CONSTRUCTION AND TESTING OF INJECTION WELL SYSTEM #1 CITY OF PAHOKEE WASTEWATER TREATMENT PLANT PALM BEACH COUNTY, FLORIDA

MARCH 1991

CONSTRUCTION AND TESTING OF INJECTION WELL SYSTEM #1 CITY OF PAHOKEE WASTEWATER TREATMENT PLANT PALM BEACH COUNTY, FLORIDA

March 1991

Prepared for: Russell & Axon, Inc. 951 Broken Sound Parkway, NW, Suite 115 Boca Raton, Florida 33431

Prepared by: Geraghty & Miller, Inc. Environmental Services 11382 Prosperity Farms Road, Suite 125 Palm Beach Gardens, Florida 33410

CONSTRUCTION AND TESTING OF INJECTION WELL SYSTEM #1 CITY OF PAHOKEE WASTEWATER TREATMENT PLANT PALM BEACH COUNTY, FLORIDA

Russell & Axon, Inc. 951 Broken Sound Parkway, NW, Suite 115 Boca Raton, Florida 33431

March 1991

Geraghty & Miller, Inc., appreciates the opportunity to work for Russell & Axon, Inc., at the City of Pahokee Wastewater Treatment Plant, Palm Beach County, Florida site. If you have any questions or comments concerning this report, please contact one of the individuals listed below.

> Respectfully submitted, GERAGHTY & MILLER, INC.

Robert T. Verrastro, P.G. Staff Scientist

Kent J. Veron, P.E. Project Engineer

James A. Wheatley, P.G. Senior Associate

KJV/RTV/JAW:lt

CERTIFICATION OF COMPLETION

CONSTRUCTION AND TESTING OF INJECTION WELL SYSTEM #1 CITY OF PAHOKEE WASTEWATER TREATMENT PLANT PALM BEACH COUNTY, FLORIDA

I hereby certify that I have reviewed this report and found that the engineering practices used are consistent with standards for constructing injection well systems in Florida and satisfy the requirements of Chapter 17-28 of the Florida Statutes.

G. Douglas Leonard, P.E. Registered Professional Engineer State of Florida, No. 42635

GERAGHTY & MILLER, INC.

CONTENTS

	Page
INTRODUCTION	1
FINDINGS	2
DATA COLLECTION	3
WELL DRILLING AND CONSTRUCTION	6
Injection Well Deep Monitor Well Construction Problems	7 9 10
SUBSURFACE CONDITIONS	11
Background Geologic Setting Hydrogeologic Setting Confining Sequence Injection Zone Water Quality	11 11 14 15 16 16
RADIOACTIVE TRACER SURVEY	17
OPERATION AND MAINTENANCE	24
Injection-Well Data Collection Monitor-Well Data Collection Injectivity Testing Mechanical Integrity Testing Plugging and Abandonment Plan	25 25 27 28
ACKNOWLEDGEMENTS	31

FIGURES

- 1. Site Map Pahokee Injection Well
- 2. Final Completion Construction and Testing Details for City of Pahokee Injection Well 1
- 3. Final Completion Construction Details for City of Pahokee Deep Monitor Well
- 4. East-West Stratigraphic Cross Section

FIGURES (continued)

- 5. Typical Straddle Packer Assembly
- 6. Diagram of Radioactive Tracer Survey Logging Tool
- 7. Typical Log Presentation of A Radioactive Tracer Survey

TABLES

- 1. Hydrologic Properties of Straddle Packer Test Intervals, Injection Well 1
- 2. Results of the Analysis of Selected Core Samples, Injection Well 1
- 3. Water-Quality Analyses, Injection Well 1 and Deep Monitor Well

APPENDICES

- A. Geologic Logs Injection Well 1 Deep Monitor Well
- B. Results of Core Tests and Photographs of the Core
- C. Gyroscopic Survey Results
- D. Geophysical Logs of Injection Well 1 (Contained in a Separate Volume)
- E. Geophysical Logs of Deep Monitor Well
- F. Hydrostatic Pressure Test Data
- G. Water Quality Analyses Straddle-Packer Tests Shallow Monitor Zone Deep Monitor Zone Injection Zone Plant Effluent
- H. Well Casing Mill Certificates Injection Well 1 Deep Monitor Well
- I. Cement Records of Injection Well 1 and Deep Monitor Well
- J Injection Test Data
- K. Operation and Maintenance Forms

CONSTRUCTION AND TESTING OF INJECTION WELL SYSTEM #1 CITY OF PAHOKEE WASTEWATER TREATMENT PLANT PALM BEACH COUNTY, FLORIDA

INTRODUCTION

In November 1988, the Florida Department of Environmental Regulation (FDER) issued a construction permit Certification UC50-145482 (modified in April, 1989) for one Class I Injection Well and an associated dual-zone Deep Monitor Well to be installed at the Pahokee Wastewater Treatment Plant. On December 24, 1988, contract documents and specifications prepared by Russell & Axon, Inc., project engineers, and Geraghty & Miller, Inc., subconsultants, were made available to qualified contractors for bidding on the well construction. The general site location is shown on Figure 1. Bids were received by the Mayor of the City of Pahokee on January 24, 1989. The contract was awarded to Youngquist Brothers, Incorporated, a drilling company from Fort Myers, Florida on April 6, 1989.

The specifications contained provisions for constructing, testing, and completion of one dual-zone deep monitor well; drilling and testing one 12-inch-diameter injection well to a total depth of 3500 feet; conducting pumping tests in discrete zones in the borehole; collecting cores to determine adequate confinement; conducting an injection test to demonstrate that the injection zone could accept the effluent; and conducting pressure tests and a radioactive tracer survey to demonstrate mechanical integrity. Copies of the various geophysical logs, geologic logs, water-quality analyses, mill certificates, mechanical integrity testing data, and core test data are included in the Appendices.

Youngquist first mobilized manpower and equipment to the City of Pahokee Wastewater Treatment Plant site in April 1989. The deep monitor well was completed at a total depth of 2008 feet below pad level on August 4, 1989. The injection well was completed at a total depth of 3510 feet below pad level on October 9, 1989. Final testing of the injection well, including geophysical logging, injection testing, and radioactive tracer survey testing, was completed by October 17, 1989. As a condition of the permit, the FDER requested that upon drilling and testing, a final report summarizing the information obtained during the program be submitted along with an application to operate the well.

This report documents the results of the well construction program and contains the various test data used to evaluate the injection zone and confining sequence. Conclusions are presented regarding the capability of the injection zone to accept treated effluent and the integrity of the confining sequence. The monitoring program required by Chapter 17-28.25, Florida Administration Code (FAC), is presented in addition to operation and maintenance procedures for the wells. A plugging and abandonment program also is detailed.

FINDINGS

- 1. The data from the injection well demonstrates the presence of an extremely transmissive injection zone saturated with water containing a concentration greater than 10,000 milligrams per liter (mg/L) of Total Dissolved Solids (TDS).
- 2. The injection zone has a transmissivity which is estimated to be greater than 2 million gallons per day per foot (mgd/ft).
- 3. The injection well has been tested at a rate in excess of 4.0 million gallons per day (mgd) and is capable of accepting a flow rate of 3.9 mgd in accordance with state regulations.
- 4. The injection zone occurs approximately between 2697 and 2950 feet below land surface in Injection Well 1 (IW-1).

- 5. The contact between the potable and non-potable water (greater than 10,000 mg/L of TDS) occurs at a depth of approximately 1820 to 1890 feet below pad level.
- 6. The horizontal permeability of the confining sequence, as determined from core tests from IW-1, ranged from 0.000554 to 0.00000794 centimeters per second (cm/sec.)
- 7. The vertical permeability of the confining sequence as determined from core tests from IW-1 ranges from 0.000103 to 0.000000756 cm/sec.
- 8. The presence of a highly transmissive injection zone in the Oldsmar Limestone, suitable overlying confining sequences, and the deep monitor well system will permit the operation of this injection well in compliance with State and Federal Underground Injection Control Regulations.

DATA COLLECTION

The collection of data to accomplish the drilling and testing program objectives required the use of a variety of techniques and equipment. The data collection methods are described below.

A log of drilling and related activities (Daily Log) was maintained by the project staff on a 24-hour basis throughout the course of the project. Items related to each well's construction and testing, various work tasks (geophysical logging, coring, inclination surveys, and related incidents), and daily activities at the site were described. Materials used during construction, time spent on contract items, and footage drilled were recorded in a separate construction log; they also were noted in the Daily Log. Copies of the Daily Logs were furnished on a weekly basis to the members of the Technical Advisory Committee (TAC), along with copies of the driller's log, geologic log, summary lithologic log, and weekly water-quality analyses and water levels for the four surficial aquifer wells.

Formation cuttings were collected from the pilot holes in the injection well and the deep monitor well. Lag time for the cuttings (time required for the cuttings to circulate from the bottom of the hole to the surface) was calculated regularly to ensure that reasonably accurate sample depths were recorded. The samples were washed, dried, and examined microscopically prior to preparing the geologic log. A copy of each geologic log is presented in Appendix A. Additionally, a continuous summary log which correlated lithology, weight on bit, penetration rate, and a concise geologic description was prepared. The summary log is drawn on a vertical scale of 20 feet per inch to facilitate correlation with the associated geophysical logs. A set of samples from each well was sent to the Florida Bureau of Geology in Tallahassee, Florida.

Cores were collected, using a core barrel and four-inch-diameter core bit, during drilling of the 12-1/4-inch-diameter borehole. Core intervals averaged approximately 11 feet in length and sections were sent to a laboratory where they were tested to determine their horizontal and vertical permeability, porosity, unconfined compressive strength, and specific gravity. The cores also were photographed. Copies of the laboratory reports and photographs of the cores are contained in Appendix B.

Multi-Shot Gyroscopic Surveys were performed on the injection well pilot and ream holes prior to setting the 22-inch-diameter intermediate casing and the 12-inchdiameter injection casing. The gyroscopic surveys provided evidence that the reamed holes for the intermediate and injection casing strings had tracked the pilot holes. Gyroscopic survey results are presented in Appendix C. Various geophysical logs were conducted in the pilot holes to collect data regarding the injection zone, the confining sequence, and the selection of monitor zones. Dual-induction (a shallow, medium, and deep investigation borehole tool), temperature, caliper, natural gamma ray, and borehole-compensated sonic/VDL were conducted. Copies of the various logs for IW- 1 are contained in Appendix D in a separate volume. Copies of the geophysical logs for the DMW are contained in Appendix E.

The dual-induction log was used to differentiate between the limestone and dolomite beds and, along with the gamma ray log, was used to aid in the correlation of lithologic units in the hole. The "porosity" log (borehole-compensated sonic) was useful in identifying the injection zone, monitor zones, and the confining sequence, as well as locating zones that could cause problems during cementing.

Inflatable straddle-packers were used to conduct pumping tests at various intervals in IW-1. The packers were leased by Youngquist Brothers from TAM International. Four pumping tests were performed in order to obtain hydraulic conductivity and water-quality data. The tests were performed at a constant pumping rate using a submersible pump set in the drill pipe. Drawdown and recovery measurements were recorded and representative formation water samples were obtained. The transmissivity and hydraulic conductivity values calculated from the packer tests are presented in Table 1.

After installation and cementing of the 12-inch-diameter injection casing in IW-1, a hydrostatic pressure test was conducted on the casing prior to the injection tests. The casing was filled with water and placed under a well-head pressure of 140 pounds per square inch (psi). Over the 1-hour test period, the pressure did not vary beyond the 5% limit as required by the FDER. The test pressure is more than 1-1/2 times the expected maximum well-head pressure of 80 psi. Additional hydrostatic pressure tests were conducted successfully on the deep monitor well's 16-inch-diameter and 6-inchdiameter casing strings. Detailed pressure test data are presented in Appendix F.

Water samples were obtained from the injection zone and both shallow and deep monitor zones. The samples were analyzed for various constituents to establish the "natural" or background quality of the water in the injection zone and in the shallow and deep zones of the deep monitor well prior to disposal of treated effluent. Copies of the laboratory reports of the analyses are contained in Appendix G.

Following sampling of the injection well, 24 hours of background temperature and pressure data were collected on the injection zone prior to beginning an injection test. The injection test was run for a 24-hour period, during which approximately 2.8 million gallons of water were pumped into the well. Subsequent to the pumping portion of the test, recovery data were recorded. A detailed discussion of the injection test is presented later in this report.

Following the injection test, a television (TV) survey was performed on the injection well. Clear fresh water was pumped into the well before surveying with the video camera. The favorable picture clarity obtained during the survey provided visual data on the condition of the injection casing and the nature of the injection zone. A copy of the survey has been supplied to each member of the TAC.

A Radioactive Tracer Survey (RTS) was conducted subsequent to the TV survey. Eight logging events were conducted which consisted of measuring radiation levels with three gamma ray detectors through an interval where a known amount of the radioactive isotope Iodine-131 was released. A thorough discussion of the RTS test is included in the report section entitled "Test Interpretation." A copy of the RTS Log is included in Appendix D.

WELL DRILLING AND CONSTRUCTION

The construction of the injection well system commenced in April 1989 when Youngquist Brothers constructed the drilling pad for IW-1 and the deep monitor well. In May 1989, construction started on IW-1 and in June 1989, drilling commenced on the deep monitor well.

Injection Well 1

Construction of the injection well began in May 1989 with the drilling of a nominal 47-inch-diameter ream hole to a depth of 193 feet below pad level. A caliper and gamma ray log was conducted and 40-inch-diameter conductor casing was installed at 193 feet. The casing was cemented in place using ASTM Type II cement with 12 percent bentonite. Copies of the Well Casing Mill Certificates and Cement Records are presented in Appendices H and I, respectively. The bottom of the casing was cemented with ASTM Type II neat cement and temperature logs were run after each cementing stage. Following cementing of the conductor casing, a nominal 39-inch-diameter hole was drilled to 996 feet below pad level. A caliper and gamma ray log was conducted and 32-inch-diameter surface casing was set at 996 feet. The casing was cemented in place with ASTM Type II neat cement at the bottom of the casing followed by ASTM Type II cement with 12 percent bentonite. Temperature logs were conducted after each stage of cementing.

After cementing of the 32-inch-diameter surface casing, the drilling method was changed from mud-rotary to reverse-air drilling. A 12-1/4-inch-diameter pilot hole was drilled to 2204 feet, followed by a gyroscopic survey and geophysical logging (dual-induction, temperature, natural gamma ray, borehole-compensated sonic/VDL, X-Y caliper). Straddle packer testing was conducted over the intervals from 1776 to 1821 feet and from 1890 to 1935 feet. After completing the testing program in the pilot hole, the hole was reamed out to a nominal 32-inch-diameter hole. Following reaming of the 32-inch-diameter hole, a gyroscopic survey and an X-Y caliper log were performed. Next, 22-inch-diameter intermediate casing was set at 2000 feet. Cementing of the 22-inch-diameter casing required 105 stages. Gravel was used after stage 95 to fill the interval from 1310 to 1295 feet. A detailed discussion of the 22-inch-diameter casing cementing program is presented in the enclosed section of this report entitled "Construction Problems." A list of all cement samples, including lost circulation materials and additives, and their compressive strengths is shown in Appendix I.

Temperature logs conducted during cementing of the 22-inch-diameter casing are contained in Appendix D.

After cementing the 22-inch-diameter casing, a 12-1/4-inch-diameter pilot hole was drilled to 3510 feet below pad level. During drilling of the 12-1/4-inch-diameter pilot hole, five conventional cores were taken from the following intervals: 2359 to 2368 feet, 2403 to 2418 feet, 2587 to 2606 feet, 2633 to 2653 feet, and 2747 to 2757 feet. A geologic description of each core and the results of the laboratory analysis of several core samples are presented in Appendix B. Table 2 summarizes the core data obtained and the intervals tested. Following completion of the pilot hole to 3510 feet below pad level, a gyroscopic survey and geophysical logs (dual-induction, temperature, X-Y caliper, borehole compensated sonic/VDL, natural gamma ray) were conducted. Straddle packer tests were run over the intervals from 2511 to 2531 feet and from 2350 to 2370 feet. Next, a cement plug was set at approximately 2800 feet. The pilot hole was reamed out to a nominal 22-inch-diameter hole to a depth of 2650 feet. Subsequently, a gyroscopic survey and X-Y caliper log were conducted. The 12-inch-diameter final injection casing was set and cemented in place at 2650 feet. ASTM Type II neat cement was placed near the bottom of the casing followed by ASTM Type II cement with six percent bentonite. The last five stages of cement consisted of ASTM Type II cement with 12 percent bentonite. Temperature logs were conducted after each stage. Before pumping the final stage (Stage 10), a cement bond log was conducted on the 12-inchdiameter casing. A copy of the cement bond log appears in Appendix D. After completing the cement bond log, a pressure test was successfully performed on the injection casing. Results of the pressure test are presented in Appendix F. Following the pressure test, the cement plug was drilled out and the original hole was cleared to a total depth of 3510 feet. Water samples of the injection zone were taken (see section entitled "Water Quality") and a caliper log was conducted from 2600 feet to 3495 feet.

The injection test program for IW-1 began with 24-hour background monitoring followed by a 24-hour injection test. After the injection test, 12 hours of post-injection monitoring were conducted. Results of the injection test are presented in Appendix J.

Following the injection test, a background TV survey was conducted. After conducting a temperature log and a radioactive tracer survey, testing of the injection well was completed. A review of the cementing records, pressure test data, injection test data, and radioactive tracer survey indicates that the injection casing is properly cemented and that isolation between the injection horizon and overlying sources of drinking water has been achieved.

The conductor, surface, and intermediate casings were constructed of 0.375inch-wall Grade B carbon-steel pipe. The final injection casing was 12-3/4-inchdiameter Grade B seamless pipe with a 0.500-inch wall thickness. Copies of the mill certificates are presented in Appendix H. Construction of IW-1 was finished on October 17, 1989 when the RTS was successfully completed. Final completion construction details are shown on Figure 2.

Deep Monitor Well

Construction of the deep monitor well began with the drilling of a nominal 32inch-diameter ream hole to 192 feet. A gamma ray/X-Y caliper log was conducted prior to setting and cementing 24-inch-diameter casing to 192 feet. The bottom portion of the casing was cemented with ASTM Type II neat cement and the upper portion was cemented with ASTM Type II cement with 12 percent bentonite. Following cementing, a temperature log was conducted, and a nominal 24-inch-diameter hole was drilled to 1009 feet. A gamma ray/X-Y caliper log was conducted followed by setting and cementing 16-inch-diameter casing at 996 feet using ASTM Type II cement with four percent bentonite. The bottom portion of the 16-inch-diameter casing was cemented with ASTM Type II neat cement. Following cementing, both temperature and cement bond logs were conducted on the 16-inch-diameter casing. Additionally, a hydrostatic pressure test was successfully performed on the casing. After the pressure test, a nominal 16-inch-diameter hole was drilled to 1925 feet followed by a gamma ray/X-Y caliper log conducted in the open hole. A string of 6-5/8-inch-diameter casing with the top 1201 feet coated with an epoxy-phenolic coating was set and cemented at 1915 feet. Cementing of the 6-5/8-inch-diameter casing required 16 stages (see Appendix I). Temperature logs were conducted after each stage of cementing. The depth to the top of the final cement stage was tagged at 1147 feet. A cement bond log and hydrostatic pressure test were conducted on the 6-5/8-inch-diameter casing, followed by drilling a nominal 6-inch-diameter hole to 2008 feet. A temperature log was conducted in the open hole section and the lower part of the 6-5/8-inch-diameter casing. Both the shallow (996 feet to 1147 feet) and lower (1915 feet to 2008 feet) monitor zones were disinfected, developed, and sampled. Water samples were analyzed for primary and secondary drinking water standards in addition to EPA Test Methods 608, 624, and 625 (see Appendix G for laboratory results). Final completion construction details of the deep monitor well are shown on Figure 3. Geophysical logs performed during the construction of the deep monitor well are presented in Appendix E.

Construction Problems

Although various problems occurred during the construction of the injection well, drilling of the deep monitor well was accomplished without any significant delays.

On June 23, 1989, during the reaming of the nominal 32-inch-diameter hole in IW-1, a drill cone broke off of the reamer assembly. On June 29, 1989, after several attempts to retrieve the cone with a junk basket, a coring barrel tool was fabricated and used to remove the lost bit cone.

Cementing of the injection well's 22-inch-diameter casing began on July 11, 1989, and finished on August 20, 1989. A total of 105 stages of cement was required with many of the stages containing lost circulation materials such as celloflake, cottonseed husks, and calcium chloride, a curing accelerator. Flowing conditions below 1300 feet and cavernous zones were the main reasons for the excessive amount of cement used. After pumping stage 95, the cement level had risen to 1310 feet. Subsequently, a meeting was held on August 9, 1989, with the injection well's engineer of record, TAC members, and Geraghty & Miller representatives. After presenting the construction data to the TAC, permission was granted by the FDER to gravel the interval from 1312 to 1295 feet. After placing the gravel, ten additional cement stages were required to complete the cementing of the 22-inch-diameter intermediate casing.

On August 28, 1989, the bottom hole drilling assembly twisted off while a 12-1/4-inch-diameter pilot hole was being drilled at 2561 feet. An overshot tool was fabricated and used to retrieve the bottom hole assembly on August 30, 1989.

On September 16, 1989, during straddle-packer testing of the interval from 2350 feet to 2370 feet, the bottom packer failed to deflate and was left in the hole. The packer was retrieved on the first attempt with an overshot fishing tool.

SUBSURFACE CONDITIONS

Background

The final design of the injection well was based on information collected during drilling and testing of the pilot holes. The drilling and testing program was designed to provide flexibility and to allow for modifications in the well completion procedure as dictated by local geologic conditions. The drilling program and specifications were based on regional geologic conditions and data from existing injection wells in the area. The following section presents the site-specific geologic conditions encountered during this project.

Geologic Setting

An extensive sequence of carbonate sediments is present at the City of Pahokee Injection Well site and throughout the region. As shown in the Cross Section on Figure 4, both the confining sequence and injection zone are present at similar depths in <u>two</u> wells in Palm Beach County. The two reference wells are the ENCON Injection Well and the Pratt & Whitney Injection Well.

The structure of the geological units encountered during the construction of the City of Pahokee Injection Well was sufficiently within the requirements of Chapter 17-28 FAC. The injection zone proved capable of receiving the design rate of effluent (3.41 million gallons per day [mgd]), and proper disposal of the effluent into this zone should not contaminate any underground source of drinking water. A brief description of the various geological units encountered is presented in the following text.

From land surface to approximately 178 feet, the sediments are comprised of limestone, sandstone, clay, unconsolidated shell and sand, and peat. An organic-rich peat layer extends from land surface to approximately 10 feet. The limestone generally is very pale orange to light gray, fine- to coarse-crystalline, and contains varying amounts of sand. The sandstone is predominantly very light gray to light olive gray, fine- to coarse-grained and is comprised of quartz and some phosphatic minerals. Various amounts of shell are contained within the sequence. Shells are particularly abundant within the first 100 feet. These sediments correspond to the Shallow Aquifer in Palm Beach County and are Pleistocene to Miocene in age.

Below 178 feet and extending to a depth of 760 feet, the sediment is composed predominantly of a pale olive, plastic, calcareous clay which contains varying amounts of sand-sized phosphate. Limestone is found within this sequence in amounts lower than 20 percent and is generally micritic and poorly to moderately well-cemented. These sediments correspond to descriptions of the Miocene-age Hawthorne Formation.

Over the interval from 760 to 1560 feet, limestone is the dominant lithology. From 760 to 910 feet, the limestone is generally medium to coarse-grained, light gray to yellowish gray, and contains varying amounts of sand. Calcareous clay also was found in gradually smaller amounts over the interval. From 910 to 1560 feet, the limestone generally is very pale orange, fossiliferous, and contains numerous calcareous pellets. The sediments between 760 to 910 feet are Miocene to later Eocene in age and correspond with descriptions of Post-Hawthorn, Pre-Hawthorn, Suwannee, Tampa and probably the Ocala Limestone. Sediments below 910 feet are similar to the later to middle Eocene Avon Park Limestone. Drilling rates over the interval from 1000 to 1560 feet generally averaged less than two minutes per foot.

Dolomite was first encountered at approximately 1560 feet. The interval between 1560 to 1870 feet is represented by interbedded layers of dolomite and limestone. The dolomite is predominantly moderate yellowish brown to dusky yellowish brown, very fine to fine-crystalline, and contains dissolution features. The interbedded limestone in this interval is mostly very pale orange, micritic, foraminiferal, and pelitomorphic.

From 1870 to 2090 feet, a very dolomitic limestone is encountered. It generally is fine- to medium-crystalline, saccharoidal, and very pale orange to moderate yellowish brown. From 1930 to 1960 feet, the limestone appears iron-rich and is grayish orange to pale red in color. The interval from 1560 to 2090 feet is of middle to later Eocene age and is similar to the Avon Park Formation and Lake City Limestone. Without detailed microfossil identification, it is difficult to delineate the boundary between the base of the Avon Park Formation and the top of the conformable sequence below the Lake City Limestone.

Interbedded limestones and dolomites are found within the interval covering 2090 to 2820 feet. The dolomite varies in color from very pale orange to dark yellowish brown and is medium to coarse-crystalline with a sucrosic texture. The limestones exhibit varying degrees of dolomitization and are white to very pale orange, fine- to coarse-crystalline, and pelitomorphic. Large-scale dissolution features are evident on the caliper log below 2700 feet and vugs are present in rock samples taken from this depth. The sediments below 2700 feet are early Eocene age and correspond with the Oldsmar Limestone.

From 2820 feet to the total depth at 3510 feet, the rocks are composed almost entirely of dolomite, although more calcitic over the interval from 3180 to 3450 feet. The top of the Paleocene-age Cedar Keys Formation was penetrated at approximately 3450 feet. Sixty feet of the formation were drilled and a yellowish gray to grayish orange, sucrosic, gypsiferous dolomite was revealed.

The injection zone extends from approximately 2697 feet to 2950 feet in the Oldsmar Formation. Results from the TV survey indicate that the dolomite sequences within this zone exhibit extensive dissolution cavities. Open-spaced crystal growth is commonly found in vugs within dolomite retrieved in the well cuttings. The majority of the injected fluid will be disposed into the cavities between 2720 feet and 2920 feet.

Hydrogeologic Setting

The upper 180 feet of sediments beneath the site are Pleistocene-, Pliocene-, and later Miocene-age sands, in addition to silts, limestone, and shell. These sediments contain the surficial aquifer which is used as a source of drinking water throughout the County. Due to the presence of highly mineralized water in the surficial aquifer in western Palm Beach County, the City of Pahokee uses water from Lake Okeechobee for drinking purposes.

Underlying the surficial aquifer are approximately 600 feet of Miocene clay and marl which form a confining bed between the surficial aquifer and the Oligocene to Eocene-age limestones and dolomites of the Floridan aquifer. This confining bed is called the Hawthorn Formation. Water quality in the Floridan aquifer is poor in comparison to the surficial aquifer. Water from the Floridan aquifer in this area contains concentrations of dissolved solids which exceed drinking water standards. The aquifer generally is not used as a source of drinking water in the County because of the additional treatment required to meet potable standards. The Floridan aquifer exists under artesian conditions with a potentiometric level above land surface. The dense Miocene clays of the overlying Hawthorn Formation provide good confinement for this aquifer.

A confining sequence is present between 2350 feet and 2650 feet below pad level in the City of Pahokee injection well. It consists of a thick sequence of dense limestone with some interbedded layers of dolomite. This confining sequence overlies a section of highly permeable dolomite of the lower Oldsmar Formation referred to as the "Bolder Zone". This zone contains highly mineralized water and is used throughout south Florida for the disposal of treated domestic waste effluent.

Confining Sequence

Information on the nature of the confining sequence was obtained during various phases of the drilling and testing program. During pilot hole drilling, drill cuttings were collected and examined by the on-site geologist and five cores were taken over the interval between 2359 feet and 2757 feet. Several portions of each core were selected to be analyzed for a number of parameters, including porosity and vertical hydraulic conductivity. Table 2 summarizes the core data obtained and lists the intervals tested. The lowest vertical permeability was exhibited by a core from 2597 feet which revealed a permeability of 0.000000756 centimeters per second (cm/sec). The limestones and dolomites comprising the confining sequence are apparent on the dual induction and sonic logs. The log sections covering the interval from 2350 to 2480 feet are particularly characteristic of uniform microcrystalline sediment.

After the completion of pilot hole drilling to a depth of 3510 feet, straddlepacker tests were conducted in the borehole. A typical straddle-packer assembly is shown on Figure 5. Two tests were successfully conducted in the interval between 2350 feet and 2550 feet. Values of hydraulic conductivity determined from these tests are presented in Table 1. The data from the cores, laboratory test data, and copies of the geophysical logs are presented in the appendices.

Injection Zone

During the drilling of the well, the presence of an injection zone was indicated by erratic penetration rates which are characteristic of a fractured cavernous dolomite formation. Confirmation of the presence of the injection zone was made from the cuttings, geophysical logs, TV survey and injection test. The results of the injection test are presented in a subsequent section of this report. Evidence gathered during drilling and testing confirmed that the injection zone consists predominantly of fractured and cavernous dolomite.

The correlation between the injection zone and the occurrence of dolomite is shown clearly on the Dual Induction and Borehole-compensated Sonic logs presented in Appendix D. The resistivity profile shown on the Dual Induction log varies drastically within the injection zone. This variation is due to the presence of a massive, dense dolomite (higher resistivity), along with fractures and cavities containing highly mineralized water (lower resistivity). On the Borehole-compensated Sonic log, the abrupt and large changes in transit velocities and cycle skipping between 2697 feet and 2950 feet confirm the presence of fractured dolomite containing large cavities. Drill cuttings were composed mainly of hard, fine- crystalline dolomite with dissolution features. Also, the presence of large cavities and fractures can be seen on the TV survey.

Water Quality

Prior to the preliminary injection test, representative water samples were collected from isolated sections of the borehole during the straddle-packer tests in IW-1 and from the injection zone. Water samples also were collected from both monitor zones in the deep monitor well. The water samples were analyzed for selected ions to establish the 10,000 mg/L TDS the interface, background water quality of the injection zone, and the background water quality of the monitor zones. Results of these laboratory analyses are presented in Appendix G.

Two straddle-packer tests were conducted in IW-1 in the interval between 1776 and 1935 feet. The formation intervals tested were both 45 feet in thickness. During the straddle-packer tests, each section of the hole was isolated using inflatable packers provided and installed by TAM International. Each zone was pumped for a minimum of four hours using a submersible pump. Temperature, conductivity, and chloride readings of the water from the isolated zones were taken periodically throughout the tests. Just prior to the end of the tests, samples were collected from each zone for laboratory analysis. Based on geophysical logs and water quality data from the packer tests, the 10,000 mg/L TDS level in the City of Pahokee injection well is estimated to be between 1821 and 1890 feet. Below 1821 feet, the TDS increases rapidly and reaches a value of 16,153 within the interval between 1890 feet and 1935 feet (see Table 3). The analysis of the deep monitor zone sample (1915 to 2008 feet) confirms this abrupt increase in TDS. The static heads measured at the end of the recovery period in the straddle-packer tests support the water-quality data. The interval from 1776 feet to 1821 feet contains lower density water than the interval between 1890 feet to 1935 feet. For regulatory purposes, the 10,000 mg/L TDS interface is estimated to be at approximately 1850 feet.

The water-quality data obtained from the injection zone sample reveal a TDS level far greater than 10,000 mg/L; therefore, the zone can be used for the disposal of treated wastewater in compliance with Chapter 17-28 FAC. Water quality analyses of the samples obtained from the straddle-packer tests, shallow and deep monitor well zones, injection zone, and plant effluent are contained in Appendix G.

RADIOACTIVE TRACER SURVEY

On October 16 and 17, 1989, a Radioactive Tracer Survey (RTS) was conducted in the injection well located at the City of Pahokee Wastewater Treatment Plant. The survey began at 8:00 a.m. and was concluded at 5:30 a.m. the following morning. During this time, a total of eight "slugs" of the radioactive isotope Iodine 131 was released. The slug of tracer material varied in strengths between one and five millicuries (MCI). Each release of tracer material was accompanied by two or more logging events. Each logging event consisted of moving a logging tool through the interval where the slug was released. The logging tool was equipped with the following: casing collar location (CCL) to pinpoint the depth of the casing seat, two tracer material ejectors (VEI and LEI), and three gamma ray detectors (the lower detector [GRSG], the middle detector [GRTE], and the upper detector [GR]). A diagram of the logging tool used for the tests is shown on Figure 6 and a copy of the RTS log is included in Appendix D.

A "fresh water bubble" was established by pumping fresh water into the well over a period of several days prior to the survey. Over 2.5 million gallons of fresh water were pumped into the injection zone during this time. The "fresh water bubble" is required to provide a potential for upward migration of fluid. The potential was measured by a pressure gauge mounted on the well head and a static pressure of 29 psi was recorded at the beginning of the RTS. Because the gauge well head pressure was zero before any fresh water was introduced into the well, the surface pressure recorded at the beginning of the test was due entirely to the density difference between the native formation water and the injected fresh water.

The testing began with the recording of a temperature log from surface to approximately 2700 feet. The next phase of the test consisted of conducting a gamma ray log from 2708 feet to 1136 feet. This first gamma ray log provides the "background" information to which subsequent logs are compared.

For each test, time-drive monitoring commenced just prior to the release of the slug. In time-drive monitoring, 1.5 inches on the log's vertical scale equals one minute (see Figure 7). In the center unscaled column, where one is accustomed to reading the measured depth of the well, there are small tick marks along the left side which indicate one-minute increments. Ten minute increments are numbered for ease of interpretation. On the right side of the center column, a large, dark tick marks the time

The first slug of tracer material was ejected at 12:03 p.m. on October 16, 1989, and is labeled "First STATIC" on the log. For this test, the upper ejector (VEI) was positioned one foot below the casing seat (bottom of the casing). It should be noted here that the casing seat was located at 2652 feet by the TV Survey on October 13, 1989. However, as determined from previous geophysical logs, the actual depth of the casing seat is at 2650 feet. For simplicity's sake and for the purposes of this report, the depths used during the RTS test will be assumed correct. Time-drive monitoring ceased after a total of 61 minutes.

As can be seen on the RTS log, the middle gamma ray detector (labeled "GRM" on the log and "GRTE" on the scale) is the first detector to indicate the presence of the tracer material (after 10 minutes). It should be noted at this point that because of the proximity of GRM to ejectors VEI and LEI, the scale for GRM is 0-2000 American Petroleum Institute gamma ray units (GAPI). Additionally, after this first release, GRM became stained with radioactive material and ceased to be useful in detecting small amounts of radioactivity. After approximately 20 minutes the bottom gamma ray detector (GRB on the logs and GRSG on the scale) began showing the presence of radioactive material. After approximately 48 minutes, the radioactivity level peaked at approximately 680 API units.

Because no radioactivity was detected at GRT, this test shows that there is no movement of water from below the casing seat into the casing or through the cement sheath behind the casing.

A gamma ray log up to approximately 2000 feet then was conducted to ensure that no tracer material had moved up into or behind the casing through the cement or formation without being detected. Fresh water then was pumped to remove any residual tracer material that lingered at the bottom of the hole. An additional gamma ray log then was run from 2756 to 2553 feet to locate any radioactive stain present in the hole. As can be seen from the log labeled "Logged Thru Slug After A Flush", the tracer left a considerable stain immediately below the casing seat at 2653 feet (which is where the tracer material was released) and at approximately 2710 feet (which is where the

It should be noted that there are two curves shown in the GRT column on this same log. The dashed line, labeled GRT BG, represents the naturally occurring gamma ray radiation or background obtained from the first gamma ray log. The solid line (GRT) curve was the gamma ray radiation log conducted at the time. The separation between the two curves indicates an increase in radiation since the first log was recorded. Naturally, this increase is due to the presence of the new source (Iodine 131) introduced during the test. It also indicates the difference in permeability between the formation above 2710 feet and the formation below 2710 feet.

formation becomes fractured and very permeable). These stains are experienced

routinely with this type of test and are repeated with each subsequent test.

The second static test began by placing ejector VEI 5 feet inside the casing at 2647 feet. This test is labeled "Second Static Test" on the log. The procedure for this test was the same as the first static test. After approximately 5 minutes of time-drive monitoring, the tracer material was detected at the upper detector. Approximately 9 minutes after releasing the slug, the lower detector began showing signs of tracer material. Both detectors GRT and GRB were showing several hundred API units before time-drive monitoring was discontinued after approximately 15.5 minutes. The short-time interval between release of the tracer material slug and detection by GRT was a source of some concern. As a result, a thorough check to ensure that there was no leak in any of the above ground piping was conducted and then a gamma ray log was conducted. The results of the gamma ray log, labeled "Logging Thru Slug," indicate that there is no appreciable difference between the amount of background gamma ray radiation and the current radiation above 2644 feet below pad level.

The tool was reset with the ejector (LEI) set at 2647 and the second static test was rerun under identical conditions. The slug was detected after approximately 8.5 minutes by GRT and after approximately 10.5 minutes by GRBA. As in the previous test, a gamma ray log was run as in the previous test to confirm that no additional tracer material had migrated up-hole. However, the rate of dispersion of tracer material upward, compared to the rate of dispersion downward, was still a source of concern. Time-drive monitoring was initiated at this point and fresh water was pumped to clear the tracer material from inside the casing. After approximately 26 minutes of pumping fresh water, the tracer material was essentially cleared. However, a stain on the casing was now beginning to form at 2647 feet.

The next section of log labeled "Logging Thru Slug After A Flush" illustrates the extent of the stain inside the casing. More fresh water was pumped to clear the stain, and the hole was logged again. The next log section, unlabeled on the log, shows that the stain, although still present, is virtually eliminated above 2638 feet.

In order to ensure there was no water leak in the above-ground piping to account for the faster upward migration of tracer material (faster than the rate of downward migration), the tool was reset with ejector LEI located at 2473 feet. A one (1) MCI slug was released after time-drive monitoring commenced. Tracer material was detected after approximately 7.5 minutes by the lower detector GRB and after 13 minutes by top detector GRT. Time-drive monitoring ended after 21 minutes. A gamma ray log was run through the slug and as can be seen on the section of log labeled "Logging Thru Slugs," the tracer material was found to be evenly dispersed between approximately 2440 and 2510 feet. This indicates that the tracer moved up from the point of release approximately 37 feet and that there was no leak in the above-ground piping or in the casing above approximately 2440 feet.

Next, fresh water was used to flush the tracer material from the casing. The tool then was reset at 2620 feet. Again, a 1 MCI slug of tracer material was released after initiating time-drive monitoring. The slug was first detected by GRB and GRT after

approximately 15 minutes. A substantial change of GRT, however, did not occur until after almost 30 minutes. Time-drive monitoring was terminated after almost 65 minutes. The gamma ray logging tool then was lowered to 2706 feet and a log was conducted through the slug to 1950 feet. The previous test results were repeated in that the tracer material was evenly dispersed over the interval from approximately 2596 feet to 2646 feet. This test showed an upward dispersal of the slug of approximately 24 feet and a downward dispersal of 26 feet.

Fresh water then was pumped to clear the tracer material from the casing. Another gamma ray log was run to see if there were any hot spots on the casing which might indicate a hole in the interval previously tested. The log showed no hot spots or stains in the casing below 2486 feet. (Previous static tests indicated no leaks above or below 2473 feet.) The separation between GRT and GRTBG on the log (File 24) between 2630 feet and 2650 feet is attributed to normal buildup of stain at the bottom of the casing string.

The results of the static RTS testing indicate that there is no leak inside the casing or in the cement sheath behind the casing. The reason for faster upward migration of tracer material when the ejector is positioned near the casing seat is due to turbulence created by water movement below the casing seat. The radioactive tracer survey revealed significant permeability in the formation immediately below the casing seat. This conclusion also is supported by geophysical logs run in the open hole over this interval.

Additionally, evidence of this water movement is shown in the TV Survey. Below approximately 2630 feet, suspended sediments can be seen in the casing. The section of the TV survey that proceeds into open hole was conducted without pumping any water at the surface. During this portion of the tape, suspended sediments can be seen in motion due to water movement. The next part of the RTS is presented in the section of the log labeled "Low Flow Dynamics" (File 25). For this portion of the test, a low flow rate of approximately 40 gallons per minute (gpm) was established prior to commencement of time-drive monitoring. The ejector was positioned at 2621 feet and a 2 MCI slug was released. After its release, the slug was detected near the two minute mark by GRB located inside the casing at 2636 feet (GRM responded almost immediately but, as already explained, useful data cannot be discerned due to stain.) Gamma ray levels returned to normal after approximately 13 minutes. After 32 minutes, gamma ray radiation was again detected by GRB at 2636 feet. This indicates that tracer material had moved up behind the casing, either in the formation or through channels in the cement sheath.

The velocity of the tracer movement was calculated based on flow rate, the length of casing that the tracer had to move through before leaving the casing, and the depth difference between the casing seat and GRB. It was determined that, at the current pumping rate (40 gpm), tracer material would be detected at GRT after 72 minutes of time-drive monitoring if the cement sheath did not seal the casing to the borehole. Consequently, time-drive monitoring was continued for a total of 75 minutes. No increase in gamma ray radiation was detected by GRT and time-drive monitoring was discontinued after 75 minutes.

A gamma ray log then was run (File 26) from 2706 feet to 1945 feet. A stain on the casing was detected at 2621 feet, which was the location of the ejector that released the slug of radioactive material. The separation between the curves representing the log response for GRT and GRT BG indicates some increase in gamma ray radiation below 2621 feet. This increase over the background readings is attributed to stain on the casing.

