

Miami-Dade Water and Sewer Department

Rehabilitation of Production Well No. 10 at the Northwest Wellfield

Final Report

May 1999

MONTGOMERY WATSON

May 4, 1999

Mr. Jorge Rodriguez Deputy Director, Water Miami-Dade Water and Sewer Department 4200 Salzedo Street Miami, Florida 33146

SUBJECT: Northwest Wellfield Supply Well No. 10 Well Rehabilitation Report

Dear Mr. Rodriguez:

Montgomery Watson is pleased to submit this final report documenting the recently completed rehabilitation of Well No. 10 at the Northwest Wellfield. The report contains descriptions of the methods and materials that were utilized during the well rehabilitation and testing. The report also includes the results of the Microscopic Particulate Analysis that were performed on water collected from the well during late 1998 and early 1999.

This report can be submitted to the GWUDI staff of Florida Department of Environmental Protection in Tallahassee in support of the Agreement, as a successful demonstration of well rehabilitation technology.

It has been a pleasure working with the Miami Dade Water and Sewer Department on this project. If you have any questions or comments, please do not hesitate to call.

Very truly yours,

MONTGOMERY WATSON

Robert T. Verrastro, P.G. Senior Hydrogeologist

cc: Vincent Flick, Miami-Dade Water and Sewer Department Gene McLoughlin, Miami-Dade Water and Sewer Department Bill Moriarty, Montgomery Watson

2328 - 10th Avenue North Suite 501 Lake Worth, Florida 33461-6616

ACKNOWLEDGEMENTS

The successful completion of this project was the result of the hard work and cooperation between many individuals and organizations involved in the design, permitting and rehabilitation of Well No. 10. Those who played significant roles in this achievement were:

Miami-Dade Water and Sewer Department

Reynaldo Abreu Mike Berounsky John Chorlog Ray Diaz Vincent Flick Gene McLoughlin Jim Pappas Bob Ready Jorge Rodriguez Roman Rodriguez

Florida Department of Environmental Protection

Marian Fugitt Van Hoofnagle

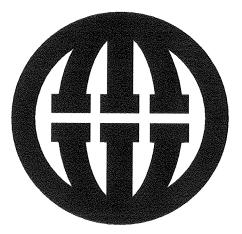
Metropolitan Dade County Environmental Resources Management

Kevin Kotun Harvey Kottke

Montgomery Watson

Mark Abbott Neil Johnson Bill Moriarty Nancy Seith Chris Wilson

Youngquist Brothers, Inc.


Jimmy Brandtly Bill Musslewhite Mike Sordan

Miami-Dade Water and Sewer Department

Rehabilitation of Production Well No. 10 at the Northwest Wellfield

Submitted by Montgomery Watson Americas, Inc. 2328 10th Avenue North, Suite 501 Lake Worth, Florida 33461

May 1999

EXECUTIVE SUMMARY

SECTION 1 - INTRODUCTION

SECTION 2- ORIGINAL WELLFIELD CONSTRUCTION AND TESTING

Casing Setting and Cementing	2-2
Open Hole Completion	
Original Pump Testing at the Northwest Wellfield	
Video Survey	
Tapping Test	
Hydrostatic Pressure Test	

SECTION 3 HYDROGEOLOGY

Regional Geologic Setting	
Wellfield Stratigraphy	
Well No. 10 Lithology	

SECTION 4 REHABILITATION AND TESTING

Open Hole Filling and Pressure Grouting	4-1
Reaming Operation	
Liner Installation	
Hydrostatic Pressure Test and Alignment Test	4-2
Open Hole Drilling and Development	4-3
Pumping Development	
Borehole Deepening	
Direct Air-Lift Development	
Pumping Development	
Acidization	
Post Acidization Development and Testing	
• •	

SECTION 5 POST-REHABILITATION WATER QUALITY

MPA Sampling Results

SECTION 6 CONCLUSIONS AND RECOMMENDATIONS

- APPENDIX': A CONSTRUCTION PERMIT APPLICATIONS
- APPENDIX B LITHOLOGIC DESCRIPTIONS
- APPENDIX C GEOPHYSICAL LOGS
- APPENDIX D WELL COMPLETION REPORT
- APPENDIX E LABORATORY ANALYTICAL RESULTS Bacteriology Clearance Data Harbor Branch Water Chemistry Data APPENDIX - F MPA LABORATORY RESULTS

LIST OF FIGURES

Figur Numb		Following Page	
1-1	Location and Site Vicinity Map	1-1	
2-1	Existing Well Configuration	2-1	
2-2	Results of Sounding Test	2-4	
3-1	Regional Stratigraphic Cross Section	3-1	
3-2	Hydrostratigraphic Cross Section	3-1	
4-1	Caliper Log Results	4-1	
4-2	Specific Capacity Test	4-5	
4-3	As-Built Diagram	4-5	

LIST OF TABLES

Table Number Title Page 2-1 Description of Wells 2-1 Original Step-Rate Pumping Test Summary at Northwest Wellfield 2-2 2-3 Step-Rate Pumping Test Summary 4-1 4-5 Post-Rehabilitation Water Quality Summary 5-1 5-1 Post-Rehabilitation MPA Results Summary 5-2 5-2 5-3 MPA Characterization Analyses 5-3

Executive Summary

Production Well No. 10 at the Miami-Dade Water and Sewer Department's (MDWASD's) Northwest Wellfield underwent construction rehabilitation during early 1998. This project was performed in response to regulatory concerns that the well may have been producing groundwater that was under the direct influence of surface water.

In 1995 and 1996, the Florida Department of Environmental Protection (FDEP) performed a screening sampling of water produced from the production wells within the Northwest Wellfield. This sampling was conducted during a state-wide evaluation of community water supply systems, as required by the Safe Drinking Water Act. In January 1997, the MDWASD received notification from the FDEP that Well No. 10 in the Northwest Wellfield had received Microscopic Particulate Analysis (MPA) score results that designated that well as producing groundwater under the direct influence of surface water.

Subsequent tests performed on Well No. 10 by MDWASD and Montgomery Watson during a 1997 wellhead investigation indicated that a possible "short-circuit" of flow around the outside of the casing may have been the cause of particulate matter contained in water produced from the well. These results were summarized in a report entitled "Independent Evaluation of GWUDI for Northwest wellfield Well No. 10", filed with the FDEP in October 1997. Following submission of that report, the MDWASD and FDEP entered into a formal "Agreement" to rehabilitate Well No. 10 and implement corrective actions on any other well within the MDWASD system that was determined to be Groundwater Under The Direct Influence of Surface Water (GWUDI). As a result, Well No. 10 has undergone a construction rehabilitation.

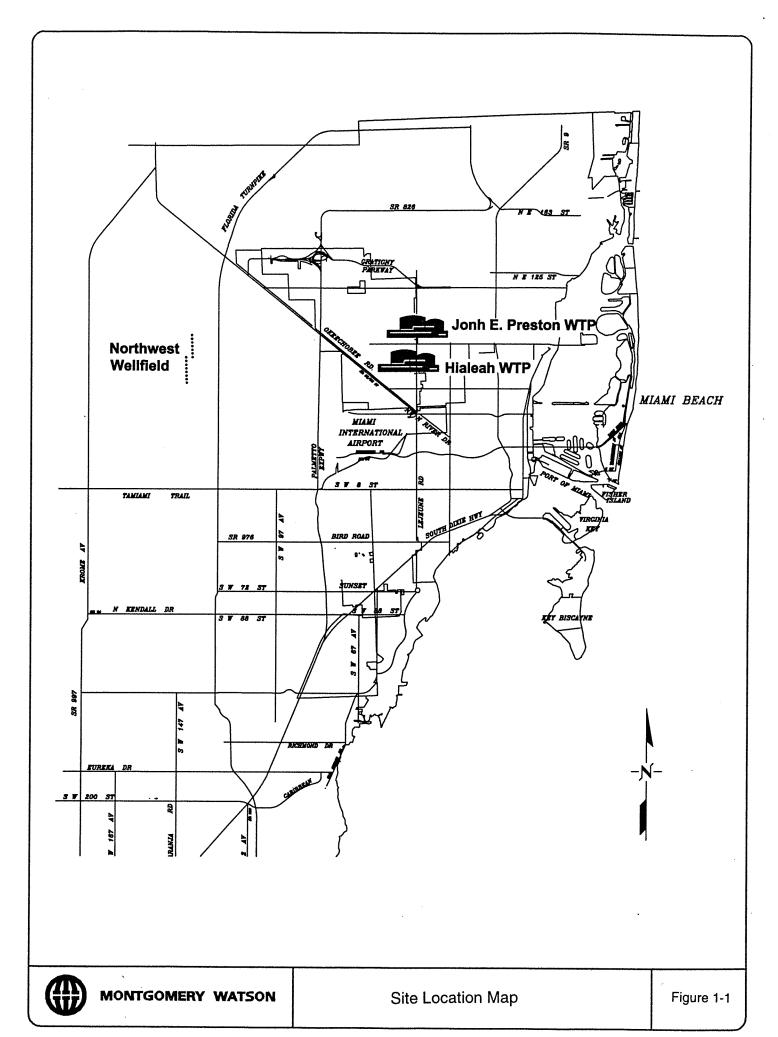
The highlights of the rehabilitation performed on Well No. 10 are as follows:

- The existing 48-inch diameter casing was pressure grouted with superplasticized Class "H" cement.
- A new 40-inch diameter steel casing was installed inside the existing 48" casing and extends from land surface to 64 feet below land surface (bls).
- A 38-inch diameter pilot hole was then drilled to 120 feet bls. Activities performed within the pilot hole included drilling, pumping and air-lift development, backfilling and acidizing.
- The open-hole of the well now extends from 64 feet bls to a total depth of 106 feet bls, and is completed in a gray-colored, sandy limestone representing the Tamiami Formation.
- The rehabilitated well now yields water at a specific capacity of in excess of 500 gallons per minute per foot of drawdown (gpm/ft) when pumped at rates of between 1,000 gpm and 3,000 gpm. The well exhibits a specific capacity of less than 300 gpm/ft when pumped at rates of between 3,000 gpm and 5,000 gpm.
- When pumped at a rate of 6,600 gallons per minute, approximately 27 feet of drawdown is induced in the well (the water level in the well was measured at 38 feet bls.

- Water produced from Well No 10 now exhibits a color of 90 PCUs, a chloride concentration of 63 milligrams per liter, a pH of 7.3 units, and an total hardness of 270 parts per million.
- The results of MPA tests performed during the post-rehabilitation monitoring of Well No. 10 indicate successful rehabilitation and satisfy the requirements set forth by the FDEP for reconsideration of the designation of Well No. 10 as GWUDI.

Section 1

Section 1 Introduction


The Miami-Dade Water and Sewer Department's (MDWASD's) Northwest Wellfield consists of fifteen supply wells which provide raw water primarily to the John E. Preston Water Treatment Plant. The Northwest Wellfield is located approximately one mile west of the Florida Turnpike, at the western terminus of N.W. 58 Street. **Figure 1-1** presents a Site Location Map. Each of the supply wells at the Northwest Wellfield is equipped with a 32-inch diameter dual-speed pump rated at design capacity of 10 million gallons of water per day (mgd) and 15 mgd. The total installed withdrawal capacity for the wellfield is 225 mgd. The average day permitted capacity of the Northwest Wellfield is currently 165 million gallons (equivalent to 60.23 billion gallons per year) from the surficial aquifer system (155 mgd) and an aquifer storage recovery system (10 mgd), as contained in MDWASD's consumptive water use permit (No. 13-00037-W).

Water collected from the wells within the Northwest Wellfield was sampled and analyzed by the Microscopic Particulate Analysis (MPA) method by the Florida Department of Environmental Protection (FDEP) between 1995 and 1996. This sampling was conducted by the FDEP during a state-wide evaluation of community water supply systems, as required by the Safe Drinking Water Act. The results of the sampling indicated that water collected from Well No. 10 contained concentrations of microscopic particulate matter that yielded FDEP "Relative Risk Factors" of 15 and 16. During October, 1996 MDWASD collected and analyzed a water sample from the well that yielded an MPA result of 23.

In January 1997, the MDWASD received notification from the FDEP that Well No. 10 in the Northwest Wellfield had received MPA score results that designated the well as producing groundwater under the direct influence of surface water. As a result of the analyses, MDWASD initiated several independent investigations into the significance and the potential cause of surface water entering Well No. 10.

Tests performed on Well No. 10 during a 1997 wellhead investigation conducted by the MDWASD and Montgomery Watson indicated that a possible "short-circuit" of flow around the outside of the casing may have been the cause of particulate matter contained in water collected from Well No. 10. The 48-inch diameter well casing extended from land surface to 40 feet below land surface (bls). The methods and results of that investigation are presented in a report prepared by Montgomery Watson entitled "Independent Evaluation of GWUDI for Northwest Wellfield Well No. 10" (dated October 23, 1997 and on file at the FDEP in Tallahassee).

As a result of the wellhead investigation, Montgomery Watson was requested to perform an evaluation of alternatives for rehabilitating Well No. 10, to eliminate the potential short circuit around the outside of the casing. After consideration of the technical feasibility, risks and costs associated with a variety of alternatives, it was decided that Well No. 10 would be rehabilitated by performance of a pressure grout of the existing well casing, followed by installation of a new casing (liner) installed deeper within the Biscayne Aquifer. Copies of the permits obtained by MDWASD from the South Florida Water Management District and the Florida Department of Health to perform the construction rehabilitation are contained in **Appendix A**.

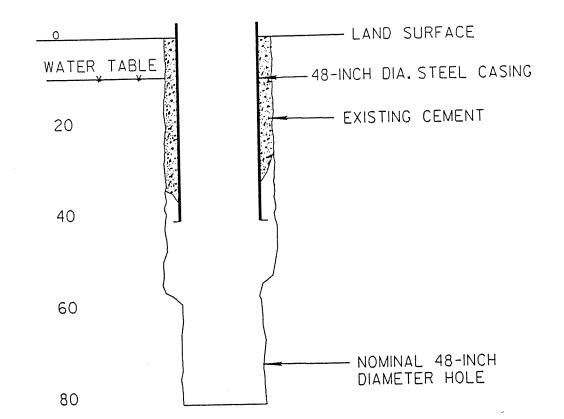
This report presents the sequence of the rehabilitation, including the methods and materials used during the work. Tests conducted throughout the rehabilitation are also presented, along with an interpretation of the results. This report also includes new geophysical and hydrogeologic findings that have resulted from performance of this work.

. .

Section 2

Section 2 Original Wellfield Construction and Testing

The fifteen (15) supply wells comprising the Northwest Wellfield were built in 1981 by the Alsay-Pippin Corporation of Lake Worth, Florida. **Table 2-1** presents "Table A" from MDWASD's consumptive use permit, which contains a description of the supply wells. A typical as-built construction diagram of a supply well at the Northwest Wellfield is presented on **Figure 2-1**. The supply wells were drilled by the mud-rotary method, where drilling mud is circulated (pumped) down through a hollow drill pipe and out, into the borehole through nozzles in a rotary drilling bit. The drilled rock cuttings and mud then flow up, around the outside of the drill bit and pipe to the surface, where the mud is then filtered and re-pumped back down the drill pipe. The mud-rotary drilling method is a conventional drilling method in southern Florida, and is particularly useful in obtaining accurate samples of the geologic formations penetrated during drilling.


Table 2-1

Well No.	1 thru 7	8 thru 15
Map designation B-2(d)	1 thru 7	8 thru 15
Existing/Proposed	Exist	Exist
Diameter (inches)	48 inches	48 inches
Total Depth	80 feet	80 feet
Cased Depth	46 feet	46 feet
Screened Interval	N/A	N/A
Pumped or Flowing	Pumped	pumped
Working Value. If Artesian (Yes/No)	N/A	N/A
Pump Manufacturer and Model No.	Byron Jackson	Byron Jackson
	Model 32 RXL	Model 32 RXL
Pump (Centrifugal, Type Jet, Deep Jet, Turbine, etc.)	Vertical turbine	Vertical turbine
Intake Depth (NGVD)	40 feet	40 feet
Pump Capacity (GPM at ft of head at PSI)	7600 gpm @ 104 feet	7600 gpm @ 104 feet
Active (Yes/No)	Yes	Yes
Year Drilled	1981	1981
Type of Meter	*	*
Florida Plane Coordinates	SEC 14 TWP 53 RGE 39	SEC 11 TWP 53 RGE 39

Table A – Description of Wells Northwest Wellfield

* No individual meters at wells, venturi meters at plant influent

EXISTING WELL CONFIGURATION

Northwest Wellfield Typical Well Construction Details

Figure 2-1

A nominal 54-inch diameter borehole was drilled to a depth of approximately 45 feet bls at each of the supply wells at the Northwest Wellfield. Numerous "lost circulation" zones were encountered within the Biscayne aquifer during the drilling of these boreholes. Lost circulation is a condition whereby the formation is so porous and permeable that the drilling mud fills voids in the formation and there is insufficient mud volume in the circulation system for the fluid to be pumped back to surface. In response to this condition, it is typical for the drilling contractor to add significant quantities of additional mud and/or other additives to increase the viscosity (thicken) the drilling fluid, in order to regain circulation.

Casing Setting and Cementing

Steel casings (48-inch diameter) were installed to depths of between 40 to 45 feet bls. The casings were then held suspended in tension within the mud-filled hole, and cemented by the "pressure grouting" technique. Pressure grouting involves lowering an open-ended tremie pipe to near the base of the casing to be cemented. The tremie pipe is then affixed and sealed to the top of the casing by a "pressure header" coupling. Cement is then pumped down the tremie pipe, and forced into the annular space between the casing and the drilled hole. The fluid column between the outside of the tremie pipe and the inside of the casing remains sealed during this process by the pressure header, and prevents the cement from filling the inside of the casing. The cement is pumped this way under pressure, from "bottom to top" until it reaches land surface.

Typically, the cement will fill the annulus around the casing and the drilled hole, resulting in a complete seal around the casing as the cement rises to the surface. For this reason, the pressure grouting technique is a conventional method of cementing in southern Florida. However, when the drilling mud within the hole has been thickened extensively, there is a potential for the pumped cement to rise as "fingers", resulting in uncemented channels behind the casing. These uncemented zones could ultimately create a connection (short-circuit) between surface water and the borehole of the supply well.

Open Hole Completion

After the cement behind the casing is allowed to harden, the contractor proceeds to drill out the open holes. At first, the bit is lowered to near the bottom of the casing and the cement "plug" is drilled out. The process of drilling the plug should be done slowly and carefully, so as to prevent the bit from "clanking" violently against the inside bottom of the well casing. If care is not taken during this process, the cement around the outside of the well casing could be broken off, resulting in an incomplete cement seal near the base of the casing. This condition could create a potential short-circuit that might exist in the annular space around the well casing. The original open hole of Well No. 10 was drilled with a 32-inch diameter bit to a depth of about 80 feet below land surface.

Original Pump Testing at the Northwest Wellfield

After drilling of the open hole was completed, each of the supply wells was subjected to development and testing by pumping. The wells comprising the Northwest Wellfield are

completed in the highly transmissive Biscayne aquifer. As a result, the wells are capable of producing several thousands of gallons of water per minute (gpm) with relatively small drawdown (measured as feet of decline in the water surface within the pumped well). Table 2-2 presents a concise summary of the step-rate pumping test results at each of the supply wells in the Northwest Wellfield during September 1981.

Well No.	Pumping Rate (gpm)	Drawdown (ft)	Specific Capacity (gpm/ft)
1	7,000	1.7	4,120
2	7,000	2.9	2,410
3	7,000	3.3	2,120
4	7,000	2.6	2,690
5	7,000	2.4	2,920
6	7,000	1.3	5,380
7	7,000	1.8	3,890
8	7,000	2.0	3,500
9	7,000	1.9	3,680
10	7,000	6.8	1,030
11	7,000	3.5	2,000
12	7,000	1.6	4,370
14	7,000	14	500

Table 2-2
Original Step-Rate Pumping Test Summary at the Northwest Wellfield

Note: Wells No. 13 and No. 15 were not tested

1997 Wellhead Evaluation of Well No. 10

In response to regulatory concerns regarding the potential for surface water impacts on water produced from Well No. 10, MDWASD has undertaken various investigations. Tests were conducted to assess the integrity of the interior and exterior of the well casing and cement and the condition of the open hole. These tests are briefly described in the following text.

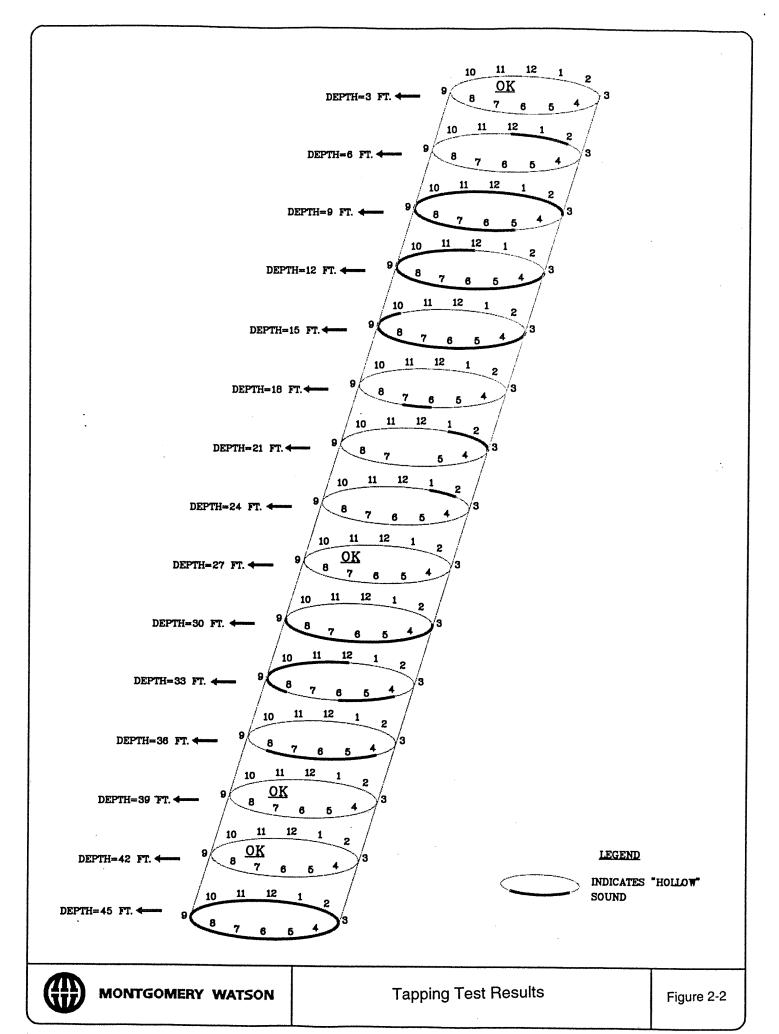
Video Survey

During January 1997, a video survey was conducted on Well No. 10 after the pump was removed. The water in the well was relatively free of suspended particles, providing excellent picture clarity. The interior of the casing above 20 feet bls appeared intact and in good condition, with a minor amount of scale (film) built up on the inside of the casing. At a depth of approximately 15 feet bls, an apparent offset casing joint was observed. This offset may have occurred during original welding or may have developed as the casing was subjected to the external pressure of the cement, as it was pressure grouted. This offset joint could have represented a "weak zone" in the casing integrity. Between the depths of 20 feet to 30 feet bls,

the casing appeared pitted and corroded, which may have been a result of galvanic corrosion associated with the submersible turbine pump column.

The base of the well casing was observed at a depth of 41 feet bls. The cement plug near the bottom of the well casing was noticeably absent. The open hole revealed a highly porous and fossiliferous limestone throughout most of it's length. A relatively dense, non-porous zone was observed between the depths of 58 feet to 60 feet bls. The base of the open hole was encountered at 80 feet bls, and appeared to be filled with chunks of rock, or possibly cement from the original cement plug.

Tapping Test


During April 1997, a diver was lowered into Well No. 10 and performed a "tapping test". This test was performed because a cement bond log was not able to be performed in such a large diameter well. For this test, a hammer was used to tap the circumference of the inside of the well casing at regular (3-foot) intervals. Evaluation of the soundings has been used to estimate the presence or absence of a cement bond behind the casing. **Figure 2-2** presents a visual summary of the tapping test results. The results of the test indicated that a "hollow" sound (implying the lack of a cement bond) was recorded along portions of the casing between depths of 6 feet to 24 feet bls and between 30 feet to 36 feet bls. These results indicated that although the casing was pressure grouted, the cement may have channeled along sections of the annulus. The diver observed that there was very little cement located near the base of the well casing, and was able to reach his arm up, around the outside of the 48-inch diameter pipe with no obstruction, further indicating lack of a cement within the annulus of the well casing.

As a result of these findings, it was determined that a pressure grouting operation should be performed on the existing well casing, to eliminate any potential short circuit of surface water entering the well from around the well casing.

Hydrostatic Pressure Test

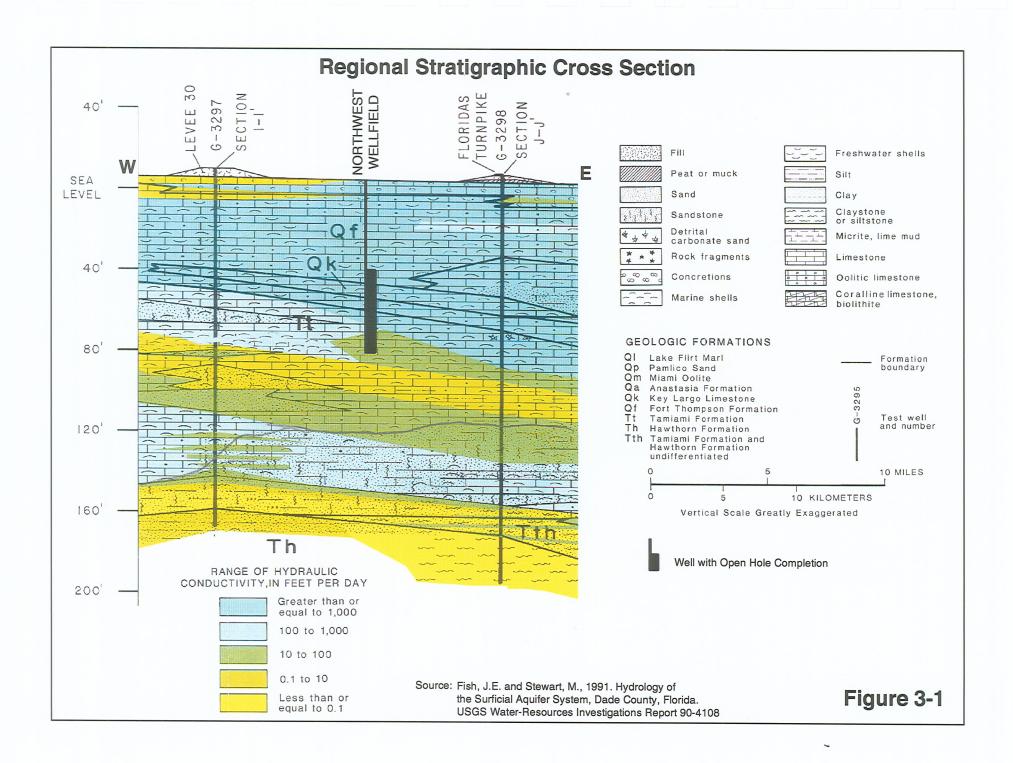
During May 1997, an inflatable packer was set near the bottom of the casing of Well No. 10. The well then was hydrostatically pressurized to 51 pounds per square inch (psi) and readings were collected every 10 minutes. Over the first 20 minutes, the pressure declined 3 psi. Adjustments where made to the surface piping, to eliminate a visible leak at the surface. Over the next 40 minutes, the pressure continued to decline another 2 psi. This pressure decline was in excess of the 5% tolerance that is often applied during well mechanical integrity testing evaluations, although further testing utilizing this technique was not undertaken.

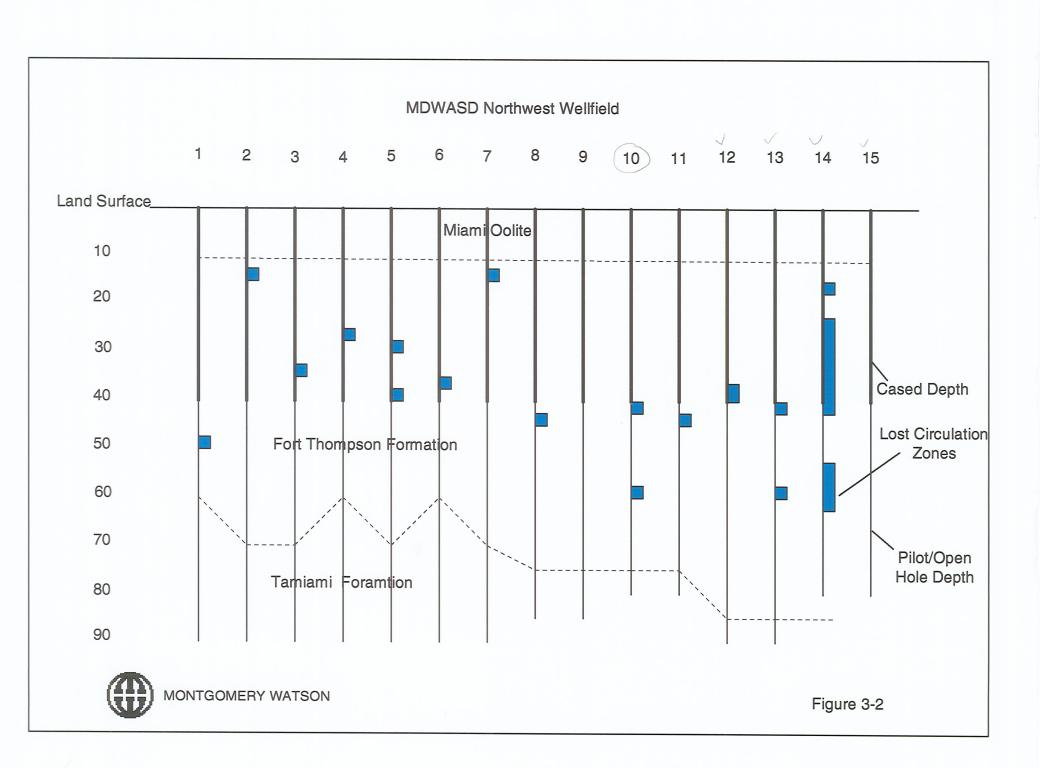
As a result of these findings, it was determined that a new 40-inch diameter well casing should be installed (cemented) within the existing casing of Well No. 10. Installation of the new casing (liner) would eliminate the potential for a leak within the existing casing to contribute surface water to the well and would permit recompletion of the final casing to within a deeper zone of the Biscayne Aquifer.

