GREEN MEADOWS WELL FIELD HYDROGEOLOGICAL AND ECOLOGICAL ASSESSMENT OF SHALLOW AQUIFER SYSTEM

Prepared for:

FLORIDA CITIES WATER COMPANY Sarasota, Florida

Prepared by:

ENVIRONMENTAL SCIENCE AND ENGINEERING, INC. Gainesville, Florida

ESE No. 83-505-0700-2140

TABLE OF CONTENTS

Section				Page
1.0	INT	RODUCTIO	<u>NC</u>	1-1
2.0	HYD	ROLOGIC	SETTING	2-1
	2.1	REGIO	NAL	2-1
		2.1.1 2.1.2	Topography and Climate Hydrogeology	2-1 2-1
	2.2	SITE-S	SPECIFIC FEATURES	2-8
		2.2.1		2-8 2-8
3.0	AQUI	FER PER	FORMANCE TEST	3-1
	3.1	PROCED	URE	3-1
		3.1.2	General Step Drawdown Test Constant-Rate Discharge Test Slug Tests	3-1 3-1 3-3 3-3
	3.2	ANALYS	IS AND RESULTS	3-6
		3.2.2	Step Drawdown Test Constant-Rate Test Slug Tests	3-6 3-11 3-21
4.0	ANAL	YSIS OF	WELL FIELD IMPACTS	4-1
	4.1 4.2	INTRODU		4-1 4-1
		4.2.1 4.2.2	Model Description Impacts	4-1 4-3
	4.3	DRY SEA	ASON	4 ∸3
		4.3.1 4.3.2	Model Description Impacts	4-3 4-8

TABLE OF CONTENTS (Continued Page 2 of 2)

Section		Page
5.0	ECOLOGICAL MONITORING AND ASSESSMENT	5-1
	5.1 OBJECTIVE 5.2 INDICATOR SPECIES 5.3 METHODOLOGY	5-1 5-1 5-4
	5.3.1 Transect Location 5.3.2 Quadrat Sampling	5-4 5-5
	5.4 RESULTS	5~5
6.0	RECOMMENDATIONS	6-1
	6.1 OPERATION PROGRAM	6-1
	6.1.1 Normal Conditions 6.1.2 Drought Conditions	6-1 6-2
	6.2 MONITORING PROGRAM	6-7
	6.2.1 Ecological Monitoring 6.2.2 Hydroperiod Monitoring	6-7 6-7
REFERENCES		
APPENDICES		
	APPENDIX AWATER USE PERMIT APPENDIX BWELL LOGS APPENDIX CSTEP DRAWDOWN TEST DATA TABLES APPENDIX DAQUIFER PUMP TEST DATA TABLES APPENDIX ESLUG TEST DATA TABLES APPENDIX FAQUIFER PUMP TEST DRAWDOWN AND	A-1 B-1 C-1 D-1 E-1
	RECOVERY CURVES	F-1

LIST OF TABLES

<u>Table</u>		Page
2-1	Monthly Rainfall at Green Meadows WTP and Average Monthly Rainfall at Fort Myers	2-5
3-1	Frequency of Measurement for Wells MW41, MW42, MW43, MW44, and Piezometers P43C, P41A, and P43B	3-4
3-2	Frequency of Measurement for Piezometer P41S	3-5
3-3	Step Drawdown Analysis	3-8
3-4	Aquifer Coefficients Determined by Use of Nonsteady- State Leaky Aquifer Type Curves	3-12
3-5	Ratio Method Analysis at MW43 Using P43B and P43C	3-22
3-6	Ratio Method Analysis at MW41 Using P41A and P41S	3-23
3-7	Hydraulic Conductivity Test Results	.3-24
5-1	Plant Species in Transects	5-6
5-2	Vegetation in Transects Along Cypress Strand Ecotone	5-7
6-1	Pumping Combinations and Drawdown at Slough for Drought Conditions After 120 Days	6-5

LIST OF FIGURES

Figure		Page
2-1	Green Meadows Well Field Location	2-2
2-2	Daily Rainfall at Green Meadows WTP, January 1, 1983, to February 28, 1985	2-3
2-3	Monthly Rainfall at Green Meadows WTP, January 1, 1983, to February 28, 1985	2-4
2-4	Regional Hydrogeologic Cross Section	2-7
2-5	Typical Construction of Observation Wells	2-9
2-6	East-West Cross Section Based on Well Logs at Site 4	2-10
2-7	Surface Water Levels at Site 4	2-11
2-8	Ground Water Levels at Site 4	2-11
2-9	Daily Rainfall at Green Meadows WTP, January 1, 1983 to March 31, 1984	2-11
2-10	Plot of Surface Water Levels Versus Ground Water Levels at Site 4	2-13
2-11	Locations of Surficial Aquifer Monitor Wells	2-14
2-12	Stage-Duration Curve for Well L-2204 Based on Monthly Readings, October 1975 to September 1981	2-15
2-13	Stage-Duration Curve for Well L-1999 Based on Monthly Readings, October 1975 to September 1981	2-16
3-1	Locations of Production Wells and APT Monitor Wells	3-2
3-2	Plot of Drawdown Versus Time for Step Drawdown Test of Well SPZ4	3-7
3-3	Step Drawdown Analysis	3-9
3-4	Plot of Drawdown and Efficiency Versus Flow Rate	3-10

LIST OF FIGURES (Continued, Page 2 of 2)

Figure		Page
3-5	Water-Level Drawdown in Well M4-1	3-13
3-6	Water-Level Drawdown in Well M4-2	3-14
3-7	Water-Level Drawdown in Well M4-3	3-15
3-8	Water-Level Drawdown in Well M4-4	3-16
3-9	Type Curve for Nonsteady-State Leaky Artesian Aquifer	3-17
3-10	Variation of s'/s with $t_D{}^\prime$ for Semi-Infinite Aquitard	3-20
4-1	Well Drawdown Versus Radius, Hantush and Jacob (1955) Model	4-4
4-2	Well Drawdown Versus Time, Hantush and Jacob (1955) Model	4-5
4-3	Wet Season Drawdown for Well Field at 200 gpm and 120 Days	4-6
4-4	Wet Season Drawdown for Well Field at 500 gpm and 120 Days	4-7
4-5	Well Drawdown Versus Radius, Hantush (1960) Model	4-9
4-6	Well Drawdown Versus Time, Hantush (1960) Model	4-10
4-7	Dry Season Drawdown for Well Field at 200 gpm and 120 Days	4-11
4-8	Dry Season Drawdown for Well Field at 500 gpm and 120 Days	4-12
5-1	Location of Cypress Strand and Wetland Monitoring Transects	5-2
6-1	Proposed Location of Staff Gage	6-3
6-2	Well Location Numbering System	6-6

1.0 INTRODUCTION

This report has been prepared by Environmental Science and Engineering, Inc. (ESE) of Gainesville, Florida, for Florida Cities Water Company (FCWC) of Sarasota, Florida, as part of a study of the surficial aquifer at the Green Meadows well field. The study was performed to comply with Special Conditions 25 through 27 of Water Use Permit Number 36-00150-W, issued May 13, 1982, by the South Florida Water Management District (SFWMD). The referenced special conditions specify that the following tasks be completed by FCWC:

- Perform an environmental impact assessment (EIA) of the effects
 of withdrawals from the surficial aquifer on the overlying
 wetlands,
- 2. Conduct an aquifer performance test (APT) on the surficial aquifer, and
- 3. Develop a monitoring program for the Green Meadows well field.

A copy of the complete water use permit is provided in Appendix A.

In 1982, ESE performed an initial site evaluation of the FCWC Green Meadows well field. The evaluation included both hydrologic and environmental components. The conclusions were summarized in the Phase I Report (ESE, 1982).

The results of the initial evaluation were used to prepare a Plan of Study (POS), which was submitted to SFWMD. In a subsequent meeting with SFWMD staff, the POS was modified to require the following:

- 1. One short-term (24-hour) pump test in a ponded area,
- 2. One long-term (72-hour) pump test in a sheetflow area,
- 3. Hydrologic monitoring, and
- 4. A census of indicator species to set baseline conditions.

After arrival at the site to set pumps for the test, it was discovered that the existing shallow production wells were crooked. Pump

installation was possible only at Well 4, which is located in a sheetflow area. After further discussions with SFWMD (telephone communication with Richard Bower), the study was again modified to require only one long-term (96-hour) pump test at Well 4.

Therefore, the final study plan consisted of the following three parts:

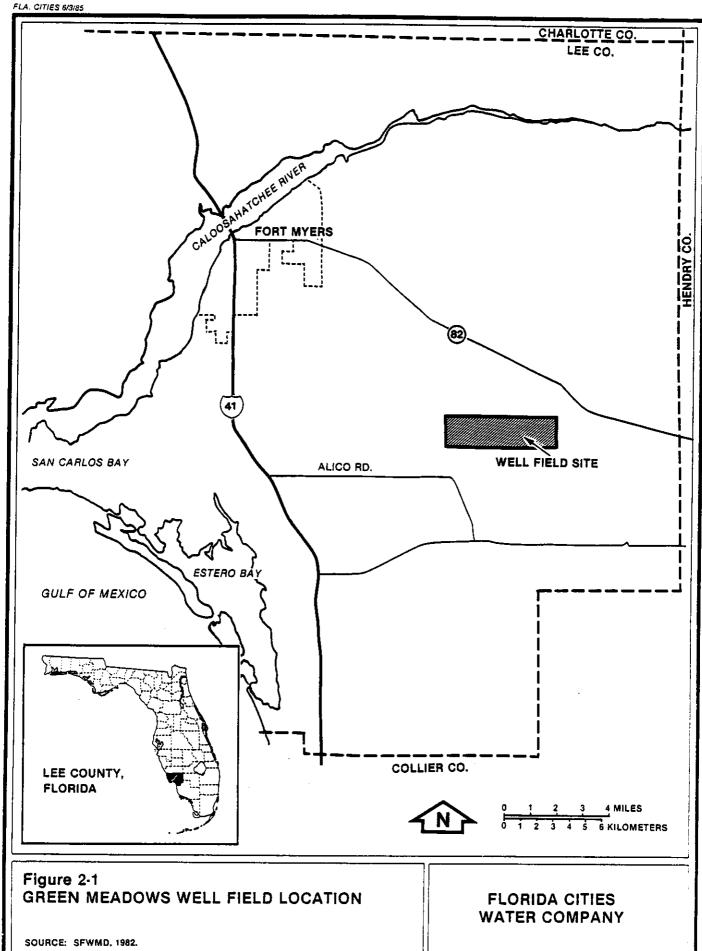
- 1. One long-term pump test in a sheetflow area,
- 2. Hydrologic monitoring, and
- 3. A census of indicator species to set baseline conditions.

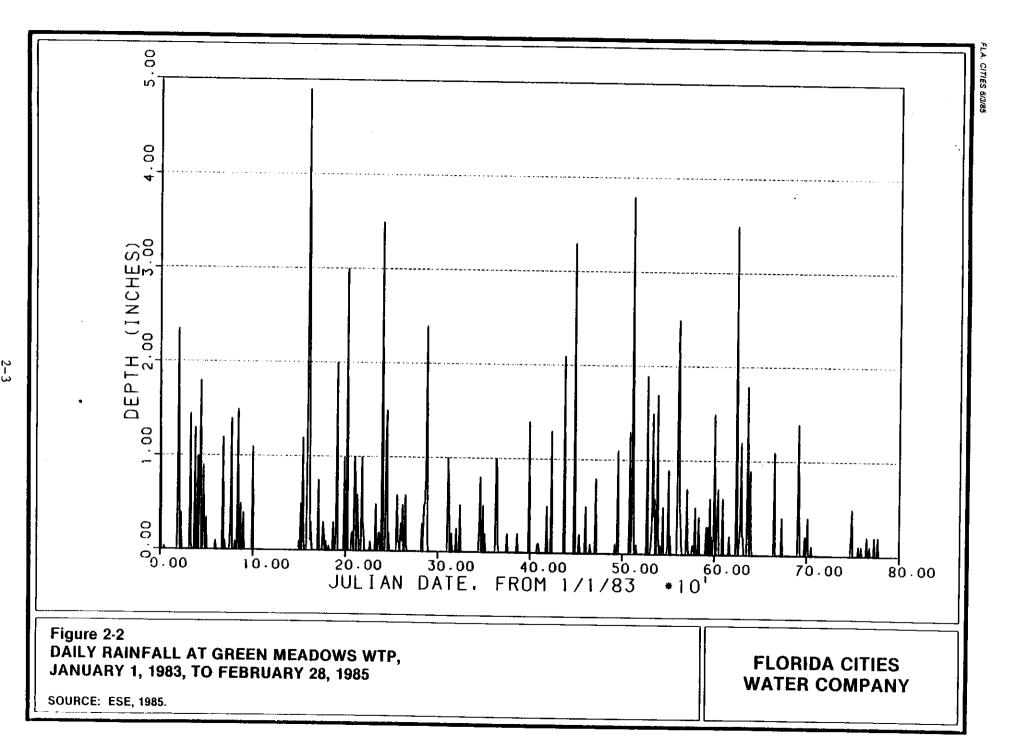
Due to problems with the pump and rainfall affecting the pump test, it was agreed among ESE, FCWC, and SFWMD that if enough data were obtained in the aborted pump test to analyze the system and address all of the SFWMD questions and concerns, that a 96-hour pumping test would not be necessary. ESE reviewed the data and determined that enough data had been obtained.

2.0 HYDROLOGIC SETTING

2.1 REGIONAL

2.1.1 Topography and Climate


The Green Meadows well field encompasses about 4.5 square miles in southeastern Lee County. It is about 15 miles southeast of Fort Myers, between Alico Road and State Route 82 (see Figure 2-1). The well field lies on the eastern slope of the Immokalee Rise, a physiographic feature occupying much of eastern Lee County (SFWMD, 1982). The site is a poorly drained area with little topographic relief. The elevation ranges from 25 to 30 feet (ft) above mean sea level (msl).


The climate of Lee County is subtropical, characterized by a wet season (June to September) and a dry season (October to May). The average annual rainfall is 52 inches at Fort Myers (SFWMD, 1983) based on a minimum of 20 years of data. Approximately 70 percent of the total annual rainfall occurs during the wet season (SFWMD, 1982).

The FCWC staff at the Green Meadows Water Treatment Plant (WTP) measures and records daily rainfall at that location. These data are plotted in Figure 2-2 by Julian date beginning January 1, 1983, and ending February 28, 1985. Figure 2-3 and Table 2-1 present the data summarized by month. From these data, it can be seen that 1983 rainfall was approximately 12 inches above average while 1984 rainfall was 1 inch below average. The average annual potential evapotranspiration (ET) was approximately 56 inches per year (ipy) (Smajstrla et al., 1984), while actual ET has been estimated to be 41 ipy (Dohrenwend, 1977). The difference between rainfall and ET is either retained in storage or discharged as surface and subsurface runoff, primarily to the Caloosahatchee River and the Gulf of Mexico.

2.1.2 Hydrogeology

The sequence of aquifers and confining zones comprising the geologic cross section of Lee County has been investigated by several authors and

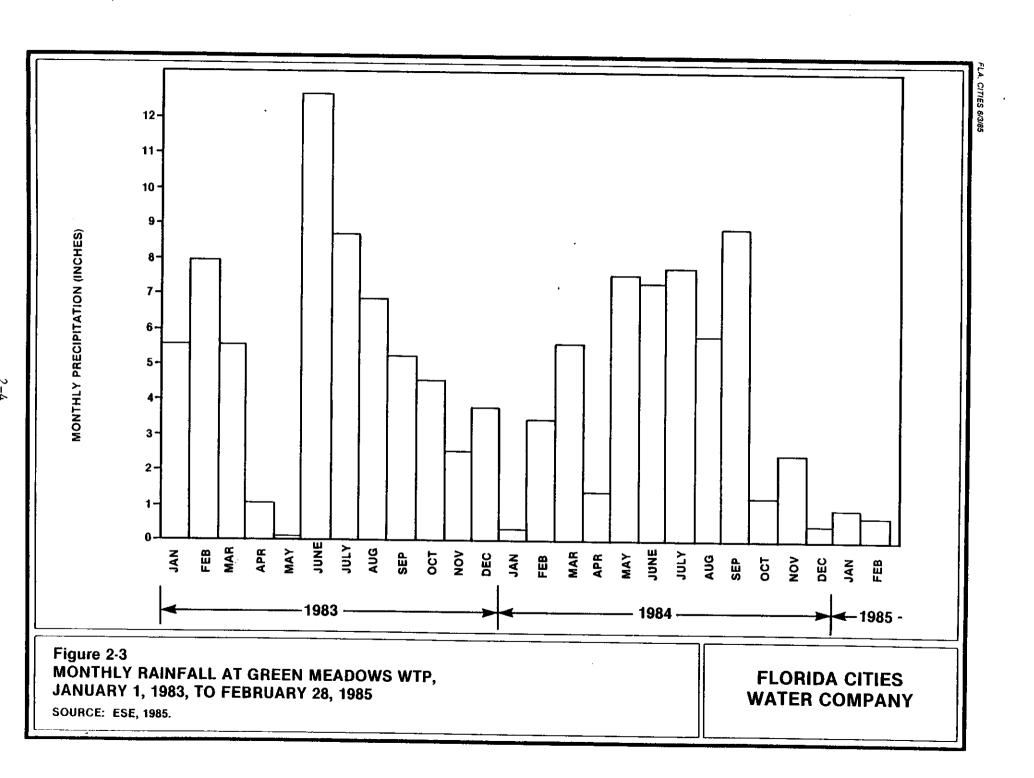


Table 2-1. Monthly Rainfall at Green Meadows WTP and Average Monthly Rainfall at Fort Myers

M. 11	- 	Rainfall (inc	hes)
Month	1983	1984	Average*
January	5.6	0.4	1.5
February	8.0	3.4	2.2
March	5.6	5.6	2.6
April	1.1	1.4	2.6
May	0.1	7.5	3.8
June	12.8	7.3	9.0
July	8.8	7.7	9.1
August	6.9	5.8	7.4
Geptember	5.3	9.0	8.5
October	4.6	1.2	4.1
ovember	2.7	2.5	1.2
ecember	3.8	0.5	1.3
nnual	65.3	52.3	53.3

^{*}Based on 30-year period from 1931-1960.

Sources: Butson and Prine, 1968. ESE, 1985. summarized by SFWMD (1982). Unless otherwise noted, the discussion presented here follows that report, including the nomenclature proposed for the various geologic features.

In Lee County, the surficial aquifer is underlain by the Hawthorn and Floridan Aquifer systems (Figure 2-4). The surficial aquifer is between 25 and 50 ft thick in central Lee County and thickens in a southeasterly direction. Contact between this aquifer and the upper Hawthorn confining zone occurs approximately 50 ft below land surface in the study area. An unconfined water table, intermittent confining beds, and the Tamiami producing zone make up the surficial aquifer.

The Hawthorn Aquifer system consists of three confining and two producing zones: the upper Hawthorn confining zone, the Sandstone aquifer, the mid-Hawthorn confining zone, the mid-Hawthorn aquifer, and the lower Hawthorn confining zone. The majority of the municipal well fields in Lee County utilize the Hawthorn Aquifer system and the deeper Floridan Aquifer system for their water supply sources. The Floridan Aquifer system consists of four zones: the lower Hawthorn/Tampa producing zone, a zone of semi-permeable confining beds, the Suwannee aquifer, and deeper aquifers.

The hydraulic connection between the surficial aquifer system and the deeper systems is considered to be slight, with confining bed permeability and relative head elevations controlling local vertical movement. Water levels in the surficial aquifer are very responsive to rainfall, which supplies the majority of the recharge to the aquifer.

According to SFWMD (1982), water-level fluctuations in the surficial aquifer between wet and dry seasons have reached 8 ft in some parts of the county. The surficial aquifer is recharged through infiltration, precipitation, and subsurface flow from adjacent areas.

	
₹ €	WATER TABLE
	CONFINING BEDS
SURFICIAL AQUIFER	TAMIAMI PRODUCING ZONE
	UPPER HAWTHORN
Σ	CONFINING ZONE
STE	SANDSTONE AQUIFER
UIFER SY	MID-HAWTHORN CONFINING ZONE
Į ₹	MID-HAWTHORN AQUIFER
HAWTHORN AQUIFER SYSTEM	LOWER HAWTHORN CONFINING ZONE
	LOWER HAWTHORN/ TAMPA PRODUCING ZONE
Ē	CONFINING BEDS
ER SYSTEM	SUMMANNET
	SUWANNEE
AQUIFER	AQUIFER
FLORIDAN	
FLOR	DEEPER AQUIFER

Figure 2-4
REGIONAL HYDROGEOLOGIC CROSS SECTION

FLORIDA CITIES WATER COMPANY

SOURCE: SFWMD, 1982.

2.2 SITE-SPECIFIC FEATURES

2.2.1 Test Wells

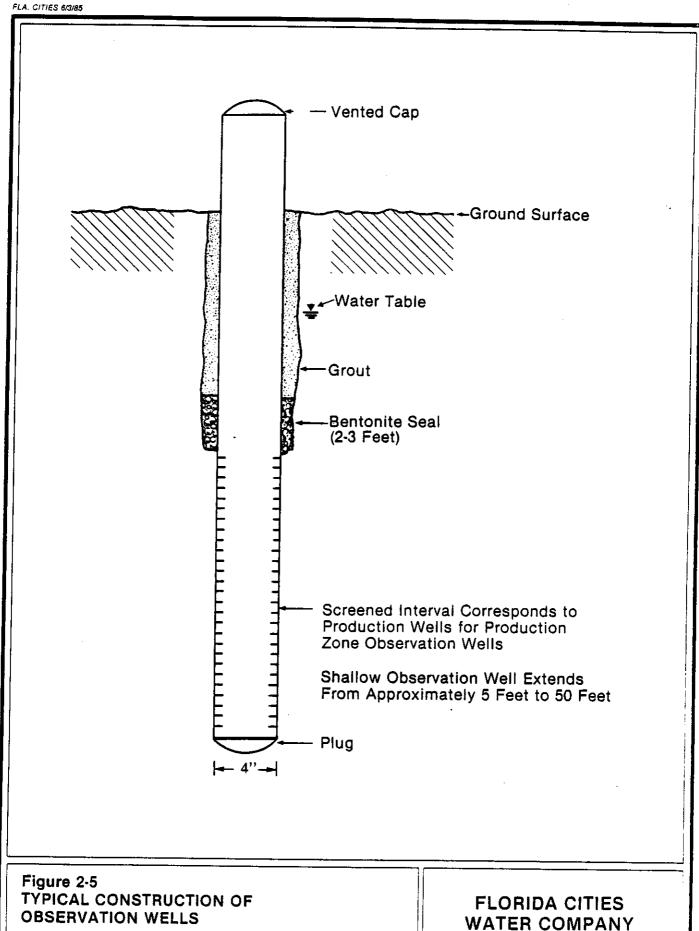
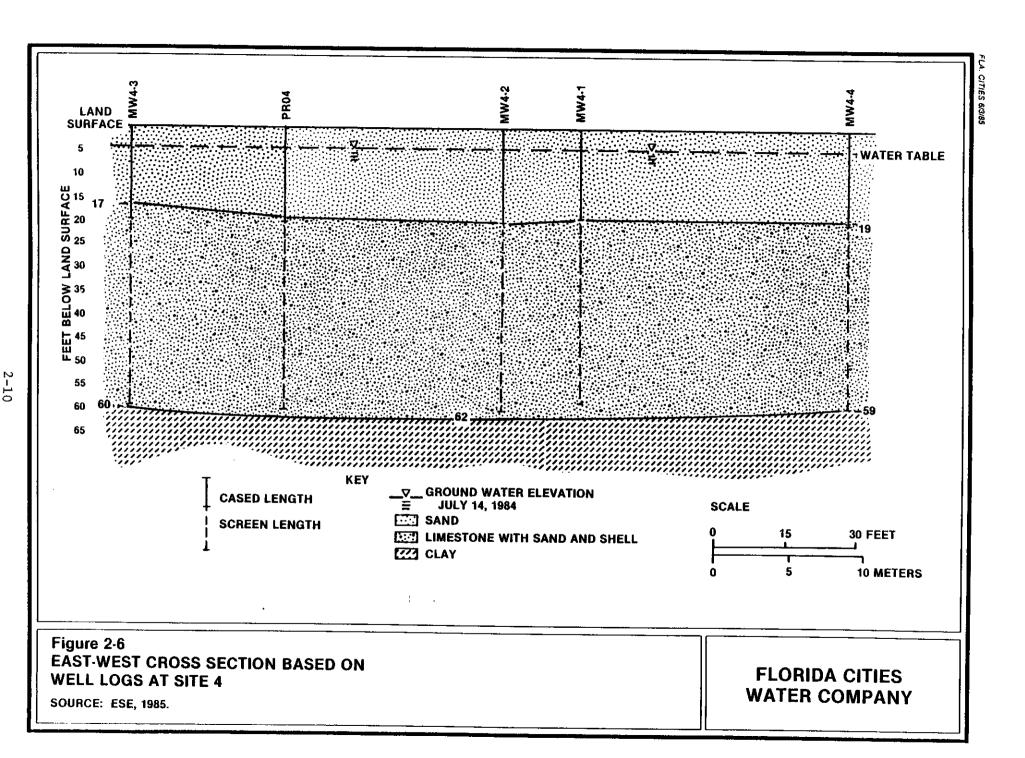

Construction of test wells was initiated after the proposed APT was agreed on by SFWMD and ESE. The information from the test wells was used to determine the site-specific hydrogeologic features. The drilling program specified four 4-inch-diameter monitor wells around shallow production zone well 4 (SPZ4). The wells were designed to penetrate completely the production zone of the surficial aquifer. After collapse of Well SPZ4, a new pumped well, Production Well 4 (PRO4), was installed to enable completion of the APT. Figure 2-5 details the typical construction of these wells. The well logs are included in Appendix B.

Figure 2-6 shows a cross section of the surficial aquifer from these well logs. The cross section is relatively uniform, with the major difference between the geology of the test site and the generalized regional cross section being the absence of a confining layer between the surficial sands and the limestone-producing zone. A clay layer was found 60 ft below land surface (bls) forming the top of the upper Hawthorn confining zone.


2.2.2 Water-Level Fluctuations and Hydroperiod

Surface and ground water levels were recorded at the test site during 1983-1984. Continuous recorders were maintained on a shallow well (M4-1) and in an area of ponded surface water from September 1983 to March 1984. The objective of this monitoring was to determine the degree of connection between surface and ground water level fluctuations. Figures 2-7 and 2-8 show the changes in water levels for the recorded time period. The daily rainfall producing these observed water levels is plotted in Figure 2-9. Comparison of these three figures shows the immediate response of the water levels to each rainfall event. Both ground and surface water levels plots show a general decrease over the period of record as would be expected at the end of the annual dry season. A plot of surface water levels versus ground water levels exhibits a linear

SOURCE: ESE, 1985.

2-9

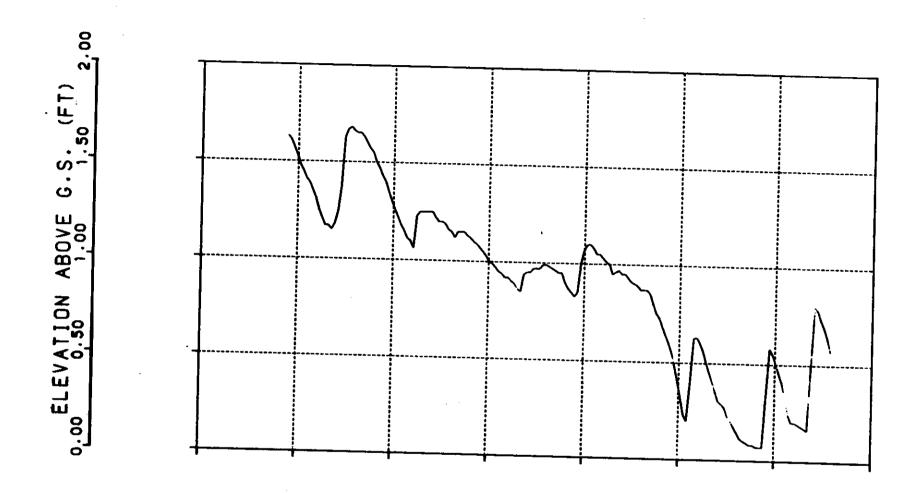
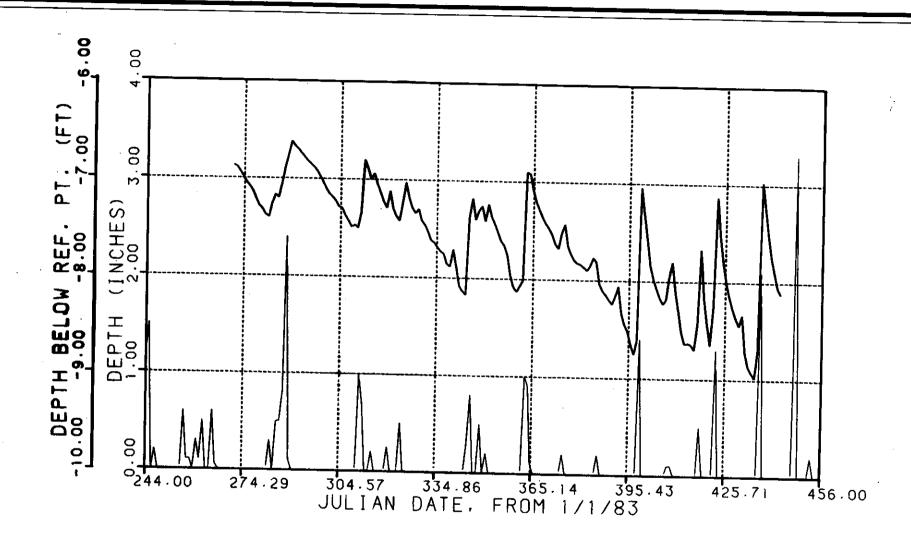
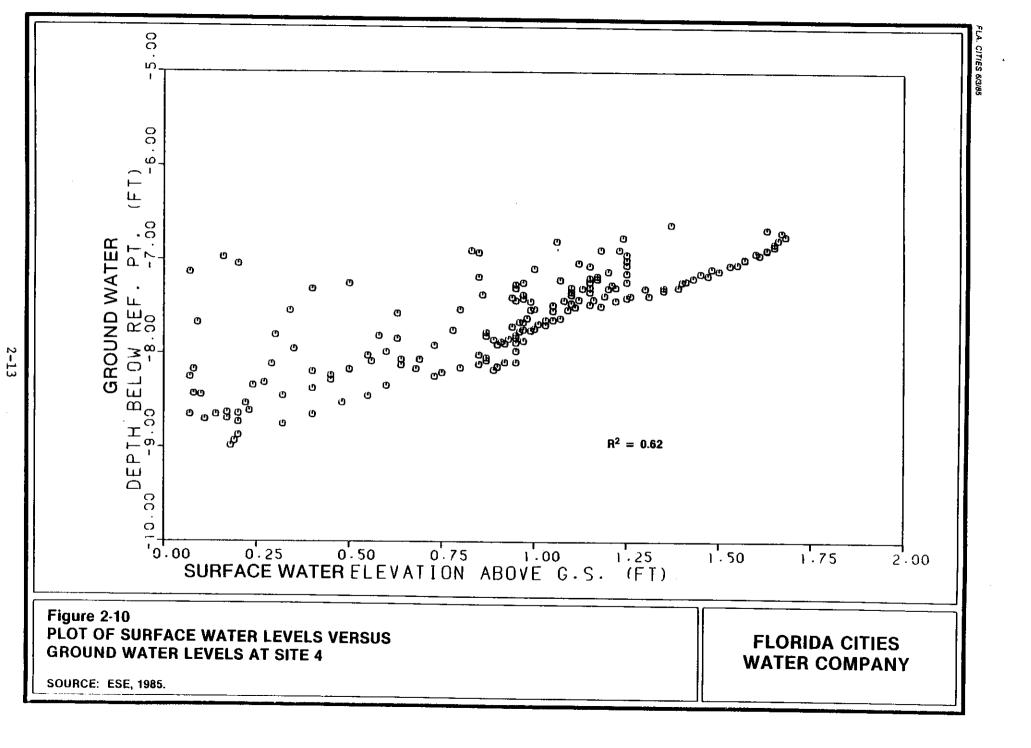



Figure 2-7 SURFACE WATER LEVELS AT SITE 4



FLORIDA CITIES WATER COMPANY

SOURCE SE, 1985.

trend as seen in Figure 2-10. The correlation coefficient of the data $(R^2 = 0.62)$ confirms this trend. However, due to the large range of ground water fluctuations at low surface water levels, these data should not be used as a means to predict specific ground water levels from surface water depth. This information does allow the use of long-term ground water level changes (hydroperiod) as an index of surface water-level trends.

The ground water hydroperiod was evaluated at Wells L-1999 and L-2204 (Figure 2-11). The existing hydroperiod of each well, as represented by a stage-duration curve, is presented in Figures 2-12 and 2-13. Periodic recompilation of the curves as new data are collected would permit a check on changes to the hydroperiod caused by pumping from the surficial aquifer.

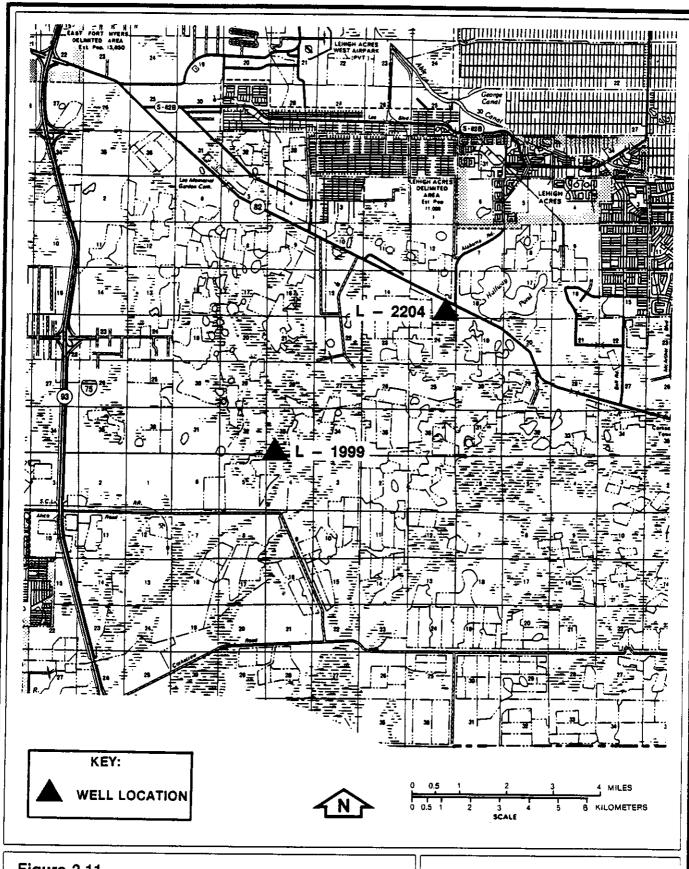
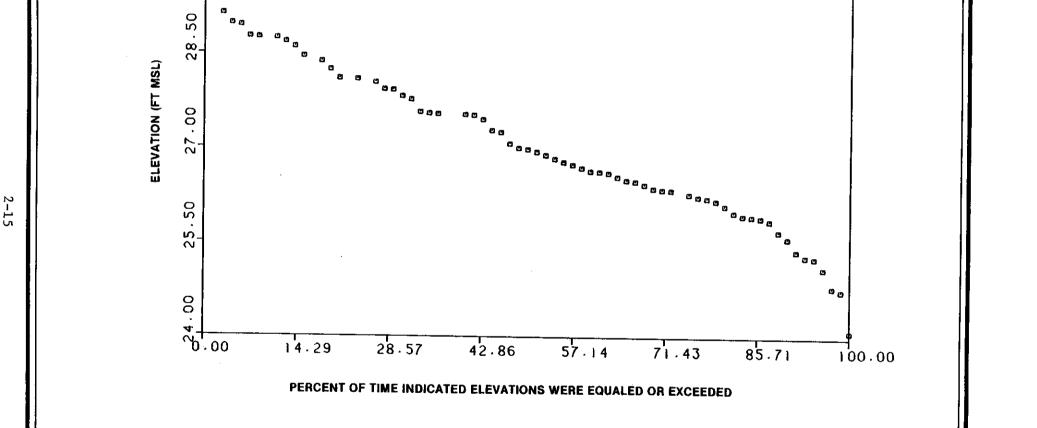



Figure 2-11
LOCATIONS OF SURFICIAL AQUIFER
MONITOR WELLS

FLORIDA CITIES WATER COMPANY

SOURCE: SFWMD, 1982.

FLORIDA CITIES

WATER COMPANY

30.00

STAGE-DURATION CURVE FOR WELL L-2204

BASED ON MONTHLY READINGS, OCTOBER

Figure 2-12

SOURCE: ESE, 1985.

1975 TO SEPTEMBER 1981

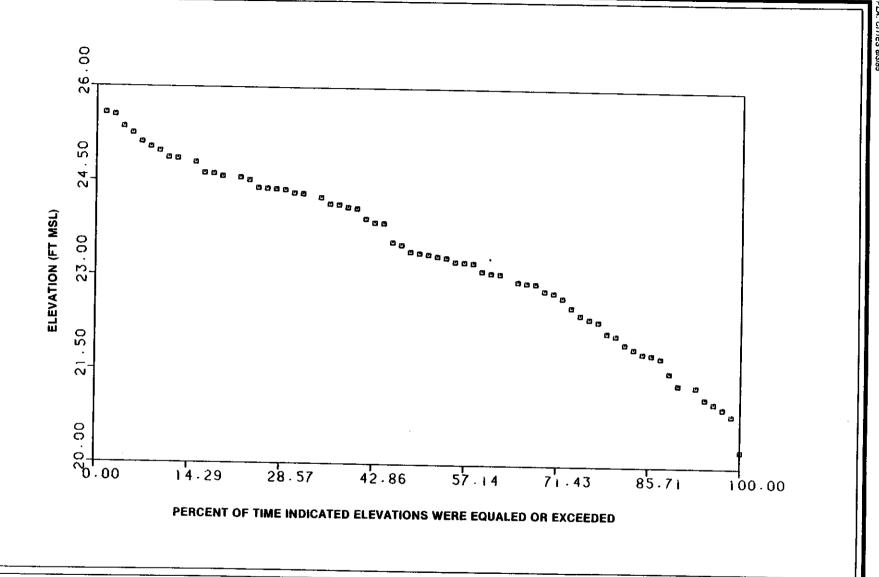


Figure 2-13 STAGE-DURATION CURVE FOR WELL L-1999 BASED ON MONTHLY READINGS, OCTOBER 1975 TO SEPTEMBER 1981

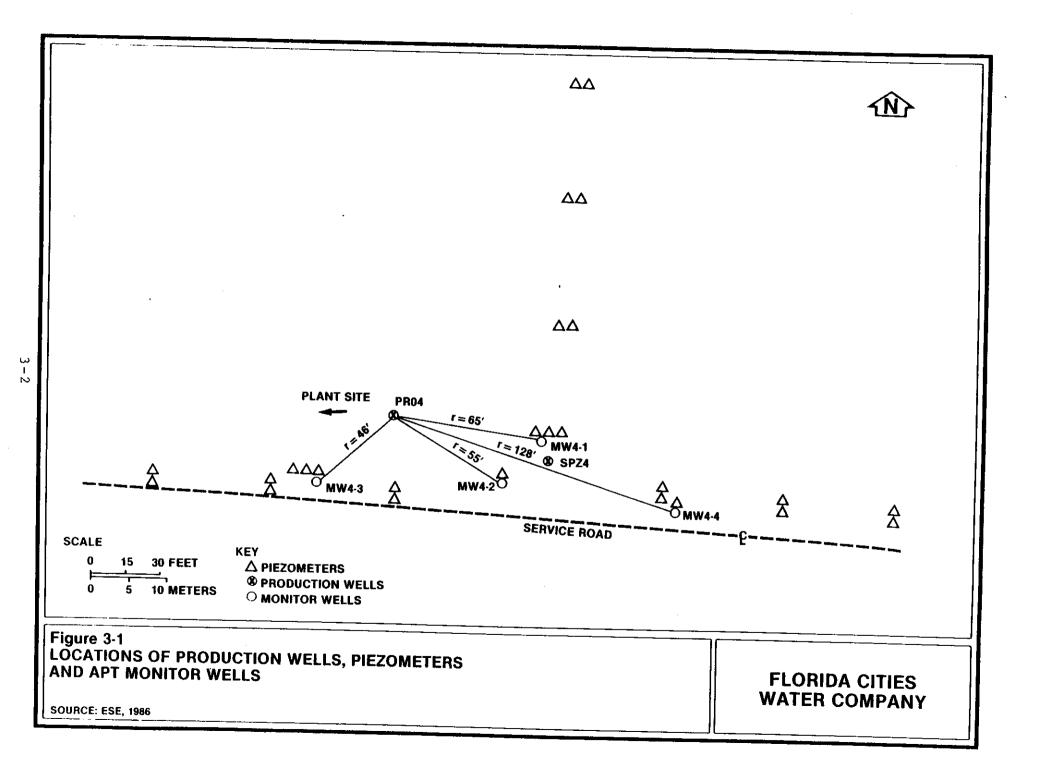
SOURCE: ESE, 1985.

FLORIDA CITIES WATER COMPANY

3.0 AQUIFER PERFORMANCE TEST

The pump test program was originally scheduled for July and August 1983. Due to high-water conditions onsite, the tests were delayed until March 21, 1984. At that time, a step drawdown test was conducted on an existing shallow production well (SPZ4) followed by a constant rate performance test. Before the constant rate test could be completed, the unscreened well collapsed, forcing termination of the test with only 10 hours of data available for analysis. A second production well was drilled in May 1984 (PRO4), and a second constant rate performance test was conducted from July 17, 1984, to July 20, 1984. The test was terminated after 62 hours due to pump failure. Slug tests were conducted at the various piezometers during July 1984.

The following sections describe the procedures, analysis, and results of the March 1984 step drawdown test and the July 1984 constant rate performance test and slug tests.


3.1 PROCEDURE

3.1.1 General

The locations of the 26 piezometers, 4 monitor wells, and 2 production wells are shown in Figure 3-1. Locations and radial distances from PRO4 were based on the specifications outlined in the POS for an APT of Well SPZ4. These distances were modified as a result of the change in pumped well location from SPZ4 to PRO4. The test pumping units were supplied by the McGregor Pump Company and were equipped with a calibrated orifice meter on the discharge side of the pumps.

3.1.2 Step Drawdown Test

The step drawdown test was performed at four constant discharge rates: 490 gallons per minute (gpm), 750 gpm, 900 gpm, and 1,000 gpm. The flow rates represent 98 percent, 150 percent, 180 percent, and 200 percent, respectively, of the design capacity (500 gpm) of the existing shallow zone production wells at the Green Meadows well field. The discharge

from the pump was conveyed through 70 ft of pipeline to a swampy area south of the access road. Minimum pumping and recovery periods of 30 minutes and 20 minutes, respectively, were maintained throughout the test. A copy of the raw data is provided in Appendix C.

3.1.3 Constant-rate Discharge Test

The constant-rate discharge test was conducted from July 17, 1984, through July 20, 1984. The total pumping time was approximately 62 hours, and the discharge rate was maintained at approximately 1,280 gpm by periodic monitoring of a calibrated orifice meter. The discharged water was conveyed from the site through 250 ft of 8-inch pipe and 300 ft of lined ditch to a pond.

