

July 30, 2014-Revised December 11, 2013

South Florida Water Management District 3301 Gun Club Road West Palm Beach, Florida 33406

Attn: Mr. Jesse VanEyk, P.E., Project Manager RE: Geotechnical Engineering & Testing Services C-139 Annex Restoration Project Hendry County, Florida Tierra South Florida Project No.: 7111-13-142

Dear Jesse:

Tierra South Florida, Inc. (TSF) has completed the geotechnical services for the subject project. The project was performed in two phases.

Phase 1 was performed in general accordance with Exhibit C-1 Statement of Work. Work completed in this phase included all works reported in this report with exception to monitoring wells W-22A and W-23A. The geotech engineering and testing services report for this phase was submitted initially (dated September 9, 2013) for the District's review and the final report (dated December 11, 2013) was submitted after addressing all review comments and approval.

Installation of monitoring wells W-22A and W-23A was not being performed earlier (during Phase 1) due to non-accessible site conditions. Work related to these two monitoring wells was performed in Phase 2 of this project in general accordance with Exhibit C-6, Statement of Work. The previously approved project report (dated 12/11/13 for Phase 1) has been revised now to include the field exploration program and laboratory testing for wells W-22A and W-23A.

TSF appreciates the opportunity to be of service to South Florida Water Management District (SFWMD) on this project and looks forward to working with you on future projects. If you have any questions or comments regarding this report, please contact our office at your earliest convenience.

Sincerely

Attachments

TIERRA SOUTH FLORIDA, INC.

Raj Krishnasamy, P.E. Principal Geotechnical Engineer

FL Registration No. 53567

Project Manager

1.0	Project Information	.2
1.1	Introduction	.2
1.2	Review of USDA Soil Survey, Hendry County, Florida	.2
2.0	Scope of services	.3
2.1	Purpose and Scope of Services	.3
2.2	SPT and Auger Boring Process	.3
2.3	Monitoring Well Construction	.4
3.0	Results of Subsurface Exploration	.4
3.1	General Soil Condition	.4
3.2	Soil Borings	.4
4.0	Laboratory testing	.5
4.1	General	.5
4.2	Organic Content	.5
4.3	Grain Size Analysis	.5
4.4	Moisture Content	.6
5.0	Groundwater And PERMEABILITY TEST	.7
5.1	Groundwater	.7
5.2	Borehole Permeability Test (BHP)	.7
6.0	Report Limitations	.8
Appen	ndix A - Soil Survey Report Soil Profiles Summary of Laboratory Test Results Grain Size Data Sheet Boring and Monitoring Well Location Plan Monitoring Well Diagram Boring Logs	

Summary of Borehole Permeability Test (BHP) Results Borehole Permeability Test (BHP) Schematic

Borehole Permeability Test (BHP) Graphs and Calculations

1.0 PROJECT INFORMATION

1.1 Introduction

The project, as we understand it is a site acquired from the United States Sugar Corporations. The site is about 14,300 acres and is currently an active citrus grove with canal, ditches and pump stations.

The purpose of this study was to provide Geotechnical engineering services to determine the subsurface conditions and provide installation of monitoring wells for future data collection. The C-139 Annex Restoration Project will restore the acquired citrus land to its historical wetland prairie state prior to agricultural use.

1.2 Review of USDA Soil Survey, Hendry County, Florida

Based on a review of the Hendry County Soil Survey (1986), it appears that there are thirty-four (34) soil-mapping units noted within the project alignment. The map units description and survey is presented in the appendix.

During this study the soils encountered, typically, are composed by topsoil underlain by sand, sand with silt, sand with shell and limestone fragments and clay, these soils were encountered within the full depth of the borings performed. These results, generally, are consistent with the USDA Soil Survey soil descriptions.

Geotechnical Services C-139 Annex Restoration Project Hendry County, Florida TSF Project No.: 7111-13-142 Page 3 of 18

2.0 SCOPE OF SERVICES

2.1 **Purpose and Scope of Services**

The study was performed to obtain information on the existing subsurface conditions at the proposed project site to assist in the design of the construction plans for the proposed improvements. The following services were provided:

- 1. Reviewed readily available published topographic and soils information. This information was obtained from the "Soil Survey of Big Cypress and Hendry County, Florida" published by the United States Department of Agriculture (USDA) Soil Conservation Services (SCS).
- 2. Performed a Geotechnical field study to determine the subsurface conditions which included a total of 21 Standard Penetration Test (SPT) borings, twenty-four (24) field permeability tests, and laboratory testing on selected soil samples.
- 3. Install 22 monitoring wells at SPT, Auger and permeability test locations.
- 4. Prepared this Data Summary Report.

These Geotechnical Services were performed in general accordance with Exhibit C-1 (Contract # 4600002706-WO01) and Exhibit C-6 (Contract # 4600002706-WO06)

2.2 SPT and Auger Boring Process

To evaluate the subsurface conditions, 21 SPT borings were drilled to depths ranging from 15 to 100 feet below existing grade

The soil test borings were performed using a CME Power Drill Rig using Bentonite "Mud" drilling procedures. The soil samples were obtained with a Split Spoon Sampler in general accordance with the SPT procedure (ASTM test designation D-1586). These samples were taken continuously to boring termination depth. Representative portions of these soil samples were sealed in glass jars, labeled and transferred to our laboratory for classification and analysis.

A total of nine (9) auger borings were performed at locations where sampling was not required. The borings were performed by advancing a hollow stem auger into the ground, in 6 inch increments. As each soil type was revealed, representative samples were placed in airtight jars and returned to our office for review by a Geotechnical engineer for confirmation of the field classification.

2.3 Monitoring Well Construction

Twenty-two (22) monitoring wells were installed at the site with depths ranging from 30 to 100 feet deep. The monitoring well was constructed with Schedule 40 PVC Tri-Loc riser and screen. All well casings and screen joints were connected by thread connections with manufactured supplied "O" rings. The annular space around the well screen was filled 6/20 silica sand filter pack to about 3 feet above the top screen section. Two (2) feet of bentonite pellets were placed above the filter pack and hydrated to provide a seal between the filter pack and the cement grout. The deep wells were fitted with stainless steel centralizers. The wells were recessed below grade and was enclosed in a meter type protective box with bolting lids (See attached Diagram).

3.0 **RESULTS OF SUBSURFACE EXPLORATION**

3.1 General Soil Condition

Typically, topsoil underlain by sand, sand with silt, sand with shell, and limestone fragments, clay and limestone were encountered within the full depth of the borings performed. Organic materials were encountered at several borings, predominately in the upper 15 feet. These results, generally, are consistent with the USDA Soil Survey soil descriptions. Soils profiles are attached in the appendix.

3.2 Soil Borings

A Geotechnical engineer bases soil stratification on a visual review of the recovered samples, laboratory testing and interpretation of the field boring logs. The boring stratification lines represent the approximate boundaries between soil types of significantly different engineering properties; however, the actual transition may be gradual. In some cases, small variations in properties not considered pertinent to our engineering evaluation may have been abbreviated or omitted for clarity. The boring profiles represent the conditions at the particular boring location and variations do occur among the borings.

Geotechnical Services C-139 Annex Restoration Project Hendry County, Florida TSF Project No.: 7111-13-142 Page 5 of 18

4.0 LABORATORY TESTING

4.1 General

Representative soil samples collected from the borings were classified and stratified in general accordance with the USCS Soil Classification System. Our classification was based on visual inspection, using the results from the laboratory testing as confirmation. Laboratory index property testing comprised of grain size analysis, moisture content, and organic content tests was performed on representative materials encountered.

•	Natural Moisture Content	14
•	Grain Size Analysis	14

• Organic Content 9

4.2 Organic Content

Moisture free samples are used for this test. Drying is accomplished by heating the samples in a drying (230° F) oven. The dried soil samples are then heated in a muffle furnace with a temperature from 445 degrees Centigrade for six hours, thereby burning off all organic-type material, leaving only the soil minerals. The difference in weight prior to and after the burning is the weight of the organics. The weight of the organics divided by the weight of the dried soil before the burning process is the percentage of organics within the sample. Organic contents that exceed five (5) percent are considered detrimental by FDOT criteria. Tests were performed in general accordance with ASTM D-2974 (AASHTO T-267).

4.3 Grain Size Analysis

The grain size analysis test measures the percentage by weight of a dry soil sample passing a series of U.S. Standard sieves, including the percent passing the No. 200 sieve (Minus 200). In this manner, the grain size distribution of the soil is measured. The percentage passing the No. 200 sieve constitutes the silt and clay content of the sample. The percentage by weight of the silt and clay in a soil affects its engineering properties, including permeability, suitability as roadway subgrade, and suitability as general fill material. Tests were performed in general accordance with ASTM D-442 (AASHTO T-88).

4.4 Moisture Content

Laboratory moisture content tests consist of the determination of the percentage of moisture in selected samples. The test is performed in general accordance with ASTM D-2974-87. Natural moisture content is determined by weighing a sample of the selected material and then drying in a warm oven. Care is taken to use gentle heat so as not to burn off any of the organic material. The sample is removed from the oven and then reweighed. The difference of the two weights is the amount of moisture in the sample. The weight of the moisture divided by the weight of the dry soil is the percentage by weight of the moisture in the sample (AASHTO T-265).

5.0 GROUNDWATER AND PERMEABILITY TEST

5.1 Groundwater

The groundwater table was measured at each of the boring locations immediately following termination of drilling or auguring. The depths to the static water table along the project alignment were measured after a short stabilization period on the order of five (5) to ten (10) minutes and were found to range from 2 to 10 feet below the existing grades except B-5, no groundwater was encountered at this location. The groundwater table measured at each of the boring locations is presented on the boring profiles in Appendix A.

Groundwater conditions will vary with environmental variations and seasonal conditions, such as the frequency and magnitude of rainfall patterns, as well as man-made influences (i.e. existing swells, drainage ponds, under drains).

5.2 Borehole Permeability Test (BHP)

On eight (8) well locations, BHP tests were performed to determine the hydraulic conductivity (k) using the usual open-hole, constant head methodology and the case-hole for different depths as advocated by the SFWMD (see schematics in appendix). The samples retrieved during drilling were visually classified by a geotechnical engineer. Each borehole was completed as an open well with gravel pack (6-20 silica sand). The well screen slot width was 0.1 inch. Water from the drill rig tank was then pumped into the open well, and the amount of water required maintaining a constant head in the pipe was recorded. The permeability tests locations are also indicated in the Boring Location Plan

At each location, the test was conducted at depths of 10, 15 and 25 feet, for a total of twenty-four (24) tests completed. A summary table with the permeability test results, test details and calculation formulas are included in the Appendix.

Geotechnical Services C-139 Annex Restoration Project Hendry County, Florida TSF Project No.: 7111-13-142 Page 8 of 18

6.0 **REPORT LIMITATIONS**

The subsurface conditions presented in this report are based upon the field exploratory test data obtained during the geotechnical study.

APPENDIX A

Soil Survey Report Soil Profiles Summary of Laboratory Test Results Grain Size Data Sheet Boring and Monitoring Well Location Plan Monitoring Well Diagram Boring Logs Summary of Borehole Permeability Test Results Borehole Permeability Test (BHP) Schematic Borehole Permeability Test (BHP) Graphs and Calculations

United States Department of Agriculture

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Hendry County, Florida

Map Unit Symbol	Map Unit	Description
1	Boca sand	This is a poorly drained soils on broad flatwoods that has a sand layer about 7 inches thick. The subsurface layer to a depth of about 27 inches is light gray sand. The subsoil is grayish brown fine sand to a depth of about 28 inches and brown sandy loam to a depth of about 33 inches. It is underlain by limestone that is discontinuous and that has many fractures and solution basins.
4	Oldsmar sand	This nearly level, poorly drained soil is on broad flatwoods, typically, this soil has a very dark gray sand surface layer about 6 inches thick. The subsurface layer to a depth of about 38 inches is sand.
7	Immokalee sand	This is a poorly drained soil on broad flatwoods that has a very dark gray sand layer about 5 inches thick. The subsurface layer to a depth of about 40 inches is sand. The subsoil to a depth of about 70 inches is sand that is stained with organic matter. The substratum is light brownish gray sand to a depth of 80 inches.
8	Malabar sand	This poorly drained soil is in sloughs on flatwoods. Typically, this soil has a dark grayish brown sand surface layer about 5 inches thick. The subsurface layer to a depth of about 15 inches is light brownish gray sand. The subsoil to a depth of 65 inches is sand, gray sandy clay loam and gray sandy loam. The substratum to a depth of 80 inches is gray sand and loamy sand.
9	Riviera fine sand	This poorly drained soil is in sloughs on broad flatwoods. Typically, this soil has a very dark gray fine sand surface layer about 4 inches thick. The subsurface layer to a depth of about 26 inches is fine sand. The subsoil to a depth of 32 inches is gray sandy loam, gray sandy clay loam to a depth of 50 inches and gray sandy loam to 70 inches deep. The substratum to a depth of 80 inches or more is gray sandy clay loam.
10	Pineda fine sand	This is a poorly drained soil in sloughs and low flats in flatwoods areas. Typically this soil has a black fine sand surface layer about 2 inches thick. The subsurface layer is gray and light gray fine sand to a depth of 14 inches. The subsoil to a depth of 30 inches is fine sand. To a depth of 50 inches, it is gray sandy clay loam. The substratum is gray sandy loam to a depth of 60 inches and gray sandy clay loam to a depth of 75 inches and sand to a depth of 80 inches.
13	Gentry fine sand, depressional	This is poorly drained soil in broad, low sloughs on flatwoods. This soil have a dark gray fine sand surface layer of 4 inches thick. The subsurface layer is sand to a depth of 14 inches. The subsoil extends to 47 inches deep composed by sandy loam. The substratum to a depth of 80 inches is sandy loam and sandy clay loam.
15	Myakka sand	This is a poorly drained soil on broad flatwoods that has a very dark gray sand layer about 6 inches thick. The subsurface layer to a depth of about 26 inches is gray sand. The subsoil to a depth of about 60 inches is sand that is

		stained with organic matter. The substratum is grayish brown
17	Basinger sand	This is a poorly drained soil is in sloughs and poorly defined drainage. Typically, this soil has a very dark gray sand surface layer about 6 inches thick. The subsurface layer to a depth of about 25 inches is light brownish gray sand. The subsoil to a depth of about 50 inches is dark yellowish brown sand. The substratum is light brownish gray sand to a depth of 80 inches.
19	Gator muck	This is a poorly drained organic soil is in swamps and marshes that has a black muck layer about 32 inches thick. The underlying material is black sandy loam to a depth of 35 inches and to a depth of 51 inches it is gray sandy clay loam that contains carbonate nodules.
20	Okeelanta muck	This very poorly drained soil is in depressions and broad freshwater marshes. Typically, this soil has a black muck surface layer about 35 inches thick. The underlying material to a depth of 60 inches is sand.
21	Holopaw sand	This is a poorly drained soil is in sloughs and low areas on flatwoods that has a very dark gray sand layer about 5 inches thick. The subsurface layer to a depth of about 48 inches is sand. The subsoil to a depth of about 65 inches is grayish brown sandy clay loam. The substratum to a depth of 80 inches is grayish brown sandy loam that has many carbonate nodules.
23	Hallandale sand	This is a poorly drained soil on broad flatwoods that has a very dark gray sand layer about 4 inches thick. The underlying material to a depth of about 16 inches is brown sand. The subsoil to a depth of about 70 inches is sand that is stained with organic matter. It is underlain by limestone that is discontinuous and that has many fractures and solution basins.
26	Holopaw sand, limestone substratum	This is a poorly drained soil on broad, low flats and in poorly defined drainage ways that has a very dark grayish brown sand layer about 6 inches thick. The subsurface layer to a depth of about 40 inches is sand. The subsoil to a depth of about 45 inches is brown sand and to a depth of 60 inches is gray sandy loam underlain by fractured limestone.
27	Riviera sand, limestone substratum	This is a poorly drained soil is in sloughs on broad flatwoods that has a black sand layer about 5 inches thick. The subsurface layer to a depth of about 35 inches is light brownish gray sand. The subsoil to a depth of about 50 inches is olive gray sandy loam underlain by fractured limestone.
28	Boca sand, depressional	This poorly drained soil is in depressions on flatwoods. Typically, this soil has a dark gray sand surface layer about 5 inches thick. The substratum layer to a depth of 25 inches is sand. The subsoil sandy clay loam to a depth of 32 inches. The substratum to a depth of 38 inches is calcium carbonate and rock fragments.
29	Oldsmar sand, limestone substratum	This nearly level, poorly drained soil is in broad areas on flatwoods. This soil has a black sand surface layer of 5 inchs thick. The subsurface layer to a depth of 38 inches is sand.

