AQUIFER PERFORMANCE TEST DATA ANALYSIS REPORT AND TECHNICAL APPENDICES - PHASE 1A PHASE I - REGIONAL INTERCONNECTION

FOR THE

WEST COAST REGIONAL WATER SUPPLY AUTHORITY

DECEMBER 1986

CAMP DRESSER & McKEE INC.
CLEARWATER, FLORIDA

APTSITO SWF-153

AQUIFER PERFORMANCE TEST DATA ANALYSIS REPORT AND TECHNICAL APPENDICES - PHASE IA

PHASE I - REGIONAL INTERCONNECTION

FOR THE

WEST COAST REGIONAL WATER SUPPLY AUTHORITY

PREPARED BY

CAMP DRESSER & MCKEE INC.

DECEMBER 1986

CAMP DRESSER & McKEE INC.

One Tampa City Center, Suite 1750 Tampa, Florida 33602 813 221-2833

December 12, 1986

Ms. Loretta Holtkamp West Coast Regional Water Supply Authority 2535 Landmark Drive, Suite 211 Clearwater, FL 33519

RE: Phase IA Draft Report - Phase I Regional Interconnection

Dear Ms. Holtkamp:

Camp Dresser & McKee Inc. is pleased to submit the attached Aquifer Performance Test Data Analysis Report and Technical Appendices - Phase IA. The report was prepared by James H. Jensen and Gerhardt Witt under my direction.

The field investigation and data analysis indicate that the site is suitable for a water supply well producing an average of 3 million gallons per day.

CDM appreciates this opportunity to provide professional engineering and hydrogeologic services to the Authority.

Sincerely,

CAMP DRESSER & MCKEE INC.

Edward J. Kent, Ph.D., P.E.

EJK/jra EJK6T.2/65

cc: T. D. Furman

D. H. Twachtmann

L. R. Tortora

G. H. Witt

J. H. Jensen

CONTENTS

Section			Page
EXEC	UTIVE	SUMMARY	
1.0	INTRO	DDUCTION	1-1
	1.2 1.3	Authorization Scope of Work SWFWMD Requirements Well Identification	1-1 1-1 1-2 1-3
2.0		OGRAPHIC SUMMARY	2–1
2.0	FHISI	OGRAFIIC BOILLANT	
	2.1	Regional 2.1.1 Climate 2.1.2 Topography 2.1.3 Surface Hydrology	2-1 2-1 2-2 2-2 2-4
	2.2	Site Information 2.2.1 Climate 2.2.2 Topography 2.2.3 Surface Hydrology	2-4 2-4 2-4 2-5
3.0	HYDRO	OGEOLOGY	3–1
	3.1	Regional Hydrogeology 3.1.1 Geology 3.1.2 Aquifer System 3.1.3 Groundwater Quality	3–1 3–1 3–4 3–6
	3.2		3–7 3–7 3–8 3–9
	3.3		3–10 3–10
4.0	WELL	DESIGN AND CONSTRUCTION	4–1
	4.1	Test Production Well Deep Monitor Wells	4-1 4-1
	4.3	Shallow Monitor Wells	4–3
	4.4 4.5	Well Sampling Procedure Equipment Used	4-4 4-4
5.0	TEST	PROCEDURES	5–1
	5.2	Well Site Plan Step-Drawdown Test Admifer Performance Testing	5–1 5–2 5–3

CONTENTS (continued)

Section			
6.0	TEST	ANALYSIS METHODS AND RESULTS	6–1
	6.26.36.4	6.3.1 Rainfall 6.3.2 Tidal/Barometric Effects 6.3.3 Regional Trends Partial Penetration Effects APT Analysis Methods 6.5.1 Theis Nonequilibrium Method 6.5.2 Cooper-Jacob Method 6.5.3 Walton Method 6.5.4 Hantush I Method 6.5.5 Hantush II Method 6.5.6 Hantush-Jacob Method 6.5.7 Jacob Leaky Artesian Method	6-1 6-4 6-4 6-4 6-5 6-6 6-7 6-7 6-9 6-11 6-12 6-13 6-14 6-15
- ^		6.5.8 Anisotropic Method	7-1
7.0	7.1 7.2 7.3	Transmissivity Storage Coefficient Leakance Test Summary	7-1 7-1 7-3 7-5
8.0	CONC	LUSIONS	8–1
9.0	BIBL	IOGRAPHY	9–1
APPENDIC	ES		
A B C D E F G H I J	Acti Geol Geop Well Step Aqui Aqui Wate	MD Aquifer Performance Test Authorization vity Chronology ogic Logs hysical Logs Completion Reports -Drawdown Test Data fer Performance Test Data fer Performance Test Analyses r Quality Analyses sary of Terms	

WCRWSA5T.1/27 12/9/86

LIST OF TABLES

<u>Table</u>		Page
3–1	Hydrogeologic Framework	3–2
4-1	Well Construction Information	4-2
6–1	Results of Step-Drawdown Test of TPW-IA	6–2
7–1	Results of APT Analysis Methods	7–2

LIST OF FIGURES

Figure	Following <u>Page</u>
1-1 General Site Location	1-1
2-1 Physiography of the Phase IA Area 2-2 Base Map for the Phase IA Test Site	2-1 2-4
3-1 Lithologic Cross-section of Phase IA Site	3–7
4-1 Site IA Location Map Showing Distances and Director of Wells	ections 4-2
4-2 Test Production Well Construction 4-3 Typical Deep Monitor Well Construction 4-4 Typical Shallow Monitor Well Construction	4-2 4-3 4-3
6-1 Observed Water Levels of the Aquifers at the Pl before, during and after the APT (Aquifer Perfe	hase IA Site 6-2 ormance Test)
6-2 Observed Water Levels at TPW-IA before, during the APT (Aquifer Performance Test)	and after 6-3
6-3 Approximate Transmissivity of TPW-IA Using Unc. 6-4 Observed Daily Rainfall 6-5 Barometric Pressure Fluctuations Recorded at t.	6-4
Tampa Airport June 1986 6-6 Regional Trend in the Florida Aquifer and ROMP Rainfall at the Phase IA Site	85 and 6-6
6-7 Regional Aquifer Trends During June 1986	6–6

WEST COAST REGIONAL WATER SUPPLY AUTHORITY AQUIFER PERFORMANCE TEST ANALYSIS - PHASE IA EXECUTIVE SUMMARY

PURPOSE

As part of an investigative program examining the water supply potential of the area, the West Coast Regional Water Supply Authority (WCRWSA) authorized Camp Dresser & McKee Inc. (CDM) to design and conduct an aquifer performance test near the intersection of I-75 and State Road 54 in south-central Pasco County. The site is referred to as Phase IA of the Phase I Regional Interconnection.

The purpose of the aquifer performance test was to gain information on the characteristics of the Floridan aquifer in this area and to determine the water quality and potential yield of a test production well at this location. The test program was performed in support of a consumptive use permit application and was conducted according to Southwest Florida Water Management District (SWFWMD) requirements.

APPROACH

Six wells were installed at the Phase 1A site:

- A 24-inch diameter Floridan aquifer test production well,
- Three 8-inch diameter Floridan aquifer monitor wells, and
- o Two 4-inch diameter water table monitor wells.

Two separate pump tests were performed:

o A step-drawdown test to determine the performance and efficiency of the test production well, and

o An aquifer performance test to determine the aquifer properties in the vicinity.

Water quality characteristics of the groundwater were also determined. Details of the well installation and testing procedures are provided in Sections 4 and 5.

RESULTS

Results of the hydrogeologic investigation, step-drawdown test, aquifer performance test, and water quality analyses indicated that the Phase IA site is suitable for a potable water supply well producing an average of 3 million gallons per day (mgd) from the Floridan aquifer. Analysis of the test data indicated the following average aquifer properties:

- o Transmissivity 423,600 gpd/ft
- o Storage Coefficient 0.0007
- o Leakance 6.0×10^{-5} per day

These data indicate that the well is in a productive area, and that the aquifer is semi-confined. Water quality test results indicate that the water from the Floridan aquifer at the test site meets federal and state primary and secondary drinking water standards. Detailed discussions of the test analyses and results are provided in Sections 6 and 7.

1.0 INTRODUCTION

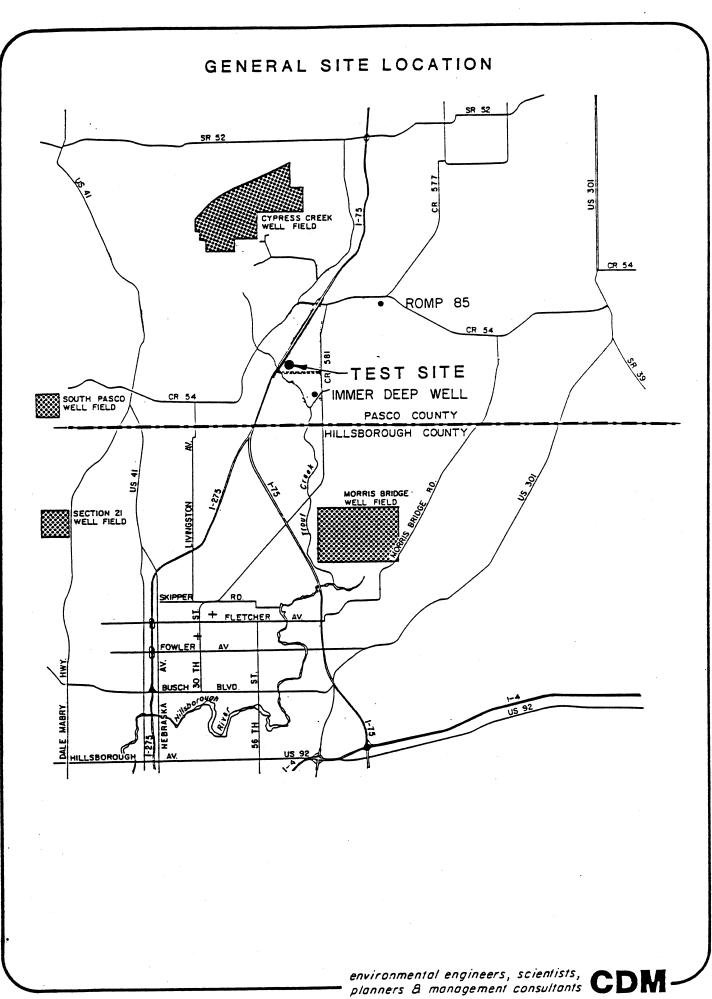
1.1 AUTHORIZATION

West Coast Regional Water Supply Authority (WCRWSA) required that wells be installed and a Floridan aquifer performance test be conducted near the intersection of I-75 and SR 54 in Pasco County (Figure 1-1) as part of an investigative program examining the water supply potential of the area. The objective of the performance test was to gain information on characteristics of the Floridan aquifer and to determine the water quality and water supply capacity of a test production well at this location. The well construction and test program, which is referred to as Phase IA of the planned Phase I Regional Interconnection, was conducted in support of Consumptive Use Permit (CUP) Application No. 208426 filed with the Southwest Florida Water Management District (SWFWMD).

Camp Dresser & McKee Inc. (CDM) was selected to design and conduct the performance test and analyze the results to determine the potential yield at the site.

1.2 SCOPE OF WORK

The approach for the aquifer performance test (APT) at the Phase 1A site in Section 23, Township 26S, Range 19E, consisted of the following three tasks:


o Task I: Development of Specifications

o Task II: Field Investigation

o Task III: Analysis and Report

Task I: Development of Specifications

In order to design the layout, construction and testing of the APT wells, information was collected regarding the hydrogeologic conditions at the proposed APT site. Sources of information included area Development of Regional Impact documents, the U.S. Geological Survey, the Southwest

Florida Water Management District (SWFWMD), drilling and testing programs reports from wellfields in the region, and Florida Bureau of Geology publications. Based upon the findings of the data collection effort and additional requirements of the SWFWMD, the locations, depths, and construction specifications were developed for:

- A 24-inch diameter Floridan aquifer test production well;
- 2. Three 8-inch diameter Floridan aquifer monitor wells; and,
- Two 4-inch diameter water table monitor wells.

Contract documents and a project manual were prepared. The Authority awarded the drilling contract to Alsay, Incorporated, the lowest qualified bidder.

Task II: Field Investigation

CDM provided resident engineering and hydrogeologic services during drilling, aquifer performance tests, and data collection in accordance with the Project Manual.

Task III: Analysis and Report

The data collected in the field investigations were analyzed to determine the aquifer properties of the site and potential yield of the test production well. This report documents the site hydrogeology, data collection effort, testing procedures, test results, and recommendations.

1.3 SWFWMD REQUIREMENTS

The field investigation included additional activities required by the SWFWMD. WCRWSA submitted a test program on December 13, 1985 and a CUP Application on February 26, 1985. The SWFWMD granted authorization for the APT in a letter dated April 2, 1986 (see Appendix A) with the following additional requirements:

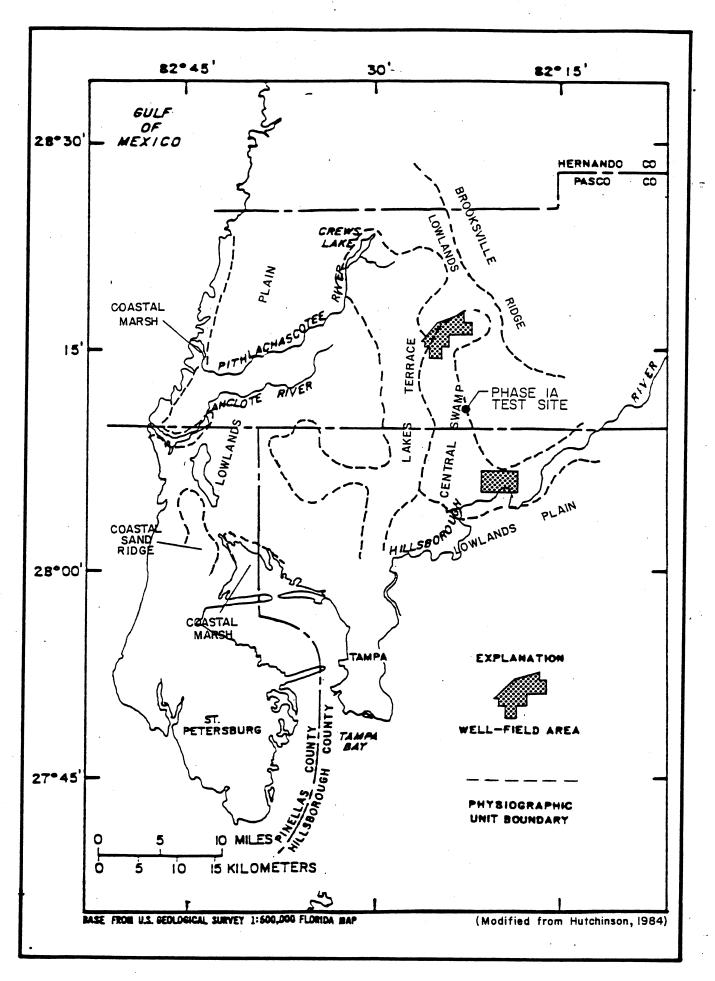
- Construction of a third deep (Floridan) monitor well at 1,500-2,000 ft. from the test production well.
- 2. Construction of a second shallow (water table) monitor well.
- 3. Water samples to be taken at every drilling pipe change (approximately 30 feet) during reverse air drilling and field analyzed for conductivity and temperature.
- 4. One additional week of pre-APT water level measurements for all wells for a total minimum of two weeks required prior to the start of the APT.

1.4 WELL IDENTIFICATION SYSTEM

A total of six wells were installed at the Phase IA test site. The wells included one test production well, three deep monitor wells, and two shallow monitor wells.

In order to accurately describe the orientation of the various wells at the Phase IA site, an identification coding system was devised. Using this coding system, the test production well at the Phase IA site is designated TPW—IA while the 5 monitor wells are given identification codes based on their depth (shallow or deep) and proximity to the test production well. For example, DMW—IA+500 represents the deep monitor well at the Phase IA site located at 500 feet distance from the test production well.

2.0 PHYSIOGRAPHIC SUMMARY


2.1 REGIONAL

The Phase IA site is in southern Pasco County which lies in the Coastal Plain physiographic province. A prominent surface feature located in the central part of the province is the Brooksville Ridge which appears to be composed of old, stabilized sand dunes (White, 1970). The Brooksville Ridge trends in a northwesterly direction and reaches a maximum altitude of 301 feet. The ridge area is flanked by the Withlacoochee River valley on the east, the Hillsborough River valley on the south, and the Terraced Coastal Lowlands on the west. Marine terraces were formed during the Pleistocene Epoch during warm interglacial periods when the seas were Relatively sharp breaks in the slope of the land higher than present. occur at altitudes of about 25 feet and 100 feet above mean sea level (msl) which define the Pamlico and Wicomico terraces, respectively. The Pamlico terrace extends into the Gulf of Mexico to a submerged scarp at about 60 feet below msl. Sinkholes are widely distributed on both the land and the submarine surfaces.

Within the Coastal Plain physiographic province in the Gulf coast region are a number of physiographic units. Figure 2-1 shows that the Phase IA site is located at the edge of the Central Swamp physiographic unit, characterized by marshy areas and swamps that are maintained by upwelling of artesian water from underlying aquifers (Hutchinson, 1984). However, the Phase IA test site is also near the boundary of the Lowlands Plain physiographic unit which extends to the north and east of the test site and is characterized by few wetlands and the presence of large oak trees and improved pastureland.

2.1.1 CLIMATE

The normal annual rainfall in the region varies from about 51 to 58 inches and is unevenly distributed during the year. Tropical storms in the summer and fall and occasionally in the winter can bring intense rains to the area (Cherry et. al., 1970). The low, flat, coastal area receives about 52

inches and the ridge section receives more than 56 inches. Approximately 60 percent of the rain falls during the period of June through September (Sinclair et al., 1985). July, the wettest month, averages more than 9 inches; November, the driest month, averages about 2 inches (Wetterhall, 1965).

Variations in day to day maximum temperatures during the summer range from about 72 degrees Fahrenheit (°F) to 90°F and during the winter from about 55°F to 75°F. During the winter, occasional cold fronts move through the area that drop temperatures into the low and middle 20s. Evapotranspiration in the area is on the order of 35 to 40 inches per year (Guyton and Associates, 1976).

2.1.2 TOPOGRAPHY

Land elevations in the region range from sea level at the shoreline to about 280 feet above msl near Dade City. The areas of highest elevations are a series of eroded sand ridges that trend to the northwest and a ridge of poorly defined sand hills that parallels the Gulf of Mexico. Between the Gulf and the sand hills, and adjacent to Old Tampa Bay are found relatively flat, swampy lowlands. These lowlands form a broad plain with gentle relief in the western parts of southern Pasco, Hillsborough, and northern Pinellas Counties. In eastern Pasco and northeastern Hillsborough Counties the land surface becomes gently rolling with smoothly rounded hills and shallow depressions (Cherry et al., 1970).

2.1.3 SURFACE HYDROLOGY

A large percentage of the water that falls on the surface returns to the atmosphere by evaporation and by transpiration of plants. The remainder drains from the area through the limestone formations that underlie the surface and through a few surface streams. Streams form where the water level in the limestone is near the land surface or where material of low permeability overlies the limestone restricting downward movement of the water (Wetterhall, 1964).

In Citrus, Hernando, and northern Pasco Counties, surface drainage is almost nonexistent. Sand hills and highly permeable land surfaces capture most of the precipitation that falls on them, and sinkholes capture a large part of the surface drainage.

Streams in the northern part of Pasco County generally originate at springs and carry little overland flow; whereas streams in the southern part carry substantial overland flow. Tributaries of the Hillsborough River drain most of the southeast and southcentral parts of Pasco County.

The area contributing water to a stream is usually delineated by topographic divides. However, in the Middle Gulf area, the area contributing water to a stream may better be delineated by groundwater divides than by surface water divides because most of the larger streams are fed by groundwater issuing from springs and seeps during much of the year.

Subsurface drainage is adequate during periods of normal rainfall, but during very wet periods, the closed depressions become flooded and store large volumes of water. Most of this water is released to the groundwater body, raising the water level in the aquifer(s). If the water level is raised sufficiently, some low-lying sinkholes that normally drain off surface waters flow as springs (Cherry et al., 1970).

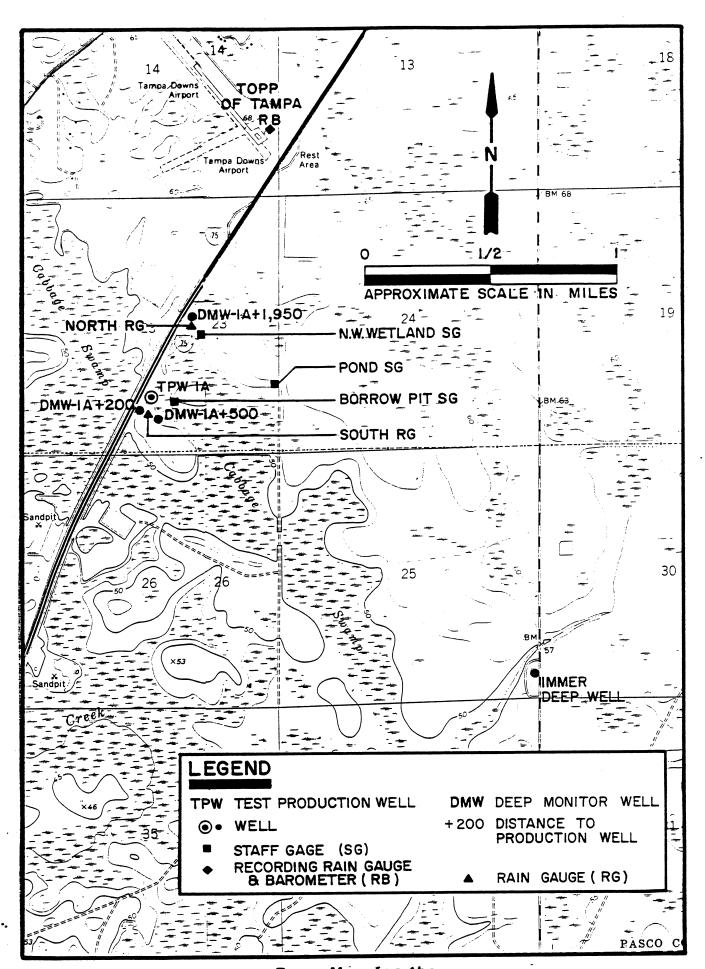
Some of the sinks in the area known to be hydraulically connected to the Floridan aquifer transmit large quantities of water vertically to recharge the Floridan aquifer. Blue Sink, northeast of Brooksville, is capable of leaking large quantities of water to the Floridan aquifer. This sink has a drainage area of about 30 square miles. Numerous other sinks also occur in the Brooksville area.

The Phase IA site is near the boundary between Sinkhole Zone 2 of Sinclair et al., (1985) which is defined as bare or thinly covered limestone with little recharge and high runoff with rare sinkhole development and Sinkhole Zone 5 where cover is 25 to 150 feet thick with the sand cover underlain by a thick clay layer. In Zone 5, internal drainage is common and both

cover-collapse and cover-subsidence sinkholes occur. The cypress heads in the area occupy depressions probably formed by cover-subsidence sinkholes. There have been only 3 small sinkholes reported in the test site vicinity between the years 1968 and 1981. The largest reported sinkhole was 11 feet across and 9 feet deep, located in Section 1, Township 26S, Range 19E about 4 miles north northeast of the site (Sinclair et al., 1985). There have been no reports of recent sinkholes within a mile of the site.

2.2 SITE INFORMATION

The Phase IA site is located just east of I-75 and south of SR 54 at the planned Saddlebrook Village development. The test site may be accessed from SR 581 approximately 2.5 miles south of SR 54 (Figure 2-2). Trout Creek is located about 1,200 feet south of the site.


2.2.1 CLIMATE

The average annual rainfall at the site is approximately 55 inches (Wetterhall, 1964). About 70 percent of the rain falls from May through September and approximately 20 percent of the total falls in July alone. November, the driest month, usually accounts for only 3 percent of the annual rainfall.

Rain gages were installed at 3 locations (Figure 2-2) to provide a profile of local rainfall differences at distances from the test production well (TFW-IA). One rain gage (South) was located near TFW-IA. A second (North) was placed near the deep monitor well (DMW-IA+1,950) located about 1,950 feet north of TFW-IA. A recording rain gage and recording barometer were installed at the Topp of Tampa Airport, approximately 1 mile north of the site.

2.2.2 TOPOGRAPHY

In southcentral and southeastern Pasco County, which includes the Phase IA site, the land surface is gently rolling with smoothly rounded hills and shallow, swampy depressions. The site contains a number of small

Base Map for the Phase 1A Test Site

cypress head and marsh-type wetlands. Most of the drier areas have been cleared for pasture. The average elevation in the vicinity of the site is about 65 feet above msl and the average slope of the land surface is 3 percent. The site is leased for cattle ranching, a common occupation throughout the presently sparsely populated region.

2.2.3 SURFACE HYDROLOGY

The headwaters of Trout Creek are just east of U.S. Highway I-75 and south of State Highway 52. Trout Creek flows under I-75 about 1,200 feet to the south of the site and then generally southward to the Hillsborough River. The channel slope ranges from about 10 feet per mile in the headwaters to less than 5 feet per mile near the mouth of the creek. The streamflow averaged about 20.4 cubic feet per second (cfs) (13.2 million gallons per day (mgd)) between 1975 and 1983 with periods of no flow most years at station 02303350 at the bridge on SR 581 (Mycyk et al., 1985).

The primary surface water features in the vicinity of the test site are wetlands which include swamps and marshes, several borrow pits and Trout Creek. The rather extensive Cabbage swamp is located south and to the west of the test site. These hydrologic features interact with the subsurface hydrogeologic regime in unique ways. For example, in the swamps and marshes, the surface water levels are close to the local water table elevation, although after rainfall events, the swamp and marsh water levels rise in proportion to their drainage area. The surface water level in the borrow pits tend to be a direct reflection of the water table elevation.

Due to the highly permeable nature of the upper zone of the soils at the site, most of the precipitation infiltrates into the ground. Where surface materials are thin and there is a low percentage of clay, drain sinks (ponding) may form in local depressions. Drain sinks may act as principal points of entry for large quantities of water into the aquifer in short periods of time.

3.0 HYDROGEOLOGY

3.1 REGIONAL HYDROGEOLOGY

3.1.1 GEOLOGY

The regional geology is described starting with the most recent deposits at the surface and then descending in depth with increasing age.

Recent and Pleistocene Deposits

At the surface in southcentral Pasco County, undifferentiated deposits of quartz sand, with varying amounts of clay and silt, form a 3 to 40 foot thick veneer. These sediments form the surficial aquifer system which is located above the confining unit and the limestone of the Floridan aquifer (see Table 3-1).

Major low sea-level stands occurred during the glacial stages of the Pleistocene Epoch. During each low stand, the shoreline receded further seaward and erosion, subterranean solution, and widespread sinkhole development in the carbonate (limestone and dolostone) rocks became prevalent. After each period of low sea level, there were associated higher sea stand periods of reworking and/or deposition of sand and clay.

Miocene Epoch Deposits

During the Middle Miocene Epoch, the sea covered most of peninsular Florida, with the exception of the Ocala Uplift area, and deposited clastic (clay and sand) and carbonate sediments along with the abundant phosphate of the Hawthorn Formation. The diverse composition of the Hawthorn sediments reflects depositional environments that include open marine and shallow coastal marine environs (Sinclair et al., 1985). Remnants of the Hawthorn Formation are present in parts of southern Pasco County and northern Hillsborough County as a thin eroded deposit.

Table 3-1 Hydrologeoloic Framework
[Modified from Wilson and Gerhart, 1982, table 1; Miller, in press, table 3]

System	Series	Stratigraphic unit	General lithology	Major lithologic unit	Hydrogeologic unit	Geologic process	Age esti- mates of boundaries, in million years—
Quaternary	Holocene Pleistocene	Surficial sand, terrace sand, phosphorite	Predominantly fine sand; interbedded clay, mari, shell, limestone, phos- phorite.	Sand	Surficial aquifer		
Tertiary	Pliocene	Undifferentiated deposits—	Clayey and pebbly sand; clay, marl, shell, phosphatic.	Clastic de- posits	Confining bed INTERMEDIATE	Fluctuations of sea level with consequent high water tables and deposition in low-lying areas alternating with low water tables and accelerated weathering of soluble rocks.	
	Hiocene	Hawthorn Formation	Dolomite, sand, clay, and limestone; silty, phosphatic.	Carbonate and clastic de-	AQUIFER Aquifer AND		,
		Tampa Lime- stone	Limestone, sandy, phos- phatic, fossiliferous; sand and clay in lower part in some areas.	posits	CONFINING		
	Oligocene	Suwannee Limestone	Limestone, sandy lime- stone, fossiliferous.	Carbonate		Exposure and weathering Carbonate deposition	18
	Eocene	Ocala Lime- stone	Limestone, chalky, for- aminiferal, dolomitic near bottom.	deposits	Confining bed	Exposure and weathering	38
		Avon Park Formation	Limestone and hard brown dolomite; intergranular evaporite in lower part in some areas.		FLORIDAN AQUIFER SYSTEM Upper Floridan aquifer Middle confining unit	Carbonate deposition	
		Oldsmar Formation	Dolomite and limestone, containing intergranu- lar gypsum in most areas.	Car- bon- ate	Lower Floridan aquifer		
	Paleocene	Cedar Keys Formation	Dolomite and limestone with beds of anhydrite.	evaporite deposits	Sub-Floridan confining unit	Exposure and weathering Carbonate deposition	63

 $[\]frac{1}{2}$ Geologic Times Chart, 1984.

^{2/}Includes all or parts of Caloosahatchee Harl, Bone Valley Formation, Alachua Formation, and Tamiami Formation.

At an earlier period of the Miocene Epoch, a shallow marine environment covered most, if not all, of western peninsular Florida and resulted in deposition of the Tampa Limestone. The Tampa Limestone consists of cream to yellow limestone with varying amounts of quartz grains and clay embedded in a carbonate matrix.

The formation is differentiated from the overlying Hawthorn Formation based on a decrease in, or absence of, phosphate grains and an increase in quartz grains within the limestone.

Oligocene Epoch Deposits

The Suwannee Limestone is a biogenic limestone composed predominantly of foraminiferal tests. Within the limestone, there are interbeds of quartz sandstone. Dolomite is common in the basal portion of the unit. The upper part of the formation may contain thin chert lenses and be highly fossiliferous.

The Suwanee Limestone is exposed locally in parts of Pasco County, and in the northeast corner of Hillsborough County (Sinclair et al., 1985).

Eocene Epoch Deposits

The Ocala Limestone Formation is a shallow marine limestone composed of large foraminiferal tests, mollusks, and large echinoids. Lithologically, it is a soft-to-hard, highly fossiliferous limestone that contains minor amounts of dolostone. The formation overlies the Avon Park Formation.

The Avon Park Formation is composed of fossiliferous limestone and dolostone. The limestone or dolostone varies from a moderate brown, dark yellow-brown to dusky yellow-brown color, is very-fine to medium-grained, porous to nonporous and may be crystalline or saccharoidal in texture. The formation is very permeable and cavernous where extensive fracturing and dissolution have occurred. The former Lake City Limestone formation is now

included as the lower part of the Avon Park Formation (Miller, 1984). The presence of anhydrite or gypsum-filled voids in the lower part of the formation results in a highly mineralized (high sulfate) water and low permeability zone.

3.1.2 AQUIFER SYSTEM

The aquifers in southcentral Pasco County are the surficial (shallow) aquifer and the Floridan aquifer. These aquifers supply almost the entire potable water supply for the Tampa Bay area. The most productive aquifer by far is the Floridan aquifer.

Surficial Aquifer

The groundwater in the surficial deposits is under nonartesian (unconfined) conditions. The upper surface of the groundwater (shallow water table) is free to rise and fall according to input and withdrawal of water from the system. The clay beds generally found at the base of the surficial aquifer are relatively impermeable and, therefore, groundwater flow is primarily lateral toward discharge areas. The water table surface generally follows the contours of the ground surface in a subdued manner, being at a greater depth beneath high areas and may be near or meet the surface in valleys and low lying areas to form seeps or springs. The depth to the water table is usually near the land surface (varying from the surface to more than 10 feet deep). The depth to the water table exhibits seasonal variations with the lowest water levels occurring at the end of the dry season (i.e., April-May) and the highest at the end of the rainy season (September-October). The range of fluctuation in the water table usually averages 3 to 5 feet between dry and wet seasons.

The surficial aquifer is replenished primarily by local precipitation. Some upward leakage from the Floridan aquifer recharges locally whenever the Floridan aquifer potentiometric surface is higher than the water table.

The surficial aquifer discharges by evapotranspiration, leakage to the Floridan aquifer (when the water table is higher than the potentiometric surface of the Floridan aquifer) and/or subsurface flow into surrounding wetlands, ditches, lakes or streams. The surficial aquifer generally yields less than 20 gallons per minute (gpm) to wells and is relatively unused for water supply.

In many areas, the surficial aquifer is slightly acidic and contains an excessive, objectionable amount of iron which can stain clothes, fixtures and utensils. In terms of available potable water supply for Pasco County, an important function of the surficial aquifer is to store water of which a portion recharges the Floridan aquifer.

Floridan Aquifer

The height to which water will rise in an artesian (confined) aquifer is called the artesian pressure head, piezometric surface or potentiometric surface. The potentiometric surface head in the artesian aquifer is controlled in part by the water level in the recharge area.

The artesian Floridan aquifer is the principal water bearing aquifer in the westcentral Gulf area. The Floridan aquifer is confined in many areas by relatively impermeable layers of dolostone with gypsum and anhydrite at the base and by overlying deposits of clay and sandy clay.

The Phase IA site is south of the large potentiometric surface high (recharge area) in the Floridan aquifer in central and east central Pasco County. The potentiometric surface slopes generally southward toward discharge areas in the vicinity of the Hillsborough River. Groundwater flow in the highly transmissive Floridan aquifer is primarily through solution enlarged joints and fractures.

Throughout most of westcentral Florida, the Floridan aquifer system consists of two aquifers; the Upper Floridan aquifer which contains freshwater (except along the coast) and the Lower Floridan aquifer which

generally contains connate saltwater. The two units are separated by confining beds that prevent the contamination of the upper Floridan aquifer by upward movement of connate water.

The base of the Upper Floridan aquifer in west-central Florida is generally placed at the first occurrence of vertically persistent, intergranular evaporites in the Avon Park Formation.

In the region, the Upper Floridan aquifer generally has a pronounced vertical anisotropy (Ryder, 1982). Permeabilities are lower in the Ocala Limestone in general as compared to very high permeabilities found in fractured and solution-riddled dolomitic zones within the Avon Park Formation, as substantiated by flow-meter and specific-capacity tests by Wolansky et al., (1980). Despite the large permeability contrasts, aquifer test results indicate that enough vertical interconnection exists between each zone to analyze the Upper Floridan aquifer as a single hydrologic unit on a regional basis (Ryder, 1985).

3.1.3 GROUNDWATER QUALITY

The chemical quality of ground and surface water is generally good throughout the Middle Gulf hydrologic system according to Cherry et al., (1970). Total dissolved solids is generally less than 500 milligrams per liter (mg/l) in the groundwater and 20 mg/l in the surface water. The water within the shallow aquifer has components, such as iron, that can make the water undesirable for use as discussed earlier. Near the coast, the chemical concentrations of sulfates and chlorides in the Floridan aquifer sometimes exceed the Secondary Drinking Water Standards (Chapter 17-3 F.A.C.).

Water quality data from within southcentral Pasco County indicate that the surficial aquifer and upper Floridan aquifer contain calcium bicarbonate type water that meets state water-quality standards for municipal supply (Florida Department of Environmental Regulation, 1982, p. 102). Geophysical logs from deeper zones within the Floridan aquifer show that water quality in the upper Floridan is of a uniform nature (Leggette,

Brashears, and Graham, Inc. 1979). At a depth of approximately 900 to 1,000 feet below msl, near the contact with the middle confining unit (bottom of the Upper Floridan aquifer), water may become highly mineralized. The middle confining unit contains highly mineralized sodium chloride to sodium sulfate type water that is associated with intergranular evaporites within the lower part of the Avon Park Formation (Hutchinson, 1985).

3.2 SITE SPECIFIC HYDROGEOLOGY

3.2.1 GEOLOGY

Well completion reports obtained from SWFWMD for the immediate surrounding area, ROMP 85, the Cypress Creek Wellfield, and the Morris Bridge Wellfield were examined in order to plan the construction and anticipate casing depths for the test and observation wells for Phase IA. The well completion reports examined from wells within 1 mile of the Phase IA site indicate that the surficial aquifer lithology is highly variable with surface sands from 2 feet thick (Permit #405867-13) in SW 1/4 Section 14, T26S, R19E, to 31 feet thick (Permit #389807-13) in NW 1/4 Section 11, T26S, R19E. Below the surface sand is generally a sandy clay or clay zone above the limestone. Limestone was encountered at depths from 30 feet to 145 feet below land surface (bls) (Permit #406791) with most wells reporting "lime" or limestone at 30 to 60 feet bls.

Cuttings from the boreholes for all the Phase IA observation wells and the test/production well were closely monitored by CDM personnel during both mud rotary and reverse air drilling operations in order to determine casing depths and total borehole depth. The lithology from the cuttings is described in Appendix C. Dual sample cuttings were collected and saved in sample bags for each 10 feet or change of formation during mud rotary drilling and for each 5 feet during reverse air drilling. One set of samples was sent to SWFWMD and the other one was split between WCRWSA and CDM.

Using information from the Phase IA site geologic logs, a lithologic cross section was prepared from DMW-IA+1950 through TPW-IA to DMW-IA+200 as shown in Figure 3-1.

Shallow borings by M.P. Brown and Associates at the Phase IA Site (see Appendix C) confirm the varied horizontal and vertical nature of the surficial sediments. The surficial fine to medium grained sand (2 to 18 feet thick) grades downward into slightly clayey to clayey sand. In most locations, a thin layer (0.5 to 8 feet thick) of a low permeability plastic, cohesive, waxey clay is located immediately above the first limestone which is located at a depth of 20 to 39 feet (M.P. Brown & Associates, August 1986).

3.2.2 AOUIFER SYSTEM

Surficial Aquifer

The water table is generally 2 to 4 feet below land surface except in the low areas where the surficial aquifer intersects the surface to form wetlands. Although the upper portion of the surfical aquifer is a permeable sand, the material quickly grades into a low permeability slightly clayey to clayey sand. Therefore, the surficial aquifer probably has a low storage coefficient and a low vertical permeability.

The surficial aquifer is rapidly recharged by local rainfall. During heavy rains numerous shallow depressions in the nearby pasture flooded to form recharge sinks. After the start of the rainy season (June 1986), a number of seeps or marshy areas were noticed near the base of the slopes, especially adjacent to the wetlands. During the dry period of the investigation (April-May), the water table in the vicinity of the test production well had retreated to 4-5 feet bls into the less permeable, slightly clayey sand.

The base of the surficial aquifer is above the waxey clay and/or the sandy clay found immediately above the first limestone unit. These clays act as the confining unit for the Floridan aquifer. A permeability test conducted

on a Shelby tube sample of the plastic, waxy clay found in most areas immediately above the first limestone had a very low permeability estimated to be less than 1×10^{-8} cm/sec $(2.8 \times 10^{-5}$ ft/day) (Appendix C, Geologic Logs).

Floridan Aquifer

The Floridan aquifer is located in the thick sequence of limestone and dolostone beginning at a depth of approximately 30 feet bls to below the bottom of the deep wells at 700 feet bls. Wolansky and Garbade (1981) place the total thickness of the Floridan aquifer at approximately 950 feet in the vicinity of the Phase IA site.

During the dry period (April-May) of the investigation, the potentiometric surface of Floridan aquifer was nearly the same elevation or slightly above the water table at the deep monitor well located 200 feet from the test production well. In the low lying wetlands, including Cabbage Swamp, the potentiometric surface is probably above the water table at times during the year, allowing upward leakage (recharge) to the surficial aquifer. At the start of the wet season in June, the water table level in the SMW-IA+500 quickly increased to above the Floridan potentiometric surface. Information on the response of the Floridan aquifer to rainfall recharge of the surficial aquifer is found in Section 6.3.1.

3.2.3 WATER QUALITY

Water quality samples were obtained and evaluated a number of times during the drilling and aquifer performance testing. Field conductivity and temperature of the borehole water were taken at each change of drilling rod (30 feet) during reverse air drilling. There was no significant change in field conductivity readings with depth or between wells. The field readings were consistent with laboratory conductivity readings. Laboratory conductivity results ranged from 120 to 350 micromhos per centimeter (mmhos/cm). Water quality samples were collected by WCRWSA personnel during the APT and analyzed for primary and secondary drinking water

standards as established by EPA and Florida Administrative Code, Chapter 17-22. The test results indicate that water from the Floridan aquifer at the test site meets the established drinking water standards. The testing and sampling procedures and analyses are further discussed in Section 4.4. The water quality test results are included as Appendix I.

3.3 BOREHOLE GEOPHYSICS

3.3.1 SITE SPECIFIC

Geophysical well logging (borehole geophysics) involves lowering an electronic sensing device into a borehole to record and/or measure various physical parameters. The information is interpreted as characteristics of the rocks, fluid contained within the rocks, and/or how the well was constructed. Geophysical logs provide the only practical measurement of the undisturbed subsurface sediments and fluids.

Geophysical logs were run in each of the deep observation wells and the test production well for Phase IA. The geophysical logs that were performed in this logging program were:

- a. Caliper
- b. Spontaneous potential
- c. Single point, long and short normal resistivity
- d. Temperature
 - 1. Static
 - 3. Pumping
- e. Flowmeter
 - 1. Static
 - 2. Pumping
- f. Fluid resistivity
 - 1. Static
 - 2. Pumping
- g. Gamma Ray

The geophysical logs obtained were compared with other logs from the well site, logs of the other wells, and the lithologic logs to obtain semi-quantitative information on such parameters as permeability (indirectly), porosity, formation resistivity, pore water quality, magnitude and direction of fluid flow, and indication of the source of the groundwater. Although none of these characteristics of the formation and groundwater is measured directly by any particular log, strong inferences are provided which can be interpreted in conjunction with the lithologic logs and knowledge of the local geology. Copies of all the logs are included in Appendix D.

All of the wells showed very similar geophysical logs. The following sections present a summary of the interpretations of the logs emphasizing the similarities and significant differences.

Caliper Log

The caliper log measures the average diameter of the casing or borehole. The diameter of the borehole provides information on the type of lithology and consolidation (induration) of the formations. This tool is useful in the determination of washed—out (increased borehole diameter) zones, cavities, and for locating defects inside the casing. The caliper log can also be used to a limited degree for stratigraphic correlation. Caliper logs were also used to correct for changes in borehole diameter which directly affect some logs, such as short and normal electric and fluid velocity logs.

The caliper logs from all the wells indicated that there was no misalignment of the casings or bad welds within the casings. All of the logs show a typical washed-out area at the end of the casing, which may be either from the overdrilling of the larger diameter hole into which the casing was placed or the comparatively soft limestone material. Thin streaks (peaks) in the log plot indicate softer zones that were washed out.

The caliper logs of all the deep wells show the same general configurations and depths of washed-out areas. The test production well description is representative of the zones in all of the wells although it shows an exaggerated plot due to the larger diameter of the borehole and increased relative diameter in the washed-out zones.

The test production well has washed-out areas to nearly 40 inches in diameter within the sandy textured limestone found at a depth from 180 to 200 feet with a 32-inch diameter at 280 to 322 feet within fossiliferous limestone, and irregular washed out streaks in excess of 40 inches diameter at 322 to 348 feet within a soft foraminiferal coquina zone.

The borehole approaches near bit gage (diameter) in the hard fractured dolostone at 512 feet in DMW-IA+1950, 510 feet in DMW-IA+500, 520 feet in DMW-IA+200, and 518 feet in TFW-IA to the bottom of the boreholes.

The TPW-IA caliper plot shows the largest number of cavities and solution zones including occurences at 546-551, 623-630, and 633-642 foot depths in the hard, fractured dolostone zone. It should be noted that the caliper logs detect only horizontal cavities or fractures, and many vertical fractures are usually found in this dolostone zone.

The observation well at the 200 foot distance from TPW-IA shows a larger number of cavities or fracture zones within the dolostone than does DMW-IA+500. The DMW-IA+1950 plot shows the fewest fractures on the caliper log.

Electric Logs

The electric logs are part of a series of logs divided into two major components, resistivity and spontaneous potential (S.P.). The electric resistivity of a rock (resistance per unit volume) depends primarily on the amount of fluid it contains and its electric conductivity. The amount of fluid contained within the rock is a function of the porosity of the rock. The three subtypes of resistivity logs are the long (64 inch) and short (16 inch) normal, and single-point. The difference of the logs is

the spacing of the electrical current generating device and the receiver, with large spacing allowing the transmission of the signal further into the rock and eliminating drilling fluid interference. The electric logs are sensitive to borehole diameter. The single-point log was not performed on DMW-1A+500, but was performed on the other wells.

The single point resistivity log has a very limited depth of investigation and, furthermore, does not make its measurement on a fixed volume of rock. It can be used for determining formation contacts and for ascertaining qualitatively that resistivities are relatively high or low with respect to one another.

The spontaneous potential (S.P.) logs are records of the potential small electrical current (voltage) generated at the boundaries of dissimilar units of rock, especially between permeable and less permeable units. The movement to the right or left of the "shale line" indicates the permeability of the rocks as well as the salinity of the water. This type of log is also useful in stratigraphic correlation.

Because the well boreholes below the casings were drilled by reverse air, the resistivity of the borehole fluid (water) and the formation water are approximately equal, creating small S.P. deflections with a lack of detail when compared with those from mud rotary drilled wells.

The single point, long and short normal electric logs cannot be run inside the casing, therefore the first 130 to 150 feet of the logged depth are not interpreted. The single point resistivity logs are very similar for TPW-IA, DMW-IA+200 and DMW-IA+1950, although the response is suppressed for TPW-IA because of the greater distance from the probe to the borehole wall. The response is greatly affected by the irregular diameter of the wells. There is a strong decrease in resistance (negative spike) near the contact between the limestone and first dolostone layer in DMW-IA+200 which may reflect a high permeability zone or peat layer. There are similar responses for the other wells within the same zone.

From about 520 feet to the bottom of the wells, the single point log shows a strong cyclic response, typical of the fractured dolostone zone with high resistivity of the low permeability dolostone and much lower resistivity in the water filled cavities and fractures.

The short and normal electric logs show some resistivity from the bottom of the casing to a depth of between 240 feet to 260 feet indicating low porosity zones. From 240 feet to the 360 feet bls depth, the apparent resistivity is low, probably due to the washed out zone and the greater porosity of the foramiferal coquina. From about 360 to 420 feet bls, there are indications of some porous zones in the lithologic unit. From a depth of 420 to approximately 510 feet bls, again the logs indicate low resisitivity and a relatively porous formation.

The S.P. logs from 150 to 500 feet bls show virtually no change, indicating that there are no sharp bedding plane contacts of different electrical potential, which indicates a uniformity in the lithology. Starting at 500 feet bls. the resistivity and the S.P. Logs show a typical dense, fractured dolostone series with little interstitial porosity. This series extends to the bottom of the borehole.

Natural Gamma Ray

The gamma ray log records natural gamma radiation emitted from formations adjacent to the borehole. The gamma radiation detected is primarily from the radioactive decay of naturally occurring isotopes; potassium 40, and daughter products in the uranium and thorium decay series. The gamma radiation is measured in counts per second (cps). Slight changes in the depositional environment or sediment source can greatly influence the amount of radioactive isotope concentration. The gamma ray log can be run through cased holes. The gamma ray log can be used also in regional stratigraphic correlation.

A slightly elevated gamma count at 24 to 28 foot depth at DMW-IA+1950 probably indicates a clay layer. The gamma radiation cps are slightly attenuated at TPW-IA because of the greater distance (radius) from the probe to the borehole wall.

The highest cps peaks for the gamma ray logs were recorded at about the same depth below land surface. The highest peak was at 188 feet for DMW-IA+500, 168 to 173 feet for DMW-IA+200 (over 100 cps), and 177 feet (90 cps) for TPW-IA (soft to medium limestone with shell fragments). A broader peak between 150 and 164 feet depth (50 cps) was recorded at DMW-IA+1950 in a similar limestone.

Each well also has similar depth gamma ray peaks recorded at greater depths. There is a double peak at the 380 and 384 foot depth (30 cps) in DMW-IA+500, a broad peak between 390 and 410 foot depth (30 cps) in DMW-IA+200, two peaks at 378 foot (30 cps) and 385 foot (25 cps) depth at DMW-IA+1950, and a peak between 393 to 409 foot depth (20 cps) in TPW-IA. There is a strong gamma ray peak of 70 cps found at 426 feet depth bls in TPW-IA and 68 cps at a comparable depth of 424 feet in DMW-IA+200, but this peak is not found in the other two wells.

Fluid Conductivity Logs

A fluid conductivity probe measures the conductivity (reciprocal of resistivity) of the borehole fluid passing through electrodes inside the probe. This is the most direct method for measuring water/fluid conductivity. The main purpose is to find zones of major fluid character changes and to eliminate the properties of the rock itself found in the electric resistivity logs.

The conductivity logs for all the wells under static conditions indicate borehole water with conductivity of approximately 250 mmhos/cm within and immediately below the casing. This relatively low value indicates that any drilling fluid in this zone has been flushed out and ionic concentration (e.g., chlorides) are low. There is a very slight increase in conductivity with depth to approximately 275-290 mmhos/cm, below which conductivity

stabilizes. Under pumping conditions, essentially a straight line of about 275 mmhos/cm is produced, indicating that most of the water is produced from the lower part of the wells. There appears to be no water quality degradation with depth in any of the wells as measured by fluid conductivity values.

Temperature Log

The temperature log measures the temperature of the fluid in the borehole and/or the casing. The temperature log can be used to detect flow zones and temperature gradients. Thick homogeneous formations exhibit a distinct geothermal gradient that is a function of the formation minerology, porosity, and groundwater circulation.

Under static conditions, the temperature increased with depth below the bottom of the casing. The lowest temperature profile recorded for a well was at DMW-IA+200 where the temperature increased from 73.3°F near the bottom of the casing to 76.0°F at the bottom of the well. The TFW-IA temperature gradient was from 76.1°F to 76.7°F at the bottom of the well, DMW-IA+500 temperature gradient was from 75.4°F to 76.7°F, and DMW-IA+1950 was warmest with a temperature gradient from 76.3°F to 77.0°F. The charts show a slight increase in the temperature gradient within the dolostone below the 500 foot depth.

The temperature logs that were made under pumping conditions all indicate a further increase in water temperature at the bottom of the wells, possibly indicating that warmer water from a greater depth was entering the wells.

Fluid Velocity Logs

Mechanical flowmeters directly measure vertical flow within boreholes. Quantitative results require the borehole to be uniform in diameter or adjustments have to be made to the velocity based on data from the caliper log, using the formula $Q=1/4d^2V$ where:

Q = flow in counts per second (cps)

d = diameter

V = velocity (cps)

The fluid velocity log under pumping conditions was used to infer quantity (percentage) contributed from specific producing zones. The fluid velocity log under static water conditions was used to determine if there was circulation (water flowing in and going out) between different zones.

The "noise" recorded as small jagged peaks on the static and pumping flowmeter logs makes them difficult to interpret. The noise is probably due to the probe scraping along or snagging on the jagged borehole walls.

No large volume flow interchange between different zones in the Floridan aquifer was detected in any of the wells. There may be some flow at DMW-IA+500 between zones below 580 feet and in the vicinity of 400 feet. There may also be limited flow between zones below 640 feet and the 370 feet level in TPW-IA.

Pumping flowmeter logs indicate that over 90 percent of the flow in all of the wells is from the fractured dolostone found below approximately 520 feet and approximately 80 percent of the flow is from fractured and cavernous zones below 600 feet. The strongest flow zones appear to be from near the bottom of the wells (700 feet) to approximately 660 feet except at the TPW-IA where the strongest flow on the log plot is in a cavernous zone between the 614 - 636 foot depth.

Summary of Geophysical Logs

The geophysical logs indicate good well casing and borehole construction. The logs also reflect a typical West Coast Floridan aquifer lithology consisting of approximately 30 feet of unconsolidated surface sand and clay, limestone becoming more dolomitic with depth to approximately 500

WCRWSA5T.1/13 12/9/86

feet, and dense, fractured dolostone from that depth to bottom of the boreholes. Approximately 80 percent of the flow is from the fractured dolostone and cavernous zones below 600 feet. The conductivity under pumping conditions was approximately 275 mmhos/cm and the static logs indicated good water quality with no significant change with depth.

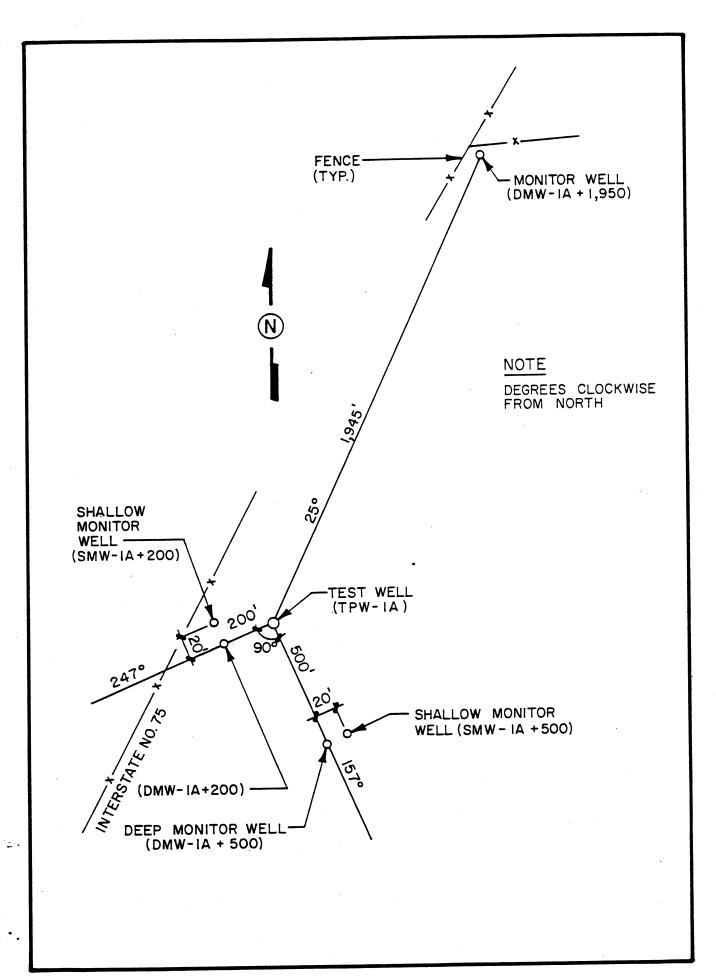
4.0 WELL DESIGN AND CONSTRUCTION

Information on each of the wells including identification code, diameter of casing, depth of casing, depth of borehole, drilling method used, development time, as well as start of construction and completion date is listed in Table 4-1. A well location map is shown on Figure 4-1.

4.1 TEST PRODUCTION WELL

A 22-inch diameter borehole was drilled without a pilot hole because there were sufficient data available to indicate that favorable water producing characteristics of the Avon Park are reliably encountered in the area. In addition, the presence of a favorable production zone at the Phase IA site was indicated by the geophysical logging of DMW-IA+500.

In general terms, construction of the test production well consisted of vibrating a 32-inch diameter steel surface casing to the first limestone at an approximate depth of 30 feet bls. Then a 30-inch diameter hole was drilled into competent limestone (a depth of approximately 130 feet) using the conventional mud rotary method. Casing was then installed and the annulus sealed with cement grout. Finally, a 22-inch diameter open borehole was drilled to a depth of 715 feet bls using the reverse air method (see Figure 4-2).


4.2 DEEP MONITOR WELLS

Three deep monitor wells were installed at the Phase IA site in order to monitor water level changes within the Floridan aquifer. The wells are positioned at 500 feet, 200 feet, and approximately 1,950 feet from the test production well. Deep monitor wells DMW-IA+500 and DMW-IA+200 are located to form a right angle to the test production well. The relative locations of the wells are shown in Figure 4-1.

