

February 26, 1993 SEF35300.B0

Mr. Paul J. Mitchell, P.E. Director of Operations and Engineering Florida Keys Aqueduct Authority 1100 Kennedy Drive Key West, FL 33041-1239

Dear Paul:

Subject:

Aquifer Storage and Recovery Test Program at Stock Island, Florida

Introduction

This letter report was prepared to describe the results of the recently completed pumping test and water quality testing at the Florida Keys Aqueduct Authority (FKAA) Aquifer Storage and Recovery (ASR) site in Stock Island, Florida. This information is also provided to satisfy the cooperative agreement between FKAA and the South Florida Water Management District (SFWMD) regarding this project. The previous scope of work in this agreement included a 72-hour pumping test. As proposed by CH2M HILL because of the different subsurface conditions at Stock Island, and agreed to by FKAA and SFWMD, the revised scope of work for this task includes conducting a 24-hour single-well pumping test and analyzing native aquifer water for primary and secondary drinking water standards parameters. The report contains background information, presents pumping test results, and discusses water quality data. All raw data and analyses are presented as attachments.

Background

The Phase I investigation of ASR at the Stock Island site was conducted in the second half of 1991 (CH2M HILL, 1992). Figure 1 is a project location map and Figure 2 shows the site layout. Coring and drilling conducted at the observation borehole (OW-1) during Part I of this program indicated that the unconsolidated sand/gravel zone used for ASR purposes at Marathon was not present at Stock Island. However, a limestone interval from approximately 680 to 716 feet below land surface (bls) was identified as a potential zone for storage of potable water. This interval is confined above by approximately 430 feet of low-permeability sediments, which would tend to impede vertical flow of the more buoyant injected waters from within the storage interval. OW-1 is cased to 32 feet bls and has open-hole construction to a maximum depth of 660 feet bls. The OW-1 borehole was not used further due to drilling difficulties and borehole cave-in, and work was begun at ASR-1.

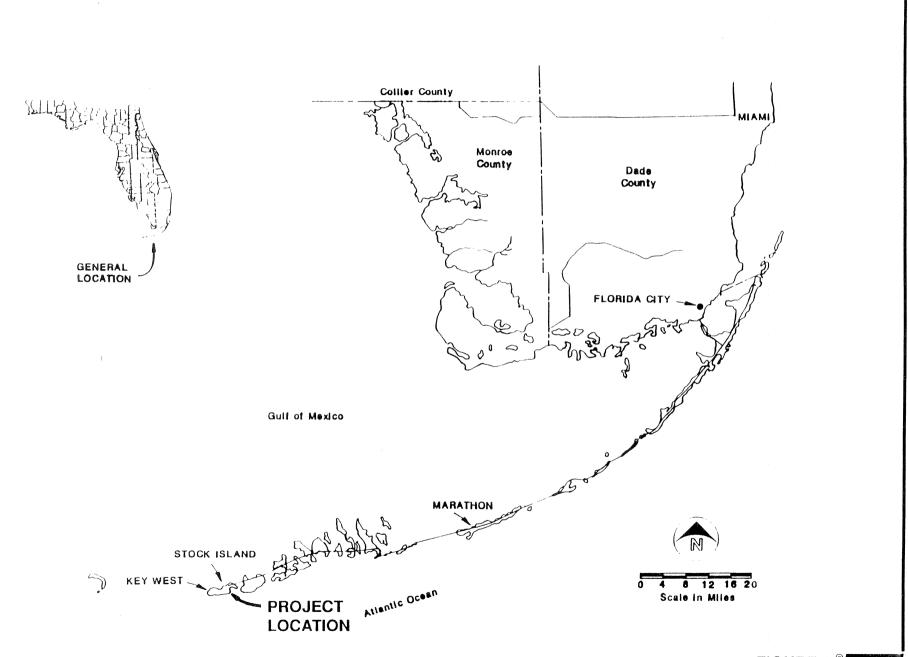


FIGURE 1 ° Project Location Map

Mr. Paul J. Mitchell, P.E. Page 2 February 26, 1993 SEF35300.B0

A 16-inch-diameter ASR well was constructed with steel casing from land surface to 680 feet bls. Figure 3 is a summary of lithologic and geophysical logs conducted during Phase I, and also includes a well construction diagram of ASR-1. The ASR-1 borehole was advanced to a depth of 750 feet bls, but lower confinement was not identified in the drill cuttings. The borehole was plugged back with neat cement from 750 to 716 feet bls; therefore, the open-hole interval from 680 to 716 feet bls is the target ASR zone.

Geophysical logging and specific capacity testing were conducted to determine preliminary hydraulic characteristics of this zone. Results of this testing indicate a specific capacity of 3.2 gallons per minute per foot (gpm/ft). Based on the fluid resistivity log conducted during the first short-term pumping test, the native aquifer water is saltwater (CH2M HILL, 1992).

Pumping Test

Pumping Test Operation

A 24-hour single-well pumping test was conducted to determine aquifer characteristics (i.e. transmissivity) at the site. A 15-horsepower Grundfos electric submersible pump was permanently installed in ASR-1. Three-inch-diameter stainless steel pump column pipe was installed to convey pumped water from the pump to aboveground piping, and ultimately to the 12-inch-diameter drainage well for disposal (see Figure 2). The well was pumped at an approximate rate of 200 gallons per minute (gpm), as measured by a Rockwell totalizing flowmeter, in line with the aboveground piping.

The pumping test began on February 17, 1993, at 8:45 a.m. ASR-1 was pumped and water levels were measured in this well and the open borehole designated as OW-1, approximately 105 feet from ASR-1 as shown in Figure 2. Water levels were measured in OW-1 to observe if any useful data regarding effects of pumping could be observed a short distance away from ASR-1.

A Hermit 1000C data logger was used to obtain water level data at regular timed intervals at ASR-1 and OW-1 throughout the test. Two pressure transducers (50 and 30 pounds per square inch [psi]) were used in ASR-1 and OW-1, respectively. The data logger was programmed to record water levels at logarithmic intervals so that readings were obtained frequently at the beginning of the test and less frequently as the test progressed. This data recording frequency corresponds with the rate of water level change during a pumping test. Manual water level measurements were also taken with an electrical water level indicator (M-scope) as backup data. Comparison of the data logger output and manual water level readings indicates good agreement between the two data sets. Data logger output and field data sheets for the pumping test are contained in Attachment A.

Mr. Paul J. Mitchell, P.E. Page 3
February 26, 1993
SEF35300.B0

Following approximately 24 hours of operation, the pump was shut off at 8:50 a.m. on February 18, 1993, and water levels were allowed to recover to pre-pumping (static) levels. Water levels were also recorded during recovery, both manually and at logarithmic intervals with the data logger.

Data Analysis

During the 24-hour pumping test, it became evident that water level fluctuations in the OW-1 borehole were not responding to the effects of pumping at ASR-1, but instead to natural tidal fluctuations. The rise and fall of water levels without correlation to effects of the pumping test are evident from the field data sheets in Attachment A. Therefore, this data was not evaluated for aquifer characteristics, and only drawdown data from ASR-1 were analyzed.

The drawdown data were evaluated with the Cooper-Jacob (1946) and Theis recovery methods (Kruseman and DeRidder, 1970). For the Cooper-Jacob (1946) methodology, a semilogarithmic graph of drawdown versus time was developed for ASR-1. For the Theis recovery method, a graph of residual drawdown versus a time ratio (t/t') were plotted on semilogarithmic paper to determine transmissivity. Residual drawdown is defined as the difference between the static water level before pumping and the depth to water after pump shutdown. The time ratio is defined as the time since water level recovery started to the total time since pumping began. These graphs and analytical calculations are contained in Attachment B.

Both of the analytical techniques described above assume that the aquifer tested is perfectly confined. One of the limitations of single-well pumping tests is that more robust analytical techniques cannot be applied (i.e., aquifer properties such as leakance from semi-confining units cannot be determined from single-well tests). Storativity—defined as the amount of water released from storage in a unit width of aquifer under a unit decrease in hydraulic head—could not be determined because of inherent limitations of the analytical methods for single-well pumping tests.

Pumping Test Results

The totalizer on the flowmeter registered 287,000 gallons pumped during the 1445 minutes of pumping, yielding an average flow of 198.6 gpm for the test. This pumping rate was used in the Theis recovery method calculations. The Theis recovery method yielded a transmissivity value of 1,164 gallons per day per foot (gpd/ft) as shown in the corresponding graph in Attachment B. The Cooper-Jacob analytical technique was applied on two segments of the drawdown versus time curve for ASR-1. This was performed because the pumping rate in the first two minutes of the test was approximately 300 gpm, and then corrected to the desired rate of 200 gpm thereafter. Therefore, two different straight-line segments on the drawdown versus time curve could be drawn

1 = 36' 1 = 718/116' = 155.6 Ship N = 1836 = 432 Blow Signific Mr. Paul J. Mitchell, P.E. Page 4
February 26, 1993
SEF35300.B0

corresponding to the two different flow rates. Transmissivity values of 2,112 and 2,400 gpd/ft were obtained, corresponding to the 300 and 200 gpm portions of the curve, respectively.

A specific capacity value of 3.6 gpm/ft was calculated based on a pumping rate of 198.6 gpm and a maximum drawdown of approximately 55 feet in ASR-1. This value is close to the specific capacity value of 3.2 gpm/ft obtained during preliminary testing during well construction (CH2M HILL, 1992).

Water Quality

Sampling

A water quality sample was obtained from ASR-1 and analyzed for primary and secondary drinking water standards parameters. These parameters include volatile organic compounds (VOCs), ethylene dibromide (EDB), pesticides, herbicides, PCBs, inorganics, and physical, microbiological, and radiological parameters. The purpose of this sampling and analysis was to characterize baseline water quality of the proposed storage zone.

ASR-1 was purged for approximately 9 hours with a Honda centrifugal pump at an approximate rate of 40 gpm on January 29, 1993. This methodology effectively purged the well of stagnant water residing in and around the well casing. Following purging, water samples were obtained directly from the pump discharge line and placed in appropriate containers for shipment to the CH2M HILL laboratory in Alachua, Florida for analysis. Quality assurance/quality control (QA/QC) samples included a travel blank to be analyzed for VOCs.

Laboratory Analytical Results

A laboratory analytical report for this sampling event is contained in Attachment C. Table 1 is a summary of major ions and general parameters. Results indicate that the water sample was below method detection limits for VOCs, EDB, pesticides, herbicides, and PCBs. Parameters exceeding maximum contaminant levels (MCLs) include color (50 color units), chloride (19,900 milligrams per liter [mg/l]), sulfate (3,100 mg/l), total dissolved solids (TDS; 37,100 mg/l), turbidity (20 nephelometric [NTUs]), iron (1.56 mg/l), and sodium (9,670 mg/l). Gross alpha was reported at a concentration of 109 picocuries per liter (pc/l), [+/- 221 pc/l] due to the high TDS concentrations. The holding times for coliform and foaming agents unfortunately were not met, and this data is unavailable.

