

Imagine the result

Seacoast Utility Authority

Construction and Testing Report

Floridan Aquifer Test Well F-1

July 2007

Construction and Testing Report

Seacoast Utility Authority Floridan Aquifer Test Well F-1

David K. Smith Hydrogeology Dept. Manager

Thomas Tessier, P.G. Vice President

> Prepared for: Seacoast Utility Authority

Prepared by: ARCADIS U.S., Inc. 2081 Vista Parkway West Palm Beach Florida 33411 Tel 561.697.7000 Fax 561.697.7751

Our Ref.: WF005600.0000

Date: July 2007

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

Table of Contents

1.	Introduction										
2.	Test	Objectives		1							
3.	Regi	onal Hydroge	eological Setting	2							
4.	Cons	Testing	3								
	4.1	Construction	of F-1 Outer Casing Strings	4							
		4.1.1	Surface Casing:	4							
		4.1.2	Intermediate Casing:	4							
	4.2	Pilot-Hole Dri	lling	5							
		4.2.1	Geological Profile	6							
		4.2.2	Water Quality and Flow Profile	7							
		4.2.3	Geophysical Logging	8							
		4.2.4	Dynamic Flow Profile	9							
		4.2.5	Packer Testing	10							
		4.2.6	Water Quality and Flow Summary	12							
	4.3	Final Construction									
		4.3.1	Final Casing	14							
		4.3.2	Well Development	14							
		4.3.3	Step Rate Test	15							
		4.3.4	Constant Rate Test	16							
		4.3.5	Silt Density Index Test	18							
		4.3.6	Final Water Quality Sampling	19							
5.	Sum	mary		20							

Table of Contents

Figures

1	Site Location Map
2	Floridan Aquifer Test Well F-1 Location
3	Floridan Aquifer Test Well F-1 Construction and Testing Details
4	Dynamic Flow Profile
Tables	

- 2 Drilling Water Quality Data Summary
- 3 Packer and Open Hole Testing Summary
- 4 Step Rate Pumping Test Summary
- 5 SDI Testing Summary
- 6 Water Quality Summary

Appendices

- A Geologic (Well) Log
- B Geophysical Logs
- C Packer Tests
- D Laboratory Data
- E Pumping Test Data Final Well Video Survey
- F Final Well Video Survey

Construction and Testing Report

Seacoast Utility Authority Floridan Aquifer Test Well F-1

1. Introduction

In February 2006, Seacoast Utility Authority (SUA) retained ARCADIS G&M, Inc., (ARCADIS) to provide hydrogeologic consulting services for the construction and testing of a test well, designated as Well F-1, to be constructed into the Floridan aquifer at the Hood Road Water Treatment Plant in Palm Beach Gardens, Florida. A site map showing the general location of the test well is presented as **Figure 1**, with a more detailed site plan provided in **Figure 2**.

The well was designed as a test-production well, so that relevant data could be obtained during construction, and so that the well could have future potential use as a production well for Seacoast's planned reverse osmosis water treatment system. An open-hole well design was proposed for F-1. Well construction and testing procedures were performed in accordance with the July 2006 contract and specifications entitled "Seacoast Utility Authority Floridan Aquifer Test Well No. 1 Construction", prepared by ARCADIS. The Contractor selected for the construction and testing of Well F-1 was All Webb's Enterprises, Inc. a Florida state licensed water well contractor.

2. Test Objectives

The prime objective of the test well was to establish the optimal design for future Floridan aquifer supply wells proposed for the Hood Road Water Treatment site. Seacoast Utility Authority requires a total of 8.0 million gallons per day (mgd) to be produced from the supply wells (three wells rated at 1,850 gallons per minute each), and need reasonable assurance that the water quality will remain at levels which may be treated by the proposed reverse osmosis water treatment plant.

The Floridan aquifer at this location contains brackish groundwater, which is known to vary with depth, with salinities as measured by Total Dissolved Solids (TDS), exceeding 10,000 milligrams per liter (mg/L) at depths greater than approximately 1,800 feet below land surface (bls). Experience elsewhere has shown that the aquifer is complex, with discrete flow zones that vary in depth and quality regionally. Therefore, important data include identifying zones of preferred water quality (lower salinity) which are sufficiently permeable to yield the required quantities of groundwater without causing vertical migration of poorer quality groundwater (either from upconing of saline groundwater with TDS greater than 10,000 mg/L, or by downwards movement of poorer quality groundwater known to exist in some locations directly beneath the Hawthorn Group which confines the Floridan aquifer).

Construction and Testing Report

Seacoast Utility Authority Floridan Aquifer Test Well F-1

To achieve these objectives, a carefully designed testing program consisting of pilothole drilling, drill-stem, water quality sampling, flow measurements, geophysical logging and packer testing was completed, prior to reaming the test hole to a larger diameter and completing the well with a final casing string sufficiently sized to allow installation of a deep well submersible or vertical turbine pump.

3. Regional Hydrogeological Setting

The regional stratigraphy and hydrogeological setting of the area surrounding the Hood Road Water Treatment Plant is summarized in **Table 1**. Two major aquifer units present at this location - the Surficial aquifer and the Floridan aquifer, separated by a thick sequence of clays belonging to the Hawthorn Group

The Surficial aquifer is composed mainly of limestone, sandstone and clay, with varying amounts of unconsolidated sand and shell between land surface and 220 feet deep. This aquifer contains the water table and water within it under mainly unconfined conditions. These sediments correspond to descriptions of the Pleistocene-age Pamlico Sand and Anastasia Formations. Below 220 feet to 420 feet deep, the sediments are mainly composed of interbedded limestone, sand and shell. These descriptions correspond to the Post-Miocene sediments of the Tamiami Formation.

The lower limit of the Surficial aquifer coincides with the top of laterally extensive and vertically persistent beds of much lower permeability. These beds, which belong to the Hawthorn Group, consist of approximately 450 feet of Miocene age clays and marls (with some limestones) which form a confining sequence between the Surficial aquifer and the Oligocene to Eocene-age limestones and dolomites of the Floridan aquifer. The Hawthorn Group is found throughout South Florida and has been redesignated (from the Hawthorn, Peace River and Arcadia Formations) to the Hawthorn Group based on extensive work to define the areal extent of the several formations comprising these sediments in Florida.

The Hawthorn Group sediments overlie the Floridan aquifer which exists under artesian conditions with a potentiometric water level above land surface. Although permeable beds (comprising the Intermediate Aquifer System) exist sometimes within the Hawthorn Group, the Hawthorn Group units generally form a confining sequence (or aquiclude) in northern Palm Beach County and nearby Martin County and the water quality is poor in comparison to the overlying Surficial aquifer.

Construction and Testing Report

Seacoast Utility Authority Floridan Aquifer Test Well F-1

The Floridan aquifer includes the thick carbonate sequence of all or part of the Paleocene to early Miocene Series and, in south Florida, serves as a regionally significant water-yielding unit under confined conditions. The Floridan aquifer underlies all of Florida and southern Georgia and includes all of the middle and upper Eocene-age Ocala Group (Avon Park and Lake City Formations) and the Oligocene-age Suwannee limestone and those permeable Hawthorn Group beds in contact with the rest of the aquifer. Water from the Floridan aquifer in this area contains concentrations of total dissolved solids (TDS) which exceed drinking water standards. However, use of Floridan aquifer water has become an established necessity in order to reduce pumping of the better-quality water from the Surficial aquifer (both to mitigate potential impacts to environmentally sensitive wetlands and to reduce the potential for saltwater intrusion in the Surficial aquifer). The Floridan aquifer is artesian in all parts of Palm Beach and Martin Counties, except in areas of eastern Martin County where land surface is more than 50 feet above mean sea level.

4. Construction and Testing

Construction of the test Well F-1 was undertaken in three stages;

- Installation of the outer casing strings down to the base of the Hawthorn Group to ensure artesian pressures (approximately 26 feet above land surface) from the Floridan aquifer were contained, and less competent rock formations within the Surficial aquifer were isolated;
- Pilot-hole drilling and testing to determine the water quality and flow characteristics within the Floridan aquifer;
- Final construction, including installation of final casing following reaming, well development, test pumping, completion of headworks and final water quality sampling.

Final well construction and a summary of the testing completed during pilot-hole drilling is shown graphically in **Figure 3**. Detailed results from the drilling and testing are contained in the Appendices.

Construction and Testing Report

Seacoast Utility Authority Floridan Aquifer Test Well F-1

4.1 Construction of F-1 Outer Casing Strings

4.1.1 Surface Casing:

Between January 9 and January 11, 2007, a nominal 32-inch diameter borehole was drilled by the mud-rotary method from land surface to 453 feet below land surface (bls), where more competent sediments belonging to the Tamiami Formation were encountered. Caliper and gamma-ray logging was performed on the drilled hole prior to installation of a 26-inch outside diameter, 0.375-inch wall thickness steel surface casing, installed to 452 feet bls. This casing was then cemented in place.

4.1.2 Intermediate Casing:

On January 16, 2007, the Contractor began to drill a nominal 12-inch diameter pilothole using a 10.75-inch diameter tri-cone (roller) bit from the base of the 26-inch diameter steel surface casing (452 feet bls) to a depth of approximately 1,015 feet bls using the mud-rotary drilling method. This drilling was completed on January 17, 2007. Geologic descriptions of the drill cuttings were prepared and these descriptions are included in **Appendix A**.

Following completion of the pilot hole, geophysical surveys were performed to determine the appropriate depth for the intermediate casing. Logging was completed by All Webb's Enterprises, Inc., geophysical logging unit and observed by ARCADIS personnel. Geophysical logging of the completed pilot-hole included Spontaneous Potential, Dual-Induction, Single-Point Resistance, Gamma-Ray and X-Y Caliper logs. Copies of the log plots are included in **Appendix B**. The base of the Hawthorn Group clays was noted at a depth of approximately 860 feet bls. A depth of approximately 1,000 feet below grade was selected as most suitable for the Intermediate Casing setting.

The pilot-hole was then reamed to a nominal 26-inch diameter size using the mudrotary method and 20-inch outside diameter, 0.375-inch wall thickness steel intermediate casing was set between 397 and 999 feet bls on January 24, 2007. The intermediate casing was cemented in place during 3 stages of cementing. Upon completion, the Contractor installed equipment required for well testing and for drilling the remainder of the borehole using the reverse-air method of drilling.

Construction and Testing Report

Seacoast Utility Authority Floridan Aquifer Test Well F-1

4.2 Pilot-Hole Drilling

From February 8 to February 21, 2007, the Contractor drilled a nominal 12-inch diameter pilot-hole from the base of the 20-inch diameter intermediate casing to a total depth of 1,750 feet bls by the reverse-air method using a 9.75-inch diameter drilling bit. Geologic descriptions of the drilled cuttings were prepared by ARCADIS personnel and are included in **Appendix A**.

A 1,000-gallon capacity, above-ground steel tank, was used by the Contractor to collect suspended solids prior to discharging the circulation water into a sequence of holding ponds (located within Plant boundaries) which allowed for further settlement of any turbidity, prior to final discharge / overflow to the off-site canal. All discharges were made in accordance with the Contractor's temporary FDEP generic discharge permit.

During drilling, an ARCADIS hydrogeologist collected water samples from the reverseair discharge at 10-foot depth intervals for field measurements of chloride, temperature, specific conductance and pH. Turbidity, dissolved oxygen and hydrogen sulfide field measurements were also performed, but less frequently, due to time restrictions. In addition, the Contractor performed short (30-minute) specific capacity and recovery tests at the completion of each drill rod (every 30 feet) by allowing the artesian well to flow and by measuring the drawdown in the open hole while not re-circulating fluids from the well. The flow from the well was then shut in and static water level was measured. Water levels were measured by extending clear vinyl tubing from a fitting on the blow-out preventer (well casing header) to a height of approximately 35 feet above grade (taped to the rig mast). A survey measuring tape was taped to the mast adjacent to the tubing to provide accurate water-level information.

On February 16, 2007, an extended flow test and development of the 1,002 to 1,135 feet bls section of an open hole was performed and the first water sample for laboratory analyses was collected.

On February 22, 2007, upon reaching a final depth of 1,750 feet bls, geophysical surveys were performed on the nominal 12-inch diameter borehole by Florida Geophysical Logging, Inc. Logging was initially conducted under static conditions. The logging suite was comprised of X-Y caliper, temperature, static flowmeter, gamma-ray, spontaneous potential, single-point resistance and dual-induction. Geophysical surveys were then performed under pumping conditions (fluid resistivity, temperature and dynamic flowmeter). Copies of the log plots are included in **Appendix C**.

Construction and Testing Report

Seacoast Utility Authority Floridan Aquifer Test Well F-1

Based on the geophysical surveys, water-quality data, and the lithologic descriptions, four sections of the open pilot hole were then targeted for single packer tests to determine water quality and test capacity of the water-bearing formation. Results from the packer tests and the other data obtained are summarized below in the following sections.

4.2.1 Geological Profile

From land surface to a depth of 150 feet, the sediments consist primarily of unconsolidated fine to medium grained quartz sand, (very fine to fine-grained, and slightly phosphatic below 60 feet), with traces of shell fragments. Between 40 and 50 feet bls and 90 and 110 feet bls, up to 40% of shell, 20% sandstone and 10% limestone was logged. A layer of shelly sand extends from 150 to 210 feet bls underlain by very silty sand. These sediments belong to the Anastasia Formation which forms a portion of the Surficial aquifer underlying the surface sand (Pamlico Sand from the surface to approximately 10 feet bls).

From 240 feet bls a mix of limestone, shell, and sand extends to 330 feet bls and is separated from phosphate-bearing Miocene clayey sediments of the Hawthorn Group by a 90-foot layer of very silty sand. These relatively thick layers of deposits belong to the Tamiami Formation.

At the top of the Hawthorn Group, encountered at 420 feet bls, is the Hawthorn Formation clayey sediments, described as light olive gray to yellowish gray, mostly calcareous and sandy clay, with traces of limestone and shell. The thickness of the Hawthorn Formation is approximately 570 feet, with sediments of the Arcadia Formation (former Tampa Formation - Scott, 1988) at the base of the Hawthorn Group between 800 and 994 feet bls. The Arcadia Formation is a transitional lithological zone represented by calcareous clay (marl) with small amounts of chert and traces of weathered limestone extending from 800 to 860 feet bls, and another 134 feet of interbedded layers of clay (marl), limestone, (phosphatic) sand and shell to a depth of 994 feet bls.

At 994 feet bls, fossiliferous, weathered limestone was encountered (top of Oligocene Suwannee Limestone). This limestone is regarded as the upper portion of the Floridan aquifer (Scott 1992), although, in some locations in southeast Florida, permeable horizons within the Arcadia Formation where hydraulically linked to the Suwannee Limestone, are sometimes regarded as also belonging to the Upper Floridan aquifer. For a further 74 feet, limestone was so unconsolidated, accompanied by large amounts

Construction and Testing Report

Seacoast Utility Authority Floridan Aquifer Test Well F-1

of calcareous, detritic sand, that it posed a serious drilling problem (disrupting circulation) for the reverse-air method.

From approximately 1,070 feet to 1,200 feet bls, the limestone becomes more competent, better cemented, with large amounts of foraminifera (mostly lepidocyclina) and mollusk shells with an occasional small amount of calcareous clay (marl). Limestone is represented mainly by oolitic grainstone. Micritic, slightly dolomitic limestone began to increase to almost 50% between approximately 1,170 and 1,200 feet bls (attributed to the top of the Ocala Limestone).

For the next 518 feet, lithology is best described as interbedded layers (10 to 40 feet thick) of two types of limestone: soft, poorly cemented yellowish gray oolitic grainstone with fossils (mainly forams), and light to dark gray, slightly dolomitic, fine-grained, moderately hard, moderately well-cemented micritic limestone (packstone to wackestone). This sequence was disrupted only in four, relatively thin intervals: 1,337 to 1,340 feet (90% dolomite, pale yellowish brown), 1,356 to 1,359 feet (calcareous clay with 30% limestone), 1,510 to 1,520 feet (95% dolomite, pale yellowish brown) and 1,650 to 1,660 feet (90% dolomite, dark to medium gray).

The Ocala Limestone belongs to the Upper Eocene and is underlain by the Middle Eocene sediments of the Avon Park Formation which is composed of fossiliferous limestone interbedded with vuggy dolomite (dolostone). This distinction becomes apparent from 1,718 feet bls to the bottom of the well (1,750 feet bls) when layers of pale yellowish brown and medium to light gray, micritic, moderately hard to hard dolomite are interbedded with very pale orange to white, micritic or sucrosic, moderately hard dolomitic limestone. The carbonate sediments of the Avon Park Formation are part of the lower Floridian aquifer and are further subdivided into an upper and lower aquifer (Scott, 1992).

4.2.2 Water Quality and Flow Profile

During pilot-hole drilling, water samples were collected at 10-foot intervals and analyzed in the field for basic parameters: temperature, specific conductivity, pH and chloride concentration. Less frequent samples were analyzed for dissolved oxygen, turbidity, and hydrogen sulfide.

Construction and Testing Report

Seacoast Utility Authority Floridan Aquifer Test Well F-1

Samples were taken from the drill pipe under artesian flow, and therefore represent, in broad terms, the likely groundwater quality at the depth of the drill bit. At every drilling rod change, the drill bit was raised several feet and the well was allowed to flow until clarity improved, so the reliability of these samples was improved after this short development period. During sampling the artesian flow rate was also measured, providing an initial summary of the flow accretion profile as drilling progressed. On several occasions, the outlet from the well casing was also opened and allowed to flow, thereby allowing a composite water quality sample to be taken. Results from these preliminary flow tests and water quality analysis are summarized in **Table 2**.

4.2.3 Geophysical Logging

The following geophysical logs were conducted during construction and testing:

- Caliper and gamma-ray logs of the nominal 32-inch diameter open hole from surface to 451 feet bls, prior to installation of the surface casing (January 12, 2007).
- Caliper, gamma-ray, spontaneous potential and single-point resistance logs were run in the pilot hole from the bottom of the surface casing to 1,015 feet bls on January 18, 2007. These logs were run to confirm the depth of the Hawthorn Group and to determine the appropriate depth for the intermediate casing.
- Caliper log and video (TV) survey of the intermediate casing seat and pilot-hole section from 999 to 1,063 feet bls were completed on February 12, 2007 due to concerns with well stability and sand dredging problems. Total depth of the drilled hole at the time of survey was 1,073 feet bls, but 10 feet of sand accumulated almost instantaneously.
- 4. Detailed logging of the pilot hole in the interval 999 feet to the total depth of 1,750 feet bls occurred on February 26, 2007 following completion of drilling, with a video survey taking place the next day. Logging comprised caliper, gamma-ray, temperature, spontaneous potential, single-point resistance, dual-induction and fluid velocity logs which were run under static conditions. After the well was initially developed (free flow) for 2 hours, the flow was restored and stabilized at a rate of 2,650 to 2,670 gpm. Temperature, resistivity and fluid velocity logs were then run under dynamic (flowing) conditions.

Construction and Testing Report

Seacoast Utility Authority Floridan Aquifer Test Well F-1

5. A caliper log was run on the reamed, nominal 20-inch diameter open hole in the 999 feet to 1,600 feet interval, on March 30, 2007, prior to final casing installation.

Copies of the geophysical logs are included in **Appendix B**. These logs were important for determining the lithological, water quality and flow profile of the test well, as well as assisting with the construction of the well.

4.2.4 Dynamic Flow Profile

One geophysical log of particular value was the dynamic flow profile obtained while pumping from the pilot hole (open hole section 999 to 1,750 feet bls) at approximately 2,700 gpm (refer to Item 4 above). Results from this log are shown in **Figure 4**, where the flow rate has been converted to percent flow. This detailed log has been generalized so that the relative contribution of flow may be determined. Key features of this profile are summarized below:

Interval	Flow Contribution
Base of casing to 1,040 feet bls	No flow
1,050 feet bls	Flow zone (evidenced as loss into formation)
1,050 to 1,140 feet bls	Limited or no flow
1,140 feet bls	Major Flow Zone (single fracture zone)
1,140 to 1,260 feet bls	Flow accretion and loss (loss at 1220 feet)
1,260 to 1,470 feet bls	Significant flow accretion via multiple flow zones
1,470 to 1,525 feet bls	No flow
1,525 to 1,585 feet bls	Flow Zone
1,585 to 1,710 feet bls	Limited Flow
1,710 to base of pilot-hole, 1,750 feet bls	Flow Zone

Construction and Testing Report

Seacoast Utility Authority Floridan Aquifer Test Well F-1

4.2.5 Packer Testing

Intervals for packer testing the open hole from 999 to 1,750 feet bls were selected after reviewing data collected during pilot-hole drilling (geological logs, water quality field parameters, flow test data and geophysical logs). Four specific intervals were selected for single packer tests after it was determined that straddle packer testing would be more problematic. Using single packers also provided the opportunity to test water quality and flow from both above and below the packer assembly, and to simulate potential vertical hydraulic leakance.

Careful selection of the packer depths was required to ensure confidence that the inflated packers would adequately seal against the formation. Final selection was made using the X-Y caliper log (to ensure the maximum packer inflate size was not exceeded), and the vertical and horizontal side-scan video survey (to ensure the packer was not seated against any minor vertical or horizontal fractures not discernable on the caliper survey).

Testing procedures involved suppressing the artesian head, setting and inflating the packer at the selected depth, restoring the artesian flow (both above and below the packer) and then developing the test zone by free flow via a 3.5-inch diameter drill pipe connected to the packer assembly until monitored field water quality parameters stabilized. Flow rates from the test zone were recorded via an inline flow meter and a water sample taken.

After sampling of the "test zone" below the packer was complete, both the test zone and the interval above the packer (referred to as the "annulus") was shut in to allow artesian water levels to recover and an accurate measurement of static water level both above and below the packer to be recorded using pressure transducers and data loggers installed. Following water level recovery, the interval above the packer was then allowed to flow by opening the valve on the intermediate casing. Water quality samples of the annulus were then taken, and flow rates were measured using a calibrated orifice flow meter. Water level changes in the test zone (i.e., below the packer) were measured to determine vertical hydraulic connection. Test intervals are summarized in **Table 3**, and results are contained in **Appendix C**.

Construction and Testing Report

Seacoast Utility Authority Floridan Aquifer Test Well F-1

Packer Test No. 1 (PT-1) was conducted in the bottom portion of the borehole in the interval 1,684 and 1,750 feet bls, with the centerline of the 3.5-foot long packer assembly set at 1,684 feet bls. The test zone was developed on March 8, 2007 at a rate of 62 gallons per minute. A total of 22,630 gallons was purged from the test interval (more than 18 pipe and test zone volumes) prior to laboratory sample collection. The zone was then allowed to recover overnight and on March 9, 2007, an annular flow test (i.e. above the packer from the interval 1,002-1,684 feet bls) took place with a constant artesian flow rate of 2,530 gpm. Changes in water levels in both zones were monitored and recorded by transducers to determine vertical hydraulic connection. After approximately 226 minutes, water levels in the test zone stabilized, flow was stopped and water level recovery measurements were taken. Maximum recorded drawdown in the test zone was 0.62 feet and 19.36 feet in the annular flow zone.

Packer Test No. 2 (PT-2) took place on March 10, 2007, and tested the interval between 1,625 and 1,750 feet bls. Approximately 15,800 gallons (almost 9 pipe and zone volumes) were purged at the rate of 78 gpm during development. This time, drawdown in the test zone was minimal (0.09 feet) and water levels returned to the static level during the flow test. This indicates minimal vertical hydraulic connection. Maximum drawdown in the annular flow zone was 19.75 feet while flowing at the same rate (2,530 gpm) as conducted during PT-1.

Packer Test No.3 (PT-3) was conducted on March 12, 2007 with the test interval between 1,500 and 1,750 feet bls. The test interval was developed at a rate of 78.5 gpm and approximately 18,500 gallons (more than 6 pipe and open hole volumes) were purged to stabilize field parameters. Free flow above the packer was again at a constant 2,530 gpm. Drawdown in the test zone was 4.53 feet, and 21.08 feet in the annular flow zone. This suggests that at 1,500 feet bls, the aquifer is more 'leaky' vertically. Water levels in the test pipe and annulus stabilized after approximately 250 minutes.

Water quality testing undertaken during pilot-hole drilling and during the first 3 packer tests indicated that groundwater salinity (as measured by conductivity and chloride) began to increase below 1,600 feet bls, although the flow contribution at this depth was limited. PT-2 (packer set at 1,625 feet bls) also indicated that vertical hydraulic connection was limited. Therefore, the decision was made to cement back the pilot hole to a depth of 1,600 feet prior to undertaking the final packer test.

Construction and Testing Report

Seacoast Utility Authority Floridan Aquifer Test Well F-1

Packer Test No. 4 (PT-4) was conducted on March 20, 2007 in the interval from 1,114 to 1,595 feet bls to simulate the likely water quality if final casing was set at 1114 feet. The test zone was developed with a free flow rate of 88 gpm. Approximately 27,400 gallons (more than 5.5 pipe and open hole volumes) were purged during development before sampling. A 500 gpm maximum sustained flow rate was established for the annular test with substantial drawdown in the flow zone (22.86 feet). Drawdown in the test zone was 0.22 feet, with 0.27 feet maximum reached after approximately 200 minutes elapsed time.

4.2.6 Water Quality and Flow Summary

Using the packer test data, interval tests, field water quality drill-stem tests, and the geophysical dynamic flow profile, five zones of different water quality (salinity) have been identified. These zones are summarized graphically in **Figure 3**.

Zone 1, extending from the bottom of the intermediate casing (999 feet bls) to approximately 1,100 feet bls is characterized by moderate salinity with specific conductance between 7,000 and 8,000 μ S/cm and chloride concentration of 2,500 to 3,000 mg/L. Total Dissolved Solids for the wider test interval, 1,000 to 1,134 feet bls, was measured as 5,000 mg/L in the laboratory.

Zone 2 from approximately 1,100 to 1,270 feet bls has higher salinity than Zone 1, with chloride concentration between 3,000 and 4,000 mg/L and specific conductance almost 10,000 μ S/cm on average. A significant flow zone was identified at 1,140 feet bls, which contributed at least 25 percent of the flow from the entire well (flow gain from this zone exceeded 700 gpm). This zone had the poorest quality water, with salinity as measured by specific conductance up to 11,550 μ S/cm.

Zone 3 between approximately 1,270 and 1,370 feet bls is a transitional zone comprising only 100 feet, where an improvement in water quality is taking place. Chloride concentration drops gradually by more than 1,000 mg/L from 3,000 mg/L to 2,000 mg/L or less, and specific conductance decreases from over 9,000 μ S/cm to approximately 6,000 μ S/cm. The increase in artesian flow from this zone as measured from the drill-stem tests was approximately 300 gpm. The dynamic flow profile suggests a greater contribution of flow, in the order of 20 percent or approximately 520 gpm when the well flowed at 2,650 gpm.

Construction and Testing Report

Seacoast Utility Authority Floridan Aquifer Test Well F-1

The largest of the zones, Zone 4, extends for 310 feet from 1,370 to approximately 1,680 feet bls. This zone represents the best water quality in the whole hydrogeological profile of Well F-1. Average chloride concentration for this zone is approximately 2,000 mg/L and specific conductance for the most part is oscillating around 5,000 μ S/cm. Groundwater with the lowest salinity was measured in the interval 1,430 to 1,510 feet bls. Water quality from Zone 4 was in part confirmed by the sample taken from the final open-hole interval (1,300 to 1,600 feet bls), with chloride concentration 1,400 mg/L, and specific conductance 3,300-3,400 μ S/cm. Flow contribution from this zone was approximately 1,000 gpm or around 35% of the total flow.

The lowest zone, Zone 5, from 1,680 to 1,750 feet bls shows an increase (almost 20%) in both chloride concentration and specific conductance. Dynamic flow logging suggests a flow contribution of approximately 10%, although the increase in artesian flow measured by the drill-stem tests was less, approximately 120 gpm. The base of the USDW (defined as groundwaters with salinity less than a TDS of 10,000 mg/L) was not intercepted, although it is possible that the final drilled depth of 1,750 feet was close.

4.3 Final Construction

After completion of all four Packer Tests, the Contractor reamed the pilot hole at a nominal 20-inch diameter size to 1,600 feet and installed and cemented in place 12-inch I.D. PVC final casing to a depth of 1,300 feet bls.

Initially, two construction options were presented by ARCADIS, with a recommendation for Option 1, which was to install final casing to 1,114 feet bls with an open hole between 1,114 and 1,600 feet bls. The casing was targeted at the base of a dolomitic layer to ensure a competent casing seat. Although moderate salinity (conductivity approximately 7,500 μ S/cm) was sampled above this interval, the presence of less competent rock meant a deeper casing seat was preferred. However, following consultation with other advisors, Seacoast opted for setting the casing deeper at 1,300 feet bls. Although this meant reducing the well yield significantly, the considered opinion was that the interval between 1,300 to 1,600 feet bls would produce water with the lowest salinity and therefore reduce the immediate treatment requirements for the proposed RO water treatment plant.

Construction and Testing Report

Seacoast Utility Authority Floridan Aquifer Test Well F-1

4.3.1 Final Casing

The final casing (inner liner) for the well consists of approximately 360 feet of 17.4-inch outside-diameter, CertainTeed Certa-Lok, SDR 17 (0.762-inch wall thickness) PVC casing attached to 940 feet of 12-inch inside-diameter CertainTeed Certa-Lok, SDR 17 (0.823-inch wall thickness) PVC casing. This construction is summarized in **Figure 3**.

On April 11, 2007, the Contractor installed all sections of the 12-inch diameter final casing to a depth of approximately 940 feet bls. The 17.4-inch diameter portion of the final casing was then installed (attached to the top of the 12-inch diameter casing) to extend from a depth of approximately 360 feet bls (to provide for the installation of a large diameter submersible pump, as needed) to just above land surface. Stainless-steel centralizers were attached (banded) within 20 feet of both the top and bottom of the final casing and at 50-foot intervals on the PVC casings as centering guides.

By April 12, 2007, the Contractor had completed the casing installation (with the casing seat at a depth of approximately 1,300 feet bls). The Contractor then began gravel placement in the open hole prior to cementing the final casing. On April 16, 2007, the top of the gravel was tagged at approximately 1,301 feet bls. Tremie pipe was installed between the 20-inch diameter intermediate casing and the final PVC casing to a depth just above final casing seat and two barrels (11.2 cubic feet) of neat Portland cement (ASTM Type II) were pumped into the annulus. The cementing of the final casing was completed on April 21, 2007, bringing the top of cement in the annulus to land surface after 6 cementing stages.

On April 23, 2007, the Contractor began gravel removal from the interval 1,300 to 1,600 feet bls. By April 28, 2007 all gravel had been removed and the excess cement plug (installed during pilot-hole cementing) was drilled out to 1,600 feet bls.

4.3.2 Well Development

On April 30, 2007, the open-hole section of the well between the bottom of the final casing (1,300 feet bls) and cement plug (1,600 feet bls) was developed by free flow and field tested for initial water quality and flow rate. After approximately 140 minutes of development, a water sample for laboratory analyses was collected (all laboratory results are included in **Appendix D**). During this period, greater than 135,000 gallons were purged and the artesian flow from the well stabilized at 990 gpm.

Construction and Testing Report

Seacoast Utility Authority Floridan Aquifer Test Well F-1

Production zone development resumed on June 25, 2007 with a pump intake located at 100 feet bls. The development method comprised alternating pumping and surging, with approximate 20-minute periods of pumping followed by 10 minutes of resting to allow water level recovery. Maximum pumping rate was established at 2,200 gpm. Water quality samples were collected and analyzed in the field, and sand content was monitored using a Rossum Sand Tester during the initial surge and at the constant rate flow. After approximately three hours of development, the water quality stabilized and after six hours, sand content dropped to approximately 5 ppm. At that time, well development was terminated and the water levels allowed to recover overnight in preparation for a step-rate pumping test.

4.3.3 Step Rate Test

A step-rate pumping test was conducted on June 26, 2007. The test consisted of 4 steps of increased pumping at rates of 600, 1,100, 1,680 and 2,130 gpm. Each step was pumped at a constant rate for approximately 30 minutes, followed by approximately 30 minutes of non-pumping (recovery). The first step was conducted by controlling the artesian flow, subsequent steps were pumped.

The Contractor installed a data-logging system with a pressure transducer installed in the well at a depth of 93 feet bls. The static potentiometric head measured by the transducer (prior to pumping) was recorded at 33.71 feet above land surface. The data logger was calibrated to display potentiometric head above the transducer in units of feet. A calibrated flowmeter was installed in the 12-inch diameter section of the discharge line, which was capable of recording instantaneous and totalizing flow and was sufficiently removed from valves, elbows, reductions and obstructions.

The data from the test are summarized on **Table 4**, and the water level drawdown data are provided in **Appendix C**. Using the measured flow rates and water level drawdowns, specific capacities (SC) were calculated for each step. As shown on Table 4, the specific capacity for Step No. 1 was approximately twice the SC calculated for the subsequent steps.

The reason for the large decrease in specific capacity between Steps 1 and 2 from 43.5 gallons per minute per foot of drawdown (gpm/ft-dd) to 23.7 gpm/ft-dd, is unclear, although dramatic declines in specific capacity when a well is pumped compared to the free-flow specific capacity is common for Floridan aquifer wells. Step 1 was conducted at a low (unpumped) free-flow rate, and the flow rate was well below even the maximum free-flow rate of approximately 990 gpm. Subsequent steps were conducted

Construction and Testing Report

Seacoast Utility Authority Floridan Aquifer Test Well F-1

by pumping the well. At these higher flow rates, friction and turbulence in the aquifer near the well, in the well bore, and within the casing are a greater contribution to overall head loss. Given these preliminary test results, and the difference in well performance between Steps 1 and 2, it is strongly recommended that the well be acidized before it is operated as a production well to try to improve the well performance.

During the step-rate test, sand content samples were periodically collected from a Rossum Sand Tester, first at the initial 'surge' for 5 minutes and then during constantrate pumping for 20 minutes. Sand content during the surge period showed increased sand concentration with increased pumping rate, although following the 'surge' acceptable sand concentrations between 1 and 2 ppm were measured. These results indicate that further development of the well is needed. However, further development is not recommended until a decision has been made on whether or not to acidize the well (following acidization the well will need to be re-developed regardless of the level of development completed pre-acidization).

After completion of the step-rate test, valve settings for completing a constant-rate pumping test at 1,750 gpm were set, and the well was left to recover overnight.

4.3.4 Constant Rate Test

An 8-hour, constant-rate pumping test of Well F-1 was conducted on June 27, 2007. Water levels in the pumped well were measured periodically during the pumping phase using a water level indicator to ensure accuracy of the pressure transducer and data logger installed by the Contractor during the step-rate test. Data from the test are contained in **Appendix E**.

The pre-test static water level (potentiometric head) measured by the transducer prior to pumping was 33.77 feet above land surface. The pumping rate was stabilized after the first 2-3 minutes of the test and was held close to 1,800 gpm. A small decrease in pumping rate occurred during the next 30 minutes until it stabilized at approximately 1,750 gpm for the remainder of the test. Water level recovery data was collected electronically for over 20 hours after the pump was turned off and the well was shut in.

Construction and Testing Report

Seacoast Utility Authority Floridan Aquifer Test Well F-1

The drawdown data from the test indicated that the pumped water level approached equilibrium after less than 10 minutes of pumping, with water levels stabilized at approximately 44.2 feet below grade (approximately 78 feet of drawdown) after 30 minutes of pumping. The depth to water measured at the end of the 8-hour pumping phase was 45.68 feet below land surface (indicating a drawdown of approximately 79.45 feet). The overall specific capacity was determined to be 22.4 gallons per minute per foot of drawdown (gpm/ft), by all measures identical to the average specific capacity for the step-rate test (22.1 gpm/ft).

Within an hour of the pump being shut off, the water level had recovered to within 1.30 feet of the original pre-test static level. An estimate of transmissivity in the vicinity of the pumped well was made by analyzing the recovering water-level data (water level vs. time since pumping stopped) graphed on semi-log paper. The use of recovery data is generally preferable because those data are less impacted by radial and convergent flow into the pumped well and inherent well inefficiency.

Analysis of the recovery data was performed using the Cooper-Jacob residual drawdown method, applicable for both confined and semi-confined aquifers. This method of analysis tends to overestimate transmissivity because it does not account for leakance from confining units, and does not account for partial penetration of the aquifer by the borehole. The transmissivity was estimated at 37,000 gpd/ft. A plot of the recovery in the well during the pumping test is included in **Appendix E**.

Because of these well losses, the estimated transmissivity using the pumped-well data likely overestimates the true aquifer transmissivity. The estimated value should not be relied upon for predicting the impact of future withdrawals.

A more reliable transmissivity value could have been obtained if an observation well had been available for measurement during the test. An observation well would also allow calculation of aquifer storage coefficient and leakance, and would also allow for measurement of well interference and predicted drawdown from the future operation. These values could then in turn be used to determine appropriate well spacing for future wells, or based on certain well spacings, the likely pumping water levels in each well at given pumping rates.

Construction and Testing Report

Seacoast Utility Authority Floridan Aquifer Test Well F-1

It is understood that a second Floridan aquifer production well will be drilled on site shortly. When this well is completed, it is strongly recommended that a further aquifer tests be conducted and water level interference drawdown be measured so that wellfield design assumptions may be verified. In the interim, the pumping water level for Well F-1 using the tested specific capacity of 22.4 gpm/ft-dd has been predicted for a pumping rate of 1,850 gpm.

Seasonal variation of Floridan aquifer water levels regionally is expected to be on the order of 3 feet (based on limited historical data from wells in Martin County and West Palm Beach). Any additional interference effect from pumping the nearest Floridan aquifer wells (Jupiter and Tequesta) will likely be small, probably in the range of 3 feet or less. Because wells typically decrease in efficiency over time, a 10% decline in specific capacity (to 20.2 gpm/ft-dd) has been assumed. Using the static water level in the well measured (in feet above land surface) prior to initiation of the step-rate pumping test, the pumping water level for F-1 can be predicted as:

Static depth to water	33.7 feet above land surface
Seasonal decline	3.0 feet
Local interference	3.0 feet
Stabilized drawdown	84.0 feet
Total depth to water	56.4 feet below land surface at 1,850 gpm

4.3.5 Silt Density Index Test

On June 28, 2007, the Contractor conducted three silt density index tests (SDI). These tests are a requirement of most RO membrane suppliers to demonstrate that fouling and potential damage to the membranes will not occur due to the turbidity of the raw well water.

The pumping rate was established at 1,750 gpm, which was the same rate as the constant rate test, and very close to the desired flow rate of 1,850 gpm required if three (duty) Floridan wells are constructed. The tests were performed by a licensed laboratory technician and observed by an ARCADIS geologist. Test results are sumarized in **Table 5**. All SDI test results passed with values less than 1.0, and an average after 15 minutes of 0.52.

Construction and Testing Report

Seacoast Utility Authority Floridan Aquifer Test Well F-1

4.3.6 Final Water Quality Sampling

Final water sample for a complete set of water quality analyses was collected on June 27, 2007 at the end of the 8-hr constant rate pumping test. Results for the major ions are summarized in **Table 6**, and the complete results are contained in **Appendix E**.

4.3.7 Final Video Inspection

Final Video inspection was completed on July 11, 2007. This survey confirmed that the final casing string was sound and installed from 358 to 1,300.6 feet bls. Cement seal behind the base of the final casing could not be detected, although a minor cement/gravel "overspill" on one side of the open hole was observed down to a depth of approximately 1,310 feet bls. A damaged casing centralizer embedded in the cement immediately below casing was also observed. This very minor construction defect should not impact on the well performance.

The open hole section from 1,300.6 to 1,600 feet bls was in good condition, with uniform lithology comprising very light, vuggy limestone. The cement backplug at the base of the borehole was clearly visible, and with the exception of two further casing centralizer fragments, the borehole was clear of debris.

A copy of the television survey is contained in Appendix F.

Construction and Testing Report

Seacoast Utility Authority Floridan Aquifer Test Well F-1

5. Summary

A Floridan aquifer test well, F-1, was successfully constructed and tested at the Seacoast Water Utility Hood Road Water Treatment facility. Construction of F-1 was completed in three stages: Installation of outer casing strings down to the base of the confining Hawthorn Group; pilot-hole drilling and testing to determine the water quality and flow characteristics within the Floridan aquifer; final construction, including installation of final casing, well development, test pumping, completion of headworks and final water quality sampling.

Total depth of the Floridan aquifer investigated was 1,750 feet below land surface. Pilot-hole drilling and testing for the interval 999 to 1,750 feet bls included logging of drill cuttings, drill-stem tests which measured water quality and artesian flow rates, geophysical logging, packer tests and interval tests.

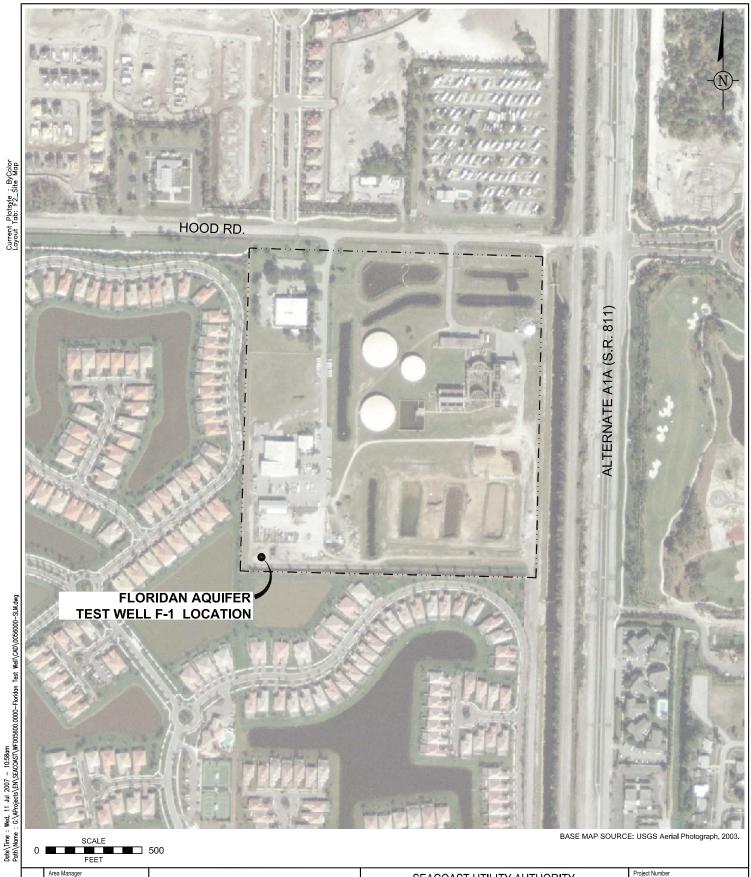
Five zones of different water quality in the Floridan aquifer, as measured by salinity, were identified. In simple terms, the salinity profile with depth progressed from 'moderate' to 'poor' to 'moderate' to 'good' and then back to 'moderate'. The base of the USDW (defined as groundwater with a TDS less than 10,000 mg/L) was not intercepted, although it is suspected that the reason for the increasing salinities at the base of the pilot hole was due to close proximity of more saline groundwater.

Groundwater with the lowest salinity was identified in the interval 1,430 to 1,510 feet bls. This interval lies within a wider zone between 1,370 and 1,680 feet bls, with chloride concentrations less than 2,000 mg/L and specific conductance approximately 3,300-3,400 μ S/cm. Groundwater with the highest salinity coincided with a significant flow zone located at 1,140 feet bls. Although a discrete water sample was not obtained from this zone, drill-stem water quality samples suggest the specific conductance was up to 11,550 μ S/cm.

Significant artesian flows were measured during drilling. Maximum artesian head was measured at +33.7 feet above land surface, with a total flow of 2,700 gpm produced from the entire pilot-hole interval. Dynamic flow logging successfully identified the major flow zones. The most significant single zone coincided with a fractured zone at 1,140 feet bls, with greater than 25 percent of the total flow produced from this depth. However, significant flow accretion via multiple flow zones also occurred in the interval 1260 to 1470 feet bls, with approximately 30 percent of the total flow.

Construction and Testing Report


Seacoast Utility Authority Floridan Aquifer Test Well F-1


During final construction, the pilot-hole was back-plugged with neat cement to a depth of 1,600 feet bls, then reamed to a diameter of 20 inches; final casing was installed to a depth of 1,300 feet bls. This back-plugging and final casing depth meant that a significant percentage (approximately 60 percent) of the flow intercepted in the pilothole was isolated. Artesian flow following installation of the 12-inch diameter casing was measured at 990 gpm. However, this well design also meant that only groundwater with relatively low salinity was intercepted.

Specific capacity, a measure of well yield per unit drawdown in water levels, was determined to be 22.4 gpm/ft-dd. This result is significantly lower than the specific capacity of over 125 gpm/ft-dd measured for the pilot-hole interval 999 to 1,750 gpm/ft, and is approximately half of the specific capacity measured during step-rate testing of the well at flow rates below 900 gpm.