		The subsoil to a depth of about 63 inches is sand nad sandy clay loam to a depth of 73 inches. The subsoil is underlain by fractured limestone.
32	Riviera sand, depressional	This poorly drained soil is in depressions on flatwoods. Typically, this soil has a very dark gray sand surface layer about 5 inches thick. The subsurface layer is light gray fine sand to a depth of about 26 inches. The subsoil extends to a depth of 70 inches. The substratum to a depth of 80 inches is gray sand with many shell fragments
33	Holopaw sand, depressional	This is a poorly drained soil is in depressions on flatwoods that has a dark grayish brown sand layer about 6 inches thick. The subsurface layer to a depth of about 65 inches is sand. The subsoil to a depth of about 65 inches is grayish brown sandy clay loam. The substratum to a depth of 80 inches is light grayish brown sandy clay loam.
34	Chobee fine sandy loam, limestone substratum, depressional	This very poorly drained soil is in swamps, marshes, and depressions. Typically, this soil has a black fine sandy loam surface layer about 15 inches thick. The subsoil to a depth of about 32 inches is light gray sandy clay loam. The substratum to a depth of 50 inches is sandy clay loam. It is underlain by limestone.
37	Tuscawilla fine sand	This nearly level, poorly drained soil is on low-lying ridges and hammocks, which generally are between sloughs and depressions on flatwoods. Typically, this soil has a dark gray fine sand surface layer about 4 inches thick. The subsurface layer to a depth of about 8 inches is gray fine sand. The subsoil extends to a depth of about 56 inches. The substratum is white, calcareous loamy fine sand to a depth of 80 inches or more.
39	Udifluvents	This unit consists of spoil material that was piled along the Caloosahatchee River when waterways was dredged and widened. These soils have a very dark gray fine sand surface layer about 25 inches thick. The underlying material is mixed or stratified light gray, light brownish gray, or gray sand, sandy clay, and clay or silty clay, loamy sand, sandy loam, sandy clay loam, or sandy clay that contains fragments of shells, limestone or both.
42	Riviera sand, limestone substratum, depressional	This poorly drained soil is near ponds and in depressions. Typically, this soil has a very dark gray sand surface layer about 3 inches thick. The subsurface layer to a depth of about 32 inches is gray sand. The subsoil is sandy clay loam to a depth of 50 inches and gray sandy loam to a depth of 58 inches.
44	Jupiter fine sand	This is a poorly drained soil is in hammocks and on low flats that border slough and marshes has a fine sand surface layer about 6 inches thick. It is black in the upper part and very dark grayish brown in the lower part. This layer is underlain by fractured limestone that contains numerous crevices and solution basins.
45	Pahokee muck	This is a very poorly drained organic soil in marshes and swamps. Typically, this soil has a black muck surface layer about 40 inches thick that is underlain by fractured limestone
50	Delray sand, depressional	This is a poorly drained soil is in swamps, marshes, and

		depressions that has a sand surface layer about 22 inches thick. The subsurface layer to a depth of about 50 inches is gray sand. The subsoil to a depth of about 62 inches is dark grayish brown sandy clay loam. The substratum to a depth of 80 inches is gray loamy fine sand that contains fragments of calcareous material.
57	Chobee fine sandy loam, depressional	This is a poorly drained soil is in marshes, swamps and depressions that has a black fine sandy loam layer about 9 inches thick. The subsoil extends to a depth of 68 inches; gray fine sandy loam in the upper part and light gray sandy loam in the lower part. The substratum to a depth of 80 inches is light gray fine sandy loam.
63	Jupiter-Ochopee-Rock outcrop complex (Jupiter)	This map unit consists of areas of nearly level, poorly drained Jupiter and Ochopee soils and bedrock outcrops on broad, low-lying, grassy prairies. Typically the Jupiter soil has a black fine sand surface layer about 6 inches thick. The subsoil to a depth of about 14 inches is dark grayish brown fine sand. It is underlain by fractured limestone. Typically, the Ochopee soil is fine sandy loam to a depth of 10 inches. Limestone bedrock is at depth of 10 inches. The rock outcrop of this unit is hard, fractured limestone.
64	Hallandale sand, depressional	This is very poorly drained soil is in depressions on flatwoods. Typically, this soil has a very dark gray sand surface layer about 3 inched thick. The subsoil to a depth of about 15 inches is sand.
65	Plantation muck	This nearly level, very poorly drained soil is on broad, low- lying flats generally adjacent to the Everglades. Typically, this soil has a black muck surface layer about 12 inches thick. The next layer is black sand to a depth of 20 inches. The substratum is sand to a depth of 39 inches, It is underlain by hard limestone.
66	Margate sand	This is nearly level, poorly drained soil is on low-lying flats and sloughs adjacent to the Everglades that has a black sand surface layer about 10 inches thick. The subsurface layer to a depth of about 18 inches is brown sand. The subsoil to a depth of about 24 inches is pale brown sand. The substratum to a depth of 30 inches is light yellowish brown gravelly sand underlain by hard limestone.
68	Dania muck	This nearly level, very poorly drained soil is in marshes along the edge of the Everglades. Typically, this soil is muck to a depth of 14 inches. The underlying material to a depth of 18 inches is fine sand. It is underlain by hard limestone.
69	Denaud-Gator mucks (Denaud)	This is very poorly drained soils in depressions along the edge of the Everglade. The Denaud soil has a black muck surface layer about 11 inches thick. The subsurface layer to a depth of about 20 inches is fine sand and dark gray fine sand to a depth of 23 inches. The underlying material to a depth of 42 inches is gray fine sandy loam and to a depth of 80 inches is light gray gravelly fine sand that has shell and calcareous concretions.
69	Denaud-Gator mucks (Gator)	This is very poorly drained soils in depressions along the edge of the Everglade. The Gator soil has a black muck surface layer about 32 inches thick. The subsurface layer to

		a depth of about 35 inches is black sandy loam. The
		underlying material to a depth of 51 menes is gray sandy
		clay loam. Calcium carbonates nodules are in the lower part
		of the underlying material.
		This is very poorly drained soils is primarily in depressions
70	Denaud muck	along the edge of the Everglade that has a black muck
		surface layer about 11 inches thick. The subsurface layer to
		a depth of about 20 inches is black fine sand and dark gray
		fine sand to a depth of about 23 inches. The underlying
		material to a depth of 42 inches is gray fine sandy loam. To a
		depth of 80 inches, it is light gray gravelly fine sand that has
		shell and calcareous concretions.
99	Water	Existing water bodies

DRAWN BY:

CHECKED BY:

JO

APPROVED BY: RK DATE: 07-29-2013 ENGINEER OF RECORD: RAJ KRISHNASAMY, P.E. FLORIDA LICENSE NO.: 53567

joliva

10/1/2013

SCALE:

NTS

7111-13-142

PROJECT NUMBER:

GEOTECHNICAL ENGINEERING SERVICES C-139 ANNEX RESTORATION S.F.W.M.D HENDRY COUNTY, FLORIDA

Sheet:

XX

3:28:28 PM J:\Tierra Documents\Projects\TSF 2013\TIII-13-142.C-139 Annex Restoration (SFWMD)\Soli Survey Report\For use -Norlyc\TABLE_MAP.dgn

DRAWN BY NG

CHECKED BY: JO

APPROVED BY: RK DATE:

07-29-2013

ENGINEER OF RECORD **RAJ KRISHNASAMY, P.E.** FLORIDA LICENSE NO .: 53567

ioliva

SCALE: NTS

7111-13-142

PROJECT NUMBER:

12/3/2013

12:16:09 PM J:\Tierra Documents\Projects\TSF_20I3\7111-13-142.C-139_Annex_Restoration (SFWMD)\geotech\BIBORING.dgn

GEOTECHNICAL ENGINEERING SERVICES C-139 ANNEX RESTORATION S.F.W.M.D HENDRY COUNTY, FLORIDA

Sheet:

XX

Legend

DRAWN BY

JO

CHECKED BY:

NG

RK

DATE:

07-29-2013

APPROVED BY: ENGINEER OF RECORD

RAJ KRISHNASAMY, P.E. FLORIDA LICENSE NO .: 53567

ioliva

SCALE: NTS

J:\Tierra Documents\Projects\TSF_20I3\7111-13-142.C-139_Annex_Restoration (SFWMD)\geotech\BIBORING.dgn

12/3/2013

12:16:17 PM

Legend

Topsoil Sand Silty Sand Limestone \square Shelly Sand

DRAWN BY: NG

CHECKED BY:

JO

APPROVED BY: ENGINEER OF RECORD:

RK

DATE:

07-29-2013

RAJ KRISHNASAMY, P.E. FLORIDA LICENSE NO .: 53567

SCALE:

NTS

J:\Tierra Documents\Projects\TSF_20I3\7111-13-142.C-139_Annex_Restoration (SFWMD)\geotech\BIBORING.dgn

PROJECT NUMBER:

7111-13-142

ioliva

12/3/2013 12:16:34 PM NOTES

 \triangledown Encountered groundwater table

N NUMBERS TO THE LEFT OF BORINGS INDICATE SPT VALUE FOR 12" PENETRATION AND THEY WERE OBTAINED USING AN AUTOMATIC HAMMER. (UNLESS OTHERWISE NOTED.)

* DENOTES DEPTH IN FEET FROM EXISTING GROUND SURFACE

GEOTECHNICAL ENGINEERING SERVICES C-139 ANNEX RESTORATION S.F.W.M.D HENDRY COUNTY, FLORIDA

Sheet:

XX

1/28/2014

9:55:38 AM

J:\Tierra Documents\Projects\TSF 2013\7111-13-142.C-139 Annex Restoration (SFWMD)\geotech\BIBORING.dgn

jol iva

joliva

1/28/2014 9:58:53 AM J:\Tierra Documents\Projects\TSF_2013\7111-13-142.C-139 Annex Restoration (SFWMD)\geotech\BIBORING.dgn

ioliva

12/3/2013

12:15:59 PM

	N	TOPSOIL DARK BROWN SAND WITH OF ORGANIC AND ROOTS (LIGHT GRAY WEAKLY CEME LIGHT BROWN SAND WITH LIGHT GRAY SILTY SAND (LIGHT GRAY SILTY SAND (LIGHT GRAY LIMESTONE W	TRACE NTED RAGMENTS SHELL FRAGMENTS (SP) SM)	0 -5 -10 -15 -20 -25 -30 -35 * L334 M HLd30 * L334 M HLd30 -55 -55 -55 -55 -55 -55 -55 -55 -55 -5
Legend Topsoil Sand Limestone Soft	Lim Silt She	estone Hard y Sand Ily Sand	<u>NOTES</u> ▼ ENCOUNTERED GROUNDWATER T N NUMBERS TO THE LEFT OF BOF SPT VALUE FOR 12" PENETRATIC OBTAINED USING AN AUTOMATIC (UNLESS OTHERWISE NOTED.) * DENOTES DEPTH IN FEET FROM EXISTING GROUND SURFACE NFERING SERVICES	ABLE RINGS INDICATE DN AND THEY WERE HAMMER. V
PROJECT NUMBER: 7111-13-14	12	C-139 ANNEX R S.F.W HENDRY COU	ESTORATION .M.D NTY,FLORIDA	Sheet: xx

Summary of Laboratory Test Results C-139 Annex

TSF Project No: 7111-13-142

Basing Number Sample Depth USCS			Sieve Analysis, Percentage Passing							Atterberg Limits		nits	Organic Nat	Natural Moisture	
Borng Number	(ft)	Symbol	3/4"	3/8"	#4	#10	#40	#60	#100	#200	Liquid Limit	Plastic Limit	Plasticity Index	(%)	Content (%)
B-1	5.0 - 7.0	SM	96	85	73	61	37	28	23	18					12
B-2	2.0 - 4.0	SP			100	99	57	25	12	4				1.83	22
B-4	0.3 - 2.0	SP-SM	100	84	74	69	35	22	15	11					7
B-4	8.0 - 10.0	SP-SM												8.24	46
B-5	13.5 - 15.0	SP	100	98	98	97	47	15	5	3					18
B-6	14.0 - 16.0	ML		100	99	98	90	83	70	60					102
B-7	4.0 - 6.0	SM	100	95	90	85	53	44	38	27					14
B-7	6.0 - 8.0	OL												19.03	14
B-7	8.0 - 10.0	OL												12.08	47
B-8	23.5 - 25.0	SM			100	98	96	95	69	26					27
B-9	6.0 - 8.0	SP			100	99	40	15	7	4					16
B-9	42.0 - 44.0	SP				100	61	18	4	2					17
B-10	2.0 - 4.0	SM	100	98	98	96	94	93	77	30					33
W-4	10.0 - 12.0	SP												5.6	40
W-9	10.0 - 12.0	SP												2.9	21
W-22A	4.0-6.0	SP												3.7	16
W-22A	8.0-10.0	SP	100	100	100	100	38	12	4	3					15
W-22A	20.0-21.0	SM	100	100	99	97	93	88	51	13					26
W-23A	0.3-2.0	SP	100	100	100	100	47	22	10	5					17
W-23A	6.0-8.0	CL	100	99	95	92	89	88	87	79					24
W-23A	20.0-22.0	SM	100	100	100	99	94	92	79	26					31

 PROJECT NAME:
 C-139 Annex

 PROJECT #:
 7111-13-142

DATE: 7/5/2013

GRAIN SIZE DISTRIBUTION CURVE 3" 2" 1.5" 1" 3/4" 3/8" #4 #10 #40 #60 #100 #200 100 🕇 [] | | |] 11111**1**1 90 80 70 60 PERCENT PASSING 50 40 30 20 • 10 0 10 0.01 0.001 100 0.1 1 **GRAIN SIZE** in millimeters

ASTM D 2487 Clas	sification of Soil fo	r Engineering Purposes	Coarse Sand	< #4 and > #10	Cu = D60 / D	010 = 78.1
Coarse Gravel	< 3" and > 3/4"		Medium Sand	< #10 and > #40	Cc = (D30)^2 / (D1	10 x D60) = 1.77
Fine Gravel	< 3/4" and > #4		Fine Sand	< #40 and > #200		
BORING #	B-1	OFFSET (ft)			DEPTH (ft):	5.0 - 7.0

SOIL CLASSIFICATION: SM

ATTERBERG LIMIT (- #40 Material)						
LIQUID LIMIT						
PLASTIC LIMIT						
PLASTIC INDEX						

SOIL CLASSIFICATION: SP

ATTERBERG LIMIT (- #40 Material)						
LIQUID LIMIT						
PLASTIC LIMIT						
PLASTIC INDEX						

 PROJECT NAME:
 C-139 Annex

 PROJECT #:
 7111-13-142

GRAIN SIZE DISTRIBUTION CURVE 3" 2" 1.5" 1" 3/4" 3/8" #4 #10 #40 #60 #100 #200 100 90 80 70 60 PERCENT PASSING 50 40 30 20 10 0 100 10 1 0.1 0.01 0.001 **GRAIN SIZE** in millimeters ASTM D 2487 Classification of Soil for Engineering Purposes Cu = D60 / D10 = 19.98 < #4 and > #10 Coarse Sand Coarse Gravel < 3" and > 3/4" Medium Sand < #10 and > #40 Cc = (D30)² / (D10 x D60) = 1.39 Fine Gravel < 3/4" and > #4 < #40 and > #200 Fine Sand **BORING # OFFSET (ft)** DEPTH (ft): 0.3 - 2.0 B-4

SOIL CLASSIFICATION: SP-SM

ATTERBERG LIMIT (- #40 Material)	
LIQUID LIMIT	
PLASTIC LIMIT	
PLASTIC INDEX	

DATE: 7/5/2013

SOIL CLASSIFICATION: SP

ATTERBERG LIMIT (- #40 Material)	
LIQUID LIMIT	
PLASTIC LIMIT	
PLASTIC INDEX	

SOIL CLASSIFICATION: ML

ATTERBERG LIMIT (- #40 Material)	
LIQUID LIMIT	
PLASTIC LIMIT	
PLASTIC INDEX	

SOIL CLASSIFICATION: SM

ATTERBERG LIMIT (- #40 Material)	
LIQUID LIMIT	
PLASTIC LIMIT	
PLASTIC INDEX	

SOIL CLASSIFICATION: SM

ATTERBERG LIMIT (- #40 Material)	
LIQUID LIMIT	
PLASTIC LIMIT	
PLASTIC INDEX	

SOIL CLASSIFICATION: SP

ATTERBERG LIMIT (- #40 Material)	
LIQUID LIMIT	
PLASTIC LIMIT	
PLASTIC INDEX	

SOIL CLASSIFICATION: SP

ATTERBERG LIMIT (- #40 Material)	
LIQUID LIMIT	
PLASTIC LIMIT	
PLASTIC INDEX	

SOIL CLASSIFICATION: SM

ATTERBERG LIMIT (- #40 Material)	
LIQUID LIMIT	
PLASTIC LIMIT	
PLASTIC INDEX	

DATE: 6/20/2014

PROJECT NAME: C-139 Annex Restauration
PROJECT #: 7111-13-142

SOIL CLASSIFICATION:

SP

ATTERBERG LIMIT (- #40 Material)	
LIQUID LIMIT	
PLASTIC LIMIT	
PLASTIC INDEX	
DATE: 6/20/2014

PROJECT NAME: C-139 Annex Restauration
PROJECT #: 7111-13-142

SOIL CLASSIFICATION:

SM

ATTERBERG LIMIT (- #40 Material)							
LIQUID LIMIT							
PLASTIC LIMIT							
PLASTIC INDEX							

DATE: 6/20/2014

PROJECT NAME: C-139 Annex Restauration
PROJECT #: 7111-13-142

ATTERBERG LIMIT (- #40 Material)
LIQUID LIMIT
PLASTIC LIMIT
PLASTIC INDEX

DATE: 6/20/2014

PROJECT NAME: C-139 Annex Restauration PROJECT #: 7111-13-142

SOIL CLASSIFICATION:

ATTERBERG LIMIT (- #40 Material)								
LIQUID LIMIT								
PLASTIC LIMIT								
PLASTIC INDEX								

DATE: 6/20/2014

PROJECT NAME: C-139 Annex Restauration PROJECT #: 7111-13-142

SOIL CLASSIFICATION:

ATTERBERG LIMIT (- #40 I	Material)
LIQUID LIMIT	
PLASTIC LIMIT	
PLASTIC INDEX	

BORING AND MONITORING WELL LOCATION PLAN

DRAWN BY: NG CHECKED BY: JO	APPROVED BY: RK DATE: 07-29-2013	ENGINEER OF RECORD: RAJ KRISHNASAMY, P.E. FLORIDA LICENSE NO.: 53567	RAJ KRISHNASAMY, P.E. P.E. LICENSE NUMBER 53567 TIERRA SOUTH FLORIDA 2765 VISTA PARKWAY, S-10 WEST PALM BEACH, FL 33411 CERTIFICATE OF AUTHORIZATION 28073	SCALE: NTS	PROJECT NUMBER: 7111-13-142	GEOTECHNICAL ENGIN C-139 ANNEX RE S.F.W. HENDRY COUN
			joliva 7/8/2014	11:49:10 AM J:\Ti	erra Documents\Projects\TSF_2013\7111-13-142.	C-I39 Annex Restoration (SFWMD)\geotech\BIBORING.dgn

ECHNICAL ENGINEERING SERVICES **39 ANNEX RESTORATION** S.F.W.M.D HENDRY COUNTY, FLORIDA

Sheet:

XX

Schedule 40,0.010" slotted PVC casing; Schedule 40 solid PVC casing; 6-20 silica sand; I/4" coated bentonite pellets; portland cement

Schedule 40,0.010" slotted PVC casing; Schedule 40 solid PVC casing; 6-20 silica sand; 1/4" coated bentonite pellets; portland cement

Schedule 40,0.010" slotted PVC casing; Schedule 40 solid PVC casing; 6–20 silica sand; 1/4" coated bentonite pellets; portland cement

Schedule 40, 0.010" slotted PVC casing; Schedule 40 solid PVC casing; 6–20 silica sand; 1/4" coated bentonite pellets; portland cement

Schedule 40, 0.010" slotted PVC casing; Schedule 40 solid PVC casing; 6–20 silica sand; 1/4" coated bentonite pellets; portland cement

Schedule 40,0.010" slotted PVC casing; Schedule 40 solid PVC casing; 6–20 silica sand; 1/4" coated bentonite pellets; portland cement

Schedule 40, 0.010" slotted PVC casing; Schedule 40 solid PVC casing; 6–20 silica sand; 1/4" coated bentonite pellets; portland cement

Schedule 40, 0.010" slotted PVC casing; Schedule 40 solid PVC casing; 6–20 silica sand; 1/4" coated bentonite pellets; portland cement

Schedule 40,0.010" slotted PVC casing; Schedule 40 solid PVC casing; 6-20 silica sand; 1/4" coated bentonite pellets; portland cement

Schedule 40,0.010" slotted PVC casing; Schedule 40 solid PVC casing; 6-20 silica sand; 1/4" coated bentonite pellets; portland cement

Schedule 40,0.010" slotted PVC casing; Schedule 40 solid PVC casing; 6-20 silica sand; 1/4" coated bentonite pellets; portland cement

Schedule 40, 0.010" slotted PVC casing; Schedule 40 solid PVC casing; 6–20 silica sand; 1/4" coated bentonite pellets; portland cement

Schedule 40,0.010" slotted PVC casing; Schedule 40 solid PVC casing; 6-20 silica sand; 1/4" coated bentonite pellets; portland cement

Schedule 40,0.010" slotted PVC casing; Schedule 40 solid PVC casing; 6-20 silica sand; I/4" coated bentonite pellets; portland cement

Schedule 40,0.010" slotted PVC casing; Schedule 40 solid PVC casing; 6-20 silica sand; 1/4" coated bentonite pellets; portland cement

Schedule 40, 0.010" slotted PVC casing; Schedule 40 solid PVC casing; 6–20 silica sand; 1/4" coated bentonite pellets; portland cement

Schedule 40,0.010" slotted PVC casing; Schedule 40 solid PVC casing; 6-20 silica sand; 1/4" coated bentonite pellets; portland cement

Schedule 40,0.010" slotted PVC casing; Schedule 40 solid PVC casing; 6-20 silica sand; 1/4" coated bentonite pellets; portland cement

Schedule 40,0.010" slotted PVC casing; Schedule 40 solid PVC casing; 6-20 silica sand; 1/4" coated bentonite pellets; portland cement

Boring B-1

Project Site: Annex-C-139

Boring Depth (ft) : 15.0

Groundwater Depth (ft): 7.0

Drilling Method: Bentonite Mud Rotary

Driller: _____ Danny Reeves

Drill Rig: ____CME-55 / Safety Hammer ____

Elevation (NAVD 88 / NGVD 29):								
Date (Start / Finish):	06/03/2013							
Time (Start / Finish):	8:00 AM / 5:00 PM							
Northing:	737939.65							
Easting:	681721.70							
County:	HENDRY							

DEEP A SOTOR	CLASSIFICATION	SAMPLE #	RECOVERY (FT)	RECOVERY (%)	STANDARD PENETRATION TEST Blows per foot on 2" O.D. Sampler with 140 lb. hammer falling XX"				BLOWS ON SAMPLER PER 6"			
					1	0	30	50	70) 90)	
0	TOPSOIL DARK BROWN TO LIGHT	S-1	1.8	90		•	,					10-12-11-10
	GRAY SAND (SP)	S-2	1.7	85								10-8-7-9
5	LIGHT BROWN SILTY SAND (SM)	S-3	1.8	90					>			11-42-20-16
		S-4	1.9	95		•						11-11-8-6
	LIGHT GRAY TO BROWN SAND (SP)	 S-5	1.9	95								8-9-9-10
		S-6	1.6	80] •							4-3-4-4
	LIGHT GRAY LIMESTONE, WEAKLY CEMENTED WITH SHELL FRAGMENTS	S-7	1.4	70		-+	_	+ - + -			-	3-2-3-2
15 —	LIGHT GRAY SAND (SP)	S-8	1.7	85						11		7-8
20	' to 7'											

Boring :	B-2

Project Site: Annex-C-139

Boring Depth (ft) : 15.0

Groundwater Depth (ft): 5.0

Drilling Method: ______Bentonite Mud Rotary____

Driller: _____ Danny Reeves

Drill Rig: _____CME-55 / Safety Hammer ____

Elevation (NAVD 88 / NGVD 29):									
Date (Start / Finish):	6/3/2013								
Time (Start / Finish):	8:00 AM / 5:00 PM								
Northing:	733965.59								
Easting:	684383.63								
County:	HENDRY								

DEEP FEET	ЮГОСУ	CLASSIFICATION	SAMPLE #	RECOVERY (FT)	RY RECOVERY (%) STANDARI Blows per f with 140 lb.	STANDARD PENETRATION TEST Blows per foot on 2" O.D. Sampler with 140 lb. hammer falling XX"				T BLOWS ON SAMPLER			
						1	0	30	5	0	70	90	FLKO
0 -		TOPSOIL BROWN TO DARK	S-1	1.7	85	•							2-3-2-2
_		BROWN SAND (SP)	S-2	1.9	95]							2-2-2-2
5 —		DARK GRAYISH BROWN SILTY SAND (SM)	S-3	1.5	75		 						2-2-2-3
-			S-4	1.6	80								4-5-4-3
		LIGHT GRAY WEAKLY	 S-5	1.7	85								4-4-5-4
-		CEMENTED LIMESTONE WITH SHELL FRAGMENTS	S-6	1.8	90								6-7-3-5
-			 S-7	1.5	75] •							4-4-3-4
15 —			S-8	1.7	75]		-	+ $-$	_		$\left + \right $	- 3-4
20 — 20 — 25 — 30 — 30 — 40 — 45 — 50 —	Sample @ ; MC (%)=46 OC(%)=8 -200=4	2' to 4'											
			I										

Boring :	B-3

Project Site: Annex-C-139

Boring Depth (ft) 30.0

Groundwater Depth (ft): 5.0

Drilling Method: Bentonite Mud Rotary

Driller: Danny Reeves

Drill Rig: CME-55 / Safety Hammer

Elevation (NAVD 88 /	NGVD 29):	_
Date (Start / Finish):	06/03/2013	_
Time (Start / Finish):	8:00 AM / 5:00 PM	_
Northing:	732019.97	_
Easting:	687573.80	_
County:	HENDRY	_

DEE FEE	ΈP T		ЮГОСУ	CLASSIFICATION	SAMPLE #	RECOVERY (FT)	RECOVERY (%)	STANDARD PENETRATION TEST Blows per foot on 2" O.D. Sampler with 140 lb. hammer falling XX"		ST er	T BLOWS ON SAMPLEF					
			НЦЦ						10	30		50	70	90		PER 6"
0	-			TOPSOIL	S-1	1.9	95			•						20-15-5-6
	-			LIGHT GRAY TO BROWN SAND (SP)	S-2	 1.9	95									6-8-11-8
5	_	∇			S-3		95			1	Ţ	/	1-1-	1+		11-15-16-10
	_			LIGHT BROWN SANDY LIMESTONE	S-4		95					\searrow				27-30-31-35
	_				S-5		90					1				27-28-10-11
10	_			WHITE SAND (SP)	S-6	1.7	85	-			- †	·	1-1-	1+		3-4-4-4
	_				S-7	1.6	80	1 +	-	+	- †	· -+	1-1-	1+	-	3-3-3-3
15	_				S-8		75	1								2-3-2-3
	_			LIGHT GRAY WEAKLY CEMENTED	S-9		75									5-5-6-8
	_			LIMESTONE WITH SHELL FRAGMENTS	S-10		80	1 /	1							1-1-2
20	_				S-11	1.6	80									6-7-5-8
	_				S-12	1.7	85									5-5-4-2
25	_				S-13	1.8	90			+	- †	· -+	1-1-	1+		6-5-6
	_			GRAY CLAYEY / SILTY SAND (SC / SM)	 S-14		90									4-5-3-5
	_			GRAY SANDY LIMESTONE	S-15		90				-+	·	1-1-	1+	-	10-9-10
30	_		╟┶┰┶┰┶┰╛						-	+- -	-+	·	-	++	-	
	_															
35	_															
	_															
	_															
40	_															
	_															
45	_															
	_															
	_															
50																

Boring :	B-4

Project Site: Annex-C-139

Boring Depth (ft) : 30.0

Groundwater Depth (ft): _____10.0_____

Drilling Method: Bentonite Mud Rotary

Driller: Danny Reeves

Drill Rig: CME-550 / Safety Hammer

Elevation (NAVD 88 / NGVD 29):										
Date (Start / Finish):	06/14/2013									
Time (Start / Finish):	8:00 AM / 5:00 PM									
Northing:	730374.75									
Easting:	691317.54									
County:	HENDRY									

DEEP FEET		ЮГОСУ	CLASSIFICATION	SAMPLE #	RECOVERY (FT)	RECOVERY (%)	ST Blc wit	STANDARD PENETRATIC Blows per foot on 2" O.D. S with 140 lb. hammer falling				TION). Sa	I TI Imp (X"	EST pler	BLOWS ON SAMPLER			
				ļ Ē						1	0	30	с С	50	70	9 9	90	FERO
0			-[Chi, ingkanja Chiji (chiji) Chiji (chiji) Chiji (chiji)	TOPSOIL	S-1	1.7	85			•							25-8-9-6
	-			- 2010 - 2010 - 2010 - 2010 - 2010		S-2	NO RECOVERY	-			•							6-6-5-6
5	_				BROWN SLIGHTLY SILTY SAND (SP / SM)	S-3	NO RECOVERY			•								4-3-3-4
	-					S-4	1.5	75										3-3-3-3
10	_		_		DARK BROWN SAND WITH ORGANIC (SP-SM/OL)	S-5	1.8	90			\sum	•						8-10-11-11
	_				GRAY SAND (SP)	S-6	1.8	90			ø							6-7-5-4
	-				GRAYISH BROWN SILTY SAND (SM)	S-7	1.8	90										4-3-3-4
15	-					S-8	1.8	90				>	•					26-20-12
	-					 	1.6	80		٩		ſ						4-4-3-4
	_					S-10	1.4	70			•							8-7-5
20	-				LIGHT GRAY TO GRAY WEAKLY	 S-11	1.4	70										5-4-7-8
	-				SILT AND SHELL FRAGMENTS	S-12	1.4	70		•								4-3-3-3
25	_					S-13	1.5	75		è								4-4-4
	-					S-14	1.5	75		•	•					3-4-3-2		
	-					S-15	1.4	70		┥								3-3-4
30	-			<u></u>												-	1	
	_			Samp														
35	_	[MC (%	6)=46)=8													
	_			Somo														
				- MC(%)=7 11													
40	-																	
	-																	
	-																	
45																		
50																		
						1			·			1						

Boring :	B-5

Project Site: <u>Annex-C-139</u> Boring Depth (ft) : <u>30.0</u>

Grounwater Not Groundwater Depth (ft): Encountered (GNE)

Drilling Method: Bentonite Mud Rotary

Driller: Danny Reeves

Drill Rig: CME-55 / Safety Hammer

Elevation (NAVD 88 / NGVD 29):									
Date (Start / Finish): _	06/4/2013								
Time (Start / Finish):	8:00 AM / 5:00 PM								
Northing:	728815.75								
Easting:	688450.36								
County:	HENDRY								

DEEP FEET 50010			ЮГОСУ	CLASSIFICATION	SAMPLE #	RECOVERY (FT)	RECOVERY (%)	STANDARD PENETRATION TEST Blows per foot on 2" O.D. Sampler with 140 lb. hammer falling XX"						BLOWS ON SAMPLER	
			Ė					1	0	30	50	7	70	90	FERO
0	_	GNE		TOPSOIL	S-1	1.6	80								3-2-2-2
	-				S-2	1.7	85	1 •							5-4-3-3
5	_			LIGHT BROWN TO BROWN SAND (SP)	S-3	1.7	85								3-2-3-3
	-				 S-4	1.8	90								2-2-2-2
4.0	-				S-5	 1.6	80	1 4							2-2-2-2
10	_				 S-6		80		•						4-6-8-7
	-	_		LIGHT GRAY WEAKLY CEMENTED	S-7		80		¥						7-6-5-5
15	_			LIMESTONE WITH SHELL FRAGMENTS	 S-8		90	1 4							4-4-4
	-				S-9		95	1 🔶							3-4-3-6
~~	-			BROWNISH GRAY SAND (SP)	S-10	1.9	95		•						6-8-7
20	_				 S-11	1.9	95		•						7-7-7-6
	-			LIGHT GRAY WEAKLY CEMENTED LIMESTONE WITH SHELL FRAGMENTS	S-12	1.5	75] ∢	ĺ						5-3-3-3
25	_				S-13	1.7	85								8-4-6
	-		on ionana Crédit de Gran Produit	LIGHT GRAY SILTY SAND	S-14	1.8	90	1 [4							4-4-4-5
20	-			WITH TRACE OF SHELL FRAGMENTS (SM)	S-15	1.9	95								6-5-4
30	_		Sam	nle @ 13.5' to 15'				1 [-							-
	-		-200	%)=18 =3											
35	_														
	-														
40	-														
40	-														
	_														
45	_														
50	_														
50															

Boring :	B-6

Project Site: Annex-C-139

Boring Depth (ft) : 30.0

Groundwater Depth (ft): _____7.0

Drilling Method: _____Bentonite Mud Rotary___

Driller: _____ Danny Reeves

Drill Rig: ____CME-55 / Safety Hammer ____

Elevation (NAVD 88 / NGVD 29):										
Date (Start / Finish):	06/12/2013									
Time (Start / Finish):	8:00 AM / 5:00 PM									
Northing:	726193.27									
Easting:	689787.81									
County:	HENDRY									

DEEP FEET			ЧОГОСУ	CLASSIFICATION	SAMPLE #	RECOVERY (FT)	RECOVERY (%)	STANE Blows with 14	DARI per f 10 lb.	D PEN oot or hamr	IETR 2" O ner fa	ATI D.	ON San g XX	TES ⁻ npler ("	BLOWS ON SAMPLER
			Ē					1	0	30	5	2	70	90	
0	-			TOPSOIL BROWN SAND TRACE OF	S-1	1.9	95				•				21-20-15-19
	-			LIMEROCK FRAGMENTS (SP)	S-2	1.9	95		۲						15-10-7-5
5	_			BROWNISH GRAY SILTY SAND (SM)	S-3	1.8	90					1	_		- 4-5-5-13
	-	∇			S-4	1.9	95			\bigtriangledown					15-17-14-12
10	-			BROWNISH GRAY SAND (SP)	S-5	1.9	95								12-13-12-12
10	_				 S-6	1.8	90						1-		4-5-6-7
	-	Ē			S-7		95								6-5-5-5
15	_	ΓL.		OLIVE GRAY SANDY SILT (ML)	S-8	1.9	95	1 – –	- -					++ -	- 5-5-6
	-				 S-9	1.9	95								6-9-7-6
	-						90								4-4-5
20	_			CEMENTED LIMESTONE	S-11		85				+ +				4-4-5-4
	_						90	-							5-6-5-7
25	_			OLIVE GRAY SANDY SILT (ML)	 S-13		90								- 4-4-6
	-			LIGHT GRAY WEAKLY CEMENTED LIMESTONE	S-14		85	1 🖌							4-3-4-4
	-			OLIVE GRAY SANDY SILT (ML)			90								6-8-7
30	_										+ +			+ -	-
	_		Samp	e @ 13.5' to 15'											
35	_		-200=0	50											
40	_														
	-														
	-														
45	_														
	-														
50															

