CDM

Preliminary Geotechnical Engineering
Evaluation for the

C-44 Water Management Project

Prepared for: Aquacalma 500 Australian Ave. South, Suite 630 West Palm Beach, FL 33401

Appendices

Appendix A Reference Documents

Appendix B Subsurface Exploration and Preliminary Geotechnical Engineering Evaluation by Ardaman & Associates, Inc.

Appendix C Boring Logs, Test Pit Logs, Well Installation and Monitoring Logs

Appendix D Field Hydraulic Conductivity Testing

Appendix E Laboratory Testing Results

Appendix F Wave Run-up Analysis

Appendix G Seepage Analysis – SEEP2D and SEEP/W

Appendix H Stability Analysis – UTEXAS4 and XSTABL

Appendix I Bearing Capacity and Settlement Analysis

APPENDIX C

Boring Logs, Test Pit Logs, Well Installation and Monitoring Logs

BORING LOGS

BOREHOLE LOG B-101

Client: Aquacalma LP

Project Location: Indiantown, Florida

Drilling Contractor: Nodarse & Associates, Inc.

Drilling Method/Rig: Mud Rotary Drill/CME 45

Drilling Date: Start: 01/19/04 End: 01/21/04

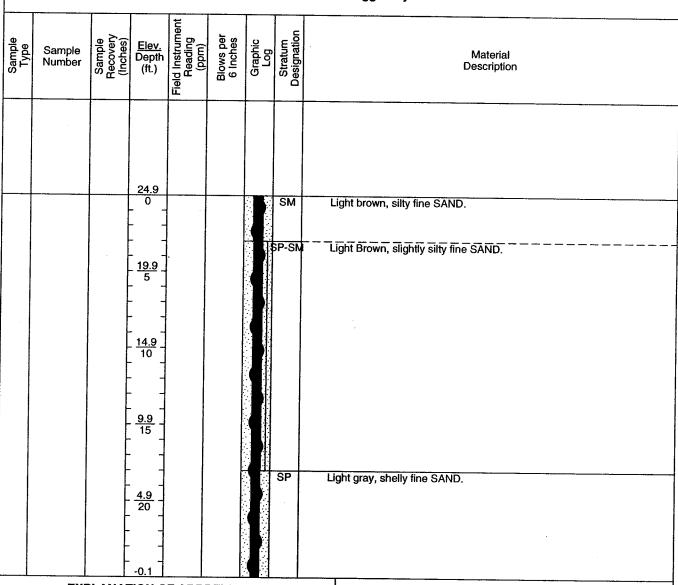
Borehole Coordinates:

Drillers: Carl Sandgren

N 1,011,068.70 E 831,654.20

Project Name: C-44 Reservoir Phase 1 Project Number: 24752-40911-RT2.FIELD

Surface Elevation (ft.):24.91


Total Depth (ft.): 140

Depth to Initial Water Level (ft. BGS):

Abandonment Method: Portland Cement

Field Screening Instrument:

Logged By: EDM

EXPLANATION OF ABBREVIATIONS

DRILLING METHODS: HSA SSA HA AR DTR Hollow Stem Auger Solid Stem Auger Hand Auger

C-44 PHASE1.GPJ CDM_CORP.GDT

Air Rotary Dual Tube Rotary FR MR RC CT Foam Rotary
Mud Rotary
Reverse Circulation
Cable Tool

JET Jetting Driving D DTC

Drill Through Casing

SAMPLING TYPES:

Auger/Grab Sample California Sampler

AS CS BX NX GP 1.5" Rock Core 2.1" Rock Core Geoprobe Hydro Punch SS ST WS Split Spoon Shelby Tube Wash Sample

AGS Above Ground

REMARKS

Drilled down without sampling from 0 to 98.5 ft-bgs. Soil description based on driller observation during drilling. Spilt Spoon sampling started at 98.5 ft-bgs.

Reviewed by:

Date: 64/2

CAMP DRESSER & McKEE

5400 Glenwood Avenue Suite 300 Raleigh, NC 27612

<u>45.1</u> 70

BOREHOLE LOG B-101

Client: Aquacalma LP Project Name: C-44 Reservoir Phase 1 Project Location: Indiantown, Florida Project Number: 24752-40911-RT2.FIELD Field Instrument Reading (ppm) Stratum Designation Blows per 6 Inches Graphic Log Elev. Depth (ft.) Sample Number Material Description SP <u>-5.1</u> 30 SIP-SHELL Gray, fine sandy SHELL. -<u>10.1</u> 35 40 -<u>20.1</u> Gray, slightly clayey shelly fine SAND. 45 -<u>30.1</u> 55 -<u>35.1</u> 60 BL C-44 PHASE1.GPJ CDM_CORP.GDT 4/16/04 -<u>40.1</u> 65

BOREHOLE LOG B-101

Client: Aquacalma LP

Project Location: Indiantown, Florida

Project Name: C-44 Reservoir Phase 1
Project Number: 24752-40911-RT2 FIFLD

FIO	ject Loca	tion: inc	Jiantow		ıa ———	,		Project Number: 24752-40911-RT2.FIELD
Sample Type	Sample Number	Sample Recovery (Inches)	Elev. Depth (ft.)	Field Instrument Reading (ppm)	Blows per 6 inches	Graphic Log	Stratum Designation	Material Description
			75 - - - - <u>-55.1</u>				SP-SC	Gray, slightly clayey fine SAND, some cemented shell fragments. (Difficult drilling from 75 to 98.5 ft-bgs.)
			- <u>60.1</u> 85					
			- -65.1 -90					
	·	-	- - <u>70.1</u> - 95 -					
SS	S-1	18/18	-75.1 100		18 20 11		SM	Dense, gray, slightly shelly silty fine SAND, trace coarse cemented shell fragments.
SS	S-2	18/18	- <u>80.1</u> 105		8 8 14			Medium dense, gray, slightly shelly silty fine SAND, trace coarse cemmented shell fragments.
SS	S-3	18/18	- <u>85.1</u> 110		10 10 14		P-SC	Medium dense, light olive gray, slightly shelly clayey fine SAND, trace silt.
ss	S-4	18/18	- <u>90.1</u> 115		6 6 -11		SP	Medium dense, light gray, slightly silty and slightly shelly fine to medium SAND, trace cemmented fragments.
SS	S-5	18/18	- <u>95.1</u> 120		13 9 25			Dense, light gray, shelly medium SAND, trace cemented fragments, phosphate, weak to moderate cementation.
SS.	S-6	18/18	100.1		15 24 18			Dense, light gray, shelly medium SAND, some cemmented fragments, phosphate, weak to moderate cementation.

BOREHOLE LOG B-101

Client: Aquacalma LP
Project Location: Indiantown, Florida

Project Name: C-44 Reservoir Phase 1
Project Number: 24752-40911-BT2 FIFLE

	ect Locat	tion: Inc		n, Floric	la			Project Number: 24752-40911-RT2.FIELD
Sample Type	Sample Number	Sample Recovery (Inches)	-100.1	Field Instrument Reading (ppm)	Blows per 6 Inches	Graphic Log		Material Description
SS	S-7	11/11	125 - - -105.1 130		28 50/5"		SP SP-SC	Very dense, olive gray, slightly clayey slightly fine SAND, some phosphate, trace shell fragments.
SS	S-8	18/18	-110.1 -135		22 25 30		SM	Very dense, silty fine SAND, some phosphate, trace shell fragments.
SS		18/0	- - - <u>115.</u> 1 140		28 31 49			No recovery.
			- <u>120.</u> 1 145					Boring terminated at 140 ft-bgs.
			- <u>125.</u> 1 150					
			- <u>130.</u> 1 155	1777				
		·	- <u>135.</u> 1 160	1110000				
			- <u>140.</u> 1 165					
		- - - -	- <u>145.</u> 1 170					
			-150.1					

BOREHOLE LOG W-101

Client: Aquacalma LP

Project Location: Indiantown, Florida

Drilling Contractor: Consolidated Citrus LP

Drilling Method/Rig: Mud Rotary Drill/CME 45

Drillers: Carl Sandgren

Drilling Date: Start: 02/23/04 **End:** 02/26/04

Borehole Coordinates:

N 1,011,069.30 E 831,695.30

Project Name: C-44 Reservoir Phase 1 Project Number: 24752-40911-RT2.FIELD

Surface Elevation (ft.): 28.67

Total Depth (ft.): 137

Depth to Initial Water Level (ft. BGS):

Abandonment Method: 2-in well

Field Screening Instrument:

Logged By: KL

			•					3 3
Sample Type	Sample Number	Sample Recovery (Inches)	Elev. Depth (ft.)	Field Instrument Reading (ppm)	Blows per 6 Inches	Graphic Log	Stratum Designation	Material Description
			28.7 0				SP	Light brown, very slightly clayey and very slightly shelly fine to
			 					coarse SAND.
			<u>23.7</u> _ 					
			18.7 10					- shell fragments
		 	13.7 15					- shell fragments
			·		11	ر ح	SHELL	Dense, dark gray, fine to medium SAND and SHELL.
SS	S-1	18/18	8.7 20 -		11 22 30	000	-SHELL	- shell fragments
		-	·			000		
			3.7			000		
DRILLII	NG METHODS	PLANAT :.	HON O	SA	MPLING	TYPES:		REMARKS
SSA - HA - AR -		Auger		AS CS BX NX	3 - Cal (- 1.5'	ger/Grab S ifornia Sa " Rock Co " Rock Co	mpler ore	
	Dual Tube R Foam Rotary Mud Rotary		GF HP SS	P - Geo P - Hyd S - Spli	oprobe Iro Punch it Spoon	1		
CT - JET -		ะแสแอก		OT	· - She S - Was HER: SS - Ab	•	е	
TC.	Drill Through	C:		AG	- WD	o'se aion	nu .	Deviation of the VIII of the V

Jetting Driving
Drill Through Casing

Above Ground

F.K Neanty Reviewed by:

Date: 04/21

BOREHOLE LOG W-101

Client: Aquacalma LP
Project Location: Indiantown, Florida

Project Name: C-44 Reservoir Phase 1
Project Number: 24752-40911-RT2.FIELD

PIO	ject Locat	tion: Inc	diantow					Project Number: 24752-40911-RT2.FIELD				
Sample Type	Sample Number	Sample Recovery (Inches)	Elev. Depth (ft.) 3.7	Field Instrument Reading (ppm)	Blows per 6 Inches		Stratum Designation	Material Description				
			25 - <u>-1.3</u> -				P-SHELI					
SS	S-2	18/18	- - - <u>11.3</u> 40		10 12 11		1	Medium dense, dark gray, fine to medium SAND and SHELL shell fragments				
			<u>16.3</u> -45					- shell fragments				
			- <u>21.3</u> 50									
			- <u>26.3</u> -55					- shell fragments				
ss	S-3	18/18	- <u>31.3</u>		9 12 14		SP	Medium dense, dark gray, slightly shelly silty fine SAND.				
		 - - - - - -	- <u>36.3</u> 65					- shell fragments				
		- - - - -	- <u>41.3</u>			SP-	SHELL	Dark gray, silty fine SAND and SHELL fragments.				

BOREHOLE LOG W-101

Client: Aquacalma LP

BL C-44 PHASE1.GPJ CDM_CORP.GDT 4/21/04

Project Name: C-44 Reservoir Phase 1

1	ject Locat		iantow	n, Floric	da			Project Number: 24752-40911-RT2.FIELD
Sample Type	Sample Number	Sample Recovery (Inches)	Elev. Depth (ft.)	Field Instrument Reading (ppm)	Blows per 6 Inches	Graphic		Material Description
·			-46.3 75 			SI	-SHE	LL CONTRACTOR OF THE CONTRACTO
SS	S-4	18/18	- <u>51.3</u> 80		12 25 25 25		SP	Very dense, bluish gray, silty fine to medium SAND, with cemented fragments.
			 - <u>-56.3</u> - 85					
			 - <u>-61.3</u> - - 90					No sampling to end of boring at 137 ft-bgs.
			- - <u>-66.3</u> - 95					
			- <u>-71.3</u> - 100					
			- <u>76.3</u> 105					
			-81.3 110					
	TOTAL TO A MARKATA	- - - - - - - -	- <u>86.3</u> 115					
		 - - - - -	-91.3 120 -96.3		And the second s			

BOREHOLE LOG B-102

Client: Aquacalma LP

Project Location: Indiantown, Florida

Drilling Contractor: Nodarse & Associates, Inc.

Drilling Method/Rig: Mud Rotary Drill/CME 55

Drillers: Ralph Smith

Drilling Date: Start: 01/21/04 End: 01/23/04

Borehole Coordinates:

N 1,000,669.00 E 851,819.80

Project Name: C-44 Reservoir Phase 1

Project Number: 24752-40911-RT2.FIELD

Surface Elevation (ft.):29.5

Total Depth (ft.): 140

Depth to Initial Water Level (ft. BGS): **Abandonment Method:** Portland Cement

Field Screening Instrument:

Logged By: KL

Sample Type	Sample Number	Sample Recovery (Inches)	Elev. Depth (ft.)	Field Instrument Reading (ppm)	Blows per 6 inches	Graphic Log	Stratum Designation	Material Description
			00.5					
ss	S-1	24/24	29.5 0		2 5	77.7	TS -	Brown, silty SANDTOPSOIL-
					2 10 13 13 7		SP	Medium dense, light yellow, slightly silty fine SAND.
SS	S-2	24/24	- -			ana	CL-ML	Very stiff, gray and brown, sandy silty CLAY.
ss	S-3	24/24	<u>24.5</u> 5		8 9	mm	ML	Very stiff, dark gray, sandy clayey SILT.
ss	S-4	24/24	-		13 15 16 15 18			Hard, dark gray, sandy clayey SILT.
ss	S-5	24/24	 - 19.5		18 8 		SP-SM	Loose, bluish gray, silty fine SAND.
SS	S-6	18/18	10		8 16 16			Dense, light gray, silty fine to medium SAND, trace shell fragments.
SS	S-7	18/18	9.5 20		16 29 26			Very dense, gray, silty fine to medium SAND, trace shell fragments, phosphate.
88	S-8	2/0	4.5		50/2"		HELL	No recovery, description based on driller observation. Very dense, light gray, cemented SHELL fragments.
HSA - SSA - HA - DTR - FR - MR - RC - CT - JET -	NG METHODS Hollow Stem A Solid Stem A Hand Auger Air Rotary Dual Tube F Foam Rotary Mud Rotary	i: Auger Auger Jotary	TION C	AS CS BX NX GF HP SS ST WS	MPLING 6 - Aug 6 - Cali 7 - 1.5 7 - Gec 9 - Hyd 6 - Spli	TYPES: per/Grab ifornia Sa ' Rock Co ' Rock Co probe fro Puncl it Spoon elby Tube sh Samp	Sample ampler ore ore h	REMARKS Reviewed by A. M. M. B. A. A. M. A. J. C. M.

Solid Stem Auger
Hand Auger
Air Rotary
Dual Tube Rotary
Foam Rotary
Mud Rotary
Reverse Circulation
Cable Tool FR MR RC CT Jetting Driving Drill Through Casing JET D

Above Ground

Reviewed by: J. K. Numfu

Date: 04/21

BOREHOLE LOG B-102

Client: Aquacalma LP

Project Location: Indiantown, Florida

Project Name: C-44 Reservoir Phase 1

Pro	ect Loca	tion: Inc	diantow					Project Number: 24752-40911-RT2.FIELD
Sample Type	Sample Number	Sample Recovery (Inches)	Elev. Depth (ft.) 4.5	Field Instrument Reading (ppm)	Blows per 6 Inches	Graphic Log	Stratum Designation	Material Description
								Soft stratum encountnered at 26. 5 ft-bgsd while drilling (based on driller observation).
SS	S-9	18/18	-0.5 30		20 37 45	1 C	M-SHEL	L Very dense, dark gray, silty SHELL fragments.
SS	S-10	18/18	 - <u>-5.5</u> - - 35		27 39 36	ľŁ	SP	Very dense, dark gray, slightly silty fine to medium SAND, trace shell fragments, phosphate.
SS	S-11	18/18	- <u>10.5</u> 40		19 26 28			Very dense, light brown and gray, slightly silty fine SAND, trace shell fragments.
ss	S-12	18/18	- <u>15.5</u> 45		21 27 29			Very dense, light brownish gray, slightly silty fine SAND, trace shell fragments, phosphate.
SS	S-13	18/18	- <u>20.5</u> 50		14 18 18			Dense, light brownish gray, slightly silty fine SAND, trace shell fragments, phosphate.
SS	S-14	18/18	- <u>25.5</u> 55		8 11 14			Medium dense, light brownish gray, slightly silty fine SAND, trace shell fragments, phosphate.
SS	S-15	18/18	- <u>30.5</u>		11 15 16			Dense, light brownish gray, slightly silty fine SAND, trace shell fragments, phosphate.
SS	S-16	18/18	- <u>35.5</u> 65		5555		ML	Stiff, light olive gray, slightly sandy slightly clayey SILT, trace shell fragments.
SS	S-17	11/11	- <u>40.5</u> 70		21 50/5"		SM	Very dense, light gray, silty fine SAND, trace shell fragments, phosphate.
SS	S-18	18/18	-45.5		18 29	\[\] \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	SHELL	Dense, dark gray, silty sandy SHELL, trace phosphate.

Sheet 3 of 4

5400 Glenwood Avenue Suite 300 Raleigh, NC 27612

BOREHOLE LOG B-102

Client: Aquacalma LP

Project Location: Indiantown, Florida

Project Name: C-44 Reservoir Phase 1
Project Number: 24752-40911-RT2.FIELD

Pro	ject Locat	t ion: Inc	diantow	n, Floric	ia				Project Number: 24752-40911-RT2.FIELD
Sample Type	Sample Number	Sample Recovery (Inches)	-45,5	Field Instrument Reading (ppm)	Blows per 6 Inches	Graphic Log	Stratum Designation		Material Description
			75 		45		-SHE		
SS	S-19	18/18	- <u>-50.5</u> 80		15 24 15				Dense, light gray and brown, silty sandy SHELL fragments.
SS	S-20	18/18	<u>-55.5</u> 85 		15 24 18	(SI)	-SHE	<u></u>	Dense, dark gray, shelly slightly silty fine to medium SAND.
SS	S-21	18/18	 -60.5 - 90 		15 24 18				
SS	S-22	18/18			14 12 10				Medium dense, gray and brown, slightly silty fine to medium SAND and SHELL fragments.
SS	S-23	18/18	 - <u>-70.5</u> - 100		12 10 10		SP		Medium dense, brown and gray, slightly silty fine SAND, trace shell fragments.
SS	S-24	18/18	 - <u>75.5</u> 105		15 10 12				Medium dense, light gray, slightly silty fine to medium SAND, trace shell fragments.
SS	S-25	18/18	- <u>80.5</u> 110		13 18 16				Dense, light gray, slightly silty fine to medium SAND, trace shell fragments.
SS	S-26	18/18	- - <u>85.5</u> 115		16 25 25 25				Dense, light gray, slightly silty fine to medium SAND, trace shell fragments.
SS	S-27	18/18	-90.5 120		9 15 22	ہکل	ATHEI LIME ROCK		Dense, light grayish brown, silty WEATHERED LIME ROCK.
SS	S-28	18/18	- - -95.5		9 10 21	M	SM-SH	IELL	Medium dense and very stiff, light grayish brown, cemented SILT and fine to medium SAND and SHELL fragments, trace

BOREHOLE LOG B-102

Client: Aquacalma LP

BL C-44 PHASE1.GPJ CDM_CORP.GDT 4/16/04

Project Number: 24752-40011 PT2 FIELD

Pro	ject Loca	tion: Ind						Project Number: 24752-40911-RT2.FIELD
Sample Type	Sample Number	Sample Recovery (Inches)	Elev. Depth (ft.)	Field Instrument Reading (ppm)	Blows per 6 Inches	Graphic	^	
			125			M	\$M-SI	ELL phosphate, weathered limestone.
			-			III		(Driller notes stratum change at 126.5 ft-bgs)
SS	S-29	18/18	- <u>100.5</u> -130		6 5 10		ML	Stiff to very stiff, light grayish brown, sandy SILT, trace phosphate.
SS	S-30	18/18	- <u>105.</u> 5 135		18 29 40		SM	Very dense, light grayish brown, silty fine to medium SAND, trace shell fragments.
SS	S-31	17/17	- - <u>110.</u> 5 140		29 20 50/5"			Very dense, light grayish brown, silty fine to medium SAND, trace shell fragments.
			- 1 10 					Boring terminated at 140 ft-bgs.
			- <u>115.</u> 5 145					
			- <u>120.5</u> 150					
		 - - -	-125.5 155					
		 - -	- <u>130.</u> 5 160					
		- - - -	- <u>135.</u> 5 165					
		-	- <u>140.5</u> 170					
		[.	145.5					

BOREHOLE LOG B-103

Client: Aquacalma LP

Project Location: Indiantown, Florida

Project Name: C-44 Reservoir Phase 1 Project Number: 24752-40911-RT2.FIELD

Drilling Contractor: Nodarse & Associates, Inc.

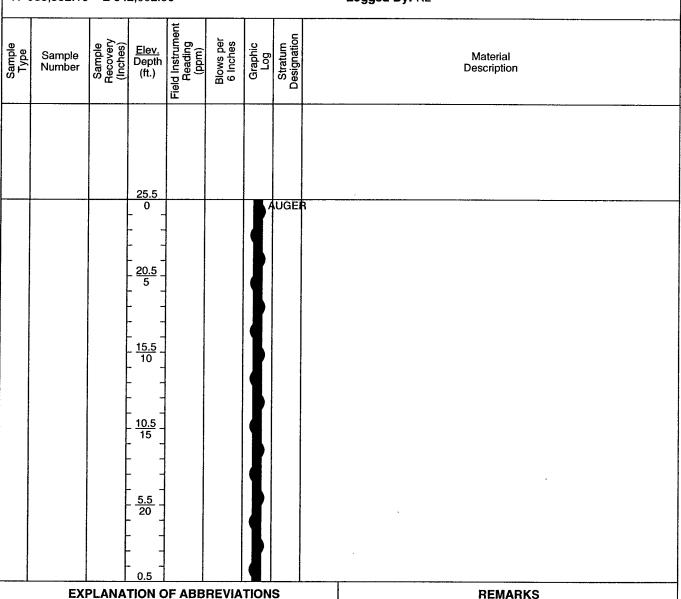
Drilling Method/Rig: Mud Rotary Drill/CME 55

Drillers: Ralph Smith

Drilling Date: Start: 01/19/04 **End:** 01/22/04

Borehole Coordinates:

N 983,392.10 E 842,992.90


Surface Elevation (ft.):25.5

Total Depth (ft.): 150

Depth to Initial Water Level (ft. BGS): **Abandonment Method:** Portland Cement

Field Screening Instrument:

Logged By: KL

DRILLING METHODS: Hollow Stem Auger Solid Stem Auger HSA SSA HA AR DTR FR MR RC CT JET D Hand Auger Air Rotary Dual Tube Rotary Foam Rotary Mud Rotary Reverse Circulation

Cable Tool Jetting Driving
Drill Through Casing

4/16/04

C-44 PHASE1.GPJ CDM_CORP.GDT

SAMPLING TYPES: Auger/Grab Sample California Sampler 1.5" Rock Core 2.1" Rock Core Geoprobe AS CS BX NX GP HP

Hydro Punch SS ST WS Split Spoon Shelby Tube Wash Sample OTHER:

Above Ground Surface

REMARKS

Drilled down without sampling from 0 to 103.5 ft-bgs. Split Spoon Sampling started at 103.5 ft-bgs.

Reviewed by: J.K. Neamtu

Date: 04/21/04

CAMP DRESSER & McKEE

5400 Glenwood Avenue Suite 300 Raleigh, NC 27612

BOREHOLE LOG B-103

Client: Aquacalma LP

Project Name: C-44 Reservoir Phase 1

Sheet 2 of 4

	Ject Local	ion: mc	iiantow	/n, Florid			1	Project Number: 24752-40911-RT2.FIELD
Sample Type	Sample Number	Sample Recovery (Inches)	Elev. Depth (ft.) 0.5	Field Instrument Reading (ppm)	Blows per 6 Inches		Stratum Designation	Material Description
			 			a	UGER	
			-4.5 -30 					
			- <u>-9.5</u> 35 -			ł		
		-	- <u>14.5</u> -40			}		
		 - - - -	- <u>19.5</u> -45					
		- - -	- <u>24.5</u> 50					
		-	- <u>29.5</u> 55					
		- - - -	- <u>34.5</u>					
		-	- <u>39.5</u>					Shell fragments started encountered at 64 ft-bgs.
		- - -				ł		
		-	- <u>44.5</u> 70					
\perp		<u> </u>	-49.5					

BOREHOLE LOG B-103

Client: Aquacalma LP

Project Location: Indiantown, Florida

Project Name: C-44 Reservoir Phase 1
Project Number: 24752-40911-RT2 FIFLD

FIU	ject Loca	ion; inc					r	Project Number: 24752-40911-RT2.FIELD
Sample Type	Sample Number	Sample Recovery (Inches)	<u>Elev.</u> Depth (ft.) -49.5	Field Instrument Reading (ppm)	Blows per 6 Inches	Graphic Log	۵	
			75			P	UGE	3
]				
			_ -54.5 _ 80					
			- <u>-59.5</u> 85					
			- 85 -					
			-64.5					
			- <u>64.5</u> - 90					
			_]					
			- <u>69.5</u> 95					
						4		•
			- <u>74.5</u> 100					
			- 100					
]					
ss	S-1	18/12	70.5		28 29 46		SP	Very dense, light gray, slightly silty fine to medium SAND, trace cemented shell fragments.
			- <u>79.5</u> 105		46			cemented shell hagments.
		-						
00		40/40	·		Z		SM	Medium dense, light gray, silty fine SAND, trace shell fragments.
ss	S-2	18/18	- <u>84.5</u> 110		7 7			. 5 5 .,,,
		-						
ss	S-3	18/18	- <u>89.5</u> 115		7 8 6			Medium dense, light gray, silty fine SAND, trace shell fragments.
		-	115					
		Ė						
ss	S-4	18/0			13 15 16		SP	No recovery.
_			- <u>94.5</u> 120		16			
		F]				ĺ	
			-		12			Dense light gray slightly sitty fine to medium SAND trace
ss	S-5	18/18	-99.5		12 10 26			Dense, light gray, slightly silty fine to medium SAND, trace weathered limestone, shell fragments.

BOREHOLE LOG B-103

Client: Aquacalma LP

Project Name: C-44 Reservoir Phase 1

Proj	ect Loca	tion: Ind	diantow					Project Number: 24752-40911-RT2.FIELD					
Sample Type	Sample Number	Sample Recovery (Inches)	-99.5	Field Instrument Reading (ppm)	Blows per 6 Inches	Graphic Log	Stratum Designation	Material Description					
ss	S-6	18/18	125		17 14 25	ШМ	SP	Dense, yellowish gray, soft LIMESTONE, poorly indurated, trace					
			- <u>104.5</u> 130 - -					silt, phosphate.					
ss	S-7	18/18	- <u>109.5</u> 135		10 26 7		SM	Dense, yellowish gray, silty fine to medium SAND, trace clay, phosphate.					
SS	S-8	18/18	- <u>114.</u> 5 140		11 22 18			Dense, olive green, silty fine SAND, trace clay.					
SS	S-9	18/18	- <u>119.</u> 5 145		21 28 10			Dense, olive green, silty fine to medium SAND.					
ss	S-10	18/18	- <u>124.</u> 5 150		17 27 45		SP	Very dense, olive green, silty fine to medium SAND.					
			-129.5 155					Boring terminated at 150 ft-bgs.					
			-134.5 160										
			-139.5 165 -165 -144.5 170										
			-149.5										

BOREHOLE LOG W-103

Client: Aquacalma LP

Project Location: Indiantown, Florida

Drilling Contractor: Consolidated Citrus LP

Drilling Method/Rig: Mud Rotary Drill/CME 45

Drillers: Carl Sandgren

Drilling Date: Start: 02/19/04 End: 02/21/04

Borehole Coordinates:

N 983,384.60 E 843,066.50

Project Name: C-44 Reservoir Phase 1

Project Number: 24752-40911-RT2.FIELD

Surface Elevation (ft.):25

Total Depth (ft.): 135

Depth to Initial Water Level (ft. BGS):

Abandonment Method: 2-in well

Field Screening Instrument:

Logged By: KL

Sample Type	Sample Number	Sample Recovery (Inches)	Elev. Depth (ft.)	Field Instrument Reading (ppm)	Blows per 6 Inches	Graphic Log	Stratum Designation	Material Description
			25.0 0 - - 20.0 5				SP	Gray, fine SAND.
			15.0 10 - - - 10.0 -					
SS	S-1	18/18	5.0		8 6 12			Medium dense, gray, slightly silty fine to medium SAND.
L	EX	PLANA	0.0 TION C	F ABBI	REVIA	TION	 S	REMARKS

DRILLING METHODS: HSA - Hollow Stem Auger

C-44 PHASE1.GPJ CDM_CORP.GDT 4/21/04

SSA

Solid Stem Auger Hand Auger AR

Air Rotary Dual Tube Rotary Foam Rotary Mud Rotary FR

MR RC CT JET Reverse Circulation Cable Tool Jetting

Driving
Drill Through Casing DTC

SAMPLING TYPES:

Auger/Grab Sample California Sampler 1.5" Rock Core 2.1" Rock Core Geoprobe AS CS BX

NX GP

HP SS Hydro Punch Split Spoon ST WS Shelby Tube Wash Sample

OTHER: AGS -Above Ground Surface

NK. Memter Reviewed by:

Date: 04/21/04

CDM

5400 Glenwood Avenue Suite 300 Raleigh, NC 27612

BOREHOLE LOG W-103

Client: Aquacalma LP

BL C-44 PHASE1.GPJ CDM_CORP.GDT 4/21/04

Project Location: Indiantown, Florida

Project Name: C-44 Reservoir Phase 1

Pro	ject Loca	tion: Inc	diantow					Project Number: 24752-40911-RT2.FIELD					
Sample Type	Sample Number	Sample Recovery (Inches)		Field Instrument Reading (ppm)	Blows per 6 Inches	Graphic	Stratum		Material Description				
			0.0 25 - - - - - - - - - - - - - - - - - -			0.0	P-SHE		Gray and brown, SHELL and coarse SAND, some cemented fragments.				
			- <u>10.0</u> 35						Dark gray, coarse SAND and SHELL, trace phospate.				
ss	S-2	18/18	- <u>15.0</u> 40		27 31 44	00			Very dense, dark gray, very slightly shelly silty fine to medium				
			-20.0 45 -25.0 50 -30.0				-SHE		SAND, trace cemented fragments, phosphate. Very dense, dark gray, coarse SAND and SHELL. - some cemented fragments.				
ss	S-3	18/18	- <u>35.0</u> 60		39 50/5"	080	-SHE	L	Very dense, gray, slightly shelly slightly silt SAND, trace phosphate.				
		- - -	-40.0 65 -45.0 70						Gray, SAND and SHELL, some cemented fragments, trace phosphate. - some gray shell fragments.				

BOREHOLE LOG W-103

Client: Aquacalma LP

Project Number: 24752 40011 PT2 FIGURE

Proj	ject Locat	tion: Inc	liantow			ļ		Project Number: 24752-40911-RT2.FIELD
Sample Type	Sample Number	Sample Recovery (Inches)	Elev. Depth (ft.)	Field Instrument Reading (ppm)	Blows per 6 Inches	1 1	Stratum Designation	
			75 			00	P-SHE	LL Light gray, slightly silty fine SAND and SHELL fragments.
SS	S-4	18/18	- <u>55.0</u> 80		18 11 11			Medium dense, light gray, slightly silty fine to medium SAND and SHELL trace phosphate.
			 - <u>60.0</u> - 85 					
and the second second			- <u>65.0</u> 90					
77783.000							I-SHE	L Silty SAND and SHELL fragments.
			-75.0 100			0000		
		-	- <u>80.0</u> 105					
			- <u>85.0</u> 110			0000		
		-	-90.0 115					
			-95.0 120					No sampling to end of boring at 135 ft-bgs.
			120 - - - -100.0					

BOREHOLE LOG B-104

Client: Aquacalma LP

Project Location: Indiantown, Florida

Drilling Contractor: Nodarse & Associates, Inc.

Drilling Method/Rig: HSA & Mud Rotary Drill/CME 45

Drillers: Carl Sandgren

Drilling Date: Start: 01/21/04 **End:** 01/26/04

Borehole Coordinates:

N 997,961.30 E 833,488.27

Project Name: C-44 Reservoir Phase 1

Project Number: 24752-40911-RT2.FIELD

Surface Elevation (ft.):20.6

Total Depth (ft.): 135

Depth to Initial Water Level (ft. BGS):7.5 **Abandonment Method: Portland Cement**

Field Screening Instrument:

Logged By: EDM/ KL

Sample Type	Sample Number	Sample Recovery (Inches)	Elev. Depth (ft.)	Field Instrument Reading (ppm)	Blows per 6 Inches	Graphic Log	Stratum Designation	Material Description
			20.6					
ss	S-1	18/18	0 _		4 5	34 S	TS SC	Medium dense, dark grayish brown, silty fine SAND, trace roots.
ss	S-2	18/18			458552		30	-TOPSOIL- Medium dense, dark grayish brown, slightly silty clayey fine SAND.
ss	S-3	18/18	- 		12 8 10			Medium dense, gray, clayey fine to medium SAND.
ss	S-4	18/18	<u>15.6</u> 5		8 10 13 10 16 16 10			Dense, greenish gray, clayey fine SAND.
ss	S-5	18/18			10 10 8		CL-ML	Very stiff, light brownish gray, silty CLAY, trace fine sand.
ss	S-6	18/18			10	33333	SP	Medium dense, gray, slightly silty and slightly clayey shelly fine
SS	S-7	18/18	10.6 10		7 11			SAND. Medium dense, gray, shelly fine SAND, trace rock (gravel size).
SS	S-8	18/12	5.6 15		IB		IELL-S	SP Medium dense, gray, slightly clayey sandy SHELL fragments, some phosphate.
SS	S-9	18/12	0.6		19 21 22	, 0	SP	Dense, gray, shelly fine SAND.
ss	S-10	18/12	-4.4		19 13 26		SM	Dense, gray, shelly silty fine SAND.

EXPLANATION OF ABBREVIATIONS

C-44 PHASE1.GPJ CDM_CORP.GDT 4/16/04

DRILLING METHODS:
HSA - Hollow Stem Auger
SSA - Solid Stem Auger
HA - Hand Auger Air Rotary Dual Tube Rotary

HSA SSA HA AR DTR FR MR RC CT JET Foam Rotary

Mud Rotary Reverse Circulation Cable Tool

Jetting

Driving
Drill Through Casing

SAMPLING TYPES:

Auger/Grab Sample California Sampler 1.5" Rock Core AS CS BX

NX GP 2.1" Rock Core Geoprobe

Hydro Punch Split Spoon Shelby Tube Wash Sample SS ST WS

OTHER: AGS Above Ground

REMARKS

Hollow Steam Auger from 0 to 10.5 ft-bgs, continued by Mud Rotary Drill to 135 ft-bgs.

Ground water was encountered during drilling at 7.5 ft-bgs.

Reviewed by: A. Wamfu

Date: $b\varsigma$

BOREHOLE LOG B-104

Client: Aquacalma LP

Project Location: Indiantown, Florida

Project Name: C-44 Reservoir Phase 1
Project Number: 24752-40911-RT2 FIFLD

Proj	ect Loca	tion: Inc	diantow					Project Number: 24752-40911-RT2.FIELD
Sample Type	Sample Number	Sample Recovery (Inches)	-4.4	Field Instrument Reading (ppm)	Blows per 6 Inches	Graphic Log	Stratum Designation	Material Description
			25 				SM	
ss	S-11	18/12	- <u>-9.4</u> - 30		17 25 21		SP	Dense, gray and white, sandy SHELL fragments.
SS	S-12	18/12	- - <u>-14.4</u> - 35		9 10 8			Medium dense, gray, slightly shelly fine SAND, some phosphate.
SS	S-13	18/12	- - - <u>19.4</u> 40		9 15 27			Dense, light brownish gray, slightly shelly and slightly silty fine SAND.
SS	S-14	18/10	- <u>-24.4</u> 45		7 7 7	(SI)	-SHELL	Medium dense, light brownish gray, slightly silty shelly fine SAND, some phosphate.
SS	S-15	18/10	- <u>29.4</u> 50		11 12 11			Medium dense, gray, shelly silty fine SAND, little phophate.
SS	S-16	18/8	- <u>34.4</u> 55		10 13 14	,,0	SP	Medium dense, gray, slightly shelly and slightly silty fine to medium SAND.
SS	S-17	18/10	- <u>39.4</u> 60		225		SM	Loose, gray, slightly shelly slightly silty fine SAND, trace phosphate.
SS	S-18	18/10	- <u>44.4</u> 65		14 15 16		SP	Dense, gray, slightly shelly fine to medium SAND, trace silt, phosphate.
ss	S-19	18/16	- <u>49.4</u> 70		23 12 21			Dense, gray and white, slightly shelly medium SAND, little phosphate, trace silt.
ss	S-20	18/18	-54.4		21 12 15			Very dense, gray, fine SAND, trace shell fragments, phosphate.

BOREHOLE LOG B-104

Client: Aquacalma LP

Project Location: Indiantown, Florida

Project Name: C-44 Reservoir Phase 1
Project Number: 24752-40911-RT2.FIELD

1.0,	ect Loca	don.	Jiai ilow		Ja			Project Number: 24752-40911-RT2.FIELD
Sample Type	Sample Number	Sample Recovery (Inches)	Elev. Depth (ft.)	Field Instrument Reading (ppm)	Blows per 6 Inches	Graphic Log	Stratum Designation	Material Description
			75				SP	
			-					
ss	S-21	10/10			29			Very dense, gray, fine SAND, trace lime rock, trace shell
33	3-21	18/12	- <u>59.4</u> 80		29 19 18			fragments, phosphate.
								A second
	·		_		-44			
SS	S-22	18/18	- <u>-64.4</u> 85		44 27 26			Medium dense, gray, slightly shelly fine to medium SAND, trace phospohate.
			- 65 -					
			_					
ss	S-23	18/18	-69.4		22 49 19			Dense, gray, shelly medium SAND, little phosphate.
			90					
			- -		İ			
ss	S-24	18/18	- - <u>74.4</u> 95		15 15 16			Medium dense, light gray, slightly silty fine to medium sand, trace shell, phosphate.
			95				ļ	,
ss	S-25	18/18	- <u>79.4</u>		6 7 17	Π	SM	Medium dense, light gray, silty SAND, trace shell fragments.
			100		-1/			
		ŀ						
ss	S-26	18/18	. , ,		15 7 11		Ì	Medium dense, greenish gray, silty fine SAND, trace shell
			- <u>84.4</u> 105					fragments. (cemented sand)
		-						
ss	S-27	18/18			- <u>8</u>			Medium dense, greenish gray, slightly clayey fine SAND, trace
\dashv			- <u>89.4</u> 110		_16			shell fragments, phosphate.
		-						
ss	S-28	18/18	<u></u>		15 10	111	SP	Medium dense, greenish gray, slightly silty fine to medium SAND,
		10/10	- <u>94.4</u> 115		<u>'7</u>			trace shell fragments.
]					
SS	5.00	19/10			33			Very dense, light greenish gray, clightly sith, fine to medium
-	S-29	18/18	- <u>99.4</u> 120		33 17 48			Very dense, light greenish gray, slightly silty fine to medium SAND, trace shell fragments, phosphate.
		F	1					
	205		}_		24			Modium donce light groupieb group all ability along the state of the s
SS	S-30	18/18	104.4		24 15 2			Medium dense, light greenish gray, slightly clayey and slightly silty SAND, trace shell fragments, phosphate.

BOREHOLE LOG B-104

Client: Aquacalma LP

BL C-44 PHASE1.GPJ CDM_CORP.GDT 4/16/04

Project Name: C-44 Reservoir Phase 1

1	ent: Aqua							Project Name: C-44 Reservoir Phase 1
Pro	ject Loca	tion: Ind	diantow	n, Floric	da			Project Number: 24752-40911-RT2.FIELD
Sample Type	Sample Number	Sample Recovery (Inches)	Elev. Depth (ft.) -104.4	T 0	Blows per 6 Inches	Graphic	Stratum To Designation	Material Description
SS	S-31	18/18	- <u>109.4</u> 130		6 8 11		SM	Medium dense, olive gray, silty fine SAND, trace phosphate.
SS	S-32	18/18	- - <u>114.</u> 4 135		6 8 15			Medium dense, olive gray, very silty fine SAND.
								Boring terminated at 135 ft-bgs.
-			- <u>119.4</u> 140					
			- - <u>124.</u> 4 145					
			-129.4 150					
		- - - -	- <u>134.4</u> 155					
			- <u>139.</u> 4 160					
			- <u>144.</u> 4 165					
			- <u>149.</u> 4 170					
			-154.4					

TEST PIT LOGS

TEST PIT LOG TP- 1

Client: Aquacalma LP

Project Location: Indiantown, Florida

Project Name: C-44 Reservoir Phase 1 Project Number: 24752-40911-RT2.FIELD

Drilling Contractor: Consolidated Citrus LP

Drilling Method/Rig: Trackhoe/CAT 3208 L

Drillers: Wayne

Drilling Date: Start: 01/14/04 End: 01/14/04

Borehole Coordinates:

Е

Surface Elevation (ft.):

Total Depth (ft.): 13

Depth to Initial Water Level (ft. BGS):

Abandonment Method: Backfill Field Screening Instrument:

Logged By: SLW/B

Sample Type	Sample Number	Sample Recovery (Inches)	Elev. Depth (ft.)	Excavation Effort	Blows per 6 Inches	Graphic Log	Stratum Designation	Material Description
AS		-	- 0 				SP-SM	Dry, dark brown, slightly silty and slightly clayey or slightly organic fine SAND, occasional limestone fragments up to 18 inches wide x 6 inches thick.
AS		-	5 -				SM	Dry, yellowish orange, calcareous shelly silty fine to medium SAND. Increading number of shells with depth. Moist at 6 ft to 8 ft below ground surface.
AS		-	10				SC	Moist, bluish gray, clayey fine SAND.
			15					Bottom of test pit at 13 ft-bgs.
			20					

EXPLANATION OF ABBREVIATIONS

DRILLING METHODS:

C-44 PHASE1.GPJ CDM_CORP.GDT 3/22/04

Hollow Stem Auger Solid Stem Auger HSA SSA

HA AR DTR FR MR Hand Auger Air Rotary Dual Tube Rotary Foam Rotary Mud Rotary
Reverse Circulation
Cable Tool RC CT JET

Jetting Driving Drill Through Casing

SAMPLING TYPES:
AS - Auger/Grab Sample
CS - California Sampler
BX - 1.5* Rock Core
NX - 2.1* Rock Core NX GP HP Geoprobe

Hydro Punch SS Split Spoon Shelby Tube Wash Sample WS -

Above Ground Surface

REMARKS

E = Easy M = Moderate

D = Difficult

Cemented sand and shell at 13 ft-bgs.

Test pit located on Consolidated Citrus LP western property on north side.

. Y leuntu Reviewed by:

Date: by

TEST PIT LOG **TP-2**

Client: Aquacalma LP

Project Location: Indiantown, Florida

Drilling Contractor: Consolidated Citrus LP Drilling Method/Rig: Trackhoe/CAT 3208 L

Drillers: Wayne

Drilling Date: Start: 01/14/04 **End:** 01/14/04

Borehole Coordinates:

Ε

Project Name: C-44 Reservoir Phase 1

Project Number: 24752-40911-RT2.FIELD

Surface Elevation (ft.):

Total Depth (ft.): 11

Depth to Initial Water Level (ft. BGS):

Abandonment Method: Backfill

Field Screening Instrument:

Logged By: SLW/B

		,						
Sample Type	Sample Number	Sample Recovery (Inches)	Elev. Depth (ft.)	Excavation Effort	Blows per 6 Inches	Graphic Log	Stratum Designation	Material Description
AS	BS-1	-	0 -				SC	Dry, black muck, organic SAND, slightly plastic, grading to clayey SAND.
AS		,					sc	Dry, blue gray, clayey SAND.
AS		-	5				SM	Dry, silty SAND, no shells. Start moist at 6 ft-bgs.
	-		15					Bottom of test pit at 11 ft-bgs.
			20					

EXPLANATION OF ABBREVIATIONS

DRILLING METHODS:
HSA - Hollow Stern Auger
SSA - Solid Stern Auger
HA - Hand Auger HA

Air Rotary Dual Tube Rotary DTR FR Foam Rotary

Mud Rotary
Reverse Circulation
Cable Tool
Jetting MR CT JET

Driving Drill Through Casing

SAMPLING TYPES:
AS - Auger/Grab Sample
CS - California Sampler
BX - 1.5* Rock Core
NX - 2.1* Rock Core
GP - Geoprobe

Hydro Punch Split Spoon Shelby Tube Wash Sample

AGS Above Ground **REMARKS**

E = Easy

M = Moderate

D = Difficult

Test pit located on western side of Consolidated Citrus LP western property.

Test pit caved in.

K. Neawtr Reviewed by:

Date: 04/2

_CORP.GDT 3/22/04 ODW C-44 PHASE1

TEST PIT LOG TP- 3

Client: Aquacalma LP

Project Location: Indiantown, Florida

Project Name: C-44 Reservoir Phase 1 Project Number: 24752-40911-RT2.FIELD

Drilling Contractor: Consolidated Citrus LP

Drilling Method/Rig: Trackhoe/CAT 3208 L

Drillers: Wayne

Drilling Date: Start: 01/14/04 End: 01/14/04

Borehole Coordinates:

Ε

Surface Elevation (ft.):

Total Depth (ft.): 13

Depth to Initial Water Level (ft. BGS):

Abandonment Method: Backfill

Field Screening Instrument:

Logged By: SLW/ B

		-						
Sample Type	Sample Number	Sample Recovery (Inches)	Elev. Depth (ft.)	Excavation Effort	Blows per 6 Inches	Graphic Log	Stratum Designation	Material Description
AS		-	0			<u> 44 4</u>	TS	TOPSOIL
AS		-					SP	Dry, gray/ white, fine SAND. Color change to orange at 1 ft-bgs.
AS		-	5				SP-SM	Dry, blue gray, slightly silty fine SAND.
AS		-	10				SC	Moist, blue gray, clayey SAND.
							SP-SC	Moist, blue gray, slightly clayey SAND.
			15				-	Bottom of test pit at 13 ft-bgs.
		-	20			·		
			·					
				<u></u> j_				

EXPLANATION OF ABBREVIATIONS

DRILLING METHODS:

C-44 PHASE1.GPJ CDM_CORP.GDT 3/22/04

Hollow Stem Auger Solid Stem Auger

HSA SSA HA AR DTR FR MR Hand Auger Air Rotary Dual Tube Rotary Foam Rotary

Mud Rotary Reverse Circulation RC CT JET Cable Tool Jetting

Driving Drill Through Casing

SAMPLING TYPES:
AS - Auger/Grab Sample
CS - California Sampler
BX - 1.5" Rock Core
NX - 2.1" Rock Core
GP - Geographe

AS CS BX NX GP HP Geoprobe Hydro Punch Split Spoon Shelby Tube

SS Wash Sample OTHER:

Above Ground Surface

REMARKS

E = Easy

M = Moderate

D = Difficult

Test pit located on the eastern boundary of Consolidated Citrus LP western property.

Reviewed by:

Date: 04

TEST PIT LOG **TP-4**

Client: Aquacalma LP

Project Location: Indiantown, Florida

Drilling Contractor: Consolidated Citrus LP

Drilling Method/Rig: Trackhoe/CAT 3208 L

Drillers: Wayne

Drilling Date: Start: 01/14/04 End: 01/14/04

Borehole Coordinates:

Е

Project Name: C-44 Reservoir Phase 1

Project Number: 24752-40911-RT2.FIELD

Surface Elevation (ft.):

Total Depth (ft.): 12

Depth to Initial Water Level (ft. BGS):

Abandonment Method: Backfill

Field Screening Instrument:

Logged By: SLW/ B

Sample Type	Sample Number	Sample Recovery (Inches)	Elev. Depth (ft.)	Excavation Effort	Blows per 6 Inches	Graphic Log	Stratum Designation	Material Description
AS		-	0 _				SP	Dry, orange and white, fine SAND.
AS AS		-					CH SP-SM	Dry, blue gray, CLAY, high plasticity. Dry, orangish brown, slightly silty fine SAND.
73							SC	Dry, brown, clayey fine SAND.
AS		-	5					Dry, Blown, clayby line China.
AS		-	10				SP-SC	Moist, brown, slightly clayey fine SAND.
AS		-	- † - †				SP	Moist, white, fine SAND.
			15					Bottom of test pit at 12 ft-bgs.
			20					
	EVI	DI ANA	TION O	E ADD	DE\((1.5)	TION		DEMADKS

EXPLANATION OF ABBREVIATIONS

DRILLING METHODS: Hollow Stem Auger Solid Stem Auger HSA SSA

CORP.GDT 3/22/04

CDM

C-44 PHASE1.GPJ

D

Hand Auger Air Rotary Dual Tube Rotary Foam Rotary HA AR DTR FR MR RC CT JET

Mud Rotary
Reverse Circulation
Cable Tool
Jetting

Driving Drill Through Casing

SAMPLING TYPES:

Auger/Grab Sample California Sampler 1.5" Rock Core 2.1" Rock Core AS CS BX NX GP HP

2.1° Hock Con Geoprobe Hydro Punch Split Spoon Shelby Tube Wash Sample WS OTHER:

Above Ground Surface

REMARKS

E = Easy M = Moderate D = Difficult

Test pit located on south border of reservoir site, west of B32.

Reviewed by:

Date: 04

TEST PIT LOG **TP-5**

Client: Aquacalma LP

Project Location: Indiantown, Florida

Drilling Contractor: Consolidated Citrus LP

Drilling Method/Rig: Trackhoe/CAT 3208 L

Drillers: Wayne

Drilling Date: Start: 01/14/04 **End:** 01/14/04

Borehole Coordinates:

Ε

Project Name: C-44 Reservoir Phase 1

Project Number: 24752-40911-RT2.FIELD

Surface Elevation (ft.):

Total Depth (ft.): 15

Depth to Initial Water Level (ft. BGS):

Abandonment Method: Backfill

Field Screening Instrument:

Logged By: SLW/ B

		···	,					
Sample Type	Sample Number	Sample Recovery (Inches)	Elev. Depth (ft.)	Excavation Effort	Blows per 6 Inches	Graphic Log	Stratum Designation	Material Description
AS		-	0			4 V 1	TS	TOPSOIL (10 inches)
AS		-					SP	Dry, white with orange, fine SAND.
AS AS		-					CH SP	Dry, blue gray, CLAY, overlying organics roots/ sand. (1-inch thick) Dry, white, fine SAND.
AS AS	BS-2					////	СН	Dry, blue gray, CLAY.
AS AS		-	-			223	OH SP	Moist, black, MUCK, with fiber (5 inches - 6 inches thick)
			- - - 10				sc	Moist, light gray, clayey SAND.
AS		-	- " -					
			- - -				SP	Light gray clean sand.
			15					Bottom of test pit at 15 ft-bgs.
			20					
	EXF	PLANA	TION O	F ABB	REVIA	TIONS	S	REMARKS

DRILLING METHODS:
HSA - Hollow Stem Auger
SSA - Solid Stem Auger
HA - Hand Auger

HA AR DTR

C-44 PHASE1.GPJ CDM_CORP.GDT 3/22/04

Air Rotary
Dual Tube Rotary

FR MR RC CT JET Foam Rotary Mud Rotary Reverse Circulation Cable Tool

Jetting Driving Drill Through Casing DTC

SAMPLING TYPES:

CS

Auger/Grab Sample California Sampler 1.5* Rock Core 2.1* Rock Core NX GP

Geoprobe
Hydro Punch
Split Spoon
Shelby Tube
Wash Sample HP SS ST WS

OTHER: AGS -Above Ground REMARKS

E = Easy

M = Moderate

D = Difficult

Test pit located on the south border of reservoir site near A51.

Reviewed by: N. Mannyn

Date:04/21

TEST PIT LOG

TP-6

Client: Aquacalma LP

Project Location: Indiantown, Florida

Drilling Contractor: Consolidated Citrus LP

Drilling Method/Rig: Trackhoe/CAT 3208 L

Drillers: Wayne

Borehole Coordinates:

Ε

Project Name: C-44 Reservoir Phase 1 Project Number: 24752-40911-RT2.FIELD

Surface Elevation (ft.):

Total Depth (ft.): 13.5

Depth to Initial Water Level (ft. BGS):

Abandonment Method: Backfill

Field Screening Instrument:

Logged By: SLW/ B

Sample Type	Sample Number	Sample Recovery (Inches)	Elev. Depth (ft.)	Excavation Effort	Blows per 6 Inches	Graphic Log	Stratum Designation	Material Description
							- Application of the contract	
AS		-	0			31.3	TS	TOPSOIL
AS		_					SP	Dry, white, fine SAND.
AS							CH/	Dry, blue gray, CLAY. (4-in thick)
AS		->					SP	Dry, orangish brown, fine SAND.
AS		· -	5				SC	Dry, brownish gray, clayey SAND.
AS							SM	With shells in the bottom of layer
AS		-					SC	Moist, light brown, shelly silty SAND. Moist, light brown, shelly clayey SAND.
AS		-	10				SM	Moist, gray, shelly silty SAND.
			 - 15] 					Bottom of test pit at 13.5 ft-bgs.
			20					
	EX	PLANA	TION C	F ABB	REVIA	TION	s	REMARKS
DRILLING METHODS: SAMPLING TYPES: HSA - Hollow Stem Auger AS - Auger/Grab Sample SSA - Solid Stem Auger CS - California Sampler HA - Hand Auger BX - 1.5" Rock Core BR - Air Rotary NX - 2.1" Rock Core DTR - Dual Tube Rotary GP - Geoprobe FR - Foam Rotary HP - Hydro Punch MR - Mud Rotary SS - Split Spoon RC - Reverse Circulation ST - Shelby Tube CT - Cable Tool WS - Wash Sample JET - Jetting OTHER: D - Driving AGS - Above Ground						ger/Grab ifornia Si Rock C Rock C pprobe dro Punci it Spoon blby Tube sh Samp	ampler ore ore h	E = Easy M = Moderate D = Difficult Test pit located at south west boundary of reservoir property nea B21.

EXPLANATION OF ABBREVIATIONS

Cable Tool
Jetting
Driving
Drill Through Casing

AGS Above Ground Surface

REMARKS

Det Neamon Reviewed by:

Date: 04/

CAMP DRESSER & McKEE

5400 Glenwood Avenue Suite 300 Raleigh, NC 27612

TEST PIT LOG **TP-7**

Sheet 1 of 1

Client: Aquacalma LP

Project Location: Indiantown, Florida

Drilling Contractor: Consolidated Citrus LP

Drilling Method/Rig: Trackhoe/CAT 3208 L

Drillers: Wayne

Drilling Date: Start: 01/14/04 End: 01/14/04

Borehole Coordinates:

Е

Project Name: C-44 Reservoir Phase 1

Project Number: 24752-40911-RT2.FIELD

Surface Elevation (ft.):

Total Depth (ft.): 12.5

Depth to Initial Water Level (ft. BGS):

Abandonment Method: Backfill

Field Screening Instrument:

Logged By: SLW/ B

<u> </u>	r · · · · · · · · · · · · · · · · · · ·	r		г	г	γ		
Sample Type	Sample Number	Sample Recovery (Inches)	Elev. Depth (ft.)	Excavation Effort	Blows per 6 Inches	Graphic Log	Stratum Designation	Material Description
AS			0 				SP	Dry, orangish brown, fine SAND.
AS	BS-3					7777	OL SC	Moist, black, organic SILT.
AS		-	5				SC	Moist, black, organic SILT. Dry, brownish gray, clayey SAND.
			15					Bottom of test pit at 12.5 ft-bgs.
		-	20]					
	EXI	PLANA	TION O	F ABB	REVIA	TION	REMARKS	

DRILLING METHODS: HSA - Hollow Stem

BL C-44 PHASE1.GPJ CDM_CORP.GDT 3/22/04

Hollow Stem Auger Solid Stem Auger

SSA HA AR DTR FR MR RC CT JET

Solid Stem Auger
Hand Auger
Air Rotary
Dual Tube Rotary
Foam Rotary
Mud Rotary
Reverse Circulation
Cable Tool
Jetting
Driving

Driving Drill Through Casing DTC

SAMPLING TYPES:

Above Ground

Surface

JNG TYPES: Auger/Grab Sample California Sampler 1.5° Rock Core 2.1° Rock Core Geoprobe Hydro Punch Split Spoon Shelby Tube Wash Sample CS BX NX GP HP SS

ST WS OTHER: AGS -

M = Moderate D = Difficult

E = Easy

H. Manch Reviewed by:

Date: 64/21/0

Sheet 1 of 1

5400 Glenwood Avenue Suite 300 Raleigh, NC 27612

TEST PIT LOG **TP-8**

Client: Aquacalma LP

Project Location: Indiantown, Florida

Drilling Contractor: Consolidated Citrus LP Drilling Method/Rig: Trackhoe/CAT 3208 L

Drillers: Wayne

Drilling Date: Start: 03/09/04 **End:** 03/09/04

Borehole Coordinates:

Ε

Project Name: C-44 Reservoir Phase 1

Project Number: 24752-40911-RT2.FIELD

Surface Elevation (ft.):

Total Depth (ft.): 15

Depth to Initial Water Level (ft. BGS): 10

Abandonment Method: Backfill

Field Screening Instrument:

Logged By: EDM

		,					,	
Sample Type	Sample Number	Sample Recovery (Inches)	<u>Elev.</u> Depth (ft.)	Excavation Effort	Blows per 6 Inches	Graphic Log	Stratum Designation	Material Description
	•							
AS.		-	0 -			77.7	TS SM	<u>Dry, dark gray, slightly silty SAND, trace organic silt.</u> _TOPSOIL Dry, light gray, silty fine SAND.
AS	S-1	-	_	Ε			JIVI	Dry, light gray, sity line OAND.
						////	sc	Moist, grayish brown, clayey SAND.
AS	S-2	-		Ε				
			5				SP-SO	
							SP	Moist, light gray, fine SAND, trace clay, silt.
AS	S-3	-		E				
AS		-	10	Е		Ш	SP-SM	Wet, light gray, silty fine SAND, trace shell fragments.
								Wet, light gray, shelly silty fine SAND.
AS	S-4	-		Ε				
			15			111		
			- ' -					Bottom of test pit at 15 ft-bgs.
				;				
			20					
			- 4					
	FY	PI ANA	TION C)F ARR	REVIA	TION	REMARKS	

EXPLANATION OF ABBREVIATIONS

DRILLING METHODS:

C-44 PHASE1.GPJ CDM_CORP.GDT 3/22/04

Hollow Stem Auger Solid Stem Auger HSA SSA

HA Hand Auger

AR DTR

Air Rotary Dual Tube Rotary Foam Rotary

FR MR CT JET Mud Rotary Reverse Circulation

Cable Tool

Jetting

Driving
Drill Through Casing

SAMPLING TYPES:

Auger/Grab Sample California Sampler 1.5" Rock Core 2.1" Rock Core

AS CS BX

NX GP HP Geoprobe Hydro Punch

Split Spoon Shelby Tube Wash Sample

SS ST WS

OTHER: AGS Above Ground Surface

REMARKS

E = Easy

M = Moderate

D = Difficult

Shell fragments begin at 11 ft-bgs, and increases with depth.

Reviewed by: A. Meanta

Date: 04/21/04

TEST PIT LOG **TP-9**

Client: Aquacalma LP

Project Location: Indiantown, Florida

Drilling Contractor: Consolidated Citrus LP

Drilling Method/Rig: Trackhoe/CAT 3208 L

Drillers: Wayne

Drilling Date: Start: 03/09/04 End: 03/09/04

Borehole Coordinates:

Ε

Project Name: C-44 Reservoir Phase 1 Project Number: 24752-40911-RT2.FIELD

Surface Elevation (ft.):

Total Depth (ft.): 15

Depth to Initial Water Level (ft. BGS): 14.5

Abandonment Method: Backfill

Field Screening Instrument:

Logged By: EDM

		,		,	r	,		
Sample Type	Sample Number	Sample Recovery (Inches)	Elev. Depth (ft.)	Excavation Effort	Blows per 6 Inches	Graphic Log	Stratum Designation	Material Description
AS			0	E		14.14	TS	Dry, dark gray, silty SAND, -TOPSOIL-
AS	S-1A	-	-	E			SC	Dry, dark gray, silty SANDTOPSOIL- Moist, light yellowish brown, slightly clayey SAND.
AS	S-1	-	 	E			SP-SM	Moist, light brownish gray, silty fine SAND, trace clay.
AS	S-2	-	10	E				Moist, light gray, shelly silty fine SAND, some cemented fragments. Cemented fragments begins at 5.5 ft-bgs, and increase in number with depth. Shells begin to decrease with depth at 5.5 ft-bgs.
AS	S-3	-	- - -	м			SM	Moist, gray, very fine silty SAND, trace shell fragments
			15					Bottom of test pit at 15 ft-bgs.
		 - - - -	20					
	EVI	DI ANA		FADD	DEVIA			DEMARKO

EXPLANATION OF ABBREVIATIONS

DRILLING METHODS: HSA - Hollow Stem A SSA - Solid Stem A HA - Hand Auger Hollow Stem Auger Solid Stem Auger

C-44 PHASE1.GPJ CDM_CORP.GDT 3/22/04

Hand Auger

Air Rotary
Dual Tube Rotary AR DTR FR MR Foam Rotary

Mud Rotary Reverse Circulation RC CT

Cable Tool Jetting

Driving Drill Through Casing

SAMPLING TYPES:

Auger/Grab Sample California Sampler 1.5" Rock Core 2.1" Rock Core BX

NX GP HP SS ST Geoprobe Hydro Punch Split Spoon Shelby Tube Wash Sample

WS -OTHER:

Above Ground Surface

REMARKS

E = Easy

M = Moderate

D = Difficult

Cemented fragment started at 5.5 ft-bgs, and grades to more with

Both sides of test pit walls caved in.

Reviewed by:

Date: D4

TEST PIT LOG **TP-10**

Client: Aquacalma LP

Project Location: Indiantown, Florida

Drilling Contractor: Consolidated Citrus LP

Drilling Method/Rig: Trackhoe/CAT 3208 L

Drillers: Wayne

Drilling Date: Start: 03/09/04 End: 03/09/04

Borehole Coordinates:

Е

Project Name: C-44 Reservoir Phase 1

Project Number: 24752-40911-RT2.FIELD

Surface Elevation (ft.):

Total Depth (ft.): 15

Depth to Initial Water Level (ft. BGS): 12

Abandonment Method: Backfill

Field Screening Instrument:

Logged By: EDM

Sample Type	Sample Number	Sample Recovery (Inches)	Elev. Depth (ft.)	Excavation Effort	Blows per 6 Inches	Graphic Log	Stratum Designation	Material Description
AS AS	S-1	-	0 	E			TS SP-SM	Dry, dark gray, silty SANDTOPSOIL- Dry, light brownish gray, very fine silty SAND.
AS	S-2	-	5	E			SC	Dry, light yellowish brown, slightly clayey SAND, trace organic silt. Color change to greenish gray at 4 ft to 6 ft-bgs.
AS	5-3	-	10	E			SM	Moist, light greenish gray and light brown, very fine silty SAND, trace clay.
			 				SP	Wet, light gray, slightly shelly fine to medium SAND.
			15 - 					Bottom of test pit at 15 ft-bgs.
			- - 20			A AND A STATE OF THE AND A STATE		
		-						
							_	

EXPLANATION OF ABBREVIATIONS

DRILLING METHODS:

C-44 PHASE1.GPJ CDM_CORP.GDT 3/22/04

Hollow Stem Auger Solid Stem Auger

HSA SSA HA

Hand Auger Air Rotary Dual Tube Rotary Foam Rotary AR DTR

FR MR RC CT Mud Rotary Reverse Circulation Cable Tool

JET D DTC

Jetting Driving Drill Through Casing

SAMPLING TYPES:

Auger/Grab Sample California Sampler

AS CS BX NX GP HP 1.5" Rock Core 2.1" Rock Core

Geoprobe
Hydro Punch
Split Spoon
Shelby Tube
Wash Sample SS ST WS

OTHER:

Above Ground

REMARKS

E = Easy

M = Moderate

D = Difficult

Shell fragments begin at 13 ft-bgs, and increase in number with depth.

KK nampu Reviewed by:

Date: 04/21

TEST PIT LOG **TP-11**

Client: Aquacalma LP

Project Location: Indiantown, Florida

Drilling Contractor: Consolidated Citrus LP

Drilling Method/Rig: Trackhoe/CAT 3208 L

Drillers: Wayne

Drilling Date: Start: 03/09/04 End: 03/09/04

Borehole Coordinates:

Ε

Project Name: C-44 Reservoir Phase 1

Project Number: 24752-40911-RT2.FIELD

Surface Elevation (ft.):

Total Depth (ft.): 15

Depth to Initial Water Level (ft. BGS): 15

Abandonment Method: Backfill

Field Screening Instrument:

Logged By: EDM

		1						
Sample Type	Sample Number	Sample Recovery (Inches)	Elev. Depth (ft.)	Excavation Effort	Blows per 6 Inches	Graphic Log	Stratum Designation	Material Description
AS		-	0	E		74.7	TS	Dry dark gray silty SAND -TOPSOU -
			- 1				SM	Dry, dark gray, silty SANDTOPSOIL- Dry, light brown, fine silty SAND.
AS	S-1	-		Е				Color change to light greyish brown at 2 ft-bgs.
AS	S-2	-	- <u>-</u> 5]	E			SP-SC	Moist, light yellowish brown and grayish brown, slightly clayey SAND, trace calcareous. Color change to light bluish gray, slightly clayey at 7 ft-bgs.
AS	S-3	-	10	Е			SP	Moist, light bluish gray, slightly silty very fine SAND, trace calcareous, shell fragments.
			15					Test pit bottom at 15 ft-bgs.
		 - - - -	20					

EXPLANATION OF ABBREVIATIONS

C-44 PHASE1.GPJ CDM_CORP.GDT 3/22/04

Hollow Stem Auger Solid Stem Auger

DRILLING METHODS:
HSA - Hollow Stem A
SSA - Solid Stem Au
HA - Hand Auger
Air Rotary
DTR - Dual Tube Rot
FR - Foam Rotary
MR - Mud Rotary
RC - Reverse Circu
CT - Cable Tool
JET - Jetting Solid Stem Auger
Hand Auger
Air Rotary
Dual Tube Rotary
Foam Rotary
Mud Rotary
Reverse Circulation
Cable Tool

Jetting Driving Drill Through Casing JET D DTC

SAMPLING TYPES:

Auger/Grab Sample California Sampler 1.5" Rock Core 2.1" Rock Core

Geoprobe Hydro Punch

BX NX GP HP SS ST WS Split Spoon Shelby Tube Wash Sample

AGS

Above Ground Surface

REMARKS

E = Easy M = Moderate D = Difficult

K. Wangh Reviewed by:

Date: by

TEST PIT LOG

Client: Aquacalma LP

Project Location: Indiantown, Florida

Project Name: C-44 Reservoir Phase 1 Project Number: 24752-40911-RT2.FIELD

Drilling Contractor: Consolidated Citrus LP

Drilling Method/Rig: Trackhoe/CAT 3208 L

Drillers: Wayne

Drilling Date: Start: 03/09/04 End: 03/09/04

Borehole Coordinates:

Ε

Surface Elevation (ft.):

Total Depth (ft.): 16

Depth to Initial Water Level (ft. BGS): 12

Abandonment Method: Backfill

Field Screening Instrument:

Logged By: EDM

		-			,	· · · · · · ·		
Sample Type	Sample Number	Sample Recovery (Inches)	Elev. Depth (ft.)	Excavation Effort	Blows per 6 Inches	Graphic Log	Stratum Designation	Material Description
				·				
AS		 	0	E		31 × 11	TS	Dry dork gray condy SILT TOPSOU
70			- ' -				SP-SN	Dry, dark gray, sandy SILTTOPSOIL- Dry, light brownish gray, very fine silty SAND.
AS	S-1	-		E				
AS	S-2	-		Е			SC	Moist, light brown, clayey SAND, some black organic silt.
AS	S-3	-	10	E			SM	Moist, light olive gray, fine silty SAND, trace clay.
AS	S-4	-	15	М		C	SHELI	Wet, white, sandy SHELL, trace cemented fragments.
			20					Bottom of test pit at 16 ft-bgs.
	EV	DI ANA	TION C	VE ADD	DEVIA	TION		DEMARKS

EXPLANATION OF ABBREVIATIONS

DRILLING METHODS: HSA - Hollow Stem Auger SSA - Solid Stem Auger HA - Hand Auger

C-44 PHASE1.GPJ CDM_CORP.GDT 3/22/04

HSA SSA HA AR DTR FR MR RC Hand Auger
Air Rotary
Dual Tube Rotary
Foam Rotary
Mud Rotary
Reverse Circulation
Cable Tool
Jetting CT

Driving
Drill Through Casing

SAMPLING TYPES:
AS - Auger/Grab Sample
CS - California Sampler
BX - 1.5* Rock Core
NX - 2.1* Rock Core
GP - Geoprobe

Hydro Punch Split Spoon Shelby Tube Wash Sample HP SS ST WS

OTHER:

Above Ground AGS Surface

REMARKS

E = Easy M = Moderate D = Difficult

4) X. Marntu Reviewed by:

Date: 04/21/04

TEST PIT LOG **TP-13**

Client: Aquacalma LP

Project Location: Indiantown, Florida

Drilling Contractor: Consolidated Citrus LP

Drilling Method/Rig: Trackhoe/CAT 3208 L

Drillers: Wayne

Drilling Date: Start: 03/09/04 End: 03/09/04

Borehole Coordinates:

Ν Ε Project Name: C-44 Reservoir Phase 1 Project Number: 24752-40911-RT2.FIELD

Surface Elevation (ft.):

Total Depth (ft.): 16

Depth to Initial Water Level (ft. BGS):14

Abandonment Method: Backfill

Field Screening Instrument:

Logged By: EDM

	r	T			T			
Sample Type	Sample Number	Sample Recovery (Inches)	Elev. Depth (ft.)	Excavation Effort	Blows per 6 Inches	Graphic Log	Stratum Designation	Material Description
AS		-	- 0 -	E		11	TS - SP-SM	Dry, dark gray, silty SAND, trace organic siltTOPSOIL- Dry, light brown, very fine silty SAND, trace organic silt.
AS	S-1	-		E				Dry, light blown, very line slity SAND, trace organic slit.
AS	S-2	-		E			SM	Moist, light brown, silty SAND, trace clay, organic silt.
AS	S-3	~	10	м				Color change to bluish gray at 6 ft-bgs.
			- - -				SP	Moist, light bluish gray, slightly clayey fine to medium SAND, trace cemented shell fragments.
AS		-	15	М			SP- SHELL	Wet, light bluish gray, slightly shelly and slightly clayey fine SAND.
		-	 					Bottom of test pit at 16 ft-bgs.
		-	20					
			- -					
	EXI	PLANA	TION O	F ABB	REVIA	TION	 S	REMARKS

CORP.GDT 3/22/04

S

G.

SSA HA AR DTR FR MR RC CT JET D Air Rotary Dual Tube Rotary

Foam Rotary Mud Rotary Reverse Circulation Cable Tool Jetting

Driving
Drill Through Casing DTC

SAMPLING TYPES:

APLING TYPES:

- Auger/Grab Sampler
- California Sampler
- 1.5" Rock Core
- 2.1" Rock Core
- Geoprobe
- Hydro Punch
- Spili Spoon
- Shelby Tube
- Wash Sample AS CS BX GP HP SS ST WS

Above Ground AGS -

REMARKS

E = Easy

M = Moderate

D = Difficult

Reviewed by: Nantu

Date: 04/21/04

TEST PIT LOG **TP-14**

Client: Aquacalma LP

Project Location: Indiantown, Florida

Drilling Contractor: Consolidated Citrus LP Drilling Method/Rig: Trackhoe/CAT 3208 L

Drillers: Wayne

Drilling Date: Start: 03/09/04 End: 03/09/04

Borehole Coordinates:

Ε

Project Name: C-44 Reservoir Phase 1

Project Number: 24752-40911-RT2.FIELD

Surface Elevation (ft.):

Total Depth (ft.): 10

Depth to Initial Water Level (ft. BGS):8

Abandonment Method: Backfill

Field Screening Instrument: Logged By: EDM

Sample Type	Sample Number	Sample Recovery (Inches)	Elev. Depth (ft.)	Excavation Effort	Blows per 6 Inches	Graphic Log	Stratum Designation	Material Description
AS		-	0			71 7	TS	Dry, dark gray, fine silty SANDTOPSOIL-
AS	S-1	-	1	E			SP-SN	Dry, light grayish brown, fine silty SAND, trace organic silt.
AS	S-2	-		Е			SC	Dry, brown, clayey SAND, trace silt.
AS	S-3	-	5	М			SP-SC	Moist, light bluish gray, slightly clayey SAND.
AS	S-4	-	10	D			SP	Wet, light bluish gray and light brown, fine SAND, some cemented fragments. Size and number of cemented fragments increase with depth.
			 		·			Bottom of test pit at 10 ft-bgs.
			15					
	·		20					
			- 1					

EXPLANATION OF ABBREVIATIONS

DRILLING METHODS: HSA - Hollow Stem

Hollow Stem Auger Solid Stem Auger Hand Auger SSA HA AR DTR Air Rotary
Dual Tube Rotary
Foam Rotary
Mud Rotary
Reverse Circulation FR MR RC CT

C-44 PHASE1.GPJ CDM

Cable Tool Jetting **JET** DTC

Driving Drill Through Casing

SAMPLING TYPES:

AS CS BX Auger/Grab Sample California Sampler 1.5" Rock Core

2.1" Rock Core Geoprobe NX GP Hydro Punch Split Spoon Shelby Tube SS ST

Wash Sample OTHER: AGS -Above Ground

Surface

REMARKS

E = Easy M = Moderate D = Difficult

Test pit terminated due to difficulty excavating wiht trackhoe and the frequency and size of cemented fragments increases with

Manty Reviewed by:

Date:04/21/04

TEST PIT LOG TP-15

Client: Aquacalma LP

Project Location: Indiantown, Florida

Drilling Contractor: Consolidated Citrus LP

Drilling Method/Rig: Trackhoe/CAT 3208 L

Drillers: Wayne

Drilling Date: Start: 03/09/04 End: 03/09/04

Borehole Coordinates:

Ε

Project Name: C-44 Reservoir Phase 1 Project Number: 24752-40911-RT2.FIELD

Surface Elevation (ft.):

Total Depth (ft.): 12

Depth to Initial Water Level (ft. BGS): 11

Abandonment Method: Backfill

Field Screening Instrument:

Logged By: EDM

		T			T	т		
Sample Type	Sample Number	Sample Recovery (Inches)	Elev. Depth (ft.)	Excavation Effort	Blows per 6 Inches	Graphic Log	Stratum Designation	Material Description
AS		_	0	E		4 V	TS	Dr. dade
AS	S-1A		-	E			ML	Dry, dark gray, silty SAND, trace organic siltTOPSOIL- Dry, dark gray, sandy SILT.
							SP-SM	Dry, brownish gray, fine silty SAND, trace clay.
AS	S-1	-		E				ory, account gray, into only or rep, trace clay.
AS	S-2	-	- - - 5	М			SP-SC	Moist, light brown and gray, slightly clayey SAND.
AS	S-3	-	10	D			SP	Moist, light greenish gray, fine SAND, trace clay.
			15					Bottom of test pit at 12 ft-bgs.

