 ft bls. Flow line keeps plugging with borehole cuttings. Slowly dredging back to the depth of 185 ft bls.	
1745	Driller is shutting down for the night. DDC is fueling up equipment. DDC said that the pad monitoring wells #2 and #3 would be developed tomorrow.	
1800	Called Security to inform them of our hiatus. Gate #1 locked. Jack B. (SI) and DDC off-site.	

Total Daily On-Site Man Hours: SI 10.0 DDC 10.0

SI Project No: FPF-301 Location: Hines Energy Complex Well Number ID: TW-1 Completed by Jack Breland

Date: 11/19/03 Drilling Contractor: Diversified Drilling Corp. Drilling Method: Reverse-air Summary: Dredged from 173 to 175 ft. bls.

REAMI	<b>REAMING 9 5/8-INCH DIAMETER PILOT HOLE TO 19-INCHES IN DIAMETER</b>	
Time	Activity Description	
0730	Jack Breland on-site. Bruce Harmon (DDC) on-site with two helpers (Shawn and Jason).	
0800	Called security and informed them of on-site personnel. The crew is repairing a leak from the 6-inch flat hose coming from the sump pump.	
0830	Driller started dredging nominal 19-inch borehole at the previous depth of 173 ft bls. It is beginning to rain. Heavy at times.	
0930	Raining heavy. Driller is currently dredging at the depth of 173 ft bls. Paul (DDC) on site with equipment to develop pad monitor wells.	
1000	DDC is re-circulating formation water back into the borehole after the suspended cuttings have been removed.	
1030	Paul off-site. Jason is developing pad monitoring wells with a small down hole pump.	
1145	Bruce said that he does not think the water from the hole and the make up water is enough to get the cuttings out of the hole.	
1245	Bit or rod is plugged. Tripping out of the hole to locate the plugged location.	
1450	Dana (SI) on-site. Working in the field office.	
1510	Dana off-site with well information for main office. Out of the hole with bit. Two of the three openings in the bit were plugged.	
1530	Tripping back into the borehole with drill string. Water level inside the well was measured at the depth of 58.5 ft btoc.	
1600	Dredging up cuttings as driller is slowly advancing borehole depth. Currently dredging at the depth of 172 ft bls.	
1700	Dredging at the depth of 173 ft bls. Cuttings are making their way from out of the borehole.	
1800	Dredged to the depth of 174 ft bls. Checked out with Security and locked gate. SI and DDC off-site.	

Total Daily On-Site Man Hours: SI 9.5 DDC 9.5

SI Project No: FPF-301 Location: Hines Energy Complex Well Number ID: TW-1 Completed by: Jack Breland Date: 11/20/03 Drilling Contractor: Diversified Drilling Corp. Drilling Method: Reverse-air: Summary: Dredged from 174 to 185 ft bls Reamed from 185 to 210 ft bls

Reaming 9 5/8-inch diameter pilot hole to 19-inch diameter	
Time	Activity Description
0730	Jack Breland (SI) on-site. Bruce Harmon (DDC) on-site at 0700 with two helpers, Shawn and Jason. Currently dredging at the depth of 175 ft bls.
0800	Called security and informed them of on-site personnel. Dredging at the depth of 178 ft bls.
0900	Dredging at the depth of 181 ft bls. Broke through bridged area. Drilling rate has increased significantly.
1000	Reaming at the depth of 185 ft bls. Dredged back to the reamed borehole that was drilled during dry reaming operation.
1100	Reaming at the depth of 189 ft bls.
1130	Kelly down at the depth of 192.91 ft bls. Adding DP#6 (30.50') to drill string. Total Length of drill string: 191.41 ft.
1230	Rig down. 6.0-inch flat hose coming from sump pump blew apart at a connection. Sand locked. Unplugging line using backhoe arm and gravity.
1430	Rig still down. Driller fixing small washout along left south side of berm before reconnecting hose line.
1535	Reaming at the depth of 193 ft bls.
1600	Reaming at the depth of 195 ft bls.
1700	Reaming at the depth of 201 ft bls. Plugged up only once during the last hour of reaming.
1745	Dredged to the depth of 210 ft bls. Stopped here for the day.
1800	Checked out with Security and locked gate. SI and DDC off-site.

Total Daily On-Site Man Hours SI 10.0 DDC 10.5

SI Project No: FPF-301 Location: Hines Energy Complex Well Number ID: TW-1 Completed by: Jack Breland Date: 11/21/03 Drilling Contractor: Diversified Drilling Corp. Drilling Method: Reverse-air: Summary: Reamed from 210 to 223 ft bls

	Reaming 9 5/8-inch diameter pilot hole to 19-inch diameter	
Time	Activity Description	
0800	Jack Breland (SI) on-site. Bruce Harmon (DDC) on-site at 0700 with two helpers, Shawn and Jason. Currently rearning at the depth of 212 ft bls.	
0830	Called security and informed them of on-site personnel. Reaming at the depth of 214 ft bls.	
0900	Reaming at the depth of 216 ft bls. Broke through bridged area. Drilling rate has increased significantly.	
1000	Reaming at the depth of 220 ft bls. Dredged back to the reamed borehole that was drilled during dry reaming operation.	
1100	Reaming at the depth of 221 ft bls. Plugged twice during this hour.	
1200	Nick (SI) on-site. Field office work.	
1230	Kelly down at the depth of 222.91 ft bls. Nick off-site. Driller is circulating up cuttings using reverse-air.	
1300	Bruce informed SI that they would be stopping here for the weekend.	
1330	Drillers have raised drill string and shut off rig. The site has been picked up and secured for the weekend. DDC off-site.	
1400	Jack B. finished with office work and locked up. Checked out with security and left the site for the weekend.	

Total Daily On-Site Man Hours SI 10.0 DDC 10.5

SI Project No: FPF-301 Location: Hines Energy Complex Well Number ID: TW-1 Completed by Jack Breland

r

Date: 11/22-23/03 Drilling Contractor: Diversified Drilling Corp. Drilling Method: Mud Rotary 0-185 ft bls Reverse Air 185-247 ft bls

Time	Activity Description	
	SI and DDC off-site for weekend.	
		······

Total Daily On-Site Man Hours: SI 0 DDC 0

SI Project No: FPF-301 Location: Hines Energy Complex Well Number ID: TW-1 Completed by: Jack Breland

Date: 11/24/03 Drilling Contractor: Diversified Drilling Corp. Drilling Method: Reverse-air: Summary: Reamed from 210 to 223 ft bls

	Reaming 9 5/8-inch diameter pilot hole to 19-inch diameter	
Time	Activity Description	
0800	Jack B. (SI) on-site and opened up field office. Waiting on DDC	
0830	Drilling area still clean and secure from weekend shutdown. No spills were noted.	
0900	Cliff H. (SI) called and informed me that Bruce (DDC) had a doctor's appointment this morning and will be out later to drill today. Another driller has been dispatched to the job site until Bruce arrives.	
1030	Dana G. (SI) on-site. Collected field data and is working on the FPF-202 study.	
1115	Joe P. (driller for DDC) on-site with two helpers, (Jason and Shawn).	
1200	Circulating up small quantities of cuttings. Preparing to add DP#7.	
1240	Added DP#7 (31.00 ft) to drill string. Total length of drill string is 222.41 ft.	
1300	Reaming at the depth of 228 ft bls. Started reaming into the clay- confining zone located between 225 and 270 ft bls. Plugged off several times in the past hour.	
1345	Dana G. off-site. Reaming at the depth of 330 ft bls.	
1700	Jack B. finished with office work and locked up. Checked out with security. DDC and SI left the site.	

Total Daily On-Site Man Hours SI 6.0 DDC 6.5

SI Project No: FPF-301 Location: Hines Energy Complex Well Number ID: TW-1 Completed by: Jack Breland

Date: 11/25/03 Drilling Contractor: Diversified Drilling Corp. Drilling Method: Reverse-air: Summary: Reamed from 265 to 318 ft bls

	Reaming and Geophysical Logging	
Time	Activity Description	
0730	Jack B (SI) and DDC on-site. Currently reaming at the depth of 268 ft bls.	
0800	Rig down. Sprung a leak on the topside of the gooseneck on rig. Driller shut down to fix it.	
0900	Reaming at the depth of 284 ft bls. Collected and sampled water quality data from the monitoring wells.	
0915	Kelly down and circulating at the depth of 286.41 ft bls.	
0920	Added DP#9 (31.00 ft) to drill string. Total length of drill string is 285.21 ft. Added additional lengths to airline	
1000	Reaming at the depth of 295 ft bls (top of Suwannee Limestone).	
1045	Kelly down and circulating at the depth of 317.21 ft bls. The base of the 14-in diameter steel casing will be set at the depth of 315 ft bls. Conditioning borehole. Geophysical logger is scheduled to be on-site at 1500 hours to run caliper log of 19-inch diameter borehole.	
1130	Tripping drill string out of the hole, 9 joints plus bits and subs.	
1230	Tripped out of hole. Measured 14-in (ID) diameter steel casing joints. Total casing lengths on-site is 361.15 ft. Driller will leave out one joint measuring 41.25 ft and hang the rest of the casing 5.0 ft above land surface.	
1300	Lunch	
1400	Cleaning area. Preparing for geophysical logging and placement of the intermediate steel casing.	
1440	Geophysical logger (Advanced Borehole Services) on-site to run caliper log of the reamed borehole.	
1530	Logger (Art B.) off-site. Driller lowered 1 st 14-in diameter casing joint (42.55 ft) into the borehole and left hanging for the night.	
1600	DDC off-site. Cliff H. (SI) on-site. Technical site meeting with SI field personnel.	
1630	Checked out with security. Jack B. and Cliff H. (SI) off-site.	

Total Daily On-Site Man Hours SI 8.0 DDC 8.0

SI Project No: FPF-301 Location: Hines Energy Complex Well Number ID: TW-1 Completed by: Jack Breland Date: 11/25/03 Drilling Contractor: Diversified Drilling Corp. Drilling Method: Reverse-air: Summary: Reamed from 265 to 318 ft bls

	Reaming and Geophysical Logging
Time	Activity Description
0730	Jack B (SI) and DDC on-site. Currently reaming at the depth of 268 ft bls.
0800	Rig down. Sprung a leak on the topside of the gooseneck on rig. Driller shut down to fix it.
0900	Reaming at the depth of 284 ft bls. Collected and sampled water quality data from the monitoring wells.
0915	Kelly down and circulating at the depth of 286.41 ft bls.
0920	Added DP#9 (31.00 ft) to drill string. Total length of drill string is 285.21 ft. Added additional lengths to airline
1000	Reaming at the depth of 295 ft bls (top of Suwannee Limestone).
1045	Kelly down and circulating at the depth of 317.21 ft bls. The base of the 14-in diameter steel casing will be set at the depth of 315 ft bls. Conditioning borehole. Geophysical logger is scheduled to be on-site at 1500 hours to run caliper log of 19-inch diameter borehole.
1130	Tripping drill string out of the hole, 9 joints plus bits and subs.
1230	Tripped out of hole. Measured 14-in (ID) diameter steel casing joints. Total casing lengths on-site is 361.15 ft. Driller will leave out one joint measuring 41.25 ft and hang the rest of the casing 5.0 ft above land surface.
1300	Lunch
1400	Cleaning area. Preparing for geophysical logging and placement of the intermediate steel casing.
1440	Geophysical logger (Advanced Borehole Services) on-site to run caliper log of the reamed borehole.
1530	Logger (Art B.) off-site. Driller lowered 1 st 14-in diameter casing joint (42.55 ft) into the borehole and left hanging for the night.
1600	DDC off-site. Cliff H. (SI) on-site. Technical site meeting with SI field personnel.
1630	Checked out with security. Jack B. and Cliff H.off-site.

Total Daily On-Site Man Hours SI 8.0 DDC 8.0

SI Project No: FPF-301 Location: Hines Energy Complex Well Number ID: TW-1 Completed by: Jack Breland

Γ

Date: 11/26/03 Drilling Contractor: Diversified Drilling Corp. Drilling Method: Reverse-air: Summary: Set 315 ft of 14-inch steel casing. Pressure grouted

Time	ND CEMENTED 14-INCH DIAMETER STEEL CASING TO 315 FT BLS Activity Description
0700	Jack B. (SI) on-site. Opened up office. DDC on-site. DDC welder on- site.
0740	Welding14-in diameter steel casing #1 (42.55 ft) to casing #2 (42.90 ft). Total depth of casing string: 85.45 ft. Centralizers are placed at the welded connection. All pipe joints will be welded with double wraps.
0800	Lowered casing string into the hole. Placed casing joint #3 (41.90 ft) over the top of the casing string and started welding the joints together.
0825	Welding14-in diameter steel casing #3 to casing string. Total depth of casing string: 127.35 ft. Centralizers are placed at the welded connection.
0830	Lowered casing string into the hole. Placed casing #4 (42.05 ft) on top of the casing string and started welding.
0900	Welding14-in diameter steel casing #4 to casing string. Total depth of casing string: 169.40 ft. Centralizers were added.
0905	Lowered casing string into the hole. Placed casing #5 (42.70 ft) over the top of the casing string and started welding.
0930	Welding14-in diameter steel casing #5 to casing string. Total depth of casing string: 212.10 ft.
0935	Lowered casing string into the hole. Placed casing joint #6 (42.65 ft) over the top of the casing string and started welding.
0940	Welding14-in diameter steel casing #6 to casing string. Total depth of casing string: 254.75 ft. Centralizers were added.
1000	Lowered casing string into the hole. Placed casing joint #7 (42.85 ft) over the top of the casing string and started welding.
1005	Welding14-in diameter steel casing #7 to casing string. Total depth of casing string: 297.60 ft. Cement operators of DDC on-site. (Rambo and Jimmy).
1025	Lowered casing string into the hole. Placed the last casing joint #8 (22.30 ft) over the top of the casing string and started welding.
1055	The header plate is welded to top of the casing string. The base of the casing string is located at approximately 315 ft below land surface. Approximately 5.0 ft hanging up to the rig floor. Casing string welded and secured to the rig floor.

1100	Running 2-in diameter steel cement tubing (15 joints) into the well to
	approximately 300 ft bls.
1120	Down time. Ran out of cement tubing at the depth of 189 ft. The truck that is hauling the rest of the cement tubing broke down in transit.
1150	Waiting on 6 joints of cement tubing.
1200	Cement tubing on-site with two additional helpers of DDC. Cementers are ready to go.
1230	Pre-flushed (168 gallons of water) borehole with pump on cement truck. DDC will cement 400 sacks of neat cement slurry continuously using the pressure grout method.
1245	Started cementing using the pressure grout method.
1255	Cement weight after approximately 100 sacks: 14.9 lbs.
1300	Cement weight after approximately 200 sacks: 15.1 lbs.
1303	Cement weight after approximately 300 sacks: 15.2 lbs.
1308	Pumped 400 sacks into the well. Cement weight at the end of the cement stage: 15.1 lbs. Flushed tubing with approximately 180 gallons of water. Water level inside well rose to the surface during flush.
1315	DDC cleaning up site. DDC and SI will be off-site until the following Monday. Happy Thanksgiving! Cliff H. (SI) on-site.
1400	DDC and SI off-site. Checked out with security.

Total Daily On-Site Man Hours SI 7.0 DDC 7.0

SI Project No: FPF-301 Location: Hines Energy Complex Well Number ID: TW-1 Completed by Jack Breland

Date: 11/27-30/03 Drilling Contractor: Diversified Drilling Corp. Drilling Method:

Time	Activity Description	
	SI and DDC off-site for holiday weekend.	

Total Daily On-site Man Hours: SI_0_DDC_0_

SI Project No: FPF-301 Location: Hines Energy Complex Well Number ID: TW-1 Completed by: Jack Breland

Γ

Date: 12/01/03 Drilling Contractor: Diversified Drilling Corp. Drilling Method: Reverse-air: Summary: grouting activities

c	CEMENTED 14-INCH DIAMETER STEEL CASING TO 315 FT BLS	
Time	Activity Description	
0800	Jack B. (SI) on-site. Opened up office. Waiting on DDC to arrive on- site.	
0900	Jeff S. (PE) stopped for a site visit. Bruce Harmon (DDC) and two helpers, Shawn and Jason, on-site.	
0930	Pulled 2-in diameter cement pipe out from the inside of the casing string.	
1000	Tripped in 1 ¼-in diameter tremie pipe inside the annulus between nominal 19-in diameter borehole and 14-in diameter steel casing.	
1030	Hard tagged top of 1 st stage cement at the depth of approximately 182 ft bls. Waiting on cement for the second stage.	
1115	Dana (SI) on-site to gather data from the FPF-202 study. DDC (Rambo and Jimmy) with cement for the 2 nd stage. Calculated theoretical volume of annulus to be cemented from caliper log: 60 ft at 19-in diameter (0.8999), 92 ft at 25-in diameter (2.3398), and 30 ft at 30-in diameter (3.5598). Total cubic feet: 376.04. Total annular volume to be filled: <u>319</u> <u>sacks (SI) and 307 sacks (DDC) calculated by Rambo</u> .	
1135	Pre-flushed tremie line with 2 brls of water.	
1140	Started cementing 2 nd stage. Cement weight from grab sample during the beginning: 15.2 lbs.	
1150	Weight of cement from grab sample after 100 barrels: 15.1 lbs. Water is flowing out of the well due to cement displacement.	
1155	Weight of cement from grab sample after 300 barrels: 15.0 lbs.	
1200	Cement returns coming from the annulus. Stopped pumping.	
1230	Pumped a total of 350 sacks into the annulus using the tremie method. Flushed tremie line with 20 gallons of water.	
1300	Cement dropped down to 60 ft bls. DDC will finish topping off tomorrow. They are going to work on the rig for the rest of the day. Called Cliff H. (SI) and he said that I did not need to stay on-site during this working phase. Jack B off-site.	

Total Daily On-Site Man Hours SI 5.0 DDC 8.0

SI Project No: FPF-301 Location: Hines Energy Complex Well Number ID: TW-1 Completed by: Jack Breland

Date: 12/02/03 Drilling Contractor: Diversified Drilling Corp. Drilling Method: Reverse-air: Summary: Pumped third and last stage cement.

Summary: Pumped third and last stage cement. Tripped in hole with 12 ¼ pilot hole bit Followed by 13-inch diameter stage bit Drilled out cement inside casing.

ì

Time	Activity Description
0730	Jack B (SI) on-site. Opened up office. Bruce Harmon (DDC) and two helpers; Shawn and Jason already on-site.
0810	Tagged cement from $2^{nd}$ stage at the depth of 48 ft bis. Theoretica calculation of cement to be placed inside the annulus. 0.8999 ft ³ x 48 = 43.0 sacks.
0830	DDC (Rambo and Jimmy) on-site with cement truck.
0945	Pre-flushed line with 2 brls of water. Pumped 50 sacks of neat cement into the annulus. Weight of cement from grab sample measured 15.0 lbs/gal. Flushed line with 10 gallons of water.
1000	Driller wants to use a 12 ¼-in bit on the bottom of the 13-inch diameter stage bit. DDC (Jimmy and Rambo) off-site. Cleaned up area
1015	Checked with Cliff H. (SI). Received permission to proceed with the larger diameter hole.
1100	Tripped in hole with stage bit and sub (3.8 ft). 1.8 ft. between cones Attached first heavy collar (31.00 ft) to bit assembly. Total length or string: 33.80 ft
1115	Tripped in DP#2 (29.80 ft) heavy collar drill rod. Total length: 63.60 ft
1120	Tripped in DP#3 (30.50 ft) weighted drill rod. Total length: 94.10 ft
1124	Tripped in DP#4 (30.41 ft) weighted drill rod. Total length: 124.51 ft
1127	Tripped in DP#5 (30.50 ft) + sub (2.0) regular drill rod. Total length: 157.01 ft
1145	Rig down. Driller needs to replace one of the "tong" cables. Driller will meet a driver in Mulberry with a cable from their Tampa office.
1200	Lunch.
1245	Dana (SI) on-site with sample collection canisters for drill cuttings.
1320	Driller on-site with cable.
1350	Drilling crew is stringing the cable. Dana off-site.
1520	Driller adding DP#6 (30.50ft) to the drill string. Total Length: 186.51 ft

1526	Driller adding DP#7 (31.00 ft) to the drill string. Total Length: 217.00 ft
1532	Driller adding DP#8 (30.50 ft) to the drill string. Total Length: 247.50 ft
1540	Added Kelly. Tagged cement inside the 14-in diameter steel casing at the depth of 352 ft bls. 66.0 ft of cement to be drilled out.
1545	Started drilling out cement inside casing using the reverse-air method.
1620	Kelly down and circulating at the depth of 249.50 ft bls.
1630	Driller adding DP#9 (30.70 ft) to the drill string. Total Length: 278.20 ft
1638	Back to drilling at the depth of 278 ft bls.
1715	Kelly down and circulating at the depth of 310.20 ft bls.
1730	Driller adding DP#10 (30.50 ft) to the drill string. Total Length: 308.70 ft
1815	Drilled out cement down to the depth of 320 ft bls. Encountered formation cuttings at the depth of 318 ft bls. Stopped for the day.
1845	DDC and SI off-site. Called security to inform them of our departure. Locked gate.

Total Daily On-Site Man Hours SI 10.0 DDC 10.0

SI Project No: FPF-301 Location: Hines Energy Complex Well Number ID: TW-1 Completed by: Jack Breland

Date: 12/03/03 Drilling Contractor: Diversified Drilling Corp. Drilling Method: Reverse-air: Summary: Reamed from 320 to 342 ft. Drilled from 342 to 467 ft.

Time	Activity Description
0730	Jack B. (SI) on-site. Opened up office. Bruce Harmon (DDC) and two helpers; Shawn and Jason on-site.
0740	Static water level inside casing: 96.88 ft below top of casing. Top o casing is 2.5 ft above land surface.
0800	Site meeting with drilling crew. Sampling procedure is critical at this stage and directions were givien as to how (SI) wants to proceed with the drilling operation.
0830	Cliff H. (SI) on-site with sampling materials and canisters for continuous sampling recovery. DDC are cleaning out cuttings from the goose.
0900	Started reaming out below casing at the depth of 320 ft bls. 9 5/8-in pilo hole was previously drilled to 342 ft bls.
1000	Reaming at the depth of 330 ft bls. Collecting continuous cuttings from reverse air discharge and shale shaker for lab analysis of the minera content. Cuttings bulk packaged in 2 gal HDPE buckets, contents purged with nitrogen before sealing to retard oxicdation.
1050	Kelly down at the depth of 341.41 ft bls. Water level down to water inside well: 136.18 ft bmp. Rate of flow: 50 gal/min. Drawdown: 39.3 ft Specific capacity: 1.6 gal/min/ft. Collected water samples. Specific capacity of formation from 318 to 340.
1125	Added DP#11 (31.00 ft) to drill string: Total String length: 341.41 ft
1200	Drilling at the depth of 350 ft bls.
	Drilling at the depth of 360 ft bls.
1310	Kelly down at the depth of 373.41 ft bls. Water level down to water inside well: 116.2 ft bmp. Rate of flow: 50 gal/min. Drawdown: 19.32 ft Specific capacity: 2.59 gal/min/ft. Collecting water samples at each root break. Specific capacity of formation from 318 to 373 ft bls. Cliff H. off site.
1330	Lunch
1400	Cleaned cuttings out of the goose. Added DP#12 (30.80 ft) to drill string Total string length: 372.21 ft
1420	Drilling at the depth of 380 ft bls.

1445	Drilling at the depth of 390 ft bls.
1500	Kelly down at the depth of 404.21 ft bls. Water level down to water inside well: 110.4 ft bmp. Rate of flow: 109 gal/min. Drawdown: 13.52 ft Specific capacity: 8.0 gal/min/ft.
1540	Added DP#13 (31.00 ft) to drill string. Total length of string: 403.21ft
1552	Drilling at the depth of 410 ft. bls.
1605	Drilling at the depth of 420 ft. bls.
1620	Kelly down at the depth of 435.21 ft. bls. Water level inside well: 111.76 ft bmp. Rate of flow: 124.5 gal/min. Drawdown: 17.62 ft Specific capacity: 7.0 gal/min/ft.
1640	Added DP#14 (31.80 ft) to drill string. Total length of string: 435.011 ft
1645	Started back drilling at the depth of 435 ft bls.
1700	Drilling at the depth of 445 ft bls.
1715	Drilling at the depth of 455 ft bls.
1735	Kelly down at the depth of 467.01 ft bls. Water level inside well: 111.76 ft bmp. Rate of flow: 124.5 gal/min. Drawdown: 16.17 ft Specific capacity: 7.4 gal/min/ft.
1750	Driller is stopping here for the day. DDC drilled approximately 147 ft today.
1800	DDC off-site. SI catching up on office work.
1810	SI off-site. Locked gate. Called Security to inform them of our departure.

Total Daily On-Site Man Hours SI 10.0 DDC 10.0

SI Project No: FPF-301 Location: Hines Energy Complex Well Number ID: TW-1 Completed by: Jack Breland Date: 12/04/03 Drilling Contractor: Diversified Drilling Corp. Drilling Method: Reverse-air: Summary: Drilled from 467 to 590 ft

Time	Activity Description
0700	Jack B (SI) on-site. Opened up office. Bruce Harmon (DDC) and two helpers; Shawn and Jason on-site.
0720	Static water level inside casing: 97.85 ft below top of casing. Top of casing is 2.5 feet above land surface.
0730	Started drilling at the depth of 467 ft bls. Added DP#14 (31.80 ft) to drill string last night before leaving: Total String length: 466.01 ft
0755	Drilling at the depth of 477 ft bls.
0805	Drilling at the depth of 487 ft bls.
0820	Kelly down at the depth of 498.81 ft bls. Pumping water level: 111.23 ft bls. Rate of flow from pumping: 115.38 gal/min. Drawdown from static water level: 13.38 ft. Specific capacity: 8.62 gal/min/ft.
0900	Added DP #15 (30.40 ft) to drill string. Total length of string: 497.21 ft.
0915	Drilling at the depth of 500 ft bls.
0925	Drilling at the depth of 510 ft bls.
0935	Kelly down at the depth of 529.21 ft bls. Water level down to water inside well: 112.23 ft bmp. Rate of flow: 120.5 gal/min. Drawdown: 14.38 ft. Specific capacity: 8.4 gal/min/ft.
0950	Added DP#16 (31.00 ft) to drill string. Total length of string: 528.31 ft
1010	Drilling at the depth of 539 ft bls.
1030	Drilling at the depth of 549 ft bls.
1100	Kelly down at the depth of 560.31 ft bls. Water level inside well: 114.23 ft bmp. Rate of flow: 116.2 gal/min. Drawdown: 17.62 ft. Specific capacity: 7.0 gal/min/ft.
1105	Added DP#18 (30.30 ft) to drill string. Total length of string: 558.61 ft
1110	Started back drilling at the depth of 560 ft bis.
1125	Drilling at the depth of 570 ft bls.

Time	Activity Description
1140	Drilling at the depth of 580 ft bis.
1155	Kelly down at the depth of 590.61 ft bls. Water level inside well: 112.23 ft bmp. Rate of flow: 142.8 gal/min. Drawdown: 14.32 ft. Specific capacity: 9.9 gal/min/ft.
1200	Added DP#19 (31.2 ft). Total String Length: 589.81 ft. Driller is stopping here for lunch.
1245	SI catching up on office work for weekly report.
1323	Drilling at a depth of 600 ft bls.
1344	Drilling at a depth of 610 ft bls.
1400	Kelly down at the depth of 621.81 ft bls. Water level inside well: 108 ft bmp. Rate of flow: 150 gal/min. Drawdown: 10.15 ft. Specific capacity: 14.7 gal/min/ft.
1429	Added DP#20 (30.50 ft) to drill string. Total length of string: 650.51 ft
1500	Drilled to a depth of 641 ft bls. Jeff S. (PEF) on-site briefly.
1510	Kelly down at the depth of 652.81 ft bls. Water level inside well: 111.2 ft bmp. Rate of flow: 150 gal/min. Drawdown: 13.61 ft. Specific capacity: 11.02 gal/min/ft.
1543	Adding DP#21 (30.20 ft). Total length of string: 680.65 ft
1550	Nathan and Jeff (PEF) return to site to make suggestions to DDC.
1613	Drilled to a depth of 672 ft bls. Circulating cuttings.
1622	Kelly at the depth of 680.65 ft bls. Water level inside well: 110.7 ft bmp. Rate of flow: 143 gal/min. Drawdown: 13.82 ft. Specific capacity: 10.3 gal/min/ft.
1655	Added DP#22 (30.3 ft) to drill string. Total length of drill string: 710.95 ft.
1715	Drilled to a depth of 690 ft bls. Circulating up cuttings. Stopping here for the day.
1730	DDC off-site.
1800	SI off-site. Called Security and locked gate.

