

BS	HOR RAM - JUT - GRS TRANSMITTAL RECEIVED MU JAN 2./1007/87 JAN 2./1007/87 JAN 2./1007/87 JAN 2./1007/87 JAN 2./1007/87 JAN 2./1007/87 JAN 2./1007/87 DAJE GEOLOGICAL CURLEY JOB NORLANDO, FL RE
	GENTLEMEN: WE ARE SENDING YOU Attached Under separate cover via the following items: Prints Plans Shop Drawings Prints Plans Samples Copy of Letter Change Order Specifications
	COPIES DATE NO. DESCRIPTION 1 EASTERN OSCEOLA County Explor- Atory Test Hole Number 1
	THESE ARE TRANSMITTED As Checked Below:
	HEMARKS for attached document is for your use. It is essentially a data report with no interpretation of hyperogeologic conditions. The basic data should be of use in your Osceola County stuck. The test hole is closed with a locking cap and can be easily used for observation. We have a key if you need it. We expect to start another test flote within a few weeks. SIGNED

If enclosures are not as noted, kindly notify us at once

EASTERN OSCEOLA COUNTY EXPLORATORY TEST HOLE NUMBER 1

EASTERN OSCEOLA COUNTY EXPLORATORY TEST HOLE NUMBER 1

Prepared for

South Brevard Water Authority

Post, Buckley, Schuh & Jernigan, Inc. in cooperation with Geraghty and Miller, Inc.

January 1987

Project Number 15-060.12

CONTENTS

		Page No.					
I.	Summary	1					
II.	Introduction	2					
		2					
III.	Description of Work	2					
	A. Test-hole construction	2					
	B. Geologic and water quality samples	5					
	C. Specific capacity tests	5					
	D. Geophysical logging	7					
	E. Five-hour yield test	8					
IV.	. Test Hole Results	8					
	A. Hydrogeology	8					
	B. Water quality	9					
	FIGURES						
1.	Test-hole site	3					
2.	Test-hole construction details	4					
3.	Generalized geologic section	6					
	APPENDICES						
1.	Geologic Log	A1-1					
2.	Water Quality Data	A2-1					
3.	Specific Capacity Tests	A 3-1					
4.							

4. Geophysical Logs

SUMMARY

- 1. The test hole was drilled at the western boundary of the St. John's River Water Management District on the south side of U.S. Highway 192 about 1.4 miles east of the junction of Highways 192 and 441 at Holopaw.
- 2. The total depth of the hole was 1100 feet. The upper 322 feet were cased with 10-inch black steel casing and grouted to the surface. The remaining depth was nominal 10-inch diameter open hole. The upper 20 feet of the test hole was completed with four-inch PVC pipe cemented inside the 10-inch casing. The casing is closed with a secure, locking cap.
- 3. The hydrogeologic section at the test hole site consists of 75 feet of surficial sands and shells which is underlain by about 245 feet of sands, clay and limestone of the Hawthorn Formation. Approximately the upper 130 feet comprise the surficial aquifer and the lower clays serve as a confining unit separating the nonartesian and artesian aquifers. The Hawthorn is underlain by more than 780 feet of Eocene limestones which compose the artesian Floridan aquifer.

articial

- 4. Water quality tests were performed in the field and water samples were collected and analyzed in the laboratory. There was very little down-hole change in water quality.
- 5. Ten geophysical logs were performed: caliper; resistivity; spontaneous potential; gamma ray; temperature under pumping and static conditions; fluid conductivity under pumping and static conditions; and fluid velocity under pumping and static conditions. These logs confirmed geologic formations and water quality as determined from lithologic samples and field and laboratory analyses.
- 6. During drilling, seven specific capacity tests were performed by the air-lift method at approximately 100-foot intervals below the casing. Results from the tests are given in Appendix 3, Table 1. A five-hour yield test was conducted after completion of the test hole with a vertical turbine pump producing 970 gallons per minute. That test indicated the specific capacity to be 510 gallons per minute per foot of drawdown. Results of the test are given in Appendix 3, Table 2.