EXPLANATION OF ABBREVIATIONS

DRILLING METHODS:

C-44 PHASE1.GPJ CDM_CORP.GDT 3/22/04

Hollow Stern Auger Solid Stern Auger

HSA SSA HA AR DTR FR MR RC CT JET D Hand Auger Air Rotary Dual Tube Rotary Foam Rotary

Mud Rotary Reverse Circulation Cable Tool
Jetting
Driving
Drill Through Casing

SAMPLING TYPES:

Auger/Grab Sample California Sampler 1.5" Rock Core

NX GP 2.1" Rock Core Geoprobe

Hydro Punch Split Spoon SS ST WS Shelby Tube Wash Sample

OTHER: Above Ground Surface

REMARKS

E = Easy

M = Moderate

D = Difficult

Test pit caved in at 10 ft-bgs, tried to excavate to 12 ft-bgs and caved in again.

Test pit cannot be excavated deeper than 12 ft-bgs.

Reviewed by:

Date: 04/21

TEST PIT LOG **TP-16**

Client: Aquacalma LP

Project Location: Indiantown, Florida

Drilling Contractor: Consolidated Citrus LP Drilling Method/Rig: Trackhoe/CAT 3208 L

Drillers: Wayne

Drilling Date: Start: 03/09/04 End: 03/09/04

Borehole Coordinates:

Ε

Project Name: C-44 Reservoir Phase 1 Project Number: 24752-40911-RT2.FIELD

Surface Elevation (ft.):

Total Depth (ft.): 15

Depth to Initial Water Level (ft. BGS): 12

Abandonment Method: Backfill

Field Screening Instrument:

Logged By: EDM

Sample Type	Sample Number	Sample Recovery (Inches)	Elev. Depth (ft.)	Excavation Effort	Blows per 6 Inches	Graphic Log	Stratum Designation	Material Description
AS AS	S-1A	-	0 _	E			TS /- OL SP-SM	Dry, dark gray, silty SANDTOPSOIL- (4-inches) Dry, dark gray, organic SILT. Dry, light brown and brown, very fine silty SAND, trace organic silt.
AS	S-1 S-2	-	5	E			SP-SC	Moist, light yellowish brown and light greenish gray, slightly clayey SAND.
AS AS	S-3	-	10	E/ M	_		SM	Moist, light greenish gray, fine silty SAND. Trace shell begins at 11 ft-bgs. Cemented fragments begin at 11 ft-bgs, and increase in number with depth. Wet, light greenish gray, fine SAND, trace shell, cemented fragments.
		-	15					Test pit bottom at 15 ft-bgs.
HSA - SSA - HA - AR - DTR - FR - MR - RC -	NG METHODS Hollow Stem A Solid Stem A Hand Auger Air Rotary Dual Tube R Foam Rotary Mud Rotary Reverse Circ Cable Tool	Auger Auger otary	FION O	SA AS CS B) N) GF HF SS ST	AMPLING 1 6 - Aug 6 - Calir (- 1.5" (- 2.1" 9 - Geo 9 - Hyd 6 - Split	TYPES: er/Grab S fornia Sa Rock Co Rock Co probe ro Punch i Spoon lby Tube	Sample mpler ore ore	REMARKS E = Easy M = Moderate D = Difficult

EXPLANATION OF ABBREVIATIONS

JET D DTC Jetting Driving Drill Through Casing

Above Ground Surface

Reviewed by:

Date: 64

TEST PIT LOG TP-17

Client: Aquacalma LP

Project Location: Indiantown, Florida

Project Name: C-44 Reservoir Phase 1

Project Number: 24752-40911-RT2.FIELD

Drilling Contractor: Consolidated Citrus LP

Surface Elevation (ft.):

Drilling Method/Rig: Trackhoe/CAT 3208 L

Total Depth (ft.): 15

Drillers: Wayne

Depth to Initial Water Level (ft. BGS): 14

Drilling Date: Start: 03/10/04 **End:** 03/10/04

Borehole Coordinates:

Abandonment Method: Backfill

Field Screening Instrument:

Logged By: EDM

Ε N

<u> </u>		r	,			,	,	
Sample Type	Sample Number	Sample Recovery (Inches)	Elev. Depth (ft.)	Excavation Effort	Blows per 6 inches	Graphic Log	Stratum Designation	Material Description
AS	S-1	-	0	E			SP	Dry, light brown and light yellowish brown, slightly silty fine SAND.
AS	S-2	-	 	E				Dry, gray, fine SAND, little organic silt.
AS	S-3	-	5	E			SC	Moist, light bluish gray, clayey SAND, trace silt.
AS	S-4	-	10 -	E			SP	Moist, light bluish gray, fine SAND, trace silt.
			15					
		-	- "					Bottom of test pit at 15 ft-bgs.
			.					
		-	20					
		}	·					

EXPLANATION OF ABBREVIATIONS

C-44 PHASE1.GPJ CDM_CORP.GDT 3/22/04

DRILLING METHODS: HSA - Hollow Stem A SSA - Solid Stem A HA - Hand Auger

Hollow Stem Auger Solid Stem Auger Hand Auger Air Rotary
Dual Tube Rotary
Foam Rotary
Mud Rotary
Reverse Circulation
Cable Tool AR DTR

FR MR RC CT **JET**

Jetting Driving Drill Through Casing DTC

SAMPLING TYPES:

Auger/Grab Sample California Sampler 1.5" Rock Core 2.1" Rock Core

AS CS BX NX GP HP Geoprobe Hydro Punch

SS ST WS Split Spoon Shelby Tube Wash Sample

> Above Ground Surface

REMARKS

E = Easy M = Moderate D = Difficult

One side of test pit caved in during excavation.

K. Wanth Reviewed by:

Date: 04

Sheet 1 of 1

5400 Glenwood Avenue Suite 300 Raleigh, NC 27612

TEST PIT LOG **TP-18**

Client: Aquacalma LP

Project Location: Indiantown, Florida

Project Name: C-44 Reservoir Phase 1 Project Number: 24752-40911-RT2.FIELD

Drilling Contractor: Consolidated Citrus LP

Drilling Method/Rig: Trackhoe/CAT 3208 L

Drillers: Wayne

Drilling Date: Start: 03/10/04 End: 03/10/04

Borehole Coordinates:

Ε

Surface Elevation (ft.):

Total Depth (ft.): 15

Depth to Initial Water Level (ft. BGS):

Abandonment Method: Backfill

Field Screening Instrument:

Logged By: EDM

Sample Type	Sample Number	Sample Recovery (inches)	Elev. Depth (ft.)	Excavation Effort	Blows per 6 Inches	Graphic Log	Stratum Designation	Material Description
								•
ΑE			0	E		34.3	TS	- Dry, light gray, sandy SILT, -TOPSOIL- (4-inches)
AS		-	_	E			TS SP	Dry, light gray, sandy SILTTOPSOIL- (4-inches) Dry, yellowish brown, fine SAND to slightly silty fine SAND.
AS	S-1A			E				Dry, gray and dark gray, fine SAND, little organic silt.
AS	S-1	-	 	E				Dry, light gray, fine SAND, trace silt.
AS	S-2	-	 - 10	E			SC	Dry, light brown and orange brown, clayey SAND, trace calcareous.
AS	S-3	-	 	E			SP	Moist, light greenish gray, fine SAND, trace clay, silt.
			15 			-		Bottom of test pit at 15 ft-bgs.
			20					
	FX	PLANA	TION C	F ABB	REVIA	TION	s S	REMARKS

EXPLANATION OF ABBREVIATIONS

DRILLING METHODS:

Hollow Stem Auger Solid Stem Auger HSA

SSA

Hand Auger Air Rotary Dual Tube Rotary Foam Rotary HA AR DTR FR MR

Mud Rotary Reverse Circulation RC CT Cable Tool

Jetting Driving Drill Through Casing

SAMPLING TYPES:

BX

Auger/Grab Sampler
California Sampler
1.5" Rock Core
2.1" Rock Core
Geoprobe
Hydro Punch NX GP

Split Spoon Shelby Tube Wash Sample SS ST

Above Ground AGS -

REMARKS

E = Easy

M = Moderate

D = Difficult

Test pit caved in at 12 ft-bgs, excavation continued to 15 ft-bgs and test pit caved in again.

No water encountered during excavation.

Neanth Reviewed by:

Date: 0

C-44 PHASE1.GPJ CDM_CORP.GDT 3/22/04

TEST PIT LOG TP-19

Client: Aquacalma LP

Project Location: Indiantown, Florida

Drilling Contractor: Consolidated Citrus LP

Drilling Method/Rig: Trackhoe/CAT 3208 L

Drillers: Wayne

Drilling Date: Start: 03/10/04 End: 03/10/04

Borehole Coordinates:

Ε

Project Name: C-44 Reservoir Phase 1 Project Number: 24752-40911-RT2.FIELD

Surface Elevation (ft.):

Total Depth (ft.): 15

Depth to Initial Water Level (ft. BGS): 11

Abandonment Method: Backfill

Field Screening Instrument:

Logged By: EDM

ļ			····		,			
Sample Type	Sample Number	Sample Recovery (Inches)	Elev. Depth (ft.)	Excavation Effort	Blows per 6 Inches	Graphic Log	Stratum Designation	Material Description
AS		-	0	Е		717.71	TS	Dry, gray, silty SAND, trace organic siltTOPSOIL-
AS	S-1	-		E			SP-SM	Dry, gray and dark gray, fine silty SAND.
AS	S-2	-	5	E			CL-SC	Moist, yellowish brown and orange brown, sandy CLAY to clayey SAND, trace silt.
AS	S-3	-	10	E/M		<i></i>	SP	Moist, light brownish gray, slightly clayey fine to medium SAND, some cemented fragments, trace silt. Increase in number of cemented fragment begin at 12 ft-bgs.
AS	S-4	-	- -	D		フsi	-SHELI	Wet, light brownish gray, shelly fine to medium SAND, some cemented fragments.
		-	20					Bottom of test pit at 15 ft-bgs.
	EXF	PLANA	TION O	F ABB	REVIA	TIONS	 S	REMARKS

EXPLANATION OF ABBREVIATIONS

DRILLING METHODS:

C-44 PHASE1.GPJ CDM_CORP.GDT 3/22/04

HSA SSA Hollow Stem Auger Solid Stem Auger

Hand Auger Air Rotary Dual Tube Rotary Foam Rotary AR DTR FR MR RC CT JET D

Mud Rotary Reverse Circulation Cable Tool Jetting

Driving Drill Through Casing

SAMPLING TYPES:

Auger/Grab Sample California Sampler 1.5" Rock Core 2.1" Rock Core

AS CS BX NX GP HP Geoprobe
Hydro Punch
Split Spoon
Shelby Tube
Wash Sample

SS WS -OTHER:

Above Ground Surface AGS -

REMARKS

E = Easy M = Moderate

D = Difficult

AK. Warrow Reviewed by:

Date: 04/01/01

TEST PIT LOG **TP-20**

Client: Aquacalma LP

Project Location: Indiantown, Florida

Drilling Contractor: Consolidated Citrus LP

Drilling Method/Rig: Trackhoe/CAT 3208 L

Drillers: Wayne

Drilling Date: Start: 03/10/04 End: 03/10/04

Borehole Coordinates:

Ε

Project Name: C-44 Reservoir Phase 1

Project Number: 24752-40911-RT2.FIELD

Surface Elevation (ft.):

Total Depth (ft.): 15

Depth to Initial Water Level (ft. BGS): 12

Abandonment Method: Backfill

Field Screening Instrument:

Logged By: EDM

<u> </u>			,		,			
Sample Type	Sample Number	Sample Recovery (Inches)	Elev. Depth (ft.)	Excavation Effort	Blows per 6 Inches	Graphic Log	Stratum Designation	Material Description
AS.						<u> </u>		
AS	S-1	-	0 - -	E		37.7	TS SP	Dry, dark gray, silty SAND, trace organic silt. (6-inches) Dry, light gray, fine SAND, trace silt.
AS	S-2	-		Ę			SP-SC	Dry, brown, slightly clayey SAND.
AS	S-3	-	5	М			SC	Moist, light greenish gray, clayey SAND, some cemented fragments. Color change to greenish gray and increase in number of cemented fragments begin at 8 ft-bgs.
			10	_			SHELL	Wet, white, sandy SHELL.
AS	S-4	-		E		0		
			15					Bottom of test pit at 15 ft-bgs.
			20					
	FYI	PLANA	TION O	F ARR	REVIA	TION	L	REMARKS

EXPLANATION OF ABBREVIATIONS

DRILLING METHODS:

C-44 PHASE1.GPJ CDM_CORP.GDT 3/22/04

Hollow Stem Auger Solid Stem Auger

HSA SSA HA AR DTR Hand Auger Air Rotary Dual Tube Rotary Foam Rotary

MR RC CT JET Mud Rotary Reverse Circulation Cable Tool Jetting Driving Drill Through Casing SAMPLING TYPES:

Auger/Grab Sample California Sampler 1.5" Rock Core 2.1" Rock Core AS CS

BX NX GP HP Geoprobe Hydro Punch

SS Split Spoon Shelby Tube WS -OTHER: Wash Sample

Above Ground Surface

REMARKS

E = Easy M = Moderate

D = Difficult

Reviewed by: Alt Mamba

Date: 04/21/04

CAMP DRESSER & McKEE

5400 Glenwood Avenue Suite 300 Raleigh, NC 27612

TEST PIT LOG **TP-21**

Sheet 1 of 1

Client: Aquacalma LP

Project Location: Indiantown, Florida

Project Name: C-44 Reservoir Phase 1 Project Number: 24752-40911-RT2.FIELD

Drilling Contractor: Consolidated Citrus LP

Drilling Method/Rig: Trackhoe/CAT 3208 L

Drillers: Wayne

Borehole Coordinates:

E

Surface Elevation (ft.):

Total Depth (ft.): 16

Depth to Initial Water Level (ft. BGS):

Abandonment Method: Backfill

Field Screening Instrument:

Logged By: EDM

L		,						
Sample Type	Sample Number	Sample Recovery (Inches)	Elev. Depth (ft.)	Excavation Effort	Blows per 6 inches	Graphic Log	Stratum Designation	Material Description
-3A-			0	E		- V	TS SP	Dry, brown, silty SANDTOPSOIL- (4-inches) Dry, light brown, fine SAND.
AS	S-1	-		E				
AS	S-2	-	5	E				Dry, light gray, fine SAND, trace silt.
AS	S-3	-	10	E				Moist, light brown, slightly silty fine SAND, trace calcareous.
			- - 15 -				SP-SM	Moist, light greenish gray, slightly silty fine SAND, trace clay.
			 					Bottom of test pit at 16 ft-bgs.
			20					
	EXI	PLANA	TION O	F ABB	REVIA	TIONS	L S	REMARKS

DRILLING METHODS:

C-44 PHASE1.GPJ CDM_CORP.GDT 3/22/04

Hollow Stem Auger Solid Stem Auger HSA SSA

Hand Auger
Air Rotary
Dual Tube Rotary
Foam Rotary AR DTR

FR MR RC CT JET Mud Rotary
Reverse Circulation
Cable Tool
Jetting

Driving Drill Through Casing

SAMPLING TYPES:

Wash Sample

Auger/Grab Sample
California Sampler
1.5" Rock Core
2.1" Rock Core
Geoprobe AS CS BX NX GP HP

Hydro Punch Split Spoon Shelby Tube SS

OTHER: Above Ground

Surface

E = Easy

M = Moderate

D = Difficult

No water encountered during excavation.

Test pit caved in several times beginning at 6 ft-bgs.

Reviewed by:

Date: 04

TEST PIT LOG **TP-22**

Client: Aquacalma LP

Project Location: Indiantown, Florida

Drilling Contractor: Consolidated Citrus LP

Drilling Method/Rig: Trackhoe/CAT 3208 L

Drillers: Wayne

Drilling Date: Start: 03/10/04 **End:** 03/10/04

Borehole Coordinates:

Ε

Project Name: C-44 Reservoir Phase 1

Project Number: 24752-40911-RT2.FIELD

Surface Elevation (ft.):

Total Depth (ft.): 15

Depth to Initial Water Level (ft. BGS):11

Abandonment Method: Backfill

Field Screening Instrument:

Logged By: EDM

Sample Type	Sample Number	Sample Recovery (Inches)	<u>Elev.</u> Depth (ft.)	Excavation Effort	Blows per 6 Inches	Graphic Log	Stratum Designation	Material Description
AS		-	0	E		38.3		Dry, gray, slightly silty fine SAND, trace organic siltTOPSOIL-
AS	S-1	-		Ε			SP-SN	(8-inches) Dry, gray to light gray, fine silty SAND, little organic silt.
AS	S-2	-	 	E			CL-SC	Moist, yellowish brown and orange brown, sandy CLAY to clayey SAND.
AS		-		E			SP-SC	Moist, light greenish gray, slightly clayey SAND, some cemented fragments.
AS	S-3	-	10	М			SP	Moist, light greenish gray, fine to medium SAND, trace clay, little cemented fragments. Cemented fragments begin at 10 ft-bgs, and increase in number with depth.
AS	S-4	-		E			SHELL	. Wet, white, slightly sandy SHELL.
			20					Bottom of test pit at 15 ft-bgs.
I	EX	PLANA	TION C	OF ABB	REVIA	TION	II IS	REMARKS

DRILLING METHODS:

C-44 PHASE1.GPJ CDM_CORP.GDT 3/22/04

HSA SSA

G METHODS:
Hollow Stem Auger
Solid Stem Auger
Hand Auger
Air Rotary
Dual Tube Rotary HA AR DTR

FR MR RC CT Foam Rotary Mud Rotary Reverse Circulation Cable Tool Jetting

JET D DTC Driving
Drill Through Casing SAMPLING TYPES:

Auger/Grab Sample
California Sampler
1.5" Rock Core
2.1" Rock Core
Geoprobe AS CS BX NX GP HP

Hydro Punch Split Spoon Shelby Tube Wash Sample SS ST WS

OTHER: Above Ground Surface E = Easy M = Moderate

D = Difficult

Reviewed by:

Date: 04

TEST PIT LOG TP-23

Client: Aquacalma LP

Project Location: Indiantown, Florida

Drilling Contractor: Consolidated Citrus LP

Drilling Method/Rig: Trackhoe/CAT 3208 L

Drillers: Wayne

Drilling Date: Start: 03/10/04 End: 03/10/04

Borehole Coordinates:

Project Name: C-44 Reservoir Phase 1

Project Number: 24752-40911-RT2.FIELD

Surface Elevation (ft.):

Total Depth (ft.): 14

Depth to Initial Water Level (ft. BGS): 10

Abandonment Method: Backfill

Field Screening Instrument:

Logged By: EDM

Sample Reference of the first state of the first st				· · · · · · · · · · · · · · · · · · ·					
AS S-1 - E SP Dry, light gray to gray, fine SAND, trace organic silt. AS S-2 - E Dry, grayish brown, slightly clayey SAND, little organic silt, trace silt. AS S-2 - E SP-SC Dry, grayish brown, slightly clayey SAND, little organic silt, trace silt. AS S-3 - B Moist, light gray and light yellowish brown, fine to coarse SAND, some cemented fragments. Cemented fragments begin at 5 ft-bgs. Size and number of cemented fragments increase with depth. AS S-3 - D M SP-SC Wet, light greenish gray, slightly clayey SAND, some cemented fragments, some fossilized shells. AS S-4 - D SHELL Wet, light gray and white, sandy SHELL, some cemented fragments, some fossilized shell in boulder size. Bottom of test pit at 14 ft-bgs.	Sample Type	Sample Number	Sample Recovery (Inches)	Elev. Depth (ft.)	Excavation Effort	Blows per 6 Inches	Graphic Log	Stratum Designation	Material Description
AS S-1 - E SP-SC Dry, light gray to gray, fine SAND, trace organic silt. AS S-2 - E SP-SC Dry, grayish brown, slightly clayey SAND, little organic silt, trace silt. AS S-3 - B SP-SC SP Moist, light gray and light yellowish brown, fine to coarse SAND, some cemented fragments. Cemented fragments begin at 5 ft-bgs. Size and number of cemented fragments increase with depth. AS S-3 - D M SP-SC Wet, light greenish gray, slightly clayey SAND, some cemented fragments, some fossilized shells. AS S-4 - D SHELL Wet, light gray and white, sandy SHELL, some cemented fragments, some fossilized shell in boulder size. Bottom of test pit at 14 ft-bgs.									
AS S-2 - E SP-SC Dry, light gray to gray, fine SAND, trace organic silt. AS S-2 - E SP-SC Dry, grayish brown, slightly clayey SAND, little organic silt, trace silt. SP Moist, light gray and light yellowish brown, fine to coarse SAND, some cemented fragments. Cemented fragments begin at 5 ft-bgs. Size and number of cemented fragments increase with depth. AS S-3 - M M SP-SC Wet, light greenish gray, slightly clayey SAND, some cemented fragments, some fossilized shells. Wet, light gray and white, sandy SHELL, some cemented fragments, some fossilized shell in boulder size. Bottom of test pit at 14 ft-bgs.	AS			0	E		41.3	TS	Dry gray slightly silty fine SAND trace organic silt. TORSON
AS S-3 - E Silt. SP Moist, light gray and light yellowish brown, fine to coarse SAND, some cemented fragments. Cemented fragments begin at 5 ft-bgs. Size and number of cemented fragments increase with depth. AS S-3 - M M SP-SC Wet, light greenish gray, slightly clayey SAND, some cemented fragments, some fossilized shells. AS S-4 - D SHELL Wet, light gray and white, sandy SHELL, some cemented fragments, some fossilized shell in boulder size. Bottom of test pit at 14 ft-bgs.	AS	S-1	-		E			SP	~~ (8-inches)
AS S-3 - D SP-SC Wet, light greenish gray, slightly clayey SAND, some cemented fragments, some fossilized shells. Wet, light gray and white, sandy SHELL, some cemented fragments, some fossilized shell in boulder size. Bottom of test pit at 14 ft-bgs.	AS	S-2	-		E			SP-SC	
AS S-4 - M fragments, some fossilized shells. Wet, light gray and white, sandy SHELL, some cemented fragments, some fossilized shell in boulder size. Bottom of test pit at 14 ft-bgs.	AS		-	5	E			SP	some cemented fragments. Cemented fragments begin at 5 ft-bos
AS S-4 - D fragments, some fossilized shell in boulder size. Bottom of test pit at 14 ft-bgs.	AS	S-3	-	10	М			SP-SC	Wet, light greenish gray, slightly clayey SAND, some cemented fragments, some fossilized shells.
	AS	S-4	-	- - -	D		· 🗘 . I	SHELL	Wet, light gray and white, sandy SHELL, some cemented fragments, some fossilized shell in boulder size.
			-	15					Bottom of test pit at 14 ft-bgs.
				- - -					
			-	20					

EXPLANATION OF ABBREVIATIONS

DRILLING METHODS:

C-44 PHASE1.GPJ CDM_CORP.GDT 3/22/04

Hollow Stem Auger Solid Stem Auger HSA -

HA AR DTR FR MR RC CT JET Hand Auger Air Rotary Dual Tube Rotary

Foam Rotary Mud Rotary Reverse Circulation Cable Tool Jetting

Driving Drill Through Casing

SAMPLING TYPES:

Auger/Grab Sample California Sampler 1.5" Rock Core

NX GP HP 2.1" Rock Core Geoprobe

Hydro Punch Split Spoon Shelby Tube Wash Sample SS

OTHER: Above Ground Surface

REMARKS

E = Easy

M = Moderate

D = Difficult

Cemented fragments begin at 10 ft-bgs, and increase in size and number with depth.

Excavation cannot continue deeper due to the presence of cemented fragment and fossilized of shell of boulder size.

Reviewed by:

Date: ♡

WELL INSTALLATION LOGS AND MONITORING REPORTS

Suite 300

Monitoring Well Installation Log

Raleigh, NC 27612 (919) 787-5620

"ent:	Aquacalma LP	Contractor:	Nodarse & Associates, Inc.	Poring	Well No.:	(919) 101-3020
oject Name:	C-44 Reservoir Phase I	Driller:	Ralph Smith	Date In:		APT-101
Project Location:	Indiantown, Florida	Ground EL:	26.75	7		2/5/2004
Project Number:	24752-40911-RT2.FIELD	Riser EL:	20.73	Logged		K.L.
r roject (valide).	24732 40317-1112.FILLD	I liser LL.		Page:		of 1
GROUND			ROADWAY BOX	_		
SURFACE		Land management		_		
			SURFACE SEAL:		2' Square	Concrete Pad
			(Thickness & Type)			
			BACKELL MATERIAL		0 110	
	<u>5.0</u>		BACKFILL MATERIAL (Type)	·	Soil Cuttin	gs
			(-)[)			
			. TOP OF SEAL:		23'	
er eng			SEAL CONSTRUCTION	N:	4' Bentonit	·
			(Thickness & Type)	•	- Contonia	
			TOP OF SANDPACK:	_	27'	
			RISER CONSTRUCTION	ON:	4" Sch 40 I	PVC
			(Type, Diameter Mater	_	4 0011401	1 10
			TOP OF SCREEN:		35'	
			SANDPACK TYPE:		6/20	
			·			
			SCREEN MATERIAL:		4" Sch 40 F	PVC, Slot 0.02"
			(Type, Slot, Diameter N	/laterial)		
			BOTTOM OF SCREEN	l: - <u>-</u>	135'	
	Į		BOTTOM OF BOREHO	DLE:	138'	
	•		BOREHOLE DIAMETE	R: _	10"	
	NOTE: All depths are in feet be	elow ground surfa	ce, unless noted otherwise.			

Raleigh, NC 27612

Monitoring Well Installation Log

(919) 787-5620

Client:	Aquacalma LP	Contractor: _	Nodarse & Associates, Inc.	Boring/Well No.:		N-101
Project Name:	C-44 Reservoir Phase I	Driller:	Carl Sandgren	Date Installed:	2/:	26/2004
Project Location:	Indiantown, Florida	Ground EL:	26.98	Logged By:		K.L.
Project Number:	24752-40911-RT2.FIELD	Riser EL:		Page: 1	of	

GROUND ROADWAY BOX SURFACE SURFACE SEAL: 2' Square Concrete Pad (Thickness & Type) Soil Cuttings BACKFILL MATERIAL: (Type) TOP OF SEAL: 33' SEAL CONSTRUCTION: 2' Bentonite (Thickness & Type) TOP OF SANDPACK: 35' RISER CONSTRUCTION: 2" Sch 40 PVC (Type, Diameter Material) TOP OF SCREEN: 37.6' SANDPACK TYPE: 6/20 SCREEN MATERIAL: 2" Sch 40 PVC, Slot 0.02" (Type, Slot, Diameter Material) BOTTOM OF SCREEN: 137.6' BOTTOM OF BOREHOLE: 140' BOREHOLE DIAMETER: NOTE: All depths are in feet below ground surface, unless noted otherwise.

Remarks:

Updated On:

Raleigh, NC 27612 (919) 787-5620

Monitoring Well Installation Log

				<u> </u>	(0.0) / 0/ 0020
' nt:	Aquacalma LP	Contractor:	Nodarse & Associates, Inc.	Boring/Well No.:	APT-102
j Jject Name:	C-44 Reservoir Phase I	Driller:	Ralph Smith	Date Installed:	2/5/2004
Project Location:	Indiantown, Florida	Ground EL:	25.83	Logged By:	K.L.
Project Number:	24752-40911-RT2.FIELD	Riser EL:		Page: 1	of 1

Toject Number.	2473240311-1112.11EED	Tilber EL.	ıraye.	1 01
GROUND			ROADWAY BOX	
SURFACE			TIONOVITI BOX	
			SURFACE SEAL:	2' Square Concrete Pad
			(Thickness & Type)	
			BACKFILL MATERIAL:	Soil Cuttings
	. 		(Type)	
			TOP OF SEAL:	22'
			SEAL CONSTRUCTION:	2' Bentonite
			(Thickness & Type)	
			TOP OF SANDPACK:	24'
			RISER CONSTRUCTION:	4" Sch 40 PVC
			(Type, Diameter Material)	
			TOP OF SCREEN:	30'
	•		SANDPACK TYPE:	6/20
			SCREEN MATERIAL:	4" Sch 40 PVC, Slot 0.02"
			(Type, Slot, Diameter Material)	1 331 10 1 10, 331 332
			BOTTOM OF SCREEN:	130'
			BOTTOM OF BOREHOLE:	133'
			BOREHOLE DIAMETER:	10"
	NOTE: All dopths are in fact to	alou ground ourfees waters	tod atherwise	
	NOTE: All depths are in feet be	eiow ground surface, unless no	tea otnerwise.	

Remarks:

Updated On:

Raleigh, NC 27612

Monitoring Well Installation Log

(919) 787-5620

Client:	Aquacalma LP	Contractor: _	Nodarse & Associates, Inc.	Boring/Well No.:	W-102
Project Name:	C-44 Reservoir Phase I	Driller: _		Date Installed:	3/1/2004
Project Location:	Indiantown, Florida	Ground EL:	26.09	Logged By:	
Project Number:	24752-40911-RT2.FIELD	Riser EL:		Page: 1 of	
				·	
ROUND			ROADWAY BOX		
URFACE			70 (4.1)	•	
			SURFACE SEAL:	2' Square Co	ncrete Pad
-			(Thickness & Type)		
	26.50		BACKFILL MATERIAL	Soil Cuttings	
			(Type)		
			TOP OF SEAL:	30'	
			SEAL CONSTRUCTIO (Thickness & Type)	N: 2' Bentonite	
			TOP OF SANDPACK:	32'	
			RISER CONSTRUCTION (Type, Diameter Materia		С
			TOP OF SCREEN:	35'	
			SANDPACK TYPE:	6/20	
	<u> </u>		SCREEN MATERIAL:		C, Slot 0.02"
			(Type, Slot, Diameter M	naterial)	
			BOTTOM OF SCREEN	135'	
			BOTTOM OF BOREHO	DLE: 136'	
			BOREHOLE DIAMETE		
	NOTE: All depths are in feet b		on unless poted attacking		
	NOTE: All depths are in feet be	elow ground surfac	ce, unless noted otherwise.		

Remarks:

Raleigh, NC 27612

Monitoring Well Installation Log

(919) 787-5620 Aquacalma LP Nodarse & Associates, Inc. nt: Contractor: Boring/Well No.: APT-103 Jject Name: C-44 Reservoir Phase I Driller: Ralph Smith Date Installed: 2/27/2004 Project Location: Indiantown, Florida Ground EL: ___ 24.74 Logged By: K.L.

Project Number:	24752-40911-RT2.FIELD	Riser EL:	Page:	1 of
GROUND SURFACE			ROADWAY BOX	
SURFACE				
			SURFACE SEAL:	2' Square Concrete Pad
			(Thickness & Type)	
			BACKFILL MATERIAL:	Soil Cuttings
			(Type)	con countys
			, , ,	
			TOP OF SEAL:	30'
	•		SEAL CONSTRUCTION:	O' Dantanita
			(Thickness & Type)	2' Bentonite
			(Thomicos a Type)	
			TOP OF SANDPACK:	32'
			RISER CONSTRUCTION:	2" Sch 40 PVC
			(Type, Diameter Material)	
			TOP OF SCREEN:	36'
			CANDDA OK TVDE	0/00
			SANDPACK TYPE:	6/20
				
-				
		_	SCREEN MATERIAL:	2" Sch 40 PVC, Slot 0.02"
			(Type, Slot, Diameter Material)	
			BOTTOM OF SCREEN:	136'
			BOTTOM OF SCREEN.	130
	·			•
			BOTTOM OF BOREHOLE:	140
		•		
	ł		BOREHOLE DIAMETER:	12"
	NOTE: All depths are in feet be	elow ground surface, unless no	oted otherwise.	

Remarks:

Updated On:

5400 Glenwood Avenue

Suite 300

Monitoring Well Installation Log

Raleigh, NC 27612 (919) 787-5620

Client:	Aquacalma LP	Contractor:	Nodarse & Associates, Inc.	Boring/\	Well No.:	W-103
Project Name:	C-44 Reservoir Phase I	Driller:	Carl Sandgren	Date Ins		2/21/2004
Project Location:	Indiantown, Florida	Ground EL:	24.79	Logged		K.L.
Project Number:	24752-40911-RT2.FIELD	Riser EL:		Page:		of
GROUND			ROADWAY BOX	_		
SURFACE			SURFACE SEAL: (Thickness & Type)		2' Square	Concrete Pad
			BACKFILL MATERIAL	:	Soil Cuttin	gs
			(Type)			
			TOP OF SEAL:		30'	
			SEAL CONSTRUCTIO (Thickness & Type)	N:	2' Bentoni	te
	·		TOP OF SANDPACK:	_	32'	
			RISER CONSTRUCTION (Type, Diameter Materi	_	2" Sch 40	PVC
			TOP OF SCREEN:		35'	
			SANDPACK TYPE:		6/20	
			SCREEN MATERIAL: (Type, Slot, Diameter M	laterial)	2" Sch 40	PVC, Slot 0.02"
			BOTTOM OF SCREEN	: -	135'	
			BOTTOM OF BOREHO	DLE:	137'	***************************************
	ŀ		BOREHOLE DIAMETE	R: _	7"	····
	NOTE: All depths are in feet be	low ground surfa	ce, unless noted otherwise.			

Updated On:

Raleigh, NC 27612 (919) 787-5620

Monitoring Well Installation Log
ontractor: Nodarse & Associates, Inc. Boring/Well No

nnt:	Aquacalma LP	Contractor:	Nodarse & Associates, Inc.	Boring/Well N	o.: W-104a
Jject Name:	C-44 Reservoir Phase I	Driller:		Date Installed:	
Project Location:	Indiantown, Florida	Ground EL:		Logged By:	K.L.
Project Number:	24752-40911-RT2.FIELD	Riser EL:		Page: 1	of
		•			
GROUND			ROADWAY BOX		
SURFACE					•
			SURFACE SEAL:	2' S	Square Concrete Pad
			(Thickness & Type)		
			BACKFILL MATERIAL:	Soil	Cuttings
			(Type)		
			TOP OF SEAL:	17'	
			SEAL CONSTRUCTION	۷: 3'B	Sentonite
			(Thickness & Type)		
			TOP OF SANDPACK:	20'	
			RISER CONSTRUCTIO)N: 2" S	Sch 40 PVC
			(Type, Diameter Materia		
			TOP OF SCREEN:	22.8	33'
			SANDPACK TYPE:	6/20) (8 bags)
			-		,
			,		
	·		SCREEN MATERIAL:		ch 40 PVC, Slot 0.02"
			(Type, Slot, Diameter Ma	aterial)	
			BOTTOM OF SCREEN:	27.8	3'
			•		
			BOTTOM OF BOREHOL	LE: <u>28'</u>	
	ŀ		BOREHOLE DIAMETER	R: <u>7"</u>	
	NOTE: All depths are in feet be	elow ground surface	ce, unless noted otherwise.		

Remarks:

Updated On:

Monitoring Well Installation Log

Raleigh, NC 27612 (919) 787-5620

Client:	Aquacalma LP	Contractor:	Nodarse & Associates, Inc.	_Boring/	Well No.:	W-104b
Project Name:	C-44 Reservoir Phase I	Driller:	Carl Sundgren	Date In:	stalled:	1/30/2004
Project Location:	Indiantown, Florida	Ground EL:	25.71	Logged	l By:	K.L.
Project Number:	24752-40911-RT2.FIELD	Riser EL:		Page:		of 1
GROUND	W	ANTES ATTEM ENGINEERS OF THE STATE	ROADWAY BOX	_		
SURFACE			SURFACE SEAL: (Thickness & Type) BACKFILL MATERIAL		2' Square C	Concrete Pad
			(Type)			
			TOP OF SEAL:		51'	
			SEAL CONSTRUCTIO (Thickness & Type))N: .	3' Bentonite	9
			TOP OF SANDPACK:		54'	·
			RISER CONSTRUCTI	ON:	2" Sch 40 F	PVC
			(Type, Diameter Mater	_		
			TOP OF SCREEN:		59'	
			SANDPACK TYPE:		6/20	
			SCREEN MATERIAL:		2" Sch 40 E	PVC, Slot 0.02"
			(Type, Slot, Diameter I		2 0011 40 1	VO, 0101 0.02
			BOTTOM OF SCREET		64'	
			50 1.0 01. 001.EE.	`` -		
			BOTTOM OF BOREH	OLE:	65'	
	H		BOREHOLE DIAMETE	ER:	7"	
	NOTE: All depths are in feet be	elow ground surfa	ice, unless noted otherwise.			

Remarks:

Raleigh, NC 27612

Monitoring Well Installation Log

(919) 787-5620

uacalma LP 44 Reservoir Phase I liantown, Florida 752-40911-RT2.FIELD	Driller: Ground EL: Riser EL:	Carl Sandgren 25.24	2' Square C : Soil Cutting:	W-105a 2/3/2004 K.L. of
		25.24 ROADWAY BOX SURFACE SEAL: (Thickness & Type) BACKFILL MATERIAL: (Type)	Page: 1 c	K.L.
		ROADWAY BOX SURFACE SEAL: (Thickness & Type) BACKFILL MATERIAL: (Type)	Page: 1 c	of concrete Pad
		ROADWAY BOX SURFACE SEAL: (Thickness & Type) BACKFILL MATERIAL: (Type)	2' Square C : Soil Cutting:	
		(Thickness & Type) BACKFILL MATERIAL: (Type)	: Soil Cuttings	
		(Thickness & Type) BACKFILL MATERIAL: (Type)	: Soil Cuttings	
		BACKFILL MATERIAL: (Type)		<u>s</u>
		(Type)		<u>s</u>
			40.5	
		TOP OF SEAL:	40.51	
			18.5'	
		SEAL CONSTRUCTION	N: 2' Bentonite	
		(Thickness & Type)		
		TOP OF SANDPACK:	20.5'	
				VC
		TOP OF SCREEN:	24'	
		SANDPACK TYPE:	6/20 (4 bags	s)
		SCREEN MATERIAL: (Type, Slot, Diameter M		VC, Slot 0.02"
		BOTTOM OF SCREEN	N: <u>29'</u>	
		BOTTOM OF BOREHO	DLE: 29'	
		BOREHOLE DIAMETE	ER: 7"	
	OTE: All depths are in feet t	OTE: All depths are in feet below ground surfa	(Type, Diameter Mater TOP OF SCREEN: SANDPACK TYPE: SCREEN MATERIAL: (Type, Slot, Diameter Mater) BOTTOM OF SCREEN BOTTOM OF BOREHO	SANDPACK TYPE: 6/20 (4 bags SCREEN MATERIAL: 2" Sch 40 P (Type, Slot, Diameter Material) BOTTOM OF SCREEN: 29' BOTTOM OF BOREHOLE: 29' BOREHOLE DIAMETER: 7"

Remarks:

Raleigh, NC 27612

Monitoring Well Installation Log

(919) 787-5620

Client:	Aquacalma LP	Contractor:	Nodarse & Associates, Inc.	Boring/Well No.:	W-105b
Project Name:	C-44 Reservoir Phase I	Driller:		Date Installed:	2/4/2004
Project Location:	Indiantown, Florida	Ground EL:	25.24	Logged By:	K.L.
Project Number:	24752-40911-RT2.FIELD	Riser EL:		Page: 1 of	
GROUND		A CONTRACTOR OF STATE AND ADDRESS OF STATE AND ADDR	ROADWAY BOX		
SURFACE			SURFACE SEAL: (Thickness & Type)	2' Square Cor	ncrete Pad
			BACKFILL MATERIAL: (Type)	Soil Cuttings	.,,,,,
			TOP OF SEAL:	52.5'	
			SEAL CONSTRUCTION (Thickness & Type)	N: 2' Bentonite	
			TOP OF SANDPACK:	54.5'	
			RISER CONSTRUCTIO (Type, Diameter Materia		<u> </u>
			TOP OF SCREEN:	59'	
			SANDPACK TYPE:	6/20 (5 bags)	
			SCREEN MATERIAL:	2" Sch 40 PV	C, Slot 0.02"
			(Type, Slot, Diameter M	laterial)	
			BOTTOM OF SCREEN:	64'	
			BOTTOM OF BOREHO	LE: <u>64'</u>	
	H		BOREHOLE DIAMETER	R: <u>7"</u>	
	NOTE: All depths are in feet be	low ground surfa	ace, unless noted otherwise.		
	,	J			
Remarks:					

5400 Glenwood Avenue

Suite 300

Monitoring Well Installation Log

Raleigh, NC 27612 (919) 787-5620

Client:	Aquacalma LP	Contractor:	Nodarse & Associates, Inc.	Boring	Well No.:	W-1	062
Project Name:	C-44 Reservoir Phase I	Driller:	Ralph Smith	Date Installed:		2/11/	
Project Location:	Indiantown, Florida	Ground EL:	27.62	Logged		K.	
Project Number:	24752-40911-RT2.FIELD	Riser EL:		Page:	=	of	
00011110							
GROUND SURFACE			ROADWAY BOX				
			SURFACE SEAL: (Thickness & Type)			Concrete Pac	<u>t</u>
	wid.		BACKFILL MATERIA	L:	Soil Cutti	ngs	
			(Type)				
			TOP OF SEAL:		22'		
			SEAL CONSTRUCTION (Thickness & Type)	ON:	3' Benton	ite	
			TOP OF SANDPACK		25'		
			RISER CONSTRUCT	ION:	2" Sch 40	PVC	
			(Type, Diameter Mate	rial)			
			TOP OF SCREEN:		30'		
			SANDPACK TYPE:		6/20 (5 b	ags)	
			SCREEN MATERIAL: (Type, Slot, Diameter		2" Sch 40	PVC, Slot 0.0	2"
			(Type, Glot, Diameter)	wiateriai)			
			BOTTOM OF SCREE	N : .	35'		
	Į		BOTTOM OF BOREH	OLE:	35'	(
	ŀ		BOREHOLE DIAMETE	≣R:	7"		
	NOTE: All depths are in feet be	elow ground surfa	ce, unless noted otherwise.				

5400 Glenwood Avenue

Suite 300 Raleigh, NC 27612

Monitoring Well Installation Log

919) 787-5620

Client:	Aquacalma LP	Contractor:	Nodarse & Associates, Inc.	Boring/Well No.:	W-106b
Project Name:	C-44 Reservoir Phase I	Driller:	Ralph Smith	Date Installed:	2/11/2004
Project Location:	Indiantown, Florida	Ground EL:	27.62	Logged By:	K.L.
Project Number:	24752-40911-RT2.FIELD	Riser EL:		Page: 1 of	1
GROUND SURFACE		and the second of the second	ROADWAY BOX	-	
			SURFACE SEAL: (Thickness & Type)	2' Square Conc	rete Pad
			BACKFILL MATERIAL: (Type)	: Soil Cuttings	
			TOP OF SEAL:	71'	
			SEAL CONSTRUCTIO (Thickness & Type)	N: 2' Bentonite	
			TOP OF SANDPACK:	73'	
			RISER CONSTRUCTION (Type, Diameter Materi		
			TOP OF SCREEN:	75'	
			SANDPACK TYPE:	6/20 (6 bags)	
			SCREEN MATERIAL:	2" Sch 40 PVC,	Slot 0 02"
			(Type, Slot, Diameter M		0.01 0.02
			BOTTOM OF SCREEN	l: 80'	
			BOTTOM OF BOREHO	DLE: 80'	
	H		BOREHOLE DIAMETE	R: 7"	
	NOTE: All depths are in feet bel	ow ground surfa	ce, unless noted otherwise.		

Suite 300

Raleigh, NC 27612

Monitoring Well Installation Log
Contractor: Nodarse & Associates Inc.

(919) 787-5620 W-107a

nt:	Aquacalma LP	Contractor: -	Nodarse & Associates, Inc.	1	Well No.:	W-107a
r oject Name:	C-44 Reservoir Phase I	_Driller: _	Carl Sundgren	1	stalled:	2/10/2004
Project Location:	Indiantown, Florida	Ground EL:	26.14	Logged	l By:	K.L.
Project Number:	24752-40911-RT2.FIELD	Riser EL:		Page:	1 of	1
GROUND			ROADWAY BOX			
SURFACE				-		
,			SURFACE SEAL: (Thickness & Type)		2' Square Con	crete Pad
			BACKFILL MATERIAL (Type)	:	Soil Cuttings	
			TOP OF SEAL:		20'	
			SEAL CONSTRUCTIO (Thickness & Type)	N:	2' Bentonite	
			TOP OF SANDPACK:		22'	
			RISER CONSTRUCTI (Type, Diameter Mater		2" Sch 40 PVC)
			TOP OF SCREEN:		24'	
			SANDPACK TYPE:		6/20 (5 bags)	
			SCREEN MATERIAL: (Type, Slot, Diameter I		2" Sch 40 PVC	C, Slot 0.02"
			BOTTOM OF SCREEN	1 :	29'	
			BOTTOM OF BOREHO	DLE:	29'	
	H		BOREHOLE DIAMETE	:R:	7"	
	NOTE: All depths are in feet belo	ow ground surfa	ice, unless noted otherwise.			
		· · ·				

Raleigh, NC 27612

Monitoring Well Installation Log

(919) 787-5620

Client:	Aquacalma LP	Contractor:	Nodarse & Associates, Inc.	Boring/Well No.:	W-107b
Project Name:	C-44 Reservoir Phase I	Driller:	Carl Sundgren	Date Installed:	2/10/2004
Project Location:	Indiantown, Florida	Ground EL:	26.15	Logged By:	K.L.
Project Number:	24752-40911-RT2.FIELD	Riser EL:		Page: 1 of	1
GROUND SURFACE			ROADWAY BOX	_	
			SURFACE SEAL: (Thickness & Type)	2' Square Cor	ocrete Pad
			BACKFILL MATERIA (Type)	L: Soil Cuttings	
			TOP OF SEAL:	58'	
			SEAL CONSTRUCTI (Thickness & Type)	ION: 2' Bentonite	
			TOP OF SANDPACK	(: <u>60'</u>	
			RISER CONSTRUCT (Type, Diameter Mate		<u> </u>
			TOP OF SCREEN:	64'	
			SANDPACK TYPE:	6/20 (5.5 bag	s)
			SCREEN MATERIAL (Type, Slot, Diamete		C, Slot 0.02"
			BOTTOM OF SCREI	EN: 69'	·
			BOTTOM OF BORE	HOLE: 69'	
			BOREHOLE DIAME	TER: <u>7"</u>	
	NOTE: All depths are in feet b	pelow ground surfa	ace, unless noted otherwise.		

Remarks:

5400 Glenwood Avenue

Suite 300 Raleigh, NC 27612

Monitoring Well Report

(919) 787-5620

₹nt:	Aquacalma LP						
r oject Name:	C-44 Reservoir P	hase I	Ground Surface EL:		25.71	Boring/Well No.	W-104a (28')
Project Location:	Indiantown, Florid	ta	Riser EL:			Page: 1	
Project Number:	24752-40911-RT	2.FIELD					
Date	Time	Elapsed Time (days)	Depth of Water Below Ground Surface (ft)	Elevation of Water (ft)		Remarks	Read By
2/6/2004	11:25		5.6		just before well	development	K.L.
2/6/2004	11:40		6.2		1	elopment of W-104b	K.L.
2/6/2004	12:21		6.6			elopment of W-104b	K.L.
2/6/2004	12:40		6.8			opment of W-104b	K.L.
2/9/2004	15:19		8.6		before developm	ent	K.L.
2/24/2004	8:50		10.55		just before slug	test	K.L.
							·
_							
				*			

							<u> </u>
			7,10				
							
······································	<u></u>	·I.					

৭emarks:

Suite 300 Raleigh, NC 27612 (919) 787-5620

Monitoring Well Report

Client:	Aquacalma LP						
Project Name:	C-44 Reservoir Pl	hase I	Ground Surface EL:	****	25.24	Boring/Well No.	W-105a (29')
Project Location:	Indiantown, Florid	la	Riser EL:			Page: 1	of 1
Project Number:	24752-40911-RT2	2.FIELD	<u> </u>	<u> </u>	1		
Date	Time	Elapsed Time (days)	Depth of Water Below Ground Surface (ft)	Elevation of Water (ft)		Remarks	Read By
2/6/2004	10:40		14.85		just before wel	l development	K.L.
2/6/2004	11:05		8.1		after well deve	elopment	K.L.
2/6/2004	11:09		7.7				K.L.
2/6/2004	11:10		7.6			-	K.L.
2/6/2004	11:11		7.6				K.L.
2/6/2004	11:13		7.6				K.L.
2/9/2004	8:30		7.4				K.L.
2/18/2004	15:20		7.5		just before slu	g test	K.L.
		,					

						-	

Remarks:

Monitoring Well Report

Suite 300 Raleigh, NC 27612 (919) 787-5620

nt:	Aquacalma LP						
Project Name:	C-44 Reservoir P	hase I	Ground Surface EL:		25.24	Boring/Well No	 W-105b (64')
Project Location:	Indiantown, Florid	la	Riser EL:			Page: 1	
Project Number:	24752-40911-RT	į.FIELD		•			
Date	Time	Elapsed Time (days)	Depth of Water Below Ground Surface (ft)	Elevation of Water (ft)		Remarks	Read By
2/6/2004	10:44		22.95		after well develo	pment	K.L.
2/6/2004	10:50		. 9				 K.L.
2/6/2004	11:00	,	6.8				K.L.
2/6/2004	11:15		6.45				K.L.
2/8/2004	15:00	······································	6.5		just before slug	test	K.L.
2/9/2004	8:30		7.4				K.L.
2/18/2004	15:20		6.4				K.L.
					·	·	
	7.3						
					·		
							· · · · · · · · · · · · · · · · · · ·
	 - -						
			· .				
							
							
Remarks:	L						

Updated On:

Monitoring Well Report

Raleigh, NC 27612
(919) 787-5620

ient:	Aquacalma LP				26.14 Boring/Well No. W-107a		
oject Name:	C-44 Reservoir Phase I					Page: 1	
oject Location:	Indiantown, Florid		Riser EL:				
oject Number:	24752-40911-RT2	.FIELD					
Date	Time	Elapsed Time (days)	Depth of Water Below Ground Surface (ft)	Elevation of Water (ft)		Remarks	Read By
	8:15		10.22		wellhead co	mpleted	K.L.
2/20/2004	0.13						
		<u> </u>			<u> </u>		
		<u> </u>		ļ	 		
					1		
			 		1		
·					 		
					<u> </u>		
						_	
			+		1		
					 		
					<u> </u>		
		 	 	+	1		
					ł		
			,	·			
					1		
			<u> </u>				
						,	

Updated On:

Suite 300 Raleigh, NC 27612 (919) 787-5620

Monitoring Well Report

	Aquacalma LP						
roject Name:	C-44 Reservoir Ph	nase I	Ground Surface EL:		26.15	Boring/Well No.	
roject Location:	Indiantown, Florida		Riser EL:			Page:1	of 1
roject Number:	24752-40911-RT2						
Date	Time	Elapsed Time (days)	Depth of Water Below Ground Surface (ft)	Elevation of Water (ft)		Remarks	Read By
2/20/2004	8:15		10.3		wellhead comp	leted	K.L.
2/20/2004	0.10						
	<u> </u>				 		
					·		
					<u> </u>		
				-			
					-		
					-		
		1					

ື∘marks:

APPENDIX D

Field Hydraulic Conductivity Testing

- 1. Variable Head Hydraulic conductivity Tests
- 2. Slug Tests
- 3. Aquifer Performance Tests

VARIABLE HEAD HYDRAULIC CONDUCTIVITY TESTS

Raleigh, NC 27612

Suite 300 Falling Head Permeability Test (919) 787-5620 Aquacalma LP Contractor: Nodarse & Associates, Inc. Boring/Well No.: W-104 Filect Name: C-44 Reservoir Phase I Driller: Carl Sandgren Date Installed: 1/23/2004 Project Location: Indiantown, Florida Ground EL: Logged By: K.L. Project Number: 24752-40911-RT2.FIELD Riser EL: Page: 1 Depth to SWL before test = Top of Casing 5.25' (measured from top of casing) $\mathbf{F}(\mathbf{t}_2 - \mathbf{t}_1)$ Ground k = permeability (ft/min) Surface $h_0 =$ 5.25 $A = Area of borehole (ft^2)$ h_1 F = intake factor h_0 = initial height of water above static water level (ft) h_2 h_1 = height of water column (ft) at time t_1 (min) h_2 = height of water colmun (ft) at time t_2 (min) For a borehole open to its base, of diameter D, SWL and cased to the full depth, F = 2.75 DIf the cased hole is through impermeable soil and Casing Inside Diameter = 3.2" the base of the casing is at the interface with a permeable stratum, F = 2DBottom of Casing For an intake formed by a cylindrical filter zone of diameter D and length A in an infinite isotropic stratum, $F = \underline{2\pi L}$ Time (min) Drop (ft) h (ft) ln[2L/D]0.00 0.00 5.25 1.50 0.02 5.23 2.75 0.03 5.23 L =3.50 0.03 5.22 (Table Cont'd) 4.50 0.04 5.21 Time (min) Drop (ft) h (ft) Time (min) Drop (ft) h (ft) 5.67 0.05 5.20 49.17 0.266666667 4.98 6.92 0.06 5.19 52.08 0.283333333 4.97 8.15 0.07 5.18 61.00 0.3 4.95 9.52 0.08 5.18 65.83 0.316666667 4.93 10.77 0.08 5.17 69.25 0.333333333 4.92 12.50 0.10 5.15 79.33 0.35 4.90 15.67 0.12 5.13 165.00 0.508333333 4.74 18.83 0.13 5.12 187.00 0.55 4.70 22.00 0.15 5.10 322.00 1 4.25 24.58 0.17 5.08 27.50 0.18 5.07 29.42 0.20 5.05 34.00 0.22 5.03 38.25 0.23 5.02

Remarks:

43.00

0.25

5.00

Reference: U.S. Dept of the Navy, Naval Facilities Engineering Command, DM 7.1-105/106 (1982)

Falling Head permeability test performed in vicinity of W-104 wells. Botttom of casing seated in clay layer. Depth to static water level assumed to be depth to bottom of casing

Updated On: 03/05/04

Suite 300

Raleigh, NC 27612

Falling Head Permeability Test

(919) 787-5620

Client:	Aquacalma LP	Contractor:	Nodarse & Associates, Inc.	Boring/Well No.:		W-104
Project Name:	C-44 Reservoir Phase I	Driller:	Carl Sandgren	Date Installed:		1/23/2004
Project Location:	Indiantown, Florida	Ground EL:		Logged By:	-	K.L.
Project Number:	24752-40911-RT2.FIELD	Riser EL:		Page: 2	of —	

Time (min)	h (ft)	LN h
0.00	5.25	1.66
1.50	5.23	1.66
2.75	5.23	1.65
3.50	5.22	1.65
4.50	5.21	1.65
5.67	5.20	1.65
6.92	5.19	1.65
8.15	5.18	1.65
9.52	5.18	1.64
10.77	5.17	1.64
12.50	5.15	1.64
15.67	5.13	1.64
18.83	5.12	1.63
22.00	5.10	1.63
24.58	5.08	1.63
27.50	5.07	1.62
29.42	5.05	1.62
34.00	5.03	1.62
38.25	5.02	1.61
43.00	5.00	1.61
49.17	4.98	1.61
52.08	4.97	1.60
61.00	4.95	1.60
65.83	4.93	1.60
69.25	4.92	1.59
79.33	4.90	1.59
165.00	4.74	1.56
187.00	4.70	1.55
322.00	4.25	1.45
		-
		_
		
		·
		1
		1
	T	
		1
		1

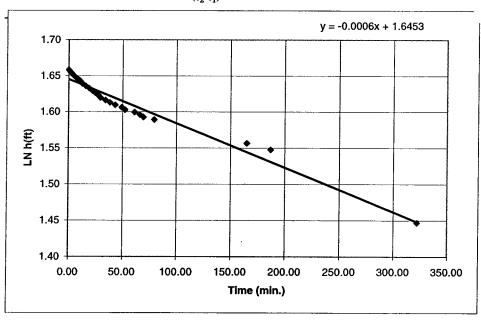
k = A $\ln (h_1/h_2)$ F $(t_2 - t_1)$

k = permeability (ft/min)

A = Area of borehole (ft^2) = $\begin{vmatrix} 0.05585049 \\ ft^2 \end{vmatrix}$ ft F = intake factor = $\begin{vmatrix} 0.73 \\ ft \end{vmatrix}$ ft

 h_0 = initial height of water above static water level (ft)

 h_1 = height of water column (ft) at time t_1 (min)


 h_2 = height of water colmun (ft) at time t_2 (min)

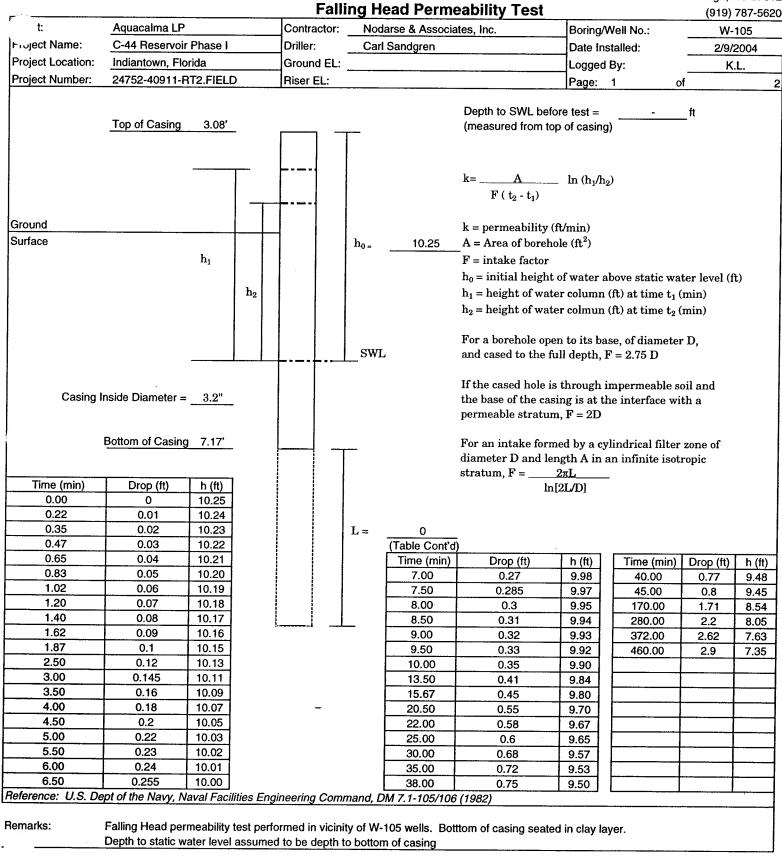
k= 4.56959E-05 ft/min

2.32E-05 cm/sec

The slope of this graph is : - $\ln (h_1/h_2)$

 (t_2-t_1)

Reference: U.S. Dept of the Navy, Naval Facilities Engineering Command, DM 7.1-105/106 (1982)


Remarks:

Falling Head permeability test performed in vicinity of W-104 wells. Botttom of casing seated in clay layer.

Depth to static water level assumed to be depth to bottom of casing

Suite 300 Raleigh, NC 27612

Suite 300 Raleigh, NC 27612

Falling Head Permeability Test

(9	19)	787-5	 0

			5		(, .	
Client:	Aquacalma LP	Contractor:	Nodarse & Associates, Inc.	Boring/Well No.:	W-1	05
Project Name:	C-44 Reservoir Phase I	Driller:	Carl Sandgren	Date Installed:	2/9/2	004
Project Location:	Indiantown, Florida	Ground EL:		Logged By:	K.I	
Project Number:	24752-40911-RT2.FIELD	Riser EL:		Page: 2	of	2

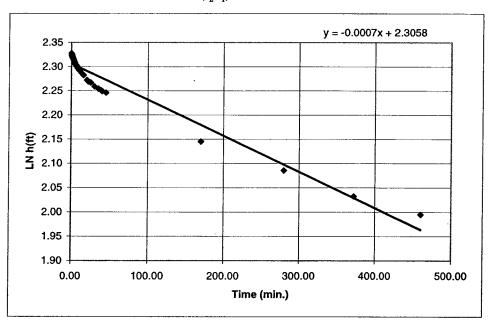
Time (min)	h (ft)	LNh
0.00	10.25	2.33
0.22	10.24	2.33
0.35	10.23	2.33
0.47	10.22	2.32
0.65	10.21	2.32
0.83	10.20	2.32
1.02	10.19	2.32
1.20	10.18	2.32
1.40	10.17	2.32
1.62	10.16	2.32
1.87	10.15	2.32
2.50	10.13	2.32
3.00	10.11	2.31
3.50	10.09	2.31
4.00	10.07	2.31
4.50	10.05	2.31
5.00	10.03	2.31
5.50	10.02	2.30
6.00	10.01	2.30
6.50	10.00	2.30
7.00	9.98	2.30
7.50	9.97	2.30
8.00	9.95	2.30
8.50	9.94	2.30
9.00	9.93	2.30
9.50	9.92	2.29
10.00	9.90	2.29
13.50	9.84	2.29
15.67	9.80	2.28
20.50	9.70	2.27
22.00	9.67	2.27
25.00	9.65	2.27
30.00	9.57	2.26
35.00	9.53	2.25
38.00	9.50	2.25
40.00	9.48	2.25
45.00	9.45	2.25
170.00	8.54	2.14
280.00	8.05	2.09
372.00	7.63	2.03
460.00	7.35	1.99
		

$$k = A$$
 $\ln (h_1/h_2)$
F $(t_2 - t_1)$

k = permeability (ft/min)

 $A = Area of borehole (ft^2)$ $0.05585049 \, \mathrm{ft}^2$ F = intake factor0.73

 h_0 = initial height of water above static water level (ft)


 h_1 = height of water column (ft) at time t_1 (min)

 h_2 = height of water colmun (ft) at time t_2 (min)

k≍ 5.33E-05 ft/min

2.71E-05 cm/sec

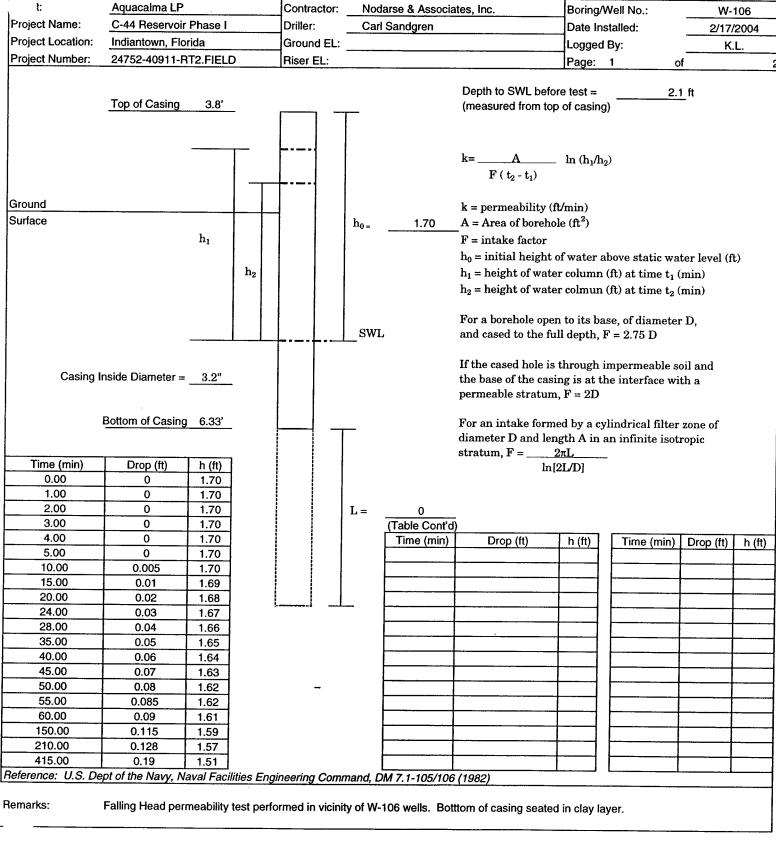
The slope of this graph is : - $\ln (h_1/h_2)$ (t_2-t_1)

Reference: U.S. Dept of the Navy, Naval Facilities Engineering Command, DM 7.1-105/106 (1982)

Remarks:

Falling Head permeability test performed in vicinity of W-105 wells. Botttom of casing seated in clay layer.

Depth to static water level assumed to be depth to bottom of casing



Suite 300

Raleigh, NC 27612

Falling Head Permeability Test (919) 787-5620

Contractor: Nodarse & Associates, Inc. Boring/Well No.: W-106

Suite 300 Raleigh, NC 27612

Falling Head Permeability Test

(919) 787-5 7

Client:	Aquacalma LP	Contractor:	Nodarse & Associates, Inc.	Boring/Well No.:	_	W-106
Project Name:	C-44 Reservoir Phase I	Driller:	Carl Sandgren	Date Installed:	_	2/17/2004
Project Location:	Indiantown, Florida	Ground EL:		Logged By:		K.L.
Project Number:	24752-40911-RT2.FIELD	Riser EL:		Page: 2	of	

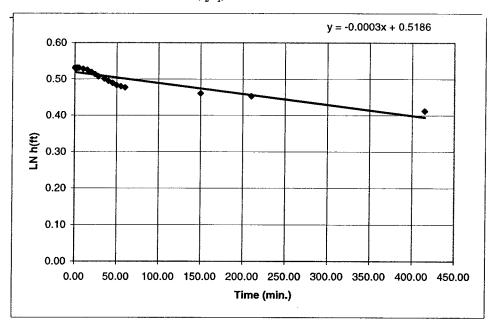
h (ft)	F (ft)
1.70	0.53
1.70	0.53
1.70	0.53
1.70	0.53
1.70	0.53
1.70	0.53
1.70	0.53
1.69	0.52
1.68	0.52
1.67	0.51
1.66	0.51
1.65	0.50
1.64	0.49
1.63	0.49
1.62	0.48
1.62	0.48
1.61	0.48
1.59	0.46
1.57	0.45
1.51	0.41
	1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70

 $k = A \ln (h_1/h_2)$ F ($t_2 - t_1$)

k = permeability (ft/min)

A = Area of borehole (ft^2) = $\begin{vmatrix} 0.05585049 \\ ft^2 \end{vmatrix}$ F = intake factor = $\begin{vmatrix} 0.73 \\ ft \end{vmatrix}$

 h_0 = initial height of water above static water level (ft)


 h_1 = height of water column (ft) at time t_1 (min)

 h_2 = height of water colmun (ft) at time t_2 (min)

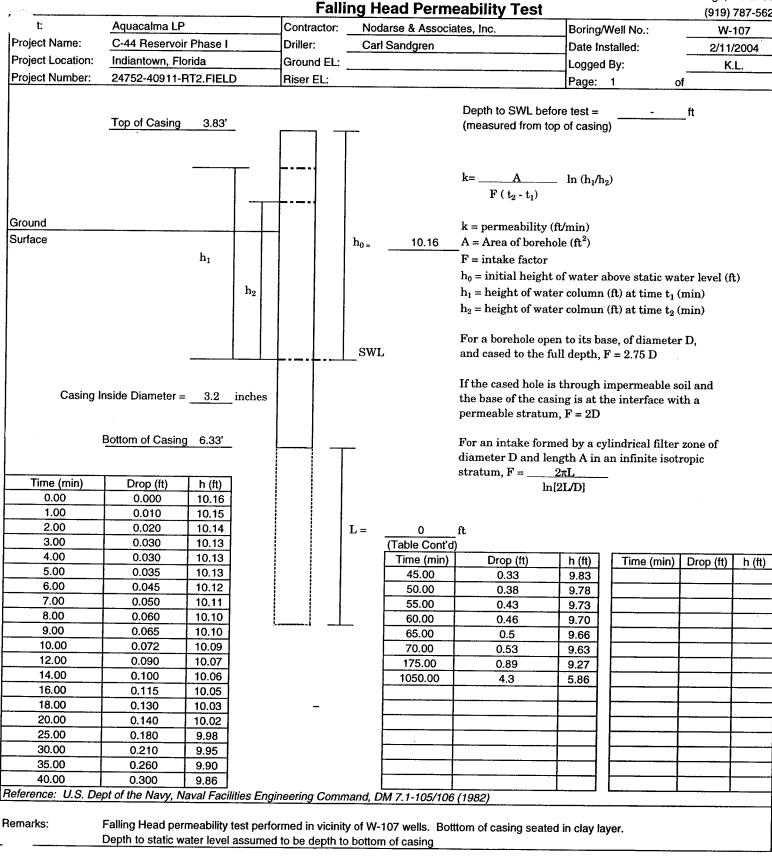
k= 2.28E-05 ft/min

1.16E-05 cm/sec

The slope of this graph is : $-\frac{\ln (h_1/h_2)}{(t_2-t_1)}$

Reference: U.S. Dept of the Navy, Naval Facilities Engineering Command, DM 7.1-105/106 (1982)

Remarks:


Falling Head permeability test performed in vicinity of W-106 wells. Bottom of casing seated in clay layer.

5400 Glenwood Avenue

Suite 300 Raleigh, NC 27612

(919) 787-5620

Suite 300

Raleigh, NC 27612

Falling Head Permeability Test

		Falliı	ng Head Permeability Test			(919) 787-F110
Client:	Aquacalma LP	Contractor:	Nodarse & Associates, Inc.	Boring/Well No.:		W-107
Project Name:	C-44 Reservoir Phase I	Driller:	Carl Sandgren	Date Installed:		2/11/2004
Project Location:	Indiantown, Florida	Ground EL:		Logged By:		K.L.
Project Number:	24752-40911-RT2.FIELD	Riser EL:		Page: 2	of	2

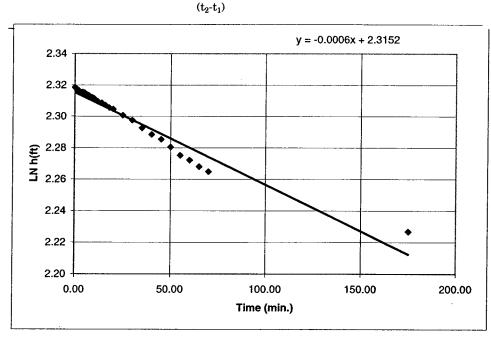
Time (min)	h (ft)	LNh
0.00	10.16	2.32
1.00	10.15	2.32
2.00	10.14	2.32
3.00	10.13	2.32
4.00	10.13	2.32
5.00	10.13	2.32
6.00	10.12	2.31
7.00	10.11	2.31
8.00	10.10	2.31
9.00	10.10	2.31
10.00	10.09	2.31
12.00	10.07	2.31
14.00	10.06	2.31
16.00	10.05	2.31
18.00	10.03	2.31
20.00	10.02	2.30
25.00	9.98	2.30
30.00	9.95	2.30
35.00	9.90	2.29
40.00	9.86	2.29
45.00	9.83	2.29
50.00	9.78	2.28
55.00	9.73	2.28
60.00	9.70	2.27
65.00	9.66	2.27
70.00	9.63	2.26
175.00	9.27	2.23
1050.00	5.86	1.77
		<u> </u>
		ļ
		L
		
		<u> </u>
1		

k=	Α	ln (h ₁ /h ₂)
	$\mathbf{F}(\mathbf{t}_2 - \mathbf{t}_1)$	

k = permeability (ft/min)

 $0.05585049 \, \mathrm{ft}^2$ A = Area of borehole (ft²)F = intake factor0.73

 h_0 = initial height of water above static water level (ft)


 h_1 = height of water column (ft) at time t_1 (min)

 h_2 = height of water colmun (ft) at time t_2 (min)

k = 4.57E-05 ft/min

2.32E-05 cm/sec

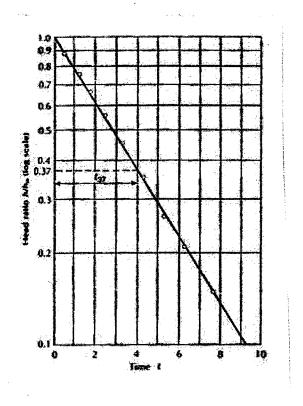
The slope of this graph is : - $\ln (h_1/h_2)$

Reference: U.S. Dept of the Navy, Naval Facilities Engineering Command, DM 7.1-105/106 (1982)

Remarks:

Falling Head permeability test performed in vicinity of W-107 wells. Botttom of casing seated in clay layer.

Depth to static water level assumed to be depth to bottom of casing

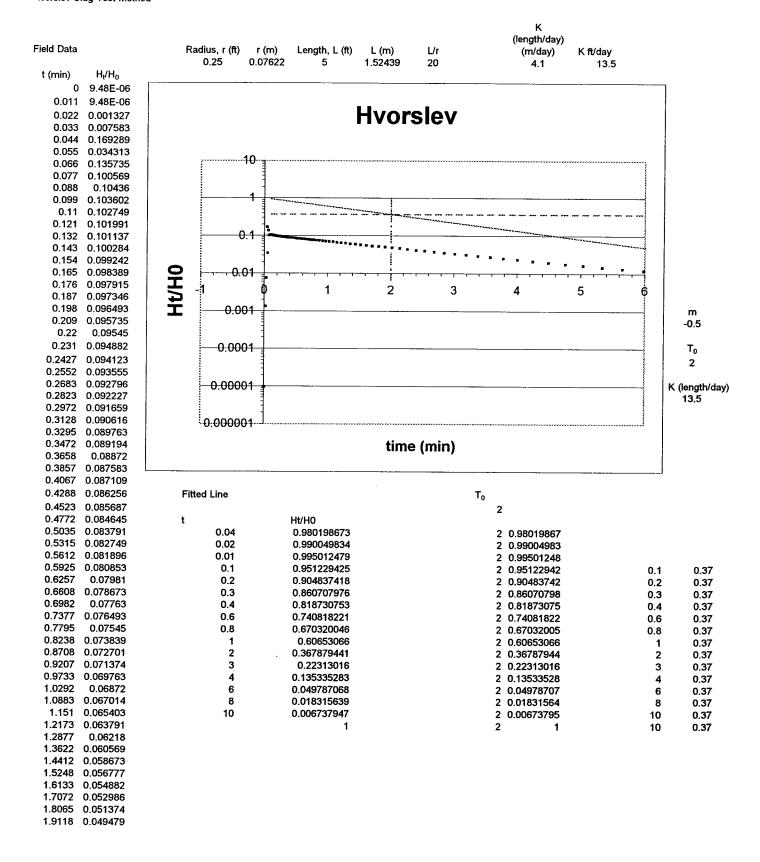

SLUG TESTS

Hvorslev Method

For the slug-in test, a metal bar (slug) of fixed volume was added to the well to displace the water level above original groundwater level and the relaxation of the water level in the well to the original level is measured over time. For the slug-out test, the slug was removed from the well and the recovery of the water level in the well to original groundwater level was measured over time.

For the Hvorslev Method, the head versus time was plotted as shown below and the time to 37% recovery of the initial change in head in the well (t_{37}) was estimated.