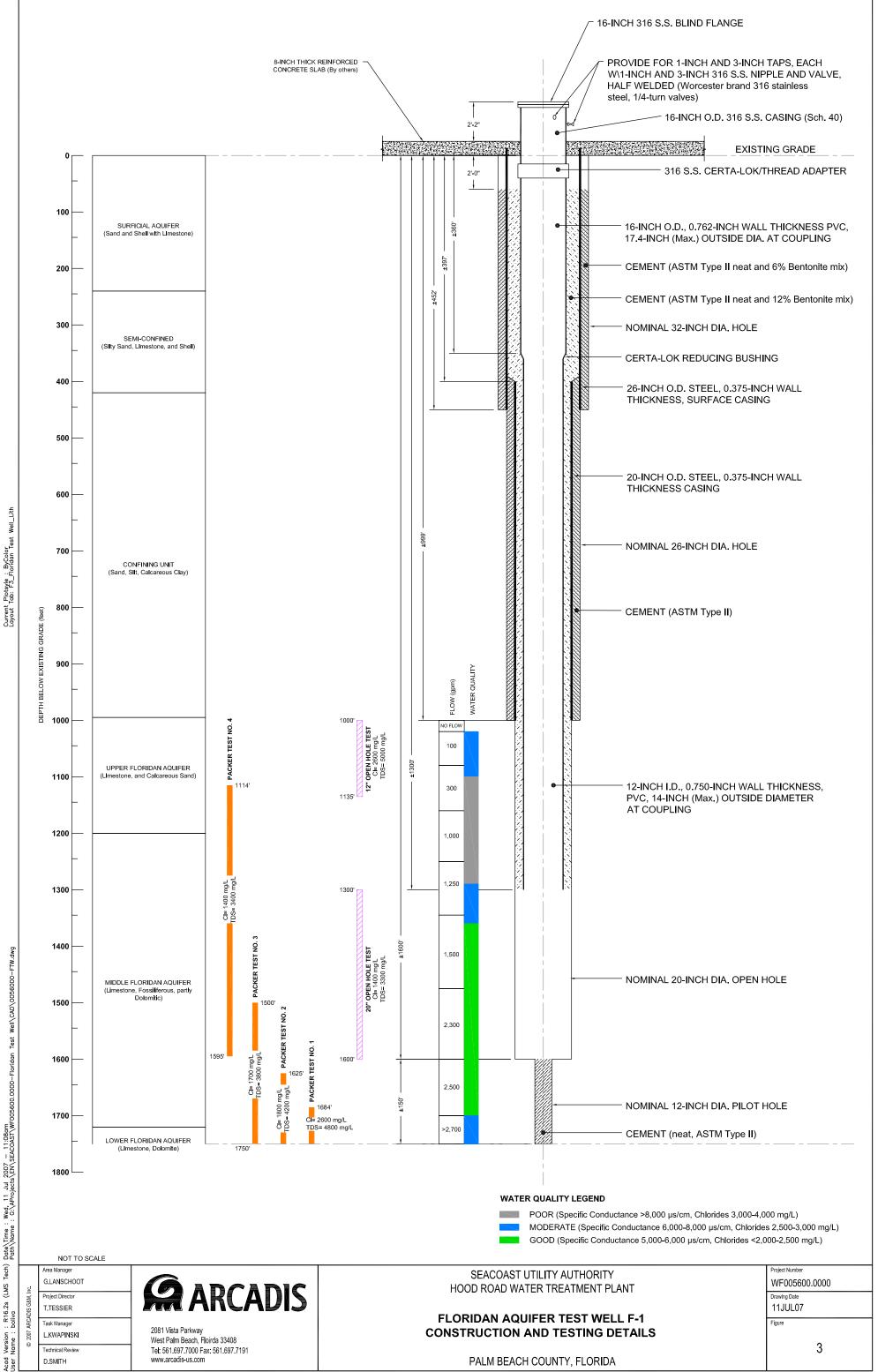
The high transmissivity and relatively low corresponding specific capacity suggests that well losses are very significant at the high pumping rates anticipated for future operation. Calculated pumping water levels for a single well pumping at 1,850 gpm is 56 feet below land surface. It is strongly recommended that the well be acidized to try and improve the well performance.

Final water quality measured from a sample taken at the end of the constant rate pumping test exceeded expectations. Salinity was significantly lower than measured during the drill stem tests and also slightly lower than the interval test, with TDS, 3,000 mg/L; Specific Conductance, 5,270 mg/L and Chloride, 1,500 mg/L.

Acad Version : R16.2s (LMS Tech) User Name : boliva

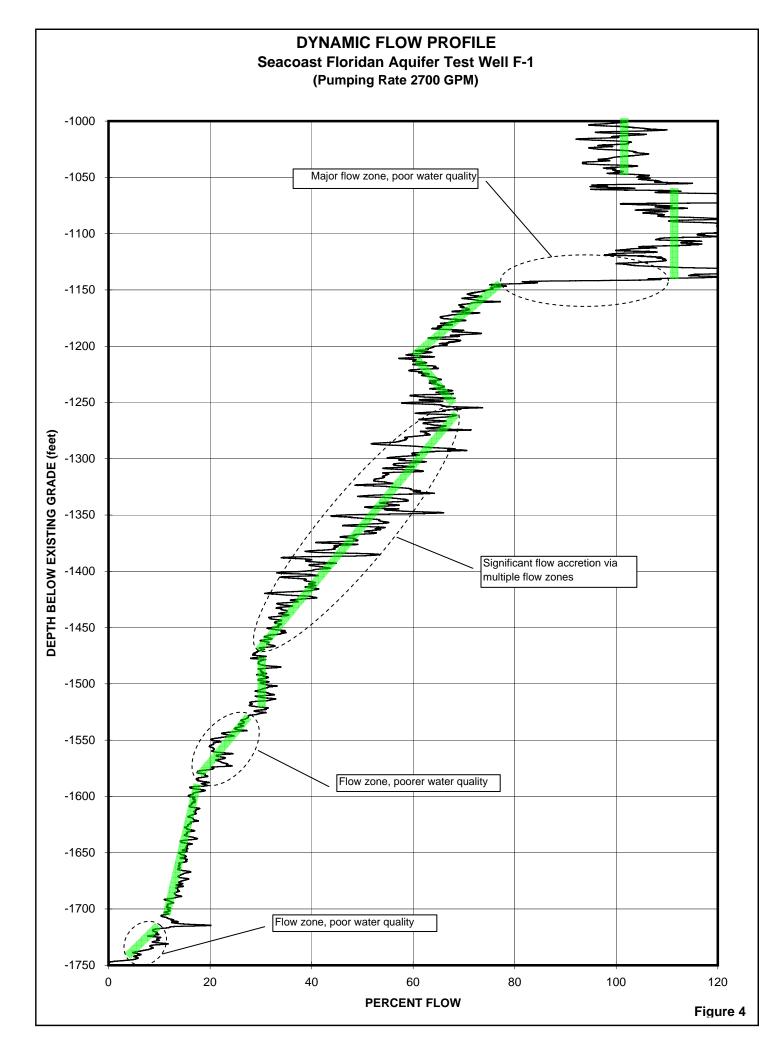
Project Director T.TESSIER Task Manager L.KWAPINSKI Technical Review D.SMITH

G.LANDSCHOOT


SEACOAST UTILITY AUTHORITY HOOD ROAD WATER TREATMENT PLANT

TEST WELL F-1 LOCATION PALM BEACH COUNTY, FLORIDA Project Number WF005600.0000

Drawing Date


Figure

2

Current Plotsyle : ByColor Layout Tab: F3_Floridan Test Well_Lith

(CAD\0056000-FTW.dwg

TABLE 1 Geologic and Hydrogeologic Summary

Floridan Aquifer Test Well F-1 Seacoast Utility Authority Hood Road Water Treatment Plant Palm Beach Gardens, Florida

Depth (ft) 0	Geologic	Lithologic	Formation Name	Hydrogeologic Unit
10	Age Recent	Description Soil, sand.	Pamlico Formation	
240	Pleistocene	Sand and Shell with Sandstone and Limestone	Anastasia Formation	Surficial Aquifer
420	Pliocene	Silty Sand With Limestone and Shell	Tamiami Formation	Semiconfining Unit
994	Miocene	Sandy, Silty, Calcareous Clay	Hawthorn Group Arcadia Formation	Confining Unit
1200	Oligocene	Limestone and Calcareous Sand	Suwanee Formation	Upper Floridan Aquifer
	Upper Eocene	Limestone, Fossiliferous, Partly Dolomitic	Ocala Formation	Middle Floridan Aquifer
1720				

G:\AProjects\EN\SEACOAST\WF005600.0000-Floridan Test Well\Final Report\Tables\Tbl1Geologic and Hydrogeologic Summary tbl.xls

Water Quality Summary Table

TABLE 2 Drilling Water Quality Data Summary

Floridan Aquifer Test Well F-1 Seacoast Utility Authority Hood Road Water Treatment Plant Palm Beach Gardens, Florida

							Field	Analysis					
Date	Time	Static Head	Flow	Est. Total Flow	Chloride	Specific Conductance	Temperature	H2S	рH	Turbidity	ORP	D.O.	Comments
		(feet agl)	(gpm)	(gals)	(mg/L)	(μS/cm)	(°C)	(mg/L)		(NTU)	(mV)	mg/L	
	15:12	33.10	na	0	nm	nm	nm	nm	nm	nm	nm	nm	Start flow (fully open)
	15:15	nm	1,000	3,000	nm	nm	nm	nm	nın	nm	nm	nm	
	15:45	nm	1,000	33,000	2,000	5,543	23.2	nm	7.38	1.00	-130.7	1.55	
	16:15	nm	1,000	63,000	2,000	5,481	23.2	nm	8.02	0.39	-175.3	3.50	
	16:30	nın	990	78,850	2,000	5,524	23.2	nm	7.70	0.58	-193.5	0.99	
04/30/07	16:45	nm	990	93,700	2,000	5,510	22.9	nm	7.71	0.63	-200.5	0.95	
	17:00	nm	990	108,550	2,000	5,528	22.7	nm	7.68	0.49	-191.9	0.89	
	17:15	nm	990	122,400	2,000	5,510	22.8	nm	7,70	0.40	-198.4	0.90	
	17:30	nm	990	137,250	2,000	5,497	22.7	1.10	7.75	0.36	-199.5	0.86	
	17:35	nm	990	142,200	nm	nm	nın	nm	nın	nm	nm	nm	Collect lab. sample
	17:45	nm	990	147,150	nm	nm	nm	nm	nm	nm	າມກ	nm	Stop flow.

Nominal 20- inch diameter Open Hole (1300-1600 ft b.g.) Flow and Water Quality Pre-Acidization Test

"DO" denotes "Disolved Oxygen"

"agl" denotes "above ground level"

"mg/L" denotes "milligrams per liter"

∀µS/cm" denotes "microSiemens per centimeter"

"C" denotes "degrees Celsius"

"mV" denotes "milivolts"

"nm" denotes "not measured"

"na" denotes "not applicable"

Green font- surface water sample.

Note: one well volume= 13000 gallons.

							Field	Analysis		Field Analysis								
Date	Time	Depth (feet bgl)	Static Head (feet agl)	Flow (gpm)	Chloride (mg/L)	Specific Conductance (mS/cm)	Temperature (°C)	H2S (mg/L)	pH (units)	Turbidity (NTU)	D.O. (mg/L)							
	13:05	Canal	na	na	40	602	22	nm	7.48	12.70	3.71							
	12:10	1,002	33.18	86	nm	nm	nm	nm	ារា	nın	ກາກ							
	13:30	1,005	nm	nm	2,250	7,040	24.1	nm	7.31	>50	ກາກ							
	14:55	1,011	31.75	120	3,000	7,400	24.1	nm	7.14	>50	nın							
02/08/07	15:10	1,021	nm	nm	3,000	7,480	24.4	0.50	7.30	>50	nın							
	15:20	1,031	nm	nm	3,000	7,500	24,5	0.50	7,38	>50	nın							
	16:45	1,042	32.15	133	3,000	7,500	24.2	0.50	7.33	>50	nın							
	17:35	1,052	nm	nın	2,500	7,830	23.1	nm	7.36	>50	nm							
	17:45	1,062	nm	nm	2,500	7,810	22.8	nm	7.34	>50	nm							
	6:30	1,073	31.1 (overnight)	180	nın	nm	nın	nm	nm	nm	nm							
02/09/07	8:30	Canal	na	กล	40	604	18.7	nm	7.41	14	3,58							
	14:45	1,071	nın	nm	2,500	7,560	24.1	0.50	7.05	>50	nm							
02/12/07	11:15	Canal	na	na	80	685	22.7	mn	7.55	15	4.34							
02/13/07	15:45	1,048	33.10	213	2,500	7,840	24.3	0.60	7.15	36	nm							
	10:15	1,103	30.80	375	3,000	8,350	22.1	1.60	7.30	>50	nm							
	11:15	1,113	nm	nm	3,000	9,020	21,8	nm	7.35	>50	nm							
02/16/07	11:30	1,123	nm	nm	3,000	9,890	21.6	nm	7.25	>50	nm							
	11:45	1,135	31.53	515	3,000	10,450	21.6	1.50	7.03	>50	nm							
	13:15	Canal	na	na	380	1,677	13.9	nm	7,60	8.15	4.55							
	14:50	1,135	nm	530	3,000	8,490	21,5	nm	7.27	>50	nm							
02/16/07	17:45	1,135	nm	530	3,000	8,870	21.3	nm	7.10	11.50	nın							
	18:15	1,135	nm	530	3,000	8,700	20.9	1.70	7.09	2.11	2.84							
	18:45	1,135	nm	530	3,000	8,600	20.9	1.70	7.09	0.42	1.96							

					Field Analysis								
Date	Time	Depth (feet bgl)	Static Head (feet agl)	Flow (gpm)	Chloride (mg/L)	Specific Conductance (mS/cm)	Temperature (°C)	H2S (mg/L)	pH (units)	Turbidity (NTU)	D.O. (mg/L)		
	9:10	1,145	nm	nm	4,000	11,550	20.1	nın	7.28	>50	nm		
	9:23	1,155	nm	nm	4,000	11,460	20.5	nın	7.32	>50	nm		
02/17/07	9:55	1,166	29.68	1,000	4,000	11,140	21.3	1.05	7.26	>50	nm		
02/11/01	10:45	1,176	nm	nm	3,500	10,780	22.5	nm	7.16	>50	nm		
	11:00	1,186	nm	nm	3,500	10,270	22.5	nın	7.22	>50	nın		
	11:35	1,197	29.56	1,070	3,500	9,620	22.6	1.20	7.38	>50	2.52		
	12:30	1,207	nm	nm	3,000	8,340	22.6	nın	7.41	>50	nm		
	12:43	1,217	nm	nm	3,000	8,730	22.4	nm	7.46	>50	nın		
	13:00	1,229	29.63	1,170	3,000	9,180	22.4	1.10	7.45	>50	2.23		
	13:45	1,239	nın	nm	3,000	9,280	22.1	nm	7.39	>50	nm		
02.17/07	13:50	Canal	na	na	240	1,120	19.0	nm	7.68	6.12	4.78		
02.11101	14:00	1,249	nm	nm	3,000	9,470	22.1	nm	7.49	>50	nın		
	14:30	1,260	29.50	1,240	3,000	9,440	22.0	0.90	7.59	>50	2.73		
	15:20	1,270	nm	nm	3,000	9,220	21.8	nm	7.80	>50	nm		
	15:40	1,280	nm	nm	3,000	8,470	21.6	nm	7,86	>50	пm		
	16:00	1,292	31.15 (overnight)	1,330	3,000	8,310	21.3	0.75	7.75	>50	2.89		

					Field Analysis								
Date	Time	Depth (feet bgl)	Static Head (feet agl)	Flow (gpm)	Chloride (mg/L)	Specific Conductance (mS/cm)	Temperature (°C)	H2S (mg/L)	pH (units)	Turbidity (NTU)	D.O. (mg/L)		
	8:55	1,300	nm	nm	3,000	7,850	19.1	nın	7.47	>50	nm		
	9:05	1,310	nm	nm	2,500	7,810	21.6	nm	7.33	>50	nm		
	9:20	1,320	nm	nm	2,500	7,820	21.4	nm	7.20	>50	nm		
02/19/07	9:45	1,324	29.30	1,420	3,000	7,810	21.3	nın	7.19	>50	nm		
	10:30	1,330	nm	nm	2,500	7,690	21.9	nm	7.31	>50	nm		
	10:40	1,340	nm	nm	2,500	7,820	20.2	nm	7.47	>50	nm		
	10:50	1,350	nm	nm	2,500	6,660	21.5	nm	7.48	>50	nm		
Combined	11:10	1,356	nm	nm	2,500	9,620	22.0	nm	7.32	>50	nm		
	11:15	1,356	29.54	1,530	2,500	7,700	21.4	nın	7.60	>50	nm		
	12:00	1,360	nm	nm	2,500	6,720	21.7	nın	7.68	>50	nm		
	12:12	1,370	nm	nm	2,500	6,100	21.9	nın	7.68	>50	nm		
	12:23	1,380	nm	nm	2,000	5,520	21.7	nm	7.76	>50	nm		
	12:35	1,385	29.63	1,640	2,000	5,450	20.8	nın	7.54	>50	nm		
02/19/07	13:12	1,390	nm	nm	2,000	5,450	22.6	nm	7.51	>50	nm		
	13:28	1,400	nm	nm	2,000	5,410	22.4	nın	7.58	>50	nm		
	13:45	1,410	nm	nm	2,000	5,430	22.1	nm	7.53	>50	nın		
	14:05	1,416	29.95	1,760	2,000	5,460	21.1	nm	7.57	>50	nm		
	15:00	1,426	nm	nm	2,000	5,250	23.2	າມກ	7.64	>50	nm		
	15:15	1,436	nın	nm	2,000	5,130	23.0	nm	7.53	>50	nm		
Combined	15:40	1,447	30.35	1,830	2,000	5,000	22.4	0.60	7.70	>50	nm		
	16:49	1,457	nın	nm	2,000	5,100	21.6	nm	7.67	>50	nm		
02/19/07	17:08	1,467	nın	nm	2,000	5,020	21.8	nm	7.69	>50	nm		
	17:55	1,478	nm	1,850	2,000	4,910	21,4	0.75	7.88	>50	3.05		

					Field Analysis								
Date	Time	Depth (feet bgl)	Static Head (feet agl)	Flow (gpm)	Chloride (mg/L)	Specific Conductance (mS/cm)	Temperature (°C)	H2S (mg/L)	pH (units)	Turbidity (NTU)	D.O. (mg/L)		
	7:00	1,478	31.72 (overnight)	2,300	2,000	8,310	19.9	1.50	7.23	14.20	3.23		
	9:00	1,488	nm	nm	2,000	4,930	20.1	nm	7.18	>50	າມາກ		
	9:20	1,498	nm	nm	2,000	4,910	20.5	nın	7.15	>50	nm		
	9:45	1,510	30.29	2,300	2,000	4,940	21.0	1.00	7.24	>50	2.85		
	10:40	1,520	nm	nm	2,000	5,000	22.7	nm	7.21	>50	nm		
	10:55	1,530	nm	nm	2,000	4,990	23.0	nm	7.23	>50	nm		
02/20/07	11:30	1,542	30.00	2,315	2,000	5,070	22.5	0.30	7.42	>50	3.11		
	12:30	1,552	nm	nm	2,000	5,310	22.7	nm	7.38	>50	nın		
	12:50	1,562	nm	nm	2,000	5,360	23.0	nm	7.42	>50	nm		
	13:20	1,573	30.30	2,400	2,000	5,410	22.8	0.75	7.60	>50	3.25		
	14:15	1,583	nm	nm	2,000	5,460	22.9	nın	7.78	>50	nm		
	14:20	Canal	na	na	340	1,410	16.2	nm	7.84	2.10	3.96		
	14:45	1,593	nm	nm	2,000	5,390	22.8	nm	7.69	>50	nın		
	15:35	1,605	30.31	2,490	2,000	5,580	22.7	0.70	7.48	>50	3.05		
Combined	15:40	1,605	nm	nm	2,000	7,980	23.6	1.80	7.49	>50	2.23		
	16:45	1,615	nm	nm	2,000	5,540	22.8	<u>nm</u>	7,78	>50	nm		
02/20/07	17:05	1,625	nm	nın	2,000	5,560	22.9	nm	7.80	>50	nm		
	17:55	1,636	32.44 (overnight)	2,530	2,500	5,630	22.1	0.70	7.72	>50	3.6		
	18:15	Canal (N side)	na	na	160	913	12.3	nm	7.73	6,08	4.01		

					Field Analysis								
Date	Time	Depth	Static Head	Flow	Chloride	Specific Conductance	Temperature	H2S	рН	Turbidity	D.O.		
		(feet bgl)	(feet agl)	(gpm)	(mg/L)	(mS/cm)	(°C)	(mg/L)	(units)	(NTU)	(mg/L)		
	7:30	Canal (S side)	na	na	140	883	15.0	nm	7.51	1.23	4.35		
	8:15	1,646	nm	nm	2,500	5,730	21.2	nm	7.33	>50	nm		
02/21/07	8:35	1,656	nm	nın	2,500	5,710	21.2	nm	7.30	>50	nm		
	9:00	1,668	nm	nm	2,500	5,720	21.3	nm	7.32	>50	nm		
	9:10	1,668	31.40	2,610	2,500	5,670	21.3	0.75	7.25	>50	3.08		
	9:55	1,678	nm	nm	2,500	5,800	22.2	nm	7.18	>50	nın		
02/21/07	10:35	1,688	nm	nm	2,500	5,840	22.3	nın	7.38	>50	nm		
	10:45	1,690	nm	nm	2,500	5,820	23.0	0.90	7.39	>50	2.25		
Combined	11:08	1,699	30.30	2,630	3,000	7,820	23.8	2.10	7.22	>50	2.87		
	12:15	1,710	nm	nm	2,500	5,920	23.2	nın	7.36	>50	nın		
	13:05	1,720	nm	nm	2,500	6,000	23.1	nın	7.48	>50	nm		
02/21/07	13:45	1,731	30.69	2,680	3,000	6,200	23.3	0,70	7.51	>50	3.2		
	14:45	1,740	nm	nm	3,000	7,010	23.2	nın	7.58	>50	ານາາ		
	15:25	1,750	nm	nm	3,000	7,310	23.2	1.00	7.65	>50	3.32		
Combined	15:40	1,750	nm (stop flow)	2,750	3,000	7,590	23.7	1.60	7.62	49.00	1.55		
	15:55	1,750	30.65	nm	па	na	na	na	na	na	na		
	16;10	1,750	31.18	nm	na	na	na	na	na	na	na		
02/26/07	16:25	1,750	31.40	nm	na	na	na	na	na	na	па		
	16:35	1,750	31.56	nm	na	na	na	па	na	na	na		
	16:55	Canal (N side)	na	na	160	895	20.4	มกา	7.89	16.10	4.22		
	14:15	1,750	33.36	3,230	3,000	6,720	23.3	1.55	7.00	0.00	2.75		

Nominal 12- inch diameter Pilot Hole Reverse-Air Drilling

"bgl" denotes "below ground level"

"DO" denotes "Disolved Oxygen"

"gpm" denotes "gallons per minute"

"mg/L" denotes "milligrams per liter" ∀µS/cm" denotes "microSiemens per centimeter"

¹⁰C" denotes "degrees Celsius"

"nm" denotes "not measured"

nin denotes not neasured

"n/a" denotes "not applicable"

Floridan Aquifer Test Well F-1 Seacoast Utility Authority Hood Road Water Treatment Plant Palm Beach Gardens, Florida

Test	Date	Type of Test	Depth Interval	Tested	Flow Rate	Flow Rate	Time	Stabilized	Stabilized	Time to Static Level	Time to Static Level
		(Free Flow)	(feet bls)	Aquifer	12-inch pipe	3.5-inch pipe	to	Drawdown	Drawdown	12-inch pipe	3.5-inch pipe
				Thickness (ft)	(gpm)	(gpm)	Stabilization (min)	12-inch pipe (ft)	3.5-inch pipe (ft)	(min)	(min)
1	16-Feb-07	12"Open Hole	1002-1135	133	533	n/a	135	24.7	n/a	25	n/a
2	09-Mar-07	Single Packer (PT#1)	1684-1750	59	2530	62	226	19.31	0.39	24	85
3	10-Mar-07	Single Packer (PT#2)	1625-1750	125	2530	78	165	18.9	0.01	78	120
4	12-Mar-07	Single Packer (PT#3)	1500-1750	250	2530	78.5	277	21.1	0.34	n/a	131
5	20-Mar-07	Single Packer (PT#4)	1114-1595	481	500	88	310	22.8	0.22	n/a	139
6	30-Apr-07	20" Open Hole	1300-1600	300	1000	n/a	n/a	n/a	n/a	n/a	n/a

Note: Open Hole tests primary target was to determine water quality, therefore water- level monitoring devices were not installed. "bls" denotes "feet below grade" "gpm" denotes "gallons per minute" "n/a" denotes "not applicable"

TABLE 4 Step Rate Pumping Test Summary

Floridan Aquifer Test Well No. F-1

Seacoast Utility Authority Hood Road Water Treatment Plant Palm Beach Gardens, Florida

Date: 06/26/07

Step No.	Static WL	Ending WL	Pumping Rate (average)	Drawdown below original static	Drawdown below step static		• • •		Content million)
	(feet above grade)	(feet below grade)	(gpm)	(feet)	(feet)	(gpm/ft-dd)	(gpm/ft-dd)	surge	continuous
1	33.71	19.91*	600	13.80	13.80	43.48	43.48	<1	<1
2	33.35	13.11	1100	46.82	46.46	23.49	23.67	6.3	1
3	33.09	44.24	1680	77.95	77.35	21.55	21.72	5.1	2
4	32.85	69.28	2130	102.99	102.13	20.68	20.86	11.2	2

Steps consisted of 30 minutes of pumping followed by 30 minutes of recovery.

"WL" signifies "water level" above or below grade as measured by a transducer (set at 93 feet below grade)

"gpm" denotes "gallons per minute"

"ft" denote "feet"

"gpm/ft-dd" denote "gallons per minute per foot of drawdown"

* feet above grade

Note: maximum free flow from well was previously stabilized at 990 gpm; well wasn't pumped during first step.

The equation to predict the drawdown after 30 minutes of pumping at any rate is:

s = 0.188193Q + 1.52337 x 10⁻⁵ Q² (Jacob, 1944)

Floridan Aquifer Test Well F-1 Seacoast Utility Authority Hood Road Water Treatment Plant Palm Beach Gardens, Florida

Date: 06/28/07

Test No.	TIME	Flow Rate (gpm)	Initial Reading (T _i) After 5 Minut		After 5 Minutes (T ₅) After 10 Minutes (T ₁₀)		After 15 Minu	tes (T ₁₅)	
			Seconds to Fill 500 ml	Seconds to Fill 500 ml	SDI	Seconds to Fill 500 ml	SDI	Seconds to Fill 500 ml	SDI
1	14:28	1,750	12.08	12.55	0.75	13.00	0.71	13.43	0.67
2	14:58	1,750	11.50	11.52	0.03	11.75	0.21	11.62	0.07
3	15:33	1,750	11.53	11.98	0.75	12.74	0.95	13.12	0.81
Average SDI					0.51		0.62		0.52

Note: water supply pressure was 30 PSI during all tests.

Pumping rate of 1,750 gallons per minute was the same as pumping rate during constant 8-hr pump test conducted on 06/27/07.

Floridan Aquifer Test Well F-1 Seacoast Utility Authority

Hood Road Water Treatment Plant

Palm Beach Gardens, Florida

Sample ID:	TW-1/1048	TW-1/1135	PT No.1	PT N0. 2	PT No.3	PT No. 4	TW-1 Prelim.	Final
Sample Date	2/13/07	2/16/07	3/8/07	3/10/07	3/12/07	3/20/07	4/30/07	6/27/07
Sampled Interval (ft bg)	1000-1048	1000-1135	1684-1750	1625-1750	1500-1750	1114-1595	1300-1600	1300-1600
Source	(12" Open Hole)	(12" Open Hole)	Packer Test No.1	Packer Test No.2	Packer Test No.3	Packer Test No.4	(20" Open Hole)	(Final)
General Chemistry (mg/L)								
Ammonia as N	1.9	1.8	1.2	1.2	0.89	0.78	0.77	0.51
Chloride	2300	2600	2100	1900	1700	1400	1400	1500
Nitrate as N	<0.1	<0.1	na	na	na	na	<0.1	0.28
Total Dissolved Solids	4800	5000	4800	4200	3800	3400	3300	3000
Alkalinity-Bicarbonate	97	120	150	150	140	150	140	150
Alkalinity-Carbonate	n/a	na	<10	<10	<10	<10	<10	<0.64
Sulfate	410	470	420	410	390	340	330	370
Calcium Hardness	380	320	na	na	na	na	na	na
Magnesium Hardness	120	na	na	na	na	na	na	na
Total Hardness as CaCO3	510	460	na	na	na	na	na	na
Hydrogen Sulfide	0.60*	1.70*	1.4	1.7	1.2	1.3	1.1*	0.53
Additional Analyses								
Ox-Red Potential (mV)*	-200	-490	-288.2	-280.8	-328.3	-336.8	-199.5	na
Gross Alpha (pCi/L)	10.1	6.8	na	na	na	na	n/a	4.5
Specific Conductance (uS/cm)	7840*	8600*	7500	7000	6400	5600	5500	5270*
pH (su)	7.15*	7.09*	7.33*	7.76*	7.64*	7.71	5.82	7.29
Turbidity (NTU)	73	0.42*	0*	10.5*	0*	0*	0.36*	na
TOC (mg/L)	n/a	n/a	n/a	n/a	n/a	n/a	1.7	na
DOC (mg/L)	n/a	n/a	n/a	n/a	n/a	n/a	1.9	na
Silica (mg/L)	n/a	n/a	n/a	n/a	n/a	n/a	13	14
Fluoride (mg/L)	n/a	n/a	n/a	n/a	n/a	n/a	2.1	1.1
Color (PCU)	n/a	n/a	n/a	n/a	n/a	n/a	1	5
Metals (200.8), mg/L								
Manganese	0.017	0.0041	na	na	na	na	n/a	0.0025
Arsenic	0.0024	0.0011	0.0039	0.0039	0.0029	<0.00032	0.006	0.0042
Magnesium	30	36	180	130	130	120	n/a	120
Potassium	5.5	7.7	35	41	39	30	n/a	35
Calcium	150	130	150	110	110	120	n/a	110
Iron	1.3	<0.020	0.58	<0.020	0.071	0.29	n/a	0.02
Sodium	230	270	1200	1100	850	790	n/a	820
Dissolved Metals (200.8), mg/L				1	,			
Arsenic	0.0036	0.0099	na	na	na	na	na	na
Iron	0.54	<0.020	na	na	na	na	na	na

Footnotes:

* Parameter analyzed in the field

mV - milivolts

NTU - Turbidity Units

mg/L - milligrams per liter; ug/L - micrograms per liter

na - Not Analyzed

uS/cm - milisiemens/centimeter

pCi/L - picocuries/Liter

PCU - color uints

G:\AProjects\EN\SEACOAST\WF005600.0000-Floridan Test Well\Final Report\Tables\Tb6 Water Quality Summary.xls

Appendix A

Geologic (Well) Log

GEOLOGIC LOG	DRILLING COMMENTS	DEPTH INTERVAL	THICKNESS
SAND – Sand, 100%, clear to dark yellowish orange (10YR 6/6), quartz, fine grained; Organic matter, trace, dark yellowish brown (10YR 4/2) to black (N1), partly decomposed; Shell, trace, white (N9) to very pale orange (10YR 8/2), small tests to 0.2 inch.	Nominal 32-inch drilling bit and stabilizer assembly. Mud- rotary method.	0 - 10	10
SHELLY SAND – Sand, 60%, clear to grayish orange (10YR 7/4), quartz, very fine to medium grained, rounded to sub- rounded; Shell, 40%, white (N9) to medium light gray (N6), tests up to 0.5 inch; Organic matter, trace, dark yellowish brown (10YR 4/2) to black (N1), partly decomposed.		10 - 40	30
SAND AND SHELL WITH SOME SANDSTONE – Sand, 40%, clear to grayish orange (10YR 7/4), quartz, very fine to medium grained, rounded to sub-rounded; Shell, 40%, white (N9) to medium light gray (N6), tests to 0.3 inch; Sandstone, 20%, clear to medium gray (N5), quartz, very fine grained, moderately hard, moderately well cemented; Organic matter, trace, dark yellowish brown (10YR 4/2) to black (N1), partly decomposed.		40 - 50	10
SILTY SAND – Sand, 100%, clear to yellowish gray (5Y 7/2), quartz, very silty, very fine to fine grained; Organic matter, trace, dark brown, decomposed; Shell, trace.		50-60	10
SAND – Sand, 100%, clear to yellowish gray (5Y 7/2), quartz, very fine to fine grained, rounded to sub-rounded, slightly phosphatic; Shell, trace, small (0.2 inch) tests.		60-80	20
SAND – Sand, 100%, clear to light gray (N7), quartz, phosphatic, fine to medium grained, sub-rounded; Shell, trace, very small tests.		80-90	10
SAND AND SHELL WITH LITTLE LIMESTONE – Sand, 50%, clear to very pale orange (10YR 8/2), quartz, little calcareous, phosphatic, very fine to fine grained, rounded to sub-rounded; Shell, 40%, white (N9) to medium light gray (N6), small tests to 0.2 inch; Limestone, 10%, very pale orange (10YR 8/2) to light gray (N7), few quartz grains, very fine to fine grained with shell intraclasts, moderately hard, moderately well cemented, slightly phosphatic.		90-110	20
SILTY SAND – Sand, 100%, clear to yellowish gray (5Y 7/2), quartz, very silty, very fine to fine grained, phosphatic; Organic matter, trace, dark brown, decomposed; Shell, trace.		110-120	10
SAND – Sand, 100%, clear, quartz, little calcareous -light gray to yellowish gray (5Y 8/1), phosphatic, very fine to fine grained, rounded to sub-rounded; Limestone, trace, white (N9) to very pale orange (10YR 8/2), moderately hard, moderately well cemented, phosphatic; Shell, trace, small fragments.		120-150	30

GEOLOGIC LOG	DRILLING COMMENTS	DEPTH INTERVAL	THICKNESS
SAND WITH SOME SHELL – Sand, 80%, clear, quartz, some calcareous- very pale orange (10YR 8/2) to light gray (N7), phosphatic, fine to medium grained, sub-rounded to sub-angular; Shell, 20%, white (N9) to very pale orange (10YR 8/2), small (0.1-0.2 inch) tests; Limestone, trace, very pale orange (10YR 8/2), moderately hard, moderately well cemented.		150-210	60
SILTY SAND – Sand, 100%, clear to yellowish gray (5Y 7/2), quartz, very silty, very fine to fine grained, phosphatic; Shell, trace.		210-220	10
SAND – Sand, 100%, clear, quartz, little calcareous- light gray (N7) to yellowish gray (5Y 8/1), phosphatic, fine grained with some medium grained, sub-rounded; Limestone, trace, white (N9) to very pale orange (10YR 8/2), moderately hard, moderately well cemented, phosphatic; Shell, trace, small fragments.		220-240	20
LIMESTONE WITH SOME SHELL AND LITTLE SAND – Limestone, 55%, very pale orange (10YR 8/2) to light gray (N7), few quartz grains, very fine to fine grained with shell intraclasts, moderately hard, moderately well cemented, slightly phosphatic; Shell, 35%, white (N9) to very pale orange (10YR 8/2), small fragments (0.1-0.3 inch); Sand, 10%, clear to yellowish gray (5Y 7/2), quartz, very silty, very fine to fine grained, phosphatic.		240-300	60
SAND, LIMESTONE AND LITTLE SHELL – Sand, 50%, clear to very pale orange (10YR 8/2), quartz, little calcareous, phosphatic, very fine to fine grained, rounded to sub-rounded; Limestone, 40%, very pale orange (10YR 8/2) to light gray (N7), few quartz grains, very fine to fine grained with shell intraclasts, moderately hard, moderately well cemented, slightly phosphatic; Shell, 10%, white (N9) to medium light gray (N6), small tests to 0.2 inch.		300-330	30
SILTY SAND – Sand, 100%, clear to yellowish gray (5Y 7/2), quartz, very silty, very fine to fine grained, slightly phosphatic; Shell, trace.		330-420	90
SILTY CLAY – Clay, 100%, light olive gray (5Y 6/1) to yellowish gray (5Y 7/2), calcareous and silty, slightly phosphatic, low plasticity, little cohesive; Limestone, trace, white (N9), to very light gray (N8), well cemented, with shell intraclasts, phosphatic, poorly cemented.		420-510	90
CLAY – Clay, 100%, light olive gray (5Y 6/1) to yellowish gray (5Y 7/2), slightly calcareous, low plasticity, slightly cohesive; Limestone, trace, white (N9) to very light gray (N8), well cemented with shell intraclasts, phosphatic; Shell, trace, white (N9) to medium light gray (N6), small tests to 0.1 inch.		510-800	290

GEOLOGIC LOG	DRILLING COMMENTS	DEPTH INTERVAL	THICKNESS
CLAY WITH VERY LITTLE CHERT– Clay, 95%, light olive gray (5Y 6/1), cohesive, low plasticity, slightly calcareous; Chert, 5%, yellowish gray (5Y 8/1) to medium light gray (N6), well cemented, hard; Limestone, trace, yellowish gray (5Y 7/2), to very pale orange (10YR 8/2) with some light olive gray (5Y 6/1), moderately hard, well cemented.		800-860	60
CLAY AND SOME LIMESTONE – Clay, 70%, light olive gray (5Y 5/2), calcareous (marl), very soft, cohesive, non- plastic, slightly phosphatic; Limestone, 30%, yellowish gray (5Y 7/2) to very pale orange (10YR 8/2), coquina, very soft, poorly cemented; Shell, trace, very light gray (N8), tests to 0.1- inch.		860-870	10
LIMESTONE, CLAY AND LITTLE SHELL – Limestone, 60%, yellowish gray (5Y 7/2), to very pale orange (10YR 8/2), coquina, very soft, poorly cemented; Clay, 30%, light olive gray (5Y 5/2) to white (N9), calcareous (marl), very soft, cohesive, non-plastic, slightly phosphatic; Shell, 10%, very light gray (N8), tests to 0.1-inch.		870-900	30
CLAY, LIMESTONE AND VERY LITTLE SHELL – Clay, 60%, light olive gray (5Y 5/2) to white (N9), calcareous (marl), very soft, cohesive, non-plastic, slightly phosphatic; Limestone, 35%, yellowish gray (5Y 7/2) to very pale orange (10YR 8/2), coquina, very soft, poorly cemented; Shell, 5%, very light gray (N8), tests to 0.1-inch.		900-920	20
LIMESTONE, SAND, SOME CLAY AND VERY LITTLE SHELL – Limestone, 35%, yellowish gray (5Y 7/2), to very pale orange (10YR 8/2), coquina, very soft, poorly cemented; Sand, 35%, yellowish gray (5Y 7/2), fine grained, calcareous, detritic; Clay, 25%, light olive gray (5Y 5/2) to white (N9), calcareous (marl), very soft, cohesive, non-plastic, slightly phosphatic; Shell, 5%, very light gray (N8), tests to 0.1-inch.		920-930	10
CLAY, SOME LIMESTONE AND LITTLE SHELL – Clay, 60%, light olive gray (5Y 5/2) to white (N9), calcareous (marl), very soft, cohesive, non-plastic, slightly phosphatic; Limestone, 35%, yellowish gray (5Y 7/2) to very pale orange (10YR 8/2), coquina, very soft, poorly cemented, between 954 and 960 ft b.g. limestone moderately hard and moderately well cemented (bit chatter); Shell, 5%, very light gray (N8), tests to 0.1-inch.	954-960 ft b.g. occasional bit chatter	930-960	30
CALCAREOUS SAND AND LITTLE CLAY– Sand, 95%, yellowish gray (5Y 7/2), calcareous, detritic, very fine to fine grained, phosphatic; CLAY, 5%, yellowish gray (5Y 7/2), calcareous (marl), very soft, non plastic.		960-980	20

GEOLOGIC LOG	DRILLING COMMENTS	DEPTH INTERVAL	THICKNESS
LIMESTONE WITH VERY LITTLE CLAY AND SAND – Limestone, 90%, yellowish gray (5 YR 8/1) to (trace) medium gray (N5), oosparite grainstone, with trace of forams, fine grained, soft to moderately hard, poorly to moderately well cemented, vuggy; Clay, 5%, yellowish gray (5 YR 8/1), calcareous (marl), very soft, non plastic; Sand, 5%, yellowish gray (5Y 7/2), calcareous, detritic, very fine to fine grained, very slightly phosphatic.		980-994	14
LIMESTONE AND VERY LITTLE SHELL – Limestone, 95%, yellowish gray (5 YR 8/1) to (trace) medium gray (N5), oosparite grainstone, fossiliferous with trace of forams, fine grained, moderately hard, moderately well cemented, vuggy; Shell, 5%, yellowish gray (5 YR 7/2) to light gray (N7), tests to 0.1- inch; Clay, trace, yellowish gray (5 YR 8/1), calcareous (marl), very soft, non plastic, very slightly phosphatic.		994-1015	21
LIMESTONE – Limestone, 100%, yellowish gray (5 YR 8/1), oolitic grainstone, slightly fossiliferous with trace of forams (lepidocyclina), fine grained, few shell intraclasts, moderately hard to soft, moderately well to poorly cemented, slightly vuggy; Shell, trace, yellowish gray (5 YR 7/2) to light gray (N7), tests to 0.1- inch.	Drilled by Reverse-Air Method below 1015ft b.g.	1015-1030	15
LIMESTONE WITH SOME SAND – Limestone, 80%, yellowish gray (5 YR 8/1), oolitic grainstone, slightly fossiliferous with trace of forams (lepidocyclina), fine grained, soft to very soft, poorly cemented, slightly vuggy; Sand, 20%, yellowish gray (5 YR 8/1) to very light gray (N8), calcareous, detritic, very fine to fine grained, sub-angular to sub-rounded; Clay, trace, white (N9) to yellowish gray (5YR 8/1), calcareous (marl), chalky, very soft, non plastic. Frequent (20%) cement cuttings.	WOB= 1-2K RPM= 62-72 Pressure= 180 lbs Some dredging.	1030-1050	20
LIMESTONE WITH SAND AND LITTLE CLAY– Limestone, 50%, yellowish gray (5 YR 8/1), oolitic grainstone, slightly fossiliferous with trace of forams (lepidocyclina), fine grained, soft to very soft, poorly cemented, slightly vuggy; Sand, 40%, yellowish gray (5 YR 8/1) to very light gray (N8), calcareous, detritic, very fine to fine grained, sub-angular to sub-rounded; Clay, 10%, white (N9) to light olive gray (5Y 5/2), calcareous (marl), chalky, very soft, non plastic. Occasional cement fragments.	WOB= 1K RPM= 62-72 Pressure= 180 lbs Heavy dredging.	1050-1070	20

GEOLOGIC LOG	DRILLING COMMENTS	DEPTH INTERVAL	THICKNESS
LIMESTONE – Limestone, 100%, yellowish gray (5 YR 7/2), oolitic grainstone, very fine grained, little (10%) micritic, fossiliferous with forams (lepidocyclina), soft to moderately hard, moderately well to poorly cemented, slightly vuggy. Large amount (80%) of cement fragments from 1074 to 1080 ft b.g., less below.	WOB= 2-4K RPM=70 Pressure= 180 lbs	1070-1100	30
LIMESTONE – Limestone, 100%, yellowish gray (5 YR 7/2), oolitic grainstone, very fine grained, some (20%) micritic, slightly dolomitic, fossiliferous with forams (lepidocyclina), moderately hard to hard, moderately well to well cemented. Small amount (10%) of cement fragments.	WOB= 5-6K RPM= 70 Pressure= 180 lbs	1100-1120	20
LIMESTONE – Limestone, 100%, pale yellowish brown (10YR 6/2), oolitic grainstone, very fossiliferous with shell intraclasts and forams (lepidocyclina), fine grained, partly slightly dolomitic, soft to moderately hard, poorly to moderately well cemented, vuggy. Small amount (10%) of cement fragments.	WOB= 2-4K RPM= 70 Pressure= 180 lbs	1120-1130	10
LIMESTONE – Limestone, 100%; 80% pale yellowish brown (10YR 6/2) grainstone, abundant fossils (forams), fine grained, soft to very soft, poorly cemented, vuggy; 20% light gray (N7) and very light gray (N8), micritic, slightly dolomitic, moderately hard, moderately well cemented; Shell, trace, pale yellowish brown (10YR 6/2), tests to 0.1-inch. Up to 20% of cement fragments in cuttings.	WOB= 2-4K RPM= 70 Pressure= 180 lbs	1130-1170	40
LIMESTONE – Limestone, 100%; 50% yellowish gray (5YR 8/1) grainstone, few fossills (forams), fine grained, soft to very soft, poorly cemented, vuggy; 50% light gray (N7) to medium gray (N5), micritic, slightly dolomitic, moderately hard, moderately well cemented.	WOB= 2-4K RPM= 70-75 Pressure= 180 lbs	1170-1180	10
LIMESTONE – Limestone, 100%; 90% yellowish gray (5YR 8/1) oolitic grainstone, fossiliferous (forams), fine grained, very soft, poorly cemented; 10% very light gray (N8), micritic, slightly dolomitic, moderately hard, moderately well cemented.	WOB= 1-2K RPM= 70-75 Pressure= 180 lbs	1180-1200	20
LIMESTONE – Limestone, 100%; 50% yellowish gray (5YR 8/1) grainstone, few fossills (forams), fine grained, soft to very soft, poorly cemented, vuggy; 50% light gray (N7) to medium gray (N5), micritic, slightly dolomitic, moderately hard, moderately well cemented; Clay, trace, very light gray (N8), calcareous, very soft, non plastic.	WOB= 2-4K RPM= 70-75 Pressure= 180 lbs	1200-1210	10
LIMESTONE – Limestone, 100%; 90% yellowish gray (5YR 8/1) oolitic grainstone, few fossils (forams), fine grained, soft, poorly cemented; 10% very light gray (N8), micritic, slightly dolomitic, moderately hard, moderately well cemented.	WOB= 1-4K RPM= 70-75 Pressure= 180 lbs	1210-1250	40