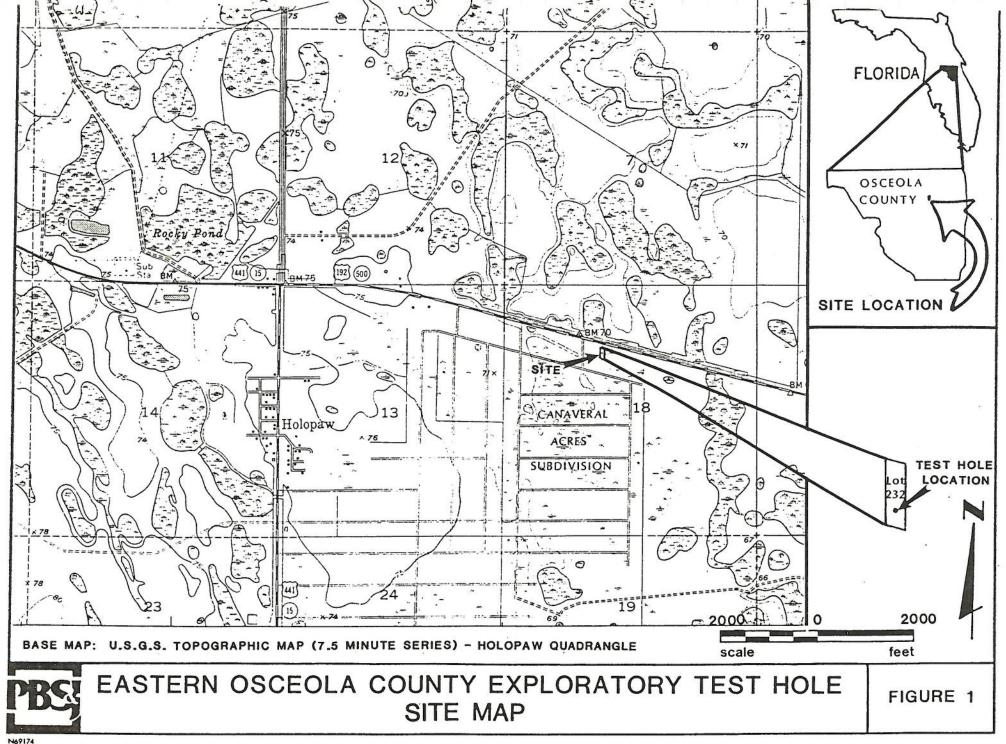
~ 100,000 4%

7. The aquifer <u>transmissivity</u> was estimated to be <u>780,000</u> gallons per day per foot based on the five-hour yield test. The aquifer is highly transmissive and capable of yielding large quantities of water.

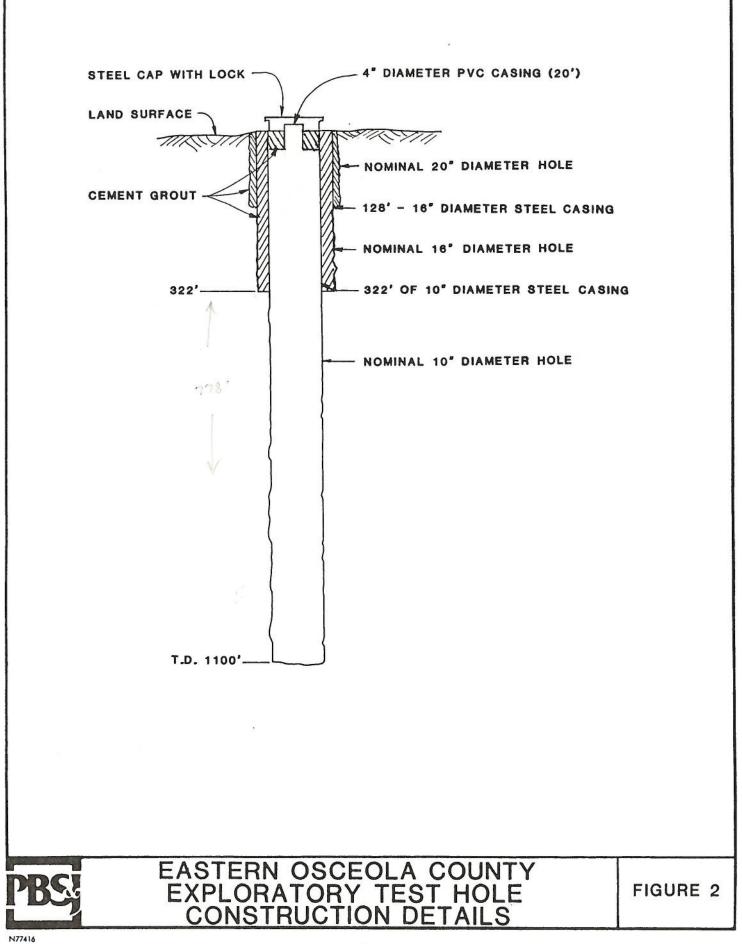
II.

INTRODUCTION

The South Brevard Water Authority (SBWA) is currently investigating the potential of developing a potable water supply from a well field in eastern Osceola County. Post, Buckley, Schuh & Jernigan, Inc. (PBS&J) is retained by SBWA as consultants for the project. Geraghty and Miller, Inc. (G&M) provided field support and technical review of the project.