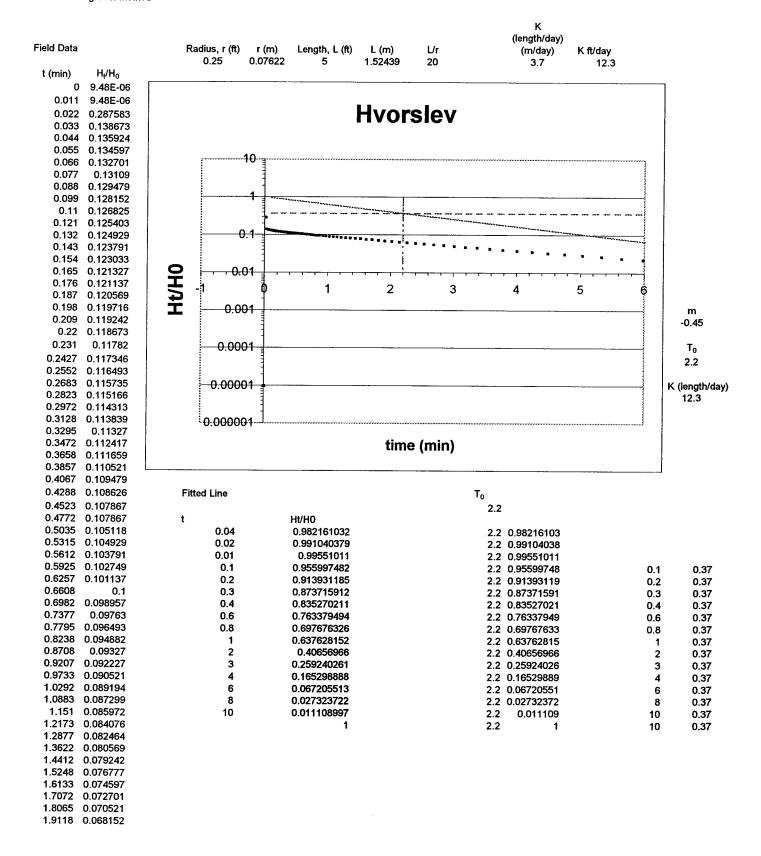
$$k = \frac{r^2 ln(L/R)}{2Lt_{37}}$$


r = well casing radius

L = length of the screened interval

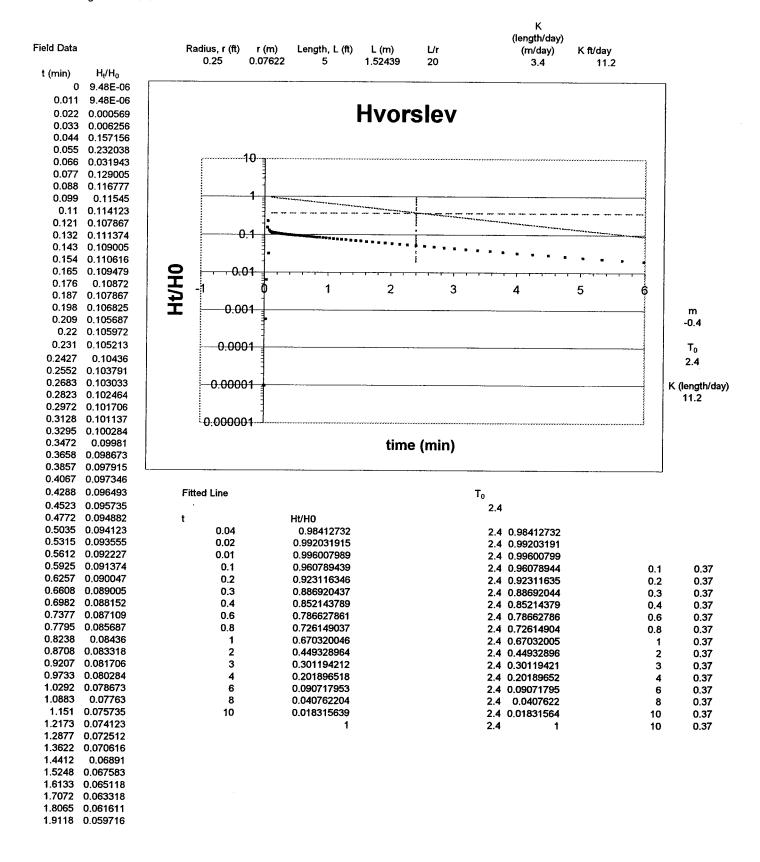
R = radius of well casing plus gravel pack

 t_{37} = time for the water level to recover to 37% of the original change in head


Well W-104A

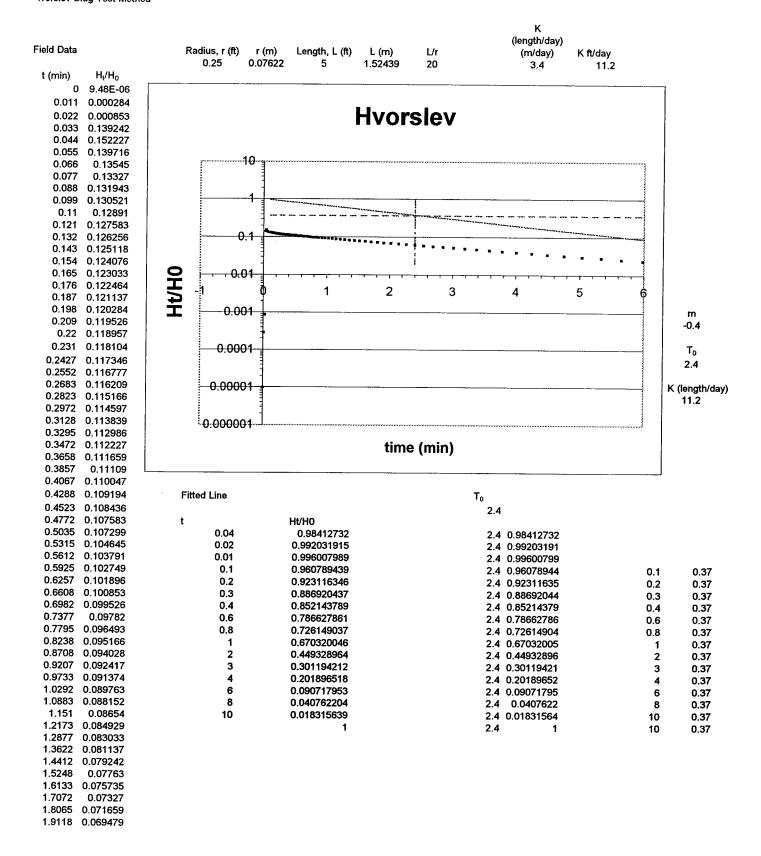
2.0233 0.047299 2.1415 0.045403 2.2667 0.043223 2.3992 0.041137 2.5397 0.038957 2.6885 0.037062 2.846 0.035166 3.0128 0.032986 3.1897 0.03109 3.377 0.02891 3.5753 0.027014 3.7855 0.025118 4.0082 0.023223 4.244 0.021043 4.4938 0.019431 4.7585 0.01782 5.0388 0.016209 5.3357 0.014597 5.6502 0.01327 5.9833 0.011943 6.3362 0.010237 6.71 0.009479 7.106 0.008152 7.5253 0.007014 7.9697 0.005972 8.4403 0.00455 8.9388 0.003791 9.4668 0.003507 10.0262 0.002749 10.6187 0.001611 11.2462 0.000853 11.911 0.000569 12.6152 0.000569 13.361 9.48E-06 14.151 9.48E-06 14.9878 9.48E-06 15.8743 9.48E-06

Time(days)	ddn(ft)	ddn (ft)	Time (min)	H _t /H ₀
		0.0001	0	9.48E-06
		0.0001	0.011	9.48E-06
		0.014	0.022	0.001327
		0.08	0.033	0.007583
		1.786	0.044	0.169289
		0.362	0.055	0.034313
		1.432	0.066	0.135735
		1.061	0.077	0.100569
		1.101	880.0	0.10436
		1.093 1.084	0.099 0.11	0.103602 0.102749
		1.076	0.121	0.102743
		1.067	0.132	0.101337
		1.058	0.143	0.100284
		1.047	0.154	0.099242
		1.038	0.165	0.098389
		1.033	0.176	0.097915
		1.027	0.187	0.097346
		1.018	0.198	0.096493
		1.01	0.209	0.095735
		1.007	0.22	0.09545
		1.001	0.231	0.094882
		0.993 0.987	0.2427	0.094123
		0.987	0.2552 0.2683	0.093555 0.092796
		0.973	0.2823	0.092796
		0.967	0.2972	0.091659
		0.956	0.3128	0.090616
		0.947	0.3295	0.089763
		0.941	0.3472	0.089194
		0.936	0.3658	0.08872
		0.924	0.3857	0.087583
		0.919	0.4067	0.087109
		0.91	0.4288	0.086256
		0.904	0.4523	0.085687
		0.893	0.4772	0.084645
		0.884	0.5035	0.083791
		0.873 0.864	0.5315 0.5612	0.082749 0.081896
		0.853	0.5925	0.080853
		0.842	0.6257	0.07981
		0.83	0.6608	0.078673
		0.819	0.6982	0.07763
		0.807	0.7377	0.076493
		0.796	0.7795	0.07545
		0.779	0.8238	0.073839
		0.767	0.8708	0.072701
		0.753	0.9207	0.071374
		0.736 0.725	0.9733 1.0292	0.069763 0.06872
		0.725 0.707	1.0292	0.06872
		0.707	1.0003	0.067014
		0.673	1.2173	0.063791
		0.656	1.2877	0.06218
		0.639	1.3622	0.060569
		0.619	1.4412	0.058673
		0.599	1.5248	0.056777
		0.579	1.6133	0.054882


0.559	1.7072	0.052986
0.542	1.8065	0.051374
0.522	1.9118	0.049479
0.499	2.0233	0.047299
0.479	2.1415	0.045403
0.456	2.2667	0.043223
0.434	2.3992	0.041137
0.411	2.5397	0.038957
0.391	2.6885	0.037062
0.371	2.846	0.035166
0.348	3.0128	0.032986
0.328	3.1897	0.03109
0.305	3.377	0.02891
0.285	3.5753	0.027014
0.265	3.7855	0.025118
0.245	4.0082	0.023223
0.222	4.244	0.021043
0.205	4.4938	0.019431
0.188	4.7585	0.01782
0.171	5.0388	0.016209
0.154	5.3357	0.014597
0.14	5.6502	0.01327
0.126	5.9833	0.011943
0.108	6.3362	0.010237
0.1	6.71	0.009479
0.086	7.106	0.008152
0.074	7.5253	0.007014
0.063	7.9697	0.005972
0.048	8.4403	0.00455
0.04	8.9388	0.003791
0.037	9.4668	0.003507
0.029	10.0262	0.002749
0.017	10.6187	0.001611
0.009	11.2462	0.000853
0.006	11.911	0.000569
0.006	12.6152	0.000569
0.0001	13.361	9.48E-06
0.0001	14.151	9.48E-06
0.0001	14.9878	9.48E-06
0.0001	15.8743	9.48E-06

2.0233 0.06673 2.1415 0.06436 2.2667 0.061611 2.3992 0.059242 2.5397 0.057062 2.6885 0.054313 2.846 0.052417 3.0128 0.049763 3.1897 0.047014 3.377 0.044834 3.5753 0.042464 3.7855 0.04 4.0082 0.03782 4.244 0.03545 4.4938 0.032701 4.7585 0.030806 5.0388 0.028626 5.3357 0.02654 5.6502 0.024076 5.9833 0.02218 6.3362 0.02 6.71 0.018104 7.106 0.016493 7.5253 0.014882 7.9697 0.01327 8.4403 0.011659 8.9388 0.010521 9.4668 0.00891 10.0262 0.008152 10.6187 0.007299 11.2462 0.005687 11.911 0.005118 12.6152 0.004076 13.361 0.003791 14.151 0.002749 14.9878 0.002464 15.8743 0.001611

Time(days)	ddn(ft)	ddn (ft)	Time (min)	H _t /H ₀
		0.0001	0	9.48E-06
		0.0001	0.011	9.48E-06
		3.034	0.022	0.287583
		1.463	0.033	0.138673
		1.434	0.044	0.135924
		1.42	0.055	0.134597
		1.4	0.066	0.132701
		1.383	0.077	0.13109
		1.366	0.088	0.129479
		1.352	0.099	0.128152
		1.338	0.11	0.126825
		1.323	0.121	0.125403
		1.318 1.306	0.132 0.143	0.124929
		1.298	0.143	0.123791 0.123033
		1.28	0.165	0.123033
		1.278	0.176	0.121327
		1.272	0.187	0.120569
		1.263	0.198	0.119716
		1.258	0.209	0.119242
		1.252	0.23	0.118673
		1.243	0.231	0.11782
		1.238	0.2427	0.117346
		1.229	0.2552	0.116493
		1.221	0.2683	0.115735
		1.215	0.2823	0.115166
		1.206	0.2972	0.114313
		1.201	0.3128	0.113839
		1.195	0.3295	0.11327
		1.186	0.3472	0.112417
		1.178	0.3658	0.111659
		1.166	0.3857	0.110521
		1.155	0.4067	0.109479
		1.146	0.4288	0.108626
		1.138	0.4523	0.107867
		1.138	0.4772	0.107867
		1.109	0.5035	0.105118
		1.107 1.095	0.5315	0.104929
		1.084	0.5612 0.5925	0.103791 0.102749
		1.067	0.6257	0.102743
		1.055	0.6608	0.101101
		1.044	0.6982	0.098957
		1.03	0.7377	0.09763
		1.018	0.7795	0.096493
		1.001	0.8238	0.094882
		0.984	0.8708	0.09327
		0.973	0.9207	0.092227
		0.955	0.9733	0.090521
		0.941	1.0292	0.089194
		0.921	1.0883	0.087299
		0.907	1.151	0.085972
		0.887	1.2173	0.084076
		0.87 0.85	1.2877 1.3622	0.082464
		0.836	1.3622	0.080569 0.079242
		0.81	1.5248	0.079242
		0.787	1.6133	0.076777
		3.707	1.0100	J.UI 7JJ/

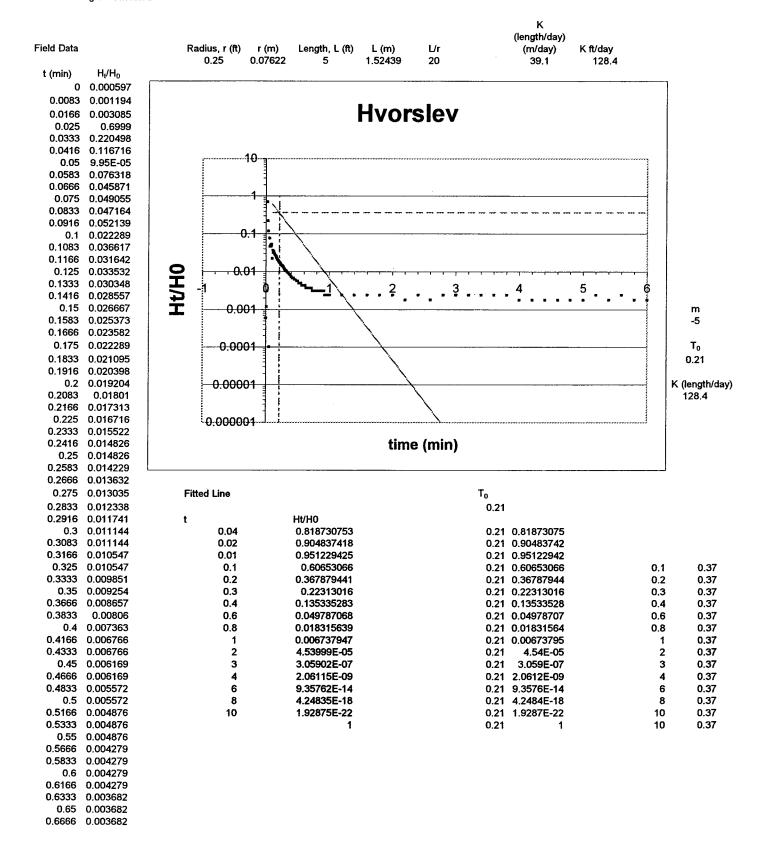

```
0.767
         1.7072 0.072701
0.744
         1.8065 0.070521
0.719
         1.9118 0.068152
0.704
        2.0233 0.06673
0.679
         2.1415 0.06436
0.65
         2.2667 0.061611
0.625
         2.3992 0.059242
0.602
         2.5397 0.057062
0.573
        2.6885 0.054313
0.553
         2.846 0.052417
0.525
        3.0128 0.049763
0.496
        3.1897 0.047014
0.473
         3.377 0.044834
0.448
        3.5753 0.042464
0.422
        3.7855
                0.04
0.399
         4.0082 0.03782
0.374
         4.244 0.03545
        4.4938 0.032701
0.345
0.325
        4.7585 0.030806
0.302
        5.0388 0.028626
0.28
        5.3357 0.02654
0.254
        5.6502 0.024076
0.234
        5.9833 0.02218
0.211
        6.3362
                 0.02
         6.71 0.018104
0.191
0.174
         7.106 0.016493
        7.5253 0.014882
0.157
0.14
        7.9697 0.01327
0.123
        8.4403 0.011659
0.111
        8.9388 0.010521
0.094
        9.4668 0.00891
0.086
       10.0262 0.008152
0.077
       10.6187 0.007299
0.06
       11.2462 0.005687
0.054
       11.911 0.005118
0.043
       12.6152 0.004076
        13.361 0.003791
0.04
0.029
        14.151 0.002749
       14.9878 0.002464
0.026
0.017
       15.8743 0.001611
0.014
0.01
0.011
0.006
```



```
2.0233 0.05763
  2.1415 0.055735
  2.2667 0.053555
  2.3992 0.051659
2.5397 0.049479
  2.6885 0.047299
  2.846 0.045118
 3.0128 0.043223
3.1897 0.040853
3.377 0.038673
 3.5753 0.036777
3.7855 0.034597
  4.0082 0.032417
  4.244 0.030521
  4.4938 0.028626
 4.7585 0.02673
 5.0388 0.024645
 5.3357 0.022938
5.6502 0.021327
 5.9833 0.02
 6.3362 0.018104
6.71 0.015924
7.106 0.014597
 7.5253 0.013744
 7.9697 0.012417
8.4403 0.01109
 8.9388 0.010047
 9.4668 0.009479
10.0262 0.008341
10.6187 0.007014
11.2462 0.006256
11.911 0.005687
12.6152 0.004834
13.361 0.00455
14.151 0.003791
14.9878 0.003791
15.8743 0.003791
```

Fime(days)	ddn(ft)	ddn (ft)	Time (min)	H _t /H ₀
		0.0001	0	9.48E-06
		0.0001	0.011	9.48E-06
		0.006	0.022	0.000569
		0.066	0.033	0.006256
		1.658	0.044	0.157156
		2.448	0.055	0.232038
		0.337	0.066	0.031943
		1.361	0.077	0.129005
		1.232	0.088	0.116777
		1.218	0.099	0.11545
		1.204	0.11	0.114123
		1.138	0.121	0.107867
		1.175	0.132	0.111374
		1.15	0.143	0.109005
		1.167	0.154	0.110616
		1.155	0.165	0.109479
		1.147	0.176	0.10872
		1.138	0.187	0.107867
		1.127	0.198	0.106825
		1.115	0.209	0.105687
		1.118	0.22	0.105972
		1.11	0.231	0.105213
		1.101	0.2427	0.10436
		1.095	0.2552	0.103791
		1.087	0.2683	0.103033
		1.081	0.2823	0.102464
		1.073	0.2972	0.101706
		1.067	0.3128	0.101137
		1.058	0.3295	0.100284
		1.053	0.3472	0.09981
		1.041	0.3658	0.098673
		1.033	0.3857	0.097915
		1.027	0.4067	0.097346
		1.018	0.4288	0.096493
		1.01	0.4523	0.095735
		1.001	0.4772	0.094882
		0.993	0.5035	0.094123
		0.987	0.5315	0.093555
		0.973	0.5612	0.092227
		0.964	0.5925	0.091374
		0.95 0.939	0.6257 0.6608	0.090047
		0.939		0.089005 0.088152
		0.919	0.6982 0.7377	0.087109
		0.904	0.7795	0.085687
		0.89	0.8238	0.003087
		0.879	0.0230	0.00438
		0.862	0.9207	0.081706
		0.847	0.9733	0.080284
		0.83	1.0292	0.078673
		0.819	1.0883	0.07763
		0.799	1.151	0.075735
		0.782	1.2173	0.074123
		0.765	1.2877	0.072512
		0.745	1.3622	0.070616
		0.727	1.4412	0.06891
		0.713	1.5248	0.067583
		0.687	1.6133	0.065118
				

```
0.668
         1.7072 0.063318
 0.65
         1.8065 0.061611
 0.63
         1.9118 0.059716
0.608
         2.0233 0.05763
0.588
         2.1415 0.055735
0.565
         2.2667 0.053555
0.545
         2.3992 0.051659
0.522
         2.5397 0.049479
0.499
         2.6885 0.047299
0.476
          2.846 0.045118
0.456
         3.0128 0.043223
         3.1897 0.040853
0.431
0.408
         3.377 0.038673
         3.5753 0.036777
0.388
0.365
         3.7855 0.034597
0.342
         4.0082 0.032417
0.322
         4.244 0.030521
0.302
         4.4938 0.028626
0.282
         4.7585 0.02673
 0.26
         5.0388 0.024645
0.242
         5.3357 0.022938
         5.6502 0.021327
0.225
0.211
         5.9833
                   0.02
0.191
         6.3362 0.018104
0.168
          6.71 0.015924
0.154
         7.106 0.014597
0.145
        7.5253 0.013744
        7.9697 0.012417
0.131
        8.4403 0.01109
0.117
0.106
        8.9388 0.010047
        9.4668 0.009479
 0.1
0.088
       10.0262 0.008341
0.074
       10.6187 0.007014
0.066
       11.2462 0.006256
        11.911 0.005687
0.06
0.051
       12.6152 0.004834
0.048
        13.361 0.00455
        14.151 0.003791
0.04
0.04
       14.9878 0.003791
0.04
       15.8743 0.003791
0.034
0.01
0.011
0.006
```

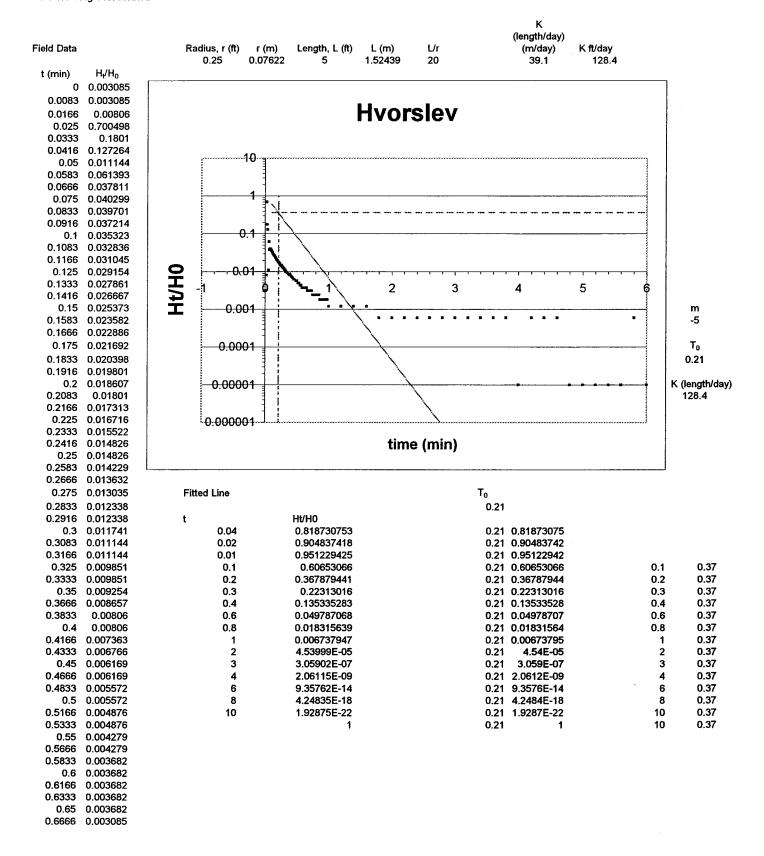


2.0233 0.067299 2.1415 0.065118 2.2667 0.063033 2.3992 0.060569 2.5397 0.058104 2.6885 0.055924 2.846 0.053839 3.0128 0.05109 3.1897 0.04891 3.377 0.04654 3.5753 0.044076 3.7855 0.041611 4.0082 0.039242 4.244 0.037062 4.4938 0.034313 4.7585 0.032133 5.0388 0.030047 5.3357 0.028341 5.6502 0.025403 5.9833 0.023791 6.3362 0.021611 6.71 0.019242 7.106 0.017536 7.5253 0.015924 7.9697 0.014313 8.4403 0.012986 8.9388 0.011659 9.4668 0.009763 10.0262 0.008626 10.6187 0.007583 11.2462 0.006445 11.911 0.005687 12.6152 0.00455 13.361 0.00436 14.151 0.003223 14.9878 0.002938 15.8743 0.002464

Time(days)	ddn(ft)	ddn (ft)	Time (min)	H _t /H ₀
		0.0001	0	9.48E-06
		0.003	0.011	0.000284
		0.009	0.022	0.000853
		1.469	0.033	0.139242
		1.606	0.044	0.152227
		1.474	0.055	0.139716
		1.429	0.066	0.13545
		1.406	0.077	0.13327
		1.392	0.088	0.131943
		1.377	0.099	0.130521
		1.36	0.11	0.12891
		1.346	0.121	0.127583
		1.332	0.132	0.126256
		1.32	0.143	0.125118
		1.309	0.154	0.124076
		1.298	0.165	0.123033
		1.292	0.176	0.122464
		1.278	0.187	0.121137
		1.269	0.198	0.120284
		1.261	0.209	0.119526
		1.255	0.22	0.118957
		1.246	0.231	0.118104
		1.238	0.2427	0.117346
		1.232	0.2552	0.116777
		1.226	0.2683	0.116209
		1.215	0.2823	0.115166
		1.209 1.201	0.2972 0.3128	0.114597
		1.192	0.3126	0.113839 0.112986
		1.184	0.3472	0.112900
		1.178	0.3658	0.112227
		1.172		
		1.172	0.3857 0.4067	0.11109 0.110047
		1.152	0.4288	0.110047
		1.144	0.4523	0.108134
		1.135	0.4772	0.107583
		1.132	0.5035	0.107299
		1.104	0.5315	0.104645
		1.095	0.5612	0.103791
		1.084	0.5925	0.102749
		1.075	0.6257	0.101896
		1.064	0.6608	0.100853
		1.05	0.6982	0.099526
		1.032	0.7377	0.09782
		1.018	0.7795	0.096493
		1.004	0.8238	0.095166
		0.992	0.8708	0.094028
		0.975	0.9207	0.092417
		0.964	0.9733	0.091374
		0.947	1.0292	0.089763
		0.93	1.0883	0.088152
		0.913	1.151	0.08654
		0.896 0.876	1.2173	0.084929
		0.856	1.2877	0.083033 0.081137
		0.836	1.3622 1.4412	
		0.836		0.079242 0.07763
		0.019	1.5248	0.07763

0.799 1.6133 0.075735

0.773	1.7072	0.07327
0.756	1.8065	0.071659
0.733	1.9118	0.069479
0.71	2.0233	0.067299
0.687	2.1415	0.065118
0.665	2.2667	0.063033
0.639	2.3992	0.060569
0.613	2.5397	0.058104
0.59	2.6885	0.055924
0.568	2.846	0.053839
0.539	3.0128	0.05109
0.516	3.1897	0.04891
0.491	3.377	0.04654
0.465	3.5753	0.044076
0.439	3.7855	0.041611
0.414	4.0082	0.039242
0.391	4.244	0.037062
0.362	4.4938	0.034313
0.339	4.7585	0.032133
0.317	5.0388	0.030047
0.299	5.3357	0.028341
0.268	5.6502	0.025403
0.251	5.9833	0.023791
0.228	6.3362	0.021611
0.203	6.71	0.019242
0.185	7.106	0.017536
0.168	7.5253	0.015924
0.151	7.9697	0.014313
0.137	8.4403	0.012986
0.123	8.9388	0.011659
0.103	9.4668	0.009763
0.091	10.0262	0.008626
0.08	10.6187	0.007583
0.068	11.2462	0.006445
0.06	11.911	0.005687
0.048	12.6152	0.00455
0.046	13.361	0.00436
0.034	14.151	0.003223
0.031	14.9878	0.002938
0.026	15.8743	0.002464

Well W-104B




```
0.6833 0.003682
 0.7 0.003682
0.7166 0.003682
0.7333 0.003085
  0.75 0.003085
0.7666 0.003085
0.7833 0.003085
  0.8 0.003085
0.8166 0.003085
0.8333 0.003085
 0.85 0.003085
0.8666 0.003085
0.8833 0.003085
  0.9 0.003085
0.9166 0.003085
0.9333 0.002388
 0.95 0.002388
0.9666 0.002388
0.9833 0.002388
   1 0.002388
   1.2 0.002388
   1.4 0.002388
   1.6 0.002388
   1.8 0.002388
   2 0.002388
  2.2 0.001791
  2.4 0.002388
  2.6 0.001791
  2.8 0.002388
   3 0.002388
  3.2 0.002388
  3.4 0.002388
  3.6 0.002388
  3.8 0.002388
   4 0.001791
  4.2 0.001791
  4.4 0.001791
  4.6 0.001791
  4.8 0.001791
   5 0.001791
  5.2 0.002388
  5.4 0.001791
  5.6 0.002388
  5.8 0.001791
   6 0.001791
  6.2 0.001791
  6.4 0.001791
  6.6 0.001791
  6.8 0.001791
   7 0.001791
  7.2 0.001791
  7.4 0.001791
  7.6 0.001791
  7.8 0.001791
   8 0.001791
  8.2 0.001791
  8.4 0.001791
  8.6 0.001791
  8.8 0.001791
  9 0.001791
  9.2 0.001791
  9.4 0.001791
```

9.6 0.001791 9.8 0.001791 10 0.001791

Time(days)	ddn(ft)	ddn (ft)	Time (min)	H√H0
		0.006	0	0.000597
		0.012	0.0083	0.000397
		0.031	0.0166	0.003085
		7.034	0.025	0.6999
		2.216	0.0333	0.220498
		1.173	0.0416	0.116716
		0.001	0.05	9.95E-05
		0.767	0.0583	0.076318
		0.461	0.0666	0.045871
		0.493	0.075	0.049055
		0.474	0.0833	0.047164
		0.524	0.0916	0.052139
		0.224	0.1	0.022289
		0.368	0.1083	0.036617
		0.318	0.1166	0.031642
		0.337	0.125	0.033532
		0.305 0.287	0.1333 0.1416	0.030348 0.028557
		0.268	0.1410	0.026557
		0.255		
		0.235	0.1583 0.1666	0.025373 0.023582
		0.237	0.1000	0.023382
		0.212	0.1833	0.022205
		0.205	0.1916	0.020398
		0.193	0.2	0.019204
		0.181	0.2083	0.01801
		0.174	0.2166	0.017313
		0.168	0.225	0.016716
		0.156	0.2333	0.015522
		0.149	0.2416	0.014826
		0.149	0.25	0.014826
		0.143	0.2583	0.014229
		0.137	0.2666	0.013632
		0.131	0.275	0.013035
		0.124	0.2833	0.012338
		0.118	0.2916	0.011741
		0.112	0.3	0.011144
		0.112	0.3083	0.011144
		0.106 0.106	0.3166 0.325	0.010547
		0.099	0.333	0.010547 0.009851
		0.093	0.35	0.009254
		0.087	0.3666	0.003254
		0.081	0.3833	0.00806
		0.074	0.4	0.007363
		0.068	0.4166	0.006766
		0.068	0.4333	0.006766
		0.062	0.45	0.006169
		0.062	0.4666	0.006169
		0.056	0.4833	0.005572
		0.056	0.5	0.005572
		0.049	0.5166	0.004876
		0.049	0.5333	0.004876
		0.049 0.043	0.55	0.004876
		0.043	0.5666 0.5833	0.004279 0.004279
		0.043	0.3833	0.004279
		0.043	0.6166	0.004279
		3.040	0.5100	J.007210

0.037	0.6333 0.003682
0.037	0.65 0.003682
0.037	0.6666 0.003682
0.037	
	0.6833 0.003682
0.037	0.7 0.003682
0.037	0.7166 0.003682
0.031	0.7333 0.003085
0.031	0.75 0.003085
0.031	0.7666 0.003085
0.031	0.7833 0.003085
0.031	0.8 0.003085
0.031	0.8166 0.003085
0.031	0.8333 0.003085
0.031	0.85 0.003085
0.031	0.8666 0.003085
0.031	0.8833 0.003085
0.031	0.9 0.003085
0.031	0.9166 0.003085
0.024	0.9333 0.002388
0.024	0.95 0.002388
0.024	0.9666 0.002388
0.024	0.9833 0.002388
0.024	1 0.002388
0.024	1.2 0.002388
0.024	1.4 0.002388
0.024	1.6 0.002388
0.024	1.8 0.002388
0.024	2 0.002388
0.018	2.2 0.001791
0.024	2.4 0.002388
0.018	2.6 0.001791
0.024	2.8 0.002388
0.024	3 0.002388
0.024	3.2 0.002388
0.024	3.4 0.002388
0.024	3.6 0.002388
0.024	3.8 0.002388
0.018	
0.018	4.2 0.001791
0.018	4.4 0.001791
0.018	4.6 0.001791
0.018	4.8 0.001791
0.018	
	5 0.001791
0.024	5.2 0.002388
0.018	5.4 0.001791
0.024	5.6 0.002388
0.018	5.8 0.001791
0.018	
0.018	6.2 0.001791
0.018	6.4 0.001791
0.018	6.6 0.001791
0.018	6.8 0.001791
0.018	7 0.001791
0.018	7.2 0.001791
0.018	7.4 0.001791
0.018	7.6 0.001791
0.018	7.8 0.001791
0.018	8 0.001791
0.018	8.2 0.001791
0.018	8.4 0.001791
0.018	8.6 0.001791
0.018	8.8 0.001791
0.018	
0.018	9.2 0.001791
0.018	9.4 0.001791
0.018	9.6 0.001791
0.018	9.8 0.001791
0.018	10 0.001791


```
0.6833 0.003085
  0.7 0.003085
0.7166 0.003085
0.7333 0.003085
 0.75 0.002388
```

0.7666 0.002388

0.7833 0.002388 0.8 0.002388

0.8166 0.002388

0.8333 0.002388 0.85 0.002388

0.8666 0.001791

0.8833 0.001791

0.9 0.001791

0.9166 0.001791

0.9333 0.001791 0.95 0.001791

0.9666 0.001791

0.9833 0.001791

1 0.001194

1.2 0.001194

1.4 0.001194

1.6 0.001194

1.8 0.000597

2 0.000597

2.2 0.000597

2.4 0.000597

2.6 0.000597

2.8 0.000597 3 0.000597

3.2 0.000597

3.4 0.000597

3.6 0.000597

3.8 0.000597

4 9.95E-06

4.2 0.000597

4.4 0.000597

4.6 0.000597

4.8 9.95E-06

5 9.95E-06

5.2 9.95E-06

5.4 9.95E-06

5.6 9.95E-06

5.8 0.000597

6 9.95E-06

6.2 0.000597 6.4 0.000597

6.6 0.000597

6.8 0.000597

7 0.000597

7.2 0.000597 7.4 0.000597

7.6 0.000597

7.8 0.000597

8 0.000597

8.2 0.000597

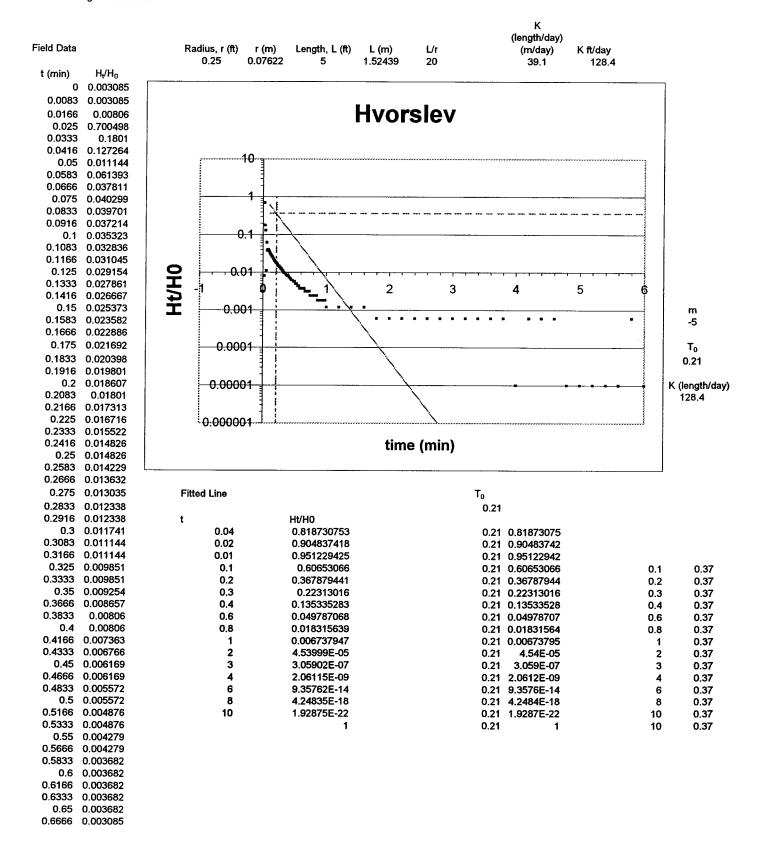
8.4 0.000597

8.6 0.000597

8.8 0.000597

9 0.000597

9.2 0.000597 9.4 0.000597

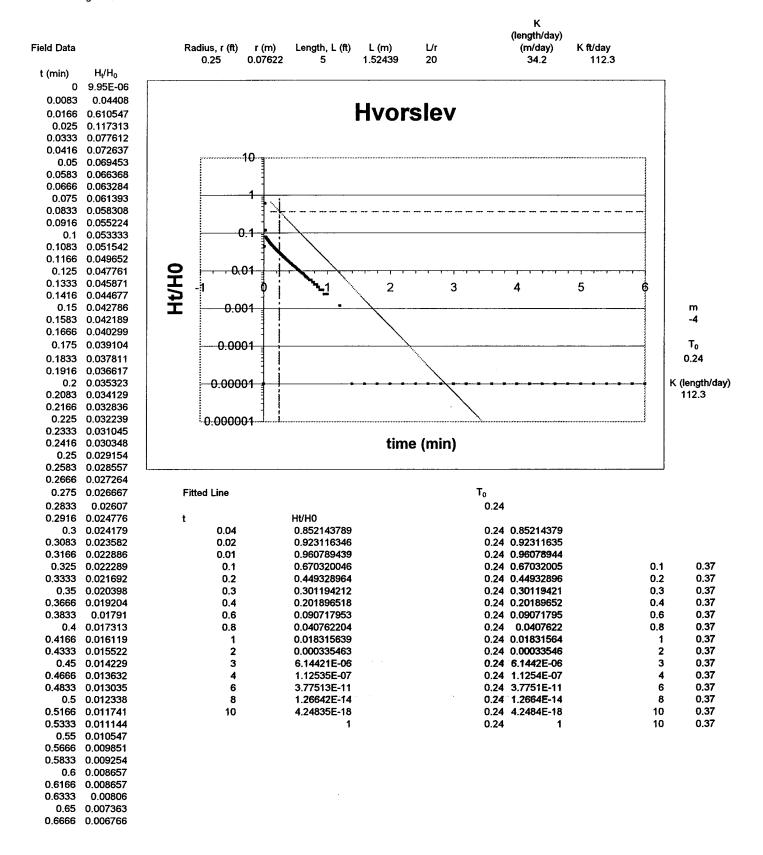

9.6 0.000597

9.8 0.000597

10 0.000597

Time(days)	ddn(ft)	ddn (ft)	Time (min)	H _t /H ₀
		0.031	0	0.003085
		0.031	0.0083	0.003085
		0.081	0.0166	0.00806
		7.04	0.025	0.700498
		1.81	0.0333	0.1801
		1.279	0.0416	0.127264
		0.112	0.05	0.011144
		0.617	0.0583	0.061393
		0.38	0.0666	0.037811
		0.405	0.075	0.040299
		0,399	0.0833	0.039701
		0.374	0.0916	0.037214
		0.355	0.1	0.035323
		0.33	0.1083	0.032836
		0.312	0.1166	0.031045
		0.293	0.125	0.029154
		0.28	0.1333	0.027861
		0.268	0.1416	0.026667
		0.255	0.15	0.025373
		0.237	0.1583	0.023582
		0.23	0.1666	0.022886
		0.218	0.175	0.021692
		0.205 0.199	0.1833 0.1916	0.020398
		0.199	0.1916	0.019801 0.018607
		0.187	0.2083	0.01801
		0.174	0.2166	0.017313
		0.168	0.225	0.016716
		0.156	0.2333	0.015522
		0.149	0.2416	0.014826
		0.149	0.25	0.014826
		0.143	0.2583	0.014229
		0.137	0.2666	0.013632
		0.131	0.275	0.013035
		0.124	0.2833	0.012338
		0.124	0.2916	0.012338
		0.118	0.3	0.011741
		0.112	0.3083	0.011144
		0.112	0.3166	0.011144
		0.099	0.325	0.009851
		0.099	0.3333	0.009851
		0.093	0.35	0.009254
		0.087	0.3666	0.008657
		0.081	0.3833	0.00806
		0.081	0.4	0.00806
		0.074 0.068	0.4166 0.4333	0.007363 0.006766
		0.062	0.4555	0.006169
		0.062	0.4666	0.006169
		0.056	0.4833	0.005572
		0.056	0.4005	0.005572
		0.049	0.5166	0.004876
		0.049	0.5333	0.004876
		0.043	0.55	0.004279
		0.043	0.5666	0.004279
		0.037	0.5833	0.003682
		0.037	0.6	0.003682
		0.037	0.6166	0.003682

0.037	0.6333	0.003682
0.037	0.65	0.003682
0.031	0.6666	0.003085
0.031	0.6833	0.003085
0.031	0.7	0.003085
0.031	0.7166	0.003085
0.031	0.7333	0.003085
0.024	0.75	0.002388
0.024	0.7666	0.002388
0.024	0.7833	0.002388
0.024		
	8.0	
0.024	0.8166	0.002388
0.024	0.8333	0.002388
0.024	0.85	0.002388
0.018	0.8666	0.001791
0.018	0.8833	0.001791
0.018	0.9	0.001791
0.018		
	0.9166	0.001791
0.018	0.9333	0.001791
0.018	0.95	0.001791
0.018	0.9666	0.001791
0.018	0.9833	0.001791
0.012	1	0.001194
		0.001194
0.012	1.2	0.001194
0.012	1.4	0.001194
0.012	1.6	0.001194
0.006	1.8	0.000597
0.006	2	0.000597
0.006	2.2	0.000597
0.006	2.4	0.000597
0.006	2.6	0.000597
0.000		
0.006	2.8	0.000597
0.006	3	0.000597
0.006	3.2	0.000597
0.006	3.4	0.000597
0.006	3.6	0.000597
0.006	3.8	0.000597
	3.0	0.000597
0.0001	4	9.95E-06
0.006	4.2	0.000597
0.006	4.4	0.000597
0.006	4.6	0.000597
0.0001	4.8	9.95E-06
0.0001	5	9.95E-06
0.0001	5.2	9.95E-06
0.0001	5.4	9.95E-06
0.0001	5.6	9.95E-06
0.006	5.8	0.000597
0.0001		
0.0001	6	9.95E-06
0.006	6.2	0.000597
0.006	6.4	0.000597
0.006	6.6	0.000597
0.006	6.8	0.000597
0.006	7	0.000597
0.006	7.2	0.000597
0.006		
0.006	7.4	0.000597
0.006	7.6	0.000597
0.006	7.8	0.000597
0.006	8	0.000597
0.006	8.2	0.000597
0.006	8.4	0.000597
0.006	8.6	0.000597
0.006	8.8	0.000597
0.006	9	0.000597
0.006	9.2	
		0.000597
0.006	9.4	0.000597
0.006	9.6	0.000597
0.006	9.8	0.000597
0.006	10	0.000597




```
0.6833 0.003085
 0.7 0.003085
0.7166 0.003085
0.7333 0.003085
0.75 0.002388
0.7666 0.002388
0.7833 0.002388
 0.8 0.002388
0.8166 0.002388
0.8333 0.002388
  0.85 0.002388
0.8666 0.001791
0.8833 0.001791
 0.9 0.001791
0.9166 0.001791
0.9333 0.001791
  0.95 0.001791
0.9666 0.001791
0.9833 0.001791
   1 0.001194
  1.2 0.001194
  1.4 0.001194
  1.6 0.001194
  1.8 0.000597
   2 0.000597
  2.2 0.000597
  2.4 0.000597
  2.6 0.000597
  2.8 0.000597
   3 0.000597
  3.2 0.000597
  3.4 0.000597
```

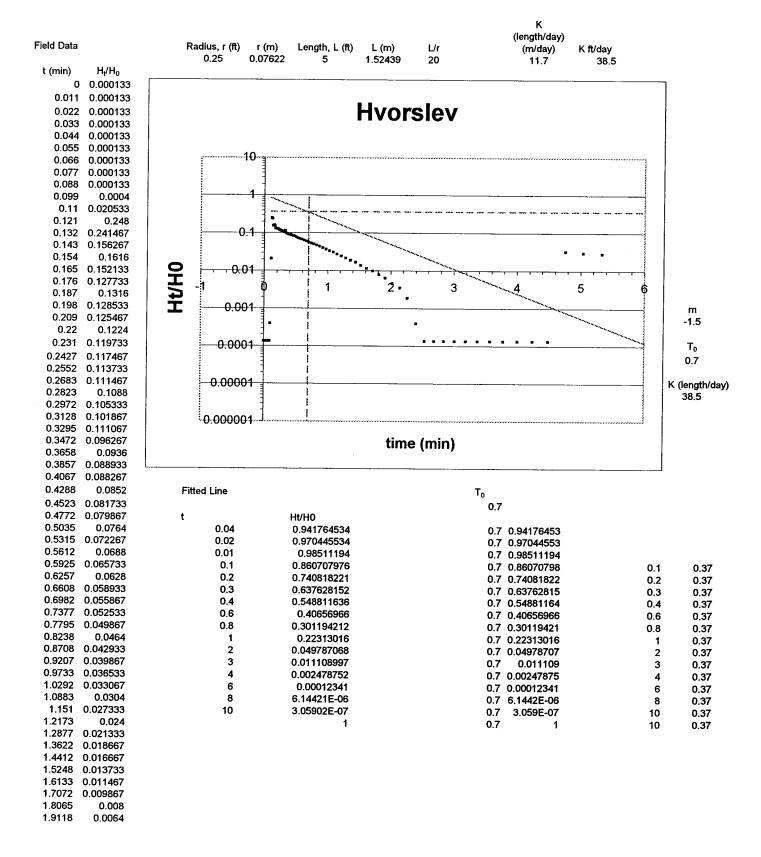
3.6 0.000597 3.8 0.000597 4 9.95E-06 4.2 0.000597 4.4 0.000597 4.6 0.000597 4.8 9.95E-06 5 9.95E-06 5.2 9.95E-06 5.4 9.95E-06 5.6 9.95E-06 5.8 0.000597 6 9.95E-06 6.2 0.000597 6.4 0.000597 6.6 0.000597 6.8 0.000597 7 0.000597 7.2 0.000597 7.4 0.000597 7.6 0.000597 7.8 0.000597 8 0.000597 8.2 0.000597 8.4 0.000597 8.6 0.000597 8.8 0.000597 9 0.000597 9.2 0.000597 9.4 0.000597 9.6 0.000597 9.8 0.000597 10 0.000597

Time(days)	ddn(ft)	ddn (ft)	Time (min)	H _t /H _o
		0.031	0	0.003085
		0.031	0.0083	0.003085
		0.081	0.0166	0.00806
		7.04	0.025	0.700498
		1.81	0.0333	0.1801
		1.279	0.0416	0.127264
		0.112	0.05	0.011144
		0.617	0.0583	0.061393
		0.38	0.0666	0.037811
		0.405	0.075	0.040299
		0.399	0.0833	0.039701
		0.374	0.0916	0.037214
		0.355	0.1	0.035323
		0.33	0.1083	0.032836
		0.312	0.1166	0.031045
		0.293	0.125	0.029154
		0.28 0.268	0.1333 0.1416	0.027861 0.026667
		0.255		
			0.15	0.025373
		0.237	0.1583	0.023582
		0.23 0.218	0.1666 0.175	0.022886 0.021692
		0.215	0.173	0.021092
		0.199	0.1916	0.019801
		0.187	0.2	0.018607
		0.181	0.2083	0.01801
		0.174	0.2166	0.017313
		0.168	0.225	0.016716
		0.156	0.2333	0.015522
		0.149	0.2416	0.014826
		0.149	0.25	0.014826
		0.143	0.2583	0.014229
		0.137	0.2666	0.013632
		0.131	0.275	0.013035
		0.124	0.2833	0.012338
		0.124	0.2916	0.012338
		0.118	0.3	0.011741
		0.112	0.3083	0.011144
		0.112	0.3166	0.011144
		0.099	0.325	0.009851
		0.099	0.3333	0.009851
		0.093 0.087	0.35 0.3666	0.009254 0.008657
		0.081	0.3833	0.00806
		0.081	0.3033	0.00806
		0.074	0.4166	0.007363
		0.068	0.4333	0.006766
		0.062	0.45	0.006169
		0.062	0.4666	0.006169
		0.056	0.4833	0.005572
		0.056	0.5	0.005572
		0.049	0.5166	0.004876
		0.049	0.5333	0.004876
		0.043	0.55	0.004279
		0.043	0.5666	0.004279
		0.037	0.5833	0.003682
		0.037	0.6	0.003682
		0.037	0.6166	0.003682

```
0.037
          0.6333 0.003682
 0.037
            0.65 0.003682
 0.031
          0.6666 0.003085
          0.6833 0.003085
 0.031
             0.7 0.003085
 0.031
 0.031
          0.7166 0.003085
 0.031
          0.7333 0.003085
 0.024
            0.75 0.002388
 0.024
          0.7666 0.002388
 0.024
          0.7833 0.002388
 0.024
             0.8 0.002388
 0.024
          0.8166 0.002388
 0.024
          0.8333 0.002388
 0.024
            0.85 0.002388
 0.018
          0.8666 0.001791
          0.8833 0.001791
 0.018
 0.018
             0.9 0.001791
          0.9166 0.001791
 0.018
 0.018
          0.9333 0.001791
 0.018
            0.95 0.001791
 0.018
          0.9666 0.001791
 0.018
          0.9833 0.001791
 0.012
             1 0.001194
 0.012
             1.2 0.001194
 0.012
             1.4 0.001194
 0.012
             1.6 0.001194
 0.006
             1.8 0.000597
 0.006
              2 0.000597
 0.006
             2.2 0.000597
 0.006
             2.4 0.000597
 0.006
             2.6 0.000597
 0.006
             2.8 0.000597
 0.006
             3 0.000597
 0.006
             3.2 0.000597
 0.006
             3.4 0.000597
 0.006
             3.6 0.000597
 0.006
             3.8 0.000597
0.0001
             4 9.95E-06
 0.006
             4.2 0.000597
 0.006
             4.4 0.000597
0.006
             4.6 0.000597
0.0001
             4.8 9.95E-06
0.0001
             5 9.95E-06
0.0001
             5.2 9.95E-06
0.0001
            5.4 9.95E-06
0.0001
            5.6 9.95E-06
0.006
            5.8 0.000597
0.0001
              6 9.95E-06
0.006
            6.2 0.000597
0.006
            6.4 0.000597
0.006
            6.6 0.000597
            6.8 0.000597
0.006
0.006
              7 0.000597
0.006
            7.2 0.000597
0.006
            7.4 0.000597
0.006
            7.6 0.000597
0.006
            7.8 0.000597
0.006
             8 0.000597
0.006
            8.2 0.000597
0.006
            8.4 0.000597
0.006
            8.6 0.000597
0.006
            8.8 0.000597
0.006
             9 0.000597
0.006
            9.2 0.000597
0.006
            9.4 0.000597
0.006
            9.6 0.000597
0.006
            9.8 0.000597
0.006
             10 0.000597
```



```
0.6833 0.006766
   0.7 0.006169
0.7166 0.005572
0.7333 0.005572
  0.75 0.005572
0.7666 0.004876
0.7833 0.004876
  0.8 0.004279
0.8166 0.004279
0.8333 0.004279
  0.85 0.003682
0.8666 0.003682
0.8833 0.003085
  0.9 0.003085
0.9166 0.003085
0.9333 0.003085
  0.95 0.002388
0.9666 0.002388
0.9833 0.002388
   1 0.002388
  1.2 0.001194
  1.4 9.95E-06
  1.6 9.95E-06
  1.8 9.95E-06
   2 9.95E-06
  2.2 9.95E-06
  2.4 9.95E-06
  2.6 9.95E-06
  2.8 9.95E-06
   3 9.95E-06
  3.2 9.95E-06
  3.4 9.95E-06
  3.6 9.95E-06
  3.8 9.95E-06
   4 9.95E-06
  4.2 9.95E-06
  4.4 9.95E-06
  4.6 9.95E-06
  4.8 9.95E-06
   5 9.95E-06
  5.2 9.95E-06
  5.4 9.95E-06
  5.6 9.95E-06
  5.8 9.95E-06
   6 9.95E-06
  6.2 9.95E-06
  6.4 9.95E-06
  6.6 9.95E-06
  6.8 9.95E-06
  7 9.95E-06
  7.2 9.95E-06
  7.4 9.95E-06
  7.6 9.95E-06
  7.8 9.95E-06
   8 9.95E-06
  8.2 9.95E-06
  8.4 9.95E-06
  8.6 9.95E-06
  8.8 9.95E-06
   9 9.95E-06
  9.2 9.95E-06
  9.4 9.95E-06
  9.6 9.95E-06
  9.8 9.95E-06
  10 9.95E-06
```

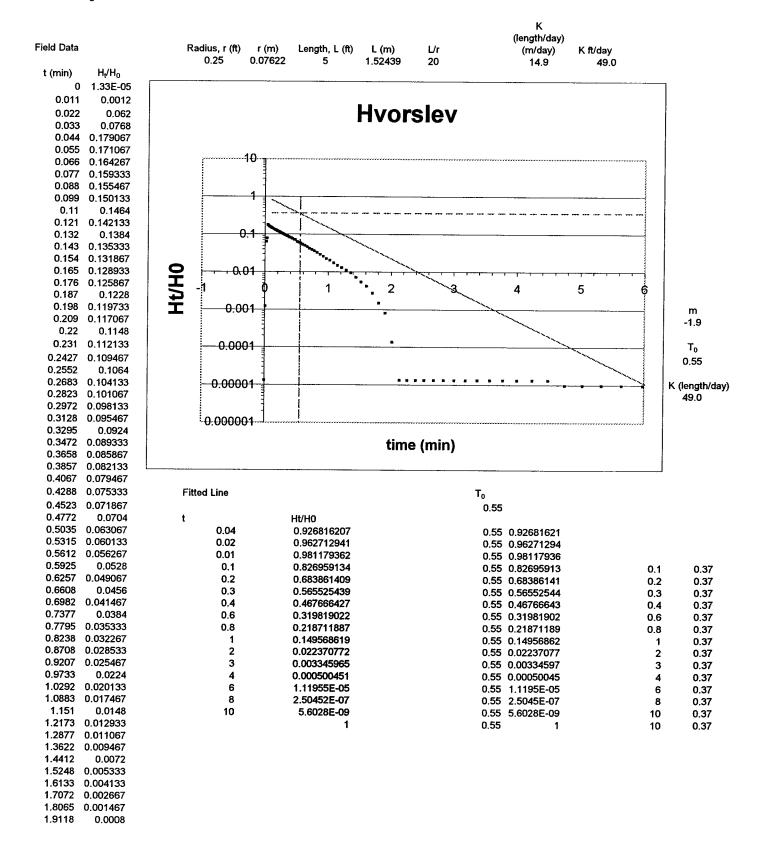

Time(days)	ddn(ft)	ddn (ft)	Time (min)	H _t /H _o
		0.0001	0	9.95E-06
		0.443	0.0083	0.04408
		6.136	0.0166	0.610547
		1.179	0.025	0.117313
		0.78	0.0333	0.077612
		0.73	0.0416	0.072637
		0.698	0.05	0.069453
		0.667	0.0583	0.066368
		0.636	0.0666	0.063284
		0.617	0.075	0.061393
		0.586	0.0833	0.058308
		0.555	0.0916	0.055224
		0.536	0.1	0.053333
		0.518	0.1083	0.051542
	•	0.499	0.1166	0.049652
		0.48	0.125	0.047761
		0.461	0.1333	0.045871
		0.449	0.1416	0.044677
		0.43	0.15	0.042786
		0.424	0.1583	0.042189
		0.405	0.1666	0.040299
		0.393	0.175	0.039104
		0.38	0.1833	0.037811
		0.368	0.1916	0.036617
		0.355	0.2	0.035323
		0.343	0.2083	0.034129
		0.33	0.2166	0.032836
		0.324	0.225	0.032239
		0.312	0.2333	0.031045
		0.305	0.2416	0.030348
		0.293	0.25	0.029154
		0.287	0.2583	0.028557
		0.274	0.2666	0.027264
		0.268	0.275	0.026667
		0.262 0.249	0.2833 0.2916	0.02607 0.024776
		0.243	0.2918	0.024776
		0.237	0.3083	0.023582
		0.23	0.3166	0.023382
		0.224	0.325	0.022289
		0.218	0.3333	0.021692
		0.205	0.35	0.020398
		0.193	0.3666	0.019204
		0.18	0.3833	0.01791
		0.174	0.4	0.017313
		0.162	0.4166	0.016119
		0.156	0.4333	0.015522
		0.143	0.45	0.014229
		0.137	0.4666	0.013632
		0.131	0.4833	0.013035
		0.124	0.5	0.012338
		0.118	0.5166	0.011741
		0.112	0.5333	0.011144
		0.106	0.55 0.5666	0.010547
		0.099 0.093	0.5666 0.5833	0.009851 0.009254
		0.093	0.5833	0.009254
		0.087	0.6166	0.008657
		5.007	0.0100	0.000001

```
0.081
          0.6333 0.00806
  0.074
            0.65 0.007363
          0.6666 0.006766
  0.068
  0.068
          0.6833 0.006766
  0.062
             0.7 0.006169
  0.056
          0.7166 0.005572
  0.056
          0.7333 0.005572
  0.056
            0.75 0.005572
 0.049
          0.7666 0.004876
 0.049
          0.7833 0.004876
 0.043
             0.8 0.004279
          0.8166 0.004279
 0.043
  0.043
          0.8333 0.004279
 0.037
            0.85 0.003682
 0.037
          0.8666 0.003682
 0.031
          0.8833 0.003085
 0.031
             0.9 0.003085
 0.031
          0.9166 0.003085
 0.031
          0.9333 0.003085
 0.024
            0.95 0.002388
 0.024
          0.9666 0.002388
 0.024
          0.9833 0.002388
 0.024
             1 0.002388
 0.012
             1.2 0.001194
0.0001
             1.4 9.95E-06
0.0001
             1.6 9.95E-06
0.0001
             1.8 9.95E-06
0.0001
              2 9.95E-06
0.0001
             2.2 9.95E-06
0.0001
             2.4 9.95E-06
0.0001
             2.6 9.95E-06
0.0001
             2.8 9.95E-06
0.0001
              3 9.95E-06
0.0001
             3.2 9.95E-06
0.0001
             3.4 9.95E-06
0.0001
             3.6 9.95E-06
0.0001
             3.8 9.95E-06
0.0001
              4 9.95E-06
0.0001
             4.2 9.95E-06
0.0001
             4.4 9.95E-06
0.0001
             4.6 9.95E-06
0.0001
             4.8 9.95E-06
0.0001
              5 9.95E-06
0.0001
             5.2 9.95E-06
0.0001
             5.4 9.95E-06
0.0001
             5.6 9.95E-06
0.0001
             5.8 9.95E-06
0.0001
              6 9.95E-06
0.0001
             6.2 9.95E-06
0.0001
             6.4 9.95E-06
0.0001
             6.6 9.95E-06
0.0001
             6.8 9.95E-06
0.0001
              7 9.95E-06
0.0001
             7.2 9.95E-06
0.0001
             7.4 9.95E-06
0.0001
             7.6 9.95E-06
0.0001
             7.8 9.95E-06
0.0001
              8 9.95E-06
0.0001
             8.2 9.95E-06
0.0001
             8.4 9.95E-06
0.0001
             8.6 9.95E-06
0.0001
             8.8 9.95E-06
0.0001
              9 9.95E-06
0.0001
             9.2 9.95E-06
0.0001
            9.4 9.95E-06
0.0001
            9.6 9.95E-06
0.0001
            9.8 9.95E-06
```

0.0001

10 9.95E-06

Well W-105A

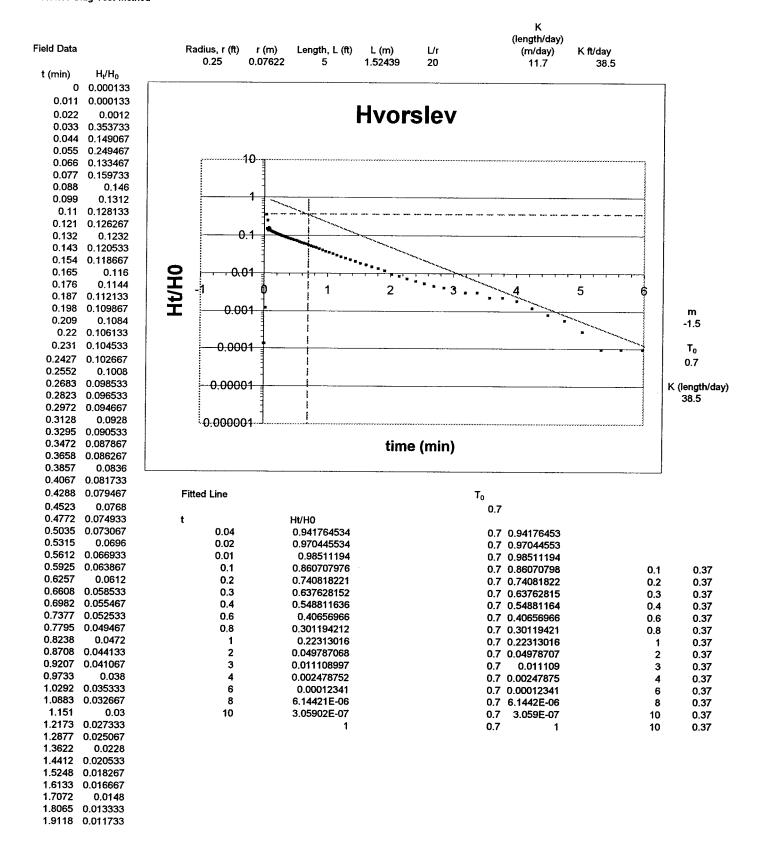


2.0233 0.004533 2.1415 0.003467 2.2667 0.001867 2.3992 0.0004 2.5397 0.000133 2.6885 0.000133 2.846 0.000133 3.0128 0.000133 3.1897 0.000133 3.377 0.000133 3.5753 0.000133 3.7855 0.000133 4.0082 0.000133 4.244 0.000133 4.4938 0.000133 4.7585 0.032133 5.0388 0.030047 5.3357 0.028341 5.6502 5.9833 6.3362 6.71 7.106 7.5253 7.9697 8.4403 8.9388 9.4668 10.0262 10.6187 11.2462 11.911 12.6152 13.361 14.151

14.9878 15.8743

Time(days)	ddn(ft)	ddn (ft)	Time (min)	H _ℓ /H _o
		0.001	0	0.000133
		0.001	0.011	0.000133
		0.001	0.022	0.000133
		0.001	0.033	0.000133
		0.001	0.044	0.000133
		0.001	0.055	0.000133
		0.001	0.066	0.000133
		0.001	0.077	0.000133
		0.001	0.088	0.000133
		0.003	0.099	0.0004
		0.154	0.11	0.020533
		1.86	0.121	0.248
		1.811	0.132	0.241467
		1.172	0.143	0.156267
		1.212	0.154	0.1616
		1.141	0.165	0.152133
		0.958	0.176	0.127733
		0.987	0.187	0.1316
		0.964	0.198	0.128533
		0.941	0.209	0.125467
		0.918	0.22	0.1224
		0.898	0.231	0.119733
		0.881	0.2427	0.117467
		0.853	0.2552	0.113733
		0.836	0.2683	0.111467
		0.816	0.2823	0.1088
		0.79	0.2972	0.105333
		0.764	0.3128	0.101867
		0.833	0.3295	0.111067
		0.722	0.3472	0.096267
		0.702	0.3658	0.0936
		0.667	0.3857	0.088933
		0.662	0.4067	0.088267
		0.639	0.4288	0.0852
		0.613	0.4523	0.081733
		0.599	0.4772	0.079867
		0.573	0.5035	0.0764
		0.542 0.516	0.5315 0.5612	0.072267
		0.493	0.5925	0.0688 0.065733
		0.433	0.6257	0.0628
		0.442	0.6608	0.058933
		0.419	0.6982	0.055867
		0.394	0.7377	0.052533
		0.374	0.7795	0.049867
		0.348	0.8238	0.0464
		0.322	0.8708	0.042933
		0.299	0.9207	0.039867
		0.274	0.9733	0.036533
		0.248	1.0292	0.033067
		0.228	1.0883	0.0304
		0.205	1.151	0.027333
		0.18	1.2173	0.024
		0.16	1.2877	0.021333
		0.14	1.3622	0.018667
		0.125	1.4412	0.016667
		0.103	1.5248	0.013733
		0.086	1.6133	0.011467

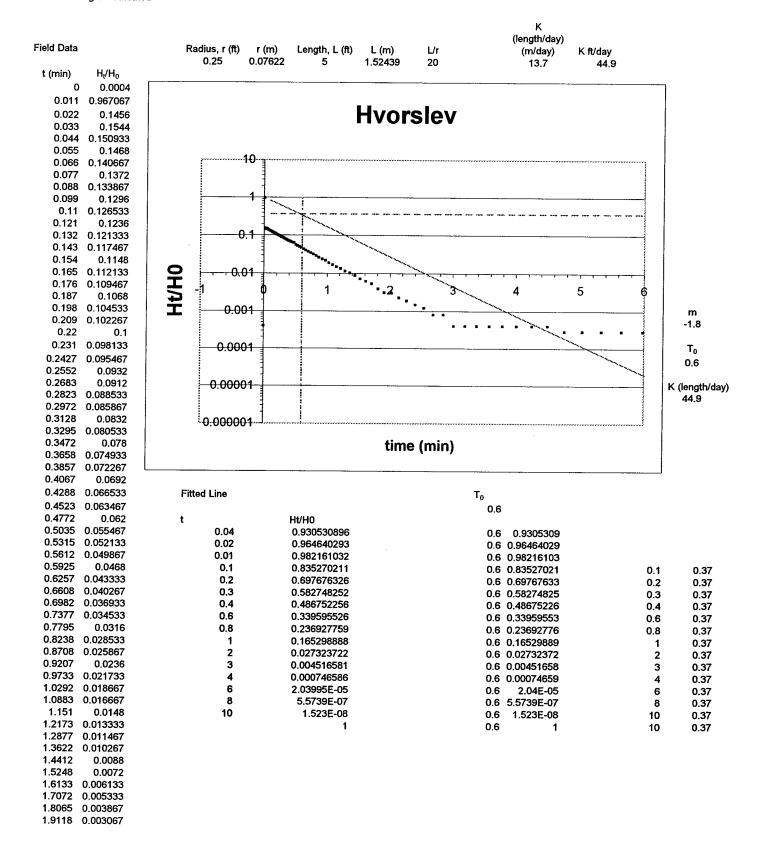
0.074	1.7072	0.009867
0.06	1.8065	0.008
0.048	1.9118	0.0064
0.034	2.0233	0.004533
0.026	2.1415	0.003467
0.014	2.2667	0.001867
0.003	2.3992	0.0004
0.001	2.5397	0.000133
0.001	2.6885	0.000133
0.001	2.846	0.000133
0.001	3.0128	0.000133
0.001	3.1897	0.000133
0.001	3.377	0.000133
0.001	3.5753	0.000133
0.001	3.7855	0.000133
0.001	4.0082	0.000133
0.001	4.244	0.000133
0.001	4.4938	0.000133
	4.7585	0
	5.0388	0
	5.3357	0
	5.6502	0
	5.9833	0
	6.3362	0
	6.71	0
	7.106	0
	7.5253	0
	7.9697	0
	8.4403	0
	8.9388	0
	9.4668	0
	10.0262	0
	10.6187	0
	11.2462	0
	11.911	0
	12.6152	0
	13.361	0
	14.151	0
	14.9878	. 0
	15.8743	0




```
2.0233 0.000133
 2.1415 1.33E-05
 2.2667 1.33E-05
 2.3992 1.33E-05
2.5397 1.33E-05
2.6885 1.33E-05
2.846 1.33E-05
 3.0128 1.33E-05
3.1897 1.33E-05
3.377 1.33E-05
 3.5753 1.33E-05
3.7855 1.33E-05
4.0082 1.33E-05
   4.244 1.33E-05
 4.4938 1.33E-05
4.7585 9.48E-06
 5.0388 9.48E-06
5.3357 9.48E-06
 5.6502 9.48E-06
5.9833 9.48E-06
 6.3362 9.48E-06
  6.71 9.48E-06
7.106 9.48E-06
 7.5253 9.48E-06
 7.9697 9.48E-06
 8.4403 9.48E-06
 8.9388 9.48E-06
 9.4668 9.48E-06
10.0262 9.48E-06
10.6187
11.2462
 11.911
12.6152
 13.361
 14.151
14.9878
```

15.8743

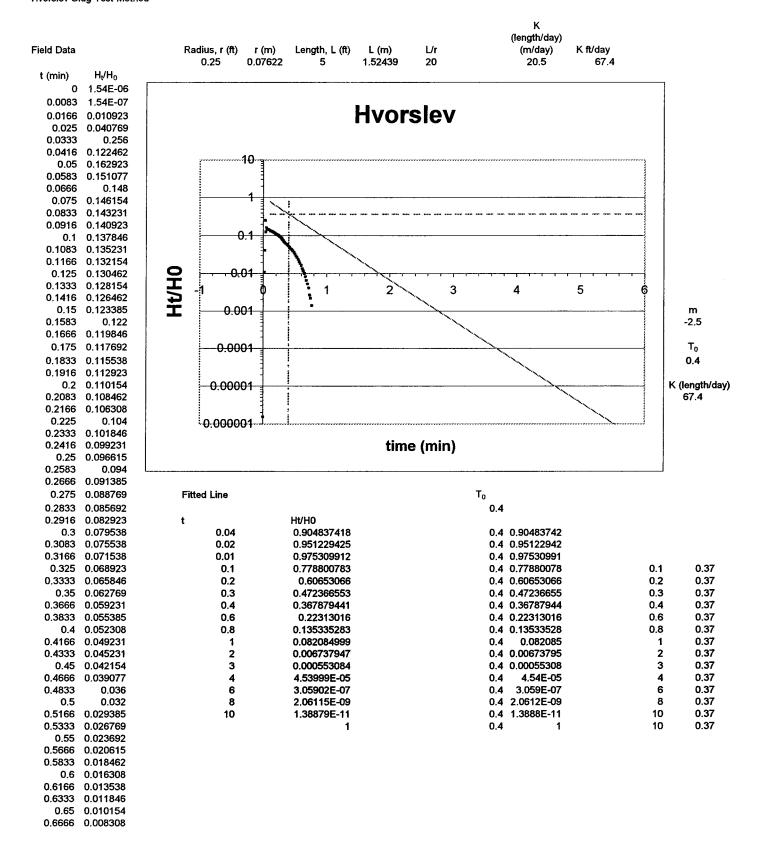
Time(days)	ddn(ft)	ddn (ft)	Time (min)	H _t /H ₀
		0.0001	0	1.33E-05
		0.009	0.011	0.0012
		0.465	0.022	0.062
		0.576	0.033	0.0768
		1.343	0.044	0.179067
		1.283	0.055	0.171067
		1.232	0.066	0.164267
		1.195	0.077	0.159333
		1.166	0.088	0.155467
		1.126	0.099	0.150133
		1.098	0.11	0.1464
		1.066	0.121	0.142133
		1.038	0.132	0.1384
		1.015 0.989	0.143	0.135333
		0.967	0.154 0.165	0.131867
		0.944	0.163	0.128933 0.125867
		0.921	0.170	0.123007
		0.898	0.107	0.1228
		0.878	0.209	0.117067
		0.861	0.203	0.117007
		0.841	0.231	0.112133
		0.821	0.2427	0.109467
		0.798	0.2552	0.1064
		0.781	0.2683	0.104133
		0.758	0.2823	0.101067
		0.736	0.2972	0.098133
		0.716	0.3128	0.095467
		0.693	0.3295	0.0924
		0.67	0.3472	0.089333
		0.644	0.3658	0.085867
		0.616	0.3857	0.082133
		0.596	0.4067	0.079467
		0.565	0.4288	0.075333
		0.539	0.4523	0.071867
		0.528	0.4772	0.0704
		0.473 0.451	0.5035 0.5315	0.063067
		0.422	0.5612	0.060133 0.056267
		0.396	0.5925	0.0528
		0.368	0.6257	0.0328
		0.342	0.6608	0.0456
		0.311	0.6982	0.041467
		0.288	0.7377	0.0384
		0.265	0.7795	0.035333
		0.242	0.8238	0.032267
		0.214	0.8708	0.028533
		0.191	0.9207	0.025467
		0.168	0.9733	0.0224
		0.151	1.0292	0.020133
		0.131	1.0883	0.017467
		0.111 0.097	1.151	0.0148
		0.083	1.2173 1.2877	0.012933 0.011067
		0.063		0.011067
		0.054	1.4412	0.009467
		0.04		0.005333
		0.031		0.004133


0.02	1.7072	0.002667
0.011	1.8065	0.001467
0.006	1.9118	0.0008
0.001	2.0233	0.000133
0.0001	2.1415	1.33E-05
0.0001	2.2667	1.33E-05
0.0001	2.3992	1.33E-05
0.0001	2.5397	1.33E-05
0.0001	2.6885	1.33E-05
0.0001	2.846	1.33E-05
0.0001	3.0128	1.33E-05
0.0001	3.1897	1.33E-05
0.0001	3.377	1.33E-05
0.0001	3.5753	1.33E-05
0.0001	3.7855	1.33E-05
0.0001	4.0082	1.33E-05
0.0001	4.244	1.33E-05
0.0001	4.4938	1.33E-05
0.0001	4.7585	9.48E-06
0.0001	5.0388	9.48E-06
0.0001	5.3357	9.48E-06
0.0001	5.6502	9.48E-06
0.0001	5.9833	9.48E-06
0.0001	6.3362	9.48E-06
0.0001	6.71	9.48E-06
0.0001	7.106	9.48E-06
0.0001	7.5253	9.48E-06
0.0001	7.9697	9.48E-06
0.0001	8.4403	9.48E-06
0.0001	8.9388	9.48E-06
0.0001	9.4668	9.48E-06
0.0001	10.0262	9.48E-06
	10.6187	0
	11.2462	0
	11.911	0
	12.6152	0
	13.361	0
	14.151	0
	14.9878	0
	15.8743	0


```
2.0233 0.009467
 2.1415
           0.0084
 2.2667
          0.0072
 2.3992 0.006133
 2.5397 0.005333
 2.6885 0.004533
  2.846 0.004133
 3.0128 0.003867
 3.1897 0.003067
 3.377 0.003067
3.5753 0.002267
 3.7855 0.002267
 4.0082 0.001867
  4.244
          0.0012
 4.4938 0.0008
4.7585 0.000569
 5.0388 0.000284
 5.3357 9.48E-05
 5.6502 9.48E-05
 5.9833 9.48E-05
 6.3362 9.48E-05
  6.71 9.48E-05
 7.106 9.48E-05
7.5253 9.48E-05
7.9697 9.48E-05
 8.4403 9.48E-05
 8.9388 9.48E-05
9.4668 9.48E-05
10.0262 9.48E-05
10.6187 9.48E-05
11.2462 9.48E-05
11.911
12.6152
13.361
14.151
14.9878
15.8743
```