Section 3

Section 3 Hydrogeology

Regional Geologic Setting


Northwestern Dade County is underlain by geologic units consisting of limestone and sand exhibiting varying permeability from land surface to approximately 160 feet bls. The geologic formations most typically present within this section are the Miami Oolite, the Fort Thompson Formation, and the Tamiami Formation. Figure 3-1 presents a regional stratigraphic cross section of the surficial sediments and geologic formations in the Northwest Wellfield area. These units form the surficial aquifer system, which is the source of most of the potable water in the area (Fish, 1991). The Miami Oolite forms the top of the surficial aquifer system, and is typically between 10 to 15 feet thick, with a hydraulic conductivity of greater than 1,000 feet per day (ft/day). Lying below the Miami Oolite is the Fort Thompson Formation, which is typically a cream to white-colored fossiliferous shelly limestone. The Fort Thompson Formation is approximately 60 feet thick in the Northwest Wellfield area and contains numerous solution-enhanced vuggy porosity features. This formation typically exhibits hydraulic conductivities of up to 10,000 ft/day in the Northwest Wellfield area. Lying below the Fort Thompson Formation is the Tamiami Formation, which is described as gray-colored sandy limestone. The Tamiami Formation is approximately 70 feet thick in the Northwest Wellfield area, exhibits hydraulic conductivities of up to 1,000 ft/day.


The surficial aquifer is an unconfined aquifer, recharged by rain water and surface-water features such as canals, wetlands and lakes. Contained within the surficial aquifer system (typically within the Fort Thompson Formation) is a highly permeable unit referred to as the Biscayne aquifer, in which most public supply wellfields in southeastern Florida are completed. Lying below the surficial aquifer system are lower permeability clay-rich sediments of the Hawthorn Formation.

Wellfield Stratigraphy

Figure 3-2 presents a hydrostratigraphic cross section developed from the original lithologic and construction descriptions from the wells within the Northwest Wellfield. The figure reveals that a horizon of white to tan-colored limestone extends from near land surface to a depth of approximately 50 feet bls in the southern portion of the wellfield. This horizon is identified as the Fort Thompson Formation. This formation thickens to approximately 70 feet as one traverses from the southern portion of the wellfield to the northern portion of the wellfield. Numerous lost circulation zones were documented in the driller's logs of this formation, which contains the water-bearing zones of the Biscayne Aquifer. The transmissivity of this unit is approximately 1,300,000 ft squared per day within the wellfield, as estimated from the specific capacity data described in Section 2 of this report.

Below the upper Fort Thompson Formation, the limestones become gray-colored, and contain higher quantities of sand. The limestones were correlatable across the wellfield, and are herein identified as the Tamiami Formation. The top of this formation was encountered at a depth of approximately 60 feet bls in the southern portion of the wellfield. Within the northern portion of the wellfield, it was encountered at a depth of 80 feet bls.

Well No. 10 Lithology

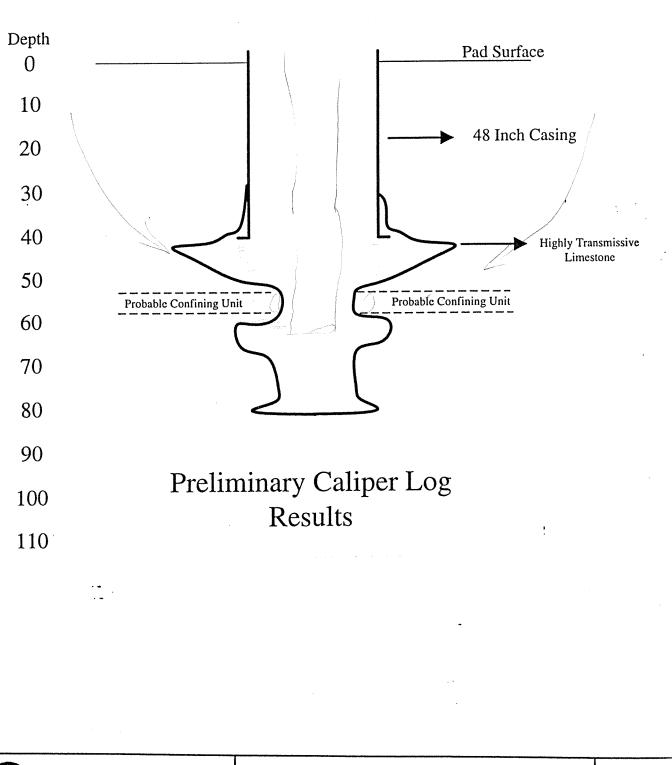
During the drilling, deepening and testing of Well No. 10 during this project, lithologic samples were collected and described. Copies of the lithologic descriptions are contained in **Appendix B**. The lithologic samples provided a detailed characterization of the geologic units present at the site. Cuttings collected from near the base of the 40-inch casing were comprised of white to cream-colored limestone to a depth of approximately 80 feet bls (representing the Fort Thompson Formation). Cuttings within the interval from 40 feet to approximately 60 feet bls exhibited very high porosity, in the form of large solution channels and vugs. Below the depth of 60 feet bls, the samples exhibited less macro-porosity and more "pinpoint" and intergranular-type porosity.

Below the depth of 80 feet bls, the limestone became dark gray-colored, and exhibited relatively low porosity. This formation was interpreted to represent the Tamiami Formation. Limestone was present to a depth of approximately 95 feet bls. Below this depth, the strata became loosely-consolidated, and was comprised primarily of shell fragments and fine sand. These sediments were very soft and penetrated easily during drilling. At a depth of approximately 115 feet bls, the sediments began to contain a significant percentage of dark gray-colored clay. At a depth of 120 feet bls, the sediments were comprised entirely of clay. This clay was interpreted as representing the uppermost sediments of the Hawthorn Formation. The entire penetrated thickness of the sediments comprising the surficial aquifer system at the Northwest Wellfield was therefore estimated at 115 feet.

Section 4

Section 4 Rehabilitation and Testing

In January 1998, Youngquist Brothers, Inc. (Youngquist), a Fort Myers based well contractor, mobilized to the site and constructed a rotating head assembly within the Well No. 10 wellhouse. On January 14, 1998, a caliper survey was performed along the entire length of the well casing and open hole. Copies of the geophysical surveys performed on Well No. 10 during this project are contained in **Appendix C**. The caliper survey revealed that the 48-inch diameter well casing extended to a depth of 40 feet bls and the open hole of the well extended to 80 feet bls. The caliper survey revealed that an enlarged borehole existed just below the base of the well casing, to a depth of approximately 48 feet bls. The caliper survey also revealed that several portions of the open hole were restricted to a diameter of approximately 32 inches, representing the diameter of the bit used to drill the open hole. These "tight" zones represented well-indurated zones that were interpreted to have potential confining properties within the aquifer. **Figure 4-1** presents a summary of the caliper log findings and interpretations.


Open Hole Filling and Pressure Grouting

Based on the caliper survey findings, it was decided that the enlarged borehole just below the base of the casing would be sealed during the pressure grout operation. Youngquist then proceeded to fill the borehole with approximately 270 cubic feet of ¼-inch size pea gravel, up to a depth of 50 feet bls. Approximately 60 cubic feet of fine-grained sand was then emplaced on top of the gravel, to a depth of 46 feet bls.

On January 20, a pressure grout operation was conducted on Well No. 10. Prior to the actual cementing operation, a pressure header was welded to the top of the 48-inch casing. The pressure header was configured to allow the passage of a 4-inch diameter work pipe, which was installed to a depth of 37 feet bls (just above the base of the 48-inch well casing). Class "H" cement containing a 2.5% component of Daracem-19, a superplasticizer manufactured by W.R. Grace Co. was then pumped through the work pipe, into the well. The superplasticizer was added to the cement to act as a "wetting agent", to enhance the ability of the cement to flow into small cracks, voids and intersticies within the formation. A total of 482 cubic feet of cement (representing one full tank of cement on Youngquist's equipment) was emplaced under a maximum recorded wellhead pumping pressure of 1.5 pounds per square inch (psi). The cement was emplaced in a total elapsed time of 23 minutes. After the cement was then pulled up to a depth of 18 feet bls. The wellhead remained sealed at a wellhead pressure of 1.5 psi throughout the operation. The cement was then left to harden overnight.

Reaming Operation

On January 21, the top of the hardened cement was physically tagged at a depth of 37.5 feet bls inside the well casing. Youngquist then prepared to drill the cement plug and open hole with the reverse-air method through the cement plug and ream the open hole to a nominal diameter of 46 inches. Reaming was accomplished with a staged drill bit assembly utilizing a 12-inch

diameter stinger (pilot) bit followed by a 46-inch diameter reamer bit. Drilling proceeded on January 27 with a bit rotation of approximately 30 revolutions per minute. The weight on the bit was maintained between a range of approximately 500 pounds to 1,000 pounds. During the reaming operation, cuttings and lithologic samples were collected at 5-foot intervals.

The reaming operation proceeded to a depth of 68 feet bls, in preparation for installing the new 40-inch diameter (0.375-inch wall thickness) steel liner. On February 9 a caliper log was conducted on the reamed hole. A copy of the log is contained in Appendix A. The caliper log revealed that a relatively uniform 56-inch diameter hole extended below the base of the 40-inch pipe to a depth of 68 feet bls with the exception of a 3-foot interval present between the depths of 54 feet bls to 57 feet bls. This "tight" zone was evident on earlier caliper log, and was interpreted to represent the confining zone at the wellfield. The decision was made to set the base of the new 40-inch liner below this zone, so that a seal would exist above the base of the liner to insure separation from any surface water influence.

Liner Installation

On February 9, fine sand was emplaced in the reamed borehole from a depth of 68 feet bls to 65 feet bls in preparation for installation of the new liner. The liner was comprised of two 40-foot long pieces of 0.375-inch wall thickness steel pipe, which were connected by a welded joint. Welding was performed by a Florida-certified welder. The lower portion of one of the pipes was then cut so that the total length of the connected pipe was 64 feet. A cementing header was welded to the top of the liner. Centralizers were welded around the pipe at 90-degree spacings at installed depths of 10 feet bls, 30 feet bls, 46 feet bls and 57 feet bls. The liner was lowered into the well with a crane.

After the liner was lowered to a total depth of 64 feet bls, an alignment test was conducted. A plummet possessing a maximum external diameter of 39 inches passed freely to the bottom of the liner, showing no detectable deviation. A tremie pipe was then lowered through the header, to depth of 50 feet bls. The liner was then pressure grouted into place with 488 cubic feet of Class "H" cement. Wellhead pressure during the cementing operation remained at 0 psi. The cement was then allowed to harden overnight.

The February 13, the top of the hardened cement was physically tagged at a depth of 60 feet bls inside the liner and at a depth of 50.5 feet bls in the annular space, outside the liner. Four stages of Class "H" cement were subsequently emplaced within the annular space of the well, completely filling the outside length of the new liner. A total of 840 cubic feet of cement was emplaced during tremie stages 1,2 and 3, which resulted in a total rise of approximately 3 feet of "fill up" in the annular space, from 50.5 feet bls to 47.5 feet bls. This zone probably represented a large cavity within the Biscayne Aquifer. The forth tremie stage emplaced 194 cubic feet of cement, and resulted in complete annular space fill up, to surface.

Hydrostatic Pressure Test and Alignment Test

On February 20, a hydrostatic pressure test was performed on Well No. 10. The test was conducted over a one-hour period, with an initial pressure of 50 psi. Over the hour-long period, the wellhead pressure declined to a pressure of 48.5 psi, representing a decline of 3%

from the initial pressure. These results successfully demonstrated mechanical integrity of the new liner.

On the same day, the pressure header was removed from the wellhead and an alignment test was performed. For the alignment test, a 35-foot length drill pipe fitted with two spindles measuring 39 inches in outer diameter (approximately ¼-inch less than the inside diameter of the new liner) was lowered down into the new liner. The plummet was lowered into the well while being suspended by a cable and hooked to the crane. During the test, the deviation of the cable from a center position at the wellhead was measured. No detectable deviation from vertical alignment was measured at the wellhead as the plummet was lowered along the entire length of the new liner. These results were interpreted as successfully demonstrating that the new liner was plumb and aligned.

Open Hole Drilling and Development

On February 23 Youngquist initiated drilling out the cement plug of the new liner. Drilling was performed using the reverse-air method, with a staged bit assembly. A 12-inch pilot bit was followed by a 36.5-inch reaming bit. Drilling took place from the base of the new liner at 64 feet bls to 80 feet bls (the original depth of the well) over a three-day period.

Upon reaching the original total well depth, reverse-air development took place by utilizing the drill bit assembly. During this portion of the development, an air compressor was used to force air down the inside of the drill pipe. The air exited out at holes located at the drill bit, forcing cuttings and water up, out the discharge hose (routed out of the roof of the wellhouse) at rates of approximately 500 gallons per minute. The drill pipe and bit assembly was raised and lowered along the entire length of the open hole (from 64 feet bls to 80 feet bls) for a 10-hour period during this process.

Pumping Development

After air development was complete, the drill pipe and bit assembly were removed from the well and a centrifugal pump was delivered to the site. On February 3, pumping development commenced through a 12-inch diameter drop pipe (lowered into the well to a depth of 40 feet bls). Prior to start-up, the depth to the "static" water level in the well was measured at approximately 5 feet bls. A pumping rate of 645 gpm (equivalent to approximately 1 million gallons of water per day [mgd]) was initially established. During pumping at this rate, the water level in the well declined to approximately 29 feet bls (equating to a total drawdown of 24 feet, and a specific capacity of 27 gallons per minute per foot of drawdown [gpm/ft]). A higher pumping rate could not be achieved because the centrifugal pump could not "lift" water that was deeper than 29 feet bls in the well. Over the next two days, pumping development and surging took place at rates of between 300 gpm and 680 gpm.

Borehole Deepening

The results of the specific capacity data collected during the pumping development indicated that Well No. 10 could be pumped at a maximum rate of approximately 1 mgd with acceptable drawdown. To improve the well capacity, it was determined that the open hole should be

extended, to permit water flow into the well from deeper zones of the aquifer. The 38-inch diameter drill bit was lowered into the well and the open hole was extended to 120 feet bls. Air-lift development again took place through the drill bit, at a rate of approximately 500 gpm for one day.

Direct Air-Lift Development

To increase the effectiveness of the air-lift process, the drill bit assembly was then removed, and a 7-inch diameter pipe was lowered into the well, to a depth of 40 feet bls. Two air compressors were then connected to the air-line, each compressor capable of pumping 1,000 cubic feet of air per minute at a pressure of 150 psi. The well was then surged in this configuration for 2 hours. The air pipe was then lowered to a depth of 61 feet bls, and the air surging and development process was continued for another 4 hours. The following day the air pipe was lowered an additional 10 feet, to a total depth of 71 feet bls (7 feet below the bottom of the 40-inch casing). With the pipe configured at this depth, surges of up to 2,000 gpm were achieved. Air-lift development took place for an additional 8 hours with the air pipe at 71 feet bls.

Pumping Development

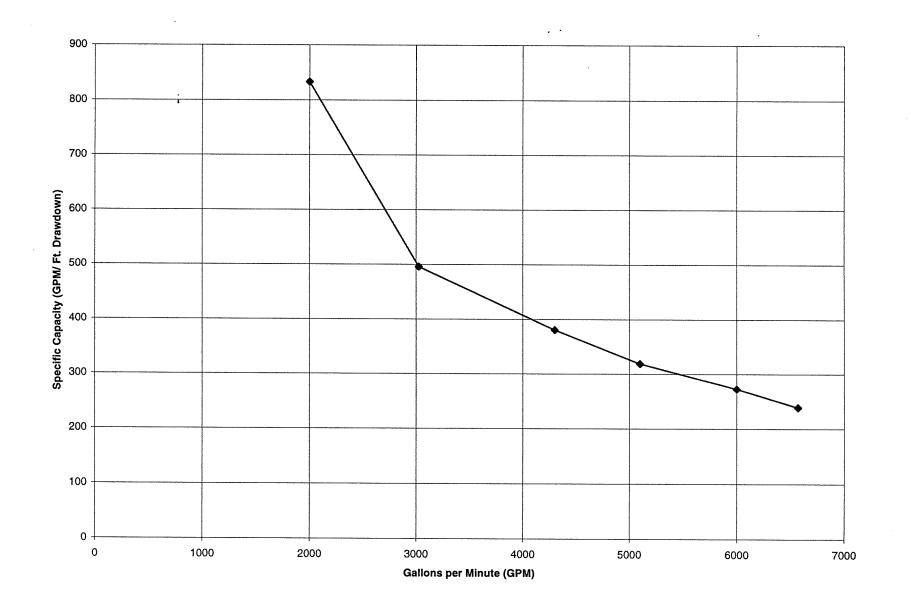
After air-lift development was complete, the centrifugal pump assembly was again lowered into the well, to begin pumping development. On May 1, 1998, the static water level measured in the well was approximately 6 feet bls. At first, a pumping rate of 3,000 gpm was established, with a pumping water level of 14 feet bls. The pumping rate was then increased to 3,700 gpm (equivalent to a daily rate of approximately 5.3 mgd), and the water level in the well declined to 17.2 feet bls. The specific capacity of the well at this rate was equivalent to 330 gpm/ft.

During pumping development, a flowmeter log and video survey (conducted by MDWASD) were performed. A copy of the flowmeter log is contained in Appendix A. Upon the completion of the pumping development for the day, a caliper log was also conducted. Analysis of these logs indicated that most of the water produced by the well was flowing into the open hole from the interval between 67 feet bls and 80 feet bls.

Acidization

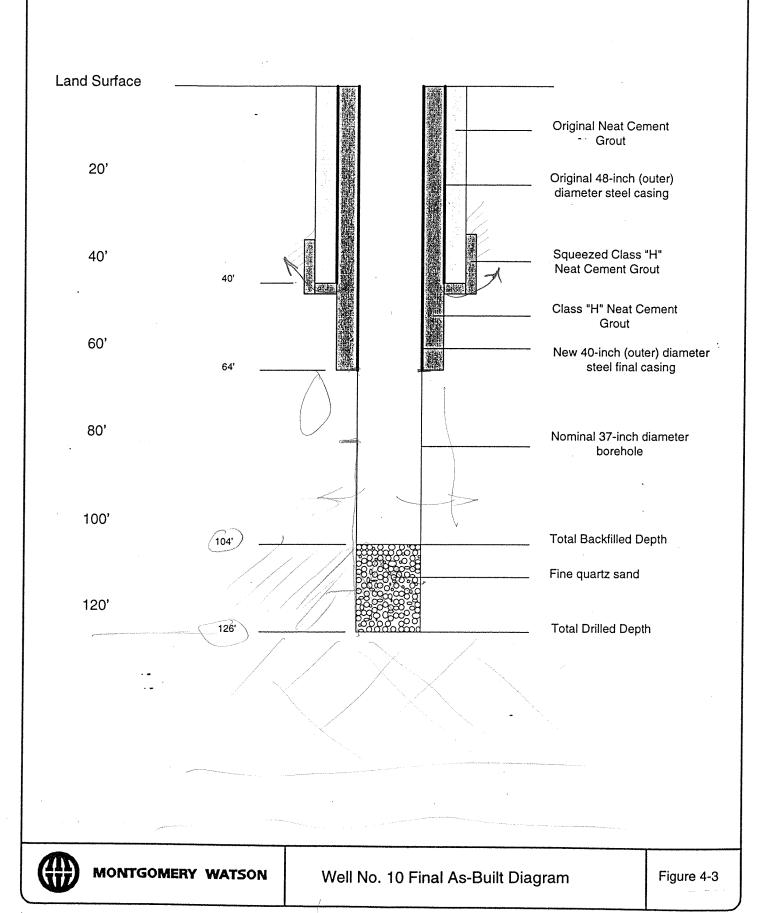
To increase the yield of the well, the open hole was back-filled with pea gravel and fine sand to a depth of 82.5 feet bls. On May 14, 1998, 4000 gallons of a 19% muriatic acid solution was pumped into Well No. 10 through an open-ended work pipe installed to a depth of 70 feet bls. The acid was blended with an inhibiting agent prior to emplacement to minimize potential corrosion of the steel well casing. During the acidization, the wellhead was sealed and wellhead pressures were monitored. A bleed-off valve was mounted on the wellhead piping to relieve pressures developed by carbon dioxide gas production during the acidization process. Wellhead pressures were not allowed to exceed 16 psi at any time during the procedure. Following emplacement of the acid, 700 gallons of fresh water were pumped into the work pipe to displace the acid into the formation. After the water was emplaced, the well was shut in for a period of 10 hours.

Post-Acidization Development and Testing


Following the acidization procedure, the sand and gravel was removed by drilling to a depth of 106 bls. The centrifugal pump assembly was again lowered into the well. On May 20, 1998, a pumping rate of 4,500 gpm was then established with a water level of approximately 21 feet bls recorded in the well. The measured static water level in the well prior to pumpage was approximately 9 feet bls, therefore a specific capacity of 375 gpm/ft of drawdown was achieved at Well No. 10. A 14% increase in specific capacity was achieved through implementing the acidization procedure. Pumping development then took place over an 8 hour period.

On June 26, 1998 the original turbine pump (newly configured to drop the intake at a depth of 47.5 feet bls) was lowered into Well No. 10, to test the feasibility of utilizing the existing equipment. The well was then tested at a variety of pumping rates, which were achieved by adjusting a valve mounted on 24-inch diameter discharge piping. The results of the specific capacity testing conducted are summarized on **Table 4-1** and is presented graphically on **Figure 4-2**. An as-built diagram of the re-completed is presented on **Figure 4-3**. Youngquist Bros. subsequently filed a Well Completion Report at the SFWMD, a copy of which is included in **Appendix D**.

Pumping Rate (gpm)	Water Level (fbls)	Drawdown (ft)	Specific Capacity (gpm/ft)
0	10.5	0	0
2,000	13	2.5	800
3,025	17	6.5	465
4,300	22	11.5	370
5,100	27	16.5	310
6,000	33	21.5	280
6,565	38	26.5	250


Table 4-1Step-Rate Pumping Test Summary

The well was then disinfected and subjected to bacteriological clearance, as per Health Department permit requirements. Twenty water samples collected from Well No. 10 between June 30, 1999 and July 9, 1999 did not contain observed concentrations of bacteria, and the well was cleared for service.

MONTGOMERY WATSON

Figure 4-2

Section 5

Section 5 Post-Rehabilitation Water Quality

Following the re-installation of pumping equipment and obtaining bacteriological clearance, Well No. 10 was placed back into service by MDWASD. Three weeks after being placed back into service, a water sample was collected from the wellhead tap. The water was analyzed by Harbor Branch Environmental Laboratories for federal primary and secondary drinking water standard constituents. The bacteriological and Harbor Branch laboratory results are contained in **Appendix E** and summarized on **Table 5-1**.

Constituent	Method	Concentration
Color	2120 B	90 CU
Chloride	300.0	63 mg/L
Alkalinity*	2320 B	216 mg/L
Total Hardness*	130-2	270 mg/L
Iron	200.7	1.0 mg/L
PH	150.	7.3*
Total Dissolved Solids	2540 C	360
Volatile Organics	524.2	Bdl
Pesticides and PCBs	Multiple	Bdl
Unregulated Group I	Multiple	Bdl
Unregulated Group II	524.2	Bdl
Unregulated Group III	625	Bdl
Gross Alpha	900.0	2.8 pCi/L

Table 5-1Post-Rehabilitation Water Quality Summary

Notes: "Bdl" signifies below detection limits "*" signifies results reported by the MDWASD Laboratory

The laboratory results indicated that there were no exceedances of federal primary drinking water standards and the only secondary drinking water standards that were exceeded were color and iron.

MPA Sampling Results

As per the Agreement, water samples were collected from the Well No. 10 during the wet and dry seasons following the rehabilitation. The water samples were split and analyzed by Montgomery Watson Laboratories under contract to MDWASD and the Tampa Branch of the Florida Department of Health Laboratory under contract to the FDEP. The laboratory analysis sheets are contained in **Appendix F** and the resultant EPA Relative Risk Factors are summarized on **Table 5-2**.

Date of Sa	ample	Rainfall (inches)	Montgomery Watson Laboratory Result	Florida Department of Health Laboratory Results
August 24, 1998	Wet Season	2.69	4	9
September 9, 1998	Wet Season	2.44	5	4
December 8, 1998	Dry Season	0.29	5	14
February 22, 1999	Dry Season	0.00	9	14

Table 5-2Post-Rehabilitation MPA Results Summary

The results of the MPA sampling indicate concentrations that equate to Categories "A" and "B", as specified within the Agreement. These results compare favorably with those obtained by the FDEP from Well No. 10 prior to the rehabilitation, which yielded Relative Risk Factors of 15, 16 and 23 from samples collected in December 1995 and October 1996, respectively. **Table 5-3** presents a characterization of the particles counted from each of the MPA's and reveals that the material consisted of algae and plant debris. The results of these tests indicate that the rehabilitation has been successful in reducing the concentration of surface related particulate matter in water produced from Well No. 10. This data satisfy the requirements set forth by the FDEP in the Agreement for reconsideration of the designation of Well No. 10 as GWUDI.

Date Sampled	EPA RRF Total	Giardia	Coccidia	Diatoms	Other Algae	Insects/ Larvae	Rotifers	Plant Debris
8/24/98								
Lab A	4	<1	<1	<1	5	<1	<1	1
Lab B	9	NA	NA	0	31	0	0	0
9/9/98							•	
Lab A	5	<1	<1	<1	1	<1 .	<1	42
Lab B	4	NA	NA	0	14	0	0	0
12/08/98								
Lab A	5	<1	<1	<1	6	<1	<1	28
Lab B	14		·					
2/24/99								
Lab A	9	<1	<1	<1	55	<1	<1	4
Lab B	14	NA	NA	· 0	874	0	0.1	0.1

. .

NA: Not assayed

Section 6

MONTGOMERY WATSON

Section 6 Conclusions and Recommendations

Post rehabilitation test results indicate that construction rehabilitation has successfully reduced the concentration of particulate matter produced in water collected from Well No. 10 at MDWASD's Northwest Wellfield.

Well No. 10 has been re-completed to restore the casing grout integrity and draw water from an open-hole set within the Tamiami Formation, between 64 feet bls and 104 feet bls. The well now yields water at a rate of 250 gallons per minute per foot of drawdown when pumped at a rate of 6,500 gpm (equivalent to 9.4 mgd). This represents a significant reduction in the specific capacity of the well when compared with the original specific capacity of 1,030 gpm/ft when the well was first installed. This reduction in capacity has resulted in the need to install additional column pipe on the existing pump for the well.

MPA data collected following the rehabilitation of Well No. 10 indicates that the concentration of particulate matter has been successfully reduced to acceptable concentrations. Modifying the production wells at the Northwest Wellfield by installing a deeper casing through the existing casing allows for restoring the casing grout integrity, a concern associated with the possible short-circuiting of flow around the outside of the casing. Installing the inner (new) casing at a deeper position within the aquifer further insures against possible short-circuiting of flow and provides additional filtration. When additional wells in the Northwest Wellfield are subjected to similar construction rehabilitations, the new casings should be set at depths that will enable the wells to maintain relatively high specific capacities while reducing concentration of particulate matter to acceptable levels.

Appendix A

MONTGOMERY WATSON

South Florida Water Management District

3301 Gun Club Road, West Palm Beach, Florida 33406 • (561) 686-8800 • FL WATS 1-800-432-2045 TDD (561) 697-2574

CON 24-06

January 07, 1998

PERMITTEE MIAMI-DADE WATER & SEWER AUTHORITY 3575 S. LEJEUNE ROAD MIAMI, FL 33146 CONTRACTOR YOUNGQUIST, TIM

YOUNGQUIST, TIM 15465 PINE RIDGE ROAD FT. MYERS, FL 33908 LICENSE NO:2172

WATER WELL REPAIR PERMIT # SF010698A EXPIRATION DATE: July 07, 1998

PROJECT: TYPE OF USE:	REHABILITATION OF NW PUBLIC WATER SUPPLY	WELLFIELD WELL	#10	
COUNTY:	MIAMI-DADE	SEC: 11	TWP: 53	RGE: 39
WELL REPAIR	SPECIFICATIONS:	INNER		OUTER
CASING D	IAMETER:	40"		48"
CASING D	DEPTH:	60.00'		40.00'
SCREENED) INTERVAL:			
OPEN HOL	.E INTERVAL:	60'-	80'	
TOTAL DE	EPTH OF WELL:	80.00'		
GROUT RE	QUIREMENT:			

Inner casing shall be grouted bottom to top. Outer casing shall be grouted bottom to top.