# Total Daily On-Site Man Hours SI_11.0 DDC_10.0

SI Project No: FPF-301 Location: Hines Energy Complex Well Number ID: TW-1 Completed by: Jack Breland

Г

Date: 12/05/03 Drilling Contractor: Diversified Drilling Corp. Drilling Method: Reverse-air: Summary: Drilled from 690 to 760 feet

Time	LING 13-INCH DIAMETER HOLE BELOW INTERMEDIATE CASING
0700	Jack B (SI) on-site. Opened up office. Bruce Harmon (DDC) and two helpers; Shawn and Jason on-site.
0720	Static water level inside casing: 98.10 ft btc. Top of casing is 2.5 ft above land surface.
0900	Started drilling at the depth of 690 ft bls.
0915	Drilled to the depth of 700 ft bls. Circulated up cuttings.
0930	Kelly down at the depth of 712.81 ft bls. Pumping water level: 108.40 ft bls. Rate of flow from pumping: 150.0 gal/min. Drawdown from static water level: 10.30 ft. Specific capacity: 14.5 gal/min/ft.
0958	Added DP#23 (31.00 ft) to drill string. Total length of string: 711.41 ft. On bottom drilling at the depth of 712 ft bls.
1000	Drilled to the depth of 722 ft bls. Circulated up cuttings.
1024	Drilled to the depth of 732 ft bls. Circulated up cuttings.
1045	Kelly down at the depth of 743.41 ft bls. Pumping water level: 104.25 ft bls. Rate of flow from pumping: 150.0 gal/min. Drawdown from static water level: 6.15 ft. Specific capacity: 24.39 gal/min/ft.
1110	Added DP#24 (31.00 ft) to drill string. Total length of string: 742.41 ft. On bottom drilling at the depth of 743 ft bls.
1141	Drilled to the depth of 753 ft bls. Circulated up cuttings.
1145	Encountered clay layer between the depths of 759 and 760 ft bls. Called Cliff H. (SI) and decided to stop since the driller is scheduled to be off- site at noon.
1300	Completed office work. Jack B off-site. Called Security and informed them of our departure. Locked gate.

Total Daily On-Site Man Hours SI 6.0 DDC 5.0

SI Project No: FPF-301 Location: Hines Energy Complex Well Number ID: TW-1 Completed by Jack Breland

Date: 12/6-7/03 Drilling Contractor: Diversified Drilling Corp. Drilling Method:

Time	Activity Description	
	SI and DDC off-site for weekend.	

Total Daily On-site Man Hours: SI 0 DDC 0

SI Project No: FPF-301 Location: Hines Energy Complex Well Number ID: TW-1 Completed by: Jack Breland

r

Date: 12/08/03 Drilling Contractor: Diversified Drilling Corp. Drilling Method: Reverse-air: Summary: Drilled from 760 to 899 feet

DRIL	LING 13-INCH DIAMETER HOLE BELOW INTERMEDIATE CASING
Time	Activity Description
0800	Jack B (SI) on-site. Opened up office.
0900	Bruce Harmon (DDC) and two helpers; Shawn and Jason on-site. Terry (PE) security on-site. He wrote down on-site personnel.
0905	Static water level inside casing: 98.40 ft btoc. Top of casing is 2.5 ft above land surface.
0910	Started drilling at the depth of 760 ft bls.
0928	Kelly down at the depth of 774.41 ft bls. Pumping water level: 104.21 ft bls. Rate of flow from pumping: 110.0 gal/min. Drawdown from static water level: 5.81 ft. Specific capacity: 18.9 gal/min/ft.
1004	Added DP#25 (31.80 ft) to drill string. Total length of string: 774.01 ft. On bottom drilling at the depth of 774 ft bls.
1050	Drilled to the depth of 784 ft bls. Circulated up cuttings.
1135	Drilled to the depth of 794 ft bls. Circulated up cuttings.
1215	Kelly down at the depth of 806.01 ft bls. Pumping water level: 103.4 ft bls. Rate of flow from pumping: 108.5 gal/min. Drawdown from static water level: 5.00 ft. Specific capacity: 21.7 gal/min/ft.
1245	Added DP#26 (31.60 ft) to drill string. Total length of string: 837.61 ft. On bottom drilling at the depth of 837.61 ft bls.
	Drilled to the depth of 753 ft bls. Circulated up cuttings.
1300	Lunch and supply run.
1430	On bottom drilling very slow at the depth of 807 ft bls.
1515	Drilling very slow at the depth of 812 ft bls.
1545	Drilled to the depth of 816 ft bls. Circulating up cuttings.
1640	Kelly down at the depth of 837.61 ft bls. Pumping water level: 102.34 bls. Rate of flow from pumping: 108.5 gal/min. Draw down from static water level: 3.94 ft. Specific capacity: 27.5 gal/min/ft.
1716	On bottom drilling at the depth of 837 ft bis. Added DP#27 (31.00 ft) to drill string.

Time	Activity Description
1732	Drilled to a depth of 842 ft bls.
1745	DDC off-site.
1800	Checked out with Security and SI off-site.

Total Daily On-Site Man Hours SI 6.0 DDC 5.0

Г

SI Project No: FPF-301 Location: Hines Energy Complex Well Number ID: TW-1 Completed by: Jack Breland

Г

Date: 12/09/03 Drilling Contractor: Diversified Drilling Corp. Drilling Method: Reverse-air: Summary: Drilled from 842 to 899 feet

DRIL	LING 13-INCH DIAMETER HOLE BELOW INTERMEDIATE CASING
Time	Activity Description
0700	Jack B (SI) on-site. Check in at the gatehouse. Drilling crew is five minutes ahead of me. Opened up office. Bruce Harmon (DDC) and two helpers; Shawn and Jason on-site.
0710	Static water level inside casing: 98.50 ft btoc. Top of casing is 2.5 ft above land surface.
0715	Started drilling at the depth of 842 ft bls.
0900	Drilled to the depth of 852 ft bls. Circulated up cuttings.
0928	Drilled to the depth of 857 ft bls. Circulated up cuttings
1100	Kelly down at the depth of 868.21 ft bls. Pumping water level: 102.80 ft bls. Rate of flow from pumping: 134.0 gal/min. Drawdown from static water level: 5.31 ft. Specific capacity: 25.2 gal/min/ft.
1132	Added DP#28 (31.20 ft) to drill string. Total length of string: 867.41 ft. On bottom drilling at the depth of 868 ft bls.
1230	Drilled to the depth of 873 ft bls.
1300	Drilled to the depth of 874 ft bls. Circulated up cuttings. Brief lunch.
1445	Drilled to the depth of 878 ft bls. Circulated up cuttings.
1610	Drilled to the depth of 888 ft bls. Circulated up cuttings.
1700	Drilled to the depth of 893 ft bls.
1745	Kelly down and END OF BOREHOLE advancement at the depth of 899.41 ft bls. Pumping water level: 103.4 ft bls. Rate of flow from pumping: 135.0 gal/min. Drawdown from static water level: 5.00 ft. Specific capacity: 21.7 gal/min/ft.
1800	DDC cleaned up site. SI stopped at the guardhouse to let them know that DDC locked the gate on the way out. SI off-site.

Total Daily On-Site Man Hours SI 11.0 DDC 11.0

 $e^{\pi n},$ 

SI Project No: FPF-301 Location: Hines Energy Complex Well Number ID: TW-1 Completed by: Jack Breland Date: 12/10/03 Drilling Contractor: Diversified Drilling Corp. Drilling Method: Reverse-air: Summary: Tripped out bit and logged well.

	GEOPHYSICAL LOGGING	
Time	Activity Description	
0730	Jack B (SI) on-site. Check in at the gatehouse. Opened up office. Bruce Harmon (DDC) and two helpers; Shawn and Jason on-site.	
0745	Static water level inside casing: 97.80 ft btoc. Top of casing is 2.5 ft above land surface.	
0800	Began tripping out of the hole with drill string after circulating hole clean.	
0945	Out of the hole with casing string. Waiting on logger.	
0950	Geophysical logging truck (Advance Borehole Services) on-site.	
1000	Logger (Art B.) is set up.	
1036	First run: Caliper/Gamma	
1138	Second run: Temperature, Fluid Resistivity, SP Potential.	
1230	Third run: Flow Log-Static Condition.	
1340	Fourth run: Sonic Log (Full wave BHC acoustic).	
1434	Out of hole with tool.	
1500	Logger off-site.	
1530	DDC cleaned up site. SI stopped off at the guardhouse to let them know that DDC locked the gate on the way out. SI off-site.	

Total Daily On-Site Man Hours SI 8.0 DDC 8.5

SI Project No: FPF-301 Location: Hines Energy Complex Well Number ID: TW-1 Completed by: Jack Breland

Date: 12/11/03 Drilling Contractor: Diversified Drilling Corp. Drilling Method: Reverse-air: Summary: Casing Preparation

	Casing Preparation
Time	Activity Description
0730	Jack B (SI) on-site. Check in at the gatehouse. Opened up office. Bruce Harmon (DDC) and two helpers; Shawn and Jason on-site.
0745	Static water level inside casing: 98.2 ft btoc. Top of casing is 2.5 ft above land surface. Preparing to temporarily seal off source of higher TDS water.
0800	Placed 1 st bag of sand (3000 lbs.) in hole from top of well. No water slurry was mixed.
0900	Placed 2 nd bag of sand in well. Cliff (SI) called and told to return to the main office in Tampa.
1000	Placed 3 rd bag of sand in well. There is only one more sack on site to be placed inside the well today. The rest of the sand bags will be here on Monday. Jack B. to SI office.
1130	Arrived at Tampa office for well meeting.
1700	Meeting over.

Total Daily On-Site Man Hours SI 8.0 DDC 5.0+

SI Project No: FPF-301 Location: Hines Energy Complex Well Number ID: TW-1 Completed by: Jack Breland Date: 12/12-14/03 Drilling Contractor: Diversified Drilling Corp. Drilling Method: Reverse-air: Summary: Casing Preparation

	Casing Preparation	
Time	Activity Description	
	SI and DDC off-site for weekend.	

Total Daily On-Site Man Hours SI 0 DDC 0

SI Project No: FPF-301 Location: Hines Energy Complex Well Number ID: TW-1 Completed by: Jack Breland

Date: 12/15/03 Drilling Contractor: Diversified Drilling Corp. Drilling Method: Reverse-air: Summary: Casing Preparation

	Casing Preparation	
Time	Activity Description	
0900	Jack B (SI) on-site. Check in at the gatehouse. Opened up office.	
0930	Static water level inside casing: 98.6 ft below top of casing. Top of casing is 2.5 ft above land surface.	
1150	Bruce Harmon (DDC) and two helpers; Shawn and Jason on-site.	
1210	Tractor-trailer on-site with 8-in diameter steel casing.	
1245	Unloaded steel casing from trailer with forks on backhoe. DDC is preparing to run 2-in diameter cement pipe inside well in order to tag the top of the sand fill.	
1315	Another trailer on-site with two pallets of Portland cement, and the rest of the 2-in diameter cement pipe.	
1400	Cement mixer (55 gallon capacity) on-site.	
1445	Cleaned pipe threads and replaced worn couplings. Tripping in hole with cement pipe.	
1500	3 joints on pipe string. Total depth of string: 63 feet.	
1530	9 joints on pipe string. Total depth of string: 189 feet.	
1600	13 joints on pipe string. Total depth of string: 273 feet.	
1630	13 joints on pipe string. Total depth of string: 525 feet.	
1700	37 joints on pipe string. Total depth of string: 777 feet.	
1730	Soft tag at 840 ft bls. Hard tag sand fill at the depth of 878 ft bls.	
1745	DDC off-site.	
1800	SI checked out at the security gate and left site.	

Total Daily On-Site Man Hours SI 9.0 DDC 9.0

SI Project No: FPF-301 Location: Hines Energy Complex Well Number ID: TW-1 Completed by: Jack Breland

Date: 12/16/03 Drilling Contractor: Diversified Drilling Corp. Drilling Method: Reverse-air: Summary: Fishing out cement pipe

	Casing Preparation	
Time	Activity Description	
0730	Jack B. (SI) on-site. Check in at the gatehouse and opened up office. Bruce Harmon (DDC) and two helpers; Shawn and Jason on-site.	
0800	Driller is tripping out cement pipe and racking the pipe (2 joint lengths) up in the derrick. Static water level inside casing: 98.8 feet below top of casing. Top of casing is 2.5 feet above land surface.	
0830	Tripped out 10 stands.	
0900	Five joints of 2-in diameter cement pipe did not make it to surface. Called Cliff H. (SI) to inform him of the situation.	
0915	Proposed procedure from DDC: Trip in hole with drill pipe to 820 ft bls and flush well. Run a video camera to see how to hook on to the top of the cement string. Run in fishing tool to retrieve pipe.	
0930	Tripping in hole with drill string to the depth of 820 ft bls.	
1030	Tripped to the depth of approximately 420 ft bls. Minor problem with sand line.	
1214	Tripped in 20 joints of pipe. Approximately 620 ft bls. Geophysical logging truck (Advance Borehole Services) on-site.	
1235	Tagged top of cement pipe with drill rods at the depth of 720 ft bls.	
1335	Flushed well using reverse-air lift.	
1400	Tool is too big to run down hole along side of drill string. Tripping out of the hole with drill pipe string.	
1515	Out of the hole with drill string. Camera is being sent down the hole.	
1630	Camera is out of hole. Requested field copy. A grab tool is being formed to retrieve the rest of the cement string (105 ft).	
1700	Art B. (ABS) off-site with logging truck. DDC off-site.	
1710	Jack B. checked out with security and left site.	

Total Daily On-Site Man Hours SI 9.0 DDC 9.0

~

SI Project No: FPF-301 Location: Hines Energy Complex Well Number ID: TW-1 Completed by: Jack Breland Date: 12/17/03

Drilling Contractor: Diversified Drilling Corp. Drilling Method: Reverse-air: Summary: Fishing out cement pipe

	Casing Preparation	
Time	Activity Description	
0830	Jack B. (SI) on-site. Check in at the gatehouse and opened up office. Bruce H. (DDC) and two helpers; Shawn and Jason on-site.	
0800	Driller is designing cement basket on-site. Static water level inside casing: 98.28 ft below top of casing. Top of casing is 2.5 feet above land surface.	
0900	Waiting for fishing tool. The fishing tool will be run with 2-inch diameter steel hydril pipe.	
0930	Bruce (DDC) said it would be in the afternoon before fishing tool will be on-site.	
0945	Collected and ran field parameters of pad monitoring wells.	
1300	Tripping in hole with hydril pipe.	
1405	Tripped to approximately 807 ft with fishing tool. DDC (Joe and Bruce) think they have the missing pipe. Tripping out of the hole.	
1530	Successful fishing trip. DDC will trip back in to bottom and reverse-air sand plug out of the hole.	
1600	DDC will lay down cement pipe that is standing up in the derrick. He will run 9-7/8 inch diameter drill bit into the hole tomorrow.	
1630	Jack B. (SI) checked out with security and off-site.	

Total Daily On-Site Man Hours SI 8 DDC

SI Project No: FPF-301 Location: Hines Energy Complex Well Number ID: TW-1 Completed by: Jack Breland

Date: 12/18/03 Drilling Contractor: Diversified Drilling Corp. Drilling Method: Reverse-air: Summary: Clearing bottom of hole.

	Clearing Hole
Time	Activity Description
0800	Jack B. (SI) on-site. Check in at the gatehouse and opened up office. Bruce H. (DDC) and two helpers; Shawn and Jason on-site.
0830	Driller (DDC) is tripping to bottom hole with 9-7/8 inch diameter bit. Static water level inside casing: 98.28 ft below top of casing. Top of casing is 2.5 ft above land surface.
0900	Tripped in 12 joints.
0930	Tripped in 25 joints. Hooked up to reverse-air. Started cleaning sand from hole at the depth of 773 ft bis.
1045	Kelly down at the depth of 805 ft bls. pH=7.85 Temperature =17.3, Conductivity = 631.
1110	Added DP#26 to drill string. On bottom clearing sand from hole.
1200	Developing out sand at the depth of 824 ft bls.
1230	Kelly down at the depth of 834 ft bls.
1230	Kelly down and circulating at the depth of 834 ft bls. Pumping water level: 98.55 feet bmp. Pumping rate: 125 gpm. Conductivity = 647, pH = 8.01, Temperature = 24.4.
1245	Rig down. A hole ruptured in the top nipple of the standpipe. Welder is on the way.
1314	Welder (DDC) on-site.
1445	Welder off-site. On bottom reaming at the depth of 834 ft bls.
1450	On bottom clearing hole at the depth of 834 ft bls.
1545	Kelly down and circulating at the depth of 864 ft bls. Pumping water level: 99.56 ft bmp. Pumping rate: 120 gpm. Drawdown- 1.54 ft. Specific Capacity = 77.9 gal/min/ft. Conductivity = 713, pH = 8.03, Temperature =23.5.
1600	On bottom clearing hole at the depth of 864 ft bls, after adding DP#28 to drill string.

	Clearing Hole	
Time	Activity Description	
1640	Kelly down and circulating at the depth of 900 ft bls. Pumping water level: 99.58 ft bmp. Pumping rate: 120 gpm. Drawdown- 1.55 ft. Specific Capacity = 77.4 gal/min/ft. Conductivity = 596, pH = 7.98, Temperature = 24.3.	
1650	Circulating and surging well. Formation water is slowly clearing up. Cliff H. (SI) on-site.	
1750	Circulated for one hour surging frequently. Cliff H. off-site.	
1800	DDC and SI leaving site. Checked out with security.	

Total Daily On-Site Man Hours SI 10 DDC 11

 $e^{\infty}$ 

SI Project No: FPF-301 Location: Hines Energy Complex Well Number ID: TW-1 Completed by: Jack Breland Date: 12/20-21/03 Drilling Contractor: Diversified Drilling Corp. Drilling Method: Reverse-air:

	Casing Preparation	
Time	Activity Description	
	SI and DDC off-site for weekend.	

Total Daily On-Site Man Hours SI 0 DDC 0

SI Project No: FPF-301 Location: Hines Energy Complex Well Number ID: TW-1 Completed by: Jack Breland

Date: 12/22/03 Drilling Contractor: Diversified Drilling Corp. Drilling Method: Reverse-air:

	ed by: Jack Breland Summary: Tripped out drill string.
Jonipiote	ed by: Jack Breland Summary: Tripped out drill string.
Time	Activity Description
1100	Jack B (SI) on-site. Check in at the gatehouse and opened office. Bruce Harmon (DDC) and one helper; Shawn, already on-site.
1115	Currently tripping out of the hole with drill string. Driller is one helpe short today. Tripped out 8 drill pipes.
1200	18 joints of pipe out of the hole. Slow process due to the fact that the sand line on the rig is down and driller having to lay pipe down using backhoe.
1220	DDC out of hole with drill string. Lunch break.
1230	Jeff S. (PEF) on-site.
1320	DDC back from lunch. Driller is moving drill pipe out of the way.
1345	Jeff S. off-site.
1445	Paul P. (DDC) on-site.
1500	DDC helper finally showed up. Tripping in hole with bridge plug. The middle of the plug will be set at the depth of 692 feet below land surface
1600	Bridge plug plus 5 (2-inch diameter) hydril pipes on boot string. Tota depth of string: 166.07 feet.
1605	Bridge plug hung up on the inside 14-inch diameter intermediate casing. Tripping out to understand and correct the problem.
1630	Bridge plug filled with water and broke the tape that was holding the bladder shut. The 10-inch diameter casing holding the bladder had also collapsed. DDC will regroup and try again tomorrow
1700	SI checked out at the gatehouse with security and left site.

Total Daily On-Site Man Hours SI 6.0 DDC 8.5

SI Project No: FPF-301 Location: Hines Energy Complex Well Number ID: TW-1 Completed by: Jack Breland

Г

Date: 12/23/03 Drilling Contractor: Diversified Drilling Corp. Drilling Method: Reverse-air: Summary: Set and cemented bridge plug.

ľ

Time	Activity Description
1100	Jack B (SI) on-site. Check in at the gatehouse and opened office. Bruce Harmon (DDC) and one helper; Shawn, already on-site.
1115	Working on building another bridge plug. Holes will be added to the top of the bladder so water can fill bladder.
1345	Tripped in 2-inch diameter cement pipe string. The base of the 8-foot bladder will be located at the depth of 695 feet below land surface.
1400	DDC and SI calculated water displacement for tubing, pumps, and hoses: 72 gallons of chase water.
1500	Began pumping cement into the bridge plug located at the depth between 687 feet to 695 feet below land surface. A 100-gallon capacity drum is being used to calculate volumes to be pumped.
1530	Finished pumping 10 sacks of cement and chase water.
1600	DDC cleaned site, unloaded 6 bags (3000 lbs.) of fill sand. They will work onsite till 1730 hours. SI checked out at the gatehouse with security and left site.

Total Daily On-Site Man Hours SI 5.0 DDC 8.0

SI Project No: FPF-301 Location: Hines Energy Complex Well Number ID: TW-1 Completed by: Jack Breland

Date: 12/24/03 Drilling Contractor: Diversified Drilling Corp. Drilling Method: Reverse-air: Summary: Cemented top of bridge plug.

Time	Activity Description
0715	Jack B (SI) on-site. Check in at the gatehouse and opened up office. Bruce Harmon (DDC) and one helper; Shawn, already on-site.
0745	Set hydril pipe string weight down on bridge plug. Turned hydril string counter clockwise to release attached bridge plug. Water level in well: 98.13 feet below measuring point.
0830	Tripped out 2 pipe joints. The bridge plug is located between 687 to 695 feet below land surface. Water displacement for tubing, pumps, and hoses: 72 gallons of chase water.
0900	Began pumping cement into the top of the bridge plug located at the depth between 687 feet to 695 feet below land surface.
0930	Finished pumping 10 sacks of cement and chase water. Water level rose above five feet during pumping and fell back to static conditions at 98.13 feet below measuring point.
0945	DDC tripped pipe string up to 620 feet and stopped.
1000	Sampled and tested pad monitoring wells for weekly water quality field parameters.
1015	SI checked out at the gatehouse with security and left site for SI. DDC drillers will be here till noon. Happy Holidays!

Total Daily On-Site Man Hours SI 4.0 DDC 4.0

SI Project No: FPF-301 Location: Hines Energy Complex Well Number ID: TW-1 Completed by: Jack Breland

Date: 12/24-28/03 Drilling Contractor: Diversified Drilling Corp. Drilling Method:

# Summary: Casing Preparation

Casing Preparation	
Time	Activity Description
	SI and DDC off-site for weekend.

Total Daily On-Site Man Hours SI 0 DDC 0

 $\sim$ 

SI Project No: FPF-301 Location: Hines Energy Complex Well Number ID: TW-1 Completed by: Jack Breland Date: 12/29/03 Drilling Contractor: Diversified Drilling Corp. Drilling Method: Reverse-air Summary: Preparation for casing installation

	Preparation for Casing Installation	
Time	Activity Description	
0900	Jack B (SI) on-site. Check in at the gatehouse and opened up office.	
0930	Bruce Harmon (DDC) two helpers; Shawn and Jason, and one welder, Roger, on-site. Water level in well: 97.30 feet below measuring point.	
0945	DDC are working on repairing sand line winch on rig.	
1020	Tagged top of stage two cement plug at the depth of 672 ft bls. Total cement fill from this stage: 5 feet. Preparing to place sand fill up to the casing depth at approximately 620 ft bls.	
1200	Calculated theoretical volume of average hole from caliper log. 2.4 ft ³ /ft x 52 ft = 125 ft ³ . Placed 3 bags (9000 lbs) of clear, coarse, rounded silica sand in the well from surface. Sand: 100 lbs/ft ³ = 90 ft ³ .	
1205	DDC will wait one hour for the sand to fall to the top of the cement plug before tagging.	
1330	Tagged sand lift at the depth of 639 ft bls. Approximately 11.0 feet for each bag. DDC will place one more bag to bring theoretical lift to the depth of approximately 628 ft bls.	
1405	Placed bag #4 (3000 lbs or 30 ft ³ ) into well from the surface. Waiting for the sand to settle to the bottom.	
1540	Tagged sand lift at the depth of 628 ft bls. Approximately 11.0 feet for the bag of sand. Preparing to pump 8 sacks (90 lbs) of Portland cement slurry.	
1630	Pumped 8 sacks of cement on top of sand plug. Weight of cement 16.7 Ibs. Pumped 72 gallons of chase water. Stopped here for the day.	
1700	DDC off-site. SI checked out at the gatehouse with security and left site	

Total Daily On-Site Man Hours SI 8.0 DDC 8.0

SI Project No: FPF-301 Location: Hines Energy Complex Well Number ID: TW-1 Completed by: Jack Breland

Date: 12/30/03 Drilling Contractor: Diversified Drilling Corp. Drilling Method: Reverse-air: Summary: Casing installation

Time	Activity Description
0700	Jack B (SI), DDC and welder on-site.
0730	Preparing to set 8-inch diameter steel casing to 614 ft bls.
0800	Setting casing to 42. 50 ft bls.
1000	Setting casing to 211.10 ft bls.
1300	Setting casing to 379.34 ft bls.
1505	Setting casing to 505.74 ft bls.
1700	Settling casing to 614 ft bls. Depth is approximately six feet shallower than the target of 620 ft bls. Apparent error in pipe tally during bridge plug and cement/sand fill operations. Cement truck on-site. Paul P. or DDC on site.
1715	DDC and SI off-site.

Total Daily On-Site Man Hours SI 8.0 DDC 8.0

-

SI Project No: FPF-301 Location: Hines Energy Complex Well Number ID: TW-1 Completed by: Jack Breland

L

Date: 12/31/03 Drilling Contractor: Diversified Drilling Corp. Drilling Method: Reverse-air: Summary: set 614 ft of casing

٦

	ND CEMENTED 8-INCH DIAMETER STEEL CASING TO 614 FT BLS.
Time	Activity Description
0700	Jack B (SI) on-site. Opened up office. Diversified Drilling Company on site with a welder.
0900	Re-measure hydril pipe tally. The bottom of cement boot DDC 694.1 ft bls and SI 694.16 ft. The top of boot is 677 ft bls. Stage one cement plug 672 ft bls; top of stage 2 sand plug 639 ft bls; top of stage 3 sand 628 ft bls, top of stage four cement plug 614 ft bls. Still trying to determine source of tally error.
1030	DDC and SI (Paul P. and Cliff H.) inform crew to set casing to a depth of 614 ft bls.
1055	The header plate is welded to top of the casing string. The base of the casing string is located at approximately 614 feet below land surface. Approximately 4.0 feet hanging up to the rig floor. Casing string welded and secured to the rig floor.
1100	Running 2.0-in diameter steel cement tubing (19 joints) into the well to approximately 590 ft bls.
1230	Pre-flushed (168 gallons of water) borehole with pump on cement truck. DDC will cement approximately 400 sacks of neat cement slurry continuously using the modified pressure grout method.
1236	Started cementing using the pressure grout method.
1240	Cement weight after approximately 100 sacks: 14.4 lbs.
1245	Cement weight after approximately 200 sacks: 14.2 lbs.
1250	Cement weight after approximately 300 sacks: 14.4 lbs.
1300	Pumped approximately 360 sacks into the annulus. Cement weight at the end of the cement stage: 14.4 lbs. Flushed tubing with approximately 220 gallons of water. Constant 40 PSI on pressure gage. Theoretical volume of cement 360 sacks with approximately 173 ft lift. Top of cement will be approximately 440 ft bls.
1315	DDC cleaning up site and will be off site until the following week.
1410	SI perform site water quality monitoring and off-site.

