SHORT CONTRIBUTIONS FLORIDA GEOLOGY

Number

Miami Geological Society

January 1995

Faulting in the Plantation RO* Injection Well Sarasota County, Florida

George O. Winston

The local working units shown on Figure 2 were established by regional correlations in another project.

In the Plantation RO well (No. 2, Fig. 1) the Arcadia-3Bu interval (Figs. 2 & 3) is 365 feet thinner than in the Venice Gardens well one mile to the west (No. 1, Fig. 1). In addition, the top of Unit 3Bu in Well 2 is 265 feet higher structurally compared to Well 1. Well 2 is only 35 feet higher on the base of the Arcadia.

Correlation of the 2 high resistivity kicks (points 1 & 2) between the tuo wells (Fig. 4) indicates that, compared to Well 1, two intervals are missing in Well 2. These intervals include 110 feet in Unit 2 (essentially Ocala), and 245 feet in basal Unit 3A (essentially upper Avon Park). How much of underlying Unit 3Bu in Well 2 has also been faulted out cannot be determined as neither well penetrates deeper marker horizons.

The above data indicate the presence in Well 2 of two adjacent normal faults, downthroun to the west.

Within the competent dolomite of Unit 3Bu in Well 2 the borehole video "survey shows 50 feet of wall-collapse in three zones within an 80-foot interval. In contrast, unfaulted Well 1 had only an occasional one-foot

In Winston 1995 I showed that in three instances thick intervals of borehole wall-collapse were associated with known faults. This suggests that thick wall-collapse zones in a well can indicate the presence of a fault, either in the well or in the vicinity. The main cause of wallcollapse in dolomite is by drilling into zones of intersecting open fractures which are often solution-enlarged. When the large blocks defined by such fracture systems lose support due to the open hole, the wall

The presence of thick wall-collapse in Well 2 provides additional support for faulting.

*aka Ramar & Venice RO

Winston, G.O., 1995 in review, "The Boulder Zone Dolomites of Florida -Vol. 1 - Paleogene & Upper Cretaceous Zones of the Southeastern Peninsula

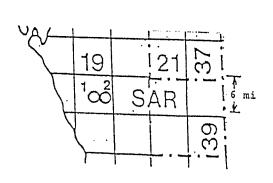
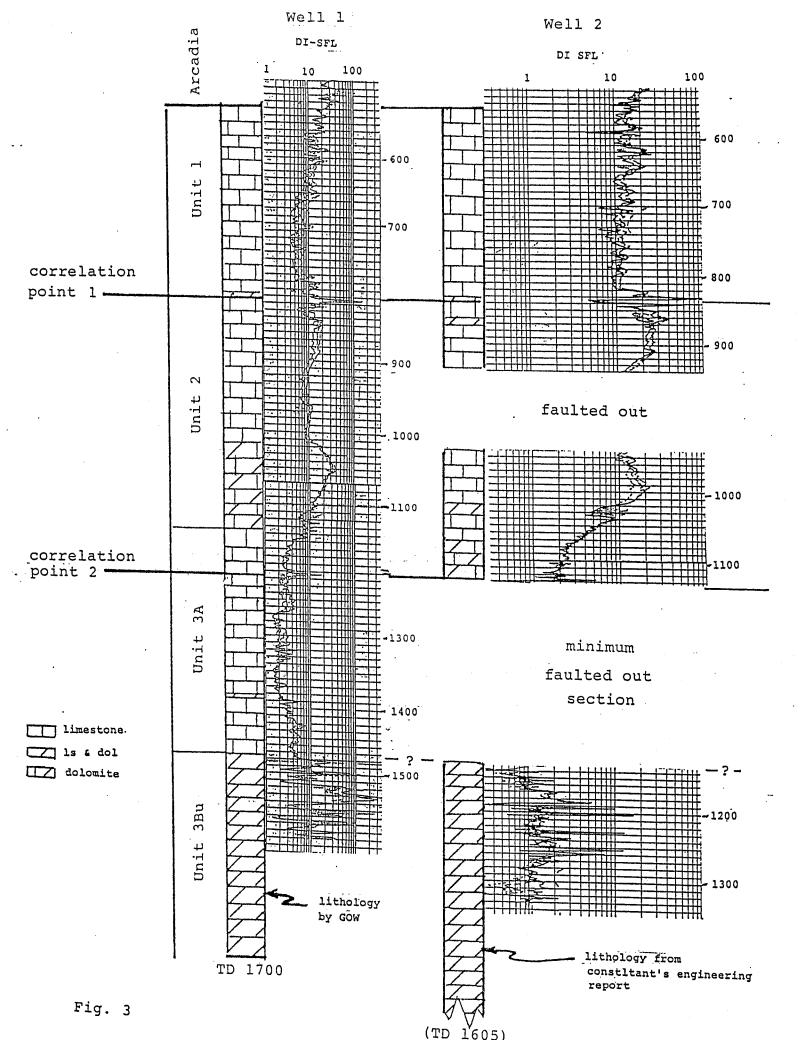


Fig. 1

OFICOGENE - Yeardia							
		田					
	2 (44)						
u			. 3041	田			
*		-	Bu	72			
4		i	. 404.	[]			
U	3	В		722			
0			27	201			
u u			300.				
		١		開			
۲.	0.1	: a y	Dol 150'	13-3			

1 1:	Lmes	tone
------	------	------

dolomite


IZ ls & dol anhydrite

anhy nods

Canaralized Caologic Column

Local Working Units Sarasota County

Fig. 2