Boring : B-7

Project Site: Annex-C-139

Boring Depth (ft) : 30.0

Groundwater Depth (ft): _____4.5

Drilling Method: Bentonite Mud Rotary

Driller: Danny Reeves

Drill Rig: CME-550 / Safety Hammer

Elevation (NAVD 88 / NGVD 29):										
Date (Start / Finish):	06/12/2013	_								
Time (Start / Finish):	8:00 AM / 5:00 PM	_								
Northing:	726331.93	_								
Easting:	694225.04	_								
County:	HENDRY	_								

DEE FEE	EP T	CLASSIFICATION SAMPLE RECOVERY R # (FT)						/ STANDARD PENETRATION TEST Blows per foot on 2" O.D. Sampler with 140 lb. hammer falling XX"							
								10		30	50	70	9	90	PER 6"
0	_		TOPSOIL	 S-1	 1.95	97	-								8-10-10-13
	_		LIGHT BROWN SAND (SP)	 S-2	 1.95	97									8-12-13-16
5		Z <u>- 1.0000</u> 2000000 2000000	LIGHT BROWN SILTY SAND (SM)	 S-3		95			- + -					+ -	18-20-17-18
		ΠÌ		 S-4		90			- + -	∕	+ +	1-1		+ -	14-16-12-9
			BLACK ORGANIC SILT (OL)	 S-5	1.7	85		۴							6-7-5-13
10				 S-6		75		•							3-4-4-5
		0.000000 202000000 2020000000 20200000000		S-7		75		\bullet	- + -			11	1-	† -	3-2-2-2
15			BROWNISH GRAY SILTY SAND WITH LIMESTONE FRAGMENTS (SM)	 S-8	 1.4	70									2-2-3
		3. (* 1605) 11. (* 1605) 20. (* 1605) 3. (* 1615) 3. (* 1615)		S-9	 1.7	85)						6-8-9-7
		\mathbb{Z}	OLIVE GRAY SANDY	S-10	1.4	70					+ -		1-	1	2-2-5
20			ČĽAY / ŠILT (ČĽ / ML)	S-11	1.6	80			•						9-9-7-8
			LIGHT GRAY WEAKLY	S-12	1.5	75							-		3-3-5-6
25			WITH SHELL FRAGMENTS	S-13	1.8	90				>					17-16-12
			LIGHT GRAY SILTY SAND (SM)	S-14	1.8	90		•	4						4-6-7-7
20			DARK GRAY LIMESTONE	S-15	1.5	75					7				31-30-19
30									- <u> </u>		TT				
		Samp	b)=47 b)=12												
35		Samo													
		- MC(% OC(%	b)=14 b)=19												
40	_	Samp	le @ 4' to 6'												
40		-200=	27												
	_														
45	_														
	_														
50	_														

 Project Site:
 Annex-C-139

 Boring Depth (ft) :
 30.0

Groundwater Depth (ft): 7.0

Drilling Method: _____Bentonite Mud Rotary____

Driller: _____ Danny Reeves

Drill Rig: ____CME-550 / Safety Hammer

Elevation (NAVD 88 / NGVD 29):								
Date (Start / Finish):	06/12/2013							
Time (Start / Finish):	8:00 AM / 5:00 PM							
Northing:	720754.90							
Easting:	689557.90							
County:	HENDRY							

DEEP FEET		гногоду	CLASSIFICATION	SAMPLE #	RECOVERY (FT)	RECOVERY (%)	RY STANDARD PENETRATION TE Blows per foot on 2" O.D. Sampl with 140 lb. hammer falling XX"					ES ⁻ pler	BLOWS ON SAMPLER PER 6"			
			5								J 		, —		90 TT	
0	_			TUPSUIL	S-1	1.4	70	•								2-2-2-2
				LIGHT BROWN TO BROWN SAND WITH TRACE OF LIMEROCK (SP)	S-2	1.6	80] 🔌								2-3-5-7
5					S-3	1.7	85									10-8-9-9
		∇	tin ingener Freinigen Anne 1960 Tyn 1960	CRAVISH ROWAL SILTY SAND (SM)	S-4	1.8	90		~							6-6-6-13
10	-			GRAFISH DROWN SILTI SAND (SM)	S-5	1.9	95					>	≯			29-30-32-44
	_				S-6	1.9	95		•							6-8-9-7
	_				S-7	1.7	85									7-6-5-5
15	_				 S-8	1.5	75									4-3-4
	_			LIGHT GRAY WEAKLY CEMENTED LIMESTONE	S-9	1.5	75									7-5-4-4
	-				 S-10	1.6	80									4-4-5
20	_				S-11	1.6	80		•							7-5-5
	-	Γ			S-12	1.8	90									5-4-4
25	_		ti i plana Tracician Al e 1960 Tracica		S-13	1.7	85	1								2-3-3
	-		Sectoral Sectoral Constant Constants	LIGHT GRAY SILTY SAND (SM)	 S-14		80									2-3-2-2
	-		9.000 19.000 9000 8000 80000		 S-15		90									6-4-6
30	-															-
	-		Sampl MC(%	e @ 23' to 25')=27												
35	_		OC(%)=26												
	-															
	_															
40																
	_															
45	_															
	_															
	_															
50																

Boring :	B-9
Project Site	Annex-C-139

Boring Depth (ft) 50.0

Groundwater Depth (ft): 5.0

Drilling Method: _____Bentonite Mud Rotary___

Driller: _____ Danny Reeves

Drill Rig: CME-550 / Safety Hammer

Elevation (NAVD 88 / NGVD 29):								
Date (Start / Finish):	07/25/2013							
Time (Start / Finish):	8:00 AM / 5:00 PM							
Northing:	720754.90							
Easting:	680683.95							
County:	HENDRY							

DEI FEE	EP 5000		ЮГОСУ	CLASSIFICATION	SAMPLE #	RECOVERY (FT)	RECOVERY (%)	STANDARD PENETRATION TES Blows per foot on 2" O.D. Sampler with 140 lb. hammer falling XX"					EST oler	BLOWS ON SAMPLER	
			<u>É</u>						10	30	50	7	9	0	FERO
0					S-1	1.8	90								4-5-8-8
	_				 S-2		90	-							8-10-11-10
5	_	∇		LIGHT BROWN TO BROWN SAND (SP)	 S-3	1.7	85	-							4-5-5-5
	_			Γ			85	-							5-6-7-7
	_			└──── Sample @ 6' to 8' MC(%)=16	 S-5	1.4	70		_						2-2-2-2-
10	_			-200=4	 		80	-	•						6-7-5-5
	_		~~~~				90	- -	_/		•	++		- -	6-5-4-4
15	_		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	LIGHT BROWN SHELLY SAND (SP)	 S-8	 1.7	85	-							4-5-4-4
	_						80	- -	∦ – -		• – –	++		+ -	5-4-4-4
	_			SHELL FRAGMENTS (SM)	 S-10		85								3-3-4-5
20	_		\sim				70				• - +	++	+ -	- -	3-2-2-2
	_		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	LIGHT GRAY SHELLY SAND WITH TRACE OF SILT (SP)	– – – – S-12		70	-							4-6-5-3
25	_		\sim	LIGHT GRAY SILTY SAND TRACE OF SHELLS (SM)		 1.4	70		A					- -	2-2-3-3
	_						80		<u> </u>		• – –	++		- -	5-8-7-9
	_				 S-15		90	-		•					11-12-10-13
30	_			LIGHT GRAY SANDY LIMESTONE	 S-16	 1.7	85	-	•						8-7-7-10
	_				 S-17	 1.7	85	-							7-9-6-5
35	_				 S-18	1.6	80	-							6-5-6-8
	_						95	-	√		•	++			4-5-3-3
	_				 S-20	 1.7	85		/						3-3-2-4
40	_			LIGHT GRAY SAND (SP)			80								2-2-2-2
	_						85		,						3-2-3-2
45	_		n initia Giulia	Sample @ 6' to 8' MC(%)=16 -200=4								++		+ -	2-1-2-2
	_	10 10 10 10 10 10 10 10 10 10 10 10 10 1		GRAY SILTY SAND (SM)	 S-24										1-1-1-2
	_	10 12 13 13 13		UNAL JILTI JANU IJMI											2-1-1-3
50						1.4				-	•	+ +	-	$\left - \right $	2-1-1-0

Boring : B-10 Project Site: Annex-C-139 Boring Depth (ft) 15.0 Groundwater Depth (ft): _____5.0 Drilling Method: Bentonite Mud Rotary

Driller: ____ Danny Reeves

Drill Rig: ____CME-550/ Safety Hammer___

Elevation (NAVD 88 / NGVD 29):								
Date (Start / Finish):	07/25/2013							
Time (Start / Finish):	8:00 AM / 5:00 PM							
Northing:	720563.91							
Easting:	669187.46							
County:	HENDRY							

DEE FEE	EP T		ЧОГОСУ	CLASSIFICATION	SAMPLE #	RECOVERY (FT)	RECOVERY (%)	ST Blo wit	ANE ws p h 14	DAR per 1 0 lb	D PE foot c . ham	NE n 2 nme	TRA ⁻ " O.D er falli	TON 9. Sa ng X	TE mpl X"	ST	BLOWS ON SAMPLER
			Ė						1	0	30)	50	70	90	с 	
0	-	_		TOPSOIL LIGHT BROWN SAND (SP)	S-1	1.6	80		٩								3-3-3-4
	_	Ч		LIGHT BROWN SILTY SAND (SM)	S-2	1.7	85			•							7-6-8-8
5	_				S-3	1.8	90	_								-	12-10-11-13
	-				S-4	1.95	97										11-13-14-15
10	-			LIGHT BROWN / PALE BROWN /	S-5	1.6	80		9								8-5-4-7
	_				S-6	1.7	85										5-4-4-4
	-				 S-7		90										7-9-10-8
15	_		전문		S-8	 1.7	85										6-5-5-6
20 25 30 35			Samı MC(º -200=	ple @ 2' to 4' %)=33 =30				-									
40 45 50																	
45 50																	

Boring :	W-2
Project Site	Annex-C-139
Boring Depth (ft)	30.0
Groundwater Dep	oth (ft): 5.0
Drilling Method:	Bentonite Mud Rotary
Driller:	Danny Reeves
	-

Drill Rig: CME-55 / Safety Hammer Logged by: Maximiliano Peralta

Elevation (NAVD 88 / NGVD 29):										
Date (Start	/ Finish): _	07/05/2013								
Time (Start	/ Finish):	8:00 AM / 5:00 PM								
Northing:		751143.17								
Easting:		663146.31								
County:		HENDRY								

DEEP FEET	ЮГОСУ	CLASSIFICATION	SAMPLE #	RECOVERY (FT)	RECOVERY (%)	STANDAR Blows per with 140 lb	D PENI foot on hamm	ETRAT 2" O.D ter falli	ΓΙΟΝ). Sar ing X.	TEST npler X"	BLOWS ON SAMPLER
	Ë					10	30	50	70	90	FERO
0 _		TOPSOIL	S-1	1.7	85	•					2-3-4-11
-			 S-2	1.8	90						7-7-7-9
5 _ ▽			 S-3	1.4	70		•				8-8-9-8
-		LIGHT GRAY SAND (SP)	 S-4	1.9	95						4-5-7-8
			 S-5	1.8	90		,				8-10-7-8
			 S-6	1.8	90						8-6-6-7
-		LIGHT BROWN SLIGHTLY SILTY SAND (SP/SP-SM)	S-7	1.7	85				11-		8-8-8-8
15 —			S-8	1.6	80						5-6-8-8
-			 S-9	1.7	85		┝				8-10-10-10
		LIGHT BROWN SAND (SP)	 S-10	1.8	90						8-8-9-14
			 S-11	1.9	95						7-8-7-7
-	si i con Tracina Si rensan Si rensan		S-12	1.9	95		• ·		17-		2-6-11-11
25 —	anginangin Anginangin Silangkangi Tanangin	LIGHT BROWN SLIGHTLY SILTY SAND (SP/SP-SM)	 S-13	1.8	90						7-8-8-10
-	3.6000 (10.040) (10.040) (10.040) (10.040) (10.040)		 S-14	1.9	95		,				6-10-8-8
		LIGHT BROWN SAND WITH SHELL FRAGMENTS (SP)	S-15	1.7	85				1		3-3-4-10
30 —	<u></u>							+	11-	11	
35 —											
40 —											
-											
45 —											
50 —											

Boring :	W-4D
Project Site:	Annex-C-139

Boring Depth (ft) : _____100.0

Groundwater Depth (ft): ______4.0

Drilling Method: _____Bentonite Mud Rotary___

Driller: Danny Reeves

Drill Rig: CME-55 / Safety Hammer

Elevation (NAVD 88 / NGVD 29):									
Date (Start / Finish):	07/29/2013 - 07-30-13								
Time (Start / Finish):	8:00 AM / 5:00 PM								
Northing:	745932.85								
Easting:	670674.72								
County:	HENDRY								

DEEP FEET	,	ногосу	CLASSIFICATION	SAMPLE #	RECOVERY (FT)	RECOVERY (%)	STANDARI Blows per f with 140 lb.	D PENE oot on 2 hamme	ETRAT 2'' O.D er falli	TION 9. Sar ng X3	TEST npler <"	BLOWS ON SAMPLER
		É					10	30	50	70	90	FERO
0 -			TOPSOIL	$\begin{array}{c} \underline{S} \underline{1} \\ \underline{S} \underline{2} \\ \underline{S} \underline{3} \\ \underline{S} \underline{3} \\ \underline{S} \underline{3} \\ \underline{S} \underline{4} \\ \underline{S} \underline{3} \\ \underline{S} \underline{4} \\ \underline{S} \underline{5} \\ \underline{S} \underline{5} \\ \underline{S} \\ \underline$	<u>1.7</u> <u>1.8</u> <u>1.6</u>	<u>85</u> <u>90</u> <u>80</u>						3-5-7-7 7-6-7-9 5-5-4-6
10 -	_			<u><u> </u></u>	<u> </u>	<u>95</u> <u>95</u> <u>85</u> _		•				7-8-9-9 9-10-11-12 7-7-7-7
	-		BROWN TO LIGHT BROWN SAND (SP)	<u>S-9</u> <u>S-10</u>	<u>1.9</u> <u>1.5</u>	95 75 85						6-7-7-7 8-9-9-10 8-9-9-8
20 -	_			<u>S-11</u> <u>S-12</u> <u>S-13</u> <u></u>	$ \frac{1.8}{1.9} \frac{1}{1.7} \frac{1}{1.7}$	<u>90</u> <u>95</u> <u>85</u>						5-9-10-9 7-8-8-9 5-5-5-6 4-4-5-5
30 -	_			<u>S-14</u> <u>S-15</u> <u>S-16</u> <u>S-17</u>	$ \frac{1.9}{1.9}$	$ \frac{85}{95} \frac{95}{70} \frac{70}{75} \frac{75}{75} \frac{75}{75}$					+	5-7-8-8 6-7-8-7 10-11-9-9 7-8-6-7
40 -	- - -			<u> </u>	$\begin{array}{c} 1.5 \\ - 1.6 \\ - 1.9 \\ - 1.9 \\ - 1.8 \\ -$							6-6-8-7 6-7-8-9 12-17-15-14 12-15-13-10 9-8-8-9
50 -	-		LIGHT GRAY WEAKLY CEMENTED LIMESTONE WITH SHELL FRAGMENTS	<u>S-23</u> <u>S-24</u> <u>S-25</u> <u>S-26</u> <u>S-27</u> _	$\begin{array}{c} - & - & 1.9 \\ - & - & 1.8 \\ - & - & 1.9 \\ - & - & 1.4 \\ - & - & 1.5 \\ - & - & 1.5 \\ - & - & 1.5 \\ - & - & 1.5 \\ - & - & - \\ \end{array}$	95 90 95 70 75						9-12-15-14 11-12-11-12 11-15-16-15 13-14-15-14 11-15-16-10
60 -	- - -			<u>S-28</u> <u>S-29</u> <u>S-30</u> <u>S-31</u> <u>S-32</u>	$\begin{array}{c} \underline{1.5} \\ \underline{1.4} \\ \underline{1.4} \\ \underline{1.6} \\ \underline{1.5} \\ \underline{1.5} \\ \underline{1.4} \\ 1.4$	75 70 80 75 70		× ×				12-13-12-13 11-14-13-12 11-14-12-11 10-11-12-12 9-9-10-9
70 -	- - - -			<u>S-33</u> <u>S-34</u> <u>S-35</u> <u>S-36</u> _ <u>S-37</u> <u>S-38</u>	<u>1.7</u> <u>1.8</u> <u>1.6</u> _ <u>1.7</u> 1.6	85 90 90 80 85 80						- 13-14-15-15 12-15-16-15 21-21-25-23 19-20-18-19 22-21-20-21
80 -	-		LIGHT GRAY MODERATELY CEMENTED LIMESTONE WITH SHELL FRAGMENTS	<u>\$-39_</u> <u>\$-40_</u> <u>\$-41_</u> <u>\$-42_</u> <u>\$-43_</u>	$\begin{array}{c} - & \underline{1.7} \\ - & \underline{1.5} \\ - & \underline{1.6} \\ - & \underline{1.6} \\ - & \underline{1.7} \\ - & \underline{1.6} \\ - & \underline{1.6} \\ - & \underline{1.6} \end{array}$	85 75 80 85 80		× ×				14-18-15-16 15-15-10-9 12-15-14-13 12-12-13-12 16-15-13-15
90 -	- - -			<u>- S-44</u> <u>- S-45</u> <u>- S-46</u> <u>- S-47</u> <u>- S-48</u> <u>- S-48</u>	$\begin{array}{c} - 1.6 \\ - 1.6 \\ - 1.6 \\ - 1.6 \\ - 1.7 \\$							16-18-17-19 15-17-19-19 18-19-20-19 14-16-15-16 14-15-16-15
100 -	_			<u>S-49_</u> <u>S-50_</u>	<u>1.7</u>	<u>85</u> _				- -	_ _	17-16-18-19 18-16-15-15
				1	1	1						1