Total Daily On-Site Man Hours SI 7.0 DDC 7.0

F:\DATA\FLPower\FPF 301\Daily Activity Logs\Daily Activities 12-31-03.doc Page 1 of 1

SI Project No: FPF-301 Location: Hines Energy Complex Well Number ID: TW-1 Completed by: Jack Breland

Date: 1/1-4/04 Drilling Contractor: Diversified Drilling Corp. Drilling Method:

# Summary: Casing Preparation

Casing Preparation		
Time	Activity Description	
	SI and DDC off-site for weekend.	
		-

Total Daily On-Site Man Hours SI 0 DDC 0

SI Project No: FPF-301 Location: Hines Energy Complex Well Number ID: TW-1 Completed by: Jack Breland

Date: 01/05/04 Drilling Contractor: Diversified Drilling Corp. Drilling Method: Reverse-air: Summary: Completed cementing 2nd stage

	CEMENTING 8-INCH DIAMETER CASING
Time	Activity Description
0830	Jack B. (SI) on-site and checked in at the gatehouse. Opened up office. Waiting for DDC. The crew will be cementing the casing annulus using the tremie method (second stage).
0930	Bruce Harmon (DDC) two helpers; Shawn and Jason on-site. Water level in well: 1.2 feet below measuring point (bmp). Inside Annulus: 97.20 feet bmp. Diapers from around drilling area were changed and secured.
1000	DDC (Jimmy and Rambo) cementing crew onsite with 425 sacks of cement.
1045	Running 1 ¼ galvanized cement pipe inside the annulus of the 8-inch diameter casing.
1100	Hard tag with tremie line at the depth of 440 ft bls. Preparing to cement the second stage. Calculated Theoretical Volume:~ 371 ft bls.
1250	Pre-flushed (80 gallons of water) with pump on cement truck. DDC will cement approximately 425 sacks of neat cement slurry continuously using the tremie method.
1300	Started cementing using the tremie method. Only one of the two pumps on the cement truck is being used.
1310	Cement weight after approximately 100 sacks: 15.2 lbs.
1320	Cement weight after approximately 200 sacks: 14.9 lbs.
1415	Pumped 212 sacks into the well. Driller was pulling out two joints of tremie pipe before continuing the cementing process when the tubing pulled loose and both pieces of the string fell down the well. Theoretical Volume of 212 sacks of cement: 144 foot lift or 296 ft bls. Informed Cliff H. (SI) of the situation.
1430	DDC went off-site for lunch. Driller said they are sending more tubing to the rig site. SI off-site.
1600	SI on-site. Driller is running new string of 1 ¹ / ₄ cement tubing to the top of the cement plug inside the annulus.
1645	Tagged cement at the depth of 356 ft bls at 60 feet less than calculated. Theoretical Volume: 296 ft.

CEMENTING 8-INCH DIAMETER CASING	
Time	Activity Description
1700	Started cementing 3 rd stage. Beginning weight of cement: 15.2 lbs Formation water flowed from the annulus during pumpage.
1710	Cement weight after approximately 100 sacks: 15.1 lbs.
1715	Cement weight after approximately 200 sacks: 15.2 lbs.
1720	Cement returns from pumping. Pumped a total of 191 sacks into the annulus. Cement weight at the end of the cement stage: 15.3 lbs Flushed tubing with approximately 120 gallons of water. Theoretical Volume of Cement: 1.938 ft/ft ³ or 368 feet lift. Actual lift 356 feet.
1730	DDC cleaned up site and left.
1735	SI checked out with security and left site.

Total Daily On-Site Man Hours SI 7.5 DDC 8.5

- **-** -

SI Project No: FPF-301 Location: Hines Energy Complex Well Number ID: TW-1 Completed by: Jack Breland

Date: 01/06/04 Drilling Contractor: Diversified Drilling Corp. Drilling Method: Reverse-air: Summary: Pressure test on 8-inch casing.

PRESSURE TEST 8-INCH DIAMETER CASING		
Time	Activity Description	
1300	Jack B. (SI) on-site and opened up office. Waiting for DDC. The cre will be pressure testing 8-inch diameter casing.	
1330	Bruce Harmon (DDC) two helpers, Shawn and Jason back from lunc Water level in well: 1.0 foot below measuring point (bmp).	
1400	Pressurized casing to 100 psi.	
1415	Pressure dropped 5.0 psi. A leak was noticed in one of the fitting.	
1430	Pressurized casing to 100.0 psi.	
1445	Reading on pressure gauge: 99.4 psi.	
1500	Reading on pressure gauge: 98.2 psi.	
1515	Reading on pressure gauge: 97.1 psi.	
1530	Reading on pressure gauge: 96.5 psi. Test completed. A total of 3. psi change or 3.5% loss in one hour. Informed Cliff H. of readings Driller has the go ahead to start drilling out plug.	
1600	Removed header plate. Waiting on drill bit.	
1610	7 and 7/8-inch diameter tooth drill bit on-site. Tripping in hole with dripipe.	
1715	Hard tag inside casing the depth of 611 ft bls. (New pipe tally).	
1730	Stopping here for the day. DDC and SI off-site.	

Total Daily On-Site Man Hours SI 4.5 DDC 10.5

.....

SI Project No: FPF-301 Location: Hines Energy Complex Well Number ID: TW-1 Completed by: Jack Breland

Date: 01/07/04 Drilling Contractor: Diversified Drilling Corp. Drilling Method: Reverse-air: Summary: Drilling out plug.

Activity Description Jack B. (SI) on-site and opened office. The drilling crew will be drilling
Jack B. (SI) on-site and opened office. The drilling crew will be drilling
out cement and sand plugs below 8-inch diameter casing.
Bruce Harmon (DDC) two helpers, Shawn and Jason are waiting on vegetable oil for sump pump. Water level in well: 3.2 ft below measuring point (bmp).
Tagged top of cement plug at the depth of 611 ft bls. Driller is meeting a carrier in Lakeland to retrieve specialized vegetable oil for sump pump.
On bottom drilling out cement plug at the depth of 611 ft bls.
Drilled through cement plug at the depth of 616 ft bls. Approximately five feet of plug. Kelly down and circulating at the depth of 616.10 ft bls.
Placed DP#16 (31.80 ft) on drill string. Total length of drill string: 615.90 ft
On bottom dredging sand at the depth of 617 ft bls.
Kelly down at the depth of 648.10 ft bis.
Added DP #17 (30.50 ft) on drill string. Total length of drill string: 646.40 ft
Lunch
On bottom dredging at the depth of 647 ft bls.
Dredging at the depth of 655 ft bls.
Top of cement plug above bridge plug is located at the depth of 668 ft bls.
Kelly down at the depth of 678.10 ft bls. Circulating.
Added DP #18 (31.18 ft) on drill string. Total length of drill string: 678.58 ft
Top of bridge plug was encountered at the depth of 686 ft bls.
Bottom of bridge plug: 694 ft bls. Raising and lowering Kelly through bridged interval. Driller would turn drill bit half a turn at the time and continuously through interval.

DRILLING OUT CEMENT AND SAND PLUGS			
Time	Activity Description		
1620	Added DP #19 (31.30 ft) on drill string. Total length of drill string: 707.30 ft		
1635	Kelly down and circulated well till clear of bridge material.		
1710	Added DP#20 through #25. Total string length 891.70 ft bls. Circulating.		
1730	Dredged down to the depth of 900 ft bls. Conditioning hole.		
1800	Stopping here for the day. DDC and SI off-site after checking out with security.		

Total Daily On-Site Man Hours SI 10.5 DDC 11.0

SI Project No: FPF-301 Location: Hines Energy Complex Well Number ID: TW-1 Completed by: Jack Breland

Date: 01/08/04 Drilling Contractor: Diversified Drilling Corp. Drilling Method: Reverse-air: Summary: Drilling out plug.

	DRILLING OUT CEMENT AND SAND PLUGS	
Time	Activity Description	
0730	Jack B. (SI) on-site. Check in at the gatehouse and opened up office. The drilling crew will be drilling out what is left of the bridge plug at the bottom of the well.	
0800	Bruce Harmon (DDC) two helpers, Shawn and Jason are on-site dredging out bridge plug.	
0900	Dredging boot material from bottom of well. Depth: 896 ft bls.	
1000	Dredging boot material from bottom of well. Depth: 897 ft bis.	
1100	Dredging boot material from bottom of well. Depth: 898 ft bls.	
1200	Dredging boot material from bottom of well. Depth: 900 ft bls. Conditioning hole.	
1655	Complete tripping out of hole.	
1830	Stopping here for the day. SI off-site after checking out with security.	

Total Daily On-Site Man Hours SI_DDC___

SI Project No: FPF-301 Location: Hines Energy Complex Well Number ID: TW-1 Completed by: Jack Breland

Date: 01/9/04 Drilling Contractor: Diversified Drilling Corp. Drilling Method: Reverse-air Summary: Step drawdown testing

	HYDRAULIC TESTING		
Time	Activity Description		
0800	Jack B. (SI) on-site. Check in at the gatehouse and opened up office. Bruce Harmon (DDC) two helpers, Shawn and Jason are on-site. Driller is preparing to run the Franklin Submersible Pump (60 hp) to the depth of approximately 232 ft bls. Six-inch diameter pipe and electric line rubbing against casing. Will use a smaller diameter drop pipe on Monday.		
0900	Jeff S. (PEF) on-site. DDC is removing 6-inch diameter drop pipe from the site.		
1000	Jeff S. (PEF) off-site. Finished up office work and checked out with security.		
1030	SI off-site.		

Total Daily On-Site Man Hours SI 2.5 DDC 0

SI Project No: FPF-301 Location: Hines Energy Complex Well Number ID: TW-1 Completed by: Jack Breland

Г

Date: 1/10-11/04 Drilling Contractor: Diversified Drilling Corp. Drilling Method: Summary:

ĩ

Time	Activity Description	1
	SI and DDC off-site for weekend.	
·		

Total Daily On-Site Man Hours SI 0 DDC 0

SI Project No: FPF-301 Location: Hines Energy Complex Well Number ID: TW-1 Completed by: Jack Breland

Date: 01/12/04

Drilling Contractor: Diversified Drilling Corp. Drilling Method: Reverse-air Summary: Setting pump

	HYDRAULIC TESTING		
Time	Activity Description		
1000	Jack B. (SI) on-site. Check in at the gatehouse and opened up the office.		
1015	Bruce Harmon (DDC) two helpers, Shawn and Jason are on-site cleaning and moving reverse-air equipment.		
1100	DDC (Robert) on-site with 4-inch diameter drop pipe.		
1200	Placed 12 joints of 4-inch diameter steel pipe on to drill table.		
1215	Lunch.		
1315	Driller is preparing to run the Franklin Submersible Pump (60 hp) to the depth of approximately 232 ft bis.		
1448	New pigtail placed on pump (2.4 ft). Tripping in hole with pipe #1 (21.0 ft).		
1504	Pipe #4 of 11 on string.		
1530	Pipe #9 of 11 on string.		
1630	Pipe in well. Hooking up to the orifice.		
1700	Hooked up three-phase generator.		
1730	Pumping rate was established at the rate of 780 gpm with approximately 10 feet of drawdown. Specific Capacity: 78.0 gpm/ft. DDC and SI off-site after checking out with security.		

Total Daily On-Site Man Hours SI 6.0 DDC 7.0

 $\tau_{i}$ 

SI Project No: FPF-301 Location: Hines Energy Complex Well Number ID: TW-1 Completed by: Jack Breland

Date: 01/13/04

.

Drilling Contractor: Diversified Drilling Corp. Drilling Method: Reverse-air Summary: Step drawdown testing

HYDRAULIC TESTING		
Time	Activity Description	
0700	Jack B. (SI) on-site. Check in at the gatehouse and opened up office.	
0705	Bruce Harmon (DDC) two helpers, Shawn and Jason are on-site. Static water level inside well: 98.52 ft bls.	
1030	Dana G. (SI) on-site to sample well for lab analysis of background water quality.	
1040	Started Step #1 at the rate of 300 gpm. Completed lab sampling. Rate dropped to 270 gpm 30 minutes into test.	
1140	Stepped rate up to 400 gpm (Step #2). Specific Capacity of Step 1: 171.90 gpm/ft.	
1240	Stepped rate up to 500 gpm (Step #3). Specific Capacity of Step 2: 143.36 gpm/ft. Dana G. (SI) off-site.	
1340	Stepped rate up to 610 gpm (Step #4). Specific Capacity of Step 3: 129.87 gpm/ft.	
1440	Stepped rate up to 760 gpm (Step #5). Specific Capacity of Step 4: 111.52 gpm/ft.	
1540	Stopped test. Specific Capacity of Step 5: 98.40 gpm/ft.	
1600	Driller is pulling pump out of the well.	
1700	Pulled pump out of the well. DDC and SI off-site after checking out with security.	

Total Daily On-Site Man Hours SI 10.0 DDC 10.0

SI Project No: FPF-301 Location: Hines Energy Complex Well Number ID: TW-1 Completed by: Jack Breland

Date: 01/14/04

Drilling Contractor: Diversified Drilling Corp. Drilling Method: Reverse-air Summ**ary**: Site Clean Up

	Site Clean Up
Time	Activity Description
0800	Jack B. (SI) on-site. Check in at the gatehouse and opened up office. Bruce Harmon (DDC) two helpers, Shawn and Jason are already on- site
0900	DDC are picking up drilling accessories and materials. SI is clearing out office and working on weekly report information.
1000	Obtained samples from the pad monitoring wells.
1030	DDC off-site.
1200	Waiting for Dana G. (SI) to pick up office materials and supplies, as well as the weekly report information. Lunch.
1300	Dana G. (SI) on-site to sample well for lab analysis.
1400	Helped Dana G. load office materials into vehicle. SI off-site.

Total Daily On-Site Man Hours SI_5.0 DDC_5.0

125



Appendix D

Lithologic Log

Feasibility Report July 26, 2004 - Schreuder, Inc.

# Schreuder, Inc. Lithology Log

Project: FPF-301 Location: Hines Energy Complex Well Number: TW – 1 Sample Description By: Jack Breland Sampling Method: Grab

Date: 12/9/03

Drilling Contractor: Diversified Drilling Corp. Drilling Method: Mud Rotary: 0-182 ft bls Reverse Air: 182-899 ft bls

Depth Interval	Sample Description	Drilling Comments
0-0.5	Gravel, multicolored, clean, limestone.	Fill material
0.5 – 5	<b>Sand</b> , (fill), white (N9) to off white (5W 6/2), very fine to fine grained, well sorted.	Fill material
5– 7	<b>Sand</b> , as above, except traces of shell fragments and slightly organic.	
7– 8	<b>Sand</b> , light olive gray (5Y 6/1), clayey, very fine rained, well sorted, abundant yellowish brown organics.	
8 – 16	Silt, off white (5W 6/2), clayey, loosely consolidated, traces of very fine-grained sand, well sorted.	
16 – 25	Clay, brown (5YR 5/6), silty, very phosphatic- yellowish traces of black (N1), soft to pebbly size.	
25 – 31	<b>Clay</b> , off white (5W 6/2) to white, loosely consolidated, minor gummy layers, decreasing phosphate with depth.	Kelly down
31 – 45	<b>Clay</b> , grayish orange (10YR 7/4) to dark yellowish orange (10YR 6/6), soft, gummy texture, abundant phosphatic grains, minor sand, very fine grained well sorted.	Added DP#1 (31.0 ft)
45 – 56	<b>Clay</b> , off white (N9) to very light gray (N8), soft, gummy texture. Traces of phosphatic limestone.	
56 – 62	<b>Clay</b> , light gray (N7) to medium light gray (N6), soft, gummy texture.	End pilot hole for surface casing
62 78	Clay, light gray (N7), soft, gummy texture, sticky.	Added DP#2 (31.0 ft)
78 – 86	<b>Clay</b> , grayish olive (10Y 4/2), soft to semi-firm, minor black (N1) phosphate layers, very low porosity.	

SCHREUDER, INC.

Danth	Correcto Description	
Depth Interval	Sample Description	Drilling Comments
86-93	<b>Mudstone</b> , light olive gray (5Y6/1), stiff, blocky, interbedded shell fragments, very fine to coarse phosphate, poor porosity.	Added DP#3 (30.5 ft)
93 –103	<b>Mudstone</b> , light olive gray (5Y 6/1) to medium olive gray (5Y 4/1), blocky, low porosity, interbedded light gray (N6) stiff clay, minor black phosphatic grains (15%).	
103 – 114	<b>Mudstone</b> , very light gray to white (N9 – N8), blocky moderately firm, minor phosphatic layers as above. Traces of soft, olive gray clay.	
114 – 125	<b>Clay</b> , medium gray (N7) soft, gummy texture, common black phosphatic layers, fine grained to pebble size.	Added DP#4 (30.41 ft)
125 – 135	<b>Limestone</b> , Light olive gray (5Y 6/1) to very light gray (N8), mudstone, moderately soft to moderately firm, pebbly sized phosphatic grains, poor apparent porosity.	
135 – 150	<b>Limestone</b> , yellowish gray, mudstone, moderately firm to firm, phosphatic specks. Splinty texture, fair to good apparent porosity.	
150160	Limestone, grayish yellow (5Y 8/4) and pale yellowish brown (10 YR 6/2), wackestone and mudstone, platey texture, traces of molds and casts, good apparent porosity and permeability.	Added DP#5 (30.50 ft)
160 – 175	Limestone, very light gray (N8) to light gray (N7), mudstone soft to moderately firm, common wackestone layers as above, minor phosphate, very fine specks to pebble sizes. Traces of very light gray gummy clay layers.	
175 – 182	Limestone, moderate yellowish brown (10 YR 5/4), wackestone, biomicritic to dolomitic, very hard to friable, excellent moldic and intergranular porosity. Minor pinhole and vuggy porosity, common hard to very hard layers.	
182 – 185	<b>Cavernous</b> . No samples. Lost circulation zone.	Added DP#6 (30.50 ft) Lost circulation, switched over to reverse air- drilling method.

1000					i n	of the local division of the
Sc	110	31	To 1	-		AT COM
-	ينقل			1.1	2.1	111.000

Depth	Sample Description	Duillima
Interval	Cample Description	Drilling Comments
185 - 190	<b>Dolostone</b> , very pale orange (10 YR 8/2) to brownish gray (5YR 4/1), hard to very hard, good intergranular porosity, traces of phosphatic grains, remnants of shell fragments.	
190 - 200	<b>Sandstone</b> , brownish gray (5YR 4/1) to very pale orange (10YR 8/2), loosely consolidated, fine to coarse grained, sub-angular to sub-rounded, moderate to well sorted, decreasing phosphate grains and shell fragments.	
200 – 210	<b>Dolostone</b> , medium bluish gray (N7), hard, microcrystalline to very fine, common sand sized black (N1) phosphatic grains.	
210 - 215	<b>Clay</b> , light gray (N7), soft, gummy texture, common sand sized phosphatic grains.	Added DP#7 (31.0 ft)
215 – 250	<b>Limestone</b> , light olive gray (5Y 6/1) to pale olive gray (10Y 6/2), wackestone, hard to very hard, microcrystalline to very fine, excellent moldic porosity, common phosphatic layers. Traces of light olive gray, soft, clay.	
225 – 230	<b>Dolostone</b> , yellowish gray (5Y 4/1) to dark greenish gray (5GY 4/1), stiff to gummy texture, decreasing hard phosphatic layers. Poor apparent porosity.	
230 –247	<b>Clay</b> , olive gray (5Y 4/1) to dark greenish gray (5GY 4/1), stiff to gummy texture, minor hard, phosphatic grains, poor apparent porosity.	
247 – 269	<b>Clay,</b> dark greenish gray, (5GY 4/1), stiff, chunky, moderately firm, poor apparent porosity.	Added DP#8 (31.80 ft)
269 - 277	Limestone, light gray (N7), to light olive gray (5Y 6/1), wackestone to mudstone, microcrystalline to very fine grained, moderately hard to hard, common mollusk shell fragments, minor molds and casts, good moldic porosity.	
277- 282	<b>Sandstone,</b> greenish gray, (5GY 6/1), fine to medium grained, moderately to well cemented, well sorted, minor black sand size to pebbly phosphatic grains, good intergranular porosity.	Added DP#9 (31.00 ft)
282 – 295	<b>Clay,</b> white (N9), to very light gray (N8), soft, gummy texture, minor phosphate grains, as above, common hard mudstone layers, abundant brownish black sharks teeth and shell fragments.	

Depth	Sample Description	
Interval	Sample Description	Drilling
		Comments
295 – 310	Limestone, light gray (N7) to light olive gray (5Y 6/1), wackestone to calcarenitic, moderately hard, abundant shells and shell fragments, molds and casts, mollusks, foraminifera, bryozoans, echinoids, good apparent porosity and permeability.	Top of Suwannee Limestone
310 – 330	Limestone, yellowish gray (5Y 8/1) to light olive gray (5Y 6/1), packstone to grainstone, calcarenitic, moderately hard to hard, abundant shells and shell fragments, molds and casts, mollusks, foraminifera, bryozoans, echinoids, good apparent porosity, good apparent permeability.	Added DP#10 (30.50 ft)
330 –340	Limestone, yellowish gray (5Y 8/1) to light olive gray (5Y 6/1), packstone to grainstone, calcarenitic, moderately soft to hard, abundant shells and shell fragments, molds and casts, mollusks, foraminifera, bryozoans, echinoids, good apparent moldic porosity, good apparent permeability.	End of pilot-hole drilling.
340 - 350	Limestone, yellowish gray (5Y 8/1) to light olive gray (5Y 6/1), packstone to grainstone, calcarenitic, moderately soft to hard, abundant shells and shell fragments, molds and casts, mollusks, foraminifera, bryozoans, echinoid, good apparent moldic porosity, good apparent permeability.	AddedDP#11 (31.00 ft) Started drilling with 13-inch diameter stage bit. Lead bit is 12 ¼-inch diameter
350 - 360	Limestone, yellowish gray (5Y 8/1) to light olive gray (5Y 6/1),wackestone to grainstone, calcarenitic, moderately soft to hard, abundant shells and shell fragments, molds and casts, mollusks, foraminfera, bryozoans, good apparent moldic porosity, good apparent permeability.	
360 - 370	Limestone, yellowish gray (5Y 8/1) to light olive gray (5Y 6/1), minor calcarenite, moderately soft to hard, abundant shells and shell fragments, molds and casts, mollusks, foraminfera, good apparent moldic porosity, good apparent permeability.	
370 - 380	Limestone, yellowish gray (5Y 8/1) to light olive gray (5Y 6/1), grain stone, moderately soft to moderately hard, minor loosely consolidated, increase in shell fragments and molds and casts.	Added DP#12 (30.80 ft)

198-18 COL 2-1		10.000	No. of Concession, Name
SCHR	2911-0	APRIL 1	Are -
P 10:0	121111	111000	<ul> <li>A solution</li> </ul>
and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se			12.1.7.2.000

Depth Interval	Sample Description	Drilling Comments
380 - 400	Limestone, yellowish gray (5Y 8/1) to light olive gray (5Y 6/1), wackestone to grainstone, loosely consolidated to moderately hard, abundant shell fragments, molds, and casts, calcareous texture, mollusks, good apparent porosity.	
400 - 410	Limestone, light olive gray (5Y 6/1), wackestone to grain stone, loosely consolidated to moderately hard, abundant shell fragments, molds, and casts, calcareous texture, mollusks, good apparent porosity	Added DP#13 (31.00 ft)
410 - 420	Limestone, light olive gray (5Y 6/1), grainstone, loosely consolidated to moderately hard, decreased shell fragments, molds, and casts, calcareous texture, mollusks, good apparent porosity	
420 - 430	Limestone, light olive gray (5Y 6/1), grainstone, loosely consolidated to moderately hard, decreased shell fragments, molds, and casts, calcareous texture, mollusks, good apparent porosity, good apparent permeability.	
430 - 450	Limestone, yellowish gray (5Y 6/1), grainstone, loosely consolidated to moderately hard, decreased shell fragments, molds, and casts, calcareous texture, mollusks, good apparent porosity, fair to good apparent permeability.	Added DP#14 (31.80 ft)
450 - 465	Limestone, yellowish gray (5Y 6/1), grainstone, loosely consolidated to soft, calcarenitic texture, abundant foraminfera, mollusks, echinoderm spines, good apparent porosity, fair to good apparent permeability.	
465 - 495	Limestone, yellowish gray (5Y 6/1), grainstone, loosely consolidated to soft, calcarenitic texture, crumbly, abundant shell fragments, molds, and casts, mollusks, good apparent porosity, fair to good apparent permeability.	Added DP#15 (31.80 ft)
495 - 525	Limestone, yellowish gray (5Y 6/1), grainstone, loosely consolidated to soft, calcarenitic texture, crumbly, abundant shell fragments, molds, and casts, mollusks, good apparent porosity, fair to good apparent permeability.	Added DP#16 (30.40 ft)

<b>D</b> 41		
Depth Interval	Sample Description	Drilling Comments
525 - 555	<b>Limestone</b> , yellowish gray (5Y 6/1), wackestone to grainstone, loosely consolidated to moderately hard, calcarenitic texture, crumbly, decreased shell fragments, molds, and casts, mollusks, good apparent porosity, fair to good apparent permeability.	Added DP#17 (31.10 ft)
555 - 560	Limestone, yellowish gray (5Y 6/1), wackestone to grainstone, very hard stringers of very hard boundstone (calcite cement), loosely consolidated to moderately hard, calcarenitic texture, crumbly, abundant foraminfera, increased shell fragments, molds, and casts, good apparent porosity.	
560 - 580	Limestone, yellowish gray (5Y 6/1), wackestone to grain stone, good moldic porosity, loosely consolidated to moderately hard, calcarenitic texture, crumbly, decreased shell fragments, molds, and casts, good apparent porosity	Added DP#18 (30.30 ft)
580 - 590	Limestone, yellowish gray (5Y 6/1), wackestone to grainstone, loosely consolidated to moderately hard, moldic texture, crumbly, increased shell fragments, abundant molds, and casts, good apparent porosity, fair to good apparent permeability.	
590 - 610	Limestone, yellowish gray (5Y 6/1), wackestone to mudstone, loosely consolidated to moderately hard, moldic texture, crumbly, traces of shell fragments, minor molds, and casts, good apparent porosity, fair to good apparent permeability.	Added DP#19 (31.20 ft)
610 - 616	Limestone, light brownish gray (5Y 6/1), mudstone, moderately hard, moldic texture, traces of shell fragments, poor apparent porosity, fair to poor apparent permeability.	
616 - 617	Marl, light olive gray (5Y 6/1) to yellowish gray (5Y 6/1), soft, gummy texture, interbedded mudstone layers as above.	
617 - 621	Limestone, yellowish gray (5Y 6/1), dark yellowish orange (10YR 5/4), grainstone, loosely consolidated, crumbly, sucrosic texture, abundance of echinoids and echinoid spines, foraminfera, good to excellent porosity, good to excellent apparent permeability.	Top of Ocala Formation

Depth	Sample Description	
Interval	Sample Description	Drilling Comments
621 - 641	Limestone, yellowish gray (5Y 6/1), dark yellowish orange (10YR 5/4), grainstone, moderately soft, loosely consolidated, crumbly, good apparent moldic porosity, good apparent permeability.	Added DP#20 (30.50 ft)
641 - 651	Limestone, very pale orange (10YR 8/2), grainstone, moderately soft to moderately hard, calcarenitic texture, crumbly, good apparent moldic porosity, good apparent permeability.	
671 - 682	Limestone, very pale orange (10YR 8/2), mudstone to grainstone, moderately hard, earthy texture, fair apparent moldic porosity, fair apparent permeability. Very hard layer at 671 feet below land surface. Crystallized echinoids in cuttings.	
682 - 690	Limestone, moderate yellowish brown (10YR 5/4), grainstone, moderately soft, loosely consolidated, common shell fragments, minor molds and casts, good apparent porosity, fair apparent permeability.	Added DP#22 (30.30 ft)
690 - 693	<b>Dolostone,</b> brownish gray, (5YR 4/1), hard to very hard, crystalline texture, poor to fair apparent porosity.	
693 - 703	<b>Dolostone,</b> as above except, interbedded layers of light gray (5Y 6/1), moderately soft, mudstone, abundant shell fragments and foraminifera.	
703 - 710	<b>Limestone</b> , yellowish gray (5Y 6/1) to light olive gray (5Y 8/1), calcarenite, loosely consolidated, sucrosic texture, crumbly, common echinoids, minor shell fragments, molds and casts, good apparent porosity.	
710 - 722	Limestone, yellowish gray (5Y 6/1) to light olive gray (5Y 8/1), calcarenite, moderately hard to loosely consolidated, sucrosic texture, crumbly, common echinoids, minor shell fragments, molds and casts, good apparent porosity, good apparent permeability.	Added DP#23 (30.60 ft)
722 - 743	Limestone, yellowish gray (5Y 6/1) to grayish orange (10YR 8/2), calcarenite, loosely consolidated, sucrosic texture, crumbly, common echinoids, minor shell fragments, molds and casts, good apparent porosity, good apparent permeability.	

