
Well Completion Report

Injection Well No. 1 Construction Completion Report Water/Wastewater Treatment Plant

November 2001

City of Cooper City Utility Department[®]

Well Completion Report

Injection Well No. 1 Construction Completion Report Water/Wastewater Treatment Plant

November 2001

City of Cooper City Utility Department

Hazen and Sawyer, P.C. 2101 Corporate Blvd. Boca Raton, FL 33431 561 997-8070 Fax: 561 997-8159

November 21, 2001

Joseph R. May, P.G. **STATE OF FLORIDA** Department of Environmental Protection Groundwater Section - UIC 400 North Congress Avenue West Palm Beach, Florida 33401

Construction Completion Report Concentrate Disposal Well Construction City of Cooper City DEP Permit No. 0153012-001-UC

Dear Mr. May:

In fulfiliment of the above-referenced permits and Florida Administrative Code Rule 62-528, Hazen and Sawyer, P.C. (H&S) and Water Technology Associates are pleased to submit the attached Concentrate Disposal Well Construction Completion Report on behalf of the City of Cooper City. The wells are located at the Cooper City Water / Wastewater Treatment Plant (WTP/WWTP). The report presents the results of the construction and testing performed during the drilling of the concentrate disposal well (IW-1) and the associated deep dual-zone monitor well (MW-1).

The drilling and testing program of IW-1 and MW-1 provides reasonable assurance of the presence of confinement between 1,770 and 3,000 feet below pad level (bpl), and a suitable lower monitoring zone above the confinement. The presence of favorable geologic conditions enables the use of the injection wells for disposal of concentrate and treated effluent at the WTP/WWTP in accordance with existing State and Federal Underground Injection Control regulations.

The well construction and testing have been completed, however, the surface equipment installation is still under construction. It is anticipated that the surface equipment will be complete within a few months. Surface equipment as-built drawings and the operation and maintenance manual will be submitted at that time along with a request to begin operational testing of the wells.

We request that the Department begin review of this completion report to expedite approval of operational testing which will enable the County to use the wells.

Boca:40340L003.doc

HAZEN AND SAWYER Folseptine Remmand, at Engineers & Scientists November 21, 2001 Page 2 of 2

Hazen and Sawyer, P.C. 2101 Corporate Blvd. Boca Raton, FL 33431 561 997-8070 Fax: 561 997-8159

Thank you in advance for your timely response to this request. Please feel free to contact us should you have any questions.

In accordance with Rule 62-528.340(4) FAC, we certify under penalty of law that this document and all attachments were prepared under our direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on our inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of our knowledge and belief, true, accurate, and complete. We are aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

HAZEN AND SAWYER, P.C.

Michael W. Wengrenovich, P.E Registration No. 34939

Albert Muniz, P.E. Registration No. 35587

Very truly yours,

HAZEN AND SAWYER, P.C.

Alles / Im

Albert Muniz, P.E. Vice President

Attachment

c: Distribution List File No. 40340 / 5.0

WATER TECHNOLOGY ASSOCIATES, INC.

James A. Wheatley, P.G.

Registration No. 530

CITY OF COOPER CITY

George A. Haughney, P.E. Utilities Director

Boca:40340L003.doc

CITY OF COOPER CITY WATER / WASTEWATER TREATMENT PLANT CONCENTRATE DISPOSAL WELL CONSTRUCTION

Distribution List

Joseph R. May, P.G.

State of Florida Department of Environmental Protection Groundwater Section - UIC 400 North Congress Avenue West Palm Beach, Florida 33401 *Telephone:* (561) 681-6691

Mark A. Silverman, P.G.

State of Florida Department of Environmental Protection Groundwater Section - UIC 400 North Congress Avenue West Palm Beach, Florida 33401 *Telephone:* (561) 681-6695

Richard Deuerling, P. G.

State of Florida Department of Environmental Protection Bureau of Groundwater Protection - UIC 2600 Blair Stone Road Tallahassee, Florida 32301 *Telephone:* (850) 921-9417

Ron Reese, P.G.

United States Geological Survey Water Resources Division 9100 Northwest 36th Street Suites 106 and 107 Miami, Florida 33178 *Telephone:* (305) 717-5821

Steven D. Anderson, P.G.

South Florida Water Management District Post Office Box 24680 3301 Gun Club Road West Palm Beach, Florida 33416 *Telephone:* (561) 753-2400, Ext. 4726

Garth D. Hinckle, Jr., P.E.

Broward County - Department of Natural Resources Protection 218 Southwest First Avenue Fort Lauderdale, Florida 33301 *Telephone:* (954) 519-1256

Nancy Marsh

Groundwater / UIC Section USEPA, Region IV 61 Forsyth Street, Southwest Atlanta, Georgia 30303-3104 *Telephone:* (404) 562-9450

George A. Haughney, P.E. Donald Long

City of Cooper City 11791 Southwest 49th Street Cooper City, Florida 33330 *Telephone:* (954) 434-5519

Albert Muniz, P.E.

Hazen and Sawyer, P.C. 2101 Corporate Boulevard Boca Raton, Florida 33431 *Telephone:* (561)997-8070

Michael W. Wengrenovich, P.E.

Hazen and Sawyer, P.C. 4000 Hollywood Boulevard Seventh Floor, North Tower Hollywood, Florida 33021 *Telephone:* (954) 987-0066

James A. Wheatley, P.G.

Water Technology Associates, Inc. 513 U.S. Highway 1, Suite 202 North Palm Beach, Florida 33408 *Telephone:* (561) 844-7436

Concentrate Disposal Well Construction Completion Report

City of Cooper City Water/Wastewater Treatment Plant

November 2001

Boca:40340coverpages.doc

Cooper City WTP/WWTP Concentrate Disposal Well

Table of Contents

Chapter 1.0 -	Injection Well Program				
-	1.1	Introd	uction	1-1	
	1.2	Purpo	se	1-2	
	1.3	Eleme	ents of the Injection Well Contract	1-2	
Chapter 2.0 -	Well Drilling and Construction				
	2.1		Construction		
	2.2	Data (Collection	2-2	
	2.3	Geolo	gic Samples	2-3	
	2.4	Cores		2-3	
	2.5	Geoph	nysical Logs	2-4	
	2.6	Video	Surveys	2-5	
	2.7	Packe	r Tests	2-5	
	2.8	Packe	r Test Water Quality	2-6	
	2.9	Casing	y	2-6	
	2.10) Ceme	nt Bond Logs	2-7	
	2.11	Tubin	g and Packer	2-7	
	2.12	2 Monit	oring Zone Depths	2-8	
Chapter 3.0 -	Subsurface Conditions				
•	3.1	Backg	round	3-1	
	3.2	Gener	alized Geologic Setting	3-1	
	3.3		geologic Setting		
	3.4				
	3.5 Confinement Analysis				
		3.5.1	Identification of Confining Units		
		3.5.2	Geophysical logs		
		3.5.3	Characterization of Well Cuttings		
		3.5.4	Core Examination and Data Analysis		
		3.5.5	Packer Test Data		
		3.5.6	Stratigraphic Correlation		
		3.5.7	Testing Quality Control Assurance		
		3.5.8	Criteria for Identification of Confining Units		
	3.6	Confi	nement Intervals		
		3.6.1	Interval From 2,200 to 2,290 Feet bpl		
		3.6.2	Interval From 2,360 to 2,650 Feet bpl		
		3.6.3	Interval From 2,650 to 2,810 Feet bpl		
		3.6.4	Interval From 2,885 to 2,975 Feet bpl		
		3.6.5	Confinement Summary		

Chapter 4.0 -	Fin	Final Testing 4.1 General				
	4.1					
	4.2	Background Water Quality	4-1			
	4.3	Mechanical Integrity Testing	4-1			
		4.3.1 Casing Pressure Test	4-1			
		4.3.2 Annulus Pressure Test	4-1			
		4.3.3 Temperature Log	4-2			
		4.3.4 Video Survey	4-2			
		4.3.5 Radioactive Tracer Survey	4-2			
		4.3.6 MIT Conclusions	4-2			
	4.4	Injection Test	4-5			
Chapter 5.0 -	Fin	Findings				
••••••••••••	5.1	Findings	5-1			
	5.2					
	5.3	Recommendations				
	5.4					
		5.4.1 Monitor Well Data Collection				
		5.4.2 Injection Well Data Collection				
		5.4.3 Injectivity Testing				
		5.4.4 Mechanical Integrity Testing				
		5.4.5 Waste Stream Analysis	5-4			
	5.5	Plugging and Abandonment Plan	5-4			
Tables	1	Core Depths				
	2	Hydraulic Conductivity Derived from Cores				
	3	Packer Test Development				
	4	Hydraulic Conductivity Derived from Packer Tests				
	5	Water Quality Analysis Results from Packer Tests				
	6	Plugging and Abandonment Cost Estimates				
Figures	1	Location Map				
	2	Well Location As-Built Site Plan				
	3	Injection Well As-Built Well Profile				
	4	Monitor Well As-Built Well Profile				
	5	Radioactive Tracer Survey Tool				
Appendices	А	FDEP Construction Permit				
	В	Weight on Bit and Rate of Penetration				
	Ē	Inclination Surveys				
	Ď	Geologic Logs				
		Injection Well				
		Monitor Well				

E Cores

Core Logs

Core Analysis

F Geophysical Logs

Geophysical Log Index

Flow Meter Analysis

Geophysical Logging Quality Control

Injection Well Geophysical Logs - (boxed separately in Box 1)

Monitor Well Geophysical Logs - (boxed separately in Box 2)

- G Video Survey
 - Video Survey Log

VHS Tapes of Survey (boxed separately with geophysical logs)

H Packer Pumping Test Data and Graphs

Straddle Packer Test - 1,660 to 1,710 Straddle Packer Test - 1,763 to 1,779 Straddle Packer Test - 1,800 to 1,850 Single Packer Test - 1,900 to 1,950 Straddle Packer Test - 1,950 to 1,966 Straddle Packer Test - 2,269 to 2,285 Straddle Packer Test - 2,515 to 2,531 Straddle Packer Test - 2,724 to 2,740 Straddle Packer Test - 2,794 to 2,810 Packer Test Quality Control Procedures

- I Packer Test Water Quality Laboratory Results
- J Log Derived Water Quality
- K Casing and Tubing Mill Certificates
- L Cement Reports
- M Casing and Tubing Pressure Tests
- N Positive Seal Packer Assembly
- O Background Water Quality Test Results Injection Well Background Water Quality Upper Monitor Zone Background Water Quality Lower Monitor Zone Background Water Quality Plant Effluent Background Water Quality
- P Injection Test Data

1.1 Introduction

On March 14, 2000, Cooper City was issued Permit No. 0153012-0015-UC by the Florida Department of Environmental Protection (FDEP) for the construction of one 14-inch diameter Class-1 injection well (IW-1) and associated dual-zone deep monitor well (MW-1). A copy of the permit is included in Appendix A. The wells are located at the Cooper City Water Treatment Plant/Wastewater Treatment Plant (WTP/WWTP). A location map of the project site is presented in Figure 1.

The wells were constructed in accordance with Contract Documents prepared by Hazen and Sawyer (H&S) entitled Contract Documents for the Construction of the Concentrate Disposal Well, dated September 13, 2000. These plans and specifications for drilling one injection well and one dual zone monitor well formed the basis of a contract between the Cooper City and Youngquist Brothers, Inc. (referred to hereinafter as "the Contractor").

H&S was retained by the City of Cooper City (the City) to provide construction management services for the project. H&S utilized the services of Water Technologies Associates, Inc. (WTA), to provide partial field observation and certain hydrogeologic services. The H&S and WTA team is hereinafter referred to as "the Engineer". On-site supervision was provided by the Engineer during testing, geophysical logging, casing installation, and cementing operations. Construction phase responsibilities of the Engineer included obtaining FDEP approval on key elements of the project and reporting project progress weekly to the Technical Advisory Committee (TAC) which included members from the FDEP, the Broward County Department of Planning and Environmental Protection (BCDPEP), the South Florida Water Management District (SFWMD) and the United States Geological Society (USGS). The United States Environmental Projection Agency (EPA) is copied on TAC correspondence, but is not a member of the TAC.

1.2 Purpose

The purpose of this report is to summarize the information obtained during the construction and testing of IW-1 and MW-1. The report describes the methods used to analyze the data, documents the approved casing setting depths and monitoring zones for MW-1, demonstrates mechanical integrity of the injection well, identifies confinement above the injection zone, and verifies that the well is suitable for the designed pumping rates to allow long term operational testing of the injection well.

1.3 Elements of the Injection Well Contract

The project specifications contained provisions for the construction and testing of the one injection well and the associated monitor well. The well design was based on the data obtained from other wells in the area. The 14-inch diameter injection well was constructed 3,400 feet below land surface. The deep dual-zone monitor well (also called the monitor well) was constructed to a total depth of 1,950 feet.

Provisions of the contract included:

- Monitoring depth, weight on bit, rate of penetration, inclination and drilling fluid during the drilling of the wells;
- Collecting and logging geologic cuttings (samples), to confirm lithologic boundaries and gross lithologic properties;
- Collecting and analyzing conventional cores to complement the geologic logging and to identify hydrologic properties of the lithologic formations;
- Conducting the following geophysical logs at various points during the well construction: X-Y caliper, gamma ray, fluid conductivity, dual induction, borehole compensated sonic/VDL, fluid resistivity, temperature, flowmeter and borehole televiewer;
- Conducting an open hole video (television) survey;
- Conducting straddle packer and single packer tests in discrete zones of the injection well pilot hole in order to determine the hydrologic properties of lithologic units;
- Collecting and analyzing of water samples taken during the packer tests to determine water quality variations with depth;
- Conducting casing cement top temperature logs and cement bond logs on various casing strings during the cementing operations;
- Collecting and analyzing background water samples from the monitoring zones and the injection zones;
- Conducting a hydrostatic pressure test, video survey and radioactive tracer survey on the final casing string to determine mechanical integrity of the injection well; and
- Conducting a short term injection test in the completed injection well to demonstrate the ability of the injection well system to accept effluent at the design flow rate.

2.0 Well Drilling and Construction

2.1 Well Construction

The injection well was constructed prior to the construction of the dual-zone monitor well (i.e., MW-1). The monitor well was constructed approximately 70 feet east of IW-1. The location of these wells are presented in Figure 2. During the drilling of the wells, geophysical logging and testing were performed. Well construction was in accordance with the FDEP construction permit. Refer to Appendix A for a copy of the permit.

The drilling of IW-1 and MW-1 proceeded generally as identified in the project specifications. The project specifications identified an outline of a drilling plan with the intention of making modifications to the plan as site specific conditions warranted. The plan included setting steel casing at selected depths in order to maintain the formation during drilling and to facilitate the proposed testing. Drilling activities are summarized in the following outlines, which identify nominal depths.

To consistently record downhole depth, all well measurements are recorded in terms of depth below pad level (bpl). Actual depths of casings are identified in the profile of the completed well IW-1 and MW-1 presented in Figures 3 and 4, respectively. The injection well was constructed as generally follows:

- Drill a nominal 12¹/₄-inch diameter pilot hole to approximately 250 feet bpl using the mud rotary method.
- Backplug pilot hole with cement.
- Drill a nominal 58-inch diameter borehole to approximately 250 feet bpl using the mud rotary method.
- Set and cement 50-inch diameter steel casing to a depth of 250 feet bpl.
- Drill a nominal 12¹/₄-inch diameter pilot hole to approximately 1,000 feet bpl using the mud rotary method
- Drill a nominal 50-inch diameter borehole to approximately 1,000 feet bpl using the mud rotary method.
- Set and cement 42-inch diameter steel casing to a depth of 1,000 feet bpl.
- Drill a nominal 12¼-inch diameter pilot hole to approximately 2,030 feet bpl using the reverse air method and coring at depths selected by the Engineer.
- Backplug pilot hole with cement.

- Drill a nominal 42-inch diameter borehole to approximately 2,000 feet bpl using the reverse air method.
- Set and cement 34-inch diameter steel casing to a depth of 2,000 feet bpl
- Drill a nominal 12¹/₄-inch diameter pilot hole to approximately 3,000 feet bpl using the reverse air method and coring at depths selected by the Engineer.
- Backplug pilot hole with cement.
- Drill a nominal 34-inch diameter borehole to approximately 2,975 feet bpl using reverse air method.
- Drill a nominal 24-inch diameter hole to approximately 3,400 feet bpl using reverse air method.
- Set and cement 24-inch diameter steel casing to a depth of 3,000 feet bpl.
- Set in place a 14-inch diameter steel tubing and packer assembly at 2,955 feet bpl, filling the annular space of the final casing with annular fluid including rust inhibitor.

The drilling of MW-1 proceeded generally as identified in the project specifications. Drilling activities are summarized in the following outline. The depth of the monitor zones was based on the data collected during the drilling and testing of IW-1. The selection of the monitor zone depths is discussed later in the report. The monitor well was constructed as generally follows:

- Drill a nominal 32-inch diameter borehole to approximately 250 feet bpl using the mud rotary method.
- Set and cement in place a 24-inch diameter steel casing at 250 feet bpl.
- Drill a nominal 24-inch diameter borehole to approximately 1,710 feet bpl using the mud rotary method.
- Set and cement in place 16-inch diameter steel casing at 1,660 feet bpl using cement baskets.
- Drill a nominal 16-inch diameter borehole to approximately 1,850 feet bpl using the mud rotary method.
- Drill a nominal 16-inch diameter borehole to approximately 1,950 feet bpl using the mud rotary method.

- Set and cement in place 6^{*}/₈-inch diameter steel casing at 1,900 feet bpl using cement baskets, filling the annular space of the final casing with cement from 1,900 to 1,710 feet bpl.
- Drill out cement plug.

The upper monitor zone (UMZ) was established between 1,660 and 1,710 feet bpl and the lower monitor zone (LMZ) between 1,900 and 1,950 feet bpl. The upper outside 1,710 feet of the $6\frac{5}{8}$ -inch diameter casing was coated with a corrosion resistant epoxy-phenolic compound. An as-built profile of the completed MW-1 is presented in Figure 4.

2.2 Data Collection

Data was collected during the construction of the wells using various methods and procedures as described in this Section. Independent testing and laboratory analyses performed by subcontractors of Youngquist Brothers, Inc. included the following: geophysical logging was performed by Florida Geophysical Logging, Inc., water quality analyses were performed by Sanders Laboratories, and testing of rock cores was performed by Ardaman & Associates, Inc. and Core Labs. Additional water quality analyses were performed by Cooper City WTP/WWTP Laboratory.

Except as noted, measurements of footage in the wells are referenced to the pad level. The National Geologic Vertical Datum (NGVD) elevation of IW-1 and MW-1 are 8.8 and 8.5 feet, respectively.

Daily progress and activities were monitored and recorded. The Engineer prepared daily progress reports during well construction. The Contractor prepared independent daily reports. In addition to recording daily drilling progress, the reports included other pertinent drilling information such as drilling speed, weight on the drill bit, penetration rates, and relative hardness of the formations. Problems encountered during drilling were observed and noted. All activities related to the installation of well casings, cementing or other materials, as well as their quantities, were recorded. Detailed descriptions of test procedures and data collection, including results of inclination surveys to verify hole straightness, were recorded. The length and configuration of tools introduced into the borchole were noted. Copies of the daily and weekly progress reports were transmitted to the TAC members on a weekly basis. Graphs of the drilling weight on bit (WOB) and rate of penetration (ROP) are presented in Appendix B.

An inclination survey was conducted every 90 feet in all pilot and reamed holes to confirm straight hole requirements for the wells. The results from the inclination surveys are presented in Appendix C.

2.3 Geologic Samples

Samples of drilled cuttings were collected and analyzed from the drilling of the injection well and monitor well pilot holes. Circulation time (the time required for drilled cuttings to reach the surface) was calculated regularly to ensure that accurate sample depths were recorded. After initial examination, the Engineer's on-site personnel described the samples. A geologic description of each sample was entered into a log. The cuttings from the confining interval were classified in accordance

with the scheme of Dunham (1962). These logs are presented in Appendix D. Two sets of drill cuttings were bagged in 10-foot intervals. After the wells were completed, the Contractor sent one set of these samples to the Florida Bureau of Geology in Tallahassee, Florida.

2.4 Cores

During the drilling of the injection well pilot hole, conventional core samples were collected. These samples were reviewed and select samples were sent to an independent laboratory for analysis. The results of the analyses are used to demonstrate confinement. Core depths were selected by the Engineer primarily on the basis of reviewing and interpreting information from other nearby wells and information obtained during the drilling of the injection well including weight on bit, rate of penetration and lithology. The Contractor used 4-inch inside diameter core barrels for this project. Each core was approximately ten feet long. Cores from IW-1 were taken at the depths identified in Table 1.

Samples from each core were selected and sent for analysis to an independent laboratory, Ardaman and Associates. These samples were tested for several parameters including permeability, porosity and specific gravity. Core laboratory analysis results and geologic core descriptions are presented in Appendix E. A summary of the hydraulic conductivity from the laboratory analyses of the cores is presented in Table 2.

2.5 Geophysical Logs

At the completion of each stage of hole drilling, geophysical logs were conducted. The purpose of these logs was to assist in casing seat selection, identify confining sequences and to help identify the location of monitoring zones. The geophysical logs performed, including a brief description of the information provided by the logs, are as follows:

- X-Y Caliper Identification of hole diameter and hole geometry.
- Gamma Ray Measurement of the natural gamma ray radiation of the formation, used as a tie-in between logs.
- Dual Induction Log A resistivity log. Identifies differentiation between limestone and dolomite beds, and, along with the gamma ray log, is useful in the correlation of lithologic units.
- Borehole Compensated Sonic Variable Density Log (VDL) Identification of the confining sequences, as well as identification of zones which could cause problems during cementing.
- Flow Meter Surveys Determination of where fluid may be entering or exiting the borehole.
- Temperature Provides a profile of static and dynamic temperature of the borehole, may be useful in determining changes in fluid movement.

- Borehole Televiewer (BHTV) Determination of where structural features (bedding planes, fractures, vugs and voids) are located.
- Cement Top Temperature Verification of the annular space fill-up after each cementing stage.
- Cement Bond Log Used to assess the quality of the bond between the inner casing and the cement grout around the casing. The resulting curve of the log is a function of casing size and thickness, cement strength and thickness, degree of cement bonding and tool centering.

Geophysical logs were transmitted to TAC members on a weekly basis during construction. Geophysical logs are presented in Appendix F and are boxed separately. Box 1 contains logs from IW-1 and Box 2 contains logs from MW-1. For convenience, many of the same type of logs were merged together (e.g. the dual induction log for MW-1 presented in Box 2 is continuous from 251 to 1,850 feet bpl). Also in Appendix F is an index of the logs performed and a tabulation of the logs included in each box.

During the geophysical logging and testing of the well, the Engineer was on site to witness the logging and verify quality control procedures. The quality control maintained during the testing program was, to a large extent, provided by Florida Geophysical Logging, Inc. Industry standard quality control measures were observed and are documented on the logs. Detailed information of the tool calibration program utilized by Florida Geophysical Logging is also included in attached Appendix F.

2.6 Video Surveys

Video surveys were conducted and recorded in VHS format in the injection well pilot holes from 1,000 to 3,410 feet bpl and in the injection casing from land surface to 2,955 feet bpl. Video surveys were also performed on both monitoring zones of MW-1. Color video surveys were made with the camera lens in two positions - downhole with a radial view and uphole with a horizontal rotating position. Air development was used to displace suspended solids from the well prior to performing the television survey. The open hole survey allowed the reviewer to visually inspect the formations encountered in the borehole, as well as to observe potential fractures and water-producing zones. Acceptable picture clarity was obtained in the surveys. A log describing the formation and structural features observed in the open hole of the injection well and monitor well are presented in Appendix G. A copy of video tape survey is also included in Appendix G, however, for convenience, the tapes are boxed separately with the geophysical logs. Injection well IW-1 tapes are included in Box 1 and MW-1 tapes are included in Box 2.

2.7 Packer Tests

Straddle packer tests were performed after pilot hole construction of the injection well. Two inflatable packers (plugs) are set in the borehole and water is pumped from between the packers. Packer tests were conducted at intervals to either support demonstration of confinement, to determine water quality so as to define the base of the Underground Source of Drinking Water

(USDW), or to identify potential monitoring zones. The packers were used to isolate zones to perform drawdown and recovery tests. The straddle packer intervals were selected based on reviewing and interpreting information from geophysical logs, lithology, cores and other packer tests. Eight straddle packer tests were performed in IW-1.

One of the straddle packer tests performed in the injection well identified an acceptable monitoring zone, the upper monitoring zone, for MW-1. The selection of the depth of the lower monitoring zone was revised and as a result, a single packer test was performed in the MW-1 at the proposed lower monitor zone. In this test, a single inflatable packer is set in the borehole and water is pumped from the open hole below the packer.

The packers were lowered into the pilot hole to the selected interval on the 7⁵/₈-inch (outside) diameter drill pipe, inflated and seated against the formation. A 4-inch diameter submersible pump was lowered into the drill pipe approximately 200 feet to introduce stress on the isolated interval. Prior to starting the tests, each zone was developed free of any drilling fluids by means of air lifting and pumping until the specific conductance stabilized. Development time is identified in Table 3. The isolated zone was then allowed to recover from development before beginning the pumping test. During drawdown and recovery, water level measurements were obtained using a data logger attached to a pressure transducer (In-situ Hermit 2000-C). In addition to the hermit data logger, a battery-operated downhole pressure recorder was used for backup and quality control. The pressure transducer was lowered to a known depth. The method of analysis used on the data collected and recorded during the packer tests was the Modified Non-Equilibrium Formula derived by Cooper and Jacob (1946). The equation of the Cooper-Jacob method is as follows:

where:

$$T = \frac{264Q}{\Delta s} \qquad T = coefficient of transmissivity (gpd/ft) Q = pumping rate (gpm) \Delta s = change in drawdown over one log cycle (ft)$$

The calculated hydraulic conductivity from the packer tests are presented in Table 4. The raw packer test data and data plots are presented in Appendix H. Based on the stabilization of the fluid specific conductance prior to starting the packer tests and the drawdown characteristics of the data shown in this Appendix, all of the hydraulic conductivity values presented from the packer tests are considered valid.

2.8 Packer Test Water Quality Samples

Water samples obtained during the packer tests were analyzed in the field for temperature and conductivity. These water samples were collected during the drawdown phase of the packer test and sent to an independent laboratory for additional analysis. The samples were analyzed and the results are presented in Appendix I. A compilation of the packer test water quality data is presented in Table 5. Log derived water graphs were prepared to compare to the packer test water quality test. This graph shows good correlation, and is presented in Appendix J.

2.9 Casing

Casing heat numbers stamped on the casing were verified with the mill certificates prior to running casing in the hole. Certified welders assembled random length casing into approximate 80-foot lengths in the on-site staging area. Copies of the casing mill certificates are presented in Appendix K. Cementing plans for each casing string were proposed by the Contractor and reviewed by the Engineer prior to cementing. After accepting the proposed plan, casing was set and cemented. A copy of the cement reports for each casing run is presented in Appendix L.

Final casing installations were pressure tested. The monitor well 16 and 6^{*}/₆-inch casings were pressure tested as identified below. The 24-inch injection well casing was tested as part of the demonstration of mechanical integrity and are described in Section 4, Final Testing.

On April 30, 2001, the monitor well 16-inch injection well casing was internally pressurized to 90 psi. No pressure change was observed over the 60-minute test period, which is within the allowable change. A copy of the test gauge certification records and certified results of the hydrostatic pressure test are contained in Appendix M.

On May 10, 2001, the monitor well 6%-inch injection well casing was internally pressurized to 73.5 psi. A pressure increase of 1.5 psi was observed over the 60-minute test period. This increase represents a 2.0 percent change in the original pressure, which is within 5.0 percent maximum allowable change. A copy of the test gauge certification records and certified results of the hydrostatic pressure test are contained in Appendix M.

On June 1, 2001 the annulus between the 24-inch casing and the 14-inch tubing was pressurized to 155 psi. A pressure decline of 2.25 psi was observed over a sixty-minute test period. This decline represents a 1.5 percent change in the test gauge inspection certification records and certified results of the hydrostatic pressure test are attached. This test was witnessed by James A. Wheatley, P.G., and Len Fishkin from FDEP.

2.10 Cement Bond Logs

Cement bond logs are used to assess the quality of the bond between the casing and the cement grout. The resulting curve of the log is a function of casing size and thickness, cement strength and thickness, degree of cement bonding and tool centering.

The travel time curve (left log track) is run to determine if the tool is properly centered. The critical travel time is the time recorded when the tool is absolutely centralized in high signal areas, areas with no cement (free pipe). Factors affecting the travel time curve are cycle skipping that can be caused by fast formation arrivals and formations that are so dense they actually have a faster transit time than the casing. The basic transit time of steel is slower than some dolomites and limestones. On the amplitude curves (center log track), a time gate is set at the time corresponding to the expected arrival of the casing signal, and the amplitude of the signal in that gate is recorded. A high amplitude indicates a larger casing signal, and therefore a poorer cement bond; a low amplitude indicates a good bond.

The variable density display (left log track) displays the entire wave signal. If there is no bond, an arrival is seen at the time corresponding to the casing velocity. As the cement becomes thicker and stronger (compressive strength), the casing signal becomes weaker.

On March 23, 2001, a cement bond log was performed in the injection well 24-inch casing. From the travel time log it can be seen that good tool centralization was maintained for the entire log. The variable density display shows no strong casing signal on any section of the 24-inch casing. The cement bond log conducted in IW-1 demonstrated that there is a good cement seal around the 24-inch diameter casing and that there are no channels or conduits that would allow fluid movement adjacent to the casing. A copy of the log is included in Appendix F.

On April 23, 2001, a cement bond log was performed in the monitor well 16-inch casing. From the travel time log, it can be seen that good tool centralization was maintained for the entire log. The amplitude curve from the casing seat to 400 feet bpl shows most readings not over 15 millivolts, indicating an excellent bond. The variable density display shows no strong casing signal on any section of the 16-inch casing. The cement bond log conducted in the dual-zone monitoring well 16-inch casing demonstrate that there is a good cement seal around the 16-inch diameter casing and that there are no channels or conduits that would allow fluid movement adjacent to the casing. A copy of the log is included in Appendix F.

2.11 Tubing and Packer

A positive seal packer was installed in the 24-inch casing at a depth of 2,955 feet bpl. The 14-inch injection tubing is seated on the packer and is centered by centralizers. This configuration allows the tubing to be replaced at a later time without damaging the well. A copy of the packer specifications is presented in Appendix N. An as-built profile of IW-1 is presented in Figure 3.

