CORE ANALYSIS REPORT

FOR

SOUTH FLORIDA WATER MANAGEMENT DISTRICT

VARIOUS WELLS

FLORIDA

CORE LABORATORIES

CORE ANALYSIS REPORT

FOR

SOUTH FLORIDA WATER MANAGEMENT DISTRICT

VARIOUS WELLS

FLORIDA

These analyses, opinions or interpretations are based on observations and materials supplied by the client to whom; and for whose exclusive and confidential use; this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories (all errors and omissions excepted); but Core Laboratories and its officers and employees, assume no responsibility and make no warranty or representations, as to the productivity, proper operations, or profitableness of any cil, gas or other mineral well or formation in connection with which such report is used or relied upon.

September 3, 1999

SOUTH FLORIDA WATER MANAGEMENT DISTRICT 3301 Gun Club Road West Palm Beach, Florida 33406

> File No.: 57181-18054 Subject: Core Analysis Various Wells Florida

Gentlemen:

The subject well was cored using diamond coring equipment and drilling mud to obtain 2.4 inch diameter cores from 5 to 130 feet from the Tertiary Limestone formation.

Core analysis data is presented in tabular and graphical form for your convenience. A porosity vs. permeability plot was prepared for statistical evaluation. Core analysis data is contained on a 3 1/2 inch computer diskette. Digital core photographs are contained on a CD.

We trust these data will be useful in the evaluation of your property and thank you for the opportunity of serving you.

Very truly yours,

CORE LABORATORIES, INC.

1

John Sebian Laboratory Supervisor

JS/ym

SOUTH FLORIDA WATER MANAGEMENT DISTRICT Various Wells File No. 57181-18054 Procedural Page

The cores were _transported to Midland by South Florida Water Management.

A Core Spectral Gamma Log was recorded for downhole E-log correlation.

Core analysis was made from selected intervals requested on full diameter samples.

Fluid removal was achieved using convection oven drying method.

Direct grain volume measurement was made using Boyle's law helium expansion. Bulk volume was measured by Archimedes Principle and caliper bulk volume on samples after cleaning. Porosity was calculated using bulk volume and grain volume measurements.

> Porosity = <u>Bulk Vol. - Grain Vol.</u> X 100 Bulk Vol.

Steady State Air Permeability was measured in two horizontal directions and vertically while the core was confined in a Hassler rubber sleeve at approximately 400 psig hydrostatic stress.

The core was slabbed after analysis.

The slabs were photographed under natural light and ultraviolet light.

Thin section billets were removed from slab and shipped to Core Laboratories in Carrollton, Texas for thin section making. Thin sections are to contain blue epoxy and a carbonate stain.

The core will remain at our Midland facility (thirty days free of charge) as we await further disposition instructions.

HYDRAULIC CONDUCTIVITY CONVERSIONS

DISCUSSION OF ANALYSIS THEORY

The micropermeameter device uses steady state air cross flow methodology to determine an air permeability. A full diameter cylinder is face from existing core fragments. The sample is placed in a rubber hassler sleeve under 400 psig confining pressure during testing. Upstream and downstream pressures are taken from mercury, water manometers or H-C gauge. Flow rates are measured using ceramic plates.

CONVERSION PERMEABILITY TO HYDRAULIC CONDUCTIVITY

k = (V*L)/(A*T*P)

k = Hydraulic Conductivity(m/sec)

V = Incremental produced volume, (mA3)

L = Length, (m)

P = Differential pressure, (m of H2O)

- A = Cross-sectional area, (mA2)
- T = Incremental time, (sec)

```
Volume, (V)
Ceramic plate orifice value@200mmH2O*orifice water/200=cc/sec
(cc/sec)/(1,000,000)=m/sec
```

```
Area, (A)
19.64 cmA2/100/100=0.001964 mA2
```

```
Length, (L)
length in cm/100=m
```

```
Differential Pressure,(P)
Pl = -Pa+sqrt of (2000*0.01787*760/760)/C value of 60+760/760
Pl = 0.2632atm
```

```
0.2632 atm*1033.26=271.95 cmH20
271.95 cmH20/100=2.7195 mH20
```