Inspection of this water quality data indicates that the sample closely resembles seawater. High concentrations of TDS, chloride, sodium, and sulfate and a near neutral pH (7.3)

Table 1 Summary of Physical Parameters and Major Ions Stock Island ASR

Compound	Value
Color	50 color units
Chloride	19,900 mg/l
Saturation Index	0.40
Fluoride	0.84 mg/l
Nitrite	<0.02 mg/l
Nitrate	0.05 mg/l
рН	7.30
Sulfate	3,100 mg/l
TDS	37,100 mg/l
Turbidity	20 NTUs
Silver	<0.005 mg/l
Arsenic	0.008 mg/l
Barium	0.020 mg/l
Cobalt	0.006 mg/l
Chromium	<0.006 mg/l
Copper	<0.006 mg/l
Iron	1.56 mg/l
Mercury	0.0003 mg/l
Manganese	0.026 mg/l
Sodium	9,670 mg/l
Lead	<0.010 mg/l
Selenium	0.027 mg/l
Zinc	<0.005 mg/l

Mr. Paul J. Mitchell, P.E. Page 5 February 26, 1993 SEF35300.B0

support this conclusion. This is consistent with results of the fluid resistivity log conducted following well installation (CH2M HILL, 1992). This log showed a low resistivity (high conductivity) borehole fluid similar to seawater. Because of this seawater composition and high TDS content, additional water samples during the pumping test were not deemed necessary because variations in seawater chemistry would be slight at such a high TDS content. Based on the TDS concentration and the confined conditions of the target ASR zone, this zone is classified as a G-IV aquifer. The high iron content may be partially related to residual corrosion of the steel casing during the past year while the well was idle.

Recommendations

CH2M HILL recommends that this testing program continue with commencement of cycle testing at the Stock Island ASR site to evaluate the storage potential of the target ASR zone. As we have discussed previously, the initial cycle should consist of a 10 million gallon volume of potable water injected at a rate of 200 gpm. Recovery should proceed immediately after injection (i.e. no storage interval) at a rate of 200 gpm until the 250 mg/l chloride value is observed. We will contact you next week to discuss scheduling, coordination with FKAA staff, and logistics of implementing this task.

Sincerely,

CH2M HILL

Peter J. Kwiatkowski, P.G.

Project Manager

Albert Muniz, P.E. Program Manager

Allest Mun

set/1001221D.DFB

Jim Weeks/FKAA cc:

John Larkin/FKAA

· Inject (34.7) days at 200 gpm to get 10MG volume

I what is the consultants professional opinion about the motion of the your tested and to ability to alive water. How does this your compare with other successful ASR experiences.

- What type of envisity axists in the tested your or is it artigranular foresty.

- el calculate a K of 4.3 Pr/cay IN

John Larkin/FKAA

Ken Williams/CH2M HILL/KWF

Jeff Giddings/SFWMD/West Palm Beach

The Company of the Company o

What are the consultante reasons for Theore have the eloborate and share their

. Do we know static head please report

Attachment A
Pumping Test Data

Data Logger Output

		0.0000	1 020	0.0100	
ASR-1 Dra		0.0900	-1.838	0.2433	-6.722
SE1000		0.0933	-2.026	0.2466	-6.816
Environment		0.0966	-2.089	0.2500	-6.879
02/18 14:	:34	0.1000	-2.277	0.2533	-6.942
		0.1033	-2.214	0.2566	-7.225
Unit# 00490	Test 0	0.1066	-2.355	0.2600	-7.146
		0.1100	-2.482	0.2633	-7.287
INPUT 1: Le	vel (F)	0.1133	-2.560	0.2666	-7.287
		0.1166	-2.733	0.2700	-7.491
Reference	0.000	0.1200	-2.906	0.2733	-7.601
Linearity	0.090	0.1233	-2.984	0.2766	-7.523
Scale factor	49.600	0.1266	-3.126	0.2800	-7.774
Offset	-0.130	0.1300	-3.141	0.2833	-7.727
Delay mSEC	50.000	0.1333	-3.283	0.2866	-7.884
•		0.1366	-3.487	0.2900	-8.073
Step 0 02/17	08:40:53	0.1400	-3.565	0.2933	-8.057
1		0.1433	-3.660	0.2966	-8.387
Elapsed Time	INPUT 1	0.1466	-3.676	0.3000	-8.308
	***	0.1500	-3.769	0.3033	-8.434
0.0000	0.235	0.1533	-3.942	0.3066	-8.685
0.0033	0.235	0.1566	-4.068	0.3100	-8.356
0.0066	0.219	0.1600	-4.099	0.3133	-8.842
0.0100	0.235	0.1633	-4.241	0.3166	-8.654
0.0133	0.219	0.1666	-4.224	0.3200	-9.031
0.0166	0.219	0.1700	-4.539	0.3233	-9.046
0.0200	0.219	0.1733	-4.445	0.3266	-8.999
0.0233	0.046	0.1766	-4.649	0.3300	-9.501
0.0266	-1.838	0.1800	-4.822	0.3333	-9.031
0.0300	-3.314	0.1833	-4.806	0.3500	-9.628
0.0333	-1.272	0.1866	-4.979	0.3666	-10.067
0.0366	0.250	0.1900	-5.073	0.3833	-10.601
0.0400	-0.974	0.1933	-5.120	0.4000	-11.324
0.0433	-0.142	0.1966	-5.403	0.4166	-11.606
0.0466	-0.424	0.2000	-5.418	0.4333	-12.124
0.0500	-0.754	0.2033	-5.544	0.4500	-12.579
0.0533	-0.502	0.2066	-5.591	0.4666	-13.270
0.0566	-0.943	0.2100	-5.701	0.4833	-13.568
0.0600	-0.691	0.2133	-5.811	0.5000	-13.882
0.0633	-0.974	0.2166	-5.984	0.5166	-14.291
0.0666	-1.304	0.2200	-6.047	0.5333	-14.730
0.0000	-1.099	0.2233	-5.984	0.5500	-14.750
		0.2266	-6.220		
0.0733	-1.304	0.2300	-6.282	0.5666	-15.484
0.0766	-1.586	0.2333	-6.345	0.5833	-16.143
0.0800	-1.570	0.2366	-6.612	0.6000	-16.520
0.0833	-1.492	0.2400	-6.612	0.6166	-16.803
0.0866	-1.791	U.24UU	-0.012	0.6333	-17.289

0.6500	-17.682	6.0000	-45.912	62.0000	-54.616
0.6666	-18.059	6.2000	-46.336	64.0000	-54.679
0.6833	-18.435	6.4000	-46.633	66.0000	-54.553
0.7000	-18.938	6.6000	-47.041	68.0000	-54.553
0.7166	-19.236	6.8000	-47.418	70.0000	-54.710
0.7333	-19.613	7.0000	-47.481	72.0000	-54.538
0.7500	-19.911	7.2000	-47.857	74.0000	-54.647
0.7666	-20.414	7.4000	-48.296	76.0000	-54.710
0.7833	-20.728	7.6000	-48.578	78.0000	-53.424
0.8000	-21.167	7.8000	-48.876	80.0000	-53.314
0.8166	-21.575	8.0000	-48.845	82.0000	-52.719
0.8333	-22.030	8.2000	-49.096	84.0000	-52.593
0.8500	-22.156	8.4000	-49.425	86.0000	-52.483
0.8666	-22.470	8.6000	-49.423 -49.441	88.0000	-52.483
0.8833	-22.941	8.8000	-49. 44 1 -49.535	90.0000	-52.358
0.9000	-23.506	9.0000	-49.555 -49.661	92.0000	-52.468
0.9166	-23.710	9.2000	-49.833	94.0000	-53.048
0.9333	-23.929	9.4000	-49.833 -50.303	96.0000	-53.613
0.9500	-24.510	9.6000	-50.366	98.0000	-53.013
0.9666	-24.981	9.8000	-50.837	100.000	-56.137
0.9833	-24.981	10.0000	-50.837 -50.774	120.000	-57.172
1.0000	-25.358	12.0000	-51.495	140.000	-57.172
1.2000	-29.391	14.0000	-52.138	160.000	-55.964
1.4000	-33.063	16.0000	-52.138 -52.327	180.000	-56.168
1.6000	-36.594	18.0000	-52.562	200.000	-55.996
1.8000	-39.292	20.0000	-52.362 -52.734	220.000	-56.027
2.0000	-40.108	22.0000	-52.734 -52.828	240.000	-56.074
2.2000	-40.390	24.0000	-52.577	260.000	-55.902
2.4000	-40.798	26.0000	-52.577 -53.001	280.000	-55.729
2.6000	-41.096	28.0000	-52.280	300.000	-55.008
2.8000	-41.441	30.0000	-52.201	320.000	-55.086
3.0000	-41.896	32.0000	-53.314	340.000	-55.055
3.2000	-42.085	34.0000	-53.926	360.000	-54.961
3.4000	-42.445	36.0000	-53.920	380.000	-54.851
3.6000	-42.618	38.0000	-54.193	400.000	-54.977
3.8000	-42.963	40.0000	-54.193	420.000	-54.992
4.0000	-43.167	42.0000	-54.318	440.000	-55.228
4.2000	-43.355	44.0000	-54.287	460.000	-55.040
4.4000	-43.637	46.0000	-54.287 -54.553	480.000	-54.929
4.6000	-43.904	48.0000	-54.333 -54.428	500.000	-54.929 -54.992
4.8000	-44.171	50.0000	-34.428 -54.647	520.000	-54.898
5.0000	-44.531	52.0000		540.000	-54.696 -54.914
5.2000	-44.751	54.0000	-54.553	560.000	-54.914 -54.914
5.4000	-45.159	56.0000	-54.412	580.000	-34.914 -54.773
5.6000	-45.441	58.0000	-54.553 54.585	600.000	-34.773 -54.961
5.8000	-45.896	60.0000	-54.585 54.381	620.000	-54.789
2.000	.5.570	00.0000	-54.381	020.000	~J+.107

640.000	-54.882
660.000	-54.961
680.000	-55.024
700.000	-54.992
720.000	-54.789
740.000	-54.977
760.000	-54.992
780.000	-54.977
800.000	-55.055
820.000	-55.086
840.000	-55.180
860.000	-55.196
880.000	-55.212
900.000	-55.228
920.000	-55.290
940.000	-55.337
960.000	-55.416
980.000	-55.416
1000.00	-55.337
1200.00	-55.369
1400.00	-55.259
END	