This report discusses drilling and testing of a test hole in a pine-flatwoods area on Lot 232 in Canaveral Acres Subdivision, approximately 1.4 miles east of the Holopaw community and 300 feet south of U.S. Highway 192 (Figure 1). The test hole provided data on the hydrogeologic conditions in the area.

III.


DESCRIPTION OF WORK

A. Test-Hole Construction

The test hole was drilled by Meridith Corporation according to specifications prepared by PBS&J/G&M. A Failing 3500 rotary rig was used to drill the hole. The upper 128 feet of 20-inch diameter hole was drilled by the <u>mud-rotary method</u>. At 128 feet, 16-inch diameter steel surface casing was seated and grouted from the bottom to land surface with neat cement. Below the surface casing, a nominal 10-inch diameter pilot hole was drilled by the <u>mud-rotary method</u> to a depth of 322 feet. The pilot hole was reamed with a nominal 16-inch diameter bit to 322 feet where 10-inch diameter steel casing was seated in a limestone bed and grouted from the bottom to the surface. A nominal 10-inch diameter hole was drilled by the reverse-air method from 322 feet to 1100 feet. Well construction details are shown in Figure 2.

ŝ

B. Geologic and Water Quality Samples

During the drilling, geologic samples were collected at 5-foot intervals by a geologist. The samples were examined in the field and logged to determine changes in lithology as a guide to selecting the proper casing depths. Figure 3 shows the general lithology of formations encountered.

After switching to reverse-air drilling, water samples were collected every 30 feet. The water samples were analyzed in the field for specific conductance, temperature, and chloride. A detailed description of the geologic formations penetrated is given in Appendix 1 and water quality analyses are given in Appendix 2.

C. Specific Capacity Tests

During the drilling of the open-hole section of the test hole, specific capacity tests were conducted at approximately 100-foot intervals. Prior to initiating each test, the hole was cleaned of cuttings by circulation. The hole was pumped by the air-lift method at an average rate of 175 gallons per minute (gpm) to produce water-level drawdown. Drawdown was measured with an electric water-level indicator, and discharge was measured by filling a 55 gallon drum in a timed interval. These tests were conducted to determine, in an economical manner, the relative yield of different zones in the test hole as it was deepened. Although the tests only provide estimates of actual yield, they are useful, in conjunction with other data, in assessing major flow zones in the test hole. Results of seven short-term specific capacity tests are given in Appendix 3, Table 1.

Water samples were collected during each test and analyzed in the field for temperature, conductivity and chloride. Selected samples were analyzed for major ions by the PBS&J laboratory in Orlando. Results of laboratory analyses are given in Appendix 2.

DEPTH (FT)	THICKNESS (FT)	GEOLOGIC AGE	UNIT	LITHOLOGY	LITHOLOGIC DESCRIPTION	WATER-BEARING PROPERTIES			
0-75	75	Holocene, Pleistocene, & Pliocene	Unconsoli- dated Sediments	1) <u></u>	SAND & SHELLS, gray to white with trace of sticky white CLAY	SURFICIAL AQUIFER			
75-320	245	Miocene	Hawthorn Formation		SANDSTONE, CLAY, & LIMESTONE, greyish green to olive green, shelly, sandy, & phosphatic	AQUICLUDE - confining unit			
320-1100	780+	Eocene	Ocala Group, Avon Park & Lake City Limestones		LIMESTONE, white to tan, soft, granular, chalky, fossiliferous DOLOMITE & LIMESTONE, light grey to dark brown to buff, vuggy to dense, granular to microcrystalline, poorly cemented to well cemented, cavernous	FLORIDAN AQUIFER - major water-bearing zone. Yields large quantities of water			
PBS; E	BS EASTERN OSCEOLA COUNTY EXPLORATORY TEST HOLE GENERALIZED GEOLOGIC SECTION								

D. Geophysical Logging

Caliper, resistivity, spontaneous potential, gamma ray, temperature, fluid conductivity and fluid velocity logs were run to verify subsurface geologic conditions, to detect down-hole changes in water quality and to determine the major zones of water entry into the test hole. Fluid conductivity and velocity logs were run under static and pumping conditions. The geophysical logs are included in Appendix 4.

The caliper log shows a 16 to 35-inch diameter cavity just below the casing from 322 to 336 feet in soft limestone mixed with clay and sand. Numerous solutional features were encountered from about 424 to 644 feet with voids ranging from 10 to more than 36 inches in diameter in soft limestone and porous, dolomitic limestone. Below about 680 feet the log indicated little solutional development.

The resistivity and spontaneous potential logs show high resistance and spontaneous potential from about <u>644 to 720 feet</u> in a hard, microcrystalline dolomite. This indicates a <u>less-permeable</u> unit within the Floridan aquifer, possibly separating the aquifer into upper and lower units.