Time,(T) sec

Conversion (m/sec)to(ft/sec)

(m/sec)*3.2808399 ft/m=ft/sec

Conversion (ft/sec)to(ft/day)

(ft/sec) *86,400 sec/day=ft/day

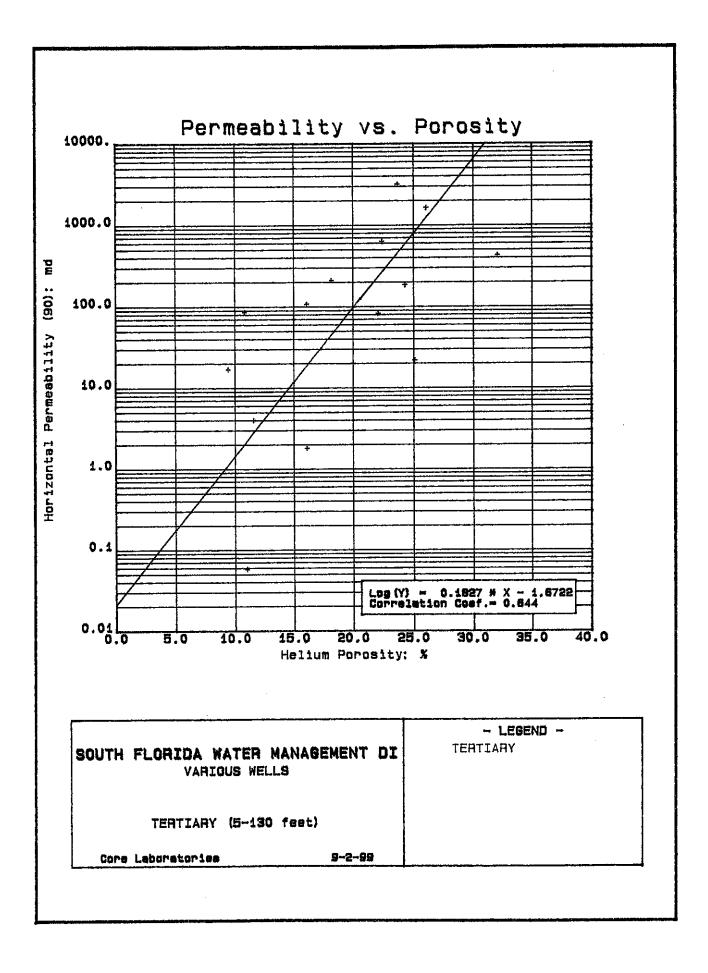
CORE LABORATORIES

Company : SOUTH FLORIDA WATER MANAGEMENT DISTRICT
well : VARIOUS WELLS
_ocation :

.

Co,State : FLORIDA

Field : Formation : TERTIARY Coring Fluid : Elevation :


.