A second dynamic pumping test was conducted at a flow rate of 3000 gpm. The tool again was set with the ejector positioned at 2621 feet. As can be seen on the log (File 28), a 2 MCI slug was ejected shortly after initiating time-drive monitoring. The tracer material was detected immediately by GRB (Note: GRM shows a decrease of

radioactivity during this period.) Time-drive monitoring was continued for approximately 31 minutes without any detectors showing indications of increased radioactivity. After time-drive monitoring was discontinued, a gamma ray log was run from 2706 feet to 1948 feet. As can be seen from the next log section (File 29), the stain at the casing seat is still visible. But the casing, although still stained, shows gamma ray readings very close to background.

Next, a third and final dynamic pumping test was conducted (File 30). Again, the ejector was located at 2621 feet, however, the pumping rate was reduced to 1400 gpm. A 5 MCI slug of tracer material was released shortly after time-drive monitoring was initiated. Again, GRB detected the slug almost immediately after release. Time-drive monitoring continued for 31 minutes without any radioactive tracer material being detected. The 5 MCI slug was used to ensure that there would be enough radioactive material present for the tool to detect, if any should migrate upward outside the casing.

After discontinuing time-drive monitoring and pumping, a final gamma ray log was run (File 31) to ensure that no tracer material had migrated upward. As can be seen on the log, a stain is present at 2621 feet (the location of the ejector). The stain provided a slightly larger response than after the second dynamic test. This probably is due to the slower pumping rate, and, thus the less efficient cleansing of the casing; the cumulative effect of repeated ejections at the same location; and the unusually large size (radioactive strength) of the slug. The log correlates very closely with the original GRT BG above the location of the stain. This indicates the absence of tracer material behind the casing due to upward migration through the formation or cement sheath.

OPERATION AND MAINTENANCE

When the injection wells are operating during long-term injection testing and over their operational life, a variety of data will be collected to satisfy statutory/permit requirements and to assist in managing the system. This section discusses the basic requirements for data collection to aid in permit compliance during the initial testing period and during the operation of the system.

Injection-Well Data Collection

The well-head pressure and the injection rate will be monitored continuously to ensure that the maximum pressure at the well head does not exceed 92 pounds per square inch gauge (psig) and the velocity down the well does not exceed 8 feet per second. Values of the daily maximum flow in millions of gallons per day (in mgd) and total daily flow (in mgd) will be recorded on a daily basis and submitted monthly to the Florida Department of Environmental Regulation (FDER). Daily measurements of the maximum injection pressure (in psig), and the average injection pressure (in psig) also will be reported monthly to the FDER. Monthly averages for the daily maximum flow (mgd), daily maximum injection pressure (psig), and daily average injection pressure (psig) will be calculated for monthly reporting to the FDER. Measurements of the injection pressure and rate should be made at the same time and recorded so that correlations between these two values can be made. It is essential that performance data be collected from the start to establish baseline information for satisfying regulatory requirements and to serve as a benchmark for future data comparison and analysis of performance. The records will be maintained permanently. The lead plant operator or a higher official must sign and date each submittal. A sample form for recording the above-mentioned measurements and calculations is included in Appendix K.

Monitor-Well Data Collection

The purpose of monitor-well data collection is to detect changes in water quality in the monitor zones that could be attributed to the injection of treated effluent. The parameters established for analysis are chlorides, specific conductance, fecal coliform, 5-day biological oxygen demand (BOD5), total dissolved solids (TDS), pH, temperature, and ammonia. Analysis for these constituents will be conducted weekly and reported to the FDER monthly. The lead plant operator or a higher official must sign and date each submittal. A sample form for recording the results of analysis for the abovementioned constituents is included in Appendix K.

In order to collect the monitor-zone data, the deep monitor wells have been equipped with sampling pumps. At least three well volumes will be pumped from the monitor zones before samples are taken. The water from the monitor zones will be discharged into the treated effluent wet well and disposed into the injection well.

The integrity of the monitor-zone sampling systems is to be maintained at all times. Sampling lines and equipment shall be kept free of contamination through the use of independent discharges and no interconnections with any other lines. Because both monitor zones will flow due to artesian pressure, the height of the water column in each monitor zone will be the same as the total depth of that monitor zone; i.e., the water column in the shallow monitor zone will be 1,147 feet and the water column in the deep monitor zone will be 2,008 feet. The volume of water in the shallow-monitorzone water column is approximately 12,126 gallons and the volume in the deep monitor zone is approximately 2,550 gallons. Multiplying these volumes by 3 will determine the minimum volume of water required to be pumped from the respective monitor zones prior to sampling. Therefore, a minimum of 36,378 gallons of water must be pumped from the shallow monitor zone and a minimum of 7,650 gallons of water must be pumped from the deep monitor zone. Assuming the sampling pumps have a pumping rate of 75 gallons per minute (gpm), the deep monitor zone should be pumped for a minimum of 1.75 hours (7,650 gallons divided by 75 gpm divided by 60) and the shallow monitor zone should be pumped for a minimum of 8 hours (36,378 gallons divided by 75 gpm divided by 60). Should a higher or lower pumping rate be determined, the pumping time can be adjusted accordingly. Monitor-zone pressure data should be recorded prior to the purging and submitted to the FDER with the monthly reports. Forms have been provided for recording this data (see Appendix K). Also, daily measurements of the maximum, minimum, and average monitor-zone pressures must be maintained. It is recommended that a 7-day wind-up, 2-pen pressure recorder be This gauge can record both monitor zone pressures employed for this task.

Injectivity Testing

A well's injectivity is a function of (1) friction loss in the casing; (2) the bottomhole driving pressure; and (3) the density differential between treated effluent and the formation water in the injection zone. The latter is a constant as long as the temperature and density of the injection fluid remains constant. Bottom-hole injection pressure and friction loss in the casing can vary as a result of changes in the flow rate, plugging of the injection zone, and/or the physical condition of the pipe. In general, pressure builds slowly with time (for a given pumping rate) as the casing "ages." Similarly, plugging of the injection zone can cause a gradual pressure build-up with respect to time; this is not expected at the Pahokee well because of the cavernous nature of the injection zone.

Periodic determination of a well's injectivity can be used as a measure of a well's efficiency and is recommended as a monitoring tool for the injection well system. Performing the test is relatively simple. It involves injecting into the well at two injection rates and recording the injection pressure for each rate. The high injection rate should approach the maximum design flow or an injection rate as high as can be sustained for the injectivity testing period. The injection flow rate (mgd) and the injection pressure (psig) should be recorded and reported for each injection rate. Additionally, the shut-in well-head pressure (psig) with no flow must be recorded and reported. All readings during the injectivity testing should be taken after the selected injection rate has stabilized for a minimum of five minutes.

Monitor zone pressures must be recorded prior to, during, and after each injectivity test and submitted to the FDER with the test results. A form has been provided for recording these results (see Appendix J).

The injectivity is calculated by dividing the injection rate by the surface injection pressure (well-head pressure minus the static pressure). The result is expressed as gallons per minute per psi. As noted, testing should be conducted at two rates so that future comparisons can be made.

A procedure for injectivity testing should be established as soon as the wells are placed in operation in order to collect baseline operating data. The procedure should be easily repeatable so that injectivities can be computed for the same injection rates. Testing should be conducted monthly for the life of the well. The lead plant operator or a higher official must sign and date each submittal.

Mechanical Integrity Testing

An injection well has mechanical integrity if there is no leak in the casing and no fluid movement into any underground source of drinking water through channels adjacent to the injection well casing. In accordance with the Chapter 17-28.13(6) and 17-28.25(1) FAC, the mechanical integrity of all injection wells must be demonstrated every five years. A TV survey is required for the injection well and injection zone. The injection casing must be pressure tested or tested by an approved method to demonstrate the absence of leaks. A temperature and/or noise log and monitoring of overlying aquifers will be conducted to demonstrate absence of fluid movement through channels adjacent to the injection well bore. A radioactive tracer survey (RTS) also is required every five years.

Plugging and Abandonment Plan

Section 28.27(2) of Chapter 17-28 FAC states that "an applicant for an Underground Injection Control permit shall be required to submit a plan for plugging and abandonment which may include post-closure monitoring of the injection operation." The FDER can order the plugging of an injection well when it has been abandoned or has been "determined to be a threat to the waters of the State." Additionally, a P&A

(plugging and abandonment) plan should be included in the Operation and Maintenance manual for the treatment facility so that it can be implemented promptly in the unlikely event it is ever needed. The objective of the P&A plan is to effectively plug or seal the borehole through the confining bed thereby preventing the upward migration of injected treated effluent and the circulation of ground water of different qualities. The program described in this section accomplishes that objective.

In the event the City of Pahokee injection well has to be abandoned, the following program would be followed. The plugging program will require the services of a qualified contractor and equipment capable of installing drill pipe to a depth of approximately 2700 feet; pumping ASTM Type II neat cement, mixing and pumping drilling fluid to suppress flow, and providing some form of blow-out prevention equipment.

The initial step in the program will be to mix a solution of "weight" material and pump it into the well to suppress flow. Sufficient weight material should be added to the well to depress the fluid level to approximately 20 feet below pad level. A supply of previously-mixed drilling fluid should be kept on-site as weight material and may have to be added periodically to maintain the desired fluid level in the well. Following the addition of the weight material, the well-head assembly will be removed to permit easy access into the well. A blow-out preventor will be installed at this time.

The bridge plug will consist of 2-inch-diameter threaded tubing and two cement baskets assembled on location and lowered into the well on a string of drill pipe. A careful tally of pipe lengths should be kept to permit setting of the plug with the cement baskets about 5 feet above the bottom of the injection casing. The 2-inch-diameter casing will have a bottom plug and two sets of left-hand threaded couplings at levels about 80 and 140 feet above the bottom of the injection casing. A series of cement ports will be cut into the 2-inch-diameter tubing above the cement baskets. The cement baskets will be expanded and set by adding crushed limestone to the well and allowing it to settle. A mixture of ASTM Type II neat cement will be pumped into the well through the drill pipe and the cement ports above the limestone fill. The quantity of cement pumped should be equivalent to the volume of slurry required to fill the casing from the top of the limestone to one foot below the lowermost left-hand threaded coupling.

The cement will be allowed to set for at least 24 hours, then "tagged" with a wire line to determine if fill-up has been achieved. If not, additional crushed limestone will be added and another stage of cement will be pumped. (A single stage of cement usually is sufficient to build the first portion of the bridge plug.) A strain of no more than 1000 pounds above drill string weight will be exerted. If no movement occurs (other than pipe stretching), the plug is deemed set and the Contractor will proceed with disconnecting the assembly by rotating and "backing off" the drill pipe (right-hand rotation will unscrew the pipe from the left-hand threaded couplings). Two successive small stages consisting of no more than 100 feet of cement fill-up will be pumped. The remainder of the casing will be filled with neat cement after the two smaller cement stages are set.

The deep monitor well also will be plugged in the event the injection well is abandoned. However, the FDER may require sampling of the monitor zones for some period of time after abandonment and plugging of the injection wells for post-closure monitoring of the system. The 6-5/8-inch-diameter tubing for the deep monitor zone can be plugged from the surface by pumping sufficient ASTM Type II neat cement to displace the fluid in the tubing. The upper monitor zone will require installation of a tremie line to fill the hole from 1147 feet to the surface. Cementing of this zone should require only one cement stage.

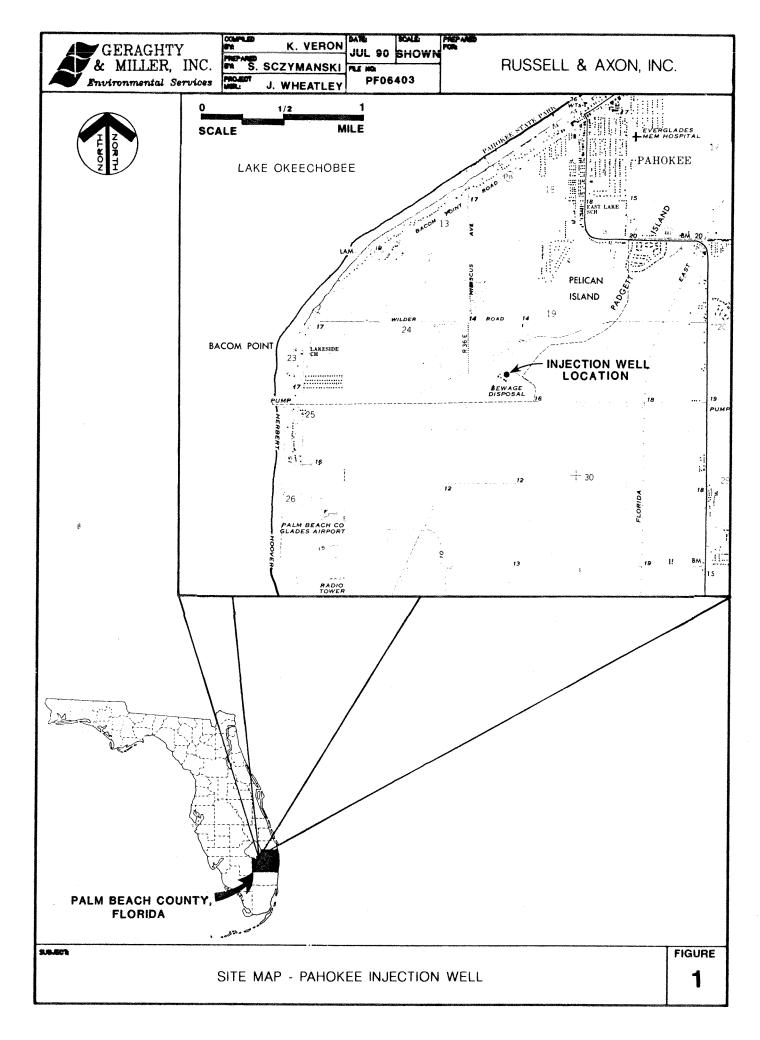
ACKNOWLEDGEMENTS

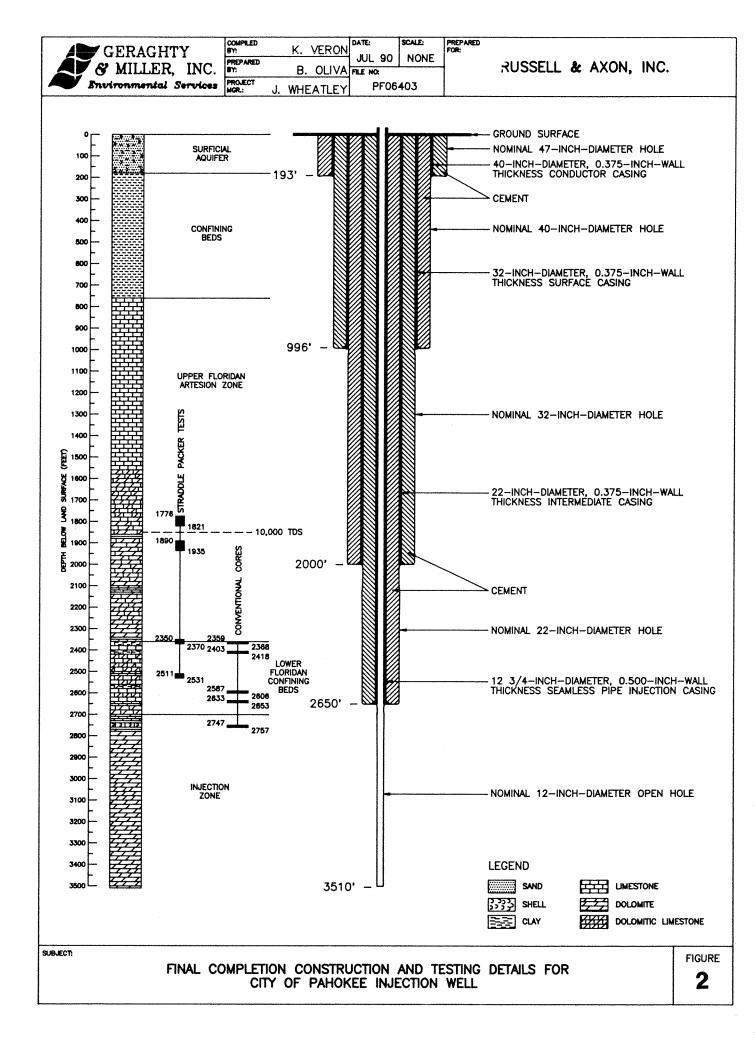
The success of this program was due largely to the cooperative efforts of a number of individuals on the staffs of the City of Pahokee, Russell and Axon, South Florida Water Management District, U.S. Geological Survey, Palm Beach County Health Department, and Florida Department of Environmental Regulation. All parties worked together to complete this project that will enable the City of Pahokee to dispose of treated effluent safely, and protect the local environment. Special thanks are due to each of the following organizations for their assistance, guidance, and cooperation.

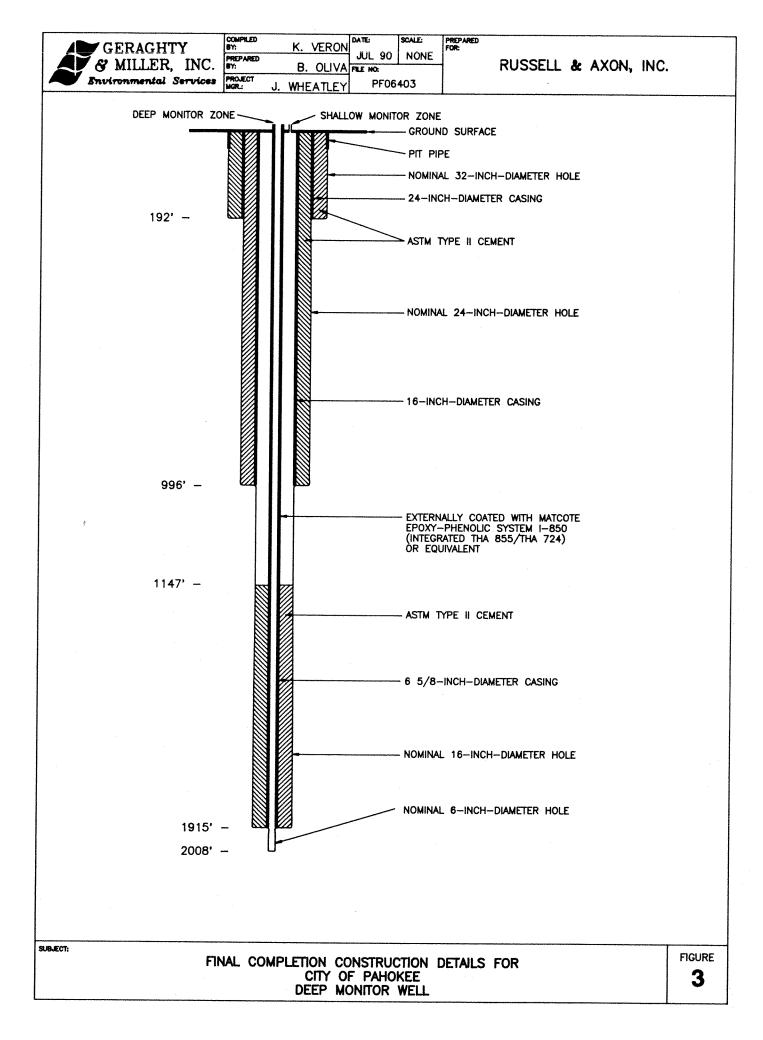
City of Pahokee

Florida Department of Environmental Regulation

South Florida Water Management District


U.S. Geological Survey


Palm Beach County Health Department


Youngquist Brothers, Incorporated

GERAGHTY & MILLER, INC.

FIGURES

EAST-WEST STRATIGRAPHIC CROSS SECTION

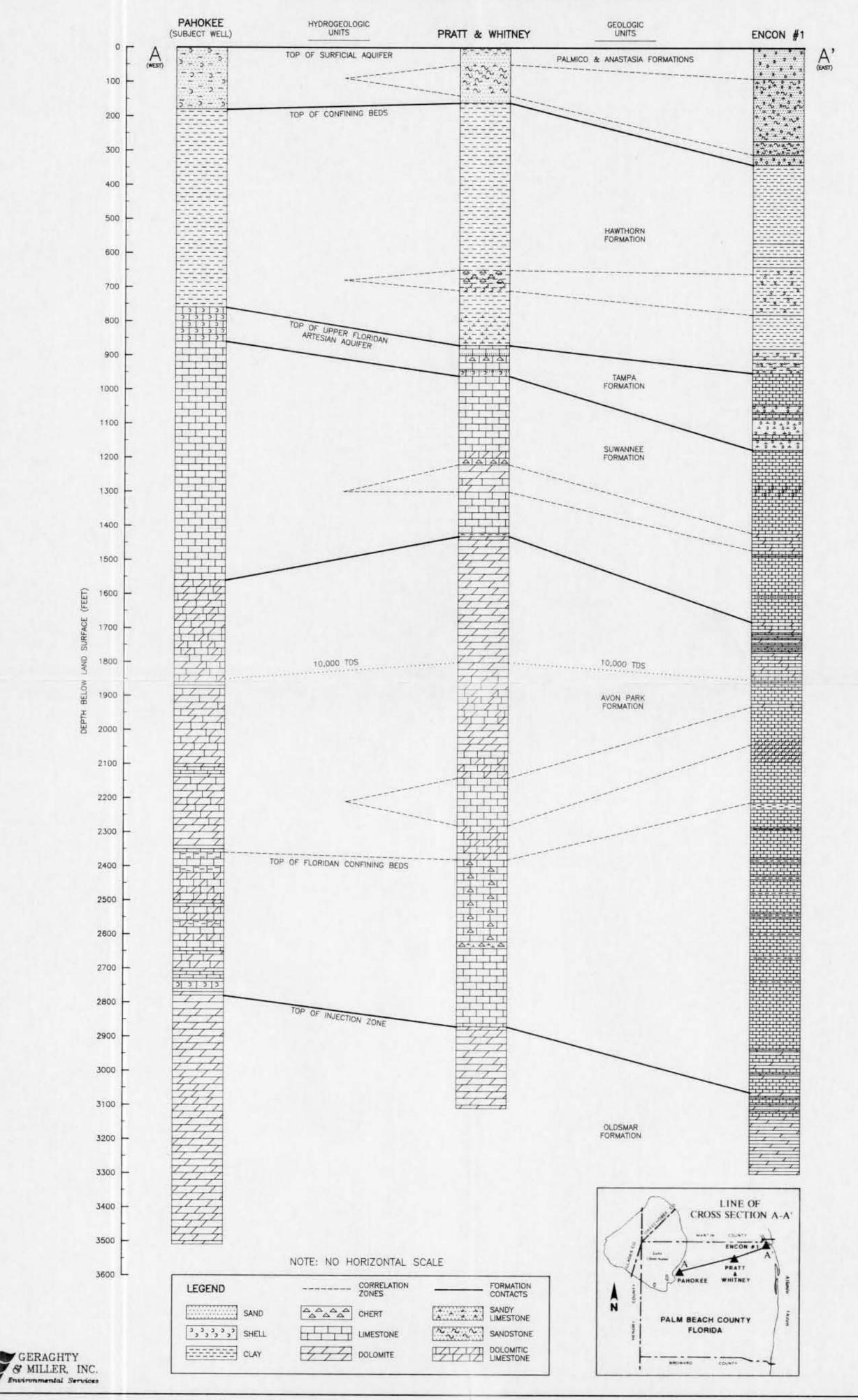
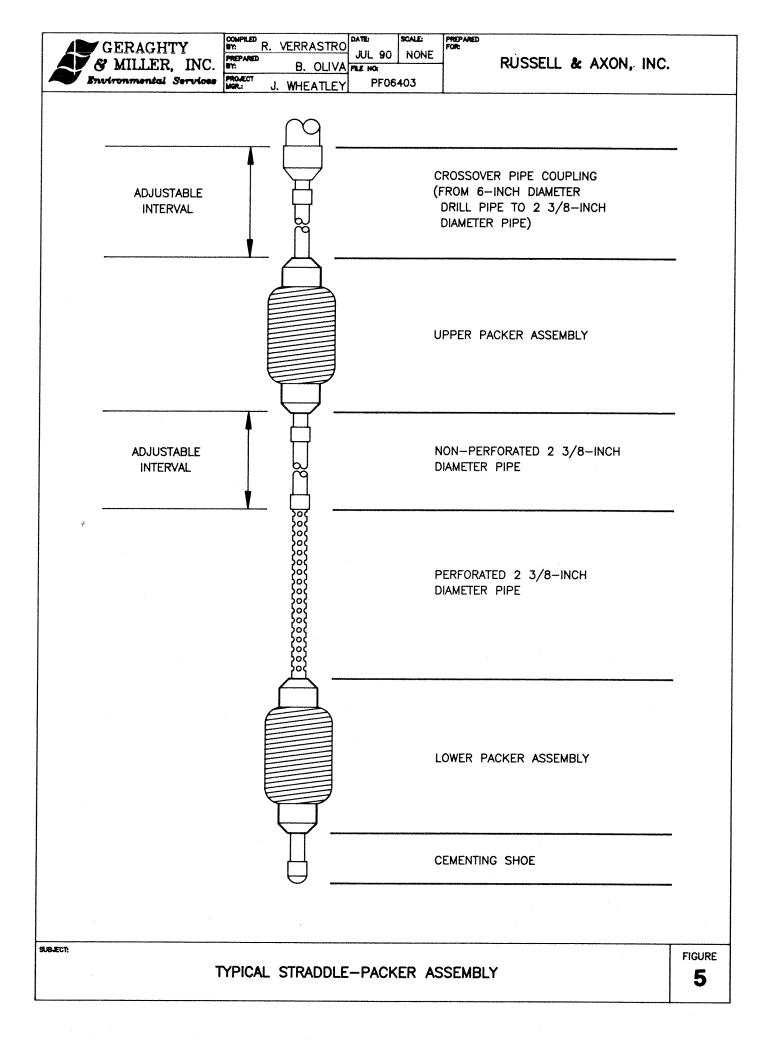
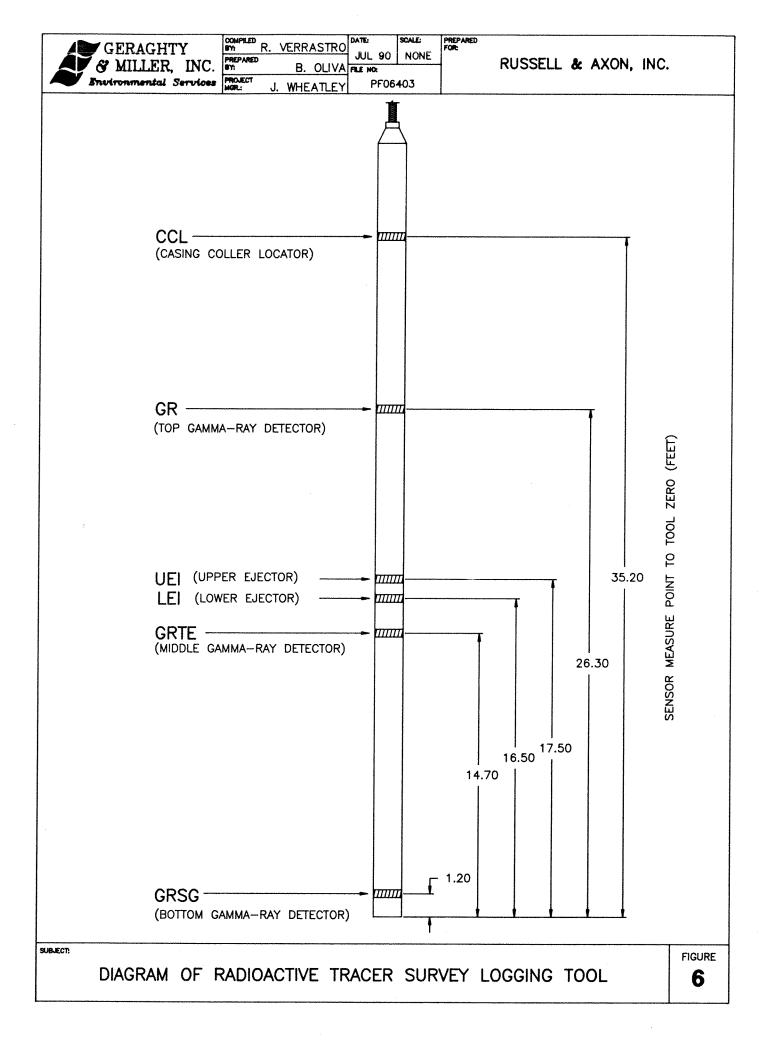
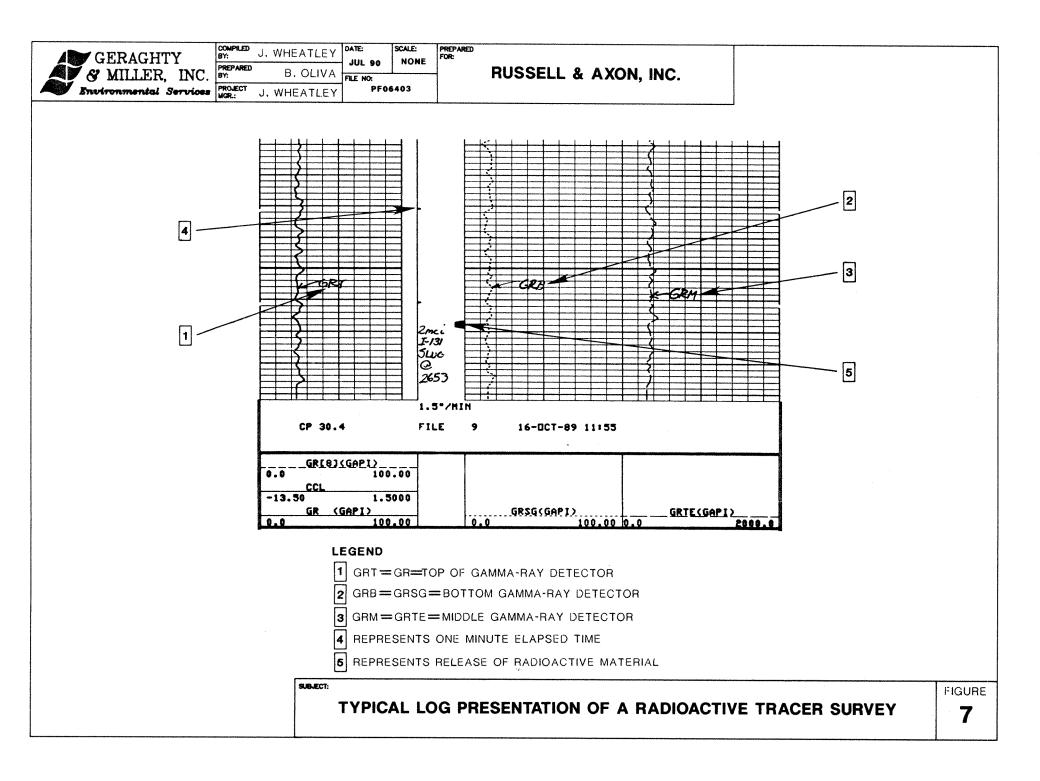





FIGURE 4

GERAGHTY & MILLER, INC.

TABLES

Test	Depth	Int. Thickness (ft)	Calculated Transmissivity (GPD/ft)	Hydraulic Conductivity (GPD/ft2)	Hydraulic Conductivity (cm/sec.)
1	1776 - 1821	45	78,185	1,737	0.082
2	1890 - 1935	45	N/A	N/A	N/A
3	2350 - 2370	20	1,377	69	0.0032
4	2511 - 2531	20	N/A	N/A	N/A

Table 1.	Hydrologic	Properties	of	Straddle	Packer	Test	Intervals,
	Injection W	ell 1					

N/A = Not available. Poor data recovery due to borehole conditions.

Sample	Core Depth	Horizontal Hydraulic Conductivity (cm/sec)	Vertical Hydraulic Conductivity (cm/sec)
1	2366	0.0000242	0.0000318
2	2367	0.0000331	0.0000376
3	2411	0.0000512	0.000103
4	2412	0.0000216	0.0000128
5	2414	0.00000794	0.0000318
6	2592	0.0000119	0.0000459
7	2597	0.0000675	0.00000756
8	2603	0.000175	0.00000151
9	2637	0.0000475	0.0000157
10	2644	0.0000151	0.0000217
11	2648	0.0000620	0.0000616
12	2747	0.000554	0.0000242

Table 2. Results of the Analysis of Selected Core Samples, Injection Well 1

Notes: (1) Four-inch-diameter cores

(2) Analysis performed by Professional Service Industries, Inc., Clearwater, Florida.

Well	Interval (fæt)	TDS (mg/L)	Chloride (mg/L)	Specific Conductance (micromhos/cm)	Sulfate (mg/L)
Monitor	946-1147	4,981	2,400	7,030	563
Injection	1776 - 1821	8,485	4,610	10,350	114
Injection	1890-1935	16,153	7,693	18,880	863
Monitor	1915-2008	19,620	13,400	25,300	1130
Injection	2650-3512	40,863	70,700	54,300	3410

Table 3.	Water-Quality Analyses, Injection Well 1 and Deep Monitor	Well,
	City of Pahokee Wastewater Treatment Plant	

GERAGHTY & MILLER, INC.

S ...

APPENDIX A

Geologic Logs

GERAGHTY & MILLER, INC.

INJECTION WELL 1

GEOLOGIC LOG OF INJECTION WELL 1 CITY OF PAHOKEE, FLORIDA

Depth Interval (feet)	Thickness (feet)	Sample Description
0 - 9.5	9.5	PEAT – Peat, 75%, black; Clay, 15%, medium gray; Shell, 10%, white to light gray, poorly sorted.
9.5 - 11.0	1.5	LIMESTONE - Limestone, 55%, micritic, very pale orange, poorly cemented; Siltstone, 40%, calcareous, dark yellowish brown, poorly- to moderately well-cemented; Shell, 5%, white to light gray, unweathered, entire shells or fragments.
11.0 - 18.5	7.5	SHELL - Shell, 100%, white to light gray, slightly weathered, bivalves and gastropods, entire shells or fragments; Clay, trace, light olive gray; Limestone, trace, micritic, very pale orange, hard.
18.5 - 30.0	11.5	SHELL – Shell, 80%, white to light gray, bivalves and gastropods, mostly fragmented; Sandstone, 20%, quartz, calcareous, fine-grained, very light gray, moderately well-cemented.
30.0 - 40.0	10.0	SANDSTONE - Sandstone, 60%, quartz, calcareous, fine- to medium-grained, very pale orange to medium light gray, subangular to rounded, well-cemented; Shell, 40%, white to light gray, bivalves and gastropods, entire shells or fragments; Limestone, trace, micritic, very pale orange, well- cemented.

City of Pahokee		-2-	Injection Well 1
Depth Interval (feet)	Thickness (feet)	Samp.	le Description
40.0 - 49.0	9.0	medium- to orange to l well-cemente very pale c fragmented; calcareous gray, subro	- Limestone, 70%, sandy, coarse-grained, very pale light gray, moderately- to ed; Shell, 30%, white to brange, unweathered, mostly Sandstone, trace, quartz, s, medium-grained, light bunded to rounded, well- hosphate, trace, very fine- ack.
49.0 - 57.0	8.0	unweathere Sandstone, medium-grain angular to Limestone, medium gray	<pre>11, 50%, very pale orange, ed, mostly fragments; , 45%, quartz, fine- to ned, light to medium gray, rounded, well-cemented; 5%, micritic, light to , moderately well cemented; trace, black.</pre>
57.0 - 76.0	19.0	orange, en fragments; S medium-gra	ll, 95%, white to very pale ntire shell or large Sand, 5%, quartz, fine- to ined, angular to sub- osphate, trace, black.
76.0 - 80.0	4.0	yellowish o fragments; very pale c brown, mode 10%, sandy	ell, 70%, white to pale range, entire shells or Limestone, 20%, sparry, prange to pale yellowish erately hard; Limestone, , micritic, very pale erately hard.
80.0 - 90.0	10.0	saccharoidal very light moderately f fossils; Sh light gray	E - Limestone, 70%, to coarse-crystalline, t gray to light gray, hard to soft, vuggy, trace hell, 30%, pale orange to y, mostly fragmented; trace, black.

City of Pahokee		-3-	Injection Well l
Depth Interval (feet)	Thickness (feet)	Sample Des	scription
90.0 - 120.0	30.0	calcareous, media grained, white subrounded to ro Limestone, 45%, white to very pa well- to well ce fossils; Shell, 5	ndstone, 50%, quartz, um- to very coarse- to very light gray, unded, well-cemented; arenaceous, sparry, le orange, moderately emented, vuggy, trace %, white to very pale ragmented; Phosphate, plack.
120.0 - 130.0	10.0	arenaceous, sparr orange, modera Sandstone, 35%, medium- to coar very light gray cemented; Shell,	Limestone, 55%, y, white to very pale tely hard to soft; quartz, calcareous, se-grained, white to y, moderately well- 10%, white to very gmented; Phosphate, lack.
130.0 - 140.0	10.0	calcareous, mediu light olive gr rounded, well-ce slightly vuggy saccharoidal to white to very pal well-cemented; Sh	dstone, 45%, quartz, m- to coarse-grained, cay, subrounded to emented, very hard, ; Limestone, 40%, coarse-crystalline, le orange, moderately hell, 15%, white to , mostly fragmented; black.
140.0 - 178.0	38.0	calcareous, med olive gray, sub moderately well- Shell, trace, w	stone, 100%, quartz, ium-grained, light angular to rounded, to well-cemented; white to very pale ; Phosphate, trace,

City of Pahokee		-4-	Injection Well l
Depth Interval (feet)	Thickness (feet)	Sample Descri	ption
178.0 - 191.0	13.0	CLAY – Clay, 75%, olive, sticky; Sands fine– to medium– olive, angular to su to moderately Phosphate, trace, bl	<pre>tone, 25%, quartz, grained, grayish ubrounded, poorly- well-cemented;</pre>
191.0 - 330.0	139.0	CLAY – Clay, 100% olive green, sticky; black.	
330.0 - 350.0	20.0	CLAY – Clay, 100% olive green, sticky white to very pale of Phosphate, trace, bla	<pre>/; Shell, trace, range, fragmented;</pre>
350.0 - 387.0	37.0	CLAY – Clay, 100% brown, sticky; Pho black.	
387.0 - 415.0	28.0	CLAY – Clay, 100%, c moderate olive brown	calcareous, silty, , sticky.
415.0 - 420.0	5.0	CLAY – Clay, 80%, c pale olive, sticky; micritic, white to moderately well-cen cemented; Phosphate,	Limestone, 20%, very pale orange, mented to well-
420.0 - 449.0	29.0	CLAY – Clay, 75%, c pale olive to moder sticky; Limestone, coarse-grained, very pale olive, poorly well-cemented; Pho black.	ate olive brown, 25%, micritic to pale orange to - to moderately
449.0 - 460.0	11.0	CLAY – Clay, 95%, si green, sticky; Phos fine-grained, nodular	phate, 5%, very

City of Pahokee		-5-	Injection Well l
Depth Interval (feet)	Thickness (feet)	Samp	le Description
460.0 - 480.0	20.0	light olive 10%, silt	y, 90%, calcareous, silty, gray, plastic; Limestone, y, micritic, very pale derately hard; Phosphate, k.
480.0 - 513.0	33.0	olive, stic 20%, phosp grained, ve	ay, 80%, calcareous, pale ky, phosphatic; Limestone, hatic, medium- to coarse- ry pale orange to yellowish cly- to moderately well-
513.0 - 525.0	12.0	pale olive phosphati phosphatic, orange to y	, 100%, silty, calcareous, to grayish olive, sticky, c; Limestone, trace, medium-grained, very pale yellowish gray, poorly- to well-cemented.
525.0 - 540.0	15.0	silty, 1 phosphatic; white; Foss	, 80%, calcareous, slightly ight greenish gray, Limestone, 20%, micritic, ils, trace, white to very , coral, weathered.
540.0 - 550.0	10.0	pale olive; grained, d dusky yell	/, 90%, calcareous, silty, Phosphate, 10%, very fine- lark yellowish orange to owish brown, rounded to ded; Limestone, trace, nite.
550.0 - 570.0	20.0	greenish ye 5%, fine- orange to	ay, 95%, calcareous, pale llow, plastic; Phosphate, grained, dark yellowish dusky brown; Limestone, itic, white.

City of Pahokee		-6-	Injection Well l
Depth Interval (feet)	Thickness (feet)	Samp	le Description
570.0 - 584.0	14.0	yellowish g Limestone, very pale (lay, 75%, calcareous, gray, phosphatic, sticky; 25%, phosphatic, micritic, orange to yellowish gray, moderately well-cemented.
584.0 - 670.0	86.0	yellowish phosphatic,	lay, 100%, calcareous, gray to pale olive, plastic; Limestone, trace, ellowish gray.
670.0 - 720.0	50.0	yellowish phosphatic; white to y	/, 95%, calcareous, silty, gray to pale olive, Limestone, 5%, micritic, /ellowish gray, soft to nard, slightly phosphatic.
720.0 - 750.0	30.0	yellowish g 15%, arena grained, yel	7, 85%, calcareous, silty, ray, phosphatic; Limestone, ceous, medium- to coarse- llowish gray to pale olive, moderately well-cemented,
750.0 - 760.0	10.0	yellowish gi Limestone, 2 coarse-grain	y, 80%, calcareous, silty, ray to light gray, sticky; 20%, arenaceous, medium- to ned, light gray, poorly- to well-cemented.
760.0 - 780.0	20.0	arenaceous, light gray, phosphate	E – Limestone, 70%, medium- to coarse-grained, poorly- to well-cemented, grains; Clay 30%, silty, white to yellowish
780.0 - 790.0	10.0	arenaceous, gray, poor cemented, ph	E – Limestone, 90%, medium-grained, light ly– to moderately well– nosphate grains; Clay, 10%, white, sticky.

