WELL AND AQUIFER PERFORMANCE TESTS

CITY OF RIVIERA BEACH WELLS #851 AND #852

PROJECT NO. 84-1032-3

BARKER, OSHA & ANDERSON, INC.

Professional Engineers
"We Specialize in Futures"

PALM BEACH COUNTY OFFICE

860 U.S. Highway One Suite 202 North Palm Beach, Florida 33408 305/626-4653

BREVARD COUNTY OFFICE

100 Parnell Street Suite C Post Office Box 1352 Merritt Island, Florida 32952 305/452-9293

WELL AND AQUIFER PERFORMANCE TESTS

CITY OF RIVIERA BEACH WELLS #851 AND #852

PROJECT NO. 84-1032-3

DECEMBER 23,1985

WELL AND AQUIFER PERFORMANCE TESTS

CITY OF RIVIERA BEACH WELLS #851 AND #852

CONTENTS

SUBJECT	PAGE
Location Plan	. 1
WELL #851 WELL AND AQUIFER PERFORMANCE TESTS	
Step-drawdown Test Data Well Performance Analyis Well #851A APT Data Well #45 APT Data Well #852 APT Data Well #45 APT Analysis Well #852 APT Analysis Step-drawdown APT Analysis Distance-drawdown APT Analysis	2 3 4 5 6 7 8 9
WELL #852 WELL AND AQUIFER PERFORMANCE TESTS	
Step-drawdown Test Data Well Performance Analysis Well #851A APT Data Well # 45 APT Data Well #851 APT Data Well #85 APT Data Well 45 APT Analysis Well #851 APT Analysis Step-drawdown APT Analysis Distance-drawdown APT Analysis	11 12 13 14 15 16 17 18
LITHOLOGIC LOG, WELL #851A LITHOLOGIC LOG, WELL #852A ELECTRIC LOGS, WELL #851A ELECTRIC LOGS, WELL #852A TIME-DRAWDOWN TYPE CURVES DISTANCE-DRAWDOWN TYPE CURVE	20 21 22 23 24 25

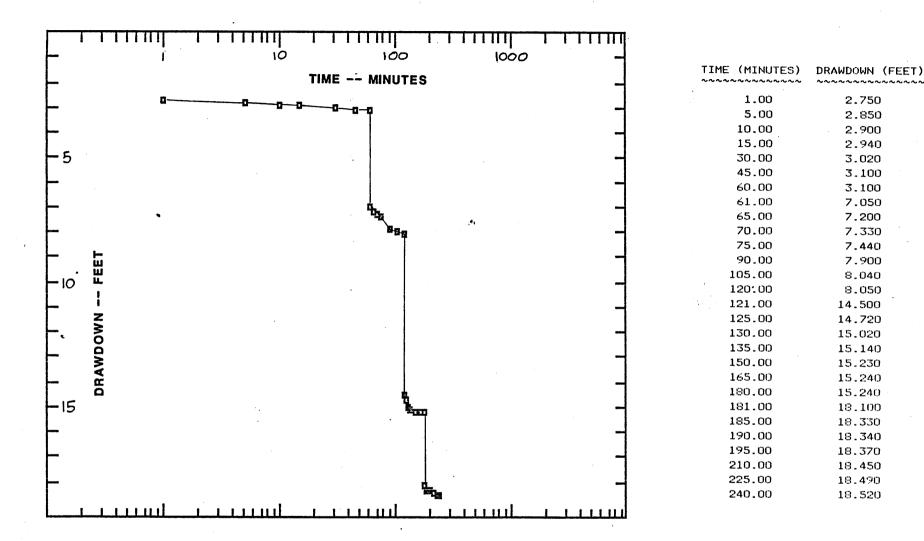
	(WELL #852
	0	T.H. #852A
	4281	
	0	OBS. WELL #45
ET	5881	
TREE	•	WELL #851 T.H. #851A
S		2,000

무

951

NOTES:

Wells #851 & #852 are screened between 70' and 130' depth with .040" slot/12" dia. (60' long) screens set in 24" diameter gravel-packed boreholes.

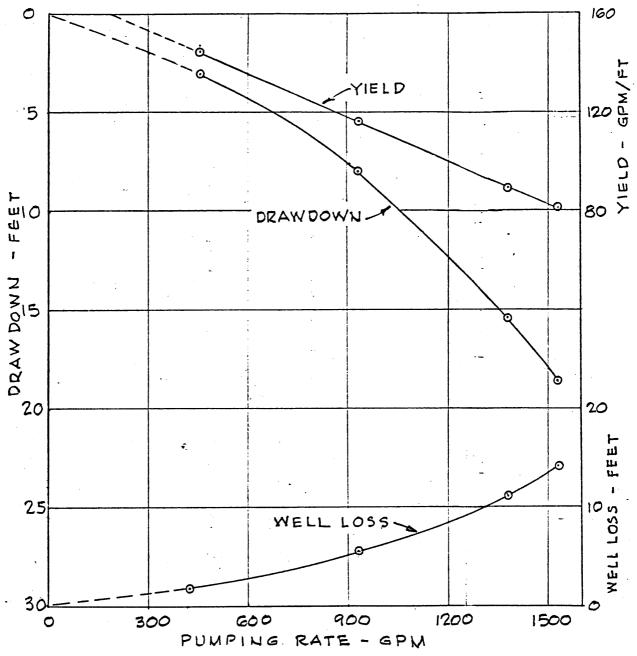

Observation Well #45 is screened between 70' and 130' depth with .030" slot/2" dia. (60' long) screen set in 8" diameter gravel-packed borehole.

Test Holes #852A & 851A are screened at 90 to 100 feet depth with .030" slot/2" dia., set in 8" diameter boreholes gravel-packed between 70 and 130 feet depth.

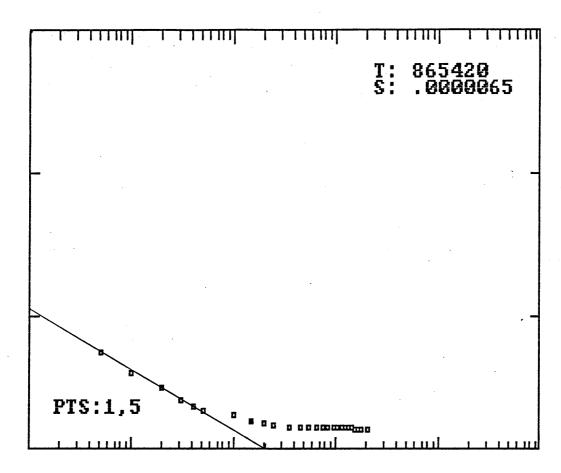
All wells are sealed with cement from surface to 70' depth.