File No.: 57181-18054 Date : 9-2-99 API No. : Analysts: SEBIAN

CORE ANALYSIS RESULTS

	SAMPLE	DEPTH		PERMEABILI	TΥ	POROSITY	GRAIN	DESCRIPTION	
	NUMBER	שבריוו	(MAXIMUM) Kair	(90 DEG) Kair	(VERTICAL) Kair	(HELIUM)	DENSITY		
	La	<u>ያድና</u> ft	md	md	md	%	gm/cc		
	к 1-3	19.0-20.0	504.	1.80	0.70	16.1	2.69	MOP1A - Lim, foss, sndy, sl moldic	
	K 2-3	20.0- 25.0	TBFA	TBFA	22695.	28.8	2.70	MOP1A - Lim, foss, v/sndy, moldic	
	K 3-3	25.0- 30.0	330.	212.	85.6	18.2	2.69	MOP1A - Sd, tn, vfgr, v/lmy, pp	
	K 4-72	_ 10.0-15.0	127.	108.	0.25	16.1	2.70	MOP2A – Lim, foss, sndy, pp, tr moldic	
	K 5-3	20.5- 25.5	3664.	3207.	6587.	23.7	2.71	MOP2A - Lim, foss, sndy, moldic	
	K 6-3	17.0- 22.0	0.17	0.06	0.01	11.0	2.69	MP1A – Lim, foss, v/sndy, pp, tr moldic	
a Ma	FK 7-3	27.0-32.0	1696.	1649.	2609.	26.1	2.69	MP1A - Lim, foss, v/sndy, pp, sl moldic	
mp	K 8-3	20.0-25.0	13.8	4.01	6.04	11.6	2.70	MP2A – Lim, foss, sndy, sl pp, sl moldic	
i	9-3 کل	5.0- 10.0	176.	86.5	3.90	10.8	2.69	MP2A – Lim, foss, v/sndy, pp	
	К 10-Ч	31.0- 35.0	214.	82.9	1.63	22.1	2.68	MP2A - Lim, foss, v/sndy, chlky, pp	
<u> ሰ</u> የን	K 11-4	125.0- 30.0	981.	430.	26.9	32.1	2.78	MP3A - Dol, foss, v/sndy, moldic	
10-C	<u>K 12</u> -3	15.0- 20.0	19.5	17.0	37.6	9.4	2.71	MP3A - Lim, foss, sndy, pp	
.0 -	K 13	36.0- 41.0	25.7	21.8	47.8	25.1	2.70	S10CA - Lim, chlky, sl sndy, pp	
	K 14	30.0- 35.0	917.	186.	90.6	24.3	2.68	S10CA - Lim, foss, v/sndy, pp	
/	K 15-3	15.5- 20.5	4660.	636.	23469.	22.4	2.69	MOP2A - Lim, foss, sndy, s1 pp, moldic	

MOPS

CORE LABORATORIES

Company : SOUTH FLORIDA WATER MANAGEMENT DISTRICT √e11 : VARIOUS WELLS

Field : Formation : TERTIARY File No.: 57181-18054 Date : 9-2-99

TABLE I

SUMMARY OF CORE DATA

ZONE AND CUTOFF DATA CHARACTERISTICS REMAINING AFTER CUTOFFS

ZONE:		ZONE:		PERMEABILITY:		
Identification	TERTIARY	Number of Samples	15			
Top Depth	5.0 ft	Thickness Represented -	70.0 ft	Flow Capacity	33116.9	md-ft
Bottom Depth	130.0 ft			Arithmetic Average	509.	md
Number of Samples	15	POROSITY:		Geometric Average	73.3	md
				Harmonic Average	0.73	md
DATA TYPE:		Storage Capacity	1402.5 ø-ft	Minimum	0.06	۳nd
Porosity	(HELIUM)	Arithmetic Average	20.0 %	Maximum	3207.	md
Permeability (90	DEG) Kair	Minimum	9.4 %	Median	97.2	md
		Maximum	32.1 %	Standard Dev. (Geom)	K-10 ^{±1.268}	mđ
CUTOFFS:		Median	22.1 %			
Porosity (Minimum)	0.0 %	Standard Deviation	±7.1 %	HETEROGENEITY (Permeabili	ty):	
Porosity (Maximum)	100.0 %					
Permeability (Minimum)	0.0100 md	GRAIN DENSITY:		Dykstra-Parsons Var	0.889	
Permeability (Maximum)	10000. md			Lorenz Coefficient	0.690)
Water Saturation (Maximum)	TBFA	Arithmetic Average	2.70 gm/cc			
Oil Saturation (Minimum) -	TBFA	Minimum	2.68 gm/cc	AVERAGE SATURATIONS (Pore	Volume):	
Grain Density (Minimum)	2.00 gm/c	c Maximum	2.78 gm/cc		•	
Grain Density (Maximum)	3.00 gm/c	c Median	2.69 gm/cc	0il	TBFA	
Lithology Excluded	NONE	Standard Deviation	±0.02 gm/cc	Water	TBFA	-