ASR-1 Re	ecovery	0.0900	-52.954	0.2433	-49.802
SE1000	OC .	0.0933	-52.875	0.2466	-49.739
Environmen	tal Logger	0.0966	-52.813	0.2500	-49.676
02/18 14	:44	0.1000	-52.750	0.2533	-49.598
		0.1033	-52.671	0.2566	-49.535
Unit# 00490	Test 0	0.1066	-52.609	0.2600	-49.472
		0.1100	-52.530	0.2633	-49.394
INPUT 1: Le	evel (F)	0.1133	-52.468	0.2666	-49.331
	. ,	0.1166	-52.389	0.2700	-49.268
Reference	0.000	0.1200	-52.327	0.2733	-49.206
Linearity	0.090	0.1233	-52.264	0.2766	-49.127
Scale factor	49.600	0.1266	-52.185	0.2800	-49.065
Offset	-0.130	0.1300	-52.123	0.2833	-49.002
Delay mSEC		0.1333	-52.044	0.2866	-48.939
,		0.1366	-51.982	0.2900	-48.861
Step 1 02/18	08:45:43	0.1400	-51.919	0.2933	-48.798
1		0.1433	-51.840	0.2966	-48.735
Elapsed Time	INPUT 1	0.1466	-51.778	0.3000	-48.672
	22 MEAN AND AND AND AND AND	0.1500	-51.699	0.3033	-48.610
0.0000	-55.259	0.1533	-51.637	0.3066	-48.547
0.0033	-54.490	0.1566	-51.558	0.3100	-48.469
0.0066	-55.086	0.1600	-51.495	0.3133	-48.421
0.0100	-54.820	0.1633	-51.417	0.3166	-48.343
0.0133	-54.522	0.1666	-51.354	0.3200	-48.280
0.0166	-54.538	0.1700	-51.276	0.3233	-48.218
0.0200	-54.412	0.1733	-51.213	0.3266	-48.155
0.0233	-54.381	0.1766	-51.150	0.3300	-48.076
0.0266	-54.334	0.1800	-51.072	0.3333	-48.014
0.0300	-54.287	0.1833	-51.025	0.3500	-47.716
0.0333	-54.193	0.1866	-50.931	0.3666	-47.402
0.0366	-54.114	0.1900	-50.868	0.3833	-47.073
0.0400	-54.036	0.1933	-50.805	0.4000	-46.759
0.0433	-53.957	0.1966	-50.727	0.4166	-46.445
0.0466	-53.895	0.2000	-50.664	0.4333	-46.131
0.0500	-53.816	0.2033	-50.601	0.4500	-45.818
0.0533	-53.754	0.2066	-50.539	0.4666	-45.504
0.0566	-53.675	0.2100	-50.460	0.4833	-45.190
 0.0600	-53.597	0.2133	-50.398	0.5000	-44.940
0.0633	-53.518	0.2166	-50.335	0.5166	-44.594
0.0666	-53.456	0.2200	-50.256	0.5333	-44.296
0.0700	-53.377	0.2233	-50.194	0.5500	-43.982
0.0733	-53.314	0.2266	-50.131	0.5666	-43.637
0.0766	-53.236	0.2300	-50.068	0.5833	-43.387
0.0800	-53.158	0.2333	-49.990	0.6000	-43.104
0.0833	-53.095	0.2366	-49.927	0.6166	-42.822
0.0866	-53.032	0.2400	-49.864	0.6333	-42.524
				3.3333	

0.6500	-42.226	6.0000	-4.037	62.0000	-0.188
0.6666	-41.943	6.2000	-3.691	64.0000	-0.188
0.6833	-41.661	6.4000	-3.408	66.0000	-0.172
0.7000	-41.379	6.6000	-3.141	68.0000	-0.188
0.7166	-41.096	6.8000	-2.906	70.0000	-0.172
0.7333	-40.830	7.0000	-2.686	72.0000	-0.172
0.7500	-40.547	7.2000	-2.497	74.0000	-0.157
0.7666	-40.281	7.4000	-2.325	76.0000	-0.142
0.7833	-39.998	7.6000	-2.168	78.0000	-0.142
0.8000	-39.716	7.8000	-2.042	80.0000	-0.157
0.8166	-39.449	8.0000	-1.900	82.0000	-0.142
0.8333	-39.182	8.2000	-1.791	84.0000	-0.142
0.8500	-38.916	8.4000	-1.696	86.0000	-0.142
0.8666	-38.665	8.6000	-1.602	88.0000	-0.126
0.8833	-38.382	8.8000	-1.508	90.0000	-0.126
0.9000	-38.115	9.0000	-1.445	92.0000	-0.110
0.9166	-37.864	9.2000	-1.366	94.0000	-0.110
0.9333	-37.629	9.4000	-1.304	96.0000	-0.110
0.9500	-37.331	9.6000	-1.257	98.0000	-0.094
0.9666	-37.096	9.8000	-1.209	100.000	-0.078
0.9833	-36.845	10.0000	-1.147	120.000	-0.063
1.0000	-36.578	12.0000	-0.879	140.000	-0.047
1.2000	-33.691	14.0000	-0.754	160.000	-0.015
1.4000	-30.929	16.0000	-0.660	180.000	0.000
1.6000	-28.387	18.0000	-0.613	END	
1.8000	-26.064	20.0000	-0.565		
2.0000	-23.882	22.0000	-0.534		
2.2000	-21.873	24.0000	-0.502		
2.4000	-20.021	26.0000	-0.471		
2.6000	-18.325	28.0000	-0.440		
2.8000	-16.818	30.0000	-0.424		
3.0000	-15.296	32.0000	-0.408		
3.2000	-13.993	34.0000	-0.377		
3.4000	-12.736	36.0000	-0.361		
3.6000	-11.637	38.0000	-0.361		
3.8000	-10.633	40.0000	-0.345		
4.0000	-9.722	42.0000	-0.314		
4.2000	-8.874	44.0000	-0.299		
4.4000	-8.104	46.0000	-0.283		
4.6000	-7.413	48.0000	-0.267		
4.8000	-6.785	50.0000	-0.251		
5.0000	-6.109	52.0000	-0.236		
5.2000	-5.670	54.0000	-0.236		
5.4000	-5.183	56.0000	-0.220		
5.6000	-4.759	58.0000	-0.204		
5.8000	-4.367	60.0000	-0.204		

OW-1 Dra		0.0900	0.094	0.2433	0.094
SE1000		0.0933	0.103	0.2466	0.094
Environment		0.0966	0.103	0.2500	0.094
02/18 14:	39	0.1000	0.103	0.2533	0.094
		0.1033	0.103	0.2566	0.094
Unit# 00490	Test 0	0.1066	0.103	0.2600	0.094
		0.1100	0.103	0.2633	0.103
INPUT 2: Le	vel (F)	0.1133	0.103	0.2666	0.094
		0.1166	0.103	0.2700	0.094
Reference	0.000	0.1200	0.103	0.2733	0.103
Linearity	0.030	0.1233	0.103	0.2766	0.094
Scale factor	29.870	0.1266	0.103	0.2800	0.094
Offset	-0.090	0.1300	0.103	0.2833	0.103
Delay mSEC	50.000	0.1333	0.103	0.2866	0.103
•		0.1366	0.103	0.2900	0.094
Step 0 02/17	08:40:53	0.1400	0.103	0.2933	0.094
•		0.1433	0.103	0.2966	0.094
Elapsed Time	INPUT 2	0.1466	0.103	0.3000	0.103
*******		0.1500	0.103	0.3033	0.094
0.0000	0.094	0.1533	0.103	0.3066	0.094
0.0033	0.094	0.1566	0.094	0.3100	0.094
0.0066	0.094	0.1600	0.094	0.3133	0.094
0.0100	0.094	0.1633	0.094	0.3166	0.094
0.0133	0.094	0.1666	0.094	0.3200	0.094
0.0166	0.094	0.1700	0.094	0.3233	0.094
0.0200	0.094	0.1733	0.094	0.3266	0.094
0.0233	0.094	0.1766	0.094	0.3300	0.094
0.0266	0.094	0.1800	0.094	0.3333	0.094
0.0300	0.094	0.1833	0.094	0.3500	0.094
0.0333	0.094	0.1866	0.094	0.3666	0.085
0.0366	0.094	0.1900	0.094	0.3833	0.094
0.0400	0.094	0.1933	0.094	0.4000	0.085
0.0433	0.094	0.1966	0.094	0.4166	0.094
0.0466	0.094	0.2000	0.094	0.4333	0.094
0.0500	0.094	0.2033	0.094	0.4500	0.094
0.0533	0.094	0.2066	0.094	0.4666	0.094
0.0566	0.094	0.2100	0.094	0.4833	0.094
0.0600	0.094	0.2133	0.094	0.5000	0.094
0.0633	0.094	0.2166	0.094	0.5166	0.094
0.0666	0.094	0.2200	0.094	0.5333	0.094
0.0700	0.094	0.2233	0.094	0.5500	0.094
0.0733	0.103	0.2266	0.094	0.5666	0.094
0.0766	0.103	0.2300	0.094	0.5833	0.094
0.0800	0.094	0.2333	0.094	0.6000	0.094
0.0833	0.094	0.2366	0.094	0.6166	0.094
0.0866	0.094	0.2300	0.094	0.6333	0.094
0.0000	ひ・ひプサ	U.44UU	U.U7 4	0.0333	0.094

0.6500	0.094	6.0000	0.103	62.0000	-0.028
0.6666	0.094	6.2000	0.103	64.0000	-0.037
0.6833	0.094	6.4000	0.103	66.0000	-0.047
0.7000	0.094	6.6000	0.103	68.0000	-0.018
0.7166	0.094	6.8000	0.103	70.0000	-0.028
0.7333	0.094	7.0000	0.103	72.0000	-0.018
0.7500	0.094	7.2000	0.103	74.0000	-0.028
0.7666	0.094	7.4000	0.094	76.0000	-0.028
0.7833	0.094	7.6000	0.094	78.0000	-0.037
0.8000	0.094	7.8000	0.094	80.0000	-0.047
0.8166	0.094	8.0000	0.094	82.0000	-0.056
0.8333	0.094	8.2000	0.094	84.0000	-0.056
0.8500	0.094	8.4000	0.094	86.0000	-0.030 -0.047
0.8666	0.094	8.6000	0.094	88.0000	
0.8833	0.094	8.8000	0.094		-0.075
0.9000	0.094	9.0000		90.0000	-0.094
0.9000	0.094		0.094	92.0000	-0.113
0.9100	0.094	9.2000	0.094	94.0000	-0.103
0.9533	0.094	9.4000	0.094	96.0000	-0.094
		9.6000	0.094	98.0000	-0.103
0.9666	0.094	9.8000	0.094	100.000	-0.084
0.9833	0.094	10.0000	0.094	120.000	-0.160
1.0000	0.094	12.0000	0.094	140.000	-0.188
1.2000	0.103	14.0000	0.094	160.000	-0.198
1.4000	0.103	16.0000	0.094	180.000	-0.198
1.6000	0.103	18.0000	0.103	200.000	-0.198
1.8000	0.103	20.0000	0.085	220.000	-0.207
2.0000	0.103	22.0000	0.085	240.000	-0.188
2.2000	0.103	24.0000	0.094	260.000	-0.160
2.4000	0.103	26.0000	0.075	280.000	-0.122
2.6000	0.103	28.0000	0.047	300.000	-0.084
2.8000	-0.103	30.0000	0.037	320.000	0.028
3.0000	0.103	32.0000	0.037	340.000	0.056
3.2000	0.103	34.0000	0.028	360.000	0.160
3.4000	0.103	36.0000	0.018	380.000	0.226
3.6000	0.103	38.0000	0.028	400.000	0.302
3.8000	0.103	40.0000	0.028	420.000	0.349
4.0000	0.103	42.0000	0.028	440.000	0.434
4.2000	0.103	44.0000	0.028	460.000	0.500
4.4000	0.103	46.0000	0.037	480.000	0.575
4.6000	0.103	48.0000	0.028	500.000	0.641
4.8000	0.103	50.0000	0.037	520.000	0.670
5.0000	0.103	52.0000	0.028	540.000	0.736
5.2000	0.103	54.0000	0.018	560.000	0.773
5.4000	0.103	56.0000	0.000	580.000	0.773
5.6000	0.103	58.0000	0.000	600.000	0.811
5.8000	0.103	60.0000	-0.018	620.000	0.811
2.3000	3.200	00.0000	0.010	020.000	0.021

640.000	0.839
660.000	0.811
680.000	0.783
700.000	0.745
720.000	0.679
740.000	0.594
760.000	0.500
780.000	0.415
800.000	0.292
820.000	0.236
840.000	0.141
860.000	0.047
880.000	-0.056
900.000	-0.113
920.000	-0.198
940.000	-0.292
960.000	-0.330
980.000	-0.396
1000.00	-0.396
1200.00	-0.084
1400.00	0.396
END	