LOCATION PLAN
(Not to scale)

MILITARY TRAIL



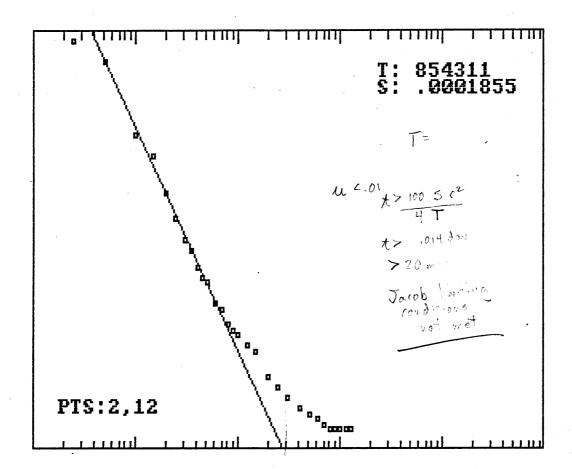
SEMI-LOGARITHMIC PLOT OF


STEP-DRAWDOWN TEST OF WELL #851 -- DECEMBER 11, 1985

PUMPING RATES

000-060 MINUTES -- 450 GPM 060-120 MINUTES -- 930 GPM 120-180 MINUTES -- 1380 GPM 180-240 MINUTES -- 1525 GPM

WELL # 851 PERFORMANCE ANALYSIS
BASED ON STEP-DRAW DOWN TEST 12-11-1985

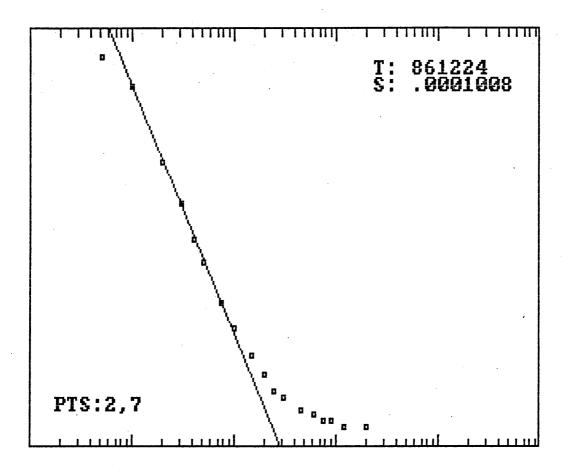

MICROCOMPUTER PROGRAM "THEISAG"