South Florida Water Management Distric Various Wells Hydraulic Conductivity

Sample Number	Project Number	Depth Top feet	Depth Bottom feet	Hydraulic Conductivity (m/sec)	Hydraulic Conductivity (ft/day)	K(air) md	K(direction)	Description
K1	MOP1A	19.0	20.0	0.00000043	0.1225	0.705	K(vertical)	Lim, foss, sndy, sl moldic
				0.00027234	77.1978	504.055	K(horiz,max)	
				0.00000111	0.3137	1.804	K(horiz,min)	the face words moldic
K2	MOP1A	20.0	25.0	0.01200692	3403.5350	22694.671	K(vertical)	Lim, foss, v/sndy, moldic
				-999	-999	-999	K(horiz,max)	
				-999	-999	-999	K(horiz,min)	Ed to vfor v/imv op
K3	MOP1A	25.0	30.0	0.00005249	14.8783	85.580	K(vertical)	Sd, tn, vfgr, v/lmy, pp
				0.00017905	50.7550	330.021	K(horiz,max)	
				0.00011472	32.5191	212.015	K(horiz,min)	Lim, foss, sndy, pp, tr moldic
K4	MOP2A	10.0	15.0	0.00000015	0.0435	0.250	K(vertical)	Lim, loss, sing, pp, ir molaid
				0.00006872	19.4807	127.014	K(horiz,max)	
				0.00005850	16.5838	108.068	K(horiz,min)	Line from and considio
K5	MOP2A	20.5	25.5	0.00355660	1008.1688	6586.781	K(vertical)	Lim, foss, sndy, moldic
				0.00194169	550,3997	3664.172	K(horiz,max)	
				0.00166447	471.8192	3207.207	K(horiz,min)	the first stands and to modeling
K6	MP1A	17.0	22.0	0.00000001	0.0023	0.013	K(vertical)	Lim, foss, v/sndy, pp, tr moldic
				0.00000011	0.0303	0.174	K(horiz,max)	
				0.00000004	0.0101	0.058	K(horiz,min)	
K7	MP1A	27.0	32.0	0.00141513	401.1406	2609.459	K(vertical)	Lim, foss, v/sndy, pp, sl moldic
				0.00091593	259.6325	1695.933	K(horiz,max)	
				0.00089080	252.5089	1649.061	K(horiz,min)	
K8	MP2A	20.0	25.0	0.00000370	1.0494	6.036	K(vertical)	Lim, foss, sndy, sl pp, sl moldic
				0.00000849	2.4067	13.843	K(horiz,max)	
				0.00000245	0.6958	4.002	K(horiz,min)	
K9	MP2A	5.0	10.0	0.00000240	0.6790	3.905	K(vertical)	Lim, foss, v/sndy, pp
				0.00007055	19. 9 979	130.014	K(horiz,max)	
				0.00004689	13.2924	86.479	K(horiz,min)	
K10	MP2A	31.0	35.0	0.00000100	0.2837	1.632	K(vertical)	Lim, foss, v/sndy, chlky, pp
				0.00011577	32.8173	213.853	K(horiz,max)	
				0.00004494	12.7384	82.924	K(horiz,min)	

South Florida Water Management Distric Various Wells Hydraulic Conductivity

.

