HYDROGEOLOGIC CONSULTANTS

1907 Commerce Lane, Suite 104 Jupiter, Florida 33458 (561) 746-0228 fax (561) 746-0119

November 8, 2017

### via Electronic Mail

Mr. William Flippin Florida Power & Light (FPL) Company 700 Universe Blvd Juno Beach, Florida 33408

# RE: FPL Okeechobee Clean Energy Center, Production Well FA-6 (SJRWMD Well ID 455803), Well Completion Report

Dear Mr. Flippin:

JLA Geosciences, Inc., is pleased to provide this letter report summarizing the construction and testing activities for Floridan Aquifer Production Well (FA-6) at the above referenced project site. Well FA-6 is designated by St. Johns River Water Management District (SJRWMD) with a well identification number of 455803. The overall project includes construction and operation of a new combined cycle natural gas fired generating unit, providing approximately 1,600 megawatts nominal of electric generation. The electric generating unit is located on a 2,341-acre site in Okeechobee County, Florida. JLA Geosciences, Inc. was tasked to provide construction management, oversight and reporting services for a component of the project that includes the construction, testing and operation of production wells completed in the Upper Floridan Aquifer (UFA) and completed in the Avon Park Producing Zone (APPZ). The wells will be used to provide makeup water for the cooling towers. A site location map is included as **Figure 1**.

### **Condition of Certification Requirements**

This report serves to satisfy the requirements of the Conditions of Certification, PA 15-058, Part IV.N. issued by Florida Department of Environmental Protection (FDEP) to Florida Power and Light (FPL) on June 29, 2016. The conditions described in Part IV.N. of the Certification require FPL to submit the information listed below within ninety (90) days of completion of construction of any UFA or APPZ production wells.

- 1. The specific locations of the wells on a map with a minimum scale of one inch equals 800 feet, or by latitude/longitude
- 2. Detailed well specifications and drawings
- 3. Geophysical logging program conducted during construction of the well(s). The program must include the following: gamma, caliper, electric (sp and electrical resistivity), fluid resistivity, temperature, flow and video.

#### FPL OCEC Production Well FA-6 Completion Report November 8, 2017 Page 2 of 5

4. Downhole water quality testing program to include field-testing at 20-foot intervals upon penetration of the top of the upper portion of the UFA for specific conductivity, chlorides, temperature and pH

### **Construction and Data Collection Summary**

Drilling activities began at Well FA-6 in August 2017. Subsurface construction and testing activities were completed at Well FA-6 on October 11, 2017 with the completion of the downhole video survey. Analytical results of the water sample collected during the step drawdown test were received on October 21, 2017. Installation of the permanent wellhead, pump and appurtenances had not yet commenced as of the date of this report. A summary of construction and testing activities are provided in **Table 1**.

Well FA-6 was completed with a 36-inch outside diameter (O.D.) casing set and cemented to 357 feet below drilling pad level (bpl) and a nominal 34-inch diameter open-hole production interval between 357 feet and 803 feet bpl. Construction details of Well FA-6 are included in **Table 2** and **Figure 2**. During well construction, data were collected and interpreted to determine the geologic and hydrogeologic characteristics of the strata intercepted by the borehole. These data were used to determine the optimal subsurface design of Well FA-6. Data also were collected to ensure the well was being constructed in accordance with the technical specifications.

### **Pilot Hole Drilling: Lithology**

Pilot holes were drilled when constructing Well FA-6, and the data collected during the drilling and testing of the pilot holes provided information that assisted with the final design of the wells. During pilot-hole drilling, drill cuttings were collected at 5-foot depth intervals, described by an onsite geologist (JLA Geosciences, Inc.) and summarized in a lithologic log. The lithologic log for FA-6 is included in **Attachment 1**.

### **Reverse-Air Pilot Hole Drilling: Water Quality Sampling**

During reverse-air drilling in the Floridan Aquifer, water quality samples of the formation water were collected at 10-foot intervals and field analyzed for temperature, pH, total dissolved solids (TDS), specific conductance and chloride concentrations. The field results were used to evaluate variability in water quality in the intended production zone with depth. Tabulated and graphical summaries of field water quality results are included in **Attachment 2**. Plots of field specific conductance results also are incorporated with geophysical log plots which are described in further detail below.

### **Reverse-Air Pilot Hole Drilling: Flow Testing**

Flow tests were performed to evaluate the artesian flow rate and specific capacity of the borehole with depth. The tests were performed at every drill rod connection at approximately 45-foot intervals. At each connection, circulation continued for approximately 15 minutes to remove cuttings from the borehole. The reverse-air circulation was then terminated and the annulus valve at the wellhead was

FPL OCEC Production Well FA-6 Completion Report November 8, 2017 Page 3 of 5

opened to allow the well to flow under artesian conditions. Flow rates were measured by an in-line flow meter.

Under flowing conditions, water levels were monitored using a manometer tube connected to an annulus port outside the drill-pipe stem. Additional water quality samples were collected for field analyses of temperature, specific conductance, chloride, pH, TDS, turbidity, hydrogen sulfide, and iron. The flow from the annulus continued for a sufficient period of time to allow flow rates and water levels to generally stabilize (approximately 30 minutes).

Upon completion of flow testing, the annulus valve was closed and the well was shut-in. Water levels continued to be monitored for an additional 15 to 20 minutes to obtain a water level under static conditions. The flow rate and water-level drawdowns (between static and flowing conditions) were used to calculate specific capacities.

### **Geophysical Logging and Video Survey**

Geophysical logging was performed in the pilot-hole intervals of Well FA-6 to correlate drill cuttings and water quality sample results collected during drilling, correlate vertical offsets between Well FA-6 and other onsite wells, identify formation boundaries, and obtain specific geologic and hydrogeologic data pertaining to the subsurface formations. These data were used to assist in the selection of the optimum casing setting depths and identify transmissive intervals within the production zone. Reamed-hole caliper logs were performed prior to casing installation to confirm borehole conditions are acceptable for installation of casing and provide data for use in calculating appropriate cement volumes. A summary of the geophysical logs performed in Well FA-6 is included in **Attachment 3**. Merged plots of the geophysical logs also are provided in **Attachment 3**. Electronic (PDF and LAS) copies of the logs are enclosed. A video survey was performed in the completed well on October 11, 2017. DVD copies of the video are being mailed separately.