Depth	Sample Description	Drilling
Interval		Comments
743 - 759	Limestone, yellowish gray (5Y 6/1) to very pale orange (10YR 8/2), calcarenite, mudstone, moderately soft to hard, loosely consolidated, common echinoids, minor shell fragments, molds and casts, good apparent porosity, good apparent permeability.	Added DP#25 (31.60 ft)
759 - 760	<b>Clay,</b> light gray (5Y 6/1), soft, gummy texture, poor apparent porosity, poor apparent permeability.	
760 - 765	Limestone, very pale orange (10YR-8/2), grainstone to wackestone, moderately hard to hard, loosely consolidated, common shell fragments, fair to good apparent porosity.	
765 - 775	Limestone, very pale orange (10YR-8/2), grainstone, to wackestone, moderately hard to hard, loosely consolidated, common shell fragments, interbedded layer of very pale yellowish brown (10YR 8/2), very hard, crystalline dolostone, abundant shell fragments, foraminifera, echinoids.	
775 - 781	<b>Dolostone,</b> very pale yellowish brown (10YR 8/2), very hard, crystalline texture, poor to fair intergranular porosity, interbedded limestone (as above).	
781 - 784	<b>Limestone</b> , very pale orange (10YR-8/2), grainstone, to wackestone, moderately hard to hard, loosely consolidated, common shell fragments, interbedded layer of very pale yellowish brown (10YR 8/2), very hard, crystalline dolostone, abundant shell fragments, foraminifera, echinoids.	
784 - 794	<b>Dolostone,</b> pale yellowish brown (10YR 8/2), very hard (slow drilling), crystalline texture, poor to fair intergranular porosity, poor apparent permeability.	
794-806	<b>Dolostone,</b> pale yellowish brown, (10 YR 4/2), very hard, (slow drilling rate), crystalline texture, massive, fair to poor apparent porosity, minor limestone layers.	
806-816	<b>Dolostone,</b> dark yellowish brown (10YR 4/2), very hard, crystalline texture, dense, no fossils, poor to fair inter-crystalline porosity.	Added DP#26 (31.60 ft)

- 10 M	Supp. 5-	and the second second	Pacoulti
1.10	17131	DET	INC.
Contraine.	113331		2777-22

Depth	Sample Description	
Interval	Sample Description	Drilling Comments
	Limestone vellowich grov (5V 6/1) to light alive	Comments
	Limestone, yellowish gray (5Y 6/1), to light olive	
	gray (5 GY 6/1), wackestone to grainstone,	
816-831	abundant shell fragments, molds and casts, traces	
	of light gray (N6), soft, light gray, gummy clay layers at base, fair to good inter-particle and	
	moldic porosity, good apparent permeability. <b>Dolostone,</b> greenish black (5 GY 2/1) to black	Top of Avon Park
	(N1), very hard to hard, minor layered organic	Formation
831-837	black marl, crystalline texture, dense, fair apparent	
	inter-crystalline porosity,	
	<b>Dolostone,</b> as above except, increase of black	Added DP#27
837-842	clayey layers, interbedded with very hard	(30.60 ft)
oor old	crystalline dolostone.	(00.00 1.)
	Limestone, pale brown, (5 YR 5/2), hard,	
842-852	crystalline texture, dolomitic, poor inter-crystalline	
	porosity, poor apparent permeability	
	<b>Dolostone,</b> greenish black (5GY 2/1) to black	
	(N1), very hard to hard, layered, crystalline	
852-856	texture, dense to fractured, fair to good apparent	
	inter-crystalline porosity,	
	Interbedded Dolostone and Limestone,	
	Limestone: pale brown, (5 YR 5/2), wackestone to	
	grainstone, abundant shell fragments, loosely	
	consolidated to moderately hard, good inter-	
856-868	granular porosity, good to fair apparent	
	permeability. Dolostone: light brownish gray	
	(5GY 2/1) to black (N1), very hard to hard, dense	
	to layered, crystalline texture, fair to good	
	apparent inter-crystalline porosity,	
	Limestone, yellowish gray (5Y 6/1) to light olive	Added DP#28
	gray (5 GY 6/1), wackestone to grainstone,	(31.20 ft)
868-870	abundant shell fragments, molds and casts, good	
	inter-particle and moldic porosity, good apparent	
	permeability.	
	Dolostone, greenish black (5GY 2/1) to black	
	(N1), very hard to hard, layered, crystalline	
	texture, dense, fair apparent inter-crystalline	
970 005	porosity, good vuggy porosity, fair apparent	
870-885	permeability.	
<u>_</u>		

Depth Interval	Sample Description	Drilling Comments
885-888	Limestone, yellowish gray (5Y 6/1) to pale yellowish gray (10YR 8/2), wackestone to grainstone, abundant shell fragments, molds and casts, good inter-particle and moldic porosity, good apparent permeability, minor layers of very hard dolostone, as above.	
888-892	Interbedded Dolostone and Limestone, Limestone: pale brown, (5YR 5/2), wackestone to grainstone, abundant shell fragments, loosely consolidated to moderately hard, good inter- grainular porosity, good to fair apparent permeability. Dolostone: light brownish gray (5GY 2/1) to black (N1), very hard to hard, dense to layered, crystalline texture, fair to good apparent inter-crystalline porosity, traces of vuggy porosity.	
892-899	<b>Dolostone,</b> light brownish gray (5GY 2/1) to black (N1), very hard to hard, dense to layered, crystalline texture, fair to good apparent inter- crystalline porosity, traces of vuggy porosity, minor grainstone layers, as above.	End of borehole advancement using 13-inch diameter stage bit.



Appendix E

Field Water Quality Data - TW-1

Feasibility Report July 26, 2004 - Schreuder, Inc.

# Schreuder Inc. Water Quality Data

Project: FPF-301 Well ID: TW-1

Location: Hines Energy Complex Sampled By: Jack Breland

Date/Time Collected	Sample ID	Depth Interval (ft bis)	pH (su)	Temperature (C ⁰ )	Conductivity (μS)	Chloride (mg/l)
12/03/03 0820	H-143	342	8.13	24.4	402.7	30
12/03/03 0820	H-149	373	8.16	24.1	350.6	38
12/03/03 0820	H-141	404	8.33	23.6	345.1	40
12/03/03 0820	H-133	435	8.32	22.9	354.4	44
12/03/03 0820	H-130	467	8.21	22.4	359.0	40
12/04/03 0820	H-106	498	7.94	21.1	357.6	38
12/04/03 0935	H-121	529	8.12	23.3	356.9	44
12/04/03 1050	H-125	560	8.11	23.8	356.7	42
12/04/03 1100	H-123	590	8.19	24.3	356.0	40
12/04/03 1415	H-113	621	8.06	24.7	357.8	42
12/04/03 1520	H-124	652	8.23	24.8	353.4	32
12/04/03 1630	H-111	682	8.14	24.5	353.2	26
12/05/03 0930	H-107	712	8.01	24.1	336.9	20
12/05/03 1000	H-103	743	8.02	24.6	320.4	24
12/08/03 0900	H-120	760	8.13	18.6	341.9	36
12/08/03 0930	H-101	774	8.14	23.0	329.5	32
12/08/03 1140	-	794	8.13	23.9	351.5	28
12/08/03 1230	H-104	806	7.98	24.2	336.1	32
12/08/03 1700	H-131	837	7.99	24.4	404.1	38
12/08/03 1800	-	842	8.10	17.0	450.2	36
12/09/03 0830	-	852	8.01	23.7	463.1	38
12/09/03 0930	-	857	7.98	23.1	470.0	32
12/09/03 1100	H-142	868	7.90	24.4	521.0	38
12/09/03 1200	H-500	873	8.04	24.5	554.0	38
12/09/03 1330	H-501	878	8.11	24.4	504.0	36
12/09/03 1530	H-502	883	8.04	23.6	518.0	32
12/09/03 1620	H-503	888	8.10	24.5	526.0	38
12/09/03 1700	H-504	893	8.09	23.3	478.0	36

Feasibility Report July 26, 2004 - Schreuder, Inc.

Date/Time Collected	Sample ID	Depth Interval (ft bls)	pH (su)	Temperature (C [°] )	Conductivity (μS)	Chloride (mg/l)
12/09/03 1800	H-505	899	7.86	24.5	422.0	32
12/18/03 1045		805	7.85	17.3	631	
12/18/03 1230		834	8.01	24.4	647	
12/18/03 1545		864	8.03	23.5	713	
12/18/03 1640		900	7.98	24.3	596	



Appendix F

Background Water Quality Data

Severn Trent Laboratories, Inc.

Feasibility Report July 26, 2004 - Schreuder, Inc.



# Analytical Report

For: Mr. Cliff Harrison Schreuder, Inc. 110 W. Country Club Dr. Tampa, FL 33612 CC:

> Order Number: B420134 SDG Number: Client Project ID: Project: Report Date: 02/04/2004 Sampled By: Client Sample Received Date: 01/13/2004 Requisition Number: Purchase Order:

Tina Fritz, Project Manager tfritz@stl-inc.com

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory.



Sample Summary

Order: B420134 Date Received: 01/13/2004 Client: Schreuder, Inc. Project:

Client Sample IDLab Sample IDMatrixDate SampledTW-1B420134*1Liquid01/13/2009 11:00

• 3.54



# 6712 Benjamin Road, Suite 100 - Tampa FL 33634 Telephone:(813) 885-7427 Fax:(813) 885-7049

ab Sample ID Description			Matrix	Date Received	Date Sampled	SDG#
20134-1 TW-1			Liquid	01/13/04	01/13/09 11:00	
		Lab Sample IDs				
Parameter	Units	<b>20134-1</b>				
Chlorinated Pesticides	(508)					
Aroclor-1016	ug/1	0.500				
Aroclor-1221	ug/1	0.500				
Aroclor-1232	ug/1	0.500				
Aroclor-1242	ug/1	0.500				
Aroclor-1248	ug/l	0.500				
Aroclor-1254	ug/1	0.500				
Aroclor-1260	ug/1	0.500				
Toxaphene	ug/1	2.50				
Chlordane (technical)	ug/l	0.250				
Prep Date		01/20/04				
Analysis Date		01/21/04				
Chlorinated Herbicides	(515.1)					
2,4-D	ug/l	0.500				
Dalapon	ug/1	100				
Dinoseb	ug/1	3.00				
Pentachlorophenol	ug/1	1.00				
Picloram	ug/1	0.500				
2,4,5-TP (Silvex)	ug/1	0.500				
Prep Date	3, 1	01/19/04				
Analysis Date		01/20/04				
SEMIVOLATILE ORGANICS (	525.2)	11				
Alachlor	ug/]	0.0760			26	
Atrazine	ug/l	0.087U				
Benzo(a)pyrene	ug/l	0.0380				
bis(2-Ethylhexyl)adipate	ug/l	0.094U				
bis(2-Ethylhexyl)phthalate	ug/1	0.560				

 $\zeta^{i}\gamma^{i}$ 



6712 Benjamin Road, Suite 100 - Tampa FL 33634 Telephone:(813) 885-7427 Fax:(813) 885-7049

ab Sample ID Description			Matrix	Date Received	Date Sampled	SDG#
0134-1 TW-1			Liquid	01/13/04	01/13/09 11:00	
		Lab Sample IDs				
Parameter	Units	<b>20134-1</b>	:	an teny taning et i.		
SEMIVOLATILE ORGANICS (	525.2)	74				
Endrin	ug/1	0.14U				
leptachlor	ug/ï	0.087U				
leptachlor epoxide	ug/T	0.064U				
lexachlorobenzene	ug/l	0.0580				
lexachlorocyclopentadiene	ug/T	0.500				
jamma-BHC (Lindane)	ug/1	0.0570				
1ethoxychlor	ug/T	0.0690				
imazine	ug/l	0.110				
Prep Date		01/21/04				
Analysis Date		01/24/04				
Total Cyanide (335.4)						
Total Cyanide	mg/1	0.0100				
Prep Date		01/16/04				
Analysis Date		01/19/01				
Diquat (549.2)						
Diquat	ug/1	1.60				
Prep Date		01/23/04				
Analysis Date		01/23/04				
Chloride (325.3)						
Chloride	mg/1	10			24	
Analysis Date		01/22/04				

Analytical Data Report



### STL Tampa

# 6712 Benjamin Road, Suite 100 - Tampa FL 33634 Telephone:(813) 885-7427 Fax:(813) 885-7049

Lab Sample ID Descriptio	n		Matrix	Date Received	Date Sampled	SDC#
20134-1 TW-1		· _ · ·	Liquid	01/13/04	01/13/09 11:00	
_		Lab Sample IDs				
Parameter	Units	20134-1	a	· .		
Total Dissolved Soli	ds (SM2540C)					
Total Dissolved Solids	mg/1	470				
Analysis Date		01/17/04				
Nitrate-N (353.2)						
Nitrate-N	mg/7	0.0100				
Analysis Date		01/14/04				
Nitrite-N (353.2)						
Nitrite-N	mg/1	0.0321				
Analysis Date		01/14/04				
Color, Apparent (SM2	120A)					
Color, Apparent	PCU	50				
Analysis Date		01/13/04				
Sulfate as SO4 (375.	4)					
Sulfate as SO4	mg/l	230				
Analysis Date		01/19/04				
Fluoride (340.2)						
Fluoride	mg/]	0.45			2.2	
Analysis Date	<b></b>	01/20/04				



			-			
Lab Sample ID Descripti	on		Matrix	Date Received	Date Sampled	SDG#
20134-1 TW-1			Liquid	01/13/04	01/13/09 11:00	
		Lab Sample IDs				
Parameter	Units	<b>20134-1</b>				
Odor (140.1)						
Odor	TON	10		5		
Analysis Date	1011	01/13/04				
Dissolved Oxygen (S	M4500C)					
Dissolved Oxygen	mg/7	6.4				
Analysis Date		01/13/04				
pH (150.1)						
рH	units	7.3				
Analysis Date		01/13/04				
Surfactants (MBAS)	(SM5540C)					
Surfactants (MBAS)	mg/l	0.0390				
Prep Date		01/15/04				
Analysis Date		01/15/04				
2,3,7,8-TCDD						
2,3,7,8-TCDD		*F71				
		10				
Endothall (548.1)						
Endotha]]	ug/l	2.50			15	
Prep Date		01/19/04				
Analysis Date		01/21/04				

Analytical Data Report

--



# STL Tampa 6712 Benjamin Road, Suite 100 - Tampa FL 33634 Telephone:(813) 885-7427 Fax:(813) 885-7049

		/****/					
Lab Sample ID Description				Matrix	Date Received	Date Sampled	SDC#
20134-1 TW-1			-	Liquid	01/13/04	01/13/09 11:00	
		Lab	Sample IDs			01/15/05 11.00	
Parameter	Units	20134-1	•				
DW-531.1 (Primary) (53	1.1)						
Charles Courses							
Carbofuran	ug/1	1.00					
Oxamy]	ug/1	1.00					
Prep Date		01/27/04					
Analysis Date		01/28/04					
DW-524.2 (Primary) (52	4.2)						
Benzene	ug/1	0.0900					
Carbon tetrachloride	ug/1	0.10U					
Chlorobenzene	ug/1	0.100					
1,2-Dichlorobenzene	ug/1	0.230					
1,4-Dichlorobenzene	ug/l	0.210					
1,2-Dichloroethane	ug/T	0.110					
1,1-Dichloroethene	ug/l	0.120					
cis-1,2-Dichloroethene	ug/l	0.080U					
trans-1,2-Dichloroethene	ug/7	0.090U					
1,2-Dichloropropane	ug/1	0.0900					
Ethylbenzene	ug/l	0.100					
Methylene chloride							
(Dichloromethane)	ug/l	0.34U					
Styrene	ug/1	0.130					
Tetrachloroethene	ug/T	0.080U					
Toluene	ug/T	0.130					
1,2,4-Trichlorobenzene	ug/l	0.260					
1,1,1-Trichloroethane	ug/1	0.0800					
1,1,2-Trichloroethane	ug/1	0.170				11	
Trichloroethene	ug/l	0.0900					
Vinyl chloride	ug/1	0.0700					
Xylenes, Total	ug/l	0.160					
Analysis Date	-27 •	01/21/04					
-		- wy to day to 1					
	a.						



Lab Sample ID Descript	ion		Matrix	Date Received	Date Sampled	SDG#
20134-1 TW-1			Liquid	01/13/04	01/13/09 11:00	<u> </u>
Parameter	Units	Lab Sample IDs 20134-1				
VOC Trihalomethane	s (524.2)					
Trihalomethanes (Total)	(**) ug/l	2.00				
Analysis Date		01/21/04				
Primary Organics -	Fumigants (504)					
1,2-Dibromoethane (EDB)	ug/1	0.014U				
1,2-Dibromo-3-chloropro	pane ug/1	0.0110				
Prep Date		01/21/04				
Analysis Date		01/21/04				
Glyphosate (547)				•		
Glyphosate	ug/1	10U				
Prep Date		01/16/04				
Analysis Date		01/17/04				
ICP Metals (200.7)						
Aluminum	mg/1	0.0421				
Arsenic	mg/1	0.0033I				
Barium	mg/l	0.020				
Beryllium	mg/l	0.00054U				
Cadmium	mg/1	0.00071U				
Chromium	mg/l	0.0017U				
Copper	mg∕l	0.013I				
Iron	mg∕1	0.23			53	
Lead	mg/l	0.0015U				
Manganese	mg/l	0.0063I				
Nickel	mg/l	0.00470				
Silver	mg/1	0.00190				



ICP Metals (200.7)         Sodium       mg/1       11         Thallium       mg/1       0.0049U         Zinc       mg/1       0.020         Prep Date       01/13/04         Analysis Date       01/19/04         Mercury (245.1)       Mercury (245.1)         Mercury mg/1       0.000072U         Prep Date       01/19/04         Analysis Date       01/19/04         Iron (6010)       Uron (6010)         Iron       mg/1       0.23         Prep Date       01/13/04         Analysis Date       01/19/04         Analysis Date       01/19/04         Analysis Date       01/19/04         Prep Date       01/19/04         Analysis Date       01/19/04         Analysis Date       01/19/04         Analysis Date       01/19/04         Analysis Date       01/19/04         Analysis Date       01/19/04         Antimony (200.9)       Mercury 10.0050U         Prep Date       01/28/04	Lab Sample ID Description	on		Matrix	Date Received	Date Sampled	SDG#
Parameter         Units         20134-1           ICP Metals (200.7)         II.           Sodium         mg/1         11.           Thallium         mg/1         0.00490           Zinc         mg/1         0.1200           Prep Date         01/13/04           Analysis Date         01/19/04           Mercury (245.1)         mg/1         0.0000720           Prep Date         01/19/04           Analysis Date         01/19/04           Iron         mg/1         0.23           Prep Date         01/13/04           Analysis Date         01/13/04           Analysis Date         01/13/04           Analysis Date         01/13/04           Analysis Date         01/13/04           Analysis Date         01/13/04           Analysis Date         01/13/04           Analysis Date         01/13/04           Analysis Date         01/13/04           Analysis Date         01/13/04           Analysis Date         01/28/04           Selenium (200.9 Rev 2.2)         20           Selenium (200.9 Rev 2.2)         20           Selenium (200.9 Rev 2.2)         20           Selenium (200.9 Rev 2.2)	20134-1 TW-1			Liquid	01/13/04	01/13/09 11:00	• <u> </u>
ICP Metals (200.7)         Sodium       mg/l       11         Thallium       mg/l       0.0049U         Zinc       mg/l       0.200         Prep Date       01/13/04         Analysis Date       01/13/04         Mercury (245.1)       Mercury (245.1)         Mercury (245.1)       mg/l       0.000072U         Prep Date       01/19/04         Analysis Date       01/19/04         Iron (6010)       Iron (6020)         Iron (6020)       mg/l       0.23         Prep Date       01/13/04         Analysis Date       01/13/04         Analysis Date       01/13/04         Antimony (200.9)       4         Antimony (200.9)       Mg/l       0.00500         Prep Date       02/03/04       12/28/04         Selenium (200.9 Rev 2.2)       Selenium mg/l       -0.050°F65         Selenium       mg/l       -0.050°F65         Prep Date       01/28/04         Analysis Date       01/28/04	Parameter	Units					
Solium         mg/l         11           Thallium         mg/l         0.0049U           Zinc         mg/l         0.020           Prep Date         01/13/04           Analysis Date         01/19/04           Mercury (245.1)            Mercury (245.1)         0.000072U           Prep Date         01/19/04           Analysis Date         01/19/04           Iron (6010)            Iron (6010)            Antimony (200.9)            Antimony (200.9)            Selenium (200.9 Rev 2.2)            Selenium (200.9 Rev 2.2)            Selenium (200.9 Rev 2.2)							<u> </u>
Thallium     mg/1     0.0049U       Zinc     mg/1     0.020       Prep Date     01/13/04       Analysis Date     01/19/04       Mercury (245.1)     mg/1     0.000072U       Prep Date     01/19/04       Analysis Date     01/19/04       Iron (6010)     0.23       Prep Date     01/19/04       Analysis Date     01/19/04       Analysis Date     01/19/04       Analysis Date     01/19/04       Analysis Date     01/28/04	ICP Metals (200.7)						
Thallium     mg/1     0.0049U       Zinc     mg/1     0.020       Prep Date     01/13/04       Analysis Date     01/19/04       Mercury (245.1)     mg/1     0.000072U       Prep Date     01/19/04       Analysis Date     01/19/04       Iron (6010)     0.23       Prep Date     01/19/04       Analysis Date     01/19/04       Analysis Date     01/19/04       Analysis Date     01/19/04       Analysis Date     01/28/04		-					
Zinc     mg/1     0.020       Prep Date     01/13/04       Analysis Date     01/19/04       Mercury (245.1)     0.000072U       Prep Date     01/19/04       Analysis Date     01/19/04       Iron (6010)     0.23       Iron (6010)     0.23       Prep Date     01/13/04       Analysis Date     01/19/04       Analysis Date     01/13/04       Analysis Date     01/19/04       Selenium (200.9)     mg/1     0.0050U       Selenium (200.9 Rev 2.2)     01/28/04       Selenium     mg/1     -0.050*F65       Prep Date     01/28/04       Analysis Date     01/28/04							
Prep Date       01/13/04         Analysis Date       01/19/04         Mercury (245.1)       mg/1       0.000072U         Prep Date       01/19/04         Analysis Date       01/19/04         Iron (6010)       mg/1       0.23         Prep Date       01/13/04         Analysis Date       01/13/04         Analysis Date       01/13/04         Antimony (200.9)       mg/1       0.0050U         Antimony       mg/1       0.0050U         Prep Date       01/28/04         Analysis Date       02/03/04         Selenium (200.9 Rev 2.2)       22/03/04         Selenium       mg/1       <0.050*F65							
Analysis Date     01/19/04       Mercury (245.1)     0.000072U       Prep Date     01/19/04       Analysis Date     01/19/04       Iron (6010)     0.23       Iron mg/1     0.23       Prep Date     01/19/04       Analysis Date     01/19/04       Analysis Date     01/19/04       Analysis Date     01/19/04       Analysis Date     01/19/04       Antimony (200.9)     0.0050U       Antimony     mg/1     0.0050U       Prep Date     01/28/04       Analysis Date     02/03/04       Selenium (200.9 Rev 2.2)     20.050*F65       Selenium     mg/1     <0.050*F65		mg/1					
Mercury (245.1)         Mercury rep Date analysis Date       0.000072U 01/19/04 01/19/04 01/19/04         Analysis Date       01/19/04 01/13/04 01/13/04 01/19/04         Iron (6010)       0.23 01/13/04 01/13/04 01/13/04 01/19/04         Analysis Date       01/13/04 01/13/04 01/13/04 01/13/04 01/13/04 01/13/04         Antimony (200.9)       0.0050U 01/28/04 01/28/04 01/28/04         Selenium (200.9 Rev 2.2)       01/28/04 01/28/04 01/28/04 01/28/04 01/28/04         Selenium mg/1       -0.050*F65 01/28/04 01/28/04 01/28/04         Analysis Date       01/28/04 01/28/04							
Mercury         mg/l         0.000072U           Prep Date         01/19/04           Analysis Date         01/19/04           Iron (6010)         .23           Prep Date         01/13/04           Analysis Date         01/13/04           Analysis Date         01/13/04           Analysis Date         01/13/04           Antimony (200.9)         .23           Antimony (200.9)         .00050U           Prep Date         01/28/04           Analysis Date         02/03/04           Selenium (200.9 Rev 2.2)         .00050F65           Selenium         mg/l         .0050*F65           Prep Date         01/28/04           Analysis Date         01/28/04	Analysis Date		01/19/04				
Prep Date       01/19/04         Analysis Date       01/19/04         Iron (6010)       0.23         Prep Date       01/13/04         Analysis Date       01/13/04         Analysis Date       01/19/04         Analysis Date       01/13/04         Analysis Date       01/19/04         Antimony (200.9)       0.0050U         Antimony mg/l       0.0050U         Prep Date       01/28/04         Analysis Date       02/03/04         Selenium (200.9 Rev 2.2)       Selenium mg/l       <0.050*F65	Mercury (245.1)						
Prep Date       01/19/04         Analysis Date       01/19/04         Iron (6010)       0.23         Prep Date       01/13/04         Analysis Date       01/13/04         Analysis Date       01/19/04         Analysis Date       01/13/04         Analysis Date       01/19/04         Antimony (200.9)       0.0050U         Antimony       mg/l       0.0050U         Prep Date       01/28/04         Analysis Date       02/03/04         Selenium (200.9 Rev 2.2)       Selenium         Selenium       mg/l       <0.050*F65	Mercury	mg/l	0.0000720				
Analysis Date     01/19/04       Iron (6010)     0.23       Prep Date     01/13/04       Analysis Date     01/19/04       Antimony (200.9)     0.0050U       Antimony mg/l     0.0050U       Prep Date     01/28/04       Analysis Date     01/28/04       Selenium (200.9 Rev 2.2)     0.050*F65       Selenium     mg/l     <0.050*F65	Prep Date						
Iron       mg/l       0.23         Prep Date       01/13/04         Analysis Date       01/19/04         Antimony       mg/l       0.0050U         Prep Date       01/28/04         Analysis Date       02/03/04         Selenium       ng/l       <0.050*F65	Analysis Date						
Prep Date       01/13/04         Analysis Date       01/19/04         Antimony (200.9)       mg/l       0.0050U         Antimony       mg/l       0.0050U         Prep Date       01/28/04         Analysis Date       02/03/04         Selenium (200.9 Rev 2.2)       Selenium mg/l       <0.050*F65	Iron (6010)						
Prep Date       01/13/04         Analysis Date       01/19/04         Antimony (200.9)       mg/l       0.0050U         Antimony       mg/l       0.0050U         Prep Date       01/28/04         Analysis Date       02/03/04         Selenium (200.9 Rev 2.2)       Selenium mg/l       <0.050*F65	Iron	ma/T	0.23				
Analysis Date     01/19/04       Antimony (200.9)     mg/l     0.0050U       Prep Date     01/28/04       Analysis Date     02/03/04       Selenium (200.9 Rev 2.2)     Selenium       Selenium     mg/l     <0.050*F65							
Antimony (200.9)         Antimony mg/l       0.0050U         Prep Date       01/28/04         Analysis Date       02/03/04         Selenium (200.9 Rev 2.2)       Selenium         Selenium       mg/l       <0.050*F65							
Antimony       mg/l       0.0050U         Prep Date       01/28/04         Analysis Date       02/03/04         Selenium       mg/l       <0.050*F65         Prep Date       01/28/04         Analysis Date       01/28/04         Analysis Date       01/29/04			•4 20, • .				
Prep Date         01/28/04           Analysis Date         02/03/04           Selenium (200.9 Rev 2.2)	Antimony (200.9)						
Prep Date         01/28/04           Analysis Date         02/03/04           Selenium (200.9 Rev 2.2)	Antimony	mg∕l	0.0050U				
Analysis Date         02/03/04           Selenium (200.9 Rev 2.2)            Selenium mg/l         <0.050*F65	Prep Date						
Selenium mg/l <0.050*F65 Prep Date 01/28/04 Analysis Date 01/29/04	Analysis Date						
Selenium mg/l <0.050*F65 Prep Date 01/28/04 Analysis Date 01/29/04	Selenium (200.9 Rev	2.2)					
Prep Date 01/28/04 Analysis Date 01/29/04	Selenium	ma/J	<0.050*F65				
Analysis Date 01/29/04							
			01/29/04				
			01/23/04				



.ab Sample ID	Description			Matrix	Date Received	Date Sampled	SDG#
20134-1	TW-1			Liquid	01/13/04	01/13/09 11:00	
			Lab Sample IDs	\$			
Parameter		Units	20134-1				
Gross Al	pha (900.0)						
Gross Alpha		pCi/l	*F71				
in observice		P-17 1		2.			
Thallium	(200.9)						
Thallium		mg∕l	<0.0020				
Prep Date			01/28/04				
Analysis Date	2		01/28/04				
Lead <b>(</b> 20	0.9)						
Lead		mg/1	0,0062				
Prep Date			01/28/04				
Analysis Date	3		02/03/04				
Total Co	oliform - Prese	nt/Absent (SM922	3B)				
Total Colifor	- m						
Present/Abs	sent	CFU/100m7	A				
Analysis Date	2		01/13/04				
Fecal Co	oliform = Prese	nt/Absent (SM922	38) .				
Fecal Colifor	- m						
Present/Abs	sent	CFU/100m7	Α				
Analysis Date	2		01/13/04				
						2	

Analytical Data Report

....