See additional conditions of permit on attached sheet.

We appreciate your assistance and cooperation in better managing the water resources of the District. If you have any questions on this matter, please call Ann-Marie Superchi at extension 6929.

Sincerely,

Jeffrey Rosenfeld, P.G., Supervising Professional Water Use Division, Regulation Department

Attachment: Additional Conditions of Permit c: MR. JOSE ANGUEIRA-DERM MR. JOHN MORRAH-DEP

Governing Board: Frank Williamson, Jr., Chairman Eugene K. Pettis, Vice Chairman Mitchell W. Berger

Vera M. Carter William E. Graham William Hammond Richard A. Machek Michael D. Minton Miriam Singer

er: 1º10

÷

Samuel E. Poole III, Executive Director Michael Slayton, Deputy Executive Director

Mailing Address: P.O. Box 24680, West Palm Beach, FL 33416-4680

REHABILITATION OF NW WELLFIELD WELL #10 January 07, 1998

DESCRIPTION OF WELL REPAIRS

INSTALL & GROUT A 40" CASING INSIDE THE EXISTING 48" CASING.

COMPLETION REPORT REQUIRED

A Water Well Completion Report (Form 0124) must be filed with the District within 30 days of completion of work.

ADDITIONAL CONDITIONS OF PERMIT

The well must be cleaned, disinfected and bacteriologically cleared in accordance with Chapter 62-555, F.A.C. The bacteriological clearance data shall be submitted to the County Health Unit or appropriate office of the Department of Environmental Protection and release for use must be obtained prior to placing the well in service.

A grouting card (Form 0196) must be supplied to the District prior to beginning construction.

=

Lawton Chiles Governor James T. Howell, M.D., M.P.H. Secretary

NOTICE OF PERMIT

CERTIFIED MAIL P 255 943 680 RETURN RECEIPT REQUESTED

Miami-Dade Water and Sewer Department, Hialeah-Preston Northwest Wellfield rehabilitation of production well No. 1 WATER AND SEWER AUTHORITY DEPT.

Eugene V. McLoughin, P.E. Miami Dade Water & Sewer Department 3575 S. Lejeune Road Miami, Florida 33146

26

SD ENGINEERING SD

November 25, 1997

1

Dear Mr. McLoughin:

Enclosed is Permit Number 125469-123WC to construct the above-referenced Water Well Rehabilitation, located at Hialeah-Preston Northwest Wellfield, Hialeah, Dade County, issued Pursuant to Section 403, Florida Statutes.

Any party to this Order (permit) has the right to seek judicial review of the permit pursuant to Section 120.68, Florida Statutes, by the filing of a Notice of Appeal pursuant to Rule 9.110, Florida Rules of Appellate Procedure, with the Clerk of the Department in the Office of General Counsel, 2600 Blair Stone Road, Tallahassee, Florida 32399-2400; and by filing a copy of the Notice of Appeal accompanied by the applicable filing fees with the appropriate District Court of Appeals. The Notice of Appeal must be filed within 30 days from the date this Notice is filed with the Clerk of the Department.

If you have any question please contact Samir Elmir, P.E. of this office, phone (305) 623-3551.

Executed in Dade County, Florida.

STATE OF FLORIDA DEPARTMENT OF HEALTH

D. Salianabi, Ho

for Annie R. Neasman, R.N., M.S. Executive Administrator

Copies furnished to: Morton Laitner, Esq., Legal Counsel Samir Elmir, P.E., MS

CERTIFICATE OF SERVICE

This is to certify that this NOTICE OF PERMIT and all copies were mailed before the close of business on 1/2/97 to the listed persons.

Clerk Stamp

FILING AND ACKNOWLEDGMENT FILED, on this date, pursuant to the 120.52(10), Florida Statutes, with the designated Department Clerk, receipt of which is hereby acknowledged.

=

97 Date Gardenia Pierre

Clerk

t - --

Lawton Chiles Governor

PERMITTEE: Eugene V. McLoughin Miami Dade Water & Sewer Dept. 700 West 2nd Avenue Hialeah, Florida 33010

PERMIT No: 125469-123WC DATE OF ISSUE: November 24, 1997 EXPIRATION DATE: November 23, 2002 COUNTY: DADE COUNTY LATITUDE/LONGITUDE: N/A SECTION/TOWNSHIP/RANGE: 53/39/11 PROJECT: Miami-Dade Water and Sewer Department, Hialeah-Preston Northwest Wellfield rehabilitation of production well No. 10.

This permit is issued under the provisions of Chapter 403, Florida Statutes, and Florida Administrative Code Rule 62-4, 62-550, 62-555 & 62-560. The above named permittee is hereby authorized to perform the work shown on the application, technical specifications approved drawing(s), plans, and other documents attached hereto or on file with the Department and made a part hereof and specifically described as follows:

TO CONSTRUCT: At Miami-Dade Water and Sewer Department Northwest Wellfield production well No.10 install a new 40 inch diameter steel well casing liner inside of the existing 48 inch casing, regrouting, reinstalling of existing well pump and appurtenances including, disinfection, testing and clearance as per FAC. 62-555.

TO SERVE: Miami-Dade Water and Sewer Department Hialeah-Preston Water Treatment Plant, 700 West 2nd Avenue, Hialeah, Dade County, Florida.

GENERAL CONDITIONS:

1. The terms, conditions, requirements, limitations and restrictions set forth in this permit, are "permit conditions" and are binding and enforceable pursuant to Sections 403.141, 403.727, or 403.859 through 403.861, F.S. The permittee is placed on notice that the Department will review this permit periodically and may initiate enforcement action for any violation of these conditions.

2. This permit is valid only for the specific processes and operations applied for and indicated in the approved drawings or exhibits. Any unauthorized deviation from the approved drawings, exhibits, specifications, or conditions of this permit may constitute grounds for revocation and enforcement action by the Department.

3. As provided in subsections 403.087(6) and 403.722(5), F.S., the issuance of this permit does not convey any vested rights or any exclusive privileges. Neither does it authorize any injury to public or private property or any invasion of personal rights, nor any infringement of federal, state, or local laws or regulations. This permit is not a waiver of or approval of any other Department permit that may be required for other aspects of the total project which are not addressed in this permit.

4. This permit conveys no title to land or water, does not constitute State recognition or acknowledgment of title, and does not constitute authority for the use of submerged lands

unless herein provided and the necessary title or leasehold interests have been obtained from the State. Only the Trustees of the Internal Improvement Trust Fund may express State opinion as to title.

5. This permit does not relieve the permittee from liability for harm or injury to human health or welfare, animal, or plant life, or property caused by the construction or operation of this permitted source, or from penalties therefore; nor does it allow the permittee to cause pollution in contravention of Florida Statutes and Department rules, unless specifically authorized by an order from the Department.

6. The permittee shall properly operate and maintain the facility and systems of treatment and control (and related appurtenances) that are installed and used by the permittee to achieve compliance with the conditions of this permit, are required by Department rules. This provision includes the operation of backup or auxiliary facilities or similar systems when necessary to achieve compliance with the conditions of the permit and when required by Department rules.

7. The permittee, by accepting this permit, specifically agrees to allow authorized Department personnel, upon presentation of credentials or other documents as may be required by law and at reasonable times, access to the premises where the permitted activity is located or conducted to:

(a) Have access to and copy any records that must be kept under conditions of the permit;

(b) Inspect the facility, equipment, practices, or operations regulated or required under this permit; and

(c) Sample or monitor any substances or parameters at any location reasonably necessary to assure compliance with this permit or Department rules.

Reasonable time may depend on the nature of the concern being investigated.

8. If, for any reason, the permittee does not comply with or will be unable to comply with any condition or limitation specified in this permit, the permittee shall immediately provide the Department with the following information:

(a) A description of and cause of noncompliance; and

(b) The period of noncompliance, including dates and times; or, if not corrected, the anticipated time the noncompliance is expected to continue, and steps being taken to reduce, eliminate, and prevent recurrence if the noncompliance. The permittee shall be responsible for any and all damages which may result and may be subject to enforcement action by the Department for penalties or for revocation of this permit.

9. In accepting this permit, the permittee understands and agrees that all records, notes, monitoring data and other information relating to the construction or operation of this permitted source which are submitted to the Department may be used by the Department as evidence in any enforcement case involving the permitted source arising under the Florida Statutes or Department rules, except where such use is prescribed by Section 403.111 and 403.73, F.S. Such evidence shall only be used to the extent it is consistent with the Florida Rules of Civil Procedure and appropriate evidentiary rules.

10. The permittee agrees to comply with changes in Department rules and Florida Statutes after a reasonable time for compliance; provided, however, the permittee does not waive any other rights granted by Florida Statutes or Department rules.

11. This permit is transferable only upon Department approval in accordance with Rule 62-4.120 and 62-30.300, F.A.C., as applicable. The permittee shall be liable for any noncompliance of the permitted activity until the transfer is approved by the Department.

12. This permit or a copy thereof shall be kept at the work site of the permitted activity.

13. This permit also constitutes:

() Determination of Best Available Control Technology (BACT)

() Determination of Prevention of Significant Deterioration (PSD)

(X) Certification of compliance with state Water Quality Standards (Section 401, PL 92-500)

() Compliance with New Source Performance Standards

- 14. The permittee shall comply with the following:
 - (a) Upon request, the permittee shall furnish all records and plans required under Department rules, During enforcement actions, the retention period for all records will be extended automatically unless otherwise stipulated by the Department.

(b) The permittee shall hold at the facility or other location designated by the permit records of all monitoring information (including all calibration and maintenance records and all original strip chart recordings for continuous monitoring instrumentation) required by the permit, copies of all reports required by this permit, and records of all date used to complete the application for this permit. These materials shall be retained at least three years from the date of the sample, measurement, report, or application unless otherwise specified by Department rule.

(c) Records of monitoring information shall include:

1. the date, exact place, and time of sampling or measurements;

2. the person responsible for performing the sampling or measurements;

3. the dates analyses were performed;

4. the person responsible for performing the analyses;

- 5. the analytical techniques or methods used;
- 6. the results of such analyses.

15. When requested by the Department, the permittee shall within a reasonable time furnish any information required by law which is needed to determine compliance with the permit. If the permittee becomes aware the relevant facts were not submitted or were incorrect in the permit application or in any report to the Department, such facts or information shall be corrected promptly.

SPECIFIC CONDITIONS:

The applicant is responsible for retaining the engineer of record in the application for 1. supervision of the construction of this project and upon completion, the engineer shall inspect for complete conformity to the plans and specifications as approved.

This well shall be cleaned, disinfected and bacteriologically cleared in accordance with 2. Chapter 62-555 Florida Administrative Code and AWWA Standard C654-87.

All concrete coatings/admixtures, liners, grouts, hoses, tubings, and protective paints 3. and coatings shall be listed by the National Sanitation Foundation as acceptable for contact with potable water.

This construction permit is issued with the understanding that pipe material and 4. appurtenances used in this installation will be in accordance with the latest applicable AWWA & NSF Standards for public water supplies.

Prior to placing a system into service, the applicant shall submit to the Department one 5. (1) set of record drawings of the completed project with completed form DEP 62.555.910(9) [Certification of Construction Completion and Request for a Letter of Clearance to Place a Public Drinking water facility into Service] signed by the engineer of record. Drawings are to be at the same scale and in the same sequence as those submitted and approved for permit. Deviations from the original permitted drawings are to be highlighted and/or noted for the Department's review. Include with the DEP form the bacteriological clearance data, pressure test results and backflow inspection certification (if applicable).

Issued this 25th day of Nov. 1997

STATE OF FLORIDA DEPARTMENT OF HEALTH

Annie R. Neasman, R.N., M.S. Executive Administrator

Appendix B

MONTGOMERY WATSON

LITHOLOGIC DESCRIPTION

Date	: 7-1-98
Contractor	: YBI
Location	: Miami Dade Water and Sewer Department Northwest Wellfield
Well	:10

DEPTH	DESCRIPTION
45′ - 50′	LIMESTONE 100%; yellowish gray to white, packstone, grain size: fine to medium, porosity: <5%, partially recrystallized, mollusks
50' - 55'	LIMESTONE 100%; light greenish gray to white, packstone, grain size: fine to medium, porosity: 25% moldic to vuggy , partially recrystallized, mollusks
55′ - 65′	LIMESTONE 100%, yellowish gray to white, packstone, grain size: medium to coarse, porosity: 20% moldic, 20% allochems, mollusks,
65′ - 80′	LIMESTONE 90%; yellowish gray to white, packstone, grain size: medium to coarse, porosity: 10%, partially recrystallized, coquina, carbonate clasts
	SAND 10%, yellowish brown to white, grain size: medium to coarse, sub- angular to rounded
80′-85′	LIMESTONE 100%; yellowish gray to white, packstone, grain size: fine to medium, porosity: <5%, recrystallized, mollusks
85′-92′	SHELL 60%, medium gray to light orange, medium to coarse grained, mollusks, bryozoans
	LIMESTONE 35%, medium gray to light gray, packstone
	SAND 5%, yellowish brown to white, medium to coarse, sub-angular to rounded
93'-107'	SHELL 80%, pale olive to gray, unconsolidated, grain size: medium sand to gravel, mollusks, bryozoans
	LIMESTONE 20%, gray to light gray, packstone, silty

DEPTH	DESCRIPTION
107′-117′	SHELL 80%, medium gray to light orange, olive silt matrix, mollusks, bryozoans, foraminifera
	LIMESTONE 20%, gray to white, packstone, 15% quartz sand in calcite matrix
117′-119′	SHELL 80%, medium gray to light orange, olive silt matrix, grain size: medium sand to gravel, mollusks, bryozoans, foraminifera
	LIMESTONE 20%, gray to white, packstone, 15% quartz sand in calcite matrix
120′	SANDY SILT 80%, olive, with 20% LIMESTONE clasts

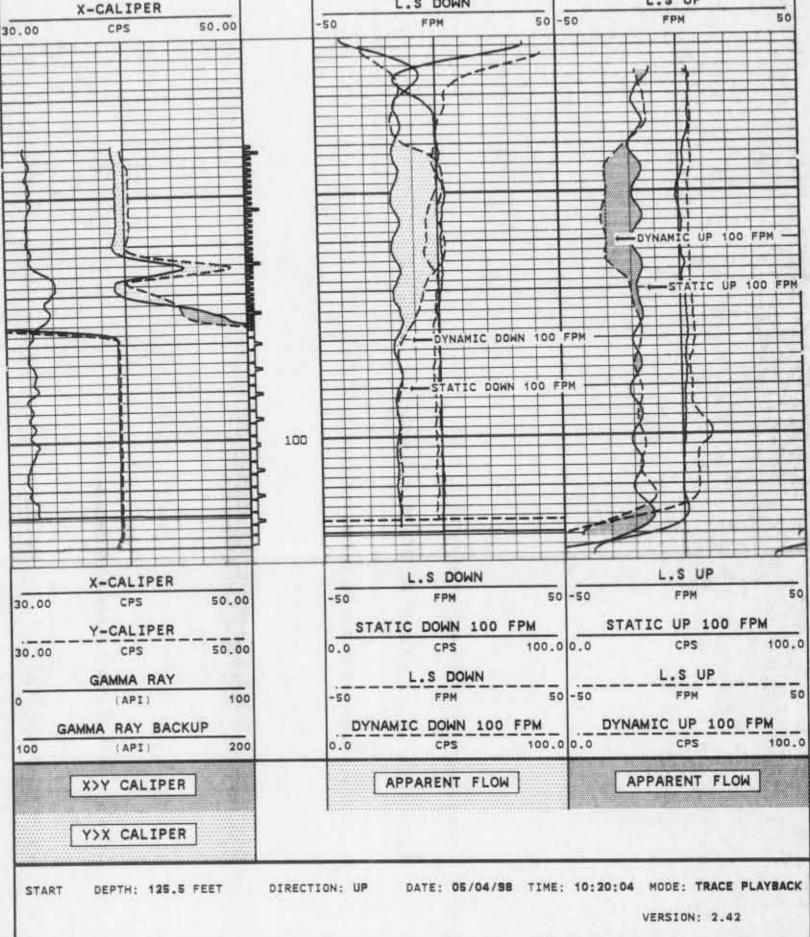
. 🛥

•

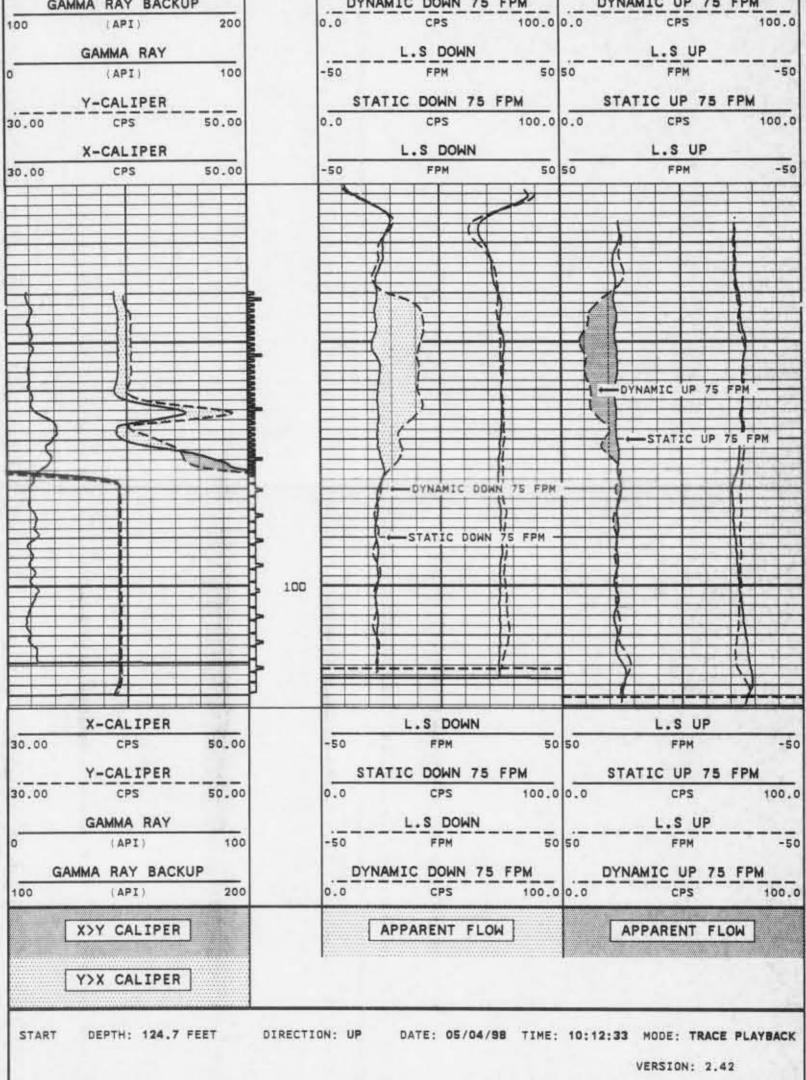
÷

-

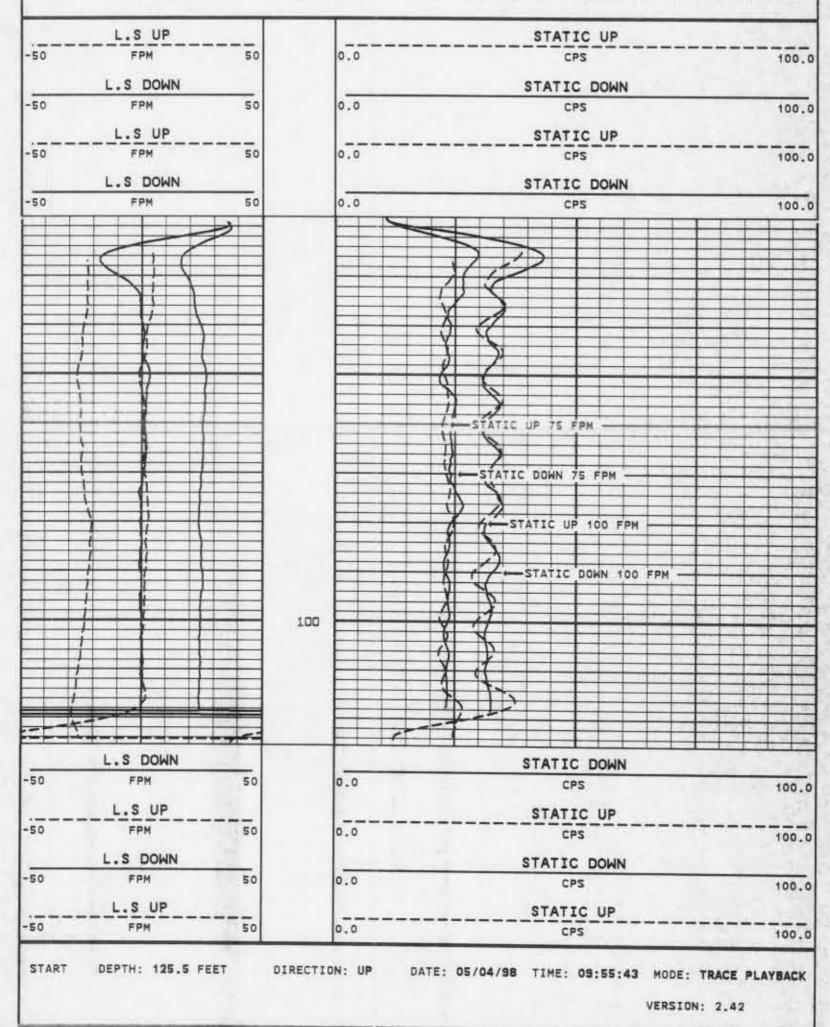
Appendix C



MONTGOMERY WATSON

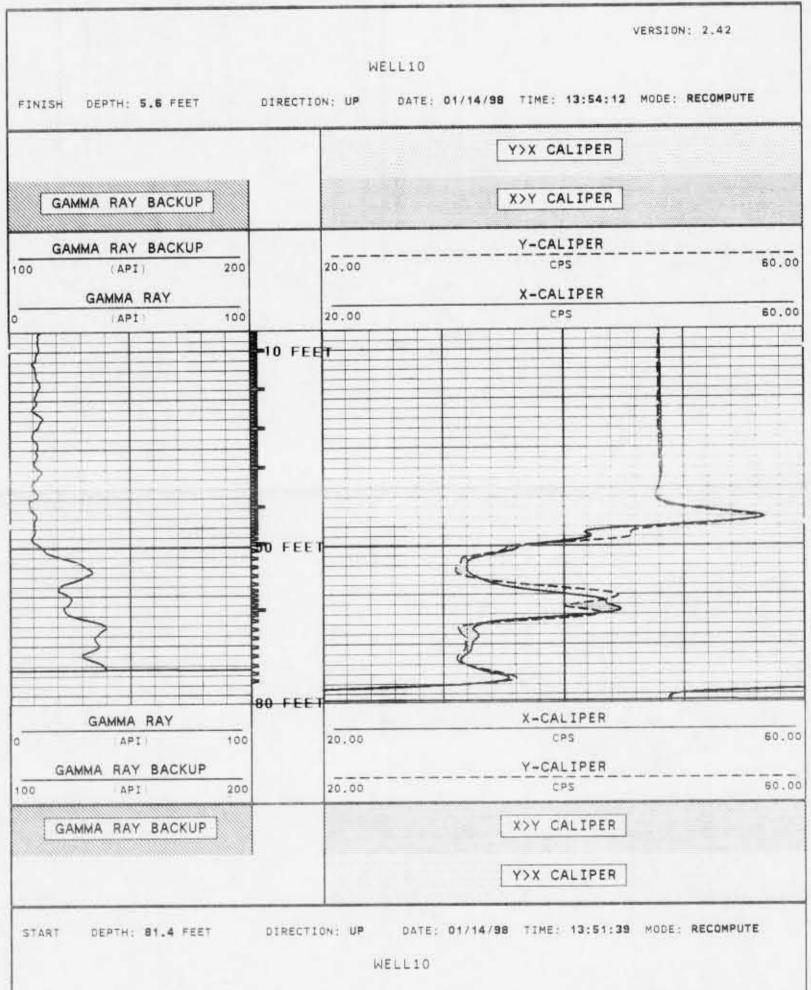

-	RUN NO. B	8	WITNESSED BY	RECORDED BY	EQUIPMENT-LOCATION	MAX. REC. TE	LEVEL	DENSITY-VISCOSITY	SALINITY, PPM CL	TYPE FLUID IN HOLE	OPERATING RIG TIME	LOGGED INTERVAL	DEPTH-LOGGER	DEPTH-DRILLER	TYPE LOG	RUN NO.	DATE	PERMANENT DATUM P LOG MEASURED FROM DRILLING MEASURED	FILE NO				-	
~	BIT	OREHOL			CATION	TEMP, DEG F.		SCOSIT	PPM CL	N HOLE	G TIME	VAL		R				FROM SURED	LOCATION SEC.	COUNTY	FIELD	WELL	COM	8
120'	FROM	BOREHOLE RECORD				GF.		Y										PAD LEVEL	TION		1		PANY	OPH
CASING	10	RD	T.URAM	LEE	102 FTM	NA	8' BELOW	1	NA	WATER	1.5 HOURS	120' 10	120'	120'	FLOWMETER		01-MAY-1998	6	TWP	DADE	NORTH WEST	NHWF #10	COMPANY MIAMI DADE	FLORIDA GEOPHYSICAL LOGGING, INC.
40"	SIZE						PAD					40.					86	RMANENT	RGE		WELL		WATER AT	GGING, II
-	WGT.	CASING	ŀ	t	t	T	T	T	T					T		T		DATUM		s	FIELD		7 SEWER	A REAL PROPERTY.
64'	FROM	R										TO						ELEV.:K.B D.F G.L	X-Y CAL				ER DEPT.	FLOWMETER
SURFACE	0 t	-																	CALIPER	RIDA				

ALL INTERPRETATIONS ARE OPINIONS BASED ON INFERENCES FROM ELECTRICAL OR OTHER MEASUREMENTS AND WE CANNOT AND DO NOT GUARANTEE THE ACCURACY OR CORRECTNESS OF ANY INTERPRETATION, AND WE SHALL NOT, EXCEPT IN THE CASE OF GROSS OR WILLFULL NEGLEGENCE ON OUR PART. BE LIABLE OR RESPONSIBLE FOR ANY LOSS, COSTS, DAMAGES, OR EXPENSES INCURRED OR SUSTAINED BY ANYONE RESULTING FROM ANY INTERPRETATION MADE BY ANY OF OUR OFFICERS, AGENTS OR EMPLOYEES. THESE INTERPRETATIONS ARE ALSO SUBJECT TO OUR GENERAL TERMS AND CONDITIONS SET OUT IN OUR CURRENT PRICE SCHEDULE.


