

SERVE · CONSERVE

Miami-Dade Water and Sewer Department

Rehabilitation of Production Well Nos. 13, 14, and 15 at the Northwest Wellfield

Final Report

January 2001

Executive Summary

Production Wells Nos. 13, 14 and 15 at the Miami-Dade Water and Sewer Department's (MDWASD) Northwest Wellfield underwent construction rehabilitation during early 1999. This project was performed in response to regulatory concerns that the wells may have been producing groundwater that was under the direct influence of surface water (GWUDI).

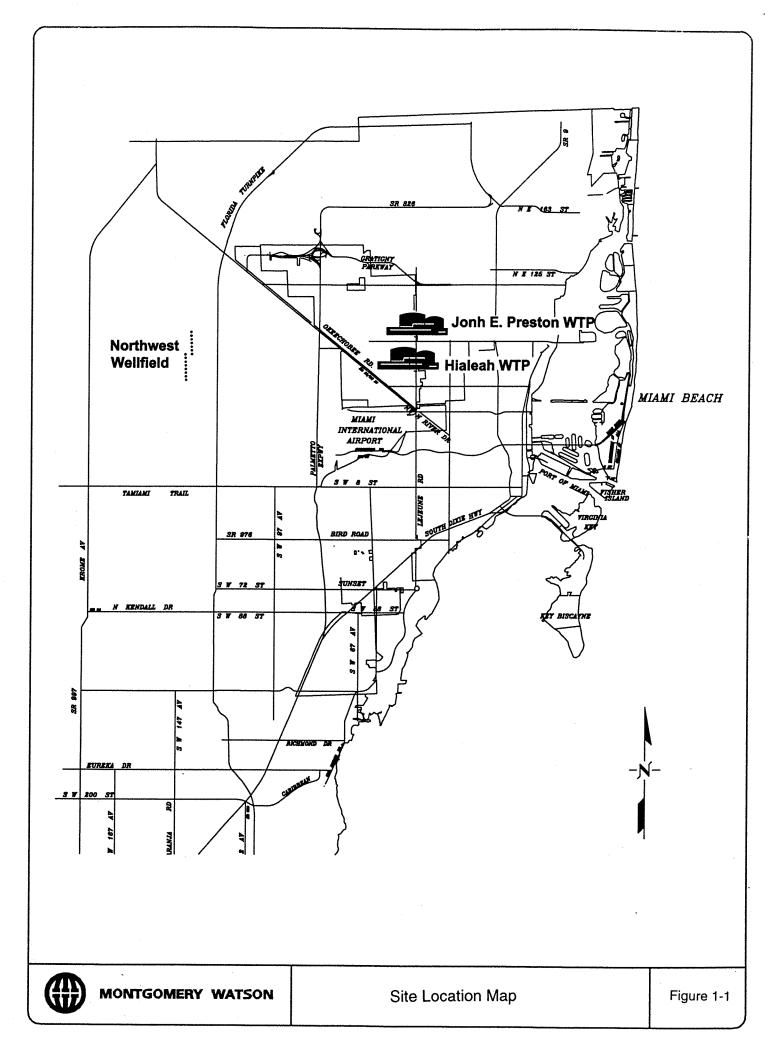
In 1995 and 1996, the Florida Department of Environmental Protection (FDEP) performed a screening sampling of water produced from the production wells within the Northwest Wellfield. This sampling was conducted during a state-wide evaluation of community water supply systems, as required by the Safe Drinking Water Act. In January 1997, the MDWASD received notification from the FDEP that Well No. 10 in the Northwest Wellfield had received score results that designated that well as GWUDI. In addition to Well No. 10, other wells within the wellfield (Nos. 5 and 15) scored "marginal" results that required further testing to determine their GWUDI status. Through subsequent water sampling and analyses performed during mid through late 1997, Wells Nos. 13, 14 and 15 were suspected to be GWUDI. An Agreement was entered into effective March 1998 between Miami-Dade County and the FDEP to institute a program to test and rehabilitate MDWASD's water production wells. The program intended to prevent the occurrence of certain surface water pathogens in water produced by MDWASD.

As a result of this program, Well No. 10 was successfully rehabilitated in early 1998. Wells Nos. 13, 14 and 15 underwent rehabilitation in early 1999. The highlights of the rehabilitation performed on Wells Nos. 13, 14 and 15 are as follows:

- The existing 48-inch diameter casings were pressure grouted with superplasticized Class "H" cement.
- New 40-inch diameter steel casings were installed inside the existing 48-inch casings and extend from land surface to between 54 and 56 feet below land surface (bls).
- A 38-inch diameter pilot hole was then drilled to between 80 and 88 feet bls in each of the wells. Activities performed within the pilot hole included drilling, pumping development, air-lift development, and step-rate pump testing.
- The rehabilitated wells now yield water at specific capacities in excess of 500 gallons per minute per foot of drawdown (gpm/ft) when pumped at rates of between 5,000 gpm and 7,000 gpm.
- Microscopic particulate analyses (MPA) performed on water collected from Wells Nos. 13, 14 and 15 following the rehabilitation indicate that the concentration of particulate matter in water produced from the well has been significantly reduced. EPA Relative Risk Factors are within limits that allow for continued safe operation of the wells by MDWASD.

Section 1

Section 1 Introduction


The Miami-Dade Water and Sewer Department's (MDWASD's) Northwest Wellfield consists of fifteen supply wells which provide raw water primarily to the John E. Preston Water Treatment Plant. The Northwest Wellfield is located approximately one mile west of the Florida Turnpike, at the western terminus of N.W. 58 Street. Figure 1-1 presents the Site Location Map. Each of the supply wells at the Northwest Wellfield is equipped with a 32-inch diameter dual-speed pump rated at design capacity of 10 million gallons of water per day (mgd) and 15 mgd. The total installed withdrawal capacity for the wellfield is 225 mgd. The average day permitted capacity of the Northwest Wellfield is currently 165 million gallons (equivalent to 60.23 billion gallons per year), as contained in MDWASD's South Florida Water Management District Consumptive Water Use Permit (No. 13-00037-W).

Water collected from the wells within the Northwest Wellfield was sampled and analyzed by the microscopic particulate analysis (MPA) method by the Florida Department of Environmental Protection (FDEP) between 1995 and 1996. This sampling was conducted by the FDEP during a state-wide evaluation of community water supply systems, as required by the Safe Drinking Water Act.

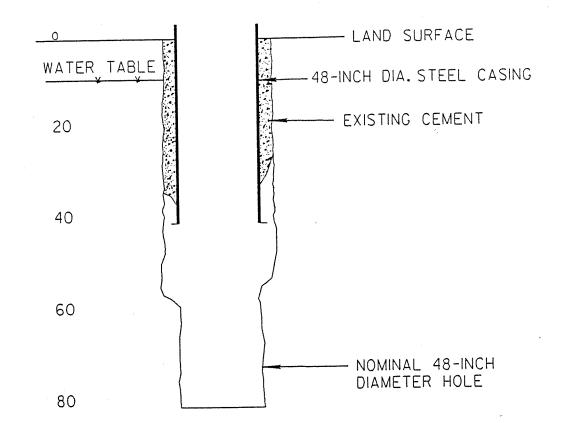
In January 1997, the MDWASD received notification from the FDEP that Well No. 10 in the Northwest Wellfield had received score results that designated the well as producing groundwater under the direct influence of surface water (GWUDI). In addition to Well No. 10, other wells within the wellfield (Nos. 5 and 15) scored "marginal" results that required further testing to determine their GWUDI status. Subsequent water sampling and analyses performed between 1997 and 1998 indicated that Wells Nos. 13, 14 and 15 were suspected to be GWUDI. As a result of these findings, the wells identified were required to undergo rehabilitation, as per an Agreement signed between MDWASD and the FDEP. The Agreement was entered into effective March 1998 instituting a program to test and rehabilitate MDWASD's water production wells. The program intended to prevent the occurrence of certain surface water pathogens in water produced by MDWASD. A copy of the Agreement is presented in **Appendix A**.

Tests performed on Well No. 10 during a 1997 wellhead investigation conducted by the MDWASD and Montgomery Watson indicated that a possible "short-circuit" of flow around the outside of the casing may have been the cause of particulate matter contained in water collected from the well. Well No. 10 was successfully rehabilitated in early 1998. The results from that demonstration project are included in a report entitled "Rehabilitation of Production Well No. 10 at the Northwest Wellfield" by Montgomery Watson dated May 1999. Wells Nos. 13, 14 and 15 underwent similar rehabilitations in early 1999.

This report presents the sequence of the rehabilitation, including the methods and materials used during the work at Wells Nos. 13, 14 and 15. Tests conducted throughout the rehabilitation are also presented, along with an interpretation of the results. This report also includes new geophysical and hydrogeologic findings that have resulted from performance of this work and a summary of the quality of water now produced from the wells.

Section 2

Section 2 Wellfield Construction and Testing

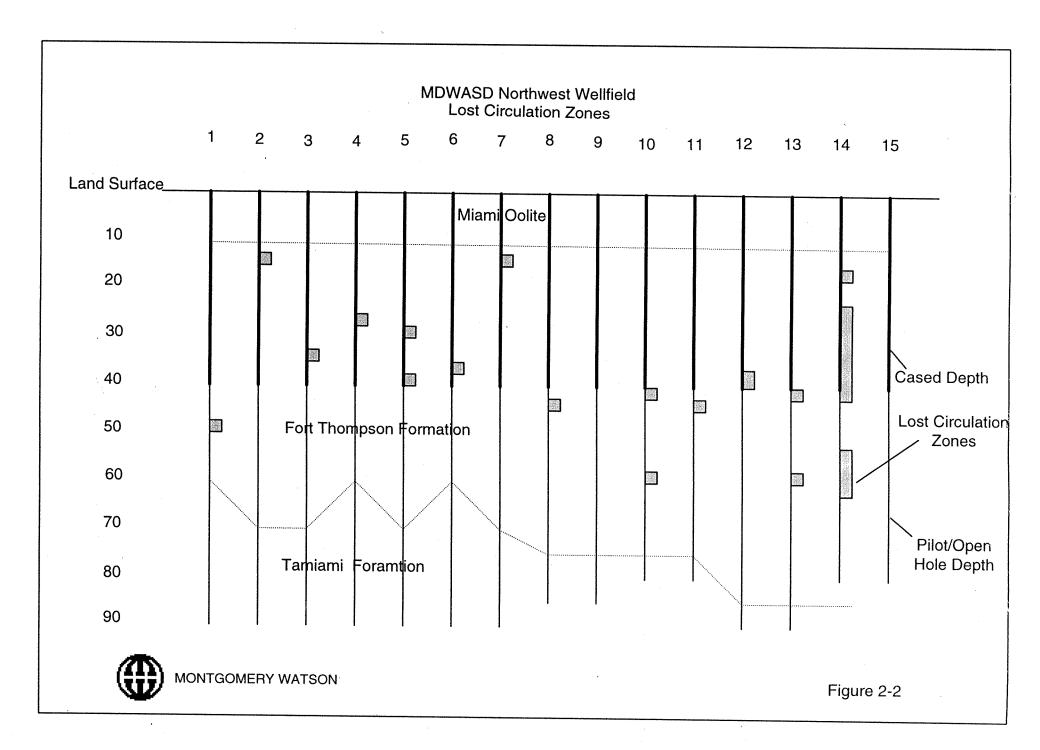

The fifteen (15) supply wells comprising the Northwest Wellfield were built in 1981 by the Alsay-Pippin Corporation of Lake Worth, Florida. **Table 2-1** presents well construction details for MDWASD's water supply wells prior to rehabilitation. A typical as-built construction diagram of a supply well at the Northwest Wellfield is presented on **Figure 2-1**. The supply wells were drilled by the mud-rotary method, where drilling mud is circulated (pumped) down through a hollow drill pipe and out, into the borehole through nozzles in a rotary drilling bit. The drilled rock cuttings and mud then flow up, around the outside of the drill bit and pipe to the surface, where the mud is then filtered and re-pumped back down the drill pipe. The mud-rotary drilling method is a conventional drilling method in southern Florida, and is particularly useful in obtaining accurate samples of the geologic formations penetrated during drilling.

Well No.	1 thru 7	8 thru 15
Map Designation B-2(d)	1 thru 7	8 thru 15
Existing/Proposed	Exist	Exist
Diameter (inches)	48 inches	48 inches
Total Depth	80 feet	80 feet
Cased Depth	46 feet	46 feet
Screened Interval	N/A	N/A
Pumped or Flowing	Pumped	Pumped
Working Value. If Artesian (Yes/No)	N/A	N/A
Pump Manufacturer and Model No.	Byron Jackson Model 32	Byron Jackson Model 32
	RXL	RXL
Pump (Centrifugal, Type Jet, Deep Jet,	Vertical turbine	Vertical turbine
Turbine, etc.)		
Intake Depth (NGVD)	40 feet	40 feet
Pump Capacity (GPM at _ft of head at _PSI)	7600 gpm @ 104 feet	7600 gpm @ 104 feet
Active (Yes/No)	Yes	Yes
Year Drilled	1981	1981
Type of Meter	Meter at plant	Meter at plant
Florida Plane Coordinates	SEC 14 TWP 53 RGE 39	SEC 11 TWP 53 RGE 39

Table 2-1. Description of Wells - Northwest Wellfield

A nominal 54-inch diameter borehole was drilled to a depth of approximately 45 feet bls at each of the supply wells at the Northwest Wellfield. Numerous "lost circulation" zones were encountered within the Biscayne aquifer during the drilling of these boreholes. Lost circulation is a condition whereby the formation is so porous and permeable that the drilling mud fills voids in the formation and there is insufficient mud volume in the circulation system for the fluid to be pumped back to surface. In response to this condition, it is typical for the drilling contractor to add significant quantities of additional mud and/or other additives to increase the viscosity (thicken) of the drilling fluid, in order to regain circulation. **Figure 2-2** presents a cross section of the depths of the lost circulation zones as recorded in the original drilling records during the construction of the wellfield.

EXISTING WELL CONFIGURATION



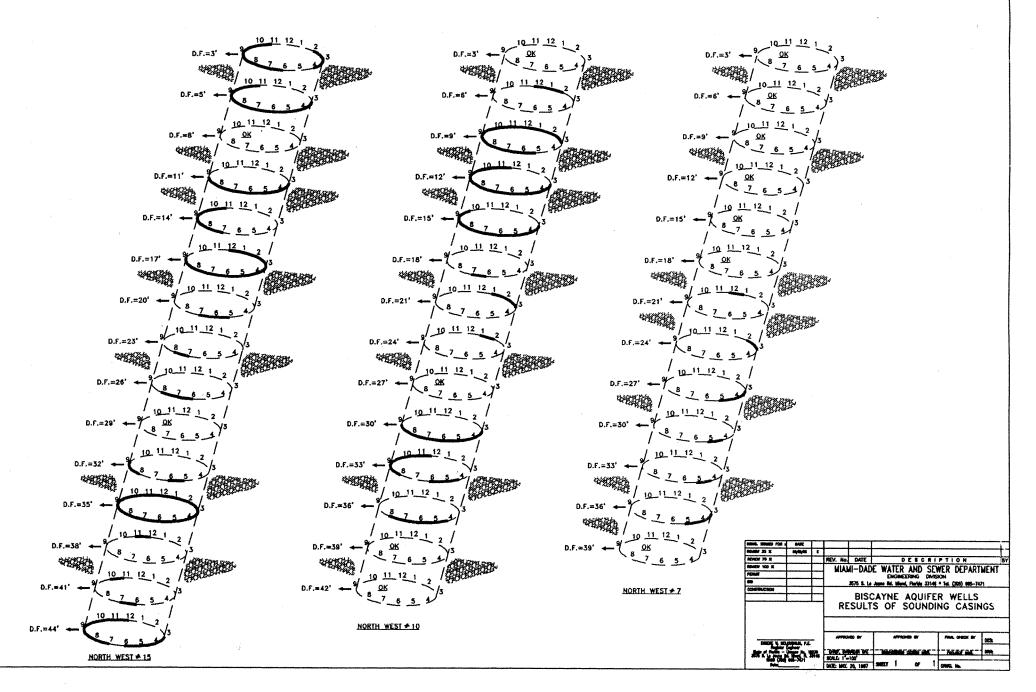
MONTGOMERY WATSON

 $(\ddagger$

Northwest Wellfield Typical Well Construction Details

Figure 2-1

Steel casings (48-inch diameter) were installed to depths of between 40 and 45 feet bls. The casings were then held suspended in tension within the mud-filled hole and cemented by the "pressure grouting" technique. Pressure grouting involves lowering an open-ended tremie pipe to near the base of the casing to be cemented. The tremie pipe is then affixed and sealed to the top of the casing by a "pressure header" coupling. Cement is then pumped down the tremie pipe, and forced into the annular space between the casing and the drilled hole. The fluid column between the outside of the tremie pipe and the inside of the casing remains sealed during this process by the pressure header, and prevents the cement from filling the inside of the casing. The cement is pumped this way under pressure, from "bottom to top" until it reaches land surface.


Typically, the cement will fill the annulus around the casing and the drilled hole, resulting in a complete seal around the casing as the cement rises to the surface. For this reason, the pressure grouting technique is a conventional method of cementing in southern Florida. However, when the drilling mud within the hole has been thickened extensively, there is a potential for the pumped cement to rise as "fingers", resulting in uncemented channels behind the casing. These uncemented zones could ultimately create a connection (short-circuit) between surface water and the borehole of the supply well.

Open Hole Completions

After the cement behind the 48-inch diameter casings was allowed to harden, the contractor proceeded to drill out the open holes. At first, the bit was lowered to near the bottom of the casing and the cement "plug" was drilled out. The process of drilling the plug should be done slowly and carefully, so as to prevent the bit from "clanking" violently against the inside bottom of the well casing. If care is not taken during this process, the cement around the outside of the well casing. This condition could create a potential short-circuit that might exist in the annular space around the well casing. The original open holes of the wells were drilled with a 32-inch diameter bit to a depth of about 80 feet bls.

1997 Tapping Test Results

Figure 2-3 presents the results of "tapping tests" conducted on Wells No. 7, 10 and 15 in the Northwest Wellfield during 1997. For these tests, a hammer was used to tap the circumference of the inside of the well casing at regular (3-foot) intervals. Evaluation of the soundings has been used to estimate the presence or absence of a cement bond behind the casing. The results of the test indicated that a "hollow" sound (implying the lack of a cement bond) was recorded along portions of the casing between depths of 6 feet to 24 feet bls and between 30 feet to 36 feet bls. These results indicated that although the casing was pressure grouted, the cement may have channeled along sections of the original well casings at Wells Nos. 10 and 15. In contrast, few hollow areas were detected at Well No. 7, which was cleared of the GWUDI classification.

Pre-Rehabilitation Microscopic Particulate Analysis Sampling

In response to FDEP's GWUDI designation letter of January 1997, MDWASD initiated an intensive microscopic particulate analysis (MPA) sampling program at each of the wells in the Northwest Wellfield. **Table 2-2** presents a summary of the MPA data collected from each of Wells Nos. 13, 14 and 15 resulting from that effort.

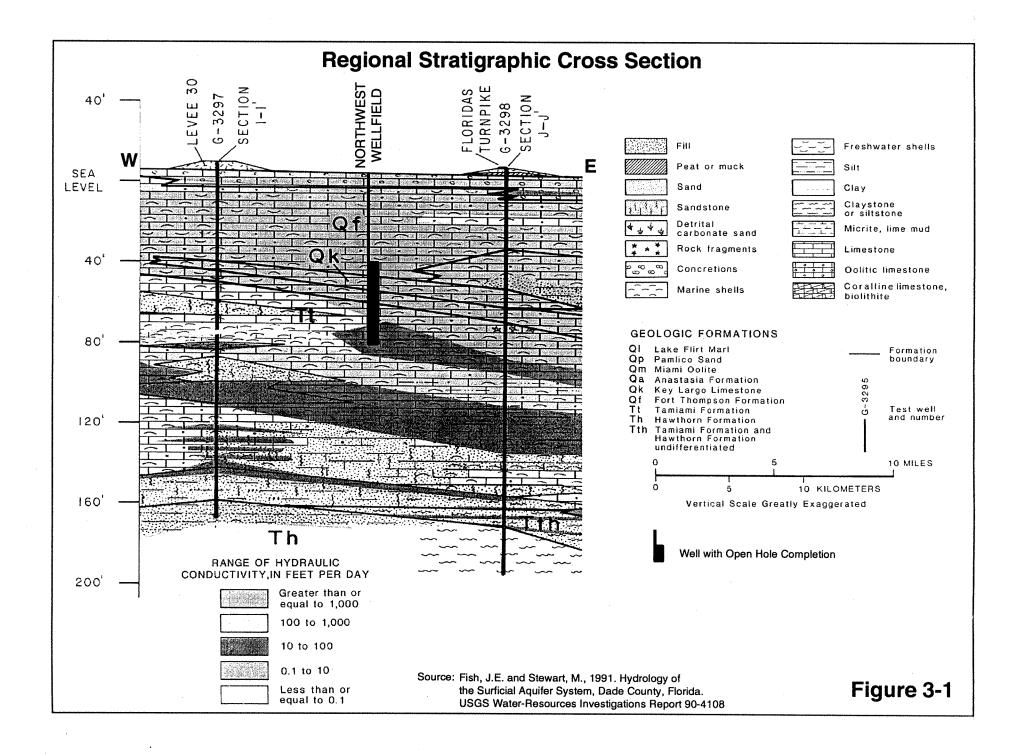
·	EPA Relative Risk Factors				
Date	Well No. 13	Well No. 14	Well No. 15		
9/6/95	30	14	14		
9/13/95	0	4	0		
10/4/95	0	No sample this date	4		
10/11/95	9	No sample this date	10		
12/19/95	0	4	0		
2/14/96	20	20	12		
2/21/99	2	No sample this date	4		
3/6/99	15	No sample this date	14		
3/13/96	4	No sample this date	4		
5/22/97	No sample this date	No sample this date	12		
6/11/97	No sample this date	No sample this date	10		
6/16/97	No sample this date	No sample this date	17		
6/18/97	12	17	No sample this date		
6/25/97	No sample this date	No sample this date	23		
7/9/97	1	No sample this date	No sample this date		
7/16/97	No sample this date	5	4		
8/13/97	0	No sample this date	No sample this date		
8/20/97	No sample this date	5	5		
8/26/97	No sample this date	No sample this date	0		
9/17/97	1	No sample this date	6		
10/8/97	No sample this date	No sample this date	0		
10/15/97	4	4	No sample this date		
11/19/97	No sample this date	No sample this date	0		
12/15/97	No sample this date	No sample this date	4		
1/13/98	No sample this date	No sample this date	4		
2/11/98	No sample this date	No sample this date	4		

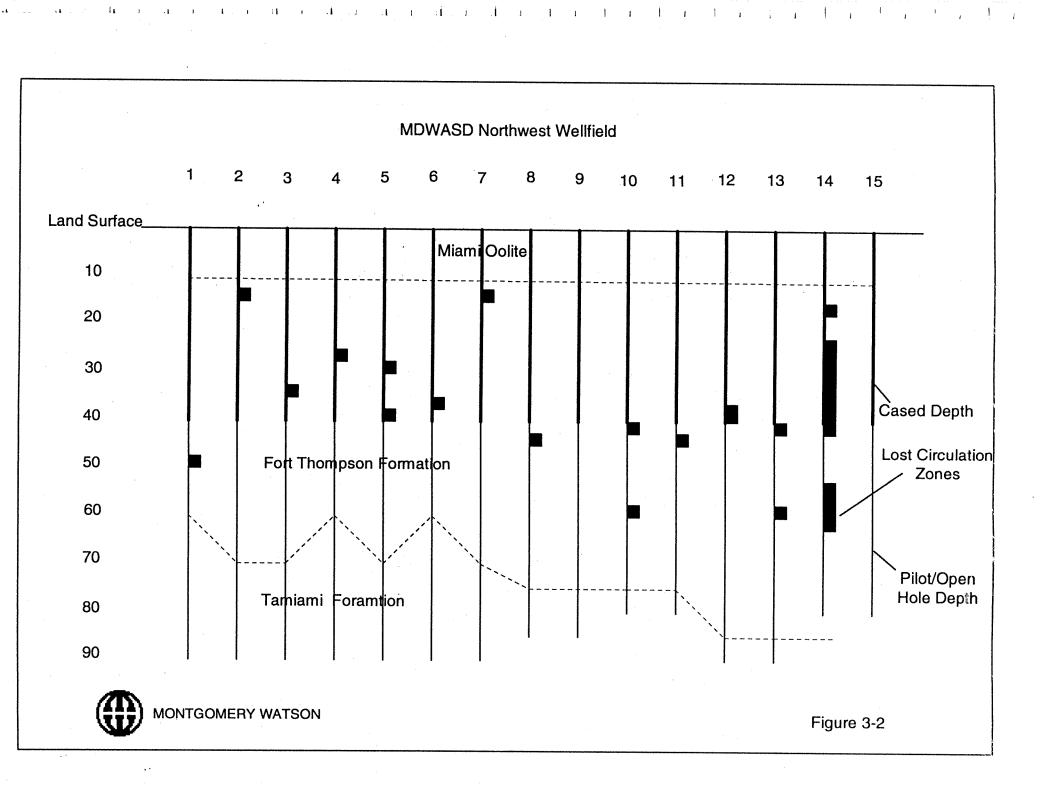
Table 2-2. Summary of	Pre-Rehabilitation MPA Data from Wells No. 13, 14 and 15
-----------------------	--

Section 3

Section 3 Hydrogeology

Regional Geologic Setting


Northwestern Miami-Dade County is underlain by geologic units consisting of limestone and sand exhibiting varying permeability from land surface to approximately 160 feet bls. The geologic formations most typically present within this section are the Miami Oolite, the Fort Thompson Formation, and the Tamiami Formation. Figure 3-1 presents a regional stratigraphic cross section of the surficial sediments and geologic formations in the Northwest Wellfield area. These units form the surficial aquifer system, and comprise the primary source of potable water in southern Florida (Fish, 1991). The Miami Oolite forms the top of the surficial aquifer system in Miami-Dade County and is typically between 10 and 15 feet thick, with a hydraulic conductivity of greater than 1,000 feet per day (ft/day). Lying below the Miami Oolite is the Fort Thompson Formation, which is typically a cream to white-colored fossiliferous shelly limestone. The Fort Thompson Formation is approximately 60 feet thick in the Northwest Wellfield area and contains numerous solution-enhanced porosity features. This formation typically exhibits hydraulic conductivities of up to 10,000 ft/day in the Northwest Wellfield area. Lying below the Fort Thompson Formation is the Tamiami Formation, which is described as gray-colored sandy limestone. The Tamiami Formation is approximately 70 feet thick in the Northwest Wellfield area and exhibits hydraulic conductivities of up to 1,000 ft/day.


The surficial aquifer is an unconfined aquifer, recharged by rain water and surface-water features such as canals, wetlands and lakes. Contained within the surficial aquifer system (typically within the Fort Thompson Formation) is a highly permeable unit referred to as the Biscayne aquifer, in which most public supply wellfields in southeastern Florida are completed. Lying below and separating the surficial aquifer system from lower aquifer systems are the lower permeability clay-rich sediments of the Hawthorn Formation.

Wellfield Stratigraphy

Figure 3-2 presents a hydrostratigraphic cross section developed from the original lithologic and construction descriptions of the wells within the Northwest Wellfield. The figure reveals that a horizon of white to tan-colored limestone extends from near land surface to a depth of approximately 50 feet bls in the southern portion of the wellfield. This horizon is identified as the Fort Thompson Formation. This formation thickens to approximately 70 feet from the southern portion of the wellfield to the northern portion of the wellfield. Numerous lost circulation zones were documented in the driller's logs of this formation, which contains the water-bearing zones of the Biscayne Aquifer. The transmissivity of this unit is approximately 1,300,000 feet squared per day within the wellfield construction.

Below the upper Fort Thompson Formation, the limestones become gray-colored, and contain higher quantities of sand. This change in lithology was contiguous across the wellfield and is herein identified as the Tamiami Formation. The top of this formation was encountered at a

. İ

J

11

. Í . 1 depth of approximately 60 feet bls in the southern portion of the wellfield. Within the northern portion of the wellfield, it was encountered at a depth of 80 feet bls.

Findings from the Rehabilitation Project at Well No. 10

During the drilling, deepening and testing of Well No. 10, lithologic samples were collected and described. The lithologic samples provided a detailed characterization of the geologic units present at the Northwest Wellfield. Cuttings collected from near the base of the 40-inch casing were comprised of white to cream-colored limestone to a depth of approximately 80 feet bls (representing the Fort Thompson Formation). Cuttings within the interval from 40 feet to approximately 60 feet bls exhibited very high porosity, in the form of large solution channels and vugs. Below the depth of 60 feet bls, the samples exhibited relatively thin zones of macroporosity separated by denser zones with more "pinpoint" and intergranular-type porosity.

Below the depth of 80 feet bls, the limestone became dark gray-colored, and exhibited relatively low porosity. This formation was interpreted to represent the Tamiami Formation. Limestone was present to a depth of approximately 95 feet bls. Below this depth, the strata became looselyconsolidated and was comprised primarily of shell fragments and fine sand. These sediments were very soft and penetrated easily during drilling. At a depth of approximately 115 feet bls, the sediments contained a significant percentage of dark gray-colored clay. At a depth of 120 feet bls, the sediments were comprised entirely of clay. This clay was interpreted as representing the uppermost sediments of the Hawthorn Formation. The entire penetrated thickness of the sediments comprising the surficial aquifer system at the Northwest Wellfield was therefore estimated at 115 feet.

Test Borings at Wells Nos. 13, 14 and 15 Installed by PSI

Test borings were drilled adjacent to Wells Nos. 13, 14 and 15 during September 1998 by PSI, Inc., through the use of the "dual-tube" rotary drilling method. This drilling method utilizes an inner coring tube suspended within an outer drilling tube. Both tubes are advanced as the borehole is drilled. Mud, air or water is pumped down the annular space between the tubes and circulated up around the outside of the core barrel. The rock cuttings (and often entire cored sections) produced as the drill bit penetrates the formation are preserved within the inner barrel. This method provides for excellent recovery of depth-specific cuttings and cores with very little mixing of unconsolidated materials within the drilled hole. The site-specific information collected from the test borings is presented in a Technical Memorandum contained in **Appendix B**.

Section 4

Section 4 Well Rehabilitation and Testing

In October 1998, Youngquist Brothers, Inc. (Youngquist), a Fort Myers based well contractor, was awarded the contract (No. W-801) for the construction rehabilitation of Wells Nos. 13, 14, and 15. Youngquist mobilized to the wellfield during January 1999 and constructed a rotating head assembly within the Well No. 15 wellhouse. A generalized sequence of work was then followed for each well, which consisted of:

- 1. Brush well casing and perform an alignment test on the 48-inch casing.
- 2. Conduct a pre-rehabilitation video survey, caliper log and flowmeter log.
- 3. Backfill the open hole with gravel and fine grained sand.
- 4. Perform specific capacity tests at intervals of every 10 feet during open hole backfilling.
- 5. Perform a pressure grout of the 48-inch casing.
- 6. Perform a hydrostatic pressure test on 48-inch casing.
- 7. Drill out the cement plug and ream the open hole to 60 feet bls.
- 8. Install 40-inch diameter casing to approximately 56 feet bls.
- 9. Perform a pressure grout of the 40-inch casing.
- 10. Drill out the cement plug and ream the open hole to 80 feet bls.
- 11. Perform a hydrostatic pressure test of 40-inch casing using inflatable packer.
- 12. Perform air-lift and pump development.
- 13. Perform a post-rehabilitation video survey, caliper log, flowmeter survey and step-rate pump test.
- 14. Disinfect the well and place the well back into service after obtaining clearance from the Department of Health.
- 15. Perform water quality and MPA sampling to evaluate the effectiveness of rehabilitation.

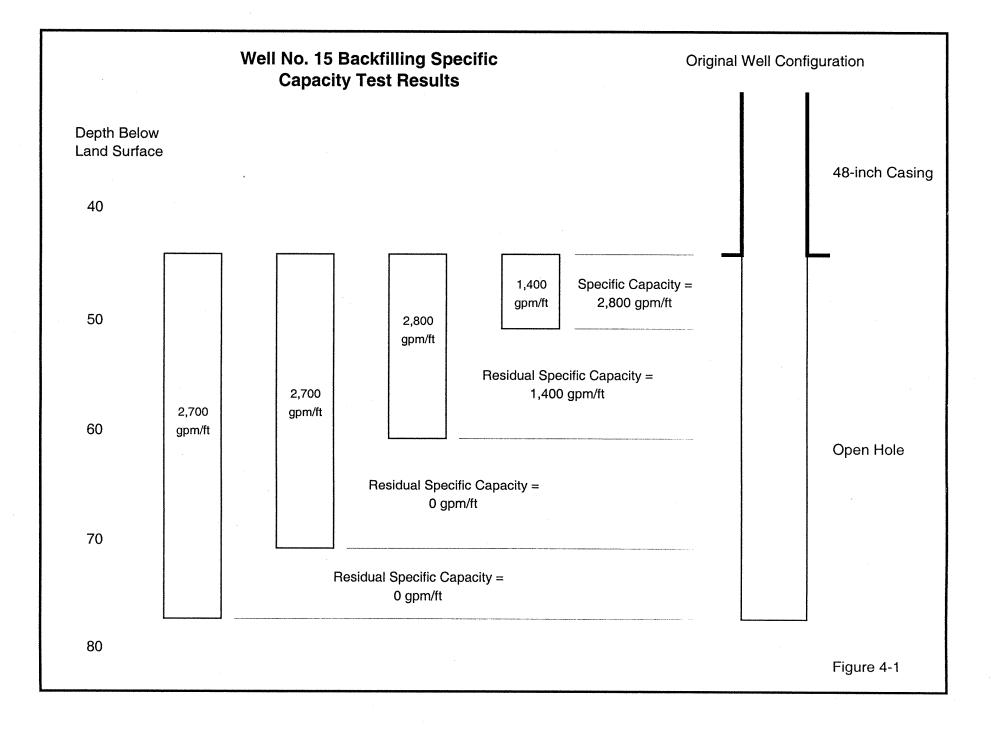
Well No. 15 Rehabiliation

On January 15, 1999, a caliper survey and stationary flowmeter log was performed along the entire length of the well casing and open hole of Well No. 15. Copies of the geophysical surveys performed on Well No. 15 are contained in **Appendix D**. The caliper survey revealed that the 48-inch diameter well casing extended to a depth of 42 feet bls and the open hole of the well extended to 76 feet bls. The open hole immediately below the casing exhibited a diameter similar to that of the casing to a depth of approximately 50 feet bls. Several portions of the open hole below 50 feet bls were restricted to a diameter of approximately 32 inches, representing the diameter of the bit used to drill the open hole. Numerous thin zones displaying larger diameters were also present within the borehole.

Backfilling and Specific Capacity Tests

Prior to infilling the open hole with fine sand and gravel, Youngquist performed a brief specific capacity test on Well No. 15. During the test, the well was pumped at a rate of 7,100 gpm. A total of approximately 3 feet of drawdown was observed in the well, equating to a specific capacity of 2,700 gpm/ft. The open hole was then backfilled with fine sand to a depth of 70 feet

bls and the well was again pumped at a rate of 7,100 gpm. The specific capacity of the well was not observed to change significantly as a result of the modification of the borehole. Youngquist then backfilled the open hole from 70 feet bls to 60 feet bls and again pumped the well at a rate of 7,100 gpm. The specific capacity of the well was not observed to change significantly as a result of the modification of the borehole. These results were interpreted to mean that the open hole from below 60 feet bls did not contribute significant quantities of water to the well during pumping. Conversely, that meant that most of the water coming into the well was from above 60 feet bls.


Youngquist then backfilled the open hole from 60 feet bls to 50 feet bls. In this configuration, flow of water into the well was coming from between the base of the casing at 42 feet bls and 50 feet bls. The well was then pumped at a rate of 6,000 gpm. A drawdown of approximately 4 feet was observed, equating to a specific capacity of 1,400 gpm (representing a 40% decline from the specific capacities recorded earlier). The results were interpreted to mean that the interval from 50 feet bls to 60 feet bls contributed some water to the well, and would be available to contribute water after the new casing was set deeper in the aquifer. In addition, the interval from just below the casing (from 42 feet bls to 50 feet bls) was also contributing significant quantities of water to the well, and might be the source of "short circuit" water coming from around the outside of the 48 inch casing. **Figure 4-1** presents a hydrogeologic interpretation of the results from the backfilled the remaining portion of the open hole (from 50 feet bls to 44 feet bls) with gravel and fine sand, in preparation for performing the pressure grout operation on the 48-inch casing.

Pressure Grouting Operation

On January 25, 1999 a pressure grout operation was conducted on the existing 48-inch casing of Well No. 15. Prior to the actual cementing operation, a pressure header was welded to the top of the 48-inch casing. The pressure header was configured to allow the passage of a 4-inch diameter tremie pipe, which was installed to a depth of 40 feet bls (just above the base of the 48-inch well casing). Class "H" cement containing a 2.5% component of Daracem-19, a superplasticizer manufactured by W.R. Grace Co. was then pumped through the tremie pipe, into the well. The superplasticizer was added to the cement to act as a "wetting agent", enhancing the ability of the cement to flow into small cracks, voids and interstices within the formation. A total of 188 cubic feet of Class H cement was emplaced under a maximum recorded wellhead pumping pressure of 1.5 pounds per square inch (psi). The cement was then left to harden overnight.

Reaming Operation and Liner Installation

Youngquist then drilled the cement plug and open hole with the reverse-air method to a nominal diameter of 46 inches. Reaming was accomplished with a staged drill bit assembly utilizing a 12-inch diameter stinger (pilot) bit followed by a 46-inch diameter reaming bit. During the drilling operation, a bit rotation of approximately 30 revolutions per minute was maintained. The weight on the bit was maintained between a range of approximately 500 pounds to 1,000 pounds. During the reaming operation, cuttings and lithologic samples were collected at 5-foot intervals. The reaming operation proceeded to a depth of 62 feet bls, in preparation for installing the new 40-inch diameter (0.375-inch wall thickness) steel liner to a depth of 58 feet bls. The liner was comprised of two 40-foot long segments of steel pipe, which were connected by a

welded joint. Welding was performed by a Florida certified welder. The lower portion of one of the pipes was then cut so that the total length of the connected pipe was 58 feet. A cementing header was welded to the top of the liner. Centralizers were welded around the pipe at 90-degree spacings at installed depths of 10 feet bls, 30 feet bls, 46 feet bls and 57 feet bls. The liner was lowered into the well with a crane.

Liner Testing and Grouting

After the liner was lowered to a total depth of 58 feet bls, an alignment test was conducted. A plummet possessing a maximum external diameter of 39 inches passed freely to the bottom of the liner, showing no detectable deviation. A tremie pipe was then lowered through the header, to depth of 50 feet bls. Two attempts were made to cement the liner in place while at a depth of 58 feet bls. Two stages of cement were pumped with no detectable returns or fill-up in the annular space around the casing. It was then decided to lift the 40-inch liner to a depth of 54 feet bls and attempt to cement it in place at that position. The open hole was then backfilled with fine sand to a depth of 55 feet bls and the liner was prepared for cementing. Cementing took place in two stages. The first stage took place on January 26, 1999 during which 435 cubic feet of cement were emplaced. The second stage was emplaced on February 1, 1999 during which 25 cubic feet of cement were emplaced. During the second stage of emplacement, cement was observed to return to the surface, indicating the annular fill-up had been achieved.

Over the next two weeks, several unsuccessful attempts were made to perform a hydrostatic pressure test on the 40-inch casing using the cement plug emplaced at the base of the casing. It was then decided that the open hole would be drilled and an inflatable packer would be used to perform the test. The open hole of the well was then drilled to a depth of 88 feet bls using a 38-inch diameter bit. Following drilling to the total depth of the well, a hydrostatic pressure test was successfully conducted on the well casing using an inflatable packer set at the base of the 40-inch casing.

Development and Pumping Test

Reverse-air development took place by utilizing compressed air forced through the drill bit assembly. The air exited out at holes located at the drill bit, forcing cuttings and water up, out the discharge hose (routed out of the roof of the wellhouse) at rates of approximately 500 gallons per minute. The drill pipe and bit assembly was raised and lowered along the entire length of the open hole (from 54 feet bls to 88 feet bls) for a 20-hour period during this process. After air-lift development was complete, the centrifugal pump assembly was again lowered into the well, to begin pumping development at rates between 3,000 gpm and 8,000 gpm. Pumping development took place for a total of 20 hours.

During pumping development, a flowmeter log and video survey (conducted by MDWASD) were performed. A copy of the flowmeter log is contained in **Appendix D**. Upon the completion of the pumping development for the day, a caliper log was also conducted. Analysis of these logs indicated that most of the water produced by the well was flowing into the open hole from the interval between 55 feet bls and 65 feet bls.

On April 5, 1999 Well No. 15 was tested at a variety of pumping rates, which were achieved by adjusting a valve mounted on the 24-inch diameter discharge piping. The results of the specific

capacity testing conducted are summarized on **Table 4-1**. An as-built diagram of the recompleted well is presented on **Figure 4-2**. Youngquist Bros. subsequently filed a Well Completion Report at the SFWMD, a copy of which is included in **Appendix C**.

Pumping Rate (gpm)	Water Level (fbls)	Drawdown (ft)	Specific Capacity (gpm/ft)
0	7.8	0	0
2,100	9.0	1.25	1,680
3,800	11.2	3.40	1,120
5,600	14.0	6.25	900
7,000	17.8	10.0	700

Table 4-1. We	I No. 15	Step-rate	pumping t	est summary
---------------	----------	-----------	-----------	-------------

Upon completion of the step-rate pumping test, MDWASD reinstalled the permanent pump in Well No. 15. The well was then disinfected by Youngquist and subjected to bacteriological testing.

Well No. 14 Rehabilitation

On April 21, 1999 mobilized to Well No. 14. The well was then brushed and subjected to a casing alignment test and caliper survey. Copies of the geophysical logs for Well No. 14 are contained in **Appendix E.** The geophysical surveys indicated that the 48-inch diameter well casing extended to a depth of 41 feet bls and the open hole extended to a total depth of 78 feet bls.

Backfilling and Specific Capacity Tests

Youngquist performed a brief specific capacity test on Well No. 14 on April 21, 1999 prior to backfilling the open hole with sand and gravel. During the test, the well was pumped at a rate of 7,500 gpm. A total of approximately 5.3 feet of drawdown was observed in the well, equating to a specific capacity of 1,400 gpm/ft. The open hole was then backfilled with fine sand to a depth of 70 feet bls and a the well was again pumped at a rate of 7,500 gpm. The specific capacity of the well was not observed to change significantly as a result of the modification of the borehole. Youngquist then backfilled the open hole from 70 feet bls to 60 feet bls and again pumped the well at a rate of 5,000 gpm. The specific capacity of the well was observed to decline to 1,190 gpm/ft with the well in this configuration. These results were interpreted to mean that the open hole from below 60 feet bls contributed relatively modest quantities of water to the well during pumping. Conversely, that meant that most of the water coming into the well was from above 60 feet bls.