### **Development**

After completing the nominal 34-inch diameter open-hole production interval below the 36-inch O.D. final casing (set at 357 feet bpl) to a depth of 803 feet bpl, development activities commenced within the open-hole interval. The purpose of development is to remove loose formation material in the open hole and to maximize the performance of the well. The first phase of development consisted of high-velocity jetting for approximately 24 hours. The borehole jetting phase of development was designed to deliver a high velocity of water directly into the borehole with the use of a rotating jetting tool. The jetting tool was slowly passed up and down the open borehole from the base of the 36-inch diameter casing to the total depth (803 feet). Following jetting, a 34.5-inch diameter drill bit was installed to the bottom of the open borehole and airlift development was performed to remove any remaining sediment that accumulated at the bottom of the open hole from jetting activities.

Following airlifting, a submersible pump was installed and development resumed by pump surging. During pump development, sand content testing, silt density index (SDI) testing, field water quality testing and specific capacity testing were performed on multiple occasions. Pump development was FPL OCEC Production Well FA-6 Completion Report November 8, 2017 Page 4 of 5

considered complete when sand content was below 1 part per million (ppm) at the approximate design rate (approximately 2,800 gpm), and water quality and specific capacities were generally stable. Pump surging was performed in Well FA-6 for approximately 40 hours.

### **Step Drawdown Testing**

After development was considered complete, a step drawdown pump test was performed. The stepdrawdown test in Well FA-6 was performed on October 9, 2017. The test in Well FA-6 consisted of 5 steps of increased pumping at average rates of 1,406 gpm (50% of design rate), 2,142 gpm (77%), 2,802 gpm (100%), 3,643 gpm (130%) and 4,118 gpm (147%). Each step was pumped at a nearly constant rate for approximately 2 hours. Prior to performing the test, a transducer was installed in the well to monitor water levels for 24 hours. During testing, pump rates, water levels, sand content, SDI and field water quality were regularly monitored and recorded. A summary table and chart of data collected during testing are provided in **Attachment 4**. A water quality sample was collected during the final step of the test (pumping at 4,118 gpm) for laboratory analysis. A summary of the laboratory results are included in **Attachment 4**, and the complete laboratory report is enclosed. At the end of the test, pumping was terminated and the recovery portion of the test began. During recovery, water levels were measured to observe water levels returning to near static conditions.

Please feel free to contact us if you have any questions or wish to discuss further.

Sincerely,

JLA Geosciences, Inc.

James L. Andersen, P.G. Principal Hydrogeologist

JLA Geosciences, Inc. Rodney J. Miller, F

Senior Hydrogeologist

FPL OCEC Production Well FA-6 Completion Report November 8, 2017 Page 5 of 5

### Figures:

- 1) Site Location Map
- 2) Well FA-6 Construction Details

### Tables:

- 1) Summary of Construction and Testing Activities
- 2) Summary of Well FA-6 Construction Details

#### Attachments:

- 1) Lithologic Log
- 2) Reverse Air Drilling Water Quality and Flow Testing Data
- 3) Geophysical Log Plots
- 4) Step Drawdown Test Data

### Enclosures:

- 1) Geophysical Logs (PDF & LAS)
- 2) Final Water Quality Sample Laboratory Reports

# Figures:

- 1) Site Location Map
- 2) Well FA-6 Construction Details





# Tables:

- 1) Summary of Construction and Testing Activities
- 2) Summary of Well FA-6 Construction Details

