ROMP 25 LILY MONITOR WELL SITE

HARDEE COUNTY, FLORIDA

PHASE ONE

CORE DRILLING AND TESTING

Geohydrologic Data Section Resource Data Department Southwest Florida Water Management District September 1998

ROMP 25 LILY MONITOR WELL SITE HARDEE COUNTY, FLORIDA

PHASE ONE

CORE DRILLING AND TESTING

September 1998

The geological evaluations and interpretations contained in the ROMP 25 Core Drilling and Testing Report have been prepared by or approved by a certified Professional Geologist in the State of Florida, in accordance with Chapter 492, Florida Statutes.

Michael T. Gates
Professional Geologist
License No. PG 0001799

Date: <u>9-29- 98</u>

ROMP 25 LILY MONITOR WELL SITE HARDEE COUNTY, FLORIDA

PHASE ONE

CORE DRILLING AND TESTING

By Michael T. Gates

Contributing Field Geologist

Douglas H. Rappuhn

Southwest Florida Water Management District

Resource Data Department

Timothy De Foe, Director

Geohydrologic Data Section

S. Greg McQuown, Manager

Southwest Florida Water Management District 2379 Broad Street Brooksville, Florida 34609-6899

September 1998

TABLE OF CONTENTS

1.0 INTRODU	JCTION
2.0 SITE LOC	ATION
3.0 DATA CO	DLLECTION METHODS
3.1	LITHOLOGIC SAMPLING
3.2	GROUND-WATER SAMPLING
3.3	HYDRAULIC TESTING
3.4	GEOPHYSICAL LOGGING
4.0 GEOLOG	Y
4.1	STRATIGRAPHY
	4.1.1 Undifferentiated Surficial Deposits
	4.1.2 Peace River Formation
	4.1.3 Arcadia Formation
	4.1.4 Suwannee Limestone
	4.1.5 Ocala Limestone
	4.1.6 Avon Park Formation
5.0 HYDROI	OGY
5.1	SURFICIAL AQUIFER SYSTEM
5.2	INTERMEDIATE AQUIFER SYSTEM
5.3	UPPER FLORIDAN AQUIFER
6.0 GROUND	-WATER QUALITY
6.1	SURFICIAL AQUIFER SYSTEM
6.2	INTERMEDIATE AQUIFER SYSTEM
6.3	UPPER FLORIDAN AQUIFER
7.0 HYDRAU	LIC DATA 1
8.0 SUMMA	RY 1
O O DEFEDEN	ICES 1

FIGURES

- 1. Project Location Map.
- 2. Location Map.
- 3. Well Site Diagram.
- 4. Permanent Surficial Monitor Well As-Built Diagram (Former Auger Hole).
- 5. Wire Line Coring Diagram.
- 6. Temporary Suwannee/Arcadia Dual OB Well As-Built Diagram (Former Core Hole).
- 7. Wire Line Packer Diagram.
- 8. Wire Line Bailer Diagram.
- 9. Geophysical Logs Run During Coring.
- 10. Hydrogeology Diagram
- 11. Graph of Water Levels
- 12. Composite Potentiometric Surface of the Intermediate Aquifer May 1996.
- 13. Composite Potentiometric Surface of the Intermediate Aquifer September 1996.
- 14. Potentiometric Surface of the Upper Floridan Aquifer September 1995.
- 15. Potentiometric Surface of the Upper Floridan Aquifer May 1996.
- 16. Chloride, Sulfate and TDS Graph.

TABLES

- 1. Field Analyses of Groundwater Samples Collected During Coring (8" PVC casing 0-85' bls).
- 2. Field Analyses of Groundwater Samples Collected During Coring (4" HW steel casing 0-305' bls).
- 3. Laboratory Analyses of Groundwater Samples Collected During (8" PVC casing 0-85' bls).
- 4. Laboratory Analyses of Groundwater Samples Collected During (4" HW steel casing 0-305' bls).

- 5. Falling Head Permeameter Results.
- 6. Water Levels During Coring.

APPENDIX

A. ROMP 25 Lithologic Log.

1.0 INTRODUCTION

The ROMP 25 (WRAP S-6) Lily well site is one of six Regional Observation and Monitor-Well Program (ROMP) well sites (ROMP 5, 9, 12, 13, 25, and TR4-1) constructed for the Southern Water Resource Assessment Project (SWRAP). The SWRAP is a long-term study of the ground-water systems in DeSoto County, Hardee County, and portions of Charlotte, Polk, and Sarasota Counties (Figure 1).

The ROMP 25 Well Site was obtained by the Southwest Florida Water Management District (SWFWMD) in February 1994 for construction of a multiple well monitor site. Drilling, testing, and monitor well construction at ROMP 25 was performed in phases. The data collected at ROMP 25 is presented in three phases: Phase One - Core Drilling and Testing, Phase Two - Exploratory Drilling, Testing and Monitor Well Construction, and Phase Three - Aquifer Performance Testing.

The first phase, wire-line coring from land surface to 1,048 feet below land surface (bls), began December 1995 and was completed in May 1996. The next phase of work, deep exploratory drilling (1,048 to 1,911 feet bls) began in August 1996. The deep exploratory drilling and two permanent monitor wells were completed in March 1997. Construction of the three remaining permanent monitor wells began in January 1998, and was completed in March 1998. The last phase of work, aquifer performance testing, is scheduled for the Spring of 1999. This report, **Phase One - Core Drilling and Testing**, presents the data collected during wire-line coring at ROMP 25.

2.0 SITE LOCATION

The ROMP 25 (WRAP S-6) Lily well site is located in Hardee County, southwest of Zolfo Springs, Florida (Figure 2). ROMP 25 is located on the south side of Roberts Road in the eastern three-quarters of the northeast quarter of Section 9, Township 36 South, Range 23 East at latitude 27° 21′ 59", longitude 82° 00′ 25.5" (Figure 3). Land surface elevation at the well site is approximately 85 feet above the National Geodetic Vertical Datum of 1929 (NGVD).

3.0 DATA COLLECTION METHODS

Hollow-stem auger, wire-line coring, and mud rotary drilling methods were used to collect lithologic and aqueous samples with depth. The hollow-stem auger method was used initially in the unconsolidated sediments. The wire-line coring method was employed after encountering competent limestone. The mud-rotary method was used to install casing at various locations in order to advance the core-hole. Groundwater samples were collected with a submersible pump and off-bottom packer or with a stainless steel bailer while advancing the core hole. All ground-water samples were collected in accordance with ROMP Water Quality Sampling Protocol.

3.1 LITHOLOGIC SAMPLING

Drilling at ROMP 25 during the coring phase of work was performed with the District-owned Central Mine Exploration (CME) 75 core drilling rig. Continuous core was collected from land surface to 1,048 feet bls from December 1995 to May 1996.

Hollow-stem augers and a split spoon sampler were used to collect continuous lithologic samples from land surface to 40 feet bls. Limestone lenses were encountered at 40 feet bls terminating the auger hole. The auger hole was converted to a permanent surficial aquifer monitor well (Figure 4) and a new core hole was started on-site.

A new 13.5-inch diameter borehole was drilled to 85 feet bls using the mud-rotary method. Eight-inch diameter polyvinyl-chloride (PVC) was installed to 85 feet bls and grouted in place. Four inch diameter HW steel casing was installed inside the eight inch PVC casing and seated into the grout at 77 feet bls. Wire-line coring began at 77 feet bls inside the four inch steel HW casing. Three inch outside diameter (OD) NQ core rods were used to collect the approximate two inch diameter core. The core was collected continuously and retrieved at five foot intervals. Figure 5 presents a diagram of the wire line core drilling configuration. Coring continued to 330 feet bls, then the four inch HW casing was removed and a six inch borehole was advanced from 85 feet bls to 305 feet bls. The HW casing was installed to

2

305 feet bls and wire-line coring resumed at 330 feet bls. Coring continued from 330 ft bls and was terminated at 1,048 feet bls in the Avon Park Formation. The core hole was then converted to a temporary dual zone (Suwannee Limestone/Arcadia Formation) observation well (Figure 6).

3.2 GROUND-WATER SAMPLING

During coring, groundwater samples were collected by packer testing and with a stainless steel bailer. The packer test samples were collected with a 2-inch submersible pump installed inside the core rods after installing the off-bottom, inflatable packer. The packer allowed the collection of discrete water quality samples and measurement of head levels. Figure 7 presents a diagram of the wire-line packer. The bailer samples were collected by lowering the stainless steel bailer through the core rods to the sample interval and retrieving. Figure 8 presents a diagram of the bailer.

Split-ground-water samples were collected at 20 feet to 40 feet intervals from land surface to 1,048 feet bls while advancing the core-hole. One sample was analyzed in the field for temperature, specific conductance, pH, chloride, sulfate, and density. The other sample was delivered to the District Environmental Chemistry Laboratory for more extensive analyses. Chain-of-Custody forms were used to track the samples. Results of the ground-water samples analyses are presented in Section 6.0. Tables 1 and 2 present the results of the samples analyzed in the field. Tables 3 and 4 present the results of the samples analyzed by the District laboratory.

3.3 HYDRAULIC TESTING

Several samples of the lithologic core were sent to the Florida Geological Survey for vertical permeability and porosity analysis. The Florida Geological Survey performed falling head permeameter tests on 17 core samples selected from ROMP 25. The samples (2-inch diameter by 3 to 6 inches in length) were selected from permeable and confining units within Intermediate and Upper Floridan aquifers at ROMP 25. Table 5 presents the hydraulic values for the core samples.

3

3.4 GEOPHYSICAL LOGGING

Borehole geophysical logs were collected at ROMP 25 during various stages of core drilling and well construction. Geophysical logs are used to delineate stratigraphic units, characterize water quality, and to calculate amounts of well construction materials. Figure 9 presents the geophysical logs run during the core drilling phase. All logs were run with SWFWMD's digital geophysical logging equipment and are archived with the ROMP 25 File of Record.

4.0 GEOLOGY

The ROMP 25 well site is located on the Wicomico terrace, within the DeSoto Plain physiographic province, a division of the Mid-Peninsular zone of the Florida Peninsula (White, 1970). The well site is within the SWFWMD Peace River Basin and is located west of Horse Creek, a tributary of the Peace River. The well site elevation is approximately 85 feet NGVD.

4.1 STRATIGRAPHY

The ROMP 25 well site stratigraphy was defined from lithologic descriptions of the core samples collected during core drilling from land surface to 1,048 feet bls and from the drill cuttings collected during rotary drilling from 1,048 feet bls to 1,911 feet bls (Phase II - Exploratory Drilling). Figure 10 depicts the geology and hydrogeology described at the ROMP 25 well site. The lithologic log for ROMP 25 is presented in Appendix A.

4.1.1 Undifferentiated Surficial Deposits

The Pliocene to Recent age undifferentiated surficial deposits is the uppermost geologic unit at the ROMP 25 well site. This unit is comprised of fine to medium grained, unconsolidated, quartz sand, with some interbedded silt, clay and organic matter. The undifferentiated surficial deposits extend from land surface to 45 feet bls.

4

4.1.2 Peace River Formation

The Peace River Formation is a lower Pliocene to Miocene age marine siliciclastic unit that lies unconformably below the undifferentiated surficial deposits. The Peace River Formation is part of the Hawthorn Group sediments described by Scott (1988). In the area of ROMP 25 the Peace River Formation is comprised of a thick sequence of inter-layered siliciclastics and carbonates extending from 45 feet bls to 107 feet bls. Quartz sand, sandy fossiliferous limestone, and interbedded phosphatic sand and clay make up the numerous beds within this unit.

4.1.3 Arcadia Formation

The Arcadia Formation, middle-Miocene in age underlies the Peace River Formation and extends from 107 feet bls to 308 feet bls. The Arcadia Formation as described by Scott (1988), consists primarily of limestone and dolostone with some quartz sand, clay and phosphate grains. The Arcadia Formation, part of the Hawthorn Group sediments, includes the Tampa and Nocatee members in some areas of South Florida. In the area of ROMP 25 neither of these members were described. The Arcadia Formation is characterized by moderately indurated calcarenite, with interbedded clay, quartz sand, phosphatic sand and gravel, and some thin chert and dolostone lenses.

4.1.4 Suwannee Limestone

The Suwannee Limestone is Oligocene in age and extends from 308 feet bls to 675 feet bls at the ROMP 25 well site. The Suwannee Limestone is distinguished from the overlying Arcadia Formation by the absence of phosphatic sediments. The Suwannee consists of a chalky, fossiliferous, calcarenite alternating with thin beds of clay and calcilutite. Permeable zones within the Suwannee are generally formed from fractures and fossil molds and casts. Mollusk and foraminifera molds are very common.

5

4.1.5 Ocala Limestone

Eocene in age, the Ocala Limestone extends from 675 feet bls to 976 feet bls at ROMP 25. The Ocala is a highly fossiliferous, fine-grained, poorly cemented shallow marine limestone. The limestone is predominantly a chalky, foraminiferal calcarenite or calcilutite with minor interbedded quartz sand and clay. Some thin dolostone lenses are also present. Common foraminifera include *Lepidocyclina sp.* and *Nummulites sp.* Pelecypods, gastropods, milliolids, and echinoids are also common. In the ROMP 25 area the Ocala Limestone is generally of low permeability.

4.1.6 Avon Park Formation

The Avon Park Formation is Eocene in age and extends from 976 feet bls to more than 1900 feet bls in the vicinity of ROMP 25. A thin bed of fine-grained, crystalline dolostone is present at the top of the Avon Park Formation near the Ocala Limestone contact. The Avon Park Formation is characterized by well indurated fossiliferous limestone and dolostone. The middle and lower sections of the unit are characterized by well developed secondary porosity features.

5.0 HYDROLOGY

The ROMP 25 well site hydrology was defined during initial wire-line coring and exploratory drilling. Aquifer systems were delineated from lithologic descriptions of permeable and non-permeable units, potentiometric levels, and water quality data collected during drilling. Changes in water levels were recorded while core drilling through the various aquifers. Table 6 and Figure 11 present the water level data.

5.1 SURFICIAL AQUIFER SYSTEM

The surficial aquifer system (SAS) is an unconfined aquifer that extends from land surface to

approximately 60 feet bls at the ROMP 25 well site. The SAS is comprised almost entirely of fine to medium grained quartz sands of the undifferentiated surficial deposits and Peace River Formation. The well sorted quartz sand, provide the high porosity and permeability of the SAS. The water level in the SAS ranges annually from two to five feet bls (83 feet to 80 feet NGVD) at ROMP 25. In March 1998 the water level of the surficial aquifer measured 2.72 feet bls (82.28 feet NGVD).

5.2 INTERMEDIATE AQUIFER SYSTEM

The intermediate aquifer system (IAS) is a confined aquifer system that includes all transmissive and confining units between the overlying surficial aquifer and underlying UFA (Southeastern Geological Society, 1986). In the area of ROMP 25 the IAS is comprised of transmissive and confining units of the Peace River Formation and Arcadia Formation. Thickness of the IAS is approximately 248 feet thick and extends from 60 feet bls to 308 feet bls at the ROMP 25 well site.

Only one permeable zone was identified in the IAS at ROMP 25. The Arcadia Formation contained a relatively permeable zone of calcilutite with moldic and intergranular porosity features from 107 to 145 feet bls. There were no significant permeable zones identified in the Peace River Formation.

Potentiometric maps of the intermediate aquifer prepared by the United States Geological Survey (USGS) are produced from data collected from wells penetrating multiple zones of the intermediate aquifer. The resulting potentiometric contour lines are composites of several permeable zones. The composite potentiometric IAS maps prepared by the USGS for May 1996 show water levels near the ROMP 25 site at 20 feet NGVD (Figure 12). The September 1996 potentiometric IAS maps show water levels near the ROMP 25 site at 30 feet NGVD (Figure 13). The measured potentiometric surface of the IAS permeable zone at ROMP 25 was 20.10 feet bls (64.90 feet NGVD) in

7

September 1996. In March 1998 the IAS permeable zone measured 14.65 feet bls (70.35 feet NGVD).

5.3 UPPER FLORIDAN AQUIFER

The Upper Floridan aquifer in the vicinity of ROMP 25 extends from approximately 308 feet bls to greater than 1,900 feet bls. The top of the Upper Floridan aquifer coincides with the top of the Oligocene Age Suwannee Limestone at approximately 308 feet bls. The base of the Upper Floridan aquifer typically is marked by a transition from massive dolostone of the Avon Park Formation, to beds of vertically persistent, intergranular evaporites termed "middle confining unit" by Ryder (1985). The Upper Floridan aquifer is comprised of the Suwannee Limestone, Ocala Limestone, and Avon Park Formation. The low permeability beds of the Ocala Limestone act as a semi-confining unit between the transmissive beds of the overlying Suwannee Limestone and the underlying Avon Park Formation.

Deep exploratory drilling (Phase II) in the Avon Park section of the Upper Floridan aquifer revealed relatively high permeability beds of calcarenite and dolostone from 1,250 feet bls to 1,560 feet bls. The top of the *highly permeable dolostone zone* of the Upper Floridan Aquifer, previously mapped by Wolansky and others (1980) occurs at 1,690 feet bls. This highly transmissive zone extends from 1,690 feet bls to 1,785 feet bls. Caliper logs and borehole video surveys conducted during the exploratory drilling phase indicate this area is comprised of highly fractured, cavernous, dolostone.

During coring, a noticeable drop in the water level occurred below 308 feet bls after drilling through a hard calcilutite lens (Figure 10). This water level change marks the top of the Upper Floridan aquifer. The potentiometric surface of the Upper Floridan aquifer at ROMP 25 varies seasonally from approximately 40 feet bls to 70 feet bls. Potentiometric maps prepared by the USGS indicate the potentiometric surface of the Upper Floridan aquifer in the area of ROMP 25 ranged from approximately 30 to 50 feet NGVD in September 1995 (Figure 14) to 15 to 20 feet

NGVD in May 1996 (Figures 15). The measured potentiometric surface of the Upper Floridan aquifer at ROMP 25 was approximately 43 feet bls (42 feet NGVD) in March, 1998.

6.0 GROUND-WATER QUALITY

Ground-water samples were collected from the intermediate, and Upper Floridan aquifers at 20 to 40 feet intervals while core drilling from land surface to 1,048 feet bls at the ROMP 25 well site. All samples were collected using the inflatable packer or stainless steel bailer shown in Figures 7 and 8. The results of ground-water quality samples are presented in Tables 1 through 4. Figure 16 presents a graph of the chloride, sulfate, and total dissolved solids (TDS) concentration of ground-water samples collected while core drilling from land surface to 1,048 feet bls.

6.1 SURFICIAL AQUIFER SYSTEM

Ground-water samples were not collected from the surficial aquifer during the coring phase at ROMP 25. However, one ground-water sample was collected from the completed permanent surficial aquifer monitor well in May 1996. The screened interval of the surficial aquifer monitor well extends from 5 to 39 feet bls. The ground-water sample was collected using a submersible pump. Specific conductance was 928 umhos/centimeter (cm). Chloride and sulfate concentrations were 7 milligrams per liter (mg/l) and 14 mg/l, respectively.

6.2 INTERMEDIATE AQUIFER SYSTEM

Ground water within the intermediate aquifer at ROMP 25 is generally within drinking water standards. Samples were collected with the off-bottom packer while coring through the IAS (60 feet bls to 305 feet bls). Specific conductance values for samples collected from the IAS ranged from 282 umhos/cm at the 121-148 feet bls sample interval to 327 umhos/cm at the 271-283 feet bls sample interval (Table 3). Chloride concentrations ranged from 5 mg/l to 7 mg/l, and sulfate concentrations was 4 mg/l for the same sample intervals (Table 3).

6.3 UPPER FLORIDAN AQUIFER

The groundwater of the Upper Floridan aquifer at ROMP 25 is generally low in dissolved minerals. One exception is sulfate concentration which rapidly increases below 333 feet bls. The concentration of sulfate increased from 16 mg/l at the 305-333 feet bls sample interval to a high of 1,020 mg/l at the 871-908 feet bls sample interval. The sulfate concentration then decreased below 908 feet bls to 640 mg/l at 1,048 feet bls. Specific conductance values of the groundwater samples increased from 343 umhos/cm at the 305-333 feet bls sample interval to a high of 1,851 umhos/cm at the 871-908 feet bls sample interval. Specific conductance values decrease below 908 feet bls to 1,359 umhos/cm at 1,048 feet bls. Chloride concentrations increased from 6 mg/l at the 305-333 feet bls sample interval to 13 mg/l at 1,048 feet bls (Tables 3 and 4). Packer tests and the stainless steel bailer were used to collect ground-water samples in the Upper Floridan (305 feet bls to 1,048 feet bls).

7.0 HYDRAULIC DATA

Falling-head permeameter tests were conducted on 17 core samples collected from sections of the Arcadia Formation, Suwannee Limestone, Ocala Limestone, and Avon Park Formation at ROMP 25. Core samples exhibiting both low and high visible porosity features were selected, to determine the relative permeability of permeable and confining units within the intermediate and Upper Floridan aquifers.

The permeameter test results show the mostly confining nature of the Arcadia Formation at ROMP 25. A non-transmissive zone was identified at 361.0 feet bls in the Suwannee Limestone. The Ocala is generally considered to be a confining unit between the Suwannee Limestone and Avon Park Formation, but the permeameter results revealed several thin permeable zones. Only one core sample was selected from the Avon Park Formation and the results indicate this zone is relatively permeable (Table 5). Additional hydraulic data will be collected from aquifer performance tests scheduled to be performed during 1998 and 1999 at ROMP 25. The aquifer performance test data will be presented in the ROMP 25 report: Phase Three - Aquifer Performance Testing.

8.0 SUMMARY

Core drilling and testing, the first phase of a hydrogeologic investigation was conducted at the ROMP 25 Lily monitor well site in Hardee County from December 1995 to May 1996. The wire-line coring method was used to collect continuous core samples from land surface to 1,048 feet bls for lithologic description and stratigraphic correlation. Ground-water samples were collected at 20 to 40 foot intervals during coring to characterize the water quality in the surficial, intermediate, and Upper Floridan aquifers. Water levels were measured daily, while coring in the surficial, intermediate and Upper Floridan aquifers.

The results of the coring investigation indicate the ROMP 25 well site is underlain by an unconfined surficial aquifer (0 feet bls to 60 feet bls), a confined intermediate aquifer (60 feet bls to 308 feet bls) with only one permeable zone (107 feet bls to 230 feet bls), and the confined Upper Floridan aquifer (308 feet bls to >1,048 feet bls). The Upper Floridan has two main permeable zones, the Suwannee and Avon Park, separated by the relatively low permeability Ocala Limestone.

Water quality in the surficial aquifer is generally good with most parameters within potable limits. Ground-water samples collected from the permeable zone of the intermediate aquifer also were within potable limits. Water quality within the Upper Floridan aquifer is close to potable limits near the top of the aquifer but becomes more mineralized with depth.

One permanent surficial monitor well and two temporary observation wells were constructed during the coring phase of work. The temporary observation wells were constructed as a dual zone monitor and will be used to monitor water levels during aquifer performance tests at ROMP 25. Both temporary wells will be plugged at the completion of site activities at ROMP 25.

9.0 REFERENCES

Mattie, J.A., Metz, P.A., and Torres, A.E., 1996, <u>Potentiometric Surfaces of the Intermediate Aquifer System, West-Central Florida, May 1996</u>: United States Geological Survey Open File Report 96-595, 1 sheet.

Metz, P.A., Mattie, J.A., and Corral, M.A., 1997, <u>Potentiometric Surfaces of the Intermediate Aquifer System, West-Central Florida, September 1996</u>: United States Geological Survey Open File Report 97-178, 1 sheet.

Mattie, J.A., Metz, P.A., and Torres, A.E., 1996, <u>Potentiometric Surfaces of the Upper Floridan Aquifer</u>, <u>West-Central Florida</u>, <u>May 1996</u>: United States Geological Survey Open File Report 96-594, 1 sheet.

Metz, P.A., Mattie, J.A., and Corral, M.A., 1997, <u>Potentiometric Surface of the Upper Floridan Aquifer</u>, <u>West-Central Florida</u>, <u>September 1996</u>: United States Geological Survey Open File Report 97-179, 1 sheet.

Ryder, P.D., 1985, <u>Hydrology of the Floridan Aquifer System in West-Central Florida</u>: United States Geological Survey Professional Paper 1403-F.

Scott, T.M., 1988, <u>The Lithostratigraphy of the Hawthorn Group (Miocene) of Florida</u>: Florida Geological Survey Bulletin No. 59.

Southeastern Geological Society Ad Hoc Committee on Florida Hydrostratigraphic Unit Definition, 1986, Florida Hydrogeologic Units; Florida Geological Survey Special Publication No. 28.

SWFWMD, 1993, Regional Observation and Monitor-well Program (ROMP), Water Quality Sampling Protocol and Quality Assurance/Quality Control Procedures (draft) July 1993.

White, W.A., 1970, <u>Geomorphology of the Florida Peninsula</u>: Florida Bureau of Geology, Geological Bulletin No. 51.

Wolansky, R.M., et. al., 1980, <u>Configuration of the Top of the Highly Permeable Dolomite Zone of the Floridan Aquifer</u>, <u>Southwest Florida Water Management District</u>: United States Geological Survey Water Resource Investigations 80-443, 1 sheet.

Wolansky, R.M., 1983, <u>Hydrogeology of the Sarasota-Port Charlotte Area, Florida</u>: United States Geological Survey, Water Resource Investigations Report 82-4089.

Southern Water Resource Assessment Project \mathcal{N}

Southern Water Use Caution area

FIGURE 1. ROMP 25 LILY

Project Location Map

FIGURE 6. ROMP 25 LILY

Temporary Suwannee/Arcadia Dual OB Well As-Built Diagram (Former Core Hole)

FIGURE 8. ROMP 25 LILY

Wire Line Bailer Diagram

Geophysical Logs Run During Coring

Romp25\figs\corelogsbitmap

908 926

ROMP 25 Water Levels During Coring December 1995 to May 1996

Table 1. Field Analyses of ROMP 25 Groundwater Samples Collected During Coring (8" PVC casing 0-85' bls)¹

Date (D/M/Y)	Time	Sample Depth (ft bls)	Specific Cond. (umohs)	Water Temp (celcius)	Water Density (g/cm ³⁾	CL	SO4	рН	Sample Collection Method	Split to Lab?
19-Dec-1995	1645	121-148 ²	317	24.9	NA	NA	NA NA	9.10	Packer Test	Y
11-Jan-1996	1530	150-188 ²	312	24.1	NA	NA	NA	7,87	Packer Test	Y
17-Jan-1996	1755	189-228 ²	310	24.1	NA	25	NA	7.22	Packer Test	Y
25-Jan-1996	1340	271-283 ²	320	25.0	NA	25	25	NA	Packer Test	Y
1-Feb-1996	1405	290-323 ²	400	24.9	NA	30	65	7.57	Packer Test	Y
6-Feb-1996	1405	305-333 ²	338	24.1	NA	25	25	7.46	Packer Test	Y

¹ All concentrations reported in mg/l unless otherwise noted

NA - Not Analyzed

Table 2. Field Analyses of ROMP 25 Groundwater Samples Collected During Coring (4" HW Steel casing 0-305' bls)¹

Date (D/M/Y)	Time	Sample Depth (ft bis)	Specific Cond. (umohs)	Water Temp (celcius)	Water Density (g/cm3)	CL	SO4	рΗ	Sample Collection Method	Split to Lab?
										
13- Ma r-96	925	373 ³	700	23.9	1.0001	40	250	7.50	Bailer	Υ
13-Mar-96	1530	413 ³	850	24.7	NA	40	325	7.57	Bailer	Y
14-Mar-96	1210	453 ³	1020	25.7	NA	50	400	7.51	Bailer	Y
19-Mar-96	815	488 ³	1023	24.7	NA	NA	NA	7.42	Bailer	Y
19-Mar-96	1225	523 ³	1078	24.8	NA	NA_	NA	7.61	Bailer_	Υ
19-Mar-96	1700	563 ³	1023	24.2	NA	NA	NA	7.65	Bailer	Y
20-Mar-96	1240	603 ³	1223	24.8	NA	60	450	7.60	Bailer	Y
21-Mar-96	900	643 ³	1024	23.6	NA	NA	NA	7.64	Bailer	Υ
25-Mar-96	1600	683 ³	1079	27.3	NA	NA	NA	NA	Bailer	Y
27-Mar-96	1615	710-748 ²	1588	27.1	NA	NA	NA	7.23	Packer Test	Y
02-Apr-96	1430	752-788 ²	1726	26.7	NA	40	NA NA	7.24	Packer Test	Y
03-Apr-96	1730	792-828 ²	1690	27.2	NA	NA	NA.	7.51	Packer Test	Υ
09-Apr-96	1810	829-868 ²	1830	26.9	NA	NA	NA	7.72	Packer Test	Υ
11-Apr-96	1445	871-908 ²	1820	26.9	NA	NA	NA	6.96	Packer Test	Υ
16-Apr-96	1930	910-968 ²	1716	26.4	NA	NA	NA	NA	Packer Test	Y
22-May-96	2105	985-1028 ²	1130	27.7	NA	NA	NA	6.86	Packer Test	Y
23-May-96	800	985-1028 ²	1082	25.8	NA	NA	NA	6.64	Packer Test	Y
28-May-96	1310	1048 ³	1353	28.1	NA	NA	NA	6.87	Bailer	Υ_
29-May-96	1515	1048 4	1239	26.5	NA	NA	NA	7.17	Geophysical Thief	Y

¹ All concentrations reported in mg/l unless otherwise noted

NA - Not Analyzed

² Packer Test Sample

² Packer Test Sample

³ Bailer Sample

⁴ Geophysical thief sample

Table 3 Laboratory Analyses of ROMP 25 Ground-water Samples Collected During Coring (8" PVC Casing 0-85' bls)¹

% NOI		2.32	5.97	0.93	-0.32	1.52	1.42
Total Hardness (CaCO3)		5	144	148	142	199	161
Fe (ug/l)		9	34	148	647	275	529
Ϊ́δ		o	7	7	12	11	6
Sa	ļ	12	9	9	6	6	7
×		21	4	2	2	2	1
Bicarb as (CaCO3)		124	157	154	156	159	152
Mg		Ŧ	12	13	17	21	16
S B		23	38	38	29	45	38
TDS		219	207	192	199	264	197
Br		0.0	0.0	0.0	0.0	0.0	0.0
Hd		8.7	8.0	8.0	7.9	7.9	7.7
SO4		4	-	-	4	45	16
่ว		5	4	4	7	6	မ
Water Density		1 0002	1 0002	1 0002	1 0002	1,0003	1 0002
Specific Cond. (umohs)		282	340	3,14	307	449	343
Depth (ft bls)		121-1482	150,1882	189-2282	271.2832	290-3232	305,3332
Time		1645		┸	Ļ	1405	╧
Date (M/D/Y)		10 Dec-1005	44 Jan 1006	47 Jan-1006	26 Inn 1006	1-Fah-1996	6 Feb 1006
<u> </u>		Щ					1

¹ All concentrations reported in mg/l unless otherwise noted

Table 4 Laboratory Analyses of ROMP 25 Ground-water Samples Collected During Coring (4" Steel HW Casing 0-305' bls)1

			.														~~~					
	% NO			2.53	na	2.97	БП	3.74	БГ	3.84	Ba	2.72	3.94	ш	eu.	2.64	2.36	4.32	1.6	3.9	0.32	1.52
Total	Hardness	(CaCO3)		432	na	569	па	616	g	714	ē	588	686	ВП	ВП	1176	1201	1146	632	575	764	169
	Ð.	(l/gn)		412	na	836	g	867	e l	773	Ba	900	6218?	ā	g.	6432	4058	5165	2872	10215	2592	99
	S			12	ē	13	B	11	na	12	па	1	10	E	па	6	6	80	4	3	7	5
	R			13	na	14	na	12	na	13	па	12	12	na	na	11	11	11	7	7	10	80
	×			3	na	9	na	е	E	8	ē	8	3	na	na	4	4	4	4	4	4	4
Bicarb	as	(CaCO3)		140	138	140	140	134	138	138	136	140	113	109	118	111	117	114	126	80	124	124
	Mg			46	50	25	58	64	26	7.1	26	58	88	86	26	131	120	128	9	95	77	64
	S	<u>.</u>		26	112	134	128	141	134	169	137	140	251	780	273	255	283	248	2 5	138	179	171
	TDS			594	699	805	811	875	831	1020	832	847	1451	1605	1561	1640	1606	1565	885	839	1125	979
	à			0.0	an	0.0	БП	0.0	шa	0.0	Bu	0.0	0.0	г	na	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	표			7.6	g	7.7	ē	7.5	BE	8.1	20	9.2	7.3	2	ē	7.2	7.4	7.3	7.5	7.0	7.7	7.8
	804			287	322	412	386	447	410	532	415	428	802	956	924	1003	1020	930	489	463	640	545
				15	15	8	16	15	9	17	16	16	9	15	5	15	5	15	0	12	13	6
Water	Density	•		1 0006	e	1,0008	g	10009	ē	1.0010	E	1 0008	10014	e	ē	1 0016	1 0016	1 0015	1 0009	1 0008	1 001	1.001
Spacific	Cond	(shomu)		848	3 2	1047	g	1032	2		2	1086	1615	2	2	1839	1851	1756	R C G	1079	1359	1228
Donth	(814 #)	Ì		3733	4133	4533	4883	5233	5633	603 3	6433	6833	710-7482	752-7882	792,8782	829-8682	871.90R ²	910-9682	085,10382	QB5,40282	10483	1048 4
Time	2			300	1530	1210	845	1225	1700	1240	O.	160	1815	1430	1730	1810	1445	1030	2405	200	1310	1515
opeo	(M/D/X)			12 Mor 06	13 Mar Of	14 Mar 96	10 Mar OS	19-Mar-96	19-Mar-96	20-Mar-96	21 Mar-06	25 Mar.06	27 Mar 06	OC MICHON	20 Apr 06	90,704,00	11 Apr 06	16 Apr 96	DE-Idy-OI	22 May 96	28-May-06	29-May-96
سيطا	_							-1	_	_						_	_		_	_		-

¹ All concentrations reported in mg/l unless otherwise noted

romp25tables\wq.wb2

² Packer Test Sample

NA - Not Analyzed ³ Bailer Sample

² Packer Test Sample

³ Bailer Sample

⁴ Geophysical thief sample

NA - Not Analyzed

Table 5. Falling Head Permeameter Results

Sample Depth	Formation	Lithology	Aquifer	Vertical Hydraulic Conductivity	Porosity
(feet bls)				Average (feet/day)	(%)
					· · · · · · · · · · · · · · · · · · ·
123.0	Arcadia	sandy limestone	IAS (permeable zone)	1.44 x 10 ⁻³	49
158.8	Arcadia	sandy limestone	IAS (confining zone)	2.38 x 10 ⁻⁴	31
212.0	Arcadia	dolostone	IAS (confining zone)	9.96 x 10 ⁻⁵	38
245.0	Arcadia	limestone	IAS (confining zone)	No Flow	45
276.8	Arcadia	sandy dolostone	IAS (confining zone)	5.30 x 10 ⁻⁵	29
312.0	Suwannee	limestone	UFA (confining zone)	1.02 x 10 ⁻⁴	32
329.0	Suwannee	limestone	UFA (permeable zone)	2.12 x 10 ⁻³	41
361.0	Suwannee	sandy dolostone	UFA (confining zone)	No Flow	8
640.5	Suwannee	limestone	UFA (permeable zone)	2.86 x 10 ⁻¹	39
728.6	Ocala	limestone	UFA (permeable zone)	3.33 x 10 ⁻²	44
767.0	Ocala	limestone	UFA (permeable zone)	1.46 x 10 ⁻²	43
814.5	Ocala	limestone	UFA (confining zone)	9.83 x 10 ⁻³	42
852.5	Ocala	limestone	UFA (permeable zone)	1.05 x 10 ⁻²	40
875.0	Ocala	limestone	UFA (confining zone)	9.85 x 10 ⁻³	38
927.0	Ocala	limestone	UFA (confining zone)	3.42 x 10 ⁻³	28
959.5	Ocala	dolostone	UFA (permeable zone)	2.48 x 10 ⁻³	21
1022.0	Avon Park	limestone	UFA (permeable zone)	2.71 x 10 ⁻²	30

Testing performed by Florida Geological Survey

Table 6. Water Levels During Coring

		Casing	Core Hole	Core Hole
Date	Time	Depth	Depth	Water Level
		(feet bls)	(feet bis)	(feet bis)
18-Dec-95	1200	85	103	-5.19
18-Dec-96	1200	85	188	-10.59
16-Jan-96	1345	85	228	-17.63
25-Jan-96	830	85	271	-19.36
01-Feb-96	840	85	290	-23.10
06-Feb-96	1240	85	305	-64.36
07-Feb-96	815	85	333	-62.08
12-Mar-96	1450	305	348	-61.26
13-Mar-96	700	305	373	-61.09
14-Mar-96	800	305	413	-60.94
20-Mar-96	735	305	563	-62.30
21-Mar-96	830	305	643	-60.70
27-Mar-96	700	305	693	-62.02
02-Apr-96	705	305	788	-61.69
15-Apr-96	1300	305	908	-59.75
16-Apr-96	740	305	929	-59.24
17-Apr-96	726	305	968	-60.14
22-May-96	710	305	1008	-70.42

r25\tabels\wq.wb2

51/2"

APPENDIX A

ROMP 5 LITHOLOGIC LOG

LITHOLOGIC WELL LOG PRINTOUT

SOURCE - FGS

WELL NUMBER: W-17608 COUNTY - HARDEE

TOTAL DEPTH: 1911 FT. LOCATION: T.36S R.23E S.09 NE LAT = 27D 21M 59S

SAMPLES - NONE

LON = 82D 00M 26S

ELEVATION: 85 FT COMPLETION DATE: 06/19/97 OTHER TYPES OF LOGS AVAILABLE - CALIPER, ELECTRIC, FLUID COND., GAMMA

OWNER/DRILLER: SWFWMD ROMP 25 DRILLED BY TIM LOHNER AND GEORGE DEGROOT

WORKED BY: DOUG RAPPUHN AND TED GATES (SWFWMD GEOLOGIST'S); WIRE LINE ROTARY CORING FROM 0 FT. TO 1048 FT. BLS - COREHOLE #1 AVON PARK WELL EXPLORATORY CUTTINGS FROM 1048 FT. TO 1556 FT. BLS EVAPORITE WELL EXPLORATORY CUTTINGS FROM 1556 FT. TO 1911 FT. BLS CUTTINGS NOT DESCRIBED BETWEEN 1765 - 1911 FT. FGS GEOLOGISTS REPORT THAT TOP OF OCALA MAY BE AS DEEP AS 693 FT. BLS

- UNDIFFERENTIATED SAND AND CLAY
- 0.0 45.0 090UDSC 45.0 107.0 122PCRV PEACE RIVER FM.
- 107.0 313.0 122ARCA ARCADIA FM.
- SUWANNEE LIMESTONE
- 313.0 675.0 123SWNN 675.0 976.0 1240CAL OCALA GROUP 976.0 - 1790.0 124AVPK AVON PARK FM.
- - 0.6 SAND AND SHELL DRILLPAD.
 - 1.6 SAND; GRAYISH BROWN TO DARK YELLOWISH BROWN 0.6-35% POROSITY: INTERGRANULAR GRAIN SIZE: MEDIUM; RANGE: VERY FINE TO MEDIUM ROUNDNESS: SUB-ANGULAR TO SUB-ROUNDED; HIGH SPHERICITY UNCONSOLIDATED ACCESSORY MINERALS: ORGANICS-08%, IRON STAIN-02% OTHER FEATURES: VARIEGATED CONTAINS ROOTLETS AND ORGANICS. VARIABLY IRON-STAINED.
 - SAND; WHITE TO VERY LIGHT ORANGE 1.6-40% POROSITY: INTERGRANULAR GRAIN SIZE: MEDIUM; RANGE: VERY FINE TO MEDIUM ROUNDNESS: SUB-ROUNDED TO SUB-ANGULAR; MEDIUM SPHERICITY TINCONSOLT DATED OTHER FEATURES: SUCROSIC VERY CLEAN, MODERATELY WELL-SORTED QUARTZ SAND. WATER TABLE AT 2FT. BLS.
 - NO SAMPLES WET SAND, DROPPED OUT OF AUGERS.
 - 4 11.4 SAND; GRAYISH BROWN TO DARK BROWN 30% POROSITY: INTERGRANULAR GRAIN SIZE: FINE; RANGE: VERY FINE TO MEDIUM ROUNDNESS: SUB-ANGULAR TO SUB-ROUNDED; MEDIUM SPHERICITY UNCONSOLIDATED ACCESSORY MINERALS: ORGANICS-14%, SILT-04%, IRON STAIN-02% BED AT 10.8 - 11.4 CONTAINS 6-8% IRON AND IS SLIGHTLY CEMENTED.
- SAND; MODERATE BROWN TO GRAYISH BROWN 11.4-35% POROSITY: INTERGRANULAR GRAIN SIZE: FINE; RANGE: VERY FINE TO MEDIUM ROUNDNESS: SUB-ANGULAR TO SUB-ROUNDED; MEDIUM SPHERICITY UNCONSOLIDATED ACCESSORY MINERALS: SILT-08%, IRON STAIN-03%
- SAND; DARK BROWN TO DARK YELLOWISH BROWN 14 -17 35% POROSITY: INTERGRANULAR GRAIN SIZE: MEDIUM; RANGE: FINE TO COARSE ROUNDNESS: SUB-ANGULAR TO ROUNDED; MEDIUM SPHERICITY POOR INDURATION CEMENT TYPE(S): IRON CEMENT ACCESSORY MINERALS: SILT-08%, IRON STAIN-04%
- 17 25 SAND; MODERATE BROWN TO MODERATE BROWN

40% POROSITY: INTERGRANULAR
GRAIN SIZE: MEDIUM; RANGE: FINE TO COARSE
ROUNDNESS: SUB-ANGULAR TO SUB-ROUNDED; MEDIUM SPHERICITY
UNCONSOLIDATED
ACCESSORY MINERALS: SILT-05%, IRON STAIN-02%

- 25 30 SAND; DARK BROWN TO BLACK
 40% POROSITY: INTERGRANULAR
 GRAIN SIZE: MEDIUM; RANGE: VERY FINE TO COARSE
 ROUNDNESS: SUB-ROUNDED TO SUB-ANGULAR; MEDIUM SPHERICITY
 UNCONSOLIDATED
 ACCESSORY MINERALS: IRON STAIN-06%, SILT-04%
 ALTHOUGH GENERALLY IRON-STAINED, UNIT CONTAINS 10-15%
 COARSE, ROUNDED, UNSTAINED QUARTZ SAND.
- 30 35 SAND; GRAYISH BROWN TO LIGHT BROWN
 GRAIN SIZE: MEDIUM; RANGE: VERY FINE TO MEDIUM
 ROUNDNESS: SUB-ANGULAR TO SUB-ROUNDED; MEDIUM SPHERICITY
 UNCONSOLIDATED
 ACCESSORY MINERALS: SILT-04%, IRON STAIN-02%
 LIKELY CONTAINS INTERBEDDED MEDIUM-COARSE ROUNDED QUARTZ
 SAND AND SLIGHTLY IRON-CEMENTED VERY FINE TO MEDIUM QUARTZ
 SAND.
- 35 37 SAND; GRAYISH BROWN TO GRAYISH BROWN
 45% POROSITY: INTERGRANULAR
 GRAIN SIZE: MEDIUM; RANGE: VERY FINE TO COARSE
 ROUNDNESS: SUB-ANGULAR TO ROUNDED; MEDIUM SPHERICITY
 UNCONSOLIDATED
 ACCESSORY MINERALS: IRON STAIN-03%, SILT-02%
 GENERALLY CLEAR QUARTZ SAND WITH INTERBEDS OF IRON-CEMENTED
 VERY FINE QUARTZ SAND.
- 37 40 SAND; VERY LIGHT ORANGE TO GRAYISH BROWN
 40% POROSITY: INTERGRANULAR
 GRAIN SIZE: FINE; RANGE: VERY FINE TO MEDIUM
 ROUNDNESS: SUB-ANGULAR TO SUB-ROUNDED; MEDIUM SPHERICITY
 ACCESSORY MINERALS: SILT-06%, IRON STAIN-01%
 AUGER BLADE SAMPLE FROM 39 FT. CONTAINED 10% WHITE SILT
 (NONCALCAREOUS). CONTAINS SOME IRON-CEMENTED GRAINS.
- 40 45 SAND; LIGHT GRAY TO GRAYISH ORANGE PINK
 40% POROSITY: INTERGRANULAR
 GRAIN SIZE: MEDIUM; RANGE: FINE TO MEDIUM
 ROUNDNESS: SUB-ROUNDED TO SUB-ANGULAR; MEDIUM SPHERICITY
 UNCONSOLIDATED
 ACCESSORY MINERALS: LIMESTONE-01%, IRON STAIN-01%
 FOSSILS: MOLLUSKS, CRUSTACEA, SHARKS TEETH
 CLEAN WELL-SORTED SAND WITH (REWORKED?) CRAB SHELL
 FRAGMENT, SHARK TOOTH AND OPERCULUM. TRACE ROUNDED
 LIMESTONE FRAGMENTS. BASE OF UNDIFFERENTIATED SURFICIAL
 DEPOSITS.
- 45 47 SAND; LIGHT GRAY TO GRAYISH ORANGE PINK
 40% POROSITY: INTERGRANULAR
 GRAIN SIZE: MEDIUM; RANGE: FINE TO MEDIUM
 ROUNDNESS: SUB-ANGULAR TO SUB-ROUNDED; MEDIUM SPHERICITY
 UNCONSOLIDATED
 ACCESSORY MINERALS: LIMESTONE-09%, PHOSPHATIC SAND-01%
 FOSSILS: SHARKS TEETH
 CONTAINS INCREASED PERCENT OF ROUNDED LIMESTONE FRAGMENTS
 AND A SMALL PERCENT OF LEACHED ROUNDED PHOSPHATIC SAND. TOP
 OF HAWTHORN DEPOSITS.
- 47 51 SAND; MODERATE GRAY
 45% POROSITY: INTERGRANULAR, POSSIBLY HIGH PERMEABILITY
 GRAIN SIZE: FINE; RANCE: VERY FINE TO MEDIUM
 ROUNDNESS: SUB-ANGULAR TO SUB-ROUNDED; MEDIUM SPHERICITY
 UNCONSOLIDATED
 CEMENT TYPE(S): IRON CEMENT
 ACCESSORY MINERALS: LIMESTONE-35%, PHOSPHATIC SAND-06%
 OTHER FEATURES: SPECKLED
 FOSSILS: WORM TRACES, FOSSIL FRAGMENTS

QUARTZ SAND WITH SUBSTANTIAL PERCENT OF WORN LIMESTONE FRAGMENTS AND INTERBEDDED CALCILUTITE. PHOSPHATE IS BOTH LEACHED AND UNLEACHED.

- 51 55 SAND; DARK GRAY TO LIGHT GRAY
 45% POROSITY: INTERGRANULAR, POSSIBLY HIGH PERMEABILITY
 GRAIN SIZE: COARSE; RANGE: FINE TO VERY COARSE
 ROUNDNESS: ROUNDED TO SUB-ROUNDED; HIGH SPHERICITY
 UNCONSOLIDATED
 ACCESSORY MINERALS: PHOSPHATIC SAND-35%, CALCILUTITE-04%
 LIMESTONE-02%
 OTHER FEATURES: SPECKLED
 FOSSILS: SHARKS TEETH
 COARSE, WELL-ROUNDED PHOSPHATE-RICH QUARTZ SAND.
 CALCILUTITE TRACES MAY PROVIDE SLIGHT INSITU CEMENTING OF
 UNIT. BOTTOM OF SURFICIAL AQUIFER SYSTEM.
- CALCILUTITE; DARK GRAY TO LIGHT GRAY 55 --60 18% POROSITY: INTERGRANULAR GRAIN TYPE: CALCILUTITE, BIOGENIC 05% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: MICROCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO MICROCRYSTALLINE POOR INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX ACCESSORY MINERALS: PHOSPHATIC SAND-25%, QUARTZ SAND-20% DOLOMITE-02% OTHER FEATURES: SPECKLED FOSSILS: MOLLUSKS UPPERMOST CARBONATE. RICH IN ROUNDED QUARTZ, PHOSPHATIC SANDS. TOP OF INTERMEDIATE AQUIFER SYSTEM.
- 60 65 PHOSPHATE; DARK GRAY TO LIGHT GRAY
 POROSITY: INTERGRANULAR; POOR INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 ACCESSORY MINERALS: CALCILUTITE-25%, QUARTZ SAND-06%
 A CONCENTRATION OF ROUNDED PHOSPHATE GRANULES (4MM) WITH
 LESSER CALCILUTITE MATRIX.
- 65 70 CALCILUTITE; MODERATE DARK GRAY

 14% POROSITY: INTERGRANULAR

 GRAIN TYPE: CALCILUTITE; 05% ALLOCHEMICAL CONSTITUENTS

 GRAIN SIZE: MICROCRYSTALLINE

 RANGE: CRYPTOCRYSTALLINE TO MICROCRYSTALLINE

 POOR INDURATION

 CEMENT TYPE(S): CALCILUTITE MATRIX, CLAY MATRIX

 SEDIMENTARY STRUCTURES: INTERBEDDED

 ACCESSORY MINERALS: CLAY-25%, PHOSPHATIC GRAVEL-15%

 PHOSPHATIC SAND-05%, QUARTZ SAND-03%

 OTHER FEATURES: SPECKLED

 CLAYEY CALCILUTITE WITH MUCH PHOSPHATIC SAND.
- 70 77 CALCILUTITE; OLIVE GRAY TO DARK GRAY
 POROSITY: LOW PERMEABILITY, INTERGRANULAR
 GRAIN TYPE: CALCILUTITE; 05% ALLOCHEMICAL CONSTITUENTS
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: CRYPTOCRYSTALLINE TO MICROCRYSTALLINE
 POOR INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX, CLAY MATRIX
 ACCESSORY MINERALS: CLAY-40%, PHOSPHATIC SAND-04%
 QUARTZ SAND-02%
 VERY CLAYEY CALCILUTITE. CLAY IS DISSEMINATED AND AS
 STREAKS.
- 77 82 CLAY; LIGHT OLIVE GRAY
 POROSITY: LOW PERMEABILITY; MODERATE INDURATION
 CEMENT TYPE(S): CLAY MATRIX
 ACCESSORY MINERALS: CALCILUTITE-15%, QUARTZ SAND-08%
 PHOSPHATIC SAND-03%
 OTHER FEATURES: PARTINGS
 VARIABLY CALCAREOUS CLAY CONTAINING SAND STRINGERS AND
 BURROW FILL.

- 82 85 CALCILUTITE; LIGHT OLIVE GRAY TO LIGHT GRAY
 16% POROSITY: INTERGRANULAR
 GRAIN TYPE: CALCILUTITE, BIOGENIC
 15% ALLOCHEMICAL CONSTITUENTS
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: CRYPTOCRYSTALLINE TO VERY FINE; MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 ACCESSORY MINERALS: QUARTZ SAND-07%, PHOSPHATIC SAND-03%
- 91 CALCILUTITE; YELLOWISH GRAY TO VERY LIGHT GRAY
 14% POROSITY: INTERGRANULAR, MOLDIC
 GRAIN TYPE: CALCILUTITE, BIOGENIC, SKELTAL CAST
 35% ALLOCHEMICAL CONSTITUENTS
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: MICROCRYSTALLINE TO FINE; MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX, CLAY MATRIX
 SEDIMENTARY STRUCTURES: BRECCIATED, MOTTLED
 ACCESSORY MINERALS: CLAY-20%, PHOSPHATIC SAND-10%
 QUARTZ SAND-03%, PHOSPHATIC GRAVEL-01%
 OTHER FEATURES: SPECKLED, PARTINGS
 MEDIUM RECRYSTALIZATION
 FOSSILS: FOSSIL FRAGMENTS, MOLLUSKS
 UNIT GRADES SOFTER WITH DEPTH. VARIABLY PHOSPHATIC. CLAY IS
 IN STREAKS, BLEBS, AND DISSEMINATED. A FEW 1-2 CM PHOSPHATE
 CLASTS. CONTAINS HARDER ALTERED OR DOLOMITIC INCLUSIONS.
- 91 93 CALCILUTITE; LIGHT OLIVE TO YELLOWISH GRAY
 POROSITY: NOT OBSERVED, LOW PERMEABILITY
 GRAIN TYPE: CALCILUTITE; 05% ALLOCHEMICAL CONSTITUENTS
 POOR INDURATION
 CEMENT TYPE(S): CLAY MATRIX
 SEDIMENTARY STRUCTURES: MOTTLED
 ACCESSORY MINERALS: CLAY-35%, PHOSPHATIC SAND-14%
 QUARTZ SAND-01%
 OTHER FEATURES: SPECKLED, MEDIUM RECRYSTALLIZATION
 PARTINGS, GRANULAR
 SOFT VERY CLAYEY PHOSPHATIC CALCILUTITE.
- 93 96.5 NO SAMPLES
 PROBABLY PHOSPHATIC AND QUARTZ SAND (POORLY CONSOLIDATED).
- 96.5- 101.3 CLAY; DARK GREENISH GRAY
 POROSITY: NOT OBSERVED, LOW PERMEABILITY
 MODERATE INDURATION
 CEMENT TYPE(S): CLAY MATRIX
 SEDIMENTARY STRUCTURES: STREAKED
 ACCESSORY MINERALS: CALCILUTITE-07%, PHOSPHATIC SAND-07%
 QUARTZ SAND-02%
 OTHER FEATURES: PARTINGS
 UPPER 1-5 FT. CONTAINS THIN INTERBEDS OF SOMEWHAT
 CALCAREOUS PHOSPHATIC SANDY OLIVE CLAY. 98 101.3 FT IS
 PURE DARK GREEN CLAY.
- 101.3- 103

 CALCILUTITE; YELLOWISH GRAY
 14% POROSITY: INTERGRANULAR, LOW PERMEABILITY
 GRAIN TYPE: CALCILUTITE; 05% ALLOCHEMICAL CONSTITUENTS
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: MICROCRYSTALLINE TO FINE; MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX, CLAY MATRIX
 SEDIMENTARY STRUCTURES: NODULAR, MOTTLED
 ACCESSORY MINERALS: CLAY-40%, PHOSPHATIC SAND-08%
 QUARTZ SAND-02%
 OTHER FEATURES: VARIEGATED, MEDIUM RECRYSTALLIZATION
 VERY CLAYEY PHOSPHATIC CALCILUTITE. CLAY IS DISSEMINATED IN
 MATRIX AND ALSO AS INFILL AROUND ROUNDED CLASTS OF
 PHOSPHATIC CALCILUTITE.
- 103 107 CALCILUTITE; YELLOWISH GRAY
 12% POROSITY: INTERGRANULAR, LOW PERMEABILITY
 GRAIN TYPE: CALCILUTITE; 10% ALLOCHEMICAL CONSTITUENTS
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: MICROCRYSTALLINE TO FINE; POOR INDURATION
 CEMENT TYPE(S): CLAY MATRIX, CALCILUTITE MATRIX

ACCESSORY MINERALS: CLAY-30%, PHOSPHATIC SAND-10% QUARTZ SAND-02% OTHER FEATURES: MUDDY FOSSILS: MOLLUSKS SEMI-SOFT PHOSPHATIC CLAYEY CALCILUTITE WITH MINOR LIMESTONE STRINGERS AND BIVALVE CASTS. A RESIDUM? UNIT RUBBELIZED ON CORING. BOTTOM OF PEACE RIVER FORMATION.

- 107 113.2 CALCILUTITE; VERY LIGHT GRAY TO LIGHT GRAY 16% POROSITY: MOLDIC, INTERGRANULAR GRAIN TYPE: CALCILUTITE, BIOGENIC 30% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO FINE; MODERATE INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX, CLAY MATRIX SEDIMENTARY STRUCTURES: INTERBEDDED ACCESSORY MINERALS: PHOSPHATIC SAND-12%, CLAY-08% QUARTZ SAND-04% OTHER FEATURES: PARTINGS FOSSILS: FOSSIL MOLDS, MOLLUSKS, CORAL TOP OF A VERTICALLY PERSISTENT LIMESTONE SECTION WITH LOWER PERCENT OF CLAY. TOP 1 FT. OF UNIT SHOWS INFILL OF QUARTZ AND PHOSPHATIC SAND (IN DESICCATION CRACKS?). THIN, MUDDY LENSES 108 - 110 FT. MORE VERY FINE PHOSPHATE 111 - 113 FT. AND SMALL MOLDS 111 - 113 FT.
- 113.2- 115 CALCILUTITE; LIGHT GRAY TO MODERATE LIGHT GRAY
 18% POROSITY: MOLDIC, INTERGRANULAR
 GRAIN TYPE: CALCILUTITE, BIOGENIC
 30% ALLOCHEMICAL CONSTITUENTS
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: MICROCRYSTALLINE TO FINE; MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 SEDIMENTARY STRUCTURES: MOTTLED
 ACCESSORY MINERALS: PHOSPHATIC SAND-10%, QUARTZ SAND-04%
 OTHER FEATURES: VARIEGATED, SPECKLED, POOR SAMPLE
 FOSSILS: FOSSIL MOLDS, MOLLUSKS
 VARIEGATED DARK AND LIGHT GRAY. DARKER SECTIONS ARE HARDER
 AND MAY BE DOLOMITIC. STARFISH ARM MOLD AT 113.9 FT.
- 115 115.5 CHERT; MODERATE DARK GRAY
 POROSITY: NOT OBSERVED; GOOD INDURATION
 CEMENT TYPE(S): SILICIC CEMENT
 OTHER FEATURES: GRANULAR
 FOSSILS: FOSSIL FRAGMENTS
- 115.5- 118 CALCILUTITE; VERY LIGHT GRAY TO LIGHT GRAY
 14% POROSITY: INTERGRANULAR, MOLDIC
 GRAIN TYPE: CALCILUTITE, BIOGENIC
 25% ALLOCHEMICAL CONSTITUENTS
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: MICROCRYSTALLINE TO FINE; MODERATE INDURATION
 CEMENT TYPE(5): CALCILUTITE MATRIX
 SEDIMENTARY STRUCTURES: MOTTLED, STREAKED
 ACCESSORY MINERALS: CLAY-10%, PHOSPHATIC SAND-05%
 PHOSPHATIC GRAVEL-01%
 OTHER FEATURES: VARIEGATED
 FOSSILS: FOSSIL MOLDS, MOLLUSKS
 CONTAINS SOFT CLAYEY STREAKS AND INFILLED BURROWS.
- 118 123.1 CALCARENITE; YELLOWISH GRAY TO VERY LIGHT GRAY
 16% POROSITY: INTERGRANULAR
 GRAIN TYPE: CALCILUTITE, BIOGENIC
 55% ALLOCHEMICAL CONSTITUENTS
 GRAIN SIZE: VERY FINE; RANGE: MICROCRYSTALLINE TO FINE
 GOOD INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 ACCESSORY MINERALS: PHOSPHATIC SAND-07%, QUARTZ SAND-02%
 OTHER FEATURES: CHALKY, SPECKLED
- 123.1- 125.5 CALCILUTITE; LIGHT GRAY
 08% POROSITY: PIN POINT VUGS, VUGULAR
 GRAIN TYPE: CALCILUTITE; 01% ALLOCHEMICAL CONSTITUENTS

GRAIN SIZE: MICROCRYSTALLINE
RANGE: MICROCRYSTALLINE TO VERY FINE; GOOD INDURATION
CEMENT TYPE(S): CALCILUTITE MATRIX, DOLOMITE CEMENT
ACCESSORY MINERALS: PHOSPHATIC GRAVEL-02%
PHOSPHATIC SAND-01%, DOLOMITE- %
OTHER FEATURES: CHALKY, LOW RECRYSTALLIZATION
FOSSILS: MOLLUSKS
VERY HARD, FEATURELESS. DOLOMITIC?

- 125.5- 128.5 CALCILUTITE; MODERATE LIGHT GRAY TO VERY LIGHT GRAY
 14% POROSITY: INTERGRANULAR
 GRAIN TYPE: CALCILUTITE; 10% ALLOCHEMICAL CONSTITUENTS
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: MICROCRYSTALLINE TO VERY FINE; MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 ACCESSORY MINERALS: QUARTZ SAND-25%, PHOSPHATIC SAND-10%
 OTHER FEATURES: GRANULAR, SPECKLED, PARTINGS
- 128.5- 133.2 CALCILUTITE; YELLOWISH GRAY TO VERY LIGHT GRAY
 16% POROSITY: INTERGRANULAR
 GRAIN TYPE: CALCILUTITE, BIOGENIC
 05% ALLOCHEMICAL CONSTITUENTS
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: MICROCRYSTALLINE TO VERY FINE; MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 ACCESSORY MINERALS: QUARTZ SAND-06%, PHOSPHATIC SAND-05%
 OTHER FEATURES: CHALKY, SPECKLED
 FOSSILS: CORAL, FOSSIL FRAGMENTS
- 133.2- 138.2 CALCILUTITE; YELLOWISH GRAY TO LIGHT OLIVE GRAY
 14% POROSITY: INTERGRANULAR
 GRAIN TYPE: CALCILUTITE; 05% ALLOCHEMICAL CONSTITUENTS
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: MICROCRYSTALLINE TO VERY FINE; MODERATE INDURATION
 CEMENT TYPE(5): CALCILUTITE MATRIX, CLAY MATRIX
 SEDIMENTARY STRUCTURES: INTERBEDDED
 ACCESSORY MINERALS: CLAY-25%, QUARTZ SAND-12%
 PHOSPHATIC SAND-08%
 OTHER FEATURES: SPECKLED, PARTINGS, CHALKY
 FOSSILS: FOSSIL FRAGMENTS, MOLLUSKS
 CLAYEY CALCILUTITE IRREGULARLY BEDDED WITH OR INFILLED
 AROUND QUARTZ PHOSPHATIC SANDY CALCILUTITE.
- 138.2- 143

 CALCILUTITE; LIGHT OLIVE GRAY TO GRAYISH GREEN 10% POROSITY: LOW PERMEABILITY, INTERGRANULAR GRAIN TYPE: CALCILUTITE
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: CRYPTOCRYSTALLINE TO MICROCRYSTALLINE POOR INDURATION
 CEMENT TYPE(S): CLAY MATRIX, CALCILUTITE MATRIX SEDIMENTARY STRUCTURES: INTERBEDDED ACCESSORY MINERALS: CLAY-30%, QUARTZ SAND-12% PHOSPHATIC SAND-08%
 OTHER FEATURES: SPECKLED, PARTINGS
 CONTAINS SOME SOFTER BEDS.
- 143 160 CALCILUTITE; LIGHT OLIVE GRAY TO LIGHT GRAY
 12% POROSITY: INTERGRANULAR, LOW PERMEABILITY
 GRAIN TYPE: CALCILUTITE
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: CRYPTOCRYSTALLINE TO MICROCRYSTALLINE
 MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX, CLAY MATRIX
 SEDIMENTARY STRUCTURES: MOTTLED
 ACCESSORY MINERALS: CLAY-25%, QUARTZ SAND-20%
 PHOSPHATIC SAND-05%
 UNIT BECOMES SLIGHTLY LESS CALCAREOUS AND MORE CLAYEY AND
 QUARTZ SANDY BELOW 150 FT. CHERT INCLUSION AT 151.8 FT.
- 160 163 CLAY; LIGHT OLIVE GRAY TO DARK GREENISH GRAY
 10% POROSITY: LOW PERMEABILITY, INTERGRANULAR
 POOR INDURATION
 CEMENT TYPE(S): CLAY MATRIX, CALCILUTITE MATRIX

SEDIMENTARY STRUCTURES: INTERBEDDED ACCESSORY MINERALS: CALCILUTITE-30%, QUARTZ SAND-15% PHOSPHATIC SAND-10%, PHOSPHATIC GRAVEL-02% OTHER FEATURES: SPECKLED IRREGULARLY BEDDED OR INFILLED OLIVE CLAY AND CLAYEY QUARTZ-PHOSPHATE SANDY CALCILUTITE. RUBBLY.

- 163 168.2 CALCILUTITE; YELLOWISH GRAY TO LIGHT OLIVE GRAY

 12% POROSITY: INTERGRANULAR
 GRAIN TYPE: CALCILUTITE; 10% ALLOCHEMICAL CONSTITUENTS
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: MICROCRYSTALLINE TO VERY FINE; MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX, CLAY MATRIX
 SEDIMENTARY STRUCTURES: INTERBEDDED
 ACCESSORY MINERALS: CLAY-20%, CHERT-06%
 PHOSPHATIC SAND-06%, QUARTZ SAND-02%
 OTHER FEATURES: CHALKY
 DISSEMINATED AND INTERBEDDED CLAY FACTION. CHERT AS
 INCLUSIONS AT 163 FT. AND 164.5 FT.
- 168.2- 175.5 CLAY; LIGHT OLIVE GRAY TO OLIVE GRAY

 MODERATE INDURATION

 CEMENT TYPE(S): CLAY MATRIX

 ACCESSORY MINERALS: PHOSPHATIC SAND-01%

 A CLEAN WAXY OLIVE CLAY CONTAINING SOME VEINLETS OF VERY

 FINE ORGANIC SAND OR DARK MINERAL.
- 175.5- 188 CALCILUTITE; LIGHT OLIVE GRAY TO OLIVE GRAY

 15% POROSITY: INTERGRANULAR, MOLDIC

 GRAIN TYPE: CALCILUTITE

 GRAIN SIZE: MICROCRYSTALLINE

 RANGE: CRYPTOCRYSTALLINE TO MICROCRYSTALLINE

 MODERATE INDURATION

 CEMENT TYPE(S): CALCILUTITE MATRIX, CLAY MATRIX

 SEDIMENTARY STRUCTURES: INTERBEDDED, MOTTLED

 ACCESSORY MINERALS: CLAY-15%, PHOSPHATIC GRAVEL-05%

 QUARTZ SAND-03%, CLAY-02%

 OTHER FEATURES: SPECKLED, MUDDY, FOSSILIFEROUS

 FOSSILS: MOLLUSKS

 CLAY IS DISSEMINATED AND AS INFILL. CHERT INCLUSION AT 181

 FT. DOLOMITIC LENSES AT 184 FT., 185 FT.
- 188 191 SANDSTONE; LIGHT OLIVE GRAY TO OLIVE GRAY
 10% POROSITY: INTERGRANULAR
 GRAIN SIZE: MEDIUM; RANGE: FINE TO COARSE
 ROUNDNESS: SUB-ANGULAR TO SUB-ROUNDED; MEDIUM SPHERICITY
 POOR INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX, CLAY MATRIX
 SEDIMENTARY STRUCTURES: INTERBEDDED, MOTTLED
 ACCESSORY MINERALS: CALCILUTITE-15%, PHOSPHATIC SAND-30%
 PHOSPHATIC GRAVEL-02%, CLAY-01%
 OTHER FEATURES: CALCAREOUS, FROSTED, SPECKLED
 FOSSILIFEROUS
 FOSSILS: MOLLUSKS, FOSSIL FRAGMENTS
 QUARTZ SANDSTONE, ABUNDANT PHOSPHATIC SAND AND GRAVEL.
 NUMEROUS CALCAREOUS AND PHOSPHATIC FOSSILS, SHELLS AND
 TEETH IN CALCAREOUS CLAY MATRIX.
- 191 193 DOLOSTONE; YELLOWISH GRAY TO LIGHT OLIVE GRAY
 05% POROSITY: INTERGRANULAR, MOLDIC
 GOOD INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX, CLAY MATRIX
 SEDIMENTARY STRUCTURES: INTERBEDDED, MOTTLED
 ACCESSORY MINERALS: QUARTZ SAND-05%, PHOSPHATIC SAND-03%
 CLAY-01%
 OTHER FEATURES: SPECKLED, MUDDY, FOSSILIFEROUS
 FOSSILS: ECHINOID, MOLLUSKS
- 193 194.3 DOLOSTONE; LIGHT OLIVE GRAY TO OLIVE GRAY
 03% POROSITY: INTERGRANULAR, LOW PERMEABILITY
 10-50% ALTERED; SUBHEDRAL
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: CRYPTOCRYSTALLINE TO MICROCRYSTALLINE

MODERATE INDURATION
CEMENT TYPE(S): CALCILUTITE MATRIX, CLAY MATRIX
SEDIMENTARY STRUCTURES: INTERBEDDED
ACCESSORY MINERALS: QUARTZ SAND-05%, PHOSPHATIC SAND-02%
PHOSPHATIC GRAVEL-01%, CLAY-01%
OTHER FEATURES: SPECKLED
DOLOSTONE, LITTLE QUARTZ. PHOSPHATIC SAND. FEWER FOSSILS.

- 194.3- 198.2 DOLOSTONE; LIGHT OLIVE GRAY TO OLIVE GRAY
 03% POROSITY: INTERGRANULAR, LOW PERMEABILITY
 10-50% ALTERED; SUBHEDRAL
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: CRYPTOCRYSTALLINE TO MICROCRYSTALLINE
 MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX, CLAY MATRIX
 SEDIMENTARY STRUCTURES: INTERBEDDED, MOTTLED
 ACCESSORY MINERALS: QUARTZ SAND-05%, PHOSPHATIC SAND-02%
 PHOSPHATIC GRAVEL-02%, CLAY-03%
 OTHER FEATURES: MEDIUM RECRYSTALLIZATION
 FOSSILS: MOLLUSKS
- 198.2- 199.5 DOLOSTONE; YELLOWISH GRAY TO LIGHT OLIVE GRAY
 02% POROSITY: INTERGRANULAR, MOLDIC
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: CRYPTOCRYSTALLINE TO MICROCRYSTALLINE
 POOR INDURATION
 CEMENT TYPE(S): DOLOMITE CEMENT, CALCILUTITE MATRIX
 CLAY MATRIX
 ACCESSORY MINERALS: CLAY-20%, QUARTZ SAND-03%
 PHOSPHATIC SAND-02%
 FOSSILS: SHARKS TEETH, MOLLUSKS
- 199.5- 204.7 CLAY; LIGHT OLIVE GRAY TO OLIVE GRAY
 01% POROSITY: NOT OBSERVED; MODERATE INDURATION
 CEMENT TYPE(S): CLAY MATRIX, DOLOMITE CEMENT
 CALCILUTITE MATRIX
 SEDIMENTARY STRUCTURES: INTERBEDDED
 ACCESSORY MINERALS: CALCILUTITE-03%, PHOSPHATIC SAND-02%
 DOLOMITE-02%
 OTHER FEATURES: CALCAREOUS, DOLOMITIC, MUDDY, FOSSILIFEROUS
 FOSSILS: ECHINOID, MOLLUSKS, BENTHIC FORAMINIFERA
 CLAY WITH INTERBEDDED FORAM FRAGMENTS, SOME INTERBEDDED
 DOLOSTONE AND SOME QUARTZ AND PHOSPHATIC SAND.
- 204.7- 210.8 CLAY; LIGHT OLIVE GRAY TO OLIVE GRAY
 02% POROSITY: MOLDIC; POOR INDURATION
 CEMENT TYPE(S): CLAY MATRIX, DOLOMITE CEMENT
 CALCILUTITE MATRIX
 SEDIMENTARY STRUCTURES: INTERBEDDED
 ACCESSORY MINERALS: DOLOMITE-03%, CALCILUTITE-02%
 PHOSPHATIC SAND-02%, QUARTZ SAND-02%
 OTHER FEATURES: CALCAREOUS, DOLOMITIC, MUDDY
 FOSSILS: MOLLUSKS, BENTHIC FORAMINIFERA
- 210.8- 217 DOLOSTONE; LIGHT OLIVE GRAY
 02% POROSITY: MOLDIC, LOW PERMEABILITY; 10-50% ALTERED
 SUBHEDRAL
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: CRYPTOCRYSTALLINE TO MICROCRYSTALLINE
 GOOD INDURATION
 CEMENT TYPE(S): DOLOMITE CEMENT
 SEDIMENTARY STRUCTURES: INTERBEDDED
 ACCESSORY MINERALS: CLAY-03%, QUARTZ SAND-01%
 PHOSPHATIC SAND-01%, PHOSPHATIC GRAVEL-01%
 OTHER FEATURES: SPECKLED
- 217 218 CLAY; LIGHT OLIVE GRAY TO OLIVE GRAY
 02% POROSITY: MOLDIC, LOW PERMEABILITY; POOR INDURATION
 CEMENT TYPE(S): CLAY MATRIX, DOLOMITE CEMENT
 SEDIMENTARY STRUCTURES: INTERBEDDED
 ACCESSORY MINERALS: DOLOMITE-02%, QUARTZ SAND-02%
 PHOSPHATIC SAND-02%, QUARTZ SAND-02%
 OTHER FEATURES: DOLOMITIC, MUDDY

FOSSILS: MOLLUSKS, BENTHIC FORAMINIFERA CLAY, DOLOMITIC, ABUNDANT PHOSPHATIC GRAVEL.

- DOLOSTONE; YELLOWISH GRAY TO LIGHT OLIVE GRAY
 05% POROSITY: INTERGRANULAR, MOLDIC, FRACTURE
 10-50% ALTERED; ANHEDRAL
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: CRYPTOCRYSTALLINE TO MICROCRYSTALLINE
 GOOD INDURATION
 CEMENT TYPE(S): DOLOMITE CEMENT, CALCILUTITE MATRIX
 SEDIMENTARY STRUCTURES: INTERBEDDED
 ACCESSORY MINERALS: LIMESTONE-05%, QUARTZ SAND-01%
 PHOSPHATIC SAND-01%
 OTHER FEATURES: CALCAREOUS
 FOSSILS: MOLLUSKS
- 233.9 CLAY; YELLOWISH GRAY TO LIGHT OLIVE GRAY
 02% POROSITY: MOLDIC, LOW PERMEABILITY, FRACTURE
 MODERATE INDURATION
 CEMENT TYPE(S): CLAY MATRIX, CALCILUTITE MATRIX
 DOLOMITE CEMENT
 SEDIMENTARY STRUCTURES: INTERBEDDED
 ACCESSORY MINERALS: DOLOMITE-20%, QUARTZ SAND-05%
 CALCILUTITE-05%
 OTHER FEATURES: CALCAREOUS
 FOSSILS: MOLLUSKS, BENTHIC FORAMINIFERA
- 233.9- 234.6 CLAY; YELLOWISH GRAY TO LIGHT OLIVE GRAY
 02% POROSITY, LOW PERMEABILITY, FRACTURE; POOR INDURATION
 CEMENT TYPE(S): CLAY MATRIX, CALCILUTITE MATRIX
 DOLOMITE CEMENT
 SEDIMENTARY STRUCTURES: INTERBEDDED
 ACCESSORY MINERALS: CALCILUTITE-10%, QUARTZ SAND-01%
 PHOSPHATIC GRAVEL-01%
 OTHER FEATURES: CALCAREOUS
- 234.6- 238 CLAY; YELLOWISH GRAY TO LIGHT OLIVE GRAY
 02% POROSITY: INTERGRANULAR, LOW PERMEABILITY, FRACTURE
 POOR INDURATION
 CEMENT TYPE(S): CLAY MATRIX, CALCILUTITE MATRIX
 SEDIMENTARY STRUCTURES: INTERBEDDED
 ACCESSORY MINERALS: QUARTZ SAND-20%, PHOSPHATIC SAND-15%
 OTHER FEATURES: BROWN ANHYDRITE CRYSTALS
 LOW RECRYSTALLIZATION, CALCAREOUS
- 238 246.9 CLAY; YELLOWISH GRAY TO LIGHT OLIVE GRAY
 01% POROSITY: INTERGRANULAR, FRACTURE, LOW PERMEABILITY
 POOR INDURATION
 CEMENT TYPE(S): CLAY MATRIX, CALCILUTITE MATRIX
 SEDIMENTARY STRUCTURES: INTERBEDDED
 ACCESSORY MINERALS: CALCILUTITE-10%, QUARTZ SAND-05%
 PHOSPHATIC SAND-03%, CALCITE-01%
 OTHER FEATURES: CALCAREOUS, FOSSILIFEROUS
 FOSSILS: MOLLUSKS, BENTHIC FORAMINIFERA, ORGANICS
- 248.4 CLAY; YELLOWISH GRAY TO LIGHT OLIVE GRAY
 01% POROSITY: INTERGRANULAR, LOW PERMEABILITY
 POOR INDURATION
 CEMENT TYPE(S): CLAY MATRIX, CALCILUTITE MATRIX
 SEDIMENTARY STRUCTURES: INTERBEDDED
 ACCESSORY MINERALS: PHOSPHATIC SAND-10%, QUARTZ SAND-05%
 CALCILUTITE-02%, PHOSPHATIC GRAVEL-02%
 OTHER FEATURES: CALCAREOUS, SPECKLED, FOSSILIFEROUS
 FOSSILS: MOLLUSKS, FOSSIL FRAGMENTS
 CLAY, CALCAREOUS, PHOSPHATIC SAND AND GRAVEL. SOME QUARTZ
 SAND. MOLLUSK FRAGMENTS ARE CALCAREOUS.
- 248.4- 263 CLAY; LIGHT OLIVE GRAY TO GREENISH GRAY
 O1% POROSITY: FRACTURE, LOW PERMEABILITY; POOR INDURATION
 CEMENT TYPE(S): CLAY MATRIX, CALCILUTITE MATRIX
 SEDIMENTARY STRUCTURES: INTERBEDDED
 ACCESSORY MINERALS: CALCILUTITE-05%, PHOSPHATIC SAND-03%
 PHOSPHATIC GRAVEL-01%, QUARTZ SAND-01%

OTHER FEATURES: CALCAREOUS FOSSILS: MOLLUSKS, FOSSIL FRAGMENTS, BENTHIC FORAMINIFERA

- 263 267.8 CALCARENITE; YELLOWISH GRAY TO LIGHT OLIVE GRAY
 10% POROSITY: INTERGRANULAR, FRACTURE, MOLDIC
 GRAIN TYPE: SKELETAL
 GRAIN SIZE: VERY FINE; RANGE: MICROCRYSTALLINE TO MEDIUM
 MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX, CLAY MATRIX
 SEDIMENTARY STRUCTURES: INTERBEDDED
 ACCESSORY MINERALS: CLAY-15%, PHOSPHATIC SAND-03%
 PHOSPHATIC GRAVEL-01%, QUARTZ SAND-01%
 OTHER FEATURES: CHALKY
 FOSSILS: MOLLUSKS, BENTHIC FORAMINIFERA, FOSSIL FRAGMENTS
 CALCARENITE, SOFT, FOSSILIFEROUS (SORITES-FORAM)
 INTERBEDDED CLAY, PHOSPHATIC SAND AND GRAVEL, MINOR QUARTZ
 SAND.
- 267.8- 269 CLAY; YELLOWISH GRAY TO LIGHT OLIVE GRAY
 02% POROSITY: FRACTURE, LOW PERMEABILITY; POOR INDURATION
 CEMENT TYPE(S): CLAY MATRIX, CALCILUTITE MATRIX
 SEDIMENTARY STRUCTURES: INTERBEDDED
 ACCESSORY MINERALS: CALCILUTITE-05%, PHOSPHATIC SAND-03%
 PHOSPHATIC GRAVEL-01%, QUARTZ SAND-01%
 OTHER FEATURES: CALCAREOUS, CHALKY
 FOSSILS: MOLLUSKS, BENTHIC FORAMINIFERA, FOSSIL FRAGMENTS
- 269 270.1 DOLOSTONE; YELLOWISH GRAY TO LIGHT OLIVE GRAY 10% POROSITY: INTERGRANULAR, MOLDIC, FRACTURE 10-50% ALTERED; ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO MICROCRYSTALLINE MODERATE INDURATION CEMENT TYPE(S): DOLOMITE CEMENT, CLAY MATRIX CALCILUTITE MATRIX SEDIMENTARY STRUCTURES: INTERBEDDED ACCESSORY MINERALS: CLAY-05%, PHOSPHATIC SAND-03% PHOSPHATIC GRAVEL-01%, QUARTZ SAND-01% OTHER FEATURES: PARTINGS, FOSSILIFEROUS FOSSILS: MOLLUSKS, BENTHIC FORAMINIFERA, FOSSIL FRAGMENTS FOSSIL MOLDS DOLOSTONE, FRACTURES, SOME CLAY INFILLED, INTERBEDDED PHOSPHATIC SAND AND GRAVEL, MOLDIC.
- 270.1- 278 CALCARENITE; YELLOWISH GRAY TO LIGHT OLIVE GRAY
 08% POROSITY: FRACTURE
 GRAIN TYPE: BIOGENIC, SKELETAL
 GRAIN SIZE: MEDIUM; RANGE: MEDIUM TO COARSE
 POOR INDURATION
 CEMENT TYPE(S): CLAY MATRIX, CALCILUTITE MATRIX
 SEDIMENTARY STRUCTURES: INTERBEDDED
 ACCESSORY MINERALS: PHOSPHATIC SAND-05%, QUARTZ SAND-05%
 PHOSPHATIC GRAVEL-01%, CLAY-03%
 OTHER FEATURES: GRANULAR, SPECKLED, WEATHERED
 FOSSILIFEROUS
 FOSSILS: MOLLUSKS, FOSSIL MOLDS
- 278 280 CALCILUTITE; WHITE TO YELLOWISH GRAY
 05% POROSITY: FRACTURE, INTERGRANULAR, MOLDIC
 GRAIN TYPE: BIOGENIC, CALCILUTITE
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: CRYPTOCRYSTALLINE TO MICROCRYSTALLINE
 MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 SEDIMENTARY STRUCTURES: INTERBEDDED
 ACCESSORY MINERALS: QUARTZ SAND-01%, PHOSPHATIC SAND-01%
 CLAY-01%
 OTHER FEATURES: CHALKY, FOSSILIFEROUS
 FOSSILS: MOLLUSKS, BENTHIC FORAMINIFERA, FOSSIL MOLDS
- 280 283.4 CLAY; DARK GREENISH GRAY TO DARK GREENISH GRAY 02% POROSITY: FRACTURE; POOR INDURATION CEMENT TYPE(S): CLAY MATRIX

SEDIMENTARY STRUCTURES: INTERBEDDED ACCESSORY MINERALS: PHOSPHATIC SAND-05%, QUARTZ SAND-05% PHOSPHATIC GRAVEL-02%, CALCILUTITE-02% CLAY, GREEN, INTERBEDDED.

- 283.4- 284.3 CALCARENITE; WHITE TO YELLOWISH GRAY
 05% POROSITY: INTERGRANULAR, MOLDIC, FRACTURE
 GRAIN TYPE: BIOGENIC, PELLET, SKELTAL CAST
 GRAIN SIZE: MEDIUM; RANGE: FINE TO MEDIUM
 MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 SEDIMENTARY STRUCTURES: INTERBEDDED
 ACCESSORY MINERALS: PHOSPHATIC SAND-01%, QUARTZ SAND-01%
 CALCITE-01%
 FOSSILS: MOLLUSKS, BENTHIC FORAMINIFERA, SHARKS TEETH
 FOSSIL MOLDS
- 292.8 CALCARENITE; WHITE TO YELLOWISH GRAY
 05% POROSITY: INTERGRANULAR, MOLDIC, FRACTURE
 GRAIN TYPE: BIOGENIC, PELLET, SKELTAL CAST
 GRAIN SIZE: MEDIUM; RANGE: FINE TO MEDIUM
 MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 SEDIMENTARY STRUCTURES: INTERBEDDED
 ACCESSORY MINERALS: PHOSPHATIC SAND-01%, QUARTZ SAND-01%
 CALCITE-01%
 FOSSILS: MOLLUSKS, BENTHIC FORAMINIFERA, SHARKS TEETH
 VERTEBRATE
- 292.8- 294.1 CLAY; WHITE TO YELLOWISH GRAY

 01% POROSITY: FRACTURE; POOR INDURATION

 CEMENT TYPE(S): CLAY MATRIX, CALCILUTITE MATRIX

 SEDIMENTARY STRUCTURES: INTERBEDDED

 ACCESSORY MINERALS: CALCILUTITE-02%, PHOSPHATIC SAND-01%

 QUARTZ SAND-01%, PHOSPHATIC GRAVEL-01%

 FOSSILS: MOLLUSKS
- 294.1- 296.8 CALCARENITE; YELLOWISH GRAY TO LIGHT OLIVE GRAY
 03% POROSITY: INTERGRANULAR, FRACTURE, MOLDIC
 GRAIN TYPE: BIOGENIC, PELLET
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: MICROCRYSTALLINE TO FINE; MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX, CLAY MATRIX
 SEDIMENTARY STRUCTURES: INTERBEDDED
 ACCESSORY MINERALS: QUARTZ SAND-05%, PHOSPHATIC SAND-05%
 PHOSPHATIC GRAVEL-01%, CLAY-01%
 OTHER FEATURES: MUDDY, WEATHERED, FOSSILIFEROUS
 FOSSILS: MOLLUSKS, BENTHIC FORAMINIFERA, ECHINOID
 OSTRACODS
- 296.8- 298 CALCARENITE; GRAYISH BROWN TO LIGHT OLIVE GRAY
 04% POROSITY: INTERGRANULAR, FRACTURE
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: MICROCRYSTALLINE TO FINE; POOR INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX, CLAY MATRIX
 SEDIMENTARY STRUCTURES: INTERBEDDED
 ACCESSORY MINERALS: QUARTZ SAND-10%, PHOSPHATIC GRAVEL-10%
 PHOSPHATIC GRAVEL-03%, CLAY-03%
 OTHER FEATURES: GRANULAR, SPECKLED, FOSSILIFEROUS
 FOSSILS: CORAL, MOLLUSKS, WORM TRACES
 CALCARENITE, SANDY, VERY WEATHERED MOLLUSK FRAGMENTS.
- 298 298.8 CLAY; OLIVE GRAY TO DARK GREENISH GRAY
 Ol% POROSITY: FRACTURE; POOR INDURATION
 CEMENT TYPE(S): CLAY MATRIX, CALCILUTITE MATRIX
 SEDIMENTARY STRUCTURES: INTERBEDDED, MOTTLED
 ACCESSORY MINERALS: QUARTZ SAND-15%, PHOSPHATIC GRAVEL-10%
 PHOSPHATIC GRAVEL-02%, CALCILUTITE-01%
 OTHER FEATURES: CALCAREOUS, FOSSILIFEROUS
 FOSSILS: MOLLUSKS, FOSSIL FRAGMENTS
- 298.8- 303.8 CALCILUTITE; YELLOWISH GRAY TO LIGHT OLIVE GRAY 03% POROSITY: FRACTURE, INTERGRANULAR

GRAIN TYPE: BIOGENIC, CALCILUTITE

GRAIN SIZE: MICROCRYSTALLINE

RANGE: CRYPTOCRYSTALLINE TO MICROCRYSTALLINE

MODERATE INDURATION

CEMENT TYPE(S): CALCILUTITE MATRIX, CLAY MATRIX

SEDIMENTARY STRUCTURES: INTERBEDDED, MOTTLED

ACCESSORY MINERALS: QUARTZ SAND-10%, PHOSPHATIC GRAVEL-10%

PHOSPHATIC GRAVEL-01%, CLAY-01%

OTHER FEATURES: PARTINGS, SPECKLED, WEATHERED

FOSSILIFEROUS

FOSSILS: ECHINOID, MOLLUSKS, FOSSIL FRAGMENTS

303.8- 308.8 CALCILUTITE; YELLOWISH GRAY TO LIGHT GREENISH GRAY 01% POROSITY: INTERGRANULAR, LOW PERMEABILITY GRAIN TYPE: CALCILUTITE

GRAIN SIZE: MICROCRYSTALLINE

RANGE: CRYPTOCRYSTALLINE TO MICROCRYSTALLINE

GOOD INDURATION

CEMENT TYPE(S): CALCILUTITE MATRIX, DOLOMITE CEMENT

SEDIMENTARY STRUCTURES: INTERBEDDED, MASSIVE

ACCESSORY MINERALS: PHOSPHATIC SAND-07%, QUARTZ SAND-05%

PHOSPHATIC GRAVEL-01%, CALCITE-01% OTHER FEATURES: HIGH RECRYSTALLIZATION, PARTINGS, SPECKLED

FOSSILIFEROUS

FOSSILS: ECHINOID, MOLLUSKS, FOSSIL MOLDS CALCILUTITE, VERY HARD, NUMEROUS FILLED IN MOLDS-SOME

CALCITE REPLACED. SOME ORGANICS.

CALCARENITE; YELLOWISH GRAY TO LIGHT OLIVE GRAY 308.8- 313 10% POROSITY: INTERGRANULAR, FRACTURE, MOLDIC GRAIN TYPE: BIOGENIC, SKELETAL, SKELTAL CAST GRAIN SIZE: VERY FINE; RANGE: MICROCRYSTALLINE TO MEDIUM MODERATE INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX, CLAY MATRIX SEDIMENTARY STRUCTURES: INTERBEDDED ACCESSORY MINERALS: PHOSPHATIC SAND-03%, QUARTZ SAND-02% CLAY-02% OTHER FEATURES: GRANULAR, CHALKY

FOSSILS: ECHINOID, MOLLUSKS, FOSSIL MOLDS

313 - 333 CALCARENITE;

10% POROSITY: INTERGRANULAR, MOLDIC

POSSIBLY HIGH PERMEABILITY

GRAIN TYPE: BIOGENIC, SKELETAL, SKELTAL CAST

GRAIN SIZE: FINE; RANGE: MICROCRYSTALLINE TO MEDIUM

POOR INDURATION

CEMENT TYPE(S): CALCILUTITE MATRIX, CLAY MATRIX

SEDIMENTARY STRUCTURES: INTERBEDDED

ACCESSORY MINERALS: CLAY-03%

OTHER FEATURES: CHALKY

FOSSILS: ECHINOID, MOLLUSKS, FOSSIL MOLDS

CALCARENITE, VERY CLEAN, VERY MINOR ORGANICS, POORLY INDURATED SUWANNEE LIMESTONE.

333 - 341 CALCARENITE;

10% POROSITY: INTERGRANULAR, MOLDIC

POSSIBLY HIGH PERMEABILITY

GRAIN TYPE: BIOGENIC, SKELETAL, SKELTAL CAST

GRAIN SIZE: FINE; RANGE: MICROCRYSTALLINE TO FINE

MODERATE INDURATION

CEMENT TYPE(S): CALCILUTITE MATRIX

FOSSILS: FOSSIL FRAGMENTS

CALCARENITE, CREAM-COLORED, VERY CLEAN, FEW INTERBEDDED

MINERALS, TYPICAL SUWANNEE LIMESTONE CORE.

341 - 348.6 CALCILUTITE;

03% POROSITY: INTERGRANULAR, LOW PERMEABILITY

GRAIN TYPE: CALCILUTITE

GRAIN SIZE: MICROCRYSTALLINE

RANGE: CRYPTOCRYSTALLINE TO FINE; UNCONSOLIDATED CEMENT TYPE(S): CALCILUTITE MATRIX, CLAY MATRIX

SEDIMENTARY STRUCTURES: INTERBEDDED

ACCESSORY MINERALS: CLAY-15%

OTHER FEATURES: CHALKY, MUDDY FOSSILS: MOLLUSKS, FOSSIL FRAGMENTS

348.6- 353 CALCILUTITE;

CARCITIE,
03% POROSITY: INTERGRANULAR, FRACTURE, LOW PERMEABILITY
GRAIN TYPE: CALCILUTITE
GRAIN SIZE: MICROCRYSTALLINE
RANGE: CRYPTOCRYSTALLINE TO FINE; MODERATE INDURATION
CEMENT TYPE(S): CALCILUTITE MATRIX
SEDIMENTARY STRUCTURES: MASSIVE

ACCESSORY MINERALS: CLAY-01% OTHER FEATURES: CHALKY FOSSILS: ORGANICS

353 - 373.3 CALCARENITE;

03% POROSITY: INTERGRANULAR, FRACTURE
GRAIN TYPE: BIOGENIC, SKELETAL, SKELTAL CAST
GRAIN SIZE: FINE; RANGE: CRYPTOCRYSTALLINE TO FINE
MODERATE INDURATION
CEMENT TYPE(S): CALCILUTITE MATRIX
ACCESSORY MINERALS: DOLOMITE-01%
OTHER FEATURES: CHALKY
FOSSILS: CORAL, MOLLUSKS, ECHINOID

373.3- 377 CALCARENITE;

10% POROSITY: INTERGRANULAR, FRACTURE, MOLDIC
GRAIN TYPE: SKELETAL, SKELTAL CAST
GRAIN SIZE: MICROCRYSTALLINE
RANGE: CRYPTOCRYSTALLINE TO FINE; MODERATE INDURATION
CEMENT TYPE(S): CALCILUTITE MATRIX
SEDIMENTARY STRUCTURES: MASSIVE
FOSSILS: CORAL

377 - 382.5 CALCILUTITE;

03% POROSITY: INTERGRANULAR, FRACTURE, LOW PERMEABILITY GRAIN TYPE: BIOGENIC, CALCILUTITE, SKELTAL CAST GRAIN SIZE: MICROCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO MICROCRYSTALLINE MODERATE INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX SEDIMENTARY STRUCTURES: MASSIVE ACCESSORY MINERALS: CLAY-01% OTHER FEATURES: CHALKY FOSSILS: MOLLUSKS, WORM TRACES

382.5- 390.5 CALCARENITE;

05% POROSITY: INTERGRANULAR, FRACTURE, MOLDIC GRAIN TYPE: BIOGENIC, SKELETAL, SKELTAL CAST GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO FINE; MODERATE INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX, CLAY MATRIX SEDIMENTARY STRUCTURES: INTERBEDDED ACCESSORY MINERALS: CLAY-04% OTHER FEATURES: CHALKY FOSSILS: ECHINOID, MOLLUSKS, BENTHIC FORAMINIFERA CALCARENITE, FRACTURED, RUBBLE. SOME INTERBEDDED GREEN CLAY.

390.5- 402.1 CALCARENITE;

CALCARENTE,

10% POROSITY: INTERGRANULAR, FRACTURE, MOLDIC

MODERATE INDURATION

CEMENT TYPE(S): CALCILUTITE MATRIX

ACCESSORY MINERALS: CALCITE-02%

FOSSILS: ECHINOID, MOLLUSKS, BENTHIC FORAMINIFERA, CORAL

CALCARENITE, MOLDIC, NUMEROUS MOLLUSK MOLDS. APPEARS VERY

PERMEABLE.

402.1- 403 CALCILUTITE;

02% POROSITY: FRACTURE, LOW PERMEABILITY GRAIN TYPE: CALCILUTITE GRAIN SIZE: MICROCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO MICROCRYSTALLINE

UNCONSOLIDATED

CEMENT TYPE(S): CALCILUTITE MATRIX, CLAY MATRIX
SEDIMENTARY STRUCTURES: INTERBEDDED
ACCESSORY MINERALS: CLAY-30%
FOSSILS: MOLLUSKS, FOSSIL MOLDS

403 - 405 CLAY;

01% POROSITY: FRACTURE, LOW PERMEABILITY; POOR INDURATION CEMENT TYPE(S): CLAY MATRIX, CALCILUTITE MATRIX ACCESSORY MINERALS: CALCILUTITE-02% OTHER FEATURES: CALCAREOUS, CHALKY

405 - 413 CALCILUTITE;

03% POROSITY: INTERGRANULAR, FRACTURE, LOW PERMEABILITY GRAIN TYPE: CALCILUTITE, BIOGENIC GRAIN SIZE: MICROCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO MICROCRYSTALLINE POOR INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX, CLAY MATRIX SEDIMENTARY STRUCTURES: INTERBEDDED ACCESSORY MINERALS: CLAY-05%, CHERT-05% OTHER FEATURES: CHALKY FOSSILS: MOLLUSKS, FOSSIL MOLDS CALCILUTITE, RUBBLE. LARGE DOLOMITIC CHERT NODULE AT 412 FT.

413 - 418 CLAY;

O1% POROSITY: FRACTURE, LOW PERMEABILITY; UNCONSOLIDATED CEMENT TYPE(S): CLAY MATRIX ACCESSORY MINERALS: CALCILUTITE-05% OTHER FEATURES: CHALKY FOSSILS: FOSSIL MOLDS

418 - 419 CALCARENITE;

O5% POROSITY: INTERGRANULAR, FRACTURE
POSSIBLY HIGH PERMEABILITY
GRAIN TYPE: BIOGENIC, CALCILUTITE, SKELETAL
GRAIN SIZE: MICROCRYSTALLINE
RANGE: CRYPTOCRYSTALLINE TO FINE; POOR INDURATION
CEMENT TYPE(S): CLAY MATRIX, CALCILUTITE MATRIX
ACCESSORY MINERALS: CLAY-10%
OTHER FEATURES: CHALKY
FOSSILS: FOSSIL MOLDS

419 - 422.6 CLAY;

02% POROSITY: INTERGRANULAR, LOW PERMEABILITY MODERATE INDURATION CEMENT TYPE(S): CLAY MATRIX, CALCILUTITE MATRIX ACCESSORY MINERALS: CALCILUTITE-05% OTHER FEATURES: CHALKY, CALCAREOUS FOSSILS: FOSSIL MOLDS, MOLLUSKS

422.6- 429 CALCARENITE;

GRAIN TYPE: BIOGENIC, SKELETAL, SKELTAL CAST
GRAIN SIZE: FINE; RANGE: MICROCRYSTALLINE TO FINE
POOR INDURATION
CEMENT TYPE(S): CALCILUTITE MATRIX
ACCESSORY MINERALS: CLAY-05%
OTHER FEATURES: CHALKY
FOSSILS: MOLLUSKS, ECHINOID, BENTHIC FORAMINIFERA

429 - 433 CLAY;

02% POROSITY: FRACTURE, LOW PERMEABILITY; POOR INDURATION CEMENT TYPE(S): CLAY MATRIX, CALCILUTITE MATRIX ACCESSORY MINERALS: CALCILUTITE-05% OTHER FEATURES: CHALKY, CALCAREOUS FOSSILS: MOLLUSKS, BENTHIC FORAMINIFERA

433 - 438.5 CALCARENITE;

10% POROSITY: INTERGRANULAR, FRACTURE POSSIBLY HIGH PERMEABILITY GRAIN TYPE: BIOGENIC, SKELETAL, SKELTAL CAST GRAIN SIZE: FINE; RANGE: MICROCRYSTALLINE TO FINE POOR INDURATION
CEMENT TYPE(S): CALCILUTITE MATRIX, CLAY MATRIX
ACCESSORY MINERALS: CLAY-10%, DOLOMITE-03%
OTHER FEATURES: CHALKY
FOSSILS: MOLLUSKS, ECHINOID, BENTHIC FORAMINIFERA
FOSSIL MOLDS
CALCARENITE, MOLDIC, INTERBEDDED CLAY LENSES. SOME
DOLOSTONE.

- 478.1 CALCARENITE; VERY LIGHT ORANGE TO YELLOWISH GRAY
 15% POROSITY: INTERGRANULAR, FRACTURE, MOLDIC
 GRAIN TYPE: BIOGENIC, SKELETAL, SKELTAL CAST
 GRAIN SIZE: FINE; RANGE: MICROCRYSTALLINE TO MEDIUM
 MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 SEDIMENTARY STRUCTURES: MASSIVE
 ACCESSORY MINERALS: CALCILUTITE-02%
 OTHER FEATURES: GRANULAR, MEDIUM RECRYSTALLIZATION
 FOSSILS: ECHINOID, BENTHIC FORAMINIFERA, MOLLUSKS
 FOSSIL MOLDS, CORAL
 CALCARENITE, MOLDIC, HIGHLY PERMEABLE, POSSIBLE FAULT
 SURFACE AT 447.5 FT.
- 478.1- 482.6 CLAY; WHITE TO YELLOWISH GRAY

 02% POROSITY: INTERGRANULAR, LOW PERMEABILITY

 UNCONSOLIDATED

 CEMENT TYPE(S): CLAY MATRIX, CALCILUTITE MATRIX

 ACCESSORY MINERALS: CALCILUTITE-10%

 OTHER FEATURES: CALCAREOUS, CHALKY
- CALCARENITE; VERY LIGHT ORANGE TO YELLOWISH GRAY
 10% POROSITY: INTERGRANULAR, FRACTURE, MOLDIC
 GRAIN TYPE: BIOGENIC, SKELETAL, SKELTAL CAST
 GRAIN SIZE: FINE; RANGE: MICROCRYSTALLINE TO MEDIUM
 MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 SEDIMENTARY STRUCTURES: MASSIVE
 ACCESSORY MINERALS: CLAY-02%
 OTHER FEATURES: GRANULAR
 FOSSILS: BENTHIC FORAMINIFERA, MOLLUSKS
- 489 493 CLAY; WHITE TO YELLOWISH GRAY

 02% POROSITY: INTERGRANULAR, LOW PERMEABILITY

 UNCONSOLIDATED

 CEMENT TYPE(S): CLAY MATRIX, CALCILUTITE MATRIX

 ACCESSORY MINERALS: CALCILUTITE-10%

 OTHER FEATURES: CALCAREOUS, CHALKY
- 493 518.6 CALCARENITE; VERY LIGHT ORANGE TO YELLOWISH GRAY
 10% POROSITY: INTERGRANULAR, FRACTURE, MOLDIC
 GRAIN TYPE: BIOGENIC, SKELETAL, SKELTAL CAST
 GRAIN SIZE: FINE; RANGE: MICROCRYSTALLINE TO MEDIUM
 MODERATE INDURATION
 CEMENT TYPE(S): CLAY MATRIX
 ACCESSORY MINERALS: CALCITE-01%, CLAY-05%
 FOSSILS: CORAL, ECHINOID, MOLLUSKS, BENTHIC FORAMINIFERA
 CALCARENITE, FOSSILIFEROUS, MOLDIC. SOME UNCONSOLIDATED
 CALCAREOUS CLAY LENSES.
- 518.6- 523.6 CLAY; WHITE TO YELLOWISH GRAY
 O1% POROSITY: INTERGRANULAR, LOW PERMEABILITY
 UNCONSOLIDATED
 ACCESSORY MINERALS: CALCILUTITE-05%
 OTHER FEATURES: CALCAREOUS, CHALKY
- 523.6- 535 CALCARENITE; VERY LIGHT ORANGE TO YELLOWISH GRAY
 05% POROSITY: INTERGRANULAR, FRACTURE
 GRAIN TYPE: BIOGENIC, SKELETAL, SKELTAL CAST
 GRAIN SIZE: FINE; RANGE: MICROCRYSTALLINE TO MEDIUM
 MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX, CLAY MATRIX
 ACCESSORY MINERALS: CLAY-10%
 OTHER FEATURES: CHALKY, GRANULAR

FOSSILS: ECHINOID, BENTHIC FORAMINIFERA, MOLLUSKS

- 535 568 CLAY; WHITE TO YELLOWISH GRAY

 02% POROSITY: INTERGRANULAR, LOW PERMEABILITY
 UNCONSOLIDATED

 CEMENT TYPE(S): CLAY MATRIX, CALCILUTITE MATRIX
 ACCESSORY MINERALS: CALCILUTITE-25%
 OTHER FEATURES: CALCAREOUS, CHALKY
 FOSSILS: BENTHIC FORAMINIFERA, MOLLUSKS
 CLAY, CALCAREOUS, INTERLAYERED WITH CALCARENITE LENSES.
- 568 576

 CALCARENITE; YELLOWISH GRAY TO YELLOWISH GRAY
 10% POROSITY: INTERGRANULAR, FRACTURE, MOLDIC
 GRAIN TYPE: BIOGENIC, PELLET, SKELETAL,
 GRAIN SIZE: FINE; RANGE: VERY FINE TO COARSE
 MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX, CLAY MATRIX
 SEDIMENTARY STRUCTURES: INTERBEDDED
 ACCESSORY MINERALS: CLAY-10%, ORGANICS-01%
 OTHER FEATURES: GRANULAR, MUDDY, WEATHERED
 FOSSILS: MOLLUSKS, ECHINOID, BENTHIC FORAMINIFERA
 FOSSIL FRAGMENTS
 CALCARENITE, INCREASING ORGANICS CONTENT, INTERBEDDED GRAY
 CLAY LENSES. VERY WEATHERED.
- 576 593 CLAY; LIGHT GRAY TO YELLOWISH GRAY
 01% POROSITY: INTERGRANULAR, LOW PERMEABILITY
 POOR INDURATION
 CEMENT TYPE(S): CLAY MATRIX, CALCILUTITE MATRIX
 ACCESSORY MINERALS: CALCILUTITE- %
 OTHER FEATURES: CALCAREOUS
- 593 620.5 CALCARENITE; YELLOWISH GRAY TO YELLOWISH GRAY
 10% POROSITY: INTERGRANULAR, VUGULAR
 GRAIN TYPE: BIOGENIC, PELLET, SKELETAL
 GRAIN SIZE: MEDIUM; RANGE: VERY FINE TO COARSE
 MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX, CLAY MATRIX
 ACCESSORY MINERALS: CLAY-10%, ORGANICS-03%
 OTHER FEATURES: GRANULAR, SUCROSIC, FOSSILIFEROUS
 FOSSILS: ECHINOID, BENTHIC FORAMINIFERA, MOLLUSKS
 CALCARENITE, FOSSILIFEROUS, VERY WEATHERED, INTERLAYERED
 WITH CALCAREOUS CLAY ZONES.
- 620.5- 623 CALCARENITE; YELLOWISH GRAY TO YELLOWISH GRAY
 15% POROSITY: INTERGRANULAR, MOLDIC, VUGULAR
 GRAIN TYPE: BIOGENIC, PELLET, SKELETAL
 MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 ACCESSORY MINERALS: CLAY-05%, ORGANICS-03%
 OTHER FEATURES: SUCROSIC, WEATHERED, GRANULAR
 FOSSILS: ECHINOID, BENTHIC FORAMINIFERA, MOLLUSKS
- 623 639 CALCARENITE; YELLOWISH GRAY TO VERY LIGHT GRAY 06% POROSITY: INTERGRANULAR GRAIN TYPE: BIOGENIC, CALCILUTITE, SKELETAL 80% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: VERY FINE; RANGE: FINE TO MICROCRYSTALLINE MODERATE INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX SEDIMENTARY STRUCTURES: INTERBEDDED, GRADED BEDDING ACCESSORY MINERALS: CALCILUTITE-20%, ORGANICS-01% OTHER FEATURES: GRANULAR FOSSILS: ORGANICS, WORM TRACES, MOLLUSKS INTERBEDDED GRANULAR VERY FINE CALCARENITE AND POORLY INDURATED GRAINY CALCILUTITE. MAY DISPLAY FINING-UPWARD SEQUENCES. ORGANIC SPECKS AND ALTERED CALCARENITE GRAINS ARE COMMON.
- 639 640 CALCARENITE; VERY LIGHT ORANGE
 24% POROSITY: INTERGRANULAR, MOLDIC
 GRAIN TYPE: SKELETAL, BIOGENIC, CALCILUTITE
 95% ALLOCHEMICAL CONSTITUENTS

GRAIN SIZE: FINE; RANGE: MEDIUM TO MICROCRYSTALLINE MODERATE INDURATION
CEMENT TYPE(S): CALCILUTITE MATRIX
ACCESSORY MINERALS: CALCILUTITE-05%
OTHER FEATURES: FOSSILIFEROUS, GRANULAR
FOSSILS: FOSSIL FRAGMENTS, MOLLUSKS, WORM TRACES

- 640 644.5 CALCARENITE; YELLOWISH GRAY TO VERY LIGHT GRAY

 16% POROSITY: INTERGRANULAR

 GRAIN TYPE: BIOGENIC, CALCILUTITE, SKELETAL

 90% ALLOCHEMICAL CONSTITUENTS

 GRAIN SIZE: VERY FINE; RANGE: FINE TO MICROCRYSTALLINE

 MODERATE INDURATION

 CEMENT TYPE(S): CALCILUTITE MATRIX

 SEDIMENTARY STRUCTURES: CROSS-BEDDED, BANDED

 ACCESSORY MINERALS: CALCILUTITE-10%, ORGANICS-01%

 OTHER FEATURES: GRANULAR

 FOSSILS: ORGANICS, FOSSIL FRAGMENTS

 GRANULAR VERY FINE CALCARENITE, FAINTLY CROSS-BEDDED WITH

 SLIGHTLY ALTERED LAMINAE. ORGANIC SPECKS COMMON.
- CALCARENITE; VERY LIGHT ORANGE
 22% POROSITY: INTERGRANULAR
 GRAIN TYPE: SKELETAL, BIOGENIC, CALCILUTITE
 85% ALLOCHEMICAL CONSTITUENTS
 GRAIN SIZE: FINE; RANGE: MEDIUM TO MICROCRYSTALLINE
 MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 SEDIMENTARY STRUCTURES: INTERBEDDED
 ACCESSORY MINERALS: CALCILUTITE-15%
 OTHER FEATURES: FOSSILIFEROUS, GRANULAR
 FOSSILS: MILIOLIDS, FOSSIL FRAGMENTS
 INTERBEDDED FINE SKELETAL/GRANULAR PACKSTONE AND POORLY
 CONSOLIDATED GRAINY CALCILUTITE. HARD, THIN CALCILUTITE
 STRINGERS AT 659 FT. VARIABLY PERMEABLE.
- 662 668.5 LIMESTONE; VERY LIGHT ORANGE TO WHITE
 20% POROSITY: MOLDIC, INTERGRANULAR
 GRAIN TYPE: BIOGENIC, CALCILUTITE, SKELTAL CAST
 45% ALLOCHEMICAL CONSTITUENTS
 GRAIN SIZE: MEDIUM; RANGE: MEDIUM TO MICROCRYSTALLINE
 MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 ACCESSORY MINERALS: CALCILUTITE-55%, CALCARENITE-45%
 OTHER FEATURES: FOSSILIFEROUS, LOW RECRYSTALLIZATION
 FOSSILS: FOSSIL MOLDS, MOLLUSKS, FOSSIL FRAGMENTS
 VARIABLY HARD, VARIABLY MOLDIC.
- 668.5- 674.5 CALCARENITE; YELLOWISH GRAY TO VERY LIGHT ORANGE

 14% POROSITY: INTERGRANULAR
 GRAIN TYPE: BIOGENIC, CALCILUTITE, SKELETAL

 60% ALLOCHEMICAL CONSTITUENTS
 GRAIN SIZE: VERY FINE; RANGE: VERY FINE TO MICROCRYSTALLINE
 MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 ACCESSORY MINERALS: CALCILUTITE-40%
 OTHER FEATURES: GRANULAR
 FOSSILS: FOSSIL FRAGMENTS
 VERY FINE CALCARENITE.
- 674.5- 678 CALCILUTITE; WHITE

 12% POROSITY: LOW PERMEABILITY, INTERGRANULAR

 GRAIN TYPE: CALCILUTITE, BIOGENIC

 05% ALLOCHEMICAL CONSTITUENTS

 GRAIN SIZE: MICROCRYSTALLINE

 RANGE: VERY FINE TO MICROCRYSTALLINE; POOR INDURATION

 CEMENT TYPE(S): CALCILUTITE MATRIX

 OTHER FEATURES: CHALKY

 CHALKY, POOR TO MODERATELY INDURATED. (OCALA TYPE?)
- 678 683 NO SAMPLES
 CUTTINGS COLLECTED THROUGH INTERVAL SUGGEST POORLY
 INDURATED VERY FINE CALCARENITE, BUT MAY CONSIST OF

PREVIOUS CHALKY CALCILUTITE.

- 683 686 SHELL BED; LIGHT GRAY TO WHITE
 40% POROSITY: POSSIBLY HIGH PERMEABILITY, MOLDIC
 INTERGRANULAR; POOR INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 SEDIMENTARY STRUCTURES: INTERBEDDED
 ACCESSORY MINERALS: CALCILUTITE-25%
 OTHER FEATURES: FOSSILIFEROUS, SPLINTERY
 MEDIUM RECRYSTALLIZATION
 FOSSILS: MOLLUSKS
 PERMEABLE BED OF RECRYSTALLIZED OYSTER SHELL WITH INTERBEDS
 OF POORLY PERMEABLE, WHITE, POOR TO MEDIUM INDURATED
 CALCILUTITE. (OCALA TYPE?).
- 686 687 LIMESTONE; VERY LIGHT ORANGE TO WHITE
 20% POROSITY: MOLDIC, INTERGRANULAR
 GRAIN TYPE: BIOGENIC, CALCILUTITE, SKELTAL CAST
 45% ALLOCHEMICAL CONSTITUENTS
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: MICROCRYSTALLINE TO VERY FINE; GOOD INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 ACCESSORY MINERALS: CALCILUTITE-55%
 OTHER FEATURES: FOSSILIFEROUS, MEDIUM RECRYSTALLIZATION
 FOSSILS: MOLLUSKS, FOSSIL MOLDS
 MOLLUSK MOLDS AND CASTS IN HARD SOMEWHAT RECRYSTALLIZED
 LIMESTONE. SOME RECRYSTALLIZED OYSTER SHELLS. SUWANNEE-TYPE
 LITHOLOGY.
- 687 708.5 CALCARENITE; YELLOWISH GRAY
 14% POROSITY: INTERGRANULAR, LOW PERMEABILITY
 GRAIN TYPE: BIOGENIC, CALCILUTITE
 55% ALLOCHEMICAL CONSTITUENTS
 GRAIN SIZE: VERY FINE; RANGE: MICROCRYSTALLINE TO VERY FINE
 MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 ACCESSORY MINERALS: CALCILUTITE-45%
 OTHER FEATURES: GRANULAR, CHALKY
 FOSSILS: FOSSIL MOLDS, BENTHIC FORAMINIFERA
 OCALA TYPE LITHOLOGY ALTHOUGH TRACES OF MOLLUSK MOLDS. VERY
 FEW LEPIDOCYCLINA NEAR BOTTOM OF INTERVAL.
- 708.5- 713.8 CALCARENITE; VERY LIGHT ORANGE TO YELLOWISH GRAY
 10% POROSITY: INTERGRANULAR, FRACTURE, PIN POINT VUGS
 GRAIN TYPE: BIOGENIC, CALCILUTITE
 GRAIN SIZE: VERY FINE; RANGE: MICROCRYSTALLINE TO FINE
 POOR INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 ACCESSORY MINERALS: CALCILUTITE-30%
 OTHER FEATURES: GRANULAR, CHALKY
 FOSSILS: MOLLUSKS, BENTHIC FORAMINIFERA, FOSSIL FRAGMENTS
- 713.8- 717.9 CALCARENITE; VERY LIGHT ORANGE TO MODERATE GRAY
 10% POROSITY: INTERGRANULAR, FRACTURE, LOW PERMEABILITY
 GRAIN TYPE: BIOGENIC, CALCILUTITE
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: CRYPTOCRYSTALLINE TO VERY FINE; UNCONSOLIDATED
 CEMENT TYPE(S): CALCILUTITE MATRIX
 ACCESSORY MINERALS: CALCILUTITE-45%, CLAY-05%
 OTHER FEATURES: CHALKY
 FOSSILS: MOLLUSKS, BENTHIC FORAMINIFERA, FOSSIL FRAGMENTS
- 717.9- 743 CALCARENITE; VERY LIGHT ORANGE TO YELLOWISH GRAY
 10% POROSITY: INTERGRANULAR, FRACTURE, PIN POINT VUGS
 GRAIN TYPE: BIOGENIC, CALCILUTITE
 GRAIN SIZE: VERY FINE; RANGE: MICROCRYSTALLINE TO VERY FINE
 POOR INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 ACCESSORY MINERALS: CALCILUTITE-45%
 OTHER FEATURES: CHALKY
 FOSSILS: MOLLUSKS, BENTHIC FORAMINIFERA, FOSSIL FRAGMENTS
 VERY WEATHERED LEPIDOCYCLINA FRAGMENTS. ALSO MOLLUSK MOLDS.

- 143 748 LIMESTONE; VERY LIGHT ORANGE TO WHITE

 05% POROSITY: INTERGRANULAR, FRACTURE, PIN POINT VUGS

 GRAIN TYPE: BIOGENIC, CALCILUTITE

 GRAIN SIZE: VERY FINE; RANGE: CRYPTOCRYSTALLINE TO FINE

 POOR INDURATION

 CEMENT TYPE(S): CALCILUTITE MATRIX

 ACCESSORY MINERALS: CALCILUTITE-40%

 OTHER FEATURES: CHALKY

 FOSSILS: FOSSIL FRAGMENTS

 VERY FINE-GRAINED, NEARLY WHITE IN COLOR. VERY WEATHERED.
- 748 754

 CALCARENITE; VERY LIGHT ORANGE
 10% POROSITY: INTERGRANULAR, FRACTURE, MOLDIC
 GRAIN TYPE: BIOGENIC, SKELETAL, SKELTAL CAST
 GRAIN SIZE: VERY FINE; RANGE: CRYPTOCRYSTALLINE TO COARSE
 MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 SEDIMENTARY STRUCTURES: INTERBEDDED
 ACCESSORY MINERALS: CALCILUTITE-25%, QUARTZ SAND-02%
 CALCITE-01%
 OTHER FEATURES: CHALKY, REEFAL, FOSSILIFEROUS
 FOSSILS: ECHINOID, MOLLUSKS, BENTHIC FORAMINIFERA
 FOSSIL MOLDS
- 754 783

 CALCARENITE; VERY LIGHT ORANGE
 05% POROSITY: FRACTURE, PIN POINT VUGS
 GRAIN TYPE: BIOGENIC, CALCILUTITE, SKELETAL
 GRAIN SIZE: VERY FINE; RANGE: MICROCRYSTALLINE TO MEDIUM
 POOR INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 ACCESSORY MINERALS: CALCILUTITE-25%, PHOSPHATIC SAND-01%
 OTHER FEATURES: CHALKY
 FOSSILS: ECHINOID, BENTHIC FORAMINIFERA, FOSSIL FRAGMENTS
 VERY FINE-GRAINED NUMEROUS FORAMS. VERY WEATHERED.
- 783 788 SILT; YELLOWISH GRAY TO LIGHT OLIVE GRAY
 20% POROSITY: INTERGRANULAR, POSSIBLY HIGH PERMEABILITY
 UNCONSOLIDATED
 SEDIMENTARY STRUCTURES: INTERBEDDED
 ACCESSORY MINERALS: PHOSPHATIC SAND-20%
 OTHER FEATURES: CALCAREOUS, GRANULAR, SPECKLED
- 793.5 LIMESTONE; YELLOWISH GRAY
 03% POROSITY: FRACTURE, LOW PERMEABILITY
 GRAIN TYPE: BIOGENIC, CALCILUTITE
 GRAIN SIZE: VERY FINE; RANGE: MICROCRYSTALLINE TO VERY FINE
 MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 SEDIMENTARY STRUCTURES: MASSIVE
 ACCESSORY MINERALS: CALCILUTITE-40%
 OTHER FEATURES: CHALKY
 FOSSILS: MOLLUSKS, ECHINOID, BENTHIC FORAMINIFERA
- 793.5- 832 CALCARENITE; YELLOWISH GRAY
 14% POROSITY: INTERGRANULAR, LOW PERMEABILITY
 GRAIN TYPE: BIOGENIC, CALCILUTITE, SKELETAL
 60% ALLOCHEMICAL CONSTITUENTS
 GRAIN SIZE: VERY FINE; RANGE: MICROCRYSTALLINE TO VERY FINE
 MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 ACCESSORY MINERALS: CALCILUTITE-40%
 OTHER FEATURES: FOSSILIFEROUS, CHALKY
 FOSSILS: BENTHIC FORAMINIFERA, FOSSIL FRAGMENTS
 VERY FINE CALCARENITE WITH MUCH CALCILUTITE MATRIX.
 VARIABLE CONCENTRATION OF NUMMULITES AND LEPIDOCYCLINA
 CRYSTALLINE SKELETONS (10-30% OF UNIT).
- 832 834 CALCILUTITE; YELLOWISH GRAY
 10% POROSITY: INTERGRANULAR, LOW PERMEABILITY
 GRAIN TYPE: CALCILUTITE, BIOGENIC, SKELETAL
 15% ALLOCHEMICAL CONSTITUENTS
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: MICROCRYSTALLINE TO VERY FINE; MODERATE INDURATION

CEMENT TYPE(S): CALCILUTITE MATRIX
ACCESSORY MINERALS: CALCARENITE-15%, CLAY-05%
OTHER FEATURES: CHALKY, FOSSILIFEROUS
FOSSILS: BENTHIC FORAMINIFERA, FOSSIL FRAGMENTS
THIN BED CONTAINS MINOR CLAY FRACTION. TIGHT. FEWER
NUMMULITES AND LEPIDOYCLINA.

- 834 852 CALCARENITE; YELLOWISH GRAY
 14% POROSITY: INTERGRANULAR, LOW PERMEABILITY
 GRAIN TYPE: BIOGENIC, CALCILUTITE, SKELETAL
 70% ALLOCHEMICAL CONSTITUENTS
 GRAIN SIZE: VERY FINE; RANGE: MICROCRYSTALLINE TO VERY FINE
 MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 ACCESSORY MINERALS: CALCILUTITE-30%
 OTHER FEATURES: FOSSILIFEROUS, CHALKY
 FOSSILS: BENTHIC FORAMINIFERA, FOSSIL FRAGMENTS
 SIMILAR TO INTERVAL NEAR 832. 10-30% NUMMULITES AND
 LEPIDOCYCLINA SKELETONS (CRYSTALLINE).
- 852 855.5 CALCARENITE; YELLOWISH GRAY
 10% POROSITY: INTERGRANULAR, LOW PERMEABILITY
 GRAIN TYPE: BIOGENIC, CALCILUTITE, SKELETAL
 55% ALLOCHEMICAL CONSTITUENTS
 GRAIN SIZE: VERY FINE; RANGE: MICROCRYSTALLINE TO VERY FINE
 MODERATE INDURATION
 CEMENT TYPE(5): CALCILUTITE MATRIX
 ACCESSORY MINERALS: CALCILUTITE-45%
 OTHER FEATURES: CHALKY, FOSSILIFEROUS
 FOSSILS: BENTHIC FORAMINIFERA, FOSSIL FRAGMENTS
 SOME FAINT BANDING. CRYSTALLINE NUMMULITES AND
 LEPIDOCYCLINA SKELETONS. A FEW GRAY DOLOMITIC(?) SKELETONS
 INCORPORATING ORGANIC SPECKS.
- 855.5- 863.5 CALCARENITE; YELLOWISH GRAY
 14% POROSITY: INTERGRANULAR, LOW PERMEABILITY
 GRAIN TYPE: BIOGENIC, CALCILUTITE, SKELETAL
 75% ALLOCHEMICAL CONSTITUENTS
 GRAIN SIZE: VERY FINE; RANGE: MICROCRYSTALLINE TO VERY FINE
 MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 ACCESSORY MINERALS: CALCILUTITE-25%
 OTHER FEATURES: FOSSILIFEROUS, CHALKY
 FOSSILS: BENTHIC FORAMINIFERA, FOSSIL FRAGMENTS
 GENERALLY 15-25% SKELETAL FRAGMENTS (NUMMULITES AND
 LEPIDOCYCLINA). TRACES OF IRREGULAR GRAY BANDING IN MATRIX.
- 863.5- 878 CALCARENITE; YELLOWISH GRAY
 16% POROSITY: INTERGRANULAR, LOW PERMEABILITY
 GRAIN TYPE: BIOGENIC, CALCILUTITE, SKELETAL
 75% ALLOCHEMICAL CONSTITUENTS
 GRAIN SIZE: VERY FINE; RANGE: MICROCRYSTALLINE TO FINE
 MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 ACCESSORY MINERALS: CALCILUTITE-25%, ORGANICS-01%
 OTHER FEATURES: FOSSILIFEROUS, CHALKY
 FOSSILS: BENTHIC FORMINIFERA, FOSSIL FRAGMENTS, ORGANICS
 SIMILAR TO PREVIOUS INTERVAL BUT CONTAINS 2% ALTERED
 (DOLOMITIC?) SKELETAL FRAGMENTS. ALTERED FRAGMENTS OFTEN
 CONTAIN ORGANIC SPECKS.
- 878 883 CALCARENITE; YELLOWISH GRAY
 12% POROSITY: INTERGRANULAR, LOW PERMEABILITY
 GRAIN TYPE: BIOGENIC, CALCILUTITE, SKELETAL
 60% ALLOCHEMICAL CONSTITUENTS
 GRAIN SIZE: VERY FINE; RANGE: MICROCRYSTALLINE TO VERY FINE
 MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 SEDIMENTARY STRUCTURES: BANDED
 ACCESSORY MINERALS: CALCILUTITE-40%
 OTHER FEATURES: CHALKY, FOSSILIFEROUS
 FOSSILS: BENTHIC FORAMINIFERA, FOSSIL FRAGMENTS
 UNIT CONTAINS LESS FORAMS. FAINT GRAY BANDING MAY INDICATE

MINOR DOLOMITIZATION.

- 883 901 CALCARENITE; YELLOWISH GRAY
 16% POROSITY: INTERGRANULAR, LOW PERMEABILITY
 GRAIN TYPE: BIOGENIC, CALCILUTITE, SKELETAL
 60% ALLOCHEMICAL CONSTITUENTS
 GRAIN SIZE: VERY FINE; RANGE: MICROCRYSTALLINE TO VERY FINE
 MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 ACCESSORY MINERALS: CALCILUTITE-40%
 OTHER FEATURES: FOSSILIFEROUS, CHALKY
 FOSSILS: BENTHIC FORAMINIFERA, FOSSIL FRAGMENTS
 CONTAINS CRYSTALLINE FORAM TESTS (LEPIDOCYCLINA AND
 NUMMULITES) IN CONCENTRATIONS OF 20-35%. APPROXIMATELY 1-2%
 OF FORAMS ARE ALTERED TO GRAY COLORED.
- 901 908 CALCARENITE; YELLOWISH GRAY TO LIGHT OLIVE GRAY
 12% POROSITY: INTERGRANULAR, LOW PERMEABILITY
 GRAIN TYPE: BIOGENIC, CALCILUTITE, SKELETAL
 55% ALLOCHEMICAL CONSTITUENTS
 GRAIN SIZE: VERY FINE; RANGE: MICROCRYSTALLINE TO VERY FINE
 MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 ACCESSORY MINERALS: CALCILUTITE-45%
 OTHER FEATURES: CHALKY, FOSSILIFEROUS
 FOSSILS: BENTHIC FORAMINIFERA, FOSSIL FRAGMENTS
 FORAM SKELETONS ARE CHALKIER AND COMPOSE APPROXIMATELY
 10-20% OF UNIT. MOSTLY LEPIDOCYCLINA. ROCK MATRIX DARKENS
 SLIGHTLY.
- 908 928 CALCARENITE; YELLOWISH GRAY TO LIGHT OLIVE GRAY

 05% POROSITY: FRACTURE

 GRAIN TYPE: BIOGENIC, SKELETAL, SKELTAL CAST

 GRAIN SIZE: VERY FINE; RANGE: MICROCRYSTALLINE TO FINE

 MODERATE INDURATION

 CEMENT TYPE(S): CALCILUTITE MATRIX

 ACCESSORY MINERALS: CALCILUTITE-40%

 OTHER FEATURES: CHALKY, FOSSILIFEROUS

 FOSSILS: BENTHIC FORAMINIFERA, FOSSIL FRAGMENTS

 VERY LARGE FORAMS, LEPIDOCYCLINA COMPRISING 25% OF MATRIX.
- 932.5 CALCILUTITE; YELLOWISH GRAY
 05% POROSITY: INTERGRANULAR, FRACTURE, LOW PERMEABILITY
 GRAIN TYPE: CALCILUTITE, SKELETAL
 10% ALLOCHEMICAL CONSTITUENTS
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: MICROCRYSTALLINE
 RANGE: MICROCRYSTALLINE TO VERY FINE; GOOD INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 SEDIMENTARY STRUCTURES: MASSIVE
 OTHER FEATURES: CHALKY, FOSSILIFEROUS
 FOSSILS: BENTHIC FORAMINIFERA, FOSSIL FRAGMENTS
 FEWER LARGE FORAMS, MATRIX GRAINS FINER, BECOMING
 OOLOMITIC.
- 932.5- 934 LIMESTONE; YELLOWISH GRAY

 03% POROSITY: INTERGRANULAR, FRACTURE, LOW PERMEABILITY

 GRAIN TYPE: CALCILUTITE, SKELETAL, SKELTAL CAST

 GRAIN SIZE: MICROCRYSTALLINE

 RANGE: MICROCRYSTALLINE TO VERY FINE; GOOD INDURATION

 CEMENT TYPE(S): CALCILUTITE MATRIX

 SEDIMENTARY STRUCTURES: MASSIVE

 ACCESSORY MINERALS: CALCILUTITE-30%

 OTHER FEATURES: CHALKY, FOSSILIFEROUS

 FOSSILS: BENTHIC FORAMINIFERA, FOSSIL FRAGMENTS

 SLIGHTLY LARGER GRAIN SIZE, NUMMULITES INCREASING, DARKER.
- 934 939.5 DOLOSTONE; YELLOWISH GRAY TO LIGHT OLIVE GRAY
 05% POROSITY: INTERGRANULAR, FRACTURE, LOW PERMEABILITY
 10-50% ALTERED; ANHEDRAL
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: CRYPTOCRYSTALLINE TO MICROCRYSTALLINE
 POOR INDURATION
 CEMENT TYPE(S): DOLOMITE CEMENT, CALCILUTITE MATRIX

ACCESSORY MINERALS: CALCILUTITE-30%
OTHER FEATURES: CALCAREOUS, CHALKY, FOSSILIFEROUS
FOSSILS: BENTHIC FORAMINIFERA, FOSSIL FRAGMENTS

- 939.5- 941.2 CALCILUTITE; YELLOWISH GRAY

 03% POROSITY: INTERGRANULAR, FRACTURE, LOW PERMEABILITY
 GRAIN TYPE: CALCILUTITE, SKELETAL, SKELTAL CAST

 90% ALLOCHEMICAL CONSTITUENTS
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: CRYPTOCRYSTALLINE TO MICROCRYSTALLINE
 GOOD INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX, DOLOMITE CEMENT
 OTHER FEATURES: CHALKY, FOSSILIFEROUS
 FOSSILS: BENTHIC FORAMINIFERA, FOSSIL FRAGMENTS
- 941.2- 944 CALCILUTITE; YELLOWISH GRAY
 03% POROSITY: INTERGRANULAR, FRACTURE
 GRAIN TYPE: BIOGENIC, CALCILUTITE, SKELETAL
 90% ALLOCHEMICAL CONSTITUENTS
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: CRYPTOCRYSTALLINE TO MICROCRYSTALLINE
 POOR INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 OTHER FEATURES: CHALKY, FOSSILIFEROUS
 FOSSILS: BENTHIC FORAMINIFERA, FOSSIL FRAGMENTS
- 944 949 CALCILUTITE; YELLOWISH GRAY
 03% POROSITY: INTERGRANULAR, FRACTURE, LOW PERMEABILITY
 GRAIN TYPE: BIOGENIC, CALCILUTITE, SKELETAL
 90% ALLOCHEMICAL CONSTITUENTS
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE
 GOOD INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 OTHER FEATURES: CHALKY, FOSSILIFEROUS
 FOSSILS: BENTHIC FORAMINIFERA, FOSSIL FRAGMENTS
- 949 959 CALCILUTITE; YELLOWISH GRAY TO LIGHT OLIVE GRAY
 03% POROSITY: INTERGRANULAR, FRACTURE, LOW PERMEABILITY
 GRAIN TYPE: BIOGENIC, CALCILUTITE, SKELETAL
 GOOD INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 ACCESSORY MINERALS: DOLOMITE-05%
 OTHER FEATURES: CHALKY, FOSSILIFEROUS
 FOSSILS: BENTHIC FORAMINIFERA, FOSSIL FRAGMENTS
 CALCILUTITE, VERY FINE-GRAINED, DOLOMITIC, NUMEROUS
 NUMMULITES, FEWER LEPIDOCYCLINA.
- 959 965.5 DOLOSTONE; LIGHT OLIVE GRAY TO MODERATE OLIVE BROWN
 15% POROSITY: INTERGRANULAR, FRACTURE, MOLDIC
 10-50% ALTERED; SUBHEDRAL
 GRAIN SIZE: MEDIUM; RANGE: FINE TO COARSE; GOOD INDURATION
 CEMENT TYPE(S): DOLOMITE CEMENT
 SEDIMENTARY STRUCTURES: MASSIVE
 ACCESSORY MINERALS: FELDSPAR-01%
 OTHER FEATURES: SUCROSIC, CRYSTALLINE, FOSSILIFEROUS
 FOSSILS: BENTHIC FORAMINIFERA
 DOLOSTONE, CRYSTALLINE, NUMEROUS MOLDS. APPEARS HIGHLY
 PERMEABLE.
- 965.5- 966 LIMESTONE; YELLOWISH GRAY TO DARK GRAYISH YELLOW
 05% POROSITY: FRACTURE
 GRAIN TYPE: BIOGENIC; 95% ALLOCHEMICAL CONSTITUENTS
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: CRYPTOCRYSTALLINE TO MICROCRYSTALLINE
 MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX, DOLOMITE CEMENT
 ACCESSORY MINERALS: DOLOMITE-05%
 OTHER FEATURES: DOLOMITIC
- 966 968 CLAY; WHITE TO YELLOWISH GRAY
 03% POROSITY: FRACTURE, LOW PERMEABILITY; UNCONSOLIDATED
 CEMENT TYPE(S): CLAY MATRIX, CALCILUTITE MATRIX

SEDIMENTARY STRUCTURES: INTERBEDDED ACCESSORY MINERALS: CALCILUTITE-30% OTHER FEATURES: CALCAREOUS CALCAREOUS CLAY, UNCONSOLIDATED.

968 - 969.5 DOLOSTONE; YELLOWISH GRAY TO LIGHT OLIVE GRAY
03% POROSITY: FRACTURE, LOW PERMEABILITY; 10-50% ALTERED
ANHEDRAL
GRAIN SIZE: MICROCRYSTALLINE
RANGE: CRYPTOCRYSTALLINE TO MICROCRYSTALLINE
GOOD INDURATION
CEMENT TYPE(S): DOLOMITE CEMENT
SEDIMENTARY STRUCTURES: MASSIVE
ACCESSORY MINERALS: LIMESTONE-05%
OTHER FEATURES: CALCAREOUS, FOSSILIFEROUS
FOSSILS: FOSSIL MOLDS
DOLOSTONE, HARD LENS, GRADES INTO A CALCAREOUS CLAY.

- 969.5- 970 CLAY; YELLOWISH GRAY TO LIGHT OLIVE GRAY
 02% POROSITY: FRACTURE, LOW PERMEABILITY; POOR INDURATION
 CEMENT TYPE(S): CLAY MATRIX, CALCILUTITE MATRIX
 DOLOMITE CEMENT
 SEDIMENTARY STRUCTURES: INTERBEDDED
 ACCESSORY MINERALS: LIMESTONE-03%, DOLOMITE-02%
 OTHER FEATURES: CALCAREOUS
- 970 974 CALCARENITE; VERY LIGHT ORANGE TO YELLOWISH GRAY
 15% POROSITY: INTERGRANULAR, FRACTURE, MOLDIC
 GRAIN TYPE: BIOGENIC, SKELETAL, SKELTAL CAST
 50% ALLOCHEMICAL CONSTITUENTS
 GRAIN SIZE: FINE; RANGE: MICROCRYSTALLINE TO MEDIUM
 POOR INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 SEDIMENTARY STRUCTURES: INTERBEDDED
 ACCESSORY MINERALS: CLAY-05%
 FOSSILS: BENTHIC FORAMINIFERA, ECHINOID, FOSSIL FRAGMENTS
 FOSSIL MOLDS
- 974 976 CLAY; YELLOWISH GRAY TO LIGHT OLIVE GRAY
 02% POROSITY: FRACTURE, LOW PERMEABILITY; UNCONSOLIDATED
 CEMENT TYPE(S): CLAY MATRIX, CALCILUTITE MATRIX
 SEDIMENTARY STRUCTURES: INTERBEDDED
 ACCESSORY MINERALS: CALCILUTITE-30%
 OTHER FEATURES: CALCAREOUS
- 976 981.4 DOLOSTONE; LIGHT OLIVE GRAY TO OLIVE GRAY
 20% POROSITY: INTERGRANULAR, FRACTURE, MOLDIC
 50-90% ALTERED; EUHEDRAL
 GRAIN SIZE: FINE; RANGE: VERY FINE TO COARSE
 GOOD INDURATION
 CEMENT TYPE(\$): DOLOMITE CEMENT
 SEDIMENTARY STRUCTURES: MASSIVE
 ACCESSORY MINERALS: LIMESTONE-02%
 OTHER FEATURES: CRYSTALLINE
 FOSSILS: ECHINOID
 DOLOMITE, CRYSTALLINE NUMEROUS ECHINOID MOLDS, CASTS AND
 FRAGMENTS. TOP OF AVON PARK FORMATION AT 976 FT. BLS.
- 981.4- 988 CALCARENITE; VERY LIGHT ORANGE TO YELLOWISH GRAY
 25% POROSITY: INTERGRANULAR, FRACTURE, MOLDIC
 GRAIN TYPE: BIOGENIC, SKELETAL, SKELTAL CAST
 80% ALLOCHEMICAL CONSTITUENTS
 GRAIN SIZE: FINE; RANGE: VERY FINE TO COARSE
 GOOD INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX, DOLOMITE CEMENT
 SEDIMENTARY STRUCTURES: INTERBEDDED
 ACCESSORY MINERALS: DOLOMITE-15%, CALCITE-05%
 OTHER FEATURES: DOLOMITIC, GRANULAR
 FOSSILS: ECHINOID, BENTHIC FORAMINIFERA
 CALCARENITE, SOME INTERBEDDED DOLOSTONE, NUMEROUS LIMESTONE
 AND CALCITE ECHINOID MOLDS.
- 988 992 CALCARENITE; VERY LIGHT ORANGE TO YELLOWISH GRAY

30% POROSITY: INTERGRANULAR, FRACTURE, MOLDIC
GRAIN TYPE: BIOGENIC, SKELETAL, SKELTAL CAST
90% ALLOCHEMICAL CONSTITUENTS
GRAIN SIZE: FINE; RANGE: MICROCRYSTALLINE TO COARSE
GOOD INDURATION
CEMENT TYPE(S): CALCILUTITE MATRIX
SEDIMENTARY STRUCTURES: MASSIVE
ACCESSORY MINERALS: DOLOMITE-02%
OTHER FEATURES: GRANULAR, FOSSILIFEROUS
FOSSILS: ECHINOID, MOLDSKS, BENTHIC FORAMINIFERA
CALCARENITE, VERY FOSSILIFEROUS, NUMEROUS ECHINOID MOLDS.
MATRIX IS MADE UP OF FORAM AND ECHINOID FRAGMENTS. APPEARS
HIGHLY PERMEABLE.

- 992 996 DOLOSTONE; YELLOWISH GRAY TO LIGHT OLIVE GRAY
 05% POROSITY: FRACTURE, LOW PERMEABILITY; 10-50% ALTERED
 ANHEDRAL
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: CRYPTOCRYSTALLINE TO MICROCRYSTALLINE
 GOOD INDURATION
 CEMENT TYPE(S): DOLOMITE CEMENT, CALCILUTITE MATRIX
 SEDIMENTARY STRUCTURES: MASSIVE, INTERBEDDED
 ACCESSORY MINERALS: CALCILUTITE-25%, CALCITE-02%
 OTHER FEATURES: BROWN ANHYDRITE CRYSTALS
 LOW RECRYSTALLIZATION
 FOSSILS: ECHINOID
- 996 1027 CALCARENITE; VERY LIGHT ORANGE
 20% POROSITY: INTERGRANULAR
 GRAIN TYPE: BIOGENIC, SKELETAL, CALCILUTITE
 70% ALLOCHEMICAL CONSTITUENTS
 GRAIN SIZE: FINE; RANGE: MEDIUM TO VERY FINE
 MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 SEDIMENTARY STRUCTURES: BEDDED, NODULAR
 ACCESSORY MINERALS: CALCILUTITE-30%
 OTHER FEATURES: GRANULAR, CHALKY
 FOSSILS: FOSSIL FRAGMENTS
 SOME ROUNDED CLASTS OR LENSOIDS OF CALCILUTITE.
- 1027 1030 DOLOSTONE; YELLOWISH GRAY TO LIGHT OLIVE GRAY
 12% POROSITY: LOW PERMEABILITY, INTERGRANULAR
 0-10% ALTERED; ANHEDRAL
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: MICROCRYSTALLINE TO FINE; GOOD INDURATION
 CEMENT TYPE(S): DOLOMITE CEMENT, CALCILUTITE MATRIX
 SEDIMENTARY STRUCTURES: STREAKED
 ACCESSORY MINERALS: CALCARENITE-25%, CALCILUTITE-10%
 OTHER FEATURES: CALCAREOUS, VARIEGATED
- 1030 1033 CALCARENITE; VERY LIGHT ORANGE
 16% POROSITY: INTERGRANULAR
 GRAIN TYPE: BIOGENIC, CALCILUTITE, SKELETAL
 60% ALLOCHEMICAL CONSTITUENTS
 GRAIN SIZE: VERY FINE; RANGE: VERY FINE TO FINE
 MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 ACCESSORY MINERALS: CALCILUTITE-40%
 OTHER FEATURES: GRANULAR, CHALKY
 FOSSILS: FOSSIL FRAGMENTS
- 1034.5 CALCILUTITE; YELLOWISH GRAY

 08% POROSITY: LOW PERMEABILITY, VUGULAR

 GRAIN TYPE: CALCILUTITE, BIOGENIC

 10% ALLOCHEMICAL CONSTITUENTS

 GRAIN SIZE: MICROCRYSTALLINE

 RANGE: MICROCRYSTALLINE TO VERY FINE; GOOD INDURATION

 CEMENT TYPE(S): CALCILUTITE MATRIX, DOLOMITE CEMENT

 SEDIMENTARY STRUCTURES: BANDED, MOTTLED

 ACCESSORY MINERALS: SILT-SIZE DOLOMITE-25%, LIMESTONE- 2%

 LIMONITE-2%

 OTHER FEATURES: DOLOMITIC, PARTINGS, STROMATAL

 FOSSILS: ORGANICS

VERY WELL INDURATED, IRREGULARLY BANDED BED CONTAINING THIN ORGANIC PARTINGS. ORGANIC LAMINAE AT TOP.

1034.5- 1038.5 CALCARENITE; VERY LIGHT ORANGE
16% POROSITY: INTERGRANULAR
GRAIN TYPE: BIOGENIC, CALCILUTITE, SKELETAL
60% ALLOCHEMICAL CONSTITUENTS
GRAIN SIZE: VERY FINE; RANGE: VERY FINE TO FINE
MODERATE INDURATION
CEMENT TYPE(S): CALCILUTITE MATRIX
ACCESSORY MINERALS: CALCILUTITE-40%
OTHER FEATURES: GRANULAR, CHALKY
FOSSILS: FOSSIL FRAGMENTS

1038.5- 1042.5 CALCARENITE; GRAYISH ORANGE TO VERY LIGHT ORANGE

18% POROSITY: INTERGRANULAR
GRAIN TYPE: BIOGENIC, CALCILUTITE, SKELETAL
75% ALLOCHEMICAL CONSTITUENTS
GRAIN SIZE: FINE; RANGE: VERY FINE TO FINE
MODERATE INDURATION
CEMENT TYPE(S): CALCILUTITE MATRIX
SEDIMENTARY STRUCTURES: INTERBEDDED
ACCESSORY MINERALS: CALCILUTITE-25%
OTHER FEATURES: GRANULAR, CHALKY, PARTINGS
FOSSILS: FOSSIL FRAGMENTS
GRAINY FINE-GRAINED CALCARENITE WITH THIN INTERBEDS OF
GRAINY CALCILUTITE.

CALCARENITE; GRAYISH ORANGE
26% POROSITY: INTERGRANULAR
GRAIN TYPE: PELLET, SKELETAL, BIOGENIC
95% ALLOCHEMICAL CONSTITUENTS
GRAIN SIZE: FINE; RANGE: VERY FINE TO MEDIUM
MODERATE INDURATION
CEMENT TYPE(S): CALCILUTITE MATRIX
ACCESSORY MINERALS: CALCILUTITE-05%
OTHER FEATURES: GRANULAR
FOSSILS: WORM TRACES, FOSSIL FRAGMENTS
HARD, BRITTLE MODERATELY WELL-SORTED PELLETAL GRAINSTONE.
END OF CORE.

CALCARENITE; VERY LIGHT ORANGE TO GRAYISH ORANGE 1048 - 1058 18% POROSITY: INTERGRANULAR GRAIN TYPE: BIOGENIC, CALCILUTITE, PELLET GRAIN SIZE: FINE; RANGE: MICROCRYSTALLINE TO FINE MODERATE INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX SEDIMENTARY STRUCTURES: INTERBEDDED ACCESSORY MINERALS: CALCILUTITE-20%, DOLOMITE-05% OTHER FEATURES: GRANULAR FOSSILS: FOSSIL FRAGMENTS FINE-GRAINED CALCARENITE WITH LESSER INTERBEDS OF LIMESTONE AND GRANULAR DOLOSTONE. LOW PERMEABILITY. SOMEWHAT SOFT. INITIAL GROUP OF CUTTINGS DESCRIPTION IS FROM PERMANENT AVON PARK MONITOR. CEMENT FRAGMENTS ARE SEEN IN THE CUTTINGS IN MODERATE CONCENTRATIONS THROUGH 1090 FT.

1058 - 1070 LIMESTONE; VERY LIGHT ORANGE
14% POROSITY: LOW PERMEABILITY, INTERGRANULAR
GRAIN TYPE: CALCILUTITE, BIOGENIC
GRAIN SIZE: MICROCRYSTALLINE
RANGE: MICROCRYSTALLINE TO FINE; MODERATE INDURATION
CEMENT TYPE(S): CALCILUTITE MATRIX
ACCESSORY MINERALS: CALCILUTITE-80%, CALCARENITE-20%
FOSSILS: FOSSIL FRAGMENTS

1070 - 1120 CALCARENITE; GRAYISH ORANGE TO VERY LIGHT CRANGE
20% POROSITY: INTERGRANULAR
GRAIN TYPE: SKELETAL, BIOGENIC
GRAIN SIZE: FINE; RANGE: MICROCRYSTALLINE TO MEDIUM
MODERATE INDURATION
CEMENT TYPE(S): CALCILUTITE MATRIX
ACCESSORY MINERALS: CALCILUTITE-15%

OTHER FEATURES: GRANULAR, FOSSILIFEROUS
FOSSILS: FOSSIL FRAGMENTS, BENTHIC FORAMINIFERA
GRANULAR CALCARENTE. DICTYOCONUS. NOT A BIG WATER
PRODUCER. UPPER 10 - 20 FT. ARE SOFTER, SLIGHTLY FINER
GRAINED THAN REST.

- 1120 1130 CALCARENITE; VERY LIGHT ORANGE
 16% POROSITY: INTERGRANULAR
 GRAIN TYPE: CALCILUTITE, BIOGENIC
 GRAIN SIZE: VERY FINE; RANGE: MICROCRYSTALLINE TO FINE
 MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 SEDIMENTARY STRUCTURES: INTERBEDDED
 ACCESSORY MINERALS: CALCILUTITE-35%
 FOSSILS: FOSSIL FRAGMENTS
 SOMEWHAT HARDER THAN CALCARENITES ABOVE. 1125 1130 FT. IS
 VERY FINE-GRAINED.
- 1130 1133 DOLOSTONE; GRAYISH BROWN TO DARK YELLOWISH BROWN
 10% POROSITY: LOW PERMEABILITY; 10-50% ALTERED; ANHEDRAL
 GRAIN SIZE: VERY FINE
 RANGE: CRYPTOCRYSTALLINE TO VERY FINE; GOOD INDURATION
 CEMENT TYPE(S): DOLOMITE CEMENT
 NO APPARENT WATER PRODUCTION FROM BED.
- 1133 1145 CALCARENITE; GRAYISH ORANGE TO VERY LIGHT ORANGE
 20% POROSITY: INTERGRANULAR
 GRAIN TYPE: SKELETAL, BIOGENIC, CALCILUTITE
 GRAIN SIZE: FINE; RANGE: MICROCRYSTALLINE TO MEDIUM
 MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 ACCESSORY MINERALS: CALCILUTITE-25%
 OTHER FEATURES: GRANULAR
 FOSSILS: FOSSIL FRAGMENTS, BENTHIC FORAMINIFERA
 VERY GRANULAR SKELETAL CALCARENITE. DICTYOCONUS. DOLOMITE
 IS PROBABLY FALLING FROM OVERLYING BED.
- 1145 1156 LIMESTONE; VERY LIGHT ORANGE
 14% POROSITY: INTERGRANULAR
 GRAIN TYPE: CALCILUTITE, BIOGENIC, SKELETAL
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: MICROCRYSTALLINE TO FINE; MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 SEDIMENTARY STRUCTURES: INTERBEDDED
 ACCESSORY MINERALS: CALCARENITE-25%
 OTHER FEATURES: CHALKY, GRANULAR
 FOSSILS: FOSSIL FRAGMENTS, BENTHIC FORAMINIFERA
 CALCILUTITIC LIMESTONE WITH LESSER AMOUNTS FINE
 CALCARENITE.
- 1156 1182 CALCARENITE; VERY LIGHT ORANGE TO GRAYISH ORANGE
 18% POROSITY: INTERGRANULAR
 GRAIN TYPE: BIOGENIC, CALCILUTITE, SKELETAL
 GRAIN SIZE: VERY FINE; RANGE: MICROCRYSTALLINE TO FINE
 MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 ACCESSORY MINERALS: CALCILUTITE-35%
 OTHER FEATURES: GRANULAR, CHALKY
 FOSSILS: FOSSIL FRAGMENTS
 FINE TO VERY FINE-GRAINED CALCARENITE. TRACE AMOUNTS OF
 GRAY LIMESTONE.
- 1182 1190 LIMESTONE; LIGHT GRAY
 14% POROSITY: INTERGRANULAR
 GRAIN TYPE: CALCILUTITE, BIOGENIC
 GRAIN SIZE: VERY FINE; RANGE: MICROCRYSTALLINE TO VERY FINE
 MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 ACCESSORY MINERALS: DOLOMITE-05%, ORGANICS-02%
 OTHER FEATURES: CHALKY, SPECKLED
 FOSSILS: MILIOLIDS
 DOLOMITIC PERCENT IS AS TRACE DOLOMITE GRAINS.

- CALCARENITE; GRAYISH ORANGE
 20% POROSITY: INTERGRANULAR
 GRAIN TYPE: SKELETAL, BIOGENIC, CALCILUTITE
 GRAIN SIZE: FINE; RANGE: MICROCRYSTALLINE TO MEDIUM
 MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 ACCESSORY MINERALS: CALCILUTITE-15%, DOLOMITE-10%
 OTHER FEATURES: GRANULAR, FOSSILIFEROUS, DOLOMITIC
 FOSSILS: FOSSIL FRAGMENTS, BENTHIC FORAMINIFERA
 GRANULAR CALCARENITE. CONTAINS DOLOMITIC GRAINS.
 DICTYOCONUS. NOT MUCH PERMEABILITY.
- 1207 1218 LIMESTONE; LIGHT GRAY TO GRAYISH ORANGE
 16% POROSITY: INTERGRANULAR
 GRAIN TYPE: CALCILUTITE, BIOGENIC, SKELETAL
 GRAIN SIZE: VERY FINE; RANGE: MICROCRYSTALLINE TO MEDIUM
 MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 SEDIMENTARY STRUCTURES: INTERBEDDED
 ACCESSORY MINERALS: CALCARENITE-40%, DOLOMITE-05%
 OTHER FEATURES: CHALKY, GRANULAR
 FOSSILS: FOSSIL FRAGMENTS
 GRAY CALCILUTITIC LIMESTONE WITH SUBEQUAL BEDS GRANULAR
 SKELETAL CALCARENITE.
- DOLOSTONE; DARK YELLOWISH BROWN
 30% POROSITY: FRACTURE, POSSIBLY HIGH PERMEABILITY
 50-90% ALTERED; ANHEDRAL
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: CRYPTOCRYSTALLINE TO VERY FINE; GOOD INDURATION
 CEMENT TYPE(S): DOLOMITE CEMENT
 OTHER FEATURES: CRYSTALLINE
 HARD, DARK CRYSTALLINE
 HARD, DARK CRYSTALLINE DOLOMITE. UNIT/SEQUENCE OF DOLOSTONE
 BEDS MAKES SUBSTANTIAL WATER. TOP OF AVON PARK FRACTURED
 DOLOSTONES.
 - DOLOSTONE; LIGHT OLIVE GRAY TO MODERATE BROWN

 35% POROSITY: FRACTURE, POSSIBLY HIGH PERMEABILITY

 10-50% ALTERED; ANHEDRAL

 GRAIN SIZE: MICROCRYSTALLINE

 RANGE: CRYPTOCRYSTALLINE TO VERY FINE; GOOD INDURATION
 CEMENT TYPE(S): DOLOMITE CEMENT
 OTHER FEATURES: CRYSTALLINE, VARIEGATED
 OLIVE-COLORED CRYSTALLINE DOLOSTONE WITH SOME BROWN
 (ORGANIC?) STREAKING. WATER PRODUCER.
 - DOLOSTONE; DARK YELLOWISH BROWN TO MODERATE YELLOWISH BROWN
 35% POROSITY: FRACTURE, POSSIBLY HIGH PERMEABILITY
 10-50% ALTERED; ANHEDRAL
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: CRYPTOCRYSTALLINE TO VERY FINE; GOOD INDURATION
 CEMENT TYPE(S): DOLOMITE CEMENT
 SEDIMENTARY STRUCTURES: STREAKED
 OTHER FEATURES: CRYSTALLINE, LOW RECRYSTALLIZATION
 BROWN DOLOSTONE. SHOWS SMALL AMOUNTS RECRYSTALLIZATION ON
 CUTTINGS. SOME DARK STREAKING.
 - DOLOSTONE; DARK YELLOWISH BROWN TO MODERATE YELLOWISH BROWN
 35% POROSITY: FRACTURE, POSSIBLY HIGH PERMEABILITY
 PIN POINT VUGS; 10-50% ALTERED; ANHEDRAL
 GRAIN SIZE: VERY FINE; RANGE: VERY FINE TO VERY FINE
 GOOD INDURATION
 CEMENT TYPE(S): DOLOMITE CEMENT
 SEDIMENTARY STRUCTURES: STREAKED
 ACCESSORY MINERALS: ORGANICS-01%
 OTHER FEATURES: CRYSTALLINE
 HARD BROWN VERY FINE-GRAINED DOLOSTONE. SOME ORGANIC
 COATINGS ON CUTTINGS. PRODUCES FETID ODOR ON PUMPING.
 TRACES OF OXIDE IRON SPECKS.
 - 1344 1359 DOLOSTONE; GRAYISH BROWN TO MODERATE BROWN POROSITY: FRACTURE, POSSIBLY HIGH PERMEABILITY PIN POINT VUGS; 10-50% ALTERED; ANHEDRAL

GRAIN SIZE: VERY FINE; RANGE: CRYPTOCRYSTALLINE TO FINE GOOD INDURATION
CEMENT TYPE(S): DOLOMITE CEMENT
OTHER FEATURES: CRYSTALLINE, GRANULAR

- 1359 1370

 DOLOSTONE; GRAYISH BROWN TO MODERATE BROWN
 POROSITY: FRACTURE, POSSIBLY HIGH PERMEABILITY
 PIN POINT VUGS; 10-50% ALTERED; ANHEDRAL
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: CRYPTOCRYSTALLINE TO VERY FINE; GOOD INDURATION
 CEMENT TYPE(S): DOLOMITE CEMENT
 ACCESSORY MINERALS: ORGANICS-01%
 OTHER FEATURES: CRYSTALLINE, GRANULAR
- 1370 1380 DOLOSTONE; DARK YELLOWISH BROWN TO GRAYISH BROWN
 POROSITY: POSSIBLY HIGH PERMEABILITY, PIN POINT VUGS
 10-50% ALTERED; ANHEDRAL
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: CRYPTOCRYSTALLINE TO VERY FINE; GOOD INDURATION
 CEMENT TYPE(S): DOLOMITE CEMENT
 ACCESSORY MINERALS: ORGANICS-04%
 OTHER FEATURES: CRYSTALLINE, GRANULAR
 FOSSILS: ORGANICS
 ORGANICS ARE AS STREAKS, SPECKS, AND INTERSTITIAL.
- 1380 1421 DOLOSTONE; MODERATE YELLOWISH BROWN TO GRAYISH ORANGE POROSITY: POSSIBLY HIGH PERMEABILITY; 10-50% ALTERED ANHEDRAL
 GOOD INDURATION
 CEMENT TYPE(S): DOLOMITE CEMENT, CALCILUTITE MATRIX
 SEDIMENTARY STRUCTURES: INTERBEDDED
 ACCESSORY MINERALS: CALCILUTITE-15%, ORGANICS-02%
 QUARTZ-01%
 OTHER FEATURES: CRYSTALLINE, GRANULAR, CALCAREOUS
 FOSSILS: ORGANICS
 INTERBEDDED MICROCRYSTALLINE VERY FINE-GRAINED CALCAREOUS
 DOLOSTONE AND SLIGHTLY ORGANIC VERY FINE-GRAINED DOLOSTONE.
 SOME OF ORGANIC UNIT APPEARS TO BE BRECCIATED OR CONTAINS
 RIP-UP CLASTS. MINOR SECONDARY QUARTZ IN VUGS.
- 1421 1431 DOLOSTONE; GRAYISH ORANGE TO MODERATE YELLOWISH BROWN POROSITY: INTERGRANULAR; 10-50% ALTERED; ANHEDRAL GRAIN SIZE: VERY FINE; RANGE: CRYPTOCRYSTALLINE TO FINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT, CALCILUTITE MATRIX ACCESSORY MINERALS: CALCILUTITE-15%, ORGANICS-02% QUARTZ-01% OTHER FEATURES: GRANULAR, CALCAREOUS FOSSILS: ORGANICS
- 1431 1441 DOLOSTONE; MODERATE YELLOWISH BROWN TO GRAYISH BROWN POROSITY: INTERGRANULAR; 10-50% ALTERED; ANHEDRAL GRAIN SIZE: VERY FINE RANGE: CRYPTOCRYSTALLINE TO VERY FINE; GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT, CALCILUTITE MATRIX ACCESSORY MINERALS: CALCILUTITE-10%, ORGANICS-01% OTHER FEATURES: GRANULAR
- 1441 1451 DOLOSTONE; MODERATE YELLOWISH BROWN
 POROSITY: INTERGRANULAR; 10-50% ALTERED; ANHEDRAL
 GRAIN SIZE: FINE; RANGE: CRYPTOCRYSTALLINE TO FINE
 GOOD INDURATION
 CEMENT TYPE(S): DOLOMITE CEMENT
 ACCESSORY MINERALS: CALCILUTITE-05%, ORGANICS-02%
 OTHER FEATURES: GRANULAR
 FOSSILS: ORGANICS
- 1451 1484 DOLOSTONE; MODERATE YELLOWISH BROWN TO GRAYISH ORANGE POROSITY: INTERGRANULAR; 10-50% ALTERED; ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO VERY FINE; GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT, CALCILUTITE MATRIX ACCESSORY MINERALS: CALCILUTITE-15%, QUARTZ-01%

ORGANICS-01%

OTHER FEATURES: CALCAREOUS, GRANULAR

FOSSILS: ORGANICS

DOLOSTONE; MODERATE YELLOWISH BROWN TO DARK YELLOWISH BROWN 1484 - 1499 POROSITY: INTERGRANULAR; 10-50% ALTERED; ANHEDRAL GRAIN SIZE: VERY FINE; RANGE: CRYPTOCRYSTALLINE TO FINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT

ACCESSORY MINERALS: CALCILUTITE-05%, ORGANICS-02%

QUARTZ-01%

OTHER FEATURES: GRANULAR FOSSILS: ORGANICS

DOLOSTONE; GRAYISH ORANGE TO VERY LIGHT ORANGE 1499 - 1506 POROSITY: INTERGRANULAR; 10-50% ALTERED; ANHEDRAL

GRAIN SIZE: VERY FINE

RANGE: CRYPTOCRYSTALLINE TO VERY FINE; GOOD INDURATION

CEMENT TYPE(S): DOLOMITE CEMENT SEDIMENTARY STRUCTURES: INTERBEDDED ACCESSORY MINERALS: CALCILUTITE-20% SUBEQUAL INTERBEDS OF TAN, CRYSTALLINE DOLOSTONE AND

CREAM-COLORED CALCAREOUS ORTHOCRYSTALLINE DOLOMITE.

DOLOSTONE; MODERATE YELLOWISH BROWN 1506 - 1514 POROSITY: INTERGRANULAR; 10-50% ALTERED; ANHEDRAL GRAIN SIZE: VERY FINE; RANGE: CRYPTOCRYSTALLINE TO FINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: CALCILUTITE-10%, ORGANICS-01% OTHER FEATURES: GRANULAR

DOLOSTONE; GRAYISH ORANGE TO VERY LIGHT ORANGE 1514 - 1525 POROSITY: INTERGRANULAR; 10-50% ALTERED; ANHEDRAL GRAIN SIZE: VERY FINE RANGE: CRYPTOCRYSTALLINE TO VERY FINE; GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: CALCILUTITE-20%, QUARTZ-02% ORGANICS-01%

GOLDEN TAN VERY FINE-GRAINED DOLOMITE WITH LESSER INTERBEDDED PALE CALCAREOUS ORTHOCRYSTALLINE DOLOSTONE. FREQUENT QUARTZ PSUEDOMORPHS AFTER RHOMBIC DOLOMITE.

DOLOSTONE; MODERATE YELLOWISH BROWN TO GRAYISH ORANGE 1525 - 1540 POROSITY: INTERGRANULAR; 10-50% ALTERED; ANHEDRAL GRAIN SIZE: VERY FINE; RANGE: MICROCRYSTALLINE TO FINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: CALCILUTITE-10%, ORGANICS-03% QUARTZ-01% OTHER FEATURES: GRANULAR

DOLOSTONE; MODERATE YELLOWISH BROWN TO GRAYISH ORANGE POROSITY: INTERGRANULAR; 10-50% ALTERED; ANHEDRAL 1540 - 1556 GRAIN SIZE: VERY FINE; RANGE: MICROCRYSTALLINE TO FINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT SEDIMENTARY STRUCTURES: INTERBEDDED

ACCESSORY MINERALS: CALCILUTITE-10%, QUARTZ-03%

ORGANICS-02%

OTHER FEATURES: GRANULAR INTERBEDDED GOLDEN BROWN VERY FINE GRANULAR DOLOMITE AND ORGANIC STREAKED/SPECKED CALCAREOUS PALE DOLOSTONE. QUARTZ PSUEDOMORPHS AFTER RHOMBIC DOLOMITE ON SURFACES OF THE PALE DOLOSTONE.

DOLOSTONE; GRAYISH ORANGE POROSITY: INTERCRYSTALLINE; 10-50% ALTERED; ANHEDRAL 1556 - 1560 GRAIN SIZE: MICROCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO VERY FINE; GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT, CALCILUTITE MATRIX ACCESSORY MINERALS: CALCILUTITE-20%, QUARTZ-15% OTHER FEATURES: CALCAREOUS, GRANULAR

GRANULAR CALCAREOUS DOLOMITE WITH MUCH SECONDARY QUARTZ.

- 1560 1575 DOLOSTONE; MODERATE YELLOWISH BROWN TO DARK YELLOWISH BROWN POROSITY: INTERCRYSTALLINE; 10-50% ALTERED; ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE
 RANGE: CRYPTOCRYSTALLINE TO MICROCRYSTALLINE GOOD INDURATION
 CEMENT TYPE(S): DOLOMITE CEMENT
 ACCESSORY MINERALS: CALCILUTITE-10%, ORGANICS-03%
 QUARTZ-02%
 FOSSILS: ORGANICS
 CRYSTALLINE LIGHT BROWN DOLOMITE. GRAY AND CREAM-COLORED CALCAREOUS FRAGMENTS (MORE IN UPPER 5 FT.).
- 1575 1595 DOLOSTONE; MODERATE YELLOWISH BROWN
 POROSITY: INTERCRYSTALLINE; 10-50% ALTERED; ANHEDRAL
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: CRYPTOCRYSTALLINE TO VERY FINE; GOOD INDURATION
 CEMENT TYPE(S): DOLOMITE CEMENT, CALCILUTITE MATRIX
 ACCESSORY MINERALS: CALCILUTITE-10%, QUARTZ-02%
 ORGANICS-02%
 FOSSILS: ORGANICS
 CRYSTALLINE GOLDEN BROWN DOLOMITE WITH MINOR SECONDARY
 OUARTZ AND ORGANIC COATINGS.
- DOLOSTONE; GRAYISH ORANGE TO MODERATE YELLOWISH BROWN
 12% POROSITY: LOW PERMEABILITY, INTERGRANULAR
 INTERCRYSTALLINE; 0-10% ALTERED; ANHEDRAL
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: MICROCRYSTALLINE TO FINE; GOOD INDURATION
 CEMENT TYPE(S): DOLOMITE CEMENT, CALCILUTITE MATRIX
 ACCESSORY MINERALS: CALCILUTITE-20%, QUARTZ-03%
 ORGANICS-03%
 OTHER FEATURES: CALCAREOUS
 FOSSILS: ORGANICS
 CALCAREOUS DOLOSTONE. LIGHTLY BUT VARIABLY SPECKLED WITH
 ORGANICS. MINOR VUG-FILL, VEINLETS, AND EUHEDRAL SURFACE
 COATINGS OF QUARTZ.
- 1623 1633 DOLOSTONE; VERY LIGHT ORANGE TO GRAYISH ORANGE
 12% POROSITY: LOW PERMEABILITY, INTERGRANULAR
 0-10% ALTERED; ANHEDRAL
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: CRYPTOCRYSTALLINE TO VERY FINE; GOOD INDURATION
 CEMENT TYPE(S): DOLOMITE CEMENT, CALCILUTITE MATRIX
 ACCESSORY MINERALS: CALCILUTITE-40%, QUARTZ-01%
 ORGANICS-01%
 OTHER FEATURES: CALCAREOUS, LOW RECRYSTALLIZATION
 COMPACT VERY CALCAREOUS DOLOSTONE.
- 1633 1638 CALCARENITE; GRAYISH ORANGE TO GRAYISH BROWN
 15% POROSITY: LOW PERMEABILITY, INTERGRANULAR
 GRAIN TYPE: BIOGENIC, CALCILUTITE
 60% ALLOCHEMICAL CONSTITUENTS
 GRAIN SIZE: VERY FINE; RANGE: MICROCRYSTALLINE TO FINE
 GOOD INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX, DOLOMITE CEMENT
 ACCESSORY MINERALS: DOLOMITE-20%, CALCILUTITE-25%
 QUARTZ-06%, ORGANICS-02%
 OTHER FEATURES: DOLOMITIC, GRANULAR
 FOSSILS: ORGANICS
 VARIABLY DOLOMITIC CALCARENITE WITH MINOR AMOUNTS OF QUARTZ
 AS VEINLETS AND DRUSY COATINGS.
- 1638 1660 DOLOSTONE; GRAYISH ORANGE
 15% POROSITY: LOW PERMEABILITY, PIN POINT VUGS
 0-10% ALTERED; ANHEDRAL
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: CRYPTOCRYSTALLINE TO VERY FINE; GOOD INDURATION
 CEMENT TYPE(S): DOLOMITE CEMENT, CALCILUTITE MATRIX
 ACCESSORY MINERALS: CALCILUTITE-15%, QUARTZ-02%
 OTHER FEATURES: CALCAREOUS, LOW RECRYSTALLIZATION

1660 - 1665

DOLOSTONE; GRAYISH ORANGE

12% POROSITY: LOW PERMEABILITY, INTERGRANULAR
0-10% ALTERED; ANHEDRAL

GRAIN SIZE: MICROCRYSTALLINE

RANGE: CRYPTOCRYSTALLINE TO FINE; GOOD INDURATION
CEMENT TYPE(S): DOLOMITE CEMENT, CALCILUTITE MATRIX
ACCESSORY MINERALS: CALCILUTITE-15%, QUARTZ-08%, SHALE-02%
OTHER FEATURES: CALCAREOUS, GRANULAR
FOSSILS: ORGANICS
CALCAREOUS DOLOSTONE CONTAINING DRUSY QUARTZ ON SOME
SURFACES. LAMINATED ORGANICS IN SOME OF THE DOLOSTONE.

DOLOSTONE; GRAYISH ORANGE

15% POROSITY: LOW PERMEABILITY, PIN POINT VUGS

0-10% ALTERED; ANHEDRAL

GRAIN SIZE: MICROCRYSTALLINE

RANGE: MICROCRYSTALLINE TO VERY FINE; GOOD INDURATION

CEMENT TYPE(S): DOLOMITE CEMENT

ACCESSORY MINERALS: CALCILUTITE-15%, QUARTZ-02%

ORGANICS-02%

OTHER FEATURES: CALCAREOUS, GRANULAR

FOSSILS: ORGANICS

CALCAREOUS DOLOSTONE. DOME ORGANIC LAMILLAE.

CALCILUTITE; VERY LIGHT ORANGE 1686 - 1701 12% POROSITY: LOW PERMEABILITY, INTERGRANULAR PIN POINT VUGS GRAIN TYPE: CALCILUTITE, BIOGENIC 25% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO VERY FINE; MODERATE INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX, DOLOMITE CEMENT ACCESSORY MINERALS: SILT-SIZE DOLOMITE-20%, QUARTZ-02% ORGANICS-01% OTHER FEATURES: DOLOMITIC, LOW RECRYSTALLIZATION FOSSILS: ORGANICS MODERATELY INDURATED DOLOMITIC CALCILUTITE. TRACE AMOUNTS ORGANIC LAMELLAE. DREDGING ZONE. LOW PERMEABILITY RESPONSE DURING DRILLING.

DOLOSTONE; VERY LIGHT ORANGE TO GRAYISH CRANGE

15% POROSITY: INTERGRANULAR, PIN POINT VUGS
LOW PERMEABILITY; 0-10% ALTERED; ANHEDRAL

GRAIN SIZE: MICROCRYSTALLINE

RANGE: MICROCRYSTALLINE TO MEDIUM; GOOD INDURATION
CEMENT TYPE(S): DOLOMITE CEMENT, CALCILUTITE MATRIX
SEDIMENTARY STRUCTURES: INTERBEDDED
ACCESSORY MINERALS: CALCILUTITE-20%, ORGANICS-01%
OTHER FEATURES: CALCAREOUS, GRANULAR
FOSSILS: FOSSIL MOLDS, ORGANICS
CALCAREOUS DOLOSTONE, VARIABLY GRANULAR INTERBEDDED WITH
OOLOMITIC VUGULAR CALCARENITE. SOME ORGANIC VARVES.

DOLOSTONE; VERY LIGHT ORANGE TO GRAYISH BROWN

15% POROSITY: LOW PERMEABILITY, PIN POINT VUGS

INTERGRANULAR; 0-10% ALTERED; ANHEDRAL

GRAIN SIZE: MICROCRYSTALLINE

RANGE: MICROCRYSTALLINE TO FINE; GOOD INDURATION

CEMENT TYPE(S): DOLOMITE CEMENT, CALCILUTITE MATRIX

SEDIMENTARY STRUCTURES: INTERBEDDED

ACCESSORY MINERALS: CALCILUTITE-30%, ORGANICS-02%

OTHER FEATURES: CALCAREOUS, LOW RECRYSTALLIZATION, GRANULAR

FOSSILS: FOSSIL MOLDS, ORGANICS

INTERBEDDED PALE CALCILUTITIC DOLOMITE, DOLOMITIC

CALCARENITE WITH INTERSTITIAL CALCITE, AND ORGANIC-RICH

DOLOMITIC CALCARENITE. MINOR BLACK CHERT AT 1765 FT.

1765 TOTAL DEPTH

÷			

		1

	•	

			·