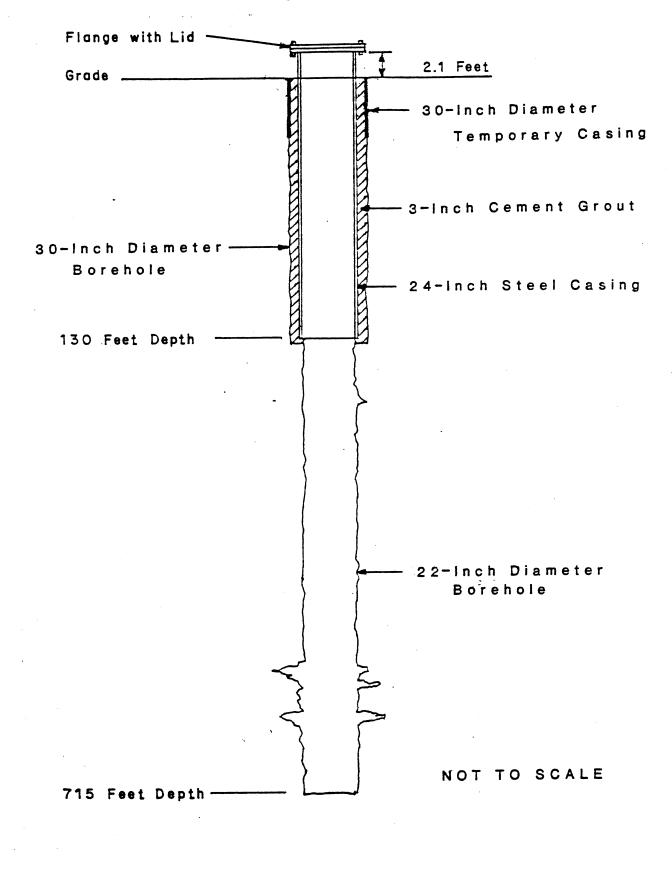

General construction methods for the deep monitor wells involved first setting 16-inch diameter temporary (surface) casing to a depth of approximately 30 feet where limestone was encountered. Then a 15 3/4-inch

Table 4-1
Well Construction Information

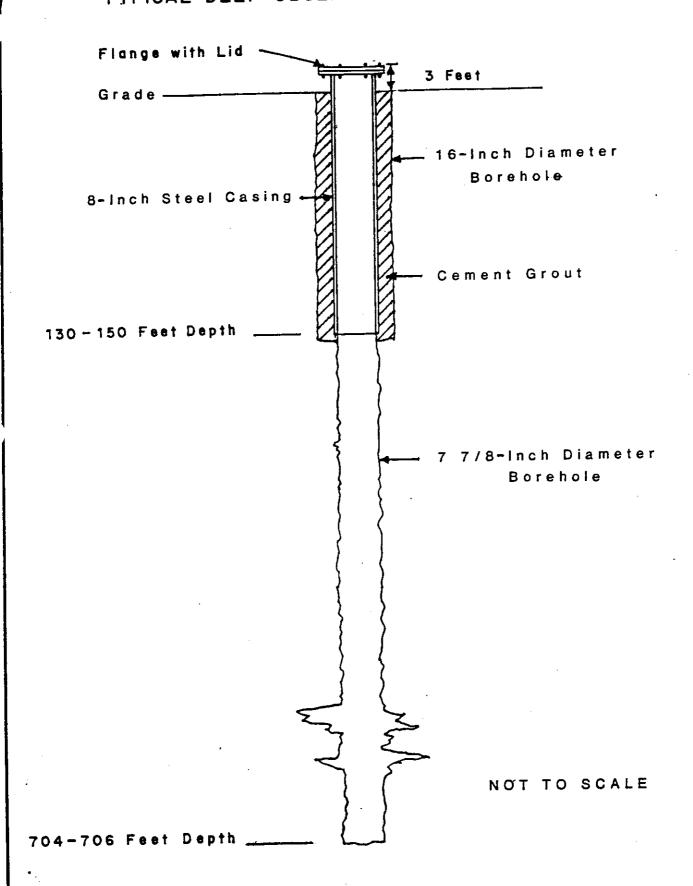
Well No.	Diameter	De Casing	epth Borehole	Drilling Methods	Development <u>Time</u>	Start/Completion <u>Dates</u>
DMW-1A+500	8"	150'	705'	0'-151' - Mud Rotary 151'-705' - Reverse Air	18 hrs.	3-11-86/5-7-86
DMW-1A+200	8"	130'	704'	0'-131' - Mud Rotary 131'-704' - Reverse Air	16 hrs.	4-9-86/4-18-86
TPW-IA	24"	130'	715'	0'-131' - Mud Rotary 131'-715' - Reverse Air	65 hrs.	4-9-86/5-12-86
DMW1A+1950	8"	130'	706'	0-131' - Mud Rotary 131'-706' - Reverse Air	14.5 hrs.	5-19-86/5-26-86
SMW-1A+500	4"	15'	20'	Wash out	2 hrs.	5-9-86/5-13-86
SMW-1A+200	4"	15'	20'	Wash out	3 hrs.	5-9-86/5-10-86

TEST PRODUCTION WELL AS-BUILT

environmental engineers, scientists, planners & management consultants

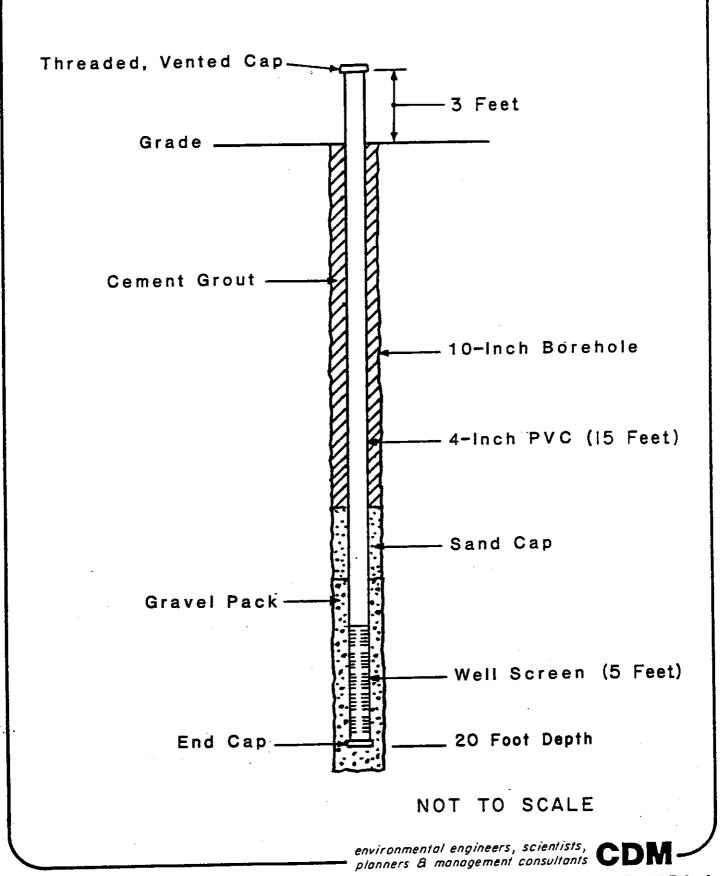
MISC6T.3/15 12/9/86

diameter borehole was drilled to approximately 131 feet bls using the mud rotary method. An 8-inch diameter steel casing was then installed to a depth of 130 feet bls and the annulus surrounding the casing was grouted to the surface with neat cement. Finally, a 7-7/8-inch diameter hole was drilled to approximately 700 feet bls using reverse air methods. The only significant deviation from this procedure is in the case of DMW-IA+500. DMW-IA+500 was the first well drilled and it was cased to a depth of 150 feet bls instead of 130 feet bls. It was decided at this time that the formation was sufficiently stable so that only 130 feet of casing was required for the remaining wells (see Figure 4-3).


Upon completion of each deep monitor well, a Stevens Type F water level recorder was installed. Water level recorders were used to record drawdowns during the step-drawdown test and continuous performance test. In addition, they were used to collect baseline water level information which allowed for corrections to water levels due to regional potentiometric level changes, as well as for significant rainfall events.

4.3 SHALLOW MONITOR WELLS

Shallow monitor wells were installed 20 feet from DMW-IA+200 and DMW-IA+500, respectively, in order to monitor the water level changes in the surficial (water table) aquifer during the APT.


Construction of the shallow monitor wells involved washing out surface material to a depth of approximately 20 feet bls inside of 10-inch temporary surface casings. The surface casings were pulled and 4-inch diameter PVC pipe with 5 feet of .010 slot screen was installed in the hole. A gravel pack was placed around the well screen to a depth of 13 feet bls followed by a sand cap to 11 feet bls. The well annulus was grouted to the surface with neat cement (Figure 4-4) and the monitor wells were developed (Table 4-1).

TYPICAL DEEP OBSERVATION WELL CONSTRUCTION

environmental engineers, scientists, planners & management consultants

TYPICAL SHALLOW MONITOR WELL CONSTRUCTION:

Stevens Type F water level recorders were installed on the shallow monitor wells. Because the 4" PVC casings used for the shallow monitor wells could not accommodate both the float and the counter weight used for the Stevens recorders, 2-inch diameter dry wells were installed adjacent to the shallow monitor wells to a depth of approximately 5 feet bls.

4.4 WELL SAMPLING PROCEDURE

During drilling of the test production well and the deep monitor wells, formation cuttings were examined and described and water quality samples were taken by CDM hydrogeologists. While using the mud rotary method, cuttings were sampled every 10 feet or every formation change (whichever came first). After changing to reverse air drilling, sample cuttings were taken every 5 feet or every formation change.

Water samples were collected only during reverse air drilling. Water samples were collected every 90 feet (every third drill stem change) and taken to the Authority laboratory at Cypress Creek Wellfield for analysis. Temperature and electrical conductivity of the formation waters from the bottom of the borehole were measured at the site every 30 feet (change of drill stem). Water quality samples were not taken during drilling at DMW—IA+500.

Water quality samples were taken by WCRWSA personnel at 73 hours into the APT and at 143 hours, shortly before the end of the APT, and analyzed for primary and secondary drinking water standards in accordance with F.A.C., Chapter 17-22.

4.5 EQUIPMENT USED

Equipment used at the Phase IA site included a Gardner-Denver drilling rig, a Failing 2500 drilling rig, a bulldozer, a backhoe, a low-boy trailer, several pick-up trucks, air compressors and steel mud pits. Steel-lined mud pits were used during all well drilling to prevent bacterial contamination of the groundwater.

5.0 TEST PROCEDURES

Two separate pump tests were performed at the Phase IA Site. The initial test was a step-drawdown test used to determine the well performance (efficiency) of the test production well. An aquifer performance test was used to determine the aquifer properties in the vicinity of the wells. Water quality characteristics of the groundwater were also determined during the APT. Appendix B contains a chronological log of field related events, including the dates when the two tests started and ended, as well as additional project milestones.

5.1 WELL SITE PLAN

The well layout plan was described in Section 4 and Figure 4-1. Stevens Type F recorders were placed on each monitor well (deep and shallow) in order to record changes in water level before, during and after each phase of testing. A nonrecording rain gage was installed in an open area in the vicinity of TPW-IA. One week prior to the APT, a second nonrecording rain gage was placed in the vicinity of the third monitor well located approximately 1,950 feet from the test well. The second rain gage was to observe the local variability in rainfall amount due to convection type thunderstorms.

Also, prior to the APT, 3 staff gages were placed in wetland locations to monitor the water level changes (Figure 2-3). This procedure was intended to give additional insight on leakance from the surficial aquifer to the Floridan aquifer during the APT.

Prior to both the step-drawdown test and the APT, a turbine pump driven by a diesel engine was placed in the test production well. A 12-inch diameter discharge pipe with a 10-inch orifice plate and manometer at the discharge end transported the pumped water approximately 1,100 feet away from the test site to flow into Trout Creek. It was necessary to transport the discharge water away from the pumping well because any significant recharge near the test site could have affected test results.

5.2 STEP-DRAWDOWN TEST

The objective of performing a step-drawdown test is to obtain information about the performance and efficiency of the well being pumped. The result is usually reported in terms of observed drawdown, well yield, well loss and the calculated specific capacity. These data taken under controlled conditions give a measure of the capacity of the completed well and provide data on which the selection of pumping equipment can be based (Johnson UOP, 1975). The step-drawdown test was also used to observe the reactions of the observation wells prior to performing the APT.

The 12-inch discharge pipe was equipped with a recording totalizer gage, a gate valve, and at the discharge end, a 10-inch orifice plate and manometer. Prior to the test, throttle rates for the diesel were selected by setting the gate valve and adjusting the throttle until selected pump rates were obtained as observed at the manometer and totalizer gage.

Three stepped pumping rates were used for the test. Each step or pumping interval was followed by a period of recovery lasting an identical period of time. The initial step was at 1,040 gpm, second step at 1,920 gpm and the third step was at 3,740 gpm. Each step and associated recovery phase lasted 70 minutes. The entire test lasted approximately 6 hours. Results of the test are discussed in 6.1 and Appendix F.

During the test, water levels were taken at the test production well with the aid of an electric sounder (M-Scope). The M-Scope probe was lowered into the test production well through a 1-inch nominal diameter PVC pipe open at the bottom. The pipe was used to minimize the effects of turbulence from the pump so that accurate water level measurements could be obtained.

The time intervals used for M-Scope readings during the step-drawdown test were every 15 seconds for the first minute, every 30 seconds to 5 minutes, every minute to 10 minutes, every 2 minutes to 20 minutes and every 5 minutes to 70 minutes. The same procedure was used for each recovery phase. As an equipment test for the subsequent APT, Steven Type F

recorders on the monitor wells were manually marked every 5 seconds for the first minute, every 10 seconds for the second minute every 15 seconds for the third minute, etc. during the test. The recorders were operated manually in order to accurately indicate the short time intervals on the charts.

5.3 AQUIFER PERFORMANCE TESTING

The APT consisted of pumping TFW-IA for a period of 6-days at a rate of 2,150 gpm and recording both the drawdown in that well and the drawdown caused by this pumping in the other monitor wells. The recorded drawdown was used to calculate aquifer properties. Recovery water level data were collected for 9-days after shutdown of the APT on a daily basis and the water level recorders were then adjusted for monthly recording.

Prior to conducting the constant discharge APT, the test pump had to be set at the selected constant rate. This was accomplished in a short period of time by opening the gate valve half way, starting the pump and then simultaneously observing the manometer near the discharge end of the pipe and the totalizing meter installed near the pump. Since a yield of 2,150 gpm was desired and the discharge pipe was 12-inch with a 10-inch orifice plate, a manometer reading of 19 inches of water was required to be maintained during the test. The pumping rate was set with a manometer reading of 19.0-inches and the totalizing meter reading at 2,170 gpm.

Immediately prior to the APT, the Stevens recorder papers were changed and the recorders were again checked for malfunctions. Also, the discharge pipe was checked for leaks. During the hour before beginning the test, the water level was measured with the M-Scope and recorded every 15 minutes in the test production well.

A person was stationed at each water level recorder to manually mark the short time periods during the early part of the APT. Time intervals for recording drawdown data in the monitor wells were every 5 seconds for the first minute, every 10 seconds for the second minute, every 15 seconds for the third minute, etc. The time interval for recording drawdowns

eventually increased to 2 hours and remained at this interval for the remainder of the test. Throughout the remainder of the APT, a hydrogeologist checked or recorded information from the recorders, staff gages, test production well, flow meter, and manometer every two hours. Recorders were set so that their pens would move a distance equivalent to the width of chart paper each day. After the chart papers were removed, drawdown data were taken from the charts and tabulated. The tabulated data were then plotted in the field on log-log and semi-log graph paper using the Cooper - Jacob straight line method, distance drawdown method and the Theis curve matching method. Near the end of the APT, each method indicated that the aquifer was stabilizing. Rain gages were also checked daily and barometric pressure data, tide tables and regional rainfall data were obtained from various sources (see Section 6.3). ROMP #85, a deep well near Zephyrhills (Figure 1-1), was used as a source of background data to indicate regional groundwater trends. Also, water samples were collected from the test well after 12 hours, and every 24 hours thereafter to be used for water quality analysis. Water quality parameters checked included chlorides, sulfates and total dissolved solids.

During the aquifer test, all pump test equipment performed properly. The manometer was constant at between 19.0-19.5 inches and the totalizer flow meter near the gate valve read between 2,140 and 2,150 gpm for the entire duration of the test. Also, there were no observations of large scale water withdrawals or spray irrigation applications within a 3 mile radius of the site during the test.

6.0 TEST ANALYSIS METHODS AND RESULTS

6.1 STEP-DRAWDOWN TEST

On May 17, 1986 a step-drawdown test was performed on the test production well as discussed in Section 5.3.

Analysis of the data indicated that the test production well is extremely stable, neither experiencing development nor clogging at the tested pumping rates. The well loss was calculated to be less than one foot at the designed pumping rate of 2,100 gpm. The results of the test data analysis are shown in Table 6-1 and the methodology is included in Appendix F.

6.2 FIELD OBSERVATIONS DURING THE APT

The APT was started on June 17, 1986 at 10:30 a.m. The pump was shut down 144 hours later to start the recovery phase of the APT. The drawdown data was extracted and reduced daily from the charts to form time and drawdown test data tables. After sufficient data was available, this uncorrected data was used to determine approximate transmissivity values and the delayed response between the shallow surficial and Floridan aquifers.

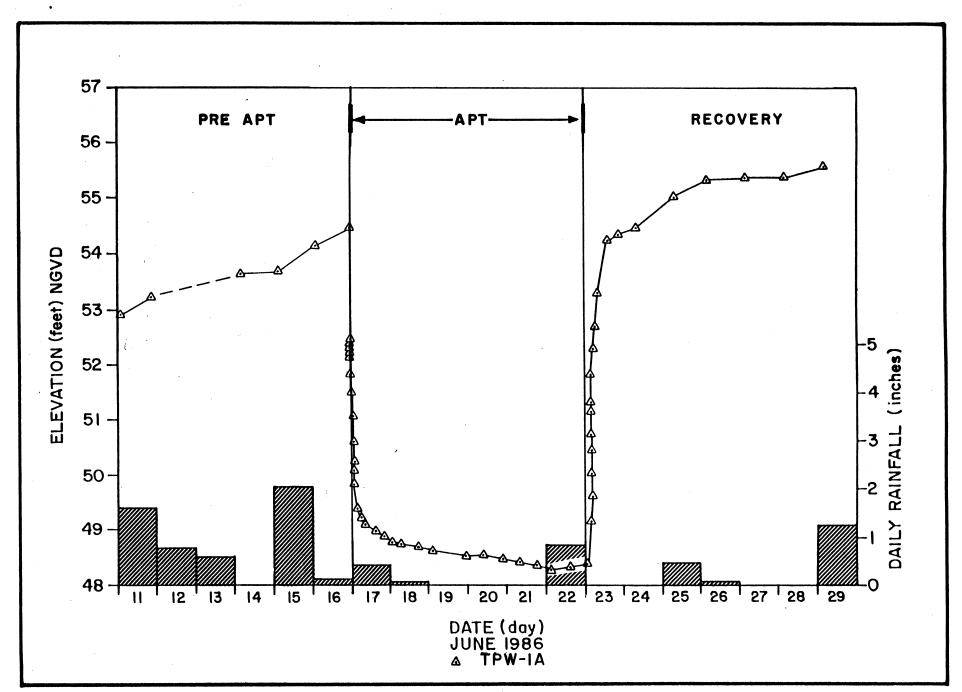
Observed groundwater level data at the Phase IA site wells for the period before, during, and after the APT is shown on Figure 6-1. The two shallow wells responded differently to local rainfall with SMW-IA+500 having a much greater response than SMW-IA+200. The rainfall caused a rapid rise of the water table at SMW-IA+500 above the Floridan aquifer potentiometric surface and the water table also declined rapidly, probably due to lateral drainage toward a depressional area to the north. The SMW-IA+500 also responded more slowly and to a lesser degree to the APT.

The water table at SMW-IA+200 was generally lower than the Floridan aquifer potentiometric surface before and after the APT, even after rain events. The water table closely paralleled the Floridan aquifer with slight declines between rain events that are indicative of evapotranspiration and/or lateral drainage in the surficial aquifer.

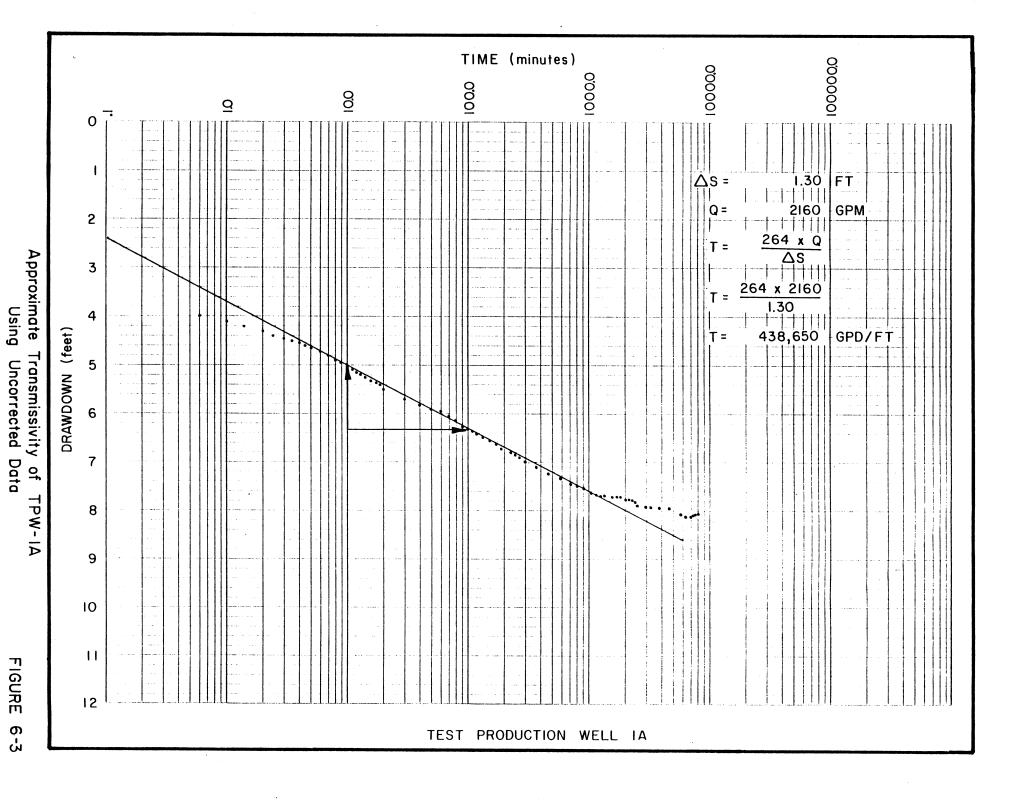
Table 6-1 Results of Step-Drawdown Test of TPW-1A

Pumping Rate (gpm)	Specific Capacity (gpm/ft)	Well Loss (ft)
1,020	408	0.25
1,920	375	0.83
3,740	325	3.19

FIGURE


O

The rise in potentiometric levels at the deep observation well sites in response to local rainfall shown on Figure 6-1 is probably due to a rise in the total vertical stress on the moderately confined aquifer. This increased stess is caused by the added weight of rainfall that has fallen and infiltrated into the surficial unit. Increased fluid pressure is a significant compensatory reaction in the underlying aquifer to increased total stress applied from above. As stated by Freeze and Cherry (1979), the total vertical stress at any point is due to the weight of the overlying rock and water; the total stress equals the stress borne by the granular skeleton of the porous medium (i.e., the effective stress) plus the fluid pressure of the water in the pores. The hydrogeologic system responds to the additional stress because of the following attributes: (1) the low permeability and consequent water-retaining nature of the predominately fine-grained surficial sediments, (2) the thinness yet low permeability of the primary confining unit, and (3) the low storativity of the moderately well confined aquifer and the consequent sensitivity of the potentiometric level to increased stress from above.


During the APT, the cone of depression surrounding the pumping well caused drawdowns in the Floridan aquifer ranging from approximately 2 feet at DMW-IA+1,950 to about 5.4 feet at DMW-IA+200. The drawdown at the pumping well (TPW-IA) reached approximately 8 feet during the APT. The water level data for TPW-IA are plotted on Figure 6-2.

During the APT the maximum drawdowns in the shallow wells ranged from approximately 2.9 feet at SMW-IA+500 to 4.0 feet at SMW-IA+200. The drawdown of the surficial aquifer does not represent a significant overall downward leakance through the semi-confining layer, but occurs because of the low specific yield of the clayey sands of the surficial aquifer. The almost Theis-like response of the deeper aquifer confirms the relatively low leakance.

Using the uncorrected data, and treating the aquifer as being fully confined, the Cooper-Jacob straight-line method (Fetter, 1980) plot gave a transmissivity (T) of 438,650 gpd/ft for TPW-IA (Figure 6-3). Using simultaneous observations at the three deep monitor wells, a modification

Observed Water Levels at TPW-IA before, during & after the APT (Aquifer Performance Test)

of the Cooper-Jacob straight-line method referred to as the "distance-drawdown method", was plotted. This effort was not as successful as the plots did not fall on a straight line. A value of transmissivity (T) between 630,000 and 420,000 gpd/ft was obtained.

6.2.1 STABILIZATION

The data plots were also used during the APT to ascertain when the aquifer had essentially stabilized (Figure 6-3), which was one of the criteria imposed by the SWFWMD before the pump test could be terminated. Stabilization of the aquifer was approximated prior to the termination of the APT as demonstrated in Figure 6-3 when the water level began fluctuating up and down a few hundredths of a foot in response to factors other than the pumping of the well.

6.3 TEST DATA EVALUATION

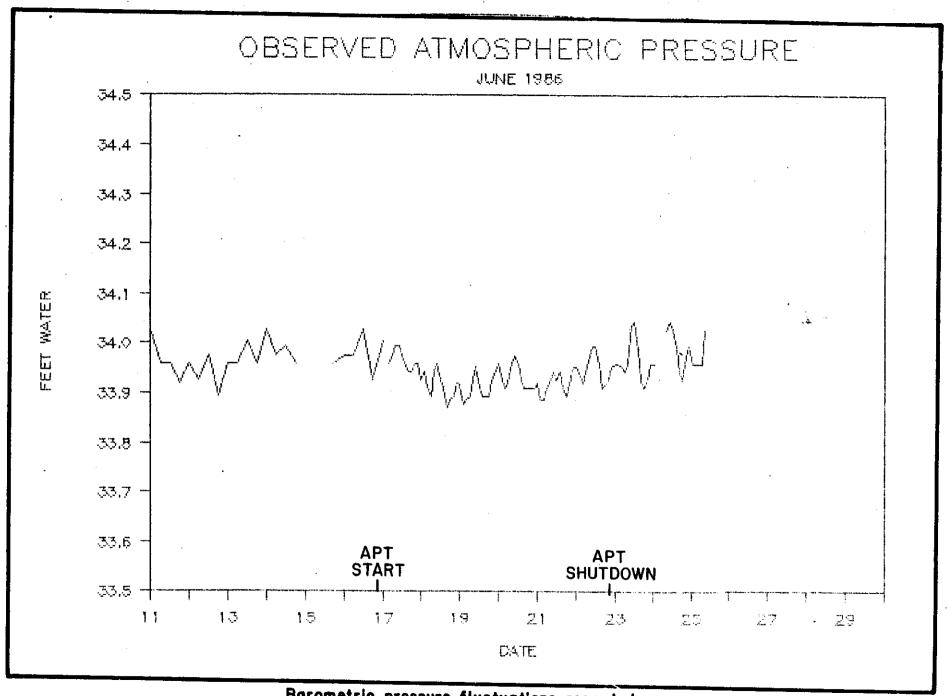
Because the APT was scheduled to last a minimum of 5 days with an equal recovery time, factors that might affect the potentiometric surface during the pump test had to be determined. Proper analysis of the aquifer test data required that corrections be made to the observed water level changes in order to eliminate natural changes caused by barometric and tidal fluctuations, precipitation and regional change (trend) to the potentiometric surface of the Floridan aquifer.

Barometric, tidal, precipitation, and background well (regional trend) information was collected for a minimum of two weeks prior to the test, during the test, and during the well recovery period in order to determine the necessary correction factors.

6.3.1 RAINFALL

Figure 6-4 shows the rainfall at the three rain gage sites. The change in the potentiometric surface level, and the time required for the water level response, were determined for both the surficial and Floridan aquifer for several measured rain events prior to and after the APT. From this data a

small drawdown correction factor (change in potentiometric surface per unit time per inch of rainfall) was calculated for the two major rain events that occurred during the pump test. This correction factor was used together with the other correction factors discussed later in this section to produce the corrected computer generated aquifer drawdown curves (Appendix H).


6.3.2 TIDAL/BAROMETRIC EFFECTS

A cyclic variation in the potentiometric surface with a maximum magnitude of 0.03 to 0.04 feet was observed in the deep wells. The cyclic nature of this variation indicated that the fluctuation could be either tidal or barometric in origin. A similar cyclic variation in water level was also observed when the data from ROMP #85 was plotted.

Tidal data for the month of June were obtained from NOAA for Tampa Bay. The cyclic nature of the observed water level changes did not appear to match the lunar progression shown in the tide tables, but appeared to occur about the same time each day. The distance from the aquifer site to the point of contact between the aquifer and tidal waters also appeared to be too great to give the observed response.

Barometric pressure data were obtained from a WCRWSA recording barometer located at the Topp of Tampa Airport. The observed barometric pressure was converted to feet of water head (Figure 6-5). The local barometric pressure experienced diurnal changes as much as 0.10 feet of water with an average of 0.05 feet of water. Todd (1980) states that barometric efficiency for a confined aquifer usually ranges from 0.2 to 0.7. The observed barometric efficiency was approximately 0.6.

The changes in the potentiometric surface caused by the fluctuations of the barometric pressure are negligible when compared with the changes in the potentiometric surface caused by the pumping during the early stage of the

Barometric pressure fluctuations recorded at the Topp of Tampa Airport, June 1986

6-5

aquifer test. The diurnal high and low pressure changes tend to cancel each other over a period of a day or greater (later stage of APT). Therefore, barometric pressure changes in the potentiometric levels were not considered to be significant in the pump test analysis.

6.3.3 REGIONAL TRENDS

Because of the dynamic nature of the Floridan aquifer, the regional potentiometric surface falls during dry periods (discharge exceeds recharge) and rises during wet periods (high recharge). Initially, two wells were chosen as background or regional trend wells. ROMP #85 well (Lat. 28° 14′ 25″, Long. 82° 19′ 25″) is a 500-foot deep Floridan well located approximately 4 miles northeast of the site with a permanent recorder installed. The Immer deep well (Lat. 28° 11′ 12″, Long. 82° 21′ 13″) is measured periodically by USGS as part of a Floridan well network used in preparing potentiometric surface maps for the SWFWMD region. The locations of these wells are shown in Figure 1-1.

Water level data (provisional data) recorded at 1-hour intervals for the month of June for ROMP #85 was obtained from the Tampa office of USGS. Figure 6-6 shows the upward trend at ROMP #85 during June, 1986.

Daily hand-taped water level measurements were taken by CDM at the Immer deep well. It was soon discovered that after a rain event the water level in the well could not be measured because surface water entered a hole for the electrical cable in the casing, collected around the sanitary collar, and ran into the well when attempts were made to measure the water level through the access plug hole in the sanitary collar. Therefore, water levels could only be measured when the water table was below the opening in the casing. Figure 6-7 shows a comparison of water levels for June 1986 of ROMP #85, the Immer deep well, and TPW-IA. The figure shows that the relative changes in the potentiometric surface are similar.

FIGURE

6-

A correction factor for the regional change in the potentiometric surface was calculated using the average slope of the change in water level at ROMP #85 (Figure 6-6). An average change in head per unit time was calculated and applied to the observed water levels for the APT. This change is reflected in the trend corrected water levels (see Appendix H).

6.4 PARTIAL PENETRATION EFFECTS

One of the causes of departure from the theoretical curve during aquifer pump tests is partial penetration. Wells that do not penetrate the entire thickness of the pumped aquifer create vertical flow gradients near the wells during pumping that makes the analytical methods for fully penetrating wells inaccurate unless data corrections are made. All of the deep wells at the test site are approximately 700 feet deep. Therefore, they penetrate about 670 feet of the Floridan aquifer which is estimated to be 950 feet thick (Wolansky and Garbade, 1981) in the vicinity of the site or about 70 percent of the aquifer thickness.

Differences in the drawdowns produced by partially penetrating wells diminish with increasing distance from the pumping wells. The partial penetration effect is not significant if the monitor wells are farther than $1.5b(K_h/K_v)^{1/2}$ distance units where b=aquifer thickness, $K_h=horizontal$ hydraulic conductivity, and $K_v=vertical$ hydraulic conductivity (Fetter, 1980). However, the monitor wells at the Phase IA site, were calculated to be close enough to the test well to have partial penetration effects on all of the monitor well data.

The partial penetration correction equation by Hantush (1964) was used in a computer program to provide a partial penetration correction factor for each monitor well (Appendix H) in order that the analytical solutions for fully penetrating wells could be used.

6.5 APT ANALYSIS METHODS

Using computerized data management procedures developed by CDM, the aquifer test data, tidal, barometric, rainfall, and regional data were tabulated.

As discussed in Section 6.3.2, it was determined that barometric and tidal effects were insignificant. However, the regional potentiometric surface trends projected from ROMP #85 were significant (Section 6.3.3). In addition, two local rain events affected the observed data (Section 6.3.1). Corrections for partial penetration (Section 6.4) for the deep observation wells and for well loss for TPW-IA (Section 6.1) were also made to the drawdown data. The correction factors and corrected drawdown data are shown in Appendix G.

After corrections for partial penetration, well loss, regional trend, and rain events were made to the drawdown data files, semilog and log-log plots of the data were generated to be used with the various analysis methods.

As previously stated, observations during drilling operations and shallow borings performed by M.P. Brown & Associates (August 1986) indicated that the confining beds are relatively thin and may not cover the entire site. Conversely, a Shelby tube soil sample analysis (Appendix C) showed that a waxy clay layer identified over much of the area immediately above the first limestone unit had a very low permeability of less than 1×10^{-8} cm/sec.

As there was a concern as to how well the Floridan aquifer was connected with the water table aquifer, several methods of analysis were selected and performed. Early time—drawdown data from tests of aquifers that are not anisotropic can generally be analyzed by the nonequilibrium or modified nonequilibrium nonleaky—aquifer methods, particularly if the leakance is not large and the monitor wells are not too distant. The assumption is that leakage has not affected drawdown or has not affected it enough to make the nonleaky—aquifer methods inapplicable.

Late time-drawdown data can generally be analyzed by the nonsteady-state, leaky-aquifer method. This method does not take into account confining bed storage; however, in much of west-central Florida, the confining bed is thin or discontinuous. It is therefore assumed that confining bed storage has a minimal effect on most aquifer tests. The APT was also analyzed by steady-state, leaky-aquifer methods. The latter method assumes that steady

state had been attained. However, the method is applicable for verification of the nonsteady-state analysis because a quasi-steady-state had been reached.

The plots and solutions for the various methods are in Appendix H. The results of the analyses are discussed in Section 7.

6.5.1 THEIS NONEQUILIBRIUM METHOD

The nonequilibrium, nonleaky formula was derived by C.V. Theis in 1935 from the analogy between the hydraulic conditions in an aquifer and the thermal conditions in an analogous thermal system. The formula is based upon the following assumptions:

- (1) the aquifer is homogeneous and isotropic,
- (2) the aquifer has infinite areal extent,
- (3) the aqufier is bounded above and below by impervious layers,
- (4) the flow to the well is in an unsteady state, i.e., the drawdown differences with time are not negligible nor is the hydraulic gradient constant with time,
- (5) the discharge well penetrates and receives water from the entire thickness of the aquifer and pumps water at a constant rate,
- (6) the well has a reasonably small diameter so that well-bore storage can be ignored, and
- (7) water removed from storage is discharged instantaneously with decline in head.

The above assumptions appear to be restrictive, and in fact, the first four are never fully met and seldom closely approached. Nevertheless, the Theis nonequilibrium formula has been applied successfully to many groundwater flow problems.

In applying the Theis method, values of drawdown(s) are plotted against a time per radius squared (t/r^2) on logarithmic paper. The data curve is superimposed on a nonleaky type curve and a match point selected and the coordinates of this common point recorded and used to solve for Transmissivity (T) and Storage Coefficient (S).

In American practical hydrologic units (Fetter, 1980):

$$h_{\circ} - h = \frac{114.6QW(u)}{T}$$

$$S = \underline{Ttu}$$

$$2693r^2$$

where:

 $h_0 - h = Drawdown (feet)$

Q = Well discharge (gallons per minute)

T = Transmissivity (gallons per day per foot)

r = Distance to the monitor well (feet)

S = Storativity (dimensionless)

t = Time since pumping began (minutes)

6.5.2 COOPER-JACOB METHOD

The Cooper-Jacob staight-line modified nonequilibrium method was derived for values of the function u of less than 0.02 for a confined, areally extensive aquifer. In this graphical method, a straight line is drawn through the field data points (drawdown versus log of time) and extended backward to the zero-drawdown axis. The change of drawdown per log cycle is obtained from the slope of the graph.

In American practical units (listed below), these equations are expressed as (Fetter, 1980):

$$T = \frac{264Q}{(h_0 - h)}$$

$$S = \underline{Tt}_{o}$$

$$4,790r^{2}$$

where

Q = Constant rate of pumpage (gallons per minute)

 $(h_0 - h) = Drawdown per log cycle of time (feet)$

t = Time since pumping began (minutes)

T = Transmissivity (gallons per day per foot)

r = Distance to the pumped well (feet)

t = Value of time at the intercept with the zero-drawdown axis.

 $t > (5r^2)$ (S/T), limiting condition

The Theis and Cooper-Jacob methods may be used if the leakance is not large and the monitor wells are not too distant. The assumption is that leakage has not affected drawdown or has not affected it enough to make the nonleaky aquifer method inapplicable (Wolansky and Corral, 1985).

6.5.3 WALTON METHOD

Walton derived a graphical method for a leaky artesian aquifer (semiconfined) with negligible storage in the confining layer. Instead of one type curve, there is a type curve for each value of r/L, where L is a leakage factor. The s versus t/r^2 plot is superimposed and adjusted on the family of type curves until most of the plotted points fall on one of the type curves and a match point is selected (Kruseman and de Ridder, 1979). The assumptions listed for the Theis equation should be satisfied except that the aquifer is semiconfined.

The equation for the Walton Method may be stated as follows:

$$T = Q \qquad W(u, r/L)$$
4 ls

$$S = \frac{4Tt}{r^2} u$$

where:

s = Drawdown (meters)

 $T = Transmissivity (m^2/day)$

Q = Rate of discharge (m³/day)

W(u,r/L) = Well function

r = Distance from observation well to discharge well (meters)

L = Leakage factor of water bearing layer.

S = Storage Coefficient

t = Time (days)

6.5.4 HANTUSH I METHOD

Hantush (1956) developed a method of analyzing the data from pumping tests in semi-confined aquifers, using the inflection point of the time-drawdown curve on single logarithmic paper. However, to determine the inflection point, the steady state drawdown should be (approximately) known from direct observation or from extrapolation. Explanation of this rather complex straight line method is in Appendix H and Kruseman and de Ridder (1979). The equations are:

$$T = \frac{2.3Qe}{4\pi\Delta s_{p}}^{-r/L} \qquad S = \frac{r4Tt}{2Lr^{2}}$$

Definition of terms are as for the Walton Method with:

 $s_p = Drawdown at inflection point$

 Δs_p = Slope of the curve at inflection point

L = Leakage factor of water bearing layer through semi-confining unit

6.5.5 HANTUSH II METHOD

This method is based on the same assumptions as the Hantush I method and Walton method but is graphically solved in a different manner.

Observations from at least two wells are required. A description of the method and solutions is located in Appendix H and Kruseman and de Ridder (1979). The equations are:

$$T = \frac{2.30Q}{4\pi (\Delta s)_{o}} \qquad S = \frac{2Tt_{p}}{Lr}$$

The definition of terms are as for the Hantush I with:

$$(\Delta s)_{\alpha} = \Delta s \text{ axis}$$

where:

r = 0

 t_p = time at the inflection point.

6.5.6 HANTUSH - JACOB METHOD

Hantush and Jacob (1955) found that, in addition to the transmissivity and coefficient of storage of a leaky artesian aquifer, the leakance can be determined by superimposing a plot of time versus drawdown on a family of type curves. The above method incorporates the assumptions of the Theis method except that assumption 3 is deleted and the following four assumptions are added:

- (8) flow in the aquifer is augmented by vertical leakage through the confining beds,
- (9) the flow lines are assumed to be refracted at a full right angle as they cross the confining bed and aquifer interface,
- (10) the confining beds are assumed to be incompressible so that water released from storage therein is negligible, and

> (11) the heads above an overlying confining bed and below an underlying confining bed are influenced by the pumping (Wolansky and Corral, 1985).

The equations may be written:

$$T = Q L(u,v)$$

$$4 \pi s$$

$$S = \frac{4T t/r^2}{1/u}$$

Leakance (K'/b') is determined from the following equation:

$$\underline{K'} = 4T \underline{v}^2$$

$$b' \qquad r^2$$

where:

L(u,v) = L function of u,v.

K' = Vertical hydraulic conductivity of the confining bed (feet per day) b' = Thickness of the confining bed (feet).

6.5.7 JACOB LEAKY ARTESIAN METHOD

Jacob (1946) described a method where the final or essentially steady-state (latest) drawdown observation in each well is plotted on logarithmic paper against the distance of the monitor well from the pumped well. The data are then matched to the Bessel function logarithmic type curve of $K_o(x)$ versus x and a common match point is chosen.

The formula may be written as:

MISC6T.3/22 12/9/86

$$T = \frac{0.16QK_{o}(x)}{s}$$

$$\underline{K'} = T (x/r)^2$$
b'

where:

 $T = Transmissivity (ft^2/day)$

K'/b' = Leakance (/day)

 $Q = Pumping rate (ft^3/day)$

s = Drawdown (ft)

r = Distance from monitor well to pumping well

6.5.8 ANISOTROPIC METHOD

In conventional methods of aquifer test analysis, homogeneous and isotropic aquifers are assumed. In many instances, however, the aquifers tested are anisotropic. The SWFWMD required that a third deep monitor well(DMW-IA+1,950) be installed so that the amount of anisotropy at the Phase IA site could be determined. Hantush (1966) developed a method for determining hydraulic properties and the principal directions of anisotropy. It requires data from at least three wells if the principal directions of anisotropy are not known. Solutions are based on either the Theis formula or Hantush-Jacob formula.

7.0 TEST RESULTS

The application of the several analytical techniques discussed in Section 6 indicated that the Floridan aquifer in the vicinity of the Phase IA site is semi-confined and exhibits a low leakance that is consistent with other APT results in the area. The leakance value is also consistent with measured permeabilities of the clay semi-confining unit at the site.

Hydraulic properties determined from the aquifer test analysis methods described in Section 6.5 and presented in Appendix H are summarized in Table 7-1.

7.1 TRANSMISSIVITY

The transmissivities (T) for the different analytical methods fell within a range from 378,000 gpd/ft. to a high of 471,000 gpd/ft.

The greatest variation in transmissivity for any well using the eight methods was 17 percent. The average of the eight different methods is 423,600 gpd/ft. with a +7 percent variation for all methods except for the Hantush I method which is -11 percent. There is no apparent pattern to the variation in transmissivity between the monitor wells for the different methods. The Cooper-Jacob method yielded a slightly lower T value for TPW-IA than for the monitor wells. The Hantush anisotropic method shows a negligible anisotropy in transmissivity at the site with the major axis at 112.2°. The transmissivities are comparable to the values of 51,800 to 57,000 ft²/d (387,000 to 426,000 gpd/ft) used by Robertson and Mallory (1977) for Pasco County. Transmissivities from 51,000 to 71,000 ft²/d (381,000 to 531,000 gpd/ft) were reported for the South Pasco Wellfield to the west of the Phase IA site.

7.2 STORAGE COEFFICIENT

The storage coefficient is fairly consistent as determined by the different methods with an average of 0.0007. The highest storage coefficient was in the vicinity of DMW-IA+1,950 which had a range of 0.0009 to 0.0015. The

Table 7-1
Results of APT Analysis Methods

Analysis Method	Well(s)	T (gpd/ft)	S (dimensionless)	Leakance k'/b' (day 1)	Leakance Factor L(ft)
Theis	DMW-IA+1,950 DMW-IA+500 TPW-IA+200	404,515 416,692 404,249	0.0015 0.0002 0.0005		
	TPW-IA average	$\frac{433,750}{414,801}$	0.0007		
Cooper-Jacob	DMW-IA+1,950 DMW-IA+500 DMW-IA+200	461,500 426,770 417,350	0.0010 0.0005 0.0008		
	TPW-IA average	403,100 427,180	0.0008		
Walton	DMW-IA+1,950 DMW-IA+500 DMW-IA+200 average	406,553 455,658 471,390 444,534	0.0015 0.0002 0.0005 0.0007		
Hantush I	DMW-IA+500	377,649	0.0005	3.90x10 ⁻⁵	44,763
Hantush II	DMW-IA+1,950 DMW-IA+500 DMW-IA+200 average	408,304	0.0009 0.0003 0.0009 0.0007		12,268
Hantush- Jacob	DMW-IA+1,950 DMW-IA+500 DMW-IA+200 average	451,976 450,488 451,976 451,480	0.0014 0.0005 0.0002 0.0007	2.54×10 ⁻⁵ 2.41×10 ⁻⁵ 2.42×10 ⁻⁵ 2.46×10 ⁻⁵	
Jacob Leaky Artesian	average	412,800		1.16x10 ⁻⁴	
Hantush Anisotropic	x axis (112.2°) y axis (22.2°) average (T _e)	462,324 440,939 451,505	0.0007 0.0007		

WCRWSA5T.1/20 12/9/86

lowest storage coefficient was for DMW-1A+500 with 0.0002 to 0.0005 being calculated by the various methods. The values for S are generally lower than those obtained for the South Pasco Wellfield of 0.001 to 0.006 (Wolansky and Corral, 1985).

7.3 LEAKANCE

Leakance as calculated from the APT data (see Table 7-1) ranged from 2.46×10^{-5} to 1.16×10^{-4} per day (day⁻¹). This range of relatively low leakance is in agreement with values reported for the Cypress Creek Wellfield, permeability testing results on the semi-confining unit at the Phase IA site and groundwater modeling calibration results in the area. The table below summarizes some of the leakance data from the Phase IA site and other nearby areas.

Data Source	Leakance (<u>day</u> ⁻¹)
Phase IA APT results (CDM, 1986)	2.46×10^{-5} to 1.16×10^{-4}
Phase IA site laboratory permeability testing (M.P. Brown & Associates, 1986)	1.9x10 ⁻⁵
C-2 test well at Cypress Creek Wellfield (Leggette, Brashears & Graham, 1975)	4.01x10 ⁻⁴
Cypress Creek Wellfield ground- water model calibration (Ryder, 1978)	1.34x10 ⁻⁵ to 1.34x10 ⁻⁴
South Pasco Wellfield testing (Wolansky and Corral, 1985)	5.0x10 ⁻⁵

WCRWSA5T.1/20 12/9/86

The above table lists a leakance value $(1.9 \times 10^{-5} \text{ day}^{-1})$ calculated from laboratory permeability testing of a Shelby tube from the Phase IA site. Leakance is actually another method of expressing the vertical permeability (K') of the semi-confining bed and is expressed by the following equation:

$$L = \frac{K'}{b'}$$

where:

 $L = Leakance (day^{-1})$

K' = Vertical hydraulic conductivity of the semi-confining bed (ft/day)

b' = Thickness of the semi-confining bed

A Shelby tube laboratory permeability of 1×10^{-8} cm/sec (2.83×10⁻⁵ ft/day) was measured for the semi-confining unit at the Phase IA site (M.P. Brown & Associates, August, 1986). The semi-confining unit ranged from 0.5 feet to 8 feet thick, but averaged approximately 1.5 feet. Applying the above equation to the Phase IA laboratory permeability value yields:

$$L = \frac{2.83 \times 10^{-5}}{1.5 \text{ ft}} \text{ ft/day} = 1.9 \times 10^{-5} \text{ day}^{-1}$$

The above leakance is slightly lower than the 2.46x10⁻⁵ day⁻¹ value obtained by the Hantush-Jacob method, but is in agreement with the magnitude of leakance values obtained by the APT anlysis.

The comparatively low leakance values calculated for the confining unit are also supported by the fact that the drawdown curves generated from the test data are close in shape to the Theis non-leaky aquifer curve.

WCRWSA5T.1/20 12/9/86

7.4 TEST SUMMARY

Analysis of the Phase IA aquifer performance test data by several applicable techniques resulted in the following average aquifer properties at the site:

Transmissivity = 423,600 gpd/ft

Leakance = 6.0×10^{-5} per day

Storage Coefficient = .0007

The analyses were based upon an exceptionally complete set of on-site monitor well water level data and should be considered as highly reliable. The Floridan aquifer at the Phase IA site is hydraulically suitable for installation of a 3 mgd water supply well.

8.0 CONCLUSIONS

Results of the hydrogeologic investigation, step—drawdown test, aquifer performance test and water quality analyses indicate that the test site is suitable for a potable water production well producing an average of 3 million gallons per day (mgd) from the Floridan aquifer. Drawdown at the test production well was 8 feet or less during the aquifer performance test at a pumping rate of 2,150 gallons per minute (3.1 mgd). The aquifer performance test results indicate that the test/production well is in a productive area with a transmissivity of approximately 423,600 gpd/ft. Although the confining bed above the Floridan aquifer is relatively thin, the Floridan aquifer acts as a semi- confined aquifer (storage coefficient approximately 0.0007) with a slightly leaky confining unit (leakance between 1.16x10⁻⁴ and 2.46 x 10⁻⁵ per day).

Estimation of long term pumping effects on the water table and vegetation are beyond the scope of this investigation. Impact of large scale water withdrawals on both wells of local residents and nearby wellfields will need to be addressed by further testing at other sites and by a regional groundwater modeling analysis.

9.0 BIBLIOGRAPHY

- Brown, M. P. & Associates. August 1986. Exploration Boring and Piezometer Installations to Define the Surficial Aquifer in the Cypress Bridge Area, Pasco County, Florida. Tampa, Florida.
- Camp Dresser & McKee Inc. 1985. Well Installation and Aquifer Performance Testing: Phase I Regional Interconnection for the West Coast Regional Water Supply Authority. Project Manual. Tampa, Florida.
- Cherry, R. N., Stewart, J. W., and Mann, J. A. 1970. Hydrology of the Middle Gulf Region. Report of Investigation No. 56. Florida Bureau of Geology.
- Fetter, C. W., Jr. 1980. Applied Hydrogeology. Charles E. Merrill Publishing Co., Columbus, Ohio.
- Freeze, R. A. and Cherry, J. A. 1979. Groundwater. Prentice-Hall, Inc. Englewood Cliffs, New Jersey.
- Gilboy, A. E. Undated. A Correlation between Lithology and Natural Gamma Logs Within the Alafia Basin of the Southwest Florida Water Management District. Southwest Florida Water Management District.
- Ground Water and Wells. 1975. Johnson Division, UOP Inc., St. Paul, Minnesota.
- Guyton, R. F. and Associates. 1974. Estimated Effects of Ground-Water Pumping in Pasco County, Florida. Houston, Texas.
- Hantush, M.S. 1964. Hydraulics of Wells. Advances in Hydrosciences.
- Hutchinson, C. B. 1984. Hydrogeology of Wellfield Areas near Tampa, Florida, Phase 2 Development and Documentation of a Quasi-Three-Dimensional Finite-Difference Model for Simulation of Steady-State Ground-Water Flow. Water Resources Investigations Report 84-4002. U.S. Geological Survey.
- Kruseman, G. P. and de Ridder, N.A. 1979. Analysis and Evaluation of Pumping Test Data. Bulletin 11. International Institute for Land Reclamation and Improvement. Wageningen, the Netherlands.
- Kwader, T. 1982. Interpretation of Borehole Geophysical Logs and their Application to Water Resources Investigations. Water Resources Assessment 83-1. Northwest Florida Water Management District.
- Leggette, Brashears, and Graham, Inc. 1979. Development and Testing Program - Phase II Cross Bar Wellfield, Pasco County, Florida, Evaluation and Effects of the Hydrologic Properties in the Northwestern Portion of the Wellfield: West Coast Regional Water Supply Authority.
- Lohman, S. W. and Others. 1970. Definitions of Selected Groundwater Terms: Revisions and Conceptual Refinements. Open-File Report. U.S. Geological Survey.

- Lohman, S. W. 1972. Groundwater Hydraulics. Professional Paper 708. U.S. Geological Survey.
- Leggette, Brashears, and Graham, Inc. 1977. Development and Aquifer Testing Evaluation - Cypress Creek Wellfield, Pasco County, Florida.
- Miller, J. A. 1986. Hydrogeologic Framework of the Floridan Aquifer System in Florida and Parts of Georgia, South Carolina, and Alabama. U.S. Geological Survey Professional Paper 1403-B.
- Mycyk, R. T., Fayard, L. D., Fletcher, W. L., and Ogle, J.K. 1985. Water Resources Data Florida Water year 1983, Volume 3A. Southwest Florida Surface Water. U.S. Geological Survey.
- Reed, J. E. 1980. Techniques of Water-Resources Investigations of the United States Geological Survey Chapter B3: Type Curves for Selected Problems of Flow to Wells in Confined Aquifers. U.S. Geological Survey.
- Ryder, P. D. 1985. Hydrology of the Floridan Aquifer System in West-Central Florida. Open-File Report 84-611. U.S. Geological Survey.
- Ryder P. D., Johnson, D. M., and Gerhart, J. M. 1980. Model Evaluation of the Hydrogeology of the Morris Bridge Wellfield and Vicinity in West Central Florida. U.S. Geological Survey Water Resources Investigations 80-29.
- Sinclair, W. C., Stewart, J. W., and Knutilla, R. L. 1985. Types, Features, and Occurrence of Sinkholes in the Karst of West Central Florida. Water Resources Investigations Report 85-4126. U.S. Geological Survey.
- Vance, J. F. 1985. Soil Survey of Pasco County, Florida. United States Department of Agriculture Soil Conservation Service.
- Wetterhall, W. S. 1964. Geohydrologic Reconnaissance of Pasco and Southern Hernando Counties, Florida. Report of Investigations No. 34. Florida Geological Survey.
- Wetterhall, W. S. 1965. Reconnaissance of Springs and Sinks in West-Central Florida. Report of Investigation No. 39. Florida Geological Survey.
- White, W. A. 1970. Geomorphology of the Florida Peninsula; Bulletin 51. Florida Bureau of Geology.
- Wolansky, R. M., Barr, G. L., and Spechler, R. M. 1980. Configuration of the Top of the Highly Permeable Dolomite Zone of the Floridan Aquifer, Southwest Florida Water Management District: Water-Resources Investigations Open-File Report 80-433, 1 sheet. U.S. Geological Survey.

- Wolansky, R. M., and Garbade, J. M. 1981. Generalized Thickness of the Floridan Aquifer, Southwest Florida Water Management District. Water Resources Investigations Open-File Report 80-1288. U.S. Geological Survey.
- Wolansky, R. M. and Corral, M. A., Jr. 1985. Aquifer Tests in West-Central Florida, 1952-76. Water Resources Investigations Report 84-4044. U.S. Geological Survey.

APPENDICES

AQUIFER PERFORMANCE TEST - PHASE IA

PHASE I - REGIONAL INTERCONNECTION

FOR THE
WEST COAST REGIONAL WATER
SUPPLY AUTHORITY

DECEMBER 1986

CAMP DRESSER & MCKEE INC. CLEARWATER, FLORIDA

APPENDICES

CONTENTS

- A. SWFWMD Aquifer Performance Test Authorization
- B. Activity Chronology
- C. Geologic Logs

 Test Production Well IA

 Deep Monitor Well IA +200

 Deep Monitor Well IA +500

 Deep Monitor Well IA +1,950

 Lithologic logs of Shallow Borings

 Soil Tests
- D. Geophysical Logs
 Test Production Well IA
 Deep Monitor Well IA +200
 Deep Monitor Well IA +500
 Deep Monitor Well IA +1,950
- E. Well Completion Reports
- F. Step-drawdown Test Data
- G. Aquifer Performance Test Data
- H. Aquifer Performance Test Analyses
 APT Drawdown Data Summary
 Theis Nonequilibrium Method
 Cooper-Jacob Method
 Walton Method
 Hantush I Method
 Hantush II Method
 Hantush-Jacob Method
 Jacob Leaky Artesian Method
 Anisotropic Method
- I. Water Quality Analyses
- J. Glossary of Terms

APPENDIX A SWFWMD AQUIFER PERFORMANCE TEST AUTHORIZATION

OUTHWEST FLORIDA WATER MANAGEMENT DISTRICT

2379 BROAD STREET, BROOKSVILLE, FLORIDA 33512-9712 PHONE (904) 796-7211 SUNCOM 684-0111

BRUCE A. SAMSON, Chairman, Tampa Wm. O. STUBBS, JR., Vice Chairman, Dade City
MARY A. KUMPE, Secretary, Sarasota RONALD B. LAMBERT, Treasurer, Wauchula
WALTER H. HARKALA, Assistant Secretary, Plant City MICHAEL ZAGORAC, JR., Assistant Treasurer, Belleair JAMES P. TAFT, Crystal River HORACE F. HERNDON, Lake Wales ROY G. HARRELL, St. Petersburg

April 2, 1986

APR - 9 1986

Mrs. Loretta Holtkamp

West Coast Regional Water Supply Authority

2535 Landmark Drive, Suite 211

Clearwater, Florida 33519

WCRWSA

Authorization For Proposed Test Program, CUP No. 208426 Re:

Dear Mrs. Holtkamp:

The District has reviewed your request to construct and test wells in order to develop specific hydrogeologic information in support of Consumptive Use Permit Application No. 208426.

In accordance with this request, the District hereby grants permission to proceed with the test program as represented in the Your well construction permit will be attached memorandum. released accordingly.

Please continue to keep the District staff appraised of your Should you have any questions or comments regarding this information, please call.

Sincerely,

RICHARD V. MCLEAN Director, Resource

Regulation Department

MT

Attachments

RECEIVED

APR 16 1986

WCRWSA CLEARWATER OFFICE April 2, 1986

MEMORANDUM

MCLEAN, Director, Resource Regulation RICHARD V. TO: Department

FROM: M MARK THAGGARD, Hydrogeologist, Consumptive Use Permitting Section

Authorization For Proposed Test Program, West Coast RE: Regional Water Supply Authority, CUP No. 208426

I. BACKGROUND

Entity Proposing Test: West Coast Regional Water Α. Supply Authority

B. Hydrogeologic Consultant: Camp Dresser & McKee

C. Location: Pittway Real Estate, Inc.

> property in southern Pasco County; Township 26 South, Range 19 East,

Section 23.