6712 Benjamin Road, Suite 100 - Tampa FL 33634 Telephone:(813) 885-7427 Fax:(813) 885-7049

Lab Sample ID Description Matrix Date Received Date Sampled SDG# 20134-2 Reporting Limit (RL) Liquid 01/13/04 Lab Sample IDs Parameter Units 20134-2 Chlorinated Pesticides (508) Aroclor-1016 0.50 ug∕∏ Aroclor-1221 ug/7 0.50 Arocior-1232 ug/1 0.50 Aroclor-1242 ug/1 0.50 Aroclor-1248 0.50 ug/1 ug/1 Aroclor-1254 0,50 Aroclor-1260 0.50 ug/1 Toxaphene ug/1 2.5 Chlordane (technical) 0.25 ug/1 Chlorinated Herbicides (515.1) 0.50 ug/T Dalapon ug/1 10 Dinoseb ug/T 3.0

#### Analytical Data Report

Alachlor ug/1

-2-1

SEMIVOLATILE ORGANICS (525.2)

2,4-D

Picloram

Pentachlorophenol

2,4,5-TP (Silvex)

Atrazine	ug/T	0.20
Benzo(a)pyrene	ug/l	0.20
bis(2-Ethylhexyl)adipate	ug/l	0.50
bis(2-Ethylhexyl)phthalate	ug/٦	2.0
Endrin	ug/1	0.50
Heptachlor	ug/T	0.20
Heptachlor epoxide	ug/1	0.20
Hexachlorobenzene	ug/1	0.20

ug∕∏

ug/l

ug/l

1.0

0.50

0.50

• •

0.20

Page 11 of 26



6712 Benjamin Road, Suite 100 - Tampa FL 33634 Telephone:(813) 885-7427 Fax:(813) 885-7049

Lab Sample ID Description			Matrix	Date Received Date Sampled SDG#	
20134-2 Reporting Li	mit (RL)		Liquid	01/13/04	
Parameter	Units	Lab Sample IDs 20134-2			
SEMIVOLATILE ORGANICS	(525.2)				_
Hexachlorocyclopentadiene	59 11 11	2.0			
gamma-BHC (Lindane)	uġ/1 ug/1	2.0 0.20			
Methoxychlor	ug/1 ug/1	0.50			
Simazine	ug/1	0.50			
Total Cyanide (335.4)					
Total Cyanide	mg/1	0.010			
Diquat (549.2)					
Diquat	ug/l	5.0			
Chloride (325.3)					
Chloride	mg/l	1.0			
Total Dissolved Solids	(SM2540C)				
Total Dissolved Solids	mg/l	5.0			
Nitrate-N (353.2)		68.5°.			
Nitrate-N	mg/1	0.050		12	

### Analytical Data Report

. جو ا



Lab Sample ]	D Description			Matrix	Date Received	Date Sampled	SDC#
20134-2	Reporting Limi	t (RL)		Liquid	01/13/04	<u> </u>	
Parameter		Units	Lab Sample IDs 20134-2				
Nitrite	e-N (353.2)						
Nitrite-N		mg/l	0.050				
Color,	Apparent (SM2120A	0					
Color, Appar	rent	PCU	5				
Sulfate	e as SO4 (375.4)						
Sulfate as S	504	mg/l	5.0				
Fluoric	de <b>(</b> 340 <b>.2</b> )						
Fluoride		mg/]	0.20				
Odor (1	140.1)						
Odor		TON	1				
Dissolv	ved Oxygen (SM4500	0					
Dissolved Ox	xygen	mg/1	0.10				
Surfact	tants (MBAS) (SM55	i40C)					
Surfactants	(MBAS)	mg/7	0.10				

Analytical Data Report

at y



6712 Benjamin Road, Suite 100 - Tampa FL 33634 Telephone:(813) 885-7427 Fax:(813) 885-7049

Analytical Data Report

20134-2 Reporting Li	nit (RL)	······································	Liquid	01/13/04		-
Parameter	Units	Lab Sample 11Ds 20134-2				
Endotha]] (548.1)	n og som en skillerer for som en som en som en som en som en som en som en som en som en som en som en som en s	endelite dal 1999 - Societa esti dalla della br>Nationalitati	<u>, , , , , , , , , , , , , , , , , , , </u>	<u>n terra na serie de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la company Na companya de la comp</u>		*497277
Endothall	ug/]	10				
DW-531.1 (Primary) (53	1.1)					
Carbofuran	ug/l	2.5				
0xamy]	ug/1	2.5				
DW-524.2 (Primary) (52	4.2)					
Benzene	ug/1	0.090				
Carbon tetrachloride	ug/1	0.10				
Chlorobenzene	ug/l	0.10				
1,2-Dichlorobenzene	ug/1	0.23				
1,4-Dichlorobenzene	ug/l	0.21				
1,2-Dichloroethane	ug/l	0.11				
1,1-Dichloroethene	ug/l	0.12				
cis-1,2-Dichloroethene	ug/1	0.08				
trans-1,2-Dichloroethene	ug/l	0.09				
1,2-Dichloropropane	ug/l	0,90				
Ethylbenzene	ug/1	0.10				
Methylene chloride		149 C				
(Dichloromethane)	ug/1	0.34				
Styrene	ug/ĩ	0.13				
Tetrachloroethene	ug/1	0.08				
Toluene	ug/T	0.13				
1,2,4-Trichlorobenzene	ug/1	0,26			35	
1,1,1-Trichloroethane	ug/l	0.080				
1,1,2-Trichloroethane	ug/1	0.17				
Trichloroethene	ug/1	0.090				
Vinyl chloride	ug/1	0.070				



6712 Benjamin Road, Suite 100 - Tampa FL 33634 Telephone:(813) 885-7427 Fax:(813) 885-7049

20134-2 Reporting Limi	nit (RL)		Liquid	01/13/04	
Parameter	Units	Lab Sample IDs 20134-2			franciska se se se
DW-524.2 (Primary) (524.		n gan ( - Serie Lagar - Series) De Andrea ( - C. 2000)		<u>ಕೆ ಸಂಪರ್ಧಿಕರು. ಅವರು ಅಕ್ಕರಿಸಿದರೆ ಪ್ರೇಕ್ಷಿಸಿಕೆ ಸಂಪರ್ಧಿಕರು.</u> 2012ರಲ್ಲಿ ಸಂಪರ್ಧಿಕರು ಸಂಪರ್ಧಕರು ಮಾಡಿದ್ದಾರೆ. 2012ರಲ್ಲಿ ಸಂಪರ್ಧಕರು ಸಂಪರ್ಧಕರು ಸಂಪರ್ಧಕರು ಸಂಪರ್ಧಕರು ಸಂಪರ್ಧಕರು ಸಂಪರ್ಧಕರು	ing and the second second second second second second second second second second second second second second s
Kylenes, Total	ug/1	0.16	3 10		
VOC Trihalomethanes (524	4.2)				
Trihalomethanes (Total)(**)	ug/1	2.0			
Primary Organics - Fumig	jants (504)				
1,2-Dibromoethane (EDB)	ug/l	0.014			
L,2-Dibromo-3-chloropropane	ug/1	0.011			
Glyphosate (547)					
Jyphosate	ug/I	25			
ICP Metals (200.7)					
luminum	mg/1	0.033			
rsenic	mg/l	0.0032			24
Barium	mg/1	0.0012			
Beryllium	mg/1	0.00054			
Cadmium	mg/1	0.00071			
Ihromium -	mg∕1	0.0017			
opper	mg/1	0.00090			
ron	mg/l	0.023			
ead	mg/1	0.0015			~ ~
anganese	mg/1	0.0014			
lickel	mg/l	0.0047			
Silver Sodium	mg/1 mg/1	0.0019 0.31			
	met / I	7 7 7			

Analytical Data Report



6712 Benjamin Road, Suite 100 - Tampa FL 33634 Telephone:(813) 885-7427 Fax:(813) 885-7049

Lab Sample ID	Description		Matrix	Date Received	Date Sampled	SDG#
20134-2	Reporting Limit (RL)		Liquid	01/13/04		
Parameter	Units	Lab Sample ID: 20134-2			a linear	
ICP Meta	.ls (200.7)	<u>, solarization de la construction de</u> La construction de la construction d				
Thallium	mg/1	0.0049				
Zinc	mg/7	0.0059				
Mercury	(245.1)					
Mercury	mg/1	0.00020				
Iron <b>(</b> 60	10)					
Iron	mg/1	0.050				
Antimony	(200.9)					
Antimony	mg/1	0.0050				
Selenium	1 (200.9 Rev 2.2)					
Selenium	mg/1	0.010				
Thallium	1 (200.9)					
Thallium	mg/1	0.0020				
Lead (20	0.9)					
Lead	mg/1	0.0020			2	

Analytical Data Report



Analysis Date

Lab Sample ID [	Description			Matrix Date R	eceived Date Sa	ampled SDG#	
20134-3 M	Method Blank		<u> </u>	Liquid 01/13/	04		
20134-4	Accuracy (%Rec)			Liquid 01/13/			
20134-5 .1	CS Accuracy Control Limit	(%R)		Liquid 01/13/			
20134-6	Precision (%RPD)			Liguid 01/13/			
	LCS Precision Control Limi		***	Liquid 01/13/			
		Lab S	ample IDs				
Parameter	arameter Units 20134-		20134-4	20134-5	<b>2</b> 0134–6	20134-7	
Chlorinated	d Pesticides (508)						
Aroclor-1016	ug/T	⊲0.50	92 %	70-130 %	11 %	<30 %	
Aroclor-1221	ug/l	<b>&lt;0.5</b> 0				~~~~	
Aroclor-1232	ug/l	<0.50					
Aroclor-1242	ug/l	<0.50					
Aroclor-1248	ug/1	⊲0.50					
Aroclor-1254	ug/1	<0.50					
Aroc <b>lor-12</b> 60	ug/1	<0.50	90 %	70-130 %	5.7 %	~30 %	
Toxaphene	ug/l	<2.5					
Chlordane (tech	nical) ug/1	<0.25					
Prep Date		01/20/04	01/20/04		01/20/04		
Analysis Date		01/21/04	01/21/04		01/21/04		
Chlorinate	d Herbicides (515.1)						
2,4-D	ug/l	⊲0.50	90 %	70-130 %	15 %	<30 %	
Dalapon	ug/1	<10	105 %	70-130 %	17 %	<30 %	
Dinoseb	ug/l	<3.0	60 %	30-130 %	28 %	<30 %	
Pentachlorophen	ol ug/l	<1.0	85 %	70-130 %	16 %	<30 %	
Picloram	ug/l	<0.50	75 %	70-130 %	24 %	<30 %	
2,4,5-TP (Silve	x) ug/i	<0.50	75 %	70-130 %	18 %	<30 %	
Prep Date		01/19/04	01/19/04		01/19/04		
Analyzata Data		AA (AA (A))					

01/20/04

14

01/20/04

### Analytical Data Report

01/20/04



### Analytical Data Report

Lab Sample ID Des	cription			Matrix Date R	leceived Date Sa	ampled SDG#
20134-3 Met	hod Blank			Liquid 01/13/	/04	
20134-4 Acc	uracy (%Rec)			Liquid 01/13/	'04	
20134-5 LCS	Accuracy Control Limi	it (%R)		Liquid 01/13/		
20134-6 Pre	cision (%RPD)	teres and the terrain of the	un lucheren el color	Liquid 01/13/		
20134-7 LCS	Precision Control Lim	nit (Advisory) %RPD	a, setti - i setti	Liquid 01/13/		
		Lab S	ample IDs			
Parameter	Units	20134-3	20134-4	20134-5	20134-6	20134-7
SEMIVOLATILE	ORGANICS (525.2)					
Alachlor	ug/1	0.076U	111 %	70-130 %	9.0 %	<30 %
Atrazine	ug/l	0.0870	95 %	70-130 %	15 %	<30 %
Benzo(a)pyrene	ug/l	0.038U	110 %	70-130 %	11 %	<30 %
bis(2-Ethylhexyl)a	udipate ug/1	0.094U	110 %	70-130 %	11 %	<30 %
bis(2-Ethylhexyl)p	hthalate ug/l	0.560	114 %	70-130 %	10 %	<30 %
Endrin	ug/T	0.140	113 %	70-130 %	5.3 %	<30 %
Heptachlor	ug/1	0.087U	110 %	70-130 %	7.3 %	<30 %
Heptachlor epoxide	e ug∕1	0.064U	101 %	70-130 %	9.9 %	<30 %
Hexachlorobenzene	ug/l	0.058U	98 %	70-130 %	12 %	<30 %
Hexachlorocycloper	itadiene ug/l	0.500	107 %	70-130 %	9.3 %	<30 %
gamma-BHC (Lindane	e) ug/l	0.0570	100 %	70-130 %	4.0 %	<30 %
Methoxychlor	ug/l	0.069U	124 %	70-130 %	0 %	<30 %
Simazine	ug/٦	0.110	111 %	70-130 %	1.8 %	<30 %
Prep Date		01/21/04	01/21/04		01/21/04	
Analysis Date		01/24/04	01/24/04		01/24/04	
Total Cyanide	2 (335.4)	* _{(4):} =				
Total Cyanide	mg/1	⊲0.010	102 %	90-110 %	0.92 %	<20 %
Prep Date		01/16/04	01/16/04		01/16/04	
Analysis Date		01/19/04	01/19/04		01/19/04	

÷.,



6712 Benjamin Road, Suite 100 - Tampa FL 33634 Telephone:(813) 885-7427 Fax:(813) 885-7049

Lab Sample ID Description Matrix Date Received Date Sampled SDG# 20134-3 Method Blank Liquid 01/13/04 20134-4 Accuracy (%Rec) Liquid 01/13/04 20134-5 LCS Accuracy Control Limit (%R) Liquid 01/13/04 20134-6 Precision (%RPD) Liquid 01/13/04 20134-7 LCS Precision Control Limit (Advisory) %RPD Liquid 01/13/04 Lab Sample IDs Parameter Units 20134-3 20134-4 20134-5 20134-6 20134-7 Diquat (549.2) Diquat ug/1 1.60 125 % 70-130 % 8.3 % <30 % Prep Date 01/23/04 01/19/04 01/19/04 Analysis Date 01/23/04 01/26/04 01/23/04 Chloride (325.3) Chloride mg∕∏ 1.00 100 % 75-125 % 0.90 % ≪30 % Analysis Date 01/22/04 01/22/04 01/22/04 Total Dissolved Solids (SM2540C) Total Dissolved Solids 5.00 mg∕∏ 99 % 80-120 % 0 % <25 % Analysis Date 01/17/04 01/17/04 01/17/04 Nitrate-N (353.2) Nitrate-N mg∕∏ 0.0100 105 % 80-120 % 0.34 % <30 % Analysis Date 01/14/04 01/14/04 01/14/04 Nitrite-N (353.2) Nitrite-N mg/T 0.032I 105 % 80-120 % 0.51 % <u><</u>30 % Analysis Date

01/14/04

01/14/04

Analytical Data Report

01/14/04



Lab Sample ID	Description				Matrix Da	ite Rece	ived Date Sa	npled SDC#
20134-3 20134-4 20134-5 20134-6 20134-7	Precision (%RPI	ontrol Limit (%R)			Liquid 01/13/04 Liquid 01/13/04 Liquid 01/13/04 Liquid 01/13/04 Liquid 01/13/04 Liquid 01/13/04			
201317				ple IDs		L/ L3/ 04		
Parameter		Units	20134-3	20134-4	20134-5	•	20134-6	20134-7
Sulfate a	as SO4 (375.4)							
Sulfate as SO Analysis Date		mg/l	5.0U 01/19/04	101 % 01/19/04	75-125 %	6	2.0 % 01/19/04	<30 %
Fluoride	(340.2)							
Fluoride Analysis Date		mg/1	0.044U 01/20/04	107 % 01/20/04	85-115 9	6	1.9 % 01/20/04	⊲30 %
Dissolve	d Oxygen (SM4500	0						
Dissolved Oxy Analysis Date		mg/l	<b>3.2</b> 01/13/04				1.2	<30 %
Surfacta	nts (MBAS) (SM55	400)						
Surfactants ( Prep Date Analysis Date		mg/T	0.039U 01/15/04 01/15/04	101 % 01/15/04 01/15/04	78-114 9	6	6.9 % 01/15/04 01/15/04	<30 %
Endothal	1 (548.1)							
Endothall Prep Date Analysis Date		ug/l	2.5U 01/19/04 01/21/04	90 % 01/19/04 01/21/04	80-120 \$	8	4.4 % 01/19/04 01/21/04	<30 %

### Analytical Data Report

1



6712 Benjamin Road, Suite 100 🗧 Tampa FL 33634 Telephone:(813) 885-7427 Fax:(813) 885-7049

Lab Sample ID	Description				Matrix	Date R	eceived Date Sa	mpled SDG#
20134-3	Method Blank				Liguid	01/13/	04	
<b>20</b> 134- <b>4</b>	Accuracy (%Re	ec)			Liquid	01/13/	04	
20134-5	LCS Accuracy	Control Limit	(%R)		Liquid	01/13/	04	
20134-6	Precision (%	(PD)			Liquid	01/13/		
20134-7	LCS Precision	Control Limit	: (Advisory) %RPD		Liguid	01/13/		
			∣ Lab S	ample IDs				
Parameter		Units	20134-3	20134-4	2013	4-5	20134-6	20134-7
DW-531.1	(Primary) (53:	L <b>.1</b> )						
Carbofuran		ug/l	1.00	120 %	80-1	20 %	0 %	<20 %
OxamyT		ug/1	1.0U	120 %		20 %	0 %	<20 %
Prep Date		2.	01/27/04	01/28/04			01/28/04	20 %
Analysis Date			01/28/04	01/28/04			01/28/04	
Dw-524.2	(Primary) (52	4.2)						
Benzene		ug/7	0.0900	100 %	70-1	30 %	0 %	<30 %
Carbon tetrach	loride	ug/l	0.100	700 %	70-1	20 76	0.70	00 %
Chlorobenzene		ug/1	0.100	100 %	70-1	.30 %	0%	⊲0 %
1,2-Dichlorobe	nzene	ug/1	0.230	100 %	, , , ,		0 76	00 %
1.4-Dichlorobe		ug/T	0.210					
1,2-Dichloroet		uq/l	0.110					
1,1-Dichloroet		, ug/1	0.120	110 %	70-1	L30 %	0 %	<30 %
cis-1,2-Dichlo		ug/1	0.080U					00 /0
trans-1,2-Dich		ug/1	0.090U					
1,2-Dichlorop		ug/T	0.0900					
Ethylbenzene		ug/l	0.100					
Methylene chlo	oride							
(Dichloromet		ug/1	0.340					
Styrene	-	ug/1	0.130					
Tetrachloroeth	iene	ug/1	0.080U					1
Toluene		ug/1	0.130	105 %	70-1	L30 %	9.5 %	<30 %
1,2,4-Trichlo	robenzene	ug/l	0.260			-		
1,1,1-Trichlor		ug/l	0.080U					
	roethane	ug/1	0.170					

Analytical Data Report



Lab Sampile ID	Description				Matrix	Date R	eceived Date Sa	mpled SDG#
20134-3	Method Blank			, , , , , , , , , , , , , , , , ,	Liquid	01/13/	04	
20134-4	Accuracy (%Red	:)			Liquid	01/13/		
20134-5	LCS Accuracy (	ontrol Limit	(%R)		Liquid	01/13/		
20134-6	Precision (%RF	(O			Liquid	01/13/		
20134-7	LCS Precision	Control Limit	t (Advisory) %RPD		Liquid	01/13/		
			Lab S	ample IDs		,		
Parameter		Units	20134-3	20134-4	2013	4-5	20134-6	20134-7
DW-524.2	(Primary) (524.	2)						
Trichloroethene		ug/1	0.0900	110 %	70-1	.30 %	0 %	⊲30 %
Vinyl chloride	2	ug/l	0.0700				0.70	00%
Vlenes, Total	1	ug/1	0.160					
Analysis Date			01/21/04	01/21/04			01/21/04	
VOC Triha	alomethanes (524	1.2)						
Trihalomethane	es (Total)(**)	ug/7	2.00					
Chloroform		%		99 %	70-1	30 %	2.0 %	<30 %
Bromodichloron	rethane	%		100 %		.30 %	1.0 %	<30 %
Dibromochlorom	nethane	%		99 %	70-1	30 %	2.0 %	<30 %
Bromoform		%		100 %	70-1	.30 %	0 %	<30 %
Analysis Date			01/21/04	01/22/04			01/22/04	
Primary (	Organics - Fumi <u>c</u>	jants (504)						
1,2-Dibromoet	nane (EDB)	ug/l	0.0140	125 %	70-1	.30 %	0 %	<30 %
1,2-Dibromo-3-	-chloropropane	ug/l	0.0110	125 %	70-1	30 %	0%	<30 %
Prep Date			01/21/04	01/21/04			01/21/04	
Analysis Date			01/21/04	01/21/04			01/21/04	

Analytical Data Report



6712 Benjamin Road, Suite 100 - Tampa FL 33634 Telephone:(813) 885-7427 Fax:(813) 885-7049

# Analytical Data Report

Lab Sample ID	Description			Matrix	Date Rec	ceived Date Sa	npled SDG#
20134-3 20134-4 20134-5 20134-6 20134-7	Method Blank Accuracy (%Rec) LCS Accuracy Control Limit (%R Precision (%RPD) LCS Precision Control Limit (A	dvisory) %RPD		Liquid 01/13/04 Liquid 01/13/04 Liquid 01/13/04 Liquid 01/13/04 Liquid 01/13/04			
Parameter	Units	20134-3	ample IDs 20134-4	2013	4-5	20134-6	20134-7
Glyphosa	te (547)						
Glyphosate	ug/l	100	100 %	70-1	.30 %	0 %	<30 %
Prep Date		01/16/04	01/16/04			01/16/04	
Analysis Date		01/16/04	01/16/04			01/16/04	
ICP Meta	ls (200.7)						
Aluminum	mg/T	0.033U	107 %	85-1	L15 %	2.5 %	<20 %
Arsenic	mg/l	0.00320	106 %	85-1	L15 %	2.4 %	<20 %
Barium	mg/1	0.0012U	103 <b>%</b>	85-1	L15 %	0.64 %	<b>&lt;</b> 20 %
Beryllium	mg/1	0.000540	107 %	85-1	115 %	0.39 %	<b>&lt;</b> 20 %
Cadmium	mg/l	0.000710	106 %	85-1	115 %	0.19 %	<b>&lt;</b> 20 %
Chromium	mg/1	0.0017U	95 %	85-3	115 %	0.50 %	<20 %
Copper	mg/l	0.000900	114 %		115 %	0.65 %	<b>~</b> 20 %
Iron	mg/1	0.023U	107 %		115 %	0.30 %	<20 %
Lead	mg∕٦	0.00150	108 %	<b>8</b> 5-3	115 %	0.07 %	<b>&lt;</b> 20 %
Manganese	mg/1	0.0014U	104 %	85-	115 %	0.08 %	<20 %
Nickel	mg∕ï	0.00470	107 %	85-	115 %	0.57 %	<20 %
Silver	mg/1	0.00190	<b>1</b> 15 %		115 %	0.23 %	<20 %
Sodium	mg/1	0.310	101 %		115 %	2.6 %	<20 %
Thallium	mg/1	0.0049U	110 %	85-	115 %	0.11 %	<20 %
Zinc	mg/1	0.00590	106 %	85-	115 %	0.39 %	<20 %
Prep Date		01/13/04	01/13/04			01/13/04	
Analysis Dat	e	01/19/04	01/19/04			01/19/04	



Lab Sample 10	Description				Matrix	Date Re	ceived	Date Sar	npled	SDG#
20134-3	Method Blank				Liquid	01/13/04	 1			
20134-4	Accuracy (%Rec)	)			Liquid	01/13/04				
20134-5	LCS Accuracy Co	ontrol Limit (%	0		Liquid	01/13/04				
20134-6	Precision (%RPI		n	a a trating and a stration	Liquid	01/13/04		, ···		
20134-7	LCS Precision (	Control Limit (/	dvisory) %RPD		Liquid	01/13/04				
				ample IDs		01/10/0-	r			
Parameter		Units	20134-3	20134-4	<b>2</b> 0134	I-5	2013	4-6	20134-	-7
Mercury (	245.1)									<b></b>
Mercury		mg/1	0.0000720	107 %	85-11	τ ۵γ	2 0	0/		
Prep Date		2,	01/19/04	01/19/04	01-11	.J /o	3.8		<b>&lt;</b> 20 %	
Analysis Date			01/19/04	01/19/04			01/1 01/1			
Iron (601	0)									
Iron		mg/l	0.0230	107 %	75-12	5 9/	0.70	0/		
Prep Date			01/13/04	01/13/04	7 5-12	2 A	0.30 % 01/13/04		<20 %	
Analysis Date			01/19/04	01/19/04			01/1			
Antimony	(200.9)									
Antimony		mg/1	<0.0050	101 %	90-11	άv	2.0.4			
Prep Date			01/28/04	01/28/04	30-11	0 /0	2.0 9		<20 %	
Analysis Date			02/03/04	02/03/04			01/2: 02/0:	-		
Selenium	(200.9 Rev 2.2)		94.							
			2.4							
Selenium		mg/1	<0.010	98 %	90-11	0%	0 %		<20 %	
Prep Date			01/28/04	01/28/04			01/28	8/04	~20 %	
Analysis Date			01/29/04	01/29/04			01/29	-		
							· · / L.	7 54		

Analytical Data Report



#### STL Tampa

6712 Benjamin Road, Suite 100 - Tampa FL 33634 Telephone:(813) 885-7427 Fax:(813) 885-7049

Lab Sample ID	Description			Matrix	Date Received	Date S	ampled	SDC#
20134-3	Method Blank			Liquid	01/13/04			
20134-4	Accuracy (%Rec)			Liquid	01/13/04			
20134-5	LCS Accuracy Control Limit	(%R)		Liquid	01/13/04			
20134-6 20134-7	Precision (%RPD) LCS Precision Control Limit	(Advisory) % RPD		-	01 /10 /04	e Martin († 1947) 1989 - Hernie Carly, s		
		Lab S	Sample IDs					
Parameter	Units	20134-3	20134-4	20134	-5 201	34-6	<b>2</b> 0134	-7
Thallium	(200.9)							
Thallium	mg/l	<0.0020	100 %	90-11	0% 04	0%	<20 %	
Prep Date		01/28/04	01/28/04		•••	28/04	<20 %	
Analysis Date		01/28/04	01/28/04			28/04		
Lead (200	.9)							
Lead Prep Date Analysis Date	mg/1	<0.0020 01/28/04 02/03/04	92 % 01/28/04 02/03/04	90-11	01/	% 28/04 03/04	<20 %	

an and a second product of the second of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se

Analytical Data Report

contraint in an a market share and the assessment of the assessment of the second states of the second states a



## STL Tampa 6712 Benjamin Road, Suite 100 - Tampa FL 33634 Telephone:(813) 885-7427 Fax:(813) 885-7049

Method: EPA 40 CFR PART 136,EPA 600/4-79-020,EPA 600/4-80-032, Standard Method, SW-846,FDEP DOH Certification #'s: E84282,E87052

I = The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.

 ${\tt U}$  = Indicates that the compound was analyzed for but not detected.

STL Savannah, 5102 LaRoche Ave., Savannah, GA 31404 Phone #912/354-7858. DOH Certification #E87052

These test results meet all the requirements of NELAC. All questions regarding this test report should be directed to the STL project manager who signed this test report.

The estimated uncertainty associated with these reported results is available upon request.

*F71 = Subcontracted results are attached to this report.