	REMARKS	
MERGED STATIC AND DY	NAMIC PASSES AT 100 FPM.	
FLOWRATE = 3,000 GPM	*	1
		VERSION: 2.42
FINISH DEPTH: 23.2 FEET D	IRECTION: UP DATE: 05/04/98 TIME: 10:3	0:46 MODE: TRACE PLAYBACK
PINIAR DEFIN. COLLECT		
Y>X CALIPER		
		APPARENT FLOW
X>Y CALIPER	APPARENT FLOW	AFFAREINT FLOR
GAMMA RAY BACKUP		DYNAMIC UP 100 FPM
100 (API) 200	0.0 CPS 100.0 0.0	CPS 100.0
GAMMA RAY	L.S DOWN	L.S UP
0 (API) 100	-50 FPM 50 -50	FPM SC
Y-CALIPER	STATIC DOWN 100 FPM	STATIC UP 100 FPM
30.00 CPS 50.00		CPS 100.0
30.00	L.S. DOWN	L.S UP

MERGED STATIC AND Flowrate = 3,000		REMARKS AT 75 FPM.					
FINISH DEPTH: 23.1 FEET	DIRECTION: UP	DATE:	05/04/98	TIME:	10:14:04	VERSION: Mode: T	2.42 RACE PLAYBAC
Y>X CALIPER						and a second	
X>Y CALIPER		ADDADEN	T FLOW]		PPARENT	FLOW
CALAUA DAY DACKUD		VNANTC DO		DM	DVA	ANTC US	75 EPM

		RE	MARKS		and the second
	CALIBRATION PASS	ES AT 75 & 100 FPM.		1.5	
					VERSION: 2.42
FINISH	DEPTH: 23.1 FEET	DIRECTION: UP	DATE: 05/04/98	TIME: 09:56:	5 MODE: TRACE PLAYBACK


COMPANY	MIAMI DADE WATER & SEWER DEPT.	5
WELL	NWWF #10	
FIELD	NORTH WEST WELL FIELD STATE _FLORIDA	

	GEOPHYSICA		GGING, MATER	ND SE	A-Y CALIFER GAMMA RAY LOG WER DEPT.	, i i i i i i i i i i i i i i i i i i i
	WELL	WELL #10	1			
	FIELD	NORTH WEST	WELL	FIELD		STDA
	COUNTY_	DADE		TS	STATE FLORIDA	AIDA
0	LOCATION				NONE	RVICES
FILE	SEC.	TWP	RGE			
PERMANENT DATUM PAD LEVEL LOG MEASURED FROM PAD DRILLING MEASURED FROM P/	FROM PAD LEV	FT.ABOVE	ELEV. PERMANENT	DATUM	ELEV.:K.B D.F	
DATE		14-JANUARY-1998	8881-Ab			
RUN NO.		ONE				
TYPE LOG		1.23	CALIPER/GR			
DEPTH-DRILLER	R	82"				
LOGGED INTERVAL	VAL	82' 10	SURFACE	m	10	
OPERATING RIG	G TIME	1.5 HOURS				
TYPE FLUID IN HOLE	N HOLE	WATER				
SALINITY,	PPM CL	NA		-		
DENSITY-VISCOSITY	SCOSTIA	5.		1		
?	TEMP, DEG F.	NA				
EQUIPMENT-LOCATION	CATION	102 FTM				
		LEE				
WITNESSED BY		VERRASTRO,	O,SEITH	\vdash		
	EHOLE	05		CASING	RE	-
RUN NO.	BIT FROM	M TO	SIZE	EGT	40"	10

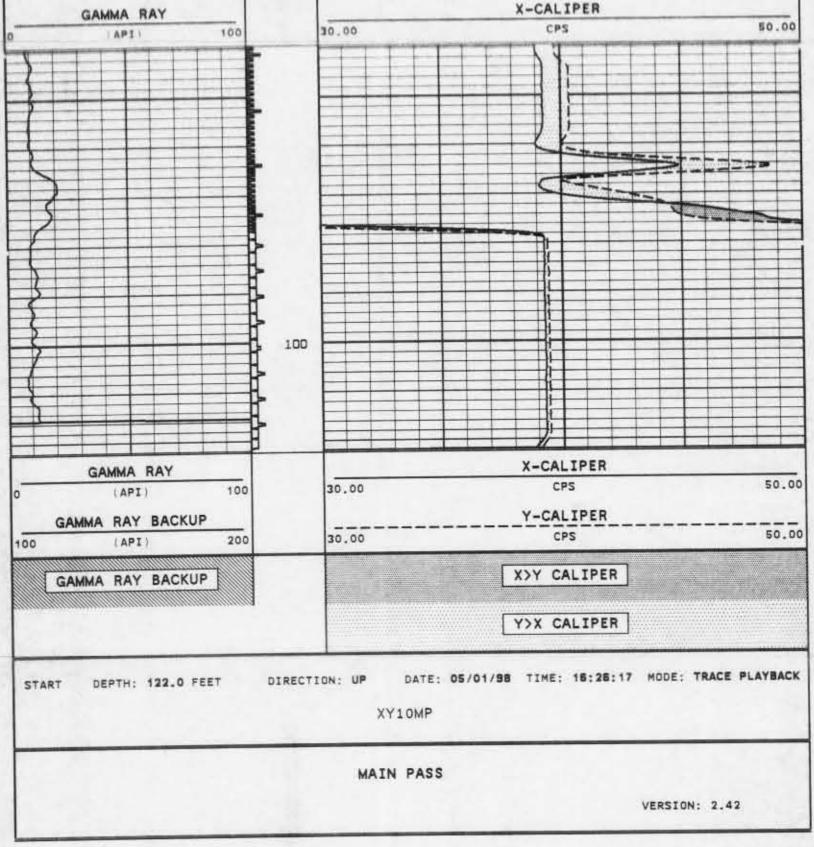
ALL INTERPRETATIONS ARE OPINIONS BASED ON INFERENCES FROM ELECTRICAL OR OTHER MEASUREMENTS AND WE CANNOT AND DO NOT GUARANTEE THE ACCURACY OR CORRECTNESS OF ANY INTERPRETATION, AND WE SHALL NOT, EXCEPT IN THE CASE OF GROSS OR WILLFULL NEGLEGENCE ON OUR PART, BE LIABLE OR RESPONSIBLE FOR ANY LOSS, COSTS, DAMAGES, OR EXPENSES INCURRED OR SUSTAINED BY ANYONE RESULTING FROM ANY INTERPRETATION MADE BY ANY OF OUR OFFICERS, AGENTS OR EMPLOYEES. THESE INTERPRETATIONS ARE ALSO SUBJECT TO DUR GENERAL TERMS AND CONDITIONS SET OUT IN DUR CURRENT PRICE SCHEDULE.

	REMARKS	
	XY CALIPER GAMMA RAY TOOL STRING CONFIGURATI	
14	GAMMA RAY 3 FT. LONG MEASURE POINT 7.5 FT. FROM BOT	
-		TOTAL TOOL STRING LENGTH = 9 FT
	XY CALIPER 6 FT. LONG	
	LONG ARM MEASURE POINT 1 FT. FOM BOT	

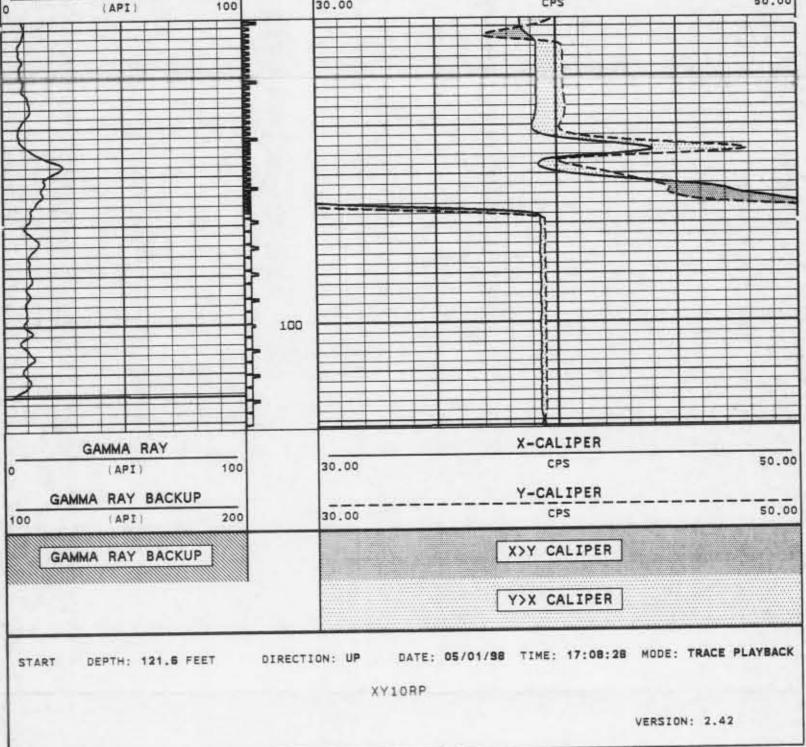
-- BOT

VERSION: 2,42

FILE:		DATE: 01/14/	98	TIME: 14:00	VE	RSION: 2.4
		X	CALIPER #	14		
		DATE: 01/14	98	TIME: 12:27		
	MEASURED	STANDARD	MINIMUM	MAXIMUM	DEVIATION	UNITS
30" 40" 58.5"	22.5 30.1 42.8	30.0 40.0 58.5	30.0	22.8 30.2 42.8	0.08 0.10 0.11	CPS CPS CPS
		¥ -	CALIPER #	14		
		DATE: 01/14	98	TIME: 12:27		
	MEASURED	STANDARD	MINIMUM	MAXIMUM	DEVIATION	UNITS
30'' 40'' 58.5''	23.2 30.3 42.5	30.0 40.0 58.5	23.1 30.3 42.5	23.3 30.5 42.7	0.13 0.08 0.09	CPS CPS CPS


	BEF	DRE SURVEY	CALIBRAT	TION SUMMAR	Y		
FILE:	D	ATE: 01/14/5	18	TIME: 14:00	VE	RSION: 2.42	
		3.0	APT CAL 1				
		DATE: 01 14	38	TIME: 12127			
BEFORE: BACKGROUND	MEASURED	STANDARD 0.0 200.0	MINIMUM 18.5 388.9	62.6 408.3	DEVIATION 8.32 15.21	UNITS API API	
BEFORE: CALIBRATOR	398,1	200.0	300.3	408.3	(0,2)		

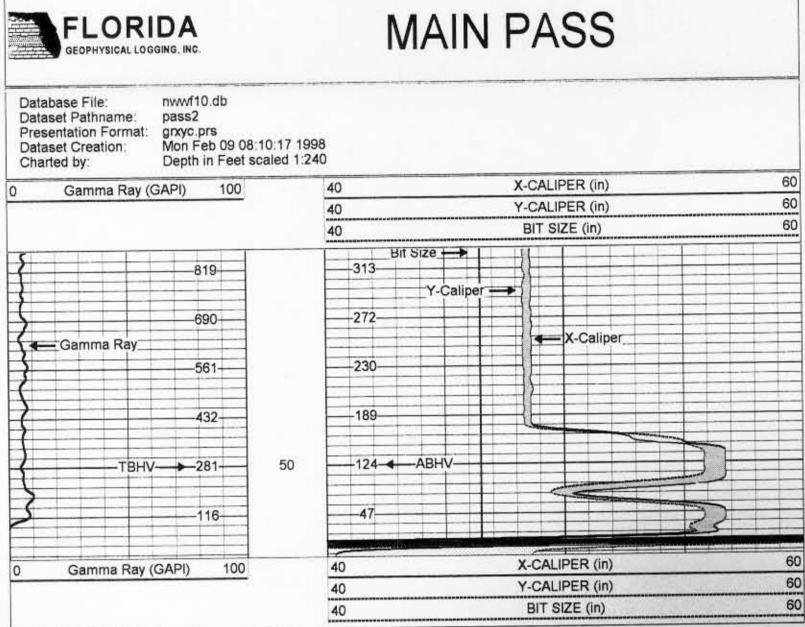
COMPANY	MIAMI DADE WATER AND SEWER DEPT.	5
WELL	NORTH WEST WELL FIELD #10	
FIELD	NORTH WEST WELL FIELD STATE FLORIDA	

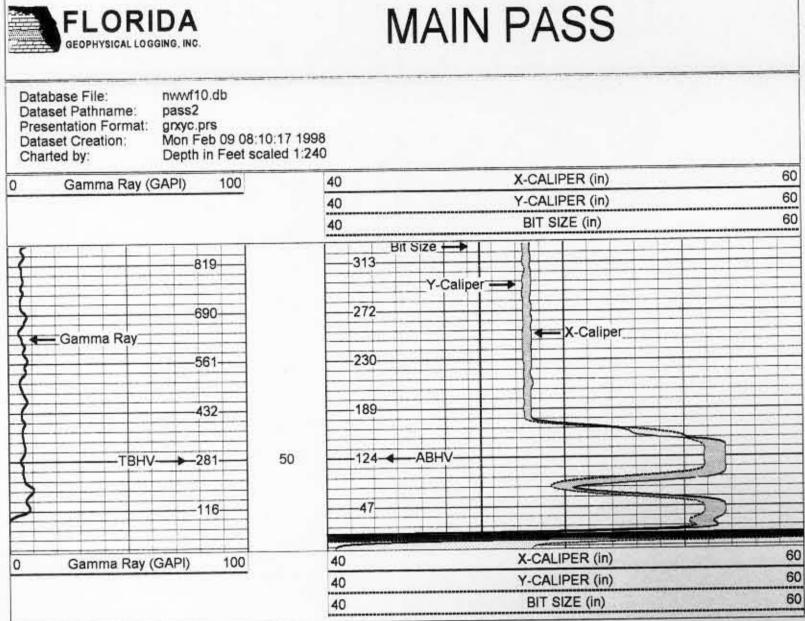

38 1/2"	RUN NO. BIT	BOREHOLE	WITNESSED BY	RECORDED BY	EQUIPMENT-LOCATION	MAX. REC. TEMP, DEG	LEVEL	DENSITY-VISCOSITY	SALINITY, PPM CL	TYPE FLUID IN HOLE	OPERATING RIG TIME	LOGGED INTERVAL	DEPTH-LOGGER	DEPTH-DRILLER	TYPE LOG	RUN NO.		PERMANENT DATUM P LOG MEASURED FROM DRILLING MEASURED	FILE		0	F	W	0	
120'	FROM	IOLE RECORD			ON	DEG F.		ITY	CL.	LE	ME							PAD FROM		LOCATION	COUNTY	FIELD	WELL	OMPANY_	GEOPH
CASING	TO	DRD	T.URAM	LEE	102 FTM	NA	8' BELOW	NA	NA	WATER	1.5 HOURS		120'		X-Y CALI		01-MAY-1998	6	TWP		DADE	NORTH WEST	NWWF #10	COMPANY MIAMI DADE	GEOPHYSICAL LOGGING, IN
40"	SIZE						PAD				S	TO 40'			CALIPER/GR		866	FT.ABOVE PERMANENT	RGE			WELL		E WATER AT	DGGING, I
	WGT.	CASING	ŀ		T													DATUM			ST	FIELD			0.
64'	FROM	RE										TO						ELEV.:K.B D.F G.L		FLOWMETER	STATE FLORIDA			SEWER DEPT.	X-Y CALIPER GAMMA RAY LOG
SURFACE	10																			TER	AIDA				ER

ALL INTERPRETATIONS ARE OPINIONS BASED ON INFERENCES FROM ELECTRICAL OR OTHER MEASUREMENTS AND WE CANNOT AND DO NOT GUARANTEE THE ACCURACY OR CORRECTNESS OF ANY INTERPRETATION. AND WE SHALL NOT, EXCEPT IN THE CASE OF GROSS OR WILLFULL NEGLEGENCE ON OUR PART, BE LIABLE OR RESPONSIBLE FOR ANY LOSS, COSTS, DAMAGES, OR EXPENSES INCURRED OR SUSTAINED BY ANYONE RESULTING FROM ANY INTERPRETATION MADE BY ANY OF OUR OFFICERS, AGENTS OR EMPLOYEES. THESE INTERPRETATIONS ARE ALSO SUBJECT TO OUR GENERAL TERMS AND CONDITIONS SET OUT IN OUR CURRENT PRICE SCHEDULE.

		VERSION: 2.42
	MAIN PASS	
	XY10MP	
FINISH DEPTH: 38.2 FEET DIRE	TION: UP DATE: 05/01/98	TIME: 18:28:50 MODE: TRACE PLAYBACK
	[Y	'X CALIPER
GAMMA RAY BACKUP		OY CALIPER
GAMMA RAY BACKUP	30.00	Y-CALIPER 50.00

					VERSION: 2.42
			Y10RP		
FINISH DEPTH: 43.4 FEET	DI	RECTION: UP	DATE: 05/01/98	TIME: 17:08:57	MODE: TRACE PLAYBACK
				Y>X CALIPER	
GAMMA RAY BACKUP]	-		X>Y CALIPER	
GAMMA RAY BACKUP				Y-CALIPER	
100 (API) GAMMA RAY	200	30.00		CPS X-CALIPER	50.00
0 (API)	100	30.00		CPS	50.00

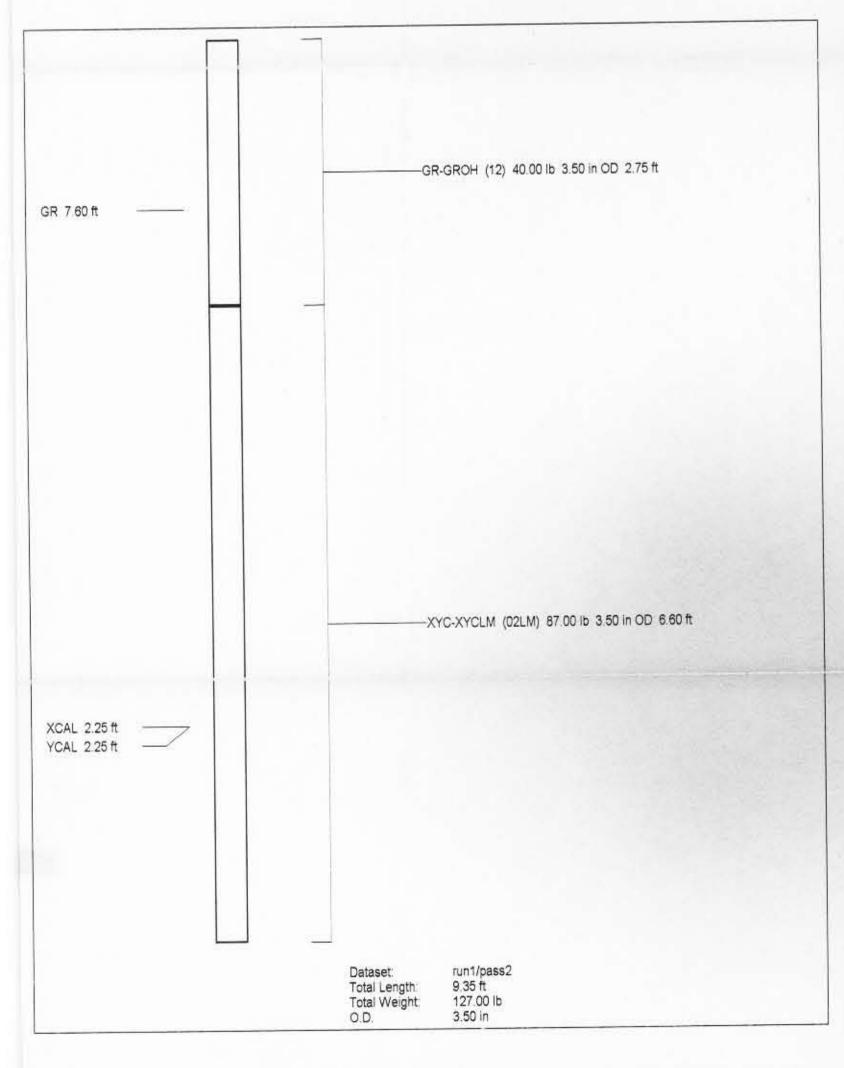

		MASTER	CALIBRATI	ON SUMMARY	Y		
FILE:		DATE: 05/	01/98	TIME: 11:	26	VERSION: 2.	42
			GR API CAL	#15			
		DATE: 11	/20/97	TIME: 09	: 15		
SHOP: BACKGROUND SHOP: CALIBRATOR	MEASURED 49.2 179.0	UNITS CPS CPS	STANDARD 0.0 120.0	MINIMUM 31.8 131.0	MAXIMUM 50.8 207.8	5.63 12.94	UNITS API API


BEFORE SURVEY CALIBRATION SUMMARY FILE: DATE: 05/01/98 TIME: 11:25 VERSION: 2.42

		X-C	CALIPER #C)1		
		DATE: 05/01/	98	TIME: 10:32		
10" 20" 30" 40" 58"	MEASURED 7.5 12.3 17.1 21.7 29.7	STANDARD 10.0 20.0 30.0 40.0 60.0	MINIMUM 7.4 12.1 16.9 21.6 29.5	MAXIMUM 7.7 12.3 17.3 21.8 29.8	0.12 0.09 0.09 0.07 0.00	UNITS CPS CPS CPS CPS CPS
		Y-(CALIPER #	01		
		DATE: 05/01	/98	TIME: 10:32		
10" 20" 30" 40" 58"	MEASURED 7.5 12.2 16.7 21.4 29.5	STANDARD 10.0 20.0 30.0 40.0 60.0	MINIMUM 7.3 12.0 16.7 21.3 29.4	MAXIMUM 7.6 12.4 16.9 21.5 29.6	DEVIATION 0.13 0.04 0.04 0.07 0.07	UNITS CPS CPS CPS CPS CPS

COMPANY	MIAMI DADE WATER & SEWER DEPT.	S.
WELL	NWWF #10	
FIELD	NORTH WEST WELL FIELD STATE FLORIDA	

Casing Record Surface String Prof. String Production String	Run Number E THREE 46		Location Recorded Rv	Equipment Number	Time Logger on Bottom	Estimated Cement Top	Max Recorded Temp.	Density / Viscosity	Open Hole Size	Top Log Interval	Bottom Logged Interval	Depth Logger	Depth Driller	Run Number	Date	Company Well Field Country State/Pro	NND	IAMI DAI W-#10 .W. WEL ADE LORIDA		LD				the trans	FLO
Size 48"	Bit From 46.5" 40'	anahola Decord			-											Permanent Datum Log Measured From Drilling Measured From		Location	Country D	Field N	AN IN		Company M		FLORIDA
Wgi/Ft	To Size	R.RODRIGUEZ	P.McHUGH	103	08:00	N/A	NIA	NA	46.5	10	165'	170	170.5	THREE	9-FEB-98	PAD PAD			DADE	N.W. WELL FIELD	VV-#-10	NIN #10	MIAMI DADE		
Top SURF	Weight	Tubing Record														Elevation 0'			State/Prv FLORIDA	ELD				LOG	GAMMA RAY
Bottom 40'	From To	đ														KB GL	Elevation	Other Services NONE	ORIDA						
< Fold Here > All interpretati interpretation, an sustained by any	ions are opin	All shares and					1000	ss o ade	r wi by a	liful anv	neg of o	lige	offi out	e on cers t in	s, a our	gents or en current Pri	able :	ees. These in	TCD: SHIT	1055	COSL	a. u.		C OI GADGI	BOB INVOLTON Y
											F	=U			RE	CASIN 0"	G:								



REPEAT PASS

-	the state of the s			And the second	
Data Pres Data	abase File: nwwf10.db aset Pathname: pass1.5 sentation Format: grxyc.prs aset Creation: Mon Feb 09 urted by: Depth in Fee	08:18:01 19 et scaled 1:2	998 240		
0	Gamma Ray (GAPI) 100)	40	X-CALIPER (in)	60
-		-	40	Y-CALIPER (in)	60
			40	BIT SIZE (in)	60
		50			
0	Gamma Ray (GAPI) 10	0		X-CALIPER (in)	60
0	Gamma nay (Grinty 10	-	40	Y-CALIPER (in)	60
			40	BIT SIZE (in)	60
0	Gamma Ray (GAPI) 10	0		Y-CALIPER (in)	6

			XY Caliper Calibra	ation Report		
Serial Perfor	Number/ med:	Model:	02LM-XYCLM Mon Feb 09 07:	51:31 1998		
	Ring		X Caliper		Y Caliper	
1: 2: 3: 4: 5: 6:	30 40 57	in in in in in	991.892 1134.33 1382.78	cps cps cps cps cps cps cps	1027.13 1164.26 1397.9	cps cps cps cps cps cps cps
			Gamma Ray Calib	ration Report		
Serial Numb Tool Model: Performed:			12 GROH Tue Jan 13 16:0	03:22 1998		
Calibrator V	alue:		120	GAPI		
Background Calibrator R		Ę.	30.7752 186.52	cps cps		
Sensitivity:			0.770492	GAPI/cps		

Appendix D

MONTGOMERY WATSON

WELL COMPLETION REPORT WELL FORM 0124 SFW		IMIT N	0 USE	PER	MIT	NO.	
Tietini Dade WSA 3575 L	journe Road S/20/98	Au	a m'	A		FL_	33146
	5/20/98		6				104 2% West #/0
oniraciar's Signature Lizenze No.	Completion Date		Casting (Dep in		fan	
E OF WORK: Construct () Repair 💓 Abandon ()		Grout		ing II. Ing II.	Dep	ih piti	DIVILL OUTTINGS LOG Examine cullings every 20 ft. or al fermation changes
LLUSE: Domentic Well () Public () Monitor () Tex krightica () Fire Well () Other		Thick- near		maler Depth	From	To	Give poler, grain size, and type of material Mate carities, depth to prestoring zones.
THOD: Rotary with \$500 () or Air (ad. Cable Tool ()	, Jal (.)	4"	44"	,175	Æ	64	Bluck steel casing
Casing Orivan (), Other ATIC WATER LEVELFL below top of casing			ļ		FO	8.4	Linester
MPING WATER LEVEL 202 FL attor Hrs. a	4500 BPM				84	95	Sand / SC 76/Lineson
NO STAFE IN D. CARACITY RI	26.4				95	98	Limester / sud/show
MP TYPE INTAKE DEPTH					98	101	Serv 190% Khen
From tap of groun	ſ				21	124	Cley
LOCATION					 	╂	Beckford even ut
Cated Near 13700 NEU J J & St Primi, AL				1			arest kenters
Joseph Princes, PC							2 104 BLS
unty_Osolc		of been				1	
		1867			1		
H Section Township Range			L	<u> </u>	<u> </u>	<u>}</u>	
Latitude-Longitude	1	Casing	: Bini	sk Ste	2.10	í Gelv	() PVC() Fiberglass ()
		Screen	: Тур	• <u>~ ^</u>	14	Si	ot size
ttings sent to District? () Yes	<u></u>	Screen	ied fri	ന്ന			[?L.) 10 [?L.)
	E IN BECTION	Турва	gro	ut with	1 % 80	Juiltive	B Alcal Class H
ale: PWS Wells stack a site map if well loca							Sulphur () Sally () Iron (
trom site location on permit application.		Condu	cuvit	¥ ——		(7	nlorides mg/i

/98 MON 15:05 FAX 9414894545

3

C

С

TSO

Ω

0

07/27/

YOUNGQUIST BROTHERS

Appendix E

MONTGOMERY WATSON

Bacteriology Clearance Analyses

~ <u> </u>	<u>V</u> E			FAX
S H	EE	T		
ſo: Fax #:	(305) 623-:			ilitative Services
Subject: Date:	Bacteriolo July 6, 199	gy Results for NW Well •	# 10.	
Pages:	•	o g this cover sheet.		
)	Date	Sample	MF	Analyst
06/30/98	8 9:00 A.M.	N W Well # 10	A	A.C. Salazar
06/30/9	8 3:00 P.M.	N W Well # 10	A	A.C. Salazar
07/01/9	8 7:30 P.M.	N W Well # 10	A	A.C. Salazar
07/01/9	8 2:00 P.M.	N W Well # 10	A	A.C. Salazar
07/02/98	3 7:30 A.M.	N W Well # 10	A	A.C. Salazar
07/02/98	8 1:30 P.M.	N W Well # 10	A	A.C. Salazar
07/03/9	8 7:30 A.M	N W Well # 10	A	A.C. Salazar
07/03/98	8 3:00 P.M.	N W Well # 10	A	A.C. Salazar
07/04/98	3 7:30 P,M	N W Well # 10	A	A.C. Salazar
07/04/98	3 2:30 P.M.	N W Well # 10	A	A.C. Salazar
	3 7:30 A.M.	N W Well # 10	A	A.C. Salazar
07/05/98				

State of Florida Certification #56084

.

.

. 🛥

From the desk of ...

Marjorie Jolly, Chemist 3 Preston Water Quality Laboratory

Miami-Dade Water & Sewer Department 1100 West 2 nd Avenue Hialesh, FI. 33010

-

Tel: (305) 887-2007 Fax: (305) 882-5767 .

cσ	V E	K	and a start of the second s	
S H	E E			FAZ
To:] Fax #: (Subject:] Date: J	Mr. Joe (305) 623- Bacteriolo July 13, 19	De Marzio, Department 3620 ogy Results for NW Well 998		ilitative Services
Pages: 1 Dat		g this cover sheet. Sample	MF	
07/06/98 - 7	':32 a.m.	N W Well # 10		Analyst A.C. Salazar
07/06/98 - 2	:10 p.m.	N W Well # 10	A	A.C. Salazar
07/07/98 - 7	:33 a.m.	N W Well # 10	A	A.C. Salazar
07/07/98 - 1:	:40 p.m.	N W Well # 10	A	A.C. Salazar
07/08/98 - 7:	:33 a.m.	N W Well # 10	A	A.C. Salazar
07/08/98 - 1:	:45 p.m.	N W Well # 10	A	A.C. Salazar
07/09/98 - 7:	33 a.m.	N W Well # 10	A	A.C. Salazar
07/09/98 - 2:	25 p.m.	N W Well # 10	A	A.C. Salazar

State of Florida Certification #56084

۱

. ...

From the desk of ...

Marjorle Jolly, Chemist 3 Preston Water Quality Laboratory

Miami-Dade Water & Sewer Department 1100 West 2 nd Avenue Hialeah, FL 33010

> Tel: (305) 887-2007 Fax: (305) 882-5767

Harbor Branch Water Chemistry Results

5600 US 1 North. Fort Pierce, FL 34946 561-465-2400, Ext. 285

FDEP QAP 870174 September 23, 1998

Marjorie Jolly Miami-Dade Water & Sewer Dept. 1100 West 2nd Avenue Hialeah, FL 33010

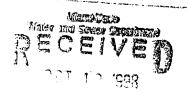
Client :	Metro Dade County
Project [Reference] :	Groundwater Samples [8006175]
Date Received :	August 26, 1998

Analytical results presented in this report have been reviewed for compliance with the laboratory quality assurance plan and applicable quality control criteria. The quality control parameters evaluated have been summarized on the Quality Control Summary page immediately following this cover sheet. Applicable quality control standards have been met unless otherwise noted on the Quality Control Summary page:

FDOH (HRS) Drinking Water Certification Number: 96230, 83486, 82500, 85512, 84526

FDOH (HRS) Environmental Certification Number: E96080, 83486, 82500, 85512, 84526

FDEP CompQAP Approval Number: 870174


NOTE: This document and the Quality Control Summary page are included as part of the Analytical Report for the above referenced project and should be retained as a permanent record thereof.

If you have any questions regarding this report, or if we can be of further assistance, please feel free to call (561) 465-2400 ext. 285 and ask to speak with a project manager.