2.12 Monitor Zone Depths

The selection of monitor zones for MW-1 was established based on information available from the drilling and testing of IW-1 and was approved by FDEP. The upper monitor zone was established between 1,660 and 1,710 feet bpl and the lower monitor zone between 1,900 and 1,950 feet bpl. An as-built profile of MW-1 is presented in Figure 4.

3.1 Background

This section presents the site specific geologic and hydrogeologic information obtained during this project and the results of various tests made during construction of IW-1 and MW-1.

3.2 Generalized Geologic Setting

A well defined, extensive sequence of carbonate sediments is present at the Cooper City WTP/WWTP site. This is consistent with information obtained from other projects in the area. The geologic units found during construction of the monitoring well satisfy the requirements of FAC Rule 62-528. The presence of a suitable confining sequence and suitable monitor zones were confirmed by geophysical logging and testing. A brief description of the various geologic units follows.

From land surface to approximately 240 feet bpl, the sediments are comprised of limestone, sandy limestone, limey sandstone, sandy clay and varying amounts of unconsolidated shell and sand. The limestone and sandy limestone are a light gray to grayish olive packstone and grainstone. The limey sandstone is generally light gray to grayish yellow and olive, fine to medium-grained and slightly phosphatic. The sandy clay is grayish olive, soft, plastic and slightly calcareous with very fine to fine-grained quartz sand. Various amounts of shell and quartz sand are also present in these sediments.

The dissolution features and generally poor cementation apparent in the upper 240 feet of sediments give this unit the high permeability characteristic of the Biscayne Aquifer. These sediments are Pleistocene to Miocene in age and correspond to descriptions of the Anastasia and Plamico Sand formations.

From approximately 240 to 810 feet bpl, the sediment is predominantly composed of an olive gray, plastic clay. From 810 to about 980 feet bpl, the sediment is predominantly carbonate marl. The marl is mostly pale or light grayish olive, soft and composed of silty clay with interbedded limestone present throughout the interval. The limestone varies from grayish olive to dark gray and is micritic. The sediments in the interval between approximately 240 and 980 feet bpl are Miocene to Late Eocene in age and correspond to the Hawthorn Formation.

From about 980 to 2,040 feet bpl, the sequence is composed almost entirely of limestone interbedded with dolomite, typically a pale orange to grayish orange, fine to medium grained packstone. Below 1,897 feet bpl, thin beds and stringers of dolomite are present. The limestone in this sequence is Middle to Late Eocene age and is delineated as part of the Avon Park Limestone. In the interval from 2,210 to 3,030 feet bpl, limestone is interbedded with dolomite, light to moderate yellowish-brown and fine to medium grained to cryptocrystalline. These dolomite units comprise about 20 percent of the sequence. The limestone in this interval is generally very pale orange, pellodial

or micritic, fine to medium grained and soft. The section is comprised of sediments of Early to Middle Eocene Age of the Avon Park Limestone.

Below 3,030 feet bpl the sequence is composed almost entirely of dolomite. The dolomite in the upper interval is predominantly pale yellowish or moderate brown, massive, fine grained or micritic and dense with some dissolution features. The interbedded limestone in the upper interval consists of pale orange to tan, fine to medium grained, soft and biosparite. This section contains sediments of Early Eocene Age corresponding to the Lower Avon Park Limestone Formation.

The highly cavernous "boulder zone" extends from approximately 3,000 to at least 3,400 feet bpl in the Lower Oldsmar Formation. The lower limit of the injection zone was not determined since drilling was terminated at approximately 3,400 feet bpl. The television surveys indicate that the dolomite in this zone exhibits extensive dissolution cavities as well as fracturing.

The various formations penetrated by IW-1 and MW-1 correlate closely with those encountered in the other wells in the area, demonstrating the continuity and uniformity of the beds. A hydrogeologic cross section of the wells on site is presented in Appendix D.

3.3 Hydrogeologic Setting

The upper 240 feet of rock and sediments are Pleistocene and Upper Miocene sandstone, limestone, clay and unconsolidated sand and shell. These sediments comprise the Biscayne Aquifer which is used as a source of drinking water throughout South Florida.

Underlying the Biscayne Aquifer are approximately 680 feet of Miocene clay and marl of the Hawthorn Formation which form a confining bed between the Biscayne Aquifer and the Oligocene to Eocene limestones and dolomites of the Floridan Aquifer. The clay and marl confining sequence is called the Hawthorn Formation. Water from the Floridan Aquifer in South Florida contains concentrations of dissolved solids which exceed drinking water standards. The aquifer is not currently used as a main source of drinking water in Broward County; however, some water utilities have begun to use it.

Within the Eocene limestones, a confining sequence has been identified between 1,650 and 2,000 feet bpl as discussed later in Section 3.5. It consists of a thick sequence of dense limestone with some interbedded layers of dolomite and is discussed in greater detail later in this report.

3.4 Water Quality

Water samples were collected from isolated sections of the borehole during the single packer and straddle packer tests. The water samples from the packer tests were analyzed for selected parameters to establish background water quality and to identify the depth at where there is 10,000 mg/l of total dissolved solids (TDS).

The tests were conducted in intervals considered suitable as confining zones and intervals suitable as monitor zones. During the packer tests, a sample of the formation water from the tested interval was collected just prior to shutting off the pump, after significant development time. Water samples

from the packer tests were analyzed for TDS, chloride, sulfate, specific conductivity, ammonia as nitrogen, nitrate as nitrogen, nitrite as nitrogen, total kjeldahl nitrogen and total organic nitrogen. Results of the laboratory analyses are presented in Appendix I. Table 5 summarizes the results of the laboratory analyses from the packer tests.

The base of the USDW is defined as water having less than 10,000 mg/l TDS. The base of the USDW was identified by performing water quality analysis on samples obtained from packer tests and geophysical log interpretation. Based on the water quality testing, the base of the USDW currently occurs 1,770 feet bpl. Also used in determining TDS is the dual induction geophysical log. From this log water quality can be derived. The log derived water quality data places the base of the USDW at 1,770 feet. This data is confirmed by the water quality results of the packer test conducted in IW-1 between 1,763 and 1,779 feet bpl, which yielded 10,500 mg/L total dissolved solids. A copy of the log derived water quality graph from IW-1 is attached and is presented in Appendix J.

Below 1,000 feet bpl, water samples of the drilling fluid were taken every 30 feet. Samples of the drilling fluid can sometimes provide qualitative information of the formation fluid, but since the samples are of the drilling fluid, quantitative data from the formation can not be obtained. As expected, the water quality analysis from these samples provided little useful data.

3.5 Confinement Analysis

The approach to the evaluation of vertical confinement at the Cooper City WTP/WWTP is as follows. Available borehole geophysical, geological data and open hole testing data were used to identify intervals from 1,770 (base of the USDW) to 3,000 feet bpl that exhibit confining properties. The vertical confinement provided by each interval was then evaluated. Particular attention was paid to locating beds of limestone, dolomite, clay or marl that have low matrix vertical hydraulic conductivities and are not penetrated by fractures and/or solution cavities. Such tight beds provide the primary vertical confinement of the injected effluent.

3.5.1 Identification of Confining Units

The presence of satisfactory confining sequences between 1,770 and 3,000 feet bpl was established at the WTP/WWTP during the drilling of IW-1. A letter previously submitted to the TAC documented the presence of this confinement on site. This letter from the Engineer is dated February 22, 2001 and is referred to as the "24-inch Casing Seat Request".

3.5.2 Geophysical Logs

The wire line geophysical logs for IW-1 were examined in detail for the presence of units of rock that could provide vertical confinement for injected fluids. A combination of sonic, caliper and resistivity logs was used to identify well-cemented limestone and/or dolomite beds that would be expected to have low matrix porosities and hydraulic conductivities. Borehole video surveying logs were used to locate fractures and/or cavernous zones that could be conduits for vertical fluid flow. Information on the orientation and thickness of beds was also obtained from the borehole video survey logs.

The development and conditioning of the wells prior to logging is not an issue for the sonic, caliper, gamma ray, temperature, resistivity and borehole video survey logs as these logs were designed to and are often run in mudded boreholes. Fine scale features, such as bed contacts, are readily distinguishable on the borehole video survey log, which indicates that borehole conditions did not have a significant adverse effect on log quality.

Flowmeter, temperature, and fluid resistivity/conductivity logs provide information on the location of flow zones into wells and on changes in the salinity of formation water. Temperature and fluid resistivity/conductivity logs did not provide useful information concerning vertical confinement in the 2,000 to 3,000 feet bpl interval. Flowmeter logs are of limited value for identifying individual beds with low vertical hydraulic conductivities because a single zone of high hydraulic conductivity very often dominates the flow for the entire tested interval.

3.5.3 Characterization of Well Cuttings

Cuttings collected during the pilot hole drilling of in IW-1 (land surface to 3,000 feet bpl) were examined in detail for lithology, macroporosity (visible porosity) and apparent matrix hydraulic conductivity using a stereomicroscope. A copy of the geologic log is attached. The cuttings were grab samples collected at 10-foot intervals during the construction of the well. The lithology of the limestone cuttings was characterized using the limestone classification scheme of Dunham (1962). The most common grain types were silt to fine-sand sized rounded carbonate grains that are described as either peloids (fecal pellet-shaped grains of indeterminate origin) or as bioclasts (transported fossil fragments). The mineralogy of the samples (calcite versus dolomite) was confirmed by reaction with dilute hydrochloric acid. Dolomite was classified according to crystal size as being either cryptocrystalline (crystals are not visible with the low powered microscope) or microcrystalline (crystals are visible with the low-powered microscope), finely crystalline (1/64 to 1/16 mm) or medium crystalline (1/16 to 1/4 mm).

The macroporosity (visible porosity) of the samples was characterized as being either very low (< 2%), low (2-5%), moderate (5-15%), high (15-25%), or very high (>25%). The apparent matrix hydraulic conductivity was qualitatively evaluated as being very low to high based on the porosity, size of the pores, and likely degree of interconnection of the pores. Geological logs for each well are contained in Appendix D.

3.5.4 Core Examination and Data Analysis

The six cores were taken from 2,200 to 2,802 feet bpl in IW-1. The lithology of the cores was evaluated to determine if there were any significant biases in the cutting samples. The well cuttings appeared to have somewhat less intergranular carbonate mud than the cores. In some limestone cuttings, the carbonate mud appeared to have been washed out of the samples during drilling. Some limestone cuttings, particularly grainstone and packstone lithologies, thus appear to be more porous than they actually are. The cores were also examined for the presence of fractures or solution features (vugs) that might be conduits for vertical fluid flow. A copy of the core descriptions are contained in Appendix E. Sections of each core were selected and submitted for laboratory analysis for hydraulic conductivity. Results from the laboratory core analysis are summarized in Table 2. The complete laboratory analysis is presented in Appendix E.

3.5.5 Packer Test Data

Single and straddle packer test data collected during the drilling of IW-1 and MW-1were analyzed for information on the hydraulic conductivity of potential confining units. The straddle packer data were analyzed using the Cooper and Jacob (1946) modification of the Theis (1935) non-equilibrium equation (i.e., the straight-line method). The transmissivity values calculated from both the pumping and recovery phase data for each test were similar.

It should be noted that the transmissivity and average hydraulic conductivities values calculated from the packer test data are largely a function of horizontal hydraulic conductivities. Packer test data thus tend to over estimate vertical hydraulic conductivities. For example, a packer test performed on an interval containing one or more high hydraulic conductivity beds interbedded between very low hydraulic conductivity beds would give a high transmissivity and average hydraulic conductivity value whereas the interval would have a very low vertical hydraulic conductivity. The results from each packer pumping test are contained in Appendix H. A summarization of the results of the packer tests is shown in Table 4.

3.5.6 Stratigraphic Correlation

The geologic and geophysical logs of IW-1, and MW-1 indicate excellent correlation as would be expected from wells in such close proximity. An example of this excellent correlation can be seen when the dual induction logs from IW-1 and MW-1 are placed side by side. With the logs in this position, it can be seen that the logs are nearly identical. Examples of this can be seen on the gamma ray log with peaks at 1,440 feet bpl are at the same depth and of the same magnitude. This correlation can also be seen on the VDL and dual induction logs.

3.5.7 Testing Quality Control Quality Assurance

For each of the testing procedures conducted, quality control and quality assurance procedures were implemented and documented. A copy of the calibration theory and practice for the geophysical logs conducted are contained in Appendix F. Quality control procedures for the packer testing are contained in Appendix H.

3.5.8 Criteria for Identification of Confinement Intervals

Beds or intervals of rock that are likely to offer good vertical confinement were identified using the following criteria:

- Low sonic transit times and derived sonic porosities.
- Variable density log (VDL) pattern consisting of either straight parallel vertical bands, where lithology is relatively uniform, or a "chevron" pattern of continuous parallel bands, where the formation consists of interbedded rock with differing densities and/or degrees of consolidation. Fractured rock typically has an irregular VDL log pattern.
- Low hydraulic conductivities calculated using packer pump test data.

- Low macroporosity (i.e., visible pore spaces) and a high degree of cementation (hardness) as observed in microscopic examination of cuttings and core samples.
- Borehole diameters on caliper logs close to the bit size. Fractured dolomite and limestone is commonly manifested by an enlarged borehole.
- Relatively high resistivities, which in the middle and lower Floridan Aquifer System are often indicative of tight dolomite and or limestone beds.
- Absence of evidence of fractures on the video survey and borehole televiewer log.

3.6 Confinement Intervals

The confinement properties of the strata between the base of the USDW (+/-1,770 feet bpl) and 3,000 feet bpl was evaluated using the above criteria and data. The confining intervals are discussed below.

3.6.1 Interval From 2,200 to 2,290 Feet Below Pad Level

This interval consists predominantly of light-colored limestone and dolomitic limestones. Grainstones and packstones are the most common lithologies. The grainstones and packstones are interbedded with subsidiary beds of carbonate-mud rich lithologies (fossiliferous mudstones and wackestones).

The borehole televiewer log indicates that the beds are horizontal and range in thickness from approximately 0.5 to 10 feet. The bedding appears to consist of stacked sequences of carbonate sand-rich (grainstones and packstones) and carbonate mud-rich (packstones to mudstones) limestones. The mudstone and wackestone beds, which have low macroporosities and are well cemented, can provide better vertical confinement than the thicker grainstone and packstone beds.

A packer test was performed over the interval 2,269 to 2,285 feet bpl within this confinement interval and yielded hydraulic conductivities ranging from 9.3×10^{-5} to 6.0×10^{-5} cm/sec. Analyses of cores collected in this interval yielded hydraulic conductivities ranging from 3.9×10^{-10} to 4.3×10^{-4} cm/sec. The analysis of the flowmeter data indicates little or no fluid entry in to the borehole over this confinement interval. No evidence of vertical fractures or solution cavities was visible on the borehole televiewer log or the television survey video. The geologic and geophysical data for this interval are characteristic of good vertical confinement.

A copy of the flowmeter analysis is attached. No evidence of vertical fractures or solution cavities was visible on the borehole televiewer log or the television survey video. The geological and geophysical data for this interval are characteristic of good vertical confinement.

3.6.2 Interval From 2,360 to 2,650 Feet Below Pad Level

This interval consists of interbedded light-colored limestones and dolomites. Grainstones and packstones are the most common lithologies. The grainstones and packstones are interbedded with subsidiary beds of carbonate-mud rich lithologies (fossiliferous mudstones and wackestones). The borehole televiewer log indicates that the beds are horizontal and range in thickness from

approximately 0.5 to 10 feet. The bedding appears to consist of stacked sequences of carbonate sand-rich (grainstones and packstones) and carbonate mud-rich (packstones to mudstones) limestones. The mudstone and wackestone beds, which have low macroporosities and are well cemented, can provide better vertical confinement than the thicker grainstone and packstone beds.

A packer test was performed over the interval 2,515 to 2,531 feet bpl within this confinement interval and yielded hydraulic conductivities ranging from 1.4×10^{-4} to 1.3×10^{-4} cm/sec. Analyses of cores collected in this interval yielded hydraulic conductivities ranging from 5.8×10^{-7} to 2.8×10^{-4} cm/sec. The analysis of the flowmeter data indicates little or no fluid entry in to the borehole over this confinement interval. No evidence of vertical fractures or solution cavities was visible on the borehole televiewer log or the television survey video. The geologic and geophysical data for this interval are characteristic of good vertical confinement.

3.6.3 Interval From 2,650 to 2,810 Feet Below Pad Level

This interval consists of light-colored limestones. Grainstones and packstones are the most common lithologies. The grainstones and packstones are interbedded with subsidiary beds of carbonate-mud rich lithologies (fossiliferous mudstones and wackestones). At about 2,800 feet bpl a layer of clay was encountered. The borehole televiewer log indicates that the beds are horizontal and range in thickness from approximately 0.5 to 10 feet. The bedding appears to consist of stacked sequences of carbonate sand-rich (grainstones and packstones) and carbonate mud-rich (packstones to mudstones) limestones. The mudstone and wackestone beds, which have low macroporosities and are well cemented, can provide better vertical confinement than the thicker grainstone and packstone beds.

Two packers test were performed over the intervals 2,724 to 2,740 and 2,794 to 2,810 feet bpl within this confinement interval and yielded hydraulic conductivities ranging from 8.2 x 10⁻⁵ to 1.1 x 10⁻⁴ cm/sec. Analyses of cores collected in this interval yielded hydraulic conductivities ranging from 5.8×10^{-7} to 2.8×10^{-4} cm/sec. The analysis of the flowmeter data indicates little or no fluid entry in to the borehole over this confinement interval. A copy of the flowmeter analysis is attached. No evidence of vertical fractures or solution cavities was visible on the borehole televiewer log or the television survey video. The geologic and geophysical data for this interval are characteristic of good vertical confinement.

3.6.4 Interval From 2,885 to 2,975 Feet Below Pad Level

This interval consists of light-colored limestones. Grainstones and packstones are the most common lithologies. The grainstones and packstones are interbedded with subsidiary beds of carbonate-mud rich lithologies (fossiliferous mudstones and wackestones). At about 2,800 feet bpl a layer of clay was encountered. The borehole televiewer log indicates that the beds are horizontal and range in thickness from approximately 0.5 to 10 feet. The bedding appears to consist of stacked sequences of carbonate sand-rich (grainstones and packstones) and carbonate mud-rich (packstones to mudstones) limestones. The mudstone and wackestone beds, which have low macroporosities and are well cemented, can provide better vertical confinement than the thicker grainstone and packstone beds.

No packer tests were performed over this interval. Comparison of the geologic and geophysical data available indicates that this interval is similar if not the same as the confinement interval 2,650 to 2,810 feet bpl. The analysis of the flowmeter data indicates little or no fluid entry in to the borehole over this confinement interval. No evidence of vertical fractures or solution cavities was visible on the borehole televiewer log or the television survey video. The geological and geophysical data for this interval are characteristic of good vertical confinement.

3.6.5 Confinement Summary

During the drilling and testing of these wells at the at the Cooper City WTP/WWTP, an extensive program was implemented to identify confinement between the base of the USDW and the depth 3,000 feet bpl. An unprecedented number of cores and packer tests were performed over a relatively small depth interval.

The limestones and dolomites present from 1,770 to 2,000 feet bpl in IW-1 have geological and geophysical characteristics indicative of good confinement. The available borehole televiewer and television surveys show no evidence of fractures or cavernous zones that could be conduits for the upward migration of injected effluent. The majority of the 1,770 to 2,000 feet bpl interval consists of horizontally bedded, fossiliferous limestone. The limestones have visible porosities (i.e. macroporosities) estimated to range mostly between 0 and 15%. Sonic and core sample total porosities range mostly between 33 and 45%. The majority of the porosity of the limestones is microporosity (microporosity = total porosity minus macroporosity). Microporosity rocks, where unfractured, typically have low hydraulic conductivities. The vertical hydraulic conductivity of core samples range from 1.6×10^{-9} to 1.0×10^{-3} cm/sec.

Dolomite beds located between 1,790 and 1,830 feet bpl and between 1,930 and 2,000 feet bpl provide very good confinement in addition to that provided by the limestone. Vertical core hydraulic conductivity from these zones ranging from 1.6×10^{-9} to 1.0×10^{-8} cm/sec. These dolomite beds show no evidence of fractures in the borehole video survey logs and television surveys. The absence of indicators of effluent in samples above 2,000 feet bpl provides strong evidence for the presence of effective confinement between 1,900 and 2,000 feet bpl. The low vertical hydraulic conductivity limestone and dolomites beds present between 1,750 and 2,000 feet bpl provide additional confinement and protection of the USDW. The combined hydrogeological, geological and geophysical data provide reasonable assurance that confinement exists below the USDW.

4.0 Final Testing

4.1 General

After the injection well construction was completed, the injection well was tested for mechanical integrity, background water samples were taken from MW-1 and a short term injection test on IW-1 was performed. The mechanical integrity testing (MIT) includes a hydrostatic pressure test of the injection casing, a temperature log, a video survey and a radioactive tracer survey (RTS). The short-term injection test consisted of injecting secondary treated plant effluent into the well for a twenty four-hour period.

4.2 Background Water Quality

Water samples were obtained from both the upper and lower monitor zones of MW-1 and the IW-1 injection zone. Prior to sampling, the wells were developed by using the reverse air procedure then allowing the well to flow naturally for a minimum of three well volumes. The samples were analyzed for a variety of constituents to establish the "natural" or background quality of the water. Background water quality laboratory analytical results from the injection zones of IW-1 and the upper and lower monitor zones of MW-1 are presented in Appendix O.

Water samples of the plant effluent were analyzed and the results of the analysis are presented in Appendix O.

4.3 Mechanical Integrity Testing

In accordance with FAC Rule 62-528, the injection wells were tested for mechanical integrity. Testing consisted of a hydrostatic pressure test of the injection casing, a temperature log, a television survey and a RTS. The hydrostatic pressure test, which was conducted at a pressure at least 50% greater than the maximum allowable operating pressure, identifies internal casing integrity. The temperature log identifies temperature variations in the well. The television survey provides visual verification of internal casing integrity. The radioactive tracer survey provides data on the external mechanical seal of the casing. The following describes the testing methods, results of the testing and presents the interpretation of the data collected during the mechanical integrity tests.

4.3.1 Casing Pressure Test

On March 26, 2001, the 24-inch injection well casing was internally pressurized to 152 psi. A pressure change was not observed over the 60-minute test period. This represents a 0.0 percent change in the original pressure, which is within the 5.0 percent limits specified by the regulations. A copy of the test gauge certification records and certified results of the hydrostatic pressure test are contained in Appendix M. This test was witnessed by Michael Wengrenovich, P. E. and Len Fishkin, P.G. (FDEP).

4.3.2 Annulus Pressure Test

On June 1, 2001 with the tubing (14-inch diameter) and permanent positive seal packer installed, the annulus between the tubing and the 24-inch casing was internally pressurized to 155 psi. A pressure decline of 2.25 psi was observed over the sixty-minute test period. This decline represents a 1.5 percent change in the original pressure, which is within the 5.0 percent limit specified by the regulations. A copy of the test gauge certification record and certified results of the hydrostatic pressure test are contained in Appendix M. James A. Wheatley, P.G. and Len Fishkin (FDEP) witnessed the test.

4.3.3 IW-1 Temperature Log

On June 1, 2001, Florida Geophysical Logging, Inc. conducted a temperature log on IW-1 from the surface to a total depth of 3,410 feet bpl. The temperature log showed a decline from about 80° F to about 69° F to a depth of 3,000 feet bpl. Below this point, the temperature decreases to about 55° F to a total depth of 3,410 feet. James A. Wheatley, P.G. witnessed the test. A copy of the temperature log is contained in Appendix F.

4.3.4 IW-1 Television Survey

A video survey of IW-1 was performed on March 28, 2001. The survey was performed from pad level to a depth of 3,410 feet bpl. Water clarity was good, enabling the camera to capture clear images of the casing interior, casing seat and open-hole section. The survey revealed that the casing was in excellent condition. A video copy of the television survey is included in Appendix G.

4.3.5 IW-1 Radioactive Tracer Survey

On June 1, 2001, a radioactive tracer survey (RTS) was conducted on IW-1. A schematic of the logging tool is shown in Figure 5. The test began with Florida Geophysical Logging, Inc., conducting a background gamma ray log (GRL) and a casing collar locator (CCL). The background GRL was "memorized" and subsequently reprinted on each out-of-position logging run to serve as a means of comparison. Each logging run is identified by its name presented at the top of the log. After the completion of the background GRL, the logging tool ejector was calibrated to a 0.25 millicurie (mCi) per second discharge, and the reservoir was loaded with 10 mCi of radioactive Iodine 131. The RTS was witnessed by James A. Wheatley, P.G., and Len Fishkin, P.G. (FDEP).

The first test conducted was a dynamic test (TEST #1). An injection rate of 50 gpm was established using potable water. For this test, the tracer ejector port was positioned five feet above the bottom of the casing (2,975 feet) and 2 MCi slug of tracer material was released under pumping conditions. Time drive monitoring was started upon release of the tracer. At about the 30-second mark, the middle detector (located 3.1 feet below the ejector) showed evidence of the slug dispersing downward from the ejector. At about the 3-minute mark, the bottom gamma ray detected the tracer slug. No increase in gamma detection by the top gamma ray detector was seen during the 60-minute monitoring period. The tools were then logged out of position (LOG OUT OF POSITION #1) to a depth of 2,750 feet bpl. Results of the log out position showed no indication of tracer material movement up hole. The injection casing was then flushed with approximately 7,000 gallons of potable water. Following the flushing, an out of log position was conducted (LOG AFTER FLUSH #1) from below the casing to 2,750 feet bpl. This log shows no indication of tracer material

movement up hole. These results are interpreted as providing evidence that the casing integrity is sound and there are no channels behind the casing.

The next test conducted was a second dynamic test (TEST #2). An injection rate of 114 gpm was established using potable water. For this test, the tracer ejector port was positioned five feet above the bottom of the casing (2,975 feet) and 2 MCi slug of tracer material was released under pumping conditions. Time drive monitoring was started upon release of the tracer. At about the 30-second mark, the middle detector (located 3.1 feet below the ejector) showed evidence of the slug dispersing downward from the ejector. At about the 2-minute mark, the bottom gamma ray detected the tracer slug. No increase in gamma detection by the top gamma ray detector was seen during the 60-minute monitoring period. The tools were then logged out of position (LOG OUT OF POSITION #2) to a depth of 2,750 feet bpl. Results of the log out position showed no indication of tracer material movement up hole. The injection casing was then flushed with approximately 7,000 gallons of potable water. Following the flushing, an out of log position was conducted (LOG AFTER FLUSH #2) from below the casing to 2,750 feet bpl. This log shows no indication of tracer material movement up hole. These results are interpreted as providing evidence that the casing integrity is sound and there are no channels behind the casing.

The third and final test conducted was also a dynamic test (TEST #3). An injection rate of 310 gpm was established using potable water. For this test, the tracer ejector port was positioned five feet above the bottom of the casing (2,975 feet) and 2 MCi slug of tracer material was released under pumping conditions. Time drive monitoring was started upon release of the tracer. At about the 15-second mark, the middle detector (located 3.1 feet below the ejector) showed evidence of the slug dispersing downward from the ejector. At about the 15-second mark, the bottom gamma ray detected the tracer slug. No increase in gamma detection by the top gamma ray detector was seen during the 60-minute monitoring period. The tools were then logged out of position (LOG OUT OF POSITION #3) to a depth of 2,750 feet bpl. Results of the log out position showed no indication of tracer material movement up hole. These results are interpreted as providing evidence that the casing integrity is sound and there are no channels behind the casing.

Following the LOG OUT POSITION #3, the logging tool was lowered to a depth of 3,102 feet bpl and the remainder of the tracer material was released. The tools were then lowered to the bottom of the open hole (3,410 feet) and a final background log was conducted.

4.3.6 MIT Conclusions

Based on the results of the temperature log, hydrostatic pressure tests, video survey and radioactive tracer survey, IW-1 has demonstrated to have mechanical integrity.

4.4 Injection Test

On June 12, 2001 a controlled injection test was conducted on IW-1 utilizing plant effluent as the source of water for testing. The test consisted of a 24-hour background period, during which transducers were placed at a depth of 2,960 feet bpl in IW-1 to monitor bottom hole pressure changes. Transducers were also placed such that wellhead and annulus pressure changes of IW-1 and both zones of the dual-zone monitoring well (MW-1) could be monitored. After performing

background monitoring, the 12-hour was started. The injection test was conducted at two rates the first rate 4,300 gpm (10.4 ft/sec) lasted 11 hours, during the last hour of the test the rate was increased to 5,150 gpm (12.4 ft/sec). The maximum well head pressure during the test was 79 psi well within the allowable 2/3 of the pressure test conducted on the annulus. Wellhead shut-in pressure is approximately 33 psi. A copy of the data obtained during the injection test as well as a site survey and wellhead elevations are presented in Appendix P. A summary of the injection rates and wellhead pressure is presented below:

Injection Rate (gpm)	Wellhead Pressure (psi)
4,300	64.5
5,150	79.0

5.0 Findings and Recommendations

5.1 Findings

The following list summarizes the findings identified during the construction of the injection and monitor wells.

- The base of the USDW, the point where the water contains 10,000 mg/l TDS, occurs at 1,770 feet bpl.
- The confining sequence generally occurs between 1,770 feet and 3,000 feet bpl.
- Vertical hydraulic conductivity determined from core testing within the confining sequences ranged from 9.3x10⁻⁹ to 1.4x10⁻³ cm/sec.
- Hydraulic conductivity was determined from packer testing within the confining sequences ranging from $9.3.0 \times 10^{-5}$ to 1.46×10^{-4} cm/sec.
- The data demonstrates the existence of an extremely transmissive injection zone below 3,000 feet bpl saturated with saline water (containing more than 10,000 mg/l TDS) similar to that which exists at other on-site operating injection wells.
- The injection zone is capable of accepting the maximum design flowrate equivalent to a velocity of 12 feet per second in the wells at a reasonable injection pressure that will not promote fractures in the injection zone or confining sequences.
- IW-1 was successfully pressure tested at 152 psi (24-inch casing) and at 155 psi (14-inch tubing).
- The testing program has demonstrated that IW-1 has mechanical integrity.
- One dual-zone monitor well was drilled with the upper lower monitor zone located from 1,660 to 1,710 feet bpl and the lower zone from 1,900 to 1,950 feet bpl.

5.2 Conclusions

The presence of favorable geologic conditions, a highly transmissive injection zone filled with water having greater than 10,000 mg/l TDS, suitable confining sequence, and suitable monitor zones will permit the use of injection wells for disposal of treated effluent at the Cooper City WTP/WWTP in accordance with existing state and federal underground injection control regulations.

Based on the results of the geophysical logging and testing performed at the Cooper City WTP/WWTP, injection well IW-1 has mechanical integrity and is ready to begin operational testing.