City of Pahokee		-7-	Injection Well 1
Depth Interval (feet)	Thickness (feet)	Sa	ample Description
790.0 - 820.0	30.0	arenaceou partiall yellowist well-ce fossil:	ONE - Limestone, 100%, us, medium- to fine-grained, uy micritic, light gray to n gray, poorly- to moderately mented, phosphate grains, iferous; Clay, trace, us, yellowish gray.
820.0 - 850.0	30.0	to coarse yellowis soft, pe Clay, tr	E - Limestone, 100%, medium- e-grained, partially micritic, h gray, poorly-cemented and litomorphic, fossiliferous; race, calcareous, white to h gray; Phosphate, trace,
850.0 - 910.0	60.0	to very micritic orange,	- Limestone, 100%, medium- coarse-grained, partially , yellowish gray to grayish poorly-cemented and soft, rphic, foraminiferal, some
910.0 - 950.0	40.0	very pale foraminif	E – Limestone, 100%, micritic, e orange, soft, pelitomorphic, feral, partially saccharoidal ry, echinoids.
950.0 - 990.0	40.0	white to pelitom	- Limestone, 100%, micritic, o very pale orange, soft, orphic, foraminiferal; e, trace, micritic, light ray.
990.0 -1000.0	10.0	very pale	- Limestone, 100%, micritic, e orange, pelitomorphic, very siliferous.
1000.0 -1070.0	70.0	grained, orange, cement	- Limestone, 100%, coarse- partially micritic, very pale poorly- to moderately well- ed, pelitomorphic, rous, calcite crystals.

City of Pahokee		-8-	Injection Well 1
Depth Interval (feet)	Thickness (feet)	Samp	le Description
1070.0 -1120.0	50.0	coarse-grain very pale poorly ce	Limestone, 100%, fine- to ned, partially micritic, orange to yellowish gray, mented, pelitomorphic, al, trace of shell, calcite astropods.
1120.0 -1140.0	20.0	grained, pa orange to moderate pelitomorph shell; Lime partially m	- Limestone, 90%, coarse- rtially micritic, very pale light gray, poorly- to ely well-cemented, ic, foraminiferal, trace of estone, 10%, fine-grained, micritic, very pale orange n gray, well-cemented, very
1140.0 -1220.0	80.0	grained, par orange to g well-ceme foraminif Limestone, grained, p	- Limestone, 90%, coarse- rtially micritic, very pale grayish orange, moderately nted, pelitomorphic, eral, trace of shell; 10%, fine- to medium- artially micritic, light edium light gray, well- ard.
1220.0 -1230.0	10.0	coarse-grain very pale moderate pelitomorphi shell, ech fine- to m	Limestone, 60%, medium- to ned, partially micritic, orange to grayish orange, ly well-cemented, ic, foraminiferal, trace of inoids; Limestone, 40%, nedium-grained, partially medium gray, moderately ed.
1230.0 -1240.0	10.0	very pale o pelitomor Limestone	Limestone, 90%, micritic, prange to grayish orange, phic, foraminiferal; , 10%, fine-grained, icritic, medium gray, hard.

Injection Well 1

City of Pahokee		-9-	Injection Well l
Depth Interval (feet)	Thickness (feet)	Sam	ple Description
1240.0 -1260.0	20.0	white to soft; Lime pale ora	- Limestone, 80%, micritic, very pale orange, chalky, estone, 20%, micritic, very nge to grayish orange, hic, foraminiferal, trace of
1260.0 -1290.0	30.0	very pale pelitomo Limestone,	- Limestone, 80%, micritic, orange to grayish orange, orphic, foraminiferal; 20%, fine-grained, medium d; Organics, trace, grayish
1290.0 -1350.0	60.0	very pale pelitomo Limestone, very pal Limeston	- Limestone, 80%, micritic, orange to grayish orange, rphic, foraminiferal; 10%, micritic, white to e orange, chalky, soft; e, 10%, fine-grained, micritic, medium gray, hard.
1350.0 -1480.0	130.0	coarse-gra very pale to moder pelitomo Limeston partially	- Limestone, 90%, medium- to ined, partially micritic, to grayish orange, poorly- cately well-cemented, rphic, foraminiferal; e, 10%, fine-grained, micritic, pale orange to , well-cemented.
1480.0 -1510.0	30.0	coarse-gra very pale poorly- to pelitomorp shell; Lim partially	- Limestone, 70%, medium- to ined, partially micritic, e orange to light gray, o moderately well-cemented, hic, foraminiferal, trace of mestone, 30%, fine-grained, micritic, very pale orange, mented, chalky; Phosphate,

 \sim

City of Pahokee		-10-	Injection Well 1
Depth Interval (feet)	Thickness (feet)	Samp	ole Description
1510.0 -1530.0	20.0	coarse-grai very pale poorly cem foramini Limestone	- Limestone, 90%, medium- to ined, partially micritic, orange to grayish orange, ented, pelitomorphic, soft, feral, trace of shell; e, 10%, fine-grained, micritic, light gray, ft.
1530.0 -1560.0	30.0	very pal moderat pelitomo Limestone, orange, c micritic,	- Limestone, 80%, micritic, e orange, poorly- to ely well-cemented, rphic, foraminiferal; 20%, micritic, very pale halky; Limestone, trace, very pale orange, hard, ral, vuggy.
1560.0 -1630.0	70.0	grained, ve moderat foraminif Dolomite, yellowish	- Limestone, 50%, fine- ery pale orange, poorly- to tely well-cemented, Yeral, slightly vuggy; 50%, saccharoidal, dark brown, moderately hard, uggy, brittle.
1630.0 - 1680.0	50.0	<pre>medium-crys brown to g brittle;</pre>	- Dolomite, 80%, fine- to stalline, moderate yellowish grayish brown, hard, vuggy, Limestone, 20%, fine- e, very pale orange, soft, ils.
1680.0 -1720.0	40.0	to fine-c: moderate yellowish b cellular, sparry, ve	Dolomite, 90%, very fine- rystalline, saccharoidal, yellowish brown to dark prown, hard, vuggy, slightly drusy; Limestone, 10%, ery pale orange, soft to y hard, pelitomorphic, ral.

City of Pahokee		-11-	Injection Well 1
Depth Interval (feet)	Thickness (feet)	Samp	le Description
1720.0 -1780.0	60.0	dolomitic, pelitomor Dolomite, l crystalling	Limestone, 90%, slightly micritic, very pale orange, phic, foraminiferal; .0%, very fine- to fine- e, saccharoidal, moderate prown to moderate brown, , drusy.
1780.0 -1810.0	30.0	crystalline to medium g brittle, dolomitic,	- Dolomite, 95%, fine- , moderate yellowish brown ray, hard, slightly vuggy, drusy; Limestone, 5%, micritic to very fine- , very pale orange to pale rown, hard.
1810.0 -1860.0	50.0	fine-crysta orange to du slightly v micritic, v	Dolomite, 90%, calcitic, alline, dark yellowish usky yellowish brown, hard, yuggy; Limestone, 10%, yery pale orange, soft to hard, foraminiferal, ggy.
1860.0 -1870.0	10.0	very fine- grayish or: slightly v	Dolomite, 95%, calcitic, to fine-crystalline, ange to moderate brown, vuggy; Limestone, 5%, ery pale orange, moderately pmorphic.
1870.0 -1920.0	50.0	dolomitic crystallin grayish or Limestone,	- Limestone, 95%, very , micritic to fine- e, very pale orange to range, hard, brittle; 5%, micritic, very pale ft to moderately hard, c.

City of Pahokee		-12-	Injection Well l
Depth Interval (feet)	Thickness (feet)	Sample	e Description
1920.0 -1930.0	10.0	fine– to saccharoidal, grayish ora	_imestone, 95%, dolomitic, medium-crystalline, , pale yellowish brown to ange, slightly vuggy; 5%, micritic, very pale
1930.0 -1960.0	30.0	dolomitic, crystalline, orange to pa iron-rich;	- Limestone, 95%, very , fine- to medium- , saccharoidal, grayish ale red, slightly vuggy, Limestone, 5%, micritic, range, hard; Phosphate,
1960.0 -1980.0	20.0	fine- to saccharoidal, grayish orang micritic, ver	imestone, 70%, dolomitic, medium-crystalline, pale yellowish brown to ge, vuggy; Limestone, 30%, ry pale orange, moderately erately hard; Phosphate,
1980.0 -1990.0	10.0	fine- to saccharoidal, to grayish o: moderately slightly vu micritic,	imestone, 95%, dolomitic, medium-crystalline, moderate yellowish brown range, moderately soft to hard, pelitomorphic, uggy; Limestone, 5%, very pale orange to rayish orange, moderately
1990.0 -2040.0	50.0	dolomitic, crystalline, to dark ye brittle; Lin micritic to pale orang Limestone, 10	- Limestone, 80%, very fine- to medium- moderate yellowish brown llowish brown, hard, mestone, 10%, dolomitic, fine-crystalline, very ge, moderately hard; D%, dolomitic, micritic, sh brown, hard, slightly e.

1

City of Pahokee		-13-	Injection Well 1
Depth Interval (feet)	Thickness (feet)	Sampl	e Description
2040.0 -2050.0	10.0	micritic to pale orange, vuggy, britt	Limestone, 80%, dolomitic, fine-crystalline, very moderately soft, slightly le; Dolomite 20%, fine- to alline, moderate yellowish
2050.0 -2090.0	40.0	crystalline, soft, pelit dolomitic, v	- Limestone, 70%, medium- pale yellowish orange, omorphic; Limestone, 30%, ery fine-crystalline, very ge, moderately soft to ard.
2090.0 -2110.0	20.0	coarse-crys moderate ye moderately h very fine-	Dolomite, 95%, medium- to talline, saccharoidal, ellowish brown, soft to ard, vuggy; Dolomite, 5%, to fine-crystalline, dark ange, moderately hard.
2110.0 -2130.0	20.0	to coarse-c orange, mode	Limestone, 100%, medium- crystalline, very pale rately soft to moderately pmorphic, fossiliferous,
2130.0 -2150.0	20.0	coarse-crysta brown, soft Limestone, 2 crystallin moderately s	Dolomite, 80%, medium- to alline, moderate yellowish to moderately hard, vuggy; 20%, medium- to coarse- ne, very pale orange, soft to moderately hard, c, fossiliferous.
2150.0 -2240.0	90.0	grayish oran brown, moder hard, vug	Dolomite, 80%, medium- to talline, saccharoidal, age to moderate yellowish ately soft to moderately gy; Limestone, 20%, c, very pale orange, soft.

City of Pahokee		-14-	Injection Well 1
Depth Interval (feet)	Thickness (feet)	Sample Des	cription
2240.0 -2270.0	30.0	coarse-crystalli grayish orange to brown, moderately hard, vuggy;	ite, 95%, medium- to ne, saccharoidal, p moderate yellowish soft to moderately Limestone, 5%, white to very pale
2270.0 -2280.0	10.0	grained, moderate brown, hard;	mite, 95%, medium- to dark yellowish Limestone, 5%, white to very pale
2280.0 -2290.0	10.0	coarse-crystalli light brown to moc moderately soft t	te, 90%, medium- to ne, saccharoidal, derate reddish brown, to moderately hard, 10%, pelitomorphic,
2290.0 -2300.0	10.0	coarse-crystalline to light brown, brittle; Lime	te, 100%, medium- to e, very pale orange , moderately hard, estone, trace, y pale orange, soft.
2300.0 -2340.0	40.0	crystalline, ve moderately hard	nite, 100%, coarse- ery pale orange, d, slightly vuggy; white to very pale
2340.0 -2357.0	17.0	coarse-crystalline to light brown	te, 100%, medium- to , very pale orange , vuggy, sparry; white to very pale

City of Pahokee		-15-	Injection Well l
Depth Interval (feet)	Thickness (feet)	Sample	Description
2357.0 -2359.0	2.0	very pale moderately v vuggy; Dolomi coarse-crys grayish orang	Limestone, 70%, micritic, orange, poorly- to well-cemented, slightly te, 30%, medium- to very- talline, saccharoidal, ge to moderate yellowish ately soft to moderately
2359.0 -2368.0	9.0	pelitomorphi	- Limestone, 100%, c, white to very pale ery well-cemented,
2368.0 -2403.0	35.0	pelitomorphi	- Limestone, 100%, c, white to very pale derately soft, vuggy,
2403.0 -2420.0	17.0	pelitomorphic grayish pink	- Limestone, 100%, , very pale orange to , poorly- to moderately , fossiliferous.
2420.0 -2430.0	10.0	pelitomorphi orange, poc Dolomite, 25	- Limestone, 75%, c, white to very pale orly cemented, vuggy; %, medium-crystalline, l, moderate yellowish tely soft.
2430.0 -2460.0	30.0	pelitomorphi orange, poo Dolomite, 40	- Limestone, 60%, c, white to very pale orly cemented, vuggy; %, medium-crystalline, l, moderate yellowish tely soft.
2460.0 -2500.0	40.0	very pale ora pelitomorphic medium-cryst grayish oran	imestone, 85%, micritic, ange, moderately soft, e, vuggy; Dolomite, 15%, alline, saccharoidal, age to yellowish brown, ft to moderately hard.

City of Pahokee		-16-	Injection Well 1
Depth Interval (feet)	Thickness (feet)	Sampl	e Description
2500.0 -2510.0	10.0		Dolomite, 100%, medium- very pale orange to light ately hard.
2510.0 -2525.0	15.0	crystalline, brown, mode	Dolomite, 70%, medium- very pale orange to light erately hard; Limestone, orphic, white to very pale rately soft.
2525.0 -2530.0	5.0	pelitomorph orange, mo Dolomite, 3	- Limestone, 70%, ic, white to very pale derately soft, chalky; 50%, medium-crystalline, moderately hard.
2530.0 -2540.0	10.0	fine-crystal yellowish o orange, slig 40%, micrit orange, soft	Dolomite, 60%, calcitic, line, saccharoidal, pale brange to dark yellowish ghtly vuggy; Limestone, ic, white to very pale , partially pelitomorphic; , very pale orange.
2540.0 -2560.0	20.0	white to ve: moderate pelitomorp Dolomite,	Limestone, 75%, micritic, ry pale orange, soft to ly hard, partially phic, foraminiferal; 25%, calcitic, fine- e, saccharoidal, pale ange, vuggy.
2560.0 -2570.0	10.0	pelitomorph orange, so phosphate gra white to ver Dolomite, 5%	Limestone, 75%, dolomite, ic, white to very pale ft to moderately hard, ains; Clay, 20%, calcitic, y pale orange, very soft; , calcitic, saccharoidal, lowish brown, hard.

City of Pahokee		-17- Injection Well 1
Depth Interval (feet)	Thickness _(feet)	Sample Description
2570.0 -2580.0	10.0	LIMESTONE - Limestone, 90%, dolomitic, fine- to coarse-crystalline, saccharoidal, white to grayish orange, soft to moderately hard, partially pelitomorphic, slightly vuggy, some phosphate grains; Dolomite, 10%, calcitic, very-fine crystalline, saccharoidal, medium yellowish brown, hard, some phosphate grains.
2580.0 -2610.0	30.0	LIMESTONE - Limestone, 90%, slightly dolomitic, fine-crystalline, saccharoidal, grayish orange, moderately hard, partially pelitomorphic; Limestone, 10%, dolomitic, cryptocrystalline to very fine-crystalline, bluish white to medium bluish gray, hard, small black veins.
2610.0 -2620.0	10.0	LIMESTONE - Limestone, 60%, slightly dolomitic, saccharoidal, very pale orange to moderate yellowish brown, moderately soft, pelitomorphic; Dolomite, 40%, cryptocrystalline to fine-crystalline, dark yellowish brown, hard.
2620.0 -2650.0	30.0	LIMESTONE – Limestone, 100%, microcrystalline to saccharoidal, very pale orange to dark yellowish brown, partially pelitomorphic, moderately soft, brittle.
2650.0 -2680.0	30.0	LIMESTONE - Limestone, 40%, micritic, white to very pale orange, soft to moderately hard; Limestone, 30%, dolomitic, micritic, white to very pale orange, brittle, some fine-size dolomite crystals; Limestone, 30%, dolomitic, very fine-crystalline, pale yellowish brown to very light gray, moderately hard, brittle.

<...

City of Pahokee		-18-	Injection Well 1
Depth Interval (feet)	Thickness (feet)	Samp	le Description
2680.0-2700.0	20.0	micritic, medium gra micritic, w	Limestone, 60%, dolomitic, pale yellowish brown to ay, hard; Limestone, 40%, white to very pale orange, oderately hard, slightly
2700.0 -2710.0	10.0	dolomitic, crystalline	E – Limestone, 100%, , very fine– to fine– , pale yellowish brown to & gray, moderately hard,
2710.0 - 2730.0	20.0	pelitomorph: very pale soft to mod 40%, micrit:	E – Limestone, 60%, ic, partially saccharoidal, orange to grayish orange, derately hard; Limestone, ic, partially saccharoidal, to black, moderately hard d.
2730.0 -2740.0	10.0	CAVERN - No	Sample.
2740.0 -2780.0	40.0	pelitomorph very pale c hard; Dolomi	E – Limestone, 80%, nic, partially micritic, prange, soft to moderately ite, 20%, fine-crystalline, yellowish brown, hard,
2780.0 -2810.0	30.0	saccharoida brown, hard	- Dolomite, 70%, al, moderate yellowish , brittle; Limestone, 30%, ic, very pale orange, soft ly hard.
2810.0 -2820.0	10.0	crystalline yellowish bi brittle;	- Dolomite, 90%, fine- e, saccharoidal, medium rown to medium gray, hard, Limestone, 10%, ic, very pale orange, soft ly hard.

City of Pahokee		-19-	Injection Well 1
Depth Interval (feet)	Thickness (feet)	Sample	e Description
2820.0 -2830.0	10.0	crystalline yellowish bro moderately ha trace, peli	colomite, 100%, very fine- e, saccharoidal, pale own to dark reddish brown, ard, brittle; Limestone, itomorphic, very pale to moderately hard.
2830.0 -2840.0	10.0	medium-cryst grayish red moderately pelitomorphi	Dolomite, 95%, fine- to alline, saccharoidal, to dark reddish brown, hard; Limestone, 5%, c, white to very pale to moderately hard.
2840.0 -2850.0	10.0	coarse-cryst grayish ora brown, mode Limestone, 5	olomite, 95%, medium- to alline, saccharoidal, ange to pale yellowish erately hard, vuggy; 5%, pelitomorphic, very soft to moderately hard.
2850.0 -2860.0	10.0	coarse-crysta	plomite, 100%, medium- to lline, yellowish brown to sh brown, moderately hard vuggy.
2860.0 -2880.0	20.0	medium-cryst grayish orang brown, modera vuggy; Limest to very pa	Dolomite, 95%, fine- to alline, saccharoidal, ge to moderate yellowish tely hard to very hard, one, 5%, micritic, white le orange, soft to rd, foraminiferal.
2880.0 -2900.0	20.0	medium-cryst; moderate yel yellowish bro very hard, v micritic, whi	Dolomite, 90%, fine- to alline, saccharoidal, lowish brown to dusky wn, moderately hard to vuggy; Limestone, 10%, te to very pale orange, moderately hard,

×...

City of Pahokee		-20-	Injection Well l
Depth Interval (feet)	Thickness (feet)	Samp	ole Description
2900.0 -2920.0	20.0	medium-cry moderate yellowish Limestone,	- Dolomite, 100%, fine- to vstalline, saccharoidal, yellowish brown to dusky brown, hard to very hard; trace, micritic, white to orange, soft to moderately
2920.0 -2930.0	10.0	medium–crys yellowish brown, mc Limestone,	Dolomite, 100%, fine- to stalline, saccharoidal, pale orange to dark yellowish oderately hard, vuggy; trace, micritic, white to orange, soft.
2930.0 -2940.0	10.0	coarse-cry yellowish	Dolomite, 100%, medium- to stalline, pale to dark brown, moderately hard; trace, pelitomorphic, very e, soft.
2940.0 -2960.0	20.0	coarse-cry moderate yellowish brittle,	Dolomite, 100%, medium- to stalline, saccharoidal, yellowish brown to dark brown, moderately hard, vuggy; Limestone, trace, hic, very pale orange, soft.
2960.0 -2970.0	10.0	coarse-cry moderate yellowish ł moderatel	Dolomite, 100%, medium- to stalline, saccharoidal, yellowish brown to dark prown, partially micritic, y hard, brittle, vuggy; trace, pelitomorphic, soft.
2970.0 -2980.0	10.0	medium-cry moderate y	Dolomite, 100%, fine- to stalline, saccharoidal, yellowish brown to dusky tially micritic, moderately le.

4

City of Pahokee		-21-	Injection Well 1
Depth Interval (feet)	Thickness (feet)	Sample Description	
2980.0 -3010.0	30.0	microcryst	E – Dolomite, 100%, alline, yellowish brown to black, moderately hard,
3010.0 -3050.0	40.0	microcrys olive gray	E – Dolomite, 100%, talline, calcitic, light to olive gray, vuggy, hard, Limestone, trace, white,
3050.0 -3070.0	20.0	microcrysta brown to g	E – Dolomite, 100%, alline, moderate yellowish rayish black, hard, brittle; , trace, pelitomorphic, t.
3070.0 -3080.0	10.0	microcrysta grayish	E - Dolomite, 100%, alline, yellowish brown to black, hard, brittle; trace, pelitomorphic, very e, soft.
3080.0 -3100.0	20.0	microcrysta brown to g Limestone,	E - Dolomite, 100%, alline, moderate yellowish rayish black, hard, brittle; trace, pelitomorphic, very e, moderately soft.
3100.0 -3110.0	10.0	microcrysta	E – Dolomite, 100%, alline, dark yellowish brown black, hard, brittle.
3110.0 -3140.0	30.0	microcrysta	E – Dolomite, 100%, alline, dark yellowish brown yellowish brown, hard,
3140.0 -3160.0	20.0	calcitic, yellowish	- Dolomite, 100%, slightly microcrystalline, pale orange to dusky brown, hard, brittle.

City of Pahokee		-22-	Injection Well 1
Depth Interval (feet)	Thickness (feet)	Sample De	scription
3160.0 -3170.0	10.0	calcitic, micr	omite, 100%, slightly ocrystalline, pale nge to dusky brown, brittle.
3170.0 - 3180.0	10.0	yellowish browr	omite, 100%, slightly rystalline, moderately n to dusky yellowish ces of dark reddish y hard, brittle.
3180.0 -3190.0	10.0	cryptocrystalli medium light gr Dolomite, 4 cryptocrystalli	omite, 60%, calcitic, ne to saccharoidal, ay, brittle to firm; 0%, calcitic, ne to saccharoidal, cown, brittle to firm.
3190.0 -3240.0	50.0	microcrystalline grayish orange t brown, moderate Dolomite, 30%, microcrystalline pale orange to 1 trace, dolomitic,	Dolomite, 70%, to fine-crystalline, to moderate yellowish ely hard, brittle; slightly calcitic, to saccharoidal, very ight gray; Limestone, , saccharoidal, white nge, pelitomorphic.
3240.0 -3260.0	20.0	microcrystalline, light brown, peli	mite, 95%, calcitic, grayish orange to tomorphic; Limestone, accharoidal, white to moderately soft.
3260.0 -3290.0	30.0	saccharoidal, mod to dark yellowi hard, brittle; dolomitic, mi	ite, 100%, calcitic, erate yellowish brown sh brown, moderately Limestone, trace, crocrystalline to very pale orange,

City of Pahokee		-23-	Injection Well 1
Depth Interval (feet)	Thickness (feet)	Sample Descri	ption
3290.0 -3330.0	40.0	DOLOMITE - Do microcrystalline to yellowish brown to brown, hard; Dolomi calcitic, very fir saccharoidal, modera to dark yellowish br	saccharoidal, dark b dusky yellowish te, 15%, slightly ne-crystalline to te yellowish brown
3330.0 -3400.0	70.0	DOLOMITE - Dolomite very fine-crystallin very pale orange to brown, brittl pelitomorphic, very trace, calcitic, sac orange to dark reddi	e to saccharoidal, moderate yellowish e, partially vuggy; Dolomite, charoidal, grayish
3400.0 -3450.0	50.0	DOLOMITE – Dolomite very fine-crystall saccharoidal, gra moderate yellowish vuggy.	line, partially ayish orange to
3450.0 -3510.0	60.0+	DOLOMITE - Dolomite, saccharoidal, yel grayish orange, mo moderately hard, t slightly calciti microcrystallin crystalline, colo partially vitreous; black.	lowish gray to derately soft to prittle, vuggy, c; Gypsum, 5%, e to coarse- rless to white,
TOTAL DEPTH:	3510.0		

DEEP MONITOR WELL

GEOLOGIC LOG OF DEEP MONITOR WELL CITY OF PAHOKEE, FLORIDA

.

Depth Interval (feet)	Thickness (feet)	Sample Description
0 - 13	13	PEAT – Peat, 75%, black; Clay, 15%, plastic, light gray; Shell, 10%, white to light gray, poorly sorted.
13 - 40	27	SHELL - Shell, 80%, light gray to brown, unweathered, entire shells or fragments; Limestone, 20%, micritic, white to light gray.
40 - 70	30	SHELL - Shell, 90%, white to light gray, entire shells or fragments; Limestone, 5%, medium- to coarse- grained, white to light gray; Sandstone, 5%, quartz, white to light gray, medium- to coarse-grained, angular to sub-angular.
70 - 80	10	SHELL – Shell, 85%, white to light gray, entire shells or fragments; Sandstone, 15%, quartz, gray to light gray, quartz, fine- to medium-grained, sub-angular.
80 - 90	10	SANDSTONE – Sandstone, 60%, quartz, fine- to medium-grained, gray to light gray, sub-angular; Shell, 30%, white to light gray, mostly fragments, some entire shells; Limestone, 10%, saccharoidal, fine- to medium-grained, light gray to white.
90 - 100	10	SANDSTONE – Sandstone, 80%, quartz, fine– to medium–grained, gray to light gray, sub–angular; Shell, 20%, white to gray, entire shells or fragments.

-2-

Deep Monitor Well

Depth Interval (feet)	Thickness (feet)	Sample Description
100 - 130	30	SANDSTONE - Sandstone, 60%, quartz, fine- to medium-grained, gray to light gray, sub-angular; Shell, 30%, white to gray, entire shells or fragments; Limestone, 10%, fine-grained, white to light gray.
130 - 150	20	SANDSTONE - Sandstone, 80%, quartz, fine- to medium-grained, light gray, sub-angular to sub-rounded, well cemented; Shell, 15%, gray to light brown, mostly small- or medium-sized fragments; Limestone, 5%, saccha- roidal, fine- to medium-grained, light gray.
150 - 160	10	SANDSTONE – Sandstone, 80%, quartz, fine– to medium-grained, light gray, sub–angular to sub–rounded, well– cemented; Shell, 20%, white to light brown, some entire shells, mostly fragments.
160 - 180	20	SANDSTONE – Sandstone, 95%, quartz, fine– to medium-grained, light gray, sub-angular to sub-rounded, well cemented; Shell, 5%, white to light gray, entire shells or fragments.
180 - 190	10	SANDSTONE - Sandstone, 90%, quartz, fine- to coarse-grained, light gray to gray, sub-angular to sub-rounded; Shell, 5%, white to light gray, entire shells or fragments; Clay, 5%, silty, grayish olive green, plastic; Phosphate, trace, black.
190 - 334	144	CLAY – Clay, 100%, silty, grayish olive green to dusky green, plastic; Phosphate, trace, black.

Depth Interval (feet)	Thickness _(feet)	Sample Description
334 - 350	16	CLAY – Clay, 100%, silty, grayish olive green to dusky green; Shell, trace, white, small fragments; Phosphate, trace, black.
350 - 415	65	CLAY – Clay, 100%, silty, grayish olive green; Phosphate, trace, black.
415 - 430	15	CLAY – Clay, 80%, calcareous, silty, pale olive, sticky; Limestone, 20%, white to light gray, moderately well– cemented to well cemented; Phosphate, trace, black.
430 - 450	20	CLAY – Clay, 60%, calcareous, silty, light gray, sticky; Limestone, 40%, micritic, white to light gray, moderately well-cemented to well cemented; Phosphate, trace, black.
450 - 480	30	CLAY – Clay, 100%, calcareous, silty, dusky yellow green, sticky; Phosphate, trace, light olive gray.
480 - 510	30	CLAY – Clay, 95%, calcareous, silty, light olive gray, phosphatic, sticky; Limestone, 5%, micritic, very pale orange, moderately hard.
510 - 550	40	CLAY – Clay, 100%, calcareous, silty, grayish yellow green, sticky; Phosphate, trace, black; Limestone, trace, white to very pale orange.
550 - 610	60	CLAY -Clay, 95%, calcareous, yellowish gray to grayish yellow green, sticky; Limestone, 5%, micritic, very pale orange to white, moderately hard; Phosphate, trace, black.
610 - 650	40	CLAY – Clay, 95%, calcareous, silty, pale olive, sticky; Phosphate, 5%, fine-grained, black; Limestone, trace, micritic, white, hard.

Depth Interval (feet)	Thickness (feet)	Sample Description
650 - 680	30	CLAY – Clay, 95%, calcareous, silty, pale olive, sticky; Phosphate, 5%, fine-grained, black; Limestone, trace, micritic, white, hard.
680 - 720	40	CLAY – Clay, 95%, calcareous, slightly phosphatic, pale olive, plastic; Limestone, 5%, micritic, very pale orange to white, moderately hard, fossiliferous.
720 - 730	10	CLAY – Clay, 90%, calcareous, slightly phosphatic, pale olive; Limestone, 10%, micritic, silty, phosphatic, white to very pale orange.
730 - 760	30	CLAY – Clay, 80%, calcareous, silty, yellowish gray to light gray; Limestone, 20%, arenaceous, micritic light gray, poorly– to moderately well-cemented, phosphatic.
760- 790	30	LIMESTONE - Limestone, 90%, arenaceous, micritic, partially saccharoidal, light gray, poorly- to well-cemented; Clay, 10%, calcareous, light gray.
790 - 820	30	LIMESTONE – Limestone, 100%, arenaceous, micritic, partially saccharoidal, light gray to yellowish gray, poorly– to well–cemented.
820 - 900	80	LIMESTONE - Limestone, 100%, saccharoidal, very pale orange, soft to moderately hard, pelitomorphic; Limestone, trace, micritic, medium light to dark gray, hard fossil- iferous, foraminiferal, trace of shell; Phosphate, trace, moderate brown.

-5-

/

Depth Interval (feet)	Thickness (feet)	Sample Description
900 - 950	50	LIMESTONE – Limestone, 100%, micritic, very pale orange to grayish orange, pelitomorphic, soft to moderately hard, foraminiferal, trace of shell.
950 - 1060	110	LIMESTONE - Limestone, 100%, micritic, very pale orange to grayish orange, partially pelitomorphic, soft to moderately hard, foraminiferal, trace of shell.
1060 - 1100	40	LIMESTONE - Limestone, 60%, medium- grained, partially micritic, light gray, moderately well-cemented, clayey; Limestone, 30%, coarse- grained, partially micritic, yellowish gray, well-cemented; Limestone, 10%, micritic, light gray, soft.
1100 - 1130	30	LIMESTONE - Limestone, 100%, fine- to coarse-grained, partially micritic, yellowish gray, poorly- to well- cemented, soft to moderately hard, pelitomorphic, foraminiferal, trace of shells.
1130 - 1150	20	LIMESTONE - Limestone 80%, medium- grained, partially micritic, very pale orange, moderately well-cemented, foraminiferal, trace of shells, clayey; Limestone, 20%, coarse- grained, partially micritic, light gray, well-cemented.
1150 - 1190	40	LIMESTONE - Limestone, 80%, medium- grained, partially micritic, very pale orange, moderately well-cemented, foraminiferal, trace of shell, clayey; Limestone, 15%, fine-grained, partially micritic, pale orange, soft; Limestone, 5%, coarse-grained, light gray, well-cemented.

-6-

`

Depth Interval (feet)	Thickness (feet)	Sample Description
1190 - 1260	70	LIMESTONE - Limestone, 90%, fine- to medium-grained, mainly micritic, very pale orange to light gray, soft, poorly cemented, pelitomorphic, foraminiferal, trace of shell; Limestone, 10%, coarse-grained, micritic, light gray, well cemented, moderately hard.
1260 - 1280	20	LIMESTONE - Limestone, 80%, medium- grained, partially micritic, very pale orange, moderately well-cemented, trace of shell, clayey; Limestone, 20%, coarse-grained, light gray, well- cemented.
1280 - 1310	30	LIMESTONE - Limestone, 100%, fine- to medium-grained, partially micritic, grayish orange, poorly- to moderately well-cemented, pelitomorphic, foraminiferal, clayey.
1310 - 1370	60	LIMESTONE - Limestone, 100%, fine- to medium-grained, partially micritic, very pale orange, moderately well- cemented, moderately hard to soft, pelitomorphic, foraminiferal.
1370 - 1400	30	LIMESTONE – Limestone, 100%, fine– to medium-grained, partially micritic, light gray, moderately well–cemented, clayey.
1400 - 1470	70	LIMESTONE - Limestone, 60%, fine- to medium-grained, partially micritic, very pale orange, poorly- to well- cemented, pelitomorphic, foraminiferal; Limestone, 40%, coarse- grained, partially micritic, light gray, well cemented.

Depth Interval (feet)	Thickness (feet)	Sample Description
1470 - 1510	40	LIMESTONE - Limestone, 90%, medium- to coarse-grained, partially micritic, light gray to very pale orange, poorly- to moderately well-cemented, pelitomorphic, foraminiferal, trace of shell; Limestone, 10%, fine-grained, partially micritic, very pale orange, poorly cemented.
1510 - 1550	40	LIMESTONE - Limestone, 80%, medium- grained, partially micritic, light gray to very pale orange, poorly- to moderately well-cemented, pelito- morphic, foraminiferal, trace of shell, clayey; Limestone, 10%, coarse- grained, partially micritic, light gray, well cemented; Limestone, 10%, fine-grained, partially micritic, light gray, soft.
1550 - 1560	10	LIMESTONE - Limestone, 70%, medium- to coarse-grained, partially micritic, light gray to very pale orange, moderately- to well-cemented, pelito- morphic, foraminiferal, hard; Dolomite, 30%, fine- to medium- crystalline, saccharoidal, yellowish brown, hard, vuggy, brittle.
1560 - 1590	30	DOLOMITE - Dolomite, 95%, fine- to medium-crystalline, yellowish brown, hard, vuggy, brittle; Limestone, 5%, medium- to coarse-grained, partially micritic, light gray to very pale orange, moderately- to well-cemented, hard.
1590 - 1610	20	DOLOMITE - Dolomite, 70%, fine- crystalline, saccharoidal, yellowish brown to dark yellowish brown, hard, vuggy, brittle; Limestone, 30%, micritic, very pale orange, poorly- to moderately well-cemented, pelito- morphic.

Depth Interval (feet)	Thickness (feet)	Sample Description
1610 - 1670	60	LIMESTONE – Limestone, 90%, micritic, very pale orange, moderately well- cemented, pelitomorphic, fora- miniferal, brittle; Dolomite, 10%, fine-crystalline, saccharodial, yellowish brown to dark yellowish brown, hard, vuggy.
1670 - 1760	90	LIMESTONE - Limestone, 100%, micritic, very pale orange, moderately well- cemented, pelitomorphic, fora- miniferal, brittle.
1760 - 1800	40	LIMESTONE - Limestone, 80%, micritic, very pale orange, poorly- to moderately well-cemented, pelito- morphic; Dolomite, 20%, fine- to medium-crystalline, saccharodial, yellowish brown to moderate brown, hard.
1800 - 1830	30	DOLOMITE - Dolomite, 60%, partially calcitic, fine- to medium-crystalline, saccharodial, yellowish brown to moderate brown, hard, vuggy; Limestone, 40%, micritic, very pale orange, soft to moderately hard, pelitomorphic.
1830 - 1840	10	DOLOMITE – Dolomite, 80%, calcitic, very fine-crystalline, saccharodial, yellowish brown to moderate brown, brittle to very hard; Limestone, 20%, micritic, very pale orange, soft to hard, pelitomorphic, trace fossils.
1840 - 1870	30	DOLOMITE - Dolomite, 70%, calcitic, very fine-crystalline, saccharoidal, grayish orange to moderate yellowish brown, moderately hard, brittle; Limestone, 30%, micritic, very pale orange, soft to moderately hard, pelitomorphic, fossiliferous.

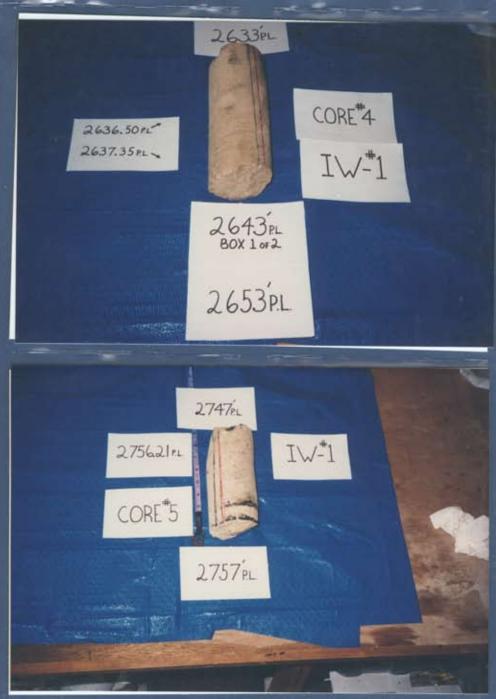
Depth Interval (feet)	Thickness (feet)	Sample Description
1870 - 1920	50	LIMESTONE - Limestone, 80%, dolomitic to very dolomitic, fine-crystalline, saccharodial, grayish orange to dusky yellowish brown, hard, brittle; Limestone, 20%, micritic, very pale orange, soft to moderately hard, pelitomorphic, foraminiferous.
1920 - 1960	40	LIMESTONE - Limestone, 80%, dolomitic to very dolomitic, fine-crystalline, saccharodial, grayish orange to moderate yellowish brown, brittle; Limestone, 20%, micritic, very pale orange, soft to moderately hard.
1960 - 2008	48+	LIMESTONE - Limestone, 70%, dolomitic, saccharodial, grayish orange, to moderate yellowish brown to grayish orange, moderately hard; Limestone, 20%, very dolomitic, saccharodial, moderate yellowish brown to moderate brown, hard; Limestone, 10%, micritic, very pale orange, soft to moderately hard.
TOTAL OFOTU	0000	

TOTAL DEPTH: 2008

. مىشىر

APPENDIX B

Results of Core Tests and Photographs of the Core


Ĺ

CITY OF PAHOKEE INJECTION WELL 1 CORE TEST DATA

CORE NO.	HORIZONTAL PERMEABILITY (cm/sec)	VERTICAL PERMEABILITY (cm/sec)	ULTIMATE COMPRESSIVE STRENGTH (PSI)	MODULUS OF ELASTICITY (PSI)	SPECIFIC GRAVITY	POROSITY
2747	5.54 x 10-4	2.42 x 10-5	4210	556,899	2.62	17.4
2637	4.75 x 10-5	1.57 x 10-5	1971	399,185	2.63	35.6
2648	6.20 x 10-5	6.16 x 10-6	1920	323,238	2.64	31.1
2644	1.51 x 10-5	2.17 x 10-6	2374	356,397	2.64	33.3
2603	1.75 × 10-4	1.51 x 10-6	1156	218,849	2.66	15.4
2597	6.75 x 10-5	7.56 x 10-7	1685	220,002	2.64	28.9
2366	2.42 x 10 ⁻⁵	1.45 x 10-5	1710	369,253	2.67	29.3
2414	7.94 x 10-6	3.18 x 10-5	2055	76,035	2.73	33.1
2592	1.19 x 10 ⁻⁵	4.59 x 10-5	4009	538,970	2.64	25.0
2412	2.16 x 10-5	1.28 × 10-5	945	134,417	2.67	26.2
2367	3.31 x 10 ⁻⁵	3.76 x 10-5	1015	157,277	2.63	30.2
2411	5.12 × 10-5	1.03 × 10-4	1744	282,281	2.73	30.3

.