Youngquist then backfilled the open hole from 60 feet bls to 50 feet bls. In this configuration, flow of water into the well was coming from between the base of the casing and 50 feet bls. The well was then pumped at a rate of 3,600 gpm. A specific capacity of 1,160 gpm was observed

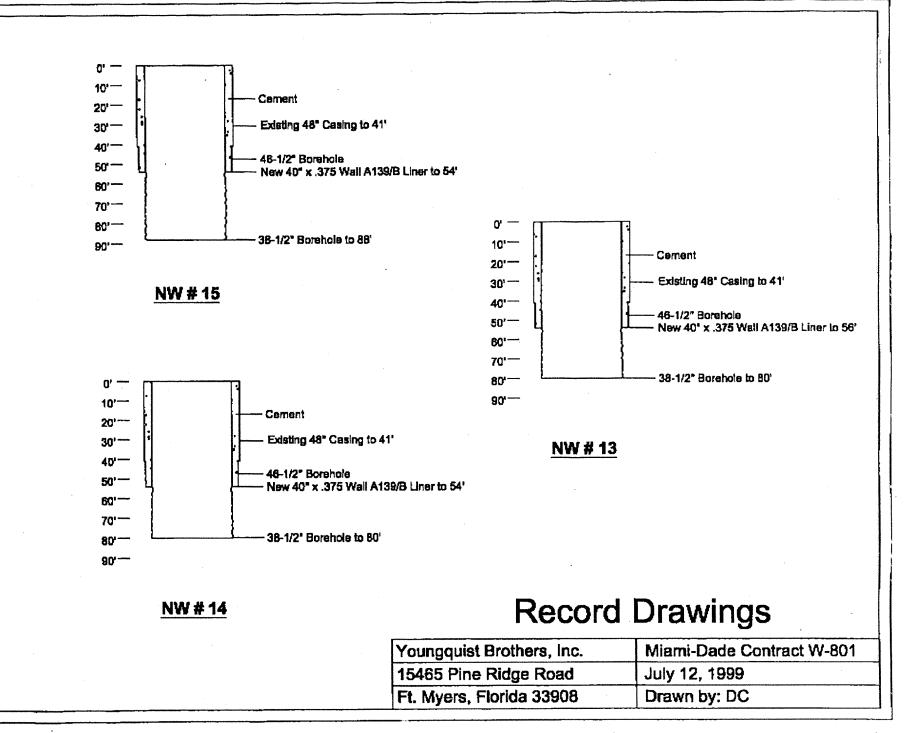


Figure 4-2

L 002

07/12/99

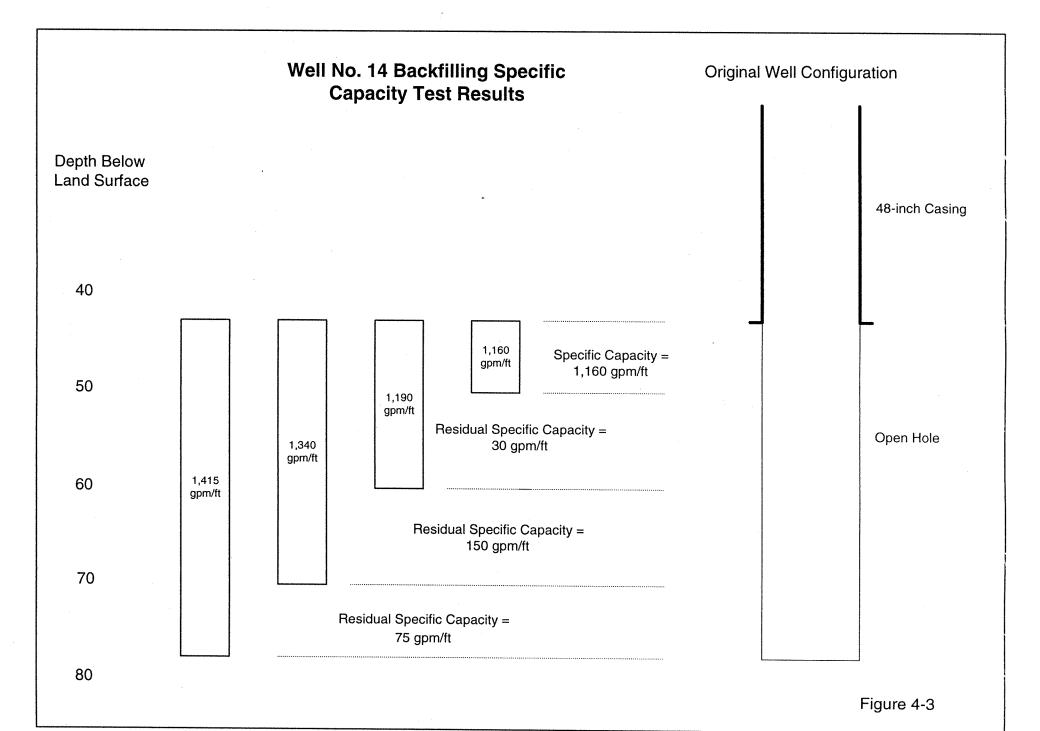
with the well in this configuration. The results were interpreted to mean that the interval from 50 feet bls to 60 feet bls contributed a relatively small quantity of water to the well. In addition, the interval from just below the casing (from 42 feet bls to 50 feet bls) was also contributing significant quantities of water to the well, and might be the source of "short circuit" water coming from around the outside of the 48 inch casing. **Figure 4-3** presents a hydrogeologic interpretation of the results from the backfilling specific capacity tests conducted on Well No. 14. Subsequently, Youngquist backfilled the remaining portion of the open hole with gravel and fine sand, in preparation for performing the pressure grout operation on the 48-inch casing.

Pressure Grouting Operation

On April 26, 1999 a pressure grout operation was conducted on the existing 48-inch casing of Well No. 14. A total of 82 cubic feet of superplasticized Class H cement was emplaced under a maximum recorded wellhead pumping pressure of 1.5 pounds per square inch (psi). The cement was then left to harden overnight.

Reaming Operation and Liner Installation

Youngquist then drilled the cement plug and open hole with the reverse-air method to a nominal diameter of 46 inches. Reaming was accomplished with a staged drill bit assembly utilizing a 12-inch diameter stinger (pilot) bit followed by a 46-inch diameter reaming bit. The reaming operation proceeded to a depth of 58 feet bls, in preparation for installing the new 40-inch diameter (0.375-inch wall thickness) steel liner to a depth of 54 feet bls. A cementing header was welded to the top of the liner. Centralizers were welded around the pipe at 90-degree spacings at installed depths of 10 feet bls, 30 feet bls, 40 feet bls and 50 feet bls.


Liner Testing and Grouting

After the liner was lowered to a total depth of 54 feet bls, an alignment test was conducted. A plummet possessing a maximum external diameter of 39 inches passed freely to the bottom of the liner, showing no detectable deviation. A tremie pipe was then lowered through the header, to depth of 50 feet bls. Cementing took place in two stages. The first stage took place on May 6, 1999 during which 482 cubic feet of cement were emplaced. The second stage was emplaced on May 7, 1999 during which 370 cubic feet of cement were emplaced. During the second stage of emplacement, cement was observed to return to the surface, indicating the annular fill-up had been achieved.

After the cement was allowed to harden, the open hole of the well was drilled to a depth of 80 feet bls using a 38-inch diameter bit. Following drilling to the total depth of the well, a hydrostatic pressure test was successfully conducted on the 40-inch casing using an inflatable packer set at the base of the casing.

Development and Pumping Test

Reverse-air development took place by utilizing compressed air forced through the drill bit assembly. The air exited out at holes located at the drill bit, forcing cuttings and water up, out the discharge hose (routed out of the roof of the wellhouse) at rates of approximately 500 gallons per minute. The drill pipe and bit assembly was raised and lowered along the entire length of the open hole (from 54 feet bls to 80 feet bls) for a 20-hour period during this process. After air-lift development was complete, the centrifugal pump assembly was again lowered into the well, to

.

begin pumping development at rates between 2,000 gpm and 7,000 gpm. Pumping development took place for a total of 20 hours.

During pumping development, a flowmeter log and video survey (conducted by MDWASD) were performed. A copy of the flowmeter log is contained in **Appendix E**. Upon the completion of the pumping development for the day, a caliper log was also conducted. Analysis of these logs indicated that most of the water produced by the well was flowing into the open hole from the interval between 55 feet bls and 65 feet bls.

On May 24, 1999 Well No. 14 was tested at a variety of pumping rates, which were achieved by adjusting a valve mounted on the 24-inch diameter discharge piping. The results of the specific capacity testing conducted are summarized on **Table 4-2**. An as-built diagram of the recompleted well is presented on **Figure 4-2**.

Pumping Rate (gpm)			Specific Capacity (gpm/ft)	
0	8.0	0	0	
2,500	9.5	1.5	1,670	
4,570	13.3	5.3	860	
5,710	18.3	10.3	560	
7,000	20.8	12.8	550	

Table 4-2. Well No. 14 Step-rate pumping test summary, May 24, 1999

Upon completion of the step-rate pumping test, MDWASD reinstalled the permanent pump in Well No. 14. The well was then disinfected by Youngquist and subjected to bacteriological testing.

Well No. 13 Rehabilitation

On June 6, 1999, Youngquist mobilized to Well No. 13. The well was then brushed and subjected to a casing alignment test and caliper survey. Copies of the geophysical logs for Well No. 13 are contained in **Appendix F.** The geophysical surveys indicated that the 48-inch diameter well casing extended to a depth of 44 feet bls and the open hole extended to a total depth of 78 feet bls. A very large cavity was present from the base of the well casing to a depth of 48 feet bls.

Backfilling and Specific Capacity Tests

Youngquist performed a brief specific capacity test on Well No. 13 on June 2, 1999 prior to backfilling the open hole with sand and gravel. During the test, the well was pumped at a rate of 4,880 gpm. A total of approximately 1.75 feet of drawdown was observed in the well, equating to a specific capacity of 2,790 gpm/ft. The open hole was then backfilled with fine sand to a depth of 70 feet bls and the well was pumped at a rate of 7,500 gpm. The specific capacity of the

well was not observed to change significantly as a result of the modification of the borehole. Youngquist then backfilled the open hole from 70 feet bls to 60 feet bls and pumped the well at a rate of 6,500 gpm. The specific capacity of the well was observed to decline to 1,860 gpm/ft with the well in this configuration. These results were interpreted to mean that the open hole from below 60 feet bls contributed relatively modest quantities of water to the well during pumping. Conversely, that meant that most of the water coming into the well was from above 60 feet bls. **Figure 4-4** presents a hydrogeologic interpretation of the results from the backfilling specific capacity tests conducted on Well No. 13. Subsequently, Youngquist backfilled the remaining portion of the open hole with gravel and fine sand, in preparation for performing the pressure grout operation on the 48-inch casing.

Pressure Grouting Operation

On June 7, 1999 a pressure grout operation was conducted on the existing 48-inch casing of Well No. 13. A total of 82 cubic feet of superplasticized Class H cement was emplaced under a maximum recorded wellhead pumping pressure of 1.5 pounds per square inch (psi). The cement was then left to harden overnight.

Reaming Operation and Liner Installation

Youngquist then drilled the cement plug and open hole with the reverse-air method to a nominal diameter of 46 inches. Reaming was accomplished with a staged drill bit assembly utilizing a 12-inch diameter stinger (pilot) bit followed by a 46-inch diameter reaming bit. During the drilling operation, a bit rotation of approximately 30 revolutions per minute was maintained. The weight on the bit was maintained between a range of approximately 500 pounds to 1,000 pounds. During the reaming operation, cuttings and lithologic samples were collected at 5-foot intervals. The reaming operation proceeded to a depth of 58 feet bls, in preparation for installing the new 40-inch diameter (0.375-inch wall thickness) steel liner to a depth of 56 feet bls. A cementing header was welded to the top of the liner. Centralizers were welded around the pipe at 90-degree spacings at installed depths of 10 feet bls, 30 feet bls, 40 feet bls and 50 feet bls. The liner was lowered into the well with a crane.

Liner Testing and Grouting

After the liner was lowered to a total depth of 56 feet bls, an alignment test was conducted. A plummet possessing a maximum external diameter of 39 inches passed freely to the bottom of the liner, showing no detectable deviation. A tremie pipe was then lowered through the header, to depth of 50 feet bls. Cementing took place in three stages. The first stage took place on June 14, 1999 during which 547 cubic feet of cement were emplaced. The second stage was emplaced on June 15, 1999 during which 223 cubic feet of cement were emplaced. The third stage was emplaced on June 16, 1999 during which 212 cubic feet of cement were emplaced During the third stage of emplacement, cement was observed to return to the surface, indicating the annular fill-up had been achieved.

After the cement was allowed to harden, the open hole of the well was drilled to a depth of 80 feet bls using a 38-inch diameter bit. Following drilling to the total depth of the well, a hydrostatic pressure test was successfully conducted on the 40-inch casing using an inflatable packer set at the base of the casing.

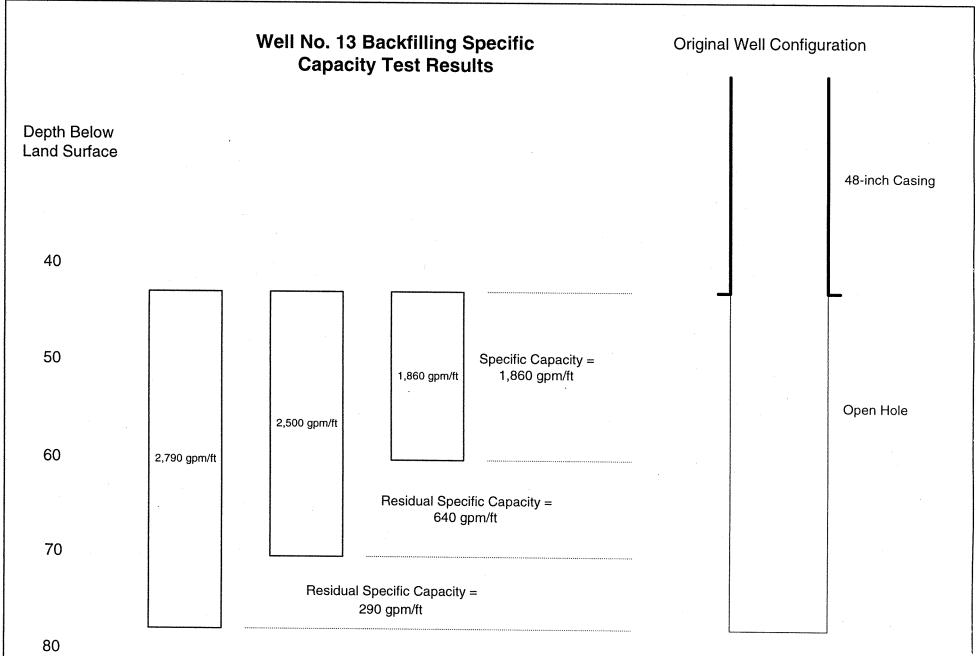


Figure 4-4

.

Development and Pumping Test

Reverse-air development took place by utilizing compressed air forced through the drill bit assembly. The air exited out at holes located at the drill bit, forcing cuttings and water up, out the discharge hose (routed out of the roof of the wellhouse) at rates of approximately 500 gallons per minute. The drill pipe and bit assembly was raised and lowered along the entire length of the open hole (from 56 feet bls to 80 feet bls) for a 20-hour period during this process. After air-lift development was complete, the centrifugal pump assembly was again lowered into the well, to begin pumping development at rates between 2,000 gpm and 8,000 gpm. Pumping development took place for a total of 20 hours.

During pumping development, a flowmeter log and video survey (conducted by MDWASD) were performed. A copy of the flowmeter log is contained in **Appendix F**. Upon the completion of the pumping development for the day, a caliper log was also conducted. Analysis of these logs indicated that most of the water produced by the well was flowing into the open hole from the interval between 60 feet bls and 70 feet bls.

On June 25, 1999 Well No. 13 was tested at a variety of pumping rates, which were achieved by adjusting a valve mounted on the 24-inch diameter discharge piping. The results of the specific capacity testing conducted are summarized on **Table 4-3**. An as-built diagram of the recompleted is presented on **Figure 4-2**.

Pumping Rate (gpm)	Water Level (fbls)	Drawdown (ft)	Specific Capacity (gpm/ft)	
0	5.0	0	0	
2,170	6.17	1.17	1,850	
4,000	8.65	3.65	1,100	
5,600	12.0	6.90	810	
7,500	16.4	11.4	660	

Table 4-3. Well No. 13 Step-rate pumping test summary, June 25, 1999

Upon completion of the step-rate pumping test, MDWASD reinstalled the permanent pump in Well No. 13. The well was then disinfected by Youngquist and subjected to bacteriological testing.

Section 5

Section 5 Post-Rehabilitation Water Quality

Following the re-installation of pumping equipment, Well Nos. 13, 14, and 15 were placed back into service by MDWASD and water samples were collected from the wellhead tap. The water was analyzed by MDWASD's laboratory for various drinking water parameters. The laboratory results are contained in **Appendix G** and summarized on **Table 5-1**.

Constituent	Method	Well No. 13	Well No. 14	Well No. 15	
		Concentration	Concentration	Concentration	
Chloride	4500CL-B	58 mg/L	62 mg/L	61 mg/L	
Alkalinity	2320 B	216 mg/L	211 mg/L	200 mg/L	
Total Hardness	EPA130-2	217 mg/L	213 mg/L	203 mg/L	
Ca Hardness	3500-CaD	190 mg/L	190 mg/L	174 mg/L	
Ammonia	4500NH3-D	0.217 mg/L	0.244 mg/L	0.27 mg/L	
pH	4500-Н	7.39	7.41	7.65	
Bromide	EPA300.0	0.126 mg/L	0.148 mg/L	0.176 mg/L	
Conductivity	2510-A	520 micromho	573 micromho	565 micromho	
UV254	5910	0.576 cm^{-1}	0.514 cm^{-1}	0.469 cm^{-1}	
TOC	5310-В	16.78 mg/l	16.48 mg/l	15.1 mg/l	

Table 5-1.	Post-rehab	ilitation	water of	quality	summary.

MPA Sampling Results

As per the Agreement, water samples were collected from Well Nos. 13, 14, and 15 during the wet and dry seasons following the rehabilitation. The definitions of wet and dry seasons were specifically detailed in the GWUDI Agreement, with wet season from May 1 to October 31. Sampling also required a certain minimum and/or maximum amount of rainfall in the previous 7 days.

The water samples were split and analyzed by a laboratory under contract to MDWASD (Environmental Associates) and the Tampa Branch of the Florida Department of Health Laboratory under contract to the FDEP. The laboratory analyses sheets are contained in **Appendix H** and the resultant EPA Relative Risk Factors are summarized on **Table 5-2**.

Date of Sample		MDWASD Laboratory Result	Florida Department of Health Laboratory Results
Well No. 13			
September 7, 1999	Wet Season	0	9
September 20, 1999	Wet Season	0	4
November 15, 1999	Dry Season	0	· 4
December 6, 1999	Dry Season	12	4
Well No. 14			
October 12, 1999	Wet Season	0	4
November 16, 1999	Dry Season	0	4
December 6, 1999	Dry Season	0	4
June 12, 2000	Wet Season	0	0
Well No. 15		· · · · · · · · · · · · · · · · · · ·	
July 6, 1999	Wet Season	0	14
August 10, 1999	Wet Season	0	15
November 22, 1999	Dry Season	0	9
January 10, 2000	Dry Season	0	10

Table 5-2. Post-rehabilitation MPA results summary.

The results of the MPA sampling indicate concentrations that equate to Categories "A" and "B", as specified within the Agreement. These results compare favorably with those obtained from the three wells prior to the rehabilitation, which yielded Relative Risk Factors above 15 several times from samples collected between September 1995 and August 1997. As a result of the post-rehabilitation analysis results, Well Nos. 13, 14, and 15 have been removed from further investigation and placed back into service by MDWASD.

Section 6

Section 6 Conclusions and Recommendations

The information collected during this project indicates that construction rehabilitation has successfully reduced the concentration of surface water-related particulate matter produced in water collected from Well Nos. 13, 14, and 15 at MDWASD's Northwest Wellfield.

Well Nos. 13, 14, and 15 have been recompleted to draw water from open-holes set within the Tamiami Formation, with the open holes beginning at least 54 feet bls. Well Nos. 13 and 14 are set with open holes from 56 feet to 80 feet bls, while Well No. 15 is set from 54 feet to 88 feet bls. Following rehabilitation, the specific capacities of Well Nos. 13, 14, and 15 were reduced from 2,790 to 660 gpm/ft (of drawdown), 1,400 to 550 gpm/ft, and 2,700 to 700 gpm/ft, respectively. The pre-rehabilitation tests were performed using pumping rates of 4,880 gpm, 7,500 gpm, and 7,100 gpm, while the post-rehabilitation tests were performed at 7,500 gpm for Well No. 13 and 7,000 gpm for Well Nos. 14 and 15.

With the completion of rehabilitation at Well Nos. 13, 14, and 15 and obtaining acceptable MPA results, MDWASD has successfully addressed the concern that these wells were potentially under the direct influence of surface water.

Appendix A

MONTGOMERY WATSON

AGREEMENT BETWEEN FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION AND MIAMI-DADE COUNTY

This Agreement is entered into and effective as of ______ 1998, between the Florida Department of Environmental Protection (FDEP) and Miami-Dade County, (County), for implementation of a program intended to prevent the occurrence of certain surface water pathogens in drinking water produced by Miami-Dade Water and Sewer Department (MDWASD).

WHEREAS, pursuant to the Safe Drinking Water Act, 42 U.S.C. Section 300f, et.seq., and the Surface Water Treatment Rule, (40 C.F.R. Parts 141 and 142), which impose certain requirements for filtration and disinfection of water produced by public water systems. FDEP is responsible for identifying ground waters in the State of Florida which are directly influenced by surface water (GWUDI) and which may consequently be at risk for waterborne pathogens such as Giardia and Cryptosporidium; and

WHEREAS, FDEP has primary responsibility for establishing procedures for determining GWUDI status; and

WHEREAS, in October, 1992, the U.S. Environmental Protection Agency (EPA) published the Consensus Method for Determining Groundwaters Under the Direct Influence of Surface Water Using Microscopic Particulate Analysis (MPA); and

WHEREAS, FDEP has commenced a statewide GWUDI evaluation program:

and

WHEREAS, in connection with the GWUDI program, FDEP informed County by letter dated January 23, 1997, that Well No. 10 at County's Northwest Wellfield (NWWF) was designated by FDEP as GWUDI in January 1997; and

WHEREAS, County notified FDEP by letter dated February 13, 1997, of its disagreement with the GWUDI designation; and

WHEREAS, the County asserts the designation may potentially require

significant expenditures by County which may not be justified; and

WHEREAS, the County asserts Giardia and Cryptosporidium have not been detected in MDWASD's drinking water system; and

WHEREAS, it is the goal of FDEP and County to protect the public health.

NOW, THEREFORE, in consideration of the mutual covenants made herein. the County and FDEP hereby agree as follows:

1. Background

Pursuant to the letters dated January 23, 1997, and March 10, 1997, to MDWASD from FDEP, copies of which are attached hereto as Exhibits "A" and "B" and which are incorporated herein by reference, Dade County has commissioned an independent evaluation of the GWUDI status of Well No. 10. Upon completion of the evaluation and submission of a report to FDEP on October 23, 1997, all relevant information will be reviewed and assessed by FDEP for applicability in determining GWUDI status. This evaluation, rehabilitation of Well No. 10, and successful post rehabilitation monitoring will satisfy the requirements set forth by FDEP for the re-consideration of FDEP's designation of Well No 10 as GWUDI. The terms of this Agreement will also satisfy the FDEP requirement of additional monitoring at the NWWF and provide for examination of the GWUDI issue for all wells within County's water supply system.

2. Objectives

The objectives of FDEP and County are the following:

a. To develop a raw water sampling protocol for wells identified through the historical and future screening MPA data evaluation that will identify suspect wells. Suspect wells are those wells that exhibit Type D MPA results, or those with Type C results in a majority of their cyclical MPA monitoring samples. Cyclical MPA monitoring is a sampling process undertaken for those wells with Type C results where

no more than five MPA tests are taken, including at least two wet season and one dry season result. Type A,B, C, and D MPA categories are defined under the section entitled ":Sampling" (4.2b).

- b. To develop a wellhead investigation program to determine the integrity of wells that have the potential for being designated GWUDI:
- c. To implement water treatment plant sampling to ensure that high quality drinking water continues to be provided to the public:
- d. To develop a wellfield maintenance program that will identify any future deficiencies at the wells as they become apparent; and
- e. To take corrective action necessary at MDWASD wellfields to maintain high quality drinking water.

3. Sampling Program Overview

County will evaluate the eighty-eight system-wide water wells operated by MDWASD. The evaluation will include a system-wide raw water sampling component, a wellhead investigation program, a water treatment plant sampling regime, and systematic wellfield maintenance. These procedures will be applied on a wellfield by wellfield basis. The County's entire water system will undergo raw water sampling unless relevant historical data is available. Sample results will be distributed among the categories defined in Section 4.2b. "Suspect " wells that are determined to require rehabilitation will be rehabilitated per a rehabilitation schedule contained in Section 4.5 "Post- Rehabilitation" of this Agreement. "Suspect" wells are those wells with Type D MPA sample results, or those with Type C results in a majority of their cyclical MPA monitoring samples. Maintenance for "non-suspect" wells will be completed within five

years. The wellfields as shown on Exhibit C may be evaluated in the following order:

- 1. Northwest Wellfield (15 wells)
- 2. South Dade Water Supply System (12 wells)
- Alexander Orr/Snapper Creek/Southwest/West Wellfields
 (31 wells)
- 4. Hialeah/Miami Springs/Preston Wellfields (30 wells)

4. Sampling Procedures

County will perform the following procedures set forth below, which are reflected on the flowchart attached hereto as Exhibit "D". Notwithstanding, if there is a conflict between this section and the flowchart, the provisions of this section shall govern.

4.1 General

- a. Daily rainfall data will be collected from nearby rainfall stations
 (generally NOAA stations) as identified in Exhibit "E" for each of the
 MDWASD wellfields.
- b. Wells entering into cyclical MPA or wellhead investigation will be brushed, disinfected, flushed, shown to be chlorine-free and televised.
- c. For the duration of the raw water sampling, quarterly reports will be provided to FDEP and Dade County Health Department (DCHD) including the results of all MPA, Giardia, Cryptosporidium, fecal coliform, total coliform, and Heterotrophic Plate Count (HPC) sampling.
- d. MDWASD proposes to complete a feasibility study on particle count technology within six months of the effective date of this Agreement.

- e. For purpose of wet weather sampling, the parties will make their best efforts to take samples following a seven-day cumulative rainfall of between two and three inches. In no event will any sample results be accepted if the wet weather rainfall is less than one inch or during an excessive rainfall event of greater than five inches during the seven days prior to sampling.
- For the purposes of dry season sampling (November 1 May 30), all
 MPA samples must be taken after a seven-day dry period in which the cumulative rainfall shall not exceed one inch.
- g. The rainfall data will be evaluated at each relevant rainfall station in order to determine the most appropriate MPA sampling times.
- h. In consideration of the extensive historical data collected since
 December 1995 on the NW wellfield, it is agreed by both parties that the following wells will be:
 - (i) Cleared from further investigation: 1,2,3,5,6,7,8,9,11,12
 - (ii) Subject to cyclical monitoring: 4
 - (iii) Subject to well investigation/rehabilitation: 10,13,14,15

4.2 Sampling

- Wells that have undergone no relevant MPA testing will have one wet season screening MPA sample taken, hereinafter called "screening MPA."
- b. Historical MPA data collected after December 13, 1995, and screening
 MPA data will be reviewed. Historical MPA data includes MPA data

acquired by either FDEP or MDWASD prior to the effective date of this Agreement. MPA categories will be based on the following distributions:

MPA Value	Category
0-9 10-15 16-19 ≥ 20	Туре А Туре В Туре С Туре D

c. Wells with one or more sample result, all of which are only Type A
 MPA result, will be scheduled for brushing, disinfection and
 videography and removed from further investigation pursuant to the
 terms of this agreement.

d. If a single screening MPA value falls within the Type B category, an additional wet season MPA sample will be collected. If the second MPA value is a Type A or B, the well will be scheduled for brushing, disinfection, and videography and removed from further investigation.

- e. Wells with any screening or historical MPA value that is Type C will enter into cyclical MPA monitoring.
- f. Wells with any screening or historical MPA value that is Type D will be turned off and wellhead investigation will be initiated, and be hereinafter defined as "suspect wells".

4.3 Cyclical MPA Monitoring and Monthly MPA, Giardia and Cryptosporidium Sampling

a. For purposes of this Agreement, "cyclical MPA monitoring" is defined as a sampling procedure which includes the collection and analysis of two wet season and one dry season MPA samples. The County and FDEP combined shall take three and only three cyclical MPA samples. except as an additional two samples are allowed under "c" below. Two samples will be collected and analyzed during Miami-Dade County's wet season (June 1 to October 31), and the third sample will be collected during the dry season.

b. If any of the three MPA samples in the cyclical MPA monitoring yields
 a Type D result, the well will immediately be turned off and the
 wellhead investigation program, as detailed below, will be initiated.

c.

If any of the cyclical MPA monitoring yields a Type C result, MDWASD will initiate two months of monthly MPA, Giardia, and Cryptosporidium sampling, hereinafter defined as "monthly sampling." If three or more of a maximum of five cyclical and monthly MPA samples are Type C, then the well will undergo wellhead investigation. If not and the cyclical MPA monitoring is complete, the well will exit the sampling program, and the well will be declared not to be GWUDI.

d. If Giardia and/or Cryptosporidium is present in any of the monthly sampling or if any of the MPA results are Type D, the well in question will immediately be turned off and the wellhead investigation program will commence.

e. If both of two wet season MPA results are Type A or B, the cyclical MPA monitoring will be continued as outlined. If the cyclical MPA monitoring has been fulfilled, the sampling program will end, and the well will be declared not to be GWUDI.

4.4 Wellhead Investigation Program

- a. This wellhead investigation applies only to wells identified in the sampling program as needing further structural investigation, based on the results of Section 4.3c and 4.3d.
- b. To determine the integrity of the grout seal, a tapping test or cement bond log will be performed on the wells as appropriate.
- c. Well casing integrity will be verified through a pressure test.
- d. A rehabilitation plan will be developed on a case-by-case basis to address any deficiencies identified in the series of tests.
- e. The rehabilitation plans developed for the wells will be implemented with the more severely damaged wells being rehabilitated first.
- f. Letter notification of which wells are to be rehabilitated along with a schedule of rehabilitation will be submitted to FDEP on a quarterly basis along with updates on the status of any on-going rehabilitation. The County agrees to complete well rehabilitation, as appropriate, at a minimum rate of eight per year, if eight or more wells are found to need rehabilitation as per the procedures established herein. The provision to complete well rehabilitation at a minimum rate of eight wells per year will become effective twelve months after the effective date of this Agreement.
- g. After rehabilitation has been completed, a 20 series bacteriological survey (Rule 62-555.315(3)(c), F.A.C.) will be performed on the well, and the results will be submitted to FDEP and DCHD.
- h. After completing the bacteriological survey and being cleared for service
 by the appropriate regulatory agencies, the well will be placed in service

and MPA split sampling will commence as defined in Section 4.5.

4.5 Post-Rehabilitation

- a. If a well has undergone rehabilitation through the wellhead investigation program as described in Section 4.4, after completing the bacteriological survey and being cleared by the Dade County Health Department (DCHD), the well will be placed in service and split sampling will commence. Additionally, for any rehabilitated well that had Type D MPA results prior to rehabilitation, a temporary particle counter will be installed on the wellhead and used to monitor particle sizes and counts in the water drawn by the well.
- b. All MPA samples for a rehabilitated well will be collected by a split sampling method. One of the samples will be analyzed by a laboratory under contract with MDWASD, and the other sample will be analyzed by FDEP. MPA categories will be based on the above described distributions (Section 4.2b).
- c. If the results of the MPA split samples differ by greater than two Relative Risk Factor (RRF) units and fall within two categories, the well will be resampled following a split sampling procedure. However, if the RRF differential is within two units and the results fall in two different categories, the results from MDWASD's contract laboratory will be used for evaluation. Wells will not be resampled if the MPA results fall within a single category.
- d. If four of no more than seven post-rehabilitation MPA results are TypeA or B (must include at least two wet and two dry season samples)

sampling will end, and the well will be declared not to be GWUDI. Otherwise, the well will be turned off and declared to be GWUDI.

e. If the resulting MPA value from the split sampling is Type D, the well will be shut off and declared to be GWUDI.

4.6 Plant Sampling Regime

- a. Monthly HPC samples will be taken on the raw and finished water at each of the John E. Preston, Hialeah, and Alexander Orr WTPs.
- Monthly Giardia and Cryptosporidium samples will be collected on the raw water at the John E. Preston, Hialeah and Alexander Orr Water Treatment Plants.
- c. Rotational Giardia, Cryptosporidium and HPC sampling will be performed for the South Dade Water Supply System.
- d. If any raw water sample is positive for Giardia or Cryptosporidium, finished water samples will be collected and analyzed for Giardia and Cryptosporidium, and a more intensive sampling program for the raw and finished water will be developed.
 e. For the duration of the plant sampling, Giardia, Cryptosporidium, and
 - HPC results will be submitted to FDEP and DCHD on a monthly basis in the form of a letter report.

4.7 Wellfield Maintenance

a. Maintenance of all MDWASD wells will be approached on a wellfield by wellfield basis.

- A general wellfield maintenance program will be developed and submitted to FDEP within one year after the effective date of the Agreement.
- c. Maintenance will be completed at one wellfield before work progresses to the next wellfield.
- d. The general wellhead investigation program may be modified on a wellfield by wellfield basis as appropriate.
- e. Any sampling that is a part of the wellfield maintenance will be applied system- wide.

4.8 Task Duration

- a. Screening MPAs will be finished within the first complete wet season
 after the effective date of this Agreement.
- b. Within six months of receiving MPA results with a Type C or D result,
 brushing, disinfecting and videography will be initiated.
- c. When brushing, disinfecting and videography is completed, cyclicalMPA monitoring will begin within three months.
- d. If an MPA sample yields a Type D result, the well will undergo wellhead investigation which will commence within one month of receiving the result.
- e. For wells subject to cyclical MPA monitoring, such monitoring will be completed within one year after the historical or screening MPA sample was analyzed or within one year after the effective date of this Agreement, whichever is later.

- 5. The County may submit and FDEP may review and consider other pertinent information and data submitted by County which may include, but not be limited to the following: fluctuations in temperature, pH, turbidity, color, particle counts, hydrogeologic characteristics, geochemical analyses and well construction integrity.
- 6. MDWASD will coordinate with the Dade County Department of Environmental Resources Management (DERM) to modify the existing county-wide Wellhead Protection Program to prohibit the presence of feedlots within the protection areas.
- 7. FDEP shall perform or cause to be performed the following:
 - a. FDEP will collect up to one-third of the wet season cyclical MPA
 monitoring samples and will participate in testing all samples collected
 in the split sampling method for sampling of rehabilitated wells.
 - b. All data submittals will be expeditiously reviewed, commented upon as necessary, and maintained and updated bi-monthly.
- 8. If either party is delayed or prevented from performing the covenants and obligations set forth herein by a Force Majeure or inevitable accident or occurrence, or by other causes beyond the party's reasonable control, the party shall be allowed an appropriate time extension as mutually agreed to by the County and FDEP. As used herein, Force Majeure shall mean an act of God which includes but is not limited to sudden, unexpected or extraordinary forces of nature such as floods, tornadoes, hurricanes, fires, earthquakes, landslides, epidemics, explosions or other forces of nature. Inevitable accidents or occurrences shall mean those which are unpreventable by either party and

shall include but not be limited to strikes, lockouts, other industrial disturbances. wars, blockades, acts of public enemies, insurrections, riots, federal, state, county and local governmental restraints and restrictions, military action, civil disturbances, explosions, conditions in federal, state, county and local permits. Upon occurrence of or threat of a Force Majeure, inevitable accident or occurrence or other cause beyond the reasonable control of either party, the party shall notify the other party within seven days and shall notify the other party of the anticipated length and cause of the delay and the timetable pursuant to which the party intends to complete performance. If the County and FDEP are unable to agree to a time extension, then each party shall have the right to pursue all available legal and equitable remedies.

9. By execution of this Agreement, FDEP adopts the sampling procedures provided for herein for the MDWASD wells and agrees to refrain from designating MDWASD wells as GWUDI unless a well fails to meet the criteria set forth in the section entitled "Post-Rehabilitation", subsection d. or if testing of a post-rehabilitation well results in Type D water. With regard to the GWUDI designation, FDEP further agrees not to commence enforcement action against the County and not to impose and enforce penalties or fines during the term of this Agreement unless County is in default of this Agreement. Representatives from FDEP and MDWASD shall meet as necessary, but at least once a quarter. to discuss the progress of this Agreement and any other additional information, issues or concerns with the potential to materially affect the terms of this Agreement.

- 10. The County does not admit to, waive any rights related to, and expressly reserves the right to defend against the following in any legal and administrative action or proceeding brought by the State of Florida and the Untied States: any alleged violation of 42 U.S.C. Section 300f, et. seq., 40 C.F.R. Parts 141 and 142, and any other federal law and federal regulations; state law and state regulations and local law and regulations, and consequently, the County does not admit any liability arising from or related to the foregoing. Further, FDEP does not waive any rights related to, and expressly reserves the right to allege the following in any legal and administrative action or proceeding brought by the State of Florida or the United States: any alleged violation of 42 U.S.C. Section 300f, et seq. 40 C.F.R. Parts 141 and 142, and any other federal law and federal regulations; state law and federal regulations; state law and federal regulations of the United States: any alleged violation of 42 U.S.C. Section 300f, et seq. 40 C.F.R. Parts 141 and 142, and any other federal law and federal regulations; state law and state regulations and local law and regulations. The provisions of this section notwithstanding, nothing in this section is intended to impair the contractual obligations of the parties set forth in this Agreement.
- This Agreement may be amended from time to time or extended by mutual written agreement of the parties hereto.
- This Agreement shall remain in effect for five years unless terminated earlier by either party upon 90 days prior written notice.

STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION

В	v	:
	2	·

Mimi Drew, Director Division of Water Facilities Date:_____

ATTEST:

MIAMI-DADE COUNTY

By: _____

By: _____

County Manager

Date:_____

Approved as to form and legal sufficiency:

Assistant County Attorney

Appendix B

MONTGOMERY WATSON

MEMORANDUM

MONTGOMERY WATSON

To:	Vincent Flick	Date: December 15, 1998
From:	Robert T. Verrastro	
Copy:	Gene McLoughlin, Nancy Seith	
Subject:	Test Boring Construction at the Northwest W	ellfield

EXECUTIVE SUMMARY

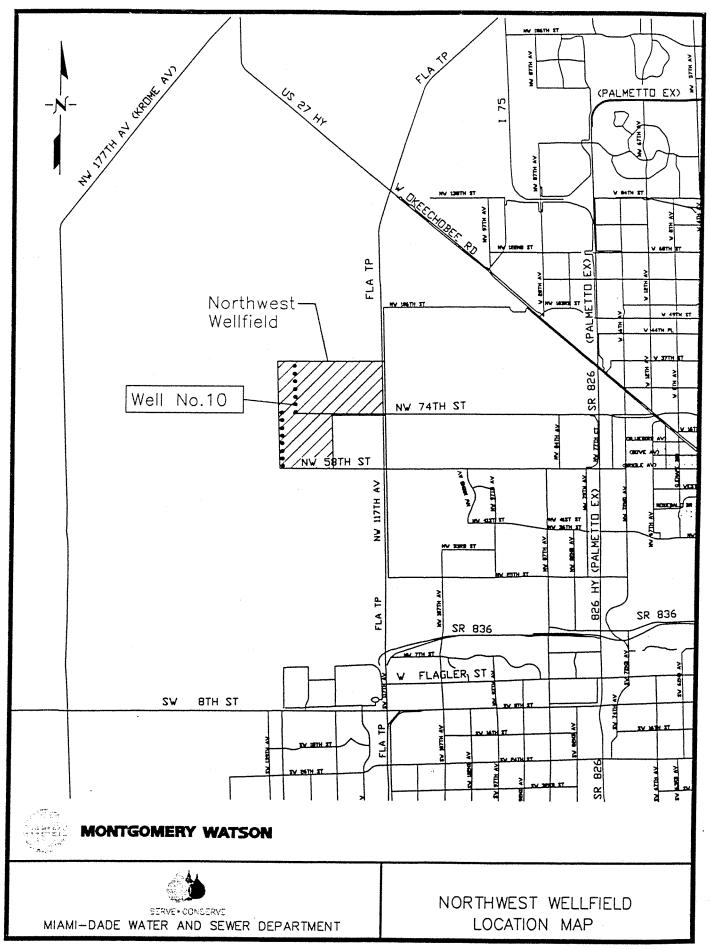
This memorandum summarizes the hydrogeologic information collected from test borings that were installed adjacent to Wells Nos. 13, 14, and 15 at the Northwest Wellfield. The test borings were installed during August 1998 by Professional Services Industries, Inc. (PSI) with observation performed by MDWASD staff and Montgomery Watson. The test boring program included the collection of continuous cores to depths of approximately 100 feet below land surface (bls) and the performance of downhole video surveys and pumping tests. Subsequent to the construction, Montgomery Watson performed additional analysis of the cores.

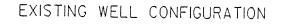
The following conclusions are derived from the information collected during this project:

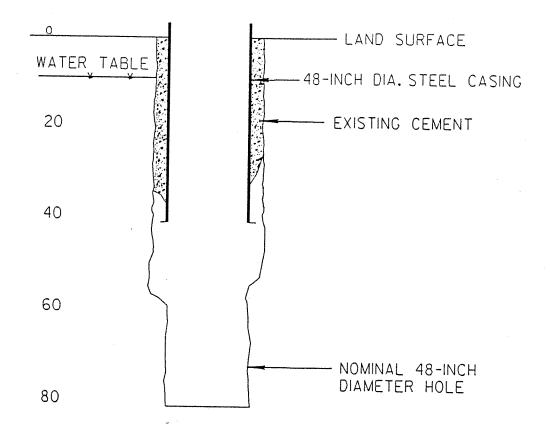
- The supply wells at the northern end of the Northwest Wellfield yield water from multiple, relatively thin (from one to four-foot thick) zones of very high porosity within the surficial aquifer.
- The "roof" of the water-bearing portion of the aquifer appears to exist at a depth of approximately 12 feet below land surface.
- The base of water-bearing materials at Wells Nos. 13 and 15 presently lies at a depth of approximately 70 feet bls. At Well No. 14, water bearing strata appears to be present to a depth of 80 feet bls.
- Based upon the information collected to date, the new casings at Wells 13 and 15 should be set at a depth of approximately 55 feet bls. Because Well No. 14 appears to contain numerous deeper flow zones, the new casing at that well should extend deeper, to approximately 60 feet bls.

INTRODUCTION AND BACKGROUND

The Miami-Dade Water and Sewer Department's (MDWASD's) Northwest Wellfield consists of fifteen supply wells which provide raw water to the John E. Preston and Hialeah Water Treatment Plants. The Northwest Wellfield is located approximately one mile west of the Florida Turnpike, at the northwestern western terminus of N.W. 58 Street. Figure 1 presents a Project Location Map. Each of the supply wells at the Northwest Wellfield is equipped with a 32-inch diameter dual-speed pump rated at design capacities of 10 million gallons of water per day (mgd) and 15 mgd. The total installed withdrawal capacity for the wellfield is approximately 225 mgd. Figure 2 presents a typical as-built diagram of the wells.


Water collected from the wells within the Northwest Wellfield was sampled and analyzed by the microscopic particulate analysis method by the Florida Department of Environmental Protection between 1995 and 1996. In January 1997, the MDWASD received notification that Well No. 10 in the wellfield had received analysis scores that designated that well as producing groundwater under the direct influence of surface water. In addition to Well No. 10, several of the other wells within the wellfield, including Wells Nos. 13, 14, and 15 yielded water samples that indicated that they might be under the direct influence of surface water. As a result, MDWASD initiated several investigations into the significance of the analyses results and the potential cause of surface waters entering the wells.


During early 1998, Well No. 10 was retrofitted with a new 40-inch diameter casing which was grouted in place and set to a total depth of 64 feet below land surface (bls). The open-hole of the retrofitted well was completed between the depth of 64 feet bls and 104 feet bls. In it's retrofitted configuration, Well No. 10 produces approximately 8 mgd with a pumping water level of approximately 27 feet bls. Currently, Well No. 10 is being evaluated for effectiveness of the recompletion. To date, water from the well continues to yield low concentrations of surface water indicator constituents, however, the concentrations of those constituents appear to have decreased.