Time(days)	ddn(ft)	ddn (ft)	Time (min)	H _t /H _o
		0.001	0	0.000133
		0.001	0.011	0.000133
		0.009	0.022	0.000133
		2.653	0.033	0.353733
		1.118	0.044	0.149067
		1.871	0.055	0.249467
		1.001	0.066	0.133467
		1.198	0.077	0.159733
		1.095	0.088	0.146
		0.984	0.099	0.1312
		0.961	0.11	0.128133
		0.947	0.121	0.126267
		0.924	0.132	0.1232
		0.904	0.143	0.120533
		0.89	0.154	0.118667
		0.87	0.165	0.116
		0.858	0.176	0.1144
		0.841	0.187	0.112133
		0.824	0.198	0.109867
		0.813	0.209	0.1084
		0.796	0.22	0.106133
		0.784	0.231	0.104533
		0.77 0.756	0.2427 0.2552	0.102667
		0.739	0.2552	0.1008 0.098533
		0.739	0.2823	0.096533
		0.724	0.2023	0.096555
		0.696	0.3128	0.0928
		0.679	0.3295	0.090533
		0.659	0.3472	0.087867
		0.647	0.3658	0.086267
		0.627	0.3857	0.0836
		0.613	0.4067	0.081733
		0.596	0.4288	0.079467
		0.576	0.4523	0.0768
		0.562	0.4772	0.074933
		0.548	0.5035	0.073067
		0.522	0.5315	0.0696
		0.502	0.5612	0.066933
		0.479	0.5925	0.063867
		0.459	0.6257	0.0612
		0.439	0.6608	0.058533
		0.416	0.6982	0.055467
		0.394	0.7377	0.052533
		0.371	0.7795	0.049467
		0.354	0.8238	0.0472
		0.331 0.308	0.8708	0.044133
		0.308	0.9207 0.9733	0.041067 0.038
		0.265	1.0292	0.035333
		0.245	1.0883	0.033333
		0.225	1.151	0.032007
		0.205	1.2173	0.027333
		0.188	1.2877	0.027007
		0.171	1.3622	0.0228
		0.154	1.4412	0.020533
		0.137	1.5248	0.018267
		0.125	1.6133	0.016667

0.111	1.7072	0.0148
0.1	1.8065	
0.088	1.9118	0.011733
0.071	2.0233	0.009467
0.063	2.1415	0.0084
0.054	2.2667	0.0072
0.046	2.3992	0.006133
0.04	2.5397	0.005333
0.034	2.6885	0.004533
0.031	2.846	0.004133
0.029	3.0128	0.003867
0.023	3.1897	0.003067
0.023	3.377	0.003067
0.017	3.5753	0.002267
0.017	3.7855	0.002267
0.014	4.0082	0.001867
0.009	4.244	0.0012
0.006	4.4938	0.0008
0.006	4.7585	0.000569
0.003	5.0388	0.000284
0.001	5.3357	9.48E-05
0.001	5.6502	9.48E-05
0.001	5.9833	9.48E-05
0.001	6.3362	9.48E-05
0.001	6.71	9.48E-05
0.001	7.106	9.48E-05
0.001	7.5253	9.48E-05
0.001	7.9697	9.48E-05
0.001	8.4403	9.48E-05
0.001	8.9388	9.48E-05
0.001	9,4668	9.48E-05
0.001	10.0262	9.48E-05
0.001	10.6187	9.48E-05
0.001	11.2462	9.48E-05
	11.911	0
	12.6152	ō
	13.361	ō
	14.151	Ŏ
	14.9878	Ŏ
	15.8743	ō
		•




```
2.0233 0.003067
 2.1415 0.002267
 2.2667 0.001867
 2.3992 0.001467
 2.5397
           0.0012
 2.6885
            0.0008
 2.846
           0.0008
 3.0128
            0.0004
 3.1897
            0.0004
 3.377
            0.0004
 3.5753
           0.0004
 3.7855
           0.0004
 4.0082
           0.0004
 4.244
           0.0004
 4.4938
           0.0004
 4.7585 0.000284
 5.0388 0.000284
 5.3357 0.000284
 5.6502 0.000284
5.9833 0.000284
6.3362 0.000284
  6.71 0.000284
7.106 0.000284
7.5253 0.000284
7.9697 0.000284
8.4403 0.000284
8.9388 0.000284
9.4668 0.000284
10.0262 0.000284
10.6187 9.48E-05
11.2462 9.48E-05
11.911
12.6152
13.361
14.151
14.9878
15.8743
```

Time(days)	ddn(ft)	ddn (ft)	Time (min)	H _t /H _o
		0.003	0	0.0004
		7.253	0.011	0.967067
		1.092	0.022	0.1456
		1.158	0.033	0.1544
		1.132	0.044	0.150933
		1.101	0.055	0.1468
		1.055	0.066	0.140667
		1.029	0.077	0.1372
		1.004	0.088	0.133867
		0.972	0.099	0.1296
		0.949	0.11	0.126533
		0.927	0.121	0.1236
		0.91	0.132	0.121333
		0.881	0.143	0.117467
		0.861	0.154	0.1148
		0.841	0.165	0.112133
		0.821	0.176	0.109467
		0.801	0.187	0.1068
		0.784	0.198	0.104533
		0.767	0.209	0.102267
		0.75	0.22	0.1
		0.736	0.231	0.098133
		0.716	0.2427	0.095467
		0.699	0.2552	0.0932
		0.684	0.2683	0.0912
		0.664	0.2823	0.088533
		0.644	0.2972	0.085867
		0.624	0.3128	0.0832
		0.604	0.3295	0.080533
		0.585	0.3472	0.078
		0.562	0.3658	0.074933
		0.542	0.3857	0.072267
		0.519	0.4067	0.0692
		0.499	0.4288	0.066533
		0.476	0.4523	0.063467
		0.465	0.4772	0.062
		0.416	0.5035	0.055467
		0.391	0.5315	0.052133
		0.374	0.5612	0.049867
		0.351	0.5925	0.0468
		0.325	0.6257	0.043333
		0.302	0.6608	0.040267
		0.277	0.6982	0.036933
		0.259 0.237	0.7377	0.034533 0.0316
		0.237	0.7795 0.8238	0.0316
		0.214	0.8708	0.026533
		0.134	0.9207	0.023667
		0.177	0.9733	0.0236
		0.14	1.0292	0.021733
		0.125	1.0883	0.016667
		0.111	1.151	0.0148
		0.1	1.2173	0.013333
		0.086	1.2877	0.011467
		0.077	1.3622	0.010267
		0.066	1.4412	0.0088
		0.054	1.5248	0.0072
		0.046	1.6133	0.006133

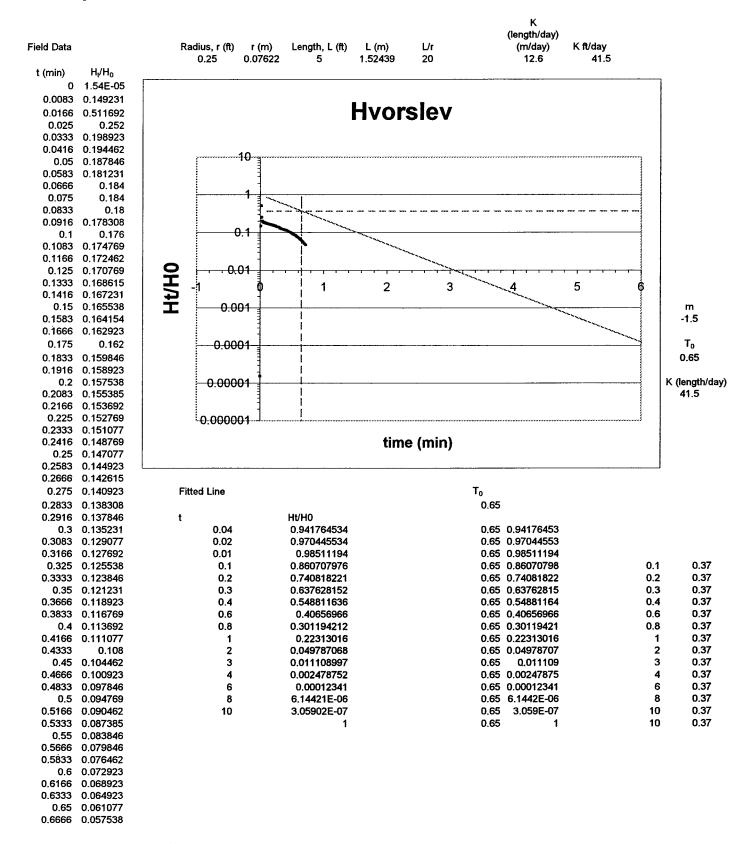
0.04	1.7072	0.005333
0.029	1.8065	0.003867
0.023	1.9118	0.003067
0.023	2.0233	0.003067
0.017	2.1415	0.002267
0.014	2.2667	0.001867
0.011	2.3992	0.001467
0.009	2.5397	0.0012
0.006	2.6885	0.0008
0.006	2.846	0.0008
0.003	3.0128	0.0004
0.003	3.1897	0.0004
0.003	3.377	0.0004
0.003	3.5753	0.0004
0.003	3.7855	0.0004
0.003	4.0082	0.0004
0.003	4.244	0.0004
0.003	4.4938	0.0004
0.003	4.7585	0.000284
0.003	5.0388	0.000284
0.003	5.3357	0.000284
0.003	5.6502	0.000284
0.003	5.9833	0.000284
0.003	6.3362	0.000284
0.003	6.71	0.000284
0.003	7.106	0.000284
0.003	7.5253	0.000284
0.003	7.9697	0.000284
0.003	8.4403	0.000284
0.003	8.9388	0.000284
0.003	9.4668	0.000284
0.003	10.0262	0.000284
0.001	10.6187	9.48E-05
0.001	11.2462	9.48E-05
	11.911	0
	12.6152	0
	13.361	0
	14.151	0
	14.9878	0
	15.8743	0

Well W-105B

 0.6833
 0.006615

 0.7
 0.005231

 0.7166
 0.004

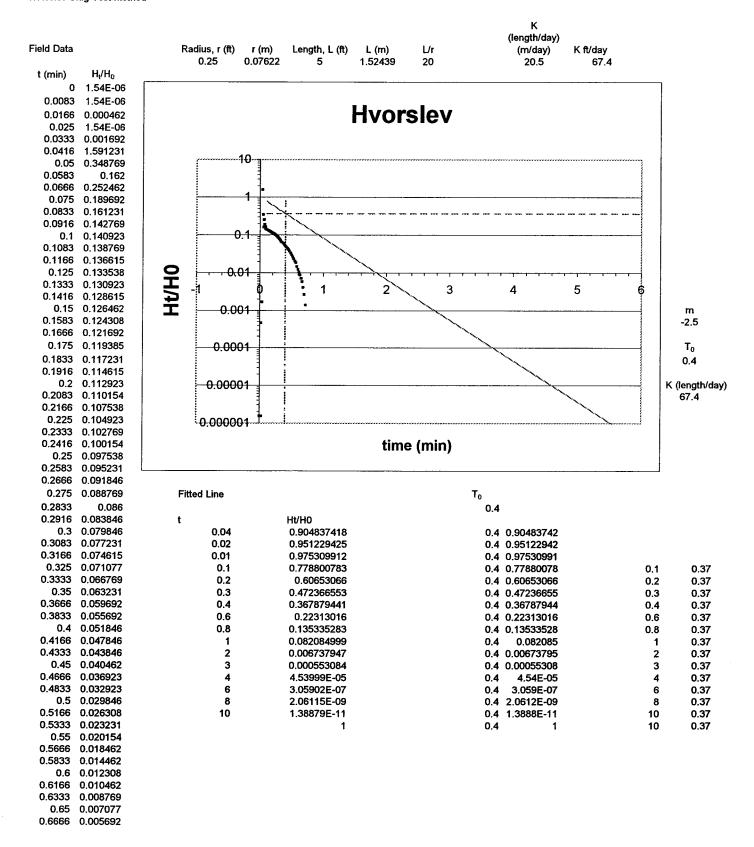

 0.7333
 0.002615

 0.75
 0.002154

 0.7666
 0.001385

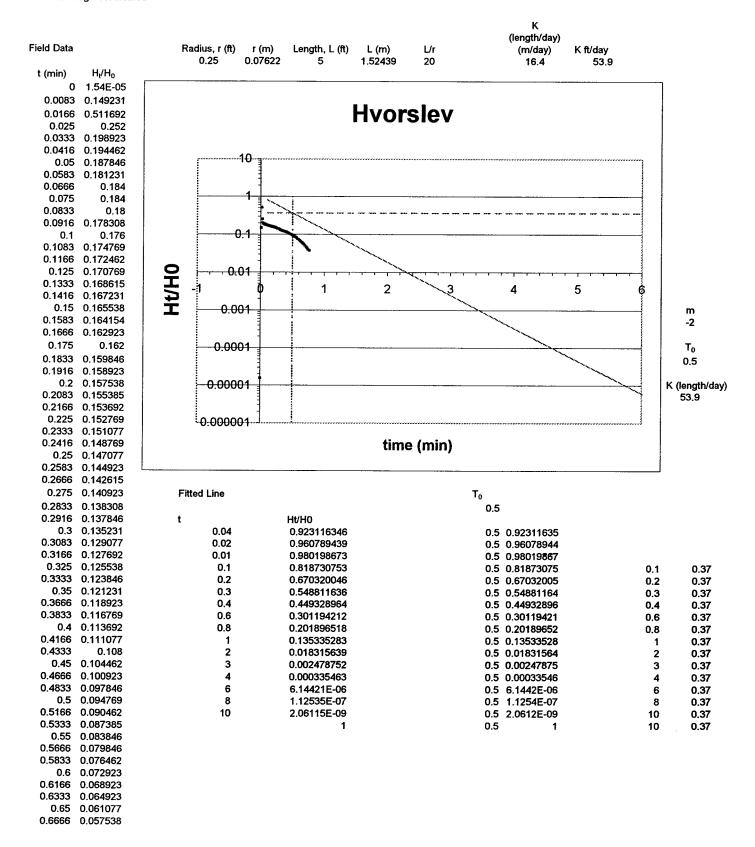
Time(days)	ddn(ft)	ddn (ft)	Time (min)	H/H ₀
		0.00001		4 E4E 06
		0.00001 0.000001	0.0112	1.54E-06 1.54E-07
		0.00001	0.0223	0.010923
		0.265	0.0225	0.040769
		1.664	0.0447	0.256
		0.796	0.0558	0.122462
		1.059	0.067	0.162923
		0.982	0.0782	0.151077
		0.962	0.0893	0.148
		0.95	0.1005	0.146154
		0.931	0.1117	0.143231
		0.916	0.1228	0.140923
		0.896	0.134	0.137846
		0.879	0.1452	0.135231
		0.859	0.1563	0.132154
		0.848	0.1675	0.130462
		0.833	0.1787	0.128154
		0.822	0.1898	0.126462
		0.802	0.201	0.123385
		0.793	0.2122	0.122
		0.779	0.2233	0.119846
		0.765	0.235	0.117692
		0.751 0.734	0.2475	0.115538
		0.734	0.2607 0.2747	0.112923 0.110154
		0.715	0.2895	0.110154
		0.691	0.3052	0.106308
		0.676	0.3218	0.104
		0.662	0.3395	0.101846
		0.645	0.3582	0.099231
		0.628	0.378	0.096615
		0.611	0.399	0.094
		0.594	0.4212	0.091385
		0.577	0.4447	0.088769
		0.557	0.4695	0.085692
		0.539	0.4958	0.082923
		0.517	0.5238	0.079538
		0.491	0.5535	0.075538
		0.465	0.5848	0.071538
		0.448	0.618	0.068923
		0.428	0.6532	0.065846
		0.408	0.6905	0.062769
		0.385	0.73	0.059231
		0.36 0.34	0.7718 0.8162	0.055385 0.052308
		0.34	0.8632	0.032308
		0.294	0.0032	0.045231
		0.274	0.9657	0.043251
		0.254	1.0215	0.039077
		0.234	1.0807	0.036
		0.208	1.1433	0.032
		0.191	1.2097	0.029385
		0.174	1.28	0.026769
		0.154	1.3545	0.023692
		0.134	1.4335	0.020615
		0.12	1.5172	0.018462
		0.106	1.6057	0.016308
		0.088	1.6995	0.013538

0.077	1.7988	0.011846
0.066	1.9042	0.010154
0.054	2.0157	0.008308
0.043	2.1338	0.006615
0.034	2.259	0.005231
0.026	2.3915	0.004
0.017	2.532	0.002615
0.014	2.6808	0.002154
0.009	2.8383	0.001385



0.6833 0.054462 0.7 0.050462 0.7166 0.046923 0.7333 0.75 0.7666

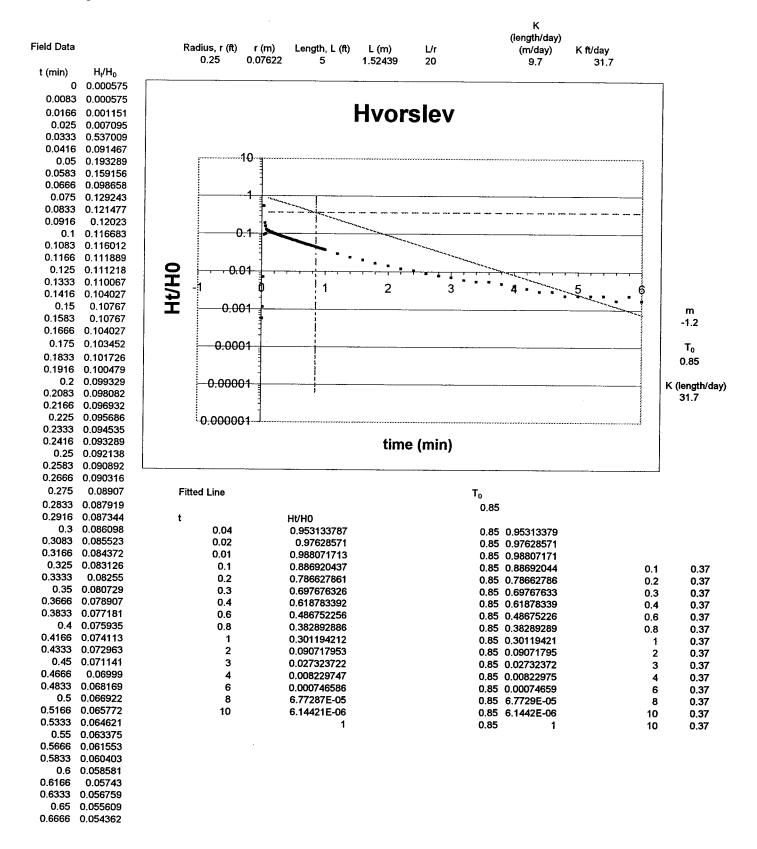
Time(days)	ddn(ft)	ddn (ft)	Time (min)	H _t /H _o
		0.0001	0	1.54E-05
		0.0001	0.0112	0.149231
		3.326	0.0223	0.511692
		1.638	0.0335	0.252
		1.293	0.0447	0.198923
		1.264	0.0558	0.194462
		1.221	0.067	0.187846
		1.178	0.0782	0.181231
		1.196	0.0893	0.184
		1.196	0.1005	0.184
		1.17	0.1117	0.18
		1.159	0.1228	0.178308
		1.144	0.134	0.176
		1.136	0.1452	0.174769
		1.121	0.1563	0.172462
		1.11	0.1675	0.170769
		1.096 1.087	0.1787 0.1898	0.168615 0.167231
		1.076		0.167231
			0.201	
		1.067	0.2122	0.164154
		1.059	0.2233 0.235	0.162923
		1.053 1.039	0.235	0.162 0.159846
		1.033	0.2473	0.158923
		1.024	0.2747	0.157538
		1.01	0.2895	0.155385
		0.999	0.3052	0.153692
		0.993	0.3218	0.152769
		0.982	0.3395	0.151077
		0.967	0.3582	0.148769
		0.956	0.378	0.147077
		0.942	0.399	0.144923
		0.927	0.4212	0.142615
		0.916	0.4447	0.140923
		0.899	0.4695	0.138308
		0.896	0.4958	0.137846
		0.879	0.5238	0.135231
		0.839	0.5535	0.129077
		0.83	0.5848	0.127692
		0.816	0.618	0.125538
		0.805 0.788	0.6532 0.6905	0.123846
		0.766	0.6903	0.121231 0.118923
		0.759	0.7718	0.116769
		0.739	0.8162	0.113692
		0.722	0.8632	0.111077
		0.702	0.913	0.108
		0.679	0.9657	0.104462
		0.656	1.0215	0.100923
		0.636	1.0807	0.097846
		0.616	1.1433	0.094769
		0.588	1.2097	0.090462
		0.568	1.28	0.087385
		0.545	1.3545	0.083846
		0.519	1.4335	0.079846
		0.497	1.5172	0.076462
		0.474 0.448	1.6057	0.072923
		0.448	1.6995	0.068923


0.422	1.7988	0.064923
0.397	1.9042	0.061077
0.374	2.0157	0.057538
0.354	2.1338	0.054462
0.328	2.259	0.050462
0.305	2.3915	0.046923

0.08 0.074 0.068 0.066 0.057 0.054 0.051 0.051 0.049

Time(days)	ddn(ft)	ddn (ft)	Time (min)	H _t ∕H _o
		0.00001	0	1.54E-06
		0.00001	0.0112	1.54E-06
		0.003	0.0223	0.000462
		0.00001	0.0335	1.54E-06
		0.011	0.0447	0.001692
		10.343	0.0558	1.591231
		2.267	0.067	0.348769
		1.053	0.0782	0.162
		1.641	0.0893	0.252462
		1.233	0.1005	0.189692
		1.048	0.1117	0.161231
		0.928	0.1228	0.142769
		0.916	0.134	0.140923
		0.902	0.1452	0.138769
		0.888	0.1563	0.136615
		0.868	0.1675	0.133538
		0.851 0.836	0.1787 0.1898	0.130923 0.128615
		0.822	0.1030	0.126462
		0.808 0.791	0.2122 0.2233	0.124308 0.121692
		0.776	0.2235	0.121092
		0.762	0.2475	0.117231
		0.745	0.2607	0.114615
		0.734	0.2747	0.112923
		0.716	0.2895	0.110154
		0.699	0.3052	0.107538
		0.682	0.3218	0.104923
		0.668	0.3395	0.102769
		0.651	0.3582	0.100154
		0.634	0.378	0.097538
		0.619	0.399	0.095231
		0.597	0.4212	0.091846
		0.577	0.4447	0.088769
		0.559	0.4695	0.086
		0.545	0.4958	0.083846
		0.519	0.5238	0.079846
		0.502	0.5535	0.077231
		0.485	0.5848	0.074615 0.071077
		0.462 0.434	0.618 0.6532	0.071077
		0.434	0.6332	0.063231
		0.388	0.73	0.059692
		0.362	0.7718	0.055692
		0.337	0.8162	0.051846
		0.311	0.8632	0.047846
		0.285	0.913	0.043846
		0.263	0.9657	0.040462
		0.24	1.0215	0.036923
		0.214	1.0807	0.032923
		0.194	1.1433	0.029846
		0.171	1.2097	0.026308
		0.151	1.28	0.023231
		0.131	1.3545	0.020154
		0.12	1.4335	0.018462
		0.094	1.5172 1.6057	0.014462
		80.0 860.0	1.6995	0.012308 0.010462
		0.000	1.0553	0.010462

0.057	1.7988	0.008769
0.046	1.9042	0.007077
0.037	2.0157	0.005692
0.026	2.1338	0.004
0.017	2.259	0.002615
0.009	2.3915	0.001385

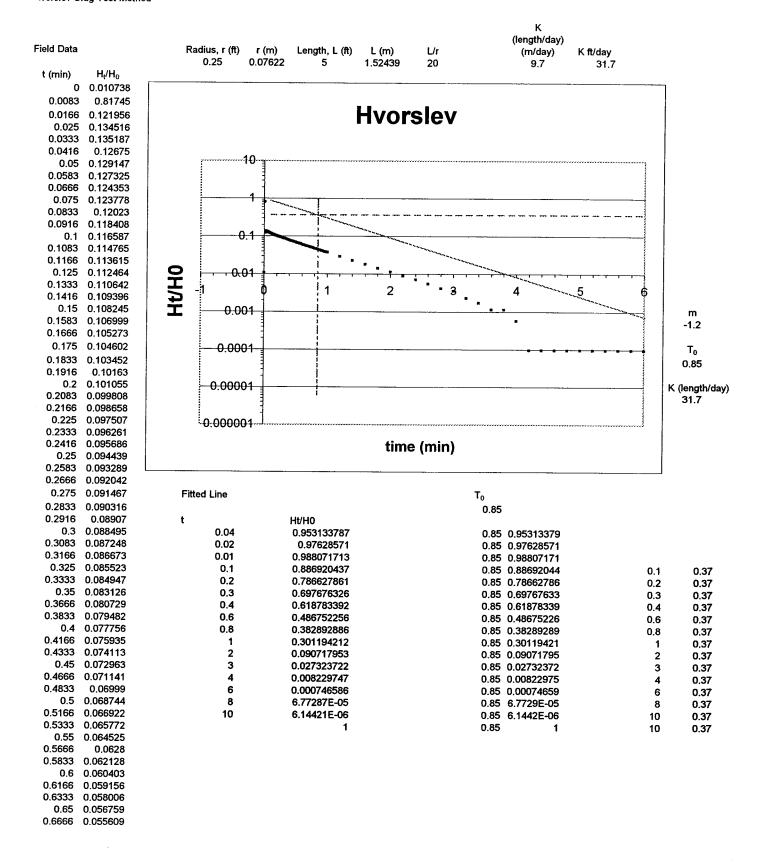


0.6833 0.054462 0.7 0.050462 0.7166 0.046923 0.7333 0.043538 0.75 0.04 0.7666 0.037385

Time(days)	ddn(ft)	ddn (ft)	Time (min)	H _t /H _o
		0.0001	0	1.54E-05
		0.97	0.0112	0.149231
		3.326	0.0223	0.511692
		1.638	0.0335	0.252
		1.293	0.0447	0.198923
		1.264	0.0558	0.194462
		1.221	0.067	0.187846
		1.178	0.0782	0.181231
		1.196	0.0893	0.184
		1.196	0.1005	0.184
		1.17	0.1117	0.18
		1.159	0.1228	0.178308
		1.144	0.134	0.176
		1.136	0.1452	0.174769
		1.121	0.1563	0.172462
		1.11	0.1675	0.170769
		1.096 1.087	0.1787 0.1898	0.168615
				0.167231
		1.076	0.201	0.165538
		1.067	0.2122	0.164154
		1.059	0.2233 0.235	0.162923
		1.053 1.039	0.235	0.162 0.159846
		1.033	0.2473	0.158923
		1.033	0.2747	0.157538
		1.024	0.2895	0.155385
		0.999	0.3052	0.153692
		0.993	0.3218	0.152769
		0.982	0.3395	0.151077
		0.967	0.3582	0.148769
		0.956	0.378	0.147077
		0.942	0.399	0.144923
		0.927	0.4212	0.142615
		0.916	0.4447	0.140923
		0.899	0.4695	0.138308
		0.896	0.4958	0.137846
		0.879	0.5238	0.135231
		0.839	0.5535	0.129077
		0.83	0.5848	0.127692
		0.816	0.618	0.125538
		0.805	0.6532	0.123846
		0.788	0.6905	0.121231
		0.773	0.73	0.118923
		0.759 0.739	0.7718 0.8162	0.116769 0.113692
		0.733	0.8632	0.113032
		0.702	0.913	0.108
		0.679	0.9657	0.104462
		0.656	1.0215	0.100923
		0.636	1.0807	0.097846
		0.616	1.1433	0.094769
		0.588	1.2097	0.090462
		0.568	1.28	0.087385
		0.545	1.3545	0.083846
		0.519	1.4335	0.079846
		0.497	1.5172	0.076462
		0.474	1.6057	0.072923
		0.448	1.6995	0.068923

0.422 1.7988 0.064923 0.397 1.9042 0.061077 0.374 2.0157 0.057538 2.1338 0.054462 0.354 2.259 0.050462 2.3915 0.046923 0.328 0.305 0.283 2.532 0.043538 0.26 2.6808 0.04 0.243 2.8383 0.037385 0.223 0.208 0.188 0.171 0.154 0.14 0.128 0.117 0.106 0.097 0.086 0.08 0.074 0.068 0.066 0.057 0.054 0.054 0.051 0.051 0.049 0.049 0.046 0.043 0.043 0.043

0.037 0.046 0.043 Well W-106A

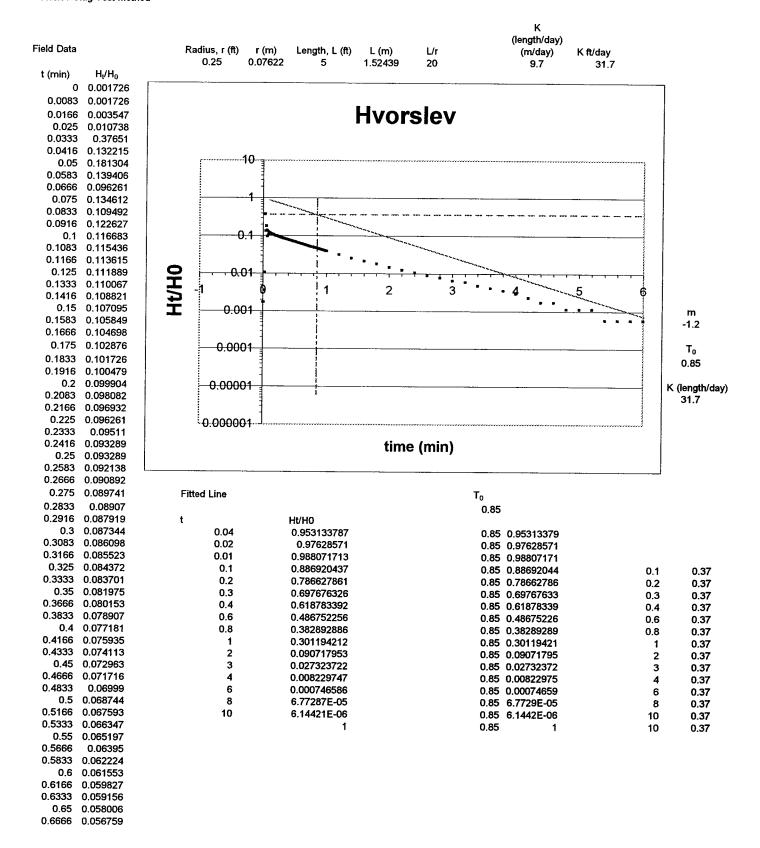

```
0.7 0.051965
0.7166 0.05139
0.7333 0.05024
 0.75 0.049569
0.7666 0.048418
0.7833 0.047267
  0.8 0.046596
0.8166 0.045446
0.8333 0.044871
 0.85 0.044199
0.8666 0.043049
0.8833 0.042474
   0.9 0.041227
0.9166 0.040652
0.9333 0.040077
0.95 0.039406
0.9666 0.038255
0.9833 0.03768
   1 0.037009
   1.2 0.029243
   1.4 0.023873
   1.6 0.020326
   1.8 0.016683
    2 0.014286
   2.2 0.011889
   2.4 0.010738
   2.6 0.008917
   2.8 0.007766
   3 0.007095
   3.2 0.005944
   3.4 0.005369
   3.6 0.005369
   3.8 0.004698
   4 0.004123
   4.2 0.003547
   4.4 0.002972
   4.6 0.002972
   4.8 0.002301
   5 0.002301
   5.2 0.002301
   5.4 0.002301
   5.6 0.001726
   5.8 0.002301
   6 0.001726
  6.2 0.001726
  6.4 0.001726
  6.6 0.001726
  6.8 0.001726
   7 0.002301
  7.2 0.001726
  7.4 0.001726
  7.6 0.001726
  7.8 0.001151
   8 0.001151
  8.2 0.001151
  8.4 0.001151
  8.6 0.001151
  8.8 0.001151
   9 0.001151
  9.2 0.001151
  9.4 0.001151
  9.6 0.001151
  9.8 0.001151
   10 0.001151
```

0.6833 0.053212

Time(days)	ddn(ft)	ddn (ft)	Time (min)	H _t /H _o
		0.006	0	0.000575
		0.006	0.0083	0.000575
		0.012	0.0005	0.000373
		0.074	0.025	0.007095
		5.601	0.0333	0.537009
		0.954	0.0333	0.091467
		2.016	0.05	0.193289
		1.66	0.0583	0.159156
		1.029	0.0666	0.098658
		1.348	0.075	0.129243
		1.267	0.0833	0.121477
		1.254	0.0916	0.12023
		1.217	0.1	0.116683
		1.21	0.1083	0.116012
		1.167	0.1166	0.111889
		1.16	0.125	0.111218
		1.148	0.1333	0.110067
		1.085	0.1416	0.104027
		1.123	0.15	0.10767
		1.123	0.1583	0.10767
		1.085	0.1666	0.104027
		1.079	0.175	0.103452
		1.061	0.1833	0.101726
		1.048	0.1916	0.100479
		1.036	0.2	0.099329
		1.023	0.2083	0.098082
		1.011	0.2166	0.096932
		0.998	0.225	0.095686
		0.986	0.2333	0.094535
		0.973	0.2416	0.093289
		0.961	0.25	0.092138
		0.948	0.2583	0.090892
		0.942	0.2666	0.090316
		0.929	0.275	0.08907
		0.917	0.2833	0.087919
		0.911	0.2916	0.087344
		0.898	0.3	0.086098
		0.892	0.3083	0.085523
		0.88	0.3166	0.084372
		0.867 0.861	0.325 0.3333	0.083126
		0.842	0.333	0.08255 0.080729
		0.823	0.3666	0.030729
		0.825	0.3833	0.076907
		0.792	0.0003	0.075935
		0.773	0.4166	0.073333
		0.761	0.4333	0.072963
		0.742	0.45	0.071141
		0.73	0.4666	0.06999
		0.711	0.4833	0.068169
		0.698	0.5	0.066922
		0.686	0.5166	0.065772
		0.674	0.5333	0.064621
		0.661	0.55	0.063375
		0.642	0.5666	0.061553
		0.63	0.5833	0.060403
		0.611	0.6	0.058581

0.599 0.6166 0.05743

0.592	0.6333	0.056759
0.58	0.65	0.055609
0.567	0.6666	0.054362
0.555	0.6833	0.053212
0.542	0.7	0.051965
0.536	0.7166	0.05139
0.524	0.7333	0.05024
0.517	0.75	0.049569
0.505	0.7666	0.048418
0.493	0.7833	0.047267
0.486	8.0	0.046596
0.474	0.8166	0.045446
0.468	0.8333	0.044871
0.461	0.85	0.044199
0.449	0.8666	0.043049
0.443	0.8833	0.042474
0.43	0.9	0.041227
0.424	0.9166	0.040652
0.418	0.9333	0.040077
0.411	0.95	0.039406
0.399	0.9666	0.038255
0.393	0.9833	0.03768
0.386	1	0.037009
0.305	1.2	0.029243
0.24 9	1.4	0.023873
0.212	1.6	0.020326
0.174	1.8	0.016683
0.149	2	0.014286
0.124	2.2	0.011889
0.112	2.4	0.010738
		0.008917
0.093	2.6	
0.081	2.8	0.007766
0.074	3	0.007095
0.062	3.2	0.005944
0.056	3.4	0.005369
0.056	3.6	0.005369
0.049	3.8	0.004698
0.043	4	0.004123
0.037	4.2	0.003547
0.031	4.4	0.002972
0.031	4.6	0.002972
0.024	4.8	0.002301
0.024	5	0.002301
	5.2	0.002301
0.024		0.002301
0.024	5.4	0.002301
0.018	5.6	
		0.001726
0.024	5.8	0.002301
0.018	6	0.001726
0.018	6.2	0.001726
0.018	6.4	0.001726
0.018	6.6	0.001726
0.018	6.8	0.001726
0.024	7	0.002301
0.018	7.2	0.001726
0.018	7.4	0.001726
0.018	7.6	0.001726
0.012	7.8	0.001151
0.012	8	0.001151
0.012	8.2	0.001151
0.012	8.4	0.001151
		0.001151
0.012	8.6	
0.012	8.8	0.001151
0.012	9	0.001151
0.012	9.2	0.001151
0.012	9.4	0.001151
0.012	9.6	0.001151
0.040		
UUTZ		
0.012	9.8	0.001151
. 0.012		

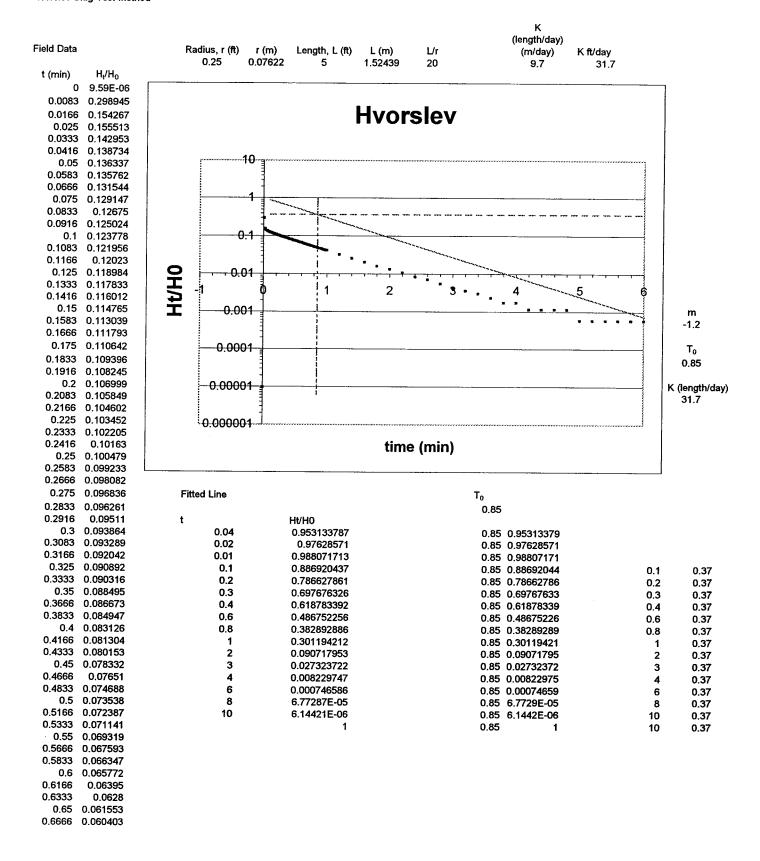

```
0.6833 0.055034
0.7 0.053212
0.7166 0.052637
0.7333 0.05139
  0.75
       0.05024
0.7666 0.049569
0.7833 0.048418
 0.8 0.047172
0.8166 0.046596
0.8333 0.045446
  0.85 0.044871
0.8666 0.043624
0.8833 0.043049
  0.9 0.041802
0.9166 0.041227
0.9333 0.040652
 0.95 0.039406
0.9666 0.03883
0.9833 0.038255
   1 0.03768
   1.2 0.029243
  1.4 0.022723
   1.6 0.017929
  1.8 0.014286
   2 0.011314
  2.2 0.008917
  2.4 0.007095
  2.6 0.005369
  2.8 0.004123
    3 0.003547
  3.2 0.002301
  3.4 0.001726
  3.6 0.001151
  3.8 0.001151
   4 0.000575
  4.2 9.59E-05
  4.4 9.59E-05
  4.6 9.59E-05
  4.8 9.59E-05
   5 9.59E-05
  5.2 9.59E-05
  5.4 9.59E-05
  5.6 9.59E-05
  5.8 9.59E-05
   6 9.59E-05
  6.2 9.59E-05
  6.4 9.59E-05
  6.6 9.59E-05
  6.8 9.59E-05
   7 9.59E-05
  7.2 9.59E-05
  7.4 9.59E-05
  7.6 9.59E-05
  7.8 9.59E-05
   8 9.59E-05
  8.2 9.59E-05
  8.4 9.59E-05
  8.6 9.59E-05
  8.8 9.59E-05
   9 9.59E-05
  9.2 9.59E-05
  9.4 9.59E-05
  9.6 9.59E-05
  9.8 9.59E-05
```

10 9.59E-05

Time(days)	ddn(ft)	ddn (ft)	Time (min)	H _t /H _o
		0.112	0	0.010738
		8.526	0.0083	0.81745
		1.272	0.0166	0.121956
		1.403	0.025	0.134516
		1.41	0.0333	0.135187
		1.322	0.0416	0.12675
		1.347	0.05	0.129147
		1.328	0.0583	0.127325
		1.297	0.0666	0.124353
		1.291	0.075	0.123778
		1.254	0.0833	0.12023
		1.235	0.0916	0.118408
		1.216	0.1	0.116587
		1.197	0.1083	0.114765
		1.185	0.1166	0.113615
		1.173	0.125	0.112464
		1.154	0.1333	0.110642
		1.141	0.1416	0.109396
		1.129	0.15	0.108245
		1.116	0.1583	0.106999
		1.098	0.1666	0.105273
		1.091	0.175	0.104602
		1.079	0.1833	0.103452
		1.06	0.1916	0.10163
		1.054	0.2	0.101055
		1.041	0.2083	0.099808
		1.029	0.2166	0.098658
		1.017	0.225	0.097507
		1.004 0.998	0.2333	0.096261
			0.2416	0.095686
		0.985	0.25	0.094439
		0.973	0.2583	0.093289
		0.96	0.2666	0.092042
		0.954 0.942	0.275 0.2833	0.091467
		0.929	0.2033	0.090316 0.08907
		0.923	0.2918	0.088495
		0.91	0.3083	0.087248
		0.904	0.3166	0.086673
		0.892	0.325	0.085523
		0.886	0.3333	0.084947
		0.867	0.35	0.083126
		0.842	0.3666	0.080729
		0.829	0.3833	0.079482
		0.811	0.4	0.077756
		0.792	0.4166	0.075935
		0.773	0.4333	0.074113
		0.761	0.45	0.072963
		0.742	0.4666	0.071141
		0.73	0.4833	0.06999
		0.717	0.5	0.068744
		0.698	0.5166	0.066922
		0.686	0.5333	0.065772
		0.673	0.55	0.064525
		0.655	0.5666	0.0628
		0.648	0.5833	0.062128
		0.63	0.6	0.060403

0.617 0.6166 0.059156

0.605	0.6333	0.058006
0.592	0.055	0.056759
0.58	0.6666	0.055609
0.574	0.6833	0.055034
0.555	0.6653	0.053034
0.555		
	0.7166	0.052637
0.536	0.7333	0.05139
0.524	0.75	0.05024
0.517	0.7666	0.049569
0.505	0.7833	0.048418
0.492	0.8	0.047172
0.486	0.8166	0.046596
0.474	0.8333	0.045446
0.468	0.85	0.044871
0.455	0.8666	0.043624
0.449	0.8833	0.043049
0.436	0.9	0.041802
0.43	0.9166	0.041227
0.424	0.9333	0.040652
0.411	0.95	0.039406
0.405	0.9666	0.03883
0.399	0.9833	0.038255
0.393	1	0.03768
0.305	1.2	0.029243
0.237	1.4	0.022723
0.187	1.6	0.017929
0.149	1.8	0.017323
0.143	2	0.014200
0.118		
0.093	2.2	0.008917 0.007095
	2.4	
0.056	2.6	0.005369
0.043	2.8	0.004123
0.037	3	0.003547
0.024	3.2	0.002301
0.018	3.4	0.001726
0.012	3.6	0.001151
0.012	3.8	0.001151
0.006	4	0.000575
0.001	4.2	9.59E-05
0.001	4.4	9.59E-05
0.001	4.6	9.59E-05
0.001	4.8	9.59E-05
0.001	5	9.59E-05
0.001	5.2	9.59E-05
0.001	5.4	9.59E-05
0.001	5.6	9.59E-05
0.001	5.8	9.59E-05
0.001	6	9.59E-05
0.001	6.2	9.59E-05
0.001	6.4	9.59E-05
0.001	6.6	9.59E-05
0.001	6.8	9.59E-05
0.001	7	9.59E-05
0.001	7.2	9.59E-05
0.001	7.4	9.59E-05
	7. 4 7.6	
0.001		9.59E-05
0.001	7.8	9.59E-05
0.001	8	9.59E-05
0.001	8.2	9.59E-05
0.001	8.4	9.59E-05
0.001	8.6	9.59E-05
0.001	8.8	9.59E-05
0.001	9	9.59E-05
0.001	9.2	9.59E-05
0.001	9.4	9.59E-05
0.001	9.6	9.59E-05
0.001	9.8	9.59E-05
0.001	10	9.59E-05

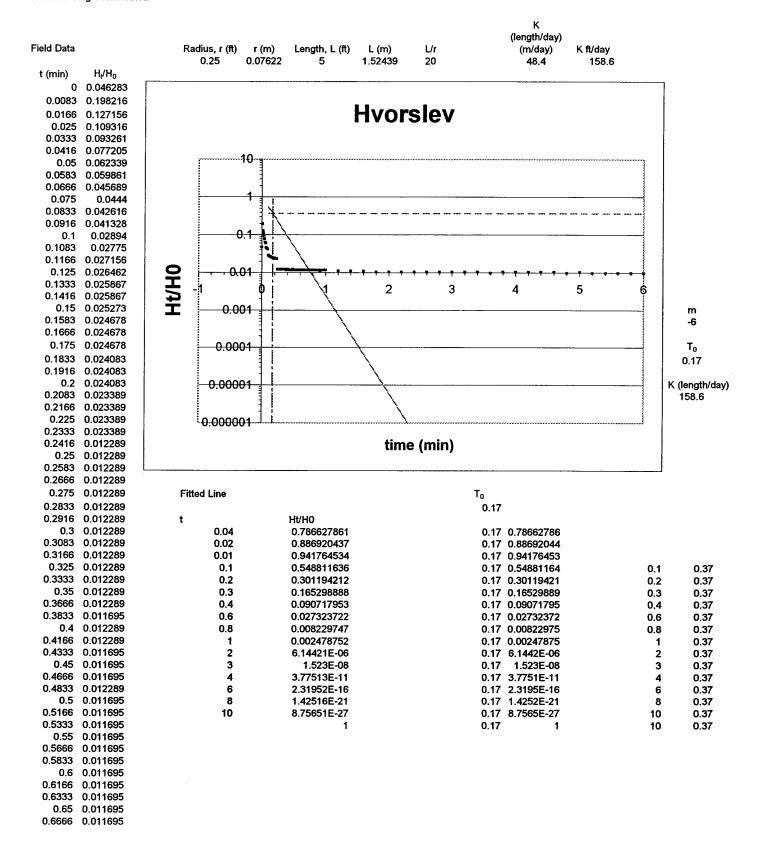



```
0.6833 0.056184
  0.7 0.055034
0.7166 0.053787
0.7333 0.052637
 0.75 0.051965
0.7666 0.050815
0.7833 0.05024
  0.8 0.048993
0.8166 0.048418
0.8333 0.047267
 0.85 0.046596
0.8666 0.045446
0.8833 0.044871
  0.9 0.044199
0.9166 0.043049
0.9333 0.042474
 0.95 0.041802
0.9666 0.040652
0.9833 0.040077
   1 0.039406
   1.2 0.03164
  1.4 0.025695
   1.6 0.021477
   1.8 0.017929
    2 0.014957
  2.2 0.01256
  2.4 0.010738
  2.6 0.008917
  2.8 0.007766
   3 0.00652
  3.2 0.005944
  3.4 0.004698
  3.6 0.004123
  3.8 0.003547
   4 0.002972
  4.2 0.002301
  4.4 0.001726
  4.6 0.001726
   4.8 0.001151
   5 0.001151
  5.2 0.001151
  5.4 0.000575
  5.6 0.000575
  5.8 0.000575
   6 0.000575
  6.2 0.000575
  6.4 9.59E-06
  6.6 9.59E-06
  6.8 9.59E-06
   7 9.59E-06
  7.2 9.59E-06
  7.4 9.59E-06
  7.6 9.59E-06
  7.8 9.59E-06
   8 9.59E-06
  8.2 9.59E-06
  8.4 9.59E-06
  8.6 9.59E-06
  8.8 9.59E-06
   9 9.59E-06
  9.2 9.59E-06
  9.4 9.59E-06
  9.6 9.59E-06
9.8 9.59E-06
```

10 9.59E-06

Time(days)	ddn(ft)	ddn (ft)	Time (min)	H√H ₀
		0.018	0	0.001726
		0.018	0.0083	0.001726
		0.037	0.0166	0.003547
		0.112	0.025	0.010738
		3.927	0.0333	0.37651
		1.379	0.0416	0.132215
		1.891	0.05	0.181304
		1.454	0.0583	0.139406
		1.004	0.0666	0.096261
		1.404	0.075	0.134612
		1.142	0.0833	0.109492
		1.279	0.0916	0.122627
		1.217	0.1	0.116683
		1.204	0.1083	0.115436
		1.185	0.1166	0.113615
		1.167	0.125	0.111889
		1.148	0.1333	0.110067
		1.135	0.1416	0.108821
		1.117	0.15	0.107095
		1.104	0.1583	0.105849
		1.092	0.1666	0.104698
		1.073	0.175	0.102876
		1.061	0.1833	0.101726
		1.048	0.1916	0.100479
		1.042	0.2	0.099904
		1.023	0.2083	0.098082
		1.011	0.2166	0.096932
		1.004 0.992	0.225 0.2333	0.096261 0.09511
		0.973	0.2333	0.09311
		0.973	0.2410	
				0.093289
		0.961	0.2583	0.092138
		0.948 0.936	0.2666	0.090892
		0.929	0.275 0.2833	0.089741 0.08907
		0.917	0.2033	0.087919
		0.911	0.2318	0.087344
		0.898	0.3083	0.086098
		0.892	0.3166	0.085523
		0.88	0.325	0.084372
		0.873	0.3333	0.083701
		0.855	0.35	0.081975
		0.836	0.3666	0.080153
		0.823	0.3833	0.078907
		0.805	0.4	0.077181
		0.792	0.4166	0.075935
		0.773	0.4333	0.074113
		0.761	0.45	0.072963
		0.748	0.4666	0.071716
		0.73	0.4833	0.06999
		0.717	0.5	0.068744
		0.705	0.5166	0.067593
		0.692	0.5333	0.066347
		0.68	0.55	0.065197
		0.667	0.5666	0.06395
		0.649	0.5833	0.062224
		0.642 0.624	0.6 0.6166	0.061553
		0.024	U.U100	0.059827

```
0.617
          0.6333 0.059156
            0.65 0.058006
 0.605
 0.592
          0.6666 0.056759
 0.586
          0.6833 0.056184
 0.574
             0.7 0.055034
          0.7166 0.053787
 0.561
 0.549
          0.7333 0.052637
 0.542
            0.75 0.051965
  0.53
          0.7666 0.050815
 0.524
          0.7833 0.05024
 0.511
             0.8 0.048993
 0.505
          0.8166 0.048418
          0.8333 0.047267
 0.493
 0.486
            0.85 0.046596
          0.8666 0.045446
 0.474
 0.468
          0.8833 0.044871
 0.461
             0.9 0.044199
 0.449
          0.9166 0.043049
 0.443
          0.9333 0.042474
 0.436
            0.95 0.041802
 0.424
          0.9666 0.040652
          0.9833 0.040077
 0.418
 0.411
             1 0.039406
  0.33
             1.2 0.03164
 0.268
             1.4 0.025695
 0.224
             1.6 0.021477
 0.187
             1.8 0.017929
 0.156
              2 0.014957
 0.131
             2.2 0.01256
 0.112
             2.4 0.010738
 0.093
             2.6 0.008917
 0.081
             2.8 0.007766
 0.068
             3 0.00652
             3.2 0.005944
 0.062
 0.049
             3.4 0.004698
 0.043
             3.6 0.004123
 0.037
             3.8 0.003547
 0.031
              4 0.002972
 0.024
             4.2 0.002301
 0.018
             4.4 0.001726
 0.018
             4.6 0.001726
 0.012
             4.8 0.001151
 0.012
              5 0.001151
 0.012
             5.2 0.001151
 0.006
            5.4 0.000575
 0.006
             5.6 0.000575
 0.006
             5.8 0.000575
 0.006
              6 0.000575
 0.006
            6.2 0.000575
0.0001
            6.4 9.59E-06
0.0001
            6.6 9.59E-06
0.0001
            6.8 9.59E-06
0.0001
              7 9.59E-06
            7.2 9.59E-06
0.0001
0.0001
            7.4 9.59E-06
            7.6 9.59E-06
0.0001
0.0001
            7.8 9.59E-06
0.0001
             8 9.59E-06
0.0001
            8.2 9.59E-06
0.0001
            8.4 9.59E-06
0.0001
            8.6 9.59E-06
0.0001
             8.8 9.59E-06
0.0001
              9 9.59E-06
0.0001
            9.2 9.59E-06
0.0001
            9.4 9.59E-06
0.0001
            9.6 9.59E-06
0.0001
            9.8 9.59E-06
0.0001
             10 9.59E-06
```

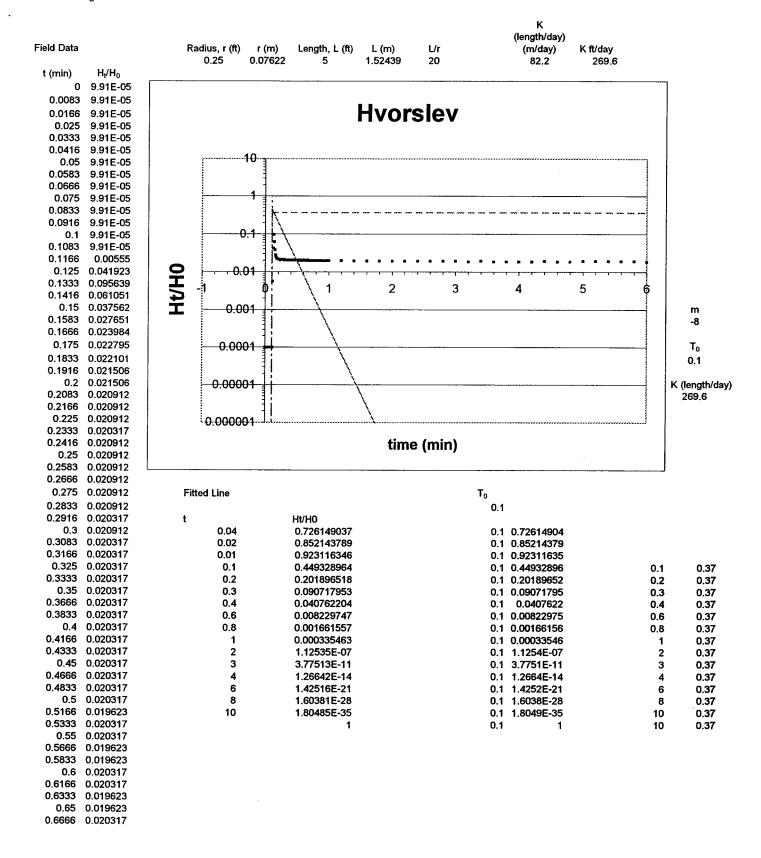


```
0.6833 0.059156
  0.7 0.058006
0.7166 0.056759
0.7333 0.056184
  0.75 0.055034
0.7666 0.053787
0.7833 0.052637
 0.8 0.05139
0.8166 0.050815
0.8333 0.049569
  0.85 0.048418
0.8666 0.047843
0.8833 0.047172
 0.9 0.046021
0.9166 0.045446
0.9333 0.044199
  0.95 0.043624
0.9666 0.042474
0.9833 0.041802
   1 0.041227
  1.2 0.032215
  1.4 0.025695
  1.6 0.020326
   1.8 0.016107
   2 0.013135
  2.2 0.010738
   2.4 0.008341
  2.6 0.007095
  2.8 0.005369
   3 0.004123
  3.2 0.003547
  3.4 0.002972
  3.6 0.002301
  3.8 0.001726
   4 0.001726
   4.2 0.001151
  4.4 0.001151
  4.6 0.001151
   4.8 0.001151
   5 0.000575
  5.2 0.000575
  5.4 0.000575
  5.6 0.000575
  5.8 0.000575
   6 0.000575
  6.2 0.000575
  6.4 0.000575
  6.6 9.59E-06
  6.8 9.59E-06
   7 9.59E-06
  7.2 9.59E-06
  7.4 9.59E-06
  7.6 9.59E-06
  7.8 9.59E-06
   8 9.59E-06
  8.2 9.59E-06
  8.4 9.59E-06
  8.6 9.59E-06
  8.8 9.59E-06
   9 9.59E-06
  9.2 9.59E-06
  9.4 9.59E-06
  9.6 9.59E-06
```

9.8 9.59E-06 10 9.59E-06

Time(days)	ddn(ft)	ddn (ft)	Time (min)	H/H ₀
		0.0001	0	9.59E-06
		3.118	0.0083	0.298945
		1.609	0.0166	0.154267
		1.622	0.025	0.155513
		1.491	0.0333	0.142953
		1.447	0.0416	0.138734
		1.422	0.05	0.136337
		1.416	0.0583	0.135762
		1.372	0.0666	0.131544
		1.347	0.075	0.129147
		1.322	0.0833	0.12675
		1.304	0.0916	0.125024
		1.291	0.1	0.123778
		1.272	0.1083	0.121956
		1.254	0.1166	0.12023
		1.241	0.125	0.118984
		1.229	0.1333	0.117833
		1.21	0.1416	0.116012
		1.197	0.15	0.114765
		1.179	0.1583	0.113039
		1.166	0.1666	0.111793
		1.154	0.175	0.110642
		1.141	0.1833	0.109396
		1.129	0.1916	0.108245
		1.116	0.2	0.106999
		1.104	0.2083	0.105849
		1.091 1.079	0.2166 0.225	0.104602 0.103452
		1.066	0.233	0.103452
		1.000	0.2333	0.102203
		1.048	0.25	0.10103
		1.035 1.023	0.2583	0.099233
		1.023	0.2666 0.275	0.098082 0.096836
		1.004	0.2833	0.096261
		0.992	0.2916	0.090201
		0.979	0.2313	0.093864
		0.973	0.3083	0.093289
		0.96	0.3166	0.092042
		0.948	0.325	0.090892
		0.942	0.3333	0.090316
		0.923	0.35	0.088495
		0.904	0.3666	0.086673
		0.886	0.3833	0.084947
		0.867	0.4	0.083126
		0.848	0.4166	0.081304
		0.836	0.4333	0.080153
		0.817	0.45	0.078332
		0.798	0.4666	0.07651
		0.779	0.4833	0.074688
		0.767	0.5	0.073538
		0.755	0.5166	0.072387
		0.742	0.5333	0.071141
		0.723	0.55	0.069319
		0.705	0.5666	0.067593
		0.692 0.686	0.5833 0.6	0.066347 0.065772
		0.667	0.6166	0.06395
		3.007	0.0100	3.00333

```
0.655
          0.6333
                    0.0628
            0.65 0.061553
 0.642
  0.63
          0.6666 0.060403
          0.6833 0.059156
 0.617
 0.605
             0.7 0.058006
          0.7166 0.056759
 0.592
 0.586
          0.7333 0.056184
 0.574
            0.75 0.055034
          0.7666 0.053787
 0.561
 0.549
          0.7833 0.052637
 0.536
             0.8 0.05139
  0.53
          0.8166 0.050815
 0.517
          0.8333 0.049569
 0.505
            0.85 0.048418
 0.499
          0.8666 0.047843
 0.492
          0.8833 0.047172
  0.48
             0.9 0.046021
 0.474
          0.9166 0.045446
 0.461
          0.9333 0.044199
 0.455
            0.95 0.043624
 0.443
          0.9666 0.042474
 0.436
          0.9833 0.041802
  0.43
              1 0.041227
 0.336
             1.2 0.032215
 0.268
             1.4 0.025695
 0.212
             1.6 0.020326
             1.8 0.016107
 0.168
 0.137
              2 0.013135
             2.2 0.010738
 0.112
 0.087
             2.4 0.008341
 0.074
             2.6 0.007095
 0.056
             2.8 0.005369
 0.043
              3 0.004123
 0.037
             3.2 0.003547
 0.031
             3.4 0.002972
 0.024
             3.6 0.002301
 0.018
             3.8 0.001726
 0.018
              4 0.001726
 0.012
             4.2 0.001151
 0.012
             4.4 0.001151
 0.012
             4.6 0.001151
 0.012
             4.8 0.001151
 0.006
              5 0.000575
 0.006
             5.2 0.000575
 0.006
             5.4 0.000575
 0.006
             5.6 0.000575
 0.006
             5.8 0.000575
 0.006
              6 0.000575
 0.006
             6.2 0.000575
0.006
             6.4 0.000575
0.0001
                9.59E-06
             6.8 9.59E-06
0.0001
0.0001
              7 9.59E-06
0.0001
             7.2 9.59E-06
0.0001
             7.4 9.59E-06
0.0001
             7.6 9.59E-06
0.0001
             7.8 9.59E-06
0.0001
              8
                 9.59E-06
0.0001
             8.2 9.59E-06
0.0001
             8.4 9.59E-06
0.0001
             8.6 9.59E-06
0.0001
             8.8
                9.59E-06
0.0001
              9 9.59E-06
0.0001
             9.2 9.59E-06
0.0001
             9.4
                 9.59E-06
0.0001
             9.6 9.59E-06
0.0001
             9.8 9.59E-06
0.0001
             10 9.59E-06
```

Well W-107A

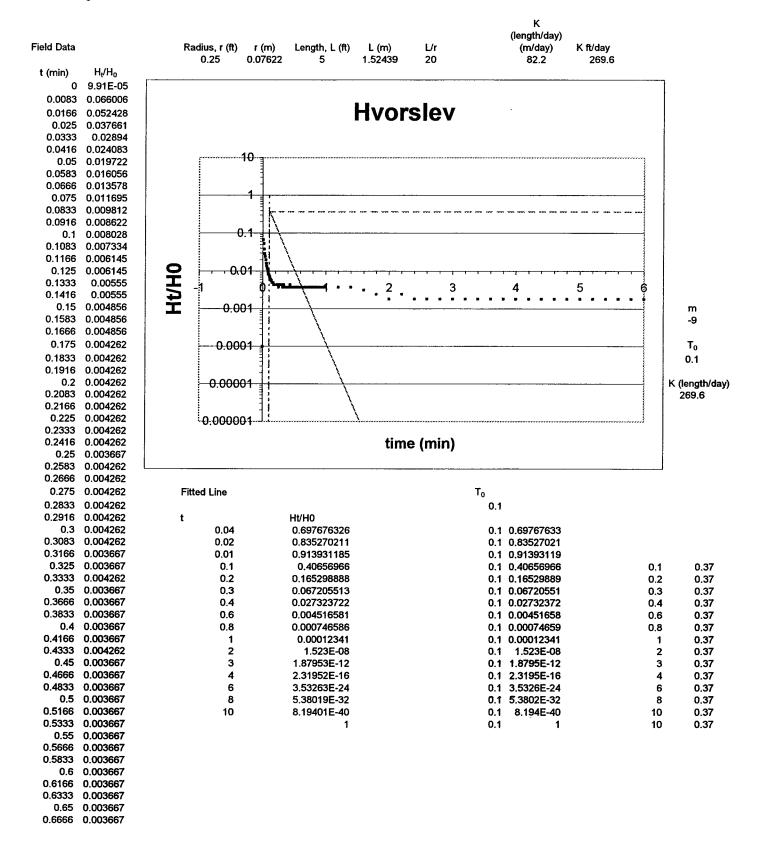



```
0.6833 0.011695
   0.7 0.011695
0.7166 0.011695
0.7333 0.011695
  0.75 0.011695
0.7666 0.011695
0.7833 0.011695
 0.8 0.011695
0.8166 0.011695
0.8333 0.011695
  0.85 0.011695
0.8666 0.011695
0.8833 0.011695
  0.9 0.011695
0.9166 0.0111
0.9333 0.011695
  0.95 0.011695
0.9666 0.011695
0.9833 0.011695
   1 0.011695
   1.2 0.0111
  1.4
       0.0111
      0.0111
  1.6
  1.8 0.010406
   2 0.010406
  2.2 0.010406
  2.4 0.010406
  2.6 0.010406
  2.8 0.010406
   3 0.010406
  3.2 0.010406
  3.4 0.010406
  3.6 0.009812
  3.8 0.010406
    4 0.010406
  4.2 0.010406
  4.4 0.010406
  4.6 0.010406
  4.8 0.009812
   5 0.010406
  5.2 0.009812
  5.4 0.009812
  5.6 0.009812
  5.8 0.009812
   6 0.009812
  6.2 0.009812
  6.4 0.009812
  6.6 0.009812
  6.8 0.009812
   7 0.009812
  7.2 0.009812
  7.4 0.009812
  7.6 0.009812
  7.8 0.009812
   8 0.009812
  8.2 0.009812
  8.4 0.009812
  8.6 0.009217
  8.8 0.009217
   9 0.009217
  9.2 0.009217
  9.4 0.009217
  9.6 0.008622
  9.8 0.009217
```

10 0.009217

Time(days)	ddn(ft)	ddn (ft)	Time (min)	H√H°
		0.467	0	0.046283
		2	0.0083	0.198216
		1.283	0.0166	0.127156
		1.103	0.025	0.109316
		0.941	0.0333	0.093261
		0.779	0.0416	0.077205
		0.629	0.05	0.062339
		0.604	0.0583	0.059861
		0.461	0.0666	0.045689
		0.448	0.075	0.0444
		0.43	0.0833	0.042616
		0.417	0.0916	0.041328
		0.292	0.1	0.02894
		0.28	0.1083	0.02775
		0.274	0.1166	0.027156
		0.267 0.261	0.125 0.1333	0.026462 0.025867
		0.261	0.1333	0.025867
		0.251		
			0.15	0.025273
		0.249	0.1583	0.024678
		0.249	0.1666	0.024678 0.024678
		0.249 0.243	0.175 0.1833	0.024678
		0.243	0.1933	0.024083
		0.243	0.1910	0.024083
		0.236	0.2083	0.023389
		0.236	0.2166	0.023389
		0.236	0.225	0.023389
		0.236	0.2333	0.023389
		0.124	0.2416	0.012289
		0.124	0.25	0.012289
		0.124	0.2583	0.012289
		0.124	0.2666	0.012289
		0.124	0.275	0.012289
		0.124	0.2833	0.012289
		0.124	0.2916	0.012289
		0.124	0.3	0.012289
		0.124	0.3083	0.012289
		0.124	0.3166	0.012289
		0.124	0.325	0.012289
		0.124	0.3333	0.012289
		0.124	0.35	0.012289
		0.124	0.3666	0.012289
		0.118	0.3833	0.011695
		0.124	0.4	0.012289
		0.124	0.4166	0.012289
		0.118	0.4333	0.011695
		0.118	0.45	0.011695
		0.118	0.4666	0.011695
		0.124	0.4833	0.012289
		0.118	0.5 0.5166	0.011695
		0.118 0.118	0.5166	0.011695 0.011695
		0.118	0.555	0.011695
		0.118	0.5666	0.011695
		0.118	0.5833	0.011695
		0.118	0.5055	0.011695
		0.118	0.6166	0.011695
		0.710	0.5100	5.511000

```
0.118
          0.6333 0.011695
 0.118
            0.65 0.011695
          0.6666 0.011695
 0.118
 0.118
          0.6833 0.011695
 0.118
            0.7 0.011695
 0.118
          0.7166 0.011695
 0.118
         0.7333 0.011695
 0.118
            0.75 0.011695
 0.118
          0.7666 0.011695
 0.118
         0.7833 0.011695
 0.118
            0.8 0.011695
 0.118
         0.8166 0.011695
 0.118
         0.8333 0.011695
 0.118
            0.85 0.011695
 0.118
         0.8666 0.011695
 0.118
         0.8833 0.011695
 0.118
            0.9 0.011695
 0.112
         0.9166
                  0.0111
 0.118
         0.9333 0.011695
 0.118
           0.95 0.011695
 0.118
         0.9666 0.011695
 0.118
         0.9833 0.011695
 0.118
             1 0.011695
 0.112
            1.2
                   0.0111
 0.112
            1.4
                   0.0111
 0.112
            1.6
                   0.0111
 0.105
            1.8 0.010406
0.105
             2 0.010406
0.105
            2.2 0.010406
0.105
            2.4 0.010406
0.105
            2.6 0.010406
0.105
            2.8 0.010406
0.105
             3 0.010406
0.105
            3.2 0.010406
0.105
            3.4 0.010406
0.099
            3.6 0.009812
0.105
            3.8 0.010406
              4 0.010406
0.105
0.105
            4.2 0.010406
0.105
            4.4 0.010406
0.105
            4.6 0.010406
0.099
            4.8 0.009812
0.105
             5 0.010406
0.099
            5.2 0.009812
0.099
            5.4 0.009812
0.099
            5.6 0.009812
0.099
            5.8 0.009812
0.099
             6 0.009812
0.099
            6.2 0.009812
0.099
            6.4 0.009812
0.099
            6.6 0.009812
0.099
            6.8 0.009812
0.099
             7
                0.009812
0.099
            7.2 0.009812
0.099
            7.4 0.009812
0.099
            7.6 0.009812
0.099
            7.8 0.009812
0.099
            8 0.009812
0.099
            8.2 0.009812
0.099
            8.4 0.009812
0.093
            8.6 0.009217
0.093
            8.8 0.009217
0.093
            9 0.009217
0.093
            9.2 0.009217
0.093
            9.4 0.009217
0.087
            9.6 0.008622
0.093
            9.8 0.009217
0.093
            10 0.009217
```

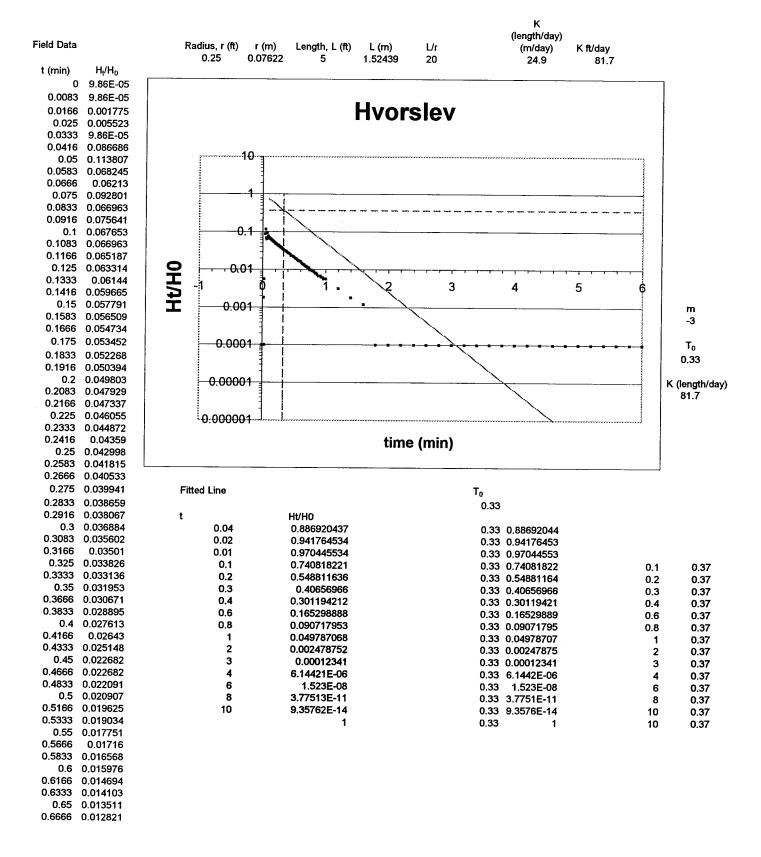



```
0.6833 0.019623
   0.7 0.019623
0.7166 0.019623
0.7333 0.019623
  0.75 0.019623
0.7666 0.019623
0.7833 0.019623
 0.8 0.019623
0.8166 0.019623
0.8333 0.019623
  0.85 0.019623
0.8666 0.019623
0.8833 0.019623
 0.9 0.019623
0.9166 0.019623
0.9333 0.019623
 0.95 0.019623
0.9666 0.019623
0.9833 0.019623
  1 0.019623
   1.2 0.019623
  1.4 0.019029
  1.6 0.019029
   1.8 0.019029
   2 0.019029
  2.2 0.019029
  2.4 0.019029
  2.6 0.019029
  2.8 0.019029
    3 0.019029
  3.2 0.018434
  3.4 0.019029
  3.6 0.018434
  3.8 0.018434
    4 0.018434
  4.2 0.018434
  4.4 0.019029
  4.6 0.018434
  4.8 0.018434
    5 0.019029
  5.2 0.019029
  5.4 0.019029
  5.6 0.019029
  5.8 0.019029
   6 0.018434
  6.2 0.018434
  6.4 0.018434
  6.6 0.018434
  6.8 0.018434
  7 0.018434
  7.2 0.018434
  7.4 0.018434
  7.6 0.018434
  7.8 0.019029
   8 0.018434
  8.2 0.018434
  8.4 0.018434
  8.6 0.018434
  8.8 0.017839
  9 0.017839
  9.2 0.017839
  9.4 0.017839
  9.6 0.017839
```

9.8 0.017839 10 0.017839

Time(days)	ddn(ft)	ddn (ft)	Time (min)	H/H ₀
		0.001	0	9.91E-05
		0.001	0.0083	9.91E-05
		0.001	0.0166	9.91E-05
		0.001	0.025	9.91E-05
		0.001	0.0333	9.91E-05
		0.001	0.0416	9.91E-05
		0.001	0.05	9.91E-05
		0.001	0.0583	9.91E-05
		0.001	0.0666	9.91E-05
		0.001	0.075	9.91E-05
		0.001	0.0833	9.91E-05
		0.001	0.0916	9.91E-05
		0.001	0.1	9.91E-05
		0.001	0.1083	9.91E-05
		0.056	0.1166	0.00555
		0.423	0.125	0.041923
		0.965	0.1333	0.095639
		0.616	0.1416	0.061051
		0.379	0.15	0.037562
		0.279	0.1583	0.027651
		0.242	0.1666	0.023984
		0.23	0.175	0.022795
		0.223	0.1833	0.022101
		0.217	0.1916	0.021506
		0.217	0.2	0.021506
		0.211	0.2083	0.020912
		0.211 0.211	0.2166 0.225	0.020912 0.020912
		0.211	0.2333	0.020312
		0.203	0.2333	0.020317
		0.211	0.25	0.020912
		0.211		
		0.211	0.2583 0.2666	0.020912
		0.211	0.200	0.020912 0.020912
		0.211	0.2833	0.020912
		0.205	0.2033	0.020312
		0.211	0.2310	0.020912
		0.205	0.3083	0.020317
		0.205	0.3166	0.020317
		0.205	0.325	0.020317
		0.205	0.3333	0.020317
		0.205	0.35	0.020317
		0.205	0.3666	0.020317
		0.205	0.3833	0.020317
		0.205	0.4	0.020317
		0.205	0.4166	0.020317
		0.205	0.4333	0.020317
		0.205	0.45	0.020317
		0.205	0.4666	0.020317
		0.205	0.4833	0.020317
		0.205	0.5	0.020317
		0.198	0.5166	0.019623
		0.205	0.5333	0.020317
		0.205	0.55	0.020317
		0.198	0.5666 0.5833	0.019623
		0.198 0.205		0.019623 0.020317
		0.205	0.6 0.6166	0.020317
		0.205	0.0100	U.U2U31/