# Table 1: Summary of Construction and Testing Activities,FPL OCEC Production Well FA-6

| Date               | Description                                                                                                                                                                                |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4/11/17<br>8/20/17 | Site preparations completed at Well FA-6 site, and drilling rig and equipment remobilized.                                                                                                 |
| 8/21/17            | Begin drilling pilot hole with 12.25-inch bit from base of sump (8 feet)                                                                                                                   |
|                    | Extend pilot hole to the total depth of 136 feet bpl                                                                                                                                       |
| 8/22/17            | Clean borehole and perform geophysical logging; caliper, gamma and dual induction and SP                                                                                                   |
|                    | Begin reaming pilot hole with 58.5-inch bit                                                                                                                                                |
| 8/23/17            | Continue reaming borehole with 58.5-inch bit                                                                                                                                               |
| 8/23/17            | Continue reaming borehole with 58.5-inch bit                                                                                                                                               |
|                    | Extend reamed hole to total depth of 120 feet bpl; clean borehole in preparation for geophysical logging                                                                                   |
| 8/24/17            | Perform XY caliper and gamma-ray logging                                                                                                                                                   |
|                    | Install 48-inch diameter casing to 117 feet bpl                                                                                                                                            |
| 8/25/17            | Complete cement stage #1 (pressure grout); pump 220 bbls of neat cement; cement returns observed at surface                                                                                |
| 8/27/17            | Begin drilling pilot hole drilling 12.25-inch bit from base of 48-inch casing                                                                                                              |
| 8/27/17            | Extend pilot hole to the total depth of 406 feet bpl; clean borehole in preparation of geophysical logging                                                                                 |
| 8/28/17            | Perform geophysical logging in pilot hole; XY caliper, gamma and dual induction.                                                                                                           |
|                    | Begin reaming pilot hole with 46.5-inch bit from base of 48-inch casing                                                                                                                    |
| 8/29/17            | Continue reaming pilot hole with 46.5-inch bit                                                                                                                                             |
| 8/31/17            | Continue reaming pilot hole with 46.5-inch bit                                                                                                                                             |
| 0/1/17             | Extend reamed hole to total depth of 361 feet bpl                                                                                                                                          |
| 9/1/17             | Perfom XY caliper and gamma ray logging prior to 36-inch casing installation. Based on caliper log plot, decision made to reinstall 46.5-inch casing further clean and condition borehole. |
| 9/2/17             | Perfom additional XY caliper and gamma ray logging prior to 36-inch casing installation                                                                                                    |
| ,,                 | Begin 36-inch casing installation; equipment breakdown occurred requiring repairs                                                                                                          |
| 9/3/17             | Complete rig repairs                                                                                                                                                                       |
|                    | Install the 46.5-inch bit assembly into the borehole and perform additional wiper passes.                                                                                                  |
| 9/4/17             | Clean borehole and perform additional geophysical logging for 36-inch casing installation; caliper and gamma                                                                               |
|                    | Install 36-inch O.D. diameter casing to 357 feet bpl                                                                                                                                       |
|                    | Complete cement stage #1 (pressure grout); pump 122 bbls of neat cement                                                                                                                    |
|                    | Tag top of cement inside 36-inch casing at 347 feet bpl and in annulus at 201 feet bpl                                                                                                     |
| 9/5/17             | Perform successful plumbness and alignment test                                                                                                                                            |
|                    | Complete cement stage #2; pump 180 bbls of 6% bentonite cement; cement returns observed at pad level                                                                                       |
|                    | Make site preparations for hurricane (Hurricane Irma)                                                                                                                                      |
| 9/15/17            | Remobilize to the site after hurricane.                                                                                                                                                    |
| 9/18/17            | Drill from top of cement plug inside 36-inch casing at 350 feet bpl to 359 feet bpl with a 34.5-inch bit                                                                                   |
| 9/19/17            | Haul off drilling mud and begin converting to reverse-air discharge drilling                                                                                                               |
| 9/24/17            | Begin reverse air drilling at 361 feet bpl using 14.75-inch bit from 359 feet bpl                                                                                                          |
| 9/25/17            | Extend pilot hole with a 14.75-inch bit to the total depth of 811 feet bpl                                                                                                                 |
|                    | Prepare pilot hole for geophysical logging                                                                                                                                                 |
| 9/26/17            | Perform suite of geophysical logs under static and dynamic conditions (474 gpm)                                                                                                            |
|                    | All geophysical logs are complete (caliper, gamma, flow) except for the dual induction (DIL) and single point resistivity (SP) logs                                                        |
| 9/27/17            | DIL geophysical log successfully completed                                                                                                                                                 |
| 9/28/17            | Begin reaming pilot hole with 34.5-inch bit from base of 36-inch casing                                                                                                                    |
| 9/29/17            | Continue reaming pilot hole with 34.5-inch bit                                                                                                                                             |
| 9/30/17            | Extend reamed hole with a 34.5-inch bit to the total depth of 803 feet bpl                                                                                                                 |
| 10/1/17            | Begin cleaning borehole and pits in preparation for jetting                                                                                                                                |
| 10/3/17            | Begin jetting procedures within open hole (357 to 803 feet bpl)                                                                                                                            |

# Table 1: Summary of Construction and Testing Activities,FPL OCEC Production Well FA-6

| Date     | Description                                               |  |  |  |  |  |  |  |
|----------|-----------------------------------------------------------|--|--|--|--|--|--|--|
| 10/4/17  | Jetting completed                                         |  |  |  |  |  |  |  |
| 10/4/17  | Install 34.5-inch bit and clean out fill from jetting     |  |  |  |  |  |  |  |
| 10/6/17  | Install submersible pump and begin pump/surge development |  |  |  |  |  |  |  |
| 10/7/17  | Continue pump/surge development                           |  |  |  |  |  |  |  |
| 10/8/17  | Complete pump/surge development                           |  |  |  |  |  |  |  |
| 10/8/17  | Allow water levels to stabilize for 24 hours              |  |  |  |  |  |  |  |
| 10/9/17  | Perform step rate pump test                               |  |  |  |  |  |  |  |
| 10/10/17 | Allow water levels to recovery for 24 hours               |  |  |  |  |  |  |  |
| 10/10/17 | Download SDD transducer data                              |  |  |  |  |  |  |  |
| 10/11/17 | Perform final vdeo under dynamic conditions (570 gpm)     |  |  |  |  |  |  |  |
| 10/12/17 | Begin demobilizing from Well FA-6 site                    |  |  |  |  |  |  |  |

# Table 2: Well Completion Summary, FPL OCEC Production Well FA-6

| Casing<br>String       | Outside<br>Diameter<br>(inches) | Inside<br>Diameter<br>(inches) | Casing<br>Depth<br>(feet bpl) | Date          | Cement<br>Stage | Type of Cement            | Cement<br>Quantity<br>(cubic feet) | Remarks                                                |
|------------------------|---------------------------------|--------------------------------|-------------------------------|---------------|-----------------|---------------------------|------------------------------------|--------------------------------------------------------|
| Surface Casing         | 48.00                           | 47.25                          | 117                           | 8/25/2017     | 1               | Neat                      | 1, 235                             | Pressure grout. Cement returns observed at pad level   |
| Final Cooing           | 20.00                           | 25.00                          | 357                           | 9/5/2017      | 1               | Neat                      | 719                                | Pressure grout Tagged cement top at 201 feet bpl       |
| Final Casing           | 36.00                           | 35.00                          |                               | 9/5/2017      | 2               | 6% Bentonite              | 1,011                              | Tremied in place. Cement returns observed at pad level |
| Production<br>Interval | The produc                      | tion interval                  | was compl                     | eted as a nom | ninal 34-incl   | h diameter open hole betw | een 357 feet ar                    | nd 803 feet bpl                                        |

- Casing sections are comprised of steel in conformence with American Society for Testing and Materials (ASTM) A139, Grade B or American Petroleum Institute (API) 5L Grade B standards