MDWASD is currently in the process of securing a contractor to perform additional retrofitting at Wells Nos. 13, 14 and 15 at the Northwest Wellfield. In preparation of this work, PSI was subcontracted to perform additional investigations at the wellfield. The intent of the investigations was to gain a greater understanding of the hydraulic nature of the materials lying from land surface to a depth of approximately 100 feet bls, so that the supply wells can be effectively retrofitted while retaining high production capacities.

This report presents the sequence of the test boring construction, including the methods and materials used during the work. Tests conducted throughout the project are also presented, along with an interpretation of the results. This report also presents new hydrogeologic findings and recommendations that have resulted from performance of this work.

SECTION 2 - MDWASD NORTHWEST WELLFIELD

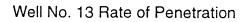
MONTGOMERY WATSON

Northwest Wellfield Well Diagram

Figure 2

CONSTRUCTION AND TESTING METHODS

The test borings were constructed by PSI through the use of the "dual-tube" rotary drilling method. This drilling method utilizes an inner coring tube suspended within an outer drilling tube. Both tubes are advanced as the borehole is drilled. Mud, air or water is pumped down the annular space between the tubes and circulated up, through the inner tube. As the fluid travels up the inner tube, it carries the rock cuttings (and often entire cored sections) produced as the drill bit penetrates the formation. This method provides for excellent recovery of depth-specific cuttings and cores with very little mixing of unconsolidated materials within the drilled hole.


Rate of Penetration

As each of the boreholes was drilled, the rate of penetration through the rock was recorded by PSI. Graphs of the rate of penetration were then prepared by Montgomery Watson, and are shown on **Figures 3**, **4** and **5**. The rate of penetration is a useful indicator of the consolidation of a rock layer. Hard or highly fractured strata usually takes longer to drill through (as measured in units of drilling time [minutes] per footage length) than softer or more uniform strata. In the surficial aquifer system of south Florida, there is a strong positive association between strata hardness and water yield. Hard formations often contain fractures and secondary porosity features that result in high transmissivity and water yield. Softer strata typically contains higher quantities of clay or sand, and does not yield large quantities of water.

The graphs contain some common features between all of the borings. In particular, the graphs of Well Nos. 13 and Well No. 15 were nearly identical, whereas the graph from Well No. 14 was more unique. The interval from land surface to approximately 15 feet bls is typically very hard (ie, displays relatively slow penetration rates). The interval at approximately 40 feet bls (the depth to the bottom of the supply well casings) is also very hard in each of the borings. A third hard interval is exhibited in the wells near a depth of approximately 60 feet bls and a fourth interval is exhibited near a depth of approximately 75 feet bls. Between these intervals were softer, more uniform formational zones that drilled relatively quickly. The drilling rate alone, however, cannot be used as a sole indicator of the water-producing capacity of a particular formation. This information was used in conjunction with additional information collected during the project to build a comprehensive interpretation of the hydrogeology of the site, to be discussed in a subsequent section of this memorandum.

HYDROGEOLOGY

The original objective of the PSI project was the collection of continuous cores from land surface to approximately 100 feet bls. A basic description of the lithology (for instance,

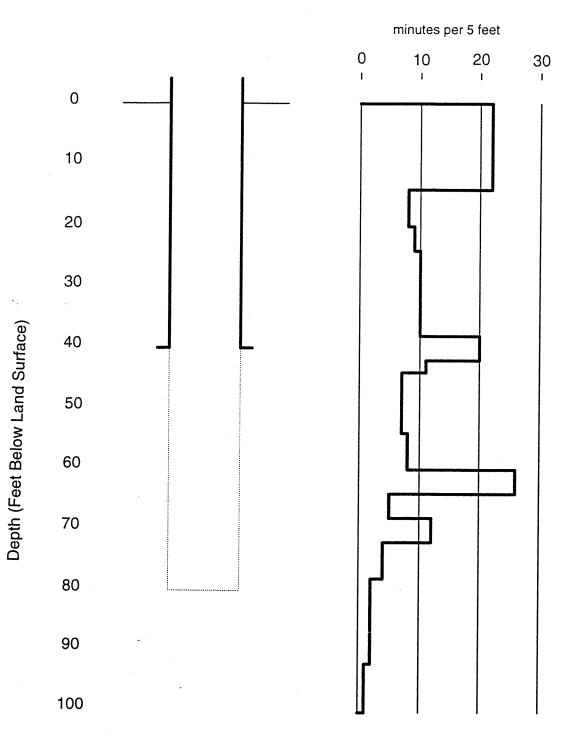
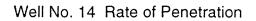



Figure 3

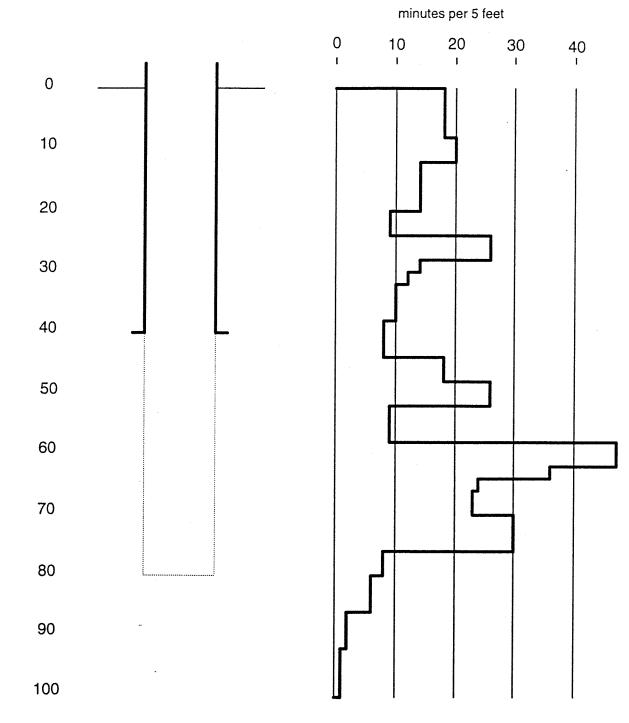
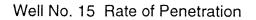
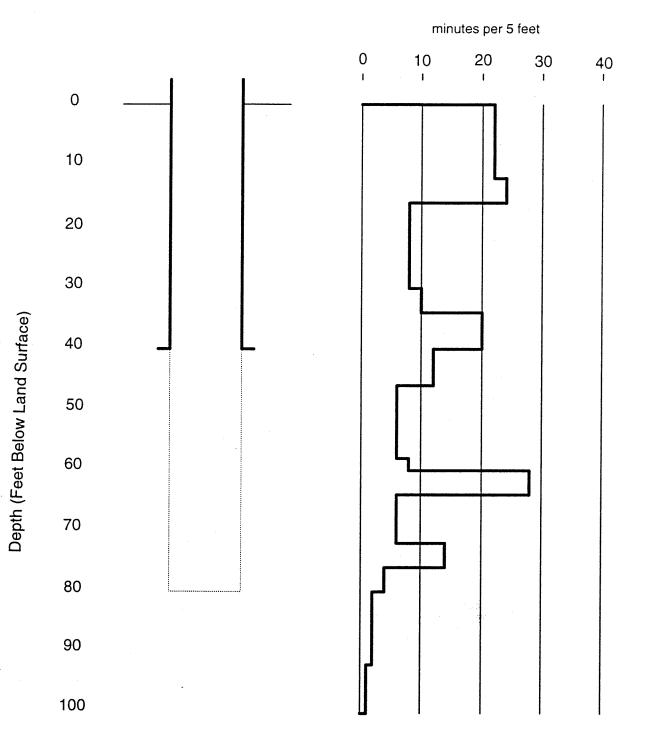




Figure 4

.

Dunham's Limestone Classification Scheme

Classific	ation of limestones accor	ding to deposi	tional texture		
Depositional texture recognizable					Depositional texture not recognizable
Original components not bound together during deposition				Original components bound together dur- ing deposition	
Contains mud (fine silt and clay size particles)		Lacks mud		-	
Mud-supported Grain-supported		upported		Crystalline carbonate (subdivide according	
Less than 10 percent grains	More than 10 percent grains				to physical or dia- genetic texture)
Mudstone	Wackestone	Packstone	Grainstone	Boundstone	

Source: After Dunham (1962), Table 1. By permission Amer. Assoc. Petrol. Geol.

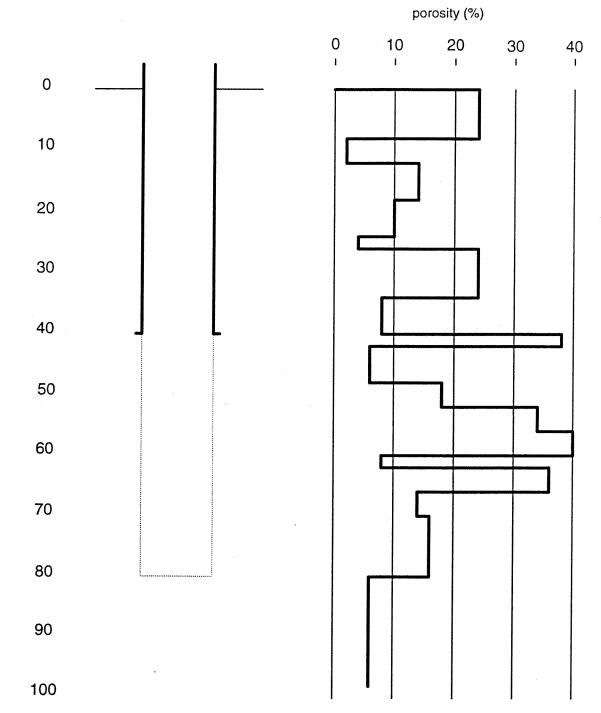
MONTGOMERY WATSON

Figure 6

"limestone" or "sandstone"), including color, grain size and composition and the recovery percentages from each boring is contained in the PSI report. A more refined description of the rock textures and porosity types is provided herein. For the lithologic description, Dunham's (1992) classification scheme was utilized. A copy of Dunham's classification of limestones is presented in **Figure 6**. Summaries of the porosities exhibited at each of the boring locations are presented on **Figures 7**, **8** and **9**.

Lithologic Summary

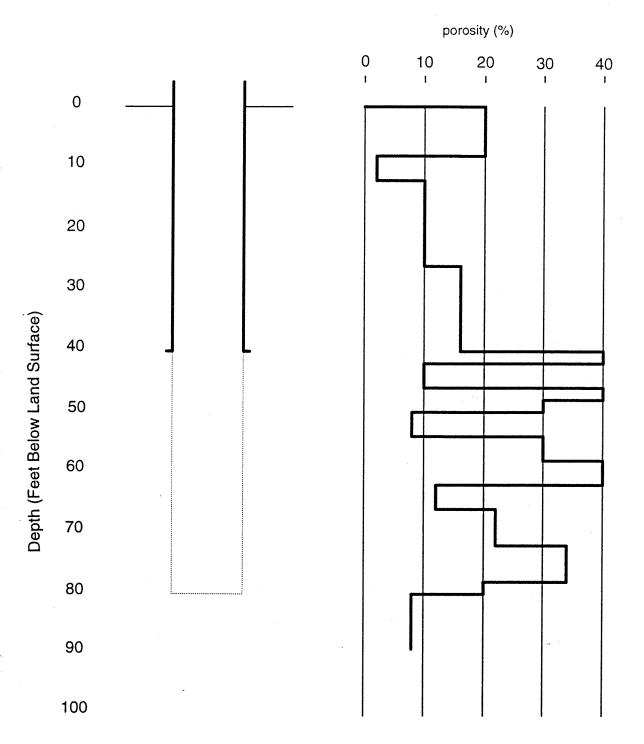
From land surface to a depth of approximately 15 feet below land surface is composed of algal-laminated wackestones, packestones and bioclastic grainstones. Occasional mudstone layers and rip-up clast layers (less than 1 foot thick) were observed in this interval. The mudstones and wackestones exhibited porosities of between 1% to 5%. The packestone and grainstone intervals exhibited moldic porosities of between 10% to 30%. This interval was interpreted as representative of the Miami Limestone.

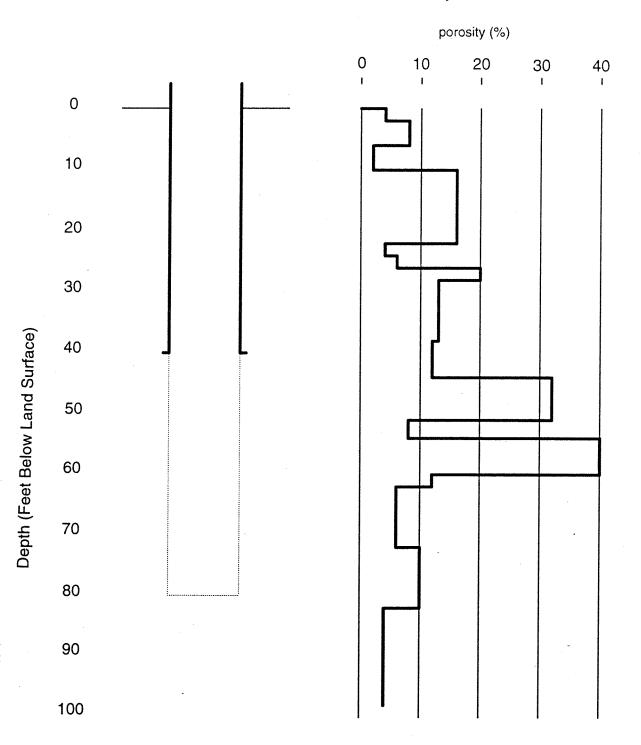

From approximately 15 feet bls to 25 feet bls, a gray-colored fossiliferous grainstone interval was observed. This interval exhibited intergranular and pinpoint moldic porosities of between 5% to 15%. From approximately 25 feet bls to 40 feet bls, a light-gray colored fossiliferous packestone/wackestone was observed. This interval exhibited moldic porosities of between 8% to 20%.

At a depth of approximately 40 feet bls, a one-foot-thick shelly, coraline boundstone was observed. This interval appears to represent an ancient oyster-bed or reef. This thin interval exhibited porosities of between 30% to 50%, and comprised the upper flow zones observed during the video surveys to be discussed shortly.

From 41 feet bls to approximately 57 feet bls, a fossiliferous packestone and grainstone interval was observed, exhibiting porosities of between 5% to 30%. From 57 feet bls to 60 feet bls, another shelly, coraline boundstone was observed, exhibiting porosities of between 30% to 50%. This interval represented another flow zone observed in the borings during the video surveys. From 60 feet bls to 80 feet bls, a fine-grained, fossiliferous and chalky packestone was observed, exhibiting porosities of between 5% to 15%. Occasional zones of higher porosity (from 30% to 40%) were observed in this interval at Well No. 14. The interval from 15 feet bls to 80 feet bls was interpreted as representative of the Fort Thompson Formation.

Below 80 feet bls, the rock became more dark-gray colored, and contained appreciable quantities of quartz sand. The limestone represented a fine-grained wackestone that exhibited porosities of between 5% to 10%. This interval (below 80 feet bls) was interpreted as representing an equivalent of the Tamiami Formation.


NWWF Well No. 13 Visual Estimate of Porosity



Uepth (Feet Below Land Surface)

NWWF Well No. 14 Visual Estimate of Porosity

NWWF Well No. 15 Visual Estimate of Porosity

Pumping Tests

As the borings at Wells Nos. 13 and 14 were drilled, brief pumping tests were performed. The pump had been removed from Well No. 15, therefore these tests were not performed at that well. For the pumping tests, the borings (installed approximately 30 feet away from each respective supply well) were used as observation wells and the corresponding supply wells were operated (pumped) at the normal rate (approximately 7,000 gpm) for a period of approximately 10 minutes. Upon completion of the pumping portion of the test, water levels were allowed to recover for a period of approximately 10 minutes. As the boreholes were advanced, various lengths of the open holes were exposed to the formation during these tests, to ascertain the degree of hydraulic connection between the formations penetrated by the boring and those at the supply well. A pressure transducer and data-logger system was used to continuously record water levels in the borings during the tests. Water level information collected during the tests is attached.

Well No. 13 Results

The first pumping test conducted at Well No. 13 was performed with the boring open hole exposed between 7.85 feet bls and 10 feet bls. When the supply well was turned on, a relatively gradual drawdown was observed in the boring location. This response is probably reflective of a relatively slow, "diffused" downward leakance of water through relatively "tight" geologic materials near the water table, into the production zone of Well No. 13 (the open hole of that supply well is completed from 40 feet bls to 80 feet bls). When the pump was turned off, a relatively slow, gradual rise in the water level was also observed at the borehole location.

The next pumping test in the boring was conducted with the open-hole exposed between 7.85 feet bls to 20 feet bls. In contrast to the earlier test, the water-level response in the boring to pumping was instantaneous. This indicates a nearly direct hydraulic connection between the open hole of the supply well and the materials at a depth of 20 feet bls. This information was subsequently interpreted to mean that the "roof" of the production zone existed somewhere above 20 feet bls at the wellfield.

The reader may recall that similar results were obtained at Well No. 10, when a pumping test was performed at that supply well. During that test, a 14-foot deep observation monitor well had been installed within the wellhouse. Instantaneous water-level responses were observed during the initiation and cessation of pumpage. It therefore appears that the "roof" of the production zone of the supply wells at the Northwest Wellfield extends to just below 10 feet bls (between 10 feet bls and 20 feet bls).

Subsequent pumping tests were performed on this boring with the open-hole exposed between the following intervals: 7.85 feet bls to 30 feet bls; 7.85 feet bls to 40 feet bls; 50 feet bls to 60 feet bls; and 74.5 feet bls to 80 feet bls. The response to pumping in the

boring was instantaneous during each of these tests, indicating direct hydraulic connection between the boring and the supply well open-hole.

Well No. 14 Results

The pumping tests performed on the boring at Well No. 14 yielded similar results to those at Well No. 13. A pumping test was conducted at this location with the open-hole of the boring exposed from 4.75 feet bls to 10 feet bls. The water-level response during this test was relatively gradual, indicating diffused downward leakage of water through lowpermeability materials overlying the aquifer. This response supports the interpretation that the roof of the aquifer lies somewhere between the depth of 10 feet bls and 20 feet bls at the wellfield.

Subsequent pumping tests were performed on the Well No. 14 boring with the open-hole exposed between the following intervals: 30 feet bls to 40 feet bls; 30 feet bls to 60 feet bls; and 60 feet bls to 80 feet bls. The response to pumping in the boring was instantaneous during each of these tests, indicating direct hydraulic connection between the boring and the open-hole of the supply well.

Video Surveys

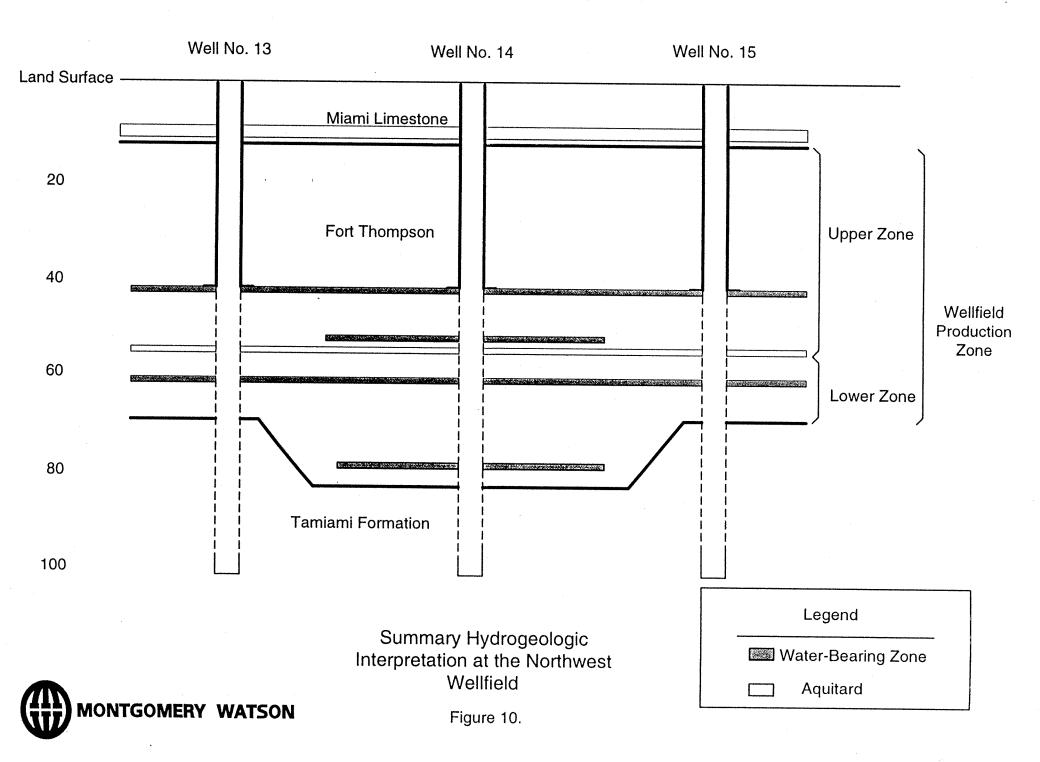
After each of the boreholes were constructed to total depth, a video survey was performed by MDWASD. The video surveys were useful in assessing the in-situ visual conditions of the formations penetrated by the borehole. During the video surveys performed at Wells Nos. 13 and 14, the corresponding supply wells were operated (pumped), in an effort to determine zones where active water flow was taking place. A "pumped" video at Well No. 15 was not possible, because the pump had been removed from that well prior to initiation of this project.

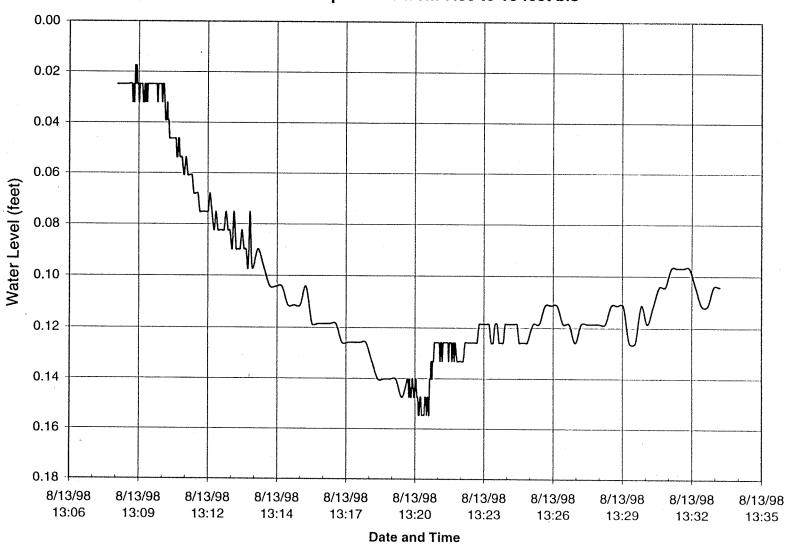
Well No. 13 Results

The pumped video performed at Well No. 13 indicated that a small amount of flow was occurring at a zone between 40 and 42 feet bls. Additional minor flows were observed from a highly porous intervals between 50 and 51 feet bls and between 68 and 69 feet bls. Most of the flow in the well, however, appeared to be occurring in the interval between 57 feet bls to 60 feet bls.

Well No. 14 Results

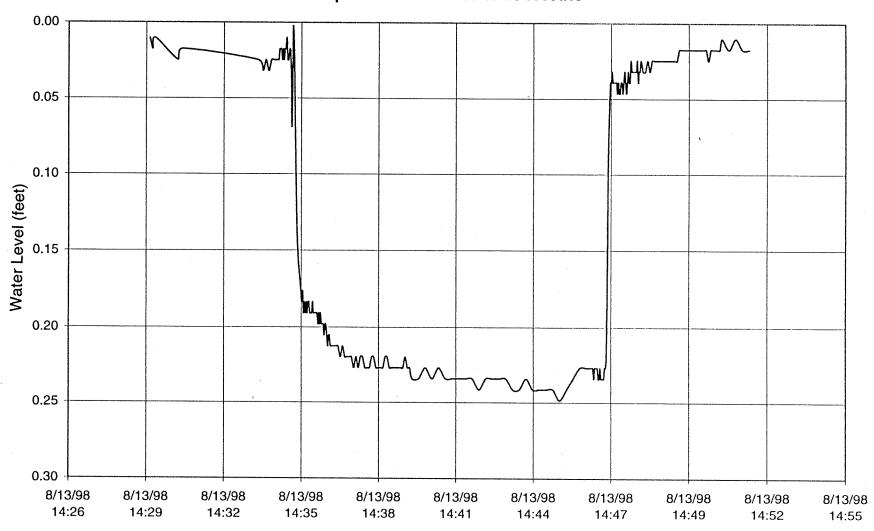
The pumped video performed at Well No. 14 indicated that flow was occurring in two zones. Major flow was observed between 56 and 57 feet bls and minor flow was observed at the bottom of the borehole, near a depth of 78 feet bls.


Borehole Cementing

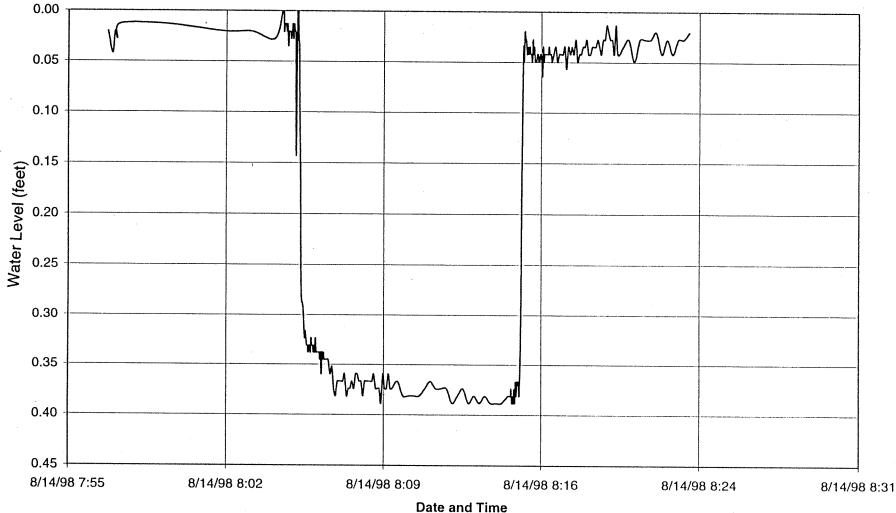

Subsequent performance of the drilling and testing program, the boring holes were filled (plugged) with neat cement grout from total depth to land surface. The cement grout was emplaced with the tremie method. During the cementing process, the quantities of pumped cement were recorded, along with the corresponding "fill-up" of the borehole. This information can often be used to interpret the hydraulic properties of the penetrated formations. For instance, PSI installed a 3"-diameter, 15-foot deep well adjacent to supply Well No. 15 to secure a water supply for the drilling process. Upon the completion of the work, this well was plugged in a manner similar to the deep boreholes. During the cementing process, this well took nearly 50 times the theoretical volume of cement to fill the open hole, indicating highly permeable materials existing at a depth of just below 10 feet bls at the site.

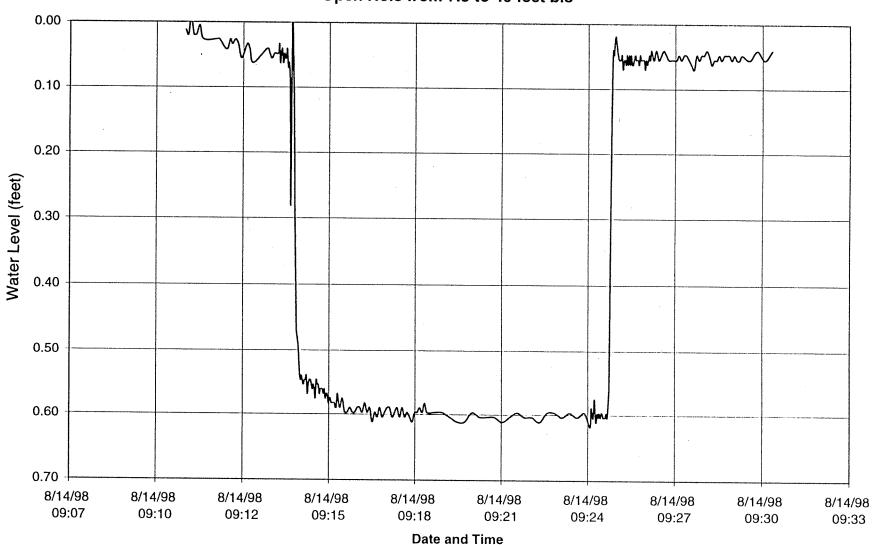
SUMMARY AND RECOMMENDATIONS

Wells Nos. 13, 14 and 15 at the Northwest Wellfield produce water from numerous thin high-transmissivity zones that are separated by softer, denser strata. Figure 10 represents a summary hydrogeologic interpretation of the information collected during this project. The "roof" of the water-bearing portion of the aquifer appears to extend to approximately 15 feet bls. Currently, all of the well casings are completed to 40 feet bls, which represents the depth to the top of the uppermost flow zone. The interval between 15 feet bls and 40 feet bls are in direct hydraulic connection. A dense interval appears to be present in each well, between the depths of 45 feet bls to 55 feet bls. A "middle" flow zone appears to be available in each of the wells, at a depth of between 57 feet bls and 60 feet bls. At Well No. 14, a "lower" flow zone appears to be particularly well developed between the depths of 75 feet bls to 78 feet bls.

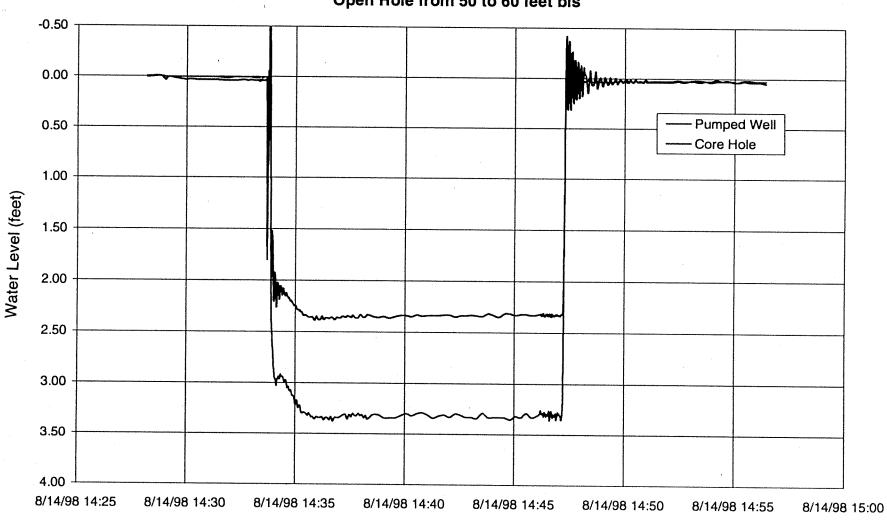

To eliminate a potential hydraulic connection with surface waters, Wells Nos. 13 and 15 should be retrofitted with inner casings set to minimum depths of 55 feet bls (just below the dense interval observed in each of the test wells. The open holes of these wells will then draw water from available flow zones from 55 feet bls to 80 feet bls, designated as the "lower zone" of the production interval. Since Well No. 14 appears to have more available flow zones, the inner casing at this well should be set to a depth of approximately 60 feet bls.

MDWASD Northwest Wellfield Well #13 - 10 Feet Open Hole from 7.85 to 10 feet bls

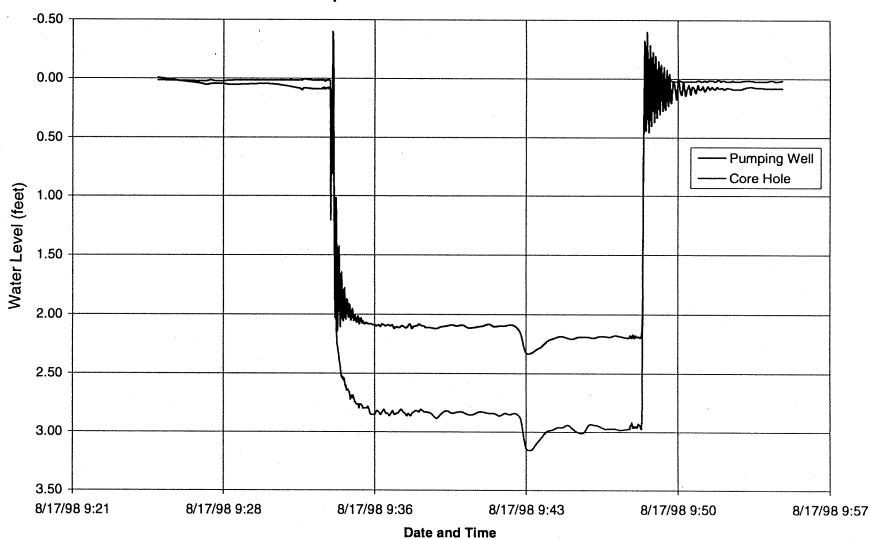

ŕ


MDWASD Northwest Wellfield Well #13 - 20 FT Open Hole from 7.85 to 20 feet bls

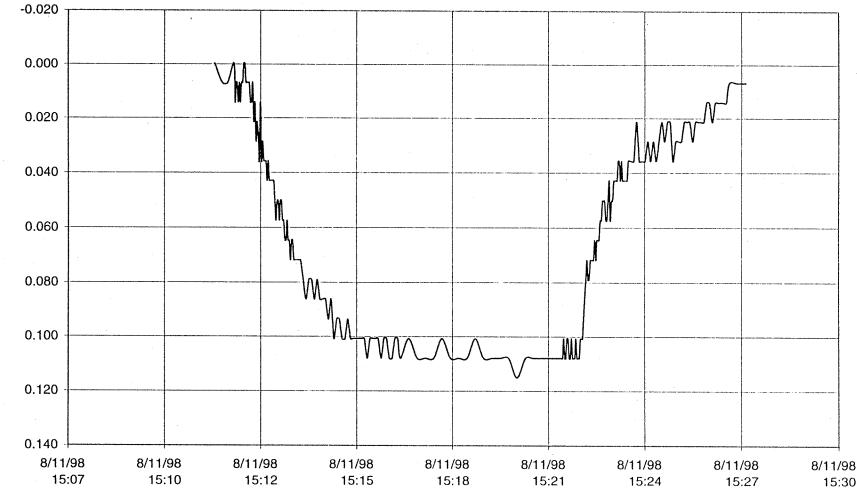
· ·


Date and Time

MDWASD Northwest Wellfield Well #13 - 30 Feet Open Hole from 7.85 to 30 feet bis

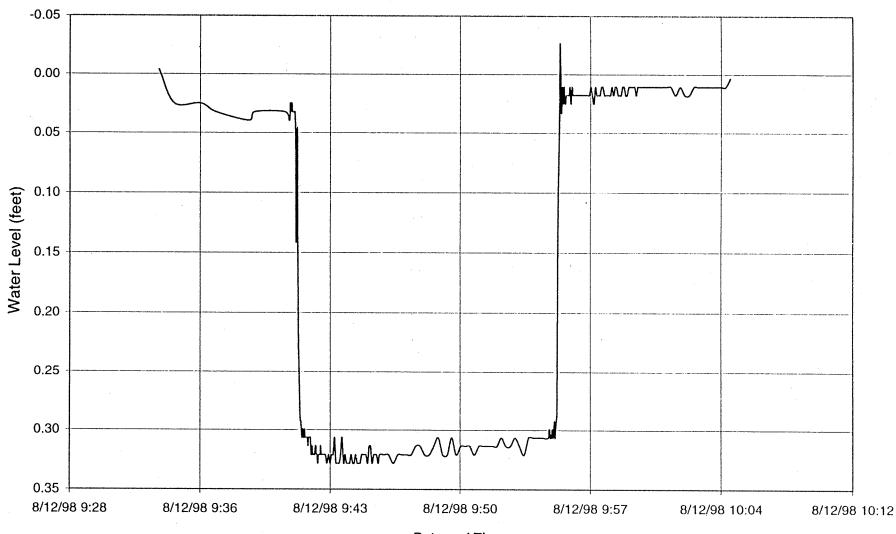


MDWASD Northwest Wellfield Well #13 - 40 Feet Open Hole from 7.5 to 40 feet bls

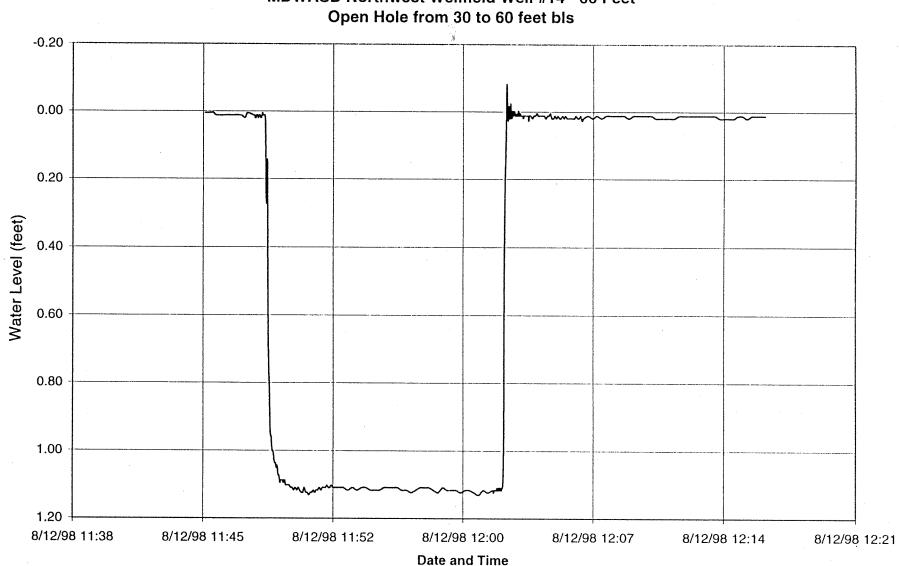

MDWASD Northwest Wellfield Well #13 - 60 Feet Open Hole from 50 to 60 feet bis

Date and Time

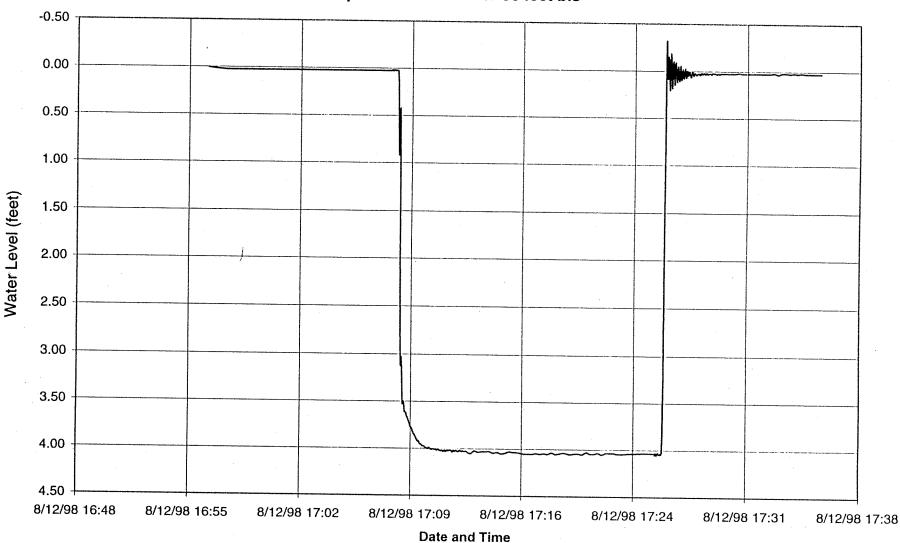
MDWASD Northwest Wellfield Well #13 - 80 Feet Open Hole from 74.5 to 80 feet bis


.

