

Imagine the result

CONSTRUCTION AND TESTING SUMMARY REPORT

Floridan Aquifer Test Wells SGF-1 and SGF-2 Sawgrass Utility Complex

September 2013

Rodney J. Miller, P.G. Hydrogeologist

David K. Smith Principal Hydrogeologist

Construction and Testing Summary Report

Floridan Aquifer Test Wells SGF-1 and SGF-2

City of Sunrise, Sawgrass Utility Complex

Prepared for: City of Sunrise

Prepared by: Malcolm Pirnie / ARCADIS 2081 Vista Parkway West Palm Beach, Florida 33411

Our Ref.: 06958002.0000.00300

Date: September 2013

Table of Contents

1.	Introduction					
2.	Design and Test Objectives					
3.	Regional Hydrogeological Setting					
4.	Finding	gs		3		
5.	Constr	uction	and Testing	5		
	5.1	Constr	uction above the Floridan Aquifer	5		
	5.2	Pilot H	ole Drilling and Testing within the Floridan Aquifer	7		
		5.2.1	Lithology	7		
		5.2.2	Pilot Hole Water Quality Sampling and Specific Capacity Testing	7		
		5.2.3	Geophysical Logging	9		
		5.2.4	Packer Testing	10		
	5.3	Hydrog	geological Setting	12		
	5.4	Final D	Design and Testing	15		
		5.4.1	Final Tubing Installation	17		
		5.4.2	Acidization	18		
		5.4.3	Development	19		
		5.4.4	Step Rate Pump Testing	19		
		5.4.5	Constant Rate Pump Testing	20		
		5.4.6	Cement Bond Logging	23		
		5.4.7	Final Video Survey	23		
6.	S. Summary					

6. Summary

Tables

1A	Summary of Construction and Testing Activities, SGF-1
1B	Summary of Construction and Testing Activities, SGF-2
2A	Summary of Inclination Survey Results, SGF-1

Table of Contents

2B	Summary of Inclination Survey Results, SGF-2
3	Cementing Summaries, SGF-1 & SGF-2
4	Summary of Geophysical Logs Performed, SGF-1 and SGF-2
5	Packer Test Analytical Water Quality and Performance Results, SGF-1 and SGF-2

Figures

1	Site Location
2	SGF-1 Construction Details
3	SGF-2 Construction Details

Appendices

A	Hydrogeologic Framework and Geologic Logs: SGF-1 and SGF-2
В	Water Quality and Specific Capacity Testing Data from Pilot Hole Drilling: SGF-1 and SGF-2
С	Geophysical Logging in SGF-1 and SGF-2
D	Packer Test Summaries, Charts and Laboratory Reports
E	Aquifer Performance Testing Summaries and Charts
F	Electronic Files of Data Collected During Construction and Testing

Floridan Test Wells SGF-1 and SGF-2, City of Sunrise Sawgrass Utility Complex

1. Introduction

The City of Sunrise (City) retained Malcolm Pirnie/ARCADIS (Engineer) to provide engineering and hydrogeologic consulting services for the construction and testing of two test wells to be constructed into the Floridan Aquifer near the City's Sawgrass Utility Complex. The Sawgrass Utility Complex includes both a water treatment plant (WTP) which currently treats raw Biscayne Aquifer water and a wastewater treatment facility (WWTF) that includes three Class I municipal injection wells. A fourth Class I injection well is included within the WTP for disposal of reverse-osmosis concentrate. The two wells are designated as SGF-1 and SGF-2. A location map showing the location of the wells and the Sawgrass Utility Complex is provided as **Figure 1**.

The two wells were designed as test production wells, so that relevant data could be obtained during construction and then the wells could have future potential use as water supply production wells for the City's planned reverse-osmosis water treatment system. Well construction and testing procedures were performed in accordance with the October 2011 contract and specifications entitled "Sawgrass Floridan Well Construction and Aquifer Performance Test (APT)" prepared by MWH. The Contractor selected for the construction and testing of SGF-1 and SGF-2 was Florida Design Drilling, Inc.; a Florida state licensed water well contractor.

2. Design and Test Objectives

The City of Sunrise (CITY) has secured a Water Use Permit (WUP) with South Florida Water Management District. Pertinent information from the WUP is as follows:

- The total annual allocation is 40.7 million gallons per day (MGD) with a 45.9 MGD max month allocation from the Biscayne and Floridan Aquifers.
- The baseline allocation from the Biscayne Aquifer from the City's wellfields (Springtree, Sawgrass, Flamingo and Southwest) is 29.09 MGD (reduced on May 13, 2013 from 31.39 MDG)
- The current allocation for the Floridan Aquifer is 4.76 MGD in 2013. The allocation is permitted to increase with increasing demand to the allocated amount of 10.98 MGD by 2028

The City's primary aim with this project was to 1) evaluate the Floridan Aquifer in the Sawgrass area to determine the expected yield as a preliminary step towards development of a Floridan Aquifer Alternative water supply source and 2) establish the optimal design and placement for future Floridan Aquifer wells. The initial design of the Floridan Aquifer test wells was completed by MWH with consultation from Malcolm Pirnie/ARCADIS. Several components were considered for the design of the Floridan Aquifer Test Wells which include:

Floridan Test Wells SGF-1 and SGF-2, City of Sunrise Sawgrass Utility Complex

- The diameter of the final casing shall be adequate to accommodate appropriately sized pumps. It was
 determined that an inside diameter (I.D.) of 16 inches is sufficiently sized for a conservative pumping
 design flow of 2 MGD.
- The final casing shall consist of a material appropriate for resistance to corrosion of brackish Floridan Aquifer waters and shall be certified by the National Sanitation Foundation (NSF) to be acceptable for water supply.
- The open-hole interval within the Floridan Aquifer shall intersect competent and permeable strata with acceptable water quality.
- The Surficial Aquifer System, the Hawthorn Group and the Floridan Aquifer shall be isolated from each other by setting and cementing casings concentrically near the base of the Surficial Aquifer and near the base of the Hawthorn Group.
- The casings shall be appropriately cemented in place. Regulations require a minimum thickness of 2 inches for the cement sheath.
- Construction and testing shall satisfy Florida Department of Environmental Protection (FDEP) Underground Injection Control (UIC) regulatory requirements for Class V aquifer storage and recovery (ASR) wells in order to provide the City the option to convert the test wells to ASR wells in the future.

3. Regional Hydrogeological Setting

The regional stratigraphy and hydrogeological setting of the area surrounding the test well site is summarized in **Appendix A**: Generalized Regional Geology and Hydrogeology. The figure summarizes the stratigraphic units, lithologic descriptions and corresponding hydrogeologic units. Two distinctly different aquifer units are present at this location; the Surficial Aquifer and the Floridan Aquifer, separated by a sequence of clays and other sediments belonging to the Hawthorn Group.

The Surficial Aquifer is the uppermost water-bearing unit and generally consists of unconsolidated sands with varying amounts of shell and clay. This aquifer contains the water table, and water within it is under mainly unconfined conditions and in the low lying wetland areas is very close to, or at the surface. These sediments, which were deposited during the Pliocene to Holocene periods, lie between land surface and a depth of approximately 200 feet.

The lower limit of the Surficial Aquifer coincides with the top of laterally extensive and vertically persistent beds of lower permeability. These beds, which belong to the Hawthorn Group, consist of interbedded, phosphatic clays, silt, sand, limestone and dolomite. These sediments are collectively referred to as the

Floridan Test Wells SGF-1 and SGF-2, City of Sunrise Sawgrass Utility Complex

"Intermediate Confining Unit" and restrict vertical movement of groundwater between the Surficial Aquifer and the underlying Floridan Aquifer. At the base of the intermediate confining units there are more permeable zones of sandy limestone and dolomite which are generally attributed to the Arcadia Formation (basal Hawthorn Group). The Floridan Aquifer system underlies all of Florida and southern Georgia. The aquifer consists primarily of Eocene-age Ocala Limestone, Avon Park Formation and Oldsmar Formation. The aquifer system has been mapped with two permeable zones; the Upper and Lower Floridan Aquifers. The Upper Florida Aquifer lies within the Ocala Limestone and the upper portion of the Avon Park Formation. The Lower Floridan Aquifer was not encountered during drilling.

4. Findings

The results of the construction and testing of SGF-1 and SGF-2 led to the following findings noted below. A summary of the hydrogeological units intersected in the test wells is presented in **Figures 2 and 3**.

- The base of the Biscayne Aquifer and the top of the Upper Confining Unit (top of the Hawthorn Group) are located in SGF-1 and SGF-2 at a depth of approximately 190 and 200 feet below ground level (bgl), respectively.
- The base of the upper confining unit and the top of the Upper Floridan Aquifer are located in SGF-1 and SGF-2 at depths of approximately 995 and 999 feet bgl, respectively.
- Pilot holes were completed in SGF-1 and SGF-2 to the total depths of 1,800 feet bgl and 1,863 feet bgl, respectively.
- Good correlation exists between the strata intercepted by SGF-1 and SGF-2 boreholes with vertical
 offsets within the Floridan Aquifer of approximately 14 feet (SGF-2 strata encountered 14 feet deeper
 than SGF-1 strata).
- Groundwater quality profiles obtained from drill-stem water quality samples, discrete packer testing
 water quality sampling and static and dynamic geophysical fluid logging confirm that the water quality
 profiles are complex. Two discrete zones of less brackish groundwater are identified (referred to as
 "Freshwater Zones" in this report):
 - An upper "freshwater" zone located within the top of the Upper Floridan Aquifer lies between approximately 1,000 feet and 1,155 feet bgl, with an average salinity (based on packer test results), as measured by conductivity and TDS, of 9,200 micro Siemens per centimeter (μS/cm) and 5,850 milligrams per liter (mg/L), respectively.

Floridan Test Wells SGF-1 and SGF-2, City of Sunrise Sawgrass Utility Complex

- A lower "freshwater" zone located within the base of the Upper Floridan Aquifer lies between approximately 1,705 feet and 1,800 feet bgl, with an average salinity (based on packer test results, as measured by conductivity and TDS, of 8,650 μS/cm and 5,300 mg/L, respectively.
- Between these two "fresh water" or less brackish groundwater intervals, increasing trends in salinity, as measured by conductivity, chloride and total dissolved solids (TDS) are observed.
 Formation with the highest salinity was observed between approximately 1,450 and 1,580 feet bgl, with a conductivity up to 19,190 μS/cm measured in a pilot hole drill stem sample of SGF-2.
- The lowermost base of the underground source of drinking water (USDW) defined as formation waters containing TDS concentrations at or below 10,000 milligrams per liter (mg/L), was not intercepted by the SGF-1 and SGF-2 pilot holes. The extension of the SGF-2 pilot hole from 1,800 feet to 1,863 feet bgl intercepted groundwater within a USDW and with lower TDS concentrations (4.330 mg/L) compared to concentrations found at shallower depths in the Floridan Aquifer. However, the formation permeability was considered too low to be part of a viable production interval. During construction of the injection well systems located within the Sawgrass Utility Complex (constructed by others), the lowermost USDW base was encountered at depths of approximately 1,920 feet bgl. Good correlation of the strata encountered in these injection wells with SGF-1 and SGF-2 was obtained with an approximate vertical offset of 20 feet, therefore based on this correlation it is interpreted that the USDW will likely lie at a depth of approximately 1,940 feet bgl in SGF-1 and approximately 1,950 feet bgl in SGF-2. This interpretation is made on the assumption that the change in salinity is primarily controlled by changes in formation lithology, that is groundwater flow is primarily horizontal along bedding planes and restricted from flowing vertically due to low permeability layers. It should be noted that while this assumption is often correct, it is not always true, therefore this interpretation is provisional only and only by drilling to these depths can the actual depth of the lowermost USDW be determined.
- The open hole production interval in both SGF-1 and SGF-2 are located within the upper "freshwater" zones after it was determined that the upper zone was more permeable and is bounded by only one saline front. In SGF-1 the open hole production interval is between 1,006 and 1,127 feet bgl, and in SGF-2 it is between 1,014 and 1,150 feet bgl.
- The approximate transmissivities of the open holes in SGF-1 and SGF-2 are 43,500 gallons per day per foot (gpd/ft) and 42,000 gpd/ft, respectively. These permeabilities are approximately half of what was originally expected, based on hydraulic parameters used for groundwater modeling that was used to determine the well separation between SGF-1 and 2.

Floridan Test Wells SGF-1 and SGF-2, City of Sunrise Sawgrass Utility Complex

5. Construction and Testing

The Contractor was given notice to commence work on March 30, 2012. After mobilizing to the SGF-1 site, construction of SGF-1 began in May 2012. The construction and testing of SGF-1 was complete by January 2013 (with the exception of combined aquifer performance testing of both wells). The Contractor mobilized a second drilling rig at SGF-2 and the construction of the wells partially overlapped. The construction of SGF-2 began in August 2012 and construction and testing was completed by May 2013.

During well construction, data were collected and interpreted to determine the geologic and hydrogeologic characteristics of the strata intercepted by the borehole. These data were used to determine the optimal subsurface design. Data also were collected to ensure both wells were being constructed in accordance with the technical specifications. Data-collection methods and results are described below. Summaries of the construction and testing activities for SGF-1 and SGF-2 are presented as **Table 1A** and **Table 1B**, respectively.

Both SGF-1 and SGF-2 were completed with the following casings and tubings:

- 48-inch outside diameter (O.D.), 0.375-inch wall thickness, welded steel Pit casing. Casing was installed and cemented to facilitate drilling within the Surficial Aquifer.
- 36-inch O.D., 0.375-inch wall thickness, welded steel Surface casing. Casing was installed and cemented to isolate the Surficial Aquifer
- 28-inch O.D., 0.375-inch wall thickness, welded steel Intermediate casing. Casing was installed and cemented to isolate the Hawthorn Group.
- 16-inch inside diameter (I.D.) with maximum O.D. of 20 inches at couplings, 0.500-inch wall thickness, threaded and coupled fiberglass reinforced plastic (FRP) tubing manufactured by Burgess Well Company, Inc. Tubing was installed and cemented to serve as a Final casing which is resistant to corrosion from the brackish groundwater.

5.1 Construction above the Floridan Aquifer

48-inch O.D. Pit Casing:

At both the SGF-1 and SGF-2 sites the Contractor drilled a borehole using the auger drilling method to facilitate the installation and cementing of a 48-inch O.D. steel pit casing. During drilling drill cuttings were collected at 10-foot depth intervals, described by the onsite geologist and summarized in geologic logs. Lithologic summaries for SGF-1 and SGF-2 are provided in **Appendix A**. The base of the pit casings were

Floridan Test Wells SGF-1 and SGF-2, City of Sunrise Sawgrass Utility Complex

set in SGF-1 and SGF-2 at 41 feet and 48 feet bgl, respectively. Construction details of SGF-1 are provided in **Figure 2** and construction details of SGF-2 are provided in **Figure 3**.

36-inch O.D. Surface Casing:

Following installation of the 48-inch O.D. pit casing, the Contractor drilled a pilot hole by the mud-rotary drilling method. The pilot hole was extended to 225 feet bgl in SGF-1 and to 228 feet bgl in SGF-2. During drilling, cutting samples were collected as described above. Inclination surveys were performed by the Contractor in the pilot hole (and all subsequent borehole drilling operations) of SGF-1 and SGF-2 at approximately 90-foot intervals. The maximum allowable inclination from vertical at any portion of a hole was 1.0 degree. The maximum allowable difference between any two successive survey points was 0.5 degree. During drilling operations, all inclination surveys met the above criteria. Summaries of inclination survey results for SGF-1 and SGF-2 are presented in **Tables 2A and 2B**, respectively.

Following pilot-hole drilling, geophysical logging was performed. Based on the drill cuttings and geophysical logging, the base of the Surficial Aquifer (Biscayne Aquifer) and the top of the Hawthorn Group was identified at 190 feet bgl in SGF-1 and at 200 feet bgl in SGF-2. Geophysical logging is discussed in Section 4.2.3 of this report. The pilot holes were then reamed to a nominal 48-inch diameter in SGF-1 and SGF-2 to depths of 217 feet and 228 feet bgl, respectively. X-Y caliper and gamma-ray logging was then performed and 36-inch O.D. steel surface casing was installed and cemented to surface in stages. The base of the surface casing was set at 215 feet bgl in SGF-1 and at 225 feet bgl in SGF-2. Summaries of cementing stages for SGF-1 and SGF-2 are provided in **Table 3**.

28-inch O.D. Intermediate Casing

After the 36-inch O.D. casing was set and cemented for each well, the Contractor drilled a pilot hole by the mud-rotary drilling method below the base of the 36-inch O.D. casing. The pilot hole in SGF-1 was extended to 1,020 feet bgl; approximately 25 feet below the base of the lowermost competent clay layer observed in the Hawthorn Group (observed between 960 and 995 feet bgl). Further descriptions of geological units intercepted are discussed in Section 4.3 below. The pilot hole in SGF-2 was terminated at 980 feet bgl. During pilot-hole drilling in SGF-2, development of the completed SGF-1 well was occurring. It was decided to terminate the pilot hole in SGF-2 migrating towards SGF-1 and adversely affecting the production interval.

Geophysical logging was then performed in the pilot holes. Based on the drill cuttings and geophysical logging, the base of the Hawthorn Group clays and the top of the Upper Floridan Aquifer in SGF-1 was identified at 995 feet bgl. The base of the Hawthorn Group clays in SGF-2 was identified at 999 feet bgl (based on cuttings collected and logging performed in the reamed hole described below). The pilot holes

Floridan Test Wells SGF-1 and SGF-2, City of Sunrise Sawgrass Utility Complex

were then reamed to a nominal 36 inch diameter borehole in SGF-1 and SGF-2 to depths of 1,004 feet and 1,010 feet bgl, respectively. X-Y caliper and gamma-ray logging was then performed and 28-inch O.D. steel casing was installed and cemented to surface in stages. The base of the 28-inch O.D. casing was set at 1,000 feet bgl in SGF-1 and at 1,006 feet bgl in SGF-2.

5.2 Pilot Hole Drilling and Testing within the Floridan Aquifer

During pilot hole drilling and testing within the Floridan Aquifer, the general sequence of work performed is outlined below. Pertinent construction and testing procedures are described further in the subsequent report sections.

- Drill pilot holes to total depth and perform geophysical logging; during drilling collect drill cutting samples (every 10 feet), collect drill stem water quality samples (approximately every 30 feet), perform inclination surveys (approximately every 90 feet) and perform specific capacity testing (approximately every 30 feet).
- 2. Perform packer testing and collect packer test water quality samples for laboratory analysis. It should be noted that the pilot hole in SGF-2 was extended an additional 63 feet after performing geophysical logging and performing one packer test. A second packer test was performed in SGF-2 after extending the pilot hole.

5.2.1 Lithology

During pilot hole drilling of both SGF-1 and SGF-2, drill cuttings were collected in the Floridan Aquifer at 10foot depth intervals, described by an onsite (ARCADIS) geologist and summarized in geologic logs. Lithologic summaries for SGF-1 and SGF-2 are provided in **Appendix A**. A description of the formations encountered during pilot-hole drilling is included in Section 5.3 below and summarized in **Figures 2 and 3**.

5.2.2 Pilot Hole Water Quality Sampling and Specific Capacity Testing

The Contractor performed pilot-hole drilling in the Floridan Aquifer using the open-circulation reverse-air drilling method. During drilling the annulus between the drill stem and the open hole was allowed to flow under artesian conditions. Formation waters were diverted to a settling tank and then discharged to the wet well at the Sawgrass Utility Complex through temporary discharge piping. Fluids from the wet well were then injected into the Class I injection wells located at the Sawgrass complex. At each drill rod connection (approximately 30-foot intervals), the Contractor continued to circulate the borehole for approximately 15 minutes to remove cuttings. Just prior to terminating circulation, a sample of the discharge fluids (referred to in this report as a "drill stem" sample) was collected for field analysis of conductivity, temperature, chloride, hydrogen sulfide, sulfate (SGF-1 and SGF-2) and pH (SGF-2 only).

Floridan Test Wells SGF-1 and SGF-2, City of Sunrise Sawgrass Utility Complex

The reverse-air circulation was then terminated and the annulus was shut in (valving on the annulus flow line was closed). A manometer tube consisting of clear plastic tubing was connected to the annulus and extended up the mast of the drill rig. After approximately 15 to 20 minutes, the Contractor climbed up the rig mast and measured the artesian head of the annulus from ground level. The annulus valve was then opened until the water level in the manometer tube lowered to several feet above ground level. The flow from the annulus was continued for a sufficient period of time to allow flow rates and water levels in the manometer tube to generally approach stabilization. The flow rate and water-level drawdown were measured and specific capacities were calculated. At the start of each work day, after allowing water levels to recover overnight, the Contractor also recorded the static water level in the manometer tube prior to resuming drilling operations. A linear trend between corrected water levels each day was then assumed and a "corrected static water level" measurement derived so that specific capacities performed throughout the day could be calculated.

Just prior to terminating the specific capacity test, a sample from the annulus was collected for field analysis of the parameters noted above. The annulus samples are considered a representative sample of the entire open borehole compared to the drill stem sample that preferentially is taken from the base of the pilot hole at the time the sample was collected. As pilot-hole drilling progresses, each annulus sample represents a greater depth interval. For example, the annulus sample in SGF-1 collected at a pilot hole depth of 1,248 feet bgl represents a mixture of formation water quality in the pilot hole interval between 1,000 feet (base of 28-inch casing) and 1,248 feet bgl (a depth interval of 248 feet). It should be noted that a greater percentage of each sample will be comprised of formation waters from highly transmissive intervals compared to formation intervals with more confining properties.

Summaries of pilot-hole water quality and specific capacity testing results are included in **Appendix B**. Further descriptions of water quality trends observed are provided in Section 5.3 below. Figures B-1 and B-2 in Appendix B show conductivity and chloride concentrations with depth of pilot-hole drill stem samples for both SGF-1 and SGF-2. Analyzing conductivity and chloride parameters serve to provide an indication of salinity trends in the Floridan Aquifer intersected by the pilot hole. For both wells, trends for chloride closely match the trends observed in conductivity. Figures B-3 and B-4 in Appendix B show conductivity and chloride concentrations for both SGF-1 and SGF-2.

Figure B-5 in Appendix B shows results from specific capacity testing in both SGF-1 and SGF-2. Figure B-6 shows the stabilized flow rates for each specific capacity test performed. As anticipated, specific capacity results generally increase as the pilot-hole interval increases and an ever greater portion of the artesian Floridan Aquifer is intersected. The tests performed between approximately 1,050 and 1,330 feet bgl show that specific capacity in SGF-1 appears to be slightly greater than SGF-2. Below 1,330 feet bgl, specific capacity results in SGF-1 and SGF-2 appear to be approximately the same.

Floridan Test Wells SGF-1 and SGF-2, City of Sunrise Sawgrass Utility Complex

5.2.3 Geophysical Logging

Geophysical logging was performed in the pilot-hole intervals of both SGF-1 and SGF-2 to achieve multiple objectives including: correlating drill cuttings collected during drilling; identifying formation boundaries; correlating vertical geological offsets between SGF-1 and SGF-2; and obtaining specific geologic and hydrogeologic data. These data were used to determine packer-testing intervals, identify transmissive and confining intervals and assist in selecting optimum production zones. Reamed-hole caliper logs were performed prior to casing installation to confirm appropriate casing setting depths and provide data for use in calculating theoretical casing-cementing volumes.

A summary of the geophysical logs performed in SGF-1 and SGF-2 is provided in **Table 4**. Hardcopies of the geophysical logs are provided with this report under separate cover. Video surveys performed are on DVDs included with the hardcopy logs (separate cover). Interpretations of the geophysical logs performed in the pilot holes within the Floridan Aquifer (approximately between 1,000 and 1,800 feet bgl) are provided in Section 5.3 below. Additional summary plots of the geophysical logs are provided as figures in **Appendix C** to assist in the interpretation of the logs and are as follows:

- Figure C-1: SGF-1 log plots between ground level and 1,020 feet bgl
- Figure C-2: SGF-1 static log plots between 1,000 and 1,800 feet bgl
- Figure C-3: SGF-1 dynamic log plots between 1,000 and 1,800 feet bgl
- Figure C-4: SGF-2 log plots between ground level and 980 feet bgl
- Figure C-5: SGF-2 static log plots between 1,000 and 1,800 feet bgl
- Figure C-6: SGF-2 dynamic log plots between 1,000 and 1,800

Figure C-7: Comparison of SGF-1 and SGF-2 log plots between ground level and 980 feet bgl (gamma-ray and dual induction)

Figure C-8: Comparison of SGF-1 and SGF-2 log plots between 1,000 and 1,800 feet bgl (gamma-ray and dual induction)

Figure C-9: Comparison of percent flow between 1,000 and 1,800 feet bgl (based on flowmeter logging)

Floridan Test Wells SGF-1 and SGF-2, City of Sunrise Sawgrass Utility Complex

5.2.4 Packer Testing

Four packer tests were conducted in SGF-1 and two packer tests were conducted in SGF-2. The tests were performed to determine the water quality and hydrologic properties of the test intervals. Excluding packer tests 3A and 3B in SGF-1, the packer tests utilized a single-packer assembly. Packer test intervals were carefully selected based on the drilling results, geophysical logs and video logs to ensure that the most appropriate intervals were tested and that the packer elements are seated on competent strata (reducing the chance of waters leaking around the packer element). A brief description of each packer test, including the primary test objectives, is included below. A summary of the water-sample analytical results and performance data from packer testing is presented as **Table 5**. Packer test water-quality summaries, charts and analytical reports are included in **Appendix D**.

<u>SGF-1 Packer Test (PT) #1</u>: Following geophysical logging in the pilot hole of SGF-1, the Contractor installed a single inflatable packer on drill pipe to 1,603 feet bgl (centerline of the packer element). After inflating the packer, the Contractor installed a submersible pump in the drill pipe. Water level transducers were installed in the drill pipe (above the pump) to measure water level changes in the test interval 1,603 to 1,800 feet bgl (below the packer) and the annulus outside the drill pipe so that water levels above the test interval could be measured to determine if any vertical formation leakance or leakage around the packer was occurring. The primary objective of this test was to determine the water quality and aquifer permeability so that the suitability of this lower "freshwater" zone as a production interval could be determined.

The Contractor began developing the interval between the packer and the total depth of the pilot hole (between 1,603 and 1,800 feet bgl) to remove suspended sediment and establish an appropriate pumping rate for the test. After developing for over 2 hours, the pump was turned off and water levels were allowed to recover to near static conditions. Following the recovery of the water level after development, the pump was turned back on, and the pumping portion of the test began at a pumping rate of 221 gpm. A totalizer was used to measure total flow volume and flowrate. During testing, water levels were measured in the drill pipe and annulus using the water level transducers and recorded on a data logger. Water quality samples were collected throughout the pumping portion of the test, a final water sample was collected for laboratory analysis. The recovery portion of the test began when the pump was shut off. Water levels were measured during the recovery portion of the test to observe water levels returning to near static conditions.

<u>SGF-1 Packer Test #2</u>: The procedure for PT #2 was similar to PT #1 with the exception that the annulus located above the packer element was tested. For PT #2, the inflatable packer was set with a packer element centerline at 1,155 feet bgl and the interval between the base of the 28-inch O.D. casing (set at 1,000 feet bgl) and 1,155 feet bgl was tested. The primary objective of this test was to determine the water quality and aquifer permeability so that the suitability of this upper "freshwater" zone as a production interval

Floridan Test Wells SGF-1 and SGF-2, City of Sunrise Sawgrass Utility Complex

could be determined. During testing, the annulus was allowed to flow (under artesian conditions) at a rate of 479 gpm.

<u>SGF-1 Packer Tests 3A and 3B</u>: After completing PT #2, the Contractor removed the single packer from the well and installed a straddle packer assembly. The top packer was set at 1,528 feet bgl and the bottom packer was set at 1,569 feet bgl. The packers were connected with perforated drill pipe to facilitate the testing of the interval between the packers. A submersible pump and transducers were installed similar to PT #1. An additional transducer also was attached to the base of the bottom packer to record water level changes in the interval between the bottom packer and the base of the pilot hole (1,800 feet bgl) so that potential leakance from below the lower packer (due to packer bleed or formation leakance) could be measured. It should be noted that this transducer could not be vented to the atmosphere and therefore recorded absolute pressure. The primary objective of Packer Test 3A was to isolate the interval suspected to contain the most saline groundwater and determine the water quality within this zone. The primary objectives of Packer Test 3B, by testing the zone above this interval while monitoring pressure heads between the straddle packers, was to determine the potential for up-coning of the poor water quality by measuring vertical hydraulic connection, and to quantify the potential water quality and yield if the upper "freshwater" zone was extended to a greater depth to include some of the poorer quality groundwater.

For both PT #3A and PT #3B, testing was conducted without performing development of the tested interval. For PT #3A, the pump inside the drill pipe was turned on and the testing between 1,528 and 1,569 feet bgl was performed at a rate of 203 gpm. After completing testing, water levels in the drill pipe and annulus were allowed to recover for approximately 30 hours. Following recovery, the annulus outside the drill pipe (between 1,000 and 1,528 feet bgl) was allowed to flow under artesian conditions at a flow rate of 920 gpm.

<u>SGF-2 Packer Test #1</u>: For PT #1 in SGF-2, a single packer was installed to 1,628 feet bgl, and the interval between 1,628 and 1,800 feet bgl was tested to quantify the water quality and aquifer permeability so that the suitability of this lower "freshwater" zone as a production interval could be determined. . This test was performed similar to PT #1 performed in SGF-1, and was performed at a pumping rate of 190 gpm. It should be noted that this test was performed in SGF-2 prior to the Contractor extending the total depth of the pilot hole from 1,800 feet to 1,863 feet bgl.

<u>SGF-2 Packer Test #2</u>: After performing PT #1 in SGF-2, the Contractor removed the single packer from the well and extended the pilot an additional 63 feet to 1,863 feet bgl. The Contractor then reinserted the single packer to 1,801 feet bgl, and the interval between 1,801 and 1,863 feet bgl was tested. The primary objective of this test was to determine if this deeper interval would yield sufficient groundwater of suitable water quality that would support extending the lower "freshwater" zone to increase the viability of this zone as a lower production interval. This test was performed similar to PT #1 performed in SGF-1. The test pumping rate was 166 gpm.

Floridan Test Wells SGF-1 and SGF-2, City of Sunrise Sawgrass Utility Complex

Water-level data were used to estimate the horizontal hydraulic conductivity and transmissivity of each test interval. The horizontal hydraulic conductivity and transmissivity estimates assisted in determining the hydraulic performance of the tested strata. Analytical results from the water quality samples assisted in determining whether waters within the tested interval are of suitable quality to be included in the production interval of the completed wells. Results from the packer test are further described in Section 5 below.

5.3 Hydrogeological Setting

Based on the results obtained from drilling and testing described above, the hydrogeological setting surrounding the SGF-1 and SGF-2 well sites is summarized below.

Test Well SGF-1:

<u>Ground level to 190 feet bgl</u>: This interval incorporates the Surficial Aquifer System (Biscayne Aquifer) and primarily consists of interbedded layers of permeable limestone and sandstone with silty sands. Gamma-ray activity increases at approximately 50 feet bgl and again at 140 feet bgl.

<u>190 to 480 feet bgl</u>: This interval includes the top of the Hawthorn Group and primarily consists of fine unconsolidated silt with a small amount of clay, limestone and shell. Based on the dual induction log, formation waters within this interval become increasingly saline.

<u>480 to 960 feet bgl</u>: A formation change is observed near 480 feet from silt to interbedded layers of poorly consolidated limestone and calcareous clay of low plasticity. This transition also is observed with a spike in gamma-ray readings and a minor (but distinct) increase in the dual-induction log plot. As observed in the cuttings and spikes in the gamma-ray log plot, an interval of phosphatic clays is present between approximately 810 and 870 feet bgl.

<u>960 to 995 feet bgl</u>: More cohesive olive gray clay with higher plasticity is present within this interval. The upper transition to this clay is seen with a spike of gamma-ray readings at approximately 955 feet bgl. This interval is considered the lowermost confining interval above the Upper Floridan Aquifer.

<u>995 to 1,120 feet bgl</u>: Below 995 to 1,020 feet, a transition from clay to limestone is present and incorporates the base of the Hawthorn Group and the top of the Floridan Aquifer. From 1,020 to approximately 1,100 070 feet bgl, limestone with numerous phosphate grains are present as seen in the cuttings and as indicated with high gamma-ray activity. A highly transmissive fracture is present between 1,100 and 1,106 feet bgl as seen in the XY caliper, flowmeter and video log. Between 1,110 and 1,120 feet bgl, a quartz grainstone layer is present; a spike in gamma-ray counts and dual induction readings are seen in this interval. Based on flowmeter logging, this interval provides approximately 30% of the total flow from the pilot hole. Collection of pilot-hole water quality samples began at a depth of 1,033 feet bgl. Between

Floridan Test Wells SGF-1 and SGF-2, City of Sunrise Sawgrass Utility Complex

1,033 and 1,123 feet bgl, conductivity concentrations range between 8,960 and 9,560 μ S/cm. Packer testing between 1,000 and 1,155 feet bgl (PT #2) show conductivity and TDS results of 9,200 μ S/cm and 5,850 mg/L, respectively.

<u>1,120 to 1,580 feet bgl</u>: The interval between 1,120 and 1,580 feet bgl primarily consists of a poorly cemented limestone. A more competent limestone interval is present between 1,175 and 1,180 feet bgl which is observed in the cuttings, XY caliper, dual induction and sonic porosity log. A fracture is observed between approximately 1,240 and 1,245 feet bgl. Below this fracture a distinct decrease in percent flow (based on flowmeter logging) is observed (between 5% and 10%). Within this interval, down to 1,500 feet bgl, drill stem water quality shows an increasing salinity trend as indicated by conductivity and chloride results. The greatest salinity was observed at 1,465 feet bgl with conductivity readings up to 16,630 μ S/cm. Packer testing between 1,528 and 1,569 feet bgl (PT #3A) shows conductivity and TDS results of 14,300 μ S/cm and 9,070 mg/L, respectively. It should be noted that the waters within this test interval nearly exceeds the TDS limit (10,000 mg/L) of what is considered a potential USDW. Based on flowmeter logging, the interval between 1,120 and 1,580 feet bgl provides approximately 50% of the total flow from the pilot hole.

<u>1,580 to 1,685 feet bgl</u>: This interval is primarily identified as a transition to less saline formation waters as seen by the elevated readings seen on the dual induction log plot. Pilot hole water quality shows a decrease in conductivity from 14,040 μ S/cm (at 1,588 feet bgl) to 5,970 μ S/cm. Sonic porosity shows greater variation in this interval compared to the interval above. Based on the flowmeter log, this interval contributes approximately 15% of the total flow from the pilot hole. This interval primarily consists of a poorly cemented limestone.

<u>1,685 to 1,800 feet bgl</u>: This interval provides formation waters with the lowest salinity of the Upper Floridan Aquifer but shows low transmissivity compared to the intervals above. Conductivity from drill stem samples range between 5,970 μ S/cm (at 1,682 feet bgl) and 6,080 μ S/cm (at 1,800 feet bgl). Packer testing between 1,603 and 1,800 feet bgl (PT #1) shows conductivity and TDS results of 8,650 μ S/cm and 5,300 mg/L, respectively. Based on the flowmeter log, this interval contributes approximately 10% of the total flow from the pilot hole. Although the pilot hole in SGF-1 was terminated at 1,800 feet bgl, construction and testing of Class I injection well systems at the Sawgrass Utility Complex (located less than 0.5 mile east of the SGF-1 site) intersected the base of the lowermost USDW at a depth of approximately 1,920 feet bgl. This interval consists primarily of a poorly cemented limestone.

Test Well SGF-2:

<u>Ground level to 200 feet bgl</u>: This interval incorporates the Surficial Aquifer System (Biscayne Aquifer) and primarily consists of interbedded layers of permeable limestone and silty sands. Less consolidated cemented sands (sandstone) were encountered in SGF-2 compared to SGF-1. Similar gamma-ray activity

Floridan Test Wells SGF-1 and SGF-2, City of Sunrise Sawgrass Utility Complex

was observed (at similar depths) as observed in SGF-1. The base of the Surficial Aquifer and the top of the Hawthorn Group were observed at 200 feet bgl (approximately 10 feet deeper than SGF-1).

<u>200 to 490 feet bgl</u>: This interval includes the top of the Hawthorn Group and primarily consists of a clayey silt with a small amount of limestone and shell. Based on the dual induction log, formation waters within this interval become increasingly saline. A 10-foot offset of formation features (with SGF-2 being deeper) is maintained in this interval.

<u>490 to 978 feet bgl</u>: A formation change is observed near 490 feet bgl from clayey silt to interbedded layers of poorly consolidated limestone and calcareous clay of low plasticity. This transition also is observed with a spike in gamma-ray readings and a minor spike in dual induction. As observed with the spikes in the gamma-ray log plot, an interval of phosphatic clays is present between approximately 820 and 870 feet bgl.