APPENDIX C

Gyroscopic Survey Results

MULTI-SHOT, INC. P.O. Box 31450 Lafayette, LA. 70593 (318) 837-2866

YOUNGQUIST BROTHERS PAHDKEE, WELL IW #1 PAHDKEE WELL#3

RIG: YOUNGOUIST #1 JOB NUMBER: G-007R-89 87/09/89 V. WAYHAM JOB NUMBER: G-023H-89 89/15/89 V. WAYHAM DECLINATION: 2 DEGREES 30 MIMUTES WEST (TRUE)

Houston Directional Software Company - Survey Version 1.88

FILE: Hard Disk:MSI FILES 89" TX: YOUGPAH. IWHI

RADIUS OF CURMATURE CALCULATIONS Friday, September 15, 1989 Page 1

HEASURED DEPTH Feet	BDRE- INCLINATION Deg Min	HOLE DIRECTION Deg Nin	COURSE LENGTH Feet	VERTICAL DEPTH Feet	RECTANG COORDIN Feet	ULAR ATES Feet	CLOSURES DISTANCE DIRECTION Feet Deg Min	
9 .00	0 0	0 0		8.00	0.00 N	0.00 E	0.00 0 0	
D.20	0 0	0 1		0.00	0.00 N	0.00 E	0.00 0 0	
30.00	5 7	N 16 0 W	39.00	30,00	0.03 N	9.91 4	0.03 N 16 0	W 0.42
60.00	0 0	0 🛯	30.90	60.00	0.06 N	0.02 W	0.07 N 16 0	
90.00	0 0	0 9	38.00	90.00	0.06 N	0.02 W	0.87 N 16 0	
120.00	0 0	0 1	30.00	120.00	0.06 N	0.02 W	0.07 N 16 0	W 0.00
150.00	0 0	0 1	38.00	150.00	0.06 N	0.02 ₩	0.07 N 16 0	
180.00	0 0	0 8	30.00	180.00	0.06 N	0.02 W	0.07 N 16 0	
210.00	9 0	0 8	39.00	210.00	0.06 N	0.02 W	0.07 N 16 0	
240.00	0 0	D ê	30.00	249.00	0.06 N	0.02 W	0.07 N 16 0	
270.00	0 D	0 1	30,00	270.90	0.06 N	0.02 W	0.07 N 16 0	W 9.80
300.00	07	S 69 B M	30.00	300.00	0.05 N	0.05 W	0.07 N 43 31	
339.00	0 7	S 29 I U	38.00	330.00	0.01 N	0.10 W	0.10 N 84 38	
360.00	07	N 21 8 W	30.00	360.00	0.01 N	0.15 W	0.15 N 85 7	
390.00	07	N 33 E E	39.00	390.00	0.08 N	0.14 5	0.16 N 62 6	
420.00	07	N 33 0 E	30.00	420.00	9.13 N	0.11 W	0.17 N 39 21	
450.00	07	N 30 I E	30.00	458.00	0.19 N	0.07 W	0.28 N 21 28	
480.00	07	N 31 0 E	30.00	460.00	0.24 N	0.04 W	0.25 N 9 15	
510.00	07	NJEU	30.00	510.00	0.31 N	0.02 W	0.31 N 4 29	
540.00	07	N 13 0 W	30.00	540.00	1.37 N	0.03 W	0.37 N 5 6	
570.00	B 7	N 38 II W	30.80	578.00	0.43 N	0.06 W	0.43 N 8 6	
680.00	07	N 37 0 W	30.00	600.00	∎.48 N	8.10 W	9.4 9 N 11 58	
630.00	07	N 38 I M	30.10	639.00	0.53 N	0.14 W	0.55 N 15 L	
660.00	0 0	0 0	30.00	660.00	1.56 N	9.16 W	9.58 N 16 17	
690.00	0 7	N 43 B M	30.00	692.02	0.58 N	0.18 W	0.61 N 17 40	
					91JD	A.10 M	U.OL N 17 40	¥ 0.42

RADIUS OF CURVATURE CALCULATIONS Friday, September 15, 1989 Page 2

MEASURED DEPTH Feet	BDRE- INCLINATION Deg Min	DIRECTION L	OURSE VERTICAL ENGTH DEPTH Feet Feet	RECTA COORD Feet	NGULAR INATES Feet	CLOSURES DISTANCE DIRECTION Feet Deg Min	DOGLEG SEVERITY Deg/100ft.
720.01 750.00 760.00 819.05	0 7 11 7 0 7 0 7	N 35 0 W N 43 0 W N 83 8 W N 53 0 W	30.00 720.05 30.00 750.00 30.00 780.00 30.00 810.00 30.00 840.05	0.63 N 0.68 N 0.71 N 8.74 N 0.76 N	0.23 W 0.27 W 0.32 W 0.38 W 0.41 W	0.67 N 19 42 W 0.73 N 21 23 W 0.78 N 24 31 W 0.93 N 27 35 W 0.86 N 28 31 W	0.06 8.06 0.29 0.22 0.42
840.00 870.01 900.00 930.00 930.00 940.00 990.00	0 0 0 7 0 7 0 7 0 7 0 7	11 18 0 E N 28 18 E N 53 0 W N 56 19 W N 48 0 W	30.00 840.08 30.00 870.00 30.00 900.09 30.00 930.00 30.00 940.00 30.00 960.00 30.00 970.00	0.79 N 0.85 N 0.91 N 0.94 N 0.98 N	0.40 W 0.37 W 0.39 W 0.44 W 0.49 W	0.88 N 26 59 W 0.93 N 23 53 W 9.98 N 23 11 W 1.04 N 25 4 W 1.10 N 26 36 W	0.42 0.07 \$.54 0.02 \$.06 0.08
1020.00 1050.00 1080.00 1110.00 1110.00	07 07 07 07 07	N 37 0 W N 85 0 W S 57 8 W S 62 0 W N 45 8 E	30.00 1020.00 30.00 1050.00 30.00 1080.00 30.00 1110.00 30.00 1140.00	1.03 N 1.06 N 1.05 N 1.01 N 1.05 N	0.65 W 0.71 W	1.16 N 27 27 W 1.22 N 29 8 W 1.23 N 32 1 W 1.24 N 35 3 W 1.28 N 35 6 W	6.34 0.27 9.04 0.82
1170.00 1200.00 1230.00 1260.00 1260.00 1290.00	0 7 0 7 0 15 0 15 0 15 0 15	N 18 8 4 N 12 0 4 N 23 8 4 N 58 0 4 N 58 0 4	30.00 1170.00 30.00 1200.00 30.00 1230.00 30.00 1269.00 30.00 1269.00 30.00 1290.00	1.11 N 1.17 N 1.27 N 1.37 N 1.41 N	0.74 W 0.77 W 0.85 W	1.33 N 33 5 W 1.39 N 32 15 W 1.48 N 31 17 W 1.61 N 32 i W 1.71 N 34 43 W	8.44 0.64 9.43 0.50 0.36
1320.00 1350.00 1380.00 1410.00 1440.00	0 15 0 15 0 15 0 15 0 15 0 15	N 28 0 U N 33 1 U N 33 0 U N 38 0 U N 38 0 U	30.00 1320.00 30.00 1350.00 30.00 1388.00 30.00 1410.00 30.00 1440.00	1.48 N 1.59 N 1.70 N 1.81 N 1.90 N	1.15 W 1.22 W 1.29 W	1.83 N 36 7 H 1.96 N 35 44 H 2.09 N 35 34 H 2.22 N 35 34 H 2.35 N 36 7 H	0.77 6.07 0.09 6.07 0.22

RADIUS OF CURVATURE CALCULATIONS

Friday, September 15, 1989 Page 3

0 U

ĥ

MEASURED DEPTH Feet	B Û R E - H INCLINATION Deg Min	IOLE DIRECTION Deg Min	COURSE LENGTH Feet	VERTICAL DEPTH Feet		NGULAR INATES Feet	C L D S L DISTANCE Feet	IRES DIRECTION Deg Min	DOGLEG SEVERITY Deg/100ft.
1470.00	8 15	N 816 U W	30.00	1470.00	1.94 N	1.51 W	2.46	N 37 49 W	8.50
1500.00	B 15	N 32 8 W	30.00	1500.00	2.D1 N	1.62 W	2.58	N 38 52 W	8.78
1530.00	8 15	N 32 0 W	30.08	1529.99	2.12 N	1.69 W	2.71	N 38 32 W	9.00
1560.00	0 15	N 42 0 🖬	30.00	1559.99	2.22 N	1.77 W	2.84	N 38 28 W	1.15
1590.00	0 15	N 42 0 ¥	30.00	1589.99	2.32 N	1.85 W	2.97	N 38 37 W	9.09
1620.00	0 15	N 33 8 W	30.00	1619.99	2.42 N	1.93 W	3.10	N 38 34 W	1.13
1650.00	0 20	N 34 D W	30.00	1649.99	2.55 N	2.92 ₩	3.25	N 38 20 W	0.27
1689.08	0 15	N 37 0 W	30.00	1679.99	2.67 N	2.10 W	3.40	N 38 13 W	1.27
1710.00	0 15	N 53 0 W	30.00	1709.99	2.77 N		3.53	N 38 28 W	0.23
1740.00	0 15	N 57 0 W	30.00	1739.99	2.84 N	2.30 W	3.66	N 39 3 W	₿.06
							3.79	N 39 19 W	0.29
1770.80	0 15	N 37 0 W	30.00	1769.99	2.93 N	2.40 V		N 39 29 W	1.22
1800.00	0 15	N 52 0 W	30.00	1799.99	3.02 N		3.92	N 39 42 W	0.35
1830.00	0 20	N 38 D W	30.00	1829.99	3.13 N		4.07		1.10
1860.00	0 20	N 43 0 W	30.00	1859.99	3.26 N		4.24	N 39 44 W	
1890.00	0 20	N 48 D W	36.00	1889.99	3.38 N	2.83 W	4.41	N 39 57 H	0.10
1920.80	0 20	N 43 0 W	30.00	1919.99	3.50 N	2.96 ₩	4.5B	N 40 10 W	F.10
1950.00	0 20	N 53 0 W	38.00	1949.99	3.62 N	3.08 W	4.75	N 40 27 W	0.19
1980.80	0 20	N 38 0 W	30.00	1979.99	3.74 N		4.93	N 40 37 W	1.29
	PREVIOUS M.S.I.	SURVEY AT IS							•
2010.00	0 20	N 41 0 W	30.00	2009.99	3.87 N	3.32 🖌	5.10	N 40 35 W	0.86
2040.00	0 28	N 41 D ¥	30.00	2039.99	4.00 N	1 3.43 W	5.27	N 40 36 W	B.00
							5.42	N 40 36 W	0.27
2070.00	D 15	N 40 0 W	30.00	2069.99	4.12 N		5.55	N 40 36 W	1.03
2100.00	0 15	N 42 D W	30.00	2099.99	4.22 N		5.69	N 40 36 W	0.84
2130.00	0 15	N 39 0 W	30.00	2129.99	4.32 N		5.82	N 40 33 W	1.01
2160.00	0 15	N 38 9 W	30.00	2159.99	4.42 1	4 3.78 W	70°C	W 66 07 11	F 101

RADIUS OF CURVATURE CALCULATIONS Friday, September 15, 1989 Page 4

DEC-20-189

1UE 10:45 10:

2212-110012

Г

MEASURED DEPTH Feet	BDRE- INCLINATION Deg Min	HOLE DIRECTION Deg Hin	COURSE LENSTH Feet	VERTICAL DEPTH Feet	RECTAN COORDI Fret		CLOSURES DISTANCE DIRECTION Feet Deg Min	DOGLEG SEVERITY Deg/108ft.
2190.00	0 15	N 35 0 W	30.00	2189.99	4.52 №	3.86 W	5.95 N 40 28 M	
2220.00	0 15	N 54 0 W	30.00	2219.99	4.62 N	3.95 W	6.0B N 40 33 I	1 1.28
-	0 30	N 54 0 W	30.00	2249.99	4.73 N	4.11 1	6.27 N 40 58 N	9.83
2250.00		N 71 0 W	30.00	2279.98	4.85 N	4.34 W	6.51 N 41 49 1	B.4 9
2280.00 2310.00	9 30 6 15	N 65 0 W	30.00	2309.98	4.93 N	4.52 W	6.69 N 42 33	1.84
						4.70 W	6.87 N 43 15	0.84
2349.00	0 30	N 70 0 W	30.00	2339.98	5.00 N		7.04 N 44 0 1	-
2370.00	8 15	N 73 0 W	30.00	2369.98	5.06 N	4.89 W	7.16 N 44 27	
2400.00	0 15	N 65 0 W	30.90	2399.98	5.11 N	5.01 W		
2430.00	0 30	N 75 0 W	30.00	2429.98	5.18 N	5.20 W		
2469.00	0 15	N 72 0 4	30.00	2459.98	5.23 N	5.39 W	7.51 N 45 49	
2490.00	0 30	N 74 0 W	30.00	2489.98	5.29 N	5.57 W	7.68 N 46 29	
2520.00	0 15	N 66 8 W	30.00	2519.98	5.36 N	5.76 W	7.87 N 47 3	
2550.00	0 15	N 71 C W	30.00	2549.98	5.41 N	5.88 ₩	7,99 N 47 24	
2588.80	0 15	N 65 0 W	30.00	2579.98	5.46 N	6.00 W	8.11 N 47 43	
2619.00	0 15	N 66 0 W	39.00	2609.98	5.51 N	6.12 W	8.23 N 48 1	W 0.01
			30.00	2639.98	5.57 N	6.24 W	8.36 N 48 15	u 0.06
2649.00	0 15	N 62 8 W		2669.98	5.62 N	6.36 W	8.48 N 48 32	
2670.00	D 15	N 73 0 H	30.00		5.66 N	6.50 W	8.62 N 49 0	
2709.00	0 20	N 78 8 W	30.00	2699.98		6.72 W	8.81 N 49 42	
2730.00	0 30	N 79 Q W	30.00	2729.98	5.70 N		9.03 N 50 33	
2760.00	0 30	N 82 I W	30.00	2759.98	5.74 N	6.98 W		
2795.00	0 30	N 82 0 4	30.00	2789.97	5.78 N	7.24 W	9.26 N 51 23	
2820.00	0 30	N 81 B W	30.00	2819.97	5.82 N	7.49 W	9.49 N 52 11	
2850.00	0 20	N 79 0 W	30.00	2849.97	5.85 N	7.21 ¥	9.68 N 52 47	
2890.00	0 31	N 83 0 W	30.00	2879.97	5.87 N	7.92 W	9.87 N 53 23	
2918.00	0 30	N 85 1 W	30.00	2909.97	5.92 N	8.18 W	10.10 N 54 8	W 9.06
T178*AAA	v	TH AM						

_ ~ -.

RADIUS OF CURVATURE CALCULATIONS

Friday, September 15, 1989 Page 5

MEASURED DEPTH Feet	8 D R INCLINATI Deg Mir	ON	DIR	L ECT 19	IN		COURSE LENGTH Feet	VERTICAL DEPTH Feet	RECT COOR Feet	Ð	INA			C L O S DISTANCE . Feet	DI	E REC1	ION		DOGLEG SEVERITY Deg/100ft.
																-			
2940.00	0 30		N	86	8	u	30.00	2939.97	5.94	N		8.44	u	10.32		E 4	52		
2970.00	0 30		N I		Ō		30.00	2969.97	5.95			8.71				54			0.03
3000.00	0 30		N		Ð		30.09	2999.97	5.97			B.97		10.54		22			1. 06
3030.00	0 30		N		Ō		30.80	3029.97	5.99					10.77		56			1.09
3060.00	0 40		N		Ŏ		30.00	3059.96					¥.	11.08		57			0.03
					v	-	20.00	3037 +70	6.02	TH.	:	9.53	W	11.27	N	57	44	W	8.55
3090.00	0 30		N 1		0	u –	30.08	3089.96	6.06	Ν	•	9.83	u.	11.55	N	58	77	¥.	0.54
3120.00	0 30	l	N	90	0	W	30.00	3119.96	6.07			0.09		11.78		58			0.17
3150.00	0 30		S :	89	0	u	30.00	3149.96	6.07			0.35		12.00			38		0.03
3180.00	D 40		N	88	9	u	30.00	3179.96	6.07			0.66		12.26					
3210.00	0 40		N		٥		30.00	3209.96	6.08								20		0.54
						-	Qu.00	3107.70	0.00	14	1	1.00	₩4	12.57	n	61	3	ų.	0.04
3240.98	0 40		S	87	0	W	30.00	3239.96	6.09	N	1	1.35	LI.	12.88	N	61	47	L	0.15
3270.00	0 40		N	89	0	W.	30.00	3269.95	6.09			1.69		13.18		62			0.08
3300.00	0 40			85	9		30.00	3299.95	6.08			2.04		13.49		63			0.23
3330.00	0 44			89	ŝ		30.00	3329.95	6.07			2.38		13.79		63			
3360.00	0 49			86	Û		30.00	3359.95	6.06			2.73							0.23
	• •	•	¥	~	v	-	50.00	JJJJ2 #7 J	0.00	11	1	Z +í J		14.10	EN	64	33	*	8.19
3390.00	0 41	}	S	86	9	¥.	30.01	3389.95	6.03	N	1	3.87	¥	14.40	N	65	14	ы	0.00
3420.00	0 40)	5	84	0	ų	38.00	3419.94	6.00			3.42		14.70		65			0.08
3450.00	8 4()	S	85		W.	30.00	3449.94	5.97			3.76		15.00		66			0.04

Final Station Closure - Distance: 15.00 Feet - Direction: N 66 33 W

FLOO PUD

÷

- 04- 140 T

0 U

Ē

11101

10.

1-10⁻⁰¹

ŀ

" "												K	lou	ston	5	30 776	7		
-	LA	P. O. BOX 31 FAYETTE, LA (318) 233-5	70503						Sł						CORPL	P. O. BOX 43 JS CHRISTI, T (512) 883-72	X 78469		
RIG/PL	AT	OF AHOKEE TPACMI UNGOUS DOTH-BY JAN WA	<u>}'</u>	Г <i>НЕ</i>		SURVEY & # 1 7/9/89		TYPE TARC CALC COM	GET I GET I CULA	SURVEY DIRECTI TION N TION S:		TYRC N/A OD	SCE ZAO NO	DPIC I	MUT KBE	I-SHOT DECL	N <i>2 %</i>	2 E	121111111111111
MEASURED DEPTH	INCL. ANGLE	HOLE DIRECTION	TRUE VERTICAL		TOTAL VERTICAL		1	RDINATES				INATES		CRSE.	AVG. INCLN.	AVERAGE HOLE	VERT. DEPTH	CRSE. DEVN.	DOG LEG
			DEPTH	-	SECTION	N(+)/S()		E(+)/W(—)		N(+)/S(-)	E(+)/W	() T		ANGLE	DIRECTION			SVRTY
30	<u>'/8</u>	NIGW		╞──┤				: 											╂───┦
80	0	NOOE		$\left \right $														<u> </u>	$\left\{ \right\}$
	0	NOOE		+									+	 					}
120		NOCE	150				6	W	01	M	06	W	01	<u> </u>					
150	0	NOOE	12	ω		14				/4	00	W	<u> </u>						+
180	0	1		+			$_{}$										<u> </u>	<u> </u>	-
210	0	NOON		+			$\left \right $				+						<u> </u>	+	
270	0	NOOE						<u></u>			+		1		1				1
300	1/8	569W	300	$\overline{\mathbf{\omega}}$		N	rs	W/	N			<u> </u>			1		1	<u> </u>	1
330	1/8	529W		<u> </u>				, ,			+		-		1		1	1	1
360	1/8	NZIW		†				,	+		+		+				1		1
390		N33E		+				:	1		1	1	+				1		+
420	1/8	N33E		+		1			1		1	1	+	1				•	1
450	1/8	NZOE	450	m		N	18	ิฟ	07		1		1	1			1		1
480	1/8	NBIÉ					<u> </u>					1					1		1
510	1/8	N3W		1		1	<u>†</u>				1	1	1	1	1	1	1	1	1
44D	1/8	NIZW		1			1	a daran manan kaka kaka kaka ka	1	1	1			1			1	1	1
570		M38W												1			T	1	1
600	1/8 1/8	NZAW	600)		- N	46	W	09										

•	LAI	P. O. BOX 314 FAYETTE, LA (318) 233-59	70503 943			SURVEY	U				2		CORPU	⊦. IS Ch (512) 883-7∡		·	
RIG/PL	Wes at Yo	OUNGQU PAHOKEE TPALM					-	TARGE CALCU COMP	ET D JLA ⁻ LET	IRECTION -	OD YES □ NO		KBE	DECL	.N	E	/w
JOB NO		207H-89	AN		DATE -												
SURVE	YOR	T	TRUE		TOTAL	TOTAL	CO-0F	DINATES		CO-ORD	INATES	CRSE.	AVG.	AVERAGE HOLE	VERT.	CRSE.	DOG LEG
MEASURED DEPTH	INCL. ANGLE	HOLE DIRECTION	VERTICAL		VERTICAL SECTION	N(+)/S()		E(+)/W()		N(+)/S(—)	E(+)/W()	LNGTH.	ANGLE	DIRECTION	DEPTH	DEVN.	SVRTY
630	1/8	N3BIN													<u> </u>	ļ	_
660	0	NOOE											<u> </u>			<u> </u>	
690	1/8	N43W														+	+
720	1/8	N35K/										_				+	╉─
750	1/8	N43W4	750	\mathfrak{O}		N	20	W	B								╉
780	1/8	H83W														+	+
810	//8	MS3W				<u> </u>							<u> </u>		+	-	+
840	0	NOOE					-					-				+	+
870	7	HIBE				<u> </u>	21	W	K		++-		_			·	+
900	48	N28E	900	pa	₽		36	nt				-				1	\top
930		NS3W		 		+	+										
960		NECON		+	+		+				1						
990		N48W N37W			++-		-										
1020		NBSW	1050	T	, 	H	57	W	Z/c	,					_	_	
1080		5574		Ť													
1110	14/	562W															+
1140) 1/8	NYSE								┨───┤──					_		
1170	2 /8	HIBW		_			-		2								+
Ling	> 1/0		1 1200	long	~	KI.	1.5		17			1					

~	LA	P. O. BOX 3 NFAYETTE, LJ (318) 233-	A 70503						S					CORP	P. O. BOX 43 JS CHRISTI, 1 (512) 883-72	TX 78469)	
COMPA LEASE/ FIELD RIG/PL	NYY AREA MCS ATYO	THEM	- 1		WELL NO DATE			TYI TAI CA CO	PE OF RGET LCUL/ MPLE	SURVE DIRECT ATION M				KBE	DECI	LN	E	/W
MEASURED	INCL.	HOLE	TRUE VERTICAL	_	TOTAL	τοτα	L CO-0	ORDINATES		C	O-OR	DINATES	CRSE.	AVG. INCLN.	AVERAGE HOLE	VERT.	CRSE.	DOG LEG
DEPTH	ANGLE	DIRECTION	DEPTH		SECTION	N(+)/S()	E(+)/W(-	-)	N(+)/S	()	E(+)/W()	LNGTH.	ANGLE	DIRECTION	DEPTH	DEVN.	SVRTY
1230	.[4	NZZNI	Res I	Æ														
1260	1/4	NSBUL										ļ						
1290	14	N8311														<u> </u>		
1320	14	N28W											<u> </u>					
1350	14	N38W	1350			NI	ØI	Ø	99									
1380	//4	N33U																T
1410	1/4	N38W																T
1440	//4	N534																1
1470	1/4	NEEN									1		1				<u> </u>	<u>†</u>
600	ĺμ	N32W	1500	∞		NI	61	W/	39				1				t	<u>†</u>
1530	1/4	M37W									1			1		1	+	1
150	1/4	H42W									1	<u> </u>	1			1	<u> </u>	<u>†</u>
1590	1/4	NYZW											1	1		1	1	<u>†</u>
1620	1/4	N33W									1					1		+
1650	1/3	N34NI	1650	3		N2	03	KI I	79		1	1		1			<u> </u>	+-
1680	1/4	N37W									1		1			1	+	+-
1710	1/4	NS3W					1				1		1	1		1	<u> </u>	┢──
1740	1/4	NSTUH					1			1	1	<u> </u>	1	1		1	+	\mathbf{H}
1770		N37W					1				1		1	1		1	<u> </u>	<u>+</u>
1800			1800	Ø		NZ	52	Wa	228		1	+	1	1		1	†	\mathbf{t}

P. O. BOX 31450 LAFAYETTE, LA 70503 (318) 233-5943

۰.

P. O. BOX 4357 CORPUS CHRISTI, TX 78469 (512) 883-7267

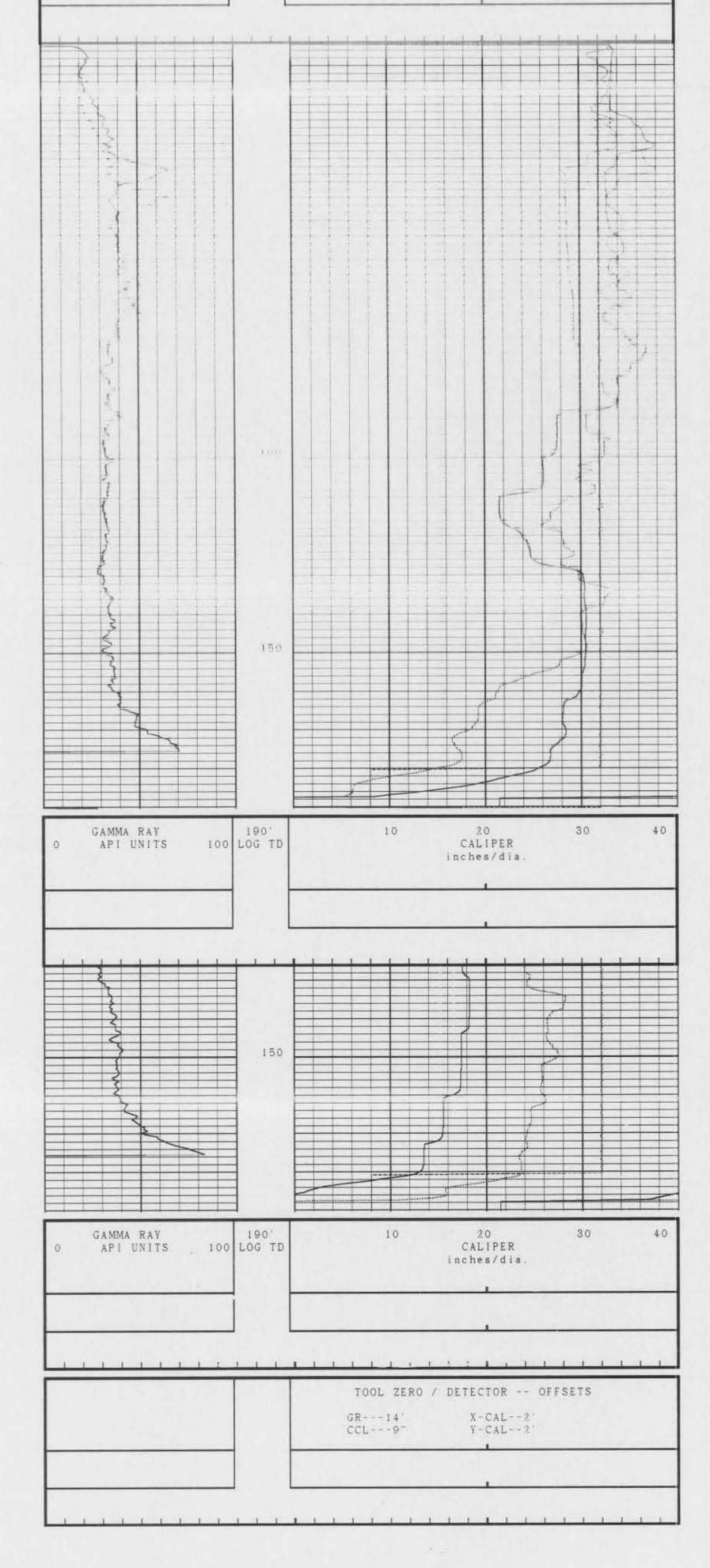
SURVEY CALCULATION FIELD SHEET

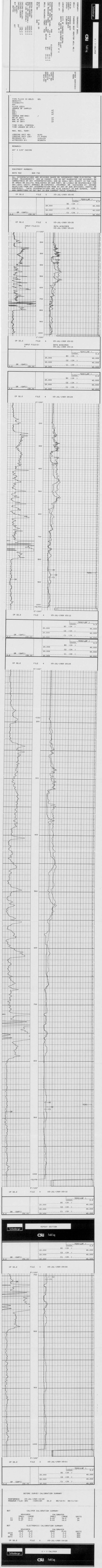
SHEET	NO	OFOF 20160000 AHOULEE THACM					SURVEY	CA	LCULATION	NI	FIELD SI	HEE	T						
COMPA	NY <u>Y</u>	UNGOUS	ST BOO	ИL	<u>Rs</u>		<u> </u>		TYPE (OF	SURVEY _					DECI			
	AREA 12	THACM			WELL N	د .0	JW#/		TARGE	ET	DIRECTION				KBE	DECI	_N	E	/W
RIG/PL	AT Y	JUNGQUE	ST I			•													
JOB NO	60	107H-87			D,	ATE					S:				······································				
SURVEY	'OR	AN WA	41+N																
MEASURED DEPTH	INCL.	HOLE	TRUE VERTICA		TOTA	_			ORDINATES		CO-OF	DINA	TES	CRSE.	AVG.	AVERAGE	VERT.	CRSE.	DOG
DEPTH	ANGLE	DIRECTION	DEPTH		SECTIC		N(+)/S(—)		E(+)/W()		N(+)/S(—)	E((+)/W(—)	LNGTH.	INCLN. ANGLE	HOLE DIRECTION	DEPTH	0.000	LEG SVRTY
1830	1/3	N38KI	1829	B		~	2	61	28	9									
1860	1/3	N4344										1							t
1890	13	N48NJ								1		1							
192D	1/3	1431																	
1950	13	NESUL	· · ·	1								+							<u> </u>
1980	1/3	NZEN	1977	29			3	05	30	<u>ন</u>		-							
1		Borte	m Ha	le i	Vac	re				1		-							
	·······				4.2		TQN	R	811			+							
				1		7-	41	RI	N			+							
								01				+							
												+							
				<u> </u> .								+							
												+							
	·····											+							
				<u> </u>								+							
									·····			+							
												+							
										╢		+							
										╢		+							
										╢		+							
				L		I						<u> </u>							

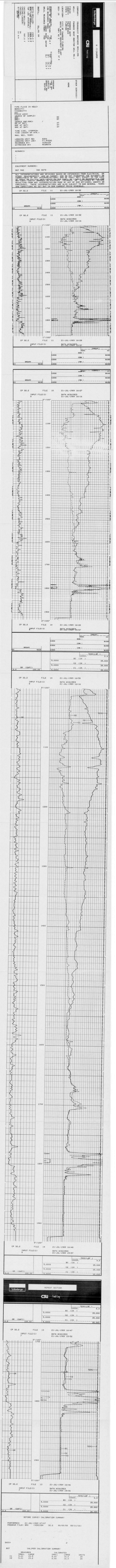
																-	
		P. O. BOX : FAYETTE, L (318) 233-	A 70503			m	LTI-S						CORP	P. O. BOX 43 US CHRISTI, [*] (512) 883-72	TX 78469)	<u></u>
SHEET COMPA LEASE FIELD RIG/PL JOB NO SURVE	NY <u> </u>	EE M	JIST DEC NECTION DELDA JIST #1		<u>S</u> 0 ATE .		TYPE C TARGE CALCU COMPL	of s T c ILA			TROSC			CULUAT		E	./w
MEASURED DEPTH	INCL. ANGLE	HOLE	TRUE VERTICAL	TOTAL		TOTAL CO-O	RDINATES		CO-OR	DIN	ATES	CRSE.	AVG.	AVERAGE	VERT.	CRSE.	DOG
			DEPTH	SECTION	N	N(+)/S(—)	E(+)/W()		N(+)/S(—)	1	E(+)/W()	LNGTH.	INCLN. ANGLE	HOLE DIRECTION	DEPTH	DEVN.	LEG SVRTY
<u>1980</u>	0-20	N394				+374	-32	/∥							1		1
	ELAM	O NIU	TI-SHOT		YR	DSURVEY	, 								1		1.
2010	0-20	NYIW	2099 99	2		+ 386	- 33			+							
2040	0-20	N4M	2039 55			+ 398	- 34	- 11		+						ļ	
2070	0-15	NYOW	206999)		+400	- 35	オ		+						,	
2100	0-15	NYZNI	a second s			+ 4 19	- 359	J		+					<u> </u>		
2/30	0-15	N39Kl	2129 09	,		+ 4/2.)	- 36			+							{
2160	0-15	N38W	2159 99			+ 4 39	- 376			+							
2190	0-15	N35N	2189 49			+ 450	-38			┼─							
2220	0-15	NS4W	2219 55	/		+ 459	-30	-#-		╈							
2250	0-30	NSIN	224999			+ 467	- 40			╉							
2280	0-30	N71W	2275,05			+ 4 75	- 416	計		+							
	D-15	NGGIN	2309 5			+ 480	- 43			+							
2340	0-30	NTON	233000			+ 4 85	- 44			+							
2370	0-15	NT3W	2369 99			+ 400	- 4/59										
2400	0-15	NGSW	2309 05			+ 435	- 47			+							
2430	0-30	NYSW	2429 98		1	+ 500	- 19	オ		†			······				
2460	0-15	NTZW	245908	;	1	+ 504	- 4 7/ - 4 8 - 4 8	計		+							
2490	0-30	N74W	24896			7 508	- 5/2			1		-					

	LAF	P. O. BOX 31 AYETTE, LA (318) 233-5	70503		mu	ITI-S				CORPL	P. O. BOX 435 JS CHRISTI, TX (512) 883-726	x 78469		
SHEET	NO. 2				SURVEY CAI	LCULATION F		- ROCO	PIR	Mor	<u>71-5407</u>			
COMPAI LEASE/ FIELD _ RIG/PL	NY <u>Y</u> AREA <u></u> <i>PAHC</i> AT <u>YO</u>	OUNGQ PAHOLCO XEE FO UNGQUI AN WAYA	EJU EJU LOCIDA IST #1	WELL NO	3 9/14/82	TARGET I CALCULA	DIRECTION		ows	KBE	DECL URUATURC	N	E,	/ w
├ ─────		1	TRUE	TOTAL	TOTAL CO-C	RDINATES	CO-OR	DINATES	CRSE.	AVG.	AVERAGE	VERT.	CRSE.	DOG LEG
MEASURED DEPTH	INCL. ANGLE	HOLE DIRECTION	VERTICAL DEPTH	VERTICAL	N(+)/S(—)	E(+)/W(—)	N(+)/S(—)	E(+)/W()	LNGTH.	INCLN. ANGLE	HOLE DIRECTION	DEPTH	DEVN.	SVRTY
2520	0-15	NGGW	2519 98		+5/3	-525								
	0-15	1	25499		+5 18	- 538	 			ļ		 		
		NGSKY	257508		+522	Contraction of the local data and the local data an				<u> </u>		ļ		ļ
	0-15		260993		+ 5 28		<u> </u>	10:03	pre	@ 2íoi	10 7.71A	1 ~ N	46.794	<u>r</u>
2640	0-15				+534	-573				4	<u> </u>	<u> </u>	+	
		N734	266998	×	+ 5 3 5	-5%	╢				4	<u> </u>		
the second se		N78N	269998		+ 542	Contraction of the second s	∦							
2730		NZZW	2729 8	·	+ 546	-620	∦	_		<u></u>		<u> </u>		
		NBZW	2759 98		+551	-646	∦							
2790		~82W	2789 28	?	+ 554	-672					_	<u> </u>		<u> </u>
				3	+558		1							
2850			-		+562					_		<u> </u>		<u> </u>
2280					+565	-735						<u>_</u>		
2910	0-30		2909 Q		+ 568						_			
2940	10.30	486W	293997	7	+570					_		1		1
2010	0-20	NBBN	29.90-		+571	-817	7					1		
3000)00	ABSW	290907		+57		2					_		_
3030	10-20	NB6W	302917		+575	5 -865	7							_
302	JO-UN	N82W		7	+ 578	3 -900								_
		DIB4M			+ 582	2 -9 3								

•

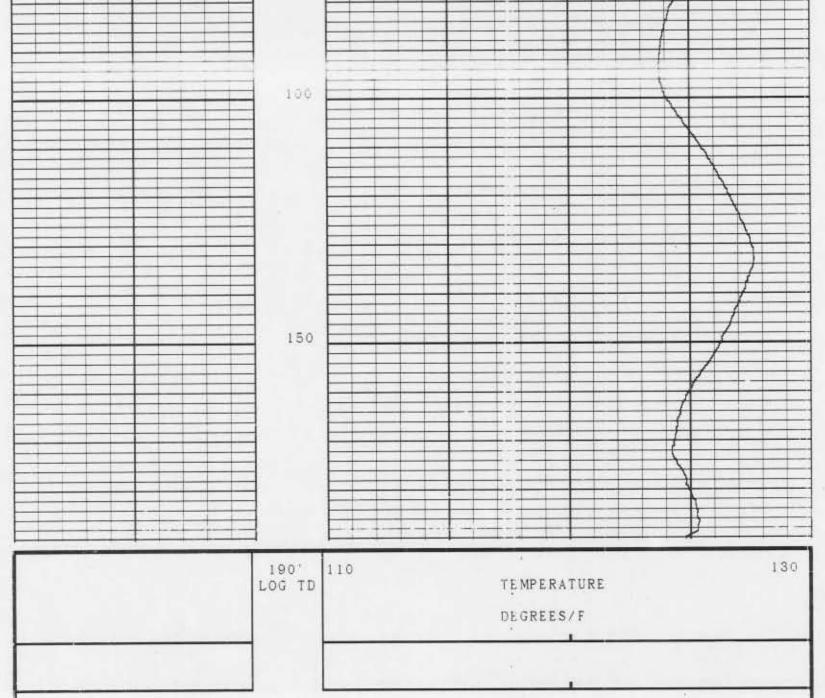

S.