Water levels were measured with one of three monitor types. Water levels in the production well (PRO4) were measured with an electric tape. Wells MW41, MW42, MW43, MW44, and piezometers P43C, P41A, and P43B were measured with a Paroscientific digiquartz data logger. The schedule shown in Table 3-1 was used for measuring drawdowns during the test for all wells and piezometers logged with the Paroscientific instrument. Piezometer P41S was measured with an Envirolab data logger on the schedule shown in Table 3-2. The schedules in Tables 3-1 and 3-2 either meet or exceed the measurement frequency suggested by SFWMD. Approximately 62 hours after pumping started, the pump failed, and the test was ended. A copy of the data is provided in Appendix D.

3.1.4 Slug Tests

The slug tests were conducted during July 1984. The purpose of the tests was to determine the hydraulic conductivity (K) of the sand aquitard. Either a Stevens water-level recorder or an Envirolab data logger was used to measure the systems response. Water levels or pressures were recorded from the start of the test, when a polyvinyl chloride (PVC) "slug" of known volume was placed in the well, and water-level changes were monitored until the well reached equilibrium. The raw data are listed in Appendix E.

Table 3-1. Frequency of Measurement for Wells MW41, MW42, MW43, MW44 and Piezometers P43C, P41A, and P43B

Frequency of Measurement	Time after Pumping Started
Every 10 seconds	0 to 3 minutes
Every 20 seconds	3 to 4 minutes
Every 30 seconds	4 to 10 minutes
Every 1 minute	10 to 25 minutes
Every 2 minutes	25 to 45 minutes
Every 5 minutes	45 to 90 minutes
Every 30 minutes	90 minutes to 9 hours
Every 1 hour	9 to 62 hours

Source: ESE, 1984.

Table 3-2. Frequency of Measurement for Piezometer P41S

Frequency of Measurement	Time after Pumping Started		
Every 10 seconds	0 to 5 minutes		
Every 30 seconds	5 to 10 minutes		
Every 1 minute	10 to 30 minutes		
Every 5 minutes	30 to 100 minutes		
Every 15 minutes	100 minutes to 8 hours		
Every 30 minutes	8 to 24 hours		
Every 1 hour	24 to 62 hours		

Source: ESE, 1984.

3.2 ANALYSIS AND RESULTS

3.2.1 Step Drawdown Test

The prediction of drawdown in the pumped well and well efficiency were determined by analysis of the March 21, 1984 step drawdown test of Well SPZ4. Figure 3-2 is a plot of the data as pressure versus time. The data were analyzed using a method presented in Bear (1979).

The general form of the drawdown equation is:

$$S_{T} = S_{f} + S_{w} \tag{3-1}$$

where: $S_T = total measured drawdown (ft),$

 $S_f = drawdown due to formation losses (ft), and$

 $S_w = drawdown due to well losses (ft).$

The losses are functions of the flow rate, Q (gpm), and substitution of these functions into the general form of the equation results in the following:

$$S_T = C_f Q + C_w Q^n$$
 (3-2)

where: $C_f = formation constant (ft/gpm)$,

 $C_w = well constant (ft/gpm^n)$, and

n = exponent due to turbulence.

Assigning a value of n = 2, a plot of Q versus the specific drawdown (defined as S_T/Q) is obtained on linear scale paper. The best linear fit is determined from which C_w and C_f are calculated. C_w is the slope of the line while C_f is the intercept value of S_T/Q at which Q equals zero. Calculations and results are shown in Table 3-3 and Figure 3-3. Plots of predicted and actual drawdown versus flow rate and efficiency versus flow rate are given in Figure 3-4.

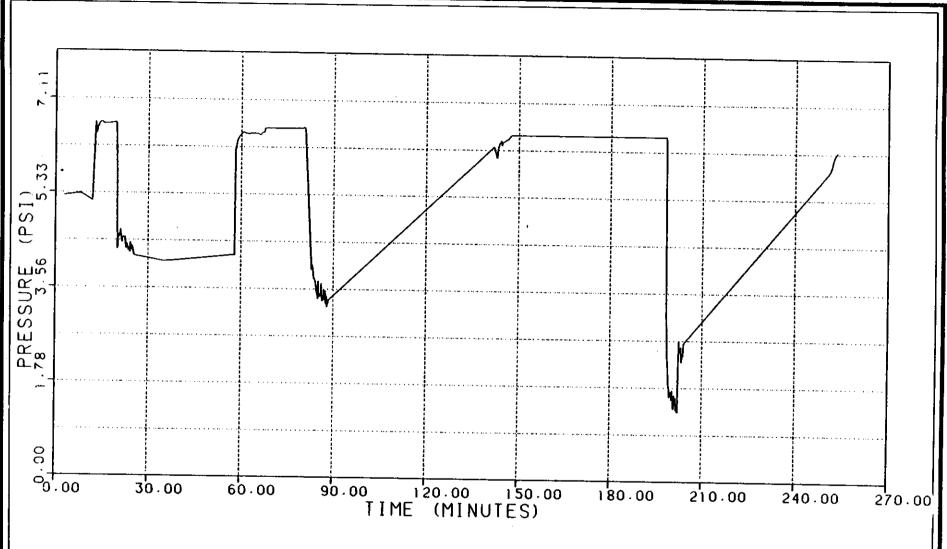


Figure 3-2
PLOT OF DRAWDOWN VERSUS TIME FOR STEP DRAWDOWN TEST OF WELL SPZ4

SOURCE: ESE, 1985.

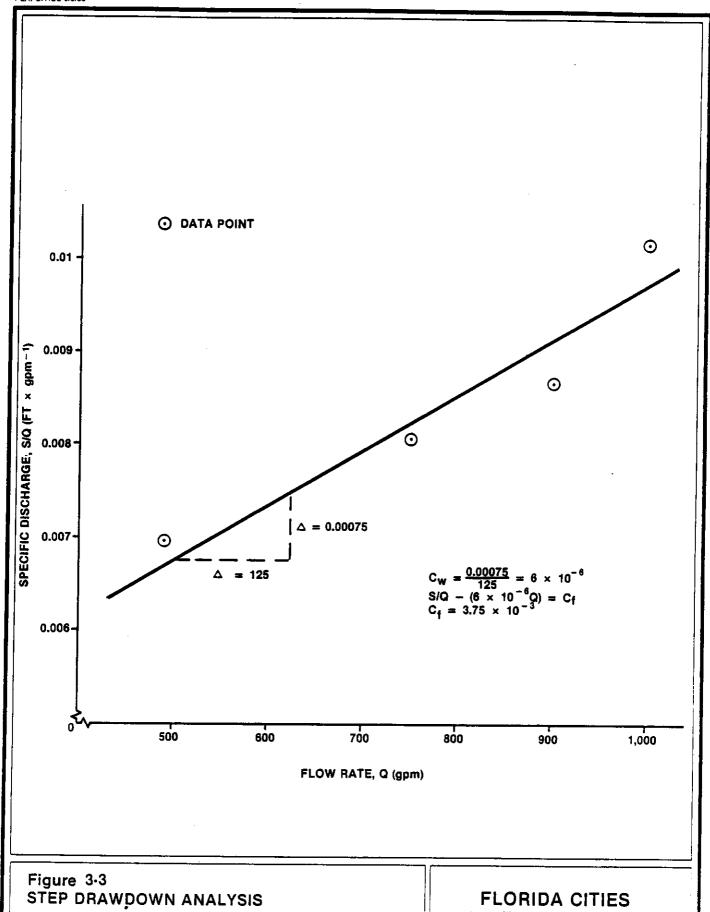
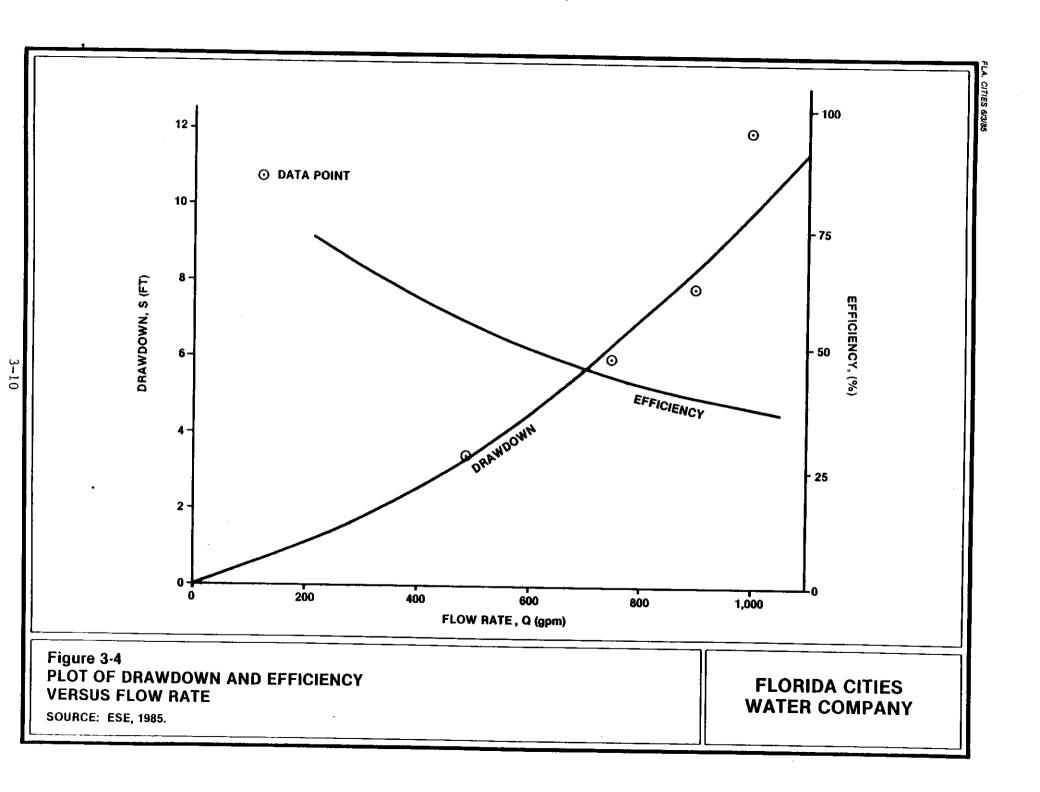

FLORIDA CITIES WATER COMPANY

Table 3-3. Step Drawdown Analysis

Discharge Steps (m)	Q _m (gpm)	S _{Tm} (ft)	S_{Tm}/Q_m (ft • gpm ⁻¹)	$E = \frac{S_f}{S_{Tm}} *100$ (%)
1	490	3.42	0.00698	56
2	750	6.03	0.00504	45
3	900	7.81	0.00868	41
4	1,000	11.99	0.01199	38


Source: ESE, 1985.

SOURCE: ESE, 1985.

3-9

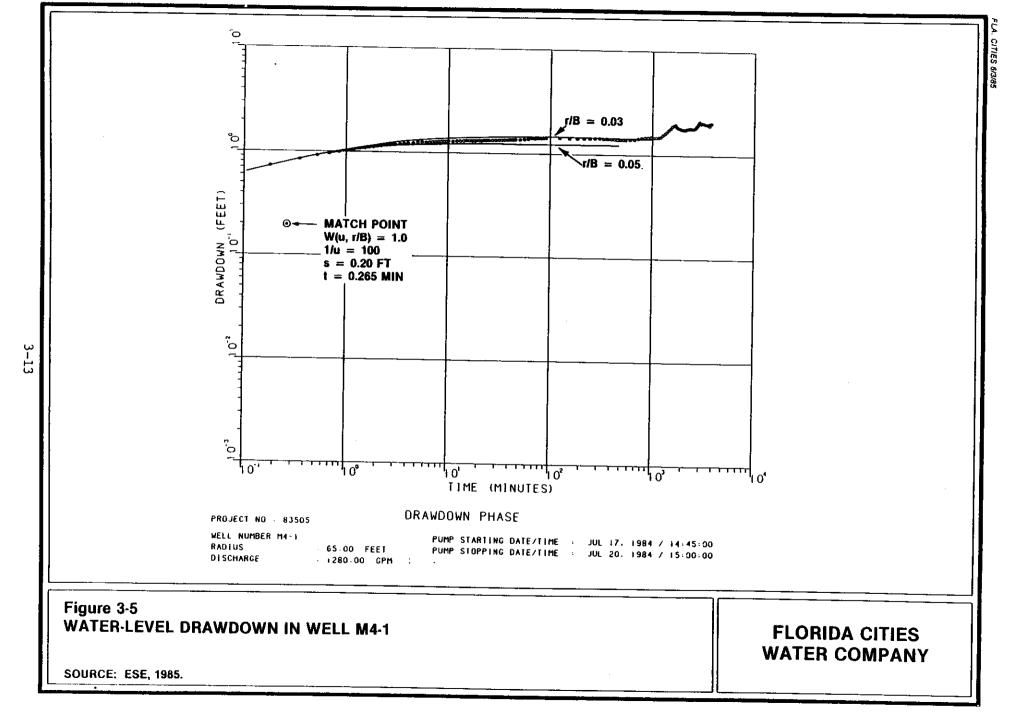
WATER COMPANY

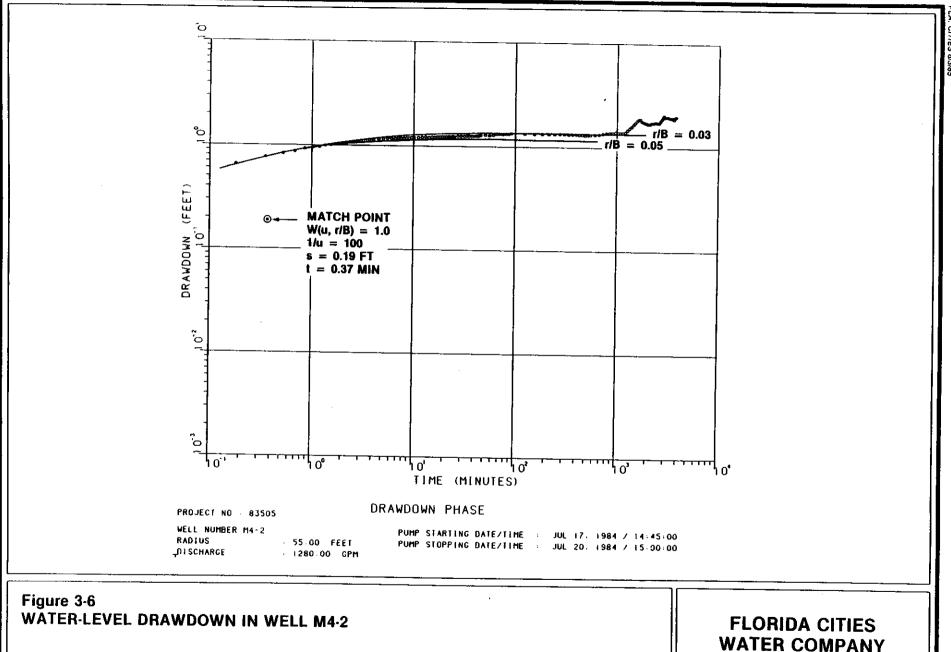
3.2.2 Constant-Rate Test

The layer of material that overlies the pumped aquifer at the test site consists of medium and fine sand with some shell. This layer retards the downward movement of water from the surface; therefore, the underlying aquifer is considered semiconfined.

The aquifer test data were analyzed to determine the system parameters using the Hantush and Jacob (1955) analytical model for an unsteady-state leaky aquifer and the Neuman and Witherspoon (1972) ratio method for leaky confining beds.

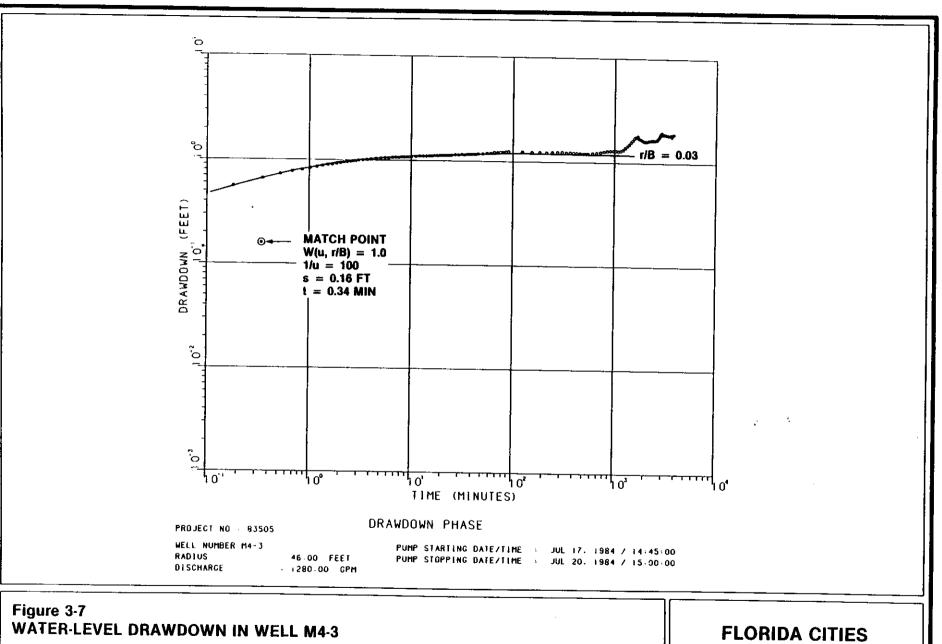
Data from the pump test were incorporated into a data management system designed for ESE's PRIME computer. Data retrieval was made both in tabulated form, consisting of time, elapsed time, drawdown, and time/radius squared (t/r^2) (see Appendix D), and as data plots, consisting of log and semilog, time versus drawdown, and t/r^2 against drawdown (see Appendix F).

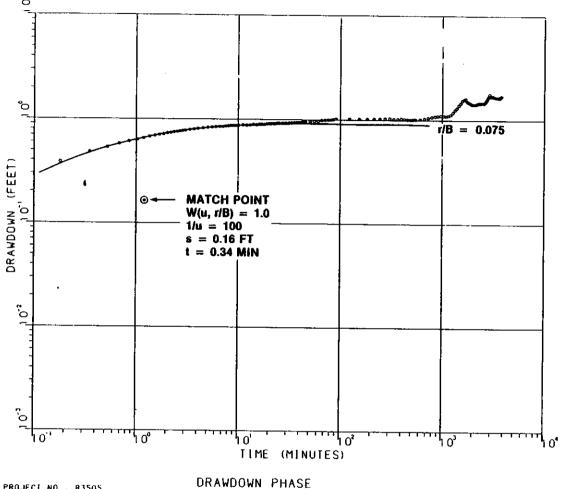

Nonsteady-State Leaky Aquifer Model—As a first step in the analysis of the constant rate pump test, the data plots [log time (t) versus log drawdown (s)] were compared to the leaky aquifer type curves (Hantush and Jacob, 1955). Results of the analysis are presented in Table 3-4. The plots and match points are shown in Figures 3-5, 3-6, 3-7, and 3-8. A copy of the type curve is shown in Figure 3-9. After an appropriate fit to the curves, the data were analyzed using the following equations:


$$s = \frac{192.5 \text{ Q}}{4 \pi \text{ T}} \text{ W (u, r/B)}$$
 (3-3)

$$u = \frac{1,440 \text{ r}^2 \text{S}}{4 \text{tT}} \tag{3-4}$$

Table 3-4. Aquifer Coefficients Determined by Use of Nonsteady-State Leaky Aquifer Type Curves


Well Number	T (ft ² /d)	S	K' (ft ² /d)
MW41	98,100	0.00017	0.632
MW42	103,200	0.00034	0.928
MW43	122,600	0.00055	0.887
MW44	116,000	0.00023	0.677


SOURCE: ESE, 1985.

WATER COMPANY

SOURCE: ESE, 1985.

PROJECT NO 83505

WELL NUMBER M4-4

RADIUS

128-00 FEET DISCHARGE - 1280-00 GPM

PUMP STARTING DATE/TIME : JUL 17, 1984 / 14:45:00

PUMP STOPPING DATE/TIME : JUL 20. 1984 / 15-00:00

Figure 3-8 **WATER-LEVEL DRAWDOWN IN WELL M4-4**

SOURCE: ESE, 1985.

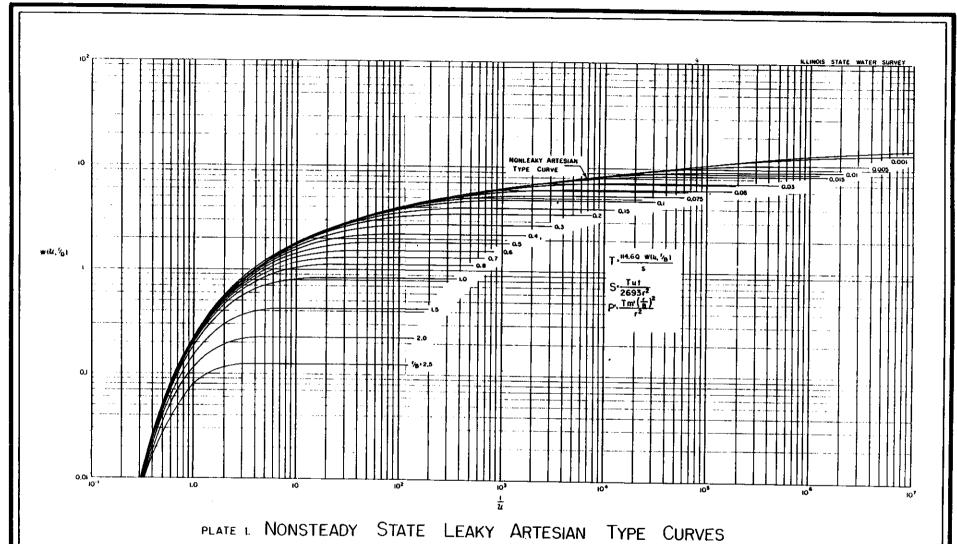


Figure 3-9
TYPE CURVE FOR NONSTEADY-STATE LEAKY
ARTESIAN AQUIFER

SOURCE: Illinois State Water Survey, 1962.

$$K' = \frac{Tb' (r/B)^2}{r^2}$$
 (3-5)

where: K' = vertical hydraulic conductivity of aquitard (ft/d),

 $T = transmissivity (ft^2/d)$.

Q = pumping rate (gpm),

s = drawdown (feet),

t = time since pumping started (minutes),

r = radial distance from pumping well (feet),

b' = aquitard thickness (feet).

 $B = (Tb'/K')^{\frac{1}{2}}$, a leakage factor (feet), and

S = storage coefficient.

The resulting average values of the aquifer coefficients are:

$$T = 111,000 \text{ ft}^2/d$$
, $\gamma_1 = 111,000 \text{ ft}^2/d$

S = 0.00032, and

K' = 0.781 ft/d.

Ratio Method-The ratio method (Neuman and Witherspoon, 1972) was used to calculate the specific storage (S_s ') of the sand aquitard overlying the pumped aquifer. This method models the pressure response of a low-permeability layer adjacent to a pumped layer of higher permeability. The following procedure was used:

1. T and S of the pumped aquifer were determined using data from MW43, the monitor well closest to PR04 (r = 46 ft). The values of T and S determined using the leaky aquifer type curves were utilized in all the following calculations.

These values were checked against those produced with the Jacob (1950) semi-log method, recommended by Neuman and Witherspoon

(1972) with weighted early time data. The transmissivity values were within 7 percent, while the values of storage agreed within 1 percent.

2. Dimensionless time (t_D) in the aquifer was determined using the following equation:

$$t_D = 9.28 \times 10^{-5} \frac{T_t}{r^2 s}$$
 (3-6)

where: t = time, selected from early in the test (min);
 r = radius to the production well (ft);
 T = transmissivity (gpd/ft); and
 S = storage.

- 3. The ratio of drawdown in the shallow well to drawdown in the deep well (s'/s) at the same early time used in Step 2 was determined.
- 4. Using the plot of t_D ' versus t_D developed by Neuman and Witherspoon (1972), dimensionless time in the aquitard (t_D ') was determined. This plot has been reproduced as Figure 3-10.
- 5. The hydraulic diffusivity of the aquitard (α ') was then determined from:

$$\alpha' = 1.077 \times 10^4 t_D' Z^2/t$$
 (3-7)

where: t = early time value used in Steps 2 and 3 (min), and

z = vertical distance from the top/bottom of the aquifer to the observation point in the aquitard.

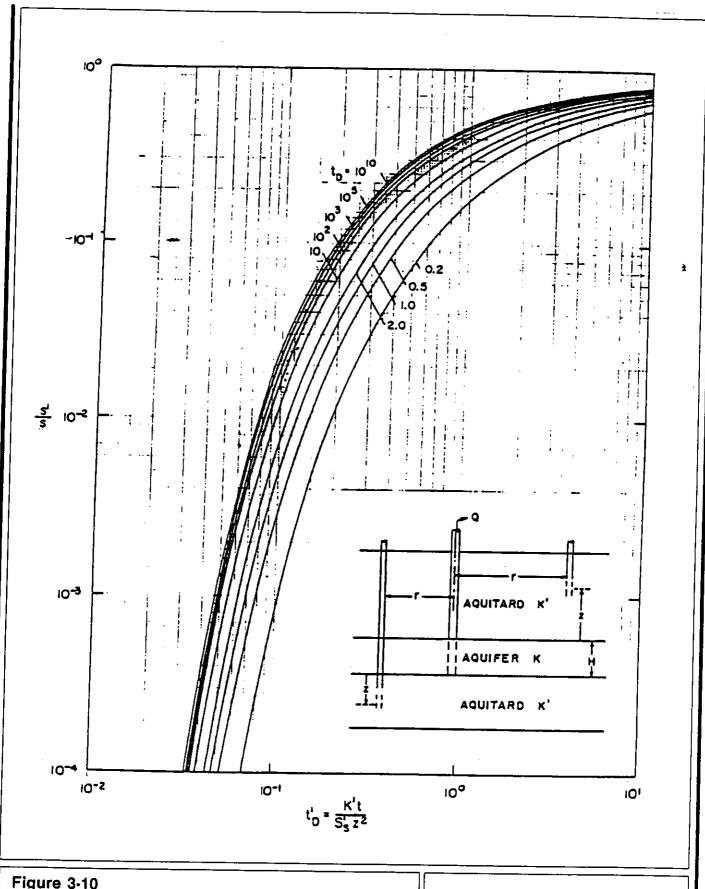


Figure 3-10 VARIATION OF s'/s WITH tD' FOR SEMI-INFINITE AQUITARD

SOURCE: Neuman and Witherspoon, 1972.

Since α ' is defined as the ratio of the hydraulic conductivity of the aquitard (K') to the specific storage of the aquitard (S_s'), the specific storage is found to be:

$$S_{s'} = K' / \alpha' \text{ (in } ft^{-1})$$
 (3-8)

The values of S_s ' and the intermediate steps are given in Tables 3-5 and 3-6.

Based on the analysis by the ratio method and the leaky aquifer-type curve, hydraulic parameters were determined to be:

$$T = (11,000 \text{ ft}^2/\text{d})$$

 $S = 0.00032$
 $K' = 0.781 \text{ ft/d}$
 $S_8' = 7.4 \times 10^{-5} \text{ ft}^{-1}$

3.2.3 Slug Tests

Slug tests to determine hydraulic conductivity were performed on 23 wells at the test site. Data were analyzed using the methods of Hvorslev (1951) and Bouwer and Rice (1976). The slug test data are presented in Appendix E, and the results of the analysis are shown in Table 3-7.

The data were analyzed for unconfined conditions using either the Method C procedure of Hvorslev (1951) or Bouwer and Rice (1976). Hvorslev's Method C (1951) was used for piezometers open at the tip only. The Bouwer and Rice (1976) method was used where the piezometer was screened for its full length (indicated by the "S" designation in the well number).

The average hydraulic conductivity was determined to be 4.1 x 10^{-6} ft/sec (0.35 ft/day), which is similar in magnitude to the average K determined from the constant-rate pumping test (0.781 ft/day) with the Hantush and Jacob (1955) method. Therefore, the slug test results confirm the results of the constant rate test and the use of the constant-rate test results in modeling the impacts of future withdrawals.

Table 3-5. Ratio Method Analysis at MW43 using P43B and P43C

	Piezometer				
		P43B	P43C		
Calculation	3 min	8 min	3 min	8 min	
S'/s	0.1	0.34	0.018	0.08	
tD	219	585	219	585	
t _D '	0.23	0.65	0.105	0.19	
Z (ft)	11.7	11.7	15.5	15.5	
α' (gpd/ft)	113,030	119,787	90,562	8,213	
S _s ' (ft ⁻¹)	0.000059	0.000055	0.000073	0.00011	

Table 3-6. Ratio Method Analysis at MW41 Using P41A and P41S

	Piezometer				
	P41A		P41S		
Calculation	7 min	10 min	7 min	10 min	
S'/s	0.015	0.11	0.43	0.48	
t _D	256	366	256	366	
t _D '	0.115	0.23	1.1	1.3	
Z (ft)	14.2	14.2	12.4	12.4	
(gpd/ft)	35,677	49,948	260,228	215,279	
s' (ft-1)	0.00019	0.00013	0.000026	0.00003	

Table 3-7. Hydraulic Conductivity Test Results

	Hydraulic Conductivity (ft/s)					
Well No.	Hvorslev Method C (1951)	Bouwer and Rice (1976				
TllA	2.2 x 10 ⁻⁶					
TllB	1.3×10^{-6}					
T12A	9.7×10^{-7}					
T12B	1.0×10^{-7}					
T13A	3.5×10^{-6}					
T13B	2.3×10^{-8}					
T21A	8.5×10^{-7}					
T22A	5.7 x 10 ⁻⁹					
T22B	2.9×10^{-8}	7-				
T23A	7.9×10^{-8}					
T23B	3.2×10^{-9}					
T31A	1.3×10^{-5}					
T32A	2.3×10^{-5}					
T32B	3.7×10^{-8}					
T33A	5.2×10^{-6}					
T33B	1.7×10^{-7}					
P41S		1.5×10^{-5}				
PZ41	6.5×10^{-7}					
PZ44	2.0×10^{-6}	~=				
MW5S		2.5×10^{-5}				
P61A	1.4×10^{-5}	2.15 A 10				
P61B	7.6×10^{-6}					
P62	1.1 x 10 ⁻⁵					

4.0 ANALYSIS OF WELL FIELD IMPACTS

4.1 INTRODUCTION

The potential impacts of withdrawals from the surficial aquifer on the ecosystem in the vicinity of the Green Meadows well field were determined using two different analytical models. The first, developed by Hantush and Jacob (1955), models nonsteady flow in an infinite leaky confined aquifer with a constant source bed. This model was used to simulate wet season conditions. The second, developed by Hantush (1960), is a modification of the first model and takes into consideration the storage in the semipervious confining layer while head in the layer supplying the leakage is allowed to decline due to the absence of recharge. This second model was used to determine the dry season impacts. The pumping rates used in the two models for the 28 existing and potential well locations were the design pumping rates of the existing surficial aquifer wells (500 gpm) and the present actual pumping rates of the existing wells (200 gpm).

4.2 WET SEASON

4.2.1 Model Description

The Hantush and Jacob (1955) nonsteady-state leaky artesian aquifer model was defined in Section 3.2.2.

The well function may be approximated by an algebraic expression and solved with the aid of a computer. Walton (1983) developed a series of ground water models suitable for microcomputers, which include the Hantush and Jacob (1955) analytical model. ESE staff modified the model for use in multiple well simulations. The use of this model requires the assumption of a constant head source bed throughout the radius of influence of the well field.

This assumption is reasonable for the Green Meadows well field location during the wet season for the following reasons:

- 1. Type curves derived from the Hantush and Jacob (1955) model provided the best fit to the data collected during the July 1984 constant-rate pump test. The test was conducted during the wet season, and standing water was covering much of the site. Therefore, the assumption of constant head in the source bed is valid for that portion of the well field during part of the 1984 wet season.
- During a normal wet season, standing water may be expected to cover a large percentage of the site. Based on the flood-prone area map prepared by the U.S. Geological Survey (USGS) (1973) for this area, approximately 97 percent of the 24-square-mile area immediately over and adjacent to the Green Meadows well field is flood prone. Although the flood-prone map depicts an extreme flood event, due to the slight change in topography over the site, flood events of lesser magnitude would also cover large portions of the site. Additionally, drawdowns due to pumping in areas not inundated under normal wet season conditions would likely extend under areas of constant head, thereby satisfying the assumption for those locations.
- 3. Adequate volumes of water exist during normal wet season conditions to more than compensate for the proposed withdrawals. Therefore, sufficient water is available to maintain constant head levels. The offsite surface flow was measured in September 1982 near the end of the wet season and found to be 53.2 million gallons per day (MGD). The water elevation in Well L-1999 at that time was 25.42 ft msl, 3 percent above the monthly average of 24.65 ft msl. The preceding month the water level was also 3 percent above the monthly average. Therefore, the measured offsite flow was approximately that of average conditions. At full development, the water withdrawn by the 28 shallow wells at 500 gpm each would be 18.7 MGD or only 35 percent of the measured surplus runoff from the site. Therefore, adequate quantities of water exist onsite during the wet season to replace that withdrawn and maintain constant head conditions.

Based on the constant-rate pump test results, topography, and runoff volumes, the assumption of constant head is met under average conditions.

4.2.2 Impacts

The duration of water levels in Well L-1999 in excess of the average wet season level is from 2 to 4 months. Therefore, a 4-month pumping duration (120 days) was selected for modeling purposes as the longest stress period during which the model would be applicable. The impacts were examined for both a single well and for the well field with all potential wells in use, at both 200 gpm and 500 gpm.

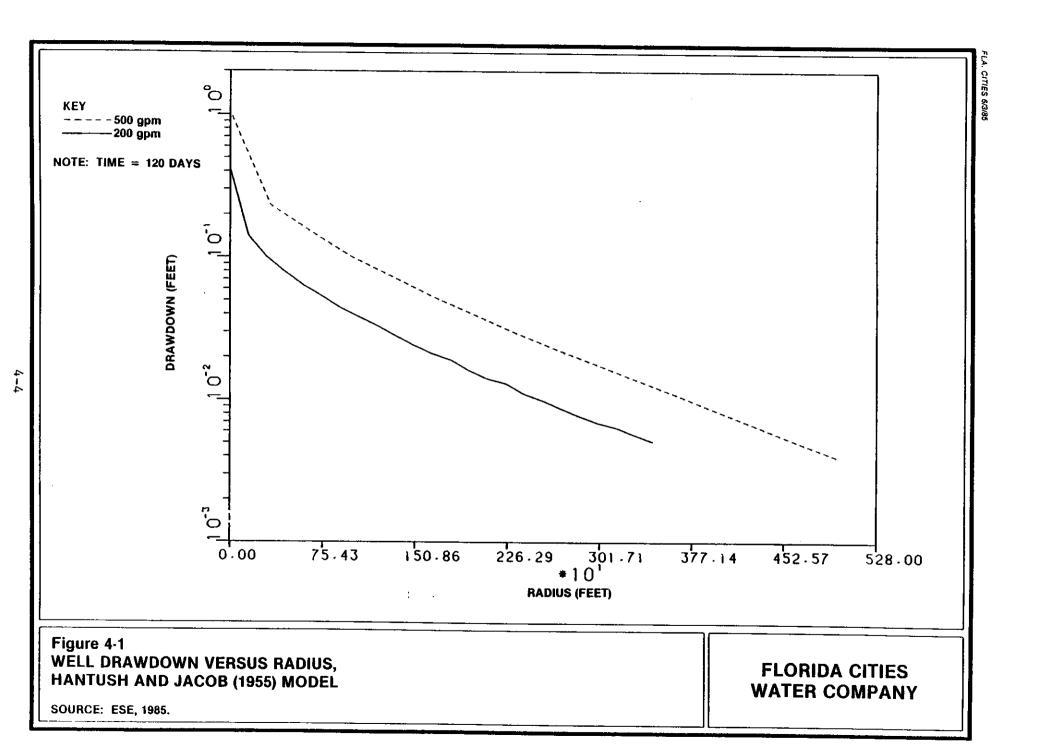
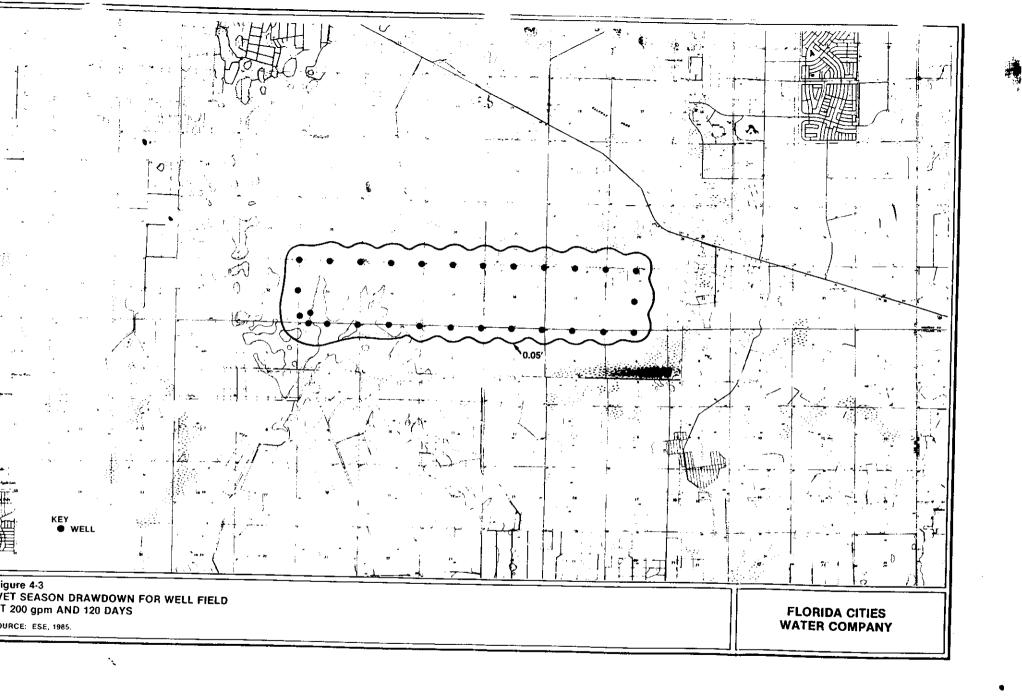
The drawdown after 120 days at various radial distances from a single pumped well is shown in Figure 4-1. At both 200 gpm and 500 gpm, the drawdown at distances greater than 1 mile is less than 0.01 ft with the maximum drawdown of approximately 1 ft occurring near the pumped well at 500 gpm. The variation of drawdown with time at a radial distance of 1 ft from a pumped well is shown in Figure 4-2. The drawdown reaches a constant at approximately 0.01 day (15 minutes) for both pumping rates, indicating that steady-state conditions were attained.

Predicted drawdowns in the region of the well field under full development after 120 days of continuous pumping from all 28 wells at 200 gpm and 500 gpm, respectively, are shown in Figure 4-3 and 4-4. Under worst-case conditions, pumping all wells at 500 gpm for 120 days, the drawdown is less than 0.01 ft at distances greater than I mile from the well field boundary.

4.3 DRY SEASON

4.3.1 Model Description

A modification to the Hantush and Jacob (1955) model was proposed by Hantush (1960) in which the storage (S') in the semipervious confining layer supplying the leakage was taken into consideration. In addition, recharge is eliminated resulting in a system in which all water supplied

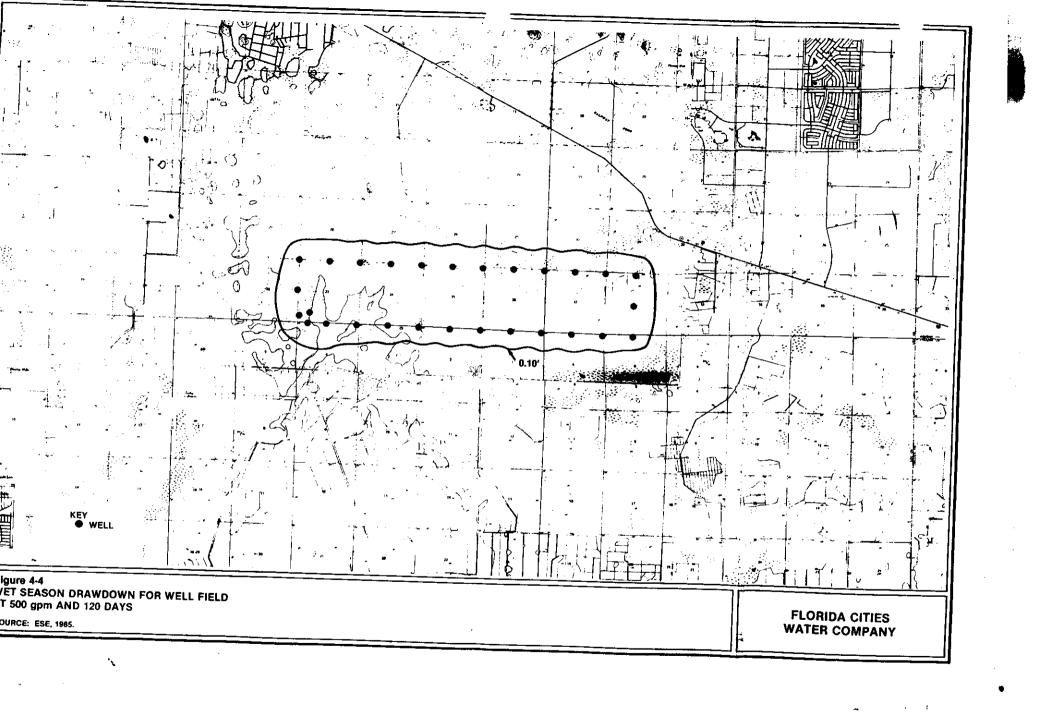


Figure 4-2
WELL DRAWDOWN VERSUS TIME, HANTUSH
AND JACOB (1955) MODEL

SOURCE: ESE, 1985.

to the pumped aquifer is derived from storage in the pumped aquifer and the overlying semipervious confining layer. This approximates conditions at the Green Meadows well field during the dry season.

The model equations are defined as follows:

$$s = \frac{Q}{4\pi T} W[u(1 + \frac{S'}{S})]$$
 (4-3)

and
$$u = r^2S/4Tt$$
 (4-4)

where: W[u(1 + S'/S)] = well function for a confined aquifer, andS' = storage coefficient for the semipervious layer.

The analytical model was programmed on an ESE microcomputer using algebraic approximations and routines designed for multiple well systems.

4.3.2 Impacts

As in the wet season simulations, the impacts of the proposed withdrawals were simulated for both a single well and for the entire well field, at both 200 gpm and 500 gpm.

The drawdown after 120 days at various radial distances from a single withdrawal well is shown in Figure 4-5. The variation of drawdown with time at a radial distance of 1 ft from a single well is shown in Figure 4-6. Predicted drawdowns in the region of the well field under full development after 120 days of continuous pumping at 200 gpm and 500 gpm, respectively, are shown in Figures 4-7 and 4-8.