GEOLOGIC LOG	DRILLING COMMENTS	DEPTH INTERVAL	THICKNESS
LIMESTONE WITH VERY LITTLE CLAY – Limestone, 95%; 70% yellowish gray (5YR 8/1) oolitic grainstone, few fossils (forams), fine grained, soft, poorly cemented, chalky; 30% very light gray (N8), micritic, slightly dolomitic, moderately hard, moderately well cemented; Clay, 5%, white (N9) to yellowish gray (5YR 8/1), calcareous, very soft, non plastic.	WOB= 2-4K RPM= 70-75 Pressure= 180 lbs	1250-1270	20
LIMESTONE – Limestone, 100%; 50% yellowish gray (5YR 8/1) grainstone, few fossills (forams), fine grained, soft to very soft, poorly cemented, vuggy; 50% light gray (N7) to medium gray (N5), micritic, slightly dolomitic, moderately hard, moderately well cemented.	WOB= 2-4K RPM= 70-75 Pressure= 180 lbs	1270-1337	67
DOLOMITE AND LITTLE LIMESTONE – Dolomite, 90%, pale yellowish brown (10YR 6/2) to light olive gray (5Y 5/2), very fine grained, slightly vuggy, hard, well cemented; Limestone, 10%, very light gray (N7) to yellowish gray (5YR 8/1) grainstone, fine grained, slightly dolomitic, moderately hard, moderately well cemented.	WOB= 10-12K RPM= 55 Pressure= 180 lbs	1337-1340	3
LIMESTONE – Limestone, 100%; 60% light gray (N7) to medium gray (N5), micritic, slightly dolomitic, moderately hard, moderately well cemented; 40% yellowish gray (5YR 8/1) grainstone, few fossills (forams), fine grained, soft to very soft, poorly cemented, vuggy.	WOB= 2-4K RPM= 70-75 Pressure= 180 lbs	1340-1356	16
CLAY AND SOME LIMESTONE – Clay, 70%, medium light gray (N6), calcareous, limey (marl), very soft to soft, non plastic; Limestone, 30%; yellowish gray (5YR 8/1) oolitic grainstone, fine grained, soft, poorly cemented, vuggy.	WOB= 2-4K RPM= 70-75 Pressure= 180 lbs	1356-1359	3
LIMESTONE – Limestone, 100%; 90% yellowish gray (5YR 8/1) oolitic grainstone, fossiliferous (forams), fine grained, very soft to soft, poorly cemented; 10% very light gray (N8), micritic, slightly dolomitic, moderately hard, moderately well cemented.	WOB= 2-4K RPM= 70-75 Pressure= 180 lbs	1359-1370	11
DOLOMITIC LIMESTONE – Limestone, 100%; 95%, medium gray (N5) to medium light gray (N6), very fine grained, little micritic, dolomitic, moderately hard to hard, moderately well to well cemented; 5%, yellowish gray (5YR 8/1), oolitic grainstone, few fossills (forams), fine grained, soft to very soft, poorly cemented, vuggy ; Clay, trace, medium gray (N5), calcareous, limey (marl), very soft to soft, non plastic	WOB= 4-10K RPM= 60-70 Pressure= 180 lbs	1370-1380	10
DOLOMITIC LIMESTONE – Limestone, 100%; yellowish gray (5Y 7/2), very fine grained, little micritic, dolomitic, moderately hard to hard, moderately well to well cemented; Clay, trace, yellowish gray (5Y 7/2), calcareous (marl), very soft, non plastic	WOB= 4-10K RPM= 50-60 Pressure= 180 lbs	1380-1390	10

GEOLOGIC LOG	DRILLING COMMENTS	DEPTH INTERVAL	THICKNESS
DOLOMITIC LIMESTONE – Limestone, 100%; 90%, pale yellowish gray (5Y 6/4), grainstone, very fine grained, slightly dolomitic, moderately hard, moderately well cemented; 10%, white (N9) to light gray (N8), fine grained, soft, poorly cemented.	WOB= 4-6K RPM= 60-70 Pressure= 180 lbs	1390-1400	10
DOLOMITIC LIMESTONE – Limestone, 100%, very light gray (N8) to dark gray (N3), very fine grained, dolomitic, moderately hard to hard, moderately well to well cemented, vuggy.	WOB= 4-6K RPM= 60-70 Pressure= 180 lbs	1400-1425	25
LIMESTONE – Limestone, 100%; 50%, pale yellowish gray (5Y 6/4), grainstone, very fine grained, fossiliferous (few forams), soft, poorly cemented; 50%, very light gray (N8), micritic, slightly dolomitic, moderately hard, moderately well cemented.	WOB= 4-6K RPM= 60-70 Pressure= 180 lbs	1425-1440	15
LIMESTONE – Limestone, 100%; 70%, pale yellowish gray (5Y 6/4), grainstone, very fine grained, fossiliferous (few forams), soft, poorly cemented; 30%, very light gray (N8), micritic, slightly dolomitic, moderately hard, moderately well cemented.	WOB= 4-6K RPM= 70 Pressure= 180 lbs	1440-1450	10
DOLOMITIC LIMESTONE – Limestone, 100%, very light gray (N8) to yellowish gray (5Y 8/1), very fine grained, dolomitic, moderately hard to hard, moderately well to well cemented, slightly vuggy; Clay, trace, very light gray (N8), calcareous, very soft, non plastic.	WOB= 8-10K RPM= 60-70 Pressure= 180 lbs	1450-1460	10
LIMESTONE WITH VERY LITTLE CLAY – Limestone, 95%; 85% yellowish gray (5YR 8/1), oolitic grainstone, few fossils (forams), fine grained, soft, poorly cemented, chalky; 15% very light gray (N8), micritic, slightly dolomitic, moderately hard, moderately well cemented; Clay, 5%, white (N9) to yellowish gray (5YR 8/1), calcareous, very soft, non plastic.	WOB= 2-4K RPM= 70-75 Pressure= 180 lbs	1460-1470	10
LIMESTONE – Limestone, 100%; 60%, pale yellowish gray (5Y 6/4), oolitic grainstone, very fine grained, fossiliferous (few forams), soft, poorly to moderately-well cemented; 40%, very light gray (N8) to medium gray (N5), micritic, slightly dolomitic, moderately hard, moderately well cemented.	WOB= 2-4K RPM= 70 Pressure= 180 lbs	1470-1480	10
LIMESTONE – Limestone, 100%; 90%, pale yellowish gray (5Y 8/1), oolitic grainstone, very fine grained, fossiliferous (few forams), very soft, poorly cemented; 10%, very light gray (N8) to medium gray (N5), micritic, slightly dolomitic, moderately hard, moderately well cemented; Clay, trace, yellowish gray (5YR 8/1), calcareous, very soft, non plastic.	WOB= 4-6K RPM= 70 Pressure= 180 lbs	1480-1490	10

GEOLOGIC LOG	DRILLING COMMENTS	DEPTH INTERVAL	THICKNESS
LIMESTONE – Limestone, 100%; 50%, pale yellowish gray (5Y 8/1), oolitic grainstone, very fine grained, fossiliferous (large forams), very soft, poorly cemented; 50%, very light gray (N8) to medium gray (N5), micritic, slightly dolomitic, moderately hard to hard, moderately- well to well cemented.	WOB= 4-6K RPM= 70 Pressure= 180 lbs	1490-1510	20
DOLOMITE AND VERY LITTLE LIMESTONE – Dolomite, 95%, pale yellowish brown (10YR 6/2), micritic, some very fine grained, slightly vuggy, hard, well cemented; Limestone, 5%, very light gray (N7) to yellowish gray (5YR 8/1), grainstone, fine grained, slightly dolomitic, soft, poorly cemented.	WOB= 10-12K RPM= 55 Pressure= 180 lbs	1510-1520	10
LIMESTONE – Limestone, 100%; 50%, yellowish gray (5Y 7/2), oolitic grainstone, very fine grained, fossiliferous (forams), very soft, poorly cemented; 50%, very light gray (N8) to medium gray (N5), micritic, slightly dolomitic, moderately hard to hard, moderately well to well cemented.	WOB= 4-6K RPM= 70 Pressure= 180 lbs	1520-1550	30
LIMESTONE – Limestone, 100%, pale yellowish gray (5Y 8/1), oolitic grainstone, slightly dolomitic, fine grained, trace of fossils (forams), soft to moderately hard, poorly to moderately well cemented; Clay, trace, yellowish gray (5YR 8/1), calcareous, very soft, non plastic.	WOB= 2-4K RPM= 70 Pressure= 180 lbs	1550-1560	10
LIMESTONE – Limestone, 100%; 95%, pale yellowish gray (5Y 8/1), oolitic grainstone, very fine grained, fossiliferous (forams), very soft, poorly cemented; 5%, light gray (N7) to medium gray (N5), micritic, slightly dolomitic, moderately hard, moderately well cemented.	WOB= 1-2K RPM= 75 Pressure= 180 lbs	1560-1570	10
LIMESTONE – Limestone, 100%; 70-90%, pale yellowish gray (5Y 7/2 to 5Y8/1), oolitic grainstone, very fine grained, fossiliferous (forams), very soft, poorly cemented; 10%-30%, light gray (N7) to medium gray (N5), very fine grained, slightly dolomitic, vuggy, moderately hard, moderately well cemented; Clay, trace, yellowish gray (5YR 8/1), calcareous, very soft, non plastic.	WOB= 2-4K RPM= 70 Pressure= 180 lbs	1570-1620	50
DOLOMITIC LIMESTONE – Limestone,100%; 95%, yellowish gray (5Y 8/1), micritic to very fine grained, dolomitic, trace of fossils, moderately hard to soft, moderately well to poorly cemented, slightly vuggy; 5% pale yellowish gray (5Y 8/1), oolitic grainstone, very fine grained, fossiliferous (forams), very soft, poorly cemented; Clay, trace, yellowish gray (5YR 8/1), calcareous, very soft, non plastic.	WOB= 4-6K RPM= 70 Pressure= 180 lbs	1620-1630	10

GEOLOGIC LOG	DRILLING COMMENTS	DEPTH INTERVAL	THICKNESS
LIMESTONE – Limestone, 100%; 90% yellowish gray (5Y 7/2) to pale yellowish brown (10YR 6/2), oolitic grainstone, very fine grained, fossiliferous (forams), very soft, poorly cemented; 10%, light gray (N7) to medium gray (N5), micritic, slightly dolomitic, moderately hard, moderately- well cemented.	WOB= 1-2K RPM= 70 Pressure= 180 lbs	1630-1650	20
DOLOMITE AND LITTLE LIMESTONE – Dolomite, 90%, dark gray (N3) to medium gray (N5), micritic, very slightly vuggy, moderately hard, moderately well cemented; Limestone, 10%, very pale orange (10YR 8/20 to grayish orange (10YR 7/4), grainstone, fine grained, very soft to soft, poorly cemented.	WOB= 10-12K RPM= 55 Pressure= 180 lbs	1650-1660	10
LIMESTONE – Limestone, 100%; 90%, yellowish gray (5Y 7/2 to 5Y 8/1), oolitic grainstone, fine grained, abundant fossils (forams), very soft, poorly cemented; 10%, light gray (N7) to medium gray (N5), micritic, slightly dolomitic, moderately hard, moderately well cemented.	WOB= 1-2K RPM= 75 Pressure= 180 lbs	1660-1670	10
DOLOMITIC LIMESTONE – Limestone,100%; 95% yellowish gray (5Y 8/1), micritic to very fine grained, dolomitic, trace of fossils, moderately hard to soft, moderately well to poorly cemented, slightly vuggy; 5% yellowish gray (5Y 8/1), oolitic grainstone, very fine grained, fossiliferous (forams), very soft, poorly cemented; Clay, trace, yellowish gray (5YR 8/1), calcareous, very soft, non plastic.	WOB= 6-10K RPM= 70 Pressure= 180 lbs	1670-1680	10
LIMESTONE – Limestone, 100%, very light gray (N8) to medium gray (N5), very fine grained, slightly dolomitic, soft to moderately hard, moderately well to poorly cemented, slightly vuggy.	WOB= 2-4K RPM= 60-70 Pressure= 180 lbs	1680-1686	6
DOLOMITIC LIMESTONE – Limestone, 100%; 90% grayish orange (10YR 7/4), grainstone, fine grained, dolomitic, few forams, moderately hard, moderately well cemented, slightly vuggy; 10% light gray (N7) to very light gray (N8), micritic, slightly dolomitic, moderately hard, moderately well cemented.	WOB= 6-10K RPM= 70 Pressure= 180 lbs	1686-1690	4
DOLOMITIC LIMESTONE – Limestone, 100%; 90% very pale orange (10YR 8/2) to grayish orange (10YR 7/2), sucrosic grainstone, fine grained, dolomitic, slightly fossiliferous, moderately hard to soft, moderately well, slightly vuggy; 10% light gray (N7) to very light gray (N8), micritic, slightly dolomitic, moderately hard, moderately well cemented.	WOB= 4-6K RPM= 70 Pressure= 180 lbs	1690-1700	10
DOLOMITIC LIMESTONE – Limestone, 100%; 80% medium light gray (N6) to very light gray (N8), micritic to very fine grained, dolomitic, moderately hard, moderately well cemented; 20% yellowish gray (5Y 8/1), oolitic grainstone, very fine grained, some forams, soft, poorly cemented; Clay, trace, medium gray (N6), calcareous, very soft, non plastic.	WOB= 4-6K RPM= 70 Pressure= 180 lbs	1700-1718	18

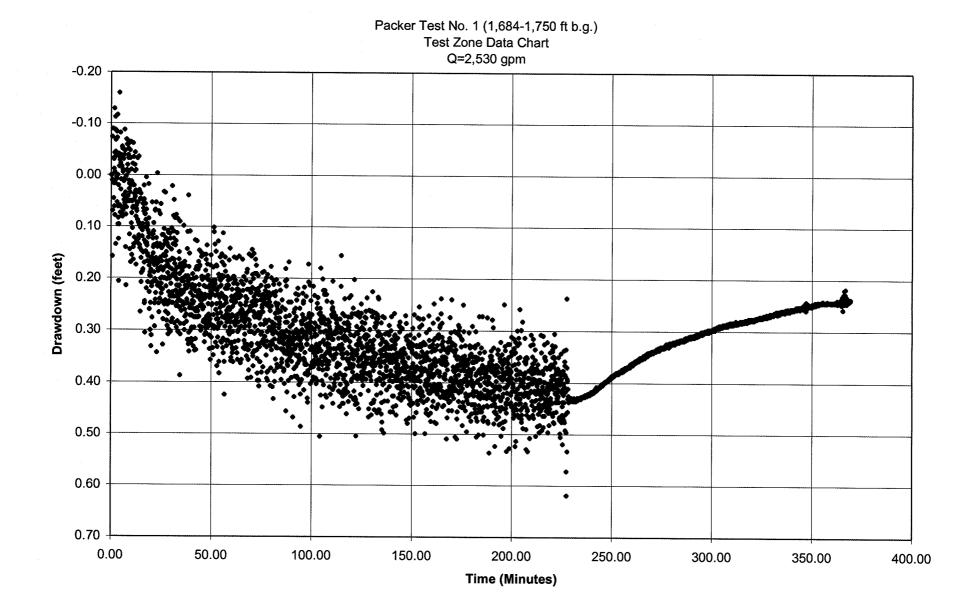
	DRILLING	DEPTH	THICKNESS
GEOLOGIC LOG	COMMENTS	INTERVAL	
DOLOMITE – Dolomite, 100%, medium light gray (N6) to light gray (N7), little pale yellowish brown (10YR 6/2), micritic, moderately hard to hard, well cemented, slightly vuggy.	WOB= 24K RPM= 50 Pressure= 180 lbs	1718-1726	8
DOLOMITE AND DOLOMITIC LIMESTONE – Dolomite, 50%, pale yellowish brown (10YR 6/2) to medium light gray (N6) and light gray (N7), micritic, moderately hard to hard, well cemented, slightly vuggy; Limestone, 50%, very pale orange (10YR 8/2) to grayish orange (10YR 7/2), sucrosic grainstone, fine grained, dolomitic, slightly fossiliferous (forams), moderately hard, moderately well cemented.	WOB= 10-12K RPM= 65 Pressure= 180 lbs	1726-1730	4
DOLOMITIC LIMESTONE – Limestone, 100%, very pale orange (10YR 8/2) to white (N9), micritic, dolomitic, trace of forams, moderately hard, moderately well cemented, slightly vuggy.	WOB= 4-6K RPM= 70 Pressure= 180 lbs	1730-1740	10
DOLOMITIC LIMESTONE AND DOLOMITE - Limestone, 70%, very pale orange (10YR 8/2) to grayish orange (10YR 7/2), micritic, some very fine grained, dolomitic, slightly fossiliferous (forams), moderately hard to soft, moderately well to poorly cemented.; Dolomite, 30%, pale yellowish brown (10YR 6/2) to medium light gray (N6) and light gray (N7), micritic, moderately hard, moderately well cemented, slightly vuggy.	WOB= 4-6K RPM= 75 Pressure= 180 lbs	1740-1750	10

Appendix B

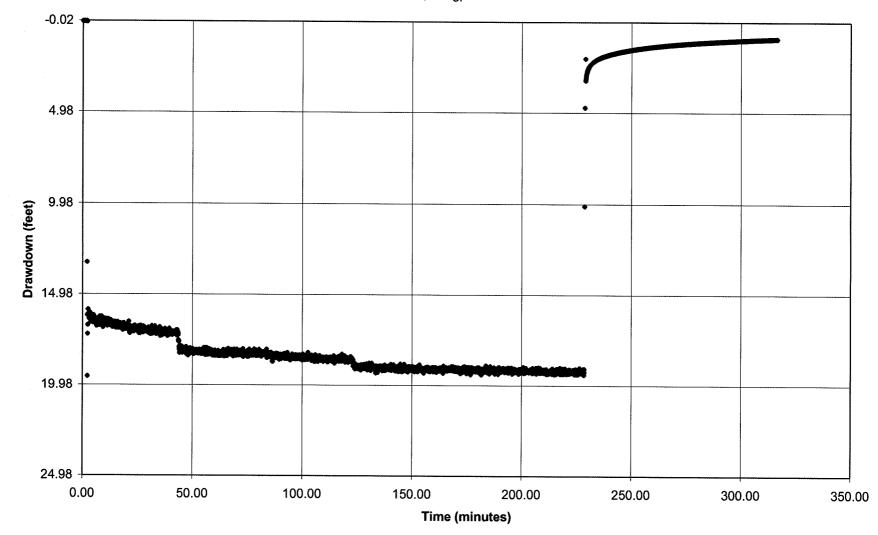
Geophysical Logs

Appendix C

Packer Tests


Packer Test No. 1

.iowitte	er Total-Sta	art (gal) : n/a				Open Hole Tot	al Depth (feet br	ol) : 1750 ft Bo	3				
		nd (gal) : 110		······			(feet bpl): 1684						
		low Rate (g					l: 1684-1750 ft B						
T		ion (min): ~2			August .		pth (feet b. TOC		o annular spac	e transducer in	stalled)		
		Test (ft AG):				Top of test pip	e: 2.83+31.05+1	·	-		·······		
pproxi	nately 2140	0 gls (17 we	ll volumes) p	ourged from we	Il prior to lab.	samples colled	ction (at 13:15).						
						De	velopment						
		Wei	Parameters	5				· · · · · · · · · · · · · · · · · · ·	Field Paran	neters			
Date	Time	Elapsed	Flow	Total	Depth to	Temp.	Cond.	Chlorides	pН	Turbidity	H2S	ORP	D.0
		Time	Rate	Volume	Water								
		(min)	(gpm)	(gal)	(feet bpl)	(°C)	(mS/cm)	(mg/L)		(NTU)	(mg/L)	mV	(mg/l
3/8/07	7:45	0	0.0	0	start	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a n/a
3/8/07 3/8/07	10:15 12:28	150 283	62.0 63.0	9300 17829	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a
3/8/07	12:38	303	62.0	17825	n/a	22.5	7698	3000	7.35	0.0	n/a	-245	0.50
3/8/07	12:38	303	62.0	18786	n/a	22.6	7698	3000	7.33	0.0	n/a n/a	-243	0.30
3/8/07	12:48	313	62.0	20026	n/a	22.6	7698	3000	7.32	0.0	n/a n/a	-234.0	0.49
3/8/07	12:58	323	62.0	20026	n/a	22.6	7698	3000	7.30	0.0	n/a 1.35	-271.2	0.49
3/8/07	13:08	355	62.0	20646	n/a n/a	22.6	7697	3000	7.34	0.0	n/a	-280.8	0.49
					Construction of the second								0.49 n/a
3/8/07	13:40	365	62.0	22630	Flow off	n/a	n/a	n/a	n/a	n/a	n/a	n/a	JUA
			•	otal volume of pu nitored by ARCA	0	sumated.							
	INDIE: OV	ernight recov	ery wash t mu	anorea by ARCA		Free Flow (a	nnular space) Test					
Date	Time	Elapsed	Flow	Flow	Total	Head	Ft of water	DTW	Water level	Water level	Water level		
Juic		Liupseu	11010										
		Time	Rate									Comr	nents
		Time (min)	Rate (ft Man.)	Rate	Volume	12"	Transd.	3.5" Pipe	3.5" Pipe	3.5" Pipe	3.5" Pipe	Comn	nents
3/9/07	10:55	(min)	(ft Man.)	Rate (gpm)	Volume (gal)	12" (ft AG)	Transd. Annulus	3.5" Pipe (feet b. TOC)	3.5" Pipe (Ft AG)	3.5" Pipe (transd. Ft)	3.5" Pipe (Tr. Ft AG)	Comn	nents
	10:55	(min) 0.0	(ft Man.) 0.0	Rate (gpm) 0	Volume (gal) Recovery	12" (ft AG) n/a	Transd. Annulus n/a	3.5" Pipe (feet b. TOC) 10:11	3.5" Pipe (Ft AG) 34.77	3.5" Pipe (transd. Ft) n/a	3.5" Pipe (Tr. Ft AG) n/a	Comn	nents
3/9/07 3/9/07 3/9/07	13:40	(min) 0.0 0.0	(ft Man.) 0.0 0.0	Rate (gpm) 0 0	Volume (gal) Recovery Recovery	12" (ft AG) n/a 33.31	Transd. Annulus n/a 33.29	3.5" Pipe (feet b. TOC) 10:11 10:11	3.5" Pipe (Ft AG) 34.77 34.77	3.5" Pipe (transd. Ft) n/a 49.36	3.5" Pipe (Tr. Ft AG) n/a 34.24		
3/9/07 3/9/07	13:40 13:52	(min) 0.0 0.0 0.0	(ft Man.) 0.0 0.0 0.0	Rate (gpm) 0 0 0	Volume (gal) Recovery Recovery Start test	12" (ft AG) n/a 33.31 n/a	Transd. Annulus n/a 33.29 n/a	3.5" Pipe (feet b. TOC) 10:11 10:11 n/a	3.5" Pipe (Ft AG) 34.77 34.77 n/a	3.5" Pipe (transd. Ft) n/a 49.36 n/a	3.5" Pipe (Tr. Ft AG) n/a 34.24 n/a	Comm	
3/9/07 3/9/07 3/9/07	13:40 13:52 13:52.5	(min) 0.0 0.0 0.0 0.5	(ft Man.) 0.0 0.0 0.0 31.0	Rate (gpm) 0 0 0 2770	Volume (gal) Recovery Recovery Start test ~1390	12" (ft AG) n/a 33.31 n/a n/a	Transd. Annulus n/a 33.29 n/a n/a	3.5" Pipe (feet b. TOC) 10:11 10:11 n/a n/a	3.5" Pipe (Ft AG) 34.77 34.77 n/a n/a	3.5" Pipe (transd. Ft) n/a 49.36 n/a n/a	3.5" Pipe (Tr. Ft AG) n/a 34.24 n/a n/a		
3/9/07 3/9/07 3/9/07 3/9/07	13:40 13:52 13:52.5 14:05	(min) 0.0 0.0 0.0 0.5 13.0	(ft Man.) 0.0 0.0 31.0 29.8	Rate (gpm) 0 0 0 2770 ~2500	Volume (gal) Recovery Recovery Start test ~1390 ~32500	12" (ft AG) n/a 33.31 n/a n/a 16.55	Transd. Annulus n/a 33.29 n/a n/a n/a	3.5" Pipe (feet b. TOC) 10:11 10:11 n/a n/a n/a	3.5" Pipe (Ft AG) 34.77 34.77 n/a n/a n/a	3.5" Pipe (transd. Ft) n/a 49.36 n/a n/a 49.30	3.5" Pipe (Tr. Ft AG) 1/a 34.24 1/a n/a 34.18		
3/9/07 3/9/07 3/9/07 3/9/07 3/9/07	13:40 13:52 13:52.5 14:05 14:15	(min) 0.0 0.0 0.5 13.0 23.0	(ft Man.) 0.0 0.0 31.0 29.8 28.8	Rate (gpm) 0 0 0 2770 ~2500 2485	Volume (gal) Recovery Start test ~1390 ~32500 ~57300	12" (ft AG) n/a 33.31 n/a 16.55 n/a	Transd. Annulus n/a 33.29 n/a n/a n/a n/a	3.5" Pipe (feet b. TOC) 10:11 10:11 n/a n/a n/a n/a	3.5" Pipe (Ft AG) 34.77 34.77 n/a n/a n/a n/a	3.5" Pipe (transd. Ft) n/a 49.36 n/a n/a 49.30 49.13	3.5" Pipe (Tr. Ft AG) n/a 34.24 n/a 34.18 34.01	Open V	Valve
3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07	13:40 13:52 13:52.5 14:05 14:15 14:25	(min) 0.0 0.0 0.5 13.0 23.0 33.0	(ft Man.) 0.0 0.0 31.0 29.8 28.8 28.8	Rate (gpm) 0 0 0 2770 ~2500 2485 2400	Volume (gal) Recovery Start test ~1390 ~32500 ~57300 ~82500	12" (ft AG) n/a 33.31 n/a 16.55 n/a 1/a	Transd. Annulus n/a 33.29 n/a n/a n/a n/a	3.5" Pipe (feet b. TOC) 10:11 10:11 n/a n/a n/a n/a n/a	3.5" Pipe (Ft AG) 34.77 34.77 n/a n/a n/a n/a n/a	3.5" Pipe (transd. Ft) n/a 49.36 n/a 49.30 49.13 n/a	3.5" Pipe (Tr. Ft AG) n/a 34.24 n/a 34.18 34.01 n/a		Valve
3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07	13:40 13:52 13:52.5 14:05 14:15 14:25 14:36	(min) 0.0 0.0 0.5 13.0 23.0 33.0 44.0	(ft Man.) 0.0 0.0 31.0 29.8 28.8 28.0 30.0	Rate (gpm) 0 0 0 0 2770 ~2500 2485 2400 2530	Volume (gal) Recovery Recovery Start test ~1390 ~32500 ~57300 ~82500 ~110350	12" (ft AG) n/a 33.31 n/a n/a 16.55 n/a n/a n/a	Transd. Annulus n/a 33.29 n/a n/a n/a n/a n/a	3.5" Pipe (feet b. TOC) 10:11 10:11 n/a n/a n/a n/a n/a n/a	3.5" Pipe (Ft AG) 34.77 34.77 n/a n/a n/a n/a n/a n/a	3.5" Pipe (transd. Ft) n/a 49.36 n/a 49.30 49.13 n/a 49.04	3.5" Pipe (Tr. Ft AG) n/a 34.24 n/a 34.18 34.01 n/a 33.92	Open V	Valve
3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07	13:40 13:52 13:52.5 14:05 14:15 14:25 14:36 14:50	(min) 0.0 0.0 0.5 13.0 23.0 33.0 44.0 58.0	(ft Man.) 0.0 0.0 31.0 29.8 28.8 28.0 30.0 30.0	Rate (gpm) 0 0 0 0 2770 ~2500 2485 2400 2530 2530	Volume (gal) Recovery Start test ~1390 ~32500 ~57300 ~82500 ~110350 ~145800	12" (ft AG) n/a 33.31 n/a n/a 16.55 n/a n/a n/a n/a n/a	Transd. Annulus n/a 33.29 n/a n/a n/a n/a n/a n/a n/a n/a n/a	3.5" Pipe (feet b. TOC) 10:11 n/a n/a n/a n/a n/a n/a n/a	3.5" Pipe (Ft AG) 34.77 34.77 n/a n/a n/a n/a n/a n/a n/a	3.5" Pipe (transd. Ft) n/a 49.36 n/a 49.30 49.13 n/a 49.04 49.04 49.11	3.5" Pipe (Tr. Ft AG) n/a 34.24 n/a 34.18 34.01 n/a 33.92 33.99	Open V	Valve
3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07	13:40 13:52 13:52.5 14:05 14:15 14:25 14:36 14:50 15:05	(min) 0.0 0.0 0.5 13.0 23.0 33.0 44.0 58.0 73.0	(ft Man.) 0.0 0.0 31.0 29.8 28.8 28.0 30.0 30.0 30.0	Rate (gpm) 0 0 0 0 2770 -2500 2485 2400 2530 2530 2530 2530	Volume (gal) Recovery Start test ~1390 ~32500 ~57300 ~82500 ~110350 ~145800 ~183800	12" (ft AG) n/a 33.31 n/a 16.55 n/a n/a n/a n/a n/a n/a n/a	Transd. Annulus n/a 33.29 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a	3.5" Pipe (feet b. TOC) 10:11 n/a n/a n/a n/a n/a n/a n/a n/a	3.5" Pipe (Ft AG) 34.77 n/a n/a n/a n/a n/a n/a n/a n/a n/a	3.5" Pipe (transd. Ft) n/a 49.36 n/a 49.30 49.13 n/a 49.04 49.04 49.11 49.09	3.5" Pipe (Tr. Ft AG) n/a 34.24 n/a 34.18 34.01 n/a 33.92 33.99 33.97	Open V	Valve
3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07	13:40 13:52 13:52.5 14:05 14:15 14:25 14:36 14:50 15:05 15:20	(min) 0.0 0.0 0.5 13.0 23.0 33.0 44.0 58.0 73.0 88.0	(ft Man.) 0.0 0.0 31.0 29.8 28.8 28.0 30.0 30.0 30.0 30.0 30.0	Rate (gpm) 0 0 0 0 2770 -2500 2485 2400 2530 2530 2530 2530 2530 2530	Volume (gal) Recovery Start test ~1390 ~32500 ~57300 ~10350 ~145800 ~183800 ~221800	12" (ft AG) n/a 33.31 n/a 16.55 n/a n/a n/a n/a n/a 14.70	Transd. Annulus n/a 33.29 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a	3.5" Pipe (feet b. TOC) 10:11 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a	3.5" Pipe (Ft AG) 34.77 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a	3.5" Pipe (transd. Ft) n/a 49.36 n/a 49.30 49.13 n/a 49.04 49.04 49.11 49.09 49.06	3.5" Pipe (Tr. Ft AG) n/a 34.24 n/a 34.18 34.01 n/a 33.92 33.99 33.97 33.94	Open V	Valve
3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07	13:40 13:52 13:52.5 14:05 14:15 14:25 14:36 14:50 15:05 15:20 15:35	(min) 0.0 0.0 0.5 13.0 23.0 33.0 44.0 58.0 73.0 88.0 103.0	(ft Man.) 0.0 0.0 31.0 29.8 28.8 28.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0	Rate (gpm) 0 0 0 2770 ~2500 2485 2400 2530 2530 2530 2530 2530 2530 2530 2530 2530 2530	Volume (gal) Recovery Start test ~1390 ~32500 ~57300 ~82500 ~110350 ~183800 ~221800 ~259800	12" (ft AG) n/a 33.31 n/a 16.55 n/a 16.55 n/a n/a n/a n/a 14.70 n/a	Transd. Annulus n/a 33.29 n/a	3.5" Pipe (feet b. TOC) 10:11 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a	3.5" Pipe (Ft AG) 34.77 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a	3.5" Pipe (transd. Ft) n/a 49.36 n/a n/a 49.30 49.13 n/a 49.04 49.11 49.09 49.06 49.03	3.5" Pipe (Tr. Ft AG) n/a 34.24 n/a 34.18 34.01 n/a 33.92 33.99 33.97 33.94 33.91	Open V Adjust	Flow
3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07	13:40 13:52 13:52.5 14:05 14:15 14:25 14:36 14:50 15:05 15:20 15:35 15:50	(min) 0.0 0.0 0.5 13.0 23.0 33.0 44.0 58.0 73.0 88.0 103.0 118.0	(ft Man.) 0.0 0.0 31.0 29.8 28.8 28.0 30.0 30.0 30.0 30.0 30.0 29.5	Rate (gpm) 0 0 0 2770 ~2500 2485 2400 2530 2530 2530 2530 2530 2530 2530 2530 2530 2530 2530 2530 2530 2530	Volume (gal) Recovery Start test ~1390 ~32500 ~57300 ~82500 ~110350 ~183800 ~221800 ~259800 ~297300	12" (ft AG) n/a 33.31 n/a 16.55 n/a 16.55 n/a n/a n/a 14.70 n/a 14.70 n/a 14.65	Transd. Annulus n/a 33.29 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a	3.5" Pipe (feet b. TOC) 10:11 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a	3.5" Pipe (Ft AG) 34.77 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a	3.5" Pipe (transd. Ft) n/a 49.36 n/a n/a 49.30 49.13 n/a 49.04 49.04 49.04 49.09 49.06 49.03 48.97	3.5" Pipe (Tr. Ft AG) n/a 34.24 n/a 34.18 34.01 n/a 33.92 33.99 33.97 33.94 33.91 33.85	Open V	Flow
3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07	13:40 13:52 13:52.5 14:05 14:15 14:25 14:36 14:50 15:05 15:20 15:35 15:50 16:05	(min) 0.0 0.0 0.5 13.0 23.0 33.0 44.0 58.0 73.0 88.0 103.0 118.0 133.0	(ft Man.) 0.0 0.0 31.0 29.8 28.8 28.0 30.0 30.0 30.0 30.0 30.0 29.5 30.0	Rate (gpm) 0 0 0 2770 ~2500 2485 2400 2530 2530 2530 2530 2530 2530 2530 2530 2530 2530 2530 2530 2530 2530	Volume (gal) Recovery Start test ~1390 ~32500 ~57300 ~82500 ~110350 ~145800 ~183800 ~221800 ~259800 ~297300 ~335300	12" (ft AG) n/a 33.31 n/a n/a 16.55 n/a 16.55 n/a n/a n/a 14.70 n/a 14.70 n/a 14.65 14.13	Transd. Annulus n/a 33.29 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a	3.5" Pipe (feet b. TOC) 10:11 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a	3.5" Pipe (Ft AG) 34.77 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a	3.5" Pipe (transd. Ft) n/a 49.36 n/a n/a 49.30 49.13 n/a 49.04 49.04 49.04 49.04 49.09 49.06 49.03 48.97 48.94	3.5" Pipe (Tr. Ft AG) n/a 34.24 n/a 34.18 34.01 n/a 33.92 33.99 33.97 33.94 33.91 33.85 33.82	Open V Adjust	Flow
3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07	13:40 13:52 13:52.5 14:05 14:15 14:25 14:36 14:50 15:05 15:35 15:50 16:05 16:20	(min) 0.0 0.0 0.5 13.0 23.0 33.0 44.0 58.0 73.0 88.0 103.0 118.0 133.0 148.0	(ft Man.) 0.0 0.0 31.0 29.8 28.8 28.0 30.0 30.0 30.0 30.0 30.0 29.5 30.0 30.0 30.0 30.0	Rate (gpm) 0 0 0 2770 ~2500 2485 2400 2530 2530 2530 2530 2530 2530 2530 2530 2530 2530 2530 2530 2530 2530 2530 2530 2530 2530	Volume (gal) Recovery Start test ~1390 ~32500 ~57300 ~82500 ~110350 ~145800 ~145800 ~145800 ~221800 ~221800 ~259800 ~297300 ~335300 ~373200	12" (ft AG) n/a 33.31 n/a 16.55 n/a 16.55 n/a n/a n/a 14.65 14.13 14.10	Transd. Annulus n/a 33.29 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a	3.5" Pipe (feet b. TOC) 10:11 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a	3.5" Pipe (Ft AG) 34.77 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a	3.5" Pipe (transd. Ft) n/a 49.36 n/a 1/a 49.30 49.30 49.13 n/a 49.04 49.04 49.04 49.01 49.09 49.06 49.03 48.97 48.94 48.94	3.5" Pipe (Tr. Ft AG) n/a 34.24 n/a 34.18 34.01 n/a 33.92 33.99 33.97 33.94 33.91 33.85 33.82 33.82	Open V Adjust	Flow
3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07	13:40 13:52 13:52.5 14:05 14:15 14:25 14:36 14:50 15:05 15:35 15:50 16:05 16:35	(min) 0.0 0.0 0.5 13.0 23.0 33.0 44.0 58.0 73.0 88.0 103.0 118.0 133.0 148.0 163.0	(ft Man.) 0.0 0.0 31.0 29.8 28.8 28.0 30.0 30.0 30.0 30.0 30.0 29.5 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30	Rate (gpm) 0 0 0 2770 ~2500 2485 2400 2530	Volume (gal) Recovery Start test ~1390 ~32500 ~57300 ~82500 ~110350 ~145800 ~121800 ~221800 ~259800 ~259800 ~335300 ~373200 ~411100	12" (ft AG) n/a 33.31 n/a 16.55 n/a 16.55 n/a n/a n/a n/a 14.70 n/a 14.65 14.13 14.10 14.05	Transd. Annulus n/a 33.29 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a	3.5" Pipe (feet b. TOC) 10:11 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a	3.5" Pipe (Ft AG) 34.77 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a	3.5" Pipe (transd. Ft) n/a 49.36 n/a 1/a 49.30 49.30 49.13 n/a 49.04 49.04 49.01 49.09 49.06 49.03 48.97 48.94 48.94 48.97	3.5" Pipe (Tr. Ft AG) n/a 34.24 n/a 34.18 34.01 n/a 33.92 33.99 33.97 33.94 33.91 33.85 33.82 33.82 33.82	Open V Adjust	Flow
3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07	13:40 13:52 13:52,5 14:05 14:15 14:25 14:36 14:50 15:05 15:35 15:50 16:05 16:35 16:50	(min) 0.0 0.0 0.5 13.0 23.0 33.0 44.0 58.0 73.0 88.0 103.0 118.0 133.0 148.0 163.0 178.0	(ft Man.) 0.0 0.0 31.0 29.8 28.8 28.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 3	Rate (gpm) 0 0 0 2770 ~2500 2485 2400 2530	Volume (gal) Recovery Start test ~1390 ~32500 ~57300 ~82500 ~110350 ~145800 ~221800 ~259800 ~335300 ~335300 ~373200 ~411100 ~449100	12" (ft AG) n/a 33.31 n/a 16.55 n/a 16.55 n/a n/a n/a n/a 14.65 14.13 14.10 14.05 14.05 14.00	Transd. Annulus n/a 33.29 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a	3.5" Pipe (feet b. TOC) 10:11 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a	3.5" Pipe (Ft AG) 34.77 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a	3.5" Pipe (transd. Ft) n/a 49.36 n/a 49.30 49.13 n/a 49.04 49.04 49.01 49.09 49.06 49.03 48.97 48.94 48.94 48.97 48.97	3.5" Pipe (Tr. Ft AG) n/a 34.24 n/a 34.18 34.01 n/a 33.92 33.99 33.97 33.94 33.91 33.85 33.82 33.82 33.82 33.87 33.91	Open V Adjust	Flow
3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07	13:40 13:52 13:52,5 14:05 14:15 14:25 14:36 14:50 15:05 15:35 15:50 16:05 16:35 16:50 17:05	(min) 0.0 0.0 0.5 13.0 23.0 33.0 44.0 58.0 73.0 88.0 103.0 118.0 133.0 148.0 163.0 178.0 193.0	(ft Man.) 0.0 0.0 31.0 29.8 28.8 28.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 3	Rate (gpm) 0 0 0 2770 ~2500 2485 2400 2530	Volume (gal) Recovery Start test ~1390 ~32500 ~110350 ~145800 ~145800 ~183800 ~221800 ~259800 ~297300 ~335300 ~373200 ~411100 ~449100	12" (ft AG) n/a 33.31 n/a 16.55 n/a n/a n/a n/a 14.70 n/a 14.70 n/a 14.65 14.13 14.10 14.05 14.00 14.00	Transd. Annulus n/a 33.29 n/a n/a	3.5" Pipe (feet b. TOC) 10:11 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a	3.5" Pipe (Ft AG) 34.77 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a	3.5" Pipe (transd. Ft) n/a 49.36 n/a 49.30 49.13 n/a 49.04 49.04 49.11 49.09 49.06 49.03 48.97 48.94 48.94 48.97 48.97	3.5" Pipe (Tr. Ft AG) n/a 34.24 n/a 34.18 34.01 n/a 33.92 33.99 33.97 33.94 33.91 33.85 33.82 33.82 33.87 33.91 33.85	Open V Adjust	Flow
3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07	13:40 13:52 13:52,5 14:05 14:15 14:25 14:36 14:50 15:05 15:35 15:50 16:05 16:50 17:05 17:20	(min) 0.0 0.0 0.5 13.0 23.0 33.0 44.0 58.0 73.0 88.0 103.0 118.0 133.0 148.0 163.0 178.0 193.0 208.0	(ft Man.) 0.0 0.0 31.0 29.8 28.8 28.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 3	Rate (gpm) 0 0 0 2770 ~2500 2485 2400 2530	Volume (gal) Recovery Start test ~1390 ~32500 ~110350 ~145800 ~145800 ~183800 ~221800 ~259800 ~297300 ~335300 ~373200 ~411100 ~449100 ~487000 ~525000	12" (ft AG) n/a 33.31 n/a 16.55 n/a n/a n/a n/a n/a 14.70 n/a 14.65 14.13 14.10 14.05 14.00 14.00 14.00	Transd. Annulus n/a 33.29 n/a	3.5" Pipe (feet b. TOC) 10:11 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a	3.5" Pipe (Ft AG) 34.77 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a	3.5" Pipe (transd. Ft) n/a 49.36 n/a 1/a 49.30 49.13 n/a 49.04 49.04 49.11 49.09 49.04 49.11 49.09 49.06 49.03 48.97 48.94 48.94 48.97 48.97	3.5" Pipe (Tr. Ft AG) n/a 34.24 n/a 34.18 34.01 n/a 33.92 33.99 33.97 33.94 33.91 33.85 33.82 33.82 33.82 33.87 33.91 33.85 33.85	Adjust	Valve Flow Flow
3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07	13:40 13:52 13:52,5 14:05 14:15 14:25 14:36 14:50 15:05 15:35 15:50 16:05 16:35 16:50 17:05	(min) 0.0 0.0 0.5 13.0 23.0 33.0 44.0 58.0 73.0 88.0 103.0 118.0 133.0 148.0 163.0 178.0 193.0	(ft Man.) 0.0 0.0 31.0 29.8 28.8 28.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 3	Rate (gpm) 0 0 0 2770 ~2500 2485 2400 2530	Volume (gal) Recovery Start test ~1390 ~32500 ~110350 ~145800 ~145800 ~183800 ~221800 ~259800 ~297300 ~335300 ~373200 ~411100 ~449100	12" (ft AG) n/a 33.31 n/a 16.55 n/a n/a n/a n/a 14.70 n/a 14.70 n/a 14.65 14.13 14.10 14.05 14.00 14.00	Transd. Annulus n/a 33.29 n/a n/a	3.5" Pipe (feet b. TOC) 10:11 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a	3.5" Pipe (Ft AG) 34.77 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a	3.5" Pipe (transd. Ft) n/a 49.36 n/a 49.30 49.13 n/a 49.04 49.04 49.04 49.01 49.04 49.01 49.09 49.06 49.03 48.97 48.94 48.97 48.97 48.97 48.97 7	3.5" Pipe (Tr. Ft AG) n/a 34.24 n/a 34.18 34.01 n/a 33.92 33.99 33.97 33.94 33.91 33.85 33.82 33.82 33.87 33.91 33.85	Open V Adjust	Valve Flow Flow
3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07	13:40 13:52 13:52,5 14:05 14:15 14:25 14:36 14:50 15:05 15:35 15:50 16:05 16:35 16:50 17:05 17:20	(min) 0.0 0.0 0.5 13.0 23.0 33.0 44.0 58.0 73.0 88.0 103.0 118.0 133.0 148.0 163.0 178.0 193.0 208.0 226.0	(ft Man.) 0.0 0.0 31.0 29.8 28.8 28.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 3	Rate (gpm) 0 0 0 2770 ~2500 2485 2400 2530	Volume (gal) Recovery Start test ~1390 ~32500 ~110350 ~145800 ~145800 ~183800 ~221800 ~259800 ~297300 ~335300 ~373200 ~411100 ~449100 ~487000 ~525000	12" (ft AG) n/a 33.31 n/a 16.55 n/a 16.55 n/a n/a 14.65 14.13 14.10 14.05 14.00 13.96 n/a	Transd. Annulus n/a 33.29 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a	3.5" Pipe (feet b. TOC) 10:11 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a	3.5" Pipe (Ft AG) 34.77 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a	3.5" Pipe (transd. Ft) n/a 49.36 n/a 1/a 49.30 49.13 n/a 49.04 49.04 49.04 49.01 49.09 49.06 49.03 48.97 48.94 48.94 48.97 48.97 48.97 48.97 1/a 8.97 1/a 8.97 1/a	3.5" Pipe (Tr. Ft AG) n/a 34.24 n/a 34.18 34.01 n/a 33.92 33.99 33.97 33.94 33.91 33.85 33.82 33.82 33.82 33.82 33.82 33.85 33.85 33.85 33.85	Adjust Adjust Stop F	Valve Flow Flow Flow Flow Flow Flow Flow Flow
3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07 3/9/07	13:40 13:52 13:52,5 14:05 14:15 14:25 14:36 14:50 15:05 15:35 15:50 16:05 16:35 16:50 17:05 17:20	(min) 0.0 0.0 0.5 13.0 23.0 33.0 44.0 58.0 73.0 88.0 103.0 118.0 133.0 148.0 163.0 178.0 193.0 208.0 226.0	(ft Man.) 0.0 0.0 31.0 29.8 28.8 28.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 3	Rate (gpm) 0 0 0 2770 ~2500 2485 2400 2530	Volume (gal) Recovery Start test ~1390 ~32500 ~110350 ~145800 ~145800 ~183800 ~221800 ~259800 ~297300 ~335300 ~373200 ~411100 ~449100 ~487000 ~525000	12" (ft AG) n/a 33.31 n/a 16.55 n/a n/a n/a n/a n/a 14.70 n/a 14.65 14.13 14.10 14.05 14.00 14.00 14.00	Transd. Annulus n/a 33.29 n/a	3.5" Pipe (feet b. TOC) 10:11 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a	3.5" Pipe (Ft AG) 34.77 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a	3.5" Pipe (transd. Ft) n/a 49.36 n/a 49.30 49.13 n/a 49.04 49.04 49.04 49.01 49.04 49.01 49.09 49.06 49.03 48.97 48.94 48.97 48.97 48.97 48.97 7	3.5" Pipe (Tr. Ft AG) n/a 34.24 n/a 34.18 34.01 n/a 33.92 33.99 33.97 33.94 33.91 33.85 33.82 33.82 33.82 33.87 33.91 33.85 33.85	Adjust	Valve Flow Flow Flow Flow Flow Flow Flow Flow


gpm denotes gallors per minute ft AG denotes feet above grade, ft BG feet below grade. °C denotes degrees celcius. mS/cm denotes milliSiemans per centimeter.