Project Number	Depth Top feet	Depth Bottom feet	Hydraulic Conductivity (m/sec)	Hydraulic Conductivity (ft/day)	K(air) md	K(direction)	Description
MP3A	125.0	130.0	0.00001651	4.6795 150 6921	26.916 980.680	K(vertical) K(horiz.max)	Dol, foss, v/sndy, moldic
						• • •	
MP3A	15.0	20.0				• • •	Lim, foss, sndy, pp
	10.0			3.3881	19.488	K(horiz,max)	
			0.00001040	2.9491	16.963	K(horiz,min)	
S10CA	36.0	41.0	0.00002932	8.3109	47.804	K(vertical)	Lim, chlky, sl sndy, pp
			0.00001578	4.4718	25.722	K(horiz,max)	
			0.00001338	3.7930	21.817	K(horiz,min)	
S10CA	30.0	35.0	0.00005558	15.7556	90.626	K(vertical)	Lim, foss, v/sndy, pp
			0.00049830	141.2517	916.946	K(horiz,max)	
			0.00010086	28.5906	186.274	K(horiz,min)	
MOP2A	15.5	20.5	0.01104494	3130.8493	23469.098	K(vertical)	Lim, foss, sndy, sl pp, moldic
			0.00241849	685.5559	4660.090	K(horiz,max)	
			0.00034481	97.7416	636.004	K(horiz,min)	
	Number MP3A MP3A S10CA S10CA	NumberTop feetMP3A125.0MP3A15.0S10CA36.0S10CA30.0	NumberTop feetBottom feetMP3A125.0130.0MP3A15.020.0S10CA36.041.0S10CA30.035.0	Number Top feet Bottom feet Conductivity (m/sec) MP3A 125.0 130.0 0.00001651 0.00053161 0.00023336 MP3A 15.0 20.0 0.00002304 0.00001195 0.0000140 S10CA 36.0 41.0 0.00002932 0.00001578 0.00001578 S10CA 30.0 35.0 0.00005558 0.00049830 0.00010086 MOP2A 15.5 20.5 0.01104494 0.00241849	Number Top feet Bottom feet Conductivity (m/sec) Conductivity (ft/day) MP3A 125.0 130.0 0.00001651 4.6795 0.00053161 150.6921 0.00023336 66.1489 MP3A 15.0 20.0 0.00002304 6.5314 0.0000195 3.3881 0.0000140 2.9491 S10CA 36.0 41.0 0.00002332 8.3109 0.00001578 4.4718 0.00001578 4.4718 0.00001338 3.7930 510CA 30.0 35.0 0.00005558 15.7556 0.00010086 28.5906 0.00010086 28.5906 0.00241849 685.5559	Number Top feet Bottom feet Conductivity (m/sec) Conductivity (ft/day) K(air) md MP3A 125.0 130.0 0.00001651 4.6795 26.916 0.00053161 150.6921 980.680 0.00023336 66.1489 430.096 MP3A 15.0 20.0 0.00002304 6.5314 37.569 0.00001195 3.3881 19.488 0.00001400 2.9491 16.963 S10CA 36.0 41.0 0.00002932 8.3109 47.804 0.00001578 4.4718 25.722 0.00001338 3.7930 21.817 S10CA 30.0 35.0 0.00005558 15.7556 90.626 0.0001086 28.5906 186.274 0.00010086 28.5906 186.274 MOP2A 15.5 20.5 0.01104494 3130.8493 23469.098 0.00241849 685.5559 4660.090 4660.090 14660.090	Number Top feet Bottom feet Conductivity (m/sec) Conductivity (ft/day) K(air) md K(direction) MP3A 125.0 130.0 0.00001651 4.6795 26.916 K(vertical) MP3A 125.0 130.0 0.00001651 4.6795 26.916 K(vertical) MP3A 15.0 20.0 0.00023336 66.1489 430.096 K(horiz,max) MP3A 15.0 20.0 0.00002304 6.5314 37.569 K(vertical) 0.00001195 3.3881 19.488 K(horiz,max) 0.00001040 2.9491 16.963 K(horiz,max) 0.00001040 2.9491 16.963 K(horiz,max) 0.00001578 4.4718 25.722 K(horiz,max) 0.00001338 3.7930 21.817 K(horiz,max) 0.00001338 3.7930 21.817 K(horiz,max) 0.0001038 141.2517 916.946 K(horiz,max) 0.00010086 28.5906 186.274 K(horiz,min) MOP2A 15.5 20.5 0.01104494 3

~

Sample Identification: K1

K1, 19.0 ft to 20.0 ft., MOP1A, Ground Surface Elevation 12.46 ft, Sample Elevation -6.54ft to -7.54 ft.