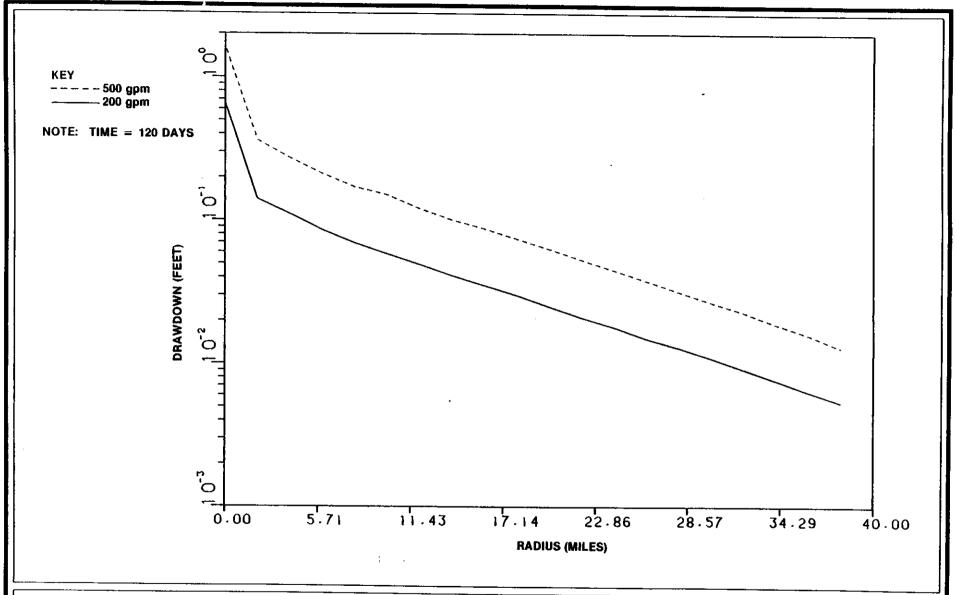
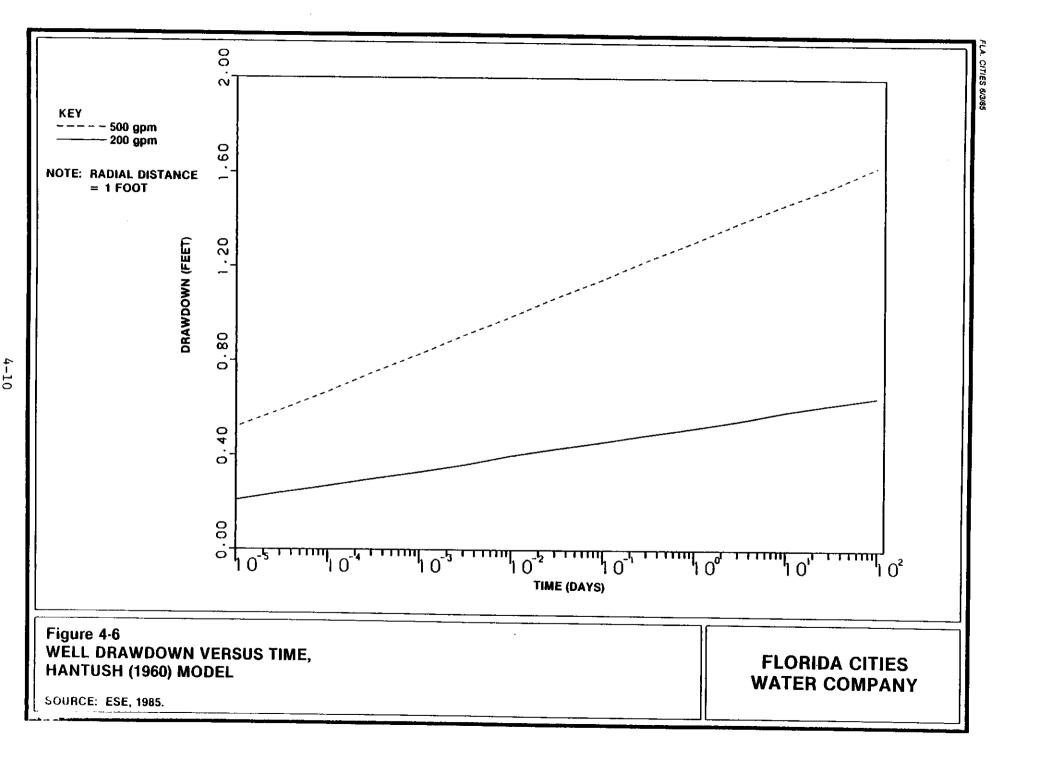
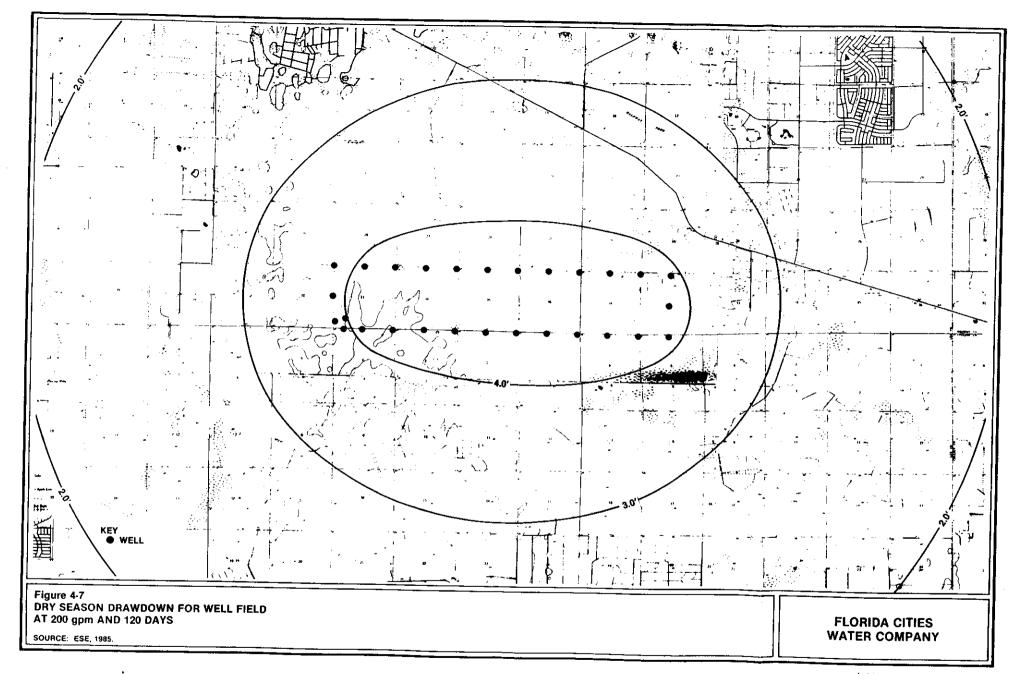
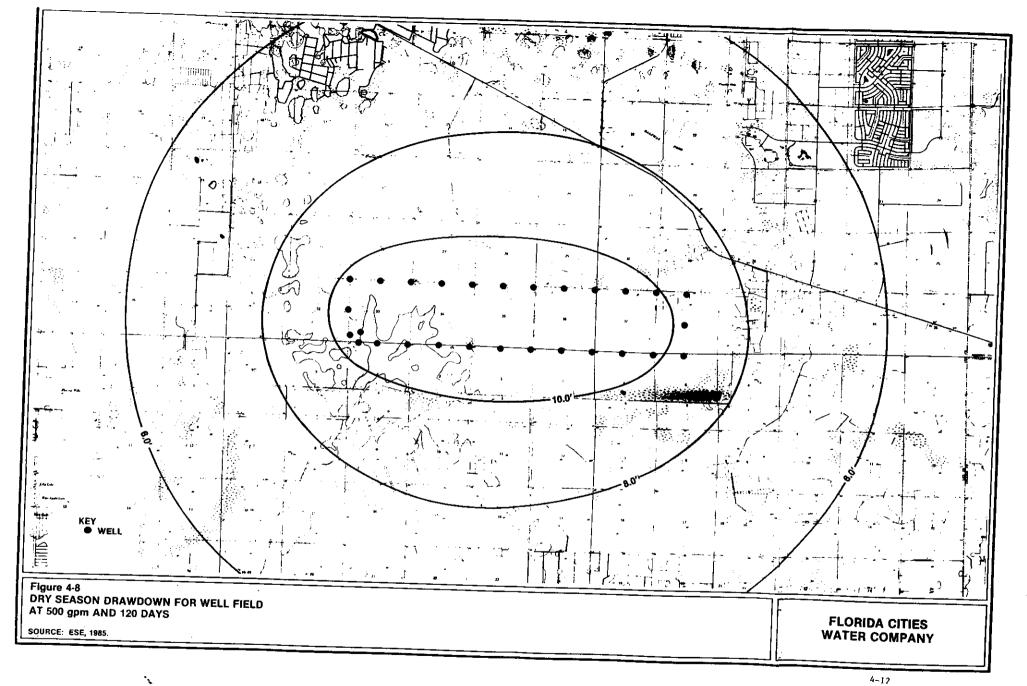





Figure 4-5 WELL DRAWDOWN VERSUS RADIUS, HANTUSH (1960) MODEL

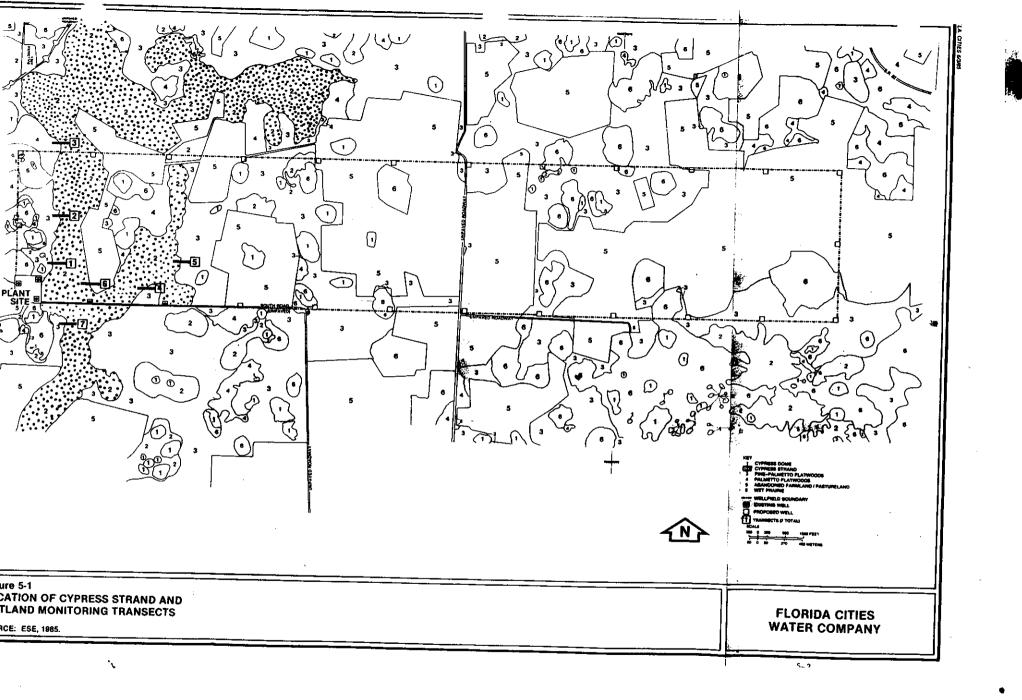
SOURCE: ESE, 1985.

5.0 ECOLOGICAL MONITORING AND ASSESSMENT

5.1 OBJECTIVE

The objective of the ecological monitoring described in this report was to obtain baseline information from which to assess the effects of withdrawals from the shallow aquifer system on the wetland systems onsite.

Well field vegetation communities were described in the Phase I Report (ESE, 1982), based on an ecological assessment conducted in August 1982. A wildlife habitat assessment was also included in the Phase I Report.


As a result of the information obtained from hydrogeological and ecological assessments performed in Phase I, a large cypress strand just east of the western boundary of the well field was selected as an indicator of ecological impacts caused by drawdown due to shallow aquifer pumping (Figure 5-1).

This large branched strand, which occupies most of Section 33, Township 45S, and Range 26E, is the wetland most likely to be affected by the withdrawals. Monitoring was conducted along permanent transects established at various locations in August 1984 along the edge of the strand. Wet prairies located west of the strand were also surveyed and species composition noted.

Future impacts to wetlands attributable to shallow aquifer pumping can be evaluated by determining the location and extent of any changes in species composition in the wet prairies and in the transects established at the edge of the strands.

5.2 INDICATOR SPECIES

The three species selected for quantitative sampling are common in the region and are sensitive indicators of long-term changes in hydroperiod.

They are bald cypress (<u>Taxodium distichum</u>), melaleuca (<u>Melaleuca quinquenervia</u>), and South Florida slash pine (<u>Pinus elliottii</u> var. <u>densa</u>).

Bald cypress -- Cypress strands occur along major drainage paths and usually have a north-south orientation. Water flows slowly through the strands via sheet flow during the wet season; in the dry season, there is often no flow. Cypress distribution is affected by drainage, logging, and fire. The mature tree is more fire-tolerant than hardwoods and fire therefore excludes hardwood invasion (Wade et al., 1980). Mature cypress can survive continuous flooding of approximately 20 centimeters (cm) depth and depths higher than 20 cm for shorter periods of time (Harms et al., 1980). However, seedlings establish only when soils are moist, but not submerged (Demaree, 1932). If soils are allowed to dry out for 3 months or more, cypress will survive, but cypress seedlings will not be able to compete successfully with fast-growing hardwoods, and the cypress will be replaced by less flood-tolerant hardwoods (Conner et al., 1981). Cypress is favored, then, by long periods of submergence with occasional periods of drawdown during which new seedlings establish on soil neither dry nor submerged, but moist.

Melaleuca—Some of the largest natural strands of melaleuca are in Lee County, one of the two counties where Melaleuca originated in Florida (Cost and Craver, 1980). Although Melaleuca frequently invades land following alterations in drainage and other disturbances to natural vegetation, Woodall (1980) reports that Melaleuca is well adapted to both disturbed and undisturbed habitats in southern Florida. For this reason, its presence and/or increase is not necessarily attributable to habitat alteration. The tree is very fire-tolerant and sheds seeds after a burn. It tolerates flooded conditions by producing a fibrous sheath of "water roots" from the base of the trunk to high water level (Myers, 1983).

Favorable sites for establishment are those where soils remain moist to saturated, but rarely submerged during the 4- to 6-month wet season (Myers, 1983). Ecotones between pine flatwoods and cypress strands are especially susceptible to Melaleuca establishment (Wade et al., 1980).

South Florida Slash Pine—South Florida slash pine is the dominant species in south Florida flatwoods. It tolerates widely fluctuating moisture conditions. Pines regenerate well on the margins of ponds and typically expand into partially drained cypress strands (Wade et al., 1980). South Florida slash pine is extremely fire tolerant, in contrast to the northern variety of slash pine. Fire suppression can result in replacement of flatwoods by hardwood forest (Wade et al., 1980). Pines will not tolerate long periods of submergence.

Any change in hydroperiod due to shallow aquifer pumping should result in increased establishment of <u>Melaleuca</u> and slash pine and decreased establishment of cypress.

5.3 METHODOLOGY

5.3.1 Transect Location

Seven permanent transects were established in locations throughout the strand at various distances from the wells. A 3- to 5-ft high wooden stake marked with the transect number was placed at the upland end of each transect, except Transect 7.

The wooden stake marking Transect 7 was placed at the wetland end of the transect for easier visibility. The stakes were painted red and yellow. Trees near each stake were spray painted as a guide to its location for future monitoring. Each transect was established across the ecotone of the swamp edge and was 80 to 100 meters (m) long. Transect locations are shown in Figure 5-1.

5.3.2 Quadrat Sampling

Consecutive quadrats, 5 m x 5 m, were delineated along the transects. The stake marking each transect represented the northeast corner of the first quadrat for Transects 1, 2, 3; the northwest corner of the first quadrat for Transects 4, 5, 6; and the northeast corner of the last quadrat for Transect 7. Adult trees (>3 m in height) and juvenile trees (\leq 3 m in height) of the three indicator species were counted separately in each quadrat so that changes in recruitment of young trees as well as survival of mature trees could be monitored.

In addition, the length of each distinct plant association along the transect was measured so that any future changes in understory vegetation can be determined. Understory associations varied widely between transects because moisture conditions varied throughout the strand.

5.4 RESULTS

Plant species that occurred in the transects are listed in Table 5-1. The length of the plant associations along each transect and the number of juvenile and adult pine, Melaleuca, and cypress trees in each association are summarized in Table 5-2. There are indications that the strands have already been altered by human activities. Bordering agricultural fields have been drained. Charred tree trunks were observed throughout the strand and adjacent flatwoods. Large strands of Melaleuca occur along the southern boundary road and the eastern portion of the section. Individual melaleuca trees were scattered in the flatwoods and at the pine-cypress ecotone of the strand.

However, the strand itself is healthy, and the abundance of juvenile cypress trees indicates active regeneration. The transects were deliberately located in areas with few Melaleuca trees, but even where Melaleuca was absent from quadrats, all areas had at least a few Melaleuca trees in sight of the quadrats.

Table 5-1. Plant Species in Transects

Scientific Name	Common Name		
Melaleuca quinquenervia	Cajeput		
Pinus elliottii var. densa	Slash Pine		
Serenoa repens	Saw Palmetto		
Stillingia aquatica	Queen's Delight		
Taxodium distichum	Bald Cypress		
Sabal palmetto	Cabbage Palm		
Sagittaria lancifolia	•		
Thalia geniculata	Alligator Flag		
Utricularia spp.	Bladderwort		
Aster caroliniensis	•		
Bacopa caroliniana	Fragrant Bacopa		
Bacopa monnieri	Water Hyssop		
Blechnum serrulatum	Swamp Fern		
Boehmeria cylindrica	Button Hemp		
Centella asiatica	Coinwort		
Hydrocotyle umbellata	Pennywort		
Hyptis alata	Bittermint		
Ilex cassine	Dahoon Holly		
Myrica cerifera	Wax Myrtle		
Panicum hemitomon	Maidencane		
Polygonum hydropiperoides	Smartweed		
Pontederia lanceolata	Pickerelweed		
Proserpinaca palustris	Mermaid Weed		
Rhynchospora divergens	Beak Rush		
Rhynchospora tracyi	Beak Rush		
Cladium jamaicense	Sawgrass		
Hypericum spp.	St. Johns wort		
udwigia repens	Ludwigia		
Hydrolea corymbosa	Sky flower		
Cuphea carthagenensis	Cuphea		
Baccharis halimifolia	Groundsel tree		
Commelina gigas	Climbing dayflower		

Transect	Understory -	T	Number of Trees					
Number	Plant Association	Length of Association (m)		ne	Melaleuca		Cypress	
			A*	J*	A	J	A	J
1	Serenoa repens	15		<u> </u>				
	Cladium-Blechnum	60	5	1	0	0	0	0
	Panicum hemitomon-Bacopa	10	2	1	0	5	61	2
	Hydrolea-Aster	15	0	0	0	0	11	2
		1)	0	0	0	0	29	2
2	Panicum hemitomon-Blechnum	40	1	0	0	0	71	7.
	Cladium	60	Ō	Ŏ	0	0	71 79	2
	Bacopa			•	Ū	O	79	2
Bac	Panicum hemitomon-Blechnum	30	0	0	0	0	48	1
	Васора	20	Õ	Ö	Ö	0	56	1
	Hydrolea-Panicum hemitomon		Ū	Ū	U	U	90	2
<u> 1</u>	Ludwigia repens	35	0	0	0	0	67	3
4	Hypericum-Centella-	50	6	1	0	1	7	
	Stillingia		ŭ	•	U	1	,	1.
	Ludwigia-Hydrolea-Pontederia	50	1	0	0	0	45	37
-				•	·	Ū	47	Э.
5	Hypericum-Aristida	40	5	6	0	0	14	2:
	Blechnum-Ludwigia	60	5	5	Ō	ő	57	19
			_	_	Ū	U),	1.2
6	Centella-Cuphea	10	2	0	1	1	8	8
	Cuphea-Ludwigia	70	0	Ö	ī	ō	152	12

Transect Number	Understory Plant Association	Length of Association (m)		Number of Trees					
			Pine		Melaleuca		Cypress		
			A*	J*	A	J	A	J	
7	Blechnum-Baccharis- Ilex cassine	50	1	3	0	0	52	2	
	Ludwigia-Panicum hemitomon† Hydrocotyle	35	0	0	0	0	7	3	

^{*}A = adult tree (>3 m height).

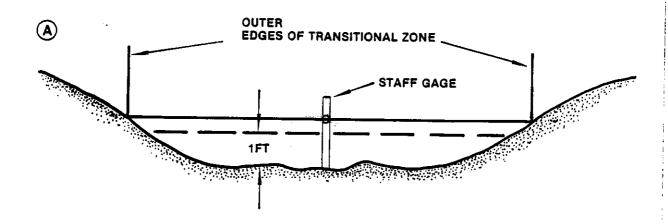
 $J = juvenile tree (\leq 3 m height).$

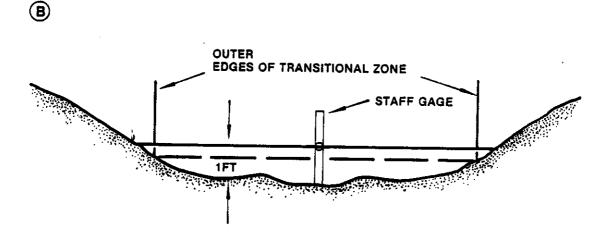
[†]Commelina gigas (Climbing dayflower) is in this association. It is listed by Ward (1978) as threatened.

The understory associations varied between transects because areas of the strand differed widely in hydroperiod. Some areas of the strand were flooded in the center and bore aquatic species such as pickerelweed (Pontederia lanceolata), arrowleaf (Sagittaria spp.), and alligator flag (Thalia geniculata). Other areas were dry from the east to the west edge, and wetland species were mixed with weedy species. Transects were not established in these dry areas, because changes in hydroperiod due to shallow aquifer pumping would have little effect.

Wet prairies west of the strand contained 0.2 and 0.5 m of water at the time of survey. Stillingia aquatica and shrubby Hypericum spp. were scattered through the prairies. Hydrolea corymbosa, alligator flag, pickerelweed, and other wetland species dominated prairie communities.

6.0 RECOMMENDATIONS

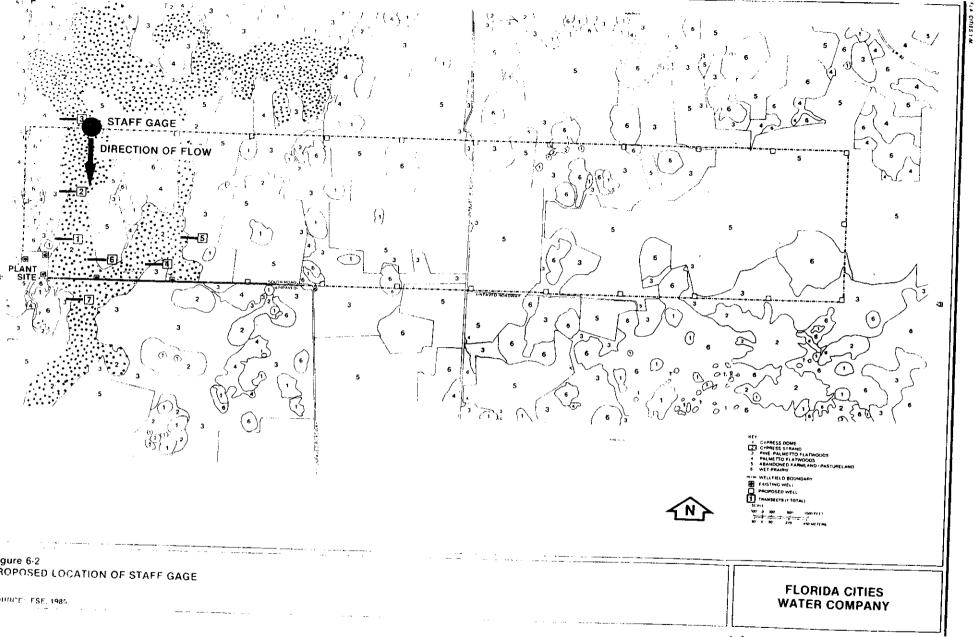

6.1 OPERATION PROGRAM


6.1.1 Normal Conditions

The edges of the cypress strand are the areas most sensitive to impacts resulting from pumping of the shallow aquifer. Any proposed pumping schedules should be designed to maintain the same frequency and duration of ground surface submergence and soil saturation that currently exists. Changes to the frequency or duration of the hydrologic regime will alter the competitive balance between upland and wetland species, permitting pine and Melaleuca to invade the transitional wetland zone, and causing changes in the understory associations as well. However, the depth of submergence may be safely altered in such a way that adverse impacts are eliminated. Maintenance of a minimum depth of water during the wet season such that saturated soil conditions are maintained at the outer edges of the transitional wetland zone or that a minimum depth of 1 ft of water is maintained in the central, wetter areas (whichever is greater) would ensure the continued vitality of the wetland. Water in excess of this level may be considered available for use through withdrawals from the surficial aquifer.

This concept is shown in Figure 6-1. The edges of the transitional zone should be established by an ecologist and the elevations of these points determined by a surveyor. Theoretically, the two edges should be at the same elevation. The surveyor would then determine the average elevation of the center of the wetland. The higher of the two elevations would be used as the control elevation for pumping.

A practical means for implementing the desired control of pumping is to use a reference point equipped with a staff gage as the basis for pumping decisions. When water levels rise above a control elevation, pumping may begin. When water levels recede below this level, pumping should stop. The recommended location for such a control point is at the upstream end of the strand where it enters the well field (see Figure 6-2).



- (A) CONTROL ELEVATION IS TRANSITIONAL ZONE ELEVATION
- **B** CONTROL ELEVATION IS 1FT ABOVE AVERAGE WETLAND BOTTOM

Figure 6-1
TYPICAL WETLAND CROSS-SECTIONS
SHOWING ALTERNATE OPERATIONAL
SCENARIOS

SOURCE: ESE, 1986

6-3

The following steps should be undertaken to establish the operating program:

- Define the outer edges of the transitional wetlands by a vegetative survey conducted by an ecologist,
- 2. Determine the elevation of the wetland edges established in Step 1 by surveying,
- 3. Establish the average ground surface elevation in the wetland and add 1 ft,
- 4. Install a staff gage, as shown in Figure 6-1, and indicate on the gage the greater of the two elevations determined in Steps 2 and 3,
- 5. Monitor water levels at the staff gage and begin pumping when water levels exceed the control elevation, and
- 6. Stop pumping when water levels recede below the control elevation.

Implementation of Steps 1 through 6 described above would ensure proper control and meet the objective of minimizing adverse impacts to the ecology of the area.

Under normal conditions with the assumption of constant head throughout the well field, the period of allowable pumping would correspond to the annual wet season, and the impacts would be those discussed in Section 4.2. Under such conditions, all pumps should be available for use, not just those near the cypress strand. However, due to the variability of rainfall and the resulting water levels, the defined wet season (June to September) should not be used as an inflexible guide to pumping.

6.1.2 Drought Conditions

Periods of lower than average rainfall can occur during the annual dry season. These periods can correspond to periods of high demand from the service area. At such times, it may be necessary to withdraw from the surficial aquifer to maintain a minimum level of service.

Table 6-1 presents an operation schedule showing the effects of pumping several different well combinations in order of increasing impact. One or more of the combinations could be selected for potential implementation under drought conditions. The Hantush (1960) model was used to simulate the drawdown at the cypress slough after 120 days of pumping with the given well combination. Well numbers correspond to those in Figure 6-2, with the initial pumped well being No. 16, in the extreme northeast corner of the well field. Wells are added from east to west, alternating flow rates between 200 gpm and 500 gpm as necessary to minimize drawdown. The maximum total flow rate (QT) obtainable without exceeding a calculated drawdown of 1 ft at the slough is 2,000 gpm (combination No. 13).

The maximum allowable impact to the slough is one criterion governing selection of a well combination. For example, if limiting drawdown in the slough at 120 days to 0.5 ft were desired, only combinations up to and including No. 7 should be used. The impacts could be reduced further by initiating the emergency withdrawals with the lowest numbered combination that will meet the demand. If initially only 200 gpm are required for supplemental water, Well 16 could be operated at 200 gpm, and the number of wells and flow rates increased up through combination No. 7 as the demand increases. This would delay the time at which 0.5 ft of drawdown is experienced at the slough.

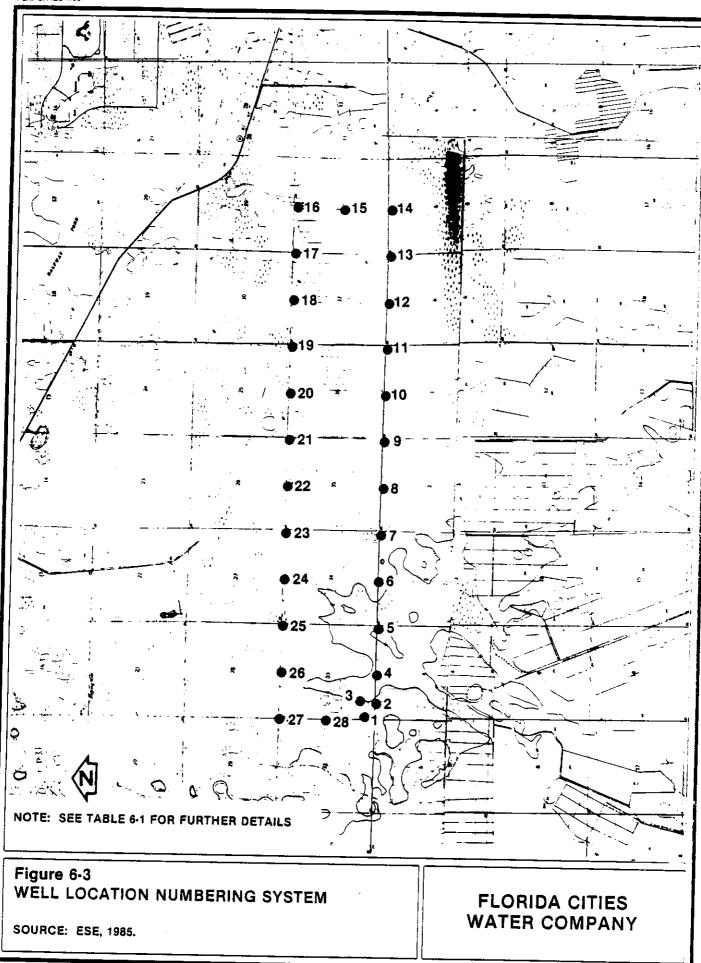

Increased economic efficiency could be obtained by keeping the required number of wells to a minimum. Continuing the previous example, use of only Wells 15 and 16 would allow a 4-stage pumping sequence (combinations No. 1, 2, 3, and 6) while maintaining a drawdown of less than 0.5 ft. Therefore, if well field development is accomplished in stages over a long period of time, initial well placement should begin at the east end of the well field to secure the necessary emergency water source.

Table 6-1. Pumping Combinations and Drawdown at Slough for Drought Conditions After 120 Days

Combination Number	Well(s)	Q _i (gpm)	Q _T (gpm)	s (ft)
1	16	200	200	0.09
2	15, 16	200	400	0.19
3	16	500	500	0.23
4	14-16	200	600	0.28
5 .	14-17	200	800	0.38
6	15, 16	500	1,000	0.47
7	13-17	200	1,000	0.48
8	13-18	200	1,200	0.58
9	12-18	200	1,400	0.69
10	14-16	500	1,500	0.70
11	12-19	200	1,600	0.80
12	11-19	200	1,800	0.91
13	14-17	500	2,000	0.95

Note: $Q_T = Q_i$ * Number of wells.

Source: ESE, 1985.

6.2 MONITORING PROGRAM

The monitoring program consists of two parts: (1) monitoring of ecological parameters, and (2) monitoring of the hydroperiod. Use of both ecological and hydrological measures to monitor long-term effects will adequately assure the identification of adverse impacts should any result. Short-term effects on surrounding lands and other water users will be minimized by adherence to the recommended operation program.

6.2.1 Ecological Monitoring

Annual monitoring should be conducted in summer, particularly for the first 5 years of pumping along the permanent transects established for this survey. Any changes in species abundance or composition indicating an invasion of upland species should lead to a re-examination of pumping procedures to reduce the impact of withdrawal on the wetland species.

The nearby wet prairies should also be examined for invasion of pines and other upland species. At the end of 5 years, the results of the annual surveys should be reviewed, along with rainfall records, to indicate whether the weather conditions were typical and to determine if shallow aquifer pumping can be conducted without long-term impact to the overlying and adjacent wetlands.

6.2.2 Hydroperiod Monitoring

Monthly water-level data should continue to be collected at Well L-1999 and added to the stage duration curve shown in Figure 2-13. A long-term downward shift in this curve may indicate a significant impact upon the hydroperiod. For example, currently 70 percent of the time an elevation of approximately 22.5 ft msl is equaled or exceeded. If this were to change due to pumping impacts, the elevation at 70 percent would decrease. However, the stage-duration curve should only be used as a secondary check on the ecological monitoring. This is due to the collection frequency of the stage data, which is monthly rather than daily and, therefore, only a partial duration series. Full series are preferred for duration curves (Linsley, Kohler, and Paulhus, 1958). Therefore, this type of frequency analysis should only be used as a long-term indication of possible impacts.

REFERENCES

- Bear, J. 1979. Hydraulics of Groundwater. McGraw-Hill Book Company. New York.
- Bouwer, H. and Rice, R.C. 1976. A Slug Test for Determining Hydraulic Conductivity of Unconfined Aquifers with Completely or Partially Penetrating Wells. Water Resour. Res., 12:423-428.
- Butson, K.D. and Prine, G.M. 1968. Weekly Rainfall Frequencies in Florida. Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida. Circular S-187.
- Conner, W.H., Gosselink, J.G., and Parrondo, R.T. 1981. American Journal of Botany, 68:320-331.
- Cost, N.D. and Craver, G.C. 1980. Distribution of Melaleuca in South Florida Measured from the Air. In: Proceedings of Melaleuca Symposium ed. R.K. Geiger. Florida Department of Agriculture and Consumer Services. Division of Forestry.
- Demaree, D. 1932. Submerging Experiments with <u>Taxodium</u>. Ecology, 13:258-262.
- Dohrenwend, R.E. 1977. Evapotranspiration Patterns in Florida. Florida Scientist, Vol. 40, No. 2, 184-192.
- Environmental Science and Engineering, Inc. 1982. Phase I Report: Green Meadows Wellfield Preliminary Hydrogeological and Ecological Assessment; Shallow Aquifer System. Gainesville, Florida.
- Harms, W.B. et al. 1980. The Effects of Flooding on the Swamp Forest in Lake Ocklawaha, Florida. Ecology, 61:1412-1421.
- Hantush, M.S. 1960. Modification of the Theory of Leaky Aquifers. Journal of Geophysical Research, Vol. 65, No. 11, 3713-3725.
- Hantush, M.S. and Jacob, C.E. 1955. Non-steady Radial Flow in an Infinite Leaky Aquifer. Am. Geophys. Un. Trans., 36:95-100.
- Hvorslev, M.J. 1951. Time Lag and Soil Permeability in Ground-Water Observations. Bulletin No. 36, Waterways Experiment Station, Corps of Engineers. Vicksburg, Mississippi.
- Illinois State Water Survey. 1962. Selected Analytical Methods for Well and Aquifer Evaluation. Bulletin 49. Urbana, Illinois.

- Jacob, C.E. 1950. Flow of Groundwater in Engineering Hydraulics. H. Rouse, Editor. John Wiley, New York.
- Linsley, R.K., Kohler, M.A., and Paulhus, J.L.H. 1958. Hydrology for Engineers. McGraw-Hill Book Company, New York.
- Myers, R.L. 1983. Site Susceptibility to Invasion by the Exotic Tree Melaleuca Quinquenervia in Southern Florida. Journal of Applied Ecology, 20:645-658.
- Neuman, S.P. and Witherspoon, P.A. 1972. Field Determination of the Hydraulic Properties of Leaky Multiple Aquifer Systems. Water Resources Research, Vol. 8, No. 5, 1284-1298.
- Smajstrla, A.G., Clark, G.A., Shih, S.F., Zazueta, F.Z., and Harrison, D.S. 1984. Potential Evapotranspiration Probabilities and Distributions in Florida. Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida. Bulletin 205.
- South Florida Water Management District. 1982. Hydrogeologic Reconnaissance of Lee County, Florida. Technical Publication 82-1.
- U.S. Geological Survey (USGS). 1973. Map of Flood-prone Areas, Alva SW, Florida. (7.5-minute series topographic map.)
- Wade, D., Ewel, J., and Hofstetter, R. 1980. Fire in South Florida Ecosystem. Forest Service General Technical Report SE-17. Southeastern Forest Experimental Station. Asheville, North Carolina.
- Walton, W.C. 1983. 35 Basic Groundwater Model Programs for Desktop Microcomputers. International Ground Water Modeling Center, Indianapolis, Indiana.
- Ward, D.B. 1978. Rare and Endangered Biota of Florida Plants.
 Volume 5. Florida Committee on Rare and Endangered Plants and
 Animals. University Presses of Florida. Gainesville, Florida.
- Woodall, S.A. 1980. Site Requirements for Melaleuca Seedling Establishment, pp. 9-15. <u>In</u>: Proceedings of <u>Melaleuca Symposium</u>.

APPENDIX A WATER USE PERMIT FORM PA-31 REV. 11/79

South Florida Water Management District WATER USE PERMIT NO. Re-Issue 36-00150-11

(NON-ASSIGNABLE)

DATE ISSUED:	May 13, 1932	EXPIRATION DATE_	May 13, 1992				
AUTHORIZING:	THE CONTINUATION OF AN UPPER HANTHORN, TAMIAN PUBLIC WATER SUPPLY WI GALLONS.	II ZONE II AND WATER '	TARLE ADUTEEDS EAD				
LOCATED IN:	LEE COUNTY, SECT	TVP. 49	3.46S RGE.23.24.25E				
ISSUED TO:	Florida Cities Water C South Lee County Syste (Cypress Lakes and Gre P.O. Box 5846 Sarasota, Florida 335	m en Meadows Wellfields	;)				
specified above and subject thereto, is by reference ma Upon written notice to the Declaration of Emergency	ant to Application for Permit No. t to the Special Conditions set forth belo de a part hereof. permitee, this permit may be temporari due to Water Shortage in accordance wit lorida Water Management District.	w. Said application, including all plus in the said application, including all plus in the said application, including all plus in the said application, including all plus including al	ans and specifications attached				
	nently or temporarily revoked, in whole of the Water Resources Act and regulation		nditions of the permit or for the				
This Permit does not convey to permittee any property rights nor any privileges other than those specified herein, nor relieve the permittee from complying with any law, regulation, or requirement affecting the rights of other bodies or agencies.							
SPECIAL CONDITI	ONS ARE AS FOLLOWS:						
SEE SHEETS 2, 3	, 4 AND 5 OF 5 - 28 GRO	UNDWATER SPECIAL COND	DITIONS.				
		FILED WITH THE C	LERK OF THE SOUTH ANAGEMENT DISTRICT				
		ON 5-17-8	-2				
		BY DEPUT	TY CLÉRK				

LIMITING CONDITIONS

- 1. APPLICATION FOR AN ADDITIONAL ALLOCATION OF MODIFICATION MAY BE MADE AT ANY TIME.
- 2. THIS PERMIT SHALL EXPIRE 10 YEARS FROM THE DATE OF ISSUANCE.
- 3. MAXIMUM DAY WITHDRAWALS SHALL SATISFY THE FOLLOWING CONDITION:
 - A. MAXIMUM DAY WITHDRAWAL SHALL NOT EXCEED 17.03 MGD. MAXIMUM DAY WITHDRAWAL SHALL NOT EXCEED 1.5 MGD FOR THE CYPRESS LAKES WELLFIELD AND 15.53 MGD FOR THE GREEN MEADOWS WELLFIELD.
- 4. PERMITTEE SHALL SUBMIT TO THE DISTRICT COPIES OF THE MONTHLY D.E.R. WATER TREATMENT PLANT REPORTS.

THE REPORTS SHALL BE SUBMITTED ON A MONTHLY BASIS FOLLOWING THE MONTH OF RECORD. PERMITTEE SHALL BEGIN SUBMITTING REPORTS IN THE MONTH FOLLOWING THE MONTH OF PERMIT ISSUANCE. REPORTS SHALL BE LEGIBLE, AND THE WATER USE PERMIT NUMBER SHALL BE ATTACHED TO ALL REPORTS.

- 5. IN THE EVENT OF A DECLARED WATER SHORTAGE, WATER WITHDRAWAL REDUCTIONS SHALL BE MADE AS SPECIFIED BY THE DISTRICT.
- 6. PERMITTEE SHALL MITIGATE ANY ADVERSE IMPACT CAUSED BY WITHDRAWALS ON LEGAL USES WHICH EXISTED AT THE TIME OF PERMIT APPLICATION. DISTRICT RESERVES THE RIGHT TO CURTAIL FUTURE PUMPAGE RATES IF PUMPAGE CAUSES AN ADVERSE IMPACT ON LEGAL USES OF WATER WHICH EXISTED AT THE TIME OF APPLICATION. ADVERSE IMPACTS ARE EXEMPLIFIED BY BUT NOT LIMITED TO THE FOLLOWING: 1) REDUCTION IN WELL WATER LEVELS RESULTING IN A REDUCTION OF 10% IN THE ABILITY OF AN ADJACENT WELL TO PRODUCE WATER (AN ADJACENT WELL MAY BE A DOMESTIC WELL, LAWN IRRIGATION WELL, PUBLIC WATER SUPPLY WELL, ETC.) 2) SIGNIFICANT REDUCTION IN WATER LEVELS IN AN ADJACENT WATER BODY SUCH AS A LAKE, POND, OR A CANAL SYSTEM, RESULTING IN A SIGNIFICANT IMPAIRMENT OF THE USE OF WATER IN THAT WATER BODY, 3) SALINE WATER INTRUSION OR INDUCTION OF POLLUTANTS INTO THE WATER SUPPLY OF AN ADJACENT WATER USE RESULTING IN A SIGNIFICANT REDUCTION IN WATER QUALITY.
- 7. PERMITTEE SHALL MITIGATE ANY ADVERSE IMPACT ON-SITE LAND USE WHICH EXISTED AT THE TIME OF APPLICATION, AS A CONSEQUENCE OF WITHDRAWALS PERMITTED HEREIN TO THE SATISFACTION OF THE DISTRICT. THE DISTRICT RESERVES THE RIGHT TO CURTAIL FUTURE PUMPAGE RATES IF INCREASED WITHDRAWALS CAUSE AN ADVERSE IMPACT ON LAND USE WHICH EXISTED AT THE TIME OF APPLICATION. ADVERSE IMPACTS ARE EXEMPLIFIED BY BUT NOT LIMITED TO THE FOLLOWING: 1) SIGNIFICANT REDUCTION IN WATER LEVELS IN AN ADJACENT WATER BODY SUCH AS A LAKE, POND, OR CANAL SYSTEM WHICH IS NOT BEING USED AS A SOURCE OF WATER: 2) LAND COLLAPSE OR SUBSIDENCE CAUSED BY REDUCTION IN WATER LEVELS; 3) DAMAGE TO CROPS AND OTHER TYPES OF VEGETATION, THE ELIMINATION OF WHICH WOULD CAUSE FINANCIAL HARN TO THE LANDOWNER.
- 8. THE ANNUAL ALLOCATION SPECIFIED HEREIN IS NOT A GUARANTEE EITHER THAT THE WATER IS AVAILABLE OR THAT THE ANNUAL ALLOCATION WILL NOT PRODUCE AN ADVERSE

IMPACT, BUT REPRESENTS THE BEST EVALUATION BY THE DISTRICT STAFF OF AVAILABLE DATA. THE ALLOCATION MAY BE SUBJECT TO CHANGE IF THE RESULTS OF MONITORING ACTIVITIES SPECIFIED HEREIN DEMONSTRATE AN ACVERSE IMPACT OR SIGNIFICANT ADVANCE OF THE SALINE WATER INTERFACE.