mg/L denotes milligrams per liter. psi denotes pressure in pounds per square inch.

mV denotes milivolts n/a denotes data not available. DTW denotes "depth to water"

Packer Test No. 1 (1,684-1,750 ft b. g.) Annular Space Data Chart Q=2,530 gpm

Packer Test No. 2

	East dates													
Flowmet	End date: er Total-St	· · · · ·	Fotal-Start (gal) : 110700 Open Hole Total Depth (feet bpl) : 1750 ft BG											
Flowmet	er Total- E	nd (gal) : 12	6480				feet bpl): 1625							
		Flow Rate (g			-		1625-1750 ft BG		Annulus transd	ucer is locat	ed 5.30 ft AC	3		
Develop	ment Durat	tion (min): ~:	205		•	·	oth (feet b. TOC):							
			est Pipe (ft A	AG): 34.83			: 2.65+31.05+11=							
				purged from wel	I prior to lab. sa			den esta de la companya de la compa						
						Devel	opment							
		W	ell Paramete	rs		Field Parameters								
Date	Time	Elapsed	Flow	Total	Depth to	Temp.	Cond.	Chlorides	рН	Turbidity	H2S	ORP	D.O.	
		Time	Rate	Volume	Water									
		(min)	(gpm)	(gal)	(feet bpl)	(⁰ C)	(mS/cm)	(mg/L)		(NTU)	(mg/L)	mV	(mg/L)	
3/10.07	~8:05	0	0.0	0	start	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	
3/10/07	10:15	130	78.0	~10300	n/a	22.0	7156	3000	7.65	10.7	n/a	-245.0	0.50	
3/10/07	10:35	145	78.0	~11100	n/a	22.2	7142	3000	7.7	n/a	n/a	-254.6	0.49	
3/10/07	10:50	153	78.0	~12100	n/a	22.3	7139	3000	7.69	10.6	n/a	-271.2	0.49	
3/10/07	11:05	163	78.0	~13300	n/a	22.3	7140	3000	7.74	n/a	1.35	-280.8	0.49	
3/10/07	11:20	173	78.0	~14400	n/a	n/a	7138	3000	7.76	10.5	1.35	-280.8	0.49	
3/10/07	11:25	205	78.0	~15400	n/a	Lab. sample	n/a	n/a	n/a	n/a	n/a	n/a	n/a	
													1 Calebra Calebra Calebra	
3/10/07	11:30 Note: Tot	205 al duration of	78.0 development a	~15800 nd total volume of p	Flow off ourged water are e		n/a	n/a	n/a	n/a	n/a	n/a	n/a	
3/10/07 Date				1		estimated.	overy Head	n/a Ft of water	n/a Ft of water	ti/a	tt/a	n/a	n/a	
	Note: Tot	al duration of	development a	nd total volume of p	ourged water are e	stimated.	overy			n/a	n/a Comm	L	π/a	
	Note: Tot	Elapsed	development a	nd total volume of p Water level 3.5" Pipe	burged water are e Water level	stimated. Reco Water level	overy Head	Ft of water	Ft of water	n/a		L	π/a	
	Note: Tot	Elapsed	DTW 3.5" Pipe	nd total volume of p Water level 3.5" Pipe	Water level 3.5" Pipe	stimated. Reco Water level 3.5" Pipe	overy Head Annulus	Ft of water Annulus	Ft of water Annulus	n/a		L	π/a	
Date	Note: Tot	Elapsed Time (min)	DTW 3.5" Pipe (feet b. TOC)	nd total volume of p Water level 3.5" Pipe (Ft AG)	Water level 3.5" Pipe (transd. Ft)	stimated. Reco Water level 3.5" Pipe (Tr. Ft AG)	overy Head Annulus (ft AG)	Ft of water Annulus (Transd.)	Ft of water Annulus (Tr. Ft AG)	n/a		L	n/a	
Date 3/10.07	Note: Tot Time 11:57	Elapsed Time (min) 27	DTW 3.5" Pipe (feet b. TOC) 10.11	Water level 3.5" Pipe (Ft AG) 34.53	Water level 3.5" Pipe (transd. Ft) 20.50	stimated. Reco Water level 3.5" Pipe (Tr. Ft AG) 35.14	overy Head Annulus (ft AG) n/a	Ft of water Annulus (Transd.) n/a	Ft of water Annulus (Tr. Ft AG) n/a	n/a		L	n/a	
Date 3/10.07 3/10/07	Note: Tot Time 11:57 12:15	Elapsed Time (min) 27 45	development a DTW 3.5" Pipe (feet b. TOC) 10.11 n/a	Water level 3.5" Pipe (Ft AG) 34.53 n/a	Water level 3.5" Pipe (transd. Ft) 20.50 20.17	stimated. Rece Water level 3.5" Pipe (Tr. Ft AG) 35.14 n/a	Overy Head Annulus (ft AG) n/a D/a	Ft of water Annulus (Transd.) n/a n/a	Ft of water Annulus (Tr. Ft AG) n/a n/a	n/a		L	u/a	
Date 3/10.07 3/10/07 3/10/07	Note: Tot Time 11:57 12:15 12:43	Elapsed Time (min) 27 45 73	development a DTW 3.5" Pipe (feet b. TOC) 10.11 n/a n/a	Water level 3.5" Pipe (Ft AG) 34.53 n/a n/a	Water level 3.5" Pipe (transd. Ft) 20.50 20.17 20.22	stimated. Reco Water level 3.5" Pipe (Tr. Ft AG) 35.14 n/a n/a	Overy Head Annulus (ft AG) n/a n/a n/a	Ft of water Annulus (Transd.) n/a n/a n/a	Ft of water Annulus (Tr. Ft AG) n/a n/a n/a	n/a		L	n/a	
Date 3/10.07 3/10/07 3/10/07 3/10/07	Note: Tot Time 11:57 12:15 12:43 12:45	Elapsed Time (min) 27 45 73 75	development az DTW 3.5" Pipe (feet b. TOC) 10.11 n/a n/a n/a	Water level 3.5" Pipe (Ft AG) 34.53 n/a n/a n/a	Water level 3.5" Pipe (transd. Ft) 20.50 20.17 20.22 20.23	stimated. Reco Water level 3.5" Pipe (Tr. Ft AG) 35.14 n/a n/a n/a	overy Head Annulus (ft AG) n/a n/a n/a n/a	Ft of water Annulus (Transd.) n/a n/a n/a n/a	Ft of water Annulus (Tr. Ft AG) n/a n/a n/a	n/a		L	n/a	
Date 3/10/07 3/10/07 3/10/07 3/10/07	Note: Tot Time 11:57 12:15 12:43 12:45 12:47	Elapsed Time (min) 27 45 73 75 77	development a DTW 3.5" Pipe (feet b. TOC) 10.11 n/a n/a n/a n/a	Water level 3.5" Pipe (Ft AG) 34.53 n/a n/a n/a n/a n/a	Water level 3.5" Pipe (transd. Ft) 20.50 20.17 20.22 20.23 20.24	stimated. Reco Water level 3.5" Pipe (Tr. Ft AG) 35.14 n/a n/a n/a n/a n/a	overy Head Annulus (ft AG) n/a n/a n/a n/a n/a	Ft of water Annulus (Transd.) n/a n/a n/a n/a n/a	Ft of water Annulus (Tr. Ft AG) n/a n/a n/a n/a n/a	n/a		L	n/a	
Date 3/10.07 3/10/07 3/10/07 3/10/07 3/10/07	Note: Tot Time 11:57 12:15 12:43 12:45 12:47 12:49	Elapsed Time (min) 27 45 73 75 77 79	development a DTW 3.5" Pipe (feet b. TOC) 10.11 n/a n/a n/a n/a	Water level 3.5" Pipe (Ft AG) 34.53 n/a n/a n/a n/a n/a n/a n/a	Water level 3.5" Pipe (transd. Ft) 20.50 20.17 20.22 20.23 20.24	stimated. Reco Water level 3.5" Pipe (Tr. Ft AG) 35.14 n/a n/a n/a n/a n/a n/a	overy Head Annulus (ft AG) n/a n/a n/a n/a n/a n/a n/a	Ft of water Annulus (Transd.) n/a n/a n/a n/a n/a a n/a n/a	Ft of water Annulus (Tr. Ft AG) n/a n/a n/a n/a n/a a/a	n/a		L	w/a	
Date 3/10.07 3/10/07 3/10/07 3/10/07 3/10/07 3/10/07 3/10/07	Note: Tot Time 11:57 12:15 12:43 12:45 12:47 12:49 12:52	Elapsed Time (min) 27 45 73 75 77 79 82	development a DTW 3.5" Pipe (feet b. TOC) 10.11 n/a n/a n/a n/a n/a n/a n/a	Water level 3.5" Pipe (Ft AG) 34.53 n/a n/a n/a n/a n/a n/a n/a n/a	Water level 3.5" Pipe (transd. Ft) 20.50 20.17 20.22 20.23 20.24 20.24 20.24	stimated. Reco Water level 3.5" Pipe (Tr. Ft AG) 35.14 n/a n/a n/a n/a n/a n/a n/a n/a	overy Head Annulus (ft AG) n/a n/a n/a n/a n/a n/a n/a	Ft of water Annulus (Transd.) n/a n/a n/a n/a n/a n/a n/a n/a	Ft of water Annulus (Tr. Ft AG) n/a n/a n/a n/a n/a n/a n/a n/a n/a	n/a		L		
Date 3/10.07 3/10/07 3/10/07 3/10/07 3/10/07 3/10/07 3/10/07	Note: Tot Time 11:57 12:15 12:43 12:45 12:47 12:49 12:52 12:54	Elapsed Time (min) 27 45 73 75 77 79 82 84	development a DTW 3.5" Pipe (feet b. TOC) 10.11 n/a n/a n/a n/a n/a n/a n/a n/a	Water level 3.5" Pipe (Ft AG) 34.53 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a	Water level 3.5" Pipe (transd. Ft) 20.50 20.17 20.22 20.23 20.24 20.24 20.25	stimated. Reco Water level 3.5" Pipe (Tr. Ft AG) 35.14 n/a n/a n/a n/a n/a n/a n/a n/a	OVERY Head Annulus (ft AG) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a	Ft of water Annulus (Transd.) n/a n/a n/a n/a n/a n/a n/a n/a n/a	Ft of water Annulus (Tr. Ft AG) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a	n/a		L		
Date 3/10.07 3/10/07 3/10/07 3/10/07 3/10/07 3/10/07 3/10/07 3/10/07 3/10/07	Note: Tot Time 11:57 12:15 12:43 12:45 12:47 12:49 12:52 12:54 12:57	Elapsed Time (min) 27 45 73 75 77 79 82 84 87	DTW 3.5" Pipe (feet b. TOC) 10.11 n/a n/a	Water level 3.5" Pipe (Ft AG) 34.53 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a	Water level 3.5" Pipe (transd. Ft) 20.50 20.17 20.22 20.23 20.24 20.24 20.25 m/a	stimated. Reco Water level 3.5" Pipe (Tr. Ft AG) 35.14 n/a n/a n/a n/a n/a n/a n/a n/a	overy Head Annulus (ft AG) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a	Ft of water Annulus (Transd.) n/a	Ft of water Annulus (Tr. Ft AG) n/a	n/a		L		
Date 3/10.07 3/10/07 3/10/07 3/10/07 3/10/07 3/10/07 3/10/07 3/10/07 3/10/07 3/10/07	Note: Tot Time 11:57 12:15 12:43 12:43 12:47 12:49 12:52 12:54 12:57 13:00	Elapsed Time (min) 27 45 73 75 77 79 82 84 84 87 90	development a DTW 3.5" Pipe (feet b. TOC) 10.11 n/a n/a n/a n/a n/a n/a n/a n/a	Water level 3.5" Pipe (Ft AG) 34.53 n/a	Water level 3.5" Pipe (transd. Ft) 20.50 20.17 20.22 20.23 20.24 20.24 20.25 n/a	stimated. Reco Water level 3.5" Pipe (Tr. Ft AG) 35.14 n/a n/a n/a n/a n/a n/a n/a n/a	overy Head Annulus (ft AG) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a	Ft of water Annulus (Transd.) n/a a a a b b b b b b b b b c c c c c c c c c c c c c c c	Ft of water Annulus (Tr. Ft AG) n/a a a a a a a b b b b b b b b b b b b b b b b b c c c c c c c c c c c c </td <td>n/a</td> <td></td> <td>L</td> <td>n/a</td>	n/a		L	n/a	
Date 3/10.07 3/10/07 3/10/07 3/10/07 3/10/07 3/10/07 3/10/07 3/10/07 3/10/07 3/10/07 3/10/07	Note: Tot Time 11:57 12:15 12:43 12:45 12:47 12:52 12:54 12:57 13:00 13:02	Elapsed Time (min) 27 45 73 75 77 79 82 84 84 87 90 92	development a DTW 3.5" Pipe (feet b. TOC) 10.11 n/a n/a n/a n/a n/a n/a n/a n/a	Water level 3.5" Pipe (Ft AG) 34.53 n/a	Water level 3.5" Pipe (transd. Ft) 20.50 20.17 20.22 20.23 20.24 20.24 20.25 n/a n/a 20.26	stimated. Reco Water level 3.5" Pipe (Tr. Ft AG) 35.14 n/a n/a n/a n/a n/a n/a n/a n/a	overy Head Annulus (ft AG) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a	Ft of water Annulus (Transd.) n/a n/a </td <td>Ft of water Annulus (Tr. Ft AG) n/a n/a</td> <td>n/a</td> <td></td> <td>L</td> <td></td>	Ft of water Annulus (Tr. Ft AG) n/a	n/a		L		
Date 3/10.07 3/10/07 3/10/07 3/10/07 3/10/07 3/10/07 3/10/07 3/10/07 3/10/07 3/10/07 3/10/07 3/10/07 3/10/07	Note: Tot Time 11:57 12:15 12:43 12:45 12:47 12:52 12:54 12:57 13:00 13:02 13:05	Elapsed Time (min) 27 45 73 75 77 79 82 84 84 87 90 92 95	development a DTW 3.5" Pipe (feet b. TOC) 10.11 n/a n/a n/a n/a n/a n/a n/a n/a	Water level 3.5" Pipe (Ft AG) 34.53 n/a	Water level 3.5" Pipe (transd. Ft) 20.50 20.17 20.22 20.23 20.24 20.25 n/a 20.26 20.27	stimated. Reco Water level 3.5" Pipe (Tr. Ft AG) 35.14 n/a n/a n/a n/a n/a n/a n/a n/a	OVERY Head Annulus (ft AG) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a	Ft of water Annulus (Transd.) n/a	Ft of water Annulus (Tr. Ft AG) n/a	n/a		L	n/a	
Date 3/10.07 3/10/07 3/10/07 3/10/07 3/10/07 3/10/07 3/10/07 3/10/07 3/10/07 3/10/07 3/10/07 3/10/07 3/10/07	Note: Tot Time 11:57 12:15 12:43 12:45 12:47 12:49 12:52 12:54 12:57 13:00 13:02 13:05 13:10	Elapsed Time (min) 27 45 73 75 77 79 82 84 84 87 90 92 95 100	development a DTW 3.5" Pipe (feet b. TOC) 10.11 n/a n/a n/a n/a n/a n/a n/a n/a	Water level 3.5" Pipe (Ft AG) 34.53 n/a	Water level 3.5" Pipe (transd. Ft) 20.50 20.17 20.22 20.23 20.24 20.25 n/a 20.26 20.27	stimated. Reco Water level 3.5" Pipe (Tr. Ft AG) 35.14 n/a n/a n/a n/a n/a n/a n/a n/a	OVERY Head Annulus (ft AG) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a	Ft of water Annulus (Transd.) n/a	Ft of water Annulus (Tr. Ft AG) n/a	n/a		L		
Date 3/10.07 3/10/07 3/10/07 3/10/07 3/10/07 3/10/07 3/10/07 3/10/07 3/10/07 3/10/07 3/10/07 3/10/07 3/10/07 3/10/07 3/10/07	Note: Tot Time 11:57 12:15 12:43 12:43 12:45 12:47 12:49 12:52 12:54 12:57 13:00 13:02 13:05 13:10 13:17	Elapsed Time (min) 27 45 73 75 77 79 82 84 87 90 92 95 100 107	development a DTW 3.5" Pipe (feet b. TOC) 10.11 n/a n/a n/a n/a n/a n/a n/a n/a	Water level 3.5" Pipe (Ft AG) 34.53 n/a n/a	Water level 3.5" Pipe (transd. Ft) 20.50 20.17 20.22 20.23 20.24 20.25 n/a 20.26 20.27 20.26 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27	stimated. Reco Water level 3.5" Pipe (Tr. Ft AG) 35.14 n/a 10/a	overy Head Annulus (ft AG) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a	Ft of water Annulus (Transd.) n/a	Ft of water Annulus (Tr. Ft AG) n/a	n/a		L		
Date 3/10.07 3/10/07 3/10/07 3/10/07 3/10/07 3/10/07 3/10/07 3/10/07 3/10/07 3/10/07 3/10/07 3/10/07 3/10/07 3/10/07 3/10/07 3/10/07	Note: Tot Time 11:57 12:15 12:43 12:45 12:47 12:52 12:54 12:57 13:00 13:02 13:05 13:10 13:17 13:23	Elapsed Time (min) 27 45 73 75 77 79 82 84 87 90 92 95 100 107 113	development a DTW 3.5" Pipe (feet b. TOC) 10.11 n/a n/a n/a n/a n/a n/a n/a n/a	Water level 3.5" Pipe (Ft AG) 34.53 n/a n/a	Water level 3.5" Pipe (transd. Ft) 20.50 20.17 20.22 20.23 20.24 20.24 20.25 n/a 20.26 20.27 20.27 20.27 20.27 n/a	stimated. Reco Water level 3.5" Pipe (Tr. Ft AG) 35.14 n/a n/a n/a n/a n/a n/a n/a n/a	overy Head Annulus (ft AG) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a	Ft of water Annulus (Transd.) n/a n/a </td <td>Ft of water Annulus (Tr. Ft AG) n/a n/a</td> <td>n/a</td> <td></td> <td>L</td> <td></td>	Ft of water Annulus (Tr. Ft AG) n/a	n/a		L		

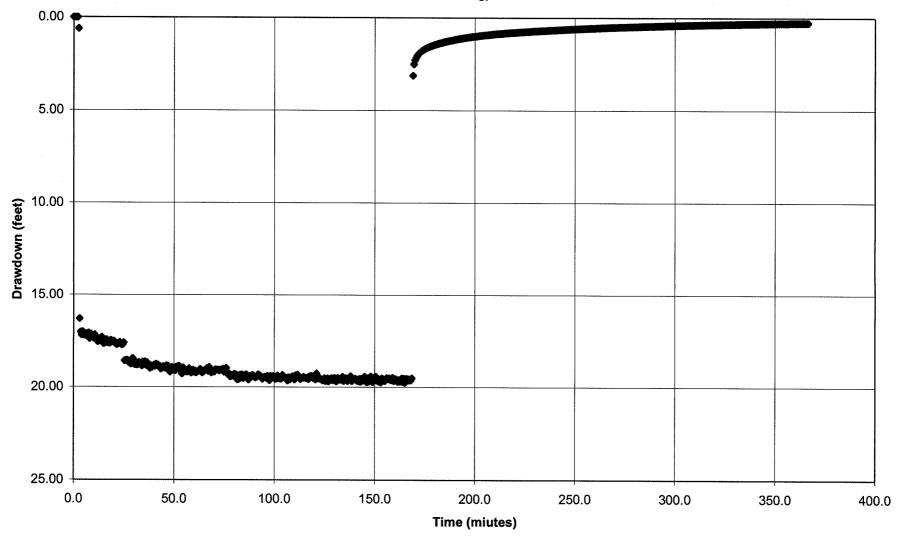
Packer Test No. 2

					Fi	ree Flow (ann	nular space) T	est					
Date	Time	Elapsed	Flow	Flow	Total	Head	Ft of water	DTW	WL	WL	WL		
		Time	Rate	Rate	Volume	12"	Transd.	3.5" Pipe	3.5" Pipe	3.5" Pipe	3.5" Pipe	Com	ments
		(min)	(ft Man.)	(gpm)	(gal)	(ft AG)	Annulus	(feet b. TOC)	(Ft AG)	(transd. Ft)	(Tr. Ft AG)		
3/10/07	13:30	0.0	0.0	0	0	start	n/a	9.81	34.83	20.32	34.95	Open	Valve
3/10/07	13:31	1.0	30.0	2530	2530	15.9	n/a	n/a	34.77	n/a	n/a		
3/10/07	13:32	2.0	30.0	2530	5060	n/a	n/a	n/a	n/a	20.36	34.91		
3/10/07	13:33	3.0	30.0	2530	7590	15.75	n/a	n/a	n/a	20.33	34.94		
3/10/07	13:35	5.0	30.0	2530	12650	n/a	n/a	n/a	n/a	20.33	34.94		
3/10/07	13:50	20.0	28.0	2445	50000	15.10	n/a	n/a	n/a	20.37	34.9	Adjust	Flow
3/10/07	13:53	23.0	30.0	2530	57590	n/a	n/a	n/a	n/a	n/a	n/a		
3/10/07	14:06	36.0	30.0	2530	65180	13.95	n/a	n/a	n/a	20.37	34.9		
3/10/07	14:25	55.0	30.0	2530	113250	13.60	n/a	n/a	n/a	20.36	34.91		
3/10/07	14:40	70.0	30.0	2530	176500	13.25	n/a	n/a	n/a	20.35	34.92		
3/10/07	14:55	85.0	30.0	2530	214450	13.20	n/a	n/a	n/a	20.35	34.92		
3/10/07	15:15	105.0	30.0	2530	252400	13.10	n/a	n/a	n/a	20.33	34.94		
3/10/07	15:30	120.0	30.0	2530	290350	13.08	n/a	n/a	n/a	20.34	34.93		
3/10/07	15:45	135.0	30.0	2530	328300	13.05	n/a	n/a	n/a	20.34	34.93		
3/10/07	16:00	150.0	30.0	2530	366250	13.03	n/a	n/a	n/a	20.33	34.94		
3/10/07	16:15	165.0	30.0	2530	404200	13.02	n/a	n/a	n/a	20.33	34.94	Stop I	Flow
		Note: 1	Total volume c	of purged water is e	estimated.								
			Note: R	ecovery (overnigt	ıt) wasn't monitor	red by ARCADIS	personel						
		Final	annular space	e water sample		Temp.	Cond.	Chlorides	рН	Turbidity	H2S	ORP	D.C
Time	: 15:36	126.0	30.0	2530	305400	22.9	7250	3000	7.24	0.78	1.50	n/a	n/a

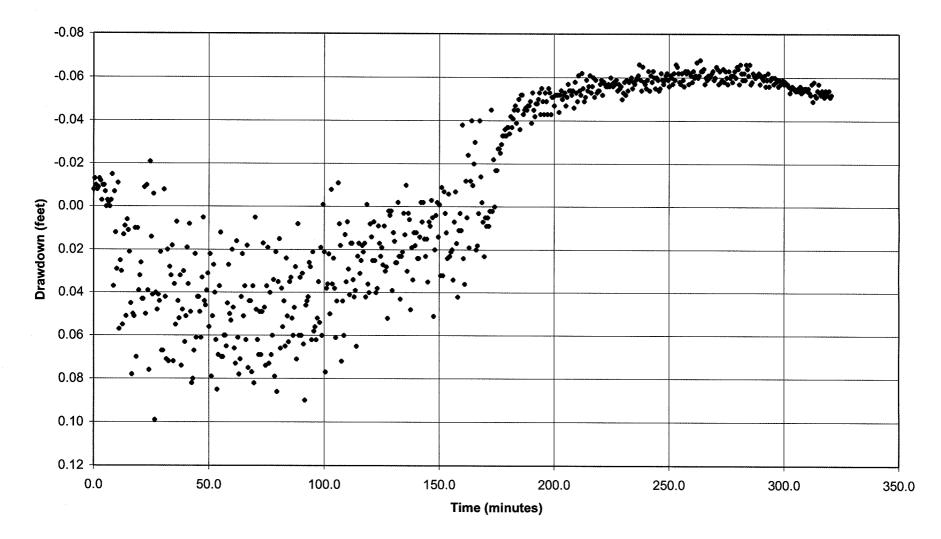
ft AG denotes feet above grade, ft BG feet below grade.

°C denotes degrees celcius.

mS/cm denotes milliSiemans per centimeter.


mg/L denotes milligrams per liter.

psi denotes pressure in pounds per square inch.


n/a denotes data not available.

n/a denotes data not available.

Packer Test No.2 (1,625-1,750 ft.b.g.) Annular Space Data Chart Q=2,530 gpm

Packer Test No.2 (1625-1750 ft b.g.) Test Zone Data Chart Q=2,530 gpm

Packer Test No. 3

End date: 3/13/07

Flowmeter Total-Start (gal) : 126480	Open Hole Total Depth (feet bpl) : 1750	ft BG
Flowmeter Total- End (gal) : 144940	Packer Depth (feet bpl): 1500 Ft BG	
Average Test Free Flow Rate (gpm) : 78.5	Tested Interval: 1500-1750 ft BG	Annulus transducer is located 5.30 ft AG
Development Duration (min): ~235	Transducer Depth (feet b. TOC): 30	
Static DTW Before Test (ft AG): 35.03	Top of test pipe: 2.60+31.05+11= 44.65 F	Ft AG

Approximately 17700 gls (7 well volumes) purged from well during prior to lab. samples collection (at 12:15).

						Dev	/elopment								
		Wel	I Parameters				Field Parameters								
Date	Time	Elapsed	Flow	Total	Depth to	Temp.	Cond.	Chlorides	рН	Turbidity	H2S	ORP	D.O.		
		Time	Rate	Volume	Water	(⁰ C)	(mS/cm)	(mg/L)		(NTU)	(mg/L)	mV	(mg/L)		
		(min)	(gpm)	(gal)	(feet bpl)					-			4		
3/12/07	~8:30	0	0.0	0	start	n/a	n/a	n/a	n/a	n/a	n/a	п/а	n/a		
3/12/07	11:00	~150	78.5	~11775	n/a	22.1	6454	2500	7.51	0.0	n/a	-255.1	0.87		
3/12/07	11:15	~165	78.5	~12952.5	n/a	22.0	6432	2500	7.66	0.0	1.30	-295	0.81		
3/12/07	11:40	~190	78.5	~14915	n/a	22.0	6421	2500	7.62	0.0	n/a	-322.5	0.58		
3/12/07	12:05	~215	78.5	~16877.5	n/a	22.1	6405	2500	7.64	0.0	1.30	-328.8	0.54		
3/12/07	12:25	~235	Flow off	~18447.5	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a		

Note: Total duration of development and total volume of purged water are estimated.

						R	ecovery			
Date	Time	Elapsed	DTW	WL	WL	WL	Head	Ft of water	Ft of water	
		Time	3.5" Pipe	3.5" Pipe	3.5" Pipe	3.5" Pipe	Annulus	Annulus	Annulus	Comments
		(min)	(feet b. TOC)	(Ft AG)	(transd. Ft)	(Tr. Ft AG)	(ft AG)	(Transd.)	(Tr. Ft AG)	
3/12/07	13:50	85	n/a	n/a	20.32	34.97	n/a	27.73	33.03	
3/12/07	13:56	91	n/a	n/a	20.34	34.95	n/a	n/a	n/a	
3/12/07	14:15	110	n/a	n/a	20.37	34.92	n/a	n/a	n/a	
3/12/07	14:25	120	9.62	35.03	20.36	34.91	n/a	27.75	33.05	
3/12/07	14:30	125	n/a	n/a	20.36	34.91	n/a	n/a	n/a	
3/12/07	14:36	131	n/a	n/a	20.36	34.91	33.03	n/a	n/a	

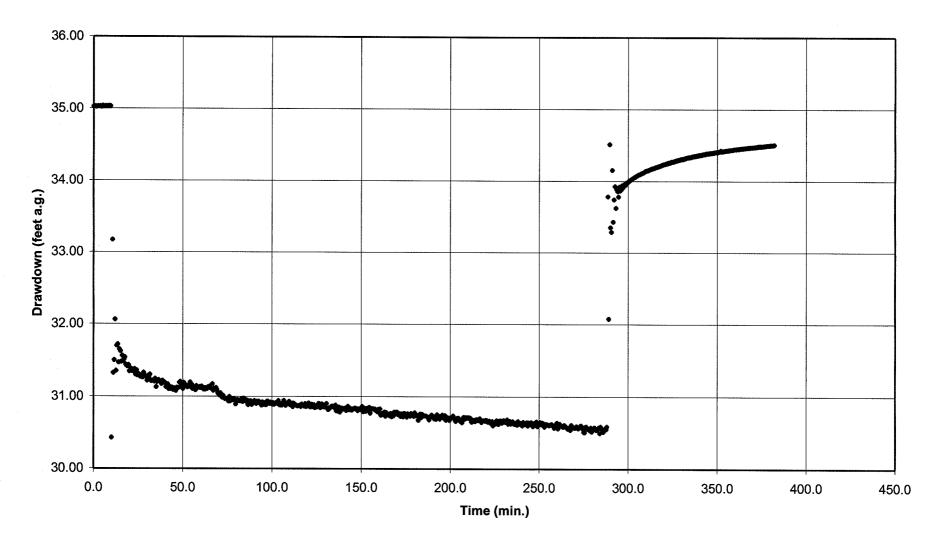
Packer Test No. 3 Free Flow (annular space) Test

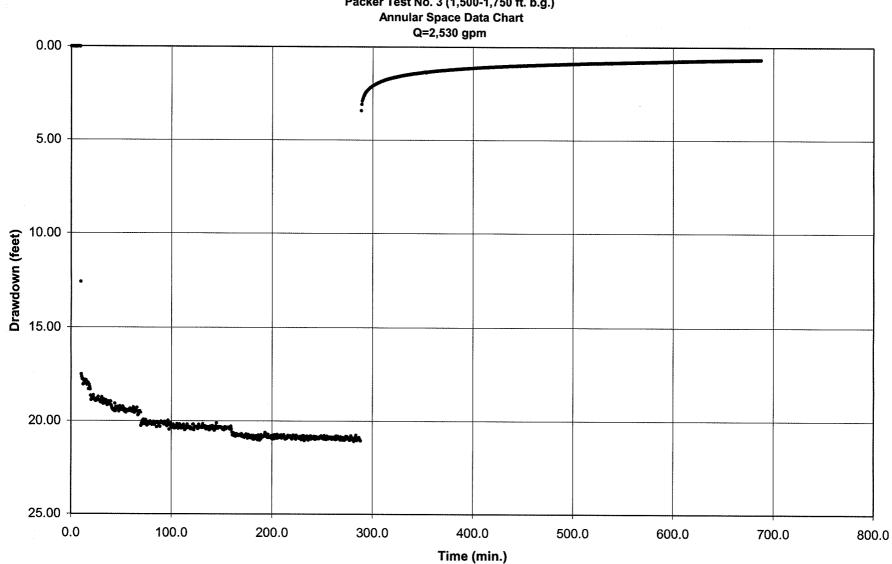
Date	Time	Elapsed	Flow	Flow	Total	Head	Ft of water	DTW	WL	WL	WL	l .	
		Time	Rate	Rate	Volume	12"	Transd.	3.5" Pipe	3.5" Pipe	3.5" Pipe	3.5" Pipe	Com	ments
		(min)	(in.Man.)	(gpm)	(gal)	(ft AG)	Annulus	(feet b. TOC)	(Ft AG)	(transd. Ft)	(Tr. Ft AG)		
3/12/07	14:38	0.0	0.0	0	0	n/a	n/a	9.62	35.03	16.22	30.87	Open	Valve
3/12/07	14:40	2.0	30.0	2530	2530	n/a	n/a	n/a	n/a	17.22	31.87		
3/12/07	14:42	4.0	30.0	2530	10120	15.05	n/a	n/a	n/a	17.10	31.77		
3/12/07	14:44	6.0	30.0	2530	15180	n/a	n/a	n/a	n/a	16.82	31.47		
3/12/07	14:45	7.0	29.0	2490	17390	14.90	n/a	n/a	n/a	16.88	31.53	Adjust	Flow
3/12/07	14:50	12.0	30.0	2530	30320	14.25	n/a	n/a	n/a	16.70	31.35		
3/12/07	15:05	27.0	29.5	2510	68310	13.90	n/a	n/a	n/a	16.59	31.24	Adjust	Flow
3/12/07	15:20	42.0	30.0	2530	45400	13.55	n/a	n/a	n/a	16.49	31.14		
3/12/07	15:35	57.0	29.5	2510	144210	13.00	n/a	n/a	n/a	16.39	31.04	Adjust	Flow
3/12/07	15:50	72.0	30.0	2530	156700	12.90	n/a	n/a	n/a	16.30	30.95		
3/12/07	16:05	87.0	30.0	2530	220110	12.80	11/a	n/a	n/a	16.25	30.90		
3/12/07	16:25	107.0	30.0	2530	270710	12.70	n/a	n/a	n/a	16.22	30.87		
3/12/07	16:45	127.0	30.0	2530	321310	12.58	n/a	n/a	n/a	16.19	30.84		
3/12/07	17:05	147.0	30.0	2530	371910	12.55	n/a	n/a	n/a	16.16	30.81	······	
3/12/07	17:20	162.0	30.0	2530	409860	12.15	n/a	n/a	n/a	16.10	30.75		
3/12/07	17:45	187.0	30.0	2530	473110	12.10	n/a	n/a	n/a	16.02	30.67		
3/12/07	18:05	207.0	30.0	2530	523710	12.10	n/a	n/a	n/a	16.00	30.65		
3/12/07	18:25	227.0	30.0	2530	574310	12.05	n/a	n/a	n/a	15.96	30.61		
3/12/07	18:45	247.0	30.0	2530	624910	n/a	n/a	n/a	n/a	15.96	30.61		
3/12/07	19:00	262.0	30.0	2530	662860	12.05	n/a	n/a	n/a	15.90	30.55		
3/12/07	19:10	272.0	30.0	2530	688160	n/a	n/a	n/a	n/a	15.91	30.56		
3/12/07	19:15	277.0	30.0	2530	700810	11.95	n/a	14.43	30.22	15.89	30.54	Stop f	low
		Note: 7	fotal volume of	purged water is e	stimated.								
			Note: Reco	overy (overnight)	wasn't monito	ored by ARCADI	S personel						
						Temp.	Cond.	Chlorides	рН	Turbidity	H2S	ORP	D.C
Time:	19:05	F	inal annular s	pace water samp	le	22.3	7290	3000	7.15	1.40	1.70	n/a	n/a

ft AG denotes feet above grade, ft BG feet below grade.

°C denotes degrees celcius.

mS/cm denotes milliSiemans per centimeter.


mg/L denotes milligrams per liter.


psi denotes pressure in pounds per square inch.

n/a denotes data not available.

n/a denotes data not available.

Packer Test No. 3 (1500-1750 ft bg) Test Zone Data Chart Q=2,530 gpm

Packer Test No. 3 (1,500-1,750 ft. b.g.)

3/20/07

3/20/07

3/20/07

15:35

15:45

15:47

129

139

141

12.88

12.88

n/a

33.17

33.17

n/a

n/a

17.36

n/a

n/a

33.41

n/a

31.19

31.21

n/a

n/a

n/a

n/a

n/a

n/a

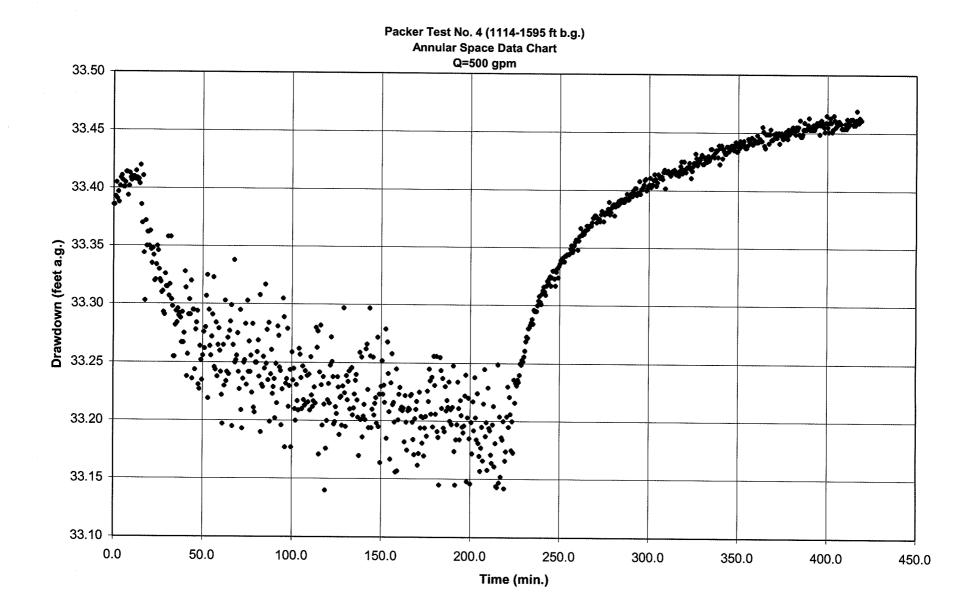
n/a

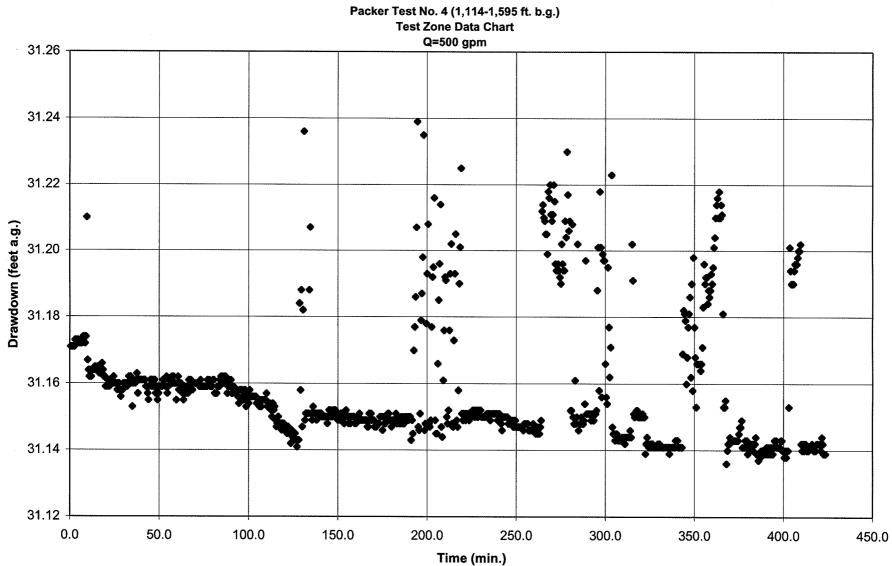
Packer Test No. 4

	Start date	: 3/20/07	7										
	End date	: 3/21/07	7										
Flowmete	r Total-Sta	urt (gal) : 144	940			Open Hole To	tal Depth (feet b	opl) : 1595 ft BG					
Flowmete	r Total- Er	ıd (gal) : 172	345			Packer Depth	(feet bpi): 1114	4 FtBG					
Average T	'est Free F	low Rate (g	om) : ~88.4			Tested Interva	ni: 1114-1595 ft E	BG	Annulus transo	lucer is locate	ed 5.30 ft AG	}	
Developm	ient Durati	on (min): ~3	10			Transducer D	epth (feet b. TO	C): 30					
Static DTV	N Before 1	est (ft AG):	33.17			Top of test pi	De: 4.60+31.45+1	11= 46.05 Ft AG					
Approxim	ately 2660	0 gis (6 well	volumes) pu	rged from well o	during prior t	o lab. samples	collection (at 13	3:10).			i i i i i i i i i i i i i i i i i i i		
							elopment						
		Wel	l Parameters						Field Parameters	6			
Date	Time	Elapsed	Flow	Total	Depth to	Temp.	Cond.	Chlorides	рН	Turbidity	H2S	ORP	D.O.
		Time	Rate	Volume	Water	(^o C)	(mS/cm)	(mg/L)		(NTU)	(mg/L)	mV	(mg/L)
		(min)	(gpm)	(gal)	(feet bpl)								
3/20/07	~8:15	0	0.0	0	start	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
3/20/07	11:50	~215	88.0	~18900	n/a	22.4	5992	2500	7.74	0.0	1.4	-271.8	0.62
3/20/07	12:55	~280	88.0	~24640	n/a	22.4	5998	2500	7.72	0.0	1.35	-336.8	0.56
3/20/07	13:24	~310	n/a	~27405	stop dev.	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Note: Tot	al duration of	development a	nd total volume of	purged water a	re estimated.							
						Re	covery						
Date	Time	Elapsed	DTW	WL	WL	WL	Head	Ft of water	Ft of water				
		Time	3.5" Pipe	3.5" Pipe	3.5" Pipe	3.5" Pipe	Annulus	Annulus	Annulus		Comm	ents	
		(min)	(feet b. TOC)	(Ft AG)	(transd. Ft)	(Tr. Ft AG)	(ft AG)	(Transd.)	(Tr. Ft AG)				

Packer Test No. 4 Free Flow (annular space) Test

Date	Time	Elapsed	Flow	Flow	Total	Head	Ft of water	DTW	WL	WL	WL		
		Time	Rate	Rate	Volume	12"	Transd.	3.5" Pipe	3.5" Pipe	3.5" Pipe	3.5" Pipe	Com	ments
		(min)	(in.Man.)	(gpm)	(gal)	(ft AG)	Annulus	(feet b. TOC)	(Ft AG)	(transd. Ft)	(Tr. Ft AG)		
3/20/07	15:47	0.0	0.0	0	0	n/a	n/a	12.88	33.17	17.36	33.41	Open	Valve
3/20/07	15:48	1.0	14.0	500	500	12.75	n/a	n/a	n/a	17.29	33.34		
3/20/07	15:49	2.0	14.0	500	1000	11.95	n/a	n/a	n/a	17.31	33.36		
3/20/07	15:50	3.0	14.0	500	1500	10.70	n/a	n/a	n/a	17.31	33.36		
3/20/07	15:51	4.0	14.0	500	2000	10.55	n/a	n/a	n/a	17.31	33.36		
3/20/07	15:53	6.0	14.0	500	2500	10.53	n/a	n/a	n/a	17.29	33.34		
3/20/07	15:55	8.0	14.0	500	4000	10.48	n/a	n/a	n/a	17.28	33.33		
3/20/07	15:57	10.0	13.0	480	4950	10.12	n/a	n/a	n/a	n/a	n/a	Adjust	Flow
3/20/07	16:03	14.0	14.0	500	6950	9.80	n/a	n/a	n/a	17.26	33.31		
3/20/07	16:20	33.0	13.0	480	16400	9.45	n/a	n/a	n/a	17.23	33.28	Adjust	Flow
3/20/07	16:35	48.0	14.0	500	23900	8.95	n/a	n/a	n/a	17.23	33.28		
3/20/07	16:55	68.0	14.0	500	33500	8.65	n/a	n/a	n/a	17.15	33.20		
3/20/07	17:15	88.0	13.0	480	43500	8.62	n/a	n/a	n/a	17.22	33.27	Adjust	Flow
3/20/07	17:35	108.0	14.0	500	53500	8.61	n/a	n/a	n/a	17.17	33.22		
3/20/07	17:55	128.0	14.0	500	63500	8.60	n/a	n/a	n/a	17.20	33.25		
3/20/07	18:15	148.0	14.0	500	73500	8.42	n/a	n/a	n/a	17.13	33.18		
3/20/07	18:35	168.0	14.0	500	83500	8.35	n/a	n/a	n/a	17.16	33.21		
3/20/07	18:55	188.0	14.0	500	93500	8.39	n/a	n/a	n/a	17.15	33.20		
3/20/07	19:15	208.0	14.0	500	103000	8.40	n/a	n/a	n/a	17.14	33.19	Stop	flow
١	Note: Total v	olume of purge	d water is estin	nated. 6-inch orifi	ce on 12-inch p	ipe used for flow	measurements.						
			-			Temp.	Cond.	Chlorides	рН	Turbidity	H2S	ORP	D.0
Time	: 16:20		annular spa	ce water sample		22.4	7668	3000	7.99	24.00	n/a	-200.7	0.60
Time:	17:55		annular spac	ce water sample		22.4	7689	3000	8.02	21.10	n/a	-208.5	0.56
Time: 18:57 annular space water sample						22.2	7682	3000	8.01	14.10	1.80	-209.1	0.53
	••••••••••••••••••••••••••••••••••••••	Note: Recov	ery (overnight	t) wasn't monitor	ed by ARCAE	IS personel				۰۱			
\G denote	s feet above	grade, ft BG fee	et below grade.										


mS/cm denotes milliSiemans per centimeter.


mg/L denotes milligrams per liter.

psi denotes pressure in pounds per square inch.

n/a denotes data not available.

n/a denotes data not available.

Appendix D

Laboratory Data

Jupi	ter tal Laboratoriles, inc.	Jupiter Environmantal Laboratories, Inc. 150 S. Old Dixle Highway Jupiter, FL 33458
	an Litanachter, nac.	Phone; (581)575-0030 Fax: (581)575-4118 vww.jupiteriabs.com clientservic4s@jupiteriabs.com
May 14, 2007		
Tami Wells Ali Webb's Enterprises, In 309 Commerce Way Jupiter, FL 33458	¢.	
RE: LOG# Project ID: COC# Dear Taml Wells:	718393 Seaccaat 32067	

Enclosed are the analytical results for sample(s) received by the laboratory on Tuesday, May 01, 2007. Results reported herein conform to the most current NELAC standards, where applicable, unless indicated by * in the body of the report.

The enclosed Chain of Custody is a component of this package and should be retained with the package and incorporated therein:

Results for all solid matrices are reported in dry weight unless otherwise noted. Results for all liquid matrices are reported as received in the laboratory unless otherwise noted.

Samples are disposed of after 30 days of their receipt by the laboratory unless archiving is requested in writing. The laboratory maintains the right to charge storage fees for archived samples.

Certain analyses are subcontracted to outside NELAC certified laboratories, please see the Footnotes section of this report for NELAC certification numbers of laboratories used.

A Statement of Qualifiers is available upon request. If you have any questions concerning this raport, please feel free to contact me.

Sincerely,

m

Erin Beauregard for Kacla Beldwin kbaldwin@jupiterlabs.com

Enclosures

Report ID: 718393 - 293815 5/14/2007

Page 1 of 6

FDOH# E86546 CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Jupiter Environmental Leboratories, Inc..

Jupiter Environmental Laboratories, inc. Jupiter Environmental Laboratories, Inc. 150 S: Old Dixie Highway Jupiter, FL 33458 Phone: (561)575-0030 Fax: (361)575-4118

SAMPLE ANALYTE COUNT

LOG# 718393 Project ID: Seacoast

Lab ID	Sample ID	Method	Analytes Reported
718393001	TW-1 1300-1600 Preline	EPA 110.2	
718393001	TW-1 1300-1600 Preline	EPA 120.1	
718393001	TW-1 1300-1600 Preline	EPA 150.1	•
718393001	TW-1 1300-1600 Preline	EPA 160,1	1
718393001	TW-1 1300-1600 Preline	EPA 200.8 (Total)	g
718393001	TW-1 1300-1600 Preline	EPA 310.2	2
718393001	TW-1 1300-1800 Preline	EPA 325,2	- 1
718393001	TW-1 1300-1600 Preline	EPA 340.1	1
718393001	TW-1 1300-1600 Preline	EPA 350.1	1
718393001	TW-1 1300-1600 Preline	EPA 353.2	1
718393001	TW-1 1300-1600 Preline	EPA 375.4	1
718393001	TW-1 1300-1600 Preline	53106	1
718393001	TW-1 1300-1600 Preline	EPA 6010B	1
718393001	TW-1 1300-1600 Preline	EPA 9050	1

Report ID: 718393 - 293815 5/14/2007

Page 2 of 6

FDOH# E86546 CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Jupiter Environmental Laboratories, inc...

Jupiter Environmental Laboratories, Inc. 150 S. Old Dide Highway Jupiter, FL 33458 Phone: (561)575-0030 Fac: (581)575-4118

SAMPLE SUMMARY

718393001	TW-1 1300-1600 Preline	Aqueous Liquid	4/30/2007 17:35	5/1/2007 17:00
Lab ID	Sample ID	Matrix	Date Collected	Date Received
Project ID: See	acoast	•		
LOG# 718	3393			

Report ID: 716393 - 293815 5/14/2007

Page 3 of 6

FDOH# E86546

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Jupiter Environmental Laboratories, Inc..

Jupiter

Environmental Laboratories, Inc.

Jupiter Environmental Laboratories, Inc. 150 S. Old Dide Highway Jupiter, FL 33456 Phone: (561)575-0030 Fax: (581)575-4118

ANALYTICAL RESULTS

Lab ID: 71 8393001 Sample ID: TW-1 1300-16	00 Preline			Date Received: Date Collected:) Mat	rix: Aqui	sous L iq	uld	
Parameters	Results	Units	Report Limit	MDL	DF Prepared	By	Analyzed	By	Qual	CAS
Analysis Des.: Sjatellis Canal (Field) (W) Specific Conductance		umhos/c m	Hisa Metrodi EP		1		04/30/07	GD		
Arniyalis Oess, 705 of EPA (VI) Total Dissolved Solids	3300	mg/L	1.0		1		05/04/07	ESC		
Analysia Dosc Allinonia by E (VC) Ammonia		mg/L	0.020		1		05/14/07	SS		7864-41-7
Anternalis Decer Since 921128 (WW Silice	ale: (REF) 13000		NGAL MERICIR, EF7 430	50105	1		05/04/07	ESC		7631-86-9
An Use Dec Toc by 2745 WT Toc		Ana) mg/L		5080	1		05/08/07	ESC		
in you Could of by EFR 13	5.82		ical Method; EPJ	150.4	1 1	¥.	05/03/07	VA		
REFICU Issolved Organic Carbon	14 - 19 - 19 - 19 - 19 - 19 - 19 - 19 -	And mg/L	ical Webce, 531 1.0		1		05/03/07	ESC		
Aranydd Dest: Chlorida By Er Wy Chlorida	1999 - 1980 - 1980 - 1980 - 1980 - 1980 - 1980 - 1980 - 1980 - 1980 - 1980 - 1980 - 1980 - 1980 - 1980 - 1980 -	Armly mg/L	ical Method : 27 50		100		05/14/07	SS		16887-00-6
Analysia Cose: Stillate by 375 Sulfate	dia tanàna mandritra dia kaominina dia kaominina dia kaominina dia kaominina dia kaominina dia kaominina dia ka	mg/L	COLUMNIC COLUMN		100		05/14/07	9 9		14808-79-8
Annon Desc Thanks of Pr Numbe		And mg/L	0.50	SHUT	5		05/14/07	SS	J4	16 984-4 8-8
Annysis Des Alicelluty Star Da 3 to Zirter (W Alkelinity-Bicarbonate Alkelinity-Carbonate	140	mg/L, mg/L	10 10	310 2	1		05/04/07 05/04/07	ÉSC ESC		

Report ID: 718393 - 293815 5/14/2007

Page 4 of 8

FDOH# E86546

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the writton consent of Jupiter Environmental Laboratories, Inc..

Jupiter

Environmental Laboratories, Inc.

Jupiter Environmental Laboratoriae, Inc. 150 S. Old Dide Highway Jupiter, FL 33458

> Phone: (561)575-0030 Fax: (561)575-4118

ANALYTICAL RESULTS

	'18393 Seaccast							- 1				
Lab ID: Sample ID:	718393001 TW-1 1300-1800 F	Preline			Date Received: Date Collected:		/2007 17:00 i0/2007	Mat	rbc Aqua	ious Lic	juld	
Parameters		Results	Units	Report Limit	MDL	DF	Prepared	By	Analyzed	By	Quai	CAS
Analysis Des INEFI (W) Color	e Calar by EPA 110		PCU	Hiyter Method: 27 4 1.0	TI42	1			05/02/07	ESC		
Anelysie Dec 355.2 (W) Nirite-Nitrate	CAULEAU		mg/L	elyica: Menac: EPA 0.10		1			05/08/07	ESC		
		0.0010 0.0060 0.026 U U 0.016	mg/L	0.000075 0.00032 0.00034 0.00014 0.00018 0.00028 0.0028 0.0020 0.00024	200-8 (1926) 0.000038 0.00016 0.000047 0.000070 0.000091 0.00014 0.00012 0.00012	1 1 1 1 1	05/03/07 05/03/07 05/03/07 05/03/07 05/03/07 05/03/07 05/03/07 05/03/07	ZS ZS ZS ZS ZS ZS ZS ZS ZS ZS	08/03/07 05/03/07 05/03/07 05/03/07 05/03/07 05/03/07 05/03/07 05/03/07	25 28 25 25 25 25 25 25 25 25		7440-47-3 7440-38-2 7782-49-2 7440-22-4 7440-43-9 7440-43-9 7440-39-3 7439-97-5 7439-97-5 7439-92-1

Report ID: 718393 - 293815 5/14/2007 Page 5 of 8

FDOH# E88546

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Jupiter Environmental Laboratories, Inc...

Jupiter Environmential Laboratories, Inc. 150°S, Old Dide Highway Jupiter, FL 33458 Phone: (581)575-030 Fex: (581)575-4118

ANALYTICAL RESULTS QUALIFIERS

LOG# 718393

Project ID: Seaccest

PARAMETER QUALIFIERS

J4 MS/MSD recovery exceeded control limits due to matrix interference. LCS/LCSD recovery was within acceptable range,

PROJECT COMMENTS

718393

A reported value of U indicates that the compound was analyzed for but not detected above the MDL. A value flagged with an "I" flag indicates that the reported value is between the laboratory method detection limit and the practical quantitation limit. Report Limit = PQL

SUBCONTRACTOR NELAC CERTIFICATION

718393 ESC = E87487

Report ID: 718393 - 293815 5/14/2007 Page 6 of 6

FDOH# E86546

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Jupiter Environmental Laboratories, inc.,

HAR CODE		Chain	of Cu	stody	/ Rec	ord		LACUSEC			J.E.L. Log # 71834
Jupiter Environmenta	I Labora	tories									P.O. #
Company Name ALL WEDD	s Shte	·prises					W.VEY				
Address 309 Com	morre	Wali									
City JUPITER SLIDE FL	70 3345	g 1			13						
Sampling Bile Address SEACODS			- 4	f I	4						
ANIN: Tami WELLS	Fax/Emsily Lwell	s R QU			inde of the sub	ţ.					
Project #		webbs		way		W Yrake + Witch					
Name <u>SE/7CO/187</u> Project a Sampler Name/Signalure	······································	. Com			a l	Y	1 Z	70L	S		
		Matuz	Mats ²		104 , C	WK	70%	トイ	(et a		
		Code: Conte			मुश्						Comments
-1 TN-1, 1300-1600 Break 4/20	67 17:35	645 10			44	$\frac{\sqrt{\nu}}{\nu}$	1^{1}	VV	5		Field Parac
_2			_								pH=7.75
_3											T= 22.7°C
_4											iand = 5497 ul
_5											D.O. = 0.86 - 1/L
_6											
_7									1		
8											
_9											
d											
Matrix Codes'			<u>.</u>				Tene		107		
S Solf-Salid Sediment SW Suntace Water GW Ground Water SL Studge WW Waste Water O Other (Please Specify) DW Drinking Water	A none i ka B HNO, O Oliv C H,SO, M Me D NACH E HCI	stere .	(), de	vsc,	3	নতা	5'00	i ad	am	Atrus	5/1/07 5:00
QA/QC level with report None <u>1_2_3</u> See price guide fi		1						1			
T.A.T. Request FDEP	Temp Control:			, <u>, , , , , , , , , , , , , , , , , , </u>			<u>.</u>	-		<u></u>	
X Standard SFWMD Rush Date Required	<u> </u>	;		r Enviror d Dixie H							
Page of		(561) 575-00)30 • Fax	(561) 575	-4118 •	clientse	rvices@	- Jupiterial	os.com		c.o.c.# 32067

02/08

PAGE

ALL WEBBS ENT INC

5617464199

16:04

05/23/2007

Page___

IV NICIOU

Jupiter Environmental Laboratories, Inc. 150 S. Old Dixie Highway Jupiter, FL 33458 Phone: (561)575-0030 Fax: (561)575-4118 www.jupiterlabs.com clientservices@jupiterlabs.com

July 10, 2007

Tami Wells All Webb's Enterprises, Inc. 309 Commerce Way Jupiter, FL 33458

RE:	LOG#	718760
	Project ID:	Floridan TW1
	COC#	31429

Dear Tami Wells:

Enclosed are the analytical results for sample(s) received by the laboratory between Wednesday, June 27, 2007 and Thursday, June 28, 2007. Results reported herein conform to the most current NELAC standards, where applicable, unless indicated by * in the body of the report.

The enclosed Chain of Custody is a component of this package and should be retained with the package and incorporated therein.

Results for all solid matrices are reported in dry weight unless otherwise noted. Results for all liquid matrices are reported as received in the laboratory unless otherwise noted.

Samples are disposed of after 30 days of their receipt by the laboratory unless archiving is requested in writing. The laboratory maintains the right to charge storage fees for archived samples.

Certain analyses are subcontracted to outside NELAC certified laboratories, please see the Footnotes section of this report for NELAC certification numbers of laboratories used.

A Statement of Qualifiers is available upon request.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Erin Beauregard for Kacia Baldwin kbaldwin@jupiterlabs.com

Enclosures

Report ID: 718760 7/10/2007 Page 1 of 3

FDOH# E86546

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Jupiter Environmental Laboratories, Inc..

Fax: (561)575-4118

SAMPLE SUMMARY

LOG# 718760 Project ID: Floridan TW1

Lab ID	Sample ID	Matrix	Date Collected	Date Received
718760001	TW1	Drinking Water	6/27/2007 16:00	6/27/2007 17:11
718760002	TW1	Drinking Water	6/28/2007 15:20	6/28/2007 16:30

Report ID: 718760 7/10/2007

Page 2 of 3

FDOH# E86546

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Jupiter Environmental Laboratories, Inc..

DOH Certification #E84025 DEP COMPQAP # 870251

Report Date: July 9, 2007

an ann a martan ann a ta an an ta ta ann a' ta ann a' ta an an an ta an ann a' ta ann an ta ann an ta an an an

LABORATORY SERVICES 2742 N. Florida Ave. P.O. Box 1833 Tampa, Florida 33601 (813) 229-2879 Fax (813) 229-0002

Jupiter Environmental LaboratoriesField Custody:Client150 S. Old Dixie HighwayClient/Field ID:718760001Jupiter, FL 33458Sample Collection:6-27-07Lab ID No:07.6560Lab Custody Date:6-29-07Sample description:DW

CERTIFICATE OF ANALYSIS

Parameter U	nits	Results			Analysis Date			Detection Limit
Gross Alpha po	Ci/1 ·	4.5	4 - 1	0.8	07-09-07/0800		00-02	0.5

Alpha Standard: Th-230

James W. Hages

James W. Hayes Laboratory Manager

Test results meet all requirements of the NELAC standards. Contact person: Jim Hayes (813) 229-2879).

KNL LABORATORY SERVICES, INC. 2742 N. Florida Ave. Tampa, FL 33602 Phone: (813) 229-2879 Fax: (813) 229-0002

ы. С.

CHAIN OF CUSTODY RECORD

-

Company Name:				www.knliabo	@tampabay.rr.com bratory.com	•		
Address:	JUPITER ENV. (ABS				Preserva	tive	
City/State/Zip:	150 S. OLD DIXIE	HWY						
Phone #:	JUPITER, FL 5-0030 Attn EUN					Ennt		
061-31					y		·	₽ <u>?</u> ???
				# of containers	And			
SAMPLE ID S	AMPLE DESCRIPTION/LOCATION	DATE/TIME	MATRIX*		$\frac{1}{1}$			
-71	8760001	6/07/11/100				~		
		010/1077/000	Du				67 65 60	
			-		<u> </u>			
			╺╋┉╍╍╍┥				rel a -	Ĩ
C	pot de par Edin		╉────┤					
	2-03-07. mc		+				Nrs V	
	Letter and the second s		╉────╋				h h	
			┢╍╍╍╍╌┥					
'WW - Wastewater Special Instructions	DW - Drinking Water GW - Groundw	tor SW - Surface We	der QI - Charal					
opeciat instructions			GI QL - 9140	ge omar:				
Print Name/Compa	Relinquished By: ny Signatura				Accepted	By:	·····	·
STEVEN SHOEDAL	4 GINE O	Date/Time	Print Name		Signatur	and the second se	Date/Time	
CI COCI INCOME	the second se	6/18/07 1605	K	NL	4AN		6/29/07-10	
Print Name/Compa	Relinguished By:				Accepted	Bv:	eraur () 70	
	ny Signature	Date/Time	Print Name	/Company	Signature	the second s	Date/Time	{
			1				LARGE THE	-
	Relinquished By:				Accepted			
Print Name/Compar	y Signature	Date/Time	Print Name	Companyl	Signature	and the second		
			George Contraction of the second seco		oignaturi		Date/Time	

104985 7185

12:240

ရာ တ 5 Car

July 10, 2007

Ms. Kacia Baldwin Jupiter Environmental Laboratories, Inc. 150 S. Old Dixie Highway Jupiter, FL 33458

RE: ERIN

Order No.: F07061267

Dear Ms. Kacia Baldwin:

ELAB, Inc. received 2 samples on 6/29/2007 10:25:00 for the analyses presented in the following report.

Analyses are performed with method-required calibration and QA/QC samples whenever applicable. Method performance, which is based on the calibration and QA/QC samples, establishes the validity and certainty of the reported sample results. This data is provided along with the sample results when requested.

Thank you for this opportunity to be of service. If you have any questions regarding this data, please feel free to call me at (386) 672-5668, extension 310.

Sincerely, Vincent "Bo" Garcia

Project Manager ELAB, Inc. P.O. Box 468 Ormond Beach, FL 32175-0468

> THIS DOCUMENT MEETS NELAC STANDARDS NELAC Certification #E83079

The following	acronyms may be utilized within this report:
%REC	Percent Recovery
А	Absent
ABLK	Analytical Method Blank
CG	Confluent Growth
CGB	Confluent Growth Without Coliforms
CGC	Confluent Growth With Coliforms
DUP	Sample Duplicate
LCS	Laboratory Control Spike (may also be appended with an abbreviation indicating spiking level)
MBLK	Preparation Method Blank
MDL	Laboratory Method Detection Limit
MS	Matrix Spike (may also be appended with an abbreviation indicating spiking level)
MSD	Matrix Spike Duplicate (may also be appended with an abbreviation indicating spiking level)
Р	Present
PQL	Practical Quantitation Limit
QCS	Alternate source Calibration Verification Standard (may also be reported as analytical LCS in some
RL	Reporting Limit
RPD	Relative Percent Difference
SPK	Spike
TIC	Tentatively Identified Compound
TNTC	Too Numerous To Count

The following notes may apply to analytical results within this report:

Residue (solids) analysis may employ a single, heated drying process of at least 12 hours duration in lieu of employing short, repeated drying cycles, which represents a deviation from the methodology.

Because the EPA-recommended holding time for pH, residual chlorine, chloramines and chlorine dioxide is 15 minutes from time of collection, these analyses are routinely performed outside of their EPA-recommended holding time when performed in the laboratory.

Analytical results for ammonia analysis, or calculated analytical results depending on ammonia analysis, do not include a sample distillation procedure. A study comparing distilled versus non-distilled analytical results has been performed to document the validity of the analysis without prior distillation, and represents equivalent results for the represented project matrices.

Since N-nitrosodiphenylamine decomposes in the GC inlet and cannot be chromatographically resolved from diphenylamine, these compounds are reported as a single analyte in the report.

Since m-cresol and p-cresol cannot be chromatographically resolved, these compounds are reported as a single analyte in the report.

Alabama	DEM	41320
Arizona	DHS	AZ0640
Colorado	DPHE	FL NELAC Reciprocity
Connecticut	DPH	PH-0216
Florida	DOH	E83079
Georgia	DNR	955
Kentucky	DEP	90050
Maine	LCP	2006032
Massachusetts	DEP	M-FL020
Michigan	DEQ	9911
Mississippi	DOH	FL NELAC Reciprocity
Nevada	EP	ELAB FL-00020
New Hampshire	DES	295805
New Jersey	DEP	FL765
New York	DOH	11608
Pennsylvania	DEP	68-00547
Puerto Rico	DOH	FL 00020
South Carolina	DHEC	96027001
Tennessee	DOH	02974
Texas	CEQ	T104704184-05-TX

The following certifications may apply to analytical results within this report:

ELAB, Inc. 8 East Tower Cr., Ormond Beach, FL 32174-87

	Case Narrative
CLIENT:	Jupiter Environmental Laboratories, Inc.
Project:	ERIN
Lab Order:	F07061267

I. SAMPLE RECEIVING/ CUSTODY

The samples were received and processed by the Sample Custody section of the laboratory. There were no significant logistics or quality problems unless noted below.

II. ANALYTICAL DATA

The samples were analyzed according to ELAB Standard Operating Procedures for the methodologies requested. There were no significant logistics or quality problems unless noted below or in the text of the report.

III. QUALITY CONTROL

There were no significant quality control problems unless noted below or in the text of the report.

ELAB, Inc. 8 East Tower Cr., Ormond Beach, FL 32174-87

Date: 10-Jul-07

			Anal	ytical I	Report				
CLIENT:	Jupiter Environmenta	l Laboratorie	s, Inc.		Client	Sample ID:	718760	001	
Lab Order:	F07061267				Coll	ection Date:	6/27/20	07 16:00:00	
Project:	ERIN				Sample D	escription:			
Lab ID:	F07061267-001				•	Matrix: I	Drinkin	g Water	
Analyses		Result	Qual	MDL	RL	Units	DF	Date Analyzed	Batch ID
ICP METALS			E200.7	Pre	pDate:			Analyst: TPI	
Barium		0.017		0.0050	0.010	mg/L	1	07/02/07 15:53	R58693A
Beryllium		0.00050	U	0.00050	0.0010	mg/L	1	07/02/07 15:53	R58693A
Cadmium		0.00050	U	0.00050	0.0010	mg/L	1	07/02/07 15:53	R58693A
Calcium		110		0.25	0.50	mg/L	1	07/02/07 15:53	R58693A
Chromium		0.0025	U	0.0025	0.0050	mg/L	1	07/02/07 15:53	R58693A
Iron		0.020	U	0.020	0.040	mg/L	1	07/02/07 15:53	R58693A
Magnesium		120		0.25	0.50	mg/L	1	07/02/07 15:53	R58693A
Manganese		0.0025	U	0.0025	0.0050	mg/L	1	07/02/07 15:53	R58693A
Nickel		0.0025	U	0.0025	0.0050	mg/L	1	07/02/07 15:53	R58693A
Potassium		35		1.2	2.5	mg/L	5	07/05/07 18:27	R58841A
Silver		0.0025	U	0.0025	0.0050	mg/L	1	07/02/07 15:53	R58693A
Sodium		820	x	2.5	5.0	mg/L	5	07/05/07 18:27	R58841A
Strontium		9.7		0.0050	0.010	mg/L	1	07/02/07 15:53	R58693A
Zinc		0.022		0.010	0.020	mg/L	1	07/02/07 15:53	R58693A
ICP/MS METALS			E200.8	Pre	pDate:			Analyst: DSK	
Aluminum		0.0050	U	0.0050	0.010	mg/L	1	07/04/07 00:11	R58769-B
Antimony		0.0013		0.00050	0.0010	mg/L	1	07/04/07 00:11	R58769-B
Arsenic		0.0042	I	0.0025	0.0050	mg/L	5	07/05/07 16:16	R58818-A
Copper		0.0016		0.00072	0.0010	mg/L	1	07/04/07 00:11	R58769-B
Lead		0.00050	U	0.00050	0.0010	mg/L	1	07/04/07 00:11	R58769-B
Selenium		0.00050	U	0.00050	0.0010	mg/L	1	07/04/07 00:11	R58769-B
Thallium		0.00050	U	0.00050	0.0010	mg/L	1	07/04/07 00:11	R58769-B
MERCURY			E245.1	Pre	pDate: 7/3/2	2007 14:08:00		Analyst: TPI	
Mercury		0.000050	U	0.000050	0.00010	mg/L	1	07/06/07 16:23	45353
ALKALINITY AS C	ACO3		SM2320 E	s Prej	pDate:			Analyst: LSM	
Alkalinity, Bicarbo	nate (As CaCO3)	150		0.64	5.0	mg/L	1	07/06/07 12:15	R58843
Alkalinity, Carbona	ate (As CaCO3)	0.64	U	0.64	5.0	mg/L	1	07/06/07 12:15	R58843
Alkalinity, Total (A	s CaCO3)	150		0.64	5.0	mg/L	1	07/06/07 12:15	R58843
ANIONS BY ION C	HROMATOGRAPHY		E300.0	Pre	pDate:	-		Analyst: SSM	
Chloride		1500	x	0.52	10	mg/L	20	06/29/07 14:08	R58738
Fluoride		1.1		0.13	1.0	mg/L		06/29/07 14:08	R58738
Nitrogen, Nitrate-N	litrite	0.28	U	0.28	1.0	mg/L		06/29/07 14:08	R58738
Sulfate		370	x	1.2	10	mg/L		06/29/07 14:08	R58738

. ID .

Analyte detected below quantitation limits U Not Detected Above the MDL

I

Data Qualifier

Code Key:

Q Holding times for preparation or analysis exceeded

Value exceeds Maximum Contaminant Level х

ELAB, Inc. 8 East Tower Cr., Ormond Beach, FL 32174-87

			Allaly	lical Re	port				
CLIENT:	Jupiter Environmenta	l Laboratorie	s, Inc.		Client	Sample ID: 7	18760	001	<u></u>
Lab Order:	F07061267				Colle	ction Date: 6	/27/20	07 16:00:00	
Project:	ERIN			Sa	mple D	escription:			
Lab ID:	F07061267-001			Matrix: Drinking Water					
Analyses		Result	Qual	MDL	RL	Units	DF	Date Analyzed	Batch ID
CYANIDE, TOT	AL.		E335.4	PrepDa	te: 7/2/2	007 11:00:00		Analyst: TKE	
Cyanide		0.0015	U	0.0015	0.010	mg/L	1	07/02/07 16:11	45331
MBAS, CALCU	LATED AS LAS, MOL WI	Г 340	SM5540C	PrepDa	e: 6/29 /	2007 16:00:00		Analyst: TKE	
MBAS		0.060	I	0.043	0.10	mg/L	1	06/29/07 17:05	45329
NITROGEN, AM	IMONIA		E350.1	PrepDa	e:			Analyst: ACO	
Nitrogen, Amm	onia (As N)	0.51		0.0063	0.050	mg/L	1	07/02/07 13:30	R58734
Ч			SM4500 H B	PrepDat	e:			Analyst: HMA	
pН		7.29	Q	0.100	0.100	pH units	1	06/29/07 14:24	R58717
ILICA, REACT	ÏVE		E370.1	PrepDat	e:			Analyst: SSM	
Silica, Dissolve	d (as SiO2)	14	x	0.14	2.0	mg/L	2	07/06/07 15:27	R58876
OLIDS, TOTA	L DISSOLVED		E160.1	PrepDat	e: 7/3/2	007		Analyst: ACO	
Solids, Total Di	ssolved	3000		3.7	5.0	mg/L	1	07/03/07 09:34	45347
ULFIDE			E376.1	PrepDat	e:			Analyst: SSM	
Sulfide		4.0		0.46	1.0	mg/L	1	07/02/07	R58759
ULFIDE, HYDR	ROGEN		E376.1	PrepDat	e:			Analyst: SSM	
Sulfide		0.53	I	0.46	1.0	mg/L	1	07/02/07	R58759

Analytical Report

Date: 10-Jul-07

Data Qualifier Code Key: I

U

Analyte detected below quantitation limits

- Not Detected Above the MDL
- Q Holding times for preparation or analysis exceeded
- x Value exceeds Maximum Contaminant Level

ELAB, Inc. 8 East Tower Cr., Ormond Beach, FL 32174-87

			Analy	tical Rep	ort								
CLIENT:	Jupiter Environmenta	I Laboratorie	s, Inc.	(Client	Sample ID:	718760002						
Lab Order:	F07061267				Coll	ection Date	6/28/2007 15:20:00						
Project:	ERIN		Sample Description:										
Lab ID:	F07061267-002		Matrix: Drinking Water										
Analyses		Result	Qual	MDL	RL	Units	DF Date Analyzed	Batch ID					
COLOR (TRUE)			SM2120 B	PrepDate:			Analyst: HMA						
Color		5.0	U	5.0	5.0	c.u.	1 06/29/07 14:45	R58722					
ODOR			SM2150B	PrepDate:			Analyst: HMA						
Odor		200	x	1.0	1.0	t.o.n.	1 06/29/07 13:45	R58721					

. 1---ID .

Date: 10-Jul-07

Data Qualifier Code Key: I

U

Analyte detected below quantitation limits Not Detected Above the MDL

Q Holding times for preparation or analysis exceeded

Value exceeds Maximum Contaminant Level х

CLIENT: Work Ord	-	ronmental Laborat	ories, Inc	.			ANALY	TICA	L QC	SUMMA	RY REP	ORT
Project:	ERIN							Т	estCod	e: AA-HG2	45.1_W	
Sample ID	MB-45353	SampType: MBLK		TestCode: AA-HG	245.1_ Units	ε μg/L	Prep Date	7/3/2007	7	RunNo:	58877	
Client ID:	MB-45353	Batch ID: 45353		TestNo: E245.1	E245	.1	Analysis Date	: 7/6/2007	7	SeqNo:	1615941	
Analyte		Resul	t Qual	MDL	SPK value	SPK Ref Val	%REC L	owLimit H	lighLimit	RPD Ref Val	%RPD	RPDLimit
Mercury		0.050) U	0.050								
Sample ID	LCS-45353	SampType: LCS		TestCode: AA-HG	245.1_ Units	:: µg/L	Prep Date	7/3/2007	,	RunNo:	58877	
Client ID:	LCS-45353	Batch ID: 45353		TestNo: E245.1	E245	1	Analysis Date	: 7/6/2007	7	SeqNo:	1615942	
Analyte		Resul	t Qual	MDL	SPK value	SPK Ref Val	%REC L	owLimit H	lighLimit	RPD Ref Val	%RPD	RPDLimit
Mercury		2.2	2	0.050	2.0	0	109	85	115			
Sample ID	F07061269-001JMS	SampType: MS		TestCode: AA-HG	245.1_ Units	:: μg/L	Prep Date	7/3/2007	,	RunNo:	58877	
		Batch ID: 45353		TestNo: E245.1	E245.	1	Analysis Date	: 7/6/2007	,	SeqNo:	1615955	
Analyte		Resul	t Qual	MDL	SPK value	SPK Ref Val	%REC L	owLimit H	lighLimit	RPD Ref Val	%RPD	RPDLimit
Mercury		2.2	2	0.050	2.0	0	108	70	130			
Sample ID	F07061309-001CMS	SampType: MS		TestCode: AA-HG	245.1_ Units	:: µg/L	Prep Date	7/3/2007	,	RunNo:	58877	
		Batch ID: 45353		TestNo: E245.1	E245.	1	Analysis Date	: 7/6/2007	,	SeqNo:	1615968	
Analyte		Resul	t Qual	MDL	SPK value	SPK Ref Val	%REC L	owLimit H	lighLimit	RPD Ref Val	%RPD	RPDLimit
Mercury	****	2.2	2	0.050	2.0	0	110	70	130			
Sample ID	F07061309-001CMS	DSampType: MSD		TestCode: AA-HG	245.1_ Units	: μg/L	Prep Date	7/3/2007	7	RunNo:	58821	
		Batch ID: 45353		TestNo: E245.1	E245.	.1	Analysis Date	: 7/5/2007	,	SeqNo:	1613858	
Analyte		Resul	t Qual	MDL.	SPK value	SPK Ref Val	%REC L	owLimit H	lighLimit	RPD Ref Val	%RPD	RPDLimit
Mercury		2.2	2 R	0.050	2.0	0	110	70	130	0.050 U	200	20

Data Analyte detected below quantitation limits I

Qualifier Code Key:

U

Q Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

Not Detected Above the MDL

S Spike Recovery outside accepted recovery limits

CLIENT:Jupiter Environmental Laboratories, Inc.Work Order:F07061267Project:ERIN

ANALYTICAL QC SUMMARY REPORT

TestCode: AA-HG245.1_W

Sample ID	F07061269-001JM	SD SampType: MSD		TestCode: AA-HG	245.1_ Units	: µg/L	Prep D	ate: 7/3/20)07	RunNo:	58877	
		Batch ID: 45353		TestNo: E245.1	E245.	.1	Analysis D	ate: 7/6/20	07	SeqNo:	1615956	
Analyte		Result	Qual	MDL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit
Mercury		2.1		0.050	2.0	0	105	70	130	2.2	2.85	20
Sample ID Client ID:	QCS TV=4.0 QCS TV=4.0	SampType: QCS Batch ID: R58821		TestCode: AA-HG TestNo: E245.1	245.1_ Units	:: µg/L	Prep Da Analysis D	ate: ate: 7/5/20	007	RunNo: SeaNo:	58821 1613763	
Analyte		Result	Qual	MDL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	•	%RPD	RPDLimit
Mercury		4.2		0.050	4.0	0	105	90	110			
Sample ID Client ID:	QCS TV=4.0 QCS TV=4.0	SampType: QCS Batch ID: R58877	,	TestCode: AA-HG TestNo: E245.1	245.1_ Units	:: µg/L	Prep D Analysis D	ate: ate: 7/6/20	007	RunNo: SeqNo:	58877 1615907	
Analyte		Result	Qual	MDL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit
Mercury		4.1		0.050	4.0	0	102	90	110			

Data Qualifier Code Key:

I Analyte detected below quantitation limits

R RPD outside accepted recovery limits

U Not Detected Above the MDL

Q Holding times for preparation or analysis exceeded

S Spike Recovery outside accepted recovery limits

=

CLIENT: Jupiter Environmental Laboratories, Inc. Work Order: F07061267 **Project:** ERIN

ANALYTICAL QC SUMMARY REPORT

TestCode: ALKALINITY

Sample ID	CCB-1	SampType:	ABLK		TestCode:	ALKAL	INITY Unit	s: mg/L	Prep D	ate:		RunNo:	58843	
Client ID:	CCB-1	Batch ID:	R58843		TestNo:	SM232	0 B		Analysis D	ate: 7/6/2	007	SeqNo:	1615583	
Analyte			Result	Qual		MDL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimi
Alkalinity, B	Bicarbonate (As CaCO3))	0.64	U		0.64								
	Carbonate (As CaCO3)		0.64	U		0.64								
Alkalinity, T	otal (As CaCO3)		0.64	U		0.64								
Sample ID	QCS	SampType:	QCS		TestCode:	ALKAL	INITY Unit	s: mg/L	Prep D	ate:		RunNo:	58843	
Client ID:	QCS	Batch ID:	R58843		TestNo:	SM232	0 B		Analysis D	ate: 7/6/2	007	SeqNo:	1615585	
Analyte			Result	Qual		MDL.	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimi
Alkalinity, T	otal (As CaCO3)		250			0.64	250	0	101	90	110			
Sample ID	F07060975-063DMS	SampType:	MS		TestCode:	ALKAL	INITY Unit	s: mg/L	Prep D	ate:		RunNo:	58843	
		Batch ID:	R58843		TestNo:	SM232	0 B		Analysis D	ate: 7/6/20	007	SeqNo:	1615588	
Analyte			Result	Qual		MDL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimi
Alkalinity, T	otal (As CaCO3)		170			0.64	100	74	99.6	90	110			
Sample ID	F07061197-001AMS	SampType:	MS		TestCode:	ALKAL	.INITY Unit	s: mg/L	Prep D	ate:		RunNo:	58843	
		Batch ID:	R58843		TestNo:	SM232	0 B		Analysis D	ate: 7/6/20	007	SeqNo:	1615602	
Analyte			Result	Qual		MDL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimi
Alkalinity, T	otal (As CaCO3)		210			0.64	100	110	97.9	90	110			
Sample ID	F07060975-063DDUP	SampType:	DUP		TestCode:	ALKAL	INITY Unit	s: mg/L	Prep D	ate:		RunNo:	58843	
		Batch ID:	R58843		TestNo:	SM232	0 B		Analysis D	ate: 7/6/20	007	SeqNo:	1615587	
Analyte			Result	Qual		MDL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimi
Data	I Analyte detec	ted below qu	antitation	limits		Q	Holding tir	nes for preparatio	on or analysis e	xceeded				
Qualifier	R RPD outside	accepted reco	very limit	5		S	Spike Reco	very outside acco	epted recovery	limits				

R RPD outside accepted recovery limits Code Key:

U Not Detected Above the MDL

Page 10 of 35

CLIENT: Jupiter Environmental Laboratories, Inc. Work Order: F07061267 **Project:** ERIN

ANALYTICAL QC SUMMARY REPORT

TestCode: ALKALINITY

Sample ID F07060975-063DDUP	SampType: DUP		TestCode: ALKALINITY	Units: mg/L	Prep Date:		RunNo:	58843	
	Batch ID: R58843		TestNo: SM2320 B		Analysis Date: 7/	6/2007	SeqNo:	1615587	
Analyte	Result	Qual	MDL SPK	value SPK Ref Val	%REC LowLi	mit HighLimit	RPD Ref Val	%RPD	RPDLimit
Alkalinity, Bicarbonate (As CaCO3)	74		0.64				74	0.217	20
Alkalinity, Carbonate (As CaCO3)	0.64	U	0.64				0.64 U	0	20
Alkalinity, Total (As CaCO3)	74		0.64				74	0.217	20
Sample ID F07061197-001ADUP	SampType: DUP		TestCode: ALKALINITY	Units: mg/L	Prep Date:		RunNo:	58843	
Sample ID F07061197-001ADUP	SampType: DUP Batch ID: R58843		TestCode: ALKALINITY TestNo: SM2320 B	Units: mg/L	•	6/2007		58843 1615601	
Sample ID F07061197-001ADUP Analyte		Qual	TestNo: SM2320 B	Units: mg/L Value SPK Ref Val	Analysis Date: 7/	6/2007 mit HighLimit			RPDLimit
Analyte	Batch ID: R58843 Result	Qual	TestNo: SM2320 B		Analysis Date: 7/		SeqNo:	1615601	RPDLimit 20
	Batch ID: R58843 Result	Qual	TestNo: SM2320 B MDL SPK		Analysis Date: 7/		SeqNo: RPD Ref Val	1615601 %RPD	

Data Qualifier Code Key:

Analyte detected below quantitation limits I

R RPD outside accepted recovery limits U

Not Detected Above the MDL

Q Holding times for preparation or analysis exceeded

S Spike Recovery outside accepted recovery limits

CLIENT: Jupiter Environmental Laboratories, Inc. Work Order: F07061267 **Project:** ERIN

ANALYTICAL QC SUMMARY REPORT

TestCode: CN335.4_DW

Sample ID	LCS-LOW	SampType:	LCS-LO	N	TestCode:	CN335.4	_DW	Units	: mg/L		Prep D	ate:	7/2/20	07	RunNo:	58741	
Client ID:	LCS-LOW	Batch ID:	45331		TestNo:	E335.4		E335.4	4		Analysis D	ate:	7/2/20	07	SeqNo:	1610247	
Analyte			Result	Qual		MDL	SPK	/alue	SPK Ref Va	al	%REC	Lov	vLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit
Cyanide			0.049		0.	0015	C	0.050		0	98.0		90	110			
Sample ID	MB-45331	SampType:	MBLK		TestCode:	CN335.4	_DW	Units	: mg/L		Prep D	ate:	7/2/20	07	RunNo:	58741	
Client ID:	MB-45331	Batch ID:	45331		TestNo:	E335.4		E335.4	4		Analysis D	ate:	7/2/20	07	SeqNo:	1610246	
Analyte			Result	Qual		MDL	SPK	/alue	SPK Ref Va	al	%REC	Lov	vLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit
Cyanide			0.0015	U	0.	0015											
Sample ID	LCS-45331	SampType:	LCS		TestCode:	CN335.4	_DW	Units	: mg/L		Prep D	ate:	7/2/20	07	RunNo:	58741	
Client ID:	LCS-45331	Batch ID:	45331		TestNo:	E335.4		E335.4	4		Analysis D	ate:	7/2/20	07	SeqNo:	1610248	
Analyte			Result	Qual		MDL	SPK	alue	SPK Ref Va	al	%REC	Lov	vLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit
Cyanide			0.19		0.	0015		0.20		0	95.5		90	110			
Sample ID	F07061142-001PMS	SampType:	MS		TestCode:	CN335.4	_DW	Units	: mg/L		Prep D	ate:	7/2/20	07	RunNo:	58741	
		Batch ID:	45331		TestNo:	E335.4		E335.4	4		Analysis D	ate:	7/2/20	07	SeqNo:	1610250	
Analyte			Result	Qual		MDL	SPK v	alue	SPK Ref Va	al	%REC	Lov	vLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit
Cyanide			0.20		0.	0015		0.20	0.005	60	98.5		90	110			
Sample ID	F07061142-001PMSD	SampType:	MSD		TestCode:	CN335.4	_DW	Units	: mg/L		Prep D	ate:	7/2/20	07	RunNo:	58741	
		Batch ID:	45331		TestNo:	E335.4		E335.4	4		Analysis D	ate:	7/2/20	07	SeqNo:	1610251	
Analyte			Result	Qual		MDL	SPK v	alue	SPK Ref Va	al	%REC	Lov	vLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit
Cyanide			0.19		0.	0015		0.20	0.005	60	92.0		90	110	0.20	6.65	20

Data Analyte detected below quantitation limits I

Qualifier

R Code Key:

Holding times for preparation or analysis exceeded Q

RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

U Not Detected Above the MDL

Page 12 of 35

CLIENT: Jupiter Environmental Laboratories, Inc. Work Order: F07061267 ERIN

Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: COLOR_DW

Sample ID	QCS	SampType:	QCS		TestCode: COLOR	_ DW Unit	s: c.u.	Prep Da	te:		RunNo:	58722	
Client ID:	QCS	Batch ID:	R58722		TestNo: SM212	0 B		Analysis Da	ite: 6/29/2	007	SeqNo:	1608868	
Analyte			Result	Qual	MDL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit
Color			20		5.0	20	0	100	90	110			
Sample ID	MB-R58722	SampType:	MBLK		TestCode: COLOR	_ DW Unit	s: c.u.	Prep Da	te:		RunNo:	58722	
Client ID:	MB-R58722	Batch ID:	R58722		TestNo: SM212	0 B		Analysis Da	ite: 6/29/2	007	SeqNo:	1608867	
Analyte			Result	Qual	MDL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit
Color			5.0	U	5.0								
Sample ID	F07061267-002ADUP	SampType:	DUP		TestCode: COLOR	_DW Unit	s: c.u.	Prep Da	te:		RunNo:	58722	
Client ID:	718760002 DUP	Batch ID:	R58722		TestNo: SM212	0 B		Analysis Da	te: 6/29/2	007	SeqNo:	1608870	
Analyte			Result	Qual	MDL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit
Color			5.0	U	5.0						5.0 U	0	20

Data Qualifier Code Key:

Analyte detected below quantitation limits 1

R RPD outside accepted recovery limits U

Q Holding times for preparation or analysis exceeded

Not Detected Above the MDL

Spike Recovery outside accepted recovery limits S

CLIENT: Jupiter Environmental Laboratories, Inc.

F07061267 Work Order: ERIN

Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: IC300_W

Sample ID	QCS	SampType:	QCS		TestCode: IC300_V	W Units	: mg/L	Prep D	ate:		RunNo:	58738	
Client ID:	QCS	Batch ID:	R58738		TestNo: E300.0			Analysis D	ate: 6/28/2	2007	SeqNo:	1609617	
Analyte			Result	Qual	MDL.	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit
Chloride			5.2		0.026	5.0	0	103	90	110			
Fluoride			0.49		0.0067	0.50	0	98.9	90	110			
Nitrogen, Ni	itrate-Nitrite		1.0		0.014	1.0	0	104	80	120			
Sulfate			5.2		0.062	5.0	0	104	90	110			
Sample ID	МВ	SampType:	ABLK		TestCode: IC300_	W Units	: mg/L	Prep D	ate:		RunNo:	58738	
Client ID:	MB	Batch ID:	R58738		TestNo: E300.0			Analysis D	ate: 6/28/2	2007	SeqNo:	1609618	
Analyte			Result	Qual	MDL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit
Chloride			0.026	U	0.026								
Fluoride			0.0067	U	0.0067								
Nitrogen, Ni	itrate-Nitrite		0.014	U	0.014								
Sulfate			0.062	U	0.062								
Sample ID	F07061222-001FMS	SampType:	MS		TestCode: IC300_\	W Units	: mg/L	Prep D	ate:		RunNo:	58738	
		Batch ID:	R58738		TestNo: E300.0			Analysis D	ate: 6/28/2	2007	SeqNo:	1609621	
Analyte			Result	Qual	MDL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit
Chloride			29		0.026	10	18	102	80	120		···· · · · · · · · · · · · · · · · · ·	
Fluoride			1.6		0.0067	1.0	0.61	98.3	80	120			
Nitrogen, Ni	itrate-Nitrite		2.1		0.014	2.0	0.15	98.5	80	120			
Sulfate			44		0.062	10	34	97.3	80	120			

Data Qualifier Code Key:

Analyte detected below quantitation limits I

R RPD outside accepted recovery limits U

Not Detected Above the MDL

Holding times for preparation or analysis exceeded Q

Spike Recovery outside accepted recovery limits S

CLIENT: Jupiter Environmental Laboratories, Inc. Work Order: F07061267 **Project:** ERIN

ANALYTICAL QC SUMMARY REPORT

TestCode: IC300_W

Sample ID F07061231-003AMS	SampType:	MS		TestCode: IC300_V	V Units	: mg/L	Prep Da	ite:		RunNo:	58738	
	Batch ID:	R58738		TestNo: E300.0			Analysis Da	ate: 6/29/2	007	SeqNo:	1609650	
Analyte		Result	Qual	MDL.	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit
Chloride		12		0.026	10	2.2	98.4	80	120			
Fluoride		1.1		0.0067	1.0	0.043	102	80	120			
Nitrogen, Nitrate-Nitrite		2.1		0.014	2.0	0	104	80	120			
Sulfate		13		0.062	10	2.4	101	80	120			
Sample ID F07061309-001BMS	SampType:	MS		TestCode: IC300_V	N Units	: mg/L	Prep Da	ate:		RunNo:	58738	
	Batch ID:	R58738		TestNo: E300.0			Analysis Da	ate: 6/29/2	:007	SeqNo:	1609662	
Analyte		Result	Qual	MDL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit
Chloride		81	S	0.026	10	73	78.7	80	120			
Fluoride		2.1		0.0067	1.0	1.0	102	80	120			
Nitrogen, Nitrate-Nitrite		2.0		0.014	2.0	0.20	90.2	80	120			
Sulfate		32		0.062	10	22	99.9	80	120			
Sample ID F07061222-001FMSD) SampType:	MSD		TestCode: IC300_V	N Units	: mg/L	Prep Da	ite:		RunNo:	58738	
	Batch ID:	R58738		TestNo: E300.0			Analysis Da	ate: 6/28/2	007	SeqNo:	1609622	
Analyte		Result	Qual	MDL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit
Chloride		28		0.026	10	18	100	80	120	29	0.673	20
Fluoride		1.6		0.0067	1.0	0.61	98.9	80	120	1.6	0.403	20
Nitrogen, Nitrate-Nitrite		2.1		0.014	2.0	0.15	97.9	80	120	2.1	0.563	20

Data Qualifier Code Key:

Analyte detected below quantitation limits I

RPD outside accepted recovery limits

R U Not Detected Above the MDL Q Holding times for preparation or analysis exceeded

S Spike Recovery outside accepted recovery limits

CLIENT:Jupiter Environmental Laboratories, Inc.Work Order:F07061267Project:ERIN

ANALYTICAL QC SUMMARY REPORT

TestCode: IC300_W

Sample ID F07061231-	-003AMSD SampType: MSD		TestCode: IC300_\	V Units	: mg/L	Prep Da	ate:		RunNo:	58738	
	Batch ID: R58738		TestNo: E300.0		-	Analysis D	ate: 6/29/2	007	SeqNo:	1609651	
Analyte	Result	Qual	MDL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit
Chloride	12		0.026	10	2.2	96.3	80	120	12	1.72	20
Fluoride	1.0		0.0067	1.0	0.043	100	80	120	1.1	1.63	20
Nitrogen, Nitrate-Nitrite	2.1		0.014	2.0	0	103	80	120	2.1	1.73	20
Sulfate	12		0.062	10	2.4	99.1	80	120	13	1.78	20
Sample ID F07061309-	001BMSD SampType: MSD		TestCode: IC300_V	V Units	: mg/L	Prep Da	ate:		RunNo:	58738	
Sample ID F07061309-	001BMSD SampType: MSD Batch ID: R58738		TestCode: IC300_V TestNo: E300.0	V Units	: mg/L	-	ate: ate: 6/29/2	:007		58738 1609663	
Sample ID F07061309- Analyte		Qual	-		: mg/L SPK Ref Val	-	ate: 6/29/2	007 HighLimit			RPDLimit
	Batch ID: R58738		 TestNo: E300.0		-	Analysis D	ate: 6/29/2		SeqNo:	1609663	
Analyte	Batch ID: R58738 Result		 TestNo: E300.0 MDL	SPK value	SPK Ref Val	Analysis D %REC	ate: 6/29/2 LowLimit	HighLimit	SeqNo: RPD Ref Val	1609663 %RPD	20
Analyte Chloride	Batch ID: R58738 Result			SPK value	SPK Ref Val	Analysis D %REC 80.0	ate: 6/29/2 LowLimit 80	HighLimit 120	SeqNo: RPD Ref Val 81	1609663 %RPD 0.160	RPDLimit 20 20 20

Data Qualifier Code Key:

R

U

I Analyte detected below quantitation limits

RPD outside accepted recovery limits Not Detected Above the MDL Q Holding times for preparation or analysis exceeded

S Spike Recovery outside accepted recovery limits

CLIENT: Jupiter Environmental Laboratories, Inc. Work Order: F07061267 **Project:** ERIN

ANALYTICAL QC SUMMARY REPORT

TestCode: ICP-200.7_DW

Sample ID	MBLANK	SampType: ABLK		TestCode: ICP-20	0.7_D Units	:: µg/L	Prep D	ate:		RunNo:	58693	
Client ID:	MBLANK	Batch ID: R58693		TestNo: E200.7			Analysis D	ate: 7/2/20	07	SeqNo:	1610121	
Analyte		Result	Qual	MDL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit
Barium		5.0	U	5.0								
Beryllium		0.50	U	0.50								
Cadmium		0.50	U	0.50								
Calcium		250	U	250								
Chromium		2.5	U	2.5								
Iron		20	U	20								
Magnesium		250	U	250								
Manganese		2.5	U	2.5								
Nickel		2.5	U	2.5								
Potassium		250	U	250								
Silver		2.5	U	2.5								
Sodium		500	U	500								
Strontium		5.0	U	5.0								
Zinc		10	U	10								
Sample ID	QCS	SampType: QCS		TestCode: ICP-20	D.7_D Units	ε μg/L	Prep D	ate:		RunNo:	58693	
Client ID:	QCS	Batch ID: R58693		TestNo: E200.7			Analysis D	ate: 7/2/20	07	SeqNo:	1610125	
Analyte		Result	Qual	MDL.	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit
Barium		500		5.0	500	0	101	90	110			
Beryllium		51		0.50	50	0	102	90	110			
Cadmium		51		0.50	50	0	102	90	110			
Calcium		26000		250	25000	0	104	90	110			
Chromium		510		2.5	500	0	102	90	110			
Iron		5100		20	5000	0	102	90	110			
Magnesium		25000		250	25000	0	101	90	110			
Manganese		500		2.5	500	0	101	90	110			

- Data Analyte detected below quantitation limits I
- Qualifier Code Key:

Q Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits S Spike Recovery outside accepted recovery limits

U Not Detected Above the MDL

CLIENT: Jupiter Environmental Laboratories, Inc. Work Order:

F07061267 ERIN

Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: ICP-200.7_DW

RunNo: 58693
Section 4610425
SeqNo: 1610125
Ref Val %RPD RPDLimit
RunNo: 58693
SeqNo: 1610142
Ref Val %RPD RPDLimit

Data Analyte detected below quantitation limits Ι

Qualifier Code Key: RPD outside accepted recovery limits

R U

Not Detected Above the MDL

Holding times for preparation or analysis exceeded Q

Spike Recovery outside accepted recovery limits S

CLIENT: Jupiter Environmental Laboratories, Inc. Work Order: F07061267 **Project:** ERIN

ANALYTICAL QC SUMMARY REPORT

TestCode: ICP-200.7_DW

Sample ID	F07061219	-001LMSD SampType:	MSD		TestCode: ICP-20	0.7_D Unit	s: µg/L	Prep D	ate:		RunNo:	58693	
		Batch ID:	R58693A	4	TestNo: E200.7			Analysis D	ate: 7/2/20	007	SeqNo:	1610143	
Analyte			Result	Qual	MDL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimi
Barium			290		5.0	250	34	101	70	130	5.0 U	0	20
Beryllium			25		0.50	25	0	101	70	130	25	0	20
Cadmium			26		0.50	25	0	104	70	130	26	1.16	20
Calcium			75000		250	12000	62000	105	70	130	75000	0.665	20
Chromium			260		2.5	250	1.1	103	70	130	260	0.775	20
Iron			2600		20	2500	0	102	70	130	2600	0.391	20
Magnesium			39000		250	12000	26000	103	70	130	38000	0.780	20
Manganese			260		2.5	250	0	102	70	130	250	0.393	20
Nickel			260		2.5	250	0	102	70	130	250	1.18	20
Potassium			17000		250	12000	2300	117	70	130	250 U	0.590	20
Silver			26		2.5	25	0	104	70	130	26	1.54	20
Sodium			15000		500	12000	2600	102	70	130	500 U	0	20
Strontium			340		5.0	250	88	101	70	130	5.0 U	0	(
Zinc			1300		10	1200	6.6	103	70	130	1300	0	20
Sample ID	MBLANK	SampType:	ABLK		TestCode: ICP-20	0.7_D Unit	s: µg/L	Prep D	ate:		RunNo:	58841	
Client ID:	MBLANK	Batch ID:	R58841		TestNo: E200.7			Analysis D	ate: 7/5/20	07	SeqNo:	1614416	
Analyte			Result	Qual	MDL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit
Barium			5.0	U	5.0								
Beryllium			0.50	U	0.50								
Cadmium			0.50	U	0.50								
Calcium			250	U	250								
Chromium			2.5	U	2.5								
Iron			20	υ	20								
Magnesium			250	υ	250								
Manganese			2.5	U	2.5								
Data	I An	alyte detected below qu	antitation	limits	Q	Holding tin	nes for preparation	on or analysis e	xceeded				
Qualifier Code Key:		D outside accepted reco t Detected Above the M	•	s	S	+	very outside acc	•					

CLIENT: Jupiter Environmental Laboratories, Inc. Work Order: F07061267 ERIN **Project:**

ANALYTICAL QC SUMMARY REPORT

TestCode: ICP-200.7_DW

Sample ID	MBLANK	SampType: ABLK		TestCode: ICP-200	.7_D Unite	s: µg/L	Prep Da	ate:		RunNo:	58841	
Client ID:	MBLANK	Batch ID: R58841		TestNo: E200.7			Analysis D	ate: 7/5/20	07	SeqNo:	1614416	
Analyte		Result	Qual	MDL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit
Nickel		2.5	U	2.5								
Potassium		250	U	250								
Silver		2.5	U	2.5								
Sodium		500	U	500								
Strontium		5.0	U	5.0								
Zinc		10	U	10								
Sample ID	QCS	SampType: QCS		TestCode: ICP-200	.7_D Units	s: µg/L	Prep Da	ate:		RunNo:	58841	
Client ID:	QCS	Batch ID: R58841		TestNo: E200.7			Analysis D	ate: 7/5/20	07	SeqNo:	1614420	
Analyte		Result	Qual	MDL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit
Barium		500		5.0	500	0	99.2	90	110			
Beryllium		50		0.50	50	0	99.0	90	110			
Cadmium		50		0.50	50	0	99.8	90	110			
Calcium		25000		250	25000	0	10 1	90	110			
Chromium		500		2.5	500	0	100	90	110			
Iron		5000		20	5000	0	99.0	90	110			
Magnesium		25000		250	25000	0	98.8	90	110			
Manganese		500		2.5	500	0	99.0	90	110			
Nickel		500		2.5	500	0	100	90	110			
Potassium		25000		250	25000	0	102	90	110			
Silver		49		2.5	50	0	98.8	90	110			
Sodium		25000		500	25000	0	99.6	90	110			
Strontium		500		5.0	500	0	100	90	110			
Zinc		2400		10	2500	0	98.0	90	110			

Analyte detected below quantitation limits Data Ι

Qualifier Code Key:

R RPD outside accepted recovery limits Q Holding times for preparation or analysis exceeded Spike Recovery outside accepted recovery limits S

U Not Detected Above the MDL

Page 20 of 35

CLIENT: Jupiter Environmental Laboratories, Inc. Work Order: F07061267 **Project:** ERIN

ANALYTICAL QC SUMMARY REPORT

TestCode: ICP-200.7_DW

Sample ID	F07070114-001AMS	SampType:	MS		TestCode: ICP-20	0.7_D Units	:: µg/L	Prep Da	ate:		RunNo:	58841	
		Batch ID:	R58841A		TestNo: E200.7			Analysis D	ate: 7/5/20	07	SeqNo:	1614428	
Analyte			Result	Qual	MDL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit
Barium			270		5.0	250	14	101	70	130			
Beryllium			25		0.50	25	0	99.6	70	130			
Cadmium			26		0.50	25	0	103	70	130			
Calcium			130000		250	12000	120000	96.0	70	130			
Chromium			260		2.5	250	0	102	70	130			
Iron			2500		20	2500	0	98.4	70	130			
Magnesium			17000		250	12000	4100	99.8	70	130			
Manganese	•		260		2.5	250	0	102	70	130			
Nickel			260		2.5	250	0	102	70	130			
Potassium			22000		250	12000	8900	107	70	130			
Silver			27		2.5	25	0	109	70	130			
Sodium			52000		500	12000	39000	101	70	130			
Strontium			970		5.0	250	740	93.6	70	130			
Zinc			1300		10	1200	0	104	70	130			
Sample ID	F07070114-001AMSC	SampType:	MSD		TestCode: ICP-20	0.7_D Unite	: µg/L	Prep Da	ate:		RunNo:	58841	
		Batch ID:	R58841A		TestNo: E200.7			Analysis D	ate: 7/5/20	07	SeqNo:	1614430	
Analyte			Result	Qual	MDL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit
			Neguit	QUE				/01/120		-			
Barium			270	QUUI	5.0	250	14	102	70	130	5.0 U	0.746	20
-				Quai						_	5.0 U 25	0.746 0	20 20
Barium			270	QUUI	5.0	250	14	102	70	130			
Barium Beryllium		,	270 25	QUUI	5.0 0.50	250 25	14 0	102 99.6	70 70	130 130	25	0	20
Barium Beryllium Cadmium			270 25 26	QUUI	5.0 0.50 0.50	250 25 25	14 0 0	102 99.6 102	70 70 70	130 130 130	25 26	0 1.17	20 20
Barium Beryllium Cadmium Calcium			270 25 26 130000	QUUI	5.0 0.50 0.50 250	250 25 25 12000	14 0 0 120000	102 99.6 102 96.0	70 70 70 70	130 130 130 130	25 26 250 U	0 1.17 0	20 20 20
Barium Beryllium Cadmium Calcium Chromium			270 25 26 130000 260		5.0 0.50 0.50 250 2.5	250 25 25 12000 250	14 0 0 120000 0	102 99.6 102 96.0 102	70 70 70 70 70	130 130 130 130 130 130	25 26 250 U 260	0 1.17 0 0	20 20 20 20

Data Analyte detected below quantitation limits I Qualifier

Code Key:

Q Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits S Spike Recovery outside accepted recovery limits

U Not Detected Above the MDL

Page 21 of 35

CLIENT:Jupiter Environmental Laboratories, Inc.Work Order:F07061267Project:ERIN

ANALYTICAL QC SUMMARY REPORT

TestCode: ICP-200.7_DW

Sample ID	F07070114-001AMSD SampType:	MSD		TestCode: ICP-20	0.7 D Units	: µg/L	Prep Da	ate:		RunNo:	58841	
·	Batch ID:	R58841A		TestNo: E200.7	_		•	ate: 7/5/20	07		1614430	
Analyte		Result	Qual	MDL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit
Nickel		260		2.5	250	0	103	70	130	260	0.390	20
Potassium		22000		250	12000	8900	107	70	130	250 U	0.449	20
Silver		27		2.5	25	0	106	70	130	27	2.23	20
Sodium		52000		500	12000	39000	104	70	130	52000	0.768	20
Strontium		980		5.0	250	740	96.0	70	130	970	0.615	0
Zinc		1300		10	1200	0	105	70	130	1300	0.766	20

Data Qualifier Code Key: I Analyte detected below quantitation limits

R RPD outside accepted recovery limits

U Not Detected Above the MDL

Q Holding times for preparation or analysis exceeded

S Spike Recovery outside accepted recovery limits

CLIENT: Jupiter Environmental Laboratories, Inc. Work Order: F07061267 **Project:** ERIN

ANALYTICAL QC SUMMARY REPORT

TestCode: ICP-200.8_DW

Sample ID	QCS S-2202	SampType:	QCS		TestCode:	ICP-200	.8_D Unit	s: µg/L	Prep D	ate:		RunNo:	58769	
Client ID:	QCS S-2202	Batch ID:	R58769		TestNo:	E200.8			Analysis D)ate: 7/3/20	007	SeqNo:	1611609	
Analyte			Result	Quai		MDL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLin
Aluminum			490			5.0	500	0	98.5	90	110			
Antimony			75			0.50	75	0	101	90	110			
Arsenic			47			0.50	50	0	94.0	90	110			
Соррег			24			0.72	25	0	96.4	90	110			
_ead			49			0.50	50	0	98.7	90	110			
Selenium			72			0.50	75	0	95.8	90	110			
Thallium			80			0.50	75	0	106	90	110			
Sample ID	ICB S-2233	SampType:	ABLK		TestCode:	ICP-200	.8_D Unit	s: μg/L	Prep D	ate:		RunNo:	58769	
Client ID:	ICB S-2233	Batch ID:	R58769		TestNo:	E200.8			Analysis D	Date: 7/3/20	007	SeqNo:	1611614	
Analyte			Result	Qual		MDL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLir
Aluminum			5.0	U		5.0								
Antimony			0.50	U		0.50								
Arsenic			0.50	U		0.50								
Copper			0.72	U		0.72								
Lead			0.50	U		0.50								
Selenium			0.50	U		0.50								
Thallium		w	0.50	U		0.50								
Sample ID	F07061232-001JMS	SampType:	MS		TestCode:	ICP-200	.8_D Units	s: μg/L	Prep D	ate:		RunNo:	58769	
		Batch ID:	R58769-E	3	TestNo:	E200.8			Analysis D)ate: 7/3/20	07	SeqNo:	1611630	
Analyte			Result	Qual		MDL.	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLin
Antimony			41			0.50	50	0	82.4	75	125			
_ead			51			0.50	50	2.1	97.0	75	125			
Selenium			53			0.50	50	0.93	104	75	125			
Data	I Analyte detec	cted below qu	antitation l	imits		Q	Holding tin	es for preparation	on or analysis e	xceeded				
Qualifier Code Key:	R RPD outside U Not Detected	-	•			S	Spike Reco	very outside acce	epted recovery	limits				

Page 23 of 35

CLIENT:Jupiter Environmental Laboratories, Inc.Work Order:F07061267Project:ERIN

ANALYTICAL QC SUMMARY REPORT

TestCode: ICP-200.8_DW

Sample ID	F07061232-001JMS	SampType:	MS		TestCode:	ICP-200	.8_D (Jnits:	: µg/L	Prep D	ate:		RunNo:	58769	
		Batch ID:	R58769-E	3	TestNo:	E200.8				Analysis D	ate: 7/3/20	007	SeqNo:	1611630	
Analyte			Result	Qual		MDL	SPK va	lue	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit
Thallium			52			0.50		50	0	105	75	125			
Sample ID	F07061232-001JMSD	SampType:	MSD		TestCode:	ICP-200	.8_D l	Jnits:		Prep D	ate:		RunNo:	58769	
		Batch ID:	R58769-E	3	TestNo:	E200.8				Analysis D	ate: 7/3/2 0	007	SeqNo:	1611631	
Analyte			Result	Qual		MDL	SPK va	lue	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit
Antimony			44			0.50		50	0	87.3	75	125	41	5.76	20
Lead			53			0.50		50	2.1	101	75	125	51	4.22	20
Selenium			53			0.50		50	0.93	103	75	125	53	0.663	20
Thallium			55			0.50		50	0	109	75	125	52	4.51	20
Sample ID	QCS S-2202	SampType:	QCS		TestCode:	ICP-200	.8_D l	Jnits:	µg/L	Prep Da	ate:		RunNo:	58818	
Client ID:	QCS S-2202	Batch ID:	R58818		TestNo:	E200.8				Analysis D	ate: 7/5/20	007	SeqNo:	1612858	
Analyte			Result	Qual		MDL	SPK va	lue	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit
Aluminum			520			5.0	Ę	500	0	105	90	110			
Antimony			74			0.50		75	0	99.2	90	110			
Arsenic			48			0.50		50	0	96.6	90	110			
Copper			25			0.72		25	0	100	90	110			
Lead			50			0.50		50	0	99.4	90	110			
Selenium			72			0.50		75	0	95.9	90	110			
Thallium			78			0.50		75	0	104	90	110			

Data Qualifier Code Key: I Analyte detected below quantitation limits

Q Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

U Not Detected Above the MDL

Page 24 of 35

CLIENT: Jupiter Environmental Laboratories, Inc. Work Order: F07061267 **Project:** ERIN

ANALYTICAL QC SUMMARY REPORT

TestCode: ICP-200.8_DW

Sample ID	ICB S-2233	SampType:	ABLK		TestCode: ICP-20	0.8_d Unite	s: µg/L	Prep D	ate:		RunNo:	58818	
Client ID:	ICB S-2233	Batch ID:	R58818		TestNo: E200.8	6		Analysis D)ate: 7/5/20	07	SeqNo:	1612864	
Analyte			Result	Qual	MDL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLim
Aluminum			5.0	U	5.0								
Antimony			0.50	U	0.50								
Arsenic			0.50	U	0.50								
Copper			0.72	U	0.72								
Lead			0.50	U	0.50								
Selenium			0.50	υ	0.50								
Thallium			0.50	U	0.50								
Sample ID	F07061202-001LMS	SampType:	MS		TestCode: ICP-20	0.8_D Units	s: µg/L	Prep D	ate:		RunNo:	58818	
		Batch ID:	R58818-4	4	TestNo: E200.8	-			ate: 7/5/20	07	SeqNo:	1612867	
Analyte			Result	Qual	MDL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLim
Aluminum			430		5.0	500	0	86.0	75	125			
Antimony			41		0.50	50	0	81.3	75	125			
Arsenic			51		0.50	50	0.42	101	75	125			
Copper			45		0.72	50	0	89.1	75	125			
Lead			51		0.50	50	0	101	75	125			
Selenium			53		0.50	50	0	106	75	125			
Thallium			53		0.50	50	0	105	75	125			
Sample ID	F07061202-001LMS	D SampType:	MSD		TestCode: ICP-20	0.8_D Unite	s: µg/L	Prep D	ate:		RunNo:	58818	
		Batch ID:	R58818-A	۱	TestNo: E200.8	ł		Analysis D	ate: 7/5/20	07	SeqNo:	1612868	
Analyte			Result	Qual	MDL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLim
Aluminum			430		5.0	500	0	86.6	75	125	5.0 U	0.635	
Antimony			42		0.50	50	0	83.0	75	125	41	2.06	2
Arsenic			50		0.50	50	0.42	99.9	75	125	51	1.46	:
Data	I Analyte detec	cted below qu	antitation l	imits	Q	Holding tim	nes for preparatio	n or analysis e	xceeded		·······		
Qualifier	R RPD outside	accepted reco	very limits		S	Spike Reco	very outside acce	pted recovery	limits				

RPD outside accepted recovery limits R Code Key:

U Not Detected Above the MDL

Date: 10-Jul-07

CLIENT:	Jupiter Environmental Laboratories, Inc.
Work Order:	F07061267
Project:	ERIN

ANALYTICAL QC SUMMARY REPORT

TestCode: ICP-200.8_DW

Sample ID	F07061202-001LMSD SampType:	MSD		TestCode:	ICP-20	0.8_D Units	:: μg/L	Prep Da	ate:		RunNo:	58818	
	Batch ID:	R58818-	A	TestNo:	E200.8			Analysis D	ate: 7/5/20	07	SeqNo:	1612868	
Analyte		Result	Qual		MDL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit
Copper		45			0.72	50	0	89.0	75	125	45	0.0584	20
Lead		50			0.50	50	0	101	75	125	51	0.249	20
Selenium		50			0.50	50	0	100	75	125	53	5.01	20
Thallium		53			0.50	50	0	105	75	125	53	0.0874	20

Data Qualifier Code Key:

Analyte detected below quantitation limits I

R RPD outside accepted recovery limits U

Not Detected Above the MDL

Q Holding times for preparation or analysis exceeded

S Spike Recovery outside accepted recovery limits

CLIENT:	Jupiter Environmental Laboratories, Inc.
Work Order:	F07061267
Project:	ERIN

ANALYTICAL QC SUMMARY REPORT

TestCode: MBAS_DW

Sample ID	MB-45329	SampType: MBL	<	TestCode: MBAS_	DW Units:	mg/L	Prep Date	e: 6/29/2007	RunNo:	58723	
Client ID:	MB-45329	Batch ID: 4532)	TestNo: SM5540	DC E425.1	I	Analysis Date	e: 6/29/2007	SeqNo:	1608931	
Analyte		Resi	ilt Qual	MDL	SPK value	SPK Ref Val	%REC I	LowLimit HighLimit	RPD Ref Val	%RPD	RPDLimit
MBAS		0.04	3 U	0.043							
Sample ID	LCS-45329	SampType: LCS		TestCode: MBAS_	DW Units:	mg/L	Prep Date	e: 6/29/2007	RunNo:	58723	
Client ID:	LCS-45329	Batch ID: 4532)	TestNo: SM554	DC E425.1	1	Analysis Date	e: 6/29/2007	SeqNo:	1608932	
Analyte		Resi	ilt Qual	MDL	SPK value	SPK Ref Val	%REC I	LowLimit HighLimit	RPD Ref Val	%RPD	RPDLimit
MBAS		0,5	8	0.043	0.60	0	96.7	90 110			
Sample ID	F07061267-001AMS										
	10/00/20/-00 AMS	SampType: MS		TestCode: MBAS_	DW Units:	mg/L	Prep Date	e: 6/29/2007	RunNo:	58723	
Client ID:	718760001 MS	Batch ID: 4532)	TestCode: MBAS_ TestNo: SM5540	·	•	•	e: 6/29/2007 e: 6/29/2007		58723 1608935	
Client ID: Analyte			-	_	DC E425.1	•	Analysis Date		SeqNo:		RPDLimit
		Batch ID: 4532	lt Qual		DC E425.1	1	Analysis Date	e: 6/29/2007	SeqNo: RPD Ref Val	1608935	RPDLimit
Analyte	718760001 MS	Batch ID: 4532 Resi	lt Qual	TestNo: SM554(MDL	DC E425.1 SPK value 0.40	SPK Ref Val	Analysis Date	e: 6/29/2007 LowLimit HighLimit 80 120	SeqNo: RPD Ref Val	1608935 %RPD	RPDLimit
Analyte MBAS	718760001 MS	Batch ID: 4532 Resi	ılt Qual 6	TestNo: SM554 0 MDL 0.043	DC E425.1 SPK value 0.40 DW Units:	SPK Ref Val 0.060 mg/L	Analysis Date %REC I 100 Prep Date	e: 6/29/2007 LowLimit HighLimit 80 120	SeqNo: RPD Ref Val RunNo:	1608935 %RPD	RPDLimit
Analyte MBAS Sample ID	718760001 MS F07061267-001ADUP	Batch ID: 4532 Resi 0.4 SampType: DUP	lit Qual 6	TestNo: SM5540 MDL 0.043 TestCode: MBAS_	DC E425.1 SPK value 0.40 DW Units: DC E425.1	SPK Ref Val 0.060 mg/L	Analysis Date %REC I 100 Prep Date Analysis Date	e: 6/29/2007 LowLimit HighLimit 80 120 e: 6/29/2007	SeqNo: RPD Ref Val RunNo: SeqNo:	1608935 %RPD 58723	RPDLimit

Data Qualifier Code Key: I Analyte detected below quantitation limits

R RPD outside accepted recovery limits U

Not Detected Above the MDL

Q Holding times for preparation or analysis exceeded

S Spike Recovery outside accepted recovery limits

_

CLIENT: Jupiter Environmental Laboratories, Inc. Work Order: F07061267 ERIN **Project:**

ANALYTICAL QC SUMMARY REPORT

TestCode: N-NH3_W

Sample ID	QCS	SampType:	QCS		TestCode: N-N	H3_W	Units	: mg/L	Prep D	ate:		RunNo:	58734	
Client ID:	QCS	Batch ID:	R58734		TestNo: E35	0.1			Analysis D)ate: 7/2/2	007	SeqNo:	1609942	
Analyte			Result	Qual	MDI	L	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit
Nitrogen, Ar	mmonia (As N)		11		0.006	3	11	0	100	90	110			
Sample ID	ССВ	SampType:	ABLK		TestCode: N-N	H3_W	Units	: mg/L	Prep D	ate:		RunNo:	58734	
Client ID:	ССВ	Batch ID:	R58734		TestNo: E35	0.1			Analysis D)ate: 7/2/2	007	SeqNo:	1609943	
Analyte			Result	Qual	MDL	_ :	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit
Nitrogen, Ar	mmonia (As N)		0.0063	U	0.006:	3								
Sample ID	F07060619-011AMS	SampType:	MS		TestCode: N-N	H3_W	Units	: mg/L	Prep D	ate:		RunNo:	58734	
		Batch ID:	R58734		TestNo: E35	0.1			Analysis D)ate: 7/2/2	007	SeqNo:	1609946	
Analyte			Result	Qual	MDL	- 8	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit
Nitrogen, Ar	mmonia (As N)		10		0.006:	3	1.0	9.2	94.6	90	110			
Sample ID	F07060975-029BMS	SampType:	MS		TestCode: N-N	H3_W	Units	: mg/L	Prep D	ate:		RunNo:	58734	
		Batch ID:	R58734		TestNo: E35	0.1			Analysis D)ate: 7/2/2	007	SeqNo:	1609974	
Analyte			Result	Qual	MDL	- 8	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit
Nitrogen, Ar	nmonia (As N)		1.1		0.006:	3	1.0	0.15	93.9	90	110			
Sample ID	F07060975-050BMS	SampType:	MS		TestCode: N-N	H3_W	Units	: mg/L	Prep D	ate:		RunNo:	58734	
		Batch ID:	R58734		TestNo: E35	0.1			Analysis D)ate: 7/2/2	007	SeqNo:	1610089	
Analyte			Result	Qual	MDL	- 8	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit
Nitrogen, A	Ammonia (As N)		21	s	0.03	1	5.0	15	128	90	110			

Data I

Qualifier Code Key: Analyte detected below quantitation limits

R RPD outside accepted recovery limits U

Q Holding times for preparation or analysis exceeded S

Not Detected Above the MDL

Spike Recovery outside accepted recovery limits

CLIENT: Jupiter Environmental Laboratories, Inc. Work Order: F07061267 **Project:** ERIN

ANALYTICAL QC SUMMARY REPORT

TestCode: N-NH3_W

Sample ID F07060619-011ADUF	SampType: DUP	TestCode: N-NH3_W	Units: mg/L	Prep Date:	RunNo:	58734	
	Batch ID: R58734	TestNo: E350.1		Analysis Date: 7/2/2007	SeqNo:	1609945	
Analyte	Result	Qual MDL SF	PK value SPK Ref Val	%REC LowLimit HighLimit	RPD Ref Val	%RPD	RPDLimit
Nitrogen, Ammonia (As N)	9.1	0.0063			9.2	0.219	20
Sample ID F07060975-029BDUF	SampType: DUP Batch ID: R58734	TestCode: N-NH3_W TestNo: E350.1	Units: mg/L	Prep Date: Analysis Date: 7/2/2007	RunNo: SeqNo:	58734 1609971	
Analyte	Result	Qual MDL SF	PK value SPK Ref Val	%REC LowLimit HighLimit	RPD Ref Val	%RPD	RPDLimit
Nitrogen, Ammonia (As N)	0.15	0.0063			0.15	2.68	20
Sample ID F07060975-050BDUP	SampType: DUP Batch ID: R58734	TestCode: N-NH3_W TestNo: E350.1	Units: mg/L	Prep Date: Analysis Date: 7/2/2007	RunNo: SeqNo:	58734 1610038	
Analyte	Result	Qual MDL SF	PK value SPK Ref Val	%REC LowLimit HighLimit	RPD Ref Val	%RPD	RPDLimit
Nitrogen, Ammonia (As N)	15	0.0063			15	0.324	20

Data Qualifier Code Key:

Analyte detected below quantitation limits I

RPD outside accepted recovery limits R U

Not Detected Above the MDL

Q Holding times for preparation or analysis exceeded

Spike Recovery outside accepted recovery limits S

CLIENT: Work Orde Project:	er:	Jupiter Envir F07061267 ERIN	ronmental L	aborator	ies, Inc				ANAI		-	SUMMA e: ODOR_		PORT
Sample ID Client ID:	MB-R5 MB-R5		SampType: Batch ID:			TestCode: ODC TestNo: SM2	-	inits: t.o.n.	Prep Da Analysis Da		2007	RunNo: SeqNo:	58721 1608863	
Analyte				Result	Qual	MDL	. SPK val	ue SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit
Odor				1.0	U	1.0)	· <u>····································</u>	· ·					
Sample ID	F07061	269-001LDUP	SampType: Batch ID:			TestCode: ODC TestNo: SM2	-	nits: t.o.n.	Prep Da Analysis Da		2007	RunNo: SeqNo:	58721 1608866	
Analyte				Result	Qual	MDL	. SPK val	ue SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit
Odor				2.0	Q	1.()					2.0	0	20

Data Qualifier Code Key: I Analyte detected below quantitation limits

R RPD outside accepted recovery limits υ

Not Detected Above the MDL

Q Holding times for preparation or analysis exceeded

S Spike Recovery outside accepted recovery limits

CLIENT: Work Order:	Jupiter Environmental Laboratories, Inc. F07061267	ANALYTICAL QC SUMMARY REPORT
Project:	ERIN	TestCode: PH4500HB_DW

Sample ID	F07061267-001ADUP	SampType: I	DUP		TestCode: PH4500	HB_D Unit	s: pH units	Prep Da	ate:		RunNo:	58717	
Client ID:	718760001 DUP	Batch ID: I	R58717		TestNo: SM450	OHB		Analysis D	ate: 6/29/2	2007	SeqNo:	1608808	
Analyte			Result	Qual	MDL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit
pН			7.39	Q	0.100						7.29	1.36	0

Data Qualifier Code Key:

I Analyte detected below quantitation limits

RPD outside accepted recovery limits R U

Not Detected Above the MDL

Q Holding times for preparation or analysis exceeded

S Spike Recovery outside accepted recovery limits

_

CLIENT: Jupiter Environmental Laboratories, Inc. Work Order: F07061267 **Project:** ERIN

ANALYTICAL QC SUMMARY REPORT

TestCode: S-376.1

Sulfide			3.6			0.77						3.6	0	20
Analyte			Result	Qual		MDL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit
		Batch ID:	R58759		TestNo:	E376.1			Analysis D	ate: 7/2/20	07	SeqNo:	1610325	
Sample ID	F07061092-003ADUP	SampType:	DUP		TestCode:	S-376.1	Units	: mg/L	Prep Da	ate:		RunNo:	58759	
Sulfide			12			0.77	9.1	3.6	95.4	80	120			
Analyte			Result	Qual		MDL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit
		Batch ID:	R58759		TestNo:	E376.1			Analysis D	ate: 7/2/20	07	SeqNo:	1610326	
Sample ID	F07061092-003AMS	SampType:	MS		TestCode:	S-376.1	Units	: mg/L	Prep Da	ate:	••••••••••••••••••••••••••••••••••••••	RunNo:	58759	
Sulfide			5.2			0.46	5.4	0	95.2	80	120			
Analyte			Result	Qual		MDL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit
Client ID:	LCS-R58759	Batch ID:	R58759		TestNo:	E376.1			Analysis D	ate: 7/2/20	07	SeqNo:	1610323	
Sample ID	LCS-R58759	SampType:	LCS		TestCode:	S-376.1	Units	: mg/L	Prep Da	ate:		RunNo:	58759	
Sulfide			0.46	U		0.46								
Analyte			Result	Qual		MDL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit
Client ID:	MB-R58759	Batch ID:	R58759		TestNo:	E376.1			Analysis D	ate: 7/2/20	007	SeqNo:	1610322	
Sample ID	MB-R58759	SampType:	MBLK		TestCode:	S-376.1	Units	: mg/L	Prep Da	ate:		RunNo:	58759	
Sulfide			2.7			0.46	2.7	0	98.5	80	120			
Analyte			Result	Qual		MDL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit
Client ID:	LCS-LOW	Batch ID:	R58759		TestNo:	E376.1			Analysis D	ate: 7/2/20	07	SeqNo:	1610337	
•	LCS-LOW	SampType:	LCS-LOV	N	TestCode:	S-376.1	Units	: mg/L	Prep D	ate:		RunNo:	58759	

Analyte detected below quantitation limits Data I

Qualifier Code Key:

RPD outside accepted recovery limits R

Q Holding times for preparation or analysis exceeded

Spike Recovery outside accepted recovery limits S

U Not Detected Above the MDL

Page 32 of 35

CLIENT: Work Order:	Jupiter Environmental Laboratories, Inc. F07061267	ANALYTICAL QC SUMMARY REPORT
Project:	ERIN	TestCode: S-376.1-H2S

Sample ID	MB-R58759	SampType:	MBLK		TestCode: S-376.	1 -H2S L	Inits: mg/L	Prep D	ate:		RunNo:	58759	
Client ID:	MB-R58759	Batch ID:	R58759		TestNo: E376.1			Analysis D	ate: 7/2/20	007	SeqNo:	1618010	
Analyte			Result	Qual	MDL	SPK val	ue SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit
Sulfide			0.46	U	0.46								

Data Qualifier Code Key: I Analyte detected below quantitation limits

R RPD outside accepted recovery limits

U Not Detected Above the MDL

Q Holding times for preparation or analysis exceeded

S Spike Recovery outside accepted recovery limits

CLIENT: Work Ord Project:	-	ronmental Laborator	ries, Ind	2.			ANAL		-	SUMMA		ORT
Sample ID	MB-R58876	SampType: MBLK		TestCode: SILICA	-370.1 Units	: mg/L	Prep Da	te:		RunNo:	58876	
Client ID:	MB-R58876	Batch ID: R58876		TestNo: E370.1			Analysis Da	ate: 7/6/20	07	SeqNo:	1615519	:
Analyte		Result	Qual	MDL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit
Silica, Disso	olved (as SiO2)	0.072	U	0.072								
Sample ID	LCS-R58876	SampType: LCS		TestCode: SILICA	-370.1 Units	: mg/L	Prep Da	te:		RunNo:	58876	
Client ID:	LCS-R58876	Batch ID: R58876		TestNo: E370.1			Analysis Da	ate: 7/6/20	07	SeqNo:	1615520	
Anaiyte		Result	Qual	MDL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit
Silica, Disso	olved (as SiO2)	11		0.072	10	0	105	90	110			
Sample ID	F07061269-001KMS	SampType: MS		TestCode: SILICA	-370.1 Units	: mg/L	Prep Da	te:		RunNo:	58876	
		Batch ID: R58876		TestNo: E370.1			Analysis Da	ate: 7/6/20	07	SeqNo:	1615524	
Analyte		Result	Qual	MDL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit
Silica, Diss	olved (as SiO2)	45	S	0.14	8.0	40	69.0	80	120			
Sample ID	F07061269-001KDUP	SampType: DUP		TestCode: SILICA	-370.1 Units	: mg/L	Prep Da	te:		RunNo:	58876	
		Batch ID: R58876		TestNo: E370.1			Analysis Da	ate: 7/6/20	07	SeqNo:	1615523	
Analyte		Result	Qual	MDL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit
Silica, Disso	olved (as SiO2)	39	x	0.14						40	1.78	20

Data Qualifier Code Key: I Analyte detected below quantitation limits

R RPD outside accepted recovery limitsU Not Detected Above the MDL

Q Holding times for preparation or analysis exceeded

S Spike Recovery outside accepted recovery limits

CLIENT: Work Ord Project:	ler: F0	piter Environmen 7061267 RIN	tal Laborator	ies, Inc.						ANAI	.YT		-	SUMMA e: SOLIDS		ORT
Sample ID	MB-45347	Samp	Type: MBLK	٦	TestCode: SOLID:	S-TD	Units	mg/L		Prep Da	ate:	7/3/200	7	RunNo:	58761	
Client ID:	MB-45347	Batc	n ID: 45347		TestNo: E160.1		E160. ⁻	I		Analysis Da	ate:	7/3/200	7	SeqNo:	1614991	
Analyte			Result	Qual	MDL	SPK	value	SPK Ref Va	al	%REC	Low	/Limit	HighLimit	RPD Ref Val	%RPD	RPDLimit
Solids, Total	I Dissolved		3.7	U	3.7											
Sample ID	LCS-4534	7 Samp	Type: LCS	٦	TestCode: SOLID	S-TD	Units	mg/L		Prep Da	ate:	7/3/200	7	RunNo:	58761	
Client ID:	LCS-4534	7 Batc	n ID: 45347		TestNo: E160.1		E160. ⁻	I		Analysis Da	ate:	7/3/200	7	SeqNo:	1614993	
Analyte			Result	Qual	MDL	SPK	value	SPK Ref Va	al	%REC	Low	/Limit	HighLimit	RPD Ref Val	%RPD	RPDLimit
Solids, Total	I Dissolved		300		3.7		300	(0	101		90	110			
Sample ID	F07070020	-004Bdup Samp	Type: DUP	٦	TestCode: SOLID:	S-TD	Units	mg/L		Prep Da	ate:	7/3/200	7	RunNo:	58761	
		Batc	n ID: 45347		TestNo: E160.1		E160. ⁻	I		Analysis Da	ate:	7/3/200	7	SeqNo:	1615035	
Analyte			Result	Qual	MDL	SPK	value	SPK Ref Va	al	%REC	Low	/Limit	HighLimit	RPD Ref Val	%RPD	RPDLimit
Solids, Total	I Dissolved		450		3.7									450	0.221	20

Data Qualifier Code Key:

Analyte detected below quantitation limits I

R RPD outside accepted recovery limits U

Not Detected Above the MDL

Q Holding times for preparation or analysis exceeded

S Spike Recovery outside accepted recovery limits

	8 Ea	b, Inc. st Tower Circle						DF	C	UST	OD	ŶY	RE	COF	SD		No.	E	11	16				age of	·
EL		ond Beach, FL 32174)672-5668 ● FAX (904	0673-4001	FOR L	AB US					Con	dition	of Cor	tente.	I	AC.	Ē							SE ONLI SSIOI	-	
(INS)	•	BACK OF THIS FORM)	.,	Temp. of	Cont	ents:	2_	°C (or	Rec	eived o					Cond	lition (of Seal	ls:			17		70	101-20	17
1. Cli	ient: (Company or India	idual)		Address:	. ~	-			2	NXIE							Phor	1e: (57)	1)5	75-1	003	0		Report Type	
	JUPITE	e EN. LARS															ļ							Routine	
		·····			īιρ	TER				State	FL	-	Zip C	ode J	<u>371</u>	<u> </u>	Fax:	()					Standard QC Datapackage	
2. Re	port to: (if different fro	m above)		Address:													Phor	le: ()				19.	Turnaround	
	ERIN			City										· · · · · · · · · · · · · · · · · · ·			<u> </u>						-	Standard	
3.0	ant Designt Mamor	_		City	er San			ontair		State	14	15.	Zip C		r		Fax:	<u> </u>	<u>,</u>	T	—		-L	Rush :/	_/
J . Ci	en rojeci Name:	718760		Codes (-	1 -	(for I			1		Preserv				+		╉──		┿			Preservative C	odes
	ent Project No .:	<u> </u>		DW = Dri				VOA		<u> </u>		17.	Come	b /	~	L]. _	ļ,	/ /	/	+	/	7	(for item 15	<u>s</u>
). No.;			GW = Gr			EL CONTRACTOR	glass						Z X X X X X X Y X Y X Y X Y X Y X Y X Y	2	x /	¥/		/		/	' /		Cool Only	
6. Cu	stody Scal No.:			SW = Sur			뢈	plastic			La C		2	1		¥.3	7/7	Z	-	/			11	Hydrochloric A Monochloroacetic	
	npled By:			PW = Pro			ll l	= micro		g/cup	tair		5	5/	\$`./	? ð/	- 7	\$ 2	3	se 1	/	/	11	Nitric Acid	
	pping Method:		·	WW = w				other			Containers	کی	e de	×/~	5	o∛∧	₹/s	י /כ	~/u	۵/	8/		н	= Sodium Hydr	roxide
	9. Sample	10. Sample	11.	I	12.	1	3.			<u>, </u>	12	S.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	20	₹```	3	/ §	/0°	13	ં/ર્ઠ	5/			Sulfuric Acid Sodium Thiosul	lfate
	ID or No.	Description									s.	N	9 Y Y	Hin 2	\. 	5%	⁄ کې	5/	× /	x/	/ 		Ľ		
Item			Date	Time	Comp	Grab Water	(Codes)	Soil	Sludge	Other	2	13	**	A. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	2 C	7	TUN CONTON	//		5 00 34	20	REM/	ARK	LAB USE O LAB SAMPI	
1	718760001		6/12/67	1600		l	W				11		1	\checkmark	\checkmark	1	1	1							
2	718768007		6/2/07	1520		D	W										[\checkmark	1					
3																		[
		· · · · · · · · · · · · · · · · · · ·					+				╞──							<u> </u>	<u></u>					 	
4							+	+										ļ						 	
5								+	Н	 	-							 	<u> </u>	ļ				ļ	
6			<u> </u>	L							L														
7				[·																				
8											\square														
9											<u> </u>							 	<u> </u>	 					
10											1														
21.	RELINQUIS	HED BY	DATE	TI	ME	2	2.	REC	EIV	ÆD E	I IY	L			DA	TE		TIM	E	FOR	LAB U!	E ONL	 Y		
	SAMPLING	HED BY	gab							_	~			·								g Fee	-	Hr	rs.
	an	d.	6/28/07	162	0	┢	7	2	\ge		Ĩ	25			67	9	10	2;2	5		<u> </u>		ental I	······································	
						-†-			<u> </u>			-			7		È				file N	_		Quote No.:	
																				ĺ					
																								1	

DISTRIBUTION: White with report; Blue, Green, Yellow to labs; Gold to submitter

Revised: 1/99

٠

Jupiter Environmental Laboratories, Inc. Jupiter Environmental Laboratories, Inc. 150 S. Old Dixie Highway Jupiter, FL 33458

> Phone: (561)575-0030 Fax: (561)575-4118 www.jupitertabs.com clientservices@jupitertabs.com

May 14, 2007

Tami Wells All Webb's Enterprises, Inc. 309 Commerce Way Jupiter, FL 33458

RE: LOG# 718393 Project ID: Seacoast COC# 32067

Dear Tami Wells:

Enclosed are the analytical results for sample(s) received by the laboratory on Tuesday, May 01, 2007. Results reported herein conform to the most current NELAC standards, where applicable, unless indicated by * in the body of the report.

The enclosed Chain of Custody is a component of this package and should be retained with the package and incorporated therein.

Results for all solid matrices are reported in dry weight unless otherwise noted. Results for all liquid matrices are reported as. received in the laboratory unless otherwise noted.

Samples are disposed of after 30 days of their receipt by the laboratory unless archiving is requested in writing. The laboratory maintains the right to charge storage fees for archived samples.

Certain analyses are subcontracted to outside NELAC certified laboratories, please see the Footnotes section of this report for NELAC certification numbers of laboratories used.

A Statement of Qualifiers is available upon request. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Erin Beauregard for Kacia Baldwin kbaldwin@jupiterlabs.com

Enclosures

Report ID: 718393 - 293815 5/14/2007 Page 1 of 6

FDOH# E86546

CERTIFICATE OF ANALYSIS

SAMPLE ANALYTE COUNT

LOG# 718393 Project ID: Seacoast

Lab ID	Sample ID	Method	Analytes Reported
718393001	TW-1 1300-1600 Preline	EPA 110.2	1
718393001	TW-1 1300-1600 Preline	EPA 120.1	1
718393001	TW-1 1300-1600 Preline	EPA 150.1	1
718393001	TW-1 1300-1600 Preline	EPA 160.1	1
718393001	TW-1 1300-1600 Preline	EPA 200.8 (Total)	8
718393001	TW-1 1300-1600 Preline	EPA 310.2	2
718393001	TW-1 1300-1600 Preline	EPA 325.2	1
718393001	TW-1 1300-1600 Preline	EPA 340.1	1
718393001	TW-1 1300-1600 Preline	EPA 350.1	1
718393001	TW-1 1300-1600 Preline	EPA 353.2	1
718393001	TW-1 1300-1600 Preline	EPA 375.4	1
718393001	TW-1 1300-1600 Preline	5310B	•
718393001	TW-1 1300-1600 Preline	EPA 6010B	
718393001	TW-1 1300-1600 Preline	EPA 9060	1

Report ID: 718393 - 293815 5/14/2007 Page 2 of 6

FDOH# E86546

CERTIFICATE OF ANALYSIS

SAMPLE SUMMARY

LOG# 718393

Project ID: Seacoa	ast			
Lab ID	Sample ID	Matrix	Date Collected	Date Received
718393001	TW-1 1300-1600 Preline	Aqueous Liquid	4/30/2007 17:35	5/1/2007 17:00

Report ID: 718393 - 293815 5/14/2007 Page 3 of 6

FDOH# E86546

CERTIFICATE OF ANALYSIS

Jupiter Environmental Laboratories, Inc. 150 S. Old Dixie Highway Jupiter, FL 33458

> Phone: (561)575-0030 Fax: (561)575-4118

ANALYTICAL RESULTS

Lab ID: 718393001 Sample ID: TW-1 1300-160	10 Preline		Date Received: Date Collected:	5/1/2007 17:00 4/30/2007	Mat	rix: Aque	eous Liqi	biu	
Parameters	Results Units	Report Limit	MDL.	DF Prepared	Ву	Analyzed	Ву	Qual	CAS
- Analysis Desc: Specific Condu	ctance Anal	ytical Method: EPA	120.1						
[Field] (W)	5500 umhos/c			1	2390	04/30/07	GD	12070	
Specific Conductance	m			•		-			
Analysis Desc: TĎS by EPA 16 (W)	60.1 (REF) Anal	ytical Method: EPA	. 160.1						
Total Dissolved Solids	3300 mg/L	1.0		1		05/04/07	ESC		
Analysis Desc: Ammonia by El (W)	PA 350.1 Anal	ytical'Method: EPA	, 350.1						
Ammonia	0.77 mg/L	0.020	2. 292 294 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1		05/14/07	SS		7664-41-7
Anatysis Desc: Silica 6010B Ci (W)	alc: [REF] Anal	ytical Method: EPA	(6010B						
Silica	13000 ug/L	430		1		05/04/07	ESC		7631-86-9
Analysis Desc: TOC by EPA 9 (W)	060 (REF) Ana	lytical Method: EP/	9060	E C					
TOC	1.7 mg/L	1.0		1		05/08/07	ESC		
Analysis Desc: pH by EPA 150).1 Ana	lytical Method: EP/	150.1						
рН	5.82 su			1		05/03/07	VA		
Analysis Desc: DOC by 5310B [REF] (W)	Ana	lytical Method: 531	0 B						
Dissolved Organic Carbon	1.9 mg/L	1.0		1		05/03/07	ESC		tan an tita was deneral featur
Analysis Desc: Chloride by EP (W)	'A 325.2 Ana	lytical Method: EP/	325.2						
Chloride	1400 mg/L	50		100		05/14/07	SS		16887-00-0
Analysis Desc: Sulfate by 375.	4 (W) Ana	lytical Method: EP/	A 375:4			stration. Station			
Sulfate	330 mg/L	100		100		05/14/07	SS		14808-79-
Analysis Desc: Fluoride by EP. (W)	A 340.1 Ana	lytical Method: EP/	A 340 .1						
Fluoride	2.1 mg/L	0.50		5		05/14/07	SS	J4	16984-48-
Analysis Desc: Alkalinity-Bican EPA 310.2[REF](W	bonate, Ana	lytical Method: EP/	A 310.2						
Alkalinity-Bicarbonate	140 mg/L	10	and the second	1		05/04/07	ESC		
Alkalinity-Carbonate	U mg/L	10		1		05/04/07	ESC		

Report ID: 718393 - 293815 5/14/2007 Page 4 of 6

FDOH# E86546

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Jupiter Environmental Laboratories, Inc..

nelac

ANALYTICAL RESULTS

LOG# 718393 Project ID: Seacoast

Lab ID: 718393001

Sample ID: TW-1 1300-1600 Pr	əlinə			Date Receiv Date Collect	/ed: 5/1/2007 17:(00 M	atrix: Aq	ueous Li	quid	
Parameters	Results	Units	Report Limit							
Analysis Desc: Color by EPA 110.2 [REF] (W)		Ana	lytical Method: EF	MDL	DF Prepared	By	Analyzed	Ву	Quai	CAS
Color		PCU	1.0							
Analysis Desc: Nitrite-Nitrate by EPA 353.2 (W)		Anal	ylical Method: EP	A 353.2	l Maria Caratana		05/02/07	ESC		100 254 669 2013 (1
Nitrite-Nitrate	U	mg/L	0.10							
Analysis Desc: EPA 200.8 Total RCF Metals (W)	KA-8	Analy	/tical Method: EP/	200 8 /Total)	1	den maria e a	05/08/07	ESC	na Congre e Usy	- 1987 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 199 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997
Chromium	0.0010			and the second						
Arsenic	0.0060	ma/L	0.000076 0.00032	0.000038	1 05/03/07	ZS	05/03/07	ZS	1997년 1997년	
Selenium Silver	0.026 r	mg/L	0.00094	0.00016	1 05/03/07	ZS	05/03/07	ZS		7440-47-3
Sadmium	Un	ng/L	0.00014	0.00047 0.000070	1 05/03/07	ZS	05/03/07	ZS		7440-38-2 7782-49-2
larium	Un	ng/L	0.00018	0.000070	1 05/03/07	ZS	05/03/07	ZS		7440-22-4
lercury	0.018 n		0.00028	0.00014	1 05/03/07	ZS	05/03/07	ZS		7440-22-4
ead		ng/L	0.0020	0.0012	1 05/03/07	ZS	05/03/07	ZS		7440-39-3
	Un	ng/L	0.00024	0.00012	4.000	ZS	05/03/07	ZŚ		7439-97-6
					1 03/03/07	ZS	05/03/07	ZS		7439-92-1

Report ID: 718393 - 293815 5/14/2007

Page 5 of 6

FDOH# E86546

CERTIFICATE OF ANALYSIS

Jupiter Environmental Laboratories, Inc. 150 S. Old Dixie Highway Jupiter, FL 33458

> Phone: (561)575-0030 Fax: (561)575-4118

ANALYTICAL RESULTS QUALIFIERS

LOG# 718393

Project ID: Seacoast

PARAMETER QUALIFIERS

J4 MS/MSD recovery exceeded control limits due to matrix interference. LCS/LCSD recovery was within acceptable range.

PROJECT COMMENTS

718393

A reported value of U indicates that the compound was analyzed for but not detected above the MDL. A value flagged with an "i" flag indicates that the reported value is between the laboratory method detection limit and the practical quantitation limit. Report Limit = PQL

SUBCONTRACTOR NELAC CERTIFICATION

718393 ESC = E87487

Report ID: 718393 - 293815 5/14/2007 Page 6 of 6

FDOH# E86546

CERTIFICATE OF ANALYSIS

Chain of Custody Record

LAB USE ONLY

J.E.L. Log # 118393 P.O. # _____

Jupiter Environmental Laboratories

BAR CODE

	ental	Labor	atori	es								*	· · ·	•		•.			Q	iote# _		
Company Name									1	AB	AN	ХĿ	<u>e</u> ls									ľ
dress									J.	٨										Å	STREET, STREET	
ity State	Zip					£			at tore							;	N			of the second second		
ampling Site Address			-		2		ŀ	bicach	(+2	ي ا												
tn:	Fax/E	Email			(etto	le d	3	4	101	Urtes							beled		Ĺ		201	
roject ame <u>SEACOATST</u> Project	*				al anelos	line	1001	4	Ľ	1	9											
ampier ame/Signature						Meth	America	8	10	Whenke + Dittrike	Shew	705	102	206	لتولعر							
		Calecia) Tide	Matrix Codef			М	A	HV-codt	ょじい	XVN	ى v		1-	6	Ğ.				С	omm	ents	
1 TH- 1; 1300-1600 Ache	4/30/07	17:35	645	10		V	2	V	\checkmark	\mathbf{V}	V	>	\checkmark	V	レ				1		srac	
2		<u></u>		<u> </u>												·····				7.7		
3			ļ							_,										22.	7~2	
4				ļ											1				<u>caire</u>	1=54	974	lee
5			:).O.	- 0.8	36.00	e
6																					and a	
7																			,			
8																						
9																						
0													,									
Matrix Codes'	1264					N ² Ca			調整						fa r -					Dana ist	l Drei	
Sol/Solid Sediment SW Surface Water V Ground Water SL Studge W Waste Water O Other (Please V Drinking Water	Specify)	A- none I- Ici B- HNO3 O- OI C- H2SO4 M- M D- NaOH	har D	ene	()	No	NX.	ý	4	17	<u>n</u> 5	0	24	ad.	am	Å	tru	<u>}</u>	<u></u>	5/1/0	7 5:2	60
A/QC level with report		E- HCI								<u>.</u>	+		+							ļ		
One123 See price A.T. Request FDEP	guide for ap	Temp Control:			i									<u>.</u>						ļ	4	
Standard SFWMD		ů.			A-		Émad										-					
Rush Date Required			c j		15	i0 Old	Dixid	e High	way ,	Labon Jupite	er, FL	. 3345	58					C	ററ#	320	67	
Page of			(561) 575-00	130 •	Fax (561) 5	575-41	118 •	clien	tserv	ices	Øjupl	teriat	os.con	1		0.	J.J.#	040	, , ,	

	-				EHWY JU	BORATO	33458	i	622
4-30-0	PH: 561-575	-0030 F	<u>X: 561-57</u> /л	<u>јев</u>		NTSERVIC	ES@JUI	ITERLABS.C	COM
Date		Client.			<u>v</u> .j	Berlin			
	. // c	Client				Projeci			
Tami Wé	<u>°#S</u>	<u> </u>				<i></i>			
Contact	<u></u>	P#+Fx			$- \gamma$	Email		·	
C'Impa		(M)T	WRF	<u> </u>	<u>M (PM)</u>	Drop;	UPS;	FXgrnd: 8a	m; 10am; other
Date required /) Shipping address MUST have client PHONE		}							
Client or PM complete	this section		12 ANT	(K) / A	12. 14 E	Tab M	USTreat	nnlete this se	ction for client /
Meihud / ANALYTE					# bottles	a copy this		include with	COC in cooler going o
Total or dissolved	<u># of Sites</u>	Water			per station	<u>bottles</u> for kit	Vohim	Plastic Glass	Total or Dissolved (circle
Metals			s (y)	N	1	(125m		
Ammonium	Hari	1 years	s (v	N	1	<u> </u>	1	P	(T) (F) C(S)N H
Alk - Carb + bice	1.		s y	(N)	1		125ml	P	
C3 (1)	12	171)	1	250,00	D D	(T) (F) (CSNH
	+ +		S Y	20		1 	125 m	P	(T) {F} (C)SNH
N. hak + N. hik	-	75	S Y	N	1	1	125 m	P P	(T) (F) (G) N H
-Silica	ll	1 20.	<u>s (Y)</u>	N,	<u></u>	<u> </u>	252mL	P P	(T) (F) C S(N)H
TDS	+ 1		S Y	N		1	istore		(T) (F) (JSNH
TIX	1		s (Y)	<u>N</u>	<u> </u>	<u> </u>	250-L	V AG	TI) (F) 50 S N(H)
DOL	<u> </u>	N ZE \	$s(\mathbf{\hat{v}})$	<u>N</u>	<u> </u>		250	Alt	
Color	1	Cur	S Y	N	1	<u> </u>	250	ρ	(T) (F) (S N H
···		w	<u>s y</u>	N				1	{T} {F} CSNH
		w	<u>s y</u>	N					{T} {F} CSNH
		w	S Y	N					{T} {F} CSNH
		w	S Y	N					{T) {F} CSNH
		w	S Y	N					(T) (F) CSNH
		w	S Y	N				1	{T} {F} CSNH
	ETTPESTRUT SPWMD	SJRWA			(F v) nest 1 de C=Chilled on ic N= ntric acid (B≈sodium hydr	ce to < 4C HN03)		S=sulfi H= hy	(*), das nobliched) uric acid (H2SO4) drochloric acid (HCD) neetate + NaOH
fircleffill in: Filters:	droppers	Bubble w	rap C	oc	Coolers:	sm	med	Ig	Custody scals/ other
Equipment Rental:									
NOTES:									
								ŕ	
								:	
Order prepared By:	Erin Beau	regard	<u>&</u>			Kit prepa	red by:	BN	γ
		<u>CLIEN</u> eturned or	T: To co ice rega	rdless of	h NELAC/F	DOH regula	tions plea od (exce	se: of Hg by EPA	method 1631E) .
You can rec	west kits and d							1	w.jupiterlabs.com

clientservices@jupiterlabs.com

April 5, 2007

David Webb, Jr. All Webb's Enterprises, Inc. 309 Commerce Way Jupiter, FL 33458

RE:	LOG#	718160
	Project ID:	SVA TW-1
	COC#	30115

Dear David Webb, Jr.:

Enclosed are the analytical results for sample(s) received by the laboratory on Wednesday, March 21, 2007. Results reported herein conform to the most current NELAC standards, where applicable, unless indicated by * in the body of the report.

The enclosed Chain of Custody is a component of this package and should be retained with the package and incorporated therein.

Results for all solid matrices are reported in dry weight unless otherwise noted. Results for all liquid matrices are reported as received in the laboratory unless otherwise noted.

Samples are disposed of after 30 days of their receipt by the laboratory unless archiving is requested in writing. The laboratory maintains the right to charge storage fees for archived samples.

Certain analyses are subcontracted to outside NELAC certified laboratories, please see the Footnotes section of this report for NELAC certification numbers of laboratories used.

A Statement of Qualifiers is available upon request.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

ckeen

Ann McKewin for / Kacia Baldwin kbaldwin@jupiterlabs.com

Enclosures

Report ID: 718160 - 283536 4/5/2007 Page 1 of 5

FDOH# E86546

CERTIFICATE OF ANALYSIS

Jupiter Environmental Laboratories, Inc.

Jupiter Environmental Laboratories, Inc. 150 S. Old Dixie Highway Jupiter, FL 33458 Phone: (561)575-0030 Fax: (561)575-4118

SAMPLE ANALYTE COUNT

LOG#	718160
Project ID:	: SVATW-1

Lab ID	Sample ID	Method	Analytes Reported
718160001	PT #4 (1114 FT)	EPA 120.1	1
		EPA 150.1	1
		EPA 160.1	1
		EPA 200.8 (Total)	6
		EPA 310.2	2
		EPA 325.2	1
		EPA 350.1	1
		EPA 375.4	1
		EPA 376.1	1

Report ID: 718160 - 283536 4/5/2007 Page 2 of 5

FDOH# E86546

CERTIFICATE OF ANALYSIS

Jupiter Environmental Laboratories, Inc.

Jupiter Environmental Laboratories, Inc. 150 S. Old Dixle Highway Jupiter, FL 33458 Phone: (561)575-0030 Fax: (561)575-4118

SAMPLE SUMMARY

Lab ID	Sample ID	Matrix	Date Collected	Date Received
718160001	PT #4 (1114 FT)	Aqueous Liquid	3/20/2007 13:10	3/21/2007 16:35

Report ID: 718160 - 283536 4/5/2007 Page 3 of 5

FDOH# E86546

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Lab ID: 718160001			Date Received:	3/21/2007	Ма	trix: Aque	eous Liq	uid	
Sample ID: PT #4 (1114 FT)			Date Collected:	3/20/2007					
Parameters	Results Units	Report Limit	MDL	DF Prepared	Ву	Analyzed	Ву	Qual	CAS
Analysis Desc: Specific Conducta	ince Analy	/tical Method: EPA	120.1			2. 18월 - 198 1981 - 1989	Ang gan Takuna	24 al 1913a) Statisticae	an ta sa shikara a sa sa sa sa sa Mana ya sa sa sa sa sa sa sa sa May sa
[REF] (W) Specific Conductance	5600 umhos/c m	있는 것을 관계적· 	나 상태 1963 나라니까 가슴다. 전상한 성상: 440 나라 가슴다.	1 1		03/29/07	BFM		
Analysis Desc: TDS by EPA 160.1 (W)	1 [REF] Analy	rtical Method: EPA	160.1						
Total Dissolved Solids	3400 mg/L	1.0		1		03/27/07	ESC		
Analysis Desc: Ammonia by EPA (W)	350.1 Analy	tical Method: EPA	.350.1						
Ammonia	0.78 mg/L	0.020		1		03/28/07	SS	J4	7664-41-7
Analysis Desc: pH by EPA 150.1	Analy	tical Method: EPA	150.1		944 q.				
nenegi a senati na nenegi na n pH	7.71 su			1		03/29/07	BFM		1
Analysis Desc: Chloride by EPA 3 (W)	25.2 Analy	tical Method: EPA	.325.2						
Chloride	1400 mg/L	50		100		03/28/07	SS		16887-00-6
Analysis Desc: Sulfate by 375.4 (W) Analy	tical Method: EPA	375.4						
Sulfate	340 mg/L	100	yr eele o o o o o o o	100	e . •	03/28/07	SS		14808-79-8
Analysis Desc: Alkalinity-Bicarbon EPA 310.2[REF](W	nate, Analy	tical Method: EPA	310.2						
Alkalinity-Bicarbonate	150 mg/L	10		1		03/26/07	ESC		
Alkalinity-Carbonate	U mg/L	10		1		03/26/07	ESC		
Analysis Desc: Hydrogen Sulfide EPA 376.1 [REF](W)	by Analy	tical Method: EPA	.376.1						
Hydrogen Sulfide	1.3 mg/L	0.0020		1		03/27/07	FL		
Analysis Desc: EPA 200.8 Metals	(W) Analy	rtical Method: EPA	200.8 (Total)		g. S. S.				
Sodium	790 mg/L	0.0070	0.0035	1 03/23/07	zs	03/23/07	ZS		7440-23-5
Magnesium	120 mg/L	0.00082	0.00041	1 03/23/07	ZS	03/23/07	ZS		7439-95-4
Potassium	30 mg/L	0.0068	0.0034	1 03/23/07	ZS	03/23/07	ZS		7440-09-7
Calcium	120 mg/L	0.048	0.024	1 03/23/07	ZS	03/23/07	ZS		7440-70-2
Iron	0.29 mg/L	0.020	0.010	1 03/23/07	ZS	03/23/07	ZS		7439-89-6
Arsenic	U mg/L	0.00032	0.00016	1 03/23/07	ZS	03/23/07	ZS		7440-38-2

Report ID: 718160 - 283536 4/5/2007 Page 4 of 5

FDOH# E86546

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS QUALIFIERS

LOG# 718160 Project ID: SVA TW-1

PARAMETER QUALIFIERS

J4 MS/MSD recovery exceeded control limits due to matrix interference. LCS/LCSD recovery was within acceptable range.

PROJECT COMMENTS

718160 Report Limit = PQL

SUBCONTRACTOR NELAC CERTIFICATION

718160 ESC = E87487

718160 FL = E83018

Report ID: 718160 - 283536 4/5/2007

.

Page 5 of 5

FDOH# E86546

CERTIFICATE OF ANALYSIS

Chain of Custody Record

LAB USE ONLY

J.E.L. Log # _____718160 P.O. # _____

Quote# _____

Jupiter Environmental Laboratories

Company Name	ALL WEB	3		•				1. j. j.	l	AB	AN	ALY	SIS		1.1			
Address							1										A STREET, STREE	
City	State	Zip					CowD/H				:				Haldi Filtgred (Y/N)	(NIE	and the second s	8
Sampling Site Add	iress					2			হি							Ş		
Attn:		Fax/E	imail				1		BKA						<u>ē</u>			
Project Name SUA	TW-1 Project	*#	-2 -62			E C	4		193									
Sampler Name/Signature		<u>я</u>	<u></u>			Para			S		\sim				20			
a Semole Labe		Collected Cale	Collected Time	Matrix Code'	# of Cont	M: 1		NH3	ALK (CARB/BKARB	F	HzS			્યુ	Ĩ	-	Commer	nts
_1 PT#4	(1114 Ft)	3/20/07	13:10	Gh!	5				an.	elci	<u></u>	· D1	-1-3		- 43 P	1. 1.	ac rau	A
2		P = + = -						per		eace	~ ~ ~ ~	2.7.1					<u>in an an</u>	
3	************		Э́ц			2024) 77	-	<u> </u>									under.	
																1.88	H=7.72	
														_			T= 22.4-	2
5			<u></u>			<u> </u>	-									علي	ald. = 599	2 aufer
6				·														
_7																	·	
_8				1.0 4	· 10	- 												
9						- 									2.2			· · · · · ·
0				÷			1									20		
	Matrix Codes*			e Relin	ruished by				1) Date:		198	Be	seived b	<u> </u>		Date	me 👘
S Soll/Solid Sed GW Ground Water WW Waste Water DW Drinking Water	O Other (Please	Specify)	5-HNO ₃ 0-01 5-HNO ₃ 0-01 5-H ₂ SO ₄ M-M 5-NaOH 5-HC1	her 🖌	Joine	than	1 70	41	01	3/21/0	71	635	an a	Ę	7.M		3/2/07 1	
	l with report 23 See price		plicable fees								34.					•.		
T.A.T. Request	FDEP		Temp Control:										+					
Standard Rush	SFWMD Date Required		<u>6</u> .	c		Jupite	er Envl	ronm	ental	Labo	ratori	es, in	 c.				<u> </u>	
Page	1_of_/			(561) 575-003	150 O 10 • Fax	(561)	e mig 575-4	nway, 118 •	, Jupit clier	ier, FL htserv	L 3345 /ices(58 Øjupite	eriabs	.com	C.O.	c.# <u>3</u> 011	5

Jupiter Environmental Laboratories, Inc. 150 S. Old Dixie Highway Jupiter, FL 33458 Phone: (561)575-0030 Fax: (561)575-4118 www.jupiterlabs.com clientservices@jupiterlabs.com

March 21, 2007

David Webb, Jr. All Webb's Enterprises, Inc. 309 Commerce Way Jupiter, FL 33458

RE:	LOG#	718074
	Project ID:	SVA TW-1
	COC#	29732

Dear David Webb, Jr.:

Enclosed are the analytical results for sample(s) received by the laboratory on Friday, March 09, 2007. Results reported herein conform to the most current NELAC standards, where applicable, unless indicated by * in the body of the report.

The enclosed Chain of Custody is a component of this package and should be retained with the package and incorporated therein.

Results for all solid matrices are reported in dry weight unless otherwise noted. Results for all liquid matrices are reported as received in the laboratory unless otherwise noted.

Samples are disposed of after 30 days of their receipt by the laboratory unless archiving is requested in writing. The laboratory maintains the right to charge storage fees for archived samples.

Certain analyses are subcontracted to outside NELAC certified laboratories, please see the Footnotes section of this report for NELAC certification numbers of laboratories used.

A Statement of Qualifiers is available upon request.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Erin Beauregard for Kacia Baldwin kbaldwin@jupiterlabs.com

Enclosures

Report ID: 718074 - 279356 3/21/2007 Page 1 of 5

FDOH# E86546

SAMPLE ANALYTE COUNT

LOG# 718074 Project ID: SVA TW-1

Lab ID	Sample ID Method		Sample ID Method		Analytes Reported
718074001	PT #1 (1684 FT)	EPA 120.1	1		
718074001	PT #1 (1684 FT)	EPA 150.1	1		
718074001	PT #1 (1684 FT)	EPA 160.1	1		
718074001	PT #1 (1684 FT)	EPA 200.8 (Total)	6		
718074001	PT #1 (1684 FT)	EPA 310.2	2		
718074001	PT #1 (1684 FT)	EPA 325.2	1		
718074001	PT #1 (1684 FT)	EPA 350.1	1		
718074001	PT #1 (1684 FT)	EPA 375.4	1		
718074001	PT #1 (1684 FT)	EPA SM4500SH	1		

Report ID: 718074 - 279356 3/21/2007

Page 2 of 5

FDOH# E86546

CERTIFICATE OF ANALYSIS

SAMPLE SUMMARY

LOG# 718074 Project ID: SVA TW-1

				·····
Lab ID	Sample ID	Matrix	Date Collected	Date Received
718074001	PT #1 (1684 FT)	Aqueous Liquid	3/8/2007 13:15	3/9/2007 14:35

Report ID: 718074 - 279356 3/21/2007

Page 3 of 5

FDOH# E86546

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

LOG# 7	718074									
Project ID: S	SVA TW-1						·····			
Lab ID:	718074001			Date Received:	3/9/2007 14:3	85 Ma	ıtrix: Aqu	eous Liq	uid	
Sample ID:	PT #1 (1684 FT)			Date Collected:	3/8/2007 13:1	5				
Parameters	<u> </u>	Results Units	Report Limit	MDL	DF Prepared	By	Analyzed	Ву	Qual	CAS
Analysis Des [REF] (W)	c: Specific Conductan	ice Analyl	ical Method: EPA	120.1						
Specific Cond	ductance	7500 umhos/c m	n Anno 200 Anno 200 Anno 200 Anno		1		03/20/07	BFM		i Garris I. Manahar (Br
Analysis Des (W)	c: TDS by EPA 160.1	[REF] Analyl	ical Method: EPA	160.1						
Total Dissolve	ed Solids	4800 mg/L	1.0		1		03/15/07	ESC	de la 1200 a	
Analysis Des (W)	c: Ammonia by EPA 3	50.1 Analyt	ical Method: EPA	350.1						
Ammonia	endizmetek debet entre ketter at die Kindsta	1.2 mg/L	0.20		10		03/19/07	SS	J4	7664-41-7
Analysis Des	c: pH by EPA 150.1	Analyt	ical Method: EPA	150.1						
рH	nan san kanalan barta kanala.	7.84 su			1 1		03/16/07	BFM	sireitti (j	CHACLASSING (
Analysis Des (W)	c: Chloride by EPA 32	25.2 Analyt	ical Method: EPA	325.2						
Chloride	ine di 1997 Berlen di Angliateta.	2100 mg/L	50	v in geboon name g	100		03/15/07	SS	J4	16887-00-6
Analysis Desc	c: Sulfate by 375.4 (W	/) Analyt	ical Method: EPA	375.4						
Sulfate		420 mg/L	100		100		03/15/07	SS	anda Malah I.	14808-79-8
Analysis Desc EPA 310.2[RI	c: Alkalinity-Carbonate EF](W)	ə, Analyt	ical Method: EPA	310.2						
Alkalinity-Carl	bonate	U mg/L	10 1 0		1		03/14/07	ESC	en de segu	
Alkalinity-Bica	arbonate	150 mg/L	10		1		03/14/07	ESC		
	: Hydrogen Sulfide b SH [REF](W)	y Analyti	ical Method: EPA	SM4500SH						
Hydrogen Sul	fide	1.4 mg/L	0.0020		1		03/15/07	FL	en verhaltet.	
Analysis Desc	c: EPA 200.8 Metals (W) Analyti	cal Method: EPA	200.8 (Total)						
Sodium	u na utomieru alekti setrilau en m	1200 mg/L	0.0070	0.0035	1 03/12/07	ZS	03/12/07	ZS		7440-23-5
Magnesium		180 mg/L	0.00082	0.00041	1 03/12/07	zs	03/12/07	ZS		7439-95-4
Potassium		35 mg/L	0.0068	0.0034	1 03/12/07	ZS	03/12/07	ZS		7440-09-7
Calcium		150 mg/L	0.048	0.024	1 03/12/07	ZS	03/12/07	ZS		7440-70-2
Iron		0.58 mg/L	0.020	0.010	1 03/12/07	ZS	03/12/07	ZS		7439-89-6
Arsenic		0.0039 mg/L	0.00032	0.00016	1 03/12/07	ZS	03/12/07	ZS		7440-38-2

Report ID: 718074 - 279356 3/21/2007

Page 4 of 5

FDOH# E86546

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS QUALIFIERS

LOG# 718074 Project ID: SVA TW-1

PARAMETER QUALIFIERS

J4 MS/MSD recovery exceeded control limits due to matrix interference. LCS/LCSD recovery was within acceptable range.

PROJECT COMMENTS

718074 Report Limit = PQL

SUBCONTRACTOR NELAC CERTIFICATION

718074	ESC = E87487
--------	--------------

718074 FL = E83018

Report ID: 718074 - 279356 3/21/2007

Page 5 of 5

FDOH# E86546

CERTIFICATE OF ANALYSIS

Jupiter Environmental Laboratories, Inc. 150 S. Old Dixie Highway Jupiter, FL 33458 Phone: (561)575-0030 Fax: (561)575-4118 www.jupiterlabs.com clientservices@jupiterlabs.com

April 10, 2007

David Webb, Jr. All Webb's Enterprises, Inc. 309 Commerce Way Jupiter, FL 33458

RE:	LOG#	718082
	Project ID:	SVA TW-1
	COC#	29465

Dear David Webb, Jr.:

Enclosed are the analytical results for sample(s) received by the laboratory on Monday, March 12, 2007. Results reported herein conform to the most current NELAC standards, where applicable, unless indicated by * in the body of the report.

The enclosed Chain of Custody is a component of this package and should be retained with the package and incorporated therein.

Results for all solid matrices are reported in dry weight unless otherwise noted. Results for all liquid matrices are reported as received in the laboratory unless otherwise noted.

Samples are disposed of after 30 days of their receipt by the laboratory unless archiving is requested in writing. The laboratory maintains the right to charge storage fees for archived samples.

Certain analyses are subcontracted to outside NELAC certified laboratories, please see the Footnotes section of this report for NELAC certification numbers of laboratories used.

A Statement of Qualifiers is available upon request.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Erin Beauregard for Kacia Baldwin kbaldwin@jupiterlabs.com

Enclosures

Report ID: 718082 - 279368 4/10/2007 Page 1 of 5

FDOH# E86546

CERTIFICATE OF ANALYSIS

SAMPLE ANALYTE COUNT

LOG# 718082 Project ID: SVA TW-1

Lab ID	Sample ID	Method	Analytes Reported
718082001	P.T. #2 (1625FT)	EPA 120.1	1
		EPA 160.1	1
		EPA 200.8 (Total)	6
		EPA 310.2	2
		EPA 325.2	1
		EPA 350.1	1
		EPA 375.4	1
		EPA 376.1	1

Report ID: 718082 - 279368 4/10/2007 Page 2 of 5

FDOH# E86546

CERTIFICATE OF ANALYSIS

SAMPLE SUMMARY

LOG# 718082 Project ID: SVA TW-1

Lab ID	Sample ID	Matrix	Date Collected	Date Received
718082001	P.T. #2 (1625FT)	Aqueous Liquid	3/10/2007 11:25	3/12/2007 14:35

Report ID: 718082 - 279368 4/10/2007 Page 3 of 5

FDOH# E86546

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

LOG# 718082 Project ID: SVA TW-1									
Lab ID: 718082001 Sample ID: P.T. #2 (1625FT)			Date Received: Date Collected:	3/12/2007 Matrix: Aqueous Liquid 3/10/2007 11:25			uid		
Parameters	Results Units	Report Limit	MDL	DF Prepared	Ву	Analyzed	Ву	Qual	CAS
Analysis Desc: Specific Conductanc [REF] (W)	e Analy	tical Method: EP/	\ 120.1						
Specific Conductance	7000 umhos/c m	n an airsean air an an Ann an Ann an Ann an Ann an Ann		1		03/20/07	BFM	sa fullu sella se	elette van Franklikke
Analysis Desc: TDS by EPA 160.1 [f (W)	REF] Analy	tical Method: EPA	160.1						
Total Dissolved Solids	4200 mg/L	1.0		986 998 08 68 28 1		03/16/07	ESC		
Analysis Desc: Ammonia by EPA 35 (W)	0.1 Analy	tical Method: EPA	350.1						
Ammonia	1.2 mg/L	0.20	and international factors	10		03/19/07	SS	J4	7664-41-7
Analysis Desc: Chloride by EPA 325 (W)	.2 Analy	tical Method: EPA	325.2						
Chloride	1900 mg/L	50		100	2019) - 1	03/15/07	SS	J4	16887-00-6
Analysis Desc: Sulfate by 375.4 (W)	Analy	tical Method: EPA	375.4	9년 3년 113 19년 113 - 1968					
Sulfate	410 mg/L	100		100		03/15/07	SS		14808-79-8
Analysis Desc: Alkalinity-Bicarbonate EPA 310.2[REF](W	e, Analy	tical Method: EPA	310.2						
Alkalinity-Bicarbonate	150 mg/L	10		-lester en el suberi 1		03/15/07	ESC		
Alkalinity-Carbonate	U mg/L	10		1		03/15/07	ESC		
Analysis Desc: Hydrogen Sulfide by EPA 376.1 [REF](W)	Analy	tical Method: EPA	376.1						
Hydrogen Sulfide	1.7 mg/L	0.0020	n (un reception distriction), e que	1		03/15/07	FL	da ang sa 193. Tang sa tang tang sa ta	
Analysis Desc: EPA 200.8 Metals (W	/) Analy	tical Method: EPA	.200.8 (Total)		ya.s.				
Magnesium	130 mg/L	0.00082	0.00041	1 03/13/07	ZS	03/13/07	ZS	erse stati	7439-95-4
Potassium	41 mg/L	0.0068	0.0034	1 03/13/07	zs	03/13/07	ZS		7440-09-7
Calcium	110 mg/L	0.048	0.024	1 03/13/07	ZS	03/13/07	zs		7440-70-2
ron	U mg/L	0.020	0.010	1 03/13/07	ZS	03/13/07	ZS		7439-89-6
Arsenic	0.0039 mg/L	0.00032	0.00016	1 03/13/07	ZS	03/13/07	ZS		7440-38-2
Sodium	1100 mg/L	0.0070	0.0035	1 03/13/07	ZS	03/13/07	zs		7440-23-5

Report ID: 718082 - 279368 4/10/2007

Page 4 of 5

FDOH# E86546

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Jupiter Environmental Laboratories, Inc..

nelaci

ANALYTICAL RESULTS QUALIFIERS

LOG# 718082 Project ID: SVA TW-1

PARAMETER QUALIFIERS

J4 MS/MSD recovery exceeded control limits due to matrix interference. LCS/LCSD recovery was within acceptable range.

PROJECT COMMENTS

718082 Report Limit = PQL

SUBCONTRACTOR NELAC CERTIFICATION

718082	ESC = E87487
--------	--------------

718082 FL = E83018

Report ID: 718082 - 279368 4/10/2007 Page 5 of 5

FDOH# E86546

CERTIFICATE OF ANALYSIS

Jupiter Environmental Laboratories, Inc. 150 S. Old Dixie Highway Jupiter, FL 33458 Phone: (561)575-0030 Fax: (561)575-4118 www.jupiterlabs.com clientservices@jupiterlabs.com

March 21, 2007

David Webb, Jr. All Webb's Enterprises, Inc. 309 Commerce Way Jupiter, FL 33458

RE:	LOG#	718083
	Project ID:	SVA TW-1
	COC#	29733

Dear David Webb, Jr.:

Enclosed are the analytical results for sample(s) received by the laboratory on Monday, March 12, 2007. Results reported herein conform to the most current NELAC standards, where applicable, unless indicated by * in the body of the report.

The enclosed Chain of Custody is a component of this package and should be retained with the package and incorporated therein.

Results for all solid matrices are reported in dry weight unless otherwise noted. Results for all liquid matrices are reported as received in the laboratory unless otherwise noted.

Samples are disposed of after 30 days of their receipt by the laboratory unless archiving is requested in writing. The laboratory maintains the right to charge storage fees for archived samples.

Certain analyses are subcontracted to outside NELAC certified laboratories, please see the Footnotes section of this report for NELAC certification numbers of laboratories used.