The gamma log shows an increase in gamma emission from about 120 to 320 feet which corresponds to the sands, shells, clay and phosphorite of the Hawthorn Formation. In the interval from about 220 to 320 feet, the gamma log shows a marked increase in emissions corresponding to a greater amount of clay and phosphorite in that section. It appears that the lower section of the Hawthorn is the principal confining unit above the Floridan aquifer.

The temperature logs show an increase from about 78.5° to 80°F. Such an increase is normal within the depth drilled.

The fluid conductivity logs show a slight increase in conductivity with depth under static and pumping conditions. Conductivity, as recorded by the logs, varied from 1490 to 1640 micromhos/cm under static conditions and from 1450 to 1500 micromhos/cm under pumping conditions. These conductivity values are slightly higher than those determined in the laboratory due to calibration of the logging equipment.

The <u>fluid velocity logs</u>, under pumping conditions, show three possible flow zones; from the bottom of the casing (322 feet) to about 430 feet, from about 520 to 575 feet and from 650 to 680 feet. The increased velocity between 650 and 680 may be related to the reduced hole diameter in a dense dolomite unit rather than an increase in flow. Under static conditions, the velocity log did not change significantly from casing depth to the bottom of the hole.

E. Five-Hour Yield Test

After the geophysical logging, a yield test was performed on the test hole using a vertical turbine pump powered by a diesel engine which pumped at 970 gpm for five hours. Drawdown measurements were made with an electric water-level indicator and the discharge was measured with an in-line flow meter. Maximum drawdown in the well was 1.9 feet after 5 hours of pumping. Following the pumping, the water recovered to static level in four minutes. The specific capacity of the well is approximately 510 gallons per minute, per foot of drawdown (gpm/ft). Test data are given in Appendix 3, Table 2.

IV.

TEST HOLE RESULTS

A. Hydrogeology

The site is underlain by sediments ranging in age from Eocene to Holocene. From bottom to top these formations include the Eocene age Avon Park, Lake City and Ocala Group limestones, the Miocene age Hawthorn Formation, and unconsolidated sediments of Miocene, Pleistocene and Holocene age. Lithologic data obtained during the drilling is presented in Figure 3 and Appendix 1.

The Avon Park, Lake City and Ocala Group limestones were encountered from 320 to 1100 feet. The limestone section consists of white to buff, soft, chalky, granular limestone and dark-brown to grayish-red to buff, vuggy, sucrosic, microcrystalline dolomite with white to tan, soft, granular, fossiliferous limestone in the upper section.

Above the limestones are approximately 245 feet of the Hawthorn Formation which contains phosphatic greenish-gray clay, shells, sandstone and limestone beds. The surficial sediments consist of 75 feet of sand and shell with trace amounts of clay.

These geologic units comprise a complex hydrogeologic system consisting of a surficial, non-artesian aquifer which extends to a depth of about 130 feet; a thick, semi-permeable confining unit from about 130 to 320 feet; and the artesian Floridan aquifer below that depth (Figure 3).

The Floridan aquifer contain cavities and solutionally enlarged openings which yield large quantities of water. In the test hole, the limestone section contains dense, dark brown dolomite from about 644 to 720 feet. This section appears to be a confining unit separating the Floridan aquifer into upper and lower zones. However, the potentiometric pressure and the water quality do not indicate any difference between the two zones.

The transmissivity of the aquifer at the test hole site was estimated to be about 780,000 gallons per day per foot (gpd/ft) based on the five-hour yield test. This value was obtained by using Walton's (1970) relationship in which transmissivity typically ranges from 1500 to 2000 times specific capacity, depending upon pumping duration and storage coefficient. Transmissivity values in Osceola and Brevard Counties range from less than 100,000 to more than 1,000,000 gpd/ft and vary greatly depending upon the presence of cavities and solutionally enlarged openings encountered at a specific site.

B. Water Quality

Water quality samples were taken throughout the drilling process, during the specific capacity and yield tests, and from thief samples at selected depths during the geophysical logging. The results are included in Appendix 2. No signifcant changes in quality occurred during the drilling operation. Chloride content ranged from 278 to 330 mg/l, conductivity ranged from 1120 to 1340 micromhos/cm, and total dissolved solids ranged from 642 to 706 mg/l.