<u>978 to 999 feet bgl</u>: More cohesive olive gray clay with higher plasticity is present within this interval. The upper transition to this clay is seen with a spike of gamma-ray readings at approximately 970 feet bgl. This interval is considered the lowermost confining interval above the Upper Floridan Aquifer. The thickness of the confining layer in SGF-2 is 21 feet less than the confining layer observed in SGF-1, and the base of the confining layer in SGF-2 is 4 feet deeper than seen in the SGF-1.

<u>999 to 1,140 feet bgl</u>: Below 999 feet to 1,010 feet bgl a transition from clay to limestone is present and incorporates the base of the Hawthorn Group and the top of the Upper Floridan Aquifer System. From 1,020 to 1,080 feet, limestone with numerous phosphate grains is present as seen in the cuttings and as indicated with high gamma-ray activity. A highly transmissive fracture is present centered at 1,120 feet bgl (15 to 20 feet deeper than the fracture observed in SGF-1). Based on flowmeter logging, this interval provides approximately 30% of the total flow from the pilot hole. Between 1,083 and 1,150 feet bgl, drill stem conductivity concentrations range between 9,790 and 10,239 μ S/cm; these results closely match the results seen in SGF-1.

<u>1,140 to 1,610 feet bgl</u>: The interval between 1,140 and 1,610 feet bgl primarily consists of a poorly to moderately cemented limestone. A small fracture is in the XY caliper log centered at 1,265 feet bgl. Below the fracture a distinct decrease in flow of 10% is observed. Between 1,140 and 1,426 feet bgl, drill stem water quality shows an increasing salinity trend with conductivity and chloride results similar to the trend observed in SGF-1. Conductivity concentrations increase from 10,239 μ S/cm (at 1,150 feet bgl) to 15,854 μ S/cm. Below 1,518 feet bgl, conductivity concentrations are elevated compared to concentrations in SGF-1. The highest concentration observed in SGF-2 was 19,190 μ S/cm at a depth of 1,548 feet bgl. Although packer testing was not performed (and TDS concentrations were not analyzed) within the interval where the highest salinity is observed in the drill stem samples (between approximately 1,456 and 1,580 feet bgl), it is reasonable to assume that formation waters exceed USDW standards for TDS concentrations. A freshening trend is observed in the drill stem water quality below 1,548 feet to a depth of 1,674 feet bgl. Based on

Floridan Test Wells SGF-1 and SGF-2, City of Sunrise Sawgrass Utility Complex

flowmeter logging, the interval between 1,140 and 1,610 feet bgl provides approximately 35% of the total flow from the pilot hole.

<u>1,610 to 1,705 feet bgl</u>: This interval is identified as a transition to less saline formation waters to a depth of approximately 1,680 feet bgl as seen by the elevated readings seen on the dual induction log plot. Pilot hole water quality shows a decrease in conductivity from 16,645 μ S/cm (at 1,611 feet bgl) to 10,465 μ S/cm (at 1,674 feet bgl). It's important to note that although a freshening trend is observed, formation waters appear to be more saline in this interval compared to SGF-1. Between 1,680 and 1,705 feet bgl, a permeable zone with higher saline waters are present. This saline interval is observed in the lower readings of the dual induction log and in the drill stem water quality samples with conductivity concentrations spiking to 16,270 μ S/cm (at 1,705 feet bgl). Based on the flowmeter log, this interval contributes approximately 25% of the total flow from the pilot hole. Packer testing was performed in SGF-2 between 1,628 and 1,800 feet bgl showing elevated readings in conductivity and TDS concentrations compared to packer testing in SGF-1 at a similar depth interval (between 1,603 and 1,800 feet bgl). This interval consists primarily of a poorly cemented limestone.

<u>1,705 to 1,863 feet bgl</u>: Below 1,705 feet bgl, a freshening trend occurs with drill stem water quality showing conductivity concentrations decreasing from 16,270 μ S/cm (at 1,705 feet bgl) to 7,110 μ S/cm (at 1,863 feet bgl). Packer testing between 1,800 and 1,863 feet bgl shows conductivity and TDS results of 6,970 μ S/cm and 4,330 mg/L, respectively. Based on the flowmeter log, the interval below 1,705 feet bgl only contributes approximately 10% of the total flow from the pilot hole.

5.4 Final Design and Testing

The original design for both wells included an approximate setting for the FRP tubing at 1,600 feet bgl and an open-hole interval between 1,600 and 1,750 feet bgl. As noted in Section 2 above, a primary design objective is to complete the wells in permeable strata with acceptable water quality. It was later agreed by the City, MWH and Malcolm Pirnie/ARCADIS that the primary guideline for determining acceptable water quality would be formation waters with TDS concentrations no greater than 6,000 mg/L.

Based on packer testing in SGF-1, two separate formation intervals meet the TDS criteria. The interval between 1,000 and 1,155 feet bgl (Upper "Freshwater" Zone) has an average TDS concentration of 5,850 mg/L, and the interval between 1,603 and 1,800 feet bgl (Lower "Freshwater" Zone) shows a slightly lower TDS with an average concentration of 5,300 mg/L. Both the Upper and Lower Freshwater Zones in SGF-1 show similar salinity concentrations, but the Upper Freshwater Zone contributes 30% of the total flow from the pilot hole compared to the Lower Freshwater Zone that contributes approximately 20% of the total flow. Also, the Lower Freshwater Zone is a relatively narrow lens of less saline groundwater with brackish groundwater with salinities greater than a TDS of 10,000 mg/L water located above and below. Completing the production interval within the Lower Freshwater Zone would increase the risk of vertical migration (either

Floridan Test Wells SGF-1 and SGF-2, City of Sunrise Sawgrass Utility Complex

upwards, downwards or both) of brackish water contaminating production interval. For these reasons, it was jointly determined that the production interval in SGF-1 would be completed in the Upper Freshwater Zone. The production interval in SGF-1 was completed between 1,006 feet bgl (base of FRP tubing) and 1,127 feet bgl.

Data obtained in the pilot hole of SGF-2 showed similar results to the data obtained in SGF-1. An Upper Freshwater Zone is identified between approximately 1,000 and 1,150 feet bgl primarily based on drill stem water quality samples. The Lower Freshwater Zone is not as clearly identified in SGF-2 compared to SGF-1. Based on drill stem water quality samples and dual induction logging, the Lower Freshwater Zone occurs below 1,620 feet bgl with a discreet lens of brackish water near 1,700 feet bgl. The original pilot hole at SGF-2 was extended to 1,800 feet bgl. As seen in the drill stem water quality samples and the flowmeter log, a clear freshening trend with low permeability was observed between 1,705 and 1,800 feet bgl. Based on this trend, it was decided to extend the pilot hole approximately 60 feet (actual depth to 1,863 feet bgl) in an attempt to locate a permeable freshwater zone. A packer test was then performed between 1,801 and 1,863 feet bgl, providing the freshest water quality observed in either the SGF-1 or SGF-2 pilot holes with a conductivity concentration of 6,970 μ S/cm and a TDS concentration of 4,330 mg/L. However, the permeability of the Lower Freshwater Zone in SGF-2 was too low to be an effective production interval, and it was jointly decided that the production interval in SGF-2 would be completed in the Upper Freshwater Zone. The production interval in SGF-2 was completed between 1,014 feet bgl (base of FRP tubing) and 1,150 feet bgl.

After the final design for each well was determined the general sequence of work performed is outlined below and pertinent construction and testing procedures are described further in subsequent report sections.

- 1. Plug back the pilot hole to approximately the base of the open-hole production zone.
- 2. Ream the pilot hole to the base of the open hole production interval and perform geophysical logging
- 3. Install FRP tubing to the selected setting depth and fill the reamed hole with gravel to the base of the FRP tubing.
- 4. Cement the FRP tubing to surface.
- 5. Perform plumbness and alignment testing, remove gravel from open hole and acidize the production interval
- 6. Perform airlift and pump development of the production interval

Floridan Test Wells SGF-1 and SGF-2, City of Sunrise Sawgrass Utility Complex

- Perform aquifer performance testing including step testing and 72-hour constant rate pump testing. Collect water quality sample for analysis of primary and secondary drinking water standards at the end of the constant rate pump test.
- 8. Perform final video survey and cement bond logging

5.4.1 Final Tubing Installation

After performing packer testing in the pilot holes and the final design of the wells were determined, the Contractor performed backplugging of the pilot holes. Between 1,587 and 1,800 feet bgl, the pilot hole in SGF-1 was filled with gravel, and between 1,121 and 1,587 feet bgl, the pilot hole was filled with cement. The purpose of filling the interval between 1,587 and 1,800 with gravel was to provide an opportunity to complete the well within a deeper production interval if deemed necessary. In SGF-2, the entire pilot hole between 1,155 and 1,863 feet bgl was filled with cement. Based on additional testing in SGF-1 and SGF-2 after the pilot hole in SGF-1 was backplugged with gravel and cement, it was determined that the production interval in SGF-2 would not be completed within the deeper interval. Therefore the pilot hole in SGF-2 was backplugged with cement.

The remaining open-hole portion of each pilot hole was then reamed to a nominal 28-inch diameter borehole to a depth of 1,127 feet bgl in SGF-1 and to a depth of 1,150 feet bgl in SGF-2. X-Y caliper and gamma-ray logging was then performed in each well. Following geophysical logging, 16-inch I.D. FRP tubing was installed to 1,006 feet bgl in SGF-1 and to 1,014 feet bgl in SGF-2. Gravel was then installed into the reamed hole (through the FRP tubing) to the base of the tubing. After installing the gravel, the Contractor installed steel cement tubing in the annulus between the 28-inch O.D. steel casing and the FRP tubing and began cementing the FRP tubing in stages. After the first cement stage in SGF-1 was performed (top of cement at 982 feet bgl), the Contractor performed background cement-bond logging. Further discussion on cement-bond logging is included Section 5.4.6 of this report. Following background cement-bond logging in each well, the Contractor continued cementing the FRP tubing to ground level in stages.

After cementing the FRP to surface, the Contractor performed plumbness and alignment testing of the tubing to ensure the wells are round, plumb and true to line. The plumbness and alignment testing was performed in accordance with the specifications and American Water Works Association (AWWA) Standard 100 for Water Wells, and the results from testing met standard requirements.

Floridan Test Wells SGF-1 and SGF-2, City of Sunrise Sawgrass Utility Complex

5.4.2 Acidization

After performing plumbness and alignment testing, the Contractor installed a drill bit inside the FRP tubing and began removing the gravel from inside the tubing and the open hole. After removing the gravel in SGF-1 to a depth of 1,127 feet bgl, the Contractor performed a specific capacity test of the production interval resulting in a specific capacity of 13.4 gpm/ft. In an effort to improve the performance of the production interval interval, acidization of the open hole was performed as outlined below:

- 1. An inflatable packer was installed on drill pipe and set near the base of the FRP tubing
- 2. Steel tubing (acid line) was then installed inside the drill pipe to 1,035 feet bgl; immediately above the uppermost permeable interval (determination based on XY caliper and flowmeter logging).
- 3. Freshwater was then pumped through the drill pipe for approximately 15 minutes. A 31.5% hydrochloric acid solution then was pumped through the acid line while continuing to pump freshwater through the drill pipe at an approximate ratio of 1 to 1 (acid to freshwater). During acid pumping, wellhead pressures were continuously monitored.
- 4. After injecting approximately 2,500 gallons of acid, the acid line was flushed with freshwater, and the well was then shut in for 1 hour.
- 5. After shutting in the well for 1 hour, freshwater flow was reestablished in the drill pipe, and acid was again injected through the acid line at a 1 to 1 ratio. Another 2,500 gallons of acid was injected for a total acid volume of 5,000 gallons.
- 6. The acid line was again flushed with freshwater and the well was shut in overnight. Wellhead pressures were monitored for several hours after shutting in the well.
- 7. The following day, the Contractor removed the spent acid from the well. The spent acid was neutralized to a pH of 7 prior to discharge.

After removing gravel inside the FRP tubing and open hole in SGF-2, the Contractor performed several hours of airlift development. Following development, a specific capacity test was performed resulting in a specific capacity of 32 gpm/ft. Although the specific capacity was considerably greater in SGF-2 compared to SGF-1 (13.4 gpm/ft), the City requested that acidization be performed in an effort to achieve the highest performance possible in the production interval. The same acid procedure was performed in SGF-2 as was performed in SGF-1. The acid line in SGF-2 was installed to 1,064 feet bgl.

Floridan Test Wells SGF-1 and SGF-2, City of Sunrise Sawgrass Utility Complex

5.4.3 Development

After acidization, the Contractor developed the production interval of both wells. Initial development consisted of airlifting. Airlift development was performed in both wells for approximately two days. Following airlifting, the Contractor installed a submersible pump and resumed developing by pump surging. During pump development, sand content was measured on multiple occasions each day using a Rossum sand tester. Pump development was considered complete when sand content was at or below 1 part per million (ppm) at the approximate design rate (approximately 1,400 gpm). Pump surging was performed in SGF-1 for approximately 13 days and in SGF-2 for approximately 2 days.

5.4.4 Step Rate Pump Testing

After development was considered complete, a step rate pump test was performed for each well. The steprate test in SGF-1 was performed on November 20, 2012, and the step-rate test in SGF-2 was performed on March 18, 2013. Summary tables and charts of data collected during step rate testing in both wells are provided in **Appendix E**.

SGF-1 Step Rate Test

The step rate test in SGF-1 consisted of 4 steps of increased pumping at average rates of 845 gpm (61% of design rate), 1,114 gpm (80%), 1,399 (101%) and 1,725 (124%). Each step was pumped at a nearly constant rate for more than 1 hour. Prior to performing the test, the Contractor installed a transducer in the well to monitor water levels. During testing, sand content was continuously monitored. With the exception of the highest pumping rate (1,710 gpm), sand content remained below the specified limit of 1 ppm. Near the end of each step, a water quality sample was collected for field analysis of conductivity, temperature, pH, hydrogen sulfide, chloride and turbidity.

Silt density index (SDI) testing also was performed at the end of each step. SDI is a measure for the fouling capacity of water in reverse osmosis systems. The test measures the rate at which a 0.45-micrometre filter is plugged when subjected to a constant water pressure of 30 psi. Specifications require that SDI shall not exceed a value of 3 any time after 20-minutes of pumping. The maximum SDI was observed at the highest flow rate with a value of 1.6. At the end of the test, pumping was terminated and the recovery portion of the test began. During recovery water levels were measured to observe water levels returning to near static conditions.

SGF-2 Step Rate Test

Step rate testing in SGF-2 was performed using the same procedures as the test performed in SGF-1. The average pumping rates for the SGF-2 test were: 852 gpm (61% of design rate), 1,095 gpm (79%), 1,440

Floridan Test Wells SGF-1 and SGF-2, City of Sunrise Sawgrass Utility Complex

(104%) and 1,742 gpm (126%). Sand content remained below 1 ppm with the greatest sand content observed at the highest pump rate (1,742 gpm) at 0.95 ppm. SDI results show a downward trend as the pumping rates increased from a value of 5.5 to a value of 1.9. Decreasing SDI values with increasing pumping rates and increasing sand content is counterintuitive. Nevertheless, because SDI values were below specified limits at the pumping rates above the design rate of 2 MGD (1,388 gpm), the test was deemed successful.

5.4.5 Constant Rate Pump Testing

Constant rate pump testing was completed with several broad objectives; to determine the hydraulic performance of each well; to determine the combined well interference effects so that combined pumping rates and pump setting depths could be recommended; to determine local aquifer parameters that could in the future be used to determine the viability and design of a Floridan Aquifer well field with multiple production wells.

Three tests were completed and are summarized below. Constant rate tests with just one well pumping were initially performed for each well. These tests were performed following step rate testing. Water levels were monitored for several days following step rate testing to allow the water levels to recover before performing the constant rate tests for approximately 72 hours in SGF-1 and SGF-2. The pump test for SGF-1 was conducted between November 26, 2012 and November 29, 2012, and in SGF-2 between March 25, 2013 and March 28, 2013. After performing the constant rate test in SGF-2, water levels again were allowed to recover. A third pump test was then performed by simultaneously pumping both SGF-1 and SGF-2. The combined constant rate test was conducted between April 2, 2013 and April 5, 2013. Summary tables and charts of data collected during constant rate pump testing are provided in **Appendix E**.

SGF-1 Constant Rate Test

The constant rate pump test in SGF-1 was performed for approximately 73 hours at an average rate of 1,450 gpm. Water levels in SGF-1 (pumped well) and SGF-2 (observation well) were measured using a water level transducer in each well. It should be noted that the Contractor was performing pilot hole drilling in SGF-2 prior to performing step rate and constant rate pump testing in SGF-1. The Contractor extended the pilot hole in SGF-2 to 1,150 feet bgl by November 19, 2012. The drill bit was then removed from the well and water levels were monitored during the entire background, pumping and recovery portions of both the step rate test and constant rate performed in SGF-1.

The static depth to water at SGF-1 and SGF-2 at the start of the test was 40.8 and 43.3 feet above ground level (agl), respectively. The maximum depth to water in SGF-1, measured at the end of the test, was 17.5 feet bgl (drawdown of 58.3 feet); in SGF-2, the maximum depth to water was measured at 25.8 feet agl (drawdown of 17.5 feet). It should be noted that water levels did not stabilize in SGF-1 or SGF-2 during the

Floridan Test Wells SGF-1 and SGF-2, City of Sunrise Sawgrass Utility Complex

entire duration of pumping. Just prior to shutting down the pump and beginning the recovery portion of the test, the Contractor collected a water quality sample for analysis of primary and secondary drinking water standards. After pumping, the water level in SGF-1 had recovered to nearly 1 foot of the original pre-test static level after approximately 4 days of recovery. The water level in SGF-2 recovered to approximately 1.5 feet of the original pre-test static level after approximately 4 days of recovery.

The overall specific capacity in SGF-1 was determined to be 24.9 gpm/ft (1,450 gpm/58.3 feet of drawdown). The transmissivity value can be estimated at 39,900 gpd/ft of drawdown using a method developed by Jacob (1946b). This is considered an apparent transmissivity near the well bore. Recovery test data were used for the calculation. The use of the recovery data is generally preferable because those data are less impacted by radial and convergent flow into the pumped well and by well inefficiencies. Using a method developed by Turcan (1963) for estimating the specific capacity of a partially penetrating well, transmissivity was estimated at 43,500 gpd/ft. This value may be more representative of the full aquifer thickness.

SGF-2 Constant Rate Test

The constant rate pump test in SGF-2 was performed for approximately 72 hours at an average rate of 1,450 gpm. Water levels in SGF-2 (pumped well) and SGF-1 (observation well) were measured using a water level transducer in each well. It should be noted that at the time of testing in SGF-2, SGF-1 was completed with an open hole between 1,006 and 1,127 feet bgl. It should also be noted that another well completed within the Floridan Aquifer was also monitored during the SGF-2 constant rate test and during the SGF-1 and SGF-2 combined pump test (discussed below). The well is referred to in this report as the "Melalueca Well". The Melalueca Well is located approximately 1.8 miles southeast of SGF-1 and 2.25 miles southeast of SGF-2. Water levels monitored in the Melalueca well during pump testing is included in Appendix E, Figure E-9.

The static depth to water at SGF-2 and SGF-1 at the start of the test was 40.2 and 37.6 feet agl, respectively. The maximum depth to water in SGF-2, measured at the end of the test, was 20.5 feet bgl (drawdown of 60.5 feet); in SGF-1, the maximum depth to water was measured at 20.5 feet agl (drawdown of 17.1 feet). As with the test performed in SGF-1, water levels did not stabilize in either well during the entire duration of pumping. Just prior to shutting down the pump and beginning the recovery portion of the test, the Contractor collected a water quality sample for analysis of primary and secondary drinking water standards. After pumping, the water level in SGF-2 had recovered to nearly 1 foot of the original pre-test static level after approximately 4.5 days of recovery. The water level in SGF-1 also recovery.

The overall specific capacity in SGF-2 was determined to be 24.0 gpm/ft (1,450 gpm/60.5 feet of drawdown). The transmissivity value can be estimated at 43,000 gpd/ft of drawdown using the Jacob method (1946b).

Floridan Test Wells SGF-1 and SGF-2, City of Sunrise Sawgrass Utility Complex

Recovery test data were used for the calculation. Using the Turcan method (1963), transmissivity was estimated at 42,000 gpd/ft.

SGF-1 and SGF-2 Combined Pump Test

Prior to step rate and constant rate testing in SGF-2, a submersible was installed in SGF-1. Following recovery from the SGF-2 constant rate test, the Contractor began pumping from both SGF-1 and SGF-2. The combined constant rate test was performed for approximately 77 hours. It should be noted that the test was extended an additional 5 hours (beyond the typical 72 hour period) due to a temporary shut down of both pumps on April 3, 2013 for approximately 2.5 hours. The average pumping rate in SGF-1 was 1,418 gpm with fluctuations in rates ranging between 1,345 gpm and 1,537 gpm. The average pumping rate in SGF-2 was 1,436 gpm with fluctuations in rates ranging between 1,415 gpm and 1,479 gpm. The variable pump rates were primarily caused by the fluctuating head pressures in the discharge piping. The discharge from SGF-1 was combined with the discharge from SGF-2 several feet downstream of SGF-1.

The static depth to water at SGF-1 and SGF-2 at the start of the test was 36.7 and 39.2 feet agl, respectively. The maximum depth to water in SGF-1, measured at the end of the test, was 33.6 feet bgl (drawdown of 70.4 feet); in SGF-2, the maximum depth to water was measured at 31.4 feet bgl (drawdown of 70.4 feet). The overall specific capacity in SGF-1 was determined to be 20.2 gpm/ft (1,418 gpm/70.4 feet of drawdown). The overall specific capacity in SGF-2 was determined to be 20.4 gpm/ft (1,436 gpm/70.4 feet of drawdown). In general specific capacities of the wells show a decrease of approximately 4 gpm/ft when pumping both wells compared to pumping only one well at similar pump rates.

A projected pumping water level has been predicted for both SGF-1 and SGF-2. Because wells typically decrease in efficiency over time and pumping water levels did not stabilize during the constant rate tests, a 20% decline in the calculated specific capacity (based on the combined constant rate test) with both wells operating at the design rate of 2 MGD has been assumed (from 20.2 gpm/ft to 16.2 gpm/ft). Water level recovery data collected after each constant rate test show that several days of non-pumping conditions are required for water levels to recover to near static levels. Because of the slow recovery after pumping, an additional 5 feet of water level drawdown is assumed (noted below as local interference). We also assumed that water levels may drop due to seasonal decline, but it was considered unlikely the water level will drop by more than 3 feet. Based on assumptions noted above and using a static water level of 40 feet above ground level (approximate static water level in SGF-1 prior to the SGF-1 constant rate test), the pumping water level in SGF-1 and SGF-2 at the design pump rate of 2 MGD can be predicted as:

- Static depth to water: 40 feet agl
- Specific Capacity (assuming 20% decline): 16.2 gpm/ft

Floridan Test Wells SGF-1 and SGF-2, City of Sunrise Sawgrass Utility Complex

- Stabilized Drawdown (based on a specific capacity of 16.2 gpm/ft): 86 feet
- Local Interference: 5 feet
- Seasonal Decline: 3 feet
- Total depth to water: 54 feet bgl

5.4.6 Cement Bond Logging

During the early stages of construction at SGF-1 (approximately June 2012), the City requested for the Engineer to investigate the feasibility of converting the test wells to ASR wells in the future. ASR wells are classified as Class V injection wells and are regulated under FDEP UIC. FDEP was contacted to determine what testing would be required during construction beyond what was already specified. FDEP required that cement bond logging (CBL) be performed in the final FRP tubing to provide further evidence that the wells possess mechanical integrity.

As briefly discussed in Section 5.4.1 above, background CBLs in SGF-1 and SGF-2 were performed prior to cementing the FRP tubing to ground level. The purpose of the background CBLs is to calibrate the CBL tool to the free pipe signal of the un-cemented tubing. The background CBL was performed in SGF-1 on September 27, 2012 and in SGF-2 on January 24, 2013. The final CBL of the cemented FRP was performed in SGF-1 on December 3, 2012 and in SGF-2 on April 17, 2013. CBLs typically are performed in steel casing to demonstrate the presence of cement behind the casing and that the bond between the casing and cement and between the cement and formation are established. Due to the large diameter (16-inch I.D.) and makeup (fiberglass reinforced plastic), it is very difficult to determine the quality of the cement bond around the tubing. However, the signal amplitudes in the un-cemented CBL logs for both wells are consistently higher the amplitudes observed in the post-cement CBL logs. This demonstrates that cement is present around the FRP tubing. Hardcopies of the CBLs are provided with this report under separate cover.

5.4.7 Final Video Survey

The final video inspection in SGF-1 was performed on December 3, 2012. The video showed the FRP tubing in good condition and the base of the tubing was observed at 1,006 feet bgl. The video also showed that the open hole section was filled with sediment up to 1,106 feet bgl. The Contractor was instructed to clean out the bottom of the borehole to the original open hole depth of 1,127 feet bgl.

The final video inspection in SGF-2 was performed on April 11, 2013. The video showed the FRP tubing in good condition and the base of the tubing was observed at 1,014 feet bgl. The video also showed that the

Floridan Test Wells SGF-1 and SGF-2, City of Sunrise Sawgrass Utility Complex

open hole section was filled to 1,136 feet bgl. The Contractor was instructed to clean out the bottom of the borehole to the original open hole depth of 1,150 feet bgl.

6. Summary

Two Floridan Aquifer test wells, SGF-1 and SGF-2 were successfully constructed and tested for the City of Sunrise near the Sawgrass Utility Complex. The Surficial Aquifer and Hawthorn Group formation are isolated from the Upper Floridan Aquifer production with 36-inch O.D. casing (installed to the base of Surficial Aquifer) and 28-inch O.D. casing (installed near the base of the Hawthorn Group).

Groundwaters within the Upper Floridan Aquifer between approximately 1,000 feet and 1,863 feet bgl can be separated into three general intervals based on salinity. Between approximately 1,000 feet and 1,155 feet bgl, the formation observed in both wells appear to possess groundwaters with acceptable TDS concentrations (under 6,000 mg/L). This interval is referred to as the Upper "Freshwater" Zone in this report. Below 1,155 feet bgl, the salinity of the formation waters increase rapidly, with salinities as measured by TDS exceeding 10,000 mg/L between approximately 1,450 feet and 1,580 feet bgl, beyond the TDS concentrations within USDW limits (10,000 mgl). Below approximately 1,580 feet bgl in SGF-1 and below 1,610 feet bgl in SGF-2, a reversal in salinity trends occur and a lower "Freshwater" zone is identified with the formation waters becoming fresher. One exception was seen in SGF-2 where a permeable zone of more brackish water is observed near 1,700 feet bgl. Based on the construction and testing of Class I injection wells in the Sawgrass Utility Complex, formation waters again become highly saline with the lowermost USDW base identified near 1,940 feet bgl.

The intent of the original well design was to complete the open hole intervals within the Lower "Freshwater" Zone. However, it was ultimately considered that the permeability within the thin freshwater lens referred to in this report as the Lower "Freshwater" Zone was too low to be considered a viable production interval. Due in part to the low permeability, there was also concern that vertical migration of more saline groundwaters from either above or below this zone would result in increased salinities that could permanently impact this production interval.

The production intervals for both SGF-1 and SGF-2 were completed within the Upper "Freshwater" Zone. Although this zone possesses greater permeability than the Lower "Freshwater" Zone, pump tests performed in both wells show that multiple days are required for water levels to recover to near static conditions after pumping. This response indicates a local depletion in aquifer storage during testing, and the need for the wells to capture groundwater from a much greater radial distance in order to sustain the withdrawals. If the test wells are placed into service, it is recommended that water levels are monitored carefully to check for declines over time that may indicate depletion in aquifer storage. The operation of both wells at their design rate of 2 MGD should be possible. However the more conservative approach would be

Floridan Test Wells SGF-1 and SGF-2, City of Sunrise Sawgrass Utility Complex

to stagger the operation of the wells by pumping only one well at a time. Following these recommendations should reduce the potential for declining water levels and a likely reduction in well yield over time.

Electronic files of data collected during construction and testing of SGF-1 and SGF-2 and other pertinent information are included on a compact disc (CD) in **Appendix F**.

Tables

	Test Well SGF-1						
Week #	Date	Tir	ne	Description			
	0/00/10	from	to				
	3/30/12			Notice of Commencement issued for March 30, 2012			
1 thru 6	4/2/12			Begin preparing and mobilizing SGF-1 site			
	5/3/12			Install 48-Inch outside diamter (O.D.), 0.375-inch wall thickness pit casing to 41 feet below ground level (bgi [ground level is top of roadway])			
	5/11/12			Mobilization complete for SGF-1			
	5/14/12			Drill out cement plug at base of pit casing using 46-inch bit			
	5/15/12		19:00	Begin drilling pilot hole from base of pit casing using 10-inch bit; extend pilot hole to 62 feet bgl			
7	5/16/12	7:00	19:00	Extend pilot hole from 62 feet to 156 feet bgl			
	5/17/12	7:00	14:20	Extend pilot hole from 156 feet to total depth of 225 feet bgl			
	5/18/12	7:00	14:50	Perform wiper trip and then perform XY caliper, gamma-ray and dual induction logging to 225 feet bgl			
	5/21/12			Begin reaming from base of pit casing using 46-inch bit; extend reamed borehole to 48 feet bgl			
	5/22/12			Extend reamed borehole to 59 feet bgl			
0	5/23/12			Extend reamed borehole to 77 feet bgl			
0	5/24/12			Extend reamed borehole to 180 feet bgl			
	5/25/12			Extend reamed borehole to total depth of 217 feet bgl; clean and circulate borehole			
	5/28/12			No onsite work performed (Memorial Day)			
	5/29/12	10:00	14:15	Perform wiper trip and then perform XY caliper and gamma-ray logging to 229 feet bgl (bottom of stinger bit ~12 feet below 46-inch bit)			
	5/30/12	10:25	16:00	Install 36-inch O.D., 0.375-inch wall thickness surface casing to 215 feet bgl			
9	5/30/12	17:40	18:34	Perform pressure grout (STAGE #1); pump 65 barrels of neat cement			
	5/31/12	8:30	9:55	Perform cement-top temperature log and then tag top of cement after STAGE #1 at 157 feet bgl			
	0/01/12	13:52	15:17	Perform tremmie grout (STAGE #2); pump 116 barrels of neat cement; cement returns observed at surface			
	6/1/12			Performed site maintenance and repairs			
	6/4/12			Begin drilling cement plug inside 36-inch O.D. casing using 30-inch bit			
10	6/5/12	7:00	23:59	Drill to top of previous pilot hole (225 feet bgl) using 30-inch bit. Begin drilling pilot hole from 225 feet bgl using 12-inch bit; extend pilot hole to approximately 342 feet bgl. Begin working 24 hour work schedule (Day shift and Night Shift)			
	6/6/12	0:00	23:59	Extend pilot hole to 728 feet bgl			
	6/7/12	0:00	21:00	Extend pilot hole to 1,020 feet bgl; Note: Contractor was directed by Engineer to drill pilot hole an additional 20 feet to 1,020 feet bgl			
	6/8/12	10:00	13:30	Perform XY caliper, gamma-ray, dual induction, spontaneous potential and sonic logging			

Test Well SGF-1					
Date	Time		Description		
Duit	from	to	Becchipiton		
6/12/12		20:30	Begin reaming from base of 36-inch O.D. surface casing using 34-inch bit; extend reamed borehole to 375 feet bgl		
6/12/12	20:30		Make repairs (replace swivel): resume drilling at 375 feet bal		
6/19/12		3:00			
6/19/12	3:00	23:59	Extend reamed hole to 656 feet bgl		
6/20/12	0:00	23:59	Extend reamed hole to approximately 799 feet bgl		
6/21/12	0:00	23:59	Extend reamed hole to 921 feet bgl		
6/22/12	0:00	19:00	Extend reamed hole to 975 feet bgl		
6/25/12		20:30	Extend reamed hole to 986 feet bgl		
6/26/12	40.00	18:30	Extend reamed hole to a total depth of 1,004 feet bgl		
0/07/40	19:00	20:50	Perform XY caliper and gamma-ray logging		
0/27/12	11.00	7.20	Complete installation of 28 inch O.D. cooling to 1,000 foot bal		
6/28/12	10.20	11.20	Derform pressure grout (STAGE #1): pump 101 barrels of neat coment		
0/20/12	21.45	23.35	Perform cement-top temperature log and then tag top of cement after Stage #1 at 738 feet bol		
	23:45	1:30	Perform tremmie grout (STAGE #2): nump 121 barrels of cement with 6% bentonite		
6/29/12	6:00	12:55	Perform cement-top temperature log and then tag top of cement after Stage #2 at 255 feet bgl		
	16:40	17:50	Perform tremmie grout (STAGE #3); pump 101 barrels of cement with 6% bentonite, cement returns observed at surface		
7/2/12			Drill out cement plug at base of 28-inch casing; begin converting from mud-rotary drilling to reverse-air drilling. Road cut and pipe installation		
7/6/12			across International Parkway performed on 7/6/12.		
7/9/12			Continue converting to reverse-air drilling and installing temporary discharge piping. Road cut and pipe installation across NW 8th Street		
7/13/12			performed on 7/10/12.		
7/16/12			Continue converting to reverse air drilling and installing temperary discharge nining		
7/20/12			Continue converting to reverse-air unning and instaining temporary discharge piping.		
7/23/12			Continue converting to reverse-air drilling and installing temporary discharge piping. Road cuts and pipe installation within WWTF (2 total)		
7/27/12			performed on 7/25/12.		
7/30/12			Install 10-inch bit to base of 28-inch casing and clean out remaining drilling mud		
7/31/12			Continue cleaning borehole		
8/1/12			Continue cleaning borehole: collect lab samples of circulation fluid for TSS to correlate turbidity with TSS		
8/2/12			Begin drilling pilot hole at 1.010 feet bol using 10-inch bit below 28-inch casing (set at 1.000 feet bol). Extend pilot hole to 1.053 ft bol		
8/3/12			Extend pilot hole to 1.123 feet bal		
	Date 6/12/12 6/19/12 6/19/12 6/20/12 6/20/12 6/22/12 6/25/12 6/26/12 6/26/12 6/28/12 6/28/12 7/2/12 7/6/12 7/9/12 7/16/12 7/20/12 7/20/12 7/23/12 7/27/12 7/30/12 7/31/12 8/1/12 8/3/12	Tin from 6/12/12 20:30 6/12/12 20:30 6/19/12 3:00 6/19/12 3:00 6/20/12 0:00 6/22/12 0:00 6/22/12 0:00 6/25/12 10:00 6/26/12 10:00 6/26/12 10:20 6/26/12 10:20 6/27/12 10:20 6/28/12 10:20 6/28/12 6:00 6/28/12 6:00 7/16/12 7 7/2/12 1 7/2/12 1 7/20/12 1 7/23/12 1 7/23/12 1 7/30/12 1 7/30/12 1 8/1/12 1 8/2/12 1	Image Image from to 6/12/12 20:30 6/12/12 20:30 6/12/12 20:30 6/19/12 20:30 6/19/12 3:00 6/19/12 3:00 6/19/12 3:00 6/20/12 0:00 23:59 6/21/12 0:00 19:00 6/22/12 0:00 19:00 6/26/12 10:00 20:50 6/26/12 11:00 11:55 6/26/12 11:00 11:55 6/27/12 11:00 11:55 6/28/12 10:20 11:55 6/28/12 10:20 11:55 6/29/12 10:20 12:55 16:40 17:50 7/2/12 2 1 7/2/12 1 1 7/16/12 1 1 7/16/12 1 1 7/20/12 1 1 7/20/12 1 1		

	Test Well SGF-1						
Week #	Date	Tir	ne	Description			
		from	to	2000.1p.1011			
	8/6/12			Extend pilot hole to 1,248 feet bgl			
	8/7/12			Extend pilot hole to 1,340 feet bgl			
19	8/8/12			Extend pilot hole to 1,465 feet bgl			
	8/9/12			Extend pilot hole to 1,618 feet bgl			
	8/10/12			Extend pilot hole to 1,774 feet bgl			
	8/13/12			Extend pilot hole to total depth of 1,800 feet bgl; Perform wiper trip and clean borehole			
	8/14/12			Performed site work at SGF-1 & SGF-2; allowed well to establish static conditions prior to geophysical logging			
20	8/15/12			Perform suite of static & dynamic geophysical logs from base of 28-inch casing to 1,800 feet bgl			
	8/16/12			Installing temporary pipeline from SGF-2 to SGF-1			
	8/17/12			Continue installing temporary pipeline from SGF-2 to SGF-1			
	8/20/12		18:40	Install single packer to 1,603 ft bgl (centerline of packer); and begin development; PACKER TEST #1 (1,603 - 1,800 ft bgl)			
			20:55	Complete development and begin recovery			
	0/01/10	7:37	11:39	Perform pumping portion of packer test #1 at a stabilized flow rate of 221 gpm			
	8/21/12	11:39		Turn off pump and begin recovery; Note: Between 15:30 and 16:27, Pump was removed from well to create a better seal at wellhead			
21			7:15	Stop recording recovery data for Packer Test #1			
21	8/22/12		14:14	Move single packer to 1,153 feet bgl and begin development by allowing annulus to flow; PACKER TEST #2 (1,000 - 1,153 feet bgl)			
			20:50	Complete development and begin recovery			
	8/23/12	7:10		Perform numping partian of packer test #2 at a stabilized flow rate of 470 gpm			
	8/24/12		17:55	r enorm pumping portion of packer test #2 at a stabilized now rate of 47.9 gpm			
	8/24/12	17:55		Shut annulus valve and allow water levels to recover for the remainder of the week			
	8/28/12		6:58	Stop recording recovery data for Packer Test #2			
	8/29/12		16:54	Install straddle packer to between 1,528 and 1,569 ft bgl; and begin pump portion of test (no development was performed) at a stabilized rate of 203 gpm; PACKER TEST #3A (1,528 - 1,569 ft bgl).			
22		22:07		Turn off pump and begin recovery			
	8/31/12		6:06	End recovery for Packer Test 3A and begin pumping portion of next packer test by allowing the annulus to flow at a stabilized flow rate of 920 gpm; PACKER TEST #3B (1,000 - 1,528 ft bgl)			
			12:08	Shut annulus valve and begin recovery. Record recovery data through the weekend			
	9/4/12			Stop recording recovery for Packer Test #3B			
23	9/5/12						
	9/6/12			USGS onsite to perform logging			
	9/11/12			Contractor provided lab results for all packer tests, Engineer directed Contractor to backfill the pilot hole			
24	9/13/12			Suppress water level with salt and installed 4.5 yd ³ of gravel between 1,587 and 1,800 feet bgl			
	9/14/12			Pumped 60 barrels in pilot hole in 2 cement stages. Cemented pilot hole from 1,587 to 1,259 feet bgl			