OW-1 R	ecovery	0.0900	0.339	0.2433	0.349
SE100	•	0.0933	0.339	0.2466	0.339
Environme	ntal Logger	0.0966	0.339	0.2500	0.349
02/18 1		0.1000	0.339	0.2533	0.349
		0.1033	0.339	0.2566	0.339
Unit# 0049	0 Test 0	0.1066	0.339	0.2600	0.349
		0.1100	0.339	0.2633	0.349
INPUT 2: L	evel (F)	0.1133	0.339	0.2666	0.339
	(-)	0.1166	0.339	0.2700	0.339
Reference	0.000	0.1200	0.339	0.2733	0.339
Linearity	0.030	0.1233	0.349	0.2766	0.349
Scale factor	29.870	0.1266	0.339	0.2800	0.339
Offset	-0.090	0.1300	0.339	0.2833	0.339
Delay mSEC		0.1333	0.339	0.2866	0.339
Bolay mode	20.000	0.1366	0.349	0.2900	0.339
Step 1 02/1	8 08:45:43	0.1400	0.349	0.2933	0.339
500p 1 02/1	0 00.15.15	0.1433	0.349	0.2966	0.339
Elansed Tim	e INPUT 2	0.1466	0.339	0.3000	0.339
		0.1500	0.339	0.3033	0.339
0.0000	0.349	0.1533	0.339	0.3066	0.339
0.0033	0.349	0.1566	0.349	0.3100	0.349
0.0066	0.349	0.1600	0.349	0.3133	0.339
0.0100	0.349	0.1633	0.349	0.3166	0.339
0.0133	0.349	0.1666	0.339	0.3200	0.339
0.0166	0.349	0.1700	0.339	0.3233	0.349
0.0200	0.349	0.1733	0.349	0.3266	0.349
0.0233	0.349	0.1766	0.349	0.3300	0.339
0.0266	0.349	0.1800	0.349	0.3333	0.349
0.0300	0.339	0.1833	0.349	0.3500	0.339
0.0333	0.339	0.1866	0.349	0.3666	0.339
0.0366	-0.339	0.1900	0.349	0.3833	0.339
0.0400	0.349	0.1933	0.339	0.4000	0.339
0.0433	0.339	0.1966	0.349	0.4166	0.339
0.0466	0.339	0.2000	0.339	0.4333	0.339
0.0500	0.339	0.2033	0.349	0.4500	0.339
0.0533	0.349	0.2066	0.339	0.4666	0.339
0.0566	0.349	0.2100	0.339	0.4833	0.339
0.0600	0.339	0.2133	0.349	0.5000	0.339
0.0633	0.349	0.2166	0.349	0.5166	0.339
0.0666	0.339	0.2200	0.349	0.5333	0.339
0.0700	0.339	0.2233	0.339	0.5500	0.339
0.0733	0.339	0.2255	0.339	0.5666	0.339
0.0766	0.339	0.2200	0.339	0.5833	0.339
0.0800	0.339	0.2333	0.339	0.6000	0.339
0.0833	0.339	0.2355	0.349	0.6166	0.339
0.0855	0.339	0.2300	0.339	0.6333	0.339
0.0000	0.337	U.24UU	U.347	0.0333	0.333

0.6500	0.339	6.0000	0.358	62.0000
0.6666	0.339	6.2000	0.349	64.0000
0.6833	0.339	6.4000	0.358	66.0000
0.7000	0.339	6.6000	0.358	68.0000
0.7166	0.339	6.8000	0.358	70.0000
0.7333	0.339	7.0000	0.368	72.0000
0.7500	0.339	7.2000	0.358	74.0000
0.7666	0.339	7.4000	0.358	76.0000
0.7833	0.339	7.6000	0.358	78.0000
0.8000	0.339	7.8000	0.358	80.0000
0.8166	0.339	8.0000	0.358	82.0000
0.8333	0.339	8.2000	0.358	84.0000
0.8500	0.339	8.4000	0.358	86.0000
0.8666	0.339	8.6000	0.358	88.0000
0.8833	0.339	8.8000	0.358	90.0000
0.9000	0.339	9.0000	0.349	92.0000
0.9166	0.339	9.2000	0.358	94.0000
0.9333	0.339	9.4000	0.358	96.0000
0.9500	0.339	9.6000	0.358	98.0000
0.9666	0.339	9.8000	0.358	100.000
0.9833	0.339	10.0000	0.358	120.000
1.0000	0.339	12.0000	0.358	140.000
1.2000	0.349	14.0000	0.339	160.000
1.4000	0.349	16.0000	0.320	180.000
1.6000	0.349	18.0000	0.330	END
1.8000	0.349	20.0000	0.349	END
2.0000	0.349	22.0000	0.339	
2.2000	0.349	24.0000	0.339	
2.4000	0.349	26.0000	0.320	
2.6000	0.349	28.0000	0.320	
2.8000	0.349	30.0000	0.283	
3.0000	0.349	32.0000	0.292	
3.2000	0.349	34.0000	0.330	
3.4000	0.349	36.0000	0.330	
3.6000	0.349	38.0000	0.273	
3.8000	0.349	40.0000	0.273	
4.0000	0.349	42.0000	0.273	
4.2000	0.349	44.0000	0.302	
4.4000	0.349	46.0000	0.302	
4.6000	0.349	48.0000	0.311	
4.8000	0.349	50.0000	0.311	
5.0000	0.349	52.0000	0.302	
5.2000	0.349	54.0000 54.0000	0.283	
5.4000	0.349	56.0000 56.0000	0.273	
5.6000	0.349	58.0000	0.273	
5.8000	0.338		0.273	
3.0000	0.349	60.0000	0.292	

0.273

0.254

0.236

0.188

0.188

0.198

0.245 0.236

0.254

0.160 0.170

0.160 0.160

0.207 0.179

0.226

0.188 0.132

0.170 0.226

0.160 0.075

0.009 -0.009

PAGE 2 OF______ PROJECT NO. <u>SEF35 300.BØ.</u>10

WELL ASR-I COMPING OBSERVATION WELL	•
TYPE OF DATA DRAWDOWN RECOVERY	
PUMPED WELL NO. ASR-1 RADIUS 8"	M.P. FOR WL'S Top of Flange EL
PUMPING RATES Q & 200 gpm	PUMP ON: DATE 2/17/93 TIME 0845
HOW a MEASURED Rockwell / Flowmeter w/ Totalizer	PUMP OFF: DATE
	comments Totalizer (Start) = 4,943,000
DISTANCE FROM PUMPED WELL	

TIME SINCE			WATER					
STARD STOPPED (MINUTES)	t/t′ _×		MEASURE	DEPTH TO WATER (ft)	DRAW- DOWN (ft)	ADJUSTED DRAW- DOWN (ft)	REMARI	«s
NMINUTES)								
151	N/A	N/A	-N/A	(1/10	51.1			
454				64.60		```		
514					54.35		Q = 200 gpm	
570	**			64.55	54.35	:	Q = 200 gpm	
629				64.57	54.37		9 ~ 200 grm	
694				64.58	54.33		Q = 200 gpm	
749				64.67	54.47		\$ = 205 gpm	
811				64.71	54.51		Q= 198 gpm	
868				64.84	54.64		Q= 200 gpm	
928				65.02			P ≈ 200 gpm	
988				65.07	State the second		Q=200 gpm	
1050				65.33	A sign and		Q = 200gpm	
1110				65,28			9= 201 gpm	
1/69	***			65.26			Q ≈ 199	<u> </u>
			2, 1, 3 2, 47	/			P= 199 gpm Q=200 gpm	
1228				65.05			()~	
				64.82			Di 200gpm	
1352				64.80			Q= 202gpm	· ·
1407	***************************************	Mile of a separate state of the separate sta		64.94			4= 200 gpm	
								· · · · · · · · · · · · · · · · · · ·

				6 0.0				

1.55	de Paglie Little Britisg Letter von der De Steckel, wie der Gertale billebetande Little (1997) in der Letter v			
	R-1	A CONTRACTOR OF THE PROPERTY O		
		요즘 하지 않는 것은 경험하는 것이 없었다면 하다.		
MAINT I I		and the second s		
WELL /	N-1 COMPING OBS	FRVATION WE		
	· · · · · · · · · · · · · · · · · · ·			
	ORAWDOWN/RECOVERY	The second secon	and the second second second second	Service State (Selection of the Control of the Cont
TYPE OF DATA	NO AMIDOMNIDECOVERY	Commence of the Commence of th		
THE OF DATA	Chaveowi/hecoven i			
			The same of the sa	
	1-0 (
DIMPER WELL	o. ASR-I RADIUS		and the second second second	P. FOR WL's $^{-1}$
LOMILED MELL	J. AUN I HADIUS 1	CONTRACT TRACTOR STOCKED		FOR WI'

PUMPING RATES Q ~ 200 gpm

HOW Q MEASURED Rockwell Flowmeter w/Totalizer

HOW WL'S MEASURED M-Scope

PUMP OFF: DATE ____ COMMENTS Totalizer

	TIME SINCE PUMPING			WATER	LEVEL		ADJUSTED		
	STAR / STOPPED MINUTES	t/t*	READINGS REFERENCE MEASURE		DEPTH TO WATER (ft)	DRAW- DOWN (ft)	DRAW- DOWN (ft)	REMARKS	
93	1813	N/A	N/A		9.53	_		Top of Flange - Static Reading	
3	0810				10.15	-			
	0844				10.20	_		Static	
	0845				10.20	_		Start Pumping	
	45 secs				360	20.8			
	2 min				49.0	38.8		Flor ≈ 300gpm	
	3 mir				47.0	36.8		Flow > 190 gpm	
L	5 mi~				54.0	43.8		Flow & 200gpm	
L	17 min	· · · · · · · · · · · · · · · · · · ·			62.0	51.8		" ", ",	
	20 min				62.2	52.0			
L	25 min				62.37	52.17	Av. ·	Flow = 190gpm Adjust flower	
-	32				62.85	52.65		Flow = 200 gpm	
L	38		ė.	-	63.75	53.55			
-	45	*****			64.0	53,80			
L	60				64,(53.90		Flow = 200 gpm 4955,000	
-	90				62.1	51.90		Flow = 195 gpm Adjust Flower	
L	100				66.4	56.20		Flow a 205 (Companyate for befor	
-	120				66.7	56.50		Flow = QOS gpm	
-	152				65.6	55.40		Q = 200 gpm	
-	180				65.6	55.40		Q = 205 gpm	
-	265				65,4	55.20		Q = 205 gpm Adjust Flow Q = 202 gpm W/cla-Klve	
-	332				64.6	54,40		Q = 202 gpm	
	389				64.7			Q = 202 gpm	

CHARA	A constant		
	PUMP	ING T	EST REPORT

WELL ASK-1 COUMPING OBSERVATION WI	ELL
PUMPED WELL NO. ASR-1 RADIUS 8"	M.P. FOR WL's Top of Flange EL
PUMPING RATES Q = 200 gpm HOW Q MEASURED ROCKWELL Flowmeter	PUMP ON: DATE 2/17/93 TIME 0845 PUMP OFF: DATE 2/18/93 TIME 0850
HOW WL'S MEASURED M-Scope	COMMENTS Fotalizer Final Reading:
DISTANCE FROM PUMPED WELL N/A	5,230,000 gals