Test program submitted D. Date of Request:

December 13, 1985; CUP application received on February 26, 1986.

E. Purpose: Hydrologic investigation

support of consumptive use permit for 24 MGD from 16 wells. obtained will Data provide information used to estimate the effects of the groundwater

withdrawals.

TEST PROGRAM II.

The test-production well casing will be 24-inches in A. diameter and will extend to an estimated depth of 150 feet (or below the upper confining unit). The total well depth will be roughly 700 feet.

Three 8-inch diameter production zone monitor wells will be drilled at a distance of 200, 500, and 1500-2000 feet from the test-production well. The monitor wells will each have 150 feet of casing and a total depth of 700 feet.

At two of the two production zone monitor sites (the two closest to the test-production well), a 4-inch diameter water table monitor well will be drilled to a total depth of 25 feet. The well will be fitted with PVC pipe with the bottom 5 feet screened.

All monitor wells will be properly developed following construction.

- B. Formation cuttings will be collected every 10 feet while drilling by mud rotary and every 5 feet or change of formation while drilling by reverse air. These cuttings will be collected while drilling the test-production well and both production zone observation wells.
- C. Water samples will be taken at every rod change (approximately 30 feet) and field analyzed for conductivity and temperature on the test-production wells and the three production zone observation wells.
- D. Upon completion of the test-production well, the following geophysical logs will be performed on the well and the first monitor well completed:
 - 1. Caliper
 - 2. Electric
 - 3. Temperature (static and sustained stress)
 - 4. Flow meter (static and sustained stress)
 - 5. Fluid resistivity
 - 6. Gamma ray
- E. A step drawdown specific capacity test will be performed on the test-production well.
- F. Prior to the start of the aquifer pumping test, water levels will be measured in all wells for a minimum of two weeks.
- G. A rain gage and recording barometer will be installed on the site after the completion of well drilling but prior to the aquifer pumping test.
- H. An aquifer pumping test consisting of drawdown and recovery will be performed for a period long enough so

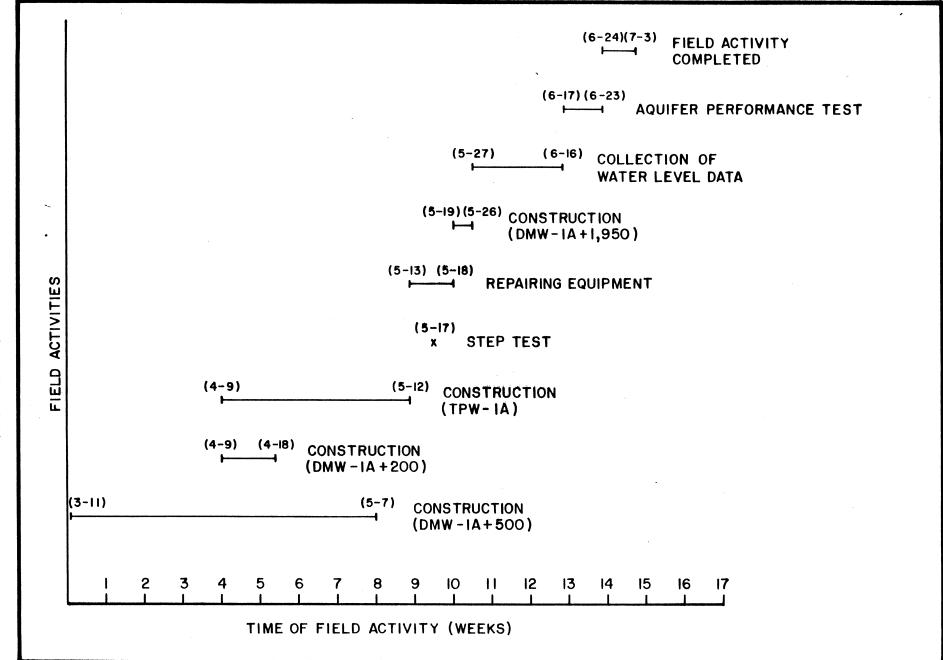
that all aquifer parameters can be determined (i.e. transmissivity, storage, and leakance). The production well will be pumped at least five days and longer if equilibrium conditions are not established.

- 1. During the test, water level will be measured in the test-production well by using an electric sounder (M-SCOPE or equivalent). Each monitor well will be equipped with a continuously recording water level instrument (Stevens Type F or equivalent).
- 2. The estimated pump rate of the test-production well is 2,100 gpm. The production rate will be monitored by use of an in-line flow meter and an orifice-manometer.
- 3. Discharge water will be routed 1000-1500 feet to the east away from the test and into Trout Creek.
- I. Water samples will be collected at 12 hours into the test and everyday thereafter and analyzed for chlorides, sulfates, total dissolved solids, and conductivity using standard testing procedures.
- J. Water levels will be monitored before, during, and after the test in nearby monitor wells to account for regional affects of pumpage within the area. Additionally, a visual reconnaissance will be maintained of the area to determine when pumpage is taking place in the area.

III. SPECIAL CONDITIONS

Staff recommends approval of the testing as outlined above, subject to the following conditions.

- A. If it is determined that the production well cannot be used for water supply development, all wells will be properly abandoned (i.e. plugged) in accordance with 17-21, FAC. One of the deep zone well and one of the water table monitor well may be converted to regional monitor wells.
- B. A report on the results of the hydrologic testing will be completed and a copy submitted to the District.


 Additionally, a copy of all raw and analyzed data and calculations will be submitted to the District.

A meeting will be be arranged between District staff and West Coast representatives to discuss the test results and determine additional testing needs.

- C. District staff shall be notified at least 48 hours prior to commencement of any testing.
- D. District staff shall be notified prior to termination of pumpage during the test.
- E. District staff shall be allowed on the property with proper prior verbal notification.
- F. WCRWSA will have to obtain a consumptive use permit from the District prior to putting any wells into production.
- G. The location of the third deep zone monitor well will be at a site mutually agreed upon by District and West Coast staff.
- H. The results of this test will determine the necessity for further testing in the area.
- I. West Coast shall investigate withdrawal related complaints from nearby property owners. West Coast shall either satisfactorily establish that its withdrawals are not causing the problem or take action to mitigate the problem. Either action shall be subject to review and approval by the District.

MT:eab

APPENDIX B ACTIVITY CHRONOLOGY

APPENDIX C GEOLOGIC LOGS

TEST PRODUCTION WELL IA

TPW-1A

	GEOLOGIC LOG OF WELL Phase 1A CTEST Production 1
Project Name $\underline{\hspace{0.1in}}$	cewsa Phase 14 Date 4/8/86
Project Number	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Hole Size	Drilling Method rotary mud Sampling Method cuttings
Depth Interval Ft.	Geologic Description
0-5'	Fine Sand
5-18'	Fine Sand and clay
13-20'	
20'-25'	
25'-30'	Sandy clay-light gray, very fine
	Sandy clay-light gray, very fine Limestone - white hard fine
	contact is around 28'
	THE TOURS - F

_CAMP_DRESSER &	McKEE INC.
)	GEOLOGIC LOG OF WELL Phase 14 (Test Production Wel
Project Name	WCRWSA - Phase 14 Date 4/9/86
Project Number _	
Hole Size	30" Sampling Method cuttings
Depth Interval F	t. Geologic Description
30'-35'	Limestone - white to ten, hard, fine to
	medium grained, biomicritic
351-401	Limestone - white to tan, hard fine to
1.1.1-1	medium grained, biomicritic
40'-45'	Limestone - white to tan, hard, medium
	grained, biomicritic with green day
	dispersed throughout.
451-501	Limestone - white to tan, hard, medium
	grained, biomicritic, with small adular
	bits of green clay dispersed throughout
501-551	Limestone - white to tan hard medium
st Circulation	grained, biomicritic with green clay.
55'-60'	Limestone - white to tan, fine to medium
	grained very little clay hard biomicvitic
+ 60'-651	Limestone - white to gray, hard, fine to
rulation	medium grained, biomicritic, very little clay,
	Shell fragments.

CAMP DRESSER & Mc	
	GEOLOGIC LOG OF WELL Test production well
Project Name	UCR WSA Phase 14 Date 4/10/86
Project Number	6006-43 Drilling Method 12. fary Mud
Hole Size3	Sampling Method Cuttings
Depth Interval Ft.	debrogic Description
65-701	Limestone, medium hardness tom to
70'-75'	gray , biomicritic
10 -73	Limestone - hard to medium hardness
77.0	white to gray biomicritic with
25-64	some clay
75-86' 80'-85'	Limestone - tan to gray, hard, biomication
80 -87	Limestone - tan to Lt. gray medium
85-90'	hardness time grained blomicritic
	crostone - tan to grav, medium
	hardness, fine grained biomicritic, shell
90-951	fragments
	Limes tone - tan to gray coarser grained
	medium hardness, biomicritic, shell
951-1061	Tragments
100-105	Limestone - same as above
, 0	Limestone - tan to gray, medium
	grained, medium hardness biomicritic
185'-110'	and a small amount of shell fragments
	The lan to Lt. gray medium
	grained medium hardness, biomicritica
•	shell fragments

GEOLOGIC	LOG	0F	WELL	Test	Pr	oduction	Wel
----------	-----	----	------	------	----	----------	-----

Project Name WCR	ewsa Phase 1A	Date4/10/84	
Project Number <u>Goo</u>	6-43	Drilling Method Mud Rotary	
Hole Size	30"	Sampling Method Coffings	
Depth Interval Ft.	Ge	ologic Description	
110'-115'		tan, fine to med grain, med	
	handness - bromic	ritic shell fragments, microf))
115-120'	Same as above	Tragments, microso	25.5 j
120'-125		with brack specks (salt	
125/-132	Same as about	ccasional hand strata, medium h	ard
	33 2000		
			
			-
			-

	GEOLOGIC LOG OF	WELL Test Production well
Project Name	WCRWSA Phase 1A	Date4/18/86
Project Number	6006-43	Drilling Method Loverse Air
Hole Size	22"	Sampling Method Cuttings
Depth Interval Ft.	Geolo	ogic Description
132'-1501	1	. Lt. gray, fine grained
	hard with hard	dork gray clay and
150'-155'	Sime recigitation	ed material
	hard with tun	gray, fine grained, lifterent textures. One
	15 biomicritic and	the other is Everosic
5'-160'	Limestone - grav	fine grained, hard to
11-1-11-61	medium hardness	r blomicrific
160'-165'	Limes Tone - gray	tine grained hard
	to medium hardy	ress, bumicritic
165-170'	with some shell to	rag ments
,,,	Limestone - tantog	ray, fine grained, hard
170'-175'	someritic shell.	traguents.
	Limestone - tan te	gray, fine graine,
	rara vionicitu,	Shell trading to with
175' - 188'	Some hard dark q	vay clay
	hend I	gray, fine grained,
	110001201718	, shell tragments
	with a greater pe	reentuge of hard
	gray clay	
ļ		

GEOLOGIC LOG OF WELL TEST WELL IA

	GEOLOGIC LOG OF WELL TEST WELL TA
Project Name $_\omega$	CRWSA Phase 1A Date 4-22-86
Project Number <u>6</u>	006-45 Drilling Method Reverse Air
Hole Size 22'	Sampling Method Cuttings
Depth Interval Ft.	Geologic Description
180 - 185	
*	Limestone grayish tan, biomicritic fine sandy grained, black specks, gestropad & shell casts
	and molds. Made up of fossil fragments, medium
	to well indurated.
185-190	Same as above more echinoid spines and plates
	pyrite coystals inside some fossil molds
o -203	Limestonce, tan, biomicritic, fine sandy grained
	black specks (iron minerals), made up of fossil
	tragments, medium to well indurated
203-310	Same as above, with thin carbonate mud
	layers, tan; at 304-305.
210-215	Same as above, no carbonate mud, oyster
	Shells, bannacles (?)
215-217	Same as above, medium hardness
217-219	Limestone gray with black specks, fine grained,
	medium to hard layers, shells, gastropud molds,
219 - 225	grean to dark gray chert, black shark teeth.
211 . 223	Linestone, gray to tan as above, fair to well
-25 - 230'	indurated, echinoid spines & plates, gastropuls, shells
	timestone gray hard medium graine
· · · · · · · · · · · · · · · · · · ·	some shell fragments

	GEOLOGIC LOG OF	WELL TEST Well 14
Project Name	WCRWSA PhaseCA	Date
Project Number	6004-45	Drilling Method Reverse Hir
Hole Size	22"	Sampling Method Cuttings
Depth Interval Ft.	Geolog	gic Description
230'-2351		ray, hard, fine grained.
	bromicritic, echinoia	plates and spines, shell
225/ 040/	tragments	
235'-240'	Limestone - tan to	gray, soft to medium
	hardness, fine grains	ed very few shell
0 11 / -1	fragments	·
240'-245'	Limestone - tanto gr	ay, soft to hard fine
	grained, shell fragme	uts with a large amount
	of soft, tan to gray	clay.
2451-250'	Cimestone - tan to gr	an soft to hard fine
	grained, shell fragmi	ents with a large amount
	of soft green clay	
256' -255'	Limestone - tan to	gray, soft to hard fine
	grained, shell frage	ments
255'-260'	Limestone - tan ha	rd, fine grained very
	fossiliferous (echinose	I spines and plates)
,	biomicritic	
265'-265'	Limestone, tanto q	ray, soft to hard,
	١	ritic and sucrosic, shell
	Fragments (bivalves.	gastropods, echinoderms)
		J =

GEOLOGIC LOG OF	WELL TEST Wel	114
-----------------	---------------	-----

Project Name	CRWSA Phase 1A	Date	2 6
Project Number	6664-45	Drilling Method Reve	
Hole Size	22"	Sampling Method	
Depth Interval Ft.	Geo	logic Description	
265'-270'		, soft, fine graine	ed. Shell
,	tragments tech	moderms)	
270'-275'		, very soft, fine	grainel
275'-280	with some shell f	rag ments	J
_	same as above		
280'-285'	Limestone - Climay	mudstone?) gray ve	ry soft
00-1	time grained		
285'- 290'	Limestone - gray he	rd fine grained ve	* Y
	fossiliferous (echin	ed plates and stems)	- primarili
290' - 295'	Extremely fossilifor	ous especially for an	ms. No
	rock matrix	· · · · · · · · · · · · · · · · · · ·	
295'-300'	Forams and shell	fragments	
3661-3051	Limestone - gray , &	ard fine grained, ve	er y
	fossiliforous (fora	ms and shell fragmi	ents)
305-310'	Limestone - gray so	ft to hard, fine gr	ained,
	a lesser percentage	of foroms and sl	rell
<i>t</i> ,	fragments		
310-315	,	eft to medium hard	ness,
,	fine grained shell t	ragments	
315 -3201	Limestone - tan	soft to medium h	ardness,
	fine grained, shell	fragments	
3201-3251	same as above exce	pt Limestone is weat	hered to
	a greater decree	•	

	GEOLOGIC LOG	OF WELL Test W.	e (11 A
Project Name	WCRWSA Phase 1A	Date4/2	-3/86
	6006 - 45		Reverse Air
Hole Size	22"	Sampling Method	•
Depth Interval Ft.	Ge	ologic Description	
325-350	Coquina, limestone		forams
	Camerinidae (Op	erculinoides oca	lanus) and
	Legidocylina ocalan	a prodominant,	lery soft.
320-322	Same as above u	with more limest	one matrix, soft
2012 7/0:-	to modium hardno	229	
355-369.5	Limestone, light	tan, biomicrit	ic fine sandy
	grained, shell as	nd gastropod fre	rsmonts and
	molds, Lepidocyce	ling ocalana,	nedium hardness
-40.0	well comented.		
369.5-372	Same as above	but poorly to f	airly indurated.
372-185	Limestone, light.	ten biomicris	ic fine sandy
	grained shell, go	stropod, echino	id & foram
83-387	fragments, fairly	soft to medicine	hardness.
	Same as above	but hander a	rell indurated.
887 17' — 395	Same as above	fairly soft,	fair induration
57 — 518	cimestone, light +	an biomicritic	fine grained
	shell fragments		J
75-460	Limestone, light +	Lan, hard, 6101	nicritic,
4. C	fine grained, shell	fragments	
· - 40S	Limestone, light to	in hard to so	ft, 6 com scritce
	time grained, shell Innestone is sucross	fragments.	The soft
	immestone is sucres	u.	

	GEOLOGIC LOG OF WELL TEST WELL IA
Project Name	wcrwsA Phase 1A Date 4/23/86
Project Number _	· · · · · · · · · · · · · · · · · · ·
Hole Size	22" Sampling Method cuffings
Depth Interval Fi	Geologic Description
405-410	Limestone; ton to light brown hard to soft
	fine grained, biomicritic with a large
410-420	percentage of forams
,,,,	Limestone, fan to brown hard to medium
	hardnessy fine grained biomicritic with
20 - 425	a large percentage of forams and shell fragment
103	Dolomite, gray to dark brown hard to
	medium hardness, fine grained, shall
Not us A	fragments
425 - 430	Dolomite, gray to brown hard to medium
	handness, fine grained, shell fragments. Also
	quite a bit of peat (dark black, medium
	hardness they hadded) Part by and become ture
430 - 435	hardness, then bedded) Pent began to occur at 428
	Delamite tan to light brown hard to medium
	hardness, fine grained, shall fragments and a great deal of peat until 433'
435 - 440	(Dilomitic)
	Limestone tan soft to medium handness fine
	grained, shell fragments with a small percentage
4 - 445	Limestone
, , , , , ,	fragments including ash in 15 50ft brown of
45 - 450	fragments including echinoids, soft brown clay Limestone, tan, medium hardness, fine grained shell fragments including forums and echinoid plates,
100 - 750	Limestone, tan, medium hardness, fine grained
	and tragments including torums and echinoid Dlates,

CAMP DRESSER & MCKEE INC.

GEOLOGIC LOG OF WELL TEST WELL IA

	02020010 200	OI WELL TEST WELL 173
Project Name <u>W</u>	CRWSA Phase IA	Date4-24-86
Project Number 6	006-45	Drilling Method Reverse air
Hole Size <u>#</u>	22	Sampling Method cuttings
Depth Interval Ft.	Ge	cologic Description
450-457		fine to medium grained, some
	tossil zones, peat	flecks, soft interlayered with
457-462	dolomite mud an	d occasional thin peat bed.
	microfossils, peat +	Lecks, medium soft toward top
·> UIO	and madeum hara	athereafter.
12-468	Dolomite, light gras	rish brown, biomicritic fine to
	465.	my forams, Dictyoconus cookei below
168-471	Dolomite, foram	coquina, unconsolidated to
4150	tair consolidation	, Dietysconus cookel
471-480	Same as above	, better consolidated, medium to
480-484	Dolomitic Line done	, medium brown, fossiliferous
	moldaic porosity, u	nedum hardness
484-486	Dolomitic 1, mestone	foram coguina, poorly consolidated
1158 - EALL	Diciyoconus cookei.	
486-504	As above with h	arder layers, light brown,
	occasional this	+ 489-490, thin layers peatand
	much.	er barely consolidated carbonate

GEOLOGIC LOG OF WELL TEST Well 1A

Project Name <u>W</u>	CRWSA Phase IA	Date 4-24-86	
Project Number	6006-45	Drilling Method Reverse air	
Hole Size 2		Sampling Method Eathings	
Depth Interval Ft.	Geol	ogic Description	
504-509	Linestone, light gran	y, very fine grained, fossil molds	
	and impressions has	od; interlayered with Dolomitic	
	limestone coaving	id, largely forams, very soft	
	to medium hard oc	easional thin port hall	
509-512.5	Limestone, light gray, fine to medium grained,		
	medium to hard,	fossiliferous zones	
12.5-520	Dolomite, brown to gray brown, fine grained to		
	medium sucrosic,	Jugy, medium hardness to hand.	
	Some solutioning	along joints & fractures	
520525	Dolomite, light brown	to dark brown, hard	
	time grained to me	edium sucrosic , some	
200	solutioning along j	ounts and fractures	
525 - 530	Dolomite, light brow	un to dark brown very	
	hard fine grained i	with quite a bit of	
520 - 1225	solutioning in some	areas.	
230-232	Dolomite, light brow	un tobrown, medium	
	hardness to very ho	erd, fine grained	
	without much so	Lutioning, vugy, more	
	solutioning at 5	34'.	
735-536	Cavity, solution nie	ddled dolomite, orange-brown	
	mud		

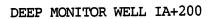
CAMP DRESSER & MCKEE INC.

GEOLOGIC LOG OF WELL TEST Well 1A

rioject Name	CKUSH Phase 14	Date_ 4-25-86
Project Number _{	6006-45	Drilling Method Reverse air
Hole Size	24	Sampling Method cuttings
Depth Interval Ft	Geo.	,
		ogic Description
536-540	Dolomite, darky ra	y to brown, dense, fine grained
	to medium grained	sucrosic, very hard, solution
	zones, the thin lay	ers peat and dark brown mud.
540-550	Dolomite, gray to &	roum, fine to medium grained,
	honeycombed soluti	on somes, with brown muddy
	water, Very hard	to fairly soft in solution zone
-		7

GEOLOGIC LOG OF WELL TEST Well 1A

			· ····
Project Name <u></u>	CRWSA 1A	Date 4-28-	-8-6
Project Number	6006-45		Reverse Acr
Hole Size		Sampling Method	Cuttings
_			
Depth Interval Ft.	Geo	logic Description	
550-565	Dolomite, brown	fine to nedui	m grained sucross
	solution in some-	zones, medun	m hard
565 - 570	Dolomite, medium t	rown, medium	grained sucresic
	vugy zones, occas	cionalechinoid	hard to very hard
570-573.5	Dolomite, brown,	alternating fin	e spained and
	medium sucrosic, l	hard to very he	end very dense
	to vugy, some solut	ioning. small e	schinpid fossile
5735-575	Dolomite, brown, m	edium grained	sucrosic solution
	riddled (honey comb	red) brown in	udde water
575-585	Dolomite, brown, fo	ne grained des	ise very hard
	interlayered with	mediena goain	ed surrosic 1/1100:
	Solution riddled, Son	me layers with	mud in voids.
•	medum hardness.	Soft zone (he	may combed) 583-584
585- 597	Dolomite, brown, fi	in Frained, vu	sy very hand
	to hand, some thin	zonec softer s	acrosic desomito
597-598	Polomite, brown to de	ark brown, med	ium grained
	sucrosic honeycomb	red brown mud	
598-599	Dolomite brown fin	e grained, vugy	hand to very home
599 - 608	Dolomite, gray to bre	own fine graine	el dense extremely
rnel i se	Same as above, som	lding and band	ing
108 - 609	Same as above, som	9 1)404 20005 M	nore salutioning


CAMP DRESSER & MCKEE INC.

GEOLOGIC LOG OF WELL TEST WELL 14

Project Name	WCRWSA Phase 14 Date 4/28/86
Project Number	Drilling Method Reverse A.
Hole Size	Sampling Method Cult.
	Sampling Method Coffings
Depth Interval Ft.	$lackbox{f V}$
608,-612	
	Polomite Light brown to dark brown, hard,
	Jenes, a few recrystalized zones
615'-620	and very little solutioning
	Same as above except the hit soft zone at
620-6251	he zene produced redish brown water
•	Potemite, brown, hard, fine grained, little solutioning
25'-630'	brown to avoy prove hard fine
	polomide little
630'-635'	Dolomite, light brown to brown hard to
	used win hardrass fine around 1. (
635'- 646'	Dolomite braus vace but a gray day
640 - 6451	Dolomite brown very hard, fine grained
	Dolamite, light brown to brown, very hard fine
645'-650'	D I
	Colomite, brown to dark brown, medium
	Dolomite, brown to dark brown, medium hardness to very hard, fine grained, recrystaliza
1501 1501	
650'-655'	Dolomite, Light brown to brown, very hard
655'- 660'	The grained with very little solution
475 - 660	Dolomite, Light brown to dark brown very hard
	to hard, fine grained
	· J

GEOLOGIC LOG OF WELL TEST WELL IA

Project Name	wcrwsA PhaselA	Date	4/29/86
Project Number	6006-43	Drilling Metho	
Hole Size			od <u>cuttings</u>
Depth Interval Ft.	Geo	ologic Description	1
660'-664			to dark brown, ver
	hard, fine grains	el with be	endina
664-667	Same as above		339
667-670	Dolomite, light gra	ay and tan,	very fine grained
	and very hard		_
620-670.5	Clay dark gray	hard car	bonat clay
70.5-674	Dolomite Tan fin	e grained, de	bonat clay ense, little solutioning
674-675	Dolomite gray, fine	grained, so	ne vags and solutining
	hard		7
675-677	Dolomite, gray to dar	kgrey fine	grained fossil molds
A =	of pelecypods and	Fastropods, m	oldic hard to very ham
677 - 682	Dolomite, gray, fi	re grained n	roldic porosity, some
	solutioning along for	ractures. Ve	ry hard.
682 -683	Dolomite, mottled de	ark brown a	nd ton fine grained.
	Vagy thin zones of	honer comb s	ale tromine
(83 - 690	Polomite, tan to k	prown fine	grained, vugy, very
	hard.		, , ,,,, ,,,
90-693	Dolomite, Dark Broc	on to tan be	ended, fine grained,
•	considerable soluti	coning along	banding and
700	fractures hard to	very hard.	
13-700	Dolomite, gray to tan sucrosic with solution	, fine grained .	o medium grained
	with Domino	n Zunes han	1 +0 10 cu hand

DMW-1A+200

GEOLOGIC LOG OF WELL Phase 1A

Project Name ω	RWSA Phase 14	Date4/9/86
Project Number	6004-43	Drilling Method Rotary Mud
Hole Size	16"	Sampling Method <u>cuttings</u>
Depth Interval Ft.	Ge	ologic Description
0-2,	Find Sand 4.	gray
5-10'	Fine Sand 1+	gray with clay
10-15	claver sand ver	y fine grained gray
15-20'	Sandy clay, ver	y fine aray
20'-25'		y, fine, almost plastic
25'-30'	, , ,	nd green nodular pieces of
		Diamicritic limestone
·		
	`	

Project Name WC	RWSA Phase 1A	Date4/10/86
Project Number	6006-43	Drilling Method <u>Kutary Mud</u>
Hole Size	= 16 ⁽¹	Sampling Method
Depth Interval Ft.	Geolog	ic Description
30'- 35'	Limestone - medium	hardness, white to
	Lt brown fine grain	red with some green
35'-40'	clay - Biomicriti	c limestone
32 -40	Limestone - mediu	in hardness white to
	tan fine to medi	ium grained with some
,	green clay - Brom:	ictific limestone
40'-45'	1 1 1	an fine to medium
	1	c with a great deal
	of see hudsated	class
45'-50'	Limestone - mediun	u hardness, white to Lt.
	brown, medium gr	rained, biomicritic
-(-(1	with less green	
50'-551		medium hardness, white
`.		ned biomicritic
55-60°	green clay is inc	hardness, white to
27-60	limestone - medium	hardness, white to
		blomicfritk with some
121 151	green clay	
60'-65'		ite to ton with quite
	a bit of green clay	(Limes fore is biomicritic)
65'-70'	same as above or	wly there is more green co

Project Name WC	RWSA Phase 14 Date 4/10/86
Project Number	6006-43 Drilling Method Rotary Mud
Hole Size	
Depth Interval Ft.	Geologic Description
70'-75'	Sandy Limestone, medium grained, medium
251	hardness some green clay, shell
751-801	
	hardness, gray to gray with a large
, ,	amount of green hydrated clay, shell
80'-88'	Sandy limestone, medium grained, soft
	to medium hardness tan to gray with
	some clay (biomicritic limestone)
55-951	Limestone tan to Lt. gray, medium
	hardness biomichitic, shell fragments
r r	(primarily bivalves) (begin to notice solt + pepper)
90-951	Limestone, tan to lt. gray, medrum
2-1	hardness biomicritic, shell fragments
95-100'	sant as above only more green clay
100'-105'	Limestone, tan to Lt. gray, medium grained
	soft to medium hardness, biomicritic
1051-1101	and increasing shell fragments
	same as above accept less shell fragment
110'-115'	Limestone, tan to Lt gray, medium
	hardness, time grained, biomicritic, stell
	fregments

^^MP DRESSER & M	cKEE INC.			<u>``</u>
		GEOLOGIC LOG OF WELL DMW+2001		
Project Name	WCRWSA	Phase 1A	Date_ 4	10/86
Project Number	6006-4	3	Drilling Method	Rutary Mud
Hole Size	1411		Sampling Method	Rutary Mud cuttings
Depth Interval Ft		Geo	logic Description	
115-121	Limes- hardne	Limestone - tan to Lt. gray medium hardness . fine grained , biomicritic, very little shell fragments		
121-131	Limesto	one, same a	is above, many	microfossils
			١	
,				·
	`			

Project Name <u>WCR</u>	RWSA Phase 1A Date 4-14-86
Project Number <u>60</u>	
Hole Size <u>g"</u>	Sampling Method <u>cuttings</u>
Depth Interval Ft.	Geologic Description
131-135	Limestone, light ton to gray, fine grained biomic ritic,
	shell and microfossil fragments and casts, some
	secondary calcite deposition in voids. Considerable grow
135-145	Same as above medium hardness
145-150	Same as above, more shell, ochinoid (?) fragments
150-155	Same as above, medium hardnersome layers (thin)
	of microcrystalline limestone, gray, with shell and
	gastropod casts.
155 - 170	Limestone, light tan to occasional gray layer fine
•	grained biomicritic, shell, echanoid spines micro
	fossils, secondary calcite, medium hardness.
170 - 180	Limestone, light tan-gray, biomicritic,
186'-196'	shell, micro fossils, medium hardness
, , ,	Limestone, light tan-gray, biomicritic,
191-15-	shell, micro fossils, medium hardness
190-195	Sandy limes tone, tan-gray, Sott
	Shell tragments with hard then
195'-200'	Sandy lungstone to a soft
	Shell fragments with hard thin
	shell fragments with hard thin layers of dark gray clay

CAMP'DRESSER & MCKEE INC.

Project Name	ICRWSA Phase 14	Date 4/14/86 24/15/86
Project Number	6006-43	Drilling Method Rote Leverse Acr
Hole Size	7 % "	Sampling Method <u>GrHings</u>
Depth Interval Ft	. Geo	logic Description
2001-205	Sandy Limestone -	Tan to gray, soft,
	1 4 .	, Shell fragments with
		ers of dark gray clay
205'-210	same as above	cavity
210'-215'		tan to gray, soft,
7	medium grained,	shell fragments. hard
	thin laware of	dark gray clay
215'-220	Sandy limes time - to	en to gray, soft, medium
		quents. Limes tore, white
•.		micritic, fine graincel.
		yers of dark gray clay
220'-225'	Sandy Limestone -	L+ gray, harder, medium
	grained, very fer	shell fragments and a
225 - 221	very small amoun	
225'_ 230'	Sandy Limestone -	Lt gray, soft, medium
	grained with a g	renter percentage of
230-2401	hard gray clay a	swell as shell fragments
	sandy - unestone	Lt gray, soft, medium grauna
240-250	with hard gray	tan - Lt. gray medium
	Janay cimestone	Tan - Lt. gray, medium
	maraness medium	- grained. Hard dark gray clay

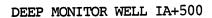
	GEOLOGIC LOG OF	WELL PINW+2001
Project Name	UCRWSA Phase 1A	Date4/1 5 /85
Project Number	6004-43	Drilling Method reverse air
Hole Size	77"	Sampling Methodcutfings
Depth Interval Ft.	Geol	ogic Description
2501-255	Limeston - L+ gray	, hard, fine grained
	slightly fossilifered	\mathbf{O}
2551-265'	1 1	, soft, fine grained
	Slightly fossilifer	▼
	amount of hard e	
265'-270	Limestone - Lt. gra	
	grained	
270'-275'		ray hard fine grained
- 4	highly fossiliferou.	s
275-290'	shell fragments, ex	streuely fresiliterous zone
	drilled very quickly	,)
270-2951	Same as above	
295-300'	Limestone - tan-gray	, fine grainel, med wm
,	hardness very fossili-	ferous
3001-315		gray, fine grained,
	medium hardness.	very fossiliferous with
	a little hard dark	grav clay
315-320'	entirely shell fragu	
3201 = 3301	seme as above	
330'-340'	shell fragments	
3401-3501		tan fine grained, soft
		-

	GEOLOGIC LOG OF WEL	1 0mw +2001
Project Name	WCRWSA Phase 14 Da	te4/5/84
Project Number	6006 40	illing Method Reverse Air
Hole Size		mpling Method cuttings
		
Depth Interval Ft.	Geologic	Description
_1 _	with shell fragmes	nts
350'-360	limestone, white to to	an hard, fine grained
- 1	with some shell frag	ments
360-370'	Limestone white to to	an medium hardness
.370'-380	tine grained with a	good deal of shell
, 510-786	Sandy Limestone - Tai	soft, medium
		esser percentage of
	shell	
380-390'	Sandy Limestone wi	tha good deal
••		e 15 ton, seft and
	medium grained	
390'-3951	Limestone, tan hard	fine grained with
	a moderate as an +	.]
395'-400'	Limestone light brow	The state of the s
	medium grained st	hell &
400'- 410	Delamite - tan to lich	+ heave hand
	grained with shell f	t brown, hard, medium
410-420	Dolomite - ten to dank hi	ragments
	Dolomite - ton to dark by	Cin tairly hard to hard,
	colored fissil fraging to	(coloined, lighter
	colored fossil fragments	(carcum carbonate:)
	1	

Project Name WC/	RWSA Phase 1A Date 4-15-86
Project Number 60	Drilling Method <u>reverse air</u>
Hole Size 84	
Depth Interval Ft.	Geologic Description
420-425	420 Dolomite, brown, fine grained sucrosic,
	flat black impressions (leaves?) medium handness.
425 - 426	himestone, tan, fossiliferrous (foroms, shell)
	medium hardness
426-427	Peat, black, soft
427-435	Linestone, ton to medium brown, forams, gastropods,
	shell fragments, medium soft to medium handness,
	with thin harder langers
435-440	Dolomitie, brown, time grained, small carbonaceon
÷.	inclusions, tairly soft
440 - 445	Limestone, ton, fine grained micritic, with some
	brown line mud,
445-467	Limestone, tan, fine grained biomicritic, forams,
	echinoid spines, medium hardness, some tan line
	mud and peat (minor amount)
467-475	Coquina, foran & echinoid fragments, interlayered
	with line mud and thin layers of linestone, ton
•	fine grained biomicritic.
475 -491	Coquina, foram, great many Dictyoconus cookei;
	more limestone layers, fossiliferrous with depth,
	poorly to moderately consolidated

	RWSA Phase IA	Date4-15-8-6
Project Number 6	006-43	Drilling Method Reverse air
Hole Size	<i></i>	Sampling Method <u>cuttings</u>
Depth Interval Ft.	Geol	ogic Description
491-4925	Limestone tannish qu	ray, very fine grained
	biomicritic, hard	
492.5 - 501	Limestone, ton, an	d coquina Dictyoconus coopii
	and other forams,	de coquina, Dictyocomus ceokoi Peronalla dalli echinoids,
	poor to fairly good	induration (soft to modiny
	hardness)	
501-503	Limestone, grayis	4 fan, fine grained biomicritic
	hard	
503-510	4mestone, tan, fin	e to medium grained biomicritic
	forams, fairly so	oft to medium handness
510-512	Limestone, gray as	nd tan, very fine grained
812-512	Limestone, fan, fr	ne to medium grained biomicritic
	with forams	
512-515	Dolomite, Brown n	redium grained Jucrosic, and
•	brownish gray fine	gramedinterbedded
515-522	Polomite, Brown	fine grained, some vags (pores)
	fairly hard to ha	rd.
522-535	Do lomite, as abo	ve, very hard, some fossil molds
535-536	Dolomite, brown, s	oft sucrosic, medium size
	grains (sandy)	

Project Name WCA	ewsA Phase 1A Date 4-15-86
	206-43 Drilling Method Reverse Air
Hole Size 8^n	
Depth Interval Ft.	Geologic Description
536- 348	Dolomite, gray, tine grained, hard with softer
	zones of brown medium grained sucrosic dolomite.
548-5551	Polomite, dark brown, fine grained, hard
st culation	with shell fragments, Dolomite sand bottom 2ft.
555'-560'	Dolomite, light brown to dark brown, fine
,	grained hard with shell fragments
560!- 565	Dolonite gray to dark brown, medium
	grained hard with softer zones of brown
	medium grained sucrosic delomite, shell
	fragments (echinoderms)
365-570'	Delomite, brown, medium grained, hard
	with softer zones of brown wedium to
	coerse grained sucrosic dolomite, shell
	fragments.
570'-575'	Polomite - brown medium to coarse grained
	hard with a small amount of peat, shell
	fragments.
575-578	Dolomite, brown, fine grained, very hard, low porosity
5 73 - 1 83	Dolomite, brown, medium grained sucrosic, horregcombe
	(good porosity) alternating with Dolomite, brown,
	Ring coping of Horry beach (on) porosity.


Project Name <u>W(</u>	PWSA Phase 1A Date 4-16-86
Project Number <u>60</u>	206-43 Drilling Method Reverse air
Hole Size 8"	Sampling Method <u>Cuttings</u>
Depth Interval Ft.	Geologic Description
683-593.5	Dolomite, fine to medium grained, very hard,
-02	fossil mold.
593.5-595.5	Dolomete, dark brown, medium grained, solution
	larger cavities as it drilled fast.
, is.s -600	Dolomite, brown, fine grained, very hard, solution
	along fractures in a few cuttings, otherwise deuse.
600-601	Dolomite, dark gray, lavender & brown banding, fine
• •	grained, very dense & hard Note Interval may be off 5ft.
602-603	Dolomite, brown to light brown, fine grained, deuse
	and very hard.
603 - 606	Dolomite, dark brown, completely honoy combed and
•	dolomite sand, medium grained, water turned
	dark brown plugged bit temperarity.
606-610	Dolomite, brown, fine grained deuse, very hand
610 -619	Dolomite, brown, fine grained donse, solutioning
	along and in vicinity of fractures, very hard.
619-621	Polomite, reddish brown, completely honey cambed,
	medium grained

Project Name	wcrwsA Phase A	Date <u>4-16-86</u>	
	6006-43	Drilling Method _	Reverse Air
	84	Sampling Method _	Cottings
Depth Interval Ft.	. Geo	logic Description	
621-626	Dolomite brown.	fine grained a	dence and very
	hard, some soluti	_	
	gray chert.		
626-630.5	Dolomite, brown,	medium graine	d sucrosic, friable,
	honeycombed in pla Void, organics	ces, drills easy	
630.5-631	Vord, organics	causes water	to turn brown.
31-638	Dolomite, gray brow		
	grained, highly varia		
	to extremely hand		
638-640.5	Dolomite, brown, m.	edium grained	I sarosic, honeyconfe
	fairly soft to soft	brown colored	l water
640.5- 645	Dolomite, brown, +	ine grained b	and to medium
	grained sucrosic s	21th solutioni	ng, brown colored
•.	water in the areas	\	ring (fine mud &
	organic accumulate	ón?)	
C45'- 650'	Dolamite, gray bro	iwn + dark br	-own fine to
	medium grained	, very hard	to medium
	hardness, sucros	ic texture w	ith some
1	Salutioning		
G53' - 655'	Polonite shrown	, fine graine	o, hard,
	Some solo timing	-	

CAMP DRESSER & MCKEE INC.

	GEOLOGIC LOG OF WELL DIMW + 2001
Project Name	OCRWSA Phase 1A Date 4/14/86
Project Number	6006-43 Drilling Method Reverse 412
Hole Size	Sampling Method
Depth Interval Ft.	Geologic Description
655'-660'	Dolomite, 4 brown to dark brown,
	fine to medium grained, hard
	some solutioning.
660 '- 665 '	Polomite, brown, fine to medium grained,
	hard, some solutioning. A pasty liney
	gray clay layer around 663'
665-671	Dolomite gray to Light brown, fine to
	medium grained, hard, a very small
	degree of solutioning
671' - 675	Dolimite, strown, fine grained hard, very
	little solutioning
675-681	Dolomite, gray to brown, fine grained to medicin
	grained, hard, very little solutioning except in
	vicinity of fractures.
681-682	Dolomite, dark brown, medium grained, considerable solutioning
685-686	Detomite, tan, fine grained, hard to very hard with
	solution zones. Thin zones of darker, coarser grained
	dolomete
686-697	Dolomite, gray, very fine grained, hard, fossil molds
	and casts (pures), forams, gastropods, & shell, variable
	solutioning inter bedded with darker, coarser grained dolomite

		GEOLOGIC LOG OF	MELL DW	W +2001	
Project Name	WCRWSA	Phase 1A	Date	4/17/86	
Project Number	6006-43		Drilling Me	thod Reverse air	
Hole Size	g ri		Sampling Me	thod <u>cuttings</u>	
				J	
Depth Interval Ft.		Geol	ogic Descript	ion	
697-698	Void, dar	le brown a	dolomite si	It and organics,	
		iddled dolon			
698-704	Dolomite,	gray to d	lark gray	very fine grained, have	1,
	very little	solution in	15		
			<i></i>		
					-
•					
``.					
			7	·	
					

Project Name WCF	2WSA Phase 1A +500 Date 3-11-86
Project Number 60	06-43 Drilling Method Retarn Mind
Hole Size	
Depth Interval Ft.	Geologic Description
0-7'	sand, white, fine to medium clear ordined
	moderately rounded slight amount of heavy minorals
7-10'	sand, fine to medium grain, light gray clayer
10-25"	Sand mostly fine to medium grain, light bluish gray
,	clayer, soft and sticky
25-28	clay, bluish gray and tan, translucent (waxy)
	slightly sandy, fairly firm and sticky, cracks
	acit dries
28-30	limestone, hard tan micritic Sine grained
•	
,	
· ·	

Project Name WCRWSA Date 3-11-FG Project Number Google T43 Drilling Method Retary Mod Hole Size Sampling Method Myd Cutture Depth Interval Ft. Geologic Description	
Hole Size Sampling Method Cutting	
Donath Turan I II	7 - 3
Depth Interval Ft. Geologic Description	
30-32' Limestone - Finegrained, sandy white - 4 bro	
32-34' Cimestone - Fine grained sandy white - tan	1000
34-40 Limestone-Fine-grained sandy white-tan	
40'-15' Limestone-soft Fine grained chauky white	
45-50' Limestone soft fine grained sanky white, Very Small	
amount of freezel cla	
50'-55' Linestone-hard fine grained saudy white, small	
amount of granish cla	
55-60 / limestone - hard fine grained sandy white lenses	
- reen Clay	
(66-65 Linestone-hard fine ground tan interbede	100
I WITH ELDE, CL	
65-70' Limestone - hard fine grained tan interbedded u	
green clay	
16-75 Limestone - hard fine grained ton interhadde	2
with green class	

Project Name WCRWSA Phase 1A +500	Date 3-13-86
Project Number <u>6006-43</u> Hole Size <u>15 3/4</u>	Drilling Method <u>rotary much</u> Sampling Method <u>need rutings</u>
	/

Depth Interval Ft.	Geologic Description
75-80	limestone, light gray to tannish, medium hardness,
	fine grained biomicritic with a little soft gray day
80-90	limestone, light gray, medium handness, fine grained
	biomicritic, with shell fragments
90-92	Same
92-95	limestone, light tan to gray hard biomicritic and
	grained with shell fragments
95-100	same as above with some soft gray clay
100-110	Imestone light tan, fairly hard biomicritic fine
	orained with shell fragments, slight amount oran soft
	clay
110-112	same es above, no clay
112-117	same as above very hard, fine black specks
117-135	limestone, gray, firm to hard, biomicritic, fine
	grained, shell fragments
135-145	limestone, gran to light fan, medium hardness
	biomicritic, fine grained, shell fragments s'small
Lost Circulation	shells
145-151	Same as above

TAMP DRESSER & MCKEE INC.

Project Name $_$		Date	-18-86	
Project Number Tes	+ Well Physic 14		mud notany	
Hole Size	8		mud eutling	
lonth Intonual Et			.	
Depth Interval Ft.	Geo	ologic Description		
151-60	same as ab			
160-70	Limestone - qu	ray to light	tan nelion	へ
	hardness fin	re a rainer	- xt c mall	
	Limestone - go hardness fin amount of	hard Clay		
170-82	Lost circulation			
				_
				-
				_
				_
				_
į			· · · · · · · · · · · · · · · · · · ·	_
				-
				_
				-
				_
i i				

Project Name <u>wc</u>	RUSA Phase 1A Date 3-19-86
Project Number 6	066-43 Drilling Method Revense Air
Hole Size	Sampling Method cuttings
Depth Interval Ft.	Geologic Description
172-174	Linestone gray to ton, fine grained hismicritic,
	medium Hard fossil fragments spary calcite matrix
175-176	clay green translucent, soft
176-180	Limestone, tan, fine grained biomicritic,
	medium hard, fossil fragments
180-185	Sand, Calcium carbonate, fine to medium grain
C	little clay, green translucent, soft-zone producing water
185-186.5	Limestone, tannish gray, fine grained biomicritic,
	modium hardness, shall fragments
186,5-190	Limestone, gray, only fair comertation of small
	to medium size sand like grains. Becoming more
	indurated with depth to medium hard. More tan in color.
190-195	Limestone as above interlayered with clayer lime
	sand, tan, fine grained, firm, S/15/1tly sticky.
	Also few chunks dark gray grout falling in.
195-200	Limestone, fairly indurated, tan, fine to med. sand
	122 grains, orange recrystalized oyster shells, very
	small amount brown and white clay (thin layers)
200-218	Limestone, ten, friable, fine to medium sand size
	grains, shell fragments, some thin harder layers

Project Name	Date
Project Number	Drilling Method
Hole Size	Sampling Method
Depth Interval Ft.	Geologic Description
218-223	Limestone, tan, well indurated piomicritic, intergrain
	spaces filled with clour calcite
223-222	Limestone, light brown, poorly indurated medium to cours
	sand 5/2e grains, ground up shell. Ketter indurated (fair
	thin layers, a few thin lavers of clayer carbonate sand
228-228.5	marl, white calcium carbonate mid
2285-230	Limestone. light brown to light grav, biomicritic well.
	indurated, very little primary porosity.
286-275	Limestone, light brown, poor in to well indurated avers
	grainy ousier fragments
•	

GEOLOGIC LOG OF WELL +500 deep sheer!

Project Name WCPWSA Phase IA	Date
Project Number 6506-43	Drilling Method reverse air
Hole Size $\frac{8^{1/2}}{}$	Sampling Method <u>cuttines</u>

	· · · · · · · · · · · · · · · · · · ·
Depth Interval Ft.	Geologic Description
235-745	incetone 1+ brown togray, mall to hisdum grains
	numerous -isil fragments medium inducation, biomicrtic
=45-275	Limestyne For to aran biomicritic fine to medium
÷	grained, fair to niedium induration shell (largerdiscoid
	forams?) gasinpod framents
275-277	Limestone, ton to It brown, biomicritic grain, fair
	induration, large percent large discoid forams thicker
277-280	Coquina, large discoid and shell Fraginant, unconstitutes
	sand to gravel.
540-786	Lime done tan biomicritic grains over 50% discoid
	forans & shell, poor to fair indiration
286 - 800	Linestone as above better induration (fair to medium)
300-315	Limestone, for riomissitic orainy, poor to medium
	indurated less forams and shed than above, args
	flat bent frams shundant below 308
3/5 -335	Coquina, lange discoid for ams and shell, orangish tan
335-340	Same as above with layers of limestons, bicinicritic
<i>340</i> -360	poorly to fairly indurated. Still many forams.
	Limestone tan, biomicritic small to to medium grained
	many forams and shell fragments, mostly well indurated
•	occasional thin layer white carbonal mud softer it 350'

Project Name <u> </u>	RWSA Phase IA	Date3-24-86
Project Number 6	006-43	Drilling Method Roverse Air
Hole Size		Sampling Method
Depth Interval Ft.	Geo	ologic Description
360-350	Limestone, tan, bion	nicritic, graing, fairly well
	indurated, Cameria	,
380 - 384	Limestone light br	form to gray, biomicritic with
		indurated, Camerinidae
384-391	· ·	light brown, biomicritic with
		ferous Hard to medium layers
		, Cone shaped foroms (Dictyoconu
•		e & Some Lepidocylina may have
	washed down from a	
391-399.5	Limestone light to a	tark brown, biomicritic fossiferous
	1	echinoid spiras fragments
399,5-400		ilt (organic?) in bottom.
400 -425		and dolomite, hard fewer Dictroconu:
	below 405' Some blace	· · · · · · · · · · · · · · · · · · ·
425 - 429	Dolomite, dark brown	n, fine textured, fractured, miner
		ugs, hard drilling but only moderately
	cemented sucrosici	
429-439	Limestone, tan to brown	biomicritic fine grained, fossilferous,
. 1		s mud, - Camerinidae type forams
	mostly fairly soft; mi	
439- 444	·	incommend and and the tell 11

Project Name WC	RWJA Phase 1A	Date3-24-86	
Project Number <u>6</u>	906-43 Drilling Method Reverse Air		
Hole Size <u>&"</u>	Sampling Method Cathing		
Depth Interval Ft.	Go	eologic Description	
444-455	1. soft	critic, Diety oconus cookie?, small	
	amount lime mud and	peat	
455-457	Dolomite, Dark bron	on, sucrosie fine grained, moderately	
	cemented		
457-460	Clay, light brown,	calcareous (Linemud), slight peat	
460 - 469		rained, slightly indurated (very soft)	
469-485	Coquina, foram (Dic-	hocomus cooke; and Camerinidae type)	
		, Perchella dalli (small echinoid)	
	slightly to moderately		
485-510	1	biomicritic fine grained fair to good	
		o accasional hard drilling)	
510-515		re grained sucrosic moderate porosity han	
	to very hard		
515-523		very fine grained, very hard	

GEOLOGIC LOG OF WELL Phase 1 A

Project Name	CRWSA Phose A Date 3/25/86
Project Number 60	006-43 Drilling Method Everse Av
Hole Size	1/
	J
Depth Interval Ft.	Geologic Description
520'- 530'	Dolamite - dork brown, fine avained with
	light green hydrated clay
530'-535'	Sand-tone - ton to brown , fine cranel
,	with light areas hydroted clay.
533'-535'	Dolan, Le - derk brown, fine grained
535'- 540'	same as a bove
40'-545'	Dolomite-derk brown coarser erainel
	interpedded with sandstone which is
	tan to light brown fine crained. There
	is a small amount of hydroted clay in
	the sand cions.
545'-550'	Dolomite - dark brown fine around
	with sand stone - tan with colertic
	cement and a small compant of
	hydroled clay
220-260	same as above (except for an increase
	In fossils in the dolomite. Perhaps its
	Lepidocylina Occlava).
360-570	Dolonite - coarse ground, dork brown
	Iscaliferous interpretated with

GEOLOGIC LOG OF WELL Phase 1A

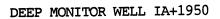
Project Number 6006 - 47 Hole Size Sampling Method Cottons	_
Hole Size Sampling Method	-
Depth Interval Ft. Geologic Description	
- a small sandstone lense fine a	roind
ten poorly cenented with calcite	
570-575 Dolomite-fossiliferous dark brown	
1 Canter MITUIN CAN	
575-580 Dolomite - dark brown fassily	ferov
coarse grained with black thin	
coarse grained with black thin bedded poat near 580' Delanite - dark to feel to	
580-385 Dolomite - dark brown fossilit	Prous
coarse grained with a small lense	_
tan limestone near 5851	
585'-590' Dolomite - medium brown to	
dark brown coarse grained, fossilifer	0 05
With another black Peat layer	
occuring at 590'	
590-595 Dolomite - medium brown to	
dark brown with black lenses of	
organic material in places, coarse oras	ned
fosciliferous	
595-600 Dolomite - medium brown to	

TAMP DRESSER & MCKEE INC.

GEOLOGIC LOG OF WELL Phase 1A

Project Name	CRWSA Phase 1 H Date 3 25 186		
Project Number 60	Number 6006 - 43 Drilling Method 12 verse Av		
Hole Size	Sampling Method eottings		
Depth Interval Ft.	Geologic Description		
650'-605'	dark brown very weathered in places. fossiliferous, coarse ground Polomite - medium brown to dark brown fossiliferous, coarse groin	 e.S	
600'-610'	Recrystalized in some areas Dolamite - medium ton brown, fosiliferous coarre grained. Some areas		
610-615	Dolomite medium to dark		
620'-620'	brown fossiliferous (echinoderms) coarse grained sam as above Dolomito - medium to dar K brow very Carilia + Carilia		
625'630'	coarse grained. Distinct zones of Solutioning and recrystalization Dolomite - medium to dark brown fossiliferous coarse grained Truck gave out of 631		

CAMP DRESSER & MCKEE INC.


GEOLOGIC LOG OF WELL Phase 14

Project Name	CRW > A Regional Interem. Date 4/2/86
Project Number Te	st Well Phase 1A Drilling Method Reverse Air
Hole Size	
	Jamping Coffing
Depth Interval Ft.	Geologic Description
631-640	Dolomite - Dark brown to light brown
	coarse grained, fossiliterous (moderately
•	Two distinct textures of dylomite
	present. One is weathered (experience
	solutioning) and the other is dense
	and unaltered. Leve 15 and the
of dens	Qual tered dolomite than weathered
	delomite
640 - 645	Polomite - Park brown to tan,
	coarse grained slightly fossiliferous.
	Two tentures present, a thin hed
	of hard gray to green clay at 643:
1	Some recrystalized areas.
645-650'	Polomite - Venu Donk have to
	Dolomite - Very Dark brown to light
	frown coarse grained moderately
	fossiliferous. A greater percentage of
	rock then weathered rock
650'-655'	
	Polomite - Dark brown to tan coarse
	grained moderately to highly tossiliferous.
1.	Quite a bit of recrystalized material

DW 1A+500 GEOLOGIC LOG OF WELL Phase 1 A

Project Name WERWSA Date April 2 1986 Project Number Test Well Phase 1A Drilling Method reverse oir Hole Size Bil Sampling Method Cuttings Depth Interval Ft. Geologic Description at 652', The recrystalized layer was followed by a thin reat layer. At 653' the dark black peat changed to a tan dolomite. CSS'-660' Dolomite - Dark brown to tan Caarse grained, slightly fossiliferous. A small amount of muck and recrystalized meterial. Two distinc textures < till present
Depth Interval Ft. Geologic Description at 652', The recrystal read layer was followed by a thin reat layer. At 653' the dark black pect. Changed to a tan dolomite. Coss'-660' Delomite - Dark brown to tan Coarse avained, slightly fossil ferous. A small amount of muck and recrystalized meterial. Two distince
Depth Interval Ft. Geologic Description at 652'. The recrystalized layer was followed by a thin seat layer. At 653' the dark black pect. Changed to a tan dolomite. Dolomite - Dark brown to tan coarse grained, slightly fossil ferous. A small amount of muck and recrystalized meterial. Two distince
at 652', The recrystalized layer was followed by a thin zeat layer. At 653' the dark black pect changed to a tan dolomite. 055'-660' Dolomite - Dark brown to tan coarse grained, slightly fossiliferous. A small amount of muck and recrystalized material. Two distince
was followed by a thin Reat layer. At 653' the dark black pertir changed to a tan dolomite. Dolomite - Dark brown to tan Change grained, slightly fossil forous. A small amount of muck and recrystalized meterial. Two distince
was followed by a thin Reat layer. At 653' the dark black pertir changed to a tan dolomite. Dolomite - Dark brown to tan Change grained, slightly fossil forous. A small amount of muck and recrystalized meterial. Two distince
a tan dolomite. a tan dolomite. Dolomite - Dark brown to tan Charge grained, slightly fossiliferous. A small amount of muck and recrystalized meterial. Two distince
css'-660' Dolomite - Dark brown to tan Coarse grained, slightly fossiliferous. A small amount of muck and recrystalized meterial. Two distinc
coarse grained, slightly fossiliferous. At small amount of muck and recrystalized material. Two distinc
recrystalized material. Two distinc
recrystalized material. Two distinc
recrystalized anterial. Two distinc
Taxioves sill present
260 France Due to 1 - 1 - 0 1:11
660'-665' Polomite - Light brown to tan coarse
grained, slightly forsiliferous. Hordly
any solutioning of the formations
665-670 came as above
670'-680' Delanite Park brown to light brown
medium to coarse grained moderately
+ +0 ssiliterous Very little solutioning
680-690' Dolomite Dark brown to light brown
coarse grained, moderately to highly
fossiliterous. A greater degree of
Solutioning

ME DRESSER & MCK	EE INC.	DW 14+500
	GEOLOGIC LOG OF	WELL Phase 1A
Project Name $\frac{\alpha}{T}$	1 / 4 0/6 1/2	Date April 2 1986 Drilling Method reverse Alv
lole Size	٤ 11	Sampling MethodCuttings
epth Interval Ft.	Gool	J
690-7001		m brown to light brown
	course grained,	Very fossil ifereus to
•	non-fossil ferou	S.
		green to gray course
		rately fossiliferous.
700-7041	Polonite	J
	grained slight	green to gray coars.
	test bed prece	chedity a layer of
	- Dalanda - Ha	an coarse a-vained
	slightly fossi	iliferous
1		

Page	_/_	of	11	
------	-----	----	----	--

CAMP DRESSER & MCKEE INC.

	GEOLOGIC LOG OF	MELL 12M 00 + 14 6 01
Project Name Project Number Hole Size	164 164	Date 5/17/86 Drilling Method Mud rotary Sampling Method Mud cuttings
Depth Interval Ft.	Geolo	gic Description
0-5'	Sand, fine to ver	y fine, light gray to
5'-20'	Sand, slightly et	ayey to clayey, fine grain
	quartz, light gray	to white.
•,		
•		
	·	
	·	

'MP DRESSER & McKEE INC.