5.3 Recommendations

Operation of the monitor well is to begin within one month after the construction of the surface facilities is complete. Injection well operation may begin operating under the construction permit after operational testing approval is issued by FDEP.

The following recommendations are in accordance with requirements of FAC Rule 62-528 for the safe operation of an injection well system. These procedures should be carried out conscientiously to ensure compliance with the injection well construction permit (refer to Appendix A) and all regulatory requirements and to ensure successful operation of the well. Additional information on monitoring and reporting data is discussed in Section 5.4.

- Dual-zone monitor well pressure is to be continuously monitored.
- Injection wellhead pressure is to be continuously monitored.
- Flow to injection well is to be continuously monitored.
- Dual zone monitor well water quality is to be monitored weekly.
- Waste stream (plant effluent) water quality is to be monitored monthly.
- Injection well injectivity tests are to be performed quarterly.
- A complete analysis of the waste stream is to be performed yearly.
- Injection well mechanical integrity tests are to be performed every five years.
- The six shallow pad wells are to be maintained for future use.

5.4 Well Operation, Maintenance and Future Testing

When the injection well is operational, a variety of data will be collected to satisfy statutory/permit requirements and to assist in managing the system. This section discusses the basic requirements for data collection to maintain permit compliance during both the initial testing and long-term operation of the injection well system. Initially, the injection wells will be operating under the construction permits. Six months of operation are required before the City can apply for an operating permit. The construction permit for IW-1 expires March 13, 2005. It is essential that the performance data collection begin upon operational startup to establish baseline information that both satisfies regulatory requirements and serves for future data comparison and performance analyses. These records should be permanently maintained.

5.4.1 Monitor Well Data Collection

The purpose of monitor zone data collection is to detect changes in water quality attributable to the injection of treated effluent into the nearby injection well. To collect the water quality samples, the

monitor zones at the dual-zone monitoring well will be equipped with two sampling pumps, one for each zone. Interconnection of piping from the different zones and wells is not permitted by FDEP. Prior to collecting water samples for analysis, at least three well volumes have to be pumped from the monitor zones. Well water is pumped to the sample sinks in the injection well pump station. Excess well water is discharged into the injection well pump station wetwell, and is pumped down the injection wells.

Dual-zone monitor well water quality is to be monitored through weekly samples from the two dualzone monitor well zones which are to be collected and analyzed weekly for TDS, chlorides, ammonia, TKN, nitrate, nitrite, pH, specific conductance, total phosphorous, sulfate, radium 226, and radium 228. The results of these analyses are to be sent to the FDEP monthly.

The pressure in both zones of the dual-zone monitor well is to be continuously monitored and recorded. Daily and monthly average, maximum and minimum pressures are to be reported to FDEP monthly.

5.4.2 Injection Well Data Collection

Beginning with the start of the use of injection well, injection records should be maintained to evaluate injection well performance.

The pressure at the injection wellhead is to be continuously monitored and recorded. Daily monthly average, maximum and minimum pressures are to be reported to FDEP monthly.

The flowrate into the injection well is to be continuously monitored and recorded. Daily average, maximum, and minimum flow rates, as well as the total volume of effluent pumped into the well are to be reported to the FDEP on a monthly basis.

5.4.3 Injectivity Testing

Periodic determination of the injectivity of a well is used as a measure of the efficiency of a well and is a permit requirement as a management tool for the injection well system. The injectivity test involves injecting effluent into a well at three (or more) injection rates and recording the injection pressure for each rate. The shut-in pressure of the injection well is to be measured before each different injection rate. The injectivity is calculated by dividing the injection rate by the required injection pressure (wellhead injection pressure minus shut-in wellhead pressure). The result is expressed as gallons per minute per pounds per square inch (mgd/psi).

Factors effecting the injection wellhead pressure are a function of:

- The density differential between treated effluent and the formation water in the injection zone;
- The friction loss in the casing; and
- The bottom hole pressure (injection zone transmissivity).

The latter is fairly constant as long as the temperature and density of the injection and formation fluids remain constant. Friction loss in the casing and bottom hole pressure can vary as a result of changes in the flowrate, physical condition of the injection zone and physical condition of the pipe. In general, pressure builds slowly with time (for a given pumping rate) as the casing "ages". Similarly, plugging of an injection zone can cause a gradual pressure build-up over time. Testing is required to be conducted quarterly for the life of the well. The testing rates for injectivity testing should be established as soon as the well is placed in operation. The test procedure should be easily repeatable.

A specific injectivity test is required to be performed quarterly. The pumping rates should be established after the well is in operation. Flow to the wells and wellhead pressures are to be recorded during this period. Test results are to be reported to the FDEP upon completion of the testing.

5.4.4 Mechanical Integrity

An injection well has mechanical integrity when there is no leak in the casing and no fluid movement into the underground source of drinking water through channels adjacent to the well bore. Mechanical integrity testing includes a pressure test, a radioactive tracer survey, a high resolution temperature log and a television survey. This testing will be used, along with the monitoring data of the upper and lower monitor zones, to demonstrate the absence of fluid movement above the injection zone.

The injection well is to be tested for mechanical integrity every five years in accordance with FAC Rule 62-528. Based on the date of testing during construction, the next MIT to be performed on IW-1 is June 1, 2006. The proposed MIT plan must be approved by FDEP prior to performing mechanical integrity testing. Request for approval should be made approximately six months prior to the required completion date.

5.4.5 Waste Stream Analysis

Samples from the waste stream are to be collected and analyzed monthly for TDS, ammonia, TKN, nitrate, specific conductance, total phosphorous, chloride, total suspended solids, sulfate, gross alpha, radium 226, and radium 228. The results of these analyses are to be sent to the FDEP monthly.

5.5 Plugging and Abandonment Plan

In the event that an injection well has to be abandoned, the well must be effectively sealed (or plugged) to prevent upward migration of the injection zone fluid or the interchange of formation water through the borehole or along the casing. The plugging program will require the services of a qualified drilling contractor with equipment capable of installing drill pipe to a depth of 3,000 feet and pumping neat cement.

The following procedures would be followed to abandon an injection well:

- Obtain a permit from the FDEP.
- Suppress the wellhead pressure with drilling mud.

- Remove the wellhead assembly.
- Fill the open hole with crushed limestone.
- Place a sand cap on the crushed limestone to the bottom of the 24-inch casing.
- Fill the 24-inch casing with neat cement.

The following procedures would be followed to abandon a dual-zone monitor well:

- Obtain a permit from the FDEP.
- Suppress the wellhead pressure with drilling mud.
- Remove the wellhead assembly.
- Fill the deep zone and the 6⁵/₈ -inch diameter casing with neat cement grout.
- Fill the shallow zone and the 16-inch diameter casing with neat cement grout

A cost estimate for plugging and abandoning the wells is presented in Table 6.

TABLES

.

Core Depths			
Core #	Depth* (feet bpl)		
1	1700-1715		
2	1780-1800		
3	1830-1847		
4	1880-1895		
5	1930-1944		
6	1980-1995		
7	2200-2210.5		
8	2275-2285		
9	2445-2458		
10	2519-2531		
11	2735-2745		
12	2790-2802		

Hydraulic Conductivity Derived from Cores					
	Interval	Horizontal	Vertical		
	2205.7-2206.2	4.3×10^{-4}	2.7×10^{-4}		
Core #7	2207.2-2207.7	3.2 x 10 ⁻⁴	2.8×10^{-4}		
	2210.2-2210.5	$2.0 \ge 10^{-10}$	8.2 x 10 ⁻⁶		
	2276.2-2276.8	3.9 x 10 ⁻¹⁰	1.7 x 10 ⁻⁹		
0	2277.3-2277.8	1.1 x 10 ⁻⁶	5.5 x 10 ⁻⁷		
Core #8	2279.4-2279.8	2.3 x 10 ⁻⁷	1.0 x 10 ⁻⁷		
	2281.2-2281.8		8.2 x 10 ⁻⁸		
	2450.2-2450.5		9.9 x 10 ⁻⁶		
~	(A) 2450.2-2450.5		2.9 x 10 ⁻⁵		
Core #9	(B) 2452.8-2453.6	1.4 x 10 ⁻⁵	1.0 x 10 ⁻⁵		
	2454.0-2454.4	8.9×10^{-7}	5.8×10^{-7}		
	2456.0-2456.4	1.3 x 10 ⁻⁵	1.7 x 10 ⁻⁵		
	2520.2-2520.7	$1.5 \ge 10^{-4}$	1.4 x 10 ⁻⁴		
~ ~ ~ ~	2525.6-2526.3	1.6 x 10 ⁻³	2.8 x 10 ⁻⁴		
Core #10	2528.3-2528.9	1.9 x 10 ⁻⁴	1.5 x 10 ⁻⁴		
	2529.4-2529.9	1.8 x 10 ⁻⁴	1.2 x 10 ⁻⁴		
0 111	2740.7-2741.1	3.0 x 10 ⁻⁴	2.9 x 10 ⁻⁴		
Core #11	2743.8-2744.1	3.6 x 10 ⁻⁷	2.1 x 10 ⁻⁵		
	2759.9-2796.6	9.4 x 10 ⁻⁵	8.2 x 10 ⁻⁵		
Core #12	2799.3-2800.0	1.2 x 10 ⁻³	7.8 x 10 ⁻⁴		
	2801.2-2801.7	$3.5 \ge 10^{-4}$	4.1×10^{-4}		

Table 2
Hydraulic Conductivity Derived from Cores

Table 3 Packer Test Development

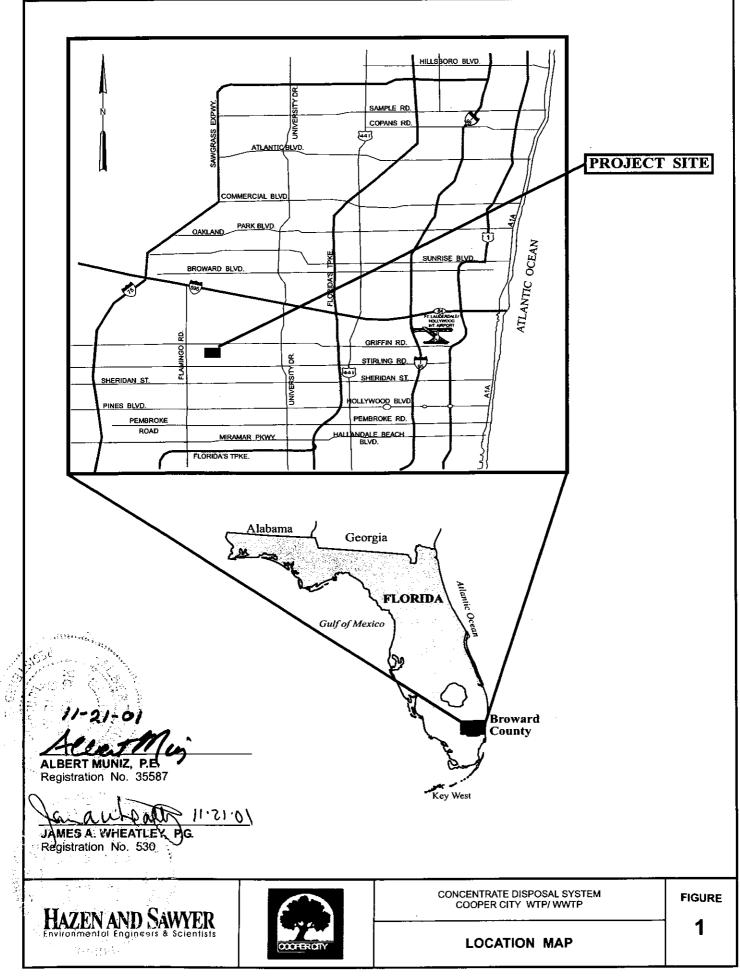
			Air opment	Pump Development	
Depth (feet bpl)	Well	Time (min)	Rate (gpm)	Time (min)	Rate (gpm)
1660 – 1710 d	IW-1	105	100	195	79
1763 – 1779 d	IW-1	88	325	382	80
1800 – 1850 d	IW-1	139	180	150	80
1900 – 1959s	MW-1	90	9	365	105
1950 1966 d	IW-1	95	100	362	75
2269 – 2285 d	IW-1	690	7	435	14
2515 – 2531 d	IW-1	540	14	375	10
2724 – 2740 đ	IW-1	945	10	360	9
2794 – 2810 d	IW-1	270	20	195	21

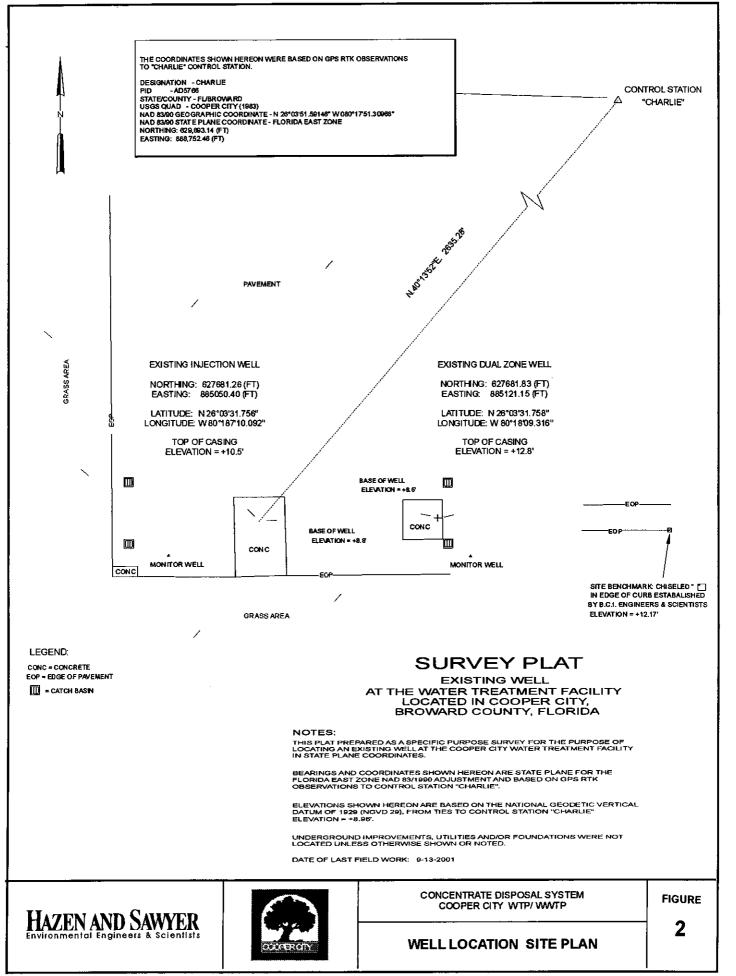
d = Straddle packer. s = Single packer.

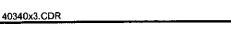
Hydraulic Conductivity Derived from Packer Tests							
Depth Interval (feet bpl)	Weli	Pumping Rate (gpm)	Maximum Drawdown (feet)	Drawdown Hydraulic Conductivity (cm/sec)	Drawdown Transmissivity (gpd/ft)	Recovery Hydraulic Conductivity (cm/sec)	Recovery Transmissivity (gpd/ft)
2269 – 2285	IW-1	9	114.6	9.3 x 10 ⁻⁵	31.8	6.0 x 10 ⁻⁵	20.6
2515 - 2531	IW-1	19	139.5	$1.4 \ge 10^{-4}$	47.7	1.3 x 10 ⁻⁴	45.6
2724 - 2740	IW-1	18	198.6	9.2 x 10 ⁻⁵	31.6	8.2 x 10 ⁻⁵	27.9
2794 - 2810	IW-1	14	143.1	1.1 x 10 ⁻⁴	37.3	1.1 x 10 ⁻⁴	36.9

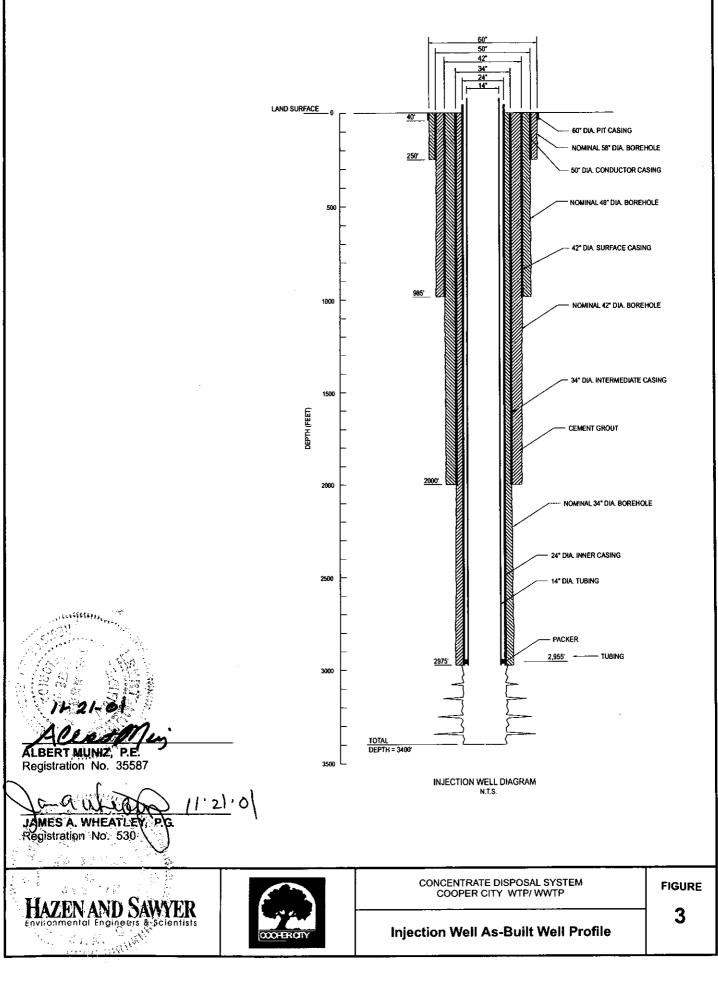
 Table 4

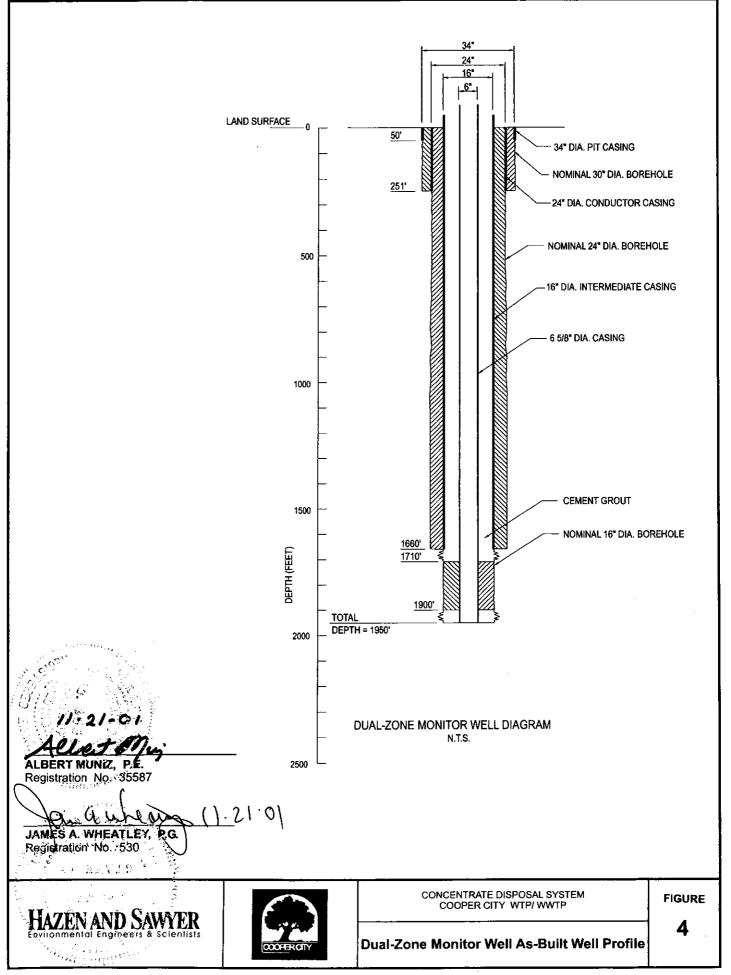
 Hydraulic Conductivity Derived from Packer Test

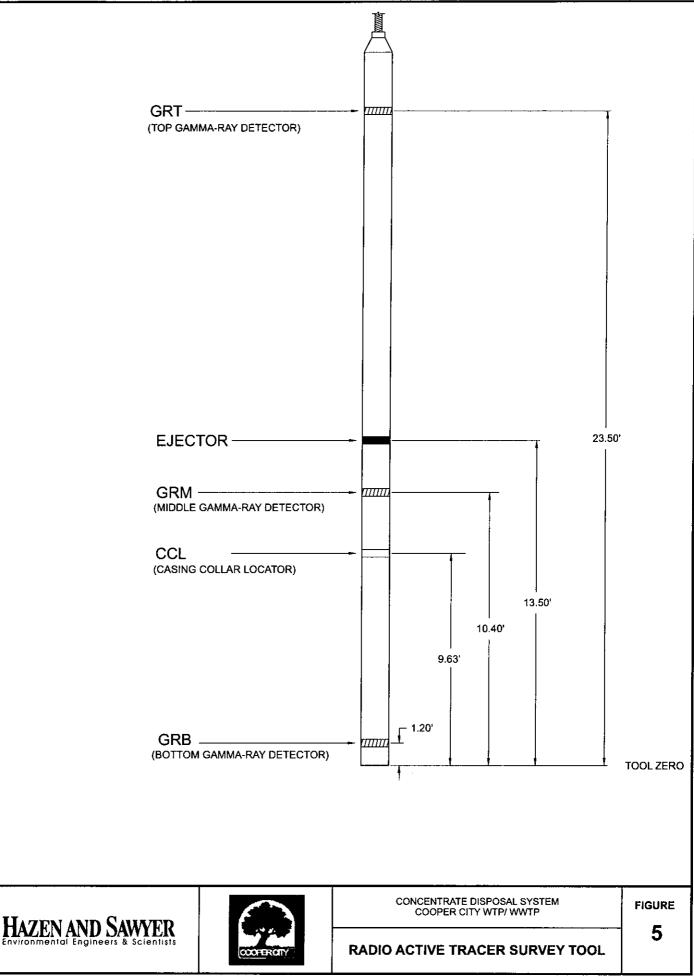

Table 5 Water Quality Analysis from Packer Tests							
Depth Interval (feet)	Well	Ammonia (mg/l)	Chloride (mg/l)	Conductivity (umhos/cm)	Total Kjeldahl Nitrogen (mg/l)	Sulfate (mg/l)	TDS (mg/l)
1660 - 1710	IW-1	0.57	2,400	7,190	0.74	495	5,170
1763 – 1779	IW-1	0.52	6,000	42,800	0.99	365	10,800
1800 - 1850	IW-1	0.68	10,500	27,500	<0.05	370	27,500
1900 - 1950	MW-1	0.05	15,500	38,200	0.82	680	27,400
1950 1966	IW-1	<0.05	17,200	42,200	<0.05	950	31,400
2269 – 2285	IW-1	0.52	20,500	42,800	0.69	2,490	32,300
2515 – 2531	IW-1	0.05	20,500	36,700	0.12	2,660	38,450
2724 – 2740	IW-1	<0.05	22,000	36,700	0.13	2,830	35,600
2794 - 2810	IW-1	0.08	21,000	36,200	0.11	2,720	35,040


Tabla 5


Task	Unit Cost	Plan Estimate
Injection Well		
Mobilization	\$20,000	\$20,000
Mechanical Integrity Test (MIT)	\$20,000	\$20,000
Crushed Limestone		
4,000 cu ft	\$10/cu ft	\$40,000
Neat Cement		
10,000 cu ft	\$10/cu ft	\$100,000
20% Contingency		<u>\$36,000</u>
TOTAL		\$216,000
Dual Zone Monitor Well		
Mobilization	\$10,000	\$10,000
Neat Cement		
3,000 cu ft	\$10/cu ft	\$30,000
20% Contingency		<u>\$8,000</u>
TOTAL		\$48,000


Table 6Plugging and Abandonment Cost Estimates


FIGURES



APPENDICES

APPENDIX A

FDEP CONSTRUCTION PERMIT

-

Department of Environmental Protection

RECEIVED HAZEN AND SAWYER, P.C. Boca Raton, Florida

MAR 16 2000

40 I I 6340

Jeb Bush Governor Southeast District P.O. Box 15425 West Palm Beach, Florida 33416

JOB No. David B. Struhs Secretary

NOTICE OF PERMIT

÷

CERTIFIED MAIL #Z220324453 RETURN RECEIPT REQUESTED

BROWARD COUNTY UIC - City of Cooper City WTP/WWTP FILE: 0153012-001-UC (IW-1, MW-1)

Mr. George A. Haughney, P.E. Director of Utilities and City Engineer City of Cooper City Department of Utilities 11791 S.W. 49th Street Cooper City, FL 33330

Dear Mr. Haughney:

Enclosed is Permit Number 0153012-001-UC, to construct a Class I (tubing and packer) fourteen (14)-inch outside diameter (O.D.) injection well, IW-1, and to operationally test IW-1 with non-hazardous membrane softening concentrate reject water and secondary treated domestic wastewater (effluent) from the Cooper City WTP/WWTP facility, issued pursuant to Section(s) 403.087, Florida Statutes and Florida Administrative Codes 62-4, 62-520, 62-528, and 62-550, 62-600, 62-601 and 62-660. The system shall be located at the Cooper City WTP/WWTP facility.

Any party to this Order (permit) has the right to seek judicial review of the permit pursuant to Section 120.68, Florida Statutes, by the filing of a Notice of Appeal pursuant to Rule 9.110, Florida Rules of Appellate Procedure, with the Clerk of the Department in the Office of General Counsel, Mail Stop 35, 3900 Commonwealth Blvd., Tallahassee, Florida 32399-3000; and by filing a copy of the Notice of Appeal accompanied by the applicable filing fees with the appropriate District Court of Appeal. The Notice of Appeal must be filed within 30 days from the date this Notice is filed with the Clerk of the Department.

Should you have any questions, please contact Mark A. Silverman, P.G., or Jose L. Calas, P.E., of this office at (561) 681-6695 or (561) 681-6691, respectively.

Executed in West Palm Beach, Florida.

STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION

Menssa L. Méeker Director of District Management Southeast District

MLM:ES:J

Copies furnished to:

Christopher Farrell, Cooper City Albert Muniz, H&S/Boca Raton Garth Hinckle, BCDPEP Richard Deuerling, FDEP/TLH Brad Russell, FDEP/WPB Francine Ffolkes, OGC Nancy Marsh, USEPA/ATL Ron Reese, USGS/MIA Steve Anderson, SFWMD/WPB

CERTIFICATE OF SERVICE

This is to certify that this NOTICE OF PERMIT and all copies were mailed before the close of business on MAR 1 4 2000 to the listed persons.

Clerk Stamp

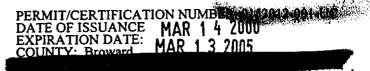
FILING AND ACKNOWLEDGMENT FILED, on this date, pursuant to the §120.52, Florida Statutes, with the gesignated Department Clerk, receipt of which is hereby acknowledged.

unl

MAR 1 4 2000 Date

"More Protection, Less Process"

Printed on recycled paper.



Department of Environmental Protection

Jeb Bush Governor Southeast District P.O. Box 15425 West Palm Beach, Florida 33416

David B. Struhs Secretary

PERMITTEE: Mr. George A. Haughney, P.E. Director of Utilities and City Engineer City of Cooper City Department of Utilities 11791 S.W. 49th Street Cooper City, FL 33330

PROJECT: Construction Permit for Class I Tubing and Packer Injection Well IW-1 at the Cooper City WTP/WWTP facility

PROJECT: Permit to construct Injection Well IW-1, and to operationally test IW-1 with non-hazardous membrane softening concentrate reject water and secondary treated domestic wastewater (effluent) from the Cooper City WTP/WWTP facility.

This permit is issued under the provisions of Chapter 403.087, Florida Statutes, and Florida Administrative Code (F.A.C.) Rules 62-4, 62-520, 62-522, 62-528, and 62-550, 62-600, 62-601 and 62-660. The above named permittee is hereby authorized to perform the work or operate the facility shown on the application and approved drawing(s), plans, and other documents attached hereto or on file with the Department and made a part hereof and specifically described as follows:

TO CONSTRUCT AND OPERATIONALLY TEST: One Class I (tubing and packer) fourteen (14)-inch outside diameter (O.D.) injection well, IW-1, and a deep dual zone monitor well, MW-1. Injection Well IW-1 will be used to inject up to a flow rate of 10.0 feet per second or 6.0 million gallons per day (MGD) (peak hour flow) of non-hazardous membrane softening concentrate reject water from the Cooper City WTP and non-hazardous secondary treated domestic wastewater (effluent) from the Cooper City WWTP. The injection interval will be in the "Boulder Zone" in the lower Oldsmar Formation between approximately 2,900 feet and the total depth of the well at 3,400 feet below land surface (bls). The confinement of the injection zone from overlying underground source of drinking water (USDW) aquifers and fluid movement adjacent to the wellbore of the injection well will be monitored by two monitoring zones in Monitor Well MW-1. The lower interval shall be positioned in a transmissive interval below the USDW at an appropriate point above the injection interval and major confining units to monitor for reasonable assurance of vertical confinement of injected fluids and external mechanical integrity of the injection well. The upper interval shall be positioned in a transmissive interval below the base of the USDW. Final depths will be determined during construction and field testing.

IN ACCORDANCE WITH: Application to Construct a Class I Injection Well System received March 5, 1999; associated permit processing fee received March 15, 1999; March 16, 1999 verbal Request for Information (RFI) regarding signature; response to verbal RFI received March 19, 1999; RFI dated April 16, 1999; meeting at the Southeast District office with the City and Hazen & Sawyer, the City's consultant, held April 26, 1999; RFI dated July 14, 1999; RFI dated Jule 11, 1999; Response to RFI received June 22, 1999; RFI dated July 14, 1999; Response to RFI received July 26, 1999; August 16, 1999 verbal RFI; Response to verbal RFI received August 23, 1999; comments from the Underground Injection Control - Technical Advisory Committee (UIC-TAC); publication of the Notice of Draft Permit 0153012-001-UC in the Sun-Sentinel newspaper on December 6, 1999; consideration of the Intent to Issue Permit 0153012-001-UC in the Sun-Sentinel newspaper on February 3, 2000.

LOCATED AT: Cooper City WTP/WWTP, 11791 S.W. 49th Street, Cooper City, Broward County, Florida 33330.

TO SERVE: Cooper City WTP/WWTP Service Area.

SUBJECT TO: General Conditions 1-24 and Specific Conditions 1-11.

Page 1 of 21

"More Protection, Less Process"

Printed on recycled paper.