Khan Hont

Don Hash Project Manager

Myron Gunsalus, Jr. Laboratory Director

Line of the second of

Southeast Florida Fort Pierce, FL 34946 FDOH #96230 / E96080 Orlando Area Deltona, FL 32725 FDOH #83486 / E83509

Jacksonville Area Fernandina Beach, FL 32034 FDOH #82500 / E82417

Fort Myers Area Lehigh Acres, FL 33936 FDOH #85512 / E85370

5600 US 1 North, Fort Pierce, FL 34946 561-465-2400, Ext. 285

Quality Control Summary

and accuracy limits.

- Laboratory Blank: All analytes were below Method Detection Limits (MDL).
- Laboratory Control Sample/ Laboratory Control Sample Duplicate:
- Matrix Spike/Matrix Spike Duplicate:

Recoveries for analytes were within laboratory precision and accuracy limits.

Recoveries for analytes were within laboratory precision

• Sample Duplicate: Analysis data demonstrated acceptable reproducibility of laboratory processes.

SM2150B:

HBEL Sample 8006175001 was received outside of the recommended hold time for Odor, therefore, the results for this analyte were obtained from a test that was performed past the holding time.

EPA 504.1:

For this method, the laboratory control sample and laboratory control sample duplicate were substituted for precision calculations for Dibromochloropropane.

EPA 625:

Precision for Dimethylphthalate was found to be outside of acceptance limits between the laboratory control sample and laboratory control sample duplicate. Due to lack of sample volume, no matrix spikes were performed. Accuracy recoveries were acceptable for both samples. This analyte was not detected in the sample. All other quality control measures were met.

EPA 200.9:

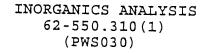
Due to high analyte concentrations and possible matrix interferences, the matrix spike and matrix spike duplicate samples for Lead and Selenium did not meet acceptable accuracy levels. For these analytes, the laboratory control samples were substituted. Antimony produced a result in the matrix spike duplicate sample that failed to meet accuracy limits. This resulted in precision also not meeting acceptable levels. Method performance was based on the matrix spike sample and laboratory control sample.

EPA 515: ---

Recoveries of Dalapon in the laboratory control sample and laboratory control sample duplicate were found to be somewhat low. Pentachlorophenol produced a result in the laboratory control sample duplicate that did not meet established acceptance limits. Accuracy was proven in the laboratory control sample. For both analytes, precision was determined to be acceptable.

Quality Assurance Manager

Southeast Florida Fort Pierce, FL 34946 FDOH #96230 / E96080 Orlando Area Deltona, FL 32725 FDOH #83486 / E83509 Jacksonville Area Femandina Beach, FL 32034 FDOH #82500 / E82417


Fort Myers Area Lehigh Acres, FL 33936 FDOH #85512 / E85370

PUBLIC DRINKING WATER ANALYSIS REPORTING FORMAT PUBLIC WATER SYSTEM INFORMATION (to be completed by system or lab)

System Name:	I.D. #:
Address: Type (check one): () Community () Nontransient N	Phone #: oncommunity () Noncommunity
SAMPLE INFORMATION (to be completed by sampler)	
Sample Date (MMDDYY): 08/25/98	Sample Time:08:30
Sample Location (be specific): <u>NW Well #10</u>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Sampler Name and Phone:	ŕ
Sampler's Signature:	Title:
Check Type(s): () Distribution () Recheck of MCL () Clearance () Thm Max Res Time () Distrib entry pt () Raw LABORATORY CERTIFICATION INFORMATION (to be	() Plant Tap () Composite of Multiple SitesAttach a format for each site
Lab Name: Harbor Branch Environmental Laboratory	
Address: 5600 U.S. 1 North, Ft, Pierce, FL 34946	······
Subcontracted Lab HRS #: <u>84252 & 84269</u> Group Ar	nalyzed: <u>EPA 548.1 & Gross Alpha</u>
ANALYSIS INFORMATION (to be completed by lab) SA	MPLE NUMBER: 8006175001
Date Sample(s) Received: <u>08/26/98</u> Group(s) Analyzed & Result	s attached for compliance with 62-550, F.A.C.:
) Asbestos Only (X) Trihalomethanes
	Secondaries Pesticides & PCBs X) All 14 () Partial () All (X) Partial
	Group III Unregulateds Radiochemical (X) All 11 () Partial (X) Single Sample () Qtrly Composite*
* Provide radiocher	mical sample dates & locations for each quarter
I, <u>N. Myron Gunsalus, Jr.</u> , do HEREBY CH	ERTIFY that all attached analytical data are correct.
Signature	-
TitleLaboratory Director	Date September 24, 1998
COMPLIANCE INFORMATION (to be completed by State))
Sample Collection Satisfactory:	Sample Analysis Satisfactory:
Resample Requested for:	Reason:
Person notified to resample: I	Date Notified:
DER/HRS Reviewing Official:	

Effective September 1994

5600 US 1 North, Fort Pierce, FL 34946 561-465-2400, Ext. 285 FDEP QAP 870174

Workorder Groundwater Samples

. .

ID	Parameter [MCL]	Result		Method	MDL	Date	Lab ID
1005 1010 1025 1024 1025 1030 1035 1036 1040 1041 1045 1052 1074 1075 1085	Arsenic[.05] Barium[2] Cadmium[.005] Chromium[.1] Cyanide[.2] Fluoride[4] Lead[.015] Mercury[.002] Nickel[.1] Nitrate[10] Nitrite[1] Selenium[.05] Sodium[160] Antimony[.006] Beryllium[.002]	ND 0.021 ND ND 0.031 0.24 0.0012 ND ND ND ND ND ND ND ND ND ND ND ND	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	EPA 200.7 EPA 200.7 EPA 200.7 EPA 200.7 SM4500CN E EPA 300.0 EPA 200.9 EPA 245.1 EPA 200.7 EPA 300.0 EPA 300.0 EPA 200.9 EPA 200.7 EPA 200.9 EPA 200.7 EPA 200.9	0.0032 0.0018 0.00070 0.0018 0.0040 0.011 0.0010 0.000060 0.0020 0.0020 0.0020 0.0020 0.0020 0.50 0.0010 0.0010 0.0010	08/27/98 08/27/98 08/27/98 08/27/98 08/27/98 08/26/98 09/10/98 08/26/98 08/26/98 08/26/98 08/26/98 09/10/98 08/27/98	96230 96230 96230 96230 96230 96230 96230 96230 96230 96230 96230 96230 96230 96230
					2.2310	09/10/98	96230

Orlando Area Deltona, FL 32725 FDOH #83486 / E83509

. ...

Jacksonville Area Fernandina Beach, FL 32034 FDOH #82500 / E82417 Fort Myers Area Lehigh Acres, FL 33936 FDOH #85512 / E85370

5600 US 1 North, Fort Pierce, FL 34946 561-465-2400, Ext. 285 FDEP QAP 870174

TRIHALOMETHANE ANALYSIS 62-550.310(2)(a) (PWS027)

Project Sample Location Sample Number Sampling Date Preservative Date Received	Metro Dade County NW Well #10 8006175001 08/25/98 08:30 Sodium Thiosulfate 08/26/98 09:45			Workorder	Groundwater Sa	amples	
ID Parameter []	MCL]	CL Res.	Result	Method	MDL	Date	Lab ID

2950	Total THMs[.1]	ND	mg/L	EPA 524.2	0.00050	09/01/98 96230	
------	----------------	----	------	-----------	---------	----------------	--

Southeast Florida Fort Pierce, FL 34946 FDOH #96230 / E96080 Orlando Area Deltona, FL 32725 FDOH #83486 / E83509 Jacksonville Area Fernandina Beach, FL 32034 FDOH #82500 / E82417 Fort Myers Area Lehigh Acres, FL 33936 FDOH #85512 / E85370

5600 US 1 North, Fort Pierce, FL 34946 561-465-2400, Ext. 285 FDEP QAP 870174

VOLATILE ORGANIC ANALYSIS 62-550.310(2)(b) (PWS028)

Project Sample Locati Sample Numb Sampling Date Preservative Date Received	er 8006175001 e 08/25/98 08:30 1:1 Hydrochloric Acid		Workorder	Groundwate	r Samples	
ID Parame	er [MCL]	Result	Method	MDL	Date	Lab ID

2378	1,2,4-Trichlorobenzene[70]	ND	ug/L	EPA 524.2	0.37	09/01/98	96230
2380	cis-1,2-Dichloroethylene[70]	ND	ug/L	EPA 524.2	0.23	09/01/98	
2955	Total Xylenes[10000]	ND	ug/L	EPA 524.2	0.30	09/01/98	
2964	Dichloromethane[5]	ND	ug/L	EPA 524.2	0.49	09/01/98	
2968	o-Dichlorobenzene[600]	ND	ug/L	EPA 524.2	0.35	09/01/98	
2969	para-Dichlorobenzene[75]	ND	ug/L	EPA 524.2	0.28	09/01/98	
2976	Vinyl chloride[1]	ND	ug/L	EPA 524.2	0.33	09/01/98	
2977	1,1-Dichloroethylene[7]	ND	ug/L	EPA 524.2	0.21	09/01/98	
2979	trans-1,2-Dichloroethylene[100]	ND	ug/L	EPA 524.2	0.18	09/01/98	
2980	1,2-Dichloroethane[3]	ND	ug/L	EPA 524.2	0.45	09/01/98	
2981	1,1,1-Trichloroethane[200]	ND	ug/L	EPA 524.2	0.25	09/01/98	96230
2982	Carbon tetrachloride[3]	ND	ug/L	EPA 524.2	0.28	09/01/98	
2983	1,2-Dichloropropane[5]	ND	ug/L	EPA 524.2	0.23	09/01/98	
2984	Trichloroethylene[3]	ND	ug/L	EPA 524.2	0.21	09/01/98	96230
2985	1,1,2-Trichloroethane[5]	ND	ug/L	EPA 524.2	0.23	09/01/98	
2987	Tetrachloroethylene[3]	ND	ug/L	EPA 524.2	0.26	09/01/98	96230
2989	Monochlorobenzene[100]	ND	ug/L	EPA 524.2	0.23	09/01/98	96230
2990	Benzene [1]	ND	ug/L	EPA 524.2	0.090	09/01/98	96230
2991	Toluene [1000]	ND	ug/L	EPA 524.2	0.18	09/01/98	96230
2992	Ethylbenzene[700]	ND	ug/L	EPA 524.2	0.19	09/01/98	96230
2996	Styrene[100]	ND	ug/L	EPA 524.2	0.24	09/01/98	96230

Southeast Florida Fort Pierce, FL 34946 FDOH #96230 / E96080 Orlando Area Deltona, FL 32725 FDOH #83486 / E83509

. ...

Jacksonville Area Femandina Beach, FL 32034 FDOH #82500 / E82417 Fort Myers Area Lehigh Acres, FL 33936 FDOH #85512 / E85370

5600 US 1 North, Fort Pierce, FL 34946 561-465-2400, Ext. 285 PE FDEP QAP 870174

PESTICIDE & PCB CHEMICAL ANALYSIS 62-550.310(2)(c) (PWS029)

Project	Metro Dade County	Workorder	Groundwater Samples
Sample Location	NW Well #10		Groundwater Samples
Sample Number	8006175001		
Sampling Date	08/25/98 08:30		
Preservative	Sodium Thiosulfate		
Date Received	08/26/98 09:45		

ID	Parameter [MCL]	Result		Method	MDL	Date	Lab ID
2005	Endrin [2]	ND	ug /1	524 500			
2010	Lindane[.2]	ND	ug/L ug/L	EPA 508	0.0061	08/27/98	96230
2015	Methoxychlor[40]	ND	-	EPA 508	0.0040	08/27/98	96230
2020	Toxaphene [3]	ND	ug/L	EPA 508	0.0040	08/27/98	96230
2031	Dalapon [200]	ND	ug/L	EPA 508	1.2	08/27/98	96230
2032	Diquat [20]	ND	ug/L	EPA 515.1	0.66	08/31/98	96230
2033	Endothall [100]		ug/L	EPA 549.1	0.88	09/01/98	96230
2034	Glyphosate[700]	ND	ug/L	EPA 548.1	10	08/28/98	84269
2035	Di(2-ethylhexyl)adipate[400]	ND	ug/L	EPA 547	6.0	08/29/98	96230
2036	Oxamyl (Vydate)[200]	ND	ug/L	EPA 525	0.81	08/31/98	96230
2037	Simazine[4]	ND	ug/L	EPA 531.1	0.36	08/28/98	96230
2039	Di(2-ethylhexyl)phthalate[6]	ND	ug/L	EPA 507	0.33	08/27/98	96230
2040	Picloram[500]	ND	ug/L	EPA 525	1.4	08/31/98	96230
2040	Dinoseb[7]	ND	ug/L	EPA 515.1	0.085	08/31/98	96230
2041		ND	ug/L	EPA 515.1	1.0	08/31/98	96230
2042	Hexachlorocyclopentadiene [50]	ND	ug/L	EPA 508	0.071	08/27/98	96230
2048	Carbofuran[40]	ND	ug/L	EPA 531.1	0.21	08/28/98	
	Atrazine[3]	ND	ug/L	EPA 507	0.24	08/27/98	96230
2051	Alachlor[2]	ND	ug/L	EPA 507	0.29	08/27/98	96230
2065	Heptachlor[.4]	ND	ug/L	EPA 508	0.0051	08/27/98	96230
2067	Heptachlor epoxide[.2]	ND	ug/L	EPA 508	0.0040	08/27/98	96230
2105	2,4-D[70]	ND	ug/L	EPA 515.1	0.32	08/31/98	96230
2110	2,4,5-TP (Silvex)[50]	ND	ug/L	EPA 515.1	0.11	08/31/98	96230
2274	Hexachlorobenzene[1]	ND	ug/L	EPA 508	0.019		96230
2306	Benzo(a)pyrene[.2]	ND	ug/L	EPA 525	0.072		96230
2326	Pentachlorophenol[1]	ND	ug/L	EPA 515.1	0.18		96230
2383	PCB[.5]	ND	ug/L	EPA 508	0.25		
2931	Dibromochloropropane[.2]	ND	ug/L	EPA 504.1	0.0025		96230
2946	Ethylene dibromide[.02]	ND	ug/L	EPA 504.1	0.0023		96230
2959	Chlordane [2]	ND	ug/L	EPA 508			96230
			49/0	LFA JUO	0.012	08/27/98	96230

Southeast Florida Fort Pierce, FL 34946 FDOH #96230 / F96080 Orlando Area Deltona, FL 32725 FDOH #83486 / F83509 Jacksonville Area Fernandina Beach, FL 32034 FDOH #82500 / E82417 Fort Myers Area Lehigh Acres, FL 33936 FDOH #85512 / F85370

5600 US 1 North, Fort Pierce, FL 34946 561-465-2400, Ext. 285 FDEP QAP 870174

RADIOCHEMICAL ANALYSIS 62-550.310(5) (PWS033)

Project Sample Location Sample Number Sampling Date Preservative Date Received	Metro Dade County NW Well #10 8006175001 08/25/98 08:30 Nitric Acid 08/26/98 09:45			Workorder	Groundwate	r Samples	
ID Name		Result (pCi/L)	Method	Er	ror	Date	Lab ID

4000	Gross Alpha	2.8	pCi/L	EPA 900.0	+/-1.0	09/01/98	8-252

Southeast Florida Fort Pierce, FL 34946 FDOH #96230 / E96080 Orlando Area Deltona, FL 32725 FDOH #83486 / E83509 Jacksonville Area Fernandina Beach, FL 32034 FDOH #82500 / E82417 Fort Myers Area Lehigh Acres, FL 33936 FDOH #85512 / E85370

5600 US 1 North, Fort Pierce, FL 34946 561-465-2400, Ext. 285 FDEP QAP 870174

SECONDARY CHEMICAL ANALYSIS 62-550.320 (PWS031)

Project	Metro Dade County		Workorder	Groundwater Samples
Sample Location	NW Well #10		() OI KOI UCI	Gloundwater Samples
Sample Number	8006175001			
Sampling Date	08/25/98 08:30			
Preservative	Nitric Acid or None			
Date Received	08/26/98 09:45			
ID Parameter	MCLI	Pocult	N.C. J.	

ID	Parameter [MCL]	Result		Method	MDL	Date	Lab ID
1002	Aluminum (2)					. <u> </u>	
1002	Aluminum[.2]	ND	mg/L	EPA 200.7	0.030	08/27/98	96230
1017	Chloride[250]	63	mg/L	EPA 300.0	5.0	09/01/98	
1022	Copper [1]	ND	mg/L	EPA 200.7	0.0014	08/27/98	
1025.	Fluoride.[2]	0.24	mg/L	EPA 300.0	0.011	08/26/98	
1028	Iron[.3]	1.0	mg/L	EPA 200.7	0.025	08/27/98	
1032	Manganese[.05]	0.013	mg/L	EPA 200.7	0.0038	08/27/98	
1050	Silver[.1]	ND	mg/L	EPA 200.7	0.0010		
1055	Sulfate[250]	ND	mg/L	EPA 300.0		08/27/98	
1095	Zinc[5]	ND	mg/L		1.4	09/01/98	
1905	Color[15]	90	-	EPA 200.7	0.050	08/27/98	96230
1920	Odor [3]		cu	SM2120 B	20	08/26/98	96230
1925		2.4	T.O.N.	SM2150 B	1.0	08/26/98	96230
	pH []	8.1	SU	EPA 150.1	0.20	09/01/98	96230
1930	Total Dissolved Solids [500]	360	mg/L	SM2540 C	5.0	08/27/98	96230
2905	Foaming Agents[.5]	0.13	mg/L	SM5540 C	0.019	08/26/98	

Orlando Area Deltona, FL 32725 FDOH #83486 / E83509 Jacksonville Area Fernandina Beach, FL 32034 FDOH #82500 / E82417 Fort Myers Area Lehigh Acres, FL 33936 FDOH #85512 / E85370

5600 US 1 North, Fort Pierce, FL 34946

561-465-2400, Ext. 285

FDEP QAP 870174

UNREGULATED GROUP I ANALYSIS 62-550.405 (PWS035)

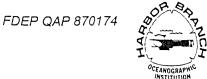
Workorder Groundwater Samples

Project	Metro Dade County
Sample Location	NW Well #10
Sample Number	8006175001
Sampling Date	08/25/98 08:30
Preservative	Sodium Thiosulfate & Monochloroacetic Acid Buffer
Date Received	08/26/98 09:45

, ,

ID	Name	Result		Method	MDL	Date	Lab ID
2021	Carbaryl	ND	ug/L	EPA 531.1	0.25	08/28/98	96230
2022	Methomyl	ND	ug/L	EPA 531.1	0.23	08/28/98	96230
2043	Aldicarb sulfoxide	ND	ug/L	EPA 531.1	0.23	08/28/98	96230
2044	Aldicarb sulfone	ND	ug/L	EPA 531.1	0.35	08/28/98	96230
2045	Metolachlor	ND	ug/L	EPA 507	0.58	08/27/98	96230
2047	Aldicarb	ND	ug/L	EPA 531.1	0.27	08/28/98	96230
2066	3-Hydroxycarbofuran	ND	ug/L	EPA 531.1	0.25	08/28/98	96230
2077	Propachlor	ND	ug/L	EPA 508	0.0069	08/27/98	96230
2356	Aldrin	ND	ug/L	EPA 508	0.011	08/27/98	96230
2364	Dieldrin	ND	ug/L	EPA 508	0.0040	08/27/98	96230
2440	Dicamba	ND	ug/L	EPA 515.1	0.12	08/31/98	96230
2592	Metribuzin	ND	ug/L	EPA 507	0.11	08/27/98	96230

Southeast Florida Fort Pierce, FL 34946 FDOH #96230 / E96080 Orlando Area Deltona, FL 32725 FDOH #83486 / E83509


. ...

Jacksonville Area Fernandina Beach, FL 32034 FDOH #82500 / E82417

Fort Myers Area Lehigh Acres, FL 33936 FDOH #85512 / E85370

5600 US 1 North, Fort Pierce, FL 34946 561-465-2400, Ext. 285

UNREGULATED GROUP II ANALYSIS 62-550.410 (PWS034)

Workorder Groundwater Samples

Project	Metro Dade County
Sample Location	NW Well #10
Sample Number	8006175001
Sampling Date	08/25/98 08:30
Preservative	1:1 Hydrochloric Acid
Date Received	08/26/98 09:45

ID	Name	Result		Method	MDL	Date	Lab ID
2210	Chloromethane	ND	ug/L	EPA 524.2	0.43	09/01/98	96230
2212	Dichlorodifluoromethane	ND	ug/L	EPA 524.2	0.49	09/01/98	96230
2214	Bromomethane	ND	ug/L	EPA 524.2	0.41	09/01/98	96230
2216	Chloroethane	ND	ug/L	EPA 524.2	0.42	09/01/98	96230
2218	Trichlorofluoromethane	ND	ug/L	EPA 524.2	0.20	09/01/98	96230
2251	Methyl-tert-butyl-ether	DM	ug/L	EPA 524.2	0.24	09/01/98	
2408	Dibromomethane	ND	ug/L	EPA 524.2	0.41	09/01/98	96230
2410	1,1-Dichloropropylene	ND	ug/L	EPA 524.2	0.10	09/01/98	96230
2412	1,3-Dichloropropane	ND	ug/L	EPA 524.2	0.30	09/01/98	96230
2413	1,3-Dichloropropene	ND	ug/L	EPA 524.2	0.30	09/01/98	96230
2414	1,2,3-Trichloropropane	ND	ug/L	EPA 524.2	0.26	09/01/98	96230
2416	2,2-Dichloropropane	ND	ug/L	EPA 524.2	0.47		96230
2941	Chloroform	ND	mg/L	EPA 524.2	0.00018	09/01/98 09/01/98	96230
2942	Bromoform	ND	mg/L	EPA 524.2	0.00048	• • • -	96230
2943	Bromodichloromethane	ND	mg/L	EPA 524.2	0.00027	09/01/98	96230
2944	Dibromochloromethane	ND	mg/L	EPA 524.2	0.00040	09/01/98	96230
2965	o-Chlorotoluene	ND	ug/L	EPA 524.2	0.18	09/01/98	96230
2966	p-Chlorotoluene	ND	ug/L	EPA 524.2	0.16	09/01/98	96230
2967	m-Dichlorobenzene	ND	ug/L	EPA 524.2	0.22	09/01/98	96230
2978	1,1-Dichloroethane	ND	ug/L	EPA 524.2		09/01/98	96230
2986	1,1,1,2-Tetrachloroethane	ND	ug/L	EPA 524.2	0.11	09/01/98	96230
2988	1,1,2,2-Tetrachloroethane	ND	ug/L	EPA 524.2	0.15	09/01/98	96230
2993	Bromobenzene	ND	ug/L	EPA 524.2 EPA 524.2	0.39	09/01/98	96230
			49/ 5	CPA 324.2	0.20	09/01/98	96230

Southeast Florida Fort Pierce, FL 34946 FDOH #96230 / E96080 Orlando Area Deltona, FL 32725 FDOH #83486 / E83509 Jacksonville Area Fernandina Beach, FL 32034 FDOH #82500 / E82417 Fort Myers Area Lehigh Acres, FL 33936 FDOH #85512 / E85370

5600 US 1 North, Fort Pierce, FL 34946

.

561-465-2400, Ext. 285 UNREGULATED GROUP III ANALYSIS 62-550.415 (PWS036 & 037)

Workorder Groundwater Samples

FDEP QAP 870174

Project	Metro Dade County
Sample Location	NW Well #10
Sample Number	8006175001
Sampling Date	08/25/98 08:30
Preservative	None
Date Received	08/26/98 09:45

ID	Name	Result		Method	MDL	Date	Lab ID
		······································					
2262	Isophorone	ND	ug/L	EPA 625	0.42	08/31/98	96230
2270	2,4-Dinitrotoluene	ND	ug/L	EPA 625	0.75	08/31/98	96230
2282	Dimethylphthalate	ND	ug/L	EPA 625	2.4	08/31/98	96230
2284	Diethylphthalate	ND	ug/L	EPA 625	0.35	08/31/98	96230
2290	Di-n-butylphthalate	ND	ug/L	EPA 625	0.74	08/31/98	96230
2294	Butyl benzyl phthalate	ND	ug/L	EPA 625	0.55	08/31/98	96230
9089	Di-n-octylphthalate	ND	ug/L	EPA 625	0.51	08/31/98	96230
9108	2-Chlorophenol	ND	ug/L	EPA 625	0.84	08/31/98	96230
9112	2-Methyl-4,6-dinitrophenol	ND	ug/L	EPA 625	1.2	08/31/98	96230
9115	Phenol	ND	ug/L	EPA 625	0.97	08/31/98	96230
9116	2,4,6-Trichlorophenol	ND	ug/L	EPA 625	1.1	08/31/98	96230

Southeast Florida Fort Pierce, FL 34946 FDOH #96230 / E96080 Orlando Area Deltona, FL 32725 FDOH #83486 / E83509

.

Jacksonville Area Femandina Beach, FL 32034 FDOH #82500 / E82417 Fort Myers Area Lehigh Acres, FL 33936 FDOH #85512 / E85370

HBEL No. 8006175-001

.

. .

,

PESTICIDE & PCB CHEMICAL ANALYSIS 62-550.310(2) (c) (PWS029)

 Param ID	eter NAME (MCL μg/l)	Sample Number	Analysis Result (µg/l)	Analysis Method	Analysis Date	MDL	Lab ID
2005	Endothall (100)	14400-03	10 U	EPA 548.1	8/28/98	10	84269

*

U - Analyte was not detected; indicated concentration is method detection limit.

Appendix F

MONTGOMERY WATSON

Laboratory Results August 24, 1998

.*

.....