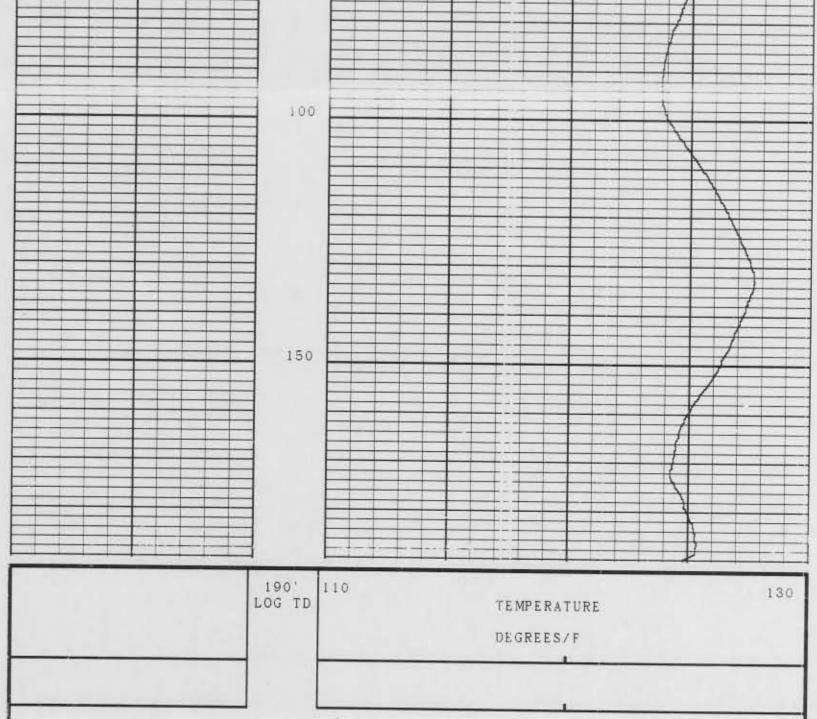

APPENDIX D


Geophysical Logs of Injection Well 1

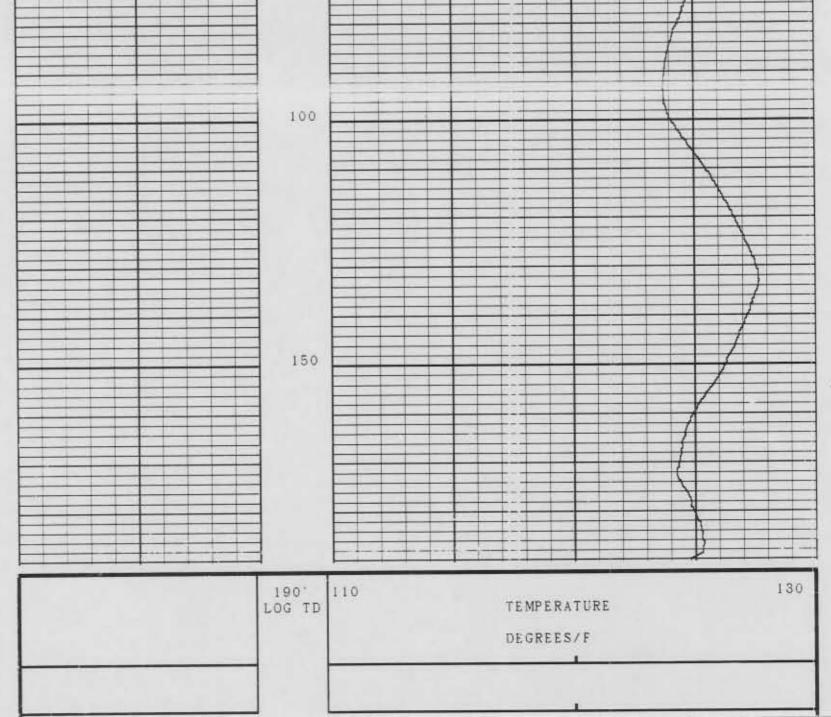
See Separate Binder - Volume II

NO HIT FROM FECORD SIZE WGT. FRG 32 19 TD 36 SU	TYPE LUID IN HOLE MUD SALINITY PPM CL DINSITY LEVEL MAX TEMP DEG F OPERATING RIG TIME RICORDED BY WITNESSED BY WITNESSED BY MR. McGRATH	LLING MEASHRED FROM PAD LEVEL NG 0NE 00 L LOG L LOG H LOGGED INT 0 LOGGED INT 0	MANENT DATUM: PAD LEVEL	Filling NO. COMPANY YOUNGQUIST BROTHERS DRILLI WELL PAHOKEE MW-1 FIELD COUNTY PALM BEACH STATE	FLORIDA GEOPHYSICAL LOGGING, INC. FT. MYERS (8 GAMMA RAY X-Y CALIPER
Run PANEL		Equipme 100CAL X10 53.7 Calibrat	DF KB ELEVATION INT NIMILRM- NIMILRM- NIMIRRM- ion Data	OTHER SERV: ZERO T-2 D-4.3 T-1 D-10	100CAL X10 60 62
Run GAMMA RA No. ZERO 1 O Run De No. From 1	BKGD 55 pths S To F	TOOL # 3.5 120 API 268 Loggin peed t/Min 30	X-Y CALIPE - - ig Data	36" 55" 730 1105 833 1214	TOOL # 4
GAMMA RA O API UNI	Y TS . 100		10	20 CALIPER inches/dia.	30 40

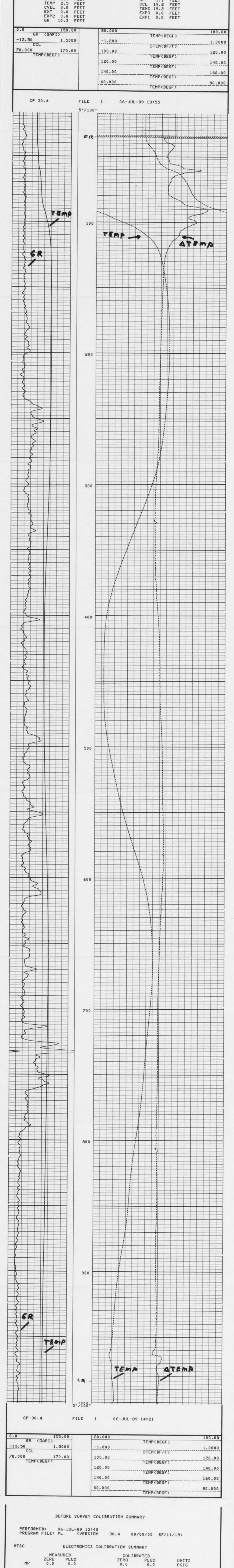



APPENDIX E

Geophysical Logs of Deep Monitor Well


RUN BORE HOLE RECORD NO BIT FROM TO SIZE WGT. FROM 192.9	BOTTOM LOGGED INT 190 TOP LOGGED INT 0 TYPE FLUID IN HOLE WATER SALINITY PPM CL WATER DENSITY FULL DENSITY FULL MAX TEMP DEG F 128 OPERATING RIG TIME I HOUR RECORDED BY MR BRANTLEY WITNESSED BY MR BRANTLEY	E D	LOCATION OTHER SERV SEC 19 TWP 42S RGE 37E	FILING NO. COMPANY YOUNGQUIST BROTHERS DRILLING CO. INC. WELL PAHOKEE MW-I FIELD COUNTY PALM BEACH STATE FLORIDA	FLORIDA GEOPHYSICAL LOGGING, INC. FORT MYERS (813) 489 2155 TEMPERATURE (813) 489 2155
				RATURE	

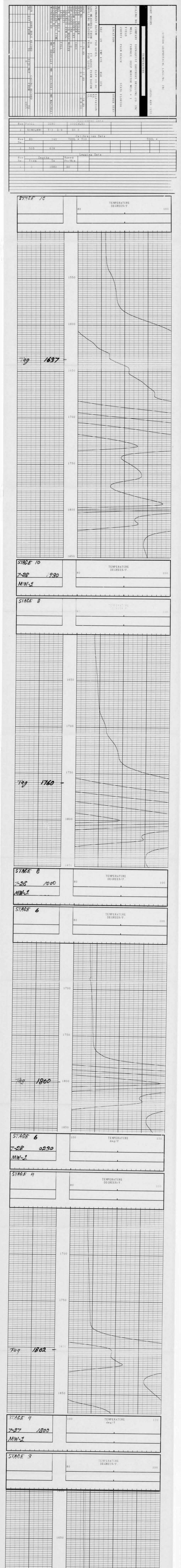
RUN BORE HOLE RECORD NO BIT FROM TO SIZE WGT. FROM 192.9	GGED INT CUID IN HOLE UTY PPM CL. LTY MP DEG F ING RIG TIME ED BY SED BY	M: PAD LEVEL ELEV:1 ROM O FT ABOVE PERM D RED FROM PAD LEVEL 6-28-89 0NE R 194 190	COUNTY PALM BEACH STATE FLORIDA	FILING NO. COMPANY YOUNGQUIST BROTHERS DRILLING CO. INC. WELL PAHOKEE MW-1 FIELD	FLORIDA GEOPHYSICAL LOGGING, INC. FORT MYERS (813) 489 2155
	50				


RUN PORF HOLE RECORD NO ELT FROM TO SIZE WGT. FROM 192.9	TYPE FLUID IN HOLE WATEK SALINITY PPM CL. DENSITY DENSITY MAX TEMP DEG F 128 OPERATING RIG TIME I HOUR WITNESSED BY MR. BRANTLEY MR. KWAPINSKI		ION 19 TWP 42S RGE 37E	FILING NO. COMPANY YOUNGQUIST BROTHERS DRILLING CO. INC. WELL PAHOKEE MW-I FIELD COUNTY PALM BEACH STATE FLORIDA	FLORIDA GEOPHYSICAL LOGGING. INC. FORT MYERS (813) 489 2155
		50			

DEPTH-DRILLER: 1009.0 DEPTH-LOGGER: 984.0 BTM. LOG INTERVAL: 984.0 TOP LOG INTERVAL: 984.0 CASING-DRILLER: 1009.0 CASING-LOGGER: CASING: 16" WEIGHT: 16" WEIGHT: 22"	PERMANENT DATUM: ELEV. OF PERM. DATUM: LOG MEASURED FROM: ABOVE PE ABOVE PE ABOVE PE RUN NO: 6 JUL 89 RUN NO: 0NE	WELL:PAHOKEE DEEP MONITORFIELD:PAHOKEE WUTPCOUNTY:PAHOKEE WUTPSTATE:PALM BEACHLOCATION:CITY OF PAHOKEE FLORISEC: 19TUP: 42 S	iberger I
984.0 F 984.0 F 37.0 F 984.0 F	PAD 13.8 F ELEVATIONS- 13.8 F KB: 19.8 F PAD PERM. DATUM GL: 13.8 F PAD 99	DEEP MONITOR WELL NO.1 WMTP CH PAHOKEE FLORIDA TER TREATMNET PLANT : 42 S RGE: 37 E	
	PROGRAM TAPE NO: 30.4 SERVICE ORDER NO: 363793	DTHER SERVICES- CBL	
TYPE FLUID IN HOLE DENSITY: VISCOSITY: PH: FLUID LOSS: SOURCE OF SAMPLE: RM: RMF: RMF: RMC: SOURCE RMF/RMC: RM AT BHT: RMF AT BHT:	АТ АТ АТ АТ АТ	131. DEGF 131. DEGF	
DENSITY: VISCOSITY: PH: FLUID LOSS: SOURCE OF SAMPLE: RM: RMF: RMF: RMC: SOURCE RMF/RMC: RM AT BHT:	AT AT AT AT AT AT AT AT AT AT AT		
DENSITY: VISCOSITY: PH: FLUID LOSS: SOURCE OF SAMPLE: RM: RMF: RMF: RMC: SOURCE RMF/RMC: RM AT BHT: RMF AT BHT: RMF AT BHT: RMF AT BHT: TIME CIRC. STOPPED TIME LOGGER ON BTM MAX. REC. TEMP: LOGGING UNIT NO: LOGGING UNIT NO: LOGGING UNIT LOC: RECORDED BY: WITNESSED BY: WITNESSED BY: REMARKS: LOG RUN FOR CEMENT CEMENT INFORMATION: 195 BBL 4% BENTONIT	AT AT AT AT AT AT AT AT AT AT AT AT AT A	131. DEGF 131. DEGF	
DENSITY: VISCOSITY: PH: FLUID LOSS: SOURCE OF SAMPLE: RM: RMF: RMF: RMC: SOURCE RMF/RMC: RM AT BHT: RMF AT BHT: RMF AT BHT: TIME CIRC. STOPPED TIME LOGGER ON BTM MAX. REC. TEMP: LOGGING UNIT NO: LOGGING UNIT LOC: RECORDED BY: WITNESSED BY: WITNESSED BY: REMARKS: LOG RUN FOR CEMENT CEMENT INFORMATION: 195 BBL 4% BENTONIT 46 BBL NEAT. PLUG D EQUIPMENT NUMBERS- MTSC 3804W AT	AT AT AT AT AT AT AT AT AT AT AT AT AT A	-89	
DENSITY: VISCOSITY: PH: FLUID LOSS: SOURCE OF SAMPLE: RM: RMF: RMF: RMC: SOURCE RMF/RMC: RM AT BHT: RMF AT BHT: RMF AT BHT: RMF AT BHT: TIME CIRC. STOPPED TIME LOGGER ON BTM MAX. REC. TEMP: LOGGING UNIT NO: LOGGING UNIT NO: LOGGING UNIT LOC: RECORDED BY: WITNESSED BY: WITNESSED BY: WITNESSED BY: WITNESSED BY: MITNESSED BY: MITNESSED BY: EQUIPMENT NUMBERS- MTSC 3804W AT ALL INTERPRETATIONS OTHER MEASUREMENTS CORRECTNESS OF ANY OF GROSS OR WILLFUL ANY LOSS, COSTS, DA RESULTING FROM ANY	AT AT AT AT AT AT AT AT AT AT AT AT AT A	-89 D ON INFERENCES FROM ND DO NOT GUARANTEE ND WE SHALL NOT, EXC PART, BE LIABLE OR INCURRED OR SUSTA E BY ANY OF OUR OFFI ALSO SUBJECT TO DUR ENT PRICE SCHEDULE.	THE ACCURACY OR EPT IN THE CASE RESPONSIBLE FOR INED BY ANYONE
DENSITY: VISCOSITY: PH: FLUID LOSS: SOURCE OF SAMPLE: RM: RMF: RMF: RMC: SOURCE RMF/RMC: RM AT BHT: RMF AT BHT: RMF AT BHT: RMF AT BHT: TIME CIRC. STOPPED TIME LOGGER ON BTM MAX. REC. TEMP: LOGGING UNIT NO: LOGGING UNIT NO: LOGGING UNIT LOC: RECORDED BY: WITNESSED BY: WITNESSED BY: REMARKS: LOG RUN FOR CEMENT CEMENT INFORMATION: 195 BBL 4% BENTONIT 46 BBL NEAT. PLUG D EQUIPMENT NUMBERS- MTSC 3804W AT ALL INTERPRETATIONS OTHER MEASUREMENTS CORRECTNESS OF ANY DF GROSS OR WILLFUL ANY LOSS, COSTS, DA RESULTING FROM ANY EMPLOYEES. THESE I	AT AT AT AT AT AT AT AT AT AT AT AT AT A	-89 D ON INFERENCES FROM ND DO NOT GUARANTEE ND WE SHALL NOT, EXC PART, BE LIABLE OR INCURRED OR SUSTA E BY ANY OF OUR OFFI ALSO SUBJECT TO DUR ENT PRICE SCHEDULE.	THE ACCURACY OR EPT IN THE CASE RESPONSIBLE FOR INED BY ANYONE CERS, AGENTS OR GENERAL TERMS

DTEM 2.5 FEET TEMP 2.5 FEET

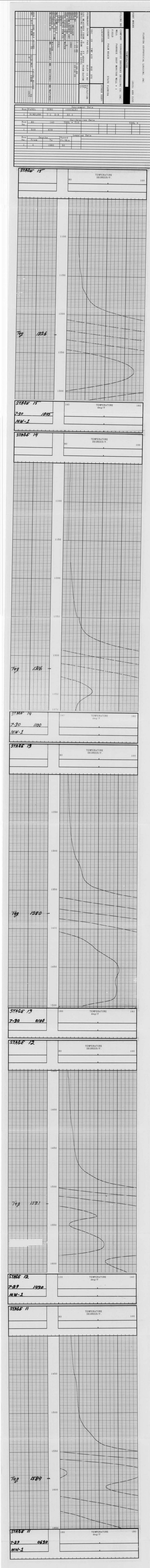
MP 1.1 FEET

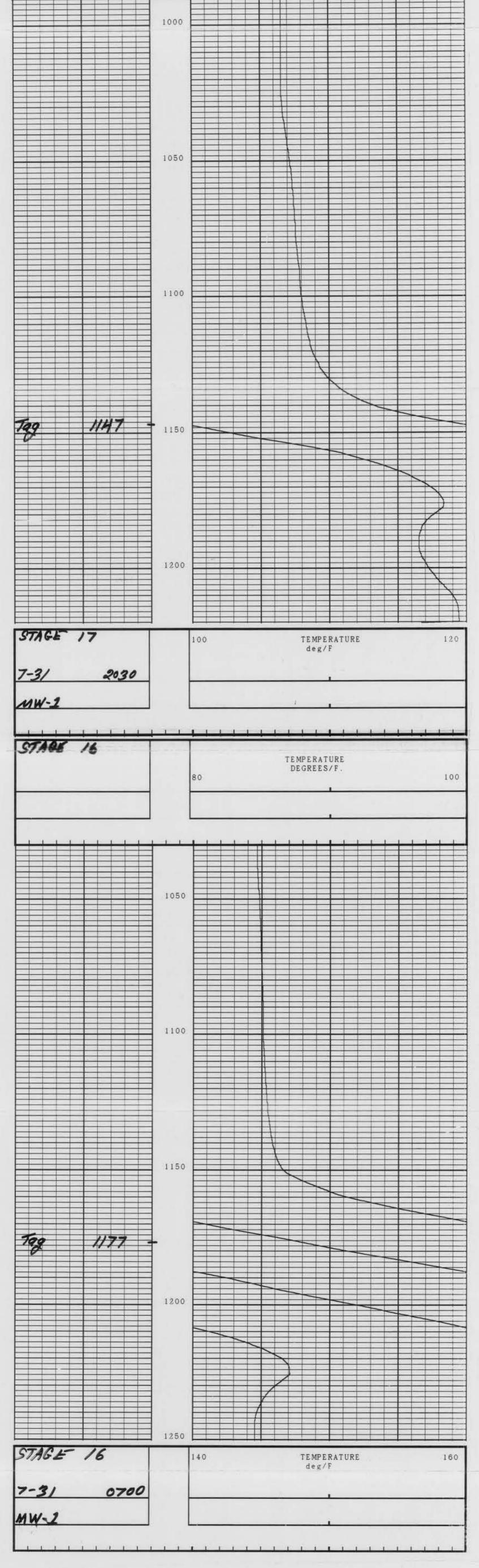


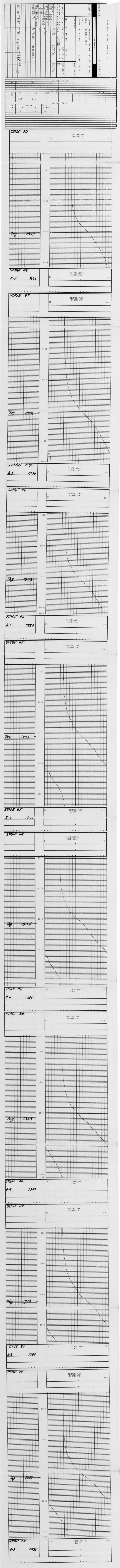
MTSC

ELECTRONICS CALIBRATION SUMMARY

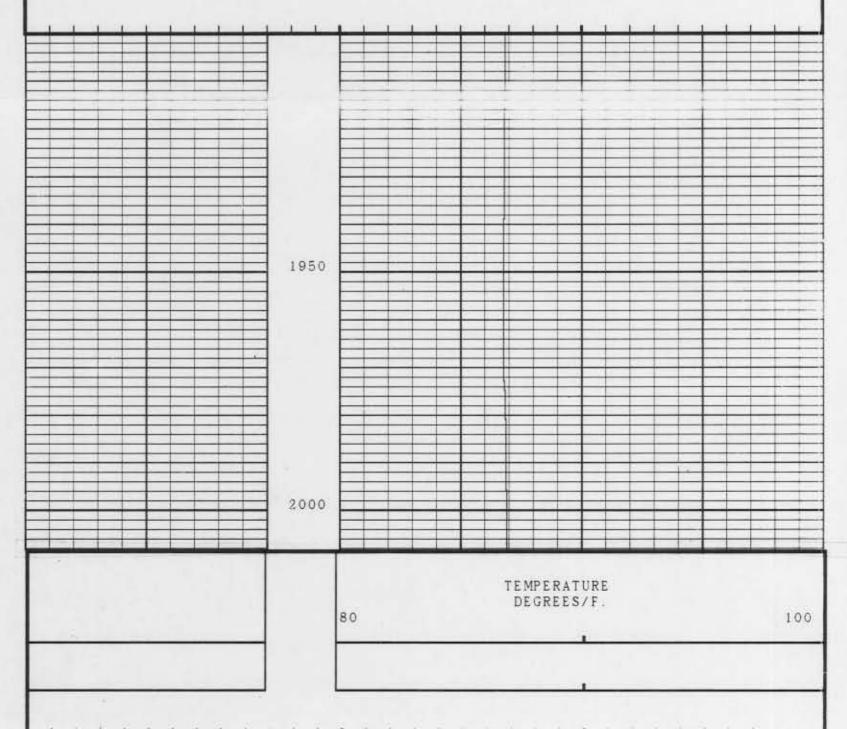
	MEA	SURED	CALI	BRATED	
TEMP	ZERD	PLUS	ZERD	PLUS	UNITS
	52.3	160.9	0.0	200.0	DEGF


....


Ł


İ.

170	00
175	0
180	0
199 1806	
185	
STAGE 3	100 TEMPERATURE 120 deg/F
7-27 0900	
<u>NW-2</u>	
STAGE 1	TEMPERATURE
	DEGREES/F. 100
1650	
1700	
1750	
1750	
1750	
1750	
1800	
1800	
1800	
1800	
1800 1800 1800 1800 1850	140
1800 Tag 1800	



RUN BORE HOLE RECORD CASING RECORD NO. BIT FROM TO SIZE WGT FROM TO 0 11 FROM 1915 1915 1915 1915	DENSITY FULL MAX_TEMP_DEG_F FULL OPERATING_RIG_TIME WILSON RECORDED_BY WILSON WITNESSED_BY MR. BRANTLEY	DATE7-31-89RUN NO.59 60DEPTHDRILLERDEPTHLOGGERBOTTOMLOGGEDINT0TOPLOGGEDSALINITYPM CL.	SEC 19 TWP 42S RGE 37E PERMANENT DATUM: PAD LEVEL ELEV: 13.80' ELEVATION: LOG MEASURED FROM O FT ABOVE PERM DATUM DF. DRILLING MEASURED FROM PAD LEVEL ELEV: 13.80' ELEVATION:	WELL PAHOKEE DEEP MONITOR WELL # 1 FIELD FIELD STATE FLORIDA COUNTY PALM BEACH STATE FLORIDA LOCATION: OTHER SERV:	FILING NO. COMPANY YOUNGQUIST BROTHERS DRILLING CO. INC.	FLORIDA GEOPHYSICAL LOGGING, INC. FORT MYERS (813) 489 2155
Run PANEL	ZERO	Equi 100CALX1	pment Data		-	3
1 NIM2LRM-	T-2 D-9	32.2				
Run <u>80</u> No.	140	Calib TOOL # T1	ration Data 0	+ + +		TOOL #
1 503	629					
Run De No. From	oths To	Speed Ft/Min	ging Data			
1 0	1980	30				
STAGE 17		80		TEMPERATURE DEGREES/F.		100

FUN BORE HOLE RECORD CASING RECORD NO BIT FROM TO SIZE WGT FROM 0 6 6 0 0 0 6 0 0	STTY EL EMP DEG F TING RIG T DED BY SSED BY SSED 5Y	DATE8-589-RUN NO.DEPTH - DRILLERONEDEPTH - LOGGER2008EOTTOM LOGGED INT2008TOP LOGGED INT0TYPE FLUID IN HOLEWATER	SEC 19 TWP 42S RGE 37E PERMANENT DATUM: PAD LEVEL ELEV: 13.80' ELEV LOG MEASURED FROM O FT ABOVE PERM DATUM DF. DRILLING MEASURED FROM PAD LEVEL ELEV I3.80' ELEV	COUNTY PALM BEACH STATE FLORIDA LOCATION: OTHER S	FILING NG. COMPANY YOUNGQUIST BROTHERS DRILLING CO. WELL PAHOKEE DEEP MONITOR WELL # 1 FIELD	TEMPERATURE	FORT MYERS (813) 41	FLORIDA GEOPHYSICAL LOGGING. INC.
T0 1915			VATION	TDA R SERV:	INC.		489 2155	÷
Run PANEL	ZERO	Equin 100CALX1	oment Data			-		
1 N1M2LRM-	T-2 D-9	32.2						
Run <u>80</u> No	140	TOOL # TIC	ation Data		1		TOOL #	
1 503	629							
Run Dept No. From		Logy Speed Ft/Min	ging Data					
1 0	1980	30						
		80		TEMPERATU DEGREES/				100

GERAGHTY & MILLER, INC.

á

n en service e la compañía

APPENDIX F

Hydrostatic Pressure Test Data

INJECTION WELL 1 PRESSURE TEST OF 12-INCH-DIAMETER INJECTION CASING (OCTOBER 6, 1989)

Time	Delta Time (in minutes)	Casing Head Pressure (in pounds per square inch)
11:08	0	139.8
11:13	5	139.0
11:18	10	139.0
11:23	15	139.0
11:28	20	139.0
11:33	25	139.0
11:38	30	139.0
11:43	35	139.0
11:48	40	139.0
11:53	45	139.0
12:01	53	138.0
12:08	60	138.0

Decrease of 1.8 psi over a one-hour period (1.29 percent change). I, Michael J. Waldron, certify that the above data is true and accurate.

Signed: Minland Killalla

DEEP MONITOR WELL PRESSURE TEST OF 16-INCH-DIAMETER STEEL CASING (July 11, 1989)

Time	Delta Time (in minutes)	Casing Head Pressure (in pounds per square inch)
18:30	0	110
18:35	5	110
18:40	10	110
18:45	15	110
18:50	20	110
18:55	25	109
19:00	30	109
19:05	35	108
19:10	40	108
19:15	45	108
19:20	50	107
19:25	55	107
19:30	60	106

Decrease of 4.0 psi over a one-hour period (3.63 percent change). We, Andrew E. Rucinski and Lech B. Kwapinski, certify that the above data are true and accurate.

Signed: Andrew Ruanski L. Kurpersele

DEEP MONITOR WELL PRESSURE TEST OF 6-INCH-DIAMETER CASING (August 3, 1989)

Time	Delta Time (in minutes)	Casing Head Pressure (in pounds per square inch)
18:20	0	102
18:25	5	102
18:30	10	102
18:35	15	102
18:40	20	102
18:45	25	102
18:50	30	102
18:55	35	102
19:00	40	102
19:05	45	102
19:10	50	102
19:15	55	102
19:20	60	102

Decrease of 0.0 psi over a one-hour period (0.00 percent change). I, Pitt T. Maner, III, certify that the above data is true and accurate.

Signed: Pitt J. Maner II

.

GERAGHTY & MILLER, INC.

l. Na

APPENDIX G

Water Quality Analyses

STRADDLE-PACKER TESTS

Stradd4 - parter tests

GEO TEC INC. 1602 CLARE AVENUE • WEST PALM BEACH, FL 33401 • 407/833-7280

MFORMA	ANALYSIS REPORT
GERAGHTY & MILLER, INC	CLIENT NAME AND ADDRESS
2700 PGA BLVD. SUITE 104	
PALM BEACH GARDENS, FL 33410	NOV 1 S 1989
40894	SAMPLE NUMBER
06-08-89 CLIENT 06-13-89 1315	
PF0546PA02 - PAHOKEE	PROJECT NO/LOCATION
IW-1/SP#1 STRADDLE PACKER TES	T #1 (1776 - 1821' PAD LEVEL)
	DATE BY NBR RESULTS,mg/L
CONDUCTIVITY umho/cm 00095	06-13 JP 166-55 10,350
	06-15 BM #1603 4,610
TDS	06-14 CH 43A-48 8,485
	06-15 BM #1602 114
DATE 06-15-89 LAB ID 8	6122,86109, E86048
DIRECTOR	

MFORMA	ANALYSIS REPORT
GERAGHTY & MILLER, INC	CLIENT NAME AND ADDRESS
2700 PGA BLVD. SUITE 104	
PALM BEACH GARDENS, FL 33410	
40895	SAMPLE NUMBER
06-12-89 CLIENT 06-13-89 1315	DATE TIME COLL RECD
PF0546PA02 - PAHOKEE	PROJECT NO/LOCATION
IW-1/SP#2 STRADDLE PACKER TEST	' #2 (1890 - 1935' PAD LEVEL)
PARAMETER STORET #	DATE BY NBR RESULTS mg/L
CONDUCTIVITY umho/cm 00095	06-13 JP 166-55 18.880
CHLORIDE 00940	06-15 BM #1603 7,693
	06-14 CH 43A-48 16,153
SULFATE 000945	06-15 BM #1602 863
DATE 06-15-89 LAB ID 86	122,86109, E86048
BY Strents	
DIRECTOR (

1

SHALLOW MONITOR ZONE

.

	MFORMA	i.	ANALYSIS H	REPORT	DEC 28 19 4
YOUNGQUIST BR	OTHERS		CLIENT	r name and ai	Geraghty & Miller, In
6100 W. 45TH	STREET				
WEST PALM BEA	CH, FLORIDA 3	3407			
42172			SAMPLE	E NUMBER	
09-27-89 1830	BM 09-27-89	2210	DATE 1	TIME RECEIVED) BY
INJECTION WEL	L – PAHOKEE		LOCATIC	ON	
SHALLOW 946 -	1147′	** ** ** ** ** ** ** ** ** ** **			
PARAMETER	STORET #	DATE BY 1	NBR	RESULTS	S,mg/L
ARSENIC	01002	10-11 MD	78-161	<0.00	·
BARIUM	01007	10-17 MD	78-167	0.13	;======
CADMIUM	01027	10-19 MD	78-169	<0.00	1
CHROMIUM	01034	10-09 MD	78-158	<0.00	5
LEAD	01051	10-11 MD	78-162	0.01	.5
MERCURY	71900	10-18 MD	78-168	<0.00	02
SELENIUM	01147	10-16 MD	78-165	<0.00	1
SILVER	01077	10-19 MD	78-170	<0.00	5
SODIUM	00929	10-05 MD	78-152	1200	
MAGNESIUM	00927	10-24 MD	78-182	114	- Mill alle day and age and
ę.					
		** ***			
DATE 11-30-8					
		ID 86122,8	OIU9, E80	048	
ВУ	u.K				
DIRECTOR	V				
(

ORGANICS ANALYSIS REPORT				
YOUNGQUIST BROTHERS		CLIENT NAME AND A	ADDRESS	
6100 W. 45TH STREET		-		
WEST PALM BEACH, F	'L 33407	-		
42172	• **** *** *** *** *** *** *** *** ***	SAMPLE NUMBER		
09-27-89 1830 BM 09	-27-89 2210	DATE TIME COLLECT	ED BY	
INJECTION WELL - PA	HOKEE	LOCATION		
SHALLOW 946 - 1147'				
PARAMETER	STORET #	MCL, mg/L	RESULTS,mg/L	
LINDANE	39782	0.004	<0.000005	
ENDRIN	39390	0.0002	<0.000005	
METHOXYCHLOR	39480	0.1	<0.00005	
	39400	0.005	<0.0005	
2,4-D		0.1	<0.001	
2,4,5-TP	39760	0.01	<0.001	
DATE 11-30-89	BY By	LAB	ID 86109,86122	

TRIHALOMETHANES			THM1.FRM
YOUNGQUIST BROTHERS			CLIENT NAME AND ADDRESS
6100 W. 45TH STREET	******* -*		-
WEST PALM BEACH, FL 3340	 07		_
42172			SAMPLE NUMBER
09-27-89 1830 BM 09-27-89	2210		DATE TIME COLLECTED BY RECD
INJECTION WELL - PAHOKEE			LOCATION
SHALLOW 946 - 1147			•
			-
PARAMETER	STORET	NO.	MCL ug/L RESULT ug/L
BROMODICHLOROMETHANE	32101		* <2
BROMOFORM	32104		* <2
CHLOROFORM	32106		* <2
DIBROMOCHLOROMETHANE	32105		* <2

<2

GEO TEC

TOTAL TRIHALOMETHANES

DATE 11-30-89 BY ______ LAB ID 86109

SEC.FRM	SECONDARY	REPORT FORM
YOUNGQUIST BROTHERS	CLIENT NAM	ME AND ADDRESS
6100 W. 45TH STREET		
WEST PALM BEACH, FL 334		
42172	SAMPLE NUN	IBER
09-27-89 1830 BM 09-27-89	2210 DATE TIME	COLLECTED BY RECD
INJECTION WELL - PAHOKEE	LOCATION	
SHALLOW 946 - 1147'		
PARAMETER STORET NO.	DATE BY NBR	RESULT, mg/L
ALKALINITY 00410	10-01 TM 64-233	3 120
CALCIUM 00916	10-24 MD 78-180) 135
CHLORIDE 00940	10-10 BM 62-353	3 2400
COLOR 00081	10-10 CH 81-74	5
COPPER 01042	10-23 MD 78-175	0.010
CORROSIVITY	CALCULATED	0.57
FOAMING AGENTS 38260	09-28 TM 64-23	4 0.118
IRON 01045	10-02 MD 78-14	8 0.090
MANGANESE 01055	10-03 MD 78-15	0 0.016
ODOR 00085	09-28 CH 81-71	1
TDS 70304	09-28 CH 81-71	4981
NON-FILTERABLE RESIDUE 00530	10-02 CH 81-72	4
ZINC 01092	10-05 MD 78-15	4 <0.10
BICARBONATE ALKALINITY	CALCULATED	119

DATE 11-30-89 BY AL LAB ID 86122, 86109

GEO TEC

	MFORMA		YSIS REPORT	
YOUNGQUIST BROTHE		C	CLIENT NAME	AND ADDRESS
6100 W. 45TH STRE				
WEST PALM BEACH,	FL 33407			
42172		S <i>I</i>	AMPLE NUMBE	R
09-27-89 1830 BM	09-27-89 2210	 I	DATE TIME C	OLL RECD
INJECTION WELL -	PAHOKEE	I	LOCATION	
SHALLOW 946 - 114	7'			
PARAMETER	STORET #	DATE BY N	NUMBER	RESULTS
TURBIDITY NTU	00076	09-28 BM	TB-71	0.6
BOD (5)	00310	09-28 CH	80-63	4
POTASSIUM	00937			31.4
ANTIMONY	01097	11-03 MD		0.060
BROMIDE	71870		62-353	3.52
STRONTIUM	01080		78-209	10.1
BORON	01022	10-10 BM		0.500
HYDROGEN SULFIDE	71875	09-28 TM	64-233	<0.20
COD	00340	10-17 TM	64-235	323
	-		19 4966 4966 2006 2016 2016 2016 2019 4056 4056 4056 4056	
DATE 11-30-89		<u> </u>		
	 8 CT 9 9 7	6122,86109	, E86048	
ву л	t			
DIRECTOR	4			

	MFORMA		ANA	LYSIS	KEPORT
YOUNGQUIST BROTH	ERS		C	LIENT	NAME AND ADDRESS
6100 W. 45TH STR	EET				
WEST PALM BEACH,	FL 33407				
42172				AMPLE	NUMBER
09-27-89 1830 BM				DATE	TIME COLL RECD
INJECTION WELL -	РАНОКЕЕ			LOCAT	ION/SHALLOW 946-1147
PARAMETER STO	 RET #	DATE	BY NU	MBER	RESULTS
SPEC COND,mS 000	095				7.03
SPEC GRAVITY 720	013				1.002
рН 004	100	09-27	вм С	0C	7.95
DO 002	299	09-27	COC		0.1 mg/L
WATER TEMPERATUR		09-27	BM C	0C	26.6
					RESULTS, ORG/100ML
FECAL COLIFORM, MI				7-45	<2
					RESULTS,mg/L
FLUORIDE 0(BM #	2795	3.85
NITRATE-N O()6`30	09-28	BM #:		
TKN 0()625	10-07	BM 6	2-354	1.38
ORTHO-PHOSPHORUS	00671	09-10	BM 62	2-352	<0.02
t-PHOSPHORUS	0,0665	10-15	BM 62	2-352	<0.02
AMMONIA NITROGEN	00610	10-10	BM 62	2-353	0.744
SULFATE	00945	10-10	ВМ 62	2-352	563
ORGANIC NITROGEN					0.64
DATE 11-30-89		0 8612			6048
BY Bret		** *** *** *** ***			

DIRECTOR

GEO TEC

PURGEABLE HALOCARBONS			
YOUNGQUIST BROTHERS		CLIENTS NAME	AND ADDRESS
6100 W. 45TH STREET			
WEST PALM BEACH, FL 334			
42172		SAMPLE NUMBER	L
09-27-89 8305 BM 09-27-89	2210	DATE TIME COL	LECTED BY RECI
INJECTION WELL - PAHOKEE		LOCATION	
SHALLOW 946 - 1147'			
		· .	
PARAMETER BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE CARBON TETRACHLORIDE	STORET NO.	MCL ug/L	RESULT ug/L
BROMODICHLOROMETHANE	32101	*	- 6
BROMOFORM	32104	*	<2
SROMOMETHANE	34413	_	<5
CARBON TETRACHLORIDE	32102	3	<0.3
CHLOROBENZENE CHLOROETHANE	34301		<2
	34311		<5
2-CHLOROETHYLVINYL ETHER CHLOROFORM		*	<5
CHLOROFORM CHLOROMETHANE	32106	*	<2
			<5
DIBROMOCHLOROMETHANE	32105	*	<2
1,2-DICHLOROBENZENE	34536		<2
1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE	34500		<2
DICHLORODIFLUOROMETHANE	345/1	75	<2
1 1_DICHLODOFTUNE	34008		<5
1,1-DICHLOROETHANE 1,2-DICHLOROETHANE	34490	2	<2
1,1-DICHLOROETHENE	34331 24501	3 7	<0.3
2-DICHLOROFTHENE	34301 24546	/	<2
1,2-DICHLOROETHENE 1,2-DICHLOROPROPANE	34541		<2
cis-1, 3-DICHLOROPROPENE			<2
trans-1, 3-DICHLOROPROPENE	24600		<2
AETHYLENE CHLORIDE	34423		<2
L, 1, 2, 2-TETRACHLOROETHANE			<2
TETRACHLOROETHENE	34475	2	<2
1,1,1-TRICHLOROETHANE	34506	3 200	<0.3
1,1,2-TRICHLOROETHANE	34511	200	<2
CRICHLOROETHENE	39180	3	<2
FRICHLOROFLUOROMETHANE	34488	3	<0.3
VINYL CHLORIDE	39175	1	<2
	5715	Ŧ	<0.1

DATE 11-30-89 BY

LAB ID 86109, E86048

GEO TEC

PURGEABLE AROMATICS		M602 METHOD	
YOUNGQUIST BROTHERS	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	CLIENT NAME AND ADDRESS	
6100 W. 45TH STREET		-	
WEST PALM BEACH, FL 33	407	-	
42172	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	SAMPLE NUMBER	
09-27-89 1830 BM 09-27-89	2210	DATE TIME COLLECTED BY REC	2.
INJECTION WELL - PAHOKEE		DESCRIPTION	
SHALLOW 946 - 1147'		LOCATION	
		-	
PARAMETER BENZENE	STORET NO. 34030	MCL ug/L RESULT ug/I 1 <0.1	ī
CHLOROBENZENE	34301	<2	-
1,2-DICHLOROBENZENE	34536	<2	•
1,3-DICHLOROBENZENE		<2	-
1,4-DICHLOROBENZENE		<2	•
ETHYLBENZENE	34371	<0.1	•
TOLUENE	34010	<0.1	•
XYLENES	81551	<2	•

DATE 11-30-89 LAB ID 86122,86109,E86048

GEO TEC

DIRECTOR

AN	ALYSIS REPORT	M608.FRM
YOUNGQUIST BROTHERS		CLIENT NAME AND ADDRESS
6100 W. 45TH STREET		
WEST PALM BEACH, F	L 33407	
42172		SAMPLE NUMBER
09-27-89 1830 BM 09	-27-89 2210	DATE/TIME COLLECTED BY/RECD
INJECTION WELL - PA	HOKEE	LOCATION/SHALLOW 946-1147'
PARAMETER	STORET NO.	RESULT ug/L
ALDRIN	39330	<0.005
a-BHC	39337	<0.005
b-BHC	39338	<0.005
d-BHC	34259	<0.005
g-BHC (LINDANE)	39340	<0.005
CHLORDANE	39350	<0.05
4,4'-DDD	39310	<0.05
4,4'-DDE	39320	<0.05
4,4'-DDT	39300	<0.05
DIELDRIN	39380	<0.005
ENDOSULFAN I	34361	<0.005
ENDOSULFAN II		<0.005
ENDOSULFAN SO4	34351	<0.05
ENDRIN	39390	<0.005
ENDRIN ALDEHYDE	34366	<0.05
HEPTACHLOR	39410	<0.005
HEPTACHLOR EPOXIDE	39420	<0.005
TOXAPHENE	39400	<0.5

ANALYSIS REPORT M608.FRM YOUNGQUIST BROTHERS CLIENT NAME AND ADDRESS 6100 W. 45TH STREET WEST PALM BEACH, FL 33407 42172 SAMPLE NUMBER 09-27-89 1830 BM 09-27-89 2210 DATE/TIME COLLECTED BY/RECD INJECTION WELL - PAHOKEE LOCATION/SHALLOW 946-1147' PARAMETER STORET NO. RESULT, ug/L PCB A1016 34671 <0.1 PCB A1221 39488 <0.1 PCB A1232 39392 <0.1 PCB A1242 39496 <0.1 PCB A1248 39500 <0.1 PCB A1254 39504 <0.1 PCB A1260 39508 <0.1

FED.REGISTER VOL 44 NO233 DECEMBER 3, 1979

11-30-89 BY DATE

LAB ID 86109,86122

MF	ORMA	ANALYSIS REPORT
YOUNGQUIST BROTHERS		CLIENT NAME AND ADDRESS
6100 W. 45TH STREET		-
WEST PALM BEACH, FLORID	A	-
42172		- SAMPLE NUMBER
09-27-89 1830 BM 09-27-	89 2210	DATE TIME COLL RECD
INJECTION WELL - PAHOKE		LOCATION
SHALLOW 946 - 1147'		- -
PARAMETER		RESULTS ng/L
HEXACHLOROBENZENE		<2
HEXACHLOROETHANE		<2
TRICHLOROETHYLENE		<0.3
TETRACHLOROETHYLENE		<0.3
ETHYLENE DIBROMIDE		<0.003
trans-1,2-DICHLOROETHEN		<2
BROMOMETHANE		<5
DATE 11-30-89 I		
^	LAB ID 86122,861	.09, E86048
BY Stat		
DIRECTOR		

Laboratories, Inc.