	Test Well SGF-1					
Week #	Date	Tir	ne	Description		
	Duto	from	to	Description		
	9/17/12			Pumped an additional 26 barrels in pilot hole in 2 cement stages (Stages 3 and 4). Cemented pilot hole from 1,259 to 1,121 feet		
	9/18/12			Begin installing 26-inch bit and drill pipe		
05	9/19/12	11:00	18:45	Install 26-inch bit and drill pipe to 1,000 feet bgl and begin reaming; extend nominal 28-inch reamed hole to 1,030 feet bgl		
25	9/20/12	7:00	10:20	Extend reamed hole to 1,055. Discontinued drilling due to high turbidity readings of discharge fluids. Begin converting from open-circulation discharge to closed circulation.		
		17:16	19:00	Resume drilling; extend reamed hole to 1,070 feet bgl		
	9/21/12	7:00	16:30	Extend reamed hole to total depth of 1,127 feet bgl		
	9/24/12			Suppress water level with salt and remove 26-inch bit from well. Perform maintenance on rig		
	0/25/12			Perform XY caliper and gamma-ray logging		
	9/25/12			Install 10 yd ³ of gravel in borehole		
	9/26/12			Install 16-inch ID FRP tubing to 1,006 feet bgl		
26				Install 12 yd ³ of gravel through FRP tubing to 1,006 feet bgl (gravel tag outside of FRP tubing)		
	9/27/12		16:00	Perform tremmie cement grout (STAGE #1); pump 20 barrels of neat cement		
	9/27/12		17:45	Perform background portion of cement-bond log (log between 675 feet and 880 feet bgl); top of gravel inside FRP tubing was tagged by the CBL tool at 880 feet bgl		
	9/28/12	7:15	8:00	Tag top of cement at 982 feet bgl. Perform cementing (STAGE #2). Pump 81 barrels of neat cement.		
	10/1/12	7:45	10:00	Tag top of cement at 830 feet bgl. Perform cementing (STAGE #3). Pump 125 barrels of 6% bentonite cement		
	10/2/12	8:00	8:55	Tag top of cement at 504 feet bgl. Perform cementing (STAGE #4). Pump 126 barrels of 6% bentonite cement		
27	10/2/12	17:00		Tag top of cement at 201 feet bgl. Perform cementing (Stage #5). Pump 83 barrels of 6% bentonite cement		
21	10/3/12			Perform successful plumbness and alignment test		
	10/4/12			Install bit in FRP and begin removing gravel from tubing and open hole		
	10/5/12			Continue removing gravel from open hole		
	10/8/12			Continue removing gravel from open hole		
28	10/9/12			Complete removing gravel to 1,127 feet bgl		
20	10/10/12			Perform brief specific capacity test; Flow Rate: 443 gpm; Sp. Capacity: 13.4 gpm/ft		
	10/11/12			Install inflatable packer in FRP tubing to 962 feet bgl in preparation for acidizing well		
	10/15/12			Install acid tubing through drill pipe and packer down to 1,035 feet bgl		
29	10/18/12	11:00	14:00	Perform acidization. Pump 5,000 gallons of HCL in two pump stages (2,500 gallons each stage)		
	10/19/12			Pump out spent acid from well		
	10/22/12			Begin airlift development		
	10/23/12			Continue airlift development. Airlift development terminated at end of work day after airlifting for 14 hours		
-30	10/24/12			Pagin installing submarsible nump in well and reconfiguring discharge piping in proparation for nump development		
	10/25/12			begin installing submetsible pump in well and reconfiguring discharge piping in preparation for pump development		
	10/26/12					

	Test Well SGF-1						
Week #	Date	Tir	ne	Description			
	Date	from	to	Description			
	10/29/12			Begin pump development			
	10/30/12	7:00	19:00	Continue pump development			
31	10/31/12	7:00	19:00	Continue pump development			
	11/1/12	7:00	19:00	Continue pump development			
	11/2/12	7:00	17:00	Continue pump development			
	11/5/12	7:00	19:00	Continue pump development			
22	11/6/12	7:00	19:00	Continue pump development; temporarily discontinue development until 28-inch OD casing is set in SGF-2			
32	11/7/12						
	11/9/12			no onsite work performed			
	11/12/12		19:00	Resume pump development			
	11/13/12	7:00	19:00	Continue pump development			
33	11/14/12	7:00	14:00	Continue pump development			
	11/15/12	7:00	19:00	Continue pump development			
	11/16/12	7:00	13:00	Continue pump development			
	11/19/12			Complete pump development			
3/	11/20/12			Perform step rate test (845 gpm, 1,114 gpm, 1,399 gpm, 1,725 gpm)			
54	11/21/12			Monitor water levels following step rate test			
	11/23/12						
	11/26/12	8:54		Begin 72-hour constant-rate test (1,450 gpm)			
	11/27/12			Continue 72-hour constant-rate test			
35	11/28/12			Continue 72-hour constant-rate test			
	11/29/12		9:00	Complete 72-hour constant-rate test; begin recovery			
	11/30/12			Continue monitoring recovery water level data			
	12/3/12		7:14	Complete collecting recovery water level data			
36	10/1/10			Remove submersible pump from well and perform XY caliper, gamma-ray, video and cement-bond logging			
	12/4/12			No construction related work performed onsite			
	12/1/12			Insert drill hit and remove approximately 20 feet of eand at the bettern of the berebele			
27	12/11/12						
51	12/12/12			Install temporary wellhead, begin rigging down, No other construction related work performed onsite			
	12/17/12						
38 thru 42	1/17/12			No construction related work performed onsite			
	1/18/12			Remove temporary wellhead and cut off casings in preparation for installing permanent wellhead			
	1/21/13			Install FRP to stainless-steel transition flange			
43	1/24/13			Install stainless steel wellhead			

	Test Well SGF-1						
Week #	Date	Time		Time	ne	Description	
	Date	from	to	Description			
	1/28/13			Reinstall 48-inch casing to just below the finished grade elevation			
44	1/29/13			No construction related work performed onsite			
	2/1/13						
45	2/4/13			No construction related work performed onsite			
	2/8/13						
	2/12/13			Install excavatable fill in the annulus between the 48-inch casing and the final casing			
46	2/13/13			No construction related work performed onsite			
	2/15/13						
47 & 48	2/18/13			No construction related work performed onsite			
	3/1/13						
49	3/4/13			Demobilize settling tanks and clean site			
	3/8/13						
50	3/11/13			Install submersible pump in well			
50	3/12/13			Install transducer and begin collecting background data for nump testing at SGE 2			
	3/13/13			Install transducer and begin collecting background data for pump testing at SGF-2			
51	3/20/13			Collect water level data during testing and recovery at SGF-2			
	3/25/13						
52	3/29/13			Collect water level data during testing and recovery at SGF-2			
	4/1/13			Continue monitoring recovery water level data			
	4/2/13	8:45		Begin 72 hour test, pumping both SGF-1 and SGF-2			
53	4/3/13			Contiue 72 hour test, pumping both wells			
	4/4/13			Continue 72 hour test, pumping both wells			
	4/5/13		14:05	Complete 72-hour test of both wells; begin recovery			
54	4/9/13		7:30	Complete collecting recovery water level data; begin removing pump from well			
57	4/29/13			Pour reinforced concrete pad around well			
				Test Well SGF-2			
---------	----------	-------	-------	---			
Week #	Date	Tir	ne	Description			
		from	to				
	8/24/12			Install 48-inch OD pit casing to 48 feet bgl			
	8/27/12			Mobilize and prepare SGF-2 site			
21 thru	9/24/12		10.00	Begin drilling pilot hole from hase of pit casing using 10-inch hit: extend pilot hole to 62 feet hal			
26	9/25/12	7:00	19.00	Extend pilot hole to 218 foot bal			
	9/20/12	7.00	19.00	Extend pilot hole to 2 to feet by			
	9/27/12	7:00					
	9/28/12			Begin reaming from base of pit casing using 46-inch bit; extend reamed borehole to 48 feet bgl			
	10/1/12	7:00	19:00	Extend reamed hole to 82 feet bgl			
	10/2/12	7:00	19:00	Extend reamed hole to 128 feet bgl			
27	10/3/12	7:00	19:00	Extend reamed hole to 158 feet bgl			
	10/4/12	7:00	19:00	Extend reamed hole to 217 feet bgl			
	10/5/12	7:00	19:00	Extend reamed hole to 228 feet bgl			
	10/8/12			Perform wiper trip and then perform XY caliper and gamma-ray logging to 226 feet bgl			
	10/0/12			Perform wiper trip and then install 36-inch O.D., 0.375-inch wall thickness surface casing to 225 feet bgl			
29	10/9/12	17:00	17:30	Perform pressure grout (STAGE #1); pump 58 barrels of neat cement			
28	10/10/12			Tag top of cement at 172 feet bgl. Perform cementing (STAGE #2); pump 101 barrels of neat cement			
	10/11/12			Tag top of cement at 40 feet bgl. Perform cementing (STAGE #3); pump 38 barrels of neat cement. Cement observed at surface.			
	10/12/12			Begin drilling cement plug inside 36-inch O.D. casing using 34-inch bit			
	10/15/12			Drill to 240 feet bgl using 34-inch bit. Begin drilling pilot hole from 240 feet bgl using 12-inch bit; extend pilot hole to approximately 350 feet			
				bgl.			
29	10/16/12	7:00	19:00	Extend pilot hole to 555 feet bgl			
	10/17/12	7:00	19:00	Extend pilot hole to 744 feet bgi			
	10/10/12	7.00	19.00	Extend pilot hole to 970 feet bgi			
	10/22/12			Extend pilot hole to 980 feet bal			
				Perform winer trip and then perform. XV caliper, gamma-ray, dual induction, spontaneous potential and sonic logging			
30	10/23/12			Tenomi wiper trip and then perioriti XT caliper, gamma-ray, dua induction, spontaneous potential and some logging			
	10/04/40	16:00	19:00	Begin reaming from base of 36-inch O.D. surface casing using 34-inch bit; extend reamed borehole to 244 feet bgl			
	10/24/12	7:00	19:00	Extend reamed borehole to 343 feet bgl			
	10/25/12	7:00	19:00				

				Test Well SGF-2
Week #	Date	Tir	ne	Description
		from	to	
	10/29/12	7:00	19:00	Extend reamed borehole to 492 feet bgl
	10/30/12	7:00	23:59	Test Weil SGF-2 Description 100 Extend reamed borehole to 590 feet bgl 353 Extend reamed borehole to 590 feet bgl 354 Extend reamed borehole to 746 feet bgl 355 Extend reamed borehole to 850 feet bgl 366 Extend reamed borehole to 830 feet bgl 376 Extend reamed borehole to 932 feet bgl 376 Extend reamed borehole to 932 feet bgl 376 Extend reamed borehole to 932 feet bgl 378 Extend reamed borehole to 932 feet bgl 378 Extend reamed borehole to 932 feet bgl 379 Perform XY caliper and gamma-ray logging 379 Begin installing 28-inch 0.D., 0.375-inch wall thickness, intermediate casing 370 Complete installation of 28-inch 0.D. 0.375-inch wall thickness, intermediate casing 370 Perform cement-top temperature log and then tag top of cement after Stage #1 at 665 feet bgl; Perform tremmie grout (STAGE #2); purp 86 barrels of neat cement 729 Perform cement-top temperature log and then tag top of cement after Stage #2 at 236 feet bgl; Perform tremmie grout (STAGE #3); purp 86 barrels of neat cement 729 Perform cement-top temperature log and then tag top of cement after Stage #2 at 236 feet bgl.
31	10/31/12	0:00	23:59	Extend reamed borehole to 746 feet bgl
	11/1/12	0:00	19:00	Extend reamed borehole to 850 feet bgl
	11/2/12			Perform onsite repairs/maintenance
	11/5/12	7:00		Extend reamed borehole to 932 feet bgl
	11/6/12		23:59	Extend reamed borehole to 995 feet bgl
	44/7/40	40.00	47.00	Extend reamed borenoie to total depth of 1,010 feet bgi
	11///12	10:30	17:30	Perform XY caliper and gamma-ray logging Perform XY caliper and gamma-ray logging
32		16.00	12.00	Complete installation of 28-inch Q.D., casing to 1,006 feet bal
	11/8/12	17.00	17:50	Perform pressure grout (STAGE #1): pump 86 barrels of peat cement
		17.00 17.00		Perform cement-top temperature log and then tag top of cement after Stage #1 at 665 feet bgl: Perform tremmie grout (STAGE #2): pump
	11/9/12	14:30	17:25	151 barrels of cement with 6% bentonite
	11/10/12	0.20	10.25	Perform cement-top temperature log and then tag top of cement after Stage #2 at 236 feet bgl; Perform tremmie grout (STAGE #3); pump
	11/10/12	9:30	10:35	102 barrels of cement with 6% bentonite; cement returns observed at surface
	11/13/12			Tag top of cement inside 28-inch casing at 1,002 feet bgl using 26-inch bit; begin removing drilling mud from inside casing and begin
22	11/14/12			converting to reverse-air drilling.
	11/15/12			Completed converting to reverse-air drilling; drill out cement plug using 26-inch bit to 1,010 feet bgl. Remove 26-inch bit from well.
	11/16/12			Install 10-inch bit to 1,010 feet bgl and begin pilot hole drilling; extend pilot hole to 1,052 feet bgl
	11/19/12			Extend pilot hole to 1,150 feet bgl. Pull 10-inch bit into 28-inch casing and install pressure transducer at well in preparation for step-rate test at SGE-1
34	11/20/12			
	11/23/12			Monitor water levels in SGF-2 for remainder of report week during pump testing at SGF-1
	11/26/12			
35	11/30/12			Monitor water levels in SGF-2 for entire report week during pump testing at SGF-1
	12/3/12	16:30	19:00	Reinstall 10-inch bit to base of pilot hole at 1,150 feet bgl. Extend pilot hole to 1,177 feet bgl
	12/4/12	7:00	19:00	Extend pilot hole to 1,332 feet bgl
20	12/5/12	7:00	19:00	Extend pilot hole to 1,364 feet bgl
30	12/6/12	7:00	19:00	Extend pilot hole to 1,487 feet bgl
	12/7/12	7:00	19:00	Extend pilot hole to 1,643 feet bgl
	12/8/12	7:00	19:00	Extend pilot hole to 1,734 feet bgl

				Test Well SGF-2								
Week #	Date	Tir	ne	Description								
	Date	from	to	Beschpiton								
	12/10/12	7:00	14:30	Extend pilot hole to 1,800 feet bgl; perform wiper trips.								
37	12/11/12			Performed site work; allowed well to establish static conditions prior to geophysical logging								
	12/12/12			Perform suite of static & dynamic geophysical logs from base of 28-inch casing to 1,800 feet bgl								
	12/14/12			Install single packer to 1,628 ft bgl (centerline of packer)								
	12/18/12	11:57	18:02	Perform pumping portion of packer test #1 at a stabilized flow rate of 235 gpm								
	12/10/12	18:02		Turn off pump and begin recovery								
38	12/19/12		9:35	Complete collecting recovery data								
	12/20/12			Perform onsite renairs/maintenance/cleanun								
	12/21/12			r enorm onsite repairs/maintenance/cleanup								
30	12/24/12			No construction related activity performed onsite								
39	12/28/12											
	12/31/12			No construction related activity performed onsite								
	1/1/13			The construction related activity performed onsite								
40	1/2/13			Contractor was directed to extend the pilot hole an additional 60 feet (to 1,860 feet bgl); Remove packer from borehole								
	1/3/13			Install 10-inch bit to base of pilot hole. Extend pilot hole to 1,863 feet bgl. Remove drill pipe and bit from well								
	1/4/13			Install single packer to 1,801 ft bgl (centerline of packer)								
	1/7/13	7:31	12:33	Perform pumping portion of packer test #2 at a stabilized flow rate of 166 gpm								
	1/7/15	12:33		Turn off pump and begin recovery								
	1/8/13		7:40	Complete collecting recovery data								
41	1/9/13		18:17	Remove packer from well. Install cement tubing to the base of pilot hole and pump 30 barrels of neat cement								
	1/10/13		10:23	Tag top of cement after Stage #1 at 1,707feet bgl. Perform cement stage #2, pump 40 barrels of neat cement								
	1/10/15		18:40	Tag top of cement after Stage #2 at 1,507 feet bgl. Perform cement stage #3, pump 40 barrels of neat cement								
	1/11/13		8:45	Tag top of cement after Stage #3 at 1,280 feet bgl. Perform cement stage #4, pump 19 barrels of neat cement								
	1/14/13		9:15	Tag top of cement after Stage #4 at 1,180 feet bgl. Perform cement stage #5, pump 5 barrels of neat cement								
	1/14/13		17:00	Tag top of cement after Stage #5 at 1,155 feet bgl.								
42	1/15/13			Install 26-inch bit and drill pipe to 1,010 feet bgl and begin reaming; extend nominal 28-inch reamed hole to 1,032 feet bgl								
	1/16/13			Extend reamed hole to 1,117 feet bgl								
	1/17/13			Extend reamed hole to a total depth of 1,150 feet bgl								

				Test Well SGF-2
Week #	Date	Tir	ne	Description
	Duio	from	to	Decemption
	1/21/13	8:13	8:36	Perform brief specific capacity test; Flow Rate: 870 gpm; Sp. Capacity: 24.9 gpm/ft
43	1/21/10	14:30	16:00	Perform XY caliper and gamma-ray logging
	1/22/13	8:10		Install 16-inch ID FRP tubing to 1,014 feet bgl; Begin installing gravel in FRP tubing
				Complete installation of gravel (approximately 648 ft3)
	1/23/13	11:30	12:10	Perform tremmie cement grout (STAGE #1); pump 8 barrels of neat cement
		16:50	17:30	Tag top of cement at 1,011 feet bgl. Perform cementing (STAGE #2). Pump 52 barrels of neat cement.
	1/04/12	8:45	9:15	Perform background portion of cement-bond log (log between 600 feet and 800 feet bgl); top of gravel inside FRP tubing was tagged by the CBL tool at 814 feet bgl
	1/24/15	9:50	10:38	Tag top of cement at 890 feet bgl. Perform cementing (STAGE #3). Pump 103 barrels of 6% bentonite cement.
		18:00	18:25	Tag top of cement at 669 feet bgl. Perform cementing (STAGE #4). Pump 29 barrels of 6% bentonite cement.
	1/25/13	11:40	13:13	Tag top of cement at 592 feet bgl. Perform cementing (STAGE #5). Pump 151 barrels of 6% bentonite cement.
	1/28/13			Tag top of cement at 281 feet bgl. Perform cementing (STAGE #6). Pump 111 barrels of 6% bentonite cement.
44	1/29/13			Perform successful plumbness and alignment test
	1/31/13			Begin removing gravel inside FRP tubing; remove gravel to 1,026 feet bgl
	2/1/13			Continue removing gravel; remove gravel to 1,095 feet bgl
	2/4/13			Continue drilling out gravel; remove gravel to 1,105 feet bgl
45	2/5/13			Complete drilling out gravel to 1,150 feet bgl
45	2/6/13			Perform approximately 4 hours of airlift development, perform specific capacity test (approximately 32 gpm/ft)
	2/7/13			Perform specific test, static WL: 40.45 ft agl, flow rate: 1,040 gpm, Sp Cap: 31.8 gpm/ft
46	2/11/13			No construction related activity performed ensite
40	2/15/13			no construction related activity performed onsite
	2/18/13			Install inflatable packer to 968 feet bgl and acid tubing to 1,064 feet bgl in preparation for acidizing the well
	2/19/13			Completed preparations for acidizing the well
47	2/20/13			Perform acidization. Pump 5,000 gallons of HCL in two pump stages (2,500 gallons each stage)
	2/21/13			Release pressure from well, deflate packer and remove acid tubing
	2/22/13			Remove packer and pump out spent acid; Begin airlift development (6 hours)
	2/25/13	9:30	11:30	Continue airlift development. Perform onsite maintenance and repairs
48	2/26/13	9:00	19:00	Continue airlift development
_	2/27/13			Perform brief specific capacity test; Flow Rate: 1,185 gpm; Sp. Capacity: 38.1 gpm/ft; Begin installing pump in preparation for pump development
40	3/4/13			No construction related activity performed ancite: Work performed at SCE 4 site
49	3/8/13			

Test Well SGF-2									
Week #	Date	Tir	ne	Description					
		from	to	•					
	3/11/13			Complete preparations for pump development					
50	3/13/13	7.00	10.00						
50	3/14/13	7:00	19:00	Begin pump development					
3/15/13 7:00 10:30 Complete pump development; Perform specific capacity test; Install transducer in preparation for step-rate testing				Complete pump development; Perform specific capacity test; Flow Rate: 1,257 gpm; Sp. Capacity: 37.4 gpm/ft					
				Install transducer in preparation for step-rate testing					
	3/18/13	8:22	12:48	Perform step rate test (852 gpm, 1,095 gpm, 1,440 gpm, 1,742 gpm)					
51	3/19/13			Collect background water level data prior to performing 72 hour constant rate test					
<u> </u>	3/22/13	11.52		Begin 72-hour constant-rate test (1.450 gpm)					
	3/26/12	11.52		Continue 72-hour test					
52	3/27/13			Continue 72-hour test					
	3/28/13		11:53	Complete 72-hour test; begin recovery					
	3/29/13		Continue monitoring recovery water level data						
	4/1/13			Continue monitoring recovery water level data					
	4/2/13	8:45		Begin 72 hour test, pumping both SGF-1 and SGF-2					
53	4/3/13			Contiue 72 hour test, pumping both wells					
	4/4/13			Continue 72 hour test, pumping both wells					
	4/5/13		14:05	Complete 72-hour test of both wells; begin recovery					
54	4/9/13		7:30	Complete collecting recovery water level data; begin removing pump from well					
54	4/11/13			Perform final video survey; bottom of borehole at 1,136 feet bgl					
55	4/15/13			Install drill bit and remove approximately 14 feet of sand from bottom of borehole					
55	4/17/13			Perform XY caliper, gamma-ray and final CBL log					
56 & 57	4/22/13			No construction related activity performed onsite					
50 Q 51	5/3/13								
	5/7/13			Remove temporary wellhead and cut off casings in preparation for installing permanent wellhead					
58	5/8/13			Install FRP to stainless-steel transition flange					
	5/10/13			Install stainless steel wellhead					
59	5/13/13			No construction related activity performed onsite					
	5/17/13								
60	5/20/13			Pour reinforced concrete pad around well on 5/20/13					
	5/24/13								

Table 2A.Summary of Inclination Survey Results, Sawgrass Test Well SGF-1City of Sunrise, Florida

Date	Inclination	Survey Result (degrees)									
	Survey Depth (feet)	Deviation Total	Deviation Change								
	10-inch Pi	ot Hole Bit									
5/16/2012	90	0.50	0.50								
5/17/2012	180	0.50	0.00								
46-inch Diameter Staged Drill Bit											
5/24/2012	96	0.40	0.40								
5/25/2012	188	0.50	0.10								
12-inch Pilot Hole Bit											
6/6/2012	187	0.50	0.50								
6/6/2012	281	0.50	0.00								
6/6/2012	373	0.50	0.00								
6/6/2012	466	0.45	0.05								
6/7/2012	561	0.30	0.15								
6/7/2012	654	0.50	0.20								
6/7/2012	748	0.50	0.00								
6/7/2012	842	0.50	0.00								
6/7/2012	936	0.30	0.20								
	34-inch Dian	neter Drill Bit									
6/12/2012	190	0.50	0.00								
6/12/2012	283	0.50	0.00								
6/12/2012	374	0.50	0.00								
6/19/2012	466	0.60	0.10								
6/19/2012	561	0.50	0.10								
6/20/2012	655	0.50	0.00								
6/20/2012	749	0.60	0.10								
6/21/2012	842	0.50	0.10								
6/22/2012	937	0.40	0.10								
	10-inch Pil	ot Hole Bit									
8/2/2012	1060	0.40	0.00								
8/6/2012	1120	0.45	0.05								
8/6/2012	1185	0.30	0.15								
8/6/2012	1247	0.50	0.20								
8/7/2012	1309	0.50	0.00								
8/8/2012	1372	0.50	0.00								
8/8/2012	1465	0.50	0.00								
8/9/2012	1559	0.50	0.00								
8/10/2012	1650	0.50	0.00								

Table 2B. Summary of Inclination Survey Results, Sawgrass Test Well SGF-2City of Sunrise, Florida

Date	Inclination	Survey Result (degrees)									
	Survey Depth (feet)	Deviation Total	Deviation Change								
	10-inch Pi	ot Hole Bit									
9/26/2012	90	0.40	0.40								
9/26/2012	180	0.30	0.10								
	46-inch Diamete	r Staged Drill Bit									
10/3/2012	90	0.30	0.30								
10/4/2012	180	0.35	0.05								
12-inch Pilot Hole Bit											
10/15/2012	270	0.30	0.30								
10/16/2012	360	0.35	0.05								
10/16/2012	450	0.40	0.05								
10/16/2012	540	0.40	0.00								
10/17/2012	630	0.35	0.05								
10/17/2012	720	0.10	0.25								
10/18/2012	810	0.20	0.10								
10/19/2012	900	0.30	0.10								
	34-inch Diameter Drill Bit										
10/24/2012	270	0.40	0.00								
10/29/2012	360	0.40	0.00								
10/29/2012	450	0.40	0.00								
10/30/2012	540	0.40	0.00								
10/31/2012	630	0.40	0.00								
10/31/2012	720	0.10	0.30								
11/1/2012	810	0.40	0.30								
11/5/2012	900	0.40	0.00								
11/7/2012	990	0.30	0.10								
	10-inch Pil	ot Hole Bit									
11/19/2012	1080	0.30	0.00								
12/4/2012	1170	0.30	0.00								
12/4/2012	1270	0.40	0.10								
12/6/2012	1350	0.50	0.10								
12/6/2012	1440	0.40	0.10								
12/7/2012	1530	0.50	0.10								
12/7/2012	1620	0.40	0.10								
12/8/2012	1710	0.40	0.00								
1/3/2013	1800	0.40	0.00								
	26-inch Dian	neter Drill Bit									
1/16/2013	1080	0.40	0.00								

	Casing String	Outside Diameter (inches)	Inside Diameter (inches)	Casing Depth (feet bgl)	Date	Cement Stage	Type of Cement	Cement Quantity (cubic feet)	Remarks
	Pit	48	47.25	41	5/3/2012	N/A	N/A	N/A	
	Curtooo	20	25.05	045	5/30/2012	1	Neat	365	Pressure grout. Tagged cement top at 157 feet bgl
<u>Т</u>	Sunace	30	35.25	215	5/31/2012	2	Neat	651	Tremied in place. Cement returns to surface.
SG					6/28/2012	1	Neat	567	Pressure grout. Tagged cement top at 738 feet bgl
Nell	Intermediate	28	27.25	1,000	6/28/2012	2	6% Bentonite	679	Tremied in place. Tagged cement top at 255 feet bpl.
est V					6/29/2012	3	6% Bentonite	567	Tremied in place. Cement returns to surface.
Τe					9/27/2012	1	Neat	112	Tremied in place. Tagged cement top at 982 feet bgl
	Final FRP				9/28/2012	2	Neat	455	Tremied in place. Tagged cement top at 830 feet bgl.
	Casing	17	16	1,006	10/1/2012	3	6% Bentonite	702	Tremied in place. Tagged cement top at 504 feet bgl.
					10/2/2012	4	6% Bentonite	707	Tremied in place. Tagged cement top at 201 feet bgl.
					10/2/2012	5	6% Bentonite	466	Tremied in place. Cement returns to surface.
							Total (cubic feet):	5,271	
	Casing String	Outside Diameter (inches)	Inside Diameter (inches)	Casing Depth (feet bpl)	Date	Cement Stage	Type of Cement	Cement Quantity (cubic	Remarks
	Pit	48	47.25	48	8/24/2012	N/A	N/A	N/A	
					10/9/2012	1	Neat	134	Pressure grout. Tagged cement top at 172 feet bgl
-2	Surface	36	35.25	226	10/10/2012	2	Neat	234	Tremied in place. Tagged cement top at 40 feet bgl.
õ					10/11/2012	3	Neat	88	Tremied in place. Cement returns to surface.
=					11/8/2012	1	Neat	199	Pressure grout. Tagged cement top at 665 feet bgl
Ne	Intermediate	28	27.25	1,006	11/9/2012	2	6% Bentonite	349	Tremied in place. Tagged cement top at 236 feet bpl.
st /					11/10/2012	3	6% Bentonite	236	Tremied in place. Cement returns to surface.
Г Ц					1/23/2013	1	Neat	19	Tremied in place. Tagged cement top at 1,011 feet bgl
-					1/23/2013	2	Neat	120	Tremied in place. Tagged cement top at 890 feet bgl.
	Final FRP	17	16	1.014	1/24/2013	3	6% Bentonite	238	Tremied in place. Tagged cement top at 669 feet bgl.
	Casing		10	1,011	1/24/2013	4	6% Bentonite	67	Tremied in place. Tagged cement top at 592 feet bgl.
	-				1/25/2013	5	6% Bentonite	349	Tremied in place. Tagged cement top at 281 feet bgl.

Total (cubic feet):

2,290

Table 3. Cementing Summary, Sawgrass Test Wells SGF-1 and SGF-2, City of Sunrise, Florida

"N/A" denotes "data not available"

"feet bgl" denotes feet below ground level.

Neat cement refers to Portland Type I/II cement with no additives

6% bentonite refers to Portland Type I/II cement with a 6% (by weight) bentonite additive

Table 4. Summary of Geophysical Logs Performed in SGF-1 and SGF-2,City of Sunrise, Sawgrass Floridan Test Wells

Date	Geophysical	Casing Depth	Open Hole Depth	Casing/Drilled Hole						
Performed	Survey Performed	(feet bgl)	(feet bgl)	Diameter (inches)						
Test Well SGF-1										
05/18/12	X-Y Caliper, Gamma Ray	40	226	48 / 10						
05/18/12	Dual Induction LL3 with SP	40	226	48 / 10						
05/29/12	X-Y Caliper, Gamma Ray	40	229	48 / 48						
05/31/12	Cement Top Temperature	215	229	36 / 48						
06/08/12	Borehole Compensated Sonic w/VDL	215	1,018	36 / 12						
06/08/12	X-Y Caliper, Gamma Ray	215	1,018	36 / 12						
06/08/12	Dual Induction LL3 with SP	215	1,018	36 / 12						
06/25/12	X-Y Caliper, Gamma Ray	215	1,004	36 / 36						
06/28/12	Cement Top Temperature	1000	988	28 / 10						
06/29/12	Cement Top Temperature	1000	988	28 / 10						
08/15/12	Borehole Compensated Sonic w/VDL	1000	1,800	28 / 10						
08/15/12	X-Y Caliper, Gamma Ray	1000	1,800	28 / 10						
08/15/12	TDS Compilation Log	1000	1,800	28 / 10						
08/15/12	Dual Induction LL3 with SP	1000	1,800	28 / 10						
08/15/12	Fluid Conductivity, Temperature	1000	1,800	28 / 10						
08/15/12	Flowmeter	1000	1,800	28 / 10						
08/15/12	Flowmeter Interpretation	1000	1,800	28 / 10						
08/15/12	Video Survey	1000	1,800	28 / 10						
09/25/12	X-Y Caliper, Gamma Ray	1000	1,127	28 / 28						
12/03/12	X-Y Caliper, Gamma Ray	1006	1,108	16 / 28						
12/03/12	Cement Bond w/ VDL	1,006	1,108	16 / 28						
12/03/12	Video Survey	1,006	1,108	16 / 28						
	Test Well SGF	-2								
09/27/12	X-Y Caliper, Gamma Ray	48	228	48 / 10						
09/27/12	Dual Induction LL3 with SP	48	228	48 / 10						
10/08/12	X-Y Caliper, Gamma Ray	48	228	48 / 48						
10/23/12	X-Y Caliper, Gamma Ray	225	228	36 / 12						
10/23/12	Borehole Compensated Sonic w/VDL	225	228	36 / 12						
10/23/12	Dual Induction LL3 with SP	225	228	36 / 12						
11/07/12	X-Y Caliper, Gamma Ray	225	1,010	36 / 36						
11/09/13	Cement Top Temperature	1,006	1,010	28 / 36						
12/12/12	X-Y Caliper, Gamma Ray	1,006	1,800	28 / 10						
12/12/12	Flowmeter	1,006	1,800	28 / 10						
12/12/12	Borehole Compensated Sonic w/VDL	1,006	1,800	28 / 10						
12/12/12	TDS Compilation Log	1,006	1,800	28 / 10						
12/12/12	Flowmeter Interpretation	1,006	1,800	28 / 10						
12/12/12	Dual Induction LL3 with SP	1,006	1,800	28 / 10						
12/12/12	Fluid Conductivity, Temperature	1,006	1,800	28 / 10						
12/12/12	Video Survey	1,006	1,800	28 / 10						
01/21/13	X-Y Caliper, Gamma Ray	1,006	1150	28 / 28						
01/24/13	Cement Top Temperature	1,014	1014	16 / 28						
01/24/13	Cement Bond w/ VDL (Background)	1,014	1014	16 / 28						
04/11/13	Video Survey	1,014	1014	16 / 28						
04/17/13	Cement Bond w/ VDL	1,014	1150	16 / 28						
04/17/13	X-Y Caliper, Gamma Ray	1,014	1150	16 / 28						

"feet bpl" denotes feet below pad level

Parameters	Units		SGF-1 Pa	SGF-2 Packer Tests			
		Test 2	Test 3B	Test 3A	Test 1	Test 1	Test 2
		Single Pkr	Straddle Pkr	Straddle Pkr	Single Pkr	Single Pkr	Single Pkr
rest type		Annulus	Annulus	Drill Stem	Drill Stem	Drill Stem	Drill Stem
Test Interval	ft bgl	1,000 - 1,155	1,000 - 1,528	1,528 - 1,569	1,603 - 1,800	1,628 - 1,800	1,801 - 1,863
Sample Date		8/24/2012	8/31/2012	8/29/2012	8/21/2012	12/18/2012	1/7/2013
Specific Conductance	uS/cm	9,200	11,300	14,300	8,650	12,400	6,970
Turbidity	NTU	0.3	0.85	9.3	2.8	17	26
Bromide	mg/L	11.5	10.9	14.8	10.8	15.5	5.50
Chloride	mg/L	2580	3250	4280	2420	4030	1810
Fluoride	mg/L	<2.1	<4.2	<4.2	<2.1	<2.10	<2.10
Ortho-Phosphate	mg/L	<1.25	<2.5	<2.5	<1.25	2.50	<1.25
Sulfate	mg/L	875	933	875	670	670	880
Alkalinity (CaCO3)	mg/L	108	102	102	110	118	110
Bicarbonate	mg/L	108	102	102	110	118	109
Carbonate	mg/L	0.13	0.13	0.15	0.2	0.160	0.340
Ammonia	mg/L	0.77	0.81	0.88	0.48	0.840	0.310
Hydrogen Sulfide	mg/L	0.47	0.67	0.44	0.73	1.04	0.264
Color	Pt-Co	5	<1.0	15	10	10	<1.00
TDS	mg/L	5850	6980	9070	5300	7780	4330
рН	mg/L	7.5	7.61	7.83	7.69	8.00	8.10
Silica	mg/L	10.9	9.19	8.71	9.83	9.10	10.2
Calcium Hardness	mg/L	285	330	375	250	337	243
Total Hardness	mg/L	1055	1289	1684	1049	1250	781
Aluminum	mg/L	0.005	0.005	0.004	0.004	<0.0007	<0.0007
Barium	mg/L	0.005	0.007	0.015	0.01	0.0150	0.008
Boron	mg/L	1.26	1.268	1.23	0.831	0.854	0.732
Calcium	mg/L	114	132	150	100	135.1	97.2
Dissolved Iron	mg/L	0.013	0.014	0.08	0.013	0.004	0.0140
Iron	mg/L	0.021	0.024	0.19	0.18	0.265	0.231
Magnesium	mg/L	187	233	318	194	220.7	131
Manganese	mg/L	0.001	0.001	0.007	0.007	0.008	0.0130
Potassium	mg/L	111	127	140	94.4	132.4	79.9
Sodium	mg/L	1710	2128	2913	1593	2245	1121
Strontium	mg/L	9.96	14.7	25.5	19.8	19.0	12.9
Flow / Pump Rate	gpm	479	920	203	221	235	166
Tested Aquifer Thickness	ft	155	528	41	197	172	62
Static Water Level	ft bgl	-40.2	-40.5	-43.5	-46.3	-40.5	-56
Drawdown	ft	38.2	36.7	85.8	39.4	22.8	78.9
Specific Capacity	gpm/ft	12.5	25.1	2.4	5.6	10.3	2.1
Transmissivity (Turcan)	gpd/ft	25,079	50,155	4,734	11,221	20,600	4,200
Horiz. Hydraulic Conductivity (Turcan)	gpd/ft2	162	95	115	57	120	68

Table 5. Packer Test Analytical Water Quality and Performance Results, Sawgrass Test Wells SGF-1 and SGF-2

-Test type "Single Pkr Annulus" refers to a packer test where a single packer was installed in the boreohole on drill pipe. The annulus outside the drill pipe and above the single packer was then allowed to flow. Water levels in the annulus and inside the drill pipe were monitored.