A Statement of Qualifiers is available upon request.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Erin Beauregard for Kacia Baldwin kbaldwin@jupiterlabs.com

Enclosures

Report ID: 718083 - 279380 3/21/2007

Page 1 of 5

FDOH# E86546

CERTIFICATE OF ANALYSIS

SAMPLE ANALYTE COUNT

LOG# 718083 Project ID: SVA TW-1

Analytes Reported	Method	Sample ID	Lab ID
1	EPA 120.1	P.T. #3 (1500FT)	718083001
1	EPA 150.1	P.T. #3 (1500FT)	718083001
1	EPA 160.1	P.T. #3 (1500FT)	718083001
6	EPA 200.8 (Total)	P.T. #3 (1500FT)	718083001
2	EPA 310.2	P.T. #3 (1500FT)	718083001
1	EPA 325.2	P.T. #3 (1500FT)	718083001
1	EPA 350.1	P.T. #3 (1500FT)	718083001
1	EPA 375.4	P.T. #3 (1500FT)	718083001
1	EPA SM4500SH	P.T. #3 (1500FT)	718083001

Report ID: 718083 - 279380 3/21/2007

Page 2 of 5

FDOH# E86546

CERTIFICATE OF ANALYSIS

3/12/2007 14:35

3/12/2007 12:15

SAMPLE SUMMARY

Aqueous Liquid

LOG#	718083			
Project ID:	SVA TW-1			
Lab ID	Sample ID	Matrix	Date Collected	Date Received

718083001	P.T. #3 (1500FT)

Report ID: 718083 - 279380 3/21/2007 Page 3 of 5

FDOH# E86546

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

LOG#	718083 SVA TW-1									
Lab ID: Sample ID:	718083001 P.T. #3 (1500FT)			Date Received: Date Collected:		Matrix: Aqueous Liquid				
Parameters		Results Units	Report Limit	MDL	DF Prepared	Ву	Analyzed	Ву	Qual	CAS
Analysis Des [REF] (W)	c: Specific Conductan	ce Analy	ical Method: EPA	120.1						
Specific Con	ductance	6400 umhos/c m	이다가 감정을 가입니다.		1 1		03/20/07	BFM		n an an thair an an thair an an thair an an thair an thai Thair an thair an thai
Analysis Des (W)	c: TDS by EPA 160.1		lical Method: EPA	v 160.1						
Total Dissolv	ed Solids	3800 mg/L	1.0		1		03/19/07	ESC		a la complete esta da la L
Analysis Des (W)	c: Ammonia by EPA 3	50.1 Analyl	lical Method: EPA	350.1						
Ammonia	n an	0.89 mg/L	0.020	n an Nil y an Chin.	1 1		03/19/07	SS	J4	7664-41-7
Analysis Des	c: pH by EPA 150.1	Analyl	ical Method: EPA	150.1						
рH		7.92 su	ia el prista de la esta con la		na fri kafster i sub 1		03/16/07	BFM	en di Sente I	E SERVICE SERVICES
Analysis Des (W)	c: Chloride by EPA 32	5.2 Analyl	ical Method: EPA	325.2						
Chloride	an a frank i sanakari (44 km)a.	1700 mg/L	50	n na h-faran di Shin She	100		03/15/07	SS	J4	16887-00-6
Analysis Des	c: Sulfate by 375.4 (W) Analyt	ical Method: EPA	375.4					Alexanda.	
Sulfate	n kara dan karang karang pan	390 mg/L	100		100		03/15/07	SS	el Bartala del D	14808-79-8
Analysis Des EPA 310.2[R	c: Alkalinity-Bicarbona EF1(W		ical Method: EPA	.310.2						
Alkalinity-Bic	이 집 같은 것 같은 것 같은 것 같은 것 같아요.	140 mg/L	10		68162.0053.01 1		03/15/07	ESC		
Alkalinity-Car	bonate	U mg/L	10		1		03/15/07	ESC		
	c: Hydrogen Sulfide by SH [REF](W)	/ Analyt	ical Method: EPA	SM4500SH						
Hydrogen Su	lfide	1.2 mg/L	0.0020		1 1	a hAiren.	03/15/07	FL		
Analysis Des	c: EPA 200.8 Metals (\	W) Analyt	ical Method: EPA	200.8 (Total)						같은 것은 것은 것은 것은 것을 수 없다. 같은 것은 것은 것은 것은 것은 것은 것을
Sodium		850 mg/L	0.0070	0.0035	1 03/13/07	ZS	03/13/07	ZS		7440-23-5
Magnesium		130 mg/L	0.00082	0.00041	1 03/13/07	ZS	03/13/07	zs		7439-95-4
Potassium		39 mg/L	0.0068	0.0034	1 03/13/07	ZS	03/13/07	zs		7440-09-7
Calcium		110 mg/L	0.048	0.024	1 03/13/07	ZS	03/13/07	zs		7440-70-2
Iron		0.071 mg/L	0.020	0.010	1 03/13/07	ZS	03/13/07	ZS		7439-89-6
Arsenic		0.0029 mg/L	0.00032	0.00016	1 03/13/07	ZS	03/13/07	ZS		7440-38-2

Report ID: 718083 - 279380 3/21/2007

Page 4 of 5

FDOH# E86546

CERTIFICATE OF ANALYSIS

Jupiter Environmental Laboratories, Inc. 150 S. Old Dixie Highway Jupiter, FL 33458 Phone: (561)575-0030 Fax: (561)575-4118

ANALYTICAL RESULTS QUALIFIERS

LOG# 718083 Project ID: SVA TW-1

PARAMETER QUALIFIERS

J4 MS/MSD recovery exceeded control limits due to matrix interference. LCS/LCSD recovery was within acceptable range.

PROJECT COMMENTS

718083 Report Limit = PQL

SUBCONTRACTOR NELAC CERTIFICATION

718083	ESC = E87487
--------	--------------

718083 FL = E83018

Report ID: 718083 - 279380 3/21/2007

Page 5 of 5

FDOH# E86546

CERTIFICATE OF ANALYSIS

Jupiter Environmental Laboratories, Inc. 150 S. Old Dixie Highway Jupiter, FL 33458 Phone: (561)575-0030 Fax: (561)575-4118 www.jupiterlabs.com clientservices@jupiterlabs.com

April 10, 2007

David Webb, Jr. All Webb's Enterprises, Inc. 309 Commerce Way Jupiter, FL 33458

RE:	LOG#	718160
	Project ID:	SVA TW-1
	COC#	30115

Dear David Webb, Jr.:

Enclosed are the analytical results for sample(s) received by the laboratory on Wednesday, March 21, 2007. Results reported herein conform to the most current NELAC standards, where applicable, unless indicated by * in the body of the report.

The enclosed Chain of Custody is a component of this package and should be retained with the package and incorporated therein.

Results for all solid matrices are reported in dry weight unless otherwise noted. Results for all liquid matrices are reported as received in the laboratory unless otherwise noted.

Samples are disposed of after 30 days of their receipt by the laboratory unless archiving is requested in writing. The laboratory maintains the right to charge storage fees for archived samples.

Certain analyses are subcontracted to outside NELAC certified laboratories, please see the Footnotes section of this report for NELAC certification numbers of laboratories used.

A Statement of Qualifiers is available upon request.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Erin Beauregard for Kacia Baldwin kbaldwin@jupiterlabs.com

Enclosures

Report ID: 718160 - 283536 4/10/2007

Page 1 of 5

FDOH# E86546

CERTIFICATE OF ANALYSIS

Jupiter Environmental Laboratories, Inc. 150 S. Old Dixie Highway Jupiter, FL 33458 Phone: (561)575-0030 Fax: (561)575-4118

SAMPLE ANALYTE COUNT

LOG# 718160 Project ID: SVA TW-1

_ab ID	Sample ID	Method	Analytes Reported
718160001	PT #4 (1114 FT)	EPA 120.1	1
		EPA 150.1	1
		EPA 160.1	1
		EPA 200.8 (Total)	6
		EPA 310.2	2
		EPA 325.2	1
		EPA 350.1	1
		EPA 375.4	1
		EPA 376.1	1

Report ID: 718160 - 283536 4/10/2007

Page 2 of 5

FDOH# E86546

CERTIFICATE OF ANALYSIS

SAMPLE SUMMARY

LOG# 718160 Project ID: SVA TW-1

Lab ID	Sample ID	Matrix	Date Collected	Date Received
718160001	PT #4 (1114 FT)	Aqueous Liquid	3/20/2007 13:10	3/21/2007 16:35

Report ID: 718160 - 283536 4/10/2007

Page 3 of 5

FDOH# E86546

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

LOG# 71 Project ID: S\	8160 /A TW-1									
Lab ID: Sample ID:	718160001 PT #4 (1114 FT)			Date Received: Date Collected:		Ma	ıtrix: Aqu	eous Liq	uid	
Parameters		Results Units	Report Limit	MDL	DF Prepared	Ву	Analyzed	Ву	Qual	CAS
Analysis Desc: [REF] (W)	Specific Conductan	ce Analyi	tical Method: EPA	120.1						
Specific Condu	uctance	5600 umhos/c m	bahar kulon kariba di shi	e na seleni e energine	Shitle the shites with 1	002131215	03/29/07	BFM		
Analysis Desc: (W)	TDS by EPA 160.1	[REF] Analyl	ical Method: EPA	160.1						
Total Dissolved	l Solids	3400 mg/L	1.0		1 1	talitet.	03/27/07	ESC		
Analysis Desc: (W)	Ammonia by EPA 3	50.1 Analyt	iical Method: EPA	.350.1						
Ammonia	, met willige weer to ke the group of them	0.78 mg/L	0.020	 A management of the state of the state 	1		03/28/07	SS	J4	7664-41-7
Analysis Desc:	pH by EPA 150.1	Analyt	ical Method: EPA	150.1				444.00.02 1949.00	4한 종감	
рН	ne se de la company de la c	7.71 su	1993년 1997년 1997 1997년 - 1997년 19 1997년 - 1997년 1 1997년 - 1997년 1 1997년 1997년 1997	gebeleden sindt	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		03/29/07	BFM		한 1997년 1997년 1997년 1997년 - 1997년 1997년 1997년 1997년 199
Analysis Desc: (W)	Chloride by EPA 32	5.2 Analyt	ical Method: EPA	.325.2						
Chloride	nala na sanan an	1400 mg/L	50	는 사가에 의미의 의미 전 사람이 	100	vid Vil)	03/28/07	SS	KULE-US	16887-00-6
Analvsis Desc:	Sulfate by 375.4 (W) Analvt	ical Method: EPA	375.4	~ 한 한 수가 가지? 것		44-060 M 24-04		94941037	
Sulfate		340 mg/L	100		100		03/28/07	SS		14808-79-8
	Alkalinity-Bicarbona न(W		ical Method: EPA	310.2						
Alkalinity-Bicar	생각 같은 것은 것은 것이 없는 것을 못했다.	150 mg/L	10	가, 특히 있는 것이라는 바람. 	1. 100 100 100 100 100 100 100 100 100 1		03/26/07	ESC		상황한 35. (1914)
Alkalinity-Carbo		U mg/L	10		1		03/26/07	ESC		
Analysis Desc: EPA 376.1 [RE	Hydrogen Sulfide by F](W)	<i>r</i> Analyt	ical Method: EPA	376.1						
Hydrogen Sulfi	de	1.3 mg/L	0.0020	ikonserstroveli	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	AND STREET	03/27/07	FL	e kanan	an na statute de la seconde de la seconde de la seconda de la seconda de la seconda de la seconda de la second El seconda de la seconda de
Analysis Desc:	EPA 200.8 Metals (V	V) Analyti	ical Method: EPA	200.8 (Total)		<u> </u>			e distante de la Secolita de la composita	
Sodium	na an tha Chailean Chaile Chailean Chailean Chaile	790 mg/L	0.0070	0.0035	1 03/23/07	ZS	03/23/07	ZS	9 - 256)	7440-23-5
Magnesium		120 mg/L	0.00082	0.00041	1 03/23/07	zs	03/23/07	ZS		7439-95-4
Potassium		30 mg/L	0.0068	0.0034	1 03/23/07	ZS	03/23/07	ZS		7440-09-7
Calcium		120 mg/L	0.048	0.024	1 03/23/07	ZS	03/23/07	zs		7440-70-2
Iron		0.29 mg/L	0.020	0.010	1 03/23/07	ZS	03/23/07	zs		7439-89-6
Arsenic		U mg/L	0.00032	0.00016	1 03/23/07	zs	03/23/07	ZS		7440-38-2

Report ID: 718160 - 283536 4/10/2007

Page 4 of 5

FDOH# E86546

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Jupiter Environmental Laboratories, Inc..

nelac

Jupiter Environmental Laboratories, Inc. 150 S. Old Dixie Highway Jupiter, FL 33458 Phone: (561)575-0030 Fax: (561)575-4118

ANALYTICAL RESULTS QUALIFIERS

LOG# 718160 Project ID: SVA TW-1

PARAMETER QUALIFIERS

J4 MS/MSD recovery exceeded control limits due to matrix interference. LCS/LCSD recovery was within acceptable range.

PROJECT COMMENTS

718160 Report Limit = PQL

SUBCONTRACTOR NELAC CERTIFICATION

718160	ESC = E87487
--------	--------------

718160 FL = E83018

Report ID: 718160 - 283536 4/10/2007

Page 5 of 5

FDOH# E86546

CERTIFICATE OF ANALYSIS

Jupiter Environmental Laboratories, Inc. 150 S. Old Dixie Highway Jupiter, FL 33458 Phone: (561)575-0030 Fax: (561)575-4118 www.jupiterlabs.com clientservices@jupiterlabs.com

March 7, 2007

Dave Smith Arcadis 2081 Vista Pkwy. West Palm Beach, FL 33411

RE:	LOG#	717895
	Project ID:	TW-1
	COC#	29463

Dear Dave Smith:

Enclosed are the analytical results for sample(s) received by the laboratory on Tuesday, February 13, 2007. Results reported herein conform to the most current NELAC standards, where applicable, unless indicated by * in the body of the report.

The enclosed Chain of Custody is a component of this package and should be retained with the package and incorporated therein.

Results for all solid matrices are reported in dry weight unless otherwise noted. Results for all liquid matrices are reported as received in the laboratory unless otherwise noted.

Samples are disposed of after 30 days of their receipt by the laboratory unless archiving is requested in writing. The laboratory maintains the right to charge storage fees for archived samples.

Certain analyses are subcontracted to outside NELAC certified laboratories, please see the Footnotes section of this report for NELAC certification numbers of laboratories used.

A Statement of Qualifiers is available upon request.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

m

Erin Beauregard for Kacia Baldwin kbaldwin@jupiterlabs.com

Enclosures

Report ID: 717895 - 274844 3/7/2007

Page 1 of 6

FDOH# E86546

CERTIFICATE OF ANALYSIS

Jupiter Environmental Laboratories, Inc. 150 S. Old Dixie Highway Jupiter, FL 33458 Phone: (561)575-0030

Phone: (561)575-0030 Fax: (561)575-4118

SAMPLE ANALYTE COUNT

LOG# 717895 Project ID: TW-1

Lab ID	Sample ID	Method	Analytes Reported
717895001	TW-1/1048	2580	1
		EPA 00-02	1
		EPA 160.1	1
		EPA 180.1	1
		EPA 200.8 (Dissolved)	2
		EPA 200.8 (Total)	7
		EPA 310.2	1
		EPA 325.2	1
		EPA 350.1	1
		EPA 353.1	1
		EPA 375.4	1
		SM 2340B	3

Report ID: 717895 - 274844 3/7/2007

Page 2 of 6

FDOH# E86546

CERTIFICATE OF ANALYSIS

Phone: (561)575-0030 Fax: (561)575-4118

SAMPLE SUMMARY

Lab ID	Sample ID	Matrix	Date Collected	Doto Received	-
Project ID:	TW-1				
LOG#	717895				

Labib	Sample ID	Matrix	Date Collected	Date Received
				······
717895001	TW-1/1048	Aqueous Liquid	2/13/2007 15:40	2/13/2007 17:00

Report ID: 717895 - 274844 3/7/2007

Page 3 of 6

FDOH# E86546

CERTIFICATE OF ANALYSIS

Jupiter Environmental Laboratories, Inc. 150 S. Old Dixie Highway Jupiter, FL 33458 Phone: (561)575-0030 Fax: (561)575-4118

ANALYTICAL RESULTS QUALIFIERS

LOG# 717895 Project ID: TW-1

PARAMETER QUALIFIERS

J4 MS/MSD recovery exceeded control limits due to matrix interference. LCS/LCSD recovery was within acceptable range.

Q Sample held beyond the accepted holding time.

Additional method/sample information: Sample(s) received past/too close to holding time expiration. **T8**

PROJECT COMMENTS

717895 Report Limit = PQL

SUBCONTRACTOR NELAC CERTIFICATION

717895	ESC = E87487

717895 KNL	= E84025
------------	----------

Report ID: 717895 - 274844 3/7/2007

Page 6 of 6

FDOH# E86546 **CERTIFICATE OF ANALYSIS**

ANALYTICAL RESULTS

Lab ID: 717895001 Sample ID: TW-1/1048			Date Received: Date Collected:		Matr	ix: Aqu	eous Liq	uid	
Parameters	Results Units	Report Limit	MDL	DF Prepared	Ву	Analyzed	Ву	Qual	CAS
Analysis Desc: TDS by EPA 16(0.1 [REF] An	alytical Method: EP/	A 160:1						
(W) Total Dissolved Solids	4800 mg/L	1.0		1		02/21/07	ESC	Q	
Analysis Desc: Ammonia by EP/ W)	A 350.1 An	alytical Method: EP/	A 350.1						
Ammonia	1.9 mg/L	0.20		10		02/20/07	SS		7664-41
Analysis Desc: Nitrate by EPA 3	53.1 (W) An	alytical Method: EP/	A 353.1						
Nitrate	U mg/L	0.10		1	ant handaday	02/16/07	ESC	T 8	
Analysis Desc: Chloride by EPA W)	325.2 An	alytical Method: EPA	\325.2		23				
Chloride	2300 mg/L	50		100		02/15/07	SS		16887-00
Nnalysis Desc: Sulfate by 375.4 Sulfate	(W) An: 410 mg/L	Ilytical Method: EP4 100		100		02/16/07			4 4000 70
Analysis Desc: Alkalinity, EPA 31	-	lytical Method: EPA		100		02/10/07	SS		14808-79
Alkalinity	97 mg/L	50		10		02/16/07	SS	J4	
Malysis Desc: Ox-Red Potentia	liby Ana	lytical Method: 258	0						
)RP*	200 mV	1.0		1		02/16/07	KB		
nalysis Desc. Gross Alpha by E 2 [REF]	EPA 00- Ana	lytical Method: EPA	.00-02						
Gross Alpha	10.1 +/- 0.8 pCi/L	0.50		1		02/27/07	KNL		
nalysis Desc: Ca Hardness by M 2340B (W)	Calc. Ana	lytical Method: SM	2340B						
alcium Hardness	380 mg/L			1		02/15/07	ZS		
lagnesium Hardness otal Hardness as CaCO3	120 mg/L 510 mg/L			1 1		02/15/07 02/15/07	ZS ZS		
nalysis Desc: Turbidity by EPA	-	lytical Method: EPA	180.1	-			20		
REF] (W) urbidity	73 NTU	0.10		1		02/15/07	ESC		
nalysis Desc: EPA 200.8 Metals		lytical Method: EPA	200.8 (Total)						
langanese	0.017 mg/L	0.00017	0.000085						

Report ID: 717895 - 274844 3/7/2007

Page 4 of 6

FDOH# E86546

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

LOG# 717895 Project ID: TW-1

Lab ID: Sample ID:	717895001 TW-1/1048				Date Receive Date Collecter		Ma	trix: Aqu	eous Lic	quid	
Parameters		Results	Units	Report Limit	MDL	DF Prepared	Ву	Analyzed	Ву	Qual	CAS
Sodium		230	mg/L	0.0070	0.0035	1 02/15/07	ZS	02/15/07	ZS		7440-23-5
Magnesium		30	mg/L	0.00082	0.00041	1 02/15/07	ZS	02/15/07	zs		7439-95-4
Potassium		5.5	mg/L	0.0068	0.0034	1 02/15/07	ZS	02/15/07	zs		7440-09-7
Calcium		150	mg/L	0.048	0.024	1 02/15/07	ZS	02/15/07	zs		7440-70-2
Iron		1.3	mg/L	0.020	0.010	1 02/15/07	ZS	02/15/07	ZS		7439-89-6
Analysis Deso Metals (W)	c: EPA 200.8 Dissolved		Analy	tical Method: EPA	200.8 (Dissolve	əd)					
Arsenic	en menne sen anna a sa anna defit à th' Biffithe (1987) e B	0.0036	mg/L	0.00032	0.00016	1 02/15/07	ZS	02/15/07	ZS		7440-38-2
Iron		0.54	mg/L	0.020	0.010	1 02/15/07	ZS	02/15/07	ZS		7439-89-6

Report ID: 717895 - 274844 3/7/2007

Page 5 of 6

FDOH# E86546

CERTIFICATE OF ANALYSIS

Chain of Custody Record

LAB USE ONLY

J.E.L. Log # <u>7177875</u> P.O. # _____

Jupiter Environmental Laboratories

BAR CODE

	al Labura	alones												Quote#	
Company Name ARCHO	(5	· · · ·				L	AB	AN/	ALY	SIS				· · · · · · · · · · · · · · · · · · ·	
Address 2081 145717 74	JY .	· · · · · · · · · · · · · · · · · · ·	E B	A	B	A		A			-				
Dity LI-PB State FL	zip 33411						1						$\frac{(N/\lambda)}{(N/\lambda)}$		/
Sampling Site Address SEACOAS		4.6.	မ်း				4	۰ ۳					とと		
ttn: 🧿 SM17H	Fax/Email		Parameters	(Serg)		- 2 2	OLEX, APPL ONWER, AUT	Level 1					Tield Filtered (Y/N) Integrity OK (Y/N)		
Project Jame TW-1 Project # W			am		ALGAR	96	E B						Filte Irity		
Sampler Jame/Signature L. Kornalinski ()		2000	Par	Z ZZ	۲ ۲	22	X	274.6					ield Filte ntegrity	1 <u></u>	
Sample Label Colle (Client ID) Date	cted Collected	Matrix # of Code* Cont	Parameter	NETAV	GR.095		nectox	111	7		··· .		Ē		+~
						<u></u>	<u>×3</u>	<u> </u>	۲				11	Commen	
2	107 15:40	SW S							· .				N	Jes- Hotals	
2							<u>.</u>					_		fillered othe	2
														filogred Othe	10
		1							<u>}</u>						
5							:				<u>.</u>	-			
.6	· · ·		_												
7	·····								-	•					
8															
9															
0		·							•	·					
Matrix Codes*	Pres Codes	** Relinquished by	/			Da	ite	Tim	8	Rect	lived by			Date Tim	IØ
Soil/Solid Sediment SW Surface Water W Ground Water SL Sludge W Waste Water O Other (Please Specify	A- none I- Ice B- HNO ₃ O- Oth C- H ₂ SO ₄ M- Me	er Maria	anina	<u>e_(1</u>	RCAP	rs) 2,	113/0	7 1	700	F	Y.	A		263/07 17	70
	D- NaOH E- HCI														
	for applicable fees			• •											
A.T.Request FDEP Standard SFWMD	Temp Control:								,	1					
Rush Date Required	<u> </u>	;	Jupiter	Envir	onme	ntal L	abora	tories	s, Inc						
Pageof		 (561) 575-00	150 Old)30 • Fax (I Dixie 561) 5	High 75-41	way, . 18 •	Jupite client	r, FL 3 servic	33458 ;es@	3 jupiter	labs.co	om	C.	.o.c.# 29463	5

Jupiter Environmental Laboratories, Inc. 150 S. Old Dixie Highway Jupiter, FL 33458

> Phone: (561)575-0030 Fax: (561)575-4118 www.jupiterlabs.com clientservices@jupiterlabs.com

March 13, 2007

Dave Smith Arcadis 2081 Vista Pkwy. West Palm Beach, FL 33411

RE: LOG# 717938 Project ID: wf005600.0001 TW-1 COC# 29508

Dear Dave Smith:

Enclosed are the analytical results for sample(s) received by the laboratory on Monday, February 19, 2007. Results reported herein conform to the most current NELAC standards, where applicable, unless indicated by * in the body of the report.

The enclosed Chain of Custody is a component of this package and should be retained with the package and incorporated therein.

Results for all solid matrices are reported in dry weight unless otherwise noted. Results for all liquid matrices are reported as received in the laboratory unless otherwise noted.

Samples are disposed of after 30 days of their receipt by the laboratory unless archiving is requested in writing. The laboratory maintains the right to charge storage fees for archived samples.

Certain analyses are subcontracted to outside NELAC certified laboratories, please see the Footnotes section of this report for NELAC certification numbers of laboratories used.

A Statement of Qualifiers is available upon request.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

7 An

Erin Beauregard for Kacia Baldwin kbaldwin@jupiterlabs.com

Enclosures

Report ID: 717938 - 276399 3/13/2007

Page 1 of 6

FDOH# E86546

CERTIFICATE OF ANALYSIS

Phone: (561)575-0030 Fax: (561)575-4118

SAMPLE ANALYTE COUNT

LOG# 717938 Project ID: wf005600.0001 TW-1

Lab ID	Sample ID	Method	Analytes Reported
717938001	TW-1/1135	2580	1
		EPA 00-02	1
		EPA 160.1	1
		EPA 200.8 (Dissolved)	2
	EPA 200.8 (Total)	7	
		EPA 310.2	1
		EPA 325.2	1
		EPA 350.1	1
		EPA 353.2	1
		EPA 375.4	1
		SM 2340B	2

Report ID: 717938 - 276399 3/13/2007

Page 2 of 6

FDOH# E86546 CERTIFICATE OF ANALYSIS

Fnone: (561)575-0030 Fax: (561)575-4118

SAMPLE SUMMARY

LOG# 717938 Project ID: wf005600.0001 TW-1

Lab ID	Sample ID	Matrix	Date Collected	Date Received
717938001	TW-1/1135	Aqueous Liquid	2/16/2007 18:50	2/19/2007 15:50

Report ID: 717938 - 276399 3/13/2007

Page 3 of 6

FDOH# E86546

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

	7938 005600.0001 TW-	1							··		
Lab ID: Sample ID:	717938001 TW-1/1135				Date Received: Date Collected:		Mai	trix: Aqu	ieous Liq	uid	
Parameters		Results	Units	Report Limit	MDL	DF Prepared	Ву	Analyzed	Ву	Qual	CAS
	TDS by EPA 160.	1 (REF)	Ar	alytical Method: EPA	160.1						
(W) Total Dissolved	l Solids	5000	mg/L	1.0		1		02/24/07	ESC		
Analysis Desc: (W)	Ammonia by EPA	350.1	Ar	alytical Method: EPA	350.1						
Ammonia		1.8	mg/L	0.20		10		02/20/07	SS		7664-41-7
Analysis Desc: (W)	Chloride by EPA:	325.2	Ar	alytical Method: EPA	325.2						
Chloride			mg/L	50		100		02/23/07	ESC		16887-00-6
Analysis Desc: Sulfate	Sulfate by 375.4 (위에 영상 전 영상 관람	Ar mg/L	alytical Method: EPA 100		100		02/23/07	SS		14808-79-8
	Alkalinity, EPA 31		-	alytical Method: EPA				02,20,07			14000-70-0
Alkalinity		120	mg/L	50		10		02/23/07	SS		
Analysis Desc: 2580	Ox-Red Potential	by	An	alytical Method: 2580)						
ORP*			mV	1.0		1		02/19/07	AS		
Analysis Desc: 02 [REF]	Gross Alpha by E	PA 00-	An	alytical Method: EPA	00-02						
Gross Alpha		6.8 +/- 0.8	•	0.40		1	- 900 ABAA-300	03/09/07	KNL	an har verse yn resery	
Analysis Desc: 353.2 (W)	Nitrite-Nitrate by I	epa	An	alytical Method: EPA	353.2						
Nitrite-Nitrate			mg/L	0.10		1		02/23/07	ESC		
Analysis Desc: 2340B (W)	Hardness by Calc	:. SM	An	alytical Method: SM 2	2340B						
Total Hardness Calcium Hardn			mg/L mg/L		an analysis and a fifth damage the first damage of the second second second second second second second second	1	n ter anges - trasbel s for	02/21/07 02/21/07	ZS ZS	na ana 2017 mana 2017 mara 1	n dheann anns a' Sannanna (Cannaissa) dha Cannais dhe
	EPA 200.8 Metals			alytical Method: EPA	200.8 (Total)	•		5212 1101	20		
Manganese		0.0041	CIBRED CARDER	0.00017	0.000085	1 02/21/07	ZS	02/21/07	ZS		7439-96-5
Arsenic		0.011		0.00032	0.00016	1 02/21/07	ZS	02/21/07	zs		7440-38-2
Sodium			mg/L	0.0070	0.0035	1 02/21/07	ZS	02/21/07	ZS		7440-23-5
Magnesium			mg/L	0.00082	0.00041	1 02/21/07	ZS	02/21/07	ZS		7439-95-4
Potassium			mg/L	0.0068	0.0034	1 02/21/07	ZS	02/21/07	ZS		7440-09-7
Calcium		130	mg/L	0.048	0.024	1 02/21/07	ZS	02/21/07	ZS		7440-70-2

Report ID: 717938 - 276399 3/13/2007 Page 4 of 6

FDOH# E86546

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

LOG# 717938 Project ID: wf005600.0001 TW-1 Lab ID: 717938001 Date Received: 2/19/2007 Matrix: Aqueous Liquid Sample ID: TW-1/1135 Date Collected: 2/16/2007 Parameters Results Units Report Limit MDL **DF** Prepared By Analyzed By Qual CAS LI ma/l Iron 0.020

Iron	U mg/L	0.020	0.010	1 02/21/07	zs	02/21/07	ZS	7439-89-6
Analysis Desc: EPA 200.8 Dissolve	ed Analytic	cal Method: EPA	200.8 (Dissolve	d)				
Metals (W) Arsenic	0.0099 mg/L	0.00032	0.00016	1 02/21/07	ZS	02/21/07	ZS	7440-38-2
Iron	U mg/L	0.00032	0.00010	1 02/21/07	ZS	02/21/07	ZS ZS	7440-38-2 7439-89-6

Report ID: 717938 - 276399 3/13/2007 Page 5 of 6

FDOH# E86546

CERTIFICATE OF ANALYSIS

Jupiter Environmental Laboratories, Inc. 150 S. Old Dixie Highway Jupiter, FL 33458

Phone: (561)575-0030 Fax: (561)575-4118

ANALYTICAL RESULTS QUALIFIERS

LOG# 717938 Project ID: wf005600.0001 TW-1

PARAMETER QUALIFIERS

PROJECT COMMENTS

717938 Report Limit = PQL

SUBCONTRACTOR NELAC CERTIFICATION

717938 ESC = E87487

717938 KNL = E84025

Report ID: 717938 - 276399 3/13/2007

Page 6 of 6

FDOH# E86546

CERTIFICATE OF ANALYSIS

Chain of Custody Record

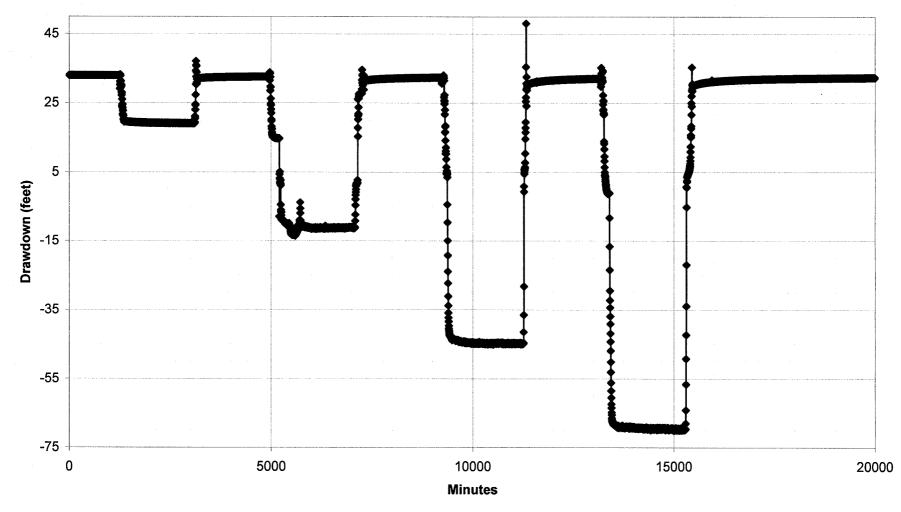
LAB USE ONLY

Jupiter	Environmental	Laboratories
---------	---------------	--------------

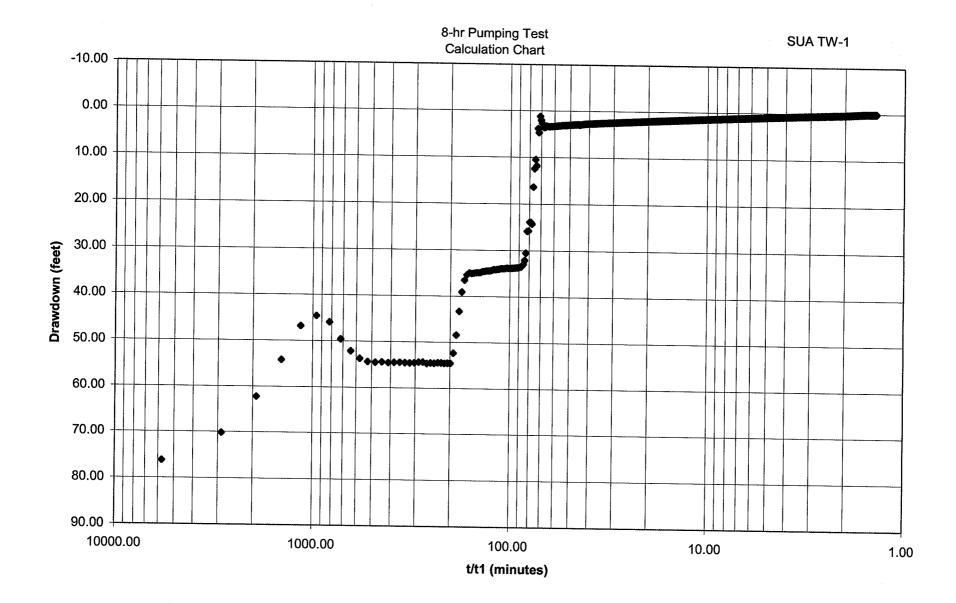
BAR CODE

	ICIIIdi		aion	65														Quote#
Company Name	ARCAOK		•						l	_AB	AN	ALY	SIS	\$				
Address 2081 Vesta City LSPB Stat	Miny				Press													
City Lore Stat	te FL Zip	33411					00	÷.								٦ ₂	N)	
Sampling Site Address	PBG.	FL			ري ري		3	are	2							X	X	
Attn: @ Smith	Fax/	Email			arameters	list /	je U	3	Malar		Sap			~~		red	N N	
Project Name Soicest TW-1 Proj				······	am	ee .	te l		1	Pol	P ' 1		~^	SN		-ilte	rity	
Sampler Name/Signature		05680.0	1007		Par		K, Fe (Bits)	2mars	Grees	Redox Pot.	, 4	NH3	0	42		Field Filtered (Y/N)	Integrity	
# Sample Label	Collected	Collected	Matrix	# of	-	Hetek		4. h	G	ed	46	4	,-	80.		Fie	=	
(Client ID)	Date	Time	Code⁺	Cont		X	Ę	2	ļ	Q	9.							Comments
_1 TW-1/1135	2/16/07	18:50	Gh/	9		~					~		~	~				
_2																		Fatl Raiser , A Core ,
_3																		Fell Parano les: Venp. (°c): 20.9 Tarlad. : 0.42 NTV
_4															·			Terge (C: 20.5
5																		
6				<u> </u>														pl : 7.09
7																		104 d. : 8600 . Stre
																		<u>рн</u> : 7.09 (она: 8600, яс. NRP = 485
_8																		
_9																		
_0																		·····
Matrix Codes*		Pres Codes					I		D	ate	Tir	ne	Re	ceived	by		I	> Date / Time
S Soil/Solid Sediment SW Surface Wa GW Ground Water SL Sludge WW Waste Water O Other (Plea	iter /	A- none I- ice 3- HNO₃ O- Ott C- H₂SO₄ M- Me D- NaOH	ier	Na	an	inst	i		2	<u> 19 9</u>	7 16	517	Z	\mathcal{I}				9/9/87 10:15
DW Drinking Water		D- NaOH E- HCI	v" I S>					~	Ŧ/	19/0	21	5	51			L	7	2/1/2 1550
QA/QC level with report	e guide for ap			1				\mathbf{T}		10	<u>'</u> †-'			Æ	7-			- / 2/19/07 1550
T.A.T. Request FDEP		Temp Control:		J			-/						+-					
Standard SFWMD		5.	、┝		1	nitor	/			ak -								
Rush Date Required		^			15	0 Old	Dixie	High	wav.	Labora Jupite	er. FL	33458	3				~	o.c.# 29508
Page of /			(561)	575-003	30 • 1	Fax (5	561) 5	75-41	118 •	clien	tservi	ices@	jupit	erlabs	s.com		U.($J.U.\# \angle / J U U$

ORIGINAL

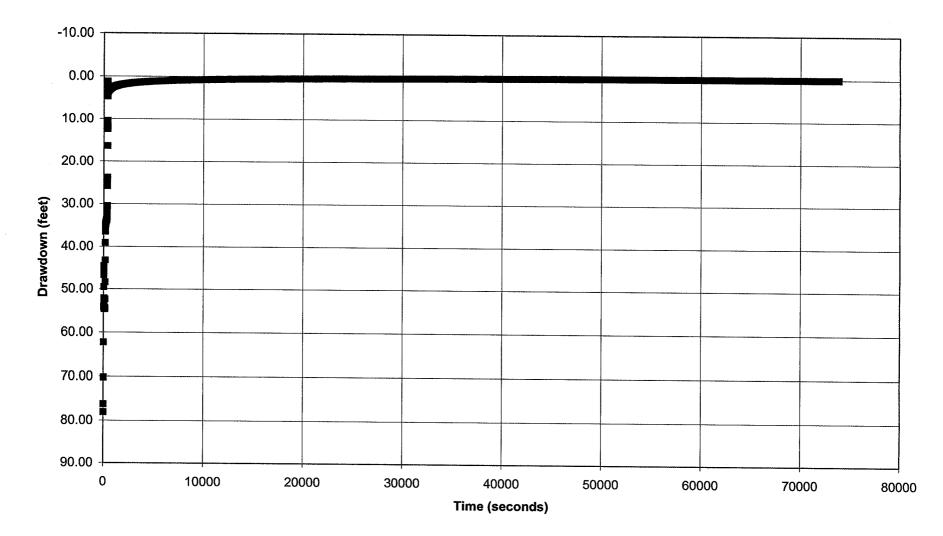

J.E.L. Log # _____717938

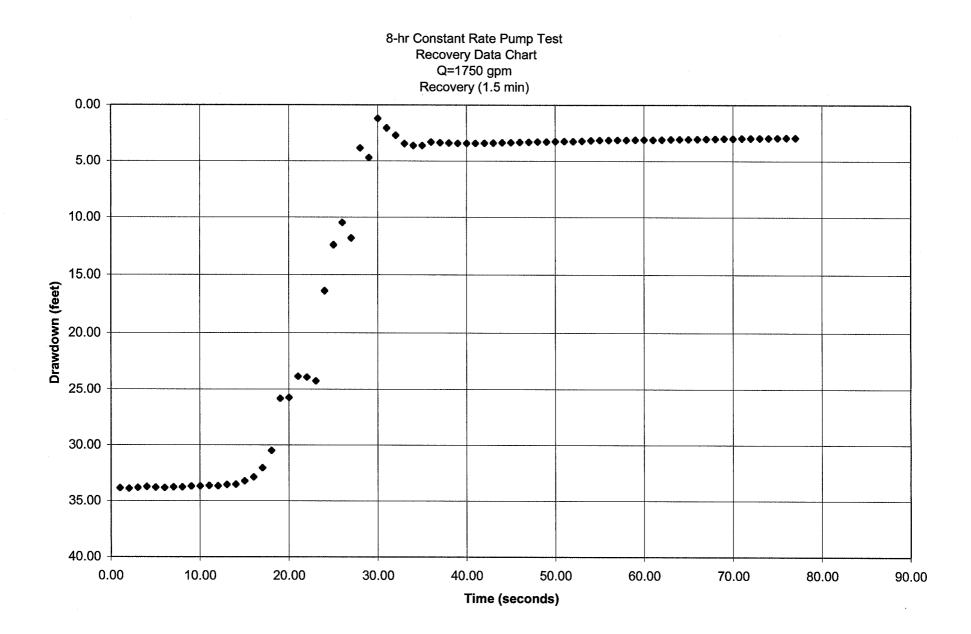
P.O. # _____


ARCADIS

Appendix E

Pumping Test Data




Seacoast F-1 Step-Rate Pumping Test

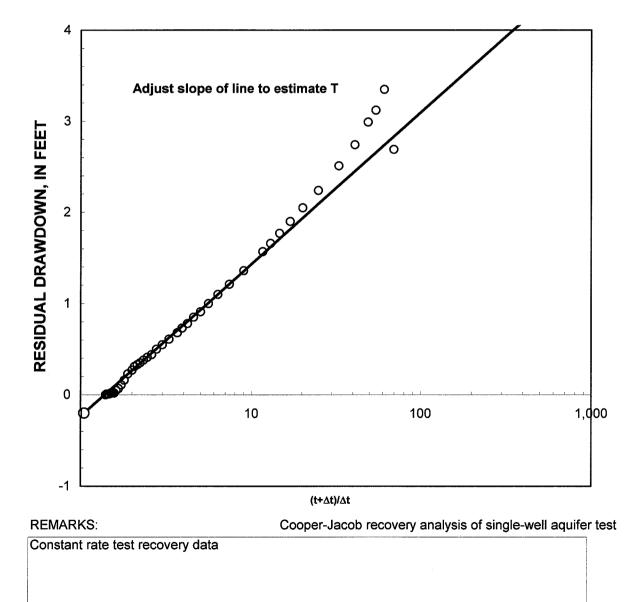
8-hr Constant Rate Pump Test Recovery Data Chart Q=1750 gpm

SUA TW-1

INPUT Construction: Casing dia. (d_c) 12 Inch Annulus dia. (d_w) 20 Inch Screen Length (L) 300 Feet Depths to: water level (DTW) 33 Feet Top of Aquifer 1300 Feet Base of Aquifer 1600 Feet Annular Fill: across screen -- Open Hole above screen -- Cement Aguifer Material -- Karst FLOW RATE 1750 GPM

WELL ID: F-1

Local ID: SUA F-1 Date: 6/27/2007 Time: 0:00


COMPUTED

Aquifer thickness = 300 Feet

Slope = 1.664399 Feet/log10

Input is consistent.

K	Π	120 Feet/Day
Т	=	37000 Feet²/Day

	Reduced Data Time,	Water Level
Entry	Date Hr:Min:Sec	Feet
1	1/0/00 0:00:00	0.00
2	1/0/00 8:00:00	78.04
3	1/0/00 8:01:00	54.53
4	1/0/00 8:02:00	54.61
5	1/0/00 8:03:00	34.88
6	1/0/00 8:04:00	34.05
7	1/0/00 8:05:00	33.76
8	1/0/00 8:06:00	25.75
9 10	1/0/00 8:07:00 1/0/00 8:08:00	2.69
10	1/0/00 8:09:00	3.35 3.12
12	1/0/00 8:10:00	2.99
13	1/0/00 8:12:00	2.74
14	1/0/00 8:15:00	2.51
15	1/0/00 8:20:00	2.24
16	1/0/00 8:25:00	2.05
17 18	1/0/00 8:30:00 1/0/00 8:35:00	1.90 1.77
19	1/0/00 8:40:00	1.66
20	1/0/00 8:45:00	1.57
21	1/0/00 9:00:00	1.36
22	1/0/00 9:15:00	1.21
23 24	1/0/00 9:30:00 1/0/00 9:45:00	1.10 1.00
25	1/0/00 10:00:00	0.91
26	1/0/00 10:15:00	0.85
27	1/0/00 10:30:00	0.78
28	1/0/00 10:45:00	0.73
29	1/0/00 11:00:00	0.68
30 31	1/0/00 11:30:00 1/0/00 12:00:00	0.61 0.55
32	1/0/00 12:30:00	0.50
33	1/0/00 13:00:00	0.44
34	1/0/00 13:30:00	0.41
35	1/0/00 14:00:00	0.38
36 37	1/0/00 14:30:00 1/0/00 15:00:00	0.35 0.33
38	1/0/00 15:30:00	0.33
39	1/0/00 16:00:00	0.27
40	1/0/00 17:00:00	0.23
41	1/0/00 18:00:00	0.16
42	1/0/00 19:00:00	0.11
43 44	1/0/00 20:00:00 1/0/00 21:00:00	0.07 0.05
45	1/0/00 22:00:00	0.02
46	1/0/00 23:00:00	0.02
47	1/1/00 0:00:00	0.02
48 40	1/1/00 1:00:00	0.01
49 50	1/1/00 2:00:00 1/1/00 3:00:00	0.01
00	1/ 1/00 0.00.00	0.01

ARCADIS

Appendix F

Final Well Video Survey

TELEVISION SURVEY LOG Floridan Aquifer Test Well F-1 Seacoast Utility Authority Hood Road Water Treatment Plant Palm Beach Gardens, Florida

Date: 7/11/07

Final Well Video Survey (from surface to 1600 ft below land surface).

Depth (fee	t below l.s.)	Description of Features and Comments
	2.9 above l.s	Top of 16-inch I.D.PVC Final Casing.
15	356	Final Casing connection in approximately 20-foot intervals.
	356	Reducer/ 16-inch casing connection.
	358	Reducer/ 12-inch casing connection.
358	1300.6	12-inch I.D. PVC final casing with connections between sections in 20- ft intervals.
	1300.6	Bottom of 12-inch casing, top of an open 20-inch open hole.
		Complete cement seal around base of casing not observed.
1300.6	1300.9	Cement and cement/ gravel mix. Centralizer inbedded in cement.
1300.9	1310	Minor cement/gravel "residual" on one side of open hole
1310	1600	Nominal 20- inch open hole. Borehole mostly tight, with few small fractures. Uniform lithology:
		very light to white, vuggy limestone with cylindrical or spiral thin black bands of minerals
		(most likely phosphate). Black grains covering botton of the borehole. Cement backplug visible.
		No accumulated debris on bottom except two centralizer fragments.