COUNTY: BROWARD PERMIT/CERTIFICATION NUMBER: 0153012-001-UC DATE OF ISSUANCE: MAR 1 4 2000 EXPIRATION DATE: MAR 1 3 2005

GENERAL CONDITIONS:

The following General Conditions are referenced in Florida Administrative Code Rule 62-528.307.

- The terms, conditions, requirements, limitations and restrictions set forth in this permit are "permit conditions" 1. and are binding and enforceable pursuant to section 403.141, F.S.
- This permit is valid only for the specific processes and operations applied for and indicated in the approved drawings or exhibits. Any unauthorized deviation from the approved drawings, exhibits, specifications, or 2. conditions of this permit may constitute grounds for revocation and enforcement action.
- 3. As provided in subsection 403.087(7), F.S., the issuance of this permit does not convey any vested rights or exclusive privileges. Neither does it authorize any injury to public or private property or any invasion of personal rights, nor infringement of federal, state, or local laws or regulations. This permit is not a waiver of or approval of any other Department permit that may be required for other aspects of the total project which are not addressed in this permit.
- 4. This permit conveys no title to land, water, does not constitute State recognition or acknowledgment of title, and does not constitute authority for the use of submerged lands unless herein provided and the necessary title or leasehold interests have been obtained from the State. Only the Trustees of the Internal Improvement Trust Fund may express State opinion as to title.
- 5. This permit does not relieve the permittee from liability for harm to human health or welfare, animal, or plant life, or property caused by the construction or operation of this permitted source, or from penalties therefrom; nor does it allow the permittee to cause pollution in contravention of Florida Statutes and Department rules, unless specifically authorized by an order from the Department.
- The permittee shall properly operate and maintain the facility and systems of treatment and control (and related appurtenances) that are installed and used by the permittee to achieve compliance with the conditions of this 6. permit, or are required by Department rules. This provision includes the operation of backup or auxiliary facilities or similar systems when necessary to achieve compliance with the conditions of the permit and when required by Department rules.
- The permittee, by accepting this permit, specifically agrees to allow authorized Department personnel, upon presentation of credentials or other documents as may be required by law and at reasonable times, access to the 7. premises where the permitted activity is located or conducted to:
 - a. Have access to and copy any records that must be kept under conditions of this permit;
 - b. Inspect the facility, equipment, practices, or operations regulated or required under this permit; and
 - Sample or monitor any substances or parameters at any location reasonably necessary to assure compliance C. with this permit or Department rules.

Reasonable time will depend on the nature of the concern being investigated.

- 8. If, for any reason, the permittee does not comply with or will be unable to comply with any condition or limitation specified in this permit, the permittee shall immediately provide the Department with the following information:
 - a. A description of and cause of noncompliance; and
 - b. The period of noncompliance, including dates and times; or, if not corrected the anticipated time the noncompliance is expected to continue, and steps being taken to reduce, eliminate, and prevent the recurrence of the noncompliance. The permittee shall be responsible for any and all damages which may result and may be subject to enforcement action by the Department for penalties or for revocation of this permit.

COUNTY: BROWARD PERMIT/CERTIFICATION NUMBER: 0153012-001-UC DATE OF ISSUANCE: MAR 1 4 2000 EXPIRATION DATE: MAR 1 3 2005

GENERAL CONDITIONS:

- 9. In accepting this permit, the permittee understands and agrees that all records, notes, monitoring data and other information relating to the construction or operation of this permitted source which are submitted to the Department may be used by the Department as evidence in any enforcement case involving the permitted source arising under the Florida Statutes or Department rules, except where such use is proscribed by sections 403.111 and 403.73, F.S. Such evidence shall only be used to the extent it is consistent with the Florida Rules of Civil Procedure and appropriate evidentiary rules.
- 10. The permittee agrees to comply with changes in Department rules and Florida Statutes after a reasonable time for compliance; provided, however, the permittee does not waive any other rights granted by Florida Statutes or Department rules.
- 11. This permit is transferable only upon Department approval in accordance with rules 62-4.120 and 62-528.350, F.A.C. The permittee shall be liable for any non-compliance of the permitted activity until the transfer is approved by the Department.
- 12. This permit or a copy thereof shall be kept at the work site of the permitted activity.
- 13. The permittee shall comply with the following:
 - a. Upon request, the permittee shall furnish all records and plans required under Department rules. During enforcement actions, the retention period for all records shall be extended automatically unless the Department determines that the records are no longer required.
 - b. The permittee shall hold at the facility or other location designated by this permit records of all monitoring information (including calibration and maintenance records and all original strip chart recordings for continuous monitoring instrumentation) required by the permit, copies of all reports required by this permit, and records of all data used to complete the application for this permit. These materials shall be retained at least three years from the date of the sample, measurement, report, or application unless otherwise specified by Department rule.
 - c. Records of monitoring information shall include:
 - 1) the date, exact place, and time of sampling or measurements;
 - 2) the person responsible for performing the sampling or measurements;
 - 3) the dates analyses were performed;
 - 4) the person responsible for performing the analyses;
 - 5) the analytical techniques or methods used
 - 6) the results of such analyses
 - d. The permittee shall furnish to the Department, within the time requested in writing, any information which the Department requests to determine whether cause exists for modifying, revoking and reissuing, or terminating this permit, or to determine compliance with this permit.
 - e. If the permittee becomes aware that relevant facts were not submitted or were incorrect in the permit application or in any report to the Department, such facts or information shall be corrected promptly.
- 14. All applications, reports, or information required by the Department shall be certified as being true, accurate, and complete.
- 15. Reports of compliance or noncompliance with, or any progress reports on, requirements contained in any compliance schedule of this permit shall be submitted no later than 14 days following each scheduled date.
- 16. Any permit noncompliance constitutes a violation of the Safe Drinking Water Act and is grounds for enforcement action; for permit termination, revocation and reissuance, or modification; or for denial of a permit renewal application.
- 17. It shall not be a defense for a permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of this permit.

GENERAL CONDITIONS:

COUNTY: BROWARD PERMIT/CERTIFICATION NUMBER: 0153012-001-UC DATE OF ISSUANCE: MAR 1 4 2000 EXPIRATION DATE: MAR 1 3 2005

- 18. The permittee shall take all reasonable steps to minimize or correct any adverse impact on the environment resulting from noncompliance with this permit.
- 19. This permit may be modified, revoked and reissued, or terminated for cause, as provided in 40 C.F.R. sections 144.39(a), 144.40(a), and 144.41 (1998). The filing of a request by the permittee for a permit modification, revocation or reissuance, or termination, or a notification of planned changes or anticipated noncompliance, does not stay any permit condition.
- 20. The permittee shall retain all records of all monitoring information concerning the nature and composition of injected fluid until five years after completion of any plugging and abandonment procedures specified under rule 62-528.435, F.A.C. The permittee shall deliver the records to the Department office that issued the permit at the conclusion of the retention period unless the permittee elects to continue retention of the records.
- 21. All reports and other submittals required to comply with this permit shall be signed by a person authorized under rules 62-528.340(1) or (2), F.A.C. All reports shall contain the certification required in rule 62-528.340(4), F.A.C.
- 22. The permittee shall notify the Department as soon as possible of any planned physical alterations or additions to the permitted facility. In addition, prior approval is required for activities described in rule 62-528.410(1)(h).
- 23. The permittee shall give advance notice to the Department of any planned changes in the permitted facility or injection activity which may result in noncompliance with permit requirements.
- 24. The permittee shall report any noncompliance which may endanger health or the environment including:
 - a. Any monitoring or other information which indicates that any contaminant may cause an endangerment to an underground source of drinking water; or
 - an underground source of drinking water, of
 b. Any noncompliance with a permit condition or malfunction of the injection system which may cause fluid migration into or between underground sources of drinking water.

Any information shall be provided orally within 24 hours from the time the permittee becomes aware of the circumstances. A written submission shall also be provided within 5 days of the time the permittee becomes aware of the circumstances. The written submission shall contain a description of the noncompliance and its cause, the period of noncompliance, including exact dates and times, and if the noncompliance has not been corrected, the anticipated time it is expected to continue; and the steps taken or planned to reduce, eliminate, and prevent reoccurrence of the noncompliance.

COUNTY: Broward PERMIT/CERTIFICATION NUMBER: 0153012-001-UC DATE OF ISSUANCE: MAR 1 4 2000 EXPIRATION DATE: MAR 1 3 2005

- 1. General Requirements
 - a. This permit is to construct and operationally test the City of Cooper City's Class I (tubing and packer) injection well, IW-1, and an associated dual zone monitor well, MW-1. This permit does not authorize the construction or operational testing of any other well or wells associated with the City of Cooper City WTP Injection Well System.
 - b. Four permanent surficial aquifer monitor wells, identified as Pad Monitor Wells (PMWs), shall be located at the corners of the injection well drilling pad and identified by location number and pad location, i.e. NW, NE, SW, and SE. The four PMWs shall be sampled and analyzed prior to the onset of drilling. Initial analyses shall be submitted prior to the initiation of work for Department approval. The samples shall be analyzed for chlorides (mg/L), specific conductance (umho/cm), temperature, total dissolved solids (TDS) and water level (relative to NGVD). These monitor wells are to be retained in service, sampled weekly for the above parameters during the construction phase of the project, monthly during the operational testing phase and quarterly once an operation permit is granted. In addition, these monitor wells shall be sampled forty-eight (48) hours prior to any maintenance, testing (including mechanical integrity testing) or repairs to the system which represent an increased potential for accidental discharge to the surficial aquifer. The results of these analyses shall be submitted to the Department within thirty (30) days of the completion of the activity. A summary sheet from the FDEP Southeast District is attached for your use when reporting the above information. If located in a traffic area the well head(s) must be protected by a traffic bearing enclosure and cover. The cover(s) must lock and be specifically marked to identify the well and its purpose.
 - c. Proper operation and maintenance includes effective performance, adequate funding, adequate operator staffing and training, and adequate laboratory and process controls, including appropriate quality assurance procedures.
 - d. No underground injection is allowed that causes or allows movement of fluid into an underground source of drinking water (USDW).
- 2. Construction and Testing Requirements
 - a. The measurement points for drilling and logging operations shall be surveyed and referenced to the National Geodetic Vertical Datum (NGVD) of 1929 prior to the onset of drilling activities for the injection well and associated dual zone monitor well.
 - b. Blow-out preventers shall be installed on the wells prior to penetration of the Floridan aquifer system.
 - c. No drilling operations shall begin without an approved disposal site for drilling fluids, cuttings, or waste. It shall be the permittee's responsibility to obtain the necessary approval(s) for disposal prior to the start of construction. A detailed disposal plan shall be submitted to the Department prior to the commencement of drilling activities (for the injection and monitor wells).
 - d. The Department shall be notified within 48 hours after work has commenced.
 - e. Hurricane Preparedness Upon the issuance of a "Hurricane Watch" by the National Weather Service, the preparations to be made include but are not necessarily limited to the following:
 - 1) Secure all on-site salt and stockpiled additive materials to prevent surface and/or groundwater contamination.
 - 2) Properly secure drilling equipment and rig(s) to prevent damage to well(s) and on-site treatment process equipment.
 - f. Waters spilled during construction or testing of the injection well system shall be contained and properly disposed.

COUNTY: Broward PERMIT/CERTIFICATION NUMBER: 0153012-001-UC DATE OF ISSUANCE: MAR 1 4 2000 EXPIRATION DATE: MAR 1 3 2005

- UIC-TAC and United States Environmental Protection Agency (USEPA) review and Department approval are required prior to the following stages of construction and testing: g.
 - Contract documents and spud date
 - Intermediate (34-inch) casing seat in injection well

 - Final (24-inch) casing seat in injection well Installation of tubing (14-inch liner) and packer in injection well Intermediate (16-inch) casing seat in monitor well
 - 2)34)56)7)
 - Final (6-5/8-inch) casing seat in monitor well
 - Monitor zone selection
 - 8) Mechanical integrity testing
 - Short-term injection test 9
 - **Operational testing** 10)
- The geophysical logging program shall at a minimum include: h.
 - Prior to setting the surface casing in Injection Well IW-1, the following geophysical logs shall be run on the pilot hole, to identify the base of the Hawthorn Group at approximately 1000 feet bls, and to establish a mechanically secure casing setting depth: D
 - Caliper
 - Gamma ray
 - Dual induction
 - To determine the intermediate casing depth in Injection Well IW-1, the logs indicated below shall be run on the pilot hole. These logs shall be interpreted for stratigraphic correlation, identification of potential monitoring zones, identification of confining units, identification of producing intervals, and to aid in the casing seat determination: 2)
 - Caliper
 - Gamma ray
 - Dual induction ٠ Borehole compensated sonic with VDL display

 - Borehole televiewer Downhole radial color television survey with rotating lens
 - Logs to be run under pumping and static conditions:
 - Flowmeter
 - .
 - Temperature Fluid resistivity
 - The pumping logs shall be run while pumping the borehole at a rate that adequately stresses the confining units, as shown by head loss across the beds, and allows the log interpreter to clearly, identify the confining beds; or at 500 gallons per minute (gpm), whichever is greater. 3)
 - To determine the final casing depth in Injection Well IW-1, the logs indicated below shall be run on the pilot hole. These logs shall be interpreted for stratigraphic correlation, identification of potential monitoring zones, identification of confining units, identification of producing intervals, 4) and to aid in the casing seat determination:
 - Caliper
 - Gamma ray
 - Dual induction .
 - Borehole compensated sonic with VDL display
 - Borehole televiewer
 - Downhole radial color television survey
 - Logs to be run under pumping and static conditions:
 - Flowmeter
 - Temperature
 - Fluid resistivity

COUNTY: Broward PERMIT/CERTIFICATION NUMBER: 0153012-001-UC DATE OF ISSUANCE: MAR 1 4 2000 EXPIRATION DATE: MAR 1 3 2005

SPECIFIC CONDITIONS:

- In the injection zone below the final casing of Injection Well IW-1, the following logs shall be run: 5)
 - Caliper
 - Gamma ray
 - **Dual induction**
 - Borehole compensated sonic with VDL display Downhole radial color television survey

 - Logs to be run under pumping and static conditions:
 - Flowmeter
 - Temperature
 - Fluid resistivity
- In Monitor Well MW-1, the logs indicated below shall be run to the setting depth of the intermediate casing, at a minimum. These logs shall be interpreted for stratigraphic correlation and 6) identification of monitoring zones, and to aid in the casing seat determination:
 - Caliper
 - Gamma ray .
 - Dual induction
 - Borehole compensated sonic with VDL display
- In Monitor Well MW-1, the logs indicated below shall be run from the intermediate casing depth to the total depth of the well. These logs shall be interpreted for stratigraphic correlation and identification of monitoring zones, and to aid in the casing seat determination: 7)
 - Caliper
 - Gamma ray
 - Dual induction
 - Borehole compensated sonic with VDL display
 - Temperature
 - Fluid resistivity
- Downhole television surveys shall be run in both monitoring zones of Monitor Well MW-1. 8)
- 9) Caliper logs shall be run on all reamed holes.
- 10) Temperature logs shall be run after each stage of cementing on all casings to identify the top of the cement.
- 11) In the injection well and the dual zone monitor well, a cement bond log shall be run after cementing the final casing (14-inch in Injection Well IW-1 and 6-5/8-inch in Monitor Well MW-1).

-This space intentionally left blank-

COUNTY: Broward PERMIT/CERTIFICATION NUMBER: 0153012-001-UC DATE OF ISSUANCE: MAR 1 4 2000 EXPIRATION DATE: MAR 1 3 2005

- Straddle packer testing shall at a minimum include the following: i.
 - A combined total of at least six straddle packer tests shall be conducted during the drilling of Injection Well IW-1 and Monitor Well MW-1. D.

 - Injection Well IW-1 and Monitor Well MW-1. At least one (1) straddle packer test conducted in each prospective monitor zone. At least four (4) straddle packer tests conducted from the lowermost zone of the USDW to the top of the proposed injection horizon. These packer tests will be used for the demonstration of confinement at the IW-1 location. For this reason the packer tests will be performed in the anticipated confining zones. At least one straddle packer test supporting the demonstration of confinement will be obtained from each interval under consideration, based on the data collected to date, to be a confining unit. [See Specific Condition (S.C.) 2.m.]. To the extent feasible, the packer tests in the confining zones shall be performed over intervals that are sufficiently narrow so as not to include high hydraulic conductivity beds. At least one (1) straddle packer test conducted to determine the base of the USDW at the IW-1 2) 3)
 - At least one (1) straddle packer test conducted to determine the base of the USDW at the IW-1 4)
 - Water samples shall be collected from each straddle packer test, and analyzed for total dissolved solids (TDS), chlorides, specific conductance, sulfate, ammonia and Total Kjeldahl Nitrogen 5)
 - (TKN), at a minimum. A five (5) gallon water sample, obtained from intervals where sufficient water is available, shall be collected at the end of each straddle packer test. These samples shall be shipped to the Underground Injection Control (UIC) Section of the Department of Environmental Protection, in Tallahassee (FDEP, UIC Program, MS 3530, Twin Towers Building, 2600 Blair Stone Road, Tallahassee, Florida 32399-2400). 6)
- The depth of the USDW and the background water quality of the monitor zones shall be determined during drilling and testing. Determination of the depth of the USDW shall be accomplished, interpreted, and analyzed using the following information: j.
 - Water samples from packer tests with analysis and interpretation.
 - Aquifer performance tests data with analysis and interpretation.
 - $\frac{1}{2}$ Aquiter performance tests data with analysis and interpretation. Geophysical logging upon reaching the total depth of the appropriate pilot hole interval including the following logs: caliper, gamma, dual induction, borehole compensated sonic, pumping flowmeter, temperature, and fluid resistivity. Plots of sonic porosity and apparent formation fluid resistivity (Rwa). Interpretation will include calculation of sonic porosity and Rwa. The input parameters used to make this calculation shall be
 - 4) provided.
- The confinement of the injection zone in the injection well system from overlying aquifers shall be monitored using the dual zone monitor well and a regular monitoring program. The lower interval shall be positioned in a transmissive interval below the USDW (i.e., where groundwater contains a TDS concentration of greater than 10,000 mg/L) at an appropriate point above the injection interval and major confining units to monitor for reasonable assurance of vertical confinement of injected fluids and external mechanical integrity of the injection wells. The upper interval shall be positioned in a transmissive interval immediately above the base of the USDW (i.e., where groundwater contains a TDS concentration of less than 10,000 mg/L). The data and analysis supporting the selection of the monitoring intervals shall be submitted to the Department, the UIC-TAC and the USEPA, Region IV, Atlanta after the collection, interpretation and analysis of all pertinent cores, geophysical logs and analysis of fluid samples. The hydrogeologic evaluation of the proposed monitoring zone will be submitted only after the collection, interpretation and analysis of all pertinent cores, packer tests, geophysical logs and analysis of fluid samples. The final selection of the specific upper and lower monitoring intervals shall be approved by the Department. The confinement of the injection zone in the injection well system from overlying aquifers shall be k. monitoring intervals shall be approved by the Department.
- To identify the upper and lower monitoring zones, the following information from the injection well and all available on-site sources of data shall be analyzed, interpreted and submitted for UIC-TAC and 1. USEPA review and Department approval:
 - borehole televiewer
 - the permeability of the transition zone in the vicinity of the USDW 2)
 - packer test data including water quality (total dissolved solids, chloride, ammonia, Total Kjeldahl Nitrogen, and specific conductance) the specific capacity of the upper and lower monitor zones the identification of the base of the USDW 35

 - 5¥

COUNTY: Broward PERMIT/CERTIFICATION NUMBER: 0153012-001-UC DATE OF ISSUANCE: MAR 1 4 2000 EXPIRATION DATE: MAR 1 3 2005

SPECIFIC CONDITIONS:

- m. Confinement for the Injection Well IW-1 location shall be demonstrated using, at a minimum, directly measured lithologic properties, geophysical evidence, and tests performed while pumping the formation, as described in Items 1) through 7) below:
 - Formation tests shall include flowmeter logs, packer tests, water quality sampling during packer tests, and analysis of drawdown curves measured during packer tests. These tests shall be conducted under pumping conditions to directly measure the hydraulic properties of the confining units.
 - For the purpose of determining confinement, flowmeter, temperature and fluid resistivity logs shall be run in the pilot hole from the base the USDW to the potential confining unit immediately prior to the intersection of the top of the injection interval, under pumping conditions, at a pumping rate that adequately stresses the confining beds (as demonstrated by head loss across the beds), so that the permeability of the zones within the potential confining intervals can be evaluated. If the confining beds are not adequately stressed by the pumping rate of the flowmeter log and/or results readily interpretable as to the extent of confinement are not obtained from the flowmeter log for any other reason, then additional straddle packer tests shall be proposed, including the specific intervals for testing, based on evaluation of geophysical logs and other available data. If so, the proposed straddle packer intervals shall be submitted to the Department, the UIC-TAC and the USEPA, Region IV, Atlanta for review and Department approval.
 If the evaluation of permeability of zones within the potential confining intervals can not be determined.
 - USEPA, Region IV, Atlanta for review and Department approval.
 3) If the evaluation of permeability of zones within the potential confining intervals can not be evaluated from flowmeter logs, due to the influence of high hydraulic conductivity beds, the use of packer(s) shall be evaluated, which may allow the testing of potential low hydraulic conductivity beds by the flowmeter logs (i.e., by isolating the productive zones from the testing). If the evaluation indicates the use of packers in such a situation is not feasible or is not likely to improve the value of the flowmeter log results pertaining to testing for low conductivity beds, the Department shall be notified within twenty-four hours, with an explanation and a proposal for an alternate means of obtaining the equivalent information.
 4) Prior to running the flowmeter log, information shall be recorded pertaining to the development and
 - 4) Prior to running the flowmeter log, information shall be recorded pertaining to the development and conditioning of the borehole, detailing all measures taken (including but not limited to the number of wiper runs with bit; a description of the extent of well development methods used, etc.) and the lengths of time applied. The pumping flowmeter logging results shall include a record of the pumping rate(s) and drawdown(s) regularly recorded throughout the test to account for possible variations in the pumping rate.
 - variations in the pumping rate.
 Other geophysical logs shall be used to provide indirect evidence to deduce or correlate formation properties measured in pumping tests and direct lithologic sample analysis.
 - 6) Lithologic properties measured in laboratory analyses of core samples shall include: hydraulic conductivity (vertical and horizontal), Young's modulus/elastic modulus Formation factor, Archie's cementation exponent and coefficient, and specific gravity. No less than five (5) core samples shall be taken and analyzed from Injection Well IW-1.
 7) The taken and analyzed from Injection well her used to address hedding characteristics. and
 - 7) To the extent feasible, core descriptions shall be used to address bedding characteristics, and lithologic descriptions from cores and cuttings shall include characterizations that pertain to the degree of confinement, including, but not limited to, texture, grain composition, grain shape (including the degree of flatness) pore geometry (including sorting and interlocking of grains), cement composition and degree of crystalization, rock matrix characteristics, and sedimentary depositional and diagenetic environment.

To the extent feasible, the descriptions and interpretations derived from the lines of testing referenced above should address the degree of confinement at the IW-1 injection well location. In addition, the geophysical logs shall be used to the extent feasible to extend the applicability of measurements of hydraulic characteristics obtained from the testing of discrete intervals, such as cores and straddle packer tests, to an entire bed or series of beds (in both the horizontal and vertical directions). The testing, analysis and interpretation of results shall be thorough enough to evaluate the extent of confinement between the top of the redefined injection zone and the base of the USDW.

COUNTY: Broward PERMIT/CERTIFICATION NUMBER: 0153012-001-UC DATE OF ISSUANCE: MAR 1 4 2000 MAR 1 4 2000 MAR 1 3 2005 EXPIRATION DATE:

- Test results pertaining to confinement shall include and/or specifically reference the following informational and quality control items: п.
 - Ouality control measures taken, including: 1)
 - Information which documents the calibration of tools, including field checks prior to testing.
 - The conditioning/development of the borehole prior to logging, including the techniques used . and the time periods in which applied, and
 - Pertaining to straddle packer/pump testing recording the pumping rate regularly throughout the test to account for possible variations in the pumping rate, and providing information regarding the detection of packer leaks, if any, during testing.
 - Representative samples of circulation fluid shall be collected during the drilling of the pilot hole of Injection Well IW-1, and during the drilling of Monitor Well MW-1. The representative samples of circulation fluid shall be collected a minimum of every thirty (30) feet in drilling from a depth of approximately 1,000 feet to the top of the "Boulder Zone" at approximately 3,000 feet bls, for Injection Well IW-1, and to the total depth of the well, for Monitor Well MW-1. The representative samples shall be analyzed for chlorides temperature compensated specific conductance and pH at a minimum ο. be analyzed for chlorides, temperature compensated specific conductance, and pH, at a minimum.
 - If effluent is encountered or suspected during pilot hole drilling and testing, the Department shall be notified immediately by telephone and in writing and immediate appropriate precautionary measures shall be taken to prevent any upward fluid movement. p.
 - Mechanical integrity of the injection well shall be determined pursuant to Rules 62-528.300(6)(b)1. and q. 62-528.300(6)(c), F.A.C.
 - The pressure test for the final casing shall be accepted if tested with a liquid-filled annular space at The pressure test for the final casing shall be accepted it tested with a fiquid-filled annular space at a high enough pressure such that the well operating pressures will never exceed 66% of the test pressure. A test tolerance of not greater than + or -5% must be certified by the engineer of record. Verification of pressure gauge calibration must be provided to the Department representative at the time of the test and in the certified test report. 1)
 - The Department shall be notified at least seventy-two (72) hours prior to all testing for mechanical ٢. integrity.
 - All testing for mechanical integrity must be initiated during normal business hours, Monday through S. Friday.
 - UIC-TAC meetings are scheduled on the 2nd and 4th Tuesday of each month subject to a five (5) working day prior notice and timely receipt of critical data by all UIC-TAC members and the USEPA, Region IV, Atlanta. Emergency meetings may be arranged when justified to avoid undue construction t. delays.
 - The dual zone monitor well (MW-1) shall not be drilled below the base of the Hawthorn Group, located at approximately 1,000 feet, until testing to determine the lower limit of the USDW in the pilot hole of Injection Well IW-1 is completed and approved by the Department. u.

COUNTY: Broward PERMIT/CERTIFICATION NUMBER: 0153012-001-UC DATE OF ISSUANCE: MAR 1 4 2000 **EXPIRATION DATE:** MAR 1 3 2005

SPECIFIC CONDITIONS:

- Quality Assurance/Quality Control Requirements 3.
 - Pursuant to Rule 62-528.440(5)(b), F.A.C., the Professional Engineer(s) of Record shall certify all documents related to the completion of the Class 1 injection well system (including the associated Floridan aquifer monitor well) as a disposal facility. The Department shall be notified immediately of a. any change of the Engineer(s) of Record.
 - In accordance with Section 492, Florida Statutes, all documents prepared for the geological/hydrogeological evaluation of the injection well system shall be signed and sealed by a Florida Licensed Professional Geologist or qualified Florida Licensed Professional Engineer. h.
 - Continuous on-site supervision by qualified personnel (engineer or geologist) is required during all C. testing, geophysical logging and cementing operations.
- 4. **Reporting Requirements**
 - All reports and surveys required by this permit shall be submitted concurrently to all members of the UIC-TAC. The UIC-TAC shall consist of representatives of the following agencies: а.
 - Department of Environmental Protection, West Palm Beach and Tallahassee United States Geological Survey (USGS), Miami South Florida Water Management District (SFWMD), West Palm Beach
 - ٠
 - ٠
 - Broward County Department of Planning and Environmental Protection (BCDPEP), Ft. Lauderdale

In addition, all reports and surveys required by this permit shall be submitted concurrently to the USEPA, Region IV, Atlanta.

- A drilling and construction schedule shall be submitted to the Department, all members of the UIC-TAC b. and the EPA, prior to site preparation for the injection well system.
- The Department and other applicable agencies must be notified of any unusual or abnormal events С. occurring during construction, and in the event the Permittee is temporarily unable to comply with the provisions of the permit (e.g., on-site spills, artesian flows, large volume circulation losses, equipment damage due to: fire, wind and drilling difficulties, etc.). Any information shall be provided orally within twenty-four (24) hours from the time the permittee becomes aware of the circumstances. A written submission shall also be provided within five (5) days of the time the permittee becomes aware of the circumstances aware of the circumstances. The written submission shall contain a description of the noncompliance and its cause, the period of noncompliance, including exact dates and times, and if the noncompliance has not been corrected, the anticipated time it is expected to continue; and the steps taken or planned to reduce, eliminate, and prevent reoccurrence of the noncompliance.
- The permittee shall report any noncompliance which may endanger health or the environment, including: d.
 - Any monitoring or other information which indicates that any contaminant may cause an endangerment to a USDW; or D)
 - Any noncompliance with a permit condition or malfunction of the injection system which may 2) cause fluid migration into or between USDWs.

Any information shall be provided orally within twenty-four (24) hours from the time the permittee becomes aware of the circumstances. A written submission shall also be provided within five (5) days of the time the permittee becomes aware of the circumstances. The written submission shall contain a description of the noncompliance and its cause, the period of noncompliance, including exact dates and times, and if the noncompliance has not been corrected, the anticipated time it is expected to continue; and the store them or planned to reduce a provent recommendence. and the steps taken or planned to reduce, eliminate, and prevent reoccurrence of the noncompliance.

COUNTY: Broward PERMIT/CERTIFICATION NUMBER: 0153012-001-UC DATE OF ISSUANCE: MAR 1 4 2000 EXPIRATION DATE: MAR 1 3 2005

- Weekly progress reports shall be submitted throughout the construction period for IW-1 and MW-1. These reports shall be submitted no later than the seventh (7th) day immediately following the period of e. record, and shall include at a minimum the following information:
 - A cover letter summary of the daily engineer report, driller's log and a projection for activities in 1) the next reporting period.
 - Daily engineers report and driller's/work log with detailed descriptions of all drilling progress, cementing, testing, logging, and casing installation activities. Lithologic and geophysical logs and water quality test results. Interpretations shall be included with all test results and logs submitted under Items 2) and 3) 2)

 - 3) 4)
 - Detailed description of any unusual construction-related events that occur during the reporting 5) period. Weekly water quality analysis and water levels for the four pad monitor wells. [See S.C. 1.b.] A certified evaluation of all logging and test results must be submitted with test data.