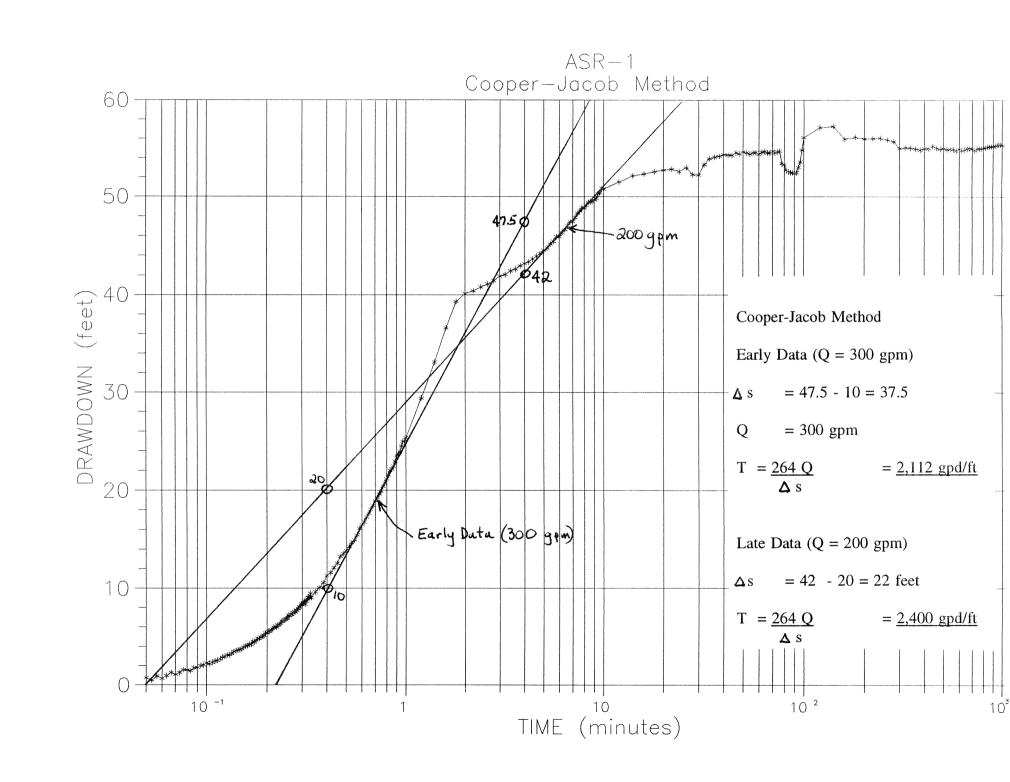
PUMPING START/ STOPPED (MINUTES	1/1*	READ REFERENCE	ÍNGS	DEPTH TO	DDAM	ADJUSTED	REMARKS.
<u>////O</u>		REFERENCE		MATER	DRAW-	DRAW- DOWN	HEMARKS
<u>////O</u>			MEASURE	WATER (ft)	DOWN (ft)	(ft)	
1778 (419-15)			in the second	64.99			
	12.10			5 8 ,0			
0:44 sec				51.5			
1:10				44.53			
1:27	1900			40.6			
1:46				36.9			
2:13				32.3			
2:35				28,83			
3:53				26.74			
4:29				18.60			
4:47				17.59			
5:25		-		15.95			
5:41				15.38			
6:11	*			14.48			
7.04				13.30			
8.33				12:40			
10:00				11,90			
14:03				11.68			
14:08				11.45			
17.05	2 (J. N. S. 2011)			11.35	<i></i>		
21:04				11.27			
30 40				11.15	2081 a. 11 att a 12		

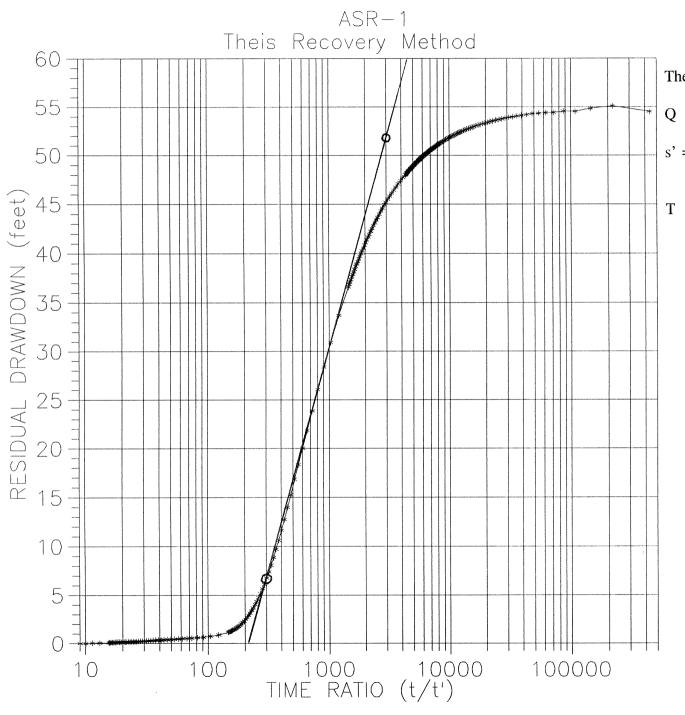
CH2M PUMPING TEST REPORT

TO AF FLANCE	
M.F. FOR WLS	Carrier of the Control of the Contro
— · 5 · · · · · · · · · · · · · · · · ·	
PUMP OFF: DATE &/18/93 TIME USSD	
COMMENTS	
	M.P. FOR WL'S TOP OF Flange EL

TIME SINCE	ME SINCE WATER		WATER	LEVEL		ADJUSTED			
PUMPING START/	t/t'	READ	INGS	DEPTH TO WATER	DRAW- DOWN	DRAW- DOWN		REMARKS	
START/ STOPPED (MINUTES		REFERENCE	MEASURE	(ft)	(ft)	(ft)			
60	等。.			10.90					
75		·		10.85					
90				10.85					
130				10.78					
180				10.75				*	
. (VK)									
						ali ili ili ili ili ili ili ili ili ili			
	No entre						fram.		
	·								
					- 4				
					-				

CH2M ■HILL PUMPING TEST REPORT


WELL OW- PUMPING OBSERVATION WELL		
TYPE OF DATA (DRAWDOWN) RECOVERY		
PUMPED WELL NO. ASR-1 RADIUS	M.P. FOR WL's Top of 2"Thraded Cap	EL
PUMPING RATES Q & 200 gpm	PUMP ON: DATE 2/17/93 TIME	0845
HOW a MEASURED Rockwell Flowmeter W/ Totalizer	PUMP OFF: DATE 2/18/93 TIME	0850
HOW WL'S MEASURED M-Scope	COMMENTS Totalizer (Start)	= 4,943,000
DISTANCE FROM DUMPER WELL 105 Feet		


IME SINCE PUMPING			WATER	LEVEL		ADJUSTED		
START/ STOPPED (MINUTES	t/t'	READ REFERENCE		DEPTH TO WATER (ft)	DRAW- DOWN (ft)	DRAW- DOWN (ft)	REMARK	s
1438				7.67	a fevêle.		4936700 = Total	izer Reading
0811				7.77			N _a - A jir	
0843				<u> </u>			Static	
0900 15.	~			7.77	0.0			
40				7.85	0.08		A Maria Barana	
61		earl er e		7.89	0.12			
89				7.95	0.18			
122				8.01	0.24			
150	navonianakiskala i virriikki kilikkiski ka em eli			8.04	0.27			
182				8,04	0.27			
267				8.01	0.24			
328				7.81	0.04			
393	danimus vistinus iddi makilmus liddi 100			7.62	+0.09			
451				7.41	+ 0.36			
512				7.22	+ 0,55			
572				7.07	+0.70	·		
631				7.06	+0.71			
691				7,12	0.65			
751				7.35				
813				7.65				
870				7.95				
930				8,21		·		
991				8.33				

-/18/93

EODM 200

Attachment B
Pumping Test Analysis

Theis Recovery Method

$$Q = 198.6 \text{ gpm} = 38,233 \text{ ft}^3/\text{day}$$

$$s' = 52 - 7 = 45$$
 feet

$$T = \frac{2.3 \text{ Q}}{4\pi \text{ s}}$$
 = 155.58 ft²/day

= 1,164 gpd/ft

Attachment C
Laboratory Results for Water Quality Sampling

February 25, 1993

Albert Muniz CH2M HILL/DFB

RE: Analytical Data for FKAA/Stock Island LGN Lab Ref. No. GN-01252

Dear Albert Muniz:

On January 30, 1993, the CH2M HILL Gainesville Laboratory (LGN) received two samples with a request for analysis of selected organic and inorganic parameters.

The analytical results and associated quality control data are enclosed. The samples for pesticides/herbicides were sent to Savannah Laboratories. The samples for gross alpha were sent to Environmental Science & Engineering, Inc(ESE).

Under CH2M HILL policy, your samples will be stored for up to 30 days after reporting. If you have not given us prior instructions for disposal, we will contact you if any samples require disposal as hazardous waste.

CH2M HILL Laboratories appreciate your business and look forward to serving your analytical needs again. If you should have any questions concerning the data, or if you need additional information, please call me or Tom Emenhiser, Client Services Manager, at 904-462-3050.

Sincerely,

Don Hash

Client Services Coordinator

Enclosures

xc:S.Skeehan/DFB

State Certifications:

Florida No. 82112, E82124 California No. I-1014 Alabama No. 40080

TABLE OF CONTENTS

CH2M HILL Lab Ref. No. GN-01252

	Page No.
List of Organic Data Qualifiers List of Sample ID Qualifiers Client Sample Cross-Reference	. i ii
Inorganic Data Case Narrative(s)	
Blank(s) Results	
Organic Data Purgable Halocarbons/Aromatics Case Narrative Analytical Results Blank(s) Results EDB and DBCP	. 7
Case Narrative	12
Pesticide/Herbicide(Performed by Savannah Lab)	14
Gross Alpha(Performed by ESE)	16
Copy of COC Documentation	1 0

ORGANIC DATA QUALIFIERS

- Indicates the compound was analyzed for, but not detected. The number adjacent to the "U" qualifier indicates the reporting limit for that compound. The reporting limit can vary from sample to sample depending on dilution factors or percent moisture adjustment when indicated.
- J Indicates an estimated value. It is used when the data indicates the presence of a compound below the stated reporting limit.
- This flag applies to GC analytes only. The "C" flag indicates the presence of this compound has been confirmed by GC/MS analysis.
- B This flag is used when the analyte is found in the associated blank, as well as the sample. This notation indicates possible blank contamination and suggests the data user evaluate these compounds and their amounts carefully.
- This qualifier indicates that the value reported exceeds the linear calibration range for that compound. Therefore, the sample should be reanalyzed at an appropriate dilution. The "E" qualified amount is an estimated concentration, and the results of the dilution will be reported on a separate Form I.
- This qualifier indicates compounds which have been identified during a diluted reanalysis. "D" qualifiers are used for samples that have been analyzed initially at a lesser dilution than required for accurate quantification.