Boring :	W-9									
Project Site:	Annex-C-139									
Boring Depth (ft) :										
Groundwater Dep	oth (ft):5.0									
Drilling Method:	Bentonite Mud Rotary									
Driller: Danny Reeves										
Drill Rig:CME-55 / Safety Hammer										

Elevation (NAVD 88 / NGVD 29):									
Date (Start / Finish):	07/09/2013								
Time (Start / Finish):	8:00 AM / 5:00 PM								
Northing:	740499.18								
Easting:	663262.34								
County:	HENDRY								

DEI FEE	EP ET		ЮГОСУ	CLASSIFICATION	SAMPLE #	RECOVERY (FT)	RECOVERY (%)	STANI Blows with 14	DAR per 1 10 lb	D PENI foot on hamm	ETRA ⁻ 2" O.E er falli	ΓΙΟΝ). Sa .ng X	TES mple X"	T BLOWS ON SAMPLER
			Ē					1	0	30	50	70	90	FERO
0	_			TOPSOIL	S-1	1.7	85		R					4-5-5-5
	-				 S-2		90							7-8-7-8
5	_	∇			 S-3		95	-						10-11-14-15
	-				 S-4	 1.9	95							10-12-12-12
	-			BROWN TO LIGHT BROWN SAND (SP)	 S-5	1.9	95							14-14-15-13
10	_	Г			 S-6		90	-						10-11-10-10
	-				 S-7	1.7	85	-						6-9-7-8
15	_				 S-8	1.9	95							16-18-20-20
	_				 S-9	 1.4	70	•						2-2-3-2
	_				S-10	1.5	75	1			† † -	1		
20	-		នាំពាំងសំព័ និត្តប្រជាជ ប្រជាជាជា ប្រជាជាជា	LIGHT GRAY SAND WITH	 S-11	1.6	80	1						1-2-2-1
	-		on produ Tracienti orginaciji Orginaciji	SILT (SP/SM)	S-12	1.4	70							1-1-1-1
25	_		(1, 1, 1, 1) $(1, 1, 1, 1, 1)$ $(1, 1, 1, 1, 1, 1)$ $(1, 1, 1, 1, 1, 1)$ $(1, 1, 1, 1, 1, 1)$		S-13	1.4	70])•						2-4-4-5
	-			GRAY LIMESTONE. WEAKLY	S-14	1.4	70	1 📢						1-1-1-1
20	-			CEMENTED, SHELL FRAGMENTS	S-15	1.6	80							1-2-4-6
30	-													
35	_													
	-		Sam MC(ple @ 10' to 12' %)=21										
10	-		OC(%)=3										
40	_													
	-													
45														
50	_													

Boring W-11

Project Site: Annex-C-139
Boring Depth (ft) : 30.0

Groundwater Depth (ft): ______

Drilling Method: _____Bentonite Mud Rotary___

Driller: Danny Reeves

Drill Rig: CME-55 / Safety Hammer

Elevation (NAVD 88 / NGVD 29):								
Date (Start / Finish):	7/10/2013							
Time (Start / Finish):	8:00 AM / 5:00 PM							
Northing:	737591.62							
Easting:	671445.13							
County:	HENDRY							

DEE FEE	EP ET	югосу	CLASSIFICATION	SAMPLE #	RECOVERY (FT)	RECOVERY (%)	ST Blo wit	AND ws po h 140	ARD er fo Ib.	PEN oot on hamn	ETRA 2" O ner fa	ATIO D. 3	ON ⁻ Sam g XX	TES ⁻ pler	F BLOWS ON SAMPLER
								10		30	50)	70	90	- PER 6"
0			TOPSOIL	S-1	1.8	90		•							4-5-5-5
				 S-2		85									3-3-4-5
5	-			S-3	1.7	85									6-5-6-6
				S-4	1.9	95									7-8-10-10
10	_		LIGHT BROWN TO BROWN SAND (SP)	S-5	1.8	90									8-7-7-7
	_			S-6	1.9	95									6-5-6-6
	_			S-7	1.8	90									5-7-6-7
15	_			S-8	1.9	95									6-6-8-9
	_			S-9	1.9	95			À			_ _			6-8-9-10
20	_			S-10	1.7	85		ť							6-5-5-6
	_		BROWN SAND WITH	S-11	1.7	85		1							4-5-4-4
	_		TRACE UF SILT (SP)	S-12	1.7	85									4-3-3-3
25	_			S-13	1.9	95			•						6-5-7-7
	_		BROWN WEAKLY CEMENTED	S-14	1.6	80		9							4-6-7-7
30	_		FRAGMENTS	S-15	1.6	80									5-5-5-6
	_														
	_														
35															
	_														
40	_														
	_														
	_														
45	_														
	_														
50	_														

Boring :	W-14D
Project Site:	Annex-C-139
Boring Depth (ft) :	100.0
Groundwater Dep	oth (ft): 3.5
Drilling Method:	Bentonite Mud Rotary
Driller	Danny Reeves

Drill Rig: CME-55 / Safety Hammer

Logged by: Maximiliano Peralta

 Date (Start / Finish):
 07/31/2013 - 08-01-13

 Time (Start / Finish):
 8:00 AM / 5:00 PM

 Northing:
 729938.48

 Easting:
 668171.28

 County:
 HENDRY

Elevation (NAVD 88 / NGVD 29):

	DEE FEE	P T	огосу	CLASSIFICATION	SAMPLE #	RECOVERY (FT)	RECOVERY (%)	STA Blov with	NDAF vs per 140 lt	RD PEI foot or 5. ham	NETRA 1 2" O.[mer fall	TION D. Sar ing X.	TEST npler X"	BLOWS ON SAMPLER
			E						10	30	50	70	90	- PER 6"
	0		13253	TOPSOIL DARK BROWN ORGANIC STAINED SAND (SP)	<u>S-1</u>	1.8	90		•					4-5-4-4
		$\neg \nabla$			$-\frac{s}{2} - \frac{s}{2}$	$-\frac{1.8}{1.0}$	90	+	•	+	- + + -	11-	1 + -	3 4 4 5
					$-\frac{5-3}{6}$	$-\frac{1.9}{1.7}$		+	•					5-6-6-10
					$-\frac{3-4}{5}$ -	$ \frac{1}{10}$		+						7_8_8_7
1						<u> </u>		+	•					6-9-8-7
'	0	_			$-\frac{3-0}{2}$ -	$-\frac{1.0}{1.0}$		+	1					7-8-9-9
		_			$-\frac{5}{5-8}$ -	$-\frac{1.3}{1.9}$		1	•					7-14-16-18
		_		LIGHT BROWN SAND (SP)	<u> </u>	$-\frac{1.0}{1.9}$		+						12-14-15-16
		_			$\frac{1}{5} \frac{1}{5} \frac{1}{10}$	$-\frac{10}{19}$				1				16-19-20-19
2	20	_			S-11	18		†			X			17-18-18-19
		_			<u> </u>	1.9		1			f			16-17-19-19
		_			S-13	1.9	95	1			▲			10-13-12-11
		_				1.9	95	1		Ĩ				12-13-12-12
		_				1.8	90	1		-				2-1-2-2
3	30	_				1.8	90	1 -	S [+	- +		+ +	4-6-6-6
		-				1.6	80	1						4-4-3-4
		_	TERNING CONTRACTOR			1.6	80	1	N					2-4-5-4
		-	- 460065 0.0066			1.8	90	1	1					5-6-5-6
		-	i rêdê êr A. E.Gali		S-20	1.7	85	1	Δ					2-3-3-3
4	40	_	ing ng pang pang pang pang pang pang pang		S-21	1.7	85	1	I					2-3-2-3
		-		GRAY / DARK GRAY SILIY SAND (SM)		1.7	85	1	\mathbf{N}					4-5-5-6
		_				1.7	85		1					1-1-1-2
		-				1.7	85	I						2-1-2-2
		-			<u> </u>	1.6	80	i II						1-1-2-2
5	50	_				1.6	80	1	\searrow					2-7-9-10
		-			S-27	1.9	95	1 –		'+ -	- ++ -		+ +	4-7-6-9
		-			S-28	1.7	85	Ι		+				12-20-21-22
		-			S-29	1.7	85	Ι			Λ			14-16-18-20
		-			S-30		85	Ι			'			12-10-7-8
6	60	-			S-31	1.7	85			N. I				12-14-10-14
		-			<u>S-32</u>	<u>1.7</u>	85							12-13-11-12
		-				1.8	90			I				7-13-10-11
		-		LIGHT GRAY SANDY LIMESTONE, WEAKLY	<u>S-34</u>	1.7	85							12-11-13-10
		-		CEMENTED, SHELL FRAGMENTS	<u></u>	1.7	85							12-13-14-15
7	70	_	╞╧╤╤╧╡		<u>S-36</u>	1_7	85			4				12-14-12-13
		-			$-\frac{S-37}{2}$	1.8	90			4				14-12-11-13
		-			$-\frac{5-38}{20}$	<u>1.8</u>	90	-						12-14-11-12
		-			$-\frac{5-39}{40}$		$ \frac{65}{-}$	+		+				12-13-11-13
		-			$-\frac{S-40}{44}$	<u>1.8</u>	90	-						11-12-10-12
8	30	_			$-\frac{5-41}{40}$	<u> </u>	85	+						14-15-13-14
		-			$-\frac{3-42}{42}$	$-\frac{1}{4}()$	$\frac{85}{20}$	+			• + + -	11-	1 + -	10-18-15-16
		-			$-\frac{5-43}{4}$	$-\frac{1.6}{1.6}$	$-\frac{80}{20}$	+						17-18-19-18
		1					$-\frac{80}{20}$	+						19-23-25-29
_ ا	0	1			$-\frac{3-43}{46}$	$-\frac{10}{10}$	$-\frac{80}{20}$ $$	+						18 10 17 19
15	9 0			LIGHT GRAY / LIGHT BROWN MODERATELY	$-\frac{3-40}{47}$	$-\frac{18}{10}$	$\frac{90}{90}$	+			∢			16_25 14 10
1					$\left -\frac{3^{-4}}{2} \right ^{-4}$	$-\frac{1.0}{1.0}$	$\frac{1}{90}$	+			¥			18_19_20_14
1					- 3-40 - 40	$-\frac{1.0}{1.7}$		+						20_22_24_30
1						$ \frac{1}{10} $		+						32_19_18_17
1	100					⊢ _ <u>'.°</u>		ŧĹ					$\downarrow \downarrow \mid _$	
'	.00													
1														
1														

Boring : W-16D

Project Site: Annex-C-139

Boring Depth (ft) : 100.0

Groundwater Depth (ft): 5.0

Drilling Method: Bentonite Mud Rotary

Driller: Danny Reeves

Drill Rig: CME-55 / Safety Hammer

Elevation (NAVD 88 / NGVD 29):						
Date (Start / Finisł	n):08-05-13					
Time (Start / Finis	h):8:00 AM / 5:00 PM					
Northing:	729087.16					
Easting:	681272.2					
County:	HENDRY					

DEEP FEET	ЧОГОСУ	CLASSIFICATION	SAMPLE #	RECOVERY (FT)	RECOVERY (%)	STANDAI Blows per with 140 I	RD PEN foot on 5. hamm	ETRAT 2" O.D ner falli	ΠΟΝ . Sar ng X)	TEST npler {"	BLOWS ON SAMPLER
						10	30	50	70	90	
0		TOPSOIL DARK BROWN SAND WITH TRACE OF ORGANIC AND ROOTS (SP)	<u>S-1</u> <u>S-2</u> <u>S-3</u> <u>S-4</u> <u>S-5</u>	<u>1.9</u> <u>1.7</u> <u>1.8</u> <u>1.8</u> <u>1.7</u>	<u>95</u> <u>85</u> <u>90</u> <u>90</u>						3-4-4-4 10-11-10-14 11-15-15-14 3-5-9-14 11-10-8-10
10		LIGHT GRAY WEAKLY CEMENTED LIMESTONE WITH SHELL FRAGMENTS	<u>S-6</u> <u>S-7</u> <u>S-8</u> <u>S-9</u>	<u>1.7</u> <u>1.7</u> <u>1.6_</u> <u>1.7_</u>	85 85 80 80						10-11-11-11 9-10-10-11 10-6-4-3 8-7-7-8 3-4-4-4
20		LIGHT BROWN SAND WITH SHELL FRAGMENTS (SP)	- S-10- S-11- S-12	$ \frac{1.8}{1.8} \frac{1}{1.8}$	$ \frac{90}{90} $						5-4-4-4 5-4-4-5
		LIGHT GRAY SILTY SAND (SM)	$ \begin{array}{c} - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 16 - 5 \\ - 5 \\ - 16 - 5 \\ - $	$\begin{array}{c} \frac{1.7}{1.8} \\ \frac{1.8}{1.8} \\ \frac{1.8}{1.8} \\ \frac{1.8}{1.8} \\ \frac{1.8}{1.8} \end{array}$	$ \begin{array}{c} - & -35 \\ - & -85 \\ - & -90 $		•				2-3-2-2 4-3-3-5 7-8-10-15 20-27-25-21
			$ \begin{array}{c} - 3 \cdot 10 \\ - 5 \cdot 17 \\ - 5 \cdot 18 \\ - 5 \cdot 19 \\ - 5 \cdot 20 \\ $	1.0 $ 1.9$ $ 1.7$ $ 1.7$ $ 1.7$ $ 1.7$ $ 1.7$ $ 1.7$ $ 1.7$ $ 1.7$ $ 1.7$ $ 1.7$ $ 1.7$ $ 1.7$ $ 1.7$ $ 1.7$ $ 1.7$ $ 1.7$ $ 1.7$ $ 1.$	$ \begin{array}{c} $		5				16-15-15-14 8-11-10-10 16-17-17-15
40 —			$\begin{array}{c} \underline{S-20} \\ \underline{S-21} \\ \underline{S-22} \\ \underline{S-23} \\$	<u>1.7</u> <u>1.8</u> <u>1.7</u> <u>1.7</u>	<u>90</u> <u>90</u> <u>85</u>						6-8-8-8 4-5-3-7 6-8-9-10
50 — - - - - -			<u>S-24</u> <u>S-25</u> <u>S-26</u> <u>S-27</u> <u>S-28</u> <u>S-29</u>	<u>1.8</u> <u>1.9</u> <u>1.9</u> <u>1.9</u> <u>1.6</u> <u>1.7</u>	90 95 95 95 80 85		•			*	45-40-41-40 35-36-30-30 50-40-41-47 35-30-31-34 25-27-20-20 17-18-15-15
60 —		LIGHT GRAY LIMESTONE WITH SHELL FRAGMENTS	$ \begin{bmatrix} S - 30 \\ S - 31 \\ S - 32 \\ S - 32 \\ S - 33 \\ S - 34 S - 34 $	<u>1.8</u>	90 90 85 85 85 85						13-20-15-14 19-20-17-17 10-11-12-13 15-16-14-15
70			S-35 S-36 S-36 S-37 S-38 S-39	$\begin{array}{c} - & - & \frac{1.6}{1.6} & - & - \\ - & - & \frac{1.6}{1.8} & - & - \\ - & - & \frac{1.8}{1.8} & - & - \\ - & - & \frac{1.7}{1.7} & - & - \\ - & - & \frac{1.7}{1.7} & - & - \end{array}$	$ \begin{array}{c} 80 \\ 80 \\ $						10-11-11-12 10-13-15-14 13-12-15-15 17-25-28-30 10-12-12-12
80			$ \begin{array}{c} - \overline{S} - \overline{40} \\ - \overline{S} - \overline{41} \\ - \overline{S} - \overline{42} \\ - \overline{S} - \overline{42} \\ - \overline{S} - \overline{43} \\ - \overline{S} - \overline{43} \\ - \overline{S} - \overline{44} \\ \end{array} $	$\begin{array}{c} - & - & - & - & - & - & - & - & - & - $	$ \begin{array}{c} - & -90 \\ - & -90 \\ - & -90 \\ - & -85 \\ - & -90 $						13-16-15-15 12-10-10-11 16-18-15-12 6-7-8-8 21-25-30-36
90			S-45 S-46 S-47 S-47 S-48 S-49 S-50	$\begin{array}{c} - & - & - & - & - & - & - & - & - & - $	90 85 85 85 85 85						20-21-27-20 16-17-19-15 18-15-14-16 17-20-21-24 37-40-41-40
100 —			<u>3-50</u>	1.0	90		+	+			

Boring :	W-22
Project Site:	Annex-C-139
Boring Depth (ft) :	30.0
Boring Bopar (ii).	