- "feet bpl" denotes feet below pad level.
- Neat cement refers to Portland Type I/II cement with no additives

- 6% bentonite refers to Portland Type I/II cement with a 6% (by weight) bentonite additive

# Attachment 1:

Lithologic Log

|                     | FLORIDA POWER AND LIGHT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     | OCEC CMA: WELL FA-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     | Lithologic Log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Depth<br>(Feet BLS) | Lithologic Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0 – 20              | SAND (100%), pale yellowish brown (10 YR 6/2) to moderate yellowish brown (10YR 5/4), unconsolidated, fine grain, primarily quartz, trace amounts of shell fragments.                                                                                                                                                                                                                                                                                                                                                                              |
| 20 – 25             | FOSSILIFEROUS LIMESTONE (60%), medium gray (N5), moderately hard to hard, fossiliferous, abundant fossil/shell casts and molds, moderately cemented, intergranular porosity, moderately high permeability; SHELL (40%), yellowish gray (5Y 8/1) to white (N9), moderately soft, whole mollusk shells (bivalves and cephalopods).                                                                                                                                                                                                                   |
| 25 – 60             | SHELL AND SHELL FRAGMENTS (70%), white (N9) and very light gray (N8) to dark gray (N3), mollusk shells (bivalves and cephalopods), high permeability; LIMESTONE (25%) granular, micritic, moderate amounts of shell/fossil casts and molds, poorly cemented, moderate to well intergranular and moldic porosity, overall high permeability; CLAY (5%), dark gray (N3) to very light gray (N8), trace very fine sand sized quartz and carbonate grains, poorly cohesive clay, low permeability. Overall, sand and shell interbedded with limestone. |
| 60 – 85             | SHELL AND SHELL FRAGMENTS (80%), yellowish gray (5Y 8/1) to white (N9) to medium dark gray (N4), mollusk shells (bivalves and cephalopods), moderate permeability; FOSSILIFEROUS LIMESTONE (20%), yellowish gray (5Y 8/1), moderately hard, medium grain, quartz and carbonate grains, fossil/undifferentiated shell casts and molds, intergranular porosity, moderate to high permeability.                                                                                                                                                       |
| 85 – 120            | CLAY (95%), olive gray (5Y 4/1) to medium dark gray (N4), trace very fine phosphate grains, moderately cohesive, low permeability; SHELL FRAGMENTS (<5%), yellowish gray (5Y 8/1), moderately soft, mollusk shells (bivalves and cephalopods), overall low permeability.                                                                                                                                                                                                                                                                           |
| 120 – 155           | CLAY (100%), olive gray (5Y 4/1) to medium dark gray (N4), minor small shell fragments, trace very fine phosphate grains, very cohesive, low permeability.                                                                                                                                                                                                                                                                                                                                                                                         |
| 155 – 160           | SANDY CLAY (90%), medium gray (N5) to olive gray (5Y 4/1) to dark green gray (5GY 4/1), very fine grain, quartz and carbonate grains, very fine phosphate grains, moderately cohesive; CLAY (10%), olive gray (5Y 4/1) to dark green gray (5GY 4/1), abundant very fine phosphate grains, moderately cohesive, low porosity.                                                                                                                                                                                                                       |
| 160 – 195           | SILTY CLAY (90%), medium gray (N5) to olive gray (5Y 4/1) to dark green gray (5GY 4/1), silt size grains, quartz and carbonate grains, very fine phosphate grains, moderately cohesive; CLAY (10%), olive gray (5Y 4/1) to dark green gray (5GY 4/1), abundant very fine phosphate grains, moderately cohesive, low porosity.                                                                                                                                                                                                                      |
| 195 – 225           | CLAYEY SAND (100%), light olive gray (5Y 6/1) to light gray (N7), very fine to                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

|                     | FLORIDA POWER AND LIGHT                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     | OCEC CMA: WELL FA-6                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                     | Lithologic Log                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Depth<br>(Feet BLS) | Lithologic Description                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                     | medium grain, quartz and carbonate grains, abundant phosphate grains, minor fossils/undifferentiated shell fragments, moderately cohesive, low permeability.                                                                                                                                                                                                                                                                                             |
| 225 – 245           | SANDY CLAY (100%), very light gray (N5) to light gray (N7), silt to very fine grain, quartz and carbonate grains, very fine phosphate grains, poorly cohesive, low permeability.                                                                                                                                                                                                                                                                         |
| 245 – 270           | SANDY CLAY (100%), medium gray (N5) to dark green gray (5GY 4/1), very fine to medium grain quartz and carbonate grains, very fine phosphate grains, traces of very fine shell fragments, moderately cohesive.                                                                                                                                                                                                                                           |
| 270 – 305           | CLAY (100%), olive gray (5Y 4/1) to medium dark gray (N4), trace very fine phosphate grains, very cohesive.                                                                                                                                                                                                                                                                                                                                              |
| 305 – 310           | SANDY CLAY (75%), medium gray (N5) to olive gray (5Y 4/1) to dark green gray (5GY 4/1), semi consolidated, silt to very fine grained, quartz, carbonate, and phosphate grains, very cohesive; CLAY (25%), olive gray (5Y 4/1) to dark green gray (5GY 4/1), unconsolidated, very fine phosphate grains, very cohesive.                                                                                                                                   |
| 310 – 325           | CLAYEY SAND (50%), light olive gray (5Y 6/1), unconsolidated, very fine to medium grain, quartz and carbonate grains, abundant phosphate grains, moderately cohesive; FOSSILIFEROUS LIMESTONE (50%), yellowish gray (5Y 8/1), moderately soft to hard, fossiliferous, abundant phosphate grains, abundant fossil/undifferentiated shell casts and molds, moldic porosity. A transition zone out of the Hawthorne into the Upper Floridan Aquifer System. |
| 325 – 375           | FOSSILIFEROUS LIMESTONE (100%) yellowish gray (5Y 8/1) to light gray (N7), moderately hard, fossiliferous, abundant fossil/shell casts and molds, moderately cemented, intergranular porosity.                                                                                                                                                                                                                                                           |
| 375 – 395           | DOLOMITIC LIMESTONE (100%), very pale orange (10YR 8/2) to pale yellowish brown (10YR 6/2), hard, coarse sand sized grained to gravel sized fragments, sub angular, minor vuggy porosity, variably crystalline.                                                                                                                                                                                                                                          |
| 395 – 410           | LIMESTONE (100%), yellowish gray (5Y 8/1), moderately hard, very fine to medium grained, vuggy porosity.                                                                                                                                                                                                                                                                                                                                                 |
| 410 – 480           | FOSSILIFEROUS LIMESTONE (60%), yellowish gray (5Y 8/1) to medium light gray (N6), abundant phosphate grains, abundant fossil/undifferentiated shell casts and molds, moldic porosity; LIMESTONE (40%), yellowish gray (5Y 8/1), moderately hard, very fine to medium grained, vuggy porosity.                                                                                                                                                            |
| 480 – 490           | DOLOMITE (90%) pale brown (5YR 5/2) to dark yellowish brown (10YR 4/2), hard, medium grain, sub angular to sub rounded; LIMESTONE (10%), very pale orange (10YR 8/2), moderately hard, medium grain, sub angular, moderately vuggy.                                                                                                                                                                                                                      |
| 490 – 575           | FOSSILIFEROUS LIMESTONE (95%), yellowish gray (5Y 8/1) to very pale orange (10YR 8/2), moderately hard, very fine to medium grained, carbonate grains,                                                                                                                                                                                                                                                                                                   |