SEMILOGARITHMIC SOLUTION OF AGUIFER CONSTANTS -- TIME DRAWDOWN METHOD

PUMPING RATE:	1380 GPM -≛ DIS	TANCE TO OBSERVA	ATION WELL: 7.5	92 FEET
MEASUREMENTS:	TIME (MINUTES)	DRAWDOWN (FEET	r) ·	
~~~~~~~~~	~~~~~~~~~~	~~~~~~~~~~	~	
1	0.50	2.250		
2	1.00	2.390		
3	2.00	2.490		
4	3.00	2.590	•	
5	4.00	2.630		
6	5.00	2.660	•	
' 7	10.00	2.690		
8	15.00	2.730	**	
9	20.00	2.750		
10	25.00	2.760		
11	35.00	2.770		
12	45.00	2.770		
13	55.00	<b>2.770</b> .		
. 14	65.00	2.770		
15	75.00	2.770	·	
16	85.00	2.770		
17	95.00	2.770		
18	105.00 •	2.770		
19	115.00	2.780		
20	125.00	2.780		
21	135.00	2.780		
. 22	145.00	2.780		
23	155.00	2.790		
24	165.00	2.790		
25	175.00	2.790		
26	205.00	2.790		
POINTS USED IN	SOLUTION: 1 & 5	ZERO TIME:	0.00 MINUTES	

TIME-DRAWDOWN SEMILOGARITHMIC PLOT OF OBS. WELL #851A WITH WELL NO. 851 PUMPING AT 1380 GPM FOR 205 MINUTES.

SOLUTION: TRANSMISSIVITY = 865420 GAL/FT/DAY -- STORATIVITY = .0000065



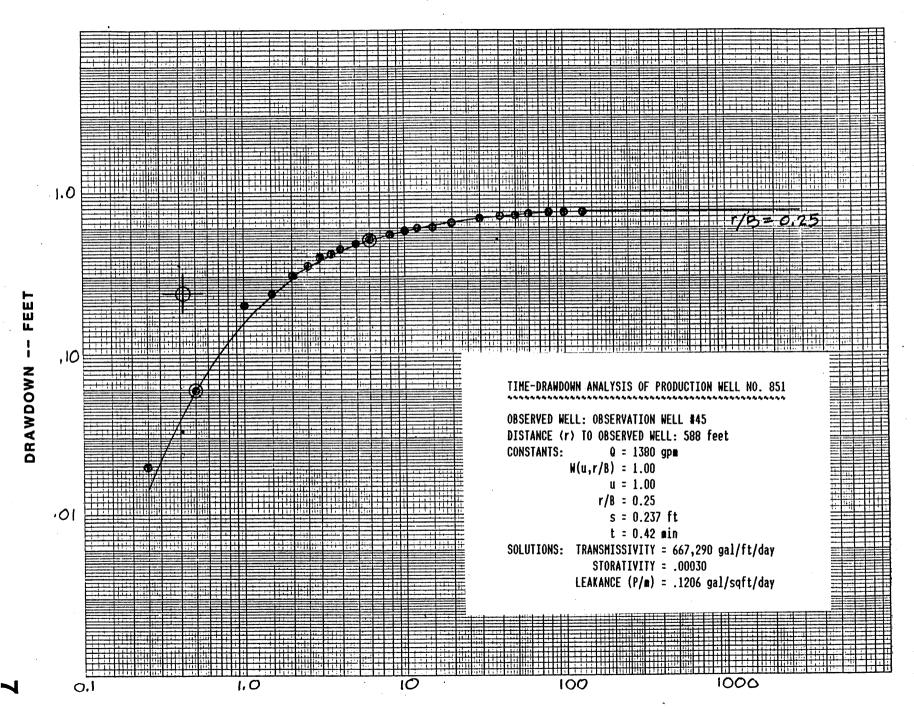

MICROCOMPUTER PROGRAM "THEISAG"
SEMILOGARITHMIC SOLUTION OF AQUIFER CONSTANTS -- TIME DRAWDOWN METHOD

PUMPING RATE: MEASUREMENTS:	TIME (MINUTES)	DRAWDOWN (FEET)	ION WELL: 589	FEET
1	0.25	0.020		
2	0.50	0.060		
3	1.00	0.200		
4	1.50	0.240		
5	2.00	0.310		
6	2.50	0.360		
、 フ	3.00	0.400		
8	3.50	0.420	**	
9	4.00	0.450		
. 10	4.50	0.470		
11	5.00	0.480		
	6.00	0.520		
13	7.00	0.530		
14	8.00	0.560		
15	9.00	0.570	•	
16 .	10.00	0.580		
17	12.50	0.600		
18	15.00	0.610		
19	20.00	0.660		
20	25.00	0.680		
21	30.00	0.700		
22	40.00	0.720		
23	50.00	0.730		
24	60.00	0.740		
25	70.00	0.750		
26	80.00	0.760		
27	90.00	0.760		
28	100.00	0.760		
29	115.00	0.760		
30	130.00	0.760		
POINTS USED IN	N SOLUTION: 2 & 12	ZERO TIME:	0.36 MINUTES	•

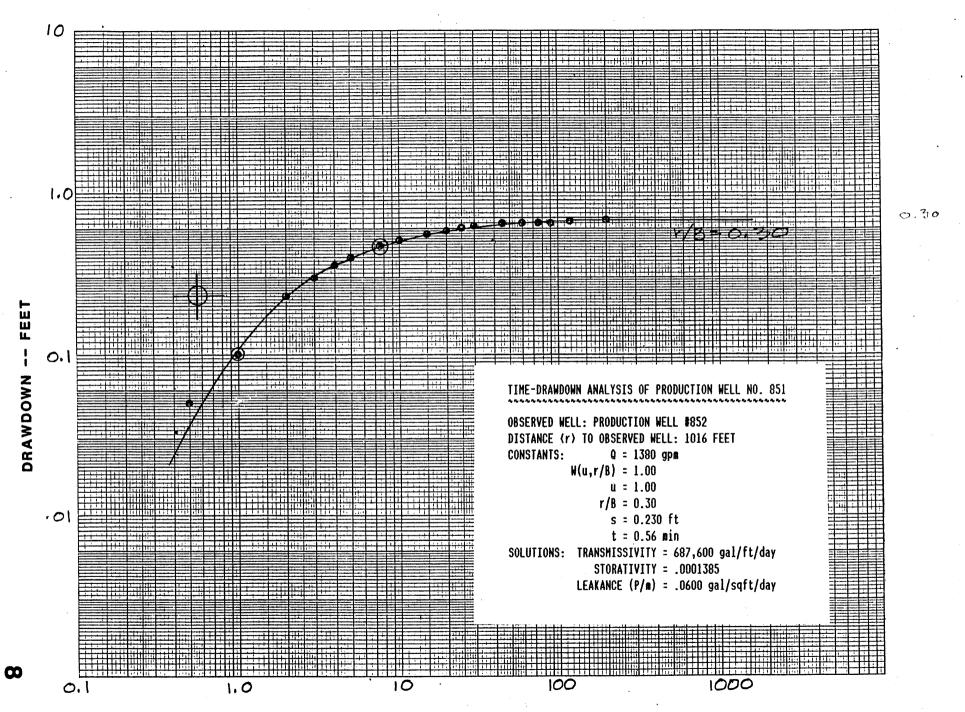
5

SOLUTION: TRANSMISSIVITY = 854311 GAL/FT/DAY -- STORATIVITY = .0001855

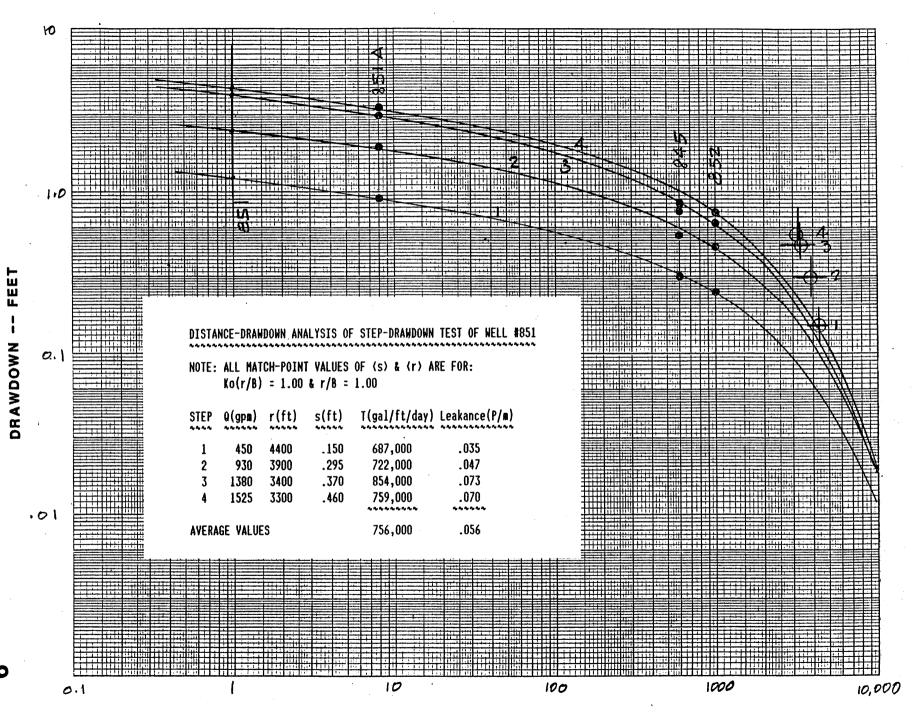


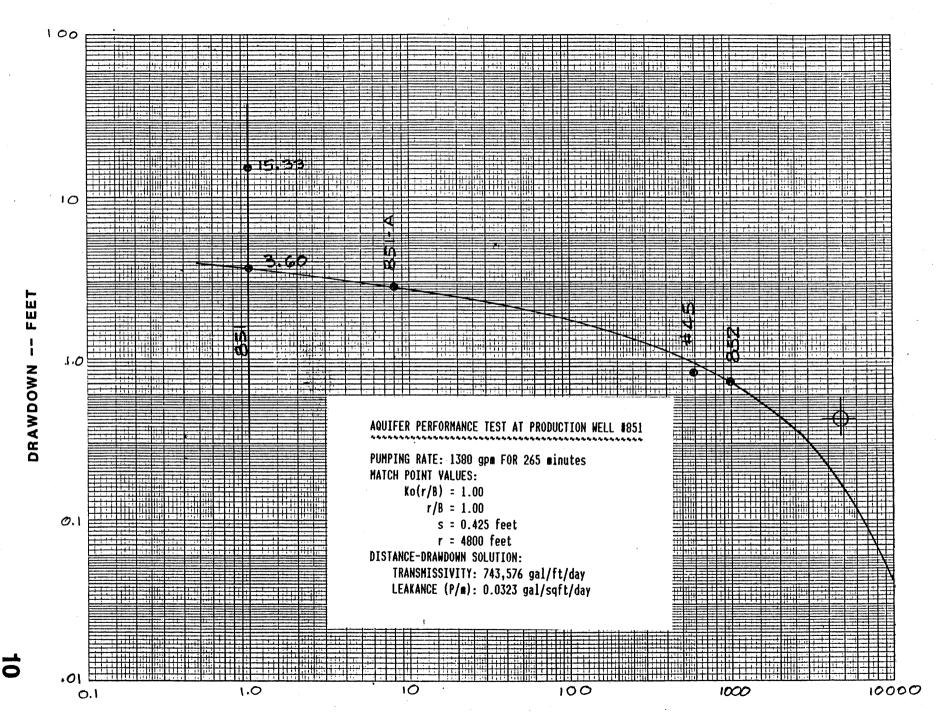

MICROCOMPUTER PROGRAM "THEISAQ"

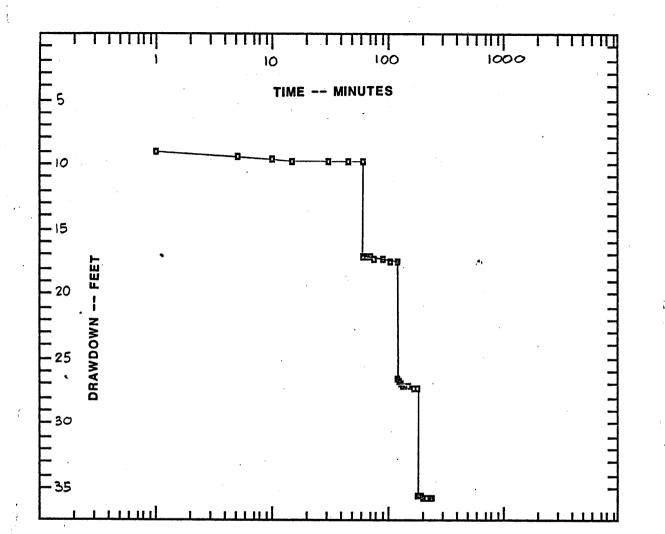
SEMILOGARITHMIC SOLUTION OF AQUIFER CONSTANTS -- TIME DRAWDOWN METHOD


PUMPING RATE:	1380 GPM DIST	ANCE TO OBSERVATION	WELL:	1016	FEET
MEASUREMENTS:	TIME (MINUTES)	DRAWDOWN (FEET)			
~~~~~~~~~	~~~~~~~~~~~	~~~~~~~~~~			
1	0.50	0.050			
2	1.00	0.100			
3	2.00	0.230			
4	3.00	0.300			
5	4.00	0.360			
6	5.00	0.400	•		
` 7	7.50	0.470			
8	10.00	0.510		••	
9	15.00	0.560			
10	20.00	0.590			
11	25.00	0.620			
12	30.00	0.630			
13	45.00	0.650			
14	60.00	0.660			
15	75.00	0.670			
16	90.00	0.670			
17	120.00	0.680			
18	200.00 •	0.680			

POINTS USED IN SOLUTION: 2 & 7 -- ZERO TIME: 0.58 MINUTES
SOLUTION: TRANSMISSIVITY = 861224 GAL/FT/DAY -- STORATIVITY = .0001008

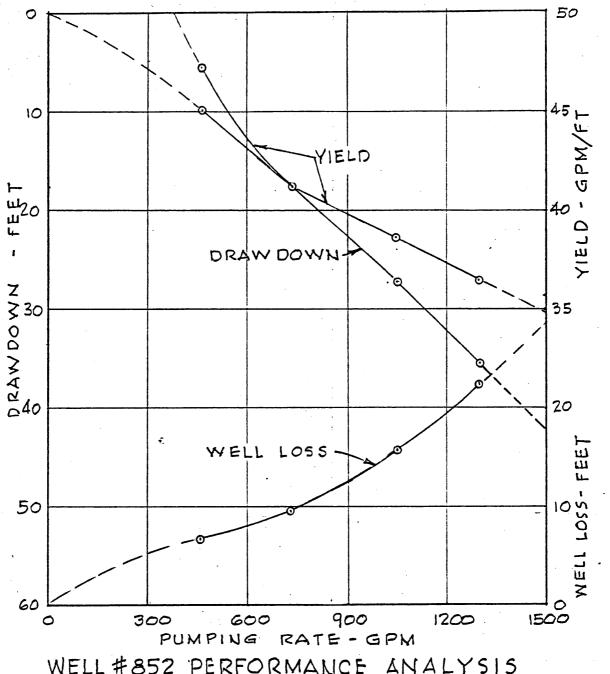

11MH -DRAWDOWN SEMILOGARITHMIC PLOT OF WELL #852 WITH WELL #851 PUMPING AT 1380 GPM FOR 200 MINUTES.


TIME OF PUMPING -- MINUTES


TIME OF PUMPING -- MINUTES

RADIUS FROM PUMPED WELL -- FEET

RADIUS FROM PUMPED WELL -- FEET


TIME (MINUTES)	DRAWDOWN (FEET)
1.00	9.040
5.00	9.400
10.00	9.650
15.00	9.780
30.00	9.810
45.00	9.810
60.00	9.810
61.00	17.050
65.00	17.100
70.00	17.200
75.00	17.250
90.00	17.350
105.00	17.480
120.00	17.510
121.00	26.600
125.00	26.700
130.00	26.850
135.00	27.040
150.00	27.180
165.00	27.220
180.00	27.220
181.00	35.500
185.00	35.560
190.00	35.660
195.00	35.700
210.00	35.750
225.00	35. <i>7</i> 80
240.00	35. <i>7</i> 80

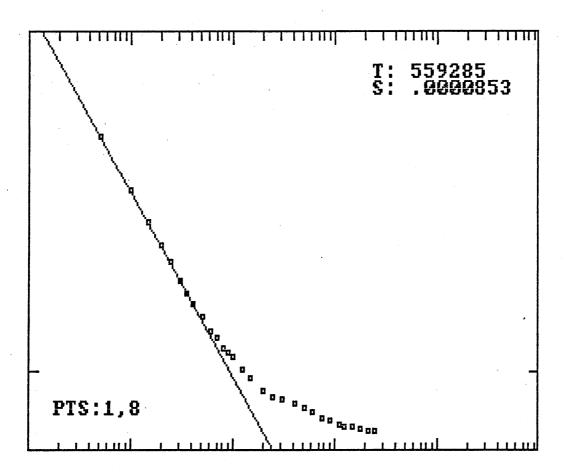
SEMI-LOGARITHMIC PLOT OF

STEP-DRAWDOWN TEST OF WELL #852 -- DECEMBER 16, 1985

PUMPING RATES

000-060 MINUTES -- 463 GPM 060-120 MINUTES -- 725 GPM 120-180 MINUTES -- 1050 GPM 180-240 MINUTES -- 1300 GPM

WELL #852 PERFORMANCE ANALYSIS
BASED ON STEP-DRAW DOWN TEST 12-16-1965

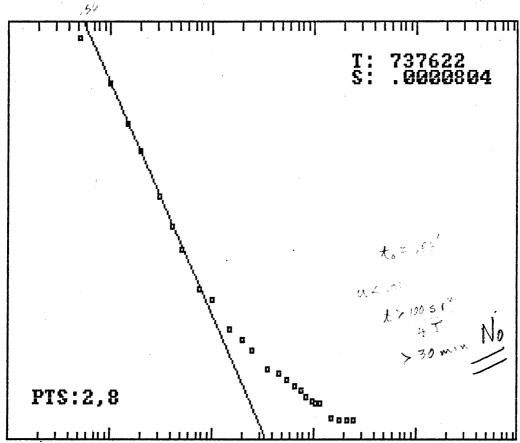

MICROCOMPUTER PROGRAM "THEISAG"
SEMILOGARITHMIC SOLUTION OF AQUIFER CONSTANTS -- TIME DRAWDOWN METHOD

PUMPING RATE: 1150 GPM -- DISTANCE TO OBSERVATION WELL: 8.05 FEET
MEASUREMENTS: TIME (MINUTES) DRAWDOWN (FEET)

1 0.75 6.850
2 1.50 7.310

i	0.75	6.850	
2	1.50	7.310	
3	2.00	7.470	
4	3.00	7.610	
5	4.00	7.700	
, 6	5.00	7.780	
7	10.00	7.875	
8 .	15.00	7.935	
. 9	20.00	7.960	
10	25.00	8.060	
11	32.00	8.070	
12	45.00	8.090	
13	60.00	8.100	
14	80.00	8.110	
15	90.00	8.120	
16	105.00	8.130	
17	120.00	8.120	
18	135.00	8.130	
19	165.00	8.135	
20	180.00	8.130	
21	195.00	8.135	
22	210.00	8.130	
23	225.00	8.125	
24	235.00	8.135	
25	250.00	8.130	
26	250.00	8.130	

POINTS USED IN SOLUTION: 3 & 7 -- ZERO TIME: 0.00 MINUTES SOLUTION: TRANSMISSIVITY = 523723 GAL/FT/DAY -- STORATIVITY = .0000000

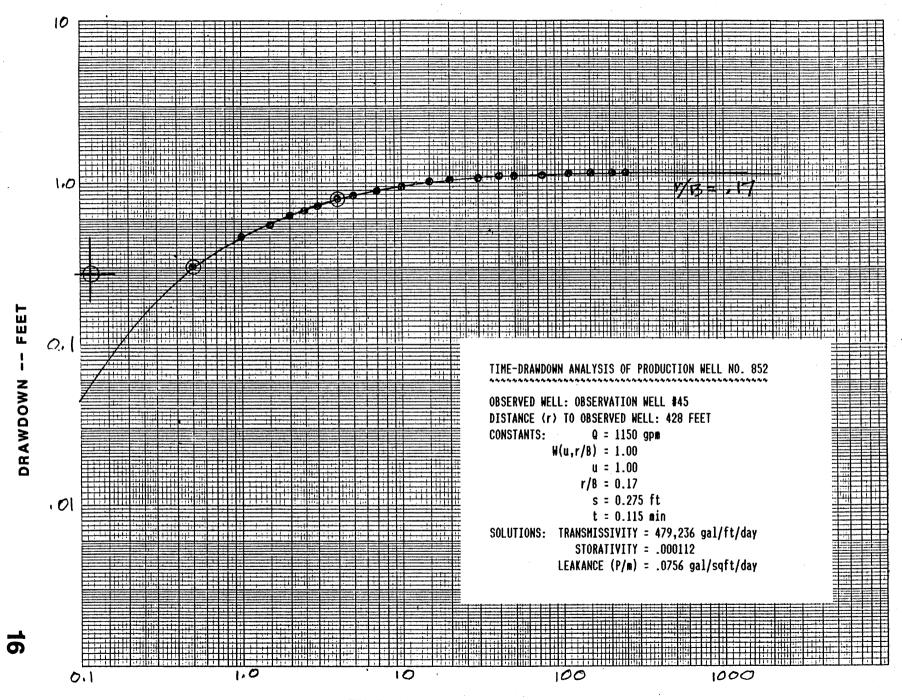


MICROCOMPUTER PROGRAM "THEISAQ"

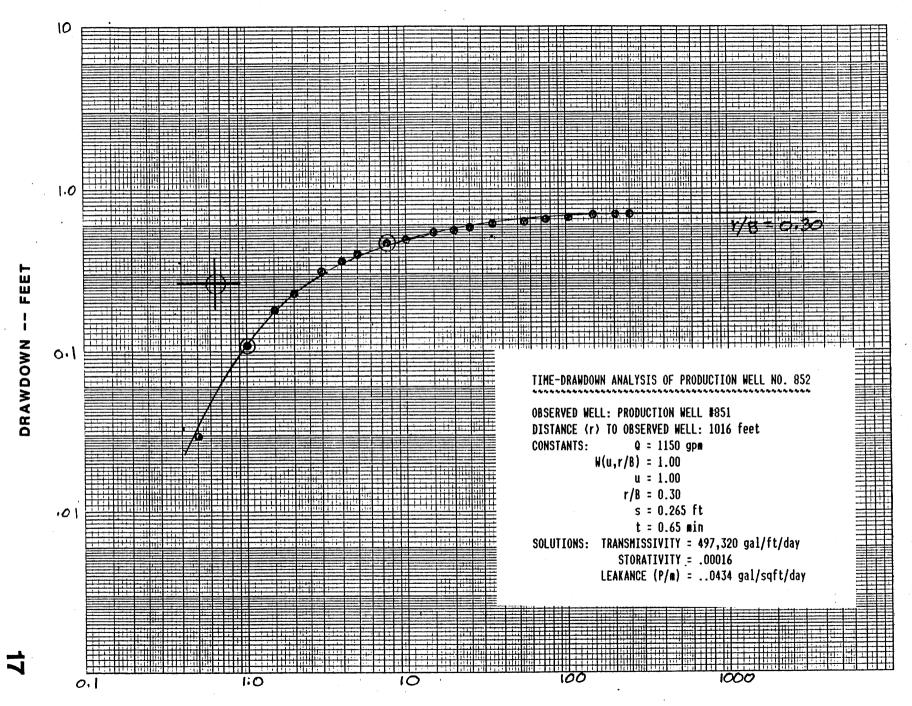
SEMILOGARITHMIC SOLUTION OF AQUIFER CONSTANTS -- TIME DRAWDOWN METHOD

PUMPING RATE:	1150 GPM DIST	TANCE TO OBSERVATION WE	ELL: 428 FEET
MEASUREMENTS:	TIME (MINUTES)	DRAWDOWN (FEET)	
~~~~~~~	~~~~~~~~~		
1	0.50	0.310	
2	1.00	0.470	
. 3	1.50	0.560	
4	2.00	0.630	;
5	2.50	0.680	
6	3.00	0.730	
` 7	3.50	0.770	•
8	4.00	0.800	
. 9	5.00	0.840	
10	6.00	0.880	
11	7.00	0.900	
12	8.00	0.930	· · · · · ·
13	9.00	0.940 -	
14	10.00	0.955	
15	12.50	0.990	
16	15.00	1.015	
17	20.00	1.050	
18	25.00	1.070	
19	30.00	1.075	
20	40.00	1.090	
21	50.00	1.100	
22	60.00	1.115	
23	75.00	1.130	
24	90.00	1.140	
25	110.00	1.150	
26	125.00	1.155	
27	150.00	1.160	
28	180.00	1.165	
29	210.00	1.170	
30	250.00	1.170	

POINTS USED IN SOLUTION: 1 & 8 -- ZERO TIME: 0.13 MINUTES
SOLUTION: TRANSMISSIVITY = 559285 GAL/FT/DAY -- STORATIVITY = .0000853

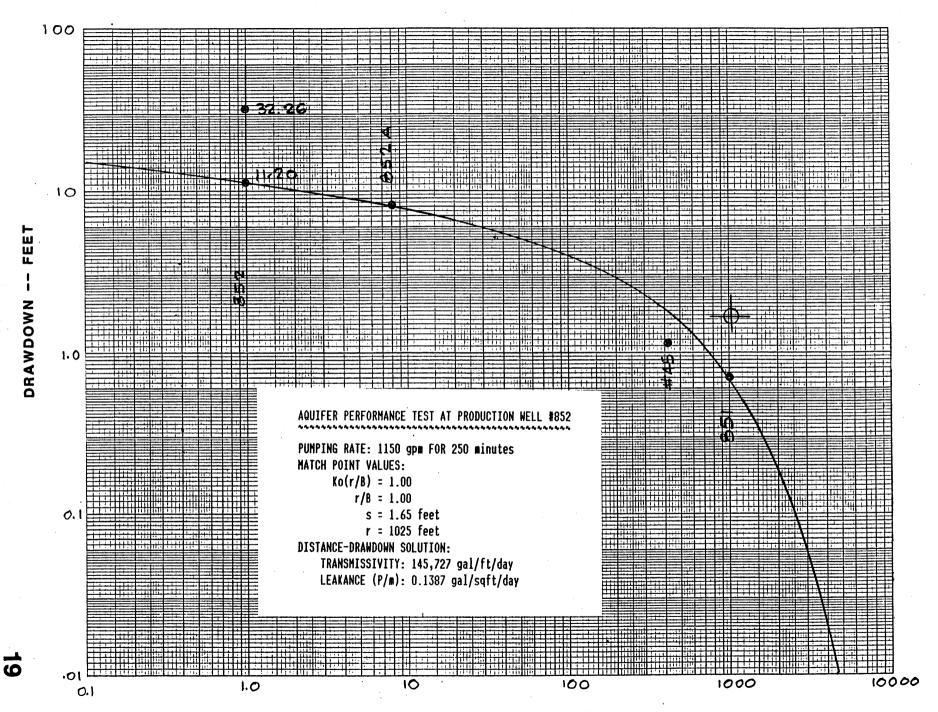



MICROCOMPUTER PROGRAM "THEISAG"
SEMILOGARITHMIC SOLUTION OF AQUIFER CONSTANTS -- TIME DRAWDOWN METHOD

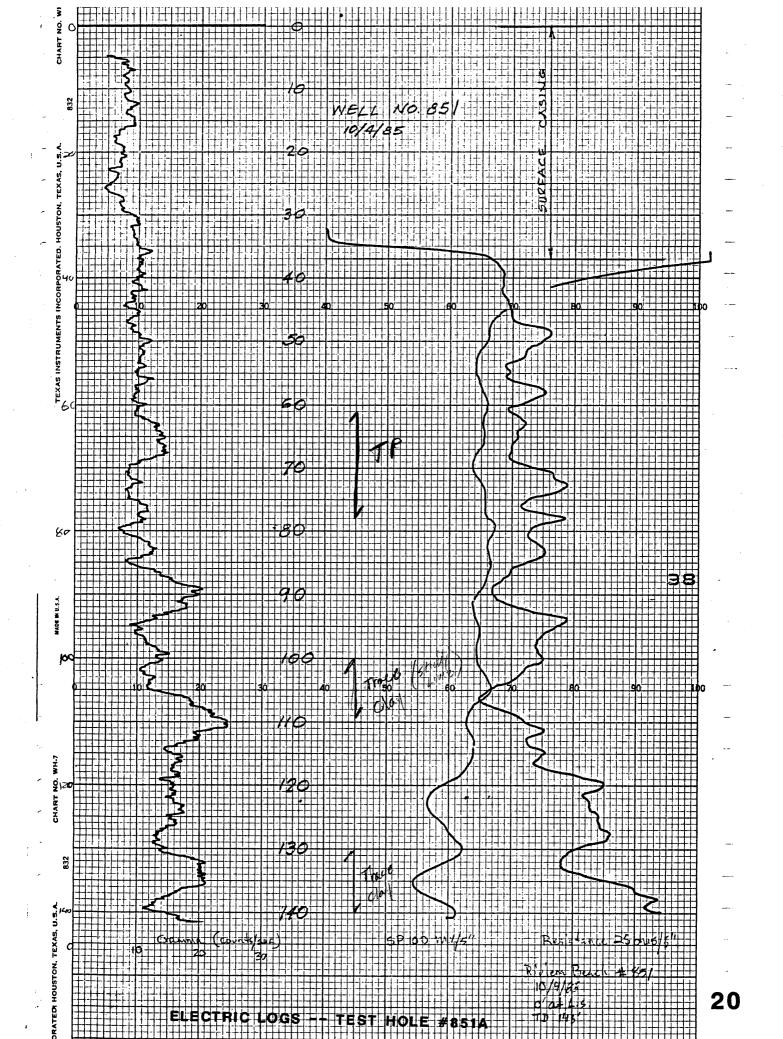

PUMPING RATE: 1150 GPM 🍜 DISTANCE TO OBSERVATION WELL: 1016 FEET MEASURÉMENTS: TIME (MINUTES) DRAWDOWN (FEET) .1 0.50 0.030 2 0.110 1.00 1.50 0.180 2.00 0.230 3.00 0.310 4.00 0.360 0.400 5.00 0.470 7.50 10.00 0.490 10 15.00 0.540 11 20.00 0.560 12 25.00 0.580 35.00 13 0.610 14 45.00 0.620 15 55.00 0.630 65.00 0.640 16 17 75.00 0.650 18 85.00 ' 0.660 19 95.00 0.665 20 105.00 0.670 21 115.00 0.670 22 150.00 0.695 23 180.00 0.700 24 210.00 0.700 250.00 0.700

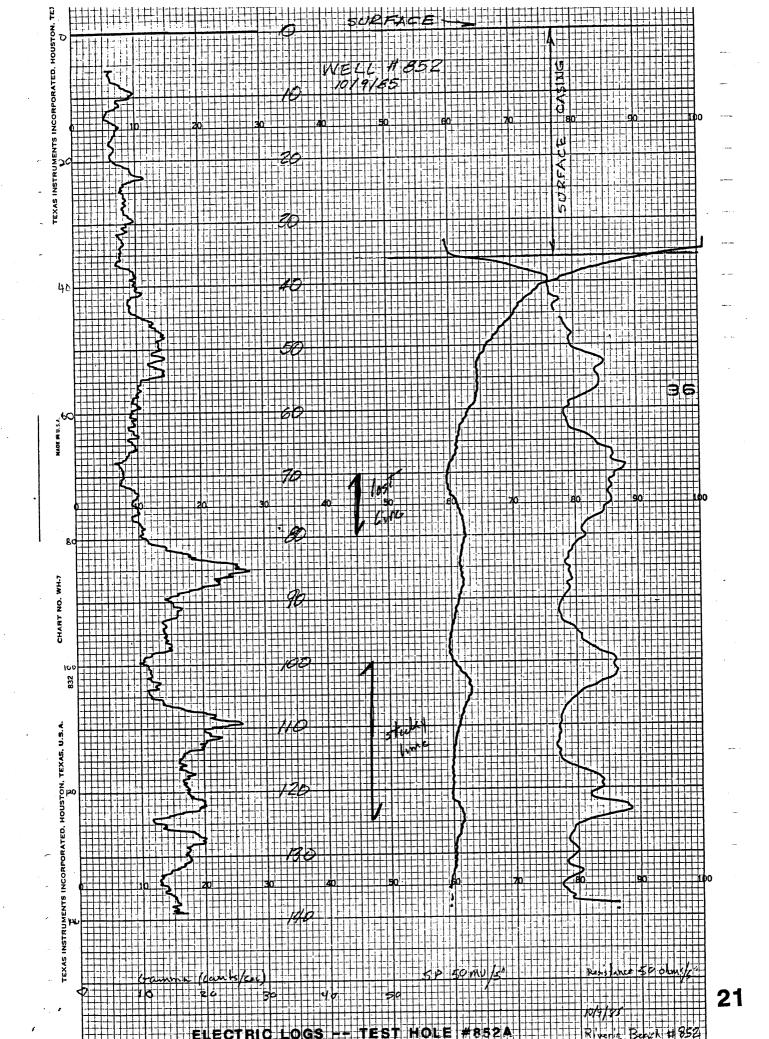
POINTS USED IN SOLUTION: 2 & 8 -- ZERO TIME: 0.54 MINUTES
SOLUTION: TRANSMISSIVITY = 737622 GAL/FT/DAY -- STORATIVITY = .0000804

TIME-DRAWDOWN SEMILOGARITHMIC PLOT AT WELL #851 WITH WELL #852 PUMPING AT  $1150~\mathrm{GPM}$  FOR 250 MINUTES.




TIME OF PUMPING -- MINUTES





TIME OF PUMPING -- MINUTES

RADIUS FROM PUMPED WELL -- FEET



RADIUS FROM PUMPED WELL -- FEET





WELL # 851

Date: 10-4-85

## WELL LOG

Ov	vner	CITY OF RIVIERA BEACH 2.	Locati	on4	45 TH ST
Ty	/pe Const	. MUD ROTARY 4.	Casing		
Şc	creen, Gr	ravel, Etc	······································		
To	otal Dept	th <u>147</u> 7. Jet Head		. 8. S	tatic Level
om	То	Formation	From	То	Formation
7	10	TOP SOIL & SAND	120	130	MED SANDSTONE AND
Ö	20	SUGAR SAND			LIME STONE
0	30	SAND AND SHELL	130	140	MED SANDSTONE UN
B	40	SHELL WY TRACE SAND			TRACE CLAY & SHELL
0	48	SHELL AND SANDSTONE	140	147	MED SANDSTONE
8	58	MED SAND STONE			
8	61	HARD SANDSTONE			
/ 、		SANDSTONE WY SHELL			•
	70	(STARIED FLUID LOSS)			
0	78	MED HARD SANDSTONE			
8	785	CAVITY (LOST CIRCULATION	)		
85	90	MED. GRAINY SANDSTONE			
0	100	MED SANDSTONE			·
00	110	MED SOFT SANDSTONE			
		WY TRACE CLAY & SHELL			
10	120	MEO SANDSTONE AND			
		LIMESTONE WY TRACE SHELL			

10. Iron____

Total Chlorides (ppm)____

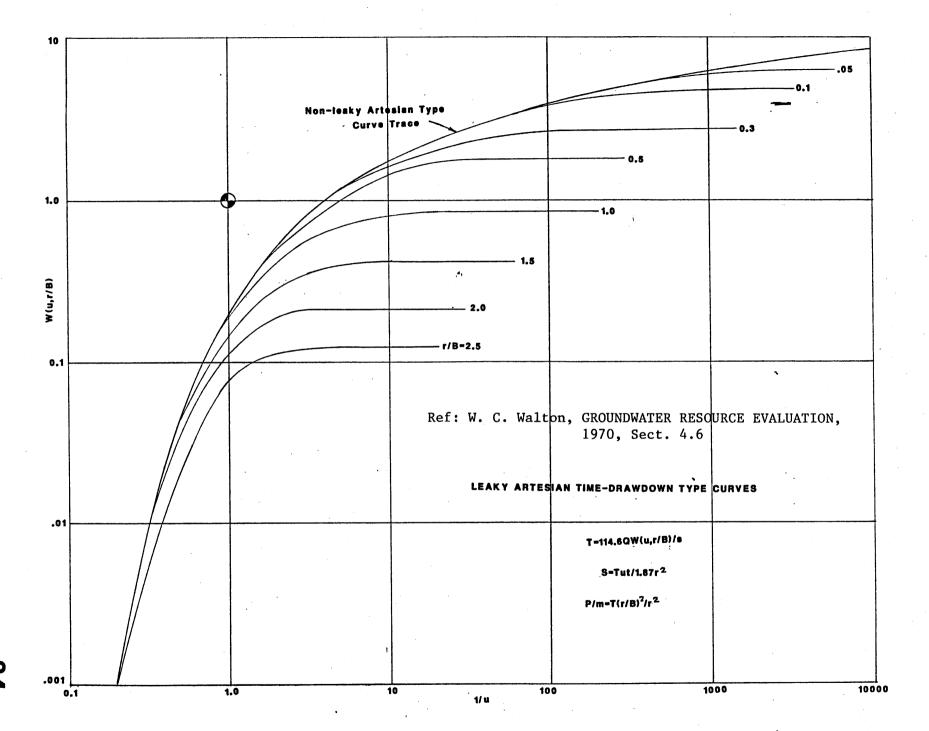
marks:

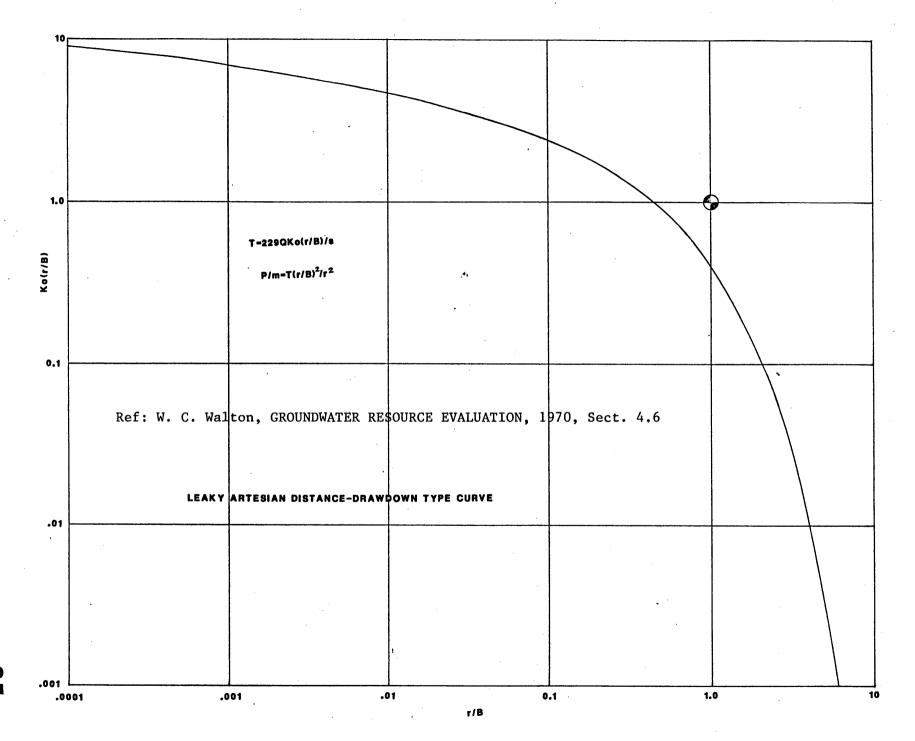
Driller (s):

11. Ph_____ 12. Hardness____

# 852

Date:


## WELL LOG


1. 0	wner	CITY OF RIVIERA BEACH 2.	Locati	on <u></u> 4	5 TH ST.
3. T	ype Cons	t. MUD ROTARY 4.	Casing		
5. S	creen, G	ravel, Etc	<del>~ ^ </del>		
6. To	otal Dep	th 7. Jet Head	:	8. S	tatic Level
From	То	Formation	From	To	Formation
0	10	TOP SOIL Y SAND SUGAR SAND	120	125	SOFT SANDSTONE
20	30	SAND AND SHELL			STICKY LIME & SAN
30	40	SHELL & SANDSTONE	125	130	HARD SANDSTONE
40	50	SANDSTONE WI SHELL	130	140	SOFT- MED SANDSTO
<i>5</i> 0	60	MED SANDSTONE WY SHELL			WY SAND AND SHELL
66	70	MED. SANDSTONE LY SHELL	140	150	MED SANDSTONE W/
70	80	MED - HARD SANDSTONE			SHELL
90	90	MED SANDSTONE W/ TRACE OF SHELL		·	• · · · · · · · · · · · · · · · · · · ·
90	100	MED SAUDSTONE Ly			
		TRACE COURSE SAND	a .		
		AND SHELL			4.
100	110	SOFT SANDSTONE W			
		STICKY LIME & SHELL			
110	150	STICKY LIME & SHELL  SOFT SANDSTONE W/  COURSE SAND AND			
		COURSE SAND AND			
		STICKY LINE			
9. To	tal Chlo	orides (ppm) 10. Iron	11.	. Ph	12. Hardness

Remarks: LOST FLUID AT 70-80'

**23** 

Driller (s): JERRY R HICKMAN