 - 7) 8)
 - A certified evaluation of all logging and test results must be submitted with test data. Description of the formations and lithology encountered. Details of cementing operations, including the number of cementing stages, and the following information for each stage of cementing: cement slurry composition, specific gravity, pumping rate, volume of cement pumped, theoretical fill depth, and actual tag depth. From both the physical tag and the geophysical logs, a percent fill shall be calculated. An explanation of any deviation between actual versus theoretical fill shall be provided. For each casing, laboratory analysis of dry cement composition of a sample taken during the neat cement stage emplaced at the base of each casing casing.
- The request to install the tubing and packer shall include: f.
 - Packer mechanical design, operation instructions and specifications n
 - Casing mill certificates Installation plan
 - 2) 3)
- Per Rules 62-528.410(4)(c), 62-528.420(4)(c) and 62-528.605(2), F.A.C., the final selection of specific injection and monitoring intervals must be approved by the Department. In order to obtain an approval, the permittee shall submit a request to the Department. The request shall be submitted concurrently to all members of the UIC-TAC and the USEPA, Region IV, Atlanta. All casing seat requests for the injection well and the Floridan aquifer monitor well shall be accompanied by technical justification. To the extent g. possible, each casing seat request should address the following items:
 - Lithologic and geophysical logs with interpretations, as the interpretations relate to the casing seat. Water quality data (including but not necessarily limited to TDS concentrations). Identification of confining units, including hydrogeologic data and interpretations.

 - Identification of monitoring zones.

 - Casing depth evaluation (mechanically secure formation, potential for grout seal). Lithologic drilling rate and weight on bit data, with interpretations (related to the casing seat).
 - 1)2334567 Identification of the base of the USDW using water quality, Rwa plots, and geophysical log interpretations.
- Monitor zone requests shall contain the following: h.
 - Identification of the base of the USDW. 1)

 - Identification of confining units. Water quality of proposed monitor zone (including but not necessarily limited to TDS). 2) 3)
 - Transmissivity or specific capacity of proposed monitor zone. 4)
 - Packer test drawdown curves and interpretation. 55
- An interpretation of all test results and geophysical logs must be submitted with all submittals. i.

COUNTY: Broward PERMIT/CERTIFICATION NUMBER: 0153012-001-UC DATE OF ISSUANCE: MAR 1 4 2000 EXPIRATION DATE: MAR 1 3 2005

- j. The injection test request shall contain the following justifications:
 - Cement bond logs and interpretation.
 - Final downhole television survey with interpretation.
 - 2) 3) Radioactive tracer test results (if the test is to be run using effluent)
 - Demonstration of mechanical integrity, which shall include Items 1) through 3) above, and the **4**5
 - 5) 6)
 - Demonstration of mechanical integrity, which shall include items 1) through 3) above, and the pressure testing and temperature logging results (if the test is to be run using effluent) Reasonable assurance that adequate confinement exists Planned injection procedures. Per Rule 62-528.405(3)(b), F.A.C., if an adequate water supply for the injection test does not exist, and the data collected during drilling provide assurance of the presence of confining bed(s), the applicant shall, after demonstrating mechanical integrity pursuant to Rules 62-528.300(6)(b)2. and (c), F.A.C., be allowed to use secondarily treated domestic wastewater effluent after disinfection or desalination concentrate for testing only with specific prior written authorization from the Department as described in Rule 62-528.100(2), F.A.C.
- Upon completion of analysis of cores and sample cuttings, the permittee shall contact the UIC Section of k. the Department of Environmental Protection in Tallahassee to arrange their transfer to the Florida State Geologic Survey.
- A final report of the construction and testing of the injection well and dual zone monitor well, shall be' submitted no later than 120 days after commencement of operational testing, pursuant to Rule 62-528.430(1)(e), F.A.C. This report shall include, as a minimum, definitions of the injection interval, all relevant confining units, the depth of the base of the USDW and all monitor zones, including all relevant data and interpretations. 1.
- **Operational Testing Requirements** 5.
 - The operational testing of the Class I injection well system under this permit shall not commence without а. written authorization from the Department.
 - Prior to operational testing approval, the following items must be submitted (with the request for operational testing approval) for UIC-TAC and USEPA review and Department approval: Ь.
 - Lithologic and geophysical logs with interpretations. 1)
 - 2) A copy of the borehole television survey of the injection well with interpretation.
 - Certification of mechanical integrity and interpreted test data. 3)
 - Results of the short term injection test with interpretation of the data. Each well shall first be tested for integrity of construction, and shall be followed by a short term injection test of such duration to allow for the prediction of operating pressure. The test results shall include a calculation or determination of fracture pressure of the injection formation [per Rule 62-528.410(6)(b)3., F.A.C.]. The injection test shall be conducted for a minimum of twenty-four (24) hours at a rate no less than the maximum rate at which the well is to be permitted. Pressure/water level data from the injection zone and both monitor zones shall be recorded continuously for at least twenty-four (24) hours 4) zone and both monitor zones shall be recorded continuously for at least twenty-four (24) hours before the test and at least twelve (12) hours following the test. The following data shall be recorded, analyzed, and reported for the duration of the injection test, i.e., all data should encompass the entire background, injection and recovery periods:
 - injection flow rate (MGD)
 - injection pressure (psig)
 - · wellhead pressure with no flow (shut-in pressure in psig)
 - monitor well pressures (upper and lower zones of MW-1)
 - annular pressure
 - tidal data •
 - barometric pressure
 - A description of the actual injection procedure including the anticipated maximum pressure and 5) flow rate at which the well will be operated under normal and emergency conditions.

COUNTY: Broward PERMIT/CERTIFICATION NUMBER: 0153012-001-UC DATE OF ISSUANCE: MAR 1 4 2000 EXPIRATION DATE: MAR 1 3 2005

- 6) Information concerning the compatibility of the injected waste with fluids in the injection zone and minerals in both the injection zone and the confining zone.
- 7) Certification of completion of well construction.
- Surface equipment (including pumping station, piping, pressure gauges and flow meters, and all appurtenances) completion certified by the Engineer of Record.
- 9) Draft operation and maintenance manual, including a description of surge and water hammer control and emergency discharge management plan procedures. The emergency discharge system must be fully constructed and operational (ready to operate) prior to approval of operational testing.
- 10) Calibration certificates for pressure gauges and flow meters.
- 11) Signed and sealed record "as-built" engineering drawings of the injection well system including all well construction, the pump station, subsurface and surface piping and equipment, and appurtenances.
- 12) The well construction drawings shall include a geologic stratigraphic cross-section depicting the corresponding formations, the base of the USDW, and the boundaries of the confining and injection zone intervals.
- 13) Technical specifications for the annular fluid and the pressure to be maintained on the annulus.
- 14) The demonstration of confinement for the Injection Well IW-1 location, prepared providing confirmation of confinement and defining the injection and confining sequences utilizing data collected during the drilling, logging and testing of the injection well and dual zone monitor well. The report shall include the results of hydraulic testing (permeability, porosity, etc.) on the cores, and shall be reviewed and updated as appropriate after the completion of any additional injection/monitor well pairs in the future from the confining interval. This submittal shall be prepared, signed, and sealed by a Florida Registered Professional Geologist or appropriately qualified Professional Engineer.
- 15) Wastestream analysis, sampled within six (6) months of the request for operational testing, for primary and secondary drinking water standards (62-550, F.A.C.) and minimum criteria parameters (62-520, F.A.C.) as attached.
- 16) Background water quality data from the monitor and injection zones, analyzed for primary and secondary drinking water standards (62-550, F.A.C.) and minimum criteria parameters (62-520, F.A.C.) as attached.
- 17) Other data obtained during well construction needed by the Department to evaluate whether the well will operate in compliance with Department Rules. [Rule 62-528.450(3)(a)3.i., F.A.C.]
- c. Prior to operational testing, the permittee shall comply with the requirements of rule 62-528.450(3)(a),(b), and (c), F.A.C.
- d. Pressure gauges and flow meters shall be installed on the injection well prior to initiating injection activities at the site.
- e. Prior to the authorization of operational testing by the Department, the County shall contact the UIC Section of the Department, Southeast District, to arrange a site inspection. The inspection will determine if the conditions of the permit have been met and to verify that the injection well system is operational. During the inspection, emergency procedures and reporting requirements shall be reviewed.

COUNTY: Broward PERMIT/CERTIFICATION NUMBER: 0153012-001-UC DATE OF ISSUANCE: MAR 1 4 2000 EXPIRATION DATE: MAR 1 3 2005

- 6. Operational Testing Conditions
 - a. Upon receipt of written authorization from the Department [S.C. 5.a.], the operational testing of the injection well system shall be subject to the following conditions:
 - 1) A qualified representative of the Engineer of Record shall be present for the start-up operations.
 - 2) The Department shall be notified in writing of the date of commencement operations.
 - 3) Operational testing for the system shall extend for a six (6) month period and shall be reviewed by the UIC-TAC and the USEPA at three (3) months and six (6) months after operational testing has begun. Prior to the end of the six month interval, the Department shall determine whether operational testing will be authorized to continue for a specified period of up to an additional eighteen (18) months. The Department and UIC-TAC will monitor the progress of the operational testing phase of this project. UIC-TAC meetings shall be held if necessary to aid the Department in determining if it may be necessary to modify the operational testing conditions. If requested by the Department, reports evaluating the system's progress shall be submitted to the Department, each member of the UIC-TAC meeting. The conditions for the operational testing period may be modified by the Department at each of these UIC-TAC review intervals.
 - 4) Flows to the injection well shall be monitored and controlled at all times to ensure the maximum injection rate does not exceed that rate at which the well was tested.
 - 5) Injection well system monitoring devices:
 - a) Pursuant to Rule 62-528.425(1)(b), F.A.C., the injection well system shall be monitored by continuous indicating, recording and totalizing devices to monitor effluent flow rate and volume, and continuous indicating and recording devices to monitor injection pressure, pressure on the annulus between the tubing and the final (innermost) string of casing, and monitor zone pressure (or water level, as appropriate; all zones). All indicating, recording and totalizing devices shall be maintained in good operating condition and calibrated annually at a minimum.
 - b) Pursuant to Rule 62-600.540(4), F.A.C., the surface equipment shall be such that manual backup capability to monitor flow and pressure shall be provided for systems utilizing automatic and continuous recording equipment.
 - 6) Pursuant to Rule 62-600.540(4)(a), F.A.C., as a minimum, the effluent pump station shall be equipped with lightning arrestors, surge capacitors or other similar devices.
 - 7) The flow from the monitor zones during well evacuation and sampling must not be discharged to surface waters or aquifers containing a USDW.
 - Per Rule 62-600.540(1), F.A.C., the wastewaters conveyed to the injection well must meet the secondary treatment and pH limitations specified in Rules 62-600.420(1)(d) and 62-600.445, F.A.C.
 - 9) The ability to disinfect the effluent shall be maintained at all times in accordance with Chapter 62-600, F.A.C.
 - 10) The wastestream shall be non-hazardous in nature at all times, as defined in 40-CFR, Part 261 and as adopted in Chapter 62-730, F.A.C.
 - 11) Only fluids that have received treatment at the Cooper City WTP/WWTP facility and purge water from the on-site monitor wells, associated with the injection well system at the Cooper City WTP/WWTP facility, may be discharged into this well.

COUNTY: Broward PERMIT/CERTIFICATION NUMBER: 0153012-001-UC DATE OF ISSUANCE: MAR 1, 4, 2000 EXPIRATION DATE: MAR 1, 3, 2005

SPECIFIC CONDITIONS:

- 12) Mechanical Integrity
 - Injection is prohibited until the permittee demonstrates that the well has mechanical integrity. Prior to operational testing the permittee shall establish, and thereafter maintain, the a) mechanical integrity of the well at all times.
 - If the Department determines that the injection well lacks mechanical integrity, written notice b) shall be given to the permittee.
 - Within 48 hours of receiving written notice that the well lacks mechanical integrity, unless the c) Department requires immediate cessation of injection, the permittee shall cease injection into
 - the well unless the Department allows continued injection, the permittee shart cease injection into the well unless the Department allows continued injection pursuant to subparagraph (d) below. The Department shall allow the permittee to continue operation of a well that lacks mechanical integrity if the permittee has made a satisfactory demonstration that fluid movement into or between USDWs is not occurring. d)
- 13) The pressure at the wellhead shall be monitored and controlled at all times to ensure the maximum pressure at the wellhead casing does not exceed 66 percent (%) of the tested pressure on the final casing and injection tubing. [See S.C. 2.q.]
- 14) Any failure of the Class I injection well monitoring and recording equipment for a period of more than forty-eight (48) hours shall be reported within twenty-four (24) hours to the Department. A written report describing the incident shall also be given to the Department within five (5) days of the start of the event. The final report shall contain a complete description of the occurrence, a discussion of its cause(s) and the steps being taken to reduce, eliminate, and prevent recurrence of the event, and all other information deemed necessary by the Department.
- 15) The injection system shall be monitored in accordance with rules 62-528.425(1)(g) and 62-528.430(2), F.A.C. Samples and measurements taken for the purpose of monitoring shall be representative of the monitored activity. The following injection well performance and monitor zone data shall be collected and reported to the Department in Monthly Operating Reports (MORs) as indicated below. as indicated below.
 - Injection well performance: a)
 - (1) Physical characteristics of the injection well:

Flow rate parameters:

- average daily flow rate to injection well (MGD)
- daily maximum sustained (15 minutes minimum) flow rate injection well (MGD) daily minimum sustained (15 minutes minimum) flow rate to injection well (MGD), •
- .

 - monthly average of the daily flow rates to injection well (MGD) monthly maximum (peak hour) flow rate to injection well (MGD) monthly minimum flow rate to injection well (MGD) •
 - .

Volume parameters:

- •
- total daily flow to injection well (MG) monthly average of the daily flow volumes to injection well (MG)
- monthly maximum of the daily flow volumes to injection well (MG) ٠
- monthly minimum of the daily flow volumes to injection well (MG)

Pressure parameters:

Injection pressure parameters:

- ٠
- daily average injection pressure at injection well (psig) daily maximum sustained (15 minutes minimum) injection pressure at injection well . (psig)
 - daily minimum sustained (15 minutes minimum) injection pressure at injection well (psig)
 - monthly average injection pressure at injection well (psig)
 - monthly maximum sustained injection pressure at injection well (psig) monthly minimum sustained injection pressure at injection well (psig)
 - .

COUNTY: Broward PERMIT/CERTIFICATION NUMBER: 0153012-001-UC DATE OF ISSUANCE: MAR 1 4 2000 **EXPIRATION DATE:** MAR 1 3 2005

SPECIFIC CONDITIONS:

Annular pressure parameters:

- daily average annular pressure at injection well (psig)
- daily maximum sustained (15 minutes minimum) annular pressure at injection well ٠ (psig)
- daily minimum sustained (15 minutes minimum) annular pressure at injection well ٠ (psig)
- monthly average annular pressure at injection well (psig) .
- monthly maximum sustained annular pressure at injection well (psig)
- monthly minimum sustained annular pressure at injection well (psig) .

Miscellaneous

- monthly wellhead pressure with no flow (shut-in pressure, psig)
- (2) Chemical characteristics of the wastestream sampled from the wet well monthly:
 - residue, total filterable (dried at 180° C) [total dissolved solids, TDS] (mg/L)
 - chloride (mg/L)
 - specific conductance (temperature compensated, umho/cm) total suspended solids, TSS (mg/L) nitrogen, ammonia, total as N (mg/L) •
 - •

 - nitrogen, total kjeldahl as N (TKN, mg/L) •
 - nitrogen, nitrate, total as N (mg/L)
 - phosphorous, total as P (mg/L) .
 - pH (standard units, s.u.)
 - sulfate, total as SO4 (mg/L) .
 - .
 - gross alpha (pCi/L) radium 226 (pCi/L) radium 228 (pCi/L)

The MORs shall indicate monthly averages for all parameters sampled daily.

- Monitor well performance: b)
 - Physical characteristics upper and lower monitor zones potentiometric surface or water (1) table height relative to NGVD (feet of head) or pressure (psig) referenced to NGVD:
 - daily maximum pressure or water level (as appropriate) daily minimum pressure or water level (as appropriate)
 - .
 - daily average pressure or water level (as appropriate) ۰
 - monthly maximum pressure or water level (as appropriate) ٠
 - monthly minimum pressure or water level (as appropriate)
 - . monthly average pressure or water level (as appropriate)
 - (2) Chemical characteristics of the upper and lower monitor zones:

Weekly sampling:

- residue, total filterable (dried at 180° C) [total dissolved solids, TDS] (mg/L)
- chloride (mg/L)
- specific conductance (temperature compensated, umho/cm) .
- nitrogen, ammonia, total as N (mg/L) ٠
- nitrogen, total kjeldahl as N (TKN, mg/L)
- nitrogen, nitrate, total as N (mg/L)
- phosphorous, total as P (mg/L) pH (standard units, s.u.)
- sulfate, total as SO4 (mg/L) gross alpha (pCi/L) radium 226 (pCi/L) radium 228 (pCi/L)
- •

The MORs shall also indicate monthly averages for all parameters sampled weekly.

COUNTY: Broward PERMIT/CERTIFICATION NUMBER: 0153012-001-UC DATE OF ISSUANCE: MAR 1 4 2000 EXPIRATION DATE: MAR 1 3 2005

SPECIFIC CONDITIONS:

- After the upper and lower monitor zones have been sampled weekly for at least six (6) months, the permittee may submit data for UIC-TAC and USEPA review and Department approval to demonstrate that reasonable assurance of groundwater stability has been established in justification of any request to reduce the sampling frequency to monthly. The request for reduction in sampling frequency shall be accompanied by technical justification and interpretations. c) interpretations.
- 16) A minimum of three (3) well volumes of fluid shall be evacuated from the monitor systems prior to sampling for the chemical parameters listed above. All samples shall be analyzed by a State-certified laboratory.
- All samples must be collected and analyzed in accordance with the quality assurance/quality control (QA/QC) requirements of Rule 62-160, F.A.C.
- 18) All injection well system data submissions including MORs shall be clearly identified on each page with facility name, I.D. Number, permit number, operator's name, license number, daytime phone number, date of sampling/recording, and type of data. Monitor zones shall be identified by well number and depth interval. The lead plant operator or higher official must sign and date each submittal. An approved summary sheet from the FDEP Southeast District UIC Section is attached.
- 19) The permittee shall submit monthly to the Department the results of all injection well and monitor well data required by this permit (MORs) no later than the last day of the month immediately following the month of record. The results shall be sent to the Department of Environmental Protection's Southeast District Office (FDEP, UIC Section, P.O. Box 15425, West Palm Beach, FL 33416). A copy of this report shall also be sent to the Department of Environmental Protection, Underground Injection Control Program, MS 3530, 2600 Blair Stone Road, Tallahassee, Florida 32399-2400.
- 20) The permittee shall calibrate all pressure gauges, flowmeters, chart recorders, and other related equipment associated with the injection well system on a annual basis, at a minimum. The permittee shall maintain all monitoring equipment and shall ensure that the monitoring equipment is calibrated and in proper operating condition at all times. Laboratory equipment, methods, and quality control will follow USEPA guidelines as expressed in Standard Methods for the Examination of Water and Wastewater. The pressure gauges, flow meter, and chart records shall be calibrated using standard engineering methods.
- 21) A controlled specific injectivity test (rate/pressure) shall be conducted monthly during the operational testing phase of this permit in accordance with Rule 62-528.430(2)(d), F.A.C. The specific injectivity test shall be conducted using at least three specified injection flow rates. The high rate should approach maximum design flow. For reporting the injectivity test results, a summary sheet and sample graph from the FDEP Southeast District UIC Section is attached. The injectivity test results shall be reported to the Department in the MORs. The following data shall be recorded and reported at each injection rate:
 - injection flow rate (MGD)
 - ٠
 - injection pressure (psig) wellhead pressure with no flow (shut-in pressure in psig) •
 - monitor zone pressures (psig)

All readings shall be taken after a minimum five minute period of stabilized flow. Pursuant to Rule 62-528.430(2)(d), F.A.C., as part of the specific injectivity test, the well shall be shut-in for a period of time necessary to conduct a valid observation of pressure fall-off.

22) Within thirty (30) days of the start-up date of operational testing, the permittee shall submit a combined wastestream analysis (including the membrane softening concentrate reject water and the secondary treated domestic wastewater), for primary and secondary drinking water standards (62-550, F.A.C.) and minimum criteria parameters (62-520, F.A.C.) as attached. The analysis shall be submitted for Department approval, and copies shall be distributed concurrently to all members of the UIC-TAC and the USEPA, Region IV, Atlanta, for review.

COUNTY: Broward PERMIT/CERTIFICATION NUMBER: 0153012-001-UC DATE OF ISSUANCE: MAR 1 4 2000 MAR 1 3 2005

/

SPECIFIC CONDITIONS:

- 23) Pursuant to Rules 62-528.425(1)(a) and 62-528.450(2)(f)3., F.A.C., a combined wastestream analysis (24 hour composite sample) for primary and secondary drinking water standards (Chapter 62-550, F.A.C.) and minimum criteria, see attached list, shall be submitted annually (sampled in February and submitted on or before April 30). The combined wastestream shall include the membrane softening concentrate reject water and the secondary treated domestic wastewater.
- 7. Surface Equipment
 - a. The integrity of the monitor zone sampling systems shall be maintained at all times. Sampling lines shall be clearly and unambiguously identified by monitoring zone at the point at which samples are drawn. All reasonable and prudent precautions shall be taken to ensure that samples are properly identified by monitor zone and that samples obtained are representative of those zones. Sampling lines and equipment shall be kept free of contamination with independent discharges and no interconnections with any other lines.
 - b. The surface equipment for the injection well system shall maintain compliance with Chapter 62-600, F.A.C. for water hammer control, screening, access for logging and testing, and reliability and flexibility in the event of damage to the well and effluent piping. A regular program of exercising the valves integral to the well head shall be instituted. At a minimum, all valves integral to the well head shall be exercised during the regularly scheduled quarterly injectivity testing.
 - c. The injection well and monitor well surface equipment and piping shall be kept free of corrosion at all times.
 - d. Spillage onto the injection well pad during construction activities, and any waters spilled during mechanical integrity testing, other maintenance, testing or repairs to the system shall be contained by an impermeable wall around the edge of the pad and directed to a sump which in turn discharges to the pumping station wet well or via other approved means to the injection well system.
 - e. The injection well construction pad with impermeable perimeter retaining wall shall be maintained and retained in service for the life of the injection well. The injection and monitor well pad(s) are not, unless specific approval is obtained form the Department, to be used for storage of any material or equipment at any time.
 - f. The four (4) surficial aquifer monitor wells installed at the corners of the injection well pad shall be secured, maintained, and retained in service.

8. Financial Responsibility

- a. The permittee shall maintain the resources necessary to close, plug and abandon the injection and associated monitor wells, at all times [Rule 62-528.435(9), F.A.C.].
- b. The permittee shall review annually the plugging and abandonment cost estimates. An increase of ten (10) percent or more over the cost estimate upon which financial responsibility is based shall require the permittee to submit documentation to obtain an updated Certificate of Demonstration of Financial Responsibility.
- c. In the event the mechanism used to demonstrate financial responsibility should become invalid for any reason, the Permittee shall notify the Department of Environmental Protection in writing within fourteen (14) days of such invalidation. The permittee shall then within thirty (30) days of said notification submit to the Department for approval new financial documentation in order to comply with Rule 62-528.435(9), F.A.C., and the conditions of this permit.

COUNTY: Broward PERMIT/CERTIFICATION NUMBER: 0153012-001-UC DATE OF ISSUANCE: MAR 1 4 2000 EXPIRATION DATE: MAR 1 3 2005

- 9. Emergency Disposal
 - a. All applicable federal, state, and local permits shall be in place to allow for any alternate discharges due to emergency or planned outage conditions.
 - b. Any proposed changes in emergency disposal methods shall be submitted for UIC-TAC and USEPA review and Department approval prior to implementation.
 - c. In the event of an emergency and/or discharge, or other abnormal event where the Permittee is temporarily unable to comply with any of the conditions of this permit due to breakdown of equipment, power outages, destruction by hazard or fire, wind, or by other cause, the Department shall be notified in person or by telephone within twenty-four (24) hours of the incident. A written report describing the incident shall also be submitted to the Department within five (5) days of the start of the incident. The written report shall contain a complete description of the emergency and/or discharge, a discussion of its cause(s), and if it has been corrected, the anticipated time the discharge is to continue, the steps being taken to reduce, eliminate, and prevent recurrence of the event, and all other information deemed necessary by the Department.
 - d. The emergency disposal method consists of the following:
 - 1) The emergency disposal method presented in the permit application received March 5. 1999 and approved by the Department as a part of this permit, shall be maintained in fully operational order at all times.
 - 2) Any emergency bypass of the injection well system shall be governed by Rule 62-620.610, F.A.C. and meet the conditions of the Wastewater Facilities Permit No. FL0040398.
 - 3) Any proposed changes in emergency disposal methods shall be submitted for UIC-TAC and USEPA review and Department approval prior to implementation.
- 10. Permit Extension(s), Renewal(s) and Operation Permit Application(s)
 - a. Pursuant to Rule 62-4.080(3), a permittee may request that a permit be extended as a modification of an existing permit. A request for an extension is the responsibility of the permittee and shall be submitted to the Department before the expiration of the permit. In accordance with Rule 62-4.070(4), F.A.C., a permit cannot be extended beyond the maximum 5 year statutory limit. Should operational testing need to continue beyond the 5 years of this permit, the permittee must renew the construction permit in accordance with S.C. 10.b. below. Operational testing shall not exceed two years except as provided in Rule 62-528.450(3)(e), F.A.C.
 - b. If injection is to continue beyond the expiration date of this permit the permittee shall apply for, and obtain an operation permit. If necessary to complete the two-year operational testing period, the permittee shall apply for renewal of the construction permit at least sixty (60) days prior to the expiration date of this permit.

PERMITTEE: Mr. George A. Haughney, P.E. Director of Utilities City of Cooper City COUNTY: Broward PERMIT/CERTIFICATION NUMBER: 0153012-001-UC DATE OF ISSUANCE: MAR 1 4 2000 EXPIRATION DATE: MAR 1 3 2005

SPECIFIC CONDITIONS:

11. Signatories

- a. All reports and other submittals required to comply with this permit shall be signed by a person authorized under Rules 62-528.340(1) or (2), F.A.C.
- b. In accordance with Rule 62-528.340(4), F.A.C., all reports shall contain the following certification:

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Issued this 14th day of Murch .2000

STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION

3/14/00 hech Melissa L. Meeker

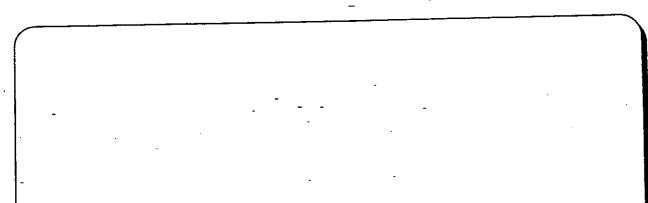
Director of District Management

SOUTHEAST DISTRICT	UС	SECTION	ł
--------------------	----	---------	---

SURFICIAL AQUIFER MO	NITOR WELL QUARTERLY REPORT	·.
FACILITY NAME	REPORT MO/YR	
OPERATOR NAME	LICENSE #	
I.D.NUMBER	PERMIT #	
INJECTION WELL #		
SAMPLING DATE	TIME	-

	PMW#1	PMW #2	PMW#3	PMW #4
LOCATION	NE CORNER	NW CORNER	SE CORNER	SW CORNER
ELEVATION OF TOC (NGVD)				
DEPTH TO WATER (TOC)				
WATER LEVEL (NGVD)				
CHLORIDES (MG/L.)				
CONDUCTIVITY (UMHOS)				
TEMPERATURE (F)				

ANALYZED BY:_____ PHONE #_____


_

. ...