-Test type "Straddle Pkr Annulus" refers to a packer test where two packers, connected together with perforated pipe, were installed on drill pipe. The annulus outside the drill pipe and above the top packer was then allowed to flow. Water levels in the annulus and inside the drill pipe were monitored. Absolute pressures in the borehole below the bottom packer also were monitored.

-Test type "Straddle Pkr Drill Stem" refers to a packer test where two packers, connected together with perforated pipe, were installed on drill pipe. The interval between the packers (through the perforated pipe) was then pumped. Water levels in the annulus and inside the drill pipe were monitored. Absolute pressures in the borehole below the bottom packer also were monitored.

-Test type "Single Pkr Drill Stem" refers to a packer test where a single packer was installed on drill pipe. The open hole below the single packer was then pumped. Water levels in the annulus and inside the drill pipe were monitored.

Figures

CITY: WB.FL_DIV/CROUP: EN_DB: BOLIVA_LD: PIC: (Opt PM: (Read)_TM: (Opt)_LYR: (Opt)ON="; OFF="REF" G: APTojectsWRWF PROJECTSISurriseIF_Test Weil CAICADField Survey DWGsISEC_29-31 Weil Recondag__LAYOUT: AUG13_F1 GENERALLOCATION

---- PLOTSTYLETABLE: ACS-COLOR_ANALYTICAL.CTB PLOTTED: 8/13/2013 4:16 PM BY: OLIVA, ACADVER: 18.1S (LMS TECH) PAGESETUP: SAVED: 8/7/2013 2:30 PM PM: W.REESE TM: R.MILLER LYR:(Op)ON=",OFF="REF" fest Weis(CAD)0695800200000410-FTW.dwg LAYOUT: AUG13_F3_SGF2 CONST DETAILS DB: B.OLIVA LD: PIC: (Opt) nrise/FL Test Well CA/Floridan Te /PB,FL DIV/GROUP: WR jects/WR/WF PROJECTS/Su CITY: WPB,FL d Vic

Appendix A

Hydrogeologic Framework and Geologic Logs: SGF-1 and SGF-2

Series		Geologic unit		Marker units and horizons	Lithology	F	Hydrogeologic unit		Approximate thickness (feet)								
HOLOCENE and PLEISTOCENE		Undifferentiated and various Pleistocono-aged formations			Quartz sand; silt; clay; shell; limestone; sandy shelly limestone	SYSTEM	WATER-TABLE / BISCAYNE AQUIFER			EX	PLANATION						
PLIOCENE		TAMIAMI FORMATION		TAMIAMI FORMATION		TAMIAMI FORMATION		TAMIAMI FORMATION			Silt; sandy clay; sandy, shelly limestone; calcareous sand- stone; and quartz sand	SURFIC AQUIFER S	LOWER TAMIAMI AQUIFER	20-	400	幸 4 9 97	Geologic unit(s) missing in some areas Avon Park
MIOCENE AND LATE OLIGOCENE		I GROUP	PEACE RIVER FORMATION	LHMU	Interbedded sand, silt, gravel, clay, carbonate, and phosphatic sand	IATE AQUIFER TEM OR VING UNIT	CONFINING UNIT	0-900		ΒΖ LHMU PZ 1,	permeable zone Boulder Zone Lower Hawthorn marker unit Permeable						
		HAWTHORN	ARCADIA FORMATION		Sandy micritic limestone; marlstone; shell beds; dolomite; phosphatic sand and carbonate; sand; silt;	INTERMED SYSI CONFIN	MID-HAWTHORN AQUIFER OR PZZ CONTEINING UNIT			PZ2, PZ3 MAP	PZ2, zones in west- central Florida MAP Middle Avon Park marker						
		,	HAWTHORN UNIT		and clay		PRODUCING ZONE PZ3	0-300		GLAUC Glauconite							
EARL OLIGOC	EARLY OLIGOCENE		* UWANNEE MESTONE		Fossiliferous, calcarenitic limestone	SYSTEM	UPPER FLORIDAN AQUIFER	100-	-800	PLEIS	horizon						
	LATE	L	OCALA MESTONE		Chalky to fossiliferous, mud-rich to calcarenitic limestone		(UF)			IN SO FLORI	UTHEASTERN DA:						
EOCENE	IDDLE	AVON PARK MAP FORMATION		MAP	Fine-grained, micritic to fossiliferous limestone; dolomitic limestone; and dolostone. Also contains in the lower part anhydrite/		APPZ	0-600	500-1,500	Satilla Pam Miami Fort The Anasta Key Lar	Formation (formerly lico Sand) Limestone ompson Formation sia Formation rao Limestone						
	W	-?	-??GLAUC		gypsum as bedded deposits, or more commonly as pore filling material. Glauconitic limestone near top of Oldsmar	lidan	LOWER FLORIDAN	0-1,	.800	,	50 L						
	EARLY	FO	ORMATION		Formation in some areas	FLOF	Addiren BZ	0-700									
PALEOC	ENE	CI	EDAR KEYS		Dolomite and dolomitic limestone												
		FURMATION		FURMATION		FURMATION		FURMATION			Massive anhydrite beds		CONTINUE CONTINUE	1.2	00?		

TION

Figure 8. Chart showing relation of hydrogeologic units as defined in this study to geologic units and their lithology.

17

LITHOLOGICAL DESCRIPTION	DEPTH INTERVAL	THICKNESS
PAVEMENT AND ROADWAY BASE	0-2	2
SILTY SANDS: Sand, 95%, white (N9) to yellowish gray (5Y 8/1), silt to very fine grained, poorly consolidated with a calcareous mud matrix; Shell and Limerock, 5%.	2-40	38
SANDSTONE: Sandstone, 95%, yellowish gray (5Y 7/2), fine to medium grained, quartz grains with calcareous matrix, moderately hard; Shell, 5%, small fragments, some cement grout fragments in sample.	40-60	20
LIMESTONE: Limestone, 100%, yellowish gray (5Y 8/1), fine to medium grained, primarily calcareous with trace amounts of quartz grains, poorly to moderately cemented, becomes poorly cemented between 70 and 80 feet bgl, trace amount of phosphatic grains.	60-80	20
SANDSTONE, LIMESTONE and SHELL: Sandstone, 70%, light olive gray (5Y 6/1), fine to medium grained, poorly cemented, primarily quartz grains, some phosphatic grains; Limestone, 20%, yellowish gray (5Y 8/1), poorly cemented; Shell, 10%, 1-3 mm fragments.	80-90	10
SAND: Sand, 90%, light olive gray (5Y 5/2), fine grained, primarily quartz with some calcareous grains, slightly phosphatic; Limestone, 10%, yellowish gray (5Y 8/1), very poorly cemented.	90-110	20
SILT: Silt, 70%, olive gray (5Y 4/1), silt size grains with trace amounts of medium size quartz grains, slightly phoshpatic, low plasticity; Limestone, 20%, yellowish gray (5Y 8/1), poorly cemented; Shell, 10%, small fragments.	110-150	40
LIMESTONE and SHELL: Limestone, 80%, primarily light olive gray (5Y 6/1), some yellowish gray (5Y 8/1); very fine to fine grained, quartz and calcareous grains, poorly cemented and soft; Shell, 20%, 1-4 mm fragments.	150-180	30
LIMESTONE: Limestone, 95%, white (N9) to yellowish gray (5Y 8/1), fine grained, moderately well cemented and hard, well-rounded limestone fragments, small amount of limestone consists of very fine grained and soft material similar to 150-180 interval; Shell 5%.	180-190	10
SILTY CLAY, LIMESTONE and SHELL: Clay, 60%, olive gray (5Y 4/1), slightly phosphatic, low plasticity; Limestone, 20%, white (N9) to yellowish gray (5Y 8/1), fine grained, moderately well cemented and hard, well-rounded limestone fragments; Shell, 20%, 1-3 mm fragments.	190-200	10
SILTY CLAY, SOME LIMESTONE AND SHELL, Clay, 80%, olive gray (5Y 4/1), soft, low plasticity, some silt size grains, slightly phosphatic; Limestone, 10%, white (N9) to yellowish gray (5Y 8/1), fine grained, moderately well cemented and hard, well-rounded limestone fragments; Shell, 10%, up to 5 mm fragments.	200-210	10
CLAY: Clay, 100%, olive gray (5Y 4/1), slightly more cohesive and slightly higher plasticity than interval above, moderately phosphatic.	210-230	20
SILT AND SHELL: Silt, 80%, light olive gray (5Y 6/1) to olive gray (5Y 4/1), moderately consolidated, soft, calcareous with some quartz; Shell, 20%, whole pieces.	230-280	50
SILT: Silt, 100%, light olive gray (5Y 5/2), primarily calcareous with some quartz grains.	280-480	200
LIMESTONE, SILT AND SHELL: Limestone, 50%, yellowish gray (5Y 7/2), very fine grained, poorly consolidated, soft; Silt, 40%, light olive gray (5Y 5/2), calcareous; Shell, 10%, small fragments.	480-630	150
CLAY: Clay, 100%, yellowish gray (5Y 7/2), slightly silty, calcareous, low plasticity, few phosphatic grains.	630-650	20
LIMESTONE: Limestone, 90%, yellowish gray (5Y 7/2) to light olive gray (5Y 5/2), with some medium gray (N5), very fine grained, unconsolidated sands, few phosphatic grains; Shell, 10%, small fragments.	650-660	10
CLAY: Clay, 100%, yellowish gray (5Y 7/2) with some medium light gray, similar to description for interval between 630 feet to 650 feet bgl.	660-680	20

LITHOLOGICAL DESCRIPTION	DEPTH INTERVAL	THICKNESS
LIMESTONE: Limestone, 90%, yellowish gray (5Y 7/2) to light olive gray (5Y 5/2), same as interval between 650 feet and 660 feet bgl, larger shell fragments observed in interval between 750 feet and 760 feet bgl.	680-790	110
CLAYEY LIMESTONE: Limestone, 70%, yellowish gray (5Y 7/2), very fine grained, unconsolidated; Clay, 30%, yellowish gray (5Y 7/2), non-plastic, non-cohesive, clay percentage increases with depth.	790-810	20
CLAY: Clay, 80%, pale olive (10Y 6/2), calcareous, slightly phosphatic, slightly cohesive, few phosphatic grains; Limestone, 20%, yellowish gray (5Y 7/2), very fine grained, unconsolidated, few shells.	810-820	10
PHOSPHATIC CLAYS: Clay, 80%, pale olive (10Y 6/2), numerous dark gray (N3) phosphatic grains with greatest percentage observed between 830 feet and 850 feet bgl, slightly plastic, slightly cohesive; Limestone, 20%, yellowish gray (5Y 7/2), same as interval between 810 feet and 820 feet bgl.	820-870	50
LIMESTONE: Limestone, 90%, yellowish gray (5Y 7/2), very fine grained, non-cemented to poorly cemented; Clay, 10%, yellowish gray (5Y 7/2), non-plastic, noncohesive; Shell and Fossils, trace.	870-910	40
CLAY: Clay, 90%, light olive gray (5Y6/1), calcareous, medium plasticity, cohesive, soft; Limestone, 10%, yellowish gray (5Y 7/2), soft, non-cemented.	910-950	40
CLAYEY LIMESTONE: Limestone, 60%, yellowish gray (5Y 7/2) with some light olive gray (5Y 6/1), very fine grained, soft, poorly cemented; Clay, 40%, yellowish gray (5Y 7/2), non-plastic, noncohesive.	950-960	10
CLAY: Clay, 100%, olive gray (5Y 4/1), medium plasticity, cohesive; Limestone, trace.	960-995	35
LIMESTONE WITH LITTLE CLAY: Limestone, 90%, yellowish gray (5Y 8/1), sparitic, moderately hard, few fossils; Clay, 10%, olive gray (5Y 4/1), thin interbedded layers which slightly decrease with depth.	995-1,020	25
LIMESTONE: Limestone, 100%, primarily yellowish gray (5Y 8/1) with some light olive gray (5Y 6/1), numerous small fossils cemented in a calcareous matrix, 50% recrystallized/sparitic and moderately well cemented, phosphate grains present, few whole shell clasts present.	1,020-1,050	30
LIMESTONE: Limestone, 100%, light olive gray (5Y6/1) to yellowish gray (5Y 8/1), primarily fine grained grainstone, poorly to moderately cemented, few sparite pieces, highly phosphatic, few small fossil fragments.	1,050-1,070	20
LIMESTONE: Limestone, 100%, yellowish gray (5Y 8/1) and light to medium gray (N7 to N6), numerous small fossil fragments in a calcareous matrix, partially recrystalized, poorly to moderately cemented, few phosphatic grains present	1,070-1,110	40
QUARTZ GRAINSTONE, Grainstone, 100%, light olive gray to olive gray (5Y 6/1 to %Y 4/1), very fine to fine grained, primarily quartz, small amount of calcareous clay, poorly to moderately cemented.	1,110-1,120	10
LIMESTONE: Limestone, 100%, yellowish gray (5Y 8/1), very fine grained, recrystalized, poorly to moderately cemented, numerous small fossils, 10% medium dark gray (N4), siltstone, primarily quartz grained.	1,120-1,140	20
LIMESTONE AND MARL: Limestone, 70%, same as interval above; Marl, 30%, (5Y 8/1), soft, medium plasticity.	1,140-1,150	10
LIMESTONE: Limestone, 100%, yellowish gray (5Y 8/1), very fine grained, poorly to moderately cemented with a crystalline matrix, fossils present but fewer than 1,120-1,140 ft interval, 5% medium dark gray (N4) mudstone.	1,150-1,170	20
LIMESTONE: Limestone, 100%, pale yellowish brown (10YR 6/2), very fine grained, poorly to moderately cemented, some fossils present, minor amount of recrystalization, few sparitic well cemented fragments.	1,170-1,180	10
LIMESTONE: Limestone, 100%, primarily pale yellowish brown (10YR 6/2), some yellowish gray (5Y 8/1) and medium gray (N5), microcrystalline to very fine crystalline some very fine grain, few dolomitic limestone fragments, moderately cemented.	1,180-1,190	10

LITHOLOGICAL DESCRIPTION	DEPTH INTERVAL	THICKNESS
LIMESTONE: Limestone, 100%, 90% yellowish gray (5Y 7/2) to pale yellowish brown (10YR 6/2), 10% yellowish gray (5Y 8/1) and medium light gray (N6) starting at 1,210 ft bgl, very fine grained, almost silty, poorly cemented and soft, slightly vuggy, few fossils.	1,190-1,250	40
LIMESTONE: Limestone, 100%, yellowish gray (5Y 8/1) to pale yellowish brown (10YR 6/2), very fine to fine grain grainstone, poorly cemented, trace amount of calcareous marl in discret intervals, fossiliferous.	1,250-1,360	110
LIMESTONE: Limestone, 100%, 80%, yellowish gray (5Y 7/2) to pale yellowish brown (10YR 6/2), very fine to fine grained, poorly cemented; 20% olive black (5Y 2/1) to light olive gray (5Y 6/1), moderately to moderately well cemented.	1,360-1,400	40
LIMESTONE: Limestone, 100%, yellowish gray (5Y 7/2) to pale yellowish brown (10YR 6/2), very fine to fine grain grainstone, poorly cemented.	1,400-1,410	10
LIMESTONE and TRACE LIGNITE: Limestone, 100%, yellowish gray (5Y 7/2) to pale yellowish brown (10YR 6/2), very fine to fine grained, poorly cemented; Lignite, trace, black (N1), very thinly interbedded with limestone, soft, smears on contact.	1,410-1,420	10
LIMESTONE: Limestone, 100%, 70% yellowish gray (5Y 7/2) to pale yellowish brown, fine grained, poorly cemented; 30% yellowish gray (5Y 7/2), micritic to very fine grained, well cemented, little to no porosity.	1,420-1,430	10
LIMESTONE: Limestone, 100%, yellowish gray (5Y 7/2) to pale yellowish brown, fine grained, poorly cemented.	1,430-1,450	20
LIMESTONE: Limestone, 100%, 90% yellowish gray (5Y 7/2) to pale yellowish brown (10YR 6/2), fine grained, poorly cemented but slightly more cemented than interval above, slightly vuggy; 10% light olive gray (5Y 6/1), micritic to very fine grained, well cemented, few small wormholes present; Lignite, trace, black (N1), soft, smears on contact; trace amount of anhydrite crystals observed in 1,470-1,480 sample.	1,450-1,500	50
LIMESTONE: Limestone, 100%, 70%, yellowish gray (5Y 7/2) to pale yellowish brown (10YR 6/2), fine grained, trace amount of micritic to very fine grained and slightly dolomitic; 30% medium light gray (N6) and light olive gray (5Y 6/1) to olive gray (5Y 4/1), micritic to very fine grained, hard, moderately well cemented, few fragments slightly vuggy.	1,500-1,560	60
LIMESTONE: Limestone, 100%, 60% light gray (N7) to light olive gray (5Y 6/7), very fine grained, moderately cemented; 40% yellowish gray (%Y 7/2) to pale yellowish brown (10YR 6/2), fine grained, poorly cemented.	1,560-1,570	10
LIMESTONE: Limestone, 100%, yellowish gray (5Y 7/2) to pale yellowish brown (10YR 6/2), fine grained, poorly cemented.	1,570-1,590	20
LIMESTONE: Limestone, 100%, 50% yellowish gray (5Y 7/2) to pale yellowish brown (10YR 6/2), fine grained, poorly cemented; 30% pale yellowish brown (10YR 6/2), micritic to very fine grained, well cemented, hard; 20% medium light gray (N6) and light olive gray (5Y 6/1), micritic to very fine grained, primarily well cemented and hard.	1,590-1,600	10
LIMESTONE and CALCAREOUS CLAY: Limestone, 90%, same as interval above; Clay, 10%, light olive gray (5Y 6/1), very fine grained, stiff, medium plasticity; Driller noted clay during drilling for approximately 2 feet starting at 1,605 feet bgl.	1,600-1,610	10
LIMESTONE: Limestone, 100%, 70% yellowish gray (5Y 8/1) to pale yellowish brown (10YR 6/2), very fine grained, poorly cemented, slightly vuggy; 30% light olive gray (5Y 6/1), micritic to very fine grained, moderately well cemented, slightly dolomitic.	1,610-1,630	20
LIMESTONE: Limestone, 100%, 90% pale yellowish brown (10YR 6/2), very fine grained, poorly cemented; 10% light olive gray (5Y 6/1) to olive gray (5Y 4/1), micritic to very fine grained, hard, well cemented, few fragments slightly vuggy.	1,630-1,640	10
LIMESTONE: Limestone, 100%, white (N9) to yellowish gray (5Y 8/1) and some light olive gray (5Y 6/1) that increases with depth, primarily soft and poorly cemented (chalky) with some fragments moderately cemented and slightly vuggy.	1,640-1,670	30

LITHOLOGICAL DESCRIPTION	DEPTH INTERVAL	THICKNESS
LIMESTONE and CALCAREOUS CLAY: Limestone, 80%, yellowish gray (5Y 8/1) and medium light gray (N6), micritic to very fine grained, hard, well cemented, slightly dolomitic; Clay, 20%, medium light gray (N6), medium plasticity, calcareous.	1,670-1,680	10
LIMESTONE: Limestone, 100%, 90% white (N9) to yellowish gray (5Y 8/1), very fine grained, poorly cemented, chalky; 5%, medium light gray (N6) to dark gray (N3), primarily micritic, hard, well cemented, slightly dolomitic.	1,680-1,700	20
LIMESTONE: Limestone, 100%, 90% yellowish gray (5Y 8/1) to pale yellowish brown (10YR 6/2), very fine grained, poorly cemented; 10% light olive gray (5Y 6/1) to olive black (5Y 2/1), micritic, hard, well cemented, slightly dolomitic.	1,700-1,760	60
LIMESTONE: Limestone, 100%, 70% yellowish gray (5Y 8/1) to pale yellowish brown (10YR 6/2), very fine grained, poorly cemented; 20% light olive gray (5Y 6/1) to olive gray (5Y 4/1), micritic to very fine grained, poorly cemented mudstone; 10% light olive gray (5Y 6/1) to olive black (5Y 2/1), micritic, hard, well cemented, slightly dolomitic.	1,760-1,780	20
LIMESTONE: Limestone, 100%, 95% yellowish gray (5Y 8/1) to pale yellowish brown (10YR 6/2), very fine grained, poorly cemented; 5% light olive gray (5Y 6/1) to olive black (5Y 2/1), micritic, hard, well cemented, slightly dolomitic.	1,780-1,800	20

LITHOLOGICAL DESCRIPTION	DEPTH INTERVAL	THICKNESS
SILTY SANDS: Sand, 95%, white (N9) to yellowish gray (5Y 8/1), silt to very fine grained, poorly consolidated with a calcareous mud matrix; Shell and Limerock, 5%.	0-50	50
LIMESTONE: Limestone, 100%, yellowish gray (5Y 8/1), fine to medium grained,	50-100	50
primarily calcareous with some quartz grains; Note: circulation polymers (appearance of		
clear silicone) observed between 80 and 100 feet. Contractor encountered loss		
circulation zone starting at 85 feet bgl.		
SILTY SAND AND SHELL: Sand, 80%, light olive gray (5Y 4/1), primarily very fine to fine	100-160	60
grained, quartz and calcareous grains; Shell, 15%, small fragments; Limestone, 5%,		
poorly cemented.		
LIMESTONE and SHELL: Limestone, 80%, primarily light olive gray (5Y 6/1), some	160-180	20
yellowish gray (5Y 8/1); very fine to fine grained, quartz and calcareous grains, poorly		
cemented and soft; Shell, 20%, 1-4 mm fragments.		
SILTY SAND AND SHELL: Sand, 80%, light olive gray (5Y 4/1), primarily very fine to fine	180-190	10
grained, quartz and calcareous grains; Shell, 15%, small fragments; Limestone, 5%,		
poorly cemented.		10
LIMESTONE: Limestone, 95%, white (N9) to yellowish gray (5Y 8/1), fine grained,	190-200	10
moderately well cemented and hard, well-rounded limestone fragments, small amount of		
limestone consists of very fine grained and soft material similar to 150-180 interval; Shell		
	000.000	00
CLAY, LITTLE LIMESTONE AND SHELL: Clay, 80%, light olive gray (5Y 6/1) to olive	200-220	20
gray (5Y 4/1), soft, low plasticity, slity; Limestone, 10%, white (N9) to yellowish gray (5Y		
8/1), fine grained, moderately cemented; Snell, 10%, small fragments.	000.000	40
SILT AND SHELL: Slit, 90%, light olive gray (5Y 6/1) to olive gray (5Y 4/1), soft, some	220-260	40
quartz grains; Shell, 10%, larger fragments than above, some whole shells.	200,200	40
CLAYEY SILT AND SHELL: Slit, 90%, light olive gray (5Y 6/1) to olive gray (5Y 4/1),	260-300	40
Slightly conesive, soit, some quartz grains; Shell, 10%, small fragments.	200.240	10
SILT: Silt, 100%, light olive gray (5Y 5/2), primarily calcareous with some quartz grains.	300-310	10
CLATET SILT AND SHELL. Sill, 90%, light onve gray (ST 6/1) to onve gray (ST 4/1),	310-320	10
Signify conesive, son, some quartz grains, shell, 10%, small haghents.	320 330	10
SILT. Silt, 100 %, light onve gray (57 5/2), printality calcaleous with some quartz grains. CLAYEV SILT AND SHELL: Silt 0.0%, light alive gray (5V 6/1) to alive gray (5V 4/1)	320-330	70
slightly cohesive, soft some quartz grains: Shell 10% small fragments	330-400	70
Signify conesive, son, some quartz grains, onen, 10%, smail hagments.	400-410	10
Limestone and Shell trace amounts	400-410	10
CLAYEX SILT: Silt 100% light olive gray (5X 6/1) to olive gray (5X 4/1) slightly	410-490	80
cohesive soft some quartz grains: Shell trace small fragments	410 400	00
LIMESTONE SILT AND SHELL: Limestone 50% vellowish grav (5Y 7/2) to light olive	490-550	60
gray (5Y 5/2), fine grained, poorly cemented, soft: Silt, 40%, light olive gray (5Y 5/2).	100 000	00
calcareous: Shell. 10%. small fragments.		
CLAYEY SILT, LIMESTONE, SHELL: Silt, 80%, light olive grav (5Y 5/2), soft.	550-560	10
calcareous, slightly cohesive; Limestone, 10%, vellowish gray (5Y 7/2), fine grained, soft;		
Shell, 10%, small fragments.		
LIMESTONE, SILT AND SHELL: Limestone, 50%, yellowish gray (5Y 7/2) to light olive	560-630	70
gray (5Y 5/2), fine grained, poorly cemented, soft; Silt, 40%, light olive gray (5Y 5/2),		
calcareous; Shell, 10%, small fragments.		
LIMESTONE AND CLAYEY SILT: Limestone, 80%, yellowish gray (5Y 7/2), fine grained,	630-660	30
poorly cemented; Silt, 20%, yellowish gray (5Y 7/2), calcareous, soft.		
LIMESTONE WITH VARYING AMOUNTS OF CLAY: Limestone, 70%, yellowish gray	660-830	170
(5Y 7/2), very fine grained, unconsolidated sand; Clay, 25%, yellowish gray (5Y 7/2),		
slightly silty, low plasticity, increased amounts of clay in 670-680 sample and 710-720		
sample; Shell, 5%, small fragments, larger shell fragments between 750 and 800 feet bgl.		

LITHOLOGICAL DESCRIPTION	DEPTH INTERVAL	THICKNESS
LIMESTONE, SHELL AND CLAY: Limestone, 50%, yellowish gray (5Y 7/2), very fine grained, harder and more cemented than interval above; Shell, 30%, fragments; Clay, 20%, yellowish gray (5Y 7/2), calcareous marl.	830-840	10
PHOSPHATIC CLAY: Clay, 80%, pale olive (10Y 6/2), low plasticity, slightly cohesive; Limestone, 20%, yellowish gray (5Y 7/2).	840-850	10
CLAYEY SILT AND LIMESTONE: Silt, 70%, yellowish gray (5Y 7/2), soft, slightly cohesive, increase of cohesive clay between 850 and 880 feet bgl; Limestone, 30%, yellowish gray (5Y 7/2), soft, mostly calcareous sands.	850-930	80
CLAY: Clay, 90%, light olive gray (5Y 6/1), calcareous, medium plasticity, cohesive; Driller encountered slightly harder drilling conditions (limestone rock) at approximately 955 feet bgl	930-955	15
CLAY AND LIMESTONE: Clay, 70, light olive gray (5Y 6/1), calcareous, medium plasticity, cohesive; Limestone, 30%, yellowish gray (5Y 7/2), fine grained, poorly cemented, phosphatic grains present, limestone increases with depth.	955-978	20
CLAY: Clay, 100%, olive gray (5Y 4/1), medium plasticity, cohesive; Limestone, trace.	978-999	21
LIMESTONE AND CLAY: Limestone, 60%, yellowish gray (5Y8/1), sparitic, moderately hard, few fossils; Clay, 40%, olive gray (5Y 4/1), thin interbedded layers which slightly decrease with depth.	999-1,010	11
LIMESTONE: Limestone, 100%, yellowish gray (5Y 8/1), sparitic, moderately hard, fossils.	1,010-1,020	10
LIMESTONE: Limestone, 100%, primarily yellowish gray (5Y 8/1) with some light olive gray (5Y 6/1), numerous small fossils cemented in a calcareous matrix, 50% recrystallized/sparitic and moderately well cemented, phosphate grains present, few whole shell clasts present.	1,020-1,050	40
LIMESTONE: Limestone, 100%, light olive gray (5Y6/1) to yellowish gray (5Y 8/1), primarily fine grained grainstone, poorly to moderately cemented, few sparite pieces, highly phosphatic, few small fossil fragments.	1,050-1,080	30
LIMESTONE: Limestone, 100%, yellowish gray (5Y 8/1) and light to medium gray (N7 to N6), numerous small fossil fragments in a calcareous matrix, partially recrystalized, poorly to moderately cemented, few phosphatic grains present	1,080-1,120	40
SANDY CLAY: Clay, 100%, light olive gray to olive gray (5Y 6/1 to %Y 4/1), very fine to fine grained, primarily quartz, small amount of calcareous clay, non-plastic, non-cohesive.	1,120-1,130	10
LIMESTONE: Limestone, 100%, yellowish gray (5Y 8/1), very fine grained, recrystalized, poorly to moderately cemented, numerous small fossils, 10% medium dark gray (N4), siltstone, primarily quartz grained.	1,130-1,160	20
LIMESTONE AND MARL: Limestone, 70%, same as interval above; Marl, 30%, (5Y 8/1), soft, medium plasticity.	1,160-1,170	10
	1,170-1,180	10
LIMESTONE: Limestone, 100%, yellowish gray (5Y 8/1) to pale yellowish brown (10YR 6/2), moderately cemented with some sparitic well cemented fragments.	1,180-1,210	30
LIMESTONE: Limestone, 100%, yellowish gray (5Y 8/1), very fine grained, soft, poorly cemented, numerous small fossils.	1,210-1,220	10
LIMESTONE: Limestone, 100%, 70% pale yellowish (10YR 6/2) and moderately cemented, 30% yellowish gray (5Y 8/1), poorly cemented, all fine grained with few fossils.	1,220-1,240	20
LIMESTONE: Limestone, 100%, yellowish gray (5Y 8/1) to pale yellowish brown (10YR 6/2), very fine to fine grained grainstone, poorly cemented, few fragments, slightly vugay.	1,240-1,390	170
LIMESTONE: Limestone, 100%, yellowish gray (5Y 7/2) to light olive gray (5Y 5/2), very fine grained, well cemented, slightly vuggy.	1,390-1,410	20
LIMESTONE: Limestone, 100%, yellowish gray (5Y 7/2) to pale yellowish brown (10YR 6/2), very fine to fine grained grainstone, poorly cemented	1,410-1,430	20

LITHOLOGICAL DESCRIPTION	DEPTH INTERVAL	THICKNESS
LIMESTONE: Limestone, 100%, same as interval above with the exception of 20% light olive (5Y 6/1) to olive gray (5Y 4/1), micritic, hard, well cemented.	1,430-1,450	20
LIMESTONE: Limestone, 100%, primarily pale yellowish brown (10YR 6/2) with some	1,450-1,520	70
yellowish gray (5Y 7/2), poorly to moderately cemented, very fine to fine grained, slightly		
vuggy; few fragments micritic and well cemented.		
LIMESTONE: Limestone, 100%, 70%, yellowish gray (5Y 7/2) to pale yellowish brown	1,520-1,590	70
(10YR 6/2), fine grained, trace amount of micritic to very fine grained and slightly		
dolomitic; 30% medium light gray (N6) and light olive gray (5Y 6/1) to olive gray (5Y 4/1),		
micritic to very fine grained, hard, moderately well cemented, few fragments slightly		
vuggy.		
LIMESTONE: Limestone, 100%, yellowish gray (5Y 7/2) to pale yellowish brown (10YR	1,590-1,610	20
6/2), fine grained, poorly to moderately cemented.		
LIMESTONE: Limestone, 100%, primarily yellowish gray (5Y 7/2) to pale yellowish brown	1,610-1,620	10
(10YR 6/2) with some light olive gray (5Y 6/1), fine grained, moderately well cemented,		
some intergranular porosity.		
LIMESTONE AND MARL: Limestone, 80%, same as interval above; Clay, 20%, light	1,620-1,630	10
olive gray (5Y 6/1), very fine grained, soft.		
LIMESTONE: Limestone, 100%, 70% yellowish gray (5Y 8/1) to pale yellowish brown	1,630-1,650	20
(10YR 6/2), very fine grained, poorly cemented, slightly vuggy; 30% light olive gray (5Y		
6/1), micritic to very fine grained, moderately well cemented, slightly dolomitic.	4 050 4 000	40
LIMESTONE: Limestone, 100%, 90% pale yellowish brown (10YR 6/2), very fine grained,	1,650-1,660	10
poorly cemented; 10% light olive gray (5Y 6/1) to olive gray (5Y 4/1), micritic to very fine		
grained, nard, well cemented, lew fragments slightly vuggy.	4 000 4000	20
LIMESTONE: Limestone, 100%, yellowish gray (5Y 8/1) and some light once gray (5Y	1,000-1090	30
6/1), primarily soft and poonly cemented with some fragments moderately well cemented		
LIMESTONE: Limestone, 100%, primarily vallewich grov (EV 7/2) with some pole	1 600 1 700	10
vollowish brown (10VP 6/2) and light clive grov (5V 6/1) year fine to fine grained	1,090-1,700	10
moderately compared slightly yuggy		
LIMESTONE: Limestone, 100%, 90% white (N9) to vellowish grav (5X 8/1), very fine	1 700-1 720	10
grained poorly comented chalky: 5% medium light gray (N6) to dark gray (N3) primarily	1,700-1,720	10
micritic hard well cemented slightly dolomitic		
LIMESTONE: Limestone 100% 90% vellowish grav (5Y 8/1) to pale vellowish brown	1 720-1 780	60
(10YR 6/2) very fine grained, poorly cemented 10% light olive gray (5Y 6/1) to olive	1,720 1,700	00
black (5Y 2/1), micritic, hard, well cemented, slightly dolomitic.		
LIMESTONE: Limestone, 100%, 95% vellowish grav (5Y 8/1) to pale vellowish brown	1.780-1.860	80
(10YR 6/2), very fine grained, poorly cemented: 5% light olive gray (5Y 6/1) to olive black	.,,	
(5Y 2/1), micritic, hard, well cemented, slightly dolomitic.		