GEOLOGIC LOG OF WELL D WW + 19701

Project Name	JCRWSA - PhaselA Date 5/1986
Project Number	6006-45 Drilling Method Mud Patary
Hole Size	Sampling Method Wuck cultings
Depth Interval Ft.	Geologic Description
20'-35'	Limes tone, very fine grained, buff to white, her
	interlayered with clay, while soft, also som
	green to yellow sandy clay
35'-42'	Limestone - tan to white, fine grained, very
3 (/	have some thin layers of day, white raft.
42'-50'	clay, gray, soft with stringers of limestone
-1 -1	us above
59'-55'	Limestero, fine grainy, buff, medium soft
55'-62'	Coguena shell fragments, lightly comented with
•	some solutioning and secondary calcife
62-65'	same as above some soft part and mud,
	loosing circulation
65-70'	Limestone - tan to white, fine grained very
•	hard, shell fragments, secondary calcite
70'-80'	
80,-82,	Limestone - tanto gray medium hardness
	shell fragments with small amounts of
- (gray clay
85'-90'	Limes tono - tan to gray, fine grained
	medium hardness shell fraging to
	are because of scirculation)
	are because of Terrculation)

n	\sim	_	
Parce	~	O.F	11
raue		OF	11
	_	•	• ,

CAMP DRESSER & MCKEE INC.

	GEOLOGIC LOG OF	WELL DMW	+ 1950/
Project Name	wcpwsA-Plase 14	DateS	120186
Project Number	6006-45	Drilling Method	Rotary Mud
	16"	Sampling Method	Rotary Mud Mud cutting
			7
Depth Interval Ft.	Geolo	gic Description	
90'-130'	Loss of circulation	on Limestone	hard from
	Loss of circulation	n in hardness	otherwise
130'-150'	ho samples.		
	•		
			•
·			
F4			
\$;			
			•
	;		
,			

CAMP DRESSER & MCKEE INC.

	GEOLOGIC LOG OF WELL PMW + 1956
Project Name	WCRWS# Phase 14 Date 5/21/86
Project Number	6606-46 Drilling Method Reverse Air
Hole Size	
Depth Interval Ft	Geologic Description
150'-160	
160'-165'	Limestone tan to light gray fine graine and which hardness with a small parantage of her
165'-170'	derk gray clay Linestone, tou to light gray, fine grown, melium
170'-175'	a greater percentage of hard dark gray day
÷1+	Lines tone - light grow, fine grained, medium hardness, a smell emount of shell with even a greater percentage of hard dark grow clay
135'-180	hardness to very hard with a small amount of
180 - 185	Limes tone - buff to tan, fine grained, in elium hardness with thin layers of hard dark gray
185-190	Clay and reat Limes tone - boff to ton, fine grained; hard to
170'-195'	gray clay and hard dark gray clay same as above

GEOLOGIC LOG OF WELL DMW 14+1950

Project Name	WCRWSA-Phase-/A Date 5/21/86
Project Number	6006-46 Drilling Method Keverse Air
Hole Size	8" Sampling Method Cuttings
Depth Interval Ft.	Geologic Description
1951 - 2001	Limestone - Tim to biff, fine grainel, medium hardness
	to hand, shall fragments with a small amount of
	hard dark gray clay
200'-205'	Limestone - Tan to Light arou for many
	Limestone - tom to Light gray, fine grained, medium hardness to hard with hard dark gray
	clay
-05'- 213'	Same as above
213'- 220	Cimestro - tou, finer grained, inelium hardness
	and a small percentage of shell from monto
120'-230	Comestone - tan to light gray, fine grained
	malium handness to soft
230-235	same as above
235-243	Limestone - ten to light gray fine grained,
4 .	lossely comented, saft
243 - 255	Same as above
255 - 253	All forams, 100% shell, dvilling very fast
283-303	Limes tone - tan, fine grained, soft, loasely
	comented a very large percentage of.
	shell fragments (forams, exhimads etc)
303 - 310	Limestone tun, fine grained, soft, lossely
	comented, fossiliferous
	,

CAMP DRESSER & McKEE INC.

GEOLOGIC LOG OF WELLDMW 14+1950

Project Name <u>Wc</u>	RWSA Date_ 5-22-86
Project Number <u>60</u>	
Hole Size	
Depth Interval Ft.	Geologic Description
310-320	Primarily forams and echinologies drilling a idel
320'-333'	primarily foroms and echinolorus, drilling quickly same as above only a smaller per centage of
	ech ino derims
3331-3451	Limes tone, ton fine grained, soft to
!	medium hardness, very fossilver ous
345 - 355	Limestone, tam, fine grained soft to
	medium hardness, some shall fragments
355'-366'	same as above
366'-320'	Limestono tam fine to medium grained medium
	hardness, some shell fragments (penetration
2-011	rate struing drun)
380'- 385'	Limes tone fan, fine to melium grained medium
385'- 310'	hardness, very tossiliterous
222 - 240.	Limestane, light brown to tan, fine to medium
	grained hard to medium hardness fossiliferors
256-410	Limestone, light gray to fan, fine to medium
	grand, medium hardness interlayered with
•	coquina, forem, very soft, Camerinidae type.
410-420	Same as above, occasional gray chart (?), or himsid
	Spine
1	

CAMP DRESSER & MCKEE INC.

GEOLOGIC LOG OF WELLDMW 1A +1950

Project Name WC	RWSA Phase 14 Date 5-22-86
Project Number <u>6</u>	006-46 Drilling Method reverse air
Hole Size	
Depth Interval Ft.	Geologic Description
3.90, 394, AZO-ALX	Limestone, tan biomicritic cemented foram and
	shell fragments, solutioning (molds) and secondar
	calcité cement, medium handness interlagered
	with coquing Dictyocanus cookei and Camerinidae
39 1424' - 430'	The totale.
A24 - 450	Limestone, tan biomicritic, fine grainel
	as well as tovarris and shell tragments
	secondary calcite cement and Camerinidae
430' - 435'	
	also containing commerted forams and
	also containing committed torains and
	theil fragments forams of Comerinidae
•	type and a small amount of hard gran
4755' - 440	clay, some solutioning Limestone, tan birmicritic (same as above
4/101- 4/151	
•	forams and shell fragments convented figether,
, , 3	melion hardness, salutioning (molds).
4.45 - 4.63	Same as about
+3/3 - 4/6	Dolomite, fine grained tan to light brown
	Dolomite, fine grained, tan to light brown, medium hardness to hard, many forams

`MP DRESSER & McKEE INC.

GEOLOGIC	LOG	OF	WELL	DMW	-14	+19501

Project Name	WCRWSA-Phase-1A	Date	5/22/86
Project Number	6006-46	Drilling Met	
Hole Size	~ ⁴	Sampling Met	
Depth Interval Ft. 4万0′ - 4才5′	Geo	ologic Description	on
470' - 475'	Dolomite tan.	fine grains	medium hardness
	to hard, loosely	cemented in	Some zones, 3/0//
<i>4</i> ,	Fragments Hard	dark gray	clay
475 - 4801	Fragments Hard Same as above	J /	(
4,50'-4,55'	Polomite, tan to b		
	herdness to soft.	3 hell trag	ments very little
5 . s .	solutioning	J	
485'-493'	Dolomite, buff to	tan fine	grained medium
463, 47.	hardness to soft	- shell fra	grained, kredium gwents osie, hard with
463, 47,	Dolomite light b	rown, ever	osie a hard with
475, 485	Solutioning		
475, 485 585 -SHS	Dolomite, ten, fin	e grained i	relium hardness
48, 49	Polomite, tan, fin to hard, vary litt	le solutioning	
48, 49 815-8531	Dolomite, tan f	ine grained	medium hardness
493, 6	to hard	<i>J</i> /	
193 - S\$5'	polonit tan f	ine grained	medium hardness,
	very little solutioni		
585-545	Polomite ton fi	4	hard, very 1.46
<i>-</i>			
5×5-5×3	Polomite + dark bron	un, fin ara	ined very hard,
	little solutioning,	a small an	rount of shell

P DRESSER & McKEE INC.

GEOLOGIC LOG OF WELL DAW 1A+ 1950

Project Name	WCRWSA-Plage-14 Date_ 5/23/86
Project Number	6006-46 Drilling Method <u>Eeverse Air</u>
Hole Size	Sampling Method Cottings
Depth Interval Ft.	Geologic Description
583 - 585	Dolomite, tan to brown, fine grainela
3 5/65 - 5/10	Dolomite tan to dark brown fine grainel,
4 5 570 - 580	medium hardness, solutioning, zones of thin bedded dolomite Dolomite, brown to dark brown, fine grained
	to sucrosic medium bardness, a little
5 550 - 555	Dolomite, brown, fine grainel, hard, more solutioning interbedded with
555 - 86 1	gray chart? Limestone, gray, medium, grainy, biomicritic medium hardness
561 - 570	Dolomite, brown, fine grained to medium sucrosses
570-573	Linestone, gray, medium grained, recrystallized biomicritic, medium hadness.
573-490	Dolomite, brown, fine grained to medium sucrosic, vagy, occasional small echinoid, medium to hard
490-595	Dolomite, tan fine grained, hard to very hard
595-600	Dolomite brown, fine grained, hard to very hard

CAMP DRESSER & MCKEE INC.

GEOLOGIC LOG OF WELL DMW 1A+1950

	GEOLOGIC LOG	OF WELL DMW /A	+1950
Project Name <u>WC</u>	RWSA Phase IA	Date	3-86
Project Number <u>6</u> 0	206-46	•	reverse air
Hole Size 84			cuttings
Depth Interval Ft.	Geo	ologic Description	
600 - 611	Dolomite, brown to	gray, dense fi	ine grained, very hard
	a few small vugs		, , , , , , , , , , , , , , , , , , , ,
611-612	Cavity filled a	with brown m	ud, solution pitting
	adjacent to cour	:tu	7
612-615	Dolomite brown	fine to madin	m grained sacrosic,
	medium hard in	solution zones	to very hand
5 -647	Dolamite, brown, de		
	arained sucrosic w	it's solution	ZONES 140 As hard
·	except in solution	riddled zo	105
647-648,5	Dolomite, brown to		
	grained, very hard	g	4000 000 7 1000
648.5 - 649.5	Dolomita, brown +		Line to medicin
	grained, honey comb		•
647.5-657	Dolomite, tan to da		
••	grained, solution in v	iciuity of Cons	tines extravel li
657- 660	Dolomite, fine gran	and the land	(Fre Line)
	dolostone) surrounde	ed by d d	ole (Tracyareo
	very hard	a Ny Gark Bri	own ouggy matrix,
660 - 470		Sin a	
* .	hard collitioning	La Contract	dense, very
	hard solutioning a	long tracture	J.

TMP DRESSER & MCKEE INC.

GEOLOGIC LOG OF WELL DMW + 19501

Project Name	ICRWSA Thase 1A Date 5/23/86
	6006-46 Drilling Method Reverse Air
Hole Size	Sampling Methodeutings
Depth Interval Ft.	Geologic Description
670' 675'	Dolomite, grayish brown, fine grained, very
	hard solutioning along fractures
675 - 685	same as above accept for an inerease
	In lan brecia surrounded by dark
	vugy matrix
685-690'	Dolomite grayish brown, fine grained, very
	hard, colutioning along fractures
690'-695'	Dolamite, brown, fine grained, very hard,
•	solutioning along fractures
695-705	polomite, brown to light brown, fine
	grained, very hard, solutioning along
	fractures
> .	
•	

LITHOLOGIC LOGS OF SHALLOW BORINGS

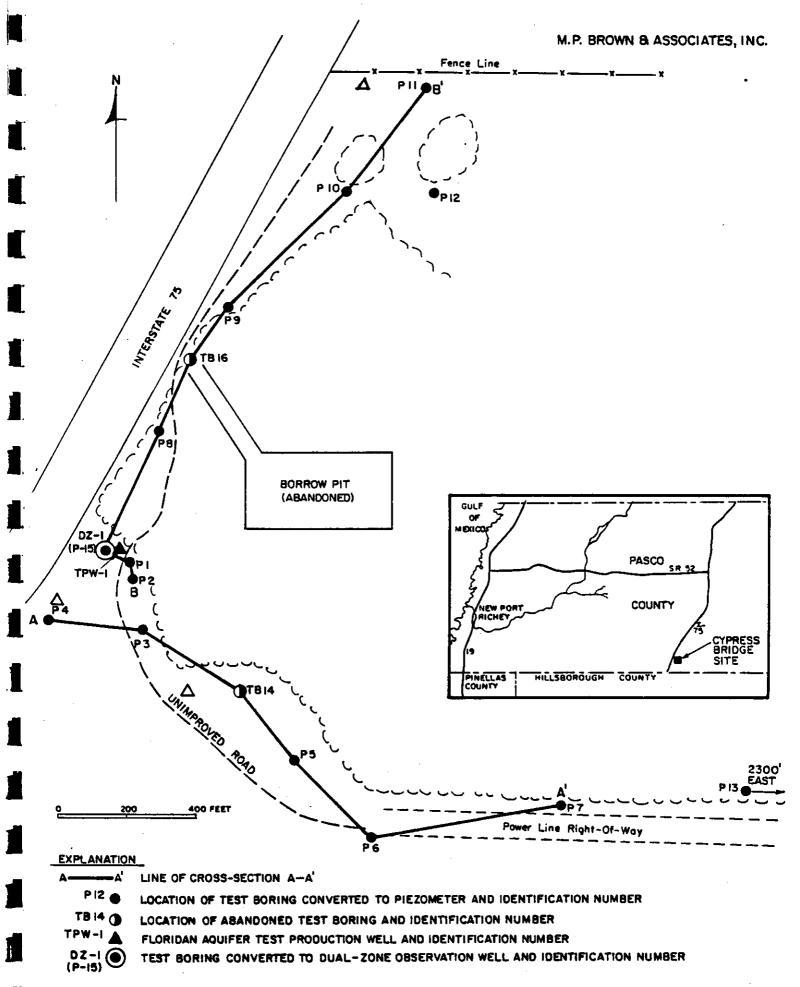


FIGURE 1. Location of Study Area, Dual-Zone Observation Wells, Piezometers, Borings, and Lines of Cross Sections,

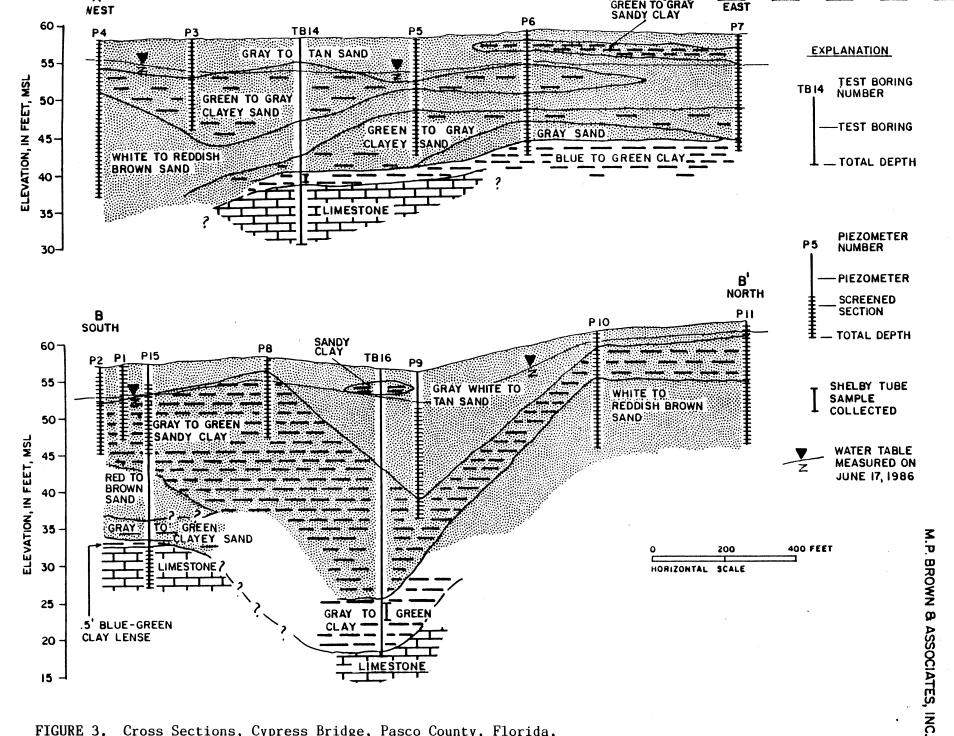


FIGURE 3. Cross Sections, Cypress Bridge, Pasco County, Florida.

<u>Lithologic Log of Piezometer P-1</u>

	•	Below ace (Ft	Description	Thickness Feet
0.	0 -	1.0	Sand, quartz, dark gray to black, very fine grained, angular, well sorted, silty, organics.	1.0
1.	0 -	2.5	Sand, quartz, light gray with dark brown inclusions, fine grained, angular, well sorted.	1.5
2.	5 -	3.5	Sand, quartz, red to brown, fine grained, angular, well sorted.	1.0
3.	5 –	4.0	Sandy clay, red to brown, iron stained, cohesive, somewhat plastic, ductile.	0.5
4.	0 -	5.0	Sandy clay, light gray, iron stained, cohesive, ductile, plastic; Limestone, light green, sand included, pebble sized.	1.0
. 5.	0 -	8.5	Clayey sand, quartz, light gray, fine grained, angular to subangular, slightly cohesive.	3.5
8.	5 - 1	.0.0	Sandy clay, light gray, cohesive, ductile, plastic, stiff.	1.5

Depth Below Land Surface (F	<u>Description</u>	Thickness <u>Feet</u>
0.0 - 2.0	Sand, quartz, light gray, fine grained, angular, organics.	2.0
2.0 - 3.0	Sand, quartz, dark brown to black, very fine grained, angular, silty.	1.0
3.0 - 5.0	Sand, quartz, tan, fine to medium grained, angular, silty.	2.0
5.0 - 8.5	Sandy clay, gray to green, cohesive, ductile, plastic, micaeous.	3.5
8.5 - 10.0	Clayey sand, quartz, light gray to green, fine grained, angular.	1.5
10.0 - 12.0	Sandy clay, gray to green, cohesive, ductile, plastic, mottled.	2.0

Depth Below Land Surface (Ft	Description	Thickness <u>Feet</u>
0.0 - 0.5	Root zone, sand, quartz, dark gray to black, very fine grained, angular, silty, organics.	0.5
0.5 - 2.0	Sand, quartz, light gray, fine grained, angular, well sorted.	1.5
2.0 - 3.0	Sand, quartz, dark brown to black, very fine grained, angular, silty, organics.	1.0
3.0 - 5.0	Sand, quartz, tan, fine to medium grained, subangular, well sorted.	2.0
5.0 - 6.5	Sandy clay, gray, iron stained, cohesive, ductile, plastic.	1.5
6.5 - 10.0	Clayey sand, quartz, light green to white, fine grained, subangular.	3.5
10.0 - 12.0	Sandy clay, gray to green, cohesive, ductile, plastic, micaeous.	2.0

Depth Below Land Surface (Ft	Description	Thickness <u>Feet</u>
0.0 - 0.5	Root zone, sand, quartz, very fine grained, angular, silty, organics.	0.5
0.5 - 3.0	Sand, quartz, light gray, fine grained, angular, well sorted.	2.5
3.0 - 4.0	Sand, quartz, light brown to tan, fine grained, angular to subangular, well sorted.	1.0
4.0 - 4.5	Clayey sand, quartz, red to brown, fine grained, angular, slightly cohesive.	0.5
4.5 - 6.0	Sandy clay, light gray, cohesive, ductile, plastic, iron stained.	1.5
6.0 - 12.5	Sand, quartz, white, fine grained, angular to subangular, well sorted.	6.5
12.5 - 21.0	Sand, quartz, red to brown, fine grained, angular, silty.	8.5

Depth Below Land Surface (F	<u>Description</u>	Thickness <u>Feet</u>
0.0 - 0.5	Root zone, sand, quartz, very fine grained, angular, silty, organics.	0.5
0.5 - 5.0	Sand, quartz, dark brown to black, very fine grained, angular, silty, organics.	4.5
5.0 - 6.5	Sand, quartz, tan, fine to medium grained, subangular, well sorted.	1.5
6.5 - 7.0	Clayey sand, quartz, light gray, fine grained, subangular.	0.5
7.0 - 10.0	Sand, quartz, white, fine to medium grained, subangular to subrounded.	3.0
10.0 - 16.0	Sandy clay, light green to gray, cohesive, ductile, plastic.	6.0

Depth Below Land Surface (F	<u>Description</u>	Thickness <u>Feet</u>
0.0 - 0.5	Root zone, sand, quartz, very fine grained, angular, silty, organics.	0.5
0.5 - 1.0	Sand, quartz, dark reddish brown, very fine grained, angular, well sorted.	0.5
1.0 - 1.5	Sand, quartz, biege, fine grained, angular, well sorted.	0.5
1.5 - 2.0	Clayey sand, quartz, red to brown to gray, iron stained, cohesive, dry.	0.5
2.0 - 3.0	Sandy clay, light green to gray, cohesive, plastic, ductile, dry, iron stained, organic material imbedded; Limestone, light green, sand included, nonfossiliferous.	1.0
3.0 - 5.0	Sand, quartz, white, iron stained, fine to medium grained, angular to subangular, well sorted.	2.0
5.0 - 7.0	Clayey sand, quartz, light green to gray, dark brown inclusions, fine grained, angular, organic material interbedded, cohesive.	2.0
7.0 - 9.0	Clayey sand, quartz, light green to gray, fine grained, angular, organic material interbedded, cohesive.	2.0
7.0 - 11.5	Sand, quartz, light green to gray, dark gray laminae, fine to medium grained, subangular to subrounded, well sorted.	4.5
11.5 - 12.5	Clayey sand, quartz, light gray to green, fine to medium grained, subangular to subrounded, cohesive, dry.	1.0
12.5 - 15.0	Sand, quartz, light green to gray, fine to medium grained, subangular to subrounded, well sorted.	2.5
15.0 - 17.0	Clay, blue green, cohesive, ductile, plastic, micaeous, carbonaceous material imbedded.	2.0

<u>Lithologic Log of Piezometer P-7</u>

Depth Below Land Surface (Ft	Description	Thickness <u>Feet</u>
0.0 - 0.5	Root zone, sand, quartz, dark gray, very fine grained, angular, silty, organic.	0.5
0.5 - 2.0	Sand, quartz, dark brown to red, fine grained, angular, organics.	1.5
2.0 - 4.0	Sandy clay, gray to green, iron stained, cohesive, ductile, plastic, dry.	2.0
4.0 - 10.0	Sand, quartz, white to light green, fine to medium grained, subangular, well sorted.	6.0
10.0 - 14.5	Clayey sand, quartz, light green to gray, fine grained, subangular, cohesive.	4.5
14.5 - 16.0	Clay, blue to green, cohesive, ductile, plastic, micaeous, stiff.	1.5

Depth Below Land Surface (F	<u>Description</u>	Thickness <u>Feet</u>
0.0 - 0.3	Root zone, sand, quartz, dark gray to black, very fine grained, angular, silty, organics. Sand, quartz, light gray, fine grained,	0.3
0.3 - 2.0	Sand, quartz, light gray, fine grained, angular, well sorted.	1.7
2.0 - 6.0	Clay, gray to green, cohesive, ductile, plastic, iron stained; Limestone, light green, sand included, nonfossiliferous.	4.0
6.0 - 11.0	Sandy clay, light gray to green, cohesive, ductile, plastic.	5.0

$\underline{\text{Lithologic Log of Piezometer P-9}}$

Depth Below Land Surface (F	Description	Thickness <u>Feet</u>
0.0 - 2.0	Sand, quartz, light gray, fine grained, angular, silty.	2.0
2.0 - 3.0	Sand, quartz, dark brown to black, very fine grained, angular, silty, organics.	1.0
3.0 - 4.0	Sand, quartz, light brown to tan, fine grained, angular to subangular, well sorted.	1.0
4.0 - 7.0	Sandy clay, light gray, iron stained, cohesive, ductile, plastic.	3.0
7.0 - 13.0	Sand, quartz, white, fine grained, angular, well sorted.	6.0
13.0 - 18.0	Sand, quartz, red to brown, fine grained, angular, well sorted.	5.0
18.0 - 19.5	Clayey sand, quartz, red to brown, fine grained, angular.	1.5
19.5 - 20.0	Sandy clay, light gray, cohesive, ductile, plastic, micaeous.	0.5

$\underline{\textbf{Lithologic Log of Piezometer P-10}}$

Depth Below Land Surface (F	<u>Description</u>	Thickness <u>Feet</u>
0.0 - 2.0	Sand, quartz, light gray, fine grained, angular, silty, organics.	2.0
2.0 - 6.0	Sandy clay, gray, iron stained, cohesive, ductile, plastic, micaeous.	4.0
6.0 - 12.0	Sand, quartz, white, fine grained, subangular to subrounded, well sorted.	6.0
12.0 - 16.0	Sand, quartz, pale red to brown, fine grained, subangular to subrounded, well sorted.	4.0

Depth Below Land Surface (F	<u>Description</u>	Thickness <u>Feet</u>
0.0 - 2.0	Sand, quartz, light gray, fine grained, angular, silty, organics.	2.0
2.0 - 6.0	Sandy clay, quartz, iron stained, cohesive, ductile, plastic; Limestone, light green, sand included, nonfossiliferous.	4.0
6.0 - 8.0	Clayey sand, quartz, light green, fine grained, angular, cohesive.	2.0
8.0 - 13.0	Sand, quartz, white, fine grained, angular, cohesive.	5.0
13.0 - 17.0	Sand, quartz, pale red to brown, fine grained, angular, well sorted.	4.0

<u>Lithologic Log of Piezometer P-12</u>

Depth Below Land Surface (F	t) <u>Description</u>	Thickness <u>Feet</u>
0.0 - 2.0	Sand, quartz, light gray, very fine grained, angular, silty, organics.	2.0
2.0 - 3.0	Clayey sand, quartz, pale red to brown, dark brown inclusions, fine grained, angular.	1.0
3.0 - 7.0	Sand, quartz, white with gray inclusions, fine to medium grained, subangular to subrounded, well sorted.	4.0
7.0 - 8.0	Sand, quartz, dark brown to black, fine grained, angular, silty, organics.	1.0
8.0 - 9.5	Sand, quartz, pale red to brown, medium to coarse grained, subangular to subrounded, iron stained.	1.5
9.5 - 13.0	Clayey sand, light gray to brown, fine grained, angular.	3.5
13.0 - 18.0	Sand, quartz, pale red to brown, fine to medium grained, subangular.	5.0

<u>Lithologic Log of Piezometer P-13</u>

Depth Land Surf		Description	Thickness Feet
0.0 -	0.5	Root zone, sand, quartz, dark gray to black, very fine grained, angular, silty, organics.	0.5
0.5 -	3.5	Sand, quartz, light gray, fine grained, angular, well sorted.	3.0
3.5 -	4.0	Sand, quartz, dark brown to black, very fine grained, angular, silty, organics.	0.5
4.0 -	6.0	Sand, quartz, tan, fine to medium grained, subangular, well sorted.	2.0
6.0 -	7.0	Sand, quartz, red to brown, fine grained, subangular, well sorted.	1.0
7.0 -	9.0	Sand, quartz, black, very fine grained, angular, silty, organics.	2.0
9.0 - 1	9.0	Sand, quartz, white, fine to medium grained, subangular to subrounded, well sorted.	10.0

Lithologic Log of Test Boring TB-14.

Depth Below Land Surface (Ft)	<u>Description</u>	Thickness <u>Feet</u>
.0 - 1.5	Sand, quartz, gray, fine grained, silty, organics.	1.5
1.5 - 2.0	Sand, quartz, black, fine grained, angular, silty.	0.5
2.0 - 3.5	Sand, quartz, light brown, fine grained, angular, well sorted.	1.5
3.5 - 7.0	Clayey sand, quartz, light gray, fine grained, angular, cohesive.	3.5
7.0 - 11.0	Sandy clay, light gray, cohesive, ductile, plastic.	4.0
11.0 - 16.0	Sand, quartz, light gray, fine grained, angular to subangular, well sorted.	5.0
16.0 - 18.0	Clayey sand, quartz, light green to gray, fine grained, angular, cohesive.	2.0
18.0 - 19.5	Clay, blue-green, cohesive, ductile, plastic, waxy, mottled.	1.5
19.5 - 22.0	Limestone, white to light green, sand included, friable, few macrofossils; clay, calcareous, white, cohesive. Lost drilling circulation at 22 ft. bls.	2.5
22.0 - 24.5	Cavity.	2.5
24.5 - 26.0	Limestone, white, sand included, partially recrystallized, friable; Clay, calcareous, white, dry, stiff.	1.5
26.0 - 29.0	Limestone, white to pale brown, recrystallized, hard, few gastropod molds, calcite inclusions.	3.0

Lithologic Log of Dual Zone Well DZ1 (P15)

	Below face (Ft)	Description	Thickness <u>Feet</u>
.0 -	2.0	Sand, quartz, gray, very fine grained, angular, silty, organics.	2.0
2.0 -	2.5	Sand, quartz, black, very fine grained, angular, silty.	0.5
2.5 -	7.0	Sandy clay, gray to green, iron stained, cohesive, ductile, plastic.	4.5
7.0 -	11.0	Clayey sand, quartz, gray to green, fine grained, angular, cohesive.	4.0
11.0 -	14.0	Sandy clay, gray to green, cohesive, ductile, plastic.	3.0
14.0 -	21.0	Clayey sand to sand, quartz, red to brown, fine grained, angular to subangular.	7.0
21.0 -	23.5	Clayey sand, quartz, gray to green, fine grained, angular, cohesive.	2.5
23.5 -	24.0	Clay, blue-green, cohesive, ductile, plastic, micaceous.	0.5
24.0 -	30.0	Limestone, white, sand included, friable, generally recrystallized, few macrofossiliferous. Lost drilling circulation at 25 ft. bls.	6.0

Lithologic Log of Test Boring 16.

•		Below ace (Ft)	<u>Description</u>		ckness <u>Feet</u>
.0	-	2.0	Sand, quartz, light gray, fine grained, angular, silty, organics.		2.0
2.0	-	4.0	Clay, orange to brown, cohesive, ductile, plastic; Limestone, white to pale yellow, sand included, nonfossiliferous.		2.0
4.0	-	9.5	Sand, quartz, pale gray to brown, fine grained, angular to subangular, well sorted.		5.5
9.5	-	13.0	Sand, quartz, white, fine grained, angular to subangular, well sorted.		3.5
13.0	-	14.0	Sandy clay, dark gray, cohesive, ductile, plastic.		1.0
14.0	-	18.0	Clayey sand to sand, quartz, green to gray, fine grained, angular.		4.0
18.0	-	31.0	Clayey sand to sand, light green, quartz, fine grained, angular.	1	3.0
31.0	, -	39.0	Clay, gray to green, cohesive, ductile, plastic, stiff; limestone, white, friable, sand included, shell included.		8.0
39.0		39.5	Limestone, white, sand included, friable, partly recrystallized, few macrofossils.		0.5

SOIL TESTS

PTL-INSPECTORATE INC.

NATIONWIDE AND INTERNATIONAL SERVICES

Sept. 18, 1986

PTL Ref: TAM-2584

TAMPA DISTRICT

West Coast Regional Water Supply Authority 2535 Landmark Drive Suite 211 Clearwater, Fla. 33519

Attn: Loretta Holtkamp

Ref: Soil Mechanics Tests

Undisturbed Samples
Cypress Bridge - Site A

Pasco County, Fla.

Dear Ms. Holtkamp:

As per your request received from your Mr. Douglas Crowson, this is to document the results of our testing of samples submitted to us. Both permeability and grain size analysis tests were performed on two Shelby Tube samples submitted to us by Mr. Crowson. These tubes were identified as P-14 18.5'- 20.0' and PL-15 32.0' - 34.0'. The following permeability test results were obtained for these samples.

P-14 k= 1.56 x 10^{-2} cm/sec.

PL-15 k= less than 1×10^{-8} cm/sec.

The rapid permeability rate of P-14 is probably due to the fissures within the weathered limestone sample contained in this tube. Thus, this permeability coefficient represents the matrix permeability rather than the permeability through the stone or calcareous clay.

The permeability of PL-15 was estimated on the length of time that this sample has been saturating. As of this date, complete saturation has not occurred. We attribute this to the amount of clay present in this sample (80% to 90%) and to its lack of free water.

The results of the grain size analyses are summarized by the distribution curves attached to this letter. Should you have any questions regarding this information, please contact the writer at your convenience.

Respectfully submitted,

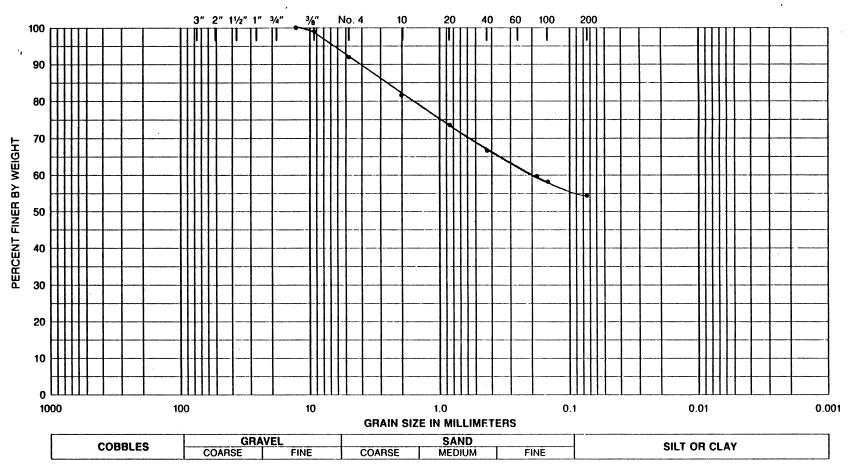
Joseph A. Eduardo, P.E.

Fla. Reg. 33318

District Engineer

JAE/lt

09-18-86


Pittsburgh Testing Laboratory GRAIN SIZE DISTRIBUTION CURVE

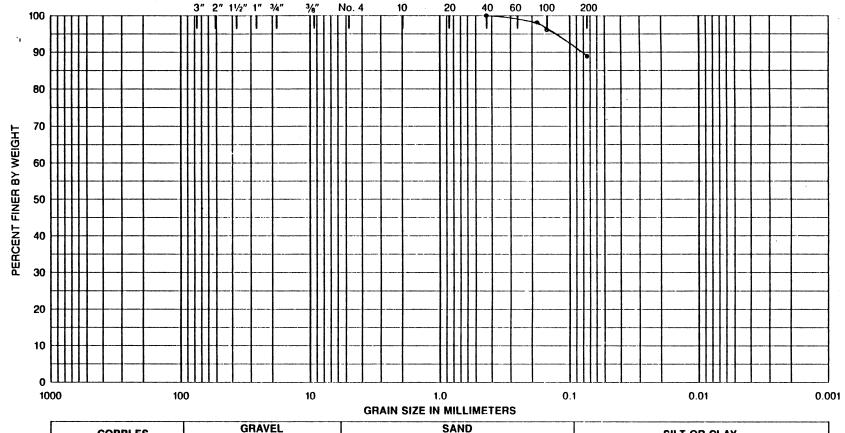
ORDER NO. _____TAM-2584

CLIENT: West Coast Regional

Water Supply

TEST BORING NO.	SAMPLE NO.	DEPTH FT.	LINE	GROUP SYM.	CLASSIFICATION	IN-SITU WC	LL	PL	PI	Gs	REMARKS	PLOTTED BY:
P-14		18.5'-20'		CL	Gravelly CLAY							JFE
											,	
					,							

Pittsburgh Testing Laboratory GRAIN SIZE DISTRIBUTION CURVE


ORDER NO. TAM-2584

CLIENT: ____

West Coast Regional

Water Supply

CORRIES	GRA	VEL		SAND		SILT OR CLAY
COBBLES	COARSE	FINE	COARSE	MEDIUM	FINE	SILI ON CLAI

TEST BORING NO.	SAMPLE NO.	DEPTH FT.	LINE	GROUP SYM.	CLASSIFICATION	IN-SITU WC	LL	PL	PI	Gs	REMARKS	PLOTTED BY:
P-15		32'-34'		CL	CLAY							JFE
						-						
							·					

APPENDIX D GEOPHYSICAL LOGS

APPENDIX E

WELL COMPLETION REPORTS

WELL COMPLETION KEP	<u>UKI</u>
Date 4-9-86	Consultant_Com
Owner Wort Coast Regional	Location: Pasco Courty
Complete Job Description: - Drilled 1434" hole (Include full pump info) Up to Surface. Drilled 778"-hole to 72 2nd developed well till water was clean	to 151'+ set 8' casing 4 comments
Casing (and Screen) Used: 153'-8"	Rig Used: Gorder Denver Days on Location: 23-days Mud Used: -15-9e/
Gravel (size):	Additives: - 1/2 Scala ash (Drispak, salt, etc)
Cement: -130 - bags	
List All Logs and Surveys Run By Type and Company: Southern Resources Caliper; Spontaneous potential; Single point (Temperature log (Began pumping); Flow meter (Satitic) Fluid resistivity (Began Gammo Roy Remarks:	T.D. 4-2-86- 6:45 pm Driller(s): J. Denchfield long+Short normal resistivity) pumping) pumping)

PW /A+500 .

6006-43

Date: 4-9-86

	WELL LOG							
. 0	wner	Jest Coost Regional 2	. Locat	ion_ /	reco Co			
3."*T	ype Cons	it. Water Well 4			3-8"			
		Gravel, Etc						
		oth <u>703'</u> 7. Jet Head		8.	Static Level - /'7"			
rom	To	Formation	From					
5'	5	White sand	195	10 205	Formation			
<u> </u>	10		205	2/5	Coarse ten limestone			
5	20	White clay	215	_	Coarse time tan limestone Coarse tan limestone (w/some			
2	25	White sandy clay	[]		shell fragments)			
3	28	white + brown slightly sardy clay white + brown slay - w/some lime	220	230				
28	40				Coarse to fine tan limestore (whome lime mud)			
_	1	hard White limestone	230	240	Course to medium tan limestone			
40	50	White limestone chalky (w/some			Coarse to medium tan limestone shell fragments			
		white 4 green clay)						
د	60	White limestone chalky (w/some]	coarse to fine tax limestone (w/shell fragments)			
		green + gray clay)		1				
60	70	Clay w/some white limestone			Coarse to fine tan limestone			
	80		,	1 _	(w/some shell tragments)			
, –		Medium hard white limestone ((w/some clay)	290	350	Coarse to fine tan topray			
ළු	90	Medium hard white limestone	1	}	limestone (W/Shell fragments)			
90	100	Medium hard white limestone	320	332	Medium to fine tan limestone			
		Cursome clay)	330	347	Merlium to fine to linestone			
110	170	Median hard white limestone		0,0	Medium to fine tan limestone (cu/more consolidation)			
170	/80	medium hard white limestone	340	3 5 0	medium to fine tan limestone			
		(w/some clay)	 		(w/shell fragments)			
90	185	Fine tan limestone w/sand						
	195		360	370	coarse to fine tan limestone white lime mud - Shell fragment			
	· •	Coarse tan limestone (w/some greg clag)		•	White lime mud - Shell fragment			
. 1		((- 7/						

Total Chlorides (ppm) 10. Iron 11. Ph 12. Hardness

ks:

Driller (s):

Date:

WELL LOG

1. 0	yner <u>رر)</u>	test Corest Regional 2.	Locati	on Pag	scs Co.
		t. (e) ater (s) e/1 4.	Casing	<u></u>	3'-8"
		ravel, Etc.			
6. To	otal Dep	th <u>703'</u> 7. Jet Head		8.	Static Level / 7"
From	To	Formation	From	Fo	Formation
370	399.5	Coarse to fine tand brown limestone (w/shell fragments)	530	533	Sandstone tan + brown fine grained w/light green c
	400	Cavity - black sediment			Dark brown Dobmite + limes
400	400	Coarse to fine Tan + brown limestone, Shell fragments + Lime must			fine grained
in h	//2.2	limestone, shell fragments + Lime must	535	540	Dark brown Dolanute fine gra
410	420	Fine to medium tan limestone w/shell fragments	540	1	Brown dolumite - fine to coars
420	430	fine+ coarse tan limestone w/shell fragments + Dolamite-brown + black	550	560	Frown dolonite fine to coarse
30		Fine to coarse tan limestone			Tan sandstone-fine to coars
		Fine to Coarse Brown dolamite + fine to medium limestone w/black pear	570	590	Fine tan limestone Brown + dark brown dolan't
450	460	Fine to coarse brown dolanite			fine to coarse w/fine tan
460	480	fine to medium limestone w/tenclay Fine to medium ton limestone		610	Brown+dark brown dolamit fine+o course wifine tan
480		W/some tanclay + shell fragments Fine to coarse tan + grey limestone + tan clay	١ .	<i>70</i> 3	Brown, dark brown + grey
490	5/0	Fine to coarse tax limestone			dolumite - fine to coarse W/fine tan limestone
5/0	530	fine to coarse brown dolamite thine tan limestone			
9. To	tal Chlo	rides (ppm) 10. Iron	11	. Ph_	12. Hardness
~ nark					er (s):

WELL COMPLETION	N REPORT
Date 1/21/86	Consultant CDM
Complete Job Description: (Include full pump info)	Location: CYPRESS BRIDGE PASCO COUNTY
Casing (and Screen) Used: 133 × 8"	Rig Used: GARDNER DENVER 150(Days on Location: Mud Used: 8 BAGS
Gravel (size): 2 its Used Up: 7 % BUTTON 14 3/4 TOOTH Cement: 87 BAGS	Additives: (Drispak, salt, etc) 1 BAG SODA ASH
List All Logs and Surveys Run By Type and Company:	T.D. 704 FEET Driller(s):
Static Water Level:Specific Yield:	TEFF DENCHFIELD
Remarks: PW 1A+200 6006-45	

WELL LOG

		<u>-</u>	
1.	Owner WEST COAST	REGIONAL	2. Location PASCO COUNTY
	Type Const. ROTARY		
5.	Screen, Gravel, Etc.		
6.	Total Depth 704	_7. Jet Head _	8. Static Level

6.	6. Total Depth 704 7. Jet Head 8. Static Level						
From	To	Formation	From	I To	Townstiles.		
350	370	white o tan lime, some	510	To	Formation		
330	3.0	Shell			tan & gray lime		
_ (512	536			
370'	380'	tan lime	536	548'	gray dolomite		
380'	395'	tan lime, shell	548'	560	1		
395'	400'	light brown lime, shell	560	565	gray obrown dolomin		
400	· -		565	513	brown dolom, te		
	1 .		583	600	brown dolomite		
010	420	I tan dolomite, dark	600	601	1		
		brown dolomik	602	603	brown dolomite		
420	425'	brown dolomite	Η .	/			
			603	606			
425	426	tan lime	606	610	, ,		
426	427'	black Peat	610	630	brown dolomite		
427'	435'	•	630	655	brown dolomite		
	1 1			671	brown dotomite		
435'	440'	brown dolomite	655	W ((brown dolomite		
440'	467'	tan lime	671	675	Phomy agramme		
			675	681	gray o brown dolomite		
167	491	tan lime, coquina	681	682	dark brown dolomite		
491'	501	tan lime	682	686	trap dolomite		
501	503	gray lime	686	697	grey dolomide		
503'	510'	tan lime	697	698'	dark brown dolomik		
			698'	704	gray dolomite		
9. To	tal Chlor	ides (ppm) 10. Iron		Ph	12. Hardness		

arks:

Driller (s):

Date:

WELL LOG

		·	
1.	Owner WEST COAST REGIONAL	2. Location PASCO COUNTY	
3.	Type Const. ROTARY	4. Casing 133' × 8"	•
5.	Screen, Gravel, Etc. 8 BAGS AQUA	GEL, 87 BAGS CEMENT	
	— . 1		

6. Total Depth <u>704</u> 7. Jet Head ____ Static Level From From , 07 light gray sand 200 tan a gray lime, dark 190 15' light gray sanda clay grey clay 30' gray sandy clay 215 gray & tan sandy lime 200 40' tan lime, green clay 30 10° 50° white lime, ten lime, green day 215 70' tan a white line, varied tan a gray lime (soft 220 70 hand white lime amounts of green clay some grey clay 70' 80' sandy lime, green clay 220 225' Shell grey lime, grey clay 80 225 240 tan a gray lime, gray clay tan & gray lime, dark 88' 250 tan & gray lime 100 tan & gray lime, shell 115 00 265 light gray lime light gray lime 131 15' 270 265 tan a gray lime tan + gray lime 270 275 tan a gray lime shell 31 155 295 Shell 315 295' tan a gray lime 55 170 tan lime **उ**५०' 315° Shell tan & gray lime 190 340'

9. Total Chlorides (ppm) Iron 11. 12. Hardness

arks:

Driller (s):

tan lime, shell

350

	Pgof
WELL COMPLETION RI	EPORT
late 5/15/86	Consultant CDM
Complete Job Description: (Include full pump info) 700 PRODUCTION WELL TPW-IA	Location: PASCC COUNTY
Casing (and Screen) Used: 24" * 133'	Rig Used: <u>FAILING 2500</u> Days on Location: <u>21</u> Mud Used: 40 BAGS
Bits Used Up: 30" (2) TOOTH 2" TOOTH; (1) 22" BUTTON (1) 1434 BUTTON Cement: 280 SACKS	Additives: (Drispak, salt, etc) 3 BAES SCDA ASH
List All Logs and Surveys Run By Type and Company:	T.D
Static Water Level: 3' Specific Yield:	BARRIE CHENEA KEITH CAMPBELL
Remarks: RAN FOLLOWING LOGIC.	

(1)

CALIPER, SPONTANEOUS POTENTIAL, SINGLE POINT (LONG & SHORT NORMAL RESISTIVITY), TEMPERATURE LOG (STATIC AND PUMPING) FLOW METER (STATIC AND PUMPING), FLUID RESISTIVITY (STATIC AND PUMPING), GAMMA RAY

Date: 5/13786

TEST PRODUCTION WELL

WELL LOG

1.	Owner WCRWSA	2. Location PASCO COUNTY
	Type Const. ROTARY	4. Casing 24" x
	Screen, Gravel, Etc	r. casting x 1 x
6.	Total Depth 100 7. Jet Head	8 Static Louis A'

	10_	Formation	From	1 To	
Q	5	SAND			Formation
5	20'	SAND & CLAY	1260	1	<i>1</i> 1
	1	· ·	1 265	295	SOFT GRAY LIME
20	30'	SANDY CLAY (light gray)	1 295	300	SHELL
30	35	WHITE LIMESTONE	300	310	GRAY LIME
<u>3</u> 5	60	WHITE & TAN LIME	310	410	'
(; i	6.5	WHITE4 GRAY LIME	410	420	BROWN LIME
	70'		1 420	430	GRAY & BROWN DOLUMIT
_	: ,	TAL GERAY LIME	430	435	TAN DOLOMITE
70	75',	WHITE & GRAY LIME	435	450	TAN LIME
7.5	155'	TAN & GRAY LIME, SHELL	450	480	GRAY DOLOMITE
155	170/	GRAY LIME	480	513	GRAY LIME
170	180	GRAY & TAN LIME, GRAY	513		BROWN DOLOMITE
		CLAY	535	1 11	GRAY & BROWN DOLOMITE
180	190	GRAYSTAN LIME	550	665	BROWN DOLOMITE
İ			666	670	GRAY & TAN DOLOMITE
1.90	217	TAN LIME	670	671	DARK GARY CLAY
217	219	GRAY LIME	671	674	TAN DOLOMITE
219	225'	GRAYSTAN LIME	674	682	ERAY DOLOMITE
225	/	HARD GRAY LIME	682	693	BROWNS TAN DOLOMITE
230	A 1	TAN & GRAY LIME	693	700	GRAYA TAN OCLOMITE
		TAN LIME			
9. Tota	l Chlori	des (ppm)10. Iron		 -	
R. rks:		10. 11011	11.	Ph	12. Hardness
···· IKS:					· — ·

Driller (s): BARRIE CHENEA KEITH CAMPBELL

	Pgof
WELL COMPLETION REP	ORT
Date 5/26/86	Consultant CDM
OWNER WEST COAST REGIONAL	Location: O.
Complete Job Description: (Include full pump info) 700' MONITOR WELL DMW 1A+1950)	Location: PASCO COUNTY
Casing (and Screen) Used:	
130' x 8"	Rig Used: FAILING 2500
	Days on Location: 7
	Mud Used: 55 BAGS AQUA GEL
Gravel (size): Bits Used Up: 143/4 TOOTH 738 BUTTON Cement: 87 SACKS	Additives: (Drispak, salt, etc) 1½ BAGS SODA ASH 25 LBS DRISPAK
12.4.479.0	T.D. 700'
List All Logs and Surveys Run By Type and Company:	
	Driller(s): BARRIE CHENEA
Static Water Level: 3'	KEITH CAMPBELL
Specific Yield:	
Remarks: RAN FOLLOWING LOGS	, GAMMA KAP

Date:

Driller (s): BARRIE CHENEA

KEITH CAMPBELL

WELL LOG

1. 0	1. Owner WEST COAST REGIONAL 2. Location PASCO COUNTY							
	3. Type Const. <u>RUTARY</u> 4. Casing 130' x 8"							
5. S	5. Screen, Gravel, Etc.							
6. T	otal Dep	th760°7. Jet Head		_ 8. \$	itatic Level3′			
From	То	Formation	From	То	Formation			
0	5	FINE SAND						
) 0	25'	SANDY CLAY						
25	30'	GREEN CLAY						
30	250	WHITE & GRAY LIMESTONE,]				
		MEDIUM HARDNESS WITH		İ				
		ZONES OF CLAY & PEAT						
250	300	TAN & GRAY LIMESTONE						
	}	RANGED FROM VERY SOFT	•					
		TO MEDIUM HARDNESS						
300	500	MEDIUM HARD LIMESTONE						
_		TAN & GRAY						
					•			
500	700	LIGHT BROWN & DARK BROWN		ļ ļ				
		DOLOMITE. MEDIUM						
	1	HARDNESS TO VERY HARD						
·		ł						
			:		•			
	ŀ							
	ſ	1	i					
		· i						
9. To	tal Chlo	rides (ppm) 10. Iron	11	. Ph	12. Hardness			

marks:

APPENDIX F STEP-DRAWDOWN TEST DATA

One Tampa City Center, Suite 1750 Tampa, Florida 33602 813 221-2833

May 28, 1986

Ms. Loretta H. Holtkamp West Coast Regional Water Supply Authority 2535 Landmark Drive, Suite 211 Clearwater, FL 33519

Re: Analysis of Step Drawdown Test from Test Well IA

Dear Ms. Holtkamp:

I am forwarding to you the results of the step drawdown test performed on May 17, 1986, on Test Well IA. The analysis of the data indicates that the well is extremely stable, neither experiencing further development nor clogging at the tested pumping rates. The well is fully developed and should not experience excessive deterioration through clogging adjacent to the borehole during the expected life of the well. The well meets the design pumping rate of 2,100 gpm with a minimal well loss of less than one foot.

The results of the step drawdown test will be included in the final report on Phase IA. Based on the above results, the pumping rate for the 5 day aquifer performance test and recovery will be at the rate of 2,100 gpm as specified in the Project Manual.

If you have any questions concerning the above analysis, please give me a call.

Sincerely,

CAMP DRESSER & MCKEE INC.

James H. Jensen

JHJ/cj 🖯

JHJ5T.1/4

PN: 6006-46-TW

Enclosure

cc: Ed Kent

Larry Roesner Gary Witt Tod Monks E. L. Adams

MEMORANDUM

TO:

Jim Jensen

Tod Monks

FROM:

Gary Witt

DATE:

May 22, 1986

RE:

Analysis of Step Drawdown Test from

West Coast Regional Water Supply Authority

Test Production Well #1 (revised)

The analysis methods used to analyze pumping test data from the stop drawdown phase of the TPW-A1 are described below. The drawdown (well loss) in the test/production well due to the turbulent flow of water through the borehole and inside the casing to the pump intake may be computed with the following equation (Jacob, 1946):

$$S_{wr} = CQ^2$$

where

 s_{wL} = well loss, ft

= well loss constant, sec^2/ft^5

= production well discharge, cubic feet per second (cfs).

The value of C may be computed from step-drawdown pumping test data using the following equation (Jacob, 1946):

$$C = \frac{\Delta s_i / \Delta Q_i - \Delta s_i - 1 / \Delta Q_i}{\Delta Q_{i-1} + \Delta Q_i}$$

The Δ s terms in Equation 1a represent increments of drawdown produced by each increase, ΔQ , in the rate of pumping. The dimensions of Δs and ΔQ are feet and cfs, respectively.

The method described above was used to analyze the data from the step drawdown test of the above-referenced well.

Data obtained is as follows:

 $Q_1 = 1,020 \text{ gpm} = 2.27 \text{ cfs } S_1 = 2.49$ $Q_2 = 1,920 \text{ gpm} = 4.28 \text{ cfs } S_2 = 5.11$ $Q_3 = 3,740 \text{ gpm} = 8.33 \text{ cfs } S_3 = 11.5$

MEMORANDUM May 22, 1986 Page Two

$$C_1 = .048$$

$$C_2 = .045$$

$$C_{1.2 \& 3} = .047$$

$$C_{1 \& 2 . 3} = .046$$

Based on this, the well losses are as follows for the three rates:

```
1,020 gpm = 2.27 cfs .25 feet
1,920 gpm = 4.28 cfs .83 feet
```

 $3,740 \text{ gpm} = 8.33 \text{ cfs} \quad 3.19 \text{ feet}$

The analysis indicates the following about the well:

The well is extremely stable and capable of producing large quantities of water. The well loss at the design rate of 2,100 gpm will be approximately one foot. The high rate of 3,740 gpm shows that at higher rates the well is less efficient. However, the rate tested exceeds the design capacity by factor of 1.80. The velocity in the well casing is approximately 4 feet per second which is more than acceptable. Therefore, most of the turbulent flow is from friction losses in the borehole.

Specific capacities of the wells are as follows:

Step 1 - 408 gpm/ft of drawdown Step 2 - 375 gpm/ft of drawdown Step 3 - 325 gpm/ft of drawdown

If you have any questions concerning this analysis, please give me a call.