*F65 = Elevated detection limits were reported due to sample matrix interference which required sample or extract dilution.

n in and another the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the

				,			Serial ivumper	USSAU	
	T AND CHAIN OF CUSTODY I		Œ	STL Tampa 6712 Benjar Tampa, FL 3	nin Road	d, Suite 100		ww.stl-inc.com 3) 885-7427 885-7049	
SEVERN TRENT STL	900 日	<b>4</b> .	C	⊃ Alternate La	boratory	/ Name/Loca	ition Phone: Fax:		
PROJECT REFERENCE PROJECT N ARRP	PROJECT LOCATION (STATE)	MATRIX TYPE				REQUIRED	ANALYSIS	PAGE	OF
SAMPLER'S SIGNATURE P.O. NUMB CLIENT (SITE) PM H. Cliff Harrison CLIENT NAME CLIENT ADDRESS COMPANY CONTRACTING THIS WORK (if applicable)	NE: 7 - 8844 CLIENT FAX	COMPOSITE (C) OR GRAB (G) INDICATE AQUEOUS (WATER) SOLID OR SEMISOLID AIR	NONAQUEOUS LIQUID (OIL, SOLVENT)	2 2	2261	Reline 5/ 5/ 20 Reline 5/ 79/ yrdiciet	Nuie oder Disolued Open Total Icon	STANDARD REF DELIVERY DATE DUE EXPEDITED REF DELIVERY (SURCHARGE) DATE DUE NUMBER OF CO PER SHIPMENT	
SAMPLE SAMP	E IDENTIFICATION	SOLID C	NONAQI	T. M.K			NERS SUBMITTED		IARKS
			1 1	3 3	3 1	2	1 Please add DO and Fe From other		
CELVED BY: (SIGNATURE) DATE DATE CELVED BY: (SIGNATURE) DATE CELVED BY: (SIGNATURE) DATE	TIME RELINQUISHED BY: (SIGN 1530 Multico B: H TIME RECEIVED BY: (SIGNATURE	in	20	DATE 1-13-0 DATE	TIM	5.55 E RE	ELINQUISHED BY: (SIGNATURE)	DATE	TIME
CEIVED POR LABORATORY BY: DATE.	TIME CUSTODY INTACT	ABORATORY CUSTODY SEAL NO. N/S	S L	0011420 TIL TAMPA DG NO. 2420/39	LABO	ORATORY REI	MARKS		
		· · · · · ·							511 8240 660 (B. ¹ -)

										ounan	NULLIN	-1	t	10000	
	SIS REQUEST AND CHAI		RECOR	DS	67	12 Benja 12 Benja mpa, FL 3	imin R	oad, Sui	te 100			Phone			
		2 0134			⊃ Alt	ernate La	borati	ory Nam	ie/Loca	tion		Phon Fax:			
PROJECT REFERENCE	PROJECT NO. FPF-301	PROJECT LOCATION (STATE)		TRIX 'PE				REQ	UIRED	ANALYSIS	~			PAGE	OF
SAMPLER'S SIGNATURE CLIENT (SITE) PA H. CLIH Harrison CLIENT NAME Schreuder, Inc. CLIENT ADDRESS COMPANY CONTRACTING THIS WORK (IF a	P.O. NUMBER CLIENT PHONE 932-8844 CLIENT E-MAIL holly@schrey	CONTRACT NO. CLIENT FAX Underwater.us	COMPOSITE (C) OR GRAB (G) INDICATE AQUEOUS (WATER) SOI ID OR SEMISCI ID	EOUS LIOUID (OIL, SOLVENT)	Wine 515,508	Hydrica 525	Harrie Cyaniele	Diexi	5 44- h	PB, NG, NJ, P	54 6	NUNE C 40-Fr / /	531	STANDARD RI DELIVERY DATE DUI EXPEDITED RI DELIVERY (SURCHARGE) DATE DUE NUMBER OF C PER SHIPMEN	
SAMPLE DATE TIME	SAMPEE IDENTIFICATIO	W		VONAQU	2	£ c	1.			NERS SUI	<u> </u>		Ê Î		MARKS
11304 11:00 T	W - 1				4	2	1		1	1 1	)	)	2		
1 1								_							
												_	_		
			_ -									_	_		
			-			·	[_								
				╞┼┤				_							
						·]						-			
	е 1								_						
			_				-						+.  -		
	<u></u>														
EUNQUISHED BY: (SIGNATURE)	1-8-04 1530	RELINQUISHED BY: ISIGNA Mulislas	dui			DATE 1/13/01	1	FIME		LINQUISI	ED BY:	(SIGNATU	RE)	DATE	TIME
CCEIVED BY: (SIGTATURE)	DATE TIME	RECEIVED BY: (SIGNATURE)	0/1	Il.	/	DATE -13-0	T	IME 1559	RE	CEIVED	IY: (sign/	TURE)		DATE	TIME
CERVED FOR LABORATORY BY:		CUSTODY, INTACT	ABORATO CUSTODY SEAL NO.		STL TAP	1PA	L.	ABORATO	DRY REM	/ARKS					···· I
												-			S118240 660 (1.

*

## LAB FORMAT FOR REPORTING DRINKING WATER ANALYSES

PUBLIC WATER SYSTEM INFORMATION (to be completed by system or lab)

System Name: ARRP	PWS ID#:
Address:	Phone #:
Type (Check one): Community Nontransient	Noncommunity Noncommunity
SAMPLE INFORMATION (to be completed by sampler) Sample Date (MM/DD/YY): 01/13/04	
	Sample Time: 11:00
Sample Location (be specific): TW-1	
Sampler Name and Phone:	
Sampler's Signature:	
Title:	
Check Types:       Distribution       Recheck of MCL         Clearance       THM Max Res Time         Distribution Entry Point       Raw         Composite of Multiple Sites - Attach a format for each site	Resample of Lab Invalidated Sample Plant Tap
LABORATORY CERTIFICATION INFORMATION (to be completed by	lab) ATTACH DOH ANALYTE SHEET*
Lab Name: STL Tampa	DOH #: E84282 Expiration Date: 6/30/2004
Address: 6712 Benjamin Rd. suite 100 Tampa FL 33634	Phone #: (813)885-7427
Subcontracted Lab DOH#: E87052, E87829, E87570 - ATTACH D	OH ANALYTE SHEET FOR SUBCONTRACTED LAB TOO*
ANALYSIS INFORMATION (to be completed by lab) - S	
Date Sample(s) Received: 1/13/04	AMPLE NOMBER(S):
Group(s) Analyzed & Results attached for compliance with Chapter 62-8	Asbestos Only
Inorganics Volatile Organics           X         All 17         Partial         X         All 21         Partial	Secondaries     Pesticides/PCBs       x     All 14     Partial       x     All 30     Partial
Group (Unregulateds       Group II Unregulateds         All 13       Partial         All 23       Partial	Group-III Unregulateds Radiochemicals

*All DOH lab #s and their DOH Analyte Sheet for labs performing the attached water analyses must be provided. Failure to do so will result in rejection of the analyses and possible enforcement against the public water system for failure to sample. **Provide radiochemical sample dates and locations for each quarter

2

Reporting Format 62-550.730(1)(b) Effective Date: January 1995

#### CERTIFICATION

I, <u>Tina Fritz</u>	do HEREBY CERTIFY that all attached analytical data are correct.
Signature:	Senastruk
Title:	Project Manager
Date:	
	INFORMATION (to be completed by State)
Sample Co	lection Satisfactory:
	nalysis Satisfactory:
Resa	mple Requested for:
	Reason:
Person	notified to resample:
	Date Notified:
DEP/DOF	Reviewing Official:

ى دەنىيە مەرىپىيە مەرىپىيە مەرىپىيە بىلەر بىلەر بىلەر ئىلەر بىلەر ئىلەر بىلەر ئىلەر بىلەر ىلەر بىلەر بىلەر بىلەر بىلەر بىلەر بىلەر بىلەر بىلەر بىلەر بىلەر بىلەر بىلەر بىلەر بىلەر بىلەر بىلەر بىلەر بىلەر

.

Reporting Format 62-550.730(1)(b) Effective Date: January 1995

				(1- 44	· · · · · · · · · · · · · · · · · · ·				
Paramete	r	1	MCL	Sample	Analysis	Analysis	Analysis	MDL	
ID		Name	(mg/L)	Number	Result (mg/L)	Method	Date	(mg/L)	Lab ID
1005	Arsenic		(0.05)	B420134*1	0.00331	200.7	1/19/04 15:14	0.0032	E84282
1010	Barium		(2)	B420134*1	0.02	200.7	1/19/04 15:14	0.0012	E84282
1015	Cadmium		(0.005)	B420134*1	0.00071 U	200.7	1/19/04 15:14	0.00071	E84282
1020	Chromium		(0.1)	B420134*1	0.0017 U	200.7	1/19/04 15:14	0.0017	E84282
1024	Cyanide		(0.2)	B420134*1	0.010 U	335.4	1/19/01	0.010	E87052
1025	Fluoride		(4)	B420134*1	0.45	340.2	1/20/04	0.044	E84282
1030	Lead		(0.015)	B420134*1	0.0015 U	200.7	1/19/04 15:14	0.0015	E87052
1035	Mercury		(0.002)	B420134*1	0.000072 U	245.1	1/19/04	0.000072	E84282
1036	Nickel		(0.1)	B420134*1	0.0047 U	200.7	1/19/04 15:14	0.0047	E84282
1040	Nitrate		(10)	B420134*1	0.010 U	353.2	1/14/04	0.010	E84282
1041	Nitrite		(1)	B420134*1	0.032 l	353.2	1/14/04	0.010	E84282
1045	Selenium		(0.05)	B420134*1	0.050 U	:00.9 Rev 2,	1/29/04	0.050	E87052
1052	Sodium		(160)	B420134*1	11	200.7	1/19/04 15:14	0.31	E84282
1074	Antimony		(0.006)	B420134*1	0.0050 U	200.9	2/3/04	0.0050	E87052
1075	Beryllium	8	(0.004)	B420134*1	0.00054 U	200.7	1/19/04 15:14	0.00054	E84282
1085	Thallium	ALC: NO.	(0.002)	B420134*1	0.0049 U	200.7	1/19/04 15:14	0.0049	E87052
		30							
						· · · · ·			

INORGANIC ANALYSIS 62-550.310(1) (PWS030) 1.

P

日本学家、新田市町学の村家を家様にいい

U: Indicates the compound was analyzed for but not detected. I: The reported value is between the lab MDL and the lab PQL

- Ph

				(PW	′S031)	8			
Parameter ID		Name	MCL (mg/L)	Sample Number	Analysis Result (mg/L)	Analysis Method	Analysis Date	MDL (mg/L)	Lab ID
1002 1017 1022 1025 1028 1032 1050 1055 1095 1905 1905 1920 1925 1930 2905	Aluminum Chloride Copper Fluoride Iron Manganese Silver Sulfate Zinc Color Odor pH Total Dissolved Foaming Agent		(0.2) (250) (1) (2.0) (0.3) (0.05) (0.1) (250) (5) (15 cu) (3 ton) (6.5 - 8.5) (500) (0.5)	B420134*1 B420134*1 B420134*1 B420134*1 B420134*1 B420134*1 B420134*1 B420134*1 B420134*1 B420134*1 B420134*1 B420134*1 B420134*1	0.042 I 10 0.013 I 0.45 0.23 0.0063 I 0.0019 U 230 0.02 5 U 1 U 7.3 470 0.039 U	200.7 325.3 200.7 340.2 200.7 200.7 200.7 375.4 200.7 SM2120A 140.1 150.1 SM2540C SM5540C	1/19/04 15:14 1/22/04 1/19/04 15:14 1/20/04 1/19/04 15:14 1/19/04 15:14 1/19/04 15:14 1/19/04 15:14 1/19/04 15:14 1/19/04 15:14 1/13/04 1/13/04 1/13/04 1/13/04	0.033 1.0 0.00090 0.044 0.023 0.0014 0.0019 5.0 0.0059 5 1 5.0 0.0059 5	Eab 10 E84282 E84282 E84282 E84282 E84282 E84282 E84282 E84282 E84282 E84282 E84282 E84282 E84282 E84282 E84282 E84282 E84282
						in t tree tree tree tree tree tree tree tr			-1 ²⁴

## SECONDARY CHEMICAL ANALYSIS 62-550,320

U: Indicates the compound was analyzed for but not detected. I: The reported value is between the lab MDL and the lab PQL

				62	EMICAL ANALYSIS* 2-550.310(5) (PWS033)				
Parameter ID		Name	MC Oq)		Analysis Result (pCi/l)	Analysis Method	Analysis Dale	MDL (pCi/l)	Lab ID
4000 4020	Gross alpha Radium-226		5	B420134* B420134*		900.0 903.1	1/21/04 1/29/03	5.02 0.22	E87829 E87829

i i i

10 min ++ -----

_____

U: Indicates the compound was analyzed for but not detected. I: The reported value is between the lab MDL and the lab PQL

VOLATILE ORGANIC ANALYSIS
62-550.310(2)(b)
(PWS028)

Parameter		MCL	Sample	Analysis	Analysis	Analysis	MDL	
ID	Name	(ug/L)	Number	Result (ug/L)	Method	Date	(ug/L)	Lab ID
2378	1,2,4-trichlorobenzene	(70)	B420134*1	0.26 U	524.2	1/21/04 18:15	0.26	E84282
2380	Cis-1,2-dichloroethylene	(70)	B420134*1	0.080 U	524.2	1/21/04 18:15	0.080	E84282
2955	Xylenes (total)	(10,000)	B420134*1	0.16 U	524.2	1/21/04 18:15	0.16	E84282
2964	Dichloromethane	(5)	B420134*1	0.34 U	524.2	1/21/04 18:15	0.34	E84282
2968	O-dichlorobenzene	(600)	B420134*1	0.23 U	524.2	1/21/04 18:15	0.23	E84282
2969	Para-dichlorobenzene	(75)	B420134*1	0.21 U	524.2	1/21/04 18:15	0.21	E84282
2976	Vinyl Chloride	(1)	B420134*1	0.070 U	524.2	1/21/04 18:15	0.070	E84282
2977	1,1-dichloroethylene	(7)	B420134*1	0.12 U	524.2	1/21/04 18:15	0.12	E84282
2979	Trans-1,2-dichloroethylene	(100)	B420134*1	0.090 U	524.2	1/21/04 18:15	0.090	E84282
2980	1,2-dichloroethane	(3)	B420134*1	0.11 U	524.2	1/21/04 18:15	0.11	E84282
2981	1,1,1-trichloroethane	(200)	B420134*1	0.080 U	524.2	1/21/04 18:15	0.080	E84282
2982	Carbon tetrachloride	(3)	B420134*1	0.10 U	524.2	1/21/04 18:15	0.10	E84282
2983	1,2-dichloropropane	(5)	B420134*1	0.090 U	524.2	1/21/04 18:15	0.090	E84282
2984	Trichloroethylene	(3)	B420134*1	0.090 U	524.2	1/21/04 18:15	0.09	E84282
2985	1,1,2-trichloroethane	(5)	B420134*1	0.17 U	524.2	1/21/04 18:15	0.17	E84282
2987	Tetrachloroethylene	(3)	B420134*1	0.080 U	524.2	1/21/04 18:15	0.080	E84282
2989	Monochlorobenzene	(100)	B420134*1	0.10 U	524. <u>2</u>	1/21/04 18:15	0.10	E84282
2990	Benzene	(1)	B420134*1	0.090 U	524.2	1/21/04 18:15	0.090	E84282
2991	Toluene	(1,000)	B420134*1	0.13 U	524.2	1/21/04 18:15	0.13	E84282
2992	Ethylbenzene	(700)	B420134*1	0.10 U	524.2	1/21/04 18:15	0.10	E84282
2996	Styrene	(100)	B420134*1	0.13 U	524,2	1/21/04 18:15	0.13	E84282

U: Indicates the compound was analyzed for but not detected. I: The reported value is between the lab MDL and the lab PQL  $X^{*}(1,0)$ 

PESTICIDE/PCB	CHEMICAL ANALYSIS								
62-550.310(2)(c)									
(PWS029)									

Parameter		MCL	Sample	Analysis	Analysis	Analysis	MDL	
ID	Name 👾	(ug/L)	Number	Result (ug/L)	Method	Date	(ug/L)	Lab ID
0000		(0.00000)			10100			
2063	2,3,7,8-TCDD (Dioxin)	(0.00003)	B420134*1	0.00003 U	1613B	1/20/04	0.00003	E87570
2005	Endrin	(2)	B420134*1	0.14 U	525.2	1/24/04 17:28	0.14	E87052
2010	Lindane	(0.2)	B420134*1	0.057 U	525.2	1/24/04 17:28	0.057	E87052
2015	Methoxychlor	(40)	B420134*1	0.069 U	525.2	1/24/04 17:28	0.069	E87052
2020	Toxaphene	(3)	B420134*1	2.5 U	508	1/21/04 17:11	2.5	E87052
2031	Dalapon	(200)	B420134*1	10 U	515.1	1/20/04 19:16	10	E87052
2032	Diquat	(20)	B420134*1	1.6 U	549.2	1/23/04 18:31	1.6	E87052
2033	Endothall	(100)	B420134*1	2.5 U	548.1	1/21/04 13:41	2.5	E87052
2034	Glyphosate	(700)	B420134*1	10 U	547	1/17/04 1:40	10	E87052
2035	Di(2-ethylhexyl)adipate	(400)	B420134*1	0.094 U	525.2	1/24/04 17:28	0.094	E87052
2036	Oxamyl (Vydate)	(200)	B420134*1	1.0 U	531.1	1/28/04 3:54	1.0	E87052
2037	Simazine	(4)	B420134*1	0.11 U	525.2	1/24/04 17:28	0.11	E87052
2039	Di(2-ethylhexyl)phthalate	(6)	B420134*1	0.56 U	525.2	1/24/04 17:28	0.56	E87052
2040	Picloram	(500)	B420134*1	0.50 U	515.1	1/20/04 19:16	0.5	E87052
2041	Dinoseb	(7)	B420134*1	3.0 U	515.1	1/20/04 19:16	3.0	E87052
2042	Hexachlorocyclopentadiene	(50)	B420134*1	0.50 U	525.2	1/24/04 17:28	0.50	E87052
2046	Carbofuran 📮	(40)	B420134*1	1.0 U	531.1	1/28/04 3:54	1.0	E87052
2050	Atrazine	(3)	B420134*1	0.087 U	525.2	1/24/04 17:28	0.087	E87052
2051	Alachior	(2)	B420134*1	0.076 U	525.2	1/24/04 17:28	0.076	E87052
2065	Heptachlor	(0.4)	B420134*1	0.087 U	525.2	1/24/04 17:28	0.087	E87052
2067	Heptachlor Epoxide	(0.2)	B420134*1	0.064 U	525.2	1/24/04 17:28	0.064	E87052
2105	2,4-D	(70)	B420134*1	0.50 U	515.1	1/20/04 19:16	0.50	E87052
2110	2,4,5-TP (Silvex)	(50)	B420134*1	0.50 U	515.1	1/20/04 19:16	0.50	E87052
2274	Hexachlorobenzene	(1)	B420134*1	0.058 U	525.2	1/24/04 17:28	0.058	E87052
2306	Benzo(a)pyrene	(0.2)	B420134*1	0.038 U	525.2	1/24/04 17:28	0.038	E87052
2326	Pentachlorophenol	(1)	B420134*1	1.0 U	515.1	1/20/04 19:16	1.0	E87052
2383	PCB	(0.5)	B420134*1	0.50 U	508	1/21/04 17:11	0.50	E87052
2931	Dibromochloropropane	(0.2)	B420134*1	0.011 U	504	1/21/04 16:12	0.011	E84282
2946	Ethylene Dibromide	(0.02)	B420134*1	0.014 U	504 504	1/21/04 16:12	0.011	E84282
2959	Chlordane	(2)	B420134*1	0.25 U	504	1/21/04 17:11		
2000	omoraulio	(~)	0420104 1	0.20 0	500	1/21/04 17.11	0.25	E87052

U: Indicates the compound was analyzed for but not detected. I: The reported value is between the lab MDL and the lab PQL

			DISINFECTION BYPRODUCTS 62-550.310(3) (PWS027)				р Б			
Parameter ID 2950	Name Total Trihalomethanes	MC (ug/ (80	/L) Numbe	r Result (ug/L)	Analysis ) Method 524.2	Analysis Date 1/21/04	MDL (ug/L) 2.0	Lab ID E84282		
	G.				2 ²²					
								<b>4</b> %		

U: Indicates the compound was analyzed for but not detected. I: The reported value is between the lab MDL and the lab PQL

## CASE NARRATIVE

# STL SACRAMENTO PROJECT NUMBER G4A150325

### General comments

The sample was received at 1° C. The cooling agent used was wet ice.

There were no other anomalies associated with this project.

÷.,



## STL Sacramento Certifications/Accreditations

Certifying State	Certificate #	Certifying State	Certificate #
Alaska	UST-055	Oregon	CA 200005
Arkansas	AZ0616	Provide Pennsylvanian Color	68 127212 5
Salifornia	NA OLLOCA	South Carolina	87014001
Connecticut	PH-0691	Virginia	00178
Georgia	EEEEEE	Wushington	COST STATE
	<u>960</u>	West Virginia	9930C, 334
Louisiana*	01944	NFESC	9982046803-00-00 NA
Nevada estate	CAF024S FRIDE	LOS USACE STOR	
New Jersey*	CA005	USDA Foreign Plant	37-82605
WATCH A D		SchuSDALForeign Soile a	S-46616

*NELAP accredited. A more detailed parameter list is available upon request.

## **QC** Parameter Definitions

QC Batch: The QC batch consists of a set of up to 20 field samples that behave similarly (i.e., same matrix) and are processed using the same procedures, reagents, and standards at the same time.

Method Blank: An analytical control consisting of all reagents, which may include internal standards and surrogates, and is carried through the entire analytical procedure. The method blank is used to define the level of laboratory background contamination.

Laboratory Control Sample and Laboratory Control Sample Duplicate (LCS/LCSD): An aliquot of blank matrix spiked with known amounts of representative target analytes. The LCS (and LCSD as required) is carried through the entire analytical process and is used to monitor the accuracy of the analytical process independent of potential matrix effects. If an LCSD is performed, it may also used to evaluate the precision of the process.

Duplicate Sample (DU): Different aliquots of the same sample are analyzed to evaluate the precision of an analysis.

**Surrogates:** Organic compounds not expected to be detected in field samples, which behave similarly to target analytes. These are added to every sample within a batch at a known concentration to determine the efficiency of the sample preparation and analytical process.

Matrix Spike and Matrix Spike Duplicate (MS/MSD): An MS is an aliquot of a matrix fortified with known quantities of specific compounds and subjected to an entire analytical procedure in order to indicate the appropriateness of the method for a particular matrix. The percent recovery for the respective compound(s) is then calculated. The MSD is a second aliquot of the same matrix as the matrix spike, also spiked, in order to determine the precision of the method.

**Isotope Dilution:** For isotope dilution methods, isotopically labeled analogs (internal standards) of the native target analytes are spiked into the sample at time of extraction. These internal standards are used for quantitation, and monitor and correct for matrix effects. Since matrix effects on method performance can be judged by the recovery of these analogs, there is little added benefit of performing MS/MSD for these methods. MS/MSD are only performed for client or QAPP requirements.

Control Limits: The reported control limits are either based on laboratory historical data, method requirements, or project data quality objectives. The control limits represent the estimated uncertainty of the test results.

G4A150325

## SAMPLE SUMMARY

#### G4A150325

WO # SAMPLE# CLIENT SAMPLE ID	SAMPLED SAMP DATE TIME	
F73R6 001 TW-1		-
	01/13/04 11:00	5
NOTE (S) :		
- The analytical results of the samples listed above are presented on the following pages.		
- All calculations are performed before rounding to avoid round-off errors in calculated results.	-	-
- Results noted as "ND" were not detected at or above the stated limit.		
free to a second states.		

- This report must not be reproduced, except in full, without the written approval of the laboratory.

- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor,

paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight,

ም ድ		70	STL 4	2.	5	ñ.	ra	me	nte	, 5		Sei	rial N	umbe	r.	(	088	27		
SEVERN TRENT		AND CHAI	N OF CUSTODY	RECO	ORD	6	1 67	TL Tan 712 Be ampa, F	njamin	Road, 3	Suite 1	00	:		Phone:	(813)	v.stl-inc.co 885-742 5-7049	om 7	······································	
								ternate	Labor	atory N	ame/L	ocation			Phone: Fex:			, ,,,		
PROJECT REFERENCE	PROJECT NO. B42	0134	PROJECT LOCATION (STATE)		MATR					F	REQUIR	ED ANA	LYSIS				PAGE		OF	
GAMPLER'S SIGNATURE	P.O. NUMBER	9134	CONTRACT NO.	ATE	T	L L	1	<b>`</b> ]			1		:	1		1	STAND/ DELIVE	RD REPO		5
LIENT (SITE) PM Fritz LIENT NAME	CLIENT PHON		CLIENT FAX	INDICATE		(OIL, SOLVENT)	X										DAT	e due _	7	<u> </u>
STL-TAMPa	CLIENT E-MAI			RAB (G)		OIL, S	22								Sec.		EXPEDI DELIVER (SURCH	2Y		>
UENT ADDRESS				CI OR	VISOLIC					<u> </u>			1 					E DUE		
OMPANY CONTRACTING THIS WORK (	(if applicable)		÷.	COMPOSITE (C) OR GRAB (C) ADUEDUS (WATER)	OR SEA	DUEOUS								der ge d' M	No.		NUMBER PER SHI	OF COO PMENT:	LERS SUE	SMITTE
SAMPLE DATE TIME	SAMPLE	IDENTIFICATIO	N .	AOLIEC	SOLID	NONAC		·		MBER C	-		-loc			I		REM/	ARKS	
-13-04 1100 -	TW - I			X										1	the state	]				
		· - · - ·			┢┥	$\left  \right $														
			· · · · · · · · · · · · · · · · · · ·			┥┥														
					-	$\left  \right $						-			RE	CEIVE	) <del>in goo</del> Hadeh (	U CONI	DITION	7-
											.v		i.		fait -				=	+
		2				┝╌╿╴								<u> </u>	A A	J	N 15	2004		
		(				┼╌┼					n E		<u> </u>				An		l	
		3								·	- 									لبي
		*. 			_		·	_			Ч. К			. *						
	DATE	TIME F	RELINGUISHED BY: ISIGH	TURE)		2		DATE		TIME		RELIN	QUISHE	D 8Y; (	IGNATURE		DA	Ē	TIME	
CEIVED BY: (SIGNATURE)			ECEIVED BY: (SIGNATURE	$\frac{1}{1}$	$\overline{\mathcal{D}}$	)		1 <u>-13</u> Date	-04	122 TIME	30	RECEN	ED BY:	ISIGNAT			DAT	Ē	TIME	
Mittan Alexandre		ale and s		ABORA	TORY	USF	ÖNLY	a lines			- 47- 17- 17-				潮					
	DATE ST. T	ME		CUSTO SEAL N	DY	, IS		<b>IPA</b>		LABOR/	TORY I		(S							
	1		2						<u></u>		<u>88 4 6</u>	o dora 110 K	<u>Reditti</u>		1	<u></u>		ST	L8240-660	

1.5

Contrastin Color

-

#### STL TAMPA

## Client Sample ID: TW-1

## Trace Level Organic Compounds

Date Sampled: 01/13/04	Work Order #: F73R61AA Date Received: 01/15/04 Analysis Date: 01/20/04	Matrix	WATER
Dilution Factor: 1			

PARAMETER 2,3,7,8-TCDD	RESULT	DETECTION LIMIT 30	UNITS pg/L	METHOD BPA-5 1613B-Tetra
INTERNAL STANDARDS 13C-2,3,7,8-TCDD	PERCENT RECOVERY 98	RECOVERY LIMITS (25 - 141)		

#### STL Sacramento (916) 373 - 5600

5 of 9

# QC DATA ASSOCIATION SUMMARY

#### G4A150325

### Sample Preparation and Analysis Control Numbers

SAMPLE#	MATRIX	ANALYTICAL	LEACH PREP BATCH # BATCH # MS RUN#	
001	WATER	EPA-5 1613B-Tetra	4020360	
1				

S

G4A150325

### METHOD BLANK REPORT

### Trace Level Organic Compounds

Client Lot #: MB Lot-Sample #:		Work O:	rder #	.: F781	CALAD	Matrix:	WATER
Analysis Date: Dilution Factor:	1	Prep Ba	ate atch #	-: 4020	360		
PARAMETER		RESULT		DETECI LIMIT	TION UNITS	METHOD	

2,3,7,8-TCDD	ND	30	pg/L	EPA-5 1613B-Tetra
INTERNAL STANDARDS	PERCENT <u>RECOVERY</u> 94	RECOVERY LIMITS (25 - 141	)	

#### NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

G4A150325

-

.