0.198	0.6333 0.019623
0.198	0.65 0.019623
0.205	0.6666 0.020317
0.198	0.6833 0.019623
0.198	0.7 0.019623
0.198	0.7166 0.019623
0.198	0.7333 0.019623
0.198	0.75 0.019623
0.198	0.7666 0.019623
0.198	0.7833 0.019623
0.198	0.8 0.019623
0.198	0.8166 0.019623
0.198	0.85 0.019623
0.198	0.8666 0.019623
0.198	0.8833 0.019623
0.198	0.8933 0.019623
0.198	0.9166 0.019623
0.198	0.9333 0.019623
0.198	0.95 0.019623
0.198	0.9666 0.019623
0.198	0.9833 0.019623
0.198	1 0.019623
0.198	1.2 0.019623
0.198	1.4 0.019029
0.192 0.192 0.192 0.192 0.192 0.192 0.192 0.192	1.6 0.019029 1.8 0.019029 2 0.019029 2.2 0.019029 2.4 0.019029 2.6 0.019029 2.8 0.019029 3 0.019029
0.186	3.2 0.018434
0.192	3.4 0.019029
0.186	3.6 0.018434
0.186	3.8 0.018434
0.186	4 0.018434
0.186	4.2 0.018434
0.192	4.4 0.019029
0.186	4.6 0.018434
0.186 0.192 0.192 0.192 0.192 0.192 0.186 0.186 0.186	4.8 0.018434 5 0.019029 5.2 0.019029 5.4 0.019029 5.6 0.019029 6 0.018434 6.2 0.018434 6.4 0.018434
0.186	6.4 0.018434
0.186	6.8 0.018434
0.186	7 0.018434
0.186	7.2 0.018434
0.186	7.4 0.018434
0.186	7.6 0.018434
0.192	7.8 0.019029
0.186	8 0.018434
0.186	8.2 0.018434
0.186	8.4 0.018434
0.186	8.6 0.018434
0.18	8.8 0.017839
0.18	9 0.017839
0.18	9.2 0.017839
0.18	9.4 0.017839
0.18	9.6 0.017839
0.18	9.8 0.017839
0.18	10 0.017839

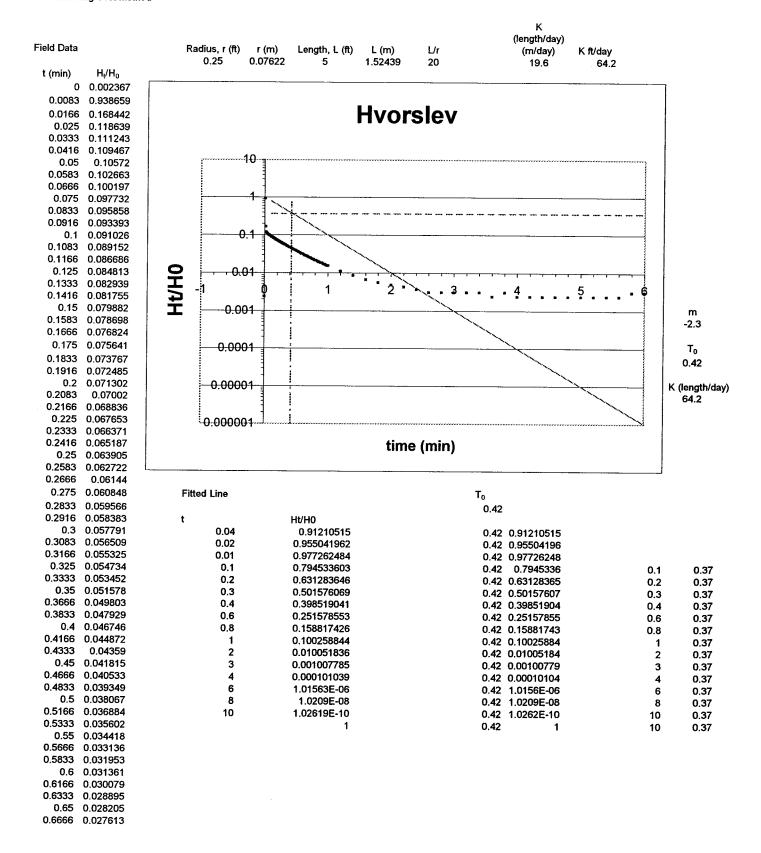

```
0.6833 0.003667
   0.7 0.003667
0.7166 0.003667
0.7333 0.003667
 0.75 0.003667
0.7666 0.003667
0.7833 0.003667
0.8 0.003667
0.8166 0.003667
0.8333 0.003667
0.85 0.003667
0.8666 0.003667
0.8833 0.003667
  0.9 0.003667
0.9166 0.003667
0.9333 0.003667
0.95 0.003667
0.9666 0.003667
0.9833 0.003667
   1 0.003667
   1.2 0.003667
  1.4 0.003667
   1.6 0.003072
   1.8 0.002379
   2 0.001784
   2.2 0.002379
  2.4 0.001784
  2.6 0.001784
  2.8 0.001784
   3 0.001784
  3.2 0.001784
  3.4 0.001784
  3.6 0.001784
  3.8 0.001784
   4 0.001784
  4.2 0.001784
  4.4 0.001784
  4.6 0.001784
  4.8 0.001784
   5 0.001784
  5.2 0.001784
  5.4 0.001784
  5.6 0.001784
  5.8 0.001784
   6 0.001784
  6.2 0.001784
  6.4 0.002379
  6.6 0.001784
  6.8 0.001784
  7 0.001784
  7.2 0.001784
  7.4 0.001784
  7.6 0.001784
  7.8 0.001784
   8 0.001784
  8.2 0.001784
  8.4 0.001784
  8.6 0.002379
  8.8 0.002379
   9 0.002379
  9.2 0.002379
  9.4 0.002379
  9.6 0.002379
  9.8 0.002379
```

10 0.002379

Time(days)	ddn(ft)	ddn (ft)	Time (min)	H _t /H _o
		0.001	0	9.91E-05
		0.666	0.0083	0.066006
		0.529	0.0166	0.052428
		0.38	0.025	0.037661
		0.292	0.0333	0.02894
		0.243	0.0416	0.024083
		0.199	0.05	0.019722
		0.162	0.0583	0.016056
		0.137	0.0666	0.013578
		0.118	0.075	0.011695
		0.099	0.0833	0.009812
		0.087	0.0916	0.008622
		0.081	0.1	0.008028
		0.074	0.1083	0.007334
		0.062	0.1166	0.006145
		0.062	0.125	0.006145
		0.056	0.1333	0.00555
		0.056	0.1416	0.00555
		0.049	0.15	0.004856
		0.049	0.1583	0.004856
		0.049	0.1666	0.004856
		0.043	0.175	0.004262
		0.043	0.1833	0.004262
		0.043	0.1916	0.004262
		0.043	0.2	0.004262
		0.043	0.2083	0.004262
		0.043	0.2166	0.004262
		0.043 0.043	0.225	0.004262
		0.043	0.2333 0.2416	0.004262
		0.043	0.2416	0.004262
				0.003667
		0.043	0.2583	0.004262
		0.043	0.2666	0.004262
		0.043 0.043	0.275 0.2833	0.004262
		0.043	0.2033	0.004262 0.004262
		0.043	0.2910	0.004262
		0.043	0.3083	0.004262
		0.037	0.3166	0.003667
		0.037	0.325	0.003667
		0.043	0.3333	0.004262
		0.037	0.35	0.003667
		0.037	0.3666	0.003667
		0.037	0.3833	0.003667
		0.037	0.4	0.003667
		0.037	0.4166	0.003667
		0.043	0.4333	0.004262
		0.037	0.45	0.003667
		0.037	0.4666	0.003667
		0.037	0.4833	0.003667
		0.037	0.5	0.003667
		0.037	0.5166	0.003667
		0.037	0.5333	0.003667
		0.037	0.55	0.003667
		0.037	0.5666	0.003667
		0.037	0.5833	0.003667
		0.037	0.6	0.003667
		0.037	0.6166	0.003667

0.037	0.6333	0.003667
0.037	0.0000	
0.037	0.666	
0.037	0.6833	
0.037	0.7	
0.037	0.7166	
0.037	0.7333	
0.037	0.75	
0.037	0.7666	
0.037	0.7833	0.003667
0.037	0.8	0.003667
0.037	0.8166	0.003667
0.037	0.8333	0.003667
0.037	0.85	0.003667
0.037	0.8666	0.003667
0.037	0.8833	0.003667
0.037	0.9	0.003667
0.037	0.9166	0.003667
0.037	0.9333	0.003667
0.037	0.95	0.003667
0.037	0.9666	0.003667
0.037	0.9833	0.003667
0.037	0.9033	0.003667
0.037	1.2	0.003667
0.037	1.4	0.003667
0.031	1.6	0.003072
0.024	1.8	0.002379
0.018	2	0.001784
0.024	2.2	0.002379
0.018	2.4	0.001784
0.018	2.6	0.001784
0.018	2.8	0.001784
0.018	3	0.001784
0.018	3.2	0.001784
0.018	3.4	0.001784
0.018	3.6	
		0.001784
0.018	3.8	0.001784
0.018	4	0.001784
0.018	4.2	0.001784
0.018	4.4	0.001784
0.018	4.6	0.001784
0.018	4.8	0.001784
0.018	5	0.001784
0.018	5.2	0.001784
0.018	5.4	0.001784
0.018	5.6	0.001784
0.018	5.8	0.001784
0.018	6	0.001784
0.018	6.2	0.001784
0.024	6.4	0.002379
0.018	6.6	0.001784
0.018	6.8	0.001784
0.018	7	0.001784
0.018	7.2	0.001784
0.018	7.4	0.001784
0.018	7.6	0.001784
0.018	7.8	0.001784
0.018	8	0.001784
0.018	8.2	0.001784
0.018	8.4	0.001784
0.024	8.6	0.002379
0.024	8.8	0.002379
0.024	9	0.002379
0.024	9.2	0.002379
0.024	9.4	0.002379
0.024	9.6	0.002379
0.024	9.8	0.002379
0.024	10	0.002379

Well W-107B

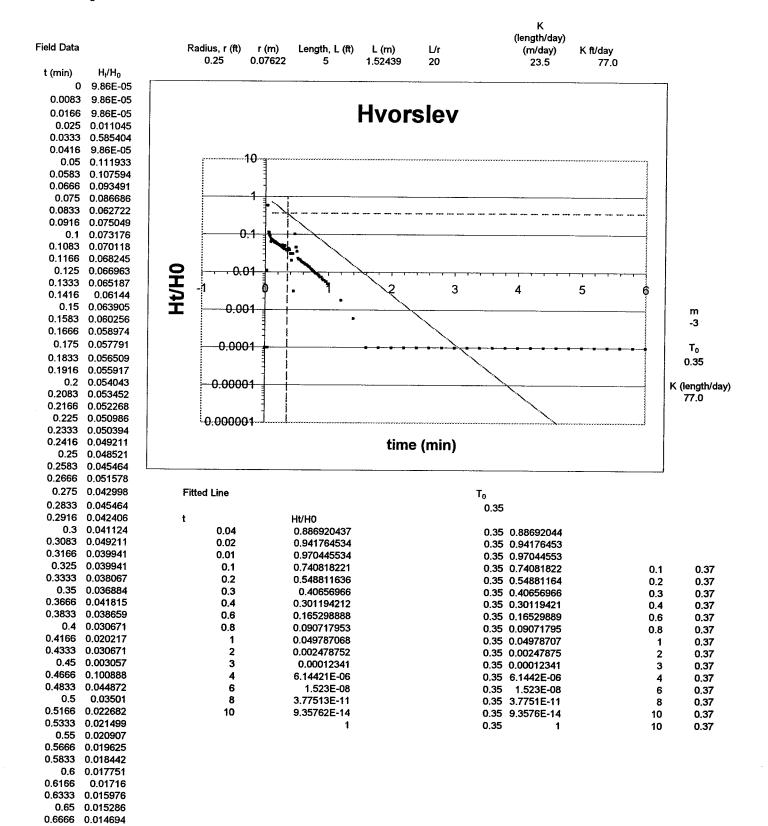



```
0.6833 0.012229
   0.7 0.011637
0.7166 0.011045
0.7333 0.011045
  0.75 0.009763
0.7666 0.009763
0.7833 0.009172
  0.8 0.009172
0.8166 0.00858
0.8333 0.007988
 0.85 0.007988
0.8666 0.007298
0.8833 0.006706
0.9 0.006706
0.9166 0.006706
0.9333 0.006114
  0.95 0.006114
0.9666 0.005523
0.9833 0.005523
   1 0.005523
   1.2 0.003057
  1.4 0.001775
  1.6 0.001183
   1.8 9.86E-05
   2 9.86E-05
  2.2 9.86E-05
  2.4 9.86E-05
  2.6 9.86E-05
  2.8 9.86E-05
   3 9.86E-05
  3.2 9.86E-05
  3.4 9.86E-05
  3.6 9.86E-05
  3.8 9.86E-05
    4 9.86E-05
  4.2 9.86E-05
  4.4 9.86E-05
  4.6 9.86E-05
  4.8 9.86E-05
   5 9.86E-05
  5.2 9.86E-05
  5.4 9.86E-05
  5.6 9.86E-05
  5.8 9.86E-05
   6 9.86E-05
  6.2 9.86E-05
  6.4 9.86E-05
  6.6 9.86E-05
  6.8 9.86E-05
   7 9.86E-05
  7.2 9.86E-05
  7.4 9.86E-05
  7.6 9.86E-05
  7.8 9.86E-05
   8 9.86E-05
  8.2 9.86E-05
  8.4 9.86E-05
  8.6 9.86E-05
  8.8 9.86E-05
   9 9.86E-05
  9.2 9.86E-05
  9.4 9.86E-05
  9.6 9.86E-05
```

9.8 9.86E-05 10 9.86E-05

Time(days)	ddn(ft)	ddn (ft)	Time (min)	H _t /H _o
		0.001	0	9.86E-05
		0.001	0.0083	9.86E-05
		0.018	0.0166	0.001775
		0.056	0.025	0.005523
		0.001	0.0333	9.86E-05
		0.879	0.0416	0.086686
		1.154	0.05	0.113807
		0.692	0.0583	0.068245
		0.63	0.0666	0.06213
		0.941	0.075	0.092801
		0.679	0.0833	0.066963
		0.767	0.0916	0.075641
		0.686	0.1	0.067653
		0.679 0.661	0.1083	0.066963
		0.642	0.1166 0.125	0.065187 0.063314
		0.623	0.123	0.063314
		0.605	0.1333	0.059665
		0.586	0.1410	0.053003
		0.573	0.1583	
		0.575	0.1565	0.056509 0.054734
		0.542	0.175	0.053452
		0.53	0.1833	0.052268
		0.511	0.1916	0.050394
		0.505	0.2	0.049803
		0.486	0.2083	0.047929
		0.48	0.2166	0.047337
		0.467	0.225	0.046055
		0.455	0.2333	0.044872
		0.442	0.2416	0.04359
		0.436	0.25	0.042998
		0.424	0.2583	0.041815
		0.411	0.2666	0.040533
		0.405	0.275	0.039941
		0.392	0.2833	0.038659
		0.386	0.2916	0.038067
		0.374	0.3	0.036884
		0.361	0.3083	0.035602
		0.355	0.3166	0.03501
		0.343	0.325	0.033826
		0.336	0.3333	0.033136
		0.324	0.35	0.031953
		0.311 0.293	0.3666	0.030671
		0.293	0.3833	0.028895
		0.268	0.4 0.4166	0.027613 0.02643
		0.255	0.4333	0.02543
		0.23	0.45	0.023148
		0.23	0.4666	0.022682
		0.224	0.4833	0.022091
		0.212	0.5	0.020907
		0.199	0.5166	0.019625
		0.193	0.5333	0.019034
		0.18	0.55	0.017751
		0.174	0.5666	0.01716
		0.168	0.5833	0.016568
		0.162	0.6	0.015976
		0.149	0.6166	0.014694

0.143	0.6333	0.014103
0.137	0.65	0.013511
0.13	0,6666	0.012821
0.124	0.6833	0.012229
0.118	0.7	0.011637
0.112	0.7166	0.011045
0.112	0.7333	0.011045
0.099	0.75	0.009763
0.099		
	0.7666	0.009763
0.093	0.7833	0.009172
0.093	0.8	0.009172
0.087	0.8166	0.00858
0.081	0.8333	0.007988
0.081	0.85	0.007988
0.074	0.8666	0.007298
0.068	0.8833	0.006706
0.068	0.9	0.006706
0.068	0.9166	0.006706
0.062	0.9333	0.006114
0.062	0.95	0.006114
0.056	0.9666	0.005523
0.056	0.9833	0.005523
0.056	1	0.005523
0.031	1.2	0.003057
0.018	1.4	0.001775
0.012	1.6	0.001183
0.001	1.8	9.86E-05
0.001		
	2	9.86E-05
0.001	2.2	9.86E-05
0.001	2.4	9.86E-05
0.001	2.6	9.86E-05
0.001	2.8	9.86E-05
0.001	3	9.86E-05
0.001		
	3.2	9.86E-05
0.001	3.4	9.86E-05
0.001	3.6	9.86E-05
0.001	3.8	9.86E-05
0.001	4	9.86E-05
0.001	4.2	9.86E-05
0.001	4.4	9.86E-05
0.001	4.6	9.86E-05
0.001	4.8	9.86E-05
0.001	5	9.86E-05
0.001	5.2	9.86E-05
0.001	5.4	9.86E-05
0.001	5.6	9.86E-05
0.001	5.8	9.86E-05
0.001		
	6	9.86E-05
0.001	6.2	9.86E-05
0.001	6.4	9.86E-05
0.001	6.6	9.86E-05
0.001	6.8	9.86E-05
0.001	7	9.86E-05
0.001	7.2	9.86E-05
0.001	7.4	9.86E-05
0.001	7.6	9.86E-05
0.001	7.8	9.86E-05
0.001	8	9.86E-05
0.001	8.2	9.86E-05
0.001	8.4	9.86E-05
0.001	8.6	9.86E-05
0.001	8.8	9.86E-05
0.001	9	9.86E-05
0.001	9.2	9.86E-05
0.001	9.4	9.86E-05
0.001	9.6	9.86E-05
0.001	9.8	9.86E-05
0.001	10	9.86E-05

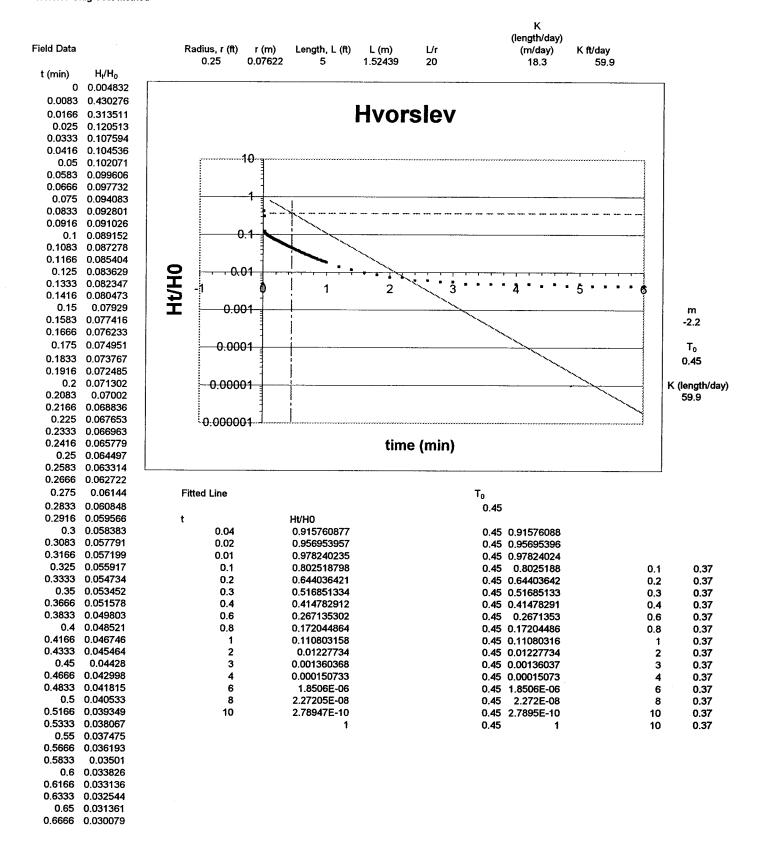



```
0.6833 0.02643
 0.7 0.02574
0.7166 0.025148
0.7333 0.023964
0.75 0.023373
0.7666 0.022682
0.7833 0.022091
 0.8 0.021499
0.8166 0.020907
0.8333 0.020217
 0.85 0.019625
0.8666 0.019034
0.8833 0.018442
 0.9 0.018442
0.9166 0.017751
0.9333 0.01716
 0.95 0.016568
0.9666 0.015976
0.9833 0.015286
   1 0.015286
  1.2 0.011045
  1.4 0.00858
  1.6 0.006706
  1.8 0.005523
   2 0.004832
  2.2 0.004241
  2.4 0.003649
  2.6 0.003057
  2.8 0.003057
   3 0.003057
  3.2 0.003057
  3.4 0,003057
  3.6 0.002367
  3.8 0.003057
   4 0.002367
  4.2 0.002367
  4.4 0.002367
  4.6 0.002367
  4.8 0.002367
   5 0.002367
  5.2 0.002367
  5.4 0.002367
5.6 0.002367
  5.8 0.003057
   6 0.003057
  6.2 0.003057
  6.4 0.003057
  6.6 0.003057
  6.8 0.003057
   7 0.003057
  7.2 0.003057
  7.4 0.003057
  7.6 0.003057
  7.8 0.003057
   8 0.003057
  8.2 0.003057
  8.4 0.003057
  8.6 0.003057
  8.8 0.003057
  9 0.003057
  9.2 0.003057
  9.4 0.003057
```

9.6 0.002367 9.8 0.003057 10 0.002367

Time(days)	ddn(ft)	ddn (ft)	Time (min)	H _t /H ₀
		0.024	0	0.002367
		9.518	0.0083	0.938659
		1.708	0.0166	0.168442
		1.203	0.025	0.118639
		1.128	0.0333	0.111243
		1.11	0.0416	0.109467
		1.072	0.05	0.10572
		1.041	0.0583	0.102663
		1.016	0.0666	0.100197
		0.991	0.075	0.097732
		0.972	0.0833	0.095858
		0.947	0.0916	0.093393
		0.923	0.1	0.091026
		0.904	0.1083	0.089152
		0.879	0.1166	0.086686
		0.86	0.125	0.084813
		0.841 0.829	0.1333 0.1416	0.082939 0.081755
		0.029	0.1416	
				0.079882
		0.798 0.779	0.1583 0.1666	0.078698 0.076824
		0.773	0.175	0.075641
		0.748	0.1833	0.073767
		0.735	0.1916	0.072485
		0.723	0.2	0.071302
		0.71	0.2083	0.07002
		0.698	0.2166	0.068836
		0.686	0.225	0.067653
		0.673	0.2333	0.066371
		0.661	0.2416	0.065187
		0.648	0.25	0.063905
		0.636	0.2583	0.062722
		0.623	0.2666	0.06144
		0.617	0.275	0.060848
		0.604	0.2833	0.059566
		0.592	0.2916	0.058383
		0.586	0.3	0.057791
		0.573	0.3083	0.056509
		0.561 0.555	0.3166 0.325	0.055325
		0.542	0.3333	0.054734 0.053452
		0.523	0.35	0.051578
		0.505	0.3666	0.049803
		0.486	0.3833	0.047929
		0.474	0.4	0.046746
		0.455	0.4166	0.044872
		0.442	0.4333	0.04359
		0.424	0.45	0.041815
		0.411	0.4666	0.040533
		0.399	0.4833	0.039349
		0.386	0.5	0.038067
		0.374	0.5166	0.036884
		0.361	0.5333	0.035602
		0.349	0.55	0.034418
		0.336 0.324	0.5666 0.5833	0.033136 0.031953
		0.324	0.5655	0.031953
		0.305	0.6166	0.031361
		3.505	0.0100	0.000013

0.293	0.6333	0.028895
0.286	0.65	0.028205
0.28	0.6666	0.027613
0.268	0.6833	0.02643
0.261	0.7	0.02574
	0.7166	
0.255		0.025148
0.243	0.7333	0.023964
0.237	0.75	0.023373
0.23	0.7666	0.022682
0.224	0.7833	0.022091
	0.7008	0.021499
0.218		
0.212	0.8166	0.020907
0.205	0.8333	0.020217
0.199	0.85	0.019625
0.193	0.8666	0.019034
0.187	0.8833	0.018442
0.187	0.9	0.018442
0.18	0.9166	0.017751
0.174	0.9333	0.01716
0.168	0.95	0.016568
	0.9666	
0.162		0.015976
0.155	0.9833	0.015286
0.155	1	0.015286
0.112	1.2	0.011045
0.087	1.4	0.00858
0.068	1.6	0.006706
0.056	1.8	0.005523
0.049	2	0.004832
0.043	2.2	0.004241
0.037	2.4	0.003649
0.031	2.6	0.003057
0.031	2.8	0.003057
0.031	3	0.003057
0.031	3.2	0.003057
0.031	3.4	0.003057
0.024	3.6	0.002367
0.031	3.8	0.003057
0.024	4	0.002367
0.024	4.2	0.002367
0.024	4.4	0.002367
0.024	4.6	0.002367
0.024	4.8	0.002367
0.024	5	0.002367
0.024	5.2	0.002367
0.024	5.4	0.002367
0.024		
	5.6	0.002367
0.031	5.8	0.003057
0.031	6	0.003057
0.031	6.2	0.003057
0.031	6.4	0.003057
0.031	6.6	0.003057
0.031	6.8	0.003057
0.031	7	0.003057
0.031	7.2	0.003057
0.031	7.4	0.003057
0.031	7.6	0.003057
0.031	7.8	0.003057
0.031	8	0.003057
0.031	8.2	0.003057
0.031	8.4	0.003057
0.031	8.6	0.003057
0.031	8.8	0.003057
0.031	9	0.003057
0.031	9.2	0.003057
0.031	9.4	0.003057
0.024	9.6	0.002367
0.031	9.8	0.003057
0.024	10	0.002367




```
0.6833 0.014103
  0.7 0.013511
0.7166 0.012229
0.7333 0.011637
 0.75 0.011045
0.7666 0.010454
0.7833 0.009763
  0.8 0.009172
0.8166 0.009172
0.8333 0.00858
0.85 0.007988
0.8666 0.007298
0.8833 0.007298
  0.9 0.006706
0.9166 0.006114
0.9333 0.006114
 0.95 0.005523
0.9666 0.005523
0.9833 0.004832
  1 0.004832
  1.2 0.001775
  1.4 0.000592
1.6 9.86E-05
  1.8 9.86E-05
   2 9.86E-05
  2.2 9.86E-05
  2.4 9.86E-05
  2.6 9.86E-05
  2.8 9.86E-05
   3 9.86E-05
  3.2 9.86E-05
  3.4 9.86E-05
  3.6 9.86E-05
  3.8 9.86E-05
   4 9.86E-05
  4.2 9.86E-05
  4.4 9.86E-05
  4.6 9.86E-05
  4.8 9.86E-05
   5 9.86E-05
  5.2 9.86E-05
  5.4 9.86E-05
  5.6 9.86E-05
  5.8 9.86E-05
   6 9.86E-05
  6.2 9.86E-05
  6.4 9.86E-05
  6.6 9.86E-05
  6.8 9.86E-05
   7 9.86E-05
  7.2 9.86E-05
  7.4 9.86E-05
  7.6 9.86E-05
  7.8 9.86E-05
   8 9.86E-05
  8.2 9.86E-05
  8.4 9.86E-05
  8.6 9.86E-05
  8.8 9.86E-05
   9 9.86E-05
  9.2 9.86E-05
  9.4 9.86E-05
  9.6 9.86E-05
  9.8 9.86E-05
```

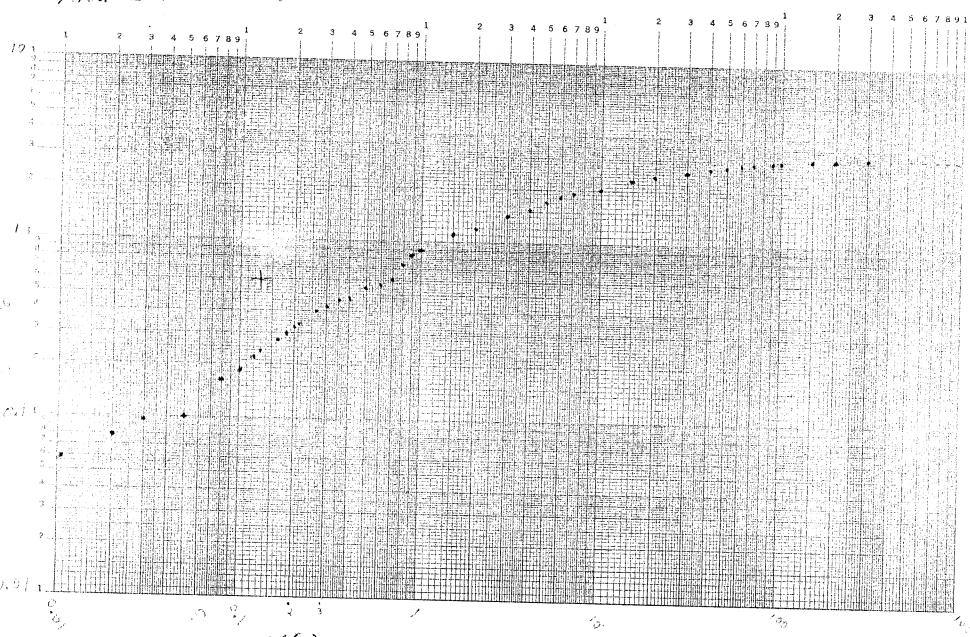
10 9.86E-05

Time(days)	ddn(ft)	ddn (ft)	Time (min)	H _t /H ₀
		0.001	0	9.86E-05
		0.001	0.0083	9.86E-05
		0.001	0.0166	9.86E-05
		0.112	0.025	0.011045
		5.936	0.0333	0.585404
		0.001	0.0416	9.86E-05
		1.135	0.05	0.111933
		1.091	0.0583	0.107594
		0.948	0.0666	0.093491
		0.879	0.075	0.086686
		0.636	0.0833	0.062722
		0.761	0.0916	0.075049
		0.742	0.1	0.073176
		0.711	0.1083	0.070118
		0.692	0.1166	0.068245
		0.679	0.125	0.066963
		0.661 0.623	0.1333 0.1416	0.065187 0.06144
		0.648	0.1416	0.063905
		0.611 0.598	0.1583 0.1666	0.060256 0.058974
		0.586	0.175	0.056974
		0.573	0.173	0.056509
		0.567	0.1916	0.055917
		0.548	0.2	0.054043
		0.542	0.2083	0.053452
		0.53	0.2166	0.052268
		0.517	0.225	0.050986
		0.511	0.2333	0.050394
		0.499	0.2416	0.049211
		0.492	0.25	0.048521
		0.461	0.2583	0.045464
		0.523	0.2666	0.051578
		0.436	0.275	0.042998
		0.461	0.2833	0.045464
		0.43	0.2916	0.042406
		0.417	0.3	0.041124
		0.499	0.3083	0.049211
_		0.405 0.405	0.3166	0.039941
		0.403	0.325 0.3333	0.039941 0.038067
		0.374	0.333	0.036884
		0.424	0.3666	0.041815
		0.392	0.3833	0.038659
		0.311	0.4	0.030671
		0.205	0.4166	0.020217
		0.311	0.4333	0.030671
		0.031	0.45	0.003057
		1.023	0.4666	0.100888
		0.455	0.4833	0.044872
		0.355	0.5	0.03501
		0.23	0.5166	0.022682
		0.218	0.5333	0.021499
		0.212	0.55	0.020907
		0.199	0.5666	0.019625
		0.187 0.18	0.5833 0.6	0.018442 0.017751
		0.16	0.6166	0.017751
		J. 17 4	0.0100	3.01710

0.162	0.6333	0.015076
0.162		0.015976
0.155	0.65	0.015286
0.149	0.6666	0.014694
0.143	0.6833	0.014103
0.137	0.7	0.013511
0.124	0.7166	0.012229
0.118	0.7333	0.011637
0.112	0.75	0.011045
0.106	0.7666	0.010454
0.099	0.7833	0.009763
0.093	0.8	0.009172
0.093	0.8166	0.009172
0.087	0.8333	0.00858
0.081	0.85	0.007988
0.074	0.8666	0.007298
0.074	0.8833	0.007298
0.068	0.9	0.006706
0.062	0.9166	0.006114
0.062	0.9333	0.006114
0.056	0.95	0.005523
0.056	0.9666	0.005523
0.049	0.9833	0.004832
0.049	1	0.004832
0.018	1.2	0.001775
0.006	1.4	0.000592
0.001	1.6	9.86E-05
0.001	1.8	9.86E-05
0.001	2	9.86E-05
0.001	2.2	9.86E-05
0.001	2.4	9.86E-05
0.001	2.6	9.86E-05
0.001	2.8	9.86E-05
0.001	3	9.86E-05
0.001	3.2	9.86E-05
0.001	3.4	9.86E-05
0.001	3.6	9.86E-05
0.001	3.8	9.86E-05
0.001	4	9.86E-05
0.001	4.2	9.86E-05
0.001	4.4	9.86E-05
0.001	4.6	9.86E-05
0.001	4.8	9.86E-05
0.001	5	9.86E-05
0.001	5.2	9.86E-05
0.001	5.4	9.86E-05
0.001	5.6	9.86E-05
0.001	5.8	9.86E-05
0.001	6	9.86E-05
0.001	6.2	9.86E-05
0.001	6.4	9.86E-05
0.001	6.6	9.86E-05
0.001	6.8	9.86E-05
0.001	7	9.86E-05
0.001	7.2	9.86E-05
0.001	7.4	9.86E-05
0.001	7.6	9.86E-05
0.001	7.8	9.86E-05
0.001	8	9.86E-05
0.001	8.2	9.86E-05
0.001	8.4	9.86E-05
0.001	8.6	9.86E-05
0.001	8.8	9.86E-05
0.001	9	9.86E-05
0.001	9.2	9.86E-05
0.001	9.4	9.86E-05
0.001	9.6	9.86E-05
0.001	9.8	9.86E-05
0.001	10	9.86E-05


```
0.7 0.028895
0.7166 0.028205
0.7333 0.027613
0.75 0.02643
0.7666 0.02574
0.7833 0.025148
  0.8 0.024556
0.8166 0.023964
0.8333 0.023373
  0.85 0.023373
0.8666 0.022091
0.8833 0.021499
 0.9 0.021499
0.9166 0.020907
0.9333 0.020217
  0.95 0.019625
0.9666 0.019625
0.9833 0.019034
   1 0.018442
   1.2 0.014103
  1.4 0.011637
  1.6 0.009763
  1.8 0.00858
   2 0.007298
  2.2 0.007298
  2.4 0.006114
  2.6 0.006114
  2.8 0.005523
   3 0.005523
  3.2 0.004832
  3.4 0.004832
  3.6 0.004832
  3.8 0.004832
   4 0.004832
  4.2 0.004832
  4.4 0.004241
  4.6 0.004832
  4.8 0.004241
   5 0.004832
  5.2 0.004241
  5.4 0.004241
  5.6 0.004241
  5.8 0.004241
   6 0.004241
  6.2 0.004241
  6.4 0.004241
  6.6 0.004241
  6.8 0.004241
   7 0.004241
  7.2 0.004241
  7.4 0.004832
  7.6 0.004832
  7.8 0.004832
   8 0.004832
  8.2 0.004832
  8.4 0.004832
  8.6 0.004832
  8.8 0.004832
  9 0.004832
  9.2 0.004832
  9.4 0.004832
  9.6 0.004832
  9.8 0.004832
  10 0.004832
```

0.6833 0.029487


Time(days)	ddn(ft)	ddn (ft)	Time (min)	H _t /H _o
		0.049	0	0.004832
		4.363	0.0083	0.430276
		3.179	0.0166	0.313511
		1.222	0.025	0.120513
		1.091	0.0333	0.107594
		1.06	0.0416	0.104536
		1.035	0.05	0.102071
		1.01	0.0583	0.099606
		0.991	0.0666	0.097732
		0.954	0.075	0.094083
		0.941	0.0833	0.092801
		0.923	0.0916	0.091026
		0.904	0.1	0.089152
		0.885	0.1083	0.087278
		0.866	0.1166 0.125	0.085404
		0.848		0.083629
		0.835 0.816	0.1333 0.1416	0.082347
				0.080473
		0.804	0.15	0.07929
		0.785	0.1583	0.077416
		0.773 0.76	0.1666	0.076233
		0.748	0.175 0.1833	0.074951 0.073767
		0.746	0.1833	0.073767
		0.723	0.1310	0.071302
		0.71	0.2083	0.07002
		0.698	0.2166	0.068836
		0.686	0.225	0.067653
		0.679	0.2333	0.066963
		0.667	0.2416	0.065779
		0.654	0.25	0.064497
		0.642	0.2583	0.063314
		0.636	0.2666	0.062722
		0.623	0.275	0.06144
		0.617	0.2833	0.060848
		0.604	0.2916	0.059566
		0.592	0.3	0.058383
		0.586	0.3083	0.057791
		0.58	0.3166	0.057199
		0.567	0.325	0.055917
		0.555	0.3333	0.054734
		0.542	0.35	0.053452
		0.523	0.3666	0.051578
		0.505 0.492	0.3833	0.049803
			0.4	0.048521
		0.474 0.461	0.4166 0.4333	0.046746
		0.449	0.4555	0.043464
		0.436	0.4666	0.042998
		0.424	0.4833	0.042330
		0.411	0.5	0.040533
		0.399	0.5166	0.039349
		0.386	0.5333	0.038067
		0.38	0.55	0.037475
		0.367	0.5666	0.036193
		0.355	0.5833	0.03501
		0.343	0.6	0.033826
		0.336	0.6166	0.033136

0.33	0.6333	0.032544
0.318	0.65	0.031361
0.305	0.6666	0.030079
0.299	0.6833	0.029487
0.293	0.7	0.028895
0.286	0.7166	0.028205
0.28	0.7333	0.027613
0.268	0.75	0.027613
0.261	0.7666	0.02574
0.255	0.7833	0.025148
0.249	8.0	0.024556
0.243	0.8166	0.023964
0.237	0.8333	0.023373
0.237	0.85	0.023373
0.224	0.8666	0.022091
0.218	0.8833	0.021499
0.218	0.9	0.021499
0.212	0.9166	0.020907
0.205	0.9333	0.020217
0.199	0.95	0.019625
0.199	0.9666	0.019625
0.193	0.9833	0.019034
0.187	1	0.018442
0.143	1.2	0.014103
0.118	1.4	0.011637
0.099	1.6	0.009763
0.087	1.8	0.00858
0.074	2	0.007298
0.074	2.2	0.007298
0.062	2.4	0.006114
0.062	2.6	0.006114
0.056	2.8	0.005523
0.056	3	0.005523
0.049	3.2	0.003323
0.049	3.4	0.004832
0.049	3.6	0.004832
0.049	3.8	0.004832
0.049	4	0.004832
0.049	4.2	0.004832
0.043	4.4	0.004241
0.049	4.6	0.004832
		_
0.043	4.8	0.004241
0.049	5	0.004832
0.043	5.2	0.004241
0.043	5.4	0.004241
0.043	5.6	0.004241
0.043	5.8	0.004241
0.043	6	0.004241
0.043	6.2	0.004241
0.043	6.4	0.004241
0.043	6.6	0.004241
0.043	6.8	0.004241
0.043	7	0.004241
0.043	7.2	0.004241
0.049		
	7.4	0.004832
0.049	7.6	0.004832
0.049	7.8	0.004832
0.049	8	0.004832
0.049	8.2	0.004832
0.049	8.4	0.004832
0.049	8.6	0.004832
0.049	8.8	0.004832
0.049	9	0.004832
0.049	9.2	0.004832
0.049	9.4	0.004832
0.049	9.6	0.004832
0.049	9.8	0.004832
0.049	10	0.004832

AQUIFER PERFORMANCE TESTS

W-101

WIOI Avea B-1

5=0.6 t=0.13

 $T = \frac{114.6(100)}{0.6}$ T = 19,100 grd/ft

T= 2553 + 3/1/24 K= 19 64/day

r=60,4°

In-Situ Inc. Hermit 3000

Report generated: 03/12/04 13:14:57

Report from file: C:\Win-Situ\Data\SN45571 2004-03-09 150244 2.bin

over E

DataMgr Version 3.71

Serial number: 00045571 Firmware Version 7.10

Unit name: HERMIT 3000#2

Test name: 2

Test defined on: 03/09/04 02:08:20 Test started on: 03/09/04 15:02:44 Test stopped on: 03/10/04 14:58:33 Test extracted on: 03/12/04 13:13:08

Data gathered using Logarithmic testing

Maximum time between data points: 10.0000 Minutes.

Number of data samples:

TOTAL DATA SAMPLES 264

Channel number [1]

Measurement type: Pressure Channel name: LOGGER Linearity: 0.0657000 Scale: 15.2017000 Offset: -0.1791000 Warmup: 50

Specific gravity: 1.000

Mode: TOC

User-defined reference: 0.000 Feet H2O

Referenced on: test start

Pressure head at reference: 21.908 Feet H2O

Channel number [0]

Measurement type: Barometric Pressure

Channel name: Barometric Linearity: 0.0000000 Scale: 0.0000000 Offset: 0.0000000

Warmup: 50

Date	Time	ET (min)	Chan[1] Feet H2O	Chan[0] Inches Hg
03/09/04	15:02:44	0.0000	0.000	30.005
03/09/04	15:02:44	0.0112	0.059	30.002
03/09/04	15:02:45	0.0223	0.079	30.002
03/09/04	15:02:46	0.0335	0.093	30.005
03/09/04	15:02:46	0.0447	0.110	30.002
03/09/04	15:02:47	0.0558	0.128	30.005
03/09/04	15:02:48	0.0670	0.148	30.002
03/09/04	15:02:48	0.0782	0.165	30.000
03/09/04	15:02:49	0.0893	0.181	30.002
03/09/04	15:02:50	0.1005	0.198	30.002
03/09/04	15:02:50	0.1117	0.216	30.002
03/09/04	15:02:51	0.1228	0.229	30.002
03/09/04	15:02:52	0.1340	0.242	30.002
03/09/04	15:02:52	0.1452	0.256	30.002
03/09/04	15:02:53	0.1563	0.271	30.002
03/09/04	15:02:54	0.1675	0.284	30.005
03/09/04	15:02:54	0.1787	0.295	30.002
03/09/04	15:02:55	0.1898	0.308	30.002
03/09/04	15:02:56	0.2010	0.320	30.002
03/09/04	15:02:56	0.2122	0.331	30.002
03/09/04	15:02:57	0.2233	0.346	30.002

03/09/04		0.2350	0.357	30.005		
03/09/04 03/09/04	15:02:58 15:02:59	0.2475 0.2607	0.368 0.379	30.005 30.005		
03/09/04	15:03:00	0.2747	0.392	30.003		
03/09/04 03/09/04	15:03:01 15:03:02	0.2895 0.3052	0.408 0.421	30.005		
109/04	15:03:02	0.3032	0.421	30.002 30.005		
09/04	15:03:04	0.3395	0.447	30.005		
03/09/04 03/09/04	15:03:05 15:03:06	0.3582 0.3780	0.465 0.454	30.005 30.005	-	
03/09/04	15:03:07	0.3990	0.465	30.002	÷	
03/09/04 03/09/04	15:03:09 15:03:10	0.4212 0.4447	0.483 0.494	30.002		
03/09/04	15:03:12	0.4695	0.513	30.002 30.002		
03/09/04 03/09/04	15:03:13 15:03:15	0.4958	0.551	30.002		
03/09/04	15:03:15	0.5238 0.5535	0.480 · 0.533	30.005 30.002		
03/09/04	15:03:19	0.5848	0.546	30.002		
03/09/04 03/09/04	15:03:21 15:03:23	0.6180 0.6532	0.566 0.593	30.002 30.005		
03/09/04	15:03:25	0.6905	0.613	30.005		
03/09/04 03/09/04	15:03:27	0.7300	0.635	30.005		
03/09/04	15:03:30 15:03:32	0.7718 0.8162	0.712 0.771	30.002 30.005		
03/09/04	15:03:35	0.8632	0.833	30.002		
03/09/04 03/09/04	15:03:38 15:03:41	0.9130 0.9657	0.875 0.888	30.002 30.002		
03/09/04	15:03:45	1.0215	0.897	30.002		
03/09/04 03/09/04	15:03:48 15:03:52	1.0807	0.974	30.000		
03/09/04	15:03:52	1.1433 1.2097	0.954 0.983	30.000 30.005		
03/09/04	15:04:00	1.2800	1.051	30.002		
03/09/04 03/09/04	15:04:05 15:04:10	1.3545 1.4335	1.025 1.102	30.002 30.000		
03/09/04	15:04:15	1.5172	1.086	30.002		
77 '09/04 39/04	15:04:20 15:04:25	1.6057 1.6995	$1.144 \\ 1.166$	30.002		
03/09/04	15:04:23	1.7988	1.168	30.000 30.002	-	
03/09/04 03/09/04	15:04:38 15:04:44	1.9042	1.190	30.000		
03/09/04	15:04:44	2.0157 2.1338	1.137 1.236	30.002 30.002		
03/09/04	15:04:59	2.2590	1.271	30.002		
03/09/04 03/09/04	15:05:07 15:05:15	2.3915 2.5320	1.300 1.342	30.002 30.002	•	
03/09/04	15:05:24	2.6808	1.375	30.002		
03/09/04 03/09/04	15:05:34 15:05:44	2.8383 3.0052	1.353	29.980		
03/09/04	15:05:54	3.1820	1.430 1.452	29.972 29.968		
03/09/04 03/09/04	15:06:06	3.3693	1.503	29.968		
03/09/04	15:06:18 15:06:30	3.5677 3.7778	1.531 1.573	29.966 29.966		
03/09/04	15:06:44	4.0005	1.551	29.966		
03/09/04 03/09/04	15:06:58 15:07:13	4.2363 4.4862	1.637 1.659	29.964 29.964		
03/09/04	15:07:29	4.7508	1.679	29.964		
03/09/04 03/09/04	15:07:45 15:08:03	5.0312	1.743	29.962		
03/09/04	15:08:22	5.3280 5.6425	1.727 1.785	29.964 29.962		
03/09/04	15:08:42	5.9757	1.798	29.964		
03/09/04 03/09/04	15:09:03 15:09:26	6.3285 6.7023	1.853 1.866	29.964 29.996		
03/09/04	15:09:49	7.0983	1.895	30.002		
03/09/04 03/09/04	15:10:15 15:10:41	7.5177 7.9620	1.945 1.963	30.002		
C 199/04	15:11:09	8.4327	2.003	30.002 30.002		
U 39/04 03/09/04	15:11:39 15:12:11	8.9312 9.4592	2.027	30.002		
03/09/04	15:12:11	10.0185	2.022 2.062	30.002 30.000		
03/09/04 03/09/04	15:13:20	10.6110	2.095	30.005		
03/03/04	15:13:58	11.2385	2.144	29.970		

02/00/04	15.14.20	11 0022	0 157	20.066
03/09/04	15:14:38	11.9033	2.157	29.966
03/09/04	15:15:20	12.6075	2.174	29.964
03/09/04	15:16:05	13.3533	2.214	29.964
03/09/04	15:16:52	14.1433	2.245	29.962
03/09/04	15:17:42	14.9802	2.249	29.962
03/09/04	15:18:36		2.296	
		15.8667		29.962
03/09/04	15:19:32	16.8057	2.300	29.964
03/09/04	15:20:32	17.8003	2.340	29.964
03/09/04	15:21:35	18.8540	2.340	29.962
03/09/04	15:22:42	19.9700	2.401	29.964
03/09/04	15:23:53	21.1522	2.421	29.962
03/09/04	15:25:08	22.4043	2.441	29.962
03/09/04	15:26:27	23.7308	2.454	29.962
03/09/04	15:27:52	25.1358	2.483	29.962
03/09/04	15:29:21	26.6242	2.514	29.964
03/09/04	15:30:56	28.2007	2.514	29.964
03/09/04	15:32:36	29.8705	2.549	29.966
03/09/04	15:34:22	31.6393	2.562	29.966
03/09/04	15:36:14	33.5130	2.586	29.966
03/09/04	15:38:13	35.4977	2.635	29.964
03/09/04	15:40:20	37.6000	2.650	29.960
03/09/04	15:42:33	39.8268	2.668	29.962
03/09/04	15:44:55	42.1857	2.699	29.960
03/09/04	15:47:25	44.6843	2.703	29.958
03/09/04	15:50:03	47.3310	2.716	29.956
03/09/04	15:52:52	50.1345	2.773	29.956
03/09/04	15:55:50	53.1042		29.958
			2.747	
03/09/04	15:58:58	56.2498	2.798	29.958
03/09/04	16:02:18	59.5818	2.773	29.956
03/09/04	16:05:50	63.1113	2.837	29.952
03/09/04	16:09:34	66.8498	2.835	29.954
03/09/04	16:13:32	70.8100	2.842	29.954
03/09/04	16:17:44	75.0048	2.850	29.952
03/09/04	16:22:10	79.4482	2.881	29.950
03/09/04	16:26:53	84.1548	2.899	29.950
03/09/04	16:31:52	89.1403	2.903	29.950
03/09/04	16:37:09	94.4212	2.884	29.948
03/09/04	16:42:44	100.0150	2.914	29.948
03/09/04	16:48:40	105.9403	2.928	29.950
03/09/04	16:54:57	112.2167	2.930	29.948
03/09/04	17:01:35	118.8650	2.972	29.950
03/09/04	17:08:38	125.9072	2.985	29.948
03/09/04	17:16:06	133.3667	3.007	29.945
03/09/04	17:24:00	141.2682	2.989	29.945
03/09/04	17:32:22	149.6378	3.038	29.948
03/09/04	17:41:14	158.5035	3.040	29.945
03/09/04	17:50:37	167.8945	3.057	29.941
03/09/04	18:00:34	177.8420	3.073	29.941
03/09/04	18:10:34	187.8420	3.079	29.948
03/09/04	18:20:34	197.8420	3.071	29.943
03/09/04	18:30:34	207.8420	3.117	29.950
03/09/04				
	18:40:34	217.8420	3.068	29.952
03/09/04		227 0420	3.117	29.952
	18:50:34	221.0420		
03/09/04	18:50:34	227.8420		20 05/
03/09/04	19:00:34	237.8420	3.146	29.954
03/09/04 03/09/04				29.954 29.956
03/09/04	19:00:34 19:10:34	237.8420 247.8420	3.146 3.139	29.956
03/09/04 03/09/04	19:00:34 19:10:34 19:20:34	237.8420 247.8420 257.8420	3.146 3.139 3.159	29.956 29.954
03/09/04 03/09/04 03/09/04	19:00:34 19:10:34 19:20:34 19:30:34	237.8420 247.8420 257.8420 267.8420	3.146 3.139 3.159 3.187	29.956
03/09/04 03/09/04	19:00:34 19:10:34 19:20:34 19:30:34	237.8420 247.8420 257.8420	3.146 3.139 3.159 3.187	29.956 29.954 29.962
03/09/04 03/09/04 03/09/04 03/09/04	19:00:34 19:10:34 19:20:34 19:30:34 19:40:34	237.8420 247.8420 257.8420 267.8420 277.8420	3.146 3.139 3.159 3.187 3.172	29.956 29.954 29.962 29.962
03/09/04 03/09/04 03/09/04 03/09/04 03/09/04	19:00:34 19:10:34 19:20:34 19:30:34 19:40:34 19:50:34	237.8420 247.8420 257.8420 267.8420 277.8420 287.8420	3.146 3.139 3.159 3.187 3.172 3.194	29.956 29.954 29.962 29.962 29.966
03/09/04 03/09/04 03/09/04 03/09/04 03/09/04	19:00:34 19:10:34 19:20:34 19:30:34 19:40:34	237.8420 247.8420 257.8420 267.8420 277.8420	3.146 3.139 3.159 3.187 3.172	29.956 29.954 29.962 29.962
03/09/04 03/09/04 03/09/04 03/09/04 03/09/04	19:00:34 19:10:34 19:20:34 19:30:34 19:40:34 19:50:34 20:00:34	237.8420 247.8420 257.8420 267.8420 277.8420 287.8420 297.8420	3.146 3.139 3.159 3.187 3.172 3.194 3.203	29.956 29.954 29.962 29.962 29.966 29.966
03/09/04 03/09/04 03/09/04 03/09/04 03/09/04 03/09/04	19:00:34 19:10:34 19:20:34 19:30:34 19:40:34 19:50:34 20:00:34 20:10:34	237.8420 247.8420 257.8420 267.8420 277.8420 287.8420 297.8420 307.8420	3.146 3.139 3.159 3.187 3.172 3.194 3.203 3.205	29.956 29.954 29.962 29.962 29.966 29.966 29.974
03/09/04 03/09/04 03/09/04 03/09/04 03/09/04 03/09/04 03/09/04	19:00:34 19:10:34 19:20:34 19:30:34 19:40:34 19:50:34 20:00:34 20:10:34 20:20:34	237.8420 247.8420 257.8420 267.8420 277.8420 287.8420 297.8420	3.146 3.139 3.159 3.187 3.172 3.194 3.203 3.205 3.196	29.956 29.954 29.962 29.962 29.966 29.966 29.974 29.976
03/09/04 03/09/04 03/09/04 03/09/04 03/09/04 03/09/04 03/09/04	19:00:34 19:10:34 19:20:34 19:30:34 19:40:34 19:50:34 20:00:34 20:10:34 20:20:34	237.8420 247.8420 257.8420 267.8420 277.8420 287.8420 297.8420 307.8420 317.8420	3.146 3.139 3.159 3.187 3.172 3.194 3.203 3.205 3.196	29.956 29.954 29.962 29.962 29.966 29.966 29.974 29.976
03/09/04 03/09/04 03/09/04 03/09/04 03/09/04 03/09/04 03/09/04 03/09/04	19:00:34 19:10:34 19:20:34 19:30:34 19:40:34 19:50:34 20:00:34 20:10:34 20:20:34 20:30:34	237.8420 247.8420 257.8420 267.8420 277.8420 287.8420 297.8420 307.8420 317.8420 327.8420	3.146 3.139 3.159 3.187 3.172 3.194 3.203 3.205 3.196 3.174	29.956 29.954 29.962 29.962 29.966 29.974 29.976 29.980
03/09/04 03/09/04 03/09/04 03/09/04 03/09/04 03/09/04 03/09/04 03/09/04 03/09/04	19:00:34 19:10:34 19:20:34 19:30:34 19:40:34 20:00:34 20:10:34 20:20:34 20:20:34 20:30:34	237.8420 247.8420 257.8420 267.8420 277.8420 287.8420 297.8420 307.8420 317.8420 327.8420 337.8420	3.146 3.139 3.159 3.187 3.172 3.194 3.203 3.205 3.196 3.174 3.209	29.956 29.954 29.962 29.962 29.966 29.976 29.976 29.980 29.980
03/09/04 03/09/04 03/09/04 03/09/04 03/09/04 03/09/04 03/09/04 03/09/04	19:00:34 19:10:34 19:20:34 19:30:34 19:40:34 19:50:34 20:00:34 20:10:34 20:20:34 20:30:34	237.8420 247.8420 257.8420 267.8420 277.8420 287.8420 297.8420 307.8420 317.8420 327.8420	3.146 3.139 3.159 3.187 3.172 3.194 3.203 3.205 3.196 3.174	29.956 29.954 29.962 29.962 29.966 29.974 29.976 29.980
03/09/04 03/09/04 03/09/04 03/09/04 03/09/04 03/09/04 03/09/04 03/09/04 03/09/04 03/09/04	19:00:34 19:10:34 19:20:34 19:30:34 19:40:34 20:00:34 20:10:34 20:20:34 20:30:34 20:40:34 20:50:34	237.8420 247.8420 257.8420 267.8420 277.8420 287.8420 307.8420 317.8420 327.8420 337.8420 347.8420	3.146 3.139 3.159 3.187 3.172 3.194 3.203 3.205 3.196 3.174 3.209 3.207	29.956 29.954 29.962 29.966 29.966 29.974 29.976 29.980 29.980 29.986
03/09/04 03/09/04 03/09/04 03/09/04 03/09/04 03/09/04 03/09/04 03/09/04 03/09/04 03/09/04 03/09/04	19:00:34 19:10:34 19:20:34 19:30:34 19:40:34 20:00:34 20:10:34 20:20:34 20:30:34 20:40:34 20:50:34 20:50:34	237.8420 247.8420 257.8420 267.8420 277.8420 287.8420 307.8420 317.8420 327.8420 337.8420 347.8420 357.8420	3.146 3.139 3.159 3.187 3.172 3.194 3.203 3.205 3.196 3.174 3.209 3.207 3.223	29.956 29.954 29.962 29.966 29.966 29.974 29.976 29.980 29.980 29.986 29.986
03/09/04 03/09/04 03/09/04 03/09/04 03/09/04 03/09/04 03/09/04 03/09/04 03/09/04 03/09/04 03/09/04 03/09/04	19:00:34 19:10:34 19:20:34 19:30:34 19:40:34 20:00:34 20:10:34 20:20:34 20:30:34 20:40:34 20:50:34 21:10:34	237.8420 247.8420 257.8420 267.8420 277.8420 287.8420 307.8420 317.8420 327.8420 337.8420 347.8420 357.8420 367.8420	3.146 3.139 3.159 3.187 3.172 3.194 3.203 3.205 3.196 3.174 3.209 3.207 3.223 3.192	29.956 29.954 29.962 29.966 29.966 29.974 29.976 29.980 29.980 29.986 29.986
03/09/04 03/09/04 03/09/04 03/09/04 03/09/04 03/09/04 03/09/04 03/09/04 03/09/04 03/09/04 03/09/04 03/09/04	19:00:34 19:10:34 19:20:34 19:30:34 19:40:34 20:00:34 20:10:34 20:20:34 20:30:34 20:40:34 20:50:34 21:10:34	237.8420 247.8420 257.8420 267.8420 277.8420 287.8420 307.8420 317.8420 327.8420 337.8420 347.8420 357.8420 367.8420	3.146 3.139 3.159 3.187 3.172 3.194 3.203 3.205 3.196 3.174 3.209 3.207 3.223 3.192	29.956 29.954 29.962 29.966 29.966 29.974 29.976 29.980 29.980 29.986 29.986
03/09/04 03/09/04 03/09/04 03/09/04 03/09/04 03/09/04 03/09/04 03/09/04 03/09/04 03/09/04 03/09/04 03/09/04 03/09/04	19:00:34 19:10:34 19:20:34 19:30:34 19:40:34 20:00:34 20:10:34 20:20:34 20:30:34 20:40:34 20:50:34 21:10:34 21:20:34	237.8420 247.8420 257.8420 267.8420 277.8420 287.8420 307.8420 317.8420 327.8420 337.8420 347.8420 357.8420 367.8420 377.8420	3.146 3.139 3.159 3.187 3.172 3.194 3.203 3.205 3.196 3.174 3.209 3.207 3.223 3.192 3.220	29.956 29.954 29.962 29.966 29.966 29.974 29.976 29.980 29.980 29.986 29.986 29.986
03/09/04 03/09/04 03/09/04 03/09/04 03/09/04 03/09/04 03/09/04 03/09/04 03/09/04 03/09/04 03/09/04 03/09/04 03/09/04 03/09/04	19:00:34 19:10:34 19:20:34 19:30:34 19:40:34 20:00:34 20:10:34 20:20:34 20:30:34 20:40:34 20:50:34 21:10:34 21:20:34 21:30:34	237.8420 247.8420 257.8420 267.8420 277.8420 287.8420 307.8420 317.8420 327.8420 337.8420 347.8420 357.8420 367.8420 367.8420 377.8420 377.8420	3.146 3.139 3.159 3.187 3.172 3.194 3.203 3.205 3.196 3.174 3.209 3.207 3.223 3.192 3.220 3.209	29.956 29.954 29.962 29.966 29.966 29.974 29.976 29.980 29.980 29.986 29.986 29.986 29.986
03/09/04 03/09/04 03/09/04 03/09/04 03/09/04 03/09/04 03/09/04 03/09/04 03/09/04 03/09/04 03/09/04 03/09/04 03/09/04	19:00:34 19:10:34 19:20:34 19:30:34 19:40:34 20:00:34 20:10:34 20:20:34 20:30:34 20:40:34 20:50:34 21:10:34 21:20:34	237.8420 247.8420 257.8420 267.8420 277.8420 287.8420 307.8420 317.8420 327.8420 337.8420 347.8420 357.8420 367.8420 377.8420	3.146 3.139 3.159 3.187 3.172 3.194 3.203 3.205 3.196 3.174 3.209 3.207 3.223 3.192 3.220	29.956 29.954 29.962 29.966 29.966 29.974 29.976 29.980 29.980 29.986 29.986 29.986

03/09/04	21:50:34	407.8420	3.227	30.000	
03/09/04	22:00:34	417.8420	3.240	30.000	
03/09/04	22:10:34	427.8420	3.227	30.002	
03/09/04	22:20:34	437.8420	3.251	30.002	
03/09/04	22:30:34	447.8420	3.260	30.005	
03/09/04 03/09/04	22:40:34 22:50:34	457.8420	3.247	30.009	
09/04	23:00:34	467.8420 477.8420	3.260 3.251	30.007 30.011	
03/09/04	23:10:34	487.8420	3.240	30.011	
03/09/04	23:20:34	497.8420	3.223	30.011	
03/09/04	23:30:34	507.8420	3.260	30.013	
03/09/04	23:40:34	517.8420	3.253	30.011	
03/09/04	23:50:34	527.8420	3.260	30.009	
03/10/04 03/10/04	00:00:34 00:10:34	537.8420 547.8420	3.245 3.275	30.009	
03/10/04	00:20:34	557.8420	3.275	30.007 30.002	
03/10/04	00:30:34	567.8420	3.269	30.002	
03/10/04	00:40:34	577.8420	3.275	29.998	
03/10/04	00:50:34	587.8420	3.282	29.998	
03/10/04	01:00:34	597.8420	3.264	29.998	
03/10/04	01:10:34	607.8420	3.271	29.996	
03/10/04 03/10/04	01:20:34	617.8420	3.286	29.994	
03/10/04	01:30:34 01:40:34	627.8420 637.8420	3.280 3.280	29.994 29.994	
03/10/04	01:50:34	647.8420	3.280	29.992	
03/10/04	02:00:34	657.8420	3.278	29.992	
03/10/04	02:10:34	667.8420	3.271	29.990	
03/10/04	02:20:34	677.8420	3.297	29.990	
03/10/04	02:30:34	687.8420	3.280	29.988	
03/10/04	02:40:34	697.8420	3.234	29.986	
03/10/04 03/10/04	02:50:34 03:00:34	707.8420 717.8420	3.262 3.267	29.986	
03/10/04	03:10:34	727.8420	3.280	29.986 29.984	
03/10/04	03:20:34	737.8420	3.271	29.980	
03/10/04	03:30:34	747.8420	3.242	29.984	
r^ '10/04	03:40:34	757.8420	3.267	29.980	
10/04	03:50:34	767.8420	3.275	29.980	
03/10/04 03/10/04	04:00:34	777.8420	3.284	29.984	
03/10/04	04:10:34 04:20:34	787.8420 797.8420	3.271 3.282	29.986 29.988	
03/10/04	04:30:34	807.8420	3.275	29.988	
03/10/04	04:40:34	817.8420	3.251	30.005	
03/10/04	04:50:34	827.8420	3.273	30.015	
03/10/04	05:00:34	837.8420	3.282	30.013	
03/10/04 03/10/04	05:10:34	847.8420	3.284	30.021	
03/10/04	05:20:34 05:30:34	857.8420 867.8420	3.273 3.256	30.021	
03/10/04	05:40:34	877.8420	3.258	30.023 30.025	
03/10/04	05:50:34	887.8420	3.247	30.029	
03/10/04	06:00:34	897.8420	3.249	30.027	
03/10/04	06:10:34	907.8420	3.260	30.025	
03/10/04	06:20:34	917.8420	3.251	30.031	
03/10/04 03/10/04	06:30:34 06:40:34	927.8420 937.8420	3.262	30.033	
03/10/04	06:50:34	947.8420	3.262 3.249	30.041 30.045	
03/10/04	07:00:34	957.8420	3.212	30.051	
03/10/04	07:10:34	967.8420	3.234	30.049	
03/10/04	07:20:34	977.8420	3.229	30.057	
03/10/04	07:30:34	987.8420	3.242	30.064	
03/10/04 03/10/04	07:40:34	997.8420	3.225	30.068	
03/10/04	07:50:34 08:00:34	1007.8420 1017.8420	3.242 3.249	30.074 30.078	
03/10/04	08:10:34	1017.8420	3.249	30.078	
03/10/04	08:20:34	1037.8420	3.236	30.086	
ቦና 10/04	08:30:34	1047.8420	3.291	30.092	
10/04	08:40:34	1057.8420	3.251	30.094	
03/10/04	08:50:34	1067.8420	3.264	30.100	
03/10/04 03/10/04	09:00:34 09:10:34	1077.8420 1087.8420	3.262	30.102	
03/10/04	09:10:34	1087.8420	3.260 3.267	30.104 30.106	
-	-		2.20,	30.100	

03/10/04	09:30:34	1107.8420	3.256	30.110
03/10/04	09:40:34	1117.8420	3.260	30.114
03/10/04	09:50:34	1127.8420	3.286	30.114
03/10/04	10:00:34	1137.8420	3.264	30.119
03/10/04	10:10:34	1147.8420	3.264	30.121
03/10/04	10:20:34	1157.8420	3.256	30.121
03/10/04	10:30:34	1167.8420	3.249	30.127
03/10/04	10:40:34	1177.8420	3.231	30.127
03/10/04	10:50:34	1187.8420	3.253	30.131
03/10/04	11:00:34	1197.8420	3.280	30.127
03/10/04	11:10:34	1207.8420	3.249	30.131
03/10/04	11:20:34	1217.8420	3.271	30.131
03/10/04	11:30:34	1227.8420	3.269	30.133
03/10/04	11:40:34	1237.8420	3.227	30.133
03/10/04	11:50:34	1247.8420	3.260	30.133
03/10/04	12:00:34	1257.8420	3.249	30.133
03/10/04	12:10:34	1267.8420	3.267	30.129
03/10/04	12:20:34	1277.8420	3.280	30.129
03/10/04	12:30:34	1287.8420	3.249	30.127
03/10/04	12:40:34	1297.8420	3.262	30.121
03/10/04	12:50:34	1307.8420	3.293	30.121
03/10/04	13:00:34	1317.8420	3.227	30.114
03/10/04	13:10:34	1327.8420	3.247	30.112
03/10/04	13:20:34	1337.8420	3.264	30.112
03/10/04	13:30:34	1347.8420	3.253	30.108
03/10/04	13:40:34	1357.8420	3.264	30.104
03/10/04	13:50:34	1367.8420	3.282	30.108
03/10/04	14:00:34	1377.8420	3.282	30.110
03/10/04	14:10:34	1387.8420	3.278	30.104
03/10/04	14:20:34	1397.8420	3.231	30.104
03/10/04	14:30:34	1407.8420	3.291	30.100
03/10/04	14:40:34	1417.8420	3.253	30.151
03/10/04	14:50:34	1427.8420	3.262	30.102

W-102

Area B-3 W102

10 T= 114.6 (23)
2.3
T= 1146 918/4

T = 153 Pt3pd/14

1.13

SE2000 Environme Logger 13-Mar 14:15

	Unit#	718	Test	5
Setups:	INPUT	1		
Type Mode I.D.	Level TOC	(F)		
Reference PSI SG	0 at	Ref.	8.767	
Linearity Scale Offset	0.124 factor -0.261	19.748		
Delay	mSEC	50		
Step	3	9-Mar	13:40:15	
Elapsed	Time	INPUT	1	
	0.0083 0.0166 0.025 0.0333 0.0416 0.05 0.0583 0.0666 0.075 0.0833 0.0916 0.1 0.1083 0.1166 0.125 0.1333 0.1416 0.15 0.1583 0.1666 0.175 0.1833	-0.075 -0.075 -0.075 -0.075 -0.075 -0.075 -0.075 -0.068 -0.068 -0.068 -0.068 -0.068 -0.068 -0.068 -0.068 -0.068 -0.068 -0.068 -0.068 -0.068 -0.068		0 0 0 0 0 0 0 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007
	0.1916 0.2 0.2083 0.2166	-0.068 -0.068 -0.068		0.007 0.007 0.007 0.007

0.2	25 -0.068	0.007	
0.23	33 -0.068	0.007	
0.24	16 -0.068	0.007	
0.3	25 -0.068	0.007	
0.25	83 -0.068	0.007	
0.26	-0.068	0.007	
0.2	75 -0.068	0.007	
0.283	33 -0.068	0.007	
0.29	16 -0.068	0.007	
0	0.068	0.007	
0.308	-0.068	0.007	
0.316	-0.068	0.007	
0.32	25 -0.068	0.007	
0.333	33 -0.068	0.007	
0.3	35 -0.068	0.007	
0.366	-0.068	0.007	
0.383	-0.068	0.007	
0	.4 -0.068	0.007	
0.416	-0.062	0.013	
0.433	33 -0.068	0.007	
0.4		0.007	
0.466	-0.068	0.007	
0.483	33 -0.062	0.013	
0.	.5 -0.068	0.007	
0.516	66 -0.068	0.007	
0.533	33 -0.068	0.007	
0.5	55 -0.068	0.007	,
0.566		0.007	
0.583	33 -0.062	0.013	
0.		0.007	
0.616		0.007	
0.633		0.013	
0.6		0.007	
0.666		0.007	
0.683		0.007	
0.		0.013	
0.716		0.007	
0.733		0.013	
0.7		0.013	
0.766		0.013	
0.783		0.013	
0.		0.013	
0.816		0.013	
0.833		0.013	
0.8		0.013	
0.866		0.013	
0.883		0.013	
0.9		0.013	
0.916		0.013	
0.933		0.013	
0.99		0.013	
0.966	6 -0.062	0.013	

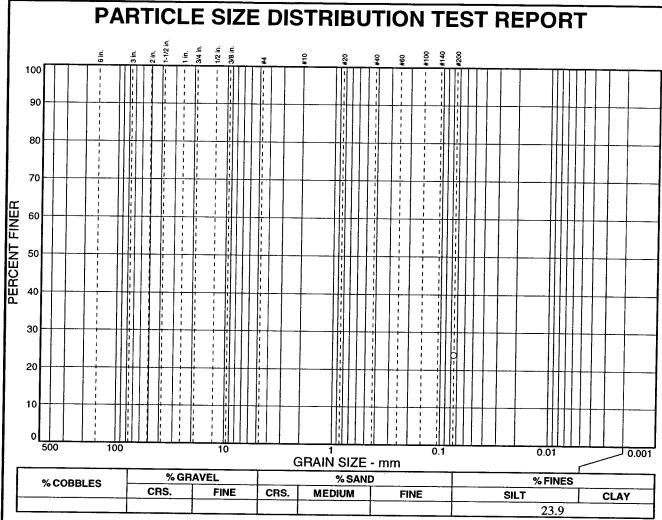
0.9833	-0.062	0.013	
1	-0.062	0.013	
1.2	-0.062	0.013	
1.4	-0.056	0.019	
1.6	-0.006	0.069	
1.8	0.031	0.106	
2	0.05	0.125	
2.2	0.068	0.143	
2.4	0.075	0.15	
2.6	0.093	0.168	
2.8	0.1	0.175	
3	0.106	0.173	
3.2	0.112	0.187	
3.4	0.112	0.167	
3.6	0.115	0.193	
3.8	0.123		
3.6 4		0.206	
	0.131	0.206	
4.2	0.137	0.212	
4.4	0.137	0.212	
4.6	0.15	0.225	
4.8	0.15	0.225	
5	0.15	0.225	
5.2	0.15	0.225	•
5.4	0.156	0.231	
5.6	0.156	0.231	
5.8	0.156	0.231	
6	0.162	0.237	
6.2	0.162	0.237	
6.4	0.168	0.243	
6.6	0.168	0.243	
6.8	0.168	0.243	
7	0.168	0.243	
7.2	0.175	0.25	
7.4	0.175	0.25	
7.6	0.175	0.25	
7.8	0.175	0.25	
8	0.181	0.256	
8.2	0.181	0.256	
8.4	0.181	0.256	
8.6	0.181	0.256	
8.8	0.181	0.256	
9	0.187	0.262	
9.2	0.187	0.262	
9.4	0.187	0.262	
9.6	0.187	0.262	
9.8	0.187	0.262	
10	0.194	0.269	
12	0.2	0.275	
14	0.206	0.281	
16	0.212	0.287	
18	0.219	0.294	
20	0.225	0.3	
		0.0	

	22	0.231	0.306	
	24	0.237	0.312	
	26	0.237	0.312	
	28	0.237	0.312	
	30	0.244	0.319	
	32	0.244	0.319	
	34	0.25	0.325	
	36	0.25	0.325	
	38	0.256	0.331	
	40	0.25	0.325	
	42	0.256	0.331	
	44	0.256	0.331	
	46	0.256	0.331	
	48	0.256	0.331	
	50	0.256	0.331	
	52	0.256	0.331	
	54	0.262	0.337	
	56	0.262	0.337	
	58	0.262	0.337	
	60	0.262	0.337	
	62	0.262	0.337	
	64	0.269	0.344	
	66	0.269	0.344	
	68	0.269	0.344	
	70	0.269	0.344	
	72	0.269	0.344	
	74	0.269	0.344	
	76	0.269	0.344	
	78	0.275	0.35	
	80	0.275	0.35	
	82	0.275	0.35	
	84	0.275	0.35	
	86	0.275	0.35	•
	88	0.275	0.35	
	90	0.275	0.35	
	92	0.275	0.35	
	94	0.275	0.35	
	96	0.281	0.356	
	98	0.281	0.356	
,	100	0.281	0.356	
	105	0.281	0.356	
	110	0.281	0.356	
	115	0.281	0.356	
	120	0.287	0.362	
	125	0.287	0.362	
	130	0.244	0.319	
	135	0.262	0.337	
	140	0.312	0.387	
	145	0.306	0.381	
	150	0.3	0.375	
	155	0.3	0.375	
	160	0.3	0.375	

165	0.3	0.375
170	0.294	0.369
		0.375
175	0.3	
180	0.3	0.375
185	0.294	0.369
190	0.294	0.369
195	0.3	0.375
200	0.3	0.375
205	0.3	0.375
210	0.3	0.375
215	0.3	0.375
220	0.3	0.375
225	0.3	0.375
230	0.3	0.375
235	0.3	0.375
240	0.3	0.375
245	0.3	0.375
250	0.325	0.373
		0.425
255	0.35	
260	0.356	0.431
265	0.356	0.431
270	0.356	0.431
275	0.356	0.431
280	0.356	0.431
285	0.363	0.438
290	0.356	0.431
295	0.363	0.438
300	0.363	0.438
305	0.363	0.438
310	0.363	0.438
315	0.363	0.438
320	0.369	0.444
325	0.363	0.438
330	0.363	0.438
335	0.363	0.438
340	0.363	0.438
345	0.363	0.438
350	0.363	0.438
355	0.363	0.438
360	0.363	0.438
365	0.363	0.438
370	0.363	0.438
375	0.363	0.438
		0.444
380	0.369	
385	0.369	0.444
390	0.369	0.444
395	0.369	0.444
400	0.369	0.444
405	0.369	0.444
410	0.369	0.444
415	0.369	0.444
420	0.369	0.444

425	0.369	0.444
430	0.369	0.444
435	0.369	0.444
440	0.369	0.444
445	0.369	0.444
450	0.369	0.444
455	0.369	0.444
460	0.369	0.444
465	0.369	0.444
470	0.369	0.444
475	0.369	0.444
480	0.369	0.444
485	0.369	0.444
490	0.369	0.444
495	0.369	0.444
500	0.369	0.444
505	0.369	0.444
510	0.369	0.444
515	0.369	0.444
520	0.369	0.444
525	0.369	0.444
530	0.369	0.444
535	0.369	0.444
540	0.369	0.444
545	0.369	0.444
550	0.369	0.444
555	0.375	0.45
560	0.375	0.45
565	0.375	0.45
570	0.369	0.444
575	0.375	0.45
580	0.369	0.444
585	0.369	0.444
590	0.369	0.444
595	0.369	0.444
600	0.369	0.444
605	0.369	0.444
610	0.369	0.444
615	0.369	0.444
620	0.369	0.444
625	0.363	0.438
630 635	0.363	0.438
635	0.363	0.438
640 645	0.363	0.438
645	0.363	0.438
650 655	0.363	0.438
655 660	0.363	0.438
660 665	0.363	0.438
665 670	0.363	0.438
670 675	0.356	0.431
675 680	0.363	0.438
000	0.356	0.431

•	685	0.363	0.438		
	690	0.356	0.431		
	695	0.356	0.431		
	700	0.356	0.431		
	705	0.356	0.431		
	710	0.356	0.431		
	715	0.356	0.431		
	720	0.356	0.431		
	725	0.356	0.431		
	730	0.35	0.425		
	735	0.35	0.425		
	740	0.35	0.425		
	745	0.35	0.425		
	750	0.35	0.425		
	755	0.344	0.419		
	760	0.344	0.419		
	765	0.344	0.419		
	770	0.344	0.419		
	775	0.344	0.419		
	780	0.344	0.419		
	785	0.344	0.419		
	790	0.344	0.419		
	795	0.344	0.419		
	800	0.337	0.412		
	805	0.337	0.412		
	810	0.337	0.412		
	815	0.337	0.412		
	820	0.337	0.412		
	825	0.337	0.412		
	830	0.337	0.412		
	835	0.337	0.412		
	840	0.337	0.412		
	845	0.337	0.412		
	850	0.331	0.406		
	855	0.337	0.412		
	860	0.331	0.406		
	865	0.331	0.406		
	870	0.331	0.406		
	875	0.331	0.406		
	880	0.331	0.406		
	885	0.325	0.4		
	890	0.325	0.4		
	895	0.331	0.406		
	900	0.325	0.4		
	905	0.325	0.4		
	910	0.331	0.406		
	915	0.325	0.4		
	920 925	0.325	0.4		
	925 930	0.331	0.406	•	
	930 935	0.331	0.406	•	
	935 940	0.331 0.331	0.406 0.406		
	3 4 0	U.JJ I	0.400		


	945	0.325	0.4
	950	0.325	0.4
	955	0.325	0.4
	960	0.325	0.4
	965	0.325	0.4
	970	0.325	0.4
	975	0.325	0.4
	980	0.325	0.4
	985	0.325	0.4
	990	0.325	0.4
	995	0.325	0.4
	1000	0.325	0.4
	1005	0.325	0.4
	1010	0.325	0.4
	1015	0.325	0.4
	1020	0.325	0.4
	1025	0.325	0.4
	1030	0.325	0.4
	1035	0.325	0.4
	1040	0.325	0.4
	1045	0.325	0.4
	1050	0.325	0.4
	1055	0.325	0.4
	1060	0.325	0.4
	1065 1070	0.325 0.325	0.4
	1075	0.325	0.4 0.4
	1073	0.323	0.406
•	1085	0.331	0.406
	1090	0.331	0.406
	1095	0.331	0.406
	1100	0.337	0.412
	1105	0.337	0.412
	1110	0.337	0.412
	1115	0.337	0.412
	1120	0.337	0.412
	1125	0.337	0.412
	1130	0.337	0.412
	1135	0.344	0.419
	1140	0.344	0.419
	1145	0.344	0.419
	1150	0.337	0.412
	1155	0.344	0.419
	1160	0.344	0.419
	1165	0.344	0.419
	1170	0.344	0.419
	1175	0.344	0.419
	1180	0.344	0.419
	1185	0.344	0.419
	1190	0.344	0.419
	1195	0.344	0.419
	1200	0.337	0.412

	1205	0.344	0.419	
	1210	0.35	0.425	
	1215	0.344	0.419	
	1220	0.344	0.419	
	1225	0.344	0.419	
	1230	0.344	0.419	
	1235	0.337	0.412	
	1240	0.344	0.419	
	1245	0.344	0.419	
	1250	0.344	0.419	
	1255	0.344	0.419	
	1260	0.337	0.412	
	1265	0.344	0.419	
	1270	0.337	0.412	
	1275	0.337	0.412	
	1273	0.344	0.419	
	1285	0.331	0.406	
	1290	0.344	0.419	
	1295	0.344	0.406	
	1300	0.344	0.419	
	1305	0.337	0.412	
	1310	0.337	0.412	
	1315	0.344	0.419	
	1320	0.337	0.412	
	1325	0.337	0.412	
	1330	0.337	0.412	
	1335	0.331	0.406	
	1340	0.325	0.4	
	1345	0.325	0.4	
	1350	0.331	0.406	
	1355	0.325	0.4	
	1360	0.325	0.4	
	1365	0.331	0.406	
	1370	0.331	0.406	
	1375	0.331	0.406	
	1380	0.325	0.4	
	1385	0.325	0.4	
	1390	0.325	0.4	
	1395	0.325	0.4	
	1400	0.325	0.4	
	1405	0.325	0.4	
	1410	0.325	0.4	
	1415	0.325	0.4	
	1420	0.325	0.4	
	1425	0.325	0.4	
	1430	0.323	0.394	
*	1435	0.319	0.394	
	1440	0.319	0.394	
	1-1-40	0.318	0.334	

APPENDIX E

Laboratory Testing Results

LABORATORY TESTING OF ADDITIONAL ARDAMAN SAMPLES

ERC	PE	PERC	ENT		SPI	EC.*	P	ASS?
FIN	F	FINE	ER		PERC	CENT	(x	=NO)
23		23.9	.9					
				-				
							İ	

	Soil Description]
PL= NP	Atterberg Limits	i PI= NP
D ₈₅ = D ₃₀ = C _u =	Coefficients D ₆₀ = D ₁₅ = C _c =	D ₅₀ = D ₁₀ =
USCS=	Classification AASHT	
As received mo	Remarks sisture content = 11.7%	

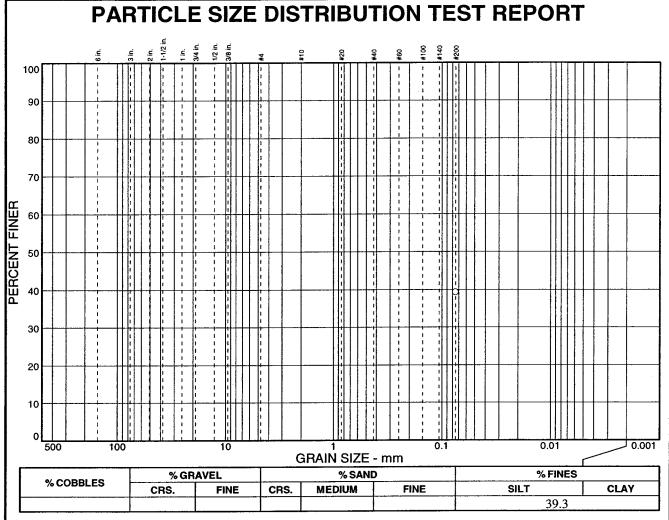
Sample No.: B1

Source of Sample:

Date: 2/19/04

Location: 4

Elev./Depth: --


Client: Aquacalma L.P.

Project: C44-Resevior

Geotechnical Engineering Laboratory

CDM Jessberger

Project No: 24752-40911

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#200	39.3		
•			

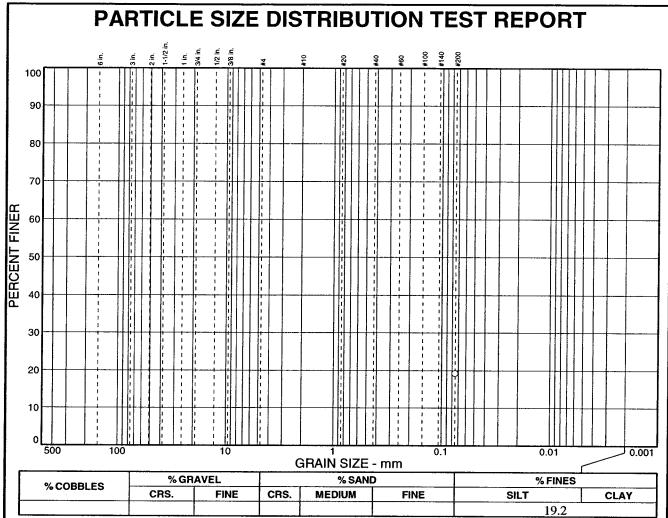
	Soil Description	<u>on</u>
PL= NP	Atterberg Limi LL= NP	i <u>ts</u> PI= NP
D ₈₅ = D ₃₀ = C _u =	Coefficients D ₆₀ = D ₁₅ = C _c =	D ₅₀ = D ₁₀ =
USCS=	Classification AASI	<u>n</u> HTO=
As received mo	Remarks oisture content = 7.39	%

Sample No.: B3

Source of Sample:

Date: 2/19/04

Elev./Depth: --


Location: 3

Client: Aquacalma L.P. Project: C44-Resevior

Geotechnical Engineering Laboratory

CDM Jessberger

Project No: 24752-40911

· · · · · · · · · · · · · · · · · · ·		
PERCENT	SPEC.*	PASS?
FINER	PERCENT	(X=NO)
19.2		
,		
	FINER 19.2	FINER PERCENT 19.2

***************************************	Soil Descriptio	<u>n</u>
PL= NP	Atterberg Limit	i <u>s</u> PI= NP
D ₈₅ = D ₃₀ = C _u =	Coefficients D ₆₀ = D ₁₅ = C _c =	D ₅₀ = D ₁₀ =
USCS=	Classification AASH	TO=
As received mo	Remarks oisture content = 13.66	%

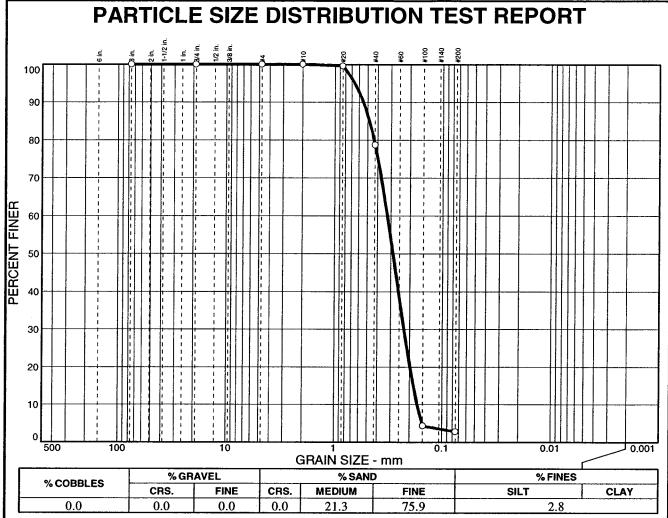
Sample No.: B3

Source of Sample:

Date: 2/19/04

Location: 5

Elev./Depth: --


CDM Jessberger

Client: Aquacalma L.P.

Project: C44-Resevior

Geotechnical Engineering Laboratory

Project No: 24752-40911

S	SIEVE	PERCENT	SPEC.*	PASS?
:	SIZE	FINER	PERCENT	(X=NO)
3,	3 in. '4 in. #4 #10 #20 #100 #200	100.0 100.0 100.0 100.0 99.6 78.7 4.3 2.8		

Poorly graded sa	Soil Description and	
PL=	Atterberg Limits	<u>•</u> Pl=
D ₈₅ = 0.481 D ₃₀ = 0.226 C _u = 1.92	Coefficients D ₆₀ = 0.325 D ₁₅ = 0.184 C _C = 0.93	D ₅₀ = 0.288 D ₁₀ = 0.169
USCS= SP	Classification AASH	ГО=
Soil classification	Remarks sture content = 20.3% n and descritpion bas al Procedure (ASTM-	ed

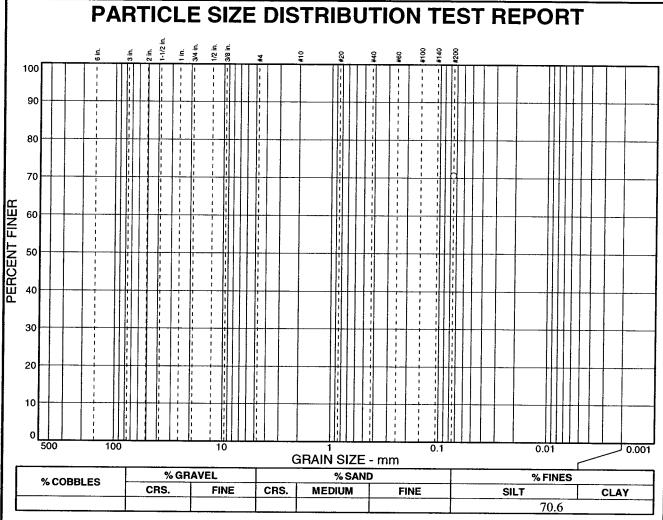
Sample No.: B3

Source of Sample:

Date: 2/19/04

Elev./Depth: --

Location: 6


Client: Aquacalma L.P.

Project: C44-Resevior

Geotechnical Engineering Laboratory

CDM Jessberger

Project No: 24752-40911

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#200	70.6		
1			

	Soil Description	<u> </u>
		-
	Atterberg Limits	
PL= 12	LL= 26	Pl= 14
5	Coefficients	_
D ₈₅ = D ₃₀ = C _u =	D ₆₀ = D ₁₅ = C _c =	D ₅₀ = D ₁₀ =
Cu=	C _c =	10
USCS=	Classification AASH	ro
0303=	ААЗП	10=
Δs received m	Remarks oisture content = 7.8%	
As received in	Disture coment = 7.8%	

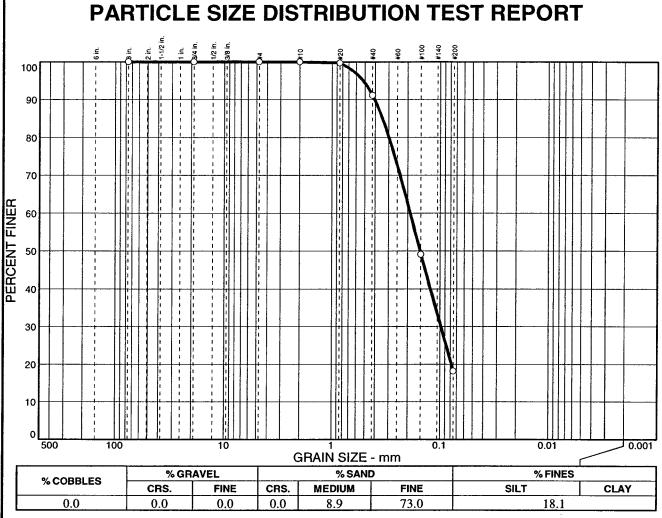
Sample No.: B5

Source of Sample:

Date: 2/19/04

Location: 3

Elev./Depth: --


CDM Jessberger

Client: Aquacalma L.P.

Project: C44-Resevior

Geotechnical Engineering Laboratory

Project No: 24752-40911

ĺ	SIEVE	PERCENT	SPEC.*	PASS?
	SIZE	FINER	PERCENT	(X=NO)
	3 in. 3/4 in. #4 #10 #20 #40 #100 #200	100.0 100.0 100.0 100.0 100.0 99.7 91.1 49.1 18.1	PERCENT	(X=NO)

	Soil Description	1
Silty sand		
PL=	Atterberg Limits	Pl=
D ₈₅ = 0.344 D ₃₀ = 0.0983 C _u =	<u>Coefficients</u> D ₆₀ = 0.189 D ₁₅ = C _c =	D ₅₀ = 0.153 D ₁₀ =
USCS= SM	Classification AASH	ΓO=
As received mois	Remarks ture content = 10.9%	,
	n and description bas al Procedure (ASTM-	

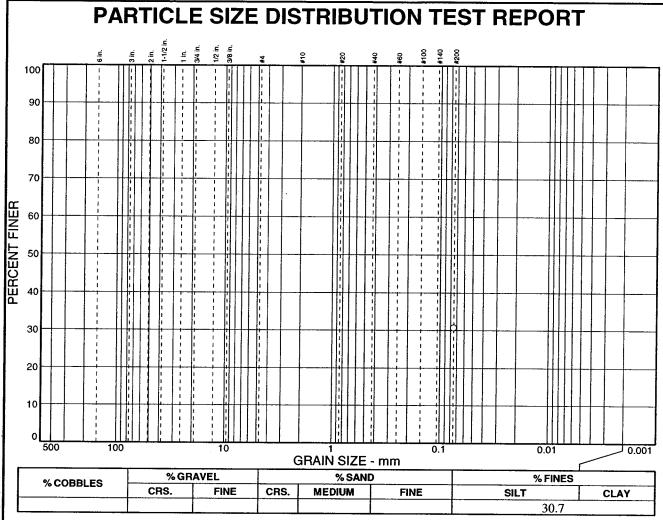
Sample No.: B6

Source of Sample:

Date: 2/19/04

Location: 2

Elev./Depth: --


Client: Aquacalma L.P.

CDM Jessberger

Project: C44-Resevior

Geotechnical Engineering Laboratory

Project No: 24752-40911

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#200	30.7		(X=100)

	Soil Description	<u>on</u>
PL= NP	Atterberg Limi LL= NP	ts Pl= NP
D ₈₅ = D ₃₀ = C _u =	Coefficients D ₆₀ = D ₁₅ = C _c =	D ₅₀ = D ₁₀ =
USCS=	Classification AASH	<u>)</u> HTO=
As received me	Remarks oisture content = 7.7%	6

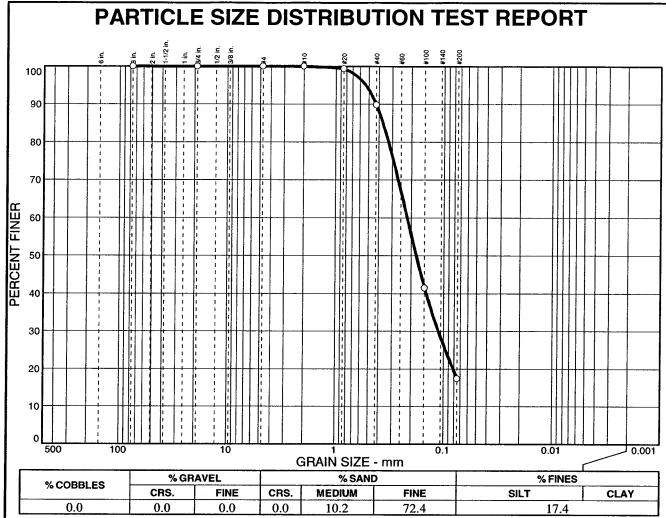
Sample No.: B6

Source of Sample:

Date: 2/19/04

Location: 4

Elev./Depth: --


CDM Jessberger

Client: Aquacalma L.P.

Project: C44-Resevior

Geotechnical Engineering Laboratory

Project No: 24752-40911

	SIEVE	PERCENT	SPEC.*	PASS?
	SIZE	FINER	PERCENT	(X≃NO)
	3 in. 3/4 in. #4 #10 #20 #40 #100 #200	100.0 100.0 100.0 100.0 99.4 89.8 41.5 17.4	PERCENT	(X=NO)
l				

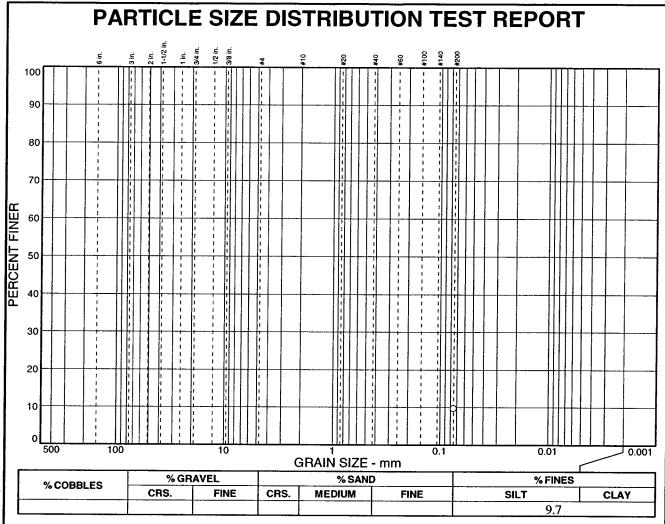
10.2 72.4		17.4
Silty sand	Soil Description	
PL=	Atterberg Limits	Pl=
D ₈₅ = 0.369 D ₃₀ = 0.112 C _u =	Coefficients D ₆₀ = 0.218 D ₁₅ = C _c =	D ₅₀ = 0.180 D ₁₀ =
USCS= SM	Classification AASHT	*O=
Soil classification	Remarks ture content = 9.8% and descritpion base al Procedure (ASTM-	

Sample No.: B8

Source of Sample:

Date: 2/19/04

Location: 2


Elev./Depth: --

CDM Jessberger

Client: Aquacalma L.P. Project: C44-Resevior

Geotechnical Engineering Laboratory

Project No: 24752-40911

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#200	9.7		
			•

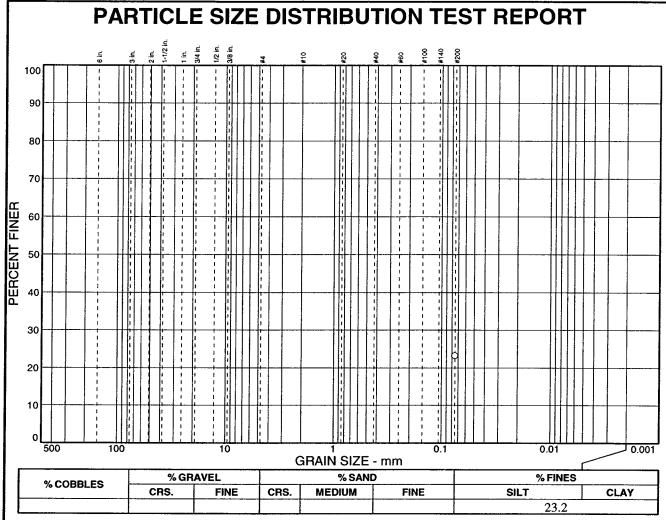
	Soil Description	
PL= NP	Atterberg Limits	PI= NP
D ₈₅ = D ₃₀ = C _u =	Coefficients D60= D15= C _C =	D ₅₀ = D ₁₀ =
USCS=	Classification AASHT	O=
As received me	Remarks oisture content = 9.8%	

Sample No.: B9

Source of Sample:

Date: 2/19/04

Location: 1 Elev./Depth: --


CDM Jessberger

Client: Aquacalma L.P.

Project: C44-Resevior

Geotechnical Engineering Laboratory

Project No: 24752-40911

SIE	VE	PERCENT	SPEC.*	PASS?
SI	ZE	FINER	PERCENT	(X=NO)
#20	00	23.2		
1				
1				
1				
1				
1				
*				

	Soil Description	<u>on</u>
PL= NP	Atterberg Limi LL= NP	<u>ts</u> PI= NP
D ₈₅ = D ₃₀ = C _u =	Coefficients D ₆₀ = D ₁₅ = C _c =	D ₅₀ = D ₁₀ =
USCS=	Classification AASH	<u>)</u> HTO=
Remarks As received moisture content = 19.0%		

Sample No.: B9

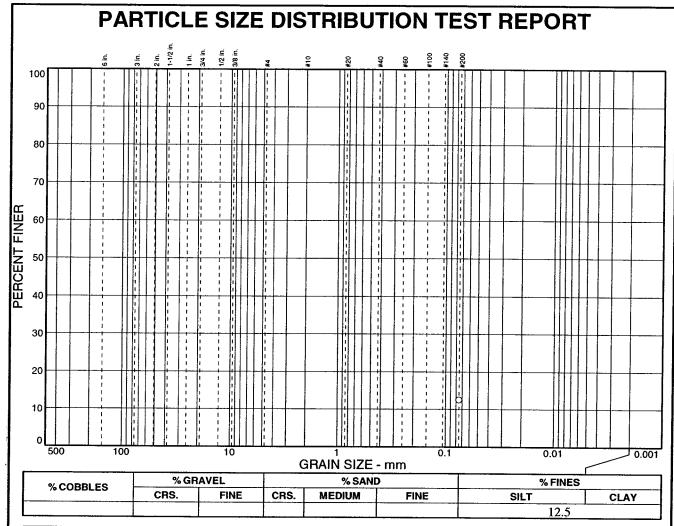
Source of Sample:

Date: 2/19/04

Location: 3

Elev./Depth: --

"".....".


Client: Aquacalma L.P.

Project: C44-Resevior

Geotechnical Engineering Laboratory

CDM Jessberger

Project No: 24752-40911

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#200	12.5		
L			

	Soil Description	<u>on</u>
PL= NP	Atterberg Limi	its PI= NP
D ₈₅ = D ₃₀ = C _u =	Coefficients D ₆₀ = D ₁₅ = C _c =	D ₅₀ = D ₁₀ =
USCS=	<u>Classification</u> AASI	<u>1</u> HTO=
As received mo	Remarks oisture content = 13.7	1%

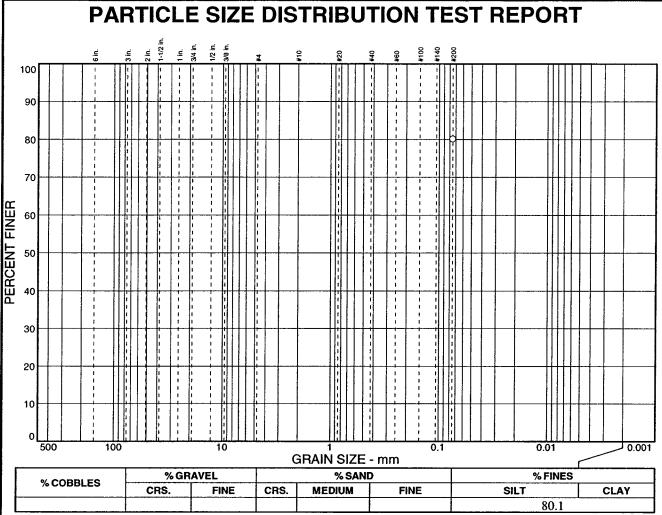
Sample No.: B9

Source of Sample:

Date: 2/19/04

Location: 5

Elev./Depth: --


CDM Jessberger

Client: Aquacalma L.P.

Project: C44-Resevior

Geotechnical Engineering Laboratory

Project No: 24752-40911

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#200	80.1		
1			
1			
			*
* (=====			

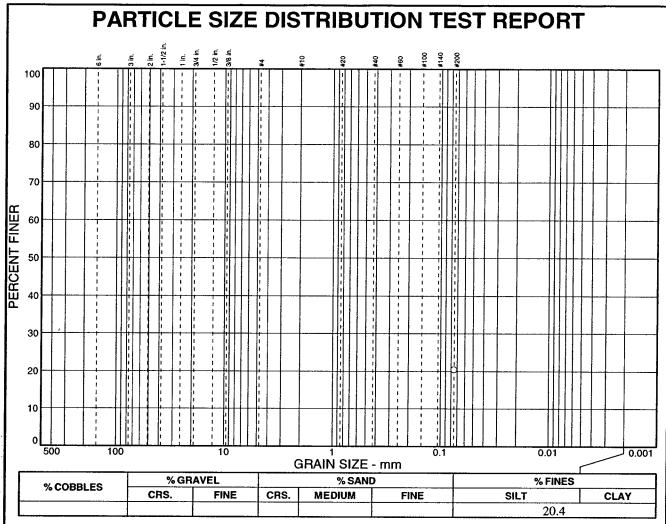
	Soil Description	<u>on</u>
PL= NP	Atterberg Limi LL= NP	
PL= NP	LL= NP	Pl= NP
D ₈₅ = D ₃₀ = C _u =	Coefficients D ₆₀ = D ₁₅ = C _c =	D ₅₀ = D ₁₀ =
USCS=	Classification AASH	<u>!</u> HTO=
As received mo	Remarks isture content = 12.7	%

Sample No.: B11

Source of Sample:

Date: 2/19/04

Location: 7


Elev./Depth: --

CDM Jessberger

Client: Aquacalma L.P. Project: C44-Resevior

Geotechnical Engineering Laboratory

Project No: 24752-40911

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#200	20.4		
			-

	Soil Descriptio	<u>n</u>
PL= NP	Atterberg Limit	<u>s</u> Pl= NP
D ₈₅ = D ₃₀ = C _u =	Coefficients D60= D15= Cc=	D ₅₀ = D ₁₀ =
USCS=	Classification AASH	TO=
Remarks As received moisture content = 5.0%		

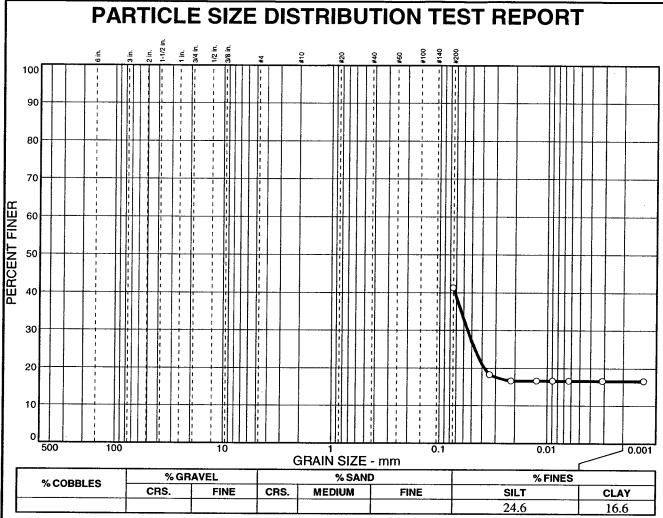
Sample No.: B13

Source of Sample:

Date: 2/19/04

Location: 1

Elev./Depth: --


CDM Jessberger

Client: Aquacalma L.P.

Project: C44-Resevior

Geotechnical Engineering Laboratory

Project No: 24752-40911

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X≈NO)
#200	41.2		
1			
1			

* (no specification provided)

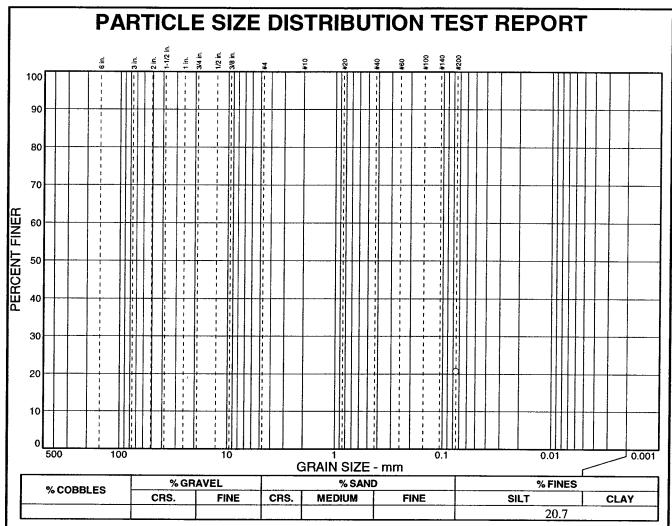
Sample No.: B13

Source of Sample:

Date:

Location: 4

Elev./Depth: --


CDM Jessberger

Client: Aquacalma L.P.

Project: C44-Resevior

Geotechnical Engineering Laboratory

Project No: 24752-40911

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#200	20.7		
* (no spe	cification provided	· d)	

	Soil Description	<u>on</u>
PL= NP	Atterberg Limit	<u>ts</u> Pl≕ NP
D ₈₅ = D ₃₀ = C _u =	Coefficients D60= D15= Cc=	D ₅₀ = D ₁₀ =
USCS=	Classification AASH	i HTO=
Remarks As received moisture content = 13.7%		

Sample No.: B16

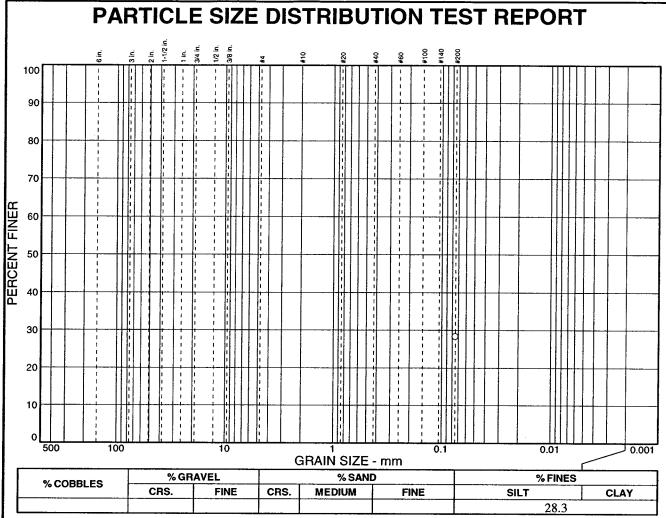
Source of Sample:

Date: 2/19/04

Location: 3

Elev./Depth: --

CDM Jessberger


Client: Aquacalma L.P.

....

Project: C44-Resevior

Geotechnical Engineering Laboratory

Project No: 24752-40911

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#200	28.3		
			•
*		ĺ	

PL= NP	· · · -	Soil Description	<u>on</u>
Description Coefficients Description			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PL= NP	Atterberg Limi LL= NP	
USCS= AASHTO=	D ₈₅ = D ₃₀ = C _u =		D ₅₀ = D ₁₀ =
	USCS=		
Remarks As received moisture content = 12.2%	As received mo	Remarks oisture content = 12.2	%

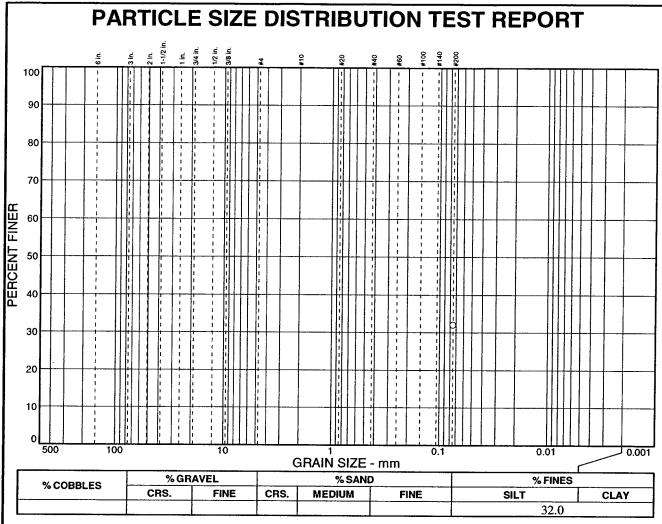
Sample No.: B16

Source of Sample:

Date: 2/19/04

Location: 4

Elev./Depth: --


CDM Jessberger

Client: Aquacalma L.P.

Project: C44-Resevior

Geotechnical Engineering Laboratory

Project No: 24752-40911

	SIEVE	PERCENT	SPEC.*	PASS?
	SIZE	FINER	PERCENT	(X=NO)
	#200	32.0		-
			i	
i				
١				
ı				
ı				
ı				
١				
١				
ı				
ı				
L				

	Soil Descriptio	<u>on</u>	
PL= NP	Atterberg Limit	t <u>s</u> Pl= NP	
D ₈₅ = D ₃₀ = C _u =	Coefficients D ₆₀ = D ₁₅ = C _c =	D ₅₀ = D ₁₀ =	
USCS=	Classification AASH	TO=	
As received moisture content = 12.4%			
As received mo		%	

Sample No.: B17

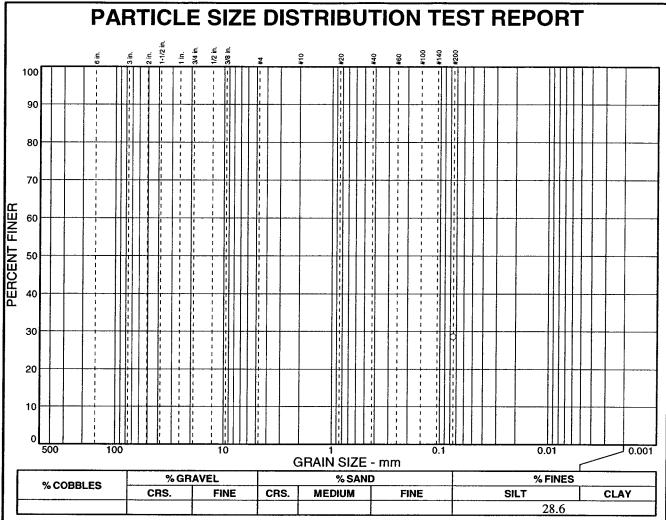
Source of Sample:

Date: 2/19/04

Location: 2

Elev./Depth: --

CDM Jessberger


Client: Aquacalma L.P.

Project: C44-Resevior

carrior

Geotechnical Engineering Laboratory

Project No: 24752-40911

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#200	28.6		
		ļ	
,			

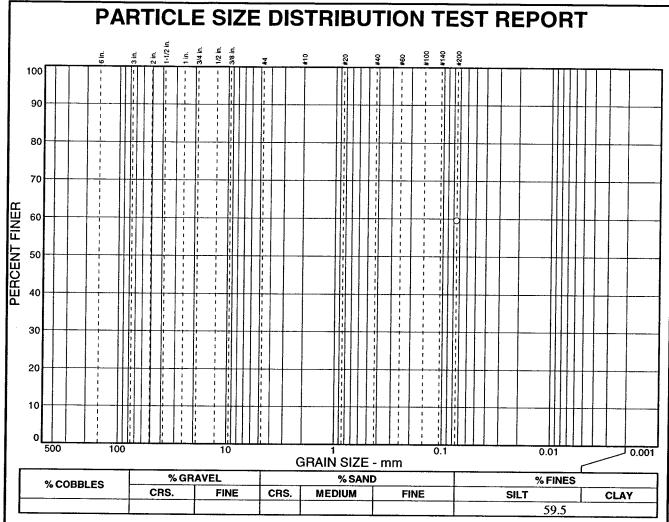
	Soil Descriptio	<u>n</u>
PL= NP	Atterberg Limit	t <u>s</u> Pl= NP
D ₈₅ = D ₃₀ = C _u =	Coefficients D ₆₀ = D ₁₅ = C _c =	D ₅₀ = D ₁₀ =
USCS=	Classification AASH	ITO=
Remarks As received moisture content = 7.4%		

Sample No.: B19

Source of Sample:

Date: 2/19/04

Elev./Depth: --


Location: 4

Client: Aquacalma L.P. Project: C44-Resevior

Geotechnical Engineering Laboratory

CDM Jessberger

Project No: 24752-40911

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#200	59.5		
			,
İ			
1			

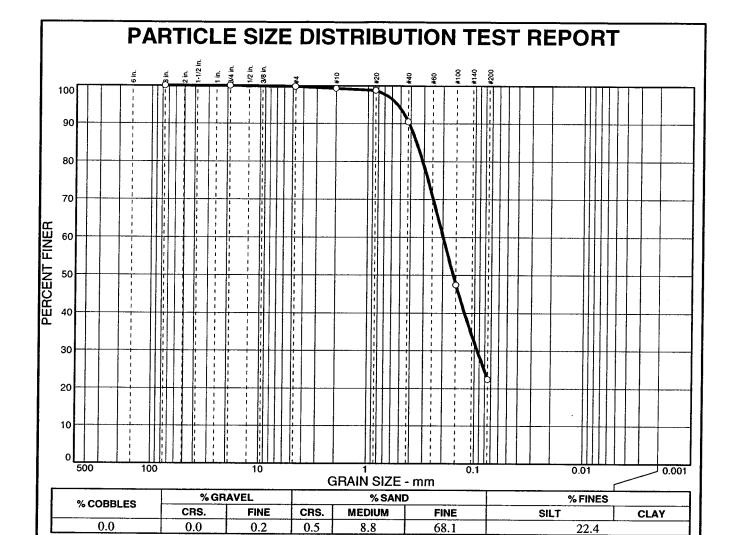
	Soil Descript	tion			
PL=	Atterberg Lin LL=	<u>nits</u> Pl=			
D ₈₅ = D ₃₀ = C _u =	Coefficient D ₆₀ = D ₁₅ = C _c =	<u>s</u> D ₅₀ = D ₁₀ =			
USCS=	Classification AAS	<u>on</u> SHTO=			
Remarks As received moisture content = 65.6%					

Sample No.: B21

Source of Sample:

Date: 2/19/04

Location: 1


Elev./Depth: --

CDM Jessberger

Client: Aquacalma L.P. Project: C44-Resevior

Geotechnical Engineering Laboratory

Project No: 24752-40911

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3 in. 3/4 in. #4 #10 #20 #40 #100 #200	100.0 100.0 99.8 99.3 98.8 90.5 47.4 22.4		

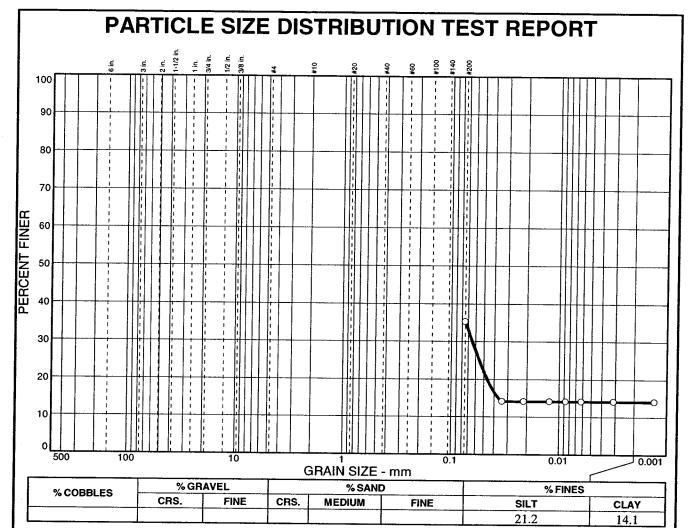
Silty sand	Soil Description	<u>on</u>
PL=	Atterberg Limit	<u>ts</u> PI=
D ₈₅ = 0.355 D ₃₀ = 0.0942 C _u =	Coefficients D ₆₀ = 0.199 D ₁₅ = C _c =	D ₅₀ = 0.159 D ₁₀ =
USCS= SM	Classification AASH	ITO=
Soil classification	Remarks sture content = 10.26 n and description ba al Procedure (ASTM	sed

Sample No.: B23

Source of Sample:

Date: 2/19/04

Location: 1


Elev./Depth: --

CDM Jessberger

Client: Aquacalma L.P. Project: C44-Resevior

Geotechnical Engineering Laboratory

Project No: 24752-40911

PERCENT	SPEC.*	PASS?
FINER	PERCENT	(X=NO)
35.3		
	į	
		35.3

Soil Description Atterberg Limits LL= NP PL= NP PI= NP Coefficients D₆₀= D₁₅= 0.0366 C_c= D₈₅= D₃₀= 0.0645 C_u= D₅₀= D₁₀= Classification USCS= AASHTO= --Remarks As received moisture content = 7.2%

(no specification provided)

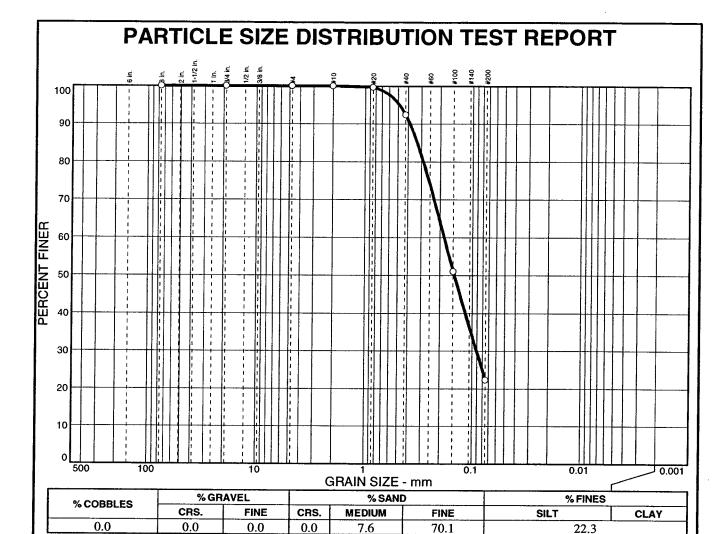
Sample No.: B23

Source of Sample:

Date: 2/19/04

Location: 4

Elev./Depth: --


CDM Jessberger

Client: Aquacalma L.P.

Project: C44-Resevior

Geotechnical Engineering Laboratory

Project No: 24752-40911

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3 in. 3/4 in. #4 #10 #20 #40 #100 #200	100.0 100.0 100.0 100.0 99.7 92.4 51.0 22.3		

Silty sand	Soil Description	
	AMaulaua I iurita	
PL=	Atterberg Limits	Pl=
D ₈₅ = 0.330 D ₃₀ = 0.0909 C _u =	<u>Coefficients</u> D ₆₀ = 0.183 D ₁₅ = C _c =	D ₅₀ = 0.147 D ₁₀ =
USCS= SM	Classification AASHT	'O=
	Remarks sture content = 3.3% n and descritpion base	ed
on Visual-Manu	al Procedure (ASTM-	D2488)

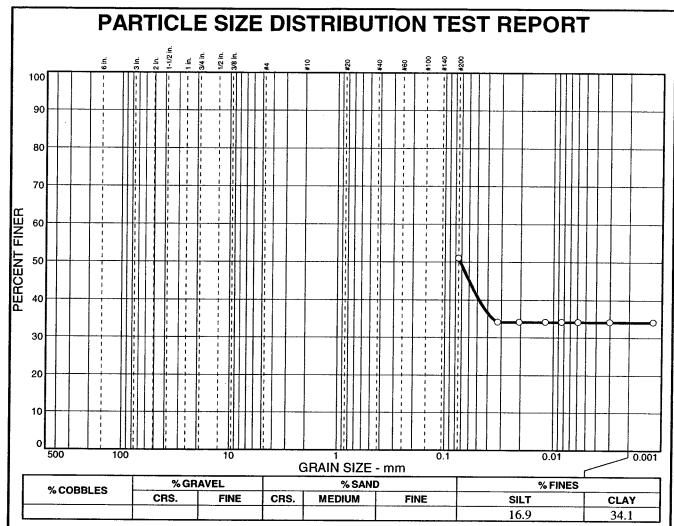
Sample No.: B26

Source of Sample:

Date: 2/19/04

Location: 3

Elev./Depth: --


CDM Jessberger

Client: Aquacalma L.P.

Project: C44-Resevior

Geotechnical Engineering Laboratory

Project No: 24752-40911

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#200	51.0		
* ,	ecification provide		

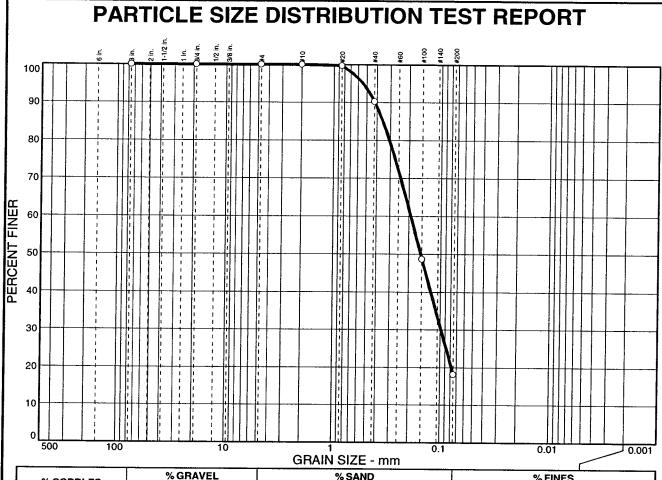
	Soil Descriptio	<u>n</u>			
PL= NP	Atterberg Limit LL= NP	<u>s</u> PI= NP			
D ₈₅ = D ₃₀ = C _u =	Coefficients D ₆₀ = D ₁₅ = C _c =	D ₅₀ = 0.0723 D ₁₀ =			
USCS=	Classification AASH	TO=			
Remarks As received moisture content = 31.2%					

Sample No.: B26

Source of Sample:

Date: 2/19/04

Location: 6


Elev./Depth: --

CDM Jessberger

Client: Aquacalma L.P. Project: C44-Resevior

Geotechnical Engineering Laboratory

Project No: 24752-40911

% COBI	RIFC	%(GRAVEL		% SAND % FINES		% SAND % FINES		
/8 CODI	DELS	CRS.	FII	VE CI	RS.	MEDIUM	FINE	SILT	CLAY
0.0)	0.0	0.	0 0	.0	9.8	72.1	18.1	
SIEVE	PERCE	NT S	PEC.*	PASS?	7		S	oil Description	·
SIZE	FINE	R PE	RCENT	(X=NO)		Ciltura			

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3 in. 3/4 in. #4 #10 #20 #40 #100 #200	FINER 100.0 100.0 100.0 100.0 99.7 90.2 48.7 18.1	PERCENT	(X=NO)

	Soil Description	
Silty sand		
PI =	Atterberg Limits	PI=
		-
D 0.254	Coefficients	_
$D_{85} = 0.354$ $D_{20} = 0.0986$	D ₆₀ = 0.192 D ₁₅ =	D ₅₀ = 0.154 D ₁₀ =
D ₃₀ = 0.0986 C _u =	C _c =	510-
	<u>Classification</u>	
USCS= SM	AASHT	O=
	Remarks	
As received mois	sture content = 12.0%	
Soil classification	n and description base	ed
on Visual-Manu	al Procedure (ASTM-)	D2488)

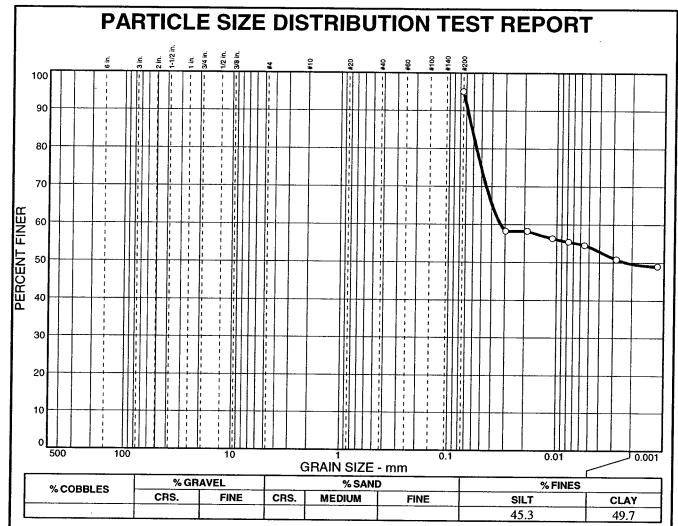
Sample No.: B29

Source of Sample:

Date: 2/19/04

Location: 2

Elev./Depth: --


CDM Jessberger

Client: Aquacalma L.P.

Geotechnical Engineering Laboratory

Project: C44-Resevior

Project No: 24752-40911

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#200	95.0		
L_,			

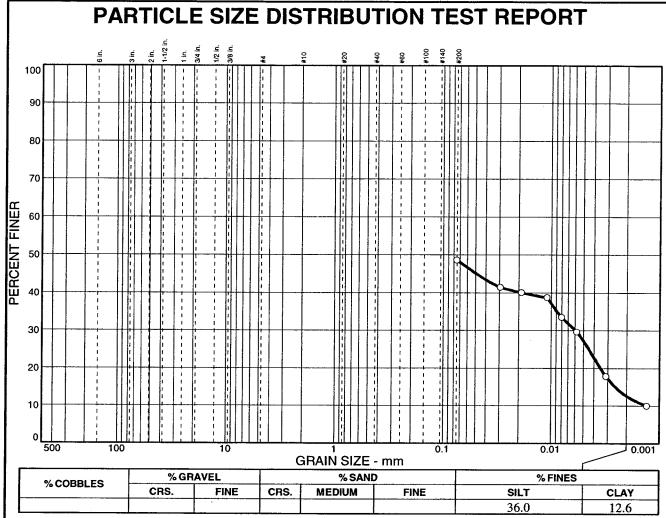
-	Soil Description	
PL= 36	Atterberg Limits LL= 124	PI= 88
D ₈₅ = 0.0621 D ₃₀ = C _u =	Coefficients D ₆₀ = 0.0331 D ₁₅ = C _c =	D ₅₀ = 0.0023 D ₁₀ =
USCS=	Classification AASHT	O=
As received mois	Remarks sture content = 88.8%	

Sample No.: B32

Source of Sample:

Date: 2/19/04

Location: 3


Elev./Depth:

CDM Jessberger

Client: Aquacalma L.P. Project: C44-Resevior

Geotechnical Engineering Laboratory

Project No: 24752-40911

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#200	48.6		
1 1			
		İ	

	Soil Description	
	Atterberg Limits	
PL= NP	LL= NP	PI= NP
D ₈₅ = D ₃₀ = 0.0060 C _u =	$\begin{array}{c} \underline{\text{Coefficients}} \\ D_{60} = \\ D_{15} = 0.0026 \\ C_{\text{C}} = \end{array}$	D ₅₀ = D ₁₀ = 0.0013
USCS= ML	Classification AASHT	O=
As received mois	Remarks ture content = 8.5%	

Sample No.: B33

Source of Sample:

Date: 2/16/04

Location: 3

Elev./Depth: --

CDM Jessberger


Client: Aquacalma L.P.

. |

Project: C44-Resevior

Geotechnical Engineering Laboratory

Project No: 24752-40911

SIEVE	PERCENT	SPEC.*	DACCO
l	PERCENT	SPEC.	PASS?
SIZE	FINER	PERCENT	(X=NO)
#200	35.4		
1			
l i			
]			
L			

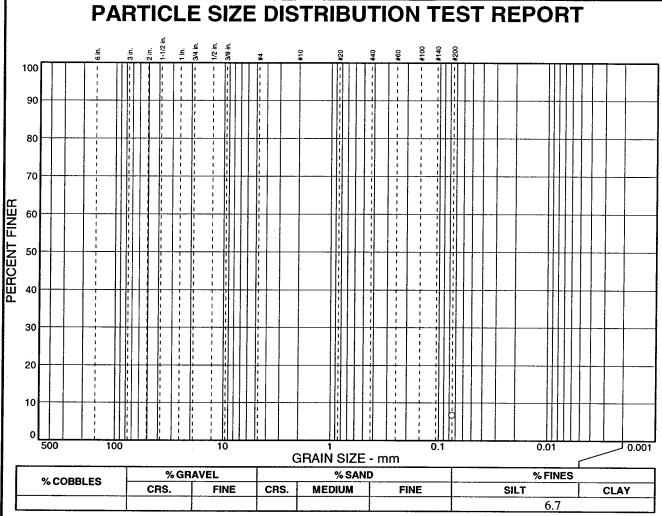
	Soil Description	
PL=	Atterberg Limits LL=	Pl=
D ₈₅ = D ₃₀ = 0.0668 C _u =	Coefficients D ₆₀ = D ₁₅ = 0.0464 C _c =	D ₅₀ = D ₁₀ = 0.0389
USCS=	Classification AASHTO)=
As received mois	Remarks sture content = 10.6%	

Sample No.: B39

Source of Sample:

Date: 2/19/04

Location: 1


Elev./Depth: --

CDM Jessberger

Client: Aquacalma L.P. **Project:** C44-Resevior

Geotechnical Engineering Laboratory

Project No: 24752-40911

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#200	6.7		
	•		

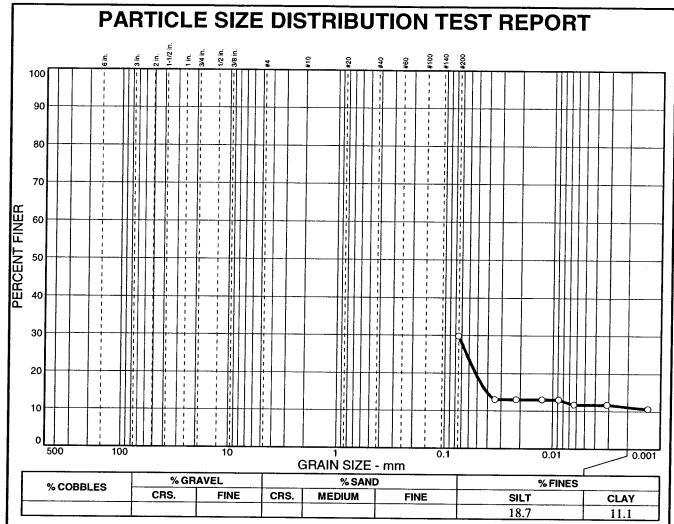
	Soil Description	<u>on</u>
D I 375	Atterberg Limi	
PL= NP	LL= NP	PI= NP
D ₈₅ = D ₃₀ = C _u =	Coefficients D ₆₀ = D ₁₅ = C _c =	D ₅₀ = D ₁₀ =
USCS=	Classification AASI	<u>1</u> HTO=
As received me	Remarks oisture content = 24.1	%

Sample No.: B39

Source of Sample:

Date: 2/19/04

Location: 2


Elev./Depth: --

CDM Jessberger

Client: Aquacalma L.P. Project: C44-Resevior

Geotechnical Engineering Laboratory

Project No: 24752-40911

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#200	29.8		
ĺ			
1			
1			
1			
1			
1 1			

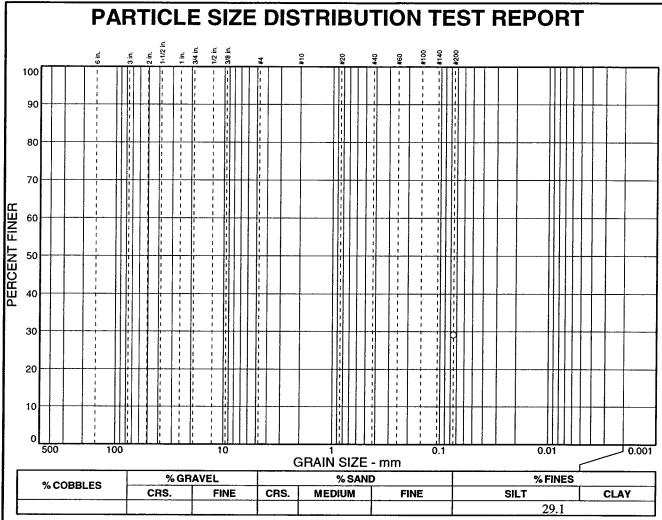
	Soil Description	
PL= NP	Atterberg Limits LL= NP	Pl= NP
D ₈₅ = D ₃₀ = C _u =	$\begin{array}{c} \underline{\text{Coefficients}} \\ D_{60} = \\ D_{15} = 0.0407 \\ C_{\text{C}} = \end{array}$	D ₅₀ = D ₁₀ =
USCS=	Classification AASHT)=
As received mo	Remarks sisture content = 17.0%	

Sample No.: B39

Source of Sample:

Date: 2/19/04

Location: 6


Elev./Depth: --

CDM Jessberger

Client: Aquacalma L.P. Project: C44-Resevior

Geotechnical Engineering Laboratory

Project No: 24752-40911

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#200	29.1		
1			
1			
1			
\Box			

	Soil Description	<u>on</u>
PL= NP	Atterberg Limit	<u>ts</u> Pl= NP
D ₈₅ = D ₃₀ = C _u =	Coefficients D ₆₀ = D ₁₅ = C _c =	D ₅₀ = D ₁₀ =
USCS=	Classification AASH	! HTO=
As received mo	Remarks bisture content = 30.3	%

Sample No.: B41

Source of Sample:

Date: 2/19/04

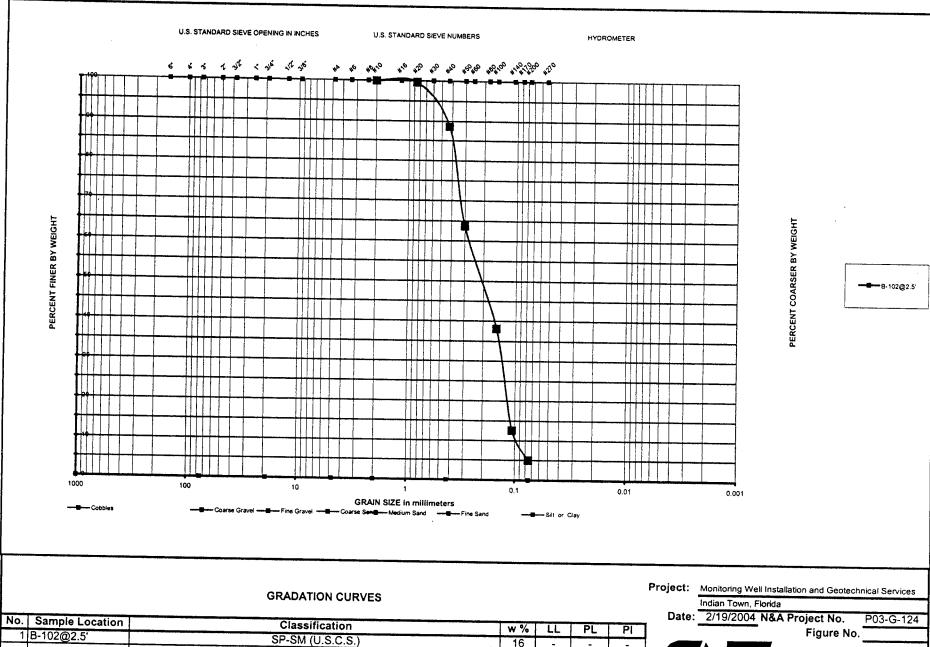
Location: 3

Elev./Depth: --

CDM Jessberger

Client: Aquacalma L.P.

Project: C44-Resevior

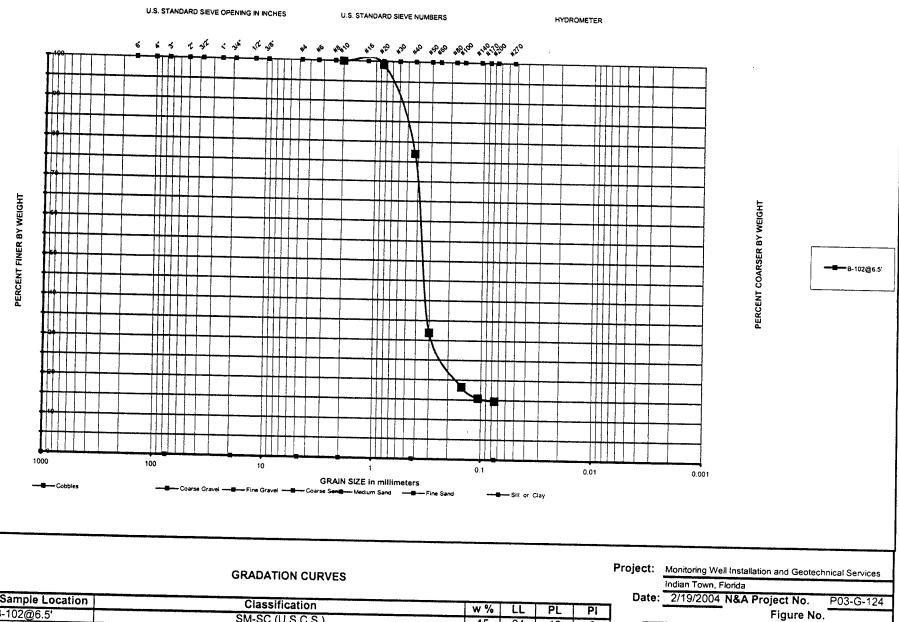

Geotechnical Engineering Laboratory

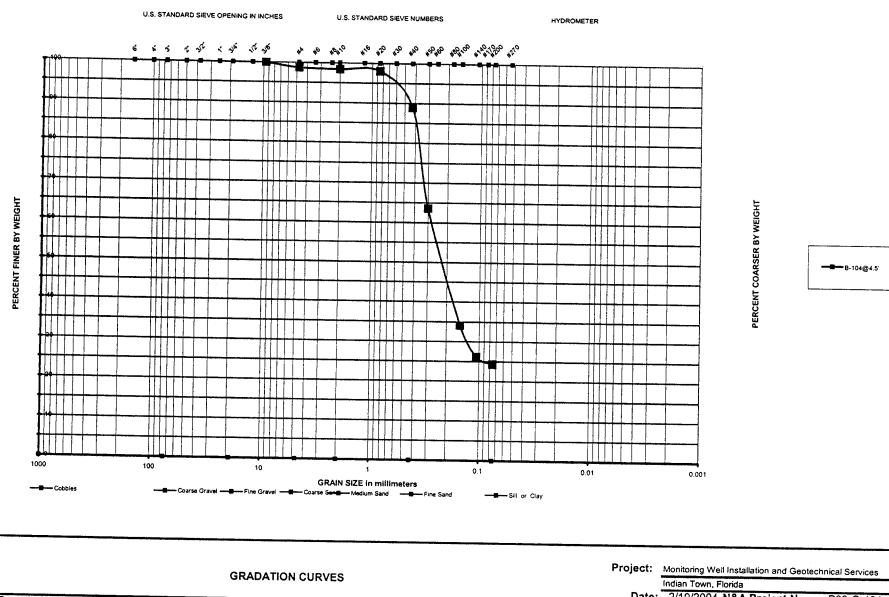
Project No: 24752-40911

LABORATORY TESTING BY NODARSE

LABORATORY TEST RESULTS MONITORING WELL INSTALLATION AND GEOTECHNICAL SERVICES PROJECT No:P03-G-124 INDIAN TOWN, FLORIDA N&A

Boring Approximate Sample	Passing Sieve Number (%)						Organic	limite		Specific	U.S.C.S.	
Number	Depth (feet)	10	40	60	100	200	(%)	Content (%)	LL	ΡI	Gravity	Classification
W-105	9.0'-11.5'	-	-	_	_	_	31		_	**************************************	2.64	CD
B-102	2.5'	100	89	64	38	5	16	0.2			2.04	SP
D 102	0 #1		<u> </u>	<u> </u>	30		10	0.3	_	-	-	SP-SM
B-102	3.5'	100	89	65	43	1.7	16	1.3	-	_	_	SM-SC
B-102	6.5'	100	77	32	18	15	15		24	6	-	
B-104	4.5'	98	89	61	24	24					_	SM-SC
	7.5	70	09	64	34	24	19	-	33	15	-	SC

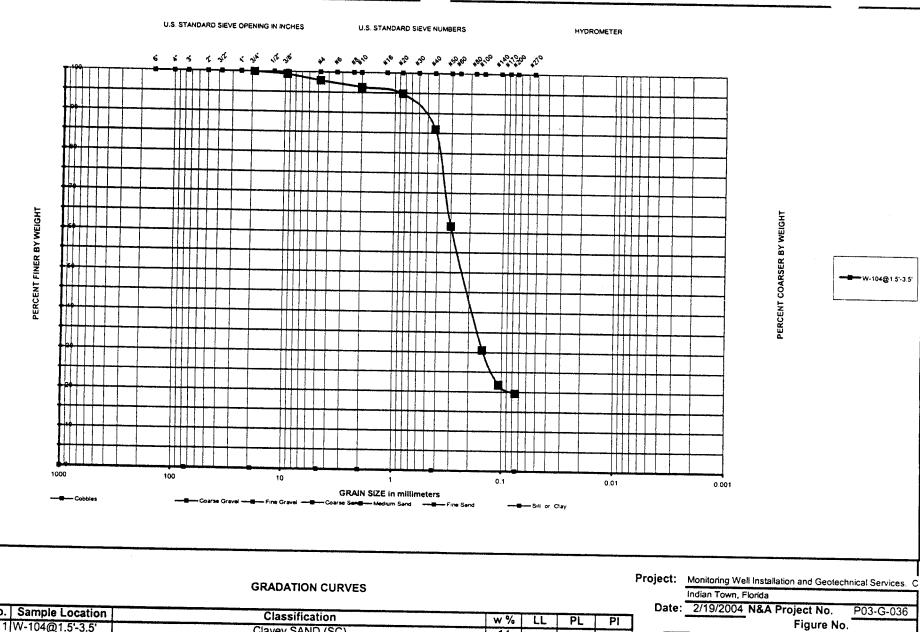

No. Sample Location Classification w % LL PL PI 1 B-102@2.5' SP-SM (U.S.C.S.) 16 Organic Content: 0.3% Poorly graded SAND with silt


No. Sample Location	Classification	W %		DI	Di
1 B-102@3.5'	SM-SC (U.S.C.S.)	16			
	Organic Content: 1.3%			 	
	Poorly graded SAND with silty clay (ASTM D 2487)		<u> </u>	 	
			[<u>-</u>	 	
			,—— <u> </u>	 	
				 	

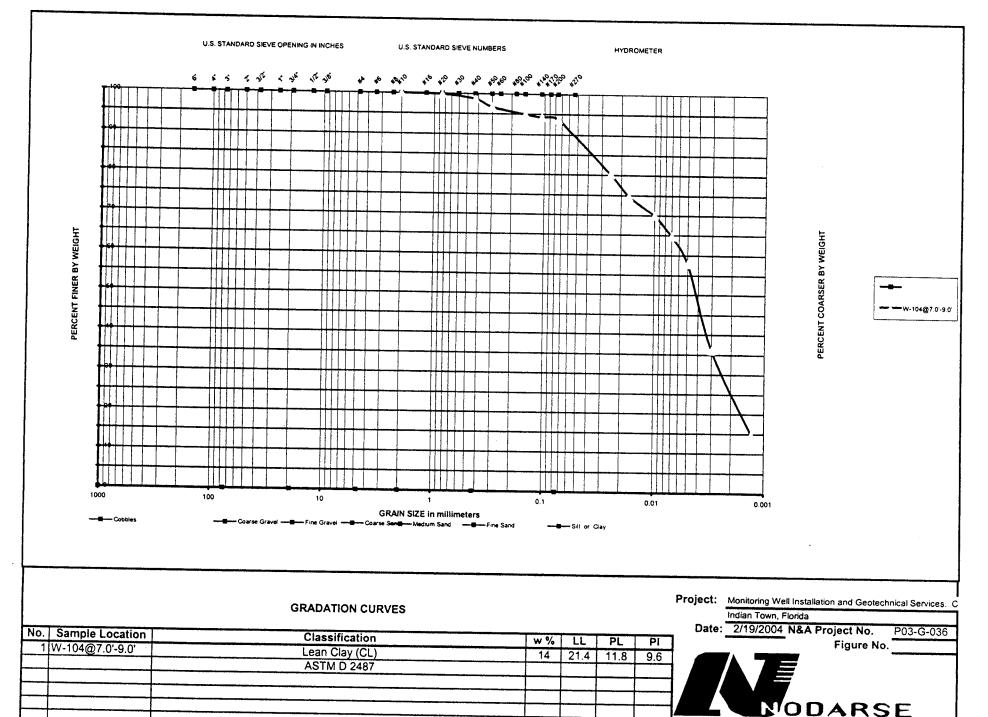
lo. Sample Location	Classification	w %	11	PL	P
1 B-102@6.5'	SM-SC (U.S.C.S.)		- 24		
	Silty, clayey SAND (ASTM D 2487)	15	24	18	<u> 6</u>
				├──	ـ
					
					<u> </u>
					<u></u>

No. Sample Location	Classification	w %	TI	PL	Pi
1 B-104@4.5'	SC (U.S.C.S.)	19	33	18	15
	Clayey SAND (ASTM 2487)	- 10		10	13
				·	

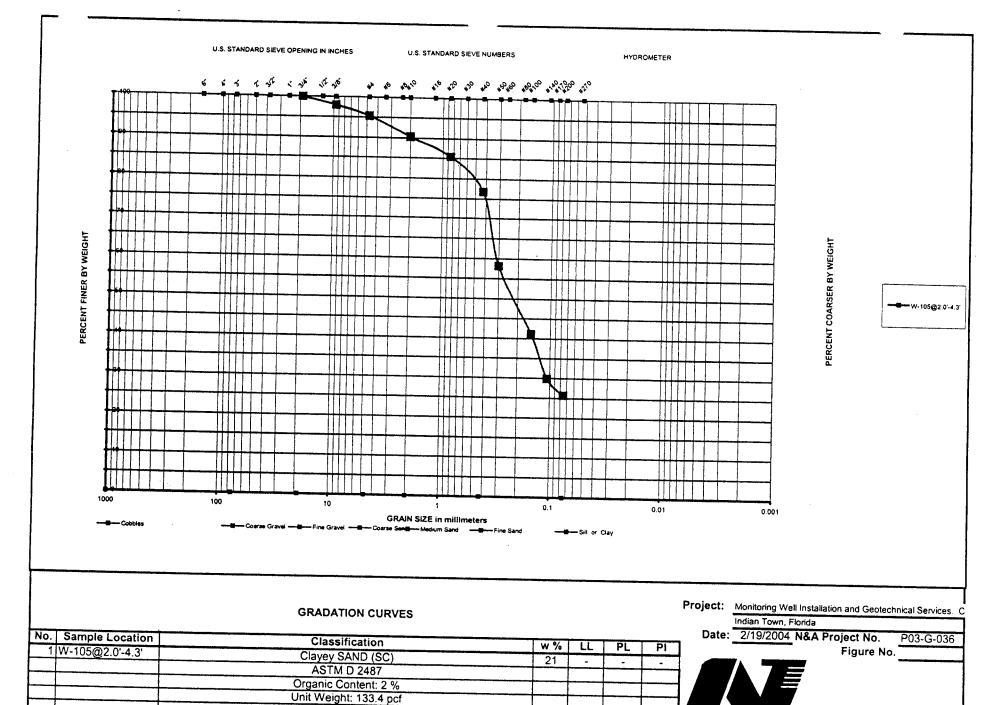
Date: 2/19/2004 N&A Project No. P03-G-124


Figure No.