Appendix B

Water Quality and Specific Capacity Testing Data from Pilot Hole Drilling: SGF-1 and SGF-2

Water-Quality Sampling Results from Pilot-Hole Reverse-Air Discharge Sawgrass Test Well SGF-1, City of Sunrise, Florida

Test Well SGF-1											
Time	Depth			Drill Stem					Annulus		
		Cond	Temp	Chloride	H2S	Sulfate	Cond	Temp	Chloride	H2S	Sulfate
		(uS/cm)	(C)	(mg/L)	(mg/L)	(mg/L)	(uS/cm)	(C)	(mg/L)	(mg/L)	(mg/L)
11:00	1033	8960	26.4	2250	NA	>200	l	Nell not fr	ree flowing at	this depth	
10:00	1060	9450	24.1	2250	NA	>200	9360	24.5	2250	NA	>200
13:30	1092	9230	22.1	2250	NA	>200	9750	23.5	2500	NA	>200
15:30	1123	9560	23.1	2250	NA	>200		21.5	2250	NA	>200
9:40	1155	9950	22.3	2250	0.53	>200	9460	22.3	2250	1.54	>200
11:35	1185	11960	24.4	2750	0.42	>200	9380	23.0	2250	1.54	>200
14:50	1218	12850	23.9	3000	0.32	>200	9380	23.3	2250	1.64	>200
18:20	1248	12510	22.7	3000	0.53	>200	9820	22.2	2250	1.48	>200
9:50	1279	12570	23.1	3250	0.58	>200	10140	23.0	2500	1.48	>200
16:00	1309	11600	23.8	2750	0.64	>200	10130	23.6	2250	1.38	>200
18:40	1340	13220	23.0	3250	0.42	>200	10390	22.9	2500	1.48	>200
9:35	1372	13880	23.2	3750	0.64	>200	10290	22.7	2500	1.70	>200
12:40	1401	14650	22.7	3500	0.48	>200	10280	23.1	2500	1.54	>200
15:17	1434	16550	22.7	4000	0.56	>200	10350	23.0	2500	NA	>200
17:45	1465	16630	22.5	3750	0.37	>200	10530	22.8	2250	NA	>200
9:10	1496	16460	22.5	3750	0.37	>200	11000	22.3	2500	1.48	>200
11:50	1528	15830	22.7	3750	0.37	>200	11050	22.7	2750	1.48	>200
13:45	1558	14360	22.6	3500	0.53	>200	11580	22.6	2750	NA	>200
16:55	1588	14040	22.5	3500	0.53	>200	11860	22.7	3000	1.54	>200
19:04	1618	10960	22.3	2500	0.32	>200	11920	22.8	2750	1.38	>200
9:05	1650	5600	22.1	1500	0.16	>200	11830	22.0	2750	NA	>200
11:10	1682	5970	22.0	1500	0.27	>200	11340	22.2	2500	1.33	>200
13:35	1712	6030	22.1	1500	NA	>200	11220	21.7	2500	NA	>200
15:20	1742	6070	22.2	1500	0.32	>200	10870	22.1	2500	1.54	>200
17:00	1774	6070	22.0	1500	0.42	>200	10570	23.1	2500	0.64	>200
9:45	1800	6080	21.4	1500	0.42	>200	9610	21.6	2250	1.64	>200
	Time 11:00 10:00 13:30 15:30 9:40 11:35 14:50 18:20 9:50 16:00 18:40 9:35 12:40 15:17 17:45 9:10 11:50 13:45 16:55 19:04 9:05 11:10 13:35 15:20 17:00 9:45	TimeDepth11:00103310:00106013:30109215:3011239:40115511:35118514:5012189:50127916:00130918:4013409:35137212:40140115:17143417:4514659:10149611:50152813:45155816:55158819:0416189:05165011:10168213:35171215:20174217:0017749:451800	Time Depth Cond (uS/cm) 11:00 1033 8960 10:00 1060 9450 13:30 1092 9230 15:30 1123 9560 9:40 1155 9950 11:35 1185 11960 14:50 1218 12850 18:20 1248 12510 9:50 1279 12570 16:00 1309 11600 18:40 1340 13220 9:35 1372 13880 12:40 1401 14650 15:17 1434 16550 15:17 1434 16550 17:45 1465 16630 9:10 1496 16460 11:50 1528 15830 13:45 1558 14040 19:04 1618 10960 9:05 1650 5600 11:10 1682 5970 13:35 <td>Time Depth Cond Temp (uS/cm) 11:00 1033 8960 26.4 10:00 1060 9450 24.1 13:30 1092 9230 22.1 15:30 1123 9560 23.1 9:40 1155 9950 22.3 11:35 1185 11960 24.4 14:50 1218 12850 23.9 18:20 1218 12850 23.1 9:50 1279 12570 23.1 16:00 1309 11600 23.8 18:40 1340 13220 23.0 9:35 1372 13880 23.2 12:40 1401 14650 22.7 15:17 1434 16550 22.7 15:17 1434 16550 22.7 17:45 1465 16630 22.5 9:10 1496 16460 22.5 9:10 1496 16460</td> <td>TimeDepthTempChloride(us/cm)(C)(mg/L)11:001033896026.4225010:001060945024.1225013:301092923022.1225015:301123956023.1225015:301125995022.3225011:3511851196024.4275014:5012181285023.9300018:2012481251022.730009:5012791257023.1325016:0013091160023.8275018:4013401322023.0325015:7114341655022.7350015:1714341655022.7350015:1714341655022.737509:1014961663022.537509:1014961663022.5350011:5015281583022.7350013:4515581436022.6350013:4515581404022.5350019:0416181096022.1150011:101682597022.0150015:201742607022.2150015:201742607022.015009:451800608021.41500</td> <td>Time Depth Cond Temp Chloride H2S 11:00 1033 8960 26.4 2250 NA 11:00 1060 9450 24.1 2250 NA 13:30 1092 9230 22.1 2250 NA 15:30 1123 9560 23.1 2250 NA 15:30 1123 9560 23.3 2250 NA 15:30 1123 9560 23.3 2250 NA 15:30 1123 9560 23.3 2250 0.53 11:35 1185 11960 24.4 2750 0.42 14:50 1218 12510 22.7 3000 0.53 18:20 1248 12510 23.1 3250 0.64 18:40 1309 11600 23.8 2750 0.64 18:40 1340 13220 23.7 3500 0.42 19:35 1372 13880<</td> <td>Test Well SGF-1TimeDepthTempChlorideH2SSulfate(uS/cm)(C)(mg/L)(mg/L)(mg/L)11:001033896026.42250NA>20010:001060945024.12250NA>20013:301092923022.12250NA>20015:301123956023.12250NA>20011:55995022.322500.53>20011:3511851196024.427500.42>20014:5012181285023.930000.32>20018:2012181250023.132500.64>20018:4012191257023.132500.64>20018:4013091160023.827500.64>20018:4013401322023.032500.64>20019:5013721388023.237500.64>20011:5114451655022.735000.43>20015:1714341655022.737500.37>20011:501528158022.537500.37>20011:5015281663022.535000.32>20015:5515881404022.535000.32>20015:6515881404022.535000.32>200</td> <td>Test Well SGF-1TimeDepthImage CondTempChlorideH2SSulfateCond(uS/cm)(C)(mg/L)(mg/L)(mg/L)(mg/L)(mg/L)11:001033896026.42250NA>200936010:001060945024.12250NA>200975011:301092923022.12250NA>200975015:301123956023.12250NA>200946011:351195995022.322500.53>200938011:3511851196024.427500.42>200938011:3511851196024.427500.42>200938011:3512181281022.730000.53>200982011:501218125023.132500.64>2001014016:0013091160023.827500.64>2001029015:1714341655022.735000.42>2001028015:1714341655022.737500.37>2001028015:171434165022.737500.37>2001053015:1714651663022.537500.37>2001105015:171434165022.735000.53>20011280<trr<tr>15:1814660<td< td=""><td>Test Well SGF-1TimeDepthTempChlorideH2SSulfateCondTemp(uS/cm)(C)(mg/L)(mg/L)(mg/L)(uS/cm)(C)11:001033896026.42250NA>200936024.510:001060945024.12250NA>200936024.513:301092923022.12250NA>200946022.315:301125995022.322500.53>200946022.39:401155995022.322500.53>200938023.014:5012181196024.427500.42>200938023.318:2012181285023.930000.32>200938023.318:2012181285023.930000.53>200982022.29:5012791257023.132500.64>2001014023.016:0013091160023.827500.64>2001013022.99:3513721388022.735000.42>2001028023.115:1714341655022.737500.37>2001028022.115:4114651663022.737500.37>200115022.715:4515881404022.537500.37>2001160</td></td<><td>Test Well Self-itTimeDepthImage: Self and the self and the</td><td>Test Well SGF-1TimeDepthCondTempChorideH2SSulfateCondTempChorideH2S11:001033896026.42250NA>20024.52250NA10:001060945024.12250NA>200975023.52500NA11:301092923022.12250NA>200975023.52500NA15:301123956023.12250NA>200946023.02250NA9:401155995022.322500.53>200946023.022501.5411:511186124827500.53>200938023.322501.5411:521124128023.930000.32>200938023.322501.5411:501248125023.132500.53>200982022.222501.6411:501248125023.132500.64>2001014023.025001.6411:501349132023.032500.64>2001013023.625001.6411:501448132023.737500.64>2001013023.625001.6411:501449132023.737500.64>2001030023.625001.6411:5114341</td></trr<tr></td>	Time Depth Cond Temp (uS/cm) 11:00 1033 8960 26.4 10:00 1060 9450 24.1 13:30 1092 9230 22.1 15:30 1123 9560 23.1 9:40 1155 9950 22.3 11:35 1185 11960 24.4 14:50 1218 12850 23.9 18:20 1218 12850 23.1 9:50 1279 12570 23.1 16:00 1309 11600 23.8 18:40 1340 13220 23.0 9:35 1372 13880 23.2 12:40 1401 14650 22.7 15:17 1434 16550 22.7 15:17 1434 16550 22.7 17:45 1465 16630 22.5 9:10 1496 16460 22.5 9:10 1496 16460	TimeDepthTempChloride(us/cm)(C)(mg/L)11:001033896026.4225010:001060945024.1225013:301092923022.1225015:301123956023.1225015:301125995022.3225011:3511851196024.4275014:5012181285023.9300018:2012481251022.730009:5012791257023.1325016:0013091160023.8275018:4013401322023.0325015:7114341655022.7350015:1714341655022.7350015:1714341655022.737509:1014961663022.537509:1014961663022.5350011:5015281583022.7350013:4515581436022.6350013:4515581404022.5350019:0416181096022.1150011:101682597022.0150015:201742607022.2150015:201742607022.015009:451800608021.41500	Time Depth Cond Temp Chloride H2S 11:00 1033 8960 26.4 2250 NA 11:00 1060 9450 24.1 2250 NA 13:30 1092 9230 22.1 2250 NA 15:30 1123 9560 23.1 2250 NA 15:30 1123 9560 23.3 2250 NA 15:30 1123 9560 23.3 2250 NA 15:30 1123 9560 23.3 2250 0.53 11:35 1185 11960 24.4 2750 0.42 14:50 1218 12510 22.7 3000 0.53 18:20 1248 12510 23.1 3250 0.64 18:40 1309 11600 23.8 2750 0.64 18:40 1340 13220 23.7 3500 0.42 19:35 1372 13880<	Test Well SGF-1TimeDepthTempChlorideH2SSulfate(uS/cm)(C)(mg/L)(mg/L)(mg/L)11:001033896026.42250NA>20010:001060945024.12250NA>20013:301092923022.12250NA>20015:301123956023.12250NA>20011:55995022.322500.53>20011:3511851196024.427500.42>20014:5012181285023.930000.32>20018:2012181250023.132500.64>20018:4012191257023.132500.64>20018:4013091160023.827500.64>20018:4013401322023.032500.64>20019:5013721388023.237500.64>20011:5114451655022.735000.43>20015:1714341655022.737500.37>20011:501528158022.537500.37>20011:5015281663022.535000.32>20015:5515881404022.535000.32>20015:6515881404022.535000.32>200	Test Well SGF-1TimeDepthImage CondTempChlorideH2SSulfateCond(uS/cm)(C)(mg/L)(mg/L)(mg/L)(mg/L)(mg/L)11:001033896026.42250NA>200936010:001060945024.12250NA>200975011:301092923022.12250NA>200975015:301123956023.12250NA>200946011:351195995022.322500.53>200938011:3511851196024.427500.42>200938011:3511851196024.427500.42>200938011:3512181281022.730000.53>200982011:501218125023.132500.64>2001014016:0013091160023.827500.64>2001029015:1714341655022.735000.42>2001028015:1714341655022.737500.37>2001028015:171434165022.737500.37>2001053015:1714651663022.537500.37>2001105015:171434165022.735000.53>20011280 <trr<tr>15:1814660<td< td=""><td>Test Well SGF-1TimeDepthTempChlorideH2SSulfateCondTemp(uS/cm)(C)(mg/L)(mg/L)(mg/L)(uS/cm)(C)11:001033896026.42250NA>200936024.510:001060945024.12250NA>200936024.513:301092923022.12250NA>200946022.315:301125995022.322500.53>200946022.39:401155995022.322500.53>200938023.014:5012181196024.427500.42>200938023.318:2012181285023.930000.32>200938023.318:2012181285023.930000.53>200982022.29:5012791257023.132500.64>2001014023.016:0013091160023.827500.64>2001013022.99:3513721388022.735000.42>2001028023.115:1714341655022.737500.37>2001028022.115:4114651663022.737500.37>200115022.715:4515881404022.537500.37>2001160</td></td<><td>Test Well Self-itTimeDepthImage: Self and the self and the</td><td>Test Well SGF-1TimeDepthCondTempChorideH2SSulfateCondTempChorideH2S11:001033896026.42250NA>20024.52250NA10:001060945024.12250NA>200975023.52500NA11:301092923022.12250NA>200975023.52500NA15:301123956023.12250NA>200946023.02250NA9:401155995022.322500.53>200946023.022501.5411:511186124827500.53>200938023.322501.5411:521124128023.930000.32>200938023.322501.5411:501248125023.132500.53>200982022.222501.6411:501248125023.132500.64>2001014023.025001.6411:501349132023.032500.64>2001013023.625001.6411:501448132023.737500.64>2001013023.625001.6411:501449132023.737500.64>2001030023.625001.6411:5114341</td></trr<tr>	Test Well SGF-1TimeDepthTempChlorideH2SSulfateCondTemp(uS/cm)(C)(mg/L)(mg/L)(mg/L)(uS/cm)(C)11:001033896026.42250NA>200936024.510:001060945024.12250NA>200936024.513:301092923022.12250NA>200946022.315:301125995022.322500.53>200946022.39:401155995022.322500.53>200938023.014:5012181196024.427500.42>200938023.318:2012181285023.930000.32>200938023.318:2012181285023.930000.53>200982022.29:5012791257023.132500.64>2001014023.016:0013091160023.827500.64>2001013022.99:3513721388022.735000.42>2001028023.115:1714341655022.737500.37>2001028022.115:4114651663022.737500.37>200115022.715:4515881404022.537500.37>2001160	Test Well Self-itTimeDepthImage: Self and the	Test Well SGF-1TimeDepthCondTempChorideH2SSulfateCondTempChorideH2S11:001033896026.42250NA>20024.52250NA10:001060945024.12250NA>200975023.52500NA11:301092923022.12250NA>200975023.52500NA15:301123956023.12250NA>200946023.02250NA9:401155995022.322500.53>200946023.022501.5411:511186124827500.53>200938023.322501.5411:521124128023.930000.32>200938023.322501.5411:501248125023.132500.53>200982022.222501.6411:501248125023.132500.64>2001014023.025001.6411:501349132023.032500.64>2001013023.625001.6411:501448132023.737500.64>2001013023.625001.6411:501449132023.737500.64>2001030023.625001.6411:5114341

- Cond (uS/cm) denotes field conductivity measured in microSiemans per centimeter

- Temp (C) denotes field temperature measured in degrees Celsius

- mg/L denotes milligrams per liter

- H2S denotes field hydrogen sulfide using a HACH kit (Model HS-WR)

- Sulfate measured in the field using a HACH kit (Model SF-1)

- Time refers to the time the drill-stem sample was taken. In general, the annulus samples were collected approximately 0.5 to 0.75 hour after the drill stem samples were collected.

- Depth refers to the total depth of the pilot hole at the time both the drill stem and the annulus sample was collected

- Drill stem samples were collected at the location where cuttings and drilling fluids discharge into the onsite settling tanks. The Contractor removed cuttings (cleaned the borehole) for approximately 15 minutes prior to collecting the drill-stem water sample

- Reverse-air, open circulation drilling method was used during pilot hole drilling. The annulus between the drill stem and the open hole was allowed to flow during drilling. Annulus samples are considered a more representative sample (compared to drill stem samples) of the entire borehole between the base of the 28-inch casing (set at 1,000 feet bgl) and the depth of the pilot hole at the time the annulus sample was collected.

Test Well SGF-2												
Date	Time	Depth			Drill Stem					Annulus		
			Cond	Temp	Chloride	H2S	рН	Cond	Temp	Chloride	H2S	рН
		'	(uS/cm)	(C)	(mg/L)	(mg/L)	(mg/L)	(uS/cm)	(C)	(mg/L)	(mg/L)	(mg/L)
11/16/2012	16:25	1052	3742	26.9	1000	0.27	8.9					
11/19/2012	9:50	1083	9790	24.5	2250	0.37	8.3					
11/19/2012	12:55	1115	9674	23.0	2250	0.48	8.3	9648	23.7	2250	1.22	8.5
11/19/2012	16:22	1150	10239	22.9	2500	0.37	8.3	9450	23.1	2250	1.33	8.2
12/4/2012	8:55	1177	11450	21.8	2750	0.27	8.2	9860	24.3	2250	0.48	8.2
12/4/2012	10:03	1208	11360	22.6	2500	<0.25	8.1	9790	22.8	2250	1.33	8.1
12/4/2012	11:50	1239	11470	22.9	2750	0.48	8.1	9860	23.2	2500	1.38	8.0
12/4/2012	13:45	1270	12610	23.0	2750	0.27	8.1	9700	23.4	2250	1.54	8.0
12/4/2012	16:10	1301	12790	23.0	3000	0.48	8.2	10460	23.3	2500	1.38	8.0
12/5/2012	17:20	1332	13350	23.1	3000	0.42	8.2	10540	25.2	2500	<0.25	8.2
12/5/2012	18:33	1364	13660	22.9	3250	0.37	8.2	10960	23.1	2750	NA	8.1
12/6/2012	12:37	1395	NA	23.4	3250	0.58	8.2	11200	23.6	2750	1.59	8.1
12/6/2012	14:30	1426	15854	23.9	3500	0.80	8.2	11050	23.9	2750	1.70	8.1
12/6/2012	16:50	1456	18864	23.5	4250	0.70	8.2	11590	23.5	3000	1.64	8.0
12/6/2012	18:30	1487	18730	23.0	4750	0.58	8.2	11100	22.9	2750	1.64	8.0
12/7/2012	8:50	1518	18986	22.3	5000	0.58	8.2	13040	22.5	3750	1.70	8.1
12/7/2012	11:08	1548	19190	22.8	4750	0.64	8.1	13178	22.1	3750	1.80	8.1
12/7/2012	14:10	1580	18205	23.1	4750	0.64	8.3	13380	23.1	3700	1.70	8.1
12/7/2012	16:00	1611	16645	23.1	4500	0.48	8.1	13705	23.1	3700	1.59	8.2
12/8/2012	7:55	1643	13693	21.9	4000	0.27	8.2	13350	23.1	4000	1.22	8.2
12/8/2012	9:02	1674	10465	22.2	3250	0.42	8.3	13222	22.7	3500	1.70	7.9
12/8/2012	11:12	1705	16270	22.4	4500	0.16	8.1	13259	23.1	4000	1.59	8
12/8/2012	13:13	1734	13937	22.8	4250	0.16	8.2	12997	23.1	4000	1.54	8.1
12/10/2012	8:30	1765	12215	22.1	3500	0.32	8.3	13995	21.8	3750	1.70	8
12/10/2012	12:05	1796	9250	22.2	2500	0.48	8.3	13340	22.8	3750	1.59	8
12/10/2012	0:00	1800	8150	22.4	2500	0.32	8.3	13500	22.6	3750	1.39	8.1
1/3/2013	11:39	1833	10380	21.1	2750	<0.25	NA	13790	22.3	3750	1.33	NA
1/3/2013	14:37	1863	7110	22.4	2000	<0.25	NA	13880	22.9	3500	1.33	NA

Water-Quality Sampling Results from Pilot-Hole Reverse-Air Discharge Sawgrass Test Well SGF-2, City of Sunrise, Florida

- Cond (uS/cm) denotes field conductivity measured in microSiemans per centimeter

- Temp (C) denotes field temperature measured in degrees Celsius

- mg/L denotes milligrams per liter

- H2S denotes field hydrogen sulfide using a HACH kit (Model HS-WR)

- Time refers to the time the drill-stem sample was taken. In general, the annulus samples were collected approximately 0.5 to 0.75 hour after the drill stem samples were collected.

- Depth refers to the total depth of the pilot hole at the time both the drill stem and the annulus sample was collected

- Drill stem samples were collected at the location where cuttings and drilling fluids discharge into the onsite settling tanks. The Contractor removed cuttings (cleaned the borehole) for approximately 15 minutes prior to collecting the drill-stem water sample

- Reverse-air, open circulation drilling method was used during pilot hole drilling. The annulus between the drill stem and the open hole was allowed to flow during drilling. Annulus samples are considered a more representative sample (compared to drill stem samples) of the entire borehole between the base of the 28-inch casing (set at 1,006 feet bgl) and the depth of the pilot hole at the time the annulus sample was collected.

Specific Capacity Testing Results from Pilot-Hole Drilling Sawgrass Test Well SGF-1, City of Sunrise, Florida

Test Well SGF-1												
Date	Start Time	P.H. Depth	Test Duration	Volume Purged	Flow Rate	W.L. Start	W.L. Finish	Drawdown	Specific Capacity	Corrected W.L. Start	Corrected Drawdown	Corrected Specific Capacity
		(ft bgl)	(min)	(gal)	(gpm)	(ft agl)	(ft agl)	(ft)	(gpm/ft)	(ft agl)	(ft agl)	(gpm/ft)
8/2/12	10:20	1028		No flo	ow from a	annulus;	no test p	erformed				
8/3/12	9:40	1060	2.14	373	174	45.45	19.75	25.70	6.8	45.4	25.65	6.8
8/3/12	13:06	1092	10.00	5984	598	40.85	10.35	30.50	19.6	44.2	33.85	17.7
8/3/12	15:46	1123	10.78	6643	616	37.25	8.45	28.8	21.4	43.07	34.62	17.8
8/6/12	9:16	1155	11.42	5984	524	37.25	8.64	28.6	18.3	42.7	34.06	15.4
8/6/12	11:49	1185	10.17	5984	588	36.15	6.55	29.6	19.9	42.3	35.75	16.5
8/6/12	14:55	1218	9.25	5984	647	36.85	7.60	29.3	22.1	42.0	34.40	18.8
8/6/12	18:46	1248	9.50	5984	630	35.95	8.35	27.6	22.8	41.65	33.30	18.9
8/7/12	10:09	1279	7.68	5984	779	35.95	9.35	26.6	29.3	41.9	32.55	23.9
8/7/12	16:12	1309	6.67	5984	897	40.95	7.73	33.2	27.0	42.1	34.37	26.1
8/7/12	18:46	1340	6.96	5984	860	35.74	8.25	27.5	31.3	42.35	34.10	25.2
8/8/12	9:45	1379	10.00	8976	898	37.45	8.33	29.1	30.8	42.0	33.67	26.7
8/8/12	13:00	1401	9.83	8976	913	35.85	7.02	28.8	31.7	41.9	34.88	26.2
8/8/12	15:38	1434	9.67	8976	928	37.35	8.81	28.5	32.5	41.7	32.89	28.2
8/8/12	18:10	1465	10.20	8976	880	35.95	6.73	29.2	30.1	41.45	34.72	25.3
8/9/12	9:30	1496	8.75	8976	1026	37.25	8.09	29.2	35.2	41.5	33.41	30.7
8/9/12	12:02	1528	8.50	8976	1056	36.65	7.99	28.7	36.8	41.5	33.51	31.5
8/9/12	14:01	1558	8.62	8976	1041	35.55	8.36	27.2	38.3	41.5	33.14	31.4
8/9/12	16:14	1588	10.17	11969	1177	35.65	6.90	28.8	40.9	41.5	34.60	34.0
8/10/12	7:20	1618	9.58	11969	1249	41.58	9.35	32.2	38.8	41.55	32.20	38.8
8/10/12	9:40	1650	9.50	11969	1260	37.45	10.34	27.1	46.5	42.3	31.96	39.4
8/10/12	11:30	1682	9.33	11969	1283	38.35	9.13	29.2	43.9	43.10	33.97	37.8
8/10/12	13:55	1712	8.83	11969	1355	37.20	10.54	26.7	50.8	43.50	32.96	41.1
8/10/12	15:38	1742	8.30	11969	1442	38.55	9.50	29.1	49.6	44.40	34.90	41.3
8/13/12	7:25	1774	7.68	11969	1558	45.05	7.50	37.6	41.5	45.05	37.55	41.5
8/13/12	10:10	1800	7.66	11969	1563	41.68	3.27	38.4	40.7	45.05	41.78	37.4
10/10/12	14:01	1127	15.00	6643	443	37.35	4.24	33.1	13.4			

- P.H. Depth (ft bgl) denotes Pilot Hole Depth, feet below ground level

- min denotes minutes

- gal denotes gallons

-gpm denotes gallons per minute

- ft agl denotes feet above ground level

- gpm/ft denotes specific capacity measured at gallons per minute per feet of drawdown

- W.L. Start refers to the water level just prior to starting a specific capacity test. Water level measured using a clear manometer tube connected to the annulus and running up the drill-rig mast. At each drill rod connection, the Contractor terminated reverse-air discharge and shut-in the annulus. The Contractor then waited approximately 15 to 20 minutes to allow water levels to recover.

- W.L. Finish refers to the water level just prior to terminating the specific capacity while the annulus is flowing at the rate indicated

- Drawdown refers to the difference between W.L. Start and W.L. Finish

- Specific Capacity calculated by dividing the Flow Rate by the Drawdown

- Corrected W.L. is based on the water level measured at the start of each work shift after allowing the water level to recover overnight for several hours. The Corrected W.L. shaded in green are actual water levels measured. Non-shaded values were calculated using a linear regression between the known shaded values.

- Corrected Drawdown refers to the difference between the Corrected W.L. and W.L. Finish

- Corrected Specific Capacity calculated by dividing the Flow Rate by the Corrected Drawdown

-Specific capacity test on 10/10/12 was performed within a nominal 28-inch borehole between 1,006 and 1,127 feet bgl. As with all other specific capacity tests performed, the drill bit and pipe was within the borehole when performing the 10/10/12 test.

Specific Capacity Testing Results from Pilot-Hole Drilling Sawgrass Test Well SGF-2, City of Sunrise, Florida

Test Well SGF-2												
Date	Start Time	P.H. Depth	Test Duration	Volume Purged	Flow Rate	W.L. Start	W.L. Finish	Drawdown	Specific Capacity	Corrected W.L. Start	Corrected Drawdown	Corrected Specific Capacity
		(ft bgl)	(min)	(gal)	(gpm)	(ft agl)	(ft agl)	(ft)	(gpm/ft)	(ft agl)	(ft agl)	(gpm/ft)
11/19/12	7:15	1052	12.00	1142	95	45.24	10.77	34.5	2.8	45.2	34.47	2.8
11/19/12	10:07	1083	10.00	1593	159	41.15	7.95	33.2	4.8	43.8	35.81	4.4
11/19/12	13:20	1115	10.00	2520	252	31.67	9.03	22.6	11.1	42.3	33.24	7.6
11/19/12	16:46	1150	10.00	221	222	29.23	11.95	17.3	12.8	40.8	28.84	7.7
12/4/12	7:20	1177	8.00	3590	449	39.30	6.85	32.5	13.8	39.3	32.45	13.8
12/4/12	10:25	1208	7.00	2585	369	33.38	8.92	24.5	15.1	39.5	30.55	12.1
12/4/12	12:15	1239	7.00	2886	412	34.15	9.87	24.3	17.0	39.6	29.77	13.8
12/4/12	13:50	1270	8.00	3662	458	33.32	10.30	23.0	19.9	39.8	29.51	15.5
12/4/12	16:20	1301	7.00	3920	560	31.88	9.70	22.2	25.2	40.0	30.28	18.5
12/5/12	16:30	1332	8.00	6000	750	40.15	10.12	30.0	25.0	40.15	30.03	25.0
12/5/12	18:33	1364	8.00	6000	750	32.78	8.85	23.9	31.3	39.8	30.95	24.2
12/6/12	13:13	1395	10.00	8348	835	33.65	7.65	26.0	32.1	39.45	31.80	26.3
12/6/12	15:08	1426	10.00	8663	866	32.35	8.27	24.1	36.0	39.33	31.06	27.9
12/6/12	16:55	1456	10.00	9669	967	31.92	6.45	25.5	38.0	39.26	32.81	29.5
12/6/12	18:50	1487	10.00	8671	867	30.80	8.55	22.3	39.0	39.10	30.55	28.4
12/7/12	8:50	1518	10.00	9540	954	33.60	10.10	23.5	40.6	39.15	29.05	32.8
12/7/12	11:08	1548	10.00	9770	977	33.15	9.25	23.9	40.9	39.20	29.95	32.6
12/7/12	14:10	1580	10.00	10010	1001	31.28	8.03	23.3	43.1	39.24	31.21	32.1
12/7/12	16:00	1611	10.00	10150	1015	30.75	12.00	18.8	54.1	39.29	27.29	37.2
12/8/12	7:55	1643	10.00	11120	1112	39.29	14.50	24.8	44.9	39.96	25.46	43.7
12/8/12	9:02	1674	10.00	11680	1168	36.07	10.60	25.5	45.9	40.63	30.03	38.9
12/8/12	11:12	1705	10.00	12930	1293	36.12	10.05	26.1	49.6	41.29	31.24	41.4
12/8/12	13:13	1734	10.00	12770	1277	35.89	10.50	25.4	50.3	41.96	31.46	40.6
12/10/12	10:17	1765	10.00	14380	1438	38.58	8.45	30.1	47.7	42.63	34.18	42.1
12/10/12	12:43	1796	10.00	14150	1415	38.92	9.10	29.8	47.5	44.06	34.96	40.5
12/10/12	13:57	1800	10.00	14740	1474	37.77	9.85	27.9	52.8	45.49	35.64	41.4
1/3/13	13:00	1833	10.00	15380	1538	39.25	7.65	31.6	48.7			
1/3/13	14:45	1863	7.00	10220	1460	37.90	10.60	27.3	53.5			

- P.H. Depth (ft bgl) denotes Pilot Hole Depth, feet below ground level

- min denotes minutes

- gal denotes gallons

-gpm denotes gallons per minute

- ft agl denotes feet above ground level

- gpm/ft denotes specific capacity measured at gallons per minute per feet of drawdown

- W.L. Start refers to the water level just prior to starting a specific capacity test. Water level measured using a clear manometer tube connected to the annulus and running up the drill-rig mast. At each drill rod connection, the Contractor terminated reverse-air discharge and shut-in the annulus. The Contractor then waited approximately 15 to 20 minutes to allow water levels to recover.

- W.L. Finish refers to the water level just prior to terminating the specific capacity test while the annulus is flowing at the rate indicated

- Drawdown refers to the difference between W.L. Start and W.L. Finish

- Specific Capacity calculated by dividing the Flow Rate by the Drawdown

- Corrected W.L. is based on the water level measured at the start of each work shift after allowing the water level to recover overnight for several hours. The Corrected W.L. shaded in green are actual water levels measured. Non-shaded values were calculated using a linear regression between the known shaded values.

- Corrected Drawdown refers to the difference between the Corrected W.L. and W.L. Finish

- Corrected Specific Capacity calculated by dividing the Flow Rate by the Corrected Drawdown

Appendix C

Geophysical Logging in SGF-1 and SGF-2

Figure C-1: Test Well SGF-1 Geophysical Logging Between Ground Level and 1,020 Feet BGL

G:AProjects/WR/WF PROJECTS/Sunrise/FL Test Well CA/Floridan Test Wells/Geophysical Logs/Merged PH Data 073013.xlsMerged Chart 0-1020

Figure C-2 Test Well SGF-1 Geophysical Logging Between 1,000 and 1,800 Feet BGL

G:AProjects/WR/WF PROJECTS/Sunrise/FL Test Well CA/Floridan Test Wells/Geophysical Logs/Merged PH Data 073013.xls/Merged Chart 1000-1800

Figure C-3 Test Well SGF-1 Dynamic Geophysical Logging Between 1,000 and 1,800 Feet BGL

G:\AProjects\WR\WF PROJECTS\Sunrise\FL Test Well CA\Floridan Test Wells\Geophysical Logs\Merged PH Data 073013.xlsDynamic Chart 1000-1800

Figure C-4 Test Well SGF-2 Geophysical Logging Between Ground Level and 980 Feet BGL

G:AProjects/WR/WF PROJECTS/Sunrise/FL Test Well CA/Floridan Test Wells/Geophysical Logs/SGF1 & SGF2 Comparison.xlsxSGF2 Logs

Figure C-5 Test Well SGF-2 Geophysical Logging Between 1,000 and 1,800 Feet BGL

G:\AProjects\WR\WF PROJECTS\Sunrise\FL Test Well CA\Floridan Test Wells\Geophysical Logs\SGF2 PH sd50 073013.xlsxSGF2 Logs

Figure C-6 Test Well SGF-6 Dynamic Geophysical Logging Between 1,000 and 1,800 Feet BGL

G:AProjects/WR/WF PROJECTS/Sunrise/FL Test Well CA/Floridan Test Wells/Geophysical Logs/SGF2 PH sd50 073013.xlsxDynamic Chart 1000-1800 (2)

Figure C-7: Geophysical Logging Comparison Between Ground Level and 980 Feet BGL

G:AProjects/WR/WF PROJECTS/Sunrise/FL Test Well CA/Floridan Test Wells/Geophysical Logs/SGF1 & SGF2 Comparison.xlsxMerged Chart 1000-1800

Figure C-8: Geophysical Logging Comparison Between 1,000 and 1,800 Feet BGL

G:\AProjects\WR\WF PROJECTS\Sunrise\FL Test Well CA\Floridan Test Wells\Geophysical Logs\SGF2 PH sd50 073013.xtsx

Figure C-9: Percent Flow Comparison Between 1,000 and 1,800 Feet BGL

1600

G:AProjects/WR\WF PROJECTS\Sunrise\FL Test Well CA\Floridan Test Wells\Geophysical Logs\SGF2 PH sd50 073013.xlsx\SGF1&2 % Flow

1600

1600

Appendix D

Packer Test Summaries, Charts and Laboratory Reports Test Well SGF-1 Packer Test 1

PACKER TEST WATER QUALITY SUMMARY

Sawgrass Floridan Test Well Construction

City of Sunrise, Florida

Test Well SGF-1 Packer Test No. 1 (Single Packer)

Start date: 8/21/2012		End dat	e: 8/21/2012
Flowmeter Total-Start (gal) :	49673	Open Hole Total Depth (feet bgl) :	1,800
Flowmeter Total- End (gal) :	103140	Packer Depth Interval (feet bgl):	1,600 - 1,800
Stabilized Test Pumping Rate (gpm) :	221	Pump Setting Depth (feet bgl):	180.0
Development Duration (hrs):	2.2	Transducer Depth (feet bgl):	170.3 (Drill Pipe); 0.0 (Annulus)
Pump Test Duration (min):	242	Pipe and open hole volume:	857 + 809 = 1,666 gallons
Static DTW Before Test (feet bgl):	-46	Maximum Drawdown (feet):	39.2

Date	Time	Elapsed	Pumping	Total	Water	Temp.	Cond.	Chlorides	Comments			
		Time	Rate	Volume	Level							
		(min)	(gpm)	(gal)	(feet bgl)	(^O C)	(µS/cm)	(mg/L)				
						Develo	opment					
8/20/12	18:40	0		0	-39.0				Begin pump development; Tot: 19,817			
8/20/12	19:09	29	220	6,380		22	4,610		Tot: 26,197; Pkr Psi: 180			
8/20/12	19:43	63	220	13,870		21.9	5,040		Tot: 33,687; Pkr Psi: 180			
8/20/12	20:09	89	220			21.9	5,080	2,250	Pkr Psi: 180			
8/20/12	20:17	97	220	22,028					Ann: -38.4 ft bgl Tot: 41,845; Pkr Psi: 180			
8/20/12	20:55	135	220	29,856					Step Test: Begin Recovery; Tot: 49,673			
	Pump Test											
8/21/12	7:37	0		0	-46.0				Step Test, Turn on Pump; Ann: -44.46			
8/21/12	7:45	8	225	1798	8.2	20.8	4290	1,750	Tot: 51,471			
8/21/12	8:05	28	223	6,255	-7.9	21.2	4510		Ann: -41.1 ft; Tot: 55,928; Pkr Psi: ~200			
8/21/12	8:30	53	226	11,913	-7.5	21.3	4700		Ann: 41.0 ft; Tot: 61,586; Pkr Psi: ~200			
8/21/12	9:00	83	218	18,468	-7.4	21.5	4,750	2,000	Ann: 40.9 ft; Tot: 68,140; Pkr Psi: ~200			
8/21/12	9:30	113	218	25,014	-7.2	21.8	4,820		Ann: 40.8 ft; Tot: 74,687; Pkr Psi: ~200			
8/21/12	10:00	143	221	31,660	-7.3	21.9	4,850	2,000	Ann: -40.7 ft; Tot: 81,333; Pkr Psi: ~200			
8/21/12	10:30	173	218	38,196	-7.2	22.4	4,930		Ann: -40.7 ft; Tot: 87,869; Pkr Psi: ~200			
8/21/12	11:01	204	222	45,064	-7.1	22.2	5,030	2,000	Ann: -40.6 ft; Tot: 94,737; Pkr Psi: ~200			
8/21/12	11:25	228	221			22.2	5,050		Collect Lab Sample			
8/21/12	11:39	242	221	53,467					Step Tests, Turn off Pump; Tot: 103,140			

"gal" denotes gallons.

"gpm" denotes gallons per minute.

"min" denotes minutes.

"feet bpl" denotes feet below pad level.

"ºC" denotes degrees celcius.

"µS/cm" denotes milliSiemans per cenitmeter.

"mg/L" denotes milligrams per liter.

"psi" denotes pressure in pounds per square inch.