DEPTH (ft)	POTASSIUM (%/100)	URANIUM (ppm)	THORIUM (ppm)	TOTAL (API)	TOTAL URANIUM FREE (API)
19	0.0022	0.59	0	4	0
19.25	0.0018	0.73	0	4	0
19.5	0.0006	1.03	0	3.7	0
19.75	0.001	0.91	0	3.7	0
20	0.0014	0.76	0	3.7	0

Sample Identification: K2

K2, 20.0 ft to 25.0 ft., MOP1A, Ground Surface Elevation 12.46 ft, Sample Elevation -7.54 ft to -12.54 ft.

DEPTH (ft)	POTASSIUM (%/100)	URANIUM (ppm)	THORIUM (ppm)	TOTAL (API)	TOTAL URANIUM FREE (API)
22	0.0035	0	0	3.5	3.5
22.25	0.0032	0	0.43	4.1	4.1
22.5	0.0013	0	1.19	3.7	3.7
22.75	0.002	0	0.53	3	3
23	0.0036	0	0	3.6	3.6

Sample Identification: K3

K3, 25.0 ft to 30.0 ft., MOP1A, Ground Surface Elevation 12.46 ft, Sample Elevation -12.54 ft to -17.54 ft.

DEPTH (ft)	POTASSIUM (%/100)	URANIUM (ppm)	THORIUM (ppm)	TOTAL (API)	TOTAL URANIUM FREE (API)
27	0.0037	0	0	3.7	3.7
27.25	0.0023	0.01	0	2.3	2.2
27.5	0.0014	0.07	0.45	2.4	1.1
27.75	0.0035	0	0	3.5	3.5
28	0.0033	0.3	0	4.1	• 0

Sample Identification: K4

K4, 10.0 ft to 15.0 ft., MOP2A, Ground Surface Elevation 15.90 ft, Sample Elevation 14.90 ft to 10.90 ft.

DEPTH (ft)	POTASSIUM (%/100)	URANIUM (ppm)	THORIUM (ppm)	TOTAL (API)	TOTAL URANIUM FREE (API)
12	0.0028	0	0.44	3.7	3.7
12.25	0.0011	0.34	0.57	3.2	0.5
12.5	0	0.6	0.54	2.6	0
12.75	0.0003	0.53	0.65	3.2	0
13	0.0012	0.27	0.71	3.4	1.2

South Florida Water Management District Various Wells Spectral Gamma Log Data

Sample Identification: K5

K5, 20.5 ft to 25.5 ft., MOP2A, Ground Surface Elevation 15.90 ft, Sample Elevation -4.60 ft to -9.60 ft.

DEPTH (ft)	POTASSIUM (%/100)	URANIUM (ppm)	THORIUM (ppm)	TOTAL (API)	TOTAL URANIUM FREE (API)
22	0.0024	0.34	0.15	3.1	` 0´
22.25	0.0027	0	0.52	3.7	3.7
22.5	0.0013	0	1.35	4	4
22,75	0	0.64	1.03	4	0
23	0.0018	0.56	0	3.5	0

Sample Identification: K6

K6, 17.0 ft to 22.0 ft., MP1A, Ground Surface Elevation 16.10 ft, Sample Elevation -0.90 ft to -5.90 ft.

DEPTH (ft)	POTASSIUM (%/100)	URANIUM (ppm)	THORIUM (ppm)	TOTAL (API)	TOTAL URANIUM FREE (API)
19	0.0033	0	0.37	4.1	4.1
19.25	0.003	0.01	0.35	3.7	3.6
19,5	0.0026	0.41	0.19	4.2	0
19,75	0.0046	0	0	4.6	4.6
20	0.0028	0	0.76	4.3	4.3

Sample Identification: K7

K7, 27.0 ft to 32.0 ft., MP1A, Ground Surface Elevation 16.10 ft, Sample Elevation -10.90 ft to -15.90 ft.

DEPTH (ft)	POTASSIUM (%/100)	URANIUM (ppm)	THORIUM (ppm)	TOTAL (API)	TOTAL URANIUM FREE (API)
16	0.0032	0.12	0	3.5	1.8
16.25	0.0018	0.5	0.05	3.4	0
16.5	0	1.23	0	3.7	0
16.75	0	0.92	0.26	3.3	0
17	0.0006	0.6	0.4	3.2	0

Sample Identification: K8

K8, 20.0 ft to 25.0 ft., MP2A, Ground Surface Elevation 15.61 ft, Sample Elevation -4.39 ft to -9.39 ft.

DEPTH (ft)	POTASSIUM (%/100)	URANIUM (ppm)	THORIUM (ppm)	TOTAL (API)	TOTAL URANIUM FREE
					(API)
22	0	1.07	0.23	3.7	0
22.25	0.0011	0.5	0.22	2.7	0
22.5	0.0004	0.89	0.22	3.5	0
22.75	0.0017	0	1.13	4	4
23	0.0009	0	1.31	3.5	3.5

Sample Identification: K9

K9, 5.0 ft to 10.0 ft., MP2A, Ground Surface Elevation 15.61 ft, Sample Elevation 10.61 ft. to 5.61 ft.

DEPTH (ft)	POTASSIUM (%/100)	URANIUM (ppm)	THORIUM (ppm)	TOTAL (API)	TOTAL URANIUM FREE (API)
6	0	0	0.8	4.2	4.2
6.25	0.0039	0	0	3.9	3.9
6.5	0.0034	0	0	3.4	3.4
6,75	0.003	0	0.14	3.3	3.3
7	0.0019	0	0.71	3.3	3.3

Sample Identification: K10

K10, 31.0 ft to 35.0 ft., MP2A, Ground Surface Elevation 15.61 ft, Sample Elevation -15.39 ft to -19.39 ft.

DEPTH (ft)	POTASSIUM (%/100)	URANIUM (ppm)	THORIUM (ppm)	TOTAL (API)	TOTAL URANIUM FREE (API)
32	0	1.43	0	4.3	0
32.25	0	1.48	0	4.4	0
32.5	0,0031	0	0.37	3.8	3.8
32.75	0.0009	0.64	0.36	3.6	0
33	0.0006	0.91	0.04	3.4	0

Sample Identification: K11

K11, 125.0 ft to 130.0 ft., MP3A, Ground Surface Elevation 17.20 ft, Sample Elevation -107.80 ft to -112.00 ft.

DEPTH (ft)	POTASSIUM (%/100)	URANIUM (ppm)	THORIUM (ppm)	TOTAL (API)	TOTAL URANIUM FREE (API)
126	0.0034	0	0	3.4	3.4
126.25	0.0005	0.72	0.32	3.3	0
126.5	0	0.94	0	2.8	0
126.75	0.0005	0.89	0	3.1	0
127	0.0032	0	0	3.2	3.2

Sample Identification: K12

K12, 15.0 ft to 20.0 ft., MP3A, Ground Surface Elevation 17.20 ft, Sample Elevation 2.80 ft to -2.80 ft.

DEPTH (ft)	POTASSIUM (%/100)	URANIUM (ppm)	THORIUM (ppm)	TOTAL (API)	TOTAL URANIUM FREE (API)
16	0.0013	0.93	0	4.1	Ò
16.25	0.0006	0.95	0	3.4	0
16.5	0	1.27	0	3.8	0
16.75	0.0015	0.83	0	4	0
17	0.0022	0	0.87	4	4

Sample Identification: K13

K13, 36.0 ft to 41.0 ft., S10CA, Ground Surface Elevation 22.21 ft, Sample Elevation -13.59 ft to -23.80 ft.