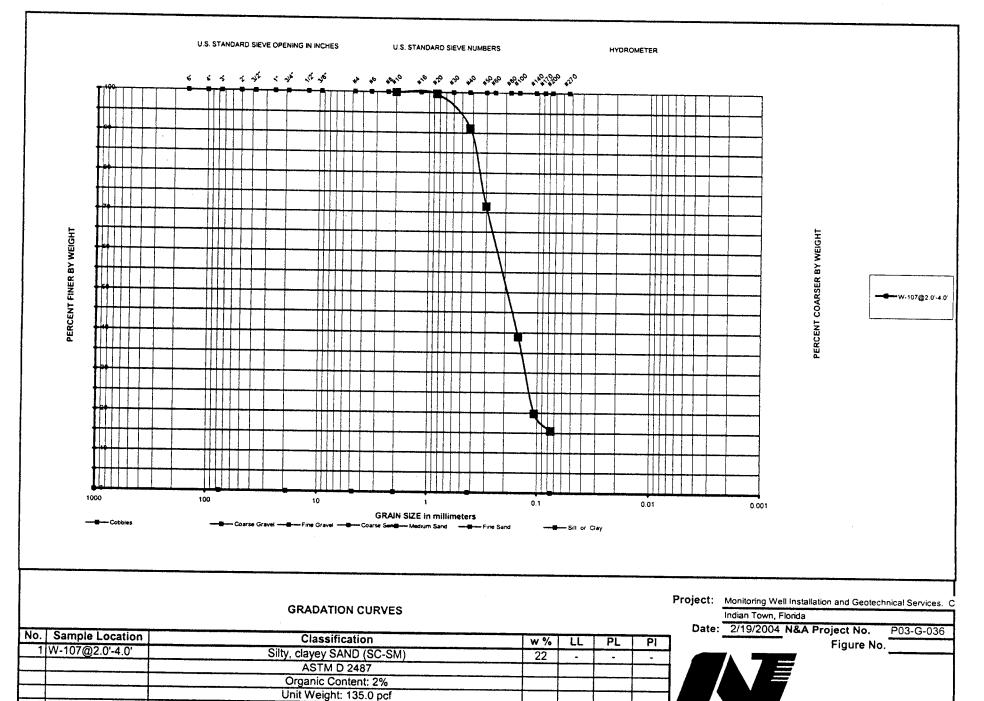
LABORATORY TEST RESULTS FOR MONITORING WELL INSTALLATION AND GEOTECHNICAL SERVICES C-44 INVESTIGATION PROJECT No: P03-G-124


INDIAN TOWN, FLORIDA N&A

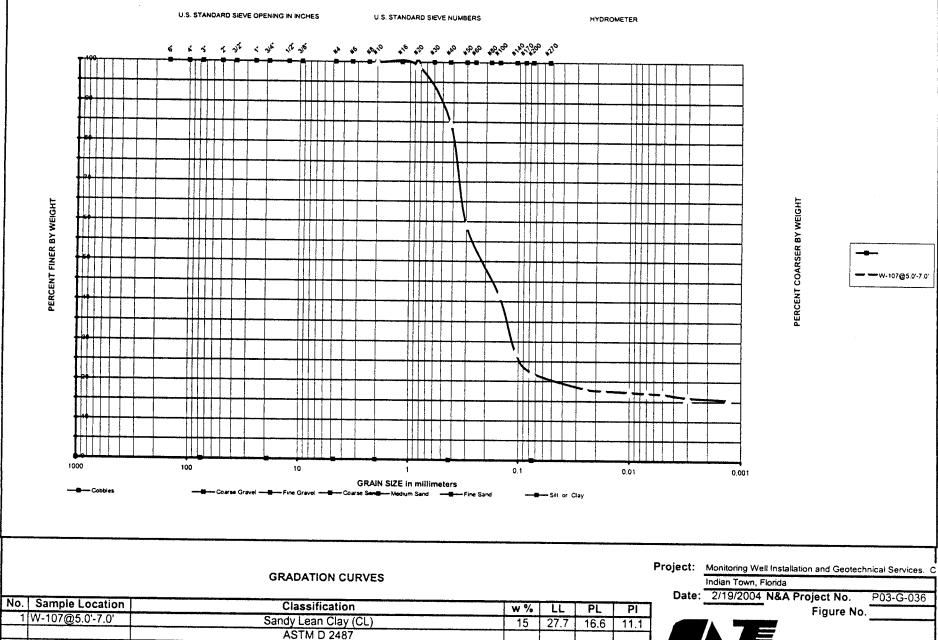
Boring	Sample Depth	Denth	Sample Depth	ASTM	P	assing	Sieve (%)	Numb	er	Moisture Content	Organic Content	į.	rberg nits	***	Specific	Hydraulic
Number	(feet)	Classification	10	40	60	100	200	(%)	(%)	LL	PI	Unit Weight	Crovity	Conductivity (cm/sec)		
W-104	1.5'-3.5'	SC	96	86	62	31	20	14	1	-	-	140.2	2.678			
W-104	7.0'-9.0'	CL	100	99	97	95	94	14	-	21	10	96.9	-	$3x10^{-8}$		
W-105	2.0'-4.3'	SC	90	77	58	41	26	21	2	-	_	133.4	2.657			
W-107	2.0'-4.0'	SM-SC	100	91	72	39	16	22	2	-	_	135.0	2.659	-		
W-107	5.0'-7.0'	CL	100	85	59	42	22	15	_	28	11	144.6	2.007	1.0x10 ⁻⁸		
W-106	1.0'-3.0'	SP	100	87	61	36	2	12	0.5	N/A	N/A	102.7	2.650	7.5×10^{-3}		



No. Sample Location	Classification	w %	LL	PI	PI
1 W-104@1.5'-3.5'	Clayey SAND (SC)	14			- : :
	ASTM D 2487				<u> </u>
	Organic Content: 1 %				
	Unit Weight: 140.16 pcf				
	Specific Gravity: 2.678				

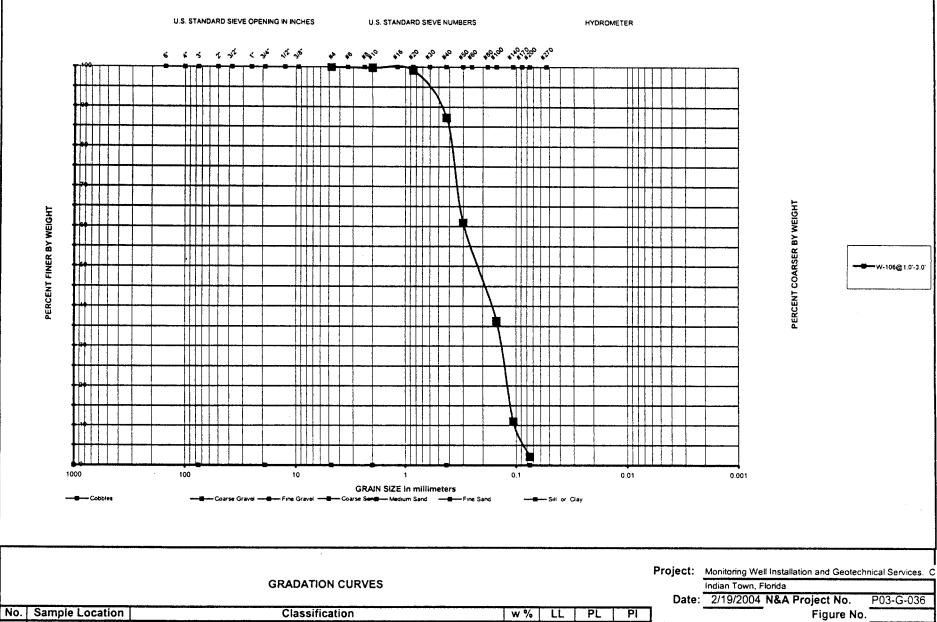


ASSOCIATES, INC.


NODARSE ASSOCIATES, INC.

Specific Gravity: 2.657

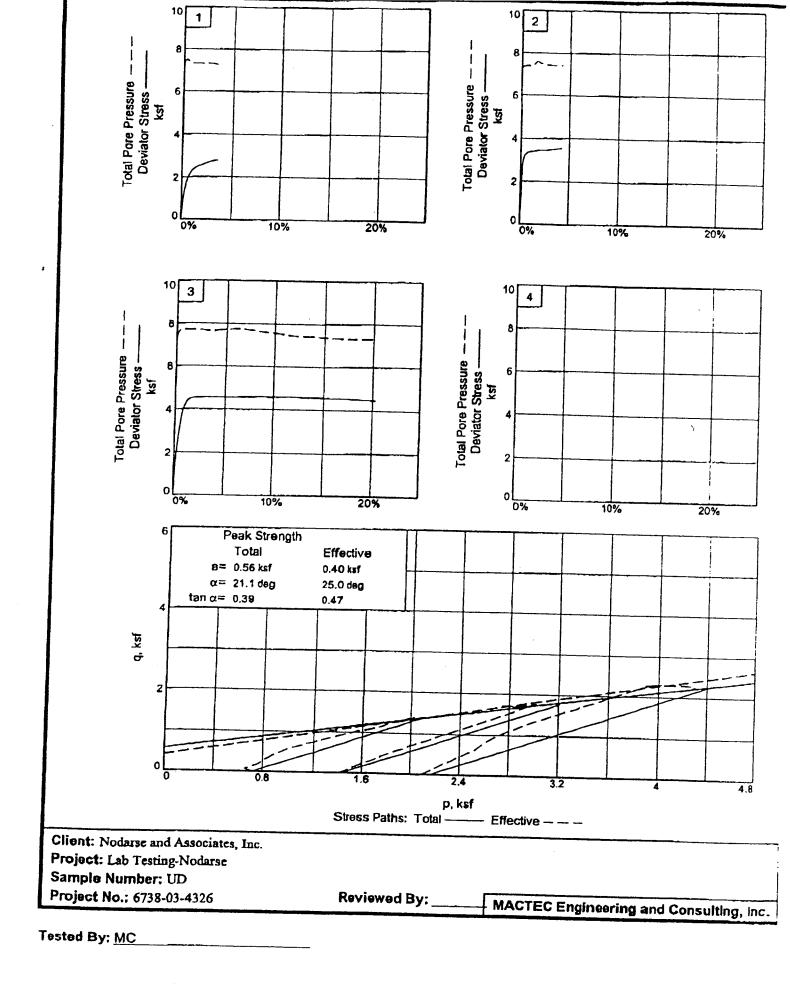
G ASSOCIATES, INC.

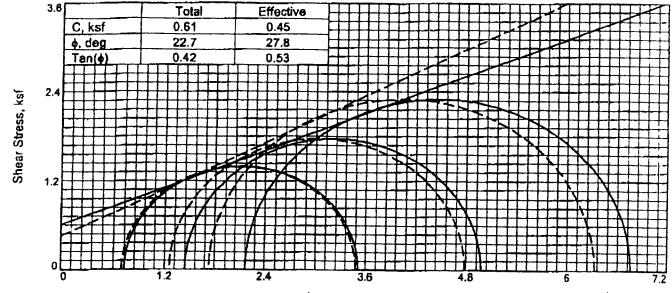

Specific Gravity: 2.659

16.6 11.1 C

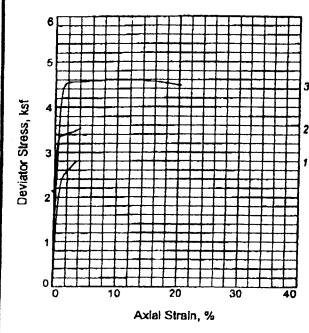
NODARSE

ASSOCIATES, INC.




NODARSE

G ASSOCIATES, INC.


 No.
 Sample Location
 W %
 LL
 PL
 PI

 1
 W-106@1.0'-3.0'
 Poorly Graded SAND (SP)
 12

Total Normal Stress, ksf ————
Effective Normal Stress, ksf ———

Type of Test:

CU with Pore Pressures

Sample Type: UD

Description: Light Gray-Tan Clayey Fine SAND

Specific Gravity = 2.70 K ASSUMED

Remarks: Staged Loaded

	Sa	mple No.		1	2	3	
3	Initial	Water Content, Dry Density, pcf Saturation, Void Ratio Diameter, in. Height, in.		17.8 113.9 100.3 0.4801 2.85 6.50	17.8 113.9 100.3 0.4801 2.85 6.50	17.8 113.9 100.3 0.4801 2.85 6.50	
	At Test	Water Content, Dry Density, pcf Saturation, Void Ratio Diameter, in. Height, in.	assumed >	15.7 118.5 100.0 0.4226 2.81 6.42	15.7 118.5 100.0 0.4226 2.86 6.19	15.7 118.5 100.0 0.4226 2.93 5.93	
	Bad Cel Fall T Ult. T	ein rate, in./min. ck Pressure, ksf I Pressure, ksf I. Stress, ksf iotal Pore Pr., ksf Stress, ksf otal Pore Pr., ksf		0.05 7.20 7.92 2.79 7.23	0.05 7.20 8.64 3.53 7.39	0.05 7.20 9.36 4.60 7.63	
		Failure, ksf Failure, ksf		3.48 0.69	4.79 1.25	6.33 1.73	

Client: Nodarse and Associates, Inc.

Project: Lab Testing-Nodarse

Sample Number: UD

Proj. No.: 6738-03-4326

Date: 4/6/04

TRIAXIAL SHEAR TEST REPORT

MACTEC ENGINEERING AND CONSULTING, INC

Reviewed By: ___

Tested By: MC

LABORATORY TESTING OF TEST PIT SAMPLES

Geotechnical Engineering Laboratory

Standard Test Method for Specific Gravity (ASTM D854)

Tested By:

Test Date:

Checked By:__

ADT

3/18/2004

KS

Client: Aquacalma L.P C-44 Reservoir Project Project Name: Project Location: Indiantown, FL Project Number: 24752-40911 Sample Number: S-1 Sample Location: TP-11 Sample Depth(ft): .5-4' Lab Sample ID: 4929

Specific Gravity of Soils				
Test Procedure	А			
Calibration Temperature T _a , (°C)	26.0			
Weight of flask M _ք , (g)	150.53			
Weight of oven-dry soil M _o , (g)	25.33			
Weight of flask and distilled water at test temperature M_a ,(g)	414.15			
Weight of flask, soil and distilled water at test temperature M _b , (g)	430.14			
Test Temperature T _b , (°C)	26.0			
Specific gravity at test temperature.	2.71			
Specific gravity at 20 °C	2.71			

Geotechnical Engineering Laboratory

Standard Test Method for Specific Gravity (ASTM D854)

Client: Aquacalma L.P
Project Name: C-44 Reservoir Project
Project Location: Indiantown, FL
Project Number: 24752-40911
Sample Number: S-2
Sample Location: TP-11
Sample Depth(ft): 4-5.5'
Lab Sample ID: 4930

Tested By: _	ADT
Test Date:	3/18/2004
Checked By:	KS

Specific Gravity of Soils				
Test Procedure	A			
Calibration Temperature T _a , (°C)	26.0			
Weight of flask M _f , (g)	153.80			
Weight of oven-dry soil M _o , (g)	29.81			
Weight of flask and distilled water at test temperature $M_{\rm a}$,(g)	411.69			
Weight of flask, soil and distilled water at test temperature M _b , (g)	430.34			
Test Temperature T _b , (°C)	26.0			
Specific gravity at test temperature.	2.67			
Specific gravity at 20 °C	2.67			

Geotechnical Engineering Laboratory

Standard Test Method for Specific Gravity (ASTM D854)

Client: Aquacalma L.P
Project Name: C-44 Reservoir Project
Project Location: Indiantown, FL
Project Number: 24752-40911
Sample Number: S-1
Sample Location: TP-16
Sample Depth(ft): 1.5-4'
Lab Sample ID: 4939

Tested By: _	ADT
Test Date:	
Checked By:	KS

Specific Gravity of Soils				
Test Procedure	Α			
Calibration Temperature T _a , (°C)	25.0			
Weight of flask M _f , (g)	143.41			
Weight of oven-dry soil M _o , (g)	27.72			
Weight of flask and distilled water at test temperature $M_{\rm a}$,(g)	418.49			
Weight of flask, soil and distilled water at test temperature $M_{\rm b}$, (g)	435.74			
Test Temperature T _b , (°C)	25.0			
Specific gravity at test temperature.	2.65			
Specific gravity at 20 °C	2.64			

Geotechnical Engineering Laboratory

Standard Test Method for Specific Gravity (ASTM D854)

Tested By: ADT

KS

Test Date:

Checked By:

Client: Aquacalma L.P
Project Name: C-44 Reservoir Project
Project Location: Indiantown, FL
Project Number: 24752-40911
Sample Number: S-2
Sample Location: TP-16
Sample Depth(ft): 4-9'
Lab Sample ID: 4940

Specific Gravity of Soils				
Test Procedure	Α .			
Calibration Temperature T _a , (°C)	25.0			
Weight of flask M _f , (g)	153.10			
Weight of oven-dry soil M_o , (g)	26.37			
Weight of flask and distilled water at test temperature M_a ,(g)	414.46			
Weight of flask, soil and distilled water at test temperature M_{b} , (g)	431.27			
Test Temperature T _b , (°C)	25.0			
Specific gravity at test temperature.	2.76			
Specific gravity at 20 °C	2.76			

Geotechnical Engineering Laboratory

Standard Test Method for Specific Gravity (ASTM D854)

Client: Aquacalma L.P C-44 Reservoir Project Project Name: Project Location: Indiantown, FL Project Number: 24752-40911 Sample Number: S-1 Sample Location: TP-19 Sample Depth(ft):___ 1-4' Lab Sample ID: 4945

Tested By:	ADT
Test Date:	
Checked By:	KS

Specific Gravity of Soils				
Test Procedure	Α			
Calibration Temperature T _a , (°C)	25.0			
Weight of flask M₁, (g)	149.90			
Weight of oven-dry soil M _o , (g)	25.30			
Weight of flask and distilled water at test temperature M_{a} ,(g)	420.78			
Weight of flask, soil and distilled water at test temperature M _b , (g)	436.60			
Test Temperature T _b , (°C)	25.0			
Specific gravity at test temperature.	2.67			
Specific gravity at 20 °C	2.67			

Geotechnical Engineering Laboratory

Standard Test Method for Specific Gravity (ASTM D854)

Tested By: ADT

Checked By: KS

Test Date:

Client:	Aquacalma L.P	
Project Name:	C-44 Reservoir Project	
Project Location:	Indiantown, FL	
Project Number:	24752-40911	
Sample Number:	S-2	
Sample Location:	TP-19	
Sample Depth(ft):	4-7'	
Lab Sample ID:	4946	

Specific Gravity of Soils				
Test Procedure	Α			
Calibration Temperature T _a , (°C)	25.0			
Weight of flask M _f , (g)	153.73			
Weight of oven-dry soil M _o , (g)	27.34			
Weight of flask and distilled water at test temperature M_a ,(g)	411.77			
Weight of flask, soil and distilled water at test temperature M_{b} , (g)	428.76			
Test Temperature T _b , (°C)	25.0			
Specific gravity at test temperature.	2.64			
Specific gravity at 20 °C	2.64			

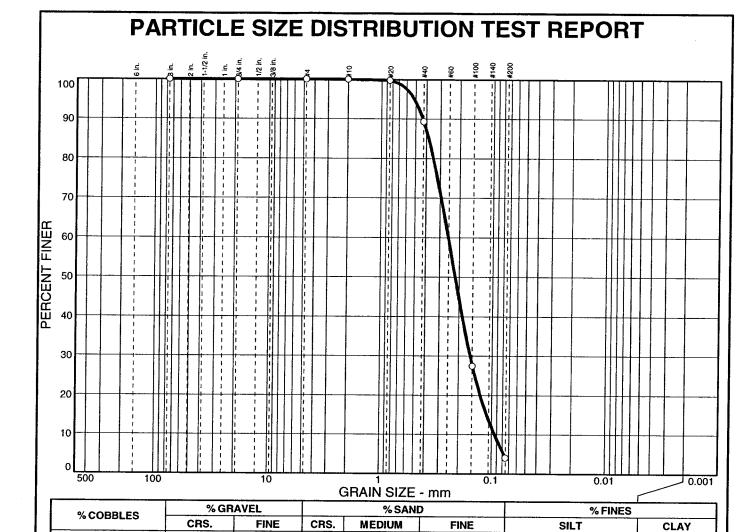
Geotechnical Engineering Laboratory

Standard Test Method for Specific Gravity (ASTM D854)

Client: Aquacalma L.P
Project Name: C-44 Reservoir Project
Project Location: Indiantown, FL
Project Number: 24752-40911
Sample Number: S-1
Sample Location: TP-20
Sample Depth(ft): .5-3'
Lab Sample ID: 4947

Tested By: ADT	
Test Date:	
Checked By:	KS

Specific Gravity of Soils				
Test Procedure	А			
Calibration Temperature T _a , (°C)	26.0			
Weight of flask M _ք , (g)	143.41			
Weight of oven-dry soil M _o , (g)	26.31			
Weight of flask and distilled water at test temperature M_a ,(g)	418.42			
Weight of flask, soil and distilled water at test temperature M _b , (g)	434.84			
Test Temperature T _b , (°C)	26.0			
Specific gravity at test temperature.	2.66			
Specific gravity at 20 °C	2.66			


Geotechnical Engineering Laboratory

Standard Test Method for Specific Gravity (ASTM D854)

Client: Aquacalma L.P
Project Name: C-44 Reservoir Project
Project Location: Indiantown, FL
Project Number: 24752-40911
Sample Number: S-3
Sample Location: TP-20
Sample Depth(ft): 5-12'
Lab Sample ID: 4949

Tested By:	ADT		
Test Date:	3/18/2004		
Checked By:	KS		

Specific Gravity of Soils			
Test Procedure	A		
Calibration Temperature T _a , (°C)	26.0		
Weight of flask M _f , (g)	149.38		
Weight of oven-dry soil M _o , (g)	27.60		
Weight of flask and distilled water at test temperature $M_{\rm a}$,(g)	420.83		
Weight of flask, soil and distilled water at test temperature $M_{\rm b}$, (g)	438.17		
Test Temperature T _b , (°C)	26.0		
Specific gravity at test temperature.	2.69		
Specific gravity at 20 °C	2.69		

85.3

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3 in. 3/4 in. #4 #10 #20 #40 #100 #200	100.0 100.0 100.0 100.0 99.8 89.3 27.4 4.0		

0.0

0.0

0.0

Poorly graded sa	nd	
PL=	Atterberg Limits	: Pi=
. –	000666	, ,_
D ₈₅ = 0.384	Coefficients D ₆₀ = 0.252	D ₅₀ = 0.218
$D_{30} = 0.158$ $C_{11} = 2.68$	$D_{15} = 0.111$ $C_{c} = 1.04$	D ₅₀ = 0.218 D ₁₀ = 0.0943
-u = s		
USCS= SP	Classification AASHT	O=
	<u>Remarks</u>	
As received mois	ture content = 7.0%	

(no specification provided)

Sample No.: S-1

0.0

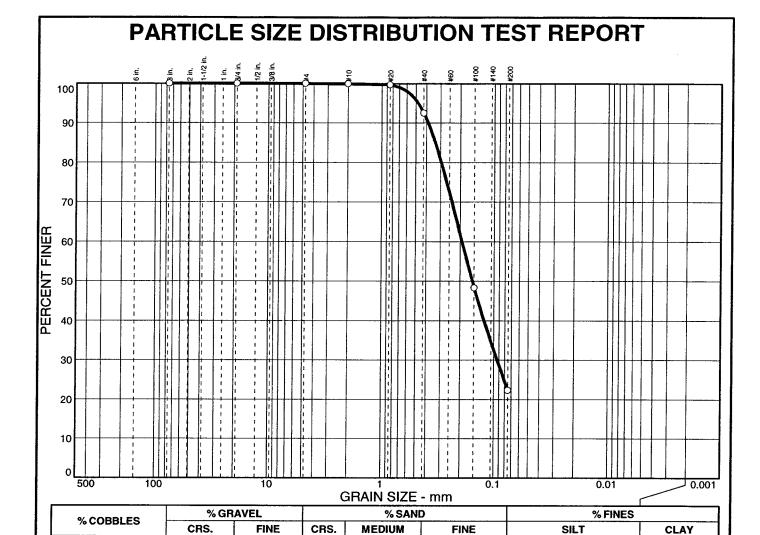
Source of Sample:

Date: 3/9/04

Location: TP-8

Elev./Depth: .5-3

4.0


CDM Jessberger

Client: Aquacalma L.P.

Project: C44-Resevior

Geotechnical Engineering Laboratory

Project No: 24752-40911

70.2

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3 in. 3/4 in. #4 #10 #20 #40 #100 #200	100.0 100.0 100.0 99.9 99.7 92.5 48.3 22.3		

0.0

0.0

0.1

Clayey sand	Soil Description	1
PL= 19	Atterberg Limits	PI= 8
D ₈₅ = 0.336 D ₃₀ = 0.0937 C _u =	Coefficients D ₆₀ = 0.193 D ₁₅ = C _c =	D ₅₀ = 0.156 D ₁₀ =
USCS= SC	Classification AASH1	ГО=
As received mois	Remarks sture content = 17.9%	,

(no specification provided)

Sample No.: S-2

0.0

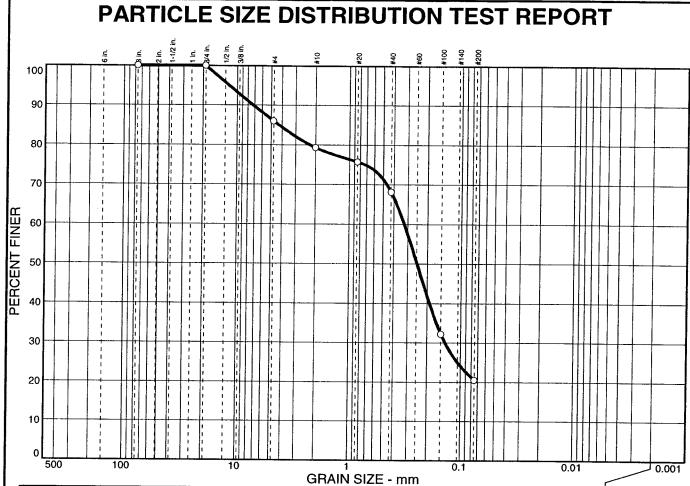
Source of Sample:

Date: 3/9/04

Location: TP-8

Elev./Depth: 3-5

22.3


CDM Jessberger

Client: Aquacalma L.P.

Project: C44-Resevior

Geotechnical Engineering Laboratory

Project No: 24752-40911

% COBBLES	% GRAVEL			% SAND		% FINE	S
70 COBBLES	CRS.	FINE	CRS.	MEDIUM	FINE	SILT	CLAY
0.0	0.0	14.0	6.7	11.2	47.6	20.5	

	SIEVE	PERCENT	SPEC.*	PASS?
l	SIZE	FINER	PERCENT	(X=NO)
	3 in. 3/4 in. #4 #10 #20 #40 #100 #200	100.0 100.0 86.0 79.3 75.7 68.1 32.2 20.5		

Silty, Clayey sand	Soil Description	
PL= 17	Atterberg Limits LL= 24	PI= 7
D ₈₅ = 4.26 D ₃₀ = 0.138 C _u =	Coefficients D ₆₀ = 0.324 D ₁₅ = C _c =	D ₅₀ = 0.248 D ₁₀ =
USCS= SC-SM	Classification AASHTO=	:
As received moistu	Remarks re content = 14.2%	

(no specification provided)

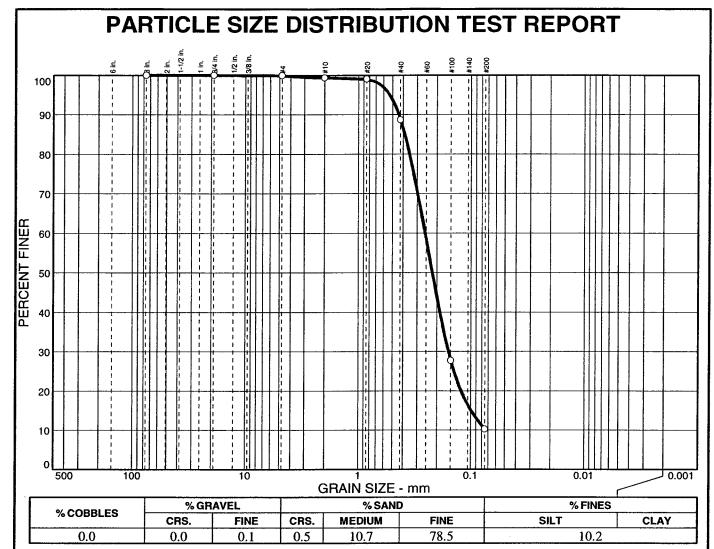
Sample No.: S-1A

Source of Sample:

Date: 3/9/04

Location: TP-9

Elev./Depth: .5-2


CDM Jessberger

Client: Aquacalma L.P.

Project: C44-Resevior

Geotechnical Engineering Laboratory

Project No: 24752-40911

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3 in. 3/4 in. #4 #10 #20 #40 #100 #200	100.0 100.0 99.9 99.4 99.0 88.7 27.7 10.2		

Poorly graded sa	Soil Description and with silt	!
PL=	Atterberg Limits	PI=
D ₈₅ = 0.390 D ₃₀ = 0.157 C _U =	Coefficients D ₆₀ = 0.256 D ₁₅ = 0.0998 C _c =	D ₅₀ = 0.220 D ₁₀ =
USCS= SP-SM	Classification AASHT	ΓO=
Soil classification	Remarks sture content = 13.6% n and description bas al Procedure (ASTM-	ed

(no specification provided)

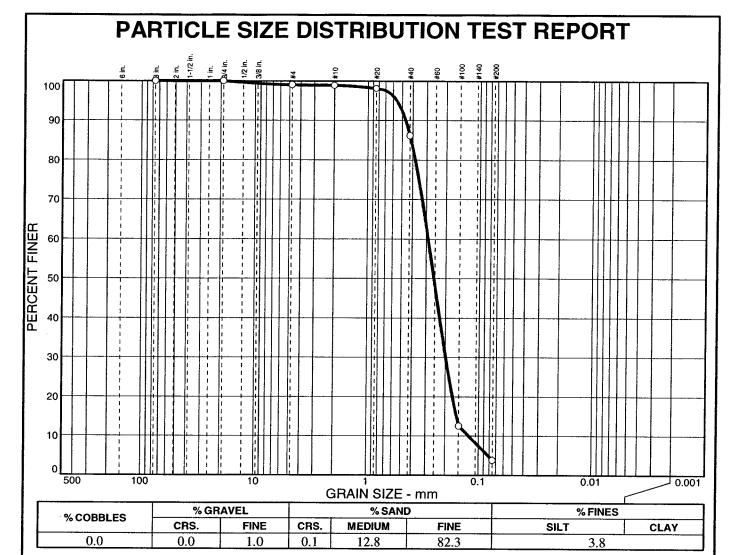
Sample No.: S-1

Source of Sample:

Date: 3/9/04

Location: TP-9

Elev./Depth: 2-5.5


CDM Jessberger

Client: Aquacalma L.P.

Project: C44-Resevior

Geotechnical Engineering Laboratory

Project No: 24752-40911

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3 in. 3/4 in. #4 #10 #20 #40 #100 #200	100.0 100.0 99.0 98.9 98.1 86.1 12.5 3.8		

Poorly graded sa	Soil Description and	
PL=	Atterberg Limits	PI=
D ₈₅ = 0.416 D ₃₀ = 0.199 C _u = 2.35	Coefficients D60= 0.289 D15= 0.158 C _C = 1.12	D ₅₀ = 0.256 D ₁₀ = 0.123
USCS= SP	Classification AASHT	O=
As received moi	Remarks sture content = 8.1%	

* (no specification provided)

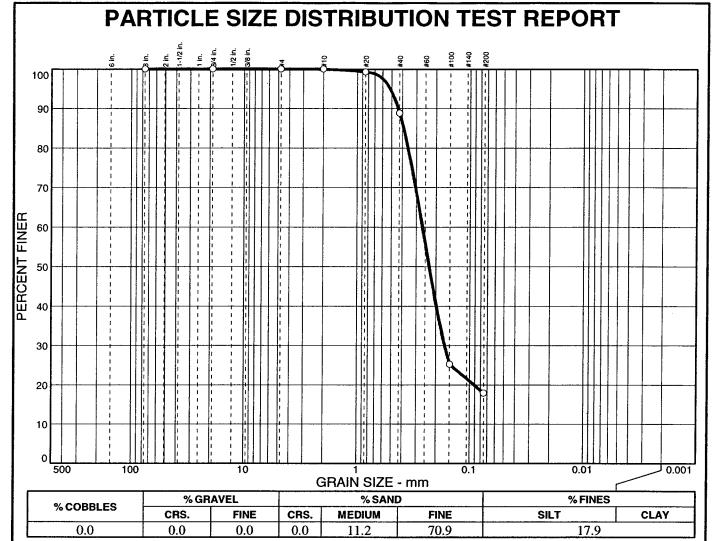
Sample No.: S-1

Source of Sample:

Date: 3/9/04

Location: TP-10

Elev./Depth: .5-3


CDM Jessberger

Client: Aquacalma L.P.

Project: C44-Resevior

Geotechnical Engineering Laboratory

Project No: 24752-40911

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3 in. 3/4 in. #4 #10 #20 #40 #100 #200	100.0 100.0 100.0 100.0 99.3 88.8 25.2 17.9		

Clayey sand	Soil Description	n
PL= 18	Atterberg Limit	<u>s</u> Pl= 12
D ₈₅ = 0.392 D ₃₀ = 0.167 C _u =	Coefficients D ₆₀ = 0.265 D ₁₅ = C _c =	D ₅₀ = 0.230 D ₁₀ =
USCS= SC	Classification AASH	TO=
As received mois	Remarks sture content = 17.29	76

(no specification provided)

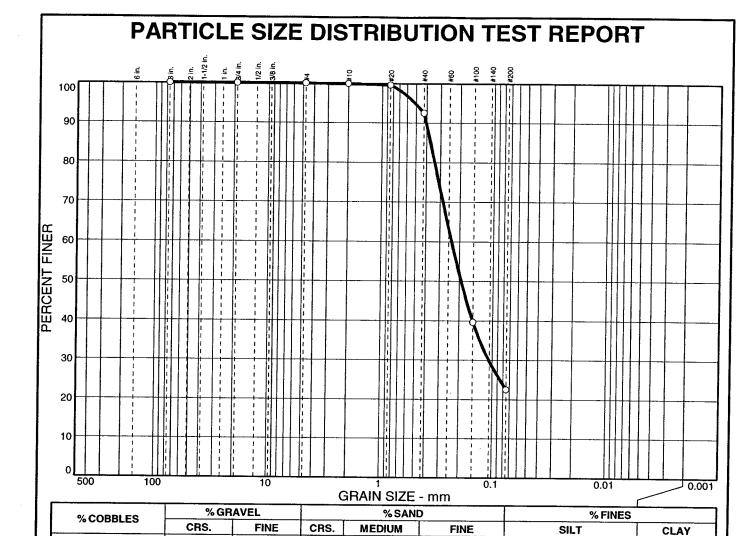
Sample No.: S-2

Source of Sample:

Elev./Depth: 3-6

Date: 3/9/04

Location: TP-10


Client: Aquacalma L.P.

Geotechnical Engineering Laboratory

CDM Jessberger

Project: C44-Resevior

Project No: 24752-40911

70.0

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3 in. 3/4 in. #4 #10 #20 #40 #100 #200	100.0 100.0 100.0 99.9 99.6 92.5 39.6 22.5		

0.0

0.0

0.1

Silty sand	Soil Description	<u>on</u>
PL=	Atterberg Limit LL=	<u>ts</u> Pl=
D ₈₅ = 0.371 D ₃₀ = 0.108 C _u =	Coefficients D ₆₀ = 0.236 D ₁₅ = C _c =	D ₅₀ = 0.193 D ₁₀ =
USCS= SM	Classification AASH	! ITO=
As received mois	Remarks sture content = 5.6%	,
	n and description ba al Procedure (ASTM	

* (no specification provided)

Sample No.: S-1

0.0

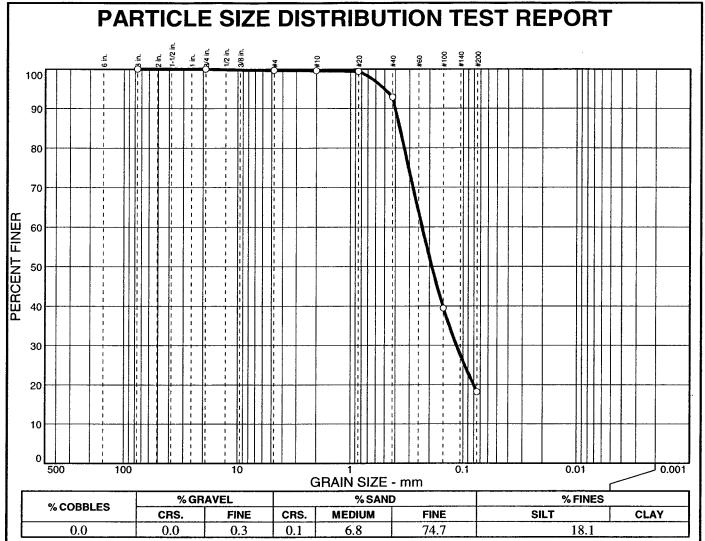
Source of Sample:

Date: 3/9/04

Location: TP-11

Elev./Depth: .5-4

22.5


CDM Jessberger

Client: Aquacalma L.P.

Project: C44-Resevior

Geotechnical Engineering Laboratory

Project No: 24752-40911

	SIEVE	PERCENT	SPEC.*	PASS?
	SIZE	FINER	PERCENT	(X=NO)
	3 in. 3/4 in. #4 #10 #20 #40 #100 #200	100.0 100.0 99.7 99.6 99.4 92.8 39.4 18.1		
L.				

Clayey sand	Soil Description	1
PL= 14	Atterberg Limits	9 Pl= 17
D ₈₅ = 0.368 D ₃₀ = 0.115 C _u =	Coefficients D ₆₀ = 0.233 D ₁₅ = C _c =	D ₅₀ = 0.191 D ₁₀ =
USCS= SC	Classification AASH	ГО=
As received mois	Remarks sture content = 16.9%	6

* (no specification provided)

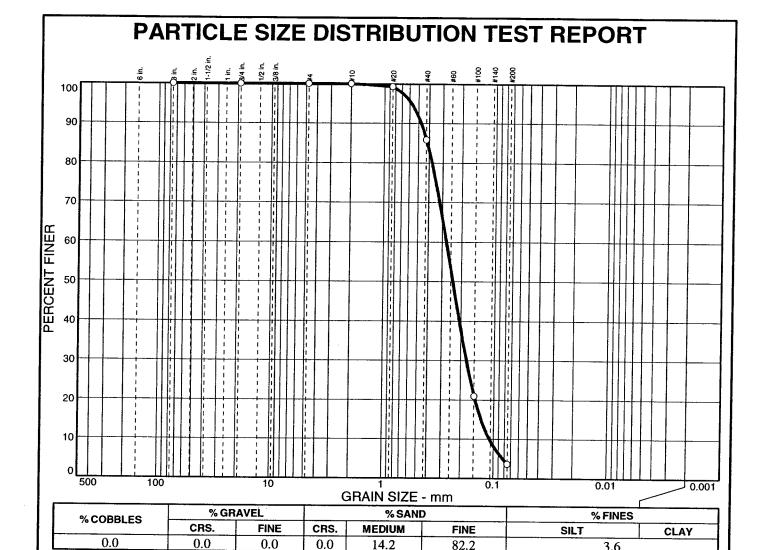
Sample No.: S-2

Source of Sample:

Date: 3/9/04

Location: TP-11

Elev./Depth: 4-5.5


CDM Jessberger

Client: Aquacalma L.P.

Project: C44-Resevior

Geotechnical Engineering Laboratory

Project No: 24752-40911

82.2

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3 in. 3/4 in. #4 #10 #20 #40 #100 #200	100.0 100.0 100.0 100.0 99.3 85.8 20.9 3.6		

Poorly graded s	Soil Description and	1
	Address III V	
PL=	Atterberg Limits LL=	PI=
D ₈₅ = 0.417 D ₃₀ = 0.177 C _u = 2.53	Coefficients D ₆₀ = 0.276 D ₁₅ = 0.130 C _c = 1.05	D ₅₀ = 0.239 D ₁₀ = 0.109
USCS= SP	Classification AASHT	O=
As received moi	Remarks sture content = 12.4%	,

* (no specification provided)

Sample No.: S-1

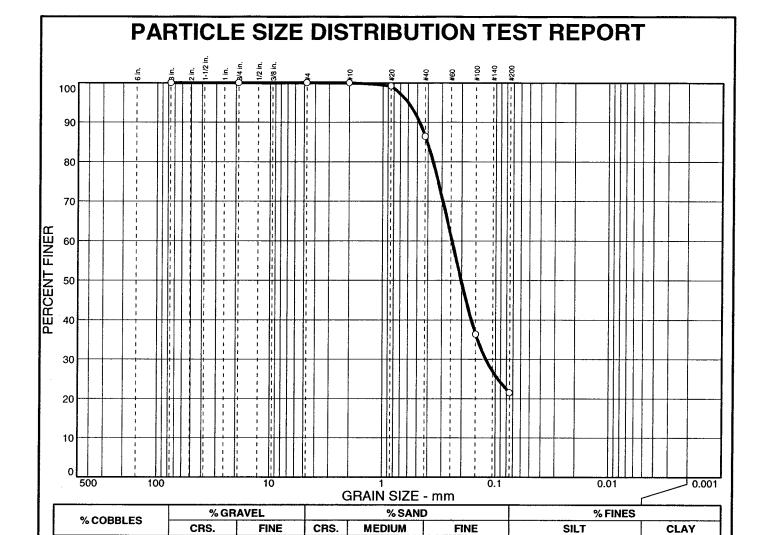
Source of Sample:

Date: 3/9/04

Location: TP-12

Elev./Depth: .5-4

3.6


CDM Jessberger

Client: Aquacalma L.P.

Project: C44-Resevior

Geotechnical Engineering Laboratory

Project No: 24752-40911

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3 in. 3/4 in. #4 #10 #20 #40 #100 #200	100.0 100.0 100.0 100.0 99.2 86.4 36.3 21.5		

0.0

0.0

13.6

64.9

Silty sand	Soil Description	!
PL= NP	Atterberg Limits	PI= NP
D ₈₅ = 0.409 D ₃₀ = 0.122 C _u =	<u>Coefficients</u> D ₆₀ = 0.245 D ₁₅ = C _c =	D ₅₀ = 0.203 D ₁₀ =
USCS= SM	Classification AASHT	ro=
As received mois	Remarks sture content = 18.7%	9

(no specification provided)

Sample No.: S-2

0.0

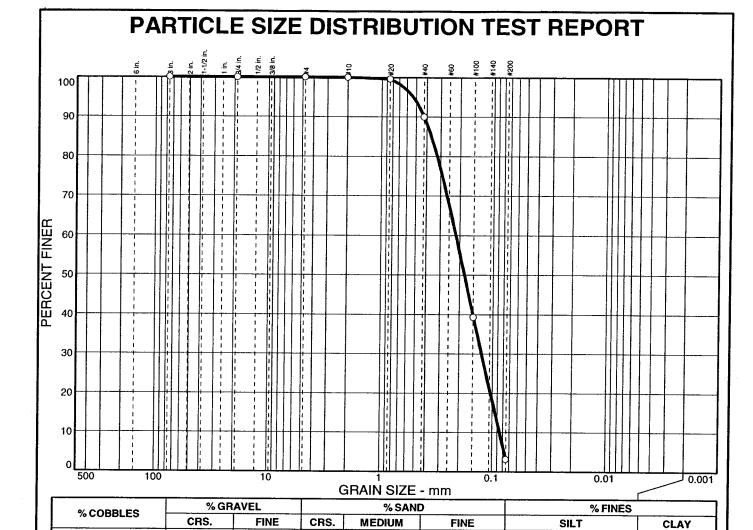
Source of Sample:

Date: 3/9/04

Location: TP-12

Elev./Depth: 4-5.5

21.5


CDM Jessberger

Client: Aquacalma L.P.

Project: C44-Resevior

Geotechnical Engineering Laboratory

Project No: 24752-40911

86.9

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3 in.	100.0		
3/4 in. #4	100.0 100.0		
#10	100.0		
#20	99.6		
#40	90.0	ļ	
#100	39.3		
#200	3.1		

0.0

0.0

Poorly graded sa	Soil Description and	
PL=	Atterberg Limits LL=	Pl=
D ₈₅ = 0.366 D ₃₀ = 0.126 C _u = 2.53	Coefficients D ₆₀ = 0.217 D ₁₅ = 0.0948 C _c = 0.86	D ₅₀ = 0.182 D ₁₀ = 0.0859
USCS= SP	Classification AASHT	O=
As received mois	Remarks sture content = 16.8%	

(no specification provided)

Sample No.: S-1

0.0

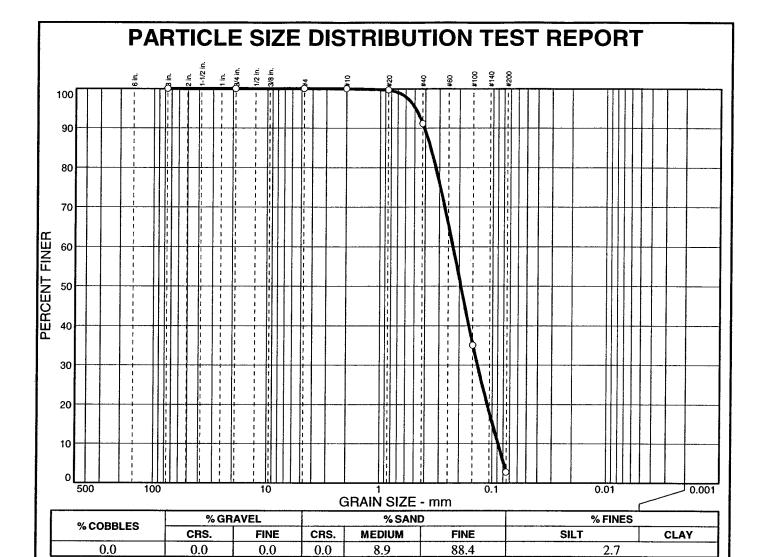
Source of Sample:

Date: 3/9/04

Location: TP-13

Elev./Depth: .5-4

3.1


CDM Jessberger

Client: Aquacalma L.P.

Project: C44-Resevior

Geotechnical Engineering Laboratory

Project No: 24752-40911

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3 in. 3/4 in. #4 #10 #20 #40 #100 #200	100.0 100.0 100.0 100.0 99.7 91.1 35.0 2.7	·	

Poorly graded sa	Soil Description and	
PL=	Atterberg Limits	Pl=
D ₈₅ = 0.362 D ₃₀ = 0.137 C _u = 2.56	Coefficients D ₆₀ = 0.228 D ₁₅ = 0.0998 C _C = 0.92	D ₅₀ = 0.194 D ₁₀ = 0.0890
USCS= SP	Classification AASHT	O=
As received mois	Remarks sture content = 8.0%	

* (no specification provided)

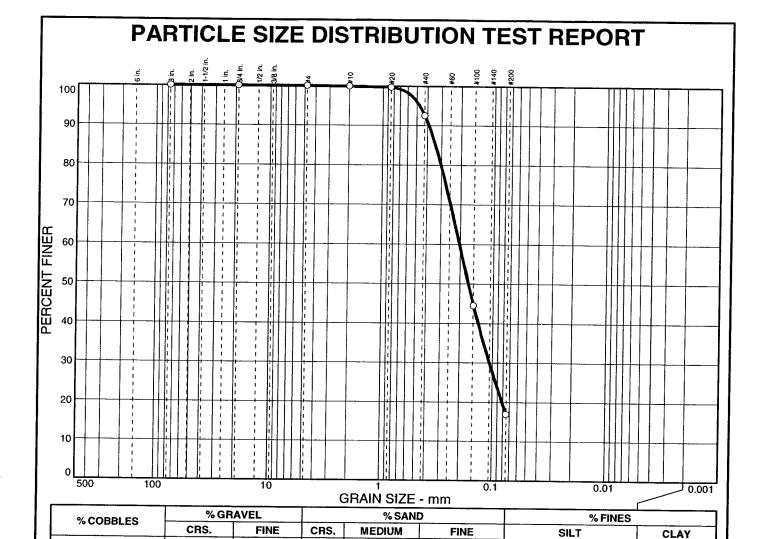
Sample No.: S-1

Source of Sample:

Date: 3/9/04

Location: TP-14

Elev./Depth: 1-2


CDM Jessberger

Client: Aquacalma L.P.

Project: C44-Resevior

Geotechnical Engineering Laboratory

Project No: 24752-40911

75.6

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3 in. 3/4 in. #4 #10 #20 #40 #100 #200	100.0 100.0 100.0 99.9 99.7 92.5 44.5 16.9		

0.0

0.0

0.1

Clayey sand	Soil Description]
PL= 16	Atterberg Limits	PI= 11
D ₈₅ = 0.341 D ₃₀ = 0.107 C _u =	Coefficients D ₆₀ = 0.204 D ₁₅ = C _c =	D ₅₀ = 0.168 D ₁₀ =
USCS= SC	Classification AASHT	Ō=
As received mois	Remarks sture content = 16.0%	,

(no specification provided)

Sample No.: S-2

Source of Sample:

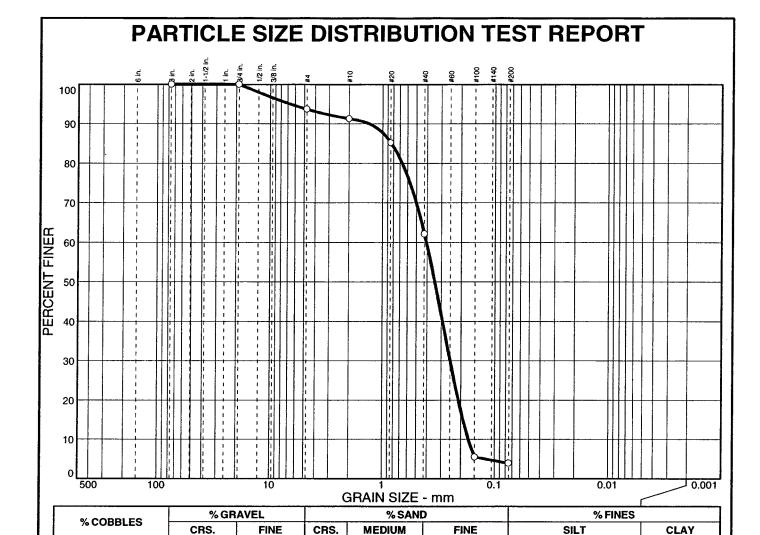
Date: 3/9/04

Location: TP-14

0.0

Elev./Depth: 2-5

16.9


CDM Jessberger

Client: Aquacalma L.P.

Project: C44-Resevior

Geotechnical Engineering Laboratory

Project No: 24752-40911

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3 in. 3/4 in. #4 #10 #20 #40 #100 #200	100.0 100.0 93.7 91.3 85.2 62.1 5.5 3.9		

6.3

2.4

29.2

58.2

	Soil Description	!
Poorly graded sa	and	
PL= NP	Atterberg Limits LL= NP	PI= NP
D ₈₅ = 0.841 D ₃₀ = 0.250 C _u = 2.39	Coefficients D ₆₀ = 0.408 D ₁₅ = 0.191 C _c = 0.89	D ₅₀ = 0.344 D ₁₀ = 0.171
USCS= SP	Classification AASH1	*O=
As received moi	Remarks sture content = 29.6%	

* (no specification provided)

Sample No.: S-3

0.0

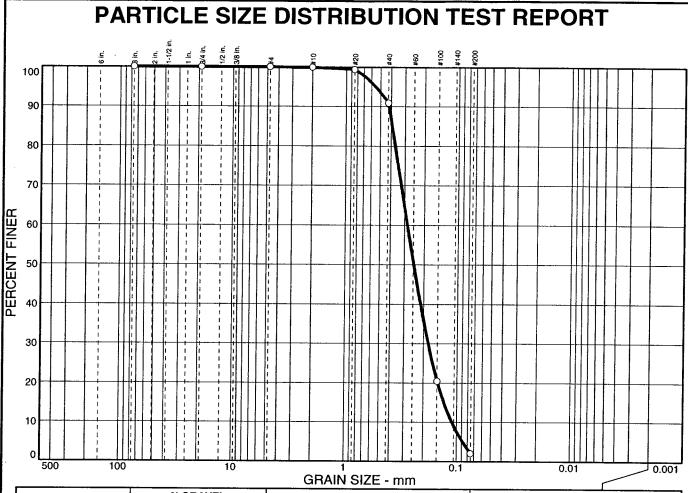
Source of Sample:

Date: 3/9/04

Location: TP-14

Elev./Depth: 5-8

3.9


CDM Jessberger

Client: Aquacalma L.P.

Project: C44-Resevior

Geotechnical Engineering Laboratory

Project No: 24752-40911

% COBBLES	% GRAVEL % SAND			% FINES			
70 CODDLES	CRS.	FINE	CRS.	MEDIUM	FINE	SILT	CLAY
0.0	0.0	0.0	0.1	9.0	88.9	2.0	

	SIEVE	PERCENT	SPEC.*	PASS?
	SIZE	FINER	PERCENT	(X=NO)
	3 in. 3/4 in. #4 #10 #20 #40 #100 #200	100.0 100.0 100.0 99.9 99.4 90.9 20.4 2.0		
l				

	Soil Description	!		
Poorly graded sa	and			
PL=	Atterberg Limits LL=	: Pl=		
D ₈₅ = 0.393	Coefficients D ₆₀ = 0.283	Dro= 0.247		
D ₃₀ = 0.181 C _u = 2.56	$D_{15} = 0.131$ $C_{c} = 1.05$	D ₅₀ = 0.247 D ₁₀ = 0.111		
USCS= SP	Classification	-0		
7,110.110=				
Remarks As received moisture content = 13.3%				
As received moi	sture content = 13.3%	•		

* (no specification provided)

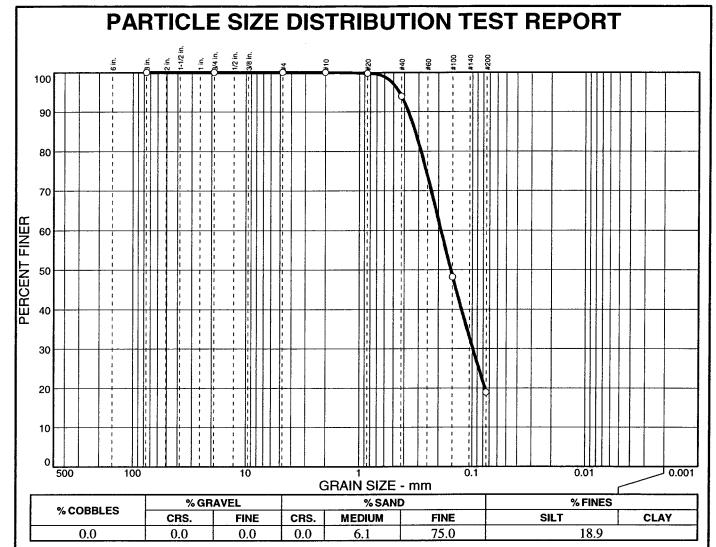
Sample No.: S-1

Source of Sample:

Date: 3/9/04

Location: TP-15

Elev./Depth: 2-4


CDM Jessberger

Client: Aquacalma L.P.

Project: C44-Resevior

Geotechnical Engineering Laboratory

Project No: 24752-40911

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3 in. 3/4 in. #4 #10 #20 #40 #100 #200	100.0 100.0 100.0 100.0 99.8 93.9 48.2 18.9		

Clayey sand	Soil Description	1		
PL= 17	Atterberg Limits	PI= 11		
D ₈₅ = 0.323 D ₃₀ = 0.0990 C _u =	Coefficients D ₆₀ = 0.190 D ₁₅ = C _c =	D ₅₀ = 0.156 D ₁₀ =		
USCS= SC	Classification AASH	ГО=		
Remarks As received moisture content = 19.4%				

* (no specification provided)

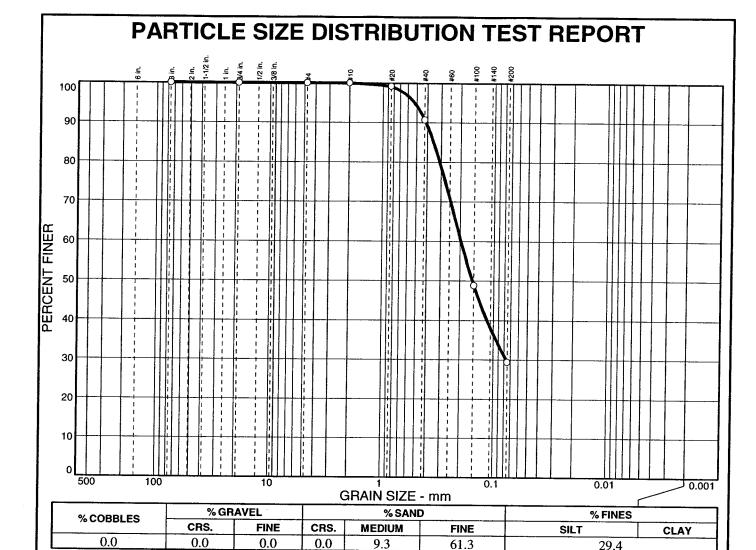
Sample No.: S-2

Source of Sample:

Date: 3/9/04

Location: TP-15

Elev./Depth: 4-7


CDM Jessberger

Client: Aquacalma L.P.

Project: C44-Resevior

Geotechnical Engineering Laboratory

Project No: 24752-40911

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3 in. 3/4 in. #4 #10 #20 #40 #100 #200	100.0 100.0 100.0 100.0 99.2 90.7 48.8 29.4		

	Soil Description]
Silty sand		
DI	Atterberg Limits	
PL=	LL=	PI=
	Coefficients	
D ₈₅ = 0.354 D ₃₀ = 0.0769	$D_{60} = 0.197$	$D_{50} = 0.155$
$C_{11} = 0.0769$	D ₁₅ = C _c =	D ₁₀ =
u		
USCS= SM	Classification AASH1	ΓΩ-
0000- biii	AAOITI	10=
	<u>Remarks</u>	
As received moisture content = 18.3%		
Soil classification and description based		
on Visual-Manu	al Procedure (ASTM-	·D2488)

61.3

* (no specification provided)

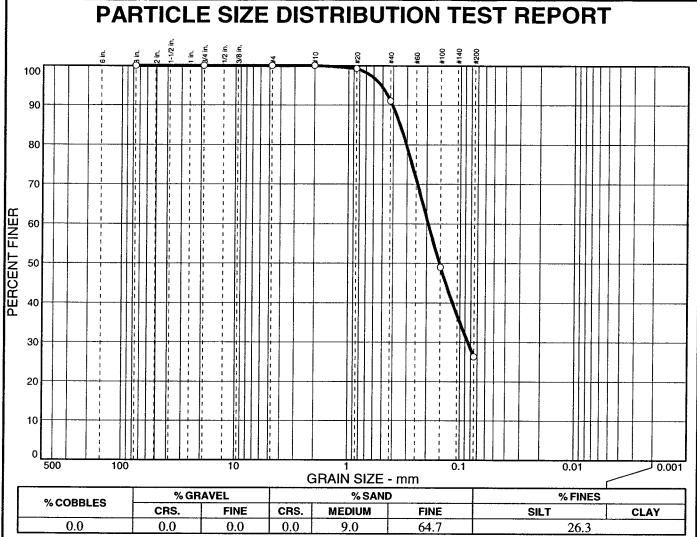
Sample No.: S-1

Source of Sample:

Date: 3/9/04

Location: TP-16

Elev./Depth: 1.4-4


29.4

CDM Jessberger

Client: Aquacalma L.P. Project: C44-Resevior

Geotechnical Engineering Laboratory

Project No: 24752-40911

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3 in. 3/4 in. #4 #10 #20 #40 #100 #200	100.0 100.0 100.0 100.0 99.3 91.0 49.0 26.3		

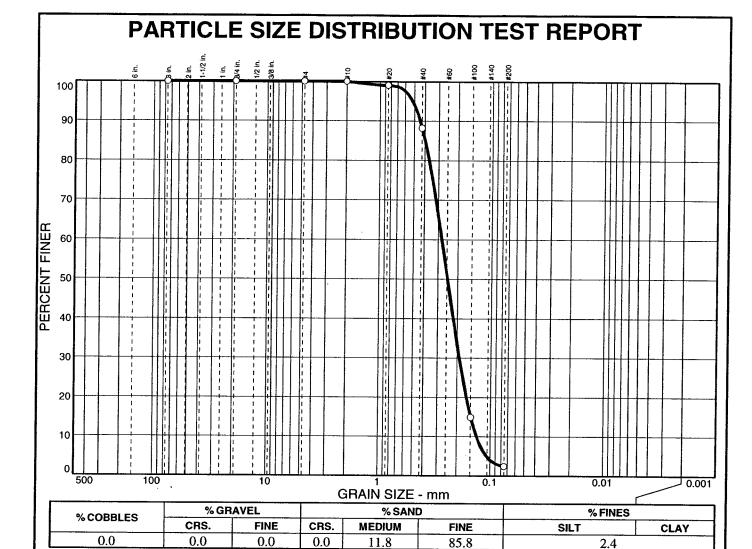
clayey sand	Soil Description	1
PL= 20	Atterberg Limits	PI= 9
D ₈₅ = 0.349 D ₃₀ = 0.0851 C _u =	$\begin{array}{c} \underline{\text{Coefficients}} \\ D_{60} = 0.194 \\ D_{15} = \\ C_{c} = \end{array}$	D ₅₀ = 0.154 D ₁₀ =
USCS= SC	Classification AASH	ΓO=
Remarks As received moisture content = 10.6%		

Sample No.: S-2

Source of Sample:

Date: 3/9/04

Location: TP-16


Elev./Depth: 4-9

CDM Jessberger

Client: Aquacalma L.P. Project: C44-Resevior

Geotechnical Engineering Laboratory

Project No: 24752-40911

-	SIEVE	PERCENT	SPEC.*	PASS?
	SIZE	FINER	PERCENT	(X=NO)
	3 in. 3/4 in. #4 #10 #20 #40 #100 #200	100.0 100.0 100.0 100.0 99.0 88.2 14.9 2.4		
		B	·	

Soil Description			
Poorly graded sand			
PL=	Atterberg Limits	PI=	
D ₈₅ = 0.399 D ₃₀ = 0.192 C _u = 2.10	Coefficients D ₆₀ = 0.279 D ₁₅ = 0.150 C _C = 0.99	D ₅₀ = 0.247 D ₁₀ = 0.133	
USCS= SP	Classification AASH1	O=	
Remarks As received moisture content = 10.2%			

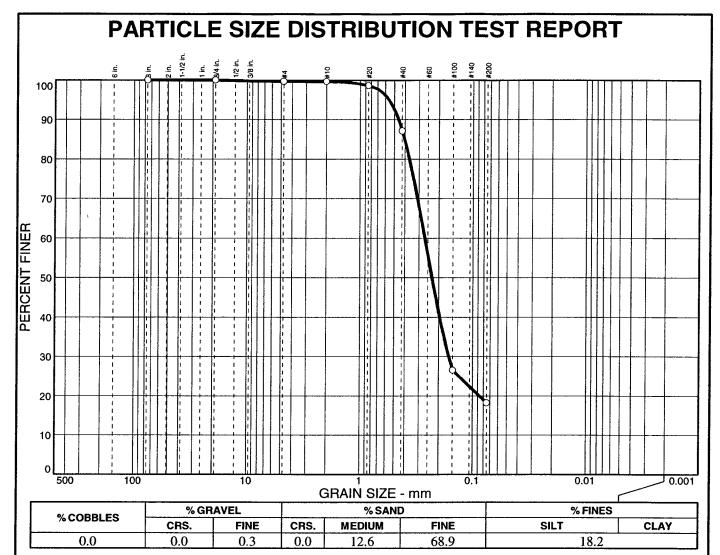
Sample No.: S-1

Source of Sample:

Date: 3/9/04

Location: TP-17

Elev./Depth: 1-3


CDM Jessberger

Client: Aquacalma L.P.

Project: C44-Resevior

Geotechnical Engineering Laboratory

Project No: 24752-40911

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3 in. 3/4 in. #4 #10 #20 #40 #100 #200	100.0 100.0 99.7 99.7 98.6 87.1 26.5 18.2		

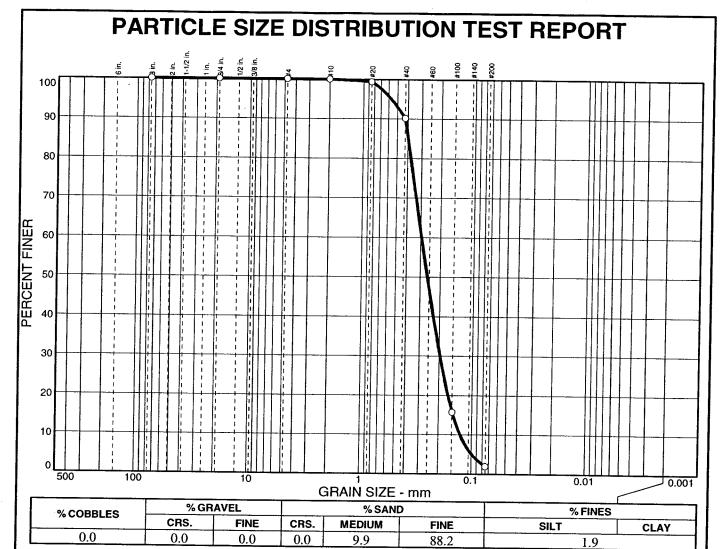
Silty, clayey sand	Soil Description	
PL= 20	Atterberg Limits	Pl= 4
D ₈₅ = 0.405 D ₃₀ = 0.163 C _U =	Coefficients D ₆₀ = 0.267 D ₁₅ = C _c =	D ₅₀ = 0.230 D ₁₀ =
USCS= SC-SM	Classification	⁻O=
As received mois	Remarks ture content = 18.7%	,

Sample No.: S-3

Source of Sample:

Date: 3/9/04

Location: TP-17


Elev./Depth: 5-8

CDM Jessberger

Client: Aquacalma L.P. Project: C44-Resevior

Geotechnical Engineering Laboratory

Project No: 24752-40911

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3 in. 3/4 in. #4 #10 #20 #40 #100 #200	100.0 100.0 100.0 100.0 99.4 90.1 15.7 1.9		
*			

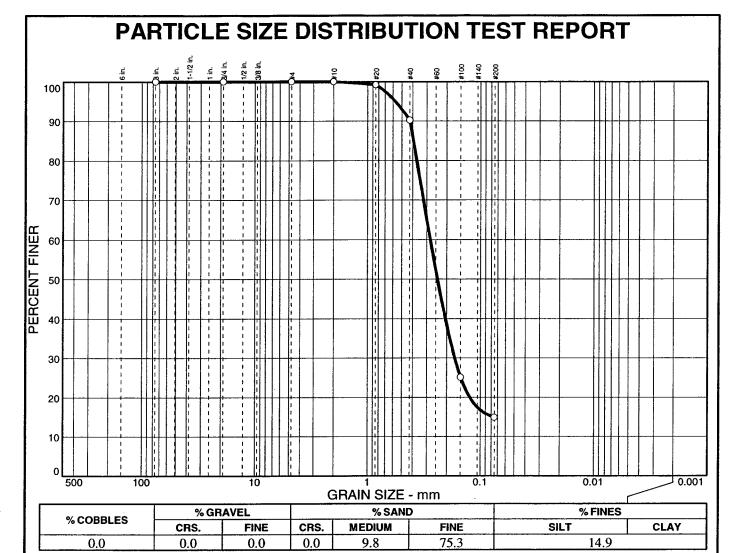
	Soil Description	
Poorly graded sand		
PL=	Atterberg Limits LL=	PI=
D ₈₅ = 0.400 D ₃₀ = 0.196 C _u = 2.32	Coefficients D60= 0.295 D15= 0.147 C _C = 1.03	D ₅₀ = 0.260 D ₁₀ = 0.127
USCS= SP	Classification AASHT	O=
Remarks As received moisture content = 3.9%		

Sample No.: S-1

Source of Sample:

Date: 3/9/04

Location: TP-18


Elev./Depth: 3-6

CDM Jessberger

Client: Aquacalma L.P. Project: C44-Resevior

Geotechnical Engineering Laboratory

Project No: 24752-40911

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3 in. 3/4 in. #4 #10 #20 #40 #100 #200	100.0 100.0 100.0 100.0 99.2 90.2 25.1 14.9		

	Soil Description	
Silty, clayey sand		
	Atterberg Limits	
PL= 20	LL= 27	PI= 7
D 0.007	Coefficients	D 0.040
D ₈₅ = 0.396 D ₃₀ = 0.170 C _U =	D ₆₀ = 0.280 D ₁₅ = 0.0766	D ₅₀ = 0.242 D ₁₀ =
Cu≕	C _c =	
11000 aa aa	Classification	
USCS= SC-SM	AASHTO=	:
A	Remarks	
As received moisti	ire content = 16.5%	

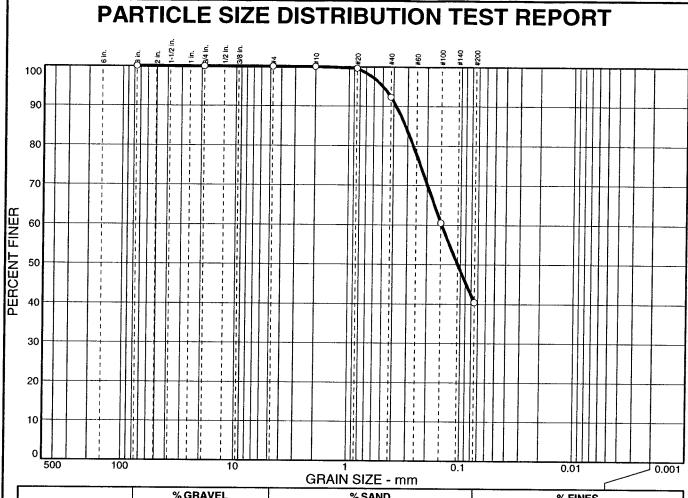
Sample No.: S-2

Source of Sample:

Date: 3/9/04

Location: TP-18

Elev./Depth: 6-11


CDM Jessberger

Client: Aquacalma L.P.

Project: C44-Resevior

Geotechnical Engineering Laboratory

Project No: 24752-40911

% COBBLES	% GF	RAVEL		%SAND	-	% FINES	
70 OODDEE0	CRS.	FINE	CRS.	MEDIUM	FINE	SILT	CLAY
0.0	0.0	0.0	0.0	7.7	51.9	40.4	······

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3 in. 3/4 in. #4 #10 #20 #40 #100 #200	100.0 100.0 100.0 100.0 99.6 92.3 60.5 40.4		

	Soil Description	
Silty sand		
PL=	Atterberg Limits	PI=
		• •-
D ₈₅ = 0.316	<u>Coefficients</u> D ₆₀ = 0.148	D ₅₀ = 0.106
D ₃₀ = C _u =	D ₁₅ =	D ₁₀ =
C _u =	C _C =	
	Classification	
USCS= SM	AASHT	O=
	Remarks	
As received mois	sture content = 21.9%	
Soil classification	n and description base	ed
	al Procedure (ASTM-I	

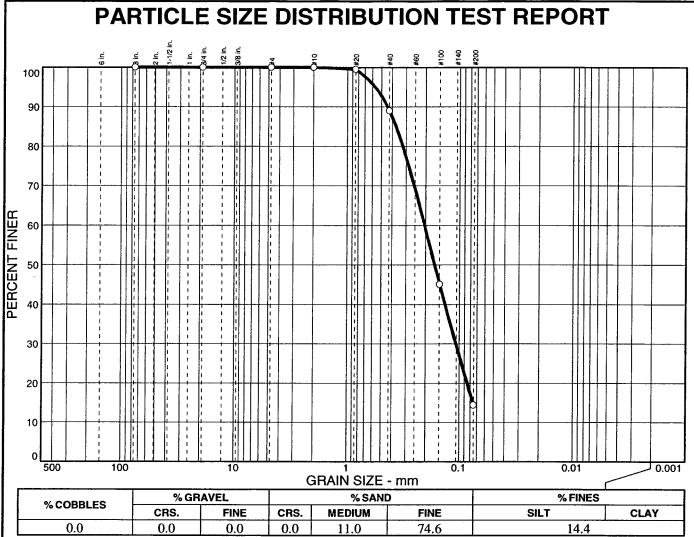
Sample No.: S-1

Source of Sample:

Date: 3/9/04

Location: TP-19

Elev./Depth: 1-4


CDM Jessberger

Client: Aquacalma L.P.

Project: C44-Resevior

Geotechnical Engineering Laboratory

Project No: 24752-40911

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3 in. 3/4 in. #4 #10 #20 #40 #100 #200	100.0 100.0 100.0 100.0 99.5 89.0 45.1 14.4		

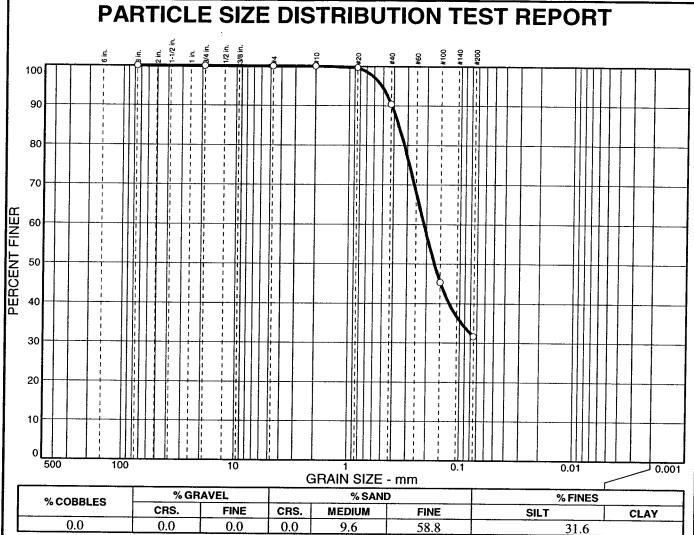
Clayey sand	Soil Description	
PL= 14	Atterberg Limits LL= 28	PI= 14
D ₈₅ = 0.372 D ₃₀ = 0.107 C _u =	Coefficients D ₆₀ = 0.205 D ₁₅ = 0.0761 C _C =	D ₅₀ = 0.166 D ₁₀ =
USCS= SC	Classification AASHT	O=
As received mois	Remarks sture content = 8.5%	

Sample No.: S-2

Source of Sample:

Date: 3/9/04

Location: TP-19


Elev./Depth: 4-7

CDM Jessberger

Client: Aquacalma L.P. Project: C44-Resevior

Geotechnical Engineering Laboratory

Project No: 24752-40911

	SIEVE	PERCENT	SPEC.*	PASS?
	SIZE	FINER	PERCENT	(X=NO)
	3 in. 3/4 in. #4 #10 #20 #40 #100 #200	100.0 100.0 100.0 100.0 99.7 90.4 45.3 31.6		
•	*			

	Soil Description	<u> </u>
Silty sand		
	Atterberg Limits	;
PL=	LL=	Pl=
_	Coefficients	
D ₈₅ = 0.364	$D_{60} = 0.212$	$D_{50} = 0.170$
D ₃₀ = C _u =	D ₁₅ = C _c =	D ₁₀ =
	Classification	
USCS= SM	AASHT	O=
	Remarks	
As received mois	sture content = 15.6%	
Soil classification	n and description base	ed
on Visual-Manua	al Procedure (ASTM-	D2488)

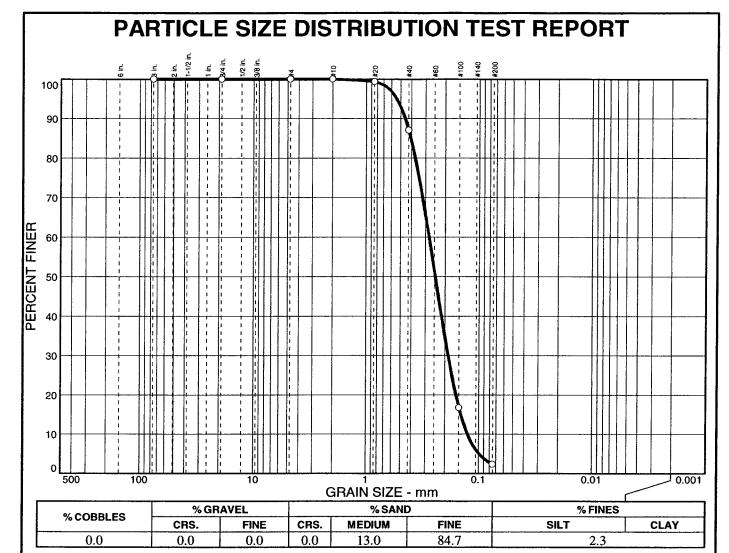
Sample No.: S-1

Source of Sample:

Date: 3/9/04

Location: TP-20

Elev./Depth: .5-3


CDM Jessberger

Client: Aquacalma L.P.