"bgl" denotes below ground level

Project: 5080 Site Location: Sunrise, FL Matrix: Water Page 1 of 2 Report Printed: 08/30/12 Submission # 1208000596 Order # 28896

 Sample I.D.:
 SGF-1 PKR #1(1,600-1,800)

 Collected:
 08/21/12
 11:37

 Received:
 08/21/12
 13:10

 Collected by:
 Rod Miller

LABORATORY ANALYSIS REPORT

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Specific Conductance (grab)	8650		uS/cm	1.0	3.0	120.1	08/22 15:20	08/22 15:20	DGK
Turbidity (lab)	2.80		NTU	0.1	0.3	180.1	08/22 10:00	08/22 10:00	DGK
Bromide	10.8		mg/L	2.75	8.25	300.0	08/22 17:44	08/21 17:44	DGK
Chloride	2420		mg/L	5.50	16.50	300.0	08/21 17:44	08/21 17:44	DGK
Fluoride	U	U	mg/L	2.100	6.300	300.0	08/21 17:44	08/21 17:44	DGK
Ortho-Phosphate (as P)	U	U	mg/L	1.250	3.750	300.0	08/21 17:44	08/21 17:44	DGK
Sulfate	670		mg/L	5.35	16.05	300.0	08/21 17:44	08/21 17:44	DGK
Alkalinity, Total (CaCO3) Endpoint 4.3	110		mg/L	0.1	0.3	310.1	08/23 12:05	08/23 12:05	DGK
Bicarbonate	110		mg/L	0.01	0.03	310.1	08/23 12:06	08/23 12:06	DGK
Carbonate	0.20		mg/L	0.01	0.03	310.1	08/23 12:06	08/23 12:06	DGK
Nitrogen (Ammonia) as N	0.48		mg/L	0.01	0.03	350.1	08/22 12:46	08/22 12:46	RPV
Hydrogen Sulfide (Un-ionized)	0.73		mg/L	0.010	0.030	376.2	08/21 17:26	08/21 17:26	RPV
Color/pH (Lab)	10/7.69		Pt-Co	1.0	3.0	SM2120B	08/22 10:00	08/22 10:00	DGK
Total Dissolved Solids (TDS)	5300		mg/L	1.00	3.00	SM 2540C	08/22 11:00	08/23 14:55	MCZ
pH (Lab)	7.69	Q	units	0.1	0.3	SM4500-H+-B	08/22 09:00	08/22 09:00	DGK
Silica	9.83		mg/L	0.22	0.66	SM4500-SiO2	08/28 16:30	08/28 16:30	RPV
Hardness, Calcium	250		mg/L	1.00	3.00	200.7	08/21	08/21 16:47	IMN
Hardness, Total	1049		mg/L	0.035	0.105	200.7	08/21	08/21 16:49	IMN
		t		i					

Florida-Spectrum Environmental Services, Inc. 1460 W. McNab Road, Fort Lauderdale, FL 33309

Pembroke Laboratory 528 Gooch Rd. Fort Meade, FL 33841 ٠

Big Lake Laboratory 610 North Parrot Ave. Okeechobee, FL 34972 <u>www.flenviro.com</u> Spectrum Laboratories 630 Indian St. Savannah, GA 31401

All NELAP certified analyses are performed in accordance with Chapter 64E-1 Florida Administrative Code, which has been determined to be equivalent to NELAC standards. Analyses certified by programs other than NELAP are designated with a "~".

Project: 5080 Site Location: Sunrise, FL Water Matrix:

1

Page 2 of 2 **Report Printed:** 08/30/12 Submission # 1208000596 Order # 28896

Sample I.D.: SGF-1 PKR #1(1,600-1,800) Collected: 08/21/12 11:37 08/21/12 Received: 13:10 Collected by: Rod Miller

LABORATORY ANALYSIS REPORT

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Aluminum	0.004		mg/L	0.00070	0.00210	200.7	08/21	08/21 16:47	IMN
Barium	0.010		mg/L	0.00003	0.00009	200.7	08/21	08/21 16:47	IMN
Boron	0.831		mg/L	0.0037	0.0111	200.7	08/21	08/21 16:47	IMN
Calcium	100		mg/L	0.0036	0.0108	200.7	08/21	08/21 16:47	IMN
Iron, Dissolved	0.013		mg/L	0.00080	0.00240	200.7	08/21	08/21 16:43	IMN
Iron	0.180		mg/L	0.0008	0.0024	200.7	08/21	08/21 16:47	IMN
Magnesium	194		mg/L	0.0475	0.1425	200.7	08/21	08/22 10:03	IMN
Manganese	0.007		mg/L	0.00009	0.00027	200.7	08/21	08/21 16:47	IMN
Potassium	94.4		mg/L	0.0011	0.0033	200.7	08/21	08/21 16:47	IMN
Sodium	1593		mg/L	0.070	0.210	200.7	08/21	08/22 10:03	IMN
Strontium	19.8		mg/L	0.00075	0.00225	200.7	08/21	08/22 10:03	IMN
Lab. filtration	08/21/2012						08/21	08/21	IMN

* H2S Calculation Based on Lab pH Unless indicated, soil results are reported based on actual (wet) weight basis.

Analytes not currently NELAC certified denoted by $\hat{}$. Work performed by outside (subcontract) labs denoted by Cert.ID in Analyst Field. Results relate only to this sample. QC = Qualifier Codes as defined by DEP 62-160

U = Analyzed for but not detected.

Q=Sample held beyond accepted holding time. I=Value is between MDL and PQL.

J=Estimated value.

10/2

Authorized CSM Signature (954) 978-6400 Florida-Spectrum Environmental Services, Inc. Certification # E86006

SUBMISSION : 2008 - 544 Logged in LIMS by A CSM assigned Report to: (company name) Flor Invoice to: (company name) Project Name and/or Number 50 Project Contact: Dan Rin Sampler Name:	# B Spectrum	$ \begin{array}{c} $	CH McNab Road Ft n Street Savanna th Road Fort Me ot Ave. N, Okeec inal-Return w/r	F CUSTODY RECORD DUE DATE Reques 09 Tel: (954) 978-6400 Fax: (954) 978-2233 Tel: (912) 238-5050 Fax: (912) 234-4815 1 Tel: (863) 285-8145 Fax: (863) 285-7030 972 Tel: (863) 763-3336 Fax: (863) 763-1544 Rush Surcharges app Yellow-Lab File Copy Pink - Sampler Copy Report to Address: Invoice to Address: Site Location: Sum r.'Se Fax: Email: Colspan="2">Colspan="2"Colspan="2" Colspan					E Requested ERVATION # charges apply //-y Com		
ORDER # Lab Control Number Shaded Areas For Laboratory Use Only	Sample ID S	Date Tin Sampled Samp	led Matrix DW SW GW WW S SED HW BIO SEA OIL	Bottle & Pres. Combo Codes	Number of Containers Received & NELAC Letter Suffixes	See br	Al Spec Da c	nalysis - Swet	Required	T E M P °C	CICI TESTS P C C H O H N L B O R
1 2001 c 2 3 4	5GF-1 _ RPKR#0	×/2/12 /1.'3		LUTU 1511 CI	5						
5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2											
9 10 Special Comments:					Total	S	ignature		Ā	filiation	Date/Time
"I waive TNI protocol" (eme Deliverables: Sample Custody & Field (Temp as received Custody seals? Y FIELD TIME: Sampling Pick-Up	rgency) (sign here) > Comments A-liter amber B-Bacteria bag/b F-500 ml H-Plastic Amber L-liter bottle S2-2 oz soil jar / S4-4 oz soil jar / S4-4 oz soil jar / V-40 ml vial W-wide mouth	A/QC Report Need tottle Type ottle 0-125 ml Lifer 58-8 oz soil jar	ed? Yes A-ascorbic C-HCL Cu-CuSO- DI-DI wat H-HNO3 M-MCAB MeOH-Mc Z-zinc ace	No (addi Preservativ 2 acid P-H S-H 4 T-N er U-U N-N N-N NH4 ethanol tate	tional charge) ss sy 2SO4 a2S2O3 npreserved aOH 4-NH4CL	1 R 2 R 3 R 3 R	celinquistic celinquistic ceceived by celinquistic ceceived by	d by:	D mhr	8/21/12	2 1316
Misc. Charges	X-other Additio B-brown liter pla	TED-Tedlar Air Bag mal Bottle Types istic	Hex-Hex C EDA-Ethy	Cr Buffer lene Diamine	rvauves		www.fler	wiro.com		COC Page	of

Test Well SGF-1 Packer Test 2

PACKER TEST WATER QUALITY SUMMARY

Sawgrass Floridan Test Well Construction

City of Sunrise, Florida

Test Well SGF-1

Packer Test No. 2 (Single Packer - Annulus)

Start date: 8/23/2012		End dat	e: 8/23/2012
Flowmeter Total-Start (gal) :	NA	Open Hole Total Depth (feet bgl) :	1,800
Flowmeter Total- End (gal) :	NA	Packer Depth Interval (feet bgl):	1,000 - 1,155
Stabilized Test Pumping Rate (gpm) :	479	Pump Setting Depth (feet bgl):	No Pump; Free Flowing AnnIulus
Development Duration (hrs):	6.6	Transducer Depth (feet bgl):	40.3 (Drill Pipe); 2.0 (Annulus)
Pump Test Duration (min):	2085	Pipe and open hole volume:	30,274 + 835 = 31,109 gallons
Static DTW Before Test (feet bgl):	-38.9	Maximum Drawdown (feet):	38.2

Date	Time	Elapsed	Pumping	Total	Annulus	Temp.	Cond.	Chlorides	Comments		
		Time	Rate	Volume	W.L.						
		(min)	(gpm)	(gal)	(feet bgl)	(^O C)	(µS/cm)	(mg/L)			
Development											
8/22/12	14:14	0		0	-36.16				Begin Flowing Annulus		
8/22/12	15:00	46	500	23,000	-2.17		5,670	2,000	Drill Pipe W.L.: -43.64 ft bgl		
8/22/12	17:06	172	500	86,000	-1.80	22.1	5,130	2,000	Drill Pipe W.L.: -45.15 ft bgl		
8/22/12	18:15	241	470	118,430	-1.70	21.4	5,130		Drill Pipe W.L.: -45.3 ft bgl		
8/22/12	19:45	331	508	164,144	-1.65	21.7	5,170		Drill Pipe W.L.: -45.6 ft bgl		
8/22/12	20:30	376	511	187,120	-1.60	21.7	5,230		Drill Pipe W.L.: -45.6 ft bgl		
8/22/12	20:50	396		194,585					Terminate Flow		
	1					Pump	o Test				
8/23/12	7:10	0		0					Resume Flow; Begin Pump Test		
8/23/12	8:33	83		31,430	-1.47	22.4	5,130		Drill Pipe W.L.: -46.21 ft bgl		
8/23/12	10:07	177	535	81,763	-1.25	22.6	5,200		Drill Pipe W.L.: -46.23 ft bgl		
8/23/12	12:17	307		152,808	-1.10	23.6	5,170		Drill Pipe W.L.: -46.28 ft bgl		
8/23/12	14:05	415	524	209,414	-1.04	23.6	5,170		Drill Pipe W.L.: -46.33 ft bgl		
8/23/12	17:25	615	480	305,414	-0.93	23.4	5,260		Drill Pipe W.L.: -46.39 ft bgl		
8/23/12	18:00	650	480	322,214	-0.92	22.8	5,230		Drill Pipe W.L.: -46.41 ft bgl		
8/23/12	20:00	770	480	388,531	-0.88	22.7	5,220	2,250	Drill Pipe W.L.: -46.42 ft bgl		
8/23/12	22:00	890	498	439,729	-0.85	22.5	5,240		Drill Pipe W.L.: -46.45 ft bgl		
8/24/12	0:00	1010	498	503,108	-0.81	23	5,230		Drill Pipe W.L.: -46.5 ft bgl		
8/24/12	2:00	1130	498	559,347	-0.79	22.6	5,240	2,250	Drill Pipe W.L.: -46.51 ft bgl		
8/24/12	4:00	1,250	489	618,017	-0.76	22.7	5,240		Drill Pipe W.L.: -46.51 ft bgl		
8/24/12	6:00	1,370	485	676,252	-0.75	21.9	5,240	2,250	Drill Pipe W.L.: -46.53 ft bgl		
8/24/12	8:30	1520	485	749,002	-2.10	22.5	5,240		Drill Pipe W.L.: -46.54 ft bgl		
8/24/12	11:19	1689		830,967	-2.08	22.9	5,250		Drill Pipe W.L.: -46.55 ft bgl		
8/24/12	13:59	1849	493	909,813	-2.04	23	5,250		Drill Pipe W.L.: -46.6 ft bgl		
8/24/12	15:23	1933	470	949,259	-2.05				Drill Pipe W.L.: -46.63 ft bgl		
8/24/12	17:16	2,046	465	1,001,848	-2.02	22.9	5,290		Drill Pipe W.L.: -46.64 ft bgl		
8/24/12	17:40	2070			-2.02	23.9	5,290	2,250	Drill Pipe W.L.:-46.66; Collect Lab Sample		
8/24/12	17:55	2085	446	1,037,967	-2.02				Drill Pipe W.L.:-46.65 ft bgl; Terminate flow		
	1		1			1					

"gal" denotes gallons.

"gpm" denotes gallons per minute.

"min" denotes minutes.

"feet bpl" denotes feet below pad level.

"°C" denotes degrees celcius.

"µS/cm" denotes milliSiemans per cenitmeter.

"mg/L" denotes milligrams per liter.

"psi" denotes pressure in pounds per square inch.

"bgl" denotes below ground level

Site Location: Sunrise

Sunrise

Water

Project:

Matrix:

Page 1 of 2 Report Printed: 09/06/12 Submission # 1208000765 Order # 29637

Sample I.D.: PKR Test #2 (1,000-1,155) 08/24/12 08/28/12 Collected: 17:40 **Received:** 11:40 Collected by: Rod Miller

LABORATORY ANALYSIS REPORT

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Specific Conductance (grab)	9200		uS/cm	1.0	3.0	120.1	08/28 14:12	08/28 14:12	DGK
Turbidity (lab)	0.30	Q	NTU	0.1	0.3	180.1	08/28 13:48	08/28 13:48	DGK
Bromide	11.5		mg/L	2.75	8.25	300.0	08/28 17:42	08/28 17:42	DGK
Chloride	2580		mg/L	5.50	16.50	300.0	08/28 17:42	08/28 17:42	DGK
Fluoride	U	υ	mg/L	2.100	6.300	300.0	08/28 17:42	08/28 17:42	DGK
Ortho-Phosphate (as P)	υ	QU	mg/L	1.250	3.750	300.0	08/28 17:42	08/28 17:42	DGK
Sulfate	875		mg/L	5.35	16.05	300.0	08/28 17:42	08/28 17:42	DGK
Alkalinity, Total (CaCO3) Endpoint 4.3	108.0		mg/L	0.1	0.3	310.1	08/30 17:02	08/30 17:02	RPV
Bicarbonate	108.0		mg/L	0.01	0.03	310.1	08/30 17:04	08/30 17:04	RPV
Carbonate	0.13		mg/L	0.01	0.03	310.1	08/30 17:06	08/30 17:06	RPV
Nitrogen (Ammonia) as N	0.77		mg/L	0.01	0.03	350.1	08/29 14:33	08/29 14:33	RPV
Hydrogen Sulfide (Un-ionized)	0.47		mg/L	0.050	0.150	376.2	08/28 17:26	08/28 17:26	RPV
Color/pH (Lab)	5/7.50	Q	Pt-Co	1.0	3.0	SM2120B	08/28 13:47	08/28 13:47	DGK
Total Dissolved Solids (TDS)	5850		mg/L	1.00	3.00	SM 2540C	08/30 14:00	08/31 13:10	MCZ
pH (Lab)	7.50	Q	units	0.1	0.3	SM4500-H+-B	08/28 13:45	08/28 13:45	DGK
Silica	10.9		mg/L	0.22	0.66	SM4500-SiO2	08/28 16:30	08/28 16:30	RPV
Hardness, Calcium	285	-	mg/L	1.00	3.00	200.7	08/29	08/29 15:27	IMN
Hardness, Total	1055		mg/L	0.035	0.105	200.7	08/29	08/29 15:27	IMN
	I	I a sur s	1	1.					

Florida-Spectrum Environmental Services, Inc. 1460 W. McNab Road, Fort Lauderdale, FL 33309

٠

Pembroke Laboratory 528 Gooch Rd. Fort Meade, FL 33841

Big Lake Laboratory 610 North Parrot Ave. Okeechobee, FL 34972 www.flenviro.com

Spectrum Laboratories 630 Indian St. Savannah, GA 31401

All NELAP certified analyses are performed in accordance with Chapter 64E-1 Florida Administrative Code, which has been determined to be equivalent to NELAC standards. Analyses certified by programs other than NELAP are designated with a "~".

:

h 1

> Project: Sunrise Site Location: Sunrise Matrix: Water

Page 2 of 2 Report Printed: 09/06/12 Submission # 1208000765 Order # 29637

Sample I.D.: PKR Test #2 (1,000-1,155) Collected: 08/24/12 17:40 08/28/12 **Received:** 11:40 Collected by: Rod Miller

LABORATORY ANALYSIS REPORT

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHÓD	DATE EXT.	DATE ANALY.	ANALYST
Aluminum	0.005		mg/L	0.00070	0.00210	200.7	08/29	08/29 15:27	IMN
Barium	0.005		mg/L	0.00003	0.00009	200.7	08/29	08/29 15:27	IMN
Boron	1.260		mg/L	0.0037	0.0111	200.7	08/29	08/29 15:27	IMN
Çalcium	114	1	mg/L	0.0036	0.0108	200.7	08/29	08/29 15:27	IMN
Iron, Dissolved	0.013		mg/L	0.00080	0.00240	200.7	08/29	08/29 15:23	IMN
Iron	0.021		mg/L	0.0008	0.0024	200.7	08/29	08/29 15:27	IMN
Magnesium	187		mg/L	0.0475	0.1425	200.7	08/29	08/30 10:25	IMN
Manganese	0.001		mg/L	0.00009	0.00027	200.7	08/29	08/29 15:27	IMN
Potassium	111		mg/L	0.0011	0.0033	200.7	08/29	08/29 15:27	IMN
Sodium	1710		mg/L	0.070	0.210	200.7	08/29	08/30 10:25	IMN
Strontium	9.96		mg/L	0.00075	0.00225	200.7	08/29	08/30 10:25	IMN
Lab. filtration	08/28/2012						08/28	08/28	IMN

* H2S Calculation Based on Lab pH Unless indicated, soil results are reported based on actual (wet) weight basis.

Analytes not currently NELAC certified denoted by -. Work performed by outside (subcontract) labs denoted by Cert.ID in Analyst Field. Results relate only to this sample. QC=Qualifier Codes as defined by DEP 62-160

U=Analyzed for but not detected.

Q=Sample held beyond accepted holding time. I=Value is between MDL and PQL. J=Estimated value.

at the second

alan

Authorized CSM Signature (954) 178-6400 Florida-Spectrum Environmental Services, Inc. Certification # E86006

Test Well SGF-1 Packer Tests 3A and 3B

PACKER TEST WATER QUALITY SUMMARY

Sawgrass Floridan Test Well Construction

City of Sunrise, Florida

Test Well SGF-1

Packer Test No. 3A (Straddle Packer - Drill Stem)

Start date: 8/29/2012		End dat	End date: 8/29/2012					
Flowmeter Total-Start (gal) :	103141	Open Hole Total Depth (feet bgl) :	1,800					
Flowmeter Total- End (gal) :	166259	Packer Depth Interval (feet bgl):	1,528 - 1,569					
Stabilized Test Pumping Rate (gpm) :	203	Pump Setting Depth (feet bgl):	165.0					
Development Duration (hrs):	0	Transducer Depth (feet bgl):	144.3 (D.P.); 2.0 (Ann.); ~1,573 (m. troll)					
Pump Test Duration (min):	313	Pipe and open hole volume:	819 + 167 = 986 gallons					
Static DTW Before Test (feet bgl):	-45.2	Maximum Drawdown (feet):	86.3					

Date	Time	Elapsed	Pumping	Total	Drill Stem	Temp.	Cond.	Chlorides	Comments		
		Time	Rate	Volume	W.L.						
		(min)	(gpm)	(gal)	(feet bgl)	(^O C)	(µS/cm)	(mg/L)			
	Development										
Comment	ced Pump	oing Test wit	hout Perfor	ming Devel	opment	T			1		
				I.		Pum	o Test				
8/29/12	16:54	0	0	0	-45				Step Test: Begin Pumping Straddle Interval		
8/29/12	17:00	6	186	1,116	37.33				Ann W.L38.4 ft bgl; Tot: 104,257		
8/29/12	17:31	37	203	7,419	39.99	22.5	8,140		Ann W.L38.5 ft bgl; Tot: 110,559		
8/29/12	18:00	66	204	13,324	41.19	21.9	8,130	3,500	Ann W.L38.6 ft bgl; Tot: 116,465		
8/29/12	18:30	96	202	19,395	41.39	21.8	8,220		Ann W.L38.6 ft bgl; Tot: 122,536		
8/29/12	19:01	127	203	25,701	41.67	22.0	8,160	3,500	Ann W.L38.8 ft bgl; Tot: 128,842		
8/29/12	19:30	156	201	31,520	41.77	21.7	8,190		Ann W.L38.8 ft bglTot: 134,661		
8/29/12	20:00	186	203	37,620	42.18	21.6	8,190	3,500	Ann W.L38.9 ft bglTot: 140,761		
8/29/12	20:30	216	204	43,743	42.14	21.8	8,130		Ann W.L38.9 ft bglTot: 146,884		
8/29/12	21:00	246	194	49,572	41.57	21.7	8,100	3,500	Ann W.L38.9 ft bglTot: 152,713		
8/29/12	21:30	276	203	55,682	41.39	21.7	8,130		Ann W.L39.0 ft bglTot: 158,823		
8/29/12	21:45	291	204	58,742	40.73	21.7	8,150	3,500	Collect Lab Sample; YSI probe Cond: 15,580 uS/cm		
8/29/12	22:07	313	203	63,118					Step Test: Turn off Pump		

"gal" denotes gallons.

"gpm" denotes gallons per minute.

"min" denotes minutes.

"feet bpl" denotes feet below pad level.

"°C" denotes degrees celcius.

"µS/cm" denotes milliSiemans per cenitmeter.

"mg/L" denotes milligrams per liter. "psi" denotes pressure in pounds per square inch. "bgl" denotes below ground level

PACKER TEST WATER QUALITY SUMMARY

Sawgrass Floridan Test Well Construction

City of Sunrise, Florida

Test Well SGF-1

Packer Test No. 3B (Annulus Above Straddle Packer)

Start date: 8/31/2012		End dat	End date: 8/31/2012					
Flowmeter Total-Start (gal) :	NA	Open Hole Total Depth (feet bgl) :	1,800					
Flowmeter Total- End (gal) :	NA	Packer Depth Interval (feet bgl):	1,528 - 1,569 (Annulus: 1,000 - 1,528)					
Stabilized Test Pumping Rate (gpm) :	920	Pump Setting Depth (feet bgl):	Free Flowing Annulus					
Development Duration (hrs):	0	Transducer Depth (feet bgl):	144.3 (D.P.); 2.0 (Ann.); ~1,573 (m. troll)					
Pump Test Duration (min):	362	Pipe and open hole volume:	30,274 + 2,153 = 32,427 gallons					
Static DTW Before Test (feet bgl):	40.7	Maximum Drawdown (feet):	36.7					

Date	Time	Elapsed	Pumping	Total	Drill Stem	Temp.	Cond.	Chlorides	Comments
		Time	Rate	Volume	W.L.				
		(min)	(gpm)	(gal)	(feet bgl)	(^O C)	(µS/cm)	(mg/L)	
						Develo	opment		
Comment	ced Pum	ping Test wit	thout Perfor	ming Devel	opment	T	T		1
						Pum	p Test		
8/31/12	6:06	0	0	0	40.7				Step Test: Begin Flowing Annulus
8/31/12	6:20	14	1,334	18,676	5				Drill Stem W.L. 40.87 ft bgl
8/31/12	6:40	34	860	35,876	4.58	22.1	10,698		Drill Stem W.L. 40.39 ft bgl
8/31/12	7:30	84	912	81,517	4.30	21.9	12,694		Drill Stem W.L. 39.87 ft bgl
8/31/12	8:03	117	961	113,237	4.23	22.4	12,360	3,000	Drill Stem W.L. 39.67 ft bgl
8/31/12	8:34	148	904	141,265	4.15	22.7	12,239		Drill Stem W.L. 39.52 ft bgl
8/31/12	9:04	178	967	170,267	4.09	22.6	12,233		Drill Stem W.L. 39.46 ft bgl
8/31/12	9:36	210	903	199,193	4.03	22.8	12,174		Drill Stem W.L. 39.29 ft bgl
8/31/12	10:07	241	946	228,538	4.00	23.0	12,154	2,750	Drill Stem W.L. 39.27 ft bgl
8/31/12	10:37	271	901	255,589	3.94	23.1	12,174		Drill Stem W.L. 39.16 ft bgl
8/31/12	11:04	298	960	281,505	3.91	23.2	12,207	3,000	Drill Stem W.L. 39.07 ft bgl
8/31/12	11:45	339	920	319,216	3.83	24.2	12,175		Collect Lab Sample; Drill Stem W.L. 38.98 ft bgl
8/31/12	12:08	362	920	340,376	3.84				Step Test: Turn off Pump
	1	1		1		1		1	

"gal" denotes gallons.

"gpm" denotes gallons per minute.

"min" denotes minutes.

"feet bpl" denotes feet below pad level.

"°C" denotes degrees celcius.

"µS/cm" denotes milliSiemans per cenitmeter.

"mg/L" denotes milligrams per liter. "psi" denotes pressure in pounds per square inch. "bgl" denotes below ground level

Page 1 of 2 Report Printed: 09/11/12 Submission # 1208000889 Order # 30293

Project: Sunrise Site Location: Sunrise Matrix: Water

Sample I.D.: PKR Test 3A (1528-1569) Collected: 08/29/12 21:45 Received: 08/31/12 13:05 Collected by: Rodney Miller

LABORATORY ANALYSIS REPORT

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Specific Conductance (grab)	14300		uS/cm	1.0	3.0	120.1	09/01 14:11	09/01 14:11	DGK
Turbidity (lab)	9.30		NTU	0.1	0.3	180.1	08/31 17:30	08/31 17:30	DGK
Bromide	14.8	I	mg/L	5.50	16.50	300.0	08/31 18:20	08/31 18:20	DGK
Chloride	4280		mg/L	11.00	33.00	300.0	08/31 18:20	08/31 18:20	DGK
Fluoride	υ	U	mg/L	4.200	12.600	300.0	08/31 18:20	08/31 18:20	DGK
Ortho-Phosphate (as P)	U	U	mg/L	2.500	7.500	300.0	08/31 18:20	08/31 18:20	DGK
Sulfate	875		mg/L	10.70	32.10	300.0	08/31 18:20	08/31 18:20	DGK
Alkalinity, Total (CaCO3) Endpoint 4.3	102		mg/L	0.1	0.3	310.1	09/05 17:15	09/05 17:15	RPV
Bicarbonate	102		mg/L	0.01	0.03	310.1	09/05 17:15	09/05 17:15	RPV
Carbonate	0.15		mg/L	0.01	0.03	310.1	09/05 17:15	09/05 17:15	RPV
Nitrogen (Ammonia) as N	0.88	· ·	mg/L	0.01	0.03	350.1	09/04 13:54	09/04 13:54	RPV
Hydrogen Sulfide (Un-ionized)	0.44		mg/L	0.100	0.300	376.2	08/31 15:28	08/31 15:28	RPV
Color/pH (Lab)	15/7.83		Pt-Co	1.0	3.0	SM2120B	08/31 17:32	08/31 17:32	RPV
Salinity (Lab)	8.4		ppt	0.10	0.30	SM 2520B	09/01 14:15	09/01 14:15	DGK
Total Dissolved Solids (TDS)	9070		mg/L	1.00	3.00	SM 2540C	09/04 14:30	09/05 14:53	MCZ
pH (Lab)	7.83	Q	units	0.1	0.3	SM4500-H+-B	08/31 17:39	08/31 17:39	RPV
Silica	8.71		mg/L	0.22	0.66	SM4500-SiO2	09/10 16:34	09/10 16:34	RPV
Hardness, Calcium	375		mg/L	1.00	3.00	200.7	09/04	09/04 15:20	IMN
	r	1		1	<u> </u>			 	

Florida-Spectrum Environmental Services, Inc. 1460 W. McNab Road, Fort Lauderdale, FL 33309

Pembroke Laboratory 528 Gooch Rd. Fort Meade, FL 33841

No.

•

Big Lake Laboratory 610 North Parrot Ave. Okeechobee, FL 34972 www.flenviro.com Spectrum Laboratories 630 Indian St. Savannah, GA 31401

All NELAP certified analyses are performed in accordance with Chapter 64E-1 Florida Administrative Code, which has been determined to be equivalent to NELAC standards. Analyses certified by programs other than NELAP are designated with a "~".

Page 2 of 2 Report Printed: 09/11/12 Submission # 1208000889 Order # 30293

Project:	Sunrise
Site Location:	Sunrise
Matrix:	Water

Sample I.D.:	PKR Test 3A (1528-1569)
Collected:	08/29/12 21:45
Received:	08/31/12 13:05
Collected by:	Rodney Miller

LABORATORY ANALYSIS REPORT

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Hardness, Total	1684		mg/L	0.875	2.625	200.7	09/04	09/04 15:20	IMN
Aluminum	0.004		mg/L	0.00070	0.00210	200.7	09/04	09/04 15:20	IMN
Barium	0.015		mg/L	0.00003	0.00009	200.7	09/04	09/04 15:20	IMN
Boron	1.230		mg/L	0.0037	0.0111	200.7	09/04	09/04 15:20	IMN
Calcium	150		mg/L	0.0036	0.0108	200.7	09/04	09/04 15:20	IMN
Iron, Dissolved	0.080		mg/L	0.00080	0.00240	200.7	09/04	09/04 15:16	IMN
Iron	0.190		mg/L	0.0008	0.0024	200.7	09/04	09/04 15:20	IMN
Magnesium	318		mg/L	0.0475	0.1425	200.7	09/04	09/05 09:00	IMN
Manganese	0.007		mg/L	0.00009	0.00027	200.7	09/04	09/04 15:20	IMN
Potassium	140		mg/L	0.0011	0.0033	200.7	09/04	09/04 15:20	IMN
Sodium	2913		mg/L	0.070	0.210	200.7	09/04	09/05 09:00	IMN
Strontium	25.5		mg/L	0.00075	0.00225	200.7	09/04	09/05 09:00	IMN
Lab. filtration	08/31/2012						08/31	08/31	IMN

* H2S Calculation Based on Lab pH Unless indicated, soil results are reported based on actual (wet) weight basis.

Analytes not currently NELAC certified denoted by ". Work performed by outside (subcontract) labs denoted by Cert.ID in Analyst Field. Results relate only to this sample. QC=Qualifier Codes as defined by DEP 62-160

U=Analyzed for but not detected.

Q=Sample held beyond accepted holding time. I=Value is between MDL and PQL.

J=Estimated value.

Control of

Authorized CSM Signature (954) 978-6400 Florida-Spectrum Environmental Services, Inc. Certification # E86006

SURMISSION	<u> </u>			CH	ATN	OF	CI	IST	ODY	REC	ORI		<u> </u>		DUE	DATE	Reques	ted
108-38 Cogged in LIMS by	B		460 W. McNa 30 Indian Stre 528 Gooch Ros 510 Parrot Ave	ab Road Ft I bet Savannal ad Fort Mea	aud. FL 33309 Tel: (954) 978-6400 Fax: (954) 978-2233 a, GA 31401 Tel: (912) 238-5050 Fax: (912) 234-4815 de, FL 33841 Tel: (863) 285-8145 Fax: (863) 285-7030 paper EL 34972 Tel: (863) 763-3336 Fax: (863) 763-1544							233 815 030 544	RUSH RESERVATION #					
CSM assigned			Original-J	Return w/re	report Yellow-Lab File Copy Pink - Sampler Copy							Rus	Rush Surcharges apply					
Report to:	da Dation	De lla	~				Report	to	-14	as k	11.		- / -	. /	Par	. Ir	FI	
Invoice to:	ne vesign		Purchase	- a A			Invoic	e to			7				1 4		· •	
(company name) Sam Project Name	e		Order # _)	080			Address: Same Site											
and/or Number Su	nrise	D					Locati	on:						•		_	<i>r.</i>	
Contact: Dan R	insdehl	Phone:	561.32	4.38	85		Fax:	561	84	14 2	29 6	7	Emai	Dar	OFL.	dril	ling	
Sampler Name:	1 Miller	Affiliat	ion:				Samp	ler					•					
ORDER #	Sample	Date	Time	Matrix	Bot	tle	Num	ber of		Δ	nəlv	sis Ro	anir	od		Tofa.		holis
Lab Control Number	D	Sampled	Sampled	DW SW	_&	;	Cont	ainers			IIally		yum			T	D I	C
Shaded Areas For Laboratory Use Only				GW WW S SED HW BIO SEA OIL	Con Coc	rs. 1bo tes	& NI Le Suf	ELAC tter fixes	See	t Da	ded	sheet	for	list		Ê M ₽ ℃	н Н	0 H N I D 0
20293	DKRT 1 2A	8-29-13	21:40	GIA	ψ	τı	-5					2,013						
m	INN LEST SH		a	000	THC:							-						
3	1328- 1569 6	t bgl						222393) 2223014		<u> </u>								
							M. C. M.		4		<u> </u>							
													1.010					
3	*							1993. 14 Marca	1. I. I. Ta									
an hier and her																		
7	·····											-				•		
8	h							1929 S. 20-20 S		-				<u> </u>				
									N. (ļ			ļ				
0																		
Special Comments: 20	SH SALINITY F	UP 9	14		1919 1919		T	otal		Signatur	e			Affilis	ition		Da	te/Tim
"I waive TNI protocol" (em	ergency) (sign here) >								1	Relinquisł	ed by:			-9- 2000 C.S.				
Deliverables:		QA/QC Re	port Needed?	Yes 1	No	(addii	tional cl	arge)		Received	¢ Ĥ/	2				a 1		104
Sample Custody & Field	<u>Comments</u>	Bottle Type		A-accorbio	Prese	rvative P H	S PO4				\leq	7		\prec	8-	<u>817</u>	$ \mathcal{L} $	130
Tomin at specified	B-Bacteria b F-500 ml	ag/bottle O-125 ml		C-HCL Cu-CuSO4	ariu	S-H2 T-Na	SO4 2S2O3		4		Ð	mi f	han 2		5.	31-1	/て	
Custody seals? Y	N H-Plastic An L-liter bottle	iber Liter		DI-DI wate H-HNO3	r	U-UI N-Ni	npreser 10H	ved	2	Received I	y:	·						
Sampling	hrs 52-2 02 Soli ji S4-4 oz soil ji T-250 ml	nr / S8-8 oz soil	jar	M-MCAB MeOH-Me	thanol	NH4	-NH4C	L	3	Relinquist	ed by	10						
Pick-Up	hrs V-40 ml vial W-wide mou	lh		Z-zinc acet	ate	0			3	Received 1	y:							
	TED-Tedlar Air Bag Additional Bottle Types Hex-Hex Cr Buffer				rreser	vatives		(-								

۰.

.

Page 1 of 2 Report Printed: 09/11/12 Submission # 1208000888 Order # 30292

Project: Sunrise Site Location: Sunrise Matrix: Water

Sample I.D.: PKR Test 3B (1,000-1,528) Collected: 08/31/12 11:45 Received: 08/31/12 13:05 Collected by: Rod Miller

LABORATORY ANALYSIS REPORT

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Specific Conductance (grab)	11300		uS/cm	1.0	3.0	120.1	09/01 14:10	09/01 14:10	DGK
Turbidity (lab)	0.85		NTU	0.1	0.3	180.1	08/31 17:30	08/31 17:30	DGK
Bromide	10.9	I	mg/L	5.50	16.50	300.0	08/31 18:20	08/31 18:20	DGK
Chloride	3250		mg/L	11.00	33.00	300.0	08/31 18:20	08/31 18:20	DGK
Fluoride	U	U	mg/L	4.200	12.600	300.0	08/31 18:20	08/31 18:20	DGK
Ortho-Phosphate (as P)	U	υ	mg/L	2.500	7.500	300.0	08/31 18:20	08/31 18:20	DGK
Sulfate	933		mg/L	10.70	32.10	300.0	08/31 18:20	08/31 18:20	DGK
Alkalinity, Total (CaCO3) Endpoint 4.3	102		mg/L	0.1	0.3	310.1	09/05 17:11	09/05 17:11	RPV
Bicarbonate	102		mg/L	0.01	0.03	310.1	09/05 17:12	09/05 17:12	RPV
Carbonate	0.13		mg/L	0.01	0.03	310.1	09/05 17:15	09/05 17:15	RPV
Nitrogen (Ammonia) as N	0.81		mg/L	0.01	0.03	350.1	09/04 13:54	09/04 13:54	RPV
Hydrogen Sulfide (Un-ionized)	0.67		mg/L	0.100	0.300	376.2	08/31 15:26	08/31 15:26	RPV
Color/pH (Lab)	U/7.61	U	Pt-Co	1.0	3.0	SM2120B	08/31 17:29	08/31 17:29	RPV
Salinity (Lab)	6.6		ppt	0.10	0.30	SM 2520B	09/01 14:15	09/01 14:15	DGK
Total Dissolved Solids (TDS)	6980		mg/L	1.00	3.00	SM 2540C	09/04 14:30	09/05 14:52	MCZ
pH (Lab)	7.61		units	0.1	0.3	SM4500-H+-B	08/31 17:39	08/31 17:39	RPV
Silica	9.19		mg/L	0.22	0.66	SM4500-SiO2	09/10 16:33	09/10 16:33	RPV
Hardness, Calcium	330		mg/L	1.00	3.00	200.7	09/04	09/04 15:12	IMN
			· · · · · · · · · · · · · · · · · · ·					1	

Florida-Spectrum Environmental Services, Inc. 1460 W. McNab Road, Fort Lauderdale, FL 33309

Pembroke Laboratory 528 Gooch Rd. Fort Meade, FL 33841 •

Big Lake Laboratory 610 North Parrot Ave. Okeechobee, FL 34972 <u>www.flenviro.com</u> Spectrum Laboratories 630 Indian St. Savannah, GA 31401

All NELAP certified analyses are performed in accordance with Chapter 64E-1 Florida Administrative Code, which has been determined to be equivalent to NELAC standards. Analyses certified by programs other than NELAP are designated with a "~".