CLIENT: SAMPLE ID: SAMPLED BY: DATE RECEIVED: DATE ANALYZED:	09-28-89		-CERTIFICATIONS- EPA NUMBER: # FL FLORIDA DRINKING WATER: # 86 FLORIDA ENVRIONMENTAL: #E86	109 514
	תרום	MEMUOD COF		

EPA METHOD 625 BASE/NEUTRALS AND ACIDS

CAS NUMBER	PARAMETER	CONCENTRATION (ug/l)	LOD (ug/l)
83-32-9	ACENAPHTHENE		
208-96-8	ACENAPHTHYLENE	BMDL	1.9
120-12-7	ANTHRACENE	BMDL	3.5
309-00-2	ALDRIN	BMDL	1.9
56-55-3	BENZO (a) ANTHRACENE	BMDL	1.9
205-99-2	BENZO(b)FLUORANTHENE	BMDL	7.8
207-08-9		BMDL	4.8
50-32-8	BENZO(k) FLOURANTHENE	BMDL	2.5
191-24-2	BENZO(a) PYRENE	BMDL	2.5
85-68-7	BENZO(ghi)PERYLENE	BMDL	4.1
319-85-7	BUTYL BENZYL PHTHALATE	BMDL	2.5
519-86-8	b-BHC	BMDL	4.2
	d-BHC	BMDL	3.1
_1-44-4	BIS(2-CHLOROETHYL)ETHER	BMDL	5.7
11-91-1	BIS(2-CHLOROETHOXY)METHANE	BMDL	5.3
117-81-7	BIS(2-ETHYLHEXYL)PHTHALATE	BMDL	2.5
108-60-1	BIS(2-CHLOROISOPROPYL)ETHER	BMDL	
101-55-3	4-BROMOPHENYL PHENYL ETHER	BMDL	5.7
57-74-9	CHLORDANE	BMDL	1.9
91-58-7	2-CHLORONAPHTHALENE	BMDL	30
7005-72-3	4-CHLOROPHENYL PHENYL ETHER	BMDL	1.9
218-01-9	CHRYSENE	BMDL	4.2
72-54-8	4,4'-DDD		2.5
75-55-9	4,4'-DDE	BMDL	2.8
50-29-3	4,4'-DDT	BMDL	5.6
53-70-3	DIBENZO(a, h)ANTHRACENE	BMDL	4.7
84-74-2	DI-n-BUTYLPHTHALATE	BMDL	2.5
541-73-1	1,3-DICHLOROBENZENE	BMDL	2.5
95-50-1	1,2-DICHLOROBENZENE	BMDL	1.9
106-46-7	1,4-DICHLOROBENZENE	BMDL	1.9
91-94-1	2 2 DICHLOROBENZENE	BMDL	4.4
60-57-1	3,3'-DICHLOROBENZIDINE	BMDL	16.5
84-66-2	DIELDRIN	BMDL	2.5
131-11-3	DIETHYL PHTHALATE	BMDL	22
121-14-2	DIMETHYL PHTHALATE	BMDL	1.6
606-20-2	2,4-DINITROTOLUENE	BMDL	5.7
117-84-0	2,6-DINITROTOLUENE	BMDL	1.9
1-71-07-8	DI-N-OCTYLPHTHALATE	BMDL	2.5
	ENDOSULFAN SULFATE	BMDL	5.6
.21-93-4	ENDRIN ALDEHYDE	BMDL	10

B M D L = BELOW METHOD DETECTION LIMIT L O D = LIMIT OF DETECTION

CONTINUED ON NEXT PAGE

9 4 0

50 N. Dixie Hwy., Ft. Lauderdale, Fla. 33334 = Phone: (305) 491-4691 = Analytical Laboratories for Municipal and Industrial Analysis, Biological Surveys, Environmental Stud

EPA METHOD 625 CONTINUTED -----

CAS NUMBER 206-44-0 86-73-7 76-44-8 1024-57-3 118-74-1 87-68-3 67-72-1 193-39-5 78-59-1 91-20-3 98-95-3 621-64-7 12674-11-2 11104-28-2	PARAMETER FLOURANTHENE FLOURENE HEPTACHLOR HEPTACHLOR EPOXIDE HEXACHLOROBENZENE HEXACHLOROBUTADIENE HEXACHLOROETHANE INDENO(1,2,3-cd)PYRENE ISOPHORONE NAPHTHALENE NITROBENZENE N-NITROSODI-N-PROPYLAMINE PCB-1016 PCB-1221	CONCENTRATION (ug/l) BMDL BMDL BMDL BMDL BMDL BMDL BMDL BMDL	LOD (ug/l) 2.2 1.9 1.9 2.2 1.9 0.9 1.6 1.9 3.7 2.2 1.9 1.9 1.9 1.9
	74-11-2 PCB-1016 04-28-2 PCB-1221 41-16-5 PCB-1232 69-21-9 PCB-1242 72-29-6 PCB-1254 97-69-1 PCB-1260 01-8 PHENANTHRENE -00-0 PYRENE 1-35-2 TOXAPHENE		

ACID EXTRACTABLES

59-50-7 4-CHLORO-3-METHYLPHENOL 95-57-8 2-CHLOROPHENOL 120-83-2 2,4-DICHLOROPHENOL 105-67-9 2,4-DIMETHYLPHENOL 51-28-5 2,4-DINITROPHENOL 534-52-1 2-METHYL-4,6-DINITROPHENOL 38-75-5 2-NITROPHENOL 100-02-7 4-NITROPHENOL 37-86-5 PENTACHLOROPHENOL 108-95-2 PHENOL 38-06-2 2,4,6-TRICHLOROPHENOL	BMDL BMDL BMDL BMDL BMDL BMDL BMDL BMDL	3.0 3.3 2.7 2.7 42 24 3.6 2.4 3.6 1.5 2.7
---	--	---

M D L = BELOW DETECTION LIMIT L O D = LIMIT OF DETECTION

.

.

- -

CONTINUED ON NEXT PAGE

.

G^r [¬]ECH/EVERGLADES LAES # .172 / 027-092889

.

EPA METHOD 625 CONTINUTED

CAS NUMBER	PARAMETER	CONCENTRATION (ug/l)	LOD (ug/l)
92-87-5 319-84-6 58-89-8 959-98-8 33213-65-9 72-20-8 77-47-7 62-75-9 36-30-6 1746-01-6	BENZIDINE a-BHC y-BHC ENDOSULFAN I ENDOSULFAN II ENDRIN HEXACHLOROCYCLOPENTADIENE N-NITROSODIMETHYLAMINE N-NITROSODIPHENYLAMINE 2,3,7,8-TCDD (DIOXIN)	BMDL BMDL BMDL BMDL BMDL BMDL BMDL BMDL	4 1.0 5.0 10 10 1.0 10 10 1.9 1.9

ıl

Albert Castellanos Chemist

M D L = BELOW DETECTION LIMIT

L O D = LIMIT OF DETECTION

.

DEEP MONITOR ZONE

	MFORMA	ANALYSIS REPORT
YOUNGQUIST BE	ROTHERS	CLIENT NAME AND ADDRESS
6100 W. 45TH		
WEST PALM BEA	ACH, FLORIDA 3	3407
42172		SAMPLE NUMBER
09-27-89 1830		2210 DATE TIME RECEIVED BY
INJECTION WE	LL – PAHOKEE	LOCATION
DEEP 1915-2	008′	
PARAMETER	STORET #	DATE BY NBR RESULTS,mg/L
ARSENIC	01002	10-11 MD 78-161 <0.005
BARIUM	01007	10-17 MD 78-167 0.13
CADMIUM	01027	10-19 MD 78-169 <0.001
CHROMIUM	01034	10-09 MD 78-158 <0.005
LEAD	01051	10-11 MD 78-162 0.015
MERCURY	71900	10-18 MD 78-168 <0.0002
SELENIUM	01147	10-16 MD 78-165 <0.001
SILVER	01077	10-19 MD 78-170 <0.005
SODIUM	00929	10-05 MD 78-152 1200
MAGNESIUM	00927	10-24 MD 78-182 114
DATE 11-30	-89 LAB	ID 86122,86109, E86048
вү	Brit	· · · · · · · · · · · · · · · · · · ·
DIRECTOR		

	ORGANICS ANALY	SIS REPORT		
YOUNGQUIST BROTHERS		CLIENT NAME AND ADDRESS		
6100 W. 45TH ST	REET	-		
WEST PALM BEACH	, FL 33407	-		
42172		- SAMPLE NUMBER		
09-27-89 1830 B	M 09-27-89 2210	- DATE TIME COLLECI	'ED BY	
INJECTION WELL				
DEEP 1915 - 2		-		
PARAMETER	STORET #	MCL, mg/L	RESULTS,mg/L	
LINDANE	39782	0.004		
ENDRIN	the same time the same time time then then the same time time time	0.0002	<0.000005	
METHOXYCHLOR	39480	0.1	<0.00005	
TOXAPHENE	39400	0.005	<0.0005	
2,4-D		0 1		
2,4,5-TP	39760	0.01	<0.001	
	, an			
			, 	
	, 486 489 489 489 489 489 489 589 589 589 489 489 589 589 58			
DATE 11-30-89	^{BY} - Bu	LAB	ID 86109,86122	
•	۱. ۲			

	THM1.FRM	
	CLIENT NAME	AND ADDRESS
	-	
07	-	
	SAMPLE NUMBER	
2210	DATE TIME COL	LECTED BY RECD
	LOCATION	
	-	
	-	÷
STORET NO.	MCL $n\alpha/L$	RESULT NG/T
32101	*	< <u>2</u>
32104	*	<2
32106	*	<2
32105	*	<2
	07 2210 <u>STORET NO.</u> 32101 32104 32106	CLIENT NAME CLIENT NAME CLIENT NAME SAMPLE NUMBER 2210 DATE TIME COLI LOCATION STORET NO. MCL ug/L 32101 * 32104 * 32106 *

DATE 11-30-89 BY

TOTAL TRIHALOMETHANES

LAB ID 86109

OFO LT

<2

SEC.FRM	SECONDARY	REPORT FORM
YOUNGQUIST BROTHERS		NAME AND ADDRESS
6100 W. 45TH STREET		
WEST PALM BEACH, FL	33407	
42172	SAMPLE	NUMBER
09-27-89 1830 BM 09-27	 -89 2210 DATE TI	ME COLLECTED BY RECD
INJECTION WELL - PAHOK		
DEEP 1915 - 2008'		÷
PARAMETER STORET	NO. DATE BY NBR	RESULT, mg/L
ALKALINITY 00410	10-01 TM 64-2	33 120
CALCIUM 00916	10-24 MD 78-1	80 135
CHLORIDE 00940	10-10 BM 62-3	53 2400
COLOR 00081	09-28 CH 81-7	1 5
COPPER 01042	10-23 MD 78-1	75 0.010
CORROSIVITY	CALCULATED	0.57
FOAMING AGENTS 38260	09-28 TM 64-2	34 0.118
IRON 01045	10-02 MD 78-1	48 0.090
MANGANESE 01055	10-03 MD 78-1	50 0.016
	09-28 CH 81-7	1 1
TDS 70304	09-28 CH 81-7	 1 4981
NON-FILTERABLE		
		*
ZINC 01092		54 <0.10
BICARBONATE ALKALINITY	CALCULATED	119

11-30-89 BY DATE ----- LAB ID 86122, 86109 ma

OFO KT

	MFORMA	ANALYSIS REPO	ORT
YOUNGQUIST BROTH	ERS	CLIENT NA	ME AND ADDRESS
6100 W. 45TH STR			
WEST PALM BEACH,	FL 33407		
42172		SAMPLE NUM	BER
09-27-89 1830 BM	09-27-89 2210	DATE TIME	COLL RECD
INJECTION WELL -	РАНОКЕЕ	LOCATION	
DEEP 1915 - 2000	3′		.`
PARAMETER	STORET #	DATE BY NUMBER	RESULTS
TURBIDITY, NTU	00076	09-28 BM TB-71	0.6
BOD (5)	00310	09-28 CH 80-63	4
		10-05 MD 78-153	31.4
ANTIMONY	01097	11-03 MD 78-196	0.060
BROMIDE	71870	10-10 BM 62-353	3.52
STRONTIUM	01080	11-07 MD 78-209	10.1
BORON	01022	10-10 BM 62-353	0.500
HYDROGEN SULFIDE	00745	09-28 TM 64-233	<0.20
COD	00340	10-17 TM 64-235	323
DATE 11-30-89		5122,86109, E86048	
<u>/</u>		122,00109, E86048	
BY Mat			
DIRECTOR (

	MFORMA		ANAI	LYSIS	REPORT	
YOUNGQUIST BROTH	ERS	*** *** *** *** *** *** ***	CI	JIENT	NAME AND	ADDRESS
6100 W. 45TH STR	 EET					
WEST PALM BEACH,	FL 334	 07	*** -** -** -**			
42172			 S#	MPLE	NUMBER	
09-27-89 1830 BM	09-27-89	2210		DATE	TIME COL	L RECD
INJECTION WELL -						1915-2008,
PARAMETER STO	 RET #	DATE				
SPEC COND, mS 000						7.03
SPEC GRAVITY 72(1.002
он 004	 100	09-27	BM CO			7.95
002	299	09-27	BM CO			
VATER TEMPERATURE						D.1 mg/L 26.6
FECAL COLIFORM, ME	 ?N	 09_27				ORG/100ML
-				-43 		<2
LUORIDE 00	051				RESUI	LTS,mg/L
						3.85
IITRATE-N 00						<0.08
	625					1.38
ORTHO-PHOSPHORUS			BM 62	-352		<0.02
-PHOSPHORUS						<0.02
MMONIA NITROGEN	00610	10-10	BM 62	-353		0.744
ULFATE	00945	10-10	BM 62	-352		563
RGANIC NITROGEN		CALCUI	LATED			0.64
ATE 11-30-89	LAB	ID 86122	2,8610	9, E8	 6048	
Y JA.A						

DIRECTOR

YOUNGQUIST BROTHERSCLIENTS NAME AND ADDRESS6100 W. 45TH STREETWEST PALM BEACH, FL 3340742172SAMPLE NUMBER09-27-89 1830 BM 09-27-89 2210INJECTION WELL - PAHOKEELOCATIONDEEP 1915 - 2008'	501	METHOD 60	M	M601	PURGEABLE HALOCARBONS
6100 W. 45TH STREET WEST PALM BEACH, FL 33407 42172 SAMPLE NUMBER 09-27-89 1830 BM 09-27-89 2210 DATE TIME COLLECTED BY REGIME INJECTION WELL - PAHOKEE LOCATION	AND ADDRES	S NAME ANI	CLIENTS		YOUNGQUIST BROTHERS
WEST PALM BEACH, FL 33407 42172 SAMPLE NUMBER 09-27-89 1830 BM 09-27-89 2210 DATE TIME COLLECTED BY REC INJECTION WELL - PAHOKEE LOCATION				, alama alama atas darin dang dalah dalah dalah dang d	6100 W. 45TH STREET
42172 SAMPLE NUMBER 09-27-89 1830 BM 09-27-89 2210 DATE TIME COLLECTED BY REGIME INJECTION WELL - PAHOKEE LOCATION				407	WEST PALM BEACH, FL 334
U9-27-89 1830 BM 09-27-89 2210 DATE TIME COLLECTED BY REGIME INJECTION WELL - PAHOKEE LOCATION		NIIMBER			
INJECTION WELL - PAHOKEE LOCATION			 DATE TI	9 2210	09-27-89 1830 BM 09-27-89
DEEP 1915 - 2008'	CIED BI F				INJECTION WELL - PAHOKEE
		211	-		DEEP 1915 - 2008'
			-		
PARAMETER STORET NO. MCL ug/L RESULT ug/1 BROMODICHLOROMETHANE 32101	RESILT.	ua/I. R	MCL 1	STORET NO	PARAMETER
BROMODICHLOROMETHANE 32101 * <2	<u></u>		*	32101	BROMODICHLOROMETHANE
32104 *			*	32104	BROMOFORM
BROMOMETHANE34413<2CARBON TETRACHLORIDE321023<5				34413	BROMOMETHANE
			3	47102	THIRCHUCKIDE
CHLOROBENZENE34301<0.3CHLOROETHANE34311<2	-		Ũ	34301	CHLOROBENZENE
CHLOROETHANE 34311 <2				34311	CHLOROETHANE
					2-CHLOROETHYLVINYL ETHER
		·	*	32106	
CHLOROMETHANE 34418				34418	CHLOROMETHANE
DIBROMOCHLOROMETHANE 2210E			+	32105	DIBROMOCHLOROMETHANE
1,2-DICHLOROBENZENE 2452C			~	34536	1,2-DICHLOROBENZENE
1, 3-DICHLOROBENZENE 34566				34566	1,3-DICHLOROBENZENE
1,4-DICHLOROBENZENE 24571				34571	1,4-DICHLOROBENZENE
DICHLORODIFILIOROMETUANE 24CCO			75	24660	DICHLORODIFLUOROMETUNE
1,1-DICHLOROETHANE 2440C <5	<5			24400	1,1-DICHLOROETHANE
1,2-DICHLOROETHANE 34496 <2	<2		_	34490	1,2-DICHLOROETHANE
1, 1-DICHLOROETHENE 34531 3 <0.3	<0.3			34331	1,1-DICHLOROETHENE
1,1-DICHLOROETHANE34668<5	<2		7	34301 24EAC	1,2-DICHLOROETHENE
1,2-DICHLOROPROPANE 34541 <2	<2			24240	1,2-DICHLOROPROPANE
1,2-DICHLOROPROPANE345412cis-1,3-DICHLOROPROPENE347042	<2			34541	Cis-1.3-DICHLOROPRODENE
trans-1,3-DICHLOROPROPENE 34699 <2	<2			34704	trans-1.3-DICHLOPODPODEND
METHYLENE CHLORIDE 34699 <2	<2			5 34699	METHYLENE CHLORIDE
				34423	
TETRACHLOPOETHURNE 34516 <2					TETRACHLOROFTURNE
$1 \cdot 1 \cdot 1 - \text{TRICHIOROFMUNIP}$ 34475 3 <0.3					1.1.1-TRICHIODORMUNT
112 THE CHILDREE 34506 200 <2			200		1, 1, 2 TRICILLOROETHANE
TRACEMENTER 34511					
39180 3 <0 3			3		TRICHLOROFI HODOWRRESS-
UTINIT OUR OBCINE THANK 34488 <2					VINVI, CHI ORING
VINYL CHLORIDE 39175 1 <0.1		:	1	39175	THIN CURCER

DATE 11-

11-30-89 ву Дие

LAB ID 86109, E86048

~--

PURGEABLE AROMATICS		M602	METHOD
YOUNGQUIST BROTHERS		CLIENT NAME A	ND ADDRESS
6100 W. 45TH STREET		-	
WEST PALM BEACH, FL 33	407	-	
42172		SAMPLE NUMBER	
09-27-89 1830 BM 09-27-89	2210	DATE TIME COL	LECTED BY REC.
INJECTION WELL - PAHOKEE		DESCRIPTION	
DEEP 1915 - 2008'		LOCATION	. •
		-	
PARAMETER BENZENE	STORET NO. 34030	MCL ug/L	RESULT ug/L <0.1
CHLOROBENZENE	34301		
			<2
1,2-DICHLOROBENZENE	34536		<2
1,3-DICHLOROBENZENE	34566		<2
1,4-DICHLOROBENZENE	34571		<2
ETHYLBENZENE	34371		<0.1
TOLUENE	34010		<0.1
XYLENES	81551		<2
·			

DATE 11-30-89 LAB ID 86122,86109,E86048 BY DIRECTOR

OFO KIDO

	ANALYSIS REI	PORT M608.FRM
YOUNGQUIST BROTHERS		CLIENT NAME AND ADDRESS
6100 W. 45TH STREET		
WEST PALM BEACH, F	L 33407	• • •
42172		SAMPLE NUMBER
09-27-89 1830 BM 09	-27-89 2210	DATE/TIME COLLECTED BY/RECD
		LOCATION DEEP 1915 - 2008'
PARAMETER	STORET NO.	RESULT ug/L
ALDRIN	39330	<0.005
а-ВНС	39337	<0.005
b-BHC	39338	<0.005
d-BHC	34259	<0.005
g-BHC (LINDANE)	39340	<0.005
CHLORDANE	39350	<0.05
4,4'-DDD	39310	
4,4'-DDE	39320	<0.03
4,4'-DDT	39300	<0.03
DIELDRIN	39380	<0.05
ENDOSULFAN I	34361	<0.005
ENDOSULFAN II	0.000	<0.005
ENDOSULFAN SO4	34351	<0.05
	39390	<0.005
ENDRIN ALDEHYDE		<0.05
HEPTACHLOR	39410	<0.005
HEPTACHLOR EPOXIDE	39420	<0.005
TOXAPHENE	39400	<0.5

ANALYSIS REPORT M608.FRM YOUNGQUIST BROTHERS CLIENT NAME AND ADDRESS 6100 W. 45TH STREET WEST PALM BEACH, FL 33407 42172 SAMPLE NUMBER 09-27-89 1830 BM 09-27-89 2210 DATE/TIME COLLECTED BY/RECD INJECTION WELL - PAHOKEE LOCATION . . PARAMETER STORET NO. RESULT, ug/L ------PCB A1016 34671 <0.1 PCB A1221 39488 <0.1 PCB A1232 39392 <0.1 PCB A1242 39496 <0.1 PCB A1248 39500 <0.1 PCB A1254 39504 <0.1 PCB A1260 39508 <0.1

FED.REGISTER VOL 44 NO233 DECEMBER 3, 1979

DATE 11-30-89 BY Hd-LAB ID 86109,86122

MFORMA	ANA	LYSIS REPORT
YOUNGQUIST BROTHERS		CLIENT NAME AND ADDRESS
6100 W. 45TH STREET		•
WEST PALM BEACH, FLORIDA		
42172		SAMPLE NUMBER
09-27-89 1830 BM 09-27-8	9 2210	DATE TIME COLL RECD
INJECTION WELL - PAHOKEE		LOCATION
DEEP 1915 - 2008'		
PARAMETER		RESULTS .ug/I.
HEXACHLOROBENZENE		<2
HEXACHLOROETHANE		<2
TRICHLOROETHYLENE		<0.3
TETRACHLOROETHYLENE		<0.2
TETRACHLOROMETHANE		<0.3
ETHYLENE DIBROMIDE		<0.003
trans-1,2-DICHLOROETHENE		<2
BROMOMETHANE	an ang ang ang ang ang ang ang ang ang <u>an</u> g ang <u>an</u> g ang ang	<5
DATE 11-30-89 LA	AB ID 86122,861	09, E86048
BY But		
DIRECTOR		
· · · · · · · · · · · · · · · · · · ·		

INJECTION ZONE

Injection Lone

	MFORMA	ANALYSIS REPORT
YOUNGQUIST BR	OTHERS	CLIENT NAME AND ADDRESS
6100 W. 45TH	STREET	
WEST PALM BEA	CH, FLORIDA	33407
42277		SAMPLE NUMBER
10-09-89 1215	BM 10-09-89	1330 DATE TIME RECEIVED BY
INJECTION WEL	L – PAHOKEE	LOCATION
TEST AT 3512'		
PARAMETER	STORET #	DATE BY NBR RESULTS,mg/L
		10-11 MD 78-161 <0.005
BARIUM		10-17 MD 78-167 <0.10
CADMIUM		10-19 MD 78-169 0.002
CHROMIUM	01034	10-10 MD 78-160 <0.005
LEAD	01051	10-11 MD 78-162 0.028
MERCURY	71900	10-18 MD 78-168 <0.0002
SELENIUM	01147	10-16 MD 78-165 0.002
SILVER	01077	10-19 MD 78-170 <0.005
SODIUM	00929	11-06 MD 78-197 11600
MAGNESIUM	00927	10-24 MD 78-182 1130
DATE 11-30-	89 т.лт	B ID 86122,86109, E86048
		B 1D 80122,86109, E86048
ву	y.1	
DIRECTOR	(v ~	
``		
		、

	ORGANICS ANALY	SIS REPORT	
YOUNGQUIST BROTH	ERS	CLIENT NAME AND	ADDRESS
6100 W. 45TH STR	EET	-	
WEST PALM BEACH,	FL 33407	-	
42277		- SAMPLE NUMBER	
10-09-89 1215 BM	10-09-89 1330	DATE TIME COLLEC	TED BY
INJECTION WELL -	PAHOKEE	- LOCATION	
TEST AT 3512'		-	
PARAMETER	STORET #	MCL, mg/L	RESULTS,mg/L
LINDANE		0.004	<0.000005
ENDRIN	39390	0.0002	<0.000005
METHOXYCHLOR			<0.00005
TOXAPHENE	39400	0.005	<0 0005
2,4-D		0.1	<0.001
2,4,5-TP	39760	0.01	<0.001
·			
		- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
		. No an	
DATE 11-30-89	BY BUIL		
	f <i>h</i> tcfl		3 ID 86109,86122
	l l		
•			

GEO TEC INC. 1602	CLARE AVENUE	• WEST PALM BEACH	, FL 33401 • 407/833-7280 ⁻
TRIHALOMETHANES		THM1.FRM	
YOUNGQUIST BROTHERS		CLIENT NAME	AND ADDRESS
6100 W. 45TH STREET			
WEST PALM BEACH, FL 334	07		
42277		- SAMPLE NUMBER	
10-09-89 1215 BM 10-09-89	1330	DATE TIME COLI	ECTED BY RECD
INJECTION WELL - PAHOKEE		LOCATION	
TEST AT 3512'			•
PARAMETER BROMODICHLOROMETHANE	STORET NO		RESULT ug/L
BROMOFORM	32101 32104	*	<2
CHLOROFORM	32104	*	<2
	2 % T 0 0	*	<2

32105

DIBROMOCHLOROMETHANE

TOTAL TRIHALOMETHANES

*

<2

<2

<2

OFO ET

•							
DATE	11-30-89	BY	fud	LAB	ID	86109	•

7

SEC.FRMSECONDARYREPYOUNGQUIST BROTHERSCLIENT NAME AND A6100 W. 45TH STREETWEST PALM BEACH, FL 3340742277SAMPLE NUMBER10-09-89 1215 BM 10-09-89 1330DATE TIME COLLECTWASTEWATER TREATMENT PLANT PAHOKEE FL LOCATIONTEST AT 3512'PARAMETERSTORET NO. DATE BY NBRALKALINITY0041010-01 TM 64-233CALCIUM0091610-24 MD 78-180	ED BY RECD
WEST PALM BEACH, FL 3340742277SAMPLE NUMBER10-09-89 1215 BM 10-09-89 1330DATE TIME COLLECTWASTEWATER TREATMENT PLANT PAHOKEE FL LOCATIONTEST AT 3512'PARAMETERSTORET NO. DATE BY NBRALKALINITY0041010-01 TM 64-233	ED BY RECD
42277SAMPLE NUMBER10-09-89 1215 BM 10-09-89 1330DATE TIME COLLECTWASTEWATER TREATMENT PLANT PAHOKEE FLLOCATIONTEST AT 3512'PARAMETERPARAMETERSTORET NO.DATE BY NBRALKALINITY0041010-01 TM 64-233	RESULT, mg/L
SAMPLE NUMBER10-09-89 1215 BM 10-09-89 1330DATE TIME COLLECTWASTEWATER TREATMENT PLANT PAHOKEE FLLOCATIONTEST AT 3512'PARAMETERSTORET NO.PARAMETERSTORET NO.DATE BY NBRALKALINITY0041010-01 TM 64-233	RESULT, mg/L
WASTEWATER TREATMENT PLANT PAHOKEE FL LOCATION TEST AT 3512' PARAMETER STORET NO. DATE BY NBR ALKALINITY 00410 10-01 TM 64-233	RESULT, mg/L
WASTEWATER TREATMENT PLANT PAHOKEE FL LOCATION TEST AT 3512' PARAMETER STORET NO. DATE BY NBR ALKALINITY 00410 10-01 TM 64-233	RESULT, mg/L
TEST AT 3512' PARAMETER STORET NO. DATE BY NBR ALKALINITY 00410 10-01 TM 64-233	RESULT, mg/L
ALKALINITY 00410 10-01 TM 64-233	RESULT, mg/L
ALKALINITY 00410 10-01 TM 64-233	
	114
CALCIUM 00916 10-24 MD 78-180	
CHLORIDE 00940 10-10 BM 62-353	
COLOR 00081 10-10 CH 81-74	
COPPER 01042 10-23 MD 78-175	 <0.005
CORROSIVITY CALCULATED	0.67
FOAMING AGENTS 38260 10-10 TM 64-234	0.715
IRON 01045 10-20 MD 78-173	
MANGANESE 01055 11-02 MD 78-194	
ODOR 00085 10-10 CH 81-74	
TDS 70304 10-11 CH 81-75	40863
NON-FILTERABLE	
	56
	0.10
BICARBONATE ALKALINITY CALCULATED	110

11-30-89 BY DATE

LAB ID 86122, 86109

GEO TEC

	MFORMA	ANALYSIS REPORT
YOUNGQUIST BROTH	IERS	CLIENT NAME AND ADDRESS
6100 W. 45TH STF		
WEST PALM BEACH,	FL 33407	
42277	, 100 fem des des des ann ann ben ann ann ann ann ann ann ann ann ann a	SAMPLE NUMBER
10-09-89 1215 BM	1 10-09-89 1330	DATE TIME COLL RECD
INJECTION WELL -	• РАНОКЕЕ	LOCATION
TEST AT 3512'		
PARAMETER	STORET #	DATE BY NUMBER RESULTS
TURBIDITY	00076	10-09 BM TB-71 18.2
BOD (5)	00310	10-10 CH 80-66 2
POTASSIUM	00937	11-06 MD 78-198 391
ANTIMONY	01097	11-03 MD 78-196 0.077
BROMIDE	71870	10-10 BM 62-353 67.8
STRONTIUM	01080	11-07 MD 78-209 10.2
		10-10 BM 62-353 67.8
HYDROGEN SULFIDE	71875	10-09 TM 64-239 0.526
COD		10-23 TM 64-236 2381
DATE 11-30-89		
DATE 11-50-89	LAB ID 8	5122,86109, E86048
ву Би	J	
DIRECTOR	/	
١		
	•	
	•	

	MFOR	RMA	ANALYSIS	REPORT
YOUNGQUIST BRC	THERS		CLIENT	NAME AND ADDRESS
6100 W. 45TH S	TREET			
WEST PALM BEAC	H, FL	33407		
42277			SAMPLE	NUMBER
10-09-89 1215	BM 10-09	-89 1330	DATE	TIME COLL RECD
INJECTION WELL		EE	LOCA	
TEST AT 3512'				•
PARAMETER S	TORET #	DATE	BY NUMBER	RESULTS
SPEC COND, mS	00095	10-09	BM COC	54.3
SPEC GRAVITY	72013			1.025
рН	00400	10-09	BM COC	7.45
FECAL COLIFORM	, MPN	10-09	BM 77-48	
FLUORIDE	00951			RESULTS,mg/L
NITRATE-N				
 TKN	00625		BM 62-354	<0.05
ORTHO-PHOSPHOR				
t-PHOSPHORUS				
AMMONIA NITROGH				
FOTAL NITROGEN		11-05		
BY	Burch	LAB ID 8612:	2,86109, E86	5048

DIRECTOR

PURGEABLE HALOCARBONS	M601	METHOD	601
YOUNGQUIST BROTHERS		CLIENTS NAME	AND ADDRESS
6100 W. 45TH STREET			
WEST PALM BEACH, FL 334			
42277		 SAMPLE NUMBER	Ł
10-09-89 1215 BM 10-09-89	1330	DATE TIME COL	LECTED BY RECI
INJECTION WELL - PAHOKEE		LOCATION	
TEST AT 3512'			
		-	
PARAMETER BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE	32101	<u>MCL UG/L</u>	RESULT ug/L
BROMOFORM	32104	*	<2
DIONONETHANE	34413		<5
CARBON TETRACHLORIDE	32102	3	<0.3
CHLOROBENZENE CHLOROETHANE	34301	• •	<2
CHLOROEINANE	34311		<5
2-CHLOROETHYLVINYL ETHER	34576		<5
CHLOROFORM CHLOROMETHANE	32106	*	<2
CHLOROMETHANE	34418		<5
DIBROMOCHLOROMETHANE	32105	*	<2
1,2-DICHLOROBENZENE	34536		<2
1,3-DICHLOROBENZENE	34566		<2
1,4-DICHLOROBENZENE	34571	75	<2
DICHLORODIFLUOROMETHANE	34668		<5
1,1-DICHLOROETHANE	34496	-	<2
1,2-DICHLOROETHANE 1,1-DICHLOROETHENE 1,2-DICHLOROETHENE	34331	3	<0.3
1,2-DICHLOROETHENE	34501	7	<2
,2-DICHLOROPROPANE	34541		<2
cis-1, 3-DICHLOROPROPENE	34341		<2
crans-1, 3-DICHLOROPROPENE	34699		<2
AETHYLENE CHLORIDE	34423		<2
1,1,2,2-TETRACHLOROETHANE	34516		<2
TETRACHLOROETHENE	34475	3	<2
L, 1, 1-TRICHLOROETHANE	34506	200	<0.3 <2
L, 1, 2-TRICHLOROETHANE	34511	~~~	<2<2
TRICHLOROETHENE	39180	3	<2.
TRICHLOROFLUOROMETHANE	34488	-	<0.3
VINYL CHLORIDE	39175	1	<0.1
DATE 11-30-89 BY	Bru	1.88 TD	96100 506040
	WY A		86109, E86048

DATE 11-30-89

CEO MA

PURGEABLE AROMATICS		M602		METHOD
		CLIENT	NAME ANI	D ADDRESS
6100 W. 45TH STREET		-		
WEST PALM BEACH, FL 334	07	-		
42277		SAMPLE	NUMBER	
10-09-89 1215 BM 10-09-89	1330	DATE TI	ME COLLE	CTED BY REC.
INJECTION WELL - PAHOKEE		DESCRIE	TION	
TEST AT 3512'		LOCATIO	N .	
PARAMETER BENZENE	STORET NO. 34030	MCL	ug/L	RESULT_ug/L <0.1
CHLOROBENZENE	34301			<2
1,2-DICHLOROBENZENE	34536			<2
1,3-DICHLOROBENZENE	34566			<2
1,4-DICHLOROBENZENE	34571			<pre></pre>
	34371			<0 1
TOLUENE	34010			<0 1
XYLENES {	31551			<2

DATE 11-30-89 LAB ID 86122,86109,E86048

DIRECTOR

CCO FIRE

	ANALYSIS REPORT	M608.FRM
YOUNGQUIST BROTHE	RS	CLIENT NAME AND ADDRESS
6100 W. 45TH STRE		
WEST PALM BEACH,	FL 33407	
42277		SAMPLE NUMBER
10-09-89 1215 BM	10-09-89 1330	DATE/TIME COLLECTED BY/RECD
INJECTION WELL -		LOCATION TEST AT 3512'
PARAMETER	STORET NO.	RESULT ug/L
ALDRIN	39330	<0.005
a-BHC	39337	<0.005
b-BHC	39338	<0.005
d-BHC	34259	<0.005
g-BHC (LINDANE)	39340	<0.005
CHLORDANE	39350	<0.05
4,4'-DDD	39310	<0.05
4,4'-DDE	39320	<0.05
4,4'-DDT	39300	<0.05
DIELDRIN	39380	<0.005
ENDOSULFAN I	34361	<0.005
ENDOSULFAN II	170 m	<0.005
ENDOSULFAN SO4	34351	<0.05
ENDRIN	39390	<0.005
ENDRIN ALDEHYDE	34366	<0.05
HEPTACHLOR	39410	<0.005
HEPTACHLOR EPOXIDE	39420	
TOXAPHENE	39400	<0.005

CEO HTA

ANALYSIS REPORT M608.FRM -----YOUNGQUIST BROTHERS CLIENT NAME AND ADDRESS 6100 W. 45TH STREET -----WEST PALM BEACH, FL 33407 42277 SAMPLE NUMBER 10-09-89 1215 BM 10-09-89 1330 DATE/TIME COLLECTED BY/RECD INJECTION WELL - PAHOKEE LOCATION TEST AT 3512' PARAMETER STORET NO. RESULT, ug/L PCB A1016 34671 <0.1 where where along along along along along along along along store game along store along along the store along PCB A1221 39488 <0.1 PCB A1232 39392 <0.1 PCB A1242 39496 <0.1 PCB A1248 39500 <0.1 PCB A1254 39504 <0.1 PCB A1260 39508 < 0.1

FED.REGISTER VOL 44 NO233 DECEMBER 3, 1979

DATE 11-30-89 LAB ID 86109,86122

Laboratories, Inc.

CLIENT:	GEOTECH/EVERGLADES LABS	CERTIFICATIONS-
	#42277 / 018-101089 CLIENT 10-10-89	EPA NUMBER: # FL099 FLORIDA DRINKING WATER: # 86144 FLORIDA ENVRIONMENTAL: #E86006

EPA METHOD 625 BASE/NEUTRALS AND ACIDS

AS UMBER	PARAMETER	CONCENTRATION (ug/l)	LOD (ug/l)
3-32-9	ACENAPHTHENE	DMDT	
08-96-8	ACENAPHTHYLENE	PMDL	1.9
20-12-7	ANTHRACENE	BMDL	3.5
09-00-2	ALDRIN	BMDL	1.9
6-55-3	BENZO(a)ANTHRACENE	BMDL	1.9
05-99-2	BENZO(b)FLUORANTHENE	PMDL	7.8
07-08-9	BENZO(k) FLOURANTHENE	BMDL	4.8
0-32-8	BENZO(a) PYRENE	BMDL	2.5
91-24-2	BENZO(ghi)PERYLENE	BMDL	2.5
5-68-7	BUTYL BENZYL PHTHALATE	BMDL	4.1
19-85-7	b-BHC	BMDL	2.5
1 36-8	d-BHC	BMDL	4.2
-44-4	BIS(2-CHLOROETHYL)ETHER	BMDL	3.1
11-91-1	BIS(2-CHLOROETHYL)ETHER BIS(2-CHLOROETHYL)ETHER	BMDL	5.7
17-81-7	BIS (2-CHLOROETHOXY) METHANE	BMDL	5.3
)8-60-1	BIS(2-ETHYLHEXYL)PHTHALATE	BMDL	2.5
)1-55-3	BIS(2-CHLOROISOPROPYL)ETHER	BMDL	5.7
7-74-9	4-BROMOPHENYL PHENYL ETHER	PMDL	1.9
L-58-7	CHLORDANE	BMDL	30
)05-72-3	2-CHLORONAPHTHALENE	BMDL	1.9
105-72-3	4-CHLOROPHENYL PHENYL ETHER	BMDL	4.2
	CHRYSENE	BMDL	2.5
3-54-8	4,4'-DDD	BMDL	2.8
5-55-9	4,4'-DDE	BMDL	5.6
)-29-3	4,4'-DDT	BMDL	4.7
-70-3	DIBENZO(a,h)ANTHRACENE	BMDL	2.5
-74-2	DI-n-BUTYLPHTHALATE	BMDL	2.5
1-73-1	1,3-DICHLOROBENZENE	BMDL	1.9
-50-1	1,2-DICHLOROBENZENE	BMDL	
6-46-7	1,4-DICHLOROBENZENE	PMDL	1.9
-94-1	3,3'-DICHLOROBENZIDINE	BMDL	4.4
-57-1	DIELDRIN	BMDL	16.5
-66-2	DIETHYL PHTHALATE	BMDL	2.5
1-11-3	DIMETHYL PHTHALATE	EMDL	22
:1-14-2	2,4-DINITROTOLUENE		1.6
6-20-2	2,6-DINITROTOLUENE	BMDL BMDL	5.7
7-84-0	DI-N-OCTYLPHTHALATE		1.9
07-8	ENDOSULFAN SULFATE	BMDL	2.5
-1-93-4	ENDRIN ALDEHYDE	BMDL	5.6
		BMDL	10
M D L =	BELOW METHOD DETECTION LIMIT	OD = LIMIT OF DE	
	CONTINUED ON NEXT F	PAGE	TECTION

- CEDTIFICATION

CONTINUED ON NEXT PAGE

Dixie Hwy., Ft. Lauderdale, Fla. 33334 • Phone: (305) 491-4691 • Analytical Laboratories for Municipal and Industrial Analytical Analytical Laboratories for Municipal and Industrial An

ECTECH/EVERGLADES LABS / .77 / 018-101089

EPA METHOD 625 CONTINUTED

AS CONCENTRATION LOD IUMBER PARAMETER (ug/l)(ug/l):06-44-0 FLOURANTHENE BMDL 2.2 6-73-7 FLOURENE BMDL 1.9 HEPTACHLOR 6-44-8 BMDL 1.9 024-57-3 HEPTACHLOR EPOXIDE BMDL 2.2 18-74-1 HEXACHLOROBENZENE BMDL 1.9 37-68-3 HEXACHLOROBUTADIENE BMDL 0.9 7-72-1 HEXACHLOROETHANE BMDL 1.6 .93-39-5 INDENO(1,2,3-cd)PYRENE BMDL 1.9 8-59-1 ISOPHORONE BMDL 3.7 1-20-3 NAPHTHALENE BMDL 2.2 +8-95-3NITROBENZENE BMDL 1.9 21-64-7 N-NITROSODI-N-PROPYLAMINE BMDL 1.9 .2674-11-2 PCB-1016 BMDL 10 PCB-1221 .1104-28-2 BMDL 10 .1141-16-5 PCB-1232 BMDL 10 3469-21-9 PCB-1242 BMDL 10 12-29-6 PCB-1248 BMDL 10 **v97-69-1** PCB-1254 BMDL 10 . + 096-82-5 PCB-1260 BMDL 10 35-01-8 PHENANTHRENE BMDL 5.4 29-00-0 PYRENE BMDL 1.9 3001-35-2 TOXAPHENE BMDL 30 120-82-1 1.2.4-TRICHLOROBENZENE BMDL 1.9

ACID EXTRACTABLES

39-50-74-CHLORO-3-METHYLPHENOLBMDL35-57-82-CHLOROPHENOLBMDL120-83-22,4-DICHLOROPHENOLBMDL105-67-92,4-DIMETHYLPHENOLBMDL51-28-52,4-DINITROPHENOLBMDL534-52-12-METHYL-4,6-DINITROPHENOLBMDL38-75-52-NITROPHENOLBMDL100-02-74-NITROPHENOLBMDL37-86-5PENTACHLOROPHENOLBMDL108-95-2PHENOLBMDL	3.0 3.3 2.7 2.7 42 24 3.6 2.4 3.6 1.5

Ł,

B M D L = BELOW DETECTION LIMIT

EOTECH/EVERGLADES LABS 42277 / 018-101089

EPA METHOD 625 CONTINUTED

.

AS	PARAMETER	CONCENTRATION	LOD
UMBER		(ug/l)	(ug/l)
2-87-5 19-84-6 8-89-8 59-98-8 3213-65-9 2-20-8 7-47-7 2-75-9 6-30-6 746-01-6	BENZIDINE a-BHC y-BHC ENDOSULFAN I ENDOSULFAN II ENDRIN HEXACHLOROCYCLOPENTADIENE N-NITROSODIMETHYLAMINE N-NITROSODIPHENYLAMINE 2,3,7,8-TCDD (DIOXIN)	BMDL BMDL BMDL BMDL BMDL BMDL BMDL BMDL	4 1.0 5.0 10 10 1.0 10 10 1.9 1.9

16

.

Albert Castellanos Chemist

B M D L = BELOW DETECTION LIMIT

L O D = LIMIT OF DETECTION

PLANT EFFLUENT

PAUL R. McGinnes and Associates Consulting Laboratories, Inc.

4168 WESTROADS DRIVE

WEST PALM BEACH, FLORIDA 33407-1241

(407) 842-2849

CITY OF PAHOKEE UTILITIES 180 NORTH LAKE AVENUE PAHOKEE, FLORIDA 33476 9001348-01A Report Date: 02/19/90

Attn: MR. BRUCE MILLER

Project ID: EFFLUENT MONITORING Sample ID: EFFLUENT FAC 17-550 PRIMARY INORGANICS

Date Received: 01/29/90 Date Collected: 01/29/90 14:40:00

Water sample collected by G. Perrone of McGinnes Laboratories.