2021

04/13/99 TUE 15:07 FAX 305 446 1957 9:42AM MONTGOMERY WATSON LABORATORIES 255 Eput Walnut Strast Panndens, California 4(10) Panndens, California 9(10) R(8 MSS 6660; Pax: 818 568 6224; 1 200 566 LABS (1 600 508 5227) Laboratory Report for Miami Dade Water and Sewer Authority Dept. 6800 S.W. 87th Avenue 33173 Miami , FL 1 Attention: Ray Diaz Fax: (305) 275-3662 I HONTGOMERY WATSON LADE. SUBNITTED ON ; AUG 2 8 1998 1 JCH Jim Hein Jour C. 1 86,8Z 9NU 14:09 No.021 P.01

Report#: 46571 ICR

: II

04/13/99	9 TUE 15:07 FAX	305 446 19	57	MONTGOMERY WATSON	N MIAMI -	$\rightarrow \rightarrow \rightarrow PBC 1$	D D C	[2] 0 2
0110 3	1,1998 9:42AM					NO.780	P.3/5	
HUG.J.	1,1990 9,12,27	•						
			** =					
						Laborato	ry	
	(21) MONTGON	NERY WATSO	N LABORATIC)AIE2		Report		
	MA Fact Walnu	n Engel	ì			#46571		
	Pasydetté, Cél	Vornia T1181				×.		
	1 9 050 040 X F 1 9 0 544 LAS	"ME: 814 568 3524; \$ (1 800 564 5227)				<i>,</i> ,		
			1					
			•		6	mples Rèce	ved	
	liami Dade Wa	ter and S	ewer :		Sal	WDICD MOUL		
7	Authority Dep	st.	I		26-a	ug-1998 15	:19:44	
τ	Pay Diaz		í			- u		
e e e e e e e e e e e e e e e e e e e	6800 S.W. 875	h Avenue	:					
1	Miami , FL	33173						
						Unice	NDL	piiut:
Prepared A	analysed of Bacohi	Machod	Analyte	1	Result	Unici		
		8826094)	Sam	plad on 08/24	/98			
ORTHWES	T WELL 10 (9)							
		Microsco	pie Part	iculate Analy.	«]	7000	1.4	1.
	09/26/99	(HL/BPA) Amondos Qu	iant.	 0	REF	0.0000	X
	08/25/98	(ма/нга) Rolacia	Risk Pactor, Coccidia	<\$	10BG	1.0	1
	00/26/90	(ML/EPA) ciliate/	lagellace Quant. (Crypts (= int scruct)	<1	1000	1.0	1
	08/26/98	(SM 97113) Concidia. } Crumency		<1	2004	1.0	7
	00/26/38	(東山ノヨウム) Diacomo		~1.	790Q	1,0	1
	00/26/99	(ML/UPA		LATYND Quant.	-1	7900	3,0	7
	09/20/90	(ML/EPA (ML/BRA) Fine Amo	iphous Debris Quant.	-200	1000	1°, 0 1 - 0	1
	04/26/98	(MD/89X		Were Chang:	<1	700G 700Q	1,0	1
	08/24/98	(SM 9711B) Giardia	Cyacs-Stapunpeiva	د >	RRF	6.0000	1
	68/36/98	(ML/SPA) Relative	Risk Factor, diardia	<u>a</u>	1005	1.0	L
	08/26/90 44/26/98	(ML/SPA) Insuce I	Parts and Larvas Quant	>300 <7	1000	1,0	1
	98/26/38	HL/RPA) Large A	porphous Debris Quant.	<1 <1	1000	1,0	2
	00/25/38	(NI./HPA) Minoral	glant,	5. 5	1009	1.0	1
	08/26/98	(МБ/ЕРА		angous Algao Quant.	<1	1040	1.0	1
	08/26/98	(ML/¥VA) Miton O		-1	1044	2.0	2
	08/26/98	(NL/RPA) Manacod	e Quant.	1	1000	1,0	1
	08/26/98	(NL/EFA) Plans P	pllan Quant.	1	1000	1.5	1
	08/25/99	I ML/EPA) provisor		<1	794C	1.0	1 1
	08/26/96	(Ус/пра (Ус/пра	1 gther 1	spris-fee Commance	-1	1000	0,17 0,17 0,17 0,17	
	00/25/98	(NL/RPA	j Discom	A Rol-Risk Factor	D	R29	a.0000	
	08/26/98	(ML/BDA) IDANCE	Parts/Dary, 201. Aisk F	đ	rrp Rif	0.0000	
	08/26/98	(HL/EPA) Migo.A	lyps, Hol.Riuk Factor	•	REF	0,0000	
	08/22/08 08/26/98	(NL/EPA) Plant	Depris. Rul. Aisk Factor	p	RRF	0.0000	
	08/26/98	(HL/BPA) Rotify	re, Rol Pink Pactor	0	RRF	0_0000	1 I
	00/26/98 -	(ML/EPA) Releti	VS BISK FACTOR, TOTAL	-			
	, .							
				,	•			
				,		•		
				1		-		
				1				
						-	4	
						Page	1	

•

04/13/99 TUE 15:08 FAX 305 446 1957	MONTGOMERY WAT	rson miami →-	→ PBC 1 NO.780 P.4/5	Ø 023
AUG.31.1998 9:42AM	:		NO.780 P.4/5	
	!			
MONTGOMENY WATSON LABORA	TORIES		Report Comments	
THE Feat Welbut First	1		#46571	-
Paradana, California 17101 918 168 8600; Fox: 818 168 5527; 1 809 566 LABS (1 800 566 5227)	6 1 2			
	•			
	i . I			
	· · · · · · · · · · · · · · · · · · ·			
(980826094)				
(980522034) @MPA Sample is at low risk of s	urface water	contaminat	ion.	
	8 1 1			
	:			
	i		N	
	ł			
	:			
	ł			
	i			
	1			
	į		•	
	:			
	8			
			N	
	:		,	
	1			
. .				
	1	-		
	1	, •	•	
	1		Page	L
			E Alle	
50'4 IZD'ON OI:71 86,8Z 9NU		: (] I		
20.9 120.0V 01:41 80'82 8UA				

-

21-24+7= 55-3: 52

		EPA RELAT	IVE SURFAC	E WATER RISI	K F/	ACTOF	RS			
Client:	Miami Dade Water an									
Water Source:	NORTHWEST WELL	0	-	Weather Conditions:	<u> </u>		T			
Lab ID# 980826094		-	At Setup:		Clear		Cloudy		Raining	
Volume Sampled:	760		-	A Finish:		Clear		Cloudy		
Filter Setup Date:	8/24/98		-	Site Conditions:		Oicai				Ranniy
Filter Setup Time:	3:58 PM		-	At Setup:		Dry	IXI	Moderate Standing Water		Area Flooded
Analysis Date:	8/26/98		-	A Finish:	1	Dry	IX	Moderate Standing Water		Area Flooded
Analysis Time:	11:00 PM		-		I		-i			
Primary Particulate	25	#/100 Gallon	Rélative Frequency**	Relative Risk Factor				Comments		
Giardia with internal st	tructures	<1	NS	0	<u> </u>					
Coccidia with internal	structures	<1	NS	0	<u> </u>					******
Diatoms		<1	NS	0	<u> </u>					·····
Other Algae		5	R	4	1					
Insects/larvae		<1	NS	0						
Rotifers		<1	NS	0						
Plant Debris (with chlo	rophyll)	1	R	0	Í —					*****
			Relative Risk Factor	4	** <u>E</u> :	xtremely	<u>H</u> eav	y, <u>H</u> eavy, <u>M</u> oderate, <u>R</u>	are,	<u>N</u> ot Significan
			Relative		- 					
Secondary Particu	lates	#/100 Gallon	Frequency	Relative Risk Factor		Comme	nts			
Nematodes		<1	NS	no risk factor						
Crustaceans		<1	NS	no risk factor						
Fungal Spores		<1	NS	no risk factor		*** **********************************				
Amoebae		<1	NS	no risk factor						
Flagellates & Ciliates		<1	NS	no risk factor						······································
Plant Pollen	- -	1	R	no risk factor		****				
	bhous Debris	>200	EH	no risk factor						
Other: Fine Amorph		>200	EH	no risk factor						
Other: Minerals Qua		<1	NS .	no risk factor						······································
Other: Other Debris	1	<1	NS	no risk factor						·····

Based upon microscopic particulate analysis and the proposed EPA risk factors associated with bio-Indicators there is low risk of surface contamination (EPA risk factors <9, low risk)

.

REFERENCE:

Consensus Method for Determining Groundwaters Under the Direct Influence of Surface Water Using Microscopic Particulate Analysis (MPA), USEPA Manchester Environmental Laboratory, EPA 910/9-92-092, October 1992. Jame C. Hen

Reviewed by:

Date: 4/23/99

8-1998 14:58 FROM DEP	WATER FAC	. TALL.	то	613054467323	P.02
-	·		<u>,</u>		
	FLORIDA DI	PARTMENT OF			
	HIF.			•	
			<u> </u>		and the second designed of the second designe
	• •				
	MPA SA	MPLE REP	PORT		
				e Water & Sewer well	#10
6 Sample # E98-775	-	moressed: 08/	26/98 B	y: Larson/Cashdollar	
te/time Collected 08/24/98 03:58 PM 08/25/98 07:45 AM		10:	20 AM		
ROCESSING INFORMATION		:		mas state & farming an	
filter color light brown	n	color of wat	er around the	filter. light brown	17.1
Total volume water filtered (gal):	710	Percoll/suc	rose notation	pellet volume (μl): ked sediment (μl):	100
Total volume filter sediment (µI):	232	Percoll/sucrose	at volume/100	gallons sampled:	2.4
Il sediment/100 gallons sampled:	32.7	erial examined:	floated (sus	ended) pellet	
number of slides examined:		sial craininger		· · · ·	·.
rimary Particulates	#100 gallon F	Relative frequency	Relative Risk I	actor Comments	
	NA				
liardia	NA				
	0	NS	O		
latoms (with chloroplasts)	30.6	M	9	some eugleno	ds
Other Algae (with chloroplasts)	0	NS	• 0		
nsects / Larvae	0	NS	0 -		
Rotifers	0	NS	Q		
Plant Debris	J				
Other	FF	PA Relative Risk	= 9		
Reference: USEPA Consensus Method	for Determining	Groundwaters Und	ler the Direct Infl	uence of Surface Water Usi	ng
Microscopic Particulate Analysis (MPA):	NA -	1101 12301 04			
EH = extremely heavy H = he	avy m≡r	noderately heav	ry R = rare		
Secondary Particulates	#/100 gallon	Comments	and the second secon	and a star a	
Large amorphous debris	R				, ·
Fine amorphous debris	н	• • •	1		
Minerals	M	•	•		· ·
Plant pollen	10.1				
	0	· .			
Nematodes	0		•••••		
Nematodes Crustaceans					
Crustaceans	4.2				
Crustaceans Amoeba	4.2 0,8	•			
Crustaceans		•			

Based upon microscopic particulate analysis and the EPA risk factors associated with bio-indicators, there is a low risk of surface contamination. Determination of surface water influence should not be based solely on the results of one or two MPAs. Other pertinent information, such as water quality data and on-site surveys, should be used in conjunction with the MPA results in making this determination.

Reported by:	Sillis Date: 08/28/98	
	Tampa Branch Laboratory James T. Howell, M.D.	M.P.H.
Lawton Chiles Governor	Single States Subscription Subscription Supervision Supervision	ceretary

	13/99 TUE 15:10 FAX 305 446 1957 MONTGOMERY WATSON MIAMI $\rightarrow \rightarrow$ PBC 1 2027
 	<u>-C-UB-1998 14.58 FRUM DE WATER FROM DE WATER FROM MEET</u>
•. *	E98- 0775
•	
	THE THE THE THE THE ATION
	MPA SOURCE WATER IDENTIFICATION STATE OF FLORIDA SAMPLE ID SHEET
	PWS 10# 4130871
	community non-transient non-community non-community
	NAME OF WATER SYSTEM AND ADDRESS: MAMI DAVE WATER AND SEWEN DEP . PHONE (345) 877-2007
	The Freshow (Dater (Duglity Fab.
	1100 W. 2nd Ave Hialeah, FL. 33010
	PROJECT CODE # ALCOUNT#.
	TO CAPPIER AND TO ACKING NIMBER: MALEL F 803/1000701
•	
	NAME OF PERSON RECEIVING SAMPLES INTO THE LABORATORY THE PERSON
	WAS PACKING AND EVIDENCE TAPE INTACT?
	THE AT PECEPT 110
	TEMPERATURE OF SAMPLES AT RECEIPTING ON THE HOUSING (IN THE DATE AND TIME THE FILTER WAS REMOVED FROM THE HOUSING (IN THE
	FIELD): 08/25/98 - 745000 DATE AND TIME SAMPLE PROCESSING BEGAN: 08/24/78 8/26/98, 10:200000
	DATE AND TIME SAMPLE PROCESSING BEGAN. CONTACT OF CONTACT OF CONTACT
	Field information Water source location: <u>N.W. Well Field</u> (use latitude and longitude coordinates if available)
	Water source location. <u>N.W. Well Hera</u> (use launde and roughted the
	Type: well Well ID #: 10 Were wells pumped constantly or cycled on and off on a regular basis for at least two weeks prior
	Were wells pumped constantly of cycled on and on on a regular back for
	to MPA sampling? Yes No
	Volume of water purged from well prior to sampling
	(IT DIS)
	Is the well grouted? Grouted Interval: (II of s) Distance from other wells (within a 1500 foot radius), status of wells (active, inactive), and usage
	of wells
	etc.: Distance from any karst features (identify feature e.g. sinkholes):
	Distance from any pollution sources (indicate types, e.g. septic tanks)
	Time since last rainfall event, and amount of rainfall in inches (best approximation)
•	Time since last rainfall event, and amount of rainfall in inches (best approximation) $-3(23)98 - 0.01$ inches

	Attach a detailed sketch of the site. This should include approximate distances to other well(s)
	A A A A A A A A A A A A A A A A A A A
	wells within this area. In addition, when available, attach a log of randan events and approximately attach a log of randan events and approximately attach a log of randah events attach attach a log of randah events attach
	amounts at the well site starting two weeks prior to the site visit.

:

•

• .

027

: .

 $\rightarrow \rightarrow \rightarrow PBC 1$

Page two MPA SOURCE WATER IDENTIFICATION, STATE OF FLORIDA SAMPLE ID SHEET PWS 10# 413087/ Well# 10 Date: 08/25/98 Measurements 23850 145am Time: Meter Reading Final:_ Date: 08/25 145 Time: 0.25 -Well Turbidity Final:_ Date: Time: Well Water Temperature Final: Date: Time: Well pH Final: Date: Time: Well Conductivity Final: Date: 08/25/98 Time: 9:48 -Well Chlorine Residual Final: 0.00 Date: Time: 9:48 0.00 Total Chlorine Final: Date: 08/24/98

Time: 1558 23140 Meter Reading Start: Date: 08/24/97 Time: 1558 0.31 Well Turbidity Start: Date: Time: Well Water Temperature Start: Date: Time: Well pH Start: Date: Time: Well Conductivity Start: Date: 08/24/48 Time: 1558 Well Chlorine Residual Start: 0,00 Date: 08/25/98 Time: 1558 0.00 Total Chlorine Start: TOTAL WATER VOLUME FILTERED (in gallons): Signatures of People Present at Time of Sampling:

Processing Information:

Total volume filtered: 710 acl Total filter sediment collected: 2321 ul. sediment/100 gal_33.68 Percoll@/sucrose floatation pellet volume: 17. ŀ uL Percoll@/sucrose floatation packed sediment uL 100 uL floatation pellet volume/100 gallons filtered 2.41uL

Type of material examined:

direct examination of unfloated sediment by wet mount or filtered thru MF

Iloated (suspended) pellet

floated packed pellet

Floatation Parameters: Percoll@/sucrose gradient sucrose gradient

potassium citrate

%NSO4

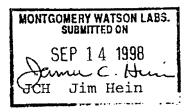
2028

	CLASSIFICATIO		NTITATION (OF PARTICUL	ATES	
EQ8-775	5 Dilutio	n: <u>1:2</u>		Vol. Inal Penci (
Gallons water exam	nined: <u>710 ga</u>				Total #/100 count gallons	Relative Risk frequency Factor
Slide #: 1 8 2 2	3 0 4 0	5 🗌 6 🗌	7 🛛 8 🗆	9 10 10		
Primary Particulates						N5 0
Coccidia —	0				21-7 30.56 0 0	NS D
Uner algae	05				00	NIS D
Rotifers O	0				$\underline{1010}$	N. J. J. 19)=
other O Secondary particulates					RR	
Large amorphous R debris	R				H H	
Fine amorphous H debris M	M				M M 72-10.1	BASKSCOMMENTS CONTRACTS
Minerals Plant pollen 43	29				00	
Nematodes O Crustacia O	22				10 0.8	22 4
Amoeba Ciliale/ Flagellates /	5				RR	
Other: Eggs	R			anian in		

Laboratory Results September 1998

MONTGOMERY WATSON LABORATORIES

555 East Walnut Street Pasadena, California 91101 818 568 6400; Fax: 818 568 6324; 1 809 566 LABS (1 800 566 5227)


Laboratory Report

for

Miami Dade Water and Sewer Authority Dept. 6800 S.W. 87th Avenue

Miami, FL 33173

Attention: Ray Diaz Fax: (305) 275-3662

. ...

Report#: 46970 ICR

Result

Dilution

MONTGOMERY WATSON LABORATORIES

555 East Walaut Streat Pasadena, California S1101 818 568 6400; Fax: 818 568 6324; 1 800 568 LABS (1 800 565 5227) Laboratory Report #46970

Miami Dade Water and Sewer Authority Dept. Ray Diaz 6800 S.W. 87th Avenue 33173 Miami , FL

Samples Received

10-sep-1998 14:29:58

Prepared Analyzed QC Batch# Method

Analyte

MDL Units

NORTHWEST WELL 10 (980910093)

Sampled on 09/09/98

Microscopic Particulate Analy.

	**********					4
09/10/98	(ML/EPA) Amoeba Quant.	<1	100G	1.0	1
09/10/98	(ML/EPA) Relative Risk Factor, Coccidia	0	RRF	0.0000	1
09/10/98	(ML/EPA) Ciliate/Flagellate Quant.	<1	100G	1.0	1
09/10/98	(SM 97118) Coccidia/Crypto(w int struct)	<1	100G	1.0	1
09/10/98	(ML/EPA) Crustacea Quant.	<1	1000	1.0	1
09/10/98	(ML/EPA) Diatoms Quant.	<1	100G	1.0	1
09/10/98	(ML/EPA) Dipteran Larvae Quant.	<1	100G	1.0	1
09/10/98	(ML/EPA) Fine Amorphous Debris Quant.	>200	100G	1.0	1
09/10/98	(ML/EPA) Fungal Spore Quant.	13	100G	1.0	1
09/10/98	(SM 9711B) Giardia Cysts-Presumptive	<1	100G	1.0	1
09/10/98	(ML/EPA) Relative Risk Factor, Giardia	0	RRF	0.0000	1
09/10/98	(ML/EPA) Insect Parts and Larvae Quant	<1	100G	1.0	1
09/10/98	(ML/EPA) Large Amorphous Debris Quant.	>200	100G	1.0	1
09/10/98	(ML/EPA) Minerals Quant.	>200	100G	1.0	1
09/10/98	(ML/EPA) Miscellaneous Algae Quant.	1	100G	1.0	1
09/10/98	(ML/EPA) Mites Quant.	<1	100G	1.0	1
09/10/98	(ML/EPA) Nematode Quant.	<1	100G	1.0	1
09/10/98	(ML/EPA) Plant Debris Quant.	42	100G	1.0	1
09/10/98	(ML/EPA) Plant Pollen Quant.	>200	100G	1.0	1
09/10/98	(ML/EPA) Rotifers Quant.	<1	100G	1.0	1
09/10/98	(ML/EPA) Other Debris-See Comments	<1	100G	1.0	1
09/10/98	(ML/EPA) Diatoms, Rel.Risk Factor	0	RRF	0.0000	1
09/10/98	(ML/EPA) Insect Parts/Larv,Rel.Risk F	0	RRF	0.0000	1
09/10/98	(ML/EPA) Misc.Algae, Rel.Risk Factor	4	RRF	0.0000	1
09/10/98	(ML/EPA) Plant Debris, Rel.Risk Factor	1	RRF	0.0000	1
09/10/98	(ML/EPA) Rotifers, Rel.Risk Factor	0	RRF	0.0000	1
09/10/98	(ML/EPA	> Relative Risk Factor, TOTAL	5	RRF	0.0000	1
03110130	(,				

. .

MONTGOMERY WATSON LABORATORIES

555 East Walnut Street Pasadena, California 91103 818 568 6400: Fax: 818 568 6324: 1 800 566 LABS (1 800 566 5227) Report Comments #46970

æ

.~

 \mathcal{A}^{\prime}

Page

1

(980910093) @MPA Sample is at low risk of surface water contamination.

24+24+7= 55-3= 52

Montgomery Watson Laboratories

EPA RELATIVE SURFACE WATER RISK FACTORS

Client:	Miami Dade Water and	Sewer					
Water Source:	NORTHWEST WELL 10		-	Weather Conditions:	1		1
Lab ID#	980910093	······································	_	At Setup:		IX Cloudy	Raining
Volume Sampled:	970		-	A Finish:	Clear	IX Cloudy	
Filter Setup Date:	9/8/98		-	Site Conditions:			
Filter Setup Time:	4:10 PM		-	At Setup:	D Dry	X Moderate Standing Water	
Analysis Date:	9/10/98	······································	-	A Finish:		Moderate Standing Water	
Analysis Time:	11:00 PM	······································	-			- moderate standing Water	Area Flooded
Primary Particulates		#/100 Gallon	Relative Frequency**	Relative Risk Factor		Comments	<u>, , , , , , , , , , , , , , , , , , , </u>
Giardia with internal stru	ctures	<1	NS	0			
Coccidia with internal st	ructures	<1	NS	0		······································	
Diatoms		<1	NS	0	1		
Other Algae		1	R	4			
Insects/larvae		<1	NS	0	[
Rotifers		<1	NS	0			
Plant Debris (with chloro	phyll)	42	М	1		**************************************	#*************************************
			Relative Risk Factor	5	** Extremely F	<u>l</u> eavy, <u>H</u> eavy, <u>M</u> oderate, <u>I</u>	<u>Rare,</u> <u>N</u> ot Significant
		1	Relative	r	r		
Secondary Particulat	les	#/100 Gallon	Frequency	Relative Risk Factor	Commen	its	
Nematodes		<1	NS	no risk factor			
Crustaceans		<1	NS	no risk factor			
Fungal Spores		13	R	no risk factor			
Amoebae		<1	NS	no risk factor		·	
Flagellates & Ciliates		<1	NS	no risk factor			
Plant Pollen	[:]	>200	EH	no risk factor			
Other: Large Amorphe		>200	EH	no risk factor			
Other: Fine Amorphon		>200	EH	no risk factor			•
Other: Minerals Quant Other: Other Debris	t.	>200	EH .	no risk factor			
Other: Other Debris		<1	NS	no risk factor	l.		
COMMENTS:	Primary surface water in Based upon microscopic there is low risk of surfac	particulate analysis	and the proposed	EPA risk factors assoc	ophyll) ciated with bio-In	ndicators	
REFERENCE:	Consensus Method for D Particulate Analysis (MP	etermining Groundw A), USEPA Manche	vaters Under the D ster Environmental	irect Influence of Surfa Laboratory, EPA 910/9	ice Water Using 9-92-092, Octob	<u>Microscopic</u> er 1992.	
Reviewed by:	Jan C- 1	Jui .	Date:	4/23/99			

04/21/99	WED	08:55	FAX	305	446	1957	
04/21/99	WED	08:55	FAX	305	446	1957	

15:02

DEC-08-1998

FROM

 $\rightarrow \rightarrow \rightarrow$ VFLICK MONTGOMERY WATSON MIAMI 613054467323

то

P.07

007

DEP WATER FAC. TALL.

MPA SAMPLE REPORT

Lab Sample #	E98-818	Utility:	PWS# 41	30871 Miami	Dade W	ater & Sewer well #	10
Date/time Collected	09/08/98 04:10 PM 09/09/98 08:57 AM	Date/time	Processed:	09/10/96 .11:00 AM	By:	Larson/Kazanis	an a
PROCESSING IN	FORMATION		•			· · · · · · · · · · · · · · · · · · ·	•
	color brown		f water aro	und the filter:	light bi	own with white part	14,2
	ater filtered (gal):	760	Perco	sil/sucrose tic	tation pe	liet volume (µl):	200
	ter sediment (µl):	200.7	Percoll/si	JCrose notaut	n packe	d sediment (µl): allons sampled:	1.9
	gallons sampled:	26.4		n pellet volui 1ed: floated	(ellenad	nod) nellet	
number of slide	s examined: 2	mat	enai examii	ied. Iloatau	Isuspen		
Primary Particul	ates #/1	00 gallon	Relative frequ	ency Relativ	Risk Fac	or Comments	
Giardia		NA.					
Coccidia		NA			<u> </u>		
Diatoms (with ch	ioroplasts)	0	NS	• • •	0		•
Other Algae (with	h chloroplasts)	14.1	R		4		
Insects / Larvae	· ·	Ó	NS		0		
Rotifers		• 0	NS		0		
Plant Debris	•	0	NS	•	0		
Other		·		<u></u>			·
•	•	EF	A Relative	Risk=	4		-
"Reference: USEPA Microscopic Panicul EH = extremely	ate Analysis (MPA):	NA =	Not Assay	ed	· .	e of Sunface Water Usin NF ≕ None found	8
Secondary Par	ticulates	#100 galion	Comment	S .			
Large amorphou	is debris	R	•				
Fine amorphous	debris	M		•	: 		
Minerals		R		• .	•		
Plant pollen	•	1.2		••			
Nematodes	•	· Q	. ·	• • .	· ·		
Crustaceans		0	•				
Amoeba		0.5		.• •			
Flagellates & cl	liates	0.4	•	•			
ridgenated a e							
Other: eggs	aments & spores	0,8 . R			• • •		

Comments: Entire floated pellet examined.

Based upon microscopic particulate analysis and the EPA risk factors associated with bio-indicators, there is a low risk of surface contamination. Determination of surface water influence should not be based solely on the results of one or two MPAs. Other pertinent information, such as water quality data and onsite surveys, should be used in conjunction with the MPA results in making this determination.

Reported by:

Lawton	Chiles
ACHAR WE LOAD	Cidica
Cover	-

09/18/98

Date:

04/13/99 TUE 15:04 FAX 305 446 1957 MONTGOMERY WATSON MIAMI →→→ PBC 1 2018 DEC-08-1998 15:02 FROM DEP WATER FAC. TALL. TO 613054467323 P.08

Page two

MPA SOURCE WATER IDENTIFICATION, STATE OF FLORIDA SAMPLE ID SHEET PWS ID# <u>4/3087/</u> Well# <u>10</u>

Measurements	~~~~		
Meter Reading Final: 61560	Time: 0851	Date: 9-9-98	
Well Turbidity Final: 0.20	Time: 0857	Date: 9-5-98	
Well Water Temperature Final:	Time:	Date:	
Well pH Final:	Time:	Date:	
Well Conductivity Final:	Time:	Date:	
Well Chlorine Residual Final: 0.00/0.	oo Time: 0857	_Date: <u>4-9-98</u>	
Total Chlorine Final:	Time:	Date:	
Meter Reading Start 0 400	300 Time: 1610	Date: 9-8-98	
Well Turbidity Start: 0.17	Time: 1605	Date: 9-8-78	
Well Water Temperature Start: 26.0	°C Time: 1605		
Well pH Start:	Time:	Date:	
Well Conductivity Start:	Time:	Date:	
Well Chlorine Residual Start: 0.00/	0.00 Time: 1605	Date: 9-8-48	
Total Chlorine Start: 0.00/0	1.00 Time:	Date:	
TOTAL WATER VOLUME FILTE	DFD (in collors).	760	
TOTAL WATER FOLOWIE FILLE	CED (In Banons).		
************	****	·····	*
Signatures of People Present at Time	****	and Rames	*
************	****	and Rames	*
************	****	and Rames	*
************	****	and Rames	
**************************************	****	and Rames	* *
************	****	and Rames	
Signatures of People Present at Time	****	and Ramos	
Signatures of People Present at Time <u>Processing Information</u> : Total volume filtered: 760 gal	**************************************	and Rames	
Signatures of People Present at Time Processing Information: Total volume filtered: 760 gal Total filter sediment collected: 200	••••••••••••••••••••••	and Came	
Signatures of People Present at Time Processing Information: Total volume filtered: 760 gal Total filter sediment collected: 200 uL sediment/100 gal 26,407	of Sampling:	and Rames	
Signatures of People Present at Time Processing Information: Total volume filtered: 760 gal Total filter sediment collected: 200 uL sediment/100 gal 26,407 Percoll@/sucrose floatation pellet volu	ne: 14.2 uI	and Rame	
Signatures of People Present at Time <u>Processing Information</u> : Total volume filtered: <u>760 gal</u> Total filter sediment collected: <u>200</u> uL sediment/100 gal <u>26,407</u> Percoll@/sucrose floatation pellet volu Percoll@/sucrose floatation packed sec	ne: 14.2 uI liment 200 uI	and Pame	
***********	****	and Ramos	1
***********	****	and Rames	
**************************************	****	and Rames	k k
**************************************	****	and Ramos	
***********	****	and Rames	
********	****	and Rames	
***********	****	and Rames	
************	****	and Rames	
************	****	and Rames	
************	****	and Rames	
************	****	and Rames	
************	****	and Rames	
************	****	and Ramos	
**************************************	****	and Rames	
**************************************	****	and Rames	
**************************************	****	and Ramos	۲. ۲.
**************************************	****	and Rames	۲. ۲.
**************************************	****	and Rames	
**************************************	****	and Ramos	× × · · · ×
Signatures of People Present at Time	****	and Rames	
Signatures of People Present at Time	****	and Rames	
Signatures of People Present at Time <u>Processing Information</u> : Total volume filtered: 760 gal	••••••••••••••••••••••	and Rames	
Signatures of People Present at Time <u>Processing Information</u> : Total volume filtered: <u>760 gal</u> Total filter sediment collected: <u>200</u>	••••••••••••••••••••••	and Rames	
Signatures of People Present at Time <u>Processing Information</u> : Total volume filtered: <u>760 gal</u> Total filter sediment collected: <u>200</u>	••••••••••••••••••••••	and Rames	
Signatures of People Present at Time Processing Information: Total volume filtered: 760 gal Total filter sediment collected: 200 uL sediment/100 gal 26,407	of Sampling:	and Rames	
Signatures of People Present at Time Processing Information: Total volume filtered: 760 gal Total filter sediment collected: 200 uL sediment/100 gal 26,407 Percoll@/sucrose floatation pellet volu	ne: 14.2 uI	and Rame	
Signatures of People Present at Time Processing Information: Total volume filtered: 760 gal Total filter sediment collected: 200 uL sediment/100 gal 26,407 Percoll@/sucrose floatation pellet volu	ne: 14.2 uI liment 200 uI	and Pame	

Type of material examined:

direct examination of unfloated sediment by wet mount or filtered thru MF floated (suspended) pellet floated packed pellet

Floatation Parameters:

Percoll@/sucrose gradient

sucrose gradient

potassium citrate

%NSO4.

04/13/99 TUE 15:05 FAX 305 446 1957 DEC-08-1998 15:03 FROM DEP WAT

4520

KBING

MI.R

P. 09

Ø 019

E98- 0818

MPA SOURCE WATER IDENTIFICATION STATE OF FLORIDA SAMPLE ID SHEET

PWS ID# 4130871

community_____non-transient non-community____non-community____

NAME OF WATER SYSTEM AND ADDRESS: Miami Dade Water + Scuer Dert. 1100 West 2nd Ave. Hialeah, FL. 33010 PHONE (Jas) 887-2007 SAMPLER NAME AND ADDRESS: David Ramos - 4180 West 10 Ct. Hialeah , FL. 33012 PHONE (35) 829-8611 LAB NAME AND ADDRESS: John E Preston Water Quelit tab DOH-Tampa Brone PHONE (305) 857-2007 NINT# (813871-7465 1100 W. Ind. Ave. Histochy FL 33010 NAME OF ANALYST PROJECT CODE # ACCOUNT#: NAME OF CARRIER AND TRACKING NUMBER: FLA EX # 901953974172 DATE SAMPLE RECEIVED BY LABORATORY: 9/10/98, 104000 NAME OF PERSON RECEIVING SAMPLES INTO THE LABORATORY: Chris Wills WAS PACKING AND EVIDENCE TAPE INTACT? DACKAL, no en american 12°C TEMPERATURE OF SAMPLES AT RECEIPT: DATE AND TIME THE FILTER WAS REMOVED FROM THE HOUSING (IN THE FIELD): 09/09/98-0857 5 9/10/98, 11° am DATE AND TIME SAMPLE PROCESSING BEGAN: 09/01/99 Field information Water source location: NWWell cield (use latitude and longitude coordinates if available) Well ID #: 10 Type: well Were wells pumped constantly or cycled on and off on a regular basis for at least two weeks prior to MPA sampling? Yes / No Volume of water purged from well prior to sampling (ft bls) Screened Interval: (ft bls) Depth of well: _____ (ft bls) Depth of casing:_____ Grouted Interval: (ft bls) Is the well grouted? Distance from other wells (within a 1500 foot radius), status of wells (active, inactive), and usage of wells Distance from surface water bodies (indicate whether river, canal, stream, lake, pond, etc.: Distance from any karst features (identify feature e.g. sinkholes): Distance from any pollution sources (indicate types, e.g. septic tanks) Time since last rainfall event, and amount of rainfall in inches (best approximation) 09/06/98 - 2.09 inches **********

Attach a detailed sketch of the site. This should include approximate distances to other well(s) and nearby features (i.e. water bodies, sinkholes, pollution sources or other pertinent landmarks) within a 1500 foot radius. Wherever possible provide a statement of the status and usage of any wells within this area. In addition, when available, attach a log of rainfall events and approximate amounts at the well site starting two weeks prior to the site visit.