DEPTH (ft)	POTASSIUM (%/100)	URANIUM (ppm)	THORIUM (ppm)	TOTAL (API)	TOTAL URANIUM FREE (API)
37	0	0.94	0	3	0
37.25	0.0014	0.58	0	3.1	. 0
37.5	0.0021	0	0.4	2.5	2.5
37.75	0.0011	0	0.93	3	3
38	0	0	1.18	2.4	2.4

Sample Identification: K14

K14, 30.0 ft to 35.0 ft., S10CA, Ground Surface Elevation 22.21 ft, Sample Elevation -7.79 ft to -12.79 ft.

DEPTH (ft)	POTASSIUM (%/100)	URANIUM (ppm)	THORIUM (ppm)	TOTAL (API)	TOTAL URANIUM FREE (API)
32	0.0035	0	0	3.5	3.5
32.25	0,0032	Ō	0.17	3.6	3.6
32.5	0.0017	0	0.82	3.3	3.3
32.75	0.0002	0.36	0.66	2.6	0
33	0.0004	0.45	0.53	2.8	0

Sample Identification: K15

K15, 15.5 ft to 20.5 ft., MOP2A, Ground Surface Elevation 15.90 ft, Sample Elevation 0.40 ft to -4.60 ft.

DEPTH (ft)	POTASSIUM (%/100)	URANIUM (ppm)	THORIUM (ppm)	TOTAL (APi)	TOTAL URANIUM FREE (API)
16	0.0033	0.44	0	4.6	ົວ໌
16.25	0.0037	0.3	. 0	4.6	0
16.5	0	1.39	0.14	4.5	0
16.75	0	0.98	0.17	3,3	0
17	0.0008	0.21	0.98	3.4	0.1

CORE LABORATORIES

LITHOLOGICAL ABBREVIATIONS

Anhy, anhyAnhydrite (-ic)Ark, arkarkos (-ic)bndband (-ed)brecbrecciaCalc, calccalcite (-ic)carbcarbonaceouscrs grcourse grainedChk, chkychalk (-y)Cdl, cdlconglomerate (-ic)crs xlncoursely crystallinednsdenseDol, doldolomite (-ic)Fracrandomly oriented fracturesfracslightly fracturedf grfine grainedfossfossil (-iferous)f xlnfinely crystallineGlauc, claucglauconite (-itc)GrtgraniteGyp, gypgypsum (-iferous)hor fracperdominantly horizontally finclinclusion (-ded)intbdinterbeddedlamlamina (-tions,-ated)	vug xhd	<pre>limestone medium grain matrix interval not analyzed nodules (-ar) oolite (-itic) pisolite (-itic) pin-point (porosity) pyrite (-itized, itic) sand (-y) solid hydrocarbon residue slightly siltstone, silty stylolite (-itic) sucrosic sulphur, sulphurous TOO BROKEN FOR ANALYSIS tripolitic very dominantly vertically fractured vuggy crossbedded medium crystalline crystal</pre>
--	------------	--

THE FIRST WORD IN THE DESCIPTION COLUMN OF THE CORE ANALYSIS REPORT DESCIBES THE ROCK TYPE. FOLLOWING ARE ROCK MODIFIERS IN DECREASING ABUNDANCE AND MISCELLANEOUS DESCRIPTIVE TERMS.

The analyzes, opinions or interpretations contained in this report are based upon observations and resterial supplied by the client for whose exclusive and confidential use this report has been made. The Interpretations or opinions expressed represent the best judgment of Core Laboratories. Core

Laboratories, however, assumes no responsibility and makes no warranty or representations, express or implied, as to the productivity, proper operations, or profitableness of any oit, gas, coal or other mitteral, property, well or sand in connection with which such report is used or relied upon for eny reason

DISTRIBUTION OF FINAL REPORTS

.

5 COPIES

SOUTH FLORIDA WATER MANAGEMENT DISTRICT ATTN: STEVE KRUPA 3301 GUN CLUB ROAD WEST PALM BEACH FL 33406