Groundwater Depth (ft): 4.0

Drilling Method: _____ Bentonite Mud Rotary____

Driller: Danny Reeves

Drill Rig: CME-55 / Safety Hammer

Elevation (NAVD 88 / NGVD 29):						
Date (Start	/ Finish):	8/28/2013	-			
Time (Start	/ Finish):	8:00 AM / 5:00 PM	-			
Northing:		720843.094	-			
Easting:		681028.797	_			
County:		HENDRY	-			

DEEP FEET	огосу	CLASSIFICATION	SAMPLE #	RECOVERY (FT)	RECOVERY (%)	STAN Blows with 1	DAR per 1 40 lb	D PENI foot on . hamm	ETRA ⁻ 2'' O.D er falli	ΓΙΟΝ). Sar ng X	TES1 npler X''	BLOWS ON SAMPLER
	HLI						10	30	50	70	90	- PER 6"
0 _		TOPSOIL	S-1	1.9	95							6-8-8-8
		BROWN TO LIGHT BROWN SAND (SP)	S-2		85							15-15-12-9
5 —			S-3	1.6	80		K					6-6-5-7
		LIGHT BROWN WEAKLY CEMENTED LIMESTONE WITH SHELL FRAGMENTS	S-4	1.6	80						_ _	12-15-16-16
10	(d. 1634) Tradicis Tradicis Tradicis		S-5	1.6	80			$\mathbf{\mathbf{Y}}$				12-11-11-10
	સંજય છે. છે. સંસ્થિતિ છે છે. આ મહાસ્વાર જોઈ છે. મહાસ્વ		S-6	1.6	80							10-11-13-12
	(4, 1) (66) (1) (7) (7) (4) (1) (7) (4) (1) (7) (4) (1) (7) (7) (7) (7)	LIGHT GRAY SAND WITH TRACE OF SILT AND SHELL (SP)	S-7	1.8	90		Ý					6-8-7-8
15 —			S-8	1.6	80							4-6-5-7
-	44419 161470 44666		S-9	1.6	80							6-6-8-9
	CLEVER TOUCHER ALE COL		S-10	 1.8	90	•						3-4-3-3
20 —	Angelandia Angelandia Angelandia Angelandia		S-11	1.8	90							5-4-4-3
-	3. 6.663 19.1363 36.663 36.753	LIGHT GRAY SILTY SAND (SM)	S-12	 1.8	90							3-5-6-4
25 —	(1, 1, 1) (1, 1) (1, 1) (1, 1) (1, 1)		S-13	 1.8	90							4-3-2-6
-	11111 1112 1112 1112		 S-14		75							4-5-5-6
-		LIGHT GRAY LIMESTONE	S-15		80							11-14-15-17
30 —									<u> </u>	1-1-	1 + -	-
-												
35 —												
-												
-												
40 —												
-												
45 —												
50 —												

			Boring	: W-22A				CERTIFICATE OF	AUTHORIZ	ATION 28073
			Projec	t Site: Annex-C-139		Elevation ((NAVD 88 / NG	GVD 29):	_	
	Boring Depth (ft) :30.0			Depth (ft) :30.0	Date (Start / Finish):6/19/2014					
			Groun	dwater Depth (ft):7.0		_				
	Drilling Method: Bentonite Mud Rotary		g Method:Bentonite Mud Rotary		Northing:	7	720562.42	_		
			Driller:	Danny Reeves		Easting:		681034.42	_	
			Drill Ri	ig: <u>CME-55 / Safety Hammer</u>		County:		HENDRY	_	
			Logge	d by: Maximiliano Peralta						
DEE FEE	EP ET		ногоду	CLASSIFICATION	SAMPLE #	RECOVERY (FT)	RECOVERY (%)	STANDARD PENETRATIO Blows per foot on 2" O.D. with 140 lb. hammer falling	ON TEST Sampler 3 XX"	BLOWS ON SAMPLER PER 6"
0				-					70 90	
U	_			<u>TOPSOIL</u>	S-1	1.0	50		<u> </u> <u> </u> <u> </u> <u> </u> <u>-</u>	2-2-3-4
	_			LIGHT BROWN SAND TRACE ROOTS (SP)	S-2	1.6	80			6-8-6-6
5	_			DARK BROWN ORGANIC STAINED SAND (SP)	S-3	1.5	75		<u> </u> .	2-4-8-12
	_	\square		DARK BROWN SAND (SP)	S-4	1.8	90			14-15-12-12
10	_				S-5	1.7	87			11-11-9-12
	_			· -	S-6	1.2	62			3-5-5-6
	_				S-7	1.9	96			7-8-8-9
15	_				S-8	1.2	62			9-9-8-9
	_				S-9	1.9	96			6-7-7-8
20	_			VERY PALE BROWN SAND TRACE SILT (SP)	S-10	1.9	96			2-3-5-5
20	_			VERY PALE BROWN CLAYEY/SILTY SAND (SC/SM)	S-11	1.0	50			2-2-4-5
	_				S-12	1.8	90			6-7-6-7
25	_				S-13	1.0	50			4-4-5-5
	-				S-14	1.3	66			6-8-8-8
20	-			LIGHT GRAY FRAGMENTED SANDY LIMESTONE WITH SOME SHELL	S-15	0.9	46			7-5-6-5
30	_								TT [] -	
	-									
35	_									
	-									
40	-									
40	-									
	-									
45	_									
	-									
_	-									
50										
					1	1	1			1

Boring W-23

Project Site: Annex-C-139

Groundwater Depth (ft): _____10.0

Drilling Method: _____Bentonite Mud Rotary___

Driller: _____ Danny Reeves

Drill Rig: <u>CME-55 / Safety Hammer</u> Logged by: <u>Maximiliano Peralta</u>

Elevation (NAVD 88 / NGVD 29):					
Date (Start / Finish):	8/29/2013				
Time (Start / Finish):	8:00 AM / 5:00 PM				
Northing:	726267.429				
Easting:	692849.182				
County:	HENDRY				

DEEP FEET	ПТНОГОСУ	CLASSIFICATION	SAMPLE #	RECOVERY (FT)	RECOVERY (%)	STANI Blows with 14	DARI per f 40 lb. 10	D PEI oot o ham 30	NETR n 2" C mer fi 5	ATIO D.D. 3 alling	ON T Sam 3 XX' 70	EST pler 90	BLOWS ON SAMPLER PER 6"
0 _		TOPSOIL DARK BROWN SAND,WITH LIMESTONE FRAGMENTS	S-1	1.8	90				•				13-17-20-10
-		(SP/FILL)	S-2		90	┆└╾		[_	_		\downarrow \downarrow	$ _{-}$	4-3-3-3
5 —		BROWN SILTY SAND (SM)	S-3		95		•					T	4-5-5-5
-					85								5-8-7-7
		BROWN SAND (SP)	S-5		90								15-12-8-8
10					90								10-11-19-25
-					85			$\overline{4}$	- + -				12-12-13-14
 15 —		CEMENTED LIMESTONE			85								15-16-14-14
_	ំណើរ ខែទើក រ ការប្រើស្រីសា មិនក្រំ ដែល				85				- + -				8-10-11-10
_	international Argumentation Argumentation Argumentational Argumentational	GRAY SILTY SAND (SM)		 1.6	80								6-6-8-10
20 —			– – – – – S-11	 1.8	90								4-4-3-4
_	2011 - 1200 2011 - 1200 2012 - 1200 2012 - 1200			 1.8	90		•		- + -	+			3-5-6-5
25 —		LIGHT GRAY SILTY SAND WITH LIMESTONE	 S-13		85								6-7-7-8
_		FRAGMENTS (SM)	– – – – – S-14	 1.6	80								5-7-7-8
_		LIGHT GRAY SILTY SAND (SM)					- /		- + -	† - ·	1-1		4-3-3-3
30 —	<u> 역당</u> 전							+ -	-			+ -	
_													
35 —													
_													
40 —													
-													
-													
45 _													
-													
50													

Boring :	W-23A
Project Site	Annex-C-139
Boring Depth (ft) :	30.0
Groundwater Depth	n (ft):4.0

Drilling Method: Bentonite Mud Rotary

Driller: Danny Reeves

Drill Rig: CME-55 / Safety Hammer

Elevation (NAVD 88 / NGVD 29):								
Date (Start / Finish):	6/17/2014							
Time (Start / Finish):	8:00 AM / 5:00 PM							
Northing:	725949.48							
Easting:	692953.28							
County:	HENDRY							

DEEP FEET		ПТНОГОСУ	CLASSIFICATION	SAMPLE #	RECOVERY (FT)	RECOVERY (%)	STANDARD PENETRATION TEST Blows per foot on 2" O.D. Sampler with 140 lb. hammer falling XX"BLOWS ON SAMPLER PER 6"1030507090
0 -	$\neg \nabla$		TOPSOIL BROWN SAND TRACE SUIT (SP)	S-1	1.6	79	2-3-2-2
	-		LIGHT BROWNISH GRAY SILTY LIMESTONE	S-2	1.7	83	
5 -	_			S-3	1.6	79	
	-			 S-4	1.7	83	
	-			 S-5	 1.7	83	
10 –	-			 S-6	 1.6	 79	
	-		LIGHT GREENISH GRAT CLAT/SILT (CL/ML)	S-7	 1.6	 79	4-5-7-5
15 -				– – – – S-8	 1.7	83	
	_		LIGHT GRAY SILTY LIMESTONE	– – – – S-9		 75	
	_		WITH FEW SHELL	 		 79	
20 –				 	17	83	4-6-5-6
		and an	PINKISH GRAY CLAYEY/SILTY	 S-12	 1 7	83	
25 -	_		SAND WITH LITTLE SHELL (SC/SM)	S-13	16	 79	
	_			 	17		
	-						. 4-6-5-5
30 -	_		GRAY FRAGMENTED SANDY LIMESTONE	5-15	1.6	/9	8-12-9-10
	_						
	-						
35 —	_						
	-						
40 -	-						
	_						
	_						
45 -							
	_						
50 -	-						
					-		

Boring :	W-24					
Project Site:	Annex-C-139					

Boring Depth (ft) : 30.0

Groundwater Depth (ft): _____4.0

Drilling Method: _____Bentonite Mud Rotary___

Driller: Danny Reeves

Drill Rig: CME-55 / Safety Hammer

Elevation (NAVD 88 / NGVD 29):								
Date (Start / Finish):	7/10/2013							
Time (Start / Finish):	8:00 AM / 5:00 PM							
Northing:	735263.54							
Easting:	680441.82							
County:	HENDRY							