-

				Detection	Date	
<u>Test Name</u>	Method	<u>Result</u>	Units	<u>Limit</u>	Started	<u>Analyst</u>
Total Silver, Ag	EPA 272.1	<0.01	mg/L	0.01	01/30/90	NRW
Total Arsenic, As	EPA 206.2	<0.002	mg/L	0.002	02/06/90	NRW
Total Barium, Ba	EPA 208.2	0.2	mg/L	0.1	02/05/90	NRW
Total Cadmium, Cd	EPA 213.2	<0.005	mg/L	0.005	02/02/90	JAM
Total Chromium, Cr	EPA 218.1	<0.01	mg/L	0.01	02/02/90	JAM
Fluoride, F-	EPA 340.2	0.52	mg/L	0.05	02/01/90	RAC
Total Mercury, Hg	EPA 245.1	<0.001	mg/L	0.001	02/08/90	MAL
Nitrate, N	EPA 352.1	0.3	mg/L	0.1	01/30/90	DJG
Total Lead, Pb	EPA 239.2	<0.002	mg/L	0.002	01/30/90	JAM
Total Selenium, Se	EPA 270.2	<0.005	mg/L	0.005	02/06/90	NRW

Methods: All analyses by McGinnes Laboratories were performed using EPA and DER approved methods per McGinnes Laboratories Quality Assurance Plan #87232G. All quality assurance samples met regulatory and inhouse quality control limits unless otherwise specified.

ion J. Mongeno.

Project Manager DHRS Laboratory ID Nos.86140/E86070

PAUL R. McGinnes and Associates Consulting Laboratories, Inc.

4168 WESTROADS DRIVE

- WEST PALM BEACH, FLORIDA 33407-1241

(407) 842-2849

-

CITY OF PAHOKEE UTILITIES 180 NORTH LAKE AVENUE PAHOKEE, FLORIDA 33476 9001348-01B Report Date: 02/19/90

Attn: MR. BRUCE MILLER

Project ID: EFFLUENT MONITORING Sample ID: EFFLUENT FAC 17-550 PRIMARY ORGANICS

Date Received: 01/29/90 Date Collected: 01/29/90 14:40:00

Water sample collected by G. Perrone of McGinnes Laboratories.

Test Name	Method	<u>Result</u>	<u>Units</u>	Detection <u>Limit</u>	Date Started	<u>Analyst</u>
2,4,5-TP (Silvex)	EPA 515	< 1.0	ug/L	1.0	02/13/90	HLW
2,4-D	EPA 515	< 2.0	ug/L	2.0	02/13/90	HLW
CHLOR.HERBICIDES - EXTRACTION	EPA 515				02/01/90	ROM
CHLOR.HYDR.PEST EXTRACT.	SW 3510				01/30/90	DLO
Endrin	SM 509A	<0.05	ug/L	0.05	02/12/90	HLW/AS
Lindane	SM 509A	<0.002	ug/L	0.002	02/12/90	HLW/AS
Methoxychlor	SM 509A	<0.1	ug/L	0.1	02/12/90	HLW/AS
Toxaphene	SM 509A	<0.1	ug/L	0.1	02/12/90	HLW/AS

Methods: All analyses by McGinnes Laboratories were performed using EPA and DER approved methods per McGinnes Laboratories Quality Assurance Plan #87232G. All quality assurance samples met regulatory and inhouse quality control limits unless otherwise specified.

Project Manager DHRS Laboratory ID Nos.86140/E86070

4168 WESTROADS DRIVE

- WEST PALM BEACH, FLORIDA 33407-1241

(407) 842-2849

CITY OF PAHOKEE UTILITIES 180 NORTH LAKE AVENUE PAHOKEE, FLORIDA 33476 9001348-01C Report Date: 02/19/90

-

Attn: MR. BRUCE MILLER

Project ID: EFFLUENT MONITORING Sample ID: EFFLUENT Comments: Gross Alpha was performed by Pembroke Labs, DHRS #84172.

Date Received: 01/29/90 Date Collected: 01/29/90 14:40:00

Water sample collected by G. Perrone of McGinnes Laboratories.

Test Name	Method	Result	Units	Detection Limit	Date Started	Analyst
<u>rese nume</u>	Method	Result	onits	LIMIL	<u>starteu</u>	MINUTAR
Gross Alpha	EPA 900	<1+-4.	pCi/L	1.0	02/06/90	P.L.
Hydrogen Sulfide, H2S	EPA 376.1	0.13	mg/L	0.05	01/29/90	GJP
Ammonia Nitrogen, N	EPA 350.2	15.5	mg/L	1.0	01/30/90	DJG
Ortho Phosphate, P	EPA 365.3	2.2	mg/L	0.1	01/30/90	DJG
Organic Nitrogen, N	EPA 350.2	2.8	mg/L	0.2	01/30/90	DJG
Ammonia Nitrogen, N		15.5	mg/L	1.0	01/30/90	DJG
Total Antimony, Sb	EPA 204.2	<0.01	mg/L	0.01	02/12/90	NRW
Turbidity	EPA 180.1	23	N.T.U.	2	01/29/90	GJP

Methods: All analyses by McGinnes Laboratories were performed using EPA and DER approved methods per McGinnes Laboratories Quality Assurance Plan #87232G. All quality assurance samples met regulatory and inhouse quality control limits unless otherwise specified.

Project Manager O DHRS Laboratory ID Nos.86140/E86070

4168 WESTROADS DRIVE - WEST PALM BEACH, FLORIDA 33407-1241

-(407) 842-2849

CITY OF PAHOKEE UTILITIES 180 NORTH LAKE AVENUE PAHOKEE, FLORIDA 33476

9001348-01D Report Date: 02/19/90

Attn: MR. BRUCE MILLER

Project ID: EFFLUENT MONITORING Sample ID: EFFLUENT

Date Received: 01/29/90 Date Collected: 01/29/90 14:40:00

Water sample collected by G. Perrone of McGinnes Laboratories.

<u>Test Name</u>	Method	<u>Result</u>	<u>Units</u>	Detection <u>Limit</u>	Date <u>Started</u>	<u>Analyst</u>
BASE/ACID/PEST-Extraction	SW 3510				01/31/90	ROM
BASE NEUTRAL EXTRACTABLES	SW 8270		ug/L		02/06/90	KGG
Acenaphthene		< 2		2		
Acenaphthylene		< 4		4		
Anthracene		< 2		2		
Benzo(a)anthracene		< 9		9		
Benzo(b)fluoranthene		< 5		_, 5		
Benzo(k)fluoranthene		< 3		3		
Benzo(a)pyrene		< 3		3		
Benzo(g,h,i)perylene		< 5		5		
Benzidine		< 45		45		
Bis(2-chloroethyl)ether		< 6		6		
Bis(2-chloroethoxy)methane		< 6		6		
Bis(2-ethylhexyl)phthalate		30		3		
Bis(2chloroisopropyl)ether		< 6		6		
4-Bromophenyl phenyl ether		< 2		2		
Butyl benzyl phthalate		< 10		10		
2-Chloronaphthalene		< 2		2		
4-Chlorophenyl phenylether		< 5		5		
Chrysene		< 3		3		
Dibenzo(a,h)anthracene		< 3		3		
Di-n-butylphthalate		30		3		
1,3-Dichlorobenzene		< 2		2		
1,4-Dichlorobenzene		< 5		5		
1,2-Dichlorobenzene		< 2		2		
3,3'-Dichlorobenzidine		< 20		20		
Diethylphthalate		< 22		22		
Dimethylphthalate		< 2		2		
2,4-Dinitrotoluene		< 6		6		
2,6-Dinitrotoluene		< 2		2		
Dioctylphthalate		25		3		
1,2-Diphenylhydrazine		< 10		10		

4168 WESTROADS DRIVE

- WEST PALM BEACH, FLORIDA 33407-1241 - (407) 842-2849

CITY OF PAHOKEE UTILITIES

- í

9001348-01D

Page: 2

Project ID: EFFLUENT MONITORING Sample ID: EFFLUENT

				Detection	Date	
Test Name	Method	<u>Result</u>	<u>Units</u>	<u>Limit</u>	Started	<u>Analyst</u>
(Continued)						
Fluoranthene		< 3	ug/L	3	02/06/90	KGG
Fluorene		< 2		2		
Hexachlorobenzene		< 2		2		
Hexachlorobutadiene		< 1		1		
Hexachloroethane		< 2		2		
Hexachlorocyclopentadiene		< 10		10		
Indeno(1,2,3-cd)pyrene		< 4		4		
Isophorone		< 3		3		
Naphthalene		< 2		2		
Nitrobenzene		< 2		2		
N-Nitrosodimethylamine		< 10		10		
N-Nitrosodi-n-propylamine		< 10		10		
N-Nitrosodiphenylamine		< 2		2		
Phenanthrene		< 6		6		
Pyrene		< 2		2		
2,3,7,8-Tetrachlorodibenzo						
p-dioxin (scan)		ND				
1,2,4-Trichlorobenzene		< 2		2		
ACID EXTRACTABLES						
4-choro-3-methylphenol		< 3		3		
2-chlorophenol		< 4		4		
2,4-Dichlorophenol		< 3		3		
2,4-Dimethylphenol		< 3		3		
2,4-Dinitrophenol		< 45		45		
2-Methyl-4,6-dinitrophenol		< 25		25		
2-Nitrophenol		< 4		4		
4-Nitrophenol		< 3		3		
Pentachlorophenol		< 4		4		
Phenol		< 2		2		
Phenanthrene		< 6		6		
2,4,6-Trichlorophenol		< 3		3		
PESTICIDE EXTRACTABLES						
Aldrin		< 2		2		
a-BHC		< 10		10		
b-BHC		< 5		5		
d-BHC		< 5		5		
g-BHC		< 10		10		
Chlordane		< 10		10		
4,4'-DDD		< 2		2		
4,4*-DDE		< 6		6		
•						

4168 WESTROADS DRIVE - WEST PALM BEACH, FLORIDA 33407-1241 - (407) 842-2849

CITY OF PAHOKEE UTILITIES

9001348-01D

Page: 3

Project ID: EFFLUENT MONITORING Sample ID: EFFLUENT

			•.	Detection	Date	
Test Name	Method	<u>Result</u>	<u>Units</u>	<u>Limit</u>	<u>Started</u>	Analys
(Continued)		_		-		
4,4'-DDT		< 5	ug/L	5	02/06/90	KGG
Dieldrin		< 3		3		
Endosulfan I		< 10		10		
Endosulfan II		< 10		10		
Endosulfan Sulfate		< 6		6		
Endrin		< 10		10		
Endrin Aldehyde		< 10		10		
Heptachlor		< 2		2		
Heptachlor Epoxide		< 3		3		
Toxaphene		< 10		10		
PCB-1016		< 30		30		
PCB-1221		< 30		30		
PCB-1232		< 30		30		
PCB-1242		< 30		30		
PCB-1248		< 30		30		
PCB-1254		< 40		40		
PCB-1260		< 30		30		
VOLATILE ORGANICS	SW 5030/8021		ug/L		01/30/90	HLW/
Benzene		<0.2		0.2		
Bromobenzene		<0.2		0.2		
Bromochloromethane		<0.1		0.1		
Bromodichloromethane		<0.1		0.1		
Bromoform		<2.0		2.0		
Bromomethane		<2.0		2.0		
n-Butylbenzene		<0.2		0.2		
sec-Butylbenzene		<0.2		0.2		
tert-Butylbenzene		<0.5		0.5		
Carbon tetrachloride		<0.5		0.5		
Chlorobenzene		<0.5		0.5		
Chloroethane		<0.5		0.5		
Chloroform		<0.5		0.5		
Chloromethane		<0.5		0.5		
2-Chlorotoluene		<0.5		0.5		
4-Chlorotoluene		<0.5		0.5		
Dibromochloromethane		<0.5		0.5		
1,2-Dibromo-3chloropropane		<3.0		3.0		
1,2-Dibromoethane		<1.5		1.5		
Dibromomethane		<5.0		5.0		
1,2-Dichlorobenzene		<0.5		0.5		
1,3-Dichlorobenzene		<0.5		0.5		
1,4-Dichlorobenzene		<0.5		0.5		

4168 WESTROADS DRIVE

- WEST PALM BEACH, FLORIDA 33407-1241 - (407) 842-2849

CITY OF PAHOKEE UTILITIES

9001348-01D

Page: 4

Project ID: EFFLUENT MONITORING Sample ID: EFFLUENT

Test Name	Method	Denvilt		Detection	Date	
(Continued)	Hethou	<u>Resul t</u>	<u>Units</u>	<u>Limit</u>	<u>Started</u>	<u>Analyst</u>
Dichlorodifluoromethane		<0.5	ug/L	0.5	01 /70 /00	
1,1-Dichloroethane		<0.5	uy/L	0.5	01/30/90	HLW/AS
1,2-Dichloroethane		<0.5		0.5		
1,1-Dichloroethene		<0.5		0.5		
cis-1,2-Dichloroethene		<0.5		0.5		
trans-1,2-Dichloroethene		<0.5		0.5		
1,2-Dichloropropane		<0.5		0.5		
1,3-Dichloropropane		<0.5		0.5		
2,2-Dichloropropane		<0.5		0.5		
1,1-Dichloropropene		<0.5		0.5		
Ethylbenzene		<0.2		0.2		
Hexachlorobutadiene		<0.5		0.5		
Isopropylbenzene		<0.5		0.5		
p-Isopropyltoluene		<0.5		0.5		
Methylene chloride		<2.5		2.5		
*Naphthalene		<0.5		0.5		
n-Propylbenzene		<0.5		0.5		
Styrene		<2.5		2.5		
1,1,1,2-Tetrachloroethane		<0.2		0.2		
1,1,2,2-Tetrachloroethane		<0.2		0.2		
Tetrachloroethene		<0.5		0.5		
Toluene		<0.2		0.2		
1,2,3-Trichlorobenzene		<0.2		0.2		
1,2,4-Trichlorobenzene		<0.2		0.2		
1,1,1-Trichloroethane		<0.2		0.2		
1,1,2-Trichloroethane		<0.5		0.5		
Trichloroethene		<0.5		0.5		
Trichlorofluoromethane		<0.5		0.5		
1,2,3-Trichloropropane		<1.0		1.0		
1,2,4-Trimethylbenzene		<0.5		0.5		
1,3,5-Trimethylbenzene		<0.5		0.5		
Vinyl chloride		<0.5		0.5		
o-Xylene		<0.2		0.2		
p & m Xylene		<0.2		0.2		
Methyltertiarybutylether		<1.0		1.0		
*NOTE:Purgeable Naphtha-						
lene is only a fraction		-				

lene is only a fraction of the total naphthalene present. Results represent only that which is easily volatilized.

4168 WESTROADS DRIVE - WEST PALM BEACH, FLORIDA 33407-1241 - (407) 842-2849

CITY OF PAHOKEE UTILITIES 9001348-01D Page: 5 Project ID: EFFLUENT MONITORING Sample ID: EFFLUENT Detection Date Test Name Method Result <u>Units</u> <u>Limit</u> **Started** Analyst Ethylene Dibromide EPA 504 < 0.01 0.01 ug/L 01/29/90 HLW/AS

TRIHALOMETHANES	EPA 501.2	, mg/L	01/30/90	HLW/AS
Chloroform	<0.002	0.002		
Bromodichloromethane	<0.001	0.001		
Dibromochloromethane	<0.001	0.001		
Bromoform	<0.003	0.003		
Total Trihalomethanes	<0.007	0.007		

Methods: All analyses by McGinnes Laboratories were performed using EPA and DER approved methods per McGinnes Laboratories Quality Assurance Plan #87232G. All quality assurance samples met regulatory and inhouse quality control limits unless otherwise specified.

Ana

Project Manager

DHRS Laboratory ID Nos.86140/E86070

4168 WESTROADS DRIVE

- WEST PALM BEACH, FLORIDA 33407-1241

(407) 842-2849

-

CITY OF PAHOKEE UTILITIES 180 NORTH LAKE AVENUE PAHOKEE, FLORIDA 33476 9001348-01E Report Date: 02/19/90

Attn: MR. BRUCE MILLER

Project ID: EFFLUENT MONITORING Sample ID: EFFLUENT FAC 17-550 SECONDARY INORGANICS

Date Received: 01/29/90 Date Collected: 01/29/90 14:40:00

Water sample collected by G. Perrone of McGinnes Laboratories.

<u>Test Name</u>	Method	<u>Result</u>	<u>Units</u>	Detection <u>Limit</u>	Date <u>Started</u>	<u>Analyst</u>
Total Alkalinity, CaCO3	EPA 310.1	403	mg/L	4	01/29/90	ROM
Calcium, Ca	EPA 215.1	114	mg/L	1	02/13/90	JAM
Chloride, Cl-	EPA 325.3	570	mg/L	40	01/30/90	ROM
Color, APHA	EPA 110.2	102	units	2	01/29/90	AYL
Corrosivity, L.I.	CALC.	0.44	L.I.		02/16/90	TPC
Total Copper, Cu	EPA 220.1	0.02	mg/L	0.01	02/09/90	NRW
Total Iron, Fe	EPA 236.1	0.40	mg/L	0.01	01/30/90	NRW
Fluoride, F-	EPA 340.2	0.52	mg/L	0.05	02/01/90	RAC
Foaming Agents, MBAS	EPA 425.1	0.18	mg/L	0.02	01/30/90	ROM
Total Manganese, Mn	EPA 243.1	0.026	mg/L	0.005	02/12/90	NRW
Total Odor Number	EPA 140.1	34	T.O.N.	1	01/30/90	JYA
рНѕ	CALC	6.80	units		02/16/90	TPC
рH	SW 9040	7.24	units		01/29/90	GDP
Sulfate, SO4	EPA 375.4	200	mg/L	20	01/31/90	RAC
Total Dissolved Solids	EPA 160.1	1,740	mg/L	1	01/31/90	JYA
Temperature	EPA 170.1	26.0	deg. C		01/29/90	GDP
Total Zinc, Zn	EPA 289.1	0.039	mg/L	0.005	02/12/90	NRW

4168 WESTROADS DRIVE -WEST PALM BEACH, FLORIDA 33407-1241 -(407) 842-2849 CITY OF PAHOKEE UTILITIES 9001348-01E Page: 2 Project ID: EFFLUENT MONITORING Sample ID: EFFLUENT Detection Date Test Name Method Result <u>Units</u> <u>Limit</u> Started <u>Analyst</u>

Methods: All analyses by McGinnes Laboratories were performed using EPA and DER approved methods per McGinnes Laboratories Quality Assurance Plan #87232G. All quality assurance samples met regulatory and inhouse quality control limits unless otherwise specified.

N. R. W. D as Colgan Analyst

Project Manager O DHRS Laboratory ID Nos.86140/E86070

4168 WESTROADS DRIVE

WEST PALM BEACH, FLORIDA 33407-1241 -

(407) 842-2849

CITY OF PAHOKEE UTILITIES 180 NORTH LAKE AVENUE PAHOKEE, FLORIDA 33476

9001348-01F Report Date: 02/19/90

-

Attn: MR. BRUCE MILLER

Project ID: EFFLUENT MONITORING Sample ID: EFFLUENT NOTE: Total Coliform ≥ 2,630,000 This sample test is UNACEPTABLE by Health Dept. Standards for safe public drinking water.

Date Received: 01/29/90 Date Collected: 01/29/90 14:40:00

Water sample collected by G. Perrone of McGinnes Laboratories.

<u>Test Name</u>	Method	<u>Result</u>	<u>Units</u>	Detection <u>Limit</u>	Date <u>Started</u>	<u>Analyst</u>
Total Coliform, count	SM 909A	NOTE	/100 mL	10,000	01/29/90	JP,LJJ

Methods: All analyses by McGinnes Laboratories were performed using EPA and DER approved methods per McGinnes Laboratories Quality Assurance Plan #87232G. All quality assurance samples met regulatory and inhouse quality control limits unless otherwise specified.

<u>Amdurlle</u>

Project Manager DHRS Laboratory ID Nos.86140/E86070

GERAGHTY & MILLER, INC.

APPENDIX H

Well Casing Mill Certificates

anjerica were right

L. B. FOSTER COMPANY Route 1, Box 15 Washington, WV 26181

STANDARD CERTIFIED TEST REPORT TUBULAR PRODUCTS

- A	Nome
с	YOUNGQUIST BROTHERS INC.
U S	Address
Ť	RR 34 EOX 502
0 M E	15000 PINE RIDGE ROAD
R	City & State
	FT. MYERS, FL 33908

MAY 26, 1989

Customer's Order No.

<u>23H-049488</u>

LBF Involce No.

Material _____ FOSTERWELD

ASTM A-139 GRADE B

Coll		- W1/F1.	Hin.	MECHANICAL PROPERTIES			CHEMICAL ANALYSIS (%)				
or Lot. No.	Size O.D.	or Wall Thick.	Hydro, Test Pres, P.S.I.	Yield Strength P.S.I. Point	Tensile Strength P.S.I.	Elong; In%	с	Mn	P	S	51
_66444	40"	.375		46,200	66,700	28.6	.20	.38	.009	.010	.008
r66430	40"	. 375		48,700	66,100	32.2	.19	. 39	.010	.011	.006
		OPPICIAL SEA									
	TATE B	DTARY PUB OF WEST VII onald E. Ad	OINIA								
	Post My unoni	RI. 4, Box 37 archivy, W. Vu. alon explose Am									

Grade .

The undersigned, in behalf of The L. B. Foster Company, hereby cettifies that the above materials have been inspected and tested in accordance with the methods prescribed in the applicable specific ations and the results of such inspection and tests shown above. In determining properties or characteristics for which no methods of the interview and the results of such inspection and tests shown above. In determining properties practices of The L. B. Foster Company have been applied. Unless it appears otherwise in the results of such inspection and tests above above, the undersigned agent of The L. B. Foster Company believes that hard unsterials conform to wild apecifications.

Subacribud and sworn to before me this 20 day of MAY 19.89 Idame. ana Notary Public

 $\int O(\lambda)$ Jalanan----BILL PETERSON - PLANT MANAGER

L.E. FOSTER CO. - WASHINGTON, WV

Agents' Nrame & Title

COMPANY

Firm No. - SW 4 69

LO LE SE CENTRE CONTRACTOR CONTRACTOR AND A CONTRACTOR

L. B. FOSTER COMPANY P. O. BOX 7796 GARDEN CITY, GA 31418-7796

STANDARD CERTIFIED TEST REPORT TUBULAR PRODUCTS

YOU	(GQUI)	ST BRO	S INC	
Address				
RT	34 BO	x 502		
	.			
FT	IYERS	FL		
City & State	the second s			

Dora MAY 26 1989

PHONE- JIMMY	
Customer's Order No.	
23H010-049497	
LBP Invoise Ne.	

Material 32" OD X 375 PIPE

Grade ASTM A-139 GR B

	1	WIZEI.	Min. Hydro. Tast Pres. P.S.I.	MECHANIC	AL PROPERTI	E S	CHEMIÇAL ANALYSIS (%)				
Heat No.	Size O.D.	•r Wali Thick,		Yield Strength P.S.I. Point	Tensile Strength P.S.I.		с	Mn	r	\$	\$1
5B12053	32"	375	495	59900	71600	32.9	.080	1.01	.020	.014	

The undersigned, in behalf of The L. B. Foster Company, hereby certifies that the above maverials have been inspected and tested in accordance with the methods prescribed in the applicable specifications and the certifies of such inspection and tests shown above. In determining properties or characteristics for which no methods of inspecting or tisting are prescribed by sold specifications, the standard mill inspection and tests practices of The L. B. Foster Company have been applied. United to appears otherwise in the results of such inspection and tests shown above, the undersigned agent of The L. B. Foster Company between that said materials conform to said specifications.

Subscribed and sworn to before me 89 his <u>L6</u> day of <u>Alkey</u> 19 <u>89</u>

C. IN Shearous. Earline 4 Notory Public

EARLINE F. SHEAROUSE Notary Popul, Chathans Court, Co. orm Ho _ SW 2 20

Tead OTIS R KESSLER PLNT MGR

Agenta' Hane & Title

CONDANS

002

L. B. FOSTER COMPANY P. O. BOX 7796 GARDEN CITY, GA 31418-7796

STANDARD CERTIFIED TEST REPORT TUBULAR PRODUCTS

Name		
YOUNGQUIST	BROS	INC
Address	-n	

RT 3 BOX 502

FT MYERS FL

City & State

C

U

5%

T.

O E

R

Material 22" OD X 375 PIPE

Grade ASTM A-139 GR B

Date ____

PHONE-JIMMY

23H010-049497

Customer's Order No.

LBF Invoice No.

MAY 26 1989

MECHANICAL PROPERTIES CHEMICAL ANALYSIS (%) Min. Wt/Ft. Hydro. Heat Size or Yield Strength Tensile Test Elong; 0.D. Wall No. In_____% Pres. Strength Thick. P.S.I. С Ρ Mn S Sł P.S.I. P.S.I. Point 96D019 22" 375 715 40200 70700 36 .23 .81 .015.026 22" ¹ 5B12059 375 715 57000 69000 .060 1.03 .018 .014 38 62

The undersigned, in behalf of The L. B. Foster Company, hereby certifies that the above materials have been inspected and tested in accordance with the methods prescribed in the applicable specifications and the results of such inspection and tests shown above. In determining properties or characteristics for which no methods of inspecting or testing are prescribed by sold specifications, the standard mill inspection and testing practices of The L. B. Foster Company have been applied. Unless it appears otherwise in the results of such inspection and tests shown above, the undersigned agent of The L. B. Foster Company believes that said materials conform to said specifications.

Subscribed and sworn to before me this 26 day of pray 19 <u>\$7</u>

Earline hearouse

Notary Public EARLINE F. SHEAROUSE Ga. Notary 1 1 My Commission Expires Instruction 22 Form No. - SW 4-69

Rether R KESSLER PLNT MGR

Agents' Name & Title

L. B. FOSTER CO

COMPANY

L. B. FOSTER COMPANY P. O. BOX 7796 GARDEN CITY, GA 31418-7796

STANDARD CERTIFIED TEST REPORT TUBULAR PRODUCTS

Name MAY 26 1989 YOUNGUIST BROS INC Address Address RT 3 BOX 502 Mark PT MYRRS FL City & stere 23H010-049497 LBF Invoice No. 23H010-049497 Manned City & stere Manned Min. Manned Mark 26 1989 Manned Mark 26 1989 Mark 201 Steregen NG Steregen NG Steregen NG Steregen NG Steregen Pistit Pistit Pistit Steregen Pistit Pistit Steregen Steregen Pistit Steregen Steregen Steregen Steregen Steregen	а <u>т (</u> 1944) Алария		55	· · ·										
U Address PHONE_JIMY Address RT 3 BOX 502 23H010-049497 W PT MYERS FL Curtamer's Oder No. PT MYERS FL City, & State City, & State Grade ASTM A-139 GR B Heat Size W1/Ft. Mol O.D. W1/Ft. Mol Size Yield Size W1/Ft. Min. PS.I. P.S.I. P.S.I. PS.I. P.S.I. P.S.I. PS.I. P.S.I. P.S.I. PS.I. Sizength Ingr. C Mn P SB12059 22" 375 715 57000 69000 38 .060 1.03 OI Sizength SB12059 Sizength		Name	• ., <u>.</u>					Date _		M	IAY 2	6 198	9	
Address Customer's Order No. RT 3 BOX 502 23H010-049497 LBF Invoice No. 23H010-049497 LBF Invoice No. 23H010-049497 LBF Invoice No. 23H010-049497 Material 221° OD X 375 PIPE Material 221° OD X 375 PIPE Material Size Work Valid Material Size Work Valid Test Pres. Pisti Strength Test Prime Pres. Point Pristi Strength Strength Point Pristi Strength Strength		YO	UNGQ	UIST BR	OS INC			7	PHON	E-JIM	MY			
23H010-049497 23H010-049497 LBF Invoice No. LBF Invoice No. Be Ciry & Stole Meterical ASTM A-139 GR B CHEMICAL ANALYSIS (%) Meterical Meterical Street OD X 375 PIPE Grade ASTM A-139 GR B CHEMICAL ANALYSIS (%) Meterical Not Street OD X 375 PIPE Grade ASTM A-139 GR B CHEMICAL ANALYSIS (%) Meterical Not Meterical Meterical Not Street OP OD X 375 715 96D019 (22" 375 715 S7000 70700 36 .23 .21 .016 S1000 75000 1000 .23 .23 <th colsp<="" td=""><td></td><td>Addre</td><td>111</td><td></td><td></td><td></td><td></td><td>Custo</td><td></td><td></td><td></td><td></td><td></td></th>	<td></td> <td>Addre</td> <td>111</td> <td></td> <td></td> <td></td> <td></td> <td>Custo</td> <td></td> <td></td> <td></td> <td></td> <td></td>		Addre	111					Custo					
Barriel User User <thuser< th=""> User User <</thuser<>	1997 T .	RT	3 B	OX 502							9497			
E FT MYERS FL City & Store Morerial 22 ⁱⁿ OD X 375 PIPE Grade ASTM A-139 GR B Morerial 22 ⁱⁿ OD X 375 PIPE Min. Hydro. Weil Thick. MECHANICAL PROPERTIES CHEMICAL ANALYSIS (%) Heat No? 0.D. OD. Wr/Fr. Weil Thick. Min. Point MECHANICAL PROPERTIES CHEMICAL ANALYSIS (%) 96D019 22" 375 715 40200 70700 36 .23 .81 .015 .026 5B12059 22" 375 715 57000 69000 38 .060 1.03 .018 .014								LBFI	nvoice Na	•				
R City & Since Morenial 221" OD X 375 PIPE Grade ASTM A-139 GR B Heat No: Size O.D. Wit/Ft. or Wit/Ft. OD. Min. Hydro. Thick. MECHANICAL PROPERTIES CHEMICAL ANALYSIS (%) 96D019 22" 375 715 40200 70700 36 .23 .81 .015 026 5B12059 22" 375 715 57000 69000 38 .060 1.03 .018 .014		FT	MYR	RS FL										
Moterial 22" OD X 375 PIPE Grade ASTM A-139 GR B Heat No. Size O.D. W/Ft. Woll Thick. Min. Prst. MECHANICAL PROPERTIES CHEMICAL ANALYSIS (%) 96D019 22" 375 715 40200 70700 36 .23 .81 .015 .026 5B12059 22" 375 715 57000 69000 38 .060 1.03 .018 .014	STIT R													
Material 221" OD X 375 PIPE ASTM A-139 GR B Heat Not Size of the strength P.S.I. Min. Hydro. O.D. MECHANICAL PROPERTIES CHEMICAL ANALYSIS (%) Yield Not Yield Thick. Yield P.S.I. Tensile Strength P.S.I. Elong: Tensile C Mn P S 96D019 22" 375 715 40200 70700 36 .23 .81 .015 .026 5B12059 22" 375 715 57000 69000 38 .060 1.03 .018 .014	an a straight			•										
Heat No. Size 0.D. Wt/Ft. or Wglil Thick. Min. Hydro. Pres. P.S.I. MECHANICAL PROPERTIES CHEMICAL ANALYSIS (%) 96D019 22" 375 715 40200 70700 36 .23 .81 .015 .026 5B12059 22" 375 715 57000 69000 38 .060 1.03 .018 .014	in - Juliane	1	nter al construction l'Anne a construction al Tress	41°										
Heat No. Size 0.D. Wt/Ft. or Wglil Thick. Min. Hydro. Pres. P.S.I. MECHANICAL PROPERTIES CHEMICAL ANALYSIS (%) 96D019 22" 375 715 40200 70700 36 .23 .81 .015 .026 5B12059 22" 375 715 57000 69000 38 .060 1.03 .018 .014		1.0000000 NG 19 55	200 AT	. .	פתדת									
Heat No: Size 0.D. Wt/Ft. or Wall Thick. Min. Hydro. Prs. MECHANICAL PROPERTIES CHEMICAL ANALYSIS (%) Yield Strength P.S.I. Tensile Strength P.S.I. Elong, m. C Mn P S 96D019 '2.2'' 375 715 40200 70700 36 .23 .81 .015 .026 5B12059 22'' 375 715 57000 69000 38 .060 1.03 .018 .014	Material		<u> </u>	<u>, x 3/3</u>	<u> </u>		Grade <u>AST</u>	<u>M A-1</u>	39 GF	B		San		
Heat No. O.D. O.D. or Well Thick. Image: Pres. P.S.I. P.S.I. Yield Strength P.S.I. Point Tensile Strength P.S.I. Elong. % C Mn P S 96D019 22" 375 715 40200 70700 36 .23 .81 .015 .026 5B12059 22" 375 715 57000 69000 38 .060 1.03 .018 .014				Wt/Ft.		MECHANIC	CAL PROPERTIE	ES	Τ	CHEA	AICAL A	ANALYSI!	5 (%)	
P.S.I. P.S.I. P.S.I. Ing. .S.I. Ing. P.S.I. Ing.P.S.I	No.		Size O.D.	or	Test	Yield	1	Flong	1	<u> </u>	<u> </u>	T	T	
96D019 22" 375 715 40200 70700 36 .23 .81 .015 .026 5B12059 22" 375 715 57000 69000 38 .060 1.03 .018 .014		n de la construction de la const			Pres. P.S.I.	P.S.I.	Strength P.S.I.	In		Mn	Р	S		
5B12059 22" 375 715 57000 69000 38 .060 1.03 .018 .014											<u> </u>	1		
5B12059 22" 375 715 57000 69000 38 .060 1.03 .018 .014			22"	375	715	40200	70700	36	.23	.81	.01	.026		
	581205	0	221	275	715	57000	(Į			
	JJ120J	·	4 4	515	/15	57000	69000	38	.060	1.0	B .01	8.01	4	
		s í												
			, ·											
			•											
		- #* ¹ .												
			4											
	· · · · · · · · · · · · · · · · · · ·		4.											
		24												
$\frac{2}{2} = \frac{1}{2} \left[\frac{1}{2}														
	in the second	<u>.</u>												
$\frac{1}{2} \left\{ \begin{array}{c} (1 - 2k + 1) \left\{ \frac{1}{2} \left\{$, , , , , , , , , , , , , , , , , , ,												
$\frac{\partial P_{1}(k_{1})}{\partial k_{2}} = \frac{1}{2} \frac{\partial P_{1}}{\partial k_{1}}$	an a		•											
		, l'												
	R and A													

The undersigned, in behalf of The L. B. Foster Company, hereby certifies that the above materials have been inspected and tested in accordance with the methods prescribed in the applicable specifications and the results of such inspection and tests shown above. In determining properties or characteristics for which no methods of inspecting or testing are prescribed by sold specifications, the standard mill inspection and testing practices of The L. B. Foster Company have been applied. Unless it appears otherwise in the results of such inspection and tests shown above, the undersigned agent of The L. B. Foster Company believes that said materials conform to said specifications.

Subscribed and sworn to before me day of pray 19 89 this

14

....

Q . 4. Earline rearous

Form No. - SW 4-69 My Commission Expires Maricel 22

Kin OTIS R KESSLER PLNT MGR

Agents' Name & Title

SI

L. B. FOSTER CO

COMPANY

· · · ·							•					•
US	S A division of y	SX Corpora	ation			TUBULA METALLURGI	R PRODUCTS	PORT		7490	P (pg2)	
7 L0 9 0 1			•••• •• •	ł	2.) 2			<u></u>		5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	(TER) ()) 37 TEST 900090 1000 () 1000 () 1000 ()	
J L D T O SPEC.								1	PREPARE J.R	0 8Y T:	ENING M	
:NSP.			•									
ITEM NO.	SIZE	MA	TERIAL DESCRIPTION		MATL.	HEAT/ LOT NO.	MIN, HYDRO	YIELD STR.	TENSILE STR.	ELONG. %	GAGE	
ذ	12 3/4 00	.500	ASTMA53873G	CATION & GRADE RB ASMESAS3GR ASMESA106GRB	5 SML5 86-D374	5 181502	PSI 2060	<u>PSI</u> 42700 [hed 5/5	PS: 72400	IN 2" 41.U	WIDTH IN. 1 1/2	FLAT २४
د	12 3/4 00	.500	45TMA5397951	RU ASMESADAGR ASMESA100GRB	a sars	NRASAD	2060		7/100	41.0	1 1/2	٥٣
				ж.								
TEM NO.	HEAT NO. TY		MN P S	SI CU NI	CR MO	1	NV	B Ti	сэ со			
.	L81502 7E. L01502 PRO N86560 - N86560 -	AT 25 UD 23	83 109 003 84 103 009	26 25 05	104 21		÷ 4			÷ •	SE THAN	
	DE DATA THIS .	5415 T				1						

(USS	USS A division of US	X Corporat	lon				R PRODUCTS	PORT		74	90	(
S O L D T O	2011年1月1日日 2011年1月1日日 2011年1月1日日 2011年1月1日日 2011年1月11日 2011年1月11日 2011年1月11日 2011年1月11日 2011年1月11日 2011年1月11日 2011年1月11日 2011年1月11日 2011年1月11日 2011年1月11日 2011年1月11日 2011年1月11日 2011年1月11日 201111 2011 2011 2011 2011 2011 2011					• • • •				GAVIRE: S. D by th	HE OFFI(IMINO MO	CE OF
SPEC.								 			<u> </u>	
ITEM NO.			TERIAL DESCRIPTION		MATL	HEAT/ LOT NO.	MIN. HYDRO	YIELD STR.	TENSILE STR	ELONG. %	GAGE WIDTH	FLAT
2.	size 12 3/4 0D 86EU87A	• 500 DD • AS T	ASTMA53878G	CATION & GRADE RB ASMESA53G ASMESA106GR	RB SML 886ED87	S L81961	2050 GRB 37	PSI 46300 THED 5/8	PSI 77400 8	40.0	1 1/2	ХC
2	12 3/4 OU 86E097A	.500 JD.AST	4 S T M A 5 3 7 7 8 G M A 1 0 6 8 7 A G R B	RB ASMESA53G ASHESA106GR		5 N85428 ADD.API51	2060 GRB 37	45400 THED 5/8	74000 3	41.5	1.1/2	Сх
2 :	12 3/4 00 86EU87A	.500 00.AST	ASTMA53878G MA10687AGRB	RB ASMESA53G ASMESA1D6GR	RB SHL 8866037	S NB6431 Add.Apisi	2050 Grb 37	40700 THED 5/8	75100 50	39.U	1 1/2	0K
	L 8 1 9 6 1 N 8 6 4 2 8 N 8 6 4 3 1 H E	00 20 AT 25							1:1:			•
22	N86428 N86428	AT 25	62 011 01 66 014 01									

(Fr	USS A division of t	JSX Corporatio	on				TUPULAI	R PRODUCTS				' (?	
s C L D					×	2 • • • • • • • • • • • • • • • • • • •			/ <u>) /) / /) /) /) /) /) /) /) /</u>	FILLS R RESPECT PREPAPE	5. D 81 TI	HE OFFI	
T O 3PEC. & INSP.											. MASSI 05/31/2	LMINO MI	<u>GP. v.</u>
		:						:					
ITEM NO.	SIZE	MATE	NAL DESCRIPTIO	N PECIFICATION & G	RADE	MATL	HEAT/ LOT NO.	MIN. HYDRO PSI	YIELD STR.	TENSILE STR.	ELONG. %	GAGE WIDTH	FLAT
2	12 3/4 00 80ED37	.500 A	STMA538 A10087A(786R8 AS GRB ASME	MESA53G¤ SA106GR8	18 SML: 3862037/	L81261	2060	46300 THED 578		+	ы. 1 1/2	Зĸ
ĩ.	12 3/4 00	.500 A	STMA5387	73GRB AS	NESA53GR	B SNL		2969		21.25%	32.1	1 172	
č ·	12 3/4 00 ***********************************	.500 A	STNA5387 A10587AU	7BGR5 AS JR8 ASME	NESASSGR SA106GRB	6 51113 8620874	N85430 DD.API5L	2030 GRS 37	43800 Thed 5/8	70000 8	42.0	1 1/2	
nto anto			••••			,				1			
	L81961 L81961												

·														
JOB, CONT					P.O. DATE	PURCH	DADEA				PRODUCT		161 11	
•	1.				_ !	201	7-1155			andright allere and the state of a	IFRUDUCI	UCJURI		. -
	· •													
۱ .														
1					•	-				: .				
1						· .				2. *		•		
k V										Ĺ	i Paeparu			
;										ĩ	J-3	- MASSI	MINO 2	<u>62.</u>
۱. ک										. 0	DĂTE	05/30/8	10	
				<u>.</u>									(_ <u></u>	
G.	.•				,							•		
Ρ.					ý								• 1	
1	•	۹											1	
1		an Ang ang ang	~ .	•					•					
1				•			· .					- -		
		MA	TERIAL DESCRI	IPTION			MATL	HEÂT/ LOT NO.	MIN. HYDRO	YIELD STR.	TENSILE STR.	ELONG. %	GAGE WIDTH	FLAT
ein hó.	SIZE	WALL	<u>.</u>				ļ		PSI	PSI (6000	PSI 73800	31:0	ы. 3/4	
3	-2 3/8 00	.218	ASTMA5	3878GR	B ASMES	A53GRB	SMLS	L91519 DD.API5L	2500 GR8 37	46000 THED 5/8			· ·	
	00EU0/A	UU•ASI		KAGKO I	H 3 FI E 3 M I								•	·
خ	2 3/8 00				B ASMES		{	MB6183	2500	48000	75300	31.0	314	
	BÓEDB7A	DD.AST	MA1068	7AGRB	ASHESA1	DSCRB35	(30372	00.APISL	633 37	FHE0 5/1				
		/	ASTRAD			ر، بد بر به مر ز					1	1 0	1 1 1 -	-
4 ³⁵ 20	12 3/4 .00 . 8,5E0874				u an an u sisteru u si an an <u>a an an a</u> si an an an an an an a	an a	• .	· ·		4 				
•										-				
4	12 3/4 0D 86EUS7A	.500	ASTHAS	3678GR	S ASHES			DD ADTE		Arwan Cl	e Se la	1		1
	86EU37A	DD.AST	MA 1068	7AGRB	ASHESAI	UOGRB86	AC U 87 A	UU.APISL	6R0 31	11460 31	40			
1		•	•	•		,								
			<u> </u>				<u> </u>	L	<u> </u>	ļ	<u> </u>	· .		<u> </u>
EM NO.	1	PE C	мн	P 3	51 (J	· и	2 1 400		Y	p 1 1	t i	¢		
1	191519 191519	AT 28	•	3	• •									
۱ ۰	N86183		•											
	N86183													
1	181501													
	181501 N85177 HE	AT 25	1	 4 4 1		- 1	•	×		· ·				
		A 1 : 2 3· O 단 : 2 4	0 / .				• •	•						
	DE DATA THIS		4 4- *				• •	1 • •	-	•	11 I.			
	DEOWAL DOG	NTIONS I		maires and	na a waxaan Afrika ya ka a ka ar	a character and a			·	r +				

	• •										
5	•	·								•	-
SEAN	ILESS T	UBER	Test.	AN MILL				R	lomnn	30.04	.1.986
	Conir	Pepa L	rionic)	P.	0.300	464			MILL TEE		
•			E.		t m	20m	ט הי ט		MILL TES	T CERTI	ICATE
·.		N.S.W	Ľ	M.M.I.	ו <i>ו</i> וי.	EST	NEN				
Cust	omer H	5. U.A.				·····			······		· · · · · · · ·
Mate	rial des	cription	STAN	USSS C	ARBON	STRE	LIII	f FIF	E, pla	in en	ds bevel
(18)	រម្មនុស្ថា លោកស្រុកស្រុកស្រុកស្រុកស្រុកស្រុកស្រុកស្រុ	ditip	<u>50 00</u> (0) (0)	bde b.	(+ 57. (due)		rees	$\frac{1}{d}$ here	-20992 6 67	<u>A-53/1</u>	API 5 L Squer cr
- (C C)	ቀቀ ደሮቀ	rshu	on le	i june -	(min.	everse	te lei	ogth 1	ວລະເຮາ		dered 3
VI 0.		10• 8		40 It.	randői	n Tanf	ງ ໝ ງ	çer şi	ize.		4.4774
1	ufacture			c.to A		Contraction of the local division of the loc	and a second second second			•, · · _ · · • · • · · · · · · · · · · · ·	
This catio	15 10 cer 11 1	rlify that	the fo	llowing p	roducis	104	01C	in accor	dance w	ith the	helow spec
	Tallin elge	1	Qui	sility of		Number) 	eres		Press
				steel		of place	*		ere s	Kos.	Kefici
	ODXO, x-lo	· · · · · · · · · · · · · · · · · · ·	111 124 12212 12.000 140	"•B	·····	104		1169	,76	50.30	······································
		<u>127 - 119</u>		•	- 31	337 FT	- 8'				(2740)
	1 1 100-1 - 1 1 100-1 - 100-									· · · · · · · · · · · · · · · · · · ·	
Monte	ing 6°	44 <u>-</u>	<u>cc.</u> ;;	AFI &	stð.5	L enc	- ASUM	·····			
]				5 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997							
		• 27	OTAL			104	· · · -	1150	,76	5 . (
	87%.8888.°°	ر دمدهم سوسهیم ، م	01/1L	te brahandagan gredenstra, sagar	/··*			ني ب بدينا. بدريند معموم	1/0	۲. ۲۰۰۷ ۲۰۰۰ - ۲۰۰۰	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
		CH	EMI	CAL	AND	ME	CAN	ICAI	LTE	S'I :	
Gualit		r•B	** at	••••••••••••••••••••••••••••••••••••••	**** ***	4 4 4 4 4 4 5 4 5 ⁻¹ - -					
The w	diele qu	antity w	as che	cked and	ording to	API S	std.	5 L al	nd AST	M•	<u></u>
]	1	CHEMI	IAL	VSIS				MECANIC	AL TEST	3
HPA1	c	Mn	S)	5	P	Ст	stre	leld mgth Amm ¹	stre	ntile ngth /mm ^s	Elongation 5 K
70.0	0,18	0,00	-	p.022 p.024	D,023	-	29	, , ,		1	+1,73
376234	0,22	0,62		5,021			30	,4			34 , 05
3 76234 3 762 52	0,23	0,58		2,024	0,021						
3 762 52		1.10		0,022			32	, Ç	2.1	•	35,85
	0,24 0,24		4	1 -							
3 762 52	0,24 0,24								1		
3 762 52	0,24 0,24										

Dispatch note: 2335

1100 7

. . .