MDWASD Northwest Wellfield Well #14 - 10 Feet Open Hole from 4.75 to 10 feet bls


Water Level (feet)

Date and Time



MDWASD Northwest Wellfield Well #14 - 40 Feet Open Hole from 30 to 40 feet bls

Date and Time

MDWASD Northwest Wellfield Well #14 - 60 Feet

MDWASD Northwest Wellfield Well #14 - 80 Feet Open Hole from 60 to 80 feet bls

Appendix C

MONTGOMERY WATSON

Well Completion Reports

WELL COMPLETION REPORT		FORM 012- Rev. 4/85	L	• •		• • •	WEI	L PERMIT N	10 SE07
Miami Dade Water + San	The Dat	25-	< <	يد مد	11	T			
Address	Sto Fef			ity	<u>n6</u>	<u>e Ju</u>	NE	RJ, Mir	mi, H
2172	<u> </u>	4/25	199				- Clark		4 P .
CAMENAN WELLShar	Completi	on Onte		Casing	Depth	50	To	al Depth	Well # 15
Driller's Name Registration No.	······································					- Y		00	13
			Grout		sing &	Des	th (ft)	DRILL CUTTINGS	LOG
TYPE OF WORK: Construct () Repair (Abandon ()			Thick-	-	rean meter			or at formation on	In call
WELL USE: Domestic Well () Public () Monitor () Te	ont / 3		(ana)		heith	From	То	Give color, grain a type of material Note cavilies, depi	
Irrigation () Fire Well () Other	ar()		& Depth	-				producing zones.	
METHOD: Rotary with MUD () or Air (, Cable Tool (1 int ()			10	H	10	50	Limes	NE
Casing Driven (), Other	, Jet ()			40	56	50	70	Tourses	3/1200010
STATIC WATER LEVEL B Ft. below top of casing		-		<u> </u>		10	BO	PENSE	LIMES
PUMPING WATER LEVEL 20 Ft after 3 Hrs	at TOD GRM			<u> </u>	<u> </u>	ļ	 		
PUMP SIZE 10" H.P. CAPACITY 7000	SPM			 	┢				
PUMP TYPE ZUARCHENTAKE DEPTH 53					┝╼──				
From top of groun	nd -								
LOCATION		7 P							
County		1 1	Number of begy						
			or days						
		1 [
14 % Section Township Range						1			
Latitude-Longitude			Casino:	Blac	k Stee	ыK	Gaiv.	() PVC ()F	iberalass /
-			Screen:	Туре			Sio	t size	
Cuttings sent to District? () Yes	<u>_</u>		Screene					L) to	
() NO LOCA	TE IN SECTION	٦	ype of	grout	t with	% ado	litives	<u>~1959 h</u>	+ NEA I
Note: PWS Wells attach a site map if well local from site location on permit application.	lion is different	V	Vater: (Clear	()C	olore	d (V) i	Sulphur () S	Salty () Iro
nom and location on permit application.		C	Conduc	tivity			_ Chl	orides	mg/l
							•		
		·	•						
	-								
	· ·								
	· ·		•						••••
•			•				•		• • •

а. С. 199

•••

10/20/99 WED 13:19 FAX 9414894545

YOUNGQUIST BROTHERS INC

2003

WELL COMPLETION REPORT WELL PERMIT MiAMI DAde WAthout Server Casing Depth Na. Total Depth CAMERAN NEberter 80' 54' 40" Drille Registration No. DRILL CUTTINGS LOG Casing & Grout Depth (ft) Examine cuttings every 20 ft. or at formátion changes Give color, gráin eize, and type of material Note cavities, depth to producing zones. Screen TYPE OF WORK: Construct () Repair (Abandon () Thick-Diameter From To **11068** WELL USE: Domestic Well () Public (~TMonitor () Test () & Depth & Depth Irrigation () Fire Well () Other _ 48" 4] 40 50 Line Some METHOD: Rotary with MUD () or Air (, Cable Tool (), Jet () 40" 54' 50 60 DUCAUE Casing Driven (), Other _ 60 70 Powers STATIC WATER LEVEL 8.2 Ft below top of casing 70 PUMP IN THE LEVEL 18.5 FL after 3 Hrs. at 7000 GPM PUMP SIZE 16 H.P. CAPACITY 7000 GPM PUMP TYPE Type intake DEPTH 53' 80 arder RASE1 Quar INP. moteria LOCATION Located Near _ Number of bega County 14 Section Township Range Casing: Black Steel (*) Galv. () PVC () Fiberglass () Latitude-Longitude Screen: Type _ _Slot size _ Cuttings sent to District? () Yes Screened from _ _ (ft.) to _ (ft,) Type of grout with % additives Class H Neat () No LOCATE IN SECTION Note: PWS Wells attach a site map if well location is different Water: Clear () Colored () Sulphur () Saity () Iron () from site location on permit application. Conductivity __ Chlorides __ ___ mg/l

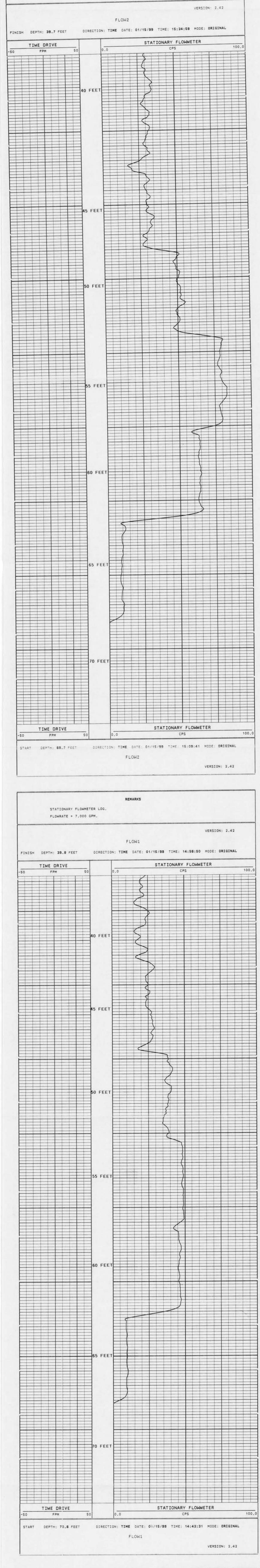
WELL COMPLETION REPORT	FORM 012 Rev. 4/85			a.		WEI	L PERMI	T NO. <u>SF07229</u>
Miani Prete Waten t Souch Pr Outradio Signation Contradio Signation C	EP . 35755 Completion Care	puth 7	Casing	'4 F	24_1 T			33146-2221 ²¹⁰ 15 Wold #
TYPE OF WORK: Construct () Repair (1) Abandon () WELL USE: Domestic Well () Public (1) Monitor () Test ()		Grout Thick- nesa & Depth	Sc Dis	sing & roen Moter Depth	Dep	th (ft) Ta	DRILL CUTT Examine cuttle or at formation Give color, gri type of materia Note cavities, producing zon	nga every 20 ft. n changes ain aiza, and ai digeth to
Irrigation () Fire Well () Other METHOD: Rotary with MUD () or Air (), Cable Tool (), Jet (Casing Driven (), Other STATIC WATER LEVEL Ft. below top of casing PUMPING WATER LEVEL Ft. atter Hrs. at			48	41 54	54	68	3/4" C. Mosti	utting 3 Y Limestone
PUMP SIZE <u>16</u> H.P. CAPACITY <u>7000</u> GPM PUMP TYPE 144.6 INTAKE DEPTH <u>53'</u> From top of ground LOCATION							Wrten 58	- ZONJE 1-661
County		Number of bage						
14 % Section Township Range		Screen:	Туре			Slo	t size)Fiberglass ()
Cuttings sent to District? () Yes () No LOCATE IN SE () No LOCATE IN SE Note: PWS Wells attach a site map if well location is from site location on permit application.	different	Type of Water: (grou [:] Clear	t with () C	% ado olored	litives d (V)	Sulphur ((ft.) / Ncar 1) Saity () Iron () mg/i

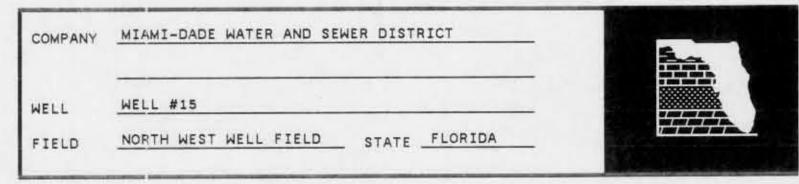
Appendix D

MONTGOMERY WATSON

Well No.15 Geophysical Logs

COMPANY MIAMI-DADE MATER AND ELEMENT Log Vell Vell #15 IELD NORTH WEST WELL FIELD STATUMANT Vell Vell #15 IELD NORTH WEST WELL FIELD STATE FLORING Vell Vell #15 IELD NORTH WEST WELL FIELD STATE FLORING Vell Vell #15 IELD NORTH WEST WELL FIELD STATE FLORING Vell IIIN Vell #15 IIINTY DADE STATE FLORING Vell IIIN Vell IIIN Vell IIIN Vell IIIN Vell IIIN Vell IIIN Vell IIIN Vell IIIN Vell IIIN Vell IIIN Vell IIIN Vell IIIN Vell IIIN Vell IIIN Vell IIIN Vell IIIN Vell IIIN Vell IIIN Vell IIIN Vell IIIN Vell IIIN Vell IIIN Vell IIIN Vell IIIN Vell IIIN Vell IIIN Vell IIIN Vell IIIN Vell IIIN Vell IIIN Vell IIIN Vell IIIN Vell IIIN Vell IIIN Vell IIIN Ve
PERMANENT DATUR
FIELD FIELD STA


ALL INTERPRETATIONS ARE OPINIONS BASED ON INFERENCES FROM ELECTRICAL OR OTHER MEASUREMENTS AND HE CANNOT AND DO NOT GUARANTEE THE ACCURACY OR CORRECTNESS OF ANY INTERPRETATION. AND WE SHALL NOT. EXCEPT IN THE CASE OF GROSS OR WILLFULL NEGLEGENCE ON DUR PART, BE LIABLE OR RESPONSIBLE FOR ANY LOSS, COSTS, DAMAGES, OR EXPENSES INCURRED OR SUSTAINED BY ANYONE RESULTING FROM ANY INTERPRETATION MADE BY ANY OF OUR OFFICERS, AGENTS OR EMPLOYEES. THESE INTERPRETATIONS ARE ALSO SUBJECT TO OUR GENERAL TERMS AND CONDITIONS SET OUT IN OUR CURRENT PRICE SCHEDULE.


	FLOWMETER TOOL S	TRING CONFIGURATIO	N					
						VERSIO	N: 2,42	
		T	DOLFLOW					
INISH	DEPTH: 24.8 FEET	DIRECTION: UP	DATE:	09/26/96	TIME: 09:53	:15 MODE:	TRACE PLA	YBACK
							GR	
						0	(API)	1
e p	CENTRALIZER	3 FT. LONG						
H								
				TC	TAL TOOL ST	RING LENGT	H = 13 FT.	
	1 11/16" WEIGH	T 5 FT. LONG						
	1 11/16" WEIGH	T 5 FT. LONG						
	1 11/16" WEIGH	T 5 FT. LONG						
	1 11/16" WEIGH	T 5 FT. LONG						
	1 11/15" WEIGH FLOWMETER S							
	FLOWMETER S	FT, LONG						
		FT, LONG						
••	FLOWMETER 5 SPINNER MEASUR 2.5 FT. FRO	FT. LONG						
	FLOWMETER 5 SPINNER MEASUR 2.5 FT. FRO	FT. LONG						
	FLOWMETER S	FT. LONG					GR	
	FLOWMETER 5 SPINNER MEASUR 2.5 FT. FRO	FT. LONG				0	GR (API)	
	FLOWMETER 5 SPINNER MEASUR 2.5 FT. FRO	S FT. LONG					(API)	
	FLOWMETER 5 SPINNER MEASUR 2.5 FT. FRO	FT. LONG	DATE:	09/26/96	TIME: 09:1		(API)	LAYBA
	FLOWMETER S SPINNER MEASUR 2.5 FT. FRO CENTRALIZER	S FT. LONG RE POINT DM BOT BOT DIRECTION: UP	DATE:		TIME: 09:1		(API)	LAYBA

÷.

1

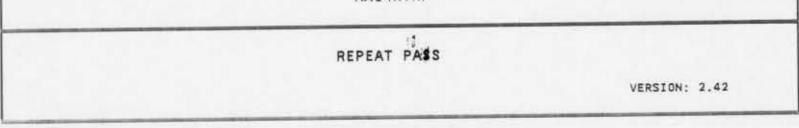
STATIONARY FLOWMETER LOG. FLOWRATE = 9,000 GPM. REMARKS

32"	RUN NO. BIT	BOREHOLE	WITNESSED BY	RECORDED BY	EQUIPMENT-LOCATION	MAX. REC. TEMP. DEG	LEVEL	DENSITY-VISCOSITY	SALINITY, PPM CL	TYPE FLUID IN HOLE	OPERATING RIG TIME	LOGGED INTERVAL	DEPTH-LOGGER	DEPTH-DRILLER	TYPE LOG	RUN NO.	DATE	PERMANENT DATUM P	FILE NO	E	0	T	5	-	
, 84	FROM				ION	DEG F.		SITY	CL	OLE	IME							ED FROM	SEC.	LOCATION	COUNTY_	FIELD_	WELL	OMPANY	GEOP
CASING	TO TO	RECORD	R.SKINNER	LEE	102 FTM	NA	FULL	NA	NA	WATER	HOUI		78'		X-Y CALIPER		20-APRIL-1999	PAD FT.ABOVE	TWP			NORTH WEST WELL	N.W.W.F #15	COMPANY MIAMI DADE	GEOPHYSICAL LOGGING, INC.
48"	SIZE		R								11 P	T0 35"			PER	4	-1999	E PERMANENT DATUM	RGE			1	115	DE WATER	DGGING,
.375 W.T	WGT.	CASING	AUG														-	IT DATUM			ST	FIELD		AND SEWER	
, 84	FROM	CASING RECORD	AUGUSTIN									TO						ELEV.:K.B. D.F. G.L.		FLOWMETER	STATE			ER	LOG V-1 CMLIFER
SURFACE	10																			TER					, in the second s

ALL INTERPRETATIONS ARE OPINIONS BASED ON INFERENCES FROM ELECTRICAL OR OTHER MEASUREMENTS AND WE CANNOT AND DO NOT GUARANTEE THE ACCURACY OR CORRECTNESS OF ANY INTERPRETATION, AND WE SHALL NOT. EXCEPT IN THE CASE OF GROSS OR WILLFULL NEGLEGENCE ON OUR PART, BE LIABLE OR RESPONSIBLE FOR ANY LOSS. COSTS. DAMAGES, OR EXPENSES INCURRED OR SUSTAINED BY ANYONE RESULTING FROM ANY INTERPRETATION MADE BY ANY OF OUR OFFICERS, AGENTS OR EMPLOYEES. THESE INTERPRETATIONS ARE ALSO SUBJECT TO OUR GENERAL TERMS AND CONDITIONS SET OUT IN OUR CURRENT PRICE SCHEDULE.

13 ...

REMARKS

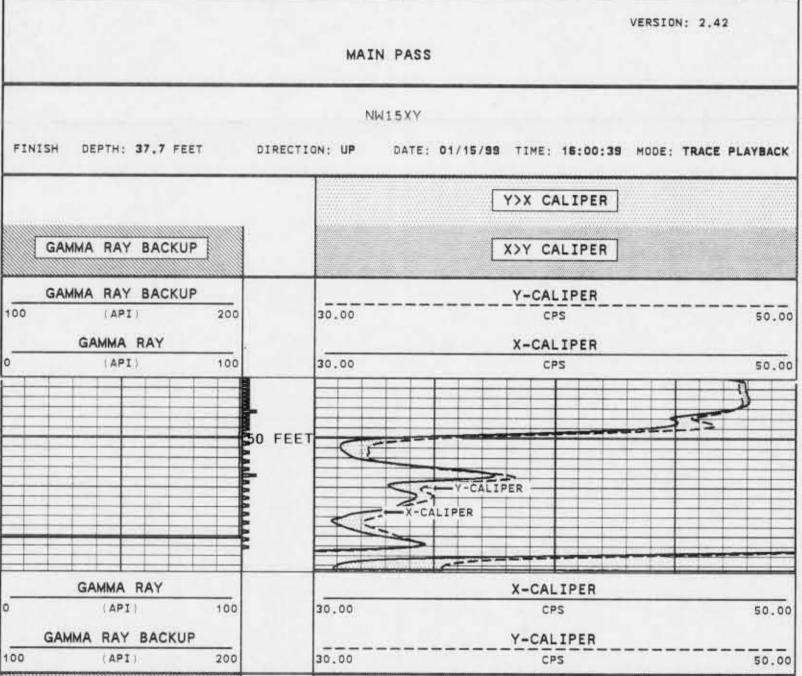

XY CALIPER/GAMMA RAY TOOL STRING CONFIGURATION

		TOO	LXYGRS					
INISH	DEPTH: 24.9 FEET	DIRECTION: UP	DATE:	09/26/96	TIME: 0	9:58:54	MODE: TRACE PLA	YBACH
							GR	
			_		_	0	(API)	1
11	GAMMA RAY 3 MEASURE POINT	FT - LONG						
H				T	OTAL TOOL	STRING	LENGTH = S FT.	77
	XY CALIPER 1	FT LONG						
	- AT GALITER .							
	SHORT ARM MEASU	RE POINT 3 FT. FROM	вот					
	BOT							
-			_				GR	-
						0		
TART		DIDECTION. UB	DATE	09/26/96	TIME . 0	9.58:33	MODE: TRACE PL	AYBA
	DEPTH: 99.0 FEET	DIRECTION: OF	DATES	03/20/30		0.00.00	weees were is	Statio

		VERS	ION: 2.42
	MAIN PASS		
FINISH DEPTH: 40.9 FEET DIRECTIO	NW14XYMP	/20/99 TIME: 11:43:07 MOD	E: TRACE PLAYBACK
		Y>X CALIPER	
		X>Y CALIPER	
	30.00	Y-CALIPER CPS X-CALIPER	50.00
	30.00	CPS	50.00
50 FEE	Y-CAL		
	N.		
		X-CALIPER	
	30.00	CPS	50.00
	30.00	Y-CALIPER	50.00

		30.00	CPS	50.00
			X>Y CALIPER	
			Y>X CALIPER	
START	DEPTH: 78.6 FEET	DIRECTION: UP DATE: NW14XYMP	04/20/99 TIME: 11:42:44 MC	DDE: TRACE PLAYBACK
		The subscription of the su		
		MAIN PASS		

	REPEAT PASS		VERSION: 2.42
FINISH DEPTH: 42.9 FEET DIRECTI	NW14XYRP	0/99 TIME: 11:41:25	MODE: TRACE PLAYBACK
		Y>X CALIPER	
		X>Y CALIPER	
	30.00	Y-CALIPER	50.00
	30.00	CPS	50.00
		-X-CALIPER	
50 FEE	Y-CAL		
	1		
		X-CALIPER	
	30.00	CPS Y-CALIPER	50.00
	30.00	CPS]
		Y>X CALIPER]
START DEPTH: 78.0 FEET DIRECT	ION: UP DATE: 04/2	20/99 TIME: 11:41:0	3 MODE: TRACE PLAYBACK


		MASTER	CALIBRAT	ION SUMMARY	Y		
	FILE:	DATE: 04/	20/99	TIME: 11:	35	VERSION: 2.	42
			X-CALIPER	#01			
		DATE: 04	/19/99	TIME: 14	: 29		
	MEASURED	UNITS	STANDARD	MINIMUM		DEVIATION	UNITS
30	671.6	293	30.0	29.9 39.8	40.2	0.16	CPS CPS
40 60	812.5 1070.4	CPS	58.0	58.0	58.3	0.00	CPS
			Y-CALIPER	#01			
		DATE: 04	/19/99	TIME: 14	: 29		
	MEASURED	UNITS	STANDARD	MINIMUM	MAXIMUM	DEVIATION	UNITS
30	622.8	CPS	30.0	29.8		0.20	CPS CPS
40	744.8			39.6 58.7	30.2 40.0 59.1	0.16	CPS

COMPANY	MIAMI DADE WATER AND SEWER.	
WELL	N.W.W.F #14	
FIELD	NORTH WEST WELL FIELD STATE FLORIDA	

	GEOP	FLORIDA GEOPHYSICAL LOGGING, INC.			X-Y CALIPER LOG	PER
-	COMPANY	COMPANY MIAMI-DADE	DE WATER	AND	SEWER DEPARTMENT	RTMENT
	FIELD	NORTH WEST	WELL	FIELD		
	COUNTY_	DADE		S	STATE FLO	FLORIDA
	LOCATION				0	RVICES: TER
ILE ND.	2	1				
PERMANENT DATUM	M PAD		ELEV.		ELEV :K B	Ð
LOG MEASURED FROM DRILLING MEASURED	RED FROM	PAD FT . ABOVE	0	IT DATUM	0.F	
DATE		15-JAN-1999	666			
RUN NO.		111				
TYPE LOG		X-Y CALIPER	PER			
DEPTH-LOGGER		78*		-		
LOGGED INTERVAL	F		TO 40'		10	
OPERATING RIG TIME	TIME	2.5 HOURS	s			
TYPE FLUID IN HOLE	HOLE	WATER		_		
SALINITY, PPM CL	MCL	NA		-		
LEVEL	11100	6. MV		+		
2	TEMP, DEG F.	NA		1		
EQUIPMENT-LOCATION		102 FTM				
RECORDED BY		LEE				
WITNESSED BY		R.SKINNER	R			
BOR	BOREHOLE RECORD	DRD		CASING	CASING RECORD	
RUN NO. BIT	FROM	1 10	SIZE	WGT.	FROM	10
ONE 45"	, 08	CASING	48"	.5 N.T	40'	SURFACE
-	-	-				

ALL INTERPRETATIONS ARE OPINIONS BASED ON INFERENCES FROM ELECTRICAL OR OTHER MEASUREMENTS AND WE CANNOT AND DO NOT GUARANTEE THE ACCURACY OR CORRECTNESS OF ANY INTERPRETATION, AND WE SHALL NOT, EXCEPT IN THE CASE OF GROSS OR WILLFULL NEGLEGENCE ON OUR PART, BE LIABLE OR RESPONSIBLE FOR ANY LOSS, COSTS, DAMAGES, OR EXPENSES INCURRED OR SUSTAINED BY ANYONE RESULTING FROM ANY INTERPRETATION MADE BY ANY OF OUR OFFICERS, AGENTS OR EMPLOYEES. THESE INTERPRETATIONS ARE ALSO SUBJECT TO OUR GENERAL TERMS AND CONDITIONS SET OUT IN OUR CURRENT PRICE SCHEDULE.

	REMARKS XY CALIPER/GAMMA RAY TOOL STRING CONFIGURATION	
		VERSION: 2.42
FINISH	TOOLXYGRL DEPTH: 24.9 FEET DIRECTION: UP DATE: 09/26/96 TIME: 09:57:35	MODE: TRACE PLAYBACK
		GR (API) 1
	GAMMA RAY 3 FT. LONG MEASURE POINT 7.5 FT. FROM BOT TOTAL TOOL STRING XY CALIPER 6 FT. LONG	3 LENGTH = 9 FT
	LONG ARM MEASURE POINT 1 FT. FOM BOT BOT	
	c	
START	DEPTH: 99.0 FEET DIRECTION: UP DATE: 09/26/96 TIME: 09:57:13 TOOLXYGRL	MODE: TRACE PLAYBACK

GA	MMA RAY BACKUP						ALIPER			
START	DEPTH: 77.1 FEET	DIRECTION:		DATE: 15XY	01/15/99	TIME:	15:56:17	MODE:	TRACE P	LAYBACK
			MAIN	PASS						
								VERSIO	N: 2.42	

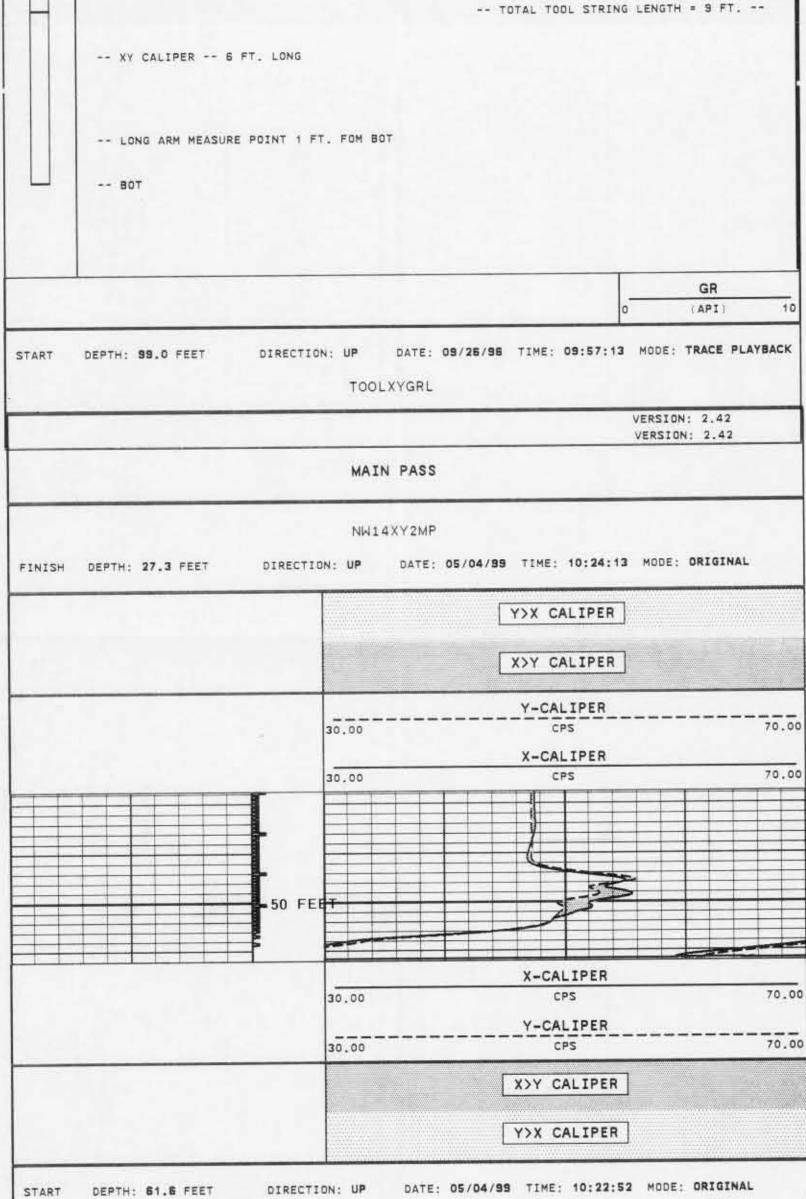
					Y>X CALIPER	
G	AMMA RAY BACKUP	<u></u>			X>Y CALIPER	
G/ 100	AMMA RAY BACKUP	200		30.00	Y-CALIPER CPS	50.00
0	GAMMA RAY	100		30.00	X-CALIPER CPS	50.00
			O FEET		-CALIPER	
	GAMMA RAY	100		30.00	X-CALIPER CPS	
	AMMA RAY BACKUP	1000		30.00	Y-CALIPER CPS	50.00 50.00
	AMMA RAY BACKUP		DIRECTIO	ON: UP DATE: 0 NW15XY1	X>Y CALIPER Y>X CALIPER	E: TRACE PLAYBACK

		MASTER	CALIBRAT	ION SUMMAR	Y		
FILE:		DATE: 01/	15/99	TIME: 15:	55	VERSION: 2.	42
			X-CALIPER	#01			
		DATE: 01	/15/99	TIME: 12	: 20		
	MEASURED	UNITS	STANDARD	MINIMUM	MAXIMUM	DEVIATION	UNITS
40 60	810.9 1077.8	CPS CPS	40.0 59.5	39.9 59.3	40.3 59.7	0.13 0.18	CPS CPS
			Y-CALIPER	#01			
		DATE: 01	/15/99	TIME: 12	: 20		
	MEASURED	UNITS	STANDARD	MINIMUM	MAXIMUM	DEVIATION	UNITS
40 60	734.9 994.6	CPS CPS	40.0 59.5	39.6	40.4	0.06	CPS CPS

COMPANY	MIAMI-DADE WATER AND SEWER DISTRICT	5
WELL	WELL #15	
FIELD	NORTH WEST WELL FIELD STATE FLORIDA	

Appendix E

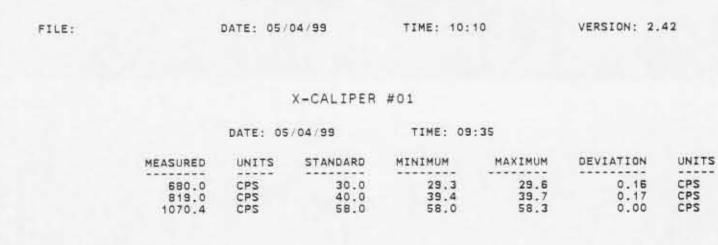
MONTGOMERY WATSON


Well No. 14 Geophysical Logs

OMP ANY MIAMI DADE WATER AND SEMER ELL N.W.W.F #14	TO T. FROM N.T 41' SU				
MPANY MIAMI DADE WATER AND SEMER LL N.W.W.F #14 STATE STATE_ UNTY TWP RGE OTHER SERV ATION TWP RGE OTHER SERV AD FT.ABOVE ELEV. NONE PAD FT.ABOVE PERMANENT D.F. FROM PAD FT.ABOVE ELEV.:K.B. PAD FT.ABOVE ELEV. ELEV.:K.B. PAD FT.ABOVE ELEV. ELEV.:K.B. PAD FT.ABOVE ELEV.:K.B. ELEV.:K.B. PAD S.S. TO D.F. FROM PAD TO SO.* TO S.S. TO SO.* TO E.E. FULL S.S.* TO TO G.L. E NA TO TO TO LE NA AUGUSTIN TO TO FROM TO SIZE WGT. FROM FROM TO SIZE WGT. FROM	TO T. FROM		CASING	, 85	46 1/2"
MPANY MIAMI DADE WATER AND SEWER ELD NORTH WEST WELL FILD UNTY TWP RGE OTHER ATION TWP RGE OTHER AD FT.ABOVE ELEV. NONE PAD FT.ABOVE ELEV. ELEV.:K.B. PAD FT.ABOVE FERVICE FROM PAD TO D.F. FROM FT.ABOVE FERVICE O.F. FROM FT.ABOVE FERVICE D.F. FROM FT.ABOVE FERVICE G.L. FROM TO S.S. TO E X-Y CALIPER TO TO E WATER TO TO G.L. LL NA TO TO TO E NA TO TO TO LL NA TO TO TO FROM LO2 FTM AUGUSTIN LE WGT. FROM FROM	TO ISTIN RECORD FROM	48"	_	78'	
MPANY_MIAMI DADE WATER AND SEWER LL N.W.W.F #14 ELD NORTH WEST WELL FIELD OUNTY STATE ATION TWP ATION FT.ABOVE PERMANENT DATUM FROM PAD FROM FT.ABOVE PERMANENT DATUM FROM S.S.* S.S.* TO MA HOURS		SIZE	-	FROM	BIT
MPANY MIAMI DADE WATER AND SEWER LL N.W.W.F #14 ELD NORTH WEST WELL FIELD UNTY	TO		RD		BOREHO
MPANY_MIAMI DADE WATER AND SEWER LL N.W.W.F #14 ELD NORTH WEST WELL FIELD UNTY STATE OUNTY TWP ATION TWP PAD FT.ABOVE PERMANENT DATUM FROM PAD S8' TO 58' TO FROM MATER L NA HATER HOURS E NA NA HOURS E NA HATER HOURS L NA NA LEE	10				50 BY
MPANY_MIAMI DADE WATER AND SEWER LL N.W.W.F #14 ELD NORTH WEST WELL FIELD VNTY TWP STATE ATION TWP RGE OTHER AD FT.ABOVE PERMANENT DATUM ELEV. ELEV. PAD FT.ABOVE PERMANENT DATUM ELEV. ELEV. PAD S8' TO 30' T S8' TO 30' T T S8' TO 30' T T E WATER HOURS T E WATER NA T NA NA NA T	10		LEE) BY
MPANY_MIAMI DADE WATER AND SEWER LL N.W.W.F #14 ELD NORTH WEST WELL FIELD UNTY STATE ATION TWPRGE AD FT.ABOVE PERMANENT DATUM FROM 04-MAY-1999 STATE ELEV. SS8' TO 30' 58' TO 30' 58' TO 30' SS8' TO 30' E WATER VA NA FULL NA	10		-11	N	IT-LOCATIO
MPANY_MIAMI DADE WATER AND SEWER LL N.W.W.F #14 ELD NORTH WEST WELL FIELD OUNTY STATE ATION TWP RGE PAD FT.ABOVE PERMANENT DATUM ELEV. PAD FT.ABOVE PERMANENT DATUM ELEV. FROM PAD S8* TO 30* S8* TO 30* T S8* TO 30* T S8* TO 30* T NA NA NA NA NA NA	10		NA		TEMP, D
MPANY_MIAMI DADE WATER AND SEWER LL N.W.W.F #14 ELD NORTH WEST WELL FIELD UNTY	10		FULL		
MPANY_MIAMI DADE WATER AND SEWER LL N.W.W.F #14 ELD NORTH WEST WELL FIELD UNTY	TO		NA	TY	Y-VISCOSI
MPANY MIAMI DADE WATER AND SEWER LL N.W.W.F #14 ELD NORTH WEST WELL FIELD UNTY	10		NA	E	TY. PPM C
MPANY MIAMI DADE WATER AND SEWER LL N.W.W.F #14 ELD NORTH WEST WELL FIELD UNTYSTATESTATESTATESTATESTATEADTWPRGERGETONNE PAD FT.ABOVE PERMANENT DATUM FROM PAD S8' CALIPER 58' TO 30' T 58' TO 30' T	10		m	m	ID IN HOL
MPANY MIAMI DADE WATER AND SEWER LL N.W.W.F #14 ELD NORTH WEST WELL FIELD UNTY	10	20	HOUH	m	IG RIG TIM
MPANY MIAMI DADE WATER AND SEWER LL N.W.W.F #14 ELD NORTH WEST WELL FIELD UNTY		100			NTERVAL
MPANY MIAMI DADE WATER AND SEWER LL N.W.W.F #14 ELD NORTH WEST WELL FIELD UNTY			л ()		IGGER .
MPANY MIAMI DADE WATER AND SEWER LL N.W.W.F #14 ELD NORTH WEST WELL FIELD UNTYSTATESTATE ATION TWPRGEOTHER ATION FF.ABOVE PERMANENT DATUM FROM PAD FT.ABOVE PERMANENT DATUM ELEV.: 04-MAY-1999 V_Y CALTPER					THED
MPANY MIAMI DADE WATER AND SEWER LL N.W.W.F #14 ELD NORTH WEST WELL FIELD UNTY		FR	. [
MPANY MIAMI DADE WATER AND SEWER LL N.W.W.F #14 ELD NORTH WEST WELL FIELD UNTY STATE UNTY TWP RGE OTHER ATION FT.ABOVE PERMANENT DATUM FROM PAD FT.ABOVE PERMANENT DATUM		66	04-MAY-19		
ANY MIAMI DADE WATER AND SEWER N.W.W.F #14 D NORTH WEST WELL FIELD ITY STATE ION STATE NONE TWP RGE ELEV	DATUM			FROM	MEASURED
PANY MIAMI DADE WATER AND SEWER	ELEV.:K.B.	ELEV.		AD	AT DATUM P
Y MIAMI DADE WATER AND SEWER N.W.W.F #14 NORTH WEST WELL FIELD STATE	NONE	RGE	TWP		SEC
ANY MIAMI DADE WATER AND SI N.W.W.F #14 D NORTH WEST WELL FIELD	ER			ATION	
ANY MIAMI DADE WATER AND N.W.W.F #14 D NORTH WEST WELL FIELD	STATE			UNTY_	co
ANY MIAMI DADE WATER AND N.W.W.F #14	IELD	WELL	NORTH WES	ELD	FI
AND		14			WE
			MIAMI DAD	MPANY_	co
	NC.	DGGING,	VSICAL LO)EOPH	∭∭ih.,
GEOPHYSICAL LOGGING, INC.				Ī	

1000

ALL INTERPRETATIONS ARE OPINIONS BASED ON INFERENCES FROM ELECTRICAL OR OTHER MEASUREMENTS AND WE CANNOT AND DO NOT GUARANTEE THE ACCURACY OR CORRECTNESS OF ANY INTERPRETATION, AND WE SHALL NOT. EXCEPT IN THE CASE OF GROSS OR WILLFULL NEGLEGENCE ON OUR PART, BE LIABLE OR RESPONSIBLE FOR ANY LOSS, COSTS, DAMAGES, OR EXPENSES INCURRED OR SUSTAINED BY ANYONE RESULTING FROM ANY INTERPRETATION MADE BY ANY OF OUR OFFICERS, AGENTS OR EMPLOYEES. THESE INTERPRETATIONS ARE ALSO SUBJECT TO OUR GENERAL TERMS AND CONDITIONS SET OUT IN OUR CURRENT PRICE SCHEDULE.


	XY CALIPER/GAMM	A RAY TOOL STRING C	EMARKS ONFIGURATION				
					VERS	ION: 2.42	
		тос	LXYGRL				
FINISH	DEPTH: 24.9 FEET	DIRECTION: UP	DATE: 09/26/98	5 TIME; 09:5	7:35 MOC	E: TRACE PLA	YBAC
	1					GR	
					0	(API)	1

NW14XY2MP MAIN PASS VERSION: 2.42 VERSION: 2.42 REPEAT PASS NW14XY2RP FINISH DEPTH: 29.5 FEET DIRECTION: UP DATE: 05/04/99 TIME: 10:18:34 MODE: ORIGINAL Y>X CALIPER X>Y CALIPER Y-CALIPER 70.00 CPS 30.00 X-CALIPER 70.00 CPS 30.00 G < 50 FEET X-CALIPER 70.00 30.00 CPS Y-CALIPER 70.00 CPS 30.00 X>Y CALIPER Y>X CALIPER START DEPTH: 50.9 FEET DIRECTION: UP DATE: 05/04/99 TIME: 10:17:16 MODE: ORIGINAL NW14XY2RP

REPEAT PASS VERSION: 2.42

MASTER CALIBRATION SUMMARY

30

40 60

Y-CALIPER #01

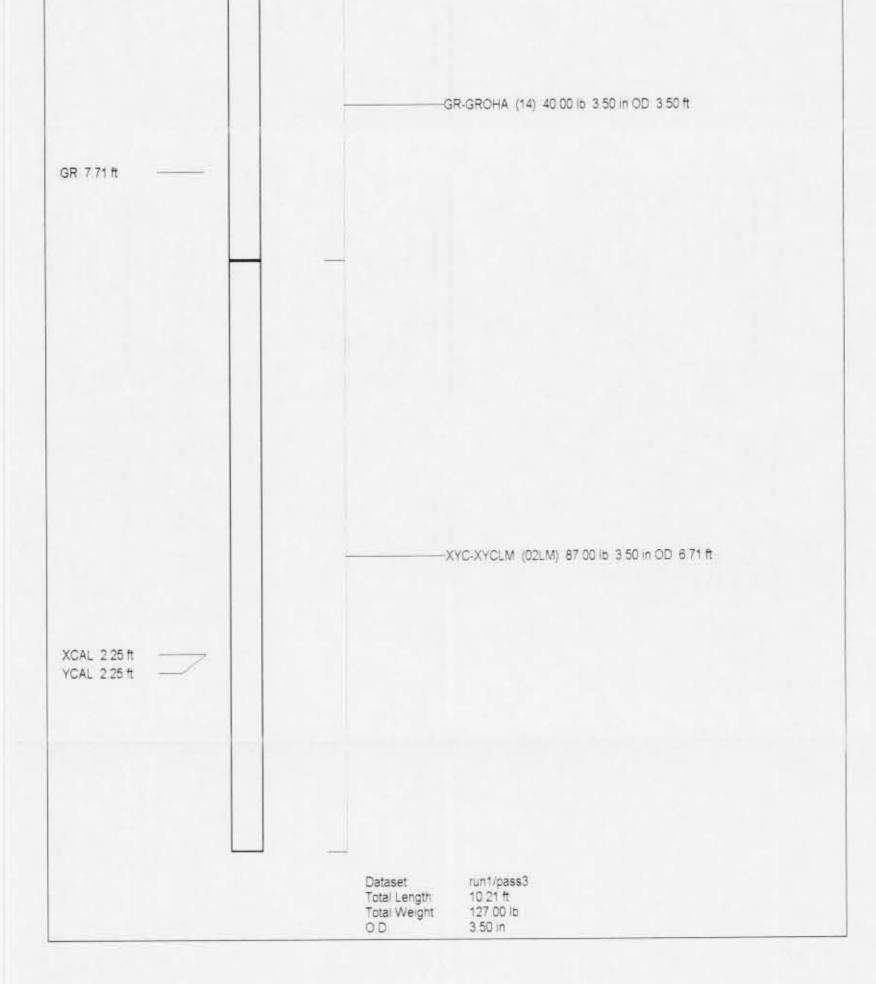
		DATE: 05	/04/99	TIME: 09	:35		
	MEASURED	UNITS	STANDARD	MINIMUM	MAXIMUM	DEVIATION	UNITS
30 40 60	618.0 750.0 993.6	CPS CPS CPS	30.0 40.0 59.0	30.2 39.2 58.7	30.5 39.6 59.1	0.18 0.02 0.16	CPS CPS CPS

COMPANY	MIAMI DADE WATER AND SEWER.	5
WELL	N.W.W.F #14	
FIELD	NORTH WEST WELL FIELD STATE FLORIDA	

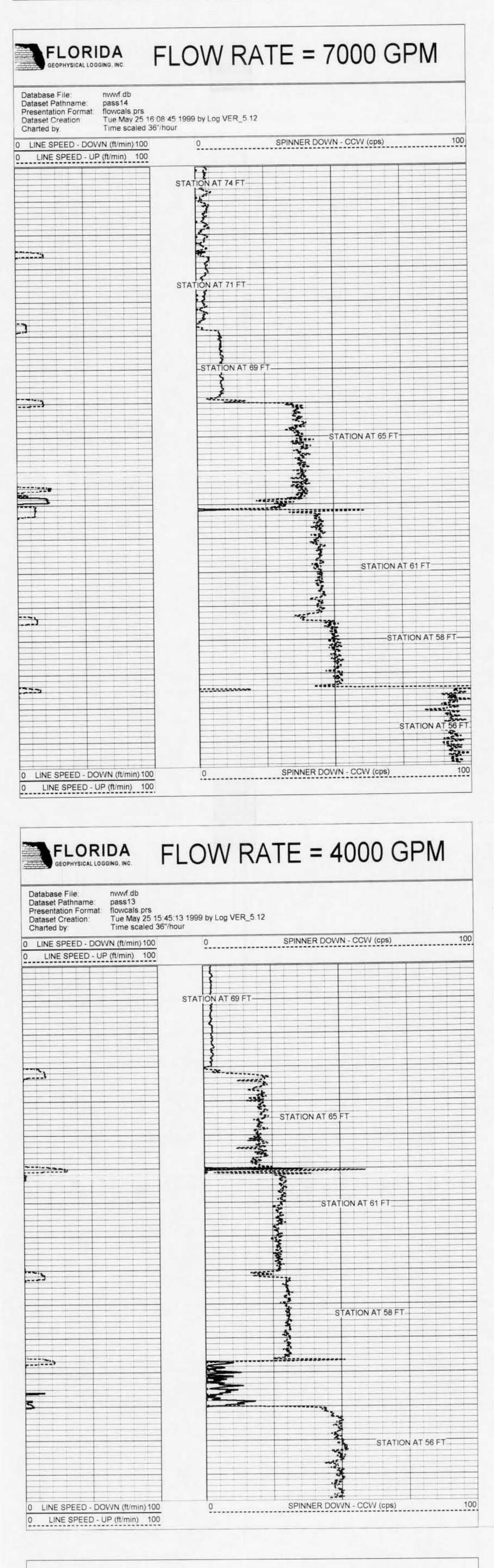
Casing Record Surface String Prot. String Production String Uner	38 5° 24"	Run Number Bit	Witnessed By	Recorded By	Equipment Number	Time Logger on Bottom	Time Well Ready	Estimated Cement Top	Density / Viscosity	Type Fluid	Open Hole Size	Top Log Interval	Bottom Logger	Depth Driller	Run Number	Date	Compan Weil Field County State/Pr	# N C	MAMI 14 NW W DADE L		DE V . FIE					<u>стра</u> сеорну	
Size 40"	55 80	Barehole Recard Bit From			0												Permanent Datum Log Measured From Drilling Measured From			Location	County	Field	Weil		Company	GEOPHYSICAL LOGGING, INC	
WgUFt 375	80' 84'	To	T URAM	DENISON	103	1400	ON ARRIVAL	NNA	NA	WATER	38.5"	54, 94	84	84	ONE	5/25/99	an.				DADE	NW WELL FIELD	#14		MIAMI DADE WATER AND SEWER	R J	>
g		Size W	A DURAND	LEE													GROUND LEVEL B				Sta	FIELD			DE WAT	_	XYO
Top SURFACE		Tubing Record Weight From	RAND	m				-									Elevation N/A				State/Prv FL				ER AND	LOG	XY CALIPER
Bottom 54"		n To															GL GL	Flevation	REMARKS	Other Services					SEWER		
All interpreta All interpreta terpretation a sustained by ar	lions are nd we sha	all not.	exce	ept in	the	e ca:	se o	fgro	SS (by	ilful any	neg of	glige our	offic	on	our ag	part, be liat	ole o	ees The	sible !	for any	loss (osts.	dar	nages or	orrectness of expenses incl general term	irred (
														(Cor	mm	ents										
													F	LC	VC	VN	1ETER										

MAIN PASS

Database Eile: musuf db


Dat Pre Dat	abase File: aset Pathname sentation Format: aset Creation arted by		1 ors		999 by Calc VEI 1200	R_5 12	
0	Gamma Ray (0	GAPI)	50		30	Y Caliper (in)	50
					30	X Caliper (in)	50
					30	BIT SIZE (in)	50
1	Gamma Ra	ay		50		Y Caliper	iper -
0	Gamma Ray (0	GAPI)	50		30	Y Caliper (in)	50
					30	X Caliper (in)	50
					30	BIT SIZE (in)	50

	FLORIDA GEOPHYSICAL LOGGING, INC.		Μ	AIN PASS	
Dat Pre Dat		1 rs	1999 by Calc VER_ 1.600	5 12	
0	Gamma Ray (GAPI)	50	30	Y Caliper (in)	50
0	Samma ruy (Srift)	00	WW	r Galiper (iii)	50
	Guinna (ay (orall)		30	X Caliper (in)	50
	Cumine (key (ork i)				
1			30	X Caliper (in) BIT SIZE (in)	50
~	Gamma Ray		30 30	X Caliper (in) BIT SIZE (in)	50 50
	\		30 30	X Caliper (in) BIT SIZE (in) Bit Size	50 50
	Gamma Ray		30 30	X Caliper (in) BIT SIZE (in) Y Caliper	50 50


MAIN P	ASS
99 by Calc VER_5.12 40	
30 Y	Caliper (in) 50
30 X	Caliper (in) 50
30 BI	T SIZE (in) 50
Bit Size ->	
Y Caliper	X Caliper
	99 by Calc VER_5.12 40 30 Y 30 X 30 Bit Bit Size