÷

SAMPLED BY:______

SITE PLAN OF PMW LOCATIONS

PRIMARY & SECONDARY DRINKING WATER STANDARDS & MINIMUM CRITERIA Updated September 1998

PRIMARY DRINKING WATER STANDARDS

7

PARAMETER

Alachlor Aldicarb Aldicarb sulfoxide Aldicarb sulfone Aroclors (Polychlorinated Biphenyls or PCB's) Alpha, Gross Antimony Arsenic Atrazine Barium Benzene Benzo(a)pyrene Bervllium Bis(2-ethylhexyl) adipate (Di(2-ethylhexyl) adipate) Bis(2-ethylhexyl) phthalate (Di(2-ethylhexyl) phthalate) Cadmium Carbofuran Carbon Tetrachloride (Tetrachloromethane) Chlordane Chlorobenzene (Monochlorobenzene) Chloroethylene (Vinyl Chloride) Chromium Coliforms, Total Cyanide 2.4-D (2.4-Dichlorophenoxyacetic acid) Dalapon (2,2-Dichloropropionic acid) Dibromochloropropane (DBCP) 1,2-Dibromoethane (EDB, Ethylene Dibromide) 1,2-Dichlorobenzene (o-Dichlorobenzene) 1,4-Dichlorobenzene (p-Dichlorobenzene or Para Dichlorobenzene) 1.2-Dichloroethane (Ethylene dichloride) 1 1-Dichloroethylene (Vinylidene chloride) 1.2-Dichlorethylene (cis-1,2-Dichloroethylene or trans-1,2-Dichloroethylene) cis-1,2-Dichloroethylene (1,2-Dichlorethylene) trans-1,2-Dichloroethylene (1,2-Dichlorethylene) Dichloromethane (Methylene chloride) 1.2-Dichloropropane Di(2-ethylhexyl) adipate (Bis(2-ethylhexyl) adipate) Di(2-ethylhexyl) phthalate (Bis(2-ethylhexyl) phthalate) Dinoseb Diquat EDB (Ethylene dibromide, 1,2-Dibromoethane) Endothall Endrin Ethylbenzene Ethylene dichloride (1,2-Dichloroethane) Fluoride Glyphosate (Roundup) Gross Alpha Heptachlor Heptachlor Epoxide Hexachlorobenzene (HCB) gamma-Hexachlorocyclohexane (Lindane) Hexachlorocyclopentadiene Lead

PRIMARY DRINKING WATER STANDARDS, CONT'D

ARAMETER

indane (gamma-Hexachlorocyclohexane) **Aercury Methoxychlor** Methylene chloride (Dichloromethane) Monochlorobenzene (Chlorobenzene) vickel Nitrate (as N) Nitrite (as N) Total Nitrate + Nitrite (as N) Oxamyl o-Dichlorobenzene or Para Dichlorobenzene (1,4-Dichlorobenzene) Pentachlorophenol Perchloroethylene (Tetrachloroethylene) Picloram Polychlorinated biphenyl (PCB or Aroclors) Radium Roundup (Glyphosate) Selenium Silver Silvex (2,4,5-TP) Simazine Sodium Styrene (Vinyl benzene) Tetrachloroethylene (Perchloroethylene) Tetrachloromethane (Carbon Tetrachloride) Thallium Toluene Toxaphene 2,4,5-TP (Silvex) 1,2,4-Trichlorobenzene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethylene (Trichloroethene, TCE) Trihalomethanes, Total Vinyl Chloride (Chloroethylene) Xylenes (total)

SECONDARY DRINKING WATER STANDARDS

/

PARAMETER

Aluminum Chloride Color Copper Corrosivity Ethylbenzene Fluoride Foaming Agents (MBAS) Iron Manganese Odor pН Silver Sulfate Toluene Total Dissolved Solids (TDS) **Xylenes** Zinc

MUNICIPAL WASTEWATER MINIMUM CRITERIA GROUND WATER MONITORING PARAMETERS

INORGANICS

Ammonia Nitrogen (organic) Total Kjeldahl Nitrogen Total Phosphorus (phosphate)

VOLATILE ORGANICS

Chloroethane Chloroform para-Dichlorobenzene (1,4 Dichlorobenzene) 1,2-Dichloroethylene (cis-1,2-Dichloroethylene or trans-1,2-Dichloroethylene)

BASE/NEUTRAL ORGANICS

Anthracene Butylbenzylphthalate Dimethylphthalate Naphalene Phenanthrene

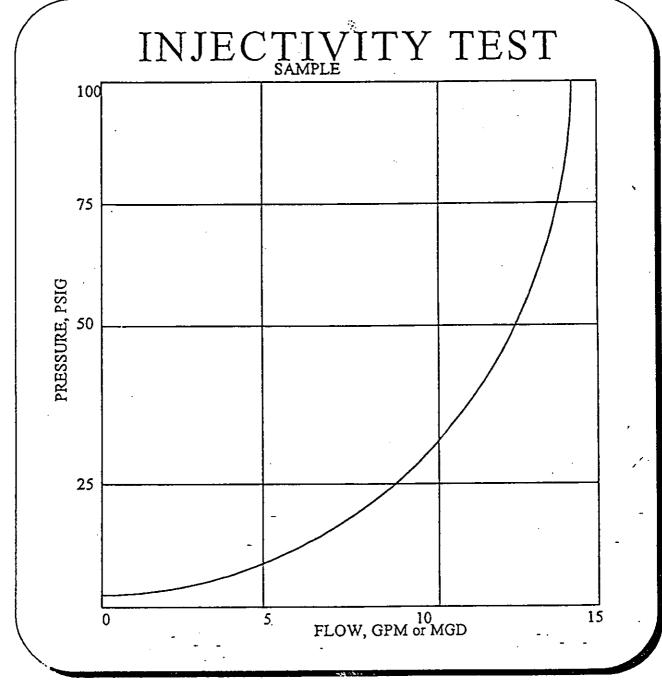
PESTICIDES AND PCBs

Aldrin Dieldrin Dioxin

ACID EXTRACTABLES

2-chlorophenol Phenol 2,4,6-trichlorophenol

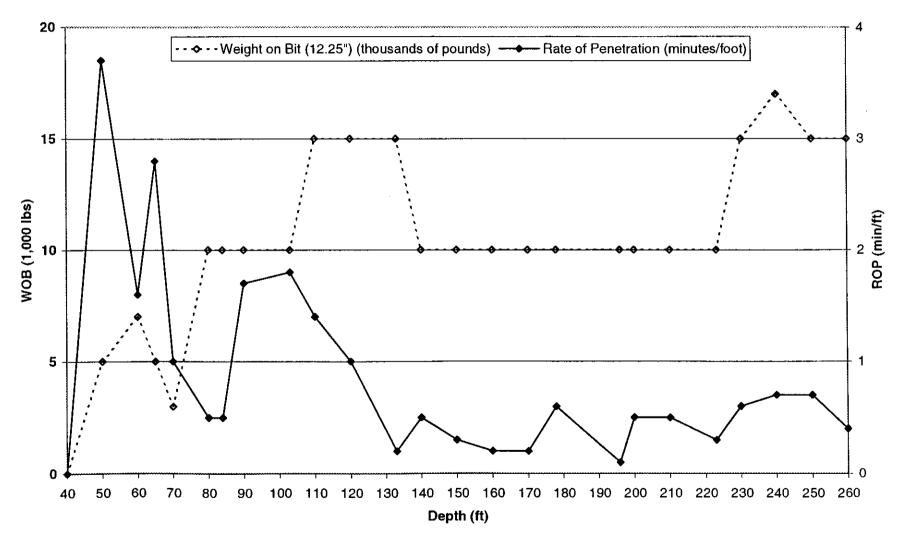
OTHER


Conductivity Biological Oxygen Demand Chemical Oxygen Demand Temperature

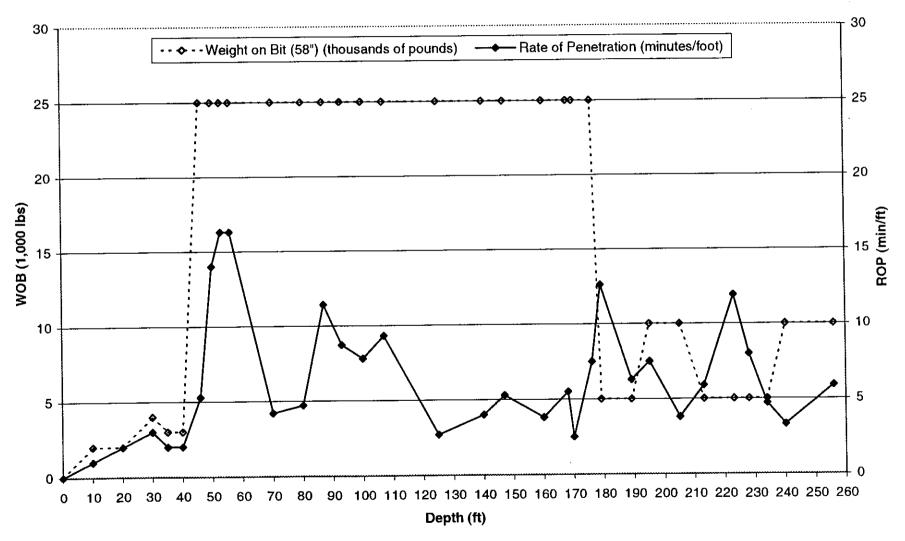
INJECTIVITY TESTING SUMMARY SHEET

FACILITY		~	TIME				
Deep Injection Well System		(START	SHUT-	IN PRESSURE	
Injectivity Testing				MINS AFTER SHUT -IN		TED PRESSURE	
Injection Well No. :						(PSI)	
DATE OF TEST:			·····	10		· · · · · · · · · · · · · · · · · · ·	
FDER PERMIT No.:				20			
· · ·				30]
Signature of Lead Operator , Were Wellhead Valves Exercised	_YES	NO	<u></u>				
COLUMN: 1 2 3	4	5	6	7	8	9	10
TIME INJECTION WELL PUMP NUMDER(S) PRESSURE AFTER 30 MINUTES (PSI)	INJECTION RATE (gpm) or (mgd)	Injection Pre	ssure after 10 If pumping	PRESSURE DIFFERENTIAL (Col S - Col 2)	INJECTIVITY INDEX (Col 4 divide by Col 7)	UPPER MONITOR ZONE IN FEET OF HEAD ABOVE NGVD (FEET)	LOWER MONITOR ZONE IN FEET OF HEAD ABOVE NGVD (FEET)
		CALIBRATED GAUGE AT INJECTION WELLHEAD (PSI)	PRESSURE RECORDER (PSI)	FROM CALIBRATED PRESSURE GAUGE AT INJECTION WELLHEAD (PSI)	FROM CALIBRATED PRESSURE GAUGE AT INJECTION WELLHEAD (GPM / PSI)		
· · · · · · · · · · · · · · · · · · ·						<u> </u>	<u> </u>
NOTES 1. INJECTIVITY INJECTIO INDEX (GPM/TSI) - (COLUM (INJECTION PRESS (COLUMN	URE (PSI) - (SIIL	JT-IN PRESSURE COLUMN 2)	. <u> </u>	OR MORE INFORMA CONSULT THE INJEC	TION REGARDING EX TIVITY TESTING PRO	KECUTION OF TIIIS DTOCOL IN THE O&	TEST M MANUAL

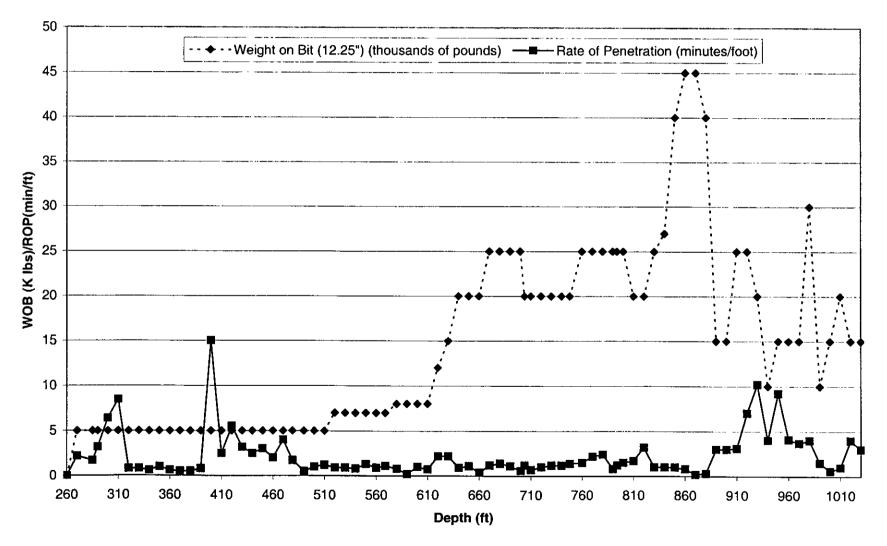
UNDERGROUND INJECTION CONTROL

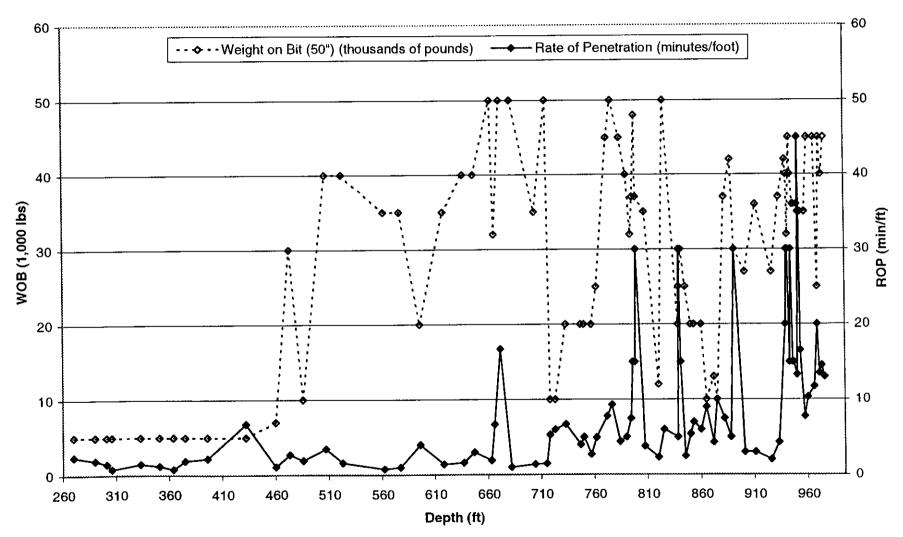

APPENDIX B

•

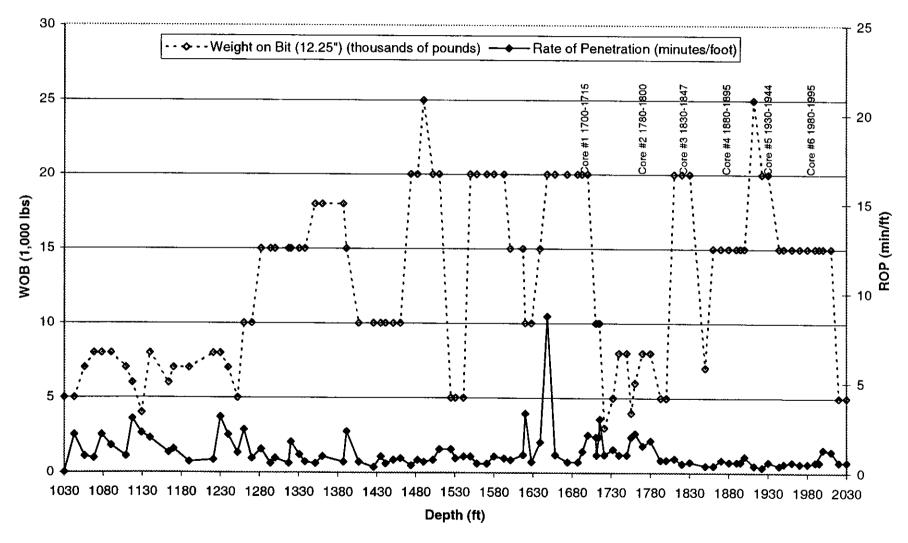

WEIGHT ON BIT AND RATE OF PENETRATION

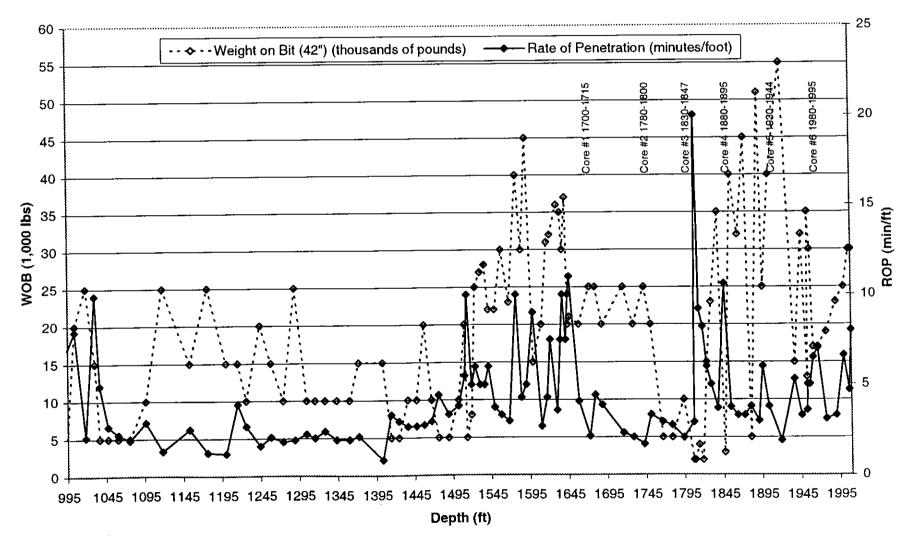
.


Cooper City Concentrate Disposal Well IW-1 Weight on Bit / Rate of Penetration 12.25-inch Diameter Pilot Hole 40 to 260 Feet BPL

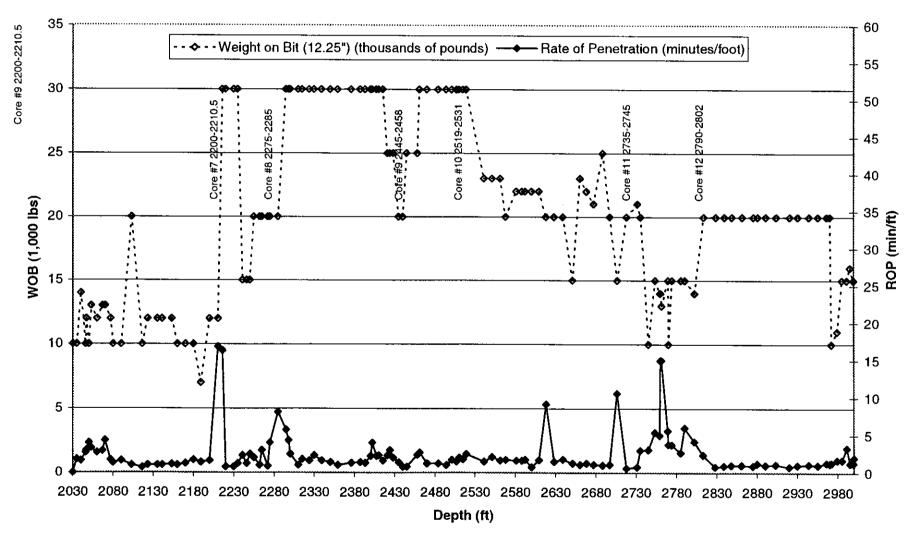

Cooper City Concentrate Disposal Well IW-1 Weight on Bit / Rate of Penetration 58-inch Diameter Borehole 0 to 260 Feet BPL

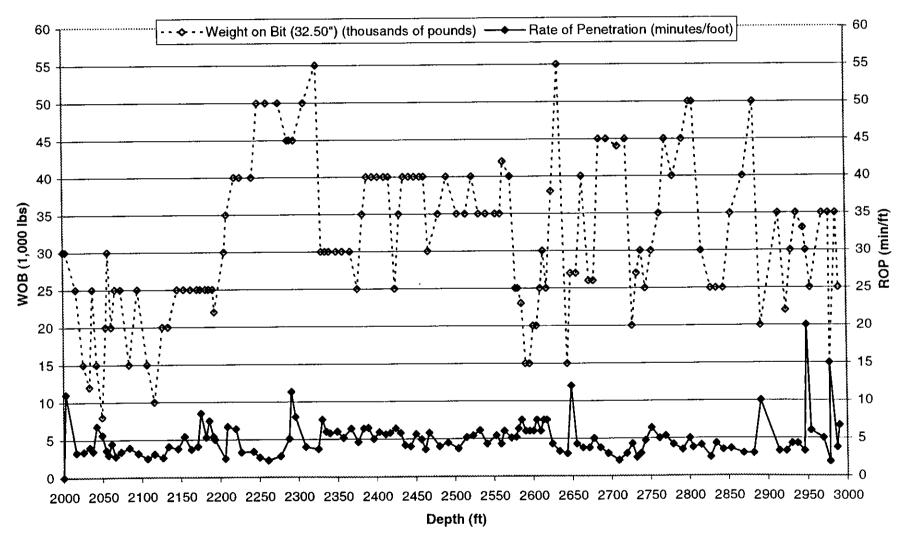
Cooper City Concentrate Disposal Well IW-1 Weight on Bit / Rate of Penetration 12.25-inch Diameter Borehole 260 to 1,030 Feet BPL

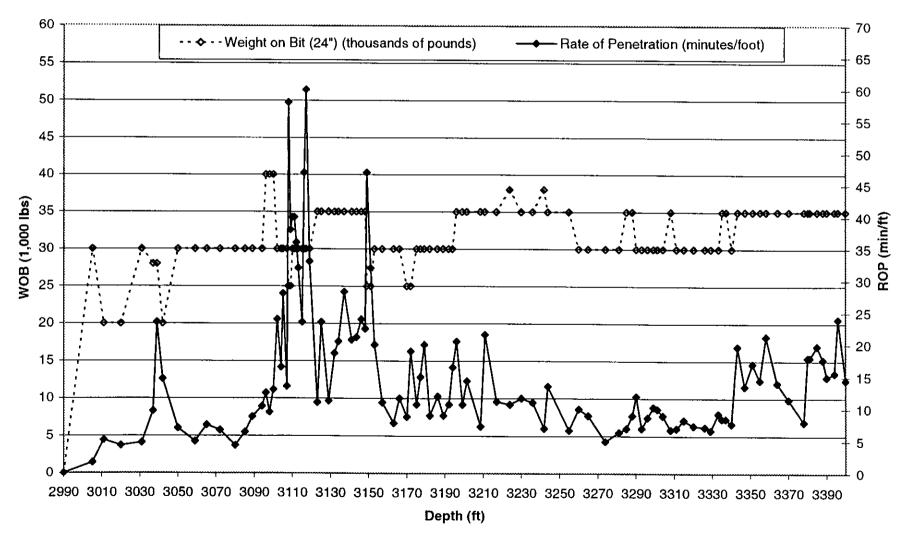

Cooper City Concentrate Disposal Well IW-1 Weight on Bit / Rate of Penetration 50-inch Diameter Borehole 260 to 995 Feet BPL

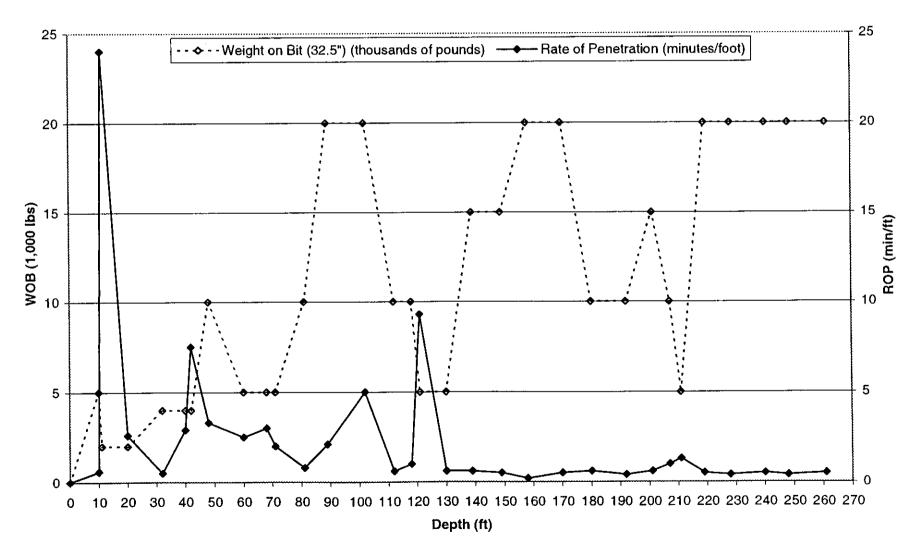

IW1 WOB-ROP 260 to 995 (50)

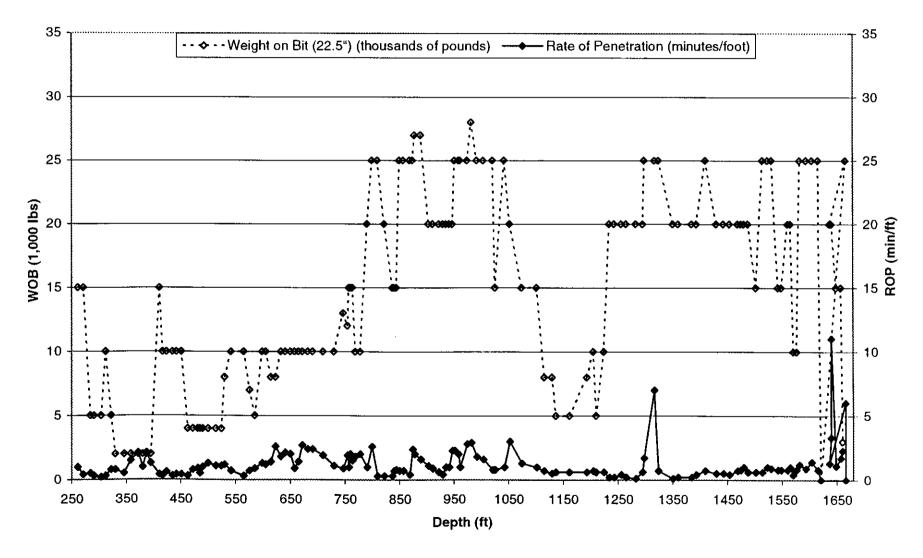
.

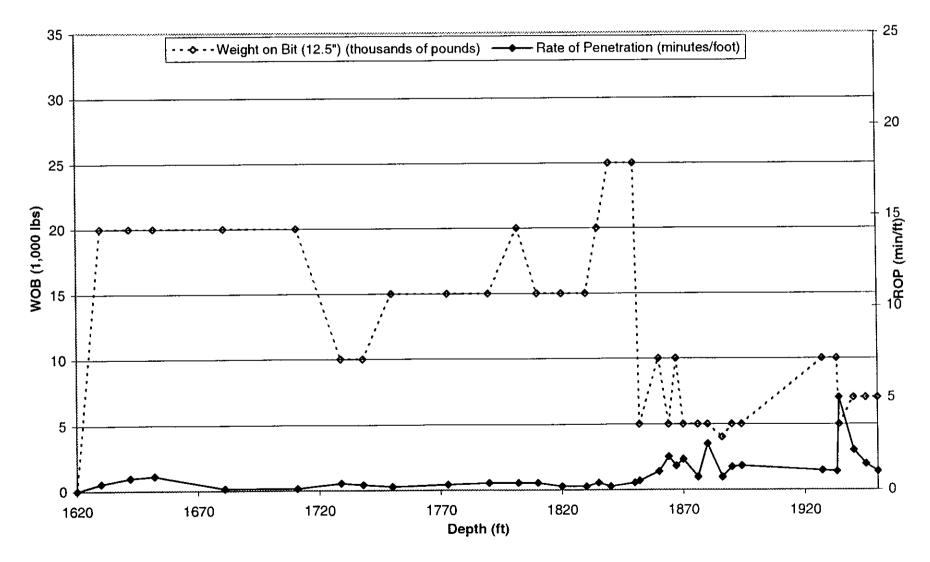

Cooper City Concentrate Disposal Well IW-1 Weight on Bit / Rate of Penetration 12.25-inch Diameter Pilot Hole 1,030 to 2,030 Feet BPL


Cooper City Concentrate Disposal Well IW-1 Weight on Bit / Rate of Penetration Nominal 42-inch Diameter Borehole 995 to 2,010 Feet BPL


Cooper City Concentrate Disposal Well IW-1 Weight on Bit / Rate of Penetration 12.25-inch Diameter Pilot Hole 2,030 to 3,000 Feet BPL


Cooper City Concentrate Disposal Well IW-1 Weight on Bit / Rate of Penetration Nominal 34-inch Diameter Borehole 2,000 to 3,000 Feet BPL


Cooper City Concentrate Disposal Well IW-1 Weight on Bit / Rate of Penetration Nominal 24-inch Diameter Open Borehole 2,990 to 3,400 Feet BPL


Cooper City Monitoring Well MW-1 Weight on Bit / Rate of Penetration Nominal 34-inch Diameter Borehole 0 to 250 Feet BPL

Cooper City Monitoring Well MW-1 Weight on Bit / Rate of Penetration Nominal 24-inch Diameter Borehole 250 to 1,620 Feet BPL

Cooper City Monitoring Well MW-1 Weight on Bit / Rate of Penetration 12.5-inch Diameter Borehole 1,620 to 1,950 Feet BPL

APPENDIX C

INCLINATION SURVEYS

Bit Size (inches)	Inclination (degrees)	Depth (feet bpl)
32.5	.300	90
32.5	.250	180
22.5	.150	270
22.5	.150	360
22.5	.400	450
22.5	.025	540
22.5	.125	630
22.5	.250	720
22.5	.250	810
22.5	.300	900
22.5	.250	990
22.5	.125	1080
22.5	.400	1170
22.5	.200	1260
22.5	.300	1350
22.5	.250	1440
22.5	.275	1530
22.5	.275	1620
12.25	.300	1710
12.25	.200	1800

Appendix C - Inclination Survey Monitoring Well MW-1 City of Cooper City WTP/WWTP

Depth	Inclination	Bit Size (inches)
(feet bpl)	(degrees)	······
90	.675	12.25
180	.500	12.25
90	.300	58.5
180	.680	58.5
270	.260	12.25
360	.300	12.25
450	.350	12.25
540	.500	12.25
630	.400	12.25
720	.250	12.25
810	.450	12.25
900	.260	12.25
270	.350	50.0
360	.250	50.0
450	.300	50.0
540	.200	50.0
630	.350	50.0
720	.500	50.0
900	.400	50.0
990	.480	12.25
1080	.325	12.25
1170	.250	12.25
1260	.375	12.25
1350	.285	12.25
1440	.400	12.25
1530	.275	12.25
1620	.250	12.25
1710	.300	12.25
1800	.400	12.25
1890	.250	12.25
1980	.460	12.25
990	.350	42.0
1080	.300	42.0
1170	.375	42.0
1260	.460	42.0

Appendix C - Inclination Survey Concentrate Disposal Well IW-1 City of Cooper City WTP/WWTP

Depth	Inclination	Bit Size
(feet bpl)	(degrees)	(inches)
1350	.250	42.0
1440	.260	42.0
1540	.250	42.0
1530	.450	42.0
1620	.250	42.0
1710	.250	42.0
1800	.250	42.0
1890	.300	42.0
2070	.450	12.25
2160	.300	12.25
2250	.300	12.25
2340	.500	12.25
2430	.300	12.25
2520	.500	12.25
2610	.475	12.25
2700	.300	12.25
2790	.375	12.25
2090	.260	34.0
2180	.350	34.0
2270	.250	34.0
2360	.260	34.0
2450	.255	34.0
2540	.250	34.0
2630	.200	34.0
2720	.250	34.0
2810	.275	34.0
2900	.250	34.0
2990	.125	34.0
3080	.200	24.0
3080	.250	24.0
3170	.200	24.0
3260	.400	24.0
3350	.250	24.0

APPENDIX D

GEOLOGIC LOGS

-

Injection Well

Depth (feet bpl)	Thickness (feet)	Sample Geologic Description
0-20	20	SANDY LIMESTONE - 100% Grayish orange (10YR 7/4) hard, medium grained, micritic, vuggy packstone with fine to medium grained colorless angular quartz sand.
20-70	50	SANDY LIMESTONE AND LIMY SANDSTONE – Sandy Limestone, 70%-50% yellowish gray (5Y 8/1) fine grained to cryptocrystalline, moderately hard wackestone/packstone with some shell fragments. Limy Sandstone, 30%-50% very light gray (N8) fine to medium grained, subangular quartz with trace medium grained phosphorite, moderately cemented with calcite, content increasing with depth.
70-80	10	LIMY SANDSTONE - 100% Yellowish gray (5Y 8/1) fine to coarse grained, subangular quartz with trace medium grained phosphorite, moderately to poorly cemented with calcite.
80-100	20	SANDY LIMESTONE - 100% Yellowish gray (5Y 8/1) medium grained to carbonate mudstone, sparry with tests and colorless medium grained quartz sand and trace medium to fine grained phosphorite. Trace medium gray (N5) Limy Sandstone below 90 feet.
100-150	50	LIMY SANDSTONE, SANDY LIMESTONE AND LIMESTONE – Limy Sandstone, 40% mainly yellowish gray (5Y 8/1) medium grained angular to subangular quartz and trace medium grained subrounded phosphorite, moderately well cemented with calcite. Trace medium gray (N5) medium to coarse-grained subangular quartz with trace medium grained phosphorite and shell fragments, moderately well cemented with calcite. Sandy Limestone, 40% yellowish gray (5Y 8/1) sparry carbonate mudstone with clear medium grained quartz sand. Limestone 20% yellowish gray (5Y 8/1) moderately hard carbonate mudstone to grainstone. Tests at 130 feet.
150-190	40	LIMESTONE AND SANDY LIMESTONE – Limestone, 90% mainly yellowish gray (5Y 8/1) medium grained, soft, packstone/grainstone. Sandy Limestone, 10% yellowish gray (5Y 8/1) sparry carbonate mudstone with clear medium grained quartz sand. Trace light olive gray (5Y 6/1) soft mudstone at 180 feet.