|                     | FLORIDA POWER AND LIGHT<br>OCEC CMA: WELL FA-6<br>Lithologic Log                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Depth<br>(Feet BLS) | Lithologic Description                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                     | fossil/undifferentiated shell casts and molds, intergranular porosity,<br>lepidocyclina present; CLAY (5%), medium gray (N5), moderately cohesive.<br>Overall, fossiliferous limestone thinly interbedded with clay.                                                                                                                                                                                                                            |
| 575 – 585           | LIMESTONE (100%), very pale orange (10YR 8/2) to light gray (N7), moderately hard, medium grained, sub angular to sub rounded, moderately hard.                                                                                                                                                                                                                                                                                                 |
| 585 – 675           | FOSSILIFEROUS LIMESTONE (60%), yellowish gray (5Y 8/1) to medium light gray (N6), moderately soft to hard, abundant phosphate grains, abundant fossil/undifferentiated shell casts and molds, moldic porosity; LIMESTONE (40%), yellowish gray (5Y 8/1), moderately hard, very fine to medium grained, vuggy porosity; DOLOMITIC LIMESTONE (<5%), very pale orange (10YR 8/2), hard, fine to medium grained, sub angular, variably crystalline. |
| 675 – 695           | DOLOMITE (90%) pale brown (5YR 5/2) to dark yellowish brown (10YR 4/2), hard, medium grained, sub angular to sub rounded; LIMESTONE (10%), very pale orange (10YR 8/2), moderately hard, medium grained, sub angular, moderately vuggy.                                                                                                                                                                                                         |
| 695 – 735           | LIMESTONE (100%), white (N9) to very pale orange (10YR 8/2), fine to medium grained, sub angular, moderately soft, chalky to variably crystalline, vuggy and slightly fossiliferous.                                                                                                                                                                                                                                                            |
| 735 – 800           | LIMESTONE (100%), very pale orange (10YR 8/2), medium grained, sub angular to rounded, moderately soft, variably crystalline, moderately vuggy.                                                                                                                                                                                                                                                                                                 |