SAMPLE ID QUALIFIERS

The qualifiers that may be appended to the sample ID for organic analyses are defined below:

- DL or D -- Dilution Run. Indicates the sample contained compounds exceeding the calibration range. The sample was diluted and reanalyzed. Both results are reported.
 - R -- Rerun. The sample was reanalyzed. The "R" is not used if the sample was also re-extracted.
 - RE -- Re-extraction Analysis. The sample was re-extracted and reanalyzed.
- MSD or MD -- Matrix Spike Duplicate (may be followed by a digit to indicate multiple matrix spike duplicates within a sample set)

CLIENT SAMPLE CROSS-REFERENCE

CH2M HILL Lab Ref. No. GN-01252

LGN	Client	Savannah	ESE	
Lab Sample No.	Lab Sample ID.	Lab Sample No.	Lab Sample No.	
GN-01252001	Water Grab	00348-1	CHZRAD93*2	
GN-01252002	Travel Blank			

CASE NARRATIVE Cations

						Lab Number:		GN-01252
Clien	t/Proj	ect:	I	FKAA		-		
I.		ng Time: olding t	imes wer	re met.				
II.	Diges None	tion Exc	eptions	:				
III.	Analy	sis:						
	Α.	Calibra All acc		criteria w	were met.			
	В.	Blanks:		criteria w	were met.			
	C.			ce Check Sa criteria w	_			
	D.	In the	ple had	s of Lead, to be dilu	ited x5 ii		btain	encountered. acceptable QC Y.
	E.		ite Sampl ceptance	le(s): criteria w	were met.			
	F.		-	trol Sample criteria w				
	G.		rial Dilu Juired fo	ution: or this lev	vel QC.			
	Н.	Other: None.						
IV.	Docum None	entatior	Except:	ions:				
V.	condiand for the	tions agor comple data ce Laborature.	reed to eteness contained	by the cli , except fo d in this h	ient and or the connardcopy o	CH2M HILL, b nditions det data package	oth to ailed has l	

Isaac Lynch

Supervisor, Inorganics Division

CASE NARRATIVE General Chemistry

Lab Number: GN-01252

Clien	t/Proje	ect:FKAA
I.		ng Time: olding times were met.
II.	Analys	sis:
	Α.	Calibration: All acceptance criteria were met.
	В.	Blanks: All acceptance criteria were met.
	C.	Matrix Spike Sample(s): All acceptance criteria were met.
	D.	Duplicate Sample(s): All acceptance criteria were met.
	E.	Lab Control Sample(s): All acceptance criteria were met.
	F.	Other: None.
III.	Docume None.	entation Exceptions:
IV.	conditand for	
	SIGNE	Isaac Lynch
		Supervisor, Inorganics Division

REPORT OF ANALYSIS

Florida Certification: 82112; E82124

AAH836 02/24/93 Page 1 of 2

Sample Nos: 125201

CH2M Hill **FKAA**

Project No: SEF19915.W4.33 Attention: Albert Muniz

Received: 01/30/93 Address: DFB Reported: 02/24/93 Copies to: Sean Skehan/DFB

Collected: 01/29/93 by Michael E. Perez

Type: water, grab Location: Stock Island ASR

SAMPLE NUMBER	125201	
SAMPLE DESCRIPTIONS	WATER, GRAB 01/28/93 08:30 pm	Laboratory Method Blank
GENERAL		
pH (Units)	7.30 01/30/93	Not Applicable 01/30/93
Color (APHA)	50 01/30/93	0 01/30/93
Turbidity (NTU)	20 01/30/93	< 0.2 01/30/93
Odor (TON)	N.O.O. 01/30/93	N.O.O. 01/30/93
Corrosivity	+0.40 01/30/93	Not Applicable 01/30/93
SOLIDS	1	,
Total Dissolved Solids	37100 02/04/93	<1.0 02/04/93
METALS	ţ	
Arsenic, Furnace	0.008	<0.005 02/24/93
Barium, ICP	0.020 02/16/93	<0.001 02/16/93
Cadmium, ICP	0.006 02/08/93	<0.005 02/08/93
Chromium, ICP	<0.006 02/08/93	<0.006 02/08/93

NOTE: Values are mg/l as substance unless otherwise stated.

Respectfully submitted,

Isaac D. Lynch, Inorganics Supervisor

n/r = not requested

NOTE: This report contains test data and no interpretation is intended or implied.

REPORT OF ANALYSIS

02/24/93

AAH836

Page 2 of 2

Sample Nos: 125201 - 125202

ORIES	Florida Certification: 8	2112;	E82124

AMPLE NUMBER	125201	125202
SAMPLE DESCRIPTIONS	WATER, GRAB 01/28/93 08:30 pm	Laboratory Method Blank
Copper, ICP	<0.006 02/08/93	<0.006 02/08/93
Iron, ICP	1.56 02/08/93	<0.020 02/08/93
Lead, Furnace	*<0.010 02/17/93	<0.002 02/17/93
Manganese, ICP	0.026 02/16/93	<0.002 02/16/93
Mercury, Cold Vapor	0.0003	<0.0002 02/10/93
Selenium, Furnace	0.027	<0.005 02/23/93
Silver, ICP	<0.005 02/08/93	<0.005 02/08/93
Sodium, ICP	9670 02/16/93	<0.50 02/16/93
Zinc, ICP	<0.005 02/08/93	<0.005 02/08/93
ANIONS	1	•
Chloride	19900 02/09/93	<1.0 02/09/93
Fluoride	0.84 02/03/93	<0.01 02/03/93
Sulfate	3100 02/11/93	<1.0 02/11/93
	•	
NUTRIENTS		<0.02
NUTRIENTS Nitrate (as N)	0.05 01/30/93	01/30/93

NOTE: Values are mg/l as substance unless otherwise stated.

* See case narrative.

Respectfully submitted,

Isaac D. Lynch, Inorganics Supervisor

n/r = not requested

NOTE: This report contains test data and no interpretation is intended or implied.

CASE NARRATIVE GC VOLATILE SAMPLES

LABORATORY: CH2M HILL LABORATORIES CLIENT: FKAA Stock Island ASR

CASE NO. : N/A CONTRACT NO.: N/A

LAB NO. : GN-01252-001-002 SDG NO.: GN-01252

I. RECEIPT

A. DATE: JANUARY 30, 1993

B. SAMPLE INFORMATION

LAB	CLIENT	SAMPLE	DATE	EXTRACTION	ANALYSIS
SAMPLE ID	SAMPLE ID	MATRIX	SAMPLED	DATE	DATE
01252001	GRAB WATER	WATER	01/28/93	N/A	02/01/93
01252002	TRVL BLK	WATER	01/28/93	N/A	02/01/93
2VBB01A	VBLK001	WATER	N/A	N/A	02/01/93

C. Documentation

Exceptions: No exceptions were encountered.

II. EXTRACTION

Α.

Holding Times: Not applicable.

В. Extraction

Exceptions:

Not applicable.

III. ANALYSIS

Α. Holding times: All holding times were met.

В. Analytical

Exceptions:

There were no analytical exceptions.

QUALITY CONTROL IV.

Α. Method Blank:

All samples met acceptable QC criteria.

В. Surrogate

Recoveries:

All samples met acceptable QC criteria.

C. Matrix Spike

Results:

Some compounds were outside acceptable limits for accuracy and/or precision. However, analysis of a continuing calibration standard immediately after the matrix spikes indicated that the analytical system was in control. Since MS/MSD results are subject to matrix effects, these values should be considered to be

advisory.

V. I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, except for the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Andres A. Romeu, Ph.D.

Manager, Organics Division

GRAB WATER

Sample Group: GN-01252

REPORT OF ANALYTICAL RESULTS PURGEABLE HALOCARBONS/AROMATICS

Date collected: 1/28/93 Date extracted: N/A Date analyzed: 2/1/93

Lab Sample ID: GN-01252001 Lab file 1 ID: B01C008 Matrix: Lab file 2 ID: B01D008 Water Method: 601/602 Dilution Factor: 1.0000 % Moisture: 100 Reporting units: ug/L

CAS NUMBER	COMPOUND NAME	REPORTING LIMIT	RESULT
71-43-2	Benzene	1.0	U
75-27-4	Bromodichloromethane	1.0	Ū
75-25-2	Bromoform	1.0	Ū
74-83-9	Bromomethane	1.0	Ū
56-23-5	Carbon tetrachloride	1.0	Ū
108-90-7	Chlorobenzene	1.0	Ü
75-00-3	Chloroethane	1.0	Ũ
57-66-3	Chloroform	1.0	ŭ
74-87-3	Chloromethane	1.0	Ü
100-75-8	2-Chloroethyl vinyl ether	1.0	Ü
124-48-1	Dibromochloromethane	1.0	ŭ
95-50-1	1,2-Dichlorobenzene	1.0	Ŭ
541-73-1	1,3-Dichlorobenzene	1.0	ŭ
106-46-7	1,4-Dichlorobenzene	1.0	Ü
74-71-8	Dichlorodifluoromethane	1.0	Ü
⁷ 5-34-3	1,1-Dichloroethane	1.0	Ü
107-06-2	1,2-Dichloroethane	1.0	Ü
75-35-4	1,1-Dichloroethene	1.0	Ü
156-59-4	cis-1,2-Dichloroethene	1.0	Ü
156-60-5	trans-1,2-Dichloroethene	1.0	Ü
78-87- 5	1,2-Dichloropropane	1.0	ŭ
10061-01-5	cis-1,3-Dichloropropene	1.0	Ŭ
10061-02-6	trans-1,3-Dichloropropene	1.0	ŭ
100-41-4	Ethyl Benzene	1.0	Ü
1634-04-4	Methyl tert butyl ether	1.0	ŭ
75-09-2	Methylene chloride (Dichloromethane)	1.0	Ü
79-34-5	1,1,2,2-Tetrachloroethane	1.0	Ŭ
27-18-4	Tetrachloroethene	1.0	Ü
08-88-3	Toluene	1.0	Ü
1-55-6	1,1,1-Trichloroethane	1.0	Ü
79-00-5	1,1,2-Trichloroethane	1.0	ŭ
79-01-6	Trichloroethene	1.0	Ü
75-69-4	Trichlorofluoromethane	1.0	Ŭ
' 5-01-4	Vinyl chloride	1.0	Ü
108-38-3/106-42-3	m- and p-Xylene	2.0	Ü
95-47-6	o-Xylene	1.0	Ü
N/A	Total Xylenes	1.0	Ü
	SURROGATE		88 % Rec.