GEOLOGIC LOG

PR					
	APPENDIX 1 W	ELL LOG			
ROJECT	E. Osceola County Test Hole	ATE	0 12/12/86 1 SHEET	_ OF6	
OCATION	East of Holopaw		CONTRACTOR	Corporatio	n
VELL NUM	ABERTest Hole				
SAMPLE D	ESCRIBED BY G.B. Jones/J.R. Baker	SAMPLI	NG METHODCatch and w	ash	
SAMPLE	SAMPLE DESCRIPTION		DRILLING COMMENTS	DEPTH INTERVAL (feet)	THICKNESS (feet)
	Sand and Shell		17 klbs	0 to	55'.
	Sand, 50%, Dk gray to tan, coarse v. fine-grained, angular (large g to subangular (small grains); she fragments, 50%, white to gray, coarse grained	grains)	String Weight 1 collar + kelly = 20 klbs	55	
	Sand and Shell (as above, trace of sticky white clay)		÷	55 to 65	10'
	Sand and Shell (as in 0-55')			65 to 75	10'
	Sandstone and Shell Shell, 50%, white to gray, coarse grained, fragmented; sand, 50%	e		75 to 105	30'
	clear, quartz, fine-to medium- grained subangular, moderately well cemented, calcareous matrix trace, silt sized phosphorite	;			
	Sandstone, Shell and Clay Sand, 50%, clear, quartz, fine-		WOB = 3 klbs	105 to 130	25'
	to medium-grained, subangular; shell, 40%, white to gray, coars fragmented; clay, 10%, green to gray, sticky; phosphorite, trace black fine-to coarse-grained, subangular				
	Sand, Shells and Clay	1	P.R. = 0.3 min/ft.	130 to	30'
	Sand, 75%, clear, quartz, fine-t coarse-grained, subangular to angular; shells, 20%, white to gray, fragmented, angular; clay, 5%, greenish gray, sticky; phor- phorite trace, black, fine-to medium-grained, subangular to angular				

I

	APPENDIX 1 WELL LOG			
OJECT	E. Osceola County Test Hole DATE 12/2/86			
CATION	East of Holopaw DRILLIN	G CONTRACTOR Meridith	Corporatio	on
ELL NUN	BER DRILLI	NG METHOD <u>Mud rotary/rev</u>	erse air	
MPLE DE	ESCRIBED BY G.B. Jones/J.R. Baker SAMPL	ING METHOD Catch and Wa	ash	
NUMBER	SAMPLE DESCRIPTION	DRILLING COMMENTS	DEPTH INTERVAL (feet)	THICKNE: (feet)
	Sand, Clay and Phosphorite Sand, 60%, clear, quartz, fine-to medium-grained, subangular to angular; clay, 30%, olive gray, silty, sticky; phosphorite, 10%, black to brown, fine- to medium-grained, subangular to	P.R. = 1 to 1.5 min./ft.	160 to 190	30'.
	angular; trace, shells <u>Clay, Sand and Shells</u> <u>Clay 80%, olive gray, sticky, silty;</u> sand, 10%, clear, quartz, fine-to medium-grained, subangular; shell, 8%, white to gray, fragmented; phosphorite, 2%, black to brown fine-to medium-	P.R. = 2-3 min./ft.	190 to 240	50'
	<pre>grained, rounded Clay, Phosphorite and Shells Clay, 85%, olive gray, few brown lenses of silt; phosphorite, 10%, black to brown, fine-to medium-grained, rounded; shells, 5%, white to gray, fragmented; limesilt, trace</pre>		240 to 275	35'
	Limestone, Phosphorite and Clay Limestone, 85%, white to lt. gray, granular, fine-to coarse-grained, angular; phosphorite, 10%, fine-to medium-grained, rounded; clay, 5%, lt. gray green, sticky, silty		275 to 280	5'
	Clay, Limestone and Phosphorite Clay, 75%, olive gray, sticky, silty; limestone (shell fragments, limesilt), 20%, lt. gray; phosphorite, 5%, fine- to coarse-grained subangular to rounded, black to brown	No weight on bit. streaks of limestone and shell hit at 300' and 307' - 6" thick each time	280 to 310	30'
	A1-2			

PB	APPENDIX 1 WEL	L LOG				
ROJECT	E. Osceola County Test Hole DATE	12/2/86	to 12/12/86 SHEET	3	OF6	
	East of Holopaw		CONTRACTOR	Meridith	Corporat	ion
	MBERTest Hole			ud rotary/r	everse ai	r
	ESCRIBED BY G.B. Jones/J.R. Baker			atch and w	ash	
	SAMPLE DESCRIPTION		DRILLING COM	MENTS	DEPTH INTERVAL (feet)	THICKNE (feet)
	Limestone, Sand and Clay	v	Lost circulati at 319.10'	ion	310 to 320	10'
	Limestone, 85%, light gray to dark g fragmented; clay, 15%, olive gray, sticky, silty; phosphorite, trace, coarse-fine grained, sub-rounded to subangular, black to brown	ray,	Casing set at	322 ft.		
	Calcareous Cement, cementing quartz silt and phosphorite					
	Limestone				320 to 337	17'
	100%, Light green to dark gray, pelmicrite (quartz and phosphorite grains in a micrite matrix), fine-to medium-grained, quartz-clear, phos- phorite-black to brown, rounded to subangular, fossiliferous, w/trace white shell fragments, formation ver loose					
	Limestone		•		337 to 375	38'
	95%, white to cream, friable, granul fossiliferous, in a soft chalky mari limesilt and sand; dolomite, 5%, yellowish brown to gray, micro- crystalline, sucrosic, vuggy				575	
	380' 1st appearance of Dictyoconus					
	Dolomite and Dolomitic Limestone	×			375 to 428	53'
	Dolomite, 60%, moderate yellowish brown to black to gray, micro- crystalline to granular, sucrosic, y dolomitic limestone, 40%, lt. gray f cream, granular, limestone grains cemented w/dolomite				420 .	
		A1-3				

