CLASS I TEST/INJECTION WELL CONSTRUCTION & TESTING PERMIT APPLICATION OKEECHOBEE LANDFILL, INC. OKEECHOBEE, FLORIDA

November 2008

Prepared by:

L.S. Sims & Associates, Inc. 1530 U.S. Highway 1 Rockledge, Florida 32955 (321) 504-4046

T

OLI-IWI SHE OCI

CLASS I TEST/INJECTION WELL
CONSTRUCTION & TESTING PERMIT APPLICATION
OKEECHOBEE LANDFILL, INC.
OKEECHOBEE, FLORIDA

November 2008

James E. McGrath, P.G.

-E Med

L.S. Sims & Associates, Inc. 1530 U.S. Highway 1 Rockledge, Florida 32955 (321) 504-4046

CLASS I TEST/INJECTION WELL CONSTRUCTION & TESTING PERMIT APPLICATION OKEECHOBEE LANDFILL, INC. OKEECHOBEE, FLORIDA

TABLE OF CONTENTS

		<u> </u>	Page
1.0	INTR	RODUCTION	1
	1.1	Facility Description	1
	1.2	Project Overview	1
2.0	AREA	A OF REVIEW STUDY	2
	2.1	Study Area	2
	2.2	Well Inventory	3
	2	2.2.1 Wells Within the AOR	3
	2	2.2.2 Wells Within 4 Miles of the OLI Site	3
	2.3	Physiographic Features	3
	2.4	Hydrogeology	4
	2	2.4.1 Holocene, Pleistocene and Pliocene	5
		2.4.1.1 SAS -Undifferentiated Surficial Deposits	5
	2	2.4.2 Miocene	5
		2.4.2.1 Upper Confining Unit-Hawthorn Group	5
	2	2.4.3 Eocene-Floridan Aquifer System	5
		2.4.3.1 Ocala Limestone	5
		2.4.3.2 Avon Park Formation	6
		2.4.3.3 Oldsmar Formation	. 6
	2	.4.4 Paleocene-Sub Floridan Confining Unit	. 7
		2.4.4.1 Cedar Kevs Formation	

(TABLE OF CONTENTS, CONT'D)

3.0	SYST	EM DESIGN CONSIDERATIONS	7
	3.1	Leachate Generation and Collection	7
	3.2	Leachate Quality	8
	3.3	Fluid Compatibility	8
	3.4	Anticipated Flow	9
	3.5	Anticipated Injection Pressure	9
	3.6	Monitoring10	0
	3.7	Contingency Plans	2
	3.8	Operation & Maintenance	3
	3.9	Casings 13	3
	3.10	Cements	4
	3.11	Surge Control	4
	3.12	Drilling Fluids	1
	3.13	Waste Management	5
4.0	DRIL	LING AND TESTING PROGRAM15	5
	4.1	Monitor Well Construction Phases	ó
	4.2	Water Quality Testing	7
	4.3	Geophysical Logging17	7
	4.4	Cutting and Core Recovery18	3
	4.5	Straddle-Packer Testing	}
	4.6	Mechanical Integrity Tests	}
	4.6	5.1 Television Surveys20)
	4.6	5.2 Pressure Tests	j
	4.6	6.3 Radioactive Tracer Survey and Temperature Log 21	
5.0	PROJE	ECT MANAGEMENT	
	5.1	TAC Meetings and Submittals21	
	5.2	Reporting	,
	5.3	Operational Testing Request	

(TABLE OF CONTENTS, CONT'D)

(MADEL OF CONTENTS, CONT D)		
REFERENCES	25	

FIGURES

- 1. SITE LOCATION MAP
- 2. SITE PLAN

6.0

- 3. AREA OF REVIEW MAP\
- 4. CROSS SECTION A-A'
- 5. CROSS SECTION B-B'
- 6. CLASS I INJECTION WELL CONSTRUCTION DETAILS
- 7. DUAL ZONE MONITORING WELL CONSTRUCTION DETAILS
- 8. INJECTION WELL FACILITY LAYOUT
- SHALLOW DRILL PAD MONITOR WELL CONSTRUCTION DETAILS 9. (TYPICAL)

APPENDICES

- A. PERMIT APPLICATION
- B. ENGINEERING DRAWINGS
- C. AREA OF REVIEW AND WELL INVENTORY DATA
- D. ANALYTICAL DATA

CLASS I TEST/INJECTION WELL CONSTRUCTION & TESTING PERMIT APPLICATION OKEECHOBEE LANDFILL, INC. OKEECHOBEE, FLORIDA

1.0 INTRODUCTION

This document has been prepared on behalf of Okeechobee Landfill, Inc. (OLI) to support a Class I TEST/Injection Well Construction and Testing Permit Application. OLI has nearly completed the construction and testing of an Exploratory Well at the site pursuant to FDEP Permit No. 0040842. The results of testing to date indicate that the exploratory well meets all the requirements of Chapter 62-528 Florida Administrative Code (FAC) for a Class I injection well. OLI expects to complete construction of the exploratory well soon and desires to complete an injection test and radioactive tracer survey upon completion of construction under a Test/Injection Well permit. Construction of a deep dual zone monitoring well for the proposed injection system has been undertaken in compliance with a separate construction and testing permit for the monitor well (FDEP permit No. 040842-019-UC). Upon completion of all construction and testing, OLI intends to operate a Class I Injection Well System at the Okeechobee Landfill in accordance with the requirements set forth in Chapter 62-528 of the Florida Administrative Code (FAC). The Construction Permit Application (Form 62-528.900(1) is included in Appendix A. Information obtained during construction and testing of the Exploratory Well has been used to support issuance of the Class I Test/Injection Well Construction Permit. This information is included or referenced in the appropriate sections of this document.

1.1 Facility Description

The OLI Okeechobee Landfill is located in Okeechobee County at 10800 N.E. 128th Avenue, Okeechobee, Florida 34972. The facility is located approximately 12 miles northeast of the northern tip of Lake Okeechobee (Figure 1). The OLI Class I Landfill in Okeechobee County is operated pursuant to the Florida Department of Environmental Protection (FDEP) Permit No. 0247963-001-SC. The landfill generates leachate that is collected on-site via a leachate collection system. The leachate is currently evaporated onsite or pumped into tanker trucks and hauled to the Pompano Wastewater Treatment Plant for disposal. A site plan of the OLI Okeechobee Landfill facility is shown on Figure 2.

1.2 Project Overview

OLI has determined that leachate disposal via a properly constructed Class I Injection Well System is the most suitable long-term disposal method for the Okeechobee Landfill facility. The FDEP issued an Exploratory Well Construction Permit on February 19, 2007. Subsequently a construction permit modification request was submitted for the Exploratory Well. FDEP approved the construction permit modifications in February 2008. Construction and testing of the Exploratory Well began on March 3, 2008. By

October 30, 2008 the Exploratory Well pilot hole had been advanced to a depth of 3,506 feet below land surface (BLS). The 42-inch conductor casing was set and cemented in place to a depth of 251 feet BLS. The 36-inch surface casing was installed and cemented in place to a depth of 674 feet BLS. The 26-inch intermediate casing string was installed and cemented in place to a depth of 1,994 feet BLS. The 16-inch diameter final casing was installed o a depth of 2940 feet BLS. Geophysical logs have been run, straddle packer tests have been conducted and cores have been collected as specified in the Exploratory Well Construction Permit. A suitable injection zone has been identified in the interval from approximately 2,740 to 3,150 feet BLS. A suitable confining sequence has been identified in the interval between the base of the Underground Source of Drinking Water (USDW) identified at a depth of approximately 1,774 feet BLS and the top of the injection zone. This information is presented and evaluated in this document to support issuance of a construction permit application for the Class I Test/Injection well.

2.0 AREA OF REVIEW STUDY

The Area of Review (AOR) for this project has been established in accordance with the criteria set forth in Chapter 62-528.300(4).

2.1 Study Area

Computation of the zone of endangering influence has been calculated using the following equation presented by Warner and Lehr (1981):

$$r = (V/\pi b\phi)^{1/2}$$

where:

r = Radius distance of the wastewater front from the injection well (feet)

 $V = \text{cumulative volume of injected wastewater } (7.32 \times 10^8 \text{ cubic feet})$

b = Thickness of the injection zone (410 feet)

 ϕ = average effective porosity (0.35)

 $\pi = 3.142$ (dimensionless)

r = 1,275 feet or approximately .24 miles

The thickness of the injection zone at the OLI Okeechobee Landfill site is approximately 410 feet. Operating at the design capacity of 3,330,000 gallons per day (GPD) for a period of 50 years, the total volume of injected fluid is approximately 3.251X 10° cubic feet. Based on the sonic log completed across the injection zone a porosity value of 0.35 has been utilized for the AOR determination. Using the following formula

$$R = (V/\pi \ X \ aquifer \ thickness \ (Feet) \ X \ porosity)^{1/2}$$

r = radius of influence

V = 50 year cumulative injected volume in cubic feet

 $\Pi = Pi = constant$

where

yields a 50 year area of influence of 2685 feet or 0.51 mile. Using the site-specific hydrogeologic conditions and maximum design flow rate, a one (1) mile AOR is appropriate and is proposed for this project.

2.2 Well Inventory

The South Florida Water Management District (SFWMD), Florida Geological Survey (FGS), and United States Geological Survey (USGS) were contacted to determine the location, depth and ownership of wells within the AOR. The limits of the AOR and well locations are shown on Figure 3. For information purposes a copy of the agency well information for all wells within a radius of four (4) miles is included in Appendix C.

2.2.1 Wells Within the AOR

Nineteen (19) wells were identified within the AOR. There are seventeen (17) groundwater monitoring wells located at the Okeechobee Landfill. The depths of these wells range from 25 to 35 feet below land surface (BLS). A site map showing the locations of these wells relative to the OLI Okeechobee Landfill is included in Appendix C. Two (2) other wells were identified within the AOR. The OLI potable supply well for the Okeechobee Landfill is identified as #12 on Figure 3. This well is completed within the Surficial Aquifer System (SAS) to a depth of 130 feet BLS. The other well (#19 on Figure 3) is an irrigation well also completed within the SAS. The depth of this well is reported to be 140 feet BLS. None of the wells are completed in the proposed injection zone or overlying confining units. There are no faults on record within the AOR.

2.2.2 Wells Within 4 Miles of the OLI Site

Thirty three (33) other wells were located within 4 miles of the OLI site. Only 6 of these wells penetrated the Floridan Aquifer System (FAS). Four (4) of the FAS wells were listed as irrigation wells. The depths of these FAS irrigation wells range from 500 to 825 feet BLS. None of the irrigation wells are completed in the proposed injection zone or overlying confining sequence.

An abandoned oil well (Shell Oil, Sloan 35-1) is located approximately $3^{\prime}l_2$ miles northwest of the OLI Okeechobee Landfill. This well was constructed in 1970 to a depth of 11,300 feet BLS. It was subsequently plugged and abandoned as a dry hole.

2.3 Physiographic Features

The OLI site is situated at the southern end of the Osceola Plain (Cooke 1939, 1945 and White 1970). In the area where the OLI site is located, the Osceola Plain narrows to what White describes as a "long spit" or "off-cape shoal" trending southeast and terminating near Indiantown Florida. This part of the Osceola Plain is a narrow terrace with elevations of approximately 40 feet above current sea level. To the west the narrow terrace is bounded by a scarp with a crest elevation of approximately 57 feet above sea level separating it from the Okeechobee Plain. To the east its toe is defined by the 30-foot elevation contour and the Eastern Valley. The present day landforms in this area have been attributed to changing sea levels during the Pleistocene and formation of well

defined marine terraces (Cooke 1945, Healy 1975 and others). The OLI site is located on the Penholoway Marine Terrace (Bradner 1994) which generally is present between elevations of 42 to 70 feet above sea level in Okeechobee County.

The topography of the marine terraces has been altered by erosional features associated with surface water drainage. The OLI site lies within the St. Lucie – Martin County Drainage Basin (Bradner 1994). Elevations on the western side of the site are approximately 60 feet above sea level and slope gradually to the northeast to approximately 40 feet above sea level on the eastern side of the site. There are several surface water drainage features in the area. As shown on the topographic map (Appendix C) there is a wetland area trending from the northwest to the southeast through central portion of Section 13 and northern portion of Section 24 (Township 36 South, Range 36 East). Further to the east of the site there is a larger wetland area trending from northwest to southeast. These wetlands eventually flow into Lake Okeechobee.

2.4 Hydrogeology

The site hydrogeology has been evaluated using data presented in studies conducted by the USGS (Lidz 1981; Miller 1986; Bradner 1994; and Aponte et.al., 1996) and the FGS (Chen 1965). In addition, lithologic and geophysical logs of several Oil Wells (Shell Oil Sloan #35-1, Triton Oil #1 L.E. Larson, and Amerada Petroleum Corporation Marie Swenson #1) were reviewed. Geophysical and lithologic logs for injection well systems at the South Florida Water Management District ASR Project in Okeechobee County (ASR), Ocean Spray (OS), St. Lucie West Services District (SLWSD), City of Pahokee, Tropicana (Trop), Pratt Whitney Aircraft-United Technologies (PWA) and QO chemicals (QO) were also reviewed. The location of these wells is shown on Figure 1. Using this information, hydrogeologic cross sections have been prepared and included on Figures 4 and 5. The following geologic formations and hydrogeologic units were confirmed during construction of the exploratory well at the OLI site:

Table 2.1 Geologic Units Anticipated at the OLI Site

Depth (BLS)	Geologic Units
0 to 250	Undifferentiated Surficial Deposits
250 to 670	Hawthorn Group
670 to 800	Ocala Limestone
800 to 2,290	Avon Park Formation
2,290 to 3,150	Oldsmar Formation
3,150 to TD	Cedar Keys Formation

Table 2.2 Hydrogeologic Units Anticipated at the OLI Site

Depth (BLS)	Hydrogeologic Units		
0 to 250	Surficial Aquifer System		
250 to 670	Upper Confining Unit		
670 to 1774	Upper Floridan Aquifer System		
2200 to 2741	Primary Confining Unit		
2741 to 3150	Injection Zone		

2.4.1 Holocene, Pleistocene and Pliocene

2.4.1.1 Surficial Aquifer System - Undifferentiated Surficial Deposits

A veneer of Holocene, Pleistocene and Pliocene sands, silts, clay, coquina, shells, organic material and limestone are present from land surface to a depth of approximately 250 feet BLS in the vicinity of the OLI site (Bradner 1994). These deposits contain the SAS. The SAS is used as a source of potable water supply in some areas of Okeechobee County. The SAS consists of relatively thin deposits of Holocene to Pliocene-age sand, silt and shell. These sediments are underlain by a thicker, more permeable sequence of interbedded sand, silt, clay, limestone and shell material. Generally wells in the SAS are completed in three depth ranges (Bradner 1994). Shallow SAS wells are generally installed to depths ranging from 30 to 60 feet bls. Intermediate depth SAS wells are generally screened at depths ranging from 100 to 140 feet bls. Deeper SAS wells are generally completed to depths ranging from 180 to 240 feet bls. The upper zone of the SAS is unconfined. The middle and deep zones may be semi-confined locally depending on the lithology.

2.4.2 Miocene

2.4.2.1 Upper Confining Unit - Hawthorn Group

The Hawthorn Group in south Florida has been differentiated into two distinct formations (Scott 1988). The Peace River Formation consists predominantly of dolosilts interbedded with sand lenses, clay and limestone. This formation directly underlies the SAS. Geologic cross-sections prepared through the Okeechobee County area (Scott 1988) indicate that the Peace River is approximately 175 feet thick just north of Lake Okeechobee and thickens toward the east and southeast. The Arcadia Formation unconformably underlies the Peace River formation. The Arcadia formation contains more carbonates than the overlying Peace River and is characterized by abundant phosphate pellets and rubble beds. The Arcadia is approximately 225 feet thick on the north side of Lake Okeechobee and thickens to the east and southeast.

Collectively the middle to late-Miocene deposits of the Hawthorn Group form an Upper Confining Unit (Miller 1986) in the area of the OLI Okeechobee Landfill. Using cuttings from the Shell Oil, Sloan 35-1 well approximately $3^1/_2$ miles northwest of the OLI site, the Hawthorn Group Sediments are present between depths of approximately 250 feet to 600 feet BLS at the proposed OLI Injection Well site.

2.4.3 Eocene - Floridan Aquifer System

2.4.3.1 Ocala Limestone

The Ocala Limestone consists of late Eocene-age Limestone characterized by numerous fossils. The Ocala Limestone contains a characteristic suite of benthonic foraminifera. These include Nummulites sp., Heterestegina sp., Operculinoids sp. and Amphistegina sp. Using cuttings from the OLI Exploratory well the Ocala Limestone is present at the OLI facility between depths of approximately 670 feet to 800 feet BLS. Generally the top of the Ocala Limestone coincides with the top of the FAS in Okeechobee County (Bradner 1994). There are localized areas where a thin section (<5 feet thick) of late Eocene-age

Suwanee Limestone is present and marks the top of the FAS. The Ocala contains the upper Floridan Aquifer. The upper Floridan is fully confined in the area of the OLI site with artesian heads at or above land surface. The upper Floridan Aquifer is used locally as a source of irrigation water. The high mineral content generally prohibits its use for potable water supply. The potentiometric surface of the upper Floridan slopes toward the northeast across the area (Spechler et. al. 1991) of the OLI site.

2.4.3.2 Avon Park Formation

Applin and Applin (1944) proposed the name "Avon Park Limestone" to describe rocks of late Middle Eocene age in northern and peninsular Florida. Miller (1986) combined the Avon Park Limestone with underlying Lake City Limestone into the Avon Park Formation because of the similarities between the units. In most areas of Florida, the units can only be divided by the micro fauna present within them. Miller defined the Avon Park Formation as "the sequence of predominantly brown limestones and dolomites of various textures that lies between the gray, largely micritic limestones and gray dolomites of the Oldsmar Formation and the white foraminiferal coquina or fossiliferous micrite of the Ocala Limestone." Duncan et al. (1994b) describes the lowermost section of the Avon Park Formation as characterized by intervals of nodular chert, cherty limestones and cherty dolostones. In Okeechobee County the upper portion of the Avon Park is part of the Upper Floridan aquifer, the middle portion of the Avon Park forms a semi-confining unit in some parts of the area and the lower Avon Park is part of the Lower Floridan Aquifer (Aponte et. al 1996 and Miller 1986).

Using lithologic data from the OLI Exploratory well the Avon Park occurred between depths of approximately 800 to 2300 feet BLS at the proposed OLI Injection Well site. The bottom of the Avon Park was delineated based on the presence of chert beds. The base of the Underground Source of Drinking Water (USDW) occurred at a depth of approximately 1,774 feet BLS within the Avon Park. Water samples collected from a packer test depth interval of 1,746 to 1,770 feet BLS, and 1,774 to 1,798 feet BLS at the site had a Total Dissolved Solids (TDS) concentration of 7,415 and 12,544 milligrams per liter (mg/L), respectively. The TDS concentration in groundwater below this depth increases exponentially and exceeds 10,000 milligrams per liter (mg/L) at the base of the USDW at a depth of approximately 1,774 feet BLS. Below a depth of approximately 2,200 feet BLS, the lower portion of the Avon Park Formation forms part of the principal confining unit overlying the target injection zone at the OLI site.

2.4.3.3 Oldsmar Formation

Applin and Applin (1944) applied the name "Oldsmar Limestone" to a series of faunal zones overlying the Cedar Keys Formation. Chen (1965) described the unit in peninsular Florida as being predominantly dolomite and limestone with gypsum and anhydrite as minor components. Duncan et al. (1994a) conformed to Miller (1986) and used the term "Oldsmar Formation" to describe the unit. They described the unit as consisting of "an upper section of interbedded white to light-gray, chalky packstone, wackestone, mudstone, and grayish brown dolostone and a lower section of predominantly well-indurated, crystalline yellowish-brown dolostone." Glauconitic limestones are known to

occur near the top of the formation accompanied by the index fossil, <u>Helicostegina gyralis</u>. The Oldsmar Formation contains the Lower Floridan Aquifer and the target injection zone (Boulder Zone) for the OLI Project. At the OLI facility, the upper portion of the Oldsmar is expected to form part of the principal confining unit overlying the injection zone in the lower portion of the formation. Using the lithologic data and geophysical logs from the Triton Oil #1 L.E. Larson Well, Amerada Oil #1 Marie Swenson Well, Shell Oil Sloan 35-1 Well and Port SLWSD Injection Well the injection zone is expected to be present in the interval from approximately 2,500 to 3,100 feet BLS at the OLI site. The geophysical logs indicate a highly fractured and cavernous formation is present at this depth and the oil well records indicate that difficult drilling and lost circulation problems typical of the Boulder Zone occurred in this depth interval.

2.4.4 Paleocene - Sub Floridan Confining Unit

2.4.4.1 Cedar Keys Formation

The Paleocene-age Cedar Keys Formation forms a confining unit beneath the FAS. The Cedar Keys is easily identified on the nearby oil well and OLI exploratory well geophysical logs due to the markedly lower formation porosity. Secondary mineralization has filled most of the porosity in this formation with anhydrite. Based on the lithologic samples, geophysical logs and the video collected in the exploratory well borehole at OLI, the top of the Cedar Keys Formation was encountered at 3,150 feet BLS.

3.0 SYSTEM DESIGN CONSIDERATIONS

3.1 Leachate Generation and Collection

Okeechobee Landfill, Inc. (OLI), owns and operates a major landfill facility located east of the city of Okeechobee, Florida. The facility accepts municipal solid waste (MSW) and construction & demolition (C&D) wastes. The OLI Class I Landfill is equipped with a leachate collection system. Construction details for the proposed OLI Class I Injection Well are shown on Figure 6. Construction details for the Dual Zone Monitor Well are shown on Figure 7.

The landfill cells are constructed with double liner systems, equipped with leachate collection systems. The leachate is pumped from various wet wells around the landfill to two lined storage ponds located on the southeast side of the landfill. The leachate ponds are lined and have membrane covers to prevent stormwater from mixing with the leachate. The East Leachate Pond has a surface area of approximately 1.3 acre, and a volume of 2,300,00 gallons and the West Leachate Pond has a surface area of approximately 1.0 acre and a volume of 2,000,000 gallons.

Some of the leachate is pumped from the ponds to two on-site evaporators that are fired with landfill biogas. The brine from the evaporators is recycled to the landfill. The remainder of the leachate is trucked to a permitted off-site disposal facility. The leachate receives no treatment prior to evaporation or off-site disposal.

3.2 Leachate Quality

On April 25, 2008 samples of the OLI Okeechobee Landfill leachate were collected and analyzed prior to off site disposal. The laboratory analytical test reports of these samples are included in Appendix D. The effluent results are either below laboratory detection limits (BDL), or the Florida Primary Drinking Water Standards (FPDWS Chapter 62-550 FAC), or the Florida Secondary Drinking Water Standards (FSDWS -Chapter 62-550 FAC) and/or the Florida Groundwater Cleanup Target Levels (GWCTLS -Chapter 62-777 FAC) except for relatively low levels of ethylbenzene and toluene exceeding the FSDWS. The leachate results are also below the standards for semi-volatile organics except for phenol and 3&4 methylphenol that exceed the GWCTLS. The leachate results are below the standards for the chlorinated pesticides and carbamated pesticides. Several inorganic constituents exceeded the FPDWS including arsenic, chromium and nickel. Several inorganic constituents also exceeded the FSDWS including iron, aluminum, chloride and TDS. The chloride concentrations were 3,900 mg/L and the TDS of the leachate sample was 14,000 mg/L.

The pH of the leachate sample was 7.9 standard units (S.U.). The corrosivity test (Langlier Saturation Index) indicates the leachate sample has the potential to be slightly scale forming in some piping materials.

The total kjeldahl nitrogen (TKN) concentration of the leachate sample was reported at a concentration of 1,400 mg/L. The organic nitrogen component of the TKN is 310 mg/L and ammonia is 1,100 mg/L.

On April 28, 2008, a sample was collected from the stormwater retention Pond identified as D-1 and is the proposed source of water for the 24 hour injection test that will be performed in the well. The laboratory analytical test reports of these samples are included in Appendix D. The laboratory test results are either below laboratory detection limits (BDL), or the Florida Primary Drinking Water Standards (FPDWS Chapter 62-550 FAC), or the Florida Secondary Drinking Water Standards (FSDWS -Chapter 62-550 FAC) and/or the Florida Groundwater Cleanup Target Levels (GWCTLS -Chapter 62-777 FAC).

3.3 Fluid Compatibility

The OLI leachate should be compatible with the injection zone formation, ambient groundwater and the proposed well construction materials proposed for use in the Class I Injection Well. The following table shows a comparison of the constituents in the injection zone formation water (sampled May 23, 2005) at the SLWSD site and the OLI leachate sampled on April 25, 2008. The injection zone water quality at the OLI site is expected to be very similar to that at the SLWSD site.

Table 3.1 OLI Leachate Quality vs. Injection Zone Water Quality

Parameter	Units	SLWSD Injection Zone	OLI Leachate	
рН	mg/L	7.8	7.9	
Sodium	mg/L	8,500	2,200	
Aluminum	mg/L	< 0.010	19	
Arsenic	mg/L	< 0.009	0.29	
Barium	mg/L	0.11	0.120	
Chromium	mg/L	0.011	0.340	
Copper	mg/L	< 0.010	0.037	
Manganese	mg/L	0.97	0.420	
Nickel	mg/L	0.062	0.190	
Selenium	mg/L	0.18	0.022	
Antimony	mg/L	0.028	0.026	
Lead	mg/L	0.0019	0.0067	
Ammonia	mg/L	< 0.02	1,100	
Chloride	mg/L	21,000	3,900	
TDS	mg/L	39,000	14,000	
Sulfate	mg/L	2,500	< 100	
Fluoride	mg/L	0.55	< 70	
Iron	mg/L	6.2	2.2	
TKN	mg/L	1.2	1,400	
Zinc	mg/L	0.032	0.086	
Total Phosphorous	mg/L	0.38	8.7	
COD	mg/L	2,400	4,000	
BOD	mg/L	1,200	310	
Gross Alpha	pCi/L	13±20	71±44	

3.4 Anticipated Flow

During calendar year 2005, the landfill generated approximately 38 million gallons of leachate. This is an average of 104,000 gpd. As the landfill is expanded, the leachate quantity is expected to increase to 200,000 gpd. The pumping system for the injection well has been designed for a continuous flow of 300,000 gpd to allow capacity to inject the projected leachate amount with 50% excess capacity to accommodate special situations. The injection well is designed to accommodate up to 3.3 MGD,

3.5 Anticipated Injection Pressure

During calendar year 2005, the landfill generated approximately 38 million. The maximum calculated shut-in pressure for the proposed injection well is approximately 28 pounds per square inch (PSI). This is considered a maximum value based on the assumption that the native formation water in the injection zone has the density of seawater and the leachate density is that of fresh water. The leachate density has not been measured but based on the chemical analyses it is expected to be greater than that of fresh water. Therefore the actual shut-in pressure of the injection well is expected to be less than 28 PSI.

During operation, the wellhead pressure will increase due to friction losses in the injection tubing. Friction losses in the proposed 2,500-foot length of Fiberglass Reinforced Plastic (FRP) injection tubing have been calculated using an empirical formula developed by Hazen and Williams.

$$f = 0.2083(100/C)^{1.85} (q)^{1.85}/(d)^{4.8655}$$

where:

f = Friction head in feet of liquid per 100 feet of injection tubing

d = Inside diameter of injection tubing (11.9 inches)

q = Injection rate (208 gallons per minute)

C = Tubing roughness coefficient (dimensionless, 140 for FRP Tubing)

The calculated wellhead pressure due to pipe friction loss at the design flow rate of 300,000 GPD is negligible (0.13 PSI). At the design flow rate the maximum operating pressure should not exceed 28 PSI.

3.6 Monitoring

Process Controls

During operation of the OLI injection well system, leachate flow rate, pH, wellhead pressure, annulus pressure and monitor zone water levels will be automatically monitored on a continuous basis. Data will be transmitted via radio telemetry to an operations computer located in the facility's main administration building. Here the data will be continuously recorded for process evaluation and preparation of Monthly Operating Reports (MORs). Alarms will be generated locally by a Programmable Logic Controller (PLC) at the injection well facility.

The following process variables will be monitored continuously by instrumentation devices as depicted on the Process & Instrumentation Diagram (P&ID), and discussed below.

- Leachate flow will be measured by a new 6" MAG flow meter (Rosemont or equal). A continuous record of flow rate will be recorded by the control system.
- Injection well pressure will be automatically monitored by a pressure transducer (Rosemont or equal). A continuous record of injection pressure will be recorded by the control system. In addition, an oil-filled pressure gauge (Ashcroft or equal) will be installed to allow local observation of the pressure, and to verify the transducer readings.
- Annulus pressure will be automatically monitored by a pressure transducer (Rosemont or equal). A continuous record of annulus pressure will be recorded by the control system. In addition, an oil-filled pressure gauge (Ashcroft or equal) will be installed to allow local observation of the pressure, and to verify the transducer readings.

- Differential pressure between the injection well and the annulus fluid will be determined automatically by the local PLC (subtracted difference between injection and annulus pressures). An alarm will be initiated if differential pressure falls below a specified value (too low). If differential pressure falls below a critical low value, a second alarm will be activated and automatic injection system shut down will be initiated.
- Monitoring well water levels shall be detected by down-hole level transducers (Siemens or equal), one for the Lower Monitoring Zone (LMZ), and one for the Upper Monitoring Zone (UMZ). A continuous record of water level in both zones will be recorded by the control system.

Leachate and Groundwater Sampling

During operational testing the monitor wells will be sampled weekly and the leachate will be sampled monthly. After six (6) months of data have been collected a request may be made to reduce the monitor well sampling frequency to monthly in accordance with Chapter 62-58.450(3)(d). The sampling parameters will be specified by permit conditions. Anticipated monitoring parameters are:

Chloride	Sulfate	Carbonate
Bicarbonate	Alkalinity	Total Phosphate
Nitrate	Nitrite	Ammonia
TKN	Sodium	Calcium
Magnesium	Iron	TDS
TOC	TSS	Potassium
COD	BOD	Coliform

The LMZ and UMZ will be equipped with 3-inch submersible pumps. Prior to sample collection, the pumps will be activated and the monitor zones purged for a 24-hour period. Purge water will be routed to the stormwater collection system, and pumped to the injection well. Samples will be collected from the pump discharge line from each of the monitor zones.

Operational data and records of monitoring will include the date, exact place and time of sampling and analysis. The personnel responsible for the data collection and analysis will be specified along with the analytical methodology and results. All reports and other submittals required by FDEP permit will be signed by a person authorized pursuant to the requirements in Chapter 62-528.340(1) or (2) FAC. All reports will contain the certification required in Chapter 62-528.410(1)(h) FAC. OLI will retain monitoring records throughout the operational life of the injection well system and for at least 5 years after completion of well plugging and abandonment.

3.7 Contingency Plans

Power Outage

During a typical short-term power outage, leachate injection operations may be temporarily suspended. This would be typical of brief power outages associated with summer thunderstorms.

During a longer-lasting outage, leachate injection can be continued. The power source for the leachate transfer pumps at the ponds is connected to an emergency generator. Power at the injection well will be supplied by a portable emergency back-up generator.

If for some reason emergency power is inoperable, leachate will be transferred to an offsite disposal facility. Tanker truck loading can be accomplished using portable dieseldriven pumps.

Injection Pump Failure

Two (2) new pumps will be installed to pump leachate to the injection well (210 gpm, 100 ft TDH, 15 HP). One pump will be the duty pump and the other will be a standby. Thus, if the duty pump breaks down, the standby pump will be available for service.

Injection System Down for Maintenance, Repair or Testing

Contingency provisions have been made for situations when the well is inoperable or must be taken off-line to conduct scheduled testing.

During these situations, OLI will utilize the existing storage capacity in the leachate ponds. Typically the ponds will be operated alternately with one being drained by pumping to the injection well while leachate is accumulated in the other pond. At any given time, at least 2,000,000 gallons of leachate storage should be available. Thus, if the injection well is unavailable for use due to some unforeseen circumstance, leachate can be accumulated in the reserve capacity of the ponds for a period of time. At the design leachate flow rate of 200,000 gpd, the leachate pond system will be capable of storing at least ten days worth of leachate.

If the ponds become full and the well is still unavailable for use, leachate can be trucked to a permitted off-site disposal facility (as it is currently disposed). The leachate transfer pumping system has been designed to allow loading leachate from the ponds to transfer tanker trucks.

Prior to the 5-Year Mechanical Integrity Tests (MIT), the leachate pond levels will be reduced to provide the required holding capacity. If for some reason the ponds do not have enough capacity, leachate will be transferred to an off-site disposal facility.

3.8 Operation & Maintenance

During operation of the Injection well, the OLI facilities staff will be responsible for maintenance of the pumps, piping and instrumentation associated with the system. OLI staff will also maintain records of injection flows, wellhead pressures, annulus pressure and monitor well pressures. This data will be recorded using the control system and operations monitoring computer discussed previously. A contracted laboratory will be responsible for collection and analysis of water quality samples from the leachate and from each monitor zone in accordance with the FDEP permit conditions. OLI staff will also conduct the required injectivity testing as specified in the permit.

3.9 Casings

The casings in construction of the Exploratory/Class I Injection Well and Dual Zone Monitor Well are or will be new, unused, and conform with the American Society for Testing and Materials (ASTM) Designation A 53/A 53M-02 for seamless steel casings; ASTM Designation A 139-00 for spiral weld steel casing; and ASTM Designation D 2996-01 for FRP tubing. All steel casings are or will be plain end, with beveled finish for buttwelding. The FRP tubing will be threaded and coupled. The actual, or in the deep monitor well where casing have not yet been installed, anticipated casing setting depths are shown on Figures 6 and 7. The exact casing setting depths have been or will be determined in the field based on geologic conditions encountered during drilling. FDEP approval has been obtained prior to installation of the 16-inch NPS injection casing, 26-inch NPS intermediate casing string in the injection well, and will be obtained prior to installation of the 16-inch NPS intermediate (upper monitor zone) casing string in the monitor well and final 6-5/8" (deep monitor zone) casing. Prior to casing installation the Contractor is required to submit Mill Certifications for approval.

The 42-inch NPS conductor casing, 36-inch NPS surface casing, and 30-inch NPS intermediate casing used in the Class I Injection Well is ASTM A 139, Grade B, electric fusion, arc—welded, helical-seam steel pipe (167.00 lb/ft, 142.68 lb/ft, and 118.65 lb/ft respectively). The 16-inch NPS injection casing already installed in the injection well, is ASTM A 53 Grade B, Type S-seamless steel, 0.500-inch thick wall (82.77lb/ft).

The FRP injection tubing used in the injection well will be DHC500 as manufactured by Centron (or equivalent). The nominal outside diameter is 10.72 inches and the nominal inner diameter is 9.72 inches (14.00 lb/ft). The tubing is threaded and coupled with a nominal box O.D. of 12.70 inches. At the design flow rate of 300,000 GPD the average fluid velocity inside the injection tubing will be less than 1.0 feet per second. The FRP injection tubing will transition to stainless steel casing at a depth of approximately 20 feet BLS. The stainless will extend through the concrete drill pad. All wellhead hardware on the Class I Injection Well will be stainless steel.

The 34-inch NPS conductor casing, 24-inch NPS surface casing and 16 NPS intermediate casing proposed for the Dual Zone Monitor Well will be ASTM A 139 Grade B, electric fusion, arc—welded, helical-seam steel pipe, standard (STD) 0.375-inch wall thickness 134.67 lb/ft, 94.71 lb/ft, and 62.64 lb/ft, respectively. The 16 NPS intermediate casing will transition to 316 stainless steel casing at a depth of approximately 20 feet BLS. The stainless will extend through the concrete drill pad.

The FRP tubing proposed for the deep monitor zone will be DHC500 as manufactured by Centron (or equivalent). The nominal outside diameter is 6.10 inches and the nominal inner diameter is 5.43 inches (5.7 lb/ft). The tubing is threaded and coupled with a pin upset of 6.73 inches and a box O.D. of 8.00 inches. The upper 20 feet of tubing, including the portion extending through the pad, will be stainless steel.

3.10 Cements

In accordance with Chapter 62-528.410 (5) FAC, all cement utilized in construction of the injection well and monitor well will meet ASTM Type II standards or its equivalent, Standard Specification for Portland Cement, American National Standards Institute/ASTM C 150-05. Cementing procedures shall conform to The AWWA Standard for Water Wells, American Water Works Association A 100-90.

Prior to casing installation and cementing, the boreholes have been conditioned via wiper trips and circulating bottoms-up. A caliper log has been or will be run to determine cement volumes. Casings will be centralized to ensure even placement of cement and to allow access for cement tremmie lines. The initial lift of cement for each casing string will be delivered by pressure grouting through a cement header. After allowing a minimum of 12 hours for curing, the top of the first lift is tagged. Subsequent lifts are delivered using a 1-2⁷⁸ inch tremmie pipe. After allowing time for each lift to cure, the top of the cement is determined by tagging with the tremmie and verification using temperature logs run inside the casing. The theoretical cement volume will be compared with the actual cement volume placed in each lift.

The initial lifts have been ASTM Type II neat cement and do not contain any additives. Remaining lifts in the injection well may contain up to 12% bentonite gel except in the final casing string where 6% gel is the maximum. All casings cemented in the deep monitoring well are cemented using a maximum of 6% gel. All drill mud, cement, and formation water displaced from the well during cementing will be containerized and shipped off-site for proper disposal.

3.11 Surge Control

Due to the low down-well velocities at the design pumping rate, special provisions for surge control and water hammer are not needed. At 300,000 gpd pumping rate (210 gpm), the velocity in the injection tube is only 0.9 fps.

The ultimate capacity of the injection well is 2,300 gpm (assuming an injection tube velocity of 10 fps). If higher flows are injected in the future, surge control and water hammer control may be needed. Provisions have been made to add a surge suppressor at the injection well if it is needed at some later date (see P&ID).

3.12 Drilling Fluids

No salt will be utilized as a drilling fluid additive during construction of the monitor well. Drilling mud (bentonite) will be used as necessary for hole conditioning and flow control. During construction of the injection well, drilling mud has been utilized for hole

conditioning and flow control until the surface casing was set and cemented in place. After installation of the surface casing, drilling mud and/or salt was utilized as drilling fluid in the injection well. All drilling fluids, formation water and drill cuttings will be contained in a closed circulation system. The system is comprised of steel tanks with a minimum total capacity of 20,000 gallons. Solids are separated from the drilling fluid with a screen (shale shaker) prior to being re-circulated in the well. The circulation system is placed on a watertight containment area (drilling pad) to ensure that spills do not impact the SAS.

3.13 Waste Management

All excess drilling mud and formation water has and will be containerized and shipped off-site to an approved disposal facility. The name and location of the facility provided by the contractor and to the FDEP in January, 2008 for water disposal is Ridgdill Construction at 1785 Ridgdill Road in Clewiston. Drilling mud has been mixed with cement to meet the paint filter test and then used on site as fill/landfill cover and or placed in the landfill. Drill cuttings and other non-hazardous solid wastes have been placed in the OLI Okeechobee Landfill.

4.0 DRILLING AND TESTING PROGRAM

The Exploratory/Injection Well has been constructed according to the existing construction permit (FDEP Permit No. 0040842) and the Dual Zone Deep Monitor Well to be included in the Test Injection Well permit applied for in this permit application is under construction at this time in accordance with FDEP Permit No. 040842-019-UC. The initial phase of construction and testing for the exploratory well is near completion with final casing installation underway at the time of this writing. Upon completion of all the construction and testing programs under existing permits, an injection test and a radioactive tracer survey are the only tests required to meet the standards of a Test/Injection well system permit in accordance with the requirements in Chapter 62-528 of the Florida Administrative Code (FAC). The next phase of the program includes completion of the RTS and injection tests as the final demonstration of mechanical integrity for the well and a demonstration for the well's ability to accept injection of fluids. Upon completion of these two tests, the Class I Injection Well can begin operational testing at the site in accordance with the requirements in Chapter 62-528 of the Florida Administrative Code (FAC).

The Exploratory Drilling Program was conducted initially to confirm the site specific hydrogeologic conditions at the site. Based on the data collected during construction of the exploratory well, conditions are suitable for approval by the FDEP for a Class I Injection Well system.

The proposed OLI Class I Test/Injection Well and Dual Zone Monitor Well have been designed to meet the criteria in Chapter 62-528.410 FAC. The materials used and construction methods have been selected to minimize impacts to ambient groundwater

quality and to prevent movement of fluids into or between USDWs. Drilling has been conducted by a qualified water well Contractor with the equipment and experience necessary to complete the project. The Contractor has provided equipment capable of supporting the maximum loads exerted by the drilling string, collars, casings and other equipment necessary for completion of the wells as specified in the Technical Specifications which were included with the application for the exploratory well construction and testing permit.

After completion of the wells the temporary pad will be removed and a concrete containment pad will be constructed. The finished pad layout is shown on Figure 8. As shown on figure 7, the Dual Zone Monitor Well will be located approximately 100 feet from the Exploratory/Class I Injection Well. Both wells will be located within a concrete containment pad constructed after all drilling and testing has been completed. Four (4), surficial aquifer monitor wells were installed at each corner of the drilling pad prior to any construction activities on the injection well or dual zone monitor well. A well construction diagram for the pad monitor wells is included on Figure 9. The pad monitor wells were sampled for conductivity, temperature and chlorides prior to the Exploratory/Class I Injection Well drilling to establish background water quality. During construction pH was added to the list of physical properties measured on a weekly basis.

4.1 Well Construction Phases

Drilling of both the Exploratory/Class I Injection Well and Dual Zone Monitor Well have been done in stages using a closed circulation system. To ensure the reamed holes track the pilot holes, a staged reaming assembly and lead bit has been used during reaming. In addition, inclination surveys will be conducted every 90 feet in the pilot hole and reamed hole. A maximum inclination of 1° from true vertical has been allowed. The Contractor furnished and installed blowout preventers on the wellheads to ensure that uncontrolled flow from the wells is not allowed at any time. The conventional mudrotary drilling method will be utilized during the first stages of drilling through the SAS and Hawthorn Group. All drilling below the Hawthorn Group will be by the reversecirculation, rotary drilling method. The conductor casings were set into the top of the Hawthorn Group sediments to ensure that the SAS is sealed off during deeper drilling operations. The surface casing strings in each well were set into the top of the upper FAS, sealing-off the Hawthorn Group. The intermediate casing strings in the exploratory well was installed below the base of the USDW. The final casing in the injection well is being installed at the top of the injection zone taking full advantage of over 500 feet of dense confining limestone and dolomite.

The drilling activities in the exploratory well have been described in detail in previously submitted reports including the exploratory well permit application, and the casing point reports submitted to FDEP for approval of the intermediate and final casings strings. Descriptions of drilled cuttings, conventional cores, packer tests, geophysical logs and other tests were submitted with test results and interpretations.

The testing completed during drilling of the exploratory well demonstrates that the base of the USDW occurs about 1,774 feet BPL, that thick sequences of dense limestone and dolomite exists below the USDW and these sequences of rock consist of about 540 feet of sedimentary rocks with permeabilities as low as 10-10 cm/sec. The testing program also demonstrated that the injection zone begins at a depth of 2,741 feet BPL and continues to a depth of 3,150 feet BPL.

4.2 Water Quality Testing

All water quality samples will be collected by L.S. Sims & Associates, Inc. in accordance with the company Quality Manual.

During the well construction project, water quality samples will be collected weekly from the pad monitor wells and analyzed in the field for chlorides, specific conductivity, temperature and water level (relative to NAVD 1988).

Water samples were collected from the pump discharge at the end of each USDW straddle packer test; packer tests in the confining sequence could not be developed long enough to obtain representative formation samples. These samples were sent to a certified laboratory for analysis of TDS, chlorides, sulfate, specific conductivity, ammonia and TKN as N. A 2.5-gallon sample of water was collected from the straddle packer pump discharge, and will be collected from the background injection zone and monitor zone samples. These samples will be sent to the Florida Geological Survey, Hydrogeology Program Coordinator, 903 West Tennessee Street, Tallahassee, Florida, 32304. Field measurements of pH, temperature, specific conductivity, dissolved oxygen and turbidity will also be collected. After development of the monitor wells, samples will be collected from each zone and sent to a certified laboratory for analysis of the primary and secondary drinking water standards (excluding asbestos, Dioxin®, epichlorohydrin, acrylamide and butachlor), potassium, ammonia and TKN as N. Field measurements of pH, temperature, specific conductivity, dissolved oxygen and turbidity will also be collected.

Prior to the injection test, a sample will be collected from the SAS water supply well at the OLI injection well site (short term injection test source water) and sent to a certified laboratory for analysis of the primary and secondary drinking water standards (excluding asbestos, Dioxin®, epichlorohydrin, acrylamide and butachlor), potassium, ammonia, TKN as N. Field measurements of pH, temperature, specific conductivity, dissolved oxygen and turbidity will also be collected.

4.3 Geophysical Logging

Geophysical logging has been conducted by an experienced operator under the supervision of the Site Geologist. The geophysical logs have provided additional information on lithology, water quality, aquifer characteristics, integrity of the well casing and borehole deviation. The surveys include: natural gamma, BHC-Sonic with VDL, dual induction, fluid resistivity, X-Y caliper, temperature with ΔT , CBL with VDL, and flow meter.

4.4 Cutting and Core Recovery

Cuttings have been collected at 10-foot intervals and at formation changes, and ten cores as were collected during drilling of the confining sequence as directed by the Site Geologist. The lithology of the cuttings and cores were determined under a binocular microscope with emphasis on rock type, color, texture, porosity (visual), grain size and type, induration, accessory minerals and fossil content.

The ten cores were collected in the lower confining sequence (2,000 TO 2600 feet BPL). The cores will be collected using a 4-inch diameter core bit and 20-foot core barrel. Core intervals were determined by the Site Geologist based on geophysical logs and cuttings analysis. All cores were stored on site in wooden boxes marked with the depth from which they were collected until all the cores were collected from the well. Selected samples were delivered to Ardaman & Associates for analysis. Testing in the laboratory included determination of vertical and horizontal hydraulic conductivity, porosity and specific gravity. The results of laboratory testing are summarized in the table below.

Depth (ft) BPL	K vertical (cm/sec)	K horizontal (cm/sec)
2054	4.7e-10	3.3e-9
2112	in progress	in progress
2167	9.3e-6	1.3e-5
2211	5.5e-5	5.2e-5
2262	2.1e-8	1.9e-5
2326	5.4e-8	7.1e-8
2390	1.3e-4	2.0e-4
2424	6.9e-10	in progress
2502	9.1e-5	1.4e-4
2585	3.5e-6	4.0e-6
2592	1.7e-5	4.8e-7

Final laboratory test results will be reported in the final report. Arrangements have been made to transfer the remaining conventional cores to the Florida Geological Survey.

4.5 Straddle-Packer Testing

The straddle-packer tests were performed to isolate selected portions of the borehole for testing to determine hydraulic characteristics and to collect representative groundwater samples. Five tests were conducted around the base of the USDW to collect water samples from the tested intervals and five packer tests were conducted in the confining sequence to measure the hyrologic characteristics of the tested intervals. The results of packer tests were discussed in detail in the final casing report submitted in October. The results of the packer tests are summarized in the table below.

Three additional (3) straddle packer tests will be conducted in the dual Zone Monitor Well. A straddle packer test will be conducted in each proposed monitor zone interval and a test will be designed to isolate the base of the lowermost USDW.

	USDW Straddle Packer Tests							
Test No.	Date	Depth Interval Tested	Q gpm	Pumping K (cm/sec)	Pumping T (cm²/sec)	TDS mg/L		
1	4/22/0 8	1898-1922	21	1.1 X 10 ⁻⁴	7.8 X 10	24,40 0		
2	4/23/0 8	1858-1882	35	4.1 X 10 ⁻³	3.0	22,30 0		
3	4/24/0 8	1818-1842	71	1.2 X 10 ⁻³	0.85	20,10 0		
4	4/25/0 8	1774-1798	40	2.1 X 10 ⁻⁴	0.15	12,54 4		
5	4/26/0 8	1746-1770	22	2.0 X 10 ⁻⁶		7,415		

Confinement Straddle Packer Tests						
Test No.	Date	Depth Interval Tested	Q gpm	Pumping K (cm/sec)	Pumping T (cm²/sec)	
C1	9/02/0 8	2324-2342	0	3.8 X 10	2.0 X 10 ⁻⁷	
C2	9/03/0 8	2608-2626	1	3.6 X 10 ⁻⁶	2.0 X 10 ⁻³	
C3	9/06/0 8	2706-2724	15	1.1 X 10 ⁻⁴	4 X 10 ⁻¹¹	
C4	9/07/0 8	2480-2497	4.3	6.2 X 10 ⁻⁵	3.2 X 10 ⁻²	
C5	9/07/0 8	2206-2223	32	2.1 X 10 ⁻⁴	0.11	

4.6 Mechanical Integrity Tests

The purpose of the MIT is to demonstrate (in accordance with requirements set forth in Chapter 62-528 FAC) that the OLI injection well tubing and casing are intact, with no holes or leaks. The MIT is also conducted to demonstrate that injected effluent will not migrate vertically upward from the permitted injection zone via channels or conduits outside the injection casing or tubing.

The MIT will consist of a pressure test on the injection tubing annulus, radioactive tracer surveys (RTS), temperature logging and video survey. The pressure test will demonstrate that the inner tubing is intact with no holes or leaks. The temperature log will demonstrate that there are no channels or vertical conduits outside the injection tubing. The MIT will be initiated during daylight hours, Monday through Friday. The FDEP will be notified prior to conducting the MIT so that a representative has sufficient time to arrive on site to witness the tests.

4.6.1 Television Surveys

Television surveys have already been completed in the open hole prior to installation of the intermediate and final casing strings. Copies of the television surveys have been submitted to the FDEP attached to the casing point reports. Television surveys will be conducted in both the 16-inch final injection casing and the 10 $^{3}I_{\rm g}$ -inch FRP injection tubing. The television surveys will be in color and the geophysical logging Contractor will be required to furnish a video with sufficient clarity acceptable to the L.S. Sims & Associates and the FDEP. The color television camera will have a rotating side-hole viewer and must be equipped with centralizers to ensure the camera remains centralized over the entire length of the well. Prior to running the video survey, water will be pumped into the well through a stripperhead assembly. The water supply line to the stripperhead will be equipped with a check valve to prevent backflow from the well. A minimum of three casing volumes of water will be pumped into the well to provide clarity for the survey.

4.6.2 Pressure Tests

Casing pressure tests will be conducted on the 16-inch NPS injection casing and the 10 $^{3}I_{8}$ -inch FRP injection tubing annulus. The 16-inch injection casing will be pressure tested after cementing and prior to drilling out the cement plug. The pressure test on the injection tubing annulus will be conducted after the 10 $^{3}I_{8}$ -inch FRP injection tubing is installed and the annulus is sealed with a landing flange at the surface.

The tests will be conducted after completely filling the casing and annulus with water. They will then be placed under an initial pressure of 100 PSI (>1.5 x maximum anticipated injection pressure) as read from a calibrated pressure gauge located on the wellhead. The gauge will be sensitive enough to accurately measure pressure test variations of five percent in increments of 0.25 PSI or less. The Contractor will submit certification documenting the date and place of pressure gauge calibration prior to conducting the pressure tests. During the pressure tests, a wellhead pressure of 100 PSI will be maintained for a period of one (1) hour with less than five percent pressure change. During the pressure tests, the wellhead pressure will be recorded every five minutes for 65 minutes. After successful completion of the pressure tests, the Contractor will depressurize the injection casing and annulus and record the volume of water that is discharged.

4.6.3 Radioactive Tracer Survey and Temperature Log

RTS and temperature logging will be conducted after the injection tubing annulus has been pressure tested. A qualified geophysical logging company licensed to handle radioactive materials in the State of Florida will conduct the tests. The temperature logging will be run from the bottom of the well (approximately 3,506 feet BLS) to land surface.

Background gamma logs and a caliper log will be run from the bottom of the well to land surface as part of the tracer surveys. The background gamma logging will be conducted within 24 hours, prior to initiating the RTS.

5.0 PROJECT MANAGEMENT

The drilling and testing programs in the exploratory injection well and the dual zone deep monitor well have been designed to collect lithologic data, water quality data and formation hydraulic parameters through cuttings analysis, core analysis and, straddle-packer tests. This information is used to demonstrate that the OLI injection well system will operate in compliance with Chapter 62-528 FAC and to support a request for operational testing of the system.

During all phases of this project, there will be frequent communications with the FDEP and Technical Advisory Committee (TAC) as required by the construction permit. A Site Geologist will provide continuous monitoring of the drilling activities during all phases of construction. Activity reports will be made on a daily basis, and along with a weekly summary prepared by the Project Manager, distributed to the individual TAC members. Typical responsibilities of the Site Geologist are lithologic descriptions, core sampling depth descriptions, water sample collection and analysis, observation of drilling operations (i.e., rate, mud additives, depths, cementing), geophysical log analysis and all drilling specification-related activities.

5.1 TAC Meetings and Submittals

TAC meetings may be scheduled during construction at significant milestones or as specified in the construction permit. Several submittals have already been made for this project including the following:

- 1. The survey data including pad elevations at the proposed injection well and dual zone monitor well locations, top of casing elevations for the pad monitor wells.
- 2. A construction schedule.
- 3. Water quality analytical data for the pad monitor wells.
- 4. Well construction completion reports for the pad monitor wells.
- 5. A revised set of Contract Documents including any revisions to the technical specifications as requested by FDEP, a copy of the responses to FDEP requests for additional information and a copy of the Exploratory/Injection Well Construction Permit.

- The name and location of the disposal site for all wastes generated during well construction.
- 7. Phase I Exploratory Drilling Test Results including the Intermediate Casing setting depth request for the Exploratory Well.
- 8. Cementing Program for the Intermediate Casing in the injection well including cement volumes, number of stages and caliper logs of the nominal 36-inch reamed hole.
- 9. Injection Casing and Injection Tubing setting depth requests for the Class I Injection Well based on a Demonstration of Confinement.
- 10. Cementing Program for the 16-inch injection casing including cement volumes, number of stages and caliper logs of the nominal 30-inch reamed hole.

The following documents include a list of anticipated submittals that remain for this project:

- 1. Results of Dual Zone Monitor Well drilling and testing including Monitor Zone selection and casing setting depth requests.
- 2. Cementing Program for the Dual Zone Monitor Well 16 NPS casing and FRP Tubing including cement volumes, number of stages and caliper logs of the nominal 24-inch reamed hole.
- 3. Request for approval of Short term injection testing.

The casing seat requests will include technical justification based on lithologic logs, geophysical logs, straddle packer test data, water quality test data, monitor zone delineation, drilling data, USDW delineation and formation evaluation.

The request for short term injection testing approval will include technical justification based on cement bond logs, temperature logs of each cement lift, theoretical versus actual cement volume calculations, final down-hole TV survey, effluent water quality analysis and mechanical integrity test results. The request will include planned injection test procedures and certification of mechanical integrity. Prior to the request, all weekly progress reports will be submitted to the TAC.

The request for monitor zone approval will include technical justification based on delineation of the USDW, confining bed delineation, water quality data from the proposed monitor zones, TV survey, transmissivity or specific capacity of the proposed monitor zones and straddle packer test data.

5.2 Reporting

All reports will be submitted to the TAC. All reports will be prepared and submitted in accordance with the FDEP Exploratory/Class I Injection Well Construction Permit issued to OLI for this project. The following reports will be submitted as necessary:

1. The TAC and other applicable agencies will be notified of any unusual or abnormal events that may occur during the construction project including

noncompliance with permit conditions, spill events and drilling difficulties. Oral reports will be made within 24 hours of any abnormal event or incident. A written report describing the details of the event will be submitted within 5 days following the incident.

- 2. The TAC will be notified at least 72 hours prior to testing for mechanical integrity. The MIT will be scheduled during normal business hours Monday through Friday.
- 3. Weekly progress reports will be submitted within 7 days following the week of record. The reports will include the following information:
 - A cover letter summarizing the driller's and Site Geologists daily logs along with a projection of work activities for the next reporting period.
 - Copies of the daily reports including detailed descriptions of all drilling progress, cementing, testing, logging, casing installation, and data interpretations.
 - Lithologic logs, geophysical logs, water quality test data and data interpretations with certified evaluations.
 - An interpretation of all test results collected up to and including the week of record.
 - Detailed descriptions of any unusual construction related events.
 - Weekly water quality test results for samples collected from the pad monitor wells.
 - Descriptions of the formations encountered during drilling.
 - Details of cementing operations including cement slurry composition, laboratory analysis of dry cement composition for neat cement lift at each casing shoe, specific gravity, pumping rate, cement volume, theoretical fill depth, actual tag depth, percent fill and an explanation for differences in theoretical versus actual fill.

5.3 Operational Testing Request

After all construction and testing is completed and the FDEP has issued the Class I Injection Well Construction and Testing Permit, a request to begin Operational Testing of the OLI Class I Injection Well System will be submitted to the TAC. In accordance with Chapter 62-528 FAC the request will include the following information:

- 1. Certification of completion of well construction and well construction drawings including a geologic cross section depicting the formations, the base of the USDW and the boundaries of the confining and injection zone intervals.
- 2. Data from the short term injection testing with interpretation, conducted pursuant to Rules 62 528.405(3)(a), 62 .528.410(7)(e) and 62 528.450(3)(a) 2., F.A.C.

- 3. A copy of the borehole television/imaging survey with interpretation.
- 4. Lithologic and geophysical logs and interpretations.
- 5. Certification of mechanical integrity and interpretation of the test data.
- 6. A description of the injection procedures including the anticipated maximum pressure and flow rate at which the well will be operated under normal and emergency conditions.
- 7. Information concerning the compatibility of the injected waste with fluids and minerals in the receiving zone.
- 8. Surface equipment (including pumping station, piping, pressure gauges and flow meters and all appurtenances) completion certified by the engineer of record. Calibration certificates for pressure gauges and flow meters shall also be submitted.
- 9. Signed and sealed record "as-built" engineering drawings of the injection well system, including all well construction, the pump station, subsurface and surface piping and equipment and appurtenances. These drawings shall include the location of sampling points for injectate and the dual monitor zone samples.
- 10. Draft operating and maintenance manual, including a description of water hammer control, with emergency discharge management plan procedures. The emergency discharge system must be fully constructed and operational prior to approval of operational testing.
- 11. The demonstration of confinement. Confirmation of confinement and delineation of the injection and confining sequences utilizing data collected during the drilling, logging and testing of the injection well and dual zone monitor well. The report shall include the results of hydraulic testing (permeability, porosity, etc.). This submittal shall be prepared, signed and sealed by a Florida Registered Professional Geologist or appropriately experienced Professional Engineer.
- 12. Wastestream analysis, sampled within 6 months of the request to operate the well, for primary and secondary drinking water standards (62-550, F.A.C.) and minimum criteria.

6.0 REFERENCES

Aponte, V.Q., Koutun, K., and Whitley, J.F.,1996, "Analysis of Tests of Subsurface Injection, Storage, and Recovery of Freshwater in the Lower Floridan Aquifer, Okeechobee County, Florida," U.S. Geological Survey, Open-File Report 95-765.

Applin, P.L. and Applin, E.R., 1944, "Regional Subsurface Stratigraphy and Structure of Florida and Southern Georgia", American Assoc. of Petroleum Geologists Bulletin, v.28, no. 12.

ASCE, 0-87262-931-7, 1992, "Pressure Pipeline Design for Water and Wastewater," Second Edition.

ASTM Designation D 3739-94, 2003, "Standard Practice for Calculation and Adjustment of the Langelier Saturation Index for Reverse Osmosis".

ASTM Designation A 53/A 53M-02, 2002, "Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless."

ASTM Designation A 139-00, 2000, "Standard Specification for Electric-Fusion (Arc)-Welded Steel Pipe (NPS 4 and Over)."

ASTM Designation D 2996-01, 2001, "Standard Specification for Filament-Wound "FiberGlass" (Glass-Fiber-Reinforced Thermosetting-Resin) Pipe."

ASTM Designation C 150-05, 2005, "Standard Specification for Portland Cement."

AWWA, A 100-90, 1966, "Standard for Deep Wells.".

Bradner, L.A., 1994, "Ground-Water Resources of Okeechobee County, Florida", U.S. Geological Survey, Water-Resources Investigations Report 92-4166.

CH2M Hill, 1979, "Hydrogeologic Report, Hercules Injection Test Well and Multizone Monitor Well, Indian River Plant", Consultants Report.

CH2M Hill, 1993, "Engineering Report on the Construction and Testing of the Injection Well and Monitoring Well at the Okeechobee Utilities Authority Wastewater Treatment Plant", (Report #SEF30361.D2).

CH2MHILL, 1989, "Construction and Testing of the Aquifer Storage Recovery (A&R) Demonstration Project for Lake Okeechobee, Florida," Engineering Report Volume 1.

Chen, C.S., 1965, "The Regional Lithostratigraphic Analysis of Paleocene and Eocene Rocks of Florida", Florida Geological Survey Bulletin No. 45.

Cooke, C.W., 1945, "Geology of Florida" Florida Geological Survey Bulletin No.29.

Dall, W.H. and Harris, G.D., 1892, "Correlation Papers, Neocene", U.S. Geological Survey Bulletin 84.

Duncan, Joel G., William L. Evans III, and Koren L. Taylor, 1994a. "Geologic Framework of the Lower Floridan Aquifer System, Brevard County, Florida", Florida Geological Survey Bulletin No. 64.

Duncan, Joel G., William L. Evans III, Joseph G. Aylor Jr., and Li Li, 1994b, "Geologic Framework of the Floridan Aquifer System, St. Lucie, Martin and Palm Beach Counties, Florida". DEP Contract No. WM514, Florida Geological Survey.

Florida Administrative Code (F.A.C.), Chapter 62-550, Drinking Water Standards, Monitoring, and Reporting.

Florida Administrative Code (F.A.C.), Chapter 62-528, Underground Injection Control.

GeoSyntec Consultants and L.S. Sims & Associates, Inc., 2005, "Report of Well Construction/Testing and Request for Operational Testing Approval, St. Lucie West Services District, FDEP Permit No. 206302-001-UC.," Consultants Report.

Geraghty & Miller, Inc., 1991, "Construction and Testing of Injection Well System #1, City of Pahokee Wastewater Treatment Plant, Palm Beach County, Florida," Consultants Report.