Sample #:	E98-	818		Dilutio	on:	1:2		Y	Vol. fina	l pellet (p	ıl):	30		-
Gallor	ns wate	r examin	ied:	760			Entire	loated /	unfloat	ed pellet	examin	ed Ves/	no	
Slide #:	1100×	2 X	3 🗆	4	5 🗌	6 🗌	7 🗆	8	9 🗆	10 🗆	Total count	#/100 gallons	Relative frequency	Risk Factor
Primary Particulates	š.										-			
Giardia						· ·				· · ·		·····	-	-
Coccidia											· ·		-	
Diatoms	0	0		-	ļ	· · · · ·		·	<u>.</u>		0	0	NIS	0
Other algae	96	.		· ·	ļ	· · · · ·		_		_	107	14.07	R	4
Insect/larvae	0	0					<u> </u>				0	0	NS	0
Rolifers	0	0			· .			·			0	2	ns	0
Plant debris	0	0					·	·			· 0	<u>a</u>	NS	0
other			<u> </u>	· ·	<u> </u>		<u>}</u>			<u> </u>				-745
Secondary particula	tes											77		17=
Large amorphous debris	R	R									R	R		
Fine amorphous debris	M	M						-			m	m		
Minerals	R	R				:					p.	R		
Plant pollen	7	2									G	1.18		
Nematodes	0	0									0	0		
Crustacia	\square	0							1		0	0		
Amoeba	4	Õ									4	0.52		
Ciliate/ Flagellates	3	0								-	3	0.39		
Other: Eggs	6	0									6	0.78		
Fungal filaments & spores	R	R									R	R		

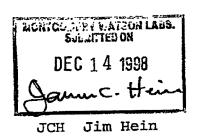
TOTAL P.10

2020

Laboratory Results December 1998

MONTGOMERY WATSON LABORATORIES

a Division of Montgomery Wetson Americas, Inc. 555 East Walnut Street Paadena, Celifornia 91101 Te 1: 826 588 6400 Fax: 528 558 6324 1 800 566 LABS (1 800 566 5227)


Laboratory Report

for

Miami Dade Water and Sewer Authority Dept. 6800 S.W. 87th Avenue

Miami, FL 33173

Attention: Ray Diaz Fax: (305) 275-3662

Report#: 50061 ICR

• .,

> MONTGOMERY WATSON LABORATORIES a Division of Montgomary Watson Americas, Inc. 555 East Walnut Streat Pasadena, California 91101 Tal: 525 568 6400 Fax: 626 568 6324 1 800 568 LABS (1 800 568 5227)

Laboratory Report #50061

Samples Received

09-dec-1998 16:44:01

Miami Dade Water and Sewer Authority Dept. Ray Diaz 6800 S.W. 87th Avenue Miami, FL 33173

Prepared Analyzed QC Batch# Method Analyte Result Units MDL Dilution

NORTHWEST WELL 10 (981209234)

Sampled on 12/08/98

Microscopic Particulate Analy.

	MICLOBCO			100G	1.0	1
12/09/98	(ML/BPA) Amoeba Quant.	<1		0.0000	1
12/09/98	(ML/EPA) Relative Risk Factor, Coccidia	0	RRF	1.0	1
12/09/98	(ML/BPA) Ciliate/Plagellate Quant.	<1	100G	1.0	1
12/09/98	(SN 9711B) Coccidia/Crypto(w int struct)	<1	100G		1
12/09/98	(ML/EPA) Crustacea Quant.	<1	100G	1.0	1
12/09/98	(ML/EPA) Diatoms Quant.	<1	100G	1.0	1
12/09/98	(ML/EPA) Dipteran Larvae Quant.	<1	100G	1.0	
12/09/98	(ML/EPA) Fine Amorphous Debris Quant.	>200	100G	1.0	1
12/09/98	(ML/EPA) Fungal Spore Quant.	<1	100G	1.0	1
12/09/98	(SM 9711B) Giardia Cysts-Presumptive	<1	100G	1.0	1
12/09/98	(ML/BPA) Relative Risk Factor, Giardia	Q	RRF	0.0000	1
12/09/98	(ML/EPA) Insect Parts and Larvae Quant	<1	100G	1.0	1
12/09/98	(ML/BPA) Large Amorphous Debris Quant.	>200	100G	1.0	1
12/09/98	(ML/EPA) Minerals Quant.	9	100G	1.0	1
12/09/98	(ML/EPA) Miscellaneous Algae Quant.	6	1006	1.0	1
12/09/98	(NL/EPA) Mites Quant.	<1	100G	1.0	1
12/09/98	(ML/EPA) Nematode Quant.	<1	1000	1.0	1
12/09/98	(ML/EPA) Plant Debris Quant.	28	100G	1.0	1
12/09/98	(ML/EPA) Plant Pollen Quant.	1	100G	1.0	1
-	(ML/EPA) Rotifers Quant.	<1	100G	1.0	1
12/09/98	(NL/EPA) Other Debris-See Comments	<1	100G	1.0	1
12/09/98	(ML/EPA) Diatoms, Rel.Risk Factor	0	RRF	0.0000	1
12/09/98	(ML/BPA] Insect Parts/Larv.Rel.Risk F	G	RRF	0.000	1
12/09/98	(ML/EPA) Misc.Algae, Rol.Risk Factor	4	RRF	0.0000	1
12/09/98	(ML/BPA) Plant Debris, Rel. Risk Factor	1	RRF	0.0000	1
12/09/9B	(ML/SPA) Rotifers, Rel.Risk Pactor	0	RRF	0.0000	1
12/09/98	(ML/BPA) Relative Risk Factor, TOTAL	5	RRF	0.0000	1
12/09/98	(ML/BPA		-			

æ

. ...

2 •

MONTGOMERY WATSON LABORATORIES a Division of Montgomery Wetson Americas, Inc. 555 East Walnet Street Pasedena, Californie 31101 Tel: 628 588 6400 Fax: 626 588 8324 1 800 568 LABS (1 800 566 5227) Report Comments #50061

 δ^{\prime}

s.

×

Page

1

(981209234) @MPA Sample is at low risk of surface water contamination.

24+24+8= 56-3= 53

Montgomery Watson Laboratories

(#)

		EPA RELAT	IVE SURFAC	E WATER RISI	K FACTO	RS				
Client:	Miami Dade Water and									
Water Source:	NORTHWEST WELL 10		-	Weather Conditions:						
Lab ID#	981209234		-	At Setup:			Raining			
Volume Sampled:	790		-	A Finish:			□ Raining			
Filter Setup Date:	12/7/98 🏹		-	Site Conditions:						
Filter Setup Time:	3:09 PM		-	At Setup:		Moderate Standing	Water Area Flooded			
Analysis Date:	12/9/98	······································	-	A Finish:						
Analysis Time:	11:00 PM	-	-							
Primary Particulates		#/100 Gallon	Relative Frequency**	Relative Risk Factor		Comme	ents			
Giardia with internal struct		<1	NS	0			·			
Coccidia with internal stru Diatoms	ctures	<1	NS	0						
Other Algae		<1	NS	0	<u> </u>					
Insects/larvae		<u> </u>	R NS	4						
Rotifers		<1	NS	0						
Plant Debris (with chlorop	hyll)	28	N	1						
			Relative Risk Factor	5	** <u>E</u> xtremely	ate, <u>R</u> are, <u>N</u> ot Significant				
Secondary Particulate	S	#/100 Gallon	Relative Frequency	Relative Risk Factor	Comm	ents				
Nematodes	,	<1	NS	no risk factor	1					
Crustaceans		<1	NS	no risk factor						
Fungal Spores Amoebae		<1	NS	no risk factor						
Flagellates & Ciliates		<1	NS	no risk factor						
Plant Pollen		<1	NS R	no risk factor		······································				
Other: Large Amorphou	ıs Debris	>200	EH	no risk factor no risk factor						
Other: Fine Amorphous		>200	EH	no risk factor	 	• • • • • • • • • • • • • • • • • • •				
Other: Minerals Quant.		9	R	no risk factor	[
Other: Other Debris		<1	NS	no risk factor	1					
COMMENTS: Primary surface water indicators observed: Other Algae Plant Debris (with chlorophyll) Based upon microscopic particulate analysis and the proposed EPA risk factors associated with bio-Indicators there is low risk of surface contamination (EPA risk factors <9, low risk)										
	Particulate Analysis (MPA	USEPA Manches	ster Environmental	Laboratory, EPA 910/	9-92-092 Oct	toher 1992				

.

.	14:13 FROM DEF WATER FAC. TALL. TO BI3054481325 FAC	02
	MORIDA DEPARTNENT OF	
	TTTATTT	
	HEALIN	
· ·		
	MPA SAMPLE REPORT	•
	marcasadone74 Miemi Dade Water & Sewer	•
ab Sample		•
ste/tima Colle	12/08/98 03:09 PM Date/Lime Processed: 12/09/98 By: Laison 12/08/98 07:40 AM 10:20 AM	
ROCESSIN	IG INFORMATION	
ł	filter color gray color of water around the mark and the water around the mark and the water around the mark and the second seco	
Total volu	ne water filtered (gal): 680 Perceivsucrose invariant (iii) NA	
Total volu	me filter sediment (µ): 102 Percol/sucrose initiation packet scenario (µ): NA	
ul sediment		•
number of	slides examined: 2 material examined: Unitoated sediment	
and and the second	ticulates #/100 gallon Relative frequency Relative Risk Comments	
rimery Par	aculates Fador	•
iardia	NA	•
occidia	NA	
	th chloroplasts) 0 NS 0	
	(with chloroplasts) 330 EH 14 euglenold, clusters, unicells	,
nsects / Lar	1 10 11	•
louifers	ns 0	•
	0 NS 0	
Plant Debris	EPA Relative Risk= 14	
Reference: US Microscopic Pe	SEPA Consensus Method for Determining Groundwaters Under the Direct Influence of Surface Water Using	
Microscopi¢ Pé EH ≓ extrem	SEPA Consensus Method for Determining Groundwaters Under the Direct Influence of Surface Water Using enfouses Analysis (MPA): NA = Not Assayed hely heavy H = heavy M = moderately heavy R = rare NF = None found	
Microscopic Pé EH = extrem Secondary	SEPA Consensus Method for Determining Groundwaters Under the Direct Influence of Surface Water Using aniculate Analysis (MPA): NA = Not Assayed nely heavy H = heavy M = moderately heavy R = rare NF = None found Particulates #/100 gallon Comments	· •
Microscopic Pé EH ≕ extrem Secon dary Large amor	SEPA Consensus Method for Determining Groundwaters Under the Direct Influence of Surface Water Using Anticulate Analysis (MPA): NA = Not Assayed nely heavy H = heavy M = moderately heavy R = rare NF = None found Particulates #/100 gallon Comments phous debris M	s •
Microscopic Pe EH = extrem Secondary Large amor Fine amorpl	SEPA Consensus Method for Determining Groundwaters Under the Direct Influence of Surface Water Using aniculate Analysis (MPA): NA = Not Assayed nely heavy H = heavy M = moderately heavy R = rare NF = None found Particulates #/100 gallon Comments	5
Microscopic Pé EH ≕ extrem Secon dary Large amor	SEPA Consensus Method for Determining Groundwaters Under the Direct Influence of Surface Water Using influence of Surface Water Using anticulate Analysis (MPA): NA = Not Assayed NA = Not Assayed NA = noderately heavy R = rare NF = None found Particulates #/100 gallon Comments Comments phous debris M M	
Alcroscopic Pé EH = extrem Secon dary Large amor Fine amorpl Minerals Plant pollen	SEPA Consensus Method for Determining Groundwaters Under the Direct Influence of Surface Water Using articulate Analysis (MPA): NA = Not Assayed NA = Not Assayed Ne = noderately heavy R = rare NF = None found Particulates #/100-gallon Comments Phous debris M M No. 7.5	
Microscopic Pé EH = extrem Secon dary Large amor Fine amorpl Minerals Plant pollem	SEPA Consensus Method for Determining Groundwaters Under the Direct Influence of Surface Water Using articulate Analysis (MPA): NA = Not Assayed NA = Not Assayed Ne = noderately heavy R = rare NF = None found Particulates #/100-gallon Comments Phous debris M M No. 7.5	5
Nicroscopic Pé EH = extrem Secondary Large amor Fine amorpi Minerals Plant pollen Nematodes	SEPA Consensus Method for Determining Groundwaters Under the Direct Influence of Surface Water Using anticulate Analysis (MPA): NA = Not Assayed NA = Not Assayed Ne moderately heavy R = rare NF = None found Particulates #/100-gallon Comments phous debris M NA No 7.5 0	
nicroscopic Pa EH = extrem Secondary Jarge amorp Fine amorp Minerals Plant pollen Nematodes Crustacean	SEPA Consensus Method for Determining Groundwaters Under the Direct Influence of Surface Water Using articulate Analysis (MPA): NA = Not Assayed NA = Not Assayed Ne = noderately heavy R = rare NF = None found Particulates #/100-gallon Comments Comments Phous debris M 7.5 0 NB 0 8.3 0	
Aicroscopic Pé EH = extrem Secondary Jarge amor Fine amorpi Minerals Plant pollen Nematodes Crustacean Amoeba	SEPA Consensus Method for Determining Groundwaters Under the Direct Influence of Surface Water Using influence analysis (MPA): NA = Not Assayed NA = Not Assayed NA = not Assayed nely heavy H = heavy M = moderately heavy R = rare NF = None found Particulates #/100-gallon Comments Omments Phous debris M NA NA No 7.5 O O Se ciliates 2.2 2.2	
Aicroscopic Pa EH = extrem Secondary Jarge amor Fine amorp Vinerals Plant pollen Nematodes Crustacean Amoeba Flagellates	SEPA Consensus Method for Determining Groundwaters Under the Direct Influence of Surface Water Using Induste Analysis (MPA): NA = Not Assayed nely heavy H = heavy M = moderately heavy R = rare NF = None found Particulates #/100 gallon Comments phous debris M 7.5 0 0 8.3 2 cillates 2.2 5 5.8	
Nicroscopic Pa EH = extrem Secondary Large amor Fine amorpl Minerals Plant pollen Nematodes Crustacean Amoeba Flagellates Other, eggs	SEPA Consensus Method for Determining Groundwaters Under the Direct Influence of Surface Water Using includes Analysis (MPA): NA = Not Assayed N = rare NF = None found nely heavy H = heavy M = moderately heavy R = rare NF = None found Particulates #/100-gallon Comments O phous debris M NA NA Not debris M NA NA NA NA NA NF = None found Particulates #/100-gallon Comments NA NA NA NA NA Particulates NA NA NA Secondebris N NA NA NA NA NA NA </td <td></td>	
Aicroscopic Pa EH = extrem Secondary Jarge amor Fine amorpi Vinerals Plant pollen Nematodes Crustacean Amoeba Flageilates Other: diggs Other: Jung Comments	SEPA Consensus Method for Determining Groundwaters Under the Direct Influence of Surface Water Using inducted Analysis (MPA): NA = Not Assayed nely heavy H = heavy M = moderately heavy R = rare NF = None found Particulates #/100 gallon Comments NF = None found Phous debris M N nous debris H N 0 8.3 0 8 5.3 2.2 5 5.8 5.8 11/10/10/10/10/10/10/10/10/10/10/10/10/1	
nicroscopic Pa EH = extrem Secondary Jarge amor Fine amorpi Minerals Plant pollen Nematodes Crustacean Amoeba Flagellates Other: sung Comments	SEPA Consensus Method for Determining Groundwaters Under the Direct Influence of Surface Water Using Influence Influenc	
Alcroscopic Pa EH = extrem Secondary Jarge amor Fine amorpi Minerals Plant pollen Nematodes Crustacean Amoeba Flagellates Other: fung Comments Based upo	SEPA Consensus Method for Determining Groundwaters Under the Direct Influence of Surface Water Using Actuate Analysis (MPA): NA = Not Assayed nely heavy H = heavy M = moderately heavy R = rare NF = None found Particulates #/100-gallon Comments phous debris M nous debris M 7.5 0 0 8.3 2 ciliates 2.2 5 5.8 6 6.3 6 8.3 6 8.3 6 8.3 6 8.3 6 8.3 7.5 0 0 8.3 10 8.3 11 6.8 12 6.8 13 14 14 filaments & spores 14 filaments & spores 15 16 16 16 17 16 18 16 19 16 10 16 10 16	
Alicroscopic Pa EH = extrem Secondary Jarge amor Fine amorph Minerals Plant pollen Nematodes Crustacean Amoeba Flagellates Other: fung Comments Based upo is a <u>moder</u>	SEPA Consensus Method for Determining Groundwaters Under the Direct Influence of Surface. Water Using influence analysis (MPA): NA = Not Assayed nety heavy H = heavy M = moderately heavy R = rare NF = None found Particulates #/100-gallon Comments NF = None found Phous debris M N hous debris M 7.5 0 8.3 0 10 8.3 2.2 11 5.8 5.8 11 Filaments & spores R 11 microscopic particulate analysis and the EPA risk factors associated with bio-indicators, there are risk of surface contamination. Determination of surface water influence should not be analysis water gualify data	.
Alcroscopic Pa EH = extrem Secondary Jarge amor Fine amorph Minerals Plant pollen Nematodes Crustacean Amoeba Flagellates Other: fung Comments Based upo is a <u>moder</u>	SEPA Consensus Method for Determining Groundwaters Under the Direct Influence of Surface. Water Using influence analysis (MPA): NA = Not Assayed nety heavy H = heavy M = moderately heavy R = rare NF = None found Particulates #/100-gallon Comments NF = None found Phous debris M N hous debris M 7.5 0 8.3 0 10 8.3 2.2 11 5.8 5.8 11 Filaments & spores R 11 microscopic particulate analysis and the EPA risk factors associated with bio-indicators, there are risk of surface contamination. Determination of surface water influence should not be analysis water gualify data	
Alcroscopic Pa EH = extrem Secondary Large amor Fine amorph Minerals Plant pollen Nematodes Crustacean Amoeba Flagellates Other: sung Comments Based upo is a <u>moden</u> based sole and on-site	SEPA Consensus Method for Determining Groundwaters Under the Direct Influence of Surface Water Using articulate Analysis (MPA): NA = Not Assayed NA = Not Assayed NF = None found Particulates #/100 gallon Comments M Particulates #/100 gallon Comments M Phous debris M Nous debris M Secillates 2.2 Secillates 2.2 Secillates 2.2 Secillates 2.2 Secillates 2.2 Secol contamination: Determination of surface water influence should not be the set of one or two MPAs. Other pertinent information, such as water quality data as surface, should be used in conjunction with the MPA results in making this determination.	
Microscopic Pa EH = extrem Secondary Large amor Fine amorpi Minerals Plant pollen Nematodes Crustacean Amoeba Flagellates Other: fung Comments Based upo is a <u>moden</u>	SEPA Consensus Method for Determining Groundwaters Under the Direct Influence of Surface Water Using articulate Analysis (MPA): NA = Not Assayed NA = Not Assayed NF = None found Particulates #/100 gallon Comments M Particulates #/100 gallon Comments M Phous debris M Nous debris M Secillates 2.2 Secillates 2.2 Secillates 2.2 Secillates 2.2 Secillates 2.2 Secol contamination: Determination of surface water influence should not be the set of one or two MPAs. Other pertinent information, such as water quality data as surface, should be used in conjunction with the MPA results in making this determination.	
Microscopic Pa EH = extrem Secondary Large amor Fine amorpi Minerals Plant pollen Nematodes Crustacean Amoeba Flagellates Other: sung Comments Based upo is a <u>moden</u> based sole and on-site	SEPA Consensus Method for Determining Groundwaters Under the Direct Influence of Surface Water Using articulate Analysis (MPA): NA = Not Assayed NA = Not Assayed NF = None found Particulates #/100 gallon Comments M Particulates #/100 gallon Comments M Phous debris M Nous debris M Secillates 2.2 Secillates 2.2 Secillates 2.2 Secillates 2.2 Secillates 2.2 Secol contamination: Determination of surface water influence should not be the set of one or two MPAs. Other pertinent information, such as water quality data as surface, should be used in conjunction with the MPA results in making this determination.	
Microscopic Pa EH = extrem Secondary Large amor Fine amorpi Minerals Plant pollen Nematodes Crustacean Amoeba Flagellates Other: sung Comments Based upo is a <u>moden</u> based sole and on-site	SEPA Consensus Method for Determining Groundwaters Under the Direct Influence of Surface Water Using influence analysis (MPA): NA = Not Assayed NA = Not Assayed NF = rare NF = None found Particulates #100-gallon Comments Phous debris M M hous debris M M NA = Not Assayed NF = None found Particulates #100-gallon Comments Phous debris M N NA = 0 S 0 S S 0 S S 5.8 S S 5.8 S S 5.8 National Social	 -
Microscopic Pa EH = extrem Secondary Large amor Fine amorph Minerals Plant pollen Nematodes Crustacean Amoeba Flagellates Other: fung Comments Based upo is a moden based sole and on-site Reported t	SEPA Consensus Method for Determining Groundwaters Under the Direct Influence of Surface Water Using Includate Analysis (MPA): NA = Not Assayed nely heavy H = heavy M = moderately heavy R = rare NF = None found Particulates #100-gallon Comments phous debris M hous debris H NA = Not Assayed nely field to gallon Comments 0 8.3 8 cillates 2.2 5 5.8 14 filaments & spores R 14 filaments & spores R 15 0 16 microscopic particulate analysis and the EPA risk factors associated with bio-indicators, there ally filsk of surface contamination. Determination of surface water influence should not be ally on the results of one or two MPAs. Other pertinent information, such as water quality data is unveys should be used in conjunction with the MPA results in making this determination. by Date: 12/14/98 Date: 12/14/98	H.
Microscopic Pa EH = extrem Secondary Large amor Fine amorph Minerals Plant pollen Nematodes Crustacean Amoeba Flagellates Other: fung Comments Based upo is a <u>moden</u> based sole and on-site	SEPA Consensus Method for Determining Groundwaters Under the Direct Influence of Surface Water Using Includate Analysis (MPA): NA = Not Assayed nely heavy H = heavy M = moderately heavy R = rare NF = None found Particulates #100-gallon Comments phous debris M hous debris H NA = 0 8.3 8 cillates 2.2 5 5.8 14 filaments & spores R 14 microscopic particulate analysis and the EPA risk factors associated with bio-Indicators, there all filaments & spores R 15 other particulate analysis and the EPA risk factors associated with bio-Indicators, there all file results of one or two MPAs. Other pertinent Information, such as water quality data is unveys should be used in conjunction with the MPA results in making this determination. by: Date: 12/14/98 1400-0. MPJ	H.

:

1117

P.04

E98-

MPA SOURCE WATER IDENTIFICATION STATE OF FLORIDA SAMPLE ID SHEET

PWS ID# 4/30871

community non-transient non-community non-community

NAME OF WATER SYSTEM AND ADDRESS: Migmi Dade Water & Sewer 100 west 2nd Ave Higlean FI 33010 PHONE GOUS 8872007 1201. Bay Hill Drite 7435 SAMPLER NAME AND ADDRESS David Kamos PHONE(305) 829-8611 Miami, F1 33015 Preston Water Quality Lab LAB NAME AND ADDRESS John E. PHONE (2007-2007 1100 West 2nd Ave. Higlein, FI 33010 ACCOUNT#: PROJECT CODE # NAME OF ANALYST NAME OF CARRIER AND TRACKING NUMBER FUL EX. # 801953974161 DATE SAMPLE RECEIVED BY LABORATORY: 12/9/97 10:00 am NAME OF PERSON RECEIVING SAMPLES INTO THE LABORATORY THE MULLON WAS PACKING AND EVIDENCE TAPE INTACT? 46 TEMPERATURE OF SAMPLES AT RECEIPT: 12"C DATE AND TIME THE FILTER WAS REMOVED FROM THE HOUSING (IN THE FIELD): 12/8/98 @ 7:40 am DATE AND TIME SAMPLE PROCESSING BEGAN 1219198 102 Field information Water source location: NW wellcield (use latitude and longitude coordinates if available) Type: well Well ID #: well # 10 Were wells pumped constantly or cycled on and off on a regular basis for at least two weeks prior to MPA sampling? Yes / No Volume of water purged from well prior to sampling (ft bls) Screened Interval: (ft bls) (ft bls) Depth of casing: Depth of well: (ft bls) Grouted Interval: Is the well grouted? Distance from other wells (within a 1500 foot radius), status of wells (active, inactive), and usage of wells Distance from surface water bodies (indicate whether river, canal, stream, lake, pond, etc. Distance from any karst features (identify feature e.g. sinkholes): Distance from any pollution sources (indicate types, e.g. septic tanks) Time since last rainfall event, and amount of rainfall in inches (best approximation) 12/6/ 0.02 inches ******* Attach a detailed sketch of the site. This should include approximate distances to other well(s)

Attach a detailed sketch of the site. This should include approximate distances to diner well(s) and nearby features (i.e. water bodies, sinkholes, pollution sources or other pertinent landmarks) within a 1500 foot radius. Wherever possible provide a statement of the status and usage of any wells within this area. In addition, when available, attach e log of rainfall events and approximate amounts at the well site starting two weeks prior to the site visit.