PB	APPENDIX 1 WELL LO	<u>0G</u>			
PROJECT	E. Osceola County Test Hole DATE 12/2	2/86 to	5 12/12/864	OF	6
LOCATION			CONTRACTOR Meridit		
WELL NU			G METHOD <u>Mud rotary/rev</u>		
SAMPLE D	ESCRIBED BY G.B. Jones/J.R. Baker SA	AMPLIN	NG METHODCatch and	wash	
SAMPLE NUMBER	SAMPLE DESCRIPTION		DRILLING COMMENTS	DEPTH INTERVAL (feet)	THICKNESS (feet)
	No Return Cavity		17	428 to 455	27'
	Mixed Cuttings:		Mixed cuttings from dredging in hole.	455 to 480	25'
	Limestone and Dolomite		9		
	Limestone, 70%, white to cream, fine grained to medium grained, very soft, granular; Dolomite, 30%, lt. gray to yellowish brown, to black, microcrystalline to sucrosic, moderately-to well-cemented, vuggy		e.		
	No Return Cavity			480 to 484	4'
	Limestone and Dolomite			484 to 495	11'
	Limestone, 90%, cream to lt. tan, granular, fine-medium-grained, poorly cemented, fossiliferous, vuggy; Dolomite, 10%, moderate yellow brown to black, microcrystalline, sucrosic, vuggy, druzy crystalization; dog- tooth calcite in vuggs		•	450	
	Dolomite and Limestone		Easy drilling but bit keeps plugging	495 to 515	20'
	Dolomite, 90%, moderate yellowish brown, fine to microcrystalline, vuggy, sucrosic; Limestone, 10%, white to cream, granular, fine grained, vuggy	/	off No W.O.B.		
	Dolomite			515 to	45'
	Dolomite, 95%, yellow brown to black to gray, microcrystalline, sucrosic, vuggy, very well cemented; Limestone, 5%, white, granular, probably from uphole			500	
	A1-	-4			
-					

DR	CI			
	APPENDIX 1 WELL LOG			
PROJEC	E. Osceola County Test Hole DATE 12/2/86	to 12/12/86	OF	
LOCATIC	East of Holopaw DRILLING	G CONTRACTOR	Corporati	on
WELL NU		G METHOD <u>Mud rotary/reve</u>		
SAMPLE	DESCRIBED BY G.B. Jones/J.R. Baker SAMPLI	NG METHODCatch and wa	ash	
SAMPLE	SAMPLE DESCRIPTION	DRILLING COMMENTS	DEPTH INTERVAL (feet)	THICKNESS (feet)
	Limestone		560 to 565	5'
	100%, lt. green to dk. green to gray, soft, friable, granular, silt to cobble sized, trace white limestone shell material and dolomite			
	<u>Dolomite</u> - Dark Gray	No sample	565 to 575	10'
	Limestone	Bit plugging badly	575 to 637	62'
	90%, white to gray, fine grained, soft, granular to chalky; Dolomite, 10%, yellowish brown, microcrystalline, mod. well cemented; clay, trace, white, calcareous, sticky		037	
	Cavity - No Return just dredging	Big plugging	637 to 644	
	Dolomite and Limestone	P.R. = 3-15 min./ft.	644 to 654	10'
	Dolomite, 60%, dark brown to yellow brown to dark gray to tan, microcrystalline, v. hard, v. well cemented; Limestone; 40%, as in description above		054	
	Dolomite and Limestone	Possibly confining	654 to	10'
	Dolomite, 85%, yellow brown to dark brown to gray, microcrystalline, v. hard, v. well cemented; Limestone, 15%, as before, probably from uphole	dolomite	664	
	Dolomite	P.R.= 6 min./ft.	664 to 725	61'

Tan to dark brown to dk gray/purplish, very hard, very well cemented; trace Limestone (probably from uphole)