Depth (feet bpl)	Thickness (feet)	Sample Geologic Description
190-200	10	LIMESTONE - Limestone, 100% yellowish gray (5Y 7/2) medium to coarse grained, moderately hard fossiliferous crystalline carbonate to packstone with little medium gray (N5) hard wackestone with clear medium quartz sand.
200-240	40	SANDY CLAY - 100% Dark greenish gray (5GY 4/1) very soft non-plastic, phosphatic with very fine to fine grained clear subangular quartz sand and trace Limestone. Plastic below 220 feet.
240-280	40	SANDY CLAY AND SANDY LIMESTONE – Sandy Clay 80%, dark greenish gray (5GY 4/1) very soft non-plastic, phosphatic with very fine to fine grained clear subangular quartz sand and trace Limestone. Sandy Limestone 20%, grayish orange (10YR 7/4) medium to coarse grained sparry phosphatic packstone.
280-460	180	SANDY CLAY - 100% Dark greenish gray (56Y 4/1) very soft, plastic calcareous with fine grained, clear subangular, quartz sand and trace fine grained phosphorite. Trace very pale orange (10YR 8/2) to light olive gray (5Y 6/1) very sparry fossiliferous packstone 380-400
460-470	10	SANDY CLAY AND SANDY CLAYEY LIMESTONE - Sandy Clay 80%, dark greenish gray (5GY 4/1) very soft, plastic, calcareous with fine grained, clear subangular quartz sand and trace fine grained phosphorite. Sandy Clayey Limestone 20%, light olive gray (5Y 6/1) fine grained, moderately hard sandy mudstone.
470-480	10	SANDY CLAY AND SANDSTONE – Sandy Clay 70%, dark greenish gray (56Y 4/1), very soft, plastic, calcareous with fine grained clear, subangular, quartz sand and trace fine grained phosphorite. Sandstone 30%, very light gray (N8) very fine to fine grained, argillaceous slightly phosphatic, poorly cemented with calcite. Trace white (N9) carbonate mudstone.
480-530	50	CLAYEY SANDSTONE - 100% Pale olive (10Y 6/2) very fine grained quartz poorly cemented with calcite with trace fine grained phosphorite and trace white (N9) micritic Limestone. Clay content increasing with depth.

Depth (feet bpl)	Thickness (feet)	Sample Geologic Description
530-560	30	SANDY CLAY AND CLAYEY SANDSTONE – Sandy Clay 70%, greenish gray (5GY 6/1) very soft, plastic with very fine grained quartz sand and trace fine grained phosphorite. Clayey Sandstone 30%, pale olive (10Y 6/2) very fine grained quartz, poorly cemented with calcite with trace fine grained phosphorite and trace white (N9) micritic limestone.
560-570	10	CLAYEY LIMESTONE AND CLAYEY SANDSTONE – Clayey Limestone 90%, light greenish gray (5GY 8/1) medium to fine grained, soft, partly sparry, slightly phosphatic packstone. Clayey Sandstone 10%, greenish black (5 GY 2/1) fine grained, very soft.
570-640	70	CLAYEY LIMESTONE – 100% Light greenish gray (5GY 8/1) medium to fine grained, soft, partly sparry, slightly phosphatic.
640-660	20	CLAY AND LIMESTONE – Clay 80%-60%, yellowish gray (5Y 7/2) plastic, slightly phosphatic with very fine grained quartz sand. Limestone 20% to 40% yellowish gray (5 Y 8/1) fine to very fine grained, moderately soft pack stone, percentage increasing with depth
660-730	70	CLAY AND LIMESTONE – Clay 70%-60%, yellowish gray (5Y 7/2) plastic, slightly phosphatic with very fine grained quartz sand. Limestone 30% to 40%, yellowish gray (5Y 8/1) fine grained, moderately soft, locally phosphatic, silty, poorly indurated wackestone/mudstone.
730-750	20	LIMESTONE AND CLAY – Limestone 70%, yellowish gray (5Y 7/2) to white (N9) generally medium grained, unconsolidated to locally moderately indurated, locally micritic and sparry packstone/grain stone. Trace Dolomite at 750 feet induration increases with depth. Clay 30%, yellowish gray (5Y 7/2) plastic, slightly phosphatic with very fine grained quartz sand.
750-810	60	CLAY AND LIMESTONE - Clay 90%, yellowish gray (5Y 7/2) soft, plastic. Limestone 10% white (N9) very fine grained to cryptocrystalline, moderately hard, well-indurated locally sparry packstone.

Depth (feet bpl)	Thickness (feet)	Sample Geologic Description
810-890		LIMESTONE AND CLAY – Limestone 60% to 80%, yellowish gray (5Y 7/2) medium grained to cryptocrystalline, poorly to well indurated packstone. Clay 40% to 20% yellowish gray (5Y 7/2) plastic, slightly phosphatic with very fine grained quartz sand
890-940	50	CLAY AND LIMESTONE – Clay 90%, yellowish gray (5Y 7/2) moderately soft, plastic. Limestone 10% yellowish gray (5Y 7/2) medium grained, moderately hard, moderately to well indurated packstone.
940-960	20	SANDY CLAY – 100% Dark greenish gray (5GY 4/1) soft, low plasticity with very fine grained quartz sand and trace fine grained phosphorite. Trace Limestone and lime mud lenses.
960-980	20	CLAY -100% Greenish gray (5GY 6/1) moderately soft, plastic calcareous, slightly sandy with trace shell fragments at 980 feet.
980-990	10	CLAY AND LIMESTONE - Clay 70%, greenish gray (5GY 6/1) moderately soft, plastic, calcareous, slightly sandy. Limestone 30%, yellowish gray (5Y 8/1) very fine grained moderately hard micritic packstone. Trace coarse grained phosphorite.
990- 1000	10	LIMESTONE AND CLAY - Limestone 70%, light olive gray (5Y 6/1) fine grained moderately hard, phosphatic wackestone. Clay 30% greenish gray (5GY 6/1) moderately soft, plastic, calcareous, slightly sandy. Trace dark greenish gray (5 GY 4/1) fine grained soft carbonate mudstone.
1000-1030	30	LIMESTONE – 100% Light olive gray (5Y 6/1) fine to very fine grained partly sparry partly micritic packstone/wackestone with some medium grained phosphorite.

Depth (feet bpl)	Thickness (feet)	Sample Geologic Description
1030-1050	20	LIMESTONE AND CLAY - Limestone, 90% mainly yellowish gray (5Y 8/1), medium grained, moderately hard, sparry packstone with occasional molds and minor amounts of yellowish gray (5Y 8/1) fine grained moderately hard phosphatic grainstone. Clay 10%, medium gray (N5) very stiff, nonplastic, slightly calcareous, phosphatic, percentage decreasing with depth. Trace brownish black (5YR 2/1) hard Chert at 1030.
1050-1070	20	LIMESTONE AND SANDSTONE - Limestone70%, yellowish gray (5Y 8/1), medium grained moderately hard, well- indurated, micritic wackestone. Sandstone 30%, light olive gray (5Y 6/1) very fine grained, well sorted, subangular quartz with trace phosphorite, poorly cemented with calcite.
1070-1080	10	LIMESTONE – 100%; 80% Yellowish gray (5Y 8/1) moderately hard, well indurated, medium grained to cryptocrystalline, occasionally sparry packstone with molds and medium grained brownish black (5Y 2/1) Dolomite inclusions. 20% Medium light gray (N6) moderately hard, occasionally sandy carbonate mudstone with molds. Trace brownish gray (5YR 4/1) hard fossiferous chert.
1080-1120	40	LIMESTONE – 100% Yellowish gray (5Y 8/1) medium grained, moderately soft, poorly indurated packstone. Trace Dolomitic Limestone at 1120.
1120-1130	10	LIMESTONE – 100%; 60% Yellowish gray (5Y 8/1) medium grained, moderately soft, poorly indurated packstone. 40% Grayish orange (10YR 7/4) fine grained, soft wackestone.
1130-1140	10	LIMESTONE – 100%; 70% Pale yellowish brown (10YR 6/2) medium to fine grained, soft, occasionally sparry wackestone. 30% Yellowish gray (5Y 8/1) medium grained, moderately soft, poorly indurated packstone. Trace forams.
1140-1160	20	LIMESTONE – 100% Very pale orange (10YR 8/2) medium grained, moderately soft packstone with tests and trace forams. Trace very light gray (N9) hard carbonate mudstone.

Depth (feet bpl)	Thickness (feet)	Sample Geologic Description
1160-1170	10	LIMESTONE – 100%; 80% Very pale orange (10YR 8/2) medium grained, moderately soft packstone with tests and trace forams. 20% Pale yellowish brown (10YR 6/2) medium grained, soft to moderately hard wackestone.
1170-1200	30	LIMESTONE – 100%; 70% Grayish orange (10YR 7/4) medium grained to cryptocrystalline, moderately hard packstone/carbonate mudstone. 30% Yellowish gray (5Y 8/1) medium grained soft packstone. Trace forams.
1200-1300	100	LIMESTONE - 100%; 60% Moderate yellowish brown (10YR 5/4), to grayish orange (10YR 7/4) medium to fine grained, soft to moderately hard, occasionally sparry, partly micritic grainstone/packstone. 40% Yellowish gray (5Y 8/1) very fine grained, moderately hard to hard packstone to carbonate mudstone.
1300-1370	70	LIMESTONE – 100% Grayish orange (10YR 7/4), medium to fine grained, moderately soft packstone/grainstone. Trace pale yellowish brown (10YR 6/2) hard, occasionally vuggy carbonate mudstone. Trace Dolomitic Limestone 1310, 1370.
1370-1390	20	LIMESTONE – 100%; 70%-90% Very pale orange (10YR 8/2) fine grained, moderately soft packstone. 30%-10% Pale yellowish brown (10YR 6/2) hard carbonate mudstone with occasional vuggs.
1390-1400	10	LIMESTONE – 100% Pale grayish orange (10YR 8/4), medium to fine grain, moderately soft packstone with minor amount of fossiliferous crystalline carbonate.
1400-1430	30	LIMESTONE – 100%; 60% Pale yellowish brown (10YR 6/2) medium to fine grained, moderately soft, partly carbonate mudstone/packstone. 40% Pale grayish orange (10YR 8/4) fine grained to microcrystalline, soft to moderately soft wackestone. Trace forams.

•

Depth (feet bpl)	Thickness (feet)	Sample Geologic Description
1430-1450	20	LIMESTONE – 100%; 80% Moderate yellowish brown (10YR 5/4) coarse to fine grained, moderately soft grainstone/ packstone. 10% Grayish orange (10YR 7/4) hard, vuggy, slightly dolomitic in part, carbonate mudstone. 10% Yellowish gray (5Y 8/1) medium grained packstone. Trace laminated Limestone and Dolomite. Forams at 1440 feet. Trace Pale yellowish brown (10YR 6/2) fossilifeous grainstone at 1450.
1450-1510	60	LIMESTONE - 100%; 70% Grayish orange (10YR 7/4) fine grained, moderately soft packstone. 20% Light olive gray (5Y 6/1) microcrystalline, moderately soft mudstone. 10% Pale yellowish brown (10YR 6/2) hard, medium grained to micritic, partly slightly dolomitic packstone. Trace forams. Trace to little fossiliferous crystalline carbonate with coarse calcite crystals at 1460 feet.
1510-1590	80	LIMESTONE – 100%; 60% Grayish orange (10YR 7/4) fine to medium grained, moderately soft grainstone. 30% Very pale orange (10YR 8/2) fine grained, moderately hard packstone. 10% Light gray (N7) to medium dark gray (N4) hard cryptocrystalline to microcrystalline carbonate mudstone/wackestone. Trace Dolomitic Limestone at 1550 feet.
1590-1600	10	LIMESTONE – 100%; 50% Very pale orange (10YR 8/2) medium grained to microcrystalline, moderately hard packstone. 30% Pale yellowish brown (10YR 6/2) fine grained to cryptocrystalline, moderately hard, occasionally dolomitic, occasionally vuggy wackestone. 10% Yellowish gray (5Y 8/1) fine grained to cryptocrystalline, hard, partly vuggy packstone. Trace very light gray (N8) medium grained, very soft carbonate mudstone.
1600-1630	30	LIMESTONE – 100%; 60% Very pale orange (10YR 8/2) fine grained, moderately soft to moderately hard, moderately to well indurated packstone. 30% Yellowish gray (5Y 8/1) medium grained moderately soft packstone. 10% Medium gray (N5) to light gray (N6) occasionally mottled, medium grained to microcrystalline, hard, micritic wackestone.

Depth (feet bpl)	Thickness (feet)	Sample Geologic Description
1630-1650	20	LIMESTONE – 100%; 60% Very pale orange (10YR 8/2) fine grained, moderately soft to moderately hard, moderately to well indurated packstone. 30% Pale yellowish brown (10YR 6/2) medium grained, hard, well indurated packstone. 20% Yellowish gray (5Y 8/1) cryptocrystalline to medium grained, hard, micritic packstone. Trace dusky yellowish brown (10YR 2/2) Dolomite and Dolomitic Limestone.
1650-1670	20	LIMESTONE – 100%; 60% Very pale orange (10YR 8/2) fine to medium grained to cryptocrystalline, moderately hard packstone. 20% Pale yellowish brown (10YR 6/2) coarse to fine grained, moderately hard to hard, partly sparry packstone. 10% Light olive gray (5Y 6/1) medium to fine grained very well indurated hard packstone. 10% Light gray (N7) cryptocrystalline hard carbonate mudstone.
1670-1780	110	LIMESTONE – 100%; 60% Very pale orange (10YR 8/2) to pale yellowish brown (10YR 6/2) medium to fine grained, moderately soft, partly vuggy packstone. Trace Dolomitic Limestone at 1710, 1730, and 1750 feet. Trace medium light gray (N6) carbonate mudstone below 1720 feet. Few forams at 1770 feet.
1780-1800	20	CORE #2
1800-1830	30	LIMESTONE – 100%; 70% Mainly very pale orange (10YR 8/2) to pale yellowish brown (10YR 6/2) medium grained, moderately hard, occasionally Dolomitic packstone. 30% Light olive gray (5Y 6/1) to medium light gray (N6) medium grained to cryptocrystalline, hard micritic packstone. Trace to few forams.
1830-1847	17	CORE #3
1847-1880	33	LIMESTONE – 100%; 90% Grayish orange (10YR 7/4) to very pale orange (10YR 8/2) coarse to fine grained, moderately to moderately well indurated, soft, fossilifeous grainstone/packstone with few forams. 10% Medium light gray (N6) medium grained to cryptocrystalline, well indurated hard, partly vuggy wackestone/packstone. Trace Dolomitic Limestone.

Depth (feet bpl)	Thickness (feet)	Sample Geologic Description
1880-1895	15	CORE #4
1895-1930	35	LIMESTONE – 100%; 80% Yellowish gray (5Y 8/1) very pale orange (10YR 8/2) medium to fine grained, moderately soft, fossiliferous wackestone/packstone, wackestone component exhibits moderate vugginess, forams and tests common. 10% Yellowish gray (5Y 8/1) very fine grained to microcrystalline, hard occasionally vuggy wackestone. Rarely with medium to fine grained Dolomite inclusions to 1890. 10% Light olive gray (5Y 6/1) coarse to fine grained, moderately hard, packstone.
1930-1944	14	CORE #5
1944-1970	26	LIMESTONE – 100%; 90% Very pale orange (10YR 8/2) to pale yellowish brown (10YR 8/2) generally medium to fine grained, moderately soft, fossiliferous, packstone with many tests and forams. 10% Grayish orange (10YR 7/4) fine to cryptocrystalline, hard, vuggy wackestone. Trace yellowish gray (5Y 8/1) fine grained, soft, slightly Dolomitic to Dolomitic wackestone at 1960.
1970-1980	10	LIMESTONE – 100%; 90% Very pale orange (10YR 8/2) to pale yellowish brown (10YR 6/2) medium to fine grained, moderately soft, fossilifeous packstone with many forams. 10% Very pale yellowish gray (5Y 9/1) medium to fine grained, well indurated, moderately hard, moderately vuggy packstone.
1980-1995	15	CORE #6
1995-2030	35	LIMESTONE – 100%; 70%-30% Very pale orange (10YR 6/2) to pale yellowish brown (10YR 6/2) medium to fine grained, moderately soft, fossilifeous packstone. Percentage decreasing with depth. Forams common to few, abundance decreasing with depth. 30%-70% Very pale yellowish gray (5Y 9/1) medium to fine grained moderately soft packstone. Percentage increasing with depth. Trace dusky yellowish brown (10YR 2/2) crystalline, hard Dolomite at 2000. Trace Dolomitic Limestone 2010-2030.

Depth (feet bpl)	Thickness (feet)	Sample Geologic Description
2030-2040	10	LIMESTONE – 100% Very pale orange (10YR 8/2) to pale yellowish brown (10YR 6/2) fine grained, moderately soft, fossilifeous packstone with few forams. Trace Dolomitic Limestone.
2040-2050	10	LIMESTONE AND DOLOMITIC LIMESTONE – Limestone, 60% mainly pale yellowish brown (10YR 7/2) to very pale orange (10YR 8/2) medium to fine grained, moderately hard wackestone. Dolomitic Limestone 40% pale brown (5YR 5/2) and dusky brown (5YR 2/2) finely laminated, moderately hard.
2050-2070	20	LIMESTONE AND DOLOMITIC LIMESTONE; – Limestone 90%; 80% very pale orange (10YR 8/2) medium to fine grained, hard, fossiliferous packstone. 20% Light gray (N7) hard, cryptocrystalline, vuggy, carbonate mudstone. Dolomitic Limestone 10%, very pale orange (10YR 8/2) medium grained, moderately hard wackestone with light gray (N7) to medium dark gray (N4) inclusions and mottles common to minor amounts of moderate brown (5YR 3/4) cryptocrystalline Dolomite. Trace light olive gray (5Y 6/1) fine grained, subrounded, well cemented Sandstone.
2070-2080	10	LIMESTONE – 100%; 50% Very pale orange (10YR 8/2) medium to fine grained, moderately hard, fossilifeous packstone. 30% Medium gray (N5) medium grained, hard, vuggy, partly micritic grainstone/packstone. 20% Very pale orange (10YR 8/2) very fine grained to microcrystalline, moderately hard occasionally slightly Dolomitic wackestone.
2080-2100	20	LIMESTONE – 100%; 80% Very pale orange (10YR 8/2) very coarse to fine grained, moderately to very well indurated, moderately soft to hard, partly sparry, fossilifeous packstone to grainstone. 20% Yellowish gray (5Y 8/1) to pale yellowish brown (10YR 6/2) microcrystalline to cryptocrystalline, well- indurated hard vuggy carbonate mudstone. Forams common.

Depth (feet bpl)	Thickness (feet)	Sample Geologic Description
2100-2200	100	LIMESTONE – 100%; 80% Yellowish gray (5Y 8/1) to very pale orange (10YR 8/2) medium grained, poorly to moderately indurated, induration increasing with depth, moderately hard to moderately soft fossiliferous grainstone/packstone. 10% Very pale orange (10YR 8/2) medium grained, moderately soft wackestone. 10% Yellowish gray (5Y 8/1) to pale yellowish brown (10YR 6/2) microcrystalline to cryptocrystalline, well- indurated hard vuggy carbonate mudstone with forams common and few tests. Trace Dolomitic Limestone at 2180, and 2200.
2200-2210.5	10.5	CORE # 7
2210.5-2220	9.5	LIMESTONE AND DOLOMITE – Limestone 70%, very pale orange (10YR 8/2) medium to fine grained, well indurated, moderately hard to moderately soft, fossilifeous packstone. Dolomite 30%, dark yellowish brown (10YR 4/2) microcrystalline, very hard. Trace Dolomitic Limestone.
2220-2230	10	LIMESTONE – 100%; 70% Yellowish gray (5Y 8/1) to very pale orange (10YR 8/2) very fine grained to cryptocrystalline, very weakly vuggy, micritic wackestone. 30% Yellowish gray (5Y 8/1) to very pale orange (10YR 8/2) coarse to medium grained moderately hard, fossiliferous, occasionally micritic grainstone to packstone. Forams common.
2230 -2240	10	LIMESTONE AND DOLOMITIC LIMESTONE – Limestone 70%; 60% Yellowish gray (5Y 8/1) dominantly very fine grained to medium grained, well sorted, moderately soft packstone. 10% Pale yellowish brown (10YR 6/2) cryptocrystalline, hard calcareous mudstone. Dolomite 30% dark yellowish brown (10YR 4/2) microcrystalline, very hard, slightly calcareous. Trace forams.
2240-2270	30	LIMESTONE – 100%; Yellowish gray (5Y 8/1) fine to medium grained, very well indurated, hard, fossiliferous packstone. Trace Dolomitic Limestone and forams.

Depth (feet bpl)	Thickness (feet)	Sample Geologic Description
2270-2275	5	DOLOMITE AND LIMESTONE – Dolomite 80% pale yellowish brown (10YR 6/2) very fine grained, very hard, weakly vuggy. Limestone 20% very coarse to fine grained, hard, fossiliferous, slightly Dolomitic packstone.
2275-2285	10	CORE #8
2285-2290	5	DOLOMITE – 100% Dark yellowish brown (10YR 4/2) to olive black (5Y 2/1) medium grained to cryptocrystalline, very hard.
2290-2300	10	DOLOMITE AND LIMESTONE – Dolomite 60%, dark yellowish brown (10YR 4/2) medium grained to cryptocrystalline, very hard. Limestone 40%, pale yellowish brown (10YR 6/2) medium grained, soft grainstone. Trace Dolomitic Limestone.
2300-2310	10	LIMESTONE – 100% Pale yellowish brown (10YR 6/2) medium to fine grained, moderately soft, fossiliferous, partly slightly Dolomitic packstone. Trace forams.
2310-2320	10	LIMESTONE, DOLOMITIC LIMESTONE AND DOLOMITE – Limestone 70%, pale yellowish brown (10YR 6/2) medium to fine grained, moderately soft, fossiliferous, partly slightly Dolomitic packstone. Dolomitic Limestone 20%, pale yellowish brown (10YR 6/2) cryptocrystalline, moderately hard carbonate mudstone with fine grained dusky yellowish brown (10YR 2/2) euhedral dolomite crystals common. Dolomite 10%, dark yellowish brown (10YR 4/2) to dark yellowish brown (10YR 4/2) medium to fine grained, moderately hard.
2320-2330	10	DOLOMITIC LIMESTONE AND LIMESTONE – Dolomitic Limestone 80%, pale yellowish brown (10YR 6/2) cryptocrystalline hard, weakly sparry carbonate mudstone with medium to fine grained euhedral and anhedral dolomite crystals. Limestone 20%, very pale orange (10YR 8/2) very fine grained to cryptocrystalline, moderately soft to very soft carbonate mudstone to marl; marl component very slightly dolomitic.

Depth (feet bpi)	Thickness (feet)	Sample Geologic Description
2330-2390	60	LIMESTONE – 100%; 80%-100% Pale yellowish brown (10YR 6/2) coarse to medium grained, moderately hard, well indurated, fossiliferous dominantly grainstone to packstone. 20% Light olive gray (5Y 6/1) coarse to medium grained, moderately hard, well-indurated fossiliferous grainstone at 2370.
2390-2420	30	LIMESTONE AND DOLOMITE – Limestone 60%-80%, pale yellowish brown (10YR 6/2) coarse to medium grained moderately hard, well indurated fossiliferous, partly Dolomitic dominantly grainstone to packstone; percentage increases with depth. Dolomite 40%-20%, moderate yellowish brown (10YR 5/4) fine grained, hard, sucrosic, percentage decreases with depth.
2420-2430	10	LIMY DOLOMITE, DOLOMITIC LIMESTONE AND LIMESTONE – Limy Dolomite 60%, grayish orange (10YR 7/4) medium to fine grained, hard with very pale orange (10YR 8/2) carbonate mudstone. Dolomitic Limestone 30%, pale yellowish brown (10YR 6/2) cryptocrystalline, hard, weakly sparry carbonate mudstone with medium to fine grained euhedral and anhedral Dolomite crystals. Limestone 10%, pale yellowish brown (10YR 6/2) coarse to medium grained, moderately hard, well indurated, fossiliferous dominantly grainstone to packstone.
2430-2445	15	LIMESTONE AND DOLOMITE – Limestone 70%; 80% very pale orange (10YR 8/2) coarse to medium grained, moderately hard, fossiliferous, packstone. 20% Yellowish gray (5Y 8/1) very soft fossiliferous wackestone. Matrix consists of carbonate marl. Dolomite 30%, grayish orange (10YR 7/4) medium grained, hard calcareous.
2445-2458	13	CORE #9
2458-2470	12	LIMESTONE AND DOLOMITE – Limestone 70%, very pale orange (10YR 8/2) coarse to fine grained, moderately hard, weakly Dolomitic in part, fossiliferous packstone with trace molds. Dolomite 30%, moderate yellowish brown (10YR 5/4) medium grained, hard.

Depth (feet bpl)	Thickness (feet)	Sample Geologic Description
2470-2490	20	LIMESTONE – 100% Very pale orange (10YR 8/2) coarse to fine grained, moderately hard, partly weakly Dolomitic, fossiliferous packstone with trace molds.
2490-2500	10	LIMESTONE AND LIMY DOLOMITE – Limestone 70%, very pale orange (10YR 8/4) dominantly fine to coarse grained, moderately hard, fossiliferous packstone. Limy Dolomite 30% grayish orange (10 YR 7/4) to pale yellowish brown (10YR 6/2) medium to fine grained, hard to moderately hard with very pale orange (10YR 8/2) carbonate mudstone matrix. Trace to few tests.
2500-2510	10	DOLOMITE AND LIMESTONE – Dolomite 60%, moderate yellowish brown (10YR 5/4) to dark yellowish brown (10YR 4/2) medium grained, hard, sucrosic with few distinct mottles. Limestone 40%, Pale orange (10YR 8/2) medium to fine grained, very well indurated, moderately hard to hard packstone.
2510-2519	9	LIMESTONE AND DOLOMITIC LIMESTONE – Limestone 80%, very pale orange (10YR 8/2) dominantly medium to fine grained with minor amount of coarse grained, well sorted, very well indurated hard packstone with few sparry inclusions. Dolomite 20%, moderate yellowish brown (10YR 5/4) medium to fine grained, hard, sucrosic.
2519-2531	12	CORE #10
2531-2550	19	LIMESTONE – 100% Very pale orange (10YR 8/2) medium to fine grained, very well indurated, hard slightly Dolomitic packstone.
2550-2570	20	DOLOMITIC LIMESTONE AND DOLOMITE – Dolomitic Limestone 80%-90%, pale yellowish brown (10YR 6/2) coarse to medium grained, very well indurated, hard, with fine to cryptocrystalline dark yellowish brown (10YR 4/2) Dolomite. Dolomite 20%-10%, moderate yellowish brown (10YR 5/4) medium to fine grained, hard. Trace forams and test.

Depth (feet bpl)	Thickness (feet)	Sample Geologic Description
2570-2600	30	DOLOMITIC LIMESTONE – 100%, Grayish orange (10YR 7/4) medium to very fine grained, very well indurated, hard to moderately hard pelloidal fossiliferous, packstone slightly to highly Dolomitic with moderate yellowish brown (10YR 5/4) medium grained to cryptocrystalline Dolomite and few tests and forams.
2600 -2630	30	LIMESTONE – 100% Very pale orange (10YR 8/2) coarse to fine grained, moderately hard packstone, very well indurated and hard at 2620. Few forams and trace Dolomitic Limestone. Trace Dolomite at 2610.
2630-2650	20	DOLOMITIC LIMESTONE AND DOLOMITE – Dolomitic Limestone 90%-70%, very pale orange (10YR 8/2) medium to fine grained, hard packstone slightly to moderately dolomitized, with medium to fine grained moderate yellowish brown (10YR 5/4) euhedral dolomite crystals. Dolomite 10%, dark yellowish brown (10YR 4/2) medium to fine grained, moderately hard to very hard, occasionally slightly calcareous.
2650-2735	85	LIMESTONE – Limestone 100%, very pale orange (10YR 8/2) medium to fine grained, well indurated, moderately hard, fossiliferous, occasionally slightly Dolomitic packstone.
2735-2745	10	Core #11
2745-2750	5	LIMESTONE – Limestone 100%; 60% very pale orange (10YR 8/2) dominantly fine to medium grained, very well indurated, moderately hard, fossiliferous, occasionally micritic, rarely slightly Dolomitic wackestone. 30% Light olive gray (5YR 6/1) to pale yellowish brown (10YR 6/2) medium grained hard fossiferous wackestone. 10% Light olive gray (5Y 6/1) coarse to fine grained, hard, fossiliferous packstone.
2750-2760	10	LIMESTONE – 100%; 80% Very pale orange (10YR 8/2) fine to medium grained, well indurated moderately hard packstone. 20% Light olive gray (5Y 6/1) fine to medium grained, hard, slightly fossiliferous wackestone. Trace forams.

Depth (feet bpl)	Thickness (feet)	Sample Geologic Description
2760-2770	10	LIMESTONE – 100%, Medium gray (N5) to medium light gray (N6) dominantly very fine to medium grained, very well indurated, very hard, fossiliferous wackestone. Trace very pale orange (10YR 8/2) Dolomitic Limestone.
2770-2780	10	LIMESTONE – 100%; 70% Medium gray (N5) to light gray (N6) medium to very coarse grained, very well indurated, very hard, fossiliferous wackestone. 30% very pale orange (10YR 8/2) medium to fine grained, very well indurated, moderately hard to hard, fossiliferous grainstone/packstone.
2780-2790	10	LIMESTONE – 60% Very pale orange (10YR 8/2) medium to fine grained, very well indurated, moderately hard to hard, fossiliferous grainstone/packstone. 40% pale yellowish brown (10YR 6/2) fine grained, very well indurated, hard, micritic fossilifeous wackestone with trace tests.
2790-2802	12	CORE # 12
2802-2810	8	LIMESTONE – 100% Very pale orange (10YR 8/2) to pale yellowish brown (10YR 6/2) fine grained, moderately soft, fossilifeous packstone with few forams and trace grayish blue- green (5BG 5/2) firm plastic clay.
2810-2820	10	LIMESTONE – 100% Very pale orange (10YR 8/2) medium light gray (N6) very coarse to medium grained, very well indurated, moderately hard to hard packstone.
2820-2830	10	LIMESTONE – 100%; 80% Very pale orange (10YR 8/2) pale yellowish brown (10YR 6/2) medium to fine grained, well indurated, moderately hard packstone. 20% very pale orange (10YR 8/2) cryptocrystalline, hard carbonate mudstone. Trace Dolomite, moderate yellowish brown (10YR 5/4) fine grained, moderately hard.
2830-2840	10	LIMESTONE – 100% Very pale orange (10YR 8/2) medium grained, moderately hard packstone.