			10064884888888	@#####################################	THE REAL PROPERTY.
5	Gamma Ray (GAPI)	50	30	Y Caliper (in)	50
			30	X Caliper (in)	50
-			30	BIT SIZE (in)	50
	FLORIDA GEOPHYSICAL LOGGING, INC tabase File: nvwvf.d	b	REF	PEAT PASS	
Pre Da		ay 25 14 22 0	8 1999 by Log VER_5 12	2	
Pre Da Ch	esentation Format grxyc p taset Creation Tue Ma arted by Depth i	ay 25 14 22 0 In Feet scaled			50
Pre Da Ch	esentation Format grxyc.p taset Creation Tue Ma	ay 25 14 22 0	d 1:240	Y Caliper (in) X Caliper (in)	50
Pre Da Ch	esentation Format grxyc p taset Creation Tue Ma arted by Depth i	ay 25 14 22 0 In Feet scaled	30	Y Caliper (in)	
Pre Da Ch	esentation Format grxyc p taset Creation Tue Ma arted by Depth i	ay 25 14 22 0 In Feet scaled	30 30 30	Y Caliper (in) X Caliper (in)	50
Pre Da Ch	esentation Format grxyc p taset Creation Tue Ma arted by Depth i	ay 25 14 22 0 In Feet scaled	30 30 30	Y Caliper (in) X Caliper (in)	50
Pre Da Ch	esentation Format grxyc p taset Creation Tue Ma arted by Depth i	ay 25 14 22 0 In Feet scaled	30 30 30	Y Caliper (in) X Caliper (in)	50
Pre Da Ch	esentation Format grxyc p taset Creation Tue Ma arted by Depth i	ay 25 14 22 0 In Feet scaled	30 30 30	Y Caliper (in) X Caliper (in)	50
Pre Da Ch	esentation Format grxyc p taset Creation Tue Ma arted by Depth i	ay 25 14 22 0 In Feet scaled	30 30 30	Y Caliper (in) X Caliper (in)	50
Pre Da Ch	esentation Format grxyc.p taset Creation Tue Ma arted by: Depth i Gamma Ray (GAPI)	ay 25 14 22 0 In Feet scaled	30 30 30	Y Caliper (in) X Caliper (in)	50
Pre Da	esentation Format grxyc p taset Creation Tue Ma arted by Depth i	ay 25 14 22 0 in Feet scaled 50	d 1 240 30 30 30 30 30 30 30 30 30 3	Y Caliper (in) X Caliper (in) BIT SIZE (in)	50 50

		XY Caliper Calibra	tion Report			
Serial Numb Performed	er/Model	02LM-XYCLM Tue May 25 13:3	3:43 1999			
Rin	g	X Caliper		Y Caliper		
1. 30 2. 40 3. 57 4. 5. 6.	5 in	999.798 1155.12 1410.57	cps cps cps cps cps cps cps	1044 48 1180 94 1397 26	cps cps cps cps cps cps cps	
		Gamma Ray Calibr	ation Report			
Serial Number: Tool Model Performed.		14 GROHA Wed May 05 17:	25:51 1999			
Calibrator Value:		120	GAPI			
Background Readi Calibrator Reading		39.762 324.482	cps cps			

Casing Record Surface Shing Prot. Shing Production Shing	12	Run Number 1		Recorded By	Location	Fautoment Number	Time Well Keady	Estimated Cement Top	Max Recorded Temp.	Density / Viscosity	Open Hole Size	Top Log Interval	Bottom Logged Interval	Depth Logger	Depth Doller	Date Due Number	Company Well Field County State/Pro	#1 N\ D/	W W ADE	/EI		E W					GEOPHYS	FLO
Size 40"	38.5" 54' 24" 80'	Bit From	the first of the second				-										Permanent Datum Log Measured From Dniling Measured From				location	County [Field N		Well #	Company N	GEOPHYSICAL LOGGING, INC	FLORIDA
Wgt/Ft 375	80' 84'	To	I. UKAM	DENISON	FT MYR	103	1530	ON ARRIVAL	NN	NA	WATER	38.5	64 64	84	84"	ONE						DADE	NW WELL FIELD		#14	MIAMI DADE WATER AND SEWER	C	
<u>بر</u>	-	Size	-	+				-					-	-		-	GROUND LEVEL GROUND LEVEL NVA						- FIELI	1		DE W		FLC
Top SURFACE		Weight	Tubing Record	LEE													Elevation					State/Prv FL	0	2		ATER AN	LOG	FLOWMETER
		From	ecord	+		-		1					-	+			NIA					F				ND SE		R
54'		To															KB GL	Elevation	REMARKS	SEE	Other Services					WER		
	stations a	24/22/2022	1.42	100.00	- B (D)		C		A	1. A. A. 1	or w	vilifu anv	/ ne v of	glig	enci offi t ou	e on cers t in c		able nploy	vees T	hes	COLE:	101 80	V 1033	1. 1. 1. 1.	ວເວົ້	10 10 00 00	or correctne , or expense to our genera	2 11 19 19 19 19 19 19 19 19 19 19 19 19
															X	YC	ALIPER											

CALIBRATION PASSES

Database File: nwwf.db Dataset Pathname: pass5		
Presentation Format flowcals prs	15 1999 by Log VER_5 12 d 1 240	
LINE SPEED - DOWN (ft/min) 100 LINE SPEED - UP (ft/min) 100	0 SPINNER DOWN - CCW (cps)	100
1		
5		
S S	5	
2		
5		
· · · · · · · · · · · · · · · · · · ·		
	<u>`</u>	
LINE SPEED - DOWN (ft/min) 100	0 SPINNER DOWN - CCW (cps)	10
and the second		
LINE SPEED - UP (ft/min) 100		
Charted by Depth in Feet scale		10
LINE SPEED - DOWN (ft/min) 100 LINE SPEED - UP (ft/min) 100	0 SPINNER DOWN - CCW (cps)	10
<u>v</u>		111
**		
1	2	
<u> </u>	2	
1		
.		
,2		
1		
LINE SPEED DOWN (fr/min) 100		10
LINE SPEED - DOWN (ft/min) 100 LINE SPEED - UP (ft/min) 100	0 SPINNER DOWN - CCW (cps)	10
LINE SPEED - DOWN (ft/min) 100 LINE SPEED - UP (ft/min) 100 Database File nwwf.db Dataset Pathname pass7 Presentation Format: flowcals.prs Dataset Creation: Tue May 25 15:23:1	15 1999 by Log VER_5 12	10
LINE SPEED - DOWN (ft/min) 100 LINE SPEED - UP (ft/min) 100 Database File nwwf.db Dataset Pathname pass7 Presentation Format: flowcals.prs Dataset Creation Tue May 25 15:23 1 Charted by Depth in Feet scale LINE SPEED - DOWN (ft/min) 100	15 1999 by Log VER_5 12	10
LINE SPEED - DOWN (ft/min) 100 LINE SPEED - UP (ft/min) 100 atabase File nwwf.db ataset Pathname pass7 resentation Format: flowcals prs ataset Creation: Tue May 25 15:23 1 harted by Depth in Feet scale	15 1999 by Log VER_5 12 d 1 240	
LINE SPEED - DOWN (ft/min) 100 LINE SPEED - UP (ft/min) 100 atabase File nwwf db ataset Pathname pass7 resentation Format: flowcals prs ataset Creation: Tue May 25 15 23 1 harted by Depth in Feet scale LINE SPEED - DOWN (ft/min) 100	15 1999 by Log VER_5 12 d 1 240	
LINE SPEED - DOWN (ft/min) 100 LINE SPEED - UP (ft/min) 100 atabase File nwwf db ataset Pathname pass7 resentation Format: flowcals prs ataset Creation: Tue May 25 15 23 1 harted by Depth in Feet scale LINE SPEED - DOWN (ft/min) 100	15 1999 by Log VER_5 12 d 1 240	
LINE SPEED - DOWN (fl/min) 100 LINE SPEED - UP (fl/min) 100 atabase File nwwf db ataset Pathname pass7 resentation Format: flowcals prs ataset Creation: Tue May 25 15 23 1 harted by Depth in Feet scale LINE SPEED - DOWN (ft/min) 100	15 1999 by Log VER_5 12 d 1 240	
LINE SPEED - DOWN (ft/min) 100 LINE SPEED - UP (ft/min) 100 atabase File nwwf db ataset Pathname pass7 resentation Format: flowcals prs ataset Creation: Tue May 25 15 23 1 harted by Depth in Feet scale LINE SPEED - DOWN (ft/min) 100	15 1999 by Log VER_5 12 d 1 240	
LINE SPEED - DOWN (fl/min) 100 LINE SPEED - UP (fl/min) 100 atabase File nwwf db ataset Pathname pass7 resentation Format: flowcals prs ataset Creation: Tue May 25 15 23 1 harted by Depth in Feet scale LINE SPEED - DOWN (ft/min) 100	15 1999 by Log VER_5 12 d 1 240	
LINE SPEED - DOWN (fl/min) 100 LINE SPEED - UP (fl/min) 100 atabase File nwwf db ataset Pathname pass7 resentation Format: flowcals prs ataset Creation: Tue May 25 15 23 1 harted by Depth in Feet scale LINE SPEED - DOWN (ft/min) 100	15 1999 by Log VER_5 12 d 1 240	
LINE SPEED - DOWN (ft/min) 100 LINE SPEED - UP (ft/min) 100 atabase File nwwf db ataset Pathname pass7 resentation Format: flowcals prs ataset Creation: Tue May 25 15 23 1 harted by Depth in Feet scale LINE SPEED - DOWN (ft/min) 100	15 1999 by Log VER_5 12 d 1 240	
LINE SPEED - DOWN (ft/min) 100 LINE SPEED - UP (ft/min) 100 atabase File nwwf db ataset Pathname pass7 resentation Format: flowcals prs ataset Creation: Tue May 25 15 23 1 harted by Depth in Feet scale LINE SPEED - DOWN (ft/min) 100	15 1999 by Log VER_5 12 d 1 240	
LINE SPEED - DOWN (ft/min) 100 LINE SPEED - UP (ft/min) 100 atabase File nwwf db ataset Pathname pass7 resentation Format: flowcals prs ataset Creation: Tue May 25 15:23 1 harted by Depth in Feet scale LINE SPEED - DOWN (ft/min) 100	15 1999 by Log VER_5 12 d 1 240 0 SPINNER DOWN - CCW (cps)	
LINE SPEED - DOWN (ft/min) 100 LINE SPEED - UP (ft/min) 100 atabase File nwwf.db ataset Pathname pass7 esentation Format: flowcals prs ataset Creation: Tue May 25 15:23 1 narted by Depth in Feet scale LINE SPEED - DOWN (ft/min) 100	15 1999 by Log VER_5 12 d 1 240 0 SPINNER DOWN - CCW (cps)	
LINE SPEED - DOWN (ft/min) 100 LINE SPEED - UP (ft/min) 100 atabase File nwwf db ataset Pathname pass7 resentation Format: flowcals prs ataset Creation: Tue May 25 15 23 1 harted by Depth in Feet scale LINE SPEED - DOWN (ft/min) 100	15 1999 by Log VER_5 12 d 1 240 0 SPINNER DOWN - CCW (cps)	
LINE SPEED - DOWN (ft/min) 100 LINE SPEED - UP (ft/min) 100 atabase File nwwf.db ataset Pathname pass7 resentation Format: flowcals.prs ataset Creation: Tue May 25 15:23 1 harted by Depth in Feet scale LINE SPEED - DOWN (ft/min) 100 LINE SPEED - UP (ft/min) 100	15 1999 by Log VER_5 12 d 1:240 0 SPINNER DOWN - CCW (cps)	
LINE SPEED - DOWN (ft/min) 100 LINE SPEED - UP (ft/min) 100 atabase File nwwf db ataset Pathname pass7 resentation Format: flowcals prs ataset Creation: Tue May 25 15:23 1 harted by Depth in Feet scale LINE SPEED - DOWN (ft/min) 100	15 1999 by Log VER_5 12 d 1 240 0 SPINNER DOWN - CCW (cps)	10
LINE SPEED - DOWN (ft/min) 100 LINE SPEED - UP (ft/min) 100 ratabase File nwwf.db resentation Format: flowcals.prs resentation Format: flowcals.prs rataset Creation: Tue May 25 15:23 1 harted by Depth in Feet scale LINE SPEED - DOWN (ft/min) 100 LINE SPEED - UP (ft/min) 100	15 1999 by Log VER_5 12 d 1:240 0 SPINNER DOWN - CCW (cps)	10
LINE SPEED - DOWN (ft/min) 100 LINE SPEED - UP (ft/min) 100 Database File nwwf.db Dataset Pathname pass7 Presentation Format: flowcals.prs Dataset Creation: Tue May 25 15:23:1 Charted by Depth in Feet scale LINE SPEED - DOWN (ft/min) 100 LINE SPEED - UP (ft/min) 100 LINE SPEED - UP (ft/min) 100	15 1999 by Log VER_5 12 d 1:240 0 SPINNER DOWN - CCW (cps)	
LINE SPEED - DOWN (ft/min) 100 LINE SPEED - UP (ft/min) 100 Dataset Pathname pass7 Presentation Format: flowcals.prs Dataset Creation Tue May 25 15:23 1 Charted by Depth in Feet scale LINE SPEED - DOWN (ft/min) 100 LINE SPEED - UP (ft/min) 100 LINE SPEED - UP (ft/min) 100 LINE SPEED - UP (ft/min) 100 LINE SPEED - DOWN (ft/min) 100 LINE SPEED - DOWN (ft/min) 100 LINE SPEED - UP (ft/min) 100	15 1999 by Log VER_5 12 d 1:240 0 SPINNER DOWN - CCW (cps)	1
LINE SPEED - DOWN (ft/min) 100 LINE SPEED - UP (ft/min) 100 Dataset Pathname pass 7 Presentation Format: flowcals prs Dataset Creation: Tue May 25 15:23:1 Charted by Depth in Feet scale LINE SPEED - DOWN (ft/min) 100 LINE SPEED - DOWN (ft/min) 100 LINE SPEED - UP (ft/min) 100 LINE SPEED - UP (ft/min) 100 LINE SPEED - UP (ft/min) 100 LINE SPEED - DOWN (ft/min) 100 LINE SPEED - UP (ft/min) LINE SPEED - DOWN (ft/min) 100 LINE SPEED - DOWN (ft/min) 100 LINE SPEED - DOWN (ft/min) 100 LINE SPEED - UP (ft/min) LINE SPEED - UP (ft/min) 100	15 1999 by Log VER_5 12 0	
LINE SPEED - DOWN (fl/min) 100 LINE SPEED - UP (fl/min) 100 Dataset Pathname pass 7 Presentation Format: flowcals.prs Dataset Creation Tue May 25 15:23 1 Charted by Depth in Feet scale LINE SPEED - DOWN (fl/min) 100 LINE SPEED - DOWN (fl/min) 100 LINE SPEED - UP (fl/min) 100 LINE SPEED - UP (fl/min) 100 LINE SPEED - DOWN (fl/min) 100 LINE SPEED - UP (fl/min) 100	15 1999 by Log VER_5.12 0 SPINNER DOWN - CCW (cps) 0 SPINNER DOWN - CCW (cps) 0 SPINNER DOWN - CCW (cps) 0 SPINNER DOWN - CCW (cps)	10
LINE SPEED - DOWN (ft/min) 100 LINE SPEED - UP (ft/min) 100 Allow at a set Pathname pass7 resentation Format: flowcals.prs ataset Creation Tue May 25 15:23:1 barted by Depth in Feet scale LINE SPEED - DOWN (ft/min) 100 LINE SPEED - UP (ft/min) 100 LINE SPEED - UP (ft/min) 100 LINE SPEED - DOWN (ft/min) 100 LINE SPEED - DOWN (ft/min) 100 LINE SPEED - UP (ft/min) 100	15 1999 by Log VER_5 12 0	10
LINE SPEED - DOWN (ft/min) 100 LINE SPEED - UP (ft/min) 100 Database File: Patabase Toreation Format: Depth in Feet scale LINE SPEED - DOWN (ft/min) 100 LINE SPEED - UP (ft/min) 100 LINE SPEED - UP (ft/min) 100 LINE SPEED - UP (ft/min) 100 LINE SPEED - DOWN (ft/min) 100 LINE SPEED - UP (ft/min) 100	15 1999 by Log VER_5 12 0	10
LINE SPEED - DOWN (ft/min) 100 LINE SPEED - UP (ft/min) 100 Database File: Dataset Pathname Desentation Format: Dataset Creation: Depth in Feet scale LINE SPEED - DOWN (ft/min) 100 LINE SPEED - UP (ft/min) 100 LINE SPEED - UP (ft/min) 100 LINE SPEED - DOWN (ft/min) 100 LINE SPEED - DOWN (ft/min) 100 LINE SPEED - UP (ft/min) 100	15 1999 by Log VER_5 12 0	10
LINE SPEED - DOWN (ft/min) 100 LINE SPEED - UP (ft/min) 100 atabase File nwwf db ataset Pathname pass7 resentation Format: flowcals.prs ataset Creation Tue May 25 15:23:1 harted by Depth in Feet scale LINE SPEED - DOWN (ft/min) 100 LINE SPEED - UP (ft/min) 100 LINE SPEED - UP (ft/min) 100 LINE SPEED - DOWN (ft/min) 100 LINE SPEED - DOWN (ft/min) 100 LINE SPEED - UP (ft/min) 100	15 1999 by Log VER_5 12 0	10
LINE SPEED - DOWN (ft/min) 100 LINE SPEED - UP (ft/min) 100 atabase File nwwf db ataset Pathname pass7 resentation Format: flowcals.prs ataset Creation Tue May 25 15:23:1 harted by Depth in Feet scale LINE SPEED - DOWN (ft/min) 100 LINE SPEED - UP (ft/min) 100 LINE SPEED - UP (ft/min) 100 LINE SPEED - DOWN (ft/min) 100 LINE SPEED - DOWN (ft/min) 100 LINE SPEED - UP (ft/min) 100	15 1999 by Log VER_5 12 0	10
LINE SPEED - DOWN (ft/min) 100 LINE SPEED - UP (ft/min) 100 Allow at a set Pathname pass7 resentation Format: flowcals.prs ataset Creation Tue May 25 15:23:1 barted by Depth in Feet scale LINE SPEED - DOWN (ft/min) 100 LINE SPEED - UP (ft/min) 100 LINE SPEED - UP (ft/min) 100 LINE SPEED - DOWN (ft/min) 100 LINE SPEED - DOWN (ft/min) 100 LINE SPEED - UP (ft/min) 100	15 1999 by Log VER_5 12 0	10
LINE SPEED - DOWN (ft/min) 100 LINE SPEED - UP (ft/min) 100 Database File: Patabase Toreation Format: Depth in Feet scale LINE SPEED - DOWN (ft/min) 100 LINE SPEED - UP (ft/min) 100 LINE SPEED - UP (ft/min) 100 LINE SPEED - UP (ft/min) 100 LINE SPEED - DOWN (ft/min) 100 LINE SPEED - UP (ft/min) 100	15 1999 by Log VER_5 12 0	10
LINE SPEED - DOWN (ft/min) 100 LINE SPEED - UP (ft/min) 100 atabase File nwwf db ataset Pathname pass7 resentation Format: flowcals.prs ataset Creation Tue May 25 15:23:1 harted by Depth in Feet scale LINE SPEED - DOWN (ft/min) 100 LINE SPEED - UP (ft/min) 100 LINE SPEED - UP (ft/min) 100 LINE SPEED - DOWN (ft/min) 100 LINE SPEED - DOWN (ft/min) 100 LINE SPEED - UP (ft/min) 100	15 1999 by Log VER_5 12 0	10
LINE SPEED - DOWN (ft/min) 100 LINE SPEED - UP (ft/min) 100 Atabase File: ataset Pathname pass7 resentation Format: ataset Creation Tue May 25 15:23:1 harted by Depth in Feet scale LINE SPEED - DOWN (ft/min) 100 LINE SPEED - UP (ft/min) 100 LINE SPEED - UP (ft/min) 100 LINE SPEED - DOWN (ft/min) 100 LINE SPEED - UP (ft/min) 100	15 1999 by Log VER_5 12 0	10
LINE SPEED - DOWN (ft/min) 100 LINE SPEED - UP (ft/min) 100 Database File: Intaset Pathname: pass7 resentation Format: tharted by Depth in Feet scales LINE SPEED - DOWN (ft/min) 100 LINE SPEED - UP (ft/min) 100	15 1999 by Log VER_5 12 0	
LINE SPEED - DOWN (ft/min) 100 LINE SPEED - UP (ft/min) 100 Database File nwwf db Dataset Pathname pass7 Presentation Format: flowcals.prs Dataset Creation: Tue May 25 15:23:1 Charted by Depth in Feet scale LINE SPEED - DOVVN (ft/min) 100 LINE SPEED - UP (ft/min) 100 LINE SPEED - UP (ft/min) 100 LINE SPEED - DOVVN (ft/min) 100 LINE SPEED - DOVVN (ft/min) 100 LINE SPEED - UP (ft/min) 100	15 1999 by Log VER_5 12 0	

Database File: nwwf.db Dataset Pathname: pass9 Presentation Format Dataset Creation: Tue May Charted by: Depth in

LINE SPEED - UP (ft/min) 100

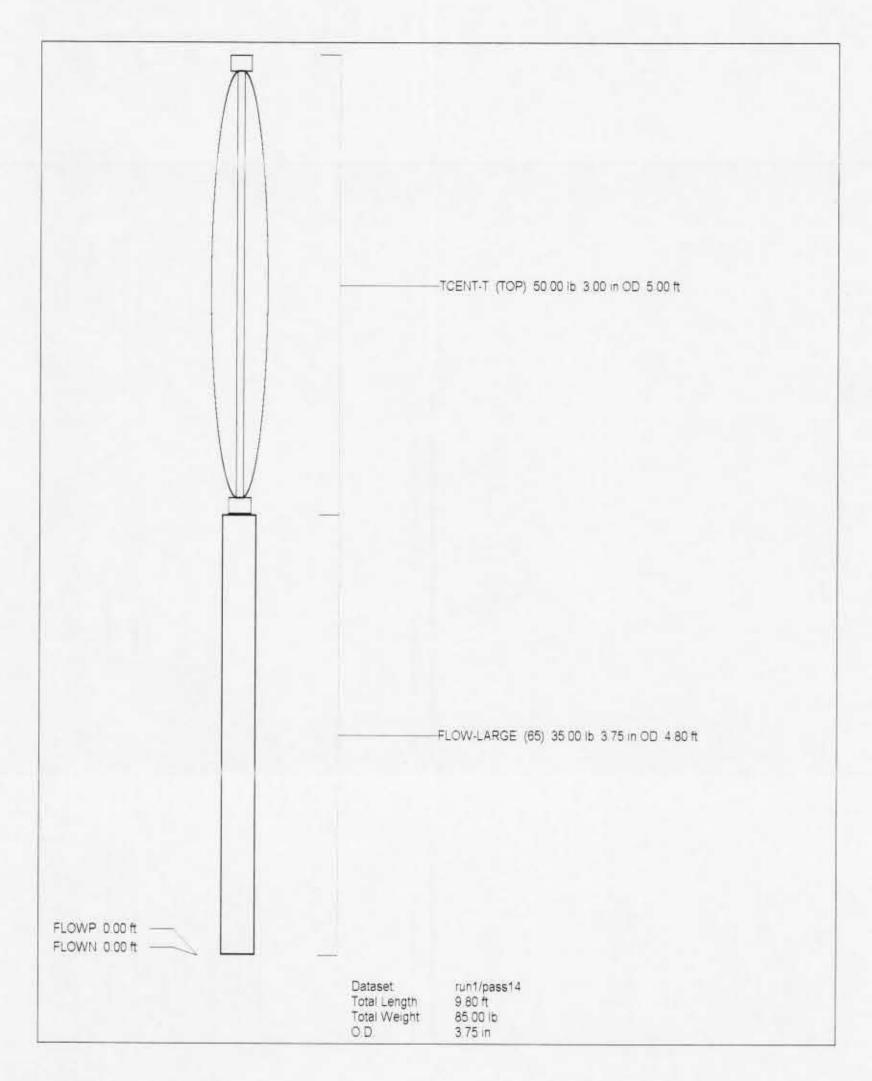
LINE SPEED - DOWN (ft/min) 100

LINE SPEED - UP (ft/min) 100

0

0

0

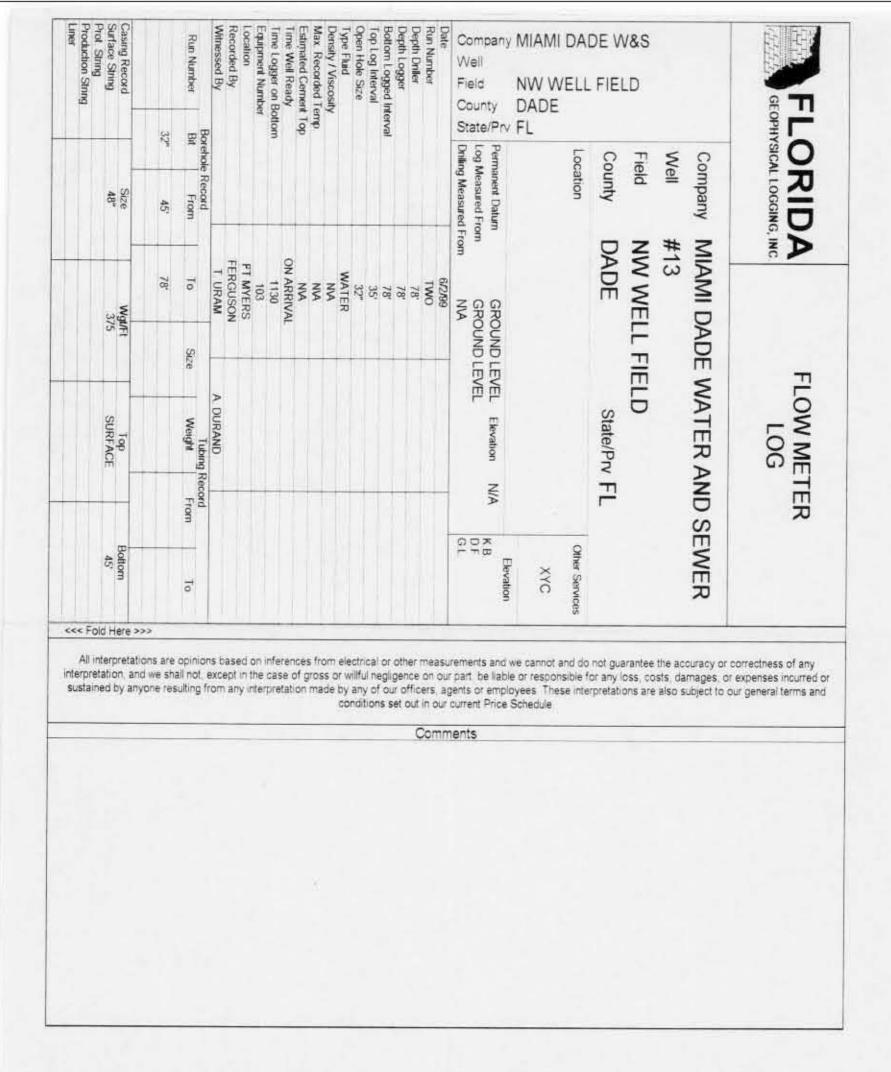

flowcals prs Tue May 25 15:27 45 1999 by Log VER_5 12 Depth in Feet scaled 1:240

LINE SPEED - DOW	/N (ft/min) 100	0	SPINNER DOWN - CCW (cps)	100
LINE SPEED - UP	(ft/min) 100			
		· · · · · · · · · · · · · · · · · · ·		
1				
		1222		
1				_
LINE SPEED - DOW	/N (ft/min) 100	0	SPINNER DOWN - CCW (cps)	10
) LINE SPEED - UP	(ft/min) 100			
FLORI	DA SING. INC.			
FLORI GEOPHYSICAL LOGO Database File:	DA SING. INC.			
FLORI GEOPHYSICAL LOGO Database File: Dataset Pathname: Presentation Format:	DA SING. INC. nwwf.db pass10 flowcals.prs			
FLORI GEOPHYSICAL LOGO Database File: Dataset Pathname:	DA SING. INC. nwwf.db pass10 flowcals.prs	3 1999 by Log VER_5 12 1 1240		

0

SPINNER DOWN - CCW (cps)

100



Appendix F

MONTGOMERY WATSON

Well No. 13 Geophysical Logs

Database File:nwwf.dbDataset Pathname:run2/pass8Presentation Format:flowcals.prsDataset Creation:Wed Jun 02 12.57 4Charted by:Depth in Feet scaled	5 1999 by Log VER_5 12 1 1 240	
LINE SPEED - DOWN (ft/min) 200	0 SPINNER DOWN - CW (cps)	50
LINE SPEED - UP (ft/min) 200	0 SPINNER UP - CCW (cps)	5
LINE SPEED - DOWN (ft/min) 200	0 SPINNER DOWN - CW (cps)	5
LINE SPEED - UP (ft/min) 200	0 SPINNER UP - CCW (cps)	5

Database Filenwwf.dbDataset Pathname:run2/pass9Presentation Format:flowcals prsDataset CreationWed Jun 02 13 00 0Charted by:Depth in Feet scale		R_5.12	
LINE SPEED - DOWN (ft/min) 200	0	SPINNER DOWN - CW (cps)	50
0 LINE SPEED - UP (ft/min) 200	0	SPINNER UP - CCW (cps)	50
LINE SPEED - DOWN (ft/min) 200	0	SPINNER DOWN - CW (cps)	50
	0	UP CALIBRATIC	50

Database File: Dataset Pathname: Presentation Format: Dataset Creation: Charted by:

nwwf.db run2/pass3 flowcals.prs Wed Jun 02 12:50:00 1999 by Log VER_5 12 Depth in Feet scaled 1:240

0 LINE SPEED - DOWN (ft/min) 200	0	SPINNER DOWN - CW (cps)	50
0 LINE SPEED - UP (ft/min) 200	0	SPINNER UP - CCW (cps)	50
	5		
	1		
0 LINE SPEED - DOWN (ft/min)200	0	SPINNER DOWN - CW (cps)	50
0 LINE SPEED - UP (ft/min) 200	0	SPINNER UP - CCW (cps)	50

FLORIDA 25 FPM DOWN CALIBRATION

Database File:nwwf.dbDataset Pathnamerun2/pass4Presentation Formatflowcals.prsDataset Creation:Wed Jun 02 1Charted by:Depth in Feet	2:51:44 1999 by Log VER scaled 1:240	2_5.12	
0 LINE SPEED - DOWN (ft/min)200	0	SPINNER DOWN - CW (cps)	50
0 LINE SPEED - UP (ft/min) 200	0	SPINNER UP - CCW (cps)	50
0 LINE SPEED - DOWN (ft/min) 200 0 LINE SPEED - UP (ft/min) 200		SPINNER DOWN - CW (cps) SPINNER UP - CCW (cps)	50

FLORIDA 35 FPM UP CALIBRATION

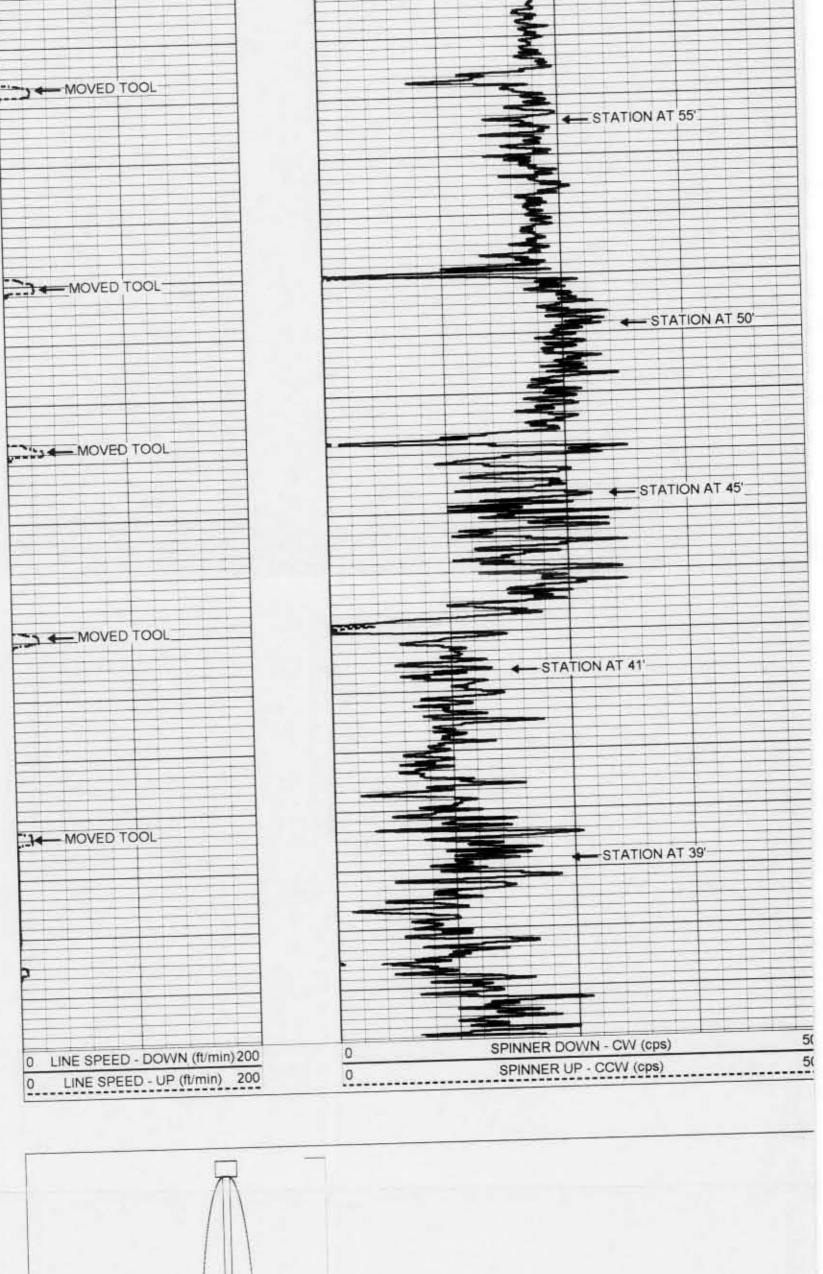
Database File:nwwf.dbDataset Pathname:run2/pass6Presentation Format:flowcals.prsDataset Creation:Wed Jun 02 12 55:0Charted by:Depth in Feet scale	00 1999 by Log VER_5.12 d 1 240
LINE SPEED - DOWN (ft/min)200	0 SPINNER DOWN - CW (cps) 50
0 LINE SPEED - UP (ft/min) 200	0 SPINNER UP - CCW (cps) 50
	0 SPINNER DOWN - CW (cps) 50
0 LINE SPEED - DOWN (ft/min) 200	0
0 LINE SPEED - UP (ft/min) 200	0 SPINNER UP - CCW (cps) 50

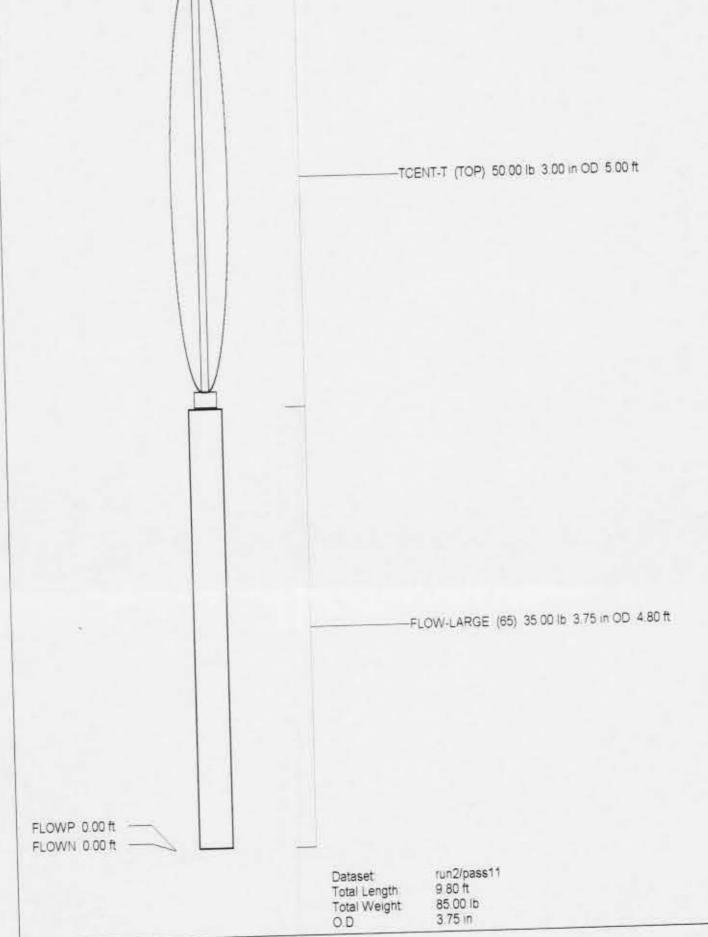
FLORIDA 37 FPM DOWN CALIBRATION

Database File:nwwf.dbDataset Pathname:run2/pass7Presentation Format:flowcals.prsDataset CreationWed Jun 02 12 56 1Charted by:Depth in Feet scaled	19 1999 by Log VEF d 1:240	R_5.12	
LINE SPEED - DOWN (ft/min) 200	0	SPINNER DOWN - CW (cps)	50
LINE SPEED - UP (ft/min) 200	0	SPINNER UP - CCW (cps)	50
0 LINE SPEED - DOWN (ft/min) 200	0	SPINNER DOWN - CW (cps)	50
LINE SPEED - UP (ft/min) 200	0	SPINNER UP - CCW (cps)	5

7000 GPM FLOW RATE

Database File: nwwf.db Dataset Pathname: run2/pass10 Presentation Format: flowcals.prs Dataset Creation: Wed Jun 02 13:08:4 Charted by: Time scaled 36"/hourdigneed and the scaled s	4 1999 by Log VER_5 12	
LINE SPEED - DOWN (ft/min) 200	0 SPINNER DOWN - CW (cps)	50
LINE SPEED - UP (ft/min) 200	0 SPINNER UP - CCW (cps)	5
	STATION AT 75'	

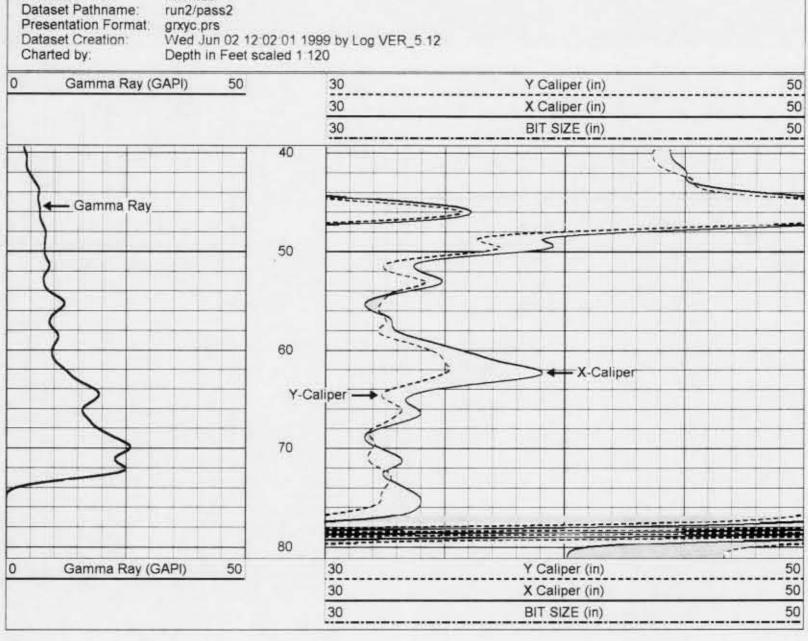

FLORIDA GEOPHYSICAL LOGGING, INC

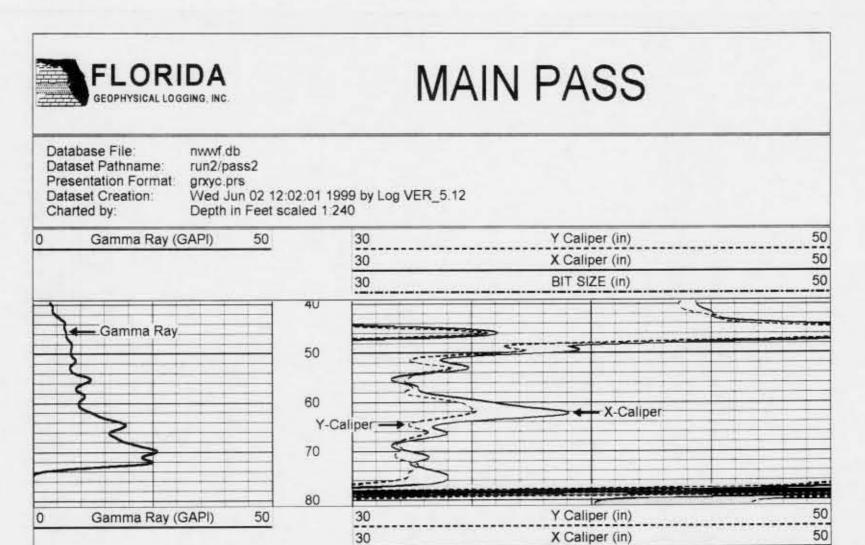

MOVED TOOL	STATION AT 70	
	STATIONAL 70	
MOVED TOOL	STATION AT 65'	
	5	
MOVED TOOL		
	STATION AT 60'	
	2	
MOVED TOOL		
	STATION AT 55'	
MOVED TOOL		
	STATION AT 50'	
	STATION AT 45	
MOVED TOOL		
J MOVED TOOL		
	STATION AT 41'	
	STATION AT 39	
0 LINE SPEED - DOWN (ft/min)200	0 SPINNER DOWN - CW (cps)	

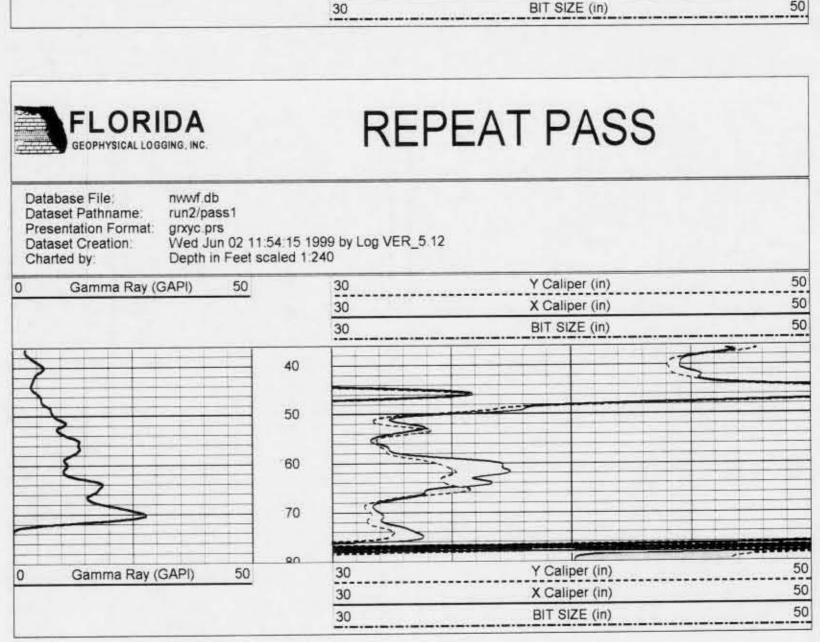
4500 GPM FLOW RATE


FLORIDA GEOPHYSICAL LOGGING, INC

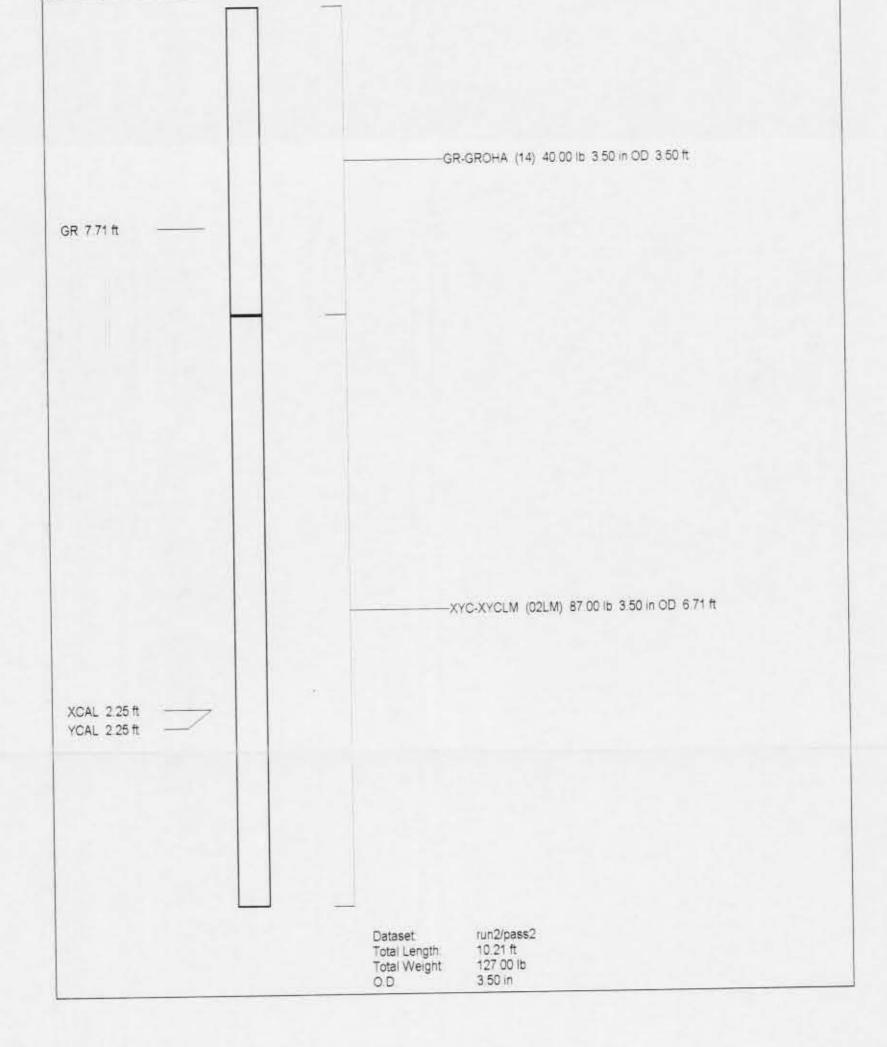
Database File: nwwf db Dataset Pathname: run2/pass11 Presentation Format: flowcals.prs Dataset Creation: Wed Jun 02 13:38 4 Charted by: Time scaled 36"/hor		50
LINE SPEED - DOWN (ft/min) 200	0 SPINNER DOWN - CW (cps)	50
LINE SPEED - UP (ft/min) 200	0 SPINNER UP - CCW (cps)	JC
	STATION AT 75'	
MOVED TOOL	STATION AT 70'	
MOVED TOOL		
	STATION AT 65'	
MOVED TOOL		
	STATION AT 60'	


ECORIDA CALIPER Gamma Ray Gamma Ray Gamma Ray	Casing Record Surface String Prof. String Production String Liner	32"	Run Number Bo	Witnessed By	Recorded By	Equipment Number	Time Logger on Bottom	Time Well Ready	Max Recorded Temp	Density / Viscosity	Type Fluid	Open Hole Size	Top Log Interval	Bottom I occert Interval	Depth Driller	Run Number	Date	Company Well Field County State/Prv	NW W DADE	/ELL					GEOPH	
A Interpretations are opinors based on inferences from electrical or other measurements and we cannot and do not guarantee the accuracy or correctness of any set out in our current Price Schedule	Size 48"		Borehole Record Bit From															Permanent Datum Log Measured Fron Drilling Measured Fr		Location	County	Field		pany	YSICAL LOGGING,	
All interpretations are opinions based on inferences from electrical or other measurements and we cannot and do not guarantee the accuracy or correctness of any terpretation, and we shall not, except in the case of gross or willful negligence on our part, be liable or responsible for any loss, costs, damages, or expenses incurred ustained by anyone resulting from any interpretation made by any of our officers, agents or employees. These interpretations are also subject to our general terms an conditions set out in our current Price Schedule	Wgt/Ft 375	78'	То	T. URAM	FERGISON	103	1130	ON APPIVAL	NIA	NA	WATER	30"	35	787	78'	TWO	6/2/99				DADE	NW WEL	#13	MIAMI DA	NC D	>
All interpretations are opinions based on inferences from electrical or other measurements and we cannot and do not guarantee the accuracy or correctness of any terpretation, and we shall not, except in the case of gross or willful negligence on our part, be liable or responsible for any loss, costs, damages, or expenses incurred inustained by anyone resulting from any interpretation made by any of our officers, agents or employees. These interpretations are also subject to our general terms an conditions set out in our current Price Schedule				A DL																	s	L FIELD		DE WA	GAN	X-Y
All interpretations are opinions based on inferences from electrical or other measurements and we cannot and do not guarantee the accuracy or correctness of any terpretation, and we shall not, except in the case of gross or willful negligence on our part, be liable or responsible for any loss, costs, damages, or expenses incurred ustained by anyone resulting from any interpretation made by any of our officers, agents or employees. These interpretations are also subject to our general terms an conditions set out in our current Price Schedule	Top SURFACE		ing Reco	JRAND																	tate/Prv FL			TER AND	LOG	CAI IPER
All interpretations are opinions based on inferences from electrical or other measurements and we cannot and do not guarantee the accuracy or correctness of any terpretation, and we shall not, except in the case of gross or willful negligence on our part, be liable or responsible for any loss, costs, damages, or expenses incurred ustained by anyone resulting from any interpretation made by any of our officers, agents or employees. These interpretations are also subject to our general terms an conditions set out in our current Price Schedule	Bottom 45		-															Elevation K B D F G L	FLOW METER	Other Service				SEWER		
Comments	All interpretation	ons are i we sha	i≣ ⊓ot, €	XCe	n JC	the (case	of	ros	i or le b	will y ar	ful i ny i	neg of c	lige our c	nce offic	on	our ag	part, be liable ents or emplo	or respon yees. The	sible f	vine to	oss c	osts.	damages.	or expenses incur	red
															C	Cor	nm	ents								




Database File:

nwwf.db



BIT SIZE (in)

			XY Caliper Calibr	ation Report	_	
Serial N Perform		Nodel	02LM-XYCLM Wed Jun 02 07	09:30 1999		
	Ring		X Caliper		Y Caliper	
1 30 in 2 40.5 in 3 56.5 in 4 in 5. in 6 in		1009.98 1161.78 1414.42	cps cps cps cps cps cps cps	1051.22 1183.66 1398.29	cps cps cps cps cps cps cps	
			Gamma Ray Calib	ration Report		
Serial Number Tool Model Performed	r:		14 GROHA Wed May 05 17	25:51 1999		
Calibrator Value:			120	GAPI		
Background Reading: Calibrator Reading:		39.762 324.482	cps cps			
Sensitivity:			0.421466	GAPI/cps		

50

Appendix G

MONTGOMERY WATSON

С	0	V	E		
					FAX
					$\Gamma \Lambda$
S	Н	Ε	Ε	Т	

To: Mr. Joe De Marzio, Department of Health & Rehabilitative Services

Fax #: (305) 623-3620

Subject: Bacteriology Results for NW Well # 13.

Date: July 21, 1999

Pages: 1, including this cover sheet.

Date	Sample	MF Result	Analyst
7/16/99 8:00 am	N. W. Well # 13	A	DR
7/16/99 2:00 pm	N. W. Well # 13	А	DR
7/17/99 9:00 am	N. W. Well # 13	А	AWT
7/17/99 4:10 pm	N. W. Well # 13	А	AWT
7/18/99 8:15 am	N. W. Well # 13	А	AS
7/18/99 3:28 pm	N. W. Well # 13	A	AS
	· · ·		
		· · · · · · · · · · · · · · · · · · ·	

From the desk of ...

Marjorie Jolly, Chemist 3 Preston Water Quality Laboratory

Miami-Dade Water & Sewer Department 1100 West 2 nd Avenue Hialeah, Fl. 33010

<u>C</u>	0	V	<u>E</u>		FAX
S	Η	Ε	E	T	

To: Mr. Joe De Marzio, Department of Health & Rehabilitative Services

Fax #: (305) 623-3620

Subject: Bacteriology Results for NW Well # 14.

Date: June 25, 1999

Pages: 1, including this cover sheet.

Date	Sample	MF Result	Analyst
6/14/99 8:05 a	m N. W. Well # 14	Α	AS
6/14/99 2:00 p	om N. W. Well # 14	A	AS
6/15/99 7:24 a	am N. W. Well # 14	A	AS
6/15/99 2:05 p	om N. W. Well # 14	A	AS
6/16/99 7:24 a	am N. W. Well # 14	Α	AS
6/16/99 1:35	om N. W. Well # 14	А	AS
6/17/99 7:24 :	am N. W. Well # 14	A	AS
6/17/99 1:45 p	om N. W. Well # 14	A	AS
6/18/99 7:41	am N. W. Well # 14	A	OC
6/18/99 1:50 p	om N. W. Well # 14	A	OC
6/19/99 7:30	am N. W. Well # 14	A	OC
6/19/99 2:33 p	om N. W. Well # 14	Α	OC
6/20/99 7:30	am N. W. Well # 14	A	AS
6/20/99 2:33	om N. W. Well # 14	Α	AS

From the desk of ...

Marjorie Jolly, Chemist 3 Preston Water Quality Laboratory

Miami-Dade Water & Sewer Department 1100 West 2 nd Avenue Hialeah, Fl. 33010

S	Н	Ε	Ε	T

To: Mr. Joe De Marzio, Department of Health & Rehabilitative Services

Fax #: (305) 623-3620

Subject: Bacteriology Results for NW Well # 14.

Date: June 25, 1999

Pages: 1, including this cover sheet.

Date	Sample	MF Result	Analyst
6/21/99 7:17 am	N. W. Well # 14	А	AS
6/21/99 1:30 pm	N. W. Well # 14	Α	AS
6/22/99 7:45 am	N. W. Well # 14	А	AS
6/22/99 1:35 pm	N. W. Well # 14	A	AS
6/23/99 7:20 am	N. W. Well # 14	Α	AS
6/23/99 2:30 pm	N. W. Well # 14	А	AS
· · · · · ·			

From the desk of ...

FAX

Marjorie Jolly, Chemist 3 Preston Water Quality Laboratory

Miami-Dade Water & Sewer Department 1100 West 2 nd Avenue Hialeah, FI. 33010

3

0	V E	R	1		FAX
Н	E E	T			
'0: Fax #: Subject: Date: Pages:	(305) 6 Bacter May 3,	23-362 iology 1999	Marzio, Department of 0 Results for NW Well i is cover sheet.		ntive Services
	Date		Sample	MF Result	Analyst
4/2.3/9		m	N. W. Well # 15	А	OC
4/23/9		m	N. W. Well # 15	Λ	OC
4/2.4/9			N. W. Well # 15	А	OC
4/21/9		pm	N. W. Well # 15	Α	OC
4/25/9		t-	N. W. Well # 15	Λ	AS,
4/25/9		pm	N. W. Well # 15	A	AS
4/26/9			N. W. Well # 15	А	AS
4/26/			N. W. Well # 15	A	AS
4/27/		+	N. W. Well # 15	Α	٨S
4/27/			N. W. Well # 15	A	AS
4/28/			N. W. Well # 15	Α	۸S
4/28/			N. W. Well # 15	A	٨S
4/2.9/	ويعمد والمحمد والمحمد والمحمد والمحمد والمحمد		N. W. Well # 15	Α	AS
4/29/		pm	N. W. Well # 15	Α	AS

From the dosk of ...

Marjorie Jolly, Chemist 3 Preston Water Quality Laboratory

Miaml-Dade Water & Sower Department 1100 West 2 nd Avenuc Hialeah, Fl. 33010

à

<u> </u>	V	E	R			FA
Ĥ	E	E	T			
o: ax #: ubject: ate: ages:	(305 Bac May	5) 623- teriolo 73, 19	-3620 9gy Res 99	rzio, Department o ults for NW Well	f Health & Rchabilit # 15.	ative Scrvices
Date				Sample	MF Result	Analyst
4/30/99	7:1	8 am	N.	W. Well # 15	Α	OC
4/30/99	2:1	0 pm	N.	W. Well # 15	A	OC
5/01/99	7:3	5 am	N.	W. Well # 15	٨	OC
5/01/99		8 pm	N.	W. Well # 15	Α	OC
5/02/99		35 am	N.	W. Well # 15	A	OC
5/02/99	· · · · · · · · · · · · · · · · · · ·	00 pm	N.	W. Well # 15	A	oc
						
,						

From the dask of...

Marjorie Jolly, Chemist 3 Preston Water Quality Laboratory

Miami-Dade Water & Sewer Department 1100 West 2 nd Avenue Hialeah, Fl. 33010

MIAMI-DADE WATER AND SEWER DEPARTMENT RAYMOND DIAZ, ACTING CHIEF, LABORATORY DIVISION JOHN E. PRESTON WATER QUALITY ASSURANCE LABORATORY, CERTIFICATION # 56084 ANALYTICAL RESULTS

Log Number	Sample Identification	Date Collected	Date Analyzed	Parameter	Result	Units	MDL	Method
2694	N.W. Well Field #13	07/15/99	07/16/99	рН	7.39		0.01	SM4500-H
		07/15/99	07/16/99	Alkalinity	216	ppm	0.07	SM2320-B
		07/15/99	07/16/99	Total Hardness	217	ppm	0.80	EPA130.2
		07/15/99	07/16/99	Ca Hardness	190	ppm	0.60	SM3500-CaD
		07/15/99	07/16/99	Chloride	58	ppm	0.70	SM4500CL-B
		07/15/99	07/19/99	Ammonia	0.217	ppm	0.001	SM4500 NH3-D
		07/15/99	07/20/99	Bromide	0.126	ppm	0.003	EPA300.0
		07/15/99	07/19/99	Conductivity	520	micromho		SM2510-A
		07/15/99	07/17/99	UV254	0.576	cm-1	0.001	SM 5910
		07/15/99	07/20/99	тос	16.78	ppm	0.30	SM5310-B
								:
	·							
490/992 21 102 102 102 102 102 102 102 102 102			97 					
Analyst: A. Th	omas/A Benitez/D Meacham/	A, W.T. A. Toledo	Title: Chemist 2	/Chemist 1's		L	Date: 07/2	3/99
Reviewer: Marj CHRSFORM8.WK4	iorie Jolly MAC	<u>lg</u>	Title: Chemist 3				Date: 07/20	5/99

MIAMI-DADE WATER AND SEWER DEPARTMENT RAYMOND DIAZ, ACTING CHIEF, LABORATORY DIVISION JOHN E. PRESTON WATER QUALITY ASSURANCE LABORATORY, CERTIFICATION # 56084 ANALYTICAL RESULTS

Log Number	Sample Identification	Date Collected	Date Analyzed	Parameter	Result	Units	MDL	Method
2274	NW #14	06/21/99	06/21/99	pH	7.41	-15 48 64 59	0.01	SM4500-HB
2274	NW #14	06/21/99	06/22/99	Alkalinity	211	ppm	0.15	SM2320-B
2274	NW #14	06/21/99	06/22/99	T. Hardiness	213	ppm	0.70	EPA 130.2
2274	NW #14	06/21/99	06/22/99	Ca Hardness	190	ppm	1.00	SM3500-CaD
2274	NW #14	06/21/99	06/22/99	Chloride	62	ppm	1.00	SM4500 CL-B
2274	NW #14	06/21/99	06/22/99	Ammonia	0.244	ppm	0.001	SM4500 NH3-D
2274	NW #14	06/21/99	06/23/99	Bromide	0.148	ppm	0.003	EPA 300.0
2274	NW #14	06/21/99	06/23/99	UV254	0.514	cm-1	0.001	SM5910
2274	NW #14	06/21/99	06/23/99	Conductivity	573	Micro mho		SM2510-B
2274	NW #14	06/21/99	06/24/99	TOC	16.48	ppm	0.26	SM5310-B
							\	
nalyst: A.T./ A.	B./D M./A.W.T.	<i>Л</i>	Title: Chemist 2	Chemist 1, Chemis	t 1, Chemist 1		Date: 06/2	5/99
eviewer: Marjor	ie Jolly MAC	KY	Title: Chemist 3				Date: 06/29	0/99

MIAMI-DADE WATER AND SEWER DEPARTMENT RAYMOND DIAZ, ACTING CHIEF, LABORATORY DIVISION JOHN E. PRESTON WATER QUALITY ASSURANCE LABORATORY, CERTIFICATION # 56084 ANALYTICAL RESULTS

Log	Sample	Date	Date	Parameter	Result	Units	MDL	Method
Number	Identification	Collected	Analyzed					
1554	North West Well # 15	04/27/99	04/27/99	Alkalinity	200	ppm	0.15	SM2320-B
		-		pH	7.65		0.01	SM4500-HB
	· · · ·			Total Hardness	203	ррт	0.70	EPA-130.2
				Ca Hardness	174	ppm	1.0	SM-3500 Ca-D
	·			Bromide	0.176	ppm	3.30	EPA-300.0
				TOC	15.1	ppm	0.26	SM5310-B
				Ammonia	0.27	ppm	0.05	SM450-NH3-D
				Chloride	61	ppm	1.0	SM4500CI-B
		-		UV254	0.469	cm-1	0.001	SM5910
				Color	83	pcu	0.21	SM2120C
				Conductivity	565	micromho		SM2510-B
1625	North West Well #15	05/02/99	05/02/99	Alkalinity	199	ppm	0.15	SM2320-B
				pH	7.70		0.01	SM4500-HB
	· · · · · · · · · · · · · · · · · · ·			Total Hardness	200	ppm	0.70	EPA-130.2
				Ca Hardness	177	ppm	1.0	SM-3500 Ca-D
	······			Bromide	0.171	ppm	3.30	EPA-300.0
				TOC	15.5	ppm	0.26	SM5310-B
				Ammonia	0.242	ppm	0.05	SM450-NH3-D
				Chloride	63	ppm	1.0	SM4500Cl-B
				UV254	0.513	cm-1	0.001	SM5910
				Color	67	pcu	0.21	SM2120C
				Conductivity	553	micromho		SM2510-B
Analyst: AT,	AB, DM, AWT K.J.M.	Title: Chemist	2, Chemist 1	, Chemist 1, Ch	emist 1		Date: ⊑	iliziaa
Reviewer: Ma		Title: Chemist		DUN			Date:	5114199
CHRSFORM WK4							vato.	

Appendix H

MONTGOMERY WATSON

NORTHWEST WELLFIELD WELL #13

MPA RESULTS

:**!:**

ENVIRONMENTAL ASSOCIATES, LTD. 24 Oak Brook Drive, Ithaca, NY 14850, Phone (607) 272-8902 Fax (607) 256-7052

PWS ID#		Well ID#	Utility N	Vame	EAL Sample ID:
FL4130871	Northwe	est Wellfield Well #13	Miami Dade W	ater & Sewer	11732
Project Code Number: COLLECTION: Collector: David Ramos		Reg.#H34940	Date collected: <u>9/7</u>	7/99	Time: <u>4:45pm</u>
	-			-	
RECEIPT OF FILTER Date Rec.: <u>9/9/99</u>		Neceiver of Samp <u>10 AM</u> Temp. of Rec. Sa		Carrier: <u>F</u> Tracking Number: <u>8</u>	ederal Express
FILTER PROCESSIN	G Tech	nician: <u>J. Antesh</u>	Time: <u>11:00 AM</u> Dat	e: <u>9/9/99</u>	
Color of water around filte	-	brown	Total volume of sedimer	nt:	<u>1 ml</u>
Filter color: Color of sediment:	light arev	brown	Volume of sediment/100) gallons:	0.1 ml/100gal
# gallons filtered:	980		Phase equivalent gallon	volume examined:	15
GIARDIA/CRYPTOSE	PORIDIUM	# Observed Calc. #/100			
Giardia cyst confirmed: Giardia cyst presumptive Cryptosporidium oocyst Cryptosporidium oocyst	confirmed:				
ANALYSIS OF PARTI	CULATES:	Analyst Todd Wheaton	Date: <u>9/11</u>	/99	
key = (EH) - extremely he	eavy (H) - h	neavy (M) -moderate (R)	- rare (NF) - none found	Ĺ.	
PARTICULATE DEBI			PROTOZOANS		
Large part. 5 µm & larger Small part. up to 5 µm Plant debris		Description silt & sand, clumped brown fine brown & amorphous	Other Coccidia Other protozoans	Quantity Descript	tion
OTHER ORGANISMS Nematodes	<u>NF</u>		ALGAE Green Algae	NF	
Nematode eggs Rotifers	NE		Diatoms	NE	
Crustaceans Crustacean eggs	NE		Blue-Green Algae	NE	
Insects Other		R-7/100gal. pollen. H-iron(Crenothrix) & R-environmental bacteria	Flagellated Algae	NF	
Microscopy: Phas	se / Hoffman	Magnif	ication: <u>10.20.40.100x</u>	Dilution: not	
Eletation Deservatores					
Type of Material exa COMMENTS: No primary surface water	imined: 🛛 o	icrose gradient pellet vol.: direct examination of unfloa are observed. Based upon a low risk of surface contami	ted sediment by 🛛 floa	ted (suspended) pe	ellet
					······································

REPORT REVIEWED BY:

Sesan Z. Boutros

DATE: <u>September 22, 1999</u>

PWS ID#	Well ID#	Utility Name EAL Sample ID		
FL4130871	Northwest Wellfield Well 13	Miami Dade Water & Sewer	11732	

Date:

9/7-8/99

Primary Particulates	#/100 gallon	Relative Frequency	Relative Risk Factor Comments
Giardia (confirmed)	0	NF	0
Coccidia (confirmed)	0	NF	0
Diatoms (with chloroplasts)	0	NF	0
Other Algae (with chloroplasts)	0	NF	0
Insects/larvae	0	NF	0
Rotifers	0	NF	0
Plant Debris (with chlorophyll)	0	NF	0
		EPA Relative Risk	= 0 Low Risk
Secondary Particulates			
Nematodes	0	NF	
Crustaceans	0	NF	
Amoeba	0	NF	
Non-photo.flagellates & ciliates	0	NF	
Photosynthetic flagellates	0	NF	

no relative risk factor assigned COMMENTS: No primary surface water indicators were observed. Based upon microscopic particulate analysis and the proposed EPA risk factors associated

R

with bio-indicators there is a low risk of surface contamination (EPA risk factors= 0 low risk).

REFERENCE: Consensus Method for Determining Groundwaters Under the Direct Influence of Surface Water Using Microscopic Particulate Analysis (MPA) USEPA Manchester Environmental Laboratory, EPA 910/9-92-029, October 1992.

REPORT REVIEWED BY:

Other:

Susan Z. Bartros

7

DATE: September 22, 1999 Environmental Associates, Ltd.

÷

542-7468

10/08/1999 06:18

TAMPA LAE VIROLOGY

PAGE 02

MPA SAMPLE REPORT

				VCI UNI			
Lab Sample #	E99-0147	Utility:	PWS#4130	871 Miami Dr	orlo Mai	er & Sewer Depi	
Date/time Collected	09/07/99 04:45 PN 09/08/98 09:10 AN	A Date/time	Processed:	09/09/99 10:30 AM	By:	Larson/Chiprich	
PROCESSING INF	ORMATION			10.30 AM			
filter co	olor light grav		color of w	about many small bit		•	
Total volume wal	ter filtered (asi):	490	Parcoli			tan tint with pa	
Total volume filte	r sediment (ui)	794	Percoll/suc	roca finitation		et volume (μl): sediment (μl):	60
µl sediment/100 ga	allons sampled:	162	µl flotation	pellet volume	packed /100 ap	lions sampled:	400
number of slides	examined:3	mate	rial examined	d: floated (s	uspend	nolis sampied:	12
Primary Particulati	60					our pener	
Such as the subscription of the		100 gallon	Relative frequ	ency" Relative	Risk	Comments	
Glardia		NA	A1 A	Factor			
Coccidia		NA	NA		NA		
Diatoms (with chloro	olasta)	10	NA		NA		
Other Algae (with ch	lomniaete)	•	NS		σ		
Insects / Larvae	no.opia3(3)	32	М		9		
Rotifers		0	NS		0		
Plant Debris		0	NS	(0		
		0	NS		כ		
"Reference: USEEA Con-	Mana Martha a car	EP.	A Relative Ri	sk= s			
"Reference: USEPA Cons Microscopic Particulate Ar	nalysia (MPA):	NA = No	oundwalers Und Assayed	er the Direct Inf	uence of	Surface Water Using	1
EH = extremely heav	Y H=heavy		lerately heavy				
Secondary Particula	tos 2/1	00 galton Co	omments		NF =	None found	
Large amorphous del	bris	R					
Fine amorphous debr	is	EH		-			
Minerals		M					
Plant pollen		5					
Nematodes							
Crustaceans		0					
Amoeba		0					
Flagellates & cillates		2					
Other, eggs		0					
		0					
Other: fungal filaments		R					

ts: One slide of the packed pellet from the floetation tube was also examined; it contained one alga.

Based upon microscopic particulate analysis and the EPA risk factors associated with bio-indicators, there is a low risk of surface contamination. Determination of surface water influence should not be based solely on the results of one or two MPAs. Other pertinent information, such as water quality data and onsite surveys, should be used in conjunction with the MPA results i

Reported by:	The AC A EIC -	nination.
Reported by:	aller Stork Date: 0	9/28/99
	\	
Jeb Bush		
Governor	Tampa Branch Laboratory	Poter C. P.
	3932 West Dr. Martin Luther King Ir Bouland Tanna Pr.	Robert G. Brooks, M.D.,
	Fax: (813)871-7466 Phone: (813)871-7465 Suncom: \$12-677	Socretary

Suncom: 512-6278

MIAMI-DADE WATER & SEWER DEPARTMENT RAYMOND DIAZ, CHIEF, LABORATORY DIVISION JOHN E. PRESTON WATER TREATMENT PLANT LABORATORY CERTIFICATION #56084 FIELD SAMPLING LOG	
Analysis Required: RAW WATER	#3
Sample Location: North West Wellfield Well # 13 Composite S Grab Composite Other	
Start Time: 4:45 p.m Date: 09/07/99 Meter Reading: 64770 Turbidity: 0.59 Temperature: 24.0 pH: 7.06	
Stop Time: 9:10 a.m. Date: 09/08/99 Meter Reading: 65750 Turbidity: 0.51 Temperature: 24.0°C pH: 7.15 Total Volume Filtered: 980	
Weather Conditions: At setup: Image: Clear At finish: Image: Clear Cloudy Image: Raining At finish: Image: Cloudy Image: Clear Image: Clear Image: Clear<	
Site Conditions: At setup: Dry At setup: Dry At finish: Dry Moderate Standing Water Area Flooded	
Sample Collector David Ramos Divid Ramos Print Name Signature Shipping Date and Time: 09/08/99-1500 Final Destination: Environmental Assoc. LTD	
Received By:	

ENVIRONMENTAL ASSOCIATES, LTD. 24 Oak Brook Drive, Ithaca, NY 14850, Phone (607) 272-8902 Fax (607) 256-7092

PWS ID#		Well ID#	Utility	Name	EAL Sample ID:		
FL4130871	NW	/ Wellfeld Well #13	Miami Dade W		11769		
Project Code Number: COLLECTION: Collector: <u>A.C. Salazar</u>		B. Reg.#H34940	Date collected: <u>9/</u>	20/99	Time: <u>4:16pm</u>		
RECEIPT OF FILTE Date Rec.: <u>9/22/99</u>		Receiver of Sample 25_AM Temp. of Rec. Sam		Carrier: <u>Fe</u> Tracking Number: <u>81</u>	deral Express 3833390594		
FILTER PROCESSIN	G Teo	chician: <u>J. Antosh</u> T	īme: <u>12:00 PM</u> Da	te: <u>9/22/99</u>			
Color of water around filt	er: <u>tan</u>		otal volume of sedime		0.08 ml		
Filter color: Color of sediment:	tan		olume of sediment/10		0.01 ml/100gal		
# gallons filtered:	<u>gre</u> 63(¥	Phase equivalent gallor		•		
GIARDIA/CRYPTOS	PORIDIUN				4- 2 4		
Giardia cyst confirmed: Giardia cyst presumptive Cryptosporidium oocyst Cryptosporidium oocyst	confirmed:						
ANALYSIS OF PART	CULATES	Analyst Todd Wheaton	Date: <u>9/23</u>	/99	_		
key = (EH) - extremely he	eavy (H)-	heavy (M) -moderate (R) - i	rare (NF) - none found	I)			
PARTICULATE DEB Large part. 5 µm & larger Small part. up to 5 µm Plant debris	RIS Quantity <u>EH</u> <u>NE</u>	Description silt & sand, clumped brown fine, amorphous debris	PROTOZOANS Other Coccidia Other protozoans	Quantity Description	on		
OTHER ORGANISMS Nematodes Nematode eggs	NE		ALGAE Green Algae	NF			
Rotifers	<u>NE</u>		Diatoms	NE			
Crustaceans Crustacean eggs	NE	······································	Blue-Green Algae	NE			
Insects Other	<u>_NE</u>	1/100gal_pollen_iron bacteria(Crenothrix)	Flagellated Algae	NF			
Microscopy: <u>Phase / Hoffman</u> Magnification: <u>10.20.40.100x</u> Dilution: <u>not dil.</u> :							
Flotation Parameters:	Percoll@/S	ucrose gradient pellet vol.:	10 µl suspension vo	ы.: <u>200</u> и и г	cellet/100gal.: 12.7		
Type of Material exa COMMENTS: No primary surface water	mined: 🛛	direct examination of unfloated vere observed. Based upon mi a low risk of surface contamina	d sediment by 🛛 🖾 floa	ted (suspended) pelle	et		
REPORT REVIEWED	BY:	Susan Z. Bout	DATE: SP	ntember 29	1999		

E.A.- Rev. Sept. 27, 95 E.S.

PWS ID#	Well ID#	Utility Name	EAL Conside ID:
FL4130871	NW Wellfeld Well #13	Miami Dade Water & Sewer	EAL Sample ID: 11769

Date:

9/20-21/99

		1	
Primary Particulates	#/100 gallon	Relative Frequency	Relative Risk Factor Comments
Giardia (confirmed)	0	NF	0
Coccidia (confirmed)	0	NF	0
Diatoms (with chloroplasts)	0	NF	
Other Algae (with chloroplasts)	0	NF	
Insects/larvae	0	NF	
Rotifers	0	NF	
Plant Debris (with chlorophyll)	0	NF	
		EPA Relative Risk	= 0 Low Risk
Secondary Particulates			
Nematodes	0	NF	
Crustaceans	0	NF	
Amoeba	0	NF	
Non-photo.flagellates & ciliates	0	NF	
Photosynthetic flagellates	0	NF	

COMMENTS: No primary surface water indicators were observed. Based upon microscopic particulate analysis and the proposed EPA risk factors associated

R

with bio-indicators there is a low risk of surface contamination (EPA risk factors= 0 low risk).

REFERENCE: <u>Consensus Method for Determining Groundwaters Under the Direct Influence of Surface Water Using Microscopic Par-</u> liculate Analysis (MPA) USEPA Manchester Environmental Laboratory, EPA 910/9-92-029, October 1992.

REPORT REVIEWED BY:

Other:

Susan Z. Boutros

1

DATE: September 29, 1999 Invironmental Associates, Ltd.

pollen, Crenothrix-no relative risk factor assigned

۰.

10/08/1999 06:18 542-7468

TAMPA LAB VIRDLOGY

PAGE 03

MPA SAMPLE REPORT

Lab Sample #	E99-0152	Utility:	PWS#4130871	Miami Dade W	later & Sewer Dept.	wait #17
Date/lime Collected	09/20/99 04:16 PM 09/21/99 08:30 AM	Date/time	Processed: 09/	22/99 By		WCII # 13
PROCESSING IN filter o	FORMATION	-	color of water			
Total volume wa	ater filtered (gal):	750			ellet volume (µl);	
Total volume fill	er sediment (µl):	411	Parcoll/sucrose	finiation pack	ed sediment (µ);	20
µl sediment/100 g	allons sampled:	54.8	ul flotation pelle	t volume/100	gallons sampled:	200
number of slides	examined: 2	and the second se	rial examined:	floated (suspe	nded) pellet	2.7
Primary Particula	ntes #/10)0 gallon	Relative frequency		Comments	
Glardia		NA	NA	NA		
Coccidia		NĄ	NA	NA		
Diatoms (with chlor	roplasts)	0	NS	0		
Other Algae (with c	chloroplasts)	4.8	R	4		
Insects / Larvae		0	NS	a		
Rotifers		0	NS	0		
Plant Debris		0	NS	õ		
		EF	A Reistive Risk	· A		
"Referenca: USEPA Co Microscopic Particulate	nsensus Method for D. Analysin (MPA)	elormining G	roundwatera Under II ol Assayed	e Direct Influence	of Surface Water Using	7
EH = extremely hea	avy H=heavy		derately heavy	R=mane N	F = None found	•
Secondary Particu		00 gallon C				
Large amorphous d		M				
Fine amorphous de	bris	EH				
Minerais		М				
Plant pollen		0.3				
Nemetodes		0				
Crustaceans		0				
Amoeba		0				
Flagellates & cillates	5	0				
Other: eggs		0.3				
Other, fungal filame	nts & spores	R				
Comments: Entire f	loated bellet exam	ned				

Comments: Entire floated pellet examined.

Based upon microscopic particulate analysis and the EPA risk factors associated with bio-indicators, there is a low risk of surface contamination. Determination of surface water influence should not be based solely on the results of one or two MPAs. Other pertinent information, such as water quality data and onsite surveys, should be used in conjunction with the MPA results in making this determination.

Reported by: Date: 09/28/99

JOHN E	RA`	MOND DIA	Z, CHIEF, LAB	VER DEPARTMENT ORATORY DIVISION LABORATORY CERTI G LOG	FICATION #56084
Analysis Required:				RAW WATER	
MP.A.	Cryptospo	oridium	Enterovin	21	
Sample Location:	N	w.u	rellfield	Well# 13	
Composite		Grab		Other	
Start Time: Meter Reading:	4:16 pm 32 180		Date: 0.36	<u>09/20/99</u> _Temperature:_242	рн: 7.39
Stop Time: Meter Reading:	<u>8:30</u> 32810		Date: <u>0.3</u> (me Filtered:	09/2//99 Temperature: 24% 630	рн: 7-35
<u>Weather Conditions</u> At setup: At finish:	Clear		Cloudy Cloudy	Rainin	-
<u>Site Conditions:</u> At setup: At finish:	Dry Dry Dry			Standing Water Standing Water	Area Flooded
Sample Col Shipping D Final Destin Received B	ate and Time: nation:	Print Name	Salazar 1/99 - 15 nmental As	Signature 30 isociates LTD	10./
Recommended Filter Giarda / Cry Enterovirus: MPA:	pto: 100 liters	gals		Signature	

Aller State

ENVIRONMENTAL ASSOCIATES, LTD. 24 Oak Brook Drive, Ithaca, NY 14850, Phone (607) 272-8902 Fax (607) 256-7092

PWS ID#	Well ID#		Utility Name	EAL Sample ID:
FL4130871	NW Wellfield Wel	#13 Mia	mi Dade Water & Se	
Project Code Number: COLLECTION: Collector: David Ramos	<u>99-05119B. Reg.#H35192</u>		collected: <u>11/15/99</u>	
			.onected. <u>11/13/29</u>	Time: <u>3:45pm</u>
RECEIPT OF FILTE Date Rec.: <u>11/17/99</u>		er of Sample: <u>J. Antos</u> of Rec. Sample: <u>1°C</u>		Eederal Express
FILTER PROCESSIN	G Technician: J. Antosh	Time: <u>12:20</u>	PM Date: 11/17/99	2
Color of water around filt	er: <u>clear</u>	Total volum	ne of sediment:	0.2 ml
Filter color: Color of sediment:	brown brown	Volume of s	sediment/100 gallons:	0.03 ml/100gal
# gallons filtered:	700	Phase equi	ivalent gallon volume ex	
GIARDIA/CRYPTOS	PORIDIUM # Observed	Calc. #/100 Gallons	-	
Giardia cyst confirmed: Giardia cyst presumptive Cryptosporidium oocyst Cryptosporidium oocyst	confirmed:			
ANALYSIS OF PART	CULATES: Analyst Toda	i Wheaton	Date: <u>11/18/99</u>	
key = (EH) - extremely he	eavy (H) - heavy (M) -mode	erate (R) - rare (NF)	- none found	
PARTICULATE DEB		PRO	TOZOANS	_
Large part. 5 µm & larger Small part. up to 5 µm Plant debris	Quantity Description EH silt & sand_clump EH fine brown amon NF		Quantity Coccidia <u>NF</u> protozoans <u>NF</u>	Description
OTHER ORGANISMS Nematodes Nematode eggs	<u>NF</u>	ALGA Green	AE Algae <u>NF</u>	
Rotifers Crustaceans	NE	Diaton	ns <u>NE</u>	
Crustacean eggs	<u>NF</u>	Blue-G	areen Algae <u>NE</u>	
Insects Other	R 3/100gal. pollen		ated Algae <u>NF</u>	
Type of Material exa COMMENTS: No primary surface water	Percoll@/Sucrose gradient pe mined: 🛛 direct examination	n of unfloated sediment	suspension vol.: <u>400</u> t by X floated (susper	ntion: <u>not_dil_</u> : μi μi pellet/100gal.: <u>28.6_</u> nded) pellet <u>the proposed EPA risk factors</u>

REPORT REVIEWED BY:

Susan T. Boutros DATE: November 30, 1999

PWS ID#	Well ID#	Utility Name	EAL Sample ID:
FL4130871	NW Wellfield Well#13	Miami Dade Water & Sewer	12088

Date:

11/15-16/99

Primary Particulates	#/100 gallon	Relative Frequency	Relative Risk Factor Comments
Giardia (confirmed)	0	NF	0
Coccidia (confirmed)	0	NF	0
Diatoms (with chloroplasts)	0	NF	0
Other Algae (with chloroplasts)	0	NF	
Insects/larvae	0	NF	0
Rotifers	0	NF	
Plant Debris (with chlorophyll)	0	NF	0
		EPA Relative Risk	= 0 Low Risk
Secondary Particulates			
Nematodes	0	NF	
Crustaceans	0	NF	
Amoeba	0	NF	
Non-photo.flagellates & ciliates	0	NF	
Photosynthetic flagellates	0	NF	

Photosynthetic flagellates	0	NF	
Other:	3	R	pollen-no relative risk factor assigned

COMMENTS: No primary surface water indicators were observed. Based upon microscopic particulate analysis and the proposed EPA risk factors associated with bio-indicators there is a low risk of surface contamination (EPA risk factors= 0 low risk).

REFERENCE: Consensus Method for Determining Groundwaters Under the Direct Influence of Surface Water Using Microscopic Particulate

Analysis (MPA) USEPA Manchester Environmental Laboratory, EPA 910/9-92-029, October 1992.

REPORT REVIEWED BY:

Susan Z. Boutros

DATE: November 30, 1999 Environmental Associates, Ltd.

542-7468

12/15/1999 09:35

FAX NO. 305 8825767 TAMPA LAB VIROLOGY

MPA SAMPLE REPORT

Lab Sample # E99-0191	Utility:	PWS#4130871 N		ter & Sewer Dept, we	all #13
Dato/time Collected 11/15/99 03:45 11/16/99 08:25		Processed: 11/1 10:3	7/95 By:	Larson/Mosbaugh	
PROCESSING INFORMATION filter color gray		color of water a	round the filter	clear	
Total volume water filtered (g	al): 870			ellet volume (للا):	NA
Total volume filter sediment (PercolVsucrose	flotation packs	d sediment (µl):	NA
µl sediment/100 gallons sampl	ed: 13			allons sampled:	NA
number of slides examined:	3 mat	ertal examined:	unfloated sedin	nent	
Primery Particulates	#/100 gailon	Relative frequency	* Reiptive Risk Fector*	Comments	
Giardia	NA	NA	NA		
Coccidla	NA	NA	NA		
Diatoms (with chloroplasts)	0	NS	0		
Other Algae (with chloroplasts)	5	R	4		
Insects / Larvae	. 0	NS	0		
Rotifers	0	NS	0		
Plant Debris	0	NS	0		
		PA Relative Risk			
Reference: USEPA Consensus Motho		Groundwaters Under I Not Assayed	the Direct Influence	e of Sunace water Using	
Microscopic Particulate Analysis (MPA EH = extremely heavy H = h	*	oderately heavy	R = rare	IF = None found	
Secondary Particulates		Comments			
Large amorphous debris	M				
Fine amorphous debris	М				
Minerals	н				
Plant pollen	14				
Nematodes	0				
Crustaceans	0				
Amoeba	0				
Flagellates & ciliates	0				
Other: eggs	4				
Other: fungal filaments & spore	os M				

Comments:

Based upon microscopic particulate analysis and the EPA risk factors associated with bio-indicators, there is a jow risk of surface contamination. Determination of surface water influence should not be based solely on the results of one or two MPAs. Other pertinent information, such as water quality data and on-site surveys, should be used in conjunction with the MPA results in making this determination.

Reported by:

Date: 12/08/99

					VUR G
JOHN E. PRE	RAYMOND DIA STON WATER TREA	Z. CHIEF LABO	ER DEPARTMEN RATORY DIVISI LABORATORY C LOG	ON	N #56084
Analysis Required:			RAW WATER		
MP.A.	Cryptosporidium	Enterovirus			
Sample Location:	NW Wallfeld	مان لناله	1=13		
Composite 🔀	Grab		Other		
Start Time:	3:45 pm	Date:	11,5/99		
	7610 Turbidity:		Temperature: 2	5,5°C pH:	7.29
Stop Time: 3	:25 G.M.	Date:	il/16/99		
Meter Reading: 72	310 Turbidity:	0,75	Temperature: 2	<u>'ろいで pH:</u>	728
	Total Volur	ne Filtered:	<u>700 gals</u> .		
Weather Conditions:	,				
At setup:	Clear	Cloudy		Raining	
At finish:	Clear	Cloudy		Raining	
Site Conditions:		,			
At setup:	Dry	Moderate S	tanding Water		rea Floodeci
At finish:	Dry	Moderate S	tanding Water		rea Flooded
Sample Collector	Davic	1 Ramo		Lavid Ka	<u>un</u>
Shipping Date and	d Time: /	99 015			
Final Destination:	Enviro	um ental	20 hrs. Assisciates		
Received By:	Print Name				
Recommended Filtered Sar Giarda / Crypto: Enterovirus: MPA:	mple Volumes:		Siz	gafure	

•

. .

•

ENVIRONMENTAL ASSOCIATES, LTD. 24 Oak Brook Drive, Ithaca, NY 14850, Phone (607) 272-8902 Fax (607) 256-7092

PWS ID#	Well ID#		
FL4130871	NW Wellfield Well#13	3 Miami Dade Water & Sewer	EAL Sample ID:
Project Code Number: COLLECTION: Collector: David Ramos	<u>99-05119B, Req.#H35192</u>	Date collected: <u>12/6/99</u>	12172
RECEIPT OF FILTE Date Rec.: <u>12/9/99</u>		of Sample: <u>J. Antosh</u> Carrier.	Time: <u>3:20pm</u>
FILTER PROCESSIN			813833390701
Color of water around filt		Time: <u>10:30 AM</u> Date: <u>12/9/99</u> Total volume of sediment:	<u> </u>
Filter color:	brown		0.1 ml
Color of sediment:	brown	Volume of sediment/100 gallons:	0.01 ml/100gal.
# gallons filtered:	750	Phase equivalent gallon volume examined	1: <u>107</u>
GIARDIA/CRYPTOS Giardia cyst confirmed: Giardia cyst presumptive Cryptosporidium oocyst Cryptosporidium oocyst	: confirmed:	c. #/100 Gallons	
ANALYSIS OF PART	ICULATES: Analyst Todd Wr	heaton Date: <u>12/22/99</u>	
key = (EH) - extremely h	eavy (H) - heavy (M) -moderate	e (R) - rare (NF) - none found	
PARTICULATE DEB Large part. 5 µm & larger Small part. up to 5 µm Plant debris	Quantity Description		ption gal. photo, flagellates
OTHER ORGANISMS Nematodes Nematode eggs Rotifers	NF	ALGAE Green Algae <u>M 54/100</u>	gal. Chlorella
Crustaceans	<u>NE</u>	Diatoms	
Crustacean eggs Insects	NE	Blue-Green Algae 52/100	al. colonial
Other	NF	Flagellated Algae Chlamy	domonas
Microscopy: <u>Pha</u> Flotation Parameters:		Magnification: <u>10.20.40.100x</u> Dilution: <u>n</u> t vol.: <u>10</u> µl suspension vol.: <u>400</u> µl	ot dil. :
		f unfloated sediment by X floated (suspended) p	
Primary surface water ind proposed EPA risk factors risk).	icators observed: green algae and associated with bio-indicators the	d blue-green algae. Based upon microscopic part ere is a low risk of surface contamination (EPA risk	iculate analysis and the factors= 12 moderate
REPORT REVIEWED	BY: Sesan h. I	Bartis DATE: January 3 7	

DATE: <u>January 3.2000</u>

PWS ID#	Well ID#	Utility Name	EAL Sample ID:
FL4130871	NW Wellfield Well#13	Miami Dade Water & Sewer	12172

Date:

12/6-7/99

Primary Particulates #/100 gallon **Relative Frequency Relative Risk Factor** Comments Giardia (confirmed) NF 0 0 Coccidia (confirmed) NF 0 0 Diatoms (with chloroplasts) 0 NF Ω Other Algae (with chloroplasts) 106 Η 12 Insects/larvae 0 NF 0 **Rotifers** 0 NF 0 Plant Debris (with chlorophyll) 0 NF 0 EPA Relative Risk = 12Moderate Risk Secondary Darticulates

Secondary Particulates			
Nematodes	0	NF	
Crustaceans	0	NF	
Amoeba	0	NF	
Non-photo.flagellates & ciliates	0	NF	
Photosynthetic flagellates	15	R	photo flagellates-no relative risk factor assigned
Other:	0	NF	· · · · · · · · · · · · · · · · · · ·

COMMENTS: Primary surface water indicators observed: green algae and blue-green algae. Based upon microscopic particulate analysis and the proposed EPA risk factors associated with bio-indicators there is a low risk of surface contamination (EPA risk factors= 12 moderate risk).