GMW/jra EJK6T.3/13

cc: E.L. Adams E.J. Kent

APPENDIX G AQUIFER PERFORMANCE TEST DATA

Reference f Pre-test Wa	TPW - IA Point TOC Iter Level (Ref	. Measuring 1	Elevati	on of Measuri on of Ground	Level	56.41	0
Distance fro	om Pumping w	all in feet _	Ď.,			ning Pate	(gpm) 2150 gpm
					7 811	thind unis	(upm)
ĺ]		Tape Red	ading at -	Depth to	Elev. of	
Time	ļ	1		· · · · · · · · · · · · · · · · · · ·	water	water	Remarks
	in min.	in feet	Meas. Point	Water Level		level	Nemu Ka
	 	 				16461	
	· 				<u> </u>		
<u> </u>	10				2.48		Pump started at
	0.08_				T		THE STUDIES OF
	O.LT_				r 1		gpm
	0.25]				
	0.33						
	0.42] -]		-		
	0.50	4.0			6.48		
	0.58						
	0.67	4.03					
	0.75	4,045			6.51		
					6,525		
	10,831	4.06	├		_6.54		
	0.92	4.075			6.5.55		
	1-1-100	44			6,57		
	-	_4.13			6.61		
	11:331	-4e17_			6.65		
	1.50	4.22			6.76		
	<i>- - - -</i>	4.25			6.73		
	/_83	4.28		<u></u>	676		
	2.00	431			6.79		
	2.25	4,355			6.835		
	2,50	4.40			6.88		
	2.75	442					
	3.00 3.50 4.00 4.50 5.00	444			6,90		
	3 5	4.51			6.92		
	Im	454		-	6.99		
	<i>#</i>				7.02		
		4.58 4.63		-	7.06		
·		Te_P\$		_	7.11		
	6.00	7:60			7 <u>.18</u>		
	7.00 8.00	4.77			7.25		
	<u>k'ool</u> -	4,70 4,77 4,82			7.30		
	9.00	_ <u></u>			7.36		
		4.93			7.41		
	12,00 _	5.00			7,48		
	14,00_	5.08			7.56		
	1620 _	_5_17			7.65		
	L&.QQ	5.21	-		7,69	-	
	20 00	5.27			- <u></u>		

;19 26

Shee: 2 of

AQUIFER TEST RECORD

rell No.	-PW-1A		Elevatio	n of Measuric	ig Point	56.4	<u>6</u> _	
	ointTOS	•		on of Ground				
e-test Wat	er Level (Ref.	Measuring P	oint)	53.98 (=	2,48)			
stance from	n Pumping wei	II in feet 📖	<u> </u>		Pum	ping Rate (opm) 2150 9pm	
			4		ı · · · · · · · · · · · · · · · · · · ·		1	
	1	=	Tape Red	Tape Reading at -		Elev. of		
Time					water	water	Remarks	
	in min.	in feet	Meas. Point	Water Level	below m.p.	level		
	22.00	5.32		-	7.80	· · · · · · · · · · · · · · · · · · ·		
	24.00				7.85			
		5.41 5.41			7,89			
	26.00 28.00				7.94		 	
		5.48			7.96		1.5 hr	
	30.00				8.10			
	35.00				2.16			
	40,00		 		8.21			
	4500							
	<u>-50.00</u>		 		8.29 8.34			
	55.00							
	<u>60.00</u>				8.39		Lbr.	
	7000		ļ		-8-21		- -	
	20.00				8,59			
	90.00	6.22			8.70			
	100.00	6.30			<u>-8.78</u>			
	1110.00		 		8.83			
	1-13000				<u>_890</u>		2hr	
	135.00	6.52			9,00			
	15000	6.56			9.04		<u> </u>	
	16500	6.63			1_9_11			
	1.80.00	6.72			9,20		3hc	
	2000	6.76			9.24			
	220.00				9.28			
	240.00				9.34		14 bg 0,37" RAIN	
	270.00	6.93			9.41		13:47 to 1425	
15:30	300.00				9.47		5hr orifice 19	
16:30	360.00]		9,55		6 hr. 16:15 - 70tz	
17:30	420.00				9.645		The RAIN 0,42	
18:30	480.00	7.25]	9.73		8 hr.	
20:30	60000				9.835		10 hr.	
22 30	720.00				9,942		12 br	
24:30	840.00		-		9,99		14hr	
2:30	960.00				10.02		16-pr.	
4:30	1080,00	7.59		†	10.07		lishr.	
<u>6:30</u>	1200.00				10.11		pc-pc	
8 30	1320.00				10.17		22 hr.	
10.30	320				75.47			

AQUIFER TEST RECORD

Well No. TPW -IA	Elevation of Measuring Point	5646	
Reference Point TOC Pre-test Water Level (Ref. Measuring Point)	Elevation of Ground Level		
Pre-test Water Level (Ref. Measuring Point)	53.98 (2,48)		- L
Distance from Pumping well in feet		Pumping Rate (gpm) _	2150 gpm

1 min. 680.00 800.00 920.00 160.00 160.00 520.00 640.00 880.00 120.00 240.00	7.785 7.78 7.805 7.835 7.835 7.84 7.895	Tape Rea	Water Level	10.19 10.175 10.20 10.24 10.265 10.26 10.26	Elev. of water level	Remarks 28 hr. 30 hr. 32 hr. 34 hr. 36 hr. 40 hr. 42 hr.
680.00 800.00 920.00 040.00 160.00 400.00 640.00 880.00 120.00 120.00	7.71 7.695 7.72 7.78 7.78 7.78 7.895 7.893 7.895 7.895	Meas. Point	Water Level	10.19 10.175 10.20 10.24 10.265 10.26 10.26	level	30 hc 32 hc 34 hc 36 hc 38 hc 40 hr
800.00 920.00 040.00 160.00 280.00 400.00 520.00 640.00 880.00 120.00	7.695 2.72 2.26 2.785 2.75 7.78 7.805 2.833 7.835 7.84 7.895			10.175 10.20 10.27 10.265 10.26 10.26		30 hc 32 hc 34 hc 36 hc 38 hc 40 hr
800.00 920.00 040.00 160.00 280.00 400.00 520.00 640.00 880.00 120.00	7.695 2.72 2.26 2.785 2.75 7.78 7.805 2.833 7.835 7.84 7.895			10.175 10.20 10.27 10.265 10.26 10.26		30 hc 32 hc 34 hc 36 hc 38 hc 40 hr
920.00 040.00 160.00 280.00 400.00 6.40.00 880.00 120.00 240.00	7.72 2.76 7.78 7.78 7.805 2.833 7.835 7.84 7.895			10.27 10.265 10.27 10.26 10.285		32 hc 34 hc 36 hc 38 hc 40 hc 42 hc
040.00 160.00 280.00 400.00 520.00 640.00 880.00 120.00 240.00	7.26 7.285 7.25 7.78 7.805 7.833 7.835 7.84 7.895			10.265 10.27 10.26 10.285		34 hc 36 hc 38 hc 40 hr 42 hc
280.00 400.00 520.00 760.00 880.00 000.00 120.00	7.79 7.78 7.805 2.833 7.835 7.84 7.895			10.27 10.26 10.285		38hv. 40 hr. 42 hr.
280.00 400.00 520.00 760.00 880.00 000.00 120.00	7.79 7.78 7.805 2.833 7.835 7.84 7.895			10.26		40 hr. 42 hr.
400.00 520.00 6.40.00 7.60.00 8.80.00 0.00.00 1.20.00	7.805 2.833 7.835 7.84 7.895			6.285		42 hr
640.00 760.00 880.00 000.00 120.00 240.00	2.833 7.835 7.84 7.815			6.285		42 hr
640.00 760.00 880.00 000.00 120.00 240.00	2.833 7.835 7.84 7.815					
760.00 880.00 000.00 120.00 240.00	7.835 7.84 7.895		 	10.313		44hr.
880.00 000.00 120.00 240.00	7.84 7.895			10.335		46 hr.
000.00 120.00 240.00	7.895			10.36		48 hr.
120.00	2011			10.375		50.hr.
240.00	2.866			10.346		52 hr.
	2.87			10.35		54 hc.
360.00	2.88			10.36		56 hr
180.00				10,405		58 hr.
00.00	7. 945			10.425		60 hc
720.00	2,96			10,44		62 hr.
340.00	7 <i>55</i>			10.43		64 hr.
160,00	7.925			10:105		66 hr.
080.00	7.95			10.43		68 hr
200,00	7,98			10.46		70 hc
320.00	7.58			10.46		72.hr.
F40.00	7.955			10,435		74 hr.
60.00	7.935			10.475		7/e.hr
280.00				10.40		78 hr.
00.00	7. 947			10.427		80 hc.
20.00	_?.૧૨			10.45		82hc
140.00						84 hr
						86 hr.
80.00						8 lo hc 8 8 hy.
						90 hr.
						90 hr. 92 hr.
				10.542		94 hr.
				10.535		96 44
						98hr
	×.76					100 hr.
2	40.00 80.00 20.00 20.00 80.00	40.00 2.55 60.00 7.59 80.00 8.002 20.00 8.05 40.00 8.052 60.00 8.053 80.00 8.08	40.00 2.55 60.00 7.59 80.00 8.002 20.00 8.02 40.00 8.062 60.00 8.055 80.00 8.08	40.00 2.55 60.00 7.59 80.00 8.002 20.00 8.02 40.00 8.062 60.00 8.055 80.00 8.08	140.00 2.55 /0.47 60.00 7.59 /0.47 80.00 8.002 /0.487 20.00 8.02 /0.50 40.00 8.062 /0.542 60.00 8.055 /0.535 80.00 8.08 /0.56	140.00 2.55 /0.47 60.00 7.59 /0.47 80.00 7.59 /0.47 00.00 8.002 /0.482 20.00 8.02 /0.50 40.00 8.052 /0.542 60.00 8.055 /0.535 80.00 8.08 /0.56

6/23

AQUIFER TEST RECORD

Well No. TPU - 1A	Elevation of Measuring Point	56.46	
Reference Point <u>TOC</u> Pre-test Water Level (Ref. Measuring Point))	
Distance from Pumping well in feet		Pumping Rate (gpm)	2150 5pm

Pre-test Wate			int)S	3.58 (<u>2.48) </u>	3-1-1	2/50 5pm
Distance from	Pumping wel	II in feet <u> </u>	4		Pum	ping Rate (gpm) 2150 5pm
Time	t In min.	s in feet	Tape Rea Meas. Point	ding at – Water Level	Depth to water below m.p.	Elev. of water level	Remarks
1830	6240.00	8.08			10.56		104 hr.
20:30	6360,00	8.13			10.61		106 hr.
22:30	6480.00	8.13			10.61		108 hr.
24.30	6600.00				10/61		UQ.hr
230	6720.00				10.60		112 hr
					10.61		114 br.
4.30	6840.00	8,145			10.625		16 hr.
6:30	6960.00	8.112 X.H.			70,625		U8.hr
8.30	7080.00	8.155		{	10,635		120 bc
12:30	7200.00	8.17			10.65		1122
<u> </u>	7320		-		10.67		124
14:30	7440	8.16			_10.63_		226
16:30	7560	_8.15			10.62		128
18:30	7680	8.14		 	10.62		130
20:30	7800	8.13			10.575		/ 32
<u> </u>	7920	- 8.025					134
24:30	8040	<u>8.07S</u>	 		10.55 <u>8</u> 10.5:15		136
2:30	8160	8.035			10.51		138
4:30	8280	-8.03			10.56		140
6.30	8400	3.02			10.477		1/42
8:30	8520	<u>7.997</u> _					144
10:00	8580	258_			10.46		<u> </u>
<u></u>							
<u> </u>			<u> </u>	 			
			<u> </u>				
L							
				<u> </u>			
L		- 					
		<u> </u>		 			
	 						
				 	ļ		
L		<u> </u>					
					 		
1	1	1	i	1	(l .	1

AQUIFER TEST RECORD

ference Poi	r Level (Ref.	Measuring D	1 4,5	9			
tance from	Pumping we	il in feet	200		Pum	ping Rate (pm) 21509pu
Time	t s Time in min. in feet		Tape Reading at —		Depth to water	Elev. of water	Remarks
			Meas. Point	Water Level	below m.p.	level	
2:30	0				-1.59	- <u>1473</u> -	Pump started at.
		20101				_ <u> 542</u> .	ļ ⁻
	0.19	370326			11 55	_5417_	
	0.25	0.60			5 19	<u> </u>	
	0,33		J		<u>2</u> 72	53 <u>/</u> 57_	
		1856 52]		5.61	53.41	
	0.50		1		7,65	(7)	
					5.1.5		
		tilla .			5.72	53.30	
		**L13				_ <u>9_9_5</u> _6	
	0.75				<u>≤.77</u> _		
	0.83		ļ		5755	_53.530	
	0.5	20 F.L.			5.80	<u>53,22</u>	
		1.23	J		5.82		
		15 mars 1 , 7 _ G			4777	_53.19_	
	1,33	1.35			C 74	55. CE	l
	1.50	1,39			594	.73 jill	
	1.67	1.44			1. 13	57,64	
	1.83	1.48			6.07	57.95	
				 			
	3.00					<u> </u>	
	225				<i>L_/</i>	52.2.1	
	<u>2,50</u>		<u> </u>		6.20	57.82	
	2.75		·				Missed Mail:
	3.00	1.645			6.235	52,78	
	3.50	1.65			6.24	52.7 <i>8</i>	
	3.50 4.80	1.43			6.47	53.6C	
	4.50	1 40		 	(,47	27.72	
		1.68			6.52	2.50	
	<u> </u>						
	6.00	7.02	 	 	6.61	- 2 3 31	
	7.00	2.10	 		1.69	52,33	
	8.00				676	-2.21	
	9.00	2:33		<u> </u>	6.82	25.55	
		2.28		1	10. 12.00	52,15	
	13.00	2.37		T	1. 96	52.66	
	14,00		1		4.03	51,99	<u></u>
	16.00	(— — — — <u>— — — — — — — — — — — — — — —</u>			7.10	51,92	<u> </u>
	18.00	7.50	 			505/7	

AQUIFER TEST RECORD

Bai	1W IAT		_ Elevatio	n of Ground L	evel		
est Wate	r Level (Ref.	Measuring Po	int) 4.57	<u></u>			. 7150
nce from	Pumping wel	l in feet			Pump	oing Rate (g	pm) 2150 9
			. ન	-		. [
	+		Tape Rea	ding at –	Depth to	Elev. of	Bonacke
Time				Γ	water	water	Remarks
	in min.	in feet	Meas. Point	Water Level	below m.p.	level	
	22.00	* / ~~	 		19 245	51775	
	<u> </u>	20655_			7 545	51.725	
	24.00	2.705			1-7,155		
	26,00	_3.74				51.64	
~	1_28.00					51.60	.5 hr
	<u> 30.00</u>			ļ	l 		6~ TC
	35.00	<u> </u>				_51.50_	
	40,00				7.59	<u> 51.43</u>	
	45.00			.l		<u>-\$1.36</u>	
	50.00	3.14			-773	_51.29_	
	55.00]		7.79	<u> 51.23</u>	
	60.00		 -		7.5.45	51.175	Lbr
	1				7.95	51.07	
	7000		†	 	52.03	50.99	
	180.00		 -		0.105		
	90.00	3,515	 -		7 12	50.84	
	100.00				200	, _, _2	
	1 110.00				2.30	50.72	12 hc
	1			-	8.37	<i>1_1_1_1_1</i>	
- -	135.00					50.59	
	1500				2.43_		
	165.00	<u>3.91</u>	_		8.50		721-
	180.00				8.265	50.455	4
	2000			_	8.65	59.37	
	2200				8.68	50:34_	
	2400				8.725	50.295	<u> </u>
	270.0	4.22			8.81	50.21	
	300.00	1 4.22 7 4.275			8.865	<u>50,155</u>	. 5hc
	- 3/MA				8.955		_le_hr
	360.0				9.05	4997	JJhr
	420.0	/			9,135		8 hr
	480,0				9.28	49.74	10 hr
	6000	7.685	<u>-</u>		9.375	.	12 6
	720.0 840.0	4.78	 			49,60	
	840,0	4 . 8.2			9,41		
	960.0	0 4.86			9,45	1	- L
	1080.0				9.48	49.54_	18hr
	1200.0				9,545		20 hr
		5.02			9,61	49,41	
	J440.0	5,08	-		9,67	J	25br

AQUIFER TEST RECORD

all No. D	mω IA_	1200	_ Elevation	n of Measurin	g Point	59.	02
eli No	N TOC						
ererence Pol	. Lavel (Ref.)	Vensuring Po	int)Z	1.59			2 (520.46
re-test wate	Pumping well	in feet		00	Pum	oing Rate (gpm) <u>2/3<i>05/pk</i></u>
istance from	Pumping Her						
		•	Tape Rea	ding at –	Depth to	Elev. of	
	•	-			water	water	Remarks
lime	in min	in feet	Meas. Point	Water Level	below m.p.	level	
							nal c
	1680.00	5,075				75	. 28 br
		5,07				_4_4_6	130hc
					+ ₋ -		132 bc
					{		<u> 134</u> ին
					9.75	_=_%_=	13646
20120	1-3-700 M]	9,755		138hv
			1		9.745		140_hr
_2730					9.75	46,00	142 hr
					1-9,78	49,74	144hr
			┤				Hohr
8 38	2/6000						48 hr.
			-				50.br.
			ļ				52 hr
	1.3120.00	- 5.34 -					54 hc
	3240.00	5.22	<u> </u>		J		56 hr
	3360.00		<u> </u>	_	·		58 br.
~	13480.00	2'371	<u> </u>	-	J		60 ha
	3600.00	<u> 5.275</u>					62 hr.
	3720.00	<u> </u>		_ _			
	3840.00	5.88			.i		164 hr
				_		ļ	_lele_hr
	4080.00	5,273					_68_hr
<u></u>	4200.00	5.31	7		.		
	1270 0				9.935		
	111110 00			-1	9.945		
	175750	5.20			9,91		
	11/00/00						78 hr
	1700000	-2700			9.885		80 hc
	-14800.00	1-2-6-3					182bc
						`[84 hr
L							186 hr.
	15160.00	2-5-36-3		-	_ !		86 hr
	<u> 2380.00</u>	1 5 35 6					1906/
		2 <u>5.348</u> .					90 hr. 92 hr. 94 hr.
	15.520.00	2 <u> 5:36</u>				- -	160 tt:
	5640,00	<u> 5391</u>					- 17 Nr
	5760.00) <u>5 42</u>				-	- 710 44
	5880.00	5.436			10.04		_ 100 hr
I	6000.00	5.45	. 1		1 (1/1 /) 🚟	1	MOODER TO
•	20:30 24:30 6:30 8:30	### Point	Time in min. in feet 1	Elevation		Elevation of Ground Level	ell No.

AQUIFER TEST RECORD

	er Level (Ref.) m Pumping wel		oint) ———	4.59 200	Pum	ping Rate (gpm) 215
	1 8		Tape Rea	ding at -	Depth to	Elev. of water	Remark
Time	in min.	in feet	Meas. Point	Water Level		level	
18.70	6240.02	5.41			10.0		_104 hr
F-2	6360.00	5,445			10,635		106 hr
	6480.00	5.465			10.655		108-hr
127 E 2	6600.00				10.15		10 pr
		·			10.07		112 hr
					74.622		_\ <i>L!\$</i> _bk
		\			10,06		116 hc
	7080.00		<u>-</u> -		10.095		U8-hr
					711, 01		
			1		_ <u>15</u> 130 _		
					10.185	48.90	
		{	1		_13.165		
ظــــــــــــــــــــــــــــــــــــ		,	1		10.11		
		5.465		1	10.055		
		5.46			10.05		
2413	_	5,455	7		10.045		
		5.435			10.025		
\ \\		5,405			9.995		
r (*)	·-				9,475		
<u></u>			7				
13:20		5.42			10.01	49.01	
	/_						
			-				
						.	
			7		.l		
]		
		-					
		-		-			
]	
				-		7	
			_		·†		

AQUIFER TEST RECORD

	DMW-IA -	<u> 1500 </u>		n of Measurin		59,86		
Reference Po				on of Ground	Level			
	er Level (Ref. n Pumping wel		500		Pum	Pumping Rate (gpm) 2150gpn		
<u> </u>	t	8	Tape Rea	iding at -	Depth to	Elev. of	B. asks	
Time	in min.	in feet	Meas. Point	Water Level	water below m.p.	water level	Remark*	
				<u>-</u>		======================================	Quasitarted at	
	0.08		 		5.465	54.18	Pump started at	
	7	1015			5.68		gp	
	O. L.7	0.085			5.75	54.11		
	0.25	0.210	.	- 	5.575_			
	0.33	0 3.05	 		5.97			
	0.42	0355	1		6.02			
	0.50	0315			6.06	53;20_		
	0.58	0.425	l		6.09			
	0,67	0.465	İ		6.13			
	0.75	0.505			6.17			
	0.83	0.535			6.20			
	0,92	0.570	† 		6.235			
	1,00	0.625		 -	4.29	<i>5</i> 3.57		
	1, 11	0.48S			6.35			
					6.31			
	11,33	-5235	 				Misse No C	
	14-59	0.795			6.46			
	المُركِ اللهِ اللهِ		 		<u> </u>			
		<u>0.815</u>	 		6.45			
	2.00	2.835			6.50	× 3.36		
	1225	0.890	 		4555			
	2,50	0.940			6.605			
	2.75	0.775		J	_6.64	-		
	3.00	1.015		J	6.68	<u> 53.18</u>		
	3.50	1.075			6.74			
	3.50 4.00 4.50	1.125			6.79			
	4.50	1175		<u> </u>	_6.84			
	5.00	1,215			6.88			
	6.00	1.295		1	6.96	57.90		
	7.00	1.360	 		7.025	<u>~_</u> ~ _		
		1.415	 		7.08			
	8.00			 	7.14			
	9.00	1.475		- 				
	10.00	1.525		 	7.19	<u>5267</u>		
	13.00	1620	 -	 	7.255			
	14.00	1.705	 		7,37			
	116.00	1760	<u> </u>		7.425			
	1	1.620	 -	 	1.465			
	200	177	J	<u> </u>	7555	<u>52,300</u>	1	

Sheet 2 01

AQUIFER TEST RECORD

٠٠٠	1W-1A-15			n of Measurin in of Ground L				
	int TOC			5.665				
	r Level (Ref. N		500		Pumi	oina Rate (a	pm) 21509p	
nce from	Pumping well	in teet	4					
			7 9	diag at -	Depth to	Elev. of		
	1	8	lape Kea	ding at -	water	water	Remarks	
Time				Water Level	1	level	,	
	in min.	in fact	Meds, Point	Maist Case!	below m.p.	leve.		
	22.00	1.935			7.60			
	,	1.985	<i></i>		7.65			
	24.00				7.70			
	26.00	7.035						
	28.00	7.075]		2-24		.5 hr	
	30.00	2.105				52.09	65 WC	
	35.00	2.205			7.87			
	40,00	7.765	1		7.03			
	45.00	2.335] 		8.00			
	50.00	2.345]	4,06	51.80		
	55.00	2,455	1		8.12			
	1	7.505			4.17		Lhr	
	60.00				4.275		L.L.L	
	1 70.00	2.610		 				
	80.00				4.375			
	90,00		<u> </u> _	J	9.45			
	100.00	<u> 2.87</u>		.	8.532	<u> </u>		
	110,00	2.94	1		8.605			
	120.00	3.00			<u>8,665</u>		2 hr	
	135.00				8.75			
	15000	3.115			5.78			
					8.835		1	
	J <u>6</u> 5.00		.	-	8.90		3hc	
	1.180.00		-{		8.98	50.88	10 Dr	
	200.00			-				
	1_220.00				9.0			
	240,00	3.40	.		9.065		4bc	
	270.01	3.47]	.	9.135			
	3000	3.53 <u>5</u> 3.65]·	l	9,20	<u> </u>	5hc	
	3/00	3.65		7	9.315		16 hr	
	420.00	3,745			9.41		17/4	
	1000	202			9,49		8 hr	
	4x0.00	-3.00D	-		9,035	50225	10hr	
	6000	3.825		-		-2-2-2	4	
	720.00	4.065			9.73	 	12 br	
	840,00	T-105			9,77		14hr	
	960.00	1115_			9.81	<u>50.05</u>		
	1080.00	4.175			9,84	<u> </u>	18hr	
	12000	4.245		7	9.91		<u> </u>	
			- -		9.97		122 br	
<u> </u>	1320.00	1-1-00		-	10,03	<i></i> -	37.2	
	15/0.00	4365			10.54		36hr	

421

6000.00 10120,00

AQUIFER TEST RECORD

WEST COAST REGIONAL

•	 0(
Well No	Elevation of Measuring Point
Reference Point TOC	
Reference Point	Elevation of Ground Level

Sheet ___ of Date 6/18/18

Pre-test Water Level (Ref. M Pumping Rate (gpm) 21505ftm 5.00 Distance from Pumping well in feet Elev. of Depth to Tape Reading at t Remarks water water Time Meas, Point Water Level below m.p. level in feet in min. 28 66. 10.03 1680,00 4,365 30 bc 10.035 1.800<u>.</u>00 4,37 4984 32 hc LO_22_ 1920.00 41.355 34bc_ 16.00 2040.00 4.40 36hC. 10,10 2160.00 41.435 38hx. 10.125 6/19 29.30 22800 4.46 40,40. 10.115 2400.00 2520.00 4.45 4,445 10.W 44Er. 49.73 10.13 4.465 2640.0 Hohr. 2760.00 2880.00 10.18 4.515 48 hr. 10,21 4.545 50.hr. 10.212 3000.00 42547 52 hc 54 hc 3120.00 3240.00 10.20 4,635 10118 4,415 56 ha 3360.00 3480.00 3600.00 3720.00 3940.00 10.185 4163 58 br. 10,212 4.47 10.245 4,60 10.263 4.601 6/20 64 hr. 10.25 L 10 5 66 hr. 10134 4.625 68_hr. 4080.00 4200.00 4320.00 10.25 70 hc 10.295 4.73 10.335 4.768 10:333 74.hr. 16:30 4440.00 16:30 4560.00 16:30 480.00 Hahr 10.30 4.735 78 hr. 10.985 4.72 80 hc 10 (50 20 (30 4.71 10.275 49.57 10.29 4920.00 <u> 250,4</u> 84 hr. 10.31 4.745 5040.00 22.36 86 hr. 90 hr. 10.335 5160.00 5280.00 5400.00 34.30 רר. 4 2:30 10.335 4.77 10.325 4.76 4:20 10.33 <u>(...7.5</u> 5520.00 5640.00 4.765 94 hr. 10.36 5 :45 5 :45 47195 9lohr 10.39 5760.00 5880.00 4.885 10.415 ۇ. ئارىي 4.95 10.423 100 hr. 49,437

AQUIFER TEST RECORD

		r Level (Ref. Pumping wel		500	1.665	Pum	ping Rate (gpm) 2150 g/
Ti	ime	1	•	Tape Rea	ding at -	Depth to water	Elev. of water	Remark
		in' min.	in feet	Meas. Point	Water Level	below m.p.	level	<u> </u>
		6240,00	41725			10.39		1104 hr
	1	6360.00	4,74			10,405		106 hr
	1	6480.00	4,725			10,44	49,42	1108-br
		6600.00	4.788			1 - 2		_U0_hr
 -,		6720.00	4.79			10.455		112 hr.
		6840,00	4,775		T	10,44		114 hr.
		6960.00	4,785	1		10,447	_ === = = = =	16 hc
		7080.00	4,808	 		70,473		JU8 hr
	30_	7200.00	<u>4,838</u>			10.503		120 bc
1						10,527		
	<u>:32</u>	7320.00	4,862	{		10.52		-
	130	7440.00	4,855			10,497		
	130	7560.00	4,832	ļ		10,50	49.30	
	<u> </u>	7680,00	4.835				-1-12-2-	
	2.30	7888775				10,45		
	230	792000	4,775	 -		10,435		
2	4:30	8040 00	4.72		-			_
	2:30	8160 00	4,75		.	10,415		
1	4′30_	8280 -	41.715			10.38		
		8700 00	4,695	 		10.36		
	7.30_	6520 00	41,695	.]		10.36		
	_دِدَا2	8640 UC	<u> </u>	<u> </u>		10,375		
		8860 00	4.715_			10,38	49.48	
				.				
								
]				
]	<u></u>	<u> </u>		_
]			
				7]			
 	<u>-</u>				1		1	
				 				
 		 		 	-			
				 				
		 			-			
				-		†	 	
 				 		 	 	

AQUIFER TEST RECORD

Well No. 🗀	00-0 IA	+ 1950	Elevatio	n of Measurin	g Paint	63	3.2.7
Reference Poi				in of Ground !			
		Measuring Pa		7.45			
	Pumping we		1950'		Pum	ping Rate (ç	1pm) 2150 9pm
			*				
	t		Tape Req	ding at -	Depth to	Elev. of	
Time				₁	water	water	Remarks
	in min.	in feet	Meas, Point	Water Level	below m.p.	level	
10:30	Q]		7.45		Pump started at
	0.08	-0.005			7.445		apm
	0.17	0			7.45		
	0.25	0			7.45		
	0.33			1	7.45		
	0.42	<u>_</u>			7.0-		
	0.50	् 			7.45		
		<u> </u>			-J172		
	0.58						
	0167				-2-45		
	0.75				_7_95		<u></u>
	0.83	<u>©</u>	 		-7.45		
	0.92	6]	7:4-		
	1,00	0			7. 5/5		
		6		1	7,45		
	1,33	0			7.45		
~~~~~	1.50	0			7 45		
	1.67	Q			7.05		
	7.83				7,05		
	2.00	,			_ <u>7: 455</u> _		
	225	0.005			7.755		
	<u> </u>				7.455		
	2.75	<u> </u>			7.455		
	3.00	0.00			7.455		
	3.50 4.00	<i>0</i> . 01	J		-7:46		
	4.00	0.01	]	]	7.46		
	4.50	0.01			7.46		
	5.00	0.013	- <i></i> -		7.462		
		0.0			7.465		
	6.00	-0015	<b></b>		- <u>2 - 7 6</u> 7. 47		
	7.00	2.02			7.475		
	8.00	0.025			<b></b>		
	9.00		<b> </b> _		7,48		
	<i></i>				7.485		
		0.04			7.49		
		0.05	<u></u>		7.50_		
	16.00	0.065	]		7,515		
		0.07	] <del></del>		7, <i>52</i>		
	1 <del></del>		1	1	1		1

### AQUIFER TEST RECORD

Time in min. in feet Meas. Point Water Level below m.p. level  22.00 0.045 7.545  24.00 0.105 7.555  28.00 0.125 7.575		r Lavel (Ref. ) Pumping wel		19 <b>5</b> 9	7.45	Pum	ping Rate (	gpm) <u>2</u> (50
In min.   in feet   Meas. Point   Water Level   below m.p.   Level	Tina	•	8	Tape Rea	ding at –	· · ·		Remarks
24.00 0.105 7.777  26.00 0.12 7.775  30.00 0.125 7.585  35.00 0.165 7.615  40.00 0.19 7.627  50.00 0.22 7.627  50.00 0.295 7.625  55.00 0.295 7.75 Lbr.  70.00 0.35 7.85  80.00 0.90 7.85  110.00 0.50 7.95  110.00 0.50 7.95  110.00 0.59 8.105  150.00 0.15 8.105  150.00 0.15 8.105  150.00 0.15 8.105  150.00 0.15 8.105  150.00 0.15 8.105  150.00 0.15 8.105  150.00 0.15 8.105  150.00 0.15 8.105  150.00 0.15 8.105  150.00 0.15 8.105  150.00 0.15 8.105  150.00 0.15 8.105  150.00 0.15 8.105  165.00 0.17 8.20  180.00 0.86 8.31 3hc 8.49  220.00 0.95 8.49  220.00 1.01 8.49  220.00 1.02 8.50 4hc 8.51  300.00 1.22 8.67 5hc 4.00  480.00 1.31 8.87 7hc 4.00  480.00 1.44 8.89 8hr.  600.00 1.52 8.98 10hc.  720.00 1.57 9.09 10hc.  90.00 1.60 10hc.  90.00 1.60 10hc.	lime	in min.	in feet	Meas. Point	Water Level	below m.p.	level	
24.00 0.105 26.00 0.125 28.00 0.125 30.00 0.125 35.00 0.165 35.00 0.165 35.00 0.165 40.00 0.19 45.00 0.295 55.00 0.277 7.75 10.00 0.30 7.75 10.00 0.55 80.00 0.40 7.85 90.00 0.55 10.00 0.55 110.00 0.55 15.00 0.555 15.00 0.555 15.00 0.555 15.00 0.555 15.00 0.17 15.00 0.655 15.00 0.17 15.00 0.655 15.00 0.17 15.00 0.17 15.00 0.17 15.00 0.17 15.00 0.17 15.00 0.17 15.00 0.17 15.00 0.17 15.00 0.17 15.00 0.17 15.00 0.17 15.00 0.17 15.00 0.17 15.00 0.17 15.00 0.17 15.00 0.17 15.00 0.17 15.00 0.17 15.00 0.17 15.00 0.17 15.00 0.17 15.00 0.17 15.00 0.17 15.00 0.17 15.00 0.17 16.00 0.17 17.00 0.184 18.00 0.84 18.00 0.84 18.00 0.84 18.00 0.85 18.00 0.105 18.00 0.105 18.00 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50 0.100 18.50		22.00	0.045			7.545		
26.00 0.12 7.575  28.00 0.125 7.575  30.00 0.125 7.585  35.00 0.165 7.615  40.00 0.19 7.67  55.00 0.245 7.625  55.00 0.245 7.75 Lhr.  70.00 0.35 7.75 Lhr.  70.00 0.35 7.85  90.00 0.45 7.95  110.00 0.565 7.95  110.00 0.59 7.95  120.00 0.59 8.165  155.00 0.655 8.165  155.00 0.655 8.165  155.00 0.655 8.165  155.00 0.655 8.165  165.00 0.77 8.22  180.00 0.86 8.40  200.00 0.95 8.40  210.00 1.05 8.50 4hc  210.00 1.05 8.50 4hc  210.00 1.05 8.50 4hc  210.00 1.05 8.50 4hc  210.00 1.05 8.50 4hc  210.00 1.05 8.50 4hc  210.00 1.05 8.50 4hc  210.00 1.05 8.50 4hc  210.00 1.05 8.50 7.60 1hc  210.00 1.00 8.50 7.00 1hc  210.00 1.00 9.50 1hc  210.00 1.00 9.50 1hc  210.00 1.00 9.50 1hc  210.00 1.00 9.50 1hc  210.00 1.00 9.50 1hc  210.00 1.00 9.50 1hc  210.00 1.00 9.00 1hc  210.00 1.00 9.00 1hc			0.105			_7_75		
28.00 0.125 30.00 0.125 35.00 0.165 35.00 0.165 40.00 0.19 45.00 0.22 55.00 0.27 60.00 0.30 7.75 7.695 7.695 7.695 7.695 7.695 7.695 7.695 7.695 7.695 7.695 7.695 7.75 1.00 0.275 7.75 1.00 0.255 7.80 7.80 7.80 7.85 90.00 0.45 7.95 110.00 0.595 7.95 110.00 0.595 7.95 120.00 0.155 8.105 1500 0.715 8.20 1500 0.77 8.22 1500 0.95 2100 0.95 2100 0.95 2100 0.95 2100 0.95 2100 0.95 2100 0.95 2100 0.95 2100 0.95 2100 0.95 2100 0.95 2100 0.95 2100 0.95 2100 0.95 2100 0.95 2100 0.95 2100 0.95 2100 0.95 2100 0.95 2100 0.95 2100 0.95 2100 0.105 2100 0.105 2100 0.105 2100 0.105 2100 0.105 2100 0.105 2100 0.105 2100 0.105 2100 0.105 2100 0.105 2100 0.105 2100 0.105 2100 0.105 2100 0.105 2100 0.106 2100 0.106 2100 0.107 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2100 0.108 2						7,57		
30.00 0.125 35.00 0.165 35.00 0.165 40.00 0.19 7.64 7.67 55.00 0.27 55.00 0.27 7.72 60.00 0.30 7.75 1.br. 70.00 0.35 80.00 0.40 10.00 0.55 110.00 0.55 110.00 0.55 1500 0.715 120.00 0.55 1500 0.715 120.00 0.55 1500 0.715 8.105 1500 0.715 8.22 180.00 0.86 200.00 0.95 8.405 1500 0.715 8.21 3hu 200.00 0.95 8.405 3hu 200.00 0.95 8.405 270.00 1.10 8.40 240.00 1.31 8.40 270.00 1.10 8.40 240.00 1.32 8.40 36.00 1.32 8.40 36.00 1.32 8.40 8.40 8.40 8.40 8.40 9.40 9.40 9.40 9.40 9.40 9.40 9.40 9		28.00				7575		
35.00 0.165  40.00 0.19  45.00 0.22  50.00 0.27  60.00 0.30  7.75  1.67  7.00 0.25  7.80  80.00 0.40  7.85  90.00 0.45  1.00 0.56  1.00 0.56  1.00 0.55  1.00 0.655  1.500 0.71  1.800 0.86  2.000 0.98  2.000 0.98  2.000 0.98  3.000 0.86  3.000 0.86  3.000 0.86  3.000 0.86  3.000 0.86  3.000 0.86  3.000 0.86  3.000 0.86  3.000 0.86  3.000 0.86  3.000 0.86  3.000 0.86  3.000 0.86  3.000 0.86  3.000 0.86  3.000 0.86  3.000 0.87  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.88  3.000 0.8						7,585		1.5hr
## ## ## ## ## ## ## ## ## ## ## ## ##								
\frac{45.00}{50.00} \ \ \text{0.245} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				1		1		
50.00 0.245  55.00 0.27  40.00 0.30  7.75  1.85  80.00 0.40  90.00 0.55  10.00 0.55  110.00 0.575  120.00 0.55  150.00 0.715  150.00 0.715  2.165  115.00 0.77  2.20 0.77  2.20 0.95  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20 0.05  2.20						1		
55.00						1		
\$\begin{align*} \begin{align*} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				1		1 ' 1		
7000 0.35  8000 0.40  10000 0.50  110.00 0.50  110.00 0.59  120.00 0.59  135.00 0.655  15000 0.77  8.20  180.00 0.86  200.00 0.95  210.00  220.00 1.01  240.00 1.05  256  300.00 1.22  300.00 1.31  480.00 1.31  480.00 1.44  480.00 1.44  480.00 1.44  889  810  810  810  810  810  810  810						1 1		ll hr.
80.00 0.40 90.00 0.45 100.00 0.45 110.00 0.50 110.00 0.55 120.00 0.59 135.00 0.655 150.00 0.77 8.22 180.00 0.86 200.00 0.95 8.40 220.00 1.05 8.50 270.00 1.10 8.55 300.00 1.22 8.67 360.00 1.31 420.00 1.31 88.44 7.hc 480.00 1.44 88.59 88.44 98.67 99.60 11.57 90.00 1.60 88.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89.76 89								<del>                                    </del>
90.00 0.45 7.95  100.00 0.50  110.00 0.545  120.00 0.59  135.00 0.655  150.00 0.71  8.20  180.00 0.86  200.00 0.95  240.00 1.05  240.00 1.05  300.00 1.22  360.00 1.31  480.00 1.44  480.00 1.44  600.00 1.52  840.00 1.52  840.00 1.52  840.00 1.52  840.00 1.52  840.00 1.52  840.00 1.52  840.00 1.52  840.00 1.52  840.00 1.52  840.00 1.60  90.00  1444  90.00 1.60  90.00  1444  90.00  1444  90.00  1444  90.00  1444  90.00  1444  90.00  1444  90.00  1444  90.00  1444  90.00  1444  90.00  1444  90.00  1444  90.00  1444  90.00  1444  90.00  1444  90.00  1444  90.00  1444  90.00  1444  90.00  1444  90.00  1444  90.00  1444  90.00  1444  90.00  1444  90.00  1444  90.00  1444  90.00  1444  90.00  1444  90.00  1444  90.00  1444  90.00  1444  90.00  1444  90.00  1444  90.00  1444  90.00  1444  90.00  1444  90.00  1444  90.00			L .	<del> </del>				
100.00						1		
110,00				<del></del> -				
120.00   0.59   8.09   2.hr.     135.00   0.655   8.105     150.00   0.715   8.22     180.00   0.86   8.31   3.hc     200.00   0.95   8.40     240.00   1.05   8.50   4.hc     270.00   1.10   8.55     300.00   1.22   8.67   5.hc     420.00   1.89   8.69   3.hr.     480.00   1.44   8.89   8.hr.     600.00   1.52   9.02   12.hr.     840.00   1.60   9.09   1.hr.     960.00   1.60   9.09   1.hr.     960.00   1.60   9.09   1.hr.     960.00   1.60   9.09   1.hr.     960.00   1.00   9.00   1.hr.				<del></del>	.			
135.00		,						7
15000 0.715								- S.III
165.00				.				
180.00		1						
200.00 0.95 220.00 1.01 240.00 1.05 270.00 1.10 300.00 1.22 360.00 1.31 420.00 1.39 480.00 1.44 8.89 8.67 8.84 10 hr. 120.00 1.53 9.02 12 hr. 12 hr. 12 hr. 12 hr. 12 hr. 12 hr. 12 hr. 12 hr. 12 hr. 12 hr. 12 hr. 12 hr. 12 hr. 12 hr. 12 hr. 12 hr. 12 hr. 12 hr. 12 hr. 12 hr. 12 hr. 12 hr. 12 hr. 12 hr. 12 hr. 12 hr. 12 hr. 12 hr. 12 hr. 12 hr. 12 hr. 12 hr. 12 hr. 12 hr. 12 hr. 12 hr. 12 hr. 12 hr. 12 hr. 12 hr. 12 hr. 12 hr. 12 hr. 12 hr. 12 hr. 12 hr. 12 hr. 12 hr. 12 hr. 12 hr. 12 hr. 12 hr.				.				
240.00 1.05 240.00 1.05 270.00 1.10 8.55 300.00 1.22 8.67 5hc. 8.76 6hv. 8.89 8hr. 480.00 1.49 8.89 8.4c. 9.02 1.57 9.02 12 br. 12 br. 12 br. 12 br. 12 br. 12 br. 12 br. 12 br. 12 br. 12 br. 12 br. 13 br. 14 br. 9.09 15 br.			<u> </u>	<b></b>		1 — — — — — — —		-
240.00 1.05 270.00 1.10 8.55 300.00 1.22 8.67 5hc 6hv: 8.84 7hc 480.00 1.31 8.89 8hr. 600.00 1.53 8.98 10hr. 720.00 1.57 9.02 12br. 840.00 1.60 9.09 10hr. 9.09 10hr.		2 <i>00.0</i> 0	0.95					
270.00 1.10 270.00 1.10 300.00 1.32 8.67 5hc 8.76 420.00 1.31 8.84 7hc 480.00 1.44 8.89 8.98 10hc 720.00 1.57 9.02 12 bc 12 bc 1080.00 1.14 9.16 1080.00 1.11		220.00	<i>L_0</i> _		<b></b>	,		
270.00 1.10 300.00 1.22		<u>  240.00</u>	_1.05	.				_ 4.56
300.00 1.22 8.67 3 hc. 360.00 1.31 8.84 3 hc. 420.00 1.39 8.89 8 hr. 480.00 1.44 8.89 8 hr. 600.00 1.53 8.98 10 hc. 720.00 1.57 9.02 12 bc. 840.00 1.60 9.09 16 hc. 1080.00 1.64 9.09 18 hr.		270.00	1_10	ļ	.	- <u>*</u> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> - <del>*</del> <del>*</del> <del>*</del> <del>*</del> <del>*</del>		
360.00 1.31 8.76 6hr.  420.00 1.39 8.89 8hr.  480.00 1.44 8.89 8hr.  600.00 1.53 9.98 10hr.  720.00 1.57 9.02 12hr.  840.00 1.60 9.09 16hr.  1080.00 1.64 9.09 16hr.	· - <del>-</del>	300.00	_1.22	<u> </u>				
420.00 1.39 480.00 1.44 600.00 1.53 720.00 1.57 840.00 1.60 9.02 12 br. 12 br. 12 br. 10 hr. 9.02 12 br. 14 hr. 9.09 16 hr. 1080.00 1.64 9.09 18 hr.			1,31					
480.00 1.44 600.00 1.53 8.89 8.hr. 720.00 1.57 9.02 12.br. 9.00 14.hr. 9.00 1080.00 1.64 9.16 1080.00 1.71		1420.00	_1-39					
60000 1.53 8.98 10 hr. 720.00 1.57 9.02 12 hr. 840.00 1.60 9.09 16 hr. 1080.00 1.71 9.16 18 hr.		480.00	1,44	1		8.89		
720.00 1.57 9.02 12 br. 840.00 1.60 9.09 14 hr. 960.00 1.64 9.09 16 hr. 1080.00 1.71 9.16 18 hr.						8.98		
84000 1,60 9,09 16hc 1080,00 171 1080,00 171						9.02		
9,09 lbhc 1080,00 lill 9,16 lbhc		8400	1,60	T				_14hr
1080,00 Litt. 9,16 Bhr				1				
		1080 0			<del> </del>			
			1	<del> </del>			<b>-</b> -	
		1320.00 1440.00	1	I	1			254c

### AQUIFER TEST RECORD

Well No. DMW-1A-+ 1950	Elevation of Measuring Point 63.22
Reference Point TOC	Elevation of Ground Level
Pre-test Water Level (Ref. Measuring Point)  Distance from Pumping well in feet	1950 Pumping Rate (gpm) 21509 pm

	1	8	Tape Rec	ading at -	Depth to	Elev. of	Remarks
Time	in min.	in feet	Meas. Point	Water Level	water below m.p.	level	Vema: **
<del> </del>	1680.00	1,79			9.24		
	1800.00				9.23		_30bc
	17920.00		1		9.255		. <u>1</u> 32 bc
	2040.00	,			9.24	· 	3456
	2160.00				9,31		
	228000	,			9.32		_38hv
	2400.00		1		9.30		40 hr.
	2520.00		1		9.3/		142 hr.
	264000				9,34		44hr
70.5	2760.00	1.925			1 4 2 2 2		Hohr
	2880.00	\		-	वमा		48 hr.
	3000.00			1	a,41		50.hr.
	3/20.00		<del> </del>	<del> </del>	9,29	. <b></b> 	52 hr.
	3240.00			<del> </del>	$q, \pi \eta$		54 hc.
	3360.00		<del> </del>		व, ा		56 hr
	3480.00	,		-	9,391		58 hr.
	3600.00	<del></del>		-	4,5		-6Q hc
	3720.00	} <b></b>	<del> </del>	-	9,435		62 hr.
	3840.00				9,42		64 hr
<u> </u>		<b></b>	<del></del>		9,405		ble hr.
	3960.00		-	_	- 1/15 -		68 hr
5,573 7 : 0,5	- 14080 <u>roo</u>				9.46		70 hc
0 50	<u> </u>		·	-	9,49		72 hr.
	4320.00				9.50		74 hr.
12-50 16-77	4440.00	2.06			9.75		7/e hr
14:30	4560.00	7.022			9.45		_ 78 hr
16:30 			<del></del>		9,447		- 1274
12 2 21	14800.00	2.667	<del> </del>		9.46		80hc
20 10			-		9.48		1071.
37:40		204			9,505		84 hr. 86 hc
4 0 17 O	5160.00			_	9,497		- 100 Ly
<u> </u>	5280.00				9.49	<del> </del>	- 8 1 1
4:30					9.49		88 hy. 90 hy. 92 hy. 94 hy.
10.30			_			<del> </del>	- 10 Ny
8:30	5640,00	2.095			1,535	<del> </del>	-   14 Ar
10 100	5760.00	2.159			9.57		96 hr
12:30	5880.QQ	1 2 159			= \ 99		_ 98hr
14:30	6 6000.00	37128			9,598		100 hr.

AQUIFER TEST RECORD

Date 6/21/8

	Pumping wel	Measuring Po II in feet <u> </u>	1950	0	Pum	iping Rate (	gpm) <u>2/50</u>
:	†	8	Tape Rea	ding at -	Depth to	Elev. of	Remarks
Time	In min.	in feet	Meas. Point	Water Level	water below m.p.	level	Acina Ro
1:00	6240.00	2.005				53,69	124 hr.
6145	6360,00	3,595			9.575		106 hr
	6480.00	-क.एज़्रेस			0.56-5		108 br
637.0 - 7.0	6600.00						10hc
14.0	6720.00				4.504		112 hr
, 30 10	6840.00				9158		114 bc
., ',		=,			7,50		116 hr.
(1.50 (1.50	6960.00	3.165			9,615		]U8.hr
6 (2 <u>(</u> )	7080.00	2.20				53,57	120 60
	7200.00				9,675		
2 36					9,615		
4:30	1046.65	8.885	{				
1 71	Y = 0	<u>-3.80</u> -	<del></del>		-3.65		
1	7 7 5.00	3.90					
<u> </u>	792006	-2155			9,605		
	19 5 C. W	2,145			9.595		
:: 		<u> 2.14</u>	<u> </u>		9,59_		_
>:	<u> </u>	3.11			9.56		
	3-275 to	2.075			9,525		
	1100,00	2.05	<u> </u>	<u> </u>	9.50		<u> </u>
	<u> 2520.00                                </u>	2,04			9,49	<b> </b>	
	314000	2.055			9,505	-==	
1:30	8860,00	2.06			9,51	<u>53.71</u>	
				<b></b>			
	]	<del> </del>		<u> </u>			_
			]	]			
				7			
			1				
	<del> </del>				1		
		<del> </del>					
	<del> </del>		<del> </del>	-		1	
			1	1	<del> </del>		·

#### AQUIFER TEST RECORD

Reference Point   TCC	Well No. SM	1W.IAT	200 _	Elevatio	n of Measurin	g Point	59.05	<u> </u>
Pre-test Water Level (Ref. Measuring Point)	Reference Poi	int TOC				=		
Distance from Pumping well in feet			Measuring Po	oint)	7.93	<u>.</u>		
Time in min. in feet Meos. Point Water Level below mp. layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer					<u> </u>	Pum	ping Rate (	gpm)
Time in min. in feet Meas. Point Water Level below m.p. level level  12:30 0 - 4.93 Pump started at				4		<u> </u>		· · · · · · · · · · · · · · · · · · ·
1   1   1   1   1   1   1   1   1   1		. <b>1</b>	. •	Tape Rea	ding at -	1		Remarks
12:30 0 - 4.93 Pump started at	Time	in min.	in feet	Meas. Point	Water Level			No.
0.08 0.17 0.15 0.25 0.33 0.42 0.50 0.58 0.67 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.7				<del> </del>				
0.08 0.17 0.15 0.25 0.33 0.42 0.50 0.58 0.67 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.7						4 65		10 malarial of
0.17 0.25 0.23 0.42 0.50 0.58 0.67 0.75 0.83 0.92 1.00 0.12 1.13 1.50 1.61 1.83 2.00 2.155 2.55 2.50 2.75 3.00 0.00 4.53 4.93 4.00 4.50 0.00 4.53 0.00 4.59 0.00 4.59 0.00 4.59 0.00 4.59 0.00 4.59 0.00 4.59 0.00 4.59 0.00 4.59 0.00 4.59 0.00 4.59 0.00 4.59 0.00 4.59 0.00 4.59 0.00 4.59 0.00 4.59 0.00 4.59 0.00 4.59 0.00 4.59 0.00 4.59 0.00 4.59 0.00 4.59 0.00 4.59 0.00 4.59 0.00 4.59 0.00 4.59 0.00 4.59 0.00 4.59 0.00 4.59 0.00 4.59 0.00 4.59 0.00 4.59 0.00 4.59 0.00 4.59 0.00 4.59 0.00 4.59 0.00 4.59 0.00 4.59 0.00 4.59 0.00 4.59 0.00 4.59 0.00 4.59 0.00 4.59 0.00 4.59	15130	9-33-	=			7-7-		prime statted at
0.25 0.33 0.42 0.56 0.58 0.67 0.75 0.83 0.92 1.00 1.17 1.33 1.50 1.50 1.51 1.83 2.00 a 4.93 2.25 2.35 2.35 2.35 2.35 2.55 2.75 2.75 2.75 2.75 2.75 2.75 2.7								1gpn
0.32 0.42 0.42 0.42 0.50 0.58 0.67 0.75 0.83 0.92 0.92 0.92 0.100 0.167 0.133 0.50 0.657 0.167 0.183 0.200 0.167 0.183 0.200 0.167 0.183 0.200 0.167 0.183 0.200 0.167 0.183 0.200 0.167 0.183 0.200 0.167 0.183 0.200 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.1								
0.32 0.42 0.42 0.42 0.50 0.58 0.67 0.75 0.83 0.92 0.92 0.92 0.100 0.167 0.133 0.50 0.657 0.167 0.183 0.200 0.167 0.183 0.200 0.167 0.183 0.200 0.167 0.183 0.200 0.167 0.183 0.200 0.167 0.183 0.200 0.167 0.183 0.200 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.1		0.25						<b> </b>
0.50 0.50 0.57 0.67 0.75 0.83 0.92 0.92 0.100 0.15 0.83 0.150 0.15 0.83 0.92 0.92 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93		0,33		1				
0.50 0.67 0.67 0.75 0.83 0.92 1.00 0.493 1.11 1.33 1.50 1.60 1.61 1.83 2.00 2.75 2.75 2.75 2.75 2.75 2.75 2.75 2.75								
0.58 0.47 0.75 0.83 0.92 1.00 1.17 1.33 1.50 1.61 1.83 2.00 a 4.93 2.25 2.55 2.55 3.00 b 4.93 4.93 4.93 4.93 4.93 4.93 4.93 4.93 4.93 4.93 4.93 4.93 4.93 4.94 4.94 4.94 4.94 4.94 4.94 4.94 4.94 4.94 4.94 4.94 4.94 4.94 4.94 4.94 4.94 4.94 4.94 4.94 4.94 4.94 4.94 4.94 4.94 4.94 4.94 4.94 4.94 4.94 4.94 4.94 4.94 4.94 4.94 4.94 4.94 4.94 4.94 4.94 4.94 4.94 4.94 4.94 4.94 4.94 4.94 4.94 4.94 4.94 4.94 4.94 4.94 4.95 4.95 4.94 4.94 4.94 4.94 4.95 4.96 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.9								
0,67 0,75 0,83 0,92 1,00 0,11 1,33 1,50 1,61 1,83 2,00 2,15 2,55 2,55 2,75 3,00 0,001 4,93 4,00 4,50 4,50 4,50 2,001 4,94 4,90 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000		,						
0.75 0.83 0.92 1.00 0.493 1.17 1.33 1.50 1.61 1.83 2.00 2.25 2.50 2.15 3.00 0.01 4.93 4.9 5.00 0.01 4.93 4.9 5.00 0.01 4.94 1.94 9.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.0								
0.83 0.92 1.00 1.17 1.33 1.50 1.61 1.83 2.00 0. 4.93 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		<i>Q</i> _ <u>[</u>			<del> </del>			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<b></b>	1 0 83		ļ	<del> </del>			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.92						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		<i> 00</i>			<u> </u>	4.23		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1.17						<u></u>
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1,33			·			
1,67  1,83  2,00  2,25  2,50  2,75  3,00  4,50  4,50  4,50  5,00  0,01  4,54  7,00  0,01  10,00  10,00  10,00  14,93  4,93  4,94  12,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00  10,00		1.50	<del></del> -		·			
7.83 2.00 2.25 2.50 2.75 3.00 2.35 4.93 4.93 4.93 4.93 4.93 4.95 5.00 0.01 4.98 4.98 4.99 4.99 4.99 4.99 4.99 4.99		1.7						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1						
2.25 2.50 2.75 3.00 0 4.93 4.50 4.50 5.00 0.01 4.93 6.00 0.01 4.94 7.00 0.01 10.00 0.01 12.00 5.02 14.95 14.00 0.03 16.00 0.04 7.57				<del> </del>		4.93		
2.50 2.75 3.00 D H-93 4.00 4.50 5.00 D.C1 7.00 D.C1 7.00 D.C1 4.94 10.00 6.01 12.00 6.02 14.95 14.90 16.00 D.O1 4.94 4.95 4.95		stand				1-75-		
7.00 0.51 7.00 0.51 9.00 10.00 0.01 12.00 6.03 14.00 0.03 16.00 0.04								
7.00 0.51 7.00 0.51 9.00 10.00 0.01 12.00 6.03 14.00 0.03 16.00 0.04	<b></b>	7.50						
7.00 0.51 7.00 0.51 9.00 10.00 0.01 12.00 6.03 14.00 0.03 16.00 0.04		2.75			<b> </b>			<b></b>
7.00 0.51 7.00 0.51 9.00 10.00 0.01 12.00 6.03 14.00 0.03 16.00 0.04		<u> 3.00</u>	0			<u></u>		
7.00 0.51 7.00 0.51 9.00 10.00 0.01 12.00 3.03 14.00 0.03 16.00 0.04		3.50						
7.00 0.51 7.00 0.51 9.00 10.00 0.01 12.00 3.03 14.00 0.03 16.00 0.04		4.00	[		<u> </u>			
7.00 0.51 7.00 0.51 9.00 10.00 0.01 12.00 3.03 14.00 0.03 16.00 0.04	<b></b>	4.50						
7.00 0.51 7.00 0.51 9.00 10.00 0.01 12.00 3.03 14.00 0.03 16.00 0.04		500	Over!	]	7	4.93		
10.00 6.01 12.00 6.02 14.00 0.03 16.00 0.04	<b> </b>	/ 00			1			
10.00 6.01 12.00 6.02 14.00 0.03 16.00 0.04			-1451	<del> </del>	<del> </del>			
10.00 6.01 12.00 6.02 14.00 0.03 16.00 0.04	<b> </b>	<i>\f</i> \\	- <u>6</u> 121	<del> </del>		<i>-=</i>   <i>L</i> <u>'</u> -		
10.00 6.01 12.00 6.02 14.00 0.03 16.00 0.04		\ <u>X</u> . <u>00</u>			<del> </del>			
10.00 6.01 12.00 6.02 14.00 0.03 16.00 0.04		17:00		<del> </del>	.			
12.00 6.03 4.95 4.96 4.57		<u> </u>	-DrG1		<b></b>			
16.00 0.03		12,00	19.02			4.95		
16.00 0.04 		114.00	0.03		<b> </b>	4.96		
18.00 0.05		16.00	0.04	J <b></b>		! <i>4.53</i>		
[m 50   20 m 6.52]		18.00	0.00	]	J	4,98		
	1 10 50	1 27 70	12.52	]		1,99	<b>_</b>	

#### AQUIFER TEST RECORD

# WEST COAST REGIONAL

1	Well No. <u>S/</u> Reference Pol Pre~test Wate	nt TOC		Elevatio	in of Measurin on of Ground I H. 93	Level	59.08	
				200	)	Pum	ning Rate (c	pm) 2150 gpm
1	Distance from	Lambing we	ii in ieer .	4	<del></del>		iping itale ()	· · · · · · · · · · · · · · · · · · ·
	Time	in min.	s in feet	<b> </b>	ding at -	Depth to water below m.p.	Elev. of water level	Remarks

0/17

	int <u>TOC</u> ir Level (Ref.	Measuring Pa		n of Ground 1 4.93		····	
	Pumping wel		200	) <u> </u>	Pum	ping Rate (	gpm) <u>2150 gpn</u>
<del></del>			<u> </u>	<del></del> -	· · ·		1
Time	. 1	8	Tape Rea	ding at -	Depth to water	Elev. of water	Remarks
	in min.	in feet	Meas. Point	Water Level	below m.p.	level	
	22.00	0,07			5.00		
	24.00				5.02		
	26.00		1		503		
	28.00				5,25		
11:00	30.00				5,06		1.5hr
	35,00				5110		
	40,00		l		545		
	45.00				<u>د ، 25</u>	~~~~	
	50.00				5.25		
	<i>55.</i> 00				<u> </u>		
11:30	60.00		]		5,35		Lbr
	70.00		]		5.46		
	80.00				5.57	±	
12,00	90.00	0.75			5.68	_	
	100.00	0.87			5,80		
	110.00	0.97			5,90		
/2:30	120.00				6_0_		2hr
/2:45	135.00				6.14		
13:00	15000	1.37			6.30		
13:15	165.00						
13:30	180.00	1,63			655		3hc
13:50	200.00					·. 	
14:10	220.00	1,89			6.82		
14:30	240,00				6.92		4bc
15'100	270.00	<u> 2:13</u>			7.06		
15:130	300.00	2,21			7.14		. 5ին
16:30	360.00	2.33			7,26		<u>b</u> hr
17:30	<i>420.</i> 0	2,43			7.36		]_hk
18!30	480.00	2.52	<u> </u>		7,45		18 hr.
<u> 20:30</u>	6000	3,69	· · · · · · · · · · · · · · · · · · ·		7,62	(	10 hc2
22!30	720.00	2.82			2.25		126
2 <i>4.</i> '30	840,00	_2.89_			7.83		_Lt_hr
2:30	960.00				7.88		16 hr
4:30	1080.00				7.93		(18hr.)
6:30	1200.00			<b>_</b>	7,98		<u> </u>
8:30	1320.00				8.03		22hr
10'30	1440.00				8.09 2.13		37pr
12:20	1510.00		]		1 <u>2:13</u> _1		126hr

### AQUIFER TEST RECORD

		14) 1A +2		<del></del>	n of Measurin in of Ground L	<b>.</b>	59.08	
	ice Poi	nt r Level (Ref.			4.93			
		Pumping wel		<del>ر دے د</del>		Pumi	oing Rate (	gpm) 21500
Dizianc	e irom	rumping wer	i ni ieei	-4			•	7,
		1	8	Tape Rea	ding at -	Depth to	Elev. of	Remarks
Ti	me	in min.	in feet	Meas. Point	Water Level	1	level	
14:	30	168000	3.24			817		_2866
16 !		1800.00	3.2 <b>6</b> 5			8.195		_130bc
	130	7920,00	3,26			811		32 bc
	,30	2040.00				8.23		134bc
						₹,29		136hc
	:30	2160.00				8 33		138hv.
	:30	338000	<u> 3 140 -</u>			e 34		40 hr.
	<u> </u>	370000	-3-41			8,37		142 hr.
	130_	252000	_3,44_					44br.
	130 _	2640.00	<u> 3.48</u>			8.41		T 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
&	<u> </u>	2760.00	3.525			5.455		_ Hohr
10	.30	288000	3,56			8.42		48 hr.
	130	.3000.00	3.587	l		5.212		_50.pr
	1:30	3120,00		<u> </u>		8.532		<u> 526c</u>
	:30	3240.00	3,610			8.53		154hc
	:30	3360.00		]		8.547	- 	56 hr.
;	130	3480.00				8.578		58 hr.
	2:30	3600.00	3,70			8.62		60 hc
	L:30_	3720.00				8.65		62 hr.
		3840.00				8.66		64 hr
	2:30_				<del> </del>	8.66		66 hr.
	1:30	396000		.		5.67		]68_hr
<u>\$</u>	130	4080.00	3.75					70 hc
	130	4200.00	3.785		ļ	2.705		
	<u> 130 -</u>	4320.00	3,81			8.235		
L_!2	130	4440.00		.		8.755		
14	1:30	4560,00	3.84	<b></b> -		8.765		
L_16	:30_	4680.00	3,845		<u> </u>	8.77		_ 78.kc
אַר	<u>(;39</u>	14200.001	3.855			8.78		80 hc
	);३०	4920.00	3.89		]	8,795		8.5.bc
	3.70	5040.00	3.89			8.815		_184 hr
	.≃ ∸4¥_ ∪ ' ₹2		3.915	1	<u> </u>	8.84		186hc
<u></u> ≦	4:30 2:30	5280.00	3,915 3,93 3,94			8.855		84 hr 86 hr 88 hr
<b>├</b> ── <i>─</i>	1:30 1:30	5400.00	1 3 9 4	<del> </del>	<i></i>	8,865		190 br.
		5520.00	1 000	1		8.87		792 hr.
	130	12340.00	-333	-	<del> </del>	8.89		90 hr. 92 hr. 94 hr.
	7.30	5640.00 5760.00	3.945 3.965 3.985	- <del> </del>	<del>-</del>	2.91		96 hr
175	0:30_	D-100 00	-5-1-2-	<del>-</del>	-	8.94		98hr
	2:30_	5880.00			-	8.45		100 hr.
14	<u> 1:30 </u>	6000.00	4.025	I	1	1 4115		- 一

AQUIFER TEST RECORD

	Well NoSA		200		n of Measurin		59.0	08
	Reference Poi				n of Ground 1			<u> </u>
	Pre-test Wate		_		.93 50			> > 150 gpm
1	Distance from	Pumping wel	lin feet			Pum	iping Rate (	gpm) 21509pm
		t	*	Tape Red	ding at -	Depth to	Elev. of	
	Time	in min.	in feet	Meas. Point	Water Level	water below m.p.	water level	Remarks
	1-/31 80	6240.00	4,04			7835		124 hr.
×.			4.045			9.47		106 hr.
		6360.00	4,062	<del> </del>		8,457		108 hr.
·/-		6480.00	1.082			4,01		10hr.
6/22	24.30	6600.00						112 hc
Í	2.30	6720.00	- 4.095		<del> </del>	9.03		<del></del>
	4:30_	6840.00	4110_			9.635		1 <i>14</i> br
	6:30	6960,00	4.165			9,03		116 hc
	8'30	7080.00	4132		<b> </b>	<u> </u>		U8.hr
	10:30	<i>7200.0</i> 0	<u>4.14</u>			1.065		120 bc
	12:30	7320.00	4.16			<u>a,082</u>		
	14:35	744000	4.175		l	61.9	मंद्रा कर	
	16:30	7560.00				9110		.
	15/20	7680.00	4,18		1	9.11		
	20.30		4.065			8,995		
	52:30					8.78		
160		8040,00				8,70		
6/23						8,66		
·		816000	<u> </u>			8.64		
		8280-00	771			8.63		
		8400-00						
		\$530.00	3.72			8165		
		Z640.00	3.73			8,66		
	<u> </u>	870000	<u>3,73</u>			8.60	50,42	
-								
				l				
						<b></b>		
								<u></u>
•	F							T
		<i>-</i>						
•								
				{				
					<del> </del>			
•				<u> </u>				
								.
				<b> </b> -				
	l	<u>_</u>		J	.l	!	l	

6/17

#### AQUIFER TEST RECORD

	NW-IA			n of Measurir on of Ground	=		
				4.225		<del>,</del>	
	r Level (Ref.			7.22			1 215004
stance from	Pumping wei	II in feet 🔔	5.70	<del></del>	Pun	iping Rate (	gpm) 21509ph
			<del> </del>	<del></del>	I	Γ	1
	t		Tape Rea	ding at -	Depth to	Elev. of	
Time			<u> </u>	<del></del>	water	water	Remarks
	in min,	in feet	Meas. Point	Water Level	below m.p.	level	
						· · · · · ·	
1					<u> </u>	l	
0:30	0		1	] <del></del>	4 225	55.85	Pump started at_
					4,225	=====	
	0.08				<del></del>		<del></del>
	017_				<u> </u>		
	0.25			]			
	0,33	·		L	4.225		
·	0.42		T		4.225		
·	0.50				4 225		
	0.58		<b> </b>		_4_224_		
	0,67				4 725		
	0.75			<b>!</b>	4.225	1	l
·				<del></del> -	4,225		
	0,83 0,92		† <u>-</u>		4.225		
					4,225		
	L_I				4.225		ļ
	1,33		1		41.225		
	1.50				4,23		
	1.67				41,225		
			<del></del>				
			<del> </del>		- <i>41.</i> 222		<del></del>
	2.00				4235		
	2,25		<b>1</b>		4,225		
					4,275		
					<u> </u>		
	2,50 2,75 3,00 3,50 4,50 4,50 5,00			<u> </u>	4,225		
	3.50						
ŀ	4.00				4,275_		
	4.50			]	41.225		
	500				41.225		
				{			
	<u>6,00</u>				4,225		
	<i>7.0</i> 0				٧.225		
	7.00 8.00		1		7,225		<u> </u>
	9,00		<del></del>	]	4,225		
					4.225		
	70.00			<del> </del>			
	75,00			<u> </u>	4.23		
	14.00	0.005	<u> _                                    </u>		_ 4_23		
		<u>ین کان کی</u>			4.23	<u> _:</u>	
				1	4.23		
	20.00	005	{ <del></del>	<del> </del>	41,235		

### AQUIFER TEST RECORD

	int TOC	- +50x	Elevatio	n of Measurin on of Ground	_		<u> </u>
Pre-test Wate	er Level (Ref.	Measuring Pa		4.22 <u>5</u>	<del></del>		
Distance from	n Pumping wel	ll in feet _	500		Pumping Rate (gpm) 2/50 5/		
Time	t in min.	s in feet	Tape Reading at -		Depth to water	Elev. of	Remarks
			Meas. Point	Water Level	below m.p.	level	
	22.00	0.01			4,235		
	24.00	0.01			4L 235		
	26.00		1	<u> </u>	4,237		
	28.00				4,24		
11:00	30.00				4,24	· 22,53	.5 hr
	35.00	0.02		1	41,245		
	40,00				4.247		
	45.00				4.252		
	50.00				4.265		
	55.00		1		41,275		
	60.00	0.655			4.28	55,79	l.hr.
	70.00				4.305		_ L.&&
	80.00		†		4,33		
<b> </b>	90.00	_9.127_			4,352		
	100.00	_ <u>0.16.</u>			4.375	55,65	
	110,00	0.18	<del> </del>		4,405		
	120.00				4,435	55,635	2 hc
	135.00				-1,4/7	_ >	
	15000	0,28			41,505		
	165.00				4,615		
	180.00				4.655		3hc
	220.00 220.00				4,735		
<b> </b>	24000	0,525			41.75		466
	2-20 W	0.525		- <i></i>			
	300 M	0.53			4,755	55.715	15hc
	360 0	D 545		<del> </del>	4 77		6 hr
	1-1120 M	0.585			7.77_ 4.81		714
<b> </b>		0.615			-1.84		8.hr.
<b>}</b>		0.695	<del> </del>	<del> </del>	<u>-7.0.7.</u> <u>-1.92</u>	.55.15	10 hr.
<b> </b>			<del></del>		5.0		12 6/1
<del> </del>		0.775	<del> </del>	<del> </del>	5.06		14hr
		0.835	<del> </del>		5,12	54 95	16 hs
		0.895 0.955		<del> </del>	5,18		18hr

### **CDM**

#### AQUIFER TEST RECORD

### WEST COAST REGIONAL

Pre-test Wate	er Level (Ref.	Measuring P	oint)	4,225	· · · · · · · · · · · · · · · · · · ·		2.50
Distance from	n Pumping wel	l in feet _		372	Pum	iping Rate (	gpm) 2(509
Time	t	8	Tape Red	ding at –	Depth to water	Elev. of	Remark
	in min.	in feet	Meas. Point	Water Level	below m.p.	level	
	168000	1,245			5.41		28 br
	1800.00	1,32			5,545		30bc
	1920.00	1,355	1		5,58	54.49	132 bc
	2040.00	1.945			5.67		J34bc
	2160.00	1.555			5.78		136hc
24130	228000	1.665			5.89		38hr
230	2400.00	1.755	7		5,98		40 hr.
4.30	2520.00	1.845	1		6.07		142 hr.
A / 30	26400	1,935			6.16	53.91	]446r,
8:30	2760.00	2,02	1		6.245		46 hr.
10:30	288000	2,08			6,305		48 hr.
72 130	3000.00	2,135			6.36		50 hr.
14120	312000	2.155	<del> </del>		6.38		52 hc
14:30					6,395		54 hc.
18:30	3340.00	_ 2.17 _ 2.22			6.445		56 hr
	3480.00	2,275	<del></del>		6,50		58 hr.
20:30 22:30	3600.00	2, 345	<del> </del>		6.57		60 hc
54130	3720.00	2,395			6.62		62 hr.
0.30	3840.00	2.425	·		/		64 hr.
1			<del> </del>			35,40	ble hr.
<u>4/3</u> 2_	3960.00	2.445			<u> </u>	5337	68_hr
4:30	14080.00	2.475				_2-2-2-2-1-	70 hc
8130	4200.00				_6_73		
10130	4320.00	2,535	·		6.76		172 hr.
	4440.00		·	{- <b></b>	6.78		74 hr.
	4560.00		<del> </del>		6.80		7/ehr
	4680.00		<b> </b>	<del> </del>	6,825		. 78 hc 80 hc
11,8,30	48,00.00	2.63	<del> </del>	{	6.855	52 10	
	4920.00	2.665	.		6,500	<u> 53.18</u>	182hr
22/30	5040.00	2,685	<u> </u>		6.91		84 hr
	5160.00		<b> </b>		6,935		186 hc
	5280.00		<b> </b>	<b> </b>	6.955		188 hr.
	5400.00		<b> </b>		6,975		90 hr.
6:30	5520.00	2.765		<b> </b>	6.99		92 hr. 94 hr.
<u>8_30</u> _	5640,00	2.785			7.01		1 <u>7</u> 4 hr
10,30	5760.00	2,805	1		7.03		196 br

### CDM

#### AQUIFER TEST RECORD

### WEST COAST REGIONAL

Pı	re-test Wate	nt <u>TO C</u> r Level (Ref.	Measuring Pa		225			.0150-0
DI	istance from	Pumping wei	II in feet _	500		Pum	iping Rate (	gpm) 2150 5 pg
	Time	f	\$	Tape Red	ding at -	Depth to water	Elev. of water	Remarks
	Time	in min.	in feet	Meas. Point	Water Level	1 :	level	
۲	18'136	6240.00	2.875			7.10	52.97	124 hr.
Γ	20.31	6360,00				7,10		106 hr.
r	22;?2	6480.00				7.12		108 hr.
ļ	\$ in 7,	6600.00	2.91			7.135		JUO.hr.
卜	ري. رين	6720.00	2.93			7,148		112 br.
r	: 4130	6840.00	2, 932			7.157		U4 ba
	6129	6960,00	2.945	1		7.17		116 hc
-	<u> </u>	7080.00	2.96			7.185		U8.hr
۲	10:30	7200.00				7.30		120 bc
r	12:30	7220.00				7.205		
┢	n. Go	7440.00				7.215		-
-	16 30	727070				7.22.	52,85	
۲	18,30	768000		† <i></i>		7,245		
h	1 <u>0.22</u>	- 780000				6.98		1
۲	2.7;30	70 50,00				6.565		
-	24.30	SOMVED				6.285		
-	2.70	5 1 £ 2,00	1,935			616		
-	4:3	8281.00	1,90_			6.125		
-	£ 130	8400tc	1,905			6.13		
ľ	815	5,420,0r	1.945			16,17		
r		8,70.00				6.335		
٢	11.30	8860,00	2.035			6,26	50.81	
۲								
t								7
۲								
r				1				
卜								
۲								
r								
r								
H						- <i></i>		
†						<del></del>		
卜				<del> </del>				
-					<del> </del>	<b></b>		<del> </del>
-				<del> </del>			<del>-</del>	

### AQUIFER TEST RECORD

PROJECT	1006-46-PT
PRUJECI	

Well No. Dartice Rendings	Elevation of Measuring Point  Elevation of Ground Level	
Pre-test Water Level (Ref. Measuring Point)	Busing Pate	

Time	,	Engine	Tape Rea	ding at -	Depth to water	Elev. of water	Remarks
	in min.	in teel	Meas. Point	Water Level	below m.p.	leve!	Totalizar mete
15:00		- 800 -				18.0	
_26:00				1		19.0	
16:00 00:17:		200				19:0	2170.7pm
18215						18/16	2140 gpm
19:18_		8220				19_0	2150 gpm
20:56		800	l			19.0	2150 gpm
2302	·	900				19.0	2150 9000
1:00		800				19.0	2150 gam
3:03		800				170	2150 g m
5:04		800	<del></del>			19.0	2180 9200
7:32		800				19.0	
\$ 155		801				19.0	
		800				19.0	2150 gpm 2150 gpm 2150 gpm
11127		300				19.0	2150 gpm
		800	<del> </del>			19.0	2150 g m
15:60		800				19.0	
17:03		1				19.0	2150 gpm
14500		800				19.0	2150 6pm
21715			<del> </del>	<del> </del>		19.0	2140 704
22:05		860				19.0	
1:03		800				190	2150 0 0 pu
<u> </u>		806				19.0	2150 gpm
5:01.		<u> </u>		<b></b>			
7:01		<u>\$</u> \$0				19.0	21504pn
8,53	ļ <b>_</b>	<u>  800 </u>				19.0-	2140 gpm
ILOQ_		800			<del></del>	-19.0-	2130_Geor.
71720		ZCD-	Spener.	value 1/5		= 130	2140 Erl
12:55_		800		<del></del>		1924	2150 spm_
14:59		800				1948	2150 gpm
16:35		800				1918	2150 gpm
18:41		800				2 19 1/3/	2190 0000
20:56		850				190	2150 ggm 2140 ggm 2150 ggm
20:56 83:00		800			I	19 \$	2 150 534
1:00		800		1	T	19 1	2/50 g/222_
3.66		ÇøQ			]	19.2	
5:06		200	T			£ 19 ±	21 50 april
7:02		800		-	1	1978	2150 8 pm

### AQUIFER TEST RECORD PROJECT 6006 - 46-PT

	•
	Elevation of Measuring Point
Reference Point	Elevation of Ground Level
Pre-test Water Level (Ref. Measuring Point)	Data (apm)

Time  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:00  //:	in min.	Engine Roms in feet  800 800 800 800 800 800 800 800 800 8	Meas. Point	Water Level	19/6 19.0 19/8 19.0 19/8 19/8 19/8 19/8 19/8	level	70 pm 2150 gpm 2140 gpm 2140 gpm 2140 gpm
12:55 19:00 21:00 21:00 21:00 5:00 5:00 7:56 13:02 14:56		500 \$00 \$00 \$00 \$00 \$00 \$00 \$00			19.0 19.6 19.18 19.18 19.5 19.5 19.5 19.5 19.5 19.5		2/50 gpm 2/50 gpm 2/50 gpm 2/50 gpm 2/50 gpm 2/50 gpm 2/50 gpm 2/50 gpm
12:55 19:00 21:00 21:00 21:00 5:00 5:00 7:56 13:02 14:56		800 800 800 800 800 800 800 800 800			19 18 19 18 19 18 19 18 19 18 19 19 19 18 19 18		2150 Gpm 2150 gpm 2150 gpm 2150 gpm 2150 gpm 2150 gpm 2150 gpm
13:00 19:00 21:00 21:00 2:00 2:00 3:00 13:00 14:56		\$00 \$00 \$00 \$00 \$00 \$00 \$00 \$00			19.0 19.18 19.5 19.5 19.8 19.8 19.8		2150 gpm 2150 gpm 2150 gpm 2150 gpm 2150 gpm 2150 gpm
14:20 13:00 2:00 2:00 2:00 2:00 2:00		\$00 \$00 \$00 \$00 \$00 \$00 \$00 \$00			19.0 19.18 19.5 19.5 19.8 19.8 19.8		2150 gpm 2150 gpm 2150 gpm 2150 gpm 2150 gpm
19:00 21:00 5:00 5:00 13:00 14:56		\$00 \$00 \$00 \$00 \$00 \$00 \$00 \$00			19 1/8 19 5 19 5 19 7 19 8 19 8 19 8		2150 gpm 2150 gpm 2150 gpm 2150 gpm
21:00 23:00 2:00 3:00 3:00 13:00 14:56		800 800 800 800 800 800			19-5 19-5 19-8 19-8 19-8 19-8		2150 gpm 2150 gpm 2150 gpm
13:00 5:00 5:00 13:00 14:56		800 800 800 800 800			19 \$ 19 \$ 19 \$ 19 \$ 19 \$		2150 gpm 2150 gpm
14.26 13.85 10.28 8.22 5.00 2.00		800 800 800 800 800			19 ± 19 ±		2150 gpm
14,26 13,65 10,26 2,00 2,00		800 800 800 800			19 ± 19 ±		2150 gpm
14.26 13.85 10.28 8.22 2.00		800 800			19 ± 19 ±		2150 gpm
14,26 13,85 10,26 8,22 J.00		800 800			19.5		2150 Jan
14.28 13.85 10.20 8.22		800 800			19.0		2140 pm
14.26 13.65 10.28		800		<del> </del>			_  =_ [ ]
14:26			1	1			1 ~1/18/2
14:26		K1967			191/8		
14.26				<u> </u>	1918_		2150 gAN
	L	800			19_1/8_		2150 5/21
_16.5k.		800	<u> </u>		1918		2140 3pm 2150 3pm
18:50		200		.	1948		2150 382
21.00		800			19 %_		2/5000
23:00		800			19字		21500 9
1:00		800			1_17.2-		2150 901
4:00		800			173-		3120 EN
5.00		800			1_12-		2140 G 2m
		800			19-5		2150 901
7:00		800			19 1/8_		2150g/zm
9:00		800			1974		
1826	<del> </del>		<b> </b>	-	19416		2150
13:00		800	<del> </del>		19116		2140
74752		800_	<del></del>	<b></b>	19.71 <u>6</u> 19.44		2150
1900			-		1-10-		2150
21:00		800	<b></b>		19 7		2150
23:00	<b></b>	800	<b>_</b>	_	<del></del>		2/00
1:00		६८०	<del></del>		19 I		2150 2150
3:00	<u> </u>	800					2150
5:00		800			19 4	<del> </del> -	750
7:00		800			194	<del> </del> -	2150
0v: F		860			-  <u> 47</u>		2150
10,00		800	:		194	ļ- <i></i> -	

1:16 3:25 5:22 7:16

9:17

11:22 13:14

15:16 17:22 19:23 -81:14

## AQUIFER TEST RECORD

PROJECT 6086-42-17

lance from	r Level (Ref. I Pumping well	l in feet _			Pumi	oing Rate (g)	pm) 2150 9/
	1		* Tape Reading at -			Elev. of water	Remarks
Time	in min.	in feet	Meas. Point	Water Level	below m.p.	level	
9:50					378		
5:40	<del>-</del>				29/16		
Ă : 17				3	27.		
24.00				1	_ 2 Ha_		
1:26					る古		
3:31					<u> </u>		
6:05					3 4		
8:15				<b> </b>	2-9116-		
10:06			.		-29/16 -29/16		
11:45					24/16_		
2:54					2 <i>5/g</i> 2 <i>9/</i> 16		
0.31			-		3-746		
19:25			_		2716		
41:30				<b></b>	2 /16		
23:31_					2		
1:a6				-	S Ze-		
1:a6 3:44 5:23					2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
8:00					23/2		
9:20			-	-	25/8		
1118					25/8		
13:07			-	-	25/4		
15:17.					25/2		
12.14_					25/4		
18:58 23:01	<b> </b>			-	2 2		1

# AQUIFER TEST RECORD PROJECT TPW-/A TPW-/A APT

Well No. Staff gauge pond east Reference Point	Elevation of Measuring Point  Elevation of Ground Level
Pre-test Water Level (Ref. Measuring Point)	
Distance from Busing well in feet	Pumping Rate (gpm) 2/50 98m

Time in min. in feet Meas. Point Water Level below m.p. level   Remarks    23 34   27   27    1 29   27   27    5 15   27    7 17   7   27    1 20   3 1/6    1 3 1/5   3 1/6    1 3 1/5   3 1/6    1 3 1/5   3 1/6    1 3 1/6   3 1/6    1 3 1/6   3 1/6    2 1/6   3 1/6    2 1/6   3 1/6    2 1/6   3 1/6    2 1/6   3 1/6    3 1/8   3 1/6    3 1/8   3 1/6    3 1/8   3 1/6    3 1/8   3 1/6    3 1/8   3 1/6    3 1/8   3 1/6    3 1/8   3 1/6    3 1/8   3 1/6    3 1/8   3 1/6    3 1/8   3 1/6    3 1/8   3 1/6    3 1/8   3 1/6    3 1/8   3 1/6    3 1/8   3 1/6    3 1/8   3 1/6    3 1/8   3 1/6    3 1/8   3 1/6    3 1/8   3 1/6    3 1/8   3 1/6    3 1/8   3 1/6    3 1/8   3 1/6    3 1/8   3 1/6    3 1/8   3 1/6    3 1/8   3 1/6    3 1/8   3 1/6    3 1/8   3 1/6    3 1/8   3 1/6    3 1/8   3 1/6    3 1/8   3 1/6    3 1/8   3 1/6    3 1/8   3 1/6    3 1/8   3 1/6    3 1/8   3 1/6    3 1/8   3 1/6    3 1/8   3 1/6    3 1/8   3 1/6    3 1/8   3 1/6    3 1/8   3 1/6    3 1/8   3 1/6    3 1/8   3 1/6    3 1/8   3 1/6    3 1/8   3 1/6    3 1/8   3 1/6    3 1/8   3 1/6    3 1/8   3 1/6    3 1/8   3 1/6    3 1/8   3 1/6    3 1/8   3 1/6    3 1/8   3 1/6    3 1/8   3 1/6    3 1/8   3 1/6    3 1/8   3 1/6    3 1/8   3 1/6    3 1/8    3 1/8   3 1/6    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8    3 1/8		1		Tape Réa	ding at -	Depth to	Elev. of	
1:28 7:32 5:15 5:17 9:20 11:41 13:15 15:18 27:16 15:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18	Time	in min.	in feet	Meas. Point	Water Level	ŀ		Remarks
1:28 7:32 5:15 5:17 9:20 11:41 13:15 15:18 27:16 15:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18 27:18	23-24					275-11		
								-,
	L_L_28				<b></b>			<u></u>
9:20 3:16 3:16 13:15								
9:20 3:16 3:16 13:15	5.15					3-,		
9:20 11:41 13:15 15:15 15:15 2:16 2:16 2:16 2:16 2:17 2:16 2:18 2:18 2:18 2:18 2:18 2:18 2:18 2:18	1 17							
					[	3 1/64		
15:42   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/	11.41			1				
15:42   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/8   3/	12:15					34,6		
17:15	15117					3110		
1:19 5:12 7:15 7:16 3:16 11:12 13:16 13:17 2:19 2:19 2:19 2:19 2:19 2:19 2:19 2:19	-13:33			<b> </b>		-3-/8		
1:19 5:12 7:15 7:16 3:16 11:12 13:16 13:17 2:19 2:19 2:19 2:19 2:19 2:19 2:19 2:19	-7-1-12-					- <del></del>		
1:19 5:12 7:15 7:16 3:16 11:12 13:16 13:17 2:19 2:19 2:19 2:19 2:19 2:19 2:19 2:19	21.16			<b> </b>		3-3		
1:19 5:12 7:15 7:16 3:16 11:12 13:16 13:17 2:19 2:19 2:19 2:19 2:19 2:19 2:19 2:19				<b> </b> -		之字		
1:19 5:12 7:15 7:16 3:16 11:12 13:16 13:17 2:19 2:19 2:19 2:19 2:19 2:19 2:19 2:19								
7:15 7:16 7:16 3:16 11:12 13:16 3:3/8 13:16 23/8 13:17 2:19 23:13 21:12 21:12 21:12 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13 21:13	4:19			]	l	ا جيد ا		
13:16 13:16 13:16 13:17 23:17 21:17 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18	5:12					7 4		
13:16 13:16 13:16 13:17 23:17 21:17 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18 23:18						3 3		[
13:16 13:16 13:16 13:17 23:17 21:17 23:13 23:13 24 23:13 23:13 24 23:13 24 23:13 24 23:13 24 23:13 24 25:13 24 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:13 25:						35/16		
13:16   33/8   33/8   Just started rain   23/8   17:17   33/8   Just started rain   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8   24/8						4 3/m1 1		
$\frac{7}{10}$ $\frac{1}{3}$ $\frac{1}{2}$ $1$	12,119					23/0		
$\frac{7}{10}$ $\frac{1}{3}$ $\frac{1}{2}$ $1$						732		
$\frac{7}{12}$ $\frac{7}{12}$ $\frac{7}{12}$								
$\frac{7}{12}$ $\frac{7}{12}$ $\frac{7}{12}$	[1:17]					3-78		JUST STRATES TRIP
$\frac{7}{12}$ $\frac{7}{12}$ $\frac{7}{12}$	2(19_					3-3		of the ity rall
$\frac{7}{12}$ $\frac{7}{12}$ $\frac{7}{12}$	23.13					- 4 - 5		