A1-5

PB	APPENDIX 1 WELL LOG	l		
PROJECT	E. Osceola County Test Hole DATE 12/2/8			
LOCATION	East of Holopaw	ING CONTRACTORMeridith C	Corporatio	n
WELL NUR		LING METHODMud rotary/rev		
SAMPLE D	•	PLING METHODCatch and wa		
SAMPLE NUMBER	SAMPLE DESCRIPTION	DRILLING COMMENTS	DEPTH INTERVAL (feet)	THICKNESS (feet)
	Dolomite	P.R. = 1.5 min./ft.	725 to 745	20' _.
	100%, cream to lt. gray, moderately hard, microcrystalline, well cemented; trace limestone			
	Dolomite - same as 664-725	*	745 to 755	10'
	Dolomite		755 to 775	20 '
	100%, buff to tan-gray to medium brown, mod. well cemented, fine grained, slightly vuggy; trace, white clay; trace, white soft limestone			9
	as above only denser and harder, no vuggs		775 to 795	20'
	as in 755 to 775		795 to 900	105'
	Dolomite			
	100%, buff to grayish red to pale red to very pale orange, fine grained to microcrystalline, slightly vuggy to dense layered in some cuttings	Appearance of grayish red dolomite	900 to 910	10'
	Dolomite	P.R. = 1-3 min./ft.	910 to 1106	196
	100%, pale yellowish orange to buff and yellowish brown, fine-grained to micro- crystalline,slightly vuggy to dense,mod. hard to v. hard, mod. well-to-well-cemen trace, ls	ted,		
	A1-6			

۰.

WATER QUALITY

Table 1

FIELD WATER QUALITY ANALYSES

•

Date	Time	Depth (ft.)	Temperature (°C)	Specific Conductance (umhos/cm)	Chloride (mg/l)
12-7-86 12-7-86 12-7-86 12-8-86 12-8-86 12-8-86 12-8-86 12-8-86 12-9-86 12-9-86 12-9-86 12-9-86 12-9-86 12-10-86 12-10-86 12-10-86 12-10-86 12-10-86 12-10-86 12-10-86 12-10-86 12-10-86 12-10-86 12-10-86	$\begin{array}{c} 1700\\ 2200\\ 2310\\ 0230\\ 0345\\ 0415\\ 1000\\ 1430\\ 1740\\ 0300\\ 0730\\ 1130\\ 1810\\ 0000\\ 0400\\ 0545\\ 0730\\ 0930\\ 1130\\ 1235\\ 1400\\ 1635\\ 1800\\ 1900\\ 2030\\ \end{array}$	330 337 368 398 428 457 487 517 547 577 607 636 666 695 723 753 753 782 812 842 812 842 871 900 930 959 988 1,017	26 26 25 25 25 25 25 25 25 25 25 25 25 25 25	1,217 1,225 1,250 1,260 1,200 1,200 1,120 1,125 1,160 1,220 1,220 1,230 1,180 1,240 1,220 1,240 1,220 1,260 1,123 1,142 1,125 1,164 1,204 1,204 1,150 1,180	300 300 300 300 300 300 315 330 300 315 300 330 270 300 300 293 330 330 330 330 330 330 300 300 300 3
12-10-86 12-10-86 12-11-86	2145 2245 0100	1,047 1,076 1,100	25 25 25	1,190 1,185 1,172	278 285 300

.

Table 2

LABORATORY ANALYSES OF WATER QUALITY

	Date	Depth (ft.)	Chloride (mg/l)	Sulfate (mg/l)	Bicarbonate (mg/l)	Calcium (mg/l)	Potassium (mg/l)	Magnesium (mg/l)	Sodium (mg/l)	<u>рН</u>	Total Dissolved Solids (mg/l)	Total Hardness _(mg/l)	Conduc- tivity umhos/cm	
	12-8-86	398	324	78.40						8.38	706		1,340	
	12-8-86	487	278	65.50						8.13	642		1,230	
A	12-8-86	517	285	60.00						8.10	672		1,300	
2-2	12-8-86	547	289	59.30	94.45	60.15	7.46	24.72	116.30	7.98	665	288	1,300	
	12-15-86	430	331	85.00	38.50	58.80	8.79	21.10	152.00		702		1,200	
	12-15-86	1100	295	80.00	94.60	97.10	8.48	27.60	150.50		714		1,200	
	12-17-86	*1	376	67.70							762		1,300	
	12-17-86	*2	370	61.40							708		1,300	

*1 Beginning of five hour yield test.

*2 End of five hour yield test.