# Attachment 2:

Reverse Air Drilling Water Quality and Flow Testing Data

| Depth | Botto   | om Hole (Dr | ill Stem) | WQ   |         | Δ        | nnulus W | Q           |      |        |       | Annulus Fl | ow       |
|-------|---------|-------------|-----------|------|---------|----------|----------|-------------|------|--------|-------|------------|----------|
|       | Cond    | Chloride    | TDS       | рН   | Cond    | Chloride | TDS      | H2S         | рН   | Total  | Flow  | Drawdown   | Specific |
|       |         | (           | (         |      | (       | (        | (        | (           |      | Iron   | Rate  | (6         | Capacity |
| 070   | (μS/cm) | (mg/L)      | (mg/L)    | 0.70 | (uS/cm) | (mg/L)   | (mg/L)   | (mg/L)<br>I |      | (mg/L) | (gpm) | (feet)     | (gpm/ft) |
| 370   | 810     | 104         | 485       | 8.79 |         |          |          |             |      |        |       |            |          |
| 380   | 896     | 101         | 537       | 8.22 |         |          |          |             |      |        |       |            |          |
| 390   | 884     | 101         | 530       | 8.15 |         |          |          |             |      |        |       |            |          |
| 400   | 800     | 99          | 520       | 8.19 | 047     | 00       | 400      | 0.40        | 7.0  | 0.0    | 40    | 0.00       | 40       |
| 406   | 8//     | 100         | 527       | 8.15 | 817     | 96       | 490      | 0.10        | 7.9  | 0.6    | 46    | 3.69       | 12       |
| 410   | 892     | 96          | 535       | 8.31 |         |          |          |             |      |        |       |            |          |
| 420   | 858     | 94          | 516       | 8.29 |         |          |          |             |      |        |       |            |          |
| 430   | 851     | 85          | 511       | 8.19 |         |          |          |             |      |        |       |            |          |
| 440   | 871     | 94          | 522       | 8.20 |         |          |          |             |      |        |       |            |          |
| 450   | 844     | 95          | 506       | 8.23 | 000     | 00       | 400      | 0.0         | 7.05 | 1.0    |       |            |          |
| 451   | 832     | 95          | 499       | 8.24 | 820     | 88       | 492      | 0.0         | 7.95 | 1.0    | 51.1  | 4.50       | 11       |
| 460   | 873     | 105         | 524       | 8.29 |         |          |          |             |      |        |       |            |          |
| 470   | 843     | 99          | 506       | 8.25 |         |          |          |             |      |        |       |            |          |
| 480   | 787     | 78          | 472       | 8.29 |         |          |          |             |      |        |       |            |          |
| 490   | 770     | 74          | 462       | 8.23 |         |          |          |             |      |        |       |            |          |
| 496   | 776     | 76          | 466       | 8.29 | 813     | 89       | 488      | 0.0         | 7.80 | 1.0    | 70    | 4.34       | 16       |
| 500   | 758     | 73          | 454       | 8.14 |         |          |          |             |      |        |       |            |          |
| 510   | 760     | 74          | 456       | 8.19 |         |          |          |             |      |        |       |            |          |
| 520   | 767     | 74          | 460       | 8.26 |         |          |          |             |      |        |       |            |          |
| 530   | 763     | 73          | 458       | 8.15 |         |          |          |             |      |        |       |            |          |
| 541   | 776     | 75          | 466       | 8.38 | 806     | 88       | 467      | 0.0         | 7.74 | 1.5    | 80    | 4.03       | 20       |
| 550   | 692     | 50          | 415       | 8.29 |         |          |          |             |      |        |       |            |          |
| 560   | 714     | 66          | 429       | 8.30 |         |          |          |             |      |        |       |            |          |
| 570   | 663     | 70          | 397       | 8.23 |         |          |          |             |      |        |       |            |          |
| 580   | 851     | 104         | 512       | 8.17 |         |          |          |             |      |        |       |            |          |
| 586   | 864     | 101         | 518       | 8.28 | 813     | 91       | 488      | 0.0         | 7.74 | 1.5    | 180   | 4.06       | 44       |
| 590   | 893     | 114         | 536       | 8.08 |         |          |          |             |      |        |       |            |          |
| 600   | 901     | 109         | 541       | 8.18 |         |          |          |             |      |        |       |            |          |
| 610   | 878     | 102         | 527       | 8.18 |         |          |          |             |      |        |       |            |          |
| 620   | 870     | 105         | 522       | 8.17 |         |          |          |             |      |        |       |            |          |
| 631   | 845     | 87          | 507       | 8.28 | 866     | 106      | 520      | 1.50        | 7.95 | 3.0    | 230   | 3.79       | 61       |
| 640   | 878     | 96          | 527       | 8.20 |         |          |          |             |      |        |       |            |          |
| 650   | 857     | 89          | 514       | 8.15 |         |          |          |             |      |        |       |            |          |
| 660   | 858     | 89          | 515       | 8.18 |         |          |          |             |      |        |       |            |          |
| 670   | 850     | 89          | 510       | 8.19 |         |          |          |             |      |        |       |            |          |
| 676   | 849     | 87          | 509       | 8.29 | 868     | 108      | 515      | 2.0         | 7.94 | 3.5    | 270   | 3.24       | 83       |
| 680   | 885     | 95          | 531       | 8.35 |         |          |          |             |      |        |       |            |          |
| 690   | 888     | 91          | 547       | 8.31 |         |          |          |             |      |        |       |            |          |
| 700   | 889     | 91          | 532       | 8.41 |         |          |          |             |      |        |       |            |          |

## Summary of Pilot Hole Water Quality and Flow Testing Data, FPL OCEC Production Well FA-6

## Summary of Pilot Hole Water Quality and Flow Testing Data, FPL OCEC Production Well FA-6

| Depth | Botto   | om Hole (Dr | ill Stem) | WQ   |         | А        | nnulus W | Q      |      |               |              | Annulus Fl | ow                   |
|-------|---------|-------------|-----------|------|---------|----------|----------|--------|------|---------------|--------------|------------|----------------------|
|       | Cond    | Chloride    | TDS       | рН   | Cond    | Chloride | TDS      | H2S    | рН   | Total<br>Iron | Flow<br>Rate | Drawdown   | Specific<br>Capacity |
|       | (µS/cm) | (mg/L)      | (mg/L)    |      | (uS/cm) | (mg/L)   | (mg/L)   | (mg/L) |      | (mg/L)        | (gpm)        | (feet)     | (gpm/ft)             |
| 710   | 894     | 89          | 535       | 8.23 |         |          |          |        |      |               |              |            |                      |
| 720   | 898     | 94          | 542       | 8.22 |         |          |          |        |      |               |              |            |                      |
| 721   | 899     | 92          | 535       | 8.24 | 871     | 92       | 528      | 2.0    | 7.96 | 3.0           | 280          | 3.06       | 92                   |
| 730   | 891     | 91          | 535       | 8.22 |         |          |          |        |      |               |              |            |                      |
| 740   | 907     | 98          | 543       | 8.26 |         |          |          |        |      |               |              |            |                      |
| 750   | 884     | 94          | 528       | 8.23 |         |          |          |        |      |               |              |            |                      |
| 760   | 907     | 95          | 543       | 8.19 |         |          |          |        |      |               |              |            |                      |
| 766   | 903     | 91          | 537       | 8.22 | 876     | 102      | 526      | 2.0    | 7.96 | 3.0           | 290          | 2.86       | 101                  |
| 770   | 928     | 105         | 556       | 8.13 |         |          |          |        |      |               |              |            |                      |
| 780   | 921     | 106         | 552       | 8.13 |         |          |          |        |      |               |              |            |                      |
| 790   | 906     | 103         | 544       | 8.17 |         |          |          |        |      |               |              |            |                      |
| 800   | 890     | 112         | 534       | 8.21 |         |          |          |        |      |               |              |            |                      |
| 811   | 857     | 93          | 514       | 8.35 | 848     | 99       | 509      | 2.0    | 8.02 | 0.8           | 300          | 2.73       | 110                  |