Site Location: Sunrise

Sunrise

Water

Project:

Matrix:

Page 2 of 2 Report Printed: 09/11/12 Submission # 1208000888 Order # 30292

Sample I.D.:	PKR Test 3E	3(1,000-1,528)
Collected:	08/31/12	11:45
Received:	08/31/12	13:05
Collected by:	Rod Miller	

LABORATORY ANALYSIS REPORT

PARAMETER	RESULT	QC	UNITS	MDL	PQL	METHOD	DATE EXT.	DATE ANALY.	ANALYST
Hardness, Total	1289		mg/L	0.035	0.105	200.7	09/04	09/04 15:12	IMN
Aluminum	0.005		mg/L	0.00070	0.00210	200.7	09/04	09/04 15:12	IMN
Barium	0.007		mg/L	0.00003	0.00009	200.7	09/04	09/04 15:12	IMN
Boron	1.268		mg/L	0.0037	0.0111	200.7	09/04	09/04 15:12	IMN
Calcium	132		mg/L	0.0036	0.0108	200.7	09/04	09/04 15:12	IMN
Iron, Dissolved	0.014		mg/L	0.00080	0.00240	200.7	09/04	09/04 15:07	IMN
Iron	0.024		mg/L	0.0008	0.0024	200.7	09/04	09/04 15:12	IMN
Magnesium	233		mg/L	0.0475	0.1425	200.7	09/04	09/05 08:55	IMN
Manganese	0.001		mg/L	0.00009	0.00027	200.7	09/04	09/04 15:12	IMN
Potassium	127		mg/L	0.0011	0.0033	200.7	09/04	09/04 15:12	IMN
Sodium	2128		mg/L	0.070	0.210	200.7	09/04	09/05 08:55	IMN
Strontium	14.7		mg/L	0.00075	0.00225	200.7	09/04	09/05 08:55	IMN
Lab. filtration	08/31/2012						08/31	08/31	IMN

* H2S Calculation Based on Lab pH Unless indicated, soil results are reported based on actual (wet) weight basis.

Analytes not currently NELAC certified denoted by $\tilde{}$. Work performed by outside (subcontract) labs denoted by Cert.ID in Analyst Field. Results relate only to this sample. QC = Qualifier Codes as defined by DEP 62-160

U = Analyzed for but not detected.

Q=Sample held beyond accepted holding time. I=Value is between MDL and PQL.

J=Estimated value.

R

Authorized CSM Signature (954) 978-6400 Florida-Spectrum Environmental Services,Inc. Certification # E86006

SUBMISSION	#		СН	AIN O	F CUST	ODY	RE	CORI)			DUE	DATE	E Requ	lested	
1208-882 Logged in LIMS b	B Speci	da □ 1460 W. rum □ 630 India 1000 528 Goo □ 610 Parro	McNab Road Ft I an Street Savannal ch Road Fort Mea ot Ave. N, Okeech	Laud. FL 33 h, GA 3140 ide, FL 3384 nobee, FL 3	309 Tel 1 Tel 41 Tel 4972 Tel	l: (954) 9 l: (912) 2 l: (863) 2 l: (863) 7	078-6400 238-5050 285-8145 763-3336		Fax: (9: Fax: (9 Fax: (8 Fax: (8 Fax: (8	54) 978-2 12) 234-4 53) 285-7 63) 763-1	233 815 030 544	RUSH RESERVATION #				#
CSM assigned		Orig	jinal-Return w/re	eport	Yellow-La	b File Co	ору	Pink	- Sampl	er Copy	1927 (S.	Rus	sh Surch	harges a	ıpply	
Report to: (company name) Flori	de Design	Prilling			Report to Address: 14	105 K	V Ki	11 ia-1 .	dr i	lake	Pn-le	E P(
Invoice to: (company name) Same		Purchas Order #	5080		Invoice to Address: Some C											
Project Name and/or Number Stand	rise				Site Location:											
Project Contact: Dan Rin	nsdhal	Phone: 561.	321.358	5	Fax: 561	8	44	29	67	. Emai	Dan	OFI	Orill	lize.	(Or	и
Sampler Name:	1 Miller	Affiliation:	sincer		Sampler Signature					. .						
ORDER #	Sample	Date Tin	ne Matrix	Bottle	Number of Containers		A	nalys	is Re	equir	ed		Thi		16651	\$31
Lab Control Number Shaded Areas For	ID	Sampico Samj	DW SW GW WW S SED HW BIO SEA OIL	Pres.	Received & NELAC Letter Suffixes	S¢ L;	e A	Htache	d st	rest	br		T E M P ℃	P H	C O N D	C H L O P
1 20292	PKR TS+ 3B	8-3+4 11			<u># А-?</u> 5					100103			24.1		2.175	
2	1,000 - 1,54			03											_	
3																
4																
5																
6																
7																
8		Į														
9					agas I. Carle											
					Total	en e		15.559.5.457.457.4 15.559.5.457.457.4		nta ta selección de	n filin sant statist	- Contractor		Antel 193		2648a
"I waive TNI protocol" (em	SHEAL SHUN	INY FOR 9	[4			1	Signatur Relinquis	re hed by:	<u>,</u> 7		Affili	ation		D	ate/Ti	me
Deliverables:		QA/QC Report Need	ed? Yes N	lo (add	itional charge)	1	Beckver	by:	4			P	Q-2	1-11) ;	
Sample Custody & Field	Comments A-liter amb	Bottle Type per bagfaattle	A-ascorbic	Preservativ acid P-H	res 3PO4 3SO4	2	Relinquisi	hed by	\$	A			2 31 7-2	("0 /~ /	$\frac{1}{z}$	50
Temp as received	C F-500 ml H-Plastic A	O-125 ml	C-HCL Cu-CuSO4 DI-DI wate	5-H T-N U-U	4304 a2S2O3 Inpreserved	2	/ Received	by:	Sul	1 14	<u> </u>					
FIELD TIME: Sampling	hrs hrs	2 oz soil jar 4 oz soil jar / S8-8 oz soil jar 4 oz soil jar / S8-8 oz soil jar MeOL-Methanol MeOL-Methanol							-							
Pick-Up	hrs V-40 ml via W-wide mc X-other	al outh TED-Tedlar Air Bai	Z-zinc aceta Add	ate litional Prese	rvatives	3	Received I	by:							,	
Additional Bottle Types Hex-Hex Cr Buffer B-brown liter plastic EDA-Ethylene Diamine							www.fl	enviro.co	m			COC Page		of	_ <u>.</u>	

Test Well SGF-2 Packer Test 1

Test Well SGF-2 Packer Test No. 1 (Single Packer)

Start date: 12/18/2012		End date: 12/18/2012						
Flowmeter Total-Start (gal) :	47100	Open Hole Total Depth (feet bgl) :	1,800					
Flowmeter Total- End (gal) :	115538	Packer Depth Interval (feet bgl):	1,628 - 1,800					
Stabilized Test Pumping Rate (gpm):	190	Pump Setting Depth (feet bgl):	164.0					
Development Duration (hrs):	1	Transducer Depth (feet bgl):	40 (Drill Pipe); 1.5 (Annulus)					
Pump Test Duration (min):	362	Pipe and open hole volume:	1,063 + 696 = 1,759 gallons					
Static DTW Before Test (feet bgl):	-40.5	Maximum Drawdown (feet):	22.8					

Date	Time	Elapsed	Pumping	Total	Drill Stem	Temp.	Cond.	Chlorides	Comments
		Time	Rate	Volume	W.L.				
		(min)	(gpm)	(gal)	(feet bgl)	(^O C)	(µS/cm)	(mg/L)	
						Pump	o Test		
12/18/12	12:00	0	235	0	-41				Begin Test
12/18/12	12:17	17	195	3,940	-20.95	23.9	12,120		Annulus WL ft bgl: -42.2
12/18/12	12:39	39	190	7,600	-19.05				Annulus WL ft bgl: -42.21
12/18/12	12:58	58	185	11,000	-17.39	23.2	12,320		Annulus WL ft bgl: -42.21
12/18/12	13:28	88	190	16,800	-19.45				Annulus WL ft bgl: -42.222
12/18/12	13:57	117	190	22,300	-17.50	23.1	12,350		Annulus WL ft bgl: -42.208
12/18/12	14:28	148	190	28,200	-18.11				Annulus WL ft bgl: -42.204
12/18/12	14:57	177	190	33,700	-17.41	23.2	12,350		Annulus WL ft bgl: -42.184
12/18/12	15:28	208	190	39,600	-17.96				Annulus WL ft bgl: -42.19
12/18/12	15:58	238	185	45,300	-17.82	23	12,350		Annulus WL ft bgl: -42.187
12/18/12	16:35	275	182	52,000	-16.54				Annulus WL ft bgl: -42.18
12/18/12	16:57	297	182	56,000	-17.37	23.3	12,320		Annulus WL ft bgl: -42.13
12/18/12	17:27	327	185	61,700	-17.82				Annulus WL ft bgl: -42.156
12/18/12	17:45	345							Collect lab sample
12/18/12	18:02	362	185	68,438	-17.73	22.7	12,420	3,250	Turn off pump
	1	1	1	i	1			1	1

"gal" denotes gallons.

"gpm" denotes gallons per minute.

"min" denotes minutes.

"feet bgl" denotes feet below ground level.

"°C" denotes degrees celcius.

"µS/cm" denotes milliSiemans per cenitmeter.

"mg/L" denotes milligrams per liter.

"psi" denotes pressure in pounds per square inch.

Page 1 of 3Report Printed:1 2/31/2012Work Order #1 2L0352Project:SunriseSunriseSunrise

Lab ID: Client Sample ID: Matrix:	12L0352-01 Packer Test Water									
	····			ratory	/ Analysis	keport				
Parameter	Result	QC	Units	Dii MDL		PQL	Method	Date Ext.	Date Analy.	Analyst
Field Parameter (s)										
pH (Field)	8.00		pH Units	I	0.100	0.300	SM4500 H+	12/18 18:30	12/18 18:30	Rep.
Specific Conductance	12400		uS/cm	1	1.00	3.00	EPA 120.1	12/18 18:30	12/18 18:30	Rep.
Temperature	22.7		°C	1	1.00	1.00	EPA 170.1	12/18 18:30	12/18 18:30	Rep.
Classical Chemistry Pa	irameters									
Bromide	15.5		mg/L	50	2.75	8.25	EPA 300.0	12/19 17:00	12/20 12:25	RPV
Total Hardness	1250		mg/L	1	0.00360	0.0108	EPA 200.7 Calc	12/19 12:00	12/19 21:24	EMC
Turbidity	17		NTU	1	0.050	0.15	EPA 180.1	12/19 14:00	12/19 14:00	ROL
Wet Chemistry						· · · ·				
Total Alkalinity	118		mg/L	I	2.00	6.00	EPA 310.1	12/21 14:00	12/21 15:59	ROL
Ammonia as N	0.840		mg/L	1	0.0140	0.0420	EPA 350.1	12/26 11:34	12/26 11:34	RPV
Bicarbonate Alkalinity	118		mg/L	1	0.0100	0.0300	EPA 310.1	12/21 14:00	12/24 15:34	ROL
Carbonate	0.160		mg/L	1	0.0100	0.0300	EPA 310.1	12/21 14:00	12/24 15:34	RÖL
Chloride	4030		mg/L	50	5.50	16.5	EPA 300	12/19 17:00	12/19 17:00	RPV
Color	10.0		CU	1	1.00	3.00	SM 2120B	12/19 14:00	12/19 15:01	ROL
Fluoride	ND	υ	mg/L	50	2.10	6.30	EPA 300.0	12/19 17:00	12/20 12:25	RPV

Florida-Spectrum Environmental Services, Inc. 1460 W. McNab Road, Fort Lauderdale, FL 33309

0.0100

1.25

0.220

5.35

0.0300

3.75

0.660

16.0

EPA 376.2

EPA 300.0

SM4500SiO2C

EPA 300.0

Pembroke Laboratory 528 Gooch Rd. Fort Mead, FL 33841

1.04

2.50

9.10

670

I

Hydrogen sulfide

Silica (SiO2)

Sulfate

Orthophosphate as P

Big Lake Laboratory 610 Parrot Ave. N. Okeechobec, FL 34972

1

50

1

50

mg/L

mg/L

mg/L

mg/L

Spectrum Laboratories 630 Indian St. Savannah, GA 31401

12/21 12:09

12/19 17:00

12/26 10:53

12/19 17:00

12/21 12:10

12/20 12:25

12/26 10:55

12/19 17:00

www.flenviro.com

ROL

RPV

ROL

RPV

Report To: Dan Ringdahl Florida Design Dri 1405 N. Killian Dr West Palm Beach I	illing Corporation tive FL, 33403			f 3 'rinted: rder #	12/31/2012 12L0352					
Lab ID: Client Sample ID: Matrix:	12L0352-01 Packer Test Water				3/12 18:30 3/12 10:45 e Balmer					
			Labo	ratory	y Analysis J	Report				
Parameter	Result	QC	Units	Dit	MDL	PQL	Method	Date Ext.	Date Analy.	Analyst
Wet Chemistry										
Total Dissolved Solids 7780			mg/L	1	1.00	3.00	TDS SM 2540C	12/20 17:30	12/21 15:06	MCZ
Metals (Dissolved) by I	EPA 200 Series Meth	lods								
Iron	0.00400		mg/L	1	0.000800	0.00240	EPA 200.7	12/19 12:00	12/20 16:36	EMC
Metals (Drinking Wate	er) by EPA 200 Serie	s Meth	ods					· · · · · · · · · · · · · · · · · · ·		
Calcium Hardness 337		mg/L		1	1.00	3.00	EPA 200.7	12/19 12:00	12/19 21:24	EMC
Total Recoverable Met	tals by EPA 200 Seri	es Metl	nods							
Aluminum	ND	U	mg/L	1	0.000700	0.00210	EPA 200.7	12/19 12:00	12/19 21:24	EMC
Barium	0.0150		mg/L	1	0.0000300	0.0000900	EPA 200.7	12/19 12:00	12/19 21:24	EMC
Boron	0.854		mg/L	1	0.00370	0.0111	EPA 200.7	12/19 12:00	12/19 21:24	EMC
Calcium	135.1		mg/L	1	0.0036	0.0108	EPA 200.7	12/19 12:00	12/19 21:24	EMC
Iron	0.265		mg/L	1	0.000800	0.00240	EPA 200.7	12/19 12:00	12/19 21:24	EMC
Magnesium	220.7		mg/L	1	0.0019	0.0057	EPA 200.7	12/19 12:00	12/19 21:24	EMC
Manganese	0.00800		mg/L	1	0.0000900	0.000270	EPA 200.7	12/19 12:00	12/19 21:24	EMC
Potassium	132.4		mg/L	1	0.0011	0.0033	EPA 200.7	12/19 12:00	12/19 21:24	EMC
Sodium	2245		mg/L	1	0.0028	0.0084	EPA 200.7	12/19 12:00	12/19 21:24	EMC
Strontium	19.0	I	mg/L	10	0.000300	0.000900	EPA 200.7	12/19 12:00	12/24 10:30	EMC

Florida-Spectrum Environmental Services, Inc. 1460 W. McNab Road, Fort Lauderdale, FL 33309

Pembroke Laboratory 528 Gooch Rd. Fort Mead, FL 33841 Big Lake Laboratory 610 Parrot Ave. N. Okeechobee, FL 34972

Spectrum Laboratories 630 Indian St. Savannah, GA 31401

www.flenviro.com

υ

Page 3 of 3 **Report Printed:** 12/31/2012 Work Order # 12L0352 **Project:** Sunrise Sunrise

Notes and Definitions

Indicated that the compound was analyzed for but not detected. This shall be used to indicate that the specific component was not

	detected. The value associated with the qualifier shall be the laboratory method detection limit.
J	Estimated value; value not accurate.
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the detection limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference

v Indicated that the analyte was detected in both the sample and the associated method blank.

I The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.

z Too many colonics were present for accurate counting.

QC=Qualifier Codes as defined by DEP 62-160 Unless indicated, soil results are reported on actual (wet) weight basis. Work performed by outside (subcontracted) labs denoted by SUB in Analyst Field.

Results relate only to this sample.

Maria Castellanos - Lab Manager

Authorized CSM Signature (954) 978-6400 Florida-Spectrum Environmental Services, Inc. Certification# E86006

All NELAP certified analysis are performed in accordance with Chapter 64E-1 Florida Administrative code, which has been determined to be equivalent to NELAC standards. Analysis certified by programs other than NELAP are designated with a "~".

> Florida-Spectrum Environmental Services, Inc. 1460 W. McNab Road, Fort Lauderdale, FL 33309

Pembroke Laboratory 528 Gooch Rd. Fort Mead, FL 33841

Big Lake Laboratory 610 Parrot Ave, N. Okeechobee, FL 34972

Spectrum Laboratories 630 Indian St. Savannah, GA 31401

www.flenviro.com

12.2.030 12.2.030 Logged in LIMS by 1 CSM assigned			460 W. McNa 30 Indian Stre 28 Gooch Ro 10 Parrot Ave	CHL ab Road Ft I cet Savanna ad Fort Mea s. N, Okeecl	AIN O Laud. FL 33 h, GA 3140 ade, FL 3384 hobee, FL 3	F CUST 309 Te 1 Te 41 Te 4972 Te	'OD' 1: (954) 1: (912) 1: (863) 1: (863)	7 REC 978-6400 238-5050 285-8145 763-3336	COR	D Fax: (95 Fax: (91 Fax: (86 Fax: (86	4) 978-2 2) 234-4 3) 285-7 3) 763-1	233 815 030 544	DU RUSI R	E DATI H RESI 18h Surc.	E Reque SRVAT harges ay	sted ION
Report to: (company name) Flor,	ida Pesison	drillin				Report to Address:	Flori	rda d	05.2	ndr	:11,-	<u>~</u>	8			
Invoice to: (company name) Sar	n.e.		Order # 5	08Z	-2	Invoice to Address: 7	105	NK	11/10	nl			and a second s			
and/or Number 5	urise,					Site Location:	inn r	19 L								
Contact: Dan R	insdahl	Phone:	561-37	24-38	85	Fax: 561	8	44 2	967)	Emai	pun	QFL	drif	ling	.6
(printed) Brac	e A Balma		Drille	11		Signature	65	un f	m							
ORDER#	Sample ID	Date Sampled	Time Sampled	Matrix	Bottle &	Number of Containers		Δ	naly	sis Re	quir	ed		Fi	eldí	est
Shaded Areas For Laboratory Use Only				GW WW GW WW S SED HW BIO SEA OIL X AIR	Pres. Combo Codes	& NELAC Letter Suffixes #								T E M P ℃	P H	C O N D
01	See	12/18/12	6:30%	0	部犯	S		0	00	Ptt	L-	1		J	ŧ	
	ATT				BINK			0		<i>v i i</i>				5	Q	2º
					600	2								7	8	ź
8														1		
10																
Special Comments:		1				Total				a sta stat						
"I waive TNI protocol" (er	mergency) (sign here) >						1	Relinquish	A	. D	AL			Sec. de		
Study (and the star		CAJQC Rep	ort Needed?	Yes 1	No (add	itional charge)	1	Received b	F	Z	, .	Ís	Ē,	ala	2/2	
	4 B-Bacheria I	Childs and	and suite		acid P	2504 2504	. 2	Relinquis	ed by:			<u> </u>			<u> </u>	
CHELD TIME				fine and the		a contract weat	2	Received b	y:							
							3	Relinquish	ed by:		(Sizing)					

Test Well SGF-2 Packer Test 2

Test Well SGF-2 Packer Test No. 2 (Single Packer)

Start date: 1/7/2013		End dat	e: 1/7/2013		
Flowmeter Total-Start (gal) :	116495	Open Hole Total Depth (feet bgl) :	1,863		
Flowmeter Total- End (gal) :	166300	Packer Depth Interval (feet bgl):	1,801 - 1,863		
Stabilized Test Pumping Rate (gpm):	166	Pump Setting Depth (feet bgl):	175.0		
Development Duration (hrs):	1	Transducer Depth (feet bgl):	121.0 (Drill Pipe); 2.25 (Annulus)		
Pump Test Duration (min):	302	Pipe and open hole volume:	1,176 + 251 = 1,427 gallons		
Static DTW Before Test (feet bgl):	-56	Maximum Drawdown (feet):	78.9		

Date	Time	Elapsed	Pumping	Total	Drill Stem	Temp.	Cond.	Chlorides	Comments
		Time	Rate	Volume	W.L.				
		(min)	(gpm)	(gal)	(feet bgl)	(^O C)	(µS/cm)	(mg/L)	
1/7/13	7:31	0	0	0	-56				Begin Test; Tot: 116495, Ann W.L45.49' bgl
1/7/13	7:34	3	170	505	19.90				Ann W.L.: -45.49' bgl, Tot: 117000
1/7/13	7:52	21	170	3,505	21.10	21.5	7,090	2,000	Tot: 120000
1/7/13	8:27	56	170	9,605	21.13	21.4	7,050		Ann W.L.: -45.37' bgl; Tot: 126100
1/7/13	8:58	87	168	14,705	21.40	21.4	6,960	2,000	Ann W.L.: -45.32
1/7/13	9:31	120	162	19,905	21.09				Ann W.L.: -45.26' bgl; Tot: 136400
1/7/13	9:57	146	162	24,205	21.70	21.8	6,970	2,000	Ann W.L.: -45.2' bgl; Tot: 140700
1/7/13	10:25	174	163	28,905	23.36				Ann W.L.: -45.2' bgl; Tot: 145400
1/7/13	10:56	205	165	33,905	22.74	21.9	6,970	2,000	Ann W.L.: -45.2' bgl; Tot: 150400
1/7/13	11:26	235	166	38,905	23.06				Ann W.L.: -45.2' bgl; Tot: 155400
1/7/13	11:57	266	166	43,805	22.84	22.0	6,970	2,000	Drill Pipe W.L.: -46.51 ft bgl
1/7/13	12:15	284				22.1	6,960	2,000	Collect Lab Sample
1/7/13	12:33	302	166	49,805					Drill Pipe W.L.: -46.53 ft bgl
						T			

"gal" denotes gallons.

"gpm" denotes gallons per minute.

"min" denotes minutes.

"feet bgl" denotes feet below ground level.

"°C" denotes degrees celcius.

"µS/cm" denotes milliSiemans per cenitmeter.

"mg/L" denotes milligrams per liter.

"psi" denotes pressure in pounds per square inch.

Report To: Dan Ringdahl Florida Design Drilling Corporation 1405 N. Killian Drive West Palm Beach FL, 33403

 Page 1 of 3

 Report Printed:
 1 /2 1/2013

 Work Order #
 1 3A0089

 Project:
 5un 103

 Sun 103
 5un 103

Matrix: Water	Collected By:	Bruce Balmer
Lab ID:13A0089-01Client Sample ID:SGF 2 packer test - 2	Collection Date: Received Date:	01/07/13 14:00

Parameter	Result	QC	Units	Dil	MDL	PQL	Method	Date Ext.	Date Analy.	Analyst

Field Parameter (s)

pH (Field)	8.10		pH Units	ì	0.100	0.300	SM4500 H+	01/07 12:15	01/07 12:15	Rep.
Specific Conductance	6970		uS/cm	1	1	3	EPA 120.1	01/07 12:15	01/07 12:15	Rep.
Temperature	22.0		°C	1	1.00	1.00	EPA 170.1	01/07 12:15	01/07 12:15	Rep.
Classical Chemistry Parameter	s									
Bromide	5.50	I	mg/L	50	2.75	8.25	EPA 300.0	01/08 17:10	01/08 17:10	DGK
Total Hardness	781		mg/L	1	0.00360	0.0108	EPA 200.7 Calc	01/07 17:00	01/08 13:19	EMC
Turbidity	26		NTU	1	0.050	0.15	EPA 180.1	01/08 09:00	01/08 09:00	ROL
Wet Chemistry										
Total Alkalinity	110		mg/L	1	2.00	6.00	EPA 310.1	01/08 09:30	01/08 09:30	ROL
Ammonia as N	0.310		mg/L	1	0.0140	0.0420	EPA 350.1	01/09 11:00	01/09 11:03	ROL
Bicarbonate Alkalinity	109		mg/L	1	0.0100	0.0300	EPA 310.1	01/08 09:30	01/08 09:30	ROL
Carbonate	0.340		mg/L	1	0.0100	0.0300	EPA 310.1	01/08 09:30	01/08 09:30	ROL
Chloride	1810		mg/L	50	5.50	16.5	EPA 300	01/08 17:10	01/08 17:10	DGK
Color	ND	V	CU	1	1.00	3.00	SM 2120B	01/08 09:30	01/08 09:30	ROL
Fluoride	ND	U	mg/L	50	2.10	6.30	EPA 300.0	01/08 17:10	01/08 17:10	DGK
Hydrogen sulfide	0.264		mg/L	1	0.0100	0.0300	EPA 376.2	01/08 12:00	01/08 12:00	ROL
Orthophosphate as P	ND	υ	mg/L	50	1.25	3.75	EPA 300.0	01/08 17:10	01/08 17:10	DGK
Silica (SiO2)	10.2		mg/L	1	0.220	0.660	SM4500SiO2C	01/15 14:00	01/15 15:30	ROL
Sulfate	880		mg/L	50	5.35	16.0	EPA 300.0	01/08 17:10	01/08 17:10	DGK

Florida-Spectrum Environmental Services, Inc. 1460 W. McNab Road, Fort Lauderdale, FL 33309

Pembroke Laboratory 528 Gooch Rd. Fort Mcad, FL 33841 Big Lake Laboratory 610 Parrot Ave. N. Okeechobee, FL 34972 Spectrum Laboratories 630 Indian St. Savannah, GA 31401

www.flenviro.com

Report To: Dan Ringdahl **Report Printed:** 1/21/2013 Florida Design Drilling Corporation Work Order # 13A0089 1405 N. Killian Drive **Project:** Sun 103 West Palm Beach FL, 33403 Sun 103 Collection Date: 01/07/13 12:15 Lab ID: 13A0089-01 Received Date: 01/07/13 14:00 **Client Sample ID:** SGF 2 packer test - 2 Collected By: Bruce Balmer Matrix: Water Laboratory Analysis Report Units Parameter Result QC Dil MDL PQL Method Date Ext. Date Analy. Analyst Wet Chemistry 4330 TDS SM 2540C 01/10 14:00 1 1.00 01/14 12:15 MCZ Total Dissolved Solids mg/L 3.00 Metals (Dissolved) by EPA 200 Series Methods 0.0140 0.000800 EPA 200.7 01/07 17:00 01/08 13:15 Iron mg/L 1 0.00240 EMC Metals (Drinking Water) by EPA 200 Series Methods 243 EPA 200.7 01/07 17:00 01/08 13:19 Calcium Hardness 1 1.00 3.00 EMC mg/L Total Recoverable Metals by EPA 200 Series Methods ND U 0.000700 0.00210 EPA 200.7 01/07 17:00 01/08 13:19 EMC Aluminum 1 mg/L 0.00800 1 0.0000300 0.0000900 EPA 200.7 01/07 17:00 01/08 13:19 EMC Barium mg/L 0.732 0.00370 EPA 200.7 01/07 17:00 01/08 13:19 Boron mg/L 1 0.0111 EMC 0.0036 01/07 17:00 97.2 EPA 200.7 01/08 13:19 EMC Calcium 1 0.0108 mg/L 0.231 mg/L 1 0.000800 0.00240 EPA 200.7 01/07 17:00 01/08 13:19 EMC Iron 131 0.0019 EPA 200.7 Magnesium 1 0.0057 01/07 17:00 01/08 13:19 EMC mg/L 0.0130 1 0.0000900 EPA 200.7 01/07 17:00 01/08 13:19 EMC Manganese 0.000270 mg/L Potassium 79.9 1 0.0011 0.0033 EPA 200.7 01/07 17:00 01/08 13:19 EMC mg/L Sodium 1121 mg/L 10 0.028 EPA 200.7 01/07 17:00 01/08 14:44 EMC 0.084 12.9 10 0.000300 0.000900 EPA 200.7 01/07 17:00 01/08 14:44 Strontium mg/L EMC

> Florida-Spectrum Environmental Services, Inc. 1460 W. McNab Road, Fort Lauderdale, FL 33309

Pembroke Laboratory 528 Gooch Rd. Fort Mead, FL 33841

Big Lake Laboratory 610 Parrot Ave. N. Okeechobee, FL 34972 Spectrum Laboratories 630 Indian St. Savannah, GA 31401

Page 2 of 3

www.flenviro.com

Report To: Dan Ringdahl Florida Design Drilling Corporation 1405 N. Killian Drive West Palm Beach FL, 33403

 Page 3 of 3

 Report Printed:
 1/21/2013

 Work Order #
 1 3A0089

 Project:
 5un 103

 Sun 103
 5un 103

Notes and Definitions

U	Indicated that the compound was analyzed for but not detected. This shall be used to indicate that the specific component was not
	detected. The value associated with the qualifier shall be the laboratory method detection limit.

- Q Sample held beyond accepted holding time. This code shall be used if the value is derived from a sample that was prepared or analyzed after the approval holding time restrictions for sample preparation or analysis.
- J-03 The reported value failed to meet the established quality control criteria for either precision or accuracy.
- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the detection limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- V Indicated that the analyte was detected in both the sample and the associated method blank.
- I The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
- Z Too many colonies were present for accurate counting.

QC=Qualifier Codes as defined by DEP 62-160 Unless indicated, soil results are reported on actual (wet) weight basis. Work performed by outside (subcontracted) labs denoted by SUB in Analyst Field.

Results relate only to this sample.

Suresh (Bobby) Supan - CSM

Authorized CSM Signature (954) 978-6400 Florida-Spectrum Environmental Services, Inc. Certification# E86006

All NELAP certified analysis are performed in accordance with Chapter 64E-1 Florida Administrative code, which has been determined to be equivalent to NELAC standards, Analysis certified by programs other than NELAP are designated with a "~".

Florida-Spectrum Environmental Services, Inc. 1460 W. McNab Road, Fort Lauderdale, FL 33309

Pembroke Laboratory 528 Gooch Rd. Fort Mead, FL 33841

Big Lake Laboratory 610 Parrot Ave. N. Okecchobce, FL 34972 Spectrum Laboratories 630 Indian St. Savannah, GA 31401

www.flenviro.com

blo page d of 4							-	· ·····	
121 00 -		□ 1460 W M/N	CHAIN ah Road Ft Land F	OF CUS		RECORI 78-6400) Bay (15) of St	DU DU	JE DATE Requested
124.07	Spectrum	630 Indian Str	eet Savannah, GA 3	1401	rel: (954) 9.	38-5050	Fax: (954) 9 A . Fax: (912) 234.	481 ⁴ RES	SH RESERVATION #
Logged in LIMS by HEC	Baylroamsata) Services, Ibc.	□ 528 Gooch Ro □ 610 Parrot Av	ad Fort Meade, FL 1 e. N. Okeechobee, F	33841 1 1. 349 7 2 1	fel: (863) 28 fel: (863) 7 6	85-8145 53-3336	Fax: (863) 285-1 Fax: (863) 763-1	2130 152.:	
CSM assigned		Original-	Return w/report	Yellow-I	ab File Co	py Pink	- Sampler Copy		tush Surcharges apply
Report to: (company name) Florida	Desien	Drilling		Report to	1405	NK: II.	- D- 1	ke in	- EFL 22405
Invoice to:	<u></u>	Purchase		Invoice to		A) 10-11-	<u>, </u>	k c par	4 GI 24403
Project Name	- '7	Urder #	030 2	Address: Site	1403	W N. II.	$\frac{-1}{2}$	int par	C166 71 1
and/or Number JUA // Project	1. K-HCP Pt	hone:	561-315	Location:	urri ^c	<u>se se</u>	<u> こ</u> { Ema	il: <u> </u>	
Contact: Dan Kingden	Burne	561 3243	885 2459	Se	1 84	4 246)	7	Dun OFC	Dr. II. ug con
(printed) Bruce A 1	Bulmer	Drille	<u></u>	Signature	Dr	n Ph	th-		
ORDER # Sar	mple Dat	te Time	Matrix Bott	e Number of		Analys	is Requir	ed	
Lab Control Number	(D Samp	Sampled	DW SW GW WW Pres	Received					T P C C C
Shaded Areas For			S SED HW BIO Com	Letter					M NAL P DOO
Laboratory Use Only			SEA OIL X AIR Code	s # A-	?				C R
OI SEFZ	packa-tost-i	2							20 815 2
2		13 12:15				See	PTT		
3	1 1)							
+									
5				<u> </u>	-			+	
6									
7				<u> </u>				+	
,			<u></u>	<u></u>					<u></u>
·									
,									
10									
Special Comments:				Totai	s	ignature		Affiliation	Date/Time
"I waive TNI protocol" (emergency) (sign	t n here) >		<u> </u>		1 8	telingpished by:	Blue	Deillen	17/13
Deliverables:	QA/Q0	C Report Nerded?	Yes No	additional charge)	1 8	eceived by	1 1	FEED	14/12 11100
Sample Custody & Field Comments	A-liter amber	Tvpe	A-ascorbic acid	P-H3PO4	2 R	NAC:	mour	1760	עשידו ביודן
Temp as receivedC	F-500 ml O-12 H-Plastic Amber Liter	25 ml	C-HCL Cu-CuSO4	S-H2SO4 T-Na2S2O3	2 1	Leceived by:	· · · · · · · · · · · · · · · · ·		
Custody scals? Y N FIELD TIME:	L-liter bottle S2-2 oz soil jar	r cuil iar	H-HNO3 M-MCAB	N-NaOH NH4-NH4CL		dinaniched bus			
Sampling hrs	T-250 ml V-40 ml vial	74 JAI	MeOH-Methanol Z-zinc acetate		3 8	conquisied by:			
Pick-Up hrs	W-wide mouth X-other TED)-Tediar Air Bag lottle Types	Additional P Hex-Hex Cr Buffer	CESCU	3 R	leccived by:			
	A AMARIDATED	11111 1 11112	I ARRIVE ARRIVE OF ARRELES	N				C. C. C. M. C.	