- 9. IF THE PERMITTEE WILL NOT SERVE A NEW DEMAND LOCATED WITHIN THE SERVICE AREA FOR WHICH THE ANNUAL ALLOCATION WAS CALL LATED, THE ANNUAL ALLOCATION MAY BE SUBJECT TO MODIFICATION.
- ONE MONTH PRIOR TO NEW WELL CONSTRUCTION, PERMITTEE SHALL SUBMIT TO THE DISTRICT FOR APPROVAL ALL OF THE FOLLOWING ITEMS FOR EACH PROPOSED WELL: PROPOSED DEPTH OF WELL, PROPOSED DEPTH OF CASING, LOCATION OF OTHER WELLS WITHIN 300' OF PROPOSED SITE, MAP OF PROPOSED SITE, INSTALLED CAPACITY, EVALUATION OF IMPACT OF WITHDRAWALS FROM THE SITE ON EXISTING USES AND LOCATION OF ALL SOURCES OF POLLUTION WITHIN 500' (EXCLUDING SEPTIC TANKS FOR SINGLE FAMILY DWELLINGS).
- 11. PERMITTEE SHALL PERFORM SPECIFIC CAPACITY TESTS ON ALL NEW WELLS WITHIN ONE MONTH OF CONSTRUCTION. THESE DATA SHALL BE SUBMITTED TO THE DISTRICT WITHIN ONE MONTH. PERMITTEE SHALL SUBMIT THE PUMPING RATE, DURATION OF THE TEST AND THE DRAWDOWN AT THE END OF THE TEST.
- 12. NEW WELL CONSTRUCTION OR MODIFICATION OF EXISTING WELLS SHALL BE PERFORMED PER FAC 17-21 AND 17-22. NEW WELL OR MODIFICATIONS OF EXISTING WELLS SHALL BE UNDER THE DIRECTION AND UNDER THE SUPERVISION OF A WATER WELL CONTRACTOR LICENSED BY THE FLORIDA DEPARTMENT OF ENVIRONMENTAL REGULATION. PERMITTEE SHALL OBTAIN A DER WELL CONSTRUCTION PERMIT PRIOR TO CONSTRUCTING A WELL.
- 13. THE DISTRICT AND THE DEPARTMENT OF ENVIRONMENTAL REGULATION SHALL BE NOTIFIED AT LEAST 5 DAYS PRIOR TO THE CONSTRUCTION OF PROPOSED WELLS.
- 14. PERMITTEE SHALL SUPPLY THE FLORIDA BUREAU OF GEOLOGY AND THE SOUTH FLORIDA WATER MANAGEMENT DISTRICT WITH DRILL CUTTINGS FROM ANY NEW WELLS. THE CUTTINGS SHALL BE COLLECTED EVERY FIVE FEET OR EVERY FORMATION CHANGE, WHICH-EVER COMES FIRST. SAMPLE BAGS SHALL BE PROVIDED BY THE PERMITTEE. ONE WELL SHALL BE RESISTIVITY AND GAMMA-RAY LOGGED IF THE WELL IS CONSTRUCTED USING MUD-ROTARY TECHNIQUE AND ONLY GAMMA-RAY LOGGED IF THE WELL IS CONSTRUCTED BY ANY OTHER METHOD. LOGS AND LOCATION MAPS OF THE WELL SHALL BE SENT TO BOTH THE DISTRICT AND THE BUREAU OF GEOLOGY WITHIN ONE MONTH OF THE DATE OF CONSTRUCTION. CUTTINGS SENT TO THE DISTRICT SHOULD BE SENT TO: WATER USE DIVISION, RESOURCE CONTROL DEPARTMENT; SFWMD, P.O. BOX "V", W. PALM BEACH, FLORIDA 33402. THE ADDRESS OF THE FLORIDA BUREAU OF GEOLOGY IS AS FOLLOWS: FLORIDA BUREAU OF GEOLOGY, 903 W. TENNESSEE, TALLAHASSEE, FLORIDA 32304.
- 15. A DRILLER'S WELL COMPLETION REPORT FOR NEW OR MODIFIED WELLS SHALL BE PROVIDED TO THE DISTRICT WITHIN ONE MONTH OF DATE OF WELL CONSTRUCTION OF MODIFICATION.
- 16. SOURCE CLASSIFICATION IS GROUNDWATER FROM THE TAMIAMI (LEHIGH ACRES SANDSTONE) AQUIFER, UPPER HAWTHORN AQUIFER, AND SURFICIAL AQUIFER.
- 17. USE CLASSIFICATION IS PUBLIC SUPPLY.
- 18. THE DIRECTOR OF THE RESOURCE CONTROL DEPARTMENT OR HIS AUTHORIZED REPRESENTATIVES SHALL BE PERMITTED TO ENTER, INSPECT AND OBSERVE THE PUBLIC WATER

SYSTEM UPON DISTRICT STAFF IDENTIFICATION IN ORDER TO DETERMINE COMPLIANCE

19. PERMITTEE SHALL NOTIFY THE DISTRICT OF ANY CHANGE IN SERVICE TERRITORY OR AREA WITHIN 30 DAYS OF THE CHANGE IN BOUNDARY.

WITH SPECIAL CONDITIONS.

- 20. PERMITTEE SHALL DETERMINE "UNACCOUNTED FOR" DISTRIBUTION SYSTEM LOSSES IF THE PERMITTEE DISTRIBUTES WATER WITHIN ONE MILE OF SURFACE SALINE WATER. LOSSES SHALL BE DETERMINED FOR THE ENTIRE DISTRIBUTION SYSTEM ON A MONTHLY BASIS. PERMITTEE SHALL DEFINE THE MANNER IN WHICH "UNACCOUNTED FOR" LOSSES ARE CALCULATED. DATA COLLECTION SHALL BEGIN WITHIN SIX MONTHS OF PERMIT ISSUANCE. LOSSES SHALL BE SUBMITTED TO THE DISTRICT ON A YEARLY BASIS FROM THE DATE OF PERMIT ISSUANCE WITH NO DATA SUBMITTED MORE THAN ONE MONTH AFTER EXPIRATION OF THE ONE YEAR PERIOD.
- 21. IF ANY CONDITIONS OF THIS PERMIT ARE VIOLATED, THE PERMIT SHALL BE SUBJECT TO REVIEW AND POSSIBLE REVOCATION AND MODIFICATION, OR ENFORCEMENT ACTION.
- 22. PERMITTEE SHALL RECORD PUMPING VOLUMES FROM EACH OF THE GREEN MEADOWS WELLS ON A MONTHLY BASIS. THE RECORDED DATA SHALL BE SUBMITTED TO THE DISTRICT EVERY MONTH STARTING THE MONTH FOLLOWING PERMIT ISSUANCE.
- 23. PERMITTEE SHALL RECORD DAILY RAINFALL AT THE GREEN MEADOWS WATER TREATMENT PLANT SITE. THE RECORDED DATA SHALL BE SUBMITTED TO THE DISTRICT EVERY MONTH STARTING THE MONTH FOLLOWING PERMIT ISSUANCE.
- 24. PERMITTEE SHALL LIMIT ANNUAL WITHDRAWALS FROM THE CYPRESS LAKES WELLFIELD TO 0.55 BGY (1.5 MGD) AND ANNUAL WITHDRAWALS FROM THE GREEN MEADOWS WELLFIELD TO 2.898 BGY (7.67 MGD). WITHDRAWALS AT GREEN MEADOWS SHALL BE MADE FROM THE TAMIAMI ZONE II AQUIFER AND SURFICIAL AQUIFER; HOWEVER, WITHDRAWALS FROM TAMIAMI ZONE II AQUIFER SHALL NOT EXCEED 6.0 MGD ON AN AVERAGE DAY BASIS, AND WITHDRAWALS FROM THE SURFICIAL AQUIFER SHALL NOT EXCEED 4.0 MGD ON AN AVERAGE DAY BASIS. PERMITTEE SHALL PROVIDE METERING IN ORDER TO BE ABLE TO TABULATE WITHDRAWALS FROM TAMIAMI ZONE II AND SURFICIAL AQUIFERS SEPARATELY.
- 25. WITHIN TWO YEARS OF PERMIT ISSUANCE, PERMITTEE SHALL CONDUCT AN ENVIRONMENTAL IMPACT ASSESSMENT OF WITHDRAWALS FROM THE SURFICIAL AQUIFER ON CYPRESS AREAS IN THE GREEN MEADOWS WELLFIELD AREA. THE ASSESSMENT SHALL DETERMINE THE BACKGROUND HYDROPERIOD OF THE AREAS, THE DEGREE TO WHICH THE CYPRESS AREAS ARE INTERCONNECTED HYDROLOGICALLY WITH THE SURFICIAL AQUIFER, AND POTENTIAL IMPACTS RESULTING FROM WITHDRAWALS. THE ASSESSMENT SHALL ALSO RECOMMEND A MONITORING PROGRAM FOR EVALUATING IMPACT, AND A WELLFIELD OPERATING PROGRAM FOR SURFICIAL AQUIFER WELLS TO MINIMIZE OR OFFSET ADVERSE IMPACT. PERMITTEE SHALL SUBMIT A PROPOSAL TO THE DISTRICT OUTLINING THE METHOD AND SCOPE OF THE ASSESSMENT WITHIN THREE MONTHS OF PERMIT ISSUANCE.
- 26. WITHIN ONE YEAR OF PERMIT ISSUANCE, PERMITTEE SHALL PERFORM AN AQUIFER PERFORMANCE TEST OF THE SURFICIAL AQUIFER AT THE GREEN MEADOWS WELLFIELD. PERMITTEE SHALL SUBMIT A PRELIMINARY PROPOSAL FOR THE TEST PROGRAM TO THE DISTRICT WITHIN SIX MONTHS OF PERMIT ISSUANCE.
- 27. PERMITTEE SHALL DEVELOP A PERFORMANCE MONITORING PROGRAM FOR THE GREEN MEADOWS WELLFIELD. THE PURPOSE OF THE PROGRAM SHALL BE TO DETERMINE THE EFFECT OF WITHDRAWALS FROM BOTH THE TAMIAMI ZONE II AND WATER TABLE AQUIFERS ON REGIONAL HYDROLOGY, AND TO FURNISH THE DISTRICT WITH SUITABLE INFORMATION TO USE IN EVALUATING FUTURE REQUESTS FOR INCREASES IN ALLOCATION IN SUPPORT OF FUTURE AQUIFER TESTING.

28. PERMITTEE SHALL CONTINUE TO IMPLEMENT THE EXISTING SALT WATER INTRUSION MONITORING AND MANAGEMENT PROGRAM AT THE CYPRESS LAKES WELLFIELD, AND THE MULTI-DEPTH POTENTIOMETRIC HEAD MONITORING PROGRAM AT GREEN MEADOWS WELLFIELD.

APPENDIX B
WELL LOGS

VIII OF WORLD STATE OF PLONIES. DEPARTMENT OF ENVIRONMENTAL REGULATION WELL COMPLETION REPORT I I Other ER: ALA CUHIES WATER The Chatteellow Well Zie Code SKETCH LOCATION OF WELL in relation to local WELL LOCATION: (Tippen) (Time) 南福田田で方の東京について、100円である。 OMMER WELL NUMBER OR NAME: DRILL METHOD: STRONGY [| Cable Tool | | Jet | | Au GEOPHYSICAL LOGS: Type: Burface Casing, Casing, and liner material: Out (In) From Steel Con. (In) WELL LOG 10 23/ JAUL HARN White HIMESTONE 19 23 TCW . Th id. 8 - Sended (PVC), O - Other: IRQUT: | | Name | Maior Coment | | Or SET L CEMEUTED 18 SYRA Vise and Percent of Addition and Grout Valu From (Ft.) To (Ft.) 194 21 GLAY ONLITE WATER LOSS WHIL PRHISH: VI Com Hale | | Perio e 🖛 Screen Ace BRILLING to (Packer Mar 4 Ose, (In.) Stat From Te Size (In.) (Ft.) (Ft.) STAINTESS STEEL 40' 10 .060 80 60 QUALITY TEST: [| None | | Bettere By: [] Health Dept. [] 1868 [of Giber ... (a) Clear [] Colored | | Sulphur | | Salty | | Iron | | Other distance (Micromhas) Parties West Connected: |] No. () Yes (Qate) TEST. by: 11 Named Stew 75100 GAM. IT Aucht | | Ballor | | | Permanent Punts | | Tell-Punts ng Woos Louis 🔲 + 🔲 – 🔠 Ft. After Thouse At Committee in Ft. [] Above [] Select Land Surface on of Messering Ft. + Ft. () Above () Selow MSL ELL ECHIPMENT: [| Coon () Capped [| Valved [.] Permanant Pump [] Tame in Pures: [] Controlugal [] Cylindar [] Jet [] Subr I l'Yurbine (| Other PT | | O-most | | Clocore | | Ganatina | | Other: AUSU Сенин П Сенин П С.Р.М. 22 Form 17-1.213(2) Effective November 30, 1982

n 1

TO THE PROPERTY OF THE PARTY OF

Job N	<u>کے</u> oا	350	5 (î):					
rroje	CT	0121014 12251U 1 Boring	1118/4	PIES G DULIS	JATER WELL	EIEL	1) 1)	Boring No 144-1 Date 10 JAN 34 Sheet of Type of Boring Rig Casing used Size Drilling mud used
Water Time						· · · · · · · · · · · · · · · · · · ·		Boring begun Boring completed Ground Elevation referred to Da
Date								Field Party:
Depth of Casing, fr.	Sample No.	Sample depth from-to (in feet)	Blows/foot on Sampler	Well Construct	Soil Graph	DEPTH IN FEET		DESCRIPTION Soil type, color, texture, consistency, sampler driving notes, blows per foot on casing, depths wash water lost, observed fluctuations in water level, notes on drilling ease, etc.
	- 			7' 57EEL 13'		5-	2'	WOOD, MUCK & ORGANIC DECRIS
				SOLID		10	10'	BR-TAN MED/FINE SAND WISHELL THN SHND W/SHELL
					-		1 1	HARD WHITE LIMEROCK ROCK HARD W/ POCKETS OF SAND & SAELL
				39' 5424811		30-		
	- - -					- <i>70</i> =	39 44	
						50	う/ ラ/	LOSTALL CIRCULATION
						-60	ر 2م	GREEN SOFT CLAY DRILLED TO 65'
						11111	-	
						11111		
					ր դեր երվոր	777		
					:	7	!	Geologist

ESE MO INGNEERING NO

Job No. 8	3505				D MYGINEEFING, INC.
Project G Location of Water Level	Boring:	71'ES W. EADUW.	T 4TER S LIEL	Cernia LFIE	Casing used Size Drilling mud used Boring begun Boring completed
Time					Ground Elevationreferred to
Date					Field Party:
Depth of Casing, fr. Sample No.	Sample depth from-to (in feet) Blows/foot	Well Construct	Soil Graph	DEPTH IN FEET	DESCRIPTION Soil type, color, texture, consistency, sampler driving notes, blows per foot on casing, depths wash water lost, observed fluctuations in water level, notes on drilling ease, etc.
		13, 13, 2, 2, 2,	- - -		2' TAN BROWN SAND - MUCK-WOOD S' TAN INED SAND
		39' SCREEN	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	25-	LIMEROCK - HARD WHITE HARD WHITE LIMEROCK WISAND, SLIGHT LOSS OF WATER IN FORMATION AT TOP, SOME SHELL WIROCK LOST CIRCULATION SCHTERED RETURNS AFTER S' EASIER DRILLING EASY DRILLING - SANDY LIMEROCK - SCATTERED WATER RETURN SWITCHED TO AIR FOR DRILLING - WELL IS PRODUCING LOTS OF WATER.

ESE AND INGINEERING NO

Client TORDA CIFIES WATER COMPANY Project GREEN INCADOWS WELLFIELD Location of Boring: Water Level Time Date								IV Books N. M. Zon 12 (as) Sul
Depth of Casing, fr.	Sample No.	Sample depth from-to (in feet)	Blows/foot on Sampler	Well Construct	Soil Graph	IN FEET	2	Soil type, color, texture, consistency, sampler driving notes, blows per foot on casing, depths wash water lost, observed fluctuations in water level, notes on drilling ease, etc. TAN - BROWN MED SAND W/ SHELL
				13' SOLID 39' SCREEN		55 111111111111111111111111111111111111	33' 45'	HARD WHITE LINGER DELL & SAND LARD LIMEROCK W/SHELL & SAND LIST CIRCULATION SCATTERED WATER RETURN - SANDY LIMEROCK DRILLING EASIER SWITCHING TO AIR ROTARY GREEN SOFT CLAY DRILLED TO GS'
					 			Granist

ESE MO ENGINEERING, INC.

Job No._ 83505

Client FLORIDA CITIES WATER COMPANY Boring No.144-4 Date 16 JAN 84 Sheet ___ of___ Project GREEN MEADONS WELL FIELD Type of Boring_____Rig___ Location of Boring: Casing used_____Size____Drilling mud used
Boring begun______Boring completed___
Ground Elevation_____referred to_____ __Drilling mud used__ Water Level Time Date Datum Field Party: ___ Soil Graph DEPTH Sample DESCRIPTION Soil type, color, texture, consistency, sampler driving notes, blows per foot on casing, depths wash water lost, observed fluctuations in water level, notes on drilling ease, etc. IN FEET 8' TAN / YELLOW BROWN SAND W SAND STEEL TAN SAND W/ SHELL AND SAND 12' Socio WHITE LIMEROCK 39' SCIECEN ROCK SOFTER - MORE SAND NATER CIRC. IS SCATTERED SWITCHED TO AIR CLAY DRILLEU TO 650 Gerlagist

APPENDIX C
STEP DRAWDOWN TEST DATA TABLES

STEP DRAMBOW'S TEST

```
PROJECT #83515
 WELL NUMBER : SPZ4
                                         PAGE #31
 INITIAL PRESSURE : 4.67 PSI
MUMBER OF STEPS
FLOW RATE(1)
                     460 сем
FLOW RATE(2)
                   750 GPM
FLOW RATE(3)
                  : 950 GPM
FLOW RATE(4)
                  : 17[C GEW
TEST STARTING DATE : MAR 21. 1984
                                       TIME : 13:18:00
      DATE
                 TIME
                          ELAPSED
                                     PRESSURE
                          TIME. T
                                        (FSI)
                         (MINUTES)
( STEP ONE )
   03/21/1584 13:12:00
                             2.00
                                     5.2700
   63/21/1984 13:18:00
                            8.50
                                     5.3200
   33/21/1984 13:22:00
                            12.00
                                     5.1800
   13/21/1984 13:23:00
                            13.00
                                     6.6700
   63/21/1584 13:23:28
                            13.33
                                     5.4600
   03/21/1984 13:23:40
                           13.67
                                     4.5700
   23/21/1984 13:24:00
                            14.00
                                     6.6110
   03/21/1984 13:24:10
                           14.17
                                     6.6300
   13/21/1984 13:24:29
                           14.33
                                     6.6500
   23/21/1984 13:24:30
                           14.50
                                     6 - 6690
   03/21/1984 13:24:40
                            14.67
                                     6.6700
   23/21/1984 13:24:50
                           14.83
                                     5.6722
   03/21/1984 13:25:00
                           15.00
                                     5 • 6620
   03/21/1984 13:25:28
                           15.33
                                     6.6600
   03/21/1984 13:25:40
                           15.67
                                     6.6310
   73/21/1984 13:29:00
                           19.30
                                     6.6510
   3/21/1984 13:29:15
                           19.25
                                     5.6670
   03/21/1984 13:29:30
                           17.5√
                                     5.6670
   3/21/1984 13:29:45
                           19.75
                                     6.66.0
( STEP TWO )
   03/21/1984 13:30:00
                           23.00
                                    F.6835
   13/21/1984 13:30:10
                           20.17
                                     4.2901
  03/21/1984 13:30:20
                           20.33
                                     4.5513
   03/21/1584 13:36:30
                           21.5
                                    4.4255
   13/21/1984 13:30:41
                           20.67
                                    4.5610
   .3/21/1984 13:31:50
                           27.83
                                    4.5110
   .3/21/1984 13:31:10
                           21.11
                                    4.55
   3/21/1984 13:31:15
                           21.17
                                    4.65
  73/21/1984 13:31:20
                           21.33
                                    4.5511
   7/21/1964 17:31:71
                           21.5
                                    4.47
   13/21/1984 13:31:45
                           21.67
```

4.4

SICE PRAMOGNE TEST

FPOJECT #83515

PAGE #62

INITIAL PRESSURE: 6.67 PSI

NUMBER OF STEPS: 4

FLOW RATE(1): 490 GPM

FLOW RATE(2): 750 GPM

FLOW RATE(3): 900 GPM

FLOW PATE(4): 1000 GPM

TEST STARTING DATE : MAR 21, 1984 TIME : 13:10:33

DATE	TIME	ELAPSED TIME: T	FRESSURE (FSI)
		(MINUTES)	(-21)
		TF1//01/237	
53 /21/19 84	13:31:50	21.83	ል ልዕስታ
23/21/1984			4.5139
13/21/1984		22.17	
03/21/1984		22.33	4.4700
03/21/1984		22.50	4.4670
13/21/1984		22.67	4.5100
33/21/1984		22.93	4.3500
33/21/1984		23.00	
33/21/1984		23.17	4.2810
03/21/1984		23.33	4.3850
	13:33:30	23.53	, -
	13:33:40		4.3260
03/21/1984	17:33:50	23•67 23•83	4 • 25 1 0
	13:34:60	24.00	4.3000
	13:34:10		4.3000
	13:34:25	24.17	4.2170
	13:34:30	24.33	
	13:34:43	24.50	
	13:34:50	24.67	4.3610
		24.83	4.2500
13/21/1984	13:35:00	25.00	4.3370
	13:35:35	? 5•5?	4 • 15 • 0
	13:45:00	75.00	4.05.0
	14:07:00	57.65	4.18.00
	14:08:00	58.00	4 • 183€
33/21/1984	14:08:10		6.2000
13/21/1584	14:08:20	58.33	4.18UÜ
13/21/1984	14:79:31	ត្ម•ក្	4.2773
17/21/1984	14:39:45	52.67	6.32(d)
	14:08:50	등의 🕳 의 🎖	1.3539
	14:19:00	Ea•;^	4.37 €
3/21/1954		59.17	6.47.1
3/21/1984	14:09:20	57.33	- 42
.7/21/1984		5°•51	
73/21/1984	14:75:4	57.67	4371

STEE CRAMBOWN TEST

WELL NUMBER: SP74

TNITIAL PRESSURF: 6.67 PSI
NUMBER OF STEFS: 4
FLOW RATE(1): 490 GPM
FLOW RATE(2): 750 GPM
FLOW RATE(3): 900 GPM
FLOW RATE(4): 1000 GPM

TEST STARTING DATE: MAR 21. 1984 TIME: 13:10:06

DATE	TIME	FLAPSED	PRESSURF
		TIME, T	(PSI)
		(MINUTES)	
03/21/1984	14:09:50	59.83	6.4650
03/21/1984	14:10:00	60.00	6.4600
03/21/1584	14:10:10	60.17	6.4700
03/21/1984	14:10:20	60.33	6.4800
13/21/1984	14:10:30	65.50	5.5000
83/21/1984	14:10:40	60.67	6.5000
03/21/1984	14:10:50	60.83	5.45000
93/21/1984	14:11:00	61.00	6.5000
33/21/1984	14:11:10	61.17	6.4800
03/21/1984	14:11:20	61.33	6.4700
63/21/1984	14:11:30	61.50	6.4690
03/21/1984	14:11:40	61.67	6.4720
33/21/1984	14:11:50	61.83	6.4800
03/21/1984	14:12:00	62.00	6.4800
53/21/1984	14:12:10	62.17	6.4700
13/21/1984	14:12:20	62.33	6.4600
^3/21/1984	14:12:35	62.50	6.4600
	14:12:45	62.67	6.4500
	14:12:50	62.83	6.4700
	14:13:00	63.00	6.4870
	14:13:10	63.17	6.4800
13/21/1984	14:13:20	63.33	5.4900
13/21/1984	14:13:33	63.50	6.4970
	14:13:43	63.67	6.4710
13/21/1984	14:13:50	63.83	5.4896
13/21/1984	14:14:55	64.00	4.400
	14:14:10	64.17	4.4910
03/21/1984	14:14:20	64.33	6.4813
13/21/1984	14:14:35	6 h . F .	6.47.0
.3/21/1984	14:14:43	64.67	47
	14:14:57	54.03	£ 47
	14:15:00	5F - 7.5	6.47
	4:15:14	65.17	6.47"
	4:15:20	65.33	6.47
	"		. • •

STEP DRAWDOWN TEST

WELL NUMBER: INITIAL PRESSUNUMBER OF STEP FLOW RATE(1) FLOW PATE(2) FLOW RATE(3) FLOW RATE(4) TEST STARTING	RE: 6.67 PSI S: 4 : 490 GPM : 750 GPM : 930 GPM	PROJECT #83515 PAGE #04 TIME : 13:10:05
DATE	TIME FLAPSED TIME: T (MINUTES)	PRESSURE (PSI)
03/21/1984 1 03/21/1984 1 03/21/1984 1	14:16:00 66.00 14:16:10 66.17 14:16:20 66.33 14:16:30 66.50 14:16:40 66.67 14:16:50 66.83 14:17:00 67.00 14:17:10 67.17 14:17:20 67.33 14:17:40 67.50 14:17:40 67.57 14:30:30 80.00 14:30:30 80.25 14:30:30 80.50	6.4500 6.4500 6.4500 6.4500 6.4600 6.4800 6.4800 6.5000 6.5000 6.5000 6.5100 6.5100 6.5000 6.6000
03/21/1984 10 03/21/1984 10 03/21/1984 10 03/21/1984 10 03/21/1984 10	4:33:40 87.33 4:33:40 84.00 4:34:00 84.07 4:34:10 84.33 4:34:10 84.67 4:34:40 84.67 4:34:40 84.63 4:35:10 95.33 4:35:10 95.33 4:35:20 85.33	7.02 C 4.01 C 7.7 C 7.72 C 3.71 C 3.65 C 3.6

3.41 5

STEE CRAMBOM! TEST

: 1000 GPM

PROJECT #83515

INITIAL FRESSURF : 6.67 FSI NUMBER OF STEPS : 4 FLOW RATE(1) : 490 GPM FLOW RATE(2) : 750 GPM FLOW PATE(3) : 900 GPM

WELL NUMPER : SPZ4

FLOW RATE(4)

TEST STAFFING DATE : MAR 21. 1984 TIME : 13:17:00

DATE.	TIME	SLAPSED	Spreeupr	
		TIME. T		
		(MINUTES)	(=51)	
		11101237		
03/21/1984	14:35:50	85.83	3.4800	
	14:36:00			
	14:36:10			
	14:36:20		3.4010	
03/21/1584		86.50	3.3300	
03/21/1984		86.67		
33/21/1984			3.3500 3.3600	
03/21/1984			3•35 ù 3•55}0	
03/21/1984				
13/21/1984		87.33	3.3600	•
13/21/1984	14:37:30	87.50	3.4172	
23/21/1984		87.67	3.5300	
33/21/1984		87•83	3.4300 3.4300	
03/21/1984				
03/21/1984			3 • 223 C	
33/21/1984		88 • 17	3.3600	
13/21/1984		88.33		
13/21/1984	14.30.40	39.50 88.67	3.3510	
13/21/1984	15.30.30	143 A	3.36.0	
(3/21/1984	15.02.14		4.2910	
3/21/1584		143.00		
03/21/1584			6.2175	
13/21/1984			6 • 2610	
3721/1984		143.50	4.3000	
23/21/1984		143.67 143.83	(.3200	
03/21/1984		143 • 83	6.3500	
73/21/1984			4.3700	
13/21/1984			4.3700	
07/21/1984	15:34:37			
3/21/1984			f • 31 C	
13/21/1984		144.67	6.36 D	
13/21/1984		144.63	4.74	
13/21/1984		145.71	÷ • 37 ° (
		145.17	- - 4	
. / 4 4 / 1 7 / 4	14 · 35 · 4.	145.33	F + 5 W	

STEP DRAVDOWN TEST ------

PROJECT #835°5 MELL NUMBER : SPZ4 PAGE #06 INITIAL PRESSURE : 6.67 PSI NUMBER OF STEPS : 4 FLOW RATE(1) : 400 GPM FLOW RATE(2) : 750 GPM FLOW PATE(3) : 500 GPM FLOW RATE(4) : 1000 RPM TEST STARTING DATE : MAR 21. 1984

 017 12110	DECE.	•	PAR	210	1364	1.14	:	13:10:90

DATE	TIME	ELAPSED TIME. T (MINUTES)	°PESSURE (PSI)
03/21/1984 03/21/1984		145.50 145.67	6.3890
03/21/1984		145.83	6.4300 6.4100
03/21/1984		146.00	6.4139
23/21/1584	15:36:10	146.17	6.4130
03/21/1984		146.33	6.4290
3721/1984		146.50	6.4275
03/21/1984		146.67	6.4200
03/21/1984		146.83	6.4500
03/21/1984		147.00	6.4600
03/21/1984 03/21/1984		147.50	6.5000
73/21/1984		198.09	6.5000
1012111904	10.28:10	199.17	6.5000
(STEP FOUR)			
03/21/1584	16:28:20	198.33	3•18≎∂
13/21/1984	16:28:30	194.50	2.7890
13/21/1984	16:28:40	192.67	2.3600
3721/1984	16:28:50	198.83	2.2165
03/21/1584	16:29:10	199.30	1.9870
13/21/1584	16:29:10	199.17	1.9000
13/21/1984	16:29:20	199.33	1.8310
13/21/1984	16:29:30	199.50	1.6000
23/21/1984 23/21/1984	16:29:40	199.67	1.6800
13/21/1984	16:29:50 16:30:00	199.83	1.7933
13/21/1984	16:30:10	200•00 200•17	1.7139
F3/21/1984	16:30:20	200.33	1.5510
13/21/1984	16:30:7	200.50 200.50	1.7300
3/21/1964	16:30:40	211.67	1.6000 1.5300
73/21/1984	16:30;51	201.83	1.3970 -1.3970
13/21/1984	16:31:	211.50	1.6573
03/21/1984	16:31:10	2 1 • 17	1.5101
3/21/1584	16:31:20	201.33	1.4700
	·		- · ·

STEP PRAUDOWN TEST

WELL NUMFER: SFZ4
INITIAL FFESSURF: 6.67 PSI
NUMBER OF STEPS: 4
FLOW RATE(1): 490 GPM
FLOW PATE(2): 750 GPM
FLOW RATE(3): 900 GPM
FLOW RATE(4): 1000 GPM

TEST STAPTING DATE : MAR 21. 1994 TIME : 13:10:00

DATE	TIME	ELAPSED	PRESSURE
		TIME • T	(FSI)
		(MINUTES)	
03/21/1984	16:31:30	201.50	1 6000
03/21/1984			1.6000
03/21/1584	16:31:50	201.67	1.3600
03/21/1984		201.83	1.3733
23/21/1984		202.00	1.3500
		202.17	1.3100
23/21/1984	16:32:20	202.33	2.2600
73/21/1984	16:32:30	202.50	2.6700
(3/21/1984	16:32:40	202.67	2.45€€
03/21/1984	16:32:50	202.83	2.4700
23/21/1984	16:33:00	293.90	2.4700
03/21/1984	16:33:11	203.17	2.5500
03/21/1984	16:33:20	293.33	2.2790
03/21/1984	16:33:30	293.50	2.3700
23/21/1984	16:33:40	203.67	2.4250
93/21/1984	16:33:50	203.83	2.3700
73/21/1984	16:34:90	234.23	ମ •62ମ ପ
03/21/1984	17:21:00	251.04	5.869¢
3/21/1584	17:21:30	251.51	E_0100
73/21/1584	17:22:00	252.00	4.0100
13/21/1984	17:22:10	252.17	6.0500
63/21/1984	17:22:20	252.33	5.1000
33/21/1984	17:22:30	252.50	6.1300
03/21/1984	17:22:46	252.67	6.1600
33/21/1984	17:22:53	252.83	F.1800
23/21/1984	17:23:35	253.00	6.2000
13/21/1584	17:23:15	253.25	
3/21/1984	17:23:30	253.50 253.50	6 • 2200
03/21/1984	17:23:45		6.2330
	. / • 43 • 45	257.75	6.2516

APPENDIX D AQUIFER PUMP TEST DATA TABLES

PHINE TEST (DRAWDOWN PHASE)

:	TELL NUMBER : MA- PACIUS (F) DISCHAPRE (C) STATIC PRESSURE	: : 122 : 20	65.11 FEET 98.00 6PM .7181 PST		ECT HOTENS ACE HOT
	PUMP STARTING DATE PUMP STOPPING DATE				= 14:45:38 = 15:30:00
TIME	ELAPSED TIME T (MINUTES)	PPESSURE (PSI)	CHANGE IN PRESSURE (PSI)	CHANCE IN HEAD (FEET)	T/P++2 (MIN/SQFT)
(JUL 1	7 • 1984)				
14:45:21 14:455:21 14:455:11 14:455:11 14:455:11 14:455:11 14:456:15 14:466:15 14:466:15 14:47 14:47 14:47 14:47 14:47 14:47	0.18 0.35 0.58 0.68 0.68 1.35 1.55 1.65 1.80 2.85 2.68	20.4966 20.4519 20.3519 20.3535 20.2881 20.2632 20.2632 20.2632 20.2637 20.2637 20.2375 20.237	0.1215 0.3157 0.3663 0.3970 0.4146 0.44309 0.44549 0.44549 0.44549 0.446725 0.446725 0.44963 0.4963 0.5067 0.5067	9.29 9.79 9.945 9.95 9.95 9.95 1.02 1.04 1.13 1.16 1.16 1.16 1.17 1.18	0.29490E-03 0.82840E-03 0.82840E-03 0.16174E-03 0.20118E-03 0.24063E-03 0.28008E-03 0.31963E-03 0.31963E-03 0.3797E-03 0.3797E-03 0.55562E-03 0.55562E-03
14:42:11:11:11:11:11:11:11:11:11:11:11:11:11	3.00 3.00 3.60 3.60 4.00 4.00 5.00 6.00 7.00	20.2067 20.2031 20.1979 20.1977 20.1955 20.1738 20.1738 20.1738 20.1738 20.1738	0.5114 0.5150 1.5260 1.5260 1.53260 1.	1.198 1.213 1.224 1.224 1.225 1.256 1.257 1.264 1.271	0.67456E-03 0.71450E-03 0.779297E-03 0.77179E-03 0.15697E-02 0.130874E-02 0.13087F-02 0.14241E-02 0.15607E-02 0.15607E-02

FUMP TEST (DPAUDO/N PHASE)

010 91.	LL MUMBER : M4- CIUS (8) SCHARGE (8) ATIC PRESSURE MP STARTINS DATE MP STOPPING DATE	: : 129 : 20		тімЕ	ECT #97515 A9E #12 = 14:45:00 = 15:00:00
TIME	ELARSED TIME T (MINUTES)	PPESSURE	CHANGE IN PRESSURE (PSI)	CHANGE IN HEAD (FEET)	· -
(JUL 17, 13111115555555555555555555555555555555	22229988889999999999999999999999999999	23.16.00 16.00	94593479351846616930 00.55566981 00.55566981 00.557777777777777777777777777777777777	1.281 1.286 1.286 1.286 1.286 1.286 1.308 1.311 1.311 1.315 1.315 1.335	0.2341E-32 0.21341E-32 0.21341E-32 0.2252E-92 0.235E-92 0.26233E-32 0.26233E-32 0.28600E-32 0.3333335707E-32 0.335700E-32 0.4345E-32 0.45168E-32 0.46168E-32 0.47535E-32 0.47535E-32 0.47535E-32 0.47535E-32 0.54485E-32 0.54485E-32 0.54485E-32 0.54485E-32 0.54485E-32 0.54485E-32 0.54485E-32
15:20:21 15:22:21 15:22:21 15:24:21 15:26:21 15:23:21 15:4:21 15:4:21	35.35 37.35 39.35 41.35 43.35 45.35	21.1364 21.1342 21.1342 21.1342 21.1291 21.1312 21.1341 21.1241	0.5817 0.5832 0.5839 0.5876 0.5891 0.5869 0.5920	1.359 1.354	0.799355-02 0.836695-00 0.884025-02 0.931365-02 0.978705-02 0.102605-01 0.107345-01

FHMP TEST (DRANDOUN PHASE)

	TEL NUMBER: MA PADINS (5) PISCHARGE (6) PTATIC PRESSURE PUMP STAPTING DA	: : 12 : 2	.65.11 FEET 919.30 GRW 0.7181 PSI 7, 1984		UCCT #43515 Page #13
F	UMP STOPPING DA	TE : JUL 2		TIME	= 14:45:00 = 15:00:00
TIME	ELAPSED TIME		PRESSURE	CHAMGE IN	T/P++2
	(MINUTES)	(PSI)	(PSI)	(FEST)	(MIN/SOFT)
(JIIL 1	7, 1984)			*****	
15:40:21	55.3E	25.1224	0.5957	1.374	0.131715-01
15:45:21 15:50:21	60.35	20.1187	0.6001	1.394	C+14284E+01
15:55:21	65•35 70•35	20.1563	0.6118	1.411	0.15467E-01
16:30:21	75.35	20.1100 20.1063	0.6081	1.453	0.166515-01
15:05:21	80.35	20.1063	0.5118 0.5118	1.411 1.411	9-17834E-11
16:10:21	85.35	20.1541	0.6140	1.416	0.190185-31 0.202315-01
16:15:21	90.35	20.1004	0.6177	1.425	9.21385E=01
15:49:0 <u>1</u>	123.02	20.0982	2.6199	1.430	0.25116E-01
17:18:01	153.72	20.1941	0.6146	1.416	0.362175-01
17:48:11	183.02	20-1034	0.6147	1.418	7.43319E-01
18:18:01 18:48:01	213.02	27.1019	0.6162	1.421	0.504195-01
19:18:31	243.02	29.1904	9.6177	1.425	0.57519E-01
19:48:01	273.02 303.02	20.0975	3.5206	1 • 4 3 2	0.646196-01
20:18:01	333.12	20.0953 20.1841	0.6228	1.437	0.7172^E=01
20:48:01	363.02	20.1019	0.6140 0.6162	1.416	0.788215-01
21:18:01	393.02	20.1041	0.5162 0.5140	1.421	0-859215-01
21:48:11	423.02	20.1063	9.6118	1.416 1.411	0.93022E=01
22:18:01	453.02	20.1114	0.5057	1.409	0.15012E na 0.10722E ab
22:49:01	483.72	21.1114	0.5067	1.413	0.114725 33
27:18:11	513.02	27.1100	0.6091	1.473	0.121425 00
23:48:01	543.02	20.1122	3•69 5 9	1.398	0.12852F ID
33:46:31	603.32	20.1092	0.49009	1.475	0.14273E 0:
21:48:11 32:48:31	663.72	23-1348	0.6133	1.415	0.156935 90
13:48:51	723.02	25.9931	0.6250	1.442	0.171135 07
74:46:21	783.02 943.02	23.0821	0•6365	1.457	0.18573E 00
75:49:3 <u>1</u>	933.02	20.0755	0.6426	1.482	्रे•्रवञहरूष्ट ४००
15:49:11	700•02 963•02	20.0755 21.0711	0.5426	1.492	0.21773E 01
· • · •	2 % € *	2 • 0 * 1 1	5.5470	1 • 4 = 3	0.227935 01

PUMP TEST (DRAWDOWN PHASE)

				cpn.	ECT #93535
	្នា∐្រស់ដែលម្ន	144-1			AGE BT4
	PARTHS (R)	•	65.10 FEET	_	H (* * 5 H
	DISCHARGE (Q)	. 120	10.00 GPM		
	STATIC FRESSUR		.71°1 PSI		
	110 7 12000		** iT-T R2T		
	PUMP STARTING	DATE * 300 15	'. 100A	TTUC	
	PUMP STOPPING	DATE . UNL 20	4 1707 - 1004		= 14:45:50
	O TOTAL TRO	PAIL . DOE 21	1704	1 I™E	= 15:30:30
TIME	ELAPSED TI	ME DOCCCHOE	CHANGE IN	C1144.0= +	
• • •	T	: FRESOUNE			T/0**2
		PSI	PRESSURE	HEAD	
			(55I)	(FEET)	(MIM/SOFT)
(.1111	18, 1984)				
	47.3 42613				
17:48:0	1 1123.02	29.0779			
8:46:0			9.6411	1.479	3.24917E 61
19:48:0	1143.72	20.0762	3.6419	1.481	\$•25634E 00
10:48:0		20.0740	0.6441	1.486	0.27054E 50
11:48:0:		20.0652	0.6529	1.506	0.284745 00
12:48:0		20.0381	0.4800	1.569	0.29894E 30
		20.0125	9∙7956	1.628	0.31314E J9
13:48:91		19.9883	9.7298	1.684	0.327345 00
14:48:53			0.7650	1.765	0.34154E 00
15:48:01		19.9281	0.7980	1.822	9.35574E 95
16:48:01		19.8878	7.8303	1.915	0.369945 03
17:48:03		1°•8702	0-8479	1.956	0.38415E 00
18:49:23		19.8577	0.3604	1.905	0.39835E 30
19:48:01		19.9025	9.9156	1.881	0.41255E 00
20:48:01		19.9171	0.8010	1.848	0.42675E 30
21:48:01		19.9281	0.79 <u>0</u> 0	1.822	0.440955 93
22:48:01		19.9391	9.7799	1.797	0.455155 33
23:48:00	- · · · · · · ·	19.9443	0.77 <u>3</u> 8	1.795	0.469355 10
00:48:42		19.9472	2.7799	1.779	0.493725 03
11:49:41		19.9457	0.7724	1.782	0.49791E 00
2:49:40		19.533	0.7848	1.910	9.51211F 33
3:48:4:	222 3 +68	19.9311	2.7872	1.015	0.526325 00
[4:48:4 <u>]</u>	2293.69	10,9252	7.7926	1.827	0.54052F 10
35:49:41	2343.68	19.9252	0.7925	1.929	0.55472F II
06:48:40	2493.68	19.9245	7.7936	1.231	0.568925 J0
7:49:41	2463.68	19.9291	0.7900	1.322	a series in
22:48:41	2523.69	19.9259	0.7922		0.583125 ()
19:48:41	2583.63	19.9223	0•7958	1.827	0.597325 00
13:48:41	2643.68	19.9869		1.936	0.611525 00
11:49:41	4540+56 27(3.69		0.9112	1.671	0.62572E 10
12:43:41	27t3•68 2763•68	19.8815	0.9376	1.032	ଜ∙୫୫୭୩୭୭ ୨୬
<u>* G. * * * * * * * .</u>	ಷ≀ರನ•65	19.8577	^. #654	1.995	0+65413F 11

PUMP TEST (DRAWDOWN PHASE)

	FEE MINEER * M4-	. 1			FCT #83575
	PARTES (P)	-	65.30 FEST	ū	Ver Hile
	PISCHAPGE (g)		713.17 GPM		
	STATIC PRESSURE				
	-1-1-6 (-1.250M)	• 2	7-7181 PST		
	FUMP STARTING DAT	E : JUL 1	7 • 1984	TIME	= 14:45:30
	PUMP STOPPING DAT	E : JUL 25			- 15:37:43
			,, 1.51	, , , , , , , , , , , , , , , , , , ,	- 15.20145
TIME	ELAPSED TIME	E D E D O LUB E	00.140.5		
	T	FPESSURE	CHANGE IN	CHANGE IN	T/P**2
		45071	PRESSURE	HEΔD	
	(MINUTES)	(DSI)	(DSI)	(FEET)	(MIM/SQFI)
	~~~~~~~			*	
CUBE	19, 1984)				
13:49:4	2803.69	19.8291	େ⊕େଜ⊗ନ୍ର	2.051	0 660775 61
14:43:4		19.7961	0.222	2.127	0.66873E 01
15:48:43		19.8299	0.9882	2•127 2•349	0.69253E 31
15:48:43		19 8291	3.9893		0.69673E 00
17:48:41		19.8189	0.8992 0.7023	2.051	0.710935 00
18:49:4		19.8240		2.074	0.72513E 0.
19:48:41		19.8304	9-3941	2.063	0.73933E 10
20:48:43	- 0 - 1 0 - 2	19.8379	0.9875	2.747	5.75353E190
21:48:41		19.8401	0.8802	2.030	0.76774E 00
22:48:4		_	0.8780	2 • 125	0.78194E 00
23:49:4		19.8423	0.8758	2.529	0.79614E 00
33:48:4		19.8489	0 • 8 <b>4 6</b> 5	2.005	0.819345 00
11:48:41		19.8453	0.8728	2.013	0.824545 10
12:48:41		19.8394	0.P787	2.127	0.83874E 00
		19.8731	0.8450	1.949	C.85294E 33
13:48:41		19.8335	9•8846	2.341	0.86714E 33
04:45:41		19.8321	9.2860	2.344	0.88135E 10
25:48:43	<b>3783.6</b> 8	19.8255	0.8926	2.059	0.995555 00

#### PRME TEST (DRAMDOWN PHASE)

				₽ <b>₽</b> ₽₽	EOT #93535
	L MUMBER : MA⊷	2			AGE #11
	IUS (F)	:	55.00 F85T		
	CHARGE (C)	: 12	୫୧୨ <b>.</b> ୧୧ ଜ୍ୟା		
AT2	TIC PPESSURE		3.2513 PSI		
PUM	P STARTING DAT	E : JUL 1	7. 1984	ŤIME	= 14:45:00
	P STOPPING DAT				
		_ , <b></b>	3 <b>4</b> 2 7 3 4	II™E.	= 15:06:00
TIME	ELAPSED TIME	PPESSURE	CHANGE IN	CUANCE TO	= =
	T	CARBONE	PRESSURE	CHANGE IN	T/P*+2
	(MINUTES)	(PSI)	(PSI)	HEAD	
	******	(-31)	1,211	(FEET)	(MIN/SOFT)
				*	
€JUL 17•	1984)				
1002 114	± 21/4 / .				
14:45:01	0.02	97 1/75	5 6074		
14:45:11	7.18	23 - 1675	ଜ•ପ୍ୟଞ୍ଚ	0.173	9.55396E-75
14:45:21	7•16 3•35	22.=674	9.2839	0.655	0.60666E=34
14:45:31		22.9171	C+3343	0.771	0.11570E-03
14:45:41	0.52	22.8899	0.3614	S-834	0.17080E-03
14:45:51	0.68	22.8737	0.3776	7.871	0.22590E-33
	9.85	22.8493	0.4020	9.927	0.28099E=03
14:46:01	1.02	22.8394	0.4119	0.950	9.33689E=03
14:46:11	1.18	22.8322	0.4191	9.967	C.39119E+33
14:46:21	1.35	22 + 8178	0.4335	1.000	0.44628E=33
14:46:31	1.52	22 + 2142	0.4371	1.008	0.501395-3
14:46:41	<b>1 • 6</b> 8	22.8075	0.4443	1.525	0.35647E-13
14:46:51	1.85	22.8060	9.4453	1.027	0.61157E=03
14:47:21	2 • 22	22.7980	9.4533	1.046	0.666675-33
14:47:11	2.18	22.7952	0.4561	1.052	0.72176E-03
14:47:21	2.35	22.7853	0.4660	1.075	C.77686E-03
14:47:31	2.52	22.7826	0.4687	1.081	0.831965-03
14:47:41	2 • 68	22.7790	0.4723	1.099	0.88715E-03
14:47:51	2 • 85	22.7757	0.4750	1.096	0.54215E=03
14:48:01		22.7795	0.4813	1.110	0.997255-03
14:48:21		22.7680	3.4831	1.114	1.11.745+32
14:49:41	3.68	22.7611	7.4912	1.133	0.121765-32
14:49:01	4.02	22.7556	5.4957	1.143	1.132785-02
14:49:31	4.52	22.7484	0.5029	1.160	5.1407152
14:50:01	5.02	22.7465	0.5048	1.164	0.165645-32
14:50:31		22.74.2	0.5111	1.179	0.189375-02
14:51:01		22.7393	0.5120	1.161	1.19890E=32
14:51:31		<del>-</del>	2.5384	1.173	0.215435-02
14:52:01	_	22.7348	7.5165	1.191	0.231965-12
14:52:31		22.7366	0.5147	1.127	0.048495=12
14:53: 1		22.7357	0.5156	1.109	
- · · ·			<b>↓</b> ● ↑ ± 3 €	1 • - 7 7	î•8e5015 <b>-</b> 02

## DUMP TEST (DRAWDOWN SHASE)

	FUL NUMBER: M4. MADIES (R) MISCHARGE (A) MATIC PRESSURF	: : 128	75.00 FEFT 970.00 GRW 3.2513 PST		EOT #93805 AOF #42
b	UMP STAPTING DAT	_	7+ 1994 )+ 1984		= 14:45:99 = 15:09:30
TIME	ELAPSED TIME	PRESSURE	CHANGE IN	CHANGE IN	T/0**2
	(MINUTES)	(DSI)	(PSI)	(FEET)	(MIN/SQFT)
(JUL 1	7. 1984)				
14:53:31	8.52	22.7330	0.5183	1.196	r.28184E-02
14:54:51	9.r2	22.7339	7.5174	1.194	0.25937E-02
14:54:31	9.52	22.7254	0.5219	1.204	0.314605-32
14:55:31	10.92	22.7267	0.5246	1.210	0.33113E-02
14:56:35	11.08	22.7267	0.5246	1.210	0.366395-32
14:57:05	12.08	22.7240	9.5273	1.216	0.39945E-02
14:58:05	13.08	22.7195	0.5318	1.227	0.432515-02
14:59:05	14.08	22.7240	2.5264	1.214	0.465565-32
15:30:05	15.18	22.7195	0.5318	1.227	0.49862E-12
15:21:05	16.00	22.7213	3.5393	1.223	9.53168E-12
15:02:05 15:03:05	17.08	22.7150	0.5363	1.237	8.56474E - 12
	18.03	22.7169	0.5345	1.233	0.59780E-32
15:04:05 15:05:05	10.08	22.7141	0.5372	1.239	0.639855-02
15:36:35	20.08	22.7153	0.5363	1.237	0.663915-32
15:07:05	21.08	22.7123	0.5390	1.243	0.49697E-02
15:38:35	22.08 23.08	22.7114	0.5399	1.245	0.73003E-92
15:09:05		22.7132	0.5381	1.241	0.763198-02
15:10:05	24.08 25.30	22.7987	1.5426	1.252	9.796145-02
15:12:35	25 • ∂8 27 • ≎8	22+7132	1.5381	1.241	0.9292IE-02
15:14:07	29.08	22.7051	0.5462	1.240	३ <b>.</b> १९5325 <b>-</b> ∪2
15:16:21	27.08 31.35	22.7060	9.5453	1.258	0.061435-02
15:18:21	33.35 35.35	22.7060	1.5453	1 + 258	0.10764E=01
15:20:21	aa∙at 3 <b>5</b> ∙35	22.7023	0.5400	1.256	0.110255-01
15:22:21	37∙35	22.7633	7.5480		8•116865=81
15:24:21	२ / • २० ३ <b>० •</b> ३ह	22.7033	2.5480		1.12347E-01
15:26:21		22.7033	0.5480	1.264	0.13.09E+31
15:28:21	41.35 43.35	22.7006	0.5507	1.270	9.13669E+01
15:30:21		22.7064	0.5507		0.14731E-11
15:35:21	45.35 50.35	22.6906	9.5607		9.14997F=91
10.00.C	<b>□</b> 2 • 3 □	22.5888	0.5 <b>62</b> 5	1.298	^•16645E <b>-</b> 01

#### FUMP TEST (DPANDONN PHASE)

e 2	FLL MUMBER : M4 ADIUS (P) ISCHARGE (C) TATIC PRESSURE	: : 128	55.70 FETT 200.70 CPM 5.2513 PSI		JECT 403535 1496 #33
PI PI	UMP STAPTING DAT UMP STOPPING DAT		7• 1984 3• 1984		= 14:45:36 = 15:06:30
TIME	FLARSED TIME T (MINUTES)	PRESSURE	CHANGE IN	CHANGE IN HEAD	
****	£ = TMO 1 = 2 )	(PSI)	(PSI)	(FEET)	(MIN/SOFT)
(JUL 1	7, 1984)				
15:40:21 15:45:21 15:50:21 15:50:21 16:05:21 16:10:21 16:148:01 16:148:01 17:148:01 17:148:01 18:148:01 19:148:01 20:148:01 21:148:01 21:148:01 21:148:01 21:148:01 21:148:01 21:148:01 21:148:01 21:148:01 21:148:01 21:148:01 21:148:01 21:148:01 21:148:01 21:148:01 21:148:01 21:148:01 21:148:01 21:148:01	55555555555555555555555555555555555555	22.6952 22.6753 22.6754 22.6762 22.6764 22.6764 22.6669 22.6699 22.6699 22.6693 22.6693 22.6693 22.6693 22.6693 22.6693 22.6728 22.6728 22.6728 22.6728 22.6752 22.6752 22.6752 22.6762 22.6762 22.6726	0.55625 0.57626 0.57669 0.57750 0.57750 0.57750 0.58834 0.58835 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.58836 0.5883	1.283 1.283 1.329 1.331 1.3335 1.3345 1.3345 1.3349 1.3349 1.3349 1.3347 1.3347 1.3327 1.3327 1.3335 1.3347	C.19950E-01 C.19950E-01 C.21603F-01 O.23256E-01 O.24950E-01 O.26505E-01 O.28968E-01 O.29968E-01 O.50584E-01 O.50584E-01 O.50584E-01 O.50584E-01 O.70336E-01 O.90253E-01 O.90253E-01 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.12099E-00 O.120
22:48:01 03:48:01 04:48:01 05:48:01 05:48:01	663 • 12 723 • 32 783 • 12 843 • 12 913 • 12 913 • 12	22.6599 22.6564 22.6492 22.6447 22.6437 22.6436	0.5814 0.7949 0.5021 0.5056 0.6076 0.4157	1.309 1.599 1.402	0.21718E 00 0.23971E 00 0.258855 00 0.27868E 00 0.29862E 00 0.31875E 00

#### P(MP TEST (DRAWDOWN PHASE) -----

⊙ I ⊕ ∇	EL NUMBER: M4 DIUS (R) SCMARGE (G) ATIC PRESSURE	: 12	55.00 FEET 200.00 GPM 3.2513 PST		ECT =07818 AG≝ #14
PU 19	MP STARTING DA MP STOPPING DA	TE : JUL 1			= 14:45:00 = 15:00:00
TIME	ELAPSED TIME		CHANGE IN PRESSURE	HFAD	•
	(MINUTES)	(PSI)		(FEET)	(MIN/SQFT)
			*****		
/JUL 18	• 1984)				
2 <b>7:</b> 42:2:	1023.02	22.6410	0.6103	1.409	3•3391¤E 33
38:48:31	1083.02		0.5066	1.399	0.35992E 00
09:48:01	1143.02	22.6419	0.5094	1.406	9.37786E 10
10:48:01	1203.02	22.6329	0.6184	1.427	0.397698 00
11:48:01	1263.02	22.6941		1.493	0.417535 00
12:48:01	1323.02	22.575?	0.6761	1.560	0.43736E 00
13:48:01	1383.02	22.5517	0.6996	1.614	0.45723E 33
14:48:51	1443.02	22.5202	0.7311	1.687	0.47703E 33
15:48:01	1503.02	22.4895	2.7618	1.757	0.49686E 00
16:48:01	1563.12	22.4552	0.7961	1.836	0.51675E 38
17:48:01	1423.02	22.4327	0.8196	1.888	0.53653E 32
18:48:01	1683.02	22.4246	0.8267	1.967	0.556375 33
19:48:01	1743.02	22.4642	3.7871	1.816	
20:48:01	1893.02	22.4751	0.7762	1.791	0.57620E 00 0.59604E 00
21:48:01	1863.02	22.4877	0.7636	1.761	
22:48:01	1923.02	22.4949	0.7564	1.745	0.61587E 00 0.63571E 30
23:48:01	1983.02	22.5048	0.7465		0.65554E 90
19:48:42	2043.70	22.5985	9.7428		
1:48:41	2103.68	22.5066	0.7447		
72:42:41	2163.69	22.4922	1.7591		
3:49:41	2203.40	22.4931	0.7522		
34:45:41	2283.68	22.4886	0.7627		0.73511E 30
5:48:41	2343.68	22.4850	0.7663	1.759	0.754945 00
36:48:41	2403.68	22.4805	0•/55 <i>3</i> 0• <b>77</b> 08		0.77477E 33
:7:48:41	2463.68	22.4895	7.7618		0.79461E 33
J8:49:41	2523.68	22.4964	0.7609		0.07444E 30
9:48:47	2533.62	22.4877	3.7636		0.93499E 30
15:46:41	2643.68	22.4661	0.7852		0.85411E 31
11:48:41	2703.68	22.4391	0.8132		0.87394 <u>6</u>
12:48:41	2763.69	22.4137	0•8137 0•8376		^.25379F 23
_	<u> </u>	<u> </u>	. •ाजा <i>I 1</i>	1.932	0.513615 19

				PR⊝J	ECT #43515
	ELL MUMBER: M4	<del>-</del> 2			AGE #IE
	MDIUS (8)	:	55.00 FEET		
	ISCHARGE (O)	: 128	300 <b>.</b> 00 904		
έ.	TATIC PRESSURE		3.2513 PSI		
	JMP STAPTING DA		7. 1984	TIME :	= 14:45:30
₽Į	JMP STOPPING DA	TE : JUL 20			= 15:00:00
				• 1 • • •	- 10-10-11
TIME	ELAPSED TIME	FRESSURE	CHANGE IN	CHANGE IN	T/8 ++2
	Ŧ		PRESSURE	HEAD	17 - 7 - 5.
	(MINUTES)	(PSI)	(PSI)	(FEET)	(MIN/SOFT)
					**********
(JUL 19	+ 1984)				
13:48:41	2823.68	22.39F9	0.8655	1.997	0.93345 <u>E</u> 35
14:48:41	2883•68	22.3569	0.8944	2.063	0.953285 01
15:48:41	2943.68	22.3894	0.8619	1.998	0.97312E J3
16:48:41	3003 <b>.</b> 68	22.3875	9.8637	1.992	0.992955 00
17:48:41	3063.68	22.3849	7.8664	1.999	0.10128E 31
18:48:41	3123.68	22.3840	0.8673	2.001	0.10326E J1
19:48:41	3183.68	22.3938	0.8583	1.986	0.10525E 91
20:49:41	3243.68	22.3948	0.8565	1.976	0.10723E 31
21:48:41	3303.68	22.4029	0.8434	1.957	0.10723E 31
22:48:41	3363.68	22.3993	2.8520	1.º65	
23:49:41	3423.68	22.4083	0.8430	1.545	· <del>-</del>
10:48:41	3483.69	22.4029	1 • R484	1.957	· · · · ·
01:48:41	3543.68	22.4020	0.8493	1.959	7.11516E 01
32:48:41	3693.68	22.4282	0.8231	1.899	0.11715E 01
03:48:41	3663.68	22.3948	0.8565	-	0.119135 01
04:48:41	3723.68	22.3855	0.8628	1.976	0.121115 31
05:48:41	3783.68	22.3849		1.990	0.12310E 61
	0700#05	<u>&amp; &amp; ● U (1 ♥ ₹</u>	9 • 9 6 6 4	1.999	?•12509E 01

#### PHMP TEST (DPANDOUN PHASE)

		v.		PR C. J	50 <b>7</b> #43805
	ELL MUMPER : MA-	<b>7</b>			ACF #11
	ADIUS (R)	•	46.30 FEET		
	FISCHARGE (c)		963.55 GPW		
\$	TATIC PRESSURE		4.0739 PST		
		_			
	UMP STARTING DATE		7 1984	TIME	= 14:45:30
۴	UMP STOPPING DATE	: JUL 23			= 15:08:j0
		-		. 1	- 10.00.00
TIME	ELAPSED TIME	PRESSURE	CHANGE IN	CHANGE IN	T/R + +2
	T		PPESSUPE	HEAD	
	(MINUTES)	(PSI)	(PSI)	(FEET)	(MIN/SOFT)
(JUL 1	7• 1984) -				
14145:01		23.9849	0.3859	0.198	0.78765E+05
14:45:11		23.8283	0.2425	3.559	2.966416-04
14:45:21	9.35	23.7831	0.2877	0.664	0.165415-03
14:45:31		23.7533	3.3175	0.732	0.24417E-33
14:45:41	<b>0 • 6</b> 8	23.7336	0.3372	3.778	9.32294E-03
14:45:51		23.7212	9.3496	0.896	0.40170E-03
14:46:01	1 • 02	23.7081	0.3627	0.837	0.48947E=93
14:46:11		23.6993	0.3715	9.857	0.55923E=33
14:46:21	1.35	23.6891	0.3817	0.881	9-63819E-93
14:46:31	1.52	23.6811	0.3897	0.899	2.716765-03
14:46:41	1 • 6 8	23 • 6775	0.3933	0.907	1.79553E-33
14:46:51		23.6702	0.4006	0.524	0.874295-03
14:47:81		23.6644	0.4064	0.937	0.95306E-03
14:47:11		23.6585	0.4123		0.10318E-02
14:47:21		23.6542	0.4166	_	3-11106E-02
14:47:31		23 • 64 98	0-4213		0.118945-92
14:47:41		23.6469	0.4239		C-12691E-02
14:47:51		23.6447	0.4261		0.134695-02
14:48:81		23.6403	9.4305		0.142565-02
14:48:21		23 • 6345	0.4363		0.150725-02
14:48:4:		23.6323	3.4385		2-174:75-52
14:49:11		23.6272	0.4436		0.189125-32
14:49:31		23.6192	0.4516	1.542	1.213455-32
14:50:01		23.6177	3.4531		0.237 95-92
14:50:31		23.6126	0.4582		0.260715-02
14:51:31		23.6141	0-4567		F.28434E-12
14:51:31		23.6083	0.4625		1.307975-02
14:52:31		23.6061	0.4647		9.33153E-32
14:52:31		23.6075	0.4633		0.355235-32
14:53:71	8 • 12	27.6024	.4684		0.378865-02

#### PHMP TEST (DRANDONN PHASE)

0 4 0 0 1 30 4 T 2	L MUMBER: M4= IUS (R) CHARGE (G) TIC PRESSURE P STARTING DATE	: 129 : 24	46.00 FEET 10.00 GPM .3788 PSI	o	ECT HRZESE AGE #12
	STOPPING DATE		• 1984 • 1984		= 14:45:30 = 15:90:30
TIME	FLAPSED TIME	PRESSURE	CHANGE IN PRESSURE	CHANGE IN HEAD	T/R**2
	(MINUTES)	(PSI)	(PSI)	(FEET)	(MIN/SOFT)
(JUL 17.	1984)	~~~~			
14:53:31	8.52	23.6039	2.4669	1.577	?•43249E=52
14:54:31	9.82	23.6817	0.4691	1.62	0.42612E=02
14:54:31	9.52	23+6010	0.4698	1.384	0.449755-02
14:55:01	10.02	23.5973	0.4735	1.802	0-473385-02
14:56:25 14:57:05		23.5944	0.4764	1.009	0.52379E-02
14:58:05	12.08 13.08	23.59(8	0.4800	1.157	0.57105E-02
14:59:65		23.5908 23.5900	0.4800	1.107	0.61830E-02
15:00:05		23.5879	0.4808	1.109	0.66556E-02
15:01:05		23•5879	5-4829	1.114	0.71282E-02
15:02:05		23.5835	0.4829	1.114	0.760085-02
15:03:05		23.5849	0•48 <b>7</b> 3 0•4859	1.124	0.807345-02
15:04:05		23.5820	0•4888	1.121	0.85460E-02
15:25:05		23.5813	9•4888 9•4895	1.128	0.981865-02
15:06:05		23.5820	3.4828	1.129 1.128	0.94912E-02
15:07:05		23.5806	0.4902	1.131	0-99638E=02
15:38:05		23.5813	3.4895	1.129	0.10436E-01 0.10969E-01
15:09:05		23.5791	9.4917	1.134	0.113825-31
15:10:0=		23.5769	0.4939	1.139	0-119546-01
15:12:05		23.5719	1.4901	1.151	7.127095-01
15:14:05		23.5733	0.4975	1.148	0.13744E-11
15:15:21	31.35	23.5685	2.5019	1.158	0.14916E1
15:19:21	33.35	23.5718	୍ରି•4990	1.151	0.157615-01
15:20:21		23.5674	0.5034	1.161	0.167065-31
15:22:21		23.5669	0.5048	1.164	1.176515-01
15:24:21		23.5645	0.5063	1.168	0.185565-01
15:26:21		?3•563°	0.5978	1.173	1.195425-11
15:28:21		23.5653	0.3055	1.166	8.204875-01
15:39:21		27.5601	0.5107		0.214725-61
15:35:21	50.35	23.5570	0.5136	1.195	0.23795E=11

RAL DIS STA	LL NUMEER : M4. CTUS (P) SCHAPGE (G) ATIC PRESSURE MP STARTING DAT MP STOPPING DAT	: 125 : 24		TIME	#67505 AGE #73 = 14:45:00 = 15:00:00
TIMF	ELAPSED TIME T (MINUTES)	PPESSURE (PSI)	CHANGE IN PRESSURE (PSI)	CHANGE IN HEAD (FEET)	<u> </u>
{JUL 17,	1 0 0 // 1				
15:40:21 15:45:21 15:50:21 15:50:21 16:00:21 16:05:21 16:10:21 16:10:21 16:10:21 16:10:21 16:10:21 17:48:01 17:48:01 18:18:01 19:48:01 19:48:01 20:48:01 21:48:01 21:48:01 21:48:01 21:48:01 21:48:01 21:48:01 21:48:01 21:48:01 21:48:01 21:48:01 21:48:01 21:48:01 21:48:01 21:48:01 21:48:01 21:48:01 21:48:01 21:48:01 21:48:01 21:48:01 21:48:01 21:48:01 21:48:01 21:48:01 21:48:01 21:48:01 21:48:01 21:48:01 21:48:01	55.35 65.35 70.35 75.35 85.35 85.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80.35 80	23.55434 23.55439 23.55439 23.55439 23.55339 23.55339 23.55339 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.5535 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.55335 23.5535 23.5535 23.5535 23.5535 23.5535	0.53128 0.53128 0.533128 0.533128 0.533128 0.533128 0.53338 0.5333128 0.53338 0.533333 0.53333 0.53333 0.53333 0.53333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0.5333 0	1.215 1.217 1.228 1.240 1.260	0.285215 - 01 0.285215 - 01 0.308845 - 01 0.356105 - 01 0.356105 - 01 0.356105 - 01 0.403565 - 01 0.403565 - 01 0.40365 - 01 0.14325 - 00 0.14325
04:48:51 05:48:51 16:48:01		23.5099 23.5095	0.5609 0.5653	1.304	0.398415 00 0.426765 00
G 4 M 5 4 U 1	963 <b>.</b> 02	23.5049	0.5660	1.306	0.45511E 00

#### PHMP TEST (DPAUDOUN PHASE)

FAD DIS STA PUMI	L MUMPER: M4- IUS (R) CHARGE (G) TIC PRESSURE P STARTING DAT P STOPPING DAT	: 129 24 E : JUL 17		TIME :	ECT #97575 AGF #74 = 14:45:00 = 15:00:00
TIME	ELAPSED TIME T (MINUTES)	PRESSURF (PSI)	CHANGE IN PRESSURE (PSI)	CHANGE IN HEAD (FEET)	T/P**2 (MIN/SOFT)
COUL 18,	1984)				
7:48:01 10:48:01 10:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:48:01 11:4	1983.02 2043.70 2103.68 2163.68 2283.68 2283.68 2403.68 2403.68 2523.68	23.5062 23.5062 23.5062 23.5062 23.4669 23.4769 23.4769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.3769 23.376	9.56646 9.56646 9.56646 9.56646 9.56646 9.56646 9.56646 9.56646 9.56646 9.56646 9.56646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.66646 9.6	1.657 1.630 1.615 1.612 1.615 1.639 1.647 1.554 1.659 1.661 1.652 1.649	0.48545555555555555555555555555555555555
1:48:41 11:48:41 12:48:41	2703.68	23.3312 23.3057 23.2817	0.7396 0.7651 0.7891	1.756 1.765	7.12494E 01 7.12777F 01 7.13761F 01

8 E	ELL TUMPER: M4- ADIUS (R) ISCHAPGE (C) TATIC PRESSURE UMP STARTING DAT	: 127	46.00 FEET 900.00 GFM +.0709 PSI	۶,	ECT #87818 AGE #18 : 14:45:JO
<b>P</b>	UMP STOPPING DAT	E : JUL 20	1984		15:00:00
TIME	ELAPSED TIME T (MINUTES)	PRESSURE (PSI)	CHANGE IN PRESSURE (PSI)	CHANGE IN HEAD	T/0**2
	*****		(~21)	(FEET)	(MIN/SOFT)
	9. 1984)				
13:48:41	2823.63	23.2532	0.8176	1.886	C.13344E J1
14:48:41 15:48:41	2883.68	23.2234	0.8594	1.962	C.13628E 31
15:48:41	2943•68 3003•68	23.2543	6.8168	1.894	9.139125 GI
17:48:41	3063.68	23.2547	0.8161	1.883	0.141955 01
18:48:41	3123.68	23.2445	0.8263	1.926	7.144795 01
19:48:41	3183.68	23.2569	2.8235	1.293	0.14762E 01
20:48:41	3243.69	23.2612	0.8139 0.8096	1.878	0.15046E 01
21:48:41	3393•68	23.2664	0.8044	1.868	9.153295 01
22:48:41	3363.68	23.2564	0.8344	1.856 1.856	0.156135 01
23:48:41	3423.68	23.2707	0.9961		0.158965 01
20:48:41	3483.68	23.2767	0.8001		0.161935 31
01:48:41	3543.69	23.2642	9.8966	1.846 1.861	0.164645 01
32:48:41	3603.68	23.2904	0.7894		0.16747E 01
33:48:41	3663.68	23.2598	0.8110		0.17031E 81
34:48:41	3723.68	23.2562	0.8146		0.17314E 01
35:48:41	3783.68	23.2496	0.9212	·	9•17598E 01 0•17881E 01

# FUMP TEST (DRAVDOUN PHASE)

															ម្រុំ	/ECT #+3505
				? :	1 4 - 4											AGE # 1
	a v D I	-					:		1	28.5	_	FSST				<u>-</u>
	DISC						:		123	03.0	1	CDA				
	STAT	IC F	PES	SSUF	₹E		:		2.8	• 352	2	PSI				
	CHRD															
	PUMP									19				1	FIME	= 14:45:00
	PUMP	510	)PPI	N5	DATE		:	JUL	20	19	8 4	<b>,</b>		1	TIME	= 15:00:00
TIME		ELAF	SED		. M. E.	n.	- <b>-</b> - ,		· •	2444						
	1	LLAF	JED			ا ح	٠ ا	SSUI	< E			EIN	CH		E IN	T/R**2
		C.M	'INÚ				101	SI)				SURE			AD	
								3 L J				1)		EE	.T)	(MIN/SQET)
(JUL	17.	1984	, )													
			٠													
14:45:0	1		Ō.	<b>) ?</b>		22	, 20	944		9.0	35	<b>7</b> 8	n,	13	:3	0.101735-05
14:45:1	-		٥.	19				48		9.1			5.	38	6	C+1119GE-64
14:45:2	_		3.	35				12 <i>P</i>		0.2				.4 €		0.213625=04
14:45:3	_		0.			28.	. 12	200		7.2				53		0.31535E=34
14:45:4			ŷ.			28.	18	15		3 . 2				57		0.41797E-04
14:45:5			€.			2°.	୍ବ	75		0.2				61		0.51880E-34
14:46:0	-		1.					779		0 • 2	7	43		63		0.62852E-04
14:45:1			1.			28•				9.2	8	31		65		0.72225E-04
14:46:2			1.			28.				0.2	9;	36		67		9.82397E-34
14:46:3			1 . 5			28.				. 3				69		0.92570E=04
14:46:4			1.6			28.				0.3				75		1.10274E-03
14:47:8			1 • 8			28.				9.3				71		0.11292E-83
14:47:1	_		2 • (			28.				9 • 3				73		0.12309E-03
14:47:2			2 • 3			28.				0.3				73		0.13326E-03
14:47:3			2.5			28.				0.3				75		0.14343E-03
14:47:4			2.6			28. 28.				9.3				75.		0.15361E-03
14:47:51			2.8			28.				0.3				76		7.163785-03
14:48:01			3.0			8.				9.3				77		9.17395E-13
14:49:2			3.3	_		22.				0.3				77( 79)		9-184125-03
14:48:41			3.6			8				0.5 0.3				77. 833	-	0.20447E-03
14:49:01			4.			7				3.3						0.224915-03
14:49:31	L		4.5			7.				9.3				813 823		0.24516E=03 0.27568E=03
14:50:01		•	5.1			7				3.3				⊕∠. 833		0.27768E=35 0.30419E=35
14:50:31			5.5			7.				0.3				୍ : ୧ ୧୫ <u>1</u>		0.33671E-05
14:51:01			6.0			7.				0.3				0 4 E		0.36723E=33
14:51:31			€.5	2		7.				9 • 3:			7			2.39775E=33
14:52:01			7.0	2		7.				0.3			• • •			0.42924E=33
14:52:31			7.5		2	7.0	?7	97		<b>1.3</b>			9.8			3.45878E=03
14:53:01			8.0	?	2	7.5	<del>7</del> .	7 1		2.3			0.8			^_4003]គួ=្រ

				556	507 winese
	FELL NUMPER : M4-4	1			ECT #33505
	PAPILS (P)		128.00 FEET	ر	AG <u>E</u> #12
	DISCHARGE (G)				
	STATIC PRESSURE		100.00 GPM		
	STAILD EVESSINE	• 28	3-3522 PST		
ſ	PUMP STARTING DATE	: JUL 17	1984	TTME	= 14:45:00
•	PUMP STOPPING DATE	: JUL 20			= 15:00:00
				(1)	- 10.10.00
	<b>_</b>				
TIME	ELAPSED TIME	PRESSURE	CHANGE IN	CHANGE IN	T/F**2
	T		PRESSURE	HEAD	
	(MINUTES)	(PSI)	(PSI)	(FEET)	(MIN/SOFT)
6.000 3	17, 1984)				
(002	F ( A - F 2 0 A )				
14:53:31	8.52	27.9744	S.3778	r. 872	0.519825-03
14:54:31		27.9736	8.3786	0.873	0.55033 <u>E-33</u>
14:54:31		27.9744	9.3778	0.872	
14:55:01		27.9718	0.3804	J.878	0.58095E-03
14:56:05		27.9692	0.3830	0.884	1.61137E-03
14:57:05		27.97)9	0.3813		0.676475-03
14:58:05		27.9692	0.3830	0.880	C.73751E-03
14:59:05		27.9649	0.3830 0.3874	0.884	0.798545-03
15:00:05		27.9665		0.894	0.85958E=33
15:01:05		27.9630	0.3857	1.890	0.52761E=03
15:02:05	·	27•9630	0.3892	0.838	0.981455 <del>-</del> 03
15:03:05		27•9639	0.3892	0.508	0.104275-02
15:04:05		27.9595	0.3883	0.896	0.110375-02
15:05:05	•		0.3927	9.996	9.11648E=02
15:06:05		27.9569	0.3953	0.912	9-12258E-J2
15:07:05	= <b></b> - ·	27.9560	0.3962	0.914	9.12868F-02
15:08:05	7-000	27.9578	0.3944	0.910	0.13479E-12
15:09:05		27.9560	0.3962	0.914	0.14989E-02
15:10:05	<del>-</del>	27.9543	0.3979	0.918	0.146995-32
15:12:05		27.9516	0.4006	9.924	0.15310E-02
15:14:05		27.9525	0.3997	2.922	0.16570E=12
15:16:21		27.9516	0.4006		C.177515-02
15:18:21		27.9490	0.4923	0.728	0.19 <u>135</u> F-12
15:21:21		27.9490	0.4032		9.203555-02
		27.5481	0.4041	0.645	0.215765-82
15:22:21 15:24:21		27.9472	0.4050	9.934	9.22797E-32
		27.9464	3.4058		0.24617F=02
15:26:21		27.9437	5.4085		0.252395-02
15:29:21		27.9412	0.4120	7.950	0.264595-02
15:30:21		27 <b>.</b> 9385	1.4137	0.954	1.27679E=32
15:35:21	50.35	27 <b>.</b> 9358	0.4164	0.941	0.39731E=.2

:: :: :: :: ::	ELL NUMBER : MA ADIES (P) ISCHARGE (D) TATIC PRESSURE UMP STARTING DAT UMP STOPPING DAT	: 125 : 125 : 28		.TIME	UECT #83695 PAGE #13 = 14:45:30
, ,	O" - STOPPING UA	TE : JUL 21	1984	TIME	= 15:00:00
TIME	ELAPSED TIME	PRESSURE	PRESSURE	CHANGE IN	1 7/5++2
	(MINUTES)	(PSI)	(124)	(FEET)	(MIN/SQFT)
		<del></del>			
(JUL 17	7• 1984)				
15:43:21	55.35	27.9332	0.4190	0.967	^•33783E=)2
15:45:21	60.35	27.9323	0.4199	0.969	0.369355-12
15:50:21 15:55:21	65 • 35 70	27.9227	0.4295	0.991	3.39286E-32
15:00:21	70.35	27.9218	9.4384	0.993	0.42938E-)2
16:05:21	<b>75.3</b> 5 80.35	27.9201	0.4321	0 <b>.</b> 997	0.45993E+32
16:10:21	ის•აი 8 <b>5</b> •35	27.9192	0.4330	0.999	0.490425-32
16:15:21	99•35	27.9148 27.9095	0.4374	1.009	0.52094E-12
16:48:01	123.92	27.9887	0.4427	1.021	0.55145E=32
17:18:01	153.02	27.9104	0.4435 0.4419	1.023	0.75083E-02
17:48:01	183.02	27.9095	0.4427	1.019	0.93394E-62
18:18:01	213.02	27.9087	0.4435	1.021 1.023	0 • 11170E - 31
18:48:01	243.02	27.9378	7.4444	1.025	0.130025+01 0.149335+01
19:18:01	273.02	27.9034	6.4488	1.035	0.166645-01
19:48:01	303.02	27.9025	9.4497	1.037	0.18495E=91
25:18:01	333.12	27.9887	7.4435	1.023	0.20326E-01
20:48:01	363•↑2	27.9096	0.4426	1.021	0.22157E-01
21:18:01	393.12	27.9052	0.4473	1.031	0.23988E-11
21:48:01	423.02	27.9104	0.4418	1.019	0.2581=E-31
22:18:31	453.92	27.9131	0.4391	1.013	0.276505-01
22:48:0:	423.12	27.9143	0.4374	1.009	J.094915+01
23:19:11	513.02	27.9179	2.4⊀0्ड	1.11	0.313125-01
23:48:01 33:49:01	543.12	27.9131	î•43 <u>5</u> 1	1.013	0.331435-01
1:48:11	603.02	27.9095	?.4427	1.021	0.36815E=01
02:4 <u>9:01</u>	663.02	27.9034	0.4488	1.935	0.49467E-61
13:48:11	723.02	27.8964	0.4558	1.051	9.441295-01
4:42:01	783.02	27.8868	9.4654	1.074	0.47792E-01
75:48:01	843.02	27.8806	0.4716	1.0P8	^•51454F+01
36:49:0 <u>1</u>	963.52	27.8762	0.476 C	1.398	0.55116E-01
V크로쿠쿠화 그	963.72	27.8727	0.4795	1.1~6	0.58779E="1

#### PUMP TEST (DPAUDOUN PHASE)

PUM	LL NUMBER : MA NIUS (R) CCHAPGE (Q) STIC PRESSURE MP STARTING DA PP STOPPING DA	: 125 : 128 : 28		:, Time :	ECT #07515 ACF #14 : 14:45:30 : 15:50:00
T I M E	ELAPSED TIME T (MINUTES)	FRESSURE (PSI)	CHANGE IN PRESSURE (PSI)	CHANGE IN HEAD (FEET)	T/P++2 (MIN/SQFT)
(JUL 18•	1984)				
7:48:01 10:48:01 10:48:01 11:48:01 11:48:01 11:48:01 11:48:01 13:48:01 15:48:01 15:48:01 16:48:01 17:48:01 17:48:01 17:48:01 18:48:01 19:48:01 19:48:01 10:48:41 10:48:41 10:48:41 10:48:41 10:48:41 10:48:41 10:48:41 10:48:41 10:48:41 10:48:41 10:48:41 10:48:41 10:48:41 10:48:41 10:48:41 10:48:41 10:48:41 10:48:41	1023.02 1023.02 1143.02 11203.02 1203.02 1203.02 1323.02 1323.02 1563.02 1563.02 1663.02 1663.02 16743.02 1803.02 1983.02 1983.02 1983.02 2103.68 2103.68 22283.68 22283.68 2403.68 2403.68 2523.68 2523.68 2523.68 2523.68 2523.68	27.8745 27.8786 27.8736 27.8631 27.8377 27.856 27.7856 27.7856 27.7857 27.7857 27.6833 27.66973 27.6570 27.7219 27.7341 27.7394 27.7394 27.7394 27.7396 27.7254 27.7254 27.7257 27.7257 27.7257 27.7257 27.7257 27.7257 27.7257 27.726991	0.4789 0.4789 0.4789 0.4789 0.4789 0.55623 0.55623 0.55638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5	1.604 1.511 1.480 1.454 1.426 1.414 1.414 1.416 1.454 1.456 1.458 1.458 1.458 1.458	C.62449E-01 0.62449E-01 0.66764E-01 0.77088E-01 0.77088E-01 0.80751E-01 0.80751E-01 0.84413E-01 0.9539E-01 0.99361E-01 0.10539E-00 0.11371E-00 0.11371E-00 0.12474E-00 0.12474E-00 0.12474E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.13579E-00 0.1357
11:48:42	2793.68 2763.68	27.6729 27.6473	0.6531 0.6794 0.7049	1.567	1.16136E 00 1.16532E 00 1.16868E 00

5 4 D T 1 D I S C 1 S T 4 T 1	AUMPER: M4-4 US (R) HAPGE (Q) IC FPESSURF STAPTING DATE	: 128 : 28	28.04 FFET 30.00 GPM 3522 PST	D	ECT #83676 AGE #76
	STOPPING DATE	: JUL 23			= 14:45:30 = 15:03:00
TIME E	ELAFSED TIME T (MINUTES)	PRESSURF (PSI)	CHANGE IN PRESSURE (PSI)	CHANGE IN HEAD (FEET)	T/R**2 (MIN/SOFT)
					FEFFE
(JUL 19, 1	1984)				
13:48:41 14:48:41 15:48:41 15:48:41 17:48:41 18:48:41 19:48:41 20:48:41 21:48:41 22:48:41 23:48:41 23:48:41 23:48:41 24:48:41 25:48:41 26:48:41	2853.68 2943.68 3003.68 3063.68 3123.68 3183.68 3243.68 3303.68 3423.68 3423.68 3463.68 3463.68 3463.68 3463.68	27.6193 27.5833 27.6158 27.6114 27.6114 27.6237 27.6237 27.6335 27.6338 27.6338 27.6338 27.6338 27.6338 27.6338 27.6338 27.6338 27.6338 27.6338 27.6338 27.6338 27.6338 27.6338 27.6338 27.6338 27.6338 27.6338 27.6338 27.6338 27.6338 27.6338 27.6338 27.6338 27.6338 27.6338 27.6338 27.6338 27.6338 27.6338 27.6338 27.6338 27.6338 27.6338 27.6338 27.6338 27.6338 27.6338 27.6338 27.6338 27.6338 27.6338 27.6338 27.6338 27.6338 27.6338 27.6338 27.6338 27.6338	0.7329 0.7689 0.7364 0.7329 0.7408 0.7373 0.7285 0.7285 0.7287 0.7189 0.7128 0.7163 0.7198 0.7198 0.7303 0.7303	1.677 1.685	0.17234E 00 0.17601E 00 0.17967E 00 0.18333E 00 0.18699E 00 0.19432E 00 0.19432E 00 0.19432E 00 0.20530E 00 0.2063E 00 0.2164E 00 0.21629E 00 0.21629E 00 0.21629E 00 0.21796E 00

to the extension of the contract of the contra

							<u> </u>	PECT #93525
	FILL THE	ខេត្ត	<u></u> የፈተለ					
	TABLUS (			•		65.10 FTE	~ ~	ASE #11
	DISCHAPE			•		13•33 4₽M		
	STATIC P		) F	•		•0725 PST		
			` _	•	10	• 0125 PSI		
	PUMP STA	RTING	DATE	• .1111	17	• 1984	T 1 11 =	
	PUMP STO					• 1984		= 14:45:00
	. 0, 1	77 1 1 1 1 1 1 1	טאיע (	• 00L	23	1 1254	TIME	= 15:00:00
TIME	FIAD	SED TI	ME D	PESSU	D.E.	CHANCE +		
, , ,		T		- E 3 3 U	ΝC	CHANGE I PRESSUR		T/8 * * 2
		INUTES	1	(PSI)		(PSI)		
			, 			(521)	(FEET)	(MIN/SOFT)
CJUL	17, 1984	<b>y</b> .		•				
	_ , _,, _, .							
14:45:	1	0.02	16	. 1755		-0.3634	-6-226	0.70440#
14:45:1		0.18		.3725		0.0000	÷0.009	0.394435-35
14:45:2		0.35		.0759		-9.3034	C • 0 0 0	0.43392E-04
14:45:3		0.52		•0759		-3-3034	-0.008	0.82840E-04
14:45:4		0.68		•0725		0.0000	-0.008	0.122295-13
14:45:5	_	3.85		• 7690			0.000	0.16174E-03
14:46:0	_	1.02		• 0828 • 0828		0.0035	0.008	0.201185-03
14:46:1	-	1.18		• 2020 • 2759		-0.0103	-0.024	0.240635-33
14:45:2		1.35		• 4/55 •3695		-0.0034	-0.008	1.29908E-03
14:46:3		1.52		• ::67. • ::655%		0.0035	0.008	0.319535-03
14:46:41		1.68		.0820		0.0070	0.016	0.359975-03
14:46:51		1.85		• : 725		-0.0103	-3.024	1.39842E=03
14:47:51		2.02		.0690		0.0000	?•១១៦	0.437878-03
14:47:12		2.18		0759		0.0035	0.008	0.47732E-33
14:47:21		2.35		0655		-0.0034	-7.008	0.51677E=03
14:47:31		2.52		.0835 .0 <b>7</b> 25		0.0070 0.0000	0.016	0.556215-03
14:47:41		2.68		0690		0.0000	9.000	2.59566E-13
14:47:51		2.85		0621		0.0000 0.0104	9.00A	0.63511E-03
14:48:01		3.02		7725		0.5099	0.324	0.674565-03
14:45:21		3.35		, 490		0•5898 0•58 <b>3</b> 5	n.gan	0.714005-33
14:40:4		3.68		1585		7.)14;	0.000	0.752975-03
14:49:01		4.12		.∂551		0.0174	0.032	0 • 6 71 79E = 03
14:49:31		4.32		5595		9.3140	0.743	0.950695-03
14:50:01		5.12		1655			0.032	0.106905-02
14:51:31		5.52		2551		0.0070 0.0174	1.016	112745-02
14:51:01		6.02		3482		0•3174 0•3 <b>24</b> 3	0.040 0.054	0.137575-32
14:51:31		6.52		3447 3447		0.0247 0.0278	9 • 056	1-142415-32
14:52:01		7.02		3274		0.3451	0.764	0.154245-02
14:52:31		7.52	•	1412		0•3 <b>45]</b> 0•3 <b>31</b> 3	0.124	0.166175-32
14:53:01		A . 12		7 T T C		0.0416	0.372	0.177915-02
		<u>.</u>	45 ●	· . <del>-</del>		. • » M 1 6	0.096	18974E=32

PUMP STORPING DATE : JUL 17, 1984  TIME = 14:45:0  TIME = 15:00:0  TIME FLAPSED TIME PRESSURE CHANGE IN CHANGE IN (MINUTES) (PSI) (PSI) (FEET) (MINUTES)  (JUL 17, 1984)  14:53:31	3 2
T (MINUTES) (PSI) (PSI) (FEET) (MIN/SO)  (JUL 17, 1984)  14:53:31	
(JUL 17. 1984)  14:53:31	FT) 
(JUL 17, 1984)  14:53:31	
14:53:31       8.52       16.3309       0.0416       0.096       0.201588-14:54:01       9.02       16.3100       0.0625       0.144       0.213417-14:54:31       9.52       16.0100       0.3625       0.144       0.225258-14:55:01       0.202 16.0066       0.0659       0.152       0.237088-14:56:05       0.2031       0.0694       0.160       0.262338-14:57:05       0.0869       0.208       0.208       0.208       0.208       0.208       0.208       0.208       0.208       0.208       0.208       0.208       0.208       0.209       0.208       0.209       0.208       0.209       0.309668-14:58:05       0.0868       0.200       0.333338-15:9857       0.0868       0.200       0.333338-15:9857       0.0858       0.200       0.333338-15:395       0.0972       0.224       0.357028-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-15:308-1	
14:54:31       9.02       16.3100       0.0625       0.144       0.213415         14:54:31       9.52       16.3100       0.3625       0.144       0.225255         14:55:01       10.02       16.0066       0.0659       0.152       0.237085         14:56:05       11.08       16.0031       0.0694       0.160       0.262355         14:57:05       12.08       15.9822       0.3903       0.208       0.296005         14:58:05       13.08       15.9857       0.0868       0.200       0.309665         14:59:05       14.38       15.9857       0.0868       0.200       0.3333355         15:00:05       15.09       15.9753       0.3972       0.224       0.357005         15:31:05       15.09       15.9545       0.1180       0.272       0.380675         15:32:05       17.08       15.9545       0.1180       0.272       0.404345         15:33:05       18.09       15.9476       0.1249       0.288       0.429715         15:34:05       19.08       15.9476       0.1249       0.288       0.451685         15:05:05       20.08       15.9337       0.1388       0.320       0.475355         15:07:05	
14:54:31       9.52       16.7100       0.0625       0.144       0.213415-         14:55:01       10.02       16.0066       0.0659       0.152       0.237085-         14:55:05       11.08       16.0031       0.0694       0.160       0.262336-         14:57:05       12.08       15.9822       0.0903       0.208       0.262336-         14:58:05       13.08       15.9857       0.0868       0.200       0.309665-         14:59:05       14.08       15.9857       0.0868       0.200       0.339466-         15:00:05       15.08       15.9857       0.0868       0.200       0.35766-         15:00:05       15.08       15.9753       0.3972       0.224       0.35766-         15:01:05       15.09       15.9545       0.1180       0.272       0.38067-         15:02:05       17.08       15.9545       0.1180       0.272       0.40434-         15:03:05       18.09       15.9476       0.1249       0.288       0.42871-         15:05:05       20.08       15.9337       0.1388       0.320       0.47535-         15:07:05       21.08       15.9163       0.1562       0.360       0.52248-	- 32
14:54:31       9.52       16.010°       9.3625       9.144       0.22525E-         14:55:01       10.02       16.0066       3.0659       0.152       0.23708E-         14:56:05       11.08       16.0031       0.0694       0.160       0.2623E-         14:57:05       12.08       15.9822       0.3903       0.208       0.28600E-         14:58:05       13.08       15.9857       0.0868       0.200       0.3096E-         14:59:05       14.28       15.9857       0.0868       0.200       0.33333E-         15:30:05       15.93       15.9753       0.3972       0.224       0.35700E-         15:31:05       16.09       15.9545       0.1180       0.272       0.40434E-         15:03:05       17.08       15.9545       0.1180       0.272       0.40434E-         15:03:05       18.09       15.9476       0.1249       0.288       0.42318E-         15:05:05       20.08       15.9337       0.1388       0.320       0.47535E-         15:07:05       21.08       15.9337       0.1388       0.320       0.49991E-         15:07:05       22.08       15.9163       0.1562       0.360       0.52268E-	
14:55:81       10.02       16.0066       0.0659       0.152       0.237085         14:56:05       11.08       16.0031       0.0694       0.160       0.262385         14:57:05       12.08       15.9822       0.0903       0.208       0.286005         14:58:05       13.08       15.9857       0.0868       0.200       0.309665         14:59:05       14.08       15.9857       0.0868       0.200       0.333335         15:00:05       15.08       15.9753       0.0972       0.224       0.357005         15:01:05       15.08       15.9545       0.1180       0.272       0.380675         15:02:05       17.08       15.9545       0.1180       0.272       0.404345         15:03:05       18.08       15.9476       0.1249       0.288       0.423515         15:04:05       19.08       15.9476       0.1249       0.288       0.451685         15:06:05       20.08       15.9337       0.1388       0.320       0.475355         15:07:05       22.08       15.9337       0.1388       0.320       0.499315         15:07:05       20.08       15.9163       0.1562       0.360       0.522685	
14:57:05       12.08       15.9822       0.0903       0.208       0.286005         14:58:05       13.08       15.9857       0.0868       0.200       0.309665         14:59:05       14.08       15.9857       0.0868       0.200       0.333335         15:00:05       15.08       15.9753       0.0972       0.224       0.357005         15:01:05       16.09       15.9545       0.1180       0.272       0.380675         15:02:05       17.08       15.9545       0.1180       0.272       0.404345         15:03:05       18.09       15.9476       0.1249       0.288       0.429715         15:04:05       19.08       15.9476       0.1249       0.288       0.451685         15:05:05       20.08       15.9337       0.1388       0.320       0.475356         15:07:05       22.08       15.9337       0.1388       0.320       0.499015         15:07:05       22.08       15.9163       0.1562       0.360       0.522685	
14:58:05       13.08       15.9857       0.0868       0.200       0.30966E-         14:59:05       14.08       15.9857       0.0868       0.200       0.33946E-         15:00:05       15.08       15.9753       0.3972       0.224       0.35700E-         15:01:05       16.09       15.9545       0.1180       0.272       0.38067E-         15:02:05       17.08       15.9545       0.1180       0.272       0.40434E-         15:03:05       18.09       15.9476       0.1249       0.288       0.42851E-         15:04:05       19.08       15.9476       0.1249       0.288       0.45168E-         15:05:05       20.08       15.9337       0.1388       0.320       0.47535E-         15:06:05       21.08       15.9337       0.1388       0.320       0.49901E-         15:07:05       22.08       15.9163       0.1562       0.360       0.52268E-	- 02
14:39:05       14.08       15.9857       0.0858       0.200       0.333335-         15:00:05       15.08       15.9753       0.0972       0.224       0.35700E-         15:01:05       16.09       15.9545       0.1180       0.272       0.38067E-         15:02:05       17.08       15.9545       0.1180       0.272       0.40434E-         15:03:05       18.08       15.9476       0.1249       0.288       0.428F1E-         15:04:05       19.08       15.9476       0.1249       0.288       0.45168E-         15:05:05       20.08       15.9337       0.1388       0.320       0.47535E-         15:06:05       21.08       15.9337       0.1388       0.320       0.49901E-         15:07:05       22.08       15.9163       0.1562       0.360       0.52268E-	
15:00:05	
15:31:0E	
15:02:05	
15:03:05	
15:94:95	
15:05:05	
15:06:05 21.08 15.9337 0.1388 0.320 0.49901E- 15:07:05 22.08 15.9163 0.1562 0.360 0.52268E-	
15:07:05 22:08 15:9163 0:1562 0:360 0:52269E=	
TARREST SET SECTION SE	
15.8956 0.1769 0.408 0.570325+	
15.8999 0.1735 0.409 0.59369E+	
1 15 * 1 4 * 25	
- 4 T 4 4 7 4 5 4 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 5 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5	٦2
15*10*21 77 77 78 15*10° 0**********************************	
15 - 20 - 21	
16.00.00	
15.04.01 Jenson	
15.04.01	
- 16 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -	
15 * 7 0 * 0 1	
15.37.21 45.35 15.7879 0.2846 0.657 0.107345- 15:35:21 50.35 15.774' 0.2984 0.698 0.119175-	

. .

#### CUMP TEST (DRANDONN PHASE)

FAO CIS STA PUM	L NUMBER: F4 IUS (F) CHARGE (O) TIC PRESSURE P STARTING DAT P STOPPING DAT	: : 128 : 15	65.10 FEET 800.33 GPM 8.3725 PSJ	TIME	ECT #33875 AGE #73 ≠ 14:45:30
TIME	ELAPSED TIME T (MINUTES)	PRESSURE (PSI)	CHANGE IN PRESSURE (PSI)	TIME : CHANGE IN HEAD (FEET)	T/P**2 (MIN/SQFT)
(JUL 17•	1984)				
15:40:21 15:45:21 15:59:21 15:55:21 16:05:21 16:05:21 16:15:21 16:15:21 16:48:01 17:16:01 17:48:01 18:48:01	55.35 60.35 65.35 70.35 75.35 85.35 85.35 90.35 123.62 153.62 153.62 213.92	15.7429 15.7360 15.7186 15.7082 15.6839 15.6735 15.6735 15.6353 15.6353 15.5972 15.5798 15.5867	0.3296 0.3365 0.3539 0.3643 0.3887 0.3817 0.3990 0.4128 0.4372 0.4753 0.4858	0.760 0.776 0.816 0.896 0.896 0.896 0.952 1.009 1.096 1.137	0.13101E - 01 0.14284E - 01 0.15467E - 01 0.16651E - 01 0.17834E - 01 0.19018F - 01 0.20201E - 01 0.21385F - 01 0.29116E - 01 0.36217E - 01 0.43318E - 31 0.50419E - 01
19:18:01 19:48:01 20:18:01 20:48:01 21:48:01 22:48:01 22:48:01 23:48:01 23:48:01 23:48:01 23:48:01 24:48:01 14:48:01	243.02 273.02 273.02 303.02 363.02 363.02 423.02 423.02 423.02 423.02 513.02 543.02 663.02 723.02	15.5764 15.5694 15.5694 15.5694 15.5798 15.5798 15.5798 15.5798 15.5764 15.5764 15.5764 15.5764 15.5764 15.5764	0.4961 0.5031 0.5031 0.5031 0.4927 0.4927 0.4928 0.4928 0.4926 0.4926 0.4926 0.4926 0.4926 0.4927 0.4926 0.4927 0.4926 0.5135 0.5135 0.5239	1.137 1.137 1.152 1.174 1.127 1.144 1.144 1.168 1.185	0.57519E-01 0.64619E-01 0.71729E-01 0.78821E-01 0.85921E-01 0.93022E-01 0.10012E 00 0.10722E 00 0.10722E 00 0.12742E 00 0.12852E 00 0.1473E 00 0.1473E 00 0.1473E 00 0.1473E 00 0.1473E 00
15:42:01 16:48:11	963.00 963.00	15.5392 15.5313	0.5343 0.5412	1.233	0.21373E 01

. •

2.1 1.5 1.0	LL AUMBER : P4 DILS (F) SCHARGE (0) ATIC PRESSURE	: : 12 : 1	65.00 FFET 800.00 6PM 6.0725 PSI		UECT #936.8 P&GE #14
PU PU	MP STARTING DA MP STOPPING DA	TE : JUL 1			= 14:45:00 = 15:00:00
TIME	ELAPSED TIME T (MINUTES)	PPESSURE	CHANGE IN PRESSURE (PSI)	CHANGE I	
		1.011	(521)	(FEET)	(MIN/SQFT)
(JUL 12	• 1984)				
37:48:31	1123.32	15.5417	Q.5388	1.224	0.242135 00
38:48:61	1/83.72	15.5417	0.5308	1.224	8 • 25634E 33
09:48:01	1143.02	15.5347	0.5378	1.241	0.27954E 30
10:48:0 <u>1</u>	1203.02	15.5313		1.248	0.28474E 30
11:48:01	1263.02	15.5070	0.5655	1.304	0.29894E 00
12:48:01	1323.32	15.4827	0.5898	1.361	
13:48:01	1383.12	15.4549	0.5176	1.425	
14:48:01	1443.02	15.4272	0.6453	1.489	
15:48:31	1503.12	15.4020	2.6696	1.545	
16:48:01	1563.72	15.3682	0.7043	1.625	C+35574E 00
17:48:01	1623.02	15.3509	0.7216	1.565	0.36994E 00
18:48:01	1683.12	15.3162	0.7563	1.745	1.38415E 33
19:48:01	1743.12	15.3335	0.7390	1.795	0.398355 30
20:48:01	1803.72	15.3682	0.7843	1.625	0.41255E 03
21:48:01	1863.12	15.3855	0.6870	1.595	0.42675E 00
22:48:01	1923.02	15.3890	0.5835	1.577	0.44095F 00
23:48:01	1983.02	15.4064	0.5661	1.537	0.455155 00
36:48:42	2043.70	15.3821	0.5904		0.46935E (0
01:48:41	2103.68	15.3959	9•6766	1.593	9-48372E 00
2:48:41	2163.69		0.4835	1.561	0.497915 00
3:48:41	2223.62	15.3783	0•6 <b>93</b> 9	1.577	0.512115 00
14:42:41	22°3•68	15.3821		1.601	0•52632₹ 30
75:48:41	2343.69	15.3717	5•6904 5•300	1.573	Ǖ540525 20
06:48:4:	2493.68	15.3786	0.7308	1.617	೧•55472€ 33
7:48:41	2463.68	15.3821	0.6939	1.601	0.568925 33
18:48:41	2523.69	15.3855	0.6904	1.593	0.58312E 00
19:49:41	2583.68		9.5873	1.585	0.897828 10
15:48:4	2543.68	15.3786	0.6939	1.601	0.611525 00
11:48:4:	2703.68	15.3578	6.7147	1.649	0.625725 00
12:42:41	2763.69	15.3370	0 • 7355	1.497	n.63¤n2g -j
- w • · • · ·	6 기타리 ● 현기	15.3196	2.7529	1.737	0.65413F 35

ύ I 2 V	TLL SUMBER : P4; DIUS (9) SCHARGE (0)	•	45.30 EFET 80.30 GPM		ECT #97505 AGE #05
ST.	ATIC PRESSURF		.0725 PST		
թ <u>ս</u> թ	IMP STARTING DATE IMP STOPPING DATE	E : JUL 17 E : JUL 20			= 14:45:00 = 15:00:00
TIME	ELAPSED TIME T (MINUTES)	PPESSURE	CHANGE IN PRESSURE	CHANGE IN HEAD	T/R**2
	/. IMO1:21	(PSI)	(PSI)	(FEET)	(MIN/SOFT)
CJUL 19	• 1984 <b>)</b>				
13:48:41	2823.68	15.2746	0.797 <u>9</u>	1.841	0.668338 3
14:48:41	2883.68	15.2433	3.8292	1.913	0•68253E 33
15:48:41	2943.68	15 + 2537	0.9188	1.889	0.69673E 00
16:48:41	3003.68	15.2641	9.8084	1.865	0.710935 00
17:48:41 18:49:41	3063.68	15.2606	0.8119	1.873	0.72513E 00
19:48:41	3123.68	15.2641	0.8084	1.865	0.73933E 03
29:48:41	3183.68 3243.68	15.2849	0.7876	1.817	9.75353E 88
21:48:41	3333•69	15.2249	0.7876	1+817	0.76774E 90
22:48:41		15.2919 15.2919	9.7806	1.801	0.781945 30
23:48:41		15.2719	0.7806	1.801	0.79614E 99
00:48:41		15.2884	0.7737	1.785	0.81534E 00
11:48:41		15.2953	0.7841 0.7772	1.809	0.824545 00
02:48:41		15.2815	0.7910		0.83874E 00
33:48:41		15.2884	0.7841		0.85294E 99
34:48:41		15.2781	0.7945		0.86714E 00
25:48:41		15.2815	0.7910		0•8 <b>8135E</b> 30 0•8 <b>9555E</b> 30

														PP	OUE	`T #	83535	;
	FELL	4:(i	Y P E	₹ :	04.4	}										E #		•
	ICAR	U.S	(P)			:				<u> </u>	٦.٠	FFET			۳.		-	
	DISC					•						G EM						
	STAT											PSI						
		. •		0.0		•			-	◆ □ ↑.	- =	F 2 1						
	PHMP	ST	ARΤ	TMG	DATE			* 1 #	17	• 1	00/				_		. <b>.</b>	
					DATE												45:00	
		J (	y F F	1140	UAIL	. •	J	UL	20	+ 1	754	•		LIM	E =	76:	00:00	
TIME		C 1 A 2		_ T	IME	-			_		<b>-</b>							
1104		. L A -			TwE	ЬĽ	t. S	SUF	₹ ₹			EIN	_	MGE		T.	/R++2	
				T 								SURE		HEAD				
		1.3		UTE		(	P \$	1)		•	(PS	(1)	(Fi	EET)		CMI	4/SGF	T)
(JUL	17.	1984	• )															
	_			•														
14:45:1				.17		3.					. 2.0		0.0	222	5	.394	495-	3.4
14:45:2				- 33		3 ⋅	<b>61</b>	95		9.	. 20	0.0	2.6	990			95E-	
14:45:3				•50		3.	61	05		9.	, <b>^</b> 3	ָרָי תָּי		יי פיי			34E-	
14:45:4			0	• 67		3 •	61:	35		0.	20	0.0		300			795-	
14:45:5	9		0	-83		3.	601	75			0.0			707			24E-	
14:46:0	ù		1	• 8 9		3.0	603	3 0			Jo			317			605-	
14:46:1	)		1	.17		3.					01		0.0				13E-	
14:46:23	3		1.	• 33		3.					21		3.5				:58E-	
14:46:31	^			•50		3.					31		0.0				ಎಎಎ= 'ನಿತ್೯⇒:	_
14:45:4	_			67		3.4					31		2.0					
14:46:50				٤3		3.					02		0.0				48E-	
14:47:30				-36		3.5					03		0.0				93E=	
14:47:1				17		3.5					03						37E-	
14:47:20				33		3.5							9.0				22E -	
14:47:3				50		3.5					34		0.0				27E-	
14:47:40				67		3.5					94		0.1				72E-	
14:47:5				83		3.5					06		0.1			_	15E-0	_
14:48:30				00							27		^ · 1				615-0	
14:48:10				17		3.5					27		3.1				06E+0	
14:48:2				33		3.5					28			97			51E - (	
14:48:30						3.5					; <b>a</b> ;		0 • 2		ੂ ਦ	789	95 <b>5</b> -0	. 3
				53		3.5				0.			3.2				4 ] F 🗕 🤅	
14:49:40				67		3 • 4					11:		0.2				85 <b>5-</b> 0	_
14:48:50				33		3 • 4	-			€.			0.2		୍ ତ୍	<b>₽</b> 97	30E-3	,7
14:45:00				9.0		3 . 4				0.			0.2	94	С.	946	75E <b>-</b> 0	3
14:49:10				17		3 - 4				<b>3</b> • 3			2.3	11	0.	986	195-3	3
14:49:20				33		3.4				0.	143	25	9.3	29	0.	102	565 <b>-</b> 0	2
14:49:37				50		3 . 4	60	5		3 .	15:	0 0	8.3	46	٥.	106	518-0	2
14:49:43				€7		3.4	53	3		0.1	1.5.7	7 5	0.3				45 <u>E</u> -0	
14:49:55				3.5		3.4	45	=		Ç.,			5.3				405-0	_
14:50:5.			5.	₹C.		3.4	38	-					0.3				345-)	-
															. •			-

the state of the s

		•			
3.1	ELL BUMBER : P418				JECT #835a5
	ADIUS (P)	•		:	AGE #02
	ISCHARGE (Q)		65.00 FEET		
			290.90 GPM		
2	TATIC PRESSURE	•	3.6105 PST		
PI	UMP STARTING DATE	: JUL 1	7. 1984	TIME	= 14:45:00
Pt	UMP STOPPING DATE	: JUL 2			= 96:00:00
	_		***	· 111/2	- 96.46.98
TIME	ELAPSED TIME	PRESSURE	CHANGE IN	CHANGE IV	T/P**2
	Ť		PRESSURE	HEAD	, , , , , , ,
	(MINUTES)	(PSI)	(PSI)	(FEET)	(MIN/SGFT)
(JUL 17	7. 1984)				
14:50:30	5.50	3.4275	0.1830	0.422	C-13018E-32
14:51:00	6.30	3.4125	9.1989	0 • 457 • 457	0.14201E-02
14:51:30	5.50	3.3975	2.2130	0.491	
14:52:00	7.00	3.3750	0.2355	0.543	0.15385E-02
14:52:30	7.50	3.3675	0.2430	7.551	0.16568E-02
14:53:00	8.00	3.3825	3 • 2 2 8 0		0.17751E-02
14:53:33	8.50	3.3705		9.526	0.18935E-02
14:54:83	5.00	3.3525	0.2400	0.554	5.201185-05
14:54:30	9.50	3.3375	0.2580	0.595	D.21362E-02
14:55:00	10.00	3.3255	0.2730	0.630	0.22485E-02
14:56:00			0.2850	0.657	9-236695-02
14:57:00		3.3150	3.2955	0.682	0.26935E-02
14:58:00		3.3150	0.2955	0.682	0.28402E-32
14:59:00		3.3075	0.3030	9.699	0.30759E-02
15:30:30		3.3075	0.3030	0•69 <del>9</del>	0.33136E+02
15:01:00		3.3075	0.3030	0.699	0•35503E-02
15:02:00		3.3030	0.3075	0.769	9.37°76E=02
15:03:00		3.3000	0.3105	3.716	9.40237E-02
15:00:90		3.3000	9.3105	2.716	C-42664E-32
15:35:00		3.3000	0.3105	9.716	0.44970E-32
		3.3000	0.3105	0.716	9.47337E=02
15:06:00	21.00	3.2925	0.3189	9.734	0.497045-02
15:07:00		3.2955	0.3150	0.727	1.52071E-02
15:08:00		3-2955	0.3150	0.727	0.54438E-02
15:09:00		3.2925	0.3180	9.734	0.568058-32
15:19:63		3.2955	0.3150	0.727	0.591725-02
15:11:01		3 <b>.295</b> 5	0.3150	0.727	0.615385-32
15:12:00		3.3000	0.3105	2.716	2.639055-02
15:13:00		3.3030	0.3875	0.7/9	P.662725-32
15:14:03	29•35	3.3939	0.3075	2.769	0.68639E=02
15:15:00	<b>30.</b> 00	3.3375	0.3030	0.699	0.710165=02
				· · •	22.20102 02

				DR ~ 1	ECT #83505
	MELL NUMBER : P41S				
	RADIUS (R)		65.00 FFET	~	AGE #13
	DISCHARGE (0)				
	STATIC PRESSURE		80.10 EPM		
	STATIC PRESSURE	• 3	•6105 PSI		
	PUMP STARTING DATE	: JIII 17	- 1984	TIME	= 14:45:00
	PUMP STOPPING DATE	: JUL 20			= 06:00:30
	o volvente	. 005 53	Y #25T	1 Tac	= 06:00:JU
TIME	FLAPSED TIME	PRESSURE	CHANGE IN	CHANGE IN	T /0 0
	T	, , , , , , , , , , , , , , , , , , ,	PRESSURE		T/R**2
	(MINUTES)	(PSI)	(PSI)	HEAD	(1)
		7. 517	17317	(FEET)	(MIN/SQFT)
(JUL	17+ 1984)				
15:20:0	35.00	3.2925	0.3180	0.734	0 000465 65
15:25:0		3.2775	0.3333	0.758	0-82840E-02
15:30:0		3.2775	0.3330	0.768	0.94675E-02
15:35:0		3.2583	0.3525		0.10651E-01
15:40:0		3-2655	0.3450	0.813	0.11834E-01
15:45:0		3.2580		0+796	0.13J18E-01
15:50:0		3 • 25 0 5	0.3525	0.813	9.14201E-01
15:55:0			0.3600	2.830	0.15385E-01
15:00:0		3.2550	0.3555	9.820	0.16568E-01
16:35:0		3.2550	0.3555	G • 8 2 3	0.177515-01
16:15:0:		3.2475	0.3630	9.837	0.18935E-01
16:15:0	· ·	3 • 2430	0.3675	C • 848	0.20118E-01
16:20:0	· ·	3 - 2595	9.3600	0.830	0.21332E-01
16:36:0		3.2739	0.3375	0.779	0.22485E-01
16:51:0		3.3105	9.3000	0.692	0.26272E-G1
17:36:30		3.2925	0.3180	0.734	0.29822E-31
17:21:0		3.2730	9.3375	0.779	9.33373E-01
17:36:00		3.2719	0.3405	0.785	0.36923E-01
17:51:88		3 • 2625	0.3480	0.803	0.46473E-01
	1004.	3 • 2625	0.3480	0.893	0.440245-01
18:06:00		3 • <b>25</b> 80	0.3525	0.813	D.47574E-31
18:21:0		3.2655	0 • 3 4 5 0	(• <b>796</b>	0.511245-01
18:36:03		3.2733	0.3375	3 <b>.</b> 779	0.54675E-01
18:51:00		3.2730	9.3375	0.779	2.582258-01
19:36:00		3.2859	0.3255	3.751	0.61775E-01
19:21:00	= = =	3 • 2835	0.3390	0.761	0.653255-01
19:36:00		3.2805	0.3300	0.761	9.68876E-01
19:51:00		3.2730	0.3375	0.779	0.72426E-01
20:36:03		3.2730	0.3375	0.779	0.75976E-01
20:21:00		3.2655	0.3450	5.796	0.79527E-01
20:36:01	351.00	<b>₹.</b> 2625	0.3486	0.803	0.83977E-01
				<del>-</del>	

₹ 4	LL NUMBER : P41S DIUS (P) SCHARGE (Q)	:	65.00 FEET 880.00 GPM		JECT #83505 PAGE #94
ST	ATIC PRESSURE		-6105 PSI		
	MP STARTING DATE MP STOPPING DATE		• 1984 • 1984		= 14:45:00 = 36:05:00
TIME	FLAPSED TIME	PRESSURE	CHANGE IN PRESSURE		T/P++2
	(MINUTES)	(PSI)	(PSI)	HEAD (FEET)	(MIN/SQFT)
				******	(1.111\200c1)
(JUL 17	• 1984)				
20:51:00	366.00	3 • 258a	0.3525	0.813	0.86627E=01
21:06:00	381.00	3.2585	0.3600	0.830	0.901785-01
21:21:00	396.00	3.2550	C.3555	0.820	0.93728E-01
21:36:00	411.00	3.2475	0.3630	0.837	0.97278E-01
21:51:00	426.00	3.2430	0.3675	9.848	9.10083E 93
22:06:00 22:21:00	441.00	3.2498	0.3705	0.855	0.10438E 00
22:36:00	456.00	3.2355	0.3750	0.865	0.10793E 00
23:06:00	471-00	3 • 2355	0.3750	0.865	0.11148E 03
23:36:01	501.30 531.30	3.2325	0.3780	9.872	0.11858E 00
00:06:00	561.00	3.2325	0.3789	9.872	0.12568E 00
90:36:99	591.09	3.2250	9.3855	0.869	7.13278E 03
01:36:00	621.80	3.2280 3.2280	0.3825	0.882	0.139885 00
01:36:00	651.00	3.2295	0.3825	0.882	0.14698E 33
02:06:00	681.00	3.2280	0•3900 0•3825	0-900	0.15408E 00
02:36:00		3.2280	0.3825	0•882 3•882	0.16118E 00
03:06:00		3.2250	0.3855	0.889	0.16828E 00 0.17538E 00
03:36:00		3.2235	0.3900	0.900	0.18249E 00
94:06:00		3.2175	0.3930	9.937	0.18959E 00
34:36:30		3.2175	0.3930	0.907	0.19669E 00
05:36:01	861•00	3.2138	0.3975	3.917	0.2037PE 00
95:36:39	891.00	3.2190	0.4905	0.924	0.21085E 00
05:06:00	921.03	3.2100	0.4005	0.924	J.21799E 00
06:36:00	951.00	3.2025	0.4080	0.941	0.22539E 00
97:06:97	981.00	3.1875	0.4235	0.976	1.23219E 00
07:36:00	1011.00	3.1725	0.4380	1.010	9.23929E 30
38:36:30	1341.00	3 • 1680	0.4425	1.821	0.24639E 10
08:36:00	1371.00	3.1359	0.4755	1.097	9.053495 00
69:26:00		3.1530	0.4575	1.055	0.26959E 00
09:36:00	1131.00	3.1520	0.4605	1.562	0.26769E 03

												PFCJ	ECT #835	?5
					P418							9	AGE #15	
	PADI					;		ε	5.05	FEET				
	DISC					:		129	36.09	GPM				
	STAT	ΙC	PRE	SSU	RE	:		₹.	6105	PSI				
	S				<b>.</b>									
	PUMP	ST	ART	ING	DATE						Ţ	IME	= 14:45:	9 0
	ьΩмь	ST	OPP	ING	DATE	:	JUL	20•	1984	<b></b>	T	IME	= 06:00:0	) a
TIME	;	FIA	PSE	n T	IME	00	ES\$U	0-	CHAR	·				
	•	- <b>-</b> 1		T '	1	F 15	E350	N E		SSURE			T/R*:	<b>+</b> 2
		(1		UTES	3.		esI)		(PS			AD	4	
									1-3	,,,	(FEE	-	(MIN/S6	IFT)
€JUL	18 • 1	1984	4)											
1 - 2 - 2 - 2		_												
10:06:0			161	• 0 0		3 • 3	<b>1</b> 500				1.04	2	9-274795	3.0
17:36:0				0.0			1350		0.47		1.09		0.28199E	
11:56:5			221				1350		0.47		1.09		0.28899E	
11:36:0			251				1260		9.49		1.13	1	0.29609E	
12:06:0	-	12					1805		0.51		1.17	6	3.30325E	
12:36:0			11.				939		0.51		1.19		9.310335	
13:06:0			41.				1035		0.51		1.17	6	0.31740E	
13:36:0			71.				855		0.52		1.21		0.3245CE	
14:06:0	-		FC1∙				1155		0.49		1.14	2	0.331605	
14:36:3			31.						0.52		1.21	8	0.338705	
15:36:0			91.						0.54		1.25		0.35290E	
15:36:0			51.						9.58	05	1.33	9	0.36713E	
17:36:00	-		11.				3555		0.55	5 f.	1.28	0	0.38130E	8 3
18:36:03			71.						0.56		1.304	4	0.39550E	
19:36:0:			31.						0.54	0.0	1.24	5	0.40970E	0.0
20:36:0:			91.			3.0	855		0.52		1.21	l	0.42391E	
21:36:01				ũ C	•				3.52	05	1.201	<u>l</u>	0.43811E	āā
22:35:00	=		11.			_	630		0.54	75	1.263	5	9.452315	0.0
23:36:00				0 C			480		0.56		1.298	3	0.466515	3.6
00135100				Çņ		3.0	4 P O		9.56		1.298	3	0.480715	ال ن
21:46:21			91.				375		9.57	3 U	1.322	?	0.49728E	0 S
72:45:00			€1.				3 ° 0		0.58	05	1.339	;	0.51148E	2.3
93:46:00			21.				405		0.57	0.0	1.315	i .	0.525685	1 g
34:46:23			e 1 •				330		0.57	75	1.332	2	0.539885	0.0
35:46:00			41.				255		0.585		1.349	)	0.554085	g h
\$6:46:13			01.				955		0.515	5 0	1.419		0.56828E	ិន
07:46:00			61.				595		0.560	0.0	1.522		0.582495	ว้า
08:46:00			21.				775		0.533	<b>3</b> 0	1.460		9.59669E	30
19:46:01			91.				583		0.652	25	1.535		0.610095	áá
10:46:00		26	41.	3.1	;	2•9	325		0.578	9.0	1.564		0.625895	

#### PHMP TEST (DRANDONN PHASE)

р О	ELL NUMBER : 6418 ADIUS (R) ISCHARGE (Q) TATIC PRESSURE		65.00 FEET 180.00 GPM .6105 PSI	=	ECT #83505 AGE #16
	UMP STAPTING DATE UMP STOPPING DATE	: JUL 17 : JUL 20			= 14:45:60 = 06:00:00
TIME	ELAPSED TIME T	PRESSURE	CHANGE IN	CHANGE IN HEAD	T/8**2
	(MINUTES)	(PSI)	(PSI)	(FEET)	(MIN/SQFT)
(JUL I	9, 1984)				
11:46:33	2771.00	2.9205	0.6900	1.592	0.63929E 00
12:46:00	2761.00	2.9130	8∙3975	1.609	0.653495 68
14:46:00	2881.00	2.9625	0.5480	1.495	0.681895 00
16:46:00	3001.00	2.9475	9 • 5 6 3 9	1.529	C.71030E 90
18:46:00	3121.00	2.9475	9.5630	1.529	0.73878E 00
20:46:00	3241.50	2.9205	0.5900	1.592	0.767135 90
22:46:00	3361.00	2.9280	9.5825	1.574	0.79550E 00
00:46:00 02:46:00	3481.00	2.9133	0.6975	1.609	9.82391E 09
64:46:03	3631.00 3721.00	2.9205 2.9100	0•6900 6•7005	1.592 1.616	0.85231E 00 0.88971E 00

#### PHMP TEST (DRANDONN PHASE)

 $oldsymbol{\star}$  . The first of the second constant  $oldsymbol{\star}$  ,  $oldsymbol{\star}$ 

;; =	ELL MUMPER: PASE ADIUS (R) EISCHARCE (R) TATIC FRESSURE	: : 128	46.03 FECT 00.00 cpm .3341 PST		FOT #43515 465 #11
	UMP STARTING DATE				= 14:45:00 = 15:00:00
TIME	ELAFSED TIME T (MINUTES)	PPESSURE	PRESSURE (PSI)	CHANGE IN HEAD (FEET)	
***		*****			
(JUL 1	7. 1984)				
14:45:01 14:45:11		16.3359 16.3333	-0.000° 0.0000	-9.002 9.202	0.78765E+05 0.86641E+04
14:45:21		16.3316	0.0025	0.06	0.165415-33
14:45:31		16.3333 16.3341	0.0008 0.3000	0.082	0 • 24417E = 03
14:45:51		16.3341	0 • 3 5 6 5 9 • 3 5 6 5	0.000 0.000	0.32294E=03
14:46:01		16.3333	0.40008	0.002	0.48047E=33
14:46:11	1.10	16.3316	0.3025	0.006	0.559235-03
14:46:21		16.3341	0.0000	0.000	0.638005-03
14:45:31		16.3333	0.0008	0.002	0.71676E-03
14:46:41		16.3316	0.0025	0.006	0.79553E-03
14:46:51		16.3316	0.9925	ଟି•ସସ6	C-87429E-03
14:47:81		16.3308	0.0033	0.008	0.95386E-03
14:47:21		16.3284	0.0057	0.013	0.103188-02
14:47:31		16.3300	0.0041	0.079	2.11106E-32
14:47:41		16.3292 16.3267	0.0049 0.0074	0.011	N-11894E-02
14:47:51		16.3259		∂.317 9.319	0.126915-52
14:48:01		16.3267	2.9074	0.017	0.13469E=32 0.14256E=32
14:45:21		16.3234	2.0107	1.825	8.15832E-32
14:42:41		16.3234	0.0107	2.325	0.174875+02
14:49:31		16.3218	0.7123	0.028	0.189825-02
14:49:31		16.3185	0.0156	0.036	0.21345E-32
14:50:01		16.3160	0.7181	2.042	9.237(85=02
14:50:31		16.3110	0.0231		0.26071E-02
14:51:01		16.3077	0.0264	0.061	9.284345-32
14:51:31		16.3044	0.0297	0.069	0.307975-32
14:52:01		16.3020	0.0321	0.074	0.33160E=12
14:52:31	7.5?	16.2987	0.0354		0.755235-32
14:53:31	8.02	16.2954	0.1387	0.009	0.37886E-J2

PUM	L MUMBER : 64 IUS (9) CHARGE (G) TIC PRESSURE P STARTING DAT P STOPPING DAT	: 129 : 16		TIME	#83505 PAGE #12 = 14:45:00 = 15:00:30
34IT 	FLAPSED TIME T (MINUTES)	PPESSURE (PSI)	CHANGE IN PRESSURE (PSI)	CHANGE IN HEAD (FEET)	
14:53:31 14:53:31 14:55:05 14:55:05 14:55:05 14:55:05 14:55:05 14:55:05 14:55:05 14:59:05 15:03:05 15:05:05 15:05:05 15:05:05 15:05:05 15:05:05 15:16:16 15:16:16	1984) 8.52 9.52 10.08 10.08 12.08 13.08 14.08 15.08 16.08 17.08 18.08 20.08 21.08 22.08 23.08 24.08 25.08 21.35	16.2913 16.2839 16.2839 16.2783 16.2783 16.2632 16.2632 16.2366 16.2418 16.2229 16.2229 16.2229 16.2229 16.2170 16.2005 16.1964 16.1964 16.1964 16.1659 16.1659 16.1659	0.0428 0.0470 0.05518 0.05518 0.05518 0.0775 0.07779 0.07779 0.07779 0.1053 0.11713 0.11336 0.1337 0.1493 0.1493 0.1493 0.1578 0.1688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.176888 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.176888 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.17688 0.		0.40249E-32 0.42612E-32 0.42612E-32 0.47338E-32 0.52379E-32 0.52379E-32 0.557105E-32 0.66556E-32 0.76209E-32 0.76209E-32 0.80734E-32 0.80734E-32 0.80435E-32 0.99638E-32 0.11382E-31 0.11382E-31 0.12794E-31
15:19:21 15:20:21 15:22:21 15:24:21 15:26:21 15:29:21 15:30:21	33.35 35.35 37.35 39.35 41.35 43.35 45.35	16.1453 16.1378 16.1287 16.1285 14.1089 16.3999 16.3999 16.0884 16.0652	0.1888 0.1963 0.2054 0.2136 0.2252 0.2342 0.2441 0.2507 0.2689	3.453 0.474 0.493 0.519 0.540 0.563 0.578	0.14916E-31 9.15761E-31 0.16706E-01 9.17651E-31 9.185965-31 0.19542E-31 0.20487E-31 0.21432E-01 0.23795E-01

				ଜନ୍ମ	EQT ##3515
	TLL MUMBER I F4	7.0		ກ	AGE #13
#	ADIUS (F)	:	46.30 FFET		
r	ISCHAPGE (n)		303.00 GPM		
	TATIC PRESSURE		.3341 PST		
-		• •			
PI	UMP STARTING DA	TE : JUL 11	7. 1004	TIME	- 4/4/54
	UMP STOPPING DA				= 14:45:30
. ,	DEF STOFFING DA	1C . UUL 2	19 1754	1 T W F	= 15:88:38
TIME	SLADGED TIME	55555455	6/1.4.1.4.E. #4.		
TIME	ELAPSED TIME	PRESSURE	<del>-</del> -	CHANGE IN	T/P++2
	Ť		PRESSURE	HEAD	
	(MINUTES)	(PSI)	(PȘI)	(FEET)	(MIN/SOFT)
(JUL 1)	7, 1984)				
•					
15:40:21	55.35	16.0462	0.2879	0.664	0.261585-31
15:45:21	60.35	16.0306	0.3935	3.756	0.28521E-J1
15:50:21	65.35	16.0149	0.3192	0.736	0.30984E-01
15:55:21	70.35	15.9984	8.3357	0.774	0.33247E-01
16:00:21	75.35	15.9844	0.3497	9.807	0.35610E-81
16:05:21	80.35	15.972?	0.3621	0.835	0.37973E-01
16:10:21	85.35	15.9613	3.3728	0.860	0.40336E-01
16:15:21	90.35	15.9497	0.3844	0.887	9.426995-31
16:49:01	123.02	15.9051	0.4290	2.990	0.58136F+11
17:18:31	153.02	15.8746	0.4595	1.960	_
17:48:01	183.02	15.8548	0.4793		7.723145-01
18:18:01	213.02	15.8449		1.196	0.864925-01
18:48:01	243.02		S•4892	1.128	0.100675 00
19:18:01		15 +8358	0.4983	1.149	0.11495E 00
19:48:01	273.02	15.8284	0.5057	1.157	0.129025 03
	303+32	15.8234	0.5187	1.178	2.143285 03
20:18:01	333-12	15.8243	0.5098	1.176	9.157395 30
20:49:01	363.02	15.8226	0.5115	1.180	9.17156E 00
21:18:01	393.12	15.8243	0.5098	1.176	7.18574E 00
21:49:01	423.02	15+8268	0.5073	1.170	0.199515 00
22:18:01	453.02	15.8300	0.5041	1.163	8.21409E 38
22:49:51	483.12	15.835A	0.4983	1.149	2.29275 00
23:19:01	513.12	15.8342	0.4999	1.153	0.242455 00
23:48:01	543.02	15.8325	0.5016	1.157	0.05662E 03
75:48:31	603.02	15.8284	3.50F7	1.167	9.28498E 00
01:49:31	663.32	15.8251	8.5099	1.174	0.313335
32:48:31	723.02	15.8144	0.5197	1.129	0.74169E 33
13:48:11	783.02	15.8194	0.5247	1.210	0.37335E 33
34:48:01	943.02	15.9036	0.5305	1.224	8.398415 73
35:49:51	603.02	15.8061	0.5280	1.218	2.426765 31
36:48:11	963.82	15.8036	0.5305	1.224	
7 D T 1 10 E 2	. Q ∪ • `` <u>a</u>	1 ( • ~ ♡ J ♡	9 <b>*</b> 3 3 3 % 5	1044	9.45511E 00

#### FUMP TEST (DRAVDCAN PHASE)

7 A D 2 I S 4 T S	L NUMPER : P4 IUS (R) CHARGE (G) TIC PPESSURE	: : 129 : 19	46.00 FERT 800.00 GPW 5.3341 PST		JECT #33595 NGE #14
₽Uw PUw	P STAPTING DATE P STOPPING DATE	TE : JUL 17 TE : JUL 20	7• 1984 )• 1984	TIME TIME	= 14:45:60 = 15:65:00
TIME	FLAPSED TIME T (MINUTES)	PRESSURE	PRESSURE	HEAD	<del></del>
			(PSI)	(FEET)	(MIN/SQFT)
(JUL 18,					
57:48:01 10:48:01 10:48:01 11:48:01 11:48:01 12:48:01 13:48:01 15:48:01 16:48:01 16:48:01 17:48:01 18:48:01 20:48:01 21:48:01 21:48:01 21:48:01 21:48:01 21:48:01 21:48:01 21:48:41 23:48:41 23:48:41 23:48:41 23:48:41 23:48:41 23:48:41 23:48:41 23:48:41 23:48:41	1983.02 1143.02 1203.02 1263.02 13283.02 1383.02 1443.02 1563.02 1563.02 1683.02 1683.02 1863.02 1863.02 1983.02 1983.02 1983.02 1983.02 1983.02 1983.68 2043.68 2283.68 2283.68	15.8061 15.8086 15.8119 15.8119 15.8112 15.7640 15.7640 15.7640 15.6815 15.6815 15.6841 15.6843 15.6641 15.6650 15.6650 15.66650 15.6666 15.6666 15.6668	0.522293 0.5222293 0.522293 0.579879 0.579879 0.579879 0.56946 0.66976699 0.66976699 0.66976699 0.66976699 0.66976699 0.66976699 0.66976699 0.66976699	1.212 1.212 1.2235 1.2235 1.2235 1.2235 1.2235 1.3348 1.5559 1.5569 1.5569 1.5549 1.5549 1.5549 1.5549 1.5549 1.5549	0.483475 00 0.51182E 00 0.54918E 00 0.56858E 00 0.59689E 00 0.65360E 00 0.65360E 00 0.71331E 00 0.73867E 00 0.73867E 00 0.78538E 00 0.79538E 00 0.885209E 00 0.885209E 00 0.885209E 00 0.98715E 00 0.
07:48:41 08:48:41	2463•68 2523•68	15.6675	0.5666	1.538	0.11643E DI
19:43:4:	2583•68 2583•68	15.6716 15.6724	0.6625		9.11927E -01
17:48:41	2643.68	15.6708	0.6617 0.6633	_	7.12210E 01
11:48:41	2703.68	15.6625	0.5716		0.12494E 91
12:48:47	2763.62	15.6443	0.5898		0.127775 01 0.130615 01

	ETT MASSES : p		46.00 FEET		107 #83818 Nog #38
	DISCHARGE (Q) STATIC PRESSURE		970.00 6PM 6.3341 PST		
	PUMP STARTING D		7• 1984 C• 1984		: 14:45:30 : 15:36:00
TIME	FLARSED TIM	E PRESSURE	CHANGE IN PRESSURE	CHANGE IN HEAD	T/P++2
	(MINUTES)	(PSI)	(PSI)	(FEET)	(MIN/SQFT)
17:48:4 15:48:4 15:48:4 17:48:4 17:48:4 19:48:4 20:48:4 21:48:4 23:48:4 23:48:4	2883.68 2943.68 3093.68 1 3163.68 1 3123.68 1 3183.68 1 3243.68 1 3303.68 1 3423.68 1 3423.68	15.6221 15.5940 15.5865 15.5940 15.5700 15.5766 15.5956 15.5966 15.5966 15.5907	G.7120 G.7401 C.7476 G.7401 C.7641 C.7575 G.7418 C.7385 G.7385 C.7335 C.7335		C.13344E 01 0.13628E 01 0.13912E 01 0.14479E 01 0.14479E 01 0.144762E 01 0.15046E 01 0.15613E 01 0.15613E 01 0.16464E 01 0.16464E 01
02:48:4	1 3603.68 1 3663.68 1 3723.68	15.5907 15.5808 15.5725 15.5725 15.5725	0.7434 0.7533 0.7616 0.7616 0.7616	1.738 1.757 1.757	0.16747E 31 0.17331E 31 0.17314E 01 0.17598E 31 0.17681E 01

٠.

8 A D 9 I S 7 T A M U P	L NUMBER : F47( IUS (P) CHARGE (G) TIC PRESSURE P STARTING DATE P STOPPING DATE	: : 128 : 17		TIME	ECT #97515 AGE #15 = 14:45:00 = 15:00:00
TIME	ELAPSED TIME T (MINUTES)	PRESSURE	CHANGE IN PRESSURE (PSI)	CHANGE IN HEAD (FEET)	T/P**2 (MIN/SQFT)
(JUL 17, 14:45:61	0.18528528528528528528528528528528528528528	17.6759 17.6759 17.6731 17.6731 17.6794 17.6699 17.6699 17.66549 17.65547 17.65547 17.63445 17.63445 17.63497 17.63497 17.63497 17.6558 17.6558 17.6558 17.5588 17.5588 17.5588 17.5588 17.5588 17.5588 17.5588 17.5588 17.5588 17.5588 17.5588 17.5588 17.5588 17.5588 17.5588 17.5588 17.5588	-0.000 0.0019 0.0019 0.0028 0.00356 0.00356 0.01117 0.0157 0.0117 0.0157 0.0117 0.0157 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0	7.141 0.169 0.188 0.213 0.245 0.275 0.305 0.335	0.786641E-03 7.87641E-03 7.87641E-03 7.87641E-03 7.87641E-03 7.87641E-03 7.87641E-03 7.876541E-03 7.87653165E-03 7.8765316E-03 7.877318E-03 7.877318E-03 7.877318E-03 7.877318E-03 7.877318E-03 7.877318E-03 7.877318E-03 7.877318E-03 7.873165E-03 7.873174E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873774E-03 7.873

PAD Dis Sta Fum	L NUMBER: P47( IUS (P) CHARGE (C) TIC PRESSURE P STARTING DATE P STOPPING DATE	: 128 : 17		TIME	ECT #A7515 A05 #12 = 14:45:38 = 15:36:88
TIME	FLAPSED TIME T (MINUTES)	PPESSURE (PSI)	CHANGE IN PRESSURE (PSI)	CHANGE IV HEAD (FEET)	_
(JUL 17,	8.52	17.4948	0 <b>•1802</b>	0.416	0.40249E=02
14:54:31 14:54:31 14:55:01 14:56:05	9•52 10•02	17.4865 17.4735 17.4615 17.4393	0.1885 0.2015 0.2135 0.2357	0.435 0.465 0.493 0.544	0.426125-02 0.44975E-02 0.47338E-02
14:57:05 14:58:05 14:59:05 15:30:05	12.38 13.78 14.08	17.4199 17.4005 17.3829	0.2551 0.2745 0.2921	0.588 0.633 0.674	0.52379E-02 0.57105E-02 0.61830E-02 0.66556E-02
15:01:05 15:02:05 15:03:05	16.09 17.08 18.08	17.3682 17.3497 17.3367 17.3229	0.3068 0.3253 0.3383 0.3521	0.708 0.750 0.780 0.812	0.71282E+32 0.76318E+32 0.80734E+12 0.85460E+32
15:04:05 15:05:05 15:06:05 15:07:05	20.08 21.68	17.3109 17.2998 17.2869 17.2757	0.3641 0.3752 0.3882 0.3993	0.840 0.866 0.896 0.921	0.90186E + 02 0.94912E - 02 0.99638E - 02 0.10436E - 01
15:08:05 15:09:05 15:10:05 15:12:05	23•09 24•08 25•68	17.2655 17.2563 17.2461 17.2295	C.4095 C.4187 O.4289	0•945 0•966 0•989	0.10909E-01 9.11392E-01 0.11354E-01
15:14:09 15:16:21 15:18:21	29.08 31.35 33.35	17.2166 17.2045 17.1925	0.4455 0.4584 0.4705 0.4825	1.028 1.057 1.085 1.113	0.127995-01 0.137445-01 0.149165-31 0.157615-01
15:20:21 15:22:21 15:24:21 15:26:21	37•35 39•3#	17.1842 17.1740 17.1639 17.1574	0.4908 0.5010 0.5111 0.5176	1.132 1.156 1.179 1.194	0.16706E-01 0.176E1E-01 0.18596E-01 0.19542E-01
15:28:21 15:30:21 15:35:21	45.35	17.1518 17.1463 17.1352	0.5232 0.5287 0.5398	1.237 1.220 1.245	0.204875-01 0.214325-01 0.237955-01

P(	ELL NUMBER : P47 ADIUS (R) ISCHAPGE (O) TATIC PRESSURE UMP STARTING DATI UMP STOPPING DATI	: 129 17		TIME	ECT #93505 AGE #13 = 14:45:30
TIME	ELAPSED TIME				= 15:00:00
	(MINUTES)	PRESSURE	CHANGE IN PRESSURE	HEAD	T/P++2
	(0100163)	(PSI)	(PSI)	(FEET)	(MIN/SQFT)
(JUL 17	7. 1984)				
15:40:21 15:45:21	55.35	17.1241	0.5509	1.271	5.26158E=31
15:50:21	50∙35 65•35	17.1174 17.1093	0.5574 0.5657	1.286	0.28521 <u>E</u> =01
15:55:21	70.35	17.1019	0.5731	1.305 1.322	0.30884E = )1 0.33247E = 01
16:50:21	75.35	17.0973	0.5777	1.333	0.35613E-01
16:05:21	P0.35	17.0917	0.5833	1.346	0.379735-31
16:10:21	85.35	17.0890	3.5868	1.352	0.403365-31
15:15:21 16:49:01	90.35	17.0853	0.5897	1.360	0.426985-01
17:18:01	123.02	17.0769	0.5981	1.390	0.58136E-31
17:48:31	153.02 183.02	17.0760	0.5998	1.392	0.723145-31
18:18:01	213.32	17.0760 · · · 17.0769	0.5993	1.382	0.86492E=01
18:48:51		17.0760	0.5921 0.5998	1.380	0.100675 00
19:18:01	273.02	17.0723	0.5027	1.382	0-11485F 30
19:48:01		17.0714	0.6036	1.390 1.392	0.12902E 00 0.14320E 00
20:18:01		17.0751	0.5999	1.394	0.14320E 00 0.15738E 00
20:48:01		17.0788	0.5962	1.375	9-171565 33
21:18:01		17.0816	9.5934	1.369	0.18574E 30
21:49:91		17•0896	9.5944	1.371	0.199915 33
22:18:01	453.12	17.1853.	0.5897	1.360	0.214URE 00
22:48:71		17.0880	0 <b>-587</b> 0	1.354	0.828275 50
23:18:01 23:48:01		17.0671	^•58 <b>7</b> 9	1.356	0.24245E 00
20.48.01		17.0862	0.5888	1.358	0.256525 10
11:48:11	<u>.</u> .	17.0816	3.5934	1.369	୮•28୍ୟସବଳ୍ ଓଡ଼
12:48:01		17.0779	0.5971	1.377	0.31333E .:
13:48:11		17.0649 17.0594	0.6101	1.477	0.34169E 1,
34:48:61		17.0557	0.6156 0.6193		0.37005E 00
15:49:01		17.7520	0.5173	1.429 1.437	0.39840F 00
06:48:01	_ * * * * *	17.0483	0.6267	1.446	7.42676E 30 0.45811F 30

DI:	LL NUMBER : P4 DIMS (R) SCHARGE (G) ATIC PPESSURE	: : 128	46.00 FEET 00.00 GPM 1.6750 PST		ECT #13335 Ang #14
PU1 PU1	MP STARTING DAT MP STOPPING DAT	FE : JUL 17 FE : JUL 20			= 14:45:30 = 15:00:00
TIME	ELARSED TIME T (MINUTES)	PRESSURE (PSI)	CHANGE IN PRESSURE (PSI)	CHANGE IN HEAD (FEET)	,
			11.011	772217	7 T IAN 2 IA E. L. A.
(JUL 18,					7*******
07:48:01 08:48:01 09:48:01 10:48:01 11:48:01	1023.02 1083.02 1143.02 1203.02 1263.02	17.0501 17.0520 17.9510 17.9418	0.6249 0.5230 0.5240 0.6332 0.6573	1.442 1.437 1.439 1.461 1.516	0.48*47E 00 0.511825 00 0.54018E 00 0.56853E 00 0.59689E 00
12:48:51 13:48:61 14:49:51 15:48:31 16:48:31	1323.02 1383.12 1443.02 1503.02 1563.02	16.9736 16.9736 16.9364 16.9105 16.8781	0.6813 0.7044 0.7386 0.7645 0.7969	1.572 1.625 1.734 1.764 1.838	0.62524E 33 0.65360E 00 0.68195E 00 0.71831E 30
17:48:01 18:48:01 19:48:01 29:48:01	1623.02 1683.02 1743.02 1803.02	16.8531 16.8365 16.8642 16.8864	0.8219 0.8385 0.9108 0.7886	1.896 1.934 1.870 1.819	0.73867E 00 0.76702E 00 0.79538E 00 0.82373E 00 0.85209E 00
21:48:01 22:48:01 23:48:01 09:48:42 01:48:41	1863.92 1923.02 1983.02 2043.70 2103.68	16.9022 16.9123 16.9179 16.9169	0.7728 0.7627 0.7571 0.7581 0.7553	1.783 1.759 1.746 1.749 1.742	0.98644E 00 0.90886E 00 0.93715E 00 0.96583E 00 0.99418E 00
12:48:41 13:48:41 14:48:41 15:48:41	2163•68 2223•68 2283•68 2343•68	16.9086 16.9049 16.9012 16.9007	0.7664 0.7701 9.7738 0.7747	1.768 1.776 1.785 1.787	0.10225E 01 0.10509E 01 0.10792E 01 0.11076E 01
16:48:41 17:48:41 18:48:41 19:48:41 10:48:41	2403.68 2463.68 2523.68 2583.68 2643.68	16.9007 16.9049 16.9049 16.8994 16.8855	0.7747 0.7791 0.7710 0.7756 0.7895	1.787 1.776 1.779 1.789 1.821	0.11368E 01 0.11643E 01 0.11927E 01 0.12217E 01 0.12494E 01
11:49:47	2703.68 2763.69	16.8633 16.8365	0.8117 0.9385	1.872	0.12777F 01 0.13761E 01

	ELL NUMBER : PAR ADIUS (P) ISCHARGE (C) TATIC PRESSURE	: : 12	46.10 FEET 830.11 GPM 7.6 <b>7</b> 50 PSI		JECT #13515 PAGE #15
	UMP STARTING DAT UMP STOPPING DAT		7• 1984 0• 1984		= 14:45:00 = 15:00:00
TIME	ELAPSED TIME T (MINUTES)	PRESSURE (PSI)	CHANGE IN PRESSURE (PSI)	CHANGE TO HEAD (FEET)	- · · · · -
(JUL 19	7, 1984)			****	
13:48:41 14:48:41 15:48:41 16:48:41 17:48:41 18:48:41 19:48:41 20:48:41 22:48:41 22:48:41 23:48:41 23:48:41 23:48:41 23:48:41 23:48:41 23:48:41	2823.69 2883.68 2943.68 3083.68 3123.68 3123.68 3123.68 3243.68 3343.68 3423.68 3423.68 3423.68 3563.68 3723.68	16.8087 16.7782 16.7985 16.8050 16.8050 16.8022 16.8087 16.8133 16.8170 16.8198 16.8198 16.8152 16.8097 16.8152 16.8097	0.8568 0.8765 0.8765 0.8770 0.8773 0.87657 0.86617 0.86617 0.8561 0.8561 0.8561 0.8561 0.8561 0.8561 0.8563 0.8563	1.998 2.069 2.069 2.022 2.007 2.023 2.013 1.998 1.9975 1.966 1.973 1.996 1.978 1.996	0.13344E 31 0.13628E 31 0.13912E 31 0.14479E 31 0.14479E 31 0.15346E 31 0.15613E 31 0.15613E 31 0.15646E 31 0.16464E 31 0.16747E 31 0.16747E 31 0.17314E 31 0.17599E 31

APPENDIX E
SLUG TEST DATA TABLES

# 9<u>0</u>00 TEST

DEBLE ID MALES UVSI, C SLICK+fie UVSI, C DIVALLES UVSI, C FEFULE LFF - MVEER : LITE	: : :	4.99 FIET 9.10 INCHES 1.17 FEET 4.43 FEET	FROUDOT E 7816 PAOS M 1
TEST METHOD : SLUG TEST STAPTING DATE	IV : JUL 11.	1004	TIME = 15:47:33

TIME	ELAPSED TIME (MINUTES)	97W (F557)	CHANGE IN HEAD (FEET)	
15:48:33:44 15:48:33:44 15:56:33:45 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14 16:14	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3.725 0.515 0.785 1.110 2.055 2.713 7.560 7.926 4.196	4.117 3.327 3.327 2.327 2.327 0.377 0.370 0.340	7.000 PP

DTW ---- DEPTH TO WATER (IN FEET)

## SEUC TEST

PROUDOT #17515 FACE # 12

FUL NUMBER : TITAL CASING LEMBTE : 4.40 FTET CASING DIAMETER : 2.10 INCHES CASING STICK-UP : 1.77 FIET CEPTH TO WATER : 4.43 FEET

TEST METHOD : SLUG IN

TEST STAPTING DATE . JUL 11. 1984

TIME = 18:47:30

PADEAULIC CONDUCTIVITY COMPUTATION

MYORSLEY (1951) METHOD C

k = (SDI*BC**/(11*EC*T))FM(DHONDH)

HYDRAULIC CONDUCTIVITY = 0.2217E-05 FEET/SEC

## PLUC TEST

File of orthographic			PROJECT		
CEETH TO MATER CASING STICK+GE CASING DIAMETER CTSING FENCED	•	5.05 FIET 2.73 INCHES 1.55 FIET 4.65 FEET	7165	+	
TEST METHOD : SLUG	[ *.				

TEST STARTING DATE : UNL 11. 1394 TIME = 16:04:30

TIMO	ELARSED TIME	ħτQ	CHANGE IN	
	(MINUTES)	(5557)	HEAD (FEET)	
(JUL 11. 1984	• }			
14:14:45 14:15:71 14:15:71 16:15:71 16:13:11 16:24:72 16:35:75	1.170 2.170 2.170 5.770 7.170 1.70	2.400 2.400 2.470 2.630 2.500 2.700 4.420	4.250 4.120 4.120 4.130 2.050 1.350	7.9226. 3.9140 0.8563 0.8645 0.6774 7.4430 0.8003

#### SEUS TEST

TEST METHOD : SLUG IN

TEST STARTING DATE : UNL 11. 1904 TIME = 16:04:30

HYDRAULIC COMBUCTIVITY COMPUTATION

HVOPSLEV (1951) MITHOD C

K = (SPI*RC**/(11*PC*T))LN(DHC/DH)

HYDRAULIC COMDUCTIVITY = 0.1342F+65 FEFT/SEC

FLE NUMPER : TICA			PROJECT	
CASING DIAMETER CASING STICK-UP DEPTH TO WATER	:	4.46 FEET 2.00 INCHES 1.15 FEET 3.64 FEET	F & G E	# 11

TEST METHOD : SLUG IN TEST STARTING DATE : JUL 11, 1984

TIME = 14:34:30

TIME	ELAPSED TIME T	DTW	CHANGE IN MEAD	
77	(MINUTES)	(FEFT)	(FEET)	
				******
(JUL 11. 1986	4)			
14:38:30	2 • 01 g	0.253	3.391	
14:40:30	4.000	0.450	3.193	1.6313 1.8764
14:45:30	_ <b>0</b> • ⊍ f C	3.910	2.732	0.7500
14:55:30	19.000	1.510	2.330	0.5577
15:05:30 15:15:30	29.000	2.110	1.530	3.4207
15:33:36	39.010 57.000	2.450	1.150	9.7150
15:52:73	57.910 75.513	3.010	0.630	0.1731
15:57:45	91.2F3	3.205	0.440	0.1219
	~ <b>4 • ∠</b> ~ u	3.4965	7.438↑	0 • 1 144

### SEGUL TEST

PROJECT 4,3515

CASING LENGTH : 4.46 FTET CASING DIAMETER : 2.00 IMCHES CASING STICK-UP : 1.15 FFET CEPTH TO WATER : 3.54 FEET

TEST METHOD : "LUG IN

TEST STARTING DATE : JUL 11. 1984

TIME = 14:36:33

MCITATUPMED VIIVITOUGED DILUERDYH

HVORSLEV (1951) METHOD C

K = (2FT+PC+*/(11*RC*T))LN(0HO/OH)

HYDFAULIC CONDUCTIVITY = 0.9721E+06 FEET/SEC

### STHE TEST

FEE NUMBER : TICE

CASING DIAMFTER : C.TR FUET

CASING STICK-ME : 2.10 INCHES

CEPTH TO VATER : 4.00 FEET

TEST METHOD : SLUG IN

TEST STAPTING DATE : JUL 11. 1994

TIME = 15:36:45

4 I AÈ	FLARSED TIME	<u>ņ</u> ±u	CHANGE IN	
****	(MINUTES)	(FDET)	HEAD (FEET)	
fUPL 11. 195	4)			
15:52:30 16:27:30 05:19:04	15.750 51.75: 1162.253	0.750 0.910 3.810	3.4#1 3.190 9.190	0.510= 1.7575 1.0475

DT4 SHEET DEPTH TO WATER (IN FEET)

#### SLUC TEST

777457 4:75 6

FLL 'U'TER : TICH

CASI'C LENGTH : 9.79 FIET

CASI'G DIAMFTER : 9.00 IMCHES

CASI'G STICK-UF : 1.34 FEET

DERTH TO WATER : 4.08 FIET

TEST METHOD : SLUB IN

TEST STARTING DATE : JUL 11, 1984

TIME = 15:36:45

HYDRAULIC COMBUCTIVITY COMPUTATION

HVORSLEY (1981) METHOD C

 $\kappa = (20I+RC++/(11+PC+T))LN(OHO/CH)$ 

PYDRAULIC CONDUCTIVITY = 0.9890F-37 FEFT/SEC

4.67 FTET

0.05 FEET

3.58 FFET

2.30 INCHES

FEE WINEES : TIRA

CASI' & LENGTH

CASING DIAMETER

CASING STICK-UP

DEPTH TO MATER

FROJECT EFFECS

PAGE Moi

			_	
TEST MET	THOD : SLUG IN			
TEST ST	ARTING DATE :	11:1 44 45		
, <b></b>	STINS DA E	OOF II+ Is	<b>μ 4</b>	TIME = 13:59:30
TIME	ELADOCO TIME			
	ELAPSED TIME	DTW	CHANGE IN	
	T		HEAD	
	(MINUTES)	(FFET)	(FEET)	
1 11 155.				
L 11• 1984	1			
14:00:00	8.508	2 24 5		
14:05:30	1.000	9.215	3.370	
14:01:00		2.427	3.160	
14:51:30	1.513	0.618	2.977	( • 829¢
14:32:30	2.000	0.750	2.830	7.7975
	2.500	ប្⊕ខ9ថ	2.694	9.7514
14:63:00	3.500	1.180	2.400	7.6774
14:04:00	4.510	1.430	2.150	0.6014
L4:05:75	5.500	1.670	1.910	^.6338
14:36:16	5.539	1.810	1.773	€ 4 = 4 4
14:37:65	7.500	2.030	1.550	2.437)
14:08:00	₽•570	2.179	1.413	2. 30 xc
14:10:00	10.500	2.420	1.160	5.3247
4:12:00	12.500	2.650	9.931	
14:17:00	17.500	3.000	0.589	1.2598
14:22:00	22.500	3.211		0.1620
		# C 1	2.37?	0.1034

# SEUR TEST

FROJECT #535 8

FELL /UMFER : T13A C491'G LEMGTH : 4.67 FFET CASI'G DIAMETER : 2.00 IVCHES CASING STICK-UP : 0.35 FEET DEPTH TO WATER : 3.59 FFET

TEST METHOD : SLUG IN

TEST STARTING DATE : JUL 11, 1984 TIME = 15:59:3)

# HYPPAULIC CONDUCTIVITY COMPUTATION

HVGRSLEV (1951) METHOD C

K = (2PI+PC++/(11+PC+T))LN(0H0/DH)

HYDRAULIC COMDUCTIVITY = 0.3528E-05 FEET/SEC

FLL MUMBER : TITE	•		PROJECT Page	
CASING LENGTH CASING DIAMETER CASING STICK-UP DEPTH TO WATER	:	9.25 FCET 2.00 IMCHES 1.61 FCET 4.26 FCET		

TEST METHOD : SLUG IM
TEST STAPTING DATE : JUL 11. 1984

TIME = 14:31:30

TIME	ELAPSED TIME T (MINUTES)	OTW (FEET)	CHANGE IN HEAD (FEET)	
(JUL 11. 158	4)			
15:48:45 16:26:36 09:20:65	77.753 115.568 1129.063	0.780 0.760 2.360	3.69) 3.50; 1.960	0 • 8 \$ 3 ° 0 • 9 2 1 6 0 • 4 4 6 9

### SEUC TEST

PROJECT #83515

ELL MUMBER : TIRP CASING LEMBTH

CASING DIAMETER
CASING STICK-UP
FERTH TO WATER

9.25 FEET 2.30 INCHES 1.61 FEET 4.26 FEET

TEST METHOD : SLUG IN

TEST STARTING DATE : JUL 11. 1984

TIME = 14:31:00

MYDRAULIC COMDUCTIVITY COMPUTATION

HVOPSLEV (1951) METHOD C

K = (2PI*RC**/(11*RC*T))LN(DHO/OH)

HYDRAULIC CONDUCTIVITY = 0.2315F-07 FEET/SEC

### CEUS TEST

TEL MUMBER : TOTA			PROJECT	
CASING LENGTH CASING DIAMETER CASING STICK-UP DEPTH TO WATER	: : :	5•12 FRET 2•00 INCHES 1•00 FRET 4•59 FRET	3 4 € €	7 .

TEST METHOD : SLUG IN TEST STARTING DATE : JUL 11. 1984

TIME = 12:11:45

TIME	ELAPSED TIME	DTU	CHANGE IN	
	(MINUTES)	(FEET)	HEAD	
		VE 5, 2, 4, 7	(FECT)	
		*****		
(JUL 11. 198	4)			
12:11:45	ଚ୍ଚ୍ଚରପ	2.288	4.310	1 2000
12:12:15	0.510	0.330	4.265	1.0000
12:13:15	1.500	9.470		೧•9 <u>854</u>
12:14:15	2.500	0.580	4.120	7 <b>.</b> 9555
12:15:15	3.570		4.010	0+9304
12:31:15		J-690	3•□].	0.9049
12:44:15	19.500	2 • 050	2.543	ै•589₹
_	34.5	2.840	1.753	0.4063
13:01:15	49.513	3.390	1.200	6.2794
13:16:15	64.5(3	3.747	0.950	\$.1°72
13:31:15	79.509	4.020	1.570	
13:53:30	171.750	4.223	0.370	1•1323 0•3958

### SEUS TEST

PRIJEOT #87818 PAGE # 0

CASING DIAMETER : TOTA CASING DIAMETER : 5.12 FEET CASING STICK-UP : 1.90 FEET DERTH TO WATER : 4.59 FEET

TEST METHOD : SLUG IM

TEST STARTING DATE : JUL 11. 1984

TIME = 12:11:45

# HYDRAULIC CONDUCTIVITY COMPUTATION

HVOPSLEV (1951) METHOD C

K = (2PI+PC++/(11+PC+T))LN(3HO/OH)

HYDRAULIC COMDUCTIVITY = 0.8519F-05 FEET/SEC

VELL MUMBER : TOGA CASING LEMBTH	•	4 53 <b>5-</b> 57	PROJECT Page	
CASING DIAMETER CASING STICK-UP DEPTH TO VATER		4.08 FFET 2.00 INCHES 1.50 FFET 3.64 FFET		

TEST METHOD: SLUG IN TEST STAFFING DATE: JUL 11, 1994 TIME = 12:38:UT

TIME	ELAFSED TIME	D TV	CHANGE IN	
	(MINUTES)	(FFET)	HEAD (FEET)	
(JUL 11, 198	4)			
13:35:00 15:01:30 16:33:00 09:13:00	50.303 146.000 239.000 1239.300	0.120 0.210 0.280 0.770	3.52 3.43) 3.367 2.079	0.9677 0.9423 0.9231 0.7935

PROUDET HORES DAGE H 3

FEL NUMBER : TODA

CASING STICK-UP CASING STICK-UP DEPTH TO WATER

4.39 FEET 2.73 INCHES

1.53 FEET 3.64 FEET

TEST METHOD : SLUG IN

TEST STARTING DATE : JUL 11. 1984

TIME = 12:35:35

HYDPAULIC COMBUCTIVITY COMPUTATION

HVORSLEV (1951) METHOD C

K = (2PI+RC++/(11+RC+T))LN(DHO/DH)

HYDRAULIC CONDUCTIVITY = 0.57335-08 FEET/SEC

FLE MUMBER: TREE CASING LENSTH			PRIJECT Page	
CASING DIAMFTER CASING STICK-UP DEPTH TO WATER	•	8.25 FEET 2.30 INCHES 1.30 FEET 3.95 FEET		

TEST METHOD : SLUG IN

TEST STAPTING DATE : JUL 11. 1984 TIME = 12:36:25

TIME	ELAPSED TIME T (MINUTES)	DTW (FEET)	CHANGE IN HEAD (FEET)		
(JUL 11. 198	4)				
13:35:30 15:00:45 16:32:11 09:13:30	59.093 144.333 235.767 1237.083	0.215 0.500 0.790 2.560	3.64 3.35 3.06 1.290	0.5455 0.8701 0.7948 0.3351	

PROJECT #81535 PAGE #12

ELL MUMPER : TORR
CASING LENGTH : 9.25 FEET
CASING DIAMETER : 2.00 INCHES
CASING STICK-UP : 1.90 FEET
DEPTH TO WATER : 3.85 FEET

TEST METHOD : SLUG IN

TEST STARTING DATE : JUL 11. 1984

TIMF = 12:36:25

HYDRAULIC CONDUCTIVITY COMPUTATION

HVORSLEV (1951) METHAD C

K = (2PI*RC**/(11*RC*T))EN(0HG/0H)

HYDPAULIC CONDUCTIVITY = 0.29465-07 FEET/SEC

PELL MUMPER : TOTA			PROJECT	
CASING DIAMETER CASING DIAMETER DEPTH TO WATER	•	4.25 FEET 2.00 IMCHES 1.24 FEET 3.03 FEET	2465	#1.]

TEST METHOD : SLUG IN TEST STAPTING DATE : JUL 11. 1994 TIME = 12:41:45

TIME	ELAPSED TIME	DTW	CHANGE IN	
	(MINUTES)	(FEET)	HEAD (FEET)	
(JUL 11, 198	4)			
13:36:15 14:58:45 16:29:30 89:14:30	54.500 137.000 227.750 1232.250	0.560 1.150 1.530 2.790	2.470 1.980 1.500 5.240	0.8152 0.6205 0.4950 0.0792

PROJECT #33575

CASING DIAMETER : 4.25 FTET CASING STICK+UP : 1.24 FEET CAPITH TO WATER : 3.03 FEET

TEST METHOD : SLUG IN

TEST STARTING DATE : JUL 11. 1984 TIME = 12:41:45

PYDRAULIC CONDUCTIVITY COMPUTATION

HVORSLEV (1951) METHOD C

K = (2PI+RC++/(11+RC+T))LN(DHO/DH)

HYDR&ULIC CONDUCTIVITY # 0.7865E-07 FEET/SEC

PROJECT #17515

TELL MEMBE CASING LEN CASING STI CASING STI DEPTH TO W	"GTH Ameter CCK-UP	2•7 1•5	0 FEET 0 INCHES 0 FEET 9 FEET	PROJECT HOZESE PAGE HOS
TEST START	D : SLUG IM ING DATE :	JUL 11• 1990	4	TIME = 12:4(:53
	APSED TIME T MIMUTES)	OTV (FEET)	CHANGE IN HEAD (FEET)	
(JUL 11. 1984). 13:36:00 13:59:15 16:30:33 09:14:45	55•167 78•417 229•667 1233•917	0.060 0.060 0.120 0.430	3.53; 3.53; 3.47; 3.169	0.923 0.983 0.9666 0.8812

PROJECT HOSETS PASC Hos

CASING LENGTH : R.31 FFET CASING DIAMETER : 2.30 INCHES CASING STICK-UP : 1.60 FTET DEPTH TO WATER : 3.59 FFET

TEST METHOD : SLUG IN

TEST STAPTING DATE : JUL 11, 1594 TIME = 12:4,:50

# HYDOAULIC CONDUCTIVITY COMPUTATION

HVOPSLEV (1951) HETHOD C

K = (2PI*RC**/(11*RC*T))LN(OHO/DH)

HYDRAULIC COMBUCTIVITY = 0.31785-68 FEET/SEC

FELL TUVOFR : TRIA			FROJECT	
CASING DIAMETER CASING STICK-UP REPTH TO WATER	:	6.83 FEET 2.00 INCHES 1.14 FEET 3.92 FEET	2 V C	# ⁻ `

TEST METHOD : SLUG IN

TEST STAPTING DATE : JUL 11, 1994 TIME = 11:57:30

TIME	ELAPSED TIME	DTie	CHANGE IN	
	(MINUTES)	(FEET)	HEAD (FEET)	
(JUL 11. 198	4)			
11:57:15 11:57:45 11:58:45 11:58:45 11:59:15 11:59:45 12:00:15 12:01:15 12:02:15	9.250 0.750 1.250 1.750 2.250 2.750 3.250 4.250 6.250	0.270 0.870 1.490 1.970 2.340 2.870 3.500 3.500	3.650 3.650 2.430 1.950 1.58n 1.29n 1.450 0.71n 0.420	0.9311 0.7781 0.6199 0.4974 0.4031 0.3291 0.3291 0.1811 0.1871

PROJECT MARS 5 PAGE #19

TLL NEWSER : TTIA

CASI G LENGTH : 6.83 FFET

CASING DIAMFTER : 2.00 INCHES

CASING STICK-UP : 1.14 FFET

DEPTH TO WATER : 3.92 FEET

TEST METHOD : SLUG IN

TEST STARTING DATE : JUL 11. 1984

TIME = 11:57:33

# HYDRAULIC CCUDUCTIVITY COMPUTATION

HYOPSLEV (1981) METHOD C

 $K = \{2PI*RC**/(11*RC*T)\}LN(DHO/DH)$ 

HYDRAULIC CONDUCTIVITY = 3.1343F-34 FEFT/SEC

FLL MUMBER : TROA			PROJECT	-
CASING DIAMETER CASING STICK-UP CEPTH TO WATER	: : :	7.67 FEET 2.30 INCHES 2.52 FEET 4.89 FEET	PACE	
TECT METION				

TEST METHOD : SLUG IN

TEST STARTING DATE : JUL 11, 1984

TIME = 11:37:15

TIME	ELAPSED TIME T (MINUTES)	DT# (FEET)	CHANGE IN HEAD (FEET)	
(JUL 11+ 198	4 )			
11:37:15 11:38:15 11:39:15 11:40:15 11:41:15 11:42:15	0 • 200 1 • 002 2 • 000 3 • 000 4 • 000	1.060 3.060 3.950 4.420 4.630 4.780	3.937 1.935 9.946 9.470 9.269 0.110	1.0003 0.4776 0.2454 0.1227 0.0679 0.5297

### SLUC TEST

PROJECT #37816 PACE # 0

CASING DIAMETER : 7.67 FEET CASING STICK-UP : 2.52 FEET DEPTH TO WATER : 4.39 FEET

TEST METHOD : SLUG IN

TEST STARTING DATE : JUL 11, 1984

TIME = 11137:15

TYPRAULIC COMPUTATION

MYORSLEY (1951) METHOD C

K = (2PI+PC++/(11+RC+T))LN(DHO/DH)

HYDRAULIC COMDUCTIVITY = 0.233FF-54 FEFT/SEC

SEL MUVEER : TYOR			PROJECT	
CASING DIAMETER CASING STICK-UP CEPTH TO WATER	:	11.25 FEET 2.39 INCHES 2.19 FEET 4.68 FEET	5 4 GE	# 1 <u>1</u>
		*•		

TEST METHOD : SLUG IN TEST STAPTING DATE : JUL 11, 1984

TIME = 11:44:15

TIME	ELAPSED TIME	DIN	CHANGE IN	
	(MINUTES)	(FEET)	HEAD (FEET)	****
(JUL 11. 198	4)			
11:44:15 11:45:15 11:50:15 12:20:15 13:20:15 15:23:30 15:10:30	0.000 1.000 5.000 36.000 95.000 218.750 266.250	0.170 0.180 0.200 0.400 9.720 1.220 1.410 3.580	4.513 4.530 4.480 4.280 3.960 3.460 3.270	1.0900 0.9978 0.9933 0.9490 0.8780 0.7672 0.7251

#### SLUS TEST

PROJECT #97515 PAGE #10

FLL NUMBER: TIDE

CASING LENGTH: 11.25 FIST

CASING DIAMFTER: 2.00 TYCHES

CASING STICK-UP: 2.00 FEET

DEPTH TO MATER: 4.68 FEET

TEST METHOD : SLUG IN

TEST STAPTING DATE : JUL 11. 1984

TIME = 11:44:15

HYDPAULIC COMDUCTIVITY COMPUTATION

HVORSLEV (1951) METHOD C

K = (2PI+RC++/(11+PC+T))EN(DHO/DH)

HYDRAULIC CONDUCTIVITY = 3.3578F-97 FEET/SEC

ELL MUMBER : TTZA			FP TUECT	
CASING DIAMETER CASING STICK-UP CASING STICK-UP DEPTH TO WATER	•	4.67 FEET 2.30 INCHES 1.58 FEET 3.97 FEET	F & O.E.	# '

TEST METHOD : SLUG IN

TEST STARTING DATE : JUL 11. 1984 TIME = 17:45:30

(JUL 11. 1984)  10:45:30	тІмғ	ELAPSED TIME	DTW	CHANGE IN	
10:45:30		T		HEAD	
10145:30		ewinoins)	(FEET)	(FEET)	
10:45:30 10:45:45 10:45:45 10:45:45 10:45:45 10:46:60 10:46:15 10:750 10:46:15 10:46:15 10:46:30 10:46:30 10:46:45 10:46:45 10:47:00 10:47:00 10:47:00 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48					
10:45:30 10:45:45 10:45:45 10:45:45 10:45:45 10:46:60 10:46:15 10:750 10:46:15 10:46:15 10:46:30 10:46:30 10:46:45 10:46:45 10:47:00 10:47:00 10:47:00 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48:10 10:48	(JUL 11. 199	4)			
10:45:45 10:46:00 10:46:15 10:46:15 10:46:30 11:300 11:46:30 11:46:45 11:46:45 11:46:45 11:46:45 11:46:45 11:46:45 11:46:45 11:46:45 11:46:45 11:46:45 11:46:45 11:46:45 11:46:45 11:46:45 11:46:45 11:46:45 11:46:45 11:46:45 11:46:45 11:46:45 11:46:45 11:46:45 11:46:45 11:46:45 11:46:45 11:46:45 11:46:45 11:46:45 11:46:45 11:46:45 11:46:45 11:46:45 11:46:45 11:46:45 11:46:45 11:46:45 11:46:45 11:46:45 11:46:45 11:46:45 11:46:45 11:46:45 11:46:45 11:46:46 11:46:45 11:46:45 11:46:46 11:46:45 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46:46 11:46				•	
15:45:45 16:46:60 16:46:15 17:46:15 17:46:15 17:46:30 17:46:30 17:46:30 17:46:30 17:46:30 17:46:30 17:46:30 17:46:30 17:46:30 17:46:30 17:46:30 17:46:30 17:46:30 17:46:30 17:46:30 17:46:30 17:46:30 17:46:30 17:46:30 17:46:30 17:46:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:30 17:47:47 17:47:47 17:47:47 17:47:47 17:47:47 17:47:47 17:47:47 17:	10:45:30	3.1.0	0.58%	7 355	
10:46:60	10:45:45				
10:46:15 10:46:30 10:00 10:46:45 10:46:45 10:46:45 10:47:00 10:47:00 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:44:15 10:47:15 10:47:15 10:44:15 10:47:15 10:44:15 10:47:15 10:47:15 10:44:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:16 10:47:16 10:47:16 10:47:16 10:47:16 10:47:16 10:47:16 10:47:16 10:47:16 10:47:16 10:47:16 10:47:16 10:47:16 10:47:16 10:47:16 10:47:16 10:47:16 10:47:16 10:47:16 10:47:16 10:47:16 10:47:16 10:47:16 10:47:16 10:47:16 10:47:16 10:47:16 10:47:16 10:47:16 10:47:16 10:47:16 10:47:16 10:47:16 10:47:16 10:47:16 10:47:16 10:47:16 10:47:16 10:47:16 10:47:16 10:47:16 10:47:16 10:47:16 10:47:16 10:47:16 10:47:16 10:47:16 10:47:16 10:47:16 10:47:16 10:47:16 10:47:16 10:47:16 10:47:16 10:47:16 10:47:16 10:47:16 10:47:16 10:47:16 10:47:16 10:47:16 10:47:16 10:47:16 10:47:16 10:47:16 10:47:16 10:47:16 10:47:16 10:47:16 10:47:16 10:47:16 10:47:16 10:47:16 10:47:16 10:47:16 10:47:16 10:47:17 10:47:17 10:47:17 10:47:17 10:47:17 10:47:17 10:47:17 10:47:	10:46:00				
10:46:30 10:46:45 10:46:45 10:46:45 10:47:00 10:47:00 10:47:15 10:47:15 10:47:30 10:47:30 10:47:30 10:47:30 10:47:30 10:47:30 10:47:30 10:47:30 10:47:30 10:47:30 10:47:30 10:47:30 10:47:30 10:47:30 10:47:30 10:47:30 10:47:30 10:47:30 10:47:30 10:47:30 10:47:30 10:47:30 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:50:00 10:	11:46:15				
10:46:45 10:47:00 10:47:00 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:47:15 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:50:10 10:					
10:47:00	<del>-</del>				0.8267
10:47:15	_				8.8055
10:47:30			1.323	2.550	C.7751
1.500	<del>-</del> ·		·	2.439	
10:49:00			1.500	2.370	
10:49:00 10:59:00 4.500 2.170 10:51:00 5.500 1.470 10:52:00 5.500 2.400 1.470 1.470 1.4468 10:53:00 7.500 2.780 1.120 1.120 1.3404 10:55:00 9.500 10:56:00 10:56:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 1			1.683		
10:51:00 5.500 2.400 1.470 0.5167 10:52:00 5.500 2.800 1.470 0.3021 11:53:00 7.500 2.780 1.290 0.3021 10:54:00 8.500 2.990 7.900 0.2070 10:56:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10:57:00 10		3.510	1.910		
10:51:00			2.170		
10:52:00		5.50			
1.153.60 7.500 2.760 1.120 0.3404 10:54:00 8.500 2.690 0.900 0.2779 10:56:00 10.500 3.620 0.740 0.2249 10:57:00 11.800 3.280 0.590 0.1793 10:58:00 12.500 3.370 0.500 0.1793 11:00:00 14.500 3.450 0.420 0.1500 11:01:00 15.500 3.570 0.360 0.1520 11:01:00 15.500 3.570 0.360 0.1054	10:52:00	5.500			
10:54:00 8.500 2.690 0.900 0.2078 10:55:00 9.500 3.620 0.250 0.760 10:56:00 10.500 3.130 0.740 0.2249 10:57:00 11.600 3.280 0.590 0.1793 11:00:00 14.500 3.450 0.420 0.1500 11:01:00 15.500 3.500 0.420 11:01:00 15.500 3.500 0.420	11:53:60	7 <b>.</b> 5 . 3			
10:55:00 9-590 3-620 0-250 0-270 10:56:00 10-500 3-130 0-740 0-2240 10:57:00 11-800 3-280 0-590 0-1793 11:00:00 14-500 3-450 0-420 11:01:00 150 15-500 3-510 0-420 11:01:00 150 18-500 3-510 0-1054	17:54:00		-		
10:56:70	10:55:00				
10:57:00 11.800 3.280 0.590 0.1793 10:58:00 12.500 0.370 0.500 0.1500 11:00:00 14.500 3.450 0.480 0.480 0.1277 11:01:00 150 18.500 3.500 0.1054	11:56:63				
15:58:00 12.503 3.370 0.300 0.1793 11:00:00 14.500 3.450 0.480 0.1277 11:01:00 15.500 3.610 0.360 0.1074					7.2249
11:00:00					C+1793
11:01:00					7. <b>1</b> 5g↑
11:04:00 18:50 7:50			_	0.427	
* * * * * * * * * * * * * * * * * * *				3.360	
	14:14:	18.500	₹.571	9.350	

#### STHE TEST

- **597UEOT** #975 5 - 5405 872

CASING DIAMETER : 4.27 FEET CASING STICK-UP : 1.59 FEET DEPTH TO WATER : 3.87 FEET

TEST METHOD : SLUG IN

TEST STAPTING DATE : JUL 11. 1984 TIME = 17:45:30

HYDRAULIC CGNDUCTIVITY COMPUTATION

HVOPSLEV (1981) METHOD C

K = (2PI*RC**/(11*RC*T))LN(DHO/OH)

HYDRAULIC COMDUCTIVITY = 0.5204E-05 FEFT/SEC

## SLUS TEST

ברר . הוצבה : בבבה			PROJECT PAGE	
CASING DIAMETER CASING STICK-UP DERTH TO WATER	:	8.70 FEET 2.00 JNOHES 1.42 FEET 3.91 FEET		•

TEST METHOD : SLUS IN

TEST STAPTING DATE : JUL 11. 1984

TIME = 11:15:15

IIWE	FLAPSED TIME	DTW	CHANGE IN	
	(MINUTES)	(FEET)	HEAD (FEET)	******
(JUL 11, 198	<b>4</b> ).			
11:15:15 11:16:15 11:17:15 11:18:15 11:24:15 11:24:15 12:24:15 13:24:15 14:25:20 15:21:30 16:05:30 JG:10:00	5.000 1.000 2.000 3.000 9.000 39.000 129.000 129.750 129.750 246.250	0.160 0.260 0.240 0.250 0.410 1.50 1.50 2.560 2.560 2.60 2.630	3.75° 3.71° 3.67° 3.66° 2.88° 2.33° 1.71° 1.33° 1.09° 0.78°	1.6000 0.9893 0.9760 0.9330 0.9330 0.4561 0.45617 0.2453

PROJECT # 27735 P&CF #15

TELL MEMBER : TTTE

CASING DIAMETER : 2.73 INCHES

CASING STICK-UP : 1.42 FEET

CEPTH TO WATER : 3.91 FEET

TEST METHOD : SLUG IN

TEST STAPTING DATE : JUL 11. 1984

TIME = 11:15:15

HYDRAULIC CONDUCTIVITY COMPUTATION

HVOPSLEV (1951) WETHOD C

K = (2PI*RC**/(11*PC*T)) LN(0H0/0H)

PYDRAULIC COMDUCTIVITY = 0.1714E-05 FEET/SEC

#### SLUG TEST -----

WELL MUMPER : P418

PROJECT #93505

CĀ	CINC (Executed)	3		c	PAGE #61
0.4	SING LENGTH	:	10.00 FFE	r	The second second
C A :	SING DIAMETER	:	2.30 INCH		
CAS	SING STICK-UP	:	0-30 FEET	, , , , r	
SCI	REFN LENGTH	•	10.00 FEET	•	
GR /	AVEL PACK DIAME	TFR :	2 00 740		
GR A	AVEL PACK POROS	TTV •	2.00 INCH	IES	
AQE	JIFER THICKNESS				
DER	TH TO WATER	•	65.40 FEET		
ST/	TIC PRESSURE	•	5 • FEET	•	
J.,	TO THE STORE	•	4+1280 PSI		
TFC	T METHOD				
750	ST METHOD : SLU	G IN			
11.3	T STARTING DATE	: JUL 19	D+ 1984	TIME	= 11:14:00
					- 11014600
T	<u> </u>				
TIME	ELAPSED TIME	PRESSURE	CHANGE IN	CHANGE IN	2014200
	Ť		PRESSURE	HEAD	он∕рна
	(MINUTES)	(PSI)	(PSI)	PEAU /FFEEA	
			7777	355513	
(JUL 10,	1984)				
•					
11:14:90	9.000	A 7400			
11:14:10	0.167	4 • 7430	0-6120	1.412	1.0000
11:14:20		4.7355	0.5075	1-461	0.9926
11:14:30	9+333	4.7280	0.5000	1+384	0.9804
11:14:40	0.500	4.7175	0.5895	1.360	9.9632
11:14:50	0.667	4.7025	0.5745	1.325	0.9387
	0.833	4 • 6905	0.5625	1.298	0.9191
11:15:00	1.000	4-6455	0.5175	1.194	
11:15:10	1.167	4.5675	0-4395	1.014	0-8456
11:15:20	1.333	4-4880	0.3600	0.830	0.7181
11:15:30	1.500	4-4250	0.2970		<b>0.5882</b>
11:15:40	1.667	4.3725	0-2445	0.685	0.4853
11:15:50	1.833	4.3305	0 2005	0-564	0.3995
11:16:00	2.903	4-3005	0-2025		0.3309
11:16:10	2.167	4-2780	0-1725	0.398	0.2819
11:16:27	2 • 3 3 3	7 • 2 / O U	0.1500	0-346	0.2451
11:16:32		4-2600	0-1320	0.304	0.2157
11:16:43		4-2450	0-1170	0.270	0.1912
11:16:00	2.667	4-2330	0-1050	0.242	0.1716
11:17:00	2-000	4.2255	0-3975	0.225	9 • 1593
11:17:17	3.000	4.2180	0.0900	0.208	0.1471
11:17:20	3.167	4.2105	0 - 0825	0-190	0.1348
	3.333	4.2039	0.0750	0.173	0.1225
11:17:30	3 <b>-</b> 500	4-2000	0.0720	0-166	
11:18:00	4 • 0 9 0	4-1925	0.0645	0.149	2-1176
11:18:33	4 •5 3 3	4.1805	0.0525	9.121	0-1354
11:19:30		4-1700	0+0420		0.0858
11:19:30		4.1625	0.0345	0.097	2.0686
11:20:00		4.1583		0.080	7+7564
11:20:35		4 • 15 0 5	0.1300	0.669	0.0493
11:21:37			0.225	0.052	0.6368
	r ● U L ↓	4.1439	0.0150	0.035	0.245
					-

### SLUC TEST

	FLE '' AER + FA'				TOT BUTT A
	OAST O LENGTE	•	11.10 FFE		tos # o
	CASING DIAMETED	:	2.13 IMC	450	
	CASING STICK-UP	:	3•33 F‴E1	r	
	SCREEN LENGTH	:	15.06 FEET	7	
	CRAVEL PACK DIAMET	F,₽	2.13 IMON		
	GRAVEL PACK PORCEI	TV :	0.3000		
	FURIFER THICKNESS	:	65.40 FTET	•	
	DEPTH TO WATER	:	5. FEET		
	STATIC FRESSURE	:	4.12°0 PSI		
	TEST METHOD : SLUG	I`.	•	-	
	TEST STARTING DATE	: JUL 1	1. 1964	IIME =	11:14:00
TIME	ELADOED TIME		_		
. •	FLARSED TIME	HE ESSURE	CHANGE IN	CHAMCE IN	DH75H3
			PRISSURF	HFAC	
	(MIMUTES)	(PSI)	(58I)	(FFET)	
<del>_</del>					
CJUL	10. 1984)				
11:21:3					
-4-61-5	7.5 12	4 • 1355	0.0075	0.017	7.1123

#### ינויי דבּצד

图图 OUT OT HIRETS TLL 197950 : 0416 হার হৈছে। ± 1 3 CASILO LENGTH 11.00 FFEE CASI'S DIAMETER 2. THOMES CASINE STICK-UP 1.10 FTET SCREEN LENGTH 10.10 FFET GRAVIL PACK DIAMETER : 2.00 INCHES CHAVEL PACK SORUSITY : 0.3000 COUIFER THICKNESS 65.40 FFET PERTH TO WATER 5• F5E⊤ STATIC PRESSURE 4.1295 per

TEST METHOD : SLMG IM TEST STARTING DATE : JUL 10. 1964

*IME = 11:14:01

HACOURTIC COMPLICATION COMBATTION

POUMER & RICE (1976) METHOD

K = PC++2/2L+LM(OF/PU)+(1/T)+LM(Y0/YT)

TRE COMPIDENCE LIMIT : 0.12965-64 --- 0.1652E-14 FEET/SEC

COHTEM (1951) METHOD

K = PC++2/2(+(1/T)+LM(PH?/DH)

HYTRHULIC COMPUCTIVITY = 1.29025-04 FEFT/950 G5% CONFIDENCE LIMIT : 0.10325-04 --- 0.43255-04 FFET/950

## SLUS TEST

045146 04146 04146	CO WATER	2.0 0.5	0 FTET 0 IMOHES 7 FEET 0 FEET	ତିକ୍ରମ୍ୟୁକ୍ତିକ ଅଟେମ୍ବର ପ୍ୟର୍ବର ଅଟେମ୍ବର
TEST ME TEST ST	THOD : SLUG IN ARTING DATE :	JUL 11, 190	4	TIME = 11:43:00
TIME	ELARSED TIME	<b>0.T</b> //	CHANGE IN	
	(MINUTOS)	(F <u>E</u> ET)	HEAD (FEET)	
GUL 11. 198	4 Y			
11:49:00 11:57:00 12:07:00 12:22:00 12:37:00 13:11:00 14:12:00 14:43:00 15:03:00	6.000 14.000 24.000 39.000 54.000 149.000 180.000	3.4)0 1.190 1.790 2.410 2.790 3.780 3.890 3.850	3.600 2.720 2.310 1.690 1.310 0.720 0.320 0.220	7.8780 7.7182 7.5634 7.4122 7.3175 7.1756 7.0737

DIA ---- DEELH ID WALES (19 EEEL)

1.0777

CROUSE TOSULTES

### SLUG FEST

- ^{रह}ापुह्लूस स्टब्स्ट स्थलहार चाल

TEST METHOD : SLUG IN

TEST STARTING DATE : UPL 11. 1984

TIME = 11:43:00

HYDRAULIC CONDUCTIVITY COMPUTATION

HYGESLEW (1981) WETHOD C

K = (2PI*PC**/(11*PC*T))LN()HO/OH)

PYDEAULIC CONDUCTIVITY = 1.6501F+36 FEET/SEC

### SEUR TEST

0 1540 0 1240 0 1940	LO MATES  STICK-AB  CISHLICA  FELORE  CONTRA  TOTAL  TOTAL	2. 1.	39 8787 32 INCHES 33 REET 38 FEET	지역이네티어컨 보니코를 1명 기사으로 # (
TEST ME Test si	THOO : STUS IN	JUL 11. 19	Ģ <b>4</b>	TIME = 15:47:00
TIME	ELAPSED TIME	DTV	HEND CHANGE IN	
~ ~ ~	(MIMUTES)	(F <u>E</u> FT)	(FCET)	******
(JUL 1). 190	4)			
10000000000000000000000000000000000000	1.000000000000000000000000000000000000	200 300 000 000 000 000 000 000 000 000	22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1.0000 9.9561 9.8550 9.8550 9.7650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.650 9.65

### SLUG TEST

2405 #132 22 28

TILL TUTTER : ETA4

CASITO LENGTH : 16.79 FRET

CASITO CIAMETER : 2.00 INCHES

CASITO STICK-UP : 0.33 FRET

BEPTH TO WATER : 3.38 FRET

TEST METHOD : SLUG IN

TEST STAPFING DATE : JUL 10. 1994

TIME = 15:47:00

HYDRAULIC COMPUCTIVITY COMPUTATION

HVORSLEV (1951) METHOD C

K = (201+8C+*/(11+8C+T))LN(0H0/0H)

# OLHO TEST

19.7, FTET 4.10 IMOHES

FULL 1000 FB : 4000 C15116 LE10TH

CASING STAMETER CASING STICK-UP panyion wint a

SCREEN ORAVEL ORAVEL AGUIFF	LU MATES  LENGTH  BACK DIAMETER  PACK BOBOSITY  LENGTH  CALLER  PACK BOBOSITY  ACTION - UP  PACK BOBOSITY  PACK	2. 12. 4. 2.33 57.	TO FEET  CO FEET  CO INCHES  TO FEET  FEET	
TEST ME TEST ST	THOD : SLUC IN	JUL 12. 19	۶ <b>4</b>	TIME = 13:30:00
TIME	FLARSED TIME	<b>ņ</b> ≢	CHANSE IN HEAD	
	(MINUTES)	(FF <u>F</u> T)	(FEET)	
UL 12. 1∓8	4)			
13:30:10 13:31:10 13:32:10 13:33:10 13:35:10 13:36:10 13:36:10	0.000 1.000 2.000 3.000 4.000 5.000 10.00	2.790 3.370 4.200 4.200 4.420 4.680 4.760	2.739 1.450 1.730 0.730 0.530 0.430 0.140	7.7143 7.5125 1.3596 1.2611 1.1973 0.0653

#### CLUG TEST ------

FP0JE**07** #437 5

FLL ' FFE : " Te ордов нор CASING LEVOTE 19.31 FEET CASING DIAMETER ; 4.13 TYCHES CASI, & SLICK-Ab 2.30 FEET SCREEN LENGTH 10.00 FEET GRAVEL PACK DIAMPTER : 4.00 IACHES CRAVEL PACK FOROSITY : 0.3300 AGUIFER THICKNESS 67.50 FFET DEPTH TO WATER FFET

TEST METHOD : SLUG IN

TEST STARTING DATE : JUL 12. 1904

TIME = 13:31:5"

HADE WAFTE COMBACTIALLA COMBALATION

POUMER & RICE (1976) METHOD

K = RC + *2/2L *LN(RE/PH) *(1/T) *LN(YO/YT)

FYDRAULIC CONDUCTIVITY = 3.25155-04 FEET/SEC 154 CONFIDENCE LIMIT : 0.2355E-04 --- 0.267FE-04 FEET/SEC

HVOPSLEV (1951) METHOD

K = PC++2/21+(1/T)+LM(DH3/DH)

HYERAULIC COMBHCTIVITY = 7.3983F-04 RESTASEC -50 COMPTOENCE LIMIT : 0.7302E-04 --- 0.4745F-04 FFET/SEC

### SLUG TEST

รียย พบพธรร : กล <b>ฺ</b> ช			PROJECT Pare	
CASING LENCTH CASING DIAMETER CASING STICK-UP DEPTH TO WATER	•	10.53 FMET 4.00 INCHES 1.35 FEET 4.13 FMET	-77	•

TEST METHOD : SLUG IN

TEST STARTING DATE : JUL 12, 1984 TIME = 16:72:36

TIME	FLAPSED TIME T (MINUTES)	OTW (FEET)	CHANGE IN HEAD (FEET)	******
(JUL 12, 198	4)			
16:02:03 16:03:03 16:04:00 16:06:00 16:08:10 16:10:00 16:12:02	0.000 1.000 2.000 4.000 6.000 8.000	2.128 2.450 2.720 3.180 3.506 3.750 3.750	2.010 1.680 1.410 0.950 0.630 0.380 0.220	1.0000 0.8359 0.7015 1.4726 3.3134 0.1099

DTW ---- DEPTH TO WATER (IN FEET)

### SLUS TEST

בי הגים דון שניה יה PASE #12

FELL MUMPER : RETA CASING LENGTH 10.33 FFET CASING DIAMETER 4.10 INCHES CASING STICK-UP 1.35 FFET DEPTH TO WATER

4.13 FEET

TEST METHOD : SLUG IN

TEST STARTING DATE : JUL 12. 1984

TIME = 16: 2:33

PYDRAULIC COMBUCTIVITY COMPUTATION

HVORSLEV (1951) METHOD C

K = (2PI*PC**/(11*RC*T))LN(DHO/DH)

HYDRAULIC CONDUCTIVITY = 0.1364E-04 FEET/SEC

#### SLUG TEST ------

4.08 FEET

3.70 FFET

4.00 INCHES

TELL MUNEER . FAIR

CASING LENGTH

CASING DIAMETER

CASING STICK-UP

FROJECT ##3518

PAGE #11

DTW ---- DEPTH TO WATER (IN FEET)

	TO WATER		70 FEET 5	
TEST M TEST S	ETHOD : SLUG IN TARTING DATE : .	JUL 17• 19	94	TIME = 15:55:00
TIME	ELAPSED TIME	DT√	CHANGE IN	
	(MINUTES)	(FEET)	HEAD (FEET)	
(JUL 17+ 198	4)			
15:55:00 15:56:00 15:57:00 15:58:00 15:59:00 16:01:00 16:07:00 16:07:00 16:07:00 16:11:00	0.000 1.000 2.000 3.000 4.000 6.000 7.500 10.000 14.000 16.000	0.630 0.970 1.270 1.510 1.770 2.120 2.360 2.650 2.990 3.120 3.20	2.970 2.630 2.330 2.090 1.830 1.480 0.750 5.480 0.390	1.0000 0.8855 0.7037 0.7037 0.6162 0.4179 0.4179 0.2554 0.2754

### SLUS TEST

7405 410

SELL ANMAER : RéiB CASI'S LEMOTH 4.39 FFET CASING DIAMETER 4.10 I"CHES CASING STICK-UP C.70 FEET PERTH TO WATER 3.60 FEET

TEST METHOD : SLUG IN

TEST STARTING DATE : JUL 17. 1984 TIME = 15:85:38

HYDRAULIC COMDUCTIVITY COMPUTATION

PYOFSLEV (1951) METHOD C

K = (2PI*RC**/(11*PC*T))LN(3HC/9H)

HYDRAULIC COMDUCTIVITY = 0.7500F-05 FEET/SEC

## SLUG TEST

PROJECT #73505

CASING LENGTH : 13.50 FEET

CASING DIAMETER : 4.00 INCHES

CASING STICK-UP : 5.30 FEET

DEPTH TO WATER : 3.99 FEET

TEST METHOD : SLUG IN

TEST STARTING DATE : JUL 12. 1984

TIME = 16:18:00

TIME	ELAPSED TIME	DT%	CHANGE IN	
	(MINUTES)	(FEET)	HEAD (FEET)	
(JUL 12. 198	4.1'			
1002 110 110	7,			
16:19:00	1.050	0.660	3.33^	0.8346
16:20:00	2.305	1.225	2.770	0.6942
16:21:00	3 • 8 7 8	1.610	2.3 Pg	0.5965
16:22:00	4 <b>⊌</b> 0 0 0	1.980	2.013	1.5038
16:23:00	5.010	2.280	1.710	3.4286
16:24:00	6.000	2.490	1.500	7.3759
16:25:00	7.096	5*690	1.300	0.3259
16:26:00 16:27:00	8.010	2.360	1.130	3.2432
	9.200	3.010	0.989	1.2456
16:29:50	11.750	3.233	C.76n	2.1975
16:31:00	13.000	3.420	0.570	0.1429

DTW ---- DEPTH TO WATER (IN FEET)

### SLUS TEST

PROJECT #03505 DAGE 472

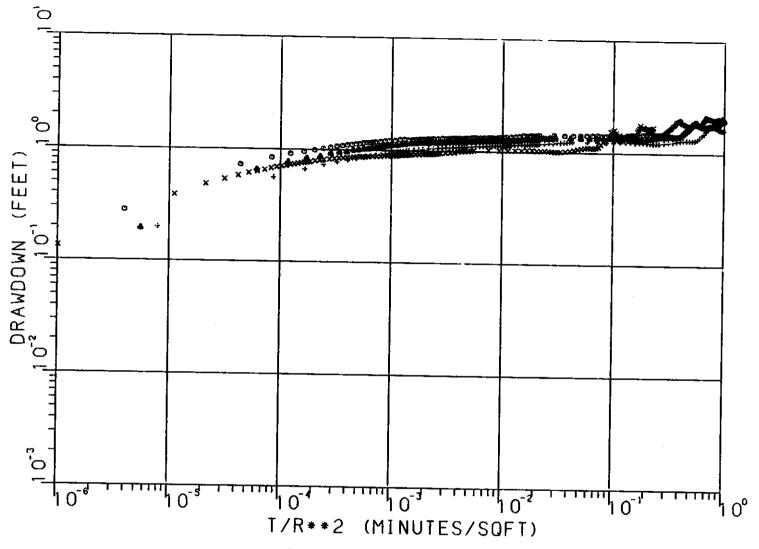
TELL MUIDER : DC-2

CASING LENGTH 19.43 FFET CASING DIAMETER 4.00 INCHES CASING STICK-UP 0.30 FEET SEPTH TO WATER 3.99 FEET

TEST METHOD : SLUG IN

TEST STARTING DATE : JUL 12, 1994

TIME = 16:19:38


HYDRAULIC CONDUCTIVITY COMPUTATION

HYCRSLEV (1981) METHOD C

K = (2FI+RC++/(11+RC+T)) LN(DHO/DH)

HYDRAULIC COMDUCTIVITY = 0.1357E-04 FEET/SEC

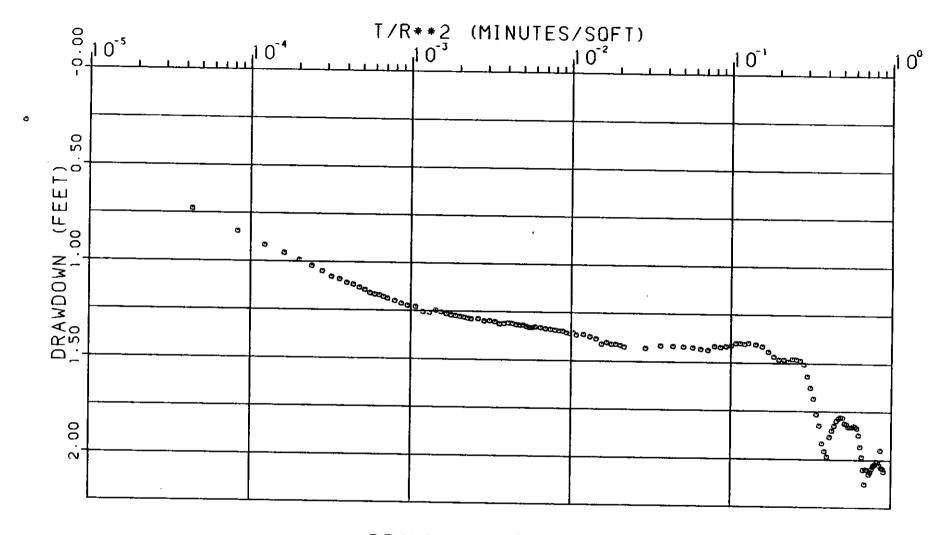
APPENDIX F
AQUIFER PUMP TEST DRAWDOWN AND RECOVERY CURVES



### DRAWDOWN PHASE

```
PROJECT NO: 83505
```

0 --- M4-1 (RADIUS = 65.00 FEET)


▲ --- M4-2 (RADIUS = 55.00 FEET)

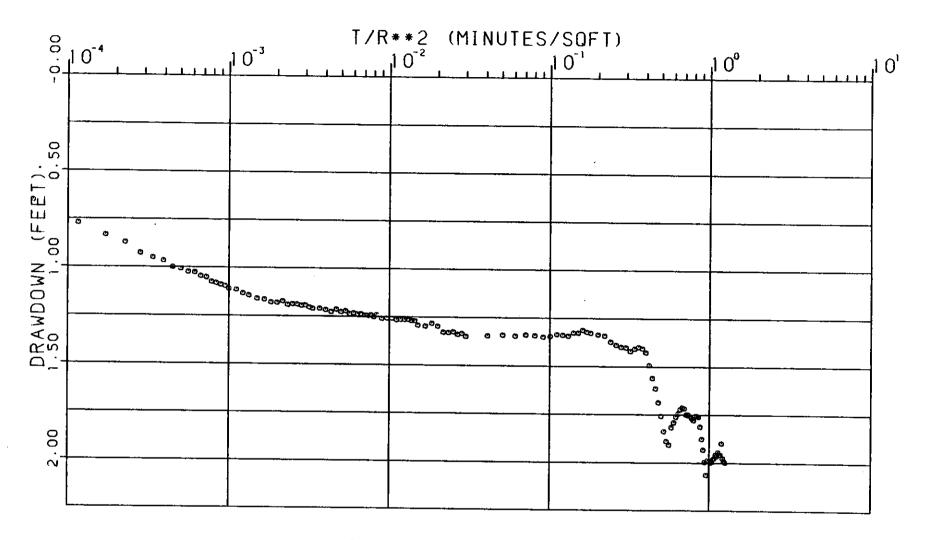
F --- M4-3 (RADIUS = 46.00 FEET) X --- M4-4 (RADIUS = 128.00 FEET)

PUMP STARTING DATE/TIME : JUL 17, 1984 / 14:45:00 PUMP STOPPING DATE/TIME : JUL 20, 1984 / 15:00:00

DISCHARGE : 1280.00 GPM






WELL NUMBER M4-1

RADIUS

: 65.00 FEET DISCHARCE : 1280.00 GPM DRAWDOWN PHASE

PUMP STARTING DATE/TIME : JUL 17. 1984 / 14:45:00

PUMP STOPPING DATE/TIME : JUL 20, 1984 / 15:00:00



WELL NUMBER M4-2 RADIUS

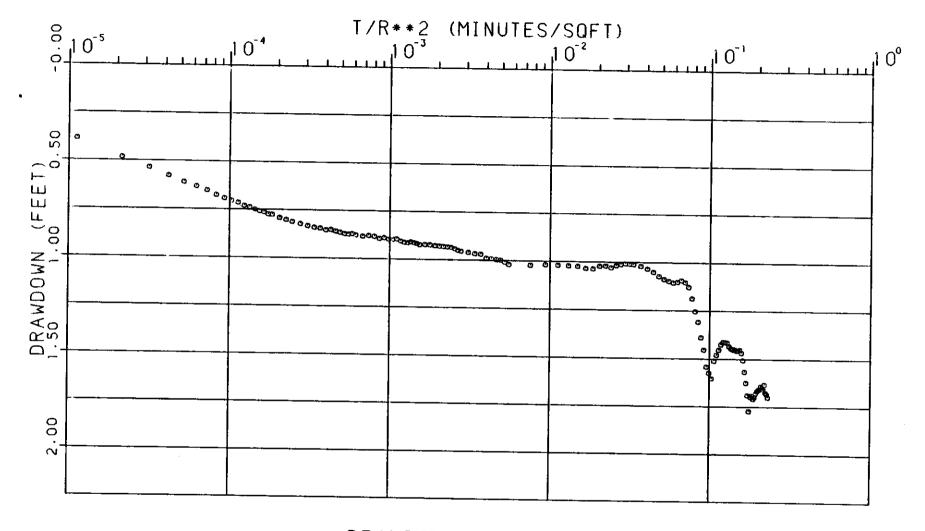

DISCHARGE

: 55.00 FEET : 1280.00 GPM DRAWDOWN PHASE

PUMP STARTING DATE/TIME : JUL 17, 1984 / 14:45:00

PUMP STOPPING DATE/TIME :

JUL 20, 1984 / 15:00:00




WELL NUMBER M4-3

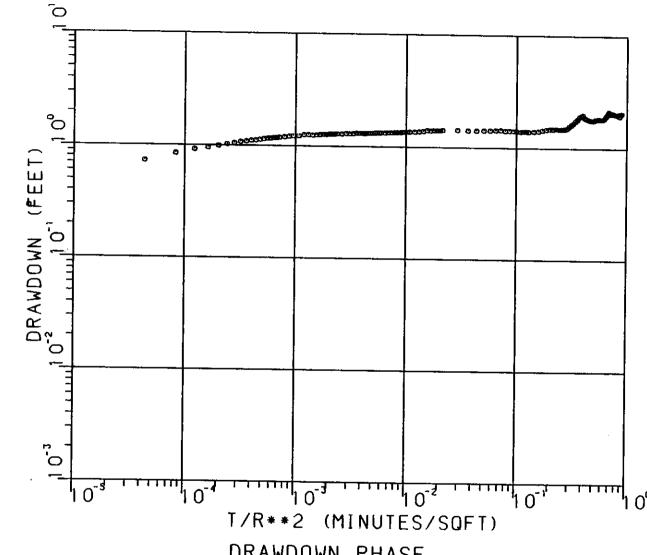
RADIUS DISCHARGE

: 46.00 FEET : 1280.00 GPM DRAWDOWN PHASE

PUMP STARTING DATE/TIME : JUL 17. 1984 / 14:45:00 PUMP STOPPING DATE/TIME : JUL 20. 1984 / 15:00:00



WELL NUMBER M4-4


RADIUS DISCHARGE

: 128.00 FEET

: 1280.00 GPM

DRAWDOWN PHASE

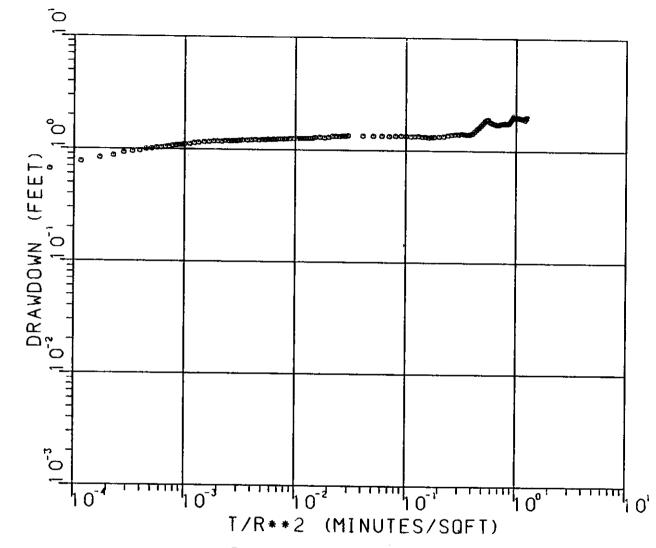
PUMP STARTING DATE/TIME : JUL 17. 1984 / 14:45:00 PUMP STOPPING DATE/TIME : JUL 20. 1984 / 15:00:00



DRAWDOWN PHASE

WELL NUMBER M4-1

RADIUS DISCHARGE


: 65.00 FEET

: 1280.00 GPM

PUMP STARTING DATE/TIME : JUL 17, 1984 / 14:45:00

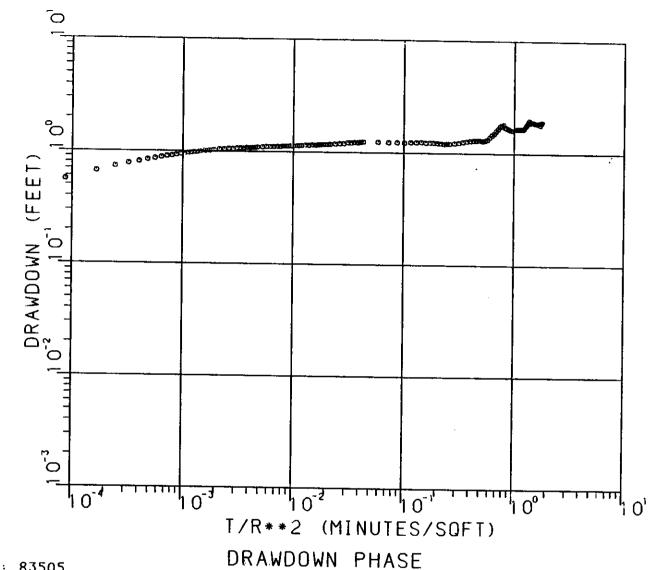
PUMP STOPPING DATE/TIME : JUL 20, 1984 / 15:00:00





DRAWDOWN PHASE

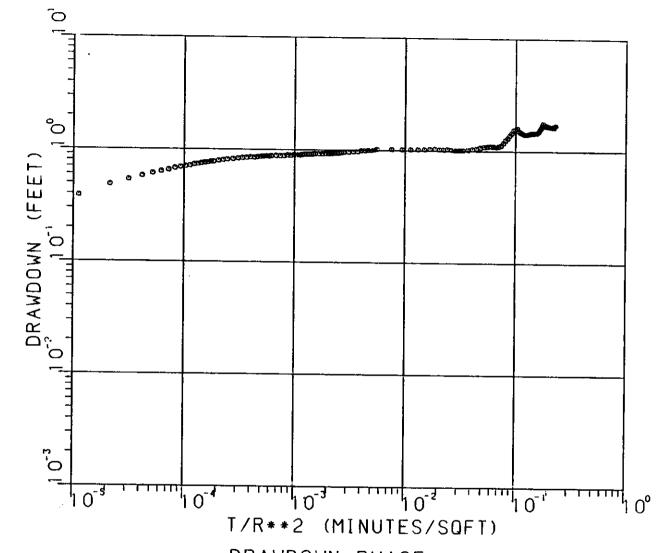
WELL NUMBER M4-2


RADIUS

: 55.00 FEET

DISCHARGE 1280 00 CPM

PUMP STARTING DATE/TIME : JUL 17, 1984 / 14:45:00

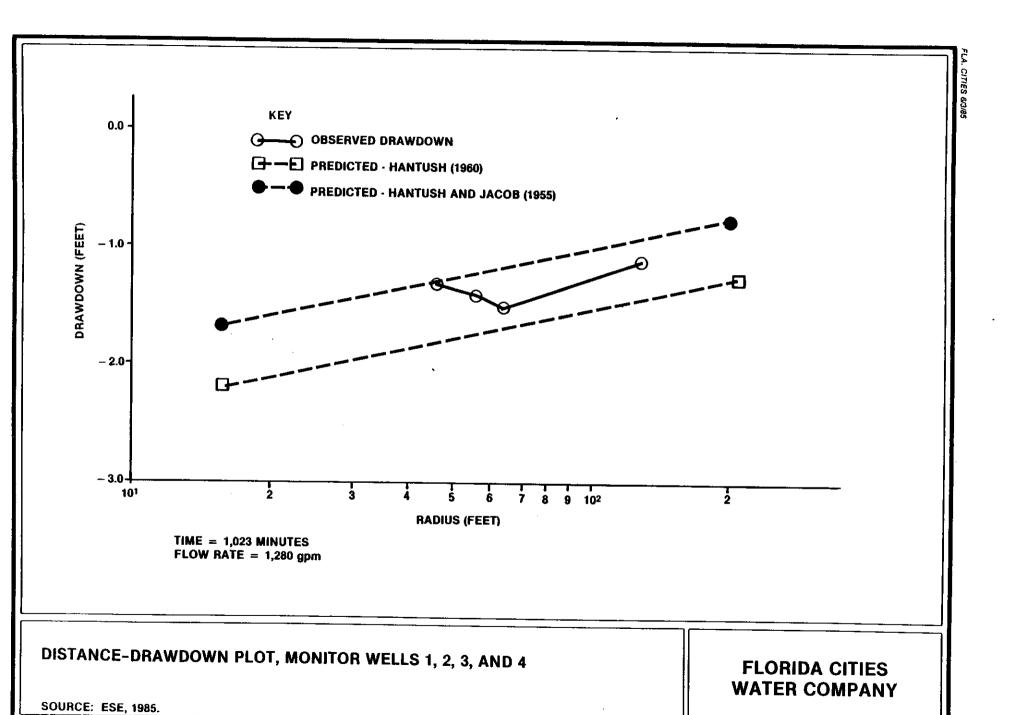

PUMP STOPPING DATE/TIME : JUL 20. 1984 / 15:00:00



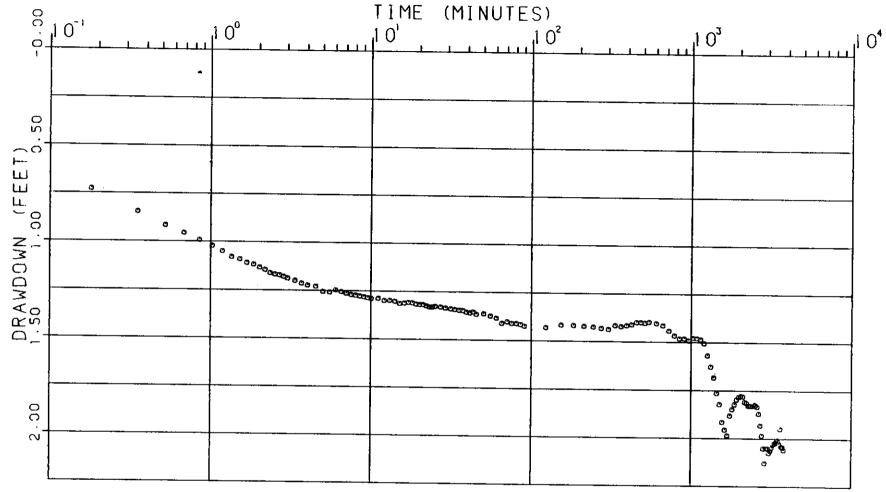
WELL NUMBER M4-3

RADIUS DISCHARGE : 46.00 FEET : 1280.00 GPM

PUMP STARTING DATE/TIME : JUL 17, 1984 / 14:45:00 PUMP STOPPING DATE/TIME : JUL 20, 1984 / 15:00:00




DRAWDOWN PHASE PROJECT NO : 83505


WELL NUMBER M4-4

RADIUS : 128.00 FEET

DISCHARGE : 1280.00 GPM PUMP STARTING DATE/TIME : JUL 17, 1984 / 14:45:00 PUMP STOPPING DATE/TIME : JUL 20. 1984 / 15:00:00

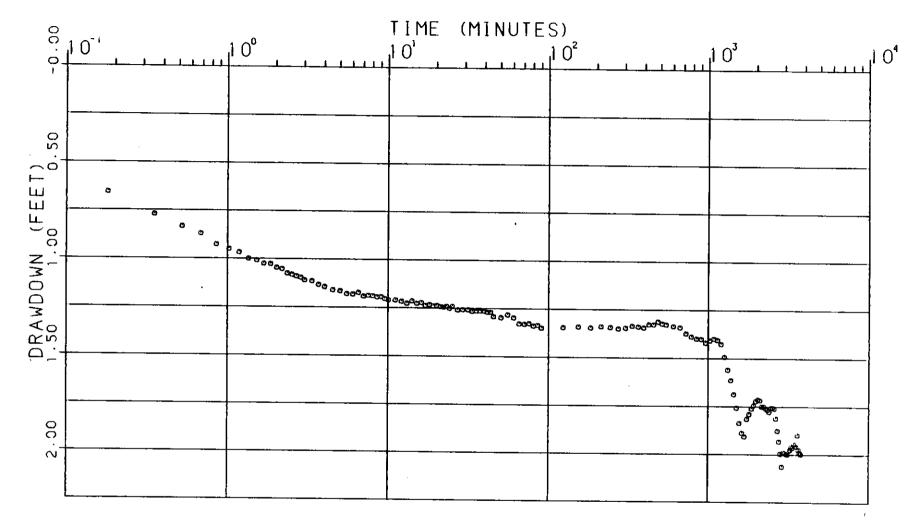






WELL NUMBER M4-1

RADIUS


: 65.00 FEET

DISCHARGE : 1,280.00 GPM DRAWDOWN PHASE

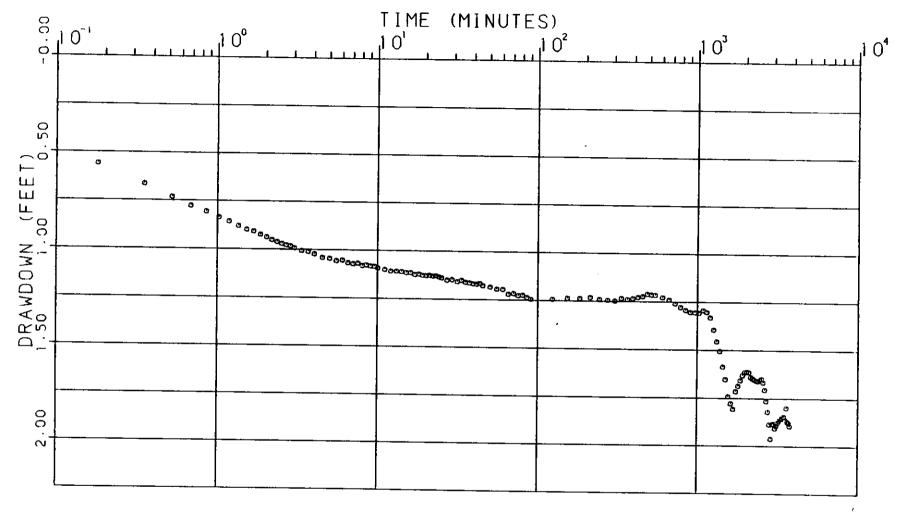
PUMP STARTING DATE/TIME : JUL 17, 1984 / 14:45:00

PUMP STOPPING DATE/TIME : JUL 20, 1984 / 15:00:00





WELL NUMBER M4-2

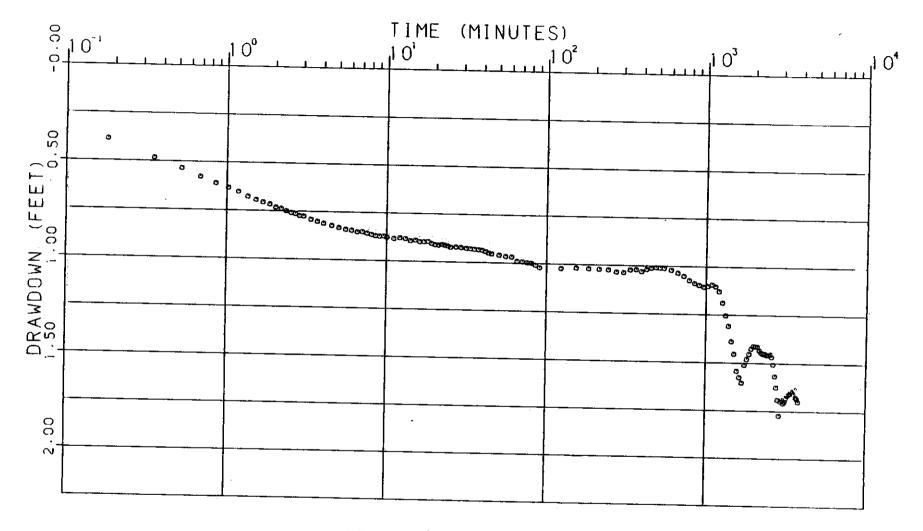

RADIUS DISCHARGE 55.00 FEET

: 1,280.00 GPM

DRAWDOWN PHASE

PUMP STARTING DATE/TIME : JUL 17, 1984 / 14:45:00 PUMP STOPPING DATE/TIME : JUL 20, 1984 / 15:00:00






WELL NUMBER M4-3

RADIUS DISCHARGE 46.00 FEET 1,280.00 GPM DRAWDOWN PHASE

PUMP STARTING DATE/TIME : JUL 17, 1984 / 14:45:00 PUMP STOPPING DATE/TIME : JUL 20, 1984 / 15:00:00





WELL NUMBER M4-4

RADIUS

DISCHARGE

- 128.00 FEET : 1,280.00 GPM

DRAWDOWN PHASE

PUMP STARTING DATE/TIME : JUL 17, 1984 / 14:45:00

PUMP STOPPING DATE/TIME : JUL 20, 1984 / 15:00:00