- Cond ( $\mu$ S/cm) denotes field conductivity measured in microsiemens per centimeter

- mg/L denotes milligrams per liter

- H<sub>2</sub>S denotes field hydrogen sulfide

- Depth refers to the total depth of the pilot hole at the time both the drill stem and the annulus sample was collected

- gpm/ft denotes specific capacity in gallons per minute per foot of drawdown

- Reverse-air, open circulation drilling method was used during pilot hole drilling

# Summary of Reverse-Air Drilling Water Quality Data, FPL OCEC Production Well FA-6



# Attachment 3:

Geophysical Log Plots

## Summary of Geophysical Logs Performed, FPL OCEC Production Well FA-6

| Date      | Geophysical                                                 | Casing Depth | Open Hole Depth | Casing/Drilled Hole |
|-----------|-------------------------------------------------------------|--------------|-----------------|---------------------|
| Performed | Survey Performed                                            | (feet bpl)   | (feet bpl)      | Diameter (inches)   |
| 08/22/17  | X-Y Caliper, Gamma Ray                                      | 8            | 136             | 56 / 12             |
| 08/22/17  | Dual Induction LL3 with SP                                  | 8            | 136             | 56 / 12             |
| 08/24/17  | X-Y Caliper, Gamma Ray                                      | 8            | 120             | 56 / 56             |
| 08/28/17  | X-Y Caliper, Gamma Ray                                      | 117          | 406             | 48 / 12             |
| 08/28/17  | Dual Induction LL3 with SP                                  | 117          | 406             | 48 / 12             |
| 09/04/17  | X-Y Caliper, Gamma Ray                                      | 118          | 361             | 48 / 46             |
| 09/27/17  | X-Y Caliper, Gamma Ray                                      | 357          | 811             | 36 / 15             |
| 09/27/17  | Dual Induction LL3 with SP                                  | 357          | 811             | 36 / 15             |
| 09/27/17  | Fluid Conductivity, Temperature; static & dynamic (474 gpm) | 357          | 811             | 36 / 15             |
| 09/27/17  | Flowmeter; static & dynamic (474 gpm)                       | 357          | 811             | 36 / 15             |
| 10/11/17  | Video Survey; dynamic (570 gpm)                             | 357          | 803             | 36 / 34             |

- "feet bpl" denotes feet below pad level

- Casing Depth refers to the depth of the innermost (deepest) casing installed at the time the geophysical log was performed

- Open Hole Depth refers to the depth of the open hole at the time the geophysical log was performed

- Casing/Drilled Hole Diameter refers to outside diameter of the innermost (deepest) casing installed at the time the log was performed. The subsequent number refers to the nominal open-hole diameter at the time the log was performed.

- Flow rates in parantheses (ex: 474 gpm) refer to the rate the well was flowing or pumping during dynamic logging in gallons per

minute (gpm)

# Geophysical Log Plots and Field Water Quality Data, FPL OCEC Production Well FA-6



# Geophysical Log Plots and Field Water Quality Data, FPL OCEC Production Well FA-6



# Geophysical Log Plots and Field Water Quality Data, FPL OCEC Production Well FA-6



# Attachment 4:

Step Drawdown Test Data

### Summary of Step Rate Test Performance and Water Quality Data, FPL OCEC Production Well FA-6

| PERFORMANCE DATA |           |           |                        |            |                   |  |  |  |  |  |  |  |
|------------------|-----------|-----------|------------------------|------------|-------------------|--|--|--|--|--|--|--|
| Step             | Pump Rate | Duration  | Stabilized Water Level | Drawdown   | Specific Capacity |  |  |  |  |  |  |  |
|                  | (gpm)     | (minutes) | (feet bpl)             | (feet bpl) | (gpm/ft)          |  |  |  |  |  |  |  |
| 1                | 1406      | 128       | 14.63                  | 22.9       | 61                |  |  |  |  |  |  |  |
| 2                | 2142      | 120       | 29.34                  | 37.6       | 57                |  |  |  |  |  |  |  |
| 3                | 2802      | 120       | 42.70                  | 50.9       | 55                |  |  |  |  |  |  |  |
| 4                | 3643      | 125       | 60.72                  | 69.0       | 53                |  |  |  |  |  |  |  |
| 5                | 4118      | 124       | 71.46                  | 79.7       | 52                |  |  |  |  |  |  |  |

Static water level prior to commencement of test was measured at 8.24 feet above pad level. Drawdown and specific capacity calculatons are based on this water level.

|      | FIELD WATER QUALITY |              |             |          |            |        |           |          |        |          |  |  |  |
|------|---------------------|--------------|-------------|----------|------------|--------|-----------|----------|--------|----------|--|--|--|
| Step | Sand                | Silt Density | Specific    | Chloride | рН         | TDS    | Turbidity | Hydrogen | Total  | Soluable |  |  |  |
|      | Concentration       | Index        | Conductance |          |            |        |           | Sulfide  | Iron   | Iron     |  |  |  |
|      | (ppm)               |              | (μS/cm)     | (mg/L)   | (pH units) | (mg/L) | (NTU)     | (mg/L)   | (mg/L) | (mg/L)   |  |  |  |
| 1    | <0.1                | n/a          | 718         | 77.25    | 7.67       | 466    | 0.93      | 2.0      | 0.1    | 0        |  |  |  |
| 2    | <0.1                | 0.7          | 721         | 76       | 7.67       | 451    | 0.01      | 2.0      | 0.1    | 0        |  |  |  |
| 3    | <0.1                | 0.44         | 740         | 75.25    | 7.67       | 481    | 0.12      | 2.0      | 0.1    | 0        |  |  |  |
| 4    | <0.1                | 0.29         | 758         | 74.25    | 7.68       | 492    | 6.27      | 2.0      | 0.1    | 0        |  |  |  |
| 5    | 2.1                 | 0.2          | 769         | 70       | 7.67       | 500    | 0.76      | 2.0      | 0.1    | 0        |  |  |  |

- gpm denotes gallons per minute

- ft bpl denotes feet below pad level

- gpm/ft denotes specific capacity in gallons per minute per foot of drawdown

- ppm denotes parts per million

- "mg/L" denotes concentration in units of milligrams per liter

- " $\mu$ S/cm" denotes specific conductance in units of microSiemens per centimeter.