Appendix E

Aquifer Performance Testing Summaries and Charts

Pump	Stabilized	Drawdown	Specific	Conductivity	Temp	рΗ	H2S	Chloride	Turbidity	Sand Content	SDI
Rate	W.L.		Capacity								
gpm	ft bgl	feet	gpm/ft	μS/cm	С		mg/L	mg/L	NTU	ppm	
862	-14.0	23.6	36.5	9,070	22.1	7.9	1.45	2,250	1.61	0.11	0.0
1,093	-5.8	31.8	34.4	8,820	22	8	1.7	2,000	NA	0.01	0.1
1,380	4.8	42.4	32.6	8,760	22	7.9	1.64	2,250	1.93	0.35	0.2
1,710	16.2	53.8	31.8	8,805	22.3	NA	1.75	2,250	1.93	2.25	1.6

STEP RATE TEST AT TEST WELL SGF-1 (11/20/12)

Static water level in SGF-1 prior to pump startup: -37.58 feet below ground level (ft bgl)

STEP RATE TEST AT TEST WELL SGF-2 (3/18/13)

Pump	Stabilized	Drawdown	Specific	Conductivity	Temp	рΗ	H2S	Chloride	Turbidity	Sand Content	SDI
Rate	W.L.		Capacity								
gpm	ft bgl	feet	gpm/ft	μS/cm	С		mg/L	mg/L	NTU	ppm	
852	-16.7	24.0	35.5	10,220	22.4	7.6	1.33	2,750	16.2	0.02	5.5
1,095	-7.3	33.4	32.8	10,110	22.8	7.2	1.38	2,750	0.52	0.02	3.7
1,440	5.1	45.9	31.4	10,110	23.1	7.9	1.48	2,750	0.45	0.13	2.9
1,742	17.1	57.8	30.1	10,040	23.2	7.8	1.43	2,750	0.42	0.95	1.9

Static water level in SGF-2 prior to pump startup: -40.72 feet bgl

gpm denotes gallons per minute

ft bgl denotes feet below ground level

gpm/ft denotes specific capacity in gallons per minute per foot of drawdown

 $\mu\text{S/cm}$ denotes conductivity in microSiemens per centimeter

C denotes temperature in Celsius

mg/L denotes milligrams per liter

NTU denotes turbidity in nephelometric tubidity units

ppm denotes parts per million

SDI denotes Silt Density Index

Sand contents noted above are based on the total sand volume collected for the entire duration of each step rate

SGF-1 STEP RATE TEST

Sawgrass Floridan Test Well Construction

The Water Division of ARCADIS

November 20, 2012

Time	Elapse	Total	Pump	Totalizer	Volume	Depth to	Draw-	Sand in	Sand	Comments
	Time per	Flanse	Rate	X1000	Pumped	Water	down	Rossum	Content	
	Ctan Data	Time	Trate	71000	i unpeu	water	down	Rossum	Content	
	Step Rate	Time								
			gpm	gallons	gallons	ft bgl		mL	ppm	open valve
8:19	0	0	0	46620		-37.5	0	0		valve open, turn on pump
	1	1								
	2	2	875							
8.21	2	2	0.0						0	Start Rossum Sand Testing
0.21	2	2	000	40005	5000	20 F	47	(0.01	Start Ressult Sand Testing
8:25	6	6	833	46625	5000	-20.5	17	rew grains	0.01	
8:31	12	12	828	46630	10000	-19.2	18.3	<0.01	0.11	
8:37	18	18	832	46635	15000	-18	19.5	<0.01	0.07	
8:47	28	28	839	46643	23000	-17.2	20.3	0.01	0.21	
8:54	35	35	843	46649	29000	-16.6	20.9	0.01	0.16	
9:04	45	45	846	46657	37000	-16	21.5	0.01	0.12	
0.01	52	52	8/18	46663	43000	-15.5	22	0.01	0.11	
0.17	52	52	0-0	+0005	43000	-10.0	22	0.01	0.11	Pagin SDI Teating
9.17	30	30								
9:34	74	74								Collect WQ Sample
	93	93	862	46698	78000	-13.9	23.6			
	95	95								Increase pump rate
9:54	1	96	1125							Rate still climbing
	1	96							0.00	Begin Rossum
	2	97	1128	46702	82000	-8.7	28.8	few grains	0.05	
	5	100	1120	46705	85000	-0.7	20.0	icw grains	0.00	
	5	100	1122	40705	85000	-0.2	29.3		0.01	
	10	105	1122	46711	91000	-7.3	30.2	few grains	0.01	
	15	110	1116	46717	97000	-7	30.5	few grains	0.00	
	20	115	1112	46722	102000	-6.9	30.6	<0.01	0.06	
	25	120	1111	46727	107000	-6.6	30.9	<0.01	0.04	Begin SDI Test (no pre-filter)
	30	125	1108	46734	114000	-6.6	30.9	< 0.01	0.04	
	40	135	1102	46744	124000	-6.1	31.4	<0.01	0.03	
	58	153	1102	107.11	121000	0.1	01.1	30.01	0.00	
	70	100	1002	46790	160000	E E C	24.0	-0.01	0.01	
44.40	73	100	1093	40700	160000	-5.50	31.9	<0.01	0.01	
11:10	11	172								Increase pump rate
	2	174								Slightly increase rate to 1,431
	3	175							0.00	Begin Rossum Testing
	5	177	1420	46792	172000	2.1	39.6	few grains	0.03	
	10	182	1412	46799	179000	2.6	40.1	few grains	0.01	
	15	187	1407	46805	185000	2.94	40.4	0.01	0 44	
	20	107	1/05	46813	103000	3.2	40.7	0.015	0.47	
	20	192	1403	40013	193000	3.2	40.7	0.013	0.47	
	35	207	1397	40034	214000	3.09	41.Z	0.03	0.50	
	45	217	1392	46847	227000			0.03	0.38	Collect WQ Sample
	60	232	1388	46869	249000	4.32	41.8	0.04	0.37	
	72	244	1386	46886	266000	4.4	41.9	0.045	0.34	
	94	266	1380	46916	296000	4.83	42.3	0.06	0.35	Complete SDI Test (no pre-filter)
12:53	102	274								Increase pump rate
	2	276	1750							Complete adjusting rate
	2	277							0.00	Begin Rossum Testing
	4	270	1740	46024	214000	12.4	50.0	four groins	0.00	
	4	210	1740	40934	314000	13.4	50.9	new grains	0.53	
	10	284	1729	46944	324000	14.1	51.6	0.02	1.51	SDI (1.9) (no pre-filter)
	15	289	1728	46953	333000	14.5	52.0	0.07	3.08	SDI #2 (1.6) (no pre-filter)
	20	294	1723	46961	341000	15	52.5	0.1	3.11	
13:18	25	299	1722	46970	350000	15	52.5	0.11	2.64	
	30	304	1717	46979	359000	15.31	52.8	0.12	2,35	
	40	31/	1716	46996	376000	15.68	53.2	0.14	2.00	Collect WO Sample
	50	204	1710	47040	202000	15.00	50.Z	0.14	2.00	Concor w & Campie
	50	524	1713	47013	393000	10.90	53.5	0.2	2.20	
	60	334	1710	47031	411000	16.22	53.7			
13:59	66	340								Stop logging transducers
	68	342								Step transducer. Turn off pump
		344	0			12				
-										

SGF-2 STEP RATE TEST Sawgrass Floridan Test Well Construction City of Sunrise, Florida March 18, 2013

Time	Elapse	Total	Pump	Totalizer	Volume	Depth to	Draw-	Sand	Comments
_	Time per	Elapse	Rate	X1000	Pumped	Water	down	Content	
	Sten Rate	Time			. ampeu			•••••	
	min	TITIC	anm	gallong	gallong	ft hal		nnm	
0.00	0	0	gpin	yallolis	gailons	10.0	0	ррш	Chan
0.22	0	0	0	64951		-40.0	0		Step
8:24	2	2	824						
8:24:25	0	0							Begin Stop Watch
	6	6						0	Begin Rossum Testing
8:30	8	8				-22.35	18.25	0.00	
	10	10	788	64958	7000			0.15	
	13	13	816	64961	10000				Adjust flow rate
	14	14				-20.2	20.4		
8:39	17	17	828	64964	13000	-19.5	21.1	0.07	
8:44	22	22	836	64968	17000	-19.18	21.42		
8:51	29	29	840	64974	23000	-18.64	21.96		
9.00	38	38	845	64981	30000				
0.00	52	52	0-10	04001	00000				Collect W/O sample
0.25	52 62	62	950	65002	F1000	16 59	24.02	0.02	
9.20	62	62	002	6000Z	51000	-10.00	24.02	0.02	la sus sus flavor un sut stars contale
9:29	67	67	1000						Increase flow, reset stop watch
	1	68	1060						Increase rate
	2	69	1107	65008	57000				
9:32:22	3	70				-10.99	29.61		
	5	72						0.00	Begin Rossum Testing
	10	77	1106	65017	66000	-9.3	31.3	0.11	
9:45	16	83	1105	65024	73000	-8.55	32.05	0.05	
9:49	20	87	1104	65028	77000	-8.77	31.83	0.04	
9.59	30	97	1103	65039	88000	-7.89	32 71	0.02	
10.00	31	98					0	0.01	
10.00	<u> </u>	108	1000	65052		-7.75		0.03	
10.10	45	112	1033	00002		-1.15		0.00	Collect WO Sample
10.14		112	1007	CEOCO		7 74		0.02	Collect w & Sample
10.20	51	110	1097	05002		-7.74		0.02	
10:29	60	127	1095	65073		-7.64		0.02	
10:31:25	62	129							Increase flow, reset stopwatch
	2	131	1477	65078	127000				
	5	134						0.00	Begin Rossum Testing
	7	136				2.23	42.83		
10:41	10	139	1462	65089	138000	2.99	43.59	0.19	
10:52	21	150	1453	65105	154000	3.78	44.38	0.06	
11:01	30	159	1450	65118	167000			0.21	
11:16	45	174	1447	65140	189000	4.12	44.72	0.52	
11:21	50	179				4.8	45.4		Collect WQ Sample
11:36	65	194	1440	65169	218000	5.25	45.85	0.13	
11.43.10	67	106		00100	2.0000	0.20	10.00	0.10	Increase flow, reset stopwatch
11.40.10	2	100	1772	65182					increase new; reset stop watch
	E	201	1112	00102				0.00	Rogin Rossum Tosting
	0	201				14.04		0.00	
	6	202	1			14.84	55.44	0.35	
11:53	10	206	1759	65196	245000	15.12	55.72	1.92	
	14	210						3.89	
12:00	17	213	1755	65208	257000	15.73	56.33	0.85	
12:06	23	219	1750	65218	267000	16.1	56.7	0.57	
12:13	30	226	1746	65231	280000	16.29	56.89	0.62	
12:23	40	236	1748	65248	297000	16.6	57.2	1.04	
12:28	45	241							Collect WQ Sample
12:43	60	256	1742	65283	332000	17.22	57.82	0.95	
12.48	65	262		00200			01.02	5.00	Turn off pump, shut in well
12.40.10		202				-17 45			
12.43.10						_12 6			
12.30						-10.0			
13:15			I			-31.3	1	I	

72-Hour Constant Rate

Sawgrass Floridan Test Well Construction

Date	Time	Elapse	Elapse	Pump	Totalizer	Volume	Depth to	Draw-	Sand in	Sand	Comments
		Time	Time	Rate	X1000	Pumped	Water	down	Rossum	Content	
		min	hr	gpm	gallons	gallons	ft bgl		mL	ppm	
11/26		0	0.00		47046	0	-38.6	0	0		open valve
11/26		2.5	0.04								Begin Rossum Testing
11/26	8:57	3.0	0.05	1391							Increase Rate
11/26		4.5	0.08	1460						0	Start Rossum Sand Testing
11/26		6.0	0.10	1444	47054	8000	-8.5	30.1	few grains	0.04	5
11/26		9.0	0.15	1430	47059	13000	0.0			0.0.	
11/26		9.5	0.16	1100		10000					Increase Rate: Begin SDI Test
11/26	9.05	11.0	0.18	1464	47062	16000	-6	32.6	few arains	0.01	Complete increasing rate
11/26	0.00	15.0	0.10	1/51	47067	21000	-5.5	33.1		0.01	
11/26		20.0	0.20	1//5	47074	28000	-4.5	3/1 1	NO.01	0.20	Increase rate to 1 458 gpm
11/26		20.0	0.35	1440	47074	20000	- - 5	54.1			SDI: 2.4(5min) 2.3(10min)
11/20	0.24	20	0.40	1457	47090		2.0	25.7	0.02	0.41	W/oc 1 445 gpm (porococ P
11/20	9.24	30	0.50	1407	47009		-2.9	30.7	0.02	0.41	was 1,445 gpm, increase R.
11/20	9.34	40	0.67	1400	47103	70000	-1.7	30.9	0.04	0.60	
11/20	9.47	23	0.00	1440	47122	76000	-0.6	30	0.05	0.54	
11/20	10.00	75	1.25	1443	47154		0.7	39.3	0.07	0.52	
11/20	10:30	96	1.60	1453	47189		1.862	40.46	0.07	0.40	
11/20	11.00	105	1.75	1456	47198	100000	2.2	40.8	0.11	0.58	
11/20	11:03	130	2.17	1448	47234	188000	2.84	41.44	0.12	0.51	
11/20	11.30	155	2.00	1400	47209	223000	3.004	42.5	0.13	0.54	
11/20	12:30	211	3.52	1452	47353	307000	4.877	43.5	0.2	0.51	
11/20	13:14	260	4.33	1448	47423	377000	5.7	44.3	0.21	0.43	
11/20	13:30	274	4.57	1465	47445	399000	5.785	44.4	0.22	0.43	
11/20	14:30	337	5.62	1460	47534	488000	6.135	44.7	0.3	0.48	
11/26	15:26	393	6.55	1462	47616	570000	7.6	46.2	0.34	0.46	
11/20	16:30	455	7.58	1458	47709	663000	8.275	46.9	0.4	0.47	
11/20	17:30	513	8.55	1452	47793	747000	8.679	47.3	0.5	0.47	
11/20	18:30	570	9.50	1450	47875	829000	9.044	47.6	0.5	0.47	
11/20	19:30	634	10.57	1451	47968	922000	9.331	47.9	0.5		Increase Rate
11/20	20:30	694	11.57	1450	48054	1008000	9.898	48.5	0.5	0.40	
11/20	21:30	754	12.57	1451	48412	1366000	10.31	48.9	0.6	0.42	
11/20	22:30	814	13.57	1449	48228	1182000	10.361	49.0	0.6	0.39	Increase Rate
11/20	23:30	874	14.57	1450	48315	1269000	10.774	49.4	0.6	0.36	
11/27	0:30	934	15.57	1450	48404	1358000	11.019	49.6	0.7	0.40	
11/27	1:30	994	16.57	1450	48489	1443000	11.351	50.0	0.7	0.37	Increase Rate
11/27	2:30	1054	17.57	1451	48575	1529000	11.545	50.1	0.8	0.40	
11/27	3:30	1114	18.57	1450	48662	1616000	11.546	50.1	0.9	0.43	Increase Rate
11/27	4:30	11/4	19.57	1451	48749	1703000	11.935	50.5	0.9	0.41	
11/27	5:30	1234	20.57	1450	48836	1/90000	11.987	50.6	1	0.43	Increase Rate
11/27	6:30	1294	21.57	1449	48924	1878000	12.74	51.3	1.1	0.45	Increase Rate
11/27	7:30	1348	22.47	1450	49003	1957000	12.75	51.4	1.2		
11/27	8:30	1415	23.58	1448	49101	2055000	12.759	51.4	1.2		Increase Rate
11/27	9:30	1475	24.58	1450	49180	2134000	13.175	51.8	1.4	0.50	
11/27	10:30	1533	25.55	1452	49270	2224000	13.092	51.7	1.4	0.48	
11/27	11:30	1601	26.68	1454	49369	2323000	13.325	51.9	1.5	0.50	
11/27	12:30	1649	27.48	1464	49439	2393000	14.094	52.7	1.5	0.48	Decrease Rate
11/27	13:30	1716	28.60	1451	49537	2491000	13.718	52.3	1.5	0.46	
11/27	14:30	1769	29.48	1448	49614	2568000	13.696	52.3	1.6	0.48	
11/27	15:30	1836	30.60	1446	49711	2665000	13.274	51.9	1.7	0.49	Increase Rate
11/27	16:30	1894	31.57	1452	49793	2747000	13.797	52.4	1.6	0.45	
11/27	17:30	1949	32.48	1450	49874	2828000	13.886	52.5	1.8	0.49	
11/27	18:30	2012	33.53	1450	49866	2820000	14.187	52.8	1.9	0.50	
11/27	19:30	2074	34.57	1451	50055	3009000	14.582	53.18	1.9	0.49	

72-Hour Constant Rate

Sawgrass Floridan Test Well Construction

Date	Time	Elapse	Elapse	Pump	Totalizer	Volume	Depth to	Draw-	Sand in	Sand	Comments
		Time	Time	Rate	X1000	Pumped	Water	down	Rossum	Content	
		min	hr	gpm	gallons	gallons	ft bgl		mL	ppm	
11/27	20:30	2134	35.57	1452	50143	3097000	14.726	53.33	1.9	0.47	
11/27	21:30	2194	36.57	1453	50230	3184000	14.73	53.33	2	0.48	
11/27	22:30	2254	37.57	1451	50311	3265000	14.977	53.58	2	0.47	
11/27	23:30	2314	38.57	1451	50405	3359000	14.947	53.55	2.1	0.48	
11/28	0:30	2374	39.57	1449	50492	3446000	14.995	53.6	2.1	0.47	
11/28	1:30	2434	40.57	1448	50578	3532000	15.075	53.68	2.2	0.48	Increase Rate
11/28	2:30	2494	41.57	1450	50664	3618000	15.229	53.83	2.2	0.47	
11/28	3:30	2554	42.57	1450	50752	3706000	15.189	53.79	2.3	0.48	
11/28	4:30	2614	43.57	1449	50841	3795000	15.162	53.76	2.4	0.49	
11/28	5:30	2674	44.57	1447	50925	3879000	15.038	53.64	2.4	0.48	
11/28	6:30	2734	45.57	1452	51012	3966000	15.625	54.23	2.5	0.48	
11/28	7:30	2789	46.48	1449	51093	4047000	15.639	54.24	2.5	0.47	
11/28	8:30	2858	47.63	1451	51193	4147000	15.884	54.48	2.5	0.46	
11/28	9:30	2914	48.57	1450	51274	4228000	15.624	54.22	2.5	0.45	
11/28	10:30	2981	49.68	1448	51371	4325000	15.573	54.17	2.6	0.46	
11/28	11:30	3034	50.57	1449	51447	4401000	15.694	54.29	2.6	0.45	
11/28	12:30	3096	51.60	1450	51537	4491000	15.891	54.49	2.6	0.44	
11/28	13:30	3155	52.58	1451	51623	4577000	15.84	54.44	2.6	0.44	
11/28	14:36	3219	53.65	1449	51717	4671000	16.245	54.85	2.7	0.44	
11/28	15:30	3274	54.57	1447	51796	4750000	16.159	54.76	2.7	0.44	
11/28	16:30	3335	55.58	1448	51884	4838000	15.575	54.18	2.7	0.43	Increase Rate
11/28	17:30	3396	56.60	1455	51975	4929000	16.344	54.94	2.8	0.44	
11/28	18:30	3454	57.57	1455	52058	5012000	16.561	55.16	2.9	0.44	
11/28	19:30	3514	58.57	1456	52144	5098000	16.802	55.4	3	0.45	
11/28	20:30	3574	59.57	1454	52232	5186000	16.952	55.55	3	0.44	
11/28	21:30	3634	60.57	1453	52319	5273000	16.848	55.45	3	0.44	
11/28	22:30	3694	61.57	1451	52406	5360000	16.757	55.36	3.1	0.44	
11/28	23:30	3754	62.57	1450	52494	5448000	16.996	55.6	3.1	0.44	
11/29	0:30	3814	63.57	1450	52580	5534000	16.055	54.66	3.1	0.43	
11/29	1:30	3874	64.57	1451	52672	5626000	16.877	55.48	3.1	0.42	
11/29	2:30	3934	65.57	1447	52154	5108000	17.149	55.75	3.1	0.42	Increase Rate
11/29	3:30	3994	66.57	1448	52842	5796000	17.994	56.59	3.3	0.44	Increase Rate
11/29	4:30	4054	67.57	1449	52928	5882000	17.229	55.83	3.7	0.48	
11/29	5:30	4114	68.57	1450	53015	5969000	17.132	55.73	3.9	0.50	
11/29	6:30	4174	69.57	1450	53101	6055000	17.481	56.08	4	0.51	
11/29	7:06	4210	70.17	1447	53154	6108000	17.27	55.87	4	0.50	
11/29	7:30	4298	71.63	1448			17.447	56.05	4	0.49	
11/29	8:30	4354	72.57	1452	53275		17.406	56.01	4.1	0.50	

72-Hour Constant Rate

Sawgrass Floridan Test Well Construction

Date	Time	Elapse	Elapse	Pump	Totalizer	Volume	Depth to	Draw-	Sand in	Sand	Comments
		Time	Time	Rate	X1000	Pumped	Water	down	Rossum	Content	
		min	hr	gpm	gallons	gallons	ft bgl		mL	ppm	
3/25	11:52	0	0		65440	0	-40.10	0.00			Step trans, start pump
3/25		4	0.1	1470							
3/25		7	0.1								Begin sand testing
3/25		9	0.2				-3.46	36.64			
3/25	12:03	10	0.2	1447	65454	0.01	-2.69	37.41			
3/25	12.09	17	0.3	1435	65463	0.02	-0.70	39.40	<0.01		
3/25	12:00	22	0.0	1448	65471	0.02	-0.15	39.95	0.01	0.35	
3/25	12.11	30	0.1	1439	65482	0.00	0.10	00.00	0.01	0.00	
3/25	12.22	32	0.5	1/52	00102	0.01					Increase flow
3/25	12.30	38	0.0	1//7	65/01	0.05	1.81	/1 01	0.02	0.3/	
3/25	12.50	40	0.0	1771	00-01	0.05	1.01	+1.31	0.02	0.04	
3/25	10.25	40	1	1111	65501	0.06	1.69	11 70	0.02	0.32	
3/25	12.30	43	1	1444	00001	0.00	1.00	41.70			SDI(5) 2.1.82.0
3/25	12.43	0	0	1424	CEE OC	0.00	2.00	42.00	0.02	0.20	301(3) 2.1 &2.0
3/25	12.53	60	1	1434	00020	0.09	2.60	42.90	0.02	0.20	l
3/23	40.00	63	1	1448	05500	0.40	0.04	40.74	0.05	0.40	Increase now
3/25	13:00	68	1	1444	65539	0.10	3.61	43.71	0.05	0.43	
3/25	0.558	92	2	1436	65572	0.13	4.45	44.55	0.03	0.19	
3/25	13:30	98	2	1463	05581	0.14	5.48	45.58	0.05	0.29	
3/25	13:55	123	2	1457	65617	0.18	6.14	46.24	0.05	0.23	
3/25	14:00	128	2	1455	65628	0.19	6.26	46.36	0.05	0.22	
3/25	14:29	157	3	1449	65666	0.23	6.97	47.07	0.07	0.25	
3/25	14:30	158	3	1451	65668	0.23	6.97	47.07	0.08	0.28	
3/25	15:00	188	3	1445	65712	0.27	7.45	47.55	0.08	0.23	
3/25	15:30	218	4	1438	65759	0.32	7.88	47.98	0.08	0.20	
3/25	16:00	248	4	1460	68814	3.37	8.77	48.87	0.08	0.18	
3/25	16:30	278	5	1454	65843	0.40	9.16	49.26	0.08	0.16	
3/25	17:00	308	5	1449	65886	0.45	9.51	49.61	0.1	0.18	
3/25	17:30	338	6	1445	65930	0.49	9.65	49.75	0.1	0.16	
3/25	18:00	368	6	1446	65930	0.49	9.94	50.04	0.1	0.15	
3/25	18:30	398	/	1452	66021	0.58	10.64	50.74	0.2	0.27	
3/25	19:00	428	/	1449	66059	0.62	10.61	50.71	0.2	0.25	
3/25	19:30	458	8	1447	66106	0.67	12.00	52.10	0.2	0.23	
3/25	20:00	488	8	1444	66146	0.71	11.07	51.17	0.2	0.22	
3/25	20:30	518	9	1444	66190	0.75	11.42	51.52	0.2	0.21	
3/25	21:00	548	9	1443	66233	0.79	11.48	51.58	0.2	0.20	
3/25	21:30	578	10	1446	66276	0.84	11.78	51.88	0.2	0.19	
3/25	22:00	608	10	1445	66320	0.88	12.10	52.20	0.2	0.18	
3/25	22:30	638	11	1444	66364	0.92	12.34	52.44	0.2	0.17	
3/25	23:00	668	11	1441	66401	0.96	12.20	52.30	0.2	0.16	
3/25	23:30	698	12	1451	66449	1.01	12.88	52.98	0.2	0.15	
3/26	0:00	728	12	1452	66493	1.05	10.00		0.2	0.15	
3/26	0:30	758	13	1446	66537	1.10	12.99	53.09	0.2	0.14	
3/26	1:00	788	13	1446	66580	1.14	13.03	53.13	0.3	0.20	
3/26	1:30	818	14	1446	66624	1.18	13.33	53.43	0.3	0.20	
3/26	2:00	848	14	1447	66668	1.23	13.57	53.67	0.3	0.19	
3/26	2:30	878	15	1443	66711	1.27	13.44	53.54	0.3	0.18	
3/26	3:00	908	15	1442	66754	1.31	13.76	53.86	0.3	0.18	
3/26	3:30	938	16	1441	66797	1.36	13.95	54.05	0.3	0.17	
3/26	4:00	968	16	1445	66840	1.40	13.84	53.94	0.3	0.16	
3/26	4:30	998	17	1450	66884	1.44	14.01	54.11	0.3	0.16	
3/26	5:00	1028	17	1443	66927	1.49	14.03	54.13	0.3	0.16	
3/26	5:30	1058	18	1453	66969	1.53	14.73	54.83	0.3	0.15	

72-Hour Constant Rate

Sawgrass Floridan Test Well Construction

Date	Time	Elapse	Elapse	Pump	Totalizer	Volume	Depth to	Draw-	Sand in	Sand	Comments
		Time	Time	Rate	X1000	Pumped	Water	down	Rossum	Content	
		min	hr	gpm	gallons	gallons	ft bgl		mL	ppm	
3/26	6:00	1088	18	1451	67016	1.58	14.70	54.80	0.4	0.20	
3/26	6:30	1118	19	1450	67058	1.62	14.63	54.73	0.4	0.19	
3/26	7:00	1148	19	1452	67101	1.66	14.81	54.91	0.4	0.19	
3/26	7:30	1178	20	1448	67148	1.71	14.86	54.96	0.4	0.18	
3/26	8:00	1208	20	1447	67189	1.75	15.01	55.11	0.4	0.18	
3/26	8:30	1238	21	1444	67232	1.79	15.08	55.18	0.4	0.17	
3/26	9:00	1268	21	1448	67274	1.83	15.05	55.15	0.4	0.17	
3/26	9:30	1298	22	1446	67318	1.88	15.24	55.34	0.5	0.20	
3/26	9:50	1318	22	1445	67346	1.91	15.18	55.28	0.4	0.16	
3/26	10:00	1328	22	1441	67358	1.92	15.01	55.11	0.5	0.20	
3/26	10:23	1350	23	1445	67393	1.95	15.30	55.40	0.43	0.17	
3/26	10:30	1358	23	1443	67403	1.96	15.46	55.56	0.5	0.20	
3/26	11:00	1388	23	1441	67448	2.01	15.38	55.48	0.5	0.19	
3/26	11:30	1418	24	1442	67489	2.05	15.49	55.59	0.5	0.19	
3/26	12:00	1448	24	1438	67540	2.10	15.38	55.48	0.5	0.18	
3/26	12:30	1478	25	1441	67578	2.14	15.76	55.86	0.5	0.18	
3/26	13:00	1508	25	1440	67620	2.18	15.66	55.76	0.5	0.18	
3/26	13:30	1538	26	1441	67672	2.23	15.70	55.80	0.5	0.17	
3/26	14.00	1568	26	1440	67706	2 27	15.78	55.88	0.5	0.17	
3/26	14:30	1598	27	1440	67749	2.31	15.63	55 73	0.5	0.17	
3/26	15:00	1628	27	1435	67796	2.36	15.00	56.01	0.5	0.16	
3/26	15:30	1658	28	1454	67838	2.00	16.01	56 54	0.5	0.16	
3/26	16:00	1688	28	1455	67887	2.10	16.45	56 55	0.6	0.10	
3/26	16:30	1718	29	1455	67925	2.10	16.63	56 73	0.0	0.10	
3/26	10.00	1731	29	1456	67942	2.50	16.00	56 54	0.6	0.18	
3/26	17.00	1748	29	1451	67970	2.53	16.68	56 78	0.6	0.18	
3/26	17:30	1778	30	1450	68008	2.57	16.69	56 79	0.6	0.18	
3/26	18.00	1808	30	1451	68053	2.61	16.75	56.85	0.6	0.18	
3/26	18:30	1838	31	1449	68101	2.66	16.75	56.85	0.6	0.17	
3/26	19:00	1868	31	1447	68141	2.70	16.94	57.04	0.6	0.17	
3/26	19:30	1898	32	1447	68184	2 74	16.78	56.88	0.6	0.17	
3/26	20.00	1928	32	1448	68227	2.79	17.00	57 10	0.6	0.17	
3/26	20:30	1958	33	1446	68271	2.83	16.87	56.97	0.6	0.16	
3/26	21.00	1988	33	1448	68314	2.00	15.04	55 14	0.6	0.16	
3/26	21:30	2018	34	1445	68358	2.07	17.04	57 14	0.0	0.10	
3/26	22:00	2048	34	1443	68402	2.02	17.01	57 33	0.0	0.16	
3/26	22:00	2078	35	1445	68445	3.01	17.20	57.00	0.0	0.10	
3/26	23.00	2108	35	1444	68488	3.05	17.00	57.26	0.7	0.10	
3/26	23.30	2138	36	1446	68531	3.09	17.30	57.40	0.7	0.10	
3/27	0.00	2168	36	1440	68575	3.03	17.60	57.71	0.7	0.17	
3/27	0.00	2198	37	1445	68619	3.14	17.01	57.56	0.7	0.17	
3/27	1.00	2228	37	1445	68661	3.22	17.10	57.37	0.7	0.17	
3/27	1.00	2258	38	1446	68705	3.22	17.61	57.57	0.7	0.17	
3/27	2.00	2288	20	1///	68747	2.21	17.01	57.71	0.7	0.10	
3/27	2.00	2200	30	1//2	68701	3.31	17.00	57.40	0.7	0.10	
3/27	2.30	2310	39	1440	68836	3.30	17.49	57.09	0.7	0.10	
3/27	3.00	2340	40	1//2	68877	2.40	17.50	57.00	0.7	0.10	
3/27	3.30	2010	40	1//2	68020	3.44 2.40	17.50	57.60	0.7	0.10	
3/27	4.00	2400	40	1440	68063	3.40 2.50	17.00	57.65	0.7	0.10	
3/27	4.30	2430	41	1442	60007	3.3Z	17.00	57.00	0.7	0.15	
3/21	5:00	∠40ŏ	41	1443	60040	3.57	17.09	57.99	0.0	0.17	
3/21	5:30	2498	42	1442	60004	3.61	17.51	57.61	0.8	0.17	
3/21	6:00	2528	42	1439	69094	3.65	17.68	51.18	0.8	0.17	

72-Hour Constant Rate

Sawgrass Floridan Test Well Construction

Date	Time	Elapse	Elapse	Pump	Totalizer	Volume	Depth to	Draw-	Sand in	Sand	Comments
		Time	Time	Rate	X1000	Pumped	Water	down	Rossum	Content	
		min	hr	gpm	gallons	gallons	ft bgl		mL	ppm	
3/27	6:30	2558	43	1443	69137	3.70	17.82	57.92	0.8	0.17	
3/27	7:00	2588	43	1441	69180	3.74	17.76	57.86	0.8	0.16	
3/27	7:30	2618	44	1440	69232	3 79	17.64	57 74	0.8	0.16	
3/27	8.00	2648	44	1441	69269	3.83	17.68	57 78	0.8	0.16	
3/27	8:30	2678	45	1440	69311	3.87	18 12	58 22	0.8	0.16	
3/27	9.00	2708	45	1440	69354	3.91	18.11	58 21	0.8	0.16	
3/27	0.00	2738	46	1436	69402	3.96	18.34	58 11	0.8	0.15	
3/27	10.00	2768	46	1//5	69//1	4.00	18.28	58 38	0.0	0.10	
3/27	10.00	2784	40	1446	60/6/	4.00	18.46	59.50	0.0	0.15	
3/27	10.17	2704	40	1446	60/8/	4.02	18.24	50.00	0.0	0.15	
3/27	11:00	2130	47	1446	60527	4.04	19.40	50.54	0.0	0.15	
3/21	11.00	2020	47	1445	60569	4.09	10.40	50.50	0.0	0.15	
3/21	11.29	2007	40	1444	60571	4.13	10.00	50.75	0.00	0.10	
3/21	11.30	2000	40	1443	60612	4.13	10.00	50.40	0.0	0.15	
3/27	12:00	2000	48	1444	09013 60655	4.17	10.32	58.42	0.0	0.15	
3/27	12:30	2910	49	1442	09000	4.22	10.31	58.41	0.0	0.15	
3/27	13:00	2948	49	1443	69691	4.25	18.20	58.30	0.8	0.14	
3/27	13:14	2962	49	1442	69719	4.28	18.41	58.51	0.9	0.16	
3/27	13:30	2978	50	1440	69740	4.30	18.19	58.29	0.8	0.14	
3/27	14:00	3008	50	1441	69783	4.34	18.41	58.51	0.8	0.14	
3/27	14:30	3038	51	1440	69825	4.39	18.59	58.69	0.8	0.14	
3/27	15:00	3068	51	1440	69871	4.43	18.67	58.77	0.8	0.14	
3/27	15:21	3089	51	1442	69902	4.46	18.42	58.52	0.9	0.15	
3/27	15:30	3098	52	1440	69917	4.48	18.62	58.72	0.8	0.14	
3/27	16:00	3128	52	1441	69955	4.52	18.49	58.59	0.8	0.14	
3/27	16:30	3158	53	1443	70006	4.57	18.57	58.67	0.9	0.15	
3/27		3166	53	1467	70014	4.57	19.17	59.27		0.00	Increase flow
3/27	17:00	3188	53	1465	70039	4.60	19.33	59.43	0.9	0.15	
3/27	17:30	3218	54	1464	70088	4.65	19.24	59.34	0.9	0.15	
3/27	18:00	3248	54	1462	70128	4.69	19.51	59.61	1	0.16	
3/27	18:30	3278	55	1465	70178	4.74	19.60	59.70	1	0.16	
3/27	19:00	3308	55	1463	70221	4.78	19.63	59.73	1	0.16	
3/27	19:30	3338	56	1463	70265	4.83	19.63	59.73	1	0.16	
3/27	20:00	3368	56	1460	70309	4.87	19.41	59.51	1	0.16	
3/27	20:30	3398	57	1460	70353	4.91	19.59	59.69	1	0.16	
3/27	21:00	3428	57	1464	70396	4.96	19.61	59.71	1	0.15	
3/27	21:30	3458	58	1460	70440	5.00	19.47	59.57	1	0.15	
3/27	22:00	3488	58	1460	70484	5.04	19.73	59.83	1	0.15	
3/27	22:30	3518	59	1458	70528	5.09	19.82	59.92	1	0.15	
3/27	23:00	3548	59	1460	70571	5.13	19.89	59.99	1	0.15	
3/27	23:30	3578	60	1462	70615	5.18	19.93	60.03	1	0.15	
3/28	0:00	3608	60	1455	70660	5.22	19.82	59.92	1	0.15	
3/28	0:30	3638	61	1458	70703	5.26	19.92	60.02	1	0.15	
3/28	1:00	3668	61	1459	70747	5.31	19.94	60.04	1	0.14	
3/28	1:30	3698	62	1458	70791	5.35	19.83	59.93	1	0.14	
3/28	2:00	3728	62	1460	70834	5.39	19.73	59.83	1	0.14	
3/28	2:30	3758	63	1458	70878	5.44	19.78	59.88	1	0.14	
3/28	3:00	3788	63	1457	70922	5.48	19.76	59.86	1.1	0.15	
3/28	3:30	3818	64	1455	70963	5.52	20.10	60.20	1.1	0.15	
3/28	4:00	3848	64	1460	77009	11.57	20.28	60.38	1.1	0.15	
3/28	4:30	3878	65	1456	77053	11.61	20.86	60.96	1.1	0.15	
3/28	5:00	3908	65	1458	71097	5.66	20.25	60.35	1.1	0.15	
3/28	5:30	3938	66	1457	71140	5.70	20.03	60.13	1.1	0.15	
0,20			~~			20	0.00				1

72-Hour Constant Rate

Sawgrass Floridan Test Well Construction

Date	Time	Elapse	Elapse	Pump	Totalizer	Volume	Depth to	Draw-	Sand in	Sand	Comments
		Time	Time	Rate	X1000	Pumped	Water	down	Rossum	Content	
		min	hr	gpm	gallons	gallons	ft bgl		mL	ppm	
3/28	6:00	3968	66	1456	71184	5.74	20.14	60.24	1.1	0.15	
3/28	6:30	3998	67	1457	71227	5.79	20.00	60.10	1.1	0.15	
3/28	7:00	4028	67	1455	71271	5.83	20.10	60.20	1.1	0.14	
3/28	7:30	4058	68	1445	71286	5.85	20.07	60.17	1.1	0.14	
3/28	8:00	4088	68	1455	71328	5.89	20.04	60.14	1.1	0.14	
3/28	8:30	4118	69	1457	71381	5.94	20.43	60.53	1.1	0.14	
3/28	9:00	4148	69	1456	71416	5.98	20.11	60.21	1.1	0.14	
3/28	9:29	4177	70	1461	71457	6.02	20.25	60.35	1.1	0.14	
3/28	9:30	4178	70	1460	71458	6.02	20.31	60.41	1.1	0.14	
3/28	10:00	4208	70	1460	71503	6.06	20.26	60.36	1.1	0.14	Collect lab sample
3/28	10:30	4238	71	1455	71546	6.11	20.12	60.22	1.1	0.14	
3/28	11:00	4268	71	1459	71591	6.15	20.35	60.45	1.1	0.14	
3/28	11:15	4282	71	1457	71611	6.17	20.38	60.48	1.2	0.15	
3/28	11:30	4268	71	1456	71636	6.20	20.35	60.45	1.1	0.14	
3/28	11:53	4320	72		71666	6.23			1.2	0.15	Turn off pump

Appendix F

Electronic Files of Data Collected During Construction and Testing