SPECIFIC CAPACITY TESTS

Table 1

SPECIFIC CAPACITY TESTS

Date	Depth (ft.)	Pumping* Rate (gpm)	* Drawdown <u>(ft.)</u>	Specific* Capacity (gpm/ft.)	
12/8/86	400	95	0.65	145	
12/8/86	517	185	0.25	740	
12/9/86	607	175	0.25	700	
12/10/86	695	205	0.10	2050	
12/10/86	812	145	0.05	2900	
12/10/86	900	150	0.10		7
12/10/86	1,006	205	0.10	2050	
12/11/86	1,100	185	0.05	3700	

*Number rounded

Appendix 3, Table 2									Page of						
App	endi	x 3, 1	Fable	2			F	IVE-I	IOUR	YIE	LD TEST				
Owner .	Brevard County Address Exploratory							xplorat	Test Hole	9	CountyO	sceola	Stale F L		
Dale	12/	16/80	3		Com	pany perlo	rming la	st_P	ost, Bu	ckl	ey, Schuh	& Jernie	an, Indesur	d byGlen	da Jones
															Test No
													al turbine		
Measur		Time I		ater	leve			Level			1	lischarge Da			
Pump o	Pump on Date $12/16$ Time $-7:59$ (t.) Pump off. Date $12/16$ Time $12:59$ (t'.) Duration of aguiter test:						Static water level 28.48' Measuring point t.o.c.					red flow	meter	Com	ments on factors
Duratio	n of aqu	ler lest	t:			Measuring					Depth of pum Previous pum Duration	ping? Yes	No X	alle	cling lest data
Date	Clock			1/1		(feet)	Correction or Conversion		(fect) Water level change		Discharge measure- ment	(gpm)			
2/16/	7:57					28.48	- 0	lever	0		ment	rible -	-		
0	7:58					28.48			0						
	7:59	0				28.48			0						
		.4		1		30.15			1.67						
		.7				30.21			1.73						
		1.2				30.28			1.80						
		1.3	1			30.30			1.82						
		2.0				30.30			1.82						
		2.3	1			30.31			1.83						
		2.7				30.31			1.83						BIA
		2.8				30.32			1.83			970			
-		4.0			-	30.31			1.83			970			
		5.0				30.32		-	1.84			-			
-	-	6.0				30.31			1.83		-				
	-	8.0		-	-	30.31			1.83						
-		9.0	5			30.31			1.83						
		10.0				30.31			1.83	-				-	
		15.0				30.31			1.83						
		20.0	0			30.31			1.83			970			
		25.0	0			30.32	2		1.84						
	_	30.	0			30.32	2		1.84			980			
		60.	0			30.35	5		1.87	-					
		90.	0			30.3	5		1.87	-					
		120				30.3			1.89	-		970		Specif	<u>ic capacity =</u> ft
		180		_		30.3			1.84	-				(pump	-shut off10-min.)
		210	0.0			30.3	3		1.85			960			

Page _______ of _____

App	bendi	x 3, '	lable	e 2 C	cont		FIV	E-HC	OUR YI	ELD	TEST						
							Address Exploratory Test Hole County							OsceolaStateFL			
Date	12/1	6/86			Com	pany perlo	rming te	st Pos	st, Buc	kley	, Schuh &	Jernigan	, Inc. Measu	Gle	enda Jones		
															Test No		
Measur	ing equi	pment	W	ater	leve	el indic	ator;	Ln-li	ne flov	v_ma	eter; Pum	p-vertica	l turbine				
Duratio	Time Data Pump on Date $12/16$ Time $_{7:59}$ (t.) Pump off. Date $12/16$ Time $_{12:59}$ (t'.) Duration of aquifer test: Pumping $_{5}$ hr Recovery 4 min						Water Level Data Static water level 28.48' Measuring point t.o.c. Elevation of measuring point					Discharge Data How Q measured <u>flow meter</u> Depth of pump/air line <u></u> Previous pumping? Yes <u> NoX</u> Duralion End			Comments on factors affecting test data		
Date	Clock time	L Time L Since pump	Time since pump	t/t*		(feet) Water level measure- ment	Correction or Conversion	Water level	(feet) Water level change s or s'		Discharge measure- ment	(gpm) Rate				•	
		240				30.33			1.85								
•		270 300				30.33			1.84			960					
		300				30.34			1.05			500		-			
	1	1	-	-										1			
	300.25	.25	Ý			30.20			1.72					Reco	very		
	200.60	.60				29.08			0.60								
	301.37	1.33	3			28.55			0.07								
	302.17	2.1	7			28.55			0.07								
_	302.50	2.5	0			28.55			0.07								
	303.00	3.0	0			28.52	2		0.04					_			
	263.4	3.4	0			28.48	3		0.00								
	304.0	4.0	0		_	28.48	3		0.00					Reco	overy complet	te	
				-													
					-												
					-												
-																	
											_	-					
					+-								-				
						-				-							
			-	-	-			-	-	-							
		-															
							-										
-																	
-						1				A3-:	3						

GEOPHYSICAL LOGS