## LABORATORY CONTROL SAMPLE EVALUATION REPORT

### Trace Level Organic Compounds

Client Lot #...: G4A150325 Work Order #...: F78TA1AC Matrix....: WATER LCS Lot-Sample#: G4A200000-360 Prep Date....: 01/19/04 Analysis Date..: 01/19/04 Prep Batch #...: 4020360 Dilution Factor: 1

PERCENT RECOVERY PARAMETER RECOVERY LIMITS METHOD 2,3,7,8-TCDD 80 (73 - 146) EPA-5 1613B-Tetras PERCENT RECOVERY INTERNAL STANDARD RECOVERY LIMITS 13C-2,3,7,8-TCDD 90 (25 - 141)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

### LABORATORY CONTROL SAMPLE DATA REPORT

### Trace Level Organic Compounds

PARAMETER 2,3,7,8-TCDD	SPIKE AMOUNT 200	MEASURED <u>AMOUNT</u> 159	UNITS pg/L	PERCENT RECOVERY 80	METHOD EPA-5 1613B-T
INTERNAL STANDARD 13C-2,3,7,8-TCDD		PERCENT <u>RECOVERY</u> 90	RECOVERY LIMITS (25 - 141)		

NOTE (S) :

Calculations are performed before rounding to avoid round-off errors in calculated results. Bold print denotes control parameters

1

್ ಜನ್ ಮಾಡಿದ್ದ ಮಾಡಿದ್ದ ಮಾಡಿದ್ದ ಮಾಡಿದ್ದ ಮಾಡಿದ್ದ ಮಾಡಿದ್ದ ಮಾಡಿದ್ದ ಮಾಡಿದ್ದ ಮಾಡಿದ್ದ ಮಾಡಿದ್ದ ಮಾಡಿದ್ದ ಮಾಡಿದ್ದ ಮಾಡಿದ್ದ ಮ

11 San State The State of the

# **STL TAMPA**

### B420134

Radiochemical Analysis By

**STL Richland** 

2800 G.W. Way, Richland Wa, 99352, (509)-375-3131. ÷. Assigned Laboratory Code: STLR Data Package Contains _____ Pages

Report No.: 24707

SDG No.	Order No.	Client Sample ID (List Order)	Lot-Sa No.	Work Order	Report DB ID	Batch No.
24957		TW-1	J4A140288-1	F709R1AA	9F709R10	4015474

an as Shar a t

3

THE WERE SHOWN



STL Richland 2800 George Washington Way Richland, WA 99352

Tel: 509 375 3131 Fax: 509 375 5590 www.stl-inc.com

## **Certificate of Analysis**

January 23, 2004

STL Tampa 6712 Benjamin Road, Suite 100 Tampa, FL 33634

Attention: Tina Fritz

Date Received in LabJanuary 14, 2004Sample TypeOne (1) WaterSDG Number24957Project Name/NumberB420134

### CASE NARRATIVE

#### I. Introduction

On January 14, 2004, one water sample was received at the STL Richland (STLR) laboratory for radiochemical analysis. Upon receipt, the sample was assigned a STLR identification number as described on the cover page of the Analytical Data Package report form. The sample was assigned to Lot Number J4A140288.

#### II. Sample Receipt

The sample was received in good condition and no anomalies were noted during check-in.

### III. Analytical Results/Methodology

The analytical results for this report are presented by laboratory sample ID. Each set of data includes sample identification information, analytical results and the appropriate associated statistical uncertainties.

The analyses requested were:

Gas Proportional Counting Gross Alpha by method RICH-RC-5014 (EPA 900.0)

#### IV. Quality Control

The analytical result for each analysis performed includes a minimum-of one laboratory control sample (LCS), and one reagent blank sample analysis. Any exceptions have been noted in the "Comments" section.

2

### V. Comments

#### Gross Alpha by method RICH-RC-5014 (EPA 900.0):

The minimum detectable activity (MDA) of the sample did not meet the required detection limit. A reduced aliquot was used due to high weight screen results. The sample activity is greater than the MDA; therefore, the data is accepted. Except as noted, the LCS, batch blank, and sample results are within acceptance limits.

I certify that this Certificate of Analysis is in compliance with the SOW, both technically and for completeness, for other than the conditions detailed above. The Laboratory Manager or a designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

234 B Hawking

Reviewed and approved:

Sara B. Verba Project Management Assistant

1) EPA Method 903.0 measures total soluble alpha-emitting radioisotopes of Radium, namely Radium-223,224,226 in drinking water, surface water and groundwater.

	DRINKING WATER ASTM METHOD CROSS									
Referenced Method	Isotope(s)	STL Richland's SOP number								
EPA 901.1	Cs-134, I-131	RICH-RC-5017								
EPA 900.0	Alpha & Beta	RICH-RC-5014								
EPA 903.1	Ra-226	RICH-RC-5005								
EPA 904.0	Ra-228	RICH-RC-5005								
EPA 905.0	Śr89/90	RICH-RC-5006								
ASTM D2460	Total Radium	RICH-RC-5027								
Standard Method 7500-U-C & ASTM D5174	Uranium	RICH-RC-5058								
EPA 906.0	Tritium	RICH-RC-5007								
NOTE:										
The Gross Alpha LCS is prepared with Am-24										
The Gross Beta LCS is prepared with Sr/Y-90	0 (unless otherwis	e specified in the case narrative)								

### **Drinking Water Method Cross References**

### **Uncertainty Estimation**

STL Richland has adopted the internationally accepted approach to estimating uncertainties described in "NIST Technical Note 1297, 1994 Edition". The approach, "Law of Propagation of Errors", involves the identification of all variables in an analytical method which are used to derive a result. These variables are related to the analytical result (R) by some functional relationship, R = constants * f(x,y,z,...). The components (x,y,z) are evaluated to determine their contribution to the overall method uncertainty. The individual component uncertainties  $(u_i)$  are then combined using a statistical model that provides the most probable overall uncertainty value. All component uncertainties are categorized as type A, evaluated by statistical methods, or type B, evaluated by other means. Uncertainties not included in the components, such as sample homogeneity, are combined with the component uncertainty as the square root of the sum-of-the-squares of the individual uncertainties. The uncertainty associated with the derived result is the combined uncertainty  $(u_c)$  multiplied by the coverage factor (1,2, or 3).

When three or more sample replicates are used to derive the analytical result, the type A uncertainty is the standard deviation of the mean value (S/yn), where S is the standard deviation of the derived results. The type B uncertainties are all other random or non-random components that are not included in the standard deviation.

The derivation of the general "Law of Propagation of Errors" equations and specific example are available on request.

	Report Definitions	
Action Lev	An agreed upon activity level used to trigger some action when the final result is greater than or equal to the Action Level. Often the Action Level is related to the Decision Limit.	
Batch	The QC preparation batch number that relates laboratory samples to QC samples that were prepared and analyzed together.	
Bias	Defined by the equation (Result/Expected)-1 as defined by ANSI N13.30.	
COC No	Chain of Custody Number assigned by the Client or STL Richland.	
Count Error (#s)	Poisson counting statistics of the gross sample count and background. The uncertainty is absolute and in the same units as the result. For Liquid Scintillation Counting (LSC) the batch blank count is the background.	
Total Uncert (#s) u _{c -} Combined Uncertainty.	All known uncertainties associated with the preparation and analysis of the sample are propagated to give a measure of the uncertainty associated with the result, $u_c$ the combined uncertainty. The uncertainty is absolute and in the same units as the result.	
(#s), Coverage Factor	The coverage factor defines the width of the confidence interval, 1, 2 or 3 standard deviations.	
CRDL (RL)	Contractual Required Detection Limit as defined in the Client's Statement Of Work or STL Richland "default" nominal detection limit. Often referred to the reporting level (RL)	
Lc	Decision Level based on instrument background or blank, adjusted by the Efficiency, Chemical Yield, and Volume associated with the sample. The Type I error probability is approximately 5%. Lc=(1.645 * Sqrt(2*(BkgrndCnt/BkgrndCntMin)/SCntMin)) * (ConvFct/(Eff*YId*Abn*Vol) * IngrFct). For LSC methods the batch blank is used as a measure of the background variability. Lc cannot be calculated when the background count is zero.	
Lot-Sample No	The number assigned by the LIMS software to track samples received on the same day for a given client. The sample number is a sequential number assigned to each sample in the Lot.	
MDC MDA	Detection Level based on instrument background or blank, adjusted by the Efficiency, Chemical Yield, and Volume with a Type I and II error probability of approximately 5%. MDC = (4.65 * Sqrt((BkgrndCnt/BkgrndCntMin)/SCntMin) + 2.71/SCntMin) * (ConvFct/(Eff * Yld * Abn * Vol) * IngrFct). For LSC methods the batch blank is used as a measure of the background variability.	
Primary Detector	The instrument identifier associated with the analysis of the sample aliquot.	
Ratio U-234/U-238	The U-234 result divided by the U-238 result. The U-234/U-238 ratio for natural uranium in NIST SRM 4321C is 1.038.	
Rst/MDC	Ratio of the Result to the MDC. A value greater than I may indicate activity above background at a high level of confidence. Caution should be used when applying this factor and it should be used in concert with the qualifiers associated with the result.	
Rst/TotUcert	Ratio of the Result to the Total Uncertainty. If the uncertainty has a coverage factor of 2 a value greater than 1 may indicate activity above background at approximately the 95% level of confidence assuming a two-sided confidence interval. Caution should be used when applying this factor and it should be used in concert with the qualifiers associated with the result.	
Report DB No	Sample Identifier used by the report system. The number is based upon the first five digits of the Work Order Number.	2
RER	The equation Replicate Error Ratio = $(S-D)/[sqrt(TPUs2 + TPUd2)]$ as defined by ICPT BOA where S is the original sample result, D is the result of the duplicate, TPUs is the total uncertainty of the original sample and TPUd is the total uncertainty of the duplicate sample.	
SDG	Sample Delivery Group Number assigned by the Client or assigned by STL Richland upon sample receipt.	
Sum Rpt Alpha Spec Rst(s)	The sum of the reported alpha spec results for tests derived from the same sample excluding duplicate result where the results are in the same units.	
Work Order	The LIMS software assign test specific identifier.	
Yield	The recovery of the tracer added to the sample such as Pu-242 used to trace a Pu-239/40 method.	

STL Richland rptGeneralInfo v3.72

## Sample Results Summary

Date: 23-Jan-04

الارد متعميد 🖶 الججاز الحجير

### STL Richland STLR

Ordered by Method, Batch No., Client Sample ID.

Report No. : 24707

SDG No: 24957

Client Id Batch Work Order Parameter	Result +- Uncertainty ( 2s)	Qual	Units	Yield	MDC or MDA	CRDL	RER2
015474 E900.0							
TW-1							
F709R1AA ALPHA	7.95 +- 5.12		pCi/L	<u></u> 100%	5.02	3.0	
No. of Results: 1							
			<b>除</b> 制的表达		12423 444		
					INTERNISCONT INTERN	and the second second	

STL Richland

RER2 - Replicate Error Ratio = (S-D)/[sqrt(sq(TPUs)+sq(TPUd))] as defined by ICPT BOA.

rptSTLRchSaSum mary2 V4.05 A97

# QC Results Summary

Date: 23-Jan-04

STL Richland STLR

Ordered by Method, Batch No, QC Type,.

Report N	lo. :	24707
----------	-------	-------

SDG No.: 24957

Batch Work Order	Parameter	Result +- Uncertainty ( 2s)	Qual	Units	Yield	Recovery	Bias	MDCIMDA
E900.0				·				
4015474 BLANK Q	C							
F74C61AA	ALPHA	0.149 + 0.671	U	pCi/L	100%			1.79
4015474 LCS				'				1.70
E74CC14D	AL Distances	·····································	理論の	- OF ALLAN	308%	79%	621	e i sasar
E74C61AC	ALPHA	67.9 16.4		-Cill-	ianot	709/2		
No. of Results:	· · · · · · · · · · · · · · · · · · ·	and the second second second second second second second second second second second second second second second			a Carlos and	S		

STL Richland

2

Bias --- (Result/Expected)-1 as defined by ANSI N13.30.

U Qual - Analyzed for, but the result is less than the Mdc/Mda|Total Uncert or gamma scan software did not identify the nuclide. rptSTLRchQcSum mary V4.05 A97

				SA	FORM					I	Date: 23-J	ar
ab Name:	STL R	lichland		SDG:	24	1957			Date:	1/13/2004	11:00:00 A	M
ot-Sample	No.: J4A14	0288-1		Repo	rt No. : 24	1707		Receive	Date:	1/14/2004	1:45:00 PM	4
lient Sam	ple ID: TW-1			coc	No.: 08	3828		Matri		WATER		
420134	-	9							Ord			Ba
neter '	Result	Count Qual Error ( 2 s)	Total Uncert( 2 s)	MDC MDA, Action Lev	Rpt Unit, Lc	Yield CRDL(RL)	Rst/MDC, Rst/TotUcert	Ana vsi Pre Da		Total Sa Size	Aliquot Size	
15474	E900.0		Work Order:	F709R1AA	Rep	ort DB ID: 9F7	09R10					
.PHA	7.95	4.7	5.1	5.02		100%	(1.6)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	38 p	·		
			80) -		1.66	3.0	(3.1)		101		L.	
esults: 1	Comments:	Ч.			1				5			
			÷									
			53						2			
									<u>a</u>			
									100			
									ê			
			14					摇				
								-	eur.			
									1000			
.c	ot-Sample lient Sam 420134 eter 5474 PHA	ot-Sample No.: J4A14 lient Sample ID: TW-1 420134 Result eter 5474 E900.0 PHA 7.95	Bit-Sample No.:         J4A140288-1           lient Sample ID:         TW-1           420134         Result         Count           eter         Qual         Error (2 s)           5474         E900.0         PHA         7.95         4.7	bt-Sample No.: J4A140288-1 lient Sample ID: TW-1 420134 eter Count Total Gual Error ( 2 s) Uncert( 2 s) 5474 E900.0 Work Order: PHA 7.95 4.7 5.1	ab Name: STL Richland SDG: ot-Sample No.: J4A140288-1 Report lient Sample ID: TW-1 COC 420134 eter Result Count Total MDC MDA, eter Qual Error (2 s) Uncert(2 s) Action Lev 5474 E900.0 Work Order: F709R1AA PHA 7.95 4.7 5.1 5.02	ab Name:STL RichlandSDG:24ot-Sample No.:J4A140288-1Report No.:24lient Sample ID:TW-1COC No.:08420134Eter CountTotaleterMDC[MDA, Rpt Unit, LcLc5474E900.0Work Order:F709R1AAReport LcPHA7.954.75.15.02pCi/L1.66	And Content Sample No.:     J4A140288-1     Report No.:     24707       Itient Sample ID:     TW-1     COC No.:     08828       420134     Result     Count     Total     MDCJMDA, Rpt Unit,     Yield       eter     Qual     Error (2s)     Uncert(2s)     Action Lev     Lc     CRDL(RL)       5474     E900.0     Work Order:     F709R1AA     Report DB ID:     9F7       PHA     7.95     4.7     5.1     5.02     pCi/L     100%       1.66     3.0	ab Name:       STL Richland       SDG:       24957         ot-Sample No.:       J4A140288-1       Report No.:       24707         lient Sample ID:       TW-1       COC No.:       08828         420134       Result       Count Error (2 s)       Total Uncert(2 s)       MDC[MDA, Action Lev       Rpt Unit, Lc       Yield CRDL(RL)       Rst/MDC, Rst/TotUcert         5474       E900.0       Work Order:       F709R1AA       Report DB ID:       9F709R10         PHA       7.95       4.7       5.1       5.02       pCi/L       100%       (1.6)         1.66       3.0       (3.1)       1.66       3.0       (3.1)	ab Name:     STL Richland     SDG:     24957     Colle it of the stample No.:       bit-Sample No::     J4A140288-1     Report No.:     24707     Receive       lient Sample ID:     TW-1     COC No.:     08828     Matri       120134     Interview     Count     Total     MDC(MDA, Rpt Unit, Le     Yield     Rest/MDC, CRDL(RL)     Annesi       5474     E900.0     Work Order:     F709R1AA     Report DB ID:     9F709R10       PHA     7.95     4.7     5.1     5.02     pC/L     100%     (1.6)       suits:     1     Comments:     I.66     3.0     (3.1)     1/2 14	ab Name:       STL Richland       SDG:       24957       Collectie Date:       Date:         bt-Sample No::       J4A140288-1       Report No.:       24707       Recover       Date:         lient Sample ID: TW-1       COC No.:       08828       Matri       Ord         retor       Qual       Count       Total       MDC/MDA, Rpt Unit, Lc       Yield       Rst/MDC, CRDL(RL)       Anarest         5474       E900.0       Work Order:       F709R1AA       Report DB ID:       9F709R10       Pre- 3a         PHA       7.95       4.7       5.1       5.02       pCi/L       100%       (1.6)       1/2/1/4       38 p         suits:       1       Comments:       Stristing and the stristing and the stristing and the stristing and the stristing and the stristing and the stristing and the stristing and the stristing and the stristing and the stristing and the stristing and the stristing and the stristing and the stristing and the stristing and the stristing and the stristing and the stristing and the stristing and the stristing and the stristing and the stristing and the stristing and the stristing and the stristing and the stristing and the stristing and the stristing and the stristing and the stristing and the stristing and the stristing and the stristing and the stristing and the stristing and the stristing and the stristing and the stristing and the stristing and the stristing and the stristing and the stristing and the stristing and the stristing and the stristing and the stristing and the stristi	ab Name:         STL Richland         SDG:         24957         Colle it         Date:         1/13/2004           bt-Sample No.:         J4A140288-1         Report No.:         24707         Recare         Date:         1/14/2004           lient Sample ID:         TW-1         COC No.:         08828         Matrix         WATER           t20134         Oual         Count         Total         MDC MDA, Rpt Unit, Le         Yield         Rst/MDC, Rot WATER         Ordered by Client           strat         E900.0         Work Order:         F709F10A         Report DB ID:         9F709F10         Fraction         Size           Strat         E900.0         Work Order:         F709F10A         Report DB ID:         9F709F10         Size         Size           PHA         7.95         4.7         5.1         5.02         pCi/L         100%         (1.6)         1/214         38 p           suits:         1         Comments:         Size         Size         Size         Size         Size         Size	ab Name:         STL Richland         SDG:         24957         Collestic         Date:         1/13/2004         11:00:00 A           bt-Sample No.:         J4A140288-1         Report No.:         24707         Recorder, Date:         1/14/2004         1:45:00 PA           lient Sample ID:         TW-1         COC No.:         08828         Matr         WATER           120134         Count         Total         MDC(MDA, Report DB ID:         Frought DB ID:         Frought DB ID:         Arter         Ordered by Client Sample ID:           120134         Count         Total         MDC(MDA, Report DB ID:         Frought DB ID

## FORM II BLANK RESULTS

Date: 23-Jan-04

いたないのないない

#### Lab Name: STL Richland 24957 Matrix: WATER ort No.: 24707 Analysis, Primary Rst/MDC, Total Sa Count Total MDC|MDA, Rpt Unit, Aliquot Detector CRDL Rst/TotUcert Prep Date 12 Size Size Error (2 s) Uncert(2s) Lc Parameter Result Qual Yield Batch: 4015474 E900.0 Work Order: F74C61AA Report DB ID: F74C61AB 1 GPC10B ALPHA 0.149 U 0.67 0.67 1.79 pCi/L 100% 0.08 1/21/04 D2 38 p 0.1009 L 0.644 0.45 3.0 No. of Results: 1 Comments: 9 ú. MDC/MDA,Lc - Detection, Decision Level based on Instrument background or blank, adjusted by the sample Efficiency, Yield, and Volume. U Quai - Analyzed for, but the result is less than the Mdc/Mda/Total Uncert or gamma scan software did not identify the nuclide. STL Elchland はい、読いた思想 rptSTLRchBlank V4.05 A97

					FORM II S RESULTS					Date: 23-J	an-04
	ame: STL Richlar atrix: WATER	nd	e				I	e or rt No.	24957 : 24707		
Paramete	r Result	Count Qual Error (2s)	Total Uncert(2 s)	Rep MDC MDA Un	ort it Yield	Expected	Expected Uncert	Recorry Ana Bi Prep	lysis, Date	Aliquot Size	Primary Detector
Batch: 401547 ALPHA	63.9	7.1	16.0	: F74C61AC 1.64 pCi/L	Report DB ID: 100% Rec Limits:	80.7 70	2.7 130		04 02:38 p	0.101 L	GPC10C
Batch: 401547 ALPHA	59.2	6.5	Work Order 15.0	: F74C61AD 1.67 pCl/L	Report DB ID: 100% Rec Limits:	74,5		79 <b>1/21/</b> 0 -0.2	)4 02:38 p	0.1093 L	GPC10E
No. of Result	s: 2 Comments:		2 * *					-0.2			
			4								
STL Alchland rptSTLRchLcs V4.05 A97	Was - (Result/Exp	acted)-f as defined by /	INSTN13.30.	k <u>e</u>	14 ₃					14	

4-54380 11	an.	70	S7L	Rici	hla	in c	1	,				Serial	Numb	26	08	828	
ANAL	YSIS REQUEST	AND C	HAIN OF CI AI402 5 2495	JSTODY I	RECO	RD	$\rightarrow$	lampa,	enjamin FL 3363	4				Phone:	www.stl-ir (813) 885- 3) 885-70-	7427	
		$\cap$	null-	2' <i>1</i> .28			$\bigcirc$	Viternati	e Labora	itory Na	ame/Loi	cation	1. S.	Phone: Fax:			
PROJECT REFERENCE	PROJECT NO B420/ P.O. NUMBER B420	34	PROJEC (STATE)		N	IATRIX TYPE		·····		F	EQUIRE	D ANALYSIS			PAC		OF
CLIENT (SITE) PM TIMAF FITZ CLIENT NAME STL - TAMPA CLIENT ADDRESS COMPANY CONTRACTING THIS WORK (IF	CLIENT PHON	1E	CONTR/		E (C) OR GRAB (G) INDICATE (WATER)	SEMISOLID	NONAQUEOUS LIQUID (OIL, SOLVENT)	<u> </u>	1 - 2 3						DE EXI DEI (SU		PORT O
SAMPLE					COMPOSITE AQUEOUS (V	SOLID OR S	NAQUE		1 24		<u> </u>		3			R SHIPMENT	
DATE TIME +13-04 1100 -	TW-1				8 8 7	SO AlF	24	,   [-	NU	D D	F CONI	AINERS SU	BMLE		New	A a	Vetur MARKS
			· · · · · · · · · · · · · · · · · · ·												G	<u>17'51</u>	un 226
							,										
RELINQUISHED BY: (SIGNATURE)	DATE	TIME	RELINGUIS	HED BY: (SIGN	ATAIREN		$\overline{\zeta}$	DATE	334	TIME		RELINQUIS	HED BY	SIGNATURE)	l	DATE	TIME
RECEIVED BY: (SIGNATURE)		TIME	RECEIVED	BY: ISIGIYATURI	<u> </u>	Phe	<u></u>	DATE		TIME 13,1		RECEIVED	BY: (sig	(URE)		DATE	TIME
RECEIVED FOR LABORATORY BY: (SIGNATURE)	DATE	TIME	CUSTODY II YES NO	VTACT	LABÒRA CUSTO SEAL N	DY		AMPA		LABOR	ATORY R	EMARKS					_
																	61 69 to 2 1 to 5

	4: 				SA	FORM MPLE RE					Ε	)ate: 23-Ja	an-04
Lab Name	: STL R	ichland		2 . L	SDG:	24	957		Collectio	Date:	1/13/2004	11:00:00 A	A.
Lot-Samp	le No.: J4A14	0288-1			Repor	t No.: 24	707		Receive	Date:	1/14/2004	1:45:00 PM	
	mple ID: TW-1				COCN	<b>10.:</b> 08	3828		Matri		WATER		
B420134	<u></u>	)				····				Ord	ered by Client		
Parameter	Result		ount r (2s)	_ Total Uncert( 2 s)	MDC MDA, Action Lev	Rpt Unit, Lc	Yield CRDL(RL)	Rst/MDC, Rst/TotUcert	Analisi Prek da		Total Sa Size	Aliquot Size	Primary Detecto
Batch: 4015474	E900.0			Work Order:			ort DB ID: 9F70						
ALPHA	7.95	2	4.7	5.1	5.02	pCi/L 1.66	100% 3.0	(1.6) (3.1)	1/2104	<b>38</b> p		0.0847 L	GPC1(
No. of Results: 1	Comments:	8				1.00							
œ				104									
				12									
				÷						R.			
			2	2									
STL Richland M rptSTLRchSample U V4.05 A97	IDC MDA,Lc - Dete Qual - Analyzed fo	ction, Decision or, but the resi	n Level ba ult is less	ised on Instrun than the Mdc/N	nent backgrou Ida Total Unc	and or blank, a ert or gamma	adjusted by the scan software	sample Efficie did not identify	ncy, Yiele, a	Volume	3.	is L	

「「「「「「「「「「」」」 - **8**30 - ----FORM II Date: 23-Jan-04 **BLANK RESULTS** 24957 Lab Name: STL Richland Matrix: R ort No.: 24707 WATER Analysis, Primary Rpt Unit, Rst/MDC, **Total Sa** Aliquot Count Total MDC|MDA, Detector CRDL Rst/TotUcert Size Size Prep Date Uncert(2 s) Lc Error (2 s) Yield Parameter Result Qual Work Order: F74C61AA Report DB ID: F74C61AB E900.0 Batch: 4015474 GPC10B 1/21/04 02 3B p ALPHA U 0.67 0.67 1.79 pCi/L 100% 0.08 0.1009 0.149 L 0.45 たちの 0.644 3.0 No. of Results: 1 Comments: ÷ 9  $\hat{\Gamma}$  $\mathbf{x} = \mathbf{x}$ MDC|MDA,Lc - Detection, Decision Level based on instrument background or blank, adjusted by the sample Efficiency, Yield, and Volume. U Qual - Analyzed for, but the result is less than the Mile/Mda|Total Uncert or gamma scan software did not identify the nuclide. STL Richland rptSTLRchBlank V4.05 A97

D FORM II Date: 23-Jan-04 LCS RESULTS 24957

e rt No.: 24707

Lab Name: STL Richland

Matrix: WATER

Parameter	1	Result	Qual	Count Error ( 2 s)	Total Uncert( 2 s)	MDCIMDA	Repor Unit	t Yield	Expected	Expected Uncert	Reco B	Analysis, Prep Date	Aliquot Size	Primary Detector
Batch: 4015474	'Es	900.0			Work Orde	r: F74C61A	C	Report DB ID:	F74C61C	3	79%			
ALPHA		63.9		7.1	16.0	1.64	pCi/L	100%	80.7	2.7	200 E	1/21/04 02:38 p	0.101	GPC10C
				12				Rec Limits:		130	-0.2		L	
Batch: 4015474	E	900.0				r: F74C61A		Report DB ID:					0 1 0 0 0	000405
ALPHA		59.2		6.5	15.0	1.67	pCi/L.	100%	74.5	2.5	79	1/21/04 02:38 p	0.1093 L	GPC10E
								Rec Limits:	70	130	-0.2			
No. of Results:	2	Comments												
10											-0.2			
0											<b>推</b>			
												4 ) 		
					13									
					SK.									
												а. А.		
					a 12									
											鎌			
STL Richland	Blas	- (Result/Ex	pected)	-1 as defined by .	ANSI N13.30.									
rptSTLRchLcs V4.05 A97					1			1 o						
					(E)									
											W W L			