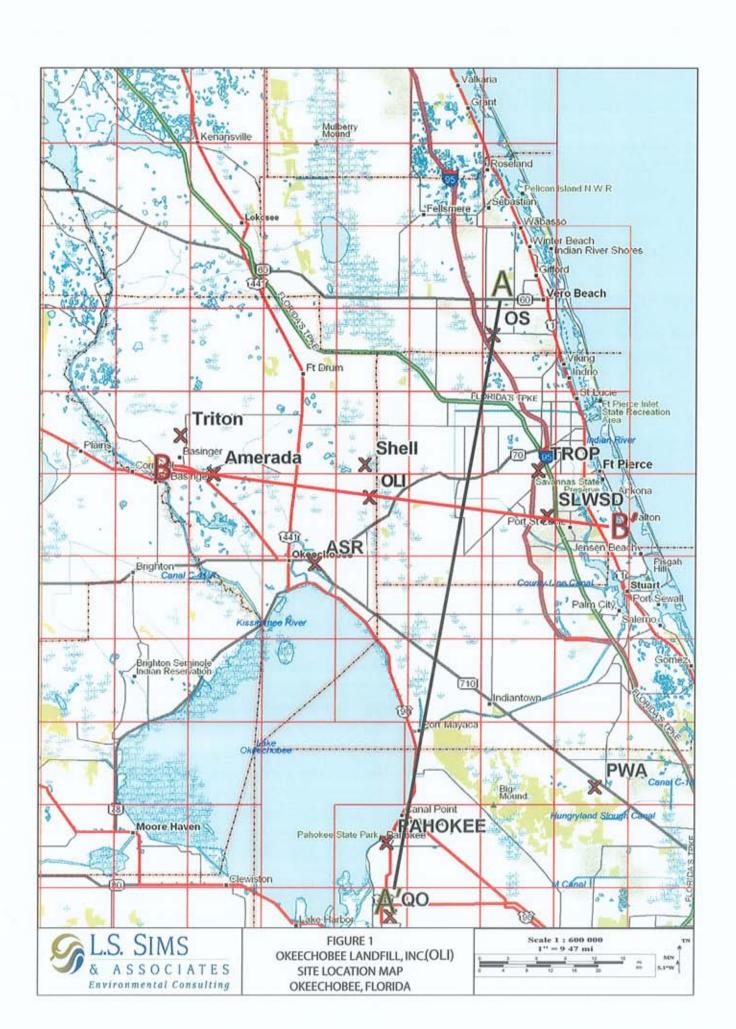
Lidz, B.H., 1981, "Lithologic Log: shell-Sloan #34-1, Okeechobee County, Florida," U.S. Department of the Interior, Geological Survey, Open-File Report 81-453.

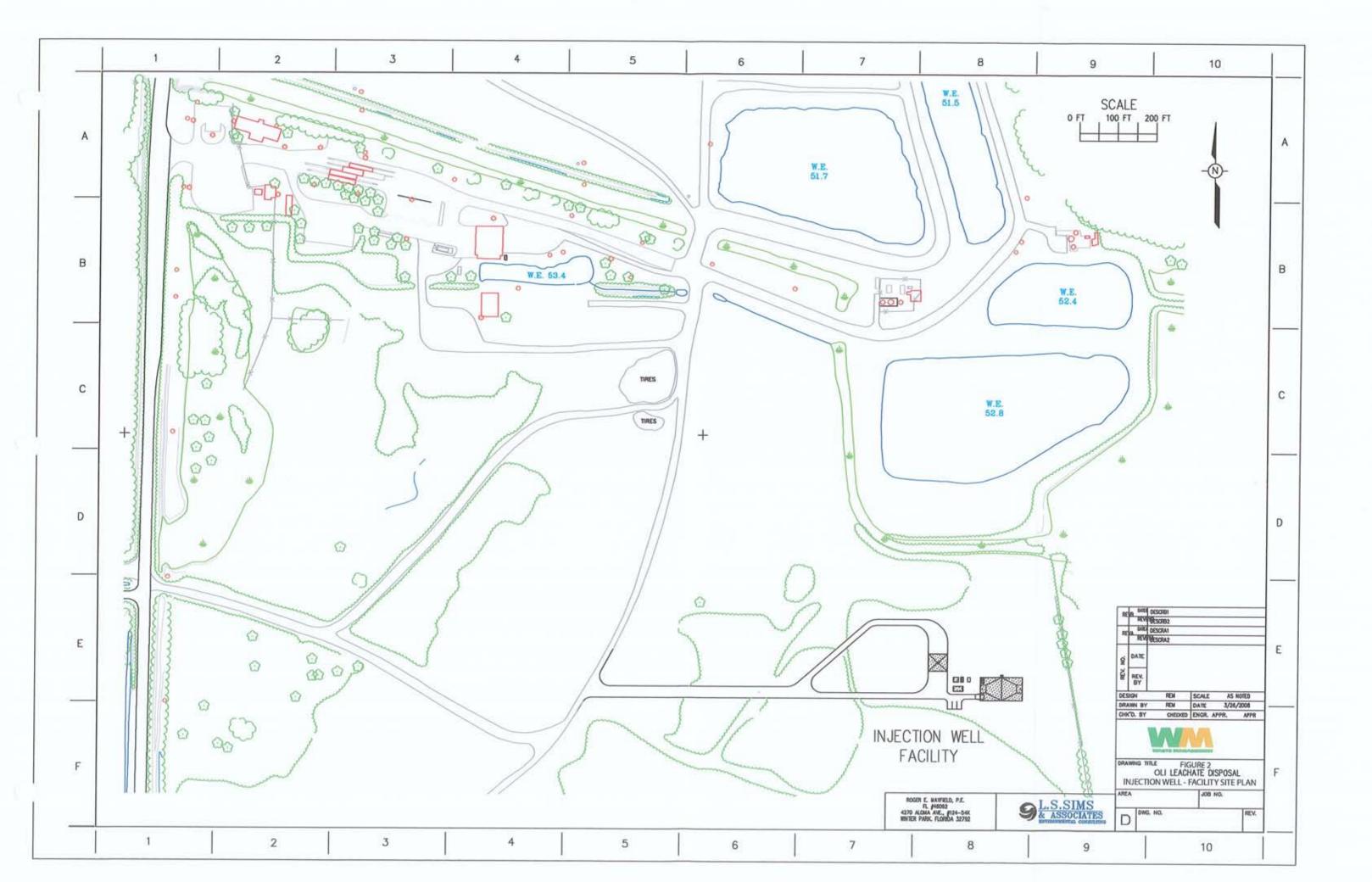
- L.S. Sims & Associates, Inc., 2005, "Operational Testing Request, Tropicana Products, Inc., Class I Injection Well System, Fort Pierce, Florida," Consultants Report.
- L.S. Sims & Associates, Inc., 2006 Exploratory/Class I Injection Well, Construction & Testing Permit Application, Okeechobee Landfill, Inc., Okeechobee, Florida
- L.S. Sims & Associates, Inc., 2007 Dual Zone Deep Monitor Well, Construction & Testing Permit Application, Okeechobee Landfill, Inc., Okeechobee, Florida
- L.S. Sims & Associates, Inc., 2008 Final Casing Point Report, Exploratory Well EW-1, Okeechobee Landfill, Inc., Okeechobee, Florida

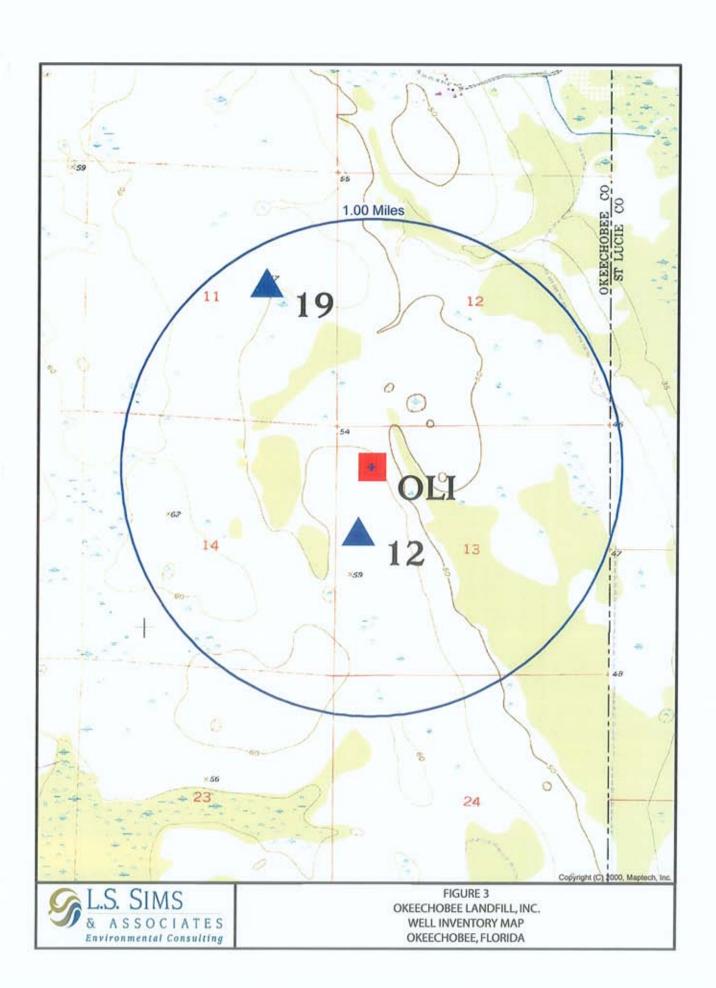
Mansfield, W.C., 1939, "Notes on the Upper Tertiary and Pleistocene Mollusks of Peninsular Florida", Florida Geological Survey Bulletin 15.

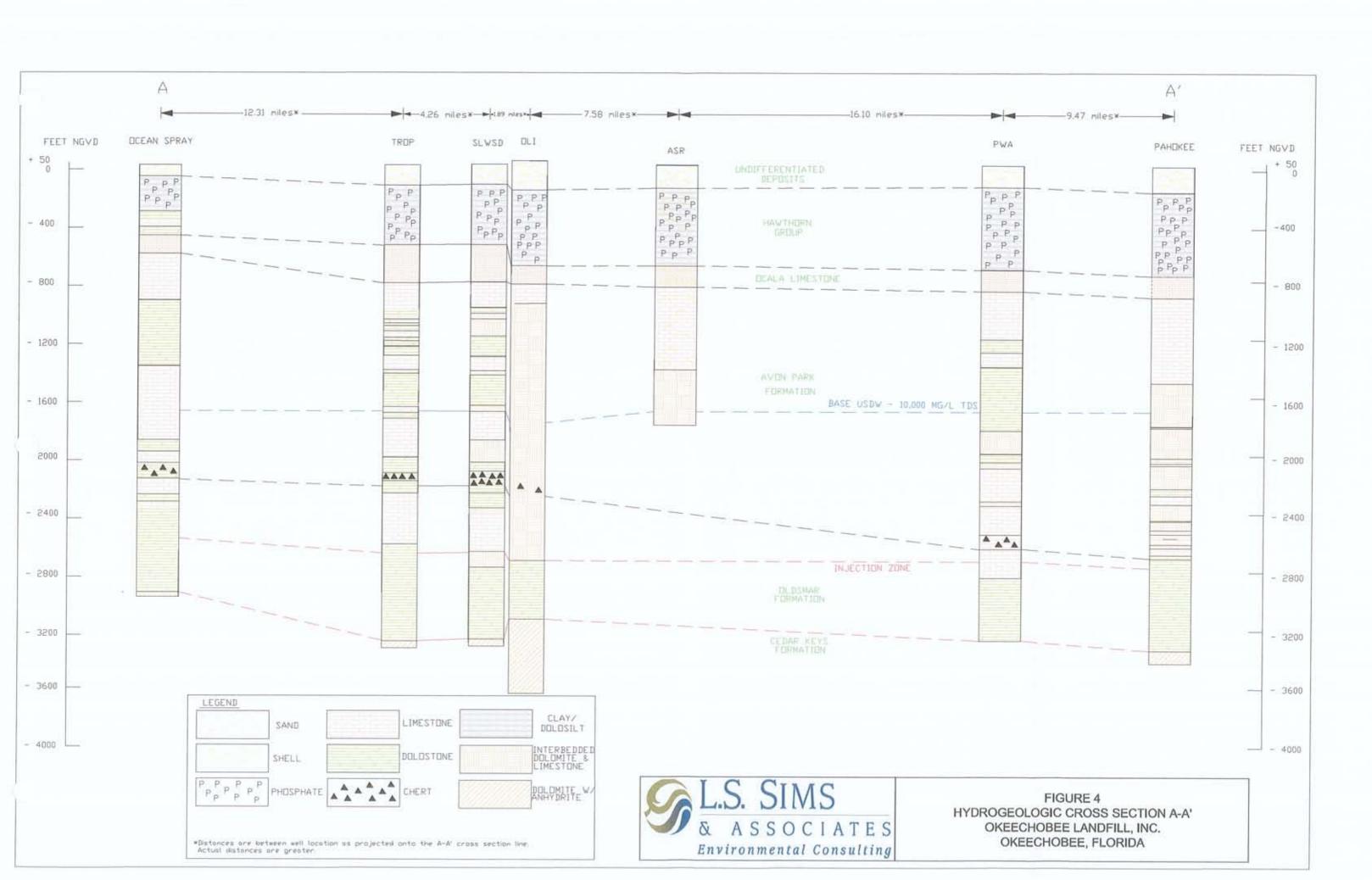
Miller, J.A., 1986, "Hydrogeologic Framework of the Floridan Aquifer System in Florida and in parts of Georgia, Alabama, and South Carolina", U.S. Geological Survey Professional Paper 1403-B.

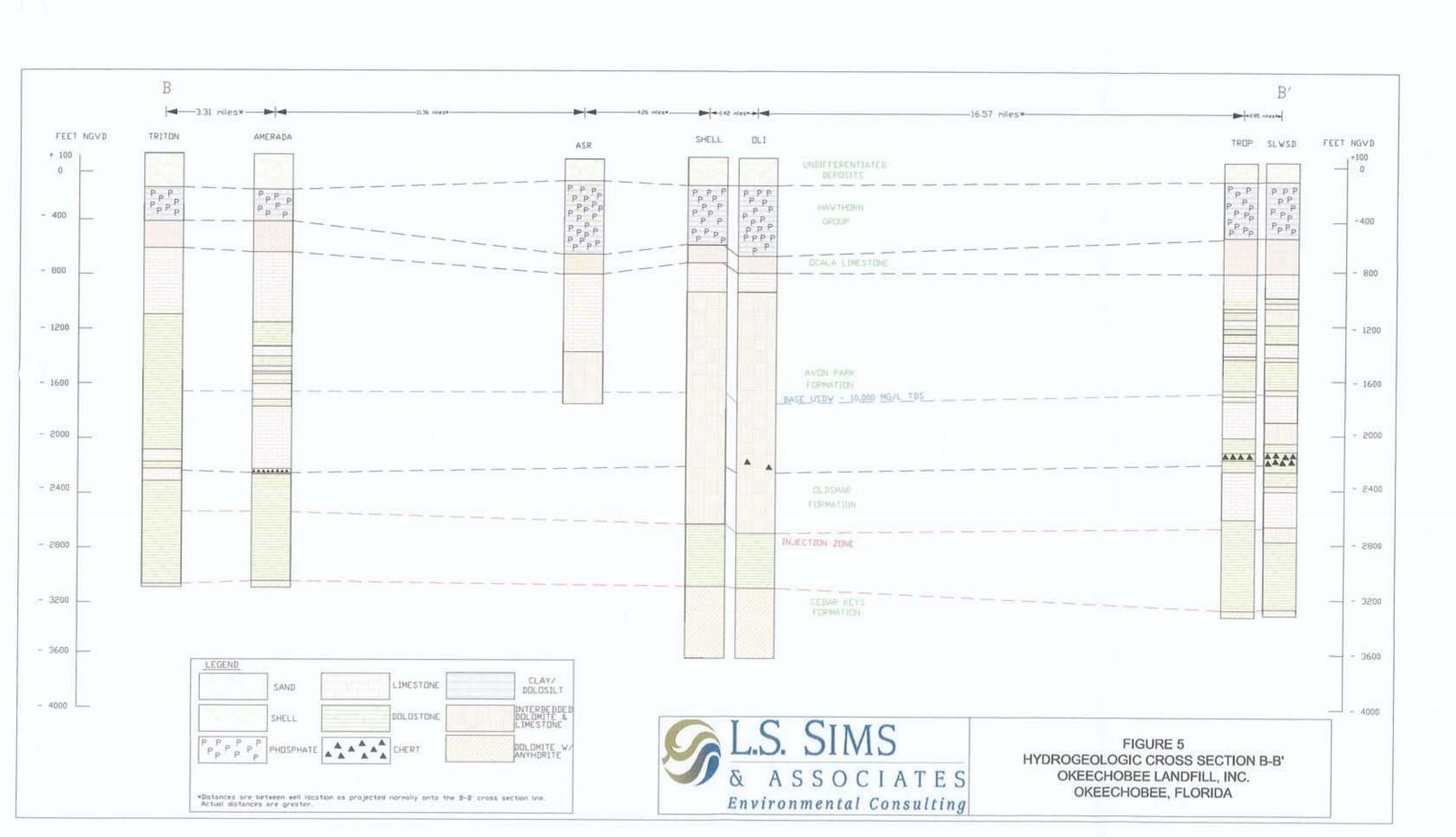
Puri, H.S. and Vernon, R.O., 1965, "Summary of the Geology of Florida and A-Guidebook to the Classic Exposures", Florida Geological Survey Special Pub. No. 5.

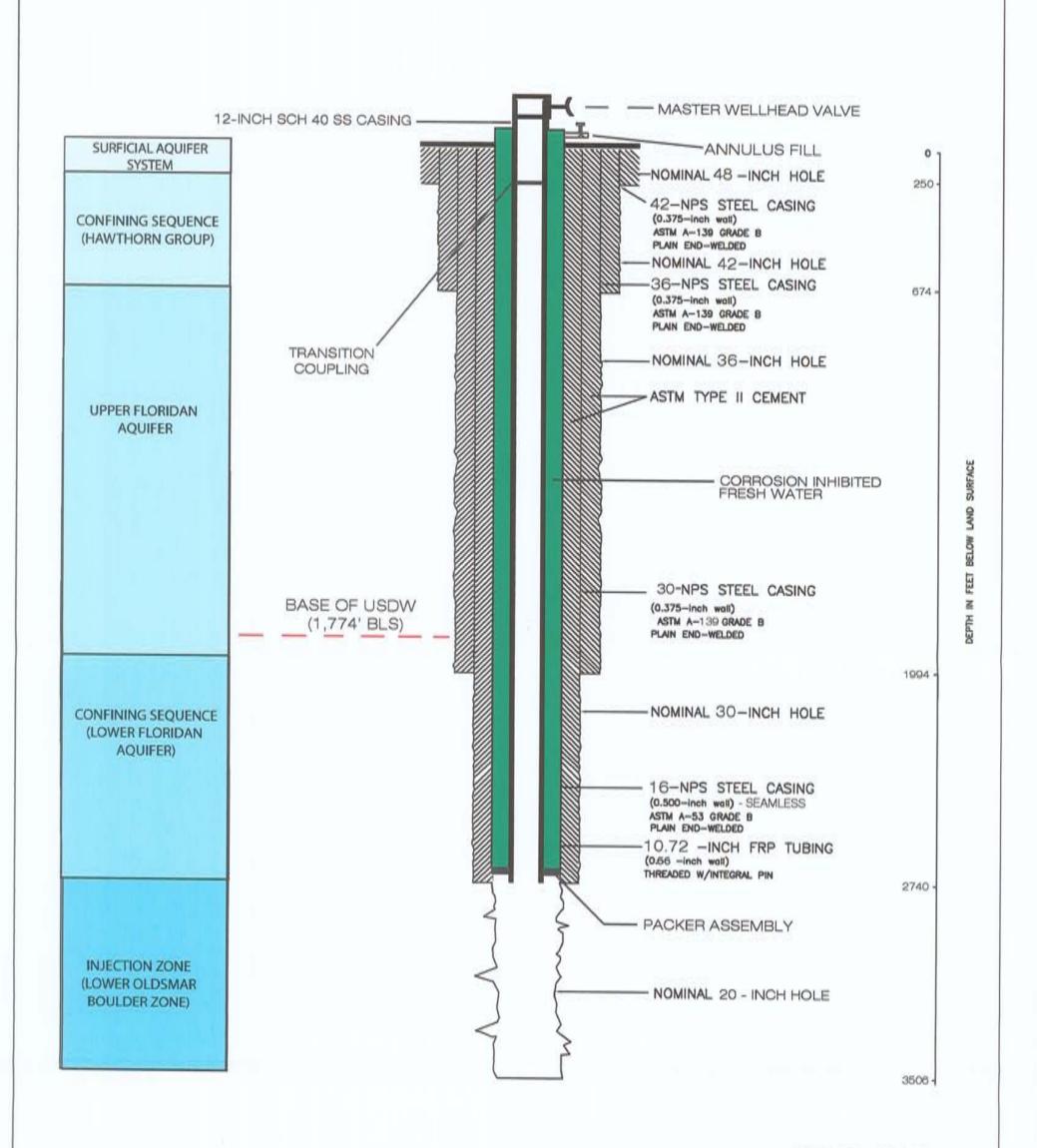

Scott, T.M., 1988, "The Lithostratigraphy of the Hawthorn Group (Miocene) of Florida", Florida Geological Survey Bulletin 59.

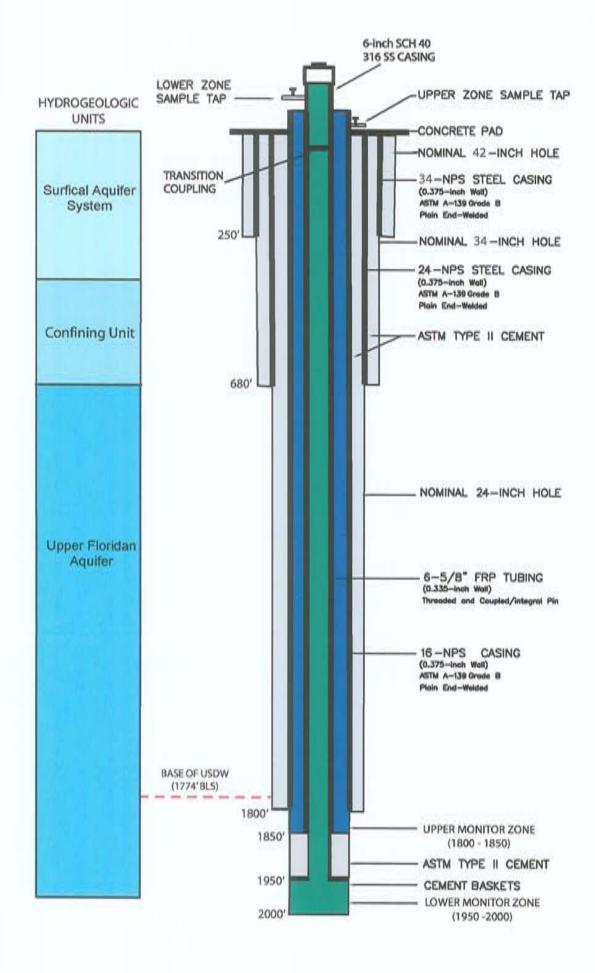

Spechler, R.M., Murray, L.C., Bradner, L.A. and Phelps, G.G., 1991, "Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, September 1990", U.S. Geological Survey Water-Resources Investigations Open-File Report 91-190.


Vechiolli, J., and others, 1986, "Hydrostratigraphic Nomenclature of Florida". Florida Bureau of Geology Special Publication No. 12.

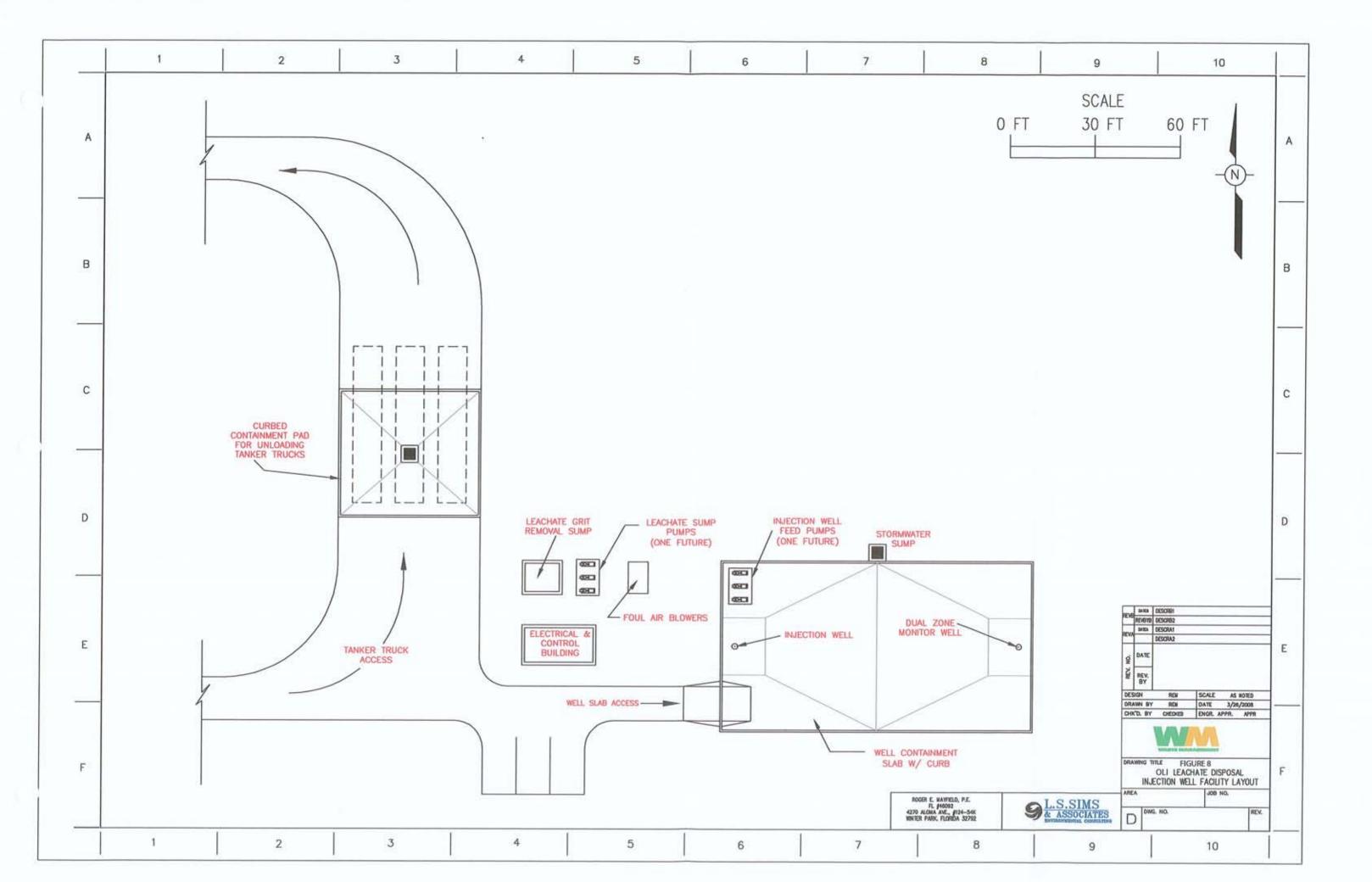

Warner, D.L., and Lehr, J.H., 1981, "Subsurface Wastewater Injection", Premier Press, Berkeley, California.

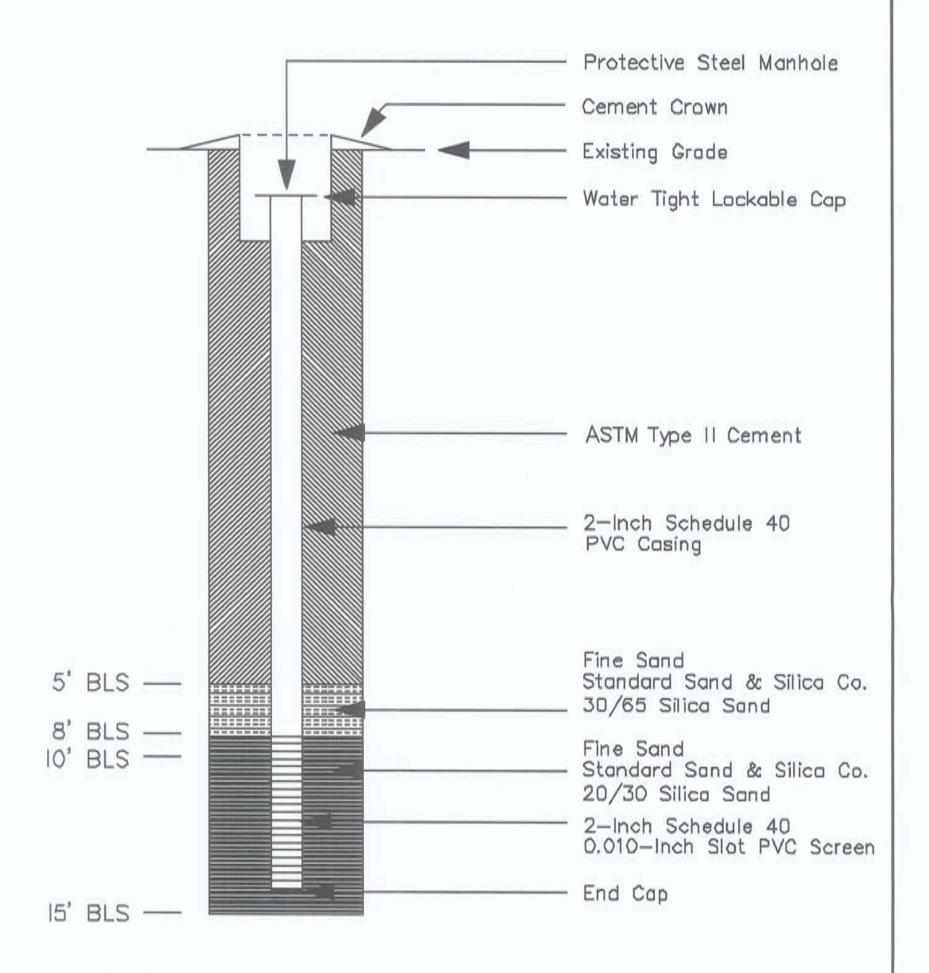

White, W.A., 1970, "The Geomorphology of the Florida Peninsula", Florida Bureau of Geology Bulletin 51.





NOT TO SCALE




FIGURE 6
CLASS 1 INJECTION WELL CONSTRUCTION DETAILS
OKEECHOBEE LANDFILL, INC.
OKEECHOBEE, FLORIDA

NOT TO SCALE

BLS = BELOW LAND SURFACE

NOTE: NOT TO SCALE

Florida Department of Environmental Protection

Twin Towers Office Bldg., 2600 Blair Stone Road, Tallahassee, Florida 32399-2400 DEP Form No: 62-528 900(1)
Form Title: Application to Construct/
Operate/Abandon Class I, III,

or V Injection Well Systems

Effective Date: DEP Application No.:

(Filled in by DEP)

APPLICATION TO CONSTRUCT/OPERATE/ABANDON CLASS I, III, OR V INJECTION WELL SYSTEMS

Part I. Directions

- A. All applicable items must be completed in full in order to avoid delay in processing this application. Where attached sheets or other technical documentation are utilized in lieu of the blank space provided, indicate appropriate cross-reference in the space and provide copies to the Department in accordance with C. below. Where certain items do not appear applicable to the project, indicate N/A in the appropriate spaces.
- B. All information is to be typed or printed in ink.
- C. Four (4) copies of this application and four (4) copies of supporting information such as plans, reports, drawings and other documents shall be submitted to the appropriate District/Subdistrict office. An engineering report is also required to be submitted to support this application pursuant to the applicable sections of Rule 62-528, F.A.C. The attached list* shall be used to determine completeness of supporting data submitted or previously received. A check for the application fee in accordance with Rule 62-4.050, F.A.C., made payable to the Department shall accompany the application.
- D. For projects involving construction, this application is to be accompanied by four (4) sets of engineering drawings, specifications and design data as prepared by a Professional Engineer registered in Florida, where required by Chapter 471, Florida Statutes.
- E. Attach 8 1/2" x 11" USGS site location map indicating township, range and section and latitude/longitude for the project.

PART II. General Information

Α.	Applicant Name Tim Hawki	ns	·	Title	Area	Vice 1	President .	
	Address 2700 NW 48th Stre	et						
	City Pompano Beach		_ State	Florida		Zip	33073	
	Telephone Number (954) 98	34-2035						
В.	Project Status: 🛛 New	☐ Exis	sting					
	☐ Modification (specify)			· · · · · · · · · · · · · · · · · · ·				
"Eng Oper	ineering and Hydrogeologic ate and Abandon Class I, I	Data Requi II, or V Inje	red for ection W	Support of ells"	Applica	ation	to Construct,	
C.	Well Type: Explorator	y Well 🛛	Test/I	njection Wel	1			

DEP Form No:
Form Title: Application to Construct/
Operate/Abandon Class I, III.
or V Injection Well Systems

Effective Date:
DEP Application No:
(Filled in by DEP)

D. Type of Permit Application
Class I Test/Injection Well Construction and Testing Permit
Class I Well Operation Permit
Class I Well Operation Repermitting
☐ Class I Well Plugging and Abandonment Permit
Class III Well Construction/Operation/Plugging and Abandonment Permit
Class I Exploratory Well Construction and testing Permit
Class V Well Construction Permit
Class V Well Operation Permit
Class V Well Plugging and Abandonment Permit
☐ Monitor Well Only
E. Facility Identification:
Name Okeechobee Landfill, Inc.
Facility Location: Street 10800 NE 128th Avenue
City Okeechobee County Okeechobee
SIC Code(s) 495303
F. Proposed facility located on Indian Lands: Yes \(\sumber\) No \(\sumber\)
G. Well.Identification:
Well No. 1 of 1 Wells (total #)
Purpose (Proposed Use) Disposal of landfill leachate
Well Location: Latitude: N27° 20' 21" Longitude: W80° 41' 34" (attach separate sheet(s), if necessary, for multiple wells)
Subpart B. General Project Description:
H. General Project Description: Describe the nature, extent and schedule of the injection well project. Refer to existing and/or future pollution control facilities, expected improvement in performance of the facilities and state whether the project will result in full compliance with the requirements of Chapter 403, F.S., and all rules of the Department. Attach additional sheet(s) if necessary or cross-reference the engineering report.
- Convert Exploratory Well to Test/Injection well. See Construction & Testing Permit
Application Support Document, L.S. Sims & Associates, Inc., October, 2008

ſ		·
ł	#13 172 mm 176 p	Established (1)
j	Charter Turbuser - Appl	Contract of the Contract of th
Ē	A CONTRACTOR OF THE PROPERTY O	"Service of the service of the servi
í		arest and well svetting
	ist frettive tassa	
ı	tesP Smot coardion Sp.	:
]		I Jan II I Jan

PART III. Statement by Applicant and Engineer

75	Xerro.	٠	4				Ŀ
P4.	App	٠.		4.	a_{i}	77	L.

I, the sweer/authorized representatives of Okeachoose Landfill, Inc. cortify under penalty of law that I have personally examined and am immaliar with the information submitted in this document and all attachments and followed in this document and all attachments and followed in the information, Landback of those individuals immediately responsible for obtaining the information, I believe that the information is true, accurate, and complete. I am make that there are significant penalties for submitting fator information, including the possibility of fine and imprisonment. I understand that this certification also applies to all subsequent reports submitted pursuant to this permit. Where construction is involved, I agree to retain the design engineer, or other professional engineer registered in Florids, to provide inspection of construction in accordance with Rule 62-528.455(1)(c), F.A.C.

A Charles and the control of the con	80-17-01
3 Igned	Datle
∇	
Tim Hawkins, Area Vice President	(954) 984-2035
Name and Title (Please Type)	Telephone Number

B. Professional Engineer Registered in Florida

This is to certify that the engineering features of this injection well have been designed/examined by me and found to be in conformity with modern engineering principles applicable to the disposal of pollutants characterized in the permit application. There is reasonable assurance, in my professional judgement, that the well, when properly maintained and operated, will discharge the effluent in compliance with all applicable statutes of the State of Florida and the rules of the Cepartment. It is also agreed that the undersigned will furnish the applicant a set of instructions for proper maintenance and operation of the well.

Signed

Dwilos

(Please Afriz Beal)

Roger E. Mayfield, P.E. Name (Please Type)

REM Associates Inc.

4270 ALOMA AUF #124-165, Winter Park FL 32792

Florida Registrativo No. 0046092 Dato 11406465 Chone No. 19411 811-1121

^{*}Attach a Letter of Authorization.

DEP Form No: Application to Construct/
Operate/Abandon Class I, III,
or V Injection Well Systems

Effective Date:
DEP Application No.:

(Filled in by DEP)

ENGINEERING AND HYDROLOGIC DATA REQUIRED FOR SUPPORT OF APPLICATION TO CONSTRUCT, OPERATE, AND ABANDON CLASS I, III, OR V INJECTION WELL SYSTEMS

The following information shall be provided for each type of permit application.

A. CLASS I TEST/INJECTION WELL CONSTRUCTION AND TESTING PERMIT

- 1. A map showing the location of the proposed injection wells of well field area for which a permit is sought and the applicable area of review. Within the area of review, the map must show the number or name, and location of all producing wells, injection wells, abandoned wells, dry holes, surface bodies of water, springs, public water systems, mines (surface and subsurface), quarries, water wells and other pertinent surface features including residences and roads. The map should also show faults, if known or suspected. Only information of public record and pertinent information known to the applicant is required to be included on this map.
- 2. A tabulation of data on all wells within the area of review which penetrate into the proposed injection zone, confining zone, or proposed monitoring zone. Such data shall include a description of each well's type, construction, date drilled, location, depth, record of plugging and/or completion, and any additional information the Department may require.
- 3. Maps and cross sections indicating the general vertical and lateral limits within the area of review of all underground sources of drinking water, their position relative to the injection formation and the direction of water movement, where known, in each underground source of drinking water which may be affected by the proposed injection.
- 4. Maps and cross sections detailing the hydrology and geologic structures of the local area.
- 5. Generalized maps and cross sections illustrating the regional geologic setting.
- 6. Proposed operating data.
 - (a) Average and maximum daily rate and volume of the fluid to be injected;
 - (b) Average and maximum injection pressure; and,
 - (c) Source and an analysis of the chemical, physical, radiological and biological characteristics of injection fluids.
- 7. Proposed formation testing program to obtain an analysis of the chemical, physical and radiological characteristics of and other information on the injection zone.
- 8. Proposed stimulation program.
- 9. Proposed injection procedure.
- 10. Engineering drawings of the surface and subsurface construction details of the system.

DEP Form No:

Form Title: Application to Construct/
Operate/Abandon class I, III,
or V Injection Well Systems
Effective Date:
DEP Application No:

(Filled in by DEP)

- 11. Contingency plans to cope with all shut-ins or well failures, so as to protect the quality of the waters of the State as defined in Rule 62-3 and 62-520, F.A.C., including alternate or emergency discharge provisions.
- 12. Plans (including maps) and proposed monitoring data to be reported for meeting the monitoring requirements in Rule 62-528.425, F.A.C.
- 13. For wells within the area of review which penetrate the injection zone but are not properly completed or plugged, the corrective action proposed to be taken under Rule 62-528.300(5), F.A.C.
- 14. Construction procedures including a cementing and casing program, logging procedures, deviation checks, proposed methods for isolating drilling fluids from surficial aquifers, proposed blowout protection (if necessary), and a drilling, testing and coring program.
- 15. A certification that the applicant has ensured, through a performance bond or other appropriate means, the resources necessary to close, plug or abandon the well as required by Rule 62-528.435(9), F.A.C.

B. CLASS I INJECTION WELL OPERATION PERMIT

- 1. A report shall be submitted with each application for a Class I Well operating permit, which shall include, but not be limited to, the following information:
 - (a) Results of the information obtained under the construction permit described in A. CLASS I TEST/INJECTION WELL CONSTRUCTION AND TESTING PERMIT, including:
 - (1) All available logging and testing program data and construction data on the well or well field;
 - (2) A satisfactory demonstration of mechanical integrity for all new wells pursuant to Rule 62-528.300(6), F.A.C;
 - (3) The actual operating data, including injection pressures versus pumping rates where feasible, or the anticipated maximum pressure and flow rate at which the permittee will operate, if approved by the Department;
 - (4) The actual injection procedure;
 - (5) The compatibility of injected waste with fluids in the injection zone and minerals in both the injection zone and the confining zone; and,
 - (6) The status of corrective action on defective wells in the area of review.
 - (b) Record drawings, based upon inspections by the engineer or persons under his direct supervision, with all deviations noted;
 - (c) Certification of completion submitted by the engineer of record;
 - (d) If requested by the Department, operation manual including emergency procedures;

DEP Form No: 62-528.900(1)
Form Title: Application to Construct/
Operate/Abandon Class I, III,
or V Injection Well Systems
Effective Date:
DEP Application No.: (Filled in by DEP)

- (e) Proposed monitoring program and data to be submitted;
- (f) Proof that the existence of the well has been recorded on the surveyor's plan at the county courthouse; and,
- (g) Proposed plugging and abandonment plan pursuant to Rule 62-528.435(2), F.A.C.

C. CLASS I WELL OPERATION REPERMITTING

- 1. An updated map showing the location of the injection wells or well field area for which a permit is sought and the applicable area of review. Within the area of review, the map must show the number or name, and location of all producing wells, injection wells, abandoned wells, dry holes, surface bodies of water, springs, public water systems, mines (surface and subsurface), quarries, water wells and other pertinent surface features including residences and roads. The map should also show faults, if known or suspected. Only information of pubic record and pertinent information known to the applicant is required to be included on this map.
- 2. A tabulation of data on all wells within the area of review which penetrate into the injection zone, confining zone, or monitoring zone. Such data shall include a description of each well's type, construction, date drilled, location, depth, record of plugging and/or completion, and any additional information the Department may require.
- 3. Maps and cross sections indicating the general vertical and lateral limits within the area of review of all underground sources of drinking water, their position relative to the injection formation and the direction of water movement, where known, in each underground source of drinking water which may be affected by the injection.
- 4. Maps and cross sections detailing the hydrology and geologic structures of the local area.
- 5. Generalized maps and cross sections illustrating the regional geologic setting.
- 6. Contingency plans to cope with all shut-ins or well failures, so as to protect the quality of the waters of the State as defined in Rule 62-3 and 62-520, F.A.C., including alternate or emergency discharge provisions.
- 7. For wells within the area of review which penetrate the injection zone but are not properly completed or plugged, the corrective action proposed to be taken under Rule 62-528.300(5), F.A.C.
- 8. A certification that the applicant has ensured, through a performance bond or other appropriate means, the resources necessary to close, plug or abandon the well as required by Rule 62-528.435(9), F.A.C.
- 9. A report shall be submitted with each application for repermitting of Class I Well operation which shall include the following information:
 - (a) All available logging and testing program data and construction data on the well or well field;

DEP Form No: 62.528.990(1)
Form Title: Application to Construct/
Operate/Abandon Class I, III,
or V Injection Well Systems
Effective Date:
DEP Application No.: (Filled in by DEP)

- (b) A satisfactory demonstration of mechanical integrity for all wells pursuant to Rule 62-528.300(6), F.A.C.;
- (c) The actual operating data, including injection pressures versus pumping rates where feasible, or the anticipated maximum pressure and flow rate at which the permittee will operate, if approved by the Department;
- (d) The actual injection procedure;
- (e) The compatibility of injected waste with fluids in the injection zone and minerals in both the injection zone and the confining zone;
- (f) The status of corrective actin on defective wells in the area of review;
- (g) Record drawings, based upon inspections by the engineer or persons under his direct supervision, with all deviations noted;
- (h) Certification of completion submitted by the engineer of record;
- (i) An updated operation manual including emergency procedures;
- (j) Proposed revisions to the monitoring program or data to be submitted; and,
- (k) Proposed plugging and abandonment plan pursuant to Rule 62-528.435(2), F.A.C.

D. CLASS I WELL PLUGGING AND ABANDONMENT PERMIT

- 1. The reasons for abandonment.
- 2. A proposed plan for plugging and abandonment describing the preferred and alternate methods, and justification for use.
 - (a) The type and number of plugs to be used;
 - (b) The placement of each plug including the elevation of the top and bottom;
 - (c) The type and grade and quantity of cement or any other approved plugging material to be used; and,
 - (d) The method for placement of the plugs.
- 3. The procedure to be used to meet the requirements of Rule 62-528.435, F.A.C.

DEP Form No:

Form Title: Application to Construct/
Operate/Abandon Class I, III,
or V Injection Well Systems

Effective Date:
DEP Application No.:

(Filled in by DEP)

E. CLASS III WELLS CONSTRUCTION/OPERATION/PLUGGING AND ABANDONMENT PERMIT

Construction Phase

- 1. A map showing the location of the proposed injection wells or well field area for which a permit is sought and the applicable area of review. Within the area of review, the map must show the number or name, and location of all producing wells, injection wells, abandoned wells, dry holes, surface bodies of water, springs, public water system, mines (surface and subsurface), quarries, water wells and other pertinent surface features including residences and roads. The map should also show faults, if known or suspected. Only information of public record and pertinent information known to the applicant is required to be included on this map.
- 2. A tabulation of data on all wells within the area of review which penetrate into the proposed injection zone, confining zone, or proposed monitoring zone. Such data shall include a description of each well's type, construction, date drilled, location, depth, record of plugging and/or completion, and any additional information the Department may require.
- 3. Maps and cross sections indicating the general vertical and lateral limits within the area of review of all underground sources of drinking water, their position relative to the injection formation and the direction of water movement, where known, in each underground source of drinking water which may be affected by the proposed injection.
- 4. Maps and cross sections detailing the hydrology and geologic structures of the local area.
- 5. Generalized maps and cross sections illustrating the regional geologic setting.
- 6. Proposed operating data:
 - (a) Average and maximum daily rate and volume of the fluid to be injected;
 - (b) Average and maximum injection pressure; and,
 - (c) Source and an analysis of the chemical, physical, radiological and biological characteristics of injection fluids, including any additives.
- 7. Proposed formation testing program to obtain an analysis of the chemical, physical and radiological characteristics of and other information on the injection zone.
- 8. Proposed stimulation program.
- 9. Proposed injection procedure.
- 10. Engineering drawings of the surface and subsurface construction details of the system.

DEP Form No: 62~528.900(1)
Form Title: Application to Construct/
Operate/Abandon Class I, III,
or V Injection Well Systems
Effective Date:
DEP Application No.:
(Filled in by DEP)

- 11. Contingency plans to cope with all shut-ins or well failures or catastrophic collapse, so as to protect the quality of the waters of the State as defined in Rule 62-3 and 62-520, F.A.C., including alternate or emergency discharge provisions.
- 12. Plans (including maps) and proposed monitoring data to be reported for meeting the monitoring requirements in Rule 62-528.425, F.A.C.
- 13. For wells within the area of review which penetrate the injection zone but are not properly completed or plugged, the corrective action proposed to be taken under Rule 62-528.300(5), F.A.C.
- 14. Construction procedures including a cementing and casing program, logging procedures, deviation checks, proposed methods for isolating drilling fluids from surficial aquifers, and a drilling, testing and coring program.
- 15. A certificate that the applicant has ensured, through a performance bond or other appropriate means, the resources necessary to close, plug or abandon the well as required by Rule 62-528.435(9), F.A.C.
- 16. Expected changes in pressure, native fluid displacement, direction of movement of injection fluid.
- 17. A proposed monitoring plan, which includes a plan for detecting migration of fluids into underground sources of drinking water, a plan to detect water quality violation in the monitoring wells, and the proposed monitoring data to be submitted.

Operation Phase

- 1. The following information shall be provided to the Department prior to granting approval for the operation of the well or well field:
 - (a) All available logging and testing program data and construction data on the well or well field;
 - (b) A satisfactory demonstration of mechanical integrity for all new wells pursuant to Rule 62-528.300(6), F.A.C.;
 - (c) The actual operating data, including injection pressure versus pumping rate where feasible, or the anticipated maximum pressure and flow rate at which the permittee will operate, if approved by the Department;
 - (d) The results of the formation testing program;
 - (e) The actual injection procedure; and,
 - (f) The status of corrective action on defective wells in the area of review.

Plugging and abandonment Phase

1. The justification for abandonment.

DEP Form No:
Form Title: Application to Construct/
Operate/Abandon Class I, III,
or V Injection Well Systems
Effective Date:
DEP Application No.:
(Filled in by DEP)

- 2. A proposed plan for plugging and abandonment describing the preferred and alternate methods.
 - (a) The type and number of plugs to be used;
 - (b) The placement of each plug including the elevation of the top and bottom;
 - (c) The type and grade and quantity of cement or any other approved plugging material to be used; and,
 - (d) The method for placement of the plugs.
- 3. The procedure to be used to meet the requirements of Rule 62-528.435, F.A.C.

F. EXPLORATORY WELL CONSTRUCTION AND TESTING PERMIT

- 1. Conceptual plan of the injection project. Include number of injection wells, proposed injection zone, nature and volume of injection fluid, and proposed monitoring program.
- 2. Preliminary Area of Review Study. Include the proposed radius of the area of review with justification for that radius. Provide a map showing the location of the proposed injection well or well field area for which a permit is sought and the applicable area of review. Within the area of review, the map must show the number or name, and location of all producing wells, injection wells, abandoned wells, dry holes, surface bodies of water, springs, public water systems, mines (surface and subsurface), quarries, water wells and other pertinent surface features including residences and roads. The map should also show faults, if known or suspected. Only information of public record and pertinent information known to the applicant is required to be included on this map.
- 3. Proposed other uses of the exploratory well.
- 4. Drilling and testing plan for the exploratory well. The drilling plan must specify the proposed drilling program, sampling, coring, and testing procedures.
- 5. Abandonment Plan.

DEF Form No: 62-528.900(1)
Form Title: Application to Construct/
Operate/Abandon Class I, III,
or V Injection Well Systems
Effective Date:
DEF Application No.:

(Filled in by DEF)

G. CLASS V WELL CONSTRUCTION PERMIT

(This form should be used for Class V Wells instead of Form 62-528.900(3), F.A.C., when there is a need for a Technical Advisory Committee and an engineering report.)

1. Type an	d number of proposed Class V Wells:
	Wells Receiving Domestic Waste
	Desalination Process Concentrate Wells (Reverse Osmosis, etc.)
	Aquifer Storage and Recovery Wells
	Aquifer Remediation Wells
	Salt-water Intrusion Barrier Wells
	Cooling Water Return Flow Wells Open-looped System
	Subsidence Control Wells
	Sand Backfill Wells
	Experimental Technology Wells
	Wells used to inject spent brine after halogen recovery
	Radioactive Waste Disposal Wells*
	Borehole Slurry Mining Wells
	Other non-hazardous Industrial or Commercial Disposal Wells
	(explain)
<u></u>	Other (explain)

*Provided the concentrations of the waste do not exceed drinking water standards contained in Chapter 62-550, F.A.C.

2. Project Description:

- (a) Description and use of proposed injection system;
- (b) Nature and volume of injected fluid (the Department may require an analysis including bacteriological analysis) in accordance with Rule 62-528.635(2)(b), F.A.C.; and,
- (c) Proposed pretreatment.
- 3. Water well contractor's name, title, state license number, address, phone number and signature.

DEP Form No: 62-528.900(1)
Form Title: Application to Construct/
Operate/Abandon Class I, III,
or V Injection Well Systems
Effective Date:
DEP Application No.:

(Filled in by DEP)

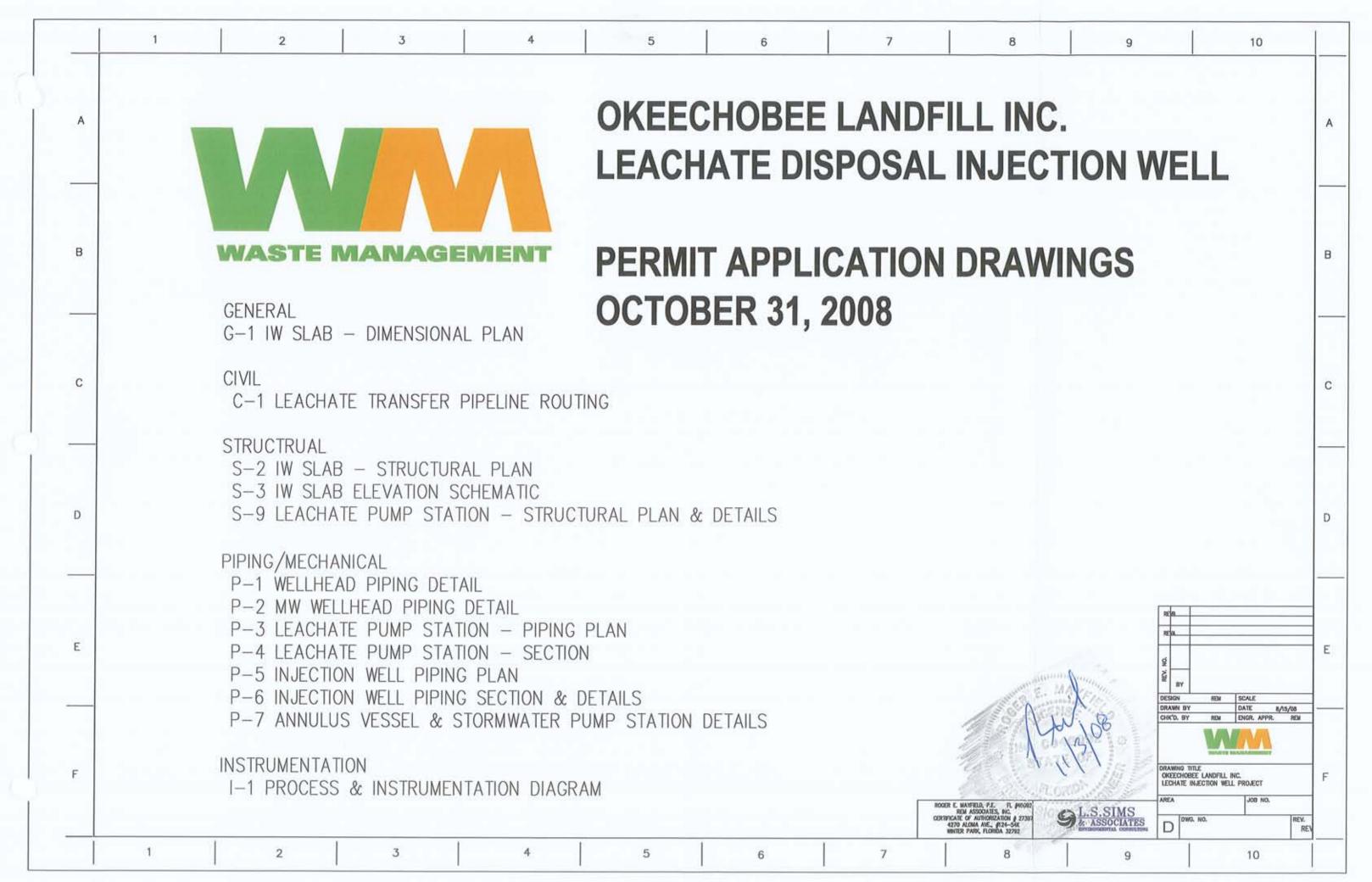
C	ell Design and Construction Details. (For multi-casing configurations or unusual onstruction provisions, an elevation drawing of the proposed well should be ttached.)
(a) Proposed total depth;
(b) Proposed depth and type of casing(s);
(c) Diameter of well;
(+	d) Cement type, depth, thickness; and,
(e) Injection pumps (if applicable): gpm @ psi
	Controls:
ra Wh of ap 6. Ar In ra fi th pr wa wa Th re	etter Supply Wells - When required by Rule 62-528.635(1), F.A.C., attach a map ection showing the locations of all water supply wells within a one-half (1/2) mile adius of the proposed well. The well depths and casing depths should be included, hen required by Rule 62-528.635(2), F.A.C., results of bacteriological examinations water from all water supply wells within one-half (1/2) mile and drilled to proximate depth of proposed well should be attached. The early of the proposed radius of the area of review with justification for that dius. Provide a map showing the location of the proposed injection well or well eld area for which a permit is sought and the applicable area of review. Within earea of review, the map must show the number or name, and location of all oducing wells, injection wells, abandoned wells, dry holes, surface bodies of ter, springs, public water systems, mines (surface and subsurface), quarries, ter wells and other pertinent surface features including residences and roads. e map should also show faults, if known or suspected. Only information of public cord and pertinent information known to the applicant is required to be included this map.
H. CLASS	V WELL OPERATION PERMIT
(Final rowith the	eport of the construction that includes the following information may be submitted application to operate.)
1. Pe	rmit Number of Class V Construction Permit:
2. Owi	ner's Name:
3. Туд	pe of Wells:

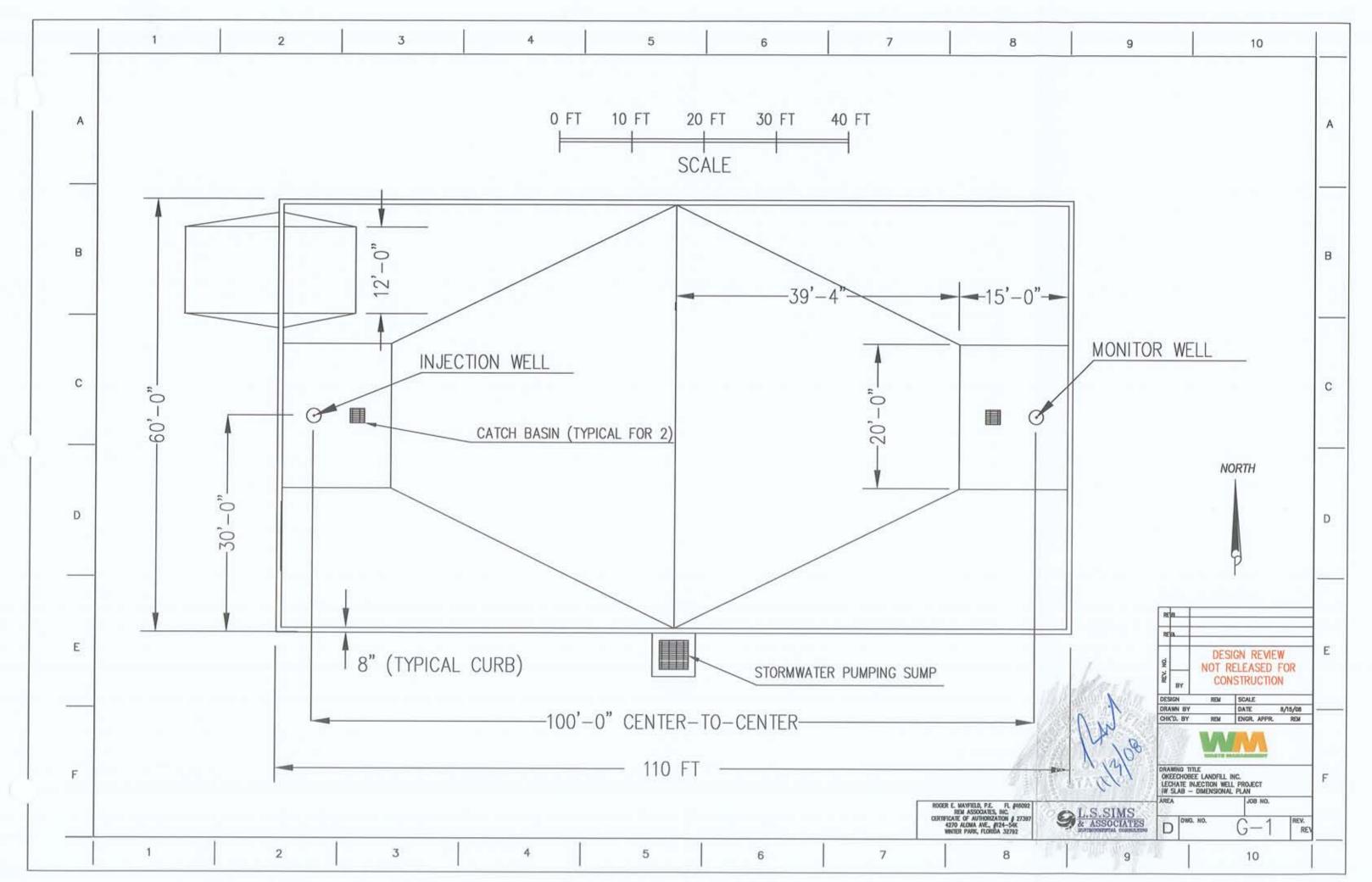
4.	Cor	struction	and Testing Su	mmary;			
	(a)	Actual D	imensions:				
	Dia	ımeter	(inches)	Well Depth	(Example)	Casing Depth	
			(Zifefies)		(feet)		(feet)
	(b)	Result of	Initial Testi	na			
5.			ating Data:	•••9			
	(a)		Rate (GPM);				
	(b)		on of injected				
	(c)						
6			pressure and p				
٠.			toring Plan (if				
	(a)		of monitoring w	ells;			
	(b)	Depth(s)					
	(c)	Paramete					-
	(d)	Frequenc	ey of sampling;	and,			
	(e)	Instrumen	tation (if app]	icable) Flow			
				Pressure			

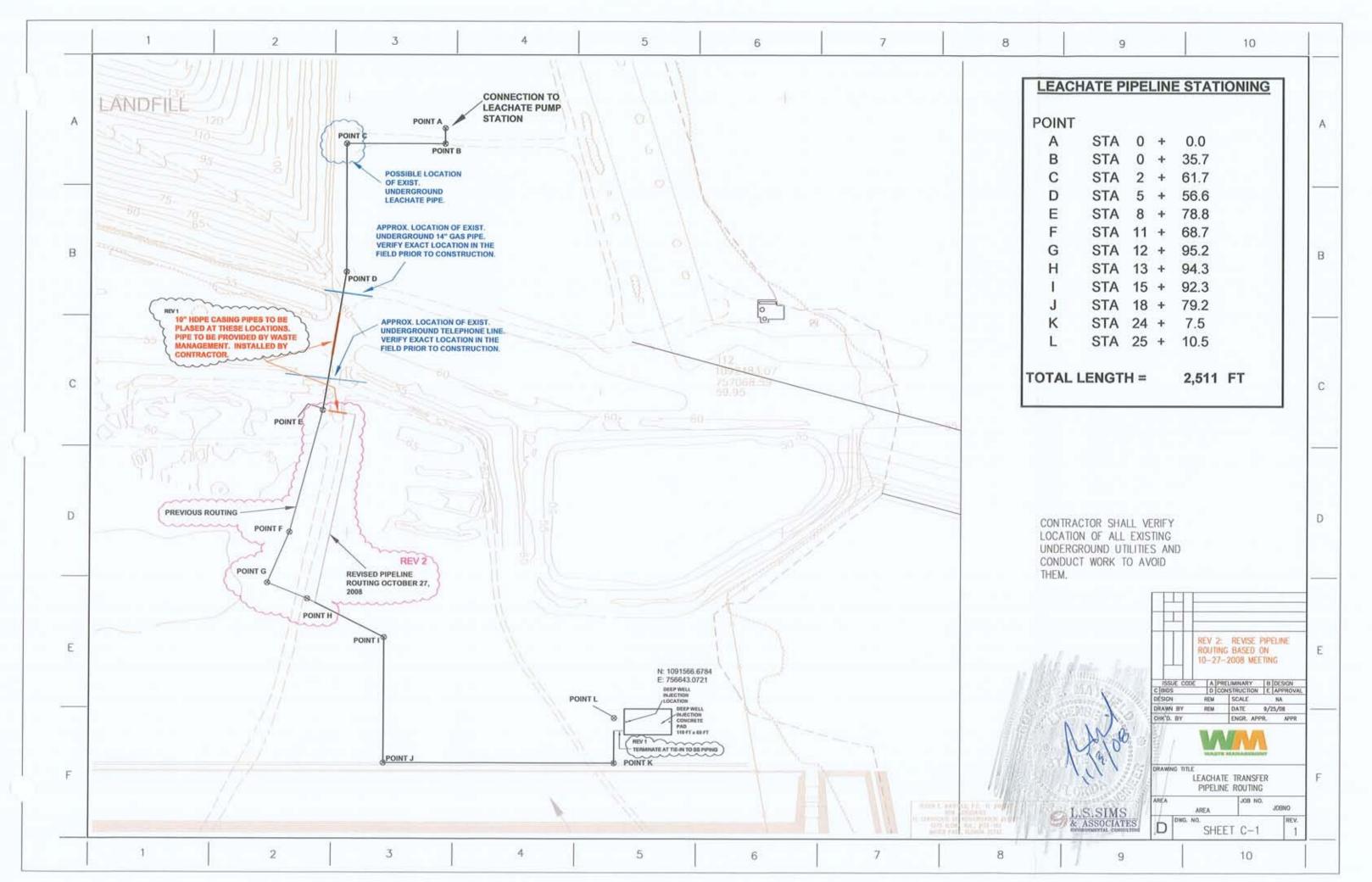
I. CLASS V WELLS PLUGGING AND ABANDONMENT PERMIT

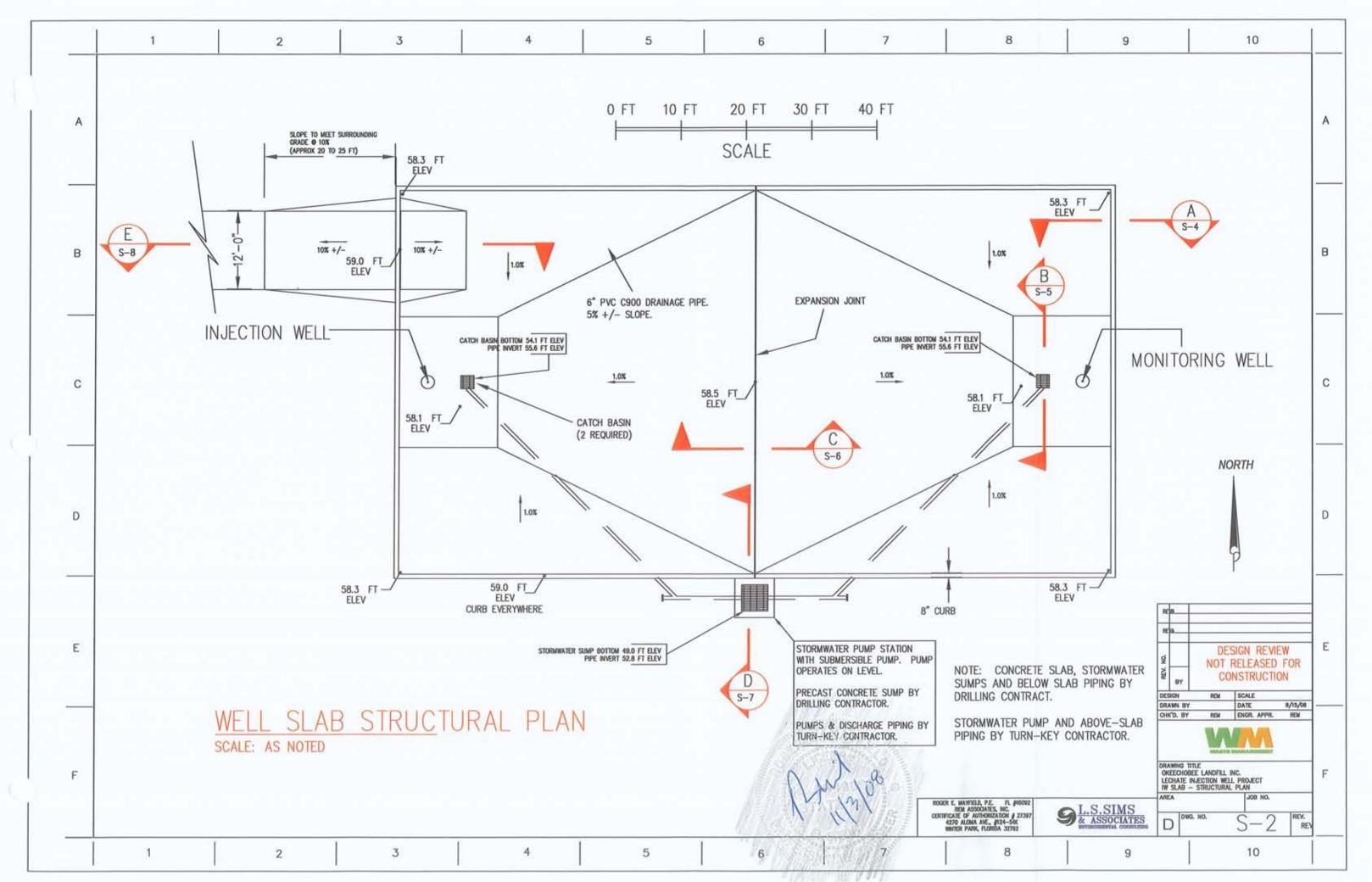
- 1. Permit number of Class V construction or operating permit.
- 2. Type of well.
- 3. Proposed plugging procedures, plans and specifications.
- 4. Reasons for abandonment.

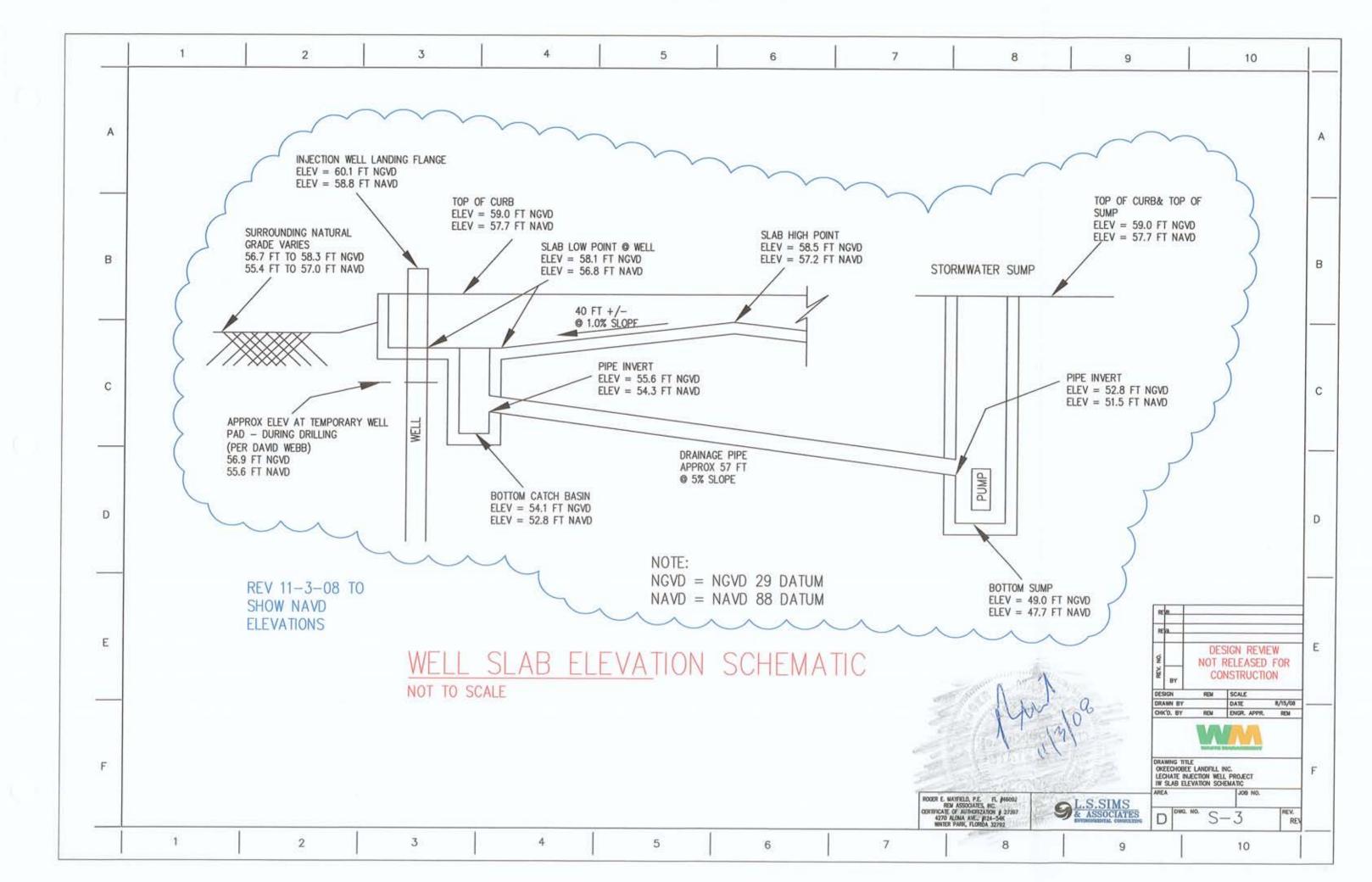
	· · · · · · · · · · · · · · · · · · ·
DEP Form No:	62-528.900(1)
Form Title:	Application to Construct/
Oper	ate/Abandon Class I, III,
or	V Injection Well Systems
Effective Date:	
DEP Application	No.:
	(Filled in by DEP)

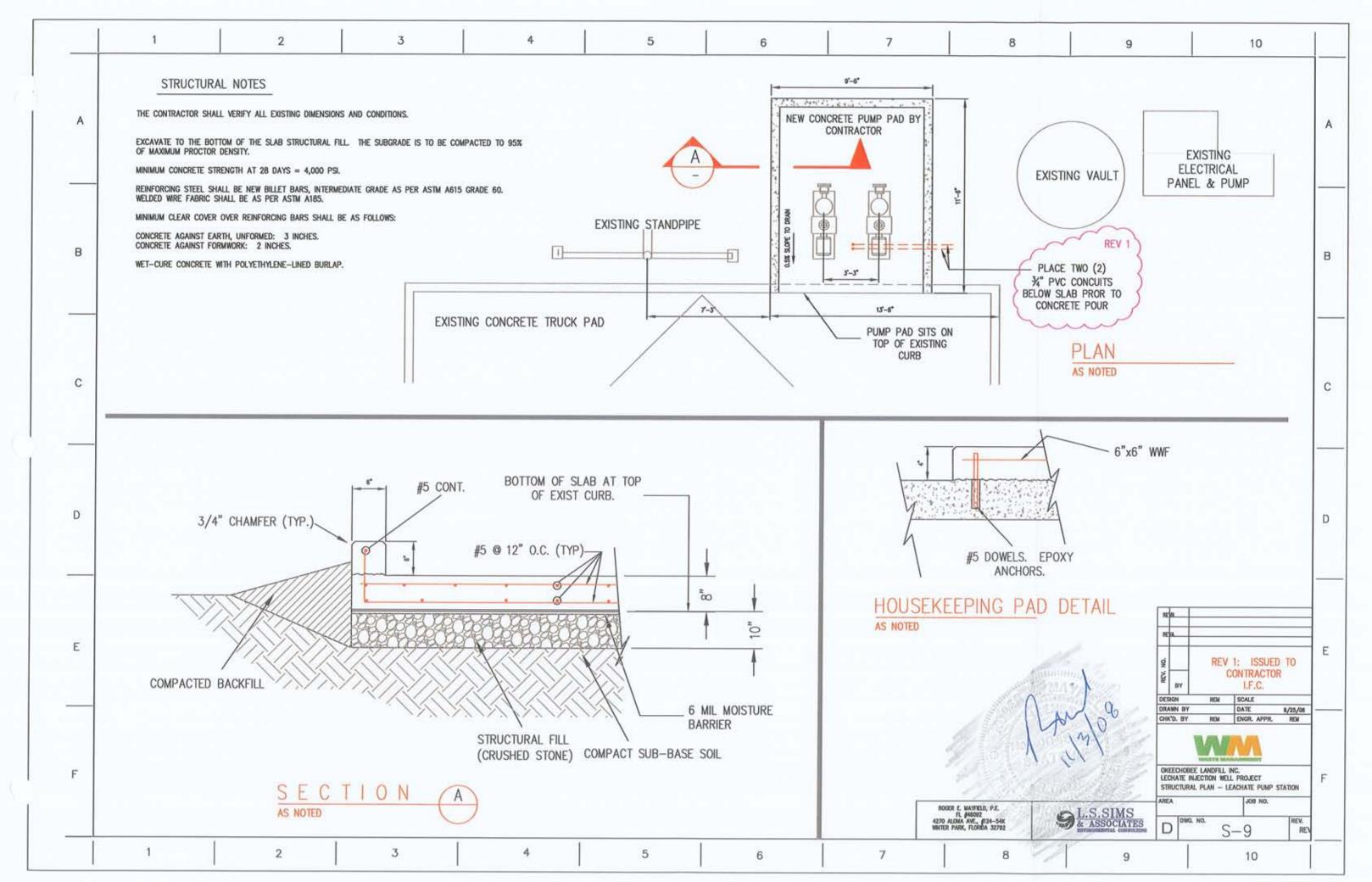

J. MONITOR WELL PERMIT

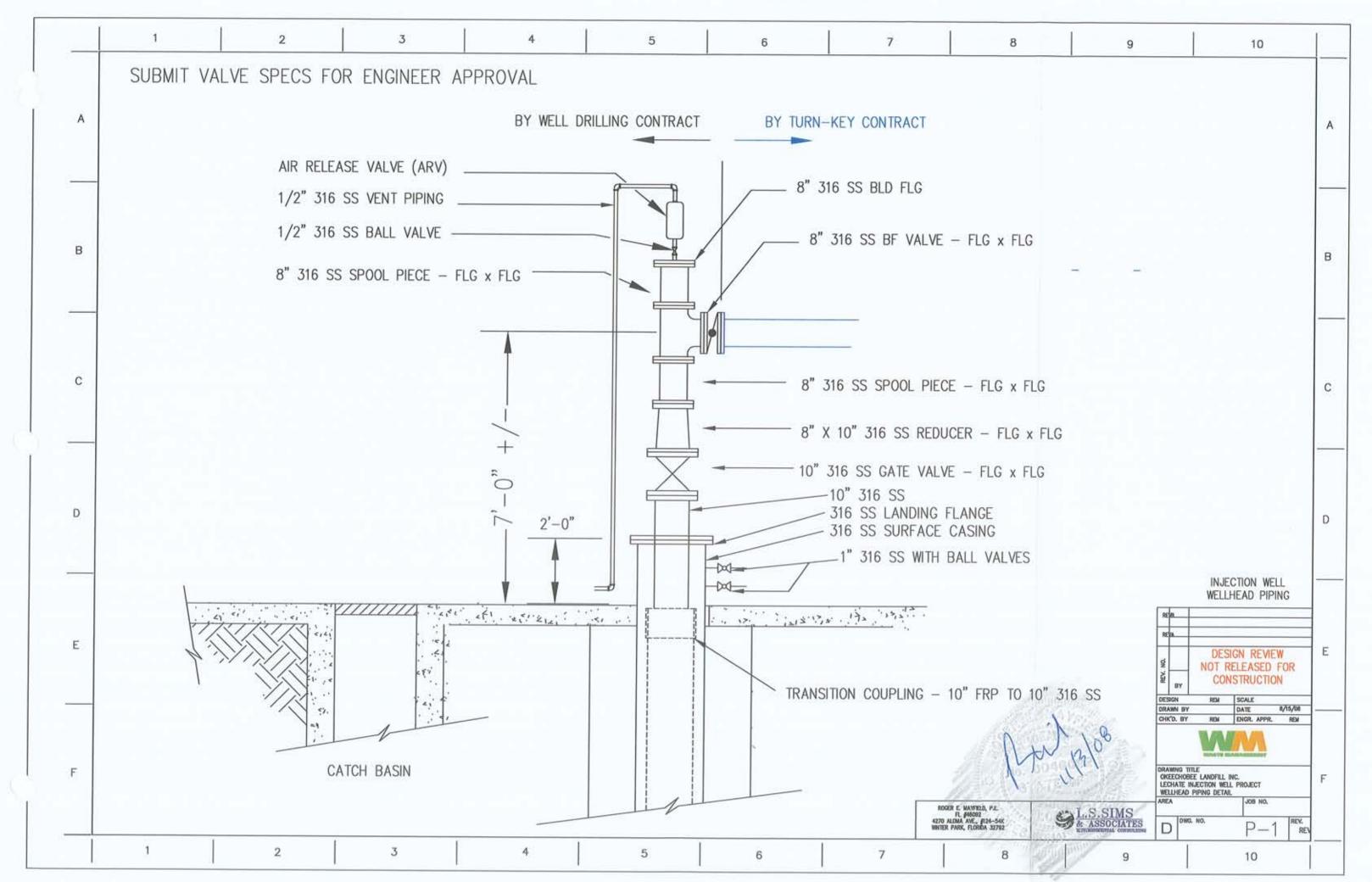

This section should be used only when application is made for a monitor well only. If a monitor well is to be constructed under a Class I, III, or V injection well construction permit, it is necessary to fill in this section.

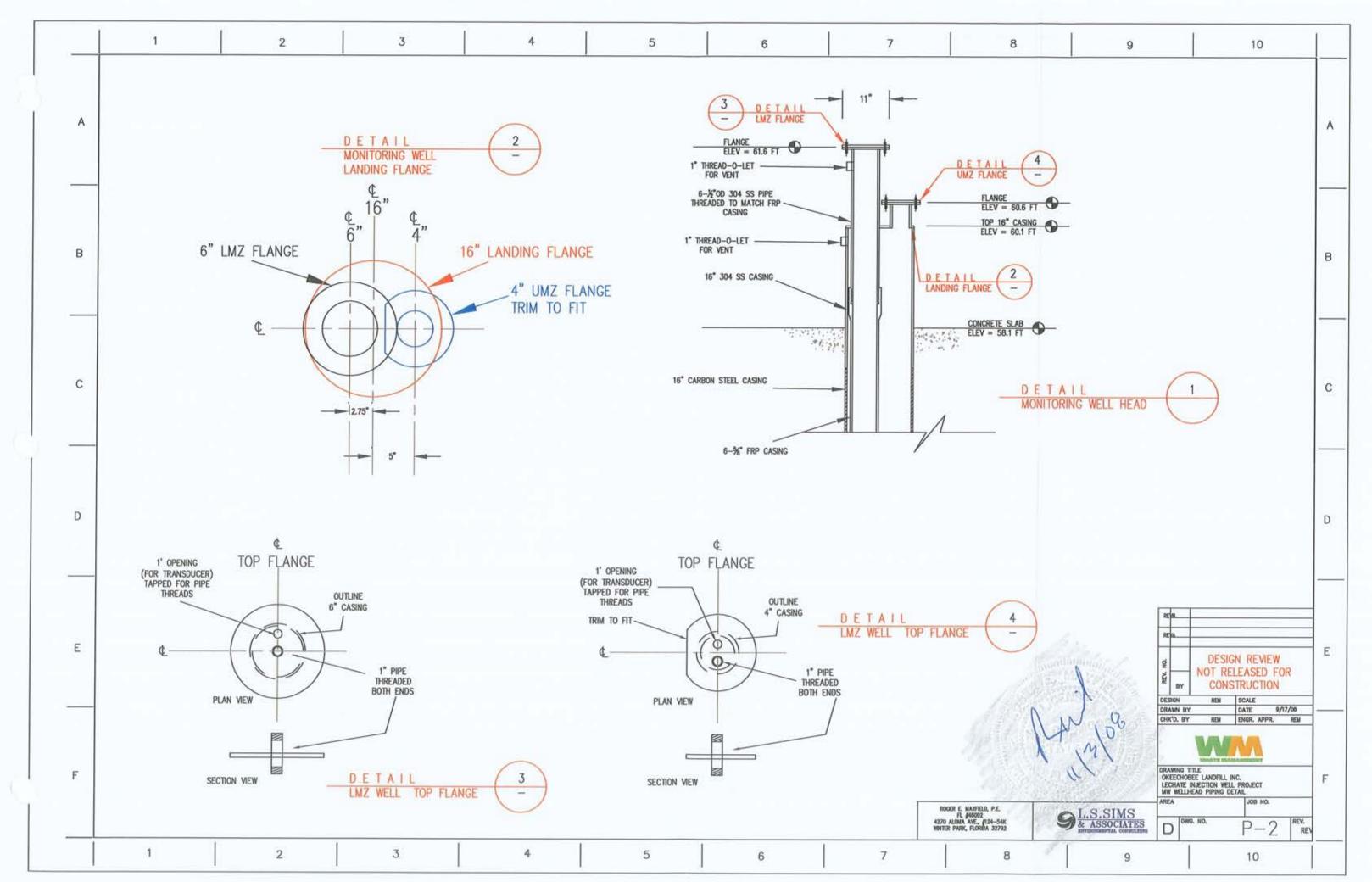

- 1. A site map showing the location of the proposed monitor wells for which a permit is sought. The map must be to scale and show the number or name, and location of all producing wells, injection wells, abandoned wells, dry holes, water wells and other pertinent surface features including structures and roads.
- 2. Maps and cross sections indicating the general vertical and lateral limits within the area of review of all underground sources of drinking water, their position relative to the injection formation and the direction of water movement, where known, in each underground source of drinking water which may be affected by the proposed injection.
- 3. Maps and cross sections detailing the hydrology and geologic structures of the local area.
- 4. Generalized maps and cross sections illustrating the regional geologic setting.
- 5. Proposed formation testing program to obtain an anlysis of the chemical, physical and radiological characteristics of and other information on the monitor zone(s).
- 6. Proposed monitoring procedure.
- 7. Engineering drawings of the surface and subsurface construction details of the monitoring system.
- 8. Proposed monitoring data to be reported for meeting the monitoring requirements in Rule 62-528.425, F.A.C.
- 9. Construction procedures including a cementing and casing program, logging procedures, deviation checks, proposed methods for isolating drilling fluids from surficial aquifers, proposed blowout protection (if necessary), and a drilling, testing and coring program

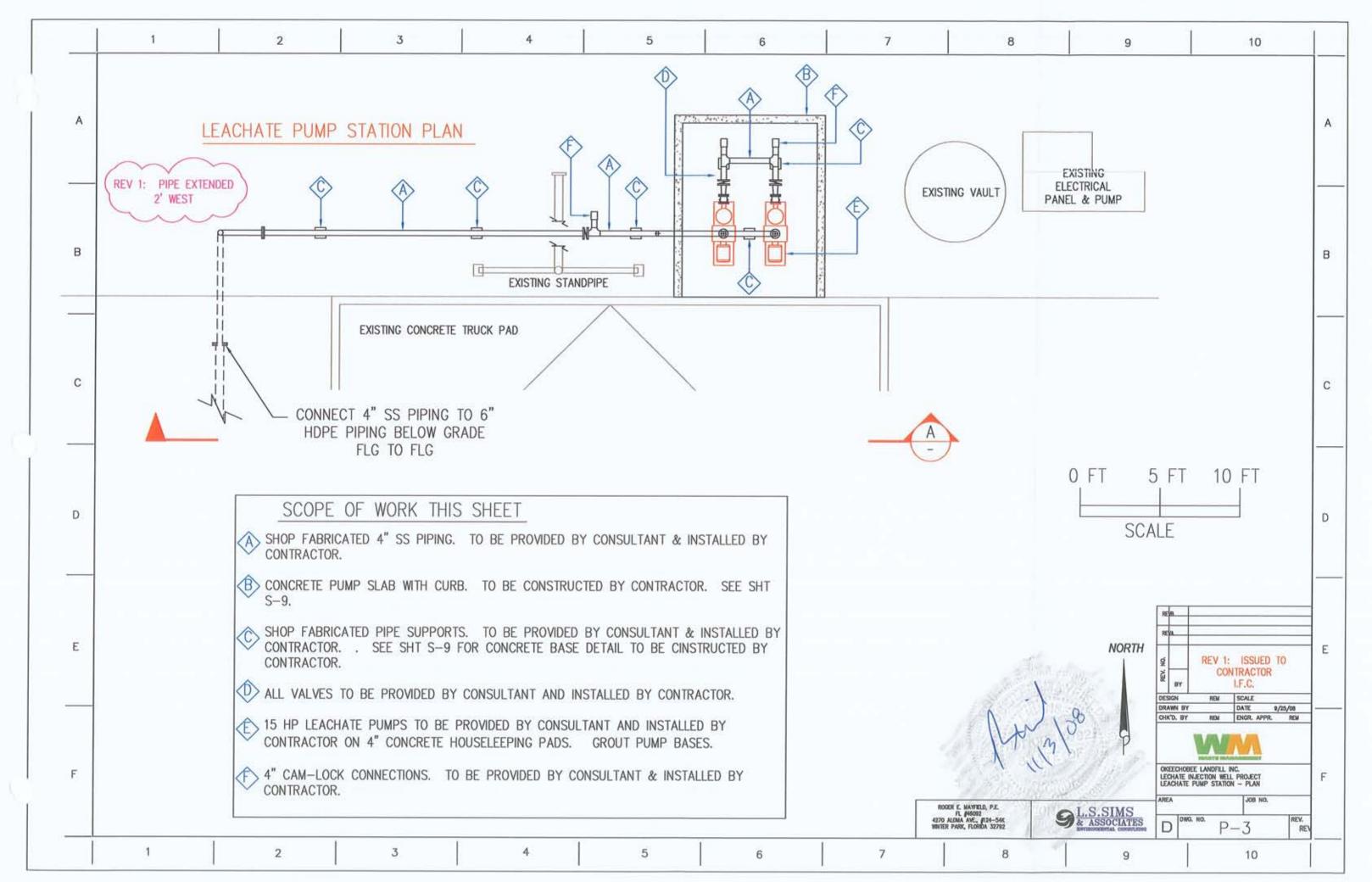

10.	Monitor	Well	${\tt Information:}$
-----	---------	------	----------------------

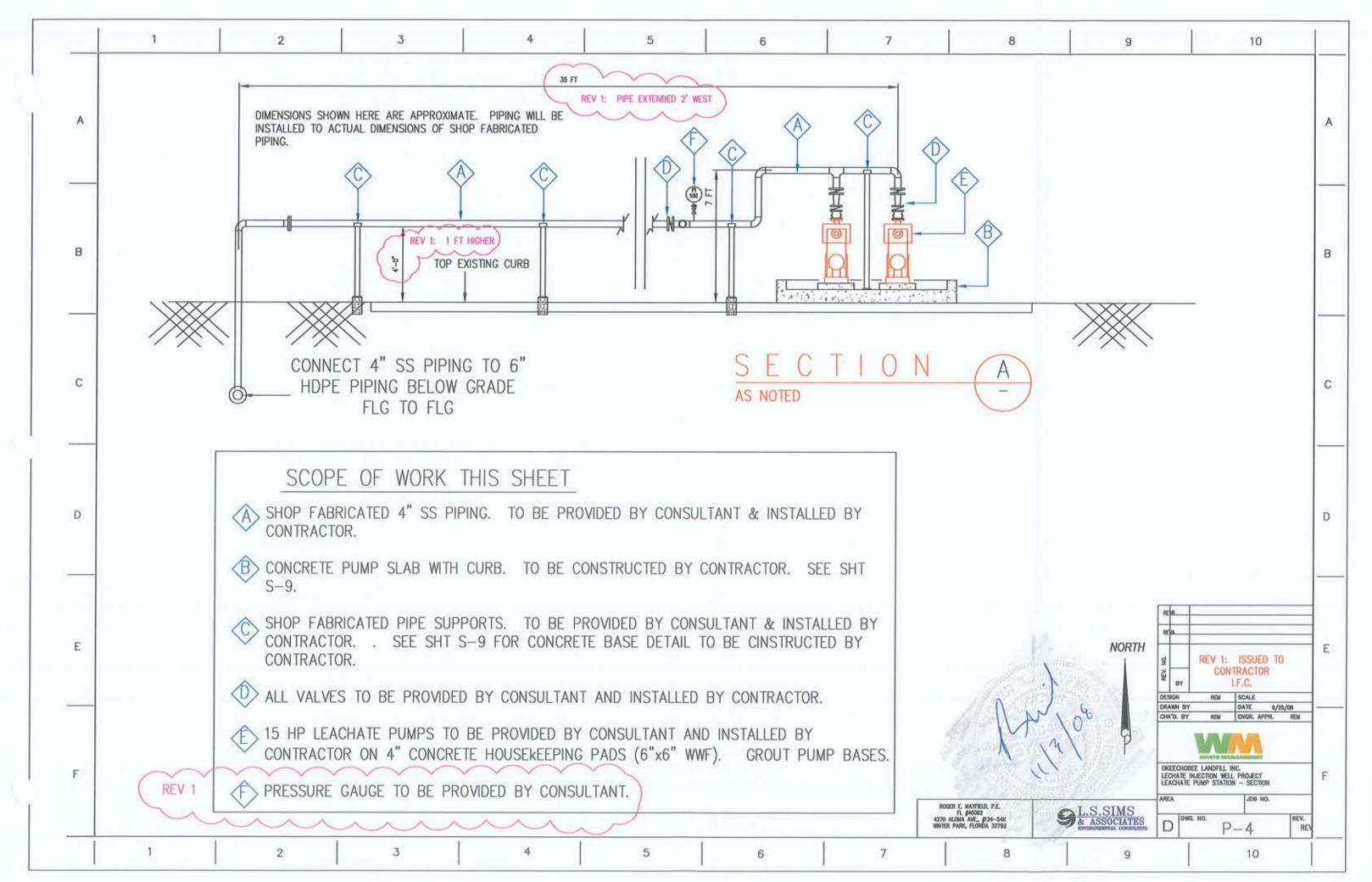

⊠ On-site	Multizone					
☐ Regional	Other (specify)					
Proposed Monit	oring Interval(s) 1600-1650, and 1800-1850					
Distance and Direction From Associated Injection Well 100 feet east						

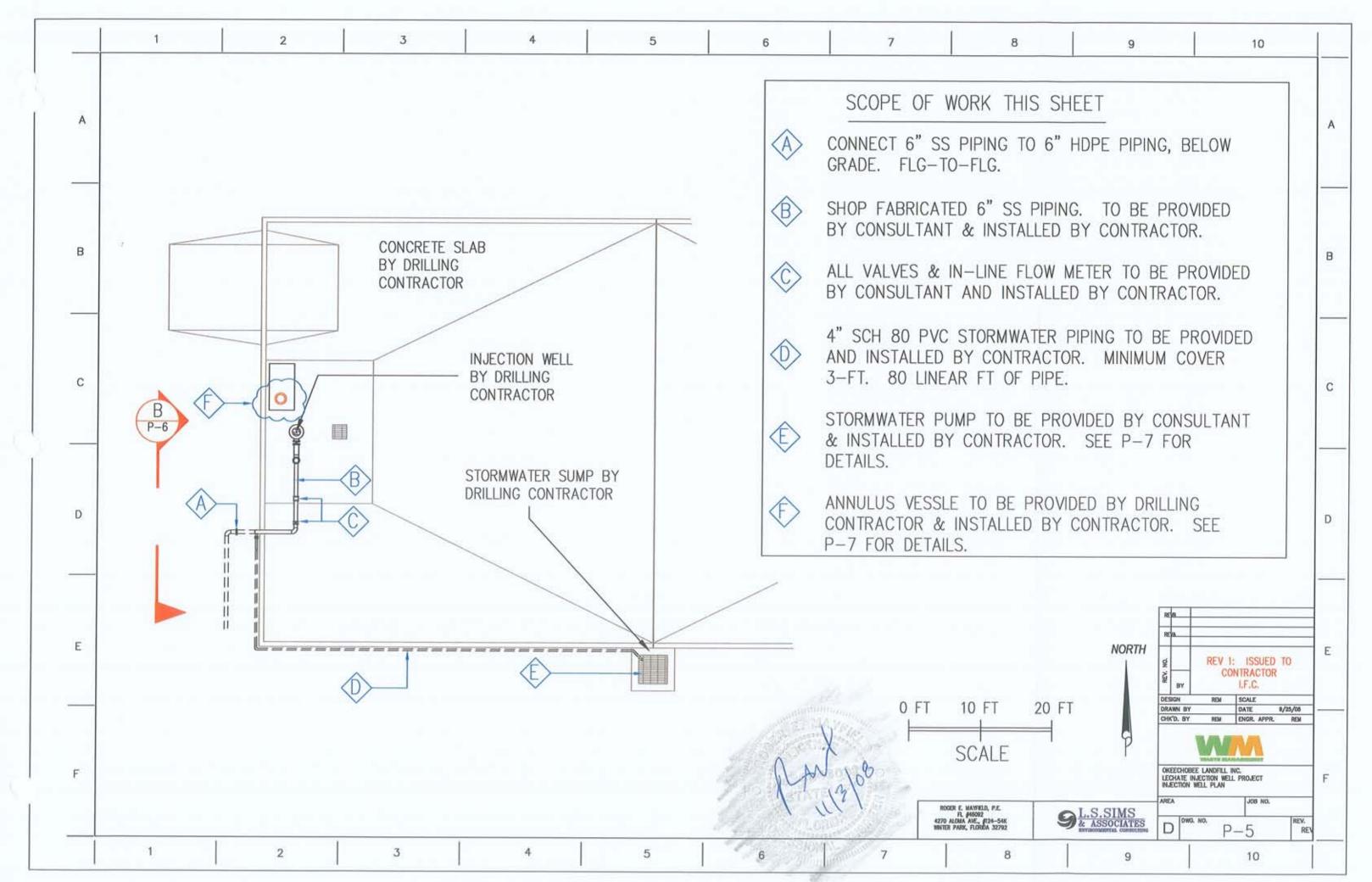


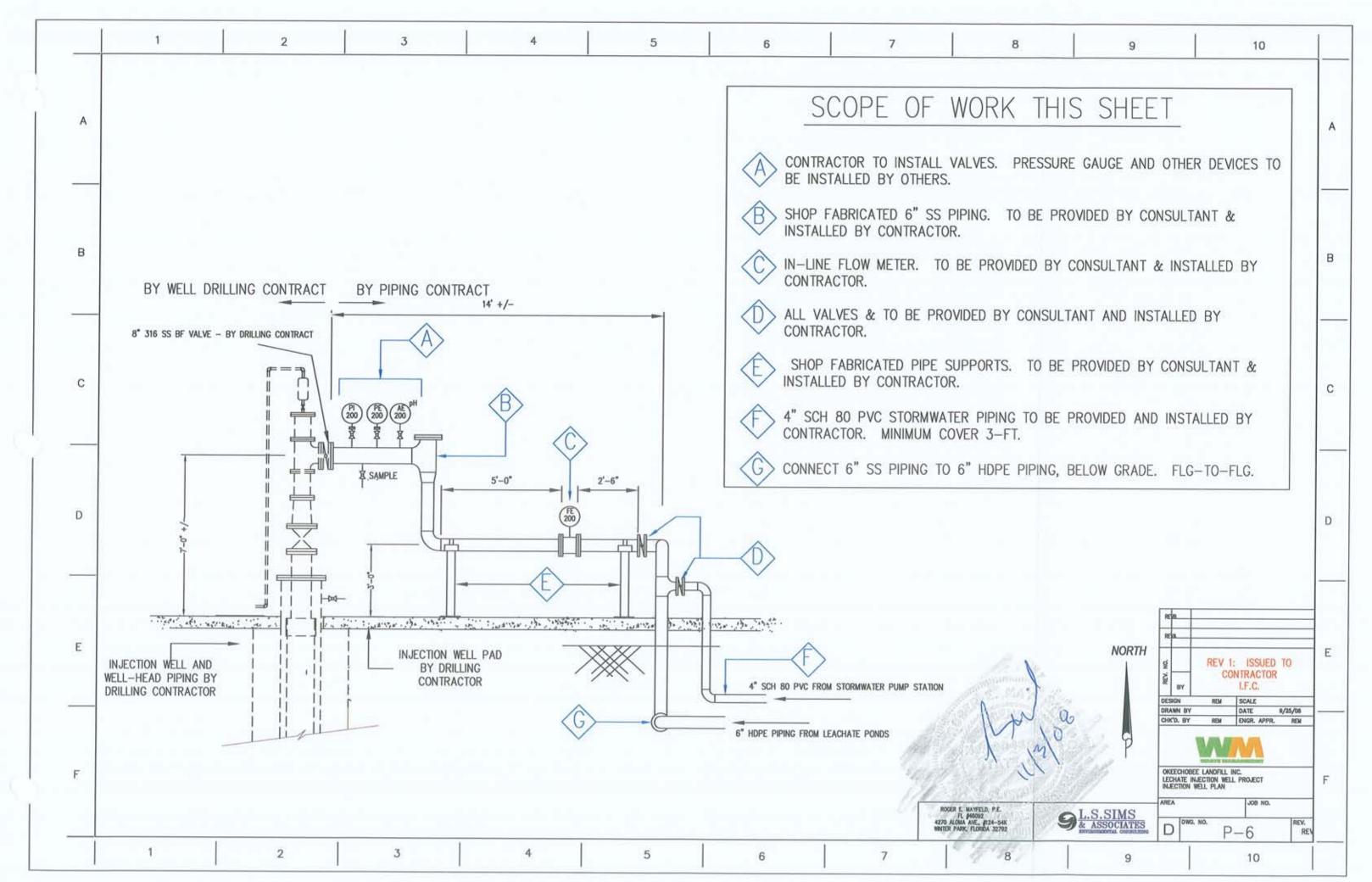


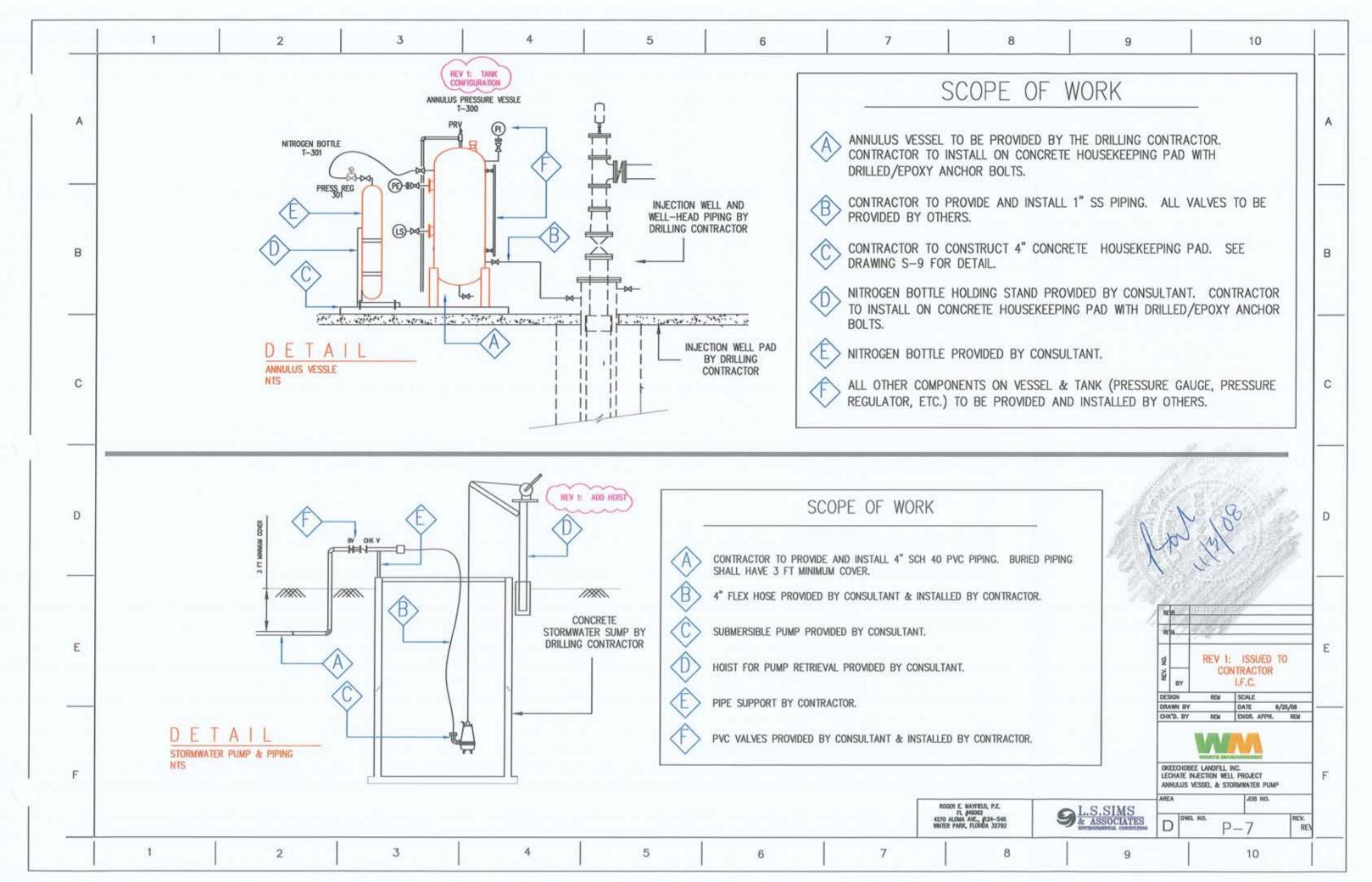


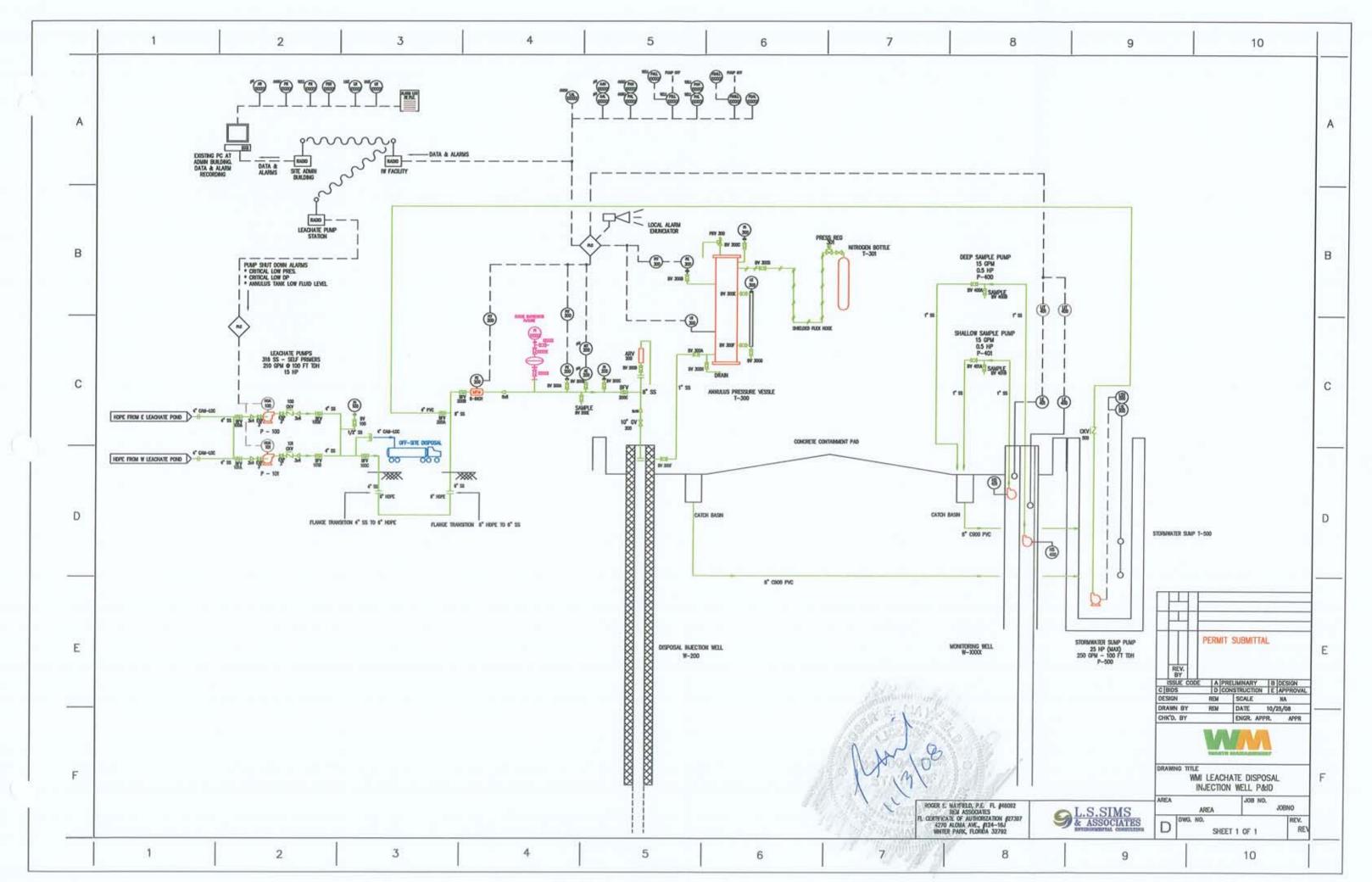


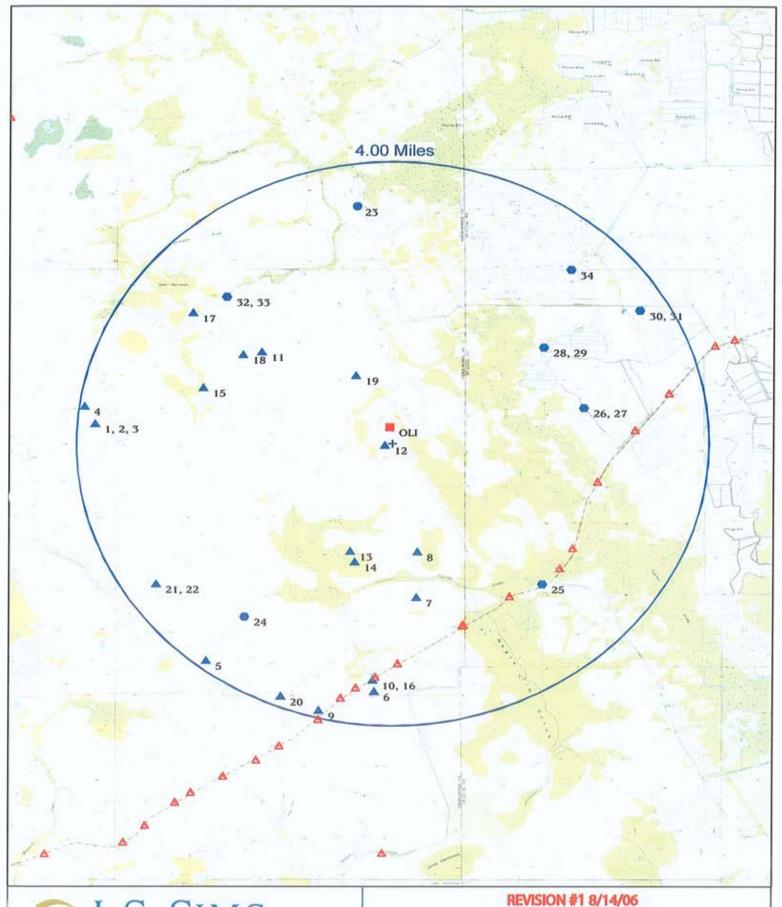












WELLS WITHIN 4 MILES OF OLI OKEECHOBEE LANDFILL, INC. OKEECHOBEE, FLORIDA

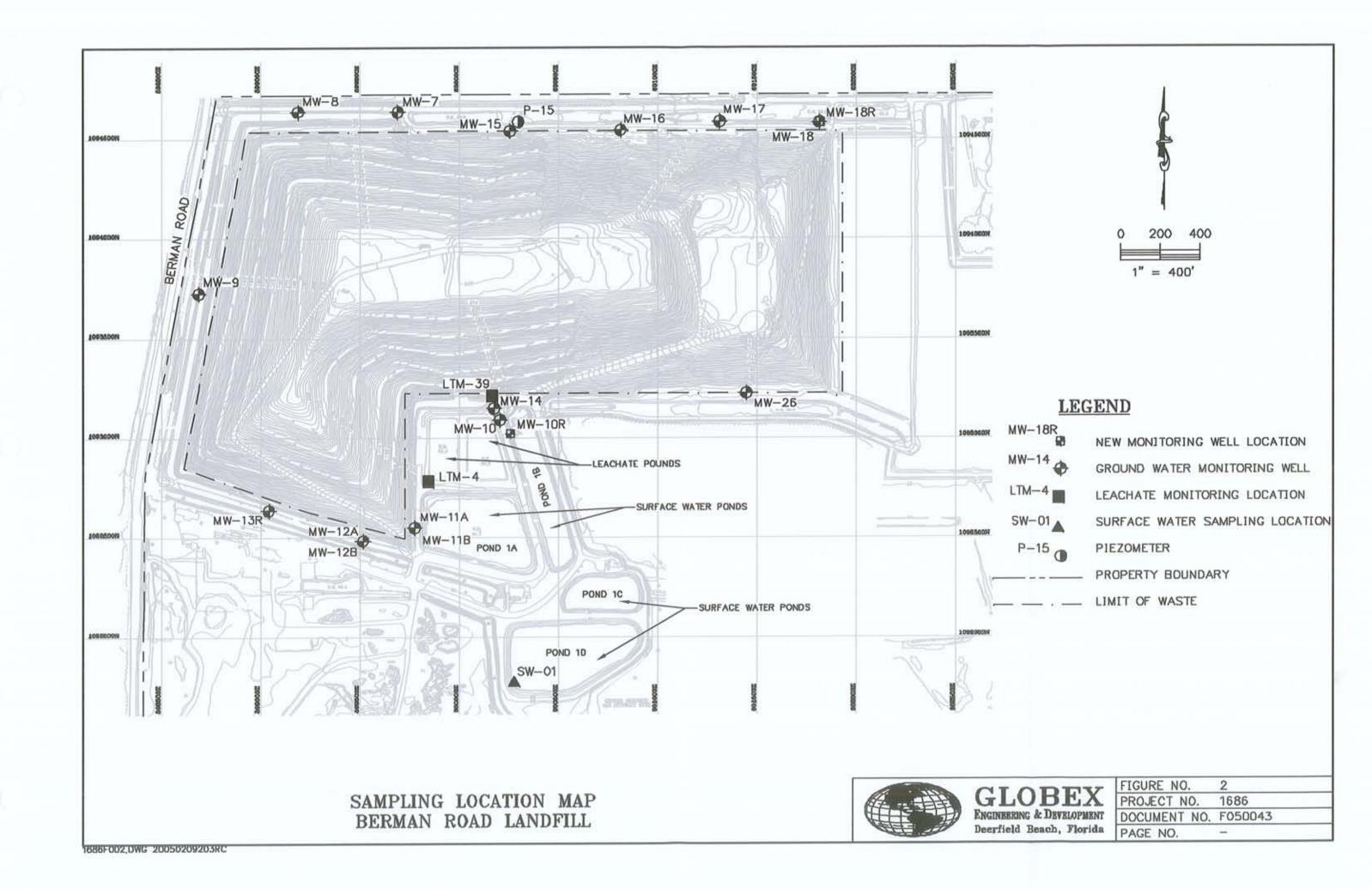
Copyright (C) 2000, Maptech, Inc.

OKEECHOBEE LANDFILL, INC. - OKEECHOBEE LANDFILL WELL INVENTORY DATA

SFWMD DATA BASE - WELLS WITHIN 4-MILE RADIUS OF WMI SITE 3/21/06

MAP NO	. OWNER	PUMP TYPE	DIAM	PUMP DEPTH	PUMP CAPAC	WELL DEPTH	CASE DEBTIL		percent out to the					
1	OKEECHOBEE EGG FARM	SUB	4	-35		140			WATER USE	SEC	TWP	RGE	LAT (Deg)	LONG (Deg)
2	OKEECHOBEE EGG FARM	SUB	4	-35	60		100	SAS	IRR	17	36	36	27.34278	80.75400
3	OKEECHOBEE EGG FARM	TUR	8	-55	60 550	140	100	SAS	IRR	17	36	36	27.34275	80.75369
4	OKEECHOBEE EGG FARM	TUR	10	28		825	400	FAS	IRR	17	36	36	27.34398	80.75387
5	T A P SOD FKA ALL GREEN SOD SERVICE	CEN	2	0	750	800	400	FAS	IRR	8	36	36	27.34694	80.75610
6	CROSSROADS RESTAURANT	SUB	4	10	65	800	0	FAS	IRR	33	36	36	27.29470	80.73092
7	CLAY FARMS	TUR	12		16	100	75	SAS	PWS	36	36	36	27.28860	80.69692
8	CLAY FARMS	TUR	12	0	2000	500	400	FAS	IRR	25	36	36	27.30750	80.68752
9	DAVIE DAIRY POTABLE WATER SUPPLY	CEN		0	2000	500	400	FAS	IRR	25	36	36	27.31689	80.68740
10	POSEYS CORNER GROCERY		2	0	18	144	105	SAS	PWS	2	37	36	27.28318	80.70736
- 11	TREE NURSERY	JET	2	15	13	125	84	SAS	PWS	36	36	36	27.29056	80.69650
12	CHAMBERS WASTE ADMINISTRATIVE COMPLEX	CEN	2	0	60	70	40	SAS	IRR	10	36	36	27.35813	80.71969
13	FAITH FARM OKEECHOBEE GROVE	SUB	4	0	25	130	120	SAS	PWS	13	36	36	27.33883	80.69421
14		TUR	6	0	160	140	100	SAS	IRR	26	36	36	27.31711	80.70136
(5/65)	FAITH FARM OKEECHOBEE GROVE	TUR	6	0	160	140	100	SAS	IRR	26	36	36	27.31491	80.70043
15 16	COWART CATFISH FARM	TUR	6	60	100	80	0	SAS	NA	9	36	36	27.35081	80.73177
2.5	TOWN STAR FOOD STORES LLP STORE 39	CEN	2	15	10	60	0	SAS	PWS	36	36	36	27.29065	80.69659
17	HAPPY TRAILS RANCH	SUB	4	50	80	117	65	SAS	IRR	4	36	36	27.36611	80.73387
18	HAPPY TRAILS RANCH	SUB	4	50	80	135	120	SAS	IRR	10	36	36	27.35762	80.72353
19	ROBERT CAPOTE	CEN	4	0	50	140	120	SAS	IRR	11	36	1.7.7.	27.35336	
20	SALES & HALES PROPERTY	CEN	2	0	60	126	105	SAS	LIV	3	37	36		80.70029
21	KIRTON RANCH	CEN	2	0	40	120	80	SAS	LIV	28			27.28739	80.71555
22	KIRTON RANCH	SUB	4	63	120	180	140	SAS	LIV	28	36 36		27.31049	80.74125
						3.55	1,50	- C/10	LIV	20	30	36	27.31028	80.74125
FGS OIL A	ND GAS SECTION DATA BASE - WELLS WITHIN 4-1	MII E DADILIO	SE 14/841	CITE NATION										
23	Shell Oil, Sloan No. 35-1	NA	JE VVIVII		D4	12122220	1,023							
		INA		PA	PA	11,300(PA)	PA	BAS	PA	34	35	36	27.38388	80.71944
USGS NW	IS FLORIDA SITE INVENTORY DATA BASE - WELLS	WITHIN A 4-M	II F RA	DILIS OF WMI SI	TE 3/24/00									
24	USGS 271813080402301 STL-138A	NA	NA	NA NA	NA NA	E4			2000					
	USGS 271837080394201 STL-138	NA	NA	NA ·	NA	51	NA	SAS	NA	27	36	36	27.30361	80.72306
	USGS 272048080391101 STL-292	NA	NA	NA		14	NA	SAS	NA	30			27.31028	80.66166
	USGS 272048080391102 STL-293	NA	NA	NA	NA	120	NA	SAS	NA	17		37	27.34666	80.65306
	USGS 272133080394101 PG-35N	NA	NA	NA	NA	35	NA	SAS	NA	17		37	27.34666	80.65306
	USGS 272133080394102 PG-35S	NA	NA	0.004.00	NA	27	NA	SAS	NA	8	36	37	27.35917	80.66139
	USGS 272200080383001 STL-290	NA	NA	NA	NA	56	NA	SAS	NA	8	36	37	27.35917	80.66139
	USGS 272200080383002 STL-291	NA	NA	NA	NA	115	NA	SAS	NA	9	36	37	27.36660	80.64166
	USGS 272210080403701 STL-296	NA		NA	NA	35	NA	SAS	NA	9	36	37	27.36660	80.64166
	USGS 272210080403702 STL-297		NA	NA	NA	NA	NA	NA	NA	3	36	36	27.36944	80.72694
	USGS 272230080392101 STL-373	NA	NA	NA	NA	NA	NA	NA	NA	3	36	36	27.36944	80.72694
•		NA	NA	NA	NA	NA	NA	NA	NA	5	36		27.37500	80.65583
5	IRR-Irrigation													

IRR-Irrigation LIV-Livestock


PWS-Public Water System

FAS-Floridan Aquifer System SAS-Surficial Aquifer System

BAS-Basement

PA-Plugged and Abandoned NA- Not Available

Highlighted Wells are Located Within the 1-Mile AOR

ANALYTICAL REPORT

Project No. Site 1011

Okeechobee Landfill

Lot #: D7J050201

Miguel Delgado Waste Management Inc. Berman Rd Landfill 10800 NE 128th Ave Okeechobee, FL 34927

Cc: Ken Guilbeault

TestAmerica Denver

Melissa L. Wright Project Manager

Muh I Wright

October 26, 2007

Table Of Contents

Standard Deliverables

Report Contents

Total Number of Pages

Standard Deliverables

The Cover Letter and the Report Cover page are considered integral parts of this Standard Deliverable package. This report is incomplete unless all pages indicated in this Table of Contents are included.

- Table of Contents
- Case Narrative
- Executive Summary Detection Highlights
- Methods Summary
- Method/Analyst Summary
- Lot Sample Summary
- Analytical Results
- QC Data Association Summary
- QC by Method
- Chain-of-Custody

Case Narrative

Enclosed is the report for three samples received at TestAmerica Denver on October 5, 2007. The results included in this report have been reviewed for compliance with TestAmerica's Laboratory Quality Manual. The results relate only to the samples in this report and meet all requirements of NELAC and any exceptions are noted below. TestAmerica Denver's Florida certification number is E87667.

This report may include reporting limits (RLs) less than TestAmerica Denver's standard reporting limit. The reported sample results and associated reporting limits are being used specifically to meet the needs of this project. Note that data are not normally reported to these levels without qualification because they are inherently less reliable and potentially less defensible than required by the latest industry standards.

Dilution factors and footnotes have been provided to assist in the interpretation of the results. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at concentrations above the linear calibration curve, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

TestAmerica utilizes USEPA approved methods in all analytical work. The samples presented in this report were analyzed for the parameters listed on the analytical methods summary page in accordance with the methods indicated. A summary of quality control parameters is provided below.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Quality Control Summary for Lot D7J050201

Sample Receiving

The cooler temperatures upon receipt at the Denver laboratory were 2.6°C and 2.7°C.

All sample bottles were received in acceptable condition.

Holding Times

All analyses were performed within established holding times.

Method Blanks

Methylene Chloride was detected in the Method 624 Blank at a concentration below the reporting limit but above the method detection limit. No corrective action is taken for results in the Method Blank that are below the reporting limits.

All other Method Blanks were within established control limits.

Laboratory Control Samples (LCS)

All Laboratory Control Samples were within established control limits.

Matrix Spike (MS) and Matrix Spike Duplicate (MSD)

The Method 624 MS/MSD was performed on an unrelated sample and demonstrated a relative percent difference above the control limit for Bromomethane. All other associated QC samples were in control; therefore, no corrective action was taken.

The Method 625 MS/MSD was performed on an unrelated sample and demonstrated MS and/or MSD recoveries below the control limits for several compounds. Also, the relative percent difference was above the control limit for 3,3'-Dichlorobenzidine. All associated QC samples were in control; therefore, no corrective action was taken.

The Method 608 MS/MSD was performed on an unrelated sample and demonstrated MSD recoveries below the control limits for 4,4'-DDE and 4,4'-DDT. All other associated QC samples were in control; therefore, no corrective action was taken.

All other MS and MSD samples were within established control limits.

Organics

Method 624

Samples LTM-39 and LTM-04 were analyzed at dilutions due to matrix interference. The reporting limits have been adjusted accordingly.

The Method 624 Continuing Calibration Verification (CCV) standard was outside the percent difference limits for Acrolein. Because all other calibration criteria were met, no corrective action was necessary.

Method 625

Sample LTM-39 was analyzed at a dilution due to high concentrations of target compounds and sample LTM-04 was analyzed at a dilution due to interfering non-target compounds. The reporting limits have been adjusted accordingly. As a result of the required dilutions the surrogate recoveries for these samples could not be determined.

Method 608

Samples LTM-39 and LTM-04 demonstrated recoveries below the control limits for the surrogates Decachlorobiphenyl and Tetrachloro-m-xylene due to matrix interference; no corrective action was taken because matrix interference was evident.

There was greater than a 40% difference between the primary and confirmation column results for beta-BHC and delta-BHC for sample LTM-04. The lower of the two results are reported and the associated data are flagged "COL".

The Method 608 Continuing Calibration Verification (CCV) standard was outside the percent difference limits for Tetrachloro-m-xylene, 4,4'-DDT, Endrin Aldehyde, Endosulfan Sulfate, and Decachlorobiphenyl. Because all other calibration criteria were met, no corrective action was necessary.

EXECUTIVE SUMMARY - Detection Highlights

D7J050201

			REPORTI	NG	ANALYTICAL
PARAMET	ER	RESULT	LIMIT	UNITS	METHOD
LTM-39 10/04/0	7 11:40 001				
2,4-Dime	ethylphenol	56 J	100	ug/L	CFR136A 625
2,6-Din:	itrotoluene	15 J	100	ug/L	CFR136A 625
Naphthal	lene	11 J	100	ug/L	CFR136A 625
Phenol		980	100	ug/L	CFR136A 625
Benzene		9.1 J	10	ug/L	CFR136A 624
	loroethane	7.1 J	10	ug/L	CFR136A 624
Ethylber		23	10	ug/L	CFR136A 624
	ne chloride	4.6 J,B	10	ug/L	CFR136A 624
Toluene		57	10	ug/L	CFR136A 624
LTM-04 10/04/07	14:20 002				
beta-BHC	•	0.026	0.050	ug/L	CFR136A 608
		Qualifiers: J	, COL	۵.	
delta-BH	C	0.018	0.050	ug/L	CFR136A 608
	•	Qualifiers: J	,COL	2.	
	thylphenol	23 J	100	ug/L	CFR136A 625
Naphthal	ene	10 J	100	ug/L	CFR136A 625
Phenol		50 J	100	ug/L	CFR136A 625
Benzene		5.5 J	17	ug/L	CFR136A 624
Ethylben		24	17	ug/L	CFR136A 624
	e chloride	6.9 J,B	17	ug/L	CFR136A 624
Toluene		33	17	ug/L	CFR136A 624

METHODS SUMMARY

D7J050201

PARAMETER	ANALYTICAL METHOD	PREPARATION METHOD
Base/Neutrals and Acids	CFR136A 625	CFR136A 625
Organochlorine Pesticides and PCBs	CFR136A 608	CFR136A 608
Purgeables	CFR136A 624	CFR136A 624

References:

CFR136A "Methods for Organic Chemical Analysis of Municipal and Industrial Wastewater", 40CFR, Part 136, Appendix A, October 26, 1984 and subsequent revisions.

METHOD / ANALYST SUMMARY

D7J050201

ANALYTICAL METHOD	ANALYST	ANALYST ID
CFR136A 608	Dennis Jonsrud	009226
CFR136A 608	Teresa L. Williams	002510
CFR136A 624	Jennifer Hazard	007928
CFR136A 625	Daniel Kiekel	011370

References:

CFR136A

"Methods for Organic Chemical Analysis of Municipal and Industrial Wastewater", 40CFR, Part 136, Appendix A, October 26, 1984 and subsequent revisions.

SAMPLE SUMMARY

D7J050201

<u>Mo #</u>	SAMPLE#	CLIENT SAMPLE ID	SAMPLED DATE	SAMP TIME
J8CPD	001	LTM-39	10/04/07	11:40
J8CPJ	002	LTM-04	10/04/07	14:20
J8CPM	003	TRIP BLANK 1	10/04/07	
MOTE (S	:1 •			

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test. pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

Client Sample ID: LTM-39

GC/MS Volatiles

Lot-Sample #:	D7J050201-001	Work Order #:	J8CPD1AA	Matrix:	WATER
Date Sampled:	10/04/07 11:40	Date Received:	10/05/07		
Prep Date:	10/09/07	Analysis Date:			
Prep Batch #:	7283644	Abalysis Time:	16:02		
Dilution Factor:	2				

Method.....: CFR136A 624

		REPORTIN	NG			
PARAMETER	RESULT	LIMIT	UNITS	MDL		
Acrolein	ND	200	ug/L	30		
Acrylonitrile	ND	200	ug/L	33		
Benzene	9.1 J	10	ug/L	1.4		
Bromodichloromethane	ЙD	10	ug/L	3.1		
Bromoform	ND	10	ug/L	0.96		
Bromomethane	ND	20	ug/L	0.93		
Carbon tetrachloride	ND	10	ug/L	1.1		
Chlorobenzene	ND	· 10	ug/L	1.4		
Dibromochloromethane	ND	10	ug/L	1.4		
Chloroethane	ND	20	ug/L	4.1		
2-Chloroethyl vinyl ether	ND	10	ug/L	3.7		
Chloroform	ND	10	ug/L	2.2		
Chloromethane	ND	20	ug/L	1.8		
1,1-Dichloroethane	ND	10	ug/L	2.1		
1,2-Dichloroethane	7.1 J	10	ug/L	1.3		
trans-1,2-Dichloroethene	ND	10	ug/L	1.4		
1,1-Dichloroethene	ND	10	ug/L	2.1		
1,2-Dichloropropane	ND	10	ug/L	1.7		
1,3-Dichloropropene	ND	10	ug/L	1.3		
(total)						
Ethylbenzene	23	10	uq/L	1.2		
Methylene chloride	4.6 J,B	10	ug/L	1.2		
1,1,2,2-Tetrachloroethane	ND	10	ug/L	2.5		
Tetrachloroethene	ND	10	ug/L	1.4		
Toluene	57	10	ug/L	1.8		
1,1,1-Trichloroethane	ND	10	ug/L	2.3		
1,1,2-Trichloroethane	ND	10	ug/L	2.5		
Trichloroethene	ND	10	ug/L	1.9		
Vinyl chloride	ND	20	ug/L	2.5		
	PERCENT	RECOVERY		•		
SURROGATE	RECOVERY	LIMITS				
1,2-Dichloroethane-d4	86	(73 - 122	2)			
4-Bromofluorobenzene	101	(79 - 119	3)			
Toluene-d8	102	(80 - 120))			

NOTE(S)

J Estimated result. Result is less than RL,

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: LTM-04

GC/MS Volatiles

Lot-Sample #: D7J050201-002	Work Order #: J8CPJ1AA	Matrix: WATER

 Date Sampled...:
 10/04/07 14:20 Date Received...:
 10/05/07

 Prep Date.....:
 10/09/07 Analysis Date...:
 10/10/07

 Prep Batch #...:
 7283644 Analysis Time...:
 16:22

Dilution Factor: 3.33

Method.....: CFR136A 624

		REPORTII	vG		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Acrolein	ND	330	ug/L	49	
Acrylonitrile	ND	330	ug/L	55	
Benzene	5.5 มี	17	ug/L	2.3	
Bromodichloromethane	ND	17	ug/L	5.1	
Bromoform	MD	17	ug/L	1.6	
Bromomethane	ND	33	ug/L	1.6	
Carbon tetrachloride	ND	17	ug/L	1.9	
Chlorobenzene ·	ND	17	ug/L	2.3	
Dibromochloromethane	ND	17	ug/L	2.4	
Chloroethane	ND	33	ug/L	6.8	
2-Chloroethyl vinyl ether	ND	17	ug/L	6.2	
Chloroform	ND	17	ug/L	3.6	
Chloromethane	ND	33	ug/L	3.0	
1,1-Dichloroethane	ND	17	ug/L	3.5	
1,2-Dichloroethane	ND	17	ug/L	2.2	
trans-1,2-Dichloroethene	ND	17	ug/L	2.4	
1,1-Dichloroethene	ND	17	ug/L	3,5	
1,2-Dichloropropane	ND	17	ug/L	2.8	
1,3-Dichloropropene	ND	17	ug/L	2.2	
(total)					
Ethylbenzene	24	17	ug/L	2.0	
Methylene chloride	6.9 J,B	17	ug/L	1.9	
1,1,2,2-Tetrachloroethane	ND	17	ug/L	4.1	
Tetrachloroethene	ND	17	ug/L	2.4	
Toluene	33	17	ug/L	3.1	
1,1,1-Trichloroethane	ND	17	ug/L	3.8	
1,1,2-Trichloroethane	ND	17	ug/L	4.2	
Trichloroethene	ND	17	ug/L	3.2	
Vinyl chloride	ND	33	ug/L	4.2	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
1,2-Dichloroethane-d4	86	(73 - 12	2)		
4-Bromofluorobenzene	104	(79 - 11			
Toluene-d8	113	(80 - 12	0)		

NOTE(S):

J Estimated result. Result is less than RL.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: TRIP BLANK 1

GC/MS Volatiles

Lot-Sample #: D7J050201-003	Work Order #: J8CPM1AA	Matrix WATER
Date Sampled: 10/04/07	Date Received: 10/05/07	

Date Received..: 10/05/07 Prep Date....: 10/09/07 Analysis Date..: 10/10/07 Prep Batch #...: 7283644 Analysis Time..: 01:57 Dilution Factor: 1

Method..... CFR136A 624

		REPORTING			
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Acrolein	ND	100	ug/L	15	
Acrylonitrile	ND	100	ug/L	17	
Benzene	ND	5.0	ug/L	0.68	
Bromodichloromethane	ND	5.0	ug/L	1,5	
Bromoform	ND	5.0	ug/L	0.48	
Bromomethane	ND	10	ug/L	0.47	
Carbon tetrachloride	ND	5.0	ug/L	0.56	
Chlorobenzene ·	ND	5.0	ug/L	0.70	
Dibromochloromethane	ND	5.0	ug/L	0.71	
Chloroethane	ND	10	ug/L	2.0	
2-Chloroethyl vinyl ether	ND	5.0	ug/L	1.9	
Chloroform	ND	5.0	ug/L	1.1	
Chloromethane	ND	10	ug/L	0.89	
1,1-Dichloroethane	ND	5.0	ug/L	1.0	
1,2-Dichloroethane	ND	5.0	ug/L	0.66	
trans-1,2-Dichloroethene	ND	5.0	ug/L	0.00	
1,1-Dichloroethene	ND	5.0	ug/L	1.0	
1,2-Dichloropropane	ND	5.0	ug/L	0.86	
1,3-Dichloropropene (total)	ND	5.0	ug/L	0.66	
Ethylbenzene	NT.		-		
Methylene chloride	ND	5.0	ug/L	0.60	
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L	0.58	
Tetrachloroethene	ND	5.0	ug/L	1.2	
Toluene	ND	5.0	ug/L	0.72	
1,1,1-Trichloroethane	ND	5.0	ug/L	0.92	
1,1,2-Trichloroethane	ND	5.0	ug/L	1.1	
r,1,2-Trichioroethane Trichloroethene	ND	5.0	ug/L	1.2	
	ND	5.0	ug/L	0.95	
Vinyl chloride	ND	10	ug/L	1.3	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
1,2-Dichloroethane-d4	88	(73 - 122	2)		
1-Bromofluorobenzene	102	(79 - 119			
Coluene-d8	105	(80 - 120			

Client Sample ID: LTM-39

GC/MS Semivolatiles

Lot-Sample #...: D7J050201-001 Work Order #...: J8CPD1AC Matrix..... WATER

 Date Sampled...:
 10/04/07 11:40 Date Received...:
 10/05/07

 Prep Date.....:
 10/09/07 Analysis Date...:
 10/14/07

 Prep Batch #...:
 7282103 Analysis Time...:
 04:34

Dilution Factor: 10

Method..... CFR136A 625

PARAMETER			REPORTIN	1G	
Acenaphthene ND	PARAMETER	RESULT	LIMIT	UNITS	MDL;
Anthracene ND 100 ug/L 4.2 Benzidine ND 1000 ug/L 5.0 Benzo(a) anthracene ND 100 ug/L 3.5 Benzo(b) fluoranthene ND 100 ug/L 3.9 Benzo(k) fluoranthene ND 100 ug/L 3.9 Benzo(k) fluoranthene ND 100 ug/L 4.6 Benzo(a) pyrene ND 100 ug/L 7.4 bis(2-Chloroethoxy) ND 100 ug/L 7.4 bis(2-Chloroethoxy) ND 100 ug/L 3.2 methane bis(2-Chloroethyl) ND 100 ug/L 4.1 ether bis(2-Ethylhexyl) ND 100 ug/L 5.6 phthalate 4-Bromophenyl phenyl ND 100 ug/L 5.6 Butyl benzyl phthalate ND 100 ug/L 20 2-Chloroaphthalene ND 100 ug/L 3.1 2-Chlorophenol ND 100 ug/L 3.1 2-Chlorophenol ND 100 ug/L 3.1 2-Chlorophenyl phenyl ND 100 ug/L 3.1 2-Chlorophenyl phenyl ND 100 ug/L 3.1 2-Chlorophenol ND 100 ug/L 3.1 2-Chlorophenol ND 100 ug/L 3.1 2-Chlorophenol ND 100 ug/L 3.1 2-Chlorophenyl phenyl ND 100 ug/L 3.9 4-Chlorophenyl phenyl ND 100 ug/L 3.9 10-1-Dutyl phthalate ND 100 ug/L 5.4 Dienzo(a,h)anthracene ND 100 ug/L 2.9 1,2-Dichlorobenzene ND 100 ug/L 2.9 1,4-Dichlorobenzene ND 100 ug/L 2.9 1,4-Dichlorobenzene ND 100 ug/L 3.0 3,3'-Dichlorobenzene ND 100 ug/L 3.0 3,3'-Dichlorobenzene ND 100 ug/L 5.7 Dientyl phthalate ND 100 ug/L 5.7	Acenaphthene		100	ug/L	2.8
Benzidine	Acenaphthylene	ND	100	ug/L	4.9
Benzo(a) anthracene	Anthracene	ND	100	ug/L	4.2
Benzo(b) fluoranthene	Benzidine	ИD	1000	ug/L	500
Benzo(k) fluoranthene	Benzo(a)anthracene	ND	100	ug/L	3.5
Benzo(ghi)perylene	Benzo(b) fluoranthene	ND	100	ug/L	3.9
Benzo(a)pyrene ND 100 ug/L 7.4 bis(2-Chloroethoxy) ND 100 ug/L 3.2 methane bis(2-Chloroethyl) - ND 100 ug/L 4.1 ether bis(2-Chloroisopropyl) ND 100 ug/L 4.3 ether bis(2-Ethylhexyl) ND 100 ug/L 5.6 phthalate 4-Bromophenyl phenyl ND 100 ug/L 4.3 ether ether ether ether Butyl benzyl phthalate ND 100 ug/L 20 2-Chloronaphthalene ND 100 ug/L 3.1 2-Chlorophenol ND 100 ug/L 3.9 4-Chlorophenyl phenyl ND 100 ug/L 5.5 ether ether ether Chrysene ND 100 ug/L 5.4 Dibenzo(a,h)anthracene ND 100 ug/L 5.1 Di-n-butyl phthalate ND 100 ug/L 2.8 1,3-Dichlorobenzene ND 100 ug/L 2.9 1,4-Dichlorobenzene ND 100 ug/L 2.9 1,4-Dichlorobenzene ND 100 ug/L 3.0 3,3'-Dichlorobenzene ND 100 ug/L 2.9 1,4-Dichlorobenzene ND 100 ug/L 2.9 1,4-Dichlorobenzene ND 100 ug/L 3.0 3,3'-Dichlorobenzidine ND 500 ug/L 3.8 2,4-Dimethyl phthalate ND 100 ug/L 5.7 Dimethyl phthalate ND 100 ug/L 5.7 2,4-Dinithyl phthalate ND 100 ug/L 5.7 2,4-Dinithyl phthalate ND 100 ug/L 5.7 3.5	Benzo(k) fluoranthene	ND	100	ug/L	4.6
Dis(2-Chloroethoxy) ND 100 ug/L 3.2 methane	Benzo(ghi)perylene	ND	100	ug/L	5.0
methane bis(2-Chloroethyl) - ND 100 ug/L 4.1 ether ND 100 ug/L 4.3 bis(2-Chloroisopropyl) ND 100 ug/L 4.3 ether bis(2-Ethylhexyl) ND 100 ug/L 5.6 phthalate ND 100 ug/L 4.3 e-Bromophenyl phenyl ND 100 ug/L 4.3 e-Bromophenyl phenyl ND 100 ug/L 2.0 2-Chloro-3-methylphenol ND 100 ug/L 2.0 2-Chlorophenyl phenyl ND 100 ug/L 3.1 2-Chlorophenyl phenyl ND 100 ug/L 3.8 4-Chlorophenyl phenyl ND 100 ug/L 5.4 Dibenzo(a,h)anthracene ND 100 ug/L 5.1 Di-n-butyl phthalate ND 100 ug/L 2.8 1,3-Dichlorobenzene ND 100 ug/L 2.9 1,4-Dichlorobenzene </td <td>Benzo (a) pyrene</td> <td>ND</td> <td>100</td> <td>ug/L</td> <td>7.4</td>	Benzo (a) pyrene	ND	100	ug/L	7.4
bis(2-Chloroethyl)- ND 100 ug/L 4.1 ether bis(2-Chloroisopropyl) ND 100 ug/L 4.3 ether bis(2-Ethylhexyl) ND 100 ug/L 5.6 phtbalate ND 100 ug/L 4.3 ether State of the complex of	bis(2-Chloroethoxy)	ND	100	ug/L	3.2
### ### ##############################	methane				
bis(2-Chloroisopropyl) ND 100 ug/L 4.3 ether bis(2-Ethylhexyl) ND 100 ug/L 5.6 phthalate ND 100 ug/L 4.3 4-Bromophenyl phenyl phenyl ether ND 100 ug/L 10 4-Chloro-3-methylphenol ND 100 ug/L 20 2-Chlorophenyl phenyl ND 100 ug/L 3.1 2-Chlorophenol ND 100 ug/L 3.8 4-Chlorophenyl phenyl ND 100 ug/L 6.5 ether ND 100 ug/L 5.4 Chrysene ND 100 ug/L 5.1 Di-n-butyl phthalate ND 100 ug/L 5.1 1,2-Dichlorobenzene ND 100 ug/L 2.8 1,3-Dichlorobenzene ND 100 ug/L 2.9 1,4-Dichlorobenzene ND 100 ug/L 3.0 3,3'-Dichlorobenzidine ND 500 ug/L 3.8	bis(2-Chloroethyl)-	ND	100	ug/L	4.1
### Bis (2-Ethylhexyl) ND 100 ug/L 5.6 phthalate ND 100 ug/L 4.3 ether Eutyl benzyl phthalate ND 100 ug/L 20 2-Chloronaphthalene ND 100 ug/L 3.1 2-Chlorophenol ND 100 ug/L 3.1 2-Chlorophenol ND 100 ug/L 3.8 4-Chlorophenyl phenyl ND 100 ug/L 3.8 4-Chlorophenyl phenyl ND 100 ug/L 5.4 Ether Eutyl benzyl phthalate ND 100 ug/L 3.8 4-Chlorophenol ND 100 ug/L 5.1 Ether Ether	ether				
bis(2-Ethylhexyl) ND 100 ug/L 5.6 phthalate 4-Bromophenyl phenyl ND 100 ug/L 4.3 ether Butyl benzyl phthalate ND 100 ug/L 10 Butyl benzyl phthalate ND 100 ug/L 20 2-Chloro-3-methylphenol ND 100 ug/L 3.1 2-Chlorophenol ND 100 ug/L 3.2 2-Chlorophenol ND 100 ug/L 3.8 4-Chlorophenyl phenyl ND 100 ug/L 5.4 ether ND 100 ug/L 5.4 Chrysene ND 100 ug/L 5.1 bi-n-butyl phthalate ND 100 ug/L 5.1 bi-n-butyl phthalate ND 100 ug/L 2.8 1,3-Dichlorobenzene ND 100 ug/L 2.8 1,3-Dichlorobenzene ND 100 ug/L 3.0 3,3'-Dichlorobenzidine ND 500 ug/L 3.8 2,4-Dimethylphenol 56 <td>bis(2-Chloroisopropyl)</td> <td>ND</td> <td>100</td> <td>ug/L</td> <td>4.3</td>	bis(2-Chloroisopropyl)	ND	100	ug/L	4.3
phthalate 4-Bromophenyl phenyl ND 100 ug/L 4.3 ether Butyl benzyl phthalate ND 100 ug/L 20 2-Chloro-3-methylphenol ND 100 ug/L 3.1 2-Chlorophenol ND 100 ug/L 3.1 2-Chlorophenol ND 100 ug/L 3.8 4-Chlorophenyl phenyl ND 100 ug/L 3.8 4-Chlorophenyl phenyl ND 100 ug/L 5.4 Dibenzo(a,h)anthracene ND 100 ug/L 5.1 Di-n-butyl phthalate ND 100 ug/L 5.1 Di-n-butyl phthalate ND 100 ug/L 12 1,2-Dichlorobenzene ND 100 ug/L 2.8 1,3-Dichlorobenzene ND 100 ug/L 2.9 1,4-Dichlorobenzene ND 100 ug/L 2.9 1,4-Dichlorobenzidine ND 500 ug/L 2.0 2,4-Dichlorophenol ND 100 ug/L 13 Diethyl phthalate ND 100 ug/L 3.8 2,4-Dimethylphenol 56 J 100 ug/L 3.8 2,4-Dimethylphenol 56 J 100 ug/L 5.7 Dimethyl phthalate ND 100 ug/L 3.8 2,4-Dimethylphenol 56 J 100 ug/L 5.7 Dimethyl phthalate ND 100 ug/L 5.7 Dimethyl phthalate ND 100 ug/L 10 4,6-Dimitro-	ether				
## A-Bromophenyl phenyl ether ## Butyl benzyl phthalate ND 100 ug/L 10 ## Chloro-3-methylphenol ND 100 ug/L 20 ## Chloronaphthalene ND 100 ug/L 3.1 ## Chlorophenol ND 100 ug/L 3.9 ## Chlorophenyl phenyl ND 100 ug/L 3.8 ## Chlorophenyl phenyl ND 100 ug/L 5.4 ## Dibenzo(a,h) anthracene ND 100 ug/L 5.1 ## Di-n-butyl phthalate ND 100 ug/L 12 ## Di-n-butyl phthalate ND 100 ug/L 2.8 ## Di-n-butyl phthalate ND 100 ug/L 2.9 ## Di-n-butyl phthalate ND 100 ug/L 3.0 ## Di-n-butyl phthalate ND 100 ug/L 3.8 ## Di-n-butyl phthalate ND 100 ug/L 3.8 ## Di-n-butyl phthalate ND 100 ug/L 3.8 ## Di-n-butyl phthalate ND 100 ug/L 5.7 ## Dimethyl phthalate ND 100 ug/L 10 ## Di-n-butyl phthalate ND 100 ug/L 3.5 ## Di-n-butyl phthalate ND 100 ug	bis(2-Ethylhexyl)	ND	100	ug/L	5.6
### Butyl benzyl phthalate					
Butyl benzyl phthalate ND 100 ug/L 10 4-Chloro-3-methylphenol ND 100 ug/L 20 2-Chloronaphthalene ND 100 ug/L 3.1 2-Chlorophenol ND 100 ug/L 3.8 4-Chlorophenyl phenyl ND 100 ug/L 6.5 ether ND 100 ug/L 5.4 Chrysene ND 100 ug/L 5.1 Dibenzo(a,h) anthracene ND 100 ug/L 5.1 Di-n-butyl phthalate ND 100 ug/L 12 1,2-Dichlorobenzene ND 100 ug/L 2.8 1,3-Dichlorobenzene ND 100 ug/L 3.0 3,3'-Dichlorobenzidine ND 500 ug/L 20 2,4-Dichlorophenol ND 100 ug/L 3.8 2,4-Dimethyl phthalate ND 100 ug/L 3.7 Dimethyl phthalate ND 100 u	4-Bromophenyl phenyl	ND	100	ug/L	4.3
4-Chloro-3-methylphenol ND 100 ug/L 20 2-Chloronaphthalene ND 100 ug/L 3.1 2-Chlorophenol ND 100 ug/L 3.8 4-Chlorophenyl phenyl ND 100 ug/L 6.5 ether ND 100 ug/L 5.4 Chrysene ND 100 ug/L 5.1 Dibenzo(a,h)anthracene ND 100 ug/L 5.1 Di-n-butyl phthalate ND 100 ug/L 12 1,2-Dichlorobenzene ND 100 ug/L 2.8 1,3-Dichlorobenzene ND 100 ug/L 2.9 1,4-Dichlorobenzene ND 100 ug/L 3.0 3,3'-Dichlorobenzidine ND 500 ug/L 20 2,4-Dichlorophenol ND 100 ug/L 3.8 2,4-Dimethylphenol 56 J 100 ug/L 5.7 Dimethyl phthalate ND 100 ug/L 3.5	ether				
2-Chloronaphthalene ND 100 ug/L 3.1 2-Chlorophenol ND 100 ug/L 3.8 4-Chlorophenyl phenyl ND 100 ug/L 6.5 ether ND 100 ug/L 5.4 Chrysene ND 100 ug/L 5.1 Dibenzo(a,h)anthracene ND 100 ug/L 5.1 Di-n-butyl phthalate ND 100 ug/L 12 1,2-Dichlorobenzene ND 100 ug/L 2.8 1,3-Dichlorobenzene ND 100 ug/L 3.0 3,3'-Dichlorobenzene ND 100 ug/L 3.0 3,3'-Dichlorobenzidine ND 500 ug/L 13 Diethyl phthalate ND 100 ug/L 3.8 2,4-Dimethylphenol 56 J 100 ug/L 5.7 Dimethyl phthalate ND 100 ug/L 3.5	Butyl benzyl phthalate	ND	100	\mathtt{ug}/\mathtt{L}	10
2-Chlorophenol ND 100 ug/L 3.8 4-Chlorophenyl phenyl ND 100 ug/L 6.5 ether Chrysene ND 100 ug/L 5.4 Dibenzo(a,h)anthracene ND 100 ug/L 5.1 Di-n-butyl phthalate ND 100 ug/L 12 1,2-Dichlorobenzene ND 100 ug/L 2.8 1,3-Dichlorobenzene ND 100 ug/L 2.9 1,4-Dichlorobenzene ND 100 ug/L 2.9 1,4-Dichlorobenzene ND 100 ug/L 3.0 3,3'-Dichlorobenzidine ND 500 ug/L 20 2,4-Dichlorophenol ND 100 ug/L 13 Diethyl phthalate ND 100 ug/L 3.8 2,4-Dimethylphenol 56 J 100 ug/L 3.8 2,4-Dimethylphenol 56 J 100 ug/L 5.7 Dimethyl phthalate ND 100 ug/L 5.7 Dimethyl phthalate ND 100 ug/L 3.8	4-Chloro-3-methylphenol	ND	100	ug/L	20
## A-Chlorophenyl phenyl ND 100 ug/L 6.5 ether Chrysene ND 100 ug/L 5.4 Dibenzo(a,h)anthracene ND 100 ug/L 5.1 Di-n-butyl phthalate ND 100 ug/L 12 1,2-Dichlorobenzene ND 100 ug/L 2.8 1,3-Dichlorobenzene ND 100 ug/L 2.9 1,4-Dichlorobenzene ND 100 ug/L 3.0 3,3'-Dichlorobenzidine ND 500 ug/L 20 2,4-Dichlorophenol ND 100 ug/L 13 Diethyl phthalate ND 100 ug/L 3.8 2,4-Dimethylphenol 56 J 100 ug/L 3.8 2,4-Dimethylphenol 56 J 100 ug/L 5.7 Dimethyl phthalate ND 100 ug/L 5.7 Dimethyl phthalate ND 100 ug/L 10 4,6-Dinitro- ND 500 ug/L 3.5	2-Chloronaphthalene	ND	100	ug/L	3.1
## Chrysene	2-Chlorophenol	ND	100	ug/L	3.8
Chrysene ND 100 ug/L 5.4 Dibenzo(a,h)anthracene ND 100 ug/L 5.1 Di-n-butyl phthalate ND 100 ug/L 12 1,2-Dichlorobenzene ND 100 ug/L 2.8 1,3-Dichlorobenzene ND 100 ug/L 3.0 3,3'-Dichlorobenzene ND 100 ug/L 3.0 3,3'-Dichlorobenzidine ND 500 ug/L 20 2,4-Dichlorophenol ND 100 ug/L 13 Diethyl phthalate ND 100 ug/L 3.8 2,4-Dimethylphenol 56 J 100 ug/L 5.7 Dimethyl phthalate ND 100 ug/L 10 4,6-Dinitro- ND 500 ug/L 3.5	4-Chlorophenyl phenyl	ND	100	ug/L	6.5
Dibenzo(a,h)anthracene ND 100 ug/L 5.1 Di-n-butyl phthalate ND 100 ug/L 12 1,2-Dichlorobenzene ND 100 ug/L 2.8 1,3-Dichlorobenzene ND 100 ug/L 3.0 3,3'-Dichlorobenzene ND 100 ug/L 3.0 3,3'-Dichlorobenzidine ND 500 ug/L 13 Dichlorophenol ND 100 ug/L 13 Diethyl phthalate ND 100 ug/L 3.8 2,4-Dimethylphenol 56 J 100 ug/L 5.7 Dimethyl phthalate ND 100 ug/L 10 4,6-Dinitro- ND 500 ug/L 3.5	ether				
Di-n-butyl phthalate ND 100 ug/L 12 1,2-Dichlorobenzene ND 100 ug/L 2.8 1,3-Dichlorobenzene ND 100 ug/L 2.9 1,4-Dichlorobenzene ND 100 ug/L 3.0 3,3'-Dichlorobenzidine ND 500 ug/L 20 2,4-Dichlorophenol ND 100 ug/L 13 Diethyl phthalate ND 100 ug/L 3.8 2,4-Dimethylphenol 56 J 100 ug/L 5.7 Dimethyl phthalate ND 100 ug/L 10 4,6-Dinitro- ND 500 ug/L 3.5	Chrysene	ND	100	ug/L	5.4
1,2-Dichlorobenzene ND 100 ug/L 2.8 1,3-Dichlorobenzene ND 100 ug/L 2.9 1,4-Dichlorobenzene ND 100 ug/L 3.0 3,3'-Dichlorobenzidine ND 500 ug/L 20 2,4-Dichlorophenol ND 100 ug/L 13 Diethyl phthalate ND 100 ug/L 3.8 2,4-Dimethylphenol 56 J 100 ug/L 5.7 Dimethyl phthalate ND 100 ug/L 10 4,6-Dinitro- ND 500 ug/L 3.5		ND	100	ug/L	5.1
1,3-Dichlorobenzene ND 100 ug/L 2.9 1,4-Dichlorobenzene ND 100 ug/L 3.0 3,3'-Dichlorobenzidine ND 500 ug/L 20 2,4-Dichlorophenol ND 100 ug/L 13 Diethyl phthalate ND 100 ug/L 3.8 2,4-Dimethylphenol 56 J 100 ug/L 5.7 Dimethyl phthalate ND 100 ug/L 10 4,6-Dinitro- ND 500 ug/L 3.5	Di-n-butyl phthalate	ND	100	ug/L	12
1,4-Dichlorobenzene ND 100 ug/L 3.0 3,3'-Dichlorobenzidine ND 500 ug/L 20 2,4-Dichlorophenol ND 100 ug/L 13 Diethyl phthalate ND 100 ug/L 3.8 2,4-Dimethylphenol 56 J 100 ug/L 5.7 Dimethyl phthalate ND 100 ug/L 10 4,6-Dinitro- ND 500 ug/L 3.5	1,2-Dichlorobenzene	ND	100	ug/L	2.8
3,3'-Dichlorobenzidine ND 500 ug/L 20 2,4-Dichlorophenol ND 100 ug/L 13 Diethyl phthalate ND 100 ug/L 3.8 2,4-Dimethylphenol 56 J 100 ug/L 5.7 Dimethyl phthalate ND 100 ug/L 10 4,6-Dinitro- ND 500 ug/L 3.5	1,3-Dichlorobenzene	ND	100	ug/L	2.9
2,4-Dichlorophenol ND 100 ug/L 13 Diethyl phthalate ND 100 ug/L 3.8 2,4-Dimethylphenol 56 J 100 ug/L 5.7 Dimethyl phthalate ND 100 ug/L 10 4,6-Dinitro- ND 500 ug/L 3.5	1,4-Dichlorobenzene	ND	100	ug/L	3.0
Diethyl phthalate ND 100 ug/L 3.8 2,4-Dimethylphenol 56 J 100 ug/L 5.7 Dimethyl phthalate ND 100 ug/L 10 4,6-Dinitro- ND 500 ug/L 3.5	3,3'-Dichlorobenzidine	ND	500	ug/L	20
2,4-Dimethylphenol 56 J 100 ug/L 5.7 Dimethyl phthalate ND 100 ug/L 10 4,6-Dinitro- ND 500 ug/L 3.5	2,4-Dichlorophenol	ND	100	ug/L	13
Dimethyl phthalate ND 100 ug/L 10 4,6-Dinitro- ND 500 ug/L 3.5	Diethyl phthalate	NID	100	ug/L	3.8
4,6-Dinitro- ND 500 ug/L 3.5	2,4-Dimethylphenol	56 J	100	ug/L	5.7
\rightarrow	Dimethyl phthalate	ND	100	ug/L	10
2-methylphenol	4,6-Dinitro-	ND	500	ug/L	3.5
a maneri abarearea	2-methylphenol				

Client Sample ID: LTM-39

GC/MS Semivolatiles

Lot-Sample #: D7J050201-001	Work Order #: J8CPD1AC	Matrix WATER
-----------------------------	------------------------	--------------

		REPORTI	NG		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
2,4-Dinitrophenol	ND	200	ug/L	200	
2,4-Dinitrotoluene	ND	100	ug/L	2.5	
2,6-Dinitrotoluene	15 J	100	ug/L	2.3	
Di-n-octyl phthalate	ND	100	ug/L	3.5	
1,2-Diphenylhydrazine	ND	100	ug/L	0.33	
(as Azobenzene)		_**	-3, -	0.55	
Fluoranthene	ND	100	ug/L	2.0	
Fluorene	ND	100	ug/L	3.1	
Hexachlorobenzene	ND	100	ug/L	6.6	
Hexachlorobutadiene	ND	100	ug/L	5.1	
Hexachlorocyclopenta-	ND	500	ug/L	15	
diene			3/		
Hexachloroethane	ND	100	ug/L	4.6	
Indeno(1,2,3-cd)pyrene	ND	100	ug/L	6.5	
Isophorone	ND	100	ug/L	2.1	
Naphthalene	11 J	100	ug/L	2.9	
Nitrobenzene	ND	100	ug/L	8.1	
2-Nitrophenol	ND	100	ug/L	20	
4-Nitrophenol	ND	500	ug/L	17	
N-Nitrosodimethylamine	ND	100	ug/L	2.9	
N-Nitrosodiphenylamine	ND	100	ug/L	4.4	
N-Nitrosodi-n-propyl-	ND	100	ug/L	3,5	
amine			3.	- • •	
Pentachlorophenol	ND	500	ug/L	200	
Phenanthrene	ND	100	ug/L	2.6	
Phenol	980	100	ug/L	3.1	
Pyrene	ND	100	ug/L	3.7	
1,2,4-Trichloro-	ND	100	ug/L	4.5	
benzene					
2,4,6-Trichloro-	ND	100	uq/L	3.7	-
phenol			3, -	,	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
2-Fluorophenol	NC, DIL	(49 - 120	0)		
Phenol-d5	NC, DIL	(54 - 120	0)		
Nitrobenzene-d5	NC, DIL	(56 - 120	0)		
2-Fluorobiphenyl	NC, DIL	(52 - 120	•		
2,4,6-Tribromophenol	NC, DIL	(56 - 120	0)		
Terphenyl-d14	NC, DIL	(50 - 120			
			•	•	

NOTE(S):

NC. The recovery and/or RPD were not calculated.

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

J Estimated result. Result is less than RL.

Client Sample ID: LTM-04

GC/MS Semivolatiles

Lot-Sample #...: D7J050201-002 Work Order #...: J8CPJ1AC Matrix..... WATER

Date Sampled...: 10/04/07 14:20 Date Received..: 10/05/07 Prep Date....: 10/09/07 Analysis Date..: 10/14/07 Prep Batch #...: 7282103 Analysis Time..: 04:56

Dilution Factor: 10

Method....: CFR136A 625

PARAMETER		REPORTI	NG		
Acenaphthene	RESULT	LIMIT	UNITS	MDL	
Acenaphthylene	ND	100	ug/L	2.8	
Anthracene	ND	100	ug/L	4.9	
Benzidine	ND ,	100	ug/L	4.2	
	ND	1000	ug/L	500	
Benzo(a) anthracene	ND	100	ug/L	3.5	
Benzo(b) fluoranthene	ND	100	ug/L	3.9	
Benzo(k) fluoranthene	ND	100	ug/L	4.6	
Benzo(ghi)perylene	. ND	100	ug/L	5.0	
Benzo(a)pyrene	ND	100	ug/L	7.4	
bis(2-Chloroethoxy)	ND	100	ug/L	3.2	
methane			~5, =	. 3.2	
ois(2-Chloroethy1)-	ND	100	ug/L	4.1	
ether			ug/ u	A - W	
ois(2-Chloroisopropyl)	ND	100	ug/L	4.3	
ether		-++	49/10	4.3	
ois(2-Ethylhexyl)	ND	100	ug/L	5.6	
phthalate		200	49/1	5.6	
-Bromophenyl phenyl	ND	100	ug/L		
ether		200	49/L	4.3	
sutyl benzyl phthalate	ND	100	ug/L	7.0	
-Chloro-3-methylphenol	ND	100	ug/L	10	
-Chloronaphthalene	ND	100		20	
-Chlorophenol	ND	100	ug/L	3,1	
-Chlorophenyl phenyl	ND	100	ug/L	3.8	
ether	1.2	100	лā/Г	6.5	
hrysene	ND	100	1=		
ibenzo(a,h)anthracene	ND	100	ug/L	5.4	
i-n-butyl phthalate	ND	100	ug/L	5.1	
,2-Dichlorobenzene	ND	100	ug/L	12	
,3-Dichlorobenzene	ND	100	ug/L	2.8	
4-Dichlorobenzene	ND	100	ug/L	2.9	
3'-Dichlorobenzidine		100	ug/L	3.0	
4-Dichlorophenol	ND	500	ug/L	20	
ethyl phthalate	ND	100	ug/L	13	
4-Dimethylphenol	ND	100	ug/L	3.8	
methyl phthalate	23 Ј	100	ug/L	5.7	
6-Dinitro-	ND	100	ug/L	10	
2-methylphenol	ND	500	ug/L	3.5	

Client Sample ID: LTM-04

GC/MS Semivolatiles

Lot-Sample #: D7J050201-002 Wc	ork Order #: J8CPJ1AC	Matrix WATER
--------------------------------	-----------------------	--------------

		REPORTII	vig		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
2,4-Dinitrophenol	ND	200	ug/L	200	
2,4-Dinitrotoluene	ND	100	ug/L	2.5	
2,6-Dinitrotoluene	ND .	100	ug/L	2.3	
Di-n-octyl phthalate	ND	100	ug/L	3.5	
1,2-Diphenylhydrazine (as Azobenzene)	ND	100	ug/L	0.33	
Fluoranthene	ND	100	ug/L	2.0	
Fluorene	ND	100	ug/L	3.1	
Hexachlorobenzene	ND	100	ug/L	6.6	
Hexachlorobutadiene	ND	100	_		
Hexachlorocyclopenta-	ND	500	ug/L ug/L	5.1 15	
diene				-	
Hexachloroethane	ND .	100	ug/L	4.6	
Indeno(1,2,3-cd)pyrene	ND	100	ug/L	6.5	
Isophorone	ND	100	ug/L	2.1	
Naphthalene	10 J	100	uq/L	2.9	
Nitrobenzene	ND	100	ug/L	8.1	
2-Nitrophenol	ND	100	ug/L	20	
4-Nitrophenol	ND	500	ug/L	17	
N-Nitrosodimethylamine	ND	100	ug/L	2.9	
N-Nitrosodiphenylamine	ND	100	ug/L	4.4	
N-Nitrosodi-n-propyl- amine	ND	100	ug/L	3.5	
Pentachlorophenol			-		
Phenanthrene	ND	500	ug/L	200	
Phenol	ND	100	ug/L	2.6	
	50 J	100	ug/L	3.1	
Pyrene	ND	100	ug/L	3.7	
1,2,4-Trichloro- benzene	ND	100	ug/L	4.5	
2,4,6-Trichloro-	17D		-		
phenol	ND .	100	ug/L	3.7	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
2-Fluorophenol	NC, DIL	(49 - 120			
Phenol-d5	NC, DIL	(54 - 120			
Nitrobenzene-d5	NC, DIL	(56 - 120			
2-Fluorobiphenyl	NC, DIL	(52 - 120			
2,4,6-Tribromophenol	NC, DIL	(56 - 120	-		
Terphenyl-d14	NC, DIL	(50 - 120	•		
<u> </u>	1.0,010	(50 - 12)	• •		

NOTE(S):

NC The recovery and/or RPD were not calculated.

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

J Estimated result, Result is less than RL.

Client Sample ID: LTM-39

GC Semivolatiles

Lot-Sample #:	D7J050201-001	Work Order #	ብ ደ ሮ PD1 ል D	Mateix	7.77 Mars
Date Sampled:	10/04/07 11:40	Date Received	10/05/07	Matrix:	WATER
Prep Date:		Analysis Date:			

Prep Batch #...: 7281470 Analysis Time..: 01:45
Dilution Factor: 1

Method..... CFR136A 608

D. J. D. D. L. Strammer		REPORTI	йG	
PARAMETER	RESULT	LIMIT	UNITS	MDL
Aldrin	ND	0.050	ug/L	0.0059
alpha-BHC	ND	0.50	ug/L	0.0053
beta-BHC	ND	0.050	ug/L	0.0087
delta-BHC	ND	0.050	ug/L	0.0058
gamma-BHC (Lindane)	ND	0.050	ug/L	0.0056
Chlordane (technical)	ND	0.50	ug/L	0.14
4,4'-DDD	ND	0.10	ug/L	
4,4'-DDE	ND	0.10	ug/L	0.0077
4,4'-DDT	ND	0.10		0.0075
Dieldrin	ND	0.10	ug/L	0.015
Endosulfan I	ND	0.050	ug/L	0.0063
Endosulfan II	ND		ug/L	0.0058
Endosulfan sulfate	ND	0.10	ug/L	0.0070
Endrin	ND	0.10	ug/L	0.0057
Endrin aldehyde		0.10	ug/L	0.0079
Heptachlor	ND	0.10	ug/L	0.0088
Heptachlor epoxide	ND	0.050	ug/L	0.0077
Toxaphene	ND	0.050	ug/L	0.0075
Toxaphene ,	ND	5.0	ug/L	0.37
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Decachlorobiphenyl	0.0 *	(48 - 127	7)	
Tetrachloro-m-xylene	24 *	(40 ~ 107		

NOTE(S):

Surrogate recovery is outside stated control limits.

Client Sample ID: LTM-39

GC Semivolatiles

Lot-Sample #: D7J050201-001	Work Order #: J8CPD2AD	Matrix: WATER
-----------------------------	------------------------	---------------

Date Sampled...: 10/04/07 11:40 Date Received..: 10/05/07 Prep Date....: 10/08/07 Analysis Date..: 10/13/07 Prep Batch #...: 7281470 Analysis Time..: 19:11

Dilution Factor: 1

Method..... CFR136A 608

		REPORTIN	1G		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Aroclor 1016	ND	1.0	ug/L	0.12	
Aroclor 1221	ND	2.0	ug/L	0.21	
Aroclor 1232	ND	1.0	ug/L	0.17	
Aroclor 1242	ND	1.0	ug/L	0.10	
Aroclor 1248	ND	1.0	uq/L	0.092	
Aroclor 1254	ND	1.0	ug/L	0.11	
Aroclor 1260	ND	1.0	ug/L	0.16	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
Decachlorobiphenyl	1.6 *	(48 - 12	7)		
Tetrachloro-m-xylene	34 *	(40 - 10	7)		

NOTE (S):

^{*} Surrogate recovery is outside stated control limits.

Client Sample ID: LTM-04

GC Semivolatiles

Lot-Sample #: D7J050201-	002 Work Order	#: J8CPJ1AD	Matrix	WATER
--------------------------	----------------	-------------	--------	-------

 Date Sampled...:
 10/04/07 14:20 Date Received..:
 10/05/07

 Prep Date....:
 10/08/07 Analysis Date..:
 10/11/07

 Prep Batch #...:
 7281470 Analysis Time..:
 02:03

Dilution Factor: 1

Method..... CFR136A 608

		REPORTIN	IG .	
PARAMETER	RESULT	LIMIT	UNITS	MDL
Aldrin	ND	0.050	ug/L	0.0059
alpha-BHC	ND	0.50	ug/L	0.0053
beta-BHC	0.026 J,COL	0.050	ug/L	0.0087
delta-BHC	0.018 J,COL	0.050	ug/L	0.0058
gamma-BHC (Lindane)	ND	0.050	ug/L	0.0069
Chlordane (technical)	ND .	0.50	ug/L	0.14
4,4'-DDD	ND	0.10	ug/L	0.0077
4,4'-DDE	ND .	0.10	ug/L	0.0075
4,4'-DDT	ND	0.10	ug/L	0.015
Dieldrin	ND	0.10	ug/L	0.0063
Endosulfan I	ND	0.050	ug/L	0.0058
Endosulfan II	ND	0.10	ug/L	0.0070
Endosulfan sulfate	ND	0.10	ug/L	0.0057
Endrin	NID	0.10	ug/L	0.0079
Endrin aldehyde	ND	0.10	ug/L	0.0088
Heptachlor	ND	0.050	ug/L	0.0077
Heptachlor epoxide	ND	0.050	ug/L	0.0075
Toxaphene	ND	5.0	ug/L	0.37
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Decachlorobiphenyl	0.0 *	(48 - 12	7)	
Tetrachloro-m-xylene	36 *	(40 - 10	7)	

NOTE(S):

COL More than 40% RPD between primary and confirmation column results. The lower of the two results is reported.

Surrogate recovery is outside stated control limits.

J Estimated result. Result is less than RL.

Client Sample ID: LTM-04

GC Semivolatiles

Lot-Sample #:	D7J050201-002	Work Order #: J8CPJ2AD	Matrix:	LIA MIN
Date Sampled:	10/04/07 14:20	Date Received.: 10/05/07	MACILLI	WAIEK
Prep Date:	10/08/07	Analysis Date : 10/13/07		

Prep Batch #...: 7281470 Analysis Time..: 19:34
Dilution Factor: 1

Method.....: CFR136A 608

PARAMETER Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	RESULT ND ND ND ND ND ND ND ND ND	REPORTING LIMIT 1.0 2.0 1.0 1.0 1.0 1.0 1.0	UNITS ug/L ug/L ug/L ug/L ug/L ug/L ug/L	MDL 0.12 0.21 0.17 0.10 0.092 0.11 0.16
SURROGATE Decachlorobiphenyl Tetrachloro-m-xylene	PERCENT RECOVERY 2.3 * 48	RECOVERY LIMITS (48 - 127) (40 - 107)		0.16

NOTE(S):

Surrogate recovery is outside stated control limits.

QC DATA ASSOCIATION SUMMARY

D7J050201

Sample Preparation and Analysis Control Numbers

SAMPLE#	MATRIX	ANALYTICAL METHOD	LEACH BATCH #	PREP BATCH #	MS RUN#
001	WATER WATER WATER	CFR136A 608 CFR136A 624 CFR136A 625		7281470 7283644 7282103	7281287 7283337 7282069
002	WATER WATER WATER	CFR136A 608 CFR136A 624 CFR136A 625		7281470 7283644 7282103	7281287 7283337 7282069
003	WATER	CFR136A 624		7283644	7283337

METHOD BLANK REPORT

GC/MS Volatiles

Client Lot #...: D7J050201

Work Order #...: J8NET1AA

Matrix....: WATER

MB Lot-Sample #: D7J100000-644

Prep Date....: 10/09/07 Prep Batch #...: 7283644

Analysis Time..: 19:38

Analysis Date..: 10/09/07

Dilution Factor: 1

REPORTING

		REPORTA	NG			
PARAMETER	RESULT	LIMIT	UNITS	METHOD		
Acrolein	ND	100	ug/L	CFR136A 624		
Acrylonitrile	ИD	100	ug/L	CFR136A 624		
Benzene	ND	5.0	ug/L	CFR136A 624		
Bromodichloromethane	ND	5.0	ug/L	CFR136A 624		
Bromoform	ND	5.0	ug/L	CFR136A 624		
Bromomethane	ND	10	ug/L	CFR136A 624		
Carbon tetrachloride	ND	5.0	ug/L	CFR136A 624		
Chlorobenzene	ND	5.0	ug/L	CFR136A 624		
Dibromochloromethane	ND .	5.0	ug/L	CFR136A 624		
Chloroethane	ND	10	ug/L	CFR136A 624		
2-Chloroethyl vinyl ether	ND	5.0	ug/L	CFR136A 624		
Chloroform	ИD	5.0	ug/L	CFR136A 624		
Chloromethane	ND	10	ug/L	CFR136A 624		
1,1-Dichloroethane	ND	5.0	ug/L	CFR136A 624		
1,2-Dichloroethane	ND	5.0	ug/L	CFR136A 624		
trans-1,2-Dichloroethene	ND	5.0	ug/L	CFR136A 624		
1,1-Dichloroethene	ND	5.0	ug/L	CFR136A 624		
1,2-Dichloropropane	ND	5.0	ug/L	CFR136A 624		
1,3-Dichloropropene	ND	5.0	ug/L	CFR136A 624		
(total)			-3,			
Ethylbenzene	ND	5.0	ug/L	CFR136A 624		
Methylene chloride	1.7 J	5.0	ug/L	CFR136A 624		
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L	CFR136A 624		
Tetrachloroethene	ND	5.0	ug/L	CFR136A 624		
Toluene	ND	5.0	ug/L	CFR136A 624		
1,1,1-Trichloroethane	ND	5.0	ug/L	CFR136A 624		
1,1,2-Trichloroethane	ND	5.0	ug/L	CFR136A 624		
Trichloroethene	ND	5.0	ug/L	CFR136A 624		
Vinyl chloride	ND	10	ug/L	CFR136A 624		
			-5/-	011110011 021		
	PERCENT	RECOVERY				
SURROGATE	RECOVERY	LIMITS				
1,2-Dichloroethane-d4	80	(73 - 12	2)			
4-Bromofluorobenzene	101	(79 - 11				
Toluene-d8	107	(80 - 12	-			
		,	- •			

Calculations are performed before rounding to avoid round-off errors in calculated results.

J Estimated result. Result is less than RL.

GC/MS Volatiles

Client Lot #...: D7J050201 Work Order #...: J8NET1AC Matrix.....: WATER

LCS Lot-Sample#: D7J100000-644

Prep Date....: 10/09/07 Analysis Date..: 10/09/07 Prep Batch #...: 7283644 Analysis Time..: 18:57

Dilution Factor: 1

	PERCENT	RECOVERY	
PARAMETER	RECOVERY	LIMITS	METHOD
Acrolein	140	(39 - 188)	CFR136A 624
1,2-Dichlorobenzene	109	(18 - 190)	CFR136A 624
Acrylonitrile	95	(48 - 149)	CFR136A 624
1,3-Dichlorobenzene	113	(59 - 156)	CFR136A 624
1,4-Dichlorobenzene	111	(18 - 190)	CFR136A 624
Benzene	89	(37 - 151)	CFR136A 624
Bromodichloromethane	77	(35 - 155)	CFR136A 624
Bromoform	98	(45 ~ 169)	CFR136A 624
Bromomethane	53	(10 - 242)	CFR136A 624
cis-1,3-Dichloropropene	87	(10 - 227)	CFR136A 624
Carbon tetrachloride	85	(70 - 140)	CFR136A 624
Chlorobenzene	103	(37 - 160)	CFR136A 624
Dibromochloromethane	9 9	(53 - 149)	CFR136A 624
trans-1,3-Dichloropropene	103	(17 - 183)	CFR136A 624
Trichlorofluoromethane	88	(17 - 181)	CFR136A 624
Chloroethane	87	(14 - 230)	CFR136A 624
2-Chloroethyl vinyl ether	74	(10 - 305)	CFR136A 624
1,4-Dioxane	66	(25 - 141)	CFR136A 624
Hexane	89	(69 - 143)	CFR136A 624
Acetone	89	(42 - 170)	CFR136A 624
Chloroform	90	(51 ~ 138)	CFR136A 624
Xylenes (total)	107	(50 - 150)	CFR136A 624
Chloromethane	80	(10 - 273)	CFR136A 624
1,1-Dichloroethane	89	(59 - 155)	CFR136A 624
1,2-Dichloroethane	83	(49 - 155)	CFR136A 624
trans-1,2-Dichloroethene	104	(54 ~ 156)	CFR136A 624
1,1-Dichloroethene	119	(10 - 234)	CFR136A 624
1,2-Dichloropropane	77	(10 - 210)	CFR136A 624
1,3-Dichloropropene	95	(17 - 183)	CFR136A 624
(total)			·
Bthylbenzene	104	(37 - 162)	CFR136A 624
Methylene chloride	96	(10 - 221)	CFR136A 624
1,1,2,2-Tetrachloroethane	101	(46 - 157)	CFR136A 624
Tetrachloroethene	103	(64 - 148)	CFR136A 624

GC/MS Volatiles

Client Lot #...: D7J050201 Work Order #...: J8NET1AC Matrix...... WATER

LCS Lot-Sample#: D7J100000-644

PARAMETER Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Vinyl chloride	PERCENT RECOVERY 102 92 99 83 66	RECOVERY LIMITS (47 - 150) (52 - 162) (52 - 150) (71 - 157) (10 - 251)	METHOD CFR136A 624 CFR136A 624 CFR136A 624 CFR136A 624
SURROGATE 1,2-Dichloroethane-d4 4-Bromofluorobenzene Toluene-d8		PERCENT RECOVERY 88 98 106	RECOVERY LIMITS (73 - 122) (79 - 119) (80 - 120)

NOTE (S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

LABORATORY CONTROL SAMPLE DATA REPORT

GC/MS Volatiles

Client Lot #...: D7J050201 Work Order #...: J8NET1AC Matrix...... WATER

LCS Lot-Sample#: D7J100000-644

Dilution Factor: 1

	SPIKE	MEASURED		PERCENT	
PARAMETER	AMOUNT	AMOUNT	UNITS	RECOVERY	METHOD
Acrolein	200	280	ug/L	140	CFR136A 624
1,2-Dichlorobenzene	20.0	21.8	ug/L	10 9	CFR136A 624
Acrylonitrile	200	190	ug/L	95	CFR136A 624
1,3-Dichlorobenzene	20.0	22.7	ug/L	113	CFR136A 624
1,4-Dichlorobenzene	20.0	22.1	ug/L	111	CFR136A 624
Benzene	20.0	17.9	ug/L	89	CFR136A 624
Bromodichloromethane	20.0	15.5	ug/L	77	CFR136A 624
Bromoform	20.0	19.7	ug/L	98	CFR136A 624
Bromomethane	20.0	10.6	ug/L	53	CFR136A 624
cis-1,3-Dichloropropene	20.0	17.3	ug/L	87	CFR136A 624
Carbon tetrachloride	20.0	17.0	ug/L	85	CFR136A 624
Chlorobenzene	20.0	20.6	ug/L	103	CFR136A 624
Dibromochloromethane	20.0	19.9	ug/L	99	CFR136A 624
trans-1,3-Dichloropropene	20.0	20.6	ug/L	103	CFR136A 624
Trichlorofluoromethane	20.0	17.5	ug/L	88	CFR136A
Chloroethane	20.0	17.4	ug/L	87	CFR136A 6_ *
2-Chloroethyl vinyl ether	20.0	14.8	ug/L	74	CFR136A 624
1,4-Dioxane	1000	663	ug/L	66	CFR136A 624
Hexane	20.0	17.7	ug/L	89	CFR136A 624
Acetone	40.0	35.5	ug/L	89	CFR136A 624
Chloroform	20.0	18.0	ug/L	90	CFR136A 624
Xylenes (total)	60.0	64.2	ug/L	107	CFR136A 624
Chloromethane	20.0	16.0	ug/L	80	CFR136A 624
1,1-Dichloroethane	20.0	17.8	ug/L	89	CFR136A 624
1,2-Dichloroethane	20.0	16.6	ug/L	83	CFR136A 624
trans-1,2-Dichloroethene	20.0	20.8	ug/L	104	CFR136A 624
1,1-Dichloroethene	20.0	23.8	ug/L	119	CFR136A 624
1,2-Dichloropropane	20.0	15.5	ug/L	77	CFR136A 624
1,3-Dichloropropene	40.0	38.0	ug/L	95	CFR136A 624
(total)					
Ethylbenzene	20.0	20.8	ug/L	104	CFR136A 624
Methylene chloride	20.0	19.1	ug/L	96	CFR136A 624
1,1,2,2-Tetrachloroethane	20.0	20.2	ug/L	101	CFR136A 624
Tetrachloroethene	20.0	20.7	ug/L	103	CFR136A 624

LABORATORY CONTROL SAMPLE DATA REPORT

GC/MS Volatiles

Client Lot #...: D7J050201

Work Order #...: J8NET1AC

Matrix....: WATER

LCs Lot-Sample#: D7J100000-644

PARAMETER Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Vinyl chloride	SPIKE AMOUNT 20.0 20.0 20.0 20.0 20.0	MEASURED <u>AMOUNT</u> 20.5 18.4 19.7 16.6 13.3	UNITS ug/L ug/L ug/L ug/L ug/L	PERCENT RECOVERY 102 92 99 83 66	METHOD CFR136A 62 CFR136A 62 CFR136A 62 CFR136A 62 CFR136A 62
SURROGATE 1,2-Dichloroethane-d4 4-Bromofluorobenzene Toluene-d8		PERCENT RECOVERY 88 98	RECOVERY LIMITS (73 - 122) (79 - 119)		

106

(80 - 120)

NOTE(S):

Toluene-d8

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

MATRIX SPIKE SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #...: D7J050201 Work Order #...: J78W71AF-MS Matrix...... WATER

 Prep Date....: 10/09/07
 Analysis Date..: 10/09/07

 Prep Batch #...: 7283644
 Analysis Time..: 20:18

Dilution Factor: 1

	PERCENT	RECOVERY		RPD	
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHOD
Acrolein	129	(39 - 188)			CFR136A 624
·	131	(39 - 188)	1.0	(0-30)	CFR136A 624
1,2-Dichlorobenzene	112	(18 - 1 9 0)			CFR136A 624
	111	(18 - 190)	0.87	(0-30)	CFR136A 624
Acrylonitrile	100	(48 - 149)			CFR136A 624
	102	(48 - 149)	1.1	(0-30)	CFR136A 624
1,3-Dichlorobenzene	114	(59 ~ 156)			CFR136A 624
	114	(59 - 156)	0.14	(0-30)	CFR136A 624
1,4-Dichlorobenzene	118	(18 - 190)			CFR136A 624
	117	(18 - 190)	1.2	(0-30)	CFR136A 624
Benzene	89	(37 - 151)			CFR136A 624
	87	(37 - 151)	2.0	(0-30)	CFR136A 624
Bromodichloromethane	77	(35 - 155)			CFR136A 624
	78	(35 - 155)	1.7	(0-30)	CFR136A 624
Bromoform	105	(45 - 169)			CFR136A 624
	114	(45 - 169)	7.6	(0-30)	CFR136A 624
Bromomethane	30	(10 ~ 242)			CFR136A 624
	62 p	(10 - 242)	70	(0-30)	CFR136A 624
cis-1,3-Dichloropropene	88	(10 - 227)		_	CFR136A 624
	85	(10 - 227)	3.9	(0-30)	CFR136A 624
Carbon tetrachloride	83	(70 - 140)			CFR136A 624
	86	(70 - 140)	4.5	(0-30)	CFR136A 624
Chlorobenzene	103	(37 - 160)			CFR136A 624
	104	(37 - 160)	0.47	(0-30)	CFR136A 624
Dibromochloromethane	101	(53 - 149)			CFR136A 624
	103	(53 - 149)	2.5	(0-30)	CFR136A 624
trans-1,3-Dichloropropene		(17 - 183)			CFR136A 624
	108	(17 - 183)	2.7	(0-30)	CFR136A 624
Trichlorofluoromethane	90	(17 - 181)			CFR136A 624
	84	(17 - 181)	7.1	(0-30)	CFR136A 624
Chloroethane	82	(14 - 230)			CFR136A 624
	84	(14 - 230)	3.5	(0-30)	CFR136A 624
2-Chloroethyl vinyl ether		(10 - 305)			CFR136A 624
	75	(10 - 305)	5.5	(0-45)	CFR136A 624
1,4~Dioxane	93	(25 - 141)			CFR136A 624
	102	(25 - 141)	10	(0-20)	CFR136A 624
Hexane	92	(69 - 143)			CFR136A 624
	95	(69 - 143)	3.4	(0-20)	CFR136A 624
Acetone	87	(42 - 170)	_		CFR136A 624
	83	(42 ~ 170)	4.7	(0-20)	CFR136A 624

MATRIX SPIKE SAMPLE EVALUATION REPORT

GC/MS Volatiles

Chloroform 87 (51 - 138) (-30) (CFR136A 624 (-30) (PARAMETER	PERCENT	RECOVERY		RPD	
Xylenes (total)	TIGHTOTH.	RECOVERY	LIMITS	RPD	LIMITS	METHOD
Xylenes (total)	Chloreform	0.5	_			
Xylenes (total)						CFR136A 624
Chloromethane 105	Xvlenes (total)			4.4	(0-30)	CFR136A 624
Chloromethane 68 (10 - 273) CFR136A 624 CFR136A 624 (10 - 273) B.2 (0-30) CFR136A 624 (10 - 273) B.3 (10 - 310) CFR136A 624 (10 - 273) B.3 (10 - 310) CFR136A 624 (10 - 273) B.3 (10 - 310) CFR136A 624 (10 - 273) B.3 (10 - 210) CFR136A 624 (10 - 273) CFR136A 624 (11 -	-, (EOCH1)					
1,1-Dichloroethane	Chloromethane			3.4	(0-30)	CFR136A 624
1,1-Dichloroethane	J. J					CFR136A 624
1,2-Dichloroethane	1.1-Dichlargethane			8.2	(0-30)	CFR136A 624
1,2-Dichloroethane 80 (49 - 155) CFR136A 624 (FR136A 624 CFR136A 624 (FR136A 624 CFR136A 6	1,1 DIGITOTOCCHANE					CFR136A 624
trans-1,2-Dichloroethene 94 (54 - 155) 3.1 (0-30) CFR136A 624 (54 - 156) CFR136A 624 (55 -	1.2-Dickloroethane			0.91	(0-30)	CFR136A 624
trans-1,2-Dichloroethene 94 (54 - 155) 3.1 (0-30) CFR136A 624 1,1-Dichloroethene 114 (10 - 234)	1,1 Didniologonane					CFR136A 624
1,1-Dichloroethene 114 (10 - 234)	trans-1 2-Dighlowest			3.1	(0-30)	
1,1-Dichloroethene	orang 1,2 Dictionoschene					
114 (10 - 234) 3.8 (0-30) CFR136A 624 1,2-Dichloropropane 73 (10 - 210) CFR136A 624 1,3-Dichloropropene 97 (17 - 183) 0.22 (0-30) CFR136A 624 (total) 96 (17 - 183) 0.22 (0-30) CFR136A 624 Ethylbenzene 105 (37 - 162) 1.6 (0-30) CFR136A 624 Methylene chloride 81 (10 - 221) CFR136A 624 Methylene chloride 81 (10 - 221) CFR136A 624 1,1,2,2-Tetrachloroethane 113 (46 - 157) CFR136A 624 Tetrachloroethene 103 (64 - 148) CFR136A 624 Toluene 107 (47 - 150) CFR136A 624 1,1,1-Trichloroethane 88 (52 - 162) CFR136A 624 1,1,2-Trichloroethane 102 (52 - 150) CFR136A 624 1,1,2-Trichloroethane 102 (52 - 150) CFR136A 624 Trichloroethene 83 (71 - 157) 2.1 (0-30) CFR136A 624 Trichloroethene 83 (71 - 157) 2.1 (0-30) CFR136A 624 Trichloroethene 83 (71 - 157) CFR136A 624 Trichloroethene 83 (71 - 157) CFR136A 624 Trichloroethene 83 (71 - 157) CFR136A 624 Trichloroethene 85 (71 - 157) 2.1 (0-30) CFR136A 624 Trichloroethene 87 (71 - 157) 2.1 (0-30) CFR136A 624 Trichloroethene 88 (71 - 157) CFR136A 624 Trichloroethene 89 (71 - 251) 5.1 (0-30) CFR136A 624 Trichloroethene 87 (71 - 157) CFR136A 624 Trichloroethene 88 (71 - 157) CFR136A 624 Trichloroethene 89 (71 - 251) 5.1 (0-30) CFR136A 624 Trichloroethene 89 (71 - 251) 5.1 (0-30) CFR136A 624 Trichloroethene 89 (71 - 251) 5.1 (0-30) CFR136A 624 Trichloroethene 89 (71 - 251) 5.1 (0-30) CFR136A 624 Trichloroethene 89 (71 - 251) 5.1 (0-30) CFR136A 624 Trichloroethene 89 (71 - 251) 5.1 (0-30) CFR136A 624 Trichloroethene 89 (71 - 251) 5.1 (0-30) CFR136A 624 Trichloroethene 89 (71 - 251) 5.1 (0-30) CFR136A 624 Trichloroethene 89 (71 - 251) 5.1 (0-30) CFR136A 624 Trichloroethene 89 (71 - 251) 5.1 (0-30) CFR136A 624 Trichloroethene 89 (71 - 251) 5.1 (0-30) CFR136A 624 Trichloroethene 89 (71 - 251) 5.1 (0-30) CFR136A 624 Trichloroethene 89 (71 - 251) 5.1 (0-30) CFR136A 624	1.1-Dichloroethana			7.0	(0-30)	
1.2-Dichloropropane 73 (10 - 234) 3.8 (0-30) CFR136A 624 (10 - 210) 2.5 (0-30) CFR136A 624 (17 - 183) CFR136A 624 (18 - 18 - 18 - 18 - 18 - 18 - 18 - 18	T) I DIGITOTO ECHENE					
1,3-Dichloropropene (total) 96 (17 - 183) 0.22 (0-30) CFR136A 624 (18 - 18 - 18 - 18 - 18 - 18 - 18 - 18	1.2-Bichloronronano			3.8	(0-30)	
1,3-Dichloropropene (total) 96	-/- 210a1oropropane					CFR136A 624
String	1.3-Dichloropropere			2.5	(0-30)	CFR136A 624
Rthylbenzene 105 (37 - 162) CFR136A 624 Methylene chloride 81 (10 - 221) CFR136A 624 Methylene chloride 81 (10 - 221) CFR136A 624 89 (10 - 221) 8.6 (0-30) CFR136A 624 1,1,2,2-Tetrachloroethane 113 (46 - 157) 4.2 (0-30) CFR136A 624 Tetrachloroethene 103 (64 - 148) CFR136A 624 CFR136A 624 Toluene 106 (64 - 148) 2.4 (0-30) CFR136A 624 Toluene 107 (47 - 150) CFR136A 624 CFR136A 624 1,1,1-Trichloroethane 88 (52 - 162) CFR136A 624 CFR136A 624 1,1,2-Trichloroethane 102 (52 - 162) 0.57 (0-30) CFR136A 624 1,1,2-Trichloroethane 108 (52 - 150) 5.9 (0-30) CFR136A 624 Trichloroethene 83 (71 - 157) 2.1 (0-30) CFR136A 624 Winyl chloride 62 (10 - 251) 5.1 (0-30) CFR136A 624 Winyl chloride 62 (10 - 251) 5.1 <td>(total)</td> <td>97</td> <td>(17 ~ 183)</td> <td></td> <td></td> <td>CFR136A 624</td>	(total)	97	(17 ~ 183)			CFR136A 624
Rthylbenzene 105 (37 - 162) CFR136A 624 Methylene chloride 81 (10 - 221) CFR136A 624 89 (10 - 221) 8.6 (0-30) CFR136A 624 1,1,2,2-Tetrachloroethane 113 (46 - 157) CFR136A 624 108 (46 - 157) 4.2 (0-30) CFR136A 624 Tetrachloroethene 103 (64 - 148) CFR136A 624 Toluene 106 (64 - 148) 2.4 (0-30) CFR136A 624 Toluene 107 (47 - 150) CFR136A 624 CFR136A 624 1,1,1-Trichloroethane 88 (52 - 162) CFR136A 624 1,1,2-Trichloroethane 102 (52 - 162) CFR136A 624 1,1,2-Trichloroethane 102 (52 - 150) CFR136A 624 Trichloroethane 108 (52 - 150) CFR136A 624 Trichloroethane 83 (71 - 157) 2.1 (0-30) CFR136A 624 Winyl chloride 62 (10 - 251) 5.1 (0-30) CFR136A 624 Winyl chloride 62 (10 - 251) 5.1 (0-30) CFR136A 624 <td></td> <td>96</td> <td>(17 - 183)</td> <td>0.22</td> <td>(0-30)</td> <td>CFR136A 624</td>		96	(17 - 183)	0.22	(0-30)	CFR136A 624
Methylene chloride 81 (10 - 221) CFR136A 624 (1,1,2,2-Tetrachloroethane 103 (64 - 157) CFR136A 624 (1,1,2,2-Tetrachloroethane 103 (64 - 148) CFR136A 624 (1,1,1-Trichloroethane 105 (47 - 150) CFR136A 624 (1,1,1-Trichloroethane 102 (52 - 162) CFR136A 624 (1,1,2-Trichloroethane 103 (52 - 150) CFR136A 624 (1,1,2-Trichloroethane 104 (52 - 157) CFR136A 624 (1,1,2-Trichloroethane 105 (52 - 150) CFR136A 624 (1,1,2-Trichloroethane 102 (52 - 150) CFR136A 624 (1,1,2-Trichloroethane 104 (71 - 157) CFR136A 624 (1,1,2-Trichloroethane 105 (52 - 150) S.9 (0-30) CFR136A 624 (1,1,2-Trichloroethane 105 (52 - 150) S.9 (0-30) CFR136A 624 (1,1,2-Trichloroethane 105 (52 - 150) S.9 (0-30) CFR136A 624 (1,1,2-Trichloroethane 105 (52 - 150) S.9 (0-30) CFR136A 624 (1,1,2-Trichloroethane 105 (52 - 150) S.9 (0-30) CFR136A 624 (1,1,2-Trichloroethane 105 (52 - 150) S.9 (0-30) CFR136A 624 (1,1,2-Trichloroethane 105 (52 - 150) S.9 (0-30) CFR136A 624 (1,1,2-Trichloroethane 105 (52 - 150) S.9 (0-30) CFR136A 624 (1,1,2-Trichloroethane 105 (52 - 150) S.9 (0-30) CFR136A 624 (1,1,2-Trichloroethane 105 (1,1,2-Trichloroethane	Ethylbenzene	105	(37 162)			
Methylene chloride 81 (10 - 221) CFR136A 624 89 (10 - 221) 8.6 (0-30) CFR136A 624 1,1,2,2-Tetrachloroethane 113 (46 - 157) 4.2 (0-30) CFR136A 624 Tetrachloroethene 103 (64 - 148) CFR136A 624 CFR136A 624 Toluene 106 (64 - 148) CFR136A 624 CFR136A 624 Toluene 107 (47 - 150) CFR136A 624 CFR136A 624 1,1,1-Trichloroethane 88 (52 - 162) CFR136A 624 CFR136A 624 1,1,2-Trichloroethane 102 (52 - 162) CFR136A 624 CFR136A 624 1,1,2-Trichloroethane 108 (52 - 150) CFR136A 624 CFR136A 624 1,1,2-Trichloroethene 83 (71 - 157) CFR136A 624 CFR136A 624 Trichloroethene 83 (71 - 157) CFR136A 624 CFR136A 624 Winyl chloride 62 (10 - 251) 5.1 (0-30) CFR136A 624 Winyl chloride 62 (10 - 251) 5.1 (0-30) CFR136A 624 Winyl chloroethane 62 (10 - 251) <td></td> <td></td> <td></td> <td>7.6</td> <td>(0.00)</td> <td></td>				7.6	(0.00)	
1,1,2,2-Tetrachloroethane	Methylene chloride			1.6	(0-30)	
1,1,2,2-Tetrachloroethane 113		89		0.6	(0.20)	
Tetrachloroethene 103 (46 - 157) 4.2 (0-30) CFR136A 624 (64 - 148) CFR136A 624 (757) 4.2 (0-30) CFR136A 624 (757) 4.2	1,1,2,2-Tetrachloroethane	113		8.0	(0~30)	
Tetrachloroethene 103 (64 - 148) CFR136A 624 106 (64 - 148) 2.4 (0-30) CFR136A 624 Toluene 107 (47 - 150) CFR136A 624 1,1,1-Trichloroethane 88 (52 - 162) CFR136A 624 1,1,2-Trichloroethane 102 (52 - 150) CFR136A 624 1,1,2-Trichloroethane 102 (52 - 150) CFR136A 624 108 (52 - 150) 5.9 (0-30) CFR136A 624 Trichloroethene 83 (71 - 157) CFR136A 624 Vinyl chloride 62 (10 - 251) CFR136A 624 SURROGATE PERCENT RECOVERY RECOVERY LIMITS 106 (44 - 148) 2.4 (0-30) CFR136A 624 CFR136A					(0.00)	
Toluene 106 (64 - 148) 2.4 (0-30) CFR136A 624 107 (47 - 150) CFR136A 624 105 (47 - 150) 1.6 (0-30) CFR136A 624 1,1,1-Trichloroethane 88 (52 - 162) CFR136A 624 1,1,2-Trichloroethane 102 (52 - 162) 0.57 (0-30) CFR136A 624 1,1,2-Trichloroethane 102 (52 - 150) CFR136A 624 108 (52 - 150) 5.9 (0-30) CFR136A 624 108 (52 - 150) 5.9 (0-30) CFR136A 624 109 (71 - 157) 2.1 (0-30) CFR136A 624 109 (71 - 157) 2.1 (0-30) CFR136A 624 109 (10 - 251) 5.1 (0-30) CFR136A 624	Tetrachloroethene			4.2	(0-30)	
Toluene 107 (47 - 150) CFR136A 624 1,1,1-Trichloroethane 88 (52 - 162) CFR136A 624 1,1,2-Trichloroethane 102 (52 - 162) CFR136A 624 1,1,2-Trichloroethane 102 (52 - 150) CFR136A 624 108 (52 - 150) 5.9 (0-30) CFR136A 624 Trichloroethene 83 (71 - 157) CFR136A 624 Winyl chloride 62 (10 - 251) CFR136A 624 59 (10 - 251) 5.1 (0-30) CFR136A 624 SURROGATE PERCENT RECOVERY RECOVERY LIMITS 77 (73 - 122)				2.4	(0.00)	
1,1,1-Trichloroethane 88 (52 - 162) 1.6 (0-30) CFR136A 624 87 (52 - 162) 0.57 (0-30) CFR136A 624 1,1,2-Trichloroethane 102 (52 - 150) CFR136A 624 108 (52 - 150) 5.9 (0-30) CFR136A 624 108 (52 - 150) 5.9 (0-30) CFR136A 624 108 (52 - 157) CFR136A 624 109 (71 - 157) 2.1 (0-30) CFR136A 624 109 (71 - 251) 5.1 (0-30) CFR136A 624	Toluene			2.4	(0-30)	
1,1,1-Trichloroethane 88 (52 - 162) CFR136A 624 87 (52 - 162) 0.57 (0-30) CFR136A 624 1,1,2-Trichloroethane 102 (52 - 150) CFR136A 624 108 (52 - 150) 5.9 (0-30) CFR136A 624 108 (52 - 150) 5.9 (0-30) CFR136A 624 108 (71 - 157) CFR136A 624 109 (71 - 157) 2.1 (0-30) CFR136A 624 109 (71 - 251) 5.1 (0-30) CFR136A 624				1 C	(0.20)	
1,1,2-Trichloroethane 102 (52 - 162) 0.57 (0-30) CFR136A 624 108 (52 - 150) CFR136A 624 108 (52 - 150) 5.9 (0-30) CFR136A 624 108 (51 - 157) CFR136A 624 108 (71 - 157) CFR136A 624 109 (71 - 157) 2.1 (0-30) CFR136A 624 109 (10 - 251) 5.1 (0-30) CFR136A 624	1,1,1-Trichloroethane			7.0	(0-30)	
1,1,2-Trichloroethane 102 (52 - 150) CFR136A 624 108 (52 - 150) 5.9 (0-30) CFR136A 624 Trichloroethene 83 (71 - 157) CFR136A 624 Winyl chloride 62 (10 - 251) CFR136A 624 SURROGATE PERCENT RECOVERY RECOVERY LIMITS 7,2-Dichloroethane-d4 RECOVERY RECOVERY LIMITS 7,73 - 122)				0 57	(0.30)	
Trichloroethene 108 (52 - 150) 5.9 (0-30) CFR136A 624 (71 - 157) CFR136A 624 (71 - 157) CFR136A 624 (71 - 157) 2.1 (0-30) CFR136A 624 (71 - 157) 2.1 (0-30) CFR136A 624 (71 - 251) CFR136A 624 (71 - 251) 5.1 (0-30) CFR136A 624 (71 - 251) 5.1 (71	1,1,2-Trichloroethane			U.5/	(0-30)	
Trichloroethene 83 (71 - 157) CFR136A 624 85 (71 - 157) 2.1 (0-30) CFR136A 624 Vinyl chloride 62 (10 - 251) CFR136A 624 59 (10 - 251) 5.1 (0-30) CFR136A 624 EURROGATE RECOVERY RECOVERY LIMITS 7.2-Dichloroethane-d4 87 (73 - 122)				- ^	(0.50)	
Vinyl chloride 85 (71 ~ 157) 2.1 (0-30) CFR136A 624 62 (10 - 251) CFR136A 624 59 (10 - 251) 5.1 (0-30) CFR136A 624 SURROGATE PERCENT RECOVERY RECOVERY LIMITS 7,2-Dichloroethane-d4 87 (73 - 122)	Trichloroethene			3.9	(0-30)	
Vinyl chloride 62 (10 - 251) CFR136A 624 59 (10 - 251) 5.1 (0-30) CFR136A 624 SURROGATE RECOVERY LIMITS 7, 2-Dichloroethane-d4 87 (73 - 122)				2 1		
DERCENT RECOVERY LIMITS 7.2-Dichloroethane-d4 87 (73 - 122)	Vinyl chloride			Z - i.	(0~30)	
PERCENT RECOVERY RECOVERY LIMITS 7 (73 - 122)			-	r +	(0.25)	
RECOVERY LIMITS 7,2-Dichloroethane-d4 87 (73 - 122)		-	(10 - 251)	3.1	(0-30)	UFR136A 624
2-Dichloroethane-d4 RECOVERY EIMITS (73 - 122)	SURROGATE					
(73 - 122)						
85 (73 - 122)					(73 - 122)	
			85		(73 - 122)	

MATRIX SPIKE SAMPLE EVALUATION REPORT

GC/MS Volatiles

SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS
4-Bromofluorobenzene	99	(79 - 119)
	100	(79 ~ 119)
Toluene-d8	105	(80 - 120)
	109	(80 - 120)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

p Relative percent difference (RPD) is outside stated control limits.

MATRIX SPIKE SAMPLE DATA REPORT

GC/MS Volatiles

Client Lot #...: D7J050201 Work Order #...: J78W71AF-MS Matrix....: WATER

 Date Sampled...:
 10/03/07 09:15
 Date Received...:
 10/04/07

 Prep Date.....:
 10/09/07
 Analysis Date...:
 10/09/07

 Prep Batch #...:
 7283644
 Analysis Time...:
 20:18

Dilution Factor: 1

	SAMPLE	SPIKE	MEASRD		PERCNI	•		
PARAMETER	TRUOMA	AMT	AMOUNT	UNITS	RECVRY	RPD	METHOD	
Acrolein	ND	200	259	ug/L	129		CFR136A	624
	ND	200	262	ug/L	131	1.0	CFR136A	624
1,2-Dichlorobenzene	ND	20.0	22.5	ug/L	112		CFR136A	
	ND	20.0	22.3	ug/L	111	0.87	CFR136A	624
Acrylonitrile	ND	200	201	ug/L	100		CFR136A	
	ND	200	203	ug/L	102	1.1		
1,3-Dichlorobenzene	ND	20.0	22.8	ug/L	114		CFR136A	
•	ND	20.0	22.8	ug/L	114	0.14	CFR136A	624
1,4-Dichlorobenzene	ND	20.0	23.6	ug/L	118		CPR136A	
	ND	20.0	23.3	ug/L	117	1.2	CFR136A	
Benzene	ND	20.0	17.8	ug/L	89		CFR136A	624
	ND	20.0	17.5	ug/L	87	2.0	CFR136A	624
Bromodichloromethane	ND	20.0	15.3	ug/L	77		CFR136A	624
	ND	20.0	15.6	ug/L	78	1.7	CFR136A	
Bromoform	ND	20.0	21.1	ug/L	105		CFR136A	
	ND	20.0	22.7	ug/L	114	7.6	CFR136A	624
Bromomethane	ND	20.0	5.92	ug/L	30		CFR136A	624
	ND	20.0	12.4	ug/L	62 p	70	CFR136A	
cis-1,3-Dichloropropene	ND	20.0	17.7	ug/L	88		CFR136A	624
	ND	20.0	17.0	ug/L	85	3.9	CFR136A	624
Carbon tetrachloride	ND	20.0	16.5	ug/L	83		CFR136A	624
	ND	20.0	17.3	ug/L	86	4.5	CFR136A	624
Chlorobenzene	ND	20.0	20.7	ug/L	103		CFR136A	624
<u></u>	ND	20.0	20.8	ug/L	104	0.47	CFR136A	624
Dibromochloromethane	ND	20.0	20.2	ug/L	101		CFR136A	624
_	ND .	20.0	20.7	ug/L	103	2.5	CFR136A	624
trans-1,3-Dichloropropene	ND	20.0	21.0	ug/L	105		CFR136A	624
	ND	20.0	21.6	ug/L	108	2.7	CFR136A	624
Trichlorofluoromethane	ND	20.0	18.0	ug/L	90		CFR136A	624
	ND	20.0	16.8	ug/L	84	7.1	CFR136A	624
Chloroethane	ND	20.0	16.3	ug/L	82		CFR136A	624
	ND	20.0	16.9	ug/L	84	3.5	CFR136A	624
2-Chloroethyl vinyl ether	ND	20.0	14.2	ug/L	71		CFR136A	624
	ND	20.0	15.0	ug/L	75	5.5	CFR136A	624
1,4-Dioxane	ND	1000	927	ug/L	93		CFR136A	624
	ND	1000	1020	ug/L	102	1.0	CFR136A	624
Hexane	ND	20.0	18.5	ug/L	92		CFR136A	624
	ND	20.0	19.1	ug/L	95	3.4	CFR136A	624
Acetone	ND	40.0	34.9	ug/L	87		CFR136A	624
	ND	40.0	33.3	ug/L	83	4.7	CFR136A	524

MATRIX SPIKE SAMPLE DATA REPORT

GC/MS Volatiles

Client Lot #...: D7J050201 Work Order #...: J78W71AF-MS Matrix....: WATER

MS Lot-Sample #: D7J040198-001

J78W71AG-MSD

PARAMETER	SAMPLE		MEASRD		PERCN	ľ		
171011111	AMOUNT	TMA	AMOUNT	<u>UNITS</u>	<u>RECVRY</u>	RPD	METHOD	
Chloroform	NT:							· · · · · · · · · · · · · · · · · · ·
Jan San San San San San San San San San S	ND	20.0	17.3	ug/L	87		CFR1362	
Xylenes (total)	ND	20.0	16.6	ug/L	83	4.4	CFR1362	A 624
Ayrones (cocar)	ND	60.0	61.1	ug/L	102		CFR1362	A 624
Chloromethane	ND	60.0	63.2	ug/L	105	3.4		
Chroromechane	ND	20.0	13.5	ug/L	68		CFR1362	
7 7 75 ab 7	ND	20.0	12.4	ug/L	62	8.2	CFR1367	
1,1-Dichloroethane	ND	20.0	17.2	ug/L	86		CFR1367	
2.0.76.42	ND	20.0	17.0	ug/L	85	0.91	CFR136A	
1,2-Dichloroethane	ND	20.0	16.1	ug/L	80		CFR1362	
	ND	20.0	16.6	ug/L	83	3.1	CFR136A	
trans-1,2-Dichloroethene	ND	20.0	18.8	ug/L	94	_	CFR136A	
	ND	20.0	20.1	ug/L	101	7.0	CFR136A	
1,1-Dichloroethene	ND	20.0	22.9	ug/L	114		CFR136A	
	ND .	20.0	23.8	ug/L	119	3.8	CFR136A	
1,2-Dichloropropane	ND	20.0	14.7	ug/L	73		CFR136A	
•	ND	20.0	15.1	ug/L	75	2.5	CFR136A	
1,3-Dichloropropene (total)	ND	40.0	38.7	ug/L	97	2.3	CFR136A	
, , , , , , , , , , , , , , , , , , , ,	ND	40.0	70.6	/_				
	ND	40.0	38.6	ug/L	96	0.22	CFR136A	624
Ethylbenzene	ND	20.0	21.1	սց/Ն	105		CFR136A	624
	ND	20.0	21.4	ug/L	107	1.6	CFR136A	
Methylene chloride	1.5	20.0	17.6	ug/L	81	_,,	CFR136A	
	1.5	20.0	19.2	ug/L	89	8.6	CFR136A	
1,1,2,2-Tetrachloroethane	ND	20.0	22.6	ug/L	113		CFR136A	
•	ND	20.0	21.6	ug/L	108	4.2	CFR136A	
Tetrachloroethene	ND	20.0	20.7	ug/L	103	- 1.22	CFR136A	
	ND	20.0	21.2	ug/L	106	2.4	CFR136A	
Toluene	ND	20.0	21.3	ug/L	107	4.T		
	ND	20.0	21.0	ug/L	_	1.6	CFR136A	
1,1,1-Trichloroethane	ND	20.0	17.6	ug/L	88		CFR136A	
	ND	20.0	17.5	ug/L			CFR136A	
1,1,2-Trichloroethane	ND	20.0	20.4	ug/L	102		CFR136A	
	ND	20.0	21.6	ug/L			CFR136A	
Trichloroethene	1.5	20.0	18.1	-			CFR136A	
	_	20.0	18.5	ug/L	83		CFR136A	
Vinyl chloride		20.0		ug/L			CFR136A	
		20.0		ug/L	62		CFR136A	
	1112	20.0	11.9	ug/L	59	5.1	CFR136A	624
		Phi	RCENT		DECOMEN			
SURROGATE			COVERY		RECOVERY			
1,2-Dichloroethane-d4		87	LOVER1		LIMITS			
·		85			(73 - 122)			
		0.5			(73 - 122)			

MATRIX SPIKE SAMPLE DATA REPORT

GC/MS Volatiles

Client Lot #...: D7J050201 Work Order #...: J78W71AF-MS Matrix..... WATER MS Lot-Sample #: D7J040198-001 J78W71AG-MSD

SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS
4-Bromofluorobenzene	99	(79 - 119)
Toluene-d8	100	(79 - 119)
101BCMC-Up	105	(80 - 120)
	109	(80 - 120)

NOTE (S):

Calculations are performed before rounding to avoid round-off errors in calculated results. Bold print denotes control parameters

p Relative percent difference (RPD) is outside stated control limits.

METHOD BLANK REPORT

GC/MS Semivolatiles

Client Lot #...: D7J050201 Work Order #...: J8G7E1AA Matrix.....: WATER

MB Lot-Sample #: D7J090000-103

Prep Date....: 10/09/07 Analysis Time..: 17:49

Analysis Date..: 10/13/07 Prep Batch #...: 7282103

Dilution Factor: 1

•		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Acenaphthene	ND	10	ug/L	CFR136A 625
Acenaphthylene	ND	10	ug/L	CFR136A 625
Anthracene	ND	10	ug/L	CFR136A 625
Benzidine	ND	100	ug/L	CFR136A 625
Benzo(a)anthracene	ИD	10	ug/L	CFR136A 625
Benzo(b)fluoranthene	ND	10	ug/L	CFR136A 625
Benzo(k)fluoranthene	ND	10	ug/L	CFR136A 625
Benzo(ghi)perylene	ND	10	ug/L	CFR136A 625
Benzo(a)pyrene	ND	10	ug/L	CFR136A 625
bis(2-Chloroethoxy)	ND	10	ug/L	CFR136A 625
methane				
bis(2-Chloroethyl)-	ND	10	ug/L	CFR136A 625
ether				
bis(2-Chloroisopropyl)	ND	10	ug/L	CFR136A 625
ether				
bis(2-Ethylhexyl)	ND	10	ug/L	CFR136A 625
phthalate				
4-Bromophenyl phenyl	ND	10	ug/L	CFR136A 625
ether				
Butyl benzyl phthalate	ND	10	ug/L	CFR136A 625
4-Chloro-3-methylphenol	ND	10	ug/L	CFR136A 625
2-Chloronaphthalene	ND	10	ug/L	CFR136A 625
2-Chlorophenol	ND	10	ug/L	CFR136A 625
4-Chlorophenyl phenyl	ND	10	ug/L	CFR136A 625
ether				
Chrysene	ND	10	ug/L	CFR136A 625
Dibenzo(a,h)anthracene	ND	10	ug/L	CFR136A 625
Di-n-butyl phthalate	ИD	10	ug/L	CFR136A 625
1,2-Dichlorobenzene	ND	10	ug/L	CFR136A 625
1,3-Dichlorobenzene	ND	10	ug/L	CFR136A 625
1,4-Dichlorobenzene	ND	10	ug/L	CFR136A 625
3,3'-Dichlorobenzidine	ND	50	ug/L	CFR136A 625
2,4-Dichlorophenol	ND	10	ug/L	CFR136A 625
Diethyl phthalate	ND	10	\mathtt{ug}/\mathtt{L}	CFR136A 625
2,4-Dimethylphenol	ND	10	ug/L	CFR136A 625
Dimethyl phthalate	ИD	10	ug/L	CFR136A 625
4,6-Dinitro-	ND	50	ug/L	CFR136A 625
2-methylphenol			-	
2,4-Dinitrophenol	ND	20	ug/L	CFR136A 625
2,4-Dinitrotoluene	ND	10	ug/L	CFR136A 625
2,6-Dinitrotoluene	ND	10	ug/L	CFR136A 625
			_	

METHOD BLANK REPORT

GC/MS Semivolatiles

To A To A Management		REPORT	ING		
PARAMETER	RESULT	LIMIT	UNITS	METHOD	
Di-n-octyl phthalate	ND	10	ug/L	CFR136A 625	
1,2-Diphenylhydrazine	ND	10	ug/L	CFR136A 625	
(as Azobenzene)	•		J. –	CINIDON GES	
Fluoranthene	ND	10	ug/L	CFR136A 625	
Fluorene	ND	10	ug/L	CFR136A 625	
Hexachlorobenzene	ND	10	ug/L	CFR136A 625	
Hexachlorobutadiene	ND	10	ug/L	CFR136A 625	
Hexachlorocyclopenta-	ND	50	ug/L		
diene			wg/ 2/	CFR136A 625	
Hexachloroethane	ND	10	ug/L	CFR136A 625	
Indeno(1,2,3-cd)pyrene	ND	10	ug/L		
Isophorone	ND	10	ug/L	CFR136A 625	
Naphthalene ·	ND	10	ug/L	CFR136A 625	
Nitrobenzene	ND	10	ug/L	CFR136A 625	
2-Nitrophenol	ND	10	ug/L	CFR136A 625	
4-Nitrophenol	ND	50	ug/L	CFR136A 625	
N-Nitrosodimethylamine	ND	10	ug/L	CFR136A 625	
N-Nitrosodiphenylamine	ND	10	ug/L	CFR136A 625	
N-Nitrosodi-n-propyl-	ND	10	ug/L	CFR136A 625	
amine	•		ug/1	CFR136A 625	
Pentachlorophenol	ND	50	ug/L	CIDDAD CO	
Phenanthrene	ND	10	ug/L ug/L	CFR136A 625	
Phenol	ND	10	ug/L ug/L	CFR136A 625	
yrene	ND	10	ug/L ug/L	CFR136A 625	
,2,4-Trichloro-	ND	10	•	CFR136A 625	
benzene			ug/L	CFR136A 625	
,4,6-Trichloro-	ND	10	ug/L		
phenol		10	ng/L	CFR136A 625	
Throat	PERCENT	RECOVERY			
URROGATE	RECOVERY	LIMITS			
Fluorophenol	75	(49 - 120	0)		
henol-d5	81	(54 - 120			
trobenzene-d5	82	(56 - 120			
Fluorobiphenyl	76	(52 - 120			
4,6-Tribromophenol	79	(56 - 120			
erphenyl-d14	101	(50 - 120			

MOIR(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC/MS Semivolatiles

Client Lot #...: D7J050201 Work Order #...: J8G7E1AC Matrix.....: WATER

LCS Lot-Sample#: D7J090000-103

 Prep Date.....: 10/09/07
 Analysis Date..: 10/13/07

 Prep Batch #...: 7282103
 Analysis Time..: 18:36

Dilution Factor: 1

	PERCENT	RECOVERY	
PARAMETER	RECOVERY	LIMITS	METHOD
Acenaphthene	89	(58 - 120)	CFR136A 625
Acenaphthylene	88	(58 - 120)	CFR136A 625
Anthracene	91	(62 - 120)	CFR136A 625
Benzidine	55	(10 - 218)	CFR136A 625
Benzo (a) anthracene	93	(60 - 120)	CFR136A 625
Benzo(b) fluoranthene	92	(55 - 120)	CFR136A 625
Benzo(k)fluoranthene	92	(57 - 120)	CFR136A 625
Benzo(ghi)perylene	91	(52 - 120)	CFR136A 625
Benzo(a)pyrene	85	(58 ~ 120)	CFR136A 625
bis(2-Chloroethoxy)	84	(56 - 120)	CFR136A 625
methane			
bis(2-Chloroethyl)-	80	(55 ~ 120)	CFR136A 625
ether			
bis(2-Chloroisopropyl)	84	(57 - 120)	CFR136A 625
ether			
bis(2-Ethylhexyl)	96	(58 - 120)	CFR136A 625
phthalate			
4-Bromophenyl phenyl	93	(61 - 120)	CFR136A 625
ether			
Butyl benzyl phthalate	91	(60 - 120)	CFR136A 625
4-Chloro-3-methylphenol	94	(63 - 120)	CFR136A 625
2-Chloronaphthalene	89	(60 - 118)	CFR136A 625
2-Chlorophenol	84	(57 - 120)	CFR136A 625
4-Methylphenol	90	(58 - 120)	CFR136A 625
2-Methylphenol	82	(56 - 120)	CFR136A 625
n-Decane	64	(28 - 120)	CFR136A 625
4-Chlorophenyl phenyl	90	(60 - 120)	CFR136A 625
ether			
2-Methylnaphthalene	86	(57 - 120)	CFR136A 625
Chrysene	92	(60 - 120)	CFR136A 625
Dibenzo(a,h)anthracene	92	(58 ~ 120)	CFR136A 625
Di-n-butyl phthalate	92	(62 - 118)	CFR136A 625
1,2-Dichlorobenzene	75	(48 - 120)	CFR136A 625
1,3-Dichlorobenzene	70	(45 - 120)	CFR136A 625

GC/MS Semivolatiles

Client Lot #...: D7J050201 Work Order #...: J8G7E1AC Matrix...... WATER

LCS Lot-Sample#: D7J090000-103

	PERCENT	RECOVERY	
PARAMETER	RECOVERY	LIMITS	METHOD
1,4-Dichlorobenzene	70	(45 - 120)	CFR136A 625
3,3'-Dichlorobenzidine	82	(34 - 120)	CFR136A 625
2,4-Dichlorophenol	93	(60 - 120)	CFR136A 625
Diethyl phthalate	91	(61 - 114)	CFR136A 625
2,4-Dimethylphenol	58	(44 - 119)	CFR136A 625
Dimethyl phthalate	93	(61 - 112)	CFR136A 625
4,6-Dinitro-	79	(41 - 120)	CFR136A 625
2-methylphenol		,=== ===,	Cilcom 020
2,4-Dinitrophenol	73	(36 - 121)	CFR136A 625
2,4-Dinitrotoluene	92	(60 - 120)	CFR136A 625
2,6-Dimitrotoluene	86	(61 - 120)	CFR136A 625
Di-n-octyl phthalate	95	(59 - 120)	CFR136A 625
Fluoranthene	97	(59 - 120)	CFR136A 625
Fluorene	89	(60 - 120)	CFR136A 625
Hexachlorobenzene	93	(62 - 120)	CFR136A 625
Hexachlorobutadiene	76	(49 - 116)	CFR136A 625
Hexachlorocyclopenta-	17	(10 - 120)	CFR136A 625
diene		(==,	
Hexachloroethane	67	(43 - 113)	CFR136A 625
Indeno(1,2,3-cd)pyrene	92	(56 - 120)	CFR136A 625
Isophorone	9 1	(54 - 120)	CFR136A 625
Naphthalene	79	(52 - 120)	CFR136A 625
Nitrobenzene	87	(58 - 120)	CFR136A 625
2-Nitrophenol	89	(59 - 120)	CFR136A 625
4-Nitrophenol	91	(53 - 120)	CFR136A 625
N-Nitrosodimethylamine	80	(52 - 120)	CFR136A 625
N-Nitrosodiphenylamine	74	(10 - 203)	CFR136A 625
N-Nitrosodi-n-propyl-	88	(58 - 120)	CFR136A 625
amine		,	C11125011 525
Pentachlorophenol	93	(49 - 120)	CFR136A 625
Phenanthrene	92	(63 - 120)	CFR136A 625
Phenol	87	(58 - 112)	CFR136A 625
Pyrene	94	(60 - 115)	CFR136A 625
1,2,4-Trichloro-	77	(50 - 120)	CFR136A 625
benzene	•	(-V 4.20)	CANADOR OLD
2,4,6-Trichloro-	99	(60 - 120)	CFR136A 625
phenol		(-0 110)	WALLSON UZS

GC/MS Semivolatiles

Client Lot #...: D7J050201

Work Order #...: J8G7E1AC Matrix....: WATER

LCS Lot-Sample#: D7J090000-103

SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS
2-Fluorophenol	77	(53 - 120)
Phenol-d5	85	(57 - 120)
Nitrobenzene-d5	87	(59 - 120)
2-Fluorobiphenyl	88	(49 - 120)
2,4,6-Tribromophenol	103	(50 - 120)
Terphenyl-d14	92	(63 - 120)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

GC/MS Semivolatiles

Client Lot #...: D7J050201

Work Order #...: J8G7ElAC

Matrix....: WATER

LCS Lot-Sample#: D7J090000-103

Prep Date....: 10/09/07 Prep Batch #...: 7282103

Analysis Date..: 10/13/07 Analysis Time..: 18:36

Dilution Factor: 1

DADAMAN	SPIKE	MEASURED		PERCENT	
PARAMETER	AMOUNT	AMOUNT	UNITS	RECOVERY	METHOD
Acenaphthene	100	88.9	ug/L	89	CFR136A 625
Acenaphthylene Anthracene	100	88.1	ug/L	88	CFR136A 625
Benzidine	100	91.3	ug/L	91	CFR136A 625
	100	54.9	ug/L	55	CFR136A 625
Benzo(a) anthracene	100	93.4	ug/L	93	CFR136A 625
Benzo(b) fluoranthene	100	91.9	ug/L	92	CFR136A 625
Benzo(k) fluoranthene	100	92.1	ug/L	92	
Benzo(ghi)perylene	100	91.0	ug/L	91	CFR136A 625
Benzo(a)pyrene	100	85.4	ug/L	85	CFR136A 625
bis(2-Chloroethoxy)	100	83.7	ug/L	84	CFR136A 625
methane			31 es	V-2	CFR136A 625
bis(2-Chloroethyl)-	100	80.2	ug/L	80	Cupana
ether			_, _		CFR136A 625
bis(2-Chloroisopropyl) ether	100	84.2	ug/L	84	CHADIDER CO.
			- 4 1	- *	CFR136A 625
bis(2-Ethylhexyl)	100	96. 4	ug/L	96	CFR136A 625
phthalate			J		CERT308 625
4-Bromophenyl, phenyl ether	100	93.4	ug/L	93	CRD1363 com
-			J. –		CFR136A 625
Butyl benzyl phthalate	100	91.0	uġ/L	91	CERTS CA COS
4-Chloro-3-methylphenol	100	94.1	ug/L	94	CFR136A 625 CFR136A 625
2-Chloronaphthalene	100	88.8	ug/L	89	
2-Chlorophenol	100	84.2	ug/L	84	CFR136A 625
4-Methylphenol	100	90.3	ug/L	90	CFR136A 625
2-Methylphenol	100	82.1	ug/L	82	CFR136A 625
n-Decane	100	64.5	ug/L	6 <u>4</u>	CFR136A 625
4-Chlorophenyl phenyl	100	90.0	ug/L	90	CFR136A 625
ether		· -	~3/ ~	30	CFR136A 625
2-Methylnaphthalene	100	86.0	ug/L	86	COMPANIES -
Chrysene	100	91.9	ug/L ug/L	86 92	CFR136A 625
Dibenzo(a,h)anthracene	100	92.1	ug/L		CFR136A 625
Di-n-butyl phthalate	100	91.5	ug/L	92	CFR136A 625
1,2-Dichlorobenzene	100	75.1	ug/L ug/L	92 75	CFR136A 625
1,3-Dichlorobenzene	100	70.3	<u>-</u>	75 70	CFR136A 625
			ug/L	70	CFR136A 625

GC/MS Semivolatiles

Client Lot #...: D7J050201 Work Order #...: J8G7E1AC Matrix.....: WATER

LCS Lot-Sample#: D7J090000-103

	SPIKE	MEASURED		PERCENT	
PARAMETER	AMOUNT	AMOUNT	UNITS	RECOVERY	METHOD
1,4-Dichlorobenzene	100	70.4	ug/L	70	CFR136A 625
3,3'-Dichlorobenzidine	100	82.5	ug/L	82	CFR136A 625
2,4-Dichlorophenol	100	93.3	ng/P	93	CFR136A 625
Diethyl phthalate	100	91.4	ug/L	91	CFR136A 625
2,4-Dimethylphenol	100	57.6	ug/L	58	CFR136A 625
Dimethyl phthalate	100	93.1	ug/L	93	CFR136A 625
4,6-Dinitro-	100	79.2	ug/L	79	CFR136A 625
2-methylphenol			J		
2,4-Dinitrophenol	100	72.7	ug/L	73	CFR136A 625
2,4-Dinitrotoluene	100	92.0	ug/L	92	CFR136A 625
2,6-Dinitrotoluene	100	85.9	ug/L	86	CFR136A 625
Di-n-octyl phthalate	100	95.2	ug/L	95	CFR136A 625
Fluoranthene	100	97.2	ug/L	97	CFR136A 625
Fluorene	100	88.7	ug/L	89	CFR136A 625
Hexachlorobenzene	100	93.5	ug/L	93	CFR136A 625
Hexachlorobutadiene	100	75.7	ug/L	76	CFR136A 627
Hexachlorocyclopenta-	100	17.4	ug/L	17	CFR136A (
diene					
Hexachloroethane	100	66.7	ug/L	67	CFR136A 625
Indeno(1,2,3~cd)pyrene	100	91.8	ug/L	92	CFR136A 625
Isophorone	100	90.6	ug/L	91	CFR136A 625
Naphthalene	100	78.7	ug/L	79	CFR136A 625
Nitrobenzene	100	87.1	ug/L	87	CFR136A 625
2-Nitrophenol	100	89.0	ug/L	89	CFR136A 625
4-Nitrophenol	100	91.3	ug/L	91	CFR136A 625
N-Nitrosodimethylamine	100	80.1	ug/L	80	CFR136A 625
N-Nitrosodiphenylamine	100	73.6	ug/L	74	CFR136A 625
N-Nitrosodi-n-propyl-	100	87.5	ug/L	88	CFR136A 625
amine					
Pentachlorophenol	100	93.5	ug/L	93	CFR136A 625
Phenanthrene	100	91.6	ug/L	92	CFR136A 625
Phenol	100	87.0	ug/L	87	CFR136A 625
Pyrene	100	93.9	ug/L	94	CFR136A 625
1,2,4-Trichloro-	100	77.4	ug/L	77	CFR136A 625
benzene					
2,4,6-Trichloro-	100	98.6	ug/L	99	CFR136A 625
phenol					

GC/MS Semivolatiles

Client Lot #...: D7J050201

Work Order #...: J8G7E1AC

Matrix..... WATER

LCS Lot-Sample#: D7J090000-103

SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS
2-Fluorophenol	77	
Phenol-d5	//	(53 - 120)
– – – – – – – – – – – – – – – – –	85	(57 - 120)
Nitrobenzene-d5	87	(59 - 120)
2-Fluorobiphenyl 2,4,6-Tribromophenol	. 88	(49 - 120)
	103	(50 - 120)
Terphenyl-d14	92	(63 - 120)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

GC/MS Semivolatiles

Client Lot #...: D7J050201 Work Order #...: J8EQK1CM-MS Matrix..... WATER

MS Lot-Sample #: D7J060135-001 J8EQK1CN-MSD

 Date Sampled...:
 10/05/07 14:00 Date Received..:
 10/06/07

 Prep Date....:
 10/09/07 Analysis Date..:
 10/14/07

 Prep Batch #...:
 7282103 Analysis Time..:
 12:19

Dilution Factor: 1

	PERCENT	RECOVERY		RPD	
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHOD
Acenaphthene	80	(56 - 120)			CFR136A 625
	78	(56 - 120)	8.1	(0-30)	CFR136A 625
Acenaphthylene	79	(53 - 120)			CFR136A 625
	77	(53 - 120)	7.6	(0-30)	CFR136A 625
Anthracene	77	(57 - 120)			CFR136A 625
	79	(57 - 120)	3.6	(0-30)	CFR136A 625
Benzidine	0.0 a	(10 - 120)			CFR136A 625
	0.0 a	(10 - 120)	0.0	(0-50)	CFR136A 625
Benzo(a)anthracene	77	(56 - 120)			CFR136A 625
	76	(56 - 120)	6.8	(0-30)	CFR136A 625
Benzo(b) fluoranthene	78	(52 - 120)			CFR136A 625
	81	(52 - 120)	2.3	(0-90)	CFR136A 625
Benzo(k) fluoranthene	79	(50 - 120)			CFR136A 625
	76	(50 - 120)	9.4	(0~50)	CFR136A 625
Benzo(ghi)perylene	72	(47 - 120)			CFR136A 625
	73	(47 - 120)	5.3	(0-64)	CFR136A 625
Benzo(a)pyrene	74	(51 - 120)			CFR136A 625
	72	(51 - 120)	7.8	(0-73)	CFR136A 625
bis(2-Chloroethoxy) methane	80	(55 - 120)			CFR136A 625
	87	(55 - 120)	2.3	(0-30)	CFR136A 625
bis(2-Chloroethy1)- ether	80	(51 - 120)			CFR136A 625
	82	(51 - 120)	2.7	(0-30)	CFR136A 625
bis(2-Chloroisopropyl) ether	82	(45 - 120)			CFR136A 625
•	87	(45 - 120)	0.25	(0-30)	CFR136A 625
bis(2-Kthylhexyl) phthalate	79	(57 - 120)			CFR136A 625
	80	(57 - 120)	4.4	(0-30)	CFR136A 625
4-Bromophenyl phenyl ether	79	(57 - 120)			CFR136A 625
	80	(57 - 120)	4.9	(0-34)	CFR136A 625
Butyl benzyl phthalate	74	(50 - 120)			CFR136A 625
	75	(50 - 120)	5.1	(0-30)	CFR136A 625

GC/MS Semivolatiles

Client Lot #...: D7J050201 Work Order #...: J8EQK1CM-MS Matrix.....: WATER

MS Lot-Sample #: D7J060135-001 J8EQK1CN-MSD

	PERCENT	RECOVERY		RPD	
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHOD
4-Chloro-3-methylphenol	93	(59 - 120)			CFR136A 625
	95	(59 - 120)	4.0	(0-30)	CFR136A 625
2-Chloronaphthalene	80	(54 - 118)			CFR136A 625
	81	(54 - 118)	4.7	(0-30)	CFR136A 625
2-Chlorophenol	80	(54 - 120)			CFR136A 625
	85	(54 - 120)	0.46	(0-30)	CFR136A 625
4-Methylphenol	90	(57 - 120)			CFR136A 625
	92	(57 ~ 120)	3.7	(0-39)	CFR136A 625
2-Methylphenol	81	(53 - 120)			CFR136A 625
	85	(53 - 120)	0.64	(0-35)	CFR136A 625
n-Decane	63	(17 - 120)			CFR136A 625
	63	(17 - 120)	6.5	(0-61)	CFR136A 625
<pre>4-Chlorophenyl phenyl ether</pre>	83	(58 - 120)			CFR136A 625
	79	(58 - 120)	11	(0-30)	CFR136A 625
2-Methylmaphthalene	83	(56 - 120)			CFR136A 625
	86	(56 - 120)	1.8	(0-30)	CFR136A 625
Chrysene	77	(55 - 120)		(,	CFR136A 625
	77	(55 - 120)	6.0	(0-30)	CFR136A 625
Dibenzo(a,h)anthracene	76	(54 - 120)		•	CFR136A 625
	77	(54 - 120)	3.6	(0-78)	CFR136A 625
Di-n-butyl phthalate	7 9	(58 - 118)			CFR136A 625
	79	(58 - 118)	4.9	(0-30)	CFR136A 625
1,2-Dichlorobenzene	89	(44 - 120)			CFR136A 625
	84	(44 ~ 120)	1.1	(0-42)	CFR136A 625
1,3-Dichlorobenzene	68	(41 - 120)			CFR136A 625
	70	(41 - 120)	2.8	(0-47)	CFR136A 625
1,4-Dichlorobenzene	69	(40 - 120)			CFR136A 625
	70	(40 - 120)	4.2	(0-49)	CFR136A 625
3,3'-Dichlorobenzidine	2.6 a	(34 - 120)			CFR136A 625
	6.4 a,p	(34 - 120)	79	(0-50)	CFR136A 625
2,4-Dichlorophenol	89	(56 - 120)			CFR136A 625
	91	(56 - 120)	3.1	(0-30)	CFR136A 625
Diethyl phthalate	89	(58 - 114)			CFR136A 625
	86	(58 - 114)	9.6	(0-30)	CFR136A 625
2,4-Dimethylphenol	86	(38 - 119)			CFR136A 625
	87	(38 - 119)	4.0	(0-35)	CFR136A 625
Dimethyl phthalate	90	(58 - 112)			CFR136A 625
	87	(58 - 112)	10	(0-30)	CFR136A 625

GC/MS Semivolatiles

Client Lot #...: D7J050201 Work Order #...: J8EQK1CM-MS Matrix..... WATER

MS Lot-Sample #: D7J060135-001 J8EQK1CN-MSD

	PERCENT	RECOVERY		RPD	
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHOD
4,6-Dinitro- 2-methylphenol	35	(33 - 120)			CFR136A 625
	24 a	(33 - 120)	43	(0-55)	CFR136A 625
2,4-Dinitrophenol	38	(33 - 120)			CFR136A 625
•	26 a	(33 - 120)	44	(0-61)	CFR136A 625
2,4-Dinitrotoluene	88	(59 - 120)		, ,	CFR136A 625
	85	(59 - 120)	9.6	(0-35)	CFR136A 625
2,6-Dimitrotoluene	81	(59 - 120)			CFR136A 625
	79	(59 - 120)	8.8	(0-30)	CFR136A 625
Di-n-octyl phthalate	81	(57 - 120)			CFR136A 625
	81	(57 ~ 120)	6.3	(0-30)	CFR136A 625
Fluoranthene	83	(57 - 120)			CFR136A 625
	82	(57 - 120)	7.5	(0-30)	CFR136A 625
Fluorene	83	(57 - 120)			CFR136A 625
	80	(57 - 120)	8.9	(0-30)	CFR136A 625
Hexachlorobenzene	80	(57 - 120)			CFR136A 625
	80	(57 - 120)	5.7	(0-30)	CFR136A 625
Hexachlorobutadiene	75	(41 - 116)			CFR136A 625
	79	(41 - 116)	0.65	(0-41)	CFR136A 625
Hexachlorocyclopenta- diene	8.4 a	(10 - 120)			CFR136A 625
	5.0 a	(10 - 120)	56	(0-82)	CFR136A 625
Hexachloroethane	51	(35 - 113)			CFR136A 625
	50	(35 - 113)	7.6	(0-52)	CFR136A 625
Indeno(1,2,3-cd)pyrene	75	(53 - 120)			CFR136A 625
	75	(53 - 120)	6.5	(0-73)	CFR136A 625
Isophorone	85	(59 - 120)			CFR136A 625
	89	(59 - 120)	1.2	(0-30)	CFR136A 625
Naphthalene	76	(51 - 120)			CFR136A 625
	82	(51 - 120)	1.8	(0-30)	CFR136A 625
Nitrobenzene	129	(35 - 164)			CFR136A 625
	117	(35 - 164)	16	(0-30)	CFR136A 625
2-Nitrophenol	82	(55 - 120)			CFR136A 625
	82	(55 - 120)	6.0	(0-30)	CFR136A 625
4-Nitrophenol	110	(54 - 120)			CFR136A 625
	100	(54 - 120)	15	(0-42)	CFR136A 625
N-Nitrosodimethylamine	73	(46 - 120)			CFR136A 625
	75	(46 - 120)	2.2	(0-30)	CFR136A 625
N-Nitrosodiphenylamine	71	(40 - 120)			CFR136A 625
	67	(40 - 120)	12	(0-50)	CFR136A 625

GC/MS Semivolatiles

Client Lot #...: D7J050201 Work Order #...: J8EQK1CM-MS Matrix..... WATER MS Lot-Sample #: D7J060135-001 J8EQK1CN-MSD

		,	DOPOVIC	תפניו- אזי	
PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS	RPD	RPD LIMITS	METHOD
N-Nitrosodi-n-propyl- amine	85	(55 - 120)			CFR136A 625
	89	(55 - 120)	1.1	(0-30)	CFR136A 625
Pentachlorophenol	92	(51 - 120)			CFR136A 625
Phenanthrene	85 78	(51 ~ 120)	13	(0-30)	CFR136A 625
_	80	(56 - 120) (56 - 120)	2.5	(0.20)	CFR136A 625
Phenol	83	(54 - 112)	2.5	(0-30)	CFR136A 625 CFR136A 625
Pyrene	87 74	(54 - 112) (54 - 115)	1.1	(0-30)	CFR136A 625
1,2,4-Trichloro-	76	(54 - 115)	3.1	(0-30)	CFR136A 625 CFR136A 625
benzene	77	(46 - 120)			CFR136A 625
	81	(46 - 120)	0.89	(0-35)	CFR136A 625
2,4,6-Trichloro- phenol	95	(58 - 120)			CFR136A 625
	93	(58 - 120)	7.8	(0-30)	CFR136A 625
SURROGATE		PERCENT		RECOVERY	
2-Fluorophenol	-	RECOVERY 72		LIMITS (49 - 120	<u> </u>
Phenol-d5		76 81		(49 - 120)
Nitrobenzene-d5		84		(54 - 120) (54 - 120)	
		85 87		(56 - 120) (56 - 120)	
2-Fluorobiphenyl		85		(52 - 120)	
2,4,6-Tribromophenol		82 93		(52 - 120) (56 - 120)	
Terphenyl-d14		93		(56 - 120)	
2 WZZ		78 74		(50 - 120) (50 - 120)	
				(20 - 120)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results. Bold print denotes control parameters

a Spiked analyte recovery is outside stated control limits.

p Relative percent difference (RPD) is outside stated control limits.

GC/MS Semivolatiles

Client Lot #...: D7J050201 Work Order #...: J8EQK1CM-MS Matrix.....: WATER

MS Lot-Sample #: D7J060135-001 J8EQK1CN-MSD

 Date Sampled...:
 10/05/07 14:00 Date Received...:
 10/06/07

 Prep Date....:
 10/09/07 Analysis Date...:
 10/14/07

 Prep Batch #...:
 7282103 Analysis Time...:
 12:19

Dilution Factor: 1

	SAMPLE	SPIKE	MEASRD		PERCNI	·		
PARAMETER	AMOUNT	AMT	TRUOMA	UNITS	RECVRY	RPD	METHOD	
Acenaphthene	ND	106	85.0	ug/L	80		CFR136A	625
	ND	101	78.4	ug/L	78	8.1	CFR136A	625
Acenaphthylene	ND	106	83.9	ug/L	79		CFR136A	625
	ND	101	77.7	ug/L	77	7.6	CFR136A	625
Anthracene	ND	106	82.0	ug/L	77		CFR136A	625
	ND	101	79.1	ug/L	79	3.6	CFR136A	625
Benzidine	ND	106	0.0	ug/L	0.0 a		CFR136A	625
	ND	101	0.0	ug/L	0.0 a	0.0	CFR136A	625
Benzo(a)anthracene	ND	106	81.7	ug/L	77		CFR136A	625
	ND	101	76.3	ug/L	76	6.8	CFR136A	625
Benzo(b) fluoranthene	ND	106	83.6	ug/L	78		CFR136A	625
	ND	101	81.7	ug/L	81	2.3	CFR136A	625
Benzo(k) fluoranthene	ND	106	84.1	ug/L	79		CFR136A	625
	ND	101	76.6	ug/L	76	9.4	CFR136A	625
Benzo(ghi)perylene	ND	106	77.1	ug/L	72		CFR136A	625
	ND	101	73.1	ug/L	73	5.3	CFR136A	625
Benzo(a)pyrene	ND	106	78.3	ug/L	74		CFR136A	625
	ND	101	72.4	ug/L	72	7.8	CFR136A	625
<pre>bis(2-Chloroethoxy) methane</pre>	ND	106	85.I	ug/L	80		CFR136A	625
	ND	101	87.1	ug/L	87	2.3	CFR136A	625
<pre>bis(2-Chloroethyl) - ether</pre>	ND	106	85.2	ug/L	80		CFR136A	625
	ND	101	82.9	ug/L	82	2.7	CFR136A	625
bis(2-Chloroisopropyl) ether	ND	106	86.9	ug/L	82		CFR136A	625
	ND	101	87.1	ug/L	87	0.25	CFR136A	625
<pre>bis(2-Ethylhexyl) phthalate</pre>	1.6	106	85.5	ug/L	7 9		CFR136A	625
	1.6	101	81.8	ug/L	80	4.4	CFR136A	625
4-Bromophenyl phenyl ether	ND	106	84.1	ug/L	79		CFR136A	625
	ND	101	80.1	ug/L	80	4.9	CFR136A	625
Butyl benzyl phthalate	ND	106	79.0	ug/L	74		CFR136A	625
_	ND	101	75.1	ug/L	75	5.1	CFR136A	625

GC/MS Semivolatiles

Client Lot #...: D7J050201 Work Order #...: J8EQK1CM-MS Matrix.....: WATER

MS Lot-Sample #: D7J060135-001 J8EQK1CN-MSD

	SAMPLE	SPIKE	MEASRD		PERCNT			
PARAMETER	TRUOMA	AMT	AMOUNT	UNITS	RECVRY	RPD	METHOD	
4-Chloro-3-methylphenol	ND	106	98.9	ug/L	93		CFR136A	625
	ND	101	95.1	ug/L	95	4.0	CFR136A	625
2-Chloronaphthalene	ND	106	84.9	ug/L	80		CFR136A	625
	ND	101	81.0	ug/L	81	4.7	CFR136A	625
2-Chlorophenol	ND	106	85.1	ug/L	80		CFR136A	625
	ND	101	85.5	ug/L	85	0.46	CFR136A	625
4-Methylphenol	1.3	106	97.5	ug/L	90		CFR136A	625
,	1.3	101	93.9	ug/L	92	3.7	CFR136A	625
2-Methylphenol	ND	106	86.3	ug/L	81		CFR136A	625
	ND	101	85.7	ug/L	85	0.64	CFR136A	625
n-Decane	ND	106	67.1	ug/L	63		CFR136A	625
	ND	101	62. 9	ug/L	63	6.5	CFR136A	625
4-Chlorophenyl phenyl ether	ND	106	88.7	ug/L	83		CFR136A	625
	ND	101	79.6	ug/L	79	11	CFR136A	625
2-Methylnaphthalene	ND	106	88.0	ug/L	83		CFR136A	625
	ND	101	86.4	ug/L	86	1.8	CFR136A	625
Chrysene	ND	106	81.7	·ug/L	7 7		CFR136A	625
	ND	101	76.9	ug/L	77	б.0	CFR136A	625
Dibenzo(a,h)anthracene	ND	106	80.4	ug/L	76		CFR136A	625
_	ND	101	77.6	ug/L	77	3.6	CFR136A	625
Di-n-butyl phthalate	ND	106	83.8	ug/L	79		CFR136A	625
	ND	101	79.8	ug/L	79	4.9	CFR136A	625
1,2-Dichlorobenzene	ND	106	94.4	ug/L	89		CFR136A	625
	ND	101	84.7	ug/L	84	11	CFR136A	625
1,3-Dichlorobenzene	ND	106	72.0	ug/L	68		CFR136A	625
•	ND	101	70.0	ug/L	70	2.8	CFR136A	625
1,4-Dichlorobenzene	ND	106	73.4	ug/L	69		CFR136A	625
	ND	101	70.4	ug/L	70	4.2	CFR136A	625
3,3'-Dichlorobenzidine	ND	106	2.79	ug/L	2.6 a		CFR136A	625
	ND	101	6.42	ug/L	6.4	79	CFR136A	625
	Qua]	lifiers:	a,p					
2,4-Dichlorophenol	ND	106	94.7	ug/L	89		CFR136A	625
	ND	101	91.8	ug/L	91	3.1	CFR136A	625
Diethyl phthalate	ND	106	95.0	ug/L	89		CFR136A	
	ND	101	86.3	ug/L	86		CFR136A	
2,4-Dimethylphenol	ND	106	91.3	ug/L	86		CFR136A	
	ND	101	87.7	ug/L	87		CFR136A	
Dimethyl phthalate	ND	106	96.2	ug/L	90		CFR136A	
	ND	101	87.0	ug/L			CFR136A	

(Continued on next page)

GC/MS Semivolatiles

Client Lot #...: D7J050201 Work Order #...: J8EQK1CM-MS Matrix..... WATER

MS Lot-Sample #: D7J060135-001 J8EQK1CN-MSD

	SAMPLE	SPIKE	MEASRI)	PERCNT		
PARAMETER	AMOUNT	AMT	AMOUNI	UNITS	RECVRY	RPD	METHOD
4,6-Dinitro- 2-methylphenol	ND	106	37.8	ug/L	35		CFR136A 625
	ND	101	24.4	ug/L	24 a	43	CFR136A 625
2,4-Dinitrophenol	ND	106	40.5	ug/L	38		CFR136A 625
2,4-Dinitrotoluene	ND	101	26.0	ug/L	26 a	44	CFR136A 625
z, 4-Dimiciocolhene	ND	106	94.2	ug/L	88		CFR136A 625
2,6-Dinitrotoluene	ND	101	85.5	ug/L	85	9.6	CFR136A 625
z,o-binitiotofuene	ND	106	86.6	ug/L	81		CFR136A 625
Di-n-octyl phthalate	ND	101	79.3	ug/L	79	8.8	CFR136A 625
or n-occli bucustate	ND .	106	86.8	ug/L	8I		CFR136A 625
Fluoranthene	ND	101	81.5	ug/L		6.3	CFR136A 625
1 1401 BITCHENE	ND	106	88.6	ug/L	83		CFR136A 625
Fluorene	ND	101	82.2	ug/L		7.5	CFR136A 625
r ractere	ND	106	88.1	ug/L	83		CFR136A 625
Hexachlorobenzene	ND	101	80.5	ug/L	80	8.9	CFR136A 625
	ND	106	84.8	ug/L	80		CFR136A 625
Hexachlorobutadiene	ND	101	80.1	ug/L	80	5.7	CFR136A 625
"Texacinorobutadiene	ND	106	79.8	ug/L	75		CFR136A 625
Hexachlorocyclopenta-	ND	101	79.2	ug/L	79	0.65	CFR136A 625
diene diene	ND	106	8.92	ug/L	8.4 a		CFR136A 625
	MD	101	5.04	ug/L	5.0 a	56	CFR136A 625
Hexachloroethane	ND ND	106	54.4	ug/L	51		CFR136A 625
Indeno(1,2,3-cd)pyrene		101	50.4	ug/L		7.6	CFR136A 625
-14020 (1,2,5 *Cd) pyrene	ND	106	80.2	ug/L	75		CFR136A 625
Isophorone	ND	101	75.1	ug/L			CFR136A 625
a boparone	ND	106	91.0	ug/L	85		CFR136A 625
Naphthalene	ND	101	89.9	ug/L	89 1	L.2	CFR136A 625
*** Priction File	ND	106	80.9	ug/L	76		CFR136A 625
Nitrobenzene	ND	101	82.3	ug/L			CFR136A 625
1-102 ODCHZENC	ND	106	138	ug/L	129		CFR136A 625
2-Nitrophenol	ND	101	118	ug/L			CFR136A 625
~ Microphenoi	ND	106	87.4	ug/L	82		CFR136A 625
4-Nitrophenol	ND	101	82.3	ug/L	82 6	.0	CFR136A 625
* Microbilenoi	NĐ	106	117	ug/L	110	1	CFR136A 625
M-Mitana - Admit 2 - 7		101	100	ug/L	100 1	.5	CFR136A 625
N-Nitrosodimethylamine		106	77.2	ng/P	73	1	CFR136A 625
N-Ni+		101	75.5	ug/L	75 2	.2	CPR136A 625
N-Nitrosodiphenylamine		106	75.6	na\r	71		CFR136A 625
	ND	101	67.1	ug/L	67 1	2 (CFR136A 625

GC/MS Semivolatiles

Client Lot #...: D7J050201

Work Order #...: J8EQK1CM-MS

Matrix..... WATER

MS Lot-Sample #: D7J060135-001

J8EQKlCN-MSD

(50 - 120)

	SAMPLE	SPIKE	MEASRD		PERCNT			
PARAMETER	AMOUNT	AMT	AMOUNT	UNITS	RECVRY	RPD	METHOD	
N-Nitrosodi-n-propyl-	ND	106	90.7	ug/L	85		CFR136A	625
amine								
	ND	101	89.8	ug/L	89	1.1	CFR136A	625
Pentachlorophenol	ND	106	97.8	ug/L	92		CFR136A	625
	IND	101	85.7	ug/L	85	13	CFR136A	
Phenanthrene	ND	106	82.6	ug/L	78		CFR136A	
	ND	101	80.6	ug/L	80	2.5	CFR136A	625
Phenol	ND	106	88.7	ug/L	83		CFR136A	
	ND	101	87.7	ug/L	87	1.1	CFR136A	625
Pyrene	ND	106	78.7	ug/L	74		CFR136A	
	ND	101	76.4	ug/L	76	3.1	CFR136A	625
1,2,4-Trichloro- benzene	ND	106	82.0	ug/L	77		CFR136A	
	ND	101	81.3	ug/L	81	0.89	CFR136A	625
2,4,6-Trichloro- phenol	ND	106	101	ug/L	95		CFR136A	625
	ND	101	93.7	ug/L	93	7.8	CFR136A	625
CIDDOCAND			PERCENT		RECOVERY			
SURROGATE 2-Fluorophenol	_		RECOVERY		LIMITS	-		
2-#10010pnenO1			72		(49 - 120)			
Phenol-d5			76		(49 ~ 120)			
Phenor-ds			31		(54 - 120)			
Nitrobenzene-d5			34		(54 - 120)			
Miclobenzene-05			35		(56 - 120)			
2-Fluorobinhom.		-	37 -		(56 - 120)			
2-Fluorobiphenyl			35		(52 - 120)			
2,4,6-Tribromophenol			32		(52 - 120)			
v' *' o - tr infollobuelloi			13		(56 - 120)			
Termhenul dia			3		(56 - 120)			
Terphenyl-d14		7	8		(50 - 120)			

74

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

a Spiked analyte recovery is outside stated control limits.

p Relative percent difference (RPD) is outside stated control limits.

METHOD BLANK REPORT

GC Semivolatiles

Client Lot #...: D7J050201 Work Order #...
MB Lot-Sample #: D7J080000-470

Work Order #...: J8G0F1AA Matrix....: WATER

Analysis Date..: 10/11/07 Prep Batch #...: 7281470

rep Date....: 10/08/07 Analysis Time..: 04:55

Dilution Factor: 1

		REPORTI	NG	f			
PARAMETER	RESULT	LIMIT	UNITS	METHOD			
Aldrin	ND	0.050	ug/L	CFR136A 608			
alpha-BHC	ND	0.50	ug/L	CFR136A 608			
beta-BHC	ND	0.050	ug/L	CFR136A 608			
delta-BHC	ND	0.050	ug/L	CFR136A 608			
gamma-BHC (Lindane)	ND	0.050	ug/L	CFR136A 608			
Chlordane (technical)	ND	0.50	ug/L	CPR136A 608			
4,4'-DDD	NTO	0.10	ug/L	CFR136A 608			
4,4'-DDE	ND	0.10	ug/L	CFR136A 608			
4,4'-DDT ·	ND	0.10	ug/L	CFR136A 608			
Dieldrin	ИD	0.10	ug/L	CFR136A 608			
Endosulfan I	ND	0.050	ug/L	CFR136A 608			
Endosulfan II	ND	0.10	ug/L	CFR136A 608			
Endosulfan sulfate	ND	0.10	ug/L	CFR136A 608			
Endrin	ND	0.10	ug/L	CFR136A 608			
Endrin aldehyde	ND	0.10	ug/L	CFR136A 608			
Heptachlor	ND	0.050	ug/L	CFR136A 608			
Reptachlor epoxide	ND	0.050	ug/L	CFR136A 608			
Toxaphene	ND	5.0	ug/L	CFR136A 608			
SURROGATE Decachlorobiphenyl	PERCENT RECOVERY 85	RECOVERY LIMITS (48 - 12	_				
etrachloro-m-xylene	64	(40 - 10					

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

METHOD BLANK REPORT

GC Semivolatiles

Client Lot #...: D7J050201

Work Order #...: J8G0F1AD

Matrix..... WATER

MB Lot-Sample #: D7J080000-470

Prep Date....: 10/08/07

Analysis Time..: 16:48

Analysis Date..: 10/11/07

Dilution Factor: 1

Prep Batch #...: 7281470

DA DA MANAGAM		REPORTING						
PARAMETER	RESULT	LIMIT	UNITS	METHOD				
Aroclor 1016	ND	1.0	ug/L	CFR136A	608			
Aroclor 1221	ND	2.0	ug/L	CFR136A	608			
Aroclor 1232	ND	1.0	ug/L	CFR136A				
Aroclor 1242	ND	1.0	ug/L	CFR136A	608			
Aroclor 1248	ND	1.0	ug/L	CFR136A	608			
Aroclor 1254	ND	1.0	ug/L	CFR136A	608			
Aroclor 1260	ND	1.0	ug/L	CFR136A	608			
SURROGATE	PERCENT	RECOVERY		•				
······································	RECOVERY	LIMITS						
Decachlorobiphenyl	82	(48 - 127))					
Tetrachloro-m-xylene	96	(40 - 107)						

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE EVALUATION REPORT

GC Semivolatiles

Client Lot #: D7	/J050201	Work Order	#:	J8G0F1AC	Matrix	WATER

LCS Lot-Sample#: D7J080000-470

 Prep Date....: 10/08/07
 Analysis Date..: 10/11/07

 Prep Batch #...: 7281470
 Analysis Time..: 00:19

Dilution Factor: 1

	PERCENT	RECOVERY	
PARAMETER	RECOVERY	LIMITS	METHOD
Aldrin	71	(35 - 112)	CFR136A 608
alpha-BHC	73	(56 ~ 111)	CFR136A 608
beta-BHC	74	(63 - 112)	CFR136A 608
delta-BHC	78	(59 - 99)	CFR136A 608
gamma-BHC (Lindane)	78	(61 - 114)	· ·
4,4'-DDD	7 9	(64 - 117)	
4,4'-DDR	78	(69 - 113)	
4,4'-DDT	78	(63 - 133)	
Dieldrin	81	(66 - 113)	
Endosulfan I	74	(45 - 127)	
Endosulfan II	76	(60 - 125)	
Endosulfan sulfate	77	(71 - 109)	CFR136A 608
Endrin	81	(65 - 118)	
Endrin aldehyde	69	(62 - 110)	
Heptachlor	74	(47 - 113)	
Heptachlor epoxide	84	(65 ~ 113)	CFR136A 608
		PERCENT	RECOVERY
SURROGATE		RECOVERY	LIMITS
Decachlorobiphenyl		90	(48 - 127)
Tetrachloro-m-xylene		72	(40 - 107)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

GC Semivolatiles

Client Lot #...: D7J050201 Work Order #...: J8G0F1AC Matrix...... WATER

LCS Lot-Sample#: D7J080000-470

 Prep Date....: 10/08/07
 Analysis Date..: 10/11/07

 Prep Batch #...: 7281470
 Analysis Time..: 00:19

Dilution Factor: 1

PARAMETER	SPIKE AMOUNT	MEASURED AMOUNT	UNITS	PERCENT RECOVERY	METHOD
Aldrin	0.500	0.354	ug/L	71	CFR136A 608
alpha-BHC	0.500	0.367	ug/L	73	CFR136A 608
beta-BHC	0.500	0.372	ug/L	74	CFR136A 608
delta-BHC	0.500	0.389	uq/L	78	CFR136A 608
gamma-BRC (Lindane)	0.500	0.388	ug/L	78	CFR136A 60B
4,4'-DDD	0.500	0.394	ug/L	79	CFR136A 608
4,4'-DDR	0.500	0.391	ug/L	78	CFR136A 608
4,4'-DDT	0.500	0.391	ug/L	78	CFR136A 608
Dieldrin	0.500	0.405	ug/L	81	CFR136A 60B
Endosulfan I	0.500	0.372	ug/L	7 4	CFR136A 608
Endosulfan II	0.500	0.379	ug/L	76	CFR136A 608
Rndosulfan sulfate	0.500	0.386	ug/L	7 7	CFR136A 608
Endrin	0.500	0.406	ug/L	81	CFR136A 608
Endrin aldebyde	0.500	0.345	ug/L	69	CFR136A 608
Heptachlor	0.500	0.371	ug/L	74	CFR136A 608
Heptachlor epoxide	0.500	0.418	ug/L	84	CFR136A 608

	PERCENT	RECOVERY				
SURROGATE	RECOVERY	LIMITS				
Decachlorobiphenyl	90	(48 - 127)				
Tetrachloro-m-xylene	72	(40 - 107)				

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results,

Bold print denotes control parameters

GC Semivolatiles

Client Lot #...: D7J050201 Work Order #...: J760M1CQ-MS Matrix..... WATER

 Date Sampled...:
 10/03/07 09:00
 Date Received..:
 10/03/07

 Prep Date....:
 10/08/07
 Analysis Date..:
 10/11/07

 Prep Batch #...:
 7281470
 Analysis Time..:
 00:54

Dilution Factor: 1

	PERCENT	RECOVERY		RPD	
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHOD
Aldrin	7 7	(35 - 112)		•	CFR136A 608
	74	(35 - 112)	2.4	(0-69)	CFR136A 608
alpha-BHC	7 9	(56 - 111)			CFR136A 608
	77	(56 - 111)	1.8	(0-67)	CFR136A 608
beta-BHC	85	(63 - 112)			CFR136A 608
	82	(63 - 112)	2.5	(0-32)	CFR136A 608
delta-BHC	86	(59 - 99)			CFR136A 608
•	83	(59 - 99)	2.0	(0-28)	CFR136A 608
gamma-BHC (Lindane)	83	(61 - 114)			CFR136A 608
	80	(61 - 114)	2.2	(0-49)	CFR136A 608
4,4'-DDD	84	(64 - 117)			CFR136A 608
	82	(64 - 117)	1.4	(0-26)	CFR136A 608
4,4'-DDR	84	(69 - 113)			CFR136A 608
	81	(69 - 113)	1.6	(0-28)	CFR136A 608
4,4'-DDT	82	(63 - 133)			CFR136A 608
	79	(63 - 133)	2.5	(0-28)	CFR136A 608
Dieldrin	86	(66 - 113)			CFR136A 608
	84	(66 - 113)	1.6	(0-25)	CFR136A 608
Endosulfan I	80	(45 - 127)		*	CFR136A 608
	78	(45 - 127)	2.1	(0-25)	CFR136A 608
Endosulfan II	85	(60 - 125)			CFR136A 608
	82	(60 - 125)	2.9	(0-26)	CFR136A 608
Endosulfan sulfate	86	(71 - 109)			CFR136A 608
	85	(71 - 109)	1.1	(0-24)	CFR136A 608
Endrin	87	(65 - 118)			CFR136A 608
	85	(65 - 118)	1.9	(0-26)	CFR136A 608
Endrin aldehyde	84	(62 - 110)		_	CFR136A 608
	83	(62 - 110)	1.1	(0-26)	CFR136A 608
Heptachlor	80	(47 - 113)			CFR136A 608
	77	(47 - 113)	2.4	(0-58)	CFR136A 608
Heptachlor epoxide	86	(65 - 113)		_	CFR136A 608
	84	(65 - 113)	1.7	(0-27)	CFR136A 608
		DDD COLOR		P. 201	
CITEDOCATE		PERCENT		RECOVERY	
SURROGATE Decachlorobiphenyl	-	RECOVERY		LIMITS	_
becachtorobipheny1		97		(48 - 127)	
Tetrachloro-m-xylene		89		(48 - 127)	
recractitoto-m-xylene		70		(40 - 107)	
		73		(40 - 107)	1

GC Semivolatiles

Client Lot #...: D7J050201 Work Order #...: J760M1CQ-MS

Matrix..... WATER

MS Lot-Sample #: D7J030334-001

J760M1CR-MSD

SURROGATE

PERCENT RECOVERY

RECOVERY LIMITS

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

GC Semivolatiles

Client Lot #...: D7J050201 Work Order #...: J760M1CQ-MS Matrix.....: WATER

 Date Sampled...:
 10/03/07 09:00 Date Received...:
 10/03/07

 Prep Date....:
 10/08/07 Analysis Date...:
 10/11/07

 Prep Batch #...:
 7281470 Analysis Time...:
 00:54

Dilution Factor: 1

	SAMPLE	SPIKE	MEASRD P		PERCNT			
PARAMETER	AMOUNT	AMT	THUOMA	UNITS	RECVRY	RPD	METHOD	
Aldrin	ND	0.474	0.363	ug/L	77		CFR136A 608	
	ND	0.478	0.355	ug/L	74	2.4	CFR136A 608	
alpha-BHC	ND	0.474	0.375	ug/L	79		CFR136A 608	
	ND	0.478	0.369	ug/L	77	1.8	CFR136A 608	
beta-BHC	ND	0.474	0.401	ug/L	85		CFR136A 608	
	ND	0.478	0.391	ug/L	82	2.5	CFR136A 608	
delta-BHC	ND	0,474	0.406	ug/L	86		CFR136A 608	
	ND	0.478	0.398	ug/L	83	2.0	CFR136A 608	
gamma-BHC (Lindane)	ND	0.474	0.391	ug/L	83		CFR136A 608	
	ND	0.478	0.383	ug/L	80	2.2	CFR136A 608	
4,4'-DDD	ND	0.474	0.396	ug/L	84		CFR136A 608	
	ND	0.478	0.390	ug/L	82	1.4	CFR136A 608	
4,41-DDE	ND	0.474	0.396	ug/L	84		CFR136A 608	
	ND	0.478	0.389	ug/L	81	1.6	CFR136A 608	
4,4'-DDT	ND	0.474	0.387	ug/L	82		CFR136A 608	
	ND	0.478	0.378	ug/L	79	2.5	CFR136A 608	
Dieldrin	ND	0.474	0.408	ug/L	B6		CFR136A 608	
	ND	0.478	0.402	ug/L	84	1.6	CFR136A 608	
Rndosulfan I	ND	0.474	0.381	ug/L	80		CFR136A 608	
	ND	0.478	0.373	nd\r	78	2.1	CFR136A 608	
Endosulfan II	NED	0.474	0.404	ug/L	85		CFR136A 608	
	ND	0.478	0.392	ug/L	82	2.9	CFR136A 608	
Endosulfan sulfate	ND	0.474	0.409	ug/L	86		CFR136A 608	
	ND	0.478	0.405	ug/L	85	1.1	CFR136A 608	
Endrin	ND	0.474	0.413	ug/L	87		CFR136A 608	
	ND	0.478	0.405	ug/L	85	1.9	CFR136A 608	
Endrin aldehyde	ND	0.474	0.399	ug/L	84		CFR136A 608	
	ND	0.478	0.395	ug/L	83	1.1	CFR136A 608	
Heptachlor	ND	0.474	0.378	ug/L	80		CFR136A 608	
	ND	0.478	0.369	ug/L	77	2.4	CFR136A 608	
Heptachlor epoxide	ND	0.474	0.408	ug/L	86		CFR136A 608	
	ND	0.478	0.402	ug/L	84	1.7	CFR136A 608	

	PERCENT	RECOVERY				
SURROGATE	RECOVERY	LIMITS				
Decachlorobiphenyl	97	(48 - 127)				
	89	(48 - 127)				
Tetrachloro-m-xylene	70	(40 - 107)				
	73	(40 - 107)				

GC Semivolatiles

Client Lot #...: D7J050201

Work Order #...: J760M1CQ-MS

Matrix..... WATER

MS Lot-Sample #: D7J030334-001

J760MlCR-MSD

SURROGATE

PERCENT RECOVERY RECOVERY LIMITS

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results. Bold print denotes control parameters

GC Semivolatiles

Client Lot #...: D7J050201 Work Order #...: J8EQK1CP-MS Matrix.....: WATER

Date Sampled...: 10/05/07 14:00 Date Received..: 10/06/07
Prep Date....: 10/08/07 Analysis Date..: 10/11/07
Prep Batch #...: 7281470 Analysis Time..: 04:04

Dilution Factor: 1

	PERCENT	RECOVERY		RPD	
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHOD
Aldrin	53	(35 - 112)			CFR136A 608
	42	(35 - 112)	17	(0-69)	CFR136A 608
alpha-BHC	69	(56 - 111)			CFR136A 608
•	65	(56 - 111)	0.33	(0-67)	CFR136A 608
beta-BHC	69	(63 - 112)			CFR136A 608
	66	(63 - 112)	2.6	(0-32)	CFR136A 608
delta-BHC	69	(59 - 99)			CFR136A 608
	68 .	(59 - 99)	6.0	(0-28)	CFR136A 608
gamma-BHC (Lindane)	73	(61 - 114)			CFR136A 608
	69	(61 - 114)	1.7	(0-49)	CFR136A 608
4,4'-DDD	78	(64 - 117)			CFR136A 608
	68	(64 - 117)	6.8	(0-26)	CFR136A 608
4,4'-DDE	69	(69 - 113)			CFR136A 608
	60 a	(69 - 113)	7.1	(0-28)	CFR136A 608
4,4'-DDT	64	(63 - 133)			CFR136A 608
	59 a	(63 - 133)	1.2	(0~28)	CFR136A 608
Dieldrin	76	(66 - 113)			CFR136A 608
	68	(66 - 113)	3.8	(0-25)	CFR136A 608
Endosulfan I	69	(45 - 127)			CFR136A 608
	60	(45 - 127)	8.0	(0-25)	CFR136A 608
Endosulfan II	69	(60 - 125)			CFR136A 608
	63	(60 - 125)	2.8	(0-26)	CFR136A 608
Endosulfan sulfate	78	(71 - 109)			CFR136A 608
	73	(71 ~ 109)	0.06	(0-24)	CFR136A 608
Endrin	75	(65 - 118)			CFR136A 608
,	67	(65 - 118)	4.8	(0-26)	CFR136A 608
Endrin aldehyde	74	(62 - 110)			CFR136A 608
	67	(62 - 110)	2.4	(0-26)	CFR136A 608
Heptachlor	71	(47 - 113)			CFR136A 608
	61	(47 - 113)	6.9	(0-58)	CFR136A 608
Heptachlor epoxide	72	(65 - 113)			CFR136A 608
	69	(65 - 113)	2.8	(0-27)	CFR136A 608
CIM DAGA GET		PERCENT		RECOVERY	
SURROGATE		RECOVERY		LIMITS	<u> </u>
Decachlorobiphenyl		65		(48 - 127	
(no.t		50		(48 - 127	
Tetrachloro-m-xylene		72		(40 - 107	
		65		(40 - 107	1

GC Semivolatiles

Client Lot #...: D7J050201

Work Order #...: J8EQK1CP-MS

Matrix..... WATER

MS Lot-Sample #: D7J060135-001

J8EQK1CQ-MSD

SURROGATE

PERCENT RECOVERY RECOVERY LIMITS

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

a Spiked analyte recovery is outside stated control limits.

GC Semivolatiles

Client Lot #...: D7J050201 Work Order #...: J8EQK1CP-MS Matrix..... WATER

Prep Batch #...: 7281470

Pate Received.:: 10/06/07

Analysis Date.:: 10/11/07

Analysis Time.:: 04:04

Dilution Factor: 1

	SAMPLE	SPIKE	MEASRD P		PERCNT			
PARAMETER	THUUOMA	AMT	AMOUNT	UNITS	RECVRY	RPD	METHOD	
Aldrin	ND	0.498	0.265	ug/L	53		CFR136A	608
	ND	0.533	0.223	ug/L	42	17	CFR136A	608
alpha-BHC	ND	0.498	0.345	ug/L	69		CFR136A	608
	ND	0.533	0.346	ug/L	65	0.33	CFR136A	608
beta-BHC	ND	0.498	0.342	ug/L	69		CFR136A	608
	ND	0.533	0.351	ug/L	66	2.6	CFR136A	608
delta-BHC	ND	0.498	0.343	ug/L	69		CFR136A	608
	ND	0.533	0.364	ug/L	68	6.0	CFR136A	608
gamma-BHC (Lindane)	ND	0.498	0.363	ug/L	73		CFR136A	608
	ND	0.533	0.369	ug/L	69	1.7	CFR136A	608
4,4'-DDD	ND	0.498	0.388	ug/L	78		CFR136A	608
	ND	0.533	0.362	ug/L	68	6.8	CFR136A	608
4,4'-DDR	ND	0.498	0.345	ug/L	69		CFR136A	608
	ND	0.533	0.322	ug/L	60 a	7.1	CFR136A	608
4,4'-DDT	ND	0.498	0.317	ug/L	64		CFR136A	608
	ND	0.533	0.314	ug/L	59 a	1.2	CFR136A	608
Dieldrin	ND	0.498	0.377	ug/L	76		CFR136A	608
	ND	0.533	0.363	ug/L	68	3.8	CFR136A	608
Endosulfan I	ND	0.498	0.345	ug/L	69		CFR136A	608
•	ND	0.533	0.319	ug/L	60	8.0	CFR136A	608
Endosulfan II	ND	0.498	0.343	ug/L	69		CFR136A	608
	ND	0.533	0.334	ug/L	63	2.8	CFR136A	608
Endosulfan sulfate	ND	0.498	0.389	ug/L	78		CFR136A	608
	ND	0.533	0.389	ug/L	73	0.06	CFR136A	608
Endrin	ND	0.498	0.376	ug/L	75		CFR136A	608
	ND	0.533	0.358	ug/L	67	4.8	CFR136A	608
Endrin aldehyde	ND	0.498	0.368	ug/L	74		CFR136A	
	ND	0.533	0.360	ug/L	67	2.4	CFR136A	608
Heptachlor	ND	0.498	0.351	ug/L	71		CFR136A	608
	ND	0.533	0.328	ng/L	61	6.9	CFR136A	
Heptachlor epoxide	ND	0.498	0.359	ug/L	72		CFR136A	
	ND	0.533	0.369	ug/L	69	2.8	CFR136A	608

	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
Decachlorobiphenyl	65	(48 - 127)			
	50	(48 - 127)			
Tetrachloro-m-xylene	72	(40 - 107)			
	65	(40 - 107)			

GC Semivolatiles

Client Lot #...: D7J050201

Work Order #...: J8EQK1CP-MS

Matrix..... WATER

MS Lot-Sample #: D7J060135-001

J8EQK1CQ-MSD

SURROGATE

PERCENT

RECOVERY

RECOVERY

LIMITS

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

a Spiked analyte recovery is outside stated control limits.

Chain c'
Custod; scord

ecord

1 4- 42L

GRENT SIL

Severn Trent Laboratories, Inc.

Comments	3. Relinquished By	(malawas	1. Relinquished By	e Required	mable 🔲 Skin tritant Polson B	Possible Hazard Identification						LTM4	100thas7 1	-	H3V30-A	Contractible and commitment (Kee Chobee 1011	OKERHOBEE FI 34972	10800 NE 128TH	O PEETHOBEE	4124 (D807) Client
	Date Time	Date	10 84has7 1900	Other	Many to Cutting I	Dakanwa Beturn To Client	Sample Dienacal					\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	₹	7	Air Aqueous Sed. Soll	Matrix	Carrier/Waybill Number	Site Contact	lumber (Area Code	Project Manager MGUE	
	3. Received By	2. Received By	1. Hecsived By	Topicon 32	OC Requirements (Specify)									2 3	Unpres. H2SQ4 HNO3 HCI NaOH ZnAc/ NeOH	Containers & Preservatives	د	M. WIIGHT	/Fax Number	Miguel Designes	
			Main () mail		Archive For Months	:							\ \frac{\zeta}{\text{T}}	\ \ \ \ \	624	VOX Sex Sex	A OA st//	more space is needed)	SEL DENVER	10 04 2007	•
THE PERSON NAMED IN COLUMN TO SERVICE OF SER	Date	}-	Date 10/5 1/5 189(Y)		nonth)	(A fee may be assessed if samples are retained										Conditions of Receipt	Special Instructions		Page 1	Chain of Custody Number 4 0 0 0 6 8	

?	Site Sample LTM39	INFORMATION FOR Waste Management Field Information Form is Re form is to be asympteted, in addition to any State Form itted along with the Chain of Costady Forms that acc iners (i.e. with the conder that is returned to the labor	infired us. The Field Form is	Labergray Use Only/Lab ID.
	Purge DATE (MM DD YY). (2400 Hr Clock) None: For Passive Sampling, replace "Water Vol in Casing" and "Well Nate Purging and Sampling Equipment Dedicated: Dedic	SED HRS WATER VOL IN CARS. Second and Water Val in Trabings/Filter Device: Y or N Imp Filter Type: Sumple Tube Type: (DTW)	ASING ACTUAL Flow Cell Vols Proged: h D 0.45 µ nr A-In-line Disposable B-Pressure A-Tetlon B-Stainless Steel	g teitele or fill in) C-Vacuum X-Other C-PVC X-Other: D-Polypropylene
	Total Well Depth Stick Up (from TOC) Note: Total Well Depth Stick Up. Casing Id. cir. are optional and can be from Sample Time Rate/Unit pH Conductance (SC/ (std) (std) (std)	vation) (ii) istorical data, unless required by SitetPermit: Well E Temp. Turbidity	(site datum, from TOC Casing (in) ID (in) Elevation, DTW, and Grow D.O.	Croins
DATA STABILIZATION			DO	(mV) (ft)
FIELD	Final Field Readings are required (i.e. record field measurements, finol stabilized	h h h h h h h h h h h h h h h h h h h	(mg/1.ppm)	(mV) Units
	Weather Conditions (required delta)	Color: Color:	for all field parameters r BLOWN WAR 90 F	equired by State(Permit Site. Other: Precipitation: Y or N
FIELD	certify that sampling procedures were in accordance with applicable EPA, S	e, and WM protocols (if more than one sample	er, all should sign):	
	Date Name	Benkanylawa	PRO-	TECH
	DISTRIBUTION: WHITE/ORIGINAL - S	ignature with Sample, YELLOW - Returned to Client, PIN	Compuny NK - Field Copy	STL-8029WM FI: 12/00

	.`'' <u>~</u>	0.39	1 2 1		FII.	ELD IN	FORM	ATION FOR	RM -	1	
	Site Name	OKE	Ecus	att.	*-, -	This Was	de Management I	ield Information Form is Re	guired]	WASTE MANAGEMENT
	Site	. <u> </u>		imple , _	سند داندانداندانداندانداندانداندانداندانداند			d, in addition to any State Formain of Custoide Forms that age		Laboratory Use (Poly/Lab ID:
	No.:		rı	oin:	M4		•	ler that is returned to the labor	,	1 1) til	8090 - MID
٠.,					Sample ID					Y Y	<u> </u>
ı	된 _	1004	10 7	11	HZO			- -			
1	PURGE INFO	PURGED	ATE	· Pin	GETIME	ELAPSE	пирс .	WATER VOLING	ASTRIC ACTUAL	VOI PURGE	WELL VOLS
	ਜ਼_=	· (MM DD)	rY)	(240	Hr Check)	three	oin}	(Gallens)		(Gallons)	PURGED
ŀ	123							Tubing/Flow Cell and Tubing			
1	PURGE/SAMPLE EQUIPMENT	Purging and Samp			عبي	or N	· F	ilter Device: Y or N		u (cir	rcle ar-fill-(n)) - 🕟
	JRGE/SAMIY EQUIPMENT	Purging Device	Æ	A- Subme B-Peristah	•	D-Bailer E-Piston Pumi		Filter Type:	A-In-line Disposabl B-Pressure	e C-Vacuum X-Other	
	35	Sampling Device	LA		•	F-Dipper/Bott		riner Type.	•	C-PVC	V 011
	<u> </u>	X-Other:	L				Sampl	le Tuhe Type:	A-Teflon B-Stainless Steel	D-Polypropyler	X-Other:
r	₹	Well Elevation	i i i	1 1 1	Dont	h to Water (i	orani d	1 .1 .1 .1	Constant Character		1 1 1 1
T	WELL DATA	(at TOC)			1 .	n TOC)]	(40)	Groundwater Elevat (site datum, from TC		(ti/msi)
1	-	Total Well Depth	<u>-</u>	11	Stick	Un	· · · · · · · · · · · · · · · · · · ·		Casing	Casing	
l	<u>≅</u>	(from TOC)		4	(ft) (from	r ground eleva	tion)	(0)	ID tin) Materiai	1
╁					-		orical data, amless	required by SuetPermit: Wel	Elevation, DTW, and G		n must be current.
l		ample Time 00 Hr Clock)	Rate/Un	it pH (std)		nce (SC/EC) m:@ 25 °C)	Temp ("C)	Torhidity (nta)	: D.O. (mg/L - ppm)	eH/ORP (mV)	DTW (fi)
ŀ							1				
l	-	<u> </u>			114				 	.}	
14	⊋		- 1 - 1 - 1 - 2	200	214						
		1	_	34]	314	;					
Į	Cyntonia (Cyntonia)	7.1		n]	413	, ,		1 1 1 1	1 7 7		
				'·	┤ *		1 1 1	- 	 		
44.4	5	4.1	<u> </u>						1		
CTABILITATION	5					<u> </u>					
į						· ·	, , ,				
1	3	,		1	 						- · · · · · · · · · · · · · · · · · · ·
12	•			 	4 1 1 1		+++			<u> </u>	1 - 1 - 1 - 1 - 1
£					1 1	╧		1 1 1 1			
						1 1					
l		sted range for 3 conse- remnit/State requirement		+/- 0.2	+/-	3%		-	+/- 10%	+/- 25 mV	Stabilize
1	Stabi	lization Data Fields	are Option:	al (i.e. complete	stabilization reac	lings for param	eters required by	WM, Site, or State): These	fields can be used wher	e four (4) field med	isurements are required ,
₹	0) 31	AMPLE DATE		pH		fill in final read	ings below and su TEMP.	bmit electronic data separatel TURBIDITY			
AT		(MM DDYY)		(std)		n @ 25°C)	(°C)	(ntu)	DO (mg/L-ppm)	eH/ORP (mV)	Other: Units
FIELD DATA	. .	0 40	7	lot	716	اماما	1_{-}	Soplalal			
PIE	Final	Field Readings are	required (i.	e. record field	measurements, fin	al stabilized re	312	ample readings before samp	line for all field parame	grans required by 5	tate/Permit/Site
	Sami	ple Appearance:							·····		inter erminjane.
				JUDY _	ana .		Odor: <u>YES</u>		olon <mark>sk (Blodia</mark>	6-	
	_	ther Conditions (rection/Speed: <	Conte	ook: CATAC 91	9 Precipit	alion: Y or N
	Spec	ific Comments (i	ncluding p	ourge/well vol	ume calculation	ns if required):				
ý							√. :				
Z					·· -			,			
COMMENTS							1 12 1				
Š	—			· · · · · · · · · · · · · · · · · · ·				 			
ď								·			
Ħ							-				
	[certi	fy that sampling o	mocedare.	were in socces	lanne with"	cable EDA C-	to and Water	olocols (if more than one s		· · · · · · · · · · · · · · · · · · ·	
	125	., sampning t		_		LUCIE EFA, SI	ace, and wisi pro	orocors (if more than one s	sampier, ali should sig	;n;: 	
	<u>.</u> ب	1000	. P <u>o</u>	ns Ram	KANAAN.		sen Ka	meaner		PKO-TE	TOH
								U ·	·	<u>'</u> .	
	٠.	Date	Nan		IJON: WHITE/O	ORIGINAL - SE	Signature avs with Sample.	YELLOW - Returned to Clie	Comp ent. PINK - Field Conv	Dany	
_											

Facility GMS#:		Sampling Date/Time:	10/4/2007 /11:40:00AM
Test Site ID#:	20367	Report Period	2007 / 4
WACS#:	70436		year / qtr
Well Name:	LTM-39	Well Purg	ged (Y/N); N
Classification of Groundwater:	GII	Weil Type	e: () Background
			() Detection
Groundwater Elevation (NGVD):			() Compliance
or (MSL):			(X) Other

	or (MSL):						(X) Other	
Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Anai Date/	lysis Time	Analysis Results/Units	Detection Limit/Units
39360	4,4'-DDD	Z	N	608	10/11/07	01:45	< 0.10 ug/L	0.10 ug/L
39365	4,4'-DDE	z	N	608	10/11/07	01:45	<0.10 ug/L	0.10 ug/L
39370	4,4'-DDT	z	N	608	10/11/07	01:45	< 0.10 ug/L	0.10 ng/L
39330	Aldrin	z	N	608	10/11/07	01:45	< 0.050 ug/L	0.050 ug/L
39337	alpha-BHC	z	N	608	10/11/07	01:45	< 0.50 ug/L	0.50 ug/L
34671	Aroclor 1016	z	N	608	10/13/07	19:11	< 1.0 ug/L	1.0 ug/L
39488	Aroclor 1221	z	N	608	10/13/07	19:11	< 2.0 ug/L	2.0 ug/L
39492	Aroclor 1232	z	N	608	10/13/07	19:11	< 1.0 ug/L	1.0 ug/L
39496	Aroclor 1242	z	א	608	10/13/07	19:11	< 1.0 ug/L	1.0 ug/L
39500	Aroclor 1248	z	N	608	10/13/07	19:11	< 1.0 ug/L	1.0 ug/L
39504	Aroclor 1254	Z	N.	608	10/13/07	19:11	<1.0 ug/L	1.0 ug/L
39508	Aroclor 1260	z	א	608	10/13/07	19:11	< 1.0 ug/L	1.0 ug/L
39338	beta-BHC	z	N	608	10/11/07	01:45	< 0.050 ug/L	0.050 ug/L
039350	Chlordane (technical)	z	и	608	10/11/07	01:45	< 0.50 ug/L	0.50 ug/L
46323	delta-BHC	z	N	608	10/11/07	01:45	< 0.050 ug/L	0.050 ug/L
39380	Dieldrin	Z	N	608	10/11/07	01:45	< 0.10 ug/L	0.10 ng/L
34361	Endosulfan I	Z	N	608	10/11/07	01:45	< 0.050 ug/L	0.050 ug/L
34356	Endosulfan II	z	N	608	10/11/07	01:45	< 0.10 ug/L	0.10 ug/L
34351	Endosulfan sulfate	2	И	608	10/11/07	01:45	< 0.10 ug/L	0.10 ug/L
39390	Endrîn	z	N	608	10/11/07	01:45	< 0.10 ug/L	0.10 ug/L
34366	Endrin aldehyde	z	א	608	10/11/07	01:45	< 0.10 ug/L	0.10 ug/L
39340	gamma-BHC (Lindane)	Z	N	608	10/11/07	01:45	< 0.050 ug/L	0.050 ug/L
39410	Heptachlor	z	N	608	10/11/07	01:45	< 0.050 ug/L	0.050 ug/L
39420	Heptachlor epoxide	z	N	608	10/11/07	01:45	< 0.050 ug/L	0.050 ug/L
39400	Toxaphene	z	א	608	10/11/07	01:45	< 5.0 ug/L	5.0 vg/L
34551	1,2,4-Trichlorobenzene	z	N	625	10/14/07	04:34	< 100 ug/L	100 ug/L
34536	1,2-Dichlorobenzene	z	N	625	10/14/07	04:34	< 100 ug/L	100 ug/L
34346	1,2-Diphenylhydrazine (as Azobenzene)	z	и	625	10/14/07	04:34	< 100 ug/L	100 ug/L
34566	1,3-Dichlorobenzene	z	1 !	625	10/14/07	04:34	< 100 ug/L	100 ng/L
34571	1,4-Dichlorobenzene	z		625	10/14/07	04:34	< 100 ug/L	100 ug/L
34621	2,4,6-Trichlorophenol	z	N	625	10/14/07	04:34	< 100 ug/L	100 ug/L
34601	2,4-Dichlorophenol	Z	N	625	10/14/07	04:34	< 100 ug/L	100 ug/L

Facility GMS#:		Sampling Date/Time:	10/4	/2007 /11:40:00AM
Test Site ID#:	20367	Report Period		2007 / 4
WACS#:	70436	····		year / qtr
Well Name:	LTM-39	Well Purg	ed (Y/N): I	N
Classification of Groundwater:	GII	Well Type	: ()	Background
			()	Detection
Groundwater Elevation (NGVD):			()	Compliance
or (MSL);			(X)	Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method		lysis /Time	Analysis Results/Units	Detection Limit/Units
34606	2,4-Dimethylphenol	z	N	625	10/14/07	04:34	56 ug/L	100 ug/L
34616	2,4-Dinitrophenol	z	N	625	10/14/07	04:34	<200 ug/L	200 ug/L
34613	2,4-Dinitrotoluene	z	И	625	10/14/07	04:34	< 100 ug/L	100 ug/L
34626	2,6-Dinitrotoluene	z	N	625	10/14/07	04:34	15 ug/L	100 ug/L
34581	2-Chloronaphthalene	z	N	625	10/14/07	04:34	< 100 ug/L	100 ug/L
34586	2-Chlorophenol	z	N	625	10/14/07	04:34	< 100 ug/L	100 ug/L
34591	2-Nitrophenol	z	N	625	10/14/07	04:34	< 100 ug/L	100 ug/L
34631	3,3'-Dichlorobenzidine	z	N	625	10/14/07	04:34	< 500 ug/L	500 ug/L
34657	4,6-Dinitro-2-methylphenol	z	N	625	10/14/07	04:34	< 500 ug/L	500 ug
34636	4-Bromophenyl phenyl ether	z	N	625	10/14/07	04:34	< 100 ug/L	100 ng/L
34452	4-Chloro-3-methylphenol	z	א	625	10/14/07	04:34	< 100 ug/L	100 ng/L
34641	4-Chlorophenyl phenyl ether	z	N	625	10/14/07	04:34	< 100 ug/L	100 ug/L
34646	4-Nitrophenoi	z	N	625	10/14/07	04:34	< 500 ug/L	500 ug/L
34205	Acenaphthene	z	N	625	10/14/07	04:34	< 100 ug/L	100 ug/L
34200	Acenaphthylene	z	И	625	10/14/07	04:34	< 100 ng/L	100 ug/L
34220	Anthracene	z	N	625	10/14/07	04:34	< 100 ug/L	100 ug/L
39120	Benzidine	z	או	625	10/14/07	04:34	< 1000 ug/L	1000 ug/L
34526	Benzo(a)anthracene	z	N	625	10/14/07	04:34	< 100 ug/L	100 ng/L
4247	Benzo(a)pyrene	z	N	625	10/14/07	04:34	< 100 ug/L	100 ug/L
4230	Benzo(b)fluoranthene	z	N	625	10/14/07	04:34	< 100 ug/L	100 ug/L
4521	Benzo(ghi)perylene	z	א	625	10/14/07	04:34	< 100 ug/L	100 ug/L
4242	Benzo(k)fluoranthene	z	N	625	10/14/07	04:34	< 100 ug/L	100 ug/L
4278	bis(2-Chloroethoxy)methane	z	א	625	10/14/07	04:34	< 100 ug/L	100 ug/L
4273	bis(2-ChloroethyI) ether	z	N	625	10/14/07	04:34	< 100 ug/L	100 ug/L
3522	bis(2-Chloroisopropyl) ether	z	א	625	10/14/07	04:34	< 100 ug/L	100 ug/L
9100	bis(2-Ethylhexyl) phthalate	z	N	625	10/14/07	04:34	< 100 ug/L	100 ug/L
4292	Butyl benzyl phthalate	z	N	625	10/14/07	04:34	< 100 ng/L	100 ug/L
4320	Chrysene	z	N	625	10/14/07	04:34	< 100 ug/L	100 ug/L
9110	Di-n-butyl phthalate	z		625	10/14/07	04:34	< 100 ug/L	100 ug/L
1596	Di-n-octyl phthalate	z	1	625	10/14/07	04:34	< 100 ug/L	100 ug/L
34556	Dibenzo(a,h)anthracene	z	- 1	625	10/14/07	04:34	< 100 ug/L	100 ug/L
1336	Diethyl phthalate	z	ı	625	10/14/07	04:34	< 100 ug/L	100 ug/L

Facility GMS#:		Sampling Date/Time:	10/4/2007 /11:40:00AM
Test Site ID#:	20367	Report Period	2007 / 4
WACS#:	70436		year / qtr
Well Name:	LTM-39	Well Purg	ged (Y/N): N
Classification of Groundwater:	GII	Well Type	e: () Background
			() Detection
Groundwater Elevation (NGVD):			() Compliance
or (MSL):			(X) Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method		lysis /Time	Analysis Results/Units	Detection Limit/Units
34341	Dimethyl phthalate	z	N	625	10/14/07	04:34	< 100 ug/L	100 ug/L
34376	Fluoranthene	z	N	625	10/14/07	04:34	< 100 ug/L	100 ug/L
34381	Fluorene	z	N	625	10/14/07	04:34	< 100 ug/L	100 ug/L
39700	Hexachlorobenzene	z	N	625	10/14/07	04:34	<100 ug/L	100 ug/L
34391	Hexachlorobutadiene	z	N	625	10/14/07	04:34	< 100 ng/L	100 ug/L
34386	Hexachlorocyclopentadiene	z	N	625	10/14/07	04;34	< 500 ng/L	500 ug/L
34396	Hexachloroethane	Z	N	625	10/14/07	04:34	< 100 ug/L	100 ug/L
34403	Indeno(1,2,3-cd)pyrene	z	И	625	10/14/07	04:34	< 100 ug/L	100 ug/L
34408	Isophorone	z	N	625	10/14/07	04:34	< 100 ug/L	100 ug/L
34428	N-Nitrosodi-n-propylamine	Z	и	625	10/14/07	04:34	<100 ug/L	100 ng/L
34438	N-Nitrosodimethylamine	z	N	625	10/14/07	04:34	< 100 ug/L	100 ug/L
34433	N-Nitrosodiphenylamine	z	N	625	10/14/07	04:34	< 100 ug/L	100 ug/L
34696	Naphthalene	z	И	625	10/14/07	04:34	11 ug/L	100 ug/L
34447	Nitrobenzene	z	N	625	10/34/07	04:34	< 100 ug/L	100 ug/L
39032	Pentachlorophenol	z	א	625	10/14/07	04:34	< 500 ug/L	500 ug/L
34461	Phenanthrene	z	ห	625	10/14/07	04:34	< 100 ug/L	100 ug/L
046000	Phenol	z	N	625	10/14/07	04:34	980 ug/L	100 ug/L
34469	Ругеве	z	И	625	10/14/07	04:34	< 100 ug/L	100 ug/L
34506	1,1,1-Trichloroethane	z	N	624	10/10/07	16:02	< 10 ug/L	10 ug/L
34516	1,1,2,2-Tetrachloroethane	z	N	624	10/10/07	16:02	< 10 ug/L	10 ug/L
34511	1,1,2-Trichloroethane	z	N	624	10/10/07	16:02	< 10 ug/L	10 ug/L
34496	1,1-Dichloroethane	z	N	624	10/10/07	16:02	< 10 ug/L	10 ug/L
34501	1,1-Dichloroethene	z	И	624	10/10/07	16:02	< 10 ug/L	10 ug/L
4531	1,2-Dichloroethane	z	N	624	10/10/07	16:02	7.1 ug/L	10 ug/L
4541	1,2-Dichloropropane	z	И	624	10/10/07	16:02	< 10 ug/L	10 ug/L
4561	1,3-Dichloropropene (total)	z	И	624	10/10/07	16:02	< 10 ug/L	10 ug/L
4576	2-Chloroethyl vinyl ether	Z	И	624	10/10/07	16:02	< 10 ug/L	10 ug/L
4210	Acrolein	z	N	624	10/10/07	16:02	< 200 ug/L	200 ug/L
4215	Acrylonistile	z	N	624	10/10/07	16:02	< 200 ug/L	200 ng/L
4030	Benzene	z	N	624	10/10/07	16:02	9.1 ug/L	10 ug/L
2101	Bromodichloromethane	z	N	624	10/10/07	16:02	< 10 ug/L	10 ug/L
2104	Bromoform	z	N	624	10/10/07	16:02	< 10 ug/L	10 ug/L

Facility GMS#:		Sampling Date/Time:	10/4/2007 /11:40:00AM
Test Site ID#:	20367	Report Period	2007 / 4
WACS#;	70436		year / qtr
Well Name:	LTM-39	Well Purge	ed (Y/N): N
Classification of Groundwater:	GII	Well Type:	: () Background
Groundwater Elevation (NGVD):			() Detection
			() Compliance
or (MSL):			(X) Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analysis Date/Time	Analysis Results/Units	Detection Umit/Units
34413	Bromomethane	Z	N	624	10/10/07 16:02	< 20 ug/L	20 ug/L
32102	Carbon tetrachloride	z	N	624	10/10/07 16:02	< 10 ug/L	10 ug/L
34301	Chlorobenzene	z	N	624	10/10/07 16:02	<10 ug/L	10 ug/L
34311	Chloroethane	z	N	624	10/10/07 16:02	<20 ug/L	20 ug/L
32106	Chloroform	z	N	624	10/10/07 16:02	< 10 ug/L	10 ug/L
3 44 18	Chloromethane	z	N] 624	10/10/07 16:02	<20 ug/L	20 ug/L
32105	Dibromochloromethane	z	N	624	10/10/07 16:02	< 10 ug/L	10 ug/L
34371	Ethylbenzene	Z	N	624	10/10/07 16:02	23 ug/L	iOug/L
34423	Methylene chloride	z	N	624	10/10/07 16:02	4.6 ug/L	10 ug/L
34475	Tetrachloroethene	z	N	624	10/10/07 16:02	<10 ug/L	10 ng/L
34010	Tolarene	z	N	624	10/10/07 16:02	57 ug/L	10 ug/L
34546	trans-1,2-Dichloroethene	Z	N	624	10/10/07 16:02	< 10 ug/L	10 ug/L
39180	Trichlorcethene	z	N	624	10/10/07 16:02	< 10 ug/L	10 ug/L
39175	Vinyl chloride	z	N	624	10/10/07 16:02	< 20 ug/L	20 ug/L
							J.

Facility GMS#:		Sampling Date/Time:	10/4/2007 / 2:20:00PM
Test Site ID#:	20366	Report Period	2007 / 4
WACS#:	70436		year / qtr
Well Name:	LTM-04	Well Purge	ed (Y/N): N
Classification of Groundwater:	GII	Well Type:	: () Background
			() Detection
Groundwater Elevation (NGVD):			() Compliance
or (MSL):			(X) Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method		lysis Time	Analysis Results/Units	Detection Limit/Units
39360	4,4'-DDD	z	N	608	10/11/07	02:03	< 0.10 ug/L	0.10 ug/L
39365	4,4'-DDE	Z	N	608	10/11/07	02:03	< 0.10 ug/L	0.10 ug/L
39370	4,4'-DDT	z	N	608	10/11/07	02:03	< 0.10 ug/L	0.10 ug/L
39330	Aldrin	z	N	608	10/11/07	02:03	< 0.050 ug/L	0.050 ug/L
39337	alpha-BHC	z	N	608	10/11/07	02:03	< 0.50 ug/L	0.50 ug/L
34671	Arosior 1016	z	N	608	10/13/07	19:34	<1.0 ug/L	1.0 ug/L
3948 8	Aroclor I221	z	N	608	10/13/07	19:34	< 2.0 ug/L	2.0 ng/L
39492	Arocior 1232	z	N	608	10/13/07	19:34	< 1.0 ug/L	1.0 ug/L
39496	Aroclor 1242	z	N	608	10/13/07	19:34	< 1.0 ug/L	1.0 ug/L
9500	Arocior 1248	z	N	608	10/13/07	19:34	< 1.0 ug/L	1.0 ug/L
9504	Arcclor 1254	z	N	608	10/13/07	19:34	<1.0 ug/L	1.0 ug/L
9508	Aroclor 1260	Z	N	608	10/13/07	19:34	< 1.0 ug/L	1.0 ug/L
9338	beta-BHC	z	N	608	10/11/07	02:03	0.026 ug/L	0.050 ug/L
39350	Chlordane (technical)	z	N	608	10/11/07	02:03	< 0.50 ug/L	0.50 ug/L
6323	delta-BHC	z	N	608	10/11/07	02:03	0.018 pg/L	0.050 ug/L
9380	Dieldrin	z	N	608	10/11/07	02:03	< 0.10 ug/L	0.10 ug/L
4361	Endosulfan I	z	N	608	10/11/07	02:03	< 0.050 ug/L	0.050 ug/L
4356	Endosulfan II	z	N	608	10/11/07	02;03	< 0.10 ug/L	0.10 ug/L
4351	Endosulfan sulfate	z	N	608	10/11/07	02:03	< 0.10 ug/L	0.10 ug/L
9390	Endrin	z	N	608	10/11/07	02:03	< 0.10 ug/L	0.10 ug/L
4366	Endrin aldchyde	z	N	608	10/11/07	02:03	< 0.10 ug/L	0.10 ug/L
9340	gamma-BHC (Lindane)	z	N	608	10/11/07	02:03	< 0.050 ug/L	0.050 ug/L
9410	Heptachior	z	N	608	10/11/07	02:03	< 0.050 ug/L	0.050 ug/L
9420	Heptachlor epoxide	z	и	608	10/11/07	02:03	< 0.050 ug/L	0.050 ug/L
9400	Toxaphene	z	N	608	10/11/07	02:03	< 5.0 ug/L	5.0 ug/L
4551	1,2,4-Trichlorobenzene	z	N	625	10/14/07	04:56	< 100 ng/L	100 ug/L
1536	I,2-Dichlorobenzene	z	N	625	10/14/07	04:56	< 100 ug/L	100 ug/L
1346	1,2-Diphenylhydrazine (as Azobenzene)	Z	N	625	10/14/07	04:56	< 100 ug/L	100 ug/L
566	1,3-Dichlorobenzene	z		625	10/14/07	04:56	< 100 ug/L	100 ug/L
!57 <u>]</u>	1,4-Dichlorobenzene	z		625	10/14/07	04:56	< 100 ug/L	100 ng/L
621	2,4,6-Trichlorophenol	z		625	10/14/07	04:56	< 100 ug/L	100 ug/L
601	2,4-Dichlorophenol	z		625	10/14/07	04:56	< 100 ug/L	100 ug/L

Facility GMS#:		Sampling Date/Time:	1	0/4	/2007 / 2:20:00PM
Test Site ID#:	20366	Report Period			2007 / 4
WACS#:	70436				year / qtr
Well Name:	LTM-04	Well Purg	ed (Y/N): 1	4
Classification of Groundwater:	GII	Wel! Type	e: ()	Background
			()	Detection
Groundwater Elevation (NGVD):		·-··	()	Compliance
or (MSL):			()	()	Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method		ilysis /Time	Analysis Results/Units	Detection Limit/Units
34606	2,4-Dimethylphenol	Z	И	625	10/14/07	04:56	23 ug/L	100 ug/L
34616	2,4-Dinitrophenol	Z	N	625	10/14/07	04:56	<200 ug/L	200 ug/L
34611	2,4-Dinitrotoluene	z	И	625	10/14/07	04:56	<100 ug/L	100 ug/L
34626	2,6-Dinitrotoluene	z	N	625	10/14/07	04:56	<100 ug/L	100 ng/L
34581	2-Chioronaphthalene	z	И	625	10/14/07	04:56	< 100 ug/L	100 ug/L
34586	2-Chiorophenol	z	N	625	10/14/07	04:56	< 100 ug/L	100 ug/L
34591	2-Nitrophenol	z	и	625	10/14/07	04:56	< 100 ug/L	100 ug/L
34631	3,3'-Dichlorobenzidine	z	N	625	10/14/07	04:56	< 500 ug/L	500 ng/L
34657	4,6-Dinitro-2-methylphenol	z	N	625	10/14/07	04:56	< 500 ug/L	500 ug
34636	4-Bromophenyl phenyl ether	z	N	625	10/14/07	04:56	<100 ug/L	100 ug/L
34452	4-Chloro-3-methylphenol	z	N	625	10/14/07	04:56	< 100 ug/L	100 ug/L
34641	4-Chlorophenyl phenyl ether	z	N	625	10/14/07	04:56	<100 ug/L	i00 ug/L
34646	4-Nitrophenol	z	N	625	10/14/07	04:56	< 500 ug/L	500 ug/L
34205	Acenaphthene	z	N	625	10/14/07	04:56	< 100 ug/L	100 ug/L
34200	Acenaphthylene	z	N	625	10/14/07	04:56	< 100 ug/L	100 ug/L
34220	Anthracene	z	N	625	10/14/07	04:56	< 100 ug/L	100 ug/L
39120	Benzidine	z	И	625	10/14/07	04:56	< 1000 ug/L	1000 ug/L
34526	Benzo(a)anthracene	z	N	625	10/14/07	04:56	< 100 ug/L	100 ng/L
34247	Benzo(a)pyrene	z	N	625	10/14/07	04:56	< 100 ug/L	100 ug/L
34230	Benzo(b)fluoranthene	z	א	625	10/14/07	04:56	< 100 ug/L	100 ug/L
34521	Benzo(ghi)perylene	z	N	625	10/14/07	04:56	< 100 ug/L	100 ug/L
34242	Benzo(k)fluoranthene	z	N	625	10/14/07	04:56	< 100 ug/L	100 ng/L
34278	bis(2-Chloroethoxy)methane	z	N	625	10/14/07	04:56	< 100 ug/L	100 ug/L
34273	bis(2-Chloroethyl) ether	z	N	625	10/14/07	04:56	< 100 ug/L	100 ug/L
73522	bis(2-Chloroisopropyl) ether	z	И	625	10/14/07	04:56	< 100 ug/L	100 ug/L
9100	bis(2-Ethylhexyl) phthalate	z	N	625	10/14/07	04:56	< 100 ug/L	100 ug/L
4292	Butyl benzyl phthalate	Z	И	625	10/14/07	04:56	< 100 ug/L	100 ug/L
4320	Chrysene	z	N	625	10/14/07	04:56	< 100 ug/L	100 ug/L
9110	Di-n-butyl phthalate	z	N	625	10/14/07	04:56	< 100 ug/L	100 ug/L
4596	Di-n-octyl phthalate	z	N	625	10/14/07	04:56	< i00 ug/L	100 ug/I
34556	Dibenzo(a,h)anthracene	z	N	625	10/14/07	04:56	< 100 ug/L	100 ug/L
4336	Diethyl phthalate	z	N	625	10/14/07	04:56	<100 ug/L	100 ug/L

Facility GMS#:		Sampling Date/Time:	10/4/2007 / 2:20:00PM
Test Site ID#:	20366	Report Period	2007 / 4
WACS#:	70436		year / qtr
Well Name:	LTM-04	Well Purge	d (Y/N): N
Classification of Groundwater:	GII	Well Type:	-
Groundwater Elevation (NGVD):			() Detection
or (MSL):		· · · · · · · · · · · · · · · · · · ·	() Compliance (X) Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method		alysis Time	Analysis Results/Units	Detection Limit/Unite
34341	Dimethyl phthalate	Z	N	625	10/14/07	04:56	5 < 100 ug/L	100 6
34376	Fluoranthene	$ _{z}$	N	625	10/14/07			100 ug/L
34381	Fluorene	z	N	625	10/14/07		"	100 ug/L
39700	Hexachlorobenzene	$ _{z}$.	N	625	10/14/07	04:56	1	100 ug/L
34391	Hexachlorobutadiene	z	N	625	10/14/07	04:56	15 -	100 ug/L
34386	Hexachlorocyclopentadiene	z	N	625	10/14/07	04:56	<u> </u>	100 ug/L
34396	Hexachioroethane	z	N	625	10/14/07	04:56	-	500 ng/L
34403	Indeno(1,2,3-cd)pyrene	z	N	625	10/14/07	04:56		100 ng/L
34408	Isophorone	z	N	625	10/14/07	04:56	i -	100 ug/L
34428	N-Nitrosodi-n-propylamine	$ _{z}$	N	625	10/14/07	04:56		100 ag/L
34438	N-Nitrosodimethylamine	z	N	625	10/14/07	04:56	< 100 ug/L	100 ug/L
34433	N-Nitrosodiphenylamine	z	N	625	10/14/07	04:56	< 100 ug/L	100 ug/L
34696	Naphthalene	z	N	625	10/14/07	04:56	10 ug/L	100 ug/L
34447	Nitrobenzene	z	N	625	10/14/07	04:56	< 100 ug/L	100 ug/L
39032	Pentachlorophenol	$ _{z}$	N	625	10/14/07	04:56	< 500 ug/L	100 ug/L
34461	Phenanthrene	z	N	625	10/14/07	04:56	< 100 ug/L	500 ug/L
046000	Phenol	z	N	625	10/14/07	04:56	50 ug/L	100 ug/L
34469	Pyrene	z	_N	625	10/14/07	04:56	< 100 ug/L	100 ug/L
34506	1,1,1-Trichloroethane	z	N	624	10/10/07	16:22	< 17 ug/L	100 ug/L
34516	1,1,2,2-Tetrachloroethane	z	א	624	10/10/07	16:22	< 17 ug/L	17 ug/L
34511	1,1,2-Trichloroethane	z	N	624	10/10/07	16:22	< 17 ug/L	17 ug/L
34496	1,1-Dichloroethane	z] }	624	10/10/07	16:22	<17 ug/L	17 ug/L
34501	1,1-Dichloroethene	z	[]	624	10/10/07	16:22	<17 ug/L	17 ug/L
34531	1,2-Dichloroethane	z		624	10/10/07	16:22	< 17 ug/L	17 ug/L
34541	1,2-Dichloropropane	z	1	624	10/10/07	16:22	<17 ug/L	17 ug/L
34561	1,3-Dichloropropene (total)	ĺz	- {	624	10/10/07	16:22	< 17 ug/L	17 ug/L
34576	2-Chloroethyl vinyl ether	z		624	10/10/07	16:22	< 17 ug/L	17 ug/L
34210	Acrolein	z		624	10/10/07	16:22		17 ug/L
34215	Acrylonitrile	z		624	10/10/07	16:22	< 330 ug/L	330 ug/L
34030	Benzene	z		524	10/10/07	16:22	< 330 ug/L	330 ug/L
32101	Bromodichloromethane	z		524	10/10/07	16:22	5.5 ug/L	17 ug/L
32104	Bromoform	Z	ĺ	524	10/10/07	16:22	< 17 ug/L < 17 ug/L	17 ug/L 17 ug/L

Facility GMS#:		Sampling Date/Time:	10/4/2007 / 2:20:00PM
Test Site ID#: 20366		Report Period	2007 / 4
WACS#:	70436		year / qtr
Well Name:	LTM-04	Well Purg	ed (Y/N): N
Classification of Groundwater:	GII	Well Type	: () Background
			() Detection
Groundwater Elevation (NGVD):			() Compliance
or (MSL):			(X) Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analy Date/1	rsis Time	Analysis Results/Units	Detection Limit/Units
4413	Bromomethane	Z	N	624	10/10/07	16:22	< 33 ug/L	33 ug/L
2102	Carbon tetrachloride	z	И	624	10/10/07	16:22	< 17 ng/L	17 ug/L
4301	Chlorobenzene	z	N	624	10/10/07	16:22	< 17 ug/L	17 ug/L
4311	-Chloroethane	z	N	624	10/10/07	16:22	< 33 ug/L	33 ug/L
2106	Chloroform	Z	N	624	10/10/07	16:22	< 17 ug/L	17 ug/L
1418	Chloromethane	z	N	624	10/10/07	16:22	<33 ug/L	33 ug/L
105	Dibromochloromethane	z	И	624	10/10/07	16:22	< 17 ug/L	17 ug/L
371	Ethylbenzene	z	N	624	10/10/07	16:22	24 ug/L	17 ug/L
1423	Methylene chloride	z	N	624	10/10/07	16:22	6.9 ug/L	17 ug/L
475	Tetrachloroethene	z	N	624	10/10/07	16:22	< 17 ug/L	17 ug/L
010	Toluene	z	N	624	10/10/07	16:22	33 ug/L	17 ug/L
1546	trans-1,2-Dichloroethene	z	N	624	10/10/07	16:22	< 17 ug/L	17 ug/L
9180	Trichlorosthene	z	N	624	10/10/07	16:22	< 17 ug/L	17 ng/L
9175	Vînyl chloride	z	N	624	10/10/07	16:22	< 33 ug/L	33 ug/L
								e e e e e e e e e e e e e e e e e e e

Facility GMS#:		Sampling D	ate/Time:	1	0/4	/2007 /12:00:00AM
Test Site ID#:		Report Perio	 od			2007 / 4
WACS#:	70436			··· ···		year / qtr
Well Name: TRIP	BLANK 1		Well Purged	(Y/N	۱۰ ۸	1
Classification of Groundwater:	GII			(1/11)). ··	•
·····			Well Type:	()	Background
Groundwater Elevation (NGVD):				()	Detection
				()	Compliance
or (MSL):				()	Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	d Analysis Method		nalysis re/Time	Analysis Results/Units	Detection Limit/Unit	
34506	1,1,1-Trichloroethane			624	10/10/07	, 01.57			
34516	1,1,2,2-Tetrachloroethane	Į	N	624	į.			5.0 ug/L	
34511	1,1,2-Trichloroethane	[N	624	10/10/07			5.0 ug/L	
34496	1,1-Dichloroethane	1	N	624	10/10/07			5.0 ug/L	
34501	1,1-Dichloroethene		N	624	10/10/07		J	5.0 ug/L	
34531	1,2-Dichloroethane		N	624	10/10/07		< 5.0 ug/L	5.0 ug/L	
34541	1,2-Dichloropropane	ļ	1 1	624	10/10/07	01:57	< 5.0 ng/L	5.0 ug/L	
34561	1,3-Dichloropropene (total)		i I	1	10/10/07	01:57	< 5.0 ug/L	5.0 ng/L	
34576	2-Chioroethyl vinyl ether]	i [624	10/10/07	01:57	< 5.0 ug/L	5.0 ug/L	
34210	Acrolein	ļ	1 1	624	10/10/07	01:57	< 5.0 ug/L	5.0 tig/L	
34215	Acrylonitrile			j j	10/10/07	01:57	< 100 ug/L	100 ng/L	
4030	Benzene		! !	624	10/10/07	01:57	< 100 ug/L	100 ug/L	
2101	Bromodichloromethane]	1	624	10/10/07	01:57	< 5.0 ug/L	5.0 vg/L	
2104	Bromoform		1 1		10/10/07	01:57	< 5.0 ug/L	5.0 ug/L	
4413	Bromomeihane			1	10/10/07	01:57	< 5.0 ug/L	5.0 ug/L	
2102	Carbon tetrachloride		1 1		10/10/07	01:57	< 10 ug/L	10 ug/L	
4301	Chlorobenzene]]	1 1		10/10/07	01:57	< 5.0 ug/L	5.0 ug/L	
4311	Chloroethane	l l	! !		10/10/07	01:57	< 5.0 ug/L	5.0 ug/L	
2106	Chieroform	ļ]	i	10/10/07	01:57	< 10 ug/L	10 tig/L	
1418	Chloromethane	-	!]	1	10/10/07	01:57	< 5.0 ug/L	5.0 ug/L	
105	Dibromochloromethane			1	10/10/07	01:57	< 10 ug/L	10 ug/L	
371	Dibromochioromethane Ethylbenzene	1 1	N 62	624	10/10/07	01:57	< 5.0 ng/L	5.0 ug/L	
423			N 62	624	10/10/07		< 5.0 ug/L	5.0 ug/L	
475	Methylene chloride		N 62	524	10/10/07	Į.	< 5.0 ug/L	5.0 ng/L	
·	Tetrachioroethene		N 62	524 1	10/10/07	ŧ.	< 5.0 ug/L	5.0 ug/L	
010	Toluene		N 62	524	10/10/07	1	< 5.0 ug/L	5.0 ug/L	
546	trans-1,2-Dichloroethene		N 62	524 10	10/10/07	- 1	< 5.0 ug/L	5.0 ug/L	
180	Trichloroethene		N 62	24 10			ł	5.0 ug/L	
175	Vinyl chloride		N 62	J		!		10 ug/L	
								10 mg/L	

ANALYTICAL REPORT

Project No. Site 1011

Okeechobee Landfill

Lot #: D7J060151

Pond 1D

Miguel Delgado Waste Management Inc. Berman Rd Landfill 10800 NE 128th Ave Okeechobee, FL 34927

Cc: Ken Guilbeault

TestAmerica Denver

Melissa L. Wright Project Manager

Mich J. Wight

October 29, 2007

Table Of Contents

Standard Deliverables

Report Contents

Total Number of Pages

Standard Deliverables

The Cover Letter and the Report Cover page are considered integral parts of this Standard Deliverable package. This report is incomplete unless all pages indicated in this Table of Contents are included.

- Table of Contents
- Case Narrative
- Executive Summary Detection Highlights
- Methods Summary
- Method/Analyst Summary
- Lot Sample Summary
- Analytical Results
- QC Data Association Summary
- QC by Method
- Chain-of-Custody

Case Narrative

Enclosed is the report for two samples received at TestAmerica Denver on October 6, 2007. The results included in this report have been reviewed for compliance with TestAmerica's Laboratory Quality Manual. The results relate only to the samples in this report and meet all requirements of NELAC and any exceptions are noted below. TestAmerica Denver's Florida certification number is E87667.

This report may include reporting limits (RLs) less than TestAmerica Denver's standard reporting limit. The reported sample results and associated reporting limits are being used specifically to meet the needs of this project. Note that data are not normally reported to these levels without qualification because they are inherently less reliable and potentially less defensible than required by the latest industry standards.

Dilution factors and footnotes have been provided to assist in the interpretation of the results. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at concentrations above the linear calibration curve, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

TestAmerica utilizes USEPA approved methods in all analytical work. The samples presented in this report were analyzed for the parameters listed on the analytical methods summary page in accordance with the methods indicated. A summary of quality control parameters is provided below.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Quality Control Summary for Lot D7J060151

Sample Receiving

The cooler temperature upon receipt at the Denver laboratory was 5.9°C.

All sample bottles were received in acceptable condition.

Holding Times

All analyses were performed within established holding times.

Method Blanks

Total Sodium was detected in the Method 6010B Blank at a concentration below the reporting limit but above the method detection limit. No corrective action is taken for results in the Method Blank that are below the reporting limits.

All other Method Blanks were within established control limits.

Laboratory Control Samples (LCS)

All Laboratory Control Samples were within established control limits.

Matrix Spike (MS) and Matrix Spike Duplicate (MSD)

The method required MS/MSD could not be performed for Method 504.1 due to insufficient sample volume; however, an LCS/LCSD pair was analyzed to demonstrate method precision.

The Method 365.3 MS/MSD was performed on an unrelated sample and demonstrated MS/MSD recoveries and a relative percent difference outside the control limits for Total Phosphorus. All other QC samples were in control; therefore, no corrective action was taken.

All other MS and MSD samples were within established control limits.

Organics

The Method 8260B Continuing Calibration Verification (CCV) standard was outside the percent difference limits for Iodomethane. Because all other calibration criteria were met, no corrective action was necessary.

Metals

The Method 6010B Continuing Calibration Blank (CCB) for Lead was above the project specific reporting limit which is lower than TestAmerica Denver's standard reporting limit. No corrective action is taken for results in the CCB that are below TestAmerica Denver's standard reporting limits.

General Comments

The analyses for Fecal Coliform and Chlorophyll-a were performed at Harbor Branch Environmental Laboratories, Inc.

Harbor Branch 5300 U.S. I North Fort Pierce, FL 34946 Phone: (772) 465-2400

EXECUTIVE SUMMARY - Detection Highlights

D7J060151

PARAMETER	RESUL'T	REPORTING LIMIT	UNITS	ANALYTICAL METHOD
PONDID 10/05/07 09:00 001				
Arsenic	1.9 B	5.0	ug/L	SW846 6020
Iron	49 B	50	ug/L	SW846 6010B
Barium	4.2 B	100	ug/L	SW846 6010B
Zinc	4.6 B	20	ug/L	SW846 6010B
Sodium	20000 J	1000	ug/L	SW846 6010B
Hardness, as CaCO3	160	2.0	mg/L	MCAWW 130.2
pН	7.7	0.10	No Units	MCAWW 150.1
Total Dissolved Solids	310	10	mg/L	MCAWW 160.1
Total Suspended Solids	3.2 B	4.0	mg/L	MCAWW 160.2
Total Kjeldahl Nitrogen	1.0	0.50	mg/L	MCAWW 351,2
Nitrate	0.046 B	0.50	mg/L	MCAWW 300.0A
Total Organic Carbon	22	1.0	mg/L	MCAWW 415.1
Field Temperature	28.4		deg C	MCAWW 170.1
Field pH	5.98	0.1	No Units	MCAWW 150.1
Field Conductivity	433	1	umhos/cm	
Total phosphorus	0.023 B	0.10	mg/L	MCAWW 365.3
Field Dissolved Oxygen	3.5	0.5	mg/L	MCAWW 360.1
Field Turbidity	5.4		NTU	MCAWW 180.1
Ammonia as N	0.050	0.050	mg/L	MCAWW 350.1
Chemical Oxygen Demand (COD)	68	50	mg/L	MCAWW 410.4
Nitrogen	1.0	0.70	mg/L	MCAWW 353.2+351.2

METHODS SUMMARY

D7J060151

PARAMETER	ANALYTICAL METHOD	PREPARATION METHOD
pH (Electrometric)	MCAWW 150.1	MCAWW 150.1
Biochemical Oxygen Demand	MCAWW 405.1	MCAWW 405.1
Chemical Oxygen Demand	MCAWW 410.4	MCAWW 410.4
EDB/DBCP/123-TCP in Water by Microextraction and G	EPA-DW 504.1	SW846 8011
Field pH	MCAWW 150.1	MCAWW 150.1
Field Conductivity	MCAWW 120.1	MCAWW 120.1
Field Dissolved Oxygen	MCAWW 360.1	
Field Temperature	MCAWW 170.1	MCAWW 170.1
Field Turbidity	MCAWW 180.1	
Filterable Residue (TDS)	MCAWW 160.1	MCAWW 160.1
Inductively Coupled Plasma (ICP) Metals	SW846 6010B	SW846 3005A
ICP-MS (6020)	SW846 6020	SW846 3005A
Mercury in Liquid Waste (Manual Cold-Vapor)	SW846 7470A	SW846 7470A
Nitrate as N	MCAWW 300.0A	MCAWW 300.0A
Nitrate-Nitrite	MCAWW 353.2	MCAWW 353.2
Nitrogen (TKN+NO3+NO2)	MCAWW 353.2+351	MCAWW TKN+NOX
Nitrogen, Ammonia	MCAWW 350.1	MCAWW 350.1
Non-Filterable Residue (TSS)	MCAWW 160.2	MCAWW 160.2
Total phosphorus	MCAWW 365.3	MCAWW 365.3
Total Hardness (Titrimetric, EDTA)	MCAWW 130.2	MCAWW 130.2
Total Kjeldahl Nitrogen	MCAWW 351.2	MCAWW 351.2
Total Organic Carbon	MCAWW 415.1	MCAWW 415.1
Trace Inductively Coupled Plasma (ICP) Metals	SW846 6010B	SW846 3005A
Unionized NH3 as N	FL-DEP Unionize	FL-DEP Calculat
Volatile Organics by GC/MS	SW846 8260B	SW846 5030B/826

References:

EPA-DW	"Methods for the Determination of Organic Compounds in Drinking Water", EPA/600/4-88/039, December 1988 and its Supplements.
FL-DEP	State of Florida Department of Environmental Protection, Florida Administrative Code.
MCAWW	"Methods for Chemical Analysis of Water and Wastes", EPA-600/4-79-020, March 1983 and subsequent revisions.
SW846	"Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 and its updates.

METHOD / ANALYST SUMMARY

D7J060151

ANALYTI METHOD	CAL	ANALYST	ANALYST ID
### mys			
EPA-DW	- · · · -	Mike Dobransky	008777
	Unionized NH3 as	Roxanne K. Sullivan	001200
MCAWW 1		Outside Lab	OUT
MCAWW 1	· · =	Kim Bertha	007985
MCAWW 1		Danielle M. Fougere	006481
MCAWW 1		Outside Lab	OUT
MCAWW 1	-	ReAnna Davis	002266
MCAWW 1	–	ReAnna Davis	002266
MCAWW 1		Outside Lab	OUT
MCAWW 1		Outside Lab	OUT
MCAWW 3	 •	Grant Henshaw	004878
MCAWW 3		Kevin Bloom	006134
MCAWW 35		Daniel Natan	001552
MCAWW 35		Kevin Bloom	006134
	53.2+351.2	Roxanne K. Sullivan	001200
MCAWW 36	50.1	Outside Lab	OUT
MCAWW 36	55.3	Kim Bertha	007985
MCAWW 40	05.1	Danielle M. Fougere	006481
MCAWW 41	LO.4	Kim Bertha	007985
MCAWW 41	· · -	Daniel Natan	001552
SW846 60		Lynn-Anne Trudell	006645
SW846 60	10B	Lynn-Anne Trudell	6645
SW846 60		Janel Motichka	2862
SW846 74	70A	David Wells	5099
SW846 82	60B	Jennifer Hazard	007928
Referenc	es:		
EPA-DW	Drinking Water",	Determination of Organic Compound EPA/600/4-88/039, d its Supplements.	ls in
FL-DEP	State of Florida Florida Administ	Department of Environmental Proterative Code.	ction,
MCAWW	"Methods for Che EPA-600/4-79-020	mical Analysis of Water and Wastes , March 1983 and subsequent revisi	", ons.
SW846	"Test Methods for Methods", Third N	r Evaluating Solid Waste, Physical Edition, November 1986 and its upd	/Chemical ates.

SAMPLE SUMMARY

D7J060151

<u>wo #</u>	SAMPLE#	CLIENT SAMPLE ID	SAMPLED DATE	SAMP TIME
J8ET6	001	PONDID	10/05/07	09:00
J8ET9	002	TRIP BLANK 1	10/05/07	
NOTE (S				

TOID(D).

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

Client Sample ID: PONDID

GC/MS Volatiles

Lot-Sample #...: D7J060151-001 Work Order #...: J8ET61A2 Matrix..... WATER

Date Sampled...: 10/05/07 09:00 Date Received..: 10/06/07 Prep Date....: 10/12/07 Analysis Date..: 10/13/07 Prep Batch #...: 7288489 Analysis Time..: 02:22

Dilution Factor: 1

Method..... SW846 8260B

	•	REPORTI	NG		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Acetone	ND	10	ug/L	1.9	_
Acrylonitrile	ND	10	ug/L	1.4	
Benzene	ND	1.0	ug/L	0.16	
Bromochloromethane	ND	1.0	ug/L	0.10	
Bromodichloromethane	ND	1.0	ug/L	0.17	
Bromoform	ND	1.0	ug/L	0.19	
Bromomethane	ND	1.0	ug/L	0.21	
2-Butanone (MEK)	ND	10	ug/L	1.8	
Carbon disulfide	ND	1.0	ug/L	0.45	
Carbon tetrachloride	ND	1.0	ug/L	0.19	
Chlorobenzene	ND	1.0	ug/L	0.17	
Dibromochloromethane	ND	1.0	ug/L	0.17	
Chloroethane	ND	1.0	ug/L	0.41	
Chloroform	ND	1.0	ug/L	0.16	
Chloromethane	ND	1.0	ug/L	0.30	
Dibromomethane	ND	1.0	ug/L	0.17	
1,2-Dichlorobenzene	ND	1.0	ug/L	0.13	
1,4-Dichlorobenzene	ПD	1.0	ug/L	0.16	
trans-1,4-Dichloro-	ND	1.0	ug/L	0.80	
2-butene			-3, -	****	
1,1-Dichloroethane	ND	1.0	ug/L	0.16	
1,2-Dichloroethane	ND	1.0	ug/L	0.13	
cis-1,2-Dichloroethene	ND	1.0	ug/L	0.15	
trans-1,2-Dichloroethene	ND	1.0	ug/L	0.15	
1,1-Dichloroethene	ND	1.0	ug/L	0.14	
1,2-Dichloropropane	ND	1.0	ug/L	0.13	
cis-1,3-Dichloropropene	ND	1.0	ug/L	0.16	
trans-1,3-Dichloropropene	ND	1.0	ug/L	0.19	
Ethylbenzene	ND	1.0	ug/L	0.16	
2-Hexanone	ND	10	ug/L	1.4	
Iodomethane	ND	1.0	ug/L	0.23	
Methylene chloride	ND	1.0	ug/L	0.32	
4-Methyl-2-pentanone	ND	10	ug/L	0.49	
Styrene	ND	1.0	ug/L	0.17	
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	0.17	
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.20	
Tetrachloroethene	ND	1.0	ug/L	0.20	
Toluene	ND	1.0	ug/L	0.17	
		- · ·	-5, -	J	

Client Sample ID: POND1D

GC/MS Volatiles

Lot-Sample #:	D7J060151-001	Work Order #: J8ET61A2	Matrix WATER
---------------	---------------	------------------------	--------------

		REPORTIN	iG	
PARAMETER	RESULT	LIMIT	UNITS	MDL
1,1,1-Trichloroethane	ND	1.0	ug/L	0.16
1,1,2-Trichloroethane	ND	1.0	ug/L	0.32
Trichloroethene	ND	1.0	ug/L	0.16
Trichlorofluoromethane	ND	1.0	ug/L	0.29
1,2,3-Trichloropropane	ND	1.0	ug/L	0.27
Vinyl acetate	ND	1.0	ug/L	0.94
Vinyl chloride	ND	1.0	ug/L	0.17
Xylenes (total)	ND	1.0	ug/L	0.19
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Dibromofluoromethane	116	(79 ~ 11	9)	
1,2-Dichloroethane-d4	116	(65 - 12	6)	
4-Bromofluorobenzene	92	(75 - 11	5)	
Toluene-d8	105	(78 - 11	8)	

Client Sample ID: TRIP BLANK I

GC/MS Volatiles

Lot-Sample #...: D7J060151-002 Work Order #...: J8ET91AA Matrix...... WATER

 Date Sampled...: 10/05/07
 Date Received..: 10/06/07

 Prep Date....: 10/12/07
 Analysis Date..: 10/13/07

 Prep Batch #...: 7288489
 Analysis Time..: 02:43

Dilution Factor: 1

Method.....: SW846 8260B

		REPORTII	vG	
PARAMETER	RESULT	LIMIT	UNITS	MDL
Acetone	ND	10	ug/L	1.9
Acrylonitrile	ND	10	ug/L	1.4
Benzene	ND	1.0	ug/L	0.16
Bromochloromethane	ND	1,0	ug/L	0.10
Bromodichloromethane	ND	1.0	ug/L	0.17
Bromoform	ND	1.0	ug/L	0.19
Bromomethane	ND	1.0	ug/L	0.21
2-Butanone (MEK)	ND	10	ug/L	1.8
Carbon disulfide	ND	1.0	ug/L	0.45
Carbon tetrachloride	ND	1.0	ug/L	0.19
Chlorobenzene	ND	1.0	ug/L	0,17
Dibromochloromethane	ND	1.0	ug/L	0.17
Chloroethane	ND	1.0	ug/L	0.41
Chloroform	ND	1.0	ug/L	0.16
Chloromethane	ND	1.0	ug/L	0.30
Dibromomethane	ND	1.0	ug/L	0.17
1,2-Dichlorobenzene	ND	1.0	ug/L	0.13
1,4-Dichlorobenzene	ND	1.0	ug/L	0.16
trans-1,4-Dichloro-	ND	1.0	ug/L	0.80
2-butene			-5, -	
1,1-Dichloroethane	ND	1.0	ug/L	0.16
1,2-Dichloroethane	ND	1.0	ug/L	0.13
cis-1,2-Dichloroethene	ND	1.0	ug/L	0.15
trans-1,2-Dichloroethene	ND	1.0	ug/L	0.15
1,1-Dichloroethene	ND	1.0	ug/L	0.14
1,2-Dichloropropane	ND	1.0	ug/L	0.13
cis-1,3-Dichloropropene	ND	1.0	ug/L	0.16
trans-1,3-Dichloropropene	ND	1.0	ug/L	0.19
Ethylbenzene	ND	1.0	ug/L	0.16
2-Hexanone	ND	10	ug/L	1.4
Iodomethane	ND	1.0	ug/L	0.23
Methylene chloride	ND	1.0	ug/L	0.32
4-Methyl-2-pentanone	ND	10	ug/L	0.49
Styrene	ND	1.0	ug/L	0.17
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	0.17
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.20
Tetrachloroethene	ND	1.0	ug/L	0.20
Toluene	ND	1.0	ug/L	0.17
			-	

Client Sample ID: TRIP BLANK 1

GC/MS Volatiles

Lot-Sample #:	D7J060151-002	Work Order	#: J8ET91AA	Matrix	: WATER

		REPORTING	3	
PARAMETER	RESULT	LIMIT	UNITS	MDL
1,1,1-Trichloroethane	ND	1.0	ug/L	0.16
1,1,2-Trichloroethane	ND	1.0	ug/L	0.32
Trichloroethene	ND	1.0	ug/L	0.16
Trichlorofluoromethane	ND	1.0	ug/L	0.29
1,2,3-Trichloropropane	ND	1.0	ug/L	0.27
Vinyl acetate	ND	1.0	ug/L	0.94
Vinyl chloride	ND	1.0	ug/L	0.17
Xylenes (total)	ND	1.0	ug/L	0.19
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Dibromofluoromethane	112	(79 - 119))	
1,2-Dichloroethane-d4	108	(65 - 126	;)	
4-Bromofluorobenzene	91	(75 - 115	;)	
Toluene-d8	109	(78 - 118	;)	

Client Sample ID: PONDID

GC Semivolatiles

Lot-Sample #:	D7J060151-001	Work Order #:	J8ET61A3	Matri	x;	WATER
Date Sampled:	10/05/07 09:00	Date Received:	10/06/07			**********
Prep Date:	10/10/07	Analysis Date:				
Prep Batch #:	7283259	Analysis Time				
Dilution Factor:	I	1				
		Method:	EPA-DW 504	.1		
			REPORTING			
PARAMETER		RESULT	LIMIT	UNITS	MDL	
1,2-Dibromoethane	(EDB)	ND	0.020	ug/L	0.0037	···
1,2-Dibromo-3-		ND	0.20	ug/L	0.0068	

SURROGATE PERCENT RECOVERY

1,2-Dibromopropane 98 (70 - 130)

chloropropane (DBCP)

Client Sample ID: PONDID

TOTAL Metals

Date Sampled	1: 10/05/07	09:00 Date	Received.	.: 10/06/07	
		REPORTI	ng		PREPARATION- WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE ORDER #
Prep Batch #	7281423				
Mercury	ND	0.20	ug/L	SW846 7470A	10/09-10/10/07 JSET61AJ
		Dilution Fa	ctor: 1	Analysis Time: 12:35	
Prep Batch #	: 7282212				
Arsenic	1.9 B	5.0	ug/L	SW846 6020	10/11-10/12/07 JERT61AA
		Dilution Fac	ctor: 1	Analysis Time: 16:12	MDL 0.21
Thallium	ND	2.0	ug/L	SW846 6020	10/11-10/12/07 J8ET61AF
		Dilution Fac	ctor: 1	Analysis Time: 16:12	•
Prep Batch #.	: 7282329				
Iron	49 B	50	ug/L	SW846 6010B	10/10-10/15/07 JSET61AK
		Dilution Fac	tor: 1	Analysis Time: 22:28	MDL 22
Barium	4.2 B	100	ug/L	SW846 6010B	10/10-10/15/07 J8ET6
		Dilution Fac	tor: 1	Analysis Time: 22:28	MDL 1.0
Antimony	ND	6.0	ug/L	SW846 6010B	10/10-10/15/07 JSET61AM
		Dilution Fac	tor: 1	Analysis Time: 22:28	MDL 3.1
Beryllium	ND	4.0	ug/L	SW846 6010B	10/10-10/15/07 JSET61AN
		Dilution Fac	tor: 1	Analysis Time. : 22:28	MDL: 0.47
Cadmium	ND	5.0	ug/L	SW846 6010B	10/10-10/15/07 JSET61AP
		Dilution Fac	tor: 1	Analysis Time; 22:28	MDL 0.45
Chromium	ИD	10	ug/L	SW846 6010B	10/10-10/15/07 J8ET61AQ
		Dilution Fac	tor: 1	Analysis Time: 22:28	MDL 2.6
Cobalt	ND	50	ug/L	SW846 6010B	10/10-10/15/07 J8ET61AR
		Dilution Fac	tor: 1	Analysis Time: 22:28	MDL 1.2
Copper	ND	25,	ug/L	SW846 6010B	10/10-10/15/07 JSET61AT
		Dilution Fact	tor: 1	Analysis Time: 22:28	MDL 4.5
Nickel	ND	40	ug/L	SW846 6010B	10/10-10/15/07 J8ET61AU

(Continued on next page)

Client Sample ID: PONDID

TOTAL Metals

Lot-Sample #...: D7J060151-001

Matrix..... WATER REPORTING PREPARATION-WORK PARAMETER RESULT UNITS METHOD ANALYSIS DATE ORDER # Silver ND 10 ug/L SW846 6010B 10/10-10/15/07 J8ET61AV Dilution Factor: 1 Analysis Time..: 22:28 MDL..... 2.8 Vanadium ND 49 ug/L SW846 6010B 10/10-10/15/07 JSET61AW Dilution Factor: 1 Analysis Time..: 22:28 MDL..... 2.5 Zinc 4.6 B 20 ug/L SW846 6010B 10/10-10/15/07 JSET61AX Dilution Factor: 1 Analysis Time..: 22:28 MDL..... 4.5 Lead ND 3.0 ug/L SW846 6010B 10/10-10/15/07 J8ET61A0 Dilution Factor: 1 Analysis Time..: 22:28 MDL..... 2.6 Selenium ND 5.0 10/10-10/15/07 JBET61A1 ug/L SW846 6010B Dilution Factor: 1 Analysis Time..: 22:28 MDL..... 4.9 Sodium 20000 J 1000 ug/L SW846 6010B 10/10-10/15/07 JEET61CF Dilution Factor: 1 Analysis Time..: 22:28 MDL..... 92

NOTE(S):

B Estimated result. Result is less than RL.

F Method blank communation. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: POND1D

General Chemistry

Lot-Sample #...: D7J060151-001 Work Order #...: J8ET6 Matrix....: WATER

Date Sampled...: 10/05/07 09:00 Date Received..: 10/06/07

PARAMETER	RESULT	? RL	UNITS	METHO	D	PREPARATION- ANALYSIS DATE	PREP BATCH #
pH	7.7	0.10	No Units	MCAWW	150.1	10/06/07	7279143
		Dilution Fact	or: 1	Analysis	Time: 11:32	MDL	. :
Ammonia as N	0.050	0.050	mg/L	MCAWW	350.1	10/11/07	7285149
		Dilution Fact	or: 1	Analysis	Time: 11:09	MDL	: 0.022
Biochemical Oxygen Demand (BOD)	ND	. 2.0	mg/L	MCAWW	405.1	10/06/07	7279145
		Dilution Fact	or: 1	Analysis	Time: 11:30	MDL	: 0.30
Chemical Oxygen Demand (COD)	68	50	mg/L .	MCAWW	410.4	10/06-10/08/07	7281149
		Dilution Fact	or: 1	Analysis	Time: 08:00	MDL	: 4.1
Field pH	5.98	0.1	No Units	MCAWW	150.1	10/05/07	7297567
		Dilution Fact	or: 1	Analysis	Time: 00:00	MDL.,	:
Field Conductivity	433	1	umbos/cm	MCAWW	120.1	10/05/07	72975
		Dilution Fact	or: 1	Analysis	Time: 00:00	MDL	1
Field Dissolved Oxygen	3.5	0.5	mg/L	MCAWW	360.1		7297566
		Dilution Fact	or: 1	Analysis	Time: 00:00	MDL	: 0.01
Field Temperature	28.4		đeg C	MCAWW	170.1	10/05/07	7297568
		Dilution Fact	or: 1	Analysis	Time: 00:00	MDL	:
Field Turbidity	5.4		NTU	MCAWW	180.1	10/05/07	7297569
		Dilution Facto	or: 1	Analysis	Time: 00:00	MDL	:
Hardness, as CaCO3	160	2.0	mg/L	MCAWW	130.2	10/09/07	7282475
		Dilution Facto	or: 1	Analysis	Time: 12:00	MDL	: 1.3
Nitrate	0.046 1	B 0.50	mg/L	MCAWW	300.0A	10/06/07	7280014
		Dilution Facto	or: 1	Analysis	Time: 11:28	MDL	: 0.042
Nitrate-Nitrite	ND	0.10	mg/L	MCAWW	353.2	10/11/07	7284549
		Dilution Facto	>r: 1	Analysis	Time: 11:09	MDL	: 0.019
Nitrogen	1.0	0.70	mg/L	MCAWW	353.2+351.2	10/17/07	7290236
		Dilution Facto	or: 1	Analysis	Time: 09:00	MDL	:

Client Sample ID: PONDID

General Chemistry

Lot-Sample #: D7J060151-001	Work Order #: J8ET6	Matrix: WATER
-----------------------------	---------------------	---------------

PARAMETER	RESUL1	r RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Total phosphorus	0.023	B 0.10 Dilution Fac	mg/L tor: 1	MCAWW 365.3 Analysis Time: 12:00	10/09-10/10/07	
Total Dissolved Solids	310	10	mg/L	MCAWW 160.1	10/11/07	7284605
		Dilution Fac	tor: 1	Analysis Time: 15:20	MDL	: 4.7
Total Kjeldahl Nitrogen	1.0	0.50	mg/L	MCAWW 351.2	10/10-10/11/07	7284268
		Dilution Fact	tor: 1	Analysis Time: 09:00	MDL	: 0.25
Total Organic Carbon	22	1.0 Dilution Fact	mg/L	MCAWW 415.1 Analysis Time: 20:00	10/11/07 MDL	7288343 : 0.16
Total Suspended Solids	3,2 B	4 - 0	mg/L	MCAWW 160.2	10/10/07	7283636
-		Dilution Fact	or: 1	Analysis Time: 16:30	MDL	: 1.1
Un-ionized Ammonia	ND	0.050 Dilution Fact	mg/L or: 1	FL-DEP Unionized Analysis Time: 09:00	10/17/07 MDL	7290235 :
NOTE (S):						

RL Reporting Limit

B Estimated result. Result is less than RL.

QC DATA ASSOCIATION SUMMARY

D7J060151

Sample Preparation and Analysis Control Numbers

		ANALYTICAL	LEACH	PREP	
SAMPLE#	MATRIX	METHOD	BATCH #	BATCH #	MS RUN#
001	WATER	MCAWW 130.2		7282475	7282314
	WATER	MCAWW 150.1		7279143	7282116
	WATER	MCAWW 160.1		7284605	7287033
	WATER	MCAWW 160.2		7283636	7284306
	WATER	MCAWW 351.2		7284268	7284355
	WATER	MCAWW 353.2		7284549	7284335
	WATER	MCAWW 405.1		7279145	7285069
	WATER	MCAWW 300.0A		7280014	7282099
	WATER	MCAWW 415.1		7288343	7288236
	WATER	MCAWW 170.1		7297568	
	WATER'	MCAWW 150.1		7297567	
	WATER	MCAWW 120.1		7297565	
	WATER	MCAWW 365.3		7283214	7284078
	WATER	MCAWW 360.1		7297566	
	WATER	\$W846 6020		7282212	7282142
	WATER	SW846 7470A		7281423	7282163
	WATER	EPA-DW 504.1		7283259	
	WATER	SW846 8260B		7288489	7288295
	WATER	SW846 6010B		7282329	7282219
	WATER	MCAWW 180.1		7297569	
	WATER	FL-DEP Unionized		7290235	
	WATER	MCAWW 350.1		7285149	7285085
	WATER	MCAWW 410.4		7281149	7281073
	WATER	MCAWW 353.2+351.2		7290236	
002	WATER	SW846 8260B		7288489	7288295

METHOD BLANK REPORT

GC/MS Volatiles

Client Lot #...: D7J060151

MB Lot-Sample #: D7J150000-489

Work Order #...: J817L1AA

Matrix..... WATER

Prep Date....: 10/12/07

Analysis Time..: 23:12

Analysis Date..: 10/12/07

Dilution Factor: 1

Prep Batch #...: 7288489

		REPORTI	NG	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Acetone	ND	10	ug/L	SW846 8260B
Acrylonitrile	ND	10	ug/L	SW846 8260B
Benzene	ND	1.0	ug/L	SW846 8260B
Bromochloromethane	ND	1.0	ug/L	SW846 8260B
romodichloromethane	ND	1.0	ug/L	SW846 8260B
romoform	ND	1,.0	ug/L	SW846 8260B
Fromomethane	ND	1.0	ug/L	SW846 8260B
-Butanone (MEK)	ND	10	ug/L	SW846 8260B
arbon disulfide	ND	1.0	ug/L	SW846 8260B
arbon tetrachloride	ND	1.0	ug/L	SW846 8260B
hlorobenzene	ND	1.0	ug/L	SW846 8260B
ibromochloromethane	ND	1.0	ug/L	SW846 8260B
hloroethane	ND	1.0	ug/L	SW846 8260B
hloroform	ND	1.0	ug/L	SW846 8260B
hloromethane	ND	1.0	ug/L	SW846 8260B
ibromomethane	ND	1.0	ug/L	SW846 8260B
,2-Dichlorobenzene	ND	1.0	ug/L	SW846 8260B
,4-Dichlorobenzene	ND	1.0	ug/L	SW846 8260B
rans-1,4-Dichloro-	ND	1.0	ug/L	SW846 8260B
2-butene			3,	
,1-Dichloroethane	ND	1.0	ug/L	SW846 8260B
,2-Dichloroethane	ND	1.0	ug/L	SW846 8260B
is-1,2-Dichloroethene	ND	1.0	ug/L	SW846 8260B
rans-1,2-Dichloroethene	ND	1.0	ug/L	SW846 8260B
,1-Dichloroethene	ND	1.0	ug/L	SW846 8260B
,2-Dichloropropane	ND	1.0	ug/L	SW846 8260B
is-1,3-Dichloropropene	ND	1.0	ug/L	SW846 8260B
cans-1,3-Dichloropropene	ND	1.0	ug/L	SW846 8260B
hylbenzene	ND	1.0	ug/L	SW846 8260B
Hexanone	ND	10	ug/L	SW846 8260B
odomethane	ND	1.0	ug/L	SW846 8260B
thylene chloride	ND	1.0	ug/L	SW846 8260B
Methyl-2-pentanone	ND	10	ug/L ug/L	SW846 8260B
yrene	ND	1.0	ug/L ug/L	
1,1,2-Tetrachloroethane	ND	1.0	ug/L ug/L	SW846 8260B
1,2,2-Tetrachloroethane	ND	1.0		SW846 8260B
trachloroethene	ND	1.0	ug/L	SW846 8260B
luene	ND		ug/L	SW846 8260B
1,1-Trichloroethane	ND	1.0	ug/L	SW846 8260B
1,2-Trichloroethane	ND ND	1.0	ug/L	SW846 8260B
ichloroethene	ND	1.0 1.0	ug/L ug/L	SW846 8260B

METHOD BLANK REPORT

GC/MS Volatiles

		REPORTI	NG	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Prichlorofluoromethane	ND	1.0	ug/L	SW846 8260B
1,2,3-Trichloropropane	ND	1.0	ug/L	SW846 8260B
/inyl acetate	ND	1.0	ug/L	SW846 8260B
inyl chloride	ND	1.0	ug/L	SW846 8260B
Kylenes (total)	ND	1.0	ug/L	SW846 8260B
	PERCENT	RECOVER	7	
URROGATE	RECOVERY	LIMITS		
ibromofluoromethane	109	(79 - 13	<u></u> 19)	
,2-Dichloroethane-d4	101	(65 - 12	26)	
-Bromofluorobenzene	89	(75 - 13	L5)	
oluene-d8	111	(78 - 13	L8)	

LABORATORY CONTROL SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #: D7J060151	Work Order #: J817L1AC	Matrix WATER
-------------------------	------------------------	--------------

LCS Lot-Sample#: D7J150000-489

Prep Date....: 10/12/07 Analysis Date..: 10/12/07 Prep Batch #...: 7288489 Analysis Time..: 23:36

Dilution Factor: 1

	PERCENT	RECOVERY	
PARAMETER	RECOVERY	LIMITS	METHOD
Benzene	104	(77 - 118)	SW846 8260B
1,3-Dichlorobenzene	96	(75 - 115)	SW846 8260B
Bromodichloromethane	98	(78 - 118)	SW846 8260B
Carbon tetrachloride	112	(80 - 120)	
Chlorobenzene	101	(78 - 118)	
Chloroform	102	(78 - 118)	SW846 8260B
1,1-Dichloroethane	107	(77 - 117)	
trans-1,2-Dichloroethene	108	(80 - 120)	
1,1-Dichloroethene	117	(68 - 133)	•
1,2-Dichloropropane	98	(76 - 116)	SW846 8260B
Ethylbenzene	107	(78 - 118)	
Methylene chloride	97	(71 - 119)	
Tetrachloroethene	111	(77 - 117)	SW846 8260B
Toluene	104	(73 - 120)	SW846 8260B
1,1,1-Trichloroethane	115	(78 - 118)	SW846 8260B
Trichloroethene	109	(78 - 122)	SW846 8260B
		•	
		PERCENT	RECOVERY
SURROGATE		RECOVERY	LIMITS
Dibromofluoromethane		111	(79 - 119)
1,2-Dichloroethane-d4		105	(65 - 126)
4-Bromofluorobenzene		97	(75 - 115)
Toluene-d8		107	(78 - 118)
			,

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

LABORATORY CONTROL SAMPLE DATA REPORT

GC/MS Volatiles

Client Lot #...: D7J060151 Work Order #...: J817L1AC Matrix.....: WATER

LCS Lot-Sample#: D7J150000-489.

Prep Date....: 10/12/07 Analysis Date..: 10/12/07 Prep Batch #...: 7288489 Analysis Time..: 23:36

Dilution Factor: 1

	SPIKE	MEASURED		PERCENT	
PARAMETER	AMOUNT	AMOUNT	UNITS	RECOVERY	METHOD
Benzene	5.00	5.22	ug/L	104	SW846 8260B
1,3-Dichlorobenzene	5.00	4.79	ug/L	96	SW846 8260B
Bromodichloromethane	5.00	4.92	ug/L	98	SW846 8260B
Carbon tetrachloride	5.00	5.58	ug/L	112	SW846 8260B
Chlorobenzene	5.00	5.04	ug/L	101	SW846 8260B
Chloroform	5.00	5.12	ug/L	102	SW846 8260B
1,1-Dichloroethane	5.00	5.34	ug/L	107	SW846 8260B
trans-1,2-Dichloroethene	5.00	5.40	ug/L	108	SW846 8260B
1,1-Dichloroethene	5.00	5.86	ug/L	117	SW846 8260B
1,2-Dichloropropane	5.00	4.92	ug/L	98	SW846 8260B
Ethylbenzene	5.00	5.35	ug/L	107	SW846 8260B
Methylene chloride	5.00	4.85	ug/L	97	SW846 8260B
Tetrachloroethene	5.00	5.57	ug/L	111	SW846 8260B
Toluene	5.00	5.20	ug/L	104	SW846 8260P
1,1,1-Trichloroethane	5.00	5.77	ng/L	115	5W846 82/
Trichloroethene	5.00	5.43	ug/L	109	SW846 826.
		PERCENT	RECOVERY		
SURROGATE		RECOVERY	LIMITS	_	
Dibromofluoromethane		111	(79 - 119)		
1,2-Dichloroethane-d4		105	(65 - 126)		
4-Bromofluorobenzene		97	(75 - 115)		
Toluene-d8		107	(78 - 118)		

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

MATRIX SPIKE SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #...: D7J060151 Work Order #...: J8DMQ1AH-MS Matrix....: WATER

MS Lot-Sample #: D7J050304-001 J8DMQ1AJ-MSD

Date Sampled...: 10/04/07 12:32 Date Received..: 10/05/07

 Prep Date....: 10/12/07
 Analysis Date..: 10/13/07

 Prep Batch #...: 7288489
 Analysis Time..: 00:17

Dilution Factor: 1

	PERCENT	RECOVERY		RPD	
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHOD
Benzene	102	(77 - 118)			SW846 8260B
	96	(77 - 118)	5.2	(0-20)	SW846 8260B
1,3-Dichlorobenzene	94	(75 - 115)			SW846 8260B
	92	(75 ~ 115)	2.5	(0-20)	SW846 8260B
Bromodichloromethane	99	(78 - 118)			SW846 8260B
	94	(78 - 118)	5.1	(0-20)	SW846 8260B
Carbon tetrachloride	110	(80 - 120)			SW846 B260B
	106	(80 - 120)	3.6	(0-21)	SW846 B260B
Chlorobenzene	102	(78 - 118)			SW846 8260B
7	98	(78 - 118)	3.4	(0~20)	SW846 8260B
Chloroform	103	(78 - 118)			SW846 8260B
	97	(78 - 118)	5.3	(0-20)	SW846 8260B
1,1-Dichloroethane	103	(77 - 117)			SW846 8260B
2 4 - 1 1 2	99	(77 - 117)	4.1	(0-21)	SW846 B260B
trans-1,2-Dichloroethene	109	(80 - 120)			SW846 8260B
d d ml_12.	102	(80 - 120)	6.5	(0-24)	SW846 8260B
1,1-Dichloroethene	108	(68 - 133)			SW846 8260B
	108	(68 - 133)	0.63	(0-20)	SW846 8260B
1,2-Dichloropropane	97	(76 - 116)			SW846 8260B
79. 5 - 73	94	(76 - 116)	3.7	(0~20)	SW846 8260B
Ethylbenzene	105	(78 - 118)			SW846 8260B
M-41-2	100	(78 - 118)	5.6	(0-26)	SW846 8260B
Methylene chloride	96	(71 - 119)			SW846 8260B
M = h 1 2	92	(71 - 119)	3.2	(0-20)	SW846 8260B
Tetrachloroethene	106	(77 - 117)			SW846 8260B
m=1	106	(77 - 117) ·	0.08	(0-20)	SW846 8260B
Toluene	104	(73 - 120)			SW846 8260B
7 7 7 800 (-1-7	100	(73 - 120)	3.1	(0-20)	SW846 8260B
1,1,1-Trichloroethane	113	(78 - 118)			SW846 8260B
m=1-1-1 +1	108	(78 - 118)	4.3	(0-20)	SW846 8260B
Trichloroethene	106	(78 - 122)			SW846 8260B
	100	(78 - 122)	5.8	(0-20)	SW846 8260B
•					
GITT BOOK WA		PERCENT		RECOVERY	
SURROGATE		RECOVERY		LIMITS	_
Dibromofluoromethane		113		(79 - 119)	
7 0 D4-1-1		110		(79 - 119)	
1,2-Dichloroethane-d4		107		(65 - 126)	
		103		(65 - 126)	

MATRIX SPIKE SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #...: D7J060151 Work Order #...: J8DMQ1AH-MS

Matrix..... WATER

MS Lot-Sample #: D7J050304-001

J8DMQlAJ-MSD

SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS
4-Bromofluorobenzene	99	(75 - 115)
	95	(75 - 115)
Toluene-d8	108	(78 - 118)
	105	(78 - 118)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

MATRIX SPIKE SAMPLE DATA REPORT

GC/MS Volatiles

Client Lot #...: D7J060151 Work Order #...: J8DMQlAH-MS Matrix....: WATER

MS Lot-Sample #: D7J050304-001 J8DMQ1AJ-MSD

Date Sampled...: 10/04/07 12:32 Date Received..: 10/05/07 Prep Date....: 10/12/07 Analysis Date..: 10/13/07 Prep Batch #...: 7288489 Analysis Time..: 00:17

Dilution Factor: 1

	SAMPLE	SPIKE	MEASRD		PERCNT	•		
PARAMETER	AMOUNT	AMT	AMOUNT	UNITS	RECVRY	RPD	METHO	D
Benzene	ND	5.00	5.08	ug/L	102	• •		8260B
	ND	5.00	4.82	ug/L	96	5.2	SW846	8260B
1,3-Dichlorobenzene	ND	5.00	4.72	ug/L	94			8260B
	ND	5.00	4.61	ug/L	92	2.5	SW846	8260B
Bromodichloromethane	ND	5.00	4.93	ug/L	99			8260B
	ND	5.00	4.68	ug/L	94	5.1		8260B
Carbon tetrachloride	ND	5.00	5.52	ug/L	110			8260B
	ND	5.00	5.32	ug/L	106	3.6		8260B
Chlorobenzene	ND	5.00	5.08	ug/L	102			8260B
	ND	5.00	4.91	ug/L	98	3.4		8260B
Chloroform	ND	5.00	5.13	ug/L	103			8260B
	ND	5.00	4.87	ug/L	97	5.3	SW846	8260B
1,1-Dichloroethane	ND	5.00	5.17	ug/L	103			8260B
	ND	5.00	4.96	ug/L	99	4.1	SW846	8260B
trans-1,2-Dichloroethene	ND	5.00	5.46	ug/L	109			8260B
	ND	5.00	5.11	ug/L	102	6.5	SW846	
1,1-Dichloroethene	ND	5.00	5.38	ug/L	108		SW846	8260B
	ND	5.00	5.41	ug/L	108	0.63	SW846	8260B
1,2-Dichloropropane	ND	5.00	4.87	ug/L	97		SW846	8260B
	ND	5.00	4.69	ug/L	94	3.7	SW846	8260B
Ethylbenzene	ND	5.00	5.27	ug/L	105		SW846	8260B
	ND	5.00	4.98	ug/L	100	5.6	SW846	8260B
Methylene chloride	ND	5.00	4.78	ug/L	96		SW846	8260B
	ND	5.00	4.62	ug/L	92	3.2	SW846	8260B
Tetrachloroethene	ND	5.00	5.31	ug/L	106		SW846	8260B
_ •	ND	5.00	5.31	ug/L	106	0.08	SW846	8260B
Toluene	ND	5.00	5.18	ug/L	104		SW846	8260B
	MD	5.00	5.02	ug/L	100	3.1	SW846	8260B
1,1,1-Trichloroethane	ND	5.00	5.64	ug/L	113		SW846	8260B
	ND	5.00	5.40	ug/L	108	4.3	SW846	8260B
Trichloroethene		5.00	5.31	ug/L	106		SW846	8260B
	ND	5.00	5.02	ug/L	100	5.8	SW846	8260B
		ישמ	סריפואיזיי		DECOURDY			

	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	113	(79 - 119)	
	110	(79 - 119)	
1,2-Dichloroethane-d4	107	(65 - 126)	
	103	(65 - 126)	

MATRIX SPIKE SAMPLE DATA REPORT

GC/MS Volatiles

Client Lot #...: D7J060151

Work Order #...: J8DMQ1AH-MS Matrix.....: WATER

MS Lot-Sample #: D7J050304-001

J8DMQ1AJ-MSD

SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS	
4-Bromofluorobenzene	99	(75 - 115)	
	95	(75 - 115)	
Toluene-d8	108	(78 - 118)	
	105	(78 - 118)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

METHOD BLANK REPORT

GC Semivolatiles

Client Lot #...: D7J060151 Work Order #...: J8LEE1AA Matrix....: WATER MB Lot-Sample #: D7J100000-259

Prep Date....: 10/10/07 Analysis Time..: 10:24

Analysis Date..: 10/11/07 Prep Batch #...: 7283259

Dilution Factor: 1

REPORTING PARAMETER RESULT LIMIT UNITS METHOD 1,2-Dibromoethane (EDB) ND 0.020 ug/L EPA-DW 504.1 1,2-Dibromo-3-ND 0.20 ug/L EPA-DW 504.1

PERCENT RECOVERY SURROGATE RECOVERY LIMITS

1,2-Dibromopropane 103 (70 - 130)

NOTE(S): Calculations are performed before rounding to avoid round-off errors in calculated results.

chloropropane (DBCP)

LABORATORY CONTROL SAMPLE EVALUATION REPORT

GC Semivolatiles

Client Lot #...: D7J060151 Work Order #...: J8LEE1AC-LCS Matrix.....: WATER

LCS Lot-Sample#: D7J100000-259 J8LEE1AD-LCSD

 Prep Date....: 10/10/07
 Analysis Date..: 10/11/07

 Prep Batch #...: 7283259
 Analysis Time..: 09:45

Dilution Factor: 1

PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS	RPD LIMITS	METHOD
1,2-Dibromoethane (KDB)	96	(70 - 130)		EPA-DW 504.1
	95	(70 - 130)	0.99 (0-30)	EPA-DW 504.1
1,2-Dibromo-3- chloropropane (DBCP)	117	(70 - 130)		EPA-DW 504.1
	117	(70 - 130)	0.24 (0-30)	KPA-DW 504.1
		PERCENT	RECOVERY	
SURROGATE		RECOVERY	LIMITS	•
1,2-Dibromopropane		104	(70 - 130)	

104

(70 - 130)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

LABORATORY CONTROL SAMPLE DATA REPORT

GC Semivolatiles

Client Lot #...: D7J060151 Work Order #...: J8LEE1AC-LCS Matrix.... WATER

LCS Lot-Sample#: D7J100000-259 J8LEElAD-LCSD

Prep Date....: 10/10/07 Analysis Date..: 10/11/07 Prep Batch #...: 7283259 Analysis Time..: 09:45

Dilution Factor: 1

PARAMETER 1,2-Dibromoethane (EDB)	SPIKE AMOUNT	MEASURED AMOUNT	UNITS	PERCENT RECOVERY	RPD	METHOD
1,2-DIDIOMOCCIANE (ADA)	0.250	0.241	ug/L	96		EPA-DW 504.1
1,2-Dibromo-3-	0.250	0.239	ug/L	95	0.99	EPA-DW 504.1
chloropropane (DBCP)	0.250	0.293	ug/L	117		EPA-DW 504.1
	0.250	0.292	ug/L	117	0.24	EPA-DW 504.1
			PERCENT	RECOVERY		
SURROGATE 1,2-Dibromopropane			RECOVERY 104	LIMITS (70 - 130)	

104 (70 - 130)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

METHOD BLANK REPORT

TOTAL Metals

Client Lot #: D7J060151	Matrix WATER
-------------------------	--------------

PARAMETER	RESULT	REPORTIN	G UNITS	метно	D	PREPARATION- ANALYSIS DATE	WORK ORDER #
							•
MB Lot-Sample Arsenic	#: D7J09000 ND	0-212 Prep B 5.0	atch #: ug/L		6020	10/11-10/12/07	TOUTOINA
ALSENIC	ND	Dilution Fac		50040	8020	10/11-10/12/07	DOUVSTAW
		Analysis Tim					
Thallium	ND	2.0	ug/L	SW846	6020	10/11-10/12/07	J8HK21AC
		Dilution Fac Analysis Tim	-				
MB Lot-Sample	#. 07100000	0-422 Prop P	252b# -	7201422			
Mercury	ND	0.20	ug/L		7470A	10/09-10/10/07	J8HXJ1AA
•		Dilution Fac Analysis Tim	tor: 1			20,00 20,20,00	
MB Lot-Sample	#: D7J09000	0-329 Prep B		7282329	•		
Iron	ND	50	ug/L	SW846	6010B	10/10-10/15/07	J8H8A1;
		Dilution Fact Analysis Time					
Barium	ND	100	ug/L	SW846	6010B	10/10-10/15/07	J8H8AlAC
		Dilution Fact Analysis Time					
Antimony	ND	6.0	ug/L	SW846	6010B	10/10-10/15/07	J8H8AlAD
		Dilution Fact Analysis Time					
		· · · · · · · · · · · · · · · · · · ·					
Beryllium	ND	4.0	ug/L	SW846	6010B	10/10-10/15/07	J8H8Alae
		Dilution Fact Analysis Time					
Cadmium	ND	5.0	ug/L	SW846	6010B	10/10-10/15/07	J8H8A1AF
		Dilution Fact					
		Analysis Time	21:19				
Chromium	ND	10	ug/L	SW846	6010B	10/10-10/15/07	J8H8A1AG
		Dilution Fact					
		Analysis Time	:: 21:19				
Cobalt	ND	50	ug/L	SW846	6010B	10/10-10/15/07	J8H8A1AH
		Dilution Fact					
		Analysis Time	21:19				
			•				

METHOD BLANK REPORT

TOTAL Metals

Client Lot #...: D7J060151

Matrix....: WATER

		REPORTI	NG		PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE	ORDER #
Copper	ND	25	ug/L	SW846 6010		
		Dilution Fac	ctor: 1		, , , , , ,	
		Analysis Tim	ne: 21:19			
Nickel	ND	40	ug/L	SW846 6010	B 10/10-10/15/07	JSHSA1AK
		Dilution Fac	tor: 1			
		Analysis Tim	e: 21:19			
Silver	ND	10	ug/L	SW846 6010	B 10/10-10/15/07	J8H8A1A1.
		Dilution Fac	tor: 1		, , , , , , , , , , , , , , , , , , , ,	
		Analysis Tim	e: 21:19			
Vanadium	ND	49	ug/L	SW846 6010	B 10/10-10/15/07	MA LASHSE
		Dilution Fac	tor: 1		, , , , , , , , , , , , , , , , , , , ,	
		Analysis Tim	e: 21:19			
Zinc	ND	20	ug/L	SW846 6010	B 10/10-10/15/07	NA LASHSU
		Dilution Fact	tor: 1		, , , , , , ,	
		Analysis Time	a: 21:19			
Lead	ND	3.0	ug/L	SW846 6010F	B 10/10-10/15/07	QA FARRT
		Dilution Fact	- ·			
		Analysis Time	3: 21:19	•		
Selenium	ND	5.0	ug/L	SW846 6010E	3 10/10-10/15/07 8	AZ LZBHBT.
		Dilution Fact			20,20 20,25,0,	OUDHING
		Analysis Time	21:19			
Sodium	130 B	1000	ug/L	SW846 6010E	3 10/10-10/15/07	TSHSA1AR
		Dilution Fact			,20 20,20,0,	
		Analysis Time	21:19			
JO™R (<) •						

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

B Estimated result. Result is less than RL.

LABORATORY CONTROL SAMPLE EVALUATION REPORT

TOTAL Metals

Client Lot #:	D7J060151			Matrix	: WATER
PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
LCS Lot-Sample#: Mercury		(88 - 111)	tch #: 728142 SW846 7470A or: 1 Analys	10/09-10/10/07	J8HXJ1AC
LCS Lot-Sample#: Arsenic		(89 - 111)	tch #: 728221 SW846 6020 or: 1 Analys	10/11-10/12/07	J8HK21AD
Thallium	103		SW846 6020 or: 1 Analys		J8HK21AE
LCS Lot-Sample#: Iron	D7J090000-	(89 - 115)		10/10-10/15/07	J8H8ALAT
Barium	102		SW846 6010B r: 1 Analys	10/10-10/15/07 is Time: 21:24	J8H8A1AU
Antimony	100	•	SW846 6010B r: 1 Analys:	10/30-10/15/07 is Time: 21:24	VALA8H8L
Beryllium	98	•	SW846 6010B r: 1 Analys:	10/10-10/15/07 is Time: 21:24	J8H8AlAW
Cadmium	104		SW846 6010B	10/10-10/15/07 is Time: 21:24	J8H8A1AX
Chromium	101		SW846 6010B r: 1 Analys:	10/10-10/15/07 is Time: 21:24	J8H8A1A0
Cobalt	98	•	SW846 6010B r: 1 Analys:	10/10-10/15/07 is Time: 21:24	J8H8A1A1
Copper	97		SW846 6010B r: 1 Analys:		J8H8A1A2
Nickel	98	,	SW846 6010B r: 1 Analysi	•	J8H8A1A3

LABORATORY CONTROL SAMPLE EVALUATION REPORT

TOTAL Metals

Client Lot #:	D7J060151		Matrix WATER
PARAMETER Silver	PERCENT RECOVERY 89	RECOVERY LIMITS . METHOD (86 - 115) SW846 6010B Dilution Factor: 1 Analysis	
Vanadium ,	99	(90 - 111) SW846 6010B Dilution Factor: 1 Analysis	
Zinc	95	(85 - 111) SW846 6010B Dilution Factor: 1 Analysis	
Lead	95	(89 - 110) SW845 6010B Dilution Factor: 1 Analysis	
Selenium	99	(85 - 112) SW846 6010B Dilution Factor: 1 Analysis	
Sodium	106	(90 - 115) SW846 6010B Dilution Factor: 1 Analysis	

NOTE(S):

LABORATORY CONTROL SAMPLE DATA REPORT

TOTAL Metals

Client Lot	#: D73	7060151				Matrix:	WATER
PARAMETER	SPIKE AMOUNT	MEASURE AMOUNT	D UNITS	PERCNT RECVRY	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
ICS Lot-Sam	mle#: D7J	1080000-4	23 Prep Bat	ch #	7281423		
Mercury	5.00	4.77	_	95	SW846 7470A Analysis Time:		J8HXJ1A
LCS Lot-Sam	ple#: D73	7090000-2	12 Prep Bate	ch #	: 7282212		
Arsenic	40.0	41.0	ug/L Dilution Factor		SW846 6020 Analysis Time:		J8HK21AD
Thallium	40.0	41.2	ug/L Dilution Factor		SW846 6020 Analysis Time:	10/11-10/12/07 15:27	J8HK21AE
LCS Lot-Sam	ple#: D7J	7090000-3:	29 Prep Bat e	ch #	7282329		
Iron	1000	962	ug/L Dilution Factor	96	SW846 6010B Analysis Time:		J8H8AlAT
Barium	2000		ug/L Dilution Factor		SW846 6010B Analysis Time:		JSHSALAU
Antimony	500	498	ug/L Dilution Factor		SW846 6010B Analysis Time: 2	•	J8H8A1AV
Beryllium	50.0		ug/L Dilution Factor		SW846 6010B Analysis Time: 2	10/10-10/15/07 21:24	J8H8A1AW
Cadmium	100	104	ug/L Dilution Factor		SW846 6010B		J8H8A1AX
Chromium	200		ug/L Dilution Factor		SW846 6010B	10/10-10/15/07	J8H8AlA0
Cobalt	500	488 1	ug/L Dilution Factor	98	SW846 6010B	,	J8H8A1A1
Copper	250		ug/L Dilution Factor	9 7 : 1	SW846 6010B Analysis Time: 2	·	J8H8A1A2
Nickel	500	488	ug/L Dilution Factor	98 : 1	SW846 6010B Analysis Time: 2		J8H8A1A3

LABORATORY CONTROL SAMPLE DATA REPORT

TOTAL Metals

Client Lot #...: D7J060151

Matrix....: WATER SPIKE MEASURED PERCNT PREPARATION- WORK AMOUNT AMOUNT UNITS RECVRY METHOD ANALYSIS DATE ORDER # PARAMETER Silver 44.7 89 50.0 ug/L SW846 6010B 10/10-10/15/07 J8H8A1A4 Dilution Factor: 1 Analysis Time..: 21:24 500 Vanadium 494 ug/L 99 SW846 6010B 10/10-10/15/07 J8H8A1A5 Dilution Factor: 1 Analysis Time..: 21:24 Zinc 500 477 ug/L 95 SW846 6010B 10/10-10/15/07 J8H8A1A6 Dilution Factor: 1 Analysis Time..: 21:24 Lead 500 474 ug/L 95 SW846 6010B 10/10-10/15/07 J8H8A1A7 Dilution Factor: 1 Analysis Time..: 21:24 Selenium 2000 1970 ug/L ^{*}99 SW846 6010B 10/10-10/15/07 J8H8A1A8 Analysis Time..: 21:24 Dilution Factor: 1 Sodium 50000 52800 ug/L 106 SW846 6010B 10/10-10/15/07 J8H8A1A9 Dilution Factor: 1 Analysis Time..: 21:24

NOTE(S):

MATRIX SPIKE SAMPLE EVALUATION REPORT

TOTAL Metals

Client Lot #...: D7J060151 Matrix..... WATER

Date Sampled...: 10/03/07 08:55 Date Received..: 10/04/07

PERCENT RECOVERY RPD PREPARATION- WORK
PARAMETER RECOVERY LIMITS RPD LIMITS METHOD ANALYSIS DATE ORDER #

MS Lot-Sample #: D7J040208-001 Prep Batch #...: 7281423

Mercury 98 (88 - 111) SW846 7470A 10/09-10/10/07 J78X61A4 96 (88 - 111) 2.3 (0-10) SW846 7470A 10/09-10/10/07 J78X61A5

Dilution Factor: 1
Analysis Time..: 12:00

NOTE (S):

MATRIX SPIKE SAMPLE DATA REPORT

TOTAL Metals

Client Lot #: Date Sampled:		08:55 Date Receive	ed: 10/04/0		K WAT	ER
PARAMETER AMOUNT		EASRD MOUNT UNITS	PERCNT RECVRY RPD	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
MS Lot-Sample #: Mercury	D7J040208-	-001 Prep Batch #	7281423	3		
ND	5.00 4.	.89 ug/L	98	SW846 7470A	10/09-10/10/07	J78X61A4
ND	5.00 4.	.78 ug/L	96 2.3		10/09-10/10/07	-
		Dilution Factor: I Analysis Time: 12:				

NOTE(S):

MATRIX SPIKE SAMPLE EVALUATION REPORT

TOTAL Metals

Client Lot Date Sample		.: 10/05/07	Matrix WATER	
PARAMETER	PERCENT RECOVERY	RECOVERY RPD LIMITS RPD LIMITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
MS Lot-Samp	le #: D7J09	0190-002 Prep Batch #	.: 7282212	
Arsenic	100	(79 - 120)	SW846 6020	10/11-10/12/07 J8CKT1A4
	96	(79 - 120) 3.0 (0-30)	SW846 6020	10/11-10/12/07 J8CKT1A5
		Dilution Factor: 1		
		Analysis Time: 15:53		
Thallium	98	(77 - 124)	SW846 6020	10/11-10/12/07 J8CKT1A6
	100	(77 ~ 124) 1.8 (0-30)	SW846 6020	10/11-10/12/07 J8CKT1A7
		Dilution Factor: 1		
		Analysis Time: 15:53		
NOTE (S):				

TOTAL Metals

Date Sam				40 Date Received: 10/05/07					Matrix: WATER		
PARAMETE	SAMPLE R AMOUNT		MEASRD AMOUNT	UNITS	PERCNT RECVRY	RPD	METHO.	D	PREPARATION- ANALYSIS DATE	WORK ORDER #	
MS Lot-Sa Arsenic	ample #:	D7J0501	90-002	Prep Batch	#: 72	28221:	2				
	17	40.0	57.0	ug/L	100		SW846	6020	10/11-10/12/07	J8CKT1A4	
	17	40.0	55.4	ug/L	96	3.0	SW846	6020	10/11-10/12/07		
			Dilut	ion Factor: 1					, , ,		
			Analy	sis Time: 15	: 53						
Thallium											
	3.2	40.0	42.3	ug/L	98		SW846	6020	10/11-10/12/07	J8CKT1A6	
	3.2	40.0	43.1	ug/L	100	1.8	SW846	6020	10/11-10/12/07		
			Dilut	ion Factor: 1						•	

Analysis Time..: 15:53

NOTE(S):

MATRIX SPIKE SAMPLE EVALUATION REPORT

TOTAL Metals

Client Lot #...: D7J060151 Matrix.....: WATER

Date Sampled...: 10/04/07 09:02 Date Received..: 10/05/07

PARAMETER	PERCENT RECOVERY	RECOVERY RPD LIMITS RPD LIMITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
MS Lot-Samol	e #: D7J05	0190-001 Prep Batch #	• 7282329		
Iron	93	(52 - 155)	SW846 6010B	10/10-10/15/07	J8CKR1A4
	99	(52 ~ 155) 2.0 (0-25)	SW846 6010B	10/10-10/15/07	
		Dilution Factor: 1			
		Analysis Time: 21:39			
Barium	103	(85 - 120)	SW846 6010B	10/10-10/15/07	J8CKR1A6
	104	(85 - 120) 1.1 (0-25)	SW846 6010B	10/10-10/15/07	
		Dilution Factor: 1			
	•	Analysis Time: 21:39			
Antimony	100	(81 - 124)	SW846 6010B	10/10-10/15/07	J8CKR1A8
-	102	(81 - 124) 2.0 (0-25)	SW846 6010B	10/10-10/15/07	
		Dilution Factor: 1			
		Analysis Time: 21:39			
Beryllium	99	(79 - 121)	SW846 6010B	10/10-10/15/07	J8CKR1CA
	101	(79 - 121) 1.6 (0-25)	SW846 6010B	10/10-10/15/07	
		Dilution Factor: 1			
		Analysis Time: 21:39			
Cadmium	105	(82 ~ 119)	SW846 6010B	10/10-10/15/07	J8CKR1CD
	106	(82 - 119) 1.3 (0-25)	SW846 6010B	10/10-10/15/07	J8CKR1CE
		Dilution Factor: 1			
		Analysis Time: 21:39			
Chromium	102	(73 - 135)	SW846 6010B	10/10-10/15/07	J8CKR1CF
	104	(73 - 135) 1.7 (0-25)	SW846 6010B	10/10-10/15/07	J8CKR1CG
		Dilution Factor: 1			
		Analysis Time: 21:39			
Cobalt	99	(82 - 119)	SW846 6010B	10/10-10/15/07	J8CKR1CH
	100	(82 - 119) 1.4 (0-25)	SW846 6010B	10/10-10/15/07	J8CKR1CJ
		Dilution Factor: 1			
		Analysis Time: 21:39			
Copper	99	(82 - 129)	SW846 6010B	10/10-10/15/07	J8CKR1CK
	99	(82 - 129) 0.23 (0-25)	SW846 6010B	10/10-10/15/07	J8CKR1CL
		Dilution Factor: 1			
		Analysis Time: 21:39			

MATRIX SPIKE SAMPLE EVALUATION REPORT

TOTAL Metals

Client Lot #...: D7J060151 Matrix...... WATER

Date Sampled...: 10/04/07 09:02 Date Received..: 10/05/07

PARAMETER Nickel	PERCENT RECOVERY 98 100	RECOVERY RPD LIMITS RPD LIMITS (84 - 120) (84 - 120) 1.6 (0-25) Dilution Factor: 1 Analysis Time: 21:3	METHOD SW846 6010B SW846 6010B	PREPARATION- ANALYSIS DATE 10/10-10/15/07 10/10-10/15/07	
Silver	87 86	(75 - 141) (75 - 141) 0.96 (0-25) Dilution Factor: 1 Analysis Time: 21:39	SW846 6010B SW846 6010B	10/10-10/15/07 10/10-10/15/07	
Vanadium	99 101	(85 - 120) (85 - 120) 1.6 (0-25) Dilution Factor: 1 Analysis Time: 21:39	SW846 6010B SW846 6010B	10/10-10/15/07 10/10-10/15/07	
Zinc	94 95	(60 - 137) (60 - 137) 0.49 (0-25) Dilution Factor: 1 Analysis Time: 21:39	SW846 6010B SW846 6010B	10/10-10/15/07 10/10-10/15/07	
Lead	94 96	(89 - 121) (89 - 121) 2.3 (0-25) Dilution Factor: 1 Analysis Time: 21:39	SW846 6010B SW846 6010B	10/10-10/15/07 10/10-10/15/07	
Selenium	98 99	(71 - 140) (71 - 140) 1.1 (0-25) Dilution Factor: 1 Analysis Time: 21:39	SW846 6010B SW846 6010B	10/10-10/15/07 10/10-10/15/07	
Sodium	105 109	(90 - 115) (90 - 115) 2.6 (0-20) Dilution Factor: 1 Analysis Time,.: 21:39	SW846 6010B SW846 6010B	10/10-10/15/07	

NOTE(S):

TOTAL Metals

Client Lot #...: D7J060151 Matrix....: WATER

Date Sampled...: 10/04/07 09:02 Date Received..: 10/05/07

PARAMETE	SAMPLE R AMOUNT		MEASRD AMOUNT	UNITS	PERCNT RECVRY	RPD_	METHOI)	PREPARATION- ANALYSIS DATE	WORK ORDER #
MS Lot-S	ample #:	D7.70501	90-001	Prep Batch (# • 72		9			
Iron	ampic #.	D/00301	30-001	rich paccu i	t /2	.62323	9			
	1900	1000	2830	ug/L	93		SW846	6010B	10/10-10/15/07	JBCKR1A4
	1900	1000	2890	ug/L	99	2.0	SW846	6010B	10/10-10/15/07	J8CKR1A5
			Dilut	ion Factor: 1						
			Analy	sis Time: 21	:39					
Barium										
Barrum	18	2000	2070	ug/L	103		SW846	6010B	10/10-10/15/07	JBCKR1A6
	18	2000	2090	ug/L		1.1			10/10-10/15/07	
				ion Factor: 1	_**					
			Analy	sis Time: 21	: 39					
•										
Antimony				4_						
•	ND	500	503	ug/L	100		SW846		10/10-10/15/07	
	ND	500	513	ug/L ion Factor: 1	102	2.0	SW846	POIOR	10/10-10/15/07	UCCRIAS
				sis Time: 21	. 79					
			mmiy	SIS TIME ZI						
Berylliu	n									
	ND	50.0	49.5	ug/L	99		SW846		10/10-10/15/07	
	ND	50.0	50.3	ug/L	101	1.6	SW846	6010B	10/10-10/15/07	J8CKR1CC
				ion Factor: 1						
			Analy	sis Time: 21	:39					
Cadmium										
	ND	100	105	ug/L	105		SW846	6010B	10/10-10/15/07	J8CKR1CD
	ND	100	106	-		1.3	SW846	6010B	10/10-10/15/07	
			Diluta	ion Factor: 1						
			Analy	sis Time: 21	: 39					
~ 1										
Chromium	NTO	200	205	/T	7.00		SW846	6010B	10/10-10/15/07	JOCKD1CD
	ND ND	200	205 209	- -	102 104	1.7	SW846		10/10-10/15/07	
	1112	200		ion Factor: 1	104	,	5,1040	00100	20, 20 20, 25, 0.	0001111200
				sis Time: 21:	39					
			•							
Cobalt										
	ND				99		SW846		10/10-10/15/07	
	ND	500		₽.	100	1.4	SW846	6010B	10/10-10/15/07	J8CKR1CJ
				ion Factor: 1	20					
			Analys	sis Time: 21:	33					

TOTAL Metals

Client Lot #...: D7J060151 Matrix..... WATER

Date Sampled...: 10/04/07 09:02 Date Received..: 10/05/07

PARAMETER	SAMPLE AMOUNT	SPIKE AMT	MEASRD	t Dyrma	PERCNT			_	PREPARATION-	WORK
Copper	10.00111	Airt	AMOUNT	UNITS	RECVRY	KPD	METHO	ש	ANALYSIS DATE	ORDER #
	ND	250	248	ug/L	99		SW846	6010B	10/10-10/15/07	TOCKDI CI
1	ND	250	248	ug/L	99	0.23		6010B	10/10-10/15/07	
			Dilut	ion Factor: 1					20,20 20,20,07	
			Analy	sis Time: 21	:39					
Nickel										
1	1D	500	492	ug/L	98		SW846	6010B	10/10-10/15/07	J8CKR1CM
1	1D	500	500	ug/L	100	1.6	SW846	6010B	10/10-10/15/07	
			Dilut:	ion Factor: 1					,	
			Analy	sis Time: 21	:39					
Silver										
Ŋ	ID	50.0	44.9	ug/L	87		SW846	6010B	10/10-10/15/07	J8CKR1CF
Ŋ	ID	50.0	44.5	ug/L	86	0.96	SW846	6010B	10/10-10/15/07	
			Diluti	on Factor: 1						_
			Analys	sis Time: 21:	:39					
Vanadium										
. N	D	500	498	ug/L	99		SW846	6010B	10/10-10/15/07	JBCKRICR
N	D	500	506	ug/L	101	1.6	SW846	6010B	10/10-10/15/07	
				on Factor: 1						
			Analys	is Time.,: 21:	39					
Zinc										
1	1	500	484	ug/L	94		SW846	6010B	10/10-10/15/07	J8CKR1CU
1	1	500	486	ug/L	95	0.49	SW846	6010B	10/10-10/15/07	
			Diluti	on Factor: 1						
			Analys	is Time: 21:	39					
Lead										
N	D 9	500	471	ug/L	94		SW846	6010B	10/10-10/15/07	Jackricw
N	2 .	500	482	ug/L	96 :	2.3	SW846	6010B	10/10-10/15/07	
			Dilutio	on Factor: 1					,	
			Analys:	is Time: 21:	39					
Selenium										
NI) 2	2000	1960 t	ıg/L 9	98		SW846	6010B	10/10-10/15/07	J8CKR1C0
M) 2	2000		.	9 1		SW846		10/10-10/15/07	
			Dilutio	n Factor: 1					, = : = - , = - , • , •	
			Analysi	s Time: 21:3	3.9					

TOTAL Metals

Client Lot #...: D7J060151 Matrix..... WATER

Date Sampled...: 10/04/07 09:02 Date Received..: 10/05/07

SAMETER ALL SOCIUM			MEASRD AMOUNT	UNITS	PERCNT RECVRY	RPD	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
20		50000	72400	ug/L	105			10/10-10/15/07	
200	000	50000		ug/L lon Factor: 1	109	2.6	SW846 6010B	10/10-10/15/07	J 8 CKR1C3

Analysis Time..: 21:39

NOTE(S):

METHOD BLANK REPORT

General Chemistry

Matrix....: WATER

Client Lot #...: D7J060151

		REPORTIN	G		PREPARATION-	PREP
PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE	BATCH #
Ammonia as N		Work Order	#: J8RW81AA	MB Lot-Sample #:		<u> </u>
	ND	0.050	mg/L	MCAWW 350.1	10/11/07	7285149
		Dilution Fact	or: 1			
		Analysis Time	11:09			
Biochemical Oxygen Demand (BOD)		Work Order	#: J8RT21AA	MB Lot-Sample #:	D7J060000-145	
	ND	2.0	mg/L	MCAWW 405.1	10/06/07	7279145
		Dilution Fact	or: 1			
		Analysis Time	:: 11:30			
Chemical Oxygen Demand (COD)		Work Order	#: J8FP31AA	MB Lot-Sample #:	D7J080000-149	
	ND	50	mg/L	MCAWW 410.4	10/06-10/08/07	7281149
		Dilution Fact	or: 1			
		Analysis Time	; 08:00			
Hardness, as CaCO3		Work Order	#: J8JV31AA	MB Lot-Sample #:	D7J090000-475	
	ND	2.0	mg/L	MCAWW 130.2	10/09/07	7282475
		Dilution Fact	or: 1			
		Analysis Time	: 12:00			
Nitrate		Work Order	#: J8G9ClAA	MB Lot-Sample #:	D7J070000-014	
	ND	0.50	mg/L	MCAWW 300.0A	10/06/07	7280014
		Dilution Facto	or: 1			
		Analysis Time	: 10:43			
Nitrate-Nitrite		Work Order	#: J8Q2M1AA	MB Lot-Sample #:	D7J110000-549	
	ND	0.10		MCAWW 353.2	10/11/07	7284549
		Dilution Facto	or: 1			
		Analysis Time.	: 11:09			
Nitrogen		Work Order	#: J85LG1AA	MB Lot-Sample #:	D7J170000-236	
	ND	0.70	mg/L	MCAWW 353.2+351.2	10/17/07	7290236
		Dilution Facto	or: 1			
		Analysis Time.	.: 09:00			
Total phosphorus		Work Order	#: J8NMA1AA	MB Lot-Sample #:	D7J100000-214	
1	ND	0.10		MCAWW 365.3	10/09-10/10/07	7283214
		Dilution Facto	r: 1			
		Analysis Time.	.: 12:00			

METHOD BLANK REPORT

General Chemistry

Client Lot #...: D7J060151 Matrix.....: WATER

PARAMETER	RESULT	REPORTING	G UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Total Dissolved Solids		Work Order	#: J80HA1AA	MB Lot-Sample #:	D7J110000-605	
	ND	10 Dilution Fact Analysis Time		MCAWW 160.1	10/11/07	7284605
Total Kjeldahl Nitrogen		Work Order	#: J8Q511AA	MB Lot-Sample #:	D7J110000-268	
	ND	0.50 Dilution Fact Analysis Time		MCAWW 351.2	10/10-10/11/07	7284268
Total Organic Carb	on ND	Work Order 1.0 Dilution Fact Analysis Time	mg/L or: 1	MB Lot-Sample #: MCAWW 415.1	D7J150000-343 10/11/07	7288343
Total Suspended Solids	,	Work Order	#: J8QTR1AA	MB Lot-Sample #:	D7J100000-636	
	ND	4.0 Dilution Fact Analysis Time		MCAWW 160.2	10/10/07	7283636
Un-ionized Ammonia	ND	Work Order 0.050 Dilution Fact Analysis Time	mg/L or: 1	MB Lot-Sample #: FL-DEP Unionized		7290235
NOTE(S):						

LABORATORY CONTROL SAMPLE EVALUATION REPORT

General Chemistry

Matrix: WATER

	PERCENT	DEGOVERNI SER			_
PARAMETER		RECOVERY RPD	METHOD	PREPARATION-	PREP
pH	RECOVERY	LIMITS RPD LIMITS	METHOD	ANALYSIS DATE	
PII	100	WO#:J8HEJ1AA-LCS/J8: (97 - 102)	HEJIAC-LOSD LOS I	ot-Sample#: D7J0	
	100		MCAWW 150.1	10/06/07	7279143
	100				7279143
		Dilution Factor: 1	Analysis Time:	09:32	
Ammonia as I	4	WO#:J8RW81AC-LCS/J8	RW81AD-LCSD LCS L	ot-Sample#: D7J1	20000-149
	103	(90 - 110)	MCAWW 350.1	10/11/07	
	102	(90 - 110) 0.85 (0-10)	MCAWW 350.1	10/11/07	7285149
		Dilution Factor: 1	Analysis Time:	11:09	
Biochemical Demand (BC		WO#:J8RT2lAC-LCS/J8F	RT21AD-LCSD LCS L	ot-Sample#: D7J0	60000-145
	90	(85 - 115)	MCAWW 405.1	10/06/07	7279145
	87	(85 - 115) 3.4 (0-20)			
		Dilution Factor: 1			
Chemical Oxy Demand (CO	gen D)	WO#:J8FP31AC-LCS/J8E	P31AD-LCSD LCS L	ot-Sample#: D7J0	80000-149
	101	(80 - 115)	MCAWW 410.4	10/06-10/08/07	7281149
	97	(80 - 115) 4.2 (0-11)	MCAWW 410.4	10/06-10/08/07	7281149
		Dilution Factor: 1			
17					
Hardness, as CaCO3		WO#:J8JV31AC-LCS/J8J	V31AD-LCSD LCS Lo	ot-Sample#: D7J0	90000-475
	100	(90 - 110)	MCAWW 130.2	10/09/07	7282475
	98	(90 - 110) 1.8 (0-10)	MCAWW 130.2	10/09/07	7282475
		Dilution Factor: 1	Analysis Time:	12:00	
Nitrate		WO#:J8G9C1AC-LCS/J8G	9ClAD-LCSD LCS Lo	ot-Sample#: D7J01	70000-014
	103	(90 - 110)	MCAWW 300.0A	10/06/07	7280014
	102	(90 - 110) 0.61 (0-10)			7280014
		Dilution Factor: 1	Analysis Time:	10:12	
Nitrate-Nitr	ite	WO#:J8Q2MlAC-LCS/J8Q	OMIAD_LOGO FOG FA	t-Complett D771	.0000 - 540
			MCAWW 353.2		
	96	(90 - 112) 3.9 (0-10)			7284549
		Dilution Factor: 1			1204343
		prideron ractor: 1	whathere true ;	LT:03	

LABORATORY CONTROL SAMPLE EVALUATION REPORT

General Chemistry

Lot-Sample #...: D7J060151 Matrix.....: WATER

PARAMETER Total phosph	***************************************	WO#:J8NMA1 (90 - 110) (90 - 110) 1.	PD LIMITS LAC-LCS/J81 3 (0-20)	MALAD-LCSD L MCAWW 365.3	10/09-10/10/07	BATCH # 00000-214 7283214
Total Dissol Solids	ved	WO#:J80HA1	AC-LCS/J80	HA1AD-LCSD L	.CS Lot-Sample#: D7J1	10000-605
	99	(86 - 106)		MCAWW 160.1	10/11/07	7284605
	99	(86 - 106) 0.	20 (0-20)	MCAWW 160.1	10/11/07	7284605
				Analysis Tim		
Total Kjelda: Nitrogen	hl	WO#:J8Q511	AC-LCS/J8Q	9511AD-LCSD L	CS Lot-Sample#: D7J1	10000-268
_	89	(77 - 115)		MCAWW 351.2	10/10-10/11/07	7284268
	85	(77 - 115) 5.	2 (0-25)	MCAWW 351.2	10/10-10/11/07	7284268
		Dilution 1	Factor: 1	Analysis Tim	me: 09:00	
Total Organia	c Carbon				CS Lot-Sample#: D7J1	
	102				10/11/07	
	103	(86 - 114) 0.	81 (0-12)	MCAWW 415.1	10/11/07	7288343
		Dilution 1	actor: 1	Analysis Tim	me: 17:00	
Total Suspend	ded			•	CS Lot-Sample#: D7J1	
	89	(86 - 114)		MCAWW 160.2	10/10/07	7283636
	97			MCAWW 160.2		7283636
		Dilution I	Factor: 1	Analysis Tim	me: 16:30	

NOTE (S)

LABORATORY CONTROL SAMPLE DATA REPORT

General Chemistry

Lot-Sample #: D7J060151	atrix WATER
-------------------------	-------------

	SPIKE	MEASU	RED	PERCNT				PREPARATION-	PREP
PARAMETER	AMOUNT	AMOUN'	T UNITS	RECVRY	RPD	METHO	DD	ANALYSIS DATE	BATCH #
рн		1	WO#:J8HEJ1AA	LCS/J8	HEJ17	C-LCSI	LCS Lot-Sa	ample#: D7J06000	0-143
	7.00	7.00	No Units	100			1 150.1	10/06/07	7279143
	7.00	7.01	No Units			MCAWW	1 150.1	10/06/07	7279143
			Dilution Fact	or: 1		Analysis	s Time: 09:32		
Ammonia as	N	Ţ	WO#:J8RW81AC	LCS/J81	RW81A	D-LCSD	LCS Lot-Sa	ample#: D7J12000	0-149
	4.00	4.12		103			350.1	10/11/07	7285149
	4.00	4.08	mg/L	102	0.85	MCAWW	350.1	10/11/07	7285149
			Dilution Fact	or: 1		Analysis	Time: 11:09	·	
Biochemical Demand (Bo		V	VO#:J8RT21AC-	-LCS/J8F	RTZlA	D-LCSD	LCS Lot-Sa	ample#: D7J06000	0-145
	198	178	mg/L	90		MCAWW	405.1	10/06/07	7279145
	198	172	mg/L	87	3.4	MCAWW	405.1	10/06/07	7279145
			Dilution Fact	or: 1	2	Analysis	Time: 11:30		
Chemical Oxy Demand (Co		₩	O#:J8FP31AC-	LCS/J8E	'P31A	D-LCSD	LCS Lot-Sa	mple#: D7J08000	0-149
	100	101	mg/L	101		MCAWW	410.4	10/06-10/08/07	7281149
	100	96.7	mg/L	97	4.2		410.4	10/06-10/08/07	
			Dilution Fact	or: 1	2	Analysis	Time: 08:00	, , ,	
Hardness, as CaCO3		W	O#:J8JV31AC-	LCS/J8J	V31A	D-LCSD	LCS Lot-Sa	mple#: D7J09000	0-475
	400	400	mg/L	100		MCAWW	130.2	10/09/07	7282475
	400	393	mg/L	98	1.8	MCAWW	130.2	10/09/07	7282475
			Dilution Facto	or: 1	P	malysis	Time: 12:00		
Nitrate		W	O#:J8G9C1AC-	LCS/J8G	9ClAI	D-LCSD	LCS Lot-Sa	mple#: D7J070006	0-014
	5.00	5.14	mg/L	103		MCAWW	300.0A	10/06/07	7280014
	5.00	5.10	mg/L	102	0.61	MCAWW	300.0A	10/06/07	7280014
			Dilution Facto	r: 1	А	nalysis	Time. : 10:12		
Nitrate-Nitr	ite	W	O#:J8Q2M1AC~	LCS/J8Q	2M1AJ	o-LCSD	LCS Lot-Sa	mple#: D7J110000)-549
	4.00	3.98		100		MCAWW		10/11/07	
	4.00	3.83	mg/L	96		MCAWW		· · · · · ·	7284549
			Dilution Facto				Time: 11:09	• •	

LABORATORY CONTROL SAMPLE DATA REPORT

General Chemistry

Lot-Sample #: D7J060151	Matrix: WATER
-------------------------	---------------

PARAMETER Total phosph	SPIKE AMOUNT ORUS 0.500 0.500		UNITS VO#:J8NMA1AC	98 99	MAIAI	D-LCSD MCAWW MCAWW		PREPARATION- ANALYSIS DATE mple#: D7J10000 10/09-10/10/07 10/09-10/10/07	7283214
Total Dissol	ved	¥	Ю#:J80HA1AC-	-LCS/J80	HALAI	O-LCSD	LCS Lot-Sar	mple#: D7J110000	0-605
	500	495	mg/L	99		MCAWW	160.1	10/11/07	7284605
	500	496	mg/L	99	0.20	MCAWW	160.1	10/11/07	7284605
			Dilution Fact	or: 1	A	nalysis	Time: 15:20		
Total Kjeldal Nitrogen	hl.	W	0#:J8Q511AC- •	LCS/J80	511AI	o-rced	LCS Lot-Sam	mple#: D7Jl1000()-268
	3.00	2.68	mg/L	89		MCAWW	351.2	10/10-10/11/07	7284268
	3.00	2.54	mg/L	85	5.2	MCAWW	351.2	10/10-10/11/07	7284268
			Dilution Fact	or: 1	A	nalysis	Time: 09:00		
Total Organic	c Carbon	W	O#:J81TH1AC-	LCS/J81	TH1AI	-LCSD	LCS Lot-Sam	nple#: D7J150000	-343
	25.0	25.6	mg/L	102		MCAWW	415.1	10/11/07	7288343
	25.0	25.8	mg/L	103	0.81	MCAWW	415.1	10/11/07	7288343
			Dilution Facto	or: 1	A	nalysis	Time: 17:00		
Total Suspend	ied	W	O#:J8QTR1AC-	LCS/J8Q	TRLAD	-LCSD	LCS Lot-Sam	mple#: D7J100000	-636
	100	89.0	mg/L	89		MCAWW	160.2	10/10/07	7283636
	100	97.0		97	8.6	MCAWW	160.2	10/10/07	7283636
			Dilution Facto	or: 1	A	nalysis	Time: 16:30		

NOTE(S):

MATRIX SPIKE SAMPLE EVALUATION REPORT

General Chemistry

(81 - 114 (81 - 114 Dil Ana WO# (80 - 115 (80 - 115 Dilu Ana: WO# (90 - 110 (90 - 110 Dilu	1) 2.1 (0-10) ution Factor: 1 lysis Time: 11:0 1: J78KK1CG-MS/ 1) 5.0 (0-11) ution Factor: 1 lysis Time: 08:0 1: J7P5H1C4-MS/	/J8CKR1C5-MSD MCAWW 350.1 MCAWW 350.1 09 /J78KK1CH-MSD MCAWW 410.4 MCAWW 410.4 00 /J7P5H1C5-MSD MCAWW 130.2	10/11/07 10/11/07 MS Lot-Sample #: D'	75050190-00 7285149 7285149 7J040153-00 7 7281148 7 7281148
(81 - 114 (81 - 114 (81 - 114 Dil Ana WO# (80 - 115 (80 - 115 Dilu Ana: WO# (90 - 110 (90 - 110	#: J8CKR1C4-MS, #) #) 2.1 (0-10) #	/J8CKR1C5-MSD MCAWW 350.1 MCAWW 350.1 09 /J78KK1CH-MSD MCAWW 410.4 MCAWW 410.4 00 /J7P5H1C5-MSD MCAWW 130.2	ANALYSIS DATE MS Lot-Sample #: D 10/11/07 10/11/07 MS Lot-Sample #: D' 10/06-10/08/00 MS Lot-Sample #: D' 10/09/07	BATCH # 7J050190-00 7285149 7285149 7J040153-00 7 7281148 7 7281148
(81 - 114 (81 - 114 (81 - 114 Dil Ana WO# (80 - 115 (80 - 115 Dilu Ana: WO# (90 - 110 (90 - 110	#: J8CKR1C4-MS, #) #) 2.1 (0-10) #	/J8CKR1C5-MSD MCAWW 350.1 MCAWW 350.1 09 /J78KK1CH-MSD MCAWW 410.4 MCAWW 410.4 00 /J7P5H1C5-MSD MCAWW 130.2	MS Lot-Sample #: D 10/11/07 10/11/07 MS Lot-Sample #: D 10/06-10/08/0 10/06-10/08/0	73050190-00 7285149 7285149 7J040153-00 7 7281148 7 7281148
(81 - 114 (81 - 114 Dil Ana WO# (80 - 115 (80 - 115 Dilu Ana: WO# (90 - 110 (90 - 110 Dilu	1) 1) 2.1 (0-10) 11tion Factor: 1 1ysis Time: 11:0 2: J78KK1CG-MS/ 3) 3) 5.0 (0-11) 11tion Factor: 1 11ysis Time: 08:0 3: J7P5H1C4-MS/ 3) 3) 0.87 (0-10)	MCAWW 350.1 MCAWW 350.1 09 /J78KK1CH-MSD MCAWW 410.4 MCAWW 410.4 00 /J7P5H1C5-MSD MCAWW 130.2	10/11/07 10/11/07 10/11/07 MS Lot-Sample #: D' 10/06-10/08/00 10/06-10/08/00 MS Lot-Sample #: D' 10/09/07	7285149 7285149 7J040153-00 7 7281148 7 7281148 7 728135-02 7282475
### (80 - 115	ution Factor: 1 lysis Time: 11:0 :: J78KK1CG-MS/ :) 5.0 (0-11) ution Factor: 1 lysis Time: 08:0 :: J7P5H1C4-MS/)) 0.87 (0-10)	MCAWW 350.1 09 /J78KK1CH-MSD MCAWW 410.4 MCAWW 410.4 00 /J7P5H1C5-MSD MCAWW 130.2	10/11/07 MS Lot-Sample #: D' 10/06-10/08/0' 10/06-10/08/0' MS Lot-Sample #: D' 10/09/07	7285149 7J040153-00 7 7281148 7 7281148 7I260375-02 7282475
### (80 - 115	ution Factor: 1 lysis Time: 11:0 :: J78KK1CG-MS/ :) 5.0 (0-11) ution Factor: 1 lysis Time: 08:0 :: J7P5H1C4-MS/)) 0.87 (0-10)	09 /J78KK1CH-MSD MCAWW 410.4 MCAWW 410.4 00 /J7P5H1C5-MSD MCAWW 130.2	MS Lot-Sample #: D' 10/06-10/08/0 10/06-10/08/0 MS Lot-Sample #: D' 10/09/07	7J040153-00 7 7281148 7 7281148 7I260375-02 7282475
(80 - 115 (80 - 115 Dilu Ana: WO# (90 - 110 (90 - 110	i) 5.0 (0-11) ution Factor: 1 lysis Time: 08:0 : J7P5H1C4-MS/)) 0.87 (0-10)	MCAWW 410.4 MCAWW 410.4 00 7J7P5H1C5-MSD MCAWW 130.2	10/06-10/08/0° 10/06-10/08/0° MS Lot-Sample #: DT	7 7281148 7 7281148 7 7281346 7 7 7 2 8 2 4 7 5 7 2 8 2 4 7 5
(80 - 115 Dilu Ana: WO# (90 - 110 (90 - 110	1) 5.0 (0-11) ution Factor: 1 lysis Time: 08:0 : J7P5H1C4-MS/)) 0.87 (0-10)	MCAWW 410.4 00 /J7P5H1C5-MSD MCAWW 130.2	10/06-10/08/0° MS Lot-Sample #: D7	7 7281148 71260375-02 7282475
(80 - 115 Dilu Ana: WO# (90 - 110 (90 - 110	1) 5.0 (0-11) ution Factor: 1 lysis Time: 08:0 : J7P5H1C4-MS/)) 0.87 (0-10)	MCAWW 410.4 00 /J7P5H1C5-MSD MCAWW 130.2	10/06-10/08/0° MS Lot-Sample #: D7	7 7281148 71260375-02 7282475
Dil Ana: WO# (90 - 110 (90 - 110 Dil	ution Factor: 1 lysis Time: 08:0 : J7P5H1C4-MS/)) 0.87 (0-10)	00 /J7P5H1C5-MSD MCAWW 130.2	MS Lot-Sample #: D7	71260375-02 7282475
(90 - 110 (90 - 110 Dilt)) 0.87 (0-10)	MCAWW 130.2	10/09/07	7282475
(90 - 110 Dile	0.87 (0-10)			
Dila		MCAWW 130.2		
	ation Factor: 1			7282475
	ysis Time: 12:0	00		
₩O#	· JREVOICE-MS/	מפשטרו רמ ₋ אפר.	MS Lot-Sample #: D7	7060153 80
(80 - 120		MCAWW 300.0A		7280014
) 1.7 (0-20)		10/06/07	7280014
	tion Factor: 1		10,00,0,	7280014
	ysis Time: 13:5	2		
WO#:	: J8ET61CH-MS/	TSETSICI-MSD	MS Lot-Sample #: D7	.T060151_00
(72 - 113)		MCAWW 353,2	10/11/07	7284549
	0.44 (0-17)		10/11/07	7284549
Dilu	tion Factor: 1 ysis Time: 11:09		20, 22, 0,	, 204343
WO#:	: J8D7PlEJ-MS/3	J8D7P1EK-MSD	MS Lot-Sample #: D7	.T050368_015
		MCAWW 365.3		
Dilu	tion Factor: 1		10,05 10,10,0	7205213
WO# :	J8C911AT-MS/J	J8C911AU-MSD	MS Lot-Sample #: D7	J050266-005
(54 - 131)		MCAWW 351.2	10/10-10/11/07	7284268
(54 - 131)	0.97 (0-38)		10/10-10/11/07	
	(90 - 110) * (90 - 110) Dilu Analy WO#: (54 - 131) (54 - 131)	(90 - 110) * (90 - 110) 60 (0-20) Dilution Factor: 1 Analysis Time: 12:00 WO#: J8C911AT-MS/3 (54 - 131) (54 - 131) 0.97 (0-38) Dilution Factor: 1	(90 - 110) MCAWW 365.3 * (90 - 110) 60 (0-20) MCAWW 365.3 Dilution Factor: 1 Analysis Time: 12:00 WO#: J8C911AT-MS/J8C911AU-MSD (54 - 131) MCAWW 351.2 (54 - 131) 0.97 (0-38) MCAWW 351.2 Dilution Factor: 1	* (90 - 110) 60 (0-20) MCAWW 365.3 10/09-10/10/07 Dilution Factor: 1 Analysis Time: 12:00 WO#: J8C911AT-MS/J8C911AU-MSD MS Lot-Sample #: D7. (54 - 131) MCAWW 351.2 10/10-10/11/07 (54 - 131) 0.97 (0-38) MCAWW 351.2 10/10-10/11/07

MATRIX SPIKE SAMPLE EVALUATION REPORT

General Chemistry

Client Lot #...: D7J060151 Matrix..... WATER

Date Sampled...: 10/05/07 11:51 Date Received..: 10/05/07

PREPARATION-PREP PERCENT RECOVERY RECOVERY LIMITS ANALYSIS DATE BATCH # PARAMETER RPD LIMITS METHOD WO#: J8C9E1A7-MS/J8C9E1A8-MSD MS Lot-Sample #: D7J050266-001 Total Organic Carbon 98 (65 - 139) 10/11/07 7288343 MCAWW 415.1 98 (65 - 139) 0.23 (0-41) MCAWW 415.1 10/11/07 7288343 Dilution Factor: 1

Analysis Time..: 18:00

NOTE(S):

N Spiked analyte recovery is outside stated control limits.

^{*} Relative percent difference (RPD) is outside stated control limits.

General Chemistry

Client Lot #...: D7J060151 Matrix.....: WATER

Date Sampled...: 10/05/07 11:51 Date Received..: 10/05/07

	SAMPI	LE SPIKE	MEASRD		PERCN	IT			PREPARATION-	PREP
PARAMETE	R AMOU	NT AMT	AMOUNT	UNITS	RECVE	XY RPD	METHO)	ANALYSIS DATE	BATCH #
Ammonia	as N		WO#:	J8CKR1C4-	MS/J8CKF	1C5-MS	D MS I	ot-Sam	ple #: D7J050190	
	0.69	4.00	4.86	mg/L	104		MCAWW	350.1	10/11/07	7285149
	0.69	4.00	4.76	mg/L	102	2.1	MCAWW	350.1	10/11/07	7285149
				ion Factor:						
			Analy	sis Time:	11:09					
Chemical Demand (WO#:	J78KK1CG-	MS/J78KK	1CH-MS	d MS I	ot-Sam	ple #: D7J040153	-001
	86	50.0	137	mg/L	104		MCAWW	410.4	10/06-10/08/07	7281148
	86	50.0	131	mg/L	90	5.0	MCAWW		10/06-10/08/07	
			Dilut	ion Factor:	1				,,,,	
			Analy	sis Time:	08:00					
Hardness, as CaCO3	,		WO#:	J7P5H1C4-	MS/J7P5H	1C5-MS	D MS L	ot-Sam	ple #: D7I260375	-020
	250	400	656	mg/L	102		MCAWW	130.2	10/09/07	7282475
	250	400	651	mg/L	101	0.87	MCAWW	130.2	10/09/07	7282475
			Dilut:	on Factor:	1					
			Analys	sis Time:	12:00					
Nitrate			WO#:	J8EVQ1CF-	MS/J8EVQ	1CG-MSI	MS L	ot-Sam	ple #: D7J060153	-005
	ND	5.00	5.12	mg/L	102		MCAWW			7280014
	ND	5.00	5.20	mg/L	103	1.7	MCAWW	300.0A	10/06/07	7280014
			Diluti	on Factor: 3	L					
			Analys	is Time:]	13:52					
Nitrate-N	litrite		WO# :	J8ET61CH-1	MS/J8ET6:	CJ-MSI	MS L	ot-Samp	ole #: D7J060151-	-001
	ND	20.0	18.2	mg/L	91		MCAWW :	_	10/11/07	7284549
	ND	20.0	18.2	mg/L	91	0.44	MCAWW :	353.2	10/11/07	7284549
				on Factor: 1						
			Analys	is Time: 1	1:09					
Total pho	_		WO#:	J8D7P1EJ-N	4S/J8D7P1	LEK-MSD	MS L	ot-Samp	ole #: D7J050368-	011
	6.6	5.00	12.7 N	mg/L	123		MCAWW 1	365.3	10/09-10/10/07	7283215
	6.6	5.00	6.89	mg/L	6.0	60	MCAWW 3	365.3	10/09-10/10/07	7283215
			Quali	fiers: N,*	i					
				on Factor: 1						
			Analys	is Time: 1	2:00					
Total Kje Nitrogen	ldahl		WO#:	J8C911AT-N	1S/J8C911	.AU-MSD	MS Lo	ot-Samp	ole #: D7J050266-	005
	ND	3.00	3.00	mg/L	100		MCAWW 3	351.2	10/10-10/11/07	7284268
	ND	3.00	2.97	mg/L	99	0.97	MCAWW 3	351.2	10/10-10/11/07	
			Diluti	on Factor: 1						
			Analys:	is Time: 0	9:00					

General Chemistry

Client Lot #...: D7J060151

Matrix..... WATER

Date Sampled...: 10/05/07 11:51 Date Received..: 10/05/07

SAMPLE SPI PARAMETER AMOUNT AMT Total Organic Carbon	AMOUNT	UNITS	PERCNT RECVRY -MS/J8C9E1	****	METHOI		PREPARATION- ANALYSIS DATE Dle #: D7J050266	PREP BATCH # -001
0.66 25.	0 25.2	mg/L	98		MCAWW	415.1	10/11/07	7288343
0.66 25.	0 25.2	mg/L	98	0.23	MCAWW	415.1	10/11/07	7288343
		ion Factor:						

Analysis Time..: 18:00

NOTE (S):

N Spiked analyte recovery is outside stated control limits.

^{*} Relative percent difference (RPD) is outside stated control limits.

General Chemistry

Client Lot #...: D7J060151

Work Order #...: J8E2D-SMP

Matrix....: WATER

J8E2D-DUP

Date Sampled...: 10/05/07 11:01 Date Received..: 10/06/07

PARAM	RESULT	DUPLICATE RESULT	UNITS	RPD	RPD LIMIT	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
pн						SD Lot-Sample	#: D7J060172-001	
	8.9	8.9	No Units		• •	MCAWW 150.1	10/06/07	7279143

General Chemistry

Client Lot #...: D7J060151

Work Order #...: J8D0T-SMP

Matrix..... WATER

J8D0T-DUP

Date Sampled...: 10/04/07 10:45 Date Received..: 10/05/07

PARAM RESULT Total Suspended	DUPLICATE RESULT	UNITS	RPD	RPD LIMIT	METHOD SD Lot-Sample #	PREPARATION- ANALYSIS DATE D7J050338-004	PREP BATCH #
Solids 2.0 J	2.0 Ј	mg/L Dilution Fac	0.0 ctor: 1	(0-20) Ana	MCAWW 160.2	10/10/07	7283637

NOTE(S):

I Estimated: The analyte was positively identified, but quantitation is estimated.

General Chemistry

Client Lot #...: D7J060151 Work Order #...: J8CRM-SMP

Matrix....: WATER

J8CRM-DUP

Date Sampled...: 10/04/07 13:00 Date Received..: 10/05/07

PARAM RESULT Total Dissolved Solids	DUPLICATE RESULT	UNITS	RPD	RPD LIMIT	METHOD SD Lot-Sample #:	PREPARATION- ANALYSIS DATE D7J050205-002	PREP BATCH #
230	230	mg/L Dilution Fact	1.7		MCAWW 160.1	10/11/07	7284604

General Chemistry

Client Lot #...: D7J060151 Work Order #...: J8EQK-SMP Matrix.....: WATER

J8EQK-DUP

Date Sampled...: 10/05/07 14:00 Date Received..: 10/06/07

Dilution Factor: 5 Analysis Time..: 11:30

Chain of Custody Record

SEVERN STL
Severn Trent Laboratories, Inc.

Project Name and Location (State) OKECHOOSE 101 4124 (0807) Client 3. Relinquished By Ben Rangeausan t. Relinquished By Turn Around Time Required Non-Hazard Sample I.D. No. and Description (Containers for each sample may be combined on one line) Contract/Purchase Order/Quote No 24 Hours 48 Hours Possible Mazard Identification OKOCKHOBEC 10800 NE RB ANG Chechoster 250 PONDID ☐ Flammable 7 Days Skin Irritant 1 7-08-0Kh ☐ 14 Days 210 Code 34972 Poison B 1002 grafco 0/04/2017 0900 Date 21 Days ☐ Unknown Time Other _ Carrier/Waybill Number Dafe D4 Site Contact Telephone Number (Area Code)/Fax Number Project Manager Date MIGGER DEGRADO 1300 Return To Client Sample Disposal Matrix 1200 Time Unpres Disposal By Lab S Received By 1. Received By H2SO Received By QC Requirements (Specify) Containers & Preservatives HNO3 w HGI NBOH ZnAc/ NBOH Archive For (h more space is needed Analysis (Attach list ii 10 04 2007 Date Hardness
Har STY-DEWYER Months (A lae may be assessed if samples are retained longer than 1 month) Rage_ Chain of Custody Number Date Date 60,00 Special Instructions/ Conditions of Receipt C# XX Time inθ <u>و</u> . Time

Comments

10/14/2018 10:00	- FRX - フェーティー MC - フラビィー しょまかい こうがたい こがかって 一般は乗り装む ここのみがしょうしょう	፼ 002/003 세'\\\
And the second second		
	A Company of the state of the s	Stool Record
	And the second s	Cook Rec
		7 1 7
		T P COOR
	To 1 - Day on the part of the last of the	
	Sele Tip Code	
\$ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\		
	Selle Th Code Selle TA A A Selle Talger Description Description Description Description Description Talger Tal	
	Signal Asympton Comments of Co	
4		
	The state of the s	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
1 () 10 ar Mala Tirola 7 (
		110 3
	The second of th	452 3
20 10		
	Annelysis (dillack) is the month of the page is needed. Annelysis (dillack) is the month of the page is needed. Annelysis (dillack) is the page is needed. Annelysis (dillack) is the page is needed. Annelysis (dillack) is assessed frampias are	
	思·大量于主义。	
		10000000000000000000000000000000000000
THE STATE OF	Armanias (Angel Hair) Transias (Angel Hair)	
A STATE OF THE STA		

HARBOR BRANCH

Date issued: October 10, 2007

To:

Melissa Wright

Severn Trent Laboratories

4955 Yarrow Street Arvada, CO 80002

Client:

Severn Trent Laboratories

Workorder ID: Okeechobee 1011

Received:

10/05/07 11:00

Dear Melissa Wright;

Analytical results presented in this report have been reviewed for compliance with the HARBOR BRANCH Environmental Laboratories Inc.'s (HBEL) Quality Systems Manual and have been determined to meet applicable Method guidelines and Standards referenced in the July 2003 National Environmental Laboratory Accreditation Program (NELAP) Quality Manual unless otherwise noted. The Analytical Results within these report pages reflect the values obtained from fests performed on Samples As Received by the laboratory unless indicated differently.

FDOH Safe Drinking Water Act. Clean Water Act and RCRA Certification #'s: 96080, E83509, E85370, E84418

Questions regarding this report should be directed to the Report Signatory at (772) 465-2400, Ext. 285 referencing the HBEL Workorder ID [Number].

Respectfully submitted,

Cindy Cromer

Technical Director or Designee

Note: This report is not to be copied, except in full, without the expressed written consent of the HARBOR BRANCH Environmental Laboratories, Inc.

5600 US 1 North Fort Pierce, FL 34946 FDOH # E96080

Printed: 10/10/07

4155 St. Johns Pkwy Suite 1300 Sanford, FL 32771 FDOH # E83509

HARBOR BRANCH ENVIRONMENTAL

4946 Fax: (772) 467-1584

Quality Control Summary

Client:

Severn Trent Laboratories

Workorder ID: Okeechobee 1011

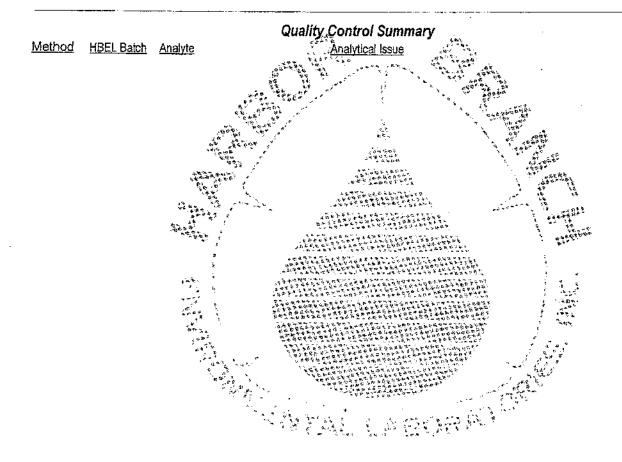
Received:

10/05/07 11:00

[2029042]

MB=Method Blank LCS=Laboratory Control Sample LCSD=Laboratory Control Sample Duplicate MS=Matrix Spike MSD=Matrix Spike Duplicate DUP=Sample Duplicate

HBEL Sample

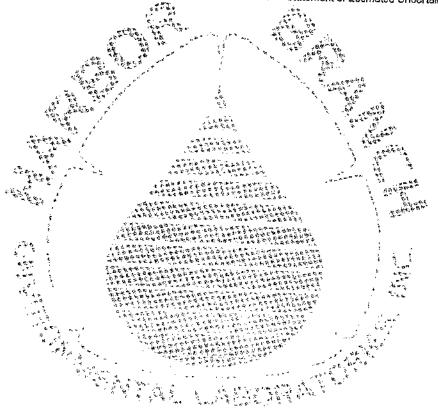

Method Narratives (If Applicable)

<u>Number</u>

Sample ID

Analytical Method

Description


HARBOR BRANCH ENVIRONMENTAL LABORATORIES, INC.

CERTIFICATE OF ANALYSIS [2029042]

Client: Severn Trent Laboratories

Workorder ID: Okeechobee 1011

Parameter	Qualifier Result	Units	Reporting Limit	Method	Laboratory Batch	Prep Date/Time	Analyzed Date/Time	Analyst	Lab ID
Laboratory ID: Sample ID:	2029042001 Pond 1D	•		Sampled: 10/05/07 Matrix: Water		Received			
Chlorophyll a	0.026	ma/L	0.00050	1		reported on			
Fecal Coliform	22	CFU/100mL	1.0		MICR12242	10/5/07 13:35		-	E96080
1_					MICH 12242		10/5/07 11:40	TR	E96080

Custody Record Chain of

Severn Trent Laboratories, Inc. SEVERN STL TRENT

13y 3.2°C

Special Instructions/ Conditions of Receipt 2008202 (A fee may be assessed if samples are retained Months tonger than 1 month) Тіте Chain of Custody Number É Page __ Date Lab Number Costs PIENCE Date | 10 | 05 | 2007 Telephone Number (Area Code)/Fax Number

Wells a. Wild Wolf Stand Contact
Site Contact

Analysis (Atlach list if
A 1812 Analysis (Atlach list if Disposal By Lab Archive For __ ्रे जनाप्यमपुराष्ट्र भारताष्ट्राणाच्या 7 > OG Requirements (Specify) \b\An\\ HOş\ı Project Manager Mollssa Wrigh Containers & Preservatives 3. Received By юн EONH *05ZF Seldun N Return To Cilent 0011 WHITE - Returned to Client with Report, CANARY - Stays with the Sample; PINK - Field Co. Sample Disposal nos Time Matrix Carrier/Waybill Number 289 Telephone Numbe Tax (1) Other___ Ŋ, Unknown वक्षेत्र जिल्ला oate O Time St Days Date Project Name and Location (State) 1/20 CMOLDRE 10(1 Skin Irritant 🗆 🔲 Poison B RSFAMERICA DENVEY 7-2626 ☐ 14 Days Sample I.D. No. and Description (Containers for each sample may be combined on one lina) 4955 Yarow St. ☐ 7 Days T. Relinquished By

2. Relinquished By

2. Relinquished By 🔲 Flammable POND ID 24 Hours 🔲 48 Hours Possible Hazard Identification Turn Around Time Required ☐ Non-Hazard 3. Resinquished By DISTRIBU Comments 4124 (0807) Address

					1	FIELD I	INFO	\overline{RM}	4 TIC	N FOI	RM		····	1	
	Site Name		ECHO	855		This	Waste Man	agement Fi	eld Inform	stion Form is Re	sanired		1	***	AE MUNAGEMEN
	Site	111	Sa	mple		t subm	itted along v	with the Cha	in of Custo	to any State For dy Forms that acc	company the sa	Form is mple	Labyratory	Jsc Only/E	ah ID:
	No.:			oint: [F]C	Sample I		inets (i.e. w	ith the cente	r that is ren	urned to the labor	ratory).		12+	JUGC	251-00
Ì	0 E	Lod	507	09	100	1+	4		1			-	4-1 1		1-11
	PURGE INFO	PURGE 1		PUR	GE TIME	ELAP	SED HR	· ·	WATE	R VOL IN C	ASING A	ACTUAI	. VOL PUR	SED -J	WELL VOLS
		(MM DD Now: For Passis		(240) ploce "Water Vo	Hr Chick) Lin Cusing"	(h and Well Vols Pu	tsonin) t <i>ged" w/</i> W	ner Vot in T	nhing/Flow	(Gallons) Cell and Tubins	of Flow Cell Vot	c Parand	(Gallons)	weard Gu	
	Z E	Putging and San	pling Equipm	ient Dedicate	d:					re:[Y] or [A				(cuele or	
ļ	SAN	Purging Device	-	A- Submer B-Peristah		p D-Bailer E-Pision Pi	mo	r	ilter Typ			Disposable	C-Vacuum		
	PURGE/SAMPLE EQUIPMENT	Sampling Device		C-QED BI				•	mei výp	·	B-Pressure A-Teffon		X-Other C-PVC	X-O	
-		X-Other:	<u> </u>					Sample	Tuhe Typ	e:	B-Stainless	Steel	D-Polyprop		
	WELL DATA	Well Elevation (at TOC)			J(fi/ms/)	Depth 10 Water (from TOC)	r (DTW)			(6)	Groundwat (site datum,				(fl/mst)
	/ELL	Total Well Dept (from TOC)	th	11	F .	Stick Up (from ground cle	everion)	1	4		Casing	11.	Casing	1	
\vdash		Note: Total Well L	Depth, Stick Up	o, Cosing Id. eic.	are optiona	I and can be from I	issorica) de	ita. unle <u>s</u> s r	equired by 3] (ft) Site/Permit, Wels	ID Elevation, DT	(in) W, and Gr	Materia oundwater Elec	ation mus	be current.
		ample Time 100 Hr Clock)	Rate/Unit	pH (std)		ductance (SC/EC nhos/em @ 25 °C)	•	emp. ("C)		Turbidity (mu)	D.C (mg/L -		eH/ORF (mV)	,	DTW (ft)
	 		1'	"									3		
		1	2"		2"					1 1					
1,5	-		3"		3"										
8			4"	`	4"					<u> </u>	1		ļ į		
DAT		1								[(j ·					
STABILIZATION DATA (Ontional)		1							i i				1		
ZAT			1	1 ;											
BEL		1				1 1 1	1				;				
STA		-					1	j					*************************************		
	Li			1 1		_ j_								\exists	
	note Pe	sted range for 3 conse	nis:	+/- 0.2		+/- 3%					+/- 109		+/- 25 nsV		Stabilize
		ization Data Fields reiPermitiSire. If a		(i.e. complete s v other Electron	tabilization ic format is	teadings for pare used, fill in final re	meters req adings belo	uired by W w and subm	M. Site, or it electronic	State). These for data separately	ields can be u	sed where te fields a	four (4) field n	ueasurem Nature	ents are required parate sheet or for
DATA	S.	AMPLE DATE (MM DD YY)		pH (std)	CON	DUCTANCE	TE	MP.	TUF	RBIDITY	DO		eH/ORP	Othe	er:
E(1) (11/1	مامحاما	7	500		os/cm @ 25°C)	براجه ا	المأد		(ntu) 	img/L-pi	-	2 (mV)	Units 	;
된	Finsi I	Field Readings are	required (i.e.	record field m	easurement	s, final stabilized	eadings, p	assive som	ple reading	es before sampli	ng for all field) [] i paramen	ers required by	State/Pe	rmit/Site.
	Samp	ie Appearance:	CUE	L				DINE			or:CTTBCX				
		her Conditions (_		Speed: _	10-	S_ Outloo	ok: <u>CLO</u>	<u>R & </u>	Preci	oitation:	Y or (A)
	Specil	Nc Comments (i	ncluding pu	rge/well volu	me całcui:	ations if require	:d):		<u></u>						· · · · · · ·
		···	 -								-				
<u> </u>			-	<u>_</u>						<u>-</u>				 ,	
§ -			<u> </u>												
						······································									<u> </u>
: .	namis	u that come to		<u></u> .	· · · · · ·			<u>. </u>	_						
ı		y that sampling p									mpler, all sh	ould sign):		Ī
	<u>/</u>	<u>, 05, 07</u>	126	NERM	LEAN	WARL)	Bu	<u>Ka</u>	me	سم		P	Ro-To	ef	
		Date	Name				Signature		····			Compa	· 		
		·		DIŞTRIBUŢJ	WHIT	FE/ORIGINAL - S	tays with S	ample, YE	LLOW - R	eturned to Clien	t, PINK - Frei	Сору		STL-8	029WM R: 12/00

Facility GMS#:		Sampling Date/Time:	10/5/2007 / 9:00:00AM
Test Site ID#:	20368	Report Period	2007 / 4
WACS#:	70436		year / qtr
Well Name:	POND1D	Well Pur	ged (Y/N): N
Classification of Groundwater:	GII	Well Typ	DE: () Background
•			() Detection
Groundwater Elevation (NGVD):			() Compliance
or (MSL):			(X) Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Anal Date/		Analysis Results/Units	Detection Limit/Units
01097	Antimony	z	N	6010	10/15/07	22:28	< 6.0 ug/L	6.0 ug/L
01002	Arsenic	z	N	6020	10/12/07	16:12	1.9 ug/L	5.0 ug/L
01007	Barium	z	N	6010	10/15/07	22:28	4.2 ug/L	100 ug/L
01012	Beryllium .	z	N	6010	10/15/07	22:28	< 4.0 ug/L	4.0 ug/L
01027	Cadmium	z	N	6010	10/15/07	22:28	< 5.0 ug/L	5.0 ug/L
01034	Chromium	Z	N	6010	10/15/07	22:28	< 10 ng/L	10 ug/L
01037	Cobalt ?	z	N	6010	10/15/07	22:28	< 50 ug/L	50 ug/L
01042	Copper	z	N	6010	10/15/07	22:28	< 25 ug/L	25 ug/L
01045	Iron	z	N	6010	10/15/07	22:28	49 ug/L	50 ug/L
01051	Lead	z	N	6010	10/15/07	22:28	< 3.0 ug/L	3.0 ug/L
71900	Mercury	z	N	7470	10/10/07	12:35	< 0.20 ug/L	0.20 ug/L
01067	Nickel	z	N	6010	10/15/07	22:28	< 40 ug/L	40 ug/L
01147	Selenium	z	N	6010	10/15/07	22:28	< 5.0 ug/L	5.0 ug/L
01077	Silver	z	N	6010	10/15/07	22:28	< 10 ug/L	10 ug/L
00929	Sodium	z	N	6010	10/15/07	22:28	20 mg/L	1 mg/L
01059	Thallium	z	N	6020	10/12/07	16:12	< 2.0 ug/L	2.0 ug/L
01087	Vanadium	z	N	6010	10/15/07	22:28	< 49 ug/L	49 ug/L
01092	Zinc	z	N	6010	10/15/07	22:28	4.6 ug/L	20 ug/L
00610	Ammonia as N	z	א	350.1	10/11/07	11:09	0.050 mg/L	0.050 mg/L
00310	Biochemical Oxygen Demand	z	N	405.1	10/06/07	11:30	<2.0 mg/L	2.0 mg/L
00340	Chemical Oxygen Demand (COD)	z	N	410.4	10/08/07	08:00	68 mg/L	50 mg/L
000094	Field Conductivity	z	N	120.1	10/05/07	00:00	433 umhos/cm	l umhos/cm
000299	Field Dissolved Oxygen	z	א	360.1	10/05/07	00:00	3.5 mg/L	0.5 mg/L
000406	Field pH	z	א	150.1	10/05/07	00:00	5.98 Std	0.1 Std
00010	Field Temperature	z	N	170.1	10/05/07	00:00	28.4 deg C	ļ
82078	Field Turbidity	z	N	180.1	10/05/07	00:00	5.4 NTU	-
00900	Hardness, as CaCO3	z	N	130.2	10/09/07	12:00	160 mg/L	2.0 mg/L
30620	Nitrate	Z	N	300.0	10/06/07	11:28	0.046 mg/L	0.50 mg/L
00630	Nitrate-Nitrite	z	N	353.2	10/11/07	11:09	< 0.10 mg/L	0.10 mg/L
000403	pH	z	N	150.1	10/06/07	11:32	7.7 Std	0.10 Std
070300	Total Dissolved Solids	z	N	160.i	10/11/07	15:20	310 mg/L	10 mg/L
00625	Total Kjeldahl Nitrogen	z	И	351.2	10/11/07	09:00	1.0 mg/L	0.50 mg/L

ility GMS#:	<u> </u>	Sampling Date/Time:	10/5/2007 / 9:00:00AM
Test Site ID#:	20368	Report Period	2007 / 4
WACS#:	70436		year / qtr
Well Name:	POND1D	Well Purg	ed (Y/N): N
Classification of Groundwater:	GII	Welf Type	() Background
Groundwater Elevation (NGVD): or (MSL):			() Detection () Compliance
OI (PISE).			(X) Other

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analysis Date/Time	Analysis Results/Units	Detection Limit/Units
00680	Total Organic Carbon	Z	N	415.1	10/11/07 20:00	22 mg/L	i.0 mg/L
00665	Total phosphorus	z	N	365.3 (Phospho		0.023 mg/L	0.10 mg/L
00530	Total Suspended Solids	z	N	160.2	10/10/07 16:30	3.2 mg/L	4.0 mg/L
00619	Un-ionized Ammonia	z	N	DEP-SOP	10/17/07 ' 09:00	< 0.050 mg/L	0.050 mg/L
038437	1,2-Dibromo-3-chloropropane (DBCP)	z	N	504.1 (Drinkin	10/11/07 12:24	< 0.20 ug/L	0.20 ug/L
77651	I,2-Dibromoethane (EDB)	z	N	504.1 (Drinkin	10/11/07 12:24	< 0.020 ug/L	0.020 ug/L
77562	1,1,1,2-Tetrachloroethane	Z	N	8260	10/13/07 02:22	< 1.0 ug/L	1.0 ug/L
34506	1,1,1-Trichloroethane	Z	N	8260	10/13/07 02:22	< 1.0 ug/L	1.0 ug/L
	1,1,2,2-Tetrachloroethane	z	N	8260	10/13/07 02:22	< 1.0 ug/L	1 -
34511	1,1,2-Trichloroethane	z	N	8260	10/13/07 02:22	<1.0 ug/L	1.0 ug/L 1.0 ug/L
34496	1,1-Dichloroethane	z	N	8260	10/13/07 02:22	<1.0 ug/L	1.0 ug/L
34501	1,1-Dichloroethene	z	N	8260	10/13/07 02:22	<1.0 ng/L	1.0 ug/L
77443	1,2,3-Trichloropropane	z	N	8260	10/13/07 02:22	<1.0 ug/L	1.0 ug/L
3453 6	1,2-Dichlorobenzene	z	N	8260	10/13/07 02:22	< 1.0 ug/L	1.0 ug/L
34531	1,2-Dichloroethane	z	N	8260	10/13/07 02:22	< 1.0 ug/L	1.0 ug/L
4541	1,2-Dichloropropane	z	N	8260	10/13/07 02:22	<1.0 ug/L	1.0 ug/L
4571	I,4-Dichlorobenzene	z	N	8260	10/13/07 02:22	< 1.0 ug/L	1.0 ug/L
1595	2-Butanone (MEK)	z	N	8260	10/13/07 02:22	<10 ug/L	1
77103	2-Hexanone	z	א	8260	10/13/07 02:22	< 10 ug/L	10 ug/L
1596	4-Methyl-2-pentanone	z	N	8260	10/13/07 02:22	<10 ug/L	10 ug/L
1552	Acetone	Z	l	8260	10/13/07 02:22	< 10 ug/L	10 ug/L
4215	Acrylonitrile	z	1		10/13/07 02:22	< 10 ug/L	10 ug/L
4030	Benzene	z			10/13/07 02:22	< 1.0 ug/L	10 ug/L
73085	Bromochloromethane	z	- 1		10/13/07 02:22	< 1.0 ug/L	1.0 ug/L
101	Bromodichloromethane	z	- [1	10/13/07 02:22	< 1.0 ug/L	1.0 ug/L
2104	Bromoform	Z			10/13/07 02:22	< 1.0 ug/L	1.0 ug/L
413	Bromomethane		i		10/13/07 02:22	< 1.0 ug/L	1.0 ug/L
7041	Carbon disulfide	2	ļ	ļ	10/13/07 02:22	<1.0 ug/L	1.0 ug/L
102	Carbon tetrachloride	z			10/13/07 02:22	<1.0 ug/L	1.0 ug/L
	Chlorobenzene	z	1	1	10/13/07 02:22	< 1.0 ug/L	1.0 ug/L
3 f	Chloroethane	z			10/13/07 02:22	< 1.0 ug/L	1.0 ug/L
106	Chloroform	z	1		0/13/07 02:22	< 1.0 ug/L	1.0 ug/L 1.0 ug/L

Facility GMS#:		Sampling Date/Time:	10/5/2007 / 9:00:00AM	_
Test Site ID#:	20368	Report Period	2007 / 4	
WACS#:	70436		year / qtr	
Well Name:	POND1D	Well Purg	ged (Y/N): N	
Classification of Groundwater:	GII	Well Type	e: () Background	
			() Detection	
Groundwater Elevation (NGVD):			() Compliance	
or (MSL):			(X) Other	

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Analysis Date/Time	Analysis Results/Units	Detection Limit/Units
34418	Chloromethane	z	N	8260	10/13/07 02:22	< 1.0 ug/L	1.0 ug/L
77093	cis-1,2-Dichloroethene	z	N	8260	10/13/07 02:22	< 1.0 ug/L	1.0 ug/L
34704	cis-1,3-Dichloropropene	z	И	8260	10/13/07 02:22	< 1.0 ug/L	1.0 ug/L
32105	Dibromochloromethane	z	N	8260	10/13/07 02:22	< 1.0 ug/L -	1.0 ug/L
77596	Dibromomethane	z	N	8260	10/13/07 02:22	< 1.0 ug/L	1.0 ug/L
4371	Ethylbenzene	z	N	8260	10/13/07 02:22	< 1.0 ug/L	1.0 ug/L
7424	lodomethane	z	N	8260	10/13/07 02:22	< 1.0 ug/L	1.0 ug/1.
4423	Methylene chloride	z	И	8260	10/13/07 02:22	< 1.0 ug/L	1.0 ug/L
7128	Styrene	z	N	8260	10/13/07 02:22	< 1.0 ug/L	I.0 ug/L
4475	Tetrachloroethene	z	N	8260	10/13/07 02:22	< 1.0 ug/L	1.0 ug/L
8131	Toluene	z	N	8260	10/13/07 02:22	< 1.0 ug/L	1.0 ug/L
4546	trans-1,2-Dichloroethene	Z	N	8260	10/13/07 02:22	< 1.0 ug/L	1.0 ng/L
4699	trans-1,3-Dichloropropene	Z	И	8260	10/13/07 02:22	< 1.0 ug/L	1.0 ug/L
49263	trans-1,4-Dichloro-2-butene	z	N	8260	10/13/07 02:22	< 1.0 ug/L	1.0 ug/L
9180	Trichloroethene	z	И	8260	10/13/07 02:22	< 1.0 ug/L	1.0 ug/L
4488	Trichlorofluoromethane	Z	N	8260	10/13/07 02:22	< 1.0 ug/L	1.0 ug/L
7057	Vinyl acetate	z	N	8260	10/13/07 02:22	< 1.0 ug/L	1.0 ng/L
9175	Vinyl chloride	z	N	8260	10/13/07 02:22	< 1.0 ng/L	1.0 ug/L
1551	Xylenes (total)	z	N	8260	10/13/07 02:22	< 1.0 ug/L	1.0 ug/L
						·	

tility GMS#:		Sampling Date/	Time:	10)/5/	2007 /12:00:00AM	
Test Site ID#:		Report Period				2007 / 4	
WACS#:	70436					year / qtr	
Well Name:	TRIP BLANK 1		Well Purged ((Y/N)	: N		
Classification of Groundwater:	GII	v	Well Type:	()	Background	
				()	Detection	
Groundwater Elevation (NGVD):				()	Compliance	
or (MSL):				()	Other	

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	4	lysis Time	Analysis Results/Units	Detection Limit/Units
77562	1,1,1,2-Tetrachlomethane		N	8260	10/13/07	02:43	< 1.0 ug/L	1.0 ug/L
34506	1,1,1-Trichloroethane		N	8260	10/13/07	02:43	< 1.0 ug/L	1.0 ug/L
34516	I,1,2,2-Tetrachloroethane		N	8260	10/13/07	02:43	< 1.0 ng/L	1.0 ug/L
34511	1,1,2-Trichloroethane		א	8260	10/13/07	02:43	<1.0 ug/L	1.0 ug/L
34496	1,1-Dichloroethane		N	8260	10/13/07	02:43	< 1.0 ug/L	1.0 ug/L
34501	1,1-Dichloroethene		א	8260	10/13/07	02;43	< 1.0 ug/L	1,0 ug/L
77443	1,2,3-Trichloropropane		N	8260	10/13/07	02:43	< 1.0 ug/L	1.0 ug/L
34536	I,2-Dichlorobenzene		א	8260	10/13/07	02:43	< 1.0 ug/L	1.0 ug/L
	1,2-Dichlomethane		N	8260	10/13/07	02:43	< 1.0 ug/L	I.O ug/L
24541	1,2-Dichloropropane		N	8260	10/13/07	02:43	< 1.0 ug/L	1.0 ug/L
34571	1,4-Dichlorobenzene	į	N	8260	10/13/07	02:43	< 1.0 ug/L	1.0 ug/L
81595	2-Butanone (MEK)		N	8260	10/13/07	02:43	< 10 ug/L	10 ug/L
077103	2-Нехапоне	+	N	8260	10/13/07	02:43	< 10 ug/L	IO ng/L
81596	4-Methyl-2-pentanone		N	8260	10/13/07	02:43	< 10 ug/L	10 ug/L
81552	Acetone		N	8260	10/13/07	02:43	< 10 ug/L	10 ug/L
34215	Acrylonitrile		N	8260	10/13/07	02:43	< 10 ug/L	10 ug/L
34030	Benzene		N	8260	10/13/07	02:43	< 1.0 ug/L	1.0 ug/L
073085	Bromochloromethane		N	8260	10/13/07	02:43	< 1.0 ug/L	1.0 ug/L
32101	Bromodichloromethane		N	8260	10/13/07	02:43	< 1.0 ug/L	1.0 ug/L
32104	Вготоботп		N	8260	10/13/07	02:43	< 1.0 ug/L	1.0 ug/L
34413	Bromomethane		א	8260	10/13/07	02:43	< 1.0 ag/L	1.0 ug/L
077041	Carbon disulfide		N	8260	10/13/07	02:43	< 1.0 ug/L	1.0 ug/L
32102	Carbon tetrachloride		N	8260	10/13/07	02:43	< 1.0 ug/L	1.0 ug/L
34301	Chlorobenzene	[[N	8260	10/13/07	02:43	< 1.0 ug/L	1.0 ug/L
34311	Chloroethane]	N	8260	10/13/07	02:43	< 1.0 ug/L	1.0 ug/L
32106	Chloroform		N	8260	10/13/07	02:43	< 1.0 ug/L	1.0 ug/L
34418	Chloromethane]	N	8260	10/13/07	02:43	< 1.0 ug/L	1.0 ng/L
77093	cis-1,2-Dichloroethene		N	8260	10/13/07	02:43	< 1.0 ug/L	1.0 ug/L
34704	cis-1,3-Dichloropropene		N	8260	10/13/07	02:43	< 1.0 ug/L	1.0 ug/L
-	Dibromechloromethane		И	8260	10/13/07	02:43	< 1.0 ug/L	1.0 ug/L
77.	Dibromomethane		N	8260	10/13/07	02:43	< 1.0 ug/L	1.0 ug/L
34371	Ethylbenzene		N	8260	10/13/07	02:43	< 1.0 ng/L	1.0 ug/L

Facility GMS#:		Sampling Date/Time:	10)/5/	2007 /12:00:00AM	
Test Site ID#:		Report Period			2007 / 4	
WACS#:	70436				year / qtr	
Well Name:	TRIP BLANK 1	Well Purg	ged (Y/N)): N	I	
Classification of Groundwater:	GII	Well Typ	e: ()	Background	
			()	Detection	
Groundwater Elevation (NGVD):			()	Compliance	
or (MSL):			()	Other	

Storet Code	Parameter Monitored	Sampling Method	Filtered Y/N	Analysis Method	Anaiy Date/1		Analysis Results/Units	Detection Limit/Units
77424	Iodomethane		N	8260	10/13/07	02:43	< 1.0 ug/L	1.0 ug/L
34423	Methylene chloride		N	8260	10/13/07	02:43	< 1.0 ug/L	1.0 ug/L
77128	Styrene		N	8260	10/13/07	02:43	< 1.0 ug/L	1.0 ug/L
34475	Tetrachloroethene		N	8260 -	10/13/07	02:43	< i.0 ug/L	1.0 ug/L
78131	Toluene		N	8260	10/13/07	02:43	< 1.0 ug/L	1.0 ug/L
34546	trans-1,2-Dichloroethene		N .	8260	10/13/07	02:43	< 1.0 ug/L	1.0 ng/L
4699	trans-1,3-Dichloropropene		N	8260	10/13/07	02:43	< 1.0 ug/L	1.0 ug/L
49263	trans-1,4-Dichloro-2-butene	İ	N	8260	10/13/07	02:43	< 1.0 ug/L	1.0 ug/L
9180	Trichloroethene		N	8260	10/13/07	02:43	< 1.0 ug/L	1.0 ng/L
4488	Trichlorofluoromethane		N	8260	10/13/07	02:43	< 1.0 ug/L	i.0 ug/L
7057	Vinyl acetate		N	8260	10/13/07	02:43	< 1.0 ug/L	1.0 ug/L
9175	Vinyl chloride		N	8260	10/13/07	02:43	< 1.0 ug/L	i.0 ug/L
1551	Xylenes (total)		N	8260	10/13/07	02:43	< 1.0 ng/L	1.0 ug/L