Depth (feet bpl)	Thickness (feet)	Sample Geologic Description
2840-2860	20	LIMESTONE – 100%; 60% Very pale orange (10YR 8/2) medium to fine grained, soft to moderately hard, partly sparry packstone. 40% Very pale orange (10YR 8/2) cryptocrystalline moderately hard, weakly vuggy carbonate mudstone/ boundstone with few very coarse grained fossil casts and molds.
2860-3000	140	LIMESTONE – 100% Very pale orange (10YR 8/2) to moderate yellowish gray (5YR 8/1) at 2940, coarse to fine grained, well indurated, moderately soft to moderately hard packstone/grainstone. Trace carbonate mudstone and tests at 2860 feet, trace carbonate mudstone at 2900 and 2960.
3000-3020	20	LIMESTONE – 100% Yellowish gray (5Y 8/1) to very pale orange (10YR 8/2) medium to fine grained, soft to moderately hard packstone.
3020-3030	10	LIMESTONE AND DOLOMITE – Limestone 70%, yellowish gray (5Y 8/1) to very pale orange (10YR 8/2) medium to fine grained, moderately hard packstone. Dolomite 30%, grayish orange (10YR 7/4) medium grained to cryptocrystalline, hard to very hard, occasionally sucrosic.
3030-3040	10	DOLOMITIE – 100%; 60% Pale yellowish brown (10YR 6/2) cryptocrystalline, very hard. 30% Dark gray (N3) microcrystalline to cryptocrystalline, very hard. 10% Olive gray (5Y 4/1) medium grained, hard, sucrosic.
3040-3070	30	DOLOMITE AND LIMESTONE – Dolomite 80%; 50% Pale yellowish brown cryptocrystalline, very hard. 30% Light olive gray (5Y 6/1) medium to fine grained anhedral and subhedral crystals, hard. 20% Dark gray (N3) microcrystalline to cryptocrystalline, very hard. Trace coarse grained uhedral crystals. Limestone 20%, pale yellowish gray (5Y 9/1) fine grained, moderately soft, partly slightly Dolomitic (euhedral crystals) packstone, percentage decreases with depth.
3070-3080	10	DOLOMITE – 100%; 90% Olive gray (5Y 4/1) to light olive gray (5Y 6/1) medium to fine grained, euhedral and subhedral crystals, hard. 10% Pale yellowish brown (10YR 6/2) cryptocrystalline, hard.

Depth (feet bpl)	Thickness (feet)	Sample Geologic Description
3080-3110	30	DOLOMITE AND LIMESTONE – Dolomite 90% pale yellowish brown (10YR 6/2) to dark yellowish brown (10YR 4/2) dominantly microcrystalline to rarely medium grained, hard. Dark yellowish brown component weakly vuggy, vuggs lined with euhedral rhombs. Limestone 10% pale yellowish gray (5Y 9/1) fine grained, moderately soft, partly slightly Dolomitic (euhedral crystals) packstone.
3110-3120	10	DOLOMITE – 100% Pale yellowish brown (10YR 6/2) cryptocrystalline, very hard.
3120-3130	10	DOLOMITE AND LIMESTONE – Dolomite 90%; 80% Dark yellowish brown, (10YR 4/2) to pale yellowish brown (10YR 6/2) fine grained to cryptocrystalline hard. Pale yellowish brown commonly fractured and healed. 20% Pale yellowish brown (10YR 6/2) to very pale orange (10YR 6/2) Dolomite Breccia, angular to subrounded dominantly light colored Dolomite fragments, slightly calcareous. Limestone 10% pale yellowish gray (5Y 9/1) fine grained, moderately soft, partly slightly Dolomitic (euhedral crystals) packstone.
3130-3150	20	DOLOMITE – 100% Light olive gray (5Y 7/1) to pale yellowish brown (10YR 6/2) cryptocrystalline, hard to very hard. Light olive gray component exhibits occasional fully healed fractures. Pale yellowish brown component exhibits occasional vuggs lined with euhedral rhombs.
3150-3170	20	DOLOMITE – 100%; 70% Dark yellowish brown (10YR 4/2) to dusky yellowish brown (10YR 2/2) dominantly cryptocrystalline to medium grained, hard, sucrosic. 20% Very pale orange (10YR 8/2) cryptocrystalline, very hard. Trace Clay, grayish green (10G 4/2) very soft, glarconitic at 3160 feet. Limestone 10% very pale orange (10YR 8/2) medium grained, soft, pelloidal grainstone/packstone.
3170-3180	10	DOLOMITE – 100%; Pale yellowish brown (10YR 6/2) to moderate yellowish brown (10YR 5/4) microcrystalline to cryptocrystalline, very hard.

Depth (feet bpl)	Thickness (feet)	Sample Geologic Description
3180-3210	30	DOLOMITE AND LIMESTONE – Dolomite 90% dark yellowish brown (10YR 4/2) to cryptocrystalline, occasionally fine grained very hard, with occasional crystal lined vuggs and healed fractures. Limestone 10% yellowish gray (5Y 8/1) medium to very fine grained soft packstone.
3210-3220	10	DOLOMITE – 100%; 80% Pale yellowish brown (10YR 6/2) cryptocrystalline, very hard, with crystal filled fractures and vuggs common. 20% Dark yellowish brown (10YR 4/2) medium grained to cryptocrystalline, very hard.
3220-3270	50	DOLOMITE – 100% Dark yellowish brown (10YR 4/2) to pale yellowish brown (10YR 6/2) cryptocrystalline to rarely medium grained, hard, sucrosic. Trace Limestone, very pale orange (10 YR 8/2) fine grained, moderately soft packstone.
3270-3300	30	DOLOMITE – 100%; 50% Light olive gray (5Y 6/1) cryptocrystalline, hard vuggy and fractured, vuggs and fractures healed or lined with very fine Dolomite crystals to 3300. 50% Dark yellowish brown (10 YR 4/2) very fine to medium grained, hard, sucrosic, weakly vuggy,
3300-3010	10	DOLOMITE – 100%; 60% Pale yellowish brown (10YR 6/2) medium grained to cryptocrystalline, hard, fossiliferous. 40% Dark yellowish brown (10 YR 4/2) very fine grained, hard, partly vuggy.
3310-3320	10	DOLOMITE – 100%; 50% Pale yellowish brown (10YR 6/2) cryptocrystalline, hard, partly fossiliferous. 40% Dark yellowish brown (10YR 4/2) fine grained to cryptocrystalline, hard.
3320-3330	10	DOLOMITE AND DOLOMITE BRECCIA – Dolomite 80%, Pale yellowish brown (10YR 6/2) cryptocrystalline, hard, sucrosic, vuggy in part. 20% Pale yellowish brown (10YR 6/2) coarse to medium grained, subangular, very well indurated, hard.

Depth (feet bpl)	Thickness (feet)	Sample Geologic Description
3330-3360	30	DOLOMITE AND LIMESTONE – Dolomite 90%; 80% olive black (5Y 2/1) to yellowish brown (10YR 5/2) cryptocrystalline, hard. 20% olive gray (5Y 4/1) fine grained, hard. Limestone 10% very pale orange (10YR 8/2) fine grained, moderately soft wackestone.
3360-3400	20	DOLOMITE - 100% Olive gray (5Y 4/1) to dark yellowish brown (10YR 4/2) cryptocrystalline, hard.

Monitor Well

.

Depth (feet)	Thickness (feet)	Sample Geologic Description
0-20	20	SANDY LIMESTONE - 100% Grayish orange (10YR 7/4) to pale yellowish brown (10YR 6/2) medium to fine grained, moderately soft packstone with fine to medium grained colorless subangular quartz sand.
20-70	50	SANDY LIMESTONE AND LIMY SANDSTONE – Sandy Limestone 70%, yellowish gray (5Y 8/1) fine grained to cryptocrystalline, hard occasionally sparry wackestone/packstone with some shell fragments and abundant colorless fine to medium grained subangular quartz. Limy Sandstone 30%, yellowish gray (5Y 8/1) fine to medium grained moderately hard subangular quartz with calcite cement and trace medium grained phosphorite.
70-90	20	LIMESTONE - 100% Very pale orange (10YR 8/2) dominantly cryptocrystalline to medium grained, hard, partly fossiliferous carbonate mudstone to packstone with colorless medium to very fine grained subrounded quartz sand, neomorphic calcite and coral tests at 90.
90-100	10	SANDY LIMESTONE - 100%; 80% Pale yellowish brown (10YR 6/2) medium to coarse grained, hard, crystalline carbonate with shell fragments and colorless very fine to medium grained subangular to angular quartz sand. 20% Grayish orange (10YR 7/4) medium to fine grained, sparry fossiliferous packstone with colorless medium to very fine grained subrounded quartz sand.
100-150	50	SANDY LIMESTONE AND LIMESTONE - Sandy Limestone 80%, yellowish gray (5Y 8/1) to pale yellowish brown (10YR 6/2) medium grained, hard packstone with abundant colorless fine grained subangular quartz sand, trace phosphorite, forams and tests. Limestone 20%, yellowish gray (5Y 8/1) sparry carbonate mudstone to grainstone.

	Depth (feet)	Thickness (feet)	Sample Geologic Description
_	150-160	10	SANDY LIMESTONE, LIMESTONE, AND CLAY - Sandy Limestone 60%, yellowish gray (5Y 8/1) to pale yellowish brown (10YR 6/2) medium grained, hard packstone with abundant colorless fine grained subangular quartz sand, trace phosphorite, forams and tests. Limestone 20%, yellowish gray (5Y 8/1) medium grained to cryptocrystalline, moderately hard to soft, partly fossiliferous packstone to carbonate mudstone. Clay 20%, yellowish gray (5Y 8/1) to light olive gray (5Y 6/1) very soft, nonplastic, calcarious.
	160-180	20	SANDY CLAY AND LIMESTONE - Sandy Clay 70%, light olive (5Y 5/2) soft, low plasticity, calcarious with medium to very fine grained subrounded quartz sand and trace phosphorite. Limestone 30%, very light gray, (N8) moderately hard, cryptocrystalline carbonate mudstone.
	180-200	20	SANDY CLAY AND LIMESTONE - Sandy Clay 80%, Dark greenish gray (5GY 5/1) soft, slightly phosphatic, plastic, noncalcareous with colorless very fine to medium grained subangular quartz sand. Limestone 20%, yellowish gray (5Y 8/1) microcrystalline to cryptocrystalline moderately hard carbonate mudstone.
	200-210	10	LIMESTONE AND CLAY – Limestone 60%, yellowish gray (5Y 8/1) to light olive gray (5Y 8/1) microcrystalline to cryptocrystalline, moderately hard carbonate mudstone with tests. Clay 40%, dark greenish gray (5GY 5/1) soft, slightly phosphatic, plastic, noncalcareous with fine to coarse quartz sand.
	210-240	30	SANDY CLAY - 100% Dark greenish gray (5GY 4/1) very soft, plastic phosphatic with very fine to fine-grained clear subangular quartz sand and trace limestone.
	240-280	40	SANDY CLAY AND LIMESTONE - Sandy Clay 80%, dark greenish gray (5GY 4/1) very soft, nonplastic, phosphatic with very fine to fine grained clear subangular quartz sand and trace Limestone, plastic below 260. Limestone 20%, grayish orange (10YR 7/4) medium to coarse grained sparry, moderately soft phosphatic packstone.

·

	epth eet)	Thickness (feet)	Sample Geologic Description
280	-450	170	SANDY CLAY - Sandy Clay 100% dark greenish gray (5GY 4/1) soft, plastic, calcareous with very fine to fine grained subangular quartz sand and trace fine grained phosphorite. Trace very pale orange (10YR 8/2) to light olive gray (5Y 6/1) sparry, fossiliferous packstone.
450	-480	30	SANDY CLAY AND SANDSTONE - Sandy Clay 70%-60%, dark greenish gray (5GY 4/1) soft, plastic, calcareous with very fine to fine grained subangular quartz sand and trace fine grained phosphorite. Sandstone 30%-40%, light olive gray (5Y 6/1) to greenish gray 5GY 4/1) very fine to fine grained, argillaceous, slightly phosphatic, moderately cemented with calcite. Trace white carbonate mudstone at 480.
480	-490	10	SANDY CLAY AND SANDY CLAYEY LIMESTONE - Sandy Clay 70%, dark greenish gray (5GY 4/1) very soft, plastic, calcareous with fine to very fine grained colorless subangular quartz sand and trace fine grained phosphorite. Sandy Clayey Limestone 30%, yellowish gray (5Y 7/2) fine grained to cryptocrystalline moderately hard, slightly fossiliferous, packstone with fine grained quartz sand and clay.
500-	-510	10	SANDY CLAY AND CLAYEY SANDSTONE – Sandy Clay 70%, dark greenish gray (5GY 4/1) very soft, plastic, calcareous with fine to very fine grained colorless subangular quartz sand and trace fine grained phosphorite. Clayey Sandstone 20%, greenish gray (5GY 6/1) fine to very fine grained, soft, very poorly cemented. Sandy Clayey Limestone 10%, yellowish gray (5Y 7/2) fine grained to cryptocrystalline moderately hard, slightly fossiliferous, packstone with fine grained quartz sand and clay.
510-	-530	20	SANDY CLAY AND CLAYEY SANDSTONE – Sandy Clay 60%, greenish gray (5GY 6/1) very soft, plastic with very fine grained quartz sand and trace fine grained phosphorite. Clayey Sandstone, 40%, light olive gray (5Y 7/1) very fine grained general unconsolidated with abundant clay.
530-	540	10	CLAYEY LIMESTONE – 100% Light greenish gray (5GY 8/1) medium to fine grained, soft to moderately soft clayey packstone with some fine grained quartz sand, trace fine grained phosphorite and occasional casts.

Depth (feet)	Thickness (feet)	Sample Geologic Description
540-560	20	SANDY CLAY AND CLAYEY SANDSTONE – Sandy Clay 70%, greenish gray (5GY 6/1) very soft, plastic with very fine grained quartz sand and trace fine grained phosphorite. Clayey Sandstone 30%, pale olive (10Y 6/2) very fine grained quartz, poorly cemented with trace fine grained phosphorite.
560-580	20	CLAYEY LIMESTONE AND CLAY – Clayey Limestone 60%, yellowish gray (5Y 7/2) to yellowish gray (5Y 8/1) medium to fine grained, soft, slightly phosphatic packstone. Clay 40%, greenish gray (5GY 6/1) moderately firm with some fine grained quartz sand.
580-620	40	CLAY LIMSTONE – 100% yellowish gray (5Y 7/2) medium to fine grained, very soft to soft, slightly phosphatic, occasionally sparry packstone. Trace casts at 600. Clay content increasing with depth.
620-650	. 30	CLAY AND LIMESTONE – Clay 80%-60%, yellowish gray (5Y 7/2) moderately soft, plastic, slightly phosphatic with very fine grained quartz sand. Limestone 20%-40%, yellowish gray (5Y 8/1) fine to very fine grained, moderately soft packstone, percentage increasing with depth.
650-730	80	CLAY AND LIMESTONE – Clay 80%-60%, yellowish gray (5Y 7/2) soft, nonplastic, very silty with trace phosphorite and very fine grained quartz sand. Limestone 20%-40%, yellowish gray (5Y 8/1) fine grained, moderately soft to hard sparry packstone.
730-750	20	LIMESTONE AND CLAY – Limestone 70%, yellowish gray (5Y 7/2) to white (N9) medium grained, unconsolidated to locally moderately indurated, locally micritic and sparry packstone/grainstone. Clay 30%, yellowish gray (5Y 7/2) plastic, slightly phosphatic with very fine grained quartz sand.
750-790	40	CLAY AND LIMESTONE – Clay 90%, yellowish gray (5Y 7/2) plastic, slightly phosphatic with very fine grained quartz sand. Limestone 10%, white (N9) to yellowish gray (5Y 7/2) fine grained to cryptocrystalline moderately, hard locally sparry packstone.
790-800	10	CLAY – 100% Grayish olive (10Y $4/2$) moderately firm, plastic with very fine grained quartz sand, trace phosphorite and white (N9) Limestone.

....

Depth (feet)	Thickness (feet)	Sample Geologic Description
800-880	80	LIMESTONE AND CLAY – Limestone 80%, yellowish gray (5Y 7/2) medium grained to cryptocrystalline, poorly to well indurated packstone. Clay 20%, yellowish gray (5Y 7/2) plastic, slightly phosphatic with very fine grained quartz sand.
880-930	50	CLAY AND LIMESTONE – Clay 90%-70%, yellowish gray (5Y 7/2) moderately soft, plastic. Limestone 10%-30%, yellowish gray (5Y 7/2) medium grained, moderately hard, moderately to well indurated packstone.
930-960	30	SANDY CLAY – 100% Dark greenish gray (5 GY 4/1) soft to moderately firm, low plasticity, with very fine grained quartz sand. Trace fine grained phosphorite and Limestone.
960-980	20	CLAY AND LIMESTONE – Clay 70%, dark greenish gray (5 GY 4/1) soft to moderately firm, low plasticity, with very fine grained quartz sand. Limestone 30%, yellowish gray (5Y 7/2) fine to medium grained, soft, poorly to moderately indurated clayey packstone.
990-1030	40	LIMESTONE AND CLAY - Limestone 80%, light olive gray (5Y 6/1) fine grained, moderately hard slightly Dolomitic wackestone with occasional casts. Clay 20%, greenish gray (5GY 6/1) moderately soft, plastic calcareous, slightly sandy.
1030-1050	20	LIMESTONE AND CLAY - Limestone 90%-80%, yellowish gray (5Y 8/1), medium grained, moderately hard, sparry packstone with occasional molds and minor amounts of yellowish gray (5Y 7/2) moderately hard, phosphatic grainstone. Clay 10%, light olive gray (5Y 5/2) nonplastic, slightly sandy, slightly phosphatic.
1050-1060	10	LIMESTONE – 100% Light olive gray (5Y 6/1) medium grained to cryptocrystalline, moderately hard, slightly phosphatic, sparry packstone to carbonate mudstone with occasional molds.
1060-1080	20	LIMESTONE AND SANDSTONE – Limestone 60%, yellowish gray (5Y 8/1) medium grained, moderately hard, well indurated, fossilifeous wackestone/packstone. Sandstone 40%, light olive gray (5Y 5/2) very fine grained, poorly cemented, well sorted, subangular quartz with trace phosphorite.

•

Depth (feet)	Thickness (feet)	Sample Geologic Description
1080-1120	40	LIMESTONE – 100% Yellowish gray (5Y 8/1) medium grained, moderately soft fossiliferous, poorly indurated packstone. Forams at 1090.
1120-1130	10	LIMESTONE – 100%; 60% grayish orange (10YR 7/4) fine grained soft wackestone. 40% Yellowish gray (5Y 8/1) medium grained, moderately soft fossiliferous, poorly indurated packstone.
1130-1160	30	LIMESTONE – 100%; 60%-70% Pale yellowish brown (10YR 6/2) medium to fine grained, soft, occasionally sparry wackestone. 40%-30% Yellowish gray (5Y 8/1) medium grained, moderately soft, fossiliferous, poorly indurated packstone. Trace forams.
1160-1190	30	LIMESTONE – 100%; 80% Very pale orange (10YR 8/2) medium grained, moderately soft to very soft packstone with tests and trace forams. 20% Pale yellowish brown (10YR 6/2) medium grained, soft to moderately hard wackestone.
1190-1300	110	LIMESTONE – 100%; 60% Moderate yellowish brown (10YR 5/4) to grayish orange (10YR 7/4) medium to fine grained, soft to moderately hard, occasionally sparry, micritic grainstone/packstone. 40% Yellowish gray (5YR 8/1) very fine grained, moderately hard to hard packstone to carbonate mudstone with trace Dolomitic Limestone. Forams 1190-1220.
1300-1370	70	LIMESTONE – 100% Grayish orange (10YR 7/2), to pale yellowish brown (10YR 6/2) medium to fine grained, moderately soft packstone/grainstone. Trace pale yellowish brown (10YR 6/2) hard occasionally vuggy carbonate mudstone with few to little forams. Abundant forams at 1350, tests at 1370, trace Dolomitic Limestone at 1310, 1370.
1370-1390	20	LIMESTONE – 100%; 70%-90% Very pale orange (10YR 8/2) fine grained, moderately soft packstone. 30%-10% Pale yellowish brown (10YR 6/2) hard, occasionally vuggy carbonate mudstone with few to little forams.
1390-1400	10	LIMESTONE – 100% Pale grayish orange (10YR 8/4) medium grained, moderately soft, occasionally very sparry packstone with forams.

Depth (feet)	Thickness (feet)	Sample Geologic Description
1400-1430	30	LIMESTONE – 100%; 60% Pale yellowish brown (10YR 6/2) medium to fine grained, moderately soft, partly micritic packstone. 40% Pale grayish orange (10YR 8/4) fine grained to microcrystalline, soft to moderately soft wackestone with trace forams.
1430-1450	20	LIMESTONE – 100%; 80% Moderate yellowish brown (10YR 5/4) coarse to fine grained, moderately soft grainstone/packstone. 10% Grayish orange (10YR 7/4) hard, vuggy, partly slightly dolomitic carbonate mudstone. 10% Yellowish gray (5Y 8/1) medium grained, soft packstone.
1450-1520	70	LIMESTONE – 100%; 70% Grayish orange (10YR 7/4) fine grained, moderately soft packstone. 20% Light olive gray (5Y 6/1) microcrystalline, moderately soft carbonate mudstone. 10% Pale yellowish brown (10YR 6/2) hard, medium grained to microcrystalline, partly slightly Dolomitic packstone with trace forams. Trace Dolomitic Limestone at 1510.
1520-1590	70	LIMESTONE – 100%; 60% Grayish orange (10YR 7/4) fine to medium grained, moderately soft packstone. 30% Very pale orange (10YR 8/2) fine grained, moderately hard packstone. 10% Light gray (N7) to medium light gray (N4) hard microcrystalline carbonate mudstone. Trace Dolomite at 1590.
1590-1600	10	LIMESTONE – 100%; 50% Very pale orange (10YR 8/2) medium grained to microcrystalline, moderately hard, occasionally sparry packstone. 30% Pale yellowish brown (10YR 6/2) fine grained to cryptocrystalline, moderately hard, occasionally dolomitic, occasionally vuggy wackestone. 10% Yellowish gray (5Y 8/1) fine grained to cryptocrystalline, hard partly vuggy packstone. Trace very light gray (N8) medium soft, carbonate mudstone.
1600-1630	30	LIMESTONE – 100%; 60% Very pale orange (10YR 8/2) fine grained, moderately soft to moderately hard, moderately to well indurated packstone. 30% Yellowish gray (5Y 8/1) medium grained moderately soft packstone. 10% Medium gray (N5) to light gray (N6) occasionally mottled, medium grained to microcrystalline, hard, micritic wackestone.

Depth (feet)	Thickness (feet)	Sample Geologic Description
1630-1650	20	LIMESTONE – 100%; 60% Very pale orange (10YR 8/2) fine grained, moderately soft to moderately hard, moderately to well indurated packstone. 30% Pale yellowish brown (10YR 6/2) medium grained, hard, well indurated packstone. 20% Yellowish gray (5Y 8/1) cryptocrystalline to medium grained, hard, micritic packstone. Trace dusky yellowish brown (10YR 2/2) Dolomite and Dolomitic Limestone.
1650-1670	20	LIMESTONE – 100%; 60% Very pale orange (10YR 8/2) fine to medium grained to cryptocrystalline, moderately hard packstone. 20% Pale yellowish brown (10YR 6/2) coarse to fine grained, moderately hard to hard, partly sparry packstone. 10% Light olive gray (5Y 6/1) medium to fine-grained very well indurated hard packstone. 10% Light gray (N7) cryptocrystalline hard carbonate mudstone.
1670-1800	130	LIMESTONE – 100%; 60% Very pale orange (10YR 8/2) to pale yellowish brown (10YR 6/2) medium to fine grained, moderately soft, partly vuggy packstone. Trace Dolomitic Limestone at 1710, 1730, and 1750 feet. Trace medium light gray (N6) carbonate mudstone below 1720. Few forams at 1770.
1800-1850	50	LIMESTONE – 100%; 70% Mainly very pale orange (10YR 8/2) to pale yellowish brown (10YR 6/2) medium grained, moderately hard, occasionally dolomitic packstone/wackestone. 30% Light olive gray (5Y 6/1) to medium light gray (N6) medium grained to cryptocrystalline, hard micritic packstone. Trace to few forams.

APPENDIX E

CORES

Core Logs

APPENDIX E CONCENTRATE DISPOSAL WELL #1 GEOLOGIC LOG

CORE #1

Depth	
Debtii	
(feet)	Semple Coolegie Description
(ieel)	Sample Geologic Description

.

1700 - 1715 No Recovery

APPENDIX E CONCENTRATE DISPOSAL WELL #1

GEOLOGIC LOG

Depth (feet)	Sample Geologic Description
1780 – 1780.6	LIMESTONE (100%), very pale orange (10YR 8/2), moderately well indurated, generally massive, fine to medium grained, moderately soft fossilifeous packstone. Irregular lower contact.
1780.6 – 1780.8	LIMESTONE (100%), very pale orange (10YR 8/2) to pale yellowish brown (10YR 6/2), moderately well indurated, horizontally laminated, medium to fine grained, moderately soft, moderately to weakly vuggy with vugs up to 1mm most less than 1mm, packstone. Irregular lower contact.
1780.8 – 1781.7	LIMESTONE (100%), grayish orange (10YR 7/4), moderately well indurated, massive fine to coarse grained, fossilifeous moderately soft packstone.
1781.7 1781.8	LIMESTONE (100%), medium light gray (N6), well indurated, massive microcrystalline to cryptocrystalline, hard, vuggy with vugs to 5mm but generally 1mm carbonate mudstone. Sharp irregular lower contact.
1781.8 – 1783.3	LIMESTONE (100%), very pale orange (10YR $8/2$), moderately well indurated, generally massive with locally faint bedding features exhibited, medium to fine grained moderately soft, fossilifeous, locally vuggy (1782.0 - 1782.1) (1782.9 - 1783.1) packstone with medium light gray (N6), well indurated, microcrystalline to cryptocrystalline hard lens at 1782.8. Sharp horizontal lower contact.

APPENDIX E CONCENTRATE DISPOSAL WELL #1

GEOLOGIC LOG

CORE # 2

Depth	
(feet)	Sample Geologic Description
1783.3 - 1783.5	LIMESTONE (100%), medium light gray (N6), poorly indurated, massive fine to very fine grained soft carbonate mudstone. Irregular lower contact.
1783.5 1784.0	LIMESTONE (100%), grayish orange (10YR 7/4), moderately well indurated, massive, fine to coarse grained, moderately soft, fossilifeous packstone with few coarse grained fragments and fossils throughout section. Irregular lower contact.
1784.0 – 1784.2	LIMESTONE (100%), light olive gray (5Y 6/1,) well indurated, massive, microcrystalline to cryptocrystalline, hard, vuggy, with vugs to 5mm but generally 1 to 2 mm carbonate mudstone. Sharp horizontal lower contact.
1784.2 1786.7	LIMESTONE (100%), very pale orange (10YR 8/2), moderately well indurated, generally massive with faint bedding features exhibited by slight color variations and weak vugginess in lower .2' of interval, dominantly fine to medium grained with many coarse grained particles throughout section, moderately soft, locally weakly vuggy with vugs up to 4mm at 1786.1. Irregular lower contact.
1786.7– 1787.0	LIMESTONE (100%), medium gray (N5), well indurated, generally massive with faint bedding features exhibited by variations in vugg diameters, fine grained to cryptocrystalline moderately hard packstone with few coarse-grained fossils and fragments throughout section, moderately vuggy with vugs generally greater than 1mm and occasionally 2mm to a maximum diameter of 4mm. Sharp horizontal lower contact.

•

APPENDIX E CONCENTRATE DISPOSAL WELL #1

GEOLOGIC LOG

Depth (feet)	Sample Geologic Description
1787.0 – 1789.3	LIMESTONE (100%), very pale orange (10YR 8/2) to grayish orange (10YR 7/4), moderately well indurated, generally massive with faint bedding features exhibited by variations in grain size, grain sorting and weakly vuggy intervals. Dominantly fine to medium grained with intervals from 1787.6 to 1788.1 coarse grained to fine grained, moderately soft fossilifeous packstone, moderately vuggy from 1787 to 1787.6 with vuggs generally 1mm to 2mm in diameter.

GEOLOGIC LOG

CORE # 3

Depth (feet)	Sample Geologic Description
1830 - 1833.4	LIMESTONE (100%), grayish orange (10YR 7/4), in upper portion of unit grading to very pale orange (10 YR 8/2), at base of unit, moderately indurated massive fine to coarse grained, fossilifeous moderately soft to soft with hardness decreasing with depth, weakly to locally moderately vuggy with large vuggs. (5 mm to 15 mm) from 1832 to 1832.5. Sharp horizontal lower contact.
1833.4 - 1833.8	LIMESTONE (100%), very light gray (N8) to yellowish gray (5Y 8/1), well indurated massive medium grained to dominantly cryptocrystalline with few pale yellowish brown (10YR 6/2), carbonate mudstone lenses up to 10mm thick, hard vuggy fossilifeous wackestone. Gradational lower contact.
1833.8 – 1835.4	LIMESTONE (100%), yellowish gray (5Y 8/1) to very pale orange (10YR 8/2), moderately indurated massive fine to coarse grained soft fossilifeous packstone/wackestone. Sharp horizontal lower contact.
1835.4 - 1835.8	LIMESTONE (100%), light gray (N7) to very light gray (N8), massive cryptocrystalline hard vuggy carbonate mudstone with many very pale orange (10YR 8/2) medium to fine grained packstone lenses. Irregular lower contact.
1835.8 – 1837.9	LIMESTONE (100%), yellowish gray (10Y 8/1), moderately indurated massive very coarse to fine grained soft fossilifeous wackestone. Sharp horizontal lower contact.
1837.9 - 1838.6	LIMESTONE (100%), medium gray (N6), well indurated generally massive microcrystalline hard carbonate mudstone. Yellowish gray (5Y 8/1) moderately hard cryptocrystalline carbonate mudstone lenses common to dominant in lower half of unit. Irregular lower contact.
1838.6 - 1840.9	LIMESTONE (100%) yellowish gray (5Y 8/1), well indurated medium grained to cryptocrystalline moderately hard vuggy wackestone with trace pebble sized clasