

cal Services
 Soil Mechanics Investigations

GROUND WATER HYDROLOGY STUDY GREEN MEADOWS ANALOG MODEL FLORIDA CITIES WATER COMPANY FT. MYERS, FLORIDA

APRIL, 1979

HYDROLOGY DIVISION LAYNE-WESTERN COMPANY, INC. 6909 JOHNSON DRIVE P. O. BOX 1322 MISSION, KANSAS 66222 913/384-0394

LAYNE ATLANTIC COMPANY 1107 SOUTH ORANGE BLOSSOM TRAIL P. O. BOX 5789 ORLANDO, FLORIDA 32855 305/423-7637

IAYNE WESTERN COMPANY, INC.

TABLE OF CONTENTS

		Page
Ι	Introduction	· l
II	Review of Data	4
	Geology Climate Test Hole Drilling	4 6 7
III	Well Development	9
ĪV	Aquifer Model System	12
	Calibration, 1971 December 6, 1976 0.4 MGD Pumpage 1 MGD Pumpage 2 MGD Pumpage 5 MGD Pumpage 7 MGD Pumpage	18 19 20 21 22 23
V	Summary & Conclusions	24
APPE	ENDICES	
A	"AQ UIFER PUMPING TEST GREEN MEADOWS AREA" dated SEPTEMBER, 1974	A-1
В	Letter dated January 19, 1973	B-1
С	"WATER SUPPLY STUDY SOUTHERN LEE COUNTY, FLORIDA", dated APRIL, 1972	C-1
D	"FLORIDA CITIES WATER COMPANY WATER SUPPLY STUDY EAST OF U.S. HIGHWAY 41, LEE COUNTY, FLORIDA", dated October, 1971	D-l
E	"WATER SUPPLY STUDY WESTERN LEE COUNTY, FLORIDA FOR FLORIDA CITIES WATER COMPANY	E 1

WESTERN COMPANY, INC.

ΙΔΥΝΕ

GROUND WATER HYDROLOGY STUDY GREEN MEADOWS ANALOG MODEL FLORIDA CITIES WATER COMPANY FT. MYERS, FLORIDA

INTRODUCTION

The Hydrology Division of Layne-Western Company, Inc. has conducted numerous studies identifying ground water conditions in Lee County, Florida. It was recognized nearly ten years ago that the Cypress Lakes plant well field was not capable of meeting the water supply growth for the Florida Cities Water Company franchise area. At approximately the same time, a similar study was being conducted for GAC Utilities for the Cape Coral area. Rapid growth and development was occurring in the coastal fringe area that would exceed locally available water supplies.

In 1971, the Hydrologist began a study for the potential water supply in what was then called the Green Meadows area. The primary purpose of initiating the Green Meadows water supply study was to furnish water for the then proposed land development project that was contemplated to be similar to Lehigh Acres. It was anticipated that the findings of such a study may prove to be equal to the local demands as well as being capable of transmitting fresh water to supplement the local sources of supply for both the Cypress Lakes system and Cape Coral. In January of 1973, GAC Utilities contracted to sell the Green Meadows property. However, sufficient investigation had been made to that time that a very preliminary study utilizing a mathematical model on digital computer was made to determine the approximate spacing and location of potential wells to supplement the Cypress Lakes and Cape

- LAYNE WESTERN COMPANY, INC.

Coral systems. As the result of that study, 26 - one acre well sites were selected and withheld from the deed of transmittal with these sites designated for water supply production. In July of 1974, the first test water production well was constructed in the southwest corner of Section 33, Township 45S, Range 26E in Lee County, Florida on a tract of land designated for a water treatment plant site. To date, three production wells each capable of pumping approximately 700 gallons per minute or 1 million gallons per day, have been constructed on the tract of land designated for the water treatment plant. Water levels in both the shallow and deeper aquifers have been monitored by the U. S. Geological Survey. This data is available upon request.

The purpose of this report is to conclude the study that was started in 1971. The study was originally conceived and has been conducted in accordance with the phases of work considered appropriate for ground water hydrologic studies. The first phase consisted of wide spaced test holes constructed in both the shallow and deeper aquifers in the vicinity to obtain definition of the geology for the general Green Meadows area. Water levels were measured and elevations made to each of the piezometers to construct a water table hydraulic gradient map of the area. Water samples were taken from each of the piezometers and analyzed to determine the general chemical characteristics of the water. The second phase of the study was the test pumping of the test production wells. Water level data was observed in the piezometers and the wells constructed in the area in order to ascertain the appropriate coefficients of transmissivity and storativity in the vicinity. These datum are attached to the Appendix of this report for their information. The third

IAVNE WESTERN COMPANY INC

phase, which is the subject of this report, is the actual modeling of the aquifer system based on the data collected through the years. It is in this phase that the leakage rate and the safe yield of the aquifer system is determined utilizing both electric analog and digital computer modeling techniques. The findings of this model study are presented.

REVIEW OF DATA

The first test drilling in the Eastern Lee County area was conducted by some mineral exploration companies. Some scattered data was available from land surface to the fresh water producing formations in the vicinity. It was found early in the investigation that there was a very shallow aquifer utilized by agricultural interests in the area for irrigation. This water was usually colored by the development of tannic acid from natural vegetation. Because of the color, it was undesirable in its appearance for public water supply use. Treatment for total color removal was considered too expensive by conventional methods.

It was the experience in Lehigh Acres that an aquifer did exist from approximately 80 to 100 feet or more in depth below land surface that could be utilized for public water supply purposes. Therefore the investigation procedure designed for Green Meadows was to construct plezometers in pairs with the first shallow plezometer terminating in the shallowmost water bearing material. A second test boring then within a foot or two of the first one, was carried to the first satisfactory water producing formation occurring usually at 100 foot depth or greater, suitable for public water supply purposes. Various samples were collected from the test holes, both shallow and deep, and were analyzed by various laboratories for its mineral content.

Geology

The primary source of ground water in Eastern Lee County are the permeable sediments in the upper 200 feet of the subsurface. The surficial sands in Eastern Lee County may have been deposited on the ocean floor during the Pleistocene Epoch when sea level was approximately 42 feet higher than at present. During a particular stand of the sea level, sands from rivers and streams settled in the shallow water near the shore. These ancient sea floors are known as terraces and are recognizable throughout the area. Other surface sands may also be found when the sea level was only about 25 feet higher than at present. These areas appear to lie just to the west of the Green Meadows area.

The upper soil profile consists mostly of coarse sand, marl, shell beds, and consolidated and semi-consolidated limestones. Some of the marl and clay lenses that occur in the upper portion of the profile limit vertical infiltration. The soil materials from approximately 100 feet in depth to about 250 feet in depth appear to be material of the Tamiami formation. It is this formation that is the principle aquifer for municipal and public water supplies. The shallow near surface aquifers of sand and shell are used primarily for irrigation in the local area. These two distinct aquifers are separated by extremely low permeability maris and clays.

The aquitard between the shallow aquifer and the deeper Tamiami formation is both beneficial and detrimental, depending upon the point of view and interest involved. The aquiclude is detrimental in that it limits the leakage into the underlying aquifer and thereby limits the actual amount of pumping that should be sustained on a long term yield basis. The aquiclude however acts as a filter in conditioning of water and results in development of a higher quality of water than would be available from the shallow surface aquifer. The aquiclude is therefore limiting the yield, but improving the

LAYNE WESTERN COMPANY, INC.

quality of water from natural sources.

The most beneficial effect of the aquitard is that local irrigators in the area can utilize the shallow aquifer system for agricultural purposes and not have any major detrimental effect on the lower aquifer system. Likewise, the lower aquifer can be pumped without affecting appreciably the water table in the shallow aquifer. This has been vividly demonstrated in the SW 1/4 of Section 33, where shallow irrigation wells have continued to operate even though the lower aquifer water level decline has been significant due to the initial pumpage of the Green Meadows well field. This comes about by the high recharge rate from local precipitation to the shallow aquifer far exceeds the amount of leakage out of the bottom of the shallow aquifer through the aquitard into the lower Tamiami formation. From the present data available, the aquitard between the two aquifer systems has been found in every boring in the general vicinity.

<u>Climate</u>

The average annual rainfall in Eastern Lee County is approximately 52 inches per year. It is common for 15% or more of this amount of water to be contributed to the shallow aquifer system. This is the equivalent to 7.8 inches per year of precipitation that contributes to the shallow aquifer. Converting this to the average recharge rate per square mile results in approximately 372,000 gallons per day per square mile to the shallow aquifer.

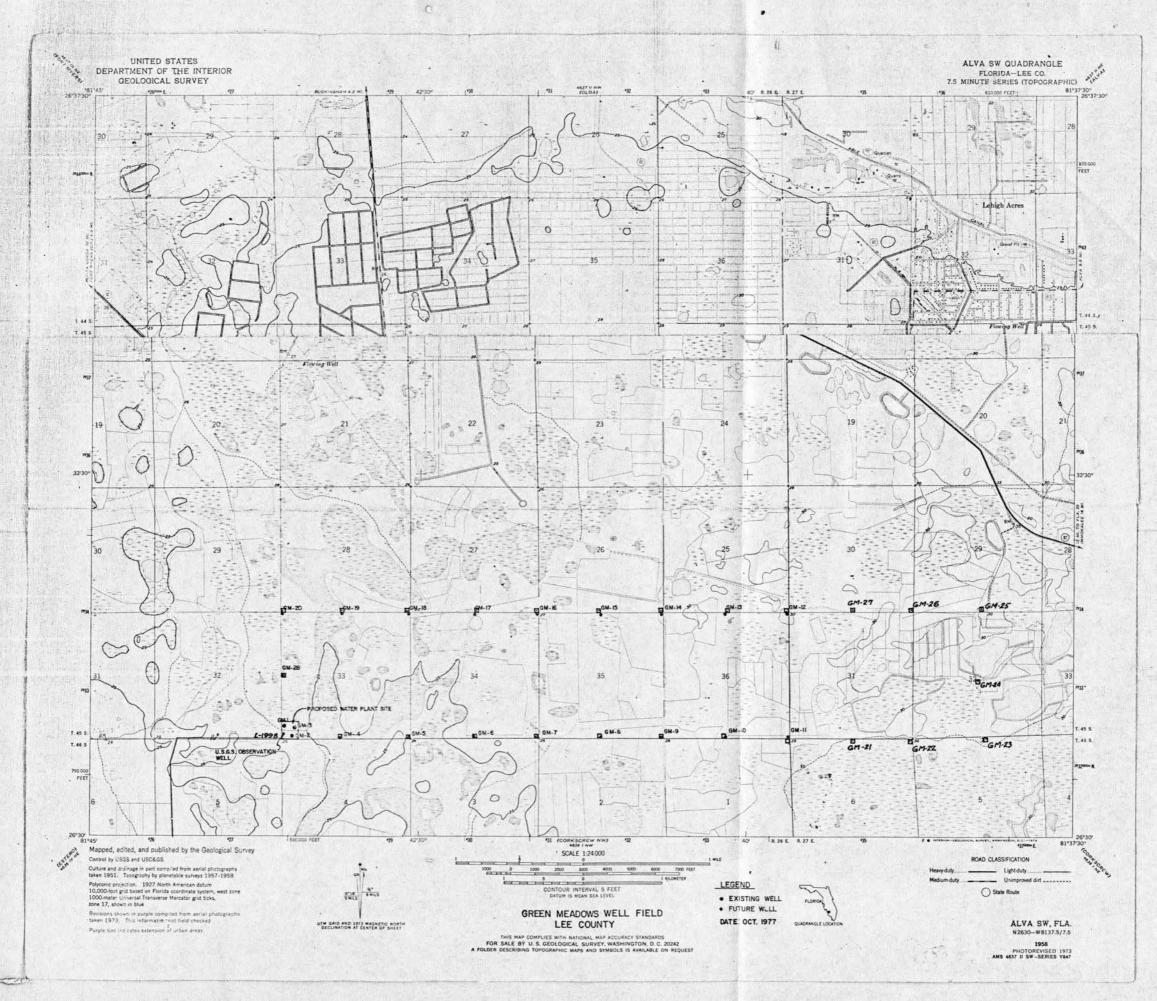
In conducting leakage studies of the Upper Hawthorn aquifer in both the Cape Coral and Cypress Lakes well fields, it was found from previous studies that an average of 150,000 gallons per day per square mile may actually be contributed to the Upper Hawthorn aquifer. Therefore it appears that only 40% of the recharge to the shallow aquifer is transmitted through the aquitards to the Tamiami formation below. This transfer only occurs in areas of pumpage where the water table has been depressed sufficiently for the infiltration to occur. There remains approximately 60% of the recharge still available to the local shallow aquifer system for irrigation purposes. In the area immediately to the south of the Green Meadows area, this has been observed to be satisfactory for continuation of trrigation without any appreciable loss or damage to the agricultural system as indicated by the absence of any claim for damages from the adjacent farmer.

Test Hole Drilling

In the Appendix of the report are copies of test hole logs that have been constructed for both Florida Cities Water Company and GAC Utilities. In addition to these were logs furnished by the U. S. Geological Survey and the approximate location along Corkscrew Grade, in Estero and other areas located in Central and Eastern Lee County. These datum are attached to the Appendix for the information provided. Where water quality samples were available, these have been included.

In 1972, a special surface water study was being conducted in addition to the shallow aquifer study for the Green Meadows area. Crest stage gauges were established in several areas to obtain the maximum water height from local precipitation. Water quality samples were taken of both surface water and from the shallow aquifer in preparation for a comprehensive study of the Green Meadows water supply system. Attached to the January 19,

LAYNE WESTERN COMPANY, INC.


1973 letter, is an illustration of the near surface and shallow aquifer water table as well as the water table elevation of the deeper Tamiami formation. Some differences in hydraulic gradient were observed.

WELL DEVELOPMENT

In early 1973, it was contemplated selling the Green Meadows property by GAC Utilities. At that time, a computer run was made based on estimates of the aquifer properties obtained from the first phase of study. It was proposed to develop approximately 21 wells with the wells spaced on one-half mile intervals in a rectangular grid pattern. The data was examined on the basis of no recharge and developing water only from the internal storage capacity of the aquifer. It was found that pumping only 5 million gallons per day resulted in a useful life of the aquifer in excess of 50 years with no recharge. Increasing pumping to approximately 10 million gallons per day, leakage from the shallow aquifer would have to be present on an order of magnitude similar to that experienced for the Upper Hawthorn aquifer. This was considered to be a reasonable expectation for the area and the recommendation was made to select approximately 20 some well sites through the center portion of the Green Meadows area that could be developed and accessible to the Florida Cities Water Company water supply system and to the City of Cape Coral. The resulting one acre well sites selected as a result of the study are shown on the attached drawing and are a part of the application pending before the South Florida Water Management District.

In July of 1974, contracts were let for the construction of the first two wells located at the water treatment plant site in the southwest corner of Section 33. These wells were constructed by McGreggor Pump Company and the logs and pumping test data are shown in the Appendix. Test Well No. I showed an initial value of transmissivity of 13,133 gallons per day per foot

AYNE WESTERN COMPANY, INC.

width of aquifer and increased to approximately 42,955 gallons per day per foot width of aquifer after 100 minutes of pumping. This is an indication of the leakage beginning to develop through the aquitard separating the shallow and deeper aquifer of the Tamiami formation. Near the end of 25 hours of pumping, the rate of drawdown appeared to stabilize at a pumping rate of 781 gallons per minute. The well's specific capacity was approximately 21 gallons per minute per foot decline in water level.

In a few weeks the second well was completed and test pumped at a rate of 948 gallons per minute for 25 hours, which had a well specific capacity of 23.7 gallons per minute per foot of drawdown. Prior to the pumping test, well development work on each of the wells showed pumping rates in excess of 1,100 gallons per minute from less than a 50 foot depth. This was an exceptional yield capacity from wells in Lee County. The coefficient of transmissivity for Well No. 2 appeared to stabilize at approximately 36,805 gallons per day per foot width of aquifer. The coefficient of storativity appeared to be .0016 for Well No. 2. No direct calculation of leakance through the aquitard was made for the pumping test. Prior values of from 150,000 gallons per day to approximately 180,000 gallons per day per square mile of aquifer appeared realistic for the area.

Approximately a year later in 1975, a third well was constructed on the water treatment plant site. No detailed pumping test was made on this well.

The operation of the three wells at the water treatment plant site has been extremely satisfactory from a yield production basis. Water levels in the group of piezometers constructed on the site showing levels in both the shallow aquifer, and in the Tamiami formation, responded as expected. No appreciable lowering of the shallow aquifer used for irrigation in the area was found. The water table did decline in the production aquifer zone of the Tamiami formation in accordance with projected water levels.

The only operational problem encountered to date with the Green Meadows water supply system has been the unusually high amount of hydrogen sulfide gas contained in the water production formation. It is thought that the present location of these wells is near the subcrop of the aquifer system and may be in contact with some natural deterioration of organic matter or sulfur reducing bacteria contributing to the development of the hydrogen sulfide gas in the water supply. This water was initially used into the distribution system with only aeration and chlorination. Excessive amounts of chlorine did have to be added to reduce the chemical oxygen demand and provide a proper residual for municipal purposes. Conditioning of this water through full lime softening as presently under construction, will provide an excellent quality of water for the area. Conventional water treatment will eliminate the hydrogen sulfide from the raw water supply.

AQUIFER MODEL SYSTEM

An electric analog model was made of the entire Lee County area including the Upper Hawthorn aquifer of the Cypress Lakes and Cape Coral systems. The transmissivity of the aquifer was simulated by electrical resistor network. Only the Tamiami or Tamiami-Upper Hawthorn aquifer system, where combined, was modeled on the network. No attempt was made to model the shallow aquifer or the leakage between the two aquifers.

A passive element steady-state electric analog network was constructed for the Tamiami and Upper Hawthorn aguifers in Lee County. No capacitors were added to the model or induction coils to simulate transient response conditions. The steady-state model is an excellent tool to define the flow rate through the aquifer and the resulting drawdown from transmission by the aquifer transmissivity coefficient. No changes in the internal storage capacity of the aquifer can be made in the steady-state system. Leakance or leakage resulting from precipitation sources can be modeled by adding a separate induction grid to the model network. Since the actual leakance rate is difficult to simulate, an arbitrary resistance value more than ten times greater than the base network resistance was selected. In the case of the Lee County model, the leakance network model was actually 100 times greater than the base resistance so that no modification to the aquifer transmissivity would result by the network addition. In later analysis work, this caused some problems in that the voltage level became too high to simulate the amount of leakage for maximum water production.

The electric analog model was calibrated based on 1971 data in which there was essentially no pumpage in the area. Only the natural water table gradient for the Tamiami aquifer formation was modeled. It was found that the leakance from the shallow aquifer was approximately 0.23 milliamps, which is the equivalent of 230,000 gallons per day for the entire model area. It was further found that the aquifer transmissivity was conducting approximately 570,000 gallons per day originating in the northeastern portion of the area. Total water discharge towards the gulf side of the aquifer was approximately 790,000 gallons per day. Voltage levels reflect the actual head condition directly. To the instrument voltage readings was added 100 feetor 100 volts of electrical potential so that all values were well above sea level elevation. To model water table elevation with respect to sea level would have required some special instrumentation that was not considered necessary for this particular model study. Therefore a voltage of 123 volts represents a water table elevation of 23 feet above sea level. Voltage readings can be added and subtracted to obtain the change in head expected for the condition.

In December, 1976, some pumpage was being maintained in the initial start up of the Green Meadows well field area. Simulating a pumpage of approximately 400,000 gallons per day, voltage levels were compared to some observed water levels in the immediate vicinity of the well field. It was found that leakance had increased to approximately 490,000 gallons per day for the aquifer system as well as an increase to approximately 700,000 gallons per day being transmitted through the aquifer from the northeasterly

AYNE WESTERN COMPANY, INC.

direction. There continued to be an outflow of approximately 790,000 gallons per day from the aquifer while 400,000 gallons was being pumped. A reasonable simulation of water table elevation was considered to be achieved by the model system.

Having achieved a reasonable simulation of water table conditions in the area, the electric analog model was then stressed to determine the possible drawdown effects for various rates of pumping with recharge from natural precipitation leakage through the aquitard and by transmission through the formation material. As pumpage was increased to 1 million gallons per day, the leakance increased to 640,000 gallons per day while the transmission capacity of the aquifer increased to 1.18 million gallons per day. Total output remained approximately the same with the additional pumpage stress from the aquifer.

Increasing pumpage to 2 million gallons per day resulted in an increase of leakance plus an increase of water being transmitted through the aquifer system.

Pumpage was increased to 5 million gallons per day and found that leakance increased to 3.3 million gallons per day for the model area, while the transmission capacity of the aquifer increased to 2.32 million gallons per day.

Pumpage was then increased to approximately,7 million gallons per day and leakance increased to 4.47 million gallons per day while the aquifer transmission increased to 2.97 million gallons per day. Electrical limitations were being approached in the model system as presently set up.

I AYNF WESTERN COMPANY, INC.

It is presently projected that leakance could increase to approximately 7.5 million gallons per day for the configuration of the well field while the aquifer transmission capacity remained close to the 3 million gallons per day simulated. This gives the total available yield from the aquifer system for the proposed well field of 10.5 million gallons per day.

In reviewing the aquifer pumping test for Well No. 2, it was found that the radius of influence of this well is approximately 5,000 feet. This was the radius indicated at the end of 25 hours of pumping. The radius of influence can increase with pumping time and is expected to increase to a nominal radius of approximately 10,000 feet with nominal steady-state development of the aquifer system. Utilizing a nominal radius of influence of 10,000 feet, the total surface area encompassed by the well field configuration comprises an area of approximately five miles in width and a little more than ten miles in length. This encompasses a total area of approximately 50 square miles, which requires a leakance rate of only 150,000 gallons per day per square mile to satisfy a yield of 7.5 million gallons per day. With the additional input from the aquifer transmissivity itself, there appears to be little doubt but what 10 million gallons per day can be adequately developed from the Green Meadows well field under steady-state conditions. This complies with the safe yield criteria utilized by most administrative agencies. In developing this yield rate, no consideration was made for ground water mining or permanent reduction of water from the storage capacity of the aquifer system.

As development occurs, it may be found that a slightly higher

LAYNE WESTERN COMPANY, INC.

leakance rate through the aquitard separating the shallow aquifer and the deeper aquifer exists in the area. If this proves to be the case, then higher pumpage rates may be possible from the well field configuration proposed. It has been previously demonstrated that the yield potential of the total aquifer system including both the shallow aquifer and the deeper aquifer from precipitation sources may exceed 372,000 gallons per day per square mile of area. This results in a potential yield of the 50 square miles of area approaching 18.6 million gallons per day. This would be considered the maximum upper limit potential of the Green Meadows well field area as presently laid out consisting of 26 well sites encompassing an area of approximately six square miles.

With regard to the protection of aquifer quality from exterior sources, it was calculated based on an average transmissivity of 36,000 gallons per day per foot width of aquifer with an effective aquifer thickness of 100 feet, formation permeability was approximately 360 gallons per day per square foot of material. This gives the maximum physical velocity of water at the bore hole well of 48 feet per day. This velocity dissipates rapidly towards the edge of the cone of depression and is nearly zero at the radius of influence with respect to the well field. Movement outside of the influence of the wells will follow the natural hydraulic gradient. This rate of flow in the Tamiami aquifer can be measured in inches per day. A review of land use policy should be considered to areas located within one-half mile of any municipal or potable water supply production well in Eastern Lee County. No deterioration effects have been seen from normal

LAVNE WESTERN COMPANY INC.

agricultural practices. Sewage treatment plants, land fills, and hazardous chemical areas should be restricted to areas greater than one-half mile from any water production well facility. Further study should be given to the spray irrigation field proposed by Lee County adjacent to the Green Meadows well field. If this is organic materials only in characteristic of normal municipal waste water and since the shallow aquifer does exist with appropriate vegetative uptake of nutrients, there appears to be little problem with deterioration of water quality from this source. Due to the different aquifer layers and aquicludes with normal vegetative conditioning of waste water, no appreciable deterioration of potable water supply is contemplated or visualized at this time. This is based on the assumption of appropriate loading rates that can be properly assimulated by the land surface vegetation. Spray effluent of properly treated sewage effluent should be no different than ordinary irrigation practices conducted in the area.

ANALOG MODEL LEE COUNTY, FLORIDA HYDROLOGY STUDY CALIBRATION, 1971

т	-	÷		
1	п	υ	υ	ιt

L

!____

Input							
Leakance Ground Water In No Total Input	ortheast			•	••••••••••••••••••••••••••••••••••••••	0.23 0.57 0.80	_ma ma ma
<u>Output</u>							•
Ground Water Out Total Pumpage	Southwest	. *				0.79 0	ma ma
		ma					
	· · · · · · · · · · · · · · · · · · ·	ma ma			·	1997 - 19	• •
		ma				· · · · ·	
		ma				19 17 17 1	
Total Output	······································	•				0.79	ma
Voltage				· .		4 4 9	· .
Well #2 123.2 v	T 43, R 22	118.4	v	T 45	R 22	107.8	v.
Well #3 123.6 V	T 43, R 23	122.7	v	Т 45,		114,1	v
Well #4 123.4 v	T43, R24	124.7	_ v	Т 45,	R 24	118.4	V.
Well #7 121.9 v	T 43, R 25	125.8	_ v	T 45,		121.9	v.
Well #8 <u>121.8</u> v	T 43, R 26	126.3	_ v	T 45,		123.6	
Well #9 <u>120.9</u> v	T 43, R 27	126_6	- V	T 45,	R 27	_125_5	V
Well #10 122.0 v	T 44, R 22	112 0		T 46,	D 77		ч <i>ё</i> .
Well #11 122.5 v Well #12 122.0 v	T 44, R 23	<u>112.8</u> 119.2	- v v	T 46,		96.3	
ττοιι πιζ <u>ιζου</u> ν	T 44, R 24	121.8	- v	T 46,		115 . 6	-
	T 44, R 25	123.7	v	T 46,		120 0	-
	T 44, R 26	125.1	_ v	T 46,	R 26	122.6	v
· ·	T 44, R 27	126.2	_ v .	Т 46,	R 27	124.8	v

LAYNE WESTERN COMPANY. INC.

T 47, R 22

T 47, R 23

T 47, R 24

T 47, R 25

T 47, R 26

T 47, R 27

87.5 v

<u>96.4</u> v

_ V

_ v

v

V

109.1

121.2

123.4

118.1

ANALOG MODEL LEE COUNTY, FLORIDA HYDROLOGY STUDY DEC. 6, 1976 0.4 MGD PUMPAGE

Input

Leakance		
Ground Water	\mathbf{In}	Northeast
Total Input		

Output

Ground Water Ou	it Southwest
Total Pumpage	
Well #9	.40

• 7 0	шe
	ma
	mā
	mā
······	

Total Output

Voltage

÷.,

1.5

.....i

Well #2	120.8	v
Well #3	121.8	ົ້
Well #4	121.2	v
Well #7	119.3	v
Well #8	117.4	v
Well #9	109,13	v
Well #10	117.5	v
Well #11 _	119.0	ົ້
Well #12	117.4	v

T 43, R 22	118.6	v
T 43, R 23	123.4	v
T 43, R 24	124.6	v
T 43, R 25	125.2	v
T 43, R 26	125.7	_ v
T 43, R 27	126.1	v
		-
T 44, R 22	113.0	_ v
T 44, R 23	118.8	ิข
T 44, R 24	121.5	v .
T 44, R 25	122.9	v
T 44, R 26	124.4	v
T 44, R 27	125,9	v

	106 0	
45, R 22	106.0	
45, R 23	113.7	-
45, R 24	117.3	
45, R 25	119.7	v
45, R 26	121.9	_ v :
45, R 27	125.3	v
		-
46, R 22	98.2	v
46, R 23	107.1	່້
46, R 24	113,6	v
46, R 25	114.7	v
46, R 26	119.7	v
46, R 27	124.4	v

Т

T T T T T

TTTTT

.49

.70

.79

.40

1.19

1.19

ma

ma

ma

ma

mä

86 7	
	-
114.8	v.
119.2	v
123.1	_v
	86.7 95.5 107.4 114.8 119.2 123.1

ANALOG MODEL LEE COUNTY, FLORIDA HYDROLOGY STUDY 1 MGD PUMPAGE

Input

1

Leakance Ground Water In Northeast Total Input

<u>Output</u>

Ground Water Out Southwest Total Pumpage

Wells # 4 & #8

ma	<u>l_05</u> _
ma	
ma	
ma	
ma	

Total Output

<u>Voltage</u>

Well #2	115.5	v
Well #3	114.3	v
Well #4	104.7	v
Well #7	113.9	v
Well #8	111.6	v
Well #9	104.8	v
Well #10	112.3	v
Well #11	112,9	v
Well #12	111.7	v

T 43, R 22	116.5	v V
Ť 43, R 23	122.1	v
T 43, R 24	124.1	v
T 43, R 25	124.5	v
T 43, R 26	125.1	v
T 43, R 27	126.3	v
T 44 , R 22	111.7	v
T 44, R 23	116.5	v
T 44 , R 24	120.2	v
T 44 , R 25		v
T 44, R 26	122.8	v
T 44, R 27	125.1	v

T 45, R 22	102.9
T 45, R 23	110.8
T 45, R 24	
T 45, R 25	<u>116.8</u> v
T 45, R 26	_119_3_V
T 45, R 27	_123.5_V
· .	
T 46, R 22	<u> 96 5 </u>
T 46, R 23	<u>_105_2_</u> V
T 46, R 24	<u> 111 2 </u>
T 46, R 25	<u>110.9</u> v
T 46, R 26	
T 46, R 27	<u>121.2</u> v
T 47, R 22	85.l_v
T 47, R 23	<u>93.6</u> v
T 47, R 24	<u>104.7</u> v
T 47, R 25	<u>111.3</u> v
T 47, R 26	114.9 v

T 47, R 27 120.5 v

0.64

1.18

1.82

0.77

1.05

1,82

ma

ma

ma

ma

ma

ANALOG MODEL LEE COUNTY, FLORIDA HYDROLOGY STUDY 2 MGD PUMPAGE

Input

Leakance Ground Water In Northeast Total Input

Output

<u>L.</u>]

Ĺ.

i.

ίu

È.

i.

Ground Water Out S	outhwest	
Total Pumpage		
Wells #4, #9, #10	2_02	ma
& A		ma
	· <u>····································</u>	ma
		ma
•		ma

Total Output

Voltage

105.1	v
103.8	v
94.9	v
105.6	v
99.2	v
94.9	v
94.8	v
97.8	v
98.6	v
	103.8 94.9 105.6 99.2 94.9 94.8 97.8

T 43, R 22	114,9	v
T 43, R 23	121.6	v
T 43, R 24	123.1	v
T 43, R 25	123.3	v
T 43, R 26	124.2	v
T 43, R 27	124.9	v
T 44, R 22	116.3	v
T 44, R 23	109.5	v
T 44 , R 24	118.2	v
T 44, R 25	116.5	
T 44, R 26	120.2	v
T 44, R 27	123.9	v

	· .
T 45, R 22	<u>101.7</u> v
T 45, R 23	<u>108.9</u> v
T 45, R 24	<u> </u>
T 45, R 25	<u>110.2</u> v
T 45, R 26	<u>111.7</u> v
T 45, R 27	<u>121.0</u> v
T 46, R 22	<u> 91.0 v</u>
T 46, R 23	<u>99.9</u> v
T46, R24	<u>106.0</u> v
T 46, R 25	<u>102.5</u> v
T 46, R 26	
T46, R27	
T 47, R 22	<u>82.3</u> v
T 47, R 23	<u>90.1</u> v
T 47, R 24	99.7 v
T 47, R 25	105.2 v
T 47, R 26	108.7 v

T 47, R 27 <u>117, 1</u> v

0.90

1.86

2,76

0.75

2.77

ma

ma

ma

ma

ma

ANALOG MODEL LEE COUNTY, FLORIDA HYDROLOGY STUDY 5 MGD PUMPAGE

 $M_{\rm c}$

•			
	np	ut	1

Leakance	3.32 ma
Ground Water In Northeast	<u>2.32</u> ma
Total Input	<u>5.64</u> ma
Output	
	6 CE

Ground Water Out Se	outhwest	
Total Pumpage		
Wells #10,4, 9, A,	2.49	ma
& B		ma
Wells #C, D, E, F,		ma
& G	2.50	ma
		ma

Total Output

Voltage

	· · ·		· · · ·	÷		
Well #2	78.9	v	Т 43,	R 22	118.8	v
Well #3	83.1	v ·	Т 43,	R 23	117.7	v
Well #4	71.4	v	Т 43,	R 24	116.0	v
Well #7	87.6	v.	T 43	R 25	114.2	v
Well #8	75.8	v	T 43	R 26	110.3	v
Well #9	71.5	v	T 43	R 27	101.8	V.
Well #10		_ v . 1				
Well #II	72.8	v	T 44	, R 22	117_2	v
Well #12	74.5	v	Т 44	R 23	113.2	v
÷			T 44	, R 24	109.2	v
			Т 44	, R 25	105.1	v
			T 44	, R 26	95.4	v
·			Т 44	, R 27	103.6	V

22	<u>114.3</u> v
	103.7 V
	<u>101.3</u> v
	98.6 V
	93.5 v
	<u>88,1</u> v
	- 1
22	<u>81 2</u> V
	<u>88.5</u> v
	93.4 V
	93.2 V
-	<u>71.7</u> v
	109.6 V
22	71.6 v
L 236	78.6 V
24	86.4 v
25	93,5 v
₹ 26 🗍	96.9 v
27 🗍	<u>107.7</u> v
	$\begin{array}{c} 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 23 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 25 \\ 26 \\ 25 \\ 26 \\ 26 \\ 26$

0.65

5,64

4 99 ma

ma

ANALOG MODEL LEE COUNTY, FLORIDA HYDROLOGY STUDY 7 MGD PUMPAGE

Input

Leakance Ground Water In Northeast Total Input

Output

Ground Water Out So	outhwest	
Total Pumpage		
Wells #4, 9, 10,A	3.73	ma
& B		ma
Wells #C, D, E,		ma
F&G	3.14	ma
		ma

Total Output

Voltage

Well #2	66.3	v
Well #3	72.4	v
Well #4	58.1	_ v
Well #7	78.5	
Well #8	64.4	v
Well #9	58.7	v
Well #10	59.1	_ v
Well #11	5.9.1	_ v
Well #12	63.0	_ v

T43, R22	<u>116.4</u> v	T 45, R 22
T 43, R 23	112.7 v	T 45, R 23
T43, R24	lll.8 v	T 45, R 24
T 43, R 25	112.3 v	T 45, R 25
T 43, R 26	110.7 v	T 45, R 26
T 43, R 27	104.5 v	T 45, R 27
		· . · · .
T 44, R 22	<u> 111.0 v</u>	T 46, R 22
T 44 , R 23	<u>103.9</u> v	T 46, R 23
T 44, R 24	<u>101.1</u> v	T 46, R 24
T 44, R 25	<u> 101.7 v</u>	T 46, R 25
T 44, R 26	<u>98,4</u> v	T 46, R 26
T44, R27	<u>104.9</u> v	T 46, R 27

	7.44	ma ma
. •	. ¹ .	•
	0.60	ma
	6.87	ma

4.47

ma

<u>7,47</u> ma

105.5 v

<u>80.8</u> v

81.5 v

<u>93.4</u> v 95.0 v

<u>89.2</u> v

80.5 V

<u>87.1</u> V

<u>86.2</u> v

<u>72.4</u> v

<u>58.7</u> v

<u>99_8</u> v

70.5 v

76.2 v

<u>82.4</u> v 87.9 v

v

v

81.2

101

I AVNE WESTERN COMPANY INC.

T 47, R 22

T 47, R 23

T 47, R 24

T 47, R 25

T 47, R 26 T 47, R 27

SUMMARY & CONCLUSIONS

It was found in this study that Eastern Lee County contains tremendous potential water supply for the inhabitants of the area.

It was found that local agricultural irrigation practices from the shallow aquifer can continue as presently practiced without deterioration of that water supply or without adverse influence of the underlying Tamiami aquifer system.

It was found in the study that municipal water supplies can be obtained from the Tamiami aquifer system being recharged by leakage from the shallow aquifer and by transmission through the aquifer transmissivity from more distant recharge areas. Evidence to date indicates that pumpage from the Tamiami aquifer system has not resulted in significant lowering of the shallow water table aquifer.

The analog model study indicates that minimum safe yield pumpage from the 26 well sites owned by Florida Cities Water Company has a minimum safe potential yield of 10 million gallons per day. It is further projected that the maximum potential yield for the well sites may be approximately 18.6 million gallons per day. Development in excess of 10 million gallons per day should proceed cautiously with appropriate monitoring of the water table in both the shallow aquifer and the deeper aquifer areas.

With appropriate respect for present and future planned land uses surrounding the well field area, there appears to be no significant problem with disposition of spray effluent from the sewage treatment plant properly condition. This is based on the assumption that loading rates to the _______LAYNE WESTERN COMPANY. INC. - soil will not exceed the uptake capacity of vegetation in the area. It should also be possible to carry on much of the normal agricultural practices in the area especially the irrigation of gladioulus and pompons. Edible vegetables may need additional care.

Respectfully submitted, ΈE.

Carl E. Nuzman, F. E Hydrology Consultant

mkh

.

· · ·

512

. .

, ---

-

i J

í.

 $\frac{\partial u}{\partial t}$

APPENDIX A

LAYNE WESTERN COMPANY, INC.-

AQUIFER PUMPING TEST GREEN MEADOWS AREA LEE COUNTY FLORIDA

SEPTEMBER, 1974

by

CARL E. NUZMAN, P. E. HYDROLOGY CONSULTANT

for

FLORIDA CITIES WATER COMPANY AND G. A. C. UTILITIES, INC. 2112 Gulf Gate Drive Sarasota, Florida

LAVNE WESTERN COMPANY INC.

AQUIFER PUMPING TEST GREEN MEADOWS AREA LEE COUNTY, FLORIDA

September, 1975

INTRODUCTION

As a result of extensive testing in 1972, exploratory drilling utilizing cable tool methods installing two (2) inch pipe to various depths, was conducted in the Green Meadows Area on a wide spacing basis. These data are included in the Appendix of this report for its information. Also included in the report is the water quality data and analysis available from that study.

As a result of the previous study, it was recommended that sites for future water supply wells be reserved from the Deed of Conveyance, when G.A.C. Corporation sold the property known as "The Green Meadows" area. Within the SW1 of Sec. 33, a tract of land suitable for water treatment plant of approximately 900 feet square, was reserved from the Deed of Conveyance. Also, approximately 26 other one (1) acre sites were reserved for future well locations. These are shown on Plate 1 attached to the pocket of this report. It was at the water treatment plant site in the SW1 of S. 33, that the first two (2) test production wells were constructed.

The purpose of this report is to give the findings of the aquifer tests performed on each of the test production wells in the Green Meadows Area.

AQUIFER TEST

N

WELLS

On 23 July, 1974, construction was completed by Mr. Al Harmon, President of McGreggor Pump Company on the first production well in the Green Meadows Area at the Green Meadows water treatment plant site. The well was constructed utilizing cemented casing to the top of the sandstone unit at approximately 97 feet below ground level. Open hole was then drilled to the bottom of the unit to approximately 195 feet in depth. Very preliminary development work was accomplished utilizing the test pump. The initial pumping test was started about 5:00 p.m. on the 23rd of July at a rate of approximately 700 gpm. Minor adjustments in the pumping rate were made until the rate was established and stabilized at about 781 gpm for a 25-hour duration test. Periodic observation of water level decline in the test production well was made. A few observations were also made in a two (2) inch diameter piezometer located in the very corner of S. 33, approximately 600 feet south of Test The total drawdown at the end of 25 hours or Well No. 1. 1500 minutes of pumping was 37.3 feet. This measurement converts to a depth of 42.5' below the top of the well casing which is approximately 1.5 feet above the ground level, in the area. The specific capacity of the well was 21 gpm per foot of decline in water level.

All during the test pumping period, the well was developing some small amount of sand and silty material from the formation. At the end of 25 hours, a water sample was collected but still contained considerable amounts of clay and fine sand resulting in a higher turbidity reading than normal. A small hydrogen sulfide odor was detectable from the discharge pipe, but was not considered to be excessive. The transmissivity of Test Production Well No. 1 utilizing only the test well data, shows an initial value of 13,133 gpd per foot width of aquifer and increasing after 100 minutes of pumping to approximately 42,955 gpd per foot width of aquifer. After 1,000 minutes of pumping, there was no additional decline in water level observed during the test pumping period. It appeared the steady-state conditions had been reached and the decline in water level had stabilized to a constant level indicating substantial recharge to the aquifer system. Detailed observation of recovery of water level was made after termination of pumping. It appeared that the water level fully recovered within 1500 minutes which was equivalent to the test pumping period. It therefore appears that for one (1) test production well, the aquifer was not overpumped at a rate of 781 gpm.

A-2-

On the 14th of August, 1974, the second test production well located some 862 feet in a southeasterly direction from the first well, across the water treatment plant site tract, was completed and testing was commenced. The No. 2 well was pumped at a rate of 948 gpm for the full 1500 minute period (25 hours).The drawdown at the end of this period was 39.96 feet which resulted in a well specific capacity of 23.7 gpm per This was slightly greater than Test Well foot of drawdown. No. 1. During the test pumping period observation in the decline in water level was also made in Test Well No. 1 which is identified as Piezometer No. 1 on the attached data. It was found that 10.32 feet decline of water level occurred in the No. 1 well while Test Well No. 2 was being pumped. The transmissivity in the early portion of the data from Test Well No. 2 was 23,175 gpd per foot width of aquifer, increasing to 35,100 gpd per foot width of aquifer in the period of time between 10 minutes and 100 minutes duration of pumping. After 500 minutes of pumping no additional decline in water level was observed in Test Well No. 2. The recovery of Test Well No. 2 appeared to be complete in approximately 1800 minutes which was just slightly greater than the 1500 minute pumping period. Since stable water level conditions were reached in the latter part of the pumping period, and the recovery was complete and nearly equivalent to the same period of pumping, the aquifer has substantial recharge.

The drawdown data for Test Well No. 1 and Test Well No. 2, while Test Well No. 2 was being pumped, was plotted to determine other characteristics. The apparent radius of Test Well No. 2 for transmissivity of 36,805 gpd per foot width of aquifer, approached 6 foot radius. It appears the effective diameter of this well, due to the type of well construction, is nearly 12 feet. Substantial quantities of loose sand and clay material were pumped from the well during the development period to develop this type of reaction. Thus, the apparent well efficiencies are in excess of 100% based upon the theoretical yield for the diameter of hole drilled. The radius of influence of each well is approximately 4,700 feet.

A water sample was taken from Test Well No. 2, for analysis purpose at the end of the pumping period. This well was better developed at this time, than Well No. 1 and the turbidity units were down to 1.4 Jackson units. Subsequent development work was made on Well No. 2 and Well No. 1, and the latest report run by Florida Cities Water Company laboratory, showed total dissolved solids had declined to 478 mg/l with zero turbidity. A slight odor from hydrogen sulfide could be detected. As a supplement to the above water supply investigation, an exploratory hole of four (4) inch diameter was drilled through the "so-called" sandstone unit into the upper Hawthorn unit. The top of the upper Hawthorn at the site of these wells, was found at a depth of 321 feet. Drilling continued to approximately 345 feet from which pumping and a water sample obtained for analysis. The results of these tests have not yet been returned to the Hydrologist for inclusion in this report. Although it appeared the water quality from the upper Hawthorn at this location would be satisfactory for public water supply use, the production potential appeared to be minimal.

AVNE WESTERN COMPANY, INC.

SUMMARY AND CONCLUSIONS

Two (2) test production wells of nominal 16 inch diameter with casing cemented to the top of the sandstone unit, approximately 100 feet below land surface, and open hole construction continued to approximately 200 feet below land surface, was utilized at the water treatment plant site in the Green Meadows Area.

The Green Meadows water treatment plant site is located approximately nine (9) miles directly south of the old Buckingham Air Field and approximately 8.5 miles east of Tamiami Trail. This is fully described as being located in the SW¹/₄ of the SW¹/₄ of S. 33, T.45S., R.26E., in Lee County, Florida.

FП

Test Well No. 1 was pumped for 25 hours at a rate of 781 gpm with a well specific capacity of 21 gpm per foot of drawdown. Well No. 2 was test pumped at a rate of 948 gpm for 25 hours period with a well specific capacity of 23.7 gpm per foot of drawdown. Prior to the test, well development work was conducted at rates in excess of 1100 gpm from a 50 foot pumping level.

Coefficients of transmissivity varied from a low of 13,133 gpd per foot, during the early portion of the development in Test Well No. 1, to a high of 51,546 gpd per foot for the apparent recovery of Test Well No. 1. Transmissivities for Test Well No. 2 started out at 23,175 gpd per foot during the early data and increased to 35,100 gpd per foot during the latter stages of the pumping. Transmissivity during recovery of Test Well No. 2 appeared to approach 36,805 gpd per foot width of aquifer. This value was considered nominal and the value to be used in subsequent computations involving simulation of the aquifer.

The apparent coefficient of storativity due to confinement of the aquifer appeared to be .0016 for the duration of the test conducted on Well No. 2.

A review of the water quality analysis shows that the magnesium carbonate hardness is much less in this water than that found in the upper Hawthorn aquifer along the west coast of Florida. Therefore, this water should be less complex chemically and not require as much lime for a conventional lime softening

A - 5 -

treatment. Also, the water should not require recarbonization after lime softening.

The maximum recommended pumping rate for these two wells for a continuous service production of water, should not exceed 700 gpm each. This is the equivalent of one (1) million gallons per day per well, for a total additional supply of 2 mgd.

From the personal knowledge of this Hydrologist, Green Meadows test production wells No. 1 and No. 2, are the largest capacity, with the highest specific capacity, and the best quality of water of any wells presently known to exist in Lee County, Florida.

A - 6 -

APPENDIX

Δ

THE LAYNE 1500 AQUIFER TEST

CLIENT: Florida Cities Water Company DATE: 14 August '74 JOB NO.: A-191-C

The Layne Aquifer Test is designed to obtain sufficient data to analyze the operation of a single production water supply well from the aquifer tested for the existing environmental conditions. The test is designed to keep costs to a minimum while obtaining all pertinent data normally used. There could be special conditions in which the number and array of piezometers would be increased and pumping time increased, for example to determine the leakage rate of a stream bed. However a majority of ground-water tests can be handled quickly and efficiently with the Layne Aquifer Test. If a multiple well system, in which a significent portion of potential yield of the aquifer System may be developed, a more complete hydrologic study is required. In this case, the Layne Aquifer Test is a necessary part of the data collection process and may be repeated at intervals depending upon the area involved. Wells in deep multiple aquifers have special problems and the Hydrology Consultant should be advised prior to the test.

The objective of the Layne 1500 minute aquifer test is to provide sufficient data to more fully analyze the aquifer formation coefficients while verifying the quality of well construction. This test may supplement or follow the exploratory Layne 500 minute aquifer test and may be referred to by others as a new well acceptance test. These data can be converted to machine language for computer processing. The aquifer coefficients of transmissivity and storativity will be computed. The well efficiency, apparent safe well yield, and radius of influence will be evaluated. There may follow suggested changes in well design and spacing to more efficiently harvest the available aquifer yield. A recommended well and well screen design can be given if requested. Enclose this completed form with the recorder charts an electric log trace, sieve analysis of both the formation material and gravel pack, if used, and water quality analysis, if available, for evaluation.

TEST WELL LOCATION Green Meadows Test Well No. 2, located approximately 700 feet east and 100 feet north of the S.W. corner of Section 33, Twp 455, Range 26 East

in Lee County, Florida.

TEST WELL CONSTRUCTION

1. Depth from land surface_____feet. Total depth from casing______

2. Diameter of drill hole 16 inches. Drilling method Rotary

Material in we	Material in well		GAGE WALL				
	LENGTH FT. IN.	DIA. IN.	NO.	THICK NESS IN	MATERIAL	TYPE	NO.
Screen				<u>Open Hol</u> e	Construction	Shutter Keystone	· · ·
							Openings
Inner Casing							
Outer Casing							
Outer Casing						Welded Screwed	

4. Gravel pack size <u>None</u> amount of gravel

5. Height of casing above ground level 1.60 feet

A - 8 -

55.2 B STATE OF FLORIDA Permis No. 9712 WSW WATER WELL CONTRACTOR'S NOTIFICATION OF CONSTRUCTION OR REPAIR OF A WATER WELL Owner's Well Identification J.M. 171 USOS # L. 1966 DEPARTMENT OF NATURAL RESOURCES DIVISION OF INTERIOR RESOURCES 4 Nº 37305 505 Larson Building, Tallahassee, Florida 32304 $\sum_{i=1}^{n}$ Telephone: (901) 488-8476 GREEN MEADOWS #2 1. OWNER FLA. Cilles Water Co 14. WELL LOG: Depth (feet) Note each type of material, producing zones, & can-ties if any. Give description at not less than 20 fuel intervals and at changes 12 Out In Well 4Ka bore (in) From To State RI. ALKO GYAde 4 SAND LOCATION OF WELL 0 Lee SHELL Y SAND - muers 4 10 County SHELLY SANDSTONE LOYALS Trees Meddews 22 10 Lot No SANDSTONE TAN + Gray 268 22 .36 a. PURPOSE OF WELL XPublic Supply CLAYY SHELL Domestie Irrightion Stock 36 41 Industrial CLAY Macan Sandy Other 4. TYPE OF WURK 41 72 New Sell Plugging Reconditionis 94 SANDSTONE + SHELL LAYOR Deepenut 72 5. QUALITY 94 105 LIMESTONE (WHITE) Xcum Colored Sulfur OSalty Other CHECK TEST MADE 105 119 Limesteine (GREEN) Nenc Test By L None L Bartens Chemanal Chioride L PPM (Check X if test was for acdium inloxide) County Health Dept. State Health Dept. RUS. G.S. LAY NO. Buster 119 131 Limestene (CAREN) + SHEL NATT KANPS (iTy Temperatur-131 145 SANDSTONE + SHELL Address Well Dimnfeited Yres No 145 150 CLAYN BALL BEARING - SAME 6. EQUIPMENT - Cable Tool Reverse Rotary Rotary Öther 17 150 167 CLAY + SAMPSTONE LAYERS Jet None Acement Other Describe and give number of bags (94316.) From 7. GROUT From (ft) 167 184 CLAY (FLUE + GREEN) To (ff) - 93 OS BAY WY GODI FOR DAS SurFAce Camper al zumm 184 185 Limestine (WHITE) Pattern te top 8. CASING AND LINER PIPE Diameter (inches) Kind From (ft) To (ft) 16 11 134K.Steel -95 12 Weided Only Threaded & Coupled (Check (me) TACA Welded Other 9. WATER LEVEL 3.41 Water level after well completed Above Back Fell to 160 Well Flowing: Yes No Flow 10. SCREENS Location (ft) Below Surface Make Materials Diameter (in). Slot Size From (ft) To (ft) 11. UPPER END OF WELL Other Pump Installed Valve XCap 12. PUMPING TEST 8-13-74 ATest Pump Permanent Pump J. OF OF CASINY 15. CONTRACTOR'S CERTIFICATION is A leet X above Delow land surface JHI tert Cabrie X Delo 4440 was done under my juryidiction and this rei helses on **Z-2**5 saximum drawdown 950 astimi Atur 24_ bours 13. PUMP INSTALLED: Type 7 ft, of total dynamic Love Jou 2037 + HArmes a artinia feut

LAYNE 1500 AQUIFER TEST

Į.

TEST #2

stance from T	. W. to Pz,	Test Well	Piezometer 1. 860 Feet	Piezometer 2.	
pth to static v		4.90	4.92	······································	
ight abov		1.60	1,60		
Time of	Elapsed Time	35	3535		
Day	In Minutes	Drawdown	Drawdown	Drawdown	Remarks
10:49	0	***	* D*	* * *	
10:50	1	19.06	0	······	
	2	23.45	.02		<u> </u>
	3	26.36	.08		
· · · · · · · · · · · · · · · · · · ·	4	26.86	.16		
<u> </u>	5.	28.04	.26	······	
	7	29.45	.47		· · · · · · · · · · · · · · · · · · ·
	9	30.84	.68		······
	11	31.56	.88		
	15	32.40	1.25		* 948 gpm
	20	33.44	1.66		
· · · · - · · · · ·	25	33.93	2.01	<u> </u>	· · · · · · · · · · · · · · · · · · ·
	30	33.93			* · · · · · · · · · · · · · · · · · · ·
<u></u>	35	34.57	2.33	·····	
	40	35.19			
·····	45	36.07	2.37 3.20	······	······································
	50	36,18		·	
	60		3.33		* 040
	70	<u> </u>	4.09		* 948 gpm
	80	37.81	4.43		
	90		4.72	· · · ·	
<u></u>	100	38,23	4.99	· · · · · · · · · · · · · · · · · · ·	
	120			· · ·	*
	150	38.56	<u>5.46</u> 6.03		
<u></u>	180	39.98	0.03	······································	*
	210	39.26	6,95		· · · · · · · · · · · · · · · · · · ·
	240	20 43	7.15_		*
	270	39.41			
	300	10.00	7.44		* 040
	330	40.62 42.01	7.69		<u>948 gpm</u>
	360	-24.UL	1.32		*
······	390	20 74	0 00		
	420	38,74	8.08		*
· · · · ·	450				<u> </u>
,	480	40.22	·····	·····	*
	510	40.22	·		
	540		········		*
	600	40.31	9.14		
·	660	4U.31	9.33		*
	720	40.28			<u></u>
	780	40.39	9.53		*
	840	40.31	9.66		
••••••••••••••••••••••••••••••••••••••	900			······································	*
	1020				*
	1140		<u></u>		*
	1260	39.99	10.13		* 948 gpm
	1380	39.99			* 940 gpm
	1500	39.96	10.32		*

MANAL AND RECORD PUMPING BATE

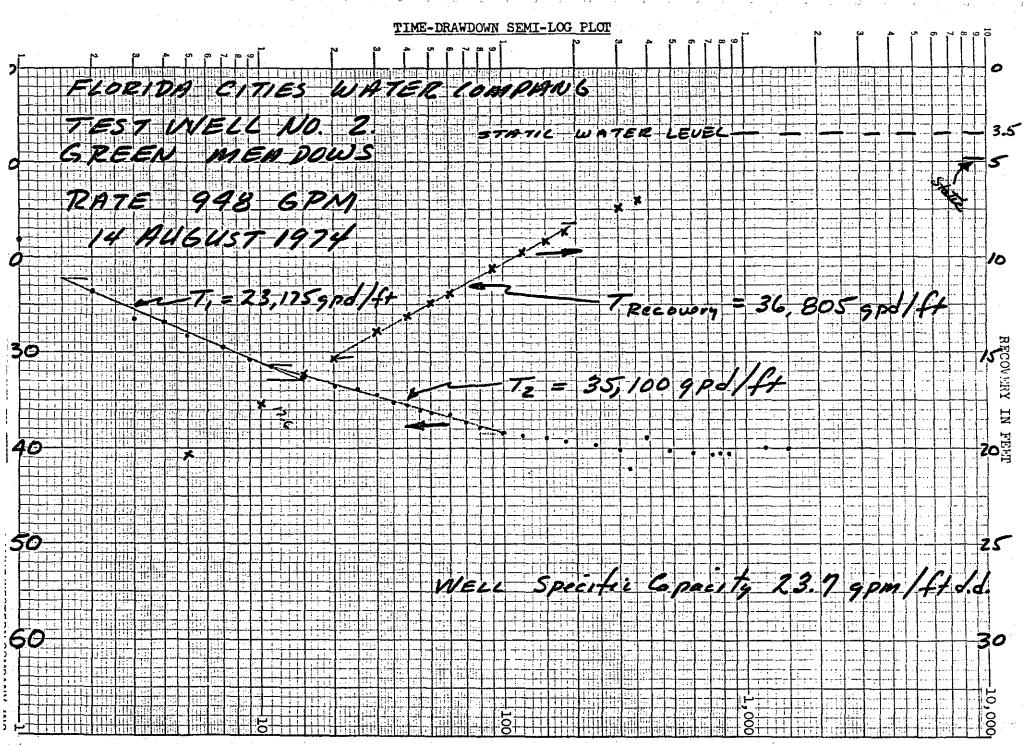
Well Specific Capacity 23.7 gpm/ft. d.d.

	Surface	Elevati		IETER NO. 1 Well lo		Surfac	e Elevat			ETERN		ell log	
LICATION SKETCH LICATION SKETCH LICATI	From			iption of Material		~			Descri	ption of			Thick
ELECTRIC LOG TEST HOLES AND ATTACH COPY OF TRACES TO THIS FORM.						1		[
ELECTRIC LOG TEST HOLES AND ATTACH COPY OF TRACES TO THIS FORM.						1		1					
ELECTRIC LOG TEST HOLES AND ATTACH COPY OF TRACES TO THIS FORM.				······································		1		1					·····
Image: Section No. 33 Image: Section No. 345													
Image: Section No. 33 Image: Section No. 345				······		· · · · · · · · · · · · · · · · · · ·	<u> </u>						
Image: Section No. 33 Image: Section No. 345						1					······		
Image: Section No. Section No. Image: Section				······································		1	<u>}</u>						
ELECTRIC LOG TEST HOLES AND ATTACH COPY OF TRACES TO THIS FORM.						1							
ELECTRIC LOG TEST HOLES AND ATTACH COPY OF TRACES TO THIS FORM.				· · · · · · · · · · · · · · · · · · ·		·							
ELECTRIC LOG TEST HOLES AND ATTACH COPY OF TRACES TO THIS FORM.				<u> </u>		-		1	·				
Image: State of the stress of the strese of the stress of the stress of the stress						{	[<u> </u>					
Image: State of the stress of the strese of the stress of the stress of the stress						{							
Image: State of the stress of the strese of the stress of the stress of the stress									- <u></u> .				
Image: Electric Log test Holes AND ATTACH COPY OF TRACES TO THIS FORM. Image: Elevation Well log Image: Test Well NO. Image: Elevation Image: Test Well log Image: Elevation						┨ ╞────		<u> </u>					
Image: State of the State o			·			┦ ├		· _					
Image: Electric Log test Holes AND ATTACH COPY OF TRACES TO THIS FORM. Image: Elevation Well log Image: Test Well NO. Image: Elevation Image: Test Well log Image: Elevation			•			┨ ┝━━───	<u>-</u>	<u> </u>			<u>.</u>		
ELECTRIC LOG TEST HOLES AND ATTACH COPY OF TRACES TO THIS FORM. LOCATION SKETCH Urface Elevation Well log IDESCRIPTION OF MATERIAL LOCATION SKETCH IDESCRIPTION OF MATERIAL IDESCRIPTION OF MA						┥ ┝━━━━━			·				
ELECTRIC LOG TEST HOLES AND ATTACH COPY OF TRACES TO THIS FORM. LOCATION SKETCH Urface Elevation Well log IDESCRIPTION OF MATERIAL LOCATION SKETCH IDESCRIPTION OF MATERIAL IDESCRIPTION OF MA						┤ ┝━━━━━		<u>.</u>					
ELECTRIC LOG TEST HOLES AND ATTACH COPY OF TRACES TO THIS FORM. LOCATION SKETCH Urface Elevation Well log IDESCRIPTION OF MATERIAL LOCATION SKETCH IDESCRIPTION OF MATERIAL IDESCRIPTION OF MA				·									
ELECTRIC LOG TEST HOLES AND ATTACH COPY OF TRACES TO THIS FORM. Internation of Meterial Thickness Internation of Material Thickness Internation of Material Thickness SW									· · · ·				
ELECTRIC LOG TEST HOLES AND ATTACH COPY OF TRACES TO THIS FORM. Urface Elevation Under the set of the set o							·			<u> </u>			
ELECTRIC LOG TEST HOLES AND ATTACH COPY OF TRACES TO THIS FORM. Internation of Meterial Thickness Internation of Material Thickness Internation of Material Thickness SW		·									·		
TEST WELL NO. LOCATION SKETCH LOCATION SKETCH LOCATION SKETCH Internet Interne													

		HAMAN AND	3.335татя 860'	C	
Time of	Elapsed Time	Test Well	PZ. No. 1	PZ. No. 2	
Daγ	In Minutes	Water Level	Water Level	Water Level	Remarks
	0	44.90	13.65		(Last Reading Before Sto
	5	20.28	13.37		
	10	17.60	12.84		······································
	ʻ15	16.22	12.33		··· [······
· · ·	20	15.30	11.92		
	30	13.96	11.23		
	40	13.11	10.68		
······································	50	12.40	10.21		
	60	11.81	9,82		
	90	10,55	8.84		
	120	9.68	8.11		
	.150	9.12			
	180	8.62	7.11		
	240				
	300	7.41	6.00		
	360	7.00	5.62		
	420		5.30		
	480	······································	5.05		
	1550	······································	3.66		·····
	Start	*	3.32		

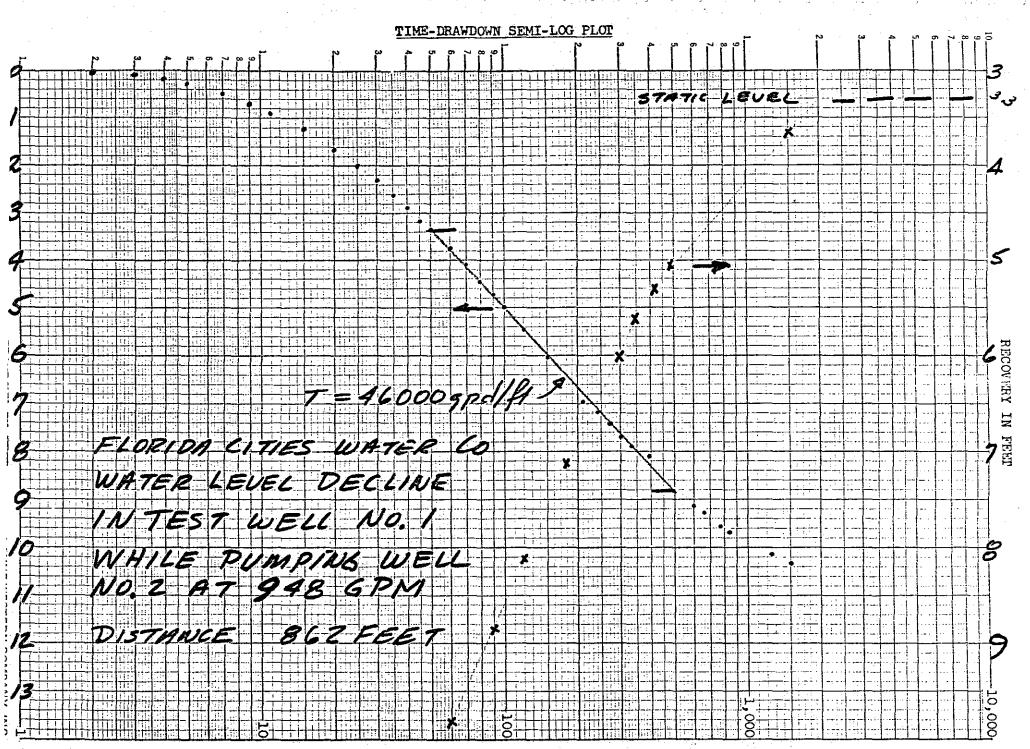
General Field Instructions: Select location of the test well by appropriate means such as test hole drilling, boring or geophysical methods. The test well can be of either temporary or permanent type of construction. A temporary test well need not be efficient to obtain good results. The test well must be open or screened in all aquifer horizons to be tested. Observation of drawdown in plezometers is most important for a good analysis.

The location of piezometer number 1 shall be in a direction parallel to the flow path of the aquifer system, or axis of the alluvial valley, at a distance from the test well approximately equal to the depth of the test well but not greater than 100 feet. The test hole should be electric logged if possible prior to the installation of the piezometer pipe, and aquifer samples saved for later laboratory sieve analysis if needed. The piezometer pipe must be open to the same aquifer horizons as the test well and of the same depth. The location of piezometer number 2 shall be located on approximately the same line from the test well as piezometer 1, at a distance four (4) times the depth of the test well but not greater than 400 feet as measured from the test well. This piezometer shall be installed in the same manner as previously given.

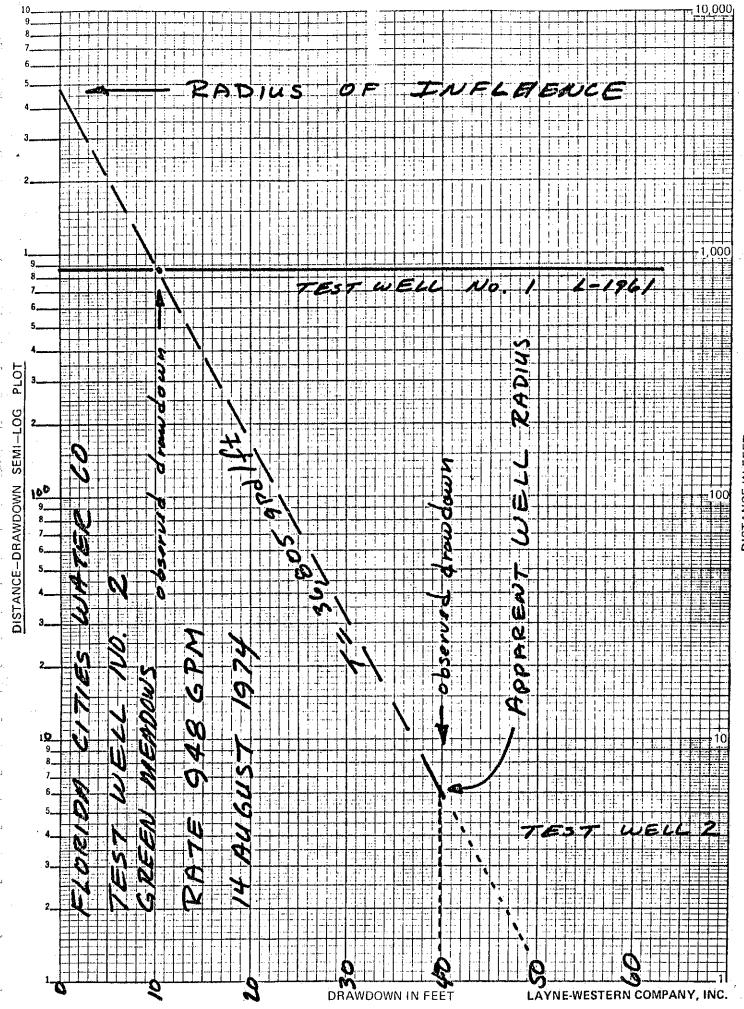

The piezometers will be equipped with automatic water level recording devices to monitor the drawdown and recovery of water level. The data on drawdown and the first 30 minutes of recovery will be read and recorded on this form from the recorder pen position. BE SURE THE FLOAT AND COUNTERWEIGHT ARE FREE TO MOVE to obtain correct readings. At the conclusion of the test, the recorders will be left in place to operate for at least four days to observe full recovery or diurnal fluctions of the static water level.

A test pump will be installed in the test well of sufficient capacity to pull the water level down in the test well a depth at least equal to 10% of the saturated thickness but not greater than 70%. A 25% drawdown is considered normal, The pump shall be operated at a constant rate as far as possible for 1500 minutes. Suitable measuring equipment will be used to determine the pumping rate.

1800


NOTE: COLLECT WATER SAMPLE NEAR END OF PUMPING TEST FOR ANALYSIS. CHECK RECORDERS FOR PROPER OPERATION JUST PRIOR TO LEAVING JOB SITE.

FROM RECORDER CHARTS TOTAL RECOVERY OCCURRED IN_____


ELAPSED TIME IN MINUTES

<u>an tara t</u>u

ELAPSED TIME IN MINUTES

* . . .

DISTANCE IN FEET

THE LAYNE 1500 AQUIFER TEST

CLIENT: FLORIDA CITIES WATER COMPANY DATE: 23 July, 1974 JOB NO.: A-191-C

The Layne Aquifer Test is designed to obtain sufficient data to analyze the operation of a single production water supply well from the aquifer tested for the existing environmental conditions. The test is designed to keep costs to a minimum while obtaining all pertinent data normally used. There could be special conditions in which the number and array of piezometers would be increased and pumping time increased, for example to determine the leakage rate of a stream bed. However a majority of ground-water tests can be handled quickly and efficiently with the Layne Aquifer Test. If a multiple well system, in which a significent portion of potential yield of the aquifer System may be developed, a more complete hydrologic study is required. In this case, the Layne Aquifer Test is a necessary part of the data collection process and may be repeated at intervals depending upon the area involved. Wells in deep multiple aquifers have special problems and the Hydrology Consultant should be advised prior to the test.

The objective of the Layne 1500 minute aquifer test is to provide sufficient data to more fully analyze the aquifer formation coefficients while verifying the quality of well construction. This test may supplement or follow the exploratory Layne 500 minute aquifer test and may be referred to by others as a new well acceptance test. These data can be converted to machine language for computer processing. The aquifer coefficients of transmissivity and storativity will be computed. The well efficiency, apparent safe well yield, and radius of influence will be evaluated. There may follow suggested changes in well design and spacing to more efficiently harvest the available aquifer yield. A recommended well and well screen design can be given if requested. Enclose this completed form with the recorder charts an electric log trace, sieve analysis of both the formation material and gravel pack, if used, and water quality analysis, if available, for evaluation.

TEST WELL LOCATION Green Meadows Test Well No. 1 located approximately 600 feet north and 100 feet east of the SW corner of S. 33, T.45S., R. 26E. in Lee County, Florida.

TEST WELL CONSTRUCTION

1. Depth from land surface_____feet. Total depth from casing______

2. Diameter of drill hole_____inches. Drilling method___

. Material in we			GAGE	WALL THICK-	MATERIAL	TYPE .	NO.
	LENGTH FT. IN.	DIA. IN.	NO,	NESS IN.			
				· · · · · · · · ·			
Screen	· . 	OPEN HO	DLE CONS	PRUCTION	·	Shutter Keystone	
					н. 		Openings
Inner Casing					· · · · · · · · · · · · · · · · · · ·	Welded Screwed	
Outer Casing						Welded Screwed	
Gravel pack si	noi	ne					······································
Gravel pack si			1 60	amount	of gravel		

Height of casing above ground level____

STATE OF FLORIDA Permit No. 9713 wsw WATER WELL CONTRACTOR'S NOTIFICATION Owner's Wejl Identification (F. M. 72 OF CONSTRUCTION OR REPAIR OF A WATER WELL DEPARTMENT OF NATURAL RESOURCES DIVISION OF INTERIOR RESOURCES 37301 505 Larson Building, Tallahassee, Florida 32304 Telephone: (901) 188-5176 GREEN MEADOWS 1. OWNER FLO-INA CITIE'S WATER CO. 14. WELLLOG Well bore (in) Note each type of material, producing ropes, 6 cars ties if any, fave description at not less than 20 foot intervals and at changes Depth (feet) 112 Juli Tote L 7LA SAYASETA From To 2 LOCATION OF WELL PLICS Frade Kd. SANA 0 З SHELL & ROCK LAYERS Street Address/Road 20 3 ZIL MYEIS .. HARD ROCK (SANDSTENE)+1 Green Mendeu's 20 25 Lot No 27 SHEU-268 25 Section 27 41 SANDSTINE (VERY HARD) Gray **9. PURPOSE OF WELL** Rublic Supply Domestic Irrutation 36 DRINKING CAULTY Stock Industrial Other_ 4. TYPE OF WORK XNew Well 41 67 GREEN CLAY Plugging Deepening Reconditionin SANNY SHELL (Small retain) B. QUALITY 67 87 TEXT KAL MAIL X clear Colored Sulfar Salty SANCY SHELLY CLAY CPECK TEST MADE 87 90 Test By None Bacteria Chemica Chionde CPPM (Check X if test was for and/um chionites County Health Dept. 90 92 SAND STINE State Health Dept. XAYNA -Bauler Other 92 95 SHELL + SPAC -KAN 15 CIT Temperature Well Duanfected Kyes 95 102 HARD SAND STORE 6. EQUIPMENT Cable Tool 102 132 LIMESTINE (WHITE) Jet Reverse Rotars 7. GROUT None ACement Other number of bass (94)[b.) From (ft) Xiement 122 142 SHELLY LIMESTINE (GREEN) Harridingen Bettom torgo 80 Grays & your pristan notional (attenes) a comment 142 162 SONDSTRACT SHELL 11.2 164 CLAY (GARTA) 8. CASING AND LINER PIPE Diameter (inches) star 1.96' 164 167 LIMESTONE (TAN & GREEN) 117172 CLAYY LIMISTONE STREAKS Threaded & Coupled Xwelded Only Check One Th Other 172 177 WHITE SLAY 9. WATER LEVEL 2.91 ten 177 182 WHITE CLAY + LIMESTONE Well Flowing See No Flow Location (ft) Below Surface 182 187 Limesteve (WHITE) **0. SCREENS** Make Materials Diameter (In) Slut Size From (ft) To (ft BACK Filled To 160 1835 1. UPPER END OF WELL Pump Installe 1 Vaite Cop Other Recenter 2. PUMPING TEST 23. _ ... X Lest Pump . . . Permanent Pump Date TOF OF CASIAS Measure point is: 15. CONTRACTOR'S CERTIFICATION which is Z., fee. X above . . . below land surface This work was done under my surviver on and this report is to the best of my knowledge and best of my work - onmenced as Z. Static water level 211 feet above Whelow measure point 40,54 Maximum Brawdown _____ feet lelow measure point Discharge at maximum drawdown 900 gal/min Mr. the gos Bring to After 24 hours 8019 3. PUMP INSTALLED a (comon mi thigo 3. t. myen dec Capacity. _ Gatresen at_____ft, of total dynamic head No. of bowls or states 813-451-0033 Live Sey + NArman Puisp intidic ..

LAYNE 1500 AQUIFER TEST

TEST # 1

Test Well

		D.	•
Piezometer	1.	Piezometer 600#	2.

Distance from T. W. to Pz.
Depth to static water
23 July, 1974

Depth to static 23 July,	. water	5,25		4.91	
23 July	, 1974			2" Dia.	······································
Time of	Elapsed Time				
Day	In Minutes	Drawdown	Drawdown	Drawdown	Remarks
17:00	0	***	***	***	· · · · · · · · · · · · · · · · · · ·
	1		,,		700
- <u></u>	2	f	,	t	۵. « المراجع ال المراجع المراجع
· · · · · · · · · · · · · · · · · · ·	3				······································
······	4		· · · · · · · · · · · · · · · · · · ·		692
······································	5	1	(,		
<u> </u>	7	ļ]	i'		
х.	9	I	1,		770
·	11		l	[
······································	15	[]	I		* 781
	20	(/		
	25	[]	· · · · · · · · · · · · · · · · · · ·		
	30		(T		• 790
17:35	37	28.70			
	42	28.87	· · · · · · · · · · · · · · · · · · ·		
· · · · · · · · · · · · · · · · · · ·	45		,		
	50	30.17	· · · · · · · · · · · · · · · · · · ·	[
	60	32,50			• 772
- <u></u>	70	32.96		[
· ····································	80	33.66	· · · · · · · · · · · · · · · · · · ·	<u> </u>	·····
/	90	34.00	·		
18:50	110	34.42	· · · · · · · · · · · · · · · · · · ·	7.42	
	140	34.75		· · · ·	* 776
1	150	35,00		r	
 1	180	35,00	·	ſ <u></u>	* 781
·	210		· · · · · · · · · · · · · · · · · · ·	9.59	/01
- <u></u>	240	<u>36.10</u> 35.92	·	<u> </u>	* 790
·	240	36.06		í	781
•••	300	36.20	·	j	*
£ ·	330			í	
(360	36.48		í <u> </u>	*
i	390			<u> </u>	
· · · · · · · · · · · · · · · · · · ·	420	(i	*
• <u></u>	450	·		······	
/	430	·		l <u></u>	*
	510				
···	540	·		· <u>····································</u>	
	600	·		· · · · · · · · · · · · · · · · · · ·	
<u> </u>	660	·		······································	
_ <u></u>	720	· · · · · · · · · · · · · · · · · · ·		······································	
	780	1		· · · · · · · · · · · · · · · · · · ·	*
	840	·		· · · · · · · · · · · · · · · · · · ·	
09:30	990	37,00			·····{*
	1020	37.00		12.13	*
· · · · · · · · · · · · · · · · · · ·	1140	37.17		ال المناجع بي الحمد في المناجع الله المن المن المن المن المن المن المن المن	····
· · · · · · · · · · · · · · · · · · ·	1260	37.46		12.46	*
	1380	37.48		L 6 e • • •	
	1500	37.29		· · · · · · · · · · · · · · · · · · ·	*
	1000	36.67 1			

*MEASURE AND RECORD PUMPING RATE

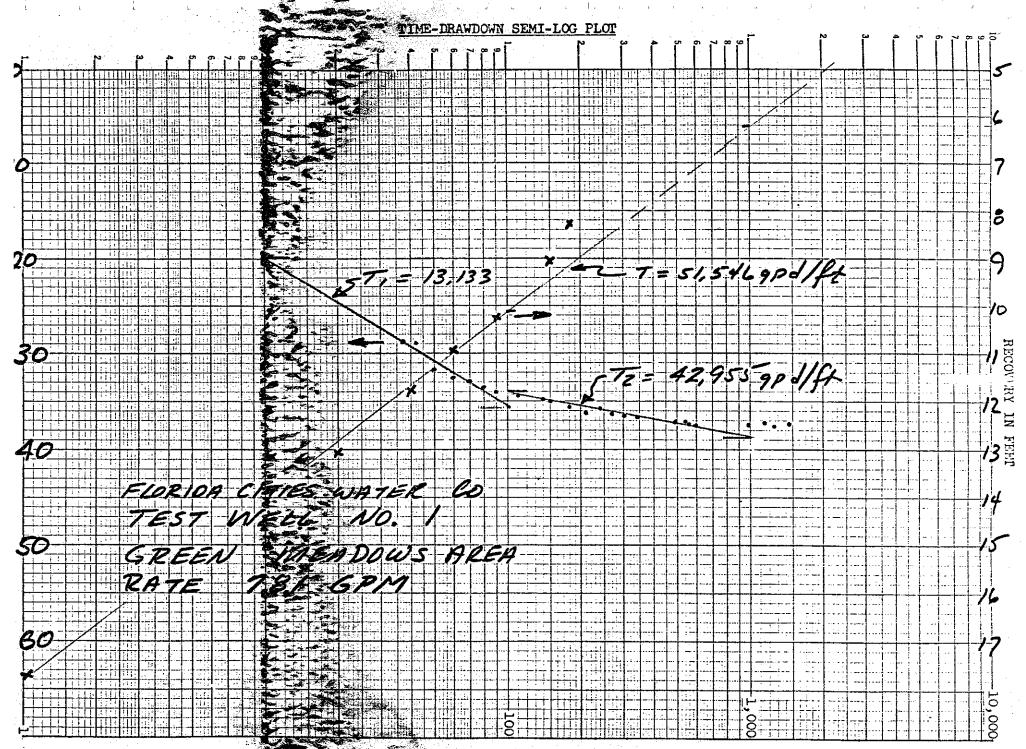
Stringe Elwation Stringe Elwation From To Description of Material From To Description of Material From To Description From From To Description From From To Description From From To Description From From From From From From From Fro	10.4	PIEZOMETER NO. 1				PIEZOMETER NO. 2					
Surface Elevation Well log From To Description of Material Trickness Surface Elevation Well log From To Description of Material Trickness Startage Exercise							tion Well log				
ELECTRIC LOG TEST HOLES AND ATTACH COPY OF TRACES TO THIS FORM. Surface Elevation From To Description of Material Thickness Image: Imag	From	To	Description of Material	Thickness	From	To	Description of Material Thickne				
ELECTRIC LOG TEST HOLES AND ATTACH COPY OF TRACES TO THIS FORM. Surface Elevation From To Description of Material Thickness Image: Imag											
ELECTRIC LOG TEST HOLES AND ATTACH COPY OF TRACES TO THIS FORM. Surface Elevation Well log From To Description of Material Thickness Image:											
ELECTRIC LOG TEST HOLES AND ATTACH COPY OF TRACES TO THIS FORM. Surface Elevation From To Description of Material Thickness Image: Structure	L										
ELECTRIC LOG TEST HOLES AND ATTACH COPY OF TRACES TO THIS FORM. Surface Elevation From To Description of Material Thickness Image: Structure											
ELECTRIC LOG TEST HOLES AND ATTACH COPY OF TRACES TO THIS FORM. Surface Elevation From To Description of Material Thickness Image: Structure											
ELECTRIC LOG TEST HOLES AND ATTACH COPY OF TRACES TO THIS FORM. Surface Elevation From To Description of Material Thickness Image: Structure											
ELECTRIC LOG TEST HOLES AND ATTACH COPY OF TRACES TO THIS FORM. Surface Elevation From To Description of Material Thickness Image: Structure											
ELECTRIC LOG TEST HOLES AND ATTACH COPY OF TRACES TO THIS FORM. Surface Elevation Well log From To Description of Material Thickness Image:											
ELECTRIC LOG TEST HOLES AND ATTACH COPY OF TRACES TO THIS FORM. Surface Elevation Well log From To Description of Material Thickness Image:											
ELECTRIC LOG TEST HOLES AND ATTACH COPY OF TRACES TO THIS FORM. Surface Elevation Well log From To Description of Material Thickness Image: Structure Image: Structure											
ELECTRIC LOG TEST HOLES AND ATTACH COPY OF TRACES TO THIS FORM. Surface Elevation Well log From To Description of Material Thickness Image: Instrument of the second sec											
ELECTRIC LOG TEST HOLES AND ATTACH COPY OF TRACES TO THIS FORM. Surface Elevation Well log From To Description of Material Thickness Image: Structure Image: Structure											
ELECTRIC LOG TEST HOLES AND ATTACH COPY OF TRACES TO THIS FORM. Surface Elevation Well log From To Description of Material Thickness Image: Structure Image: Structure											
ELECTRIC LOG TEST HOLES AND ATTACH COPY OF TRACES TO THIS FORM. Surface Elevation Well log From To Description of Material Thickness Image: Structure Image: Structure											
ELECTRIC LOG TEST HOLES AND ATTACH COPY OF TRACES TO THIS FORM. Surface Elevation Well log From To Description of Material Thickness Image:				`							
ELECTRIC LOG TEST HOLES AND ATTACH COPY OF TRACES TO THIS FORM. Surface Elevation Well log From To Description of Material Thickness Image: Structure Image: Structure	1										
ELECTRIC LOG TEST HOLES AND ATTACH COPY OF TRACES TO THIS FORM. Surface Elevation Well log From To Description of Material Thickness Image: Instrument of the second sec											
ELECTRIC LOG TEST HOLES AND ATTACH COPY OF TRACES TO THIS FORM. Surface Elevation Well log From To Description of Material Thickness Image: Instrument of the second sec			· · · · · · · · · · · · · · · · · · ·				······································				
ELECTRIC LOG TEST HOLES AND ATTACH COPY OF TRACES TO THIS FORM. Surface Elevation Well log From To Description of Material Thickness Image: Instrument of the second sec			······································								
TEST WELL NO. Surface Elevation Well log From To Description of Material Image: Section of Material Thickness Image: Section of Material Image: Section of Material Image: Section No. Image: Section No. Image: Section No. Image: Section No. Image: Section No. Image: Section No. Image: Section No. Section No.			/								
TEST WELL NO. Surface Elevation Well log From To Description of Material Thickness Thickness Image: Section No. Image: Section No.							+				
TEST WELL NO. Surface Elevation Well log From To Description of Material Thickness Image: Section Section Section Section Section Section Section No. Image: Section No. Image: Section No. Township. N/S Image: Section No. Section No. Section No. Image: Section No. Section No. Section No. <						· · ·					
From To Description of Material Thickness	1 .				_						
	Surface	Elevatio	TEST WELL NO. Well log]	LOCATION SKETCH				
	the second se		on Well log	Thickness			LOCATION SKETCH				
	the second se		on Well log	Thickness		-	LOCATION SKETCH				
	have been a second s	То	on Well log	Thickness			LOCATION SKETCH				
	the second se	То	on Well log	Thickness			LOCATION SKETCH				
	have been a second s	То	on Well log	Thickness			LOCATION SKETCH				
% of the% % of the	have been a second s	То	on Well log	Thickness							
% of the% % of the% Section No TownshipN/S RangeE/W County State	the second se	То	on Well log Description of Material	Thickness			LOCATION SKETCH				
% of the% % of the	have been a second s	То	on Well log Description of Material	Thickness							
% of the% % of the% Section No TownshipN/S RangeE/W County State	here and the second sec	То	on Well log Description of Material	Thickness							
Section No TownshipN/S RangeE/W County State	the second se	То	on Well log Description of Material	Thickness							
Section No TownshipN/S RangeE/W County State	here and the second sec	То	on Well log Description of Material	Thickness							
Section No TownshipN/S RangeE/W County State	here and the second sec	То	on Well log Description of Material	Thickness							
Township N/S Range E/W County State	the second se	То	on Well log Description of Material	Thickness							
Range E/M County State	here and the second sec	То	on Well log Description of Material	Thickness							
County	the second se	То	on Well log Description of Material	Thickness			% of the, ½				
County	the second se	То	on Well log Description of Material	Thickness			% of the, %				
State	the second se	To	on Well log Description of Material	Thickness			½ of the, ½ Section NoN/S				
	the second se	To	on Well log Description of Material				½ of the ½ of the % section No TownshipN/S RangeE/W				
	From	To	on Well log Description of Material	Thickness			% of the% Section No TownshipN/S RangeE/M County				
	From	To	on Well log Description of Material	Thickness			½ of the ½ of the Section No TownshipN/S RangeE/W County State				
	From	To	on Well log Description of Material				½ of the ½ of the Section No TownshipN/S RangeE/W County State				
WELL SKETCH	From	To	on Well log Description of Material	Thickness			½ of the ½ of the Section No TownshipN/S RangeE/W County State				

, . , .

È i

		37,29 = 42.54		2" Pz.	
Time of	Elapsed Time	Test Well #1	PZ. No. 1	PZ. No. 2	
Day	In Minutes	Water Level	Water Level	Water Level	Remarks
	0	42.54		17.37	(Last Reading Before Stop)
	5	17.86			
	10	15.75	······		
	15	15.04	······		
	20	14.58		13.04	· · · · · · · · · · · · · · · · · · ·
	30	13.37	· · · · · · · · · · · · · · · · · · ·		
	40	12.69	······	11.75	
	50	12.14			
<u></u>	60	11.67		10.91	
- <u></u>	90	10.62		10.25	
 , <u>_</u> _ , <u>_</u> ,	120	9.93			
	150	9.37		9.02	
· · · · · · · · · · · · · · · · · · ·	180	8,91	·····	8.21	
- <u></u>	240		·····		
· · ·	300			······································	······································
	360		· · ·	[······································
	420				
······	480		<u> </u>		······································

STOP TEST PUMP AND OBSERVE RECOVERY


General Field Instructions: Select location of the test well by appropriate means such as test hole drilling, boring or geophysical methods. The test well can be of either temporary or permanent type of construction. A temporary test well need not be efficient to obtain good results. The test well must be open or screened in all aquifer horizons to be tested. Observation of drawdown in piezometers is most important for a good analysis.

The location of piezometer number 1 shall be in a direction parallel to the flow path of the aquifer system, or axis of the alluvial valley, at a distance from the test well approximately equal to the depth of the test well but not greater than 100 feet. The test hole should be electric logged if possible prior to the installation of the piezometer pipe, and aquifer samples saved for later laboratory sieve analysis if needed. The piezometer pipe must be open to the same aquifer horizons as the test well and of the same depth. The location of piezometer number 2 shall be located on approximately the same line from the test well as piezometer 1, at a distance four (4) times the depth of the test well but not greater than 400 feet as measured from the test well. This piezometer shall be installed in the same manner as previously given.

The piezometers will be equipped with automatic water level recording devices to monitor the drawdown and recovery of water level. The data on drawdown and the first 30 minutes of recovery will be read and recorded on this form from the recorder pen position. BE SURE THE FLOAT AND COUNTERWEIGHT ARE FREE TO MOVE to obtain correct readings. At the conclusion of the test, the recorders will be left in place to operate for at least four days to observe full recovery or diurnal fluctions of the static water level.

A test pump will be installed in the test well of sufficient capacity to pull the water level down in the test well a depth at least equal to 10% of the saturated thickness but not greater than 70%. A 25% drawdown is considered normal, The pump shall be operated at a constant rate as far as possible for 1500 minutes. Suitable measuring equipment will be used to determine the pumping rate.

NOTE: COLLECT WATER SAMPLE NEAR END OF PUMPING TEST FOR ANALYSIS. CHECK RECORDERS FOR PROPER OPERATION JUST PRIOR TO LEAVING JOB SITE.

ELAPSED TIME IN MINUTES

U .

	O T LUI L		ATER ANALYSIS REPORT
	Orla		Laboratories, Inc.
	P. O. Box	8025A	• Orlando, Florida 32806 • 305/843-1661
Report to:LAYNE-WEST	ERN CO.	INC.	Appearance:turbid
Date: July 27, 1974			Sampled by: client
		<u> </u>	GAC Fla Cities Util Identification: Green Meadows TW 1 7/23/*
his water was analyzed according to "Sta	ndard Mathods fo	or the Exami	METHODS nation of Water and Wastewater," Latest Edition, APHA, AWWA and WPCF.
······································			
etermination	Data Significance	p. p.m .	RESULTS Data Significance Determination p.p.m.
otal Dissolved Solids, @ 105 ⁰ C.	x	523	Total Hardness, as CaCO3 x. 240
henolphthalein Alkalinity, as CaCO	2, x,	0	Calcium Hardness, as CaCO3 x. 196
otal Alkalinity, as CaCO3	x	246	Magnesium Hardness, as CaCO ₃ x. <u>44</u>
Carbonate Alkalinity, as CaCO ₃	X	0	Calcium, as Ca
licarbonate Alkalinity, as CaCO ₃	×. –	246	Magnesium, as Mg
- Carbonates, as CO ₃	×	0	Sodium, as Na x44
licarbonates, as HCO3	Х. ш	300	Iron, as Fe
lydroxides, as OH	Xi	0	Manganese, as Mn 😽 🔜 🖉
Carbon Dioxide, as CO ₂	×	20	Copper, as Cu
Chloride, as C1	х	51	Silica, as SiO ₂ *
ulfate, as SO ₄	x	35	Color, Standard Platinum Cobalt Scale
luoride, as F	.×	0.94	Odor Threshold ×
hosphate, as PO ₄	.×	3.6	Turbidity, Jackson Units x. <u>25</u>
H (Laboratory)	.×	7,4	
Hs	.×	6.9	
tability Index	.x	6,4	
aturation Index	.x.	0.5	· · · · · · · · · · · · · · · · · · ·

ŗ

Signed:	y dy	Mo	sless	
	1	Chemist	1	

(To convert ppm to grains per gallon, divide ppm by 17.1 – p.p.m. = mg/l)

INTERNATIONAL ANALYSIS OF WATER, SEWAGE & INDUSTRIAL WASTEWATER ENVIRONMENTAL IMPACT STUDIES

n an		• <u>-</u>	· ·		
ary (F13)	1 A.N. A.R.N.1190 W				
(183) - STANDARD WATF	CANALYSIS R	11.0161			
ATT Orlando I					
P. O. Box 8025A • C	Flando, Florida	32806 •	305/843-166	1	
611777-2-	1	•	1.7	11 A 1	
Report to: Florida Cilies Water Co.	Appearance:	clear	Will		re.a.
Date:August 15, 1974	Sampled by:	clien	Ĺ	·	83.
9163 Report Number:	Identification:	SREEN MPAI	INS WILL (NIT 2.	
		(off Alice	Road)		
METH	IODS				
This water was analyzed according to "Standard Methods for the Examination i	of Water and Sustein	ater " Latest Edu	ION APHA ANN	A and MPCE	

	Data Significanco	RESU	ILTS	Data Significance	
Determination	· · · .	p.p.m.	Determination	· · ·	p.p.m.
Total Dissolved Solids, @ 105°C.	. x	<u>331</u>	Total Hardness, as CaCO3	x, .	240
Phenolphthalein Alkalinity, as $CaCO_3$	x	<u> </u>	Calcium Haroness, as CaCO3	۸	198
Total Alkalinity, as CaCO3	×	243	Magnesium Hardness, as CaCO3	×	42
Carbonate Alkalinity, as CoCO3	x	0	Calcium; as Ca		79
Bicarbonate Alkalinity, as CaCO3	، ۲۰	243	Magnesium, as Mg	.ж.	10
Carbonates, as CO3	×., -	<u> </u>	Sodium, as Na	. ×	63
Bicarbonates, as HCO3	x	296	Iron, as Fe		2.1
Hydroxides, as OH	x	0	Manganese, as Mr.	•X	<u> </u>
Carbon Dioxide, as CO ₂	x	20	Copper, as Cu	, vi	<u> </u>
Chloride, as C1	×	-78	Silica, es SiO2	×	14
Sulfate, as SO4	×	51	Color, Standard Platinum Cobalt	Scale _	<u></u>
Flueride, as F	.×.	0.7	Odar Thresholm	`x	0
Phosphate, as PO4	.× _	2.7	Turbidity, Jankson Units	x	1,40%
pH (Laboratory)	.х -	7.4		-	· · · · · · · · · · · · · · · · · · ·
pHs -	.* -	1.9		. ·	
Stability Index		6,4		-	
Saturation Index		0.5			

•

Signed: Judy Marley

U.S. GUELL HUML CHRWZY (WRD) 109 CLUBA HOLDERDA 2070 MINT CALL OF FOURT LIVERS, FEA. 53001

Par. Run Copy to off Sund N. R. P. + Cond N.

June 29, 1972

Mr. J. R. Spratt, President Alico Land Development Company La Belle, Florida 33935

Dear Mr. Spratt:

This letter summarizes our discussions of June 23, 1972 concerning supplemental water supplies for the western part of Lee County.

Public water supplies for most of the western part of Lee County, including Cape Coral, Pine Island, Sanibel and Captiva, Fort Myers Beach and adjacent mainland areas, are obtained from a water-bearing formation termed the "upper Hawthorn aquifer". In addition, thousands of small diameter wells obtain water from this aquifer for domestic use or yard irrigation. It is estimated that about 30,000 persons are dependent on water supplies from the public water systems.

The increasing demands for water from the upper Hawthorn aquifer, which occurs at depths of about 100 to 300 feet below the land surface, has resulted in a progressive lowering of water levels in the formation. Studies by others have indicated that water supply shortages in the public supply systems will occur within the next five years; one system has shown evidence of such shortage during the dry season in 1972.

To augment existing water supplies and forestall impending shortages, other sources of supply have been investigated. Plans are currently underway to establish a desalination plant to supply water to Sanibel-Captiva Islands. A similar system was until recently under consideration for Pine Island. Private investigations have been conducted by the Florida Cities Water Company and the CAC Corporation in the area at San Carlos Park near U.S. 41 to the Green Meadows subdivision bordering on State Route 82. These investigations have shown the presence of suitable water-bearing materials beginning about 6.5 miles east of U.S. 41 on the County Road to Corkscrew and Extending eastward to State Route 82.

Two water-bearing formations occur in the area. The uppermost formation, which attains a thickness of 50 feet or more is referred to as the water-table aquifer. This aquifer is separated from the underlying water-bearing formation by about 40 feet of clay marl. The lower water-bearing formation, beginning at a depth of about 90 feet and extending downward to about 250 feet is termed the "sandstone aquifer", although the deposits consist of sand, sandstone, and limestone. Chemical Letter to Mr. J. R. Spratt Page 2 June 29, 1972

analyses from this aquifer indicate that the water is suitable for public supply purposes with chloride concentrations less than 100 mg/1 (milligrams per liter).

Although a large amount of information has been obtained, the water production capacity of the sandstone aquifer has not been determined. This involves the construction of a large diameter production well with adequate equipment for conducting a pumping test. Several observation wells are also necessary to monitor the effects of pumping. It has been estimated that the cost of construction and testing may range upward from \$20,000. The information obtained will provide reliable evidence of the water transmission and storage characteristics of the aquifer, water production capability and required spacing between production wells, and other valuable data. These tests combined with those conducted in other areas may be used to estimate the potential yield of the entire aquifer.

Unfortunately because of relatively high cost of construction and testing, the private corporations are unwilling to proceed unless some reasonable assurance is given that the test facility, if successful, may be used for water production for an interim period (possibly five years) to partially recover the costs of the investment. The preferred location of the test facility is at the site where the aquifer attains sufficient thickness and where water quality has been determined, i.e., near the southeast corner of section 6, Township 465, Range 26E. The land area adjacent to this test well site is owned by your company.

Several alternatives exist for the placement of the test facility including (1) on Alico property, (2) on county road right-of-way, and (3) on property owned by the GAC Corporation at Green Meadows. The first location is preferred because of the information available, the shorter length of pipeline required, and other related factors. If constructed on Alico property, the production well would be cased through the water-table aquifer to a depth of about 90 feet to avoid any effect on existing irrigation wells in the shallower aquifer. As the need for water increases, additional production wells probably will be constructed to the east and the earlier production wells phased out of the system.

I am sure that the information which will be obtained from the production well testing facility and other information obtained from test holes in the area will be supplied on request.

I hope that our discussions have resulted in a better understanding of existing conditions and proposed plans for resolving some

		WATER SUPPLY SERVICES SINCE 1924- TEST DRILLING • WATER WELLS • PUMPS		
raci	Name_	Green Meadows Project , TEST		
No.	GAG	Utilities, Inc. Date February 25,197	<u> </u>	
	<u></u>	e County State Florida Driller Marvin Mi	ller	
		StateDriller		······································
		Hole Elevation of Test		
			1)	
<i>v</i>	SE	Static Water Level 9.77 (No. Static Water Level 5.72	(NO.	1-A)
	-	Lee Co., Florida Measured 100+ Hours	After Con	npletior
	, To	Description of Strata	Water	Bearing
-	6	Sandy Soil	6	
-	9	Marl rock and sand	3	
-			10	
	<u>19</u> 39	Rock Marl rock and sand, hard	20	Goo
	55	Limestone rock, with clay and sand	16	Poo
┝╌╍	75	Green clay with fragments of shell	20	
	. 88	Green clay and shell	13	
	89	Sandstone, hard	1	
-	91	Yellow gravel and sand	2	Fai.
	101	Sandstone, shell and coarse sand	10	Good
	137	Shell, coarse sand and sandstone layers	36	Good
	153	Coarse sand, less shell and dark clay color	16	Good
	163	Coarse sand, shell with light clay color	10	Good
	194	Soft limestone	31	Fair
	224	Clay and shell	30	None
	240	Clay with some sand mixed	16	
	····	Total Depth Drilled		
_				
ŧ	Test	Well 1-A located 2 feet from No. 1 was the same to 61 feet Well No. 1 has 2 inch diameter pipe to 09 feet depth.	depth.	L
5:	Test	pumped 2 hours for water sample at 60 gpm, full capacity of	f pump.	
	Test	Well No. 1-A has 2 inch diameter pipe to 40 feet and 61 fee hole depth.	at of	•,

1	1°	TEST DRILLING . WATER WELLS . PUMPS		•
•				
otrac	t Name	Green Meadows Project , TEST H	OLE	
·	- 	No 2 and	<u>2-A</u>	
				المسم
tyL	ee Cou	nty State_Florida Driller_Marvin Mi	ller	
atio	n of Test	Hole Elevation of Test		
rth_	Center	of Area Hole		
·		Static Water Level 10,66 (NO		2-7)
	· · · · · ·	V Sec. 13 of T 45 S Static Water Level 5.1 Measured 100+ Hours A	Iter Con	apletion
26E		Lee Co., Florida		
.om	To	Description of Strata	Water	Bearing
_0		Sand		
_1	15	Rock		
1 <u>5</u>	25	Marl with clay	10	Fair
5	29	Very hard.marl	21	
2 <u>9</u>	50	White marl Hard pan (very hard)		Good None
<u>0</u> 51	<u>51</u> 61	Sandy clay, light color	10	None
,1	63	Rock	2	None
63	73	Limestone, firm	10	Good
13	85	Limestone, soft	12	Fair
85	87	Rock, gray in color	2	None
37	97	Limestone, loose	10	Good
<u></u>		Rock, hard	1	None
98	128	Sandstone with hard and soft layers	30	Good
<u>;8</u>	143	Coarse sand and shell	15	Good
43	160	Fine gray sand	17	Fair
0	175	Clay	15	None
75	184	Shell	9	Fair
4 34	234	Shell rock with some clay	50	Fair
	238	Clay	4	None

r =	_	Layne-Western Company, In		
		agne-vestern company, n	16.	
	Ul	TEST DRILLING . WATER WELLS . PUMP5 .		
, 1 ,				:
: 				
ntrac	t Name_	Green Meadows Project TEST HO	LE	
		Utilities, Inc. February 15,1971 No. 3 and	<u>3-A</u>	
<u>5 No</u>		Date		
ityI	lee_Cov	nty State_Florida Driller_Marvin Mi	<u>ller</u>	
r : atio	n of Test	Hole Elevation of Test		·
Nort	theast	Corner of Area Hole		· · · · · · · · · · · · · · · · · · ·
۲۲. 		29 Static Water Level 12.60 (No.	3)	
<u>}</u>	<u>NE</u>	A Sec. 29 of T 45 S Static Water Level 7.00 Measured 100+ Hours Ad	ter Con	<u>J-A</u>
27	<u> </u>	Lee Co., Florida		
om	То	Description of Strata	Water	Bearing
<u>്റ</u>	19	Brown sand	19	T
	29	Limestone, water bearing rock	10	Good
? 9	31	Rock	2	
Ļ	49	Limestone, light to dark clay color	18	Good
19	59	Limestone and clay	10	Fair
>	75	Limestone, clay and sand	16	Fair
75	85	Limestone, sand and shell	10	Good
;	95	Limestone and sand	10	Good
95	110	Limestone and shell, yellow in color	15	Good
)	111_	Shell rock, hard	1	
11	158	Shell and sand	47	Good
3	169	Sandstone with sand in layers	11	Good
6.3	208	Sand and clay with trace of shell	39	Fair
n <u>9</u>	218	Sand and clay	10	Poor
3	235	Sand and clay, very soft	17	None
35	239	Clay	4	
}		Total Depth Drilled	<u> </u>	<u> </u>
	<u></u>		<u> </u>	
			 	ļ
3g of		Well 3-A located 2 feet from No. 3 was the same to 50 feet of Well No. 3 has 2 inch diameter pipe to 110 feet in depth.	eprn.	
ìarks:	Test	pumped 2 hours for water sample at 60 gpm, pump capacity.	1 1 ·	
		Well No. 3-A has 2 inch diameter pipe to 21 feet and 50 foot depth.	nole	
1.67		pumped 1 hour for water sample at 60 gpm, pump capacity. ra • GARDEN CITY • LIBERAL • KANSAS CITY • DENVER • OMAHA • AMES • ST. LOUIS • AURO	~ 1	• •
1-62	TTUCTI		на	•

3		ayne))	TEST DRILLING . WATER	WELLS . PUMPS.	
, 8 ., • •		and the second s	· · ·		·
1 ntrac	t Name_	GAC Utilities, Inc		TEST HOL	
, ,		reen Meadows	Date April 1971	No4	`
11.y	<u>Ft.</u>	Myers	State_Florida	Driller M. E. Mi	ller
		Hole	Elevation	of Test	
ا '⁄4	SE	% Sec. <u>32</u> of T <u>45S</u> ,		ter LevelHours Afte	
27	E,	Lee Co., Florida	L Measureu_		
om	To		Description of Strata	·····	Water Bearin
h	6	Light brown sand			
1	7.	Hard pan layer			
7	. 27	Sand and shell		· · · · · · · · · · · · · · · · · · ·	
<u> </u>	29	Hard shell and sand			
	36	White sand and shell			<u> </u>
;	41	Lime rock - hard			
L	50	White sand and shell	······································		
ر		Location temporarily a	bandoned - due to d	ifficulty	
		· · · · · · · · · · · · · · · · · · ·	·		
<u> </u>		· · · · · · · · · · · · · · · · · · ·			
	·				
		· · · · · · · · · · · · · · · · · · ·			
		·			
·		······································	۲ د د د د د د د د د د د د د د د د د د د		

.

٠

(layne)-

ه ١٩٨ فان يع سلا ٨٨ ست سد ٢٧ ٨٨ م يا في سلا ٨

Layne-Western Company, Inc.

untract	atract Name Green Meadows						TEST H	OLE]
	KC	-998-C	Date_M	arch	18, 1972		No7		
ty	Gre	en Meadows	State	Flo	<u>rida</u>	Driller_	<u>M. Mi</u> .	ller	
)f Th 	e East	Hole <u>Near The Center</u> Side Of Section. 4 Sec. <u>13</u> of T <u>46</u> S., <u>Lee</u> Co., <u>Florida</u> .				r Level _		after Completi	lion
rom	To		Description	n of Stra	ta	-		Water Beari	ing
0 4" 6' -9' 13' 17' 20' 40' 82'	4" 6' 9' 13' 17' 20' 40' 82' 86'	White sand Brown sand Marl Sand Shell rock Hard rock Sand and shell							
82	126'	Sand rock (hard) Sand and shell							
126 • 50 • • 70 •	150 ¹ 170 ¹ 228 ¹	Sand shell and rock Green clay Lime rock	······			······································			
28'	230'	Clay			······································		······		
<u>30'</u>	TOCAL	Depth							

Layne-Western Company, Inc.

WATER SUPPLY SERVICES SINCE 1924-TEST DRILLING . WATER WELLS . PUMPS

ntraci	t Name_	Green Meadows	`					TEST HO	LE	
No.		C-998-C	Date M	arch	<u>18, 1972</u>		No	8		·
v	Gre	en Meadows	State	Flor	cida	Driller.	Μ.	Miller	· · · · ·	
f Th	<u>ie West</u>	Hole <u>Near The Center</u> Side Of Section	·		Elevation of Hole Static Water					
		4 Sec. 11 of T 46 S. Lee Co., Florida			Measured		. <u> </u>	Hours Aft	er Con	npletion
rom	То		Description	o of Stra	ita				Water	Bearing
D 4" 5' 9' 4 4 7' 43' 5' 75' 5' 95'	4" 5' 9' 14' 17' 43' 55' 75' 85' 95' 115' 125'	Topsoil White sand Brown sand Marl Sand Rock Sand and shell Rock and sand Clay and shell Clay Sand and shell Lime rock and sand								
25'	165'	Sand and rock								
<u>5</u> •	Total	Depth	· · · · · · · · · · · · · · · · · · ·	· · · · · ·						
							·			

Layne-Western Company, Inc.

, I.,

--WATER SUPPLY SERVICES SINCE 1924-PUMPS TEST DRILLING . WATER WELLS .

trac	t Name_	Green Meadows			· ·		TEST H	OLE	
b No	• <u></u>	KC-998-C	_ Date_	March	1, 1972		No9	······	
ریا	Gr	een Meadows	. State	Flo	rida	Driller_	M. Mill	ler	
<u>rn</u>	er In	Hole <u>Near Fence</u> The Section Corner <u>4 Sec. 33</u> of T <u>45 S.</u> ,	3	3	Elevation of Hole Static Wate	r Level _	Hours A	fter Con	nlation
26	<u>E.</u> ,	Lee Co., Florida	• <u> </u>		Medauleu	·····	nours A		
m	To		Descrip	tion of Str	ata			Wäter	Bearing
0	<u>}</u>	Topsoil							
<u>!</u> <u>:</u> •	5'	White sand	. <u></u>						ļ
5' j•	10'	Marl			<u> </u>				
·	14'	Clay	 -						
4'	18' 42'	Sand Rock							
	84 '	Soft limestone		· · ·			<u></u>		
14.1	105'	Clay, sand, and shell		• •••••	······································				
	126'	Sand and limestone							
6	156'	Sand and rock							
	168'	Hard rock and sand							
8	174'	Clay	······						ļ
8	218' 223'	Lime rock	w <u>ani mana ana ana a</u> na ana ana ana ana ana ana	·····	<u></u>	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
8		Clay Depth			<u></u>	<u></u>	<u></u>		
l — — — — — — — — — — — — — — — — — — —	10041								<u> </u>
					<u></u>				
						·····	· · · · · · · · · · · · · · · · · · ·		
s					an a				<u> </u>
marks:	Most	Rumped At 60 C R M						· · ·	· · ·

WICHITA . GARDEN CITY . LIBERAL . KANSAS CITY DENVER . OMAHA . AMES . ST. LOUIS . AURORA

Layne-Western Company, Inc.

	t Name_	Green Meadows	<u>}</u>				TEST HO	LE	
No	K	C-998-C	Date	March	1, 1972	<u> </u>	No10		
y		n Meadows	State	Flor	ida	Driller_	M. Miller	<u>.</u>	
orn	n of Test er of (SE	Hole <u>Near the section</u> 28, 27, 34, & 33 34 Sec. <u>28</u> of T <u>45 S.</u> , <u>Lee</u> Co., <u>Florida</u> .		3		Level _	Hours Aft		apletion
rom	То		Descriptio	on of Stra	ta			Water	Bearing
	· 2	Topsoil					· · · · · · · · · · · · · · · · · · ·		
· 2 •	6'	White sand	· ·		· · ·				
	11'	Marl			رة				
• ي •	15'	Sandy clay							
5.	17'	Sand	•						
jî ∎ a	40'	Rock					· ·		
•0•	70	Sandy clay							
)•	80 *	Coarse sand							
30.	90	Sand			· · · · · · · · · · · · · · · · · · ·		· · ·		
)•	100'	Sand and shell							
٥¢،	120'	Sand and meal rock							
<u>)</u> •	130'	Fine sand							
1.0.1	140'	Coarse sand	-						
· ? •	160'	Sand and shell							
• ر	170'	Sandy clay	······			······	······································		
0	180'	Sand and lime rock							
1	220'	Lime rock							
0'	230'	Clay			· · · · · · · · · · · · · · · · · · ·				
	Total	Depth		· · · · · · · · · · · · · · · · · · ·					
						-			

arke:

·62

Test Pumped At 50 G.P.M.

	·	الا عند الله الله الله الله الله الله الله الل			
1.1	T D	Layne-Western Company	j, Ind	C .	
· · ·		aune))			· · ·
		TEST DRILLING . WATER WELLS . PUMPS			
		- the second sec			
. <u>1</u>			<u>.</u>		
mtrad	t Name_	GAC Utilities, Inc.	ST HOL	E	
			11	•	
ty	Ft.	Myers State Forida Driller M_E		<u>er</u>	
itio	n of Test	Hole West side of Elevation of Test		•	
		cet south of section Hole			
		Static Water Level	 , , , ,		<u> </u>
		V4 Sec. 35 of T 45S	urs Afte	r Com	pletion
		Lee Co., Florida.			
rom	To	Description of Strata		Water	Bearing
<u> </u>	15	Sand		····	
5	19	White marl rock - hard	;		
	27	Lime rock and marl		<u> </u>	
	45	White marl			
r	82	Clay and shell			
	108	Loose sand and limestone			
18	109	Lime rock - hard			
•	120	Shell and sand		 	·
0	130	Sand with some shell			
)	138	Lime rock with sand layers		<u></u>	
8	148	Lime rock with shell and sand			· · · · · · · · · · · · · · · · · · ·
<u>}</u>	149	Sandstone - hard			
29	155	Sand with trace of shell			
	165	Layers of sand and sandstone - hard	······		
<u>.</u>	203	Gray sand	<u> </u>		
13	221	Limestone and sand			
جــــــ	241	Limestone with shell and sand		ĺ	
1	255	Clay with trace of shell			
	Total	Depth			
~					

parks: Installed 2-inch diameter casing with drive shoe to 130 feet. Test pumped well at 45 gpm for 2 hours and collected water sample.

WICHITA . GARDEN CITY . LIBERAL . KANSAS CITY . DENVER . OMAHA . AMES . ST. LOUIS . AURORA 5.N-62

~7

IESI NULE REPURI

Layne-Western Company, Inc.

TEST DRILLING . WATER WELLS . PUMPS

ontrac	t Name_	Green Meadows Groundwate	TEST HO	TEST HOLE				
No	¥	C 998-C	Date 24 Sept. 71	No		•		
ity		Ft. Mye rs	State_Florida	DrillerM.Miller	DrillerM.Miller			
<u>w.</u>	ŚW	Hole 4 Sec. 35 of T 45S, Lee Co., _Florida	Hole Static W	a of Test ater Level dHours At				
From	To		Description of Strata	<u>in a chairte ann an an</u>	Wate	er Bearing		
	17	Light colored sand	······································					
7	49	Layers of hard rock an	d coarse sand	· · · · · · · · · · · · · · · · · · ·	32	good		
	69	Clay in limestone and	sand		20	-		
- 5	84	Limestone and sand, cl	ay filled	·	15	none		
4	90	Green clay			6	none		
	94	Limestone with green c	lay		4	none		
4	103	Limestone with layers	of hard rock, wate:	r bearing	9_	_fair.		
	140	Limestone (very good w	ater bearing mater	[a])	37	V.go		
0	156	Hard rock layers with			16	good		
	166	Boulders, gray sand (f	irm) with some shel	1	10	poor		
6	186	Gray sand with trace o	f_shell	· · · · · · · · · · · · · · · · · · ·	20	poor		
	196	Gray sand with some lin	mestone		10 <u>1</u>	_poor_		
<u>5</u>	226	Limestone with some cla	a <u>y</u>	·	30_	_poor_		
	235	Mostly clay with some	limestone rock	· · · · · · · · · · · · · · · · · · ·	9	none		
n.i	236	Medium rock			<u>_1</u>	none		
	246	Clay with some shell	······		10_	none		
	246	Total depth drilled				-		
·								
				•				

arks: Installed 82 feet of 2 inch diameter pipe. Test pumped 60+ gpm with 15 inches of vacuum.

	Contract Na	me Greet	n Meado	Date TEST HOLE No. L-621							
	Job NoDate										
	City				State Driller						
	Test Hole Lo	SE_{4}^{1}			45 S., R 26 E. in Lee County, Florida						
					TEST LOG						
	FROM	то	MARSH FUNNEL VISCOSITY SECONDS	MUD PIT Loss Inches	Static Water Level Measure Hours After Completion FORMATION						
	0+0"	6'0"			Sand, fine to med., white to yellow						
	6'0"	10'0"			Sand, gray, silty						
	10'0"	20'0"		•	Limestone, tan						
	2010"	40'0"		Limestone, tan; gray marl							
	40'0"	60'0"			Clay, green						
	60'0"	75'0"			Sandstone, gray, calcareous; shell						
	75'0"	80'0"			Limestone, blue-gray						
	8010"	95'0"			Limestone, blue-gray, sandy						
•	95'0"	120'0"			Sandstone, gray, calcareous						
	120'0"	140*0"			Sandstone, gray, green clay						
	140'0"	160'0"		·	Clay and limestone, gray						
	160'0"	170'0"			Clay, green						
	170'0"	190'0"			Clay, light gray and limestone						
•	190'0"	200'0"			Limestone, light gray, sandy						
	Contir	ued		<u> </u>							
l	NOTES: SI	xe of Plt		 	xx						
	Data obta	ined from	n U.S.	Geolog	jical Survey - Ft. Myers, Florida. Located						

Contract Nar	neGree	n <u>Mead</u>	ows Pr	Date TEST HOLE No. L-621
Job No	·			Date
City				_State Driller
Test Hole Lo	cation	Distance	and Direct	ion from Permanent Landmark or Previous Test Hole
Contin	nuation o			TEST LOG
		MARSH	MUD PIT	Static Water Level Meas
FROM	TO	FUNNEL	LOSS INCHES	Hours After Completion
		BECONDS		
200'0"	220'0"			Clay, gray, some limestone
220'0"	240'0"			Clay, green and gray
240'0"	260'0"			Clay, dark gray, phosphatic; phosphate gr
26010"	280'0"			Clay, dark gray, phosphatic, sandy
280'0"	32010"			Limestone, gray-white, phosphatic
320'0"	340'0"			Same
340'0"	360'0"			Limestone, as above, some gray clay
•				——————————————————————————————————————
<u></u>				
·				
			· · · · · · · · · · · · · · · · · · ·	
·····				
		· · · ·		
	· · · · · · · · · · · · · · · · · · ·	·····		
NOTES: Siz	e of Pit		۰.	

Contract Nar	ne <u>Gr</u>	Project TEST HOLE		
Job No				NoNoL=619
City			· · · · · · · · · · · · · · · · · · ·	_State Driller
Test Hole Lo	cation NE			T 45 S., R 27 E., Lee County, Florida
		Distance	and Directi	on from Permanent Landmark or Previous Test Hole TEST LOG
<u>a mini 2008 - Tan</u> tan		MARSH	<u>.</u>	Static Water Level Measu
FROM	то	FUNNEL	NUD PIT	Hours After Completion
		BECONDE	INCHES	FORMATION
0'0"	12.0"			Sand, fine to med., tan to brown
12'0"	20'0"			Limestone, tan
20'0"	85'0"			Limestone, ?
85'0"	120'0"			Clay, green, ?
120'0"	200*0"			Limestone, sandy, ?
200'0"	220'0"		•	Sandstone, gray
220'0"	240'0"			Same
240'0"	260'0"			Clay, dark gray, sandy
260'0"	280'0"			Sand, gray, clayey
280*0"	320'0"			Sand, med. to coarse
320'0"	380'0"			Limestone, gray, casts, molds
380'0"	400'0"			Limestone, gray and tan
400'0"	440'0"			Clay, gray, phosphatic
440'0"	460'0"			Clay, green
Contir	ued		.	
NOTES: SIZ	e of Pit	·		X

Contract Nam	ne Green	Meado	ws Pro	DjectTEST HOLE
Job No				DateNoL-619
City	· · · · · · · · · · · · · · · · · · ·			State Driller
Test Hole Lo	cation	· · · · · · · · · · · · · · · · · · ·		
		• <u>•</u> ••••••••••••••••••••••••••••••••••		ion from Permanent Landmark or Previous Test Hole TEST LOG
Contir	uation o	I L-619	9 	Static Water Level Measure
FROM	то	FUNNEL VIRCOBITY	MUD PIT	Hours After Completion
		SECONDS	INCHES	FORMATION
460'0"	495'0"			Clay, dark gray, sandy, phosphatic
495'0"	540'0"			Limestone, gray white, phosphatic
· .	· · ·			
				•
<u> </u>	· · · · · · · · · · · · · · · · · · ·			
) 			
	- 			
	- 199 - 19 - 19 - 19 - 19 - 19 - 19 - 1			
				•
IOTES: Size	of Pit			· · ·
	or Pit			XX

;

Contract NameGreen_Meadows_ProjectTEST_HOLE											
lob No				No No							
City				State Driller							
Test Hole Lo	ocation <u>NW</u>			46 S., R 26 E., Lee County, Florida							
				TEST LOG							
		MARSH	MUD PIT	Static Water Level Me							
FROM	то	FUNNEL VISCOBITY	LOSS INCHES	Hours After Completion							
		SECONDS		FORMATION							
0	15			Sand, med., tan; sandstone; shell							
15	30	_	·····	Sandstone, tan, calcareous; shells							
30	45			Sandstone, gray; calcareous; shells							
45	60		· · · · · · · · · · · · · · · · · · ·	Same							
60	75			Limestone, tan and gray; shells							
75	105			Limestone, gray; few shells							
105	120			Clay, green; some limestone							
120	150			Clay, green							
150	165		-	Limestone, gray, sandy							
165	180			Sandstone, gray-tan, calcareous							
180	210			Sandstone, gray, calcareous; phosphate							
210	225			Clay, dark gray-green, sandy							
225	240			Sand, very fine, gray; clayey							
240	270			Clay, green and gray							
270 295	295 345		*54	Clay, dark gray, sandy, phosphatic Limestone, gray-white, phosphatic							
	ze of Pit										

THE KANSAS STATE DEPARTMENT OF HEALTH

TOPEKA KANSAS

DIVISION OF LABORATORIES Environmental Health Laboratory 801 Harrison Street 66612

E. D. LYMAN, M. D., M. P. H. Director of Health

May 26, 1971

Layne Western Company, Inc. 1010 West 39th Street Kansas City, Missouri 64111

Attention: Mr Nuzman

Dear Mr. Nuzman:

Listed below in milligrams per liter are the results of chemical analyses of two samples of water collected in Florida. The samples may be identified as follows:

4

No. 1 GM No. 1 240' Hole, 89' pipe, collected 4-30-71.

No. 2 GAC Test Hole No. 11, collected 5-13-71.

а т С	•		~ ~		
		<u>No.</u>	1	No.	_2
рН	Ħ	7.3		7.3	•
Total Hardness (as CaOO3)	=	326.	mg/l	262.	mg/1 ·
Calcium (as Ca)	=	104.	mg/1	69.	mg/1
Magnesium (as Mg)	÷	16.	mg/l	22.	mg/l
Sodium	=	45.	mg/l	50, .	mg/1
Total Alkalinity (as CaCO ₃)	×	276.	mg/l	250.	mg/1
Chloride	=	88.	mg/l	60.	mg/1
Sulfate	=	18.	mg/1	33.	mg/l
Nitrate (as NO ₃)	#	1.8	mg/l	1.5	mg/l
Fluoride	=	0.4	mg/1	0.6	mg/1
Iron	=	0.38	mg/1	0.38	mg/l
Manganese	=	0.00	mg/1	0.00	mg/1

Sincerely,

Nicholas D. Duffett, Ph.D. Director

*

Howard a. Statterhers

Howard A. Stoltenberg, M.A. Chief, Water Chemistry Section

HAS:glb

A - 38 -

Ca	pe Coral	The second s	1	1	,	£ 7	í	[I	1
LOCATION DESCRIPTION	DIA.	CASING DEPTH	RELL EPTH	PH	1	T.Hd.	Mg.Hd.	Ca.Hd.	CL	T.D.S
Green Meadows No. 1 2/11/71	2"	89	244	7.4	270	314	66	248	80	430
Green Meadows No. 1 2/25/71	2 "	89	244	7.3	272	304	72	232	120	410
Green Meadows No. 1-A 2/11/71	2 "	40	61	7.2	189	710	246	464	1200	3100
Green Meadows No. 1-A 2/25/71	2 "	40	61			<u>'</u>	<u> </u>		1380	3500
Green Meadows No. 2	2"	162	238	7.2	268	198	110	88	60	440
Green Meadows No. 2-A	2"	23	50	7.2	238	250	22	228	30	300
Green Meadows No. 3	2"	110	239	7.4	284	282	88	194	110	620
Green Meadows No. 3-A	2"	21	50	7.2	214	212	10	204	20	230
Irr. Well NW4 10-465-26E	6ª			7.2	212	232	34	· 198	65	270
Irr. Well SW ¹ 25-455-26E	6"			7.4	188	216	12	204	45	250
Irr. Well SE4 14-46S-26E	6"		, , , , , , , , , , , , , , , , , , ,	7.0	218	242	12	230	30	280
Irr. Well SE ¹ / ₄ 35-455-26E	8."	·		7.1	234	250	12	238	35	280
Flowing Well NW ¹ / ₄ 9-46S-25E	6"			7.6					1000	2600
Green Meadows No. 7-A	2"		105	7.8	272	264	2	262	40	295
Green Meadows No. 7	2"		230	7.7	256	284	30	254	60	300
Green Meadows No. 8-A	2"		105	7.8	276	226	26	200	40	280
		1 m -								
		1	•							
									-	
								-	-	-
***************************************		-								
					-	-		•		
Cape CoralNorth Pine Island H	*01.10*	125	225'	7.3	200	294	156	138	180	460

		WATER QUA CAPE CORAL						. [.]	•	· .
Location Description	Casing Dia.	Casing Depth	Well Depth	pH	M. Alk.	T. Hd.	Mg Hd.	Ca Hd.	C 1	T.D.
Green Meadows #12	2"	82 *	103'	7.8	186	186	48	138	40	250
Green Meadows #12	2"	82 '	136'	7.9	258	272	162	110	40	310
Green Meadows #12	· 2 "	82 *	2 43 '	7.8	246	232	72	160	40	330
Green Meadows #9			105'	7.8	290	270		270	80	390
Green Meadows #9	•	•	2 23 '	7.6	240	244	88	156	70	350
Green Meadows #10	2 "	· ·	105'	7.6	254	270	64	206	70	340
Green Meadows #10	2"		230'	7.4	248	158	76	82	70	29
Green Meadows #11-A	2 "		50 *	7.4	208	230	2 0	210	170	2 6
Green Meadows #11	2 "	130'	2 55 '	7.6	244	252	92	160	80	37
Green Meadows #3-A	2 "	21'	56'	7.2	214	212	10	204	20	23
Green Meadows #3	2"	110'	239	7.4	284	282	88	194	110	62
Green Meadows #2-A	2 "	23 '	50"	7.2	238	250	22	2 28	30	30
Green Meadows #2	2 "	162'	238'	7.2	2 68	198	110	88	60	44
Green Meadows #1-A 2/11/	71 2"	40'	61'	7.2	184	710	2 46	464	1200	310
Green Meadows 2/25/		40'	61.						1380	350
Green Meadows #1	. 2"	89*	240'	7.4	2.70	314	66	2 48	80	43
Green Meadows #1	2 "	89"	244 '	- 7.3	280	304	72	232	120	41
		•								
							· · ·			

 (\cdot, \cdot)

÷

.

.

•

. . .

	P. O. Box 8025A	• Orlando, Florida	32806 • 305	424-5606
WATER ANALYSIS REPORT	•	ANALYTICAL	LABORATORY	DIVISION
Report to: LAYNE-WESTERN C	OMPANY	Appearance: CLEAR	L	
Date:SEPTEMBER_20,_197	1	Sampled by: CLIEN	ř <u> </u>	· · · · · · · · · · · · · · · · · · ·
Sample Number:4809		Identification: GM #12 243' DEEP PUM DS FROM 90'-155'	P+60 GPM N LEVEL	10ST WATI
This water was analyzed using methods adapted from WPCF.	"Standard Methods for the a	Examination of Water and Waster	vater," Latest Edition, A	PHA, AWWA and
	RESULT	S	• •	
Determination	p.p.m.	Determination		p.p.m.
Total Dissolved Solids, @ 105°C	366_	Sulfate, as SO4		16
Total Hardness, as CaCO	240	Fluorides, as F		0.55
Calcium Hardness, as CaCOa	180	Silica, as SiO ₂		_37
Magnesium Hardness, as CaCO ₄	60	Copper, as Cu		0.0
Calcium, as Ca	72	Phosphate (Total), as PO		0.7
Magnesium, as Mg		Color, Standard Platinum	Cobalt Scale	15
Alkalinity (Phenolphthalein), as CaCO ₁	0	Odor	• •	_0
Alkalinity (Total), as CaCO3	270	pH (Laboratory)	•	7.8
Carbonate Alkalinity, as CaCOa	0	pHs	· ' ·	6.9
Bicarbonate Alkalinity, as CaCOa	270	Stability Index	• . • •	6.0
Hydroxides, as OH		Saturation Index		0.9
Carbon Dioxide, as CO ₂	<u>9</u> .	Turbidity, Silica Scale		20
Carbonates, as CO _{st}	_0			د. مربع
Bicarbonates, as HCO ₃	330	•		
Chlorides, as Cl	<u> </u>	•		<u> </u>
Iron, as Fe	0.0	· · ·		
Manganese, as Mn	<u>D.D</u>			·

(To convert ppm to grains per gallon, divide pp) (b) 17.1) INSPECTIONS, ANALYSIS, QUALITY CONTROL, RESEARCH & DEVELOPMENT IN MICROBIOLOGY, BIOCHEMISTRY & CHEMISTRY.

,

 \cdot

n

۷....

LAYNE WESTERN COMPANY, INC.-

B-1

∟.**№-25**

APPENDIX B

WATER WELLS • LAYNE PUMPS • TEST DRILLING • WATER TREATMENT EQUIPMENT 1010 West 39th Street • Kansas City, Missouri 64111 • AC 816 931-2353

January 19, 1973

G.A.C. Utilities P.O. Box 8000 Miami, Florida 33152

Attention Mr. James R. Powell, Vice President

Dear Mr. Powell:

In response to your request of 18 January, 1973, I have reviewed the material obtained from test hole drilling conducted at the Green Meadows project site located in Southern Lee County, Florida. Copies of this information are contained in the previous submitted report, "Water Supply Study -Southern Lee County, Florida" dated April, 1972.

Using the limited available data, two (2) computer runs were made to determine effective spacing required for a projected satisfactory yield to supply Florida Cities and Cape Coral water supplies in the future. In the first computer run, 21 wells were programmed, pumping at a continuous rate of 350 gpm each, spaced on one-half mile intervals, concentrated in land sections No. 33, Section 34, and Section 35, located in the west-center portion of the project area. Using estimated values of transmissivity, storage coefficient, and with no recharge considered, the projected useful life for this well pattern was 13.6 years. Repeating the procedure with the same assumed conditions, only changing to 10 wells, located at approximately one-mile intervals, and encompassing land Section 36 and the adjacent Section 31 to the west, the projected useful life of the aquifer diverting ten million gallons per day with no recharge was 54.5 years. On this basis, the recommended well locations are shown on the folded, attached illustration.

The concept of the original study was to construct a test production well, with surrounding piezometers to determine the exact coefficient and transmissivity for a sampled area, James Powell Page -2-January 19, 1973

the computed coefficient of storage for the aquifer system, and then to model the aquifer system on analog computing techniques to compute the actual recharge received from local precipitation in the area. Then, computations would be made that would more accurately predict the safe yield and useful life of the aquifer system. This work under the second phase of the investigative program has not been completed.

The above recommendations are based on the assumption that an 80 foot decline in static water level in the lower aquifer is not an unreasonable amount and further, there would be no appreciable effect on the shallow upper aquifer around the perimeter of the property. The effect on the shallow aquifer was to be a part of the testing program previously identified.

Twenty-six (26) well sites have been shown on the drawing, as recommended locations. From the information presently available, each of the sites should provide a satisfactory water supply of useable quality. It should be anticipated that two or three of the sites will not be available or utilized because of physical conditions existing in the area or other factors. It is suggested that the well sites be a minimum of one (1) acre an area to allow for some loss due to public road right-of-way, and other utility easements that may be required in the future. It is further suggested that one site preferably the site located in the southwest corner of Section 33 near Test Well No. 9, may need to be large enough to accommodate a water treatment plant and water storage facilities.

Should you have any questions or desire additional information, please do not hesitate to contact me.

Respectfully submitted,

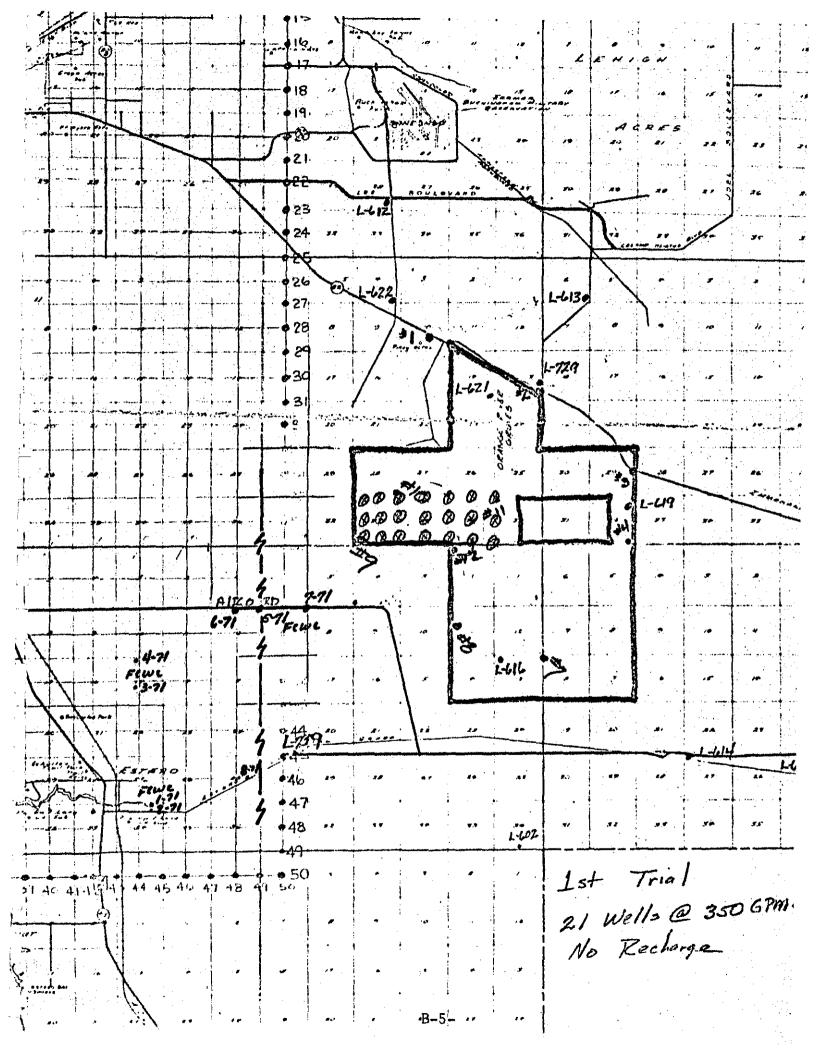
Carl E. Nuzman, P.E. HYDROLOGY CONSULEDNT

mb

01/18/73. 16.21.51 PROGRAM LAYNETS

ENTER THE VALUES FOR TMAX, DIML, DIMU ? 10000 35 35 ENTER THE VALUES FOR NUMT, ORE, DELT ? 33 0. .1 ENTER THE VALUES FOR DELX, DELY, M ? 1320 1320 0 ENTER THE VALUES FOR KTH, ISTEP, INDEX 2 20 1 4 ENTER THE VALUES FOR ERR, FACS, FACB ? •012 •05 -200• ENTER THE VALUES FOR FACP, FACT, RIVER 7 600 • 75000 • 0 • ENTER THE VALUES FOR SPAC, ELEV, TPAQEL 7 5 20 - 75 -ALPHANUMERIC PLOT WANTED, YES OR NO ? NO PRINT INITIAL PARAMETER VALUES, YES OR NO ? NO-PRINT INITIAL VALUES OF MATRIX DATA, YES OR NO ? NO GPM OR -GPD ROW COL ? 350 16 8 GPM OR -GPD ROW COL ? 350 16 10 GPM OR -GPD HOW COL ? 350 16 12 GPM OR -GPD ROW COL ? 350 16 14 GPM OR -GPD ROW COL ? 350 16 16 GPM OR -GPD ROW COL ? 350 16 18 ? 350 16 20 GPM OR -GPD ROW COL GPM OR -GPD ROW COL 2 350 18 8 GPM OR -GPD ROW COL ? 350 18 10 GPM OR -GPD ROW COL ? 350 18 12 GPM OH - GPD ROW COL 2 350,18-14 GPM OR -GPD ROW COL ? 350 18 16 GPM OR - GPD ROW COL ? 350 18.18 GPM OR -GPD ROW COL 2 350 18 20 GPM OR -GPD ROW COL 7 350 20 8 GPM OR -GPD ROW COL 2 350 20 10 GPM OR -GPD ROW COL 2 350 20 12 GPM OR -GPD ROW COL ? 350 20 14 GPM OR -GPD ROW COL ? 350 20 16 GPM OR -GPD ROW COL ? 350 20 18 GPM OR -GPD ROW COL ? 350 20 20 GPM OR -GPD ROW COL . 0 5 5

NO RECHARGE CONDITION


10,000

10.5 MGD PUMPAGE From 21 WELL LOCATIONS

TIME	STEP	NU	ABER=	
SIZE	OF T	IME	STEP=	

20

	SIZE OF TIME STEP=		104858
1	DURATION OF PUMPING IN	SECONDS=	2•097E+05
~		MINUTES=	3+495E+03
ł		HOURS=	58.254
ļ		DAYS =	2.427
ļ	TTERATION STEP NUMBER=	1	B-4-

	DAYS =	1242.757		3,4 years
	HOURS =	29826.162		
	MINUTES=	1.790E+06	•	
DURATION OF PUMPING IN	SECONDS=	1.074E+08		
SIZE OF TIME STEP=		53687091		

TIUN SIEF WULL LIMITED OF INFLUENCE

÷. .

 $1 \le 1$

DRAWDOWN IN FEET

				· · · ·	•		· · · ·			
	2 320	3 132	0 4 1320	5 132	2'6	7	8	9	10	
13	22.4	22.6	23.0	23.7	24.5	25.4	26.4	27.2	27.9	28+3
	28.6	28.7	28.5	28.2	27.6	26.7	25.7	24.4	23.0	21.4
	19.7	18.2	16.7	15.4	14.2	13.2	12.3	11.6	11.0	10.5
, 520'	10+2	9•9	9•8							
- 14	23.2	23.5	24.1	24.9	26.0	27.2	28•6	29+6	30+5	31 • 1
	31.5	31.6	31+5	31 - 1	30.4	29.5	28+3	26+8	25+1	23+1
1	21 • 1	19.2	17.5	16.0	14.7	13.6	12.7	11+9	11.2	10.7
320'	10.3	10+1	10.0			· .				
	<u>.</u>	0 # 0		04 0	0.0. //			00.4	00.7	0 4 0
15	24.0	24.3	25.0	20+0	27.4	29.2	31.2	32.4	33.7	34•3
	34.9	34.9	35.0	34.3	33.8	32.6	31.4	29.5	27.6	24+9
3201	22.4	20.2	· · · · · · · · · · · · · · · · · · ·	16.6	15-2	14.0	13+0	12.1	11.4	10+9
17	10.5	10+2	10.1							
16	24.6	25.0	25.8	27.0	28.7	31 • 1	34.7	35+3	37.8	37+4
	(9.2)	38.2	39.3	37.6	(38.D	35.7	35.5	32.3	31.D	26.7
10	23.6	21.0	18.9	17.1	15.5	14.2	13.2	12.3	11.6	11+0
320'	10.6	10-3	10.2				• • •			
			· · · ·				•			
17	25.0	25-4	26.2	27.6	29.4	31.9	34.8	36•3	38+1	38 • 7
e s	39.7	39+5	39.8	38+9	38.6	37-0	35+8	33+3	31+2	27+5
	24.3	21+5	19.2	17.3	15.7	14.4	13.3	12.4	11.7	11.1
L v	10•7	10+4	10+3							
		· .					· · · · · · · · · · · · · · · · · · ·	۰.	\frown	
18	25-1	25 • 5	26.4	27.8	29.7	32.5	36.5	37.2	(39.9)	39.7
с. К. 2	(41.5)	40+5	(41.7)		(40.4)	37.9	37.6	34.2	32.8	28+1
	24.5	21.7	19.4	17•4 .	15+8	14.5	13.3	12.4	11+7	11+1
	10•7	10-4	10.3							
· 19 ·	25.0	25•4	26.2	27.6	29.4	31.9	34+8	36+3	38+1	38.7
	39.7	39-5	39.8	38.9	38+6	37.0	35.8	33.3	31.2	27.5
	24.3	21.5	19.2	17.3	15.7	14.4	13+3	12.4	11+7	11.1
L	10.7	10•4	10.3		1.5-7	1-1-1	10+0	14 - 1		
	10-1	1000.4	10-0							
20	24.6	25+0	25.8	27.0	28.7	31 • 1	34.7	35.3	37.8	37.4
L	(39.2)	38+2	(39.3)	37.6	(38.1)	35.7	(35.5)	32.3	31.1	26.7
	23.6	21.0	18.9	17.1	15.5	14.2	13.2	12.3	11.6	11.0
$\epsilon = 1$	10.6	10+3	10.2						•	
	-		-			· B•	-6-			·
<u></u> 01	9/1.0	0/ 7	<u>e</u> t.e	ne n	65 A - J	77 0	01 0	20.44	33.7	34.3

TIME STEP NUMBER=

31

SIZE OF T	IME STEP=	•	с. С. С. С.	214748365	 art. An an	
DURATION (OF PUMPING	IN	SECONDS =	4•295E+08		
			MINUTES=	7.158E+06		
		•	HOURS=	119304.647		·
			DAYS =	4971.027	 13.6	yeors

ITERATION STEP NUMBER= 15

DRAWDOWN IN FEET

i										
;	2 132	Ø 3 13	20' 4 1320	5 131	0 6	7	8	9	10	
13	72.6	72.8	73+2	73+8	74.5	75.3	76+1	76.8	77.4	77.7
	77.7	77.6	77.2	76.6	75•7	74.6	73.3	71.7	70.0	68+1
	66.2	64.3	62+6	61.0	59.6	58.4	57•3	56•4	55.6	55.0
,320	54.6	54.3	54+1	41.0		0011	0,110	0,0-1		
- 14	73 • 5	73 • 8	74.3	75 • 1	76-0	77.2	78.4	79.3	80.1	80+5
	80 • 7	80-6	80.2	79+5	78.6	77.4	75+9	74 • 1	72.1	69.8
	67.5	65.4	63.4	61.7	60+1	58•8	57.6	56.7	55+9	55.2
320	54+8	54.5	54.3	·			- · · ·			
										•
15	74.3	74.6	75+3	76.2	77.5	79•2	81•1	82+1	83.3	83•7
E 1	84+1	83•9	83 • 7	82•8	82•0	80+5	79•1	76.9	74.7	71 • 7
310'	68•9	66•4	64+2	62•3	60•6	59•2	57•9	56+9	56•1	55+4
12	54+9	54.6	54•4							· · ·
16	75.0	75.3	76.0	77•2	78.8	81 • 1	84.6	85•0	87.4	86•9
L	88.4)	87.2	(88.0	86•1	(86.3)	83•7	(83.1)	79.7	78.2	73+5
1320'	70 • 1	67.2	64.8	62•7	61.0	59•5	58+2	57+1	56.2	55+6
12-	55•1	54•7	54.6						100 - 100 100	
17	75-3	75 • 7	76.5	77 - 8	79+6	82.0	84 • 7	86+1	87.8	88+1
1.1.1.1	88.9	88•5	88+6	87.5	86+8	85+0	83•5	80•7	78.3	74-3
1	70.8	67.8	65.2	63.0	61.2	59.6	58+3	57.2	56.3	55.6
۱.	55-1	54•8	54+6							
18	75.5	75.9	76.7	78•0	79.9	82•5	86.4	87.0	(89.6)	89+1
i .:	(90.8)	89.5	(90.4)	88+5	(88.7)	85+9	(85.3)	81.6	279.9	74.9
	71 • 1	67.9	65.3	63•1	61.3	59•7	58.4	57•3	56.4	55•7
F 1	55•2	54•8	54+6		У.,					•
ະມ 19	75 • 3	75 • 7	76.5	77•8	79.6	82•0	84•7	86-1	87.8	88•1
	88.9	88.5	88+6	87.5	86+8	85.0	83.5	80 • 7	78+3	74.3
	70+8	67.8	65.2	63+0	61.2	59+6	58+3	57•2	56+3	55.6
х	55+1	54.8	54.6				~ ~ ~ ~	0.11		0000
	75.0	75.3	76.0	77.2	78.8	81•1	(84.6)	85•0	(87.4)	86.9
	(88.4)	87.2	(88.0)	86 • 1	(86.3)	83.7	(83.0	79.7	(18.2)	73.5
	70.1	67.2	64.8	62.7	61.0	59+5	58.2	57-1	56.2	55+6
	55.1	54.7	54.6			. –	·	····		
- -		•			В-	7-				
	#7 /F **	•	₽ 10	-	· · ·		ś	~~ 1		00 7

SYSTEM: FOR, OLD, LAYNETS READY. RUN, M=15000, T=200 01719/73 . 08 . 32 . 28 LAYNETS PROGRAM ENTER THE VALUES FOR TMAX, DIML, DIMW 2 10000 35 35 ENTER THE VALUES FOR NUMT, ORE, DELT ?:33(+0)+1 ENTER THE VALUES FOR DELX, DELY, M ? 2640 2640 0 ENTER THE VALUES FOR KTH, ISTEP, INDEX 2 20 1 4 ENTER THE VALUES FOR ERR, FACS, FACE 2:+012 +05 -200+ ENTER THE VALUES FOR FACP, FACT, RIVER 7 600. 75000. 0. FATER THE VALUES FOR SPAC, ELEV, TPAGEL ? 5 20+ -75+ ALPHANUMERIC PLOT WANTED, YES OR NO ? NO PRINT INITIAL PARAMETER VALUES, YES OH NO ? NO PRINT INITIAL VALUES OF MATRIX DATA, YES OR NO ? NO GPM OR -GPD ROW COL 2 700 16 11 GPM OR -GPD ROW COL 7 700 16 15 GPM OR -GPD ROW COL 2 700-16-19 10 mgp from 10 hocotions GPM OR -GPD ROW COL 2 700 17 24 2 GPM OR -GPD ROW COL 700 18 10 GPM OR -GPD ROW COL 2 700 18 12 GPM OR -GPD ROW COL ? 700 18 14 GPM OR -GPD ROW COL ? 700 18 16 2 GPM UP -GPD ROW COL 700.18-18 GPM OR -GPD ROW COL ? 700 18 20 GPM OR -GPD ROW COL 5 0 5 5

SE030

L033001, WESTERN, LAYNETS

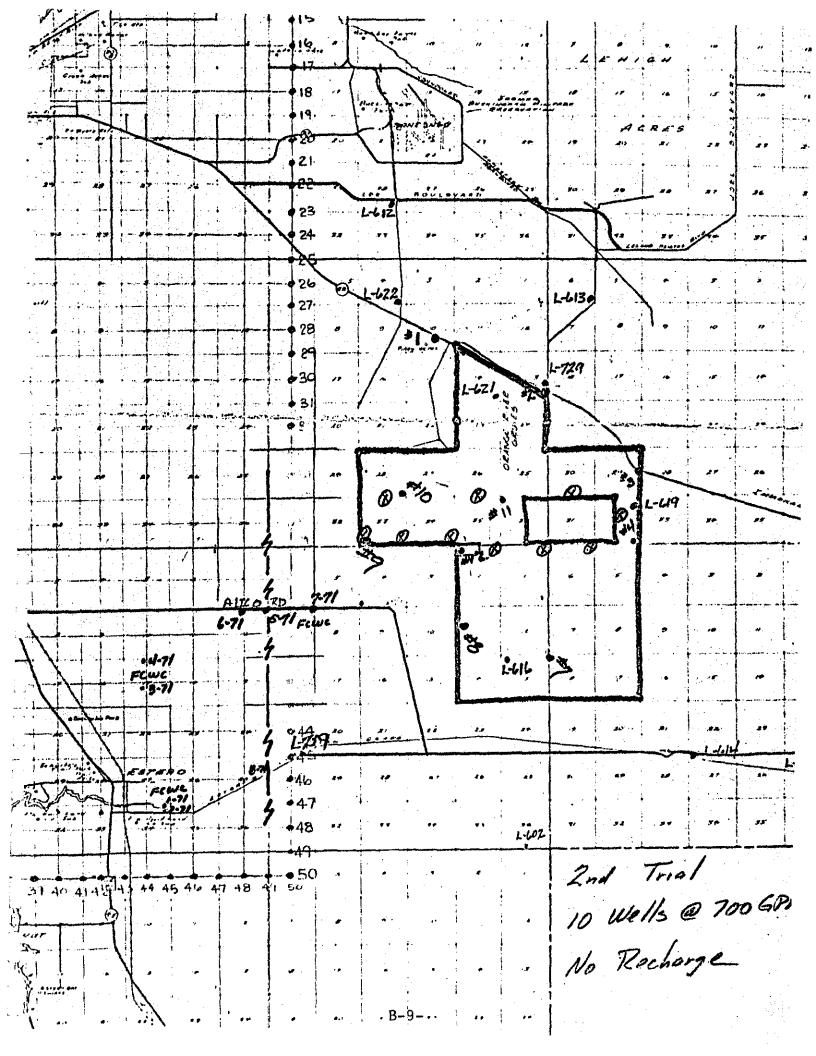
TIME STEP NUMBER=

PL 2762

USER NUMBER:

UCS

01/19/73 • 08 • 31 • 38


SIZE OF TIME STEP=

 $\mathbf{S0}$

2.097E+05 B-8-

104858

TURATION OF PUMPING IN SECONDS=

r 7			DRAWD	OWN IN	FEET	• •					•
	2 16	40'3 26	40' 4 264	10' 5 264	10	7	8	9	10		
1.2	2 V.	3 20	4 20*	5 70	6	7	8		10		
13	18+5	18.7	19+1	19.8	80.6	21.6	22•8	24.2	25+5	26.7	
	27.6	28.2	28.7	28.9	28.8	28.5	27.9	27.0	25+8	24.3	d.
40	22.6	20.9	19-2	17.7	16+3	15.2	14+1	13.3	12.6	12.0	
4~	11+6	11+3	11.2	· · · · · · · · · · · · · · · · · · ·			•				
<u> </u>	19.0	19-2	19.7	20.4	21.4	22.7	24.2	25.9	27.7	29-4	
1	30.4	31+1	31 • 8	32.2	31+9	31•5	30.9	30+1	28.5	26•6	
in!	24 • 4	22.3	20+3	18.5	17.0	15.6	14.5	13.6	12+8	12.2	
H+101	11.8	11+5	11•3	н 1 М			н. 1. т				
15	19+4	19.6	20.2	21,+0	22.2	23.7	25•6	27.8	30.3	32+8	. •
	33.5	34+2	35.2	36.2	35+4	34•7	34•3	34+0	31 • 8	29+3	
10)	26+4	23•7	21.3	19.2	17+5	16.0	14•8	13.8	13.0	12•4	
C.	11.9	11.6	11+4		· · · ·			•••••••••••••••••••••••••••••••••••••••	· .		
16	19.6	19.9	20.5	21.4	22.7	24.4	26.7	29.5	33+1	38.3	
	36.8	37.2	38.7	(42.D	39.0	37+8	37.9	39.9	35.4	32.4	
in!	28.4	24.9	22+1	19.8	17+9	16+3	15+0	13.9	13.1	12.5	
, c101	12.0	11 • 7	11.5		·						
17	19.7	20+0	20.6	21.6	23.0	24.8	27.3	30•5	34.4	37.1	•
1 A 1	38.6	39+0	40•5	41.2	40•9	39.7	39+7	39.0	37+6	36.8	
	29+9	25+6	22.4	20+0	18•0	16+4	15 • 1	14.0	13-1	12.5	
1	12•0	11 • 7	11.5	·							1917)
18	19.6	19.9	20.6	21.5	22.9	24.8	27.3	31.0	37.1	37-4	
i.	41.3	$40 \cdot 1$	43.3	41•4	(13.6)	40•7	42.4	39.0	39.4	33•9	
· · ·	29.1	82•5	55.8	19+9	17.9	16.3	15.0	13•9	13 • 1	12•4	
,	12.0	11+6	11.5								
19	19•4	19•7	20.3	21.2	22+5	24.2	26•4	29.2	32.4	34•1	
,	36 • 1	36 • 7	37.9	37•8	38+1	37.3	36+9	35.3	33-8	30+6	
	27•2	24+2	81•6	19•4	17•6	16.1	14+8	13.8	13.0	12.3	
i j	11•9	11+5	11.4								•
20	19+0	19.3	19.9	20•7	21.8	23•2	25+0	27.1	29.2	30.+8	
د ا	32+2	33+1	33+8	34.0	34•0	33+5	32•8	31.5	29.9	27.7	
•	25•2	22.8	20.6	18•7	17•1	15.7	14+5	13.5	12.8	12+1	
•	$11 \cdot 7$	11 - 4	11+3								•
	· · · ·			.		B-10-					
··· 81	18+6	18.8	19•3	20.0	20+9	82•1	23+5	25•1	26•6	27•9	

AREA OF INFLUENCE 15 272 SQ MILES

ITERATION STEP NUMBER=

an an an An An Angel

THE OTHE MONTHER.

	SIZE OF TIME STEP=	•	214748365	
!	DURATION OF PUMPING IN	SECONDS=	4•295E+08	
•		MINUTES =	7•158E+06	
•		HOURS=	119304+647	
:		DAYS =	4971-027	-> 13.6 years

6

- -

SIZE OF TIME STEP=	429496730			
DURATION OF PUMPING IN	SECONDS=	8•590E+08		
	MINUTES =	1•432E+07		
	HOURS =	238609-294		
	DAYS =	9942.054		

ITERATION STEP NUMBER=

DRAWDOWN IN FEET

7

/		1	3 1 - ²⁰ - 20		1					
	2 264	0 3 26	40 4 26	40'5 20	40 ₆	7	8	9. u	10	
13	34.5	34•8	35.2	35+8	36.6	37•6	38•8	40.1	41.4	42+5
•••	43+4	44.0	44.4	44.5	44.3	43.8	43.1	42.2	40.8	39.2
1	37.4	35.5	33+8	32 • 1	30.6	29+3	28.2	27.3	26.5	25.9
-,40 	25-4	25•1	25.0							
14	or 6	AF 0	05 0	04 5	00 5	0000	40 0	41.0	40 6	65 A
14	35•0	35•3	35.8	36•5	37 •5	38+7	40.2	41.9	43.6	45+2
— .	46+1	46+8	47.4	47.7	47.4	46.9	46.2	45+2	43.6	41+5
. J0	39.2	37.0	34.8	38•9	31.3	29•8	28•6	27•6	26•7	26+1
2640	25•6	25•3	25•1		с. 19					
15	35•4	35.7	36.2	37•0	38+2	39.7	41.5	43.7	46.2	48.7
i .	49+3	49.9	50.8	54 • 7	50•9	50+1	49•6	49•1	46.8	44+2
	41 • 2	38-4	35 - 8	33-6	31+8	30+2	28•9	27+8	26.9	26.2
40	25•7	25.4	25+2				•		••	
16	35•6	35+9	36.5	37-4	38•7	40•4	42•6	45-4	49.0	54+1
· •	52.6	52+9	54.3	57•6	54.5	53+2	53•2	55-1	50.4	47.3
t	43+2	39.6	36+6	34•2	32•1	30.5	29+1	27.9	27.0	26+3
16 40'	25-8	25.4	25+3	0-10-1	0					20+0
	<u></u>	~ ~ ~		0.5.4		40 G	40 0	1. m . k.	FO D	
17	35•7	36.0	36•6	37.6	39.0	40.8	43.2		50+3	52.9
	54•3	54.7	56-1	56•7	56+3	55+1		54+2	52.6	51+7
A	44.7	40.2	36•9	34•4	32+3	30.5	29-1	28+0	27.0	26•3
	25 • 8	25•4	25+3		· .		× .			
18	35•6	35+9	36.5	37.5	38+9	40•7	43.2	46.9	52.9	53+2
	57-1	55+7	58.9	56.9	59.0	56.0	57•6	54.1	54.4	48+8
· ·	43 • 8	39.8	36.7	34•2	32.1	30+4	29.0	27•9	27•0	26•2
	25•7	25•4	25.2					· .	· · · ·	
19	35+4	35•7	36+2	37 • 1	38•4	40•1	42•2	45•0	48-1	49.9
· · · ·	51+8	52.4	53+4	53.3	53.5	52.5	52+1	50+3	48.7	45•4
	41 • 9	38.8	36.0	33 • 7	31.8	30.2	28.3	27.7	26.8	26+1
	25+6	25.3	25+1			40 · 4				
	04 0	95 0	25 7	26 E	37•7	20 1	40 9	40 8	<i>4.0</i> 0	<i>ur</i> =
20	34+9	35.2	35•7 49-3	36•5 49•4		39•1 48•7	40+8	42.8	44.9	46+5
	47•9	48+7	49•3 35•0	49•4 33•0	49•3 31•2	48•7	47.9	46.5	44.8	42+5
	39+9	37.3	35•0 24•9	33+0	51.02	29•7	28•5	27•4	26+6	25+9
	25•4	25+1	64+7		. D.	-11-				
(J) 1	34•4	34+6	35•1	35•8	36•7	37+9	39+3	40.8	42.3	43.4
<u>31</u>	34•4 14•6	45+3	45+8	- 45+9	30•1 45•7	37•9 45•2	-44•4			43•6
	4344 * 15	유민환경	r-g_J ≠ (1	++ / ≠ /	44:3 # I	49 (J + 7)	44 • 4	43+8	41.7	39+9

	2 264	3 2640	1	10 5 2640	6	7	8	9	10	
	- 10	200	- 20	10	. 0	•				
r = 13 ·	65+5	65.7	66+1	66 • 7	67+5	68+5	69.7	70.9	72+2	73.3
	74 - 1	74.6	75.0	75 • 1	74.8	74.3	73.6	72.5	71+1	69.4
and the	67.5	65.6	63.8	62•1	60•6	59-2	58.1	57 • 1	56+3	55 - 7
7640'	55.2	54.9	54.7						1994) - A.J.	
14	66.0	66•2	66•7	67•4	68•4	69+6	71+1	72.7	74-4	76.0
	76 • 9	77.5	78.0	78-3	77.9	77+3	76+6	75+6	73+8	71.7
11	69-4	67•1	64.9	62.9	61.2	59•7	58•4	57•4	56+5	55+8
.640'	55+3	55+0	54.8			•	•		÷ .	an a
		:		* P e				· · · ·	•	
e - 15	66 - 4	66•6	67.2	68•0	69•1	70.6	72.4	74 • 5	77•0	79-4
	80+0	· · ·	81.4	82•3	81•4	80+6	80•0	79 5	77+1	74-4
10	71•3	68+4	65•9	63•6	61•7	60•1	58•7	57.6	56•7	56+0
24401	55•4	55•1	54.9	· •						
					•				a the second sec	
16	66+6	66•9	67.5	68.4	69•6	71.3	73.4	76.2	79•8	(84.9)
	83 • 3	83+5	84•9	88.2	85•0	83•6	83•5	85.4	80.7	77•5
1.40	73+3	69•6	66•6	64-1	62.0	60•3	58.9	57.7	56+8	56+0
2040'	55.5	55+1	55•0	· · · ·		· .			• •	
				÷.,					· · · ·	
17	66.6	66•9	67.6	68+5	69•8	71+6	74.1	77.2	81+0	83•7
	85.0	85+4	86•7	87•3	86+8	85•5	85+3	84+5	82.9	81.9
	74.8	70•3	66+9	64+3	62•2	60•4	58+9	57 • 7	56+8	56+0
	55 - 5	55+1	54.9			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1				
		-	·		· · ·		·			1
18	66+5	66•8	67.4	68+4	69.7	71+5	74.0		(83. P)	83+9
	87.7	and the second	89.5		89.5	86•4	(88.0)		<840	79+0
,	73.9	69.9	66.7	64•1	62.0	60+3	58•8	57.6	56•7	55.9
i _	55-4	55+0	54.9			,				
	<i></i>		(0)		70 0	70 0	ao o	0C 9	#@ ^	
19	66•2	66•5	67•1	68•0	69•2	70.9	73.0	75.7	78.9	80.5
	82+4	83•0	84.0		83•9	82+9	82+4	80+6	78+9	75+6
	72.0	68•8	66•0	63+6	61.6	60.0	58•6	57•4	56•5	55+8
	55•2	54•9	54•7							
	10 00		66.6	C 13 4	60 F	60.0		7 0 6	nr /	an -
20		66+1	66•6		68.5	69•9			75+6	77+2
			79.8			79.1		76.8	75.0	72.6
			65.0	62•9	61+1	59+5	58•2	57 • 1	56+2	55+5
3 L	55+0	54•7	54.5			B- 12 -		·		•

DRAWDOWN IN FEET

ITERATION STEP NUMBER= 15

TIME STEP NUMBER=	33
SIZE OF TIME STEP=	858993459
DURATION OF PUMPING IN SECONDS=	1•718E+09
MINUTES=	2.863E+07
HOURS =	477218-588
DAYS =	19884.108

AH 10410 CTT 1. TIME STEP

54.5 years

- LAYNE WESTERN COMPANY, INC.

C-1-

APPENDIX C

[.

WATER SUPPLY STUDY

SOUTHERN LEE COUNTY, FLORIDA

APRIL, 1972

by

CARL E. NUZMAN, P.E. HYDROLOGY CONSULTANT

LAYNE-WESTERN COMPANY, INC. 1010 West 39th Street Kansas City, Missouri 64111

816-931-2353

-W- 20

. ...

2.2

. .

с...а

1 1

Investigation of water supply potential in Southeastern Lee County, Florida has shown there is a multilayered aquifer of substantial proportion existing to approximately 350 feet in depth containing water of acceptable quality for public supply. The yield potential appears substantial and at least four to five times greater than that experienced from the Upper Hawthorne aquifer along the West Coast. Additional investigation may show substantially higher amounts with proper spacing of wells and with good management of the surface water.

WATER SUPPLY STUDY SOUTHERN LEE COUNTY, FLORIDA APRIL, 1972

INTRODUCTION

Interest and an initial authorization to begin study in the southeastern portion of Lee County, Florida was made by GAC Utilities, Inc., in July, 1970. The purpose of the study was twofold. First, was to determine the groundwater availability and suitability in quality and quantity to provide for the proposed needs of the Green Meadows project development. The planned size of this project has varied from time to time with different stages of planning progress; however, the expected water consumption for the project itself, is about five to seven mgd in approximately 20 years following initial construction. The second purpose of the study was to determine whether surplus water could be developed in this area and transported westerly to provide additional supplies to both Cape Coral and Florida Cities Water Company, service Ft. Myers Beach and areas along Tamiami Trail.

FIELD TESTING PROGRAM

A review of the records of the Geological Survey office of Ft. Myers, Florida gave information regarding three (3) locations within the project area. These are identified as L-621, L-619, and L-616. These logs showed limestone layers alternating with sand or clays existing to approximately 80 feet in depth. An extensive

に ジョ 第8

LAYNE WESTERN COMPANY, INC.

clay layer of a thickness of approximately 30 to 40 feet of a green coloration existed over most of the project area. Below 110 feet, more or less, a sandstone unit generally existed to approximately 240 to 250 feet in depth. Occasionally, deeper depths of some sand were encountered to 320 feet. Below this, additional limestones alternating with clay lenses existed to considerable depth in the area. The uppermost limestones have been pumped locally for irrigation purposes in the area. It has been considered by others, that the sandstone unit generally existing from 120 to 320 feet in depth, could provide substantial quantities of water if appropriately developed. The purpose of the Green Meadows groundwater hydrologic study was to develop information in regard to the uppermost limestones and the so-called sandstone unit to determine the approximate suitability of this formation to yield water to wells and to determine the quality of this water. Ten (10) test holes have been drilled covering the area approximately as located on the previous illustration and the driller's interpretation of these formations are included for their information. Water samples have been taken from these wells and in all cases, the deper waters are satisfactory for public supplies with some water conditioning desirable. These data on water quality are included following the test logs in the appendix.

Subsequent to the initiation of this study, Florida Cities Water Company was acquired by GAC Utilities and concurrently, a study of a similar nature was being conducted for Florida Cities

C-5-

n- 25

LAYNE WESTERN COMPANY, INC.

Water Company. The Florida Cities Water Company was investigating an area between the Tamiami Trail and the Green Meadows project area to see if suitable waters could be developed to supplement their supply at a point closer to the supply pipelines. Attached in the appendix of this report are the driller's interpretation of the test hole formations encountered and the water quality analysis that are available. Generally, it was found that the water was unsatisfactory in the area near the Corkscrew grade road. Discussions were held with the San Carlos Park Development Company and two (2) test holes were drilled in the eastern-most portion of this development. Although the yield looked very promising in the San Carlos Park area, chlorides in the water samples taken were generally in excess of 450 mg/l (P.P./M.) and were unsatisfactory for public water supply use. One test hole had chlorides in excess of 1200 ppm which apparently is located close to a deep flowing well and has experienced serious contamination. Because of the experience in the accessible areas close to Tamiami Trail, further investigation in this area was abandoned. The next test hole was located along Alico Road at a point approximately five (5) miles east of the Tamiami Trail. At test hole designated "FCWC-5-71", the quality of water was acceptable; however the yield potential was less than desired. The sandstone formation anticipated in the 120 to 220 feet depth was absent producing primarily tight limestones with some vield potential. Test Hole 6-71 was drilled one-half mile to the west and showed an increase in chlorides and total dissolved solids. These data were interpreted to indicate that this location was near the edge

3

C-6-

of the transition zone of favorable quality water. Therefore, further development of this formation should be at least one (1) mile in an easterly direction to provide suitable protection from the invasion and infiltration of poor quality water. Test Hole 7-71 for Florida Cities Water Company was drilled to a depth of 300 feet encountering limestones, some gray sand with some black sand indicating the sandstone aguifer unit was still absent but apparently, we were at the beginning of this material. The yield characteristics of the limestone appeared satisfactory and with proper well construction, a satisfactory yield of suitable quality of water was available at this location for public water supply purposes. In a separate report to Florida Cities Water Company, this location was recommended as a suitable location for a well field consisting of approximately five (5) wells located approximately one-fourth mile spacing between wells and should be capable of producing 350 gpm each, (1/2 mgd) for a total of 2-1/2 mgd. It was anticipated that the yield of the formation should be in excess of 500 gpm at this location for testing purposes and to meet peak demands if needed. The water test analysis showed total dissolved solids of 445 ppm with chlorides 72 ppm at the above location. One additional test hole was drilled east of Estero approximately 2-1/2 miles along the Corkscrew grade although the yield characteristics at this location were ample, total dissolved solids were in excess of 1000 ppm with chlorides at 340 ppm.

Static water level has been measured a number of times in many of the holes, and is normally found between 5 and 9 feet below

C-7-

W- 26

- LAYNE WESTERN COMPANY, INC.

land surface. It is the intent of the study to have elevations run to available test hole in the project area and to accurately establish the water table elevation and gradient that exists in the area.

WORK TO CONCLUDE STUDY

In the first phase of this investigation, suitable sites and satisfactory quality of water has been identified by test drilling and laboratory analyses of water samples taken. Test Hole 7-71, drilled for Florida Cities Water Company is a satisfactory location as well as Test Holes No. 9, 10, and 12, of the Green Meadows project. GAC Utilities will designate a site near one of the above mentioned test holes as a suitable location for a test production well. As a part of the second phase of this study, the production well of suitable design to meet State Health Requirements is to be constructed and tested at a substantial rate to determine the yield characteristics of the aquifer. Prior to commencing the test, at least one (1) and possibly two (2) additional piezometer wells are to be constructed in the vicinity of the test well to observe the effect of pumpage on the aquifer. The well contractor is expected to install a pump with the capability of pumping at least 700 gpm with 150 feet total pumping head. The test production well is to be cased and cemented to approximately 80 feet in depth in a confining clay layer to leave undisturbed as much as possible, the upper-most limestones aquifers existing in the vicinity. Water sample analyses have indicated some water quality may be superior in some respects in the lower formations and it is anticipated this

C-8-

----- LAYNE WESTERN COMPANY, INC.---

will be the primary aquifer to supply water for public supplies.

After the conclusion of test pumping a production well, the data will be analyzed and applied to all other test holes constructed in the area by the hydrologist to determine the maximum potential drawdown in the lower aquifer unit due to pumpage at various projected rates expected for future development. These data are to be analyzed and with subsequent computations, to be prepared in a final report available for general distribution to interested parties.

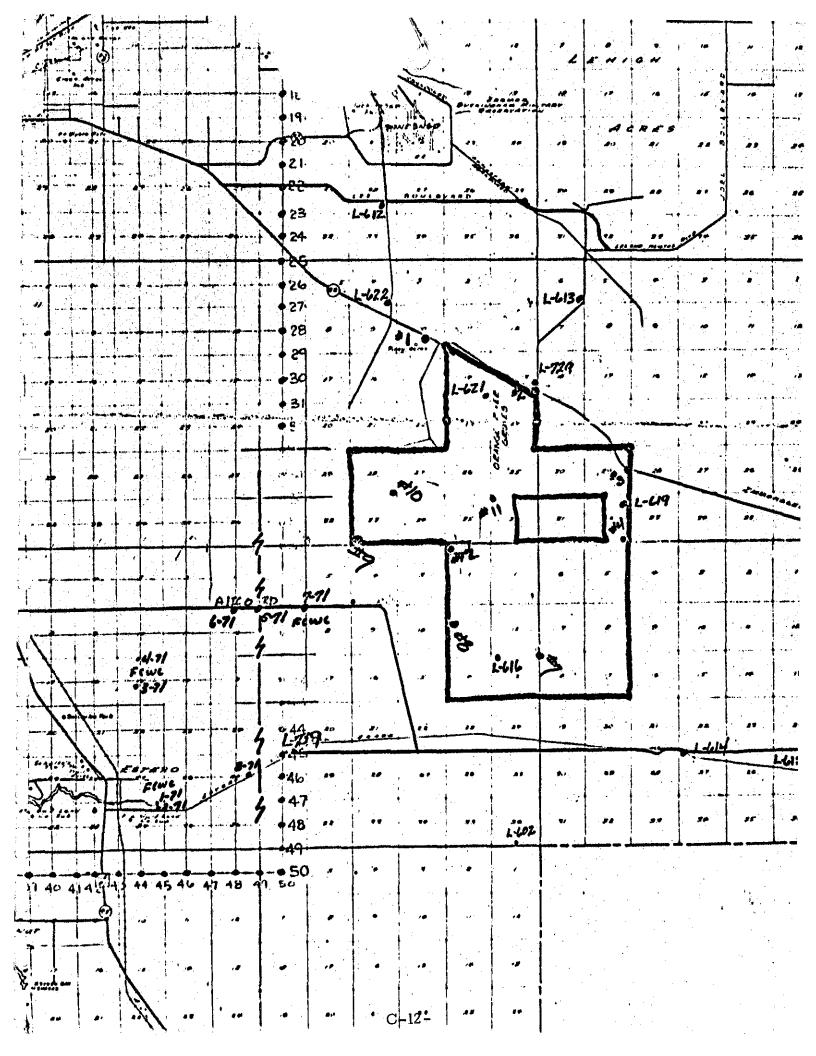
It is the opinion of the hydrologist that transmissivity of the aquifer in the Green Meadows project area would be found as a result of a test, to be in the range of 60,000 to 90,000 gpd/ft. width of aquifer material. Storativity should approach 0.05. Both aquifer coefficient values are from four to five times greater than that experienced from the water supply study of the Upper Hawthorn formation in the vicinity of Cape Coral and the Cypress Lakes well field. This would place the potential yield of the aquifer in the vicinity of Green Meadows at least four and possibly five times greater than that experienced in the previous mentioned areas. The investigative program identified in this report is designed to verify these opinions.

As stated in the Water Supply Study for Western Lee County, Florida, for Florida Cities Water Company, four (4) wells drilled north or northwest of the Cypress Lakes well field by the cable tool method or possibly only two (2) wells of 10 inch diameter, drilled by the reverse air hydraulic circulation method, would provide an additional

C-9-

iw⊊ 28

- LAYNE WESTERN COMPANY, INC.-


one million gallons per day of additional capacity to this facility for the present time. The yield life of these additional wells is expected to be two to three years duration. Upon completion of developing a well field in the southeastern portion of Lee County, the existing wells in the Cypress Lakes plant should be maintained on a stand-by basis to meet peak demands during periods of high use. During periods of low water use, these wells should be maintained in an idle condition to allow recovery of water levels in the vicinity. This will allow for more economical pipeline transmission sized to the high average rate and not required to meet peak demands.

APPENDIX

C-11-

L. - 26

- LAYNE WESTERN COMPANY, INC.-

	· .	a fille and a state of the stat		
		Layne-Western Company, I	nc.	
		TEST DRILLING . WATER WELLS . PUMPS		
нції 1919 —				
trac	t Name_	Green Meadows Project		
No	GAC	Utilities, Inc. Date February 25,197: No. 1 and	<u>1-4</u>	
	Lee	County State Florida Driller Marvin Mi	ller	
<u></u>				
		Hole Elevation of Test	· · · · · ·	
r 7.	·····	10 Static Water Level 9.77 (No.	1)	
<u> </u>	SE	K Sec 10 of T 45 S	(NO.	
_26	5 E .	Lee Co., Florida Measured 100+ Hours	Aiter Cor	υριετιοή
 .m	To	Description of Strats	Wate	r Bearing
0	6	Sandy Soil	6	T
•	9	Marl rock and sand	3	•
ġ	19	Rock	10	
)	39	Marl rock and sand, hard	20	Good
9	55	Limestone rock, with clay and sand	16	Poor
5	75	Green clay with fragments of shell	20	
1 <u>5</u>	88	Green clay and shell	13	
3	89	Sandstone, hard	1	
<u>, </u>	91	Yellow gravel and sand	2	Fair
•1	101	Sandstone, shell and coarse sand	10	Good
<u> </u>	137	Shell, coarse sand and sandstone layers	36	Good
7	153	Coarse sand, less shell and dark clay color	16	Good
3	163	Coarse sand, shell with light clay color	10	Good
5 3	194	Soft limestone	31	Fair
4	224	Clay and shell	30	None
24	240	Clay with some sand mixed	16	
0		Total Depth Drilled		-
-				
		Well 1-A located 2 feet from No. 1 was the same to 61 feet	· · · · · · · · · · · · · · · · · · ·	

Test well No. 1 has 2 inch diameter pipe to 09 feet depth. Test pumped 2 hours for water sample at 60 gpm, full capacity of pump. marks: Test Well No. 1-A has 2 inch diameter pipe to 40 feet and 61 feet of hole depth.

Test Well No. 1-A test pumped 1 hour at 3 gpm for water sample.

N-62

WICHITA + GARDEN CITY + LIBERAL + KANSAS CITY + DENVER + OMAHA + AMES + ST. LOUIS + AURORA

		TEST DRILLING . WATER WELLS . PUMPS		
• . .*				
tract	Name	Green Meadows Project		7
- No.	GAC	Utilities, Inc. Date February 25,1971 No. 2 and 2	<u>-A</u>	
L	se Cou	nty State Florida Driller Marvin Mil	ler	
	<u></u>	Hole Elevation of Test		
	1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 -	of Area		
		Static Water Level 10.66 (NO.	2)	
<u>E 1/</u>	SE	14 Sec_13 of T_45 S Static Water Level 5.16 Measured 100+ Hours Al		2-A
26E		Lee Co., Florida		piedo
m	То	Description of Strats	Water	Bearing
0	11	Sand	11	[
1	15	Rock	4	.
5	25	Marl with clay	10	1
5	29	Very hard.marl	4	Fai
9	50	White marl	21	Goo
0	51	Hard pan (very hard)	1	Non
1	61	Sandy clay, light color	10	Non
1	63	Rock	2	Non
3	73	Limestone, firm	10	Goo
3	85	Limestone, soft	12	Fai
5	87	Rock, gray in color	2	Non
7	97	Limestone, loose	10	Goo
7	98	Rock, hard	-	Vone
8	128	Sandstone with hard and soft layers	30	Goo
8	143	Coarse sand and shell	15	Goo
3	160	Fine gray sand	17	Fai
0	175	Clay	15	Non
5	184	Shell	9	Fai
- T	234	Shell rock with some clay Clay	50	Fai Non
4	238		4	2 81/010

	WATER SUPPLY SERVICES SINCE 1924 TEST DRILLING . WATER WELLS . PUMPS		
tract Name_	Green Meadows Project TEST H		
No. GAC	Utilities, Inc	<u>3-A</u>	
Lee Co	ntyState_FloridaDriller_Marvin_M	iller	
	Corner of Area Hole 29 Static Water Level 12.60 (No 1/ Sec 29 of T 45 S Static Water Level 12.60 (No	. 3) 0 (NO. After Com	<u>3-A)</u> pletion
ma To	Description of Strate	Water	Bearing
19	Brown sand	19	1
29	Limestone, water bearing rock	10	Goo
31	Rock	2	1
49	Limestone, light to dark clay color	18	Goo
59	Limestone and clay	10	Fai
75	Limestone, clay and sand	16	Fai
85	Limestone, sand and shell	10	Goo
95	Limestone and sand	10	Goo
110	Limestone and shell, yellow in color	15	Goo
111	Shell rock, hard	- 1	
158	Shell and sand	47	Goo
169	Sandstone with sand in layers	11	Goo
208	Sand and clay with trace of shell	39	Fai
218	Sand and clay	10	Poo
235	Sand and clay, very soft	17	Non
239	Clay	4	ļ
000 mit 000	Total Depth Drilled	· · · · · · · · · · · · · · · · · · ·	
	Well 3-A located 2 feet from No. 3 was the same to 50 feet Well No. 3 has 2 inch diameter pipe to 110 feet in depth.	depth.	

tract	: Name	GAC Utilities, Inc.	<u></u>	*******************************	TEST HO	ε
No.	G	ceen Meadows	Date Apri	1 1971	No4	
	Ft.	Myers S	tate Flori	đa	Driller M. E. Mi	iller
ition	of Test	Hole	32		Test	
271	<u>.</u>	Lee Co., Florida	······································	MCasurcu	nours Au	
m	To	D	escription of Str	ata 		Water Bearin
	6	Light brown sand			· · · ·	
	7	Hard pan layer		· · ·		
	27	Sand and shell				
	29	Hard shell and sand				
	36	White sand and shell				<u> </u>
•••••	41	Lime rock - hard				
	50	White sand and shell	·	·····		
·		Location temporarily aba	ndoped -	due to di	fficulty	
		<u>nocation compolatily and</u>			III CULLY	<u> </u>
						+
					······	+
	:		<u> </u>			+
			14.1. A			
			· · ·			
		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	······································	·····	
				······		
				· · · · · · · · · · · · · · · · · · ·	<u> </u>	
ألنعصب	<u> </u>		· · · · ·			t

TEST DRILLING . WATER WELLS . PUMPS

ract	Name	Green Meadows			TEST HO No. 7	
r No.	KC	-998-C	Date Ma	irch 18, 1972	No	
iy	Gre	en Meadows	State	Florida	Driller M. Mill	.er
		Hole <u>Near The Center</u> Side Of Section.	13-	•		
4	NE 1	Sec. 13 of T 46 S.		╋━━┥	r Level	. <u></u>
		Lee Co., Florida		Measured	Hours Af	ter Completion
m	То		Description	of Strata		Water Bearing
0	4"	Topsoil	·			
-4 "	6 '	White sand				
6'	91	Brown sand				
9'	13'	Marl				
131	17'	Sand *				
.7 '	20'	Shell rock				
۷0 ⁺	40'	Hard rock	· · · ·			
^0 '	82 '	Sand and shell			•	
J 2'	86 '	Sand rock (hard)				
86 •	126	Sand and shell	· .			
61	150'	Sand shell and rock				
50'	170'	Green clay				
'0 '	228'	Lime rock		•		
28'	230'	Clay				
101	Total	Depth	· ·			
					•	
			-			
,	-	•				
			· · · · · ·		· · · · · · · · · · · · · · · · · · ·	
			•			
marks:						

TEST DRILLING . WATER WELLS . PUMPS

) tract	Name	Green Meadows		TEST HOL	
h-No.	ĸ	2-998-C	Date March 18, 1972	No8	
ty	Gre	en Meadows	StateFlorida	Driller M. Miller	
		Hole <u>Near The Center</u> Side Of Section			
i i je	<u>.</u>	4 Sec. 11 of T 46 S. Lee Co., Florida	Static Wate	r LevelHours Aft	er Completion
)m	To		Description of Strata		Water Bearing
<u> </u>	4"	Topsoil			
<u>4"</u>	5'	White sand			
5.	9'	Brown sand			
9'	14	Marl			
14'	17'	Sand			
<u>7</u> •	43 '	Rock			
3 *	55 '	Sand and shell			
55'	75	Rock and sand			
<u>5'</u>	85 '	Clay and shell	· · · · · · · · · · · · · · · · · · ·		
85!	95'	Clay			
15*	115'	Sand and shell			
15'	125'	Lime rock and sand	• • • • • • • • • • • • • • • • • • • •		
<u>!5</u> *	165'	Sand and rock			
651	Total	Depth		<u> </u>	
				•	
	· · · · · · · · · · · · · · · · · · ·	 			
marke:					

.

N-62

TEST DRILLING . WATER WELLS . PUMPS

Tac	t Name	Green Meadows				TEST HOL	E	
· No.		«C-998-C	Date_March	1, 1972	N	9	······································	
у	Gre	en Meadows	StateFlc	orida	Driller	M. Mille	r	
1.1		Hole <u>Near Fence</u> The Section Corner		Elevation of Hole				
			33	Static Wate	r Level	•		
1.1	1 A A A A A A A A A A A A A A A A A A A	½ Sec. 33 of T 45 S. Lee Co., Florida		Measured		Hours Afte	er Com	pletion
m	To		Description of St	rata			Water	Bearing
0	3.	Topsoil						
1	5'	White sand			· · · · · · · · · · · · · · · · · · ·			
5 !	10'	Marl		•				
)*	14'	Clay	·			• 		
4.*	18'	Sand	· · · · · · · · · · · · · · · · · · ·					
<u>)</u> •	42 *	Rock	· · · · · · · · · · · · · · · · · · ·			·		
21	84 '	Soft limestone						
4!	105	Clay, sand, and shell	·					
3+ -	126'	Sand and limestone	· · · · · · · · · · · · · · · · · · ·					
6'	156'	Sand and rock			·			
j •	168'	Hard rock and sand		· · · · ·			· ·	
8*	174'	Clay		·····		·		
•	218'	Lime rock	· · · · · · · · · · · · · · · · · · ·		·			
8.	223'	Clay	· · · ·	·				
1 * .	Total	Depth	·					
-					•			
					· .			
						· · · · · · · · · · · · · · · · · · ·		
÷			•	• .				
narks:								

Test Pumped At 60 G.P.M.

TEST DRILLING . WATER WELLS . PUMPS

rac	t Name	Green Meadows		TEST HOL	E
- No	KC	C-998-C	Date March 1, 1972	No10	
iy	Greer	Meadows	StateFlorida	Driller M. Miller	· · · · · · · · · · · · · · · · · · ·
	and the second	Hole Near the section	Elevation o Hole Static Wate		
1		4 Sec. 28 of T 45 S., Lee Co., Florida.		Hours Aft	er Completion
m	To		Description of Strata		Water Bearing
0	3 *	Topsoil		<u> </u>	
<u></u> £	61	White sand			
<u>6'</u>	11'	Marl		· · · · · · · · · · · · · · · · · · ·	
<u>L</u> *	15'	Sandy clay			
15*	17'	Sand			
7 •	40'	Rock			
•J	70	Sandy clay			
<u>)</u>	80'	Coarse sand			
5 !	901	Sand		· · ·	
101	100'	Sand and shell	· · · · · · · · · · · · · · · · · · ·		
D+	120'	Sand and meal rock	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
<u>0'</u>	130 .	Fine sand			
0 • 1	140*	Coarse sand	· · · · · · · · · · · · · · · · · · ·		
401	160'	Sand and shell			
0.	170 •	Sandy clay			
/01	180*	Sand and lime rock		•	
01	220*	Lime rock		a	
D•	230	Clay	•		
01	Total	Depth			
				· .	

rmarka:

Test Pumped At 50 G.P.M.

WATER SUPPLY SERVICES SINCE 1924

TEST DRILLING . WATER WELLS . PUMPS .

i trac	t Name	GAC Utilities, Inc. TEST HON	.E
r No	G	reen Meadows Date May 1971 No. 11	
ty	Ft. 1	Myers State Forida DrillerM_EMil	ler
itio ad	n of Test	Hole West side of Elevation of Test eet south of section Hole	
}	NE !	er. 35 Static Water Level 4 Sec. 35 of T 45S Measured Hours Aft	
)m	То	Description of Strata	Water Bearing
ວ	15	Sand	
· · ·	19	White marl rock - hard	
9	27	Lime rock and marl	
	45	White marl	
5	82	Clay and shell	
·····	108	Loose sand and limestone	
J	109	Lime rock - hard	
<u>^</u>	120	Shell and sand	
<u>ل</u>	130	Sand with some shell	
0	138	Lime rock with sand layers	
i	148	Lime rock with shell and sand	
8	149	Sandstone - hard	
}	155	Sand with trace of shell	
5	165	Layers of sand and sandstone - hard	
1	203	Gray sand	
3	221	Limestone and sand	
٦	241	Limestone with shell and sand	
	255	Clay with trace of shell	
5.	Total	Depth	

Installed 2-inch diameter casing with drive shoe to 130 feet. ~marke: Test sumped well at 45 gpm for 2 hours and collected water sample.

WICHITA . GARDEN CITY . LIBERAL . KANSAS CITY . DENVER . OMAHA . AMES . ST. LOUIS . AURORA N 62

Layne-Western Company, Inc.

W-62

-WATER SUPPLY SERVICES SINCE 1924-

TEST DRILLING . WATER WELLS . PUMPS

tract	Name	Green Meadows Groundwater Study	TEST HOLE		
No.	K	C 998-C Date 24 Sept. 7	71No,12		
م		Ft. Mye rs State_ Florida	Driller_M.Miller		
، بیمیند. بیمینیسی	SW	Hol 35 5 Stat	vation of Test e ic Water Level usured Hours After	r Comp	letion
m	To	Description of Strata		Water E	learing
) 	<u>17</u> 49	Light colored sand Layers of hard rock and coarse sand			good
	<u>69</u> 84	Clay in limestone and sand			poor
 -	90	Limestone and sand, clay filled Green clay	<u></u>		none none
·	94	Limestone with green clay			none
	103	Limestone with layers of hard rock, w	ater bearing	{	fair
	140	Limestone (very good water bearing ma	terial)	37	V.go
	156	Hard rock layers with sand	· · · · · · · · · · · · · · · · · · ·	16 0	boop
	166	Boulders, gray sand (firm) with some	shell	10	oor
	186	Gray sand with trace of shell	······································	20	poor
	196	Gray sand with some limestone		i se 🖡	poor
	226	Limestone with some clay		Г	000r.
	<u>235</u> 236	Mostly clay with some limestone rock Medium rock			ione
	230	Clay with some shell	· · ·		ione.
	246	Total depth drilled			
			· · · · · · · · · · · · · · · · · · ·		

Installed 82 feet of 2 inch diameter pipe. Test pumped 60+ gpm with 15 inches of vacuum.

WICHITA . GARDEN CITY . LIBERAL . KANSAS CITY . DENVER . OMAHA . AMES . ST. LOUIS . AURORA

Contract Nam	e Green	Meadou	vs Pro	
Job No				NoNo
City				Driller
Test Hole Lo	ration SEX	, Sec.	14, T	45 S., R 26 E. in Lee County, Florida
		Distance 4	and Directi	on from Permanent Landmark or Previous Test Hole
				TEST LOG
FROM	то	MARSH Funnel	MUD PIT	Static Water Level Measu Hours After Completion
		VISCOSITY	INCHES	FORMATION
010"	6'0"			Sand, fine to med., white to yellow
6'0"	10'0"			Sand, gray, silty
10'0"	20'0"			Limestone, tan
2010"	40'0"		-	Limestone, tan; gray marl
40'0"	6010"			Clay, green
60'0"	75'0"		- *	Sandstone, gray, calcareous; shell
75'0"	80'0"			Limestone, blue-gray
80'0"	9510"			Limestone, blue-gray, sandy
95'0"	120'0"			Sandstone, gray, calcareous
120'0"	140'0"			Sandstone, gray, green clay
140'0"	160'0"			Clay and limestone, gray
160'0"	170'0"			Clay, green
170'0"	190'0"			Clay, light gray and limestone
190'0"	200'0"			Limestone, light gray, sandy
Contir	ued			
NOTES: Sia	e of Pit			.XX

· ·

۰...

.

	e Green	Meado	ws Pr	
b No				NoNo
ity				State Driller
est Hole Lo	cation			
	<u></u>			on from Permanent Landmark or Previous Test Hole
Contin	uation of			TEST LOG Static Water Level Measured
FROM	то	MARSH FUNNEL VISCOBITY	MUD PIT LOSS Inches	Hours After Completion
200*0"	220'0"	SECONDS		Clay, gray, some limestone
220'0"	240'0"			Clay, green and gray
240'0"	260'0"			Clay, dark gray, phosphatic; phosphate grain
260'0"	280*0"			Clay, dark gray, phosphatic, sandy
280'0"	320'0"			Limestone, gray-white, phosphatic
320'0"	340'0"		۰ ۹ ,	Same
340'0"	360'0"			Limestone, as above, some gray clay
			-	
	[· [
·····				
				•

· •

._:

· .

. . .

1.1

н н.,

. .

. . . .

•

Contract Nam	n e Gre	en Mea	dows	Project TEST HOLE
ob No				_Date NoL-619
City				
est Hole Lo	cation <u>NE</u>			T 45 S., R 27 E., Lee County, Florida
		<u>, 11 </u>	<u> </u>	TEST LOG
FROM	то	MARSH FUNNEL VISCOSITY SECONDS	MUD PIT Loss Inches	Static Water Level Measured Hours After Completion FORMATION
0*0"	12'0"			Sand, fine to med., tan to brown
12'0"	20'0"			Limestone, tan
20'0"	85'0"			Limestone, ?
85'0"	120'0"			Clay, green, ?
120*0"	200'0"			Limestone, sandy, ?
200'0"	220'0"		, 6 , .	Sandstone, gray
220'0"	240'0"			Same
240'0"	260'0"			Clay, dark gray, sandy
260'0"	280'0"			Sand, gray, clayey
280'0"	320'0"		.	Sand, med. to coarse
320'0"	380'0"			Limestone, gray, casts, molds
380'0"	400'0"			Limestone, gray and tan
400'0"	440'0"		•	Clay, gray, phosphatic
440'0"	460'0"			Clay, green
Contin	ued			

.

Data From U.S. Geological Survey - Ft. Myers, Florida. Drilled By

Others In Green Meadows Area Several Years Ago.

1

1. 2

ι.

Job No,	e Green	Meddo	<u>NS FIU</u>	
City				
Test Hole Lo	cation			
				Ion from Permanent Landmark or Previous Test Hole
Contir FROM	nuation o	E L-61	MUD PIT LOSS INCHES	TEST LOG Static Water Level Measure Hours After Completion FORMATION
460'0"	495'0"	SECONDS		Clay, dark gray, sandy, phosphatic
495'0"	540'0"			Limestone, gray white, phosphatic
			'4	
			- - -	
IOTES: Siz	e of Pit			X

Contract Na	me <u>Gre</u>	en Mead	lows P	roject TEST HOLE
Job No				NoNoL-616
City		·····		Driller
Test Hole L	ocationNW			46 S., R 26 E., Lee County, Florida
				TEST LOG
**************************************		MARSH	MUD PIT	Static Water Level
FROM	to	FUNNEL, VISCOBITY		Hours After Completion
		SECONDS	INCHES	FORMATION
0	15			Sand, med., tan; sandstone; shell
15	30			Sandstone, tan, calcareous; shells
30	45			Sandstone, gray; calcareous; shells
45	60			Same
60	75			Limestone, tan and gray; shells
75	105			Limestone, gray; few shells
105	120			Clay, green; some limestone
120	150			Clay, green
150	165			Limestone, gray, sandy
165	180			Sandstone, gray-tan, calcareous
180	210			Sandstone, gray, calcareous; phosphate
210	225			Clay, dark gray-green, sandy
225	240	;		Sand, very fine, gray; clayey
240	270			Clay, green and gray
270 295	295 345			Clay, dark gray, sandy, phosphatic Limestone, gray-white, phosphatic
NOTES: S	Size of Pit			× ×

ч.

TOPEKA

KANSAS

THE KANSAS STATE DEPARTMENT OF HEALTH

DIVISION OF LABORATORIES Environmental Health Laboratory 801 Harrison Street 66612

E. D. LYMAN, M. D., M. P. H. Director of Health

May 26, 1971

Layne Western Company, Inc. 1010 West 39th Street Kansas City, Missouri 64111

Attention: Mr Nuzman

Dear Mr. Nuzman:

Listed below in milligrams per liter are the results of chemical analyses of two samples of water collected in Florida. The samples may be identified as follows:

No. 1 GM No. 1 240' Hole, 89' pipe, collected 4-30-71.

No. 2 GAC Test Hole No. 11, collected 5-13-71.

43		<u>No.</u>	1	No.	2
pH	a	7.3		7.3	
Total Hardness (as CaCO ₃)	=	326.	mg/1	262.	mg/l
Calcium (as Ca)	=	104.	mg/1	69.	mg/1
Magnesium (as Mg)	=	16.	mg/1	22.	mg/1
Sodium	= ·	45.	mg/1	50.	mg/1
Total Alkalinity (as CaCO ₃)	=	276.	mg/1	250.	mg/1
Chloride	-	88.	mg/1	60.	mg/1
Sulfate		18.	mg/1	33.	mg/1
Nitrate (as NO ₃)	=	1.8	mg/l	1.5	mg/1
Fluoride		0.4	mg/1	0.6	mg/1
Iron	82	0.38	mg/1	0.38	mg/1
Manganese	•	0.00	mg/1	0.00	mg/1

Sincerely,

Nicholas D. Duffett, Ph.D. Director

d a. Stattenherg. 4

Howard A. Stoltenberg, M.A. Chief, Water Chemistry Section

HAS:g1b

LOCATION DESCRIPTION	CASING DIA.	CAS INC DEPTH	NELL DEPTH	РН	M.ALK.	T.Hd.	Mg.Hd.	Ca.Hd.	CL	T.D
Green Meadows No. 1 2/11/71	2"	89	244	7.4	270	314	66	248	80	43
Green Meadows No. 1 2/25/71	2"	89	244	7.3	272	304	72	232	120	41
Green Meadows No. 1-A 2/11/71	2 "	40	61	7.2	189	710	246	464	1200	310
Green Meadows No. 1-A 2/25/71	2*	40	61						1380	350
Green Meadows No. 2	2"	162	238	7.2	268	198	110	88	60	44
Green Meadows No. 2-A	2"	23	50	7.2	238	250	22	228	30	30
Green Meadows No. 3	2"	110	-239	7.4	284	282	88	194	110	62
Green Meadows No. 3-A	2"	21	50	7.2	214	212	10	204	20	23
Irr. Well NW% 10-46S-26E	6"			7.2	212	232	34	198	65	27
Irr. Well SW1 25-458-26E	6"			7.4	188	216	12	204	45	2!
Irr. Well SE% 14-46S-26E	6"			7.0	218	242	12	230	30	21
Irr. Well SE ¹ ₄ 35-458-26E	8"		1	7.1	234	250	12	238	35	2
Flowing Well NW4 9-465-25E	6"			7.6					1000	26
Green Meadows No. 7-A	2"		105	7.8	272	264	2	262	40	29
Green Meadows No. 7	2"		230	7.7	256	284	30	254	60	30
Green Meadows No. 8-A	2"		105	7.8	276	226	26	200	40	28
					•					
			•							
Cape CoralNorth Pine Island Ro	a 10"	125	2251	7.3	200	294	156	138	180	46

Cape Coral Water Treatment Plant Laboratory

					WATER Q CAPE CORA	UALITY DA L WATER 1							
	• -	Locat	tion	Casing	Casing	Well	pH	м.	T.	Mg	Ca	Cl	T.D.:
		Descr;	iption	Dia.	Depth	Depth		Alk.	Hđ.	Hd.	Hd.		
	Green	Meadows	#12	2 ^u	82 '	103	7.8	186	186	48	138	40	250
	Green	Meadows	#12	2 *	82 '	136'	7.9	258	272	162	110	40	310
	Green	Meadows	#12	2"	82 *	243 *	7.8	246	232	72	160	40	330
		14 3	"								0.50		
		Meadows		- •		105'	7.8	290	270		270	80	390
	Green	Meadows	- 井9 			223 "	7.6	240	244	88	156	70	350
	Green	Meadows	#10	2"		105'	7.6	254	270	64	206	70	340
	Green	Meadows	#10	2"	- -	230'	7.4	248	158	76	82	70	290
B L	Green	Meadows	#11-A	2"		50 '	7.4	208	230	20	210	170	260
		Meadows		2"	130'	255'	7.6	244	252	92	160	80	370
5	Green	Meadows	#3-A	2"	21'	56'	7.2	214	212	10	204	20	235
~		Meadows		2"	110'	239*	7.4	284	282	88	194	110	625
_	Green	Meadows	#2-A	2"	23*	50'	7.2	238	250	22	228	30	300
ST		Meadows		2"	162	238	7.2	268	198	110	88	60	440
ERN	Green	Meadows	#1-A 2/11/71	2"	40*	61'	7.2	184	710	246	464	1200	3100
		Meadows	2/25/71	2*	40*	61'						1380	3500
0		Meadows		2*	89'	240	7.4	270	314	66	248	80	430
		Meadows		2"	89'	244	7.3	280	304	72	232	120	410

Y, INC.

.

12.5

28

and the second			A 1 1	· · · · ·
Orlando				
				· · · · · · · · · · · · · · · · · · ·
	(1) A. M.	a second s		the second se

P. O. Box 8025A • Orlando, Florida 32806 • 305 424-5606

WATER ANALYSIS REPORT

Report to: LAYNE-WESTERN COMPANY

Date: SEPTEMBER 20, 1971

Sample Number:_____

4809

ANALYTICAL LABORATORY DIVISION

Appearance: CLEAR

Sampled by: CLIENT

Identification: GM #12 TEST WELL 82' PIPE 243' DEEP PUMP + 60 GPM MOST WATER METHODS FROM 90'-155' LEVEL

This water was analyzed using methods edapted from "Standard Methods for the Examination of Water and Westewater," Latest Edition, APHA, AWWA and WPCF.

	RESU	LTS	• •
Determination	p.p.m.	Determination	p.p.m.
Total Dissolved Solids, @ 105°C	366	Sulfate, as SO.	16
Total Hardness, as CaCO,	240	Fluorides, as F	0.55
Calcium Hardness, as CaCOs	180	Silica, as SiO ₂	37
Magnesium Hardness, as CaCO ₁	60	Copper, as Cu	0.0
Calcium, as Ca	72	Phosphate (Total), as PO4	0.7
Magnesium, as Mg	14	Color, Standard Platinum Cobalt Scale	15
Alkalinity (Phenolphthalein), as CaCOa	0	Odor	0
Alkalinity (Total), as CaCO3	270	pH (Laboratory)	7.8
Carbonate Alkalinity, as CaCOa	0	pHs	6.9
Bicarbonate Alkalinity, as CaCOa	270	Stability Index	6.0
Hydroxides, as OH	0	Saturation Index	0.9
Carbon Dioxide, as CO2	9	Turbidity, Silica Scale	20
Carbonates, as CO ₃	_0		
Bicarbonates, as HCO _a	330		
Chlorides, as Cl	39		<u></u>
Iron, as Fe	0.0		
Manganese, as Mn	0.0		

Chemist

Signed:.

(To convert ppm to greins per gellon, divide pph by 17.1) INSPECTIONS, ANALYSIS, QUALITY CONTROL, RESEARCH & DEVELOPMENT IN MICROBIOLOGY, BIOCHEMISTRY & CHEMISTRY. Layne-Western Company, Inc. WATER SUPPLY SERVICES SINCE 1924 TEST DRILLING . WATER WELLS . PUMPS TACE Name_Florida Cities Water Company_______ TEST HOLE

No Estero #1 June 30, 1971 KC-277-C Date No._____ Florida M. Miller Ft. Myers Driller... State. tion of Test Hole Near the NE corner **Elevation of Test** _ a small tract of land located Hole_____ 34 the: Static Water Level Flowing Well 1/ NE 1/ Sec. 34 of T 465 Hours After Completion Measured_____ 25 E. Lee Co., Florida Water Bearing **Description of Strata** To m 7 Light sand Û. Sand with hard pan layers at 7' and 17' 17 Sand (some rust color) and limestone 10 27 Some White limestone formation 43 16 Fair Clay, light colored changing to a darker color 30 None 73 3 80 7 Clay, with a trace of shell None Hard limestone with rock -- 4 to 6-inch voids Fair 98 18 su Compacted limestone with colored sand 10 108 Poor Hard sandstone with gray sand 116 8 Poor Phonada Gray sandstone 30 Poor 146 i Donto e 30 Poor 176 Compacted sand with limestone color 1 18 194 Black sand Fair 6 Hole 201 Black sand with some clay mixed 7 Poor 206 Lime rock, Artesian flow started at 4 GPM 5 ١Ŀ Fair Lime rock, water sample taken, flow 10 GPM 210 4 Good Lime rock with dark sand 218 U 8 Fair 1 238 Shell and lime rock 20 Good Lime rock, Artesian flow in excess of 30 GPM 261 5 23 7. Goo 263 Heavy clay ľ 2 None Total Depth Drilled

Jarks: Chlorides from flowing well were reported to be 540 mg/l only 42 feet of inch pipe was used in constructing test hole.

-62 WICHITA + GARDEN CITY + LIBERAL + KANSAB CITY + DENVER + OMAHA + AMEB + ST. LOUIS + AURONA

1

STORES

lay.	ne-Weste		and the second	Inc.	
	TEST DRILLING				
ract NameFlorida Cities Water Co No. KC-277-C	Date June 30,	1971	TEST No. Este		

y	Ft.	Myers State Florida DrillerM. Miller			
itio	n of Test mall tr	Hole Near the SW corner Elevation of Test			
a ti		34 Static Water Level Flowing We	11		
	1/ NE $1/200 34 0740 5.$				
L .		Lee Co., Florida Measured Hours Aft	er Com	pietion	
m	To	Description of Strata	Water	Bearing	
<u>)</u>	10	White sand			
	14	Brown sand	4	Fair	
4	24	Sand rock with limestone and white sand	10	Good	
	35	Limestone and sand	11	Fair	
5	45	Light colored clay and shell	10	Poor	
1	79	Green clay			
9	89	Clay and limestone			
<u>)</u>	109	Layers of hard limestone and sand	20	Fair	
_ ر	119	Boulders in limestone and sand	10	Poor	
٩	175	Limestone with sand and clay	56	Poor	
)	195	Black sand and clay mixed	20	Fair	
5	205	Shell and limestone formation flow at 4 GPM	10	Fair	
<u>ب</u>	212	Shell and limestone formation	7	Good	
2	222	Clay color limestone with small gravel	10	Fait	
, , ,	232	Limestone and gravel	10	Fair	
2	252	White shell and limestone flow about 30 GPM	20	Good	
-	259	Clay colored shell and clay	7	Fair	
J	261	Clay	2	None	
J	Total	Depth Drilled With Churn Drill			

Darks: Only 42 feet of 2-inch diameter pipe required to drill test hole original oride content was approximately 550 mg/l. Well was plugged back with cement 5 195 feet and tested. Chloride's still 460 mg/l after 16 hours pumping.
W.L. 3.5 feet below land surface after plugging.

162 WICHITA + GARDEN CITY + LIBERAL + KANSAS CITY + DENVER + OMAHA + AMES + ST. LOUIS + AURORA

Orlando Laboratorio	es, Inc.		
P. O. Box 8025A	• Orlando, Florida	32806 •	305 424-5606
WATER ANALYSIS REPORT	ANALYTICAL	LABORATO	DRY DIVISION
Report to: LAYNE WESTERN CO. INC.	Appearance:CL	EAR	
Date:JUNE 29, 1971	Sampled by:CL		
Sample Number 4543	Identification: WEL	L #2	

METHODS

This water was analyzed using methods adapted from "Standard Methods for the Examination of WPCF. Water and Westew AWWA and Edition

		RESULTS		
	Determination	p.p.m.	Determination	
	Total Dissolved Solids, @ 105°C	1,400	Sulfate, as	
	Total Hardness, as CaCO _{ii}	504	Fluorides,	
	Calcium Hardness, as CaCOa	282	Silica, as S	
	Magnesium Hardness, as CaCOa	222	Copper, as	
,	Calcium, as Ca	1/3	Phosphate	
L	Magnesium, as Mg	54	Color, Star	
\$	Alkalinity (Phenolphthalein), as CoCO ₂	0	Odor	
t c	Alkalinity (Total), as CaCOa	192	pH (Labora	
	Carbonate Alkalinity, as CaCOa	0	pHs	
-	Bicarbonate Alkalinity, as CaCO3	192	Stability In	
i	Hydroxides, as OH	_0	Saturation	
r :	Carbon Dioxide, as CO2	12.5	Turbidity,	
!	Carbonates, as CO;	0		
	Bicarbonates, es HCO ₈	234		
ę	Chlorides, as Ci	465	•	
: L	iron, as fe	0.05	·	
	Manganese, as Mn	0.0		

Potermination	p.p.m,
Sulfate, as SO4	80
Fluorides, es F	0.8
Silica, es SiO2	4.0
Copper, as Cu	0.0
Phosphate (Total), as PO4	0.8
Color, Standard Platinum Cobalt Scale	0
Odor	0
pH (Laboratory)	7.5
pHs	6.9
Stability Index	6.3
Saturation Index	0.6
Turbidity, Silice Scale	0
IN MARY SIRE COR	•
	واستبرت الكافية بالبابية

Signed: Chemist

(To convert ppm to grains per gallon, divide ppm by 27) INSPECTIONS, ANALYSIS, QUALITY CONTROL, RESEARCH & DEVELOPMENT IN MICROBIOLOGY, BIOCHEMISTRY & CHEMISTRY.

	<u>C</u>	TEST DRILLING . WATER WELLS . PUMPS		
TAC	t Name	Florida Cities Water Company TEST HO	· · ·	
No		KC 277-C Date 29 June, 1971 No. 3-71	<u> </u>	
		San Carlos Park State Florida Driller M. Miller	•	
:10		Hole East end of San Elevation of Test evard near the center 15		Cê
	A	4 Sec. 15 of T 46-S Lee Co., Florida Measured Hours Af		
m	To	Description of Strata	Water	Bearing
)	6	Gray sand		
	11	Hard rock and boulders		
	21	Yellow to orange sand	10	Fai
	30	White sand with soft limerock	9	Fai
 	38	Soft limestone rock	8	Fai
	50	Limestone with green clay	12	Poo
	80	Green clay	30	Non
	96	Clay with shell and sand	16	Non
	103	Water producing sand and limestone - (Water Sample)	7	Goo
	126	Compact sand and shell with some clay	15	Fai
	141	Limestone and shell	15	Fai
	151	White limestone	10	Good
	181	Limestone with some clay	30	Fai
	211	Limestone with black sand	30	Fair
	216	Limestone formation (water sample)	5	Good
		Total depth of drilling		
	216			

0' of casing pipe at 216' depth, the static level was above ground with well lowing 5 gpm. Pumped more than 60 gpm.

	L	TEST DRILLING . WATER WELLS . PUMPS		
TAC	t Name_	Florida Cities Water Company TEST H		
No.		KC 277-C Date 2 July, 1971 No. 4-71		
		San Carlos Park State Florida Driller. Miller		
l		Hole 1/2 mile north of Elevation of Test n San Carlos Develop- 15 Hole	urface	
	NW	4 Sec. 15 of T 46S	1. A.	
1	To	Description of Strata	Water	Bearing
	8	Brown sand		
	11	Two layers of rock in sand		
	27	White sand medium to fine	16	Fai
	44	White marl rock		
	96	Green clay with some shell	52	Non
••••	105	Hard limestone rock	9	Fai
	115	Sand and fine limestone (water sample pumped)	10	Goo
-	145	Dense gray sand	30	Fai
	155	Sand and clay	10	Poo
_	175	Sand with some clay and limestone, mixed	20	Fai
	185	Black sand with clay and limestone	10	Fai
	200	Black sand and limestone (water sample)	15	Good
_	200	Total depth of drilling		
		Water sample at 115' had chlorides of 475 ppm		
		Water sample at 200' had chlorides of 445 ppm		
		_		
<u> </u>				<u> </u>
,			1	- 1

ver 60 gpm.

52 WICHITA + GARDEN CITY + LIBERAL + KANSAS CITY + DENVER + OMAHA + AMES + ST. LOUIS + AURORA

Layne-Western Company, Inc.

TEST DRILLING . WATER WELLS . PUMPS

Tac	t Name_	Florida Cities Water Company TEST HOL		
> No	кс-2	77-C Date Sept. 27, 1971 No. 5-71		
y	Fort	Myers State Florida Driller M. Mille:	٢	
itio	n of Test 41 on	Hole 5 miles east of Elevation of Test Alico (Rock Pit) Road Hole		
	SB.	Sec. of T 46 S Measured Measured		pletion
m.	To	Description of Strata	Water	Bearing
0	9	Sand		
1	16	Medium Hard Rock	7	
6	24	Sand	8	
	43	Layers of Rock and Sand	19	Fair
3	47	Solid Rock, hard	4	V.Poor
· · · ·	77	Sand with heavy clay	30	V. POOI
1	79	Hard pan layer	2	None
2	106	Lime Rock (Pumped 50 gpm for water sample)	27	Good
J.	125	Lime Rock and shell (light clay color)	19	Fair
5	140	Rock layers with clay and compacted sand	15	Poor
)	157	Gray sand with clay	17	V.Poor
7	177	Limestone and light colored clay with black sand	20	Poor
1 1 	195	Limestone, Loose granular formation.	18	Fair
5	205	Limestone and clay	10	Poor
-	215	Limestone and clay with black sand	10	Poor
5	230	Clay with some sand	15	None
-	Total	Depth of Drilling	•	
-				
j				
	Pump le at 2 Dt dept	ped 1 hour only 15 gpm with 122 feet of 2 inch pipe casing in 230 feet depth. Estimate yield potential at 250 gpm from 79 t 25.	test :0 14	0

WICHITA . GARDEN CITY . LIBERAL . KANSAS CITY . DENVER . OMAHA . AMES . ST. LOUIS . AURORA

lando Laboratories, Inc.

P. O. Box 8025A

Orlando, Florida 32806

305 424-5606

WATER ANALYSIS REPORT

ANALYTICAL LABORATORY DIVISION

Report to: FLORIDA CITIES WATER CO.)ater __ SEPTEMBER 7, 1971

Sample Number: 4758-1

Appearance: CLEAR Sampled by: CLIENT

Identification: ALICO. ROAD WELL 84' PIPE 94' HOLE -EAST "41 £

METHODS This water was analyzed using methods adapted from "Standard Methods for the Examination of Water and Wastewater," Latest Edition, APHA, AWWA and NPCF.

	RES	SULTS	-
Determination	p.p.m.	Determination	p.p.m.
Total Dissolved Solids, (M 105"C	510	Sulfate, as SO1	Z6
Total Hardness, as CaCOa	300	Fluorides, as F	0.40
Catcium Hardness, as CaCOa	Z16_	Silica, as SiO ₂	25
Magnesium Hardness, as CaCOa	84	Copper, as Cu	0
Calcium, as Ca		Phosphate (Total), as PO1	0.3
Magnesium, as Mg	21	Color, Standard Platinum Cobalt Scale	0
Alkalinity (Phenolphthalein), as CaCOa	.0	Odor	0
Alkalinity (Total), as CaCOa	246	pH (Laboratory)	7.4
Carbonate Alkalinity, as CaCOa	0	()Hs	6.9
Bicarbonate Alkalinity, as CaCO ₄	246	Statulity tucker	6.4
Hydroxides, as OH	0	Saturation Index	0.5
Carbon Dioxide, as CO2	19	Turbidity, Silica Scale	0
Carbonates, as CO.	0		
Bicarbonates, as HCO;	300		n. 1990 - 18 - ∕18 1 19 - 1840 18
Chlorides, as Cl	.96		-m House Hollow as more
Iron, as fe	0.36		···· • • • • •
Manganese, as Mn	0.0		

Sitpush:

ur Elledua emist

(to convert ppm to grams per gallon, divide ppm by 17.1) INSPECTIONS, ANALYSIS, GUALITY CONTROL, RESEARCH & DEVELOPMENT IN MICROBIOLOGY, BIOCHEMISTRY CHEMISTRY.

Orlando Lab	oratories,	Inc.		
	P. O. Box 8025A • Orl	ando, Florida 3280	6 • 305 424-560	3
WATER ANALYSIS REPORT	A	NALYTICAL LAB	ORATORY DIVISIO)N
Report to: FLORIDA CITIES WAT	ER CO Appeara	nce: CLEAR	αντικό το	*****
Date:SEPTEMBER 7, 1971	Samplec	by: CLIENT	5-71	••
Sample Number: 4758-2	Identific METHODS	ation ALICO ROAI #2 - 122' 5' Mile	PIPE 230' HOLE	
This water was analyzed using methods adapted from WPCP.	"Standard Mathods for the Examination of RESULTS p.p.m. Dotermination		leiest Editlen, APHA, AWWA	

Determination	p.p.m.	Determination
Total Dissolved Solids, @ 105°C	700_	Sulfate, as SO4
Total Hardness, as CaCO ₃	330	Fluorides, as F
Calcium Hardness, as CaCOa	216	Silice, as SiO ₂
Magnesium Hardness, as CaCOa	114	Copper, es Cu
Calcium, as Ca	86	Phosphate (Total), as PO:
Magnesium, as Mg	_85_	Color, Standard Platinum Cobait Scale
Alkalinity (Phenolphthalein), as CaCO3	<u> </u>	Odor
Alkalinity (Total), as CaCOa	156_	pH (Laboratory)
Carbonate Alkalinity, as CaCOa	_0	pHs
Bicarbonate Alkalinity, as CaCOa	156	Stability Index
Hydroxides, as OH	0	Saturation Index
Carbon Dioxide, as CO ₂	12	Turbidity, Silica Scale
Carbonates, as CO ₃	0	
Bicarbonates, as HCO:	190_	
Chlorides, as Cl	234	
Iron, as Fe	0.20	
Manganese, as Mn	0.0	

Manganèse, as Mn

feel le line Signed: .

0.48

23

0

0.8

0

0

7.4

2.1

6.8

0.3

(To convert ppm to grains per galton, divide ppm by 17.1) INSPECTIONS, ANALYSIS, QUALITY CONTROL, RESEARCH & DEVELOPMENT IN MICROBIOLOGY, BIOCHEMISTRY & CHEMISTRY,

		TEST DRILLING • WATER WELLS • PUMPS		
ct Na	me_Florida Cities Water	Company	TEST HOLE]
	C 277-C	Date 14 Oct., 1971 No	6-71	• •
	Ft. Myers	Rlowida	M. Miller	
on of Ali	Test Hole 4.5 miles E. of U co (Rock Pit) Road-Estin	hate Elevation of Test Hole		
ion		Static Water Level	······································	
5 S	N 14 Sec. 1 of T 465			
25E	Lee Co., Florida	Measured	Hours Alter Con	npletio
17	``	Description of Strata	Wate	r Bearing
1	3 White Sand			
3	3 Limestone, rock	<u> </u>	20	Fair
4		d layers	10	Fair
5	5 Limestone rock, med	lium hard	12	Fair
7	5 Green clay w/some r	ock particles	20	None
7	7 Black rock		1	None
8	2 Clay and sand mixed		5	None
8	B Rock layer		1	None
	Clay and sand		7	None
9	5 Limestone (pump tes	t at 103' - 60+ gpm)	25	Good
90 11	5 Fine limestone mate	rial w/sand	10	Poor
		TA	10	Fair
11	5 Sand and shell, fir		11	Good
11		se (pumping test - 65+ gpm)	<u> </u>	
11 12 13	Sand and shell, loo			
111 121 131 140	Sand and shell, loo		·····	
111 121 131 140	Sand and shell, loo			
11 12 13 14	Sand and shell, loo			

ı.

٠.

62

P. O. Box 8025A	• Orlando, Florida 32806 • 305 424-5606
WATER ANALYSIS REPORT	ANALYTICAL LABORATORY DIVISION
Report to: _FLORIDA CITIES WATER, CO.	Appearance: CLEAR
Date:OCTOBER 4, 1971	Sampled by: CLIENT 6-71
Sample Number: 4859-1	Identification: ALICO #1 61' PIPE 103' HOLE 60 GPM 4.5 Mile EAST #41

WPCF. RESULTS Determination Determination p.p.m. P.p.M 710 33 Total Dissolved Solids, (#) 105"C Sulfate, as SO, O.SD 360 Total Hardness, as CaCOa Fluorides, as F 270 23 Calcium Hardness, as CaCO_a Silica, as SiO₂ 90 Magnesium Hardness, as CaCOa Copper, as Cu 108 2.8 Calcium, as Ca Phosphate (Total), as PO, ZZ 0 Magnesium, as Mg Color, Standard Platinum Cobait Scale 0 Alkalinity (Phenolphthalein), as CaCOn Odor

264 Alkalinity (Total), as CaCOa Carbonate Alkalinity, as CaCOa Z64 Bicarbonate Alkalinity, as CaCOa 0 Hydroxides, as OH 18 Carbon Dioxide, as CO2 0 Carbonates, as CO. 322 Bicarbonates, as HCOa 192

Chlorides, as Cl

Manganese, as Mn

Iron, as Fe

25 pH (Laboratory) pHs Stability Index 0,7 Saturation Index Turbidity, Silica Scale

Signed:

(June Selecura)

(In convert pans to grains per gather, divide pans by 17.1) INSPECTIONS, ANALYSIS, QUALITY CONTROL, RESI DEVELOPMENT IN MICROBIOLOGY, HICK HEMISTRY THIMISTRY.

0.0

0.0

Orlando Laboratories, Inc.

P. O. Box 8025A Orlando, Florida 32806 305 424-5606

WATER ANALYSIS REPORT

Report to: FLORIDA CITIES WATER, CO.

Date: ____OCTOBER_4, 1971_ _____

Sample Number: 4859-2

ANALYTICAL LABORATORY DIVISION

Appearance: CLEAR

Sampled by: CLIENT 6-7

Identification: ALICO #1 61' PIPE 147' HOLE 70 GPM 4.5 E i

METHODS

This water was analyzed using methods adapted from "Standard Mothods for the Examination of Water and Wastewater," Latest Edition, APHA, AWWA and WPCF.

	RESU	ATS	•
Determination	p.p.m.	Determination	p.p.m.
Total Dissolved Solids, (*) 105"C	825	Sulfale, as SO1	34
Total Hardness, as CaCOa	420	Fluoridos, as F	0,50
Calcium Hardness, as CaCOa	300	Silica, as SiO:	24
Magnesium Hardness, as CaCO3	120_	Copper, as Cu	0
Calcium, as Ca	120	Phosphate (Total), as PO	0.5
Magnesium, as Mg	29	Color, Standard Platinum Cobalt Scale	0
Alkalinity (Phenolphthalein), as CaCOa	0	Odor	0
Alkalinity (Total), as CaCO1	258	pH (Laboratory)	7.4
Carbonate Alkalinity, as CaCOa	0	pHs	67
Bicarbonate Alkalinity, as CaCOa	258	Statistity Index	60
Hydroxides, as OH	0	Saturation. Index	0.7
Carbon Dioxide, as CO2	22	Turbidity, Silica Scalo	0
Carbonates, as CO ₃	0		• ••••••••••••••••••••••••••••••••••••
Bicarbonates, as HCO3	314		1 100 - 100 Mart - 100 min - 100 Mart - 1
Chlorides, as Cl	240		**** ** * * * * * * *
Iron, as Fe	0.0		-
Manganese, as Mn	0.0	•	
		•	

Signed:

Jen Upedica

(To convert ppm to grains per gation, divide ppm by 17.1) INSPECTIONS, ANALYSIS, QUALITY CONTROL, RESEARCH & DEVELOPMENT IN MICROBIOLOGY, BIOCHEMISTRY A CHEMIS

							In	

P. O. Box 8025A • Orlando, Florida 32806 • 305 424-5606

W.	ATER	ANAL	YSIS	REPORT

Report to: FLORIDA CITIES WATER, CO.

Date: OCTOBER 4, 1971

Sample Number

4859-2

ANALYTICAL LABORATORY DIVISION

0,50

7.4

61

Appearance: CLEAR

Sampled by: CLIENT 6-7/

Identification: ALICO #1 61' PIPE 147' HOLE 70 GPM 4.5 Email #41

METHODS

This water was analyzed using methods adapted from "Standard Mothods for the Examination of Water and Wastewater," Latest Edition, APHA, AWWA and WPCF.

	RE	SULTS
Datermination	p.p.m,	Determination
Total Dissolved Solids, @ 105"C	825	Sulfate, as SO1
Total Hardness, as CaCOa	420	Fluondes, as F
Calcium Hardness, as CaCO ₃	300	Silica, as SiO2
Magnesium Hardness, as CaCO;	120_	Copper, as Cu
Calcium, as Ca	120	Phosphate (Total), as PO1
Magnesium, as Mg	29	Color, Standard Platinum Cobalt Scale
Alkalinity (Phenolphthalein), as CaCO3	0	Odor
Alkalinity (Total), as CaCOa	258	pH (Laboratory)
Carbonate Alkalinity, as CaCOa	0	рНs
Bicarbonate Alkalinity, as CaCOa	258	Stability Index
Hydroxides, as OH	0	Saturation. Index
Carbon Dioxide, as CO ₂	22	Turbidity, Silica Scale
Carbonates, as CO3	0	•
Bicarbonates, as HCO3	314	
Chlorides, as Cl	240	
Iron, as Fe	0.0	
Manganese, as Mn	0.0	

Signed: Jeur Ufeduca

(To convert ppm to greint per (nilon, divide ppm by 17,1) INSPECTIONS, ANALYSIS, QUALITY CONTROL, RESEARCH & DEVELOPMENT IN MICROBIOLOGY, BIOCHEMISTRY & CHEMISTRY

(Toma)_	lay	yne-U	ester	m Com	npany,	Inc.	•
		TEST	DRILLING .	WATER WELLS	• PUMPS		
			at to prove that are all differ				

rac No.	KC 2	277-C Date 14 Oct., 1971 No. 7-71	
, <u> </u>	Ft. My	ers State Florida Driller M. Miller	
tior on	of Test Alico te loc	Hole Six miles E. of U.S. Elevation of Test (Rock Pit) Road. Hole ation in Static Water Level Y Sec. of T 4 Sec. Florida	er Completion
n	To	Description of Strats	Water Bearing
)	13	Surface sand	
_	47	Hard rock w/sand layers	
<i>,</i>	57	Clay w/shell and rock	
· ·	89	Clay	
	109	Limestone formation, hard	
	119	Limestone and shell	
, ·	129	Lime rock w/shell and sand	
ъ. –	139	Lime rock w/shell, black rock and sand	
	169	Gray sand	
	199	Limestone material in sand	
	219	Limestone sand w/black sand	
	239	Black sand w/some green clay color	
	259	Black sand w/fine limestone mixed	
4	300	Green clay w/black and white coarse sand	•
T			1

WICHITA + GARDEN CITY + LIBERAL + KANSAS CITY + DENVER + OMAHA + AMES + ST. LOUIS + AURORA

-62

, Li

	P. O. Box 80	25A • Orlando, Florida 32806 • 30	05 424-5606
WATER ANALYSIS REPORT		ANALYTICAL LABORATOR	
Report to: FLORIDA CITIES WA	ATER CO.	Appearance; CLEAR	an a
Date:SEPTEMBER 24, 19"	71	_ Sampled by: CLIENT	71
Sample Number: <u>4831</u>	ME	Identification:#3 - ALICO #3. WEI 61' PIPE 103' HOL 6 Mile EAST 4	E 60 GPM
This water was analyzed using methods adapted from WPCF.		the Examination of Water and Wastewater," Latest Edition,	APHA, AWWA and
	RE	SULTS	
Determination	p.p.m.	Determination	p.p.m. 12
Total Dissolved Solids, @ 105°C	445	Sulfate, as SO:	
Total Hardness, as CaCOa	318	Fluorides, as F	0.50
Calcium Hardness, as CaCOa	222	Silico, as SiO ₂	17 -
Magnesium Hardness, as CaCOa	_96_	Copper, as Cu	0
Calcium, as Ca	_89	Phosphate (Total), as PO1	0.1
Magnesium, as Mg	_23_	Color, Standard Platinum Cobalt Scale	15_
Alkalinity (Phenolphthalein), as CaCO,	0	Odor	0
Alkalinity (Total), as CaCOa	276_	pH (Laboratory)	7.2_
Carbonate Alkalinity, as CaCOa	_0	pHs	6.8
Bicarbonate Alkalinity, as CaCOa	276	Stability Index	6.4
Hydroxides, as OH	0	Saturation Index	0.4
Carbon Dioxide, as CO2	35_	Turbidity, Silica Scale	0
Carbonates, as CO3	0		•
Bicarbonates, as HCO3	337		•
Chlorides, as Ci	72		••••
Iron, as Fe	D,10		4 9994 - 12 - 14 - 14 - 14 - 14 - 14 - 14 - 1
	0.0	•	

Signed: Gelle Libertico Illon, divide pim by 17.13

(To convert ppin to grains per fallon, divide ppin by 17.1) INSPECTIONS, ANALYSIS, QUALITY CONTROL, RESEARCH & DEVELOPMENT IN MICROBIOLOGY, BIOCHEMISTRY & CHEMISTRY,

0	r	1	8	D	L ¢	<u>d</u>	O	I.	8	10	a	r	8	t	0	X	ž.	e	9	وا	Ĭ	n	C	•

• • •

Ľ.

P. O. Box 8025A	• Orlando, Florida 32806 • 305 424-5606
WATER ANALYSIS REPORT	ANALYTICAL LABORATORY DIVISION
Report to: FLORIDA CITIES WATER, CO.	Appearance: CLEAR
Date:OCTOBER 4, 1971	Sampled by: CLIENT 7-7/
Sample Number: <u>4859-3</u>	Identification: ALICO 72 145' PIPE 300' HOL 3GPM 6 Mile EAST + 41
METHOD	State and the second
This water was analyzed using methods adapted from "Standard Mothods for the E WPCF.	Reminence, or availat star atestameter, rejett conich virth' what suc

)

	RES	
Determination	p.p.m,	Potermination p.p.m,
Total Dissolved Solids, @ 105"C	283_	Sulfate, as SO, 5
Total Hardness, as CaCOa	180_	Fluorides, as F
Calcium Hardness, as CaCOa	120_	Silica, as SiO ₂
Magnesium Hardness, as CaCOa	60	Copper, as Cu
Calcium, as Ca	48	Phosphate (Total), as PO,
Magnesium, as Mg	. 14	Color, Standard Platinum Cobalt Scale
Alkalinity (Phenolphthalein), as CaCOa	0	Odor O
Alkalinity (Total), as CaCO3	102	pH (Laboratory) 7.4
Carbonate Alkalinity, as CaCOa	0	рНз 7.5
Bicarbonate Alkalinity, as CaCOa	102	Stability Index
Hydroxides, as OH	0	Saturation Index -0,1
Carbon Dioxide, as CO2	8.7	Turbidity, Silica Scale
Carbónates, as ÇO _s	0	• •
Bicarbonates, as HCOa	124	
Chiorides, as Cl	63	
Iron, as Fe	0.0	· An address of the De
Manganese, as Mn	D.D	

Gene Elfertura (To convert ppm to grains per gallon, divide ppm by 17,1)

Signed:...

INSPECTIONS, ANALYSIS, QUALITY CONTROL, RESEARCH & DEVELOPMENT IN MICROBIOLOGY, BIOCHEMISTRY & CHEMISTRY.

~

L	TEST DRILLING . WATER WELLS . PUMPS		2
		· · ·	
act Name	Florida Cities Water Company TEST H		
	C 277-C Date 14 Oct., 1971 No.		
	t. Myers State Florida Driller S. J. Bon	:en	
ion of Te Of Est	ero Corkscrew Grade Road Elevation of Test Hole		
		. <u></u>	
6E	Lee Co., Florida	After Cor	npletio
То	Description of Strata	Wate	r Bearin
11	Surface sand		
18	Hard rock		_
39	Lime rock containing shallow water	21	Fai
86	Clay	47	Non
144	Lime rock - water bearing	58	Goo
174	Limerock w/heavy clay and shell	30	Poo
180	Black sand	6	Fai
			•
	•		
			1.
		-	1
			1
1			1
			+
			1 .
			+

WICHITA + GARDEN CITY + LIBERAL + KANSAS CITY + DENVER + OMAHA + AMES + ST. LOUIS + AURORA

.

62

	P. O. Box 802	5A • Orlando, Florida 32806 • 305 424-5606
WATER ANALYSIS REPORT		ANALYTICAL LABORATORY DIVISIO
Report to: FLORIDA CITIES W. Date: OCTOBER 6, 1971	ATER CO.	Appearance: CLEAR Sampled by: CLIENT 8-7/
Sample Number: 4883	METI	Identification: (#) CORK SCREW GRADE 2.3M. E. US 41 41' Pipe-100'Hole-40GPM
This water was analyzed using methods adapted from WPCF.	m "Stamlard Mathods for I	the Examination of Water and Wastewater," Latest Edition, APHA, AWWA
Determination	RESI P.P.M.	ULTS Determination
Total Dissolved Solids, @ 105°C	1,100	Sulfate, as SOs 47
Total Hardness, as CaCO;	468	Fluorides, as F
Calcium Hardness, as CaCO ₃	318	Silico, as SiO2
Magnesium Hardness, as CaCO ₃	ISD	Copper, as Cu
Calcium, as Ca	127	Phosphate (Total), as PO1
Magnesium, as Mg	36	Color, Standard Platinum Cobalt Scale 10
Alkalinity (Phenolphthalein), as CaCOn	0	Odor
Alkalinity (Total), as CaCO ₃	252	pH (Laboratory) 7.3
Carbonate Alkalinity, as CaCOa	0	рнз 6,7_
Bicarbonate Alkalinity, as CaCOa	252	Stability Index
Hydroxides, as OH	0	Saturation Index
Carbon Dioxide, es CO3	27	Turbidity, Silice Scale
Carbonates, as CQ.	0	

Bicarbonates, as HCOa

Chlorides, as Cl

Iron, as Fe

Manganese, as Mn

un Medura Signed: . Chemist

(To convert ppm to grains per gallon, divide ppm by 17.1) INSPECTIONS, ANALYSIS, QUALITY CONTROL, RESEARCH & DEVELOPMENT IN MICROBIOLOGY, BIOCHEMISTRY & CHEMISTRY.

307_ 340_

0,0

0,0

: ``	1	Orlando La	bor						
	÷		P. 0	. Box 8025A	• (Drlando, Florid	a 32806	• 305	5 424-5606

· ·	1.1			
		ANAL		
11/7	TED		V.L.1L.	/ NUT
WU II			1 1 1	

ANALYTICAL LABORATORY DIVISION

68

0.55

30

0,4

15

3

6,7

0.7

0

7.4_

Report	to:	FLO	RIDA	CITIES	WATE	R_CO.
÷	1998 - C.	et e ti	$f_{12} = f_{12}$			

Date: ____OCTOBER 6, 1971

Sample Number:

<u>4883-</u>

Sampled by:	CL	JENT	E	-7	2/
Identification:	#2	CORK	SCREW	GRA	DE

2.3 M. E. US 41

Appearance: CLEAR

METHODS 57' Pipe-184' Hole-60GPM-10''Vac.

This water was analyzed using methods adapted from "Standard Methods for the Examination of Water and Watewater," Latest Edition, APHA, AWWA and WACE.

	RES	ULTS	
Determination	រូបគ្រុះការ	Determination	
Total Dissolved Solids, @ 105"C	1,220	Sulfate, as SOL	
Total Hardness, as CaCO3	492	Fluorides, as F	
Calcium Hardness, as CaCO ₃	342	Silica, as SiO ₂	an an an an Anna Anna Anna Anna Anna Anna Anna
Magnesium Hardness, as CaCO ₃	150	Copper, as Cu	•
Calcium, as Ca	137	Phosphate (Totai)	, as PO ₄
Magnesium, as Mg	36	Color, Standard I	Platinum Cobelt Scale
Alkalinity (Phenolphthalein), as CaCOn	0	Odor	
Alkalinity (Total), as CaCOa	230	pH (Laboratory)	
Carbonate Alkalinity, as CaCOa	0 230	pHs	
Bicarbonate Alkalinity, as CiiCOii	230	Stability Index	
Hydroxides, as OH	19	Saturation Index	
Carbon Dioxide, as CO ₂	0	Turbidity, Silica S	icale
Carbonates, as CO ₃			
Bicarbonates, as HCO3	281		•
Chlorides, as Ci	369		
Iron, as Fe	0,0		•
Manganese, as Mn	<u>v,</u> 0		

Signed:

Gene Midua

(To convert ppm to grains per gallon, divide for by 17.1) INSPECTIONS, ANALYSIS, QUALITY CONTROL, RESEARCH & DEVELOPMENT IN, MICROBIOLOGY, BIOCHEMISTRY & CHEMISTRY.

Contract Nar	ne Green	n Meado	ws Pro	ject TEST HOLE
Job No		· · · · · · · · · · · · · · · · · · ·		NoL-729
City				_State Driller
Test Hole Lo	ocation Sou	th Ent	rance	to Lehigh Acres SE% 13 - 45 S 26 E.
		Distance	and Directi	on from Permanent Landmark or Previous Test Hole
	-			TEST LOG
FROM	то	MARSH FUNNEL VISCOBITY	NUD PIT	Static Water Level Measur Hours After Completion
	_	SECONDS	INCHES	
0'0"	5'0"			Sand, medium, dark brown
5'0"	9'0"			Clay, white
9+0"	15'0"			Sand, medium, tan.
15*0"	27'0"			Limestone, creamy tan
27'0"	41'0"			Same; sandy
41'0"	50'0"			Clay, light gray
50'0"	60'0"			Clay, green; numerous shell fragments
60'0"	80'0"		•	Limestone, gray
8010	100'0"			Limestone, tan, sandy
100'0"	110'0"			Sand, medium, gray-tan
110'0"	120'0"			Sand, medcoarse, gray, shell fragments
120'0"	130'0"			Sandstone and sand, gray
NOTES: S	ize of Pit	<u> </u>		x x
				West Side Of Road. Data Obtained From

	Ċ	ayne) lay		R SUPPLY SER	Company, A VICES SINCE 1924 ER WELLS . PUMPS	Inc .
trac	Name	Green Meadows Project			TEST	
۲ No	1. 		Date		No. <u>L-60</u>	2
ty			State	-	Driller	
Th (S \4	e Sout outh C	Hole Near The Center h Side Of Section Quarter Corner) Sec. 36 of T 46 S., Lee Co., Florida		Hole Static W	n of Test /ater Level d Hours	After Completic
) m	To		Description of			Water Bearin
0	10	Sand, fine, brown, sh	hells, some	e clay		
	40	Sandstone, gray-tan,	calcareou	3		
0	60	Limestone, tan and gr	ay	· · · · · · · · · · · · · · · · · · ·		•
)	170	Clay, light gray, few	limeston	e layers	······································	
Ø	240	Limestone, sandy, tar	n and gray	· · · · · · · · · · · · · · · · · · ·		
<u>ז</u>	295	Clay, green				
:	390	Limestone, gray and t		<u> </u>		
ń	410	Clay, dark gray, sand				
<u>]</u> **	450	Limestone, light gray			· · · · · · · · · · · · · · · · · · ·	
0	475	Limestone, light gray	, some pho	osphorite		
			······································			
·						
	1 ¹¹		• .	· · ·		·
					<u> </u>	
		······		1		
, 			· .	······		
			. <u></u>	· · · · · · · · · · · · · · · · · · ·	······	

V-62

		WATER SUPPLY SERVICES SINCE 1924 TEST DRILLING . WATER WELLS . PUMPS		
itrac	t Name_	Green Meadows Project TEST HOL	E	
' No.	· ·	Date		
,		State Driller		
<u>у</u>		Hole Near The S.W. Cor- Elevation of Test		
		section Of Lee Boule- Hole	· · · ·	
		ingham Road. 2B Static Water Level		
		1/4 Sec. 28 of T 44 S Measured	er Com	pletic
26	<u>E.</u> ,	Lee Co., Florida		
om	То	Description of Strata	Water	Bearin
0	5	Sand, white to tan		
5	10	Marl, creamy white		
0	20	Limestone, tan		
0	40	Clay, dark green		
10	50	Sand, fine, green; clayey		
50	60	Sandstone, gray, clcareous		
		Lost CirculationDrilled to 300 ftno samples		
				.
<u> </u>				
			 	ļ
			i	
<u> </u>				
			ļ	
			•	

TEST DRILLING . WATER WELLS . PUMPS

tract	Name	Green Meadows Project				TEST HOL	E
h <u>No.</u>			Date			No. L-612	
У			State		Driller		
ation	of Test	Hole <u>Near The S.W. Cor</u> - section Of Lee Boule-		Elevation of Hole	Test		
		ngham Road.	28	Static Wate	r Level		
_1⁄4	SE 1	4 Sec. 28 of T 44 S.		Manaurad		Hours Aft	er Completio
26	<u>E.</u> ,	Lee Co., Florida	bbb	wicasuicu		110018 AIU	
m	То		Description of Strate	1		a with a second sec	Water Bearing
0	5	Sand, white to tan					
5	10	Marl, creamy white					
10	20	Limestone, tan					
0	40	Clay, dark green	·			· · · · · · · · · · · · · · · · · · ·	
10	50	Sand, fine, green; cla			<u></u>		
=0	60	Sandstone, gray, clcar	eous		··		
		Lost CirculationDrill	led to 300 ft	no sa	mples	·····	
				2		· · · · · · · · · · · · · · · · · · ·	
			····			· · · · · · · · · · · · · · · · · · ·	
<u></u>		· · · · · · · · · · · · · · · · · · ·					
;			<u> </u>	·····			
	· · · · · ·		· · · · · · · · · · · · · · · · · · ·				
				· · ·			
	· ·		·				
			· · · · · · · · · · · · · · · · · · ·				
·			·····				
<u>. </u>							
		۰۰ میروند میروند از میروند میروند و میروند میروند از میروند از میروند میروند و میروند از میروند میروند میروند می			•		
,	-					· · ·	

		TEST DRILLING . WATER WELLS . PUMPS	
		Croop Mondows Project	LE
	: Name	No. L-613	•
No		Date	
y		State Driller	
	· · · · · · · · · · · · · · · · · · ·	Hole West Side Of Road, Elevation of Test h Acres Business Area. Hole	,
، ، 		Static Water Level	
	<u>SE</u>]	4 Sec. 6 of T 45 S Measured Hours Aft	ter Completio
27	<u> </u>	Lee Co., Florida	
5m	То	Description of Strata	Water Bearing
0	10	Sand, brown, white clay med.	
LO	30	Limestone and clay marl, white	
30	45	Clay, gray and green, shell fragments.	
15	. 60	Limestone, gray, sandy	
50	75	Limestone, gray	
75	90	Sandstone, gray, calcareous	
90	105	Same, some phosphate, shell	
)5	120	Sandstone, gray, quarty gravel, phosphate, shell	
20	140	Limestone, tan	
10	150	Clay, gray	· [· · · · ·] · · · · ·
50	165	Same	
55	190	Same, some limestone	
90	230	Clay, green	
30	260	Clay, dark gray, sandy, phosphatic	
50	360	Limestone, gray-white, phosphatic	<u> </u>
			<u> </u>
			<u> </u>
	· · · ·		1 1
larks:	Data	Obtained From U.S. Geological Survey - Ft Myara Florida	
arks:	Data	Obtained From U.S. Geological Survey - Ft. Myers, Florida.	

-WATER SUPPLY SERVICES SINCE 1924-

TEST DRILLING . WATER WELLS . PUMPS

	t Name	Green Meadow Project	Date		TEST HOL L-614	E
			State	Driller		
ation	of Test	Hole <u>South Side Of</u> Grade Road	Elevation Hole	and the second		
	•	4 Sec. 27 of T 46 S., Lee Co., Florida	<u> </u>	1	Hours Aft	er Completio
m	То		Description of Strata			Water Bearing
0	10	Sand, med., white and	brown			
0	20	Limestone, tan, v. ha	rđ			
20	33	Same	<u></u>		· · ·	
3	50	Limestone, tan and gr	ay, few shells			
50	80	Limestone, tan and gr	ay, sandy	· · · · · · · · · · · · · · · · · · ·		
ר	110	Same				
_0	160	Clay, light green; so	me limestone	••••••••••••••••••••••••••••••••••••••	· · · ·	
50	180	Clay, dark green, pho	sphatic		-	
j 0	200	Sandstone, gray, calc	· · · · · · · · · · · · · · · ·			
00	220	Same	<u></u>	<u>,</u>	4.	
:0	280	Clay, light gray		· · · ·		
80	300	Clay, dark green, pho	sphatic, sandy			
)0	310	Same, but dark gray			•	
10	340	Limestone, light gray	-white, phosphatic,	, some clay		
10	360	Limestone, as above				
				•		
				· · · · · · · · · · · · · · · · · · ·		

V-62 WICHITA + GARDEN CITY + LIBERAL + KANSAS CITY + DENVER + OMAHA + AMES + ST. LOUIS + AURORA

Contract Nam	e Green M	leadows	Proje	
Job No				NoNo
City				
Test Hole Lo	cation <u>NE</u>	sec.	25, T	46 S., R 27 E., Lee County, Florida
		Uistance i	and Directi	ion from Permanent Landmark or Previous Test Hole TEST LOG
FROM	то	MARSH FUNNEL VIBCOSITY SECONDS	MUD PIT LOSS INCHES	Static Water Level Measure Hours After Completion FORMATION
0	15			Sand, tan and white, clayey
15	30			Limestone, sandy, gray
30	45			Limestone, gray; few shells
45	75		• .	Shell, limestone fragments
75	90			Limestone, gray; shell fragments
90	105		*	Limestone, gray
105	120			Same
120	135			Same
135	150			Limestone, light gray, sandy
150	175			Same
175	220			Clay, green
220	240			Sandstone, gray, calcareous
240	255			Sandstone, gray-tan, clacareous
255	270			Sandstone, as above, shell fragments, sand
270	285			Sandstone, some green clay
	e of Pit	servatio		XXX 1. Data Obtained From U.S. Geological

ontract Name b No	, Green M	leadows	Proje	TEST HOLE NoNoL-615
ty				State Driller
est Hole Loc	ation		<u> </u>	
		Distance	and Directi	tion from Permanent Landmark or Previous Test Hole
Continu	uation of	E L-615	;	TEST LOG
FROM	то	MARSH FUNNEL VISCOSITY	MUD PIT	Hours After Completion
		SECONDS	INCHES	FORMATION
285	300			Sand, fine, tan
300	330		· · ·	Clay, green; limestone fragments
330	350			Same
350	360			Clay, green
360	390			Limestone-no samples
			ۍ. ۲	
			-	
			· · ·	
OTES: Size	of Pit			_XX
· · ·	:		•••	

1 1

÷.

ontract Na	ne <u>Gre</u> e	en Meado	ows Pr	oject TEST HOLE
»b No				_Date
ity				_State Driller
est Hole Lo	ocation <u>SE</u> (4, T 45 S., R 26 E., Lee County, Florida
<u></u>		Distance a	and Direction	on from Permanent Landmark or Previous Test Hole TEST LOG
		MARSH	MUD PIT	Static Water Level Measure
FROM	TO	FUNNEL VISCOSITY BECONDS	LOSS Inches	Hours After Completion
0'0"	7'0"	BECONDO		Sand, brown, iron stained, fine to med.
7'0"	20*0"			Limestone, light gray and brown
20'0"	30*0"			Clay, light green
30'0"	40'0"			Clay, dark green, shell fragments, phosphat
40'0"	6010"			Clay, dark green, shell fragments
60'0"	70'0"		<u>ب</u>	Sandstone, gray, calcareous
70*0*	80'0"			Same
8010"	100'0"			Same
100'0"	115'0"			Same
115'0"	130'0"		•	Limestone, and gray clay
130'0"	190'0"	4	•	Clay, gray
190'0"	220'0"		,	Clay, dark gray, sandy, phosphatic
220'0"	250'0"			Clay, gray
25010"	280'0"			Limestone, gray-white, phosphatic
280'0"	305'0"			Same

*

ontract Nam	e Green N	leadows	s Proje	ect TEST HOLE
ob No				No. L-739
ity				State Driller
est Hole Lo	cation_ <i>nea</i>			Sec. 30, T 46 S., R 26 E., Lee Co., Florida
<u></u>		Distance (and Direction	TEST LOG
FROM	то	MARSH Funnel	MUD PIT	Static Water Level Measured
		VISCOSITY	INCHES	FORMATION
0'0"	10'0"			Sand, fine-med., brown
10'0"	2010"			Sand, fine-med., tan
20'0"	25'0"			Sand, fine, white
25'0"	30'0"			Limestone, tan, sandy
30'0"	50'0"			Same with shells
50'0"	55*0"		١ ٩	Limestone, gray
55'0"	70'0"			Limestone, tan & gray, some clay, shells
70'0"	90'0"			Limestone, gray
90'0"				Limestone, tan
	140'0"			Limestone, gray, tan
140'0"	150'0"		•	Limestone, tan, sandy
150'0"	170'0"			Clay, light gray
170'0"	200'0"			Clay, green, sandy
200'0"	210'0"			Clay, dark gray-green, shell frag., phosphat
Continu	ed			

.

TEST HOLE REPORT Layne-Western Company

<u></u>				s Project	TEST HOLE No. L-739
				······	
ty				_State	Driller
est Hole Loca	ation	Distance a	and Directi	on from Permanent Landmark or Prev	lous Test Hole
Continua	ation of		#2	TEST LOG	
		MARSH	MUD PIT		Water Level Measure
FROM	то	VISCOSITY	LOSS INCHES		Hours After Completion
210'0"	218'0"			Clay, dark gray-gre	en
218'0"	225'0"			Limestone, gray-whi	te, sandy
225 '0"	230'0"			Sand, fine-med., gr	cay-tan
230'0"	240'0"			Sandstone, gray	an a
240'0"	250'0"			Sandstone, gray, ar	nd sand
		-			
				······································	
DTES: Size	of Pit			x	
r 1	· · · · · · · · · · · · · · · · · · ·			a A haran karan kara Karan karan kar	Dittor

TEST HOLE REPORT Layne-Western Company

Green Meadows Project Contract Name

Job No.

Date.

State

TEST HOLE

No. L-635

IN SUCCESSION

City.

Driller.

Southeastern Lee County, Florida **Test Hole Location**

Distance and Direction from Permanent Landmark or Previous Test Hole

FROM	то	MARSH FUNNEL VISCOBITY BECONDS	MUD PIT Loss Inches	Static Water Level Measured Hours After Completion FORMATION
0+0+	10'0"			Sand, fine, white
10'0"	20'0"			Limestone, shell, dark brown, sandy silt
20'0"	40'0"			Clay, light gray
40'0"	50'0"			Clay, light gray and dark green
50'0"	60'0"			Clay, dark green
60'0"	70'0"			Clay, green
70'0"	80'0"			Limestone, tan, shell
80'0"	100'0"			Limestone, very hard, some shell
100'0"	110'0"		•	Limestone, phosp. pebbles
110'0"	120'0"			Clay, light gray, phosp.
130'0"	160'0"			Clay, dark gray, phosphatic
160'0"	250'0"	с. <i>н</i> .		Limestone, gray-white, phosphatic
250'0"	270'0"			Same, some marle, more phosphate
270'0"	280'0"			Limestone, some green clay
Contin	ued			

Data Obtained From U.S. Geological Survey - Ft. Myers, Florida.

TEST HOLE REPORT Layne-Western Company

TEST HOLE Contract Name Green Meadows Project No.____L-635 Job No. Date. Driller. State. City_ Test Hole Location. Distance and Direction from Permanent Landmark or Previous Test Hole TEST LOG Continuation of L-635 #2 Static Water Level . Measured MARSH MUD PIT FUNNEL Hours After Completion 1088 FROM TO VISCOSITY INCHES FORMATION SECONDS 300'0" Clay, green 280'0" Limestone, clayey 300 '0" 340'0" Limestone, phosphatic 410'0" 340 0" Clay, gray-white 410'0" 420'0" Limestone, gray-white, phosphate, s. clay 520'0" 420 0" Limestone, light gray, phosphate 520 0" 560'0" Limestone, light gray to tan, some phosphate 560'0" 580*0" Limestone, tan; dolomitic 58010" 600'0" Limestone, light gray to white, phosphatic 600'0" 740*0" Limestone, light gray, less phosphate 78010" 740'0" Limestone, white 780'0" 800 0" 80010" 820'0" Dolomite, tan Dolomite, tan, white limestone 82010" 840'0" Limestone, tan, dolomitic 840'0" 1000'0" Continued-----NOTES: Size of Pit_ 0000

TEST HOLE REPORT Layne-Western Company

Green Meadows Project Contract Name_

Job No.

Date.

TEST HOLE

Driller.

No. L-635

City_

NOTES:

Size of Pit.

State.

Continu	ation of	L-635	#3	TEST LOG
FROM	70	MARSH FUNNEL VISCOSITY	MUD PIT	Static Water Level Measured Hours After Completion
		SECONDS	INCHES	FORMATION
100010"	1080'0"	•		Same
1080'0"	1100'0"			Limestone, tan, tough green clay, fine quarty sand
1100'0"	1160'0"			Sand, fine, tan, tan limestone
1160'0"	1180'0"			Limestone, tan ·
1180'0"	1300'0"			Limestone, light brown (Mobil Pick-Ocala 1240
1300*0"	1320'0"			Limestone, light brown and gray
1320'0"	1405'0"	÷.		Limestone, tan, (Camerinas at 1320)
,				
				······································

X

APPENDIX D

AVALE MECTEDAL COMDANY. INC.

FLORIDA CITIES WATER COMPANY WATER SUPPLY STUDY EAST OF U. S. HIGHWAY 41 LEE COUNTY, FLORIDA

October, 1971

LAYNE-WESTERN COMPANY, INC. 1010 West 39th Street Kansas City, Missouri 64111 AC 816-931-2353

D_1 1_

WATER SUPPLY INVESTIGATION EAST OF U.S. HIGHWAY 41

October, 1971

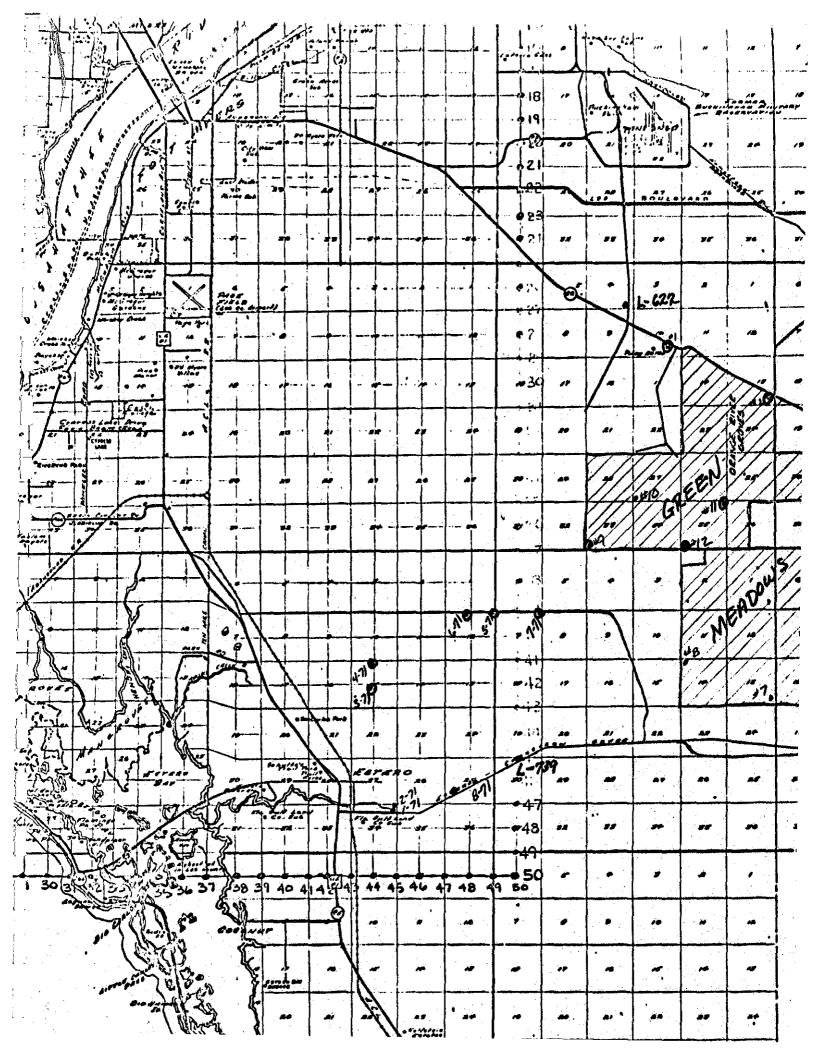
In December, 1971, authorization was considered for a water supply study to supplement the present water supply for the Cypress Lakes water treatment plant located south of the City of Ft. Myers; Florida.

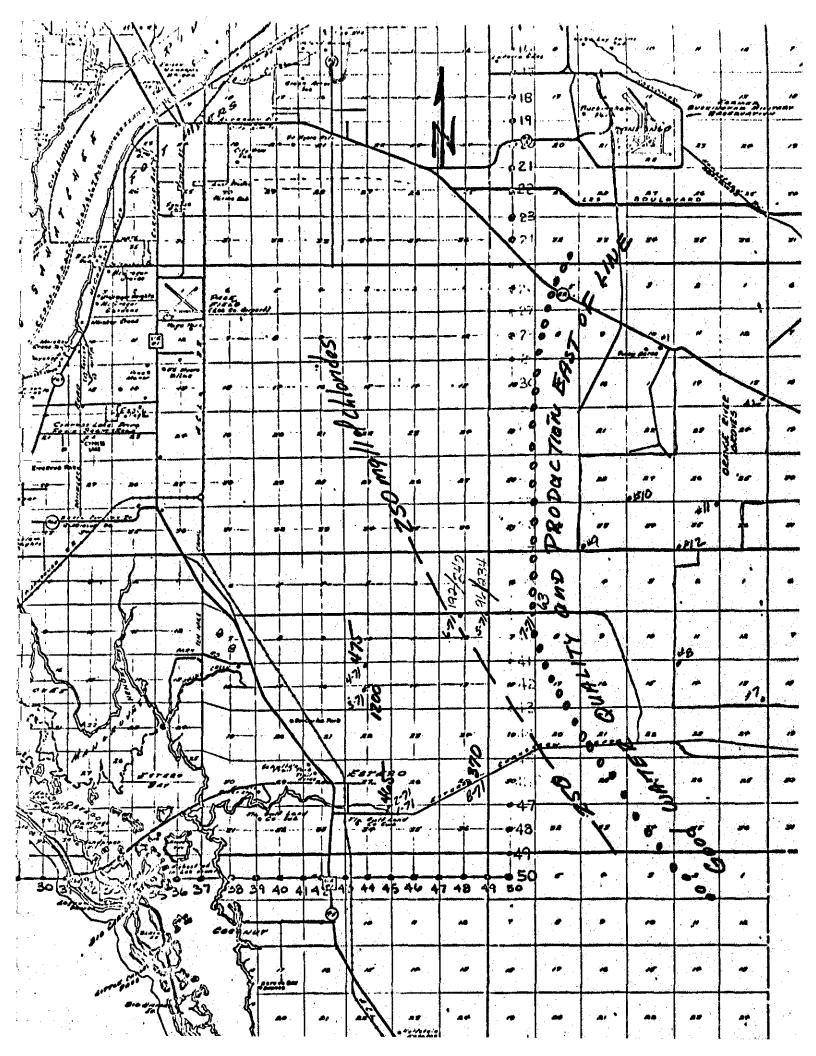
The study began with the drilling of two (2) test holes on the east side of the Estero community. Chloride content of these wells was up 465 ppm chloride.

Interest was expressed by the developers of San Carlos Park area and two (2) test holes, Test Holes 3-71 and 4-71, were drilled at the eastern extremeties of this development. The south test hole encountered water of 1200 ppm chlorides, and the north test hole, onehalf mile north of No. 3, had chloride of 475 ppm. It would appear that Test Hole 3-71 is located very close to a deep flowing well which may be covered over and bringing high chloride water from deep formations up into the shallow aquifers.

The study was extended to drill some test holes on Alico Road located directly west of the West Coast Rock Company. Test Hole No. 6-71, located 4.5 miles east of U.S. Highway 41, had good water production in the upper limestone formations with chloride content of 172 ppm. Chloride content of water increased to 240 ppm in the lower section of this formation. One-half mile east at Test Hole 5-71 location, the chloride content of the upper water was 96 ppm and increased to 234 ppm in the lower section. Located an additional one (1) mile east, or a total of six (6) miles east of U.S. Highway 41, at Test Hole 7-71, the chloride content of the water sampled was only 63 ppm. This well did not penetrate the typical sandstone unit defined in Test Hole L-739 located three (3) miles to the south. Good production lime rock material was encountered in Test Hole 7-71 from 89 feet through 139 feet.

It is recommended that a test well be constructed at the site of Test Hole 7-71. This test well should be 10 inch diameter hole with casing cemented from 90 feet to the surface by the pressure grout system. It is further recommended that the well be drilled by reverse air circulation method to a depth of approximately 140 feet. It is recommended that the test well be pumped for 500 minutes at a rate of approximately 500 gpm, if possible. After recovery of water levels in this pumping test, it is recommended that the test pump be pulled and the well acidized. The well should again be test pumped at the rate of 500 gpm for 500 minutes duration. The pH of the water should be checked to insure complete removal of all acid has been accomplished in the 500 minutes of pumping. The continuous yield of this well then may be rated by the hydrologist at a higher or lower rate than that tested. It is anticipated that a lower rate may be recommended.


It is the opinion of the hydrologist at this time, that it would be feasible to construct five (5) wells located on one-quarter mile spacing between wells. that are capable of producing 350 gpm each, for a total of 2.5 million gallons per day. These wells should be constructed to the east of Test Hole 7-71, and along the south side of Alico Road. The minimum diameter pipeline which should be considered is 12 inch diameter and may be of asbestos cement material to reduce cost of piping. Pumps (350 gpm) pumping against an estimated head of 210 feet would require 30 hp per unit. Tone control equipment is available which could provide operation of the wells individually from the water treatment plant.


Respectfully submitted,

all Muzmi

Carl E. Nuzman, P.E. HYDROLOGY CONSULTANT LAYNE-Western Company, Inc.

CEN/mb

	TEST HOLE EPORT
(Jayne)	Layne-Western Company, Inc.
(ayne)	TEST DRILLING . WATER WELLS . PUMPS

Cintrac	t Name	Florida Cities Water Company TEST HO	• · · ·	
Job No	•	KC-277-C Date June 30, 1971 No. Estero	# <u>_</u>	
ty	Ft. My	vers State Florida Driller M. Mille)r	
<u>of</u> in t NE j	small he: 4 <u>NE</u>	Hole Near the NE corner Image: Sector of the sector o		ıpleti
rom	То	Description of Strata	Water	Bearin
0	7	Light sand		Ţ
7	17	Sand with hard pan layers at 7' and 17'		T
17	27	Sand (some rust color) and limestone	10	So
27	43	White limestone formation	16	Fa
43	73	Clay, light colored changing to a darker color	30	No
73	80	Clay, with a trace of shell	7	No
B O	98	Hard limestone with rock 4 to 6-inch voids	18	Fa
98	108	Compacted limestone with colored sand	10	PO
08	116	Hard sandstone with gray sand	8	Po
116	146	Gray sandstone	30	Po
46	176	Compacted sand with limestone color	30	Po
. 76	194	Black sand	18	Fa
י94	201	Black sand with some clay mixed	7	Po
01	206	Lime rock, Artesian flow started at 4 GPM	5	Fa
206	210	Lime rock, water sample taken, flow 10 GPM	4	Go
10	218	Lime rock with dark sand	8	Fa
218	238	Shell and lime rock	20	Go
38	261	Lime rock, Artesian flow in excess of 30 GPM	23	V.G
261	263	Heavy clay	2	No
63	Total	Depth Drilled		
		rides from flowing well were reported to be 540 mg/l only 42 was used in constructing test hole.	feet	of

TEST HOLE ' EPORT

Layne-Western Company, Inc. WATER SUPPLY SERVICES SINCE 1924-TEST DRILLING . WATER WELLS . PUMPS

Contrac	t Name	Florida Cities Water Company TEST HOL		
-	KC-2		<u>‡2</u> `	
<u>y</u>	Ft.	Myers State Florida Driller M. Miller		
(<u>E</u> sn La th	nall tr ne	Hole Near the SW corner act of land located 34 Static Water Level Flowing Wei	11	
1.1.1		4 Sec. <u>34</u> of T <u>46</u> S. Lee Co., Florida Hours Aft	er Com	pletion
From	To	Description of Strata	Water	Bearing
D	10	White sand		
10	14	Brown sand	4	Fair
4	24	Sand rock with limestone and white sand	10	Good
24	35	Limestone and sand	11	Fair
5	45	Light colored clay and shell	10	Poor
45	79	Green clay		
9	89	Clay and limestone		
89	109	Layers of hard limestone and sand	20	Fair
.^9	119	Boulders in limestone and sand	10	Poor
-9	175	Limestone with sand and clay	56	Poor
75	195	Black sand and clay mixed	20	Fair
5	205	Shell and limestone formation flow at 4 GPM	10	Fair
05	212	Shell and limestone formation	7	Good
2	222	Clay color limestone with small gravel	10	Fair
22	232	Limestone and gravel	10	Fair
2	252	White shell and limestone flow about 30 GPM	20	Good
52	259	Clay colored shell and clay	7	Fair
9	261	Clay	2	None
<u>_1</u>	Total	Depth Drilled With Churn Drill		

F marks: Only 42 feet of 2-inch diameter pipe required to drill test hole original hloride content was approximately 550 mg/l. Well was plugged back with cement 195 feet and tested. Chloride's still 460 mg/l after 16 hours pumping. [W.L. 3.5 feet below land surface after plugging. WICHITA . GARDEN CITY . LIBERAL . KANSAS CITY . DENVER . OMAHA . AMES . ST. LOUIS . AURORA LW-62

P. O. Box 8025A	• Orlando, Florida 32806 • 305 424-5606
WATER ANALYSIS REPORT	ANALYTICAL LABORATORY DIVISION
Report to: LAYNE WESTERN CO. INC.	Appearance: CLEAR
Date: JUNE 29, 1971	Sampled by:CLIENT
Sample Number: 4543	Identification: WELL #2

METHODS

This water was analyzed using methods adopted from "Standard Methods for the Examination of Water and Wastewater," Latest Edition, APHA, AWWA and WPCF.

Determination	p.p.m.	Determination	p.p.m.
Total Dissolved Solids, @ 105°C	1,400	Sulfate, as SO ₄	80
Total Hardness, as CaCO	504	Fluorides, as F	0.8
Calcium Hardness, as CaCOa	282	Silice, as SiO ₂	4.0
Magnesium Hardness, as CaCOa	222	Copper, as Cu	0.0
Calcium, as Ca	//3	Phosphate (Total), as PO4	0.8
Magnesium, as Mg	54	Color, Standard Platinum Cobalt Scale	0
Alkalinity (Phenolphthalein), as CaCO3	0	Odor	0
Alkalinity (Total), as CaCO ₃	192	pH (Laboratory)	7.5
Carbonate Alkalinity, as CaCOa	0	pHs	6.9
Bicarbonate Alkalinity, as CaCO3	192	Stability Index	6.3
Hydroxides, as OH	0	Saturation Index	0.6
Carbon Dioxide, as CO2	12.5	Turbidity, Silica Scale	0
Carbonates, as CO ₃	0		
Bicarbonates, as HCO3	234		.
Chlorides, as Cl	465		
iron, as Fe	0.05		. <u></u>
Manganese, as Mn	0.0		

Signed:....

Hobbel Chemist

(To convert ppm to grains per gallon, divide ppm by 17/) INSPECTIONS, ANALYSIS, QUALITY CONTROL, RESEARCH & DEVELOPMENT IN MICROBIOLOGY, BIOCHEMISTRY & CHEMISTRY.

	TEST HOLE [IPORT
Tauna	Layne-Western Company, Inc .
(layne))-	TEST DRILLING . WATER WELLS . PUMPS

`_ntrac	t Name	I 3-71		
ob No.)	KC 277-C Date 29 June, 1971		
ty		San Carlos Park State_Florida Driller_M. Miller	•	<u></u>
arlo of Se NE 14	s Bould	Hole East end of San Elevation of Test evard near the center 15 Hole 15 5 Static Water Level Above land V4 Sec. 15 of T 46-S Lee Co., Florida Measured		
From	To	Description of Strata	Water	Bearing
0	6	Gray sand		
6	11	Hard rock and boulders		
11	21	Yellow to orange sand	10	Fai
21	30	White sand with soft limerock	9	Fai
30	38	Soft limestone rock	8	Fai
38	50	Limestone with green clay	12	Poo
50	80	Green clay	30	None
80	96	Clay with shell and sand	16	None
96	103	Water producing sand and limestone - (Water Sample)	7	Good
. 11	126	Compact sand and shell with some clay	15	Fai
- 26	141	Limestone and shell	15	Fai
_41	151	White limestone	10	Good
151	181	Limestone with some clay	30	Fair
81	211	Limestone with black sand	30	Fair
211	216	Limestone formation (water sample)	5	Good
	216	Total depth of drilling		
	•			
		Water sample at 103' had chlorides of 1200 ppm		
_ ·		Water sample at 216' had chlorides of 1200 ppm		

lowing 5 gpm. Pumped more than 60 gpm.

LW.A9

WICHITA & GARDEN CITY & LIDEDAL & MANDAR PITY & DEMUED & OMALIA & AMED & OF LOUIS - ALIA

TEST HOLE [IPORT

WICHITA

Layne-Western Company, Inc.

- -

Contrac	t Name	Florida Cities Water Company TEST HOL	E	
Job No.		KC 277-C Date 2 July, 1971 No. 4-71		
ity		San Carlos Park State_Florida Driller M. Miller		
C.H. ment	3-71 i area. 	Hole 1/2 mile north of Elevation of Test n San Carlos Develop- 15 4 Sec. 15 of T 4 Sec. 15 of T 4 Sec. Florida Measured Hours After		
From	To	Description of Strata	Water	Bearin
0	8	Brown sand		
8	11	Two layers of rock in sand		
11	27	White sand medium to fine	16	Fai
27	44	White marl rock		
44	96	Green clay with some shell	52	Non
96	105	Hard limestone rock	9	Fai
L05	115	Sand and fine limestone (water sample pumped)	10	Goo
115	145	Dense gray sand	30	Fai
45	155	Sand and clay	10	Poo
155 1	175	Sand with some clay and limestone, mixed	20	Fai
75	185	Black sand with clay and limestone	10	Fai
_85	200	Black sand and limestone (water sample)	15	Goo
	200	Total depth of drilling		
		Water sample at 115' had chlorides of 475 ppm		
		Water sample at 200' had chlorides of 445 ppm		
				<u> </u>
throu	At 115 gh a 2' 60 gpm.	5' depth with 63' of casing, well pumped 30 gpm with 28" of v " diameter pipe. At 200' depth with 63' of 2" casing pumped	acuu	D

	Œ.	TEST HOLE REPORT Layne-Western Company, Inc. water supply services since 1924 TEST DRILLING . WATER WELLS . PUMPS		
e to case :				
<u> </u>	t Name	Florida Cities Water Company TEST HOLD 77-C Date Sept. 27, 1971	E	
	Fort M		c	
T C	11 on 1	Hole 5 miles east of Alico (Rock Pit) Road Decation in SEconner Main Seconner Static Water Level About 5 fee Measured		pletion
"rom	То	Description of Strata	Water	Bearing
0	9	Sand		
9	16	Medium Hard Rock	7	
L6	24	Sand	8	
24	43	Layers of Rock and Sand	19	Fai
13	47	Solid Rock, hard	4	V.Por
47	77	Sand with heavy clay	30	V. Por
77	79	Hard pan layer	2	None
79	106	Lime Rock (Pumped 50 gpm for water sample)	27	Good
)6	125	Lime Rock and shell (light clay color)	19	Fai
.25	140	Rock layers with clay and compacted sand	15	Poor

Gray sand with clay 740 157 V.Poc 17 Limestone and light colored clay with black sand 177 57 20 Pooi Limestone, Loose granular formation. 177 195 18 Fai 95 205 Limestone and clay 10 POOI Limestone and clay with black sand 205 215 10 Pooi 15 230 Clay with some sand 15 None Depth of Drilling 230 Total Pumped 1 hour only 15 gpm with 122 feet of 2 inch pipe casing in test emarks: hole at 230 feet depth. Estimate yield potential at 250 gpm from 79 to 140

foot depth.

LW-62 WICHITA . GARDEN CITY . LIBERAL . KANSAS CITY . DENVER . OMAHA . AMES . ST. LOUIS . AURORA

Orlando	Laborat	torie:	s, Inc.
---------	---------	--------	---------

P. O. Box 8025A

25A • Orlando, Florida 32806

• 305 424-5606

WATER ANALYSIS REPORT

Date: _____SEPTEMBER 7, 1971

Sample Number: 4758-1

Report to FLORIDA CITIES WATER CO.

ANALYTICAL LABORATORY DIVISION

Appearance: CLEAR

Sampled by: CLIENT 5-7/

EAST "41

Alle Sefedica

Identification: ALICO ROAD WELL

METHODS

This water was analyzed using methods adapted from "Standard Methods for the Examination of Water and Wastewater," Latest Edition, APHA, AWWA and WPCF.

	PF1	SULTS	
Determination	p.p.m.	Determination	p.p.m.
Total Dissolved Solids, @ 105"C	510	Sulfate, as SO ₄	ZЬ
Total Hardness, as CaCO _a	300	Fluorides, as F	0.40
Calcium Hardness, as CaCO ₃	Z16	Silica, as SiO:	25
Magnesium Hardness, as CaCOa	84	Copper, as Cu	0
Calcium, as Ca	_86	Phosphate (Total), as PO,	0.3
Magnesium, as Mg	21	Color, Standard Platinum Cobalt Scale	0
Alkalinity (Phenolphthalein), as CaCOa		Oclor	0
Alkalinity (Total), as CaCO ₃	246	pH (Laboratory)	7.4
Carbonate Alkalinity, as CaCOa		pHs .	6.9
Bicarbonate Alkalinity, as CaCO _a	246	Stability hickex	6.4
Hydroxides, as OH	0	Saturation Index	0.5
Carbon Dioxide, as CO ₂	19	Turbidity, Silica Scale	0
Carbonates, as CO ₃	0		
Bicarbonates, as HCO3	300		
Chlorides, as Cl	96		
Iron, es Fe	0.36		
Manganese, as Mn	0.0		· · ·

(to convert ppm to grains per gatton, divide ppm by 12.1)

Signude

INSPECTIONS, ANALYSIS, QUALITY CONTROL, RESEARCH & DEVELOPMENT IN MICROBIOLOGY, BIOCHEMISTRY & CHEMISTRY.

Orlando Lat	oorator1	es, Inc.
	P. O. Box 8025A	• Orlando, Florida 32806 • 305 424-5606
WATER ANALYSIS REPORT		ANALYTICAL LABORATORY DIVISIO
Report to: FLORIDA CITIES WAT	ER CO.	Appearance: CLEAR
Date:		Sampled by: CLIENT 5-71
Sample Number: 4758-2		Identification ALICO ROAD WELL
	METHO	The - 122' PIPE 230' HOLE
This water was analyzed using methods adapted from WPCF.	n "Standard Mothods for the	Examination of Water and Wastewater," Latest Edition, APHA, AWWA a
	RESULT	r IS en la companya de
Determination	p.p.m.	Determination p . p .m.
Total Dissolved Solids, @ 105°C	700	Sulfate, as SO4
Total Hardness, as CaCOa	330	Fluorides, as F
Calcium Hardness, as CaCO ₃	216	Silica, as SiO ₂
Magnesium Hardness, as CaCOa	114	Copper, as Cy
Calcium, as Ca	86	Phosphate (Total), as PO:
Magnesium, as Mg	85	Color, Standard Platinum Cobait Scale
Alkalinity (Phenolphthalein), as CaCO:	0	Odor 0
Alkalinity (Total), as CaCO3	156	pH (Laboratory)
Carbonate Alkalinity, as CaCO:	0	рНs <u>21</u>
Bicarbonate Alkalinity, as CaCOa	156	Stability Index
Hydroxides, as OH	0	Saturation Index
Carbon Dioxide, as CO ₂	12	Turbidity, Silica Scale
Carbonates, as CO;;	0	
Bicarbonates, as HCO ₃	190	
Chlorides, as Cl	234	
Iron, as Fe	0.20	
Manganese, as Mn	0.0	

Signed:

eur le le line (To convert ppm to grains per gellon, divide ppm by 17.1) INSPECTIONS, ANALYSIS, QUALITY CONTROL, RESEARCH & DEVELOPMENT IN MICROBIOLOGY, BIOCHEMISTRY & CHEMISTRY.

TEST HOLE REPORT

TEST DRILLING . WATER WELLS . PUMPS

<u>ontrac</u>	t Name	Florida Cities Water Company TEST HO		
Job No	KC 2	77-C Date 14 Oct., 1971 No. 6-71		
ity		. Myers State Florida Driller M. Mil	ler	
on	Alico	Hole 4.5 miles E. of U.S. Elevation of Test (Rock Pit) Road-Estimate Hole (South //4 corner) A/6 S Static Water Level		
F}		Sec. 2 of T 455 Static Water Level 4 Sec. 2 of T 455 Measured Hours Af Lee Co., Vlorida Vlorida Neasured Hours Af	ter Cor	npletic
From	To	Description of Strata	Wate	r Bearin
0	13	White Sand		
<u> 3 </u>	33	Limestone, rock	20	Fai
3	43	Limestone rock, hard layers	10	Fai.
43	55	Limestone rock, medium hard	12	Fai
5	75	Green clay w/some rock particles	20	Non
76	77	Black rock	1	Non
7	82	Clay and sand mixed	5	Non
82	83	Rock layer	1	Non
3	90	Clay and sand	7	Non
90	115	Limestone (pump test at 103° - 60+ gpm)	25	Good
5	125	Fine limestone material w/sand	10	Poor
 5	135	Sand and shell, firm	10	Fai
5٢	146	Sand and shell, loose (pumping test - 65+ gpm)	11	Good
	146	Total depth of drilling		
·	ļ			_
	ļ		_	
. <u></u>	ļ			
	<u> </u>			
	<u> </u>			_
а 1911 — Ал				

Orlando	Tabox	Tran

P. O. Box 8025A .

8025A • Orlando, Florida 32806

305 424-5606

WATER ANALYSIS REPORT

Report to: _FLORIDA CITIES WATER, CO. Date: ____OCTOBER 4, 1971 Sample Number:____4859-1

ANALYTICAL LABORATORY DIVISION

Appearance: CLEAR

Sampled by: CLIENT

6-7

Identification ALICO #1 61' PIPE 103' HOLE 60 GPM 4.5 Mile EAST *41

METHODS

This water was analyzed using methods adapted from "Standard Methods for the Examination of Water and Wastowater," Latest Edition, APHA, AWWA and WPCF.

	RE	SULTS	
Determination	p.p.m.	Determination	p. p.m.
Total Dissolved Solids, (# 105"C	710	Sulfate, as SO+	33
Total Hardness, as CaCOa	360	Fluorides, as F	O.SD
Calcium Hardness, as CaCOa	270	Silica, as SiO2	23
Magnesium Hardness, as CaCO ₃	90	Copper, as Cu	0
Calcium, as Ca	108	Phosphate (Total), as PO1	2.8
Magnesium, as Mg	Z2	Color, Standard Platinum Cobalt Scale	0
Alkalinity (Phenolphthalein), as CaCOa	0	Odor	0
Alkalinity (Total), as CaCOa	264	pH (Laboratory)	25
Carbonate Alkalinity, as CaCOu	0	pHs	6.8
Bicarbonate Alkalinity, as CaCO ₃	264	Stability Index	6.1
Hydroxides, as OH	0	Saturation Index	0.7
Carbon Dioxide, as CO ₂	18	Turbidity, Silica Scale	0
Carbonates, as CO _{ii}	0		
Bicarbonates, as HCO _{it}	322		بر المراجعة (1997). مستحدة المراجعة (1997)
Chlorides, as Cl	192_		مور <u>منتقد مر</u> د
Iron, as Fe	0.0		
Manganese, as Mn	0.0		a gana da sina.

Signed:

(Jeue Ufectica)

(To convert point to grains per gallon, divide point by 17.1) INSPECTIONS, ANALYSIS, CHALLEY CONTROL, RESEARCH & DEVELOPMENT IN MICROHIDLOGY, BIOCHEMISTRY & CHEMISTRY.

Orlando	Labo	ratori	es, Inc.
---------	------	--------	----------

P. O. Box 8025A • Orlando, Florida 32806 • 305 424-5606

WATER ANALYSIS REPORT	ANALYTICAL LABORATORY DIVISION
Report to: _FLORIDA CITIES WATER, CO.	Appearance: CLEAR
Date: OCTOBER 4, 1971	Sampled by: CLIENT 6-7/
Sample Number:4859-2	Identification: ALICO #1 61' PIPE 147' HOLE 70 GPM 4.5 Emr = 41

METHODS

This water was analyzed using methods adapted from "Standard Methods for the Examination of Water and Westewater," Latest Edition, APHA, AWWA and WPCF.

	RES	SULTS	
Determination	p.p.m.	Determination	p.p.m,
Total Dissolved Solids, @ 105"C	825	Sulfate, as SO1	34
Total Hardness, as CaCOa	420	Fluorides, as F	0.50
Calcium Hardness, as CaCOa	300	Sílica, as SíO ₂	24
Magnesium Hardness, as CaCOa	120_	Copper, as Cu	0
Calcium, as Ca	120	Phosphate (Total), as PO:	0,5
Magnesium, as Mg	29	Color, Standard Platinum Cobalt Scale	0
Alkalinity (Phenolphthalein), as CaCO3	0	Odor	0
Alkalinity (Total), as CaCO4	258	pH (Laboratory)	7.4
Carbonate Alkalinity, as CaCO	0	pHs	67
Bicarbonate Alkalinity, as CaCOa	258	Stability Index	60
Hydroxides, as OH	0	Saturation Index	0.7
Carbon Dioxide, as CO2	22	Turbidity, Silica Scale	0
Carbonates, as CO _a	0		
Bicarbonates, as HCO3	314		
Chlorides, as Cl	240		ار به می رود. این اینها در موسیسی
Iron, as Fe	0.0		
Manganese, as Mn	0.0		

Signed:

Gene Elfedica

(To convert ppm to grains per gallon, divide ppm by 17.1) INSPECTIONS, ANALYSIS, QUALITY CONTROL, RESEARCH & DEVELOPMENT IN MICROBIOLOGY, BIOCHEMISTRY & CHEMISTRY.

	TEST HOL	E REPOR	$\mathbf{T}_{\mathbf{r}}$, and $\mathbf{r}_{\mathbf{r}}$
(layne)	Layne-Western	ERVICES SINCE 1924	y, Inc .
	TEST DRILLING • W	ATER WELLS • PUMPS	

· · · · · · · · · · · · · · · · · · ·	KC 2	Florida Cities Water Company 77-C Date 14 Oct., 1971 No. 7-71	.E	
	Ft. My			, Burnerig
Location L on	a of Test Alico te loc	Hole Six miles E. of U.S. I Elevation of Test (Rock Pit) Road. 6 Hole ation in (SE.Corner) 6 Static Water Level 4 Sec6of T46S Measured Hours Aft Lee Co., Florida Measured Hours Aft	er Com	pletic
From	To	Description of Strata	Water	Bearin
0	13	Surface sand		
13	47	Hard rock w/sand layers		
17	57	Clay w/shell and rock		
57	89	Clay		
39	109	Limestone formation, hard		
109	119	Limestone and shell		
19	129	Lime rock w/shell and sand		
129	139	Lime rock w/shell, black rock and sand		
39	169	Gray sand		
-59	199	Limestone material in sand		
199	219	Limestone sand w/black sand		
19	239	Black sand w/some green clay color		
239	259	Black sand w/fine limestone mixed		
59	300	Green clay w/black and white coarse sand		
-				
·	1			
emarks:		ped two (2) inch diameter hole one (1) hour at 15 gpm with feet of casing pipe in test hole.		••••••••••••••••••••••••••••••••••••••

	P. O. Box 8025A	• Orlando, Florida 32806 • 305	424-5606
WATER ANALYSIS REPORT		ANALYTICAL LABORATORY	DIVISION
Report to: FLORIDA CITIES WA	TER CO.	Appearance: CLEAR	
Date:SEPTEMBER 24, 19'	71	Sampled by: CLIENT 7-7	7/
Sample Number: 4831	METHO	Identification:#2 - ALICO #3 WELL 61' PIPE 103' HOLE	ان الارد المراجع الارد
This water was analyzed using methods adapted fro WPCF.		Examination of Water and Wastewater," Latest Edition, AP	HA, AWWA and
	RESULT	under der Antonio der Anton ISBN 1997-1997-1997-1997-1997-1997-1997-1997	· · ·
Determination	p.p.m.	Determination	p.p.m.
Total Dissolved Solids, (II) 105"C	445	Sulfate, as SO1	12
Total Hardness, as CaCO _a	318	Fluorides, as F	0.50
Calcium Hardness, as CaCO3	222	Silica, as SiO2	17
Magnesium Hardness, as CaCO3	_ 96	Copper, as Cu	0
Calcium, as Ca	89	Phosphate (Total), as PO1	0.1
Nagnesium, as Mg	_23	Color, Standard Platinum Cobalt Scale	15
Alkalinity (Phenolphthalein), as CaCO ₃	0	Odor	0
Alkalinity (Total), as CaCO3	276	pH (Laboratory)	7.Z
Carbonate Alkalinity, as CaCOa	0	pHs	6.8
Bicarbonate Alkalinity, as CaCOa	276	Stability Index	6.4
Hydroxides, as OH	0	Saturation Index	0.4
Carbon Dioxide, as CO ₂	35	Turbidity, Silica Scale	0
Carbonates, as CO'a	0		· · ·
Bicarbonates, as HCO ₃	337		
Chlorides, as Cl	72		• ••••••••••••••••••••••••••••••••••••
Iron, as Fe	DID		
Manganese, as Mn	0.0		

Signed: Geere Chemist

(To convert ppm to grains per gallon, divide ppm by 17.1) INSPECTIONS, ANALYSIS, QUALITY CONTROL, RESEARCH & DEVELOPMENT IN MICROBIOLOGY, BIOCHEMISTRY & CHEMISTRY.

١,

rlando Lab	orator	ies, Inc.
------------	--------	-----------

P. O. Box 8025A

(8025A 🍝 Orlando,

Orlando, Florida 32806 • 3

305 424-5606

7-71

Ď.p.m.

0.64

10

D.Z

0

0

7.4

26

-0,1

23

WATER ANALYSIS REPORT

Date: _

Sample Number:_

Report to: FLORIDA CITIES WATER, CO.

4859-3

OCTOBER 4, 1971

ANALY	TICAL	LABORATORY	DIVISION

Appearance: CLEAR

Sampled by: CLIENT

Identification: ALICO 12 145' PIPE 300' HOL] 3GPM 6 Mile East 41

METHODS

This water was analyzed using methods edapted from "Standard Methods for the Examination of Water and Wastewater," Latest Edition, APHA, AWWA and WPCF.

	RE	SULTS	
Determination	ង់ម៉េណៈ	Determination	
Total Dissolved Solids, @ 105°C	283	Sulfato, as SO:	
Total Hardness, as CaCO ₃	180	Fluorides, as F	
Calcium Hardness, as CaCOa	120_	Silica, as SiO ₂	
Magnesium Hardness, as CaCOa	60	Copper, as Cu	
Calcium, as Ca	48	Phosphate (Total), as PO	
Magnesium, as Mg	14	Color, Standard Platinum	Cobalt Scale
Alkalinity (Phenolphthalein), as CaCO3	0	Odor	
Alkalinity (Total), as CaCO3	102	pH (Laboratory)	
Carbonate Alkalinity, as CaCO3	0	pHs	
Bicarbonate Alkalinity, as CaCOa	102	Stability Index	
Hydroxides, as OH	0	Saturation Index	
Carbon Dioxide, as CO ₂	<u>8,7</u>	Turbidity, Silica Scale	
Carbonates, as CO ₃	0		
Bicarbonates, as HCO;	124		
Chlorides, as Cl	63		
iron, as Fe	0.0		
Manganese, as Mn	0.0		

Signed:

flue Elfertuca

(To convert ppm to grains per gallon, divide ppm by 17.1) INSPECTIONS, ANALYSIS, QUALITY CONTROL, RESEARCH & DEVELOPMENT IN MICROBIOLOGY, BIOCHEMISTRY & CHEMISTRY.

		Byne-Western Company, In water supply services since 1924 test drilling . water wells . pumps	-	• • •
tract	Name	Florida Cities Water Company TEST H)LE	
No.	KC	277-C Date 14 Oct., 1971 No. 8-71		
	Ft	. Myers State Florida Driller S. J. Bor	en	
t o _¼	<u>f Este</u>	Hole Corkscrew Grade Road Elevation of Test Hole 25 Static Water Level Hours A		npleti
26E		Lee Co., Florida Measured Rours A		
m	To 11	Description of Strate Surface sand	Wate	r Beari
				+
	<u>18</u> 39	Hard rock Lime rock containing shallow water	21	Fa
	86	Clay	47	No
	144	Lime rock - water bearing	58	Go
·	174	Limerock w/heavy clay and shell	30	Po
	180	Black sand	6	Fa
N. AN				
aritan. A	· · · ·			
			_	
· · ·	· · · · · · · · · · · · · · · · · · ·			

	P. O. Box 8025A	• Orlando,	Florida 32806 •	305 424-5606
VATER ANALYSIS REPORT		ANAL	YTICAL LABORAT	ORY DIVISIO
eport to: FLORIDA CITIES W	ATER CO.	Appearance:	CLEAR	
OCTOBER 6, 1971		Sampled by:	CLIENT E	3-71
ample Number:4883		Identification:	A CORK SCREV	W GRADE
	METHO	· ·	2.3M. E. US 41 41' Pipe-100'Ho	ole-40GPM
his water was analyzed using methods adapted fro /PCF,	m "Standard Methods for the	Examination of Water	and Wastowator," Latest Ed	ition, APHA, AWWA an
	RESULT	5		
stermination .	p.p.m.	Determination		p.p.m;
otal Dissolved Solids, @ 105°C	1,100_	Sulfate, as SO1		41
otal Hardness, as CaCOa	468	Fluorides, as F		0.55
alcium Hardness, as CaCO3	318	Silica, as SiO ₂		30
Aagnesium Hardness, as CaCO,	1.10	Copper, as Cu		0
alcium, as Ca	127	Phosphate (Tota	nl), as PO ₁	0.4
Aagnesium, as Mg	36	Color, Standard	Platinum Cobalt Scale	10_
Ikalinity (Phenolphthalein), as CaCO3	0	Odor		0
Ikalinity (Total), as CaCO:	252	pH (Laboratory)		7.3
arbonate Alkalinity, as CaCOa	<u> </u>	pHs		6,7
icarbonate Alkalinity, as CaCO a	252	Stability Index		6,1
ydroxides, as OH	0	Saturation Inde		0,6
arbon Dioxide, as CO2	27	Turbidity, Silica	Scale	0
arbonates, as CO _s	0			
icarbonates, as HCO ₄	307			
hlorides, as Cl	340			
	DID			

Signed: Jeur Medica

(To convert ppm to greins per gallon, divide ppm by 17.1) INSPECTIONS, ANALYSIS, QUALITY CONTROL, RESEARCH & DEVELOPMENT IN MICROBIOLOGY, BIOCHEMISTRY & CHEMISTRY.

	P. O. Box 802	6A • Oriando, Florida 32806 • 30	5 424-5606
WATER ANALYSIS REPORT	• • • •	ANALYTICAL LABORATOR	Y DIVISION
Report to: FLORIDA CITIES V	VATER CO.	Appearance: CLEAR	
Date:OCTOBER 6, 1971	a a statistic se a statis and a statistic fields for set so and an age, ages	Sampled by: CLIENT 8-	71
Sample Number: 4883-1	·	Identification: #2 CORK SCREW GI 2.3 M. E. US 41	RADE
This water was analyzed using mothods adapted from WPCF.	METH "Standard Methods for t	ERITING INALITAL COCTOR	
	RESU	ILTS	
Determination	p.p.m.	Determination	p.p.m.
Total Dissolved Solids, @ 105"C	1,220	Sulfate, as SO1	68
Total Hardness, as CaCO3	492	Fluorides, as F	0.55
Calcium Hardness, as CaCOa	342	Silica, as SiO ₂	30_
Magnesium Hardness, as CaCOa	150	Copper, as Cu	0
Calcium, as Ca	137	Phosphate (Total), as PO1	0,4
Magnesium, as Mg	36_	Color, Standard Platinum Cobalt Scale	15_
Alkalinity (Phenolphthalein), as CaCO3	0	Odor	3
Alkalinity (Total), as CaCO,	230	pH (Laboratory)	7.4_
Carbonate Aikalinity, as CaCOa	0.	pHs	6,7
Bicarbonate Alkalinity, as CiiCOii	230	Stability Index	6,0
Hydroxides, as OH	0	Saturation Index	0.7

Orlando Laboratories, Inc.

Chlorides, as Cl

Bicarbonates, as HCO₃

Carbon Dioxide, as CO₂

Carbonates, as CO₃

iron, as Fe

Manganese, as Mn

Signed:

Turbidity, Silica Scale

Gen Mideua

(To convert ppm to grains per gallon, divide Jun by 17.1)

INSPECTIONS, ANALYSIS, QUALITY CONTROL, RESEARCH & DEVELOPMENT IN MICROBIOLOGY, BIOCHEMISTRY & CHEMISTRY.

19

0

281

369

0,0

0,0

July 1, 1971

Florida Cities Water Company Sarasota, Florida

Gentlomon:

TEST DRILLING IN THE ESTERO, FLORIDA AREA

Two (2) test holes were drilled on a tract of land upon which Florida Cities Water Company obtained an option to purchase. One (1) test hole was located in the southwest corner of this tract and one (1) test hole was located in the northeast corner of this tract. Both test holes penetrated the upper sandstone unit present in the area and were continued into the upper Hawthorne formation which was identified. The dolinoation characteristic formation between these two (2) aquifer units was black sand encountered from 176' to 201' in both test holes. Upon passing this sand, and entering the top of the upper Hawthorne limestone, Artesian heads were encountered. The flow from these wells increased as a ponetration increased in the lime rock. The upper Hawthorne' formation was approximately 60* thick in this area. The piozometric head would be approximately 10* above land surface. Partial chemical analysis, performed by Mr. Roland Hahn, showed that chloride content was in excess of 500 parts per million. The water was unusable for its intended purpose and Mr. Marvin Miller was instructed to coment the wells back to approximately 200' depth and again test. The first attempt at cementing Well No. 1 was not successful in that the Artesian head was not shut off in the lower formation. After a short period of pumping, the chloride content remained the same as before. He then proceeded to Well No. 2 and cemented the lower portion of this well. The cemont plugging appeared to be successful in that the static water level was reduced to a level of 3.5' below land surface Plorida Citios Water Company Page - 2 -July 1, 1971

prior to the commencement of pumping. Over the weekend on June 26 and June 27 of 1971, Test Well No. 2 at Estero was pumped for at least sixteen (16) hours and a water sample submitted to Orlando Laboratories, Inc. for analysis. The results of that analysis and the laboratory report is attached for its information. Although chlorides were reduced approximately 100 parts per million by the cementing action, apparently the black sands in the lower portion of the sandstone aquifer unit are still carrying considerable . amounts of high chloride water.

To coment the well back to the 125 to 150' range in depth would severely limit the potential yield of wells at this location. It is doubtful that wells with a capacity in excess of 100 gallons per minute on a continuous use basis could be obtained.

It is, therefore, recommended that this site has little potential use as a water supply to Florida Cities Water Company. The expense of further testing and development is not warranted and unless the land has beneficial use for other purposes, it is suggested that the option be allowed to expire without further water supply testing.

The invoice price for comenting shown on Mr. Marvin Miller's Invoice includes comenting these wells back to land surface which has already been instructed for him to do. Mr. Marvin Miller is proceeding on a second tract of land east of San Carlos Park for exploratory purposes of a potable water supply suitable for use.

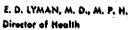
Respectfully submitted,

Carl E. Nuzman, P.E. Hydrology Consultant Layne-Western Company, Inc.

Enclosure

РĴ.

MargaiR LevelIII MTer


Cape Coral Water Treatment Plant Laboratory

LOCATION DESCRIPTION	DIA.	CAS INC DEPTH	WELL DEPTH	PII	K.ALK.	T.Hd.	Mg.Hd.	Ca.Hd.	CL	T.D.S
een Meadows No. 1 2/11/71	2"	89	244	7.4	270	314	66	248	80	430
een Meadows No. 1 2/25/71	2"	89	244	7.3	272	304	72	232	120	410
een Meadows No. 1-A 2/11/71	2"	40	61	7.2	189	710	246	464	1200	3100
een Meadows No. 1-A 2/25/71	2"	40	61						1380	3500
een Meadows No. 2	2"	162	238	7.2	268	198	110	88	60	440
een Meadows No. 2-A	2"	23	50	7.2	238	250	22	228	30	300
een Meadows No. 3	2"	110	239	7.4	284	282	88	194	110	620
een Meadows No. 3-A	2."	21	50	7.2	214	212	10	204	20	230
r. Well NW4 10-465-26E	6"			7.2	212	232	34	198	65	270
r. Well SW1 25-45S-26E	6"			7.4	188	216	12	204	45	250
r. Well SE% 14-46S-26E	6"			7.0	218	242	12	230	30	2 80
r. Well SE% 35-45S-26E	8"			7.1	234	250	12	238	35	280
owing Well NW4 9-465-25E	6"			- 7.6					1000	2600
								•		
pe CoralNorth Pine Island 1	Rold 10"	125	225	7.3	200	294	156	138	180	460

		TEST DRILLING . WATER WELLS . PUMPS		· .
			•	
	· · ·			
ntrac	t Name	Green Meadows Project TEST HO		
(Utilities, Inc. Date February 25,197	<u>1-A</u>	
OD NO.	· · · · · · · · · · · · · · · · · · ·		lor	
<u>y</u>	Lee	County State_ Florida Driller Marvin Mil.	TO T	
		Hole Elevation of Test	. ·	
<u>r ciiw</u>		Static Water Level 9.77 (No. 2	1)	
-W 1/	SE	K Sec 10 of T 45 S	(NO	
		Lee Co., Florida Measured 100+ Hours Af	ter Con	npleti
mon	To	Description of Strata	Water	Bearin
0	6	Sandy Soil	6	
6	9	Marl rock and sand	3	
9	19	Rock	10	
9	. 39	Marl rock and sand, hard	20	Go
9	55	Limestone rock, with clay and sand	1.2	Po
- 9		Limestone fock, with citay and sand	16	
	75	Green clay with fragments of shell	20	
5	75	Green clay with fragments of shell	20	
5 <u>5</u>	75 88_	Green clay with fragments of shell Green clay and shell	20 13	Fa
5 5 88 9	75 88 89	Green clay with fragments of shell Green clay and shell Sandstone, hard Yellow gravel and sand Sandstone, shell and coarse sand	20 13 1 2 10	Go
5 5 88 9	75 88 89 91	Green clay with fragments of shell Green clay and shell Sandstone, hard Yellow gravel and sand Sandstone, shell and coarse sand Shell, coarse sand and sandstone layers	20 13 1 2 10 36	Go Go
5 5 88 9 91 1 37	75 88 89 91 101	Green clay with fragments of shell Green clay and shell Sandstone, hard Yellow gravel and sand Sandstone, shell and coarse sand Shell, coarse sand and sandstone layers Coarse sand, less shell and dark clay color	20 13 1 2 10 36 16	Go Go Go
5 5 88 9 9 91 1 37 37 3	75 88 89 91 101 137 153 163	Green clay with fragments of shell Green clay and shell Sandstone, hard Yellow gravel and sand Sandstone, shell and coarse sand Shell, coarse sand and sandstone layers Coarse sand, less shell and dark clay color Coarse sand, shell with light clay color	20 13 1 2 10 36 16 10	Go Go Go Go
5 5 88 9 91 1 37 3 7 3 3	75 88 89 91 101 137 153 163 194	Green clay with fragments of shell Green clay and shell Sandstone, hard Yellow gravel and sand Sandstone, shell and coarse sand Shell, coarse sand and sandstone layers Coarse sand, less shell and dark clay color Coarse sand, shell with light clay color Soft limestone	20 13 1 2 10 36 16 10 31	Go Go Go Fa
$5 \frac{5}{5}$ $88 \frac{9}{9}$ $91 \frac{1}{37}$ $3 \frac{3}{3}$ $54 \frac{1}{4}$	75 88 89 91 101 137 153 163 194 224	Green clay with fragments of shell Green clay and shell Sandstone, hard Yellow gravel and sand Sandstone, shell and coarse sand Shell, coarse sand and sandstone layers Coarse sand, less shell and dark clay color Coarse sand, shell with light clay color Soft limestone Clay and shell	20 13 1 2 10 36 16 10 31 30	Go Go Go Fa
5 5 88 9 91 1 37 3 -3 -4 4 4	75 88 89 91 101 137 153 163 194 224 240	Green clay with fragments of shell Green clay and shell Sandstone, hard Yellow gravel and sand Sandstone, shell and coarse sand Shell, coarse sand and sandstone layers Coarse sand, less shell and dark clay color Coarse sand, shell with light clay color Soft limestone Clay and shell Clay with some sand mixed	20 13 1 2 10 36 16 10 31	Go Go Go Fa
5 <u>5</u> 5 8 <u>8</u> 9 91	75 88 89 91 101 137 153 163 194 224	Green clay with fragments of shell Green clay and shell Sandstone, hard Yellow gravel and sand Sandstone, shell and coarse sand Shell, coarse sand and sandstone layers Coarse sand, less shell and dark clay color Coarse sand, shell with light clay color Soft limestone Clay and shell	20 13 1 2 10 36 16 10 31 30	Fa Go Go Go Fa No
55 5 88 9 91 1 37 37 3 -3 -3 -4 4	75 88 89 91 101 137 153 163 194 224 240	Green clay with fragments of shell Green clay and shell Sandstone, hard Yellow gravel and sand Sandstone, shell and coarse sand Shell, coarse sand and sandstone layers Coarse sand, less shell and dark clay color Coarse sand, shell with light clay color Soft limestone Clay and shell Clay with some sand mixed	20 13 1 2 10 36 16 10 31 30	Go Go Go Fa

THE KANSAS STATE DEPARTMENT OF HEALTH

DIVISION OF LABORATORIES Environmental Health Laboratory 801 Harrison Street 66612

May 26, 1971

TOPEKA

KANSAS

Layne Western Company, Inc. 1010 West 39th Street Kansas City, Missouri 64111

Attention: Mr Nuzman

Dear Mr. Nuzman:

Listed below in milligrams per liter are the results of chemical analyses of two samples of water collected in Florida. The samples may be identified as follows:

No. 1 GM No. 1 240' Hole, 89' pipe, collected 4-30-71.

No. 2 GAC Test Hole No. 11, collected 5-13-71.

		No.	1	<u>No. 2</u>		
pH		7.3	• • •	7.3	to the second	
Total Hardness (as CaCO ₃)	-	326.	mg/1	262.	mg/l	
Calcium (as Ca)	24	104.	mg/1	69.	mg/1	
Magnesium (as Mg)	-	16.	mg/l	22	mg/1	
Sodium	348	45.	mg/l	50.	mg/1	
Total Alkalinity (as CaCO ₃)	-	276.	mg/1	250.	mg/1	
Chloride	-	88.	mg/1	60	mg/1	
Sulfate	. 🛋	18.	mg/1	33.	mg/1	
Nitrate (as NO ₃)	-	1.8	mg/l	1.5	mg/1	
Fluoride	=	0.4	mg/1	0.6	mg/1	
Iron	•	0.38	mg/l	0.38	mg/1	
Manganese	.	0.00	mg/1	0.00	mg/1	

Sincerely,

Nicholas D. Duffett, Ph.D. Director

Howcard a. Statewhere

Howard A. Stoltenberg, M.A. Chief, Water Chemistry Section

r -	(Le	TEST MOLE REPORT Layne-Western Company, M WATER SUPPLY SERVICES SINCE 1924 TEST DRILLING . WATER WELLS . PUMPS	Inc.	
, ,				· · · ·
	•	Green Meadows Project TEST	HOLE	
·		No 2 and	<u>2-A</u>	
		Utilities, Inc. Date February 25,1971		
ity_L	ee Cou	nty State_ Florida Driller_Marvin M	iller	
, .		Hole Elevation of Test Of Area Elevation of Test Hole Static Water Level _10.66 (N	0.2)	
NE 1	<u>SE</u>	% Sec. 13 of T_45 S Static Water Level 5. Measured 100+ Hours		2-A
<u>26</u> E		Lee Co., Florida		
From	To	Description of Strata	Water	Bearin
0	11	Sand	11	
11	15	Rock	4	_
15	25	Marl with clay	10	
25	29	Very hard.marl	4	Fai
29	50	White marl	21	Goo
50	51	Hard pan (very hard)	1	Nor
51	61	Sandy clay, light color	10	Nor
61	63	Rock	2	Nor
63	73	Limestone, firm	10	Goo
73	85	Limestone, soft	12	Fai
85	87	Rock, gray in color	2	Nor
. 87	97	Limestone, loose	10	Goo
.97	98	Rock, hard	1	None
98	128	Sandstone with hard and soft layers	- 30	Goo
128	143	Coarse sand and shell	15	Goc
.43	160	Fine gray sand	17	Fai
160	175	Clay	15	Nor
.75	184	Shell	9	Fai
184	234	Shell rock with some clay	50	Fai
334	238	Clay	4	Nor
cmarks:	Test Test	Well No. 2 has 2 inch diameter pipe to 162 feet depth. pumped for 2 hours for water sample at 60 gpm, full capaci Well 2-A has 2 inch diameter pipe to 23 feet depth and 50 depth		

Test pumped for 1 hour for water sample at 60 gpm, full capacity of pump.

		TEST MOLE REPORT			
	10	layne-Western Company, In	C .	· · ·	
(WATER SUPPLY SERVICES SINCE 1924		<u> </u>	
	(Carro	TEST DRILLING . WATER WELLS . PUMPS			
•	•		. '		
-				<u></u>	
entract Name Green Meadows Project					
	the second s		<u>3-A</u> `		
o No.	GAC	Utilities, Inc February 15,1971 No. 3 and			
Lee_County State_Florida Driller Marvin Mi					
		Hole Elevation of Test		2 104,344 (244 - 244	
ort	heast	Corner of Area Hole			
] .	· ·	29 Static Water Level 12.60 (No.	3)		
E_1	NE	4 Sec. 29 of T 45 S Static Water Level 7.00 Measured 100+ Hours A	(No.	<u>3-A)</u>	
27	E	Lee Co., Florida		heren	
F-700	То	Description of Strata		Water Bearing	
	19	Brown sand	19		
, 9	29	Limestone, water bearing rock	10	Good	
	31	Rock	2		
31	49	Limestone, light to dark clay color	18	Good	
· · · · · ·	59	Limestone and clay	10	Fai	
59	75	Limestone, clay and sand	16	Fai	
	85	Limestone, sand and shell	10	Good	
35	95	Limestone and sand	10	Guod	
	110	Limestone and shell, yellow in color	15	Goo	
.0	111_	Shell rock, hard	1		
 	158	Shell and sand	47	Good	
_ د	169	Sandstone with sand in layers	11	Good	
9	208	Sand and clay with trace of shell	39	Fai	
;	218	Sand and clay	10	Poor	
.8	235	Sand and clay, very soft	17	None	
	239	Clay	4		
9		Total Depth Drilled			
	· ·				
i					
		Well 3-A located 2 feet from No. 3 was the same to 50 feet	depth.		
:ملاتم ر	Test	Well No. 3 has 2 inch diameter pipe to 110 feet in depth. pumped 2 hours for water sample at 60 gpm, pump capacity.			
	Test	Well No. 3-A has 2 inch diameter pipe to 21 feet and 50 foo depth.	t hole		
i		pumped 1 hour for water sample at 60 gpm, pump capacity.			

			TEST I	IOLE	REPORT	,	. +	
1. 1. 1.		lan	mo-Mesi	tern (Company,	Inc		· · ·
	7 1.		WATER SI	UPPLY SERVICE	S SINCE 1924			
;, (WELLS . PUMPS			
					· · · · ·			1 A
			•	· · · · ·	• 1		•	
ontraci	t Name	GAC Utilities, Inc	3.		TES	T HOLE		
	·····	reen Meadows	DateApril	1971	No4		••••••••••••	
[Ft.	Myers	State Florid	la	Driller M. E	. Mil	ler	
		Hole		Elevation o	f Test			
				Hole		· · · · · · · · · · · · · · · · · · ·		
			32	Static Wate	er Level			· .
		4 Sec. <u>32</u> of T <u>45S</u>	•	Measured_	Hou	rs After	Com	pletion
27.	<u> </u>	<u>Lee</u> Co., <u>Florida</u>						
<u>-</u>	To		Description of Stra	ta			Water I	Bearing
,	6	Light brown sand						
u .	7	Hard pan layer		· .				
•	27	Sand and shell						
7	29	Hard shell and sand		· · · · · · · · · · · · · · · · · · ·				
	36	White sand and shell						
6	41	Lime rock - hard						
, 	50	White sand and shell						
			· · · · · · · · · · · · · · · · · · ·					
-		Location temporarily a	abandoned - c	lue to di	fficulty		:	
		· · · ·						
					• • • • • • • • • • • • • • • • • • •			
						<u></u>		
						· · ·		
-						<u>.</u>		
								itaanii Aanaa
				· · · · · · · · · · · · · · · · · · ·				
arks:	Lost	one string of tools at	50 feet. Sa	and would	heave in cas	ing a	nd w	edge

Lost one string of tools at 50 feet. Sand would heave in casing and wedge tools. Casing pipe locked to rock by sand wedge. Lost string of casing pipe.

· •

1411 March 19-4

มี หม่ คล

-

. .

· · · · · · · · ·

· .

	Lé	syno Lay	ne-U	T MOLE VOSÉORNO VATER SUPPLY SERVICE DRILLING . WATER	OMPC s since 192	any, Ind	.	
Contract	: Name	GAC Utilities, Inc.				TEST HOL	,E	
Job No.	G	ceen Meadows	Date	May 1971		No11		
ty	Ft. I	Ayers	StateF	'orida	Driller	M.E. Mill	<u>ler</u>	
Location	of Test 300± fe	Hole West side of the south of section	35	Elevation of Hole Static Wate				
	NE J	4 Sec. 35 of T 455 Lee Co., Florida.				Hours Aft	er Com	pletio
rom	To		Description	of Strata			Water	Bearin
0	15	Sand	•					
5	19	White marl rock - hard	3					ļ
_9	27	Lime rock and marl	<u> </u>				<u> </u>	<u> </u>
27	45	White marl					 	<u> </u>
5	82	Clay and shell					<u> </u>	
82	108	Loose sand and limesto	one				<u> </u>	

5	82	Clay and shell
82	108	Loose sand and limestone
8	109	Lime rock - hard
109	120	Shell and sand
0	130	Sand with some shell
30	138	Lime rock with sand layers
8	148	Lime rock with shell and sand
L++8	149	Sandstone - hard
19	155	Sand with trace of shell
່ 5	165	Layers of sand and sandstone - hard
L65	203	Gray sand
2 3	221	Limestone and sand
21	241	Limestone with shell and sand
<u>}</u>	255	Clay with trace of shell
255	Total	Depth
marks	: Tra-	

Lumarks: Installed 2-inch diameter casing with drive shoe to 130 feet. Test pumped well at 45 gpm for 2 hours and collected water sample.

السائم ممدد

الالمت المسالب الملا

THE KANSAS STATE DEPARTMENT OF HEALTH

DIVISION OF LABORATORIES Environmental Health Laboratory 801 Harrison Street 66612

TOPEKA KANSAS

E. D. LYMAN, M. D., M. P. H. Director of Health

May 26, 1971

Layne Western Company, Inc. 1010 West 39th Street Kansas City, Missouri 64111

Attention: Mr Nuzman

Dear Mr. Nuzman:

Listed below in milligrams per liter are the results of chemical analyses of two samples of water collected in Florida. The samples may be identified as follows:

No. 1 GM No. 1 240' Hole, 89' pipe, collected 4-30-71.

No. 2 GAC Test Hole No. 11, collected 5-13-71.

		•			
	•	No.	1	No.	_2
рН	-	7.3	•	7.3	
Total Hardness (as CaOO ₃)		326.	- mg/1	262.	mg/1
Calcium (as Ca)	-	104.	mg/1	69.	mg/1
Magnesium (as Mg)	-	16.	mg/1	22.	mg/1
Sodium	-	45.	mg/1	50.	mg/1
Total Alkalinity (as CaCO ₃)	62 1	276.	mg/1	250.	mg/1
Chloride	ani.	88.	mg/1	60.	mg/1
Sulfate	-	18.	mg/1	33.	mg/1
Nitrate (as NO3)	-	1.8	mg/l	1.5	mg/1
Fluoride	-	0.4	mg/1	0.6	mg/1
Iron	-	0.38	mg/1	0.38	mg/1
Manganese	•	0.00	mg/1	0.00	mg/1

Sincerely,

Nicholas D. Duffett, Ph.D. Director

Da. Stoltenberg

Howard A. Stoltenberg, M.A. Chief, Water Chemistry Section

	•	TEST HOLE REPORT				
	Ċ	Test Drilling . WATER WELLS . PUMPS	6 •			
· · ·	V	Green Meadows Groundwater Study TEST HO C 998-C Date 24 Sept. 71 No. 12	LE 			
ob No.		Ft. Mye rs State_Florida Driller_M.Miller		الكس <u>تين</u> ال		
	of Test	Hole Elevation of Test 4 Sec. 35 of T 455 35 Lee Co., Florida		npletion		
om	То	Description of Strata	Wate	r Bearing		
0	17	Light colored sand				
	49	Layers of hard rock and coarse sand	32	DOOD		
49	69	Clay in limestone and sand	20	poor		
\$ 1	84	Limestone and sand, clay filled				
3	90	Green clay				
<u>۱</u>	94	Limestone with green clay				
1	103	Limestone with layers of hard rock, water bearing				
23	140	Limestone (very good water bearing material)				
()	156	Hard rock layers with sand				
56	166	Boulders, gray sand (firm) with some shell				
ę <u> </u>	186	Gray sand with trace of shell				
36	196	Gray sand with some limestone	10_	poor		
ş <u>i</u>	_226_	Limestone with some clay	30_	boor		
26	235	Mostly clay with some limestone rock	9	none		
	236	Medium rock	1	none		
30	246	Clay with some shell	10	pone		
	246	Total depth drilled	ļ			
<u> </u>						
			1	1		

Remarks: Installed 82 feet of 2 inch diameter pipe. Test pumped 60+ gpm with 15 inches of vacuum. . –

Orlando Lab	orator	ies, Inc.	
	P. O. Box 802	A • Orlando, Florida 32806 • 3	05 424-5606
WATER ANALYSIS REPORT	· · · · · · · · · · · · · · · · · · ·	ANALYTICAL LABORATO	RY DIVISION
Report to: LAYNE-WESTERN C	OMPANY	Appearance: CLEAR	
Date:SEPTEMBER 20, 197	1	Sampled by: CLIENT	
Sample Number:4809	44 C 7 L3	Identification: GM #12 TEST WEL 243' DEEP PUMP+60 GPM ODS FROM 90'-155' LEVEL	
This water was analyzed using methods adapted from WPCF.		e Examination of Water and Wastewater," Latest Edition	, APHA, AWWA and
	RESU	LTS	
Determination	p .p.m.	Determination	p.p.m.
Total Dissolved Solids, @ 105°C	366	Sulfate, as SO,	16
Total Hardness, as CaCO:	240	Fluorides, as F	0.55
Calcium Hardness, as CaCOa	180	Silica, as SiO2	_37
Magnesium Hardness, as CaCO ₃	60	Copper, as Cu	0.0
Calcium, as Ca	72	Phosphate (Total), as PO4	0.7
Magnesium, as Mg		Color, Standard Platinum Cobait Scale	15
Alkalinity (Phenolphthalein), as CaCO ₄	0	Odor	0
Alkalinity (Total), as CaCOa	270	pH (Laboratory)	7.8
Carbonate Alkalinity, as CaCOa	0	pHs	6.9
Bicarbonate Alkalinity, as CaCOa	27.0	Stability Index	6.0
Hydroxides, as OH	$\frac{0}{9}$	Saturation Index	0.9
Carbon Dioxide, as CO ₂		Turbidity, Silica Scale	20
Carbonates, as CO ₃	0		
Bicarbonates, as HCO ₃	330		
Chlorides, as Cl			•
Iron, as Fe	0.0		• •
Manganese, as Mn	0.0		

ゆり

Chemist

١,

Signed:

•

ontract Nam	o Gree	n Meado	ows Pr	oject TEST HOLE
b No				
ity				State Driller
	cation_5/F	1/4 al	SEVA	Section 4, T455, R26E.
		Distance a	nd Directio	on from Permanent Landmark or Previous Test Hole
				TEST LOG
		MARSH Funnel	NUD PIT	Static Water Level Measure Measure Hours After Completion
FROM	TO	VISCOSITY BECONDS	INCHES	FORMATION
0'0"	7'0"			Sand, brown, iron stained, fine to med.
7'0"	20'0"			Limestone, light gray and brown
20*0"	30*0"			Clay, light green
30'0"	40'0"			Clay, dark green, shell fragments, phospha
40'0"	60'0"			Clay, dark green, shell fragments
60'0"	70'0"			Sandstone, gray, calcareous
70'0"	80'0"			Same
80'0"	100'0"			Same
100*0"	115'0"			Same
115*0"	130'0"			Limestone, and gray clay
130'0"	190'0"			Clay, gray
190'0"	220'0"			Clay, dark gray, sandy, phosphatic
220'0"	250'0"			Clay, gray
250'0"	280'0"			Limestone, gray-white, phosphatic
280'0"	305'0"			Same

ŗ

į

.

אכ רז.

•

.

۶ د د

Contract Name	e Green N	leadows	s Proj	ect TEST HOLE
ob No				
		·		Driller
Fore Hole Loc	ation_1160	r 5	+6	Dunter Corner of Section 19. T465. RZ
n also	describes	Aistance I	and Direction	on from Permanent Landmark or Previous Test Hole
why of NE	E 1/4 al Sec	30,46	<u>, S, R.I.</u>	V.E. TEST LOG
FROM	то	MARSH FUNNEL	MUD PIT	Static Water Level Measure Hours After Completion
FROM		VISCOSITY	INCHES	FORMATION
0'0"	10'0"			Sand, fine-med., brown
10'0"	20'0"		1	Sand, fine-med., tan
20'0"	25'0"			Sand, fine, white
25'0"	30'0"			Limestone, tan, sandy
30'0"	50*0"			Same with shells
50'0"	55'0"			Limestone, gray
55'0"	70'0"			Limestone, tan & gray, some clay, shells
70'0"	90.0"		·	Limestone, gray
9010"				Limestone, tan
	140'0"			Limestone, gray, tan
140'0"	150+0"			Limestone, tan, sandy
150'0"	170'0"			Clay, light gray
170'0"	200'0"			Clay, green, sandy
200.0"	210'0"			Clay, dark gray-green, shell frag., phospha
Continu	ed	T		

DED

:

TEST HOLE REPORT Layne-Western Company

	e(leadow	<u>B Project</u> DateNo_L-739
lity	······································			State Driller
Fest Hole Loc	ation			
<u></u>				on from Permanent Landmark or Previous Test Hole
Continu	ation of		#2	TEST LOG Static Water Level Measure
FROM	TO	MAR9H Funnel	NUD PIT	Hours After Completion
	, 	VISCOSITY	INCHES	FORMATION
210'0"	218'0"			Clay, dark gray-green
218'0"	225'0"			Limestone, gray-white, sandy
225'0"	230'0"			Sand, fine-med., gray-tan
230'0"	240'0"		· ·	Sandstone, graý
240'0"	250+0"			Sandstone, gray, and sand
OTES: Size	of Pit			

APPENDIX E

WATER SUPPLY STUDY

in

WESTERN LEE COUNTY, FLORIDA

For:

Florida Cities Water Company Sarasota, Florida Fort Myers Beach, Florida

By:

Carl E. Nuzman, P.E. Hydrology Consultant Layne-Western Company, Inc. Kansas City, Missouri 64111 (816) 931-2353

TABLE OF CONTENTS

. Т.

1. 1. 1.

[] []

> انت ا : ا

INTRODUCTION
Purpose and Scope Acknowledgements Population of Area
GEOLOGIC SITUATION
Map of Test Hole Locations Test Hole Reports Aquifer Tests
WATER QUALITY
Well Inventory Data
WATER LEVEL
Safe Yield Pumpage Data
AQUIFER SIMULATION MODEL
Digital Computer Model Future 1980 Water Level
SUMMARY AND CONCLUSIONS
RECOMMENDATIONS
APPENDICES:
GAC Utilities Data North Fort Myers Data Bonita Springs Data Pine Island Well Field Well Construction Specifications

INTRODUCTION

A formal proposal was submitted and accepted by Florida Cities Water Company to investigate the water supply situations for additional development in the vicinity of their Cypress Lakes well field located south of the City of Fort Myers, Florida. This report gives the results of the investigation.

Purpose and Scope

The purpose of the investigation is to determine whether sufficient ground water supply exists in the vicinity of the FCWC Cypress Lakes well field and water plant site to warrant building a water softening plant and have sufficient supply to meet future needs. The investigative procedure was to collect data from existing sources and inventory the present water supply situation. Then, test holes were drilled on a wide spacing basis to supplement these data and establish water level and water quality sampling stations. These data were then used in a model simulating the present aquifer condition. The aquifer simulation model was then programmed to include additional development and predict the probable outcome of such development. Both analog and digital computer techniques were used in the aquifer model simulation process.

Acknowledgements

The author received assistance from Mr. Gary Long, the manager of the Fort Myers District of Florida Cities Water Company who gave freely of his time to locate, obtain rights-of-way and collect data for the test drilling operation. Cooperation and assistance was received from Mr. Durwood Boggess, District Geologist of the U.S. Geological Survey, who measured water levels in wells and reported all pertinent geology data collected in the area of study. The test drilling sub-contractor was Mr. Marvin Miller, who did an excellent job. Some pumpage data and sea level elevations were furnished or made by personnel of Henry B. Steeg & Associates of Cape Coral, Florida. A concurrent study of water supply for Cape Coral was conducted for GAC Utilities and appreciation is expressed to this company which allowed wider and more comprehensive coverage of he Lee County area to be made for the mutual benefit of both studies. Appreciation for information obtained from the Pine Island Water District, the Florida Natural Resources Commission for data received, and to individuals who allowed water samples to be taken or test holes to be drilled on property under their control.

Population of Area

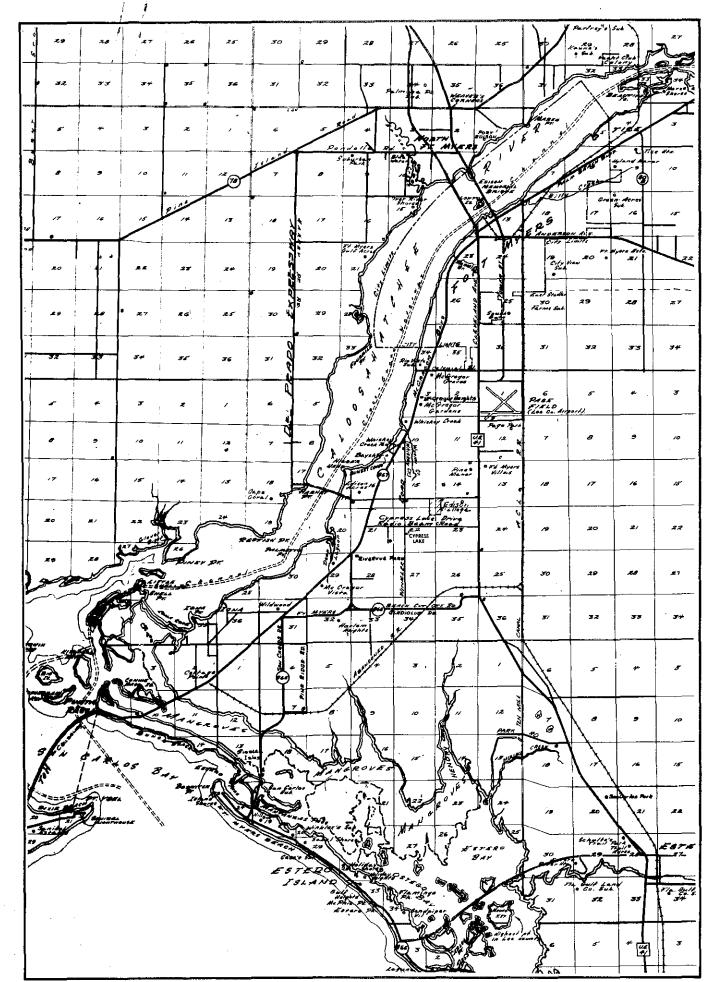
The present (October 1970) population of Cape Coral is listed at 15,296. The population one year ago was listed at 13,228. Occupancy of Cape Coarl started late in 1958. The average population growth has been approximately 13 percent a year. The population of Cape Coral can be expected to double in ten (10) years.

In 1966, FCWC furnished water to approximately 1500 customers on Fort Myers Beach, representing about 3500 population. The franchise service area has been expanded and now FCWC furnishes water to an equivalent population of 7000. The population of the FCWC franchise area can be expected to double in ten (10) years without further increase in area. If the service area is increased, a greater growth may be realized in time.

ΪĴ.

[] ;]

GEOLOGIC SITUATION


The most productive formation in the area suitable for public water supply development is the upper Hawthorn formation. This aquifer is a firm cocquina type of limestone formation generally encountered about 125 feet below land surface and continues in depth to approximately 225 feet. A green or yellow clay unit is then encountered which can be 200 feet thick, separating the upper Hawthorn aquifer from the lower Hawthorn aquifer. The normal chloride content of water from this aquifer is estimated to be about 80 parts per million (ppm).

The upper Hawthorn is usually protected from surface salt water infiltration by a green clay blanket usually 20 to 30 feet thick. Occasionally some sands are found in small areas on top the clay horizon which makes up the Tamiami formation. The most productive wells developed only in this formation are those of Florida Cities Water Company located at North Fort Myers water plant.

The lower Hawthern and the Tampa-Suwannee limestone formations have water production capability from approximately 550 feet below land surface to nearly 1,000 feet or more, in depth. The normal chloride content of water from these horizons is about 650 ppm and must be classified as brackish. The existing water pressure level in these aquifers is above land surface and these wells flow, if not restricted.

Nearly ten (10) years ago, or more, some vegetable farming requiring supplemental irrigation was practiced on cleared tracts of land. Many tracts were located in the Cape Coral area and a few tracts were located near the Cypress Lakes well field. These wells had shallow casings and were constructed with open hole to all formations with many wells penetrating to depths of 900 feet. Originally, good water from the upper Hawthorn formation was mixed in the well with poor quality from the lower Hawthorn formation and deeper formations, resulting in a high yield well of usable quality. Very little intra-flow between aquifers occurred because pressure levels in each aquifer were very similar. At the present (1970) time, the water level has been greatly lowered in the upper aquifer allowing brackish water to contaminate this aquifer by intra-flow in old abandoned wells. These abandoned wells have proven to be a serious pollution source deteriorating water quality in the upper Hawthorn formation.

Water levels in various piezometers have been measured by the U.S.G.S. of Ft. Myers. Illustrated is the present water table contours for the condition existing on October 20, 1970, in the study area for only the Upper Hawthorn. The drawdown from the original artesian level has reached 50 feet in small areas. Greater depths have been observed in pumped wells.

					S SINCE 1924			
Contrac	t Name	Florida Cities Water Com	ipany		TEST H			
Job No	•		Date_July	, 1970	No. FCW 1	-70		
City]	St. Myers	State Florid	la	Driller Marvin M	ille <u>r</u>		
Location of Test Hole Cypress Lake Drive & Edison Junior College			Elevation of Test Hole 6.2' msl (8.18 top p				pipe)	
		4 Sec. 23 of T 45S			r Level <u>4.59 (belo</u> ugust '70 _{Hours} A	-		
From	To		Description of Str	rata		Wate	r Bearing	
1	4'	Sand			1			
4	10	Rock						
10	40	Shell and sand						
40	50	Brown shell and sand						
50	65	Green clay and shell						
65	70	Green clay				<u> </u>	_	
_70	80	Rock and clay						
80	85	White sand rock						
85	105	White sand				20	poor	
117	126	White and black rock				9	poor	
130	150					20	fair	
160	220	White rock				40	good	
220	230	Greenclay and shell				10	none	
230		. depth						

TEST HOLE REPORT

.

.

TEST HOLE EVALUATION 1 IDENTIFICATION NUMBER FO	1
ELEVATION TOP OF PIPE	8.18 feet m.s.l.
HEIGHT OF PIPE ABOVE LAND SURFACE	1.90 feet
	6.28 feet m.s.l.
ELEVATION OF STATIC WATE	R LEVEL
DATE DEPTH TO WATE	<u>R</u> <u>ELEVATION</u>
1944-1952	21.8
<u>19 Aug., 1970</u> <u>4.59</u>	3.59
20 Oct., 1970 5.43	2.75
Apparent Areal Drawdown	18.21 feet
FORMATION NAME - UPPER H	
ELEVATION TOP OF FORMATION	
ELEVATION OF CASING POINT	<u>- 119.72</u> feet m.s.l.
PRODUCTION CAPABILI	
ESTIMATED PERMEABILITY	250 gpd/sq. ft.
ESTIMATED TRANSMISSIVITY10,	000 gpd/ft.
ESTIMATED STORATIVITY	0.01
EST. SPECIFIC CAPACITY	<u>5 gpm/ft.</u>
YIBLD POTENTIAL	<u>200gpm</u>
TOTAL DISSOLVED SOLIDS	800 mg/l
CHLORIDES	<u>255mg/1</u>
ELEVATION OF BOTTOM FORMATION	- 213.72 feet m.s.l.
WELL DIAMETER	2inches
METHOD OF DRILLING Cable-	• Tool
BOTTOM ELEVATION OF TEST HOLE	- 223.72 feat m.s.l.

-LAYNE-WESTERN COMPANY. INC.----

₿ LW-62 WICHITA + GARDEN CITY + LIBERAL + KANSAS CITY + DENVER + OMAHA + AMES + ST. LOUIS + AURORA

\$

I		yne	me-Western water supply servic test drilling • water	LES SINCE 1924		
Contrac	t Name	Florida Cities Water Co	mpany	TEST HO	E	<u> </u>
			Date_July, 1970	No. FCW 2-7	0	
Job No				- L		
City	Ft. 1	fyers	State Florida	Driller Marvin Mi	ller	
Junior	Colleg	Hole East of Edison ge A Sec23 of T455, Lee Co., Florida	Static Wa	of Test .7 (8.58) top pi ter Level 15.64 (T. August '70 Hours Aff	pipe	
From	То		Description of Strata		Water	r Bearing
1	5'	Sand				
5	20	Rock and sand				
20	-30	Sand and shell				
30	50	Shell and clay				
50	60	Shell and sand				1
.60	65	Green_clay				
65	70	Green clay and shell				
70	80	Sand rock				
80	100	Sand				
100	105	Black sand			<u> </u>	
105	125	Yellow rock		·····	20	poor
125	210	White rock			85	good
210	225	Black sand, rock			15	poor
225	230	<u>Green clay</u>			5	none
230	Tota	depth			<u> </u>	<u> </u>
		······			+	
					1	1

Test (9 second - 5 gallons) 33 gpm with shallow lift pump Static water level (-) 7.06 feet below msl

د_

L.

التسبية ب

و است

الوائد الدارية ا

أهداد المسا

📑 LW-52 WICHITA • GARDEN CITY • LIBERAL • KANSAS CITY • DENVER • OMAMA • AMES • ST. LOUIS • AURORA

TEST HOLE EVALUATION DA IDENTIFICATION NUMBER_		
	8.58	feet π.3.1
HEIGHT OF PIPE ABOVE LAND SURFACE_	1.6	feer
ELEVATION LAND SURFACE DATUM	6.98	feet m.s.l.
ELEVATION OF STATIC WATER	LEVEL	
DATE DEPTH TO WATER	ELEVATION	-
1944-1952	21.9	
19 Aug. 1970 15,64	- 7.06	
20 Oct., 1970 14.64	-6.06	
Apparent Areal Drawdown	28.96 f	eet
FORMATION NAME - UPPER HA	WTHORN	
ELEVATION TOP OF FORMATION	- 63	_ feet m.s.l.
ELEVATION OF CASING POINT	- 119	_ feet m.s.l.
PRODUCTION CAPABILIT	Y	
ESTIMATED PERMEABILITY	<u>200</u> gpd/sg.	ft.
ESTIMATED TRANSMISSIVITY	17,000 gpd/ft.	
ESTIMATED STORATIVITY	0.01	
EST. SPECIFIC CAPACITY	8.5 gpm/ft.	
YIELD POTENTIAL	<u>350 gpm</u>	
TOTAL DISSOLVED SOLIDS		
CHLORIDES	<u>690 mg/1</u>	
ELEVATION OF BOTTOM FORMATION	-118	feer m.s.l
WELL DIAMETER 2	inches	
METHOD OF DRILLING Cable	-Tool	
	-223	- jeeu m.s.l

1

TEST HOLE REPORT	TEST HOLE EVALUATION DATA IDENTIFICATION NUMBER <u>FCWC 3-70</u>			
WATER SUPPLY SERVICES SINCE 1924		ELEVATION TOP OF PIPE 8.41 feet m.		
TEST DRILLING . WATER WELLS . PUMPS		HEIGHT OF PIPE ABOVE LAND SURFACE 1.3 feet		
		ELEVATION LAND SURFACE DATUM 7.11 feet m.		
ntract Name Florida Cities Water Company TEST HG	DLE	ELEVATION OF STATIC WATER LEVEL		
b No	_70	DATE DEPTH TO WATER ELEVATION		
tyStateFloridaDrillerMarvin	Miller			
st of Edison Junior College Hole 6.0 MSI (0.41 1		<u>19 Aug., 1970</u> <u>16.07</u> <u>- 7.66</u>		
14 Static Water Level 16.07 (T 1/4 Static Water Level 16.07 (T 1/4 Static Water Level 16.07 (T 1/4 Measured August '70 Hours A		20 Oct., 1970 15.30 - 6.89		
24 E Lee Co., Florida		Apparent Areal Drawdown 29.66 feet		
rom To Description of Strata	Water Bearing			
1 21' White sand and shell		FORMATION NAME - UPPER HAWTHORN		
1 31 Sand w/gray shell 1 58 Clay		ELEVATION TOP OF FORMATION feet m.		
1 58 Clay 8 78 Clay w/shell				
8 82 Layer of hard pan		PRODUCTION CAPABILITY		
2 122 Gray sand	40 poor			
2 192 Shell and coarse sand	70 good	ESTIMATED PERMEABILITY 200 gpd/sq. ft.		
2 202 hard pan (limestone) 2 237 Shell and limestone	10 none 35 good	ESTIMATED TRANSMISSIVITY 21,000 gpd/ft.		
2 237 Shell and limestone 7 238 Clay	1 none	ESTIMATED STORATIVITY 0.01		
8 -Total depth				
		EST. SPECIFIC CAPACITY 10.5 gpm/ft.		
		YIELD POTENTIAL 420 gpm		
	· · · · · · · · · · · · · · · · ·	TOTAL DISSOLVED SOLIDS 500 mg/l		
		CHLORIDESmg/l		
		ELEVATION OF BOTTOM FORMATION - 230		
	· ·	WELL DIAMETER 2 inches		
emarks:		METHOD OF DRILLING Cable-Tool		
Casing - 2" diameter pipe 126 feet in depth				

_

r

a.

.

.

.....

.

· · · · · · · · · ·

.

			TEST DRILLING . WATE	R WELLS • P	UMPS			
Contract	Name	Florida Cities Water Compa	ny		TEST HOL	E.		
		Date		-	<u>FCW4-70</u>			
City_	Ft. My		773	Driller	Marvin Mil	ller		
Near 🛪	center4	Sec. 14 of T_45 S_, LeeCo,Florida	14 Static W	<u>l feet ma</u> ater Level <u></u>	sl (10.52 il.20 feet Hours Aft	<u></u>		
From	То	Descri	ption of Strata			Water	Bearing	
1	11	Sand						
11	31	Sandy shell						
31	52	Clay and shell						
52	78	Clay				ļ		
78	80	Hard pan				<u> </u>		
80	113	Gray sand, fine shell				33	poor	
113	147	Shell rock				34	Good	
147	231				·····	84	Good	
231	244	Shell and clay			. <u>.</u>	13,	poor	
244	251	Clay and fine shell				7	none	
		depth						
Remarks:	Casin	g - 2" diameter pipe 126 fe (5.5 seconds - 5 gallons)	et in depth					

📩 LW-62 WICHIYA + GARDEN CITY + LIBERAL + KANSAS CITY + DENVER + OMAHA + AMES + ST. LOUIS + AURORA

TEST HOLE EVALUATION DATA IDENTIFICATION NUMBER <u>FCWC 4-70</u>	İ
ELEVATION TOP OF PIPE 10.52	feet m.s.l.
HEIGHT OF PIPE ABOVE LAND SURFACE 1.3	feet
	feet m.s.l.
ELEVATION OF STATIC WATER LEVEL	
DATE DEPTH TO WATER ELEVATION	
<u>19 Aug., 1970</u> <u>10.22</u> <u>0.30</u>	
20 Oct., 1970 10.14 0.38	
Apparent Areal Drawdown 21.80 f	eet
FORMATION NAME - UPPER HAWTHORN	
ELEVATION TOP OF FORMATION - 71	feet m.s.l.
117	feet m.s.l.
PRODUCTION CAPABILITY	
ESTIMATED PERMEABILITY <u>220</u> gpd/sq.f	it.
ESTIMATED TRANSMISSIVITY 25,600 gpd/ft.	
ESTIMATED STORATIVITY 0.01	
EST. SPECIFIC CAPACITY 13 gpm/ft.	
YIELD POTENTIAL 510 gpm	
TOTAL DISSOLVED SOLIDS 430 mg/l	
CHLORIDES 90 mg '1	
ELEVATION OF BOTTOM FORMATION - 235	jeet m.s.l.
WELL DIAMETER 2 inches	
METHOD OF DRILLING Cable-Tool	-
BOTTOM ELEVATION OF TEST HOLE 242	cect misil

White durit shart with a mit mit with a mit	TEST HOLE REPORT				TEST HOLE EVALUATION DATA IDENTIFICATION NUMBER <u>FCWC 5-70</u>	
Intract Name Florida Cities Water Company Test Mole No Dea Dea Dea y Escapiorida Deate Deate Deate y Escapiorida Deate Deate Deate Deate Deate y Escapiorida Deate Deat <t< th=""><th></th><th>SUPPLY SERVICES SINCE 1924</th><th></th><th>· · · · ·</th><th>ELEVATION TOP OF PIPE11.81</th><th>feet</th></t<>		SUPPLY SERVICES SINCE 1924		· · · · ·	ELEVATION TOP OF PIPE11.81	feet
Similar Nume	TEST DRILL	ING • WATER WELLS • PUMPS			HEIGHT OF PIPE ABOVE LAND SURFACE 1.2	feet
Attract Nume Plorida Cities Water Company TEST WOLE Date b No. Date Date <t< td=""><td></td><td></td><td></td><td></td><td>ELEVATION LAND SURFACE DATUM 10.61</td><td>feet</td></t<>					ELEVATION LAND SURFACE DATUM 10.61	feet
Nome Date Description Date Description Description <thdescription< th=""> Description <thdescription< <="" td=""><td>Florida Cities Water Company</td><td></td><td></td><td></td><td></td><td></td></thdescription<></thdescription<>	Florida Cities Water Company					
y FE. NVersa See#lorida Dulker Marvin Miller ation of Tet Hok 11 Flevation of Lest 12 iii Max. 1970 11.20 0.61 24 E Lest Kow Ander Lored Messured Hours Alter Completion 21 B Trome and A.shell Messured Hours Alter Completion 21 B Strome and A.shell 11 20 Oct. 1970 10.70 21 B Strome and A.shell 11 20 Oct. 1970 10.70 1.11 22 B Lest Kee Acta Wate Bentg 20 Oct. 1970 10.70 1.11 22 B Lise Acta Messured Hours Alter Completion 20 Oct. 1970 10.70 1.11 21 B Strome and A.shell Image: Strome and A.shell Image: Strome and A.shell 21.79 Feet 21 Lise Actor Strome and A.shell Image: Strome and A.shell 21.79 Feet 22.5 32 Sand Sand 19 Boor Strike Points Full 20 gepd/ft. 23 Lisestone shell 20 Good 10 Boor 22.5 mg/l 134 Lisestone shell 20 Good<		NoFCW-5-	-70			
caute of Test Hole Image: Developed of State Image: Developed of State Massed Hours After Completion		L				
1 1 2 1 2 0 11.20 0.51 24 E Lee Co. Florida Messured Hours After Completion 20 Oct. 1970 10.70 1.120 0.151 24 E Lee Co. Florida Messured Hours After Completion 20 Oct. 1970 10.70 1.120 0.111 20 Oct. 1970 Desciption of State Wate Bening 20 Oct. 1970 10.70 1.111 20 Oct. 1970 Desciption of State Wate Bening 21.79 Freet 21.79 Freet 21 Brown sand Desciption of State Massared 21.79 Freet 21.79 Freet 23 Shell and shell Desciption of State Desciption of State 20 Oct. 1970 11.20 0.111 23 Sand Desciption of State Desciption of State Desciption of State 20 Oct. 1970 11.20 21.79 Freet 23 Sand Desciption of State Desciption of State Desciption of State 20 Oct. 1970 Desciption of State 20 Oct. 1970 Desciption of State 20 Oct. 1970 20 Oct. 1970 Desciption of State 20 Oct. 1970 20 Oct. 1970 Desciption of State 20 Oct. 1970	y <u>Ft. Myers</u> StateFlorida		iller			
		Elevation of Test Hole 10.5				
Image: Sec. 24 or T. 45.5 Image:					<u>19 Aug., 1970</u> <u>11.20</u> <u>0.61</u>	
24 E Lee Co. Florida nm To Description of Senta Wate Benning 0 11' Brown aand, shell	<u>14</u> <u>NE</u> <u>14</u> Sec. <u>14</u> of T <u>45</u> S ,				20 Oct., 1970 10.70 1.11	
0m 13 Decrement of Stata Water stata 0m 13 Decrement of Stata Water stata 0 11* Brown sand, shell FORMATION NAME - UPPER HAWTHORN 1 11 Shell and sand -99 feet to 1 14 Shell and clay -99 feet to 1 50 Clay with shell -99 feet to 1 50 Clay and shell -115.4 feet to 2 74 Rock -115.4 feet to 2 74 Rock -119 PRODUCTION CAPABILITY 200 gpd/sg. ft. 2 74 Rock -119 PROFUL -115.4 feet to 3 93 Sand 19 PROFUL 200 gpd/sg. ft. 3 13 Limestore with sand 34 fair 234 fair 4 234 Clay 1 00 good gpd 1 234 Clay 1 none -10 -10 234 Clay 1 no	<u>24 E , Lee Co., Florida ,</u>	measuren Hours A.		npiction		
1 21 Brown aand, shell	rom To Description of Str.	ata	Wate	r Bearing	Apparent Areal Drawdown 21.79 fe	et
1 31 Shell and sand	0 11' Brown sand	·····		_	FORMATION NAME - UPPER HAWTHORN	
1 31 Shell and clay			+		ELEVATION TOP OF FORMATION -99	feet
1 50 Clay with shell 1		· · · ·				
0 69 Clay PRODUCTION CAPABILITY 9 72 Clay and shell PRODUCTION CAPABILITY 2 74 Rock Sand 2 74 Rock Sand 3 99 Rock layers 6 9 109 Black shell and sand 10 9 103 Limestore with sand 34 3 233 Limestore with sand 34 3 234 Clay 1 4 Total depth 1 00 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -		***	+			feet
9 72 Clay and shell			+		PRODUCTION CAPABILITY	
22 74 Rock 19 Door 4 93 Sand 19 Door 33 99 Rock layers 6 poor 99 109 Black shell and sand 10 poor 99 143 Limestore with sand 34 fair 3 233 Limestore shell 34 fair 3 234 Clay 1 none 4 Total depth 1 none 4 Total depth 1 none 1					ESTIMATED PERMEABILITY 200 god/sg. f	t.
93 Sand 19 poor 3 99 Rock layers 6 poor 9 109 Black shell and sand 10 poor 9 143 Limestore with sand 34 fair 3 233 Limestore shell 34 fair 3 234 Clay 1 none 4 Total depth 1 none 4 Total depth 1 none 1	2 74 Rock					
9 109 Black shell and sand 10 poor 9 143 Limestore with sand 34 fair 3 233 Limestore shell 30 good 3 234 Clay 1 none 4 Total depth 1 none 4 Total depth 1 none 5	493 Sand		19	poor		
9 143 Limestore with sand 34 fair 3 233 Limestore shell 30 good 3 234 Clay 1 none 4 Total depth 1 none 4 Total depth 1 none 4 Total depth 1 none 5 cclay 1 none 6 1 1 none 7 1 none 1 6 1 1 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <td< td=""><td></td><td></td><td></td><td></td><td>ESTIMATED STORATIVITY 0.01</td><td></td></td<>					ESTIMATED STORATIVITY 0.01	
143 Limestone with same 34 raif 233 Limestone shell 90 good 3 234 Clay 1 none 4 Total depth 1 none 4 Total depth 1 none 4 Total depth 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				-	EST. SPECIFIC CAPACITY 9.0 gpm/ft.	
3 234 Clay 1 none 4 Total depth 1 none 6 1 1 none 7 1 1 none 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
4 Total depth Total depth Total depth Total DISSOLVED SOLIDS 800 mg/l 4 Total depth CHLORIDES 225 mg/l 5 Casing 2" diameter pipe 126 feet in depth feet Test (5 sec 5 gallons) 60 gpm with shallow lift pump MCTHOD OF TEST HOLE - 224		· · · · · · · · · · · · · · · · · · ·		-	YIELD POTENTIAL <u>360</u> gpm	
CHLORIDES 225 mg/l CHLORIDES 225 mg/l CHLORIDES 225 mg/l Marks: Casing 2" diameter pipe 126 feet in depth Test (5 sec 5 gallons) 60 gpm with shallow lift pump METHOD OF DRILLING CABLE-TOOL MCTION OF TEST HOLE - 224 feet				1.01.	TOTAL DISSOLVED SOLIDS 800 mg/1	
well DIAMETER 2 inches marks: Casing 2" diameter pipe 126 feet in depth Test (5 sec 5 gallons) 60 gpm with shallow lift pump METHOD OF DRILLING CABLE-TOOL					CHLORIDES 225 mg/l	
well DIAMETER 2_inches well DIAMETER 2_inches </td <td></td> <td></td> <td>+</td> <td></td> <td>ELEVATION OF BOTTOM FORMATION - 223</td> <td>feet</td>			+		ELEVATION OF BOTTOM FORMATION - 223	feet
marks: Casing 2" diameter pipe 126 feet in depth Test (5 sec 5 gallons) 60 gpm with shallow lift pump		· · · · · · · · · · · · · · · · · · ·	+			.ree£
Casing 2" diameter pipe 126 feet in depth Test (5 sec 5 gallons) 60 gpm with shallow lift pump feet			1		WELL DIAMETER inches	
Test (5 sec 5 gallons) 60 gpm with shallow lift pump	marks: Casing 2" diameter pipe 126 feet in dep	th	<u></u>	. !	METHOD OF DRILLING CABLE-TOOL	
Test (5 sec 5 gallons) 60 gpm with shallow lift pump					BOTTOM ELEVATION OF TEST HOLE - 224	feet
	· · · · · · · · · · · · · · · · · · ·					

TEST HOLE REPORT Layne-Western Company, Inc. WATER SUPPLY SERVICES SINCE 1924 TEST DRILLING • WATER WELLS • PUMPS

Contrac	t Name_ ⁾	Florida Cities Water C	Company	TEST HOL		7
Job No.			Date_July, 1970	No. FCW 6-	<u>// </u>	
City	Ft	. Myers	StateFlorida	Driller Marvin Mi	ller	
		Hole East side of m Avenue	- 13]	of Test 1 (16.16 top pig		
		4 Sec. 13 of T 45 S Lee Co., Florida	Measured	ter Level <u>9.73</u> (below Hours Aft		
From	To		Description of Strata		Water Be	earing
1	4'	Sand				
4	10	Rock				
10	30	Sand, shell				
30	50	Shell				
50	70	<u>Green</u> clay				
70	90	Sand				
90	100	Green clay, sand				
105	120	White sand				
120	140	Black_sand			20	<u>1000</u>
140	1.50	Gray clay			10	none
160	200	White rock			40	<u>goo</u> c
200	220	Black sand			20	рооз
220	Tot <u>a</u>	l_depth				·
			· · · · · · · · · · · · · · · · · · ·			
		······································			<u>+</u> .	
Remarks	Casi	ng - 2" diameter pipe	147 feet in depth			

	TEST HOLE EVALUATION DATA IDENTIFICATION NUMBER FORC 6-70	-		
_	TOP OF PIPE 16.	16	ieet	π.v.1
	HEIGHT OF PIPE ABOVE LAND SURFACE 0.	50	feet	
4	BLEVATION LAND SURFACE DATUM 15.	66	feer	a.s.1.
	ELEVATION OF STATIC WATER LEVEL			
	DATE DEPTH TO WATER	ELEVATION		
	1944-1952	22 .1		
		6.43		
	20 Oct., 1970 8.96 Apparent Areal Drawdown	7.20 15.67		
	FORMATION NAME - UPPER HAWTHORN			
	ELEVATION OF CASING POINT 132			
	PRODUCTION CAPABILITY		1000	
	ESTIMATED PERMEABILITY 190	gpd/s q.	ft.	
	ESTIMATED TRANSMISSIVITY 7,600	gpd/ft.		
	ESTIMATED STORATIVITY 0.01	<u></u>		
	EST. SPECIFIC CAPACITY 3.8	gpm/ft.		
	YIELD POTENTIAL 150	gpm		
	TOTAL DISSOLVED SOLIDS 380	mg/l		
	CHLORIDES 75	mg/1		
	ELEVATION OF BOTTOM FORMATION - 185		feet	a.s.l.
	WELL DIAMETER 2	inches		
	METHOD OF DRILLING CABLE-TOOL			
	BOTTOM ELEVATION OF TEST HOLE _ 205		- fea-	

.....

-... d

5

GI LW-62 WICHITA + GARDEN CITY + LISERAL + KANSAS CITY + DENVER + CMAHA + AMES + ST. LOUIS + AURORA

			TEST DRILLING • WATE	₹ WELL\$ • 1	PUMPS				. .
Contract	Name_F	lorida Cities Water Co	mpany		TEST HOLE				
Job No.			Date July, 1970	~	NoFCW 7-70	0			
		. Myers	State_Florida	-	Marvin Mille	er	4		
Lity				_ Driller_			······································		
		_{Hole} Warren Bros. Tar la Dri v e	Elevation Hole 4	of Test 7 feet	msl (5.76 top	p pi	pe)		
10116,	GIUUIU		25 Static W	tor Level	+7.8 (Flowin	q)			
W 1/4	SE 1/	Sec. 26 of T 45 S			70 Hours After				
		Lee Co., Florida	Measured	<u></u>	Hours After	Com	pletion		
From	To		Description of Strata		v		Bearing		
1	10'	Rock							
10	30	Brown sand							
40	52	Shell							• •
52	70	Green clay				·			
70	84	Green clay and sand							2
84	90	White sand							
90	110	Green sand		-					
110	122	Blue clay							
122	130	White rock				8	good		
130	150	Yell <u>ow rock</u>				20	poor		
15 <u>0</u> .	205	White_rock				55	good		
205	230	Green clay				25	none		
230	Tota	l depth	··				<u> </u>		
							l		
							<u> </u>		
							<u> </u>		
I									

ATION TOP OF PIPE 5.76 feet m.s.l. HT OF PIPE ABOVE LAND SURFACE 0.90 feet 4.86 ATION LAND SURFACE DATUM _____ feet m.s.l. ELEVATION OF STATIC WATER LEVEL DEPTH TO WATER ELEVATION DATE 21.0 44-1952 13.56 Aug., 1970 + 7.8 Oct., 1970 + 4.41 10.17 7.44 feet parent Areal Drawdown FORMATION NAME - UPPER HAWTHORN ATION TOP OF FORMATION - 117 ____ feet m.s.l. ATION OF CASING POINT____ - 121 ____ feet m.s.l. PRODUCTION CAPABILITY gpd/sq. ft. ESTIMATED PERMEABILITY 225 ESTIMATED TRANSMISSIVITY 10,800 gpd/ft. ESTIMATED STORATIVITY 0.01 EST. SPECIFIC CAPACITY 5.4 gpm/ft. YIELD POTENTIAL 215 gpm TOTAL DISSOLVED SOLIDS 1900 mg/l mg/l 666 CHLORIDES ATION OF BOTTOM FORMATION - 199 feet m.s.l. inches WELL DIAMETER 2 METHOD OF DRILLING CABLE-TOOL BOTTOM ELEVATION OF TEST HOLE - 225 _____feat m.s.l LAYNE-WESTERN COMPANY. INC.----

TEST HOLE EVALUATION DATA IDENTIFICATION NUMBER FCWC 7-70

Flowing well 2-1/4" head - flowing approximately 30 gpm

📅 LW-62 WICHITA + GARDEN CITY + LIBERAL + KANSAS CITY + DENVER + OMAHA + AMES + ST. LOUIS + AURORA

	TEST HOLE REPORT
	Layne-Western Company, Inc.
ne)–	TEST DRILLING • WATER WELLS • PUMPS

Contract NameFlorida Cities Water Company Job No Date			= TEST HO	LE 		
City	Ft. My	ers	State Florida	_ Driller Marvin Mil	ler	
<u>SW 1</u> 4	<u>SW </u>	Hole		of Test 10.7 .ter LevelHours Af		
From	То		Description of Strata		Water	Bearing
0		Sanđ			-	
9	11	Rock		-		
11	25	Sand				
25	40	Shell, coarse sand				
40	50	Clay_and_shell				
50	78	Clay				
78	80	Hard pan				
80	122_	Sand				
122	132	Black shell and coar	se sand	•	10	fair
132	142	Clay and coarse sand			10	poor
142	152	Clay and shell			10	poor
152	168	Shell and limestone			16	qood
168	170	Hard pan			2	none
170	_ 212	Shell & Limestone			42	good
212	232	Shell with clay			20	poor
232	240	Clay with shell			8	none
240	Tota	l depth				
Remarks:						

IDENTIFICATION NUMBER FCWC	8-70	
ELEVATION TOP OF PIPE	11.57	feet m.s.l.
HEIGHT OF PIPE ABOVE LAND SURFACE	0.8	feet
ELEVATION LAND SURFACE DATUM	10.77	feet m.s.l.
ELEVATION OF STATIC WATER LE	VEL	
DATE DEPTH TO WATER	ELEVATION	
	21.5	<u> </u>
14 Aug., 1970 3.65	7.92	
20 Oct., 1970 4.20	7.37	
Apparent Areal Drawdown	13.58	feet
FORMATION NAME - UPPER HAWTE	IORN	
ELEVATION TOP OF FORMATION	-111	feet m.s.l.
ELEVATION OF CASING POINT	-115	feet m.s.l.
PRODUCTION CAPABILITY		
ESTIMATED PERMEABILITY 210	apd∕sq.	ft.
ESTIMATED TRANSMISSIVITY 14.300	gpd/ft,	
ESTIMATED STORATIVITY 0.01		
EST. SPECIFIC CAPACITY 7.1	gpm/ft.	
YIELD POTENTIAL285	abw	
TOTAL DISSOLVED SOLIDS 1100	mg /1	
CHLORIDES360	mg ′1	
ELEVATION OF BOTTOM FORMATION - 201		_1000 T.S.I.
WELL DIAMETER 2	inches	
METHOD OF DRILLINGCABLE-TOOL		_
BOTTOM ELEVATION OF TEST HOLE _ 229		-seen musul
	TERN COMPANY	1.5

TEST HOLE EVALUATION DATA

Casing - 2" diameter pipe 126 feet in depth

Test (4.5 sec. - 5 gallons) 67 gpm with shallow lift pump

🕇 LW-62 - WICHITA + GARDEN CITY + LIBERAL + XANSAS CITY + DENVER + OMAHA + AMES + ST. LOUIS + AURORA

	(].	lay.		ern Ca	ompany, Ind	ç.	
		lyne	TEST DRILLING	• WATER WI			
Contract	t Name	Florida Cities Water C	ompany		TEST HOL	E	
Job No.			Date July, 19	70	NoFCW 9-	70	
City		. Myers	State Florida		Driller ^{Marvin} Mille	er	
SE ¼	Colleg	Hole B Parkway & Sec of T45 S, LeeCo., Florida	15 H	atic Water	Test (8.46 feet top Level 3.02 (T. p. rust '70 Hours Aff	ipe)	
From	То		Description of Strata			Water	r Bearing
1	21'	Sand					
_21	34	Sand and shell					
34	40	Clay and shell					
_40	74	Clay					
_ 74	76	Clay and shell					
76	77.5	Rock					
<u>77.5</u>	80	Hard pan			-		
	90	Sand, shell and clay					
90	120	Sand with fine shell					
120	130	Shell, sand and clay				4	poor
130	189	Shell limestone				59	
189	192	Limestone rock				3	good
192	198	Clay, shell and sand				.6	poor
198	201	Limestone rock				3	good
201	211	Shell limestone				10	good
211	226	Shell and clay				15	poor
226	228	<u>Clay with fine shell</u>				2	none
228	229	Hard rock				1	none
229	Tota	depth					
Remarks:	Caeii	ng - 2 [#] diameter nine 1)6 foot in do-				

.

.

ι.,

i. .

. .

Casing - 2" diameter pipe 126 feet in depth

Test (5 seconds - 5 gallons) 60 gpm with shallow lift pump

WICHITA • GARDEN CITY • LIBERAL • KANSAS CITY • DENVER • OMAHA • AMES • ST. LOUIS • AURORA **₩**-62

TEST HOLE EVALUATION IDENTIFICATION NUMBER_		
ELEVATION TOP OF PIPE	8.46	feet m.s.l.
HEIGHT OF PIPE ABOVE LAND SURPACE		
ELEVATION LAND SURFACE DATUM		
ELEVATION OF STATIC WAT	R LEVEL	
DATE DEPTH TO WAT	ER ELEVATION	1
1944-1952	22.0	
14 Aug., 1970 3.02	5.14	
20 Oct., 1970 3.60	4.86	
Apparent Areal Drawdown		<u>feet</u>
FORMATION NAME - UPPER	HAWTHORN	
ELEVATION TOP OF FORMATION	- 123	_ feet m.s.l.
ELEVATION OF CASING POINT	- 119	_ feet m.s.l.
PRODUCTION CAPABIL	ITY	1
ESTIMATED PERMEABILITY	<u>220</u> _gpd/sq.	ft.
ESTIMATED TRANSMISSIVITY	<u>15,900</u> gpd/ft.	
ESTIMATED STORATIVITY	0.01	
EST. SPECIFIC CAPACITY	8_gpm/ft.	
YIELD POTENTIAL	gpm	
TOTAL DISSOLVED SOLIDS	<u>850</u> mg/l	~
CHLORIDES	285mg/l	
ELEVATION OF BOTTOM FORMATION	- 219	íeet m.s.l.
WELL DIAMETER	<u>2</u> inches	
METHOD OF DRILLING CA	BLE-TOOL	<u> </u>
BOTTOM ELEVATION OF TEST HOLE	- 222	feet m.s.l
	WESTERN COMPAN	Y. INC

. . . .

.

.

		lay	ne-Wes	tern (R E P O R T Company, Int S SINCE 1924 WELLS • PUMPS	C .	
Contract Job No.		Florida Cities Water Co	mpany Date_July,	1970	TEST HOL No. FCW 10		7
City	I	t. Myers	StateFlor	rida	Driller_Marvin Mil	ler	
Cape C	of Test 1 oral br	Hole Ft. Myers side of	16 •	Static Wate	f Test freet mal (7.80 to er Level <u>3.27 (T.</u> Igust '70 Hours Aft	op pi pipe)	
From	To		Description of Str	ata		Water	Bearing
1	10'	Sand	1				
10	20	Sand and shell					1
20	30	Sandy clay and shell					1
30	60	Clay and shell			· ·	30	none
60	85	Sandy clay			<u> </u>	25	none
85	104	Clay and shell				19	none
104	122	Sand and fine shell				18	poor
122	· 128	Sand, shell and clay				6	poog
128	134	Black clay and shell				6	2001
134	139_	Sand, shell and clay				5	poo1
139	236	Shell, water rock with				97	qood
236	239	Clay and shell				3	none
239 241	241 Tota	Clay, fine shell l depth	······································			2	none
Remarks:		ng - 2" diameter pipe 1					

Test (7 seconds - 5 gallons) 43 gpm with suction lift pump

C LW-82 WICHITA + GARDEN CITY + LIBERAL + KANSAS CITY + DENVER + OMAHA + AMES + ST. LOUIS + AURORA

	TEST HOLE EVALUATION DATA IDENTIFICATION NUMBER FCWC 10-70	
_	ELEVATION TOP OF PIPE 7.80	feet m.s.l.
	HEIGHT OF PIPE ABOVE LAND SURFACE 1.0	feet
H	ELEVATION LAND SURFACE DATUM6.80	feet m.s.l.
	ELEVATION OF STATIC WATER LEVEL	
	DATE DEPTH TO WATER ELEVATION	
	<u> 1944 –1952 </u>	
	14 Aug., 1970 3.27 4.53	
	20 Oct., 1970 5.34 2,46	
	Annarent Areal Drawdown 17.47	
	<u>Apparent Area</u> l Drawdown <u>17.47</u> FORMATION NAME - UPPER HAWTHORN	
	ELEVATION TOP OF FORMATION 127	foot m o 1
	ELEVATION OF CASING POINT	
	PRODUCTION CAPABILITY	ieet m.s.i.
	ESTIMATED PERMEABILITY 180 gpd/sq. 1	-
		· · ·
	ESTIMATED TRANSMISSIVITY 15,600 gpd/ft.	
	ESTIMATED STORATIVITY 0.01	
	EST. SPECIFIC CAPACITY 7.8 gpm/ft.	
	YIELD POTENTIAL <u>310</u> gpm	
	TOTAL DISSOLVED SOLIDS mg/1	
	CHLORIDESmg/1	
	ELEVATION OF BOTTOM FORMATION - 229	feer m.s.l.
	WELL DIAMETER 2 inches	
	METHOD OF DRILLING <u>CABLE-TOOL</u>	
-	BOTTOM ELEVATION OF TEST HOLE234	feet m.z.l
!	LAYNE-WESTERN COMPANY	. INC

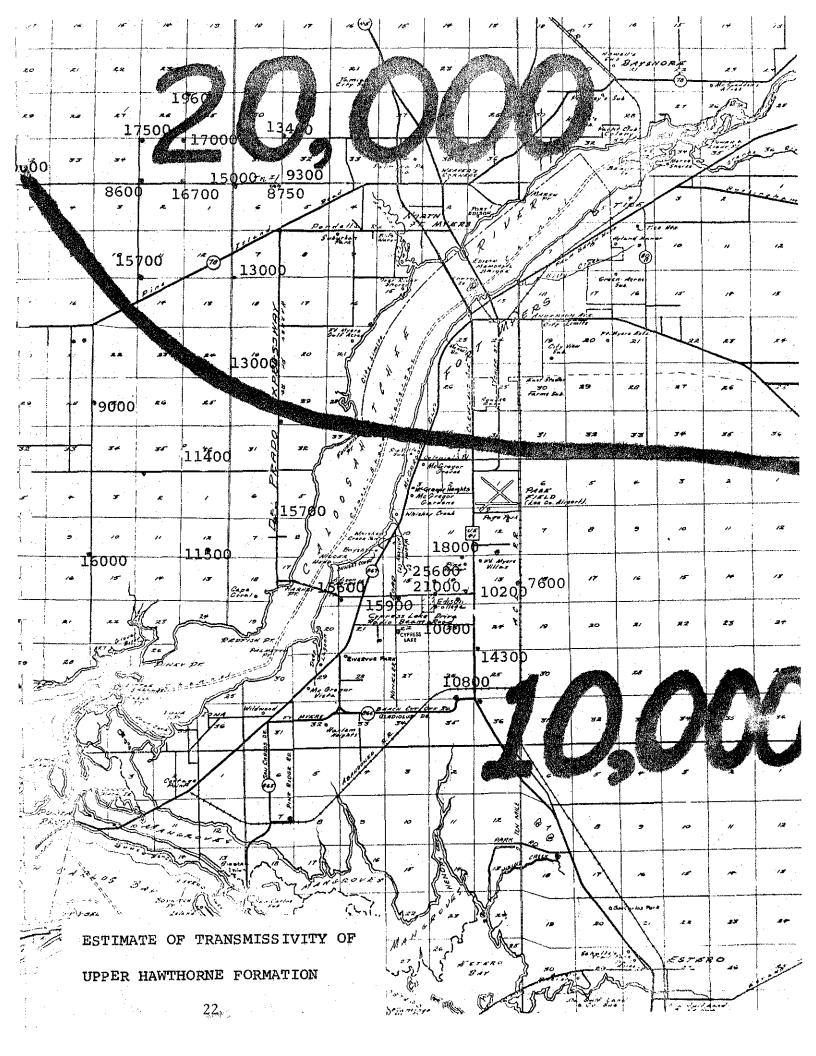
			TEST HO	LE REPORT		
	(ja	le le	yne-Western WATER SUPPLY	n Company, a	Inc .	
	G		TEST DRILLING .	WATER WELLS . PUMPS		
Contract	t Name_1	Florida Cities Water	Company		HOLE 11-70	
Job No.			Date	No		
City		Pt. Myers	State Florida	Driller Marvin	Miller	
Location	a of Test	Hole		tion of Test 7.4 feet msl		
		4 Sec. 14 of T 45 S Lee Co., Florida	┼┯┼╌╀━╇╶┥	Water Level		npletion
From	To		Description of Strata		- Water	Bearing
Fill						T
1	4'	Sand	· · · · · · · · · · · · · · · · · · ·			
4	6	Rock				
6	16	Sand				
16	26	<u>Sand, shell & Clay</u>	<u>, </u>			
26	36	Shell & clay				-
_36	65	<u>Green clay</u>				_
65	66	Rock				
66	74	Sand and clay				
74		Rock	·		<u> </u>	
75	122	Sand			47	poor
122	140	Shell			18	Fair
140	142	Shell rock			2	gooð
142 _	. 168	Shell			26	fair
168	170	Shell rock			2	good
170	178	Shell			8	fair
178	_ 185	Shell with gray c	Lay		7	poor
185	187	Shell rock			2	good
187	232	Shell			<u>45 (</u>	good
232 Remarks:	236	Green clay Total	depth		4 1	none

-

. .

. .

Casing - 2" diameter pipe 126 feet in depth No test - water too low for suction lift pump


N LW-62 WICHITA + GARDEN CITY + LIBERAL + KANSAS CITY + DENVER + OMAHA + AMES + ST. LOUIS + AURORA

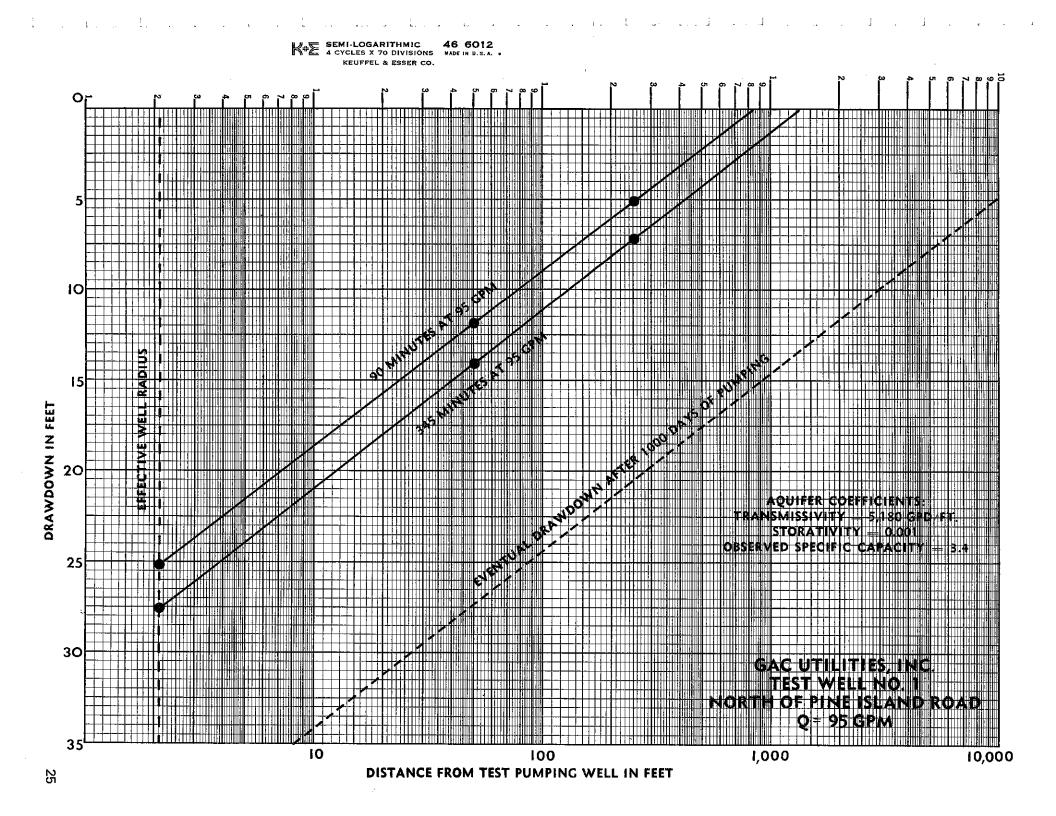
A 11 <u>-70</u>	
8.81	feet m.s.l
1.0	feet
7.81	feet m.s.l
EVEL	· · · ·
ELEVATION	
21.9	<u> </u>
440	
HORN	
67	feet m.s.l
118	feet m.s.l
200 gpd/sq.	ít.
,200 gpd/ft.	
0.01	
5.1 gpm/ft.	
<u>205 gpm</u>	
mg /1	
mg /1	
-224	_feet π.s.l
2inches	
TOOL	
-228	-ices music

0'3" Top soil	
Florida Cities Water Company TEST HOLE No_1-A Cypress Lakes Well Field Date Fort Myers Beach State Florida Driller Marvin Miller Test Hole Elevation of Test Test Hole Elevation of Test Measured	ompletio
Date Fort Myers Beach State Florida Test Hole	ompletio
t_south of well 2-C Hole	-
0'3" Top soil	
6'6" Rock 17 Marl and shell 32 Light green clay 58 Green clay	
17 Marl and shell 32 Light green clay 58 Green clay	
32 Light green clay 58 Green clay	
58 Green clay	
• ****	+
67 Light green clay	
67 Light green clay 06 Sandy clay	-
09 Green clay	
) non
	3 fai
	3 poo
	1 non
30 Green clay	
30 Total depth of drilling	
· · · · · · · · · · · · · · · · · · ·	_
2 2	228 Gray clay with shell 44 230 Green clay 44

N LW-62 WICHITA + GARDEN CITY + LIBERAL + KANSAS CITY + DENVER + OMAHA + AMES + ST. LOUIS + AURORA

WICHITA + GARDEN CITY + LIBERAL + KANSAS CITY + DENVER + OMAHA + AMES + ST. LOUIS + AURORA LW-62

Aquifer Tests


In the final report of the test well program for the Cypress Lakes well field prepared by Bennett & Bishop, Consulting Engineers of Sarasota, Florida, they report their study of data obtained prior to any pumpage, gave a minimum transmissivity of 12,000 gallons per day per foot width of aquifer and a storage coefficient of 0.0008 to be the best average for the test wells. They also report, "Based on this graphic representation, it appears that a safe withwithdrawal of wells in the area can be made on the basis of 12 hours withdrawal and 12 hours recharge at a pumping drawdown for each well of approximately 20 feet, giving maximum drawdown in a series of wells of approximately The withdrawals have been determined on the basis 35 feet. of an average yield per well of 125 gpm ." The present (1970) areal decline of static water level in the vicinity of the well field is 44 feet.

A short eight (8) hour pumping test was conducted upon completion of drilling of Cape Coral Well No. 9, by Layne-Atlantic Company. The analysis of drawdown indicated the transmissivity of the Upper Hawthorn of this well after acidizing was nearly 20,000 gallons per day per foot width of aquifer material.

A short test was conducted on Cape Coral Test Well No. 1 north of Pine Island Road, which indicated a formation transmissivity of 5,180 gallons per day per foot width of material. The production potential in this area was much lower than in other areas of Cape Coral but yields up to 150 gpm are still possible. Later a 72 hour test with recovery measurements was made on this same well. No unusual or severe negative boundary conditions were revealed in the data. The maximum safe yields of this well was computed to be 175 gallons per This well was drilled with cable tool equipment and minute. was stimulated with dynamite at the 170 foot level and also, acidized. This well was located in the tightest, least permeable area of the Upper Hawthorn aquifer, as expected, but obtained the best quality of water available in the area.

23

Cape Coral Test Well No. 2, located north of Pine Island Road, was a 10 inch diameter well, drilled by the reverse rotary method, using air lift pumping within the drill stem. No acid treatment nor dynamite was used on this well. The specific capacity observed was 2.6 gallons per minute per foot of drawdown. The review of the well log suggests the formation could be slightly better and a significant increase in specific capacity should be obtained by acidizing this well at some future time. The water quality is acceptable and should be stable with many years of use. The suggested safe yield of this well is also 175 gallons per minute even though the well was tested at a pumping rate of 225 gallons per minute with 87 feet of drawdown. It is recommended that the pump setting should be at least 120 feet below land surface. All these wells in the Upper Hawthorn formation after two to three years of use, should be acidized and then cleaned to their original depths.

LAYNE-ATLANTIC COMPANY WELL TEST DATA

. .

MPING TEST BEGAN	1			ING Feet 2 TE September 25	
TIME	YIEL GALLONS PE	.D IN CR MINUTE	DRAWDOWN	PUMPING LEVEL	DATE
10:00 AM	RPM	GPM			
11:00 AM		250	90	93	Sep.25, 1970
12:00 NOON		250	90	93	19
1:00 PM		225	86	83	۰
2:00 PM		225	87	90	**
3:00 PM		225	87	90	**
4:00 PM		225	87	90	**
5:00 PM		225	87	90	••
6:00 PM		225	87	90	100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100
ITIES, INC. onstruction Di FLORIDA Ivd. sp 44 S. Rge 2 6749	d: September 29 d: September 29 Top Soil White Shell, White Shell,	-120 White Clay, She -130 Lime, Shell -145 Lime, white and -165 Lime, Gray -175 Lime, white-gra	Lime, white-gray White Lime, brow Clay, green Lime, gray, whit - odor in water	Set 126' 10" - 10" pipe T.C. Cemented with 85 bags Static 2'6" Tested 8 hours - 225 GPM - 90' P. Top of Well capped	
G.A.C. UTIL Ft. Myers C CAPE CORAL, Del Prado B Sec. 6 - Tw Permit No.		25 120 130 145		SO S FF	

WATER QUALITY DATA

It appears from the data on the quality of water in the Upper Hawthorn formation, that the original content was about 80 parts per million. The best quality of water is found in areas of tightest formation that have not been contaminated by the flow of water from lower formations through abandoned wells.

The best quality of water found in the vicinity of the Cypress Lakes well field was located in this section of land directly north of the present plant location. The yield potential of this area is also satisfactory so that several additional wells could be constructed in this area to supplement the supply from existing wells. A mile to the south of the present well field, water quality of approximately 700 parts per million of chlorides has apparently existed for many years. Water levels above land surface are still encountered in this area, resulting in some flowing wells.⁴¹ A complete listing of the water quality data analyzed from samples obtained from test wells in the vicinity of the Cypress Lakes well field, are enclosed in their entirety. A summary of water quality data of the Cape Coral test wells and miscellaneous wells in the Cape Coral vicinity are also enclosed for their information.

Orlando Laboratories, Inc.

WATER ANALYSIS REPORT

.

P. O. Box 8025A • Orlando, Florida 32806 • 305 424-5606

ANALYTICAL LABORATORY DIVISION

Report to: Layne Western Co. clear Appearance: June 24, 1970 client Date: Sampled by: Identification: Test well #1 North Pine Is. Rd. 100 gmp after re-drilling(GAC Utilities) 3714 Sample Number:___

METHODS

This water was analyzed using methods adapted from "Standard Methods for the Examination of Water and Wastewater," Latest Edition, APHA, AWWA and WPCE.

	RESU	JLTS	
Determination	p.p.m.	Determination	p.p.m.
Total Dissolved Solids, @ 105°C	440	Sulfate, as SO4	5
Total Hardness, as CaCO ₃	270	Fluorides, as F	1.0
Calcium Hardness, as CaCO ₃	150	Silica, as SiO ₂	3.6
Magnesium Hardness, as CaCO ₃	120	Copper, as Cu	0
Calcium, as Ca	60	Phosphate (Total), as PO,	0,6
Magnesium, as Mg	29	Color, Standard Platinum Cobalt Scale	3
Alkalinity (Phenolphthalein), as CaCO _a	0	Odor	0
Alkalinity (Total), as CaCO ₃	258	pH (Laboratory)	6.9
Carbonate Allalinity, as CaCO ₃	0	рHs	7.0
Bicarbonate Alkalinity, as CaCO ₃	258	Stability Index	7.1
Hydroxides, as OH	0	Saturation Index	-0.1
Carbon Dioxide, as CO_2	65	Turbidity, Silica Scale	0
Carbonates, as CO ₃	0		
Bicarbonates, as HCO _a	315		
Chlorides, as Cl	75		<u> </u>
Iron, as Fe	0		
Manganese, as Mn	0		

Signed:_

(To convert ppm to grains per gallon, divide ppm by 17.1) 28 INSPECTIONS, ANALYSIS, QUALITY CONTROL, RESEARCH & DEVELOPMENT IN MICROBIOLOGY, BIOCHEMISTRY & CHEMISTRY,

Orlando Laboratories, Inc.

P. O. Box 8025A • Orlando, Florida 32806 • 305 424-5606

WATER ANALYSIS	REPORT	ANALYTICAL LABORATORY DIVISION
Report to: Layne-Atla	ntic Co.	Appearance: Clear
Date:September	30, 1970	Sampled by: client
Sample Number:	3918	Identification: GAC Utilities Cape Coral, Fort
Dis water was analyzed using mer WPCF,	bock adapted from "Standard	Meyers, Fl. 10" well permit # 6749 METHODS job#52001 PO# 10316 Methods for the Dammatric of Water and Watewater," Latest Edition, APIIA, AWWA and

and Methods for the Examinations of Water and Wastewater," Litest Edition, APHA, AWWA and

	RE	SULTS	
Determination	p.p.m.	Determination	p.p.m.
Total Dissolved Solids, # 105 C	575	Sulfate, as SO4	5
Total Hardness, as CaCO.	300	Fluorides, as t	0.6
Caltium Hardness, as Cat O ₃	168	Silica, as tao.	7.4
Magnasium Hardness, as CaCOs	132	Copper, as Co	0
Calcium, as Ca	67	Phosphale (Total), as PO	0.9
Magnesium, as Mg	32	Color, Standard Platinum Cobalt Scale	3
Alkalinity (Phenolphthalein), as CaCO,		Odor	0
Alkalinity (Total), as CaCO	216	pH (Laboratory)	7.8
Carbonate Alkalinity, as CaCO.	0	pHs	7.1
Bicarbonate Alkalimity, as CaCOs	216	Stability index	6.4
Hydroxides, as OH	0	Saturation Index	0.7
Carbon Dioxide, as CO ₂	7	Turbidity, Silica Scale	0
Carbonates, as CO _n	0		
Bicarbonates, as HCO.	263		
Chlorides, as Cl	156		
Iron, as Fe			
Manganese, as Mn	0		

Molgan Chengot Signed:

the convertigencia grains per gallon, divide grain by 17.1). PERFORMED, ADVICE, QUALITY CONTROL, RELAKCE & DIVERSION IN THE MEROBOLOGY, NOTRIMEDRY & CREMENCY

Orlando Laboratories, Inc.

P. O. Box 8025A • Orlando, Florida 32806 • 305 424-5606

WATER ANALYSIS REPORT	ANALYTICAL LABORATORY DIVISION
Report to: Layne Western Company, Inc.	Appearance: <u>clear</u>
Date: August 14, 1970	Sampled by: client
Sample Number:3830-5	Identification: FCW 9-70

METHODS

This water was analyzed using methods adapted from "Standard Methods for the Examination of Water and Wastewater," Latest Edition, APHA, AWWA and WPCF.

RESULTS			
Determination	p.p.m.	Dutermination	թ.թ.m.
Total Dissolved Solids, @ 105°C	850	Sulfate, 'as SO ₄	0
Total Hardness, as CaCO _a	432	Fluorides, as F	0.6_
Calcium Hardness, as CaCO ₃	270	Silica, as SiO ₂	7.2
Magnesium Hardness, as CaCO ₃	162	Copper, as Cu	0
Calcium, as Ca	108	Phosphate (Total), as PO4	0.6
Magnesium, as Mg	40	Color, Standard Platinum Cobalt Scale	2
Alkalinity (Phenolphthalein), as CaCO3	0	Odor	0
Alkalinity (Total), as CaCOa	210	pH (Laboratory)	7.2
Carbonate Alkalinity, as $CaCO_{\pi}$	0	pHs	6.8
Bicarbonate Alkalinity, as CaCO3	210	Stability Index	6.4
Hydroxides, as OH		Saturation Index	0.4
Carbon Dioxide, as CO ₂	28	Turbidity, Silica Scale	0
Carbonates, as CO ₃	0		
Bicarbonates, as HCO ₃	256		
Chlorides, as Cl	285		
Iron, as Fe	0		
Manganese, as Mn	0		· · · · ·

(To convert ppm to grains per gallon, divide ppm by 17.1)

Orlando Laboratories, Inc.

P. O. Box 8025A • Orlando, Florida 32806 • 305 424-5606

ANALYTICAL LABORATORY DIVISION

Report to: Layne-Western Company Co.	Appearance:
Date:August 14, 1970	Sampled by: <u>client</u>
Sample Number:3830-7	Identification: FCW 10-70

WATER ANALYSIS REPORT

Manganese, as Mn

METHODS

This water was analyzed using methods adapted from "Standard Methods for the Examination of Water and Watewater," Latest Edition APHA AAAA and WPCF. OFCUNTO

RESULTS				
Determination	p.p.m.	Determination	p.p.m.	
Total Dissolved Solids, @ 105°C	1000	Sulfate, as SO,	55	
Total Hardness, as CaCO ₃	402	Fluorides, as F	1.2	
Calcium Hardness, as CaCO ₃	204	Silica, as SiO ₂	6.4	
Magnesium Hardness, as CaCO ₃	198	Copper, as Cu	. 0.	
Calcium, as Ca	82	Phosphate (Total), as PO.	0.9	
Magnesium, as Mg	48	Color, Standard Platinum Cobalt Scale	2	
Alkalinity (Phenolphthalein), as CaCO ₃	0	Odor	0	
Alkalinity (Total), as CaCO ₃	162	pH (Laboratory)	7.3	
Carbonate Alkalinity, as CaCO;;	0	рНs	7.1	
Bicarbonate Alkalinity, as CaCOa	162	Stability Index	6.9	
Hydroxides, as OH	0	Saturation Index	0.2	
Carbon Dioxide, as CO <u>-</u>	17	Turbidity, Silica Scale	0	
Carbonates, as CO::	0			
Bicarbonates, as HCO ₃	197			
Chlorides, as Cl	351			
Iron, as Fe	0			

Signed: L. Morgan

وسيتنبغ وسيتنا وسيتنا وسيتنا

(To convert ppm to grains per gallem diside pom os 111 INSPECTIONS, ANALYSIS, QUALITY CONTROL RESEARCH & DEVELOPMENT IN INCROSIDING & DOWN STOLES CHARACTER

29 INSPECTIONS, ANALYSIS, QUALITY CONTROL, RESEARCH & DEVELOPMENT IN MICROBIOLOGY, BIOCHEMISTRY & CHEMISTRY,

Orlando Laboratories, Inc.

1

-63

ឌ

P. O. Box 8025A • Orlando, Florida 32806 • 305 424-5606

WATER ANALYSIS REPORT	ANALYTICAL LABORATORY DIVISION		
Report to: Layne Western Co., Inc.	Appearance: <u>clear</u>		
Date:August 14, 1970	Sampled by: client		
Sample Number:	Identification: FCW 7-70		

METHODS

This water was analyzed using methods adapted from "Standard Methods for the Examination of Water and Westewater," Latest Edition, APHA, AWWA and WPCP.

		RES	ULTS	
	Determination	p.p.m.	Determination	P.p.m.
e	Total Dissolved Solids, @ 105°C	1900	Sulfate, as SO4	135
	Total Hardness, as CaCO3	608	Fluorides, as F	0.3
	Calcium Hardness, as CaCO ₃	246	Silica, as SiO $_2$	7.6
	Magnesium Hardness, as CaCO ₃	362	Copper, as Cu	0
	Calcium, as Ca	98	Phosphate (Totai), as PO ₄	0.3
	Magnesium, as Mg	88	Color, Standard Platinum Cobalt Scale	3
	Alkalinity (Phenolphthaléin), as CaCO3	0	Odor	0
	Alkalinity (Total), as CaCO ₂	186	pH (Laboratory)	7.1
	Carbonate Alkalinity, as CaCO3	`	pHs	6.9_
	Bicarbonate Alkalinity, as CaCOa	186	Stability Index	6.7
	Hydroxides, as OH	0	Saturation Index	0.2
	Carbon Dioxide, as CO ₂	30	Turbidity, Silica Scale	0
•	Carbonates, as CO ₃	0		
	Bicarbonates, as HCO3	227		
	, Chlorides, as Cl	666	· · · · · · · · · · · · · · · · · · ·	
	Iron, as Fe	0		`
	Manganese, as Mn	<u> </u>		

Signe

(To convert ppm to greins per gallon, divide ppm by 17,1) INSPECTIONS, ANALYSIS, QUALITY CONTROL, RESEARCH & DEVELOPMENT IN MICROBIOLOGY, BIOCHEMISTRY & CHEMISTRY.

Orlando Laboratories, Inc.

P. 0. Box 8025A • Orlando, Florida 32806 • 305 424-5606

WATER ANALYSIS REPORT ANALYTICAL LABORATORY DIVISION Report to: Layne Western Company, Inc. Appearance: clear Date: September 9, 1970 Sampled by: client Sample Number: 3870-1 Identification: FCW 8 -70

METHODS

This water was analyzed using methods adapted from "Standard Methods for the Examination of Water and Wastewater," Latest Edition, APHA, AWWA and WPCP.

RESULTS			
Determination	p.p.m.	Determination	p.p.m.
Total Dissolved Solids, @ 105°C	1100	Sulfate, as SO4	25
Total Hardness, as CaCO ₃	378	Fluorides, as F	0.5
Calcium Hardness, as CaCO ₃	174	Silica, as SiO ₂	8,8
Magnesium Hardness, as CaCOa	204	Copper, as Cu	0
Calcium, as Ca	70	Phosphate (Total), as PO ₄	0.3
Magnesium, as Mg	50	Color, Standard Platinum Cobalt Scale	3
Alkalinity (Phenolphthalein), as CaCO ₃		Odor	
Alkalinity (Total), as CaCO3	216	pH (Laboratory)	7.2
Carbonate Alkalinity, as CaCO ₃	0	рHs	7.0
Bicarbonate Alkalinity, as CaCO ₃	216	Stability Index	6.8
Hydroxides, as OH	0	Saturation Index	0.2
Carbon Dioxide, as CO ₂	29	Turbidity, Silica Scale	0
Carbonates, as CO ₃	0	· .	·
Bicarbonates, as HCO3	264		
Chlorides, as Cl	360	· ·	
Iron, as Fe	0		
Manganese, as Mn	0`		<u> </u>

Signed: 7

(To convert point to grains per gallon, divide point by 17.1) INSPECTIONS, ANALYSIS, QUALITY CONTROL, RESEARCH & DEVELOPMENT IN MICROBIOLOGY, BIOCHEMISTRY & CHEMISTRY.

	P. 0, Box 802	5A • Orlando, Florida 32806	305 424-5606
· · · · · · · · · · · · · · · · · · ·			
WATER ANALYSIS REPO	DRT .	ANALYTICAL LABOR	ATORY DIVISIO
Report to: Layne-Wester	n Company, Inc.	Appearance: clear	
Date: September 9,	1970	Sampled by: <u>client</u>	· .
Sample Number:	3870-2	Identification: 5 <u>-70 FCW</u>	
This water was analyzed using methods WPCF.		the Examination of Water and Wastewater," Latest	Edition, APHA, AWWA ar
Determination	p.p.m.	Determination	P.p.m.
Fotal Dissolved Solids, @ 105°6	800	Sulfate, as SO4	15
Total Hardness, as CaCO3		Fluorides, as F	. 0.3
Calcium Hardness, as $CaCO_3$	162	Silica, as SiO ₂	8.0
Magnesium Hardness, as CaCO	138	Copper, as Cu	0
	65		<u>^ 0</u>

	RES	SULTS	
Determination	p.p.m.	Determination	P.p.m.
Total Dissolved Solids, @ 105°C	800	Sulfate, as SO4	15
Total Hardness, as CaCO3		Fluorides, as F	0.3
Calcium Hardness, as CaCO ₃	162	Silica, as SiO ₂	8.0
Magnesium Hardness, as CaCO3	138	Copper, as Cu	0
Calcium, as Ca	65	Phosphate (Total), as PO ₄	0.3
Magnesium, as Mg	34	Color, Standard Platinum Cobalt Scale	3
Alkalinity (Phenolphthalein), as CaCO $_3$	0	Odor	0
Alkalinity (Total), as CaCO _a	222	pH (Laboratory)	7.2
Carbonate Alkalinity, as CaCO		pHs	7.0
Bicarbonate Alkalinity, as CaCO;	222	Stability Index	6.8
Hydroxides, as OH	0	Saturation Index	0,2
Carbon Dioxide, as CO ₂	30	Turbidity, Silica Scale	0
Carbonates, as CO ₃			<u> </u>
Bicarbonates, as HCO3	/ 270		<u> </u>
Chlorides, as Cl	225		
Iron, as Fe	0	•	
Manganese, as Mn			
		Don.	

Chymist Signed

(To convert ppm to grains per galion, divide ppm by 17.1) INSPECTIONS, ANALYSIS, QUALITY CONTROL, RESEARCH & DEVELOPMENT IN MICROBIOLOGY, BIOCHEMISTRY & CHEMISTRY.

Orlando Laboratories, Inc.

 P. 0. Box 8025A
 • Orlando, Florida 32806
 • 305 424-5606

 WATER ANALYSIS REPORT
 ANALYTICAL LABORATORY DIVISION

 Report to:
 Layne-Western Company, Inc.
 Appearance:

 Date:
 August 14, 1970
 Sample Number:
 3830-6

 Sample Number:
 3830-6
 Identification:
 FCW - 6-70

METHODS

This water was analyzed using methods adapted from "Standard Methods for the Examination of Water and Wastewater," Latest Edition, APHA, AWWA and WPCF.

RESULTS				
Determination	p.p.m.	Determination	p.p.m.	
Total Dissolved Solids, @ 105°C	380	Sulfate, as SQ4	10	
Total Hardiness, as CaCO,	240	Fluorides, as F	0.5	
Calcium Hardness, as CaCOa	120	Silica, as SiO2	9.8	
Magnesium Hardnèss, as CaCOs	120	Copper, as Cu	0	
Calcium, as Ca	48	Phosphate (Total), as PO4	0.6	
Magnesium, as Mg	29	Color, Standard Platinum Cobalt Scale	3	
Alkalinity (Phenolphthalein), as CaCO ₃	0	Odor	0	
Alkalinity (Total), as CaCO3	210	pH (Laboratory)	7.2	
Carbonate Alkalinity, as CaCO ₃	0	pHs	7.2	
Bicarbonate Alkalinity, as CaCO ₃	210	Stability Index	7.2	
Hydroxides, as OH	0	Saturation Index	0	
Carbon Dioxide, as CO2	28	Turbidity, Silica Scale	0	
Carbonates, as CO3	0			
Bicarbonates, as HCO ₃	256		·	
Chlorides, as Cl	75		<u> </u>	
Iron, as Fe	0	н. Н	<u> </u>	
Manganese, as Mn	0			

araan Signed:

; _]

(To convert ppm to grains per gallon, divide ppm by 17.1) INSPECTIONS, ANALYSIS, QUALITY CONTROL, RESEARCH & DEVELOPMENT IN MICROBIOLOGY, BIOCHEMISTRY & CHEMISTRY.

		AL				

• .___

32

P. O. Box 8025A	• Orlando, Florida 32806 • 305 424-5606
WATER ANALYSIS REPORT	ANALYTICAL LABORATORY DIVISIO
Report to: Layne Western Company, Inc.	Appearance, clear
Date: August 14, 1970	Sampled by:
Sample Nomber 3830-3	Identification: FCW 3-70
METHOD	

This water was analyzed using methods adapted from "Standard Methods for the Examination of Water and Wastewater," Latest Edition, APHA, AWWA and WPCF.

	RESULTS		
Determination	p.p.m.	Determination	p.p.m.
Total Dissolved Solids, @ 105°C	500	Sulfate, as SO4	5
Total Hardness, as CaCO ₃	288	Fluorides, as F	0.3
Calcium Hardness, as CaCO ₃	198	Silica, as SiO ₂	7.6
Magnesium Hardness, as CaCO ₃	90	Copper, as Cu	0
Calcium, as Ca	79	Phosphate (Total), as PO ₄	0.9
Magnesium, as Mg	<u> 22 </u>	Color, Standard Platinum Cobalt Scale	2
Alkalinity (Phenolphthalein), as CaCO3	0	Odor	
Alkalinity (Total), as CaCO ₃	240	pH (Laboratory)	7.1
Carbonate Alkalinity, as CaCO;;	0	pHs	6.9
Bicarbonate Alkalinity, as CaCO ₃	240	Stability Index	6.7
Hydroxides, as OH	0	Saturation Index	0.2
Carbon Dioxide, as CO_2	39	Turbidity, Silica Scale	0
Carbonates, as CO ₃	0		
Bicarbonates, as HCO3	293	. ·	
Chlorides, as Cl	111		
iron, as Fe	0		
Manganese, as Mn	0		. <u> </u>

Signed:

(To convert ppm to greins per gallon, divide ppm by 17.1) INSPECTIONS, ANALYSIS, QUALITY CONTROL, RESEARCH & DEVELOPMENT IN MICROBIOLOGY, BIOCHEMISTRY & CHEMISTRY.

 OPlando Laboratories, Inc.

 P. 0. Box 8025A
 Orlando, Florida 32806
 305 424-5606

 WATER ANALYSIS REPORT
 ANALYTICAL LABORATORY DIVISION

 Report to:
 Layne-Western Company, Inc.
 Appearance:
 Clear

 Date:
 August 14, 1970
 Sampled by:
 Client

 Sample Number:
 3830 -8
 Identification:
 FCW 4 -70

This water was analyzed using methods adapted from "Standard Methods for the Examination of Water and Westewijter," Latest Edition, APHA, AWWA and WPCF.

	RES	ULTS	
Determination	p.p.m.	Determination	p.p.m.
Total Dissolved Solids, @ 105°C	430	Sulfate, as SO4	2
Total Hardness, as CaCO ₃	270	Fluorides, as F	0.5_
Calcium Hardness, as CaCOa	150	Silica, as SiQ ₂	7.0
Magnesium Hardness, as CaCOa	120	Copper, as Cu	0
Calcium, as Ca	60	Phosphate (Total), as PO4	0.6
Magnesium, as Mg	29	Color, Standard Platinum Cobait Scale	2
Alkalinity (Phenolphthalein), as CaCO ₃	0	Odor	0
Alkalinity (Total), as CaCO ₃	240	pH (Laboratory)	7.2
Carbonate Alkalinity, as CaCO ₃	0	pHs	
Bicarbonate Alkalinity, as CaCO ₃	240	Stability Index	7.0
Hydroxides, as OH	0	Saturation Index	0.1
Carbon Dioxide, as CO ₂	33	Turbidity, Silica Scale	0
Carbonates, as CO ₃	0		
Bicarbonates, as HCO ₃	293		
Chlorides, as Cl	90		
Iron, as Fe	0		
Manganese, as Mn	— 0 —		

Signed: A Mar am

(To convert ppm to grains per gallon, divide ppm by 17.1) INSPECTIONS, ANALYSIS, QUALITY CONTROL, RESEARCH & DEVELOPMENT IN MICROBIOLOGY, BIOCHEMISTRY & CHEMISTRY.

Orlando Laboratories, Inc.

P. O. Box 8025A • Orlando, Florida 32806 • 305 424-5606

WATER ANALYSIS REPORT	ANALYTICAL LABORATORY DIVISION
Report to: Layne Western Company, Inc.	Appearance: clear
Date: August 14, 1970	Sampled by:
Sample Number:	Identification: FCW 2-70

METHODS

This water was analyzed using methods adapted from "Standard Methods for the Examination of Water and Wastewater," Latest Edition, APHA, AWWA and WPCE

	RES	rs				
Determination	p,p.m,	Determination	p.p.m.			
Total Dissolved Solids, @ 105°C	800	Suifate, as SO4	0			
Total Hardness, as CaCO3	432	Fluorides, as F	0			
Calcium Hardness, as CaCO ₃	246	Silica, əs SiO2	7.0			
Magnesium Hardness, as CaCO3	186	Copper, as Cu				
Calcium, as Ca	98	Phosphate (Total), as PO4	009			
Magnesium, as Mg	45	Color, Standard Platinum Cobalt Scale	2			
Alkalinity (Phenolphthalein), as CaCOs	0	Odor	0			
Alkalinity (Totai), as CaCO3	222	pH (Laboratory)	7.1			
Carbonate Alkalinity, as CaCO ₃	0	pHs	6.9			
Bicarbonate Alkalinity, as CaCO3	222	Stability Index	6.7			
Hydroxides, as OH	0	Saturation Index	0.2			
Carbon Dioxide, as CO ₂	35	Turbidity, Silica Scale	0			
Carbonates, as CO ₃	0					
Bicarbonates, as HCO ₃	270					
Chlorides, as Cl	255	,				
lron, as Fe	0					
Manganese, as Mn	0					
	·	Signed: AMargan				

Orlando Laboratories, Inc.

P. 0. Box 8025A	• Orlando, Florida 32806 • 305 424-5606
WATER ANALYSIS REPORT	ANALYTICAL LABORATORY DIVISION
Report to: Layne Western Company, Inc.q	Appearance: Clear
Date:August 14, 1970	Sampled by: <u>client</u>
Sample Number:3030-4	Identification: FCW 2 -70

METHODS

This water was analyzed using methods adapted from "Standard Methods for the Examination of Water and Wastewater," Latest Edition, APHA, AWWA and WPCF. OESIII TC

	RES	ULTS	
Determination	p.p.m.	Determination	p.p.m.
Total Dissolved Solids, @ 105°C	1950	Sulfate, as SO4	140
Total Hardness, as CaCO ₃	600`	Fluorides, as F	0.5
Calcium Hardness, as CaCO3	318	Silica, as SiO ₂	7.6
Magnesium Hardness, as CaCO ₃	282	Copper, as Cu	0
Calcium, as Ca	127	Phosphate (Total), as PO4	0.6
Magnesium, as Mg	68	Color, Standard Platinum Cobalt Scale	3
Alkalinity (Phenolphthalein), as CaCO3	0	Odor	
Alkalinity (Total), as CaCO3	192	pH (Laboratory)	7.0
Carbonate Alkalinity, as CaCO ₃	0	рHs	6.8_
Bicarbonate Alkalinity, as CaCO3	192	Stability Index	6.6
Hydroxides, as OH	0	Saturation Index	002'_
Carbon Dioxide, as CO.	38	Turbidity, Silica Scale	0
Carbonates, as CO ₃	0	· · · · ·	
Bicarbonates, as HCO3	234-		
Chlorides, as Cl	690	· .	. <u> </u>
Iron, as Fe	0		<u> </u>
Manganese, as Mn	0		
· · · · · · · · · · · · · · · · · · ·		A and	

Signed loras nist

(To convert ppm to grains per gallon, divide ppm by 17.1) INSPECTIONS, ANALYSIS, QUALITY CONTROL, RESEARCH & DEVELOPMENT IN MICROBIOLOGY, BIOCHEMISTRY & CHEMISTRY. З

(To convert ppm to grains per gallon, divide ppm by 17.1) INSPECTIONS, ANALYSIS, QUALITY CONTROL, RESEARCH & DEVELOPMENT IN MICROBIOLOGY, BIOCHEMISTRY & CHEMISTRY,

WATER QUALITY DATA FROM CAPE CORAL WATER PLANT

			A grant and a second second				1 A A A A A A A A A A A A A A A A A A A	1	and the second second		1	and the second second second
			CAS ING	CASING	WELL		М.	T.	Mg	Ca		
	LOCATION	DESCRIPTION	DIA.	DEPTH	DEPTH	рH	ALK	HD.	HD.	HD.	<u>c1</u>	T.D.S.
	•					1997) 1997				· · ·		
	GAC Obs.	Well 1-70	2 "	143	229	7.8	185	284	162	122	180	590
	GAC Obs.	Well 2-70	2"	137	220	7.8	194	304	164	140	230	700
	GAC Obs.	Well 3-70	2"	137	220	7.9	196	390	212	148	220	720
	GAC Obs.	Well 4-70	2"	84	230	7.8	242	246	138	108	110	390
	GAC Obs.	Well 5-70	2 ["]	147	241		172	442	242	200	460	1200
	GAC Obs.	Well 6-70	2 "	·163	230		240	372	182	190	220	700
	GAC Obs.	Well 7-70	2 "	168	235	7.7	178	262	134	128	120	340
	GAC Obs.	Well 8-70	2"	1 2 6	230		140	820	460	360	1070	2700
	GAC Obs.	Well 9-70	2 "	126	235		182	284	136	148	210	420
	GAC Obs.	Well 10-70	2"	147	230		216	42 8	228	200	320	960
	GAC Obs.	Well 11-70	2"	106	205	7.9	216	242	142	100	110	350
	GAC Obs.	Well 12-70	2"	126	250		186	254	122	132	100	376
	GAC Obs.	Well 13-70	2 ⁴⁰	126	215		194	320	174	146	350	494
	GAC Obs.	Well 14-70	2"	42	225	7.4	174	3 86	238	148	450	1250
	GAC Obs.	Well 15-70	2"	126	230	7.4	228	320	200	120	180	650
1	GAC Obs.	Well 16-70	2"	126	225	 '	228	240	136	104	90	330
•	GAC Obs.	Well 17-70	2"	129	225		234	236	136	100	60	330
	50 Ft. E.	of GAC TH 4-70	2"	10	12	7.4	360	640	400	240	1150	2900
	GAC Obs.	Well 1-70 @ 102 Ft.	2*	80	102	7.6	180	304	176	128	210	600
	GAC Prod.	Well #9	8"	120	241	7.3	260	414	176	238	180	650
	No. 2 Sew	ver Plant Well	4"		200?	~	196	386	216	170	620	1600
	GAC Prod.	Well #16	8"	120	241		220	26 9	136	132	160	410
	GAC Test	Well No. 1 (N-1)	8"	127	227	7.4	232	252	138	114	80	350
	North Gol	den Gate Test No. 1	4 ⁿ	60	80	7.5	270	264	50	214	30	325
	GAC Test	WellNo. 2 (N-2)	10"	126	225	7.3	200	294	156	138	180	460
		·	· · · · · · · · · · · · · · · · · · ·									

WATER QUALITY DATA FROM CAPE CORAL WATER PLANT

₹j¥

L. . . .

Ŀ,

است. · · · سند ما

ы. _

•		CAS ING	CASING	WELL		М.	Т.	Mg.	Ca.		
	LOCATION DESCRIPTION	DIA.	DEPTH	DEPTH	pH	ALK	HD.	HD.	HD.	<u>c1</u>	TDS
	C.C. Blk 1255 Lots 35-36		— —		· · · ••••••		an an the s			700	190(
	C.C. Blk 1610 Lots 31-32						. 	→ -		600	170(
÷	C.C. Blk 239 Lots 17-18	· · · ·				. 			:	570	140(
	C.C. Blk 235 Lots 20-21	· · · · · · · · · · · · · · · · · · ·				•••••				540	150(
	C.C. Blk 242 Lots 29-30		<u>.</u>		: — —			. .		630	145(
	C.C. Blk 836 Lots 31-32			· · · · · ·		· · · · · · · · ·			÷	150	47(
	C.C. B1k 246 Lots 1 - 2		— —				<u> </u>			210	45(
	C.C. Blk 285 Lots 19-20			——		-				350	85(
	GAC Unit 97 Const. Well	4"		985	7.8	180	570	314	256	700	180(
÷.,	C.C. Condominium				7.8	190	422	270	152	450	140(
	C.C. Blk 1744 Lots 21-22		·	168	7.5	166	570	330	240	750	215(
	C.C. Blk 150 (5337 Cocoa	St.) 2"	. 	168	· · · ·	: 	,			250	
	C.C. B1k 586 (S.E. 33nd E	21.)		210						320	
· .	Sunset Towers Well (cooli	ing) 4"	450	750	7.8	170	560	340	220	690	200(
3	Flowing Well SE ¹ ₂ 2-445-23	3E 1					538			610	180(
сл С	Flowing Well E ¹ / ₄ Co 3-44-	-23E	·				514			570	160(
.3	C.C. Blk 1744 Lots 21-22	2		168	7.5	166	570	330	240	750	215
	Price Flowing Well SW Fin	re T		650?	7.3	178	508	350	158	620	170
	C.C. Blk 866 Lots 15-16				7.7		 _^	هنه سند		260	851
	C.C. Blk 1269 (Voges)	2"	126	168	7.9	190	460	216	244	500	<u> </u>
	C.C. Blk 31 (5338 Nautilu	as Dr)			·	·				60	
	C.C. Blk 1616 Lots 26-27	7	·		· · · · · · · · · · · · · · · · · · ·	·	· <u> </u>		·	700	
	C.C. Blk 1054	2"	84	108		268	310	160	150	160	601
	C.C. Blk 675 (1429 SE 211	P R)		126	7.6	210	290	150	140	160	431
• •	C.C. B1k 789 (1007 SE 13	P1)			7.4	192	386	172	214	4 70	· •••
		· · · · ·		· ·							

المردينية المراجع

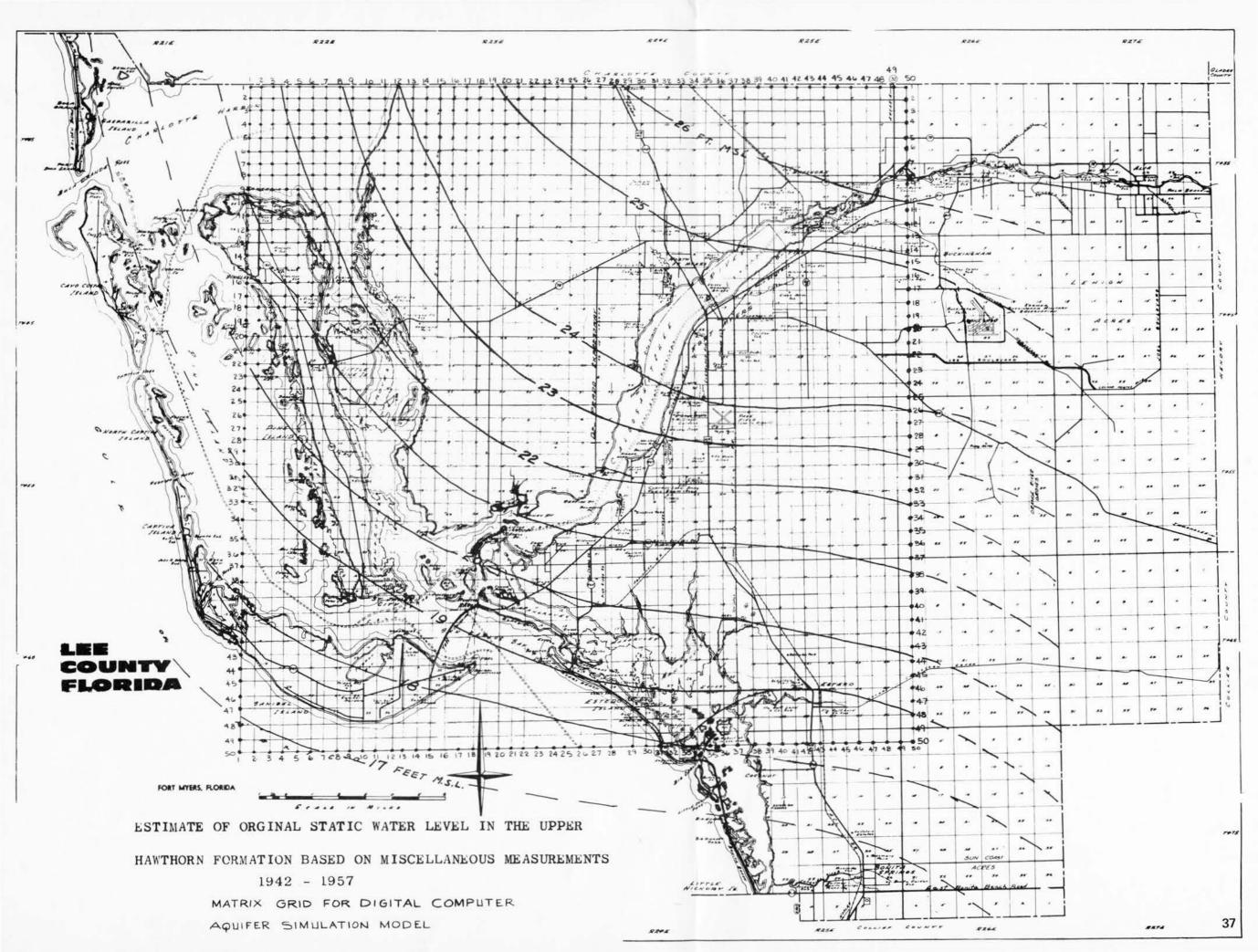
لند : __

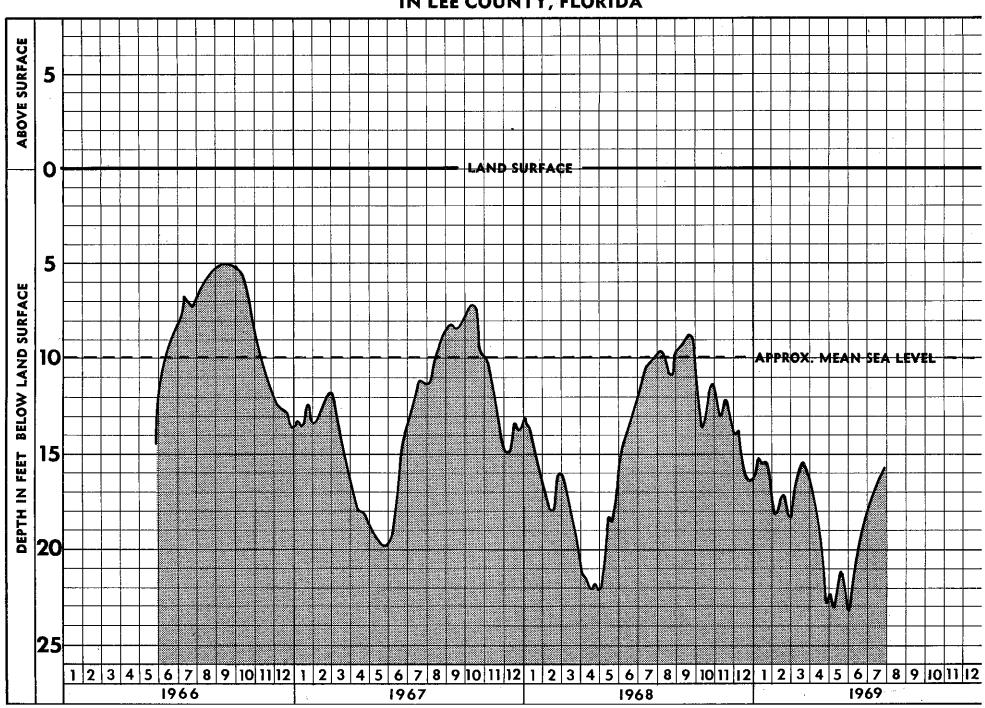
р. ____

بي....

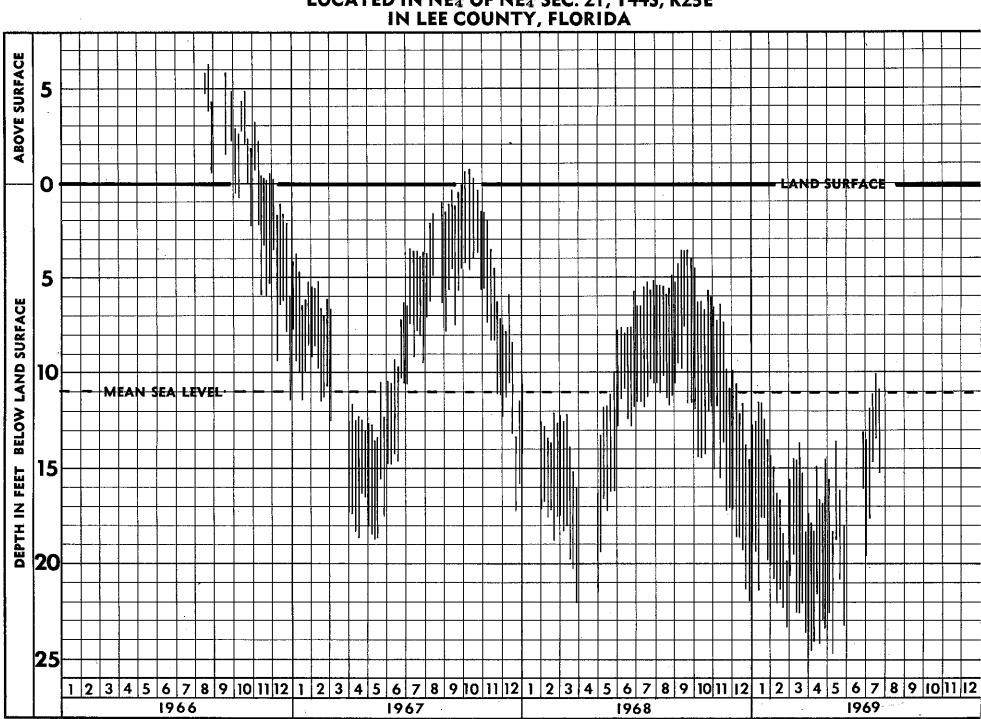
WATER LEVEL DATA

A search was made for historic water level information from wells drilled only in the Upper Hawthorn formation. From a few measurements made during 1942, through 1957, a probable water level contour map was developed for the general area. This is shown on the attached illustration.

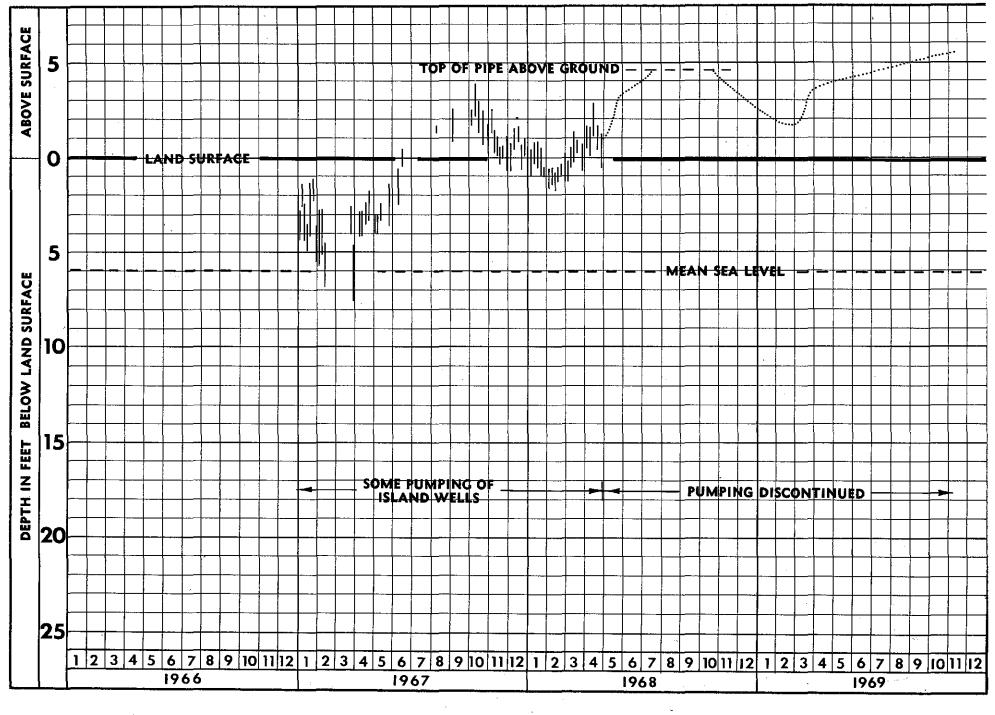

Recent measurements made during 1970, have been made and are shown in contour form with elevation to mean sea level. In general, the static water level in the Upper Hawthorn formation has declined 30 or more feet in the well field areas. Little or no change has occurred in the northeast portion of the study area, believed to be the general recharge area.


Using the steady-state aguifer flow equation:

Q = T * I * L


Where Q is the flow in gallons per day, T is the average transmissivity in gallons per day per foot width of aquifer, estimated to be 10,000 gpd/ft, I is the average hydrulic gradient in feet per mile, estimated to be one (1) foot every 2-1/3 miles, and L is the average flow width or horizontal length in miles. The computed steady-state flow in the Upper Hawthorn formation for Western Lee County in a 625 square mile study area, was 150,000 gallons per day. This is a good indication of the original natural recharge to the aquifer system. Some additional recharge can be experienced with development of an aquifer by infiltration or leakage from overlying and underlying aquifers. Some leakage may occur from other aquifers to the Upper Hawthorn aquifer, but indications from pumping tests suggest this may be small in value.

Mention of the hydrograph of Cape Coral observation Well No. L-581, shows the cyclic nature of water pumpage due to seasonal demand. But more important, the high and lows of the yearly cycle are progressively lower each year since records began in 1966. This would confirm the fact that pumpage from the aquifer is greater than the natural recharge. A similar trend is noted also for the Pine Island well field observation well. The fact that the aquifer will recover to some extent and that recharge exists is observed by the recovery of the Fort Myers Beach observation well after pumpage was discontinued in that area. However, the static water level has not returned to the estimated original level prior to major pumpage in the general study area.



CAPE CORAL OBSERVATION WELL L-581 LOCATED NW¹/₄ OF NW¹/₄ 2-44-23E IN LEE COUNTY, FLORIDA

PINE ISLAND OBSERVATION WELL L-582 LOCATED IN NE¹/₄ OF NE¹/₄ SEC. 21, T44S, R23E IN LEE COUNTY, FLORIDA

FORT MYERS BEACH OBSERVATION WELL 439 LOCATED NEAR BASE OF WATER TOWER

افت_____

بيني من الم

·____

41

DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY

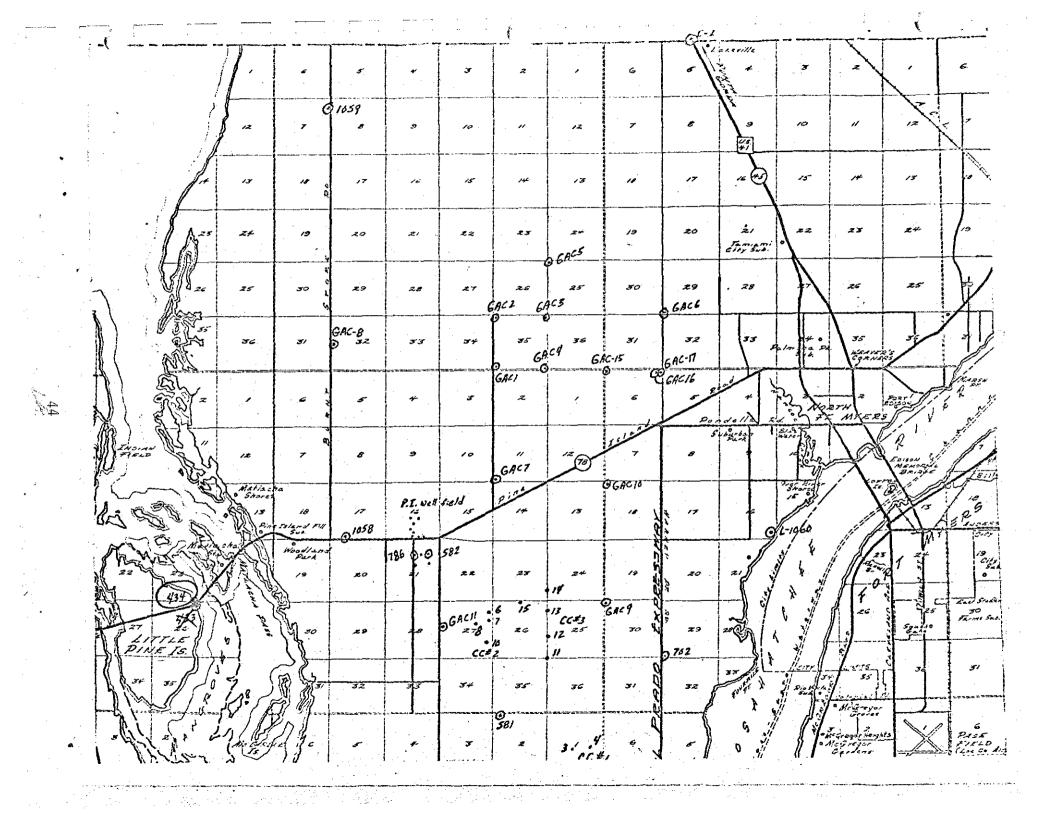
Washington File No.

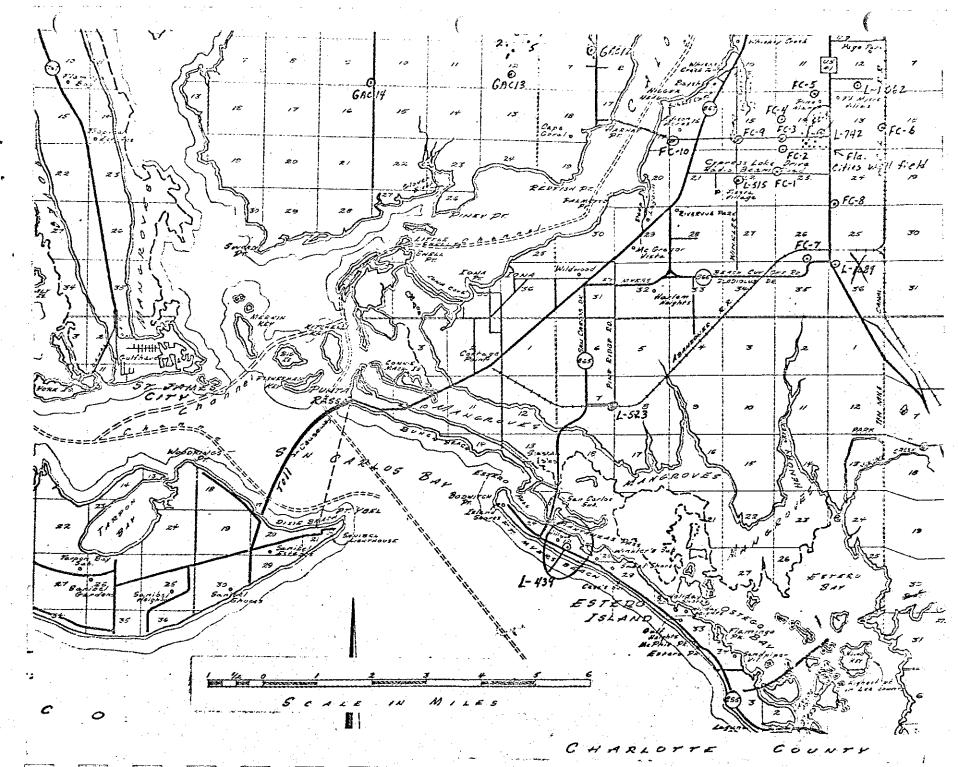
District

No.	USGS No.	Date	Time	Water level	Height MP (LSD)	Water level (LSD)	Alt. MP (MSL)	Alt. Water Jevel (MSD)	· .			
SAC-1	L-1106	10-20-70	1452	+1.89	3.1	+4.99	15.06	16.95		US MAA PETAT	· 8-18-7	0
2	11.7	,,	1457	1.07	4.0	+2.93	18.37	17.30		· · · · · · · · · · · · · · · · · · ·		
3	1108		1502	2.06	4.Z	+2.14	19.40	17.34		·		· · · · · · · · · · · · · · · · · · ·
4	1109	1.	1523	1.16	4.1	2.94	17.16	16.00				
5	1110	,,			4.3		19.99		Bri	Ke n at	ground	level
6		<u>, </u>	1537	4.56	4.0	0.56	20.76	16.20				
7	11/2	.;	1442.	6.39	4.3	2.09	15.72	9.33				
8	1113	,,	1632	+5.6	5.6	+11.2	11.55	17.15		· · ·		
- 9	1114	*1	1402	15.55	2.9	13.15	11.95	- 3.60			•	
10	1115	,,	1407	5:85	2.5	3.35	15.49	9.64				
	1116	**	1927	18.16	4.0	14.16	13.02	-5.14				
12	1117	"	1347	17.47	3.1	14.37	9.85	-7.62		·····		
/3	1118	"	1324	17.50	3.2	14.30	8.65	-8.85				
14	1119	,,	1336	5.74	4.5	1.24	8.85	3.11				
15	1/20		1528	1.26	1.6	+0.34	1559	14.33				
16	1098	,,	1543	2.82	1.6	1.22	16.57	13.75			· ·	
17	1099	"	1545	2.95	1.7	ARS	16.68	13.73				
	L-434	~	1712	+13.5	1.2	+14.7	E 4	E 17.5		High	tide	
	581	,,	0852	18.95	3.4	15.55	12.98	-5.97				
	582	"	1608	29.20	7.5	21.70	E 18	E- 11.2				
	702		1355	13.00	2.7	10.30	10.15	-2.85				
	786		1615	21.52	Z. Z	19.32	Ell	E-11.3				
	1058	در	1620	+6.03	1.3	+ 7.33	£7	E 13.0				
	1059		1645	+1.83	3.7	+ 5.53	E 15	E 16.8				
•	1060	"	1900	2.82	-0.2	3.02	£6	E. 3.2				
	C-2	10-21-70	0845	+0.70	3.0	+3.70	E 26	E 26.7				
	1-742	10-20-70	0950	17.25	2.2	15.05	E 12	E-5.3				
FG-1	1124	••	1036	5.43	1.9	353	8.18	2.75				
2	1125	"	1028	18.64	1.6	13.04	8.58	-6.06				
3	1126		1002	15.30	1.3	14.00	8.41	-6.89				
4	1127	71	0945	10.14	1.3	8.84	10.52	0.38				
ک	1128	16	0937	10.70	1.2	9.50	//.81	1.11				
NPUZLI	SHED D	ATA.			****	****		·		GEOLOC MITH I MAIN	SUILDIN STREET	C .

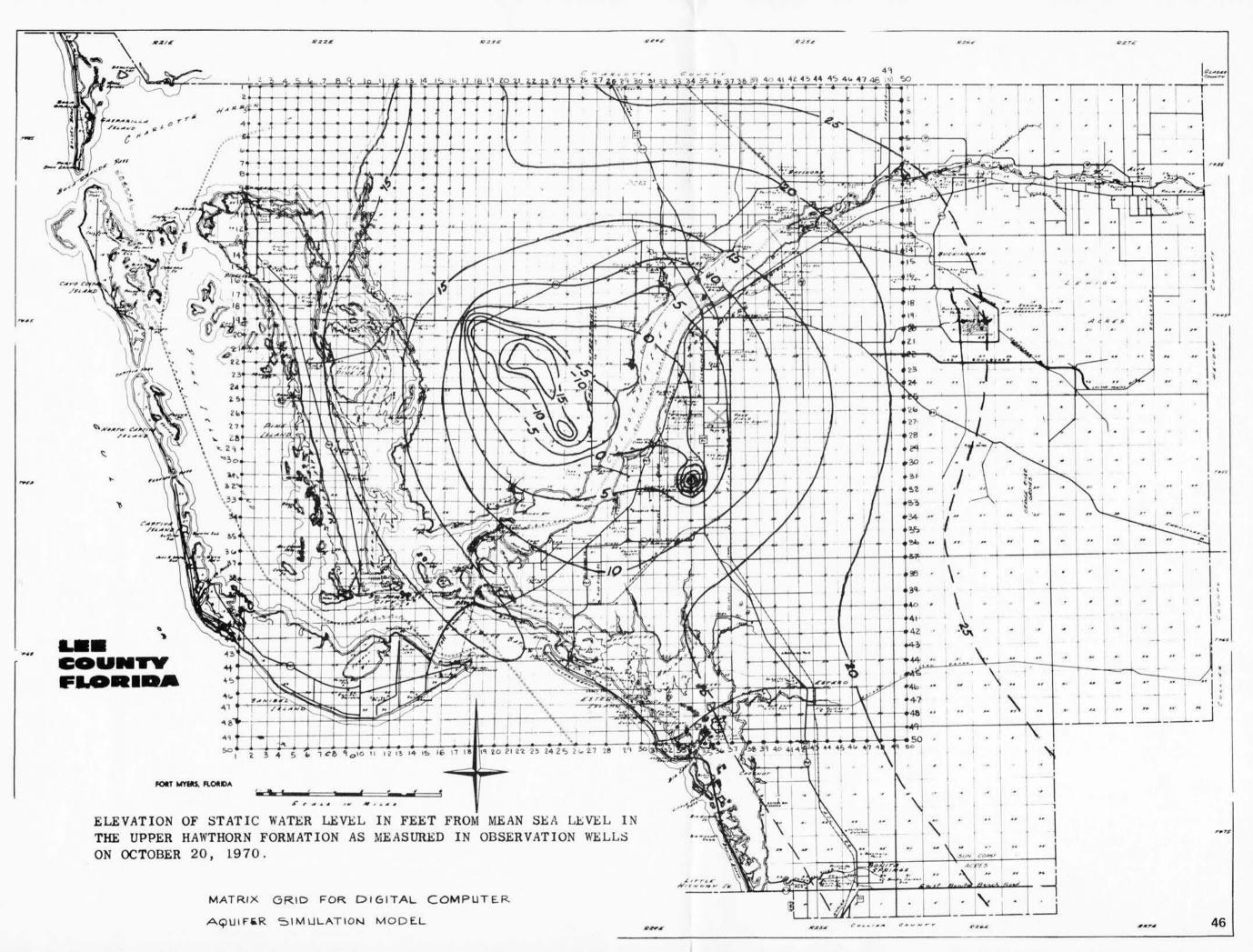
42

9-930


U TED ST. TES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY


9-230

District


1

Local No.	U 565 No.	Date	Time	Water Ievel	Height (MP) (LSD)	Water Ievel (LSD)	AH. MP (MSL)	Alt. Nater Jevel (MSL)					
FC-6	1-1121	10-20-70	1046	8.96	0.5	8.46	16.16	7.20		<u> </u>			
7	1122	••	1132	+4.41	0.9	1531	5.76	10.17					
8	1/23	**	1102	4.20	0.8	3.40	11.57	7.37			<u> </u>		
9	1129		1007	3.60	1.5	2.10	8.46	486					
10	1100		10/2	5.34	1.0	4.34	7.80	2.46					}
11	1156	۵۴,	0955	30.98	1.5	29.48	8.81	-22.17] .
	1-439	· ••	1212	+4.39	0.85	+5.24	E.T	E 11.4					-
	515	p#	1020	1.22	2.0	+0.78	E9	£ 7.8					- -
	523		1157	+7.0	0.8	+7.80	ES	E 12.0					
nagalagi kili di ugi karakana la	735	.,	1115	+8.2	3.3	+11.5	E9	£ 17.2					•
ļ	1062		0915	10.52	2.3	8.22	E 15	E 4.5					7
												-	-
Con	Caral	Produ	tian s	uelle	1					- <u> </u>		-	-
3	4-813		0742	24	1.1	- 23	6.70	- 17.3	·		1		-
4	304	10-20-70	0757	22	1.5	20	8.20	- 13.8	}				-
	805		0732	59	1.8	57		-50.8	ļ				1
6	790		0834	1	1]	8.20			- {			
				-	2.6	26	13.29	-/3//				+	•
7 8	791 792			┝╺┉╼╾╴╸╸┈┷╼╸	2.6		13.31	670		· · · · ·	·		-
	794	 	0818	71	3.0	<u>68</u> 23	13.18				-}	·	-
10			0824	26	3.4		13.74			┥		+	4
	796		0752	55	-1.1	56	1.	-46.Z					-
12	797		0755	30	-1.0	31	9.21		•				-
13	798		0800	29	- 1.1	30	10.47						-
	799		0805	31	-1.0	32	10.09				-	-	-
	800	1+	0810	64	-1.0	65	10.74	-53.3					-
	م												-
 					 				. <u> </u>			L.	
					<u> </u>					1			
		·			ļ <u> </u>				 	·			
			حزی جیسیادی ویلیستار م	·	 							1	
	مارىچىنى تىكرىنى تىلى]
INPUBL	SHED D	ATA								109 50	итн вс	CAL SUN NEDING REET	VEY (W

.45 .0

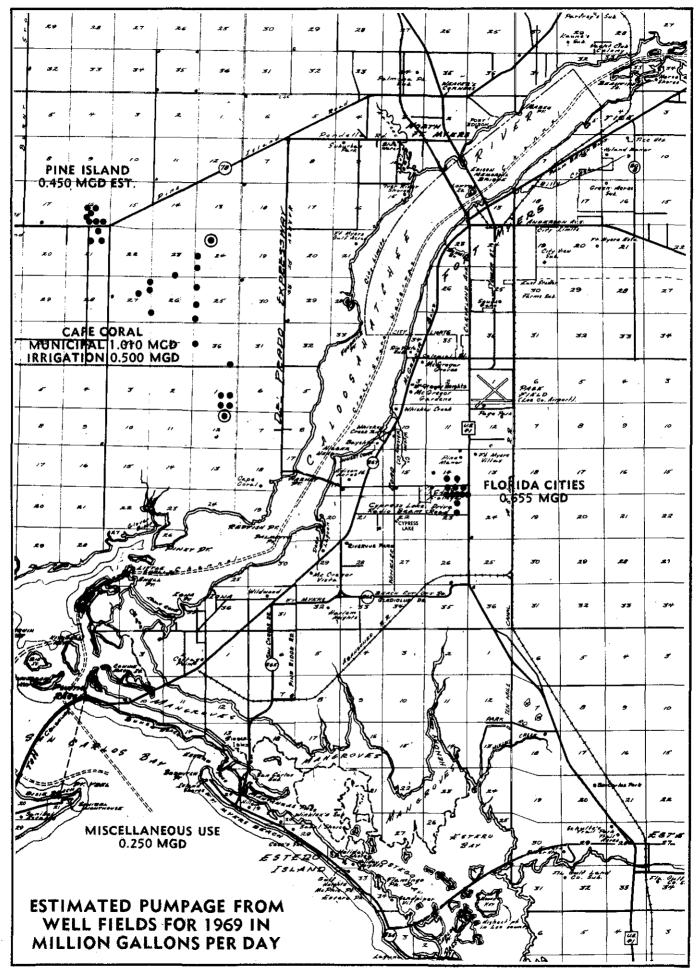
Pumpage Data

Metered data was available from Florida Cities Water Company and Cape Coral. Estimates were made of the raw water pumpage from the Pine Island well field. This was a major portion of the pumpage but in the simulation model, additional pumpage was programmed.

It was found that the two (2) wells used by Cape Coral to irrigate two (2) gold courses, were quite significant. An estimate of 500,000 gallons per day average use was programmed in the model. Some additional pumpage for miscellaneous uses was considered. It was found that apparently there is significant pumpage not considered, located in the North Fort Myers area and the downtown area of Fort Myers. Florida Cities Water Company has only one well in use to some extent at the North Fort Myers water plant that penetrates the Upper Hawthorn formation.

Projected increases used in the simulation model were to double municipal pumpage for a ten (10) year period beginning at the present time. Pumpage has to be programmed in the computer model by steps, so only one large step was considered instead of annual increases as actually expected. Thus, the total computed volume of water extracted should exceed the project annual increase and should be adequate even if growth exceeds the projected use.

At present, in the FCWC service area, the average annual increase in water pumpage is 300,000 gpd per year, or in ten (10) years, increase 2 mgd over present usage.


AVERAGE MONTHLY WATER USE IN MILLION GALLONS PER DAY

MONTH	YEAR		FLORIDA CITIES	CAPE CORAL	PINE ISLAND
January	1965			0.373	
February	1965			0.381	1
March	1965			0.414	· [
April	1965	·		0.458	
May	1965		. 	0.450	1
June	1965	. ,		0.318	
July	1965			0.328	••••••
August	1965			0.339	1.
September	1965		· 	0.351	
October	1965			0.358	
November	1965			0.421	
December	1965	۰ ۲		0.434	
~~~~					
		Average		0.385	
January	1966			0.413	<b></b>
February	1966			0.485	¹
March	1966			0.540	r
April	1966		· · · · · · · · · · · · · · · · · · ·	0.527	- ·
May	1966		<b>~~</b>	0.537	l
June	1966			0,412	<b>ر ا</b> ا
July	1966			0.486	<b>——</b>
August	1966		<b></b>	0.464	(j
September	1966		·	0.476	· · ·
October	1966		~	0.515	
November	1966			0.644	L.
December	1966			0.655	E L
<i>D</i> = 0 = 1.0 = 1	2000				
· ·		Average		0.511	
January	1967			0.652	
February	1967			0.700	
March	1967			0,783	<u> </u>
April	<b>19</b> 67			0.896	
May	1967		<del></del>	0.901	
June	1967			0.640	· · · · · · · · · · · · · · · · · · ·
July	1967	•		0.639	<b></b> · [ ]
August	1967			0.626	
September	1967			0.628	
October	1967		and and a state of the second se	0.669	<b></b> į,
November	1967			0.806	
December	1967			0.779	<b></b>
		Average		0.726	0.250 E.

## AVERAGE MONTHLY WATER USE IN MILLION GALLONS PER DAY

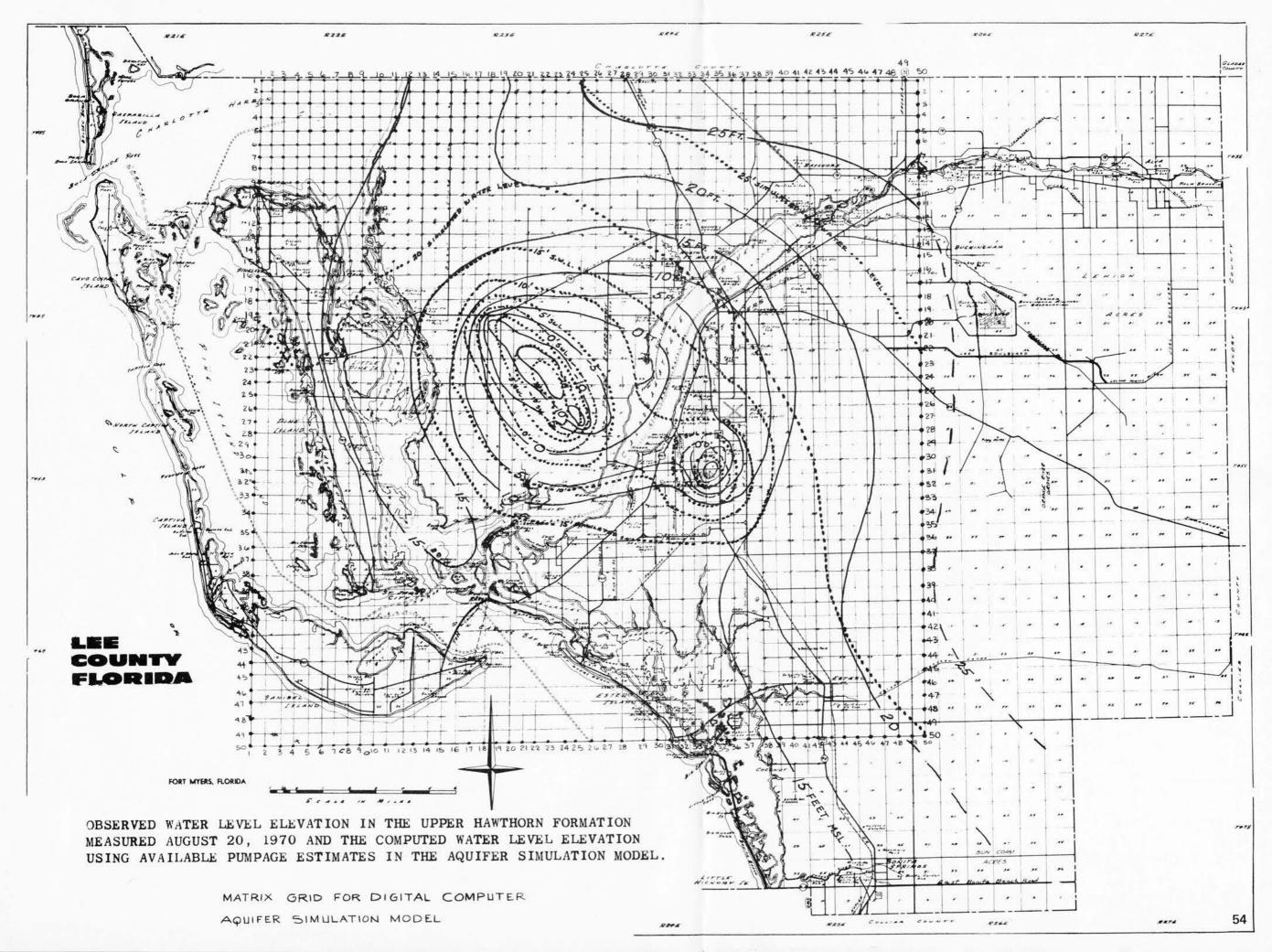
2

MONTH	YEAR		CYPRESS LAKES	CAPE CORAL	PINE ISLAND
January	1968			0.849	
February	1968	,		0.923	
March	1968	· · · · ·		0.947	
April	1968			1.073	
May	1968		0.355	0.750	
June	1968		0.408	0.664	
July	1968		0.431	0.669	
August	1968		0.470	0.719	
September	1968		0.384	0.723	
October	1968		0.430	0.846	<del>~ -</del>
November	1968		0.510	0.858	<del></del> —
December	1968		0.544	0.943	
		Average	0.440	0.830	0.350 E.
January	1969		0.635	0.960	<del></del>
February	1969		0.740	1.059	
March	1969		0.737	0.999	<del></del>
April	1969	•	0.767	1.183	
May	1969	·	0.584	1.039	<b></b>
June	1969		0.579	1.017	
July	1969		0.629	0.914	
August	1969		0.638	0.916	
September	1969		0.542	0.914	
October	1969		0.575	0.933	
November	1969		0.672	1.034	
December	1969		<u>0.759</u>	1.069	aggae agaat aggaa agaata
		Average	0.655	1.010	0.450 E.
January	1970		0.796	1.065	
February	1970		0.884	1.161	<b></b>
March	1970		0.909	1.156	<b>—</b>
April	1970		0.965	1.398	
May	1970		0.965	1.451	
June	1970		0.767		<b></b>
July	1970		0.860		
August	1970		••••••••••••••••••••••••••••••••••••••	-	
September	1970	·		1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	
October	1970				<b></b>
November	1970		n de la constante de la constan En la constante de la constante		
December	1970	· · · · ·	<b>—</b> .	in de la calendaria. La calendaria estas	میں بی اور
		X		**************************************	·····
		Average			



#### AQUIFER SIMULATION

An appraisal of the data accumulated at this point in the investigation, indicates some degree of ground water mining is occurring in Western Lee County, Florida. This was best indicated by the continued decline of water level each year as illustrated by individual well hydrographs. This type of aquifer situation can best be simulated on the digital computer by a mathematical model developed by Bredehoeft, and Pinder of the U.S. Geological Survey which was subsequently modified by Green (University of Kansas) and is available through the Hydrological Engineering Division of Layne-Western Company, Inc. The computer runs were made on a CDC 6400 time sharing machine operated by United Computing Service. Also, a small scale, steady-state analog model was constructed to verify recharge and discharge quantities of the aquifer.


In Western Lee County, the Upper Hawthorn aquifer is ridge shaped with a tight cover with the ridge oriented in a northwest-southeast direction and sloping downward both to the east and to the west. Thus, there is no adequate outcrop area in which a large recharge is available to the aguifer system. The local recharge programmed into the computer model was the equivalent of 150,000 gpd which reduces to 100th of one percent of the average annual rainfall of 50 inches per year. Due to the geologic structure, it is also reasonable to assume the local recharge to lower aquifers such as the Lower Hawthorn and the Tampa-Suwanee would be no greater and probably less, than the Upper Hawthorn formation. However, due to the increased thickness of these aquifers, it is estimated that one and one-half to two and one-half millions gallons per day could be transmitted through the aquifer system from the remote recharge Thus, if pumpage in these aquifers reached twice the transarea. mission capability of these formations, or approximately five million gallons per day, ground water mining would again be apparent accompanied by a decline in water level for these formations.

#### Digital Computer Model

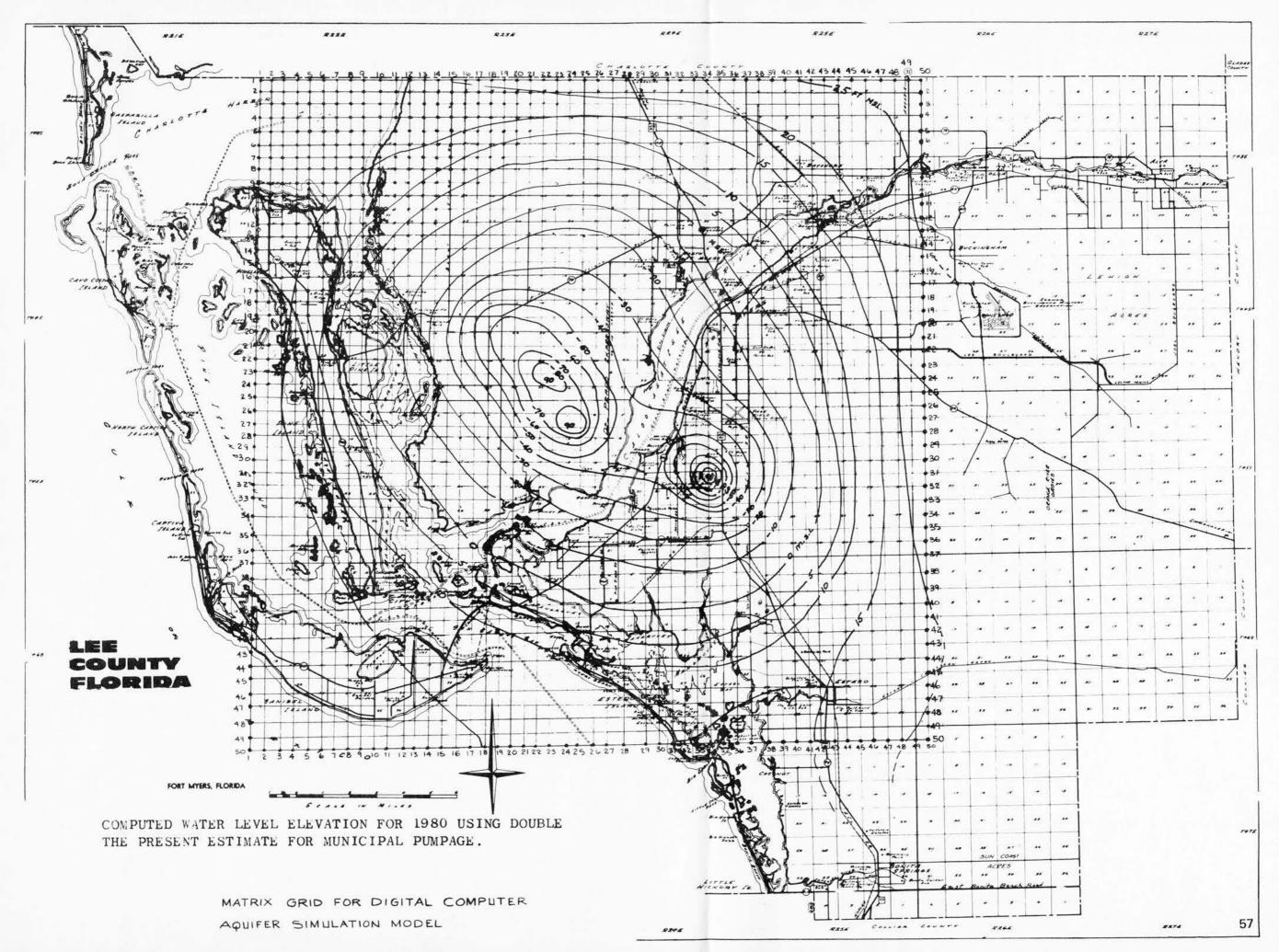
Simultaneous with this study, the author was conducting a study of the water supply situation for GAC Utilities, Inc., for the Cape Coral well field area from the same aquifer system. These data were modeled on a 50 x 50 matrix covering an area of 25 miles square or a total of 625 square miles. Illustrated is the computed water level for these data compared to the observed condition that existed in August. A reasonable comparison was obtained. 1970. Only the northeast portion of the area shows a significant departure. This appears due to the absence of program pumpage from the aquifer by residents in North Fort Myers and in the downtown area. Irrigation pumpage was added, as shown. The increase in pumpage was programmed in approximately two year steps beginning in 1963, and continuing through 1970. The areal storage coefficient used and developed from the simulation runs, was 0.01. This is equivalent to saying that one percent of the formation modeled is capable of yielding water to wells. The programmed transmissivity was 10,000 gallons per day per foot width of aquifer for the southwest portion of the area and 20,000 gallons per day per foot width of aguifer for the northeast portion of the area.

#### Future 1980 Water Level

The computer simulation model was then extended in time for a ten year period to approximate the pumpage expected by 1980. The pumpage for municipal use was programmed to double beginning in 1971 for the remainder of the period. The resulting water level elevation is shown in the illustrated drawing followed by the computed drawdown for the same condition. From the results of these computations, it appears obvious that some shortage in water to meet future demands brought on by expanding population in the area will be experienced in six to eight years. The general static water level in the area is projected to be approximately 120 feet and the water level in pumped wells will be at least 40 percent greater. To obtain the projected quantity of water from the aquifer in ten years, many additional wells would have to have been constructed and the yields of each individual well would probably be less than one-half their present capacity.



## AQUIFER SIMULATION MODEL


CARL E. NUZMAN, P.E., HYDROLOGIST HYDROLOGIC ENGINEERING DIVISION LAYNE-WESTERN COMPANY, INC. 1010 WEST 39TH STREET KANSAS CITY, MISSOURI 64111 AREA CODE (816) 931-2353

IS SIMULATION CONSIDERS THE PUMPING TO COMMENCE IN 1964 AND CONTINUE THROUGH 198

INPUT PARAMETERS

. . . . . . . .

a de la servición de la companya de La companya de la comp	
MBER OF NODES IN COLUMN OF MATRIX	50
UMBER OF NODES IN ROW OF MATRIX	50
RIZONTAL GRID SPACING IN PROTOTYPE IN FEET	2640
ERTICAL GRID SPACING IN PROTOTYPE IN FEET	2640
NGTH OF INITIAL TIME STEP INCREMENT IN SECONDS	10
FLOW FLUX TO VERTICAL LEAKAGE FROM CONFINING LAYER IN SPD/SQ	FT 0
AXIMUM ALLOTED PUMPING PERIOD IN YEARS	25.00
XIMUM NUMBER OF TIME STEPS ALLOTED	499
UMBER OF TIME STEPS BETWEEN PRINTOUTS ROWS	115
MBER OF TIME STEPS BETWEEN PRINTOUTS COLUMNS	116
ACTION OF ANNUAL PRECIPITATION TO VERTICAL RECHARGE	.0001
ULTIPLICATION FACTOR FOR ADJUSTING STORATIVITY	.01000
LTIPLICATION FACTOR FOR ADJUSTING STATIC WATER LEVEL	1.00
ULTIPLICATION FACTOR FOR ADJUSTING BEDROCK ELEVATION	-225.00
XIMUM TIME FOR THE PUMPING SCHEDULE IN YEARS	17.0
"ERAGE INCHES OF PRECIPITATION PER YEAR	50.00
RACTION OF PRECIPITATION THAT REACHES AQUIFER IN INCHES/YEAR	.0050



Layne-Western Company,Inc.

A Marley Company

June 13, 1979

Florida Cities Water Company 2112 Gulf Gate Drive P. O. Box 5846 Sarasota, Florida 33581

Attention: Mr. William G. Lee

Regarding: GROUND WATER HYDROLOGY STUDY GREEN MEADOWS ANALOG MODEL FLORIDA CITIES WATER COMPANY FT. MYERS, FLORIDA APRIL, 1979

Dear Mr. Lee:

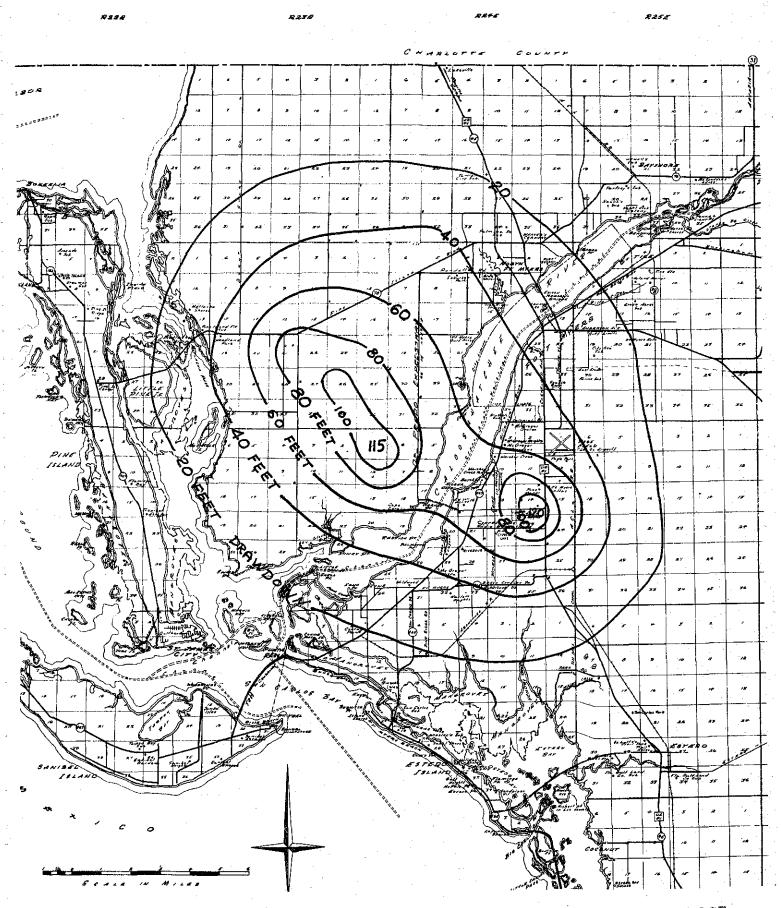
We have completed the final report for the above referenced study and are enclosing one (1) for your information.

If you should have any questions regarding the enclosure, please contact us at your convenience.

Thank you.

Very truly yours, Carl E. Nuzman, P. E.

Hydrology Consultant


mkh

Enclosure

cc: James R. Powell Gerald Blevins South Florida Water Management District



-WATER SUPPLY SERVICES



COMPUTED DRAWDOWN OF WATER LEVEL BY 1980 WITH TWICE THE PRESENT PUMPAGE

#### SUMMARY AND CONCLUSION

It was found, during the investigation, that the best quality of water from an aquifer for municipal supply, capable of being processed with conventional water treatment equipment, was found in the Upper Hawthorn formation. The original water level in the Upper Hawthorn formation was usually above ground level permitting the construction of flowing artesian wells. Some flowing wells in this formation can still be obtained near the perimeter of the study area. The effective local recharge to the Upper Hawthorn aquifer was approximately 150,000 gallons per day. The geologic shape of the aquifer is such that no distant recharge area exists.

The present (1970) pumpage from the Upper Hawthorn formation in Lee County is at least 2.6 million gallons per day. With the inclusion of pumpage from miscellaneous domestic wells, it is probably 3.0 million gallons per day. This is 20 times the computed natural recharge rate. A serious decline of water level now exists in the Western Lee County area. The present drawdown of water level has equalled or exceeded 50 feet in some small areas. A general decline of 20 feet or more of water level now exists over much of Western Lee County.

The average aquifer flow coefficient of transmissivity is approximately 15,000 gallons per day per foot width of aquifer material. The average aquifer coefficient of storativity, or storage coefficient, is 0.01, a dimensionless number. This is equivalent to indicating that one (1) percent of the aquifer material is capable of yielding water to wells. Higher and lower values of these coefficients can be found in places in the study area.

ι.

11

È i

There is ground water mining now occurring in Western Lee County. Continued growth in the area will increase the demand of water from the Upper Hawthorn formation and this is expected to increase at least to the five (5) million gallon per day level within ten years. The aquifer is capable of supplying this demand of water for at least six to eight years but there will be a significant deterioration in individual well yields requiring supplemental or replacement wells located one-half mile or more distant from present wells to meet the then existing demand. A trend toward wider spacing of wells for all large water users in the area will be required, to obtain the necessary diversion capacity to meet demands. This will develop a need for additional investment capital to meet the water supply needs. Failure of the aquifer system will first be observed by experiencing shortages of water from wells on peak days, which, if continued, develops into a serious shortage to meet the service area water demands. It is concluded that all water utilities service companies in Western Lee County, will experience water shortages in their supply from the Upper Hawthorn formation within six to eight years.

There are several alternatives to the water supply situation and each must evaluated for their economic feasibility. The first alternative is to do a more efficient job of mining the available supply from the Upper Hawthorn aguifer. Since this is usually the least expensive method, all utility companies should give some immediate thought and develop plans to insure an adequate supply for the interim period. Florida Cities Water Company has an area of acceptable quality of water located north of the Cypress Lakes well field which could be developed with four or five wells on a wide spacing basis, and double the diversion capacity for that facility. Cape Coral can go into the area north of Pine Island Road near Del Prado Boulevard and develop an extensive well field of nine to 12 wells and gain another two million gallons per day to supplement their present supplies. Cape Coral has used good ground water development techniques in spreading their three well fields to develop water over a wide area. The Pine Island Water District can only go to the east and northeast for a few additional wells to supplement their The spacing of their existing wells is existing wells. too close for efficient harvesting of the water. A second alternative would be the desalination of brackish water obtained from deep wells withdrawing water from the Lower Hawthorn and Tampa-Suwanee formations in the area. The quality of water from these formations vary in chloride content from 540 parts per million to 1070 parts per million with total dissolved solids varying from a low of 1400 parts per million to a high of 2700 parts per million. Capacities up to five (5) million gallons per day could be developed from deeper aquifers on a sustained yield basis. Larger capacities could be developed from the deeper aguifers but would seriously shorten the utility and service life of this aquifer system.

A third alternative would be the importation of fresh water from a surplus water area which may exist in Eastern Lee County. There is a major change in geology which will allow a substantial increase in ground water recharge from rainfall in the aquifers that exist in Eastern Lee County. Excellent quality of water with chloride content of 57 parts per million with total dissolved solids at 440 parts per million, have been found, as reported in the Appendix under the Bonita Springs data. A similar quality of water was reported for the North Golden Gate Test Hole No. 1, located in Collier County, under the Water Quality Data section from the Cape Coral water plant. The yield of this well from the 80 foot depth was 555 gallons per minute with only about 17 feet of drawdown. Highwer, individual well yields are expected with better construction techniques. Surplus, fresh water may exist in the Telegraph swamp area, the area in Eastern Lee County south of Lehigh Acres, and the Cork Screw swamp area east of Bonita Springs. These sources are unproven at the present time.

The fourth alternative is to supplement present supplies with surface water as may be obtained from the Lee County water system. Little study was made of this alternative but the reliability of this supply for large amounts of additional water during drought periods, make this source questionable. At times, during the year the quality of water from this source is greatly deteriorated from organic growth and pollution. Some short-term and short-range relief may be obtained from this alternative, but it does not appear feasible to answer the long-range water supply growth of Western Lee County. f "

1 1

A fifth alternative does exist but is not presently popular with the general public. This is the alternative of recycling sewage effluent after extensive treatment to the water supply distribution system. If fifty (50) percent of the sewage effluent could be re-cycled through the distribution system, the demand on the ground water system would be reduced proportionally; thus, greatly extending the useful life of the local fresh water aquifer. Further disadvantage to this alternative becomes apparent because sewage processing is generally accomplished by a large number of small processing units scattered throughout the service area. No central sewage collection system generally exists. The feasibility of this alternative is very questionable.

#### RECOMMENDATIONS

1. Florida Cities Water Company should take steps immediately to acquire sites to drill four (4) wells north and northwest of the Cypress Lakes well field to supplement their existing supply. These wells should be 10 inch diameter wells with casings cemented to at least 125 feet and drilled to an expected depth of 230 feet. The expected yield of each well will be 175 gallons per minute for a total of 700 gallons per minute on a continuous basis (one mgd). Additional wells may have to be constructed in three to five years to meet peak demands at the Cypress Lakes plant facility.

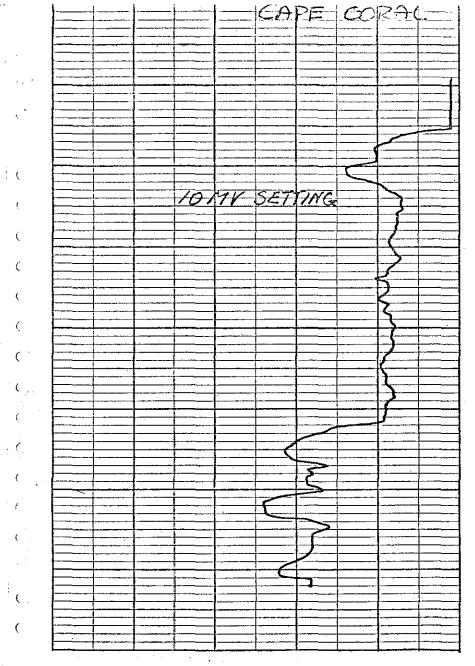
1

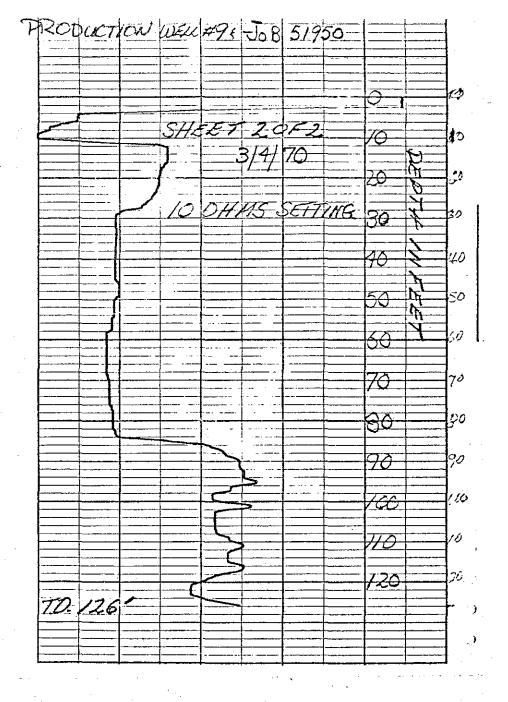
έ...

It is also suggested that two (2) 10 inch diameter wells drilled by the reverse hydraulic air circulation method be constructed in the vicinity of the North Fort Myers water plant of Florida Cities Water Company. An additional one million gallons per day could be developed locally for this facility. All wells in the Upper Hawthorn formation should be acidized every two to three years of use and cleaned to their original depth.

It is recommended that GAC Utilities can develop one to two million gallons per day north of Pine Island Road in the vicinity of Del Prado Avenue. Nine (9) well sites with three (3) alternates were listed in a separate report. The Pine Island Water District may have to develop additional well sites east and northeast of their present wells to meet peak demands if water use increases.

2. It is recommended that well construction be equivalent to that used for Cape Coral Test Well No. 2 in which a 10 inch drill hole was advanced through the productive formation to approximately 225 to 250 feet in depth. Prior to drilling the bottom hole, 10 inch standard weight casing had been pressure grouted with cement grout to approximately 125 feet in depth. Higher yield potentials had been realized by this method. Specific yields or specific capacity of wells of 50 to 150 percent have been achieved over cable tool construction. An additional increase of 50 to 150 percent increase in specific yield has been achieved by using 15 percent strength Muriatic acid with stabilizers and inhibitors added.


3. Maintenance and service is essential to maintain yield from high capacity water production wells. Every two to three years, all wells should have pumps removed and inspected for any necessary repairs. The well should then be acidized and cleaned to the original depth followed by test pumping to remove the acid residue and check the well's performance characteristics.

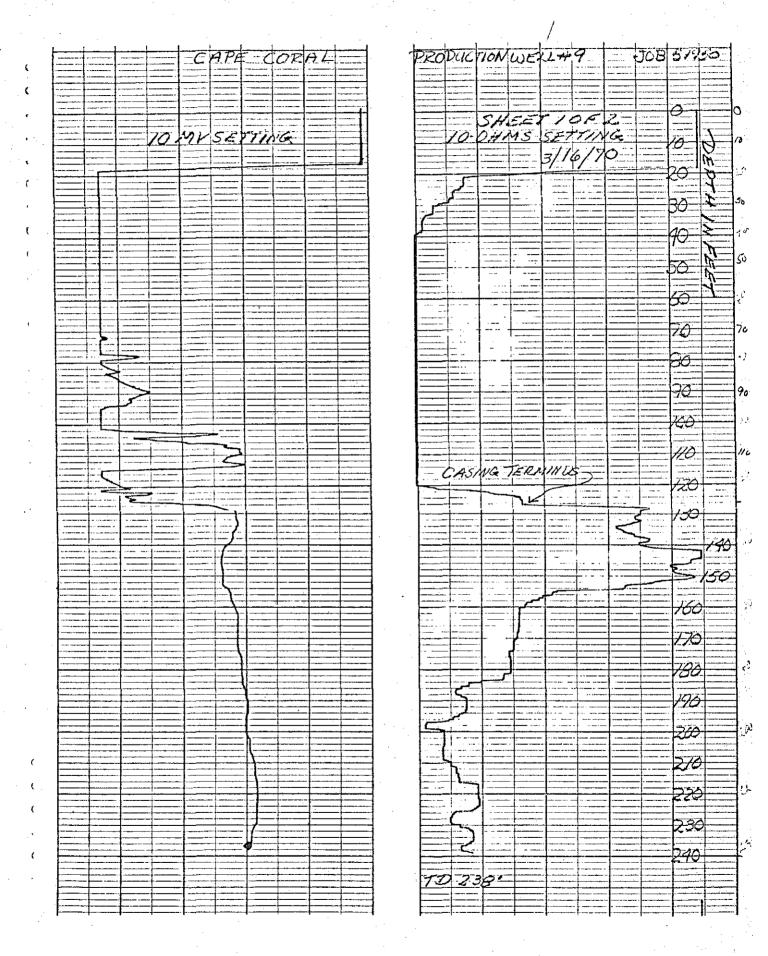

As part of the investigative procedure, for both Florida 4. Cities Water Company and Cape Coral, two (2) inch diameter observation wells have been left in place. These observation wells should now be used for routine monitoring of the well system. At least quarterly, and preferably monthly, water levels should be observed and recorded in each observation well. Semiannually, a water sample should be pumped from each observation well and its chemical content analyzed. Most observation wells can be pumped by a gasoline powered shallow lift pump, but some observation wells such as Florida Cities No. 11, will have to be bailed or pumped with an air lift system. As the areal drawdown increases, fewer wells will be pumped by shallow lift suction systems. The monitoring wells system will provide data in evaluating the adequacy of the supply and as additional data is available, the aguifer simulation model can be reviced and its accuracy improved to better predict the time available to meet the then existing demand. A change in water quality deterioration at an observation point will serve as a warning that the geologic protective system may be breaking down and brackish or salt water intrusion may be imminent. The most serious threat to salt water intrusion is from a vertical movement either by flow through abandoned wells or by vertical infiltration from surface canals dredged through the aquifer protective system. The permeability of the aquifer material is so low that horizontal velocities of the physical movement of water is on the order of one foot per day. At that rate of movement, it would take nearly seven (7) years for salt water to move one-half mile horizontally through the aguifer.

It is recommended that attention be given to the 5. development of a supplemental water supply needed in seven to ten years. Considering the state of the art and the potential supply needed, the author is of the opinion that importation water from Eastern Lee County holds the greatest promise of developing an economical supply for Western Lee County. The water use growth potential of the area served by Florida Cities Water Company, Cape Coral, and Pine Island Water District, is approximately one (1) million gallons per day per year. Thus, developing a supply of the order of magnitude of 20 million gallons per day, would supplement the existing supply for a period of 20 years in the future. The closest area where a surplus of fresh water may exist is an easterly The Cork Screw swamp area county south of Lehigh Acres. east of Bonita Springs may be potentially a more productive area. A detailed study of the water supply potential of either or both of these areas should be made in the next one to two years. This work should then be followed by detailed planning and engineering required to transport the raw water to existing centers of use. Untreated water except for chlorination, could be transported to existing water softening plants to increase their utility and extend their economic service life. A preliminary estimate of the cost of a water importation system consisting of ten (10) one million gallon per minute wells each, 18 miles of pipeline capable of ultimately transporting 20 million gallons per day, a storage collection reservoir and booster pumps, was 1.5 million dollars. Acquisition of right-of-way, engineering and fees, and other contingency expense, should not exceed one-half million dollars.

## APPENDIX A

GAC UTILITIES DATA






المحمود المحمولة المحمولة المحمد المحمد المحمد المحمد المحمد المحمد المحمولة المحمولة المحمد المحمد المحمد الم القدارة عالي الأقرار المحمد إلى المحدد إليه الالك

- Peri - Ing. - ' Mantana Printal' '

L

89



	· .	and the second			
5	GAC III	ILITIES, INC.	1	211-212	Green Clay
•		Construction Division	1	212-214	Lt. brown Line and Shell
		L, FLORIDA	i –	214-219	Lt. brown Line, some shell
		and a second	i	219-220-	Black Clay, popper Line in the
	Santa Barl	bara LEE COUNTY	ļ I	220-221	Yellow clay, pepper Line
			<b>.</b>	221-226	Gray Line, brown Stks, pepper Limi
				226-228	Gray Lime, Shells, pepper Lime
	· · · · · · · · · · · · · · · · · · ·			228-236	Gray Line, streaks of white
	S.O. #519	50			Line, lots Shells
				236-240	Lt. brown Lime, some shells some
		January 28, 1970	!	_ /	Cla
	Finished:	February 26, 1970		240-241	Lt. brown Lime, some shells, cli
i.	0- 10	Soil			
	10- 25	Shell, Clay, Brown	1	TOTAL DEPTH	1. 2411
	25- 40	Shell, Clay, Green			
	40- 85	Shell, Clay, Green		Set 1201 of	F 9H Dino Comments total and
	85-123	Lime, Clay, Shell	i	- Static of 7	8" Pipe, Comonted with 55 Bags
	125-130	Pepper sand and white Lime		نو نوانيا جايد بويديا ^{ير}	nakar <b>na 10° 0</b> °.
	130-152	Sandy Lime, Lime stone, Shell	Í	Tected 220	CON DAL DI ON MAN
•	152-152	Lt. Brown Limestone, very much	•. 1	Acidizad Ka	GPH 94* P.L 8 hour Test
	152#150	Shell	1	Tested 350	GPM 90* P.L 8 hour Test
	158-160	White Lime, med.			
	160-162	Lt. brown Lime, many shells		Locastion:	Unit 24 East R/W -
	162-165	White Lime, Shells	1		Santa Barbara, Lee County
	165-166	Lt. Brown Lime, Shells		t	Twsp. 44S, Rge. 23E,
	166-172	Lt. Brown Lime, lots of Shells	·	1	Section 24, Florida
	172-176	Gray Lime, many Shells		•	
	176-179	Coarse Shell, trace of Clay	ļ		
	179-180	Brown - Green Lime, some Shells			
	180-181	Lt. green Lime, Shells			1
: نور	181-182	Gray and white Lime, lots of	1		
		Shells, Trace of Clay			
	182-183	Gray Lime, Coarse, Shells		· ·	
. •	183-185	Gray Lime, Shells, med. hard		- -	$\left  \left\{ \frac{1}{2} \right\} \right  = \left  \left\{ \frac{1}{2} \right\} \right  $
	185-189	Gray Lime, Shells, med. hd.stks.	}	· .	ты, <b>к</b> . а.,
	189-194	Gray Lime, some Shell, med.	Į .	•	
	194-199	Gray Lime, lots Shell, Hd. stks.		•	
	199-204	Gray, yellow Lime, lots of Shell	1		
		hd. stks.	•		
	204-208	Gray-yellow Lime, lots Shell	1.	. · · · · ·	
	208-209	Gray Lime Shell, Lt. brown Lime	.		
	209-210	Gray Lime, some Shell - hard			
	210-211	Gray Lime, gray-green Clay,	]	· · · ·	1
		some Shell			
		JOING DIGIT			<b>∟</b> ↓

#### **ORLANDO LABORATORIES, INC.**

P. O. BOX 8025A + ORLANDO, FLORIDA 32806 + 305 424-5606

March 12, 1970

Layne-Atlantic Co. PO Box 5789 Orlando, FL 32805

#### REPORT OF ANALYSIS: Cape Coral S/D Well #16, Unit 24, East R/W - Santa Barbara, Lee County, Twsp. 44S, Rge. 23E, Sec. 24, Fl.

	RE	SULTS		ALYSIS:	(55 Gailons)					
Date,	Static, 1	Depth,	No	Pumping level,	Time to pump,	gpm,	Florides	$\mathbf{TH}$	Cl	TDS
2/10	17'	172	3438 - 2	25'			0.6	288	90	420
2/10	17'9''	152	- 3	34 ,	2min. 30sec.	21		270	90	375
2/10	17'9"	162	" -4	26' 5''	Omin. Osec.	0		282	93	400
2/11	י17	178	3454-2	22'8''	1min. 45sec.	31	0.4	336	75	340
2/11	17'8'	179	3438-5	25'	3min. 0 sec.	18		300	75	345
2/11	17'8'	183	3454-4	24	2min. 45sec.	20		348	75	350
2/11	17'8''	188	· -5	25	2min. 20sec.	20		300	75	345
2/11	17'8''	193	·· -6	25'8'	2min. 15sec.	24		360	90	370
2/11	17'4'	198	·· -3	23	3min.0 sec.	18		336	66	340
2/12	17'5"	203	·· -9	23'10'	2min. 58sec.	18		312	84	375
2	17'2"	208	8	23' 4'	1min. 30sec.	36		294	81	350
2/12	16'3''	213	7	19'11''	1min. 55sec.	28		366	75	370
2/13	16'	218	" -10	21'7"	1min. 40sec.	33	0.1	342	75	380
		221	3446 *		***		0.1	410	204	
2/16	16'7"	221	3454-11	20'11"	2min. Osec.	27			165	
2/16	16'10''	226	14	23'9''	1min. 25sec.	38		330	75	390
2/16	16'4''	231	-12	20'11'	1min. 45sec.	31	0.0	330	75	390
2/16	16'4''	236		21'2"	1min. 35sec.	34		294	75	370
2/19	16'10''	241	'' -1	* 94'	7hrs, 30min,	220	1.2	300	105	
3/4		241	3463 **	90'	6hrs. Omin.	350	1.2	600	183	420
				Canal Wat	er Analysis (Dri	illing Wa				
2/13			3438-1*		• •	÷	0	282	66	350
2/13			3438-6					282	75	400
2/13			3438-7					318		420
•			-		NOT	E * com	plete analy	sis	-	
	•	Respe	ectfully s	ubmitted,		** com	plete analy	sis. a	fter	acidizin
						- Total I	Hardness	,		
		ORLA	NDO LA	BORATORIES,	INC. Cl -	Chlorid	le			
•				-			Dissolved	Solid	s	
			1. ~	7_			on per min			
		$\mathcal{S}$	₽¶[	Organ.	·					
		Laure	l Morga	n //		1. A.	· •			

Chemist

LM/ie

WATER ANALYSIS REPORT Report to: Layne-Atlantic Co.

February 19, 1970 Date: ____ 3454-1 Sample Number:-

Permit No. 6499 - S.O.#51950 Cape Coral S/D Well No. 16 Unit 24, East R/W Santa Barbara, Lee County Twsp 44S, Rge. 23E, Sec. 24, Florida Identification: Cape Coral _Depth 241

P. 0. Box 20254 • Orlando, Florida 32814 • 305 424-5006

NETHODS

This water was analyzed using methods adapted from "Standard Methods for the Examination of Water and Wastewater," Twelfth Edition, 1965, APHA, AWWA and WPCF.

	RES	ULTS	
Determination	p.p.m.	Determination	p.p.m.
Total Dissolved Solids, @ 105°C	470	Sulfate, as SO₄	5
Total Hardness, as CaCO ₃	300	Fluorides, as F	1.2
Calcium Hardness, as CaCOa	180	Silica, as SiO ₂	9.0
Magnesium Hardness, as CaCO ₃	120	Copper, as Cu	0
Calcium, as Ca		Phosphate (Total), as PO ₄	0.9
Magnesium, as Mg	29	Color, Standard Platinum Cobalt Scale	5
Alkalinity (Phenolphthalein), as CaCO ₃	0	Odor	sulfurous
Alkalinity (Total), as CaCO ₃	240	pH (Laboratory)	7_1
Carbonate Alkalinity, as CaCO ₃		pHs ,	7.0
Bicarbonate Alkalinity, as CaCO ₃	240	Stability Index	6.9
Hydroxides, as OH		Saturation Index	0.1
Carbon Dioxide, as CO2	37	Turbidity, Silica Scale	0
Carbonates, as CO ₃			
- Bicarbonates, as HCO _x	293		<u> </u>
Chlorides, as Cl		· · ·	
Iron, as Fe	005		<del></del> -
janese, as Mn	0		

(To convert ppm to grains per gellon, divide ppm by 17.1)

INSPECTION ANALYSIS QUALITY CONTROL. RESEARCH & DEVELOPMENT IN MICROBIOLOGY, BIOCHEMISTRY & CHEMISTRY. 1.

INSPECTIONS, ANALYSIS, QUALITY CONTROL, RESEARCH & DEVELOPMENT IN MICROBIOLOGY, BIOCHEMISTRY & CHEMISTRY.

Orlando Kahorstonies. Inc.

orlando Lab	oraior	ies, Inc.		Orlando Laboratories, Inc.					
	P. O. Box 202	54 • Orlando, Florida 32814 • 30	5 424-5606		P. O. Box 202	54 • Orlando, Florida 32814 • 30	5 424-5606		
WAYER ANALYSIS REPORT Report to: Layne-Atlantic Co Date:March 4, 1970		Permit No. 6499 - S.O.# Cape Coral S/D Well No. Unit 24, East R/W Santa Barbara, Lee Coum Twsp 445, Rge. 23E, Sec.	16 ty	WATER ANALYSIS REPORT Report to: Layne -Atlantic Co. Date: February 13, 1970		Permit No. 6499 - S.O.# Cape Coral S/D Well No. Unit 24, East R/W Santa Barbara, Lee Coun Twsp 445, Rge. 23E, Sec	16 ty		
Sample Number: 3463		Identification: Cape Coral	well#16	Sample Number: <u>3438-1</u>		. Identification: Sample #1_canal_wa			
This water was analyzed using methods adapted from AWWA and WPCF.	METH "Standard Methods fo	HODS r the Examination of Water and Wastewater," Twelfth E	dition, 1965, APHA	This water was analyzed using methods adapted from AWWA and WPCF.	METH "Standard Methods for	2/9 IODS r the Examination of Water and Westewater," Twalfth	•		
	RES	UL7S			RESI				
Determination	p.p.m.	Determination	p.p.m.	Determination	р.р.м. 'рго	Determination	р.р.т. 30		
Total Dissolved Solids, @ 105°C	600	Sulfate, as SO.	15	Total Dissolved Solids, @ 105°C	350	Sulfate, as SO4			
Total Hardness, as CaCO _a	420	Fluorides, as F		Total Hardness, as CaCO ₃	282	Fluorides, as F			
Calcium Hardness, as CaCO ₃	258	Silica, as SiO ₂	<u>    7.2     </u>	Calcium Hardness, as CaCOa	240	Silica, as SiO ₂	_7.0		
Magnesium Hardness, as CaCO ₃	132	Copper, as Cu	0	Magnesium Hardness, as CaCO ₃		Copper, as Cu	0		
Calcium, as Ca	110	Phosphate (Total), as PO4	0,9	Calcium, as Ca	96	Phosphate (Totai), as PO4	0.6		
Magnesium, as Mg	39	Color, Standard Platinum Cobalt Scale	5	Magnesium, as Mg		Color, Standard Platinum Cobalt Scale			
Alkalinity (Phenolphthalein), as CaCO ₃	0	Odor	0	Alkalinity (Phenolphthalein), as CaCO ₃	0	Odor			
Alkalinity (Total), as CaCO ₃	246	pH (Laboratory)	6.8	Alkalinity (Total), as CaCO _a	216	pH (Laboratory)	7.3		
Carbonate Alkalinity, as CaCOa	0	pHs	68	Carbonate Alkalinity, as CaCO ₃		pHs	6.9		
Bicarbonate Alkalinity, as CaCO ₃	246	Stability Index	_6.8	Bicarbonate Alkalinity, as CaCO ₃	216	Stability Index	6.5		
Hydroxides, as OH	0	Saturation Index	0	Hydroxides, as OH	0	Saturation Index	0.4		
Carbon Dioxide, as CO ₂	75	Turbidity, Silica Scale	0	Carbon Dioxide, as CO ₂	21	Turbidity, Silica Scale	0		
Carbonates, as CO ₃	0		<u> </u>	Carbonates, as CO ₃	0		<u> </u>		
Bicarbonates, as HCO _x	_300			Bicarbonates, as HCO _a	263				
Chlorides, as Cl	183		. <u></u>	Chlorides, as Cl	66	· · ·	<u></u>		
Iron, as Fe	0.1	,	<del></del> .	Iron, as Fe	0.2				
Manganese, as Mn				Marian ese, as Mn	0		<u> </u>		

بینی میں انہ ا _____ L....

لــــ .. ـــــا

Signed Mongan Chamist

يىيىتى تىلىيى الىرىنى بىلىي  Signed Anthenist

(To convert ppm to grains per gallon, divide ppm by 17.1) N INSPECTIONS, ANALYSIS, QUALITY CONTROL, RESEARCH & DEVELOPMENT IN MICROBIOLOGY, BIOCHEMISTRY & CHEMISTRY.

(Io convert ppm to grains per gallon, divide ppm by 17.3) INSPECTIONS, ANALYSIS, QUALITY CONTROL, RESEARCH & DEVELOPMENT IN MICROBIOLOGY, BIOCHEMISTRY & CHEMISTRY.

Orlando Lai	ooratori	es, Inc.		<u>Orlando Lab</u>	orstori	es, Inc.	
	P. O. Box 20254	• Orlando, Florida 32814 • 30	5 424-5606		P. 0. Box 20254	• Orlando, Florida 32814 • 30	5 424-5606
WATER ANALYSIS REPORT		Permit No. 6499 - S.O.#51950		WATER ANALYSIS REPORT		Permit No. 6499 - S.O.#5	
Report to: Layne-Atlantic Co.		Cape Coral S/D WeIl No. Unit 24, East R/W		Report to: Layne-Atlantic Co.		Cape Coral S/D Well No. Unit 24, East R/W	
Date:February 13, 1970		Santa Barbara, Lee Coum Twsp 44S, Rge, 23E, Sec	ty , 24, Florida	Date:		Santa Barbara, Lee Count Twsp 44S, Rge. 23E, Sec.	y 24, Florid
ample Number:3438-2	· · · · · · · · · · · · · · · · · · ·	Identification: 2/11/70_30-minpun	aping-T.D. 172'	Sample Number: 3446		Identification: PO # 12654 Well #	16 depth 22
his weter was analyzed using methods adapted fr WWA and WPCF.		pumping level-25' DS JOB NO.: S1950 WELL NO. 16 Me Examination of Water and Wasterwater," Twelffh Ex		METHODS This water was analyzed using methods adapted from "Standard Methods for the Examination of Water and Wastewater," Twell AVXIVA and WPCF.			Edition, 1965, APHA,
	RESULT		·	Determination	RESULT		
heterdinetige .	420	Determination .	_{р.р.} . 15		410	Determination	p.p.m.
Total Dissolved Solids, @ 105°C		Sulfate, as SO4		Total Dissolved Solids, @ 105°C Total Hardness, as CaCO ₃	270	Sulfate, as SO4	30 0.1
Total Harding K, as CaCO3		Fluorides, as F	0,6			Fluorides, as F	
Calcium Hardness, as CaCOs	192	Silica, as SiOz	_9.0_	Calcium Hardness, as CaCO ₃	240	Silica, as SiO ₂	- 5.0
Magnesium Hardness, as CaCO ₂	<u>96</u>	Copper, as Cu	0	Magnesium Hardness, as CaCO _a		Copper, as Cu	0
Calcium, as Ca		Phosphate (Total), as PO4		Calcium, as Ca	96	Phosphate (Total), as PO4	0.9
Magnesium, as Mg		Color, Standard Platinum Cobalt Scale		Magnesium, as Mg		Color, Standard Platinum Cobalt Scale	25
Alkalinity (Phenolphthalein), as CaCOa	0	Odor	0	Alkalinity (Phenolphthalein), as CaCO ₃		Odor	0
Alkalinity (Total), as CaCO ₃	240	pH (Laboratory)		Alkalinity (Total), as CaCOa	240	pH (Laboratory)	7.4
Carbonate Alkalinity, as CaCO ₃	0	pHs	6,9	Carbonate Alkalinity, as CaCO ₃	0	pHs	<b>6_9</b>
acarbonate Alkalinity, as CaCO _R	240	Stability Index	6.5	Bicarbonate Alkalinity, as CaCOa	240	Stability Index	6.4
Hydroxides, as OH		Saturation Index	0.4	Hydroxides, as OH	0	Saturation Index	<b>0,-5</b>
Carbon Dioxide, as CO ₂	_ 24	Turbidity, Silica Scale	0	Carbon Dioxide, as CO ₂	19	Turbidity, Silica Scale	- 0
Carbonates, as CO ₃	0	•		Carbonates, as $CO_3$	0		·
Bicarbonates, as HCO _a	293	ж. С	· · ·	Bicarbonates, as HCO ₃	293		
Chiondes, as Cl	90			Chlorides, as Cl	204		<u> </u>
lron, as Fe	2.0			iron, as Fe	0.5	·	
Manganese, as Mri			<u> </u>	Garanese, as Mn	0		

.

----

Signed: I Margan

· . . .

To convert poin to greine per gallon, divide poin by 17.1) INSPICTIONS, ANALYSIS, QUALITY CONTROL RESEARCH & DEVELOPMENT IN MICROBIOLOGY, SIDCHEMISTRY & CHEMISTRY. 1

. . . .

1

(To convert ppm to grains per gallon, divide ppm by 17.1) INSPECTIONS, ANALYSIS, QUALITY CONTROL, RESEARCH & DEVELOPMENT IN MICROBIOLOGY, BIOCHEMISTRY & CHEMISTRY. · ----

.

P. O. E	SOX 8025A	+ ORLA	NDO, FLORIDA 33	2806 • 305	424-56	506			P. O. BOX	( 8025A • ORLA	NDO. FLORIDA 328	06 • 305 4	124-5606
February 13, 1970				1. A.			February	, 20, 1970		:			
Layne-Atlantic Co. P O Box 5789 Orlando, FL 32805		· · · · · · · · · · · · · · · · · · ·	Permit No. 6499 - Cape Coral S/D We Unit 24, East R/W Santa Barbara, Le Twsp 445, Rge. 23	11 No. 16 e County	Florida		P Ó Box Orlando,	FL 328	05 JYSIS: # 34	454	Permit No. 6499 - S Cape Coral S/D Well Unit 24, East R/W Santa Barbara, Lee Twsp 44S, Rge. 23E,	No. 16 County	lorida
REPORT OF ANALYSIS:	# 3438						Sample #		Lab-No.:		Pumping Level: St		
Sample #: Date: Lab-No	o.: Depth	of well:	Pumping Level:	Static Level:	Gpm:	Time	3454-2 -3 -4	2/11/70 2/11/70 2/11/70	2 · 3 4	178' 198' 183'	22'8" 23' 23'11''	17' 17'4'' 17'8''	55 1min 45se " 3min " 2min 45sec
3438-3 2/10/70 3 -4 2/10/70 4 -5 2/11/70 5	1	.52' 62' 79'	34' 26' 5'' 25'	17'9'' 17'8''	55 55	2 1/2min 10 min 3 min.	-5 -6 -7	2/11/70 2/11/70 2/12/70	5 6 7	188' 193' 213'	25' -25'8'' 19'11''	17'8'' 17'8'' 16'3''	" 2min 20sec " 2min 20sec " 2min 15sec " 1min 55sec
-6 2/10/70 (canal) -7 2/11/70 (canal)	)			· .			-8 -9 -10	2/12/70 2/12/70 2/12/70 2/13/70	8 9 10	208' 203' 218'	23'4' 23'10'' 21'7''	17'2" 17'5" 16'	" 1 1/2 min " 2min 58sec " 1min 40sec
RESULTS OF ANALYSIS:	# 3438					•	-11 -12 -13	2/16/70 2/16/70 2/16/70	11 12 13	221' 231' 236'	20'11'' 20'11'' 21'2''	16'7'' 16'4'' 16'4''	<pre>'' 2 min '' 1min 45see '' 1min 35see</pre>
Sample # : Chl	oride, as (	21	Total Hard	ness, as TH	ΤĽ	DS	-14	2/16/70	14	226'	23'9"	16'10"	" 1min 25sec
3438-3 -4 -5 -6 -7	90 93 78 75 75		270 282 300 282 318	-	4 3 4	375 400 390 400 420	Sample #: 3454-2 -3	:	. 6	e, as Cl 75 36	Total Hardness, as 336 336	5 TH	TDS 340 340
espectfully submitted,		•					-4 -5 -6 -7 -8		Ę	75 75 90 75 31	348 300 360 366 294		350 345 370 370 350
RLANDO LABORATORIE	S, INC.						-9 -10 -11		1	84 75 165 75	312 342 354 330		375 380 580
<u>J.M. Jongan</u> aurel Morgan							-12 -13 -14	Fluoride,	· · · ·	75 75 # 3454-2 0.4	294 330	0 maa	390 370 390
M/ie				н (с. 1997) 1997 — Полонания 1997 — Полонания			Beccettu	lly submit		. 0101-2 0.1	Phu #0+04-12	0 ppm	н.

KINSPECTION ANALYSIS QUALITY CONTROL, RESEARCH & DEVELOPMENT IN MICROBIOLOGY, BIOCHEMISTRY & CHEMISTRY.

-

• •

e . .

• .

INSPECTION ANALYSIS QUALITY CONTROL, RESEARCH & DEVELOPMENT IN MICROBIOLOGY, BIOCHEMISTRY & CHEMISTRY.

Laurel Morgan, Chemist

	LADE LOTAL OLD HELLEN - DIAL MAL 21 - LAND	
$\sim$	Santa Barbara, Lee County	
•		
	Serial NoYour Order NoS. C. No. 51950	
1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	From LAYNE-ATLANTIC CO.	
	"World's Largest Water Developers"	
	MEMPHIS TENNESSEE	
	Smeet 1072 -4	23/10
		R ^{ij} J
		<u> </u>
		70
		\$0
		90
		100
		110
	CASMIC FERMINUS	
		140
	10114 SETTING 5011115 SETTING	
		59
		/6Q
		170
		200
		2/0
		220
		240
		<u> </u>
	75	
i		

GAC UTILITIES, INC.

#### WATER QUALITY ANALYSIS

### CAPE CORAL TEN INCH DIAMETER TEST

WELL NO. 2, NORTH OF PINE ISLAND ROAD

WELL DRILLED BY LAYNE-ATLANTIC COMPANY ANALYSIS BY CAPE CORAL WATER PLANT PERSONNEL

	4 HRS. PUMPING	7 HRS. PUMPING	
pĦ	7.3	7.3	
M. Alk.	200	200	i.
Total hardness (CaCO ₃ )	294	294	
Mg hardness (CaCO3)	150	156	
Ca hardness (CaCO3)	144	138	ŀ
Chlorides	180	180	
Total dissolved solids	450	460	

### APPENDIX B

# NORTH FORT MYERS DATA

•	Layne-	Шe	stern	Comp	pany, l	nc
				and the second		

WATER SUPPLY SERVICES SINCE 1924-TEST DRILLING . WATER WELLS . PUMPS

MISCELLANEOUS WELL LOG AT FCWC NORTH FORT MYERS WATER PLANT

aune

Contract		North Fort Myers, Flor				<b>TEST HOL</b> NoWell N		
Job No.			Date					
City	2		State		Driller_	Marvin Mil	ler	<b>,</b>
South	County	Hole Park Road á Sec of T, Co.,			r Level _	Hours Aft		pletion
From	, To		Description of Str	ata		<u></u>	Water	Bearing
0'0'		Top soil						
0'6"	1'0"	Sand						
1	2	Soft lime rock		· · · · · ·	i			
2	. 7	Marl						-
7	9	Sand and shell		· ·				
9	13	Rock			· · · · · ·			
13	47	Green clay				· · ·		
47	48	White clay						
48	52	Sand and shell			· · ·		4	good
52		Green clay (total dep	th)	·				
			······································			· · · · · · · · · · · · · · · · · · ·		
		· · · · · · · · · · · · · · · · · · ·					·	<u>i</u>
								r
	. ,	<u></u>	<u>· · · · · · · · · · · · · · · · · · · </u>		<u></u>	en e		
								<b>7</b> 7
				1. 1.		· · · ·		
			<u></u>					
			· · · · · · · · · · · · · · · · · · ·					
Remarks: LW-62	Set l wire grave	0'5" of 20 inch diamete wound screen and 38 fee 1 packed in 20 inch dia 14 • GARDEN CITY • LIBERAL • KAN	t of 8 inch meter drill	diameter hole.	casin	g. Screen	RA	

# #4 WELL

20" GRAVEL PACK WELL

07-61	White Sand
6'-10'	Brown Sand
101-31:1	Rock
14:-20:	Marl, Shell & Little Sand
201-381	Light Green Clay
381-461	Shell & Marl
461-481	Green Clay

8" WELL NO. 7

01-1111	Top Soil .
Lin_61	White Sand
61-181	Marl
18:-28:	Light Green Clay
281-301	Marl & Shell
301-351	Green Clay
351-391	Hard Pan (Shell)
391-451	Light Green Clay
45*-54*	Hard Pan (Sand & Shell)

## APPENDIX C

ç in

۳ --

٦ د.

÷

# BONITA SPRINGS DATA

Interview with Mr. D. H. Boggess, District Geologist Address: Smith Building, 2070 Main Street Ft. Myers, Florida

Test Location #731 NW4, NE4, NE4 Sec. 25 Twp.46S, R 27E. located near Cork Screw Road

0'0" - 25'0" Sand shell zone 25'0" 150'0" Limestone, dolomite 150'0" 215'0" Green clay 218'0" 243'0" Producing limestone formation

Casing in well

165'

3.89 feet Static water level below surface

10.89 feet Pumping water level at 60 gpm

8.6 gpm/ft. D.D. Specific capacity of well

COMMENTS REGARDING WATER PRODUCTION

- 1. This well cased out some good dolomite formation that would be useful in production.
- 2. The formation is generally too loose to stand open hole. The well needs to be screened.
- 3. Water quality generally acceptable.

72 ppm of chloridesWater temperature26.5 deg. C. (79.6 deg. F)Conductivity350 micro mohs

# LABORATORIES

PML

M. B. WHITE, M.D. DIRECTOR, CLINICAL RESEARCH J. S. BRACKEN, M.D. DIRECTOR, BIOLOGICAL SCIENCES

WM. F. MAHONEY, M.D. DIRECTOR OF ELECTRONICS & INSTRUMENTATION

I. M. CHAMELIN, Sc.D. DIRECTOR, CHEMICAL & PHYSICAL SCIENCES

# Research & Development Division

1928 HILLVIEW AVENUE / SARASOTA / FLORIDA TELEPHONE / 958-0396

ACCESSION NO.: 237 DATE RECEIVED 8-23-68DATE OF REPOR 8-26-68 SAMPLE OF: Water U.S. Geological Survey Well

 FOR:
 PARTIAL
 COMPLETE
 ORDER NO.:

 SUBMITTED BY:
 Florida Cities Water,

 SOURCE:
 2112 Gulf GateDrive,

 Sarasota, Fla.

231

# CERTIFICATE OF ANALYSIS

	· · · · · · · · · · · · · · · · · · ·	Parts per N	lillion
Total Dissolved Solids @ 103° C.		440	
Total Hardness (Versenate)		190	
Alkalinity as CoCO3		220	
Non-Carbonate Hardness		O	
Bicarbonate, HCO3		268	
Iron, Fe	1	0.04	
Sulfates, SO4			
Chlorides, Cl		57	
Calcium, Ca	· · · · · · · · · · · · · · · · · · ·		
Magnesium, Mg		19	
Fluorides, F (Distillation)		0.48	
Carbon Dioxide, as CO2			
Bicarbonate, as CoCO3		220	
Carbonate, as CaCO3		0	
Hydroxide, as CaCO3		<u> </u>	
Color (Standard Cobalt Scale)	9 <b>A</b>		
Odor	None		· •
pH (Field)	<u>N.D.</u>		
pH (Laboratory)			
pHs		· ·	
Stability Index	7.8		
Corrosive			
Scale Forming	Maybe		
Appearance	Satisfactory		

Respectfully submitted, PML LABORATORIES Analyst

PML

# LABORATORIES

M. B. WHITE, M.D. DIRECTOR, CLINICAL RESEARCH J. S. BRACKEN, M.D. DIRECTOR, BIOLOGICAL SCIENCES

WM. F. MAHONEY, M.D. DIRECTOR OF ELECTRONICS & INSTRUMENTATION

SOURCE:

I. M. CHAMELIN, Sc.D. DIRECTOR, CHEMICAL & PHYSICAL SCIENCES

Research & Development Division

1928 HILLVIEW AVENUE SARASOTA / FLORIDA TELEPHONE / 958-0396

Shallow FRRIGATION WE dopted 37 feet-DATE RECEIVED 8-23-68 DATE OF REPORT 8-26-68 236 ACCESSION NO .: Water N.E.Section 25 Ward Ranch SAMPLE OF: near Bonita N.E. SPRINGS FOR: PARTIAL COMPLETE C ORDER NO.: Florida Cities Water, SUBMITTED BY:

CERTIFICATE OF ANALYSIS

2112 Gulf Cate Drive,

Sarasota, Fla.

		Ports per Million
Total Dissolved Solids @ 103° C		405
Total Hardness (Versenate)		290
Alkalinity as CaCO3		280
Non-Carbonate Hardness		10
Bicarbonate, HCO3		342
Iron, Fe		1.44
Sulfotes, SO ₄		Less that
Chlorides, CI		33
Calcium, Ca		108
Magnesium, Mg		5
Fluorides, F (Distillation)		0.18
Carbon Dioxide, os CO2	<b>A</b> .	43
Bicarbonate, as CaCO3		280
Carbonate, as CaCO3	· · · · · · · · · · · · · · · · · · ·	0
Hydroxide, as CaCO3		0
Color (Standard Cobalt Scale)		
Odor	None	
рН (Field)	N.D.	
oH (Laboratory)	7.1	
pHs	7.1	
Stability Index	<u> </u>	
Corrosive		-
Scale Forming	Maybe	
	Satisfacto	177

Respectfully submitted, ML LABORATORIES **Inalyst** 

# Wall #3 at Bonita Springs

105'--132' Shell with white clay 132'--145' Green clay with shell 145'--148' Sand with shell 143'--196' Sand 196'---210-Creen clay Gray clay 210'--214' 214'--258' Green clay Hard Lina Rock 258'--262' 252'--275' Soft line rock Total depth 275' Total casing 207' 10" Total casing 40' 10" at time of 72 hr. test

84

1.

# **PML** LABORATORIES

Research & Development Division

M. B, WHITE, M.D. DIRECTOR, CLINICAL RESEARCH J. S. SRACKEN, M.D. DIRECTOR, BIOLOGICAL SCIENCES WM. F. MAHONEY, M.D. DIRECTOR OF ELECTRONICS & INSTRUMENTATION I. M. CHAMELIN, Sc.D. DIRECTOR, CHEMICAL & PHYSICAL SCIENCES

SOURCE:

1928 HILLVIEW AVENUE / SARASOTA / FLORIDA TELEPHONE / 958-0396

ACCESSION NO.: 275 DATE RECEIVED 12/16/63 DATE OF REPORT 12/18/63 SAMPLE OF: Vator Voll V3 11/14/63 11:45 AM Sample 01 Depite Spring FOR: PARTIAL COMPLETE I ORDER NO.: SUBMITTED BY: V201142 Cities Vator 2012 Citie Cata Drive

CERTIFICATE OF ANALYSIS

Saracoto, Pla.

	* · · · · · · · · · · · · · · · · · · ·		Parts per Million
Total Dissolved Solids @ 10	3° C	1	553
····· · · · · · · · · · · · · · · · ·			230
Alkalinity as CaCO ₃			270
			0
			350
			0.08
			66
			90
			65
			27
			0.60
			7
		-	270
•		4	÷
			0
		*****	÷ * *
Odor		and a surday of the second s	-
-			-
pH (Laboratory)		7.0	-
pHs	• 		-
Stability Index	**************************************		•••
Corrosive			<b>~</b>
Scale Forming			
·		Satiofest	020

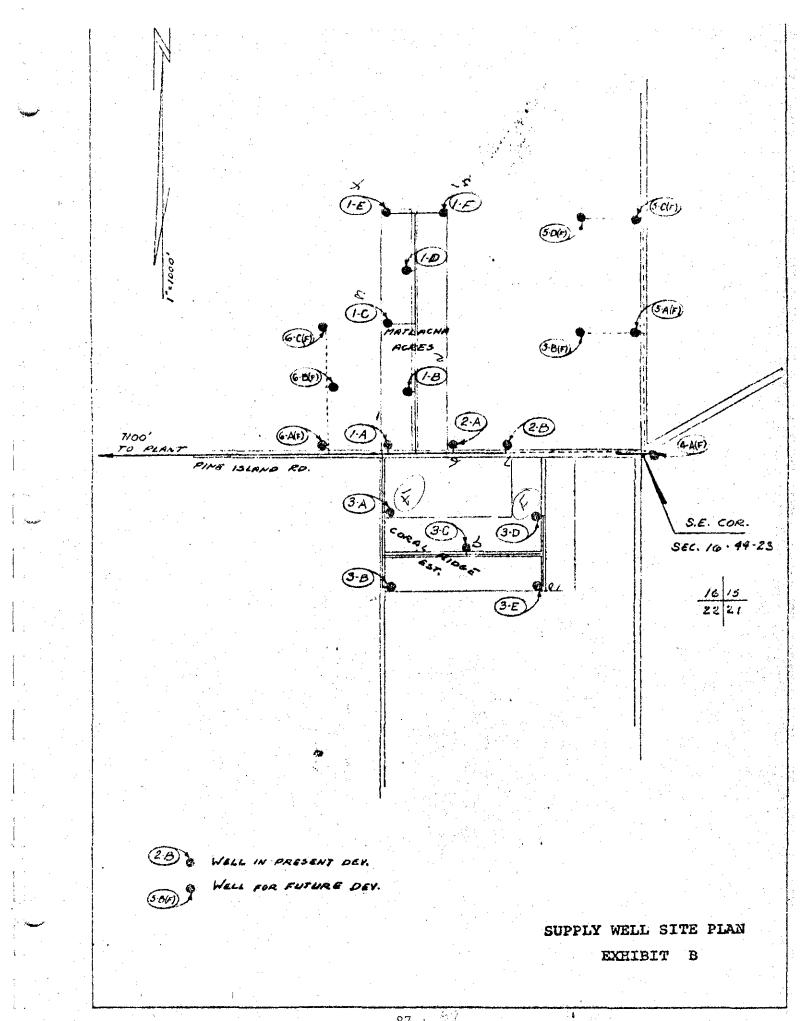
Respectfully submitted, PML LABORATORIES

Analyst

0 E³

### APPENDIX D

# PINE ISLAND WELL FIELD DATA


Ľ,

3

ŀ

1.

i.J



1.12 <u>1</u> Xa.	青額紅	or 1 hr.	4 @ 31' 2.hr.		m 6 hr.	12 hr.	GRA 222' 12 hr. Drawdown	Cl2 DAT.	Cl2 Composite	Actual Pumping
in larrenerse Suis	977 143	127	122	118	118	116	82	93	7.6	- <u>199</u> 82
	194	163	133	174	174	172	122	309	37.7	122
30	254	236	236	236	235	283	167	393	66.0	168
23	:03	150	150	143	143	142	301	393	•	
12	545 ·	165	157	150	150	148	1.05	262	29.6	× 105
NP.	205	194	196	194	183	180	129	282	36.1	128
Zače	<u> </u>	137	137	132	132	130	<u>\$</u> 2	102	9.4	92
20	157	137	137	132	127	120	85	99	8.4	85
3 a 3 a	110	160	94	94	87	80	57	123	•	-
22	118	210	103	103	103	102	72 .	180	13.0	72
30	04	68	88	68	83	86	51	73	4.8	61
30	çq	94	94	89	82	75	53	57		· .
	332	127	127	122	122	120	95 .	95	8.2	85
terre server <del>en</del> Etropologia Victoria	and and a start	an a	ander State Sta I State St I State St	128282848999-1872049212;	and a subsection of the subsec	1705	1210	737)493 TLINENDIAN BEAT	221	1000
نې نې دې د کې د کې د کې	Lo Maria	129 & 21	earaqu	il.	é	•		•	FATTE	er B

GANATER PINE ISLAND MATER ASSOCIATION, INC.

SUPPLY RELLS

88

#### WATER ANALYSIS TABULATION

GREATER PINE ISLAND WATER ASSOCIATION, INC.

BENNETT, BISHOP & PASSALACQUA, INC.

. . . . . . .

												BENNETT,	BISHOP &	PASSALACQUA, I
*1	parts per	million	3		4	5	6	7	-	8	9	EXHIBIT	"D" 10	
Well No.	1-A	<u>1-B</u>	-1-C	1-D	1-E	1-F	2-A	2-B	3-A	р 3-В	3-C	<b>3</b> -D	<u>ј</u> -Е	Remarks
Total Dissolved Solids *	470	875	1050	1050	825		480	450	522	615	405_	525	440	
Total Hardness *	318	474	522	522	481	481	298	318	298		273	305	305	
Alkalinity as CaCO3 *	230	240	210	210	230	230	210	210	210	230	240	220	210	· .
Non-Carbonate Hardness *		234	312	312	251	251		108	88	93.	33	85	95	· · · · · · · · · · · · · · · · · · ·
Bicarbonate, HCO ₃ *	280	294	256	256	280	280	256	256	256	280	294	270	256	· · · · · · · · · · · · · · · · · · ·
Iron, Fe *	0.06	0.08	0.08	0.14	0.12	0.12	0.12	0.08	0.06	0.12	0.14	0.06	0.08	
Sulfates, SO4 #	5-				50		20	15	13	34	<u>5-</u>	14	15	
Chlorides, Cl 3/2/27 *	93	309	393	393.	282	282	102	99	123	180	78	57	96	
Calcium, Ca *	58	68	89	89	79	79	58	58	58	68	58	53	53	
Magnesium, Mg *	42	74	73	73	69	- 69	37	42	37	37 .	31	42	42	
Flourides, F *	1.10	1.4	1.2	1.1	1.2	1.4	1.08	1.5	0.96	0.8	0.8	1.24	1.1	
Carbon Dioxide, CO ₂ *	22	2	2	22	2	2	16	12	12	2	22	12	10	
Bicarbonate, CaCO3 *	230	240	210	210	230	230	210	210	210	230	240	220	210	-
Carbonate, CaCO3 *	4	2	4	4	4	4	0	0	<u> </u>	4	4	<u>o</u> _	0	
Hydroxide, CaCO ₃ *	0	0	0	0	0	0	0	0	0	0	0	<u>o</u> _	<u> </u>	
Color (Std. cobalt) *	5	5	5	5	5	5	5	5	5	5	. 5	5	5	· · · · · · · · · · · · · · · · · · ·
Odor	None	None	None	None	None	None	None	None	None	None	None	None	None	
pH (Field)	N.D.	N.D.	N.D	N.D	N.D	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	÷
pH (Lab.)	8.3	8.3	. 8.3	8.3	8.3	8.3	7.4	7.5	7.5	8.3	8.3	7.5	7.6	
pHs	7.4	7.4	7.4	7.4	7.4	7.4	7.5	7.5	7.5	7.4	7.4	7.6	7.5	· · · · · · · · · · · · · · · · · · ·
Stability Index	6.5	6.5	6.5	6.5	6.5	6.5	7.6	7.5	7.5	6.5	6.5	4		
Corrosive	±	<u>±</u>	+	<u> </u>	±	±	±	<u>+</u>	e ±	<u> </u>	<u>±</u>	<u>t</u>	±	
Scale Forming	<u>+</u>	±	± :	<u>±</u>	<u>+</u>	<u>±</u>	<u>±</u> .	±	<u>t</u> .	<u>±</u>	±	<u>±</u>	<u>±</u>	· · · · · · · · · · · · · · · · · · ·
Appearance	Sat	Sat	Sat.	Sat	Sat.	Sat.	Sa't.	Sat	Sat.	Sat.	Sat.	Sat.	Sat.	
Phenolphthalein Alk. *	35	35	35	35	30	30	N.D.	N.D.	N.D.	35	40	N.D.	N.D.	······
Methyl Grange *	295	205	175	175	200	200	N.D.	N.D.	N.D.	295	200	N.D.	N.D.	

### APPENDIX E

#### WELL CONSTRUCTION SPECIFICATIONS

#### GENERAL SPECIFICATIONS

#### WATER SUPPLY WELL

#### I. SCOPE OF WORK

These specifications are intended to provide the information necessary for all parties concerned with the contract to know the conditions and determine the amount of equipment, materials and work required to successfully complete a water supply well for municipal use.

These specifications are for a large diameter well to be constructed in lime rock with the producing water zone to be of open hole construction. All these specifications are in accordance with what is considered to be good practice by the water well industry and the American Water Works Association in the United States. The work covered by these specifications will meet the specific requirements of any local or state health department or other appropriate regulatory agencies as may have jurisdiction at the location desired.

#### II. PERSONNEL AND DRILLING EQUIPMENT

The Contractor certifies he has been in business of constructing similar type water supply wells for _____ years. The Contractor further states that ______ who has been employed by the Contractor for _____ years

will be assigned to this job as field superintendent. The Contractor will list three (3) clients and the name of the responsible official from whom a reference of quality of work can be obtained.

Further, the Contractor will list the manufacturer's name, model number and age of equipment to be used in the construction of the water supply well or wells, specified herein.

#### III. PERMITS

The Contractor shall obtain a permit from the State Board of Health to drill the new well or wells, immediately following notice to proceed with this contract. The Contractor shall furnish both the Owner and the Engineer with a copy of the permit. No field operation shall commence until the necessary approvals have been obtained.

#### IV. MOBILIZATION AND DEMOBILIZATION

This item in the bid schedule includes moving on and off the site, all materials and equipment necessary for constructing and developing the well, or wells. It also includes cleaning up the

site upon completion of the contract.

#### V. CONSTRUCTION OF WELL

The well shall be a large diameter, lime rock well, drilled by the rotary process. Unconsolidated material above the water bearing lime rock formation shall be completely cased off and sealed so as to prevent contamination of the lime rock or corrosion of the casing by soil and water above the water bearing formation. In order to provide maximum development of the lime rock formation, no drilling mud will be used in this formation. Cuttings and formation water will be removed during the drilling process by the air reverse circulation method. No other drilling process is acceptable.

Contractor shall drill the well at the location agreed upon with the Owner and in compliance with regulations and recommendations. Any drilling fluid pits required should be positioned at least 15 feet from the proposed pump foundation pad or the top of the well. Contractor shall dispose of drilling fluid and cuttings and discharge water in a manner acceptable to the Owner. The Contractor shall drill a _______inch diameter hole to accomodate the outer casing to a depth of _______feet. This depth may be adjusted somewhat because of conditions encountered at the site and payment will be on the basis of the unit price per lineal foot of hole drilled. The top of the casing shall be a minimum of two (2) feet

above the final ground surface or pump house floor base. This _________inch diameter casing shall be joined as it is being placed by either welded or threaded connections to form a water-tight casing. The well will not be accepted if straightness or vertical alignment is unsatisfactory to the extent that it interferes with the installation of a pump. If doubt exists, as to the plumbness and alignment, the Contractor may be required by the Owner to conduct an Eastman alignment survey or equal, at no extra cost, to the owner.

After the surface casing has been installed, centered and plumb, the three (3) inch annular space between the walls and the drilled hole and the outside of the casing shall be filled with a neat cement grout under pressure. The grout shall be pumped to the bottom of the hole under pressure through a separate, temporary pipeline. The cement shall be mixed at the site and the mixing and pumping shall be a continuous operation until the grout has filled the entire annular space as evidenced by its overflowing at the surface. The mixture shall weigh approximately fifteen (15) pounds per gallon and at no time during the cementing operation, shall the weight fall below fourteen (14) pounds per gallon. The Contractor is cautioned that he must have sufficient pumping and mixing equipment together with separate stand-by equipment, as well as sufficient supply of cement at the site before this

operation is begun as the cementing, once started, shall be a continuous operation until the grout overflows at the surface. The Contractor shall guarantee the effectiveness of the cement seal around the casing and that there will be no leakage around the casing anywhere along its entire length.

Drilling into the lime rock aquifer horizon shall be resumed after the grout mentioned above, has set for 72 hours. The diameter of the hole drilled in the lime rock shall be not more than five-eighths (5/8) inches smaller than the inside diameter of the surface casing. The hole shall be drilled by the rotary process in order to secure straightness, alignment and concentricity with the outer casing. This hole shall be drilled to the bottom of the _______formation expected to be encountered________ feet below ground surface. Additional depth may be specified by the Owner.

The total contract price shall be subject to adjustment in accordance with the unit adjustment prices given in the proposal form.

#### VI. MATERIALS

The well casing forming the permanent well shall be constructed of new, durable, and non-toxic material sufficient to protect the well against structural deficiencies during

construction and against entry of pollutants during the expected life of the well. Only new, and unused API-5L or A-53 seamless or electric weld black pipe may be used. The casing will be _______inch I.D. with a thickness of ______inches and a weight of ______pounds per foot for a plain end condition.

The neat cement grout shall be a mixture of Portland cement and not more than six (6) gallons of water per bag (94#) of cement. The use of Bentonite (up to 2% by weight of cement) to reduce shrinkage may be used. The water used shall be fresh, clean and potable. If the water is questionable, it shall be tested in accordance with ASTM C109.

#### VII. DEVELOPING THE WELL

The well shall be developed by any acceptable method selected by the Contractor. A preliminary pumping test shall be provided for a period of four (4) hours to determine the potential yield, drawdown, and recovery. After developing, the Contractor shall remove any formation materials brought into the well by the development process.

#### VIII. TESTING THE WELL

After the completion of the preliminary pumping test, or tests, the Owner may elect to conduct a final pumping test for a period of at least 500 minutes to secure information for the

selection of permanent pumping equipment. The Contractor shall furnish a deep well turbine pump capable of discharging ______ gallons per minute. The Contractor shall provide the necessary power to operate the pump continuously, for the duration of the test. After drilling, development, and preliminary testing, the well shall be allowed to set idle for at least 12 hours for the water level to return to its normal static level. This water level shall be carefully measured and recorded to the nearest one hundredth of a foot from the top of the casing prior to the commencement of pumping. The well shall then be pumped continuously for 500 minutes at a rate determined by the Owner, not to exceed ______gallons per minute. Immediately after commencement of the pumping, the water level shall be measured and recorded to the

nearest one hundredth of a foot and the water level during recovery shall also be measured every minute for the first 15 minutes, every five minutes for the next 45 minutes and every 30 minutes for the remainder of the period.

Accidental interruptions may, if so agreed, upon between the Contractor and Owner, be compensated for by correspondingly increasing the time of pumping test. No accidental interruption may exceed 5% of the proposed pumping time. Should the Contractor be unable to continue the test, he shall re-start the test at his own expense, only after a 12 hour rest period for the static water

level to return to its original condition. The time stated for the duration of the final test is a minimum, and the Owner reserves the right to require the Contractor to extend the test period to ______hours or to make additional tests not to exceed a combined pumping test time of _____hours.

#### IX. ACIDIZING

If so directed, in order to increase the yield of water from the well, after the final pump test, the Contractor shall remove the test pump and acidize the well. Before removing the pump from the well, the Contractor shall run a test on the pump to obtain four points on the head - capacity curve and a capacity horsepower curve. After acidizing, a similar number of points shall be obtained and the results compared. Acidizing shall be performed by using compressed air to displace the acid into the formation.

Prior to acidizing, pre-treatment with a solution of 50# of sodium tripolyphosphate or an equivalent phosphate, shall be introduced through the acidizing tube installed in the well to within 20 feet of the bottom. The solution shall be displaced into the formation with 300 gallons of water. The solution shall then be surged with air to properly mix the phosphate and produce a scouring effect in the well bore. The solution shall then be pumped to waste.

Upon completion of the pre-treatment with phosphate, 500 gallons of 15% hydrochloric acid solution shall be used containing a non-toxic inhibitor to prevent damage to the casing and a non-toxic stabilizer to prevent after-precipitation of dissolved minerals. The chemical used as inhibiting and stabilizing ingredients shall be acceptable to the Florida Board of Health. The acidizing process shall be subject to the approval of the Florida State Board of Health. The acid solution shall be introduced through the tubing set to a depth as authorized by the Owner and the acid shall be displaced in the formation with 500 gallons of water.

A suitable sealing arrangement shall be provided between the well casing and acid tubing to develop pressure of at least 500 pounds per square inch on the well. The sealing arrangement shall be provided with the necessary valves and pressure gauges to determine the pressure in the annulus so that additional acid, water, or air, can be introduced into the well and acid, or water, can be vented or pumped from the well.

If the pressure in the well does not develop to 500 psi after operating the compressor for one hour, then watever pressure that is developed, shall be retained for an additional one (1) hour or until the pressure drops below 250 psi. Then, the waste valve shall be opened and the well shall be pumped at a rate to produce approximately 50% drawdown to clear the well of spent acid.

The Owner may elect to have the Contractor prepare and introduce a second 500 gallons solution of acid treatment into the well in the exact same manner as hereinbefore described. The acid tubing shall be pulled back in the well to an upper water bearing formation as determined by the Owner. After the acidizing treatment, the well shall be pumped clear of all sediment and discoloring matter until no acid reaction is shown on 407m45 paper. A test pump shall then be installed and an additional final pumping test shall be provided in accordance with these specifications. The additional pump test shall be a duplication of the final pump test previously described.

#### X. DISINFECTING THE WELL

The well shall be disinfected after the well has been tested for yield but before removing the test pump from the well, and before collecting any samples for determining micro-biological quality.

The well shall be disinfected by introducing a chlorinated lime or chlorine solution into the well in such a manner that a concentration of at least 50 ppm of available chlorine exists in all parts of the well at static conditions. The chlorine solution shall be introduced into the well in such a manner that the well surface above the static level will be completely flushed with the solution. A minimum of two (2) hours contact time shall be provided before pumping the well to waste.

#### XI. CONTRACTOR'S RESPONSIBILITY

The Contractor shall be responsible for performing all the work in strict accordance with the specifications. If evidence indicates that the well is not constructed in accordance with these specificatins, to the satisfaction of the Owner, proper changes shall be made by the Contractor, or if proper changes cannot be made, the Contractor shall abandon such well, without cost to the Owner, and drill a new well. If the Contractor is not responsible for installing the permanent pump, the well shall be temporarily capped in such a manner as to prevent any pollutants from entering the well.

#### XII. GUARANTEES

Contractor shall guarantee that all materials, equipment and work performed are free from defects in workmanship, design, or materials for a period of one (1) year after completion. If, within one (1) year of completion, the well should fail to perform, due to any such defects, it shall be repaired and restored to operating condition within a reasonable period of time at no cost to the Owner. As a condition of acceptance, the Contractor shall demonstrate to the Owner, that the full depth of the well is free of any obstruction and clear of any formation materials.

#### XIII. ABANDONMENT CLAUSE

If the well fails to conform to the specifications, and the Contractor is unable to correct the condition at his own expense, it shall be considered an abandoned hole and the Contractor shall immediately start a new well at a nearby location specified by the Owner. The Contractor may salvage as much casing and materials as possible, from the abandoned hole. The salvage material shall remain the property of the Contractor. They may be used in a new well, if not damaged. The abandoned hole shall be filled with impermeable material and sealed in such a manner as to avoid accidents and to prevent it acting as a channel for pollution of water bearing formations.

#### XIV. WELL LOG AND FORMATION SAMPLES

The Contractor shall keep an accurate log of the well as the drilling progresses. The log shall include the depth, thickness and nature of each formation encountered as well as a physical sample of each formation. Samples shall be taken at regular intervals of  $5 \int_{1}^{100} \frac{1}{2}$  and at every change in formation. A complete record of the casing and casing lengths with location of any packers, plugs or seals, shall be furnished. All test data including static water level measurements, length of test, rate of discharge, and all drawdown measurements will be complete and furnished to the Owner. Two (2) water samples, one collected after one (1) hour of pumping, and one near the end of the final

test will be collected by the Contractor and submitted to an approved laboratory for analysis of chemical constituents. The results of such analysis will be sent to the Owner. The Contractor will also electric log the well and provide a copy of the electric log to the Owner.

### PROPOSAL SCHEDULE

ITEM NO. WORK OR MATERIAL	QUANTITY OF UNIT UNITS PRICE	TOTAL AMOUNT
<pre>1. Mobilization and/or    demobilization</pre>	lump sum \$	\$
2. Drillinginch diameter hole accommodate surface casing	\$lin.ft.\$	\$
3. Furnishing and installing inch diameter surface casing	\$lin.ft.\$	\$
4. Groutingdia. surface casing	lump sum	\$
5. Drilling dia. hole be- neath surface casing for open hole completion	\$lin.ft.\$/ft.	\$
6. Acidizing	lump sum/ treatment\$	\$
7. Conducting 500 minute final pumping test	Lump sum/ test \$	\$
8. Continuation of pumping past 500 minutes	hrs. \$ <u>/hr</u> ,	\$
9. Completed well using expected dimensions only (total of above items)	lump sum	\$
10. Completion time of well	daymonth	year.