TRAVEL BLANK

REPORT OF ANALYTICAL RESULTS PURGEABLE HALOCARBONS/AROMATICS

Date collected: 1/28/93 Date extracted: N/A Date analyzed: 2/1/93 Matrix: Water

Lab Sample ID: GN-01252002 Lab file 1 ID: B01C015 Lab file 2 ID: B01D015 Dilution Factor: 1.0000

Method: 601/602

Sample Group: GN-01252

% Moisture: 100

Reporting units: ug/L

CAS NUMBER	COMPOUND NAME	REPORTING LIMIT	RESULT
71-43-2	Benzene	1.0	U
75-27-4	Bromodichloromethane	1.0	U
'5-25 <i>-</i> 2	Bromoform	1.0	Ū
74-83-9	Bromomethane	1.0	Ū
6-23-5	Carbon tetrachloride	1.0	Ū
08-90-7	Chlorobenzene	1.0	Ü
5-00-3	Chloroethane	1.0	Ū
7-66-3	Chloroform	1.0	Ü
4-87-3	Chloromethane	1.0	Ü
00-75-8	2-Chloroethyl vinyl ether	1.0	Ü
24-48-1	Dibromochloromethane	1.0	Ü
5-50-1	1,2-Dichlorobenzene	1.0	Ü
41-73-1	1,3-Dichlorobenzene	1.0	Ü
06-46-7	1,4-Dichlorobenzene	1.0	Ü
4-71-8	Dichlorodifluoromethane	1.0	Ü
5-34-3	1,1-Dichloroethane	1.0	Ü
07-06-2	1,2-Dichloroethane	1.0	Ü
5-35-4	1,1-Dichloroethene	1.0	Ü
56-59-4	cis-1,2-Dichloroethene	1.0	Ü
56-60-5	trans-1,2-Dichloroethene	1.0	ŭ
8-87-5	1,2-Dichloropropane	1.0	Ü
0061-01-5	cis-1,3-Dichloropropene	1.0	Ü
0061-02-6	trans-1,3-Dichloropropene	1.0	Ü
00-41-4	Ethyl Benzene	1.0	Ŭ
634-04-4	Methyl tert butyl ether	1.0	Ü
5-09-2	Methylene chloride (Dichloromethane)	1.0	Ü
9-34-5	1,1,2,2-Tetrachloroethane	1.0	Ü
27-18-4	Tetrachloroethene	1.0	Ŭ
08-88-3	Toluene	1.0	Ü
1-55-6	1,1,1-Trichloroethane	1.0	Ü
9-00-5	1,1,2-Trichloroethane	1.0	Ü
9-01-6	Trichloroethene	1.0	U
5-69-4	Trichlorofluoromethane	1.0	Ü
5-01-4	Vinyl chloride	1.0	ŭ
08-38-3/106-42-3	m- and p-Xylene	2.0	ŭ
5-47-6	o-Xylene	1.0	Ŭ
/A	Total Xylenes	1.0	Ü
	SURROGATE		94 % Rec

VBLK001

REPORT OF ANALYTICAL RESULTS PURGEABLE HALOCARBONS/AROMATICS

Date collected: N/A
Date extracted: N/A

Date analyzed: 2/1/93

Matrix: Water
Method: 601/602
% Moisture: 100

Sample Group: GN-01252

Lab Sample ID: 2VBB01A
Lab file 1 ID: B01C003

Lab file 2 ID: B01D003
Dilution Factor: 1.0000

Reporting units: ug/L

CAS NUMBER	COMPOUND NAME	REPORTING LIMIT	RESULT
71-43-2	Benzene	1.0	U
75-27-4	Bromodichloromethane	1.0	U
75-25-2	Bromoform	1.0	U
74-83-9	Bromomethane	1.0	U
56-23-5	Carbon tetrachloride	1.0	U
108-90-7	Chlorobenzene	1.0	U
75-00-3	Chloroethane	1.0	U
67-66-3	Chloroform	1.0	U
74-87-3	Chloromethane	1.0	Ú
100-75-8	2-Chloroethyl vinyl ether	1.0	U
124-48-1	Dibromochloromethane	1.0	Ü
95-50-1	1,2-Dichlorobenzene	1.0	Ū
541-73-1	1,3-Dichlorobenzene	1.0	Ū
106-46-7	1,4-Dichlorobenzene	1.0	Ü
74-71-8	Dichlorodifluoromethane	1.0	Ū
75-34-3	1,1-Dichloroethane	1.0	Ü
107-06-2	1,2-Dichloroethane	1.0	Ü
75-35-4	1,1-Dichloroethene	1.0	Ü
156-59-4	cis-1,2-Dichloroethene	1.0	Ü
156-60-5	trans-1,2-Dichloroethene	1.0	Ū
78-87-5	1,2-Dichloropropane	1.0	Ū
0061-01-5	cis-1,3-Dichloropropene	1.0	Ü
10061-02-6	trans-1,3-Dichloropropene	1.0	ū
100-41-4	Ethyl Benzene	1.0	ū
634-04-4	Methyl tert butyl ether	1.0	Ü
75-09-2	Methylene chloride (Dichloromethane)	1.0	Ū
79-34-5	1,1,2,2-Tetrachloroethane	1.0	Ü
127-18-4	Tetrachloroethene	1.0	ŭ
108-88-3	Toluene	1.0	Ü
71-55-6	1,1,1-Trichloroethane	1.0	Ü
79-00-5	1,1,2-Trichloroethane	1.0	Ü
79-01-6	Trichloroethene	1.0	Ü
75-69-4	Trichlorofluoromethane	1.0	Ü
75-01-4	Vinvl chloride	1.0	Ü
108-38-3/106-42-3	m- and p-Xylene	2.0	ŭ
95-47-6	o-Xylene	1.0	Ü
N/A	Total Xylenes	1.0	Ü
	SURROGATE		89 % R

CASE NARRATIVE GC VOLATILE SAMPLES

LABORATORY: CH2M HILL LABORATORIES CLIENT: FKAA Stock Island ASR

CASE NO. : N/A

CONTRACT NO.: N/A

LAB NO. : GN-01252-B01

SDG NO.: GN-01252

I. RECEIPT

A. DATE: JANUARY 30, 1993

B. SAMPLE INFORMATION

LAB SAMPLE ID	CLIENT SAMPLE ID	SAMPLE MATRIX	DATE SAMPLED	EXTRACTION DATE	ANALYSIS DATE
01252B01	GRAB WATER	WATER	01/28/93	02/10/93	02/10/93
3VBB10C	VBLK001	WATER	N/A	02/10/93	02/10/93

C. Documentation

Exceptions: No exceptions were encountered.

II. EXTRACTION

A. Holding Times: Not applicable.

B. Extraction

Exceptions: Not applicable.

III. ANALYSIS

A. Holding times: All holding times were met.

B. Analytical

Exceptions: There were no analytical exceptions.

IV. QUALITY CONTROL

A. Method Blank: All samples met acceptable QC criteria.

B. Surrogate

Recoveries: All samples met acceptable QC criteria.

C. Matrix Spike

Results: All samples met acceptable QC criteria.

V. I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, except for the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Andres A. Romeu, Ph.D.

Manager, Organics Division

GRAB WATER

REPORT OF ANALYTICAL RESULTS EDB and DBCP

Date collected:

1/28/93

Sample Group: GN-01252

Date extracted:

2/10/93

2/10/93

WATER

Lab Sample ID: GN-01252B01

Date analyzed:

Lab file 1 ID: B10E007

Matrix:

Lab file 2 ID: B10F007

Method: 504 Dilution Factor: 1.0000

100

Reporting units: ug/L

% Moisture:

CAS NUMBER	COMPOUND NAME	REPORTING LIMIT	RESULT
106-93-4 96-12-8	1,2-Dibromoethane 1,2-Dibromo-3-chloropropane	0.02 0.02	U
	SURROGATE		93 % Rec.

VBLK001

REPORT OF ANALYTICAL RESULTS EDB and DBCP

Date collected:

N/A

Sample Group: GN-01252

Date extracted:

2/10/93

Lab Sample ID: 3VBB10C

Date analyzed:

2/10/93

Lab file 1 ID: B10E004

Matrix:

Water

Lab file 2 ID: B10F004

Method:

504

Dilution Factor: 1.0000

% Moisture: 100

Reporting units: ug/L

CAS NUMBER	COMPOUND NAME	REPORTING LIMIT	RESULT
106-93-4 96-12-8	1,2-Dibromoethane 1,2-Dibromo-3-chloropropane	0.02 0.02	U
	SURROGATE		102 % Re

2846 Industrial Plaza Drive (32301) • P.O. Box 13056 • Tallahassee, FL 32317-3056 • (904) 878-3994 • Fax (904) 878-9504

LOG NO: T3-00348

Received: 05 FEB 93

Ms. Nancy Mosurick CH2M Hill P.O. Box 370 Alachua, FL 32615

Project: SEF19915.W4.22/FFAA Stock Island ASR

Sampled By: Client

REPORT OF RESULTS

Page 1

LOG NO	SAMPLE DESCRIPTION , LIQUID SAMPLES		DATE SAMPLED				
00348-1	GN 01252001		01-29-93				
PARAMETER		00348-1					
Chlorinated	Hydrocarbon Pesticides (508)						
Endrin, ug	/1	<0.020					
Gamma-BHC,	ug/l	<0.010					
Methoxychlo	or, ug/l	<0.50					
Toxaphene,	ug/l	<1.0					
Chloropheno	xy Acid Herbicides (515.1)						
2,4-D, ug/	1	<0.50					
2,4,5-TP S:	ilvex, ug/l	<0.50					

2846 Industrial Plaza Drive (32301) • P.O. Box 13056 • Tallahassee, FL 32317-3056 • (904) 878-3994 • Fax (904) 878-9504

LOG NO: T3-00348

Received: 05 FEB 93

Ms. Nancy Mosurick CH2M Hill P.O. Box 370 Alachua, FL 32615

Project: SEF19915.W4.22/FFAA Stock Island ASR

Sampled By: Client

REPORT OF RESULTS

Page 2

LOG NO	SAMPLE DESCRIPTION	, QC REPORT	FOR LIQUID	SAMPLES		
00348-2 00348-3 00348-4 00348-5 00348-6	Method Blank Accuracy (% Recover Precision (% RPD) Date Extracted Date Analyzed	cy)				
PARAMETER		00348-2	00348-3	00348-4	00348-5	00348-6
Chlorinated Pesticide	Hydrocarbon s (508)					
Endrin, ug	/1	<0.020	94 %	1.1 %	02.05.93	02.09.93
Gamma-BHC,	ug/l	<0.010	80 %	3.8 %	02.05.93	02.09.93
Methoxychl	or, ug/l	<0.50			02.05.93	02.09.93
Toxaphene,	ug/l	<1.0			02.05.93	02.09.93
Chloropheno	xy Acid Herbicides	(515.1)				
2,4-D, ug/	1	<0.50	118 %	5.1 %	02.05.93	02.08.93
2,4,5-TP S	ilvex, ug/l	<0.50	88 %	10 %	02.05.93	02.08.93

Method: EPA 40 CFR Part 136

HRS Certification #'s:81291,87279,E81005,E87052

Wayne W. Word

February 24, 1993

ESE No.: 3924039V L201 3200

Mr. Don Hash CH2M Hill POB 370 Alachua, FL 32615

RE:

ESE Sample IDs:

CHZRAD93*2

CH2M Hill Pr.#:

GN01252; PO# 10212

Dear Mr. Hash:

Enclosed is the result of analysis of 1 water sample sent to ESE for selected radionuclides evaluation. The sample was collected on January 29, 1993 and received at ESE on February 5, 1993. A copy of the Chain-of-Custody form is enclosed also as requested.

The sample was analyzed in accordance with procedures specified in **Prescribed Procedures** for Measurement of Radioactivity in Drinking Water, EPA-600-4-80-03 1980, as applicable to the parameters of interest. Our laboratory is certified to perform analysis by the Florida DER/DHRS (certification nos. 82138 and E82067).

Your cost for this analysis is \$30.00 as previously agreed (reference PO Lab 10212). An itemized invoice in this amount will follow shortly; payment is requested within 30 days of the invoice date.

Thank you for giving ESE this opportunity to be of service. Please feel free to call me if you have any questions or need additional assistance.

Sincerely,

ENVIRONMENTAL SCIENCE & ENGINEERING, INC.