Project: C44-Resevior

Geotechnical Engineering Laboratory

Project No: 24752-40911

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3 in. 3/4 in. #4 #10 #20 #40 #100 #200	100.0 100.0 100.0 100.0 99.4 87.0 16.7 2.3		-

Soil Description Poorly graded sand					
PL= NP	Atterberg Limits	PI= NP			
D ₈₅ = 0.408 D ₃₀ = 0.188 C _u = 2.22	$\begin{array}{c} \underline{\text{Coefficients}} \\ \text{D}_{60} = 0.280 \\ \text{D}_{15} = 0.145 \\ \text{C}_{\text{C}} = 1.00 \end{array}$	D ₅₀ = 0.246 D ₁₀ = 0.126			
USCS= SP	Classification AASHT	ГО=			
Remarks As received moisture content = 6.9%					

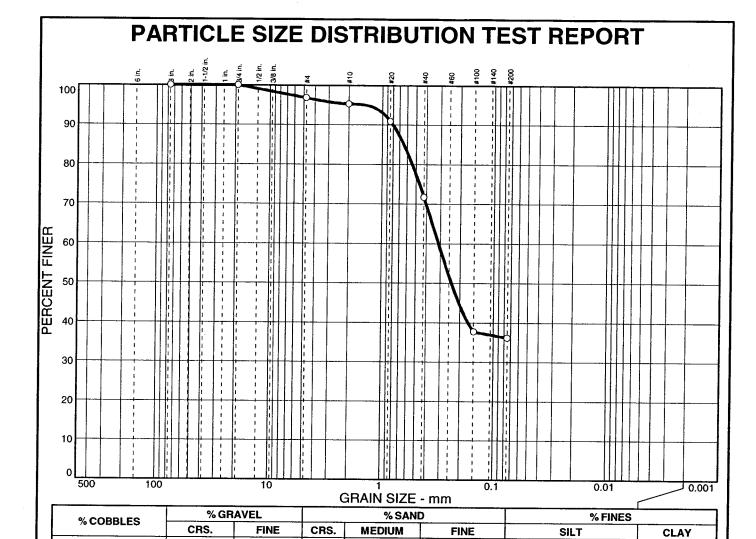
Sample No.: S-2

Source of Sample:

Date: 3/9/04

Location: TP-20

Elev./Depth: 3-5


CDM Jessberger

Client: Aquacalma L.P.

Project: C44-Resevior

Geotechnical Engineering Laboratory

Project No: 24752-40911

23.6

35.5

1.5

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3 in. 3/4 in. #4 #10 #20 #40 #100 #200	100.0 100.0 96.8 95.3 90.9 71.7 37.7 36.2		

0.0

	Soil Description]
Clayey sand		
PL= 12	Atterberg Limits LL= 37	PI= 25
D ₈₅ = 0.645 D ₃₀ = C _u =	Coefficients D ₆₀ = 0.313 D ₁₅ = C _c =	D ₅₀ = 0.239 D ₁₀ =
USCS= SC	Classification AASH1	
As received mois	Remarks sture content = 17.2%)

* (no specification provided)

Sample No.: S-3

0.0

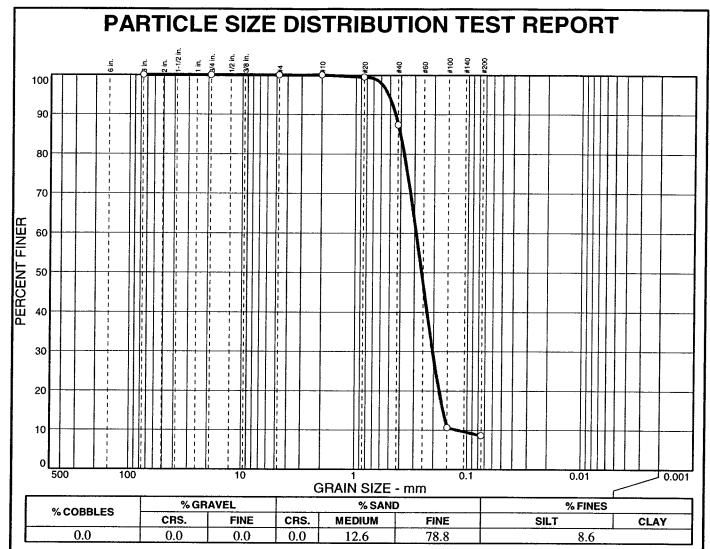
Source of Sample:

Date: 3/9/04

Location: TP-20

Elev./Depth: 5-12

36.2


CDM Jessberger

Client: Aquacalma L.P.

Project: C44-Resevior

Geotechnical Engineering Laboratory

Project No: 24752-40911

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3 in. 3/4 in. #4 #10 #20 #40 #100 #200	100.0 100.0 100.0 100.0 99.5 87.4 10.6 8.6		

Poorly graded san	Soil Description of with silt	n
PL=	Atterberg Limit	<u>s</u> Pl=
D ₈₅ = 0.407 D ₃₀ = 0.205 C _u = 2.39	Coefficients D ₆₀ = 0.291 D ₁₅ = 0.164 C _c = 1.18	D ₅₀ = 0.259 D ₁₀ = 0.122
USCS= SP-SM	Classification AASH	TO=
Soil classification	Remarks ure content = 14.89 and description bas Procedure (ASTM	sed

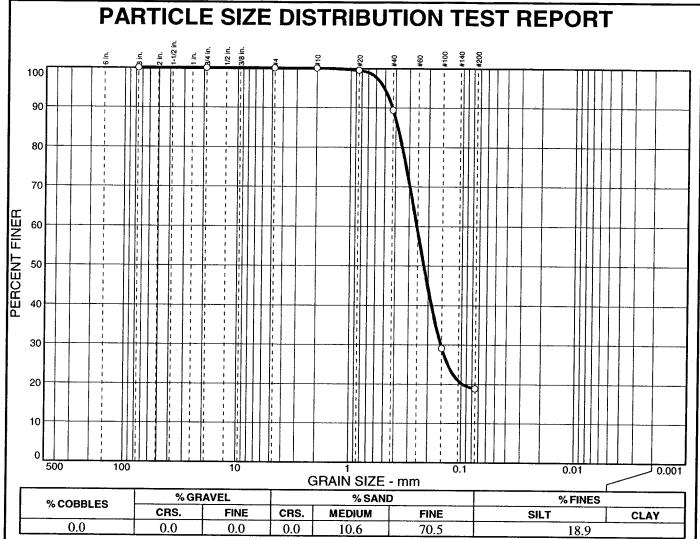
Sample No.: S-1

Location: TP-22

Source of Sample:

Date: 3/9/04

Elev./Depth: .5-3


CDM Jessberger

Client: Aquacalma L.P.

Project: C44-Resevior

Geotechnical Engineering Laboratory

Project No: 24752-40911

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3 in. 3/4 in. #4 #10 #20 #40 #100 #200	100.0 100.0 100.0 100.0 99.5 89.4 29.1 18.9		

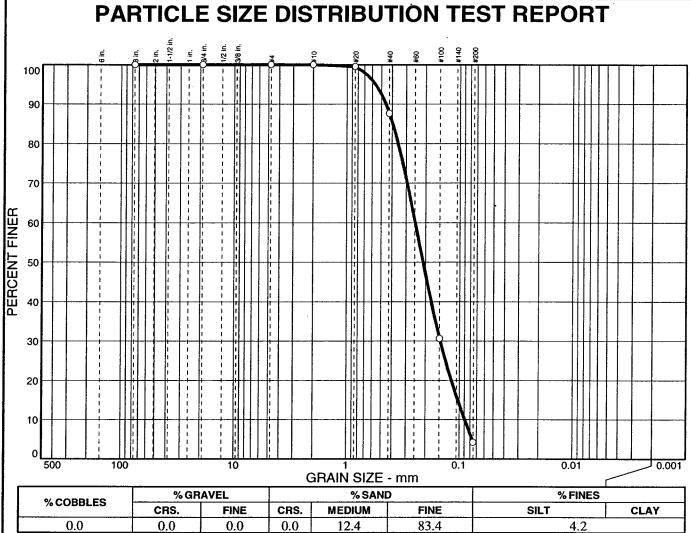
Clayey sand	Soil Description	1
PL= 14	Atterberg Limits	<u>s</u> Pl= 11
D ₈₅ = 0.385 D ₃₀ = 0.153 C _u =	<u>Coefficients</u> D ₆₀ = 0.255 D ₁₅ = C _c =	D ₅₀ = 0.220 D ₁₀ =
USCS= SC	Classification AASH	ГО=
Remarks As received moisture content = 21.2%		

Sample No.: S-2

Source of Sample:

Date: 3/9/04

Location: TP-22


Elev./Depth: 3-6

CDM Jessberger

Client: Aquacalma L.P. **Project:** C44-Resevior

Geotechnical Engineering Laboratory

Project No: 24752-40911

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3 in. 3/4 in. #4 #10 #20 #40 #100 #200	100.0 100.0 100.0 100.0 99.5 87.6 30.6 4.2		

12.7	05.4	J	7.4
Poorly	So y graded sand	il Description	
PL=	<u>Att</u>	erberg Limits L=	PI=
D ₈₅ = D ₃₀ = C _u =	: 0.397 D	Coefficients 60= 0.248 15= 0.104 c= 0.99	D ₅₀ = 0.211 D ₁₀ = 0.0897
USCS	S= SP <u>C</u>	lassification AASHTO=	
As rec	ceived moisture of	Remarks content = 11.1%	

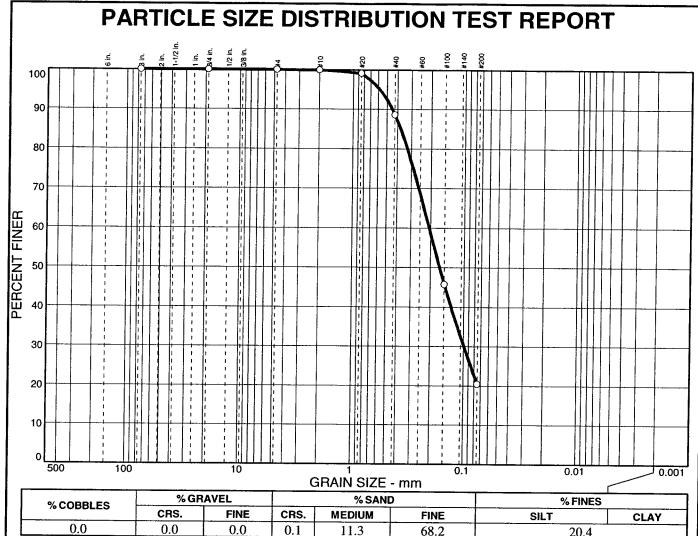
Sample No.: S-1

Source of Sample:

Date: 3/9/04

Elev./Depth: .5-3

Location: TP-23


Client: Aquacalma L.P.

Project: C44-Resevior

Geotechnical Engineering Laboratory

CDM Jessberger

Project No: 24752-40911

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3 in. 3/4 in. #4 #10 #20 #40 #100 #200	100.0 100.0 100.0 99.9 99.1 88.6 45.7 20.4		

11.5 1 00.2		20.4
Silty sand	Soil Description	n
PL= NP	Atterberg Limit	<u>s</u> Pl= NP
D ₈₅ = 0.377 D ₃₀ = 0.0993 C _u =	$\begin{array}{c} \underline{\text{Coefficients}} \\ \text{D}_{60} = 0.207 \\ \text{D}_{15} = \\ \text{C}_{c} = \end{array}$	D ₅₀ = 0.166 D ₁₀ =
USCS= SM	Classification AASH	TO=
As received mois	Remarks sture content = 28.79	%

Sample No.: S-2

Source of Sample:

Date: 3/9/04 **Elev./Depth:** 3-5

Location: TP-23

Client: Aquacalma L.P. Project: C44-Resevior

Geotechnical Engineering Laboratory

CDM Jessberger

Project No: 24752-40911

Geotechnical Engineering Laboratory

Standard Test Method for Moisture, Ash, and Organic Matter of Peat and Other Organic Soils(ASTM D2974)

Client:	Aquacalma L.P	
Project Name:	C-44 Reservoir Project	Tested By: ADT
		Test Date:
Project Location:	Indiantown, FL	
Project Number:	24752-40911	Procedure: C
Sample Number:	S-1	Temperature: 440 °C
Sample Depth(ft):	.5-4'	
Sample Date:	3/9/2004	
Sample Location:	TP-11	
Lab ID Number:	4929	

AS RECEIVED MOISTURE CONTENT		
Tin Dish Identity	QR6	
Tin Mass (g)	9.4	
Wet Mass of Sample & Tin (g)	329.8	
Dry Mass of Sample & Tin (g)	312.8	
Mass of Water (g)	17.0	
Mass of Dry Soil (g)	303.5	
Moisture Content (%)	5.6	

ASH CONTENT	
Porcelain Dish Identity	KY
Porcelain Dish Mass (g)	19.4
Porcelain Dish + Oven Dried Soil (g)	51.3
Mass of Oven Dried Soil (g)	31.9
Mass of Dish & Burned Soil (g)	51.1
Mass of Burned Soil (g)	31.7
Mass of Organic Material (g)	0.2
Ash Content (%)	99.3

Geotechnical Engineering Laboratory

Standard Test Method for Moisture, Ash, and Organic Matter of Peat and Other Organic Soils(ASTM D2974)

Client:	Aquacalma L.P		
Project Name:	C-44 Reservoir Project	Tested By:	ADT
		Test Date:	
Project Location:	Indiantown, FL	-	
Project Number:	24752-40911	Procedure:	С
Sample Number:	S-1	Temperature:	440 °C
Sample Depth(ft):	1.5-4	• –	
Sample Date:	3/9/2004		
Sample Location:	TP-16		
Lab ID Number:	4939		

AS RECEIVED MOISTURE CONTENT	
Tin Dish Identity	JP3
Tin Mass (g)	9.0
Wet Mass of Sample & Tin (g)	67:0
Dry Mass of Sample & Tin (g)	59.1
Mass of Water (g)	7.9
Mass of Dry Soil (g)	50.1
Moisture Content (%)	15.7

ASH CONTENT	-
Porcelain Dish Identity	T
Porcelain Dish Mass (g)	19.1
Porcelain Dish + Oven Dried Soil (g)	50.8
Mass of Oven Dried Soil (g)	31.7
Mass of Dish & Burned Soil (g)	50.4
Mass of Burned Soil (g)	31.3
Mass of Organic Material (g)	0.4
Ash Content (%)	98.7

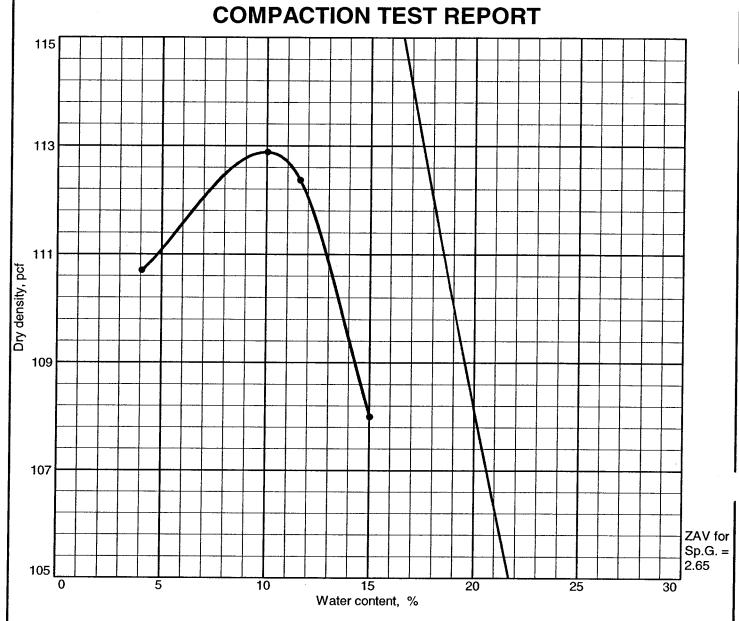
Geotechnical Engineering Laboratory

Standard Test Method for Moisture, Ash, and Organic Matter of Peat and Other Organic Soils(ASTM D2974)

Client:	Aquacalma L.P	
Project Name:	C-44 Reservoir Project	Tested By: ADT
•		Test Date:
Project Location:	Indiantown, FL	
Project Number:	24752-40911	Procedure: C
Sample Number:	S-1	Temperature: 440 °C
Sample Depth(ft):	1-4'	•
Sample Date:	3/9/2004	•
Sample Location:	TP-19	
Lab ID Number:	4945	

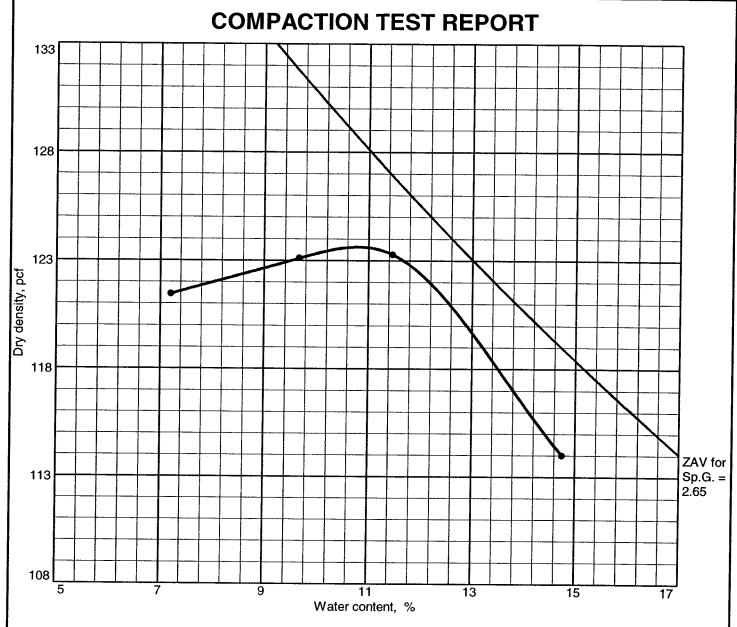
AS RECEIVED MOISTURE CONTENT			
Tin Dish Identity	l16		
Tin Mass (g)	9.1		
Wet Mass of Sample & Tin (g)	271.3		
Dry Mass of Sample & Tin (g)	224.2		
Mass of Water (g)	47.1		
Mass of Dry Soil (g)	215.1		
Moisture Content (%)	21.9		

ASH CONTENT			
Porcelain Dish Identity	PP		
Porcelain Dish Mass (g)	17.7		
Porcelain Dish + Oven Dried Soil (g)	47.4		
Mass of Oven Dried Soil (g)	29.8		
Mass of Dish & Burned Soil (g)	46.8		
Mass of Burned Soil (g)	29.2		
Mass of Organic Material (g)	0.6		
Ash Content (%)	97.9		

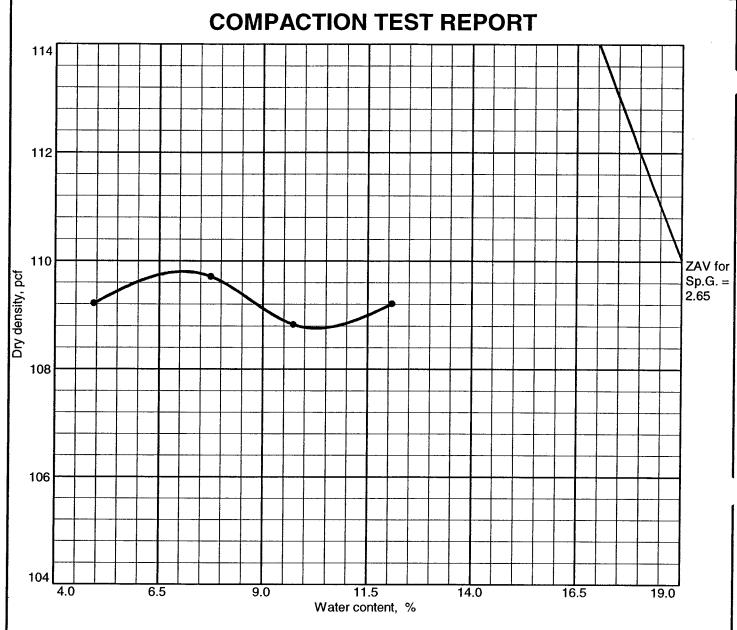

Geotechnical Engineering Laboratory

Standard Test Method for Moisture, Ash, and Organic Matter of Peat and Other Organic Soils(ASTM D2974)

Client:	Aquacalma L.P	
Project Name:	C-44 Reservoir Project	Tested By: ADT
		Test Date:
Project Location:	Indiantown, FL	
Project Number:	24752-40911	Procedure: C
Sample Number:	S-1	Temperature: 440 °C
Sample Depth(ft):	.5-3'	
Sample Date:	3/9/2004	
Sample Location:	TP-20	
Lab ID Number:	4947	


AS RECEIVED MOISTURE CONTENT			
Tin Dish Identity	QR8		
Tin Mass (g)	9.4		
Wet Mass of Sample & Tin (g)	290.3		
Dry Mass of Sample & Tin (g)	252.5		
Mass of Water (g)	37.9		
Mass of Dry Soil (g)	243.1		
Moisture Content (%)	15.6		

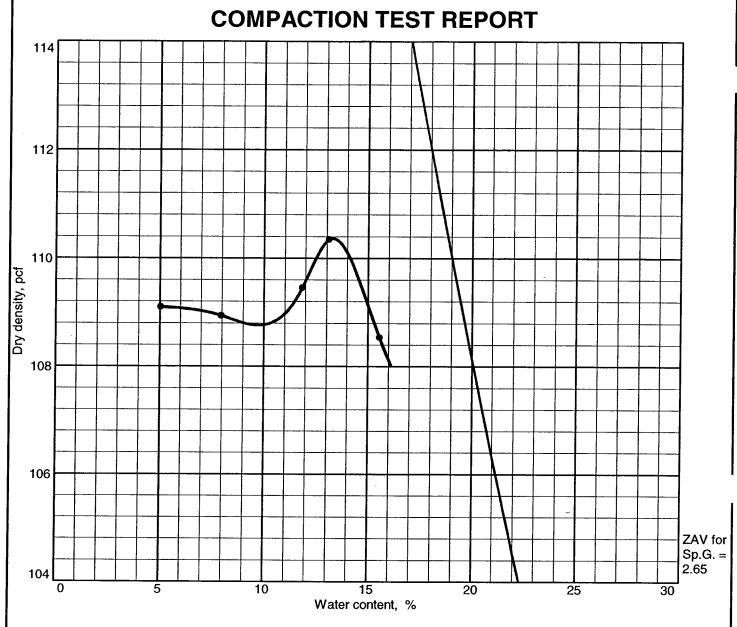
ASH CONTENT	****
Porcelain Dish Identity	K
Porcelain Dish Mass (g)	18.6
Porcelain Dish + Oven Dried Soil (g)	41.1
Mass of Oven Dried Soil (g)	22.5
Mass of Dish & Burned Soil (g)	41.1
Mass of Burned Soil (g)	22.5
Mass of Organic Material (g)	0.0
Ash Content (%)	99.8


Elev/	Classi	fication	Nat.	67.6		D.	%>	%<
Depth	USCS	AASHTO	Moist.	Sp.G.	LL	PI	No.4	No.200
.5-4	SM			2.65			0.0	22.5

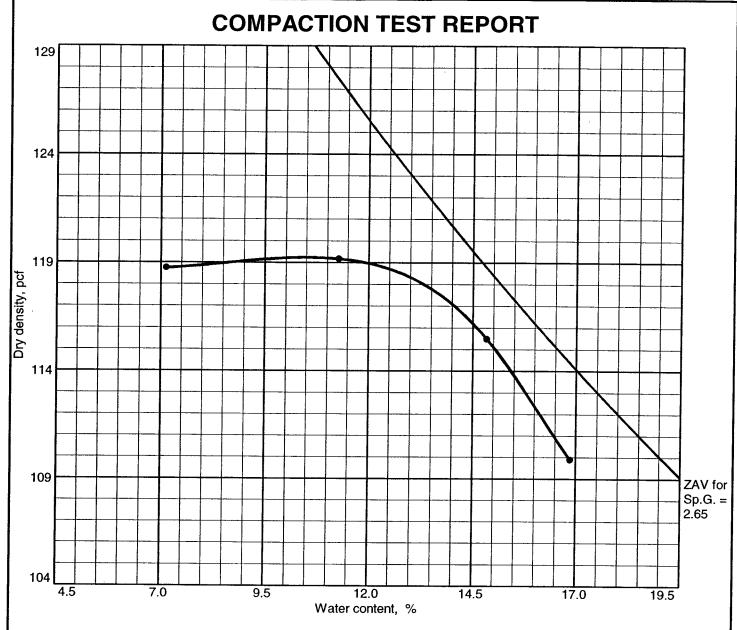
TEST RESULTS	MATERIAL DESCRIPTION
Maximum dry density = 112.9 pcf	Silty sand
Optimum moisture = 10.0 %	
Project No. 24752-40911 Client: Aquacalma L.P.	Remarks:
Project: C44-Resevior	TP-11 S-1
• Location: TP-11	0.5'-4'
COMPACTION TEST REPORT	
CDM Jessberger Geotechnical Engineering Laboratory	Plate

Elev/	Class	ification	Nat.			I	%>	%<	
Depth	USCS	AASHTO	Moist.	Sp.G.	Moist. Sp.G.	LL	PI		No.200
4-5.5	SM			2.65			0.3	18.1	

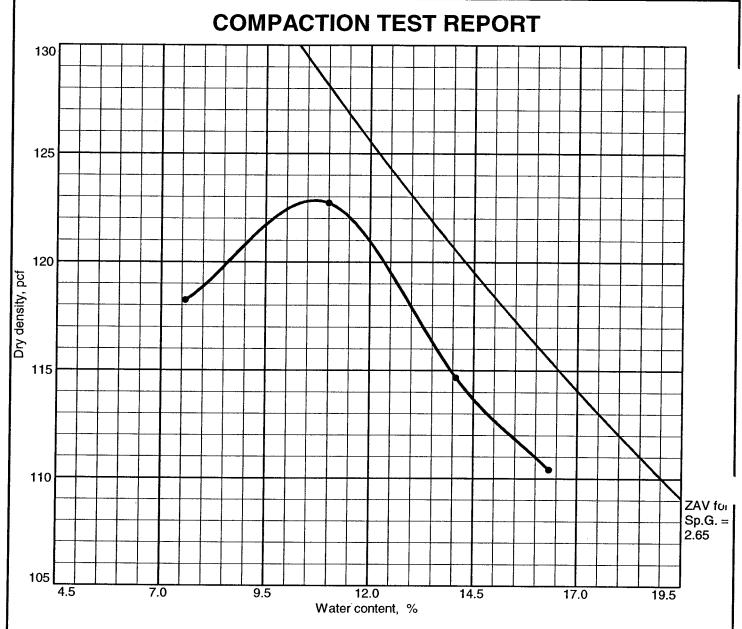
TEST RESULTS	MATERIAL DESCRIPTION
Maximum dry density = 123.6 pcf	Silty sand
Optimum moisture = 10.8 %	
Project No. 24752-40911 Client: Aquacalma L.P.	Remarks:
Project: C44-Resevior	TP-11
Location: TP-11	S-2 4'-5.5'
COMPACTION TEST REPORT CDM Jessberger Geotechnical Engineering Laboratory	Plate


Elev/	Classi	fication	Nat.	C= C		DI	%>	%<
Depth	USCS	AASHTO	Moist.	Sp.G.	LL	PI	No.4	No.200
1.4-4	SM			2.65			0.0	29.4

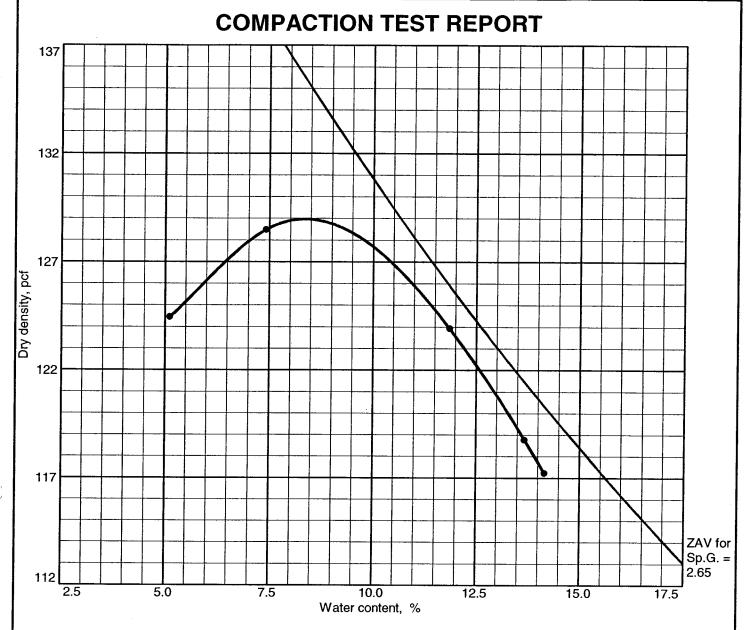
TEST RESULTS	MATERIAL DESCRIPTION		
Maximum dry density = 109.8 pcf	Silty sand		
Optimum moisture = 7.1 %			
Project No. 24752-40911 Client: Aquacalma L.P.	Remarks:		
Project: C44-Resevior	TP-16 S-1		
• Location: TP-16	Depth: 1.5'-4'		
COMPACTION TEST REPORT			
CDM Jessberger Geotechnical Engineering Laboratory	Plate		


Elev/	Class	ification	Nat.			Ī	%>	%<
Depth	USCS	AASHTO	Moist.	Sp.G.	LL	PI	No.4	No.200
4-9	SM			2.65			0.0	26.3

TEST RESULTS	MATERIAL DESCRIPTION
Maximum dry density = 122.2 pcf	Silty sand
Optimum moisture = 9.9 %	
Project No. 24752-40911 Client: Aquacalma L.P.	Remarks:
Project: C44-Resevior	TP-16 S-2
Location: TP-16	Depth: 4'-9'
COMPACTION TEST REPORT CDM Jessberger Geotechnical Engineering Laboratory	Diete
Geotechnical Engineering Laboratory	Plate


Elev/	Class	ification	Nat.	0-0			%>	%<
Depth	USCS	AASHTO	Moist.	Sp.G.	LL	PI	No.4	No.200
1-4	SM			2.65				40.4

TEST RESULTS	MATERIAL DESCRIPTION				
Maximum dry density = 110.4 pcf	Silty sand				
Optimum moisture = 13.3 %					
Project No. 24752-40911 Client: Aquacalma L.P.	Remarks:				
Project: C44-Resevior	TP-19 S-1				
• Location: TP-19	Depth: 1'-4'				
COMPACTION TEST REPORT					
CDM Jessberger Geotechnical Engineering Laboratory	Plate				


Elev/	Class	ification	Nat.	00			%>	%<
Depth	USCS	AASHTO	Moist.	Sp.G.	LL	Pi	No.4	No.200
4-7	SM	-		2.65			0.0	14.4

TEST RESULTS	MATERIAL DESCRIPTION
Maximum dry density = 119.2 pcf	Silty sand
Optimum moisture = 10.5 %	
Project No. 24752-40911 Client: Aquacalma L.P.	Remarks:
Project: C44-Resevior	TP-19
	S-2
• Location: TP-19	Depth: 4'-7'
COMPACTION TEST REPORT	
CDM Jessberger	
Geotechnical Engineering Laboratory	Plate Plate

Elev/	Classi	fication	Nat.	0-0		5.	%>	%<
Depth	USCS	AASHTO	Moist.	Sp.G.	LL	Pi	No.4	No.200
.5-3	SM			2.65			0.0	31.6

TEST RESULTS	MATERIAL DESCRIPTION
Maximum dry density = 122.8 pcf	Silty sand
Optimum moisture = 10.7 %	
Project No. 24752-40911 Client: Aquacalma L.P.	Remarks:
Project: C44-Resevior	TP-20 S-1
• Location: TP-20	0.5'-3'
COMPACTION TEST REPORT CDM Jessberger Geotechnical Engineering Laboratory	Plate

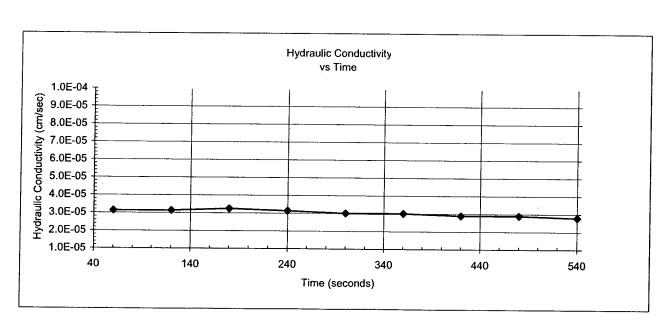
Elev/	Classi	fication	Nat.	00			%>	% <
Depth	USCS	AASHTO	Moist.	Sp.G.	LL	PI	No.4	No.200
5-12	SM			2.65			3.2	36.2

TEST RESULTS	MATERIAL DESCRIPTION
Maximum dry density = 129.0 pcf	Silty sand
Optimum moisture = 8.4 %	
Project No. 24752-40911 Client: Aquacalma L.P.	Remarks:
Project: C44-Resevior	TP-20 S-3
• Location: TP-20	5'-12'
COMPACTION TEST REPORT CDM Jessberger Gootoobnical Engineering Leberatory	
Geotechnical Engineering Laboratory	Plate

Hydraulic Conductivity Using Flexible Wall Permeameter (ASTM D5084)

Client: Aquacalma L.P Project Name: C-44 Resevoir Project **Project Location:** Indiantown, FL 24752-40911 Project Number: Sample Number: S-2 Sample Location: **TP-11** Depth (ft): 38086 Lab I.D. Number: 4930 Sample Description: 0 Test Type: Constant Head (Method A)

Tested by:	ADT
Checked by:	0
Start Test Date:	4/9/2004
Permeant Fluid:	De-aired water
Sample Preparation	
Procedures:	0
	0


Sample Characteristics	Initial	Final
Avg. length of specimen (in)	4.93	4.93
Avg. dia. of specimen (in)	2.43	2.43
Area (sq in)	4.64	4.64
Volume (cubic in)	22.83	22.83
Moist mass (g)	759.5	759.5
Moist unit weight (pcf)	126.7	126.7
Moisture content (%)	10.9	10.9
Dry density (pcf)	114.3	114.3
Specific gravity (assumed)	2.65	2.65
Void ratio	0.45	0.45

Test Specifications	
B-Value (%):	100.0
Consolidation stress (psi):	10.0
Gradient (in/in):	25.0
Cell pressure (psi):	59.1
Head pressure (psi):	51.4
Tail pressure (psi):	46.9
Max effective stress (psi):	12.2
Min effective stress (psi):	7.8

Comments: Sample was divided vertically in quarters.

No observed anomalies (ie rocks, voids, etc.).

Hydraulic Conductivity at 20 °C = 2.7E-05 cm/sec

Hydraulic Conductivity Using Flexible Wall Permeameter (ASTM D5084)

Client:	Aquacalma L.P
Project Name:	C-44 Resevoir Project
Project Location:	Indiantown, FL
Project Number:	24752-40911
Sample Number:	S-2
Sample Location:	TP-16
Depth (ft):	38086
Lab I.D. Number:	4940
Sample Description:	0
Test Type:	Constant Head (Method A)

Tested by:	ADT
Checked by:	0
Start Test Date:	4/9/2004
Permeant Fluid:	De-aired water
Sample Preparation	
Procedures:	0
	0

Sample Characteristics	Initial	Final
Avg. length of specimen (in)	4.90	4.90
Avg. dia. of specimen (in)	2.43	2.43
Area (sq in)	4.64	4.64
Volume (cubic in)	22.71	22.71
Moist mass (g)	749.2	749.2
Moist unit weight (pcf)	125.7	125.7
Moisture content (%)	10.5	10.5
Dry density (pcf)	113.7	113.7
Specific gravity (assumed)	2.65	2.65
Void ratio	0.45	0.45

Test Specifications	
B-Value (%):	88.0
Consolidation stress (psi):	10.0
Gradient (in/in):	25.0
Cell pressure (psi):	42.4
Head pressure (psi):	34.6
Tail pressure (psi):	30.2
Max effective stress (psi):	12.2
Min effective stress (psi):	7.8

Comments: Sample was divided vertically in quarters.

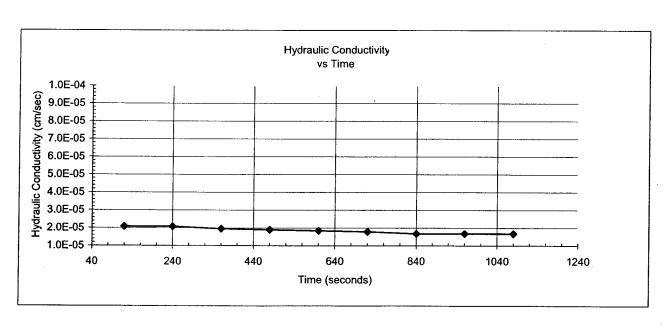
No observed anomalies (ie rocks, voids, etc.).

Hydraulic Conductivity at 20 °C = 1.9E-05 cm/sec

Hydraulic Conductivity Using Flexible Wall Permeameter (ASTM D5084)

Client:	Aquacalma L.P
Project Name:	C-44 Resevoir Project
Project Location:	Indiantown, FL
Project Number:	24752-40911
Sample Number:	S-2
Sample Location:	TP-19
Depth (ft):	38086
Lab I.D. Number:	4946
Sample Description:	0
Test Type:	Constant Head (Method A)

Tested by:	ADT
Checked by:	0
Start Test Date:	4/9/2004
Permeant Fluid:	De-aired water
Sample Preparation	
Procedures:	0
_	0
_	


Sample Characteristics	Initial	Final
Avg. length of specimen (in)	4.91	4.91
Avg. dia. of specimen (in)	2.43	2.43
Area (sq in)	4.63	4.63
Volume (cubic in)	22.71	22.71
Moist mass (g)	735.1	735.1
Moist unit weight (pcf)	123.3	123.3
Moisture content (%)	10.6	10.6
Dry density (pcf)	111.5	111.5
Specific gravity (assumed)	2.65	2.65
Void ratio	0.48	0.48

Test Specifications	
B-Value (%):	100.0
Consolidation stress (psi):	10.0
Gradient (in/in):	25.0
Cell pressure (psi):	56.4
Head pressure (psi):	48.6
Tail pressure (psi):	44.2
Max effective stress (psi):	12.2
Min effective stress (psi):	7.8

Comments: Sample was divided vertically in quarters.

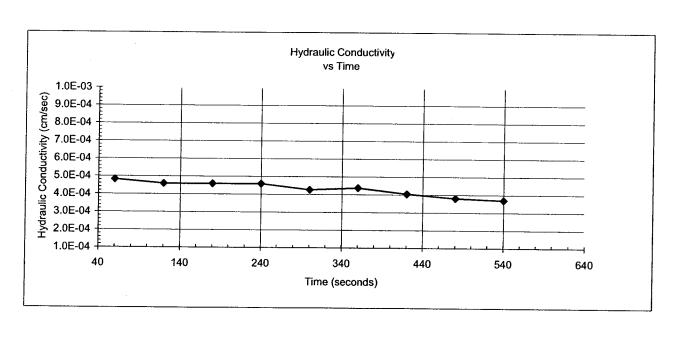
No observed anomalies (ie rocks, voids, etc.).

Hydraulic Conductivity at 20 °C = 1.6E-05 cm/sec

Hydraulic Conductivity Using Flexible Wall Permeameter (ASTM D5084)

Client:	Aquacalma L.P
Project Name:	C-44 Resevoir Project
Project Location:	Indiantown, FL
Project Number:	24752-40911
Sample Number:	S-1
Sample Location:	TP-20
Depth (ft):	38086
Lab I.D. Number:	4947
Sample Description:	0
Test Type:	Constant Head (Method A)

Tested by:	ADT
Checked by:	0
Start Test Date:	4/9/2004
Permeant Fluid:	De-aired water
Sample Preparation)
Procedures:	0
	0
•	


Sample Characteristics	Initial	Final
Avg. length of specimen (in)	4.86	4.86
Avg. dia. of specimen (in)	2.43	2.43
Area (sq in)	4.63	4.63
Volume (cubic in)	22.50	22.50
Moist mass (g)	731.1	731.1
Moist unit weight (pcf)	123.8	123.8
Moisture content (%)	9.9	9.9
Dry density (pcf)	112.7	112.7
Specific gravity (assumed)	2.65	2.65
Void ratio	0.47	0.47

Test Specifications	
B-Value (%):	51.0
Consolidation stress (psi):	10.0
Gradient (in/in):	10.0
Cell pressure (psi):	70.6
Head pressure (psi):	61.5
Tail pressure (psi):	59.7
Max effective stress (psi):	10.9
Min effective stress (psi):	9.1

Comments: Sample was divided vertically in quarters.

No observed anomalies (ie rocks, voids, etc.).

Hydraulic Conductivity at 20 °C = 3.7E-04 cm/sec

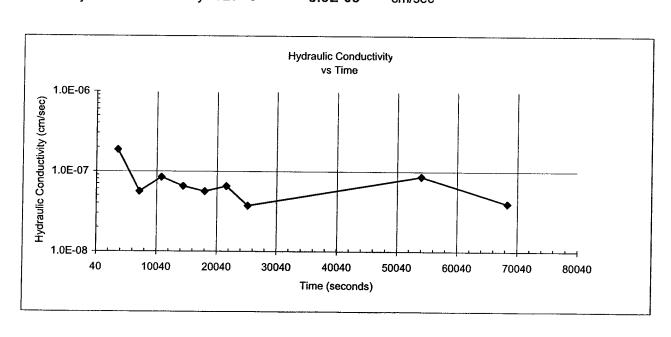
Hydraulic Conductivity Using Flexible Wall Permeameter (ASTM D5084)

Client:	Aquacalma L.P
Project Name:	C-44 Resevoir Project
Project Location:	Indiantown, FL
Project Number:	24752-40911
Sample Number:	S-3
Sample Location:	TP-20
Depth (ft):	5-12
Lab I.D. Number:	4949
Sample Description:	0
Test Type:	Constant Head (Method A)

Tested by:	ADT
Checked by:	0
Start Test Date:	4/9/2004
Permeant Fluid:	De-aired water
Sample Preparation	
Procedures:	0
_	0

Sample Characteristics	Initial	Final
Avg. length of specimen (in)	4.75	4.75
Avg. dia. of specimen (in)	2.43	2.43
Area (sq in)	4.63	4.63
Volume (cubic in)	21.97	21.97
Moist mass (g)	776.9	776.9
Moist unit weight (pcf)	134.7	134.7
Moisture content (%)	8.5	8.5
Dry density (pcf)	124.1	124.1
Specific gravity (assumed)	2.65	2.65
Void ratio	0.33	0.33

Test Specifications	
B-Value (%):	100.0
Consolidation stress (psi):	10.0
Gradient (in/in):	25.0
Cell pressure (psi):	58.8
Head pressure (psi):	51.0
Tail pressure (psi):	46.7
Max effective stress (psi):	12.1
Min effective stress (psi):	7.9

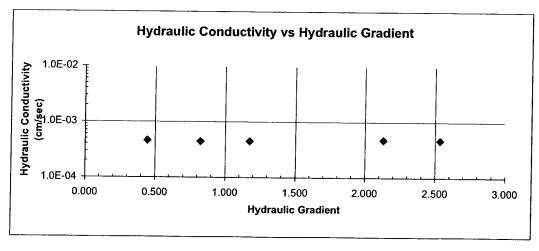

Comments: Sample was divided vertically in quarters.

No observed anomalies (ie rocks, voids, etc.).

Hydraulic Conductivity at 20 °C =

5.3E-08

cm/sec

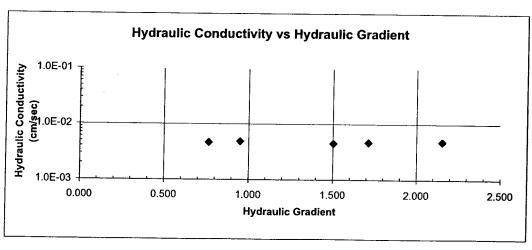

Hydraulic Conductivity Test on Granular Soils (ASTM D 2434

CI:--4.

Client:	Aquacalma LP		Tested By:	0				
Project Name:	C-44 Resevoir Project		Test Date:	1/0/1900				
Project Location:	Indiantow	n, FL	Permeant Fluid:	Tap Wa	ater			
Project Number:	24752-40	0911	Sample Preparation					
Sample Number:	TP-11			Client requested sample to be compacted to 90%				
Sample Location:	S-1			density and 2% wet o				
Sample Depth (ft):	0	-	moisture content of the modified Proctor .					
Lab ID Number:	4929	_	Sample Description					
Sample Characte			•	ilty Sand with Gravel				
As received moistur	e content (%)	5.6	Length between m		4.52			
Moisture content at		9.6	% retained on 3/4-					
Length of specimen		7.00	Initial void ratio:	· · ·	0.54			
Diameter of specime	en (in)	4.37	Specific gravity of	solids (assumed):	2.65			
Area (sqin)		14.96	Comments:	Test performed on 3				
Moist unit weight (pcf) 118.1			material. Fines wa	material. Fines washed out of sample throughout				
Dry unit weight (pcf)	•	107.7	test.					

	Mano	meters		Flow	Elapsed	Velocity	Gradient	Temp	Hydraulic Cond.
Test	Тор	Bot	Head	Quantity	Time	Q/At	h/L	Correct.	K @ 20 ℃
No.	h ₁ (cm)	h ₂ (cm)	h (cm)	Q (cm³)	t (sec)	(cm/sec)	(no units)	Factor	(cm/sec)
1	12.6	7.5	5.1	1.3375	60.0	0.0002	0.4	0.8886	4.6E-04
2	34.6	10.2	24.5	6.6	60.0	0.0011	2.1	0.8886	4.8E-04
3	17.5	8.1	9.5	2.4	60.0	0.0004	0.8	0.8886	4.4E-04
4	39.7	10.6	29.1	7.7	60.0	0.0013	2.5	0.8886	4.6E-04
5	22.1	8.6	13.5	3.4	60.0	0.0006	1.2	0.8886	4.5E-04
		-							

Hydraulic Conductivity at 20°C= 4.6E-04 cm/sec

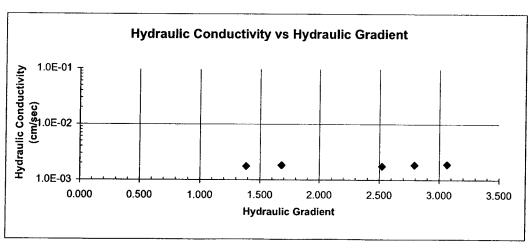


Hydraulic Conductivity Test on Granular Soils (ASTM D 2434

Aquacalm	na LP	Tested By: 0	
			
		_	Tap Water
24752-40	0911		
TP-16			
S-1			
0	_	moisture content of the modified	Proctor .
4939	-		
ristics	_		Gravel
e content (%)	10.6		
compaction (%)	7.9		
	7.00	Initial void ratio:	0.60
en (in)	4.37	Specific gravity of solids (assume	
	14.96		ed on 3/4" minus
	111.8	material. Fines washed out of sa	mple throughout
	103.7	test.	
	C-44 Resevo Indiantow 24752-40 TP-16 S-1 0 4939 eristics e content (%) compaction (%) (in) en (in)	S-1 0 4939 eristics e content (%) 10.6 compaction (%) 7.9 (in) 7.00 en (in) 4.37 14.96 cf) 111.8	C-44 Resevoir Project Indiantown, FL 24752-40911 TP-16 S-1 0 4939 Pristics e content (%) (in) 7.00 Compaction (%) Fin (in) 14.37 Compaction (in) 4.37 Compaction (in) 4.37 Analogo (in) 4.37 An

	Mano	meters		Flow	Elapsed	Velocity	Gradient	Temp	Hydraulic Cond.
Test	Тор	Bot	Head	Quantity	Time	Q/At	h/L	Correct.	K @ 20 °C
No.	h₁ (cm)	h ₂ (cm)	h (cm)	Q (cm ³)	t (sec)	(cm/sec)	(no units)	Factor	(cm/sec)
1	44.3	19.6	24.7	66.9275	60.0	0.0116	2.2	0.8886	4.8E-03
2	24.7	13.8	10.9	30.1	60.0	0.0052	0.9	0.8886	4.9E-03
3	36.5	16.9	19.7	51.7	60.0	0.0089	1.7	0.8886	4.6E-03
4	20.8	12.0	8.8	23.2	60.0	0.0040	0.8	0.8886	4.7E-03
5	32.9	15.7	17.3	43.7	60.0	0.0075	1.5	0.8886	4.5E-03
			[Į.	Ī		į.		

Hydraulic Conductivity at 20°C= 4.7E-03 cm/sec



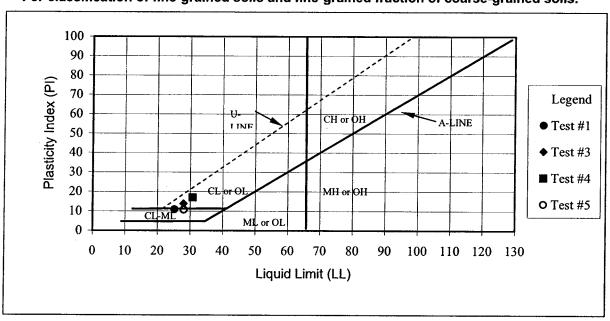
Hydraulic Conductivity Test on Granular Soils (ASTM D 2434

Client:	Aquacalm	a LP	Tested By:	adt			
Project Name:	C-44 Resevoir Project		Test Date:	1/0/1900			
Project Location:	Indiantow	n, FL	Permeant Fluid:	Tap Wa	ater		
Project Number:	24752-40	911	Sample Preparatio				
Sample Number:	TP-19			ample to be compacte	ed to 90%		
Sample Location:	S-1	-		density and 2% wet o			
Sample Depth (ft):	0	-		moisture content of the modified Proctor .			
Lab ID Number:	4945	-	Sample Description	n:			
Sample Characte	ristics	-	·	Ity Sand with Gravel			
As received moisture	e content (%)	21.9	Length between m		4.52		
Moisture content at	compaction (%)	15.0	% retained on 3/4-i	` ,			
Length of specimen	(in)	7.00	Initial void ratio:		0.60		
Diameter of specime	en (in)	4.37	Specific gravity of s	solids (assumed):	2.65		
Area (sqin)		14.96	Comments:	Test performed on 3			
Moist unit weight (pcf) 118.9		118.9	material. Fines wa	material. Fines washed out of sample throughout			
Dry unit weight (pcf)		103.4	test.				

	Mano	meters		Flow	Elapsed	Velocity	Gradient	Temp	Hydraulic Cond.
Test	Тор	Bot	Head	Quantity	Time	Q/At	h/L	Correct.	K @ 20 ℃
No.	h₁ (cm)	h ₂ (cm)	h (cm)	Q (cm ³)	t (sec)	(cm/sec)	(no units)	Factor	(cm/sec)
1	47.1	12.0	35.2	38.1225	60.0	0.0066	3.1	0.8886	1.9E-03
2	27.2	7.9	19.3	20.0	60.0	0.0035	1.7	0.8886	1.8E-03
3	42.8	10.7	32.1	33.6	60.0	0.0058	2.8	0.8886	1.8E-03
4	23.1	7.2	15.9	15.8	60.0	0.0027	1.4	0.8886	1.8E-03
5	39.0	10.0	29.0	29.0	60.0	0.0050	2.5	0.8886	1.8E-03
				·					

Hydraulic Conductivity at 20°C= 1.8E-03 cm/sec

Geotechnical Engineering Laboratory


Liquid Limit, Plastic Limit and Plasticity Index of Soils (ASTM D4318)

Client:	Aquacalma L.P.			
Project Name:	C44-Resevior			
Project Location:	Indiantown, FL			
Project Number:	24752-40911			

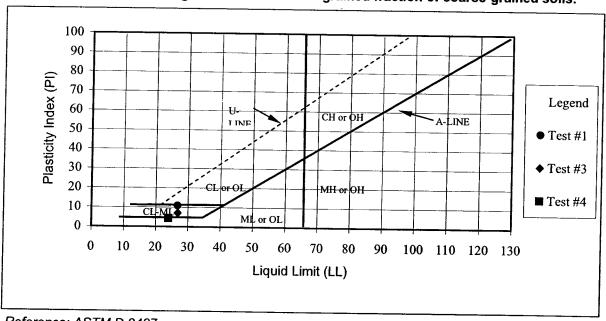
Results

Test Number:	1	2	3	4	5
Sample Number:	S-2	S-2	S-2	S-2	S-2
Sample Location:	TP-22	TP-20	TP-19	TP-11	TP-15
Lab ID Number:	4952	4948	4946	4930	4938
Tested By:	ADT	ADT	ADT	ADT	ADT
Test Date:	3/29/04	3/29/04	3/29/04	3/29/04	3/29/04
Sample Depth (ft):	0.0	0.0	0.0	0.0	0.0
As Rec'd Water Cont. (%):	21.2	6.9	8.5	16.9	19.4
Liquid Limit (LL)	25	NP	28	31	28
Plastic Limit (PL)	14	NP	14	14	17
Plasticity Index (PI)	11	NP	14	17	11

Plasticity Chart
For classification of fine-grained soils and fine-grained fraction of coarse-grained soils.

Geotechnical Engineering Laboratory

Liquid Limit, Plastic Limit and Plasticity Index of Soils (ASTM D4318)


Client:	Aquacalma L.P.
Project Name:	C44-Resevior
Project Location:	Indiantown, FL
Project Number:	24752-40911

Results

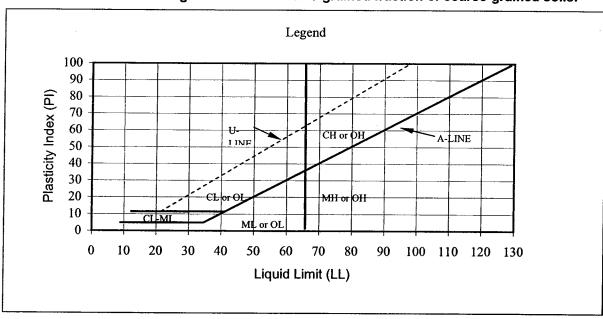
Test Number:	1	2	3	4	5
Sample Number:	S-2	S-2	S-2	S-3	S-2
Sample Location:	TP-14	TP-23	TP-18	TP-17	TP-12
Lab ID Number:	4935	4954	4944	4942	4932
Tested By:	ADT	ADT	ADT	ADT	0
Test Date:	3/29/04	3/29/04	3/29/04	3/29/04	4/5/04
Sample Depth (ft):	2-5'	3-5'	6-11'	5-8'	4-5.5'
As Rec'd Water Cont. (%):	16.0	28.7	16.5	18.7	18.7
Liquid Limit (LL)	27	NP	27	24	NP
Plastic Limit (PL)	16	NP	20	20	NP
Plasticity Index (PI)	11	NP	7	4	NP

Plasticity Chart

For classification of fine-grained soils and fine-grained fraction of coarse-grained soils.

Geotechnical Engineering Laboratory

Liquid Limit, Plastic Limit and Plasticity Index of Soils (ASTM D4318)


Client:	Aquacalma L.P.		
Project Name:	C44-Resevior		
Project Location:	Indiantown, FL		
Project Number:	24752-40911		

Results

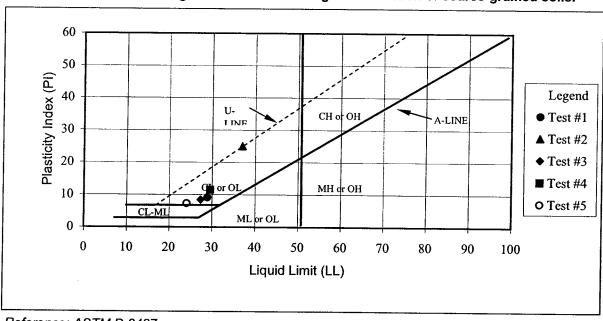
Test Number:	1
Sample Number:	S-3
Sample Location:	TP-14
Lab ID Number:	4936
Tested By:	ADT
Test Date:	3/29/04
Sample Depth (ft):	5-8'
As Rec'd Water Cont. (%):	29.6
Liquid Limit (LL)	NP
Plastic Limit (PL)	NP
Plasticity Index (PI)	NP

Plasticity Chart

For classification of fine-grained soils and fine-grained fraction of coarse-grained soils.

Geotechnical Engineering Laboratory

Liquid Limit, Plastic Limit and Plasticity Index of Soils (ASTM D4318)


Client:	Aquacalma L.P		
Project Name:	C-44 Reservoir Project		
Project Location:	Indiantown, FL		
Project Number:	24752-40911	_	

Results

Test Number:	1	2	3	4	5
Sample Number:	S-2	S-3	S-2	S-2	S-1A
Sample Location:	TP-16	TP-20	TP-8	TP-10	TP-9
Lab ID Number:	4940	4949	4924	4928	4925
Tested By:	ADT	ADT	ADT	ADT	ADT
Test Date:	4/5/04	4/5/04	4/6/04	4/6/04	4/6/04
Sample Depth (ft):	4-9'	5-12'	3-5'	3-6'	.5-2'
As Rec'd Water Cont. (%):	18.3	17.2	17.9	17.2	14.2
Liquid Limit (LL)	29	37	27	30	24
Plastic Limit (PL)	20	12	19	18	17
Plasticity Index (PI)	9	25	8	12	7

Plasticity Chart

For classification of fine-grained soils and fine-grained fraction of coarse-grained soils.

CDM Geotechnical Engineering Laboratory

Consolidated Undrained Triaxial Compression Test for Cohesive Soils - ASTM D4767 **Testing Summary**

Client:

Aquacalma, LP

Project:

C-44

Location: hdianto, E

Project No: 24752-40911

Test Date:

4/14/2004

Exploration No:

TP-11

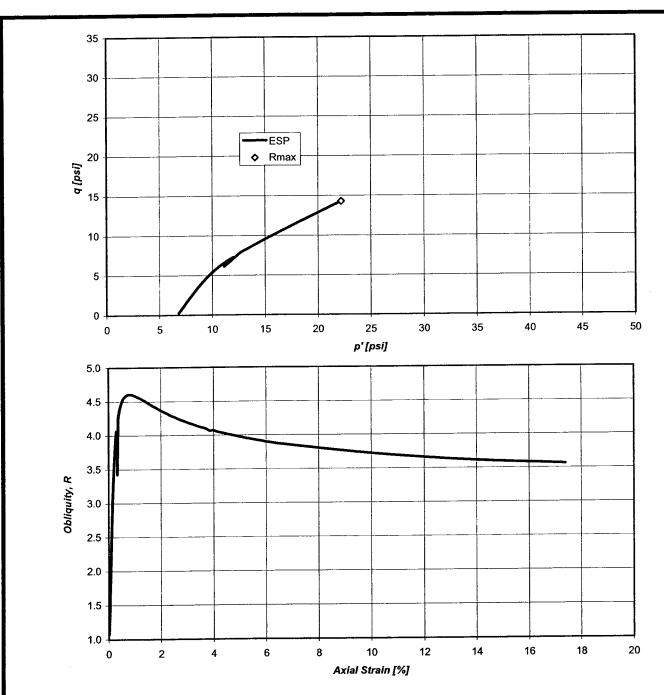
Sample No:

S-1

Depth (ft):

0.5-4

Sample Description: Silty Sand


	<u>Initial</u>	<u>PreShear</u>	Plasticity Indecies:	
Water Content:	10.9%	18.3%	LL: -	
Wet Mass (g):	719.9	762.9	PL: -	
Dry Density (pcf):	108.2	107.7	PI: -	
Height (in):	4.93	4.92		
Diameter (in):	2.43	2.43		
Specific Gravity:	2.75	2.75		
Voids Ratio:	0.587	0.594	Preconsolidtion Pressure (psi):	-
			Vertical Consol Stress (psi):	6.58
Max Obliquity, R:	4.60		Over Consolidation Ratio:	-
p' @ R _{max} (psi):	22.20		B-Coefficient:	95
q @ R _{max} (psi):	14.28		Back Pressure (psi):	60.44

@	R _{max} :		0.86%

Axial Strain (%)	o' ₁ (psi)	σ' ₃ (psi)	p' (psi)	q (psi)	Excess Pore Press (psi)	Obliquity R
0.1	11.7	5.3	8.5	3.2	1.3	2.207
1.0	41.3	9.0	25.1	16.1	-2.4	4.586
2.0	77.1	17.6	47.3	29.7	-11.0	4.381
3.0	112.6	26.8	69.7	42.9	-20.3	4.199
5.0	156.1	39.2	97.7	58.5	-32.6	3.984
7.0	175.1	45.3	110.2	64.9	-38.7	3.868
9.0	175.1	45.3	110.2	64.9	-38.7	3.868
11.0	194.5	52.4	123.4	71.1	-45.7	3.715
13.0	194.5	52.4	123.4	71.1	-45.7	3.715
15.0	201.8	55.8	128.8	73.0	-49.2	3.614

Notes:

^{1.} Cobidatio befine in gel accdance hASTM2435.

Exploration No:

TP-11

Sample No:

S-1

Depth (ft):

0.5-4

Sample Description:

Silty Sand

Preconsolidtion Pressure (psi):

Vertical Consol Stress (psi):

6.6

Over Consolidation Ratio:

_

Maximum Obliquity, R:

4.60

q @ R_{max} (psi):

14.28

CDM

Geotechnical Engineering Laboratory Client:

Aquacalma, LP

Project: C-44

Project No: 24752-40911

CIUC Triaxial Test ASTM D4767

CDIVI Geotechnical Engineering Laboratory

Consolidated Undrained Triaxial Compression Test for Cohesive Soils - ASTM D4767 **Testing Summary**

Client:

Aquacalma, LP

Project:

C-44

Location: Indiantown, FL

Project No: 24752-40911

Test Date:

Exploration No:

TP-16 S-2

4/6/2004

Sample No: Depth (ft):

4-9

Sample Description: Clayey Sand

Water Content:

Wet Mass (g): Dry Density (pcf):

Height (in): Diameter (in):

Specific Gravity: Voids Ratio:

Max Obliquity, R:

p' @ R_{max} (psi):

q @ R_{max} (psi):

ε @ R_{max}:

PreShear <u>Initial</u> 10.7% 16.8% 748.4 793.2 113.4

113.8 4.90 4.90 2.43 2.43

2.75 2.75

0.508 0.514

4.11 13.09

7.97

1.11%

Plasticity Indecies:

LL:

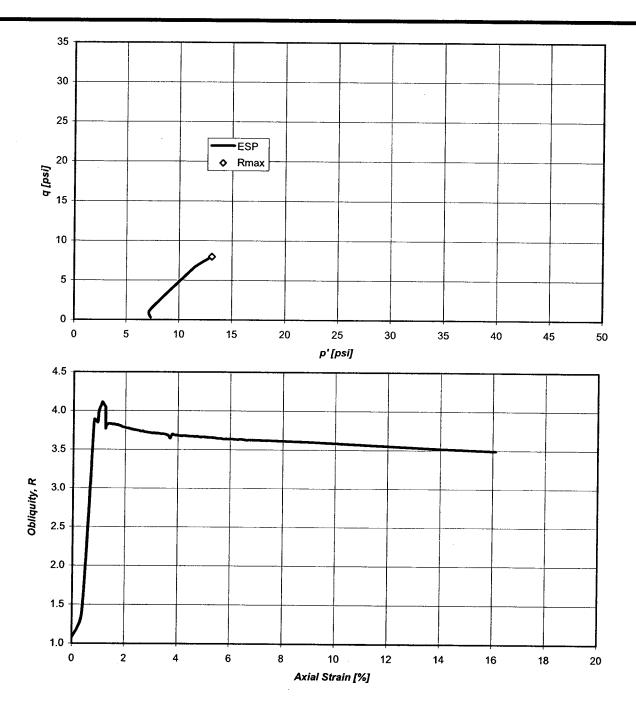
PL:

PI:

Preconsolidtion Pressure (psi):

Vertical Consol Stress (psi): **Over Consolidation Ratio:**

7.06


B-Coefficient:

Back Pressure (psi):

95 60.00

Axial Strain (%)	σ' ₁ (psi)	σ' ₃ (psi)	p' (psi)	q (psi)	Excess Pore Press (psi)	Obliquity R
0.1	7.6	7.1	7.3	0.3	0.0	1.080
1.0	19.5	4.9	12.2	7.3	2.1	3.967
2.0	27.5	7.3	17.4	10.1	-0.3	3.788
3.0	33.0	8.9	21.0	12.1	-1.8	3.715
5.0	41.1	11.2	26.1	14.9	-4.0	3.663
7.0	47.0	13.0	30.0	17.0	-5.9	3.625
9.0	47.0	13.0	30.0	17.0	-5.9	3.625
11.0	54.3	15.1	34.7	19.6	-8.6	3.600
13.0	61.4	17.2	39.3	22.1	-10.7	3.560
15.0	67.9	19.3	43.6	24.3	-12.7	3.521

Consolidation phase performed in general accordance with ASTM D2435.

Exploration No:

TP-16

Sample No:

S-2

Depth (ft):

4-9

Sample Description:

Clayey Sand

Preconsolidtion Pressure (psi):

Vertical Consol Stress (psi):

7.1

Over Consolidation Ratio:

1.1

Maximum Obliquity, R:

4.11

q @ R_{max} (psi):

7.97

CDM

Geotechnical Engineering Laboratory Client:

Aquacalma, LP

Project:

C-44

Project No: 24752-40911

CIUC Triaxial Test ASTM D4767

CDM Geotechnical Engineering Laboratory

Consolidated Undrained Triaxial Compression Test for Cohesive Soils - ASTM D4767 **Testing Summary**

Client:

Aquacalma, LP

Project:

C-44

p' @ R_{max} (psi):

Location: Indiantown, FL

Project No: 24752-40911

Test Date:

Exploration No:

4/6/2004 TP-19

Sample No:

S-2

Depth (ft):

4-7

Sample Description: Clayey Sand

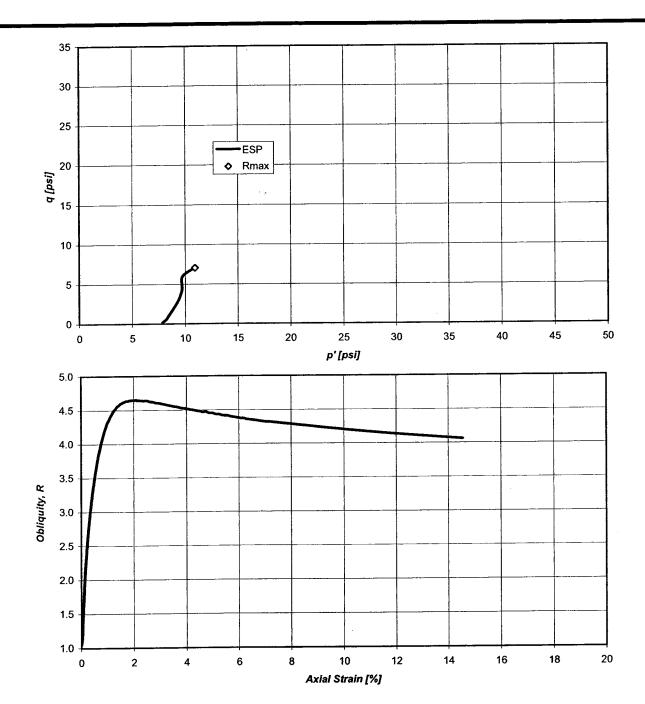
Back Pressure (psi):

7.66

95

59.49

	Initial	<u>PreShear</u>	Plasticity Indecies:		
Water Content:	11.1%	17.1%	LL: -		
Wet Mass (g):	735.2	780.4	PL: -		
Dry Density (pcf):	111.4	112.8	PI: -		
Height (in):	4.89	4.86			
Diameter (in):	2.43	2.43			
Specific Gravity:	2.75	2.75			
Voids Ratio:	0.541	0.522	Preconsolidtion Pressure (psi):		
			Vertical Consol Stress (psi):		
Max Obliquity, R:	4.66		Over Consolidation Ratio:		
n' @ R (nsi)	10.92		B-Coefficient:		


q @ R _{max} (psi):	7.05
ε @ R _{max} :	2.08%

10.92

7.05

Axial Strain (%)	σ' ₁ (psi)	σ' ₃ (psi)	p' (psi)	q (psi)	Excess Pore Press (psi)	Obliquity R
0.1	11.6	6.7	9.1	2.5	1.0	1.742
1.0	15.9	3.7	9.8	6.1	3.9	4.303
2.0	17.8	3.8	10.8	7.0	3.7	4.646
3.0	19.5	4.2	11.9	7.6	3.3	4.604
5.0	22.5	5.1	13.8	8.7	2.5	4.455
7.0	24.9	5.8	15.4	9.6	1.8	4.328
9.0	25.2	5.8	15.5	9.7	1.7	4.320
11.0	29.0	7.0	18.0	11.0	0.6	4.171
13.0	29.0	7.0	18.0	11.0	0.6	4.171
15.0	32.0	7.9	20.0	12.1	-0.4	4.060

Consolidation phase performed in general accordance with ASTM D2435.

Exploration No:

TP-19

Sample No:

S-2

Depth (ft):

4-7

Sample Description:

Clayey Sand

Preconsolidtion Pressure (psi):

Vertical Consol Stress (psi):

7.7

Over Consolidation Ratio:

-

Maximum Obliquity, R:

4.66

q @ R_{max} (psi):

7.05

CDM

)

Geotechnical Engineering Laboratory Client:

Aquacalma, LP

Project:

C-44

Project No: 24752-40911

CIUC Triaxial Test ASTM D4767

CDM Geotechnical Engineering Laboratory

Consolidated Undrained Triaxial Compression Test for Cohesive Soils - ASTM D4767 **Testing Summary**

Client:

Aquacalma, LP

Project:

C-44

Location: hdianta, E

Project No: 24752-40911

Test Date:

Exploration No:

4/13/2004 TP-20

Sample No:

S-1

Depth (ft):

0.5-3

Sample Description: Silty Sand

	<u>Initial</u>	<u>PreShear</u>	<u>Plasticity</u>	<u>Indecies:</u>
Water Content:	8.4%	17.3%	LL:	-
Wet Mass (g):	742.5	792.2	PL:	-
Dry Density (pcf):	114.4	113.1	PI:	-
Height (in):	4.92	4.90		
Diameter (in):	2.43	2.43		
Specific Gravity:	2.75	2.75		
Voids Ratio:	0.501	0.517	Preconsol	lidtion Pressure (psi):
			Vertical Co	onsol Stress (psi):

Max Obliquity, R:

4.86

Over Consolidation Ratio:

7.15

p' @ R_{max} (psi):

15.20

B-Coefficient:

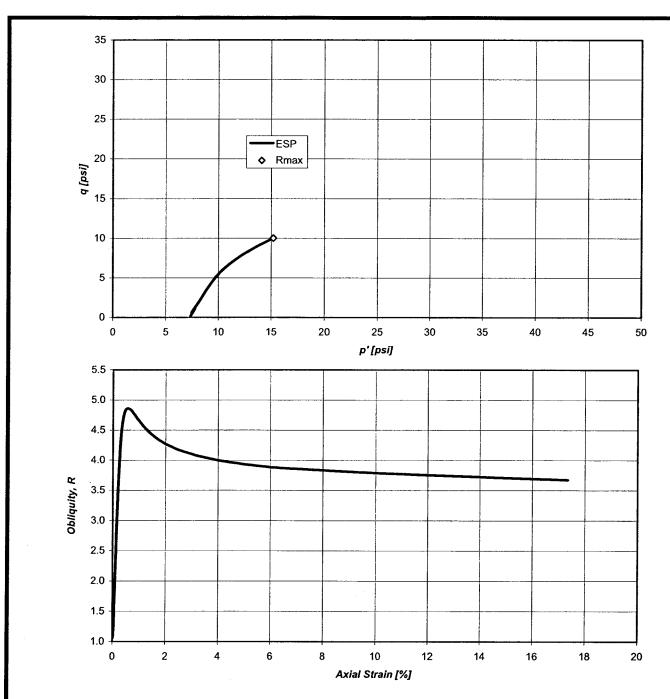
95

q @ R_{max} (psi):

10.01

Back Pressure (psi):

60.08


 ε @ R_{max}:

0.58%

Axial Strain (%)	σ' ₁ (psi)	σ' ₃ (psi)	p' (psi)	q (psi)	Excess Pore Press (psi)	Obliquity R
0.1	10.6	6.0	8.3	2.3	1.2	1.766
1.0	33.8	7.3	20.5	13.3	-0.1	4.654
2.0	49.0	11.5	30.2	18.8	-4.3	4.275
3.0	60.1	14.6	37.3	22.7	-7.4	4.115
5.0	79.0	20.1	49.5	29.5	-12.9	3.939
7.0	90.9	23.5	57.2	33.7	-16.3	3.870
9.0	90.9	23.5	57.2	33.7	-16.3	3.870
11.0	114.2	30.1	72.2	42.0	-23.0	3.788
13.0	114.2	30.1	72.2	42.0	-23.0	3.788
15.0	132.5	35.5	84.0	48.5	-28.4	3.730

Notes:

^{1.} Cobidatio beenel in goll accdance MASTM2435.

Exploration No:

TP-20

Sample No:

S-1

Depth (ft):

0.5-3

Sample Description:

Silty Sand

Preconsolidtion Pressure (psi):

Vertical Consol Stress (psi):

7.2

Over Consolidation Ratio:

_

Maximum Obliquity, R:

4.86

q @ R_{max} (psi):

10.01

CDM

Geotechnical Engineering Laboratory Client:

Aquacalma, LP

Project:

C-44

Project No: 24752-40911

CIUC Triaxial Test ASTM D4767