.

L. B. FOSTER COMPANY P. O. BOX 7796 GARDEN CITY, GA 31418-7796

STANDARD CERTIFIED TEST REPORT TUBULAR PRODUCTS

RECENTED BY 4-3 1388

JUNE 7 1989

23H010-049525

Address	QUIST BROS IN	
RURAL	ROUTE 34 BOX	<u>502</u>
FT MYI	ERS FL	
City & State	, ,	

Material ______ & 16" O D X 375

Grade ASTM A-139 GR B

Date

PHONE -Customer's Order No.

LBF Invoice No.

		Wt/Ft.	Min.	MECHANIC	AL PROPERTIE	s	CHEMICAL ANALYSIS (%)						
Heat No.	Size O.D.	or Wall Thick.	Hydro. Test Pres. P.S.I.	Yield Strength P.S.I. Point	Tensile Strength P.S.I.	Elang, In <u>2</u> ,	с	Mn	Р	S	SI		
						-							
512898	24"	375	660	58900	77700	30	.22	.76	.008	.020			
36D004	16"	375	990	40400	74200	34	.24		.008				
96D019	16"	375	990	40200	70700	36	.23	.81	.015	.026			
											-		
I													
1													

The undersigned, in behalf of The L. B. Foster Company, hereby certifies that the above materials have been inspected and tested in accordance with the methods prescribed in the applicable specifications and the results of such inspection and tests shown above. In determining properties or characteristics for which no methods of inspecting or testing are prescribed by sold specifications, the standard mill inspection and testing practices of The L. B. Foster Company have been applied. Unless it appears otherwise in the results of such inspection and tests shown above, the undersigned agent of The L. B. Foster Company believes that said materials conform to said specifications,

Subscribed and sworn to before me this state day of fune 19_

lisin Kesst

ÓTIS R KESSLER PLANT MGR

L B FOSTER CO

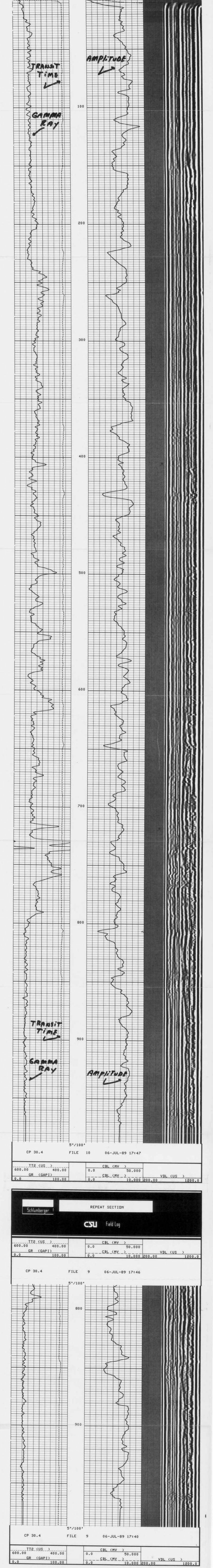
Notary Fubile

ROBERT G. STEVENSON Notary Public, Effingham County, Gr. MY Commission Expires May 18, 1993 Agents' Name & Title

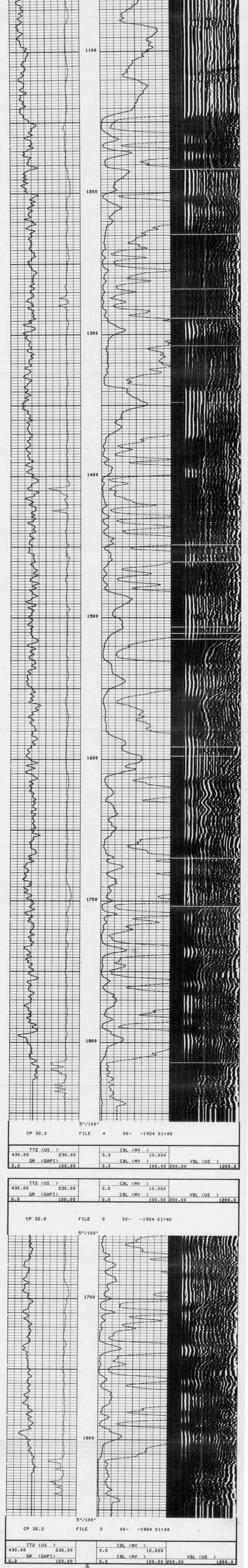
Form No. - 5W 4.69

COMPANY

GERAGHTY & MILLER, INC.


APPENDIX I

Cement Records of Injection Well 1 and Deep Monitor Well


DEPTH-DRILLER: 1009.0 F DEPTH-LOGGER: 984.0 F BTM. LOG INTERVAL: 976.0 F CASING-DRILLER: 10.0 F CASING-LOGGER: 1009.0 F CASING: 16" WEIGHT: 16" WEIGHT: 16" DEPTH: 22"	LUCHTION: CLIT OF PHONKEE FLORIDA SEC: 19 TWP: 42 S RGE: 37 E FERMANENT DATUM: TWP: 42 S RGE: 37 E ELEV. OF PERM. DATUM: 13.8 F ELEVATIONS- ELEV. OF PERM. DATUM: 13.8 F KB: 19.8 F ABOVE PERM. DATUM GL: 13.8 F DRLG. MEASURED FROM: PAD DATE: 6 JUL 89 RUN ND: 0NE	YOUNGQUI PAHOKEE PAHOKEE PALM BEA FLORIDA	CEMENT BOND LOG VARIABLE DENSITY
	PROGRAM TAPE NO: 30.4 SERVICE DRDER NO: 363793	DTHER SERVICES- CBL TEMP	
TYPE FLUID IN HOLE DENSITY: VISCOSITY: PH: FLUID LOSS: SOURCE OF SAMPLE: RM: RMF:	AT AT AT AT 131. I AT 131. I	DEGF DEGF DEGF	
RMC: SDURCE RMF/RMC: RM AT BHT: RMF AT BHT: RMC AT BHT: TIME CIRC. STOPPE TIME LOGGER ON BT MAX. REC. TEMP: LOGGING UNIT NO: LOGGING UNIT LOC: RECORDED BY:	1.: 131.0 DEGF 8193 FT.MYERS		

ALL INTERPRETATIONS ARE OPINIONS BASED ON INFERENCES FROM ELECTRICAL OR OTHER MEASUREMENTS AND WE CANNOT, AND DO NOT GUARANTEE THE ACCURACY OR CORRECTNESS OF ANY INTERPRETATIONS, AND WE SHALL NOT, EXCEPT IN THE CASE OF GROSS OR WILLFUL NEGLIGENCE ON OUR PART, BE LIABLE OR RESPONSIBLE FOR ANY LOSS, COSTS, DAMAGES OR EXPENSES INCURRED OR SUSTAINED BY ANYONE RESULTING FROM ANY INTERPRETATION MADE BY ANY OF OUR OFFICERS, AGENTS OR EMPLOYEES. THESE INTERPRETATIONS ARE ALSO SUBJECT TO OUR GENERAL TERMS AND CONDITIONS AS SET OUT IN OUR CURRENT PRICE SCHEDULE.

06-JUL-89 18:40 FILE 11 CP 30.4 TT2 (US) CBL (MY) 50.000 0.0 400.00 0.0 CBL (MY) YDL (US > GR (GAPI) 10.000 200.00 1200.0 100.00 0.0 FILE 10 06-JUL-89 18:29 CP 30.4 5"/100" 0

Witnessed By	Recorded By	Equip. Location	Max. Rec. Temp.	Logger on Bottom	u Circulation Ended		Source: Rmf R		Rmt @ Meas. Temp.	Rm @ Meas. Temp.	Source of Sample		Dens. Viso.	Type Fluid in Hole	Bit Size	Casing-Logger	Casing-Driller	Top Log Interval	Btm. Log Interval	Depth Logger (So	Depth Driller	Run No.	Date	Drilling Measured From	Permanent Datum	COUNTY FIELD LOCATH WELL COMPAN	ON	CITY O	kee w of Paj	WTP HOKEE P EP MON	LORIDA ITOR WE		/ Schlumberger	
MCGRATH	SCHULER	tion 8193		ttom	bed		Amo	Temp.	mp.	\$	•	088		WATER	14 3/4		6 5/8 @ 19	1000.0 F	1853.0 F	(SohL) 1862.0 F	1860.0 F	FOUR	1-AUG-89	mo	PAD	API SERIAL NO.	S WASTE WATER TREATM	CITY OF PAHOKEE FLORID	COUNTY	FIELD	WELL	COMPANY	erger	
		FT.MYERS				0		0	0	0							1925.0 F								Bev.	8ECT. 19	ER TREATM		PALM BEACH	PAHOKEE WWTP	PAHOKEE DEE	YOUNGQUIST	VARIABLE	CEMENT
																	•								above Perm. Datum	TWP. RANGE 42 S 37 E			STATE		PAHOKEE DEEP MONITOR WELL NO.1	YOUNGOUIST BROTHERS DRILLING		AT BOND LOG
		-				0		0	•								G							G.L. 13.8 F	Elev.: N.B.18.0 F			Other Services:	FLORIDA		LL NO.1	LING	DENSITY '	
						-	-		-	2.2		-			-	22	-	-	-	-						e furnis					1.77.77	ot. and		
				0 0 1 0	ros	not s (red		era will r a	ful ful fust	e th ne taine	e a glig ad inte	by arpr	178C 26 81 618	on	OL	no:	par	1,	be	lia	ble	or	res		sible 1	or any	loss	. COST	ts, da	mages	OF 6)	ot, and ase of genses gents or set out		
		No.		i	Ne	n c	urr	ent	Prie	C6 5	Sch	edu	10.		FO	UR 671	1		-	-	-	-	-				T	-	_	_	_			
DISR	nillin altin	ng ity e i	Flu	r I	.67			_	_			_						_				0	_	_							0		-	~
LE	990 QUI	PM	B		AT	A	_	-	_	_	_	_	-		C1	SE	_	_		-		-	-	-	-			-		.**				
Ŧ	00	Nu	mb	18/ 18/ 18/	2	_			_	•	_	_	_		SL		38	04	_	-		_	_				+							
F	00	Nu	imb imb	181 181 181	5	_		-	_	_	_	_		_		_	-	_			_		_				+				_			
Ŧ	00	No.	umb	10r	8	_	_	_	_	_	_					_	_	_	-			-				-	+		_		_		_	
T	00	-	umb umb	184 184 184	11						_	_	_					_		_		_	_		_		1	-	-		_		_	
		*		с,з					СМ	E-S	LC	CM	E-G	IR-C	CME	E																		
ř	43	0.	. 0		T2		U	s	.?	23	ō .	. 0 (5-					0		5		CB	L	<u>< M</u>	Y	>	000	0			10000			
L	0.		0.00		R	(G	AP		10	0	. 01	0	_	_			0	. ()		CB	L	< M	Y	> 100	.01	0 20	00.	00	/DL	(US) 12	200.0
				CP	3	12.	2											4	F.			0	0 -		-1	924	01	: 50						
	The second secon													5"		10																		

GERAGHTY & MILLER, INC.

,

INJECTION WELL 1

Casing Size _(Inches)	Date	Stage Number	Cement Additives	Volume Pumped (Cubic Feet)	Compressive Strengths (in pounds per square inch)	
40	5/18/89	1	12% Bentonite	786.04	1180	
40	5/18/89	1	Neat	168.44		197 - 17
40	5/20/89	2	Neat	67.38	3340	17 – surface
32	5/27/89	1	12% Bentonite	1212.75	1930	997 - 332
32	5/27/89	1	Neat	561.46	4950	997 - 332
32	5/28/90	2	12% Bentonite	853.42	840	332 – surface
22	7/11/89	1	12% bentonite	943.25	N/A	
22	7/11/89	1	Pozzolanmix	263.88	2470	
22	7/11/89	1	Neat	505.31	> 5000	2000 - 1807
22	7/12/89	2	Pozzolanmix	1431.72	2450	1807 - 1807
22	7/13/89	3	Pozzolan 2000	516.72	2990	1807 - 1785
22	7/13/89	4	Pozzolan 2000	707.44	2660	1785 - 1696
22	7/13/89	5	Pozzolan 2000	713.05	2660	1696 - 1696
22	7/14/89	6	Pozzolan 2000	561.46	3560	1696 - 1687
22	7/14/89	7	Pozzolan 2000	561.46	3120	1687 - 1681
22	7/14/89	8	Pozzolan 2000	280.73	> 5000	1681 - 1681
22	7/15/89	9	Pozzolan 2000	286.34	2780	1681 - 1681
22	7/15/89	10	Pozzolan 1500, Kolite, <i>6</i> % Bentonite	145.98	1450	1681 - 1680
22	7/16/89	11	Pozzolan 3000	84.22	3440	1680 - 1680
22	7/16/89	12	Pozzolan 1500	140.36	1480	1680 - 1680

Casing Size (Inches)	Date	Stage Number	Cement Additives	Volume Pumped (Cubic Feet)	Compressive Strengths (in pounds per square inch)	
22	7/17/89	13	Type II Neat, 3% CaCl ₂ , and Celloflakes	140.37	4350	1680 - 1680
22	7/17/89	14	Type II, Neat, 3% CaCl ₂ , and Celloflakes	140.37	2870	1680 - 1680
22	7/17/89	15	Type II, Neat, 3%, CaCl ₂ , and Celloflakes	140.37	4200	1680 - 1673
22	7/17/89	16	Type II, Neat, 3% CaCl ₂ , and Celloflakes	140.37	1640	1673 - 1663
22	7/18/89	17	Type II, Neat, 3%, CaCl ₂ , and Celloflakes	140.37	3240	1633 - 1655
22	7/18/89	18	Type II, Neat, 3%, CaCl ₂ , and Celloflakes	247.04	4140	1655 - 1651
22	7/18/89	19	Type II, Neat, 3%, CaCl ₂ , and Celloflakes	140.37	> 5000	1651 - 1651
22	7/18/89	20	Type II, Neat, 3%, CaCl ₂ , and Celloflakes	61.76	3670	1651 - 1648
22	7/19/89	21	Type II, Neat, 3%, CaCl ₂ , and Celloflakes	140.37	▶ 5000	1648 - 1633
22	7/19/89	22	Type II, Neat, 4%, CaCl ₂	140.37	3820	1633 - 1605

Casing Size (Inches)	Date	Stage <u>Number</u>	Cement Additives	Volume Pumped (Cubic Feet)	Compressive Strengths (in pounds per square inch)	
22	7/19/89	23	Type II Neat, 4% CaCl ₂ , and Celloflakes	252.66	3340	1605 - 1605
22	7/19/89	24	Type II, Neat, 4% CaCl ₂ , and Celloflakes	140.37	3280	1605 - 1605
22	7/19/89	25	Type II, Neat, 4% CaCl ₂ , and Celloflakes, Kolite	168.44	4760	1605 - 1605
22	7/20/89	26	Type II, Neat, Celloflakes, Kolite	140.37	4110	1605 - 1600
22	7/20/89	27	Type II, Neat, Celloflakes, Kolite	140.37	3250	1600 - 1593
22	7/20/89	28	Pozzolan 1500, 6% Bentonite, Celloflakes, Kolite	140.37	2420	1593 - 1581
22	7/20/89	29	Type II, Neat, 4% CaCl ₂ , Celloflakes and Micatex	140.37	4950	
22	7/20/89	30	Pozzolan, 6% Bentonite, Micatex, Seed Hulls	280.74	2760	1556 - 1546
22	7/21/89	31	Neat, 12% Bentonite, Micatex	561.46	1340	1546 - 1514
22	7/21/89	32	Neat, 12% Bentonite, Micatex	617.61	1360	1514 - 1490
22	7/21/89	33	Neat, 12% Bentonite, Micatex, Cotton Seed Hulls	842.19	1970	1490 - 1452

Casing Size (Inches)	e Date	Stage Number	Cement Additives	Volume Pumped <u>(Cubic Feet)</u>	Compressive Strengths (in pounds per square inch)	
22	7/21/89	34	Neat, 12% Bentonite, Celloflakes, Cotton Seed Hulls	561.46	1430	1462 - 1453
22	7/22/89	35	Neat, 4% CaCl ₂ and Micatex	140.37	· 5000	1453 - 1446
22	7/22/89	36	Neat, 4% CaCl ₂ and Micatex	140.37	4720	1446 - 1437
22	7/22/89	37	Neat, 12% Bentonite	561.46	2660	1437 - 1416
22	7/23/89	38	Neat, 4% CaCl ₂ and Celloflakes	129.14	5000	1416 - 1407
22	7/23/89	39	Neat, 4% CaCl ₂ and Celloflakes	196.51	▹ 5000	1407 - 1400
22	7/23/89	40	Neat, 12% Bentonite, Micatex	280.73	2760	1400 - 1395
22	7/24/89	41	Neat, 4% CaCl ₂ and Celloflakes	140.37	4420	
22	7/24/89	42	Neat, 3% CaCl ₂ Celloflakes and Kolite	140.37	4420	
22	7/25/89	43	Neat, 3%, CaCl ₂ and Kolite	140.37	4420	
22	7/25/89	44	Neat, 3% CaCl ₂ and Kolite	140.37	4420	1373 - 1354
22	7/25/89	45	12% Bentonite, Celloflakes	140.37	4420	1354 - 1354
22	7/25/89	46	Neat, Kolite	140.37	4420	1354 - 1354

Casing Size (Inches)	Date	Stage <u>Number</u>	Cement Additives	Volume Pumped (Cubic Feet)	Compressive Strengths (in pounds per square inch)	
22	7/26/89	47	Neat, 4% CaCl ₂ and Celloflakes	140.37	4420	1354 - 1354
22	7/26/89	48	Neat, 4% CaCl ₂ and Celloflakes	140.37	▹ 5000	1354 - 1354
22	7/26/89	49	Neat, 4% CaCl ₂ and Celloflakes	56.14	1840	1354 - 1354
22	7/26/89	50	Neat, 4% CaCl ₂ and Celloflakes	140.37	1450	1354 - 1350
22	7/27/89	51	Neat, 5% CaCl ₂ and Celloflakes	235.81	4880	1350 - 1335
22	7/27/89	52	Neat, 4% CaCl ₂ and Celloflakes	145.96	3470	1330 - 1330
22	7/27/89	53	Neat, 4%, CaCl ₂ and Celloflakes	140.37	3470	1330 - 1330
22	7/27/89	54	Neat, 4%, CaCl ₂ and Celloflakes	140.37	3470	1330 - 1330
22	7/28/89	55	Neat, 4% CaCl ₂ , Celloflakes and Cotton Seed Hulls	140.37	3470	1330 - 1330
22	7/28/89	56	Neat, 4% CaCl ₂ and Celloflakes	140.37	3470	1330 - 1329
22	7/28/89	57	Neat, 4% CaCl ₂ and Celloflakes	145.96	3470	1329 - 1329
22	7/28/89	58	Neat, 4% CaCl ₂ and Celloflakes	140.37	3470	1329 - 1329

Casing Size (Inches)	Date	Stage Number	Cement Additives	Volume Pumped (Cubic Feet)	Compressive Strengths (in pounds per square inch)	
22	7/28/89	59	Neat, 12% Bentonite, Celloflakes	561.48	3470	1329 - 1328
22	7/29/89	60	12% Bentonite	140.37	2750	1328 - 1328
22	7/29/89	61	12% Bentonite, D29	145.96	2760	1328 - 1320
22	7/29/89	62	Neat, 4% CaCl ₂	140.37	> 5000	1320 - 1317
22	7/30/89	63	Neat, 12% Bentonite	84.22	4980	
22	7/30/89	64	12% Bentonite D29	291.92	2470	
22	7/30/89	65	l2% Bentonite 4% CaCl ₂	252.66	4200	1314 - 1314
22	7/31/89	66	Neat, 4% CaCl ₂	140.37	4920	1314 - 1312
22	7/31/89	67	Neat, 4% CaCl ₂	140.37	· 5000	1312 - 1312
22	7/31/89	68	Neat, 4% CaCl ₂	145.98	4980	1312 - 1312
22	7/21/89	69	Neat, 4% CaCl ₂	196.51	4920	1312 - 1312
22	7/31/89	70	Neat, 4% CaCl ₂ ,	140.37	3470	1312 - 1311
22	8/1/89	71	Neat, 4% CaCl ₂ , 25 lbs Celloflakes	140.37	· 5000	1311 - 1311
22	8/1/89	72	Neat, 12% Bentonite, 25 lbs Celloflakes	280.73	3840	1311 - 1311
22	8/1/89	73	Neat, 4% CaCl ₂	145.98	· 5000	1311 - 1310
22	8/1/89	74	Neat, 4% CaCl ₂	140.37	3210	1310 - 1310

Casing Size (Inches)	Date	Stage Number	Cement Additives	Volume Pumped (Cubic Feet)	Compressive Strengths (in pounds per square inch)	
22	8/2/89	75	Neat, 4% CaCl ₂ , 50 lbs Cottonseed Hulls	140.37	· 5000	1310 - 1310
22	8/2/89	76	Neat, 4% CaCl ₂ , Cottonseed Hulls	168.44	> 5000	1310 - 1310
22	8/2/89	77	Neat	140.37	3140	1310 - 1310
22	8/2/89	78	Neat, 4% CaCl ₂	140.37	4850	1310 - 1310
22	8/2/89	79	Neat, 4% CaCl ₂	140.37	3200	1310 - 1310
22	8/3/89	80	Neat, 12% Bentonite, Cottonseed Hulls, 25 lbs Celloflakes	522.16	3200	
22	8/3/89	81	Neat, 4% CaCl ₂ and 25 lbs Cottonseed Hulls	140.37	4990	1310 - 1309
22	8/3/89	82	Neat, 4% CaCl ₂	140.37	3660	1309 - 1308
22	8/3/89	83	Neat, 4% CaCl ₂	140.37	3560	1308 - 1308
22	8/4/89	84	Neat	140.37	4250	1308 - 1306
22	8/4/89	85	Neat, 12% Bentonite, Cottonseed Hulls	364.95	2100	1306 - 1304
22	8/4/89	86	Lite ASTM Type II, 12% Bentonite, 126 ppg	280.73	3050	1303 - 1303
22	8/4/89	87	Lite ASTM Type II, 12% Bentonite	280.73	3840	1303 - 1303

Casing Siz _(Inches)	e Date	Stage Number	Cement Additives	Volume Pumped (Cubic Feet)	Compressive Strengths (in pounds per _square inch)	
22	8/5/89	88	Neat, 10 Lbs Cottonseed Hulls	258.27	4970	1303 - 1303
22	8/5/89	89	Neat, 12% Bentonite, 10 lbs Cottonseed Hulls	364.95	2100	1306 - 1304
22	8/6/89	90	Neat, 12% Bentonite	280.73	3860	1301 - 1301
22	8/6/89	91	Neat, 12% Bentonite	280.73	2870	1301 - 1301
22	8/6/89	92	Pozzolan (DSG–2500), 13.0 ppg	280.73	> 5000	1301 - 1301
22	8/7/89	93	Neat, 4% CaCl ₂	140.37	3060	1311 - 1310
22	8/7/89	94	Neat, 4% CaCl ₂	145.98	4880	1311 - 1310
22	8/7/89	95	Neat, 4% CaCl ₂	168.44	· 5000	1310 - 1310
22	8/15/89	96	Neat, 4% CaCl ₂ , 25 lbs Celloflakes	140.37	5000	1291 - 1263
22	8/16/89	97	Neat, 4% CaCl ₂	140.37	3930	1263 - 1233
22	8/16/89	98	DSG 2500 (13 lb/g) 50 lbs Celloflakes	421.10	1880	1233 - 1168
22	8/17/89	99	DSG 2500 (13 lb/g) 50 lbs Celloflakes	280.73	3220	1168 - 1118
22	8/17/89	100	Neat, 12% Bentonite, 50 lbs Celloflakes	280.73	1270	1118 - 1071
22	8/18/89	101	Neat, 12% Bentonite, 50 lbs Celloflakes	280.73	1760	1071 - 1018
22	8/18/89	102	Neat, 12% Bentonite, 50 lbs Celloflakes	421.10	1820	1018 - 915

.

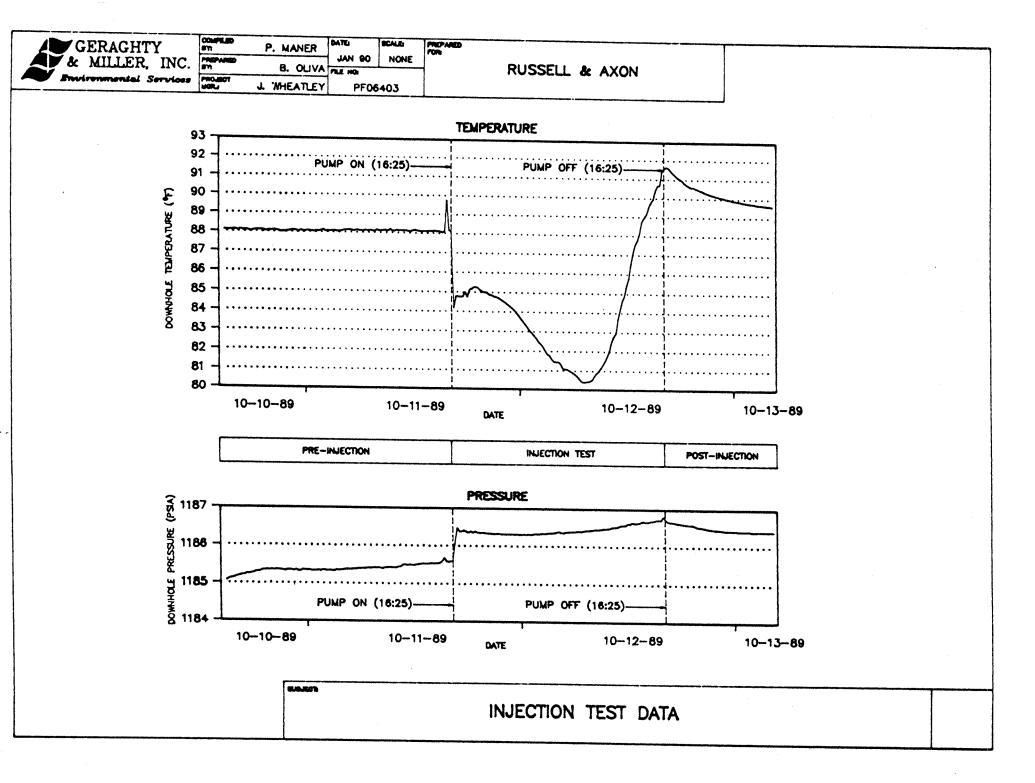
Casing Size _(Inches)	e Date	Stage Number	Cement Additives	Volume Pumped (Cubic Feet)	Compressive Strengths (in pounds per square inch)	
22	8/19/89	103	Neat, 12% Bentonite	814.12	1800	915 - 618
22	8/19/89	104	Neat, 12% Bentonite	808.50	2130	618 - 320
22	8/20/89	105	Neat, 12% Bentonite	611.99	2440	320 – surface
12	9/29/89	1	Neat, 6% Bentonite	3716	3180	
12	9/29/89	1	Neat	235.81	4720	2650 - 2410
12	9/30/89	2	Neat, 6% Bentonite	432.32	3260	2410 - 2275
12	10/1/89	3	Neat, 6% Bentonite, 50 lbs Celloflakes	421.12	2180	2275 - 2188
12	10/1/89	4	Neat, 6% Bentonite, 75 lbs Celloflakes	558.88	3240	2188 - 2008
12	10/1/89	5	Neat, 6% Bentonite, 50 lbs Celloflakes	280.75	3670	2008 - 1863
12	10/2/89	6	Neat, 12% bentonite	707.49	3050	1863 - 1440
12	10/2/89	7	Neat, 12% Bentonite	707.49	1530	1440 - 1028
12	10/3/89	8	Neat, 12% Bentonite	707.49	1880	1028 - 590
12	10/3/89	9	Neat, 12% Bentonite	707.49	3070	590 - 142
12	10/3/89	10	Neat, 12% Bentonite	218.99	3490	142 – surface

GERAGHTY & MILLER, INC.

DEEP MONITOR WELL

CEMENT RECORD CITY OF PAHOKEE DEEP MONITOR WELL

Casing Size (Inches)	Date	Stage Number	Cement Additives	Volume Pumped (Cubic Feet)	Compressive Strengths (in pounds per squareinch)	Fill Interval (Feet)
24	6/28/89	1	12% Bentonite	365.00	1750	194 - 0
24	6/28/89	1	Neat	140.00	2050	194 – 0
16	7/6/89	1	4% Bentonite	1095.00	2620	1009 – surface
16	7/6/89	1	Neat	258.00	4350	1009 – surface
6	7/26/89	1	Neat	224.59	3740	1925 - 1806
6	7/26/89	1	6% Bentonite, Kolite, and Celloflakes	202.13	1430	1925 - 1806
6	7/26/89	2	6% Bentonite, Celloflakes	140.37	2710	1806 - 1806
6	7/27/89	3	6% Bentonite, Celloflakes	39.30	3330	1806 - 1806
6	7/27/89	4	Neat, 4% CaCl ₂ , Celloflakes	56.14	4300	1806 - 1802
6	7/27/89	5	Neat, 4% CaCl ₂ , Celloflakes	56.14	> 5000	1802 - 1800
6	7/27/89	6	Neat, 4% CaCl ₂ , Celloflakes	56.14	2950	1800 - 1800
6	7/28/89	7	Neat, 4% CaCl ₂ , Celloflakes	56.14	3620	1800 - 1800
6	7/28/89	8	Neat, 4% CaCl ₂ , Celloflakes	56.14	3700	1800 - 1760
6	7/28/89	9	Neat, 4% CaCl ₂ , Celloflakes	67.37	3890	1760 - 1760
6	7/28/89	10	6% Bentonite	174.03	3250	1730 - 1637


CEMENT RECORD CITY OF PAHOKEE DEEP MONITOR WELL

Casing Size (Inches)	Date	Stage Number	Cement Additives	Volume Pumped (Cubic Feet)	Compressive Strengths (in pounds per _square inch)	Fill Interval (Feet)
6	7/29/89	12	6% Bentonite, Celloflakes	56.14	2980	1637 - 1584
6	7/29/89	12	6% Bentonite, Celloflakes	56.14	3060	1584 - 1521
6	7/29/89	13	6% Bentonite, Celloflakes	224.56	3460	1521 - 1380
6	7/30/89	14	6% Bentonite	123.52	2950	1380 - 1316
6	7/30/89	15	6% Bentonite	168.44	3750	1316 - 1226
6	7/30/89	16	6% Bentonite	67.38	3280	1226 - 1177
6	7/31/89	16	6% Bentonite	39.30	2720	1177 - 1147

GERAGHTY & MILLER, INC.

APPENDIX J

Injection Test Data

APPENDIX K

Operation and Maintenance Forms

CITY OF PAHOKEE WASTEWATER TREATMENT PLANT I.D. # 5050M00787

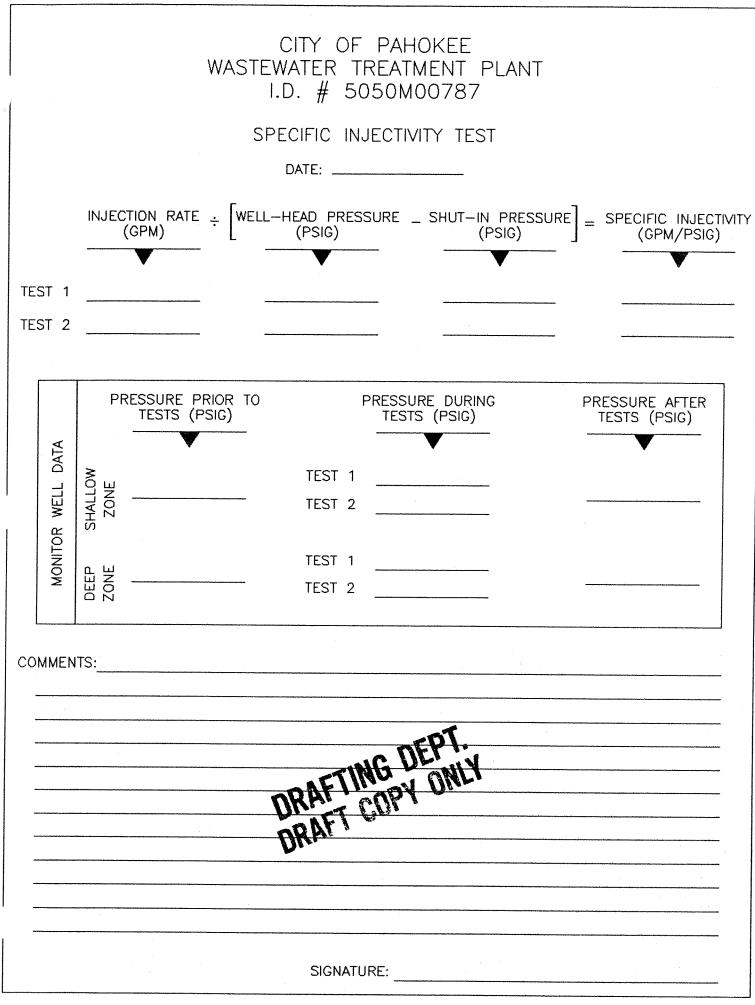
INJECTION WELL DATA

MONTH: _____YEAR:_____

TIME	INJECTION* FLOW RATE (MGD)	INJECTION* PRESSURE (PSIG)	MAXIMUM FLOW RATE (MGD)	MAXIMUM PRESSURE (PSIG)	AVERAGE PRESSURE (PSIG)	VOLUM INJECTE (GALLON
IIME		(1 510)	(1100)	(, 0,0)		
				·····		
		· .				
				······		
		·	·			
					······	
	· · · · · · · · · · · · · · · · · · ·					
					· · · · · · · · · · · · · · · · · · ·	
			······			
-						
					en a Marine	
		· · · · ·				
					·	
					· _ · · · · · · · · · · · · · · · · · ·	
TOTAL						
AVERAGE		1				
MAXIMUN						****
MINIMUM						
	f INJECTION FLOW	RATE and INJEC	TION PRESSURE			

CITY OF PAHOKEE WASTEWATER TREATMENT PLANT ID # 5050M00787

MONITOR WELL SURFACE PRESSURE DATA


MONTH:_____YEAR:_____

ſ	SHALLOW MONITOR ZONE				DEEP MONITOR ZONE			
TE	MAXIMUM PRESSURE (PSIG)	MINIMUM PRESSURE (PSIG)	AVERAGE PRESSURE (PSIG)		MAXIMUM PRESSURE (PSIG)	MINIMUM PRESSURE (PSIG)	AVERAGE PRESSURE (PSIG)	
1								
Ī								
						·		
					· · · · · · · · · · · · · · · · · · ·			
					-		- 	
	· · · · · · · · · · · · · · · · · · ·							
_	·							
		· · · · · · · · · · · · · · · · · · ·						
					······································			
-								
						· ·		
							·····	
							·····	
ŀ							·····	
1		I			· · · · · · · · · · · · · · · · · · ·			

Geraghty & Miller, Inc

SIGNATURE:

WA	ASTEWATE	OF PAHO R TREATMI 5050M00	ENT PLAN	Т					
MONITOR WELL WATER QUALITY DATA									
	MONTH:	YEA	Ŕ:						
	WEEK BEGINNING								
PARAMETER									
DATE OF SAMPLING									
SHALLOW MONITOR ZONE ((996 FT. TO 1	1147 FT.)							
PRESSURE PRIOR TO SAMPLING (PSIG)									
TEMPERATURE (°F)									
рН									
SPECIFIC CONDUCTIVITY (μ mhos/cm)									
CHLORIDES (mg/L)			nrl	T					
TOTAL DISSOLVED SOLIDS (mg/L)		NRAF	TING DEL T COPY O	NLY					
AMMONIA (mg/L)		ngaf	CUT · ·						
FECAL COLIFORM (colonies/100ml)		יייוע							
TKN (mg/L)									
DEEP MONITOR ZONE (19	15 FT. TO 200	08 FT.)	· · · · · · · · · · · · · · · · · · ·		, , , ,				
PRESSURE PRIOR TO SAMPLING (PSIG)									
TEMPERATURE (°F)									
рН									
SPECIFIC CONDUCTIVITY (μ mhos/cm)									
CHLORIDES (mg/L)									
TOTAL DISSOLVED SOLIDS (mg/L)									
AMMONIA (mg/L)	- -								
FECAL COLIFORM (colonies/100ml)									
TKN (mg/L)									
COMMENTS:			<u></u>						
<u></u>		SIGNATURE:							