REFERENCE: Consensus Method for Determining Groundwaters Under the Direct Influence of Surface Water Using Microscopic Particulate

Analysis (MPA) USEPA Manchester Environmental Laboratory, EPA 910/9-92-029, October 1992.

REPORT REVIEWED BY:

Jusan Z. Bartros

DATE: January 3, 2000

JAN-07-00 FRI 01:12 PM PRESTON LABORATORY FAX NO. 305 8825767 P. 02

01/07/2008 09:12 542-7468

•

TAMPA LAB VIROLOGY PAGE 82

MPA SAMPLE REPORT

	E99-0208	Utility:	PW	5#4130	871 Miar	ni Dade	e Wal	er & Sewer Dept. we	11 #13
Lab Sample #	12/08/99 03:20 PM	Date/lime			12/08/99	3	By:	Larson/Mosbaugh	
Date/time Collected	12/07/99 08:55 AM	-			10:50 A	M			
PROCESSING IN	FORMATION				ater arou	und the	filter	clear	
filter	color light gray		C		Valer alou	e fi ci ati	on D el	liet voluma (µl):	NA
Total volume w	ater filtered (gal):	840		Perco	insucios	tation t	backed	d sediment (µl):	NA ·
Total volume fil	ter sediment (µl):	80 9.6	г: ы	flotatio	n pellet v	olume/	100 g:	allons sampled:	NA
µl sediment/100	gallons sampled:		orial	axamin	ed: unf	loated	sedim	ient :	
number of slide									
Primary Particul	ates #/	100 gailon	Rela	ive frequ	enoy ^a F	Factor	4	Comments	
Giardia		NA		NA		NA		1.	1
Coccidia		NA		NA	and se	NA		:	
Diatoms (with chi	loropiasts)	٥		NS		·*o		****	
Other Algae (with		1		R		4		•	
Insacts / Larvae	1 or in of the start of the sta	Q		NS		0			
		0		NS		0			·,
Rotifers Plant Debris		8,6		R		0			
		E	PAR	elative	Risk=	4			
*Reference: USEPA Microscopic Particul EH = extremely	ate Analysis (MPA):	147-	- 1101	Assay Assay arately		R = rar	nnuenc È · N	a of Surface Water Using NF = None found	
Secondary Par		#/100 gallon	Cc	mment	9				
Large amorphou	is debris	Н							
Fine amorphous	debris	Н						ν - Λ	
Minerals		н						•	
Plant pollen		9.3							
Nemalodes		0					• .		
Crustaceans		0					•		
Amoeba		0.7							
Flagellates & ci	liates	Ó	•						
Other. eggs		2							
Other: fungal fil	aments & spores	R				_			
Comments:									
Is a low risk or	croscopic particula surface contamina esuits of one or two hout be used in c			AT	-A Inform	ation s	such a king th	ated with bio-indicate ce should not be bas is water quality data its determination, ate: 12/17/99	irs, there ied and on-
								Robert G. B	Inter M.D.
								Roben U. B	

.

Tampa Branch Laboratory 3952 West Dr. Martin Luther King Jr. Boulevard • Tampa, FL 33614-8404 Fux: (813)871-7468 Phone:(813)871-7465 Suncom: 512-5278	8
---	---

Secretary

NORTH

RAYMO	ILDADE WATER & SEWER DEPARTMENT OND DIAZ, CHIEF, LABORATORY DIVISION IR TREATMENT PLANT LABORATORY CERTIFICATION #56084 FIELD SAMPLING LOG
Analysis Required:	RAW WATER
Sample Location: <u>Nor</u> H Composite X	Grab Crab Other C
Start Time: $3:20 pm$ Meter Reading: 34860 T	Date: <u>12/6/99</u> Furbidity: <u>0,17</u> Temperature: 25,0°C _{pH:} 7,29
Stop Time: $\underline{3500}$	
Weather Conditions: At setup: Clear At finish: Clear	Cloudy Raining Cloudy Raining
Site Conditions: At setup: Dry At finish: Dry	Moderate Standing Water Area Flooded Moderate Standing Water Area Flooded
	David Ramos int Name 12/07/99-1500 Environmental Assoc.
-	ls

•

.

NORTHWEST WELLFIELD WELL # 14

MPA RESULTS

ENVIRONMENTAL ASSOCIATES, LTD. 24 Oak Brook Drive, Ithaca, NY 14850, Phone (607) 272-8902 Fax (607) 256-7092

PWS ID#		Well ID#	Utility Name		EAL Sample ID:
FL4130871	NW We	llfield-Well #14	Miami Dade Wate	r & Sewer	11783
Project Code Number: COLLECTION: Collector: <u>A.C. Salaar</u>	<u>99-05119B. Re</u>	eq.#H34940	Date collected: <u>9/21/9</u>	99	Time: <u>4:16pm</u>
RECEIPT OF FILTE Date Rec.: <u>9/23/99</u>		Receiver of Sample <u>M</u> Temp. of Rec. Sam	e: <u>J. Runyan</u> Carr ple: <u>1°C</u> Trac	rier: <u>Fec</u> cking Number: <u>813</u>	deral Express 3833390609
FILTER PROCESSIN	G Techicia	an: <u>J. Antosh</u>	Fime: <u>11:00 AM</u> Date: <u>9</u>	3/23/99	
Color of water around filt Filter color: Color of sediment:	tan		Total volume of sediment: Volume of sediment/100 ga		0.5 ml 0.1 ml/100gal
# gallons filtered:	390		Phase equivalent gallon vo	olume examined: 2	20
GIARDIA/CRYPTOS	PORIDIUM #(Observed Calc. #/100	Gallons		
Giardia cyst confirmed: Giardia cyst presumptive Cryptosporidium oocyst Cryptosporidium oocyst	confirmed:	= = =			
ANALYSIS OF PART	ICULATES:	Analyst Todd Wheaton	Date: <u>9/29/99</u>	<u>ر</u>	_
key = (EH) - extremely h	neavy (H) - heav	vy (M) -moderate (R) ·	rare (NF) - none found		
PARTICULATE DEE Large part. 5 µm & larger Small part. up to 5 µm Plant debris	Quantity De	escription e silt & sand e amorphous debris		NF NF	on
OTHER ORGANISM Nematodes Nematode eggs Rotifers Crustaceans Crustacean eggs Insects	NE NE NE NE NE		Diatoms Blue-Green Algae	<u>Tetraedro</u> <u>H5'i/100ġal</u> <u>NF</u>	I. Scenedesmus. n. Pediastrum. Navicula Chlamydomonas
Other	<u> </u>	/100gal.pollen	Flagellated Algae	<u> </u>	Chiamydomonas
Type of Material ex COMMENTS: Primary surface water in	:: Percoll@/Sucro camined: 🛛 diro odicators observe	ose gradient pellet vol.: ect examination of unfloa	ication: <u>10.20.40.100x</u> <u>10</u> µl suspension vol.: ted sediment by ⊠ floate ms. Based upon microsco of surface contamination (Ef	: <u>1000</u> µl µl ed (suspended) pel opic particulate ana	llet Ilysis and the propose
	<u></u>				
REPORT REVIEWE	D BY:	Susan Z. Bou	tur DATE: Oct	ober 5, 199)9

PWS ID#	Well ID#	Utility Name	EAL Sample ID:
FL4130871	NW Wellfield-Well #14	Miami Dade Water & Sewer	11783

Date:

9/21-22/99

Primary Particulates	#/100 gallon	Relative Frequency	Relative Risk Facto	or Comments
Giardia (confirmed)	0	NF	0	
Coccidia (confirmed)	0	NF	0	
Diatoms (with chloroplasts)	51	Н	13	· · ·
Other Algae (with chloroplasts)	97	Н	12	
Insects/larvae	0	NF	0	
Rotifers	0	NF	0	
Plant Debris (with chlorophyll)	0	NF	0	
5		EPA Relative Risk	= 25 Hi	gh Risk

Secondary Particulates			
Nematodes	0	ŇF	
Crustaceans	0	NF	
Amoeba	0	NF	
Non-photo.flagellates & ciliates	0	NF	
Photosynthetic flagellates	0	NF	
Other:	10	R	pollen-no relative risk factor assigned

COMMENTS: Primary surface water indicators observed: green algae and diatoms. Based upon microscopic particulate analysis and the proposed EPA risk factors associated with bio-indicators there is a high risk of surface contamination (EPA risk factors = 25 high risk).

REFERENCE: <u>Consensus Method for Determining Groundwaters Under the Direct Influence of Surface Water Using Microscopic Par-</u> ticulate Analysis (MPA) USEPA Manchester Environmental Laboratory, EPA 910/9-92-029, October 1992.

REPORT REVIEWED BY:

Jusan Z. Bartis

DATE: October 5, 1999

L0/2692

FAX NO. 305 8825767

10/08/1999 06:18 542-7468

TAMPA LAB VIROLOGY

PAGE 84

MPA SAMPLE REPORT

Lab Semple #	E99-0153	Utility;	PWS#41208	71 140-	. D		
Data/time Collected	09/21/99 04:16 PM 09/22/99 08:10 AM		Processed:	09/23/99 10:40 AM	Bv:	er & Sewer Dept. Larson	well #14
Total volume wa Total volume fill µl sediment/100 g number of slides	FORMATION color <u>light tan and</u> ater filtered (gal): er sediment (µl): gallons sampled: examined: 5	830 2826 340	Percoll/sucr	er aroun sucroze f ose flotal ellet volu	d the filter: lotation pell lion packed	tan lint with par et volume (μl): sediment (μl): lons sampled: ed) pellet	ticles 100* 500 34.0
Primary Particula	tes #/10	0 gallon	Relative freque	ncy" Rela Fact	tive Risk	Comments	-
Giardia		NA	NA		NA		
Coccidia		NA	NA		NA		
Dlatoms (with chlor	oplasts)	Ο.	NS		0		
Other Algae (with c	hloroplasts)	36	м		9		
Insects / Larvae		0	NS		9 0		
Rotifers		0	NS		0		
Plant Debris		D	NS		0		
*Rolorence: USEPA Cor Microscopic Particulete J EH = extremely hes Secondary Particu	vy H = heavy	lermining Gro NA = No	erately heavy	r the Direc	9 t influence of (Surface Water Using None found	
Large amorphous de	ebris	M ·					
Fine amorphous deb	oris	EH					
Minerals		н					
Plant pollen		0					
Nematodes		0					
Grustaceans		0					
Amoeba		0					
Flagellates & ciliates		0					
Other, eggs		0					
Other: fungal filament	ts & spores	R					
Comments: *A portio	n of the filter sodie	/					

nments: *A portion of the filter sediment (1000 µl) was floated and this floated pellet was examined to provide the equivalent of 109 gallons of water examined. One slide of the packed pellet from the floatation tube was also examined; it contained 2 algae.

Based upon microscopic particulate analysis and the EPA risk factors associated with bio-indicators, there is a low risk of surface contamination. Determination of surface water influence should not be based solely on the results of one or two MPAs. Other pertinent information, such as water quality data and onsite surveys, should be used in conjunction with the MPA result

Reported by:	A G G G G G G G G G G G G G G G G G G G	mination.
		09/28/99
Job Bush		
Governor	Tampa Branch Laboratory 3952 West Dr. Martin Luther King Jr. Boulevard « Tampa, FL 33614-8404 Fax: (813)871-7468 Phone:(813)871-7465 Suncom: 512-6278	Robert G. Brooks, M.D., Secretary

Suncom: 512-6278

MIAMI-DADE WATER & SEWER DEPARTMENT RAYMOND DIAZ, CHIEF, LABORATORY DIVISION JOHN E. PRESTON WATER TREATMENT PLANT LABORATORY CERTIFICATION #56084 FIELD SAMPLING LOG
Analysis Required: RAW WATER
Sample Location: <u>N.W. Well Field Well #14</u> Composite A Grab Other
Start Time: 4:16 pm Date: 0.9/21/99 Meter Reading: 26070 Turbidity: 0.814 Temperature: 25°C pH: 7-27
Stop Time: <u>9:10a.m</u> Date: <u>09/22/99</u> Meter Reading: <u>26460</u> Turbidity: <u>0.40</u> Temperature: <u>25°</u> pH: <u>7.24</u> Total Volume Filtered: <u>390</u> Invelvedute
Weather Conditions: At setup: Clear At finish: Clear Cloudy Raining
Site Conditions: At setup: Dry Moderate Standing Water Area Flooded At finish: Dry Moderate Standing Water Area Flooded
Sample Collector $AC SalazarACCPrint NameSignatureShipping Date and Time:O9/22/99 - 1500Final Destination:Environmental Assoc.LTD$
Received By:

ENVIRONMENTAL ASSOCIATES, LTD. 24 Oak Brook Drive, Ithaca, NY 14850, Phone (607) 272-8902 Fax (607) 256-7092

PWS ID#	Well ID#	Utility Name	EAL Sample ID:
FL4130871	NW Wellfield Well #14	Miami Dade Water & Sewer	11959
Project Code Number: COLLECTION: Collector: <u>David Ramos</u>	<u>99-05119B. Req.#H35118</u>	Date collected: <u>10/12/99</u>	Time: <u>4:30pm</u>
RECEIPT OF FILTE Date Rec.: <u>10/14/99</u>	R: Receiver of Sample Time: <u>10:45 AM</u> Temp. of Rec. Sam	e: <u>J. Antosh</u> Carrier: <u>E</u> ple: <u>2°C</u> Tracking Number: <u>8</u>	ederal Express
FILTER PROCESSIN	IG Technician: <u>J. Antosh</u> 7	Time: <u>11:30 AM</u> Date: <u>10/14/99</u>	
Color of water around fill		Total volume of sediment:	0.1 ml
Filter color:	light tan	Volume of sediment/100 gallons:	0.01 ml/100gal.
Color of sediment: # gallons filtered:	DIOWIT	Phase equivalent gallon volume examined:	•
-	PORIDIUM # Observed Calc. #/100 (-	
Giardia cyst confirmed: Giardia cyst presumptive Cryptosporidium oocyst Cryptosporidium oocyst			
ANALYSIS OF PART	ICULATES: Analyst Todd Wheaton	Date: <u>10/23/99</u>	
key = (EH) - extremely h	eavy (H) - heavy (M) - moderate (R) -	rare (NF) - none found	
PARTICULATE DEB		PROTOZOANS	
Large part. 5 µm & larger Small part. up to 5 µm	Quantity Description EH silt & sand, mineral crystals EH fine brown amorphous		tion flagellates
Plant debris	NE	<u> </u>	••••••••••••••••••••••••••••••••••••••
OTHER ORGANISMS		ALGAE	
Nematodes Nematode eggs	<u>NF</u>	Green Algae	
Rotifers	NE	Diatoms <u>NF</u>	
Crustaceans Crustacean eggs	<u>NF</u>		
Insects	NF	Blue-Green Algae <u>NF</u>	
Other	NF	Flagellated Algae <u>NF</u>	
	· · · · · · · · · · · · · · · · · · ·		
Microscopy: Pha	se / Hoffman Magnific	ation: <u>10.20.40.100x</u> Dilution: <u>no</u>	t dil. :
Flotation Parameters:	Percoll@/Sucrose gradient pellet vol.:	<u>10</u> μl suspension vol.: <u>400</u> μl μ	l pellet/100gal.: <u>10.9</u>
Type of Material exa COMMENTS:	amined: 🛛 direct examination of unfloate	ed sediment by \square floated (suspended) pe	llet
No primary surface water associated with bio-indica	indicators were observed. Based upon n ators there is a low risk of surface contamin	nicroscopic particulate analysis and the prop ation (EPA risk factors= 0 low risk).	osed EPA risk factors
······································			
REPORT REVIEWED	BY: Susan T. Bret	DATE: October 28.19)99 .

PWS ID#	Well ID#	Utility Name	EAL Sample ID:
FL4130871	NW Wellfield Well #14	Miami Dade Water & Sewer	11959

Date: 10/12/99

Primary Particulates	#/100 gallon	Relative Frequency	Relative Risk Factor	Comments	
Giardia (confirmed)	0	NF	0		
Coccidia (confirmed)	0	NF	0		
Diatoms (with chloroplasts)	0	NF	0		
Other Algae (with chloroplasts)	0	NF	0		
Insects/larvae	0	NF	0		
Rotifers	0	NF	0		
Plant Debris (with chlorophyll)	. 0	NF	0		
	•	EPA Relative Risk	= 0 Low F	Risk	

Secondary Particulates			
Nematodes	0	NF	
Crustaceans	0	NF	
Amoeba	0	NF	
Non-photo.flagellates & ciliates	2	R	flagellates-no relative risk factor assigned
Photosynthetic flagellates	0	NF	
Other:	0	NF	

COMMENTS: No primary surface water indicators were observed. Based upon microscopic particulate analysis and the proposed EPA risk factors associated with bio-indicators there is a low risk of surface contamination (EPA risk factors= 0 low risk).

REFERENCE: Consensus Method for Determining Groundwaters Under the Direct Influence of Surface Water Using Microscopic Particulate

Analysis (MPA) USEPA Manchester Environmental Laboratory, EPA 910/9-92-029, October 1992.

Susan Z. Bartros **REPORT REVIEWED BY:**

DATE: October 28, 1999

542-7468

11/12/1999 88:57

1

P. 02

MPA SAMPLE REPORT

Lab Sample #	E99-0168	Utility:	PWS#4130	101 I Mild						
Date/time Collected	10/12/99 04:30 PM		Processed:	10/14/9 10:30 A	19	Ву:	Larso	n		
	10/13/99 09:00 AM			10.007		-				
PROCESSING IN	FORMATION		color of v	vater ero	und the	filter:	tan t	int		
filter o	color light tan ar	a gray 890	- Perro	ll/sucros	e flotatio	on pel	let volu	TWE (h	i):	NA
Total volume wa	ater filtered (gal):	142	- Percoll/si	icmse fic	station p	acked	şedin	nent (µ	y:	NA
Total volume fil	ter sødiment (µl):	18.0		n pellet v	volume/	100 ga	illons i	sample	d:	NA
number of slide	galions sampled: s examined:' 2	ma	terlal examin	ned: un	floated j	pellet				
Number of sides	s examined.						~	ommei		
Primary Particul	ates 🦻	190 gallon	Relative in	edneuch.	Factor			omme	105	
Glardia		NA	N			NA				
Coccidia		NA	N	A	-	NA				
Diatoms (with chi	omolasts)	D	N	Ş		0				
Other Algae (with	chloroplasts)	2	۶	२		4				
Insects / Larvae		D	N	S		0				
Rotifers		0	N	S.		0				
		0	N	IS		0				
• •		v								
Plant Debris	Consonsus Method fo	or Determinir NA	EPA Relath	ve Risk= ra Under th ed	ne Direct Ir	4 Tiuena	of Sur	face Wal	iar Ualns Ind	I
Plant Debris -Reference: USEPA Microscopio Perticul EH = extremely	heavy H=hea	or Determinir NA	EPA Relath 19 Groundwater = Not Assay moderately	ve Risk= is Under th ed heavy	R = ran	าที่นธกจ	o of Sur IF = N	face Wal	ind	
Plant Debris Reference: USEPA Microscopio Particul EH = extremely Secondary Part	heavy H = hea liculates	or Determinin NA	EPA Relath 19 Groundwater = Not Assay moderately	ve Risk= is Under th ed heavy	ne Direct Ir	าที่นธกจ	o of Sur IF = N	face Wal	ar Uains	
Plant Debris -Reference: USEPA Microscopio Perticul EH = extremely Secondary Part Large amorphot	heavy H = hea liculates us debris	ar Determinir NA ivy M ≖ #/100 gallor	EPA Relath 19 Groundwater = Not Assay moderately	ve Risk= is Under th ed heavy	ne Direct Ir	าที่นธกจ	of Sur	face Wat	ar Ualng	
Plant Debris Reference: USEPA Microscopio Particul EH = extremely Secondary Part Large amorphou Fine amorphous	heavy H = hea liculates us debris	er Determinir NA ivy M≖ #/100 galler H	EPA Relath 19 Groundwater = Not Assay moderately	ve Risk= is Under th ed heavy	ne Direct Ir	าที่นธกจ	o of Sur IF = N	face Wat	ar Uains	
Plant Debris -Reference: USEPA Microscopic Particul EH = extremely Secondary Part Large amorphous Fine emorphous Minerals	heavy H = hea liculates us debris	ar Determinir NA ivy M ≖ #/100 gallor H H	EPA Relativ g Groundwater Not Assay moderately Comment	ve Risk= is Under th ed heavy	ne Direct Ir	าที่นธกจ	e of Sur IF = N	face Wat	ar Ualns	
Plant Debris -Reference: USEPA Microscopio Perticul EH = extremely Secondary Part Large amorphous Fine amorphous Minerals Plant pollen	heavy H = hea liculates us debris	er Determinir NA ivy M = #/100 gallor H H H	EPA Relativ g Groundwater Not Assay moderately Comment	ve Risk= is Under th ed heavy	ne Direct Ir	าที่นธกจ	e of Sur IF = N	face Wat	ar Ualns	
Plant Debris -Reference: USEPA Microscopio Particul EH = extremely Secondary Part Large amorphous Fine amorphous Minerals Plant pollen Nomatodes	heavy H = hea liculates us debris	ar Determinin NA ivy M = #/100 gallor H H EH 8.8	EPA Relativ g Groundwater Not Assay moderately Comment	ve Risk= is Under th ed heavy	ne Direct Ir	าที่นธกจ	of Sur	face Wal	ם Ualn <u>s</u> חַרָּו	
Plant Debris -Reference: USEPA Microscopic Particul EH = extremely Secondary Part Large amorphous Minerals Plant pollen Nomatodes Crustaceans	heavy H = hea liculates us debris	or Determinin NA ivy M = #/100 gallor H H EH 8.8 0	EPA Relativ g Groundwater Not Assay moderately Comment	ve Risk= is Under th ed heavy	ne Direct Ir	าที่นธกจ	e of Sur	face Wal	ar Uains	
Plant Debris -Reference: USEPA Microscopio Particul EH = extremely Secondary Part Large amorphous Minerals Plant polien Nomatodes Crustaceans Arnoeba	heavy H = hea Liculates Lis debris	ar Determinir NA ivy M = #/100 gallor H H EH 8.8 Q Q	EPA Relativ g Groundwater Not Assay moderately Comment	ve Risk= is Under th ed heavy	ne Direct Ir	าที่นธกจ	e of Sur IF = N	face Wal	ar Ualns	
Plant Debris -Reference: USEPA Microscopio Particul EH = extremely Secondary Part Large amorphous Minerals Plant pollen Nomatodes Crustaceans Arnoeba Flagellates & ci	heavy H = hea Liculates Lis debris	Ar Determinin NA NY M M M N N O B N H H H H H E H 8.8 0 0 0	EPA Relativ g Groundwater Not Assay moderately Comment	ve Risk= is Under th ed heavy	ne Direct Ir	าที่นธกจ	e of Sur	face Wal	nd	
Plant Debris -Reference: USEPA Microscopio Particul EH = extremely Secondary Part Large amorphous Minerals Plant pollen Nomatodes Crustaceans Arnoeba Flagellates & ci Other; eggs	heavy H = hea Uculates us debris a debris	ar Determinir NA ivy M = #/100 gallor H H EH 8.8 0 0 0	EPA Relativ g Groundwater Not Assay moderately Comment	ve Risk= is Under th ed heavy	ne Direct Ir	าที่นธกจ	9 of Sur IF = N	face Wal	ar Uains	
Plant Debris -Reference: USEPA Microscopio Particul EH = extremely Secondary Part Large amorphous Minerals Plant pollen Nomatodes Crustaceans Arnoaba Flagellates & ci Other: eggs Other: fungal fil Comments	heavy H = hea Liculates Lis debris	Ar Determinin NA NY M H H EH 8.8 0 0 0 0 0 0 R	EPA Relath g Groundwater = Not Assay moderately the Comment	ve Risk= a Under th ed heavy ts	e Direct Ir R = ran	ifiuence o N	(F = N			

		Robert G. Brooks, M.D.,
Jeb Bush	Tampa Branch Laboratory Tomma, FL 33614-8404	Secretary
Governot	3952 West Dr. Martin Luther King Jr. Boulevald Champer Suncare: 512-6278 Fax: (813)871-7468 Phone: (813)871-7465 Suncare: 512-6278	

|--|

. 1	
	~
- (L-	6

JOHN E. PF	RAYMOND DIA	WATER & SEWER DEPART Z, CHIEF; LABORATORY DI TMENT PLANT LABORATOR IELD SAMPLING LOG	VISION
Analysis Required:		RAW WAT	ER
M.P.A. [Cryptosporidium		
Sample Location:	NW Well	field well t	£14
Composite	🔀 Grab	Other	
Start Time:	4:20 pm	Date: 10/12/97	
Meter Reading:	71 <u>0690</u> Turbidity:		26.0 pH: 7.26
Stop Time:	9:00 a.m.	Date: 10/13/99	
Meter Reading:	77610 Turbidity:		26,0 pH: 7.28
	Total Volu	me Filtered: <u>920 go</u>	
Weather Conditions:			
At setup:	Clear	Cloudy	Raining
At finish:	Clear	Cloudy	Raining
Site Conditions:	/		
At setup:	র্র চন্দ	Moderate Standing Wate	r Area Flooded
At finish:	Dry	Moderate Standing Wate	r Area Flooded
Sample Coller	etor $D_{a / l c}$ Print Name	l Ramos	Signature
Shipping Date	and Time: 10/13	199 - 1500	
Final Destinat	tion: <u>Envir</u>	roumental Assoc	Inc.
Received By:	Print Name		Signature
Recommended Filtered Giarda / Crypt Enterovirus: MIVA:	Sample Volumes:	π	

ENVIRONMENTAL ASSOCIATES, LTD. 24 Oak Brook Drive , Ithaca, NY 14850, Phone (607) 272-8902 Fax (607) 256-7092

PWS ID#	Well ID#	Utility Name	EAL Sample ID:
FL4130871	NW Wellfield Well #14	Miami Dade Water & Sewer	12099
Project Code Number: COLLECTION: Collector: David Ramos	<u>99-05119B. Req.#H35192</u>	Date collected: <u>11/16/99</u>	Time: <u>3:10pm</u>
RECEIPT OF FILTE Date Rec.; <u>11/18/99</u>		: <u>J. Antosh</u> Carrier: <u>Fe</u> ple: <u>4°C</u> Tracking Number: <u>81</u>	deral Express 3833390675
FILTER PROCESSIN	IG Technician: <u>J. Antosh</u> T	ime: <u>10:45 AM</u> Date: <u>11/18/99</u>	
Color of water around fill	ter: <u>clear</u> 7	Fotal volume of sediment:	0.15 ml
Filter color: Color of sediment:	tan v	Volume of sediment/100 gallons:	0.02 ml/100gal
# gallons filtered:	gray 930	Phase equivalent gallon volume examined:	102
GIARDIA/CRYPTOS	PORIDIUM # Observed Calc. #/100 (Gallons	
Giardia cyst confirmed: Giardia cyst presumptive Cryptosporidium oocyst Cryptosporidium oocyst			
ANALYSIS OF PART	ICULATES: Analyst Todd Wheaton	Date: <u>11/18/99</u>	
key = (EH) - extremely h	neavy (H) - heavy (M) -moderate (R) -	rare (NF) - none found	
PARTICULATE DEB		PROTOZOANS	
Large part. 5 µm & larger Small part. up to 5 µm Plant debris	Quantity Description EHsilt & sand, crystals EHfine_amorphous_debris NE	Quantity Descripti Other Coccidia <u>NF</u> Other protozoans <u>NF</u>	on
OTHER ORGANISM Nematodes Nematode eggs	<u>NF</u>	ALGAE Green Algae <u>NF</u>	
Rotifers Crustaceans	<u>NF</u>	Diatoms <u>NF</u>	
Crustacean eggs	NF		
Insects Other	NF		
O (III)		Flagellated Algae <u>NF</u>	
Microscopy: Pha	ase / Hoffman Magnific	- cation: <u>10.20.40.100x</u> Dilution: <u>not</u>	dil. :
Flotation Parameters	: Percoll@/Sucrose gradient pellet vol.:	<u>10</u> μl suspension vol.: <u>500</u> μl μl	pellet/100gal.: <u>16.1</u>
		ed sediment by 🛛 floated (suspended) pe	-
No biological materials w	vere observed. Based upon microscopic p is a low risk of surface contamination (EPA	particulate analysis and the proposed EPA risl risk factors= 0 low risk).	c factors associated
•			
		· · · · · · · · · · · · · · · · · · ·	
••••••••••••••••••••••••••••••••••••••	0 - 0		
REPORT REVIEWED	BY: Susan h. Bout	DATE: December 1.1	999

PWS ID#	Well ID#	Utility Name	EAL Sample ID:
FL4130871	NW Wellfield Well #14	Miami Dade Water & Sewer	12099

Date: 11/16/99

Primary Particulates	#/100 gallon	Relative Frequency	Relative Risk Fac	ctor Comments
Giardia (confirmed)	. 0	NF	0	
Coccidia (confirmed)	0	NF	0	
Diatoms (with chloroplasts)	0	NF	0	
Other Algae (with chloroplasts)	0	NF	0	
Insects/larvae	0	NF	0	
Rotifers	0	NF	0	
Plant Debris (with chlorophyll)	0	NF	0	
		EPA Relative Risk	= 0 L	₋ow Risk

Secondary Particulates			
Nematodes	0	NF	
Crustaceans	0	NF	
Amoeba	0	NF	
Non-photo.flagellates & ciliates	0	NF	
Photosynthetic flagellates	0	NF	
Other:	0	NF	

COMMENTS: No biological materials were observed. Based upon microscopic particulate analysis and the proposed EPA risk factors associated with bio-indicators there is a low risk of surface contamination (EPA risk factors= 0 low risk).

REFERENCE: Consensus Method for Determining Groundwaters Under the Direct Influence of Surface Water Using Microscopic Particulate

Analysis (MPA) USEPA Manchester Environmental Laboratory, EPA 910/9-92-029, October 1992.

REPORT REVIEWED BY:

Jusan Z. Boutros

DATE: December 1, 1999 Environmental Associates, Ltd.

DEC-15-99 WED 12:27 PM PRESTON LABORATORY

FAX NO. 305 8825767

825767

P. 03

PAGE 83

12/15/1999 09:35 542-7458

MPA SAMPLE REPORT

							Dent Wal	1 #1 A
Lab Sample #	E99-0182	Utility:	the state of the s	0871 Mie 11/18/1		Water a By: La	L Sewer Dept. we	
Date/time Collected	11/16/89 03:10 PM 11/17/89 08:50 AM		Processed:	11:30 /	AM			
PROCESSING II filter	NFORMATION color off-white rater filtered (gal);	950	Darr	all/succos	ra fictatio	n pellet	vellow tint volume (µl):	NA
Total volume f	liter sediment (للا): gallons sampled:	136	ul flotati	on pellet	volume/10	ju galio	ediment (µl): ns sampled:	NA
number of slide	es examined:	3 mat	enal exami				Comments	
Primary Particu	lates i	100 gallon	Relative	frequency"	Relative R Factor			
Giardia		NA		A	-	A		
Coccidia		NA		NA		la		
Diatoms (with cl	nioroplasts)	0		NS	C 4			
Other Algae (will	th chloroplasts)	9		R		•		
Insects / Larvae		0		NS		נ		
Rotifers		0		NS		5		
Plant Debris		0		NS Diele		4		
			EPA Relat	We Rick-	he Direct In:	huence of	Surface Weter Using	
"Reference: USEP. Microscopic Partici EH = extremely	liate Analyene (MICA).	avy M=	moderately	heavy	R = rare		= None found	
Secondary Pa		#/100 gallor	Comma	nis				
Large amorpho	ous debris	Н						
Fine amorphou		M			a.			
Minerais		EH						
Plant pollen		. 8						
Nernatodes		0						
Crustaceans		0						
Amoeba		0						
Flagellates &	ciliales	0						
Other: eggs		0						
Other, fungal	flaments & spores	<u>∎ R</u>						

Comments:

Based upon microscopic particulate analysis and the EPA risk factors associated with bio-indicators, there is a low risk of surface contamination. Determination of surface water influence should not be based solely on the results of one or two MPAs. Other pertinent information, such as water quality data and onsite surveys, should be used in conjunction with the MPA results in making this determination.

Reported by:	Que	-May	ank _	Data:	12/08/99

JUL-13-00 THU 12:30 PM PRESTON LABORATORY FAX NO. 305 8825767

.

P. 04

	•	-
1	A	G

1993 a centre d'a commune tratación a	ana air - Arris waita a an a shaar	lauss deute telefo - site ved uterte en mercula-	an in the second of the second second in the second	179
	RAY	MOND DIAZ, CHIEF, L	EWER DEPARTMENT ABORATORY DIVISION	
JOHN E. I	RESTON WA	TER TREATMENT PLA	NT LABORATORY CER	TIFICATION #56084
		FIELD SAMP		
•				
Analysis Required:			RAW WATER	
	—			
MP.A.		ridium Entere		
Sample Location:	N.W	1. Wellfield	Well #14	
Composite		Grab	Other	
Start Time:	3:10 P.,	U Date:	11/16/99	
Meter Reading:	78320	_Turbidity: <u>9,42</u>	Temperature: 25	0°C _{pH:} 7.33
Stop Time:	850C.	v Date:	11/17/89	
	79250	Turbidity: 0.33		0°C pH: 7.42
Mater Reaching.				
	ر (۱۰ م. ۱۰۰ میلید میلی (میلید میلید در مان میلید). مراجع	Total Volume Filtered:	430 galo.	and a state of the
Weather Conditions:	. /			
At setup:	Clear	Cloy	dy 🔲 Ra	ining
At finish:	Clear	Clou	dy 🗖 Ra	ining
Site Conditions:				
At setup:	Dıy	P Mode	rate Standing Water	Arca Flooded
At finish:	Dry	Mode	rute Standing Water	Area Flooded
		\sim P		γ
Sample Col	llector	David Ramos Print Name	Signa	tionice Kama
	•			ane -
Shipping D	ate and Time:	11/17/99 - 15 Environmenta	· 1	
Final Destin	nation:	Environmenta	1 HS50C.	
Received B	y:	19 10 10 10 10 10 10 10 10 10 10 10 10 10		
		Print Name	Siste	
-				
Recommended Filter Giarda / Cr	red Sample Volu ypto: 100 liters	nes:		
Enterovirus				
	600 - 100	0 gals		

•.

ENVIRONMENTAL ASSOCIATES, LTD. 24 Oak Brook Drive, Ithaca, NY 14850, Phone (607) 272-8902 Fax (607) 256-7092

PWS ID#		Well ID#	Utility N		EAL Sample ID:	
FL4130871	NW	Wellfield Well#14	Miami Dade W	ater & Sewer	12173	
Project Code Number: <u>99-05119B. Req.#H35192</u> COLLECTION: Collector: <u>David Ramos</u> Date collected: <u>12/6/99</u> Time: <u>3:40pm</u>						
RECEIPT OF FILTER Date Rec.: <u>12/9/99</u>		Receiver of Sample AM Temp. of Rec. Samp	: <u>J. Antosh</u> ole: <u>1°C</u>	Carrier: <u>Fe</u> Tracking Number: <u>81</u>	ederal Express	
FILTER PROCESSIN	G Techn	ician: <u>J. Antosh</u> T	ime: <u>10:45_AM</u> Dat	ie: <u>12/9/99</u>		
Color of water around filte	er: <u>clouc</u>	t <u>y</u> T	otal volume of sedimer	nt:	0.1 ml	
Filter color: Color of sediment:	<u>gray</u> brow	νν	olume of sediment/10) gallons:	0.01 ml/100gal	
# gallons filtered:	910		Phase equivalent gallor	volume examined:	111	
GIARDIA/CRYPTOSE	PORIDIUM	# Observed Calc. #/100 G	Gallons			
Giardia cyst confirmed:						
ANALYSIS OF PARTI	CULATES:	Analyst Todd Wheaton	Date: <u>12/2</u>	2/99		
key = (EH) - extremely he	eavy (H)-h	eavy (M) -moderate (R) -	rare (NF) - none found	1)		
PARTICULATE DEBI	RIS Quantity	Description	PROTOZOANS			
Large part. 5 µm & larger Small part. up to 5 µm Plant debris	EH	silt & sand, clumped amorph, fine brown amorphous	Other Coccidia Other protozoans	Quantity Descript		
OTHER ORGANISMS Nematodes Nematode eggs	<u>NE</u>		ALGAE Green Algae	NF		
Rotifers Crustaceans	<u>NE</u>	·	Diatoms	NF		
Crustacean eggs	_NE		- Blue-Green Algae			
Insects Other		1/100gal. pollen. iron	-		·	
	<u> </u>	bacteria(Crenothrix)	Flagellated Algae			
Microscopy: <u>Phase / Hoffman</u> Magnification: <u>10.20.40.100x</u> Dilution: <u>not dil.</u> :						
Flotation Parameters:	Percoll@/Su	crose gradient pellet vol.:	<u>10</u> µl suspension v	ol.: <u>400 </u> µl µl	pellet/100gal.: <u>11.0</u>	
Type of Material exa COMMENTS:	amined: 🛛 o	direct examination of unfloate	ed sediment by 🛛 🖾 floa	ated (suspended) pe	llet	
No primary surface water associated with bio-indica	indicators we tors there is a	re observed. Based upon m Llow risk of surface contamin	nicroscopic particulate a ation (EPA risk factors=	nalysis and the propo 0 low risk).	sed EPA risk factors	

REPORT REVIEWED BY: Jusan R. Bartros DATE: January 3, 2000						

PWS ID#	Well ID#	Utility Name	EAL Sample ID:	
FL4130871	NW Wellfield Well#14	Miami Dade Water & Sewer	12173	

Date:

12/6-7/99

Relative Risk Factor Comments **Relative Frequency** #/100 gallon **Primary Particulates** NF 0 Giardia (confirmed) 0 NF 0 Coccidia (confirmed) 0 NF 0 Diatoms (with chloroplasts) 0 NF Other Algae (with chloroplasts) 0 0 NF 0 Insects/larvae 0 NF 0 Rotifers 0 NF 0 Plant Debris (with chlorophyll) 0 EPA Relative Risk = 0 Low Risk

Secondary Particulates			
Nematodes	0	NF	
Crustaceans	0	NF	
Amoeba	0	NF	
Non-photo.flagellates & ciliates	0	NF	
Photosynthetic flagellates	0	NF	
Other:	0	NF	

COMMENTS: No primary surface water indicators were observed. Based upon microscopic particulate analysis and the proposed EPA risk factors associated with bio-indicators there is a low risk of surface contamination (EPA risk factors= 0 low risk).

REFERENCE: Consensus Method for Determining Groundwaters Under the Direct Influence of Surface Water Using Microscopic Particulate

Analysis (MPA) USEPA Manchester Environmental Laboratory, EPA 910/9-92-029, October 1992.

Jusan Z. Bartros

REPORT REVIEWED BY:

DATE: January 3, 2000

JAN-07-00 FRI 01:13 PM PRESTON LABORATORY

FAX NO. 305 8825767

TAMPA LAB VIROLOGY

01/07/2000 09:12 542-7469

MPA SAMPLE REPORT

		Utility: PV	VS#4130871	Miami Dade Wa	ater & Sewi	ar Dept. we	#14
Lab Sample #	E99-0209	Date/time Pro		08/99 By	Larson/I	Mosbaugh	
Date/time Collected	12/08/99 03:40 PM 12/07/99 08:55 AM	- Datertinio I I		55 AM	<u> </u>		
PROCESSING IN	FORMATION		alor of water	around the filte	r: yellow		
filter	color gray					10 1 - 1	NA
Total volume w	ater filtered (gal):		11/	a flabation DBCK	ed seumo	···· (pa/)·	NA NA
Total volume fl	Iter sediment (µI):	60 .	1 Antation pel	let volume/100	Genous an	mpled:	INA
µl sediment/100	gallons sampled:	materia	l examined:	unfloated sed	iment		
number of slide						omments	
Primary Particu	lates 🕷	100 gallon Rel	alive frequency	Facilit			
		NA	NA	NA	t		· 2
Giardia		NA	NA	NA		•	
Coccidia	(aroniasts)	0	NS	· · · · · 0	, γ , γ		•
Diatoms (with ch	horopiasta)	13	R	4		•	
Other Algae (wit		D	NS	0		•	
Insects / Larvae		0	NS	0			' <u>*</u>
Rotifers		12.	R	0			
Plant Debris			Relative Risk	<u>a</u> 4			_
"Reference: USEP/ Microscopio Parlia EH = extremely Secondary Pa	A Consensus Method fo late Analysis (MPA); heavy $H = hea$ ciculates		derately heav	y R = rana	NF = Nor	ne found	
		М					
Large amorpho		R					
Fine amorphou	s deblia	M			•	` i	
Minerals		5			855 1		
Plant pollen		0			· •		
Nematodes		0			••		
Crustaceans		4					
Amoaba		- O			•		
Flagellatos & c	ciliates		aino modera	te rotifer eggs			
Other: eggs	-	2	also mousic				
Other; fungal	filaments & spores	R					
Comments:	1	Inte anelvola	and the EPA I	isk factors ass	ociated with	n bio-Indica	tors, there asod
Is a <u>low</u> risk o solely on the	nicroscopic particu f surface contamin results of one or tv should be used in	ation. Determ	nination of su her pertinent li Why the MPA (nformation, suc esuits in making	ch as water g this deter	quality data mination.	a and on-
sile surveys.	should be used in		In C	\sim		12/17/99	
Reported by:	Dille	JIND	SPRV	<			
						Robert O.	Brooks, M.D
Jeb Bush		Твтр	Branch Laborat	vara a rampa, i o o	3614-8404	2	Secretar
Governot	3952 W Fex: (813)87	est Dr. Martin Luc 11-7468	Phone: (813)871	-7465 Su	incom: 512-627	ç	

P. 03

NIAP+17

With the second strategies and the second states

1

:• . . .

.