- "NTU" denotes Nephelometric Turbidity Units

- Sand concentrations noted above are based on measurements excluding the first 15 minutes (or greater) of pumping at each step

- Silt Density Index (SDI) values noted above are based on SDI tests performed near the completion of each step

- On 10/9/17 the step rate pump test was performed and the final water quality sample for lab analysis was collected



# Final Water Quality Sample Analytical Results, FPL OCEC Production Well FA-6

| Parameter                     | Units    | Result  |   | Parameter                | Units | Result   |
|-------------------------------|----------|---------|---|--------------------------|-------|----------|
| Silica, Dissolved             | mg/L     | 21.2    |   | 1,1,2-Trichloroethane    | μg/L  | 0.500 U  |
| Langelier_Index               | LX       | 0.060   |   | 1,1-Dichloroethene       | μg/L  | 0.500 U  |
| Saturation_Index              | pHs      |         |   | 1,2,4-trichlorobenzene   | μg/L  | U        |
| Stability_Index               | pHs      |         |   | 1,2-dichloroethane       | μg/L  | 0.500 U  |
| Residual Chlorine             | mg/L     | 0.10    | U | 1,2-dichloropropane      | μg/L  | 0.500 U  |
| Turbidity                     | NTU      | 0.22    |   | Benzene                  | μg/L  | 0.10 U   |
| Bicarbonate Alkalinity        | mg/L     |         |   | Carbon Tetrachloride     | μg/L  | 0.500 U  |
| Carbonate CaCO3               | mg/L     |         | U | Chlorobenzene            | μg/L  | 0.500 U  |
| Total Alkalinity CaCO3        | mg/L     | 141     |   | Ethylbenzene             | μg/L  | 0.500 U  |
| Specific Conductance          | μmhos/cm | 820     |   | Methylene chloride       | μg/L  | 2.500 U  |
| Color                         | CU       | 5.00    | U | Para-dichlorobenzene     | μg/L  | 0.500 U  |
| Total Solids                  | mg/L     | 599     |   | Styrene                  | μg/L  | 0.500 U  |
| Chloride                      | mg/L     | 64.3    |   | Tetrachloroethene        | μg/L  | 0.500 U  |
| Nitrate (as N)                | mg/L     | 0.0250  | U | Toluene                  | μg/L  | 0.500 U  |
| Nitirite (as N)               | mg/L     | 0.0250  | U | Trichloroethene          | μg/L  | 0.500 U  |
| Sulfate                       | mg/L     | 149     |   | Vinyl chloride           | μg/L  | 0.500 U  |
| Aluminum                      | mg/L     | 0.050   | U | Xylenes (total)          | μg/L  | 1.500 U  |
| Aluminum, Dissolved           | mg/L     | 0.050   | U | cis-1,2-dichloroethene   | μg/L  | 0.500 U  |
| Arsenic                       | mg/L     | 0.0050  | U | o-dichlorobenzene        | μg/L  | 0.500 U  |
| Barium                        | mg/L     | 0.0413  |   | trans-1,2-dichloroethene | μg/L  | 0.500 U  |
| Boron                         | mg/L     | 0.098   |   | TDS                      | mg/L  | 474      |
| Chromium                      | mg/L     | 0.00250 | U | BOD5day                  | mg/L  | 2.70     |
| Copper                        | mg/L     | 0.00250 | U | тос                      | mg/L  | 1.90     |
| Lead                          | mg/L     | 0.00530 | Ι | Orthophosphate (as P)    | mg/L  | 0.029    |
| Selenium                      | mg/L     | 0.00750 | U | TKN (as N)               | mg/L  | 0.33 I   |
| Silica (SiO2)                 | mg/L     | 2.3     |   | Total Phosphorus (as P)  | mg/L  | 0.050 U  |
| Silver                        | mg/L     | 0.00250 | U | Lab pH                   | pHs   | 7.6      |
| Strontium                     | mg/L     | 18.2    |   | Ammonia (as N)           | mg/L  | 0.34     |
| Zinc                          | mg/L     | 0.010   | U | Iron                     | mg/L  | 0.02 U   |
| Magnesium                     | mg/L     | 40.4    |   | Magnesium Hardness CaCO3 | mg/L  | 166      |
| Calcium                       | mg/L     | 58.7    |   | Manganese                | mg/L  | 0.0025 U |
| Calcium Hardness (CaCO3)      | mg/L     | 147     |   | Potassium                | mg/L  | 3.9      |
| Iron, Dissolved               | mg/L     | 0.02    | U | Sodium                   | mg/L  | 44.3     |
| Manganese, Dissolved          | mg/L     | 0.0025  | U | Fluoride                 | mg/L  | 0.68     |
| Hydrogen Sulfide (un-ionized) | mg/L     | 0.62    |   | Sulfide                  | mg/L  | 2.8      |
| TSS                           | mg/L     | 5.0     | U |                          |       |          |
| 1,1,1-Trichloroethane         | μg/L     | 0.500   | U |                          |       |          |

-"TKN" denotes Total Kjeldahl Nitrogen

-"TDS" denotes Total Dissolved Solids

-"mg/L" denotes concentration in units of milligrams per liter

-"µmhos/cm" denotes specific conductance in units of micromhos per centimeter

- "NTU" denotes Nephelometric Turbidity Units

-" $\mu$ g/L" denotes concentration units of micrograms per liter

-"U" indicates compound was analyzed for but not detected

-"I" indicates reported value between the laboratory method detection limit and the laboratory pratical quantitation limit