4-54380 11	<u>a.M.</u> -	70 -	STL RIC	hla	nc	ł,					Serial	Numb		0	8828	
ANAL	SIS REQUEST	and chai	IN OF CUSTODY	RECO	RD		TL Tam 712 Ber Impa, Fl	njamin I		uite 10	0		Website: Phone: ( Fax: (81	www.sl 813i 88 3) 835-7	Hinc.com 5-7427 7049	
		Dh	24957 v 1-28			() Ali	ternate	Labora	tory Na	me/Loc	cation		Phone: Fax:			
PROJECT REFERENCE	PROJECT NO. 04201 P.O. NUMBER	34	PROJECT LOCATIO (STATE)	N N	iatrix Type				RE	QUIRE	) ANALYSI				PAGE	OF
SAMPLER'S SIGNATURE	CLIENT PHON	134	CONTRACT NO.	CATE		- IN	3								STANDARD RE DELIVERY	$\phi$
CLIENT (SITE) PM TIMAFritz CLIENT NAME			CLIENT FAX	C INDI		SOLVENT SOLVENT				2			<b>.</b>		date due Expedited re	
STL-TAMPA CLIENT ADDRESS	CLIENT E-MAIL	• •		(C) OR GRAB (G) INDICATE (ATER)	0,LID	2 1 2 E									DELIVERY SURCHARGE)	0
COMPANY CONTRACTING THIS WORK (if	applicable)			ISITE (C) C US (WATE!	SOLID OR SEMISOLID AIR	MEDUS L		n sita La Sa							PER SHIPMENT	DOLERS SUBMITTED
SAMPLE DATE TIME	SAMPLE	DENTIFICATI	ON -	COMPOSITE AQUEOUS (W	SOLID (		. I	NUI	I MBER OF	F CONT	AINERS SL			Th	mlung	MARKS
H3-04 1100 -	TW-1	·	······································	X		3	Ē	7	0	9	R			. (	on conc	litional.
						_	¦							(	31751	-11226
	·····														<u>e 13 (</u>	ILA 2.2.0
						_										
																·····
			·····									x4bax				· · · · · · · · · · · · · · · · · · ·
RELINQUISHED BY: (SIGNATURE)	DATE	TIME	RELINQUISHED BY: IS	IGNATURE!	Д		DATE		TIME		RELINQUI	HED BY	(SIGNATURE)		DATE	TIME
RECEIVED BY: (SIGNATURE)	DATE		MUUU	<u>121</u>	D	8	1-13	304	173	30						
last l'examples au	DATE	TIME	RECEIVED BY: ISIGNAN	<u>541</u>	Ph	ω '	date 1   14	104	тіме 13.4		RECEIVED	BY: (SIG)	EURE)		DATE	TIME
ECEIVED FOR LABORATORY BY: Ignature)	DATE 1	TIME AND A	CUSTODY INTACT YES O NO O	CUSTO SEAL I	IDY IO,	ISE ONLY STL TA LOG N	MPA		LABORA	Tory r	EMARKS					
		L	31			<u></u>								-		61) 0/316 (2000)

Analytical Data Package Prepared For

# **STL TAMPA**

### B420134

Radiochemical Analysis By

STL Richland

Report No.: 24782

SDG No.	Order No. Client Sample ID (List Order)	Lot-Sa No.	Work Order	Report DB ID	Batch No.
25040	TW-1 (F709R)	J4A260118-1	F8JJ21AA	9F8JJ210	4026427

STL Richland rptSTLRef(Title v3.73

ne ne e ne stange sta



STL Richland

www.stl-inc.com

2800 George Washington Way Richland, WA 99352

Tel: 509 375 3131 Fax: 509 375 5590

## Certificate of Analysis

January 30, 2004

STL Tampa

(717) Read Read The Found and American Street Found and American Street Found and American Street Found and American Street Found and American Street Found and American Street Found and American Street Found and American Street Found and American Street Found and American Street Found and American Street Found and American Street Found and American Street Found and American Street Found and American Street Found and American Street Found and American Street Found and American Street Found and American Street Found and American Street Found and American Street Found and American Street Found and American Street Found and American Street Found and American Street Found and American Street Found and American Street Found and American Street Found and American Street Found and American Street Found and American Street Found and American Street Found and American Street Found and American Street Found and American Street Found and American Street Found and American Street Found and American Street Found and American Street Found and American Street Found and American Street Found and American Street Found and American Street Found and American Street Found and American Street Found and American Street Found and American Street Found and American Street Found and American Street Found and American Street Found and American Street Found and American Street Found and American Street Found and American Street Found and American Street Found and American Street Found and American Street Found and American Street Found and American Street Found and American Street Found and American Street Found and American Street Found and American Street Found and American Street Found and American Street Found and American Street Found and American Street Found and American Street Found and American Stre American Street Found and American Street Found and American Street Found and American Street Found and American Street Found and American Street Found and American Street Found and American Street Found and American Street Found and

Date Received in Lab Sample Type SDG Number Project Name/Number

January 14, 2004 One (1) Water 25040 B420134

t

:

:

2

### CASE NARRATIVE

#### I. Introduction

On January 14, 2004, one water sample was received at the STL Richland (STLR) laboratory for radiochemical analysis. The sample was originally assigned to Lot Number J4A140288. The Gross Alpha analysis for sample TW-1 was greater than 5 pCi/L; therefore, the sample was logged in for Radium-226 per client request. Upon login, the sample was assigned a STLR identification number as described on the cover page of the Analytical Data Package report form. The sample was assigned to Lot Number J4A260118.

#### II. Sample Receipt

The sample was received in good condition and no anomalies were noted during check-in.

#### 111. Analytical Results/Methodology

The analytical results for this report are presented by laboratory sample ID. Each set of data includes sample identification information; analytical results and the appropriate associated statistical uncertainties.

The analysis requested was:

Gas Proportional Counting Radium-226¹ by method RICH-RC-5027 (EPA 903.0)



	Lab Name:	STL Richland	3	×			ORM II RESULTS					24957	Date: 23-J	an-04
	Matrix	WATER								e	rit No. :	24707		
2	Parameter	Result Q	Count Jual Error ( 2 s)	Tota! Uncert(2∶s)	MDC MDA	Repor Unit	t Yleid	Expected	Expected Uncert	Reco ry Bi	Analys Prep D	is, ate	Allquot Size	Primary Detector
	4015474 ALPHA	'E900.0 63.9	7.1	Work Order: 16.0	1.64	pCi/L	Report DB ID: 100% Rec Limits:	80.7 70	2.7 130	793	1/21/04	02:38 p	0.101 L	GPC10C
Batch:	4015474 ALPHA	£900.0 59.2	6.5	Work Order: 15.0	1 <i>.</i> 67	pCi/L	Report DB ID: 100% Rec Limits:	74.5 [~] 70	, 2.5 130	79 -0.2	1/21/04	02:38 p	0.1093 L	GPC10E
No. d	of Results: 2	Comments:									2			
10														
				1 1 2 2										
STL Rid rptSTLF V4.05	RchLcs	ins - (Result/Expec	ted)-1 as defined by A	NSI N13.30.			80						β.	

4-54380 ·	TaM.	70	57L	Ricl	hla	2.Ý	d	/	,				Serial	Numb		0	8828		
A	NALYSIS REQUES	T AND CHA	AIN OF CU	STODY F	RECC	RD		$\sum_{6}$	TL. Tam 712 Bei impa, F	njarnin F	Road, S 4	uite 10	0		Website: Phone: (I Fax: (81)	813) 88	35-7427		
		M	u -	28				◯ AI	ternate	Labora	tory Na	me/Lo	cation	金融を	Phone: Fax:				
PROJECT REFERENCE	PROJECT N 8420	0. 134 01:34	PROJEC (STATE)	F		MATF TYP					RI	EQUIRE	d analysi	S	14		PAGE		DF
SAMPLER'S SIGNATURE	P.O. NUMBE B 42 CLIENT PHO	0134	CONTRA		CATE		- E14-		3								STANDARD RE DELIVERY	$\leq$	$\neq$
CLIENT (SITE) PM TIMAFITZ CLIENT NAME	- CLIENT PHU		CLIENT F	-AX	(G) INDICATE		14100	Survey Survey	0								DATE DUE EXPEDITED RE		<del>_</del>
STL-TAMP CLIENT ADDRESS					9	SOLID		S N S									DELIVERY (SURCHARGE) DATE DUE	$\subset$	$\supset$
COMPANY CONTRACTING THIS WO	RK (if applicable)				COMPOSITE (C) OR GRA	OR SEMIS		Nh	¹								NUMBER OF C	DOLERS S	
SAMPLE DATE TIME		Le identificat	rion 👘		COMF	SOLIC	AIR	R		NU	MBER O	F CONT	AINERS SU	IBMITE		DI	mling	MARKS	
13-04 1100	TW-1							3	F	7	0	9	$ \mathcal{R} $			(	JA Conc	lition	<u>al</u>
			·														5A conc GA751 e73	Fun i	<u>226</u> 225
								-									<u>e / )      </u>		<u> </u>
		<u> </u>							.	[							<u> </u>		
	<u> </u>						-							<u>M</u>					
													1						
							_		-					19					. <u> </u>
																			4 <del>-</del>
							12							1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1					
RELINQUISHED BY: (SIGNATURE)	DATE	TIME .	RECINQUISI	HED BY: (SIGA	IATZIREX		fly	2	DATE	304	TIME		RELINQUI	Shed by	(SIGNATURE)		DATE	TIM	E
RECEIVED BY: (SIGNATURE)	DATE	TIME	RECEIVED E	Y: ISIGNATURE	<u> </u>	f	0-0 h6	5	DATE 1141		time 13.L		RECEIVED	1.1	URE)		DATE	TIM	E
RECEIVED FOR LABORATORY BY: (SIGNATURE)	DATE	TIME	CUSTODY IN YES O NO O	TACT	CUST	DDY		SE ONLY STL T/ LOG N	AMPA			ATORY F	REMARKS				<u> </u>		
	<u></u>		<u>.</u>				!											- 01) 01 64.7	1243

Ĭ.

Analytical Data Package Prepared For

# STL TAMPA

### B420134

Radiochemical Analysis By

## STL Richland

a No Work Ord 118-1 F8JJ21AA	der Report DB A 9F8JJ210		
118-1 F8JJ21A	A 9F8JJ210	4026427	
			×
			2
			- ii

STL Richland rptSTLRehTitle v3.73



STL Richland

www.stl-inc.com

2800 George Washington Way Richland, WA 99352

Tel: 509 375 3131 Fax: 509 375 5590

### Certificate of Analysis

January 30, 2004

STL Tampa

(112 Design Ford Conc. If the second state is a second state in the second state is a second state in the second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state is a second state i

Date Received in Lab Sample Type SDG Number Project Name/Number January 14, 2004 One (1) Water 25040 B420134

5

:

:

6

### CASE NARRATIVE

#### l. Introduction

On January 14, 2004, one water sample was received at the STL Richland (STLR) laboratory for radiochemical analysis. The sample was originally assigned to Lot Number J4A140288. The Gross Alpha analysis for sample TW-1 was greater than 5 pCi/L; therefore, the sample was logged in for Radium-226 per client request. Upon login, the sample was assigned a STLR identification number as described on the cover page of the Analytical Data Package report form. The sample was assigned to Lot Number J4A260118.

#### II. Sample Receipt

The sample was received in good condition and no anomalies were noted during check-in.

#### III. Analytical Results/Methodology

The analytical results for this report are presented by laboratory sample ID. Each set of data includes sample identification information; analytical results and the appropriate associated statistical uncertainties.

The analysis requested was:

Gas Proportional Counting Radium-226¹ by method RICH-RC-5027 (EPA 903.0)



		nethod Cross H	elerences	
		DRINKING WATER	ASTM METHOD CROSS REFERENCES	
	Referenced Method	Isotope(s)	STL Richland's SOP number	
	EPA 901.1	Cs-134, I-131	RICH-RC-5017	
	EPA 900.0	Alpha & Beta	RICH-RC-5014	
	EPA 903.1	Ra-226	RICH-RC-5005	
	EPA 903.0	Ba-228	RICH-RC-5005	
1			RICH-RC-5027	
	Standard Method 7500-U-C & ASTM D5174	Uranium	RICH-RC-5058	V 20
	EPA 906.0	Tritium	RICH-RC-5007	
				10
	NOTE:			
	The Gross Alpha LCS is prepared with Am-24			
	The Gross Beta LCS is prepared with Sr/Y-90	) (unless otherwise s	specified in the case narrative)	

-----

#### **Drinking Water Method Cross References**

#### **Uncertainty Estimation**

STI. Richland has adopted the internationally accepted approach to estimating uncertainties described in "NIST Technical Note 1297, 1994 Edition". The approach, "Law of Propagation of Errors", involves the identification of all variables in an analytical method which are used to derive a result. These variables are related to the analytical result (R) by some functional relationship, R = constants * f(x,y,z,...). The components (x,y,z) are evaluated to determine their contribution to the overall method uncertainty. The individual component uncertainties  $(u_i)$  are then combined using a statistical model that provides the most probable overall uncertainty value. All component uncertainties are categorized as type A, evaluated by statistical methods, or type B, evaluated by other means. Uncertainties not included in the components, such as sample homogeneity, are combined with the component uncertainty as the square root of the sum-of the-squares of the individual uncertainties. The uncertainty associated with the derived result is the combined uncertainty  $(u_c)$  multiplied by the coverage factor (1,2, or 3).

When three or more sample replicates are used to derive the analytical result, the type A uncertainty is the standard deviation of the mean value (S/vn), where S is the standard deviation of the derived results. The type B uncertainties are all other random or non-random components that are not included in the standard deviation.

The derivation of the general "Law of Propagation of Errors" equations and specific example are available on request.

2

STL Richland rptGeneralInfo v3.72

Action	Lev	<b>Report Definitions</b> An agreed upon activity level used to trigger some action when the final result is greater than or equal to the Action Level. Often the Action Level is related to the Decision Limit.	
Batch		The QC preparation batch number that relates laboratory samples to QC samples that were prepared and analyzed together.	
Bias		Defined by the equation (Result/Expected)-1 as defined by ANSI N13.30.	
COCIN	No	Chain of Custody Number assigned by the Client or STL Richland.	
Count	Error (#s)	Poisson counting statistics of the gross sample count and background. The uncertainty is absolute and in the same units as the result. For Liquid Scintillation Counting (LSC) the batch blank count is the background.	
	ในเรื่องป <i>ล</i> ์เจริโต		and exception of
u _{e –} Con Uncerta		of the uncertainty associated with the result. $u_c$ the combined uncertainty. The uncertainty is absolute and in the same units as the result.	401 23
(#s), Co Factor	overage	The coverage factor defines the width of the confidence interval, 1, 2 or 3 standard deviations.	billikar -
CRDI.		Contractual Required Detection Limit as defined in the Client's Statement Of Work or STL Richland "default" nominal detection limit. Often referred to the reporting level (RL)	
Le		Decision Level based on instrument background or blank, adjusted by the Efficiency, Chemical Yield, and Volume associated with the sample. The Type I error probability is approximately 5%. Lc=(1.645 * Sqrt(2*(BkgrndCnt/BkgrndCntMin)/SCntMin)) * (ConvFct/(Eff*Yld*Abn*Vol) * IngrFct). For LSC methods the batch blank is used as a measure of the background variability. Lc cannot be calculated when the background count is zero.	
Lot-Sa	mple No	The number assigned by the LIMS software to track samples received on the same day for a given client. The sample number is a sequential number assigned to each sample in the Lot.	
MDC	MDA	Detection Level based on instrument background or blank, adjusted by the Efficiency. Chemical Yield, and Volume with a Type I and II error probability of approximately 5%. MDC = $(4.65 \times \text{Sqrt}((BkgrndCnt/BkgrndCntMin)/SCntMin) + 2.71/SCntMin) * (ConvFet/(Eff * Yid * Abn * Vol) * IngrFet). For LSC methods the batch blank is used as a measure of the background variability.$	
Prima	ry Detector	The instrument identifier associated with the analysis of the sample aliquot.	
Ratio I	U-234/U-238	The U-234 result divided by the U-238 result. The U-234/U-238 ratio for natural uranium in NIST SRM 4321C is 1.038.	
Rst/MI	DC	Ratio of the Result to the MDC. A value greater than 1 may indicate activity above background at a high level of confidence. Caution should be used when applying this factor and it should be used in concert with the qualifiers associated with the result.	
Rst/To	otUcert	Ratio of the Result to the Total Uncertainty. If the uncertainty has a coverage factor of 2 a value greater than 1 may indicate activity above background at approximately the 95% level of confidence assuming a two-sided confidence interval. Caution should be used when applying this factor and it should be used in concert with the qualifiers associated with the result.	
Report	DB No	Sample Identifier used by the report system. The number is based upon the first five digits of the Work Order Number.	
RER		The equation Replicate Error Ratio = $(S-D)/[sqrt(TPUs2 + TPUd2)]$ as defined by ICPT BOA where S is the original sample result, D is the result of the duplicate, TPUs is the total uncertainty of the original sample and TPUd is the total uncertainty of the duplicate sample.	
SDG		Sample Delivery Group Number assigned by the Client or assigned by STL Richland upon sample receipt.	
Sum R Spec R	tpt Alpha (st(s)	The sum of the reported alpha spec results for tests derived from the same sample excluding duplicate result where the results are in the same units.	
Work	Order	The LIMS software assign test specific identifier.	
Yield	e.	The recovery of the tracer added to the sample such as Pu-242 used to trace a Pu-239/40 method.	

STL Hichland rptGeneralInfo v3.72

.....

#### Sample Results Summary

Date: 30-Jan-04

#### STL Richland STLR

Ordered by Method, Batch No., Client Sample ID.

Report	No.:	24782
--------	------	-------

SDG No: 25040

C Batch	Client Id Work Order	Parameter	Result +- Uncertainty ( 2s)	Quai	Units	Yield	MDC or MDA	CRDL	RER2
4()26427	E903.0								
TW-	1 (F709R)								
Fa	BJJ21AA RA	-226	2.52 +- 0.703	R	pCi/L	96%	0.224	1.0	
*my	1 TF70SFR DUR	PLICKE STRAF	ale d'an a suit faith an	e .	1 ²⁴		200 Co	a the state of the second	State Roman
F	BJJ21AC RA	-226	2.65 +- 0.689	R Anterio	pCi/L	100%	0.212	1.0	
	of Results: 2								

 STL Richland
 -Replicate Error Ratio = (S-D)/[sqrt(sq(TPUs)+sq(TPUd))] as defined by ICPT BOA.

 rp:STLRchSaSum
 R Qual - EPA Method 903.0 measures total soluble alpha-emitting radioisotopes of Radium, namely Radium-223,224,226 in drinking water, surface water and groundwater.

#### Sample Results Summary

#### STL Richland STLR

Ordered by Method, Batch No., Client Sample ID.

Report	No. :	: 24782
--------	-------	---------

SDG No: 25040

4026427 E903.0 TW-1 (F709R)	TW-1 (F709R)	Client Id Batch Work Ord	er Parameter	Result +- Uncertainty ( 2s)	Qual	Units	Yield	MDC or MDA	CRDL	RER2
TW-1 (F709R)		4026427 E903.0								
F8JJ21AA RA-226 2.52 +- 0.703 R pCi/L 96% 0.224 1.0	$r_{2} = 0.703$ B $r_{1} = 0.224$ 10	, ,	01.006	2.52 + 0.703	в	pCi/l	96%	0 224	10	

No. of Results: 2

 STL Richland
 - Replicate Error Ratio = (S-D)/[sqrt(sq(TPUs)+sq(TPUd))] as defined by ICPT BOA.

 rp:STLRchSaSum
 R Qual - EPA Method 903.0 measures total soluble alpha-emitting radioisotopes of Radium, namely Radium-223,224,226 in drinking water, surface water and groundwater.

609

## QC Results Summary STL Richland STLR

Date: 30-Jan-04

Ordered by Method, Batch No, QC Type,.

Report No.: 24782

SDG No.: 25040

Batch Work Order	Parameter	Result +- Uncertainty ( 2s)	Qual	Units	Yield	Recovery	Bias	MDC MDA
E903.0								
4026427 BLANK C		0.00743 +- 0.0807	U.	pCi/L	95%			0.214
F8J7A1AA	RA-226			சும்- கல்கள் கட்டனில்	ALL REAL PROPERTY.	L. D. C. Marine	A. 70	Lingent Marine
4026427 165 3	<b>S</b>	CITAL STORE MALERIA		nCi/l	94%	99%	0.0	0.196
F8J7A1AC	RA-226	3.64 + 0.956	л.	powe		99%		
No. of Results:	2			== 11 ==		-	2016	The family of the second

- (Result/Expected)-1 as defined by ANSI N13.30. Bias STL Richland

• 10

17-27-4-1-F

R Qual - EPA Method 903.0 measures total soluble alpha-emitting radioisotopes of Radium, namely Radium-223,224,226 in drinking water, rptSTLRchQcSum

surface water and groundwater. U Qual - Analyzed for, but the result is less than the Mdc/Mda[Total Uncert or gamma scan software did not identify the nuclide. mary V4.05 A97

						FORM				C	Date: 30-Ja	an-04
					SA	MPLE RES	ULTS		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			
Lab Nan	ne: STL R	lichland			SDG:	250	40		Collection Date:	1/13/2004	1:00:00 AN	- tv
	nple No.: J4A26				Repor	t No.: 247	'82		Received Date:	1/26/2004 9	9:25:00 AM	
	ample ID: TW-1				COC 1	No.: 081	328		Matrix:	WATER lered by Client	Sample ID,	Batch No.
Parameter	Result	Qual E	Count Error ( 2 s)	Total Uncert( 2 s)	MDC MDA, Action Lev		Yield CRDL(RL)	Rst/MDC, Rst/TotUcert	Analysis, Prep Date	Total Sa Size	Aliquot Size	Primary Detector
Baich: 4026427 RA-225	E903.0 2.52	R	0.44	Work Order: 0.7		Repor pCi/L 0.0871	t DB ID: 9F8. 96% 1.0	JJ210 (11.3) (7.2)	1/29/04 0917 a		0.5 L	GPC10A
No. of Results:	1 Comments:											
STL Richland rptSTLRchSample	MDC MDA,Lc - Dete R Qual - EPA Metho U Qual - Analyzed f								ency, Yield, and Volum 24,226 In drinking wate	ie. er, surlace wate	r and ground	iwater.
V4.05 A97											¢	

FORM II Date: 30-Jan-04 DUPLICATE RESULTS 25 Collection Date: 1/13/2004 11:00:00 AM SDG: 25040 Lab Name: STL Richland Received Date: 1/26/2004 9:25:00 AM Report No. : 24782 Lot-Sample No.: J4A260118-1 Matrix: WATER 簿 COC No.: 08828 Client Sample ID: TW-1 (F709R) DUP 12 Aliquot Primary **Total Sa** Rst/MDC, Analysis, MDC/MDA, Rpt Unlt, Total Result, Count 魏 Detector Size Size Rst/TotUcert Prep Date CRDL Uncert( 2 \$) Action Lev Yleld Orig Rst · Error ( 2 s) Qual Parameter Report DB ID: F8JJ21CR Orlg Sa DB ID; 9F8JJ210 Work Order: F8JJ21AC E903.0 Batch: 4026427 GPC10B 0.4662 1/29/04 09:57 a (12.5)0.212 pCi/L 100% 0.45 0,69 RA-226 2.65 R 一時 L (7.7)1.0 R 2.52 **RER2 0.3** No. of Results: 1 Comments: Θ 「「「「「 * * * * RER2 - Replicate Error Ratio = (S-D)/[sqrt(sq(TPUs)+sq(TPUd))] as defined by ICPT BOA. STL Richland MDC[MDA,Le - Detection, Decision Level based on Instrument background or blank, adjusted by the sample Efficiency, Yield, and Volume. rptSTLRchDupV4.0 R Qual - EPA Method 903.0 measures total soluble alpha-emitting radiolsotopes of Radium, namely Radium-223,224,226 in drinking water, surface water and groundwater. 5 A97 .....

#### FORM II

#### Date: 30-Jan-04

 $10^{-1}$ 

#### **BLANK RESULTS**

Lab Name: Matrix:	STL Richi WATER	and							SDG: Report	25040 No.: 24782		
Parameter	Result	Qual	Count Error ( 2 s)	Total Uncert( 2 s)	MDC MDA, Lc	Rpt Unit, CRDL	Yleld	Rst/MDC, Rst/TotUcert	Analysis, Prep Date	Total Sa Size	Allquot Size	Primary Detector
Batch: 4026427 RA-226	E903.0 0.00743	UR	0.081	Work Order: 0.081	F8J7A1AA 0.214 0.0819	Repor pCi/L 1.0	1 DB ID: F8. 95%	J7A1AB 0.03 0.18	1/29/04 09:57 a		0.5003 L	GPC10C
No. of Results: 1	Comment	ts:		2 1								
10												
ð.												
			65									

STL Richland rptSTLRchBlank V4.05 A97 MDC|MDA,Lc - Detection, Decision Level based on instrument background or blank, adjusted by the sample Efficiency, Yield, and Volume. R Qual - EPA Method 903.0 measures total soluble alpha-emilting radioisotopes of Radium, namely Radium-223,224,226 in drinking water, surface water and groundwater. U Qual - Analyzed for, but the result is less than the Mdc/Mda|Total Uncert or gamma scan software did not identify the nuclide.

FORM II

## LCS RESULTS

Date: 30-Jan-04

Lab Name: Matrix: Parameter	STL Richla WATER Result	nd 	Count Error ( 2 s)	Totat Uncert(2 s)	MDCIMDA	Report Unit	Yield	Expected	Expected Uncert	SDG: Report Recovery, Bias	Analysis, Prep Date	Aliquot Size	Primary Detector
Batch: 4026427	E903.0				r: F8J7A1A0	2	Report DB ID	: F8J7A1C					GPC10D
RA-226	3.64	R	0.53	0.96	0.196	pCi/L	94% Rec Limits:	3.68 70	0.2 130	99% 0.0	1/29/04 09:57 a	0 5015 L	GPC 100
No. of Results: 1	Comments			Ċ.				· · · · · · · · · · · · · · · · · · ·					
للمتو													
											5		
											n a Carlo Angelan Regelan Regelan Angelan Angelan Angelan Angelan		
											- 12 		
STL Richland B rptSTLRchLcs R	ias - (Result/E Qual - EPA Meth	xpected 16d 903.	)-1 as defined by 0 measures total	ANSI N13.30. soluble alpha-er	nitting radiols	ntopes of F	tadium, namely R	adium-223,2	24,226 in dri	nking water, su	rface water and groun	dwater.	
V4.05 A97													
													σ

SEVERN			STL R CHAIN OF CUSTC ATTORX	DY RE	ĊŌŔ	D   (	6712 Benjamin Road, Suite LOO Jampa, FL 33634								Website: www.stl-inc.com Phone: (813) 885-7427 Fax: (813) 885-7049				
<b>JIRENT</b>			n 2011-127/ May 1-28					ternate	Labora	tory Na	ime/Lo	cation	5		Phone: Fax:				
PROJECT REFERENCE	PR:  /-	0JECT NO.	PROJECT LOC (STATE)	ALION		TRIX				R	EQUIRE	D ANAL	YSIS				PAGE		(
SAMPLER'S SIGNATURE	P,Q /2	0 JECT NO. 04 20134 NUMBER 42013 ENT PHONE			4		-11-0	5				]	T		1. S. C. S. C.		STANDARD DELIVERY	REPORT	2
CLIENT (SITE) PM TIMALET CLIENT NAME	72. CLI		CLIENT FAX		INDICALE			ŭ 0							in and in a second second second second second second second second second second second second second second s	1	DATE D	JE	
CLIENT NAME	npa:	ENT E-MAIL		2	101 DE 101		10 0 C	y Y									EXPEDITED DELIVERY (SURCHARG	REPORT	, C
				2	ATER)			}					ļ	[			· · · · · · · · · · · · · · · · · · ·	JE	
COMPANY CONTRACTING	is i	31100	AQUEOUS (WATER)						l ·	i s. I	i I	• 1		1	NUMBER OF PER SHIPMI	NT:			
SAMPLE DATE TIME		ICATION	- A	AQUE	AIR	, P		NUMBER OF CONTAIN			FAINERS	S SUBMITTED				purleurs	REMARKS	s S	
F13,-114 1100		-/ 100	7 in for Ra-22	6	X		3	F	.7	0	q	R					GA Co	reli-Li	-01
2	FBJ	<u></u>	) (Total Ro 1 1/23/01	diam	-  -												GAZE	Tur	<u>n</u> ]
															M.	77	(_73	CIL	<u>n</u>
							-							;	1. 1. 2.	[		·	
	J4	A24011	8		_ _	•													
		H ZO	10		.	.	.								1				
<b>`</b>		e to			  .														
															-				<u> </u>
		/						· · ·											
RELINQUISHED BY: ISIGNATU	E) DATE	TIME	TIME RELINQUISHED BY: ISIGNATURE/ DATE TIME RELINQUISHED BY: ISIGNATURE) DATE TW		TIM														
RECEIVED BY: (SIGNATURE)	Anull			1 . 10				TIME			RECEIVED BY: ISIG		ISIGNAT	TURE)		DATE		TIM	
RECEIVED FOR LABORATOR	BY: DATE	TIME	CUSTODY INTACT	LAI	BORAT		SE ONLY		,		ATORY	DEAMAD	1: (S		9				
(SIGNATURE)			YES O		CAL NO		LUGN	ωνπ <del>α</del> Δ.	• .	CABOR	ATURY I	RE MARI	13 21		10				