÷

revised:0298

1	N	IDETH
Í	MIAMI-DADE WATER & SEWER DEPARTMENT RAYMOND DIAZ, CHIEF, LABORATORY DIVISION JOHN E. PRESTON WATER TREATMENT PLANT LABORATORY CERTIFICATION #56084 FIELD SAMPLING LOG	
	Analysis Required: RAW WATER	
	M.P.A. Cryptosporidium Enterovirus	
	Sample Location: Northwest Wellfield Well#14 Composite S Grab Other	
	Start Time: $3^{\circ}+0$ Date: $12/6/9$ Meter Reading: 70820 Turbidity: 0.34 Temperature: $24.0^{\circ C}$	
	Stop Time: $\underline{8:55 \text{G.m.}}$ Date: $\underline{/2/7/99}$ Meter Reading: $\underline{71730}$ Turbidity: $\underline{0.14}$ Temperature: $24.0^{\circ \text{C}}$ $\overline{7.28}$ Total Volume Filtered: $\underline{910}$	
	Weather Conditions: At setup: Clear At finish: Clear	
	Site Conditions: At setup: Dry At finish: Dry Moderate Standing Water Area Flooded	
	Sample Collector David Ramos David Ramos Print Name Signature Shipping Date and Time: 12/07/99 - 1500 Final Destination: Environmental Assoc.	2
	Received By: Signature Print Name Signature Recommended Filtered Sample Volumes: Giarda / Crypto: 100 liters Enterovirus: 60 - 100 gals MPA: 600 - 1000 gals	-

REPORT: PARTICULATES, GIARDIA, AND CRYPTOSPORIDIUM

ENVIRONMENTAL ASSOCIATES LTD. 24 Oak Brook Drive, Ithaca, NY 14850 (607) 272-8902 Fax (607) 256-7092

Filter ID: <u>13271</u>	Client: <u>Miami D</u> a	ade Water & Sewer		
Station/Body of water:	N.W. Wellfield Well #14			
RECEIPT OF FILTER: Date Received: 6/14/2000	0 # of filters: <u>1</u>	Туре:	Carrier: <u>F</u>	Federal Express
COLLECTION:				
Collector: <u>David R</u> Femperature: <u>°E</u>	amos Water			
FILTER PROCESSING				
Color of water around filter: Filter color: Color of sediment: # gallons filtered:	clear tan brown 1100	Total volume of sediment: Volume of sediment/100 ga IFA equivalent gallon volur Phase equivalent gallon vol	ne examined:	0.05 ml 0.005 ml/100L 100gal.
GIARDIA/CRYPTOSPC	DRIDIUM # Observed Calc. #/10	00 Gallons		
Giardia cyst confirmed: Giardia cyst presumptive : Cryptosporidium oocyst cc Cryptosporidium oocyst pr ANALYSIS OF PARTIC				
key = (EH) - extremel (M) -moderate	ly heavy [>20/field @ 100X] e [4-9/field @ 100X] (F	(H) - heavy [10-20/1 R) - rare [<1-3/field @ 100X PROTOZOANS	field @ 100X] (] (NF) ·	none found
PARTICULATE DEBRI Large part. 5 µm & larger Small part. up to 5 µm	Quantity Description EHfine_silt & sand EHfine_amorphous_debris	C		ption
Plant debris OTHER ORGANISMS Nematodes	NF5/100gal	ALGAE Green Algae	NE	· · · · · · · · · · · · · · · · · · ·
Nematode eggs Rotifers Crustaceans Crustacean eggs		Diatoms	 	
Insects Other		Blue-Green Algae _		
		Flagellated Algae	_NE	
COMMENTS:			• <u>• • • • • • • • • • • • • • • • • • </u>	

No primary surface water indicators were observed. Based upon microscopic particulate analysis and the proposed EPA risk factors associated with bio-indicators there is a low risk of surface contamination (EPA risk factors= 0 low risk).

CALCULATED VALUES

Total algae _-----

% Sediment Reduction Filtration performance

DATE: June 27, 2000

REPORT REVIEWED BY:

Jusan J. Boutros

E.A.- Rev. Jan.6, 1992

		Utility Name	EAL Sample ID:
PWS ID#	Well ID#		13271
FL4130871	N.W. Wellfield Well #14	Miami Dade Water & Sewer	

Date: 6/12-13/2000

Primary Particulates	#/100 gallon	Relative Frequency	Relative Risk Fact	tor Comments
Giardia (confirmed)	0	NF	0	
Coccidia (confirmed)	0	NF	0	
Diatoms (with chloroplasts)	0	NF	0	
Other Algae (with chloroplasts)	0	NF	0	
Insects/larvae	0	NF	0	
	0	NF	0	
Rotifers Plant Debris (with chlorophyll)	0	NF	0	
r lan Debns (with enlorophyli)		EPA Relative Risk	= 0 L	ow Risk

Secondary Particulates			
Nematodes	5	R	no relative risk factor assigned
	0	NF	
Crustaceans	0	NF	
Amoeba	0		
Non-photo.flagellates & ciliates	0	NF	
Photosynthetic flagellates	0	NF	
	0	NF	
Other:	V		

COMMENTS: No primary surface water indicators were observed. Based upon microscopic particulate analysis and the proposed EPA risk factors associated with bio-indicators there is a low risk of surface contamination (EPA risk factors= 0 low risk).

REFERENCE: Consensus Method for Determining Groundwaters Under the Direct Influence of Surface Water Using Microscopic Particulate

Analysis (MPA) USEPA Manchester Environmental Laboratory, EPA 910/9-92-029, October 1992.

REPORT REVIEWED BY:

Jusan Z. Bartros

DATE: *June 27, 2000*

÷4

MPA SAMPLE REPORT

Lab Sample #	E00-0068	Utility:			e Wati	er & Sewer Dept, we	<u>ell #14</u>
Date/time Colloctod	08/12/00 03:65 PN 06/13/00 07:55 AN			6/14/00 1:20 AM	By:	Larson/Kazanis	
Total volume w Total volume fl	color _gray /ater filtered (gal): lter sediment (µl): gallons sampled:	60	Percoll/sucro	ucrose flotation ellet volume/	lon pel packet 100 gt	let volume (µl): d sediment (µl): allons sampled:	NA NA NA
Primary Particu		#/100 gallon F	i Relative frequency	r Relative I		Comments	<u></u>
Glardla		NA	: NA	NA			
Coccidia		NA	: NA	i na			
Diatoms (with ch	lomplasts)	0	NS	0			
Other Algae (with		0.2	NS	0			
Insects / Larvae		0	NS	. 0			
Rotifers		0.2	NS	, 0			
Plant Debris		0	NS	1 0			
		EP	A Relative Ris	k= 1 0		and the telefort in the	
*Reference: USEPA Microscopio Particu EH = extromely Secondary Par	lete Analysis (MPA): heavy H = hea		Groundwaters Ur Not Assayed oderately hea Comments			e of Surface Waler Using	
State of the local division of the local div		M					
Large amorphou Fine amorphou:		M		1			
Minerals		M 1.5	1	ì			
Plant pollen		1.6	1				
Nernatodes		0		i			
Crustaceans		0,4	ì	,			
Amoeba		0,4	1 1	Į			
Flagellates & c	illates	0.1	1				
Other: eggs			1	1			
Other: fungal fi	laments & spores						
Comments: El	ntire pellet examin	100.		\$		and with blo indicati	ors there
Based upon m is a <u>low</u> risk of	leroscopie particu surface contamin	late analysis ation. Deter	and the EPA	risk factors a rface water i oformation	issocia nfluen such a	ted with blo-indication ce should not be be s water quality data	sed and on-

solely on the results of one or two MPAs. Other pertinent Information, such as water quality us solely on the results in making this determination. site surveys, should be used in conjunction with the MPA results in making this determination.

Reported by:	Eun-A	Wark		Date: 06	/23/00
			i 		Robert G. Brooks, M.D ,
Jeb Bush Governor	3952 West Dr. Man Fax: (\$13)871-7468	Tampa Branch Laboratory tin Luther King Jr. Boulevard « Phone: (813)871-7465	Tainpa, FL	. 336]4-8404 Suncom: 512-6278	Sceretary
		1	•		

. | JUL-13-00 THU 12:31 PM PRESTON LABORATORY

	PRESTON WA	TER TREATM	ENT PLANT	LABORATORY	CERTIFICA	TION #56084	
<u></u>				alarsa ni isi adar T			
Analysis Required	Cryptospo	ridium [Enteroviru	RAW WATER			
Sample Location:	N·W·	WZLIFi	eld W	21/ # 12	1		
Composite	\boxtimes	Grab		Other		-	
Stut Time:	3:55 pu		Date:	06/12/00	6.0		
Meter Reading:	52650	Turbidity:	0.46	Temperature:	22°C	pH: 7.34	
Stop Time:	7:55 G.+	· ·	Date:	06/13/00	-		
Meter Reading:	83750		0.24	Temperature:	22.0° C	рH: 7.27	
		Total Volume	•	1100 gal	٥		
Wenther Condition	15: /				ئا <i>2لار):ام دریک مییو</i>		
At setup:	Clear	1	Cloudy	Ľ	Raining		
At fuuish:	Clear	·	Cloudy		Raining		
Site Conditions:	, , , , , , , , , , , , , , , , ,	<u></u>	.,7				
	Dry		Moderate	Standing Water		Area Flooded	
At setup:	Dry Dry	1	Moderate	Standing Water		Area Flooded	
At setup: At finish:				, <u>,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	NIK	Raus	
-	Collector	David Print Name	Ramos		Signature		
At finish: Sample (Collector Date and Time:	Print Name 06/13/0	00 — 14	500	Signature		
At finish: Sample (Shipping		Print Name 06/13/0	00 — 14		X 2/11- Signanıre	<u></u>	
At finish: Sample (Shipping	Date and Time: stination:	Print Name 06/13/0	00 — 14	500	Signature	<u></u>	

J

NORTHWEST WELLFIELD WELL #15

MPA RESULTS

REPORT: Microscopic Particulate Analysis

ENVIRONMENTAL ASSOCIATES, LTD. 24 Oak Brook Drive, Ithaca, NY 14850, Phone (607) 272-8902 Fax (607) 256-7092

PWS ID#		Well ID#	l bitte			
FL4130871	NW	Wellfield-Well #15	Utility Miami Dade W		ewer	EAL Sample ID:
Project Code Number: COLLECTION:	<u>PO#99-05</u>		1		CWEI	11500
Collector: David Pamos			Date collected: 7/6	5/99		Time: <u>3:45pm</u>
RECEIPT OF FILTE Date Rec.: <u>7/8/99</u>		Receiver of Sample: 00 AM Temp. of Rec. Samp		Carrier: Tracking Ni		leral Express
FILTER PROCESSIN	G Tec	hician: <u>J. Antosh</u> T		te: <u>7/8/99</u>		
Color of water around filt			otal volume of sedimer	nt:	 Q	.1 ml
Filter color: Color of sediment:	brov brov		olume of sediment/100) gallons:	٥	.01 ml/100gal.
# gallons filtered:	860		hase equivalent gallor	volume ex		· · · · · · · · · · · · · · · · · · ·
GIARDIA/CRYPTOSPORIDIUM # Observed Calc. #/100 Gallons						
Giardia cyst confirmed:						
ANALYSIS OF PARTI	CULATES:	Analyst Todd Wheaton	Date: <u>7/17</u>	/99		
key = (EH) - extremely he	eavy (H) -	heavy (M) -moderate (R) - r	are (NF) - none found			
PARTICULATE DEBR			PROTOZOANS			
Large part. 5 µm & larger Small part. up to 5 µm Plant debris	Quantity EH _EH _NE	Description silt & sand, clumped brown fine brown & amorphous	Other Coccidia Other protozoans		Description 24/100gal. flagellates	flagellates, photo
OTHER ORGANISMS Nematodes	NF		ALGAE Green Algae	NE		
Nematode eggs Rotifers	NE		Diatoms	NF		
Crustaceans Crustacean eggs	NE		Blue-Green Algae	NE		
Insects Other		R-iron bacteria(Crenothrix). R-1/100gal, plant debris without chlorophyll	Flagellated Algae	<u> </u>	Chlamydom	onas
Microscopy: Phas	e / Hoffman	Magnifica	tion: <u>10.20.40.100x</u>	Dih	ition: <u>not dil</u>	•
Flotation Parameters:	Percoll@/Su	ucrose gradient pellet vol.:				
Type of Material exam COMMENTS:	mined: 🛛	direct examination of unfloated	l sediment by 🛛 floai	ted (suspei	nded) pellet	
No primary surface water i associated with bio-indicate	ndicators we ors there is ;	are observed. Based upon mic a low risk of surface contaminat	croscopic particulate an ion (EPA risk factors= (nalysis and 0 low risk).	the propose	ed EPA risk factors
REPORT REVIEWED I	ΞY:	Seesan Z. Bout	DATE: TIM	1u 28 1	1999	

PWS ID#	Well ID#	Utility Nama	EAL Samole ID:
FL4130871	NW Wellfield-Well #15	Mlami Dade Water & Sewer	11500

Date:

7/7/99

Primary Particulates	#/100 gallon	Relative Frequency	Relative Risk Fa	ctor Comments
Giardia (confirmed)	· 0	NF	0	
Coccidia (confirmed)	0	NF	0	
Diatoms (with chloroplasts)	0	NF	0	
Other Algae (with chloroplasts)	0	NF	0	
Insects/larvae	0.	NF	0	
Rotifers	0	NF	0	
Plant Debris (with chlorophyll)	0	NF	0	
		EPA Relative Risk	= 0	ow Risk

Secondary Particulates			
Nematodes	0	NF	
Crustaceans	0	NF	
Amoeba	0	NF	
Non-photo.flagellates & ciliates	5	R	flagellates-no relative risk factor assigned
Photosynthetic flagellates	19	R	photo. flagellates-no relative risk factor assigned
Other:	1	R	Crenothrix, plant debris-no relative risk factor

COMMENTS: No primary surface water indicators were observed. Based upon microscopic particulate analysis and the proposed EPA risk factors associated with bio-indicators there is a low risk of surface contamination (EPA risk factors= 0 low risk).

REFERENCE: <u>Consensus Method for Determining Groundwaters Under the Direct Influence of Surface Water Using Microscopic Par-</u> ticulate Analysis (MPA) USEPA Manchester Environmental Laboratory, EPA 910/9-92-029, October 1992.

REPORT REVIEWED BY:

Susan Z. Bartis

date: July 28, 1999

MPA SAMPLE REPORT

Lab Sample # _ E99-0101	_ Utility:		871 Mia	mi Dade	Wate	& Sewer Dept. we	#15
Date/time Collected 07/06/99 03:45 PM 07/07/99 08:05 AM		Processed:	07/08/9 10:30 A	9 E		Kazanis	
PROCESSING INFORMATION filter color gray		color of wa	iter aro	und the fi	Iter:	murky	
Total volume water filtered (gal):	850	Percoll	sucros	e flotation	, pelle	t volume (µl):	180
Total volume filter sediment (µl):	430	Percoll/suc	rose flo	tation pao	cked s	sediment (µI):	100
μl sediment/100 gallons sampled:	50.6					ons sampled:	21.2
number of slides examined:	mat	erial examine	d: <u>floa</u>	ited (susp	pende	d) pellet	
Primary Particulates #/	100 gailon	Relative frequ		Relative Ris factor	k	Comments	
Giardia	NA	NA		NA	· ·		
Coccidia	NA	NA		NA			
Diatoms (with chloroplasts)	0	NS		0			
Other Algae (with chloroplasts)	542	EH		14		unicells, clusters, eug	lencid
Insects / Larvae	0	NS		0			
Rotifers	. 0	NS		0			
Plant Debris	0	NS		0			
		PA Relative F		14			******
*Reference: USEPA Consensus Method for Microscopic Particulate Analysis (MPA): EH = extremely heavy H = heavy	NA = 1	Groundwaters Ur Not Assayed oderately hea)irect Influe = rare		Surface Water Using	
Secondary Particulates #		Comments					
Large amorphous debris	M			*******			<u></u>
Fine amorphous debris	М						
Minerals	R						
Plant pollen	6						
Nematodes	0						
Crustaceans	0						
Amoeba	25						:
Flagellates & ciliates	19						
Other: eggs	4						
Other: fungal filaments & spores	R						

Comments: Algae were detected at a level almost twice that of the level for EH risk given in the numerical range table.

Based upon microscopic particulate analysis and the EPA risk factors associated with bio-indicators, there is a <u>moderate</u> risk of surface contamination. Determination of surface water influence should not be based solely on the results of one or two MPAs. Other pertinent information, such as water quality data and on-site surveys should be used in conjunction with the MPA results in making this determination.

Reported by	R	ep	00	rte	ed	by
-------------	---	----	----	-----	----	----

Jeb Bush Governor

Date:

07/19/99

RAY	MI-DADE WATER & SEWER DEPARTMENT MOND DIAZ, CHIEF, LABORATORY DIVISION TER TREATMENT PLANT LABORATORY CERTIFICATION #56084 FIELD SAMPLING LOG
Analysis Required:	RAW WATER
$\frac{\text{Sample Location:}}{\text{Composite}} \boxed{N \cdot W}.$	Grab Other D
Start Time: <u>3459:11</u> Meter Reading: <u>7/8/D</u>	Date: <u>0.7/06/99</u>
Stop Time: <u>8:059.14</u> Meter Reading: <u>72,670</u>	$\begin{array}{llllllllllllllllllllllllllllllllllll$
Weather Conditions: At setup: Image: Clear At finish: Image: Clear	Cloudy Raining Cloudy Raining
Site Conditions: At setup: Dry At finish: Dry	Moderate Standing Water Area Flooded Moderate Standing Water Area Flooded
Sample Collector	David Ramos Durid Raun Print Name Signature
Shipping Date and Time: Final Destination: Received By:	07/07/99 - 1500 Environmental Associates, LTD
Recommended Filtered Sample Volum Giarda / Crypto: 100 liters Enterovirus: 60 - 100 MPA: 600 - 1000	gals

. .

و عد د د

Ł

REPORT: Microscopic Particulate Analysis

ENVIRONMENTAL ASSOCIATES, LTD. 24 Oak Brock Drive, Ithaca, NY 14850, Phone (607) 272-8902 Fax (607) 256-7092

PWS ID#		Well ID#	Utility	A(
FL4130871	Northy	vest Wellfield Well #15	Miami Dade W		Sewer	EAL Sample ID: 11636
Project Code Number: COLLECTION: Collector: David Ramos		B. Req.#H34539	Date collected: <u>8/</u>			Time: <u>4:15om</u>
RECEIPT OF FILTE Date Rec.: <u>8/12/99</u>		Receiver of Sample 10_AM Temp. of Rec. Sam		Carrier: Tracking N		leral Express
FILTER PROCESSIN	÷			te: <u>8/12/9</u>		
Color of water around filt			otal volume of sedime).1 ml
Filter color:	gra	IV	olume of sediment/10			
Color of sediment: # gallons filtered:	<u>brc</u>	29911	Phase equivalent gallor	-		1.01 ml/100gal
GIARDIA/CRYPTOSI						
Giardia cyst confirmed: Giardia cyst presumptive Cryptosporidium oocyst Cryptosporidium oocyst	: confirmed:		te la Alemana			
ANALYSIS OF PARTI	CULATES	Analyst Todd Wheaton	Date: <u>8/17</u>	/99		_
key = (EH) - extremely he	eavy (H) -	heavy (M)-moderate (R)-	rare (NF) - none found	۶.		
PARTICULATE DEBI Large part. 5 µm & larger Small part. up to 5 µm Plant debris	RIS Quantity <u>M</u> <u>EH</u> <u>NE</u>	Description silt & sand, clumped brown fine amorphous debris	PROTOZOANS Other Coccidia Other protozoans	Quantity	Descriptio 43/100gal	photo, flagellates.
OTHER ORGANISMS Nematodes Nematode eggs	<u>NE</u>		ALGAE Green Algae	_NE_		
Rotifers	NE		Diatoms	NE_		
Crustaceans Crustacean eggs	<u>NE</u>	·	Blue-Green Algae	NE		
Insects	<u>NE</u>	B-10/100gal, pollen, M-iron	Flagellated Algae		eualenoid	
Other		bacteria(Crenothrix)	Playellated Algae	<u>R</u>	euglenola	
Microscopy: <u>Phase / Hoffman</u> Magnification: <u>10.20.40.100x</u> Dilution: <u>not dil.</u> : Flotation Parameters: Percoll@/Sucrose gradient pellet vol.: <u>10</u> µl suspension vol.: <u>800</u> µl µl pellet/100gal.: <u>8.4</u> Type of Material examined: ⊠ direct examination of unfloated sediment by ⊠ floated (suspended) pellet COMMENTS: No primary surface water ndicators were observed. Based upon microscopic particulate analysis and the proposed EPA risk factors associated with bio-indicators there is a low risk of surface contamination (EPA risk factors= 0 low risk).						
			· · · · · · · · · · · · · · · · · · ·			
REPORT REVIEWED	BY:	Susan Z. Barti	DATE: AL	iaust.	25 199	9

PWS ID#	Well ID#	Utility Name	EAL Sample ID:
FL4130871	Northwest Wellfield Well	Miami Dade Water & Sewer	11636

Date: 8/10-11/99

Primary Particulates #/100 gallon **Relative Frequency Relative Risk Factor** Comments Giardia (confirmed) 0 NF 0 Coccidia (confirmed) 0 NF 0 Diatoms (with chloroplasts) 0 NF 0 Other Algae (with chloroplasts) 0 NF 0 Insects/larvae 0 NF 0 Rotifers 0 NF 0 Plant Debris (with chlorophyll) 0 NF 0 EPA Relative Risk = 0Low Risk

Secondary Particulates			
Nematodes	0	NF	
Crustaceans	0	NF	
Amoeba	0	NF	
Non-photo.flagellates & ciliates	37	М	flagellates-no relative risk factor assigned
Photosynthetic flagellates	6	R	photo. flagellates-no relative risk factor assigned
Other:	10	R	pollen, Crenothrix-no relative risk factor assigned

COMMENTS: No primary surface water ndicators were observed. Based upon microscopic particulate analysis and the proposed EPA risk factors associated with bio-indicators there is a low risk of surface contamination (EPA risk factors= 0 low risk).

REFERENCE: <u>Consensus Method for Determining Groundwaters Under the Direct Influence of Surface Water Using Microscopic Par-</u> <u>liculate Analysis (MPA)</u> USEPA Manchester Environmental Laboratory, EPA 910/9-92-029, October 1992.

REPORT REVIEWED BY:

Jusan Z. Bartros

DATE: August 25, 1999

MPA SAMPLE REPORT

Lab Sample #	E99-0127	Utility:	_PWS#4130	871 Miami D	ade Wat	er & Sewer Dept. well #15
Date/time Collected	08/10/99 04:15 PM 08/11/99 08:00 AM	Date/tim	e Processed:	08/12/99 10:10 AM	By:	Kazanis/Stark
PROCESSING IN	FORMATION					
	color brown/gray		color of w	ater around t	the filter:	tan
Total volume wa	ater filtered (gal):	538	Percol	/sucrose flot	ation pel	let volume (µl): 134
	ter sediment (µl):	189				sediment (µI): 200
µl sediment/100 g		35.1				illons sampled: 24.9
number of slides	examined: <u>3</u>	mat	erial examine	d: <u>floated (</u>	suspend	led) pellet
Primary Particula	ntes #/10	00 gallon	Relative freq	uency* Relativ Factor		Comments
Giardia		NA	NA		NA	**********
Coccidia		NA	NA		NA	
Diatoms (with chlo	roplasts)	1	R		6	
Other Algae (with o	chloroplasts)	82	М		9	unicells, clusters, euglenoid
Insects / Larvae		0	NS		0	
Rotifers		0	NS		0	
Plant Debris		0	NS		0	
			PA Relative I		15	
*Reference: USEPA Co	onsensus Method for C	etermining	Groundwaters U	nder the Direct	influence o	of Surface Water Using
Microscopic Particulate EH = extremely he			Not Assayed oderately hea	ivy R = rai		= None found
Secondary Partic	- •		Comments	ivy 11-14		
Large amorphous of		_	Comments	A Maida ann an maraicean		
Fine amorphous de		R M				
Minerals	50113	R				
Plant pollen		10				
Nematodes		0				
Crustaceans		0				
Amoeba		68				
Flagellates & ciliate	es	42				
Other: eggs		М				
Other: fungal filame	ents & spores	R				

Comments:

Based upon microscopic particulate analysis and the EPA risk factors associated with bio-indicators, there is a <u>moderate</u> risk of surface contamination. Determination of surface water influence should not be based solely on the results of one or two MPAs. Other pertinent information, such as water quality data and on-site surveys, should be used in conjunction with the MPA results in making this determination.

Reported by:

Date:	09/03/99

Jeb	Bush	
Cas		

	¥2
MIAMI-DADE WATER & SEWER DEPARTMENT RAYMOND DIAZ, CHIEF, LABORATORY DIVISION JOHN E. PRESTON WATER TREATMENT PLANT LABORATORY CERTIFICATION #56084 FIELD SAMPLING LOG	
Analysis Required: RAW WATER	
Sample Location: North West Well field Well # 15 Composite X Grab Other Other	
Start Time: 4:15 pm Date: 03/10/99 Meter Reading: 72837 Turbidity: 0.25 Temperature: 25.0°E	
Stop Time: 8:00 4.m Date: 08/1/144 Meter Reading: 74030 Turbidity: 0.19 Temperature: 75,00 pH: 7.33 Total Volume Filtered: 1193	
Weather Conditions: At setup: Clear Cloudy Raining At finish: Clear Cloudy Raining	
Site Conditions: At setup: Image: Dry At setup: Image: Dry At finish: Image: Dry Moderate Standing Water Image: Area Flooded At finish: Image: Dry Moderate Standing Water Image: Area Flooded	
Sample Collector David Ramos David Ramo Print Name Signature Shipping Date and Time: 08/11/99-1500 Final Destination: Environmental Assoc. Ltd. Baneired Bre	
Received By: Print Name Signature Recommended Filtered Sample Volumes: Giarda / Crypto: 100 liters Enterovirus: 60 - 100 gals MPA: 600 - 1000 gals	

۰.

<u>د</u> ...

REPORT: Microscopic Particulate Analysis

ENVIRONMENTAL ASSOCIATES, LTD. 24 Oak Brook Drive, Ithaca, NY 14850, Phone (607) 272-8902 Fax (607) 256-7092

PWS ID#	Well ID#	Utility Name	EAL Samole ID:
FL4130871	NW Wellfield-Well #15	Miami Dade Water & Se	ewer 12113
Project Code Number: COLLECTION: Collector: David Ramos	<u>99-05119B. Req.#H35192</u>	Date collected: <u>11/22/99</u>	Time: <u>4:00pm</u>
RECEIPT OF FILTE Date Rec.: <u>11/24/99</u>	R: Receiver of Sample Time: <u>10:45_AM</u> Temp. of Rec. Sam	e: <u>J. Runyan</u> Carrier. ple: <u>1°C</u> Tracking Nu	Federal Express
FILTER PROCESSIN	IG Technician: <u>J. Antosh</u> T	Fime: <u>12:00 PM</u> Date: <u>11/24/9</u>	9
Color of water around fill	ter. <u>clear</u>	Total volume of sediment:	0.08 ml
Filter color:	tan	Volume of sediment/100 gallons:	0.01 ml/100gal
Color of sediment: # gallons filtered:	brown 904.2	Phase equivalent gallon volume ex	(amined: <u>113</u>
GIARDIA/CRYPTOS	PORIDIUM # Observed Calc. #/100	Gallons	
Giardia cyst confirmed: Giardia cyst presumptive Cryptosporidium oocyst Cryptosporidium oocyst	confirmed:		
ANALYSIS OF PART	ICULATES: Analyst Todd Wheaton	Date: <u>12/3/99</u>	
key = (EH) - extremely h	neavy (H) - heavy (M) -moderate (R) -	rare (NF) - none found	
PARTICULATE DEE Large part. 5 µm & large Small part. up to 5 µm	Quantity Description	PROTOZOANS Quantity Other Coccidia <u>NF</u> Other protozoans <u>R</u>	Description 1/100gal. photo. flagellates
Plant debris	NF	_	
OTHER ORGANISM Nematodes	<u>NF</u>	ALGAE Green AlgaeNE	• • • • • • • • • • • • • • • • • • •
Nematode eggs Rotifers Crustaceans	NE	 DiatomsNF	·
Crustacean eggs	<u>_NE</u>	Blue-Green Algae <u>NF</u>	
Insects Other		Flagellated Algae	Phacus
Microscopy: Ph	ase / Hoffman Magnifi	 ication: <u>10.20.40.100x</u> Di	ilution: <u>not dil.</u> :
Flotation Parameters	: Percoll@/Sucrose gradient pellet vol.:	NFμl suspension vol.: 400	μi μi pellet/100gal.: <u>8.8</u>
COMMENTS: No primary surface wate	camined: 🛛 direct examination of unfloa ar indicators were observed. Based upon cators there is a low risk of surface contami	microscopic particulate analysis an	d the proposed EPA risk factors
••••••••••••••••••••••••••••••••••••••			
REPORT REVIEWE	DBY: Sesan J. Bori	tur DATE: Decemb	ver 6 1999

REPORT REVIEWED BY:

DATE: <u>December 6</u>, 1999

PWS ID#	Wəll ID#	Utility Name	EAL Sampla ID:
FL4130871	NW Wellfield-Well #15	Miami Dade Water & Sewer	12113

Date: 11/22/99

REPORT REVIEWED BY:

Primary Particulates	#/100 gallon	Relative Frequency	Relative Risk F	actor Comments
Giardia (confirmed)	· 0	NF	0	
Coccidia (confirmed)	0	NF	0	
Diatoms (with chloroplasts)	0	NF	0	
Other Algae (with chloroplasts)	0	NF	0	
Insects/larvae	0	NF	0	
Rotifers	0	NF	0	
Plant Debris (with chlorophyll)	0	NF		
		EPA Relative Risk	= 0	Low Risk

Secondary Particulates			
Nematodes	0	NF	
Crustaceans	0	NF	
Amoeba	0	NF	
Non-photo.flagellates & ciliates	0	NF	
Photosynthetic flagellates	1	R	Phacus-no relative risk factor assigned
Other:	0	NF	

COMMENTS: No primary surface water indicators were observed. Based upon microscopic particulate analysis and the proposed EPA risk factors associated with bio-indicators there is a low risk of surface contamination (EPA risk factors= 0 low risk).

REFERENCE: <u>Consensus Method for Determining Groundwaters Under the Direct Influence of Surface Water Using Microscopic Particulate</u> <u>Analysis (MPA)</u> USEPA Manchester Environmental Laboratory, EPA 910/9-92-029, October 1992.

Susan Z. Boutros

DATE: December 6, 1999 Environmental Associates, Ltd.

12/15/1999 09:35

542-7468

FAX NO. 305 8825767 TAMPA LAB VIROLOGY

MPA SAMPLE REPORT

ab Sample #	E99-0195		ne Processed:	11/24/99		er & Sewer Dept well Larson	
Jam/time Conserved	11/23/99 08:30 A			08:09 AM			
Total volume w	color <u>light gray</u> ater filtered (gal iter sediment (µi gallons sampled): 72): 5 1: 6,	7 Perce 0 Percoll/si 9 ul flotatio	ucrose flotation	ation pe 1 packe e/100 g	llet volume (川): d sediment (川): allons sampled:	NA NA NA
Primary Particul	ates .	#/100 gallor	Relative frequ	iency" Relativ Fac		Comments	
Giardia		NA	NA	N	Ą		
Coccidia		NA	NA	N	A		
Diatoms (with ch	(oroplasta)	0	NS		Q		
Other Algae (with	n chloroplasts)	48.7	М		9	Scendesmus, Trachelamo Tetraedron, euglenoid, unicellular and mutticellula	
Insects / Larvae		٥	NS		0		
Rotifers		0.1	NS		0		
Plant Debris		9.8	R		0		
FIRITEDCOTIS			EPA Relative	Risk=	9		
			EFA NCIONTO			a minda an Manda a Indone	
Microscopic Particul EH = extremely	late Anglysis (MPA): heavy H = he	for Determine N/ aavy M	ing Groundwater > Not Assay = moderately on Comment	ed heavy R=r		e of Surface Water Using	
Microscopic Particul EH = extremely Secondary Par	late Analysis (MPA): heavy H = he ticulates	for Determine N/ aavy M	ing Groundwate = Not Assay = moderately	ed heavy R=r			
Microscopic Particul EH = extremely Secondary Part Large amorphou	late Anglysis (MPA): heavy H = he tjculates us debris	for Determin NA savy M ≠/100 gail	ing Groundwate = Not Assay = moderately	ed heavy R=r			
Microscopic Particul EH = extremely Secondary Part Large amorphou Fine amorphous	late Anglysis (MPA): heavy H = he tjculates us debris	a for Determin NA Bavy M #/100 gail	ing Groundwate = Not Assay = moderately	ed heavy R=r			
Microscopic Particul EH = extremely Secondary Part Large amorphous Fine amorphous Minerals	late Anglysis (MPA): heavy H = he tjculates us debris	a for Determin N/ 32Vy M #/100 gail H	ing Groundweter = Not Assay = moderately on Comment	ed heavy R=r			-
Microscopic Particul EH = extremely Secondary Part Large amorphous Fine amorphous Minerals Plant pollen	late Anglysis (MPA): heavy H = he tjculates us debris	a for Determin N/ savy M ∌/100 gail H H H	ing Groundwater = Not Assay = moderately on Comment 3	ed heavy R=r			
Microscopic Particul EH = extremely Secondary Part Large amorphou Fine amorphou Minerals Plant pollen Nematodes	late Anglysis (MPA): heavy H = he tjculates us debris	t for Determin NA savy M ≱/100 gail H H H	ing Groundwater = Not Assay = moderately on Comment 3	ed heavy R=r			
Microscopic Particul EH = extremely Secondary Part Large amorphous Fine amorphous Minerals Plant pollen Nematodes Crustaceans	late Anglysis (MPA): heavy H = he tjculates us debris	t for Determin NA savy M #/100 gail H H H 4. 0 0	ing Groundwater = Not Assay = moderately on Comment 3	ed heavy R=r			
Microscopic Particul EH = extremely Secondary Part Large amorphous Fine amorphous Minerals Plant pollen Nematodes Crustaceans Amoeba	late Anglysis (MPA): heavy H = he ticulates us debris a debris	t for Determin NA savy M #/100 gail H H H 4. 0 0	ing Groundwate	ed heavy R=r			
Microscopic Particul EH = extremely Secondary Part Large amorphous Fine amorphous Minerals Plant pollen Nematodes Crustaceans	late Anglysis (MPA): heavy H = he ticulates us debris a debris	for Determine N/ savy M #/100 gail H H 4. 0 0 2 1	ing Groundwate	ed heavy R=r			

Comments: Entire pellet examined.

Based upon microscopic particulate analysis and the EPA risk factors associated with bio-indicators, there is a low risk of surface contamination. Determination of surface water influence should not be based solely on the results of one or two MPAs. Other pertinent information, such as water quality data and on-site surveys, should be used in conjunction with the MPA results in making this determination.

Reported by:	Sum Mark Date: 12	08/39
Job Bush Governor	Tampa Branch Laboratory 3952 West Dr. Martin Luther King Jr. Boulevard • Tampa, FL 33614-8404 Fax: (\$13)871-7468 Fax: (\$13)871-7468	Robert G. Brooks, M.D., Secretary

RA	IAMI-DADE WATER & SEWER DEPARTMENT YMOND DIAZ, CHIEF, LABORATORY DIVISION ATER TREATMENT PLANT LABORATORY CERTIFICATION #56084 FIELD SAMPLING LOG
Analysis Required:	RAW WATER
M.P.A. Cryptospa	oridium Enterovirus
Sample Location: Nor-	thwest Wellfield Well # 15
Composite 🔀	Grab Other
Start Time: 4:50 pu	2 Date: 11/22/99
Meter Reading: <u>79 266.</u>	<u>S</u> Turbidity: 0, 9 Temperature: $\frac{75}{25}, 3^{\circ}$ pH: 7, 19
Stop Time: 30 G, u	
"Meter Reading: \$02.00,-	
	Total Volume Filtered: <u>704.2</u>
Weather Conditions:	
At setup: Clear	Cloudy Raining
At finish: Clear	Cloudy Raining
Site Conditions:	
At setup: Dry	Moderate Standing Water Area Flooded
At finish: Dry	Moderate Standing Water
Sample Collector	David Ramos Elevid Kamos Print Name Signature
Shipping Date and Time:	11/23/99 - 1500
Final Destination:	Environmental Associates LTD
Received By:	
Recommended Filtered Sample Volu Giarda / Crypto: 100 litera	
Enterovirus: 60 - 10 MPA: 600 - 100	0 gals

•

REPORT: Microscopic Particulate Analysis

24 Oak Brook Drive, Ithaca, NY 14850, Phone (607) 272-8902 Fax (607)21 3-7092

FL4130871 Project Code Number: J COLLECTION:	NW Weilfield Weil PO#99-05119B. Reg.#H351	#15	Utility Miami Dade W		EAL Sample IC
	PO#99-051198 Beg #4251			ater & Sewer	12358
Collector: David Ramos	<u>, , , , , , , , , , , , , , , , , , , </u>	192			
RECEIPT OF FILTER			Date collected: <u>1/1</u>	0/2000	Time: <u>3:55pm</u>
	Time: <u>10:30 AM</u> Temp. c	er of Sample: . of Rec. Sample		Carrier: <u>Fe</u> Fracking Number: <u>81</u>	deral Express
FILTER PROCESSING	Technician: <u>J. Antosh</u>	Tim	ne: <u>11:00 AM</u> Dat	e: <u>1/12/2000</u>	
Color of water around filte Filter color:		Tot	tal volume of sedimer	nt:	0.02 ml
Color of sediment:	light brown brown	Vol	lume of sediment/100) gallons:	0.002 ml/100a=
# gallons filtered:	830		ase equivalent gallon		
GIARDIA/CRYPTOSP	ORIDIUM #Observed (Calc. #/100 Gai			
Giardia cyst confirmed: Giardia cyst presumptive : Cryptosporidium oocyst c Cryptosporidium oocyst p	onfirmed:				
ANALYSIS OF PARTIC	ULATES: Analyst Todd	Wheaton	Date: 1/21/	2000	
key = (EH) - extremely hea	avy (H) - heavy (M) -mode	erate (R) - rar	re (NF) - none found) .	_
PARTICULATE DEBR	IS Quantity Description <u>H</u> silt & sand clump	ned brown	PROTOZOANS Other Coccidia	∫ Quantity Descripti _NF	on
Small part. up to 5 µm Plant debris	EH fine brown amor NF				photo flagellat s
OTHER ORGANISMS Nematodes Nematode eggs Rotifers	NE		ALGAE Green Algae	NE	
Crustaceans	<u>NE</u>		Diatoms		
Crustacean eggs Insects	<u>_NF</u>	••••••••••••••••••••••••••••••••••••••	Blue-Green Algae	NE	
Other	R 1/100gal fungal s bacteria(Crenothr		Flagellated Algae		
Microscopy: Phase	/ Hoffman	Magnificatio	on: <u>10,20,40,100x</u>	Dilution: not	dil_ :
Flotation Parameters: F	ercoll@/Sucrose gradient pe	ellet vol.; 1	0 Ul suspension vo		
	nined: 🛛 direct examination				
lo primary surface water in	dicators were observed Ba	ised upon micr	osconio particulate a		
		a. sumarninant	ALLER ISK IACIOISE (
		,			
REPORT REVIEWED B	Y: Susant	Boutrs		nuary 24.	

E.A. Rev. Sr. L 27, 95 E.B.

PWS ID#	Well ID#	Utility Name	EAL Sample ID:
FL4130871	NW Wellfield Well #15	Miami Dade Water & Sewer	12358

Date: 1/10-11/00

Primary Particulates	#/100 gallon	Relative Frequency	Relative Risk Facto	r Comments
Giardia (confirmed)	· 0	NF	0	
Coccidia (confirmed)	0	NF	0	
Diatoms (with chloroplasts)	0	NF	0	
Other Algae (with chloroplasts)	0	NF	0	
Insects/larvae	0	NF	0	
Rotifers	0	NF	0	
Plant Debris (with chlorophyll)	0	NF	0	
		EPA Relative Risk	= 0 Lov	v Risk

Secondary Particulates			
Nematodes	0	NF	
Crustaceans	0	NF	
Amoeba	0	NF	
Non-photo.flagellates & ciliates	0	NF	
Photosynthetic flagellates	6	R	euglenoid-no relative risk factor assigned
Other:	1	R	fungal spore, Crenothrix- no relative risk factor

COMMENTS: No primary surface water indicators were observed. Based upon microscopic particulate analysis and the proposed EPA risk factors associated with bio-indicators there is a low risk of surface contamination (EPA risk factors = 0 low risk).

REFERENCE: Consensus Method for Determining Groundwaters Under the Direct Influence of Surface Water Using Microscopic Particulate

Analysis (MPA) USEPA Manchester Environmental Laboratory, EPA 910/9-92-029, October 1992.

REPORT REVIEWED BY:

Susan h. Boutros

DATE: January 24, 2000 Environmental Associates, Ltd.

公 03

81/18/2008 11:29 542-7468

TAMPA LAB VIROLOGY

PAGE 82

MPA SAMPLE REPORT

Lab Sample # _ E00-	0007	Utility:	PWS#4130	0871 Miami Da	ade Wet	er & Sewer Dept. we	11 #15
	0/00 03:55 PM	Data/time	Processed:	01/12/00 10:55 AM	By:	Larson/Mosbaugh	
PROCESSING INFORM	MATION						
filter color	light gray tin	t	color of w	ater around th	ne filter.	tan tínt	
Total volume water fil		890				let volume (µl):	NA
Total volume filter sec	liment (µi):	40	Percoll/su	crose flotation	packed	sediment (µI);	NA
µl sediment/100 gallon:		4.5	HI flotation	i pellet valume	:/100 ga	illons sampled;	NA
number of slides exam	nined: 4	mate	rial examini	d: unfloated	t sedim	ent	
Primary Particulates	#/10	0 gallon R	leistive freque	ncy" Relative Facto		Comments	
Glardla		NA	NA	NA			
Coccidia	1	NA	NA	NA			
Diatoms (with chloroplas	•	0	NS	0			
Other Algae (with chloro	plasts)	24.9	M	9	. T	nicellular, euglenoid, rechelomonag	
Insects / Larvae		0	NS	0			
Rotifers		0	NS	0			
Plant Debris		55.6	M	1			
		EPA	Relative Ri	sk= 10			
Reference: USEPA Consensu Microscopic Particulate Analys EH = extremely heavy	is (MPA):	NA = NO	PI Assayad				
Secondary Particulates	H = heavy		erately her	avy R = rare	e NF	# None found	
	** ! •		amments				
Large amorphous debris		н					
Fine amorphous debris		M					
Minerals		М					
Plant pollen		4.0					
Nematodes		٥					
Crustaceans		0					
Amoeba		1.5					
Flagellates & cillates		0	ł				
Other: eggs		0.7					
Other: fungal filaments &		R					
Comments: Entire pellet	examined.		1				
			1				

Based upon microscopic particulate analysis and the EPA risk factors associated with bio-indicators, there is a moderate risk of surface contamination. Determination of surface water influence should not be based solely on the results of one or two MPAs. Other pertinent information, such as water quality data and on-site surveys, should be used in conjunction with the MPA results in making this determination.

Reported by:

Date: 01/18/00

RA	IAMI-DADE WATER & SEWER DEPARTMENT YMOND DIAZ, CHIEF, LABORATORY DIVISION ATER TREATMENT PLANT LABORATORY CERTIFICATION #56084 FIELD SAMPLING LOG
Analysis Required:	RAW WATER
Sample Location: <u>NU</u> Composite X	U Wellfield Well#15 Grab D Other D
Start Time: <u>3.*55 p</u> Meter Reading: 73.50	
Stop Time: <u>g:55</u> Meter Reading: <u>\$18()</u>	Date: $Oi 11 00$ Turbidity: $O:35$ Temperature: $22.0^{\circ C}$ pHz 7-37 Total Volume Filtered: 8.30
Weather Conditions: At setup: Clear At finish: Clear	17 Cloudy Raining Cloudy Raining
Site Conditions: At setup: 🗹 Dry At finish: 🖵 Dry	Moderate Standing Water Area Flooded Moderate Standing Water Area Flooded
Sample Collector Shipping Date and Time: Final Destination:	David Ramos Stavid Kann Prim Name 01/11/00-1500 Environmental Assoc.

.

.

#2