DEE FEE	EP ET	ногосу	CLASSIFICATION	SAMPLE #	RECOVERY (FT)	RECOVERY (%)	STANI Blows with 14	DARI per f 40 lb.	D PENI oot on hamm	ETRA 2" O.[er fall	TION D. Sa ing X	N TE ample (X"	ST er	BLOWS ON SAMPLER PER 6"
		5							30	50		90	,	
0	_		TUPSUIL LIGHT BROWN SAND (SP)	S-1	1.2	60								2-8-3-7
		7		S-2	1.5	75			- -	+ + -		++	- -	4-6-15-20
5			LIGHT GRAY WEAKLY CEMENTED LIMESTONE	S-3	1.6	80				L .			_	20-16-8-8
	-			S-4	1.6	80		$\left \right $						6-6-7-8
10	-		LIGHT GRAY TO LIGHT	S-5	1.8	90					10-12-12-13			
10	-		BROWN SAND (SP)	 S-6		75								3-5-5-8
	-			S-7	1.5	75								2-3-4-5
15	_		LIGHT GRAY SAND WITH SHELL FRAGMENTS (SP)	S-8	1.4	70								3-3-5-6
	-		BROWN SAND (SP)	S-9	1.3	65						11		3-4-3-3
	-	~~~~~	LIGHT GRAY SAND WITH SHELL FRAGMENTS (SP)			75						11		6-7-8-10
20	_			S-11		75		/						2-3-6-6
	-			S-12		75								4-5-5-5
25	_		LIGHT BROWN SAND (SP)	S-13		85								6-3-5-7
	-			 S-14		85								5-8-9-10
	-			 S-15		85	-							5-5-6-8
30	-	<u>al a de d</u>							'	+ + -		11	-	
	_													
35	_													
	_													
	_													
40														
	_													
45	-													
45	_													
	-													
50														

Test Locatio	n Test Depth (ft)	Soil Type (USCS)	GWT Depth (ft)	Hc (ft)	d (ft)	L (ft)	Q (gpm)	Q (cfs)	Kh (ft/s-ft ²)	Kh (ft/day)	*K (to compare)		
W-3	0-10	SP	2.00	2.00	0.50	10	2.5	5.6E-03	1.60E-04	13.8	N/A		
W-3	10-15	SP	2.00	2.00	0.33	5	2.4	5.3E-03	5.14E-04	44.4	2.51E-04		
W-3	15-25	SP	2.00	2.00	0.33	10	1.9	4.3E-03	2.08E-04	18.0	2.02E-04		
W-6	0-10	SP / OL	3.00	3.00	0.50	10	3.4	7.6E-03	1.86E-04	16.1	N/A		
W-6	10-15	Limestone	3.00	3.00	0.33	5	5.1	1.1E-02	1.09E-03	94.2	5.33E-04		
W-6	15-25	Limestone	3.00	3.00	0.33	10	4.6	1.0E-02	4.89E-04	42.2	4.76E-04		
W-10	0-10	SP	2.00	2.00	0.50	10	1.6	3.6E-03	1.24E-04	10.7	N/A		
W-10	10-15	SP	2.00	2.00	0.33	5	1.2	2.7E-03	2.59E-04	22.4	1.26E-04		
W-10	15-25	SP	2.00	2.00	0.33	10	1.0	2.3E-03	1.10E-04	9.5	1.07E-04		
W-14	0-10	SP	3.00	3.00	0.50	10	5.5	1.2E-02	3.01E-04	26.0	N/A		
W-14	10-15	SP	3.00	3.00	0.33	5	4.7	1.0E-02	9.99E-04	86.3	4.87E-04		
W-14	15-25	SP	3.00	3.00	0.33	10	4.6	1.0E-02	4.98E-04	43.0	4.85E-04		
W-16	0-10	SP	4.00	4.00	0.50	10	9.1	2.0E-02	3.96E-04	34.2	na		
W-16	10-15	SP	4.00	4.00	0.33	5	5.0	1.1E-02	5.40E-04	46.7	5.26E-04		
W-16	15-25	SP	4.00	4.00	0.33	10	6.3	1.4E-02	3.37E-04	29.1	6.58E-04		
W-20	0-10	SP	2.50	2.50	0.50	10	5.4	1.2E-02	7.61E-04	65.8	N/A		
W-20	10-15	SP	2.50	2.50	0.33	5	3.9	8.8E-03	6.77E-04	58.5	4.13E-04		
W-20	15-25	SP	2.50	2.50	0.33	10	3.1	6.8E-03	2.62E-04	22.6	3.19E-03		
W-22A	0-10	SP	7.00	7.00	0.50	10	3.7	8.2E-03	1.15E-04	9.9	1.40E-04		
W-22A	10-15	SP	7.00	7.00	0.33	5	1.5	3.3E-03	9.21E-05	8.0	4.48E-05		
W-22A	15-25	SM / Limestone	7.00	7.00	0.33	10	1.2	2.8E-03	3.81E-05	3.3	2.24E-05		
W-23A	0-10	SP / Limestone / CL	1.50	1.50	0.50	10	0.5	1.1E-03	5.11E-05	4.4	3.78E-05		
W-23A	10-15	Limestone / CL	1.50	1.50	0.33	5	0.7	1.6E-03	2.01E-04	17.4	9.77E-05		
W-23A	15-25	Limestone / CL	1.50	1.50	0.33	10	1.4	3.1E-03	2.01E-04	17.4	1.18E-04		
Equations for K value: $ \begin{array}{c} 0-10' \\ k = \frac{4Q}{\pi^* d(2H_2^2 + 4H_2D_s + H_2d)} \end{array} $ Equation for comparation $ \begin{array}{c} q \text{ Ln } [\underline{mL} + \sqrt{1 + (\underline{mL})}] \\ *k = \frac{D}{2\pi^* L^* H_C} \end{array} $ Lambe-Whitman, case G (from Hyorsley, 1951)													
Case tests Hc=Du-constant piezometer head 10'-15' P 15'-25' k= π*d*D2*Du D=d-Diameter of borehole Q-Stabilized flow rate H2-Groundwater Depth													

Summary of Permeability Test Results

SFWMD			Test N	o.:	W-3			Date:		08/13/13
C-139 Annex	Restoration		Well D	epth:	10.0	Feet		Analyst:		RK
7111-13-142		.	Locatic	on:	Hendry Co	ounty				
	Flow Rate									
Reading	(gpm)	Equation	on for K	Value	:	4Q			Soil Profile	
0.00	0.00				$\pi^* d(2H_2^2 +$	- 4H ₂ D _s +	H ₂ d)	0-14'	Sand (SP)	
2.50	2.50							14'-25'	Sand (SP)	
5.00	2.50		d	=	0.5	feet				
7.50	2.50		H ₂	=	2.0	feet				
10.00	2.50		Ds	=	8.0	feet				
12.50	2.50		GWT	=	2.0	feet				
15.00	2.50									
17.50	2.50	Where:	:			Hydr	aulic Condu	uctivity		
20.00	2.50					4.0		2		
22.50	2.50				ŀ	(= 1.0	50E-04	CF/S/Ft ² - Ft Head		
25.00	2.50									
27.50	2.50									
30.0	2.50				Flox	·· Doto ve	Elanced Tir	ma		
32.5	2.50				FIUV	V Rale vs	Elapseu m	ne		
35.0	2.50		2.00							
37.5	2.50		3.00							
- '	↓′	, m	2.50		8-8-8-8	;888	▋╌┫╌┫╌┫╴	-8888		
- '	↓′	(gl	2.00							
- '	ļ′	ate	1.50							
·'	↓ ′	≥ 2	1.00 -							
Dete (anm)			0.50							
N Rate (gpm)	2.50		0.00 L		I			I		
			0		5		10	15	20	
						Ela	ipsed Time ((min)		
	SFWMD C-139 Annex 7111-13-142 Reading 0.00 2.50 5.00 7.50 10.00 12.50 15.00 22.50 25.00 27.50 30.0 32.5 35.0 37.5 w Rate (gpm)	SFWMD C-139 Annex Restoration 7111-13-142 Reading (gpm) 0.00 0.00 2.50 2.50 5.00 2.50 7.50 2.50 10.00 2.50 12.50 2.50 15.00 2.50 17.50 2.50 20.00 2.50 25.00 2.50 25.00 2.50 25.00 2.50 25.00 2.50 30.0 2.50 37.5 2.50 37.5 2.50 X X X X X X X X	SFWMD C-139 Annex Restoration 7111-13-142 Reading (gpm) Equation 0.00 0.00 2.50 2.50 5.00 2.50 10.00 2.50 12.50 2.50 15.00 2.50 17.50 2.50 22.50 2.50 25.00 2.50 25.00 2.50 25.00 2.50 25.00 2.50 30.0 2.50 37.5 2.50 37.5 2.50 37.5 2.50 37.5 2.50 37.5 2.50 37.5 2.50 37.5 2.50 37.5 2.50 37.5 2.50 37.5 2.50 Wrate (gpm) 2.50	SFWMD Test No C-139 Annex Restoration Well Di 7111-13-142 Location Reading (gpm) 0.00 0.00 2.50 2.50 5.00 2.50 7.50 2.50 10.00 2.50 12.50 2.50 15.00 2.50 17.50 2.50 20.00 2.50 22.50 2.50 25.00 2.50 27.50 2.50 30.0 2.50 35.0 2.50 35.0 2.50 35.0 2.50 35.0 2.50 35.0 2.50 35.0 2.50 35.0 2.50 35.0 2.50 2.50 3.00 2.50 3.00 2.50 3.00 2.50 3.00 2.50 3.00 2.50 0.00 0 0	SFWMD Test No.: C-139 Annex Restoration Well Depth: 7111-13-142 Location: Reading (gpm) 0.00 0.00 2.50 2.50 5.00 2.50 7.50 2.50 10.00 2.50 12.50 2.50 15.00 2.50 20.00 2.50 25.00 2.50 25.00 2.50 25.00 2.50 30.0 2.50 35.0 2.50 35.0 2.50 35.0 2.50 35.0 2.50 35.0 2.50 35.0 2.50 35.0 2.50 35.0 2.50 35.0 2.50 1.00 0 2.50 0.50 30.0 2.50 35.0 2.50 0.50 0.50 0.50 0.50 0.50	SFWMD Test No.: W-3 C-139 Annex Restoration Well Depth: 10.0 7111-13-142 Location: Hendry Co 0.00 0.00 0.00 0.00 0.00 0.00 5.00 2.50 10.0 7.50 2.50 10.0 10.00 2.50 10.0 112.50 2.50 117.50 22.50 2.50 0.0 17.50 2.50 0.0 22.50 2.50 0.0 22.50 2.50 0.0 30.0 2.50 2.50 32.5 2.50 2.50 35.0 2.50 2.50 35.0 2.50 0.0 2.50 2.50 0.00 2.50 0.50 0.00 2.50 0.50 0.00 2.50 0.50 0.00 9 1.50 0.00 9 0.50 0.00 0 5<	SFWMD Test No.: W-3 C-139 Annex Restoration Well Depth: 10.0 Feed 7111-13-142 Well Depth: 10.0 Feed Reading (gpm) Cocation: Hendry County 0.00 0.00 0.00 T*d(2H ₂ ² + 4H ₂ D ₃ + 2.50 2.50 10.0 Feed 5.00 2.50 10.0 Feed 10.00 2.50 10.0 Feed 10.00 2.50 10.0 Feed 112.50 2.50 10.0 Feed 117.50 2.50 2.50 Feed 22.50 2.50 2.50 Feed 22.50 2.50 2.50 Feed 32.5 2.50 3.00 Flow Rate vs 32.5 2.50 1.00 Feed 1.00 9 1.50 1.00 Feed 1.00 0 5 5 1.00 Feed	SFWMD Test No.: W-3 C-139 Annex Restoration Well Depth: 10.0 Feet 7111-13-142 Location: Hendry County	SFWMD Date: C-139 Annex Restoration Test No.: W-3 Date: C-139 Annex Restoration 7111-13-142 Certain Media Date: Reading Flow Rate Certain Media Date: Analyst: Reading Flow Rate Equation for K Value; 4Q 0.00 0.00 0.00 0.00 0.00 0.14' 250 2.50 2.50 10.0 2.60 14'-25' 12.50 2.50 2.50 14'-25' 0.14' 12.50 2.50 0 5 feet	SFWMD Test No:: W-3 Date: C-139 Annex Restoration Well Depth: 10.0 Feet Analyst: T111-13-142 Location: Hendry County Analyst:

Client:	SFWMD			Test N	0.:	W-3			Date:	08/13/13
Project:	C-139 Annex	Restoration		Well D	epth:	15.0	Feet		- Analyst:	RK
Job No.:	7111-13-142			Locatio	on:	Hendry Co	ounty			
Elapsed		Flow Rate								
Time (min)	Reading	(gpm)	Equation	on for K	Value	:	Q	_		Soil Profile
0	0.00	0.00				Π	*d*D2*Du		0-14	' Sand (SP)
1	2.50	2.50							14'-25	' Sand (SP)
2	5.10	2.60		d	=	0.3	feet			
3	7.60	2.50		D2	=	5.0	feet			
4	10.10	2.50		Du	=	2.0	feet			
5	12.40	2.30		GWT	=	2.0	feet			
6	15.00	2.60								
7	17.40	2.40	Where	:			Hydrau	lic Cond	luctivity	_
8	19.80	2.40							_	
9	22.00	2.20				ł	<= 5.14	E-04	CF/S/Ft ² - Ft Head	
10	24.20	2.20								
11	26.80	2.60								
12	29.1	2.30					<u> </u>		. .	
13	31.4	2.30				Flov	w Rate vs E	lapsed I	ime	
14	33.7	2.30								
15	35.9	2.20		^{3.00}						
			я́ц	2.50						
			d6)	2.00						
			ate	1.50						
			Ř	1.00						
			NO	0.50						
Constant Flow	w Rate (gpm)	2.39	ш	_{0.00} L				1	1	
				0		5		10	15	20
							Elaps	sed Time	(min)	
							- 1			

Client:	SFWMD			Test N	0.:	W-3			Date:	08/13/13
Project:	C-139 Annex	Restoration	-	Well D	epth:	25.0	Feet		Analyst:	RK
Job No.:	7111-13-142		-	Locatio	on:	Hendry Co	unty		-	
			-							
Elapsed		Flow Rate								
Time (min)	Reading	(gpm)	Equation	on for K	Value	:	Q			Soil Profile
0	0.00	0.00				π	*d*D3*Du		0-14	' Sand (SP)
1	2.00	2.00							14'-25	' Sand (SP)
2	3.90	1.90		d	=	0.3	feet			
3	5.90	2.00		D3	=	10.0	feet			
4	7.80	1.90		Du	=	2.0	feet			
5	9.70	1.90		GWT	=	2.0	feet			
6	11.60	1.90								
7	13.60	2.00	Where	:			Hydraulic Co	onductivity		_
8	15.60	2.00								
9	17.50	1.90				K	= 2.08E-0	4 CF/S/Ft ²	- Ft Head	
10	19.50	2.00								
11	21.40	1.90								
12	23.3	1.90								
13	25.2	1.90				Flov	v Rate vs Elapse	d Time		
14	27.1	1.90								
15	29.0	1.90		^{2.50}						
			Ê	2.00						
			d6)	1 50						
			Ite	1.50						
			Ra	1.00						
			Ň	0.50						
Constant Flow	w Rate (gpm)	1.93	Ē	0.00					1	
				0		5	10)	15	20
							Elapsed Ti	me (min)		

Client:	SFWMD			Test N	0.:	W-6			Date:		08/13/13
Project:	C-139 Annex	Restoration		Well D	epth:	15.0	Feet		Analyst:		RK
Job No.:	7111-13-142			Locatio	on:	Hendry Co	ounty				
Elapsed		Flow Rate									
Time (min)	Reading	(gpm)	Equation	on for K	Value	<u>:</u>	Q	_		Soil Profile	
0	0.00	0.00				π	*d*D2*Du		0-2'	Sand (SP)	
1	5.00	5.00							2'-4'	Silt (OL)	
2	10.10	5.10		d	=	0.3	feet		4'-6'	Sand (SP)	
3	15.20	5.10		D2	=	5.0	feet		6'-25'	Limestone	
4	20.30	5.10		Du	=	2.0	feet				
5	25.40	5.10		GWT	=	3.0	feet				
6	30.50	5.10									
7	35.60	5.10	Where	:			Hydrau	lic Cond	luctivity		
8	40.20	4.60							_		
9	45.80	5.60				ł	<= 1.09	E-03	CF/S/Ft ² - Ft Head		
10	50.90	5.10									
11	56.00	5.10									
12	61.0	5.00					<u> </u>		. .		
13	66.1	5.10				Flov	v Rate vs El	apsed I	ime		
14	71.1	5.00									
15	76.3	5.20		^{6.00}							
			я ш	5.00			╺╾┋╾┋╶╌╸╱		╺╴┫╌╴┫╌		
			d6)	4.00							
			ate	3.00							
			Ŗ	2.00							
			No No	1.00							
Constant Flow	v Rate (gpm)	5.09	ш	0.00					I		
				0		5		10	15	20	
							Elaps	ed Time	(min)		
L											

Client:	SFWMD		Te	st No.	.:	W-6			Date:		08/13/13
Project:	C-139 Annex	Restoration	W	ell De	pth:	25.0	Feet		Analyst:		RK
Job No.:	7111-13-142		Lo	cation	n: He	endry Co	unty		-		
Elapsed		Flow Rate					_				
Time (min)	Reading	(gpm)	Equation for	or K V	alue:		Q			Soil Profile	
0	0.00	0.00				Π,	*d*D3*Du		0-2'	Sand (SP)	
1	4.60	4.60							2'-4'	Silt (OL)	
2	9.20	4.60		d	=	0.3	feet		4'-6'	Sand (SP)	
3	13.80	4.60	[) 3	=	10.0	feet		6'-25'	Limestone	
4	18.30	4.50	[Du	=	2.0	feet				
5	22.80	4.50	G	WТ	=	3.0	feet				
6	27.30	4.50									
7	32.00	4.70	Where:		_		Hydrauli	ic Condu	uctivity		
8	36.60	4.60					4 005	- 04			
9	41.20	4.60				K	(= 4.89E	04	CF/S/Ft ² - Ft Head		
10	45.70	4.50									
11	50.30	4.60									
12	54.8	4.50									
13	59.3	4.50				FIOW	v Rate vs Ela	apsed Lir	ne		
14	63.8	4.50									
15	68.2	4.40	5.0								
			E 4.0	ŏ							
			df 3.5								
			ete 2.5	ŏ							
			2.0 2 1.5	0							
				ŏ							
Constant Flow	w Rate (gpm)	4.55	止 0.5 0.0	0 0 1		L		1	I		
				0		5		10	15	20	
							Flanse	d Time (min)		
							сары				

Client:	SFWMD			Test N	0.:	W-10			Date:	08/13/13
Project:	C-139 Annex	Restoration	_	Well D	epth:	10.0	Feet		Analyst:	RK
Job No.:	7111-13-142		-	Locatio	on:	Hendry Co	ounty			
Elapsed		Flow Rate			_					
Time (min)	Reading	(gpm)	Equation	on for K	Value	» <u>: </u>	4Q	_		Soil Profile
0	0.00	0.00				$\pi^* d(2H_2^2 +$	- 4H ₂ D _s + H	l ₂ d)	0-25'	Sand (SP)
1	1.60	1.60								
2	3.20	1.60		d	=	0.5	feet			
3	4.80	1.60		H_2	=	2.0	feet			
4	6.40	1.60		Ds	=	8.0	feet			
5	8.00	1.60		GWT	=	2.0	feet			
6	9.60	1.60								
7	11.20	1.60	Where	:			Hydrau	Ilic Condu	uctivity	
8	12.80	1.60					4.04		2	
9	14.40	1.60				K	(= 1.24	E-04	CF/S/Ft ² - Ft Head	
10	16.00	1.60								
11	17.60	1.60								
12	19.2	1.60				Flow	N Date ve F	Jansod Ti	ma	
13	20.8	1.60				FIUV		lapseu m	me	
14	22.4	1.60		1.00						
15	24.0	1.60		1.80			──── ─ ── ─ ─			
ļ	_ _ /	<u> </u> /	Шd	1.40						
		<u>↓</u> ′	(Gl	1.20						
		ļ	tate	0.80						
	!		⊻ ≥	0.60						
Constant Ela	Data (apm)	1.60	<u>l</u>	0.40						
Constant Flow	N Rate (gpm)	1.00		0.00 L		L			I	
				U		5		10	15	20
							Elap	sed Time	(min)	

Client:	SFWMD			Test N	0.:	W-10			Date:	08/13/13
Project:	C-139 Annex	Restoration		Well D	epth:	15.0	Feet		- Analyst:	RK
Job No.:	7111-13-142			Locatio	on:	Hendry Co	ounty			
			_							
Elapsed		Flow Rate								
Time (min)	Reading	(gpm)	Equation	on for K	Value	:	Q	_		Soil Profile
0	0.00	0.00				π	*d*D2*Du		0-25'	Sand (SP)
1	1.20	1.20								
2	2.40	1.20		d	=	0.3	feet			
3	3.60	1.20		D2	=	5.0	feet			
4	4.80	1.20		Du	=	2.0	feet			
5	6.00	1.20		GWT	=	2.0	feet			
6	7.20	1.20								
7	8.40	1.20	Where	:			Hydrau	lic Cond	uctivity	