SR. JSHA

04/13/99 TUE 15:	00 FAX 305	446 1957	MONTGOMERY	WATSON MIAMI		🖉 011
DEC-15-1998 1	6:13 FROM	DEP WATER FAC.	TALL.	то	613054467323	P.05

HLAD

PAGE 04

E98-1117

Page two MPA SOURCE WATER IDENTIFICATION, STATE OF FLORIDA SAMPLE ID SHEET PWS ID# 4130871 Well# 10 <u>o</u>

Measurements
Meter Rending Final: 25 860 Time: 14 cm Date: 12/ 3/90
Well Turbidity Final: 0.22 Inne: 1: 2000 Date: 12/ 51 10
Well Water Temperature Final Time: Date:
Well pH Final:
Well Conductivity Final: Time: Date:
Well Chloring Residual Final: 0-00/0 00 Time: 7-300- Date, 12/01
Total Chlorine Final: 0.00 /0.00 Time: 9:35 4- Date: 121 4/1
Meter Reading Start: 25 180 Time: 3:09pm Date: 12/7/98
Wall Turchidity Start: 0,28 Time: 7:50 an Date: 15117.73
Well Water Temperature Start: 25.0°C Time 3:00 pm Date: 12/11-70
Well pH Start:
Well Conductivity Start: Time: Date:
Well Chlorine Residual Start: <u>6.50/0.5</u> Time: 9:30 am Date: 12/8/44 Well Chlorine Residual Start: <u>6.50/0.5</u> Time: 9:30 am Date: 12/8/44
Total Chlorine Start: 0.00/0.08
TOTAL WATER VOLUME FILTERED (in gallons): 000

Signatures of People Present at Time of Sampling: Dariel Kaus
······································

이 집에 잘 많는 것 같아요. 그는 것 같아요. 이 것 같아요. 가슴
Total volume filtered: 680 gal
Total volume filtered: 680 Gal Total filter sediment collected: 102 µl
Total volume filtered: 680 Gal Total filter sediment collected: 102 µl uL scdiment/100 gal 15.0
Total volume filtered: <u>680 gal</u> Total filter sediment collected: <u>102 µl</u> uL sediment/100 gal <u>15.0</u> Percoll@/sucrose floatation pellet volume: <u>Mas</u> ul
Total volume filtered: 680 gal Total filter sediment collected: 102 ul ul sediment/100 gal 15.0 Percoll@/sucrose floatation pellet volume: Mae ul Percoll@/sucrose floatation packed sediment Mae ul
Total volume filtered: <u>680 gal</u> Total filter sediment collected: <u>102 µl</u> uL sediment/100 gal <u>15.0</u> Percoll@/sucrose floatation pellet volume: <u>Mas</u> ul
Total volume filtered: 680 Gal Total filter sediment collected: 102 µl uL sediment/100 gal 15.0 Percoll@/sucrose floatation peller volume: Mas uL Percoll@/sucrose floatation packed sediment Mas uL uL floatation pellet volume/100 gallons filtered na uL
Total volume filtered: <u>680 gal</u> Total filter sediment collected: <u>102 µl</u> uL sediment/100 gal <u>15.0</u> Percoll@/sucrose floatation pellet volume: <u>Mas</u> uL Percoll@/sucrose floatation packed sediment <u>Mas</u> uL uL floatation pellet volume/100 gallons filtered <u>uL</u>
Total volume filtered: <u>680 Gal</u> Total filter sediment collected: <u>102 µl</u> uL sediment/100 gal <u>15.0</u> Percoll@/sucrose floatation pellet volume: <u>Mae</u> uL Percoll@/sucrose floatation packed sediment <u>Mae</u> uL uL floatation pellet volume/100 gallons filtered <u>nu</u> UL floatation pellet volume/100 gallons filtered <u>nu</u> Type of material examined: <u>Marcu</u> direct examination of unfloated sediment by wet mount or filtered thru MF
Total volume filtered: <u>680 Gal</u> Total filter sediment collected: <u>102 µl</u> uL sediment/100 gal <u>15.0</u> Percoll@/sucrose floatation pellet volume: <u>Mas</u> uL Percoll@/sucrose floatation packed sediment <u>Mas</u> uL uL floatation pellet volume/100 gallons filtered <u>na</u> uL Type of material examined: <u>i</u> direct examination of unfloated sediment by wet mount or filtered thru MF floated (suspended) pellet
Total volume filtered: <u>680 Gal</u> Total filter sediment collected: <u>102 µl</u> uL sediment/100 gal <u>15.0</u> Percoll@/sucrose floatation pellet volume: <u>Mae</u> uL Percoll@/sucrose floatation packed sediment <u>Mae</u> uL uL floatation pellet volume/100 gallons filtered <u>nu</u> UL floatation pellet volume/100 gallons filtered <u>nu</u> Type of material examined: <u>Marcu</u> direct examination of unfloated sediment by wet mount or filtered thru MF
Total volume filtered: <u>(80 gal</u> Total filter sediment collected: <u>102 µl</u> uL sediment/100 gal <u>15.0</u> Percoll@/sucrose floatation packed sediment <u>102 uL</u> uL floatation pellet volume/100 gallons filtered <u>102 uL</u> UL floatation pellet volume/100 gallons filtered <u>102 uL</u> Type of material examined: <u>direct examination of unfloated sediment by wet mount or filtered thru MF</u> floated (suspended) pellet floated packed pellet
Total volume filtered: 680 gal Total filter sediment collected: 102 Jul uL sediment/100 gal 15.0 Percoll@/sucrose floatation pellet volume: Mae uL Percoll@/sucrose floatation packed sediment Mae uL uL floatation pellet volume/100 gallons filtered nu uL Type of material examined: Afrect examination of unfloated sediment by wet mount of filtered thru MF floated (suspended) pellet floated packed pellet Floatation Parameters:
Total volume filtered: <u>(80 Gal</u> Total filter sediment collected: <u>102</u> uL sediment/100 gal <u>15.0</u> Percoll@/sucrose floatation pellet volume: <u>Ma</u> uL Percoll@/sucrose floatation packed sediment <u>Ma</u> uL uL floatation pellet volume/100 gallons filtered <u>na</u> uL Type of material examined: <u>I</u> direct examination of unfloated sediment by wet mount or filtered thru MF floated (suspended) pellet floated (suspended) pellet <u>Floatation Parameters</u> : <u>Percoll@/sucrose gradient</u>
Total volume filtered: 680 gal Total filter sediment collected: 102 Jul uL sediment/100 gal 15.0 Percoll@/sucrose floatation pellet volume: Mae uL Percoll@/sucrose floatation packed sediment Mae uL uL floatation pellet volume/100 gallons filtered nu uL Type of material examined: Afrect examination of unfloated sediment by wet mount of filtered thru MF floated (suspended) pellet floated packed pellet Floatation Parameters:

Sample #:	· · · · · · · · · · · · · · · · · · ·	Dilutio	Dilution: 1.2 Vol. final pellet (µf): 204											
Gallo	is water	examin	ed:	133			Entire floated unfloated pellet examined: yes no							
Slide #:	1 X		3 🗌	4	5 🗌	6 🗌	7	8	9 []	10 🗆	Total count	#/100 gallons	Relative frequency	Risk Factor
rimary Particulates											1	<u> </u>	1	
Giardia														
Coccidia											 .			
Diatoms	O	\bigcirc									0	0	ns	0
Other algae 🕺	253	186								1	439	330.1	EH	14
nsecUlarvae	0	Ö									0	0	n5	6
Rolifers	0	0							·····		0	0	N5	0
Plant debris	0	0				· · · .					0	0	ns	0
other														المسيب ا
Secondary particula	les.													(14)
arge amorphous lebris	m	M									M	M		
Fine amorphous Jebris	H	H									Н	Н		
Vinerals	m	M									M	M		6.1.0
lant pollen	8	2									10	75		
Vematodes	0	6									0	0		
Crustacia	0	0									0	0		p
Amoeba	4	7									11	8.3		
Ciliate/ Flagellates	2	1			· ·			· · · ·			3	2.2		
Other: Eggs		B			<u>.</u>						9	6.8		
Fungal filaments & spores	R	R									L	R		

MPA CLASSIFICATION AND QUANTITATION OF PARTICULATES

.

÷

: 4 . .

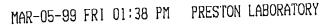
* oundenoids. Clusters, sixo, 20

. . .

.

04/13/99 TUE 15:00 FAX 305 446 1957 DEC-15-1998 16:14 FROM DEP WATER FAC. (i MONTGOMERY WATSON MIAMI TALL. TO I AMETH LAS VIKULUGY

:


P.06 2012

Laboratory Results February 1999

04/13/99 TUE 14:55 FAX 305 446 1957

MONTGOMERY WATSON MIAMI $\rightarrow \rightarrow \rightarrow$ PBC 1

FAX NO. +

Montgomeny Yatson Lanoratories

a Divising of Minagonany Webbon American had 555 Cant Wolant Summ Polantopan, Cathornin 91101 To I: 1028 Sun 6400 Parts 576 Stafe 325 1 200 546 LABS (1 840 505 5227)

Laboratory Report.

for

Miami Dade Water and Sewer Authority Dept. 6800 S.W. 87th Avenue

Miami		FL	33173
Atter	nt.io	ימכ	11 To [14]
Fax:	(3)	05)	275-3662
			882-5767

SURAN C	AUNITIC MERT WATTER LANS. DEBNITER OF	Server a
******	MAR 0 5 1999	CONCEPTION OF THE PARTY OF THE
	Jerman C. Heini JCH JIM Hein	

Report#: 52095 ICR

N

257-3 40/10 d SZI-1

REPORTABORAL NOSTAW YRRWONTGOMERY MARCHINE BE-20-15M

_	u Holeron ol Stri Cont Wa Pasadana, C Tel: 626 366	Monigomery Watson Amo	IN LABORAYONIES		Laborat Repor #5209	rt.			
	Red word Durley	Water and	Sector	Sam	ples Rec	eived			
	Authority		.5ewer						
	Ray Diaz	87th Avenue							
fet, pared	walvee of 350	chil Natheat	Pthylac	Result	Unica	NDL.	Dilutic		
N.W. WI	TAL FIRLD WE	LL 10 (9902	24014) Sampled on	02/23/9	9				
		Micronec	pic Particulate Analy.						
•	07/24/50	[HL/6/ A) Annelus Quant.	<1	1000	1.0	1		
	02/24/99	(NU/ESA) Relative Rick Factor. Coucidia	٥	RAP	0.0000	1		
	03/26/93	I ML/LEA) Cilvate/Plagellate Guant.	~1.	1006	1.0	1		
	02/34/90	(141 2711N) Concidia/Crypho(w int struct)	<1	1006	1.0	1		
	02/24/99	(EL/STA) Crustacea Quant.	<:	1000	1.0	1		
	07/24/39	(MU/07X) Distone Quant.	<1	1006	1.0	1		
	02/21/00	I ML/LEA	1 Dipteran harvee Quint.	-1	1000	1.0	1		
5 J	02/21/99	(NE/EEX) Fine Asorphony Debrie Quant.	>200	1000	1.0	1		
<u> </u>	02/74/03	1 mil/Kun) Forgal Spore Quant.	<1	1000	1.0	1		
	02/24/99	(SM 97110) Glardia Cysen-Presymptive	<1	1006	1.0	1		
	42/41/89	(196/EFA	1 Falurive Rick Factor, Glardia	o	RRF	0.0000	1		
	03/24/09	(NL/EPA) Incest Parts and Larvae Quant	<7	1000	1.0	7		
	02/24/99	L ML/ROA) Large hadrobans Debris Quant.	>200	1000	1.0	1		
	02/24/60	1 86/224) Mánerals Ovans.	1	100G	1.0	1 1		
	02/23/09	t malara) Kiscollabecus Algae Onant.	55	700C 700C	1.0 1.0	1		
	02/04/52	(NL/EFA) XIECT GASES.	<1 -,1	100G	1.0	1		
	02/24/59	(ML/CPA) Neusside Outst:	-1	100G	2.0	1		
	02/24/99	(MI/EPA) Plant Lebelt Cuast.	<1	1000	2.0	1		
	02/24/09	(NL/ARA	V Plant Pollen Quant,	c1	1006	1.0	1		
	02/24/59	(ML/EZA) kucilers (dant.) onher Debrid-Sze Communts	n/a	1000	1.0	1		
	92/25/52	(ML/FOA (HL/FPA) Diateme, Kal.Rick Fostor	0	PRF	0.0000	I		
	02/24/93 02/24/95	(KE/ENA) Insact Farts/Lary, Rul.Risk P	o	KRZ	0.0000	1		
	02/34/00	(ML/EQA) Misc.Algan. Rel.Rick Factor	9	RRT	0.0000	1		
	02/14/27	(ML/ELA) Plane Debris, Rel. Rick Factor	o	RNP	0.0000	1		
	02/24/20	(ME/EPA) sprifers, Rol.Risk Factor	0	RRF	0.0000	1		
	02/24/97	(NU/KPA) Pelotive Rick Factor, TotAl	2	REF	0.0000	2		

626553354 L-158 P.02/04 F-452

23180TA908AJ NC3TAW YA3WC0TIfOM-mo19 m630111 88-30-16M

Page 1

MONTGOMERY VIATSON LARABRATORIES 6 Obision of Maidyonery Women Americas, inc 595 East Weinet Busse Facedone, Collocato 51101 Tol. 576 500 8400 Faz: 679 508 6324 1 809 503 LABS 11 001 566 5727)

د به می اداد. افغان ماندانین بیش بود یا 60 م افغان و بو و بود بادین 7 مانو و بود

Report Comments #52095

(990234014)

A-G 纳绮

Sample is at low risk of surface water contamination.

Page

231ACTAROBAL NOSTAW YRAMODTNOM-mora mc00:11

1

24124 - - - - - - - - 41

Montgomery Watson Laboratories

20/20.1

1 1 30

770000C070

From-MUNIGUNERT WAISON LABURAIURIES

Apr-2/-39 11:32am

EF	Ϋ́	REL	.ATI\	/E \$	SURF	ACE	WATER	RISK	FACTORS

Relative Risk Factor Comments S 0 S 0 A 9 S 0 S 0 S 0 S 0 S 0 S 0 Relative Risk Factor Extremely Heavy, Heavy, Moderate, Rare, Not Significant tive re Risk e Risk 9 ** Extremely Heavy, Heavy, Moderate, Rare, Not Significant tive Relative Risk Factor S no risk factor	EPA RELATIVE SURFACE WATER RISK FACTORS												
At Setup: Image: Clear Image: Cloudy Image: Relative Risk Factor At Setup: Image: Cloudy Image: Relative Risk Factor Moderate Standing Water Image: Area Flooded At Setup: Image: Cloudy Image: Relative Risk Factor Moderate Standing Water Image: Area Flooded At Setup: Image: Relative Risk Factor Comments Image: Relative Risk Factor Area Flooded S 0 Image: Relative Risk Factor Comments Image: Relative Risk Factor Image: Relative Risk Factor S 0 Image: Relative Risk Factor Image: Relative Risk Factor Image: Relative Risk Factor S 0 Image: Relative Risk Factor Image: Relative Risk Factor Image: Relative Risk Factor S 0 Image: Relative Risk Factor Image: Relative Risk Factor Image: Relative Risk Factor S no risk factor Image: Relative Risk Factor Image: Relative Risk Factor Image: Relative Risk Factor S no risk factor Image: Relative Risk Factor Image: Relative Risk Factor Image: Relative Risk Factor S no risk factor Image: Relative Risk Factor Image: Relative Risk Factor Image: Relative Risk Factor	Client: Miami Dade Wate												
A Finish: □ Clear ⊠ Cloudy □ Raining Site Conditions: □ At Setup: ⊠ Dry □ Moderate Standing Water □ Area Flooded A Finish: ២ Dry □ Moderate Standing Water □ Area Flooded ancy** Relative Risk Factor Comments Comments S 0 S 0 0 S 0 S 0 S 0 S 0 S 0 S 0 S 0 S 0 S	Water Source: NORTHWEST WE	ELL 10	-	Weather Conditions:									
A Finish: □ Clear ☑ Cloudy □ Raining At Setup: ☑ Dry □ Moderate Standing Water □ Area Flooded A Finish: ☑ Dry □ Moderate Standing Water □ Area Flooded A Finish: ☑ Dry □ Moderate Standing Water □ Area Flooded A Finish: ☑ Dry □ Moderate Standing Water □ Area Flooded Area Flooded ○ ○ ○ S 0 ○ ○ ○ S 0 ○ ○ ○ S 0 ○ ○ ○ S 0 ○ ○ ○ S 0 ○ ○ ○ S 0 ○ ○ ○ S 0 ○ ○ ○ S 0 ○ ○ ○ S 0 ○ ○ ○ S 0 ○ ○ ○ S no risk factor ○ ○ S no risk factor ○ ○ S <td< td=""><td>Lab ID# 990224014</td><td></td><td>_</td><td>At Setup:</td><td>🗵 Clear</td><td>Cloudy</td><td>Raining</td></td<>	Lab ID# 990224014		_	At Setup:	🗵 Clear	Cloudy	Raining						
Site Conditions: At Setup: Image: Conditional conditented conditi	Volume Sampled: 850 Gallons			A Finish:	Clear	IX Cloudy							
A Finish: LX Dry Image: Moderate Standing Water Image: Area Flooded ancy** Relative Risk Factor Comments S 0 0 S 0 S 0 S 0 S 0 S 0 S 0 S 0 S 0 S 0 S 0 S 0 Relative Risk 9 ** Extremely Heavy, Heavy, Moderate, Rare, Not Significan tive remov Relative Risk Factor Comments S no risk factor S no risk factor <td>Filter Setup Date: 2/22/99</td> <td></td> <td>-</td> <td>Site Conditions:</td> <td></td> <td></td> <td></td>	Filter Setup Date: 2/22/99		-	Site Conditions:									
A Finish: LX Dry Image: Moderate Standing Water Image: Area Flooded uva ancy** Relative Risk Factor Comments S 0 S 0 S 0 S 0 S 0 S 0 S 0 S 0 S 0 S 0 S 0 S 0 Relative Risk 9 ** Extremely Heavy, Heavy, Moderate, Rare, Not Significan tive rency Relative Risk Factor Comments S no risk factor	Filter Setup Time: 5:35 PM		-	At Setup:	Drv Drv	Moderate Standing	Water D Area Flooded						
Relative Risk Factor Comments S 0 S 0 M 9 S 0 S 0 S 0 S 0 Relative Risk 9 ** Extremely Heavy, Heavy, Moderate, Rare, Not Significant tive re Risk Year Permetry Relative Risk Factor Comments S no risk factor	Analysis Date: 2/24/99		-										
Relative Risk Factor Comments S 0 S 0 M 9 S 0 S 0 S 0 S 0 Relative Risk 9 ** Extremely Heavy, Heavy, Moderate, Rare, Not Significant tive re Risk Year Permetry Relative Risk Factor Comments S no risk factor	Analysis Time: 5:00 PM		•										
S 0 S 0 I 9 S 0 S 0 S 0 B 0 S 0 S 0 B 0 Comments Not Significant Comments Significant S no risk factor S no r	Primary Particulates	#/100 Gallon	Relative Frequency**	Relative Risk Factor		Comm	ants.						
S 0 S 0 S 0 S 0 S 0 Relative Risk Factor Extremely Heavy, Heavy, Moderate, Rare, Not Significant tive r* Extremely Heavy, Heavy, Moderate, Rare, Not Significant tive rency Relative Risk Factor Comments S no risk factor S no risk factor <	Giardia with Internal structures		L										
S 0 I 9 S 0 S 0 Relative Risk Factor Extremely Heavy, Heavy, Moderate, Rare, Not Significan tive recry Relative Risk Factor Comments S no risk factor S no r	Giardia with Internal Structures	<1	NS NS		ļ								
1 9 S 0 S 0 Relative Risk Factor Extremely Heavy, Heavy, Moderate, Rare, Not Significan tive recry Relative Risk Factor Comments S no risk factor S	Diatoms	<1	NS										
S 0 S 0 Relative Risk 9 ** Extremely Heavy, Heavy, Moderate, Rare, Not Significant tive tive rency Relative Risk Factor S no risk fact	Dither Algae	55	M										
S 0 Relative Risk Factor *** Extremely Heavy, Heavy, Moderate, Rare, Not Significant tive tive *** Extremely Heavy, Heavy, Moderate, Rare, Not Significant tive *** Extremely Heavy, Heavy, Moderate, Rare, Not Significant tive *** Extremely Heavy, Heavy, Moderate, Rare, Not Significant tive *** tive *** tive *** tive *** tive *** sency Relative Risk Factor S no risk factor H no risk factor S no risk factor <	nsects/larvae	<1	NS										
R 0 e Risk tor 9 ** Extremely Heavy, Heavy, Moderate, Rare, Not Significant tive tency Relative Risk Factor Comments S no risk factor S H no risk factor S S no risk factor S <td>Rotifers</td> <td><1</td> <td>NS</td> <td></td> <td> </td> <td></td> <td></td>	Rotifers	<1	NS										
tor 9 "Extremely Heavy, Heavy, Moderate, Rare, Not Significantive tive Relative Risk Factor Comments S no risk factor H no risk factor H no risk factor S no risk factor G no risk factor H no risk factor S no risk factor G no risk factor S no risk factor G no risk factor H no risk factor S no risk factor G no risk factor S no risk factor S no risk factor S no risk factor	Plant Debris (with chlorophyll)	4	R	-			<u> </u>						
Relative Risk Factor Comments S no risk factor H no risk factor S no risk factor			Relative Risk Factor	9	** <u>E</u> xtremely <u>I</u>	** <u>E</u> xtremely <u>H</u> eavy, <u>H</u> eavy, <u>M</u> oderate, <u>R</u> are, <u>N</u> ot Si							
S no risk factor H no risk factor S no risk factor	Secondary Particulates	#/100 Gallon	Relative Frequency	Relative Risk Factor	Commer	nts	999 have blir himmen av sen de anne se an de ander besterne et an de sen de sen de sen de sen de se						
S no risk factor H no risk factor H no risk factor S no risk factor S no risk factor B no risk factor H no risk factor S no risk factor	Vematodes	<1	NS	no risk factor									
S no risk factor S no risk factor S no risk factor H no risk factor H no risk factor S no risk factor	Crustaceans	<1	NS	and the second se									
S no risk factor S no risk factor H no risk factor H no risk factor S no risk factor S no risk factor gae Plant Debris (with chlorophyll)	⁻ ungal Spores	<1	NS	no risk factor									
S no risk factor H no risk factor H no risk factor S no risk factor S no risk factor gae Plant Debris (with chlorophyll)	Amoebae	<1	NS	no risk factor									
H no risk factor H no risk factor S no risk factor S no risk factor gae Plant Debris (with chlorophyll)	Flagellates & Ciliates	<1	NS	no risk factor									
H no risk factor S no risk factor S no risk factor gae Plant Debris (with chlorophyll)													
S no risk factor S no risk factor gae Plant Debris (with chlorophyll)			Lange and the second										
S no risk factor gae Plant Debris (with chlorophyll)	•		1		ļ								
gae Plant Debris (with chlorophyll)					ļ								
roposed EPA risk factors associated with bio-Indicators stors <9, low risk) der the Direct Influence of Surface Water Using Microscopic commental Laboratory, EPA 910/9-92-092, October 1992.	Plant Pollen Other: Large Amorphous Debris Other: Fine Amorphous Debris Other: Minerals Quant. Other: Other Debris COMMENTS: Primary surface w Based upon micro there is low risk of	<1 >200 >200 <1 <1 <1 scopic particulate analysis surface contamination (EF	NS EH NS NS Other Algae Pla and the proposed PA risk factors <9, vaters Under the D	no risk factor no risk factor no risk factor no risk factor no risk factor nt Debris (with chloro EPA risk factors assoc low risk) irect Influence of Surfa	ciated with bio-liace Water Using	- <u>A Microscopic</u>							

•,

P.02

ТО

MPA SAMPLE REPORT Lab Sample # E99-0015 PWS#4130871 Miami Dade Water & Sewer Dept. well #10 Utility: Date/time Collected 2/22/99 05:35 PM Date/time Processed: 02/24/99 Bv: Larson/Harrell 11:00 AM 2/23/99 07:05 AM PROCESSING INFORMATION color of water around the filter: clear filter color light gray 10* Total volume water filtered (gal): 820 Percoll/sucrose flotation pellet volume (µl): Total volume filter sediment (ul): 90 Percoll/sucrose flotation packed sediment (µl): 75 µl flotation pellet volume/100 gallons sampled: 1.4 ul sediment/100 gallons sampled: 11.0 number of slides examined: material examined: floated (suspended) pellet 1 Relative frequency* **Relative Risk** Comments Primary Particulates #/100 gallon Factor Giardia NA NA NA NA NA Coccidia NA Diatoms (with chloroplasts) 0 NS Ô Other Algae (with chloroplasts) EH. 874 14 Insects / Larvae 0 NS 0 NS Rotifers 0.1 0 NS 0.1 0 Plant Debris **EPA Relative Risk=** 14 *Reference: USEPA Consensus Method for Determining Groundwaters Under the Direct Influence of Surface Water Using Microscopic Particulate Analysis (MPA): NA = Not Assayed NF = None found M = moderately heavy EH = extremely heavy R = rareH = heavy#100 gallon Comments Secondary Particulates Large amorphous debris Μ Fine amorphous debris EΗ H Minerals 2.5Plant pollen Nematodes 0 Crustaceans 0 Amoeba 0.3 Flagellates & ciliates 0 Other: eggs 2.7 Other: fungal filaments & spores R

Comments: A portion of the filter sediment (80 μ l) was floated and this floated pellet was examined to provide the equivalent of 726 gallons of water filtered examined. One slide of the packed pellet from the floatation tube was also examined; it contained 27 algae.

Based upon microscopic particulate analysis and the EPA risk factors associated with bio-indicators, there is a <u>moderate</u> risk of surface contamination. Determination of surface water influence should not be based solely on the results of one or two MPAs. Other pertinent information, such as water quality data and on-site surveys, should be used in conjunction with the MPA results in making this determination.

Reported by:	relia	ML	Han	k.	Date: 02/26/99	
		- V V				

MPA CLASSIFICATION AND QUANTITATION OF PARTICULATES

Sample #:	E99-	015	· · · ·	Dilutio	n:	12		V	/ol. final	pellet (µ	I): <u>-</u>	0			MAR-09-1995
Gallor	ed:	729	Entire floated / unfloated pellet examined: (yes) / no												
Slide #:	11/29 11/29 11/20 11/20	2	3 🗌	4	5 🗌	6 🗆	7	8 🗌	9 🗆	10 🗌	Total count	#/100 gallons	Relative frequency	Rísk Factor	13:25
Giardia										[·····					
Coccidia				·											
Diatoms	0										0	6	<u>n5</u>	0	D HATER
Other algae	6373	Court	noid.	Clust	us, L	micel.	(a)				6373	874	EH	14	
Insect/larvae	0	0									0	0	in:	0.	O FAC
Rotifers	}					· · · .					1	0.1	<u>~05</u>	0	0.
Plant debris	1 } .										1	0.1	A China A	0	OF
other	\bigcirc					<u> </u>					0	O	NE	O	0
Secondary particula	ites		-							-1		r · · · · ·	Transa and a state	i;4)	<i>ะ ท</i> ๅ ส
Large amorphous debris	m			ļ.							m	m			<i>(</i>) ¹
Fine amorphous debris	EH										EH	EH			1) \
Minerals	H										H	1+			EH
Plant pollen	18										18	2.5	-	<u> </u>	619548460424 16 0 0 0
Nematodes	0										0	0		<u> </u>	\mathcal{O} $^{5484}_{84}$
Crustacia	6										0	0		<u> </u>	0 684
Amoeba	2										.2	0.3	<u> </u>		O ¹²
Ciliate/ Flagellates	0				in a se						0	0.			J. J. T.
Other: Eggs	20				-				- <u> · · ·</u>		20	2.7	-		μ μ
Fungal filaments & spores	R	ni 1910 - Alexandria 1910 - Alexandria									R	E.			R

* Animatica (evamined 8.9% & Alide)

3152U

ΤO

015

P.04

MPA SOURCE WATER IDENTIFICATION STATE OF FLORIDA SAMPLE ID SHEET

PWS ID# 4130971

community non-transient non-community non-community

NAME OF WATER SYSTEM AND ADDRESS: Miami Dade Water + Sever Dept 1100 West 2nd Ave. Hialenh, FL. 33010 PHONE: (305) 887-2007

JORGE L. RUIL SAMPLER NAME AND ADDRESS:

18301 NW SLND at HIALFAH FL. 33015-2622 PHONE: Q05) 828-2255 LAB NAME AND ADDRESS: John E. Preston water Quelity Kaboratory DOH Tampa Brand Hratean, FE-33010 #1 PHONE: (905) 897 2007 Lat -1100 W 2nd Ave: (813)871-PROJECT CODE # ACCOUNT#: NAME OF ANALYST 7465

NAME OF CARRIER AND TRACKING NUMBER: Fed. Ex. # 805646569330 DATE SAMPLE RECEIVED BY LABORATORY: 2424/99

NAME OF PERSON RECEIVING SAMPLES INTO THE LABORATORY SLA LALAD WAS PACKING AND EVIDENCE TAPE INTACT?

TEMPERATURE OF SAMPLES AT RECEIPT:

DATE AND TIME THE FILTER WAS REMOVED FROM THE HOUSING (IN THE FIELD): $O_2/23/99 - 7:05 a.m.$

5:35 pm 2/24/99, 11° am DATE AND TIME SAMPLE PROCESSING BEGAN: 02/22/99= Field information

Water source location: N.W. Well field (use latitude and longitude coordinates if available) Type: well Well ID #: 10

Were wells pumped constantly or cycled on and off on a regular basis for at least two weeks prior to MPA sampling? Yes / No

Volume of water purged from well prior to sampling

Depth of well:______(ft bls) Depth of casing:_____ (ft bls) Screened Interval: (ft bls) (ft bls) Is the well grouted? Grouted Interval:

Distance from other wells (within a 1500 foot radius), status of wells (active, inactive), and usage of wells

Distance from surface water bodies (indicate whether river, canal, stream, lake, pond, etc.:

Distance from any karst features (identify feature e.g. sinkholes): Distance from any pollution sources (indicate types, e.g. septic tanks)

Time since last rainfall event, and amount of rainfall in inches (best approximation)

Attach a detailed sketch of the site. This should include approximate distances to other well(s) and nearby features (i.e. water bodies, sinkholes, pollution sources or other pertinent landmarks) within a 1500 foot radius. Wherever possible provide a statement of the status and usage of any wells within this area. In addition, when available, attach a log of rainfall events and approximate amounts at the well site starting two weeks prior to the site visit.

E99 015

P.05

Page two MPA SOURCE WATER IDENTIFICATION, STATE OF FLORIDA SAMPLE ID SHEET

ΤО

PWS ID# 4/30871 Well# 10

Measurements	Time: 7:05 Date: 2123/99
Meter Reading Final: 27090	Linic.
Well Turbidity Final: D.41 NTU	Time: 7: 10 Date: 2/23/99
Well Water Temperature Final: 21.9	Time: 7:10 Date: 2/22/99
Well pH Final: 7.30	Date:
Well Conductivity Final:	Date:
Well Chlorine Residual Final: 0.00	Time: 7:10 Date: 2/23/99
Total Chlorine Final: 0-00	Time: 7:10 Date: 2 23199
Meter Reading Start: 26270	Time: 5:35 Date: 2/22/99
Well Turbidity Start: 0.30 NTU	Time: 5:30 Date: 2/22/99
Well Water Temperature Start: 21.9	Time: 5:30 Date: 2/22/99
Well pH Start: 7,29	Time: Date:
Well Conductivity Start:	Time: Date:
Well Chlorine Residual Start: 0.00	Time: 5:30 Date: 2/22/99
Total Chlorine Start: 0.00	Time: 5:30 Date: 2/22/99
TOTAL WATER VOLUME FILTERE	D (in gallons): 820
*******	***************************************
Signatures of People Present at Time of	Sampling: Orse E. 144
	N N N

Processing Information:

Total volume filtered: <u>820 9al</u>. Total filter sediment collected: <u>90 ul</u> uL sediment/100 gal <u>11.0</u> Percoll@/sucrose floatation pellet volume: <u>10*</u> uL *729 gal. floated Percoll@/sucrose floatation packed sediment <u>75</u> uL uL floatation pellet volume/100 gallons filtered <u>1.4</u> uL

Type of material examined:

direct examination of unfloated sediment by wet mount or filtered thru MF

X floated (suspended) pellet

floated packed pellet

Floatation Parameters:

- X_Percoll@/sucrose gradient
- sucrose gradient
- potassium citrate
- __%NSO4