Barbara J. Ritter

Project Manager

Enclosure

000016

Environmental Science & Engineering DATE 02/24/93 STATUS: FINAL PAGE 1

PROJECT NUMBER 7934025 0201 FIELD GROUP CH2RAD93

PROJECT NAME CH2MHILL - RADS PROJECT MANAGER B.J. RITTER

RESULTS OF ANALYSIS

SAMPLE ID'S PARAMETERS UNITS	STORET METHOD	GN-01252-001 CH2RAD93 2
DATE TIME		01/29/93
ALPHA,GROSS PC/L	1501 R	109
ALPHA, GR., CT. ERROR +/-PC/L	1502 R	221

REPORT DATE/TIME : 02/24/93 16:27:25 ANALYSIS DATE : 02/23/93 EXTRACT DATE :

: BATCH : G35499

ISSIFICATION : GROSS ALPHA- EPA 900

C TYPE : FDER/SW

"1LYST : SANDRA MIHOCIK

TRACTOR : A ENTRY : SANDRA MIHOCIK

STATUS : FINAL

THOD BLANK CORRECTION METHOD: NONE

!RAD93 FDER PROJECT NUMBER PROJECT NAME
!RAD93 FDER 7934025 0201 CH2MHILL - RA LAB COORDINATOR 7934025 0201 CH2MHILL - RADS BARBARA RITTER

SE BATCH : G35499

hod Blank Sample Summary

		_			
ATE	SAMPLE	STORET	PARAMETER	UNITS	FOUND
2 /23/93	MB*NONE*1	1501*R	ALPHA, GROSS	PC/L	ND
23/93	MB*NONE*1	1502*R	ALPHA GR. CT.ERROR	+/-PC/L	0.7
23/93	MB*NONE*1	3501*R	BETA GROSS	PC/L	ND
2/23/93	MB*NONE*1	3502*R	BETA GR. CT. ERROR	+/-PC/L	1.9

licate Analysis Sample Summary

MIE	SAMPLE		STORET	PARAMETER	UN	IITS R	EP #1	REP #2	RPD	RPD CRIT
2/23/93	RP*OTHER	*11	1501*R	ALPHA, GROSS	PC	:/L <	1.0	<1.0	0.0	51
° ′23/93	RP*OTHER	*11	3501*R	BETA GROSS	PC	:/L 1	0.3	16.0	43.3	49

ndard Matrix Spike Recovery Summary

ATE	SAMPLE	STORET	PARAMETER	%RECV	RECV CRIT	UNITS	TARGET	FOUND
23/93	SP*NONE*1	1501*R	ALPHA, GROSS	108.7	74-122	PC/L	42.6	46.3
23/93	SP*NONE*1	3501*R	BETA, GROSS	103.8	58-130	PC/L	106	110

ample Matrix Spike Recovery Summary

Ε	SAMPLE		STORET	PARAMETER	%RECV	RECV CRIT	UNSPIKED	UNITS	TARGET	FOUND	RPD
23/93	SPM1*OTHER	*11	1501*R	ALPHA, GROSS	119.6	74-122	0.0	PC/L	179	214	
2/23/93	SPM1*OTHER	*11	3501*R	BETA, GROSS	105.4	58-130	10.3	PC/L	426	449	
2/23/93	SPM2*OTHER	*11	1501*R	ALPHA, GROSS	112.1	74-122	0.0	PC/L	182	204	6.4
23/93	SPM2*OTHER	* 1 1	3501*R	BETA, GROSS	112.4	58-130	10.3	PC/L	427	480	6.5

CHAMHI.	. A . 1./~	10 4 1		~ ~~ a ~~ ~	, -	دں	f-1		 		ADIV			1			,	OTION OF THE		
CH2M HILL Project		ICAL	LABC		rchase (TAII	1	OF CUSTODY HE		EST CODE		10 1	PERFU			OD 1 AD 1101	
SELLA		بئ. ر <u>ک</u>	4.3	1	· onuse ·	oraci #					ĺ	LABI	EST CODE	PES		!	Lab 1#	DED AREA F	Lab 2 #	= ONLY
Project Name														GRSA HE	5 ·	į	6N-0	01252		
F. K. 4 A Company Name/C	H2M HIL	L Offic	e <u>ت</u> ا۔			A				# 2				œ i			Quote #		Kit Reques	t#
Project Manager	& Phone	#		Re	port Co	py to: \$	TEAN	SKCH	F A AV			ANALYSI	ES REQUE	STED			Project	#		
Mr. [] Ms. [] △ & ♂			ر کمچه ر	HB	5a	m=		- 1-2-1			(5) 			Ct 1	0					
Requested Compl	etion Da		Sampling	Require	ements	San	nple D	isposa	- <u> </u>	4	23			25 20	Q Q		No. of Sa	amples	Page	of
1 Posson		SD	WA NPDE		OTHER سسب	. I r	ose	Return	י וֹ		は重			701	ή Λ			/	/	1
1 / 11 053 /50	1	Matrix						**************************************			S S S			N X	£.		COC Rev	Login	LIMS Vei	r, Ack Ger
Sampling	C G O R	W S		CLI	ENT SA CHARA	MPLE	ĮD		F	3 3	400			12055 1808 1808 1808	<u> </u>			2/2	2/2	
Date Time	M A P B	T I E L R		(5	CHARA	CIENS	•)				M CO			5 6 60	77/			REMARKS	LAB 1	LAB 2
29 JAN	*	X								1				***************************************			25000	BILL	د سي	Stive
																	Fi.	Puran	- 76	10
																		A3 00 5- A1 C.		
	, >	¥	BIL	.					2	-	Travel Bil									002
Sampled By & Title	<u> </u>		gn and print	name)		1	Date	Time		+	Relinquished By	(Please sign an	nd print name)			Date/T	ime	HAZWRAP/N	ESSA: Y	(N)
MICHALEL Received By	<u>E.</u> [Please	ستي gn and print	name)		`	Date	Time	en	\dashv	MICHAGE E Relinguished By	P=1E	رے۔ nd print name)			D _{ate/J}	ime	QC Level: 1	2 3 Other	r:
Received By	n Ho	Please	gn and print	name)			Date	AN	1200	_		(Please sign an			. 4	2/4/9	3 KH	COC Rec	≠ ICE	γ
								~				(r ienac sign an	ω print fidme)		•••	Date/T		Ana Req N	TEMP :	3°C /
Received By		(Please si	gn and print	name)			Date	Time			Shipped Via UPS BUS Fed-E	Hand	Other		Shipp	ng #	7833	3104		
Work Authorized B	У	(Please si	gn and print	name)			Rema	arks		1		7		<u>'</u>	1		, , , ,			

CHMHI		3 F-1	10N	105-1-6	SL SAV	(on)	e e e e e e e e e e e e e e e e e e e
CH2M HILL Project	LYTICAL LABORATORIES # Purchase Ord	CHAIN	OF CUSTODY RE	CORD AND AGREEMEN	T TO PERFORI		
1	id S. G. J. 33	C1 #		LAB TEST CODES /		SHADED AREA FOR	
Project Name				C'DYA	77 13		Lab 2 #
-	5	^ 5		GRSA H	55 1	SN:01252	
Company Name/CH2	STOCK ISCITUTO	2.5.R #				⊋uote ≱ ∵ ∜ I	(it Request #
					5	\$ 4	1 - 2
Project Manager & P	Phone # Report Copy to	D: SEAN SKEHAN D		ANALYSES REQUESTED	P	rolect # 177 3	r
Mr []	- MUNIZONB JAM	- 100 May 110	-13		***************************************		
	1010			4	V		
Requested Completion	Camping requirements	Sample Disposal: N	133	3	₩ N	lo. of Samples	Page of
2/17 BTHAN	SDWA NPDES RCRA OTHER	Dispose Return A	日本	10	141	1527	1/1/
1 Posson	Type Matrix	N			7	OC Rey Login	LIMS Ver Ack Gen
Sampling C	N.C. W.C.	E ID R	15 2 J	7055		7 7	
	O R A O CLIENT SAMP	RS) S	5, E	505	\(\sigma \)		
Date Time F	PBEL		M.	60 %	En la	REMARKS	LAB 1 LAB 2
29 JAN	XX		G00:	3715			ID ID
2			600	321E ×	-	SUE ATTACK	was Stoot
,					F	on Purbmers of America	B-5 40
:					1,	er Ammanie	-0
	YX BIL		Travel Bila			79	
			1)0001 1011	•			0,92
				RESULTS TO A	Barr All	TIS RICH	
				RESULTS TO K		Section X	11
				2/16	102		1
					7/3		ं (क्रिक्
			,		:		<u> </u>
				· · · · · · · · · · · · · · · · · · ·			<u> </u>
Sampled By 9 Tist-	(Please size and arish						3
MICHREL E	(Please sign and print name)	Date/Time	Relinquished By	(Please sign and print name)	Date/Time	HAZWRAP/NESS	A: Y (N)
Received By	Please Agn and print name)	Date/Time	MICHIBEL E. Relinquished By	(Please sign and print name)	Date/Time	QC Level: 2	3 Other:
Kon	Mar	BONG 1 1200	,	- , ,	: Date/Time	COC Rec >	ICE Yage
Received By	(Please sign and print name) V. Prem D.	6 Date/Time Z-5-13 (700	Relinquished By	(Please sign and print name)	Date/Time	Aria Reg N	TEMP 3 C
Received By	(Please sign and print name)	Date/Time	Shipped Via		Shinning #	Cust Seal	Ph V
			UPS BUS Fed-Ex	Hand Other	Shipping #	833104	
Work Authorized By	(Please sign and print name)	Remarks				00.01	
- Indiana							
_ instructions and A	Agreement Provisions on Revers	e Side					

QUALITY ANALYTICAL LAB PRATORIES CH2M HILL Project # Purchase Ord		OF CUSTODY HEC	ORD AND AGREEMEN				The same of the same of the same of
을 변기 시 역 다 돌 . 살 기 경			LAB TEST CODES 1 GRSA HE	1 3 3	SHADED AREA FO	Lab 2#	ONLY
Company Name/CH2M HILL Office	# O F		4		Quote #	Kit Request #	
Project Manager & Phone # Report Copy to Mr. [] Ms. [] A B A M J A Z A T S A IN	O: SEAN SKEHAN OF	3	ANALYSES REQUESTED		Project #		
equested Completion Date: Sampling Requirements SDWA NPDES RCRA OTHER Torsonaria	Sample Disposal: Dispose Return A I N	Affacts S	ALPANA 615	HERBS	No. of Samples COC Rev Login	Page /	of Ack Gen
Sampling C G W S O R A O M A T I P B E L CLIENT SAMP (9 CHARACTE	LE ID ERS)	METAL	6 Ross	7537 1	REMARKS	LAB 1	LAB 2
JAN XX			×	`	FOR PURNIC	.7 <u>₽~</u> ≥	4001 4001
Y X BIL	2	Travel Bilk			BY AWFALL		992
							1
mpled By & Title (Please sign and print name)	/ Date/Time	Relinquished By (F	Please sign and print name)	Date/Tin	10		
MICHAEL E. PEIEE Received By Please sign and print name) Date/Time Date/Time		Relinquished By) ()	P=160-60 lease sign and print name)	Pater Tim	ac Level:	2 3 Other:	W:
Please sign and print name) Please sign and print name)	Date/Time	Relinquished By / (P	lease sign and print name)	Date/Tim	Cust Seal	TEMP 3	
TK Authorized By (Please sign and print name)	Date/Time 2/5/43 083 0 Remarks 7 3 00 3 4	Shipped Via UPS BUS Fed-Ex	Hand Other	Shipping #	833104		
tructions and Agreement Provisions on Revers							