$\frac{7}{12}$ $\frac{7}{12}$ $\frac{7}{12}$	1:12			l		2-6		] J =
$\frac{7}{12}$ $\frac{7}{12}$ $\frac{7}{12}$	3:2			]		スタ		
7:13 9:28 10:34	5:13					2-8		l
$\frac{9.28}{10:3}$								
15:36 15:00 15:00 17:16 17:16	9 73					-12-		
15'00 3:47 7:36 1'16	12.2							
1 1/16 3:47 7:36 1 1/16						<del>',-6</del> ,,		
7:36	17,00							
7.36	3-7/					<u></u>		
	7:36							
								<del> </del>

#### AQUIFER TEST RECORD

PROJECT 6006 - 41-PT TPW-/A APT

10:13	<del> </del>			≈ M5t -				gpm) 2150 5/
10:1/3	Tie-	f	*	Tape Rea	ding at –	· ·		Remarks
	i ime	in min.	in feet	Meas. Point	Water Level	i i	=	
	10:13					28/4		
12:12 18:05 18:50 19:30 19:35 28:78 29:78 21:30 23:58 23:58 23:58 23:4 2:4 2:47 (6:20 23:58 23:35 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:37 23:3		}				28'/4		
\$\frac{15.05}{15.50}						2× 5/16		ļ
19:35  19:35  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28:78  28		<del></del>						0.30 rain
19:35 21:30 21:30 23:58 1:36 28 4 28 4 3:47 6:20 28 4 10:18 28 7/6 11:52 10:18 28 7/6 11:52 28 7/6 28 7/6 11:52 28 7/6 28 7/6 28 7/6 28 7/6 28 7/6 28 7/6 28 7/6 28 7/6 28 7/6 28 7/6 28 7/6 28 7/6 28 7/6 28 7/6 28 7/6 28 7/6 28 7/6 28 7/6 28 7/6 28 7/6 28 7/6 28 7/6 28 7/6 28 7/6 28 7/6 28 7/6 28 7/6 28 7/6 28 7/6 28 7/6 28 7/6 28 7/6 28 7/6 28 7/6 28 7/6 28 7/6 28 7/6 28 7/6 28 7/6 28 7/6 28 7/6 28 7/6 28 7/6 28 7/6 28 7/6 28 7/6 28 7/6 28 7/6 28 7/6 28 7/6 28 7/6 28 7/6 28 7/6 28 7/6 28 7/6 28 7/6 28 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 29 7/6 20 7/6 20 7/6 20 7/6 20 7/6 20 7/6 20 7/6 20 7/6 20 7/6 20 7/6 20 7/6 20 7/6 20 7/6 20 7/6 20 7/6 20 7/6 20 7/6 20 7/6 20 7/6 20 7/6 20 7/6 20 7/6 20 7/6 20 7/6 20 7/6 20 7/6 20 7/6 20 7/6 20 7/6 20 7/6 20 7/6 20 7/6 20 7/6 20 7/6 20 7/6 20 7/6 20 7/6 20 7/6 20 7/6 20 7/6 20 7/6 20 7/6 20 7/6 20 7/6 20 7/6 20 7/6 20 7/6 20 7/6 20								+002 rain
21:30 23:58  1:36 28			<del></del>					
23:58 1:34 28 4 3:47 6:20 8:25 10:18 11:52 13:37 15:02 17:23 14:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34 28:34	,		1			28岁	·	
3:47 (6:20 (8:25) (8:25) (9:18) (9:18) (9:18) (9:18) (9:18) (9:25) (9:25) (9:26) (9:26) (9:26) (9:26) (9:26) (9:26) (9:27) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28) (9:28	23.58			-7		28-5		
3:47 6:20  8:25  10:18  11:52  13:37  15:02  17:23  16:34  28:34  28:34  20:34  20:34  20:34  20:34  20:34  20:34  20:34  20:35  28:34  20:35  28:34  20:35  28:34  20:35  28:34  20:35  28:34  20:35  28:34  20:35  28:34  20:35  28:34  20:35  28:34  20:35  28:34  20:35  28:34  20:35  28:34  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35  20:35						28 4		
(6:20)  8:25  10:18  10:18  11:52  13:37  15:02  17:23  14:34  15:39  13:37  1:36  28:44  28:44  28:44  28:44  28:44  28:44  28:44  28:44  28:44  28:44  28:44  28:44  28:44  28:44  28:44  28:44  28:44  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:45  28:	3:47					28年		
8:25 10:18 10:18 11:52 13:37 15:02 17:23 19:34 28:34 28:34 20:00						28岁		
10:18 11:52 13:37 15:02 17:23 14:34 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44 28:44						28%		
13:37   28:1/16   0.0 rain   15:02   28:3/4   0.0 \( \delta \)   17:23   28:3/4   0.0 \( \delta \)   13:37   28:3/4   0.0 \( \delta \)   13:5/5   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6   28:5/6		<del></del>	1 <b></b>					
13:37   28"   16   0.0 ram   15:02   28.3/4   0.0 ram   17:23   0.0 ram	11:52				]	285/2		<u> </u>
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						2811/16		0.0 rain
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						2 Sc 3/4		0.0 Nom
								0.05 nain
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	19:34		]			28.34		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	21:39					<u>as 78</u>		
5:30 9:26 11:23 13:4 29:0 29:0 0:0251	43:37			_		_ <u>a 8 _ x .</u>		
5:30 9:26 11:23 13:4 29:0 29:0 0:0251	1:35					28- 多-		
5:30 9:26 11:23 15:32 15:32 17:20 19:03 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4 2	3:56					<u> </u>		
9:26 29:0 29:0 29:0 11:23 15:32 15:32 17:20 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4	5:30				J	082		
9:26 11:23 13:13 15:22 17:20 19:03 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4	4:2				ļ	28岁		
11:23 13:13 15:22 17:20 19:03 29:4 29:4 29:4 29:4 29:4 29:4 29:4 29:4	9:24					<u>24.</u> 2_		<b></b>
15:12 29 1/2 5making to 29 1/2 5making to 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29 1/2 29	11:23				<b></b>	29		-
15:22 17:20 19:03 29:4 29:4 29:4	13:13					29_1/8_		0.045/AID
17:20 19:03 29:4 29:4 29:4	<u> 15:22                                  </u>					29 121		STARTING TO KAIT
22.17	17:20					29/4		CIGH KAID
-32:17	19:07					294_		
	22:17					1-29 F		
<u> </u>	23:28					274		<u> </u>
<u>_1:21               29 \under                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         </u>	1:71				1	1-29-4		
3:32 5:32 7:22 9:24	3.32					29 4		

#### AQUIFER TEST RECORD

PROJECT		
	TPW-/A	APT

Well No. Borrow pit staff gaust Reference Point  Pre-test Water Level (Ref. Measuring Point)	Elevation of Ground Level		
Distance from Pumping well in feet	theast of Testwell	Pumping Rate (gpm) .	2150 gpn

	t		Tape Rea	ding at -	Depth to	Elev. of	D
Time	in min.	in feet	Meas. Point	Water Level	water below m.p.	water level	Remarks
				<b> </b>			·
6:50						11 3/16	
202						11 1/8	
10:10						111/8	
11-56						11-18	
_13:45_						_11_74	
12:19						-1144	light rain at 15:
19:40						_11_24	0.04" rain stopp
9:30						- N. <u>14</u> - 11 <u>Y</u> -1	
811,27						11.37	
1315						13/8	Light RAis On
-15:25 17:25						11/4	
,,						1142	
19:06							Light RAIN O.OL
9:27						115/4 115/4	
13:24						11 74	
15:15						11 3/4	
17:35						U13/16	
19:35						_117/8	
5:32						12 1/8	
11:51 13:30						1278	
15:55						121/4	_0:01.00
17:27						12/4	
19:46						_12 <u>'/4</u> _12 <u>'/4</u>	
9:27						123/16	
11:22						123/16	
13:32						123/6	
15:10						!2_2/4	
15:26 17:26 9:24						123/16 123/16 123/16 123/1 123/1	started raining
30							
13:55						115/8	
15 49				<del></del>		115/8	

# AQUIFER TEST RECORD PROJECT 6006-46-17 TPW-1A APT

	HEART (MET	. Measuring l	oint) =		· · · · · · · · · · · · · · · · · · ·		
Distance from	Pumping we	il in feet .	≈ 1950		Pum	ping Rate (	gpm) 21509
Time	t		Tape Rea	iding at —	Depth to water	Elev. of	Remarks
	in min.	in feet	Meas. Point	Water Level	below m.p.	level	
(3:20			1		29 K		
15:13					29 Yz		
17:30			1		293/4		
19:30					-29 13/14 293/14		<u> </u>
21:23		T			7934		
23:30					292		
			7		29 글	· · · · · · · · · · · · · · · · · · ·	
3:38			1		29等		
5.21					297 29 5		
7.23			1		30		
9,29			<b> </b>		30		
11:45			<b> </b>		30/16_		
13:29			†		30 1/8		0,0/ Dam
15:50			<del></del>		30 1/8		
17/21				- <del>-</del>	3014		
19:42			<del> </del>		30 ///		
21:22			<del> </del>		30 14 30 14 30 14		
23:22					- 30 五十		
1:24					30年		
4:20			<del> </del>		30 4		
7:18					30-E		烫
7:26					30-2		
9,24					3.1/.		
1:17					30/2		
13-13-1-1					ـ  طالے 202		
					- <del>- 30</del> 78   .		
					<u>2074</u>  -		
13:22 15:21 17:23 21:71 23:20			<del> </del>		<i></i>		Jackstartelman
			·		42-\$ -		-15- of
43-45-			<del> </del>		- ZY-+		vain at north
1:20 7:29					- <del>28 2</del> -		raingeree
			<del> </del>		<del>28 P</del> -		
5:18					288		
7:18			<del> </del>		30/3 30/16 303/4 303/4 253/5 257 28 7 28 7 28 7 28 7		
1:21-1			<del> </del>		29		
LO. मी			<b>∤</b>				
18:00 10:10 1:42					29/8 29/8 29/4 29/4		
16:10					29/8		
<i>18</i> !es].			II		29 1/4		

### AQUIFER TEST RECORD PROJECT 6006-46

Well No. IMMER WELL  Reference Point Sanitary Collar	Elevation of Measuring Point Elevation of Ground Level	55.71 1,54 from Sandary
Pre-test Water Level (Ref. Measuring Point)		Pumping Rate (gpm )
Distance from Pumping well in feet		Pumping Raie (ypin)

ance from	Pumping wel	Measuring Pi I in feet			Pum	ping Rate (g	pm )
	† s		Tape Rea	Tape Reading at -		Elev. of water	Remarks
Time DATE	i <del>n min.</del>	in feet	Meas. Point	Water Level	water below m.p.	ievel	
	TIME						
					4,77	52.48	
2-6-86	7:009				4.80	52.45	
2-7	-8:00 F		-		41.86	52.39	
2-8	7:15P				4.93	52.32	
2-9	5:30		-		41.96	52.29	
6-10-1			·		-1.79	52,46	
6-11	6:002_					52.54	
6-12	1:302		-			120121-	
6-13				.		52.99	
6-14	12:150				41.26		
6-15	11:20			J	41,18	53.07	
6-15	1:45/2		1		3.77	53.48	
6-17					9,01	48,24	Surface water is Flowing
6-18				]	<u> </u>		15to 12 WELL
6-18					<u>-</u>		
6-20	6:45	<del> </del>			3.30	53.95	
6-21	11:28				3,325	53,925	
<u>e-3</u> 1					3.30	53.95	
6-21	15:30				3.35	53.90	
25- تم	6:50		-		3.36	53.89	
6-22	10:34				3,14	54.11	Surface water
<u>6-23</u>		.	_				15 Flowing into
6-24							WELL
6-25					2.28	54.97	
6-24	14:50				2.26	54.99	
6-27	15:20					54.89	
6.28	11:36				2.36	54,24	
6-29	11:15				3.01		WATER Flowing int
6-30	15:30				1.72	55.53	
							<u> </u>
	T						
		1					
<u>-</u>	<del> </del>						
	<del></del>						
	-	-					
	-						
		-					
	1	3					ì

### AQUIFER TEST RECORD PROJECT 6006 - 46

Well No. <u>K</u> Reference Po			Elevatio	on of Ground	Level			
Pre-test Wate		Measuring P	Point)			5 . /	\	
Distance from	Pumping we	II in feet _			Pum (	oing Rate (	gpm /	
	t	8	Tape Rea	iding at -	Depth to	Elev. of water		Remarks
T <del>ime</del> Dat <i>e</i>	in min.	in feet	Meas. Point	Water .Level	Rain full bolow m.p.	level		
					L		.	
					0.0			
6-2					0.09		<del> </del>	
6-3					0,29		4	
6-4					0.12		<del>  </del>	
6-5					0.16		-	
6-6			7		0.0		<b></b>	- ALL SOUTA
6-7					0.0			
6-8					0.0			
6-9					0.55		_	
6-10							1	
6-11					4,53 (?)			
6-12	1				0.60		50	
				J	0.67		No	<u>/+h</u>
6-13					0.55		5	
		I			0.25		\\\\\	
6-14					0.00		_ 5	
					0.00		12	
6-15					1.96			
				_			<u> </u>	
6-16							15	Includes 6-15
			_	_	1,93			17)01100 0 73
6-17					0,42		<u> </u>	
					0.30		12	
6-18							.   5_	
L					0.05		<u>-   N .</u>	
6-19					0.03		13-	
					0.03			
6-20					0.0		- 3-	
					0.0		12	
6-21					0.01		<u>S</u>	
					0.01		5	
6-22					0.77		- 13- N	
					0.99	<del> </del>	-   5	
6-23					0.0		-13-	
					0.0		- <del>  ~</del> -	Started Raining
6-24					0.0	<del> </del>	<u>&gt;</u> -	Started the HOTWAS
L	_					-	-	

### AQUIFER TEST RECORD PROJECT 606-46

II No. Ret				n of Measurin n of Ground L		<u> </u>	
e-test Wate	r Level (Ref.	Measuring Po	int)				
	Pumping wel				Pumi	ping Rate (	gpm )
·	1	8	Tape Rea	ding at —	Depth 10	Eiev. of	Remarks
Fime	in mın.	in feet	Meas. Point	Water Level	RAINFAII balow m.p.	level	
DATE							
					0.43		5
6-25					0.55		W
					0.05		5
6-ac							W
				<del> </del>	0.04		3
6-27					0.0		N
					0.0		
6-28					0.0		\frac{5}{\mu}
					0.0		
6-29				.	_/,_/9		<u> </u>
					1.29		<u> </u>
	<del></del>	<del> </del>					
			<b></b>				
					-		
	J				-		
					.		
						.	
			1		]		
			1				
	<del> </del>		<b></b>				
		-					
		-		-+	- †	1	
						<del> </del>	
	_						
					-l		

# APPENDIX H AQUIFER PERFORMANCE TEST ANALYSES

#### APT DRAWDOWN DATA SUMMARY

TPW-1A

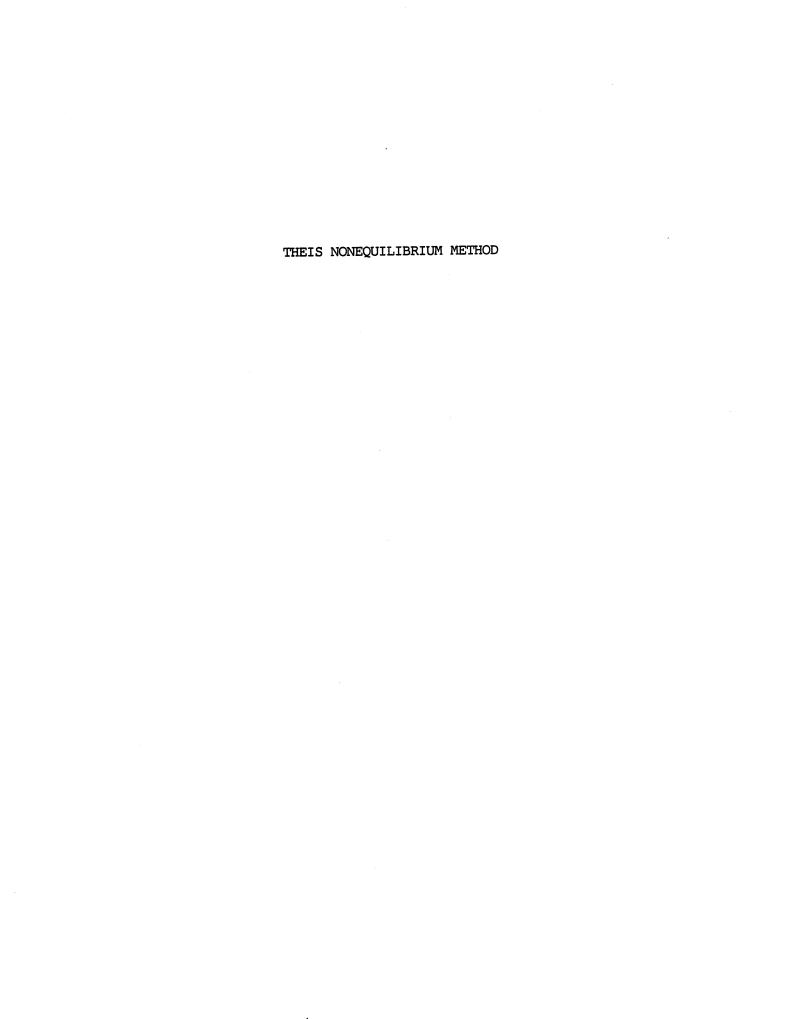
Q = 2150 gpm

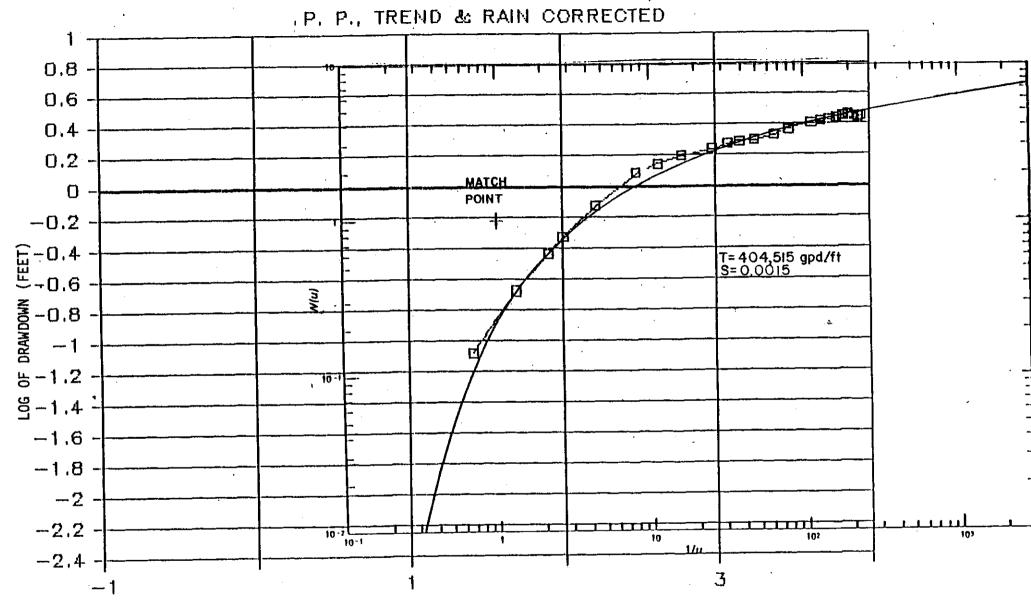
TIME	DRAWDOWN (ft.)							
1			Corrected		- <del> </del>			
Log Minutes	Uncorrected	Well Loss (a)	Well Loss & Regional Trend (b)	Well Loss, Regional Trend, & Bain (c)	hog(c) (d)			
0.00   -1.097   0.08   -0.770   0.17   -0.602   0.25   -0.481   0.33   -0.377   0.42   -0.301   0.50   -0.237   0.58   -0.174   0.67   -0.125   0.75   -0.081   0.83   036   0.92   0.000   1.00   0.124   1.33   0.176   1.50   0.262   1.83   0.176   1.50   0.262   1.83   0.176   1.50   1.000   10.00   1.415   26.00   1.903   80.00   1.903   80.00   2.217   165.00   2.477   300.00   2.217   165.00   2.477   300.00   2.982   960.00   3.079   1200.00   3.158   1440.00   3.255   1800.00   3.380   2400.00   3.158   1440.00   3.255   1800.00   3.380   2400.00   3.477   3000.00   3.623   4200.00   3.624   4200.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   6120.00   3.787   61	0.000 0.670 1.340 2.010 2.630 3.350 4.000 4.015 4.030 4.045 4.045 4.090 4.170 4.220 4.280 4.630 4.930 5.410 6.300 6.630 6.990 7.165 7.355 7.540 7.695 7.780 7.780 7.780 7.780 7.780 7.780 7.780 7.780 7.780 7.795 7.895 7.997 8.020 8.170 8.170 8.170 8.095 7.997	0.000 -0.130 0.540 1.210 1.880 2.550 3.215 3.230 3.245 3.260 3.245 3.290 3.420 3.480 3.480 3.480 3.500 5.500 5.500 5.830 6.190 6.365 6.555 6.740 6.895 7.147 7.220 7.320 7.370 7.320 7.370 7.295 7.197	0.540 1.210 1.880 2.550 3.200 3.215 3.245 3.260 3.275 3.290 3.370 3.420 3.480 3.831 4.131 4.614 5.017 5.321 5.514 5.853 6.232 6.423 6.638 6.873 6.997 7.110 7.145 7.313 7.512 7.763 7.912 7.983 8.053 8.124 8.070 7.993	0.040 1.210 1.330 3.200 3.215 3.230 3.245 3.260 3.275 3.290 3.370 3.420 3.481 4.131 4.614 5.017 5.321 5.514 5.853 6.232 6.431 6.657 6.914 7.052 7.180 7.237 7.442 7.607 7.785 7.814 7.912 7.985 8.124 8.104 8.118	0.268 0.274 0.407 0.509 0.509 0.511 0.513 0.515 0.515 0.528 0.542 0.583 0.542 0.726 0.726 0.726 0.726 0.741 0.767 0.808 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840			

DMW-1A+1950 Q = 2150 gpm

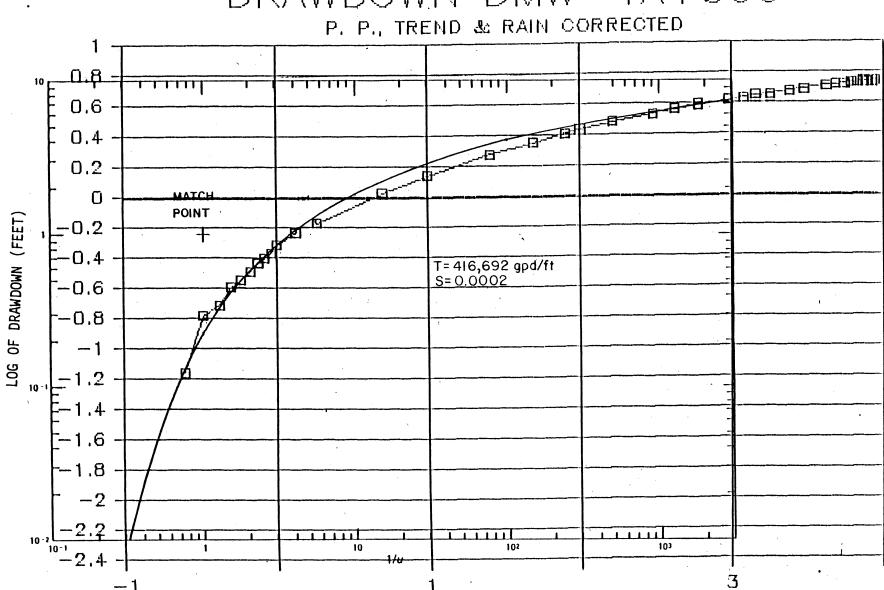
T	IME	i i 1	DRAWDO	WN (ft.)		
				Corrected	, and also also and they are very class value and also care and also care	the tree and the case one are any
Log	Minutes	Uncorrected	Partial Penetration (-0.04) (a)	Partial Penetration & Regional Trend (b)	Partial Penetration, Regional Trend, & Rain (c)	Log(c) (d)
3.158 3.255 3.380 3.477 3.623 3.681 3.742 3.787 827 .865 3.899 3.930	0.00 0.08 0.17 0.25 0.33 0.42 0.50 0.58 0.67 0.75 0.83 0.92 1.00 1.33 1.50 10.00 26.00 10.00 26.00 50.00 80.00 100.00 165.00 300.00 420.00 1800.00 1440.00 1800.00 1800.00 1440.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1800.00 1	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.012 0.035 0.120 0.245 0.400 0.770 1.220 1.390 1.530 1.640 1.755 1.805 1.780 1.850 1.960 2.020 2.020 2.020 2.020 2.128 2.150 2.225 2.145 2.060	-0.040 -0.040 -0.040 -0.040 -0.040 -0.040 -0.040 -0.040 -0.040 -0.040 -0.040 -0.040 -0.040 -0.028 -0.028 -0.005 0.080 0.205 0.360 0.460 0.730 1.180 1.350 1.490 1.600 1.715 1.765 1.740 1.810 1.920 1.980 1.967 2.020 2.088 2.110 2.185 2.000 2.020	0.084 0.212 0.371 0.474 0.753 1.222 1.408 1.573 1.733 1.882 1.965 1.990 2.143 2.337 2.563 2.634 2.712 2.801 2.843 2.939 2.843 2.939 2.843 2.939 2.828	0.084 0.212 0.371 0.474 0.753 1.222 1.416 1.592 1.774 1.937 2.035 2.082 2.272 2.432 2.585 2.634 2.712 2.801 2.843 2.939 2.914 2.921 3.005	-1.078 -0.674 -0.430 -0.324 -0.123 0.087 0.149 0.197 0.239 0.275 0.293 0.299 0.331 0.369 0.409 0.421 0.433 0.447 0.454 0.468 0.459 0.447 0.451

DMW-1A+500

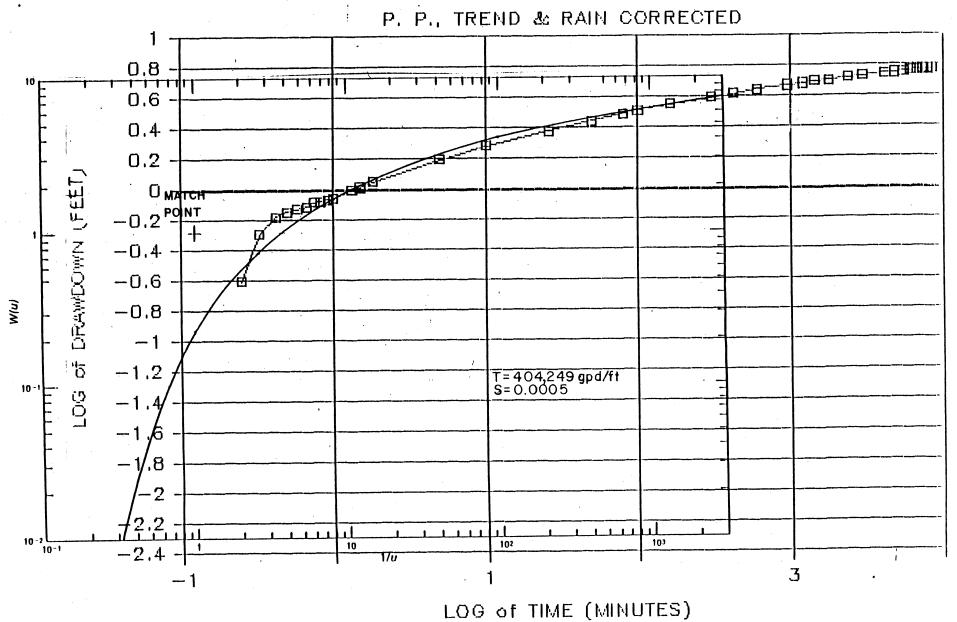

Q = 2150 gpm

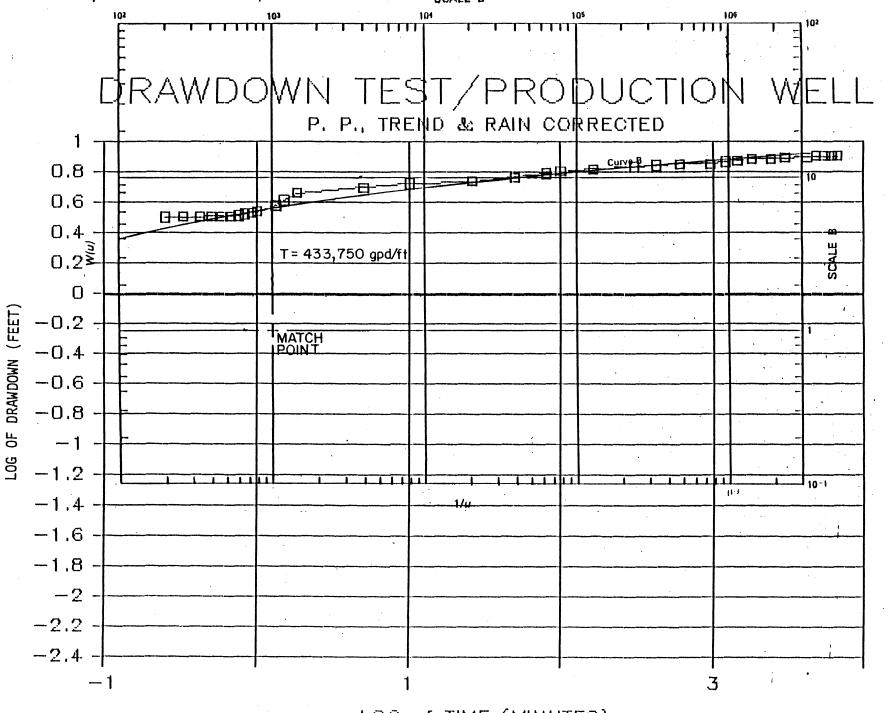

TIME		DRAWDO	WN (ft.)		
	1	·	Corrected		
Log Minutes	Uncorrected	Partial Penetration (-0.14) (a)	Fartial Penetration & Regional Trend (b)	Partial Penetration, Regional Trend, & Rain (c)	Log(e) (d)
0.00 -1.097	0.000 0.015 0.085 0.210 0.305 0.395 0.425 0.465 0.505 0.570 0.625 0.725 0.815 1.525 2.035 2.395 2.710 2.870 3.170 3.535 3.745 3.970 4.145 4.245 4.365 4.365 4.370 4.450 4.790 4.845 4.790 4.862 4.775 4.695 4.715	-0.125 -0.055 0.070 0.165 0.255 0.285 0.325 0.325 0.365 0.430 0.485 0.585 0.675 1.385 1.895 2.255 2.570 2.730 3.030 3.395 3.605 4.225 4.230 4.225 4.230 4.570 4.570 4.625 4.650 4.555 4.555 4.575	0.070 0.165 0.195 0.255 0.285 0.325 0.365 0.395 0.485 0.585 0.675 1.076 1.386 1.899 2.262 2.581 2.744 3.053 3.437 3.663 3.913 4.138 4.272 4.425 4.480 4.643 4.643 4.643 4.643 5.375 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317 5.317	0.070 0.165 0.255 0.285 0.325 0.365 0.395 0.485 0.676 1.899 2.581 2.744 3.053 3.437 3.671 3.932 4.179 4.327 4.495 4.772 4.772 4.919 5.195 5.237 5.383 5.476 5.444 5.476 5.560	-1.155 -0.762 -0.593 -0.545 -0.488 -0.438 -0.366 -0.314 -0.233 -0.171 0.032 0.142 0.278 0.354 0.438 0.438 0.4536 0.565 0.653 0.653 0.653 0.653 0.679 0.716 0.731 0.736 0.731 0.738 0.736 0.738

DMW-1A+200


Q = 2150 gpm

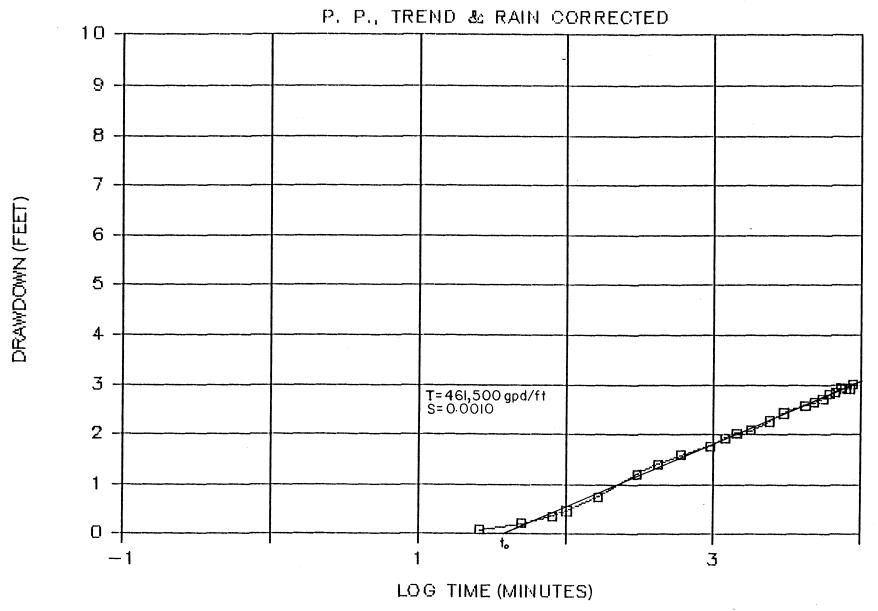
TIME	l 1	DRAWDOWN (ft.)					
	;	. 4	Corrected				
Log Minutes	Uncorrected	Partial Penetration (-0.35) (a)	Partial Penetration & Regional Trend (b)	Partial Penetration, Regional Trend, & Rain (c)	Log(c)		
0.00 -1.097	0.000 0.260 0.600 0.860 1.020 1.070 1.130 1.130 1.140 1.230 1.350 1.350 1.390 1.480 1.930 2.280 2.740 3.140 3.590 3.590 3.910 4.275 4.460 4.685 4.860 4.955 5.080 5.070 5.155 5.247 5.310 5.295 5.360 5.428 5.428 5.480 5.547 5.460 5.400	-0.340 -0.090 0.250 0.510 0.720 0.750 0.750 0.830 0.845 0.860 0.880 1.000 1.130 1.580 1.930 2.790 3.240 3.560 3.925 4.110 4.335 4.510 4.720 4.805 4.720 4.805 4.945 5.010 5.078 5.130 5.197 5.110 5.050	0.250 0.510 0.670 0.720 0.750 0.780 0.830 0.845 0.860 0.880 1.000 1.040 1.130 1.581 1.931 2.394 2.797 3.101 3.254 3.583 3.967 4.168 4.418 4.643 4.772 4.930 4.970 5.138 5.543 5.543 5.543 5.5612 5.702 5.702 5.702 5.702 5.865 5.865 5.865 5.865	0.250 0.510 0.750 0.750 0.750 0.830 0.845 0.860 0.880 1.040 1.130 1.581 1.931 2.394 2.797 3.101 3.583 3.967 4.176 4.437 4.684 4.827 5.062 5.267 5.409 5.565 5.791 5.951 5.971	-0.602 -0.292 -0.174 -0.125 -0.108 -0.065 -0.055 -0.055 -0.053 0.199 0.286 0.379 0.447 0.492 0.512 0.554 0.647 0.647 0.684 0.699 0.704 0.722 0.733 0.745 0.749 0.756 0.775 0.776		

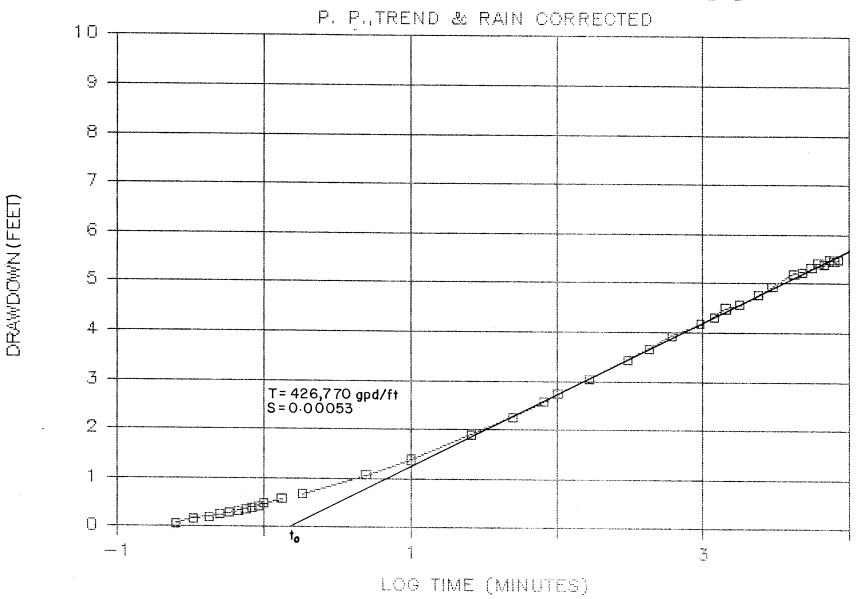


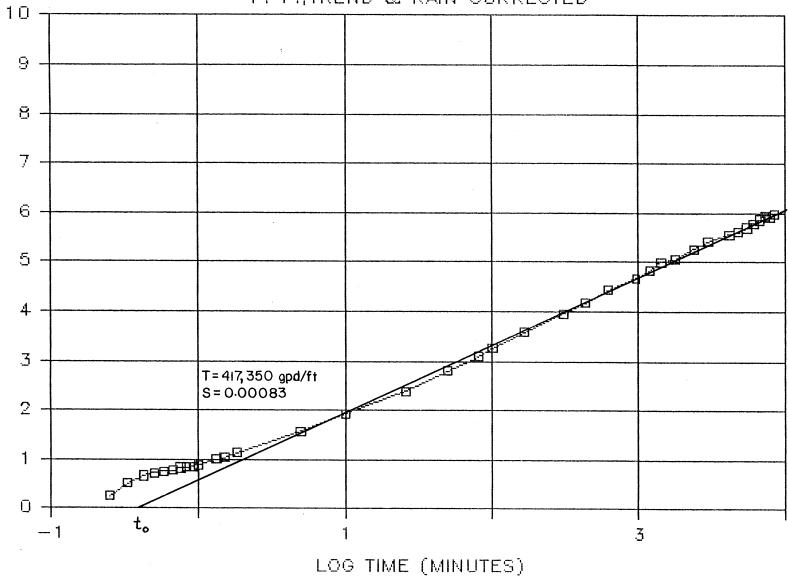

LOG TIME MINUTES



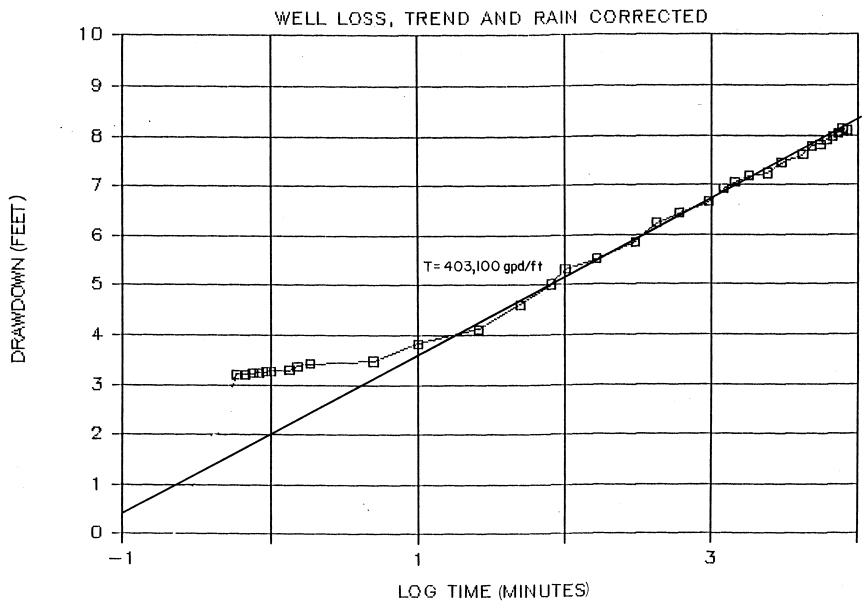

LOG of TIME (MINUTES)

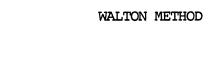


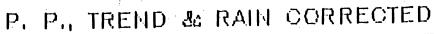


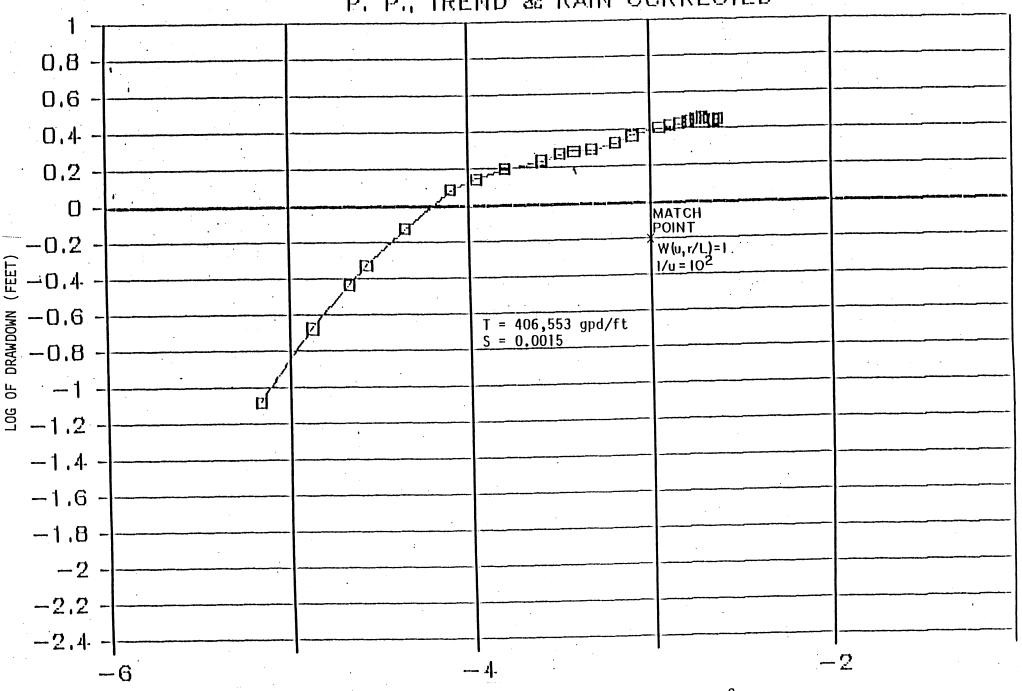


LOG of TIME (MINUTES).





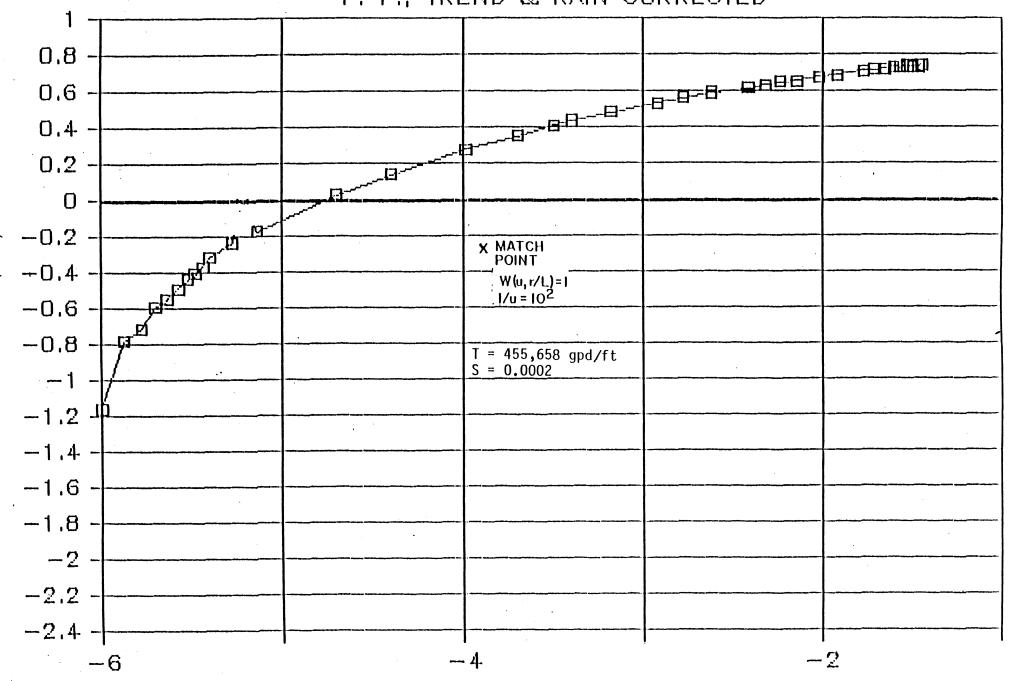



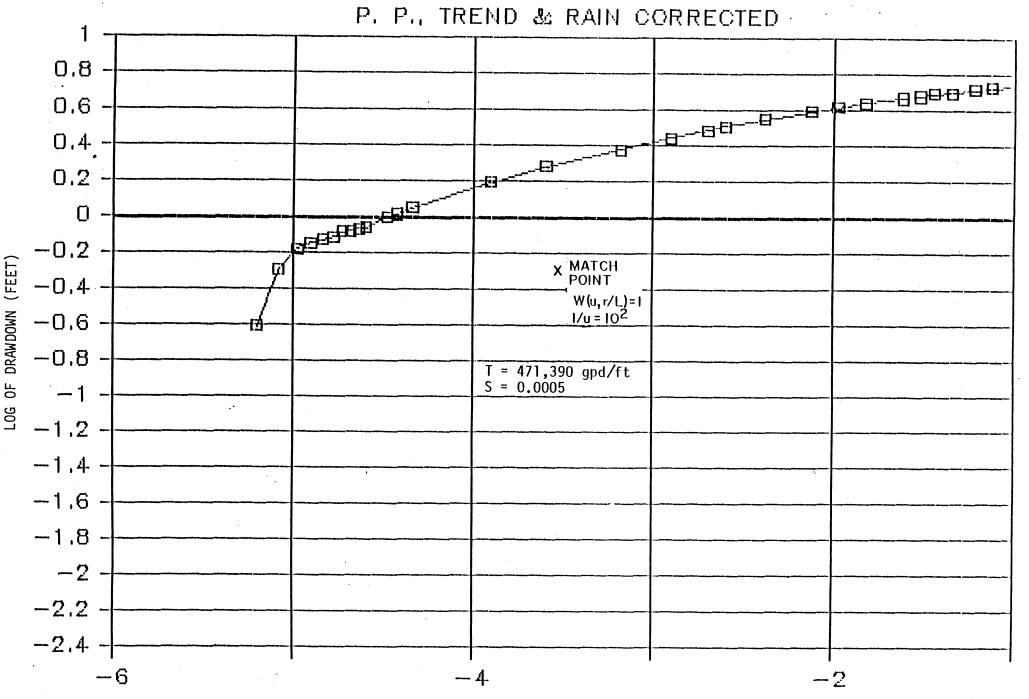


DRAWDOWN (FEET)




## DRAWDOWN TPW-1A

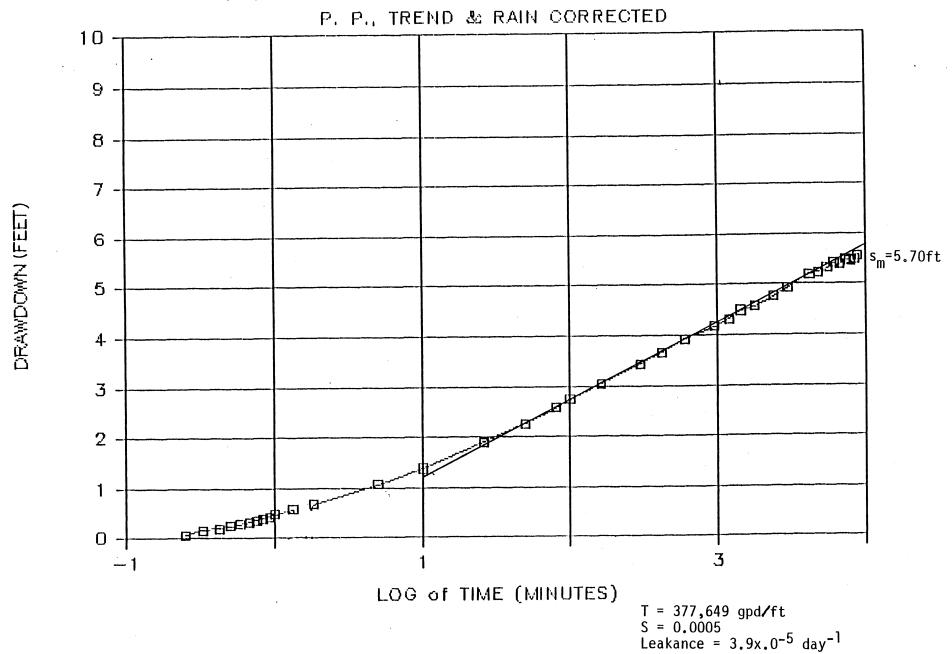







LOG OF TIME/RADIUS SQUARED (MINUTES/FEET²)


P. P., TREND & RAIN CORRECTED





LOG OF TIME/RADIUS SQUARED (MINUTES/FEET²)

#### HANTUSH I METHOD



HANTUSH, M.S., 1964.

HYDRAULICS OF WELLS. ADVANCES.

IN HYDROSCIENCES

The point where W(u, r/L) = 1 and  $1/u = 10^2$  is chosen as match point  $A_{90}$ . On the observed data sheet this point has the coordinates s = 0.035 m ant t = 0.22 day. Introduction of the appropriate numerical values into Eqs. (27) and (28) yields

$$kD = \frac{Q}{4\pi s} \text{ II'}(u,r/L) = \frac{761}{4 \times 3.14 \times 0.035} \times 1 = 1729 \text{ m}^2/\text{day}$$

and

$$S = \frac{4kDt}{r^2}u = \frac{4 \times 1729 \times 0.22}{90^2} \times \frac{1}{10^2} = 1.9 \times 10^{-3}$$

Furthermore, because r = 90 m and r/L = 0.1 it follows that L = 900 m and hence  $c = L^2/kD = (900)^2/1729 = 468$  days.

#### 3.4.2. HANTUSH'S METHOD 1

IIANTUSII (1956) developed several methods of analyzing the data from pumping tests in semi-confined aquifers, using the inflection point of the time-drawdown curve on single logarithmic paper. However, to determine the inflection point the steady-state drawdown should be known from direct observation or from extrapolation. The following assumptions and conditions should be satisfied:

- The assumptions and limiting conditions as listed for the Walton method (Section 4.1).
- The steady-state drawdown should be (approximately) known.

In the Hantush method I, which is based on Eq. (27), the drawdown measurements of a single piezometer are used.

The curve of s versus t on single logarithmic paper has an inflection point p, discussed further below (Fig. 26) where the following relations hold

$$s_p = \frac{1}{2} s_m = \frac{Q}{4\pi k D} K_0 \left(\frac{r}{L}\right) \tag{29}$$

where  $K_0$  is the modified Bessel function of the second kind and zero order.

b. 
$$u_p = \frac{r^2 S}{4kDt_p} = \frac{r}{2L}$$
 (30)

c. the slope of the curve at the inflection point, As,, is given by

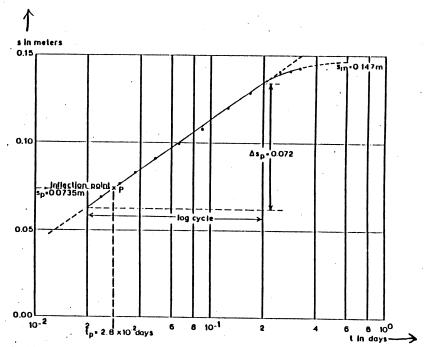



Fig. 26. Analysis of data from pumping test 'Dalem' (r = 90 m) the Hantush method

$$ds_{p} = \frac{2.30Q}{4\pi kD} e^{-r/L} \tag{31}$$

or

$$r = 2,30L (\log \frac{2.30Q}{4\pi kD} - \log As_p)$$
 (32)

d. at the inflection point the relation between the drawdown and the slope of the curve is given by

$$2.30 \frac{s_r}{ds_r} = e^{r/L} K_0 (r/L)$$
 (33)

In Eqs. (29) to (33) the index p means at the inflection point. Further  $\Delta s$  stands for the slope of a straight line, i.e. the drawdown difference per log cycle of time.

#### Procedure

- Plot on single logarithmic paper the drawdown s versus the corresponding time t (t on logarithmic scale) and draw the curve that best fits through the plotted points (time-drawdown curve, Fig. 26).
- Determine the value of the maximum drawdown  $s_m$  by extrapolation. It will be noticed that this is only possible if the period of the test was long enough.
- Calculate  $s_p$  by using Eq. (29):  $s_p = {1 \choose 2} s_m$ . The value of  $s_p$  on the curve locates the inflection point P.
- Read the value of t, at the inflection point from the time-axis (absciss).
- Determine the slope  $As_p$  of the curve at the inflection point. This can be closely approximated by reading the drawdown difference per log cycle of time over the straight portion of the curve on which the inflection point lies, or over the tangent to the curve at the inflection point.
- Substitute the values of  $s_p$  and  $\Delta s_p$  into Eq. (33) and find r/L by interpolation from the table of the function  $e^x K_0(x)$  given in Annex III.
- Knowing r/L and r, calculate L.
- Knowing Q,  $s_p$ ,  $\Delta s_p$  and r/L, calculate kD from Eq. (31) using the table of the function  $e^{-x}$  (Annex III), or from Eq. (29) using the table of the function  $K_0(x)$ , (Annex III).
- Knowing kD,  $t_p$ , r and r/L, calculate S from Eq. (30).
- Knowing kD and L, calculate c from the relation  $c = L^2/kD$ .

#### Remarks

- The accuracy of the calculated formation constants depends on the accuracy of the extrapolation of the value of  $s_m$ . The calculation should therefore be checked by substituting the values of S, L and kD into Eqs. (28) and (27).

For different values of t, s should be calculated. The values of s should – in any case if the values of t are not too small – fall on the observed data curve. If the calculated data deviate from the observed data, the extrapolation of  $s_m$  should be adjusted. Sometimes the observed data curve may be drawn somewhat steeper or flatter through the plotted points and so  $\Delta s_p$  can be adjusted too. With the new values of  $s_m$  and/or  $\Delta s_p$  the calculation is repeated.

- If there is more than one piezometer this method can be applied to the data of each piezometer separately, or the Hantush method III for the analysis of unsteady-state flow in leaky aquifers with more than one piezometer should be applied.

#### Example

86

From the pumping test 'Dalem' the data from the piezometer at 90 m (Table 10) are used for a numerical example.

The drawdown data from this well are plotted versus t on single logarithmic paper (Fig. 26) and the maximum (or steady-state) drawdown is found by extrapolation ( $s_m = 0.147$  m). According to Eq. (29) the drawdown at the inflection point

 $s_p = \frac{1}{2} s_m = 0.0735$  m. Plotting this point on the time-drawdown curve gives  $t_p = 2.8 \times 10^{-2}$  day.

Through the inflection point of the curve a tangent line to the curve is drawn which matches here with the straight portion of the curve itself. The slope of this tangent line  $\Delta s_n = 0.072$  m.

Introducing these values into Eq. (33) gives

$$2.30 \frac{s_p}{ds_p} = 2.30 \times \frac{0.0735}{0.072} = 2.34 = e^{r/L} K_0(r/L)$$

Using Annex III gives r/L = 0.15 and because r = 90 m it follows that L = 90/0.15 = 600 m.

Furthermore  $Q = 761 \text{ m}^3/\text{day}$  is given, and the value of  $e^{-r/L} = e^{-0.15} = 0.86$  is found from Annex III. Substitution of these numerical values into Eq. (31) yields

$$kD = \frac{2.30Q}{4\pi ds_p} e^{-r/L} = \frac{2.30 \times 761}{4 \times 3.14 \times 0.072} \times 0.86 = 1665 \text{ m}^2/\text{day}$$

and consequently

$$c = \frac{L^2}{kD} = \frac{600^2}{1665} = 216 \text{ days}$$

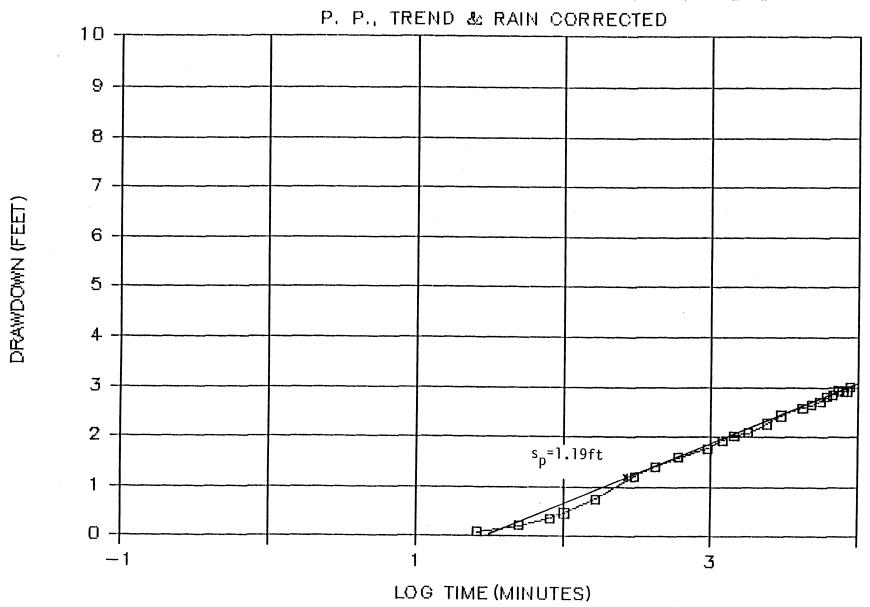
Introduction of the appropriate numerical values into Eq. (30) gives

$$S = \frac{r4kDt}{2Lr^2} = \frac{90}{2 \times 600} \times \frac{4 \times 1665 \times 2.8 \times 10^{-2}}{90^2} = 1.7 \times 10^{-3}$$

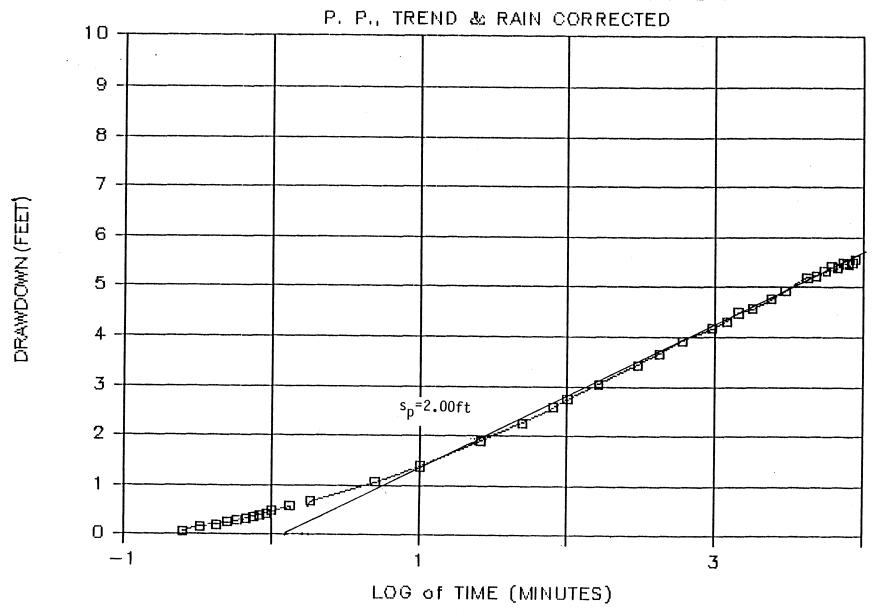
To verify the extrapolated steady-state drawdown, the drawdown at a chosen moment is calculated using Eqs. (27) add (28). If t = 0.1 days is chosen, then

$$u = \frac{r^2 S}{4kDt} = \frac{90^2 \times 1.7 \times 10^{-3}}{4 \times 1665 \times 10^{-1}} = 0.02$$

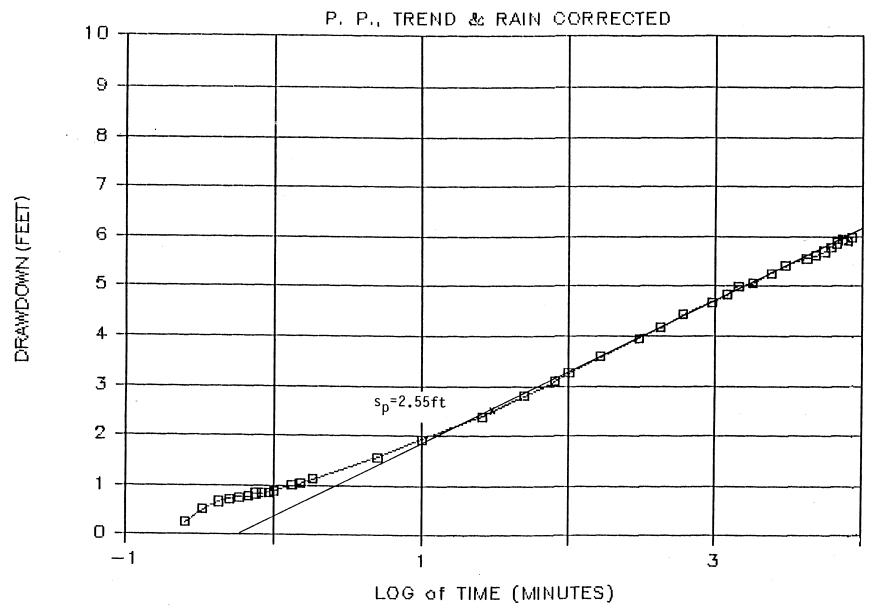
According to Annex IV, W(u, r/L) = 3.11 (for u = 0.02 and r/L = 0.15). Thus

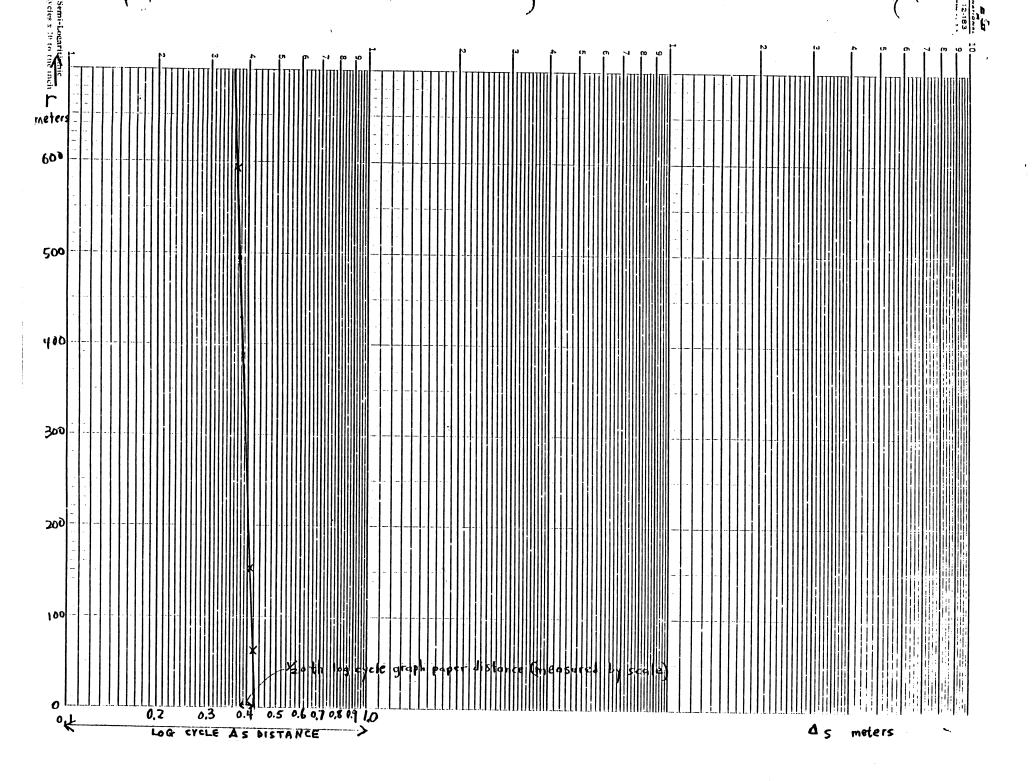

$$s_{(r=0.1)} = \frac{Q}{4\pi kD} W(u,r/L) = \frac{761}{4 \times 3.14 \times 1665} \times 3.11 = 0.113 \text{ m}$$

The point t = 0.1, s = 0.113 falls on the time-drawdown curve and justifies the extrapolated value of  $s_m$ .


In practice several points should be tried out.

## HANTUSH II METHOD


## DRAWDOWN DMW-1A+1950




## DRAWDOWN DMW-1A+500



## DRAWDOWN DMW-1A+200





# HANTUSH, M.S., 1964. HYDRAULICS OF WELLS. ADVANCES IN HYDROSCIENCES

## 3.4.3. HANTUSH'S METHOD II

This method, which is also based on Eq. (27), can be used to analyse the data from pumping tests for which the assumptions and limiting conditions as described in Section 4.1 (Walton method) are satisfied. However, it should be noted that data from at least two piezometers should be available and that the maximum drawdown can be extrapolated for each of these wells.

#### Procedure

- Plot on single logarithmic paper the drawdown s versus the corresponding time t for all piezometers (t on logarithmic scale, Fig. 27).
- Determine the slope of the straight portion of each curve; these are the values  $\Delta s$  (the drawdown difference per log cycle of time).
- Plot on single logarithmic paper distance r versus slope  $\Delta s$  ( $\Delta s$  on logarithmic scale), and draw the best-fit straight line through the plotted points. This line is the graphic representation of Eq. (32).
- Determine the slope of this line  $\Delta r$ : the difference of r per log cycle of  $\Delta s$  (Fig. 28).
- Extend the straight line till it intercepts the absciss where r = 0 and  $\Delta s = (\Delta s)_0$ . Read the value of  $(\Delta s)_0$ .
- Knowing the values of  $\Delta r$  and  $(\Delta s)_0$ , calculate L from Eq. (34)

$$L = \frac{1}{2.30} \, dr \tag{34}$$

and kD from Eq. (35)

$$kD = 2.30 \frac{Q}{4\pi (\Delta s)_0} \tag{35}$$

- Knowing kD and L, calculate c from the relation  $c = L^2/kD$ .
- With the known values of Q, r, kD and L, calculate  $s_p$  for each observation well, using Eq. (29):  $s_p = (Q/4\pi kD)K_0(r/L)$  and the table for the function  $K_0(x)$ , given in Annex III.

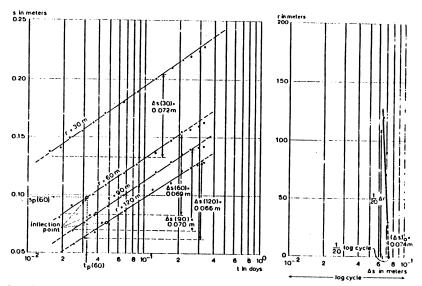



Fig. 27. Analysis of data from pumping test 'Dalem' with the Hantush method II: Determination of values of Δs for different values of r

Fig. 28. Idem, Determination of the value of  $\Delta r$ 

- Plot each  $s_p$  value on its corresponding drawdown-time curve and read  $t_p$  on the absciss.
- Knowing the values of kD, r, r/L and  $t_p$ , calculate S from Eq. (30):  $(r^2S)/(4kDt_p) = \frac{1}{2}(r/L)$ .

#### Example

From the pumping test 'Dalem' (Table 10), data from the piezometers at 30, 60, 90 and 120 m are used in working out a numerical example.

In Fig. 27 a time-drawdown curve has been drawn for each of the piezometers on single logarithmic paper. The slope of the straight portion of each curve was determined, resulting in

$$\Delta s$$
 (30 m) = 0.072 m  
 $\Delta s$  (60 m) = 0.069 m  
 $\Delta s$  (90 m) = 0.070 m  
 $\Delta s$ (120 m) = 0.066 m

In Fig. 28 the values of  $\Delta s$  were plotted versus r on single logarithmic paper and a straight line was fitted through the plotted points. Because of its steepness, the slope was measured as the difference of r over 1/20 log cycle of  $\Delta s$  (if 1 log cycle measures 10 cm, 1/20 log cycle measures 0.5 cm). The difference of r per 1/20 log cycle of  $\Delta s$  equals 120 m or the difference of r per log cycle of  $\Delta s$ , i.e.  $\Delta r$ , equals 2400 m. The straight line intersects the  $\Delta s$  axis where r = 0 in the point  $(\Delta s)_0 = 0.074$  m. Substitution of these values into Eqs. (34) and (35) gives

$$L = \frac{1}{2.30} \Delta r = \frac{1}{2.30} \times 2400 = 1044 \text{ m}$$

and since  $Q = 761 \text{ m}^3/\text{day}$ 

$$kD = \frac{2.30Q}{4\pi (ds)_0} = \frac{2.30 \times 761}{4 \times 3.14 \times 0.074} = 1883 \text{ m}^2/\text{day}$$

linally

$$c = \frac{L^2}{kD} = \frac{(1044)^2}{1883} = 550 \text{ days}$$

For each piezometer the value of r/L is calculated and the corresponding values of  $K_0(r/L)$  are found in Annex III. The results are listed in Table II.

TABLE 11

Data to be substituted into Eqs. (29) and (30)

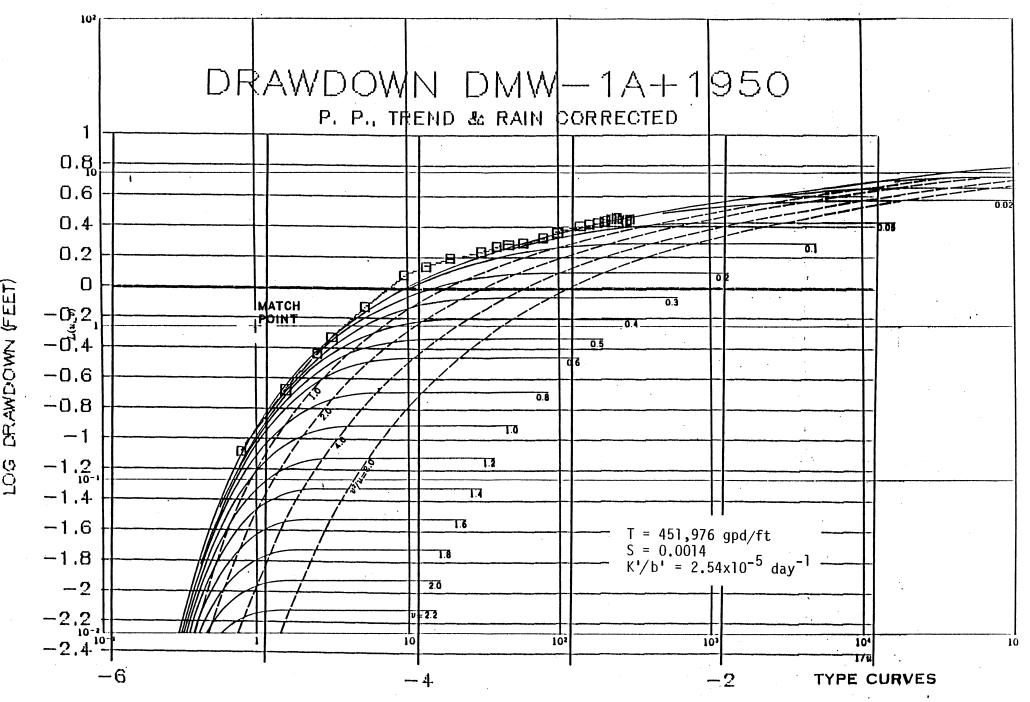
r (m)	rJL	$K_0(r/L)$	<i>s,</i> (m)	/, (day)	ار (nı)
30	0.0287	3.668	0.1200	outside figure	0.240
60	0.0575	2.984	0.0982	$3.25 \times 10^{-1}$	0.196
90	0.0860	2.576	0.0841	$3.85 \times 10^{-3}$	0.168
120	0.1148	2.290	0.0748	4.70 × 10 ⁻²	0.150

The drawdown, s_p, in the inflection point of the curve through the observed data, as plotted in Fig. 27 for the piczometer at 60 m, is calculated from Eq. (29)

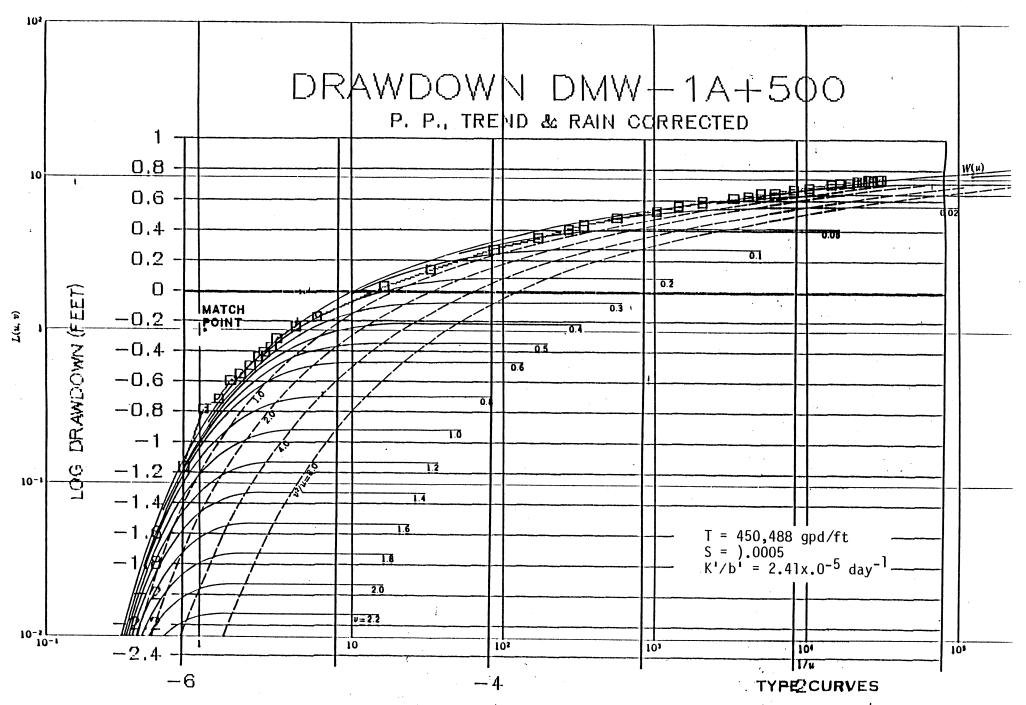
$$s_p(60) = \frac{Q}{4\pi kD} K_0(r/L) = \frac{761}{4 \times 3.14 \times 1883} \times 2.984 = 0.0982 \text{ m}$$

The point on this curve for which s = 0.0982 m is determined; this is the inflection point. On the absciss the value of  $t_p$  at the inflection point is  $t_p$  (60) =  $3.25 \times 10^{-2}$  days. While from Eq. (29) it follows that  $s_m$  (60) =  $2.s_p$  (60) = 0.196 m.

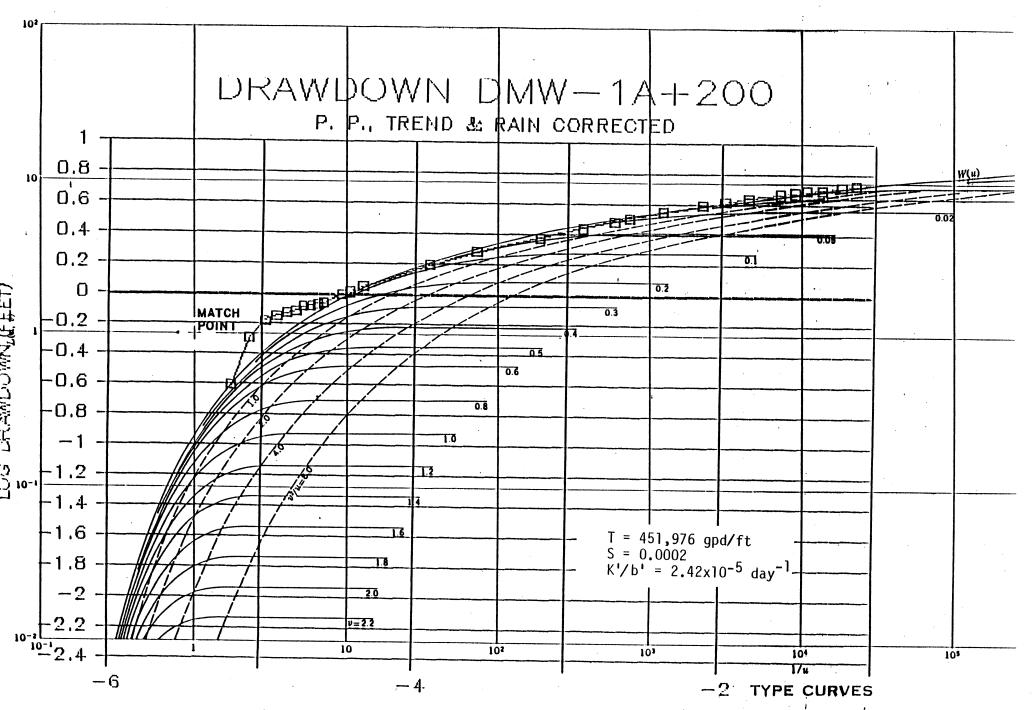
This calculation is also made for the other piezometers. The results are listed Table 11.


Substitution of the values of  $t_r$  into Eq. (30) yields values of S. For example for r=60 m

$$S = \frac{r}{2L} \frac{4kDt_r}{r^2} = \frac{60}{2 \times 1044} \times \frac{4 \times 1880 \times 3.25 \times 10^{-2}}{60^2} = 2.0 \times 10^{-3}$$


In the same way for r = 90 m and for r = 120 m, the values  $S = 1.6 \times 10^{-3}$  c  $S = 1.5 \times 10^{-3}$  are calculated. The average value of  $S = 1.7 \times 10^{-3}$ . It will be noticed that the calculated values for the steady-state drawdown are so what higher than the extrapolated values from Table 8.

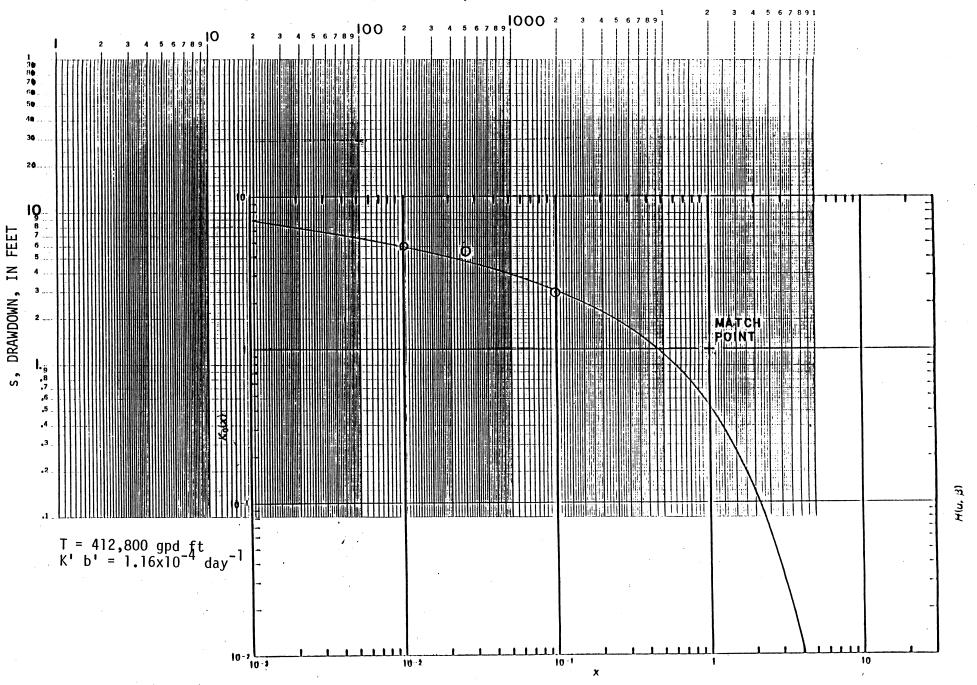
ANNEX	III. Ta	ible of	the fu	nctions (	•^, e ⁻ ^	, K _o (x)	and e	Κ _ο (x);	after ∺⁄	NTUSH	(1956)				-
x	e ^x	e ^{-x}	K _o (x)	e ^x K _o (x)	x	e ^x ·	e ^{-x}	K ₀ (x)	e ^x K _o (x)	x	e ^x	e-x	K _o (x)	e ^x K _o (x)	)
0.010 11 12 13 14 15 16 17 18	1.012		4.721 4.626 4.539 4.459 4.385 4.316 4.251 4.191 4.134 4.080	4.677 4.594 4.517 4.447 4.381 4.320 4.263	11 12 13 14 15 16 17 18	1.105 1.116 1.127 1.139 1.150 1.162 1.173 1.185 1.197 1.209	0.905 0.896 0.887 0.378 0.369 0.861 0.852 0.844 0.835	1.333 2.248 2.169	2.682 2.505 2.534 2.471 2.412 2.358 2.309 2.262 2.219 2.179	1.1 1.2 1.3 1.4 1.5 1.6 1.7	3.669 4.055	0.368 0.333 0.301 0.272 0.247 0.223 0.202 0.183 0.165 0.150	0.421 0.365 0.318 0.278 9.244 0.214 0.188 0.165 0.146 0.129	1.144 1.098 1.057 1.021 0.988 0.958 0.931 0.906 0.883 0.861	
0.020 21 22 23 24 25 26 27 28 29	1.020 1.021 1.022 1.023 1.024 1.025 1.026 1.027 1.028 1.029	0.980 0.979 0.978 0.977 0.976 0.975 0.974 0.973 0.972 0.971	4.028 3.980 3.933 3.889 3.846 3.766 3.729 3.692 3.657	3.979 3.940 3.902 3.866 3.831 3.797	22 23 24 25 26 27 28	1.221 1.234 1.246 1.259 1.271 1.284 1.297 1.310 1.323 1.336	0.819 0.811 0.802 0.794 0.787 0.779 0.771 0.763 0.756 0.748	1.753 1.706 1.662 1.629 1.580 1.541 1.505 1.470 1.436	2.141 2.105 2.071 2.039 2.008 1.979 1.952 1.925 1.900 1.876	2.1 2.2 2.3 2.4 2.5 2.5 2.7 2.8	1.102(1) 1.218(1) 1.346(1)	0.135 0.122 0.111 0.100 9.07 (-2) 8.21 (-2) 7.43 (-2) 6.72 (-2) 6.08 (-2) 5.50 (-2)	8.93 (-2) 7.91 (-2)	0.842 0.823 0.806 0.789 0.774 0.760 0.746 0.733 0.721 0.709	
0.030 31 32 33 34 35 36 37 38	1.030 1.031 1.032 1.034 1.035 1.036 1.037 1.038 1.039	0.970 0.969 0.968 0.967 0.966 0.965 0.964 0.963	3.623 3.591 3.559 3.528 3.499 3.470 3.442 3.414 3.388 3.362	3.675 3.647	31 32 33 34 35 36 37 38	1.350 1.363 1.377 1.391 1.405 1.419 1.433 1.448 1.462 1.477	0.733 0.726 0.719 0.712 0.705 0.698 0.691 0.684	1.372 1.342 1.314 1.286 1.259 1.233 1.207 1.183 1.160 1.137	1.853 1.830 1.809 1.788 1.768 1.749 1.731 1.713 1.696 1.679	3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9	2.711(1) 2.996(1) 3.312(1) 3.660(1) 4.045(1) 4.470(1) 4.940(1)	4.98 (-2) 4.50 (-2) 4.08 (-2) 3.69 (-2) 3.34 (-2) 3.02 (-2) 2.73 (-2) 2.47 (-2) 2.24 (-2) 2.02 (-2)	3.47 (-2) 3.10 (-2) 2.76 (-2) 2.46 (-2) 2.20 (-2) 1.96 (-2) 1.75 (-2) 1.56 (-2) 1.40 (-2) 1.25 (-2)	0.687 0.677 0.667 0.658 0.649 0.640 0.632 0.624 0.617	
0.040 .041 .042 .043 .044 .045 .046 .047 .048	1.043 1.044 1.045 1.046 1.047 1.048 1.049	0.961 0.960 0.959 0.958 0.957 0.956 0.955 0.954 0.953	3.219	3.473 3.450 3.429 3.408 3.387 3.367 3.348 3.329 3.310 3.292	.42 .43 .44 .45	1.492 1.507 1.522 1.537 1.553 1.568 1.584 1.600 1.616	0.644 0.638 0.631 0.625 0.619	1.072 1.052 1.032 1.013 0.994 0.976 0.958	1.647 1.632 1.617 1.602 1.589 1.575 1.562			1.83(-2) 1.00(-2)	1.00(-2) 8.9 (-3) 8.0 (-3) 7.1 (-3) 6.4 (-3) 5.7 (-3) 5.1 (-3) 4.6 (-3) 4.1 (-3)	0.602 0.595 0.589 0.582 0.576 0.570 0.564 0.559	
0.050 .051 .052 .053 .054 .055 .056 .057	1.055 1.056 1.058 1.059 1.060	0.951 0.950 0.949 0.948 0.947 0.946 0.945 0.945 0.944	3.001 2.984 2.967	3.274 3.256 3.239 3.223 3.206 3.190 3.174 3.159 3.144 3.129	.52 .53 .54 .55 .56 .57	1.649 1.665 1.682 1.699 1.716 1.733 1.751 1.768 1.786 1.804	0.594	0.908 0.892 0.877 0.861 0.847 0.832 0.818 0.804	1.489 1.478 1.467 1.457	5.0	1.484(2)		3.7 (-3)	0.548	
.062	1.063 1.064 1.065 1.066 1.067 1.068	0.941 0.940 0.939 0.938 0.937 0.936 0.935	2.916 2.900 2.884 2.869 2.853	3.114 3.100 3.086 3.072 3.058 3.045 3.032 3.019 3.006 2.994	.61 .62 .63 .64 .65	1.859 1.878 1.896 1.915	0.549 0.543 0.538 0.533 0.527 0.522 0.517 0.512 0.507	0.765 0.752 0.740 0.728 0.716 0.704 0.693 0.682	1.398 1.389 1.380 1.371 1.363 1.354 1.346		-			·	
0.070 71 72 73 74 75 76 77 78	1.076 1.077 1.078 1.079 1.080 1.081	0.932 0.931 0.930 0.930 0.929 0.928 0.927 0.926 0.925		2.981 2.969 2.957 2.945 2.934 2.923 2.911 2.900 2.889 2.879	73 74 75 76 77 78	2.014 2.034 2.054 2.075 2.096 2.117 2.138 2.160 2.181 2.203	0.492 0.487 0.482 0.477 0.472 0.468 0.463	0.650 0.640 0.630 0.620 0.611 0.601 0.592	1.315 1.307 1.300 1.293 1.285 1.278 1.272						
0.080 81 82 83 84 85 86 87 88	1.084 1.085 1.086 1.088 1.089	0.921 0.920 0.919 0.918 0.918 0.917	2.647 2.635 2.623 2.611 2.599 2.587 2.576 2.554 2.553 2.542	2.368 2.857 2.847 2.837 2.827 2.817 2.807 2.798 2.788 2.779	81 82 83 84 85 86 87	2.225 2.248 2.270 2.293 2.316 2.340 2.363 2.387 2.411 2.435	0.436 0.432 0.427 0.423	0.557 0.548 0.540 0.532 0.524 0.516 0.509	1.239 1.233 1.226 1.220						
0.090 91 92 93 94 95 96 97 98	1.097 1.099 1.100 1.101 1.102	0.913 0.912 0.911 0.910 0.909 0.908 0.908	2.499 2.488 2.478 2.467 2.457 2.447	2.769 2.760 2.751 2.742 2.733 2.725 2.716 2.707 2.699	91 92 93 94 95 96 97	2.460 2.484 2.509 2.534 2.560 2.576 2.612 2.633 2.664 2.601	9.407 0.402 9.398 0.395 0.391 0.387 0.283 0.379 2.275	0.487 0.480 0.473 0.466 0.459 0.452 0.452 0.446 0.410	1.197 1.192 1.186 1.181 1.175 1.170 1.165 1.159		•				






LOG of TIME/RADIUS SQUARED (MINUTES/FT2)




LOG of TIME/RADIUS SQUARED (MINUTES/FT2)



LOG of TIME/RADIUS SQUARED (MINUTES/FT2)



## r, DISTANCE FROM PUMPED WELL, IN FEET



-Type curve of the Bessel function  $K_{n}(x)$  versus x.

## ANISOTROPIC METHOD

(Requires Hantush - Jacob Method)

Ref. - Analysis of Data from Pumping Test in Anisotropic Aquifers by Mandi Hantush, Journal of Geophysical Research, Vol. 71 (1966) Analysis of Data from Pumping Tests in Anisotropic Aquifers

## MAHDI S. HANTUSH

The College of Engineering, University of Baghdad, Baghdad, Iraq Journal of Geophysica Research Jan-Feb. 1966 Vol. 71

Abstract. In conventional methods of aquifer tests homogeneous and isotropic aquifers are assumed. In many instances, however, the aquifers tested are anisotropic. Procedures are outlined for determining the principal directions of anisotropy and the hydraulic properties of homogeneous anisotropic aquifers. Data from pumping tests in leaky or nonleaky aquifers are used. The aquifers are uniform in thickness, and the flow therein during the period of the test behaves as if it were in an infinite aquifer. The collected data are from at least two groups of wells if the principal directions of anisotropy are known and from at least three groups of wells if these directions are not known. Each group of wells is located on a different radial line. When the pumped well partially penetrates the aquifer, the observation wells should either be completely screened throughout the aquifer or be located at distances from the pumped well of at least  $1.5b(K_s/k_r)^{1/3}$ , where b is the uniform thickness of the aquifer,  $K_s$  is the vertical conductivity, and  $K_r$  is the directional conductivity in the horizontal planes of the aquifer. The procedures are illustrated by an example of computation.

### INTRODUCTION

The methods for analyzing data from pumping tests, in which the pumped well completely penerates and steadily discharges from infinite nonleaky and leaky artesian aquifers, are based on either the Theis formula or on the Hantush-Jacob formula [see for example Schoeller, 1959, 1962; Todd, 1959; Hantush, 1964; De Wiest, 1965. The Theis formula, describing the flow in nonleaky aquifers, is given by

$$s = (Q/4\pi T)W(u) \tag{1}$$

and the Hantusch-Jacob formula for the flow a leady aquifers can be expressed by either

$$s = (Q/4\pi T) W(u, r/B)$$
 (2)

$$s = (Q/4\pi T) V^*(q, r/B)$$
 (3)

with the ultimate steady-state drawdown s.

$$s_{\bullet} = (Q/2\pi T) K_0(r/B) \tag{4}$$

aliere

7.

1

÷

$$u = r^2/4\nu t$$
  $\nu = T/S$   $B^2 = T/(K'/b')$   
 $q = (K'/b')t/S$ 

and a denotes the induced drawdown at any most since pumping started and at any point r

distant from the pumped well; Q is the constant discharge of the completely penetrating well; T and S are, respectively, the transmissivity and the storativity (storage coefficient) of the homogeneous and isotropic aquifer; (K'/b') is the leakage coefficient, K' and b' being the hydraulic conductivity and the thickness of the semipervious layer, respectively; W(u) and W(u, r/B) are the well functions for nonleaky and leaky aquifers, respectively; they are extensively tabulated [see for example Hantush, 1956, 1964; Walton, 1962; De Wiest, 1965]; and K. is the zero-order modified Bessel function of the second kind, tabular values of which are available [see for example Dwight, 1961; Hantush, 1956; Walton, 1962; De Wiest, 1965]. The function  $W^*(q, r/B)$  is the second form of the well function for leaky aquifers and is defined by

$$W^*(\alpha, \beta) = 2K_0(\beta) - W(\alpha, \beta)$$
$$= W(0, \beta) - W(\alpha, \beta)$$

where  $W(\alpha, \beta)$  is the well function for leaky aquifers. Obviously,  $W^*(\alpha, \beta)$  can be obtained from the available tables of  $W(\alpha, \beta)$ .

The methods of analyzing data from pumping tests in leaky and nonleaky homogeneous isotropic aquifers, henceforth referred to as the isotropic methods of analysis, are well known [see for example Jacob, 1950; Butler, 1957;

Todd, 1959; Schoeller, 1959, 1962; Walton, 1962; Hantush, 1964; De Wiest, 1965]. All these methods first determine T and one or both of the constant parameters  $\nu$  and B. The two remaining unknowns S and (K'/b') follow-from the relations  $\nu = T/S$  and  $R^2 = T/(K'/b')$ , since T has already been obtained. Obviously, S and (K'/b') could not have been computed if the value of T, appearing in the expressions for  $\nu$  and B, were not the same as that involved in the factor  $(Q/4\pi T)$ .

In many instances, aquifers may be considered homogeneous but not isotropic. In such aquifers, the hydraulic conductivity varies from direction to direction. In two-dimensional flow (or what may be considered as two-dimensional flow), the transmissivity in the flow direction, usually referred to as the directional transmissivity can be shown [see for example Maasland, 1957] to be given by

$$T_{*}/[\cos^{2}\theta + (T_{*}/T_{*})\sin^{2}\theta] = (5)$$

where  $T_{\bullet}$ ,  $T_{\bullet}$ , and  $T_{\bullet}$  are the transmissivities radial line in an anisotropic aquifer will yield in the  $x_{\bullet}$ ,  $y_{\bullet}$  and r directions, respectively, the values for  $T_{\bullet}$  and either one or both of the direction making the angle  $\theta$  with the x axis, and where the coordinate axes x and y are the determination of  $T_{\bullet}$ ,  $\nu$  and B' in only aparallel to the principal direction of anisotropy.

The counterparts of (1), (2), (3), and (4) for homogeneous anisotropic aquifers [Hantush, 1965] are

$$s = (Q/4\pi T_*) W(u') \tag{6}$$

$$s = (Q/4\pi T_{\bullet}) W(u', r/B')$$
 (7)

$$s = (Q/4\pi T_*) W^*(q, r/B')$$
 (8)

$$s = (Q/2\pi T_s) K_0(r/B') \tag{9}$$

where

$$u' = r^{2}/4\nu't \qquad q = (K'/b')t/S$$

$$T_{*} = (T_{*}T_{*})^{1/2}t \nu' = T_{*}/S \qquad (10)$$

$$B' = [T_{*}/(K'/b')]^{1/2}$$

It should be observed that, although  $T_{\bullet}$  is a constant for the anisotropic aquifer, the quantities  $\nu$  and B' are not constant but are functions of direction, since they depend on  $T_{\bullet}$ , which varies with the polar angle  $\theta$ .

Equations 6, 7, 8, and 9 are analogous to (1), (2), (3), and (4), respectively, the difference being in the meaning of the parameters in-

volved. This analogy suggests the possibility of making use of the isotropic methods of analysis in attempting to develop procedures for analysing similar data from anisotropic aquifers.

## ANALYSIS

The isotropic methods of analysis are based on one or the other of (1) through (4). The parameters T,  $\nu$ , and B in these equations are constants. In general, this is not true in the corresponding equations for the flow in anisotropic aquifers. Although T. herein is constant regardless of the location of the observed point. the quantities  $\checkmark$  and B' vary from direction to direction. They are constants for any given direction, however. Thus the drawdown variation in observation wells finished in anisotropic aquifers and located on any radial line will be given by (6), (7), (8), or (9), with constant values for  $T_{\bullet}$ ,  $\checkmark$ , and B'. Consequently, the isotropic methods of analysis when used in conjunction with data from observation wells located on a radial line in an anisotropic aquifer will yield parameters  $\checkmark$  and B' for that given direction.

The determination of  $T_{\bullet}$ ,  $\nu'$  and B' in only one direction provides three equations with four or five unknowns, depending on whether the principal directions of anisotropy are known. These equations are

$$T_* = (T_s T_v)^{1/2}$$
  $\nu' = T_r / S$  (11)  
 $B' = [T_r / (K'/b')]^{1/2}$ 

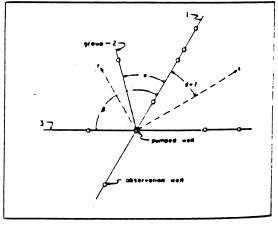



Fig. 1. Location of three rays of observation wells in anisotropic aquifer of unknown principal directions of anisotropy.

where the unknowns are  $T_{\bullet}$ ,  $T_{\bullet}$ ,  $S_{\bullet}$  (K'/b'), and the principal directions of anisotropy are is defined by  $\theta$  in the expression of  $T_{\bullet}$  [see (5)]. Consequently, more information is needed to complete the solution of the problem. Such information can be provided if observations in one or two (depending on whether  $\theta$  is known) other groups of observation wells are available.

Figure 1 shows three groups of wells (one sell can constitute a group), each on a different and all line. Let  $\alpha$  and  $\beta$  be the angles which the second and third line make, respectively, with the first. Let he z and y axes be parallel to the directions of anisotropy, the first line making the angle  $\theta$  with the x axis. Consequently, the first, second, and third lines of observation wells are making the angles  $\theta$ ,  $\theta$  +  $\alpha$ , and  $\theta$  +  $\beta$ with the z axis, respectively, the z axis being me of the principal directions of anisotropy. Let the values of the parameters  $(\nu', T_r, B')$  for the first, second, and third groups of observation wells be denoted by  $(\nu_1', T_{rt}, B_1'), (\nu_2', T_{r2}, B_2')$ , and  $(r_1' T_{r0}, B_1')$ , respectively. From (5),  $T_{r1}$ ,  $T_{re}$  and  $T_{re}$  are given by

$$T_{n} = T_{n}/[\cos^{2}\theta + n\sin^{2}\theta]$$

$$T_{n} = T_{n}/[\cos^{2}(\theta + \alpha) + n\sin^{2}(\theta + \alpha)]$$

$$T_{n} = T_{n}/[\cos^{2}(\theta + \beta) + n\sin^{2}(\theta + \beta)] /$$

$$(13)$$

from which the following two relations can be obtained

$$a = \frac{\cos^2\left(\theta + \alpha\right) + n\sin^2\left(\theta + \alpha\right)}{\cos^2\theta + n\sin^2\theta} \tag{15}$$

$$b = \frac{\cos^2(\theta + \beta) + n\sin^2(\theta + \beta)}{\cos^2\theta + n\sin^2\theta}$$
 (16)

*liere

$$a = (\nu_1'/\nu_2') = (B_1'/B_2')^2$$
 (17)

$$b = (\nu_1'/\nu_3') = (B_1'/B_3')^2$$
 (18)

$$\left[ n = T_z/T_v = (T_*/T_v)^2 \right] \tag{19}$$

known principal directions of anisotropy. If the principal directions of anisotrophy are known, the information required to solve for the four unknown quantities can be provided from observations in two groups of wells, each being on a different radial line. Let these two groups be those of the first and second lines (Figure 1). From (15) and (19), one obtains

$$T_{\nu} = T_{\nu} \left( \frac{\sin^2 \left(\theta + \alpha\right) - \alpha \sin^2 \theta}{\alpha \cos^2 \theta - \cos^2 \left(\theta + \alpha\right)} \right)^{0.5} \tag{20}$$

Since  $\theta$ ,  $\alpha$ ,  $T_{\bullet}$ ,  $v_1'$ ,  $v_2'$   $B_1'$   $B_2'$ , and, consequently,  $\alpha$  are known from observation, the successive solutions of (20), (19), (12), (13),  $S = (T_{rr}/v_1')$  or  $= (T_{rr}/v_2')$ , and  $(K'/b') = (T_{rr}/B_1'^2)$  or  $= (T_{rr}/B_2'^2)$  will produce values for  $T_{rr}$ ,  $T_{rr}$ ,  $T_{rr}$ , S, and (K'/b'), respectively.

Unknown principal directions of anisotropy. If the principal directions of anisotropy are unknown, the information required to solve for the five unknown quantities can be provided from observations in three groups of wells lying on different radial lines. Let these groups be those of Figure 1.

Solving (15) and (16) for  $\theta$  and n yields

$$\tan 2\theta = -2 \frac{(b-1)\sin^2 \alpha - (a-1)\sin^2 \beta}{(b-1)\sin 2\alpha - (a-1)\sin 2\beta}$$
(21)

$$n = \frac{\cos^2(\theta + \alpha) - a\cos^2\theta}{a\sin^2\theta - \sin^2(\theta + \alpha)}$$
(22)

or

$$n = \frac{\cos^2(\theta + \beta) - b \cos^2 \theta}{b \sin^2 \theta - \sin^2(\theta + \beta)}$$
 (23)

It should be noted that a negative value of  $\theta$  indicates that the positive x axis lies to the left of the first line of observation, wells

Equation 21 has two roots for the angle (2θ)
(15) in the range 0 and 2π of the xy plane. If one of the roots is δ, the other will be π + δ. Consequently, θ has the two values δ/2, and π/2 + δ/2. One of the values of θ yields n > 1 and the other n < 1. This is to be expected because these two values leave (15) and (16) invariant except for reciprocating the value of n. Since the x axis is assumed to be along the major axis of anisotropy, n = T_n/T_n > 1. Thus the cases the imajor axis of anisotropy, the other value locates the minor axis of anisotropy, the y axis.

The quantities  $\alpha$ ,  $\beta$ ,  $T_s$ ,  $\nu_1'$ ,  $\nu_2'$ ,  $\nu_2'$ ,  $B_1'$ ,  $B_1'$ ,  $B_2'$ , and, consequently,  $\alpha$  and b are known from observation. Successive solutions of (21), (22) or (23), (19), (12), (13), (14),  $S = T_{ca}/\nu_1'$  or  $T_{ca}/\nu_2'$  or  $T_{ca}/\nu_2'$  or  $T_{ca}/\nu_2'$  and  $T_{ca}/\nu_2'$  or  $T_{ca}/\nu_2'$  or  $T_{ca}/\nu_2'$  or  $T_{ca}/\nu_2'$ 

or =  $T_{rs}/B_s^{rs}$  or =  $T_{rs}/B_s^{rs}$  will produce values for  $\theta$ , n,  $T_s$ , and then  $T_s$ ,  $T_{rs}$ ,  $T_{rs}$ ,  $T_{rs}$ , S, and (K'/b'), respectively.

### PROCEDURES OF ANALYSIS

The procedures presented herein are for analyzing data from pumping tests in leaky aquifers. They are applicable step by step for tests in nonleaky aquifers after the steps involving the use of the leakage factor B' are dropped out.

The application of the isotropic methods on each group of wells on a radial line will determine values of the parameters  $T_{\bullet}$ ,  $\checkmark$ , and B'. Let  $(T_{e1}, v_1, B_1)$ ,  $(T_{e2}, v_2, B_2)$ , and  $(T_{e2}, v_2, B_2)$ be the values of these parameters obtained from applying the isotropic method on the first, second, and third group of wells, respectively. Theoretically, the relations  $T_{e1} = T_{e2} = \overline{T}_{e3}$ ,  $(\nu_1'/\nu_1') = (B_1'/B_1')^2, (\nu_1'/\nu_1') = (B_1'/B_1')^2,$ and  $(\nu_1'/B_1'' = \nu_2'/B_2'' = \nu_3'/B_3'')$  should hold. These equalities should be used as a guide when applying the isotropic methods of analysis. If these equalities are not at least approximately satisfied, field conditions are not in agreement with that assumed by theory and other vitiating conditions must be present. If they are reasonably satisfied, the procedures of analysis are as follows.

Known directions of anisotropy. Data from two groups of wells, each being on a different radial line, and the isotropic method of analysis produce the values  $(T_{\bullet \bullet}, \nu_1', B_1')$  and  $(T_{\bullet \bullet}, \nu_2', B_2')$ . The angles  $\alpha$  and  $\theta$  are known from observation (Figure 1). These values and successive computations in the following equations produce average values of the formation constants, namely,  $T_{\bullet}$ ,  $T_{\bullet}$ , S, and, in case of leaky aquifers, K'/b', the leakage coefficient.

$$a = 0.5[(\nu_1'/\nu_2') + (B_1'/B_2')^2]$$

 $a = \nu_1'/\nu_2'$  for nonleaky aquifers

$$T_{\bullet} = 0.5(T_{\bullet 1} + T_{\bullet 2}) \tag{25}$$

$$T_z = T_z^2/T_y \tag{26}$$

Equation 20 is used for  $T_n$ , and equation 12 and 13 are used for  $T_n$  and  $T_n$ .

$$S = 0.5[(T_{r_1}/\nu_1') + (T_{r_2}/\nu_2')]$$

$$K'/b' = 0.5S[(\nu_1'/B_1'^2) + \nu_2'/B_2'^2]$$
(27)

Unknown direction of anisotropy. The use of the isotropic method in conjunction with data from three groups of wells, each being on a different radial line (Figure 1) will yield the values  $(T_{e1}, \nu_1', B_1')$ ,  $(T_{e2}, \nu_2', B_2')$ , and  $(T_{e3}, \nu_2', B_2')$ . The angles  $\alpha$  and  $\beta$  are known from observation. The unknown principal directions of anisotropy, as well as the unknown formation constants, are obtained from successive computations in the following relations:

Equation 24 is valid for a.

$$b = 0.5[(\nu_1'/\nu_2') + (B_1'/B_2')^2]$$
 for leaky aquifers  

$$b = \nu_1'/\nu_2'$$
 for nonleaky aquifers (23)

Equations 26, 12, 13, and 14 are valid for  $T_m$   $R_{m_1}$ ,  $T_{m_2}$ , and  $T_{m_3}$ .

$$T_* = (1/3)(T_{*1} + T_{*2} + T_{*3})$$
  
 $T_* = T_* n^{1/2}$ 

Equations 26, 12, 13, and 14 are valid for  $T_{re}$ ,  $T_{re}$ , and  $T_{re}$ .

$$S = (1/3)[(T_{r_1}/\nu_1') + (T_{r_2}/\nu_2') + (T_{r_3}/\nu_2')]$$
(29)

$$K'/b' = (1/3)S[(\nu_1'/B_1'^2) + (\nu_2'/B_2'^2) + (\nu_3'/B_3'^2)]$$
(30)

When more than three groups of wells are available for observation, the application of the preceding analysis to each combination of three will produce a set of values for each of the formation constants and directions of anisotropy. The average of each set of values of a constant will be considered as the average value of the corresponding formation constant. For example, if four groups of wells are available, there will be four combinations of three. The application of the preceding analysis to these combinations produces four values for each of the constants. Theoretically, the four values of each of the unknowns, thus deter-

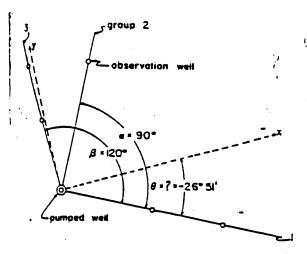



Fig. 2. Location of three rays of observation wells used in a pumping test in an anisotropic kaky aquifer.

mined, should be the same. In practice, four different values of each unknown may be obtained; they should not differ greatly, however, if field conditions approximate those called for by theory. The average of the four determined values for each constant will be taken as the average value of the constant in question.

Example of computation. Figure 2 illustrates the location of three rays of observation wells in a leaky anisotropic aquifer. The principal directions of anisotropy are not known. The isotropic methods of analysis in leaky aquifers produced the following values:  $T_{et} = 0.12 \text{ ft}^2/\text{ser}$ ,  $r_{t'} = 1150 \text{ ft}^2/\text{sec}$ ,  $B_{t'} = 4800 \text{ ft}$ ,  $T_{ez} = 0.10 \text{ ft}^2/\text{sec}$ ,  $r_{t'} = 615 \text{ ft}^2/\text{sec}$ ,  $B_{t'} = 3450 \text{ ft}$ ,  $T_{et} = 0.09 \text{ ft}^2/\text{sec}$ ,  $r_{e'} = 510 \text{ ft}^2/\text{sec}$ , and  $B_{t'} = 200 \text{ ft}$ .

The ratios  $v_1'/v_2' = 1.87$  and  $(B_1'/B_1')^2 = 1.94$  are approximately equal; so are the ratios  $v_1'/v_2' = 2.26$  and  $(B_1'/B_1')^2 = 2.16$ , and the ratios  $(v_1'/B_1'') = 5 \times 10^{-6}$ ,  $(v_2'/B_1'') = 5.17 \times 10^{-6}$ , and  $(v_2'/B_2'') = 4.81 \times 10^{-6}$ . Also the values of  $T_{co}$  are approximately the same. Such magnitudes of deviation may be due to observational errors as well as mechanical errors in applying the isotropic method of analysis. Consequently, average values of these ratios, as shown in (24), (28), (22 or 23), (29), and (30), will be used in the analysis. Successive slide rule computations yield the following values: 4 = 1.9, b = 2.21,  $\theta = -26^{\circ}51'$  (locating the major axis of anisotropy, since it gives n = 3.22

> 1),  $T_{\bullet} = 0.103$  ft²/sec,  $T_{\bullet} = 0.0575$  ft²/sec,  $T_{\bullet} = 0.185$  ft²/sec,  $T_{\bullet} = 0.127$  ft²/sec,  $T_{\bullet} = 0.0665$  ft²/sec,  $T_{\bullet} = 0.0575$  ft²/sec,  $S = 1.1 \times 10^{-4}$ , and  $K'/b' = 5.5 \times 10^{-3}$  sec⁻¹. The transmissivity in any direction is then given by (5).

Information that is obtained from applying the isotropic methods of analysis is used in the above procedures. To bring these procedures to completion, the information supplied by the isotropic methods should include values of  $T_{\bullet}$ and v from tests in nonleaky aquifers and values of  $T_*$  and  $\checkmark$  and/or B' from tests in leaky aquifers. Not all isotropic methods furnish such information, however. For example, the Thiem method, the Theis recovery method, the Skibitzke bailer method, and the Ferris slug method furnish values [see for example Jacob, 1950; Todd, 1959, Hantush, 1964; De Wiest, 1965] for  $T_{\bullet} = (T_{\bullet}T_{\bullet})^{1/2}$  only. Consequently, such methods do not supply enough information for the procedures presented above to be of use in solving even for  $T_*$  and  $T_*$ . A procedure in which data from tests in anisotropic aquifers are used and in which the number of observation wells is large enough to delineate the expected elliptical shape of an equal drawdown (or residual drawdown) curve is reserved for a subsequent paper. This procedure can be used where the present procedure fails to produce a solution for  $T_{-}$  and  $T_{-}$ .

## REFERENCES

Butler, S. S., Engineering Hydrology, Prentice-Hall, Englewood Cliffs, N. J., 1957.

De Wiest, R. J. M., Geohydrology, John Wiley & Sons, New York, 1965.

Dwight, H. B., Mathematical Tables, Dover Publications, New York, 1961.

Hantush, M. S., Analysis of data from pumping tests in leaky aquifers, Trans. Am. Geophys. Union, 37, 702-714, 1956.

Hantush, M. S., Hydraulics of wells, in Advances in Hydroscience, edited by V. T. Chow, Academic Press, New York, 1964.

Hantush, M. S., Wells in homogeneous anisotropic aquifers, Water Resources Res., in press, 1965.

Jacob, C. E., Engineering Hydraulics, edited by II. Rouse, chapter 5, John Wiley & Sons, New York, 1950.

Massiand, M., Theory of fluid flow through anisotropic media, in Drainage of Agricultural

## APPENDIX I WATER QUALITY ANALYSES



PRFOR	M PRIMARY	ANALYSI	S REPORT	
ALSAY INCORPORAT	ED	CLIE	NT NAME AND	 ADDRESS
P O BOX 6650				
LAKE WORTH, FLOR	IDA 33460			
19777		 SAMPI	LE NUMBER	
02-11-86 CLIENT		DATE	TIME COLLECT	TED /BY
02-11-86 1520			TIME RECEIVE	
WEST COAST WATER	SUPPLY	LOCA		
PARAMETER ARSENIC	STORET NO. 01002	DATE 03-03	<u>BY NBR</u> MD 57-318	RESULT, mg/L 0.007
BARIUM	01007	02-27	MD 57-316	0.148
CADMIUM	01027	02-27	MD 57-317	<0.001
CHROMIUM	01034	03-05	MD 57-319	<0.005
LEAD	01051	03-01	MD 57-317	0.006
MERCURY	71900	03-04	MD 57-318	<0.0002
SELENIUM	01147	03-03	MD 57-318	0.004
SILVER	01077	02-27	MD 57-316	0.002
FLUORIDE	00951	02-15	MD 57-311	<0.20
NITRATE-N	00630	02-20	BM 50-451	0.005
SODIUM	00929	03-07	MD 57-320	13.8

DATE 04-08-86

ID 86122

## GEO TEC INC. 1602 CLARE AVENUE . WEST PALM BEACH, FL 33401 . 305/833-7280

SFOR	M SECONDARY	ANALYSIS REPORT						
ALSAY INCORPORA	TED	CLIENT NAME AND ADD	RESS					
P 0 B0X 6650		••						
LAKE WORTH, FLOI	RIDA 33460	· <b>-</b>						
19777		SAMPLE NUMBER						
02-11-86 CLIENT	02-11-86 1520	DATE TIME COLLECTED	BY; RECEIVED					
WEST COAST WATER SUPPLY LOCATION								
PARAMETER	STORET NO	. DATE BY NBR	RESULT mg/L					
ALKALINITY	00410	02-12 MD 57-309	210.0					
CALCIUM	00916	03-07 MD 57-320	86.8					
CHLORIDE	00940	02-13 BM 62-99	10.4					
COLOR	00081	02-11 CM 43-249	15					
COPPER	01042	03-10 MD 57-322	<0.005					
CORROSIVITY			.31					
FOAMING AGENTS	38260	02-12 TM 64-13	46					
IRON	01045	03-10 MD 57-321	0.158					
MAGNESIUM	00927	03-07 MD 57-321	6.78					
MANGANESE	01055	03-10 MD 57-321	0.009					
ODOR	00085	02-11 CM 43-249	1					
pH	00400	02-12 MD 57-314	7.48					
SODIUM	00929	03-07 MD 57-320	13.8					
SULFATE	00945	02-19 MD 57-314	<5.0					
FILTERABLE RESID	JE 70300	02-21 CM 43-254	252					
TOTAL HARDNESS	00900	<u></u>	244.7					
ZINC	01092	03-06 MD 57-320	<0.10					

DATE 04-08-86 BY

LAB ID 86122



(	G	E	0	E		n	C.	16
				 	 •			

OFORM	PRIMARY ORGANICS					
ALSAY INCORPORATED	CLIENT NAME AND ADDRESS					
P D BOX 6650	. <del></del>					
LAKE WORTH, FLORIDA 33460	<del>-</del>					
19777	SAMPLE NUMBER					
02-11-86 CLIENT	DATE/TIME COLLECTED BY					
02-11-86 1520	DATE/TIME RECEIVED BY					
WEST COAST WATER SUPPLY	LOCATION					
,	<del>-</del>					

PARAMETER ENDRIN	STORET NO. 39390	RESULTS. mg/L <0.00005
LINDANE	39782	<0.00005
METHOXYCHLOR	39480	<0.0001
TOXAPHENE	39400	<0.0005
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2,4-D		<0.0001
2,4,5-TP	39760	<0.0001

METHOD FOR ORGANOCHLORINE PESTICIDES IN INDUSTRIAL EFFLUENTS. EPA 1973 METHOD FOR CHLORINATED PHENOXY ACID HERBICIDES IN INDUSTRIAL EFFLUENTS, EPA 1973

DATE 04-08-86 BY

LAB ID 86109

2535 LANDMARK DRIVE, SUITE 211
Clearwater (813) 796-2355 · Tampa (813) 223-9343

CLEARWATER, FL. 33519

.

BOARD OF DIRECTORS

CHARLES E. RAINEY CURTIS L. LAW JAN K. PLATT MIKE SALMON J.W. CATE, JR. WILLIAM C. MAYTUM

GENERAL MANAGER

GENE HEATH

SUMMARY OF WATER QUALITY ANALYSES
PERFORMED ON WATER SAMPLES
COLLECTED DURING THE
DRILLING OF THE DEEP MONITOR WELL
LOCATED 500 FEET FROM CYPRESS BRIDGE
TEST PRODUCTION WELL 1A

DATE	DEPTH	<u>C1</u>	<u>S04</u>	TDS	CONDUCTIVITY
4/02/86	660'	10.4	<1	213	300
4/03/86	660'	10.4	<1	210	300

2535 LANDMARK DRIVE, SUITE 211 Clearwater (813) 796-2355 Tampa (813) 223-9343

BOARD OF DIRECTORS

CLEARWATER, FL. 33519

CHARLES E. RAINEY CURTIS L. LAW JAN K. PLATT MIKE SALMON J.W. CATE, JR. WILLIAM C. MAYTUM

GENERAL MANAGER

GENE HEATH

SUMMARY OF WATER QUALITY ANALYSES
PERFORMED ON WATER SAMPLES
COLLECTED DURING THE
DRILLING OF THE DEEP MONITOR WELL
LOCATED 200 FEET FROM CYPRESS BRIDGE
TEST PRODUCTION WELL 1A

DATE	DEPTH	C1	<u>S04</u>	TDS	CONDUCTIVITY	ALKALINITY	TOTAL HARDNESS	CAL CIUM HARDNESS
4/14/86	168'	12.0	<1	193	310			
4/15/86	260'	10.4	<1	167	250			
4/15/86	350'	11.4	<1	185	300	·		
4/15/86	420'	9.9	<1	203	320			
4/15/86	514'	11.4	<1	202	310			
4/16/85	609'	6.2	<1	214	300			
4/17/86	700'	9.9	<1	218	300			
4/18/86	700' After 16 hours	9.9	12	211	300	173	161	157

2535 LANDMARK DRIVE, SUITE 211 Clearwater (813) 796-2355 · Tampa (813) 223-9343

CLEARWATER, FL. 33519

BOARD OF DIRECTORS

CHARLES E. RAINEY
CURTIS L. LAW
JAN K. PLATT
MIKE SALMON
J.W. CATE, JR.
WILLIAM C. MAYTUM

GENERAL MANAGER

GENE HEATH

SUMMARY OF WATER QUALITY ANALYSES PERFORMED ON WATER SAMPLES COLLECTED DURING THE DRILLING OF CYPRESS BRIDGE TEST PRODUCTION WELL 1A

DATE	DEPTH	<u></u>	<u>S04</u>	TDS	<u>FE</u>	CONDUCTIVITY
4/18/86	145'	10.9	17	497	-	1900
4/22/86	176'	12.0	<1	157	-	200
4/23/86	268'	10.9	<1	217	-	200
4/23/86	356'	9.4	<1	207	0.01	300
4/24/86	450'	10.9	<1	207	0.01	300
4/25/86	540'	10.9	10	205	0.03	300
4/29/86	635'	9.4	<1	202	0.02	300
4/29/86	696'	10.4	<1	203	<0.01	300

2535 LANDMARK DRIVE, SUITE 211 Clearwater (813) 796-2355 Tampa (813) 223-9343

CLEARWATER, FL. 33519

BOARD OF DIRECTORS

CHARLES E. RAINEY CURTIS L. LAW JAN K. PLATT MIKE SALMON J.W. CATE, JR. WILLIAM C. MAYTUM

GENERAL MANAGER

GENE HEATH

SUMMARY OF WATER QUALITY ANALYSES
PERFORMED ON WATER SAMPLES
COLLECTED DURING THE
DRILLING OF THE DEEP MONITOR WELL
LOCATED 1950 FEET FROM CYPRESS BRIDGE
TEST PRODUCTION WELL 1A

DATE	DEPTH	C1	<u>S04</u>	TDS	FE	CONDUCTIVITY
5/21/86	183'	10.7	<1	162	<0.01	220
5/22/86	273'	10.2	<1	94	<0.01	120
5/22/86	366'	10.7	<1	105	<0.01	150
5/22/86	424'	15.3	<1	187	<0.01	250
5/22/86	463'	10.2	<1	116	<0.01	122
5/23/86	553'	10.2	<1	209	<0.01	325
5/23/86	616'	10.2	<1	133	<0.01	220
5/23/86	705'	11.7	<1	164	<0.01	290

2535 LANDMARK DRIVE, SUITE 211 Clearwater (813) 796-2355 · Tampa (813) 223-9343

CLEARWATER, FL. 33519

BOARD OF DIRECTORS

CHARLES E. RAINEY CURTIS L. LAW JAN K. PLATT MIKE SALMON J.W. CATE, JR. WILLIAM C. MAYTUM

GENERAL MANAGER

GENE HEATH

SUMMARY OF WATER QUALITY ANALYSES ON PUMP TEST SAMPLES FROM THE CYPRESS BRIDGE TEST PRODUCTION WELL 1A

DATE	HOURS	PUMPED	<u>C1</u>	<u>S04</u>	TDS	H ₂ S	CONDUCTIVITY
6/17/86	12	hr	11.4	<1	224	0.02	330
6/18/86	36	hr	10.9	<1	216	0.02	330
6/19/86	60	hr	10.9	<1	220	0.01	340
6/20/86	84	hr	10.9	1	202	0.02	340
6/21/86	108	hr	10.9	1	212	0.01	330
6/22/86	132	hr	10.4	1	220	0.02	330

RESULTS OF ANALYSIS OF INORGANIC CHEMICAL CONSTITUENTS OF CYPRESS BRIDGE TEST PRODUCTION WELL 1A

ALL RESULTS ARE LISTED IN (mg/1) UNLESS OTHERWISE STATED

DATE OF THIS REPORT:	8-DEC-86		#1	4 2	1 3	नं त	#5
,	SAMPLE NAME: DATE SAMPLED: TIME SAMPLED: COLLECTED BY: DATE ANALYZED: ANALYZED BY:		CYPT1A 973 HRS 20-JUN-86 1139 SBR/KKL 20-JUN-86 KJC	CYPT1A 0143 HRG 23-JUN-86 0900 9BR/KKL 23-JUN-86 KJC			
PRIMARY INORGANIC CHEMICALS:	STORET# EPA METHOD#	HCL					
ARSENIC	9001 3.402	0.05					
BARIUM	1007 208.2	ì		0.07			
CADMIUM	1027 213.2	0.01					
CERONIUM	1034 21 9 .1	0.05					
LEAD	1051 23 9. 2						
MERCURY	71900 245.1	0.002					
NITRATE	620 352.1	10		0 . 08			
SELENIUM SILVER	1147 270.2 1077	0.01 0. 05	0.004	:0.062			
FLUORIDE	272.2	1.4-2.4	1. 1.	(0.2			
TURBIDITY (NTU)	340.2 76 N/A	5.0	0.22	0.21			
SECONDARY INORGANIC CHEMICALS:	STORET# EPA METHOD#	MCL					
TOTAL ALKALINITY	410 S.M.403		169	178			
CALCIUM	916 CALCULATED		69.60	73.60			
CALCIUM	916 215.2			135	•		
CHLORIDE	940 S.M.407-A	250.0	10.9	11.4			
COLOR (P.C.U.)	80 A-405.M.2	15.0		5.0			a e
COPPER	1042 220.2	1.0	<0.002	<0.001			

HCL: MAXIMUM CONTAMINANT LEVEL

RESULTS OF ANALYSIS OF INORGANIC CHEMICAL CONSTITUENTS OF CYPRESS BRIDGE TEST PRODUCTION WELL 1A

ALL RESULTS ARE LISTED IN (mg/l) UNLESS OTHERWISE STATED

	DATE OF THIS REPORT:	8-060-86		## # # # # # # # # # # # # # # # # # #	#2	#3	# 4	# 2
		SAMPLE NAME: DATE SAMPLED: TIME SAMPLED: COLLECTED BY: DATE ANALYZED: ANALYZED BY:		CYPT1A 973 HRS 20-JUN-86 1130 SBR/KKL 20-JUN-86 KJC	CYPTIA 0143 HRS 23-JUN-86 0900 SBR/KKL 23-JUN-96 KJC			
,	CORRESIVITY (LANGELIER)	99413	NONE	(0.19)	(0.12)			
``	FOAMING AGENTS (MBA)	CALCULATED 38240 5.M.512-A	0.5	. •				
	HYDROGEN SULFIDE	5.h.427-C		1.00	1.90			
	IRON	3.7.427-0 1045 234.2	0.3	0.13	0.04			
	MAGNESIUM	CALCULATED		0.49	1.25			
	MUISSION	242.1			7.5			
	MANGANESE	10 5 5 243.2	0.05	0.003	0.006			
	ODOR (THRESHOLD)	85 140.1	3.0					
	рН	403 150.1	>6.5	7.50	7.52			
	SODIUM	9 2 9 273.2	160.0		3.4			
	SULFATE	945 3 7 5.4	250.0	The second second	(1			
	T.D.S.	70300 5.N.207-G	500.0	211	207		,	
	TOTAL HARDNESS	S.M.314-B		176	189			
	ZINC CARBONATE ALKALINITY	1092 299.2 Calculated	5.0	<0.003	0.011			
	BICARBONATE ALKALINITY	CALCULATED		169	178			
į	CARBONATE HARDNESS	CALCULATED		169	178			
i	NON-CARBONATE HARDNESS	CALCULATED		7.00	11.00			
(CALCIUM HARDNESS	CALCULATED		174	184			
ļ	MAGNESIUM HARDNESS	CALCULATED		2.00	5.00			
(CONDUCTIVITY (umhos/cm)			330	330			

MCL: MAXIMUM CONTAMINANT LEVEL

WEST COAST REGIONAL WATER SUPPLY AUTHORITY LABORATORY OHRS #54043
RESULTS OF ANALYSIS OF CREANIC CONSTITUENTS OF CYPRESS BRIDGE TEST PRODUCTION WELL 1A
ALL RESULTS ARE LISTED IN (ug/1) UNLESS OTHERWISE STATED

DATE OF THIS REPORT:		. 4	# -	#2	#3	# 4
	SAMPLE NAME: DATE SAMPLED: TIME SAMPLED: COLLECTED BY:		20-JUN-36 1130 SB9/KXL 20-JUN-86	CYPTIA 0148 HRS 23-JUN-86 0900 3BR/KKL		
2 U R B E A B L E B :	STORET# EPA METHOD#	MCI				
PROMODICHLORONE THANS	101 SE 104		(0.3	10.3		
BRONOFORM	32104 601		۵.6>	40. 5		
CHLOROFORM	32106 501		(0.6	(0.5		
DIBROMOCHLORONETHANE	32105 601		₹0.4	<0.4		
METHYLENE CHLORIDE	34423 601		<1.0	<1.0		
DATE OF THIS REPORT:	08-BUA-80		\$!	#£	· #2	ξŮ
	SAMPLE NAME: DATE SAMPLED: TIME SAMPLED: COLLECTED BY: DATE ANALYZED: ANALYZED BY:	tu tuali tuali	CYPT1A 273 HRS 20-JUN-86 1130 58R/KKL 26-JUN-86 KJC	23-JUN-86 0900 SBR/KKL		
PURGEABLES:	STORET# EPA METHOD#	MCI				
ETHYLBENZENE	34371 602			<1.9		
TOLUENE	34010 602		<1.2	<1.2		
CHLOROBENZENE	34301 602		⟨1.6	(1.6		
1,4-DICHLOROBENZENE	34571 602		<0.5	<0.5		
1,3-DICHLOROBENZENE	34566 602		⟨0 .8	8.0>		
1,2-DICHLOROBENZENE	34536		<0.3	(0.3		

WEST COAST REGIONAL WATER SUPPLY AUTHORITY LABORATORY DHRS #54043

RESULTS OF ANALYSIS OF ORGANIC CONSTITUENTS OF CYPRESS BRIDGE TEST PRODUCTION WELL 14

ALL RESULTS ARE LISTED IN (ug/1) UNLESS OTHERWISE STATED

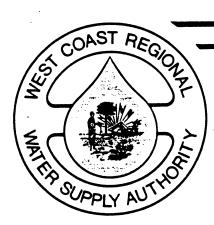
DATE OF THIS REPORT:	08-906-86	. oji	41	# 3	4 []	2 5
	SAMPLE NAME: DATE SAMPLED: TIME SAMPLED: COLLECTED BY: DATE ANALYZED BY:	20 11 SE 20)-JUN-86 130)-JUN-36	0900 SBR/KKL		
FUREEABLES:	STORET∉ EPA NETHED#					
TRICHLORGETHYLENE			⟨≬,2	(0,€	- + 11 - 11 - 14 - 11 - 11 - 11 - 11 - 1	
TETPACHLORGETHYLENE	36475 501	â	<6.2	€0.2		
CARBON TETRACHLORIDE	3015E 106	3	⟨0.3	:0.3		
VINYL CHLORIDE	39175 501		(1.0	⟨ 1. 0		
1,1,1-TRICHLOROETHANE	34506 601			⟨1.3		
1,2-DICHLORGETHANE	34531 601		(0.5	⟨ 0,5		
ETHYLENE DIBROMIDE	77651 DHRS		40.02	√0. ù E		
DATE OF THIS REPORT:			#1	# 2	#3	24
	DATE SAMPLED: TIME SAMPLED: COLLECTED BY: DATE ANALYZED:	20 11 SB	-JUN-86 30 R/KKL -JUN-86	SBR/KKL		•
PURSEABLES:	STORET# EPA METHOD#	MCL				
BENZENE	34030 602	1	<0.2	(0.2		

WEST COAST REGIONAL WATER SUPPLY AUTHORITY LABORATORY DHRS #54043

IS OF ANALYSIS OF ORGANIC CONSTITUENTS OF CYPRESS BRIDGE TEST PRODUCTION WELL 1A

ALL RESULTS ARE LISTED IN (ug/1) UNLESS OTHERWISE STATED

DATE OF THIS REPORT:	08-AUG-86	81	#2	#3	#4	# 5
	SAMPLE NAME: DATE SAMPLED: TIME SAMPLED: COLLECTED BY: DATE EXTRACTED: DATE ANALYZED: ANALYZED BY:	EYPTIA 973 HRS 20-JUN-86 1130 SBR/KKL 24-JUN-86 07-JUL-86	CYPTIA 3143 HRS 23-JUN-86 0900 SBR/KKL 24-JUN-86 01-JUL-86 KJC			
BASE NEUTRAL EXTRACTABLES:	STORETO	NCL A	9 9			
HEXACHLOROBUTADIENE	34391 612	√⟨5.0	⟨5.0			· · · · · · · · · · · · · · · · · · ·
HEXACHLORGETHANE	34396 612	(5.0)	<5.0			
HEXACHLOROCYCLOPENTAD IENE	34386 612	₹200.0	(200.0			
1,2,4-TRICHLOROBENZENE	34551 / 612	<20.0	<20.0			


F 📑 OF ANALYSIS OF ORGANIC CONSTITUENTS OF CYPRESS BRIDGE TEST PRODUCTION WELL 1A

ALL RESULTS ARE LISTED IN (ug/1) UNLESS OTHERWISE STATED

DATE OF THIS REPORT:	08-AUG-86	#1	#2	#3	‡ 4	#5
	SAMPLE NAME: DATE SAMPLED: TIME SAMPLED: COLLECTED BY: DATE EXTRACTED: DATE ANALYZED: ANALYZED BY:	CYPTIA 973 HRS 20-JUN-86 1130 SBR/KKL 24-JUN-86 06-AUS-86 KJC	CYPTIA 0143 HRS 23-JUN-86 0900 SBR/KKL 24-JUN-86 31-JUL-86			
PESTICIDES:	STORET# .~ EPA METHOD#	NCL	Andrew Commencer			
ALDRIN	39330 808	/ (0.7	<0.7		<u>_</u>	
А-ВНС	39337 608	6.0>	۵.۵			
В-ВНС	39338 608	(1.3	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			
G-BHC	39340 °	<0.5	` <0.5			
D.	39259 608 ·	<0.5	<0.5			
CHLORDANE	393 50 6 08	⟨1.0	₹1.0			
4,4-000	39310 608	⟨3.1	⟨3.1			
4,4-DDE	39320 608	⟨1.3	<1.3			
4,4-DDT	37300 608	<0.2	<0.2			
DIELDRIN	39380 608	⟨1.5	<1.5			
ENDOSULFAN I	34361 608	<0.2	\$0.2			
ENDOSULFAN II	34356 608	⟨3.1	(3.1			
ENDOSULFAN SULFATE	34351 608	⟨2.0	⟨2.0	-		
ENDRIN ALDEHYDE	34366 608	₹3.1	⟨3.1			
HEPTACHLOR	39410 608	<0.7	<0.7			
HEPTACHLOR EPOXIDE	39420 608	\$.0>	6.0			

MCL: MAXIMUM CONTANINANT LEVEL

West Coast Regional
Water Supply Authority

2535 LANDMARK DRIVE, SUITE 211 Clearwater (813) 796-2355 · Tampa (813) 223-9343

CLEARWATER, FL. 33519

BOARD OF DIRECTORS

CHARLES E. RAINEY CURTIS L. LAW JAN K. PLATT MIKE SALMON J.W. CATE, JR. WILLIAM C. MAYTUM

GENERAL MANAGER

GENE HEATH

Sample: Cypress Bridge Test Production Well 1A

After 143 Hours Pumping Collected June 23, 1986

At 0930 by Susan B. Reinhardt

Gross Beta Gross Alpha (pCi/1)(pCi/1)

<4.0 3.7+3.2

This analysis was performed by Environmental Science and Engineering FDHRS ID#82138.

ENVIRONMENTAL SCIENCE AND ENGINEERING, INC. PROJECT MANAGER: JOSEPH J. VONDRICK

DATE: 07/17/86

WEST COAST REG'L UTILITIES

<i>i</i>)					ALPHA, GROSS	ALPHA, GR, CT. ERROR	BETA, GROSS	BETA, GR, CT. ERROR
•					PC/L	PC/L	PC/L	PC/L
FLD.GRP.	#	SAMPLE ID	DATE	TIME				
WCRU-3	1	CYPT1	06/23/86	09:30	4.50	2.90	<4.0	NA
WCRU-3	2	CYPT1	06/23/86	09:30	5.40	3.50	<4.0	NA
WCRU-3	3	CC	06/23/86	09:30	<3.00	NA	<4.0	NA

CYPTI - CYPRESS BRIDGE
PRODUCTION TEST #1

.

THORNTON LABORATORIES, INC.

1145 EAST CASS STREET

TAMPA, FLORIDA 33601 - 2880 MARINE, ANALYTICAL AND ENVIRONMENTAL SERVICES TELEPHONE (813) 223-9702 P.O. BOX 2880

July 22, 1986

Laboratory Number 640611

FOI

West Coast Regional Water Supply Authority

2535 Landmark Dr. Suite 211

Clearwater, FL 33519

Attn: S. Reinhardt

System Name

TWX 810 876-9134

THORNT LAB TPA

CYPTI

Date & Time Received 6-23-86/09:30 am

Date & Time Collected 6-23-86/10:30

Collector

SBR/KKL

DRINKING WATER CHEMICAL ANALYSIS

Laboratory ID #84147 PRIMARY STANDARDS

PARAMENER	l:CL(a)	RESULT (b)	PARAMETER	MCL(a)	RESULTION
INORGANICS			ORGANICS		1
Arsenic (As)	0.05	<0.005	Endrin	0.0002	< 0/,0061
Barium (Ba)	1.0	<0.03	Lindane	0.004	< 0.6001.
Padmium (Cc)	0.01	C.002	Methoxychior	0.1	< 0.005
-Chromium (Cr)	0.05	<0.005	Toxaphene	0.005	< Ծ.սնհ
Lead (Pb)	0.05	0.02	2,4-D	6.1	₹ 0.0%
Mercury (Hg)	0.002	<0.0002	2,4,5-TP	0.01	< 0.0€%
Ritlate (N)	10	0.02			
Selenium (Se)	0.01	<0.005			
Silver (Ag)	0.05	<0.005			
Socium: (Na)	160	4.1	•		
Fluoride (F)	1.6	0.13			
Turbidity (NTU)	1	0.14			

Analysis according to approved methods listed in Chapter 17-22.

(a) Quality Standards, Chapter 17-22.104 F.A.C.

(b) All results are expressed as mg/L except as noted

THORNTON LABORATORIES, INC.

THORNTON LABORATORIES, INC.

1145 EAST CASS STREET

TWX: 810 876-9134 THORNT LAB TPA

TAMPA, FLORIDA 33601 - 2880 MARINE, ANALYTICAL AND ENVIRONMENTAL SERVICES TELEPHONE (813) 223-9702 P.O. BOX 2880

July 22, 1986

Laboratory Number 640611

For

West Coast Regional Water Supply Authority

2535 Landmark Dr. Suite 211 Clearwater, FL 33519

Attn: S. Reinharut

System Name

CYPTI

Date & Time Received 6-23-86/09:30 am

Date & Time Collected 6-23-86/10:30 Collector

SBR/KKL

DRINKING WATER CHEMICAL ANALYSIS

Laboratory ID \$84147 SECONDARY STANDARDS

PARAJENER	5CL(a)	result(b)	PARATIFIARR	الآلك	RESULT (b)
Calcium (Ca)		58	CORROSIVITY		
Chlorice (Cl)	250	8.1	Total Hardness(c)		181
Color (Pt-Co Units)	15	5	Tetal Alkalinies (c)		172
opper (Cu)	1	<0.005	M.C.E. (c)		S :
roaming Agents	0.5	<0.02	bicarbonate (HCO3)		210
Hydrogen Sulvide		<0.04	Carbon Lichage (ω_2)		5.0
Iron (Fe)	0.3	6.17	Pichroonate (c)		172
Magnesium (Mg)		2.5	Calbonate(c)	****	-0-
Manganese (Nn)	0.05	0.005	hydroxide (c)		C-
Ocor (Threshold Units)	3	-6-	phe Value		7.3
pH Value	6.5 Min.	7.8	Sacuration Index	>-0.2	
Sulrate (SO ₄)	250	<1		<+6.2	0. 5
Total Dissolved Solids	500	212	Stability Index		6.8
Zinc (Zn)	5	0.012	Interpretation:		Scale Forming

Analysis according to approved methods listed in Chapter 17-22.

(a) Quality Standards, Chapter 17-22.104 F.A.C.

(b) All results are expressed as mg/L except as noted

(c) Results expressed as mg/L CaCO3

TEORITON LABORATORIES, INC.

APPENDIX J GLOSSARY OF TERMS

GLOSSARY OF TERMS

<u>Anhydrite</u>. An evaporite mineral, CaSO₄, found in sedimentary rocks associated with gypsum.

<u>Anisotropy</u>. The condition under which one or more of the hydraulic properties of an aquifer vary according to the direction of flow.

<u>Annular Space (Annulus)</u>. The space between casing or well screen and the wall of the drilled hole or between drill pipe and casing.

<u>Aquifer</u>. Rock or sediment in a formation, group of formations, or part of a formation which is saturated and sufficiently permeable to transmit economic quantities of water to wells and springs.

<u>Aquifer, artesian</u>. An aquifer that is overlain by a confining bed. The confining bed has a significantly lower hydraulic conductivity than the aquifer. Also called a confined aquifer.

Bore Hole. An uncased drilled hole

<u>Confining Unit</u>. A body of material of low hydraulic conductivity that is stratigraphically adjacent to one or more aquifers. It may lie above or below the aquifer. Also called a confining bed.

<u>Connate Water</u>. Water that was deposited simultaneously with the geologic formation in which it is contained.

<u>Cone of Depression</u>. The depression, approximately conical in shape, that is formed in a water-table or potentiometric surface when water is removed from an aquifer at a well.

<u>Coquina Zone</u>. A zone within the subsurface in which sand and small shell fragments are the dominant constituents.

Consumptive Use. That part of the water withdrawn that is no longer available because it has been either evaporated, transpired, incorporated into products and crops, or otherwise removed from the immediate water environment.

<u>Cuttings</u>. Subsurface material which has been returned to the surface during drilling operations as grains or fragments.

<u>Diffusivity</u>. A property of an aquifer or confining bed defined as the ratio of the transmissivity to the storativity.

<u>Discharge Pipe</u>. Pipe which transports cuttings, drilling mud or water away from the bore hole during drilling operations or during testing phases.

<u>Drawdown</u>. A lowering of the water table of an unconfined aquifer or the potentiometric surface of a confined aquifer caused by pumping of groundwater from wells.

<u>Dry Well</u>. A bore hole or well that does not extend into the zone of saturation.

Evapotranspiration. The sum of evaporation plus transpiration by plants.

<u>Foram (foraminifera)</u>. A benthonic or planktonic form of Protazoa usually with a calcareous test in which there is considerable morphologic variation.

<u>Gravel Pack</u>. Graded material placed directly around a well screen in order to prohibit the clogging of the screen by formation material to insure an adequate hydraulic connection between the water producing formation and the well.

<u>Groundwater</u>. The water contained in interconnected pores located below the water table in an unconfined aquifer or located in a confined aquifer. The water that enters wells and issues from springs.

<u>Grout</u>. Cement which is placed between the well casing and the wall of the drilled bore hole for sealing purposes. A small percentage of bentonite is often added to reduce shrinkage and cracking upon drying.

 $\underline{\text{Gypsum}}$. An evaporite mineral, CaSO_4 .2H₂O, found in clays and limestones; sometimes associated with sulphur.

<u>Heterogeneous</u>. Pertaining to a substance having different characteristics in different locations. A synonym is nonuniform.

<u>Homogeneous</u>. Pertaining to a substance having identical characteristics everywhere. A synonym is uniform.

Hydraulic Conductivity. A coefficient of proportionality describing the rate at which water can move through a permeable medium.

<u>Isotropy</u>. The condition in which hydraulic properties of the aquifer are equal in all directions.

<u>Leakance Coefficient</u>. The rate of flow that crosses a unit area of the interface between the main aquifer and its semiconfining bed if the difference between the head in the main aquifer and the source supplying leakage is unity.

<u>Manometer</u>. A narrow, vertical tube located near the orifice on the discharge pipe. The manometer measures the hydraulic head of water in the discharge pipe as a function of pumping rate and size of the orifice.

Monitor(ing) Well. A well used to observe the elevation of the water table or the potentiometric surface. An observation well is generally of larger diameter than a piezometer and typically is screened or slotted throughout the thickness of the aquifer. Water quality samples may also be obtained.

<u>Mud Pit</u>. A steel-lined pit used to contain the mixture of drilling mud, water and cuttings which are brought to the surface during drilling operations. Mud pits are used to guard against bacterial contamination of the well during drilling processes.

<u>Mud Rotary Drilling Methods</u>. A method of drilling in which bentonite or other additives is used to create a drilling fluid of a viscosity to circulate cuttings to the surface at the same time it lubricates the drill bit and seals (coats) the bore hole.

Orifice. A machined plate of an exact diameter size which is attached to the open end of a discharge pipe. The diameter of the orifice and the discharge pipe in combination with a specific manometer reading can be used to measure the discharge from a well.

<u>Permeability (k)</u>. A property of a rock or medium which describes ease with which water is transported.

<u>Potable Water Supply</u>. Water of a quality which is fit for human consumption. Potable water quality standards are dictated by government regulations.

<u>Potentiometric Surface</u>. A surface that represents the level to which water will rise in tightly cased wells. If the head varies significantly with depth in the aquifer, then there may be more than one potentiometric surface. The water table is a particular potentiometric surface for an unconfined aquifer.

<u>Production Well</u>. A well which is constructed with the intent of providing specific quantities of water for water supply purposes.

Reverse Air Drilling Method. A drilling method in which compressed air and formation waters are used to circulate cuttings to the surface through the drill stem. This method does not require the use of clay additives to the bore hole water.

Shelby Tube. A thin wall tube sampler secured to a head containing a ball check valve. The head is threaded to receive standard drill rods. The Shelby tube is used to obtain an undisturbed formation sample immediately below the bottom of the bore hole.

Solution Zone. A zone within carbonate rock which has been dissolved leaving voids capable of supplying significant quantities of groundwater.

Specific Capacity. An expression of the productivity of a well, obtained by dividing the rate of discharge of water from the well by the drawdown of the water level in the well. Specific capacity should be described on the basis of the number of hours of pumping prior to the time the drawdown measurement is made. It will generally decrease with time as the drawdown increases.

<u>Staff Gage</u>. A measuring stick similar to a yard stick used to monitor the change in surface water level.

Storage Coefficient (S), dimensionless. The volume of water an aquifer released from or takes into storage per unit surface area of the aquifer per unit change in head.

Totalizing Flow Meter. A meter which measures the accumulated discharge of water through a pipe.

Transmissivity (T). The rate at which water is transmitted through a unit width of an aquifer or confining bed under a unit hydraulic gradient. It is a function of properties of the liquid, the porous media, and the thickness of the porous media.

<u>Vibrated Casing</u>. A method of installing casing in which the casing is actually vibrated into the substratum instead of first drilling a hole and inserting the casing.

<u>Well Loss</u>. A loss in water head during pumping which is related to the presence or the design of the well.