8	9.60	1.20					0.50		2	
9	10.80	1.20				ľ	(= 2.59	E-04	CF/S/Ft ² - Ft Head	
10	12.00	1.20								
11	13.20	1.20								
12	14.4	1.20				Flow	v Data va El	ancod Ti	imo	
13	15.6	1.20				FIOV		apseu I	line	
14	16.9	1.30								
15	18.1	1.20		1.40	_				-	
			. Ĵ	1.20						
			(31	0.80						
			ate	0.60						
			2 2	0.40						
		4.04		0.20						
Constant Flo	w Rate (gpm)	1.21		0.00						
				0		5		10	15	20
							Elaps	ed Time	(min)	
							•		. ,	

Client:	SFWMD			Test No	0.:	W-10			Date:	08/13/13
Project:	C-139 Annex	Restoration	-	Well D	epth:	25.0	Feet		- Analyst:	RK
Job No.:	7111-13-142		_	Locatio	on:	Hendry Co	unty			
			-							
Elapsed		Flow Rate								
Time (min)	Reading	(gpm)	Equatio	n for K	Value	:	Q	_		Soil Profile
0	0.00	0.00				π	*d*D3*Du		0-25	5' Sand (SP)
1	1.00	1.00								
2	2.00	1.00		d	=	0.3	feet			
3	3.00	1.00		D3	=	10.0	feet			
4	4.00	1.00		Du	=	2.0	feet			
5	5.00	1.00		GWT	=	2.0	feet			
6	6.00	1.00								
7	7.00	1.00	Where:				Hydrau	lic Cond	uctivity	_
8	8.10	1.10								
9	9.10	1.00				K	(₌ 1.10	E-04	CF/S/Ft ² - Ft Head	
10	10.20	1.10								
11	11.30	1.10								
12	12.1	0.80				—			_ _	
13	13.2	1.10				Flov	v Rate vs E	lapsed Ti	ime	
14	14.3	1.10								
15	15.3	1.00		^{1.20} Г						
			Ê	1.00						
			d6)	0.80						
			Ite	0.60						
			Ra	0.40						
			Ň	0.20						
Constant Flow	w Rate (gpm)	1.02	Ē	0.00 L				I	1	
				0		5		10	15	20
							Elaps	ed Time	(min)	

Client:	SFWMD			Test N	0.:	W-14			Date:	08/19/13
Project:	C-139 Annex	Restoration	_	Well D	epth:	. 10.0	Feet		Analyst:	JO
Job No.:	7111-13-142		-	Locatio	on:	Hendry Co	unty			
Elapsed		Flow Rate								
Time (min)	Reading	(gpm)	Equation	on for K	Value	ə:	4Q			Soil Profile
0	0.00	0.00				$\pi^* d(2H_2^2 +$	$\cdot 4H_2D_s + H_2d$)	0-25'	Sand (SP)
1	5.50	5.50								
2	11.00	5.50		d	=	0.5	feet			
3	16.50	5.50		H_2	=	3.0	feet			
4	22.00	5.50	l	Ds	=	7.0	feet			
5	27.50	5.50		GWT	=	3.0	feet			
6	33.00	5.50								
7	38.50	5.50	Where	:			Hydraulic	: Condu	ctivity	
8	44.00	5.50	ł				2 01 E	04		
9	49.50	5.50	ł			K	(= 3.01E-	-04 c	CF/S/Ft ⁺ - Ft Head	
10	55.00	5.50	4							
11	60.50	5.50								
12	66.0	5.50				Flov		 nsed Tim		
13	71.0	5.50						J300 1		
14	//.U	5.50		e 00 -						
10	62.3	0.50		5.00						
		∤ ────┤	md	5.00						
		├ ───┤	6) e	4.00						/
		łł	Rate	3.00						
		łł	≥	2.00						
Constant Flov	w Rate (gpm)	5 50	Ы Б	1.00						
		0.00	1	0.00 -		5		10	15	
				0		0		10	10	20
							Elapsed	d Time (r	min)	

Client:	SFWMD			Test N	0.:	W-14			Date:	08/19/13	
Project:	C-139 Annex	Restoration		Well D	epth:	15.0	Feet		Analyst:	JO	
Job No.:	7111-13-142			Locatio	on:	Hendry Co	ounty				
Elapsed		Flow Rate									
Time (min)	Reading	(gpm)	Equation	n for K	Value	<u>:</u>	Q	_		Soil Profile	
0	0.00	0.00				Π	r*d*D2*Du		0-25'	Sand (SP)	
1	4.70	4.70									
2	9.40	4.70		d	=	0.3	feet				
3	13.80	4.40		D2	=	5.0	feet				
4	18.50	4.70		Du	=	2.0	feet				
5	23.10	4.60		GWT	=	3.0	feet				
6	27.70	4.60									
7	32.40	4.70	Where:				Hydrau	lic Cond	uctivity		
8	37.00	4.60					0.00				
9	41.60	4.60				ł	K= 9.99	E-04	CF/S/Ft ² - Ft Head		
10	46.30	4.70									
11	51.00	4.70									
12	55.7	4.70					v Dete ve F	langed Ti			
13	60.3	4.60				FIO	w Rale vs E	lapsed T	me		
14	65.0	4.70									
15	69.7	4.70	-	5.00 4.50					-₿-₿-₿		
			(m	4.00							
			d6)	3.50 3.00							
			ate	2.50							
			Ř	2.00 1.50							
			No	1.00							
Constant Flov	w Rate (gpm)	4.65	LL.	0.00 C		ı		I			
				0		5		10	15	20	
							Elaps	ed Time	(min)		
									`		

Client:	SFWMD			Fest No	D.:	W-14			Date:	08/19/13
Project:	C-139 Annex	Restoration	۱.	Nell D	epth:	25.0	Feet		Analyst:	JO
Job No.:	7111-13-142		L	ocatio	n:	Hendry Co	ounty		-	
Elapsed		Flow Rate								
Time (min)	Reading	(gpm)	Equation	for K	Value	<u>: </u>	Q	_		Soil Profile
0	0.00	0.00				π	*d*D3*Du		0-25'	Sand (SP)
1	4.50	4.50								
2	9.00	4.50		d	=	0.3	feet			
3	13.50	4.50		D3	=	10.0	feet			
4	18.00	4.50		Du	=	2.0	feet			
5	22.50	4.50		GWT	=	3.0	feet			
6	27.00	4.50								
7	31.50	4.50	Where:				Hydrau	lic Cond	uctivity	
8	35.00	3.50							_	
9	39.50	4.50				K	<= 4.98	E-04	CF/S/Ft ² - Ft Head	
10	44.00	4.50								
11	49.50	5.50								
12	54.0	4.50							_	
13	59.5	5.50				Flov	v Rate vs E	lapsed I	me	
14	64.0	4.50								
15	69.5	5.50	10).00 Г						
			E E	3.00 - 3.00 -						
			d6)	2.00						
			lite	5.00						
			BR 2	1.00						
				2.00 -						
Constant Flow	w Rate (gpm)	4.63		.00 0.00		L		I	I	
				0		5		10	15	20
							Fland	od Timo	(min)	
							Liaps		(11111)	

Client:	SFWMD			Test No	э.:	W-16			Date:	08/19/13
Project:	C-139 Annex	Restoration	_	Well De	epth:	10.0	Feet		Analyst:	JO
Job No.:	7111-13-142		-	Locatio	in: I	Hendry Co	unty			
Elapsed		Flow Rate								
Time (min)	Reading	(gpm)	Equatio	on for K	√alue:		4Q	-		Soil Profile
0	0.00	0.00			I	π*d(2H₂² +	$4H_2D_s + H_2$	d)	0-23'	Sand (SP)
1	9.00	9.00							23'-25'	Sand with shell (SP)
2	18.00	9.00		d	=	0.5	feet			
3	27.10	9.10	l	H_2	=	4.0	feet			
4	36.10	9.00		Ds	=	6.0	feet			
5	45.20	9.10		GWT	=	4.0	feet			
6	54.30	9.10								
7	63.40	9.10	Where:	:			Hydraul	ic Condu	uctivity	1
8	72.50	9.10					2 061	- 04	2	
9	81.50	9.00				K	(= 3.90	2-04	CF/S/Ft ⁻ - Ft Head	
10	90.60	9.10								
11	99.70	9.10	<u> </u>							
12	108.8	9.10				Flov	N Rate vs El:	ansed Tir	ma	
13	117.9	9.10							ne	
14	127.0	9.10		10.00						
15	136.1	9.10	~	9.00		┝╌┫╌╴┫		┍ ┏╼╼╋╾╍╋╼	-888	
		<u> </u>	шd	8.00						
			6) e	6.00 -						
			tate	5.00 -						
			⊥ ≥	3.00						
Constant Flov	w Rate (anm)	9.07	Flo	1.00						
Constant 1 lot	w Rate (gpm)	5.07	1	0.00		L		10	45	
				0		5		10	15	20
							Elapse	ed Time ((min)	

Client:	SFWMD			Test N	0.:	W-16			Date:	08/19/13
Project:	C-139 Annex	Restoration	Well Depth: 15.0 Feet				Feet		Analyst:	JO
Job No.:	7111-13-142			Locatio	on:	Hendry Co	ounty			
									-	
Elapsed		Flow Rate								
Time (min)	Reading	(gpm)	Equation	on for K	Value		Q			Soil Profile
0	0.00	0.00				π	*d*D2*Du		0-23'	Sand (SP)
1	5.00	5.00							23'-25'	Sand with shell (SP)
2	10.00	5.00		d	=	0.3	feet			
3	15.00	5.00		D2	=	5.0	feet			
4	20.00	5.00		Du	=	4.0	feet			
5	25.00	5.00		GWT	=	4.0	feet			
6	30.10	5.10								
7	35.20	5.10	Where	:			Hydraulic	c Cond	uctivity	
8	40.20	5.00							_	
9	45.20	5.00				k	<= 5.40E	-04	CF/S/Ft ² - Ft Head	
10	50.30	5.10								
11	55.20	4.90								
12	60.4	5.20							. .	
13	65.3	4.90				Flov	v Rate vs Elap	psed I	ime	
14	70.4	5.10								
15	75.4	5.00		^{6.00}						
			Ê	5.00		8-8-8-8	╶╶╏╌╴║╶╸║ ╶╴		╱┻╌┓╌┻╌┓	
			dɓ)	4.00						
			ate	3.00						
			Ř	2.00						
			No No	1.00						
Constant Flow	v Rate (gpm)	5.03	Ш	0.00				I	1	
				0		5		10	15	20
							Elapsed	d Time	(min)	

Client:	SFWMD		Test N	0.:	W-16		Date:	08/19/13
Project:	C-139 Annex	Restoration	Well D	epth:	25.0	Feet	Analyst:	JO
Job No.:	7111-13-142		Locatio	n:	Hendry Co	unty		
Elapsed		Flow Rate						
Time (min)	Reading	(gpm)	Equation for K	Value	<u> </u>	Q		Soil Profile
0	0.00	0.00			Π,	*d*D3*Du	0-23	' Sand (SP)
1	6.20	6.20					23'-25	' Sand with shell (SP)
2	12.40	6.20	d	=	0.3	feet		
3	18.60	6.20	D3	=	10.0	feet		
4	24.90	6.30	Du	=	4.0	feet		
5	31.20	6.30	GWT	=	4.0	feet		
6	37.40	6.20						
7	43.60	6.20	Where:			Hydraulic Co	onductivity	
8	50.00	6.40						
9	56.40	6.40			K	= 3.37E-04	CF/S/Ft ² - Ft Head	
10	62.70	6.30						
11	69.00	6.30						
12	75.3	6.30					t Time a	
13	81.6	6.30			FIOW	Rate vs Elapsed	1 lime	
14	87.9	6.30						
15	94.2	6.30	10.00					
			Ê 8.00					
			05 7.00 6 00		▋╌▋╌▋╌₿	-8-8-8-8-8-		
			eg 5.00					
			<u>4.00</u> 3.00					
			<u> </u>					
Constant Flow	v Rate (gpm)	6.28				l	I	
			0		5	10	15	20
						Elapsed Tir	me (min)	

Client:	SFWMD			Fest N	0.:	W-20			Date:	08/19/13
Project:	C-139 Annex	Restoration	Well Depth: 15.0 Feet						Analyst:	JO
Job No.:	7111-13-142		Location: Hendry County				ounty		-	
	<u> </u>									
Elapsed		Flow Rate	_				_			
Time (min)	Reading	(gpm)	Equation	for K	Value	<u> </u>	Q	_		Soil Profile
0	0.00	0.00				π	*d*D2*Du		0-4'	' Sand (SP)
1	4.00	4.00							7'-25'	' Cemented Sand with shell fragments
2	8.20	4.20		d	=	0.3	feet			
3	12.30	4.10		D2	=	5.0	feet			
4	16.40	4.10		Du	=	2.5	feet			
5	20.40	4.00		GWT	=	2.5	feet			
6	24.40	4.00								
7	28.50	4.10	Where:				Hydrau	ulic Cond	luctivity	_
8	32.50	4.00					0.7		2	
9	36.40	3.90				ł	<= 0.//	/E-04	CF/S/Ft ² - Ft Head	
10	40.30	3.90								1
11	44.20	3.90								
12	47.9	3.70				F In	·· Data va F	T-mand T	· •	
13	51.7	3.80				FIOV	N Rate vs E	lapsed i	ime	
14	55.4	3.70								
15	59.1	3.70	4	1.50						
			. (u	3.50 ·					╲╋╌╋╌╋	
		L	d6)	3.00						
		L	ate	2.50						
		L	Ř	1.50						
		ļ		1.00						
Constant Flor	w Rate (gpm)	3.94).00 [L			1	
				0)	5		10	15	20
							Flap	sed Time	(min)	
							Liap		()	

Client:	SFWMD		Τe	st No.:	١	W-20			Date:		08/19/13
Project:	C-139 Annex	Restoration	Well Depth: 25.0 Feet						Analyst:		JO
Job No.:	7111-13-142		Location: Hendry County								
		. 									
Elapsed		Flow Rate					-				
Time (min)	Reading	(gpm)	Equation to	or K Va	lue:		Q			Soil Profile	
0	0.00	0.00	1			π*	d*D3*Du		0	-4' Sand (SP)	
1	3.00	3.00							7'-2	25' Cemented	Sand with shell fragments
2	6.10	3.10		d =	=	0.3	feet				
3	9.10	3.00	l ')3 =	-	10.0	feet				
4	12.10	3.00	ļ '	⊃u =	-	2.5	feet				
5	15.20	3.10	G	₩T =	-	2.5	feet				
6	18.10	2.90									
7	21.30	3.20	Where:		_		Hydraulic	; Condı	uctivity		
8	24.40	3.10	1				0.005	24	2		
9	27.20	2.80				K	= 2.62E	-04	CF/S/Ft ² - Ft Head		
10	30.30	3.10									
11	33.40	3.10	L								
12	36.5	3.10				F law			B		
13	39.7	3.20	1			FIOW	Rate vs Elap)sea i li	ne		
14	42.7	3.00	1								
15	45.7	3.00	10.0								
		<u> </u>		ю́							
		ļ	16) 7.0	0							
		ļ	ege 5.0	ığ							
		ļ	<u>بة 4.0</u>	0	·───	┝╾╴╋╴╸	╶ ╺ <mark>┓╶╶╝╌╴╝╶╶┲</mark> ┙		╺╼╋╼╾╋╼╍╋╍╍╍╍╍		
				0			<u> </u>				
Constant Flow	<pre>w Rate (gpm)</pre>	3.05									
				0		5		10	15	20	
							Elapsed	d Time	(min)		
									()		

Client:	SFWMD			Test N	o.:	W-22A			Date:	06/19/14
Project:	C-139 Annex	Restoration	Well Depth: 15.0 Feet						Analyst:	MP
Job No.:	7111-13-142		Location: Hendry County				ounty		- -	
Elapsed		Flow Rate								
Time (min)	Reading	(gpm)	Equati	on for K	Value	<u>:</u>	Q			Soil Profile
0	0.00	0.00	4			Π	*d*D2*Du		0-2	:0' Sand (SP)
1	1.50	1.50	4				_		20'-2	1' SiltySand (SM)
2	3.00	1.50	-	d	=	0.3	feet		21'-2	:5' Limestone
3	4.50	1.50	_	D2	=	5.0	feet			
4	6.00	1.50	_	Du	=	7.0	feet			
5	7.50	1.50	_	GWT	=	7.0	feet			
6	9.00	1.50	_							
7	10.50	1.50	Where	; :			Hydra	ulic Cond	uctivity	
8	12.00	1.50								
9	13.50	1.50				ł	< <u> </u>	1E-05	CF/S/Ft ² - Ft Head	
10	15.00	1.50								
		ļ	ļ							
			4			F low	·· Data va			
		<u> </u>	4			FIOV	N Rate vs	Elapseo II	me	
		<u> </u>	4							
		<u> </u>		1.60			ſ			7
		<u> </u>	Ű Ű	1.40						
		<u> </u>	(Bt	1.00						
		<u> </u>	ate	0.80						
		<u> </u>	Ľ Ž	0.60						
			<u> </u>	0.40						
Constant Flov	w Rate (gpm)	1.50	ш	0.00 L			<u> </u>	i		
				0	ļ	2	4	6	8 10	12
							Flar	osed Time	(min)	
									((()))	

Client:	SFWMD			Test N	0.:	W-22A			Date:	06/19/14
Project:	C-139 Annex	Restoration		Well D	epth:	25.0	Feet		Analyst:	MP
Job No.:	7111-13-142		Location: Hendry County				unty		-	
									- 	
Elapsed		Flow Rate								
Time (min)	Reading	(gpm)	Equation	on for K	Value	<u>: </u>	Q			Soil Profile
0	0.00	0.00	1			π'	*d*D3*Du		0-20	' Sand (SP)
1	1.20	1.20	1						20'-21	' SiltySand (SM)
2	2.40	1.20	1	d	=	0.3	feet		21'-25	' Limestone
3	3.60	1.20		D3	=	10.0	feet			
4	4.80	1.20	1	Du	=	7.0	feet			
5	6.00	1.20	1	GWT	=	7.0	feet			
6	7.20	1.20	1							
7	8.60	1.40	Where:	•			Hydra	ulic Cond	uctivity	_
8	10.00	1.40	1		1					
9	11.20	1.20			1	K	(= 3.8	1E-05	CF/S/Ft ² - Ft Head	
10	12.40	1.20	1		1					
	'	<u> </u>	<u> </u>							
	'	ļ'	1			F lav		<u> </u>	· · · · · ·	
	_ '	ļ'	4			FIOW	/ Rate vs	Elapsed II	ime	
	_ _ '	ļ'	4							
	_ _ '	ļ'	1	1.60						
	_ '	ļ') (n	1.40						
	'	ļ'	. dč	1.00						
	_ '	ļ'	ate	0.80						
	'	ļ'	Ä	0.60						
	'	'	N	0.40						
Constant Flov	w Rate (gpm)	1.24	ш	0.00 L					<u> </u>	
				0		2	4	6	8 10	12
							Flar	used Time	(min)	
							—r	/004 111.0	((()))	

Client:	SFWMD			Test N	0.:	W-23A			Date:	06/19/14
Project:	C-139 Annex	Restoration	Well Depth: 25.0 Feet						Analyst:	MP
Job No.:	7111-13-142		Location: Hendry County				ounty		_	
Elapsed		Flow Rate					-			
Time (min)	Reading	(gpm)	Equation	on for K	Value	: <u> </u>	Q			Soil Profile
0	0.00	0.00	1			π	*d*D3*Du		0-2	2' Sand (SP)
1	1.40	1.40	1						2'-4	Limestone
2	2.80	1.40	1	d	=	0.3	feet		4'-12	<u>²'</u> Clay (CL)
3	4.20	1.40	4	D3	=	10.0	feet		12'-18	3' Limestone
4	5.60	1.40	1	Du	=	1.5	feet		18'-24	I' SiltySand (SM)
5	7.00	1.40	1	GWT	=	1.5	feet		24'-25	j' Limestone
6	8.40	1.40	1							
7	9.80	1.40	Where:	:			Hydra	ulic Cond	luctivity	_
8	11.20	1.40	1				2.0	4 - 04		
9	12.60	1.40	4			K	(= 2.0	1E-04	CF/S/Ft ² - Ft Head	
10	14.00	1.40	1							
		<u> </u>								
			4			Flow	v Date ve		imo	
	┥───		4			FIUV	V Raie vs	Elapseu i	ime	
		_	-							
		_		1.60						
		_	. Ê	1.40						
		<u> </u>	. (6)	1.00						
			ate	0.80						
		<u> </u>	. Ľ	0.60						
		4.40		0.40						
Constant Floy	w Rate (gpm)	1.40		0.00 L			·	·	I	
				0	Į.	2	4	6	8 10	12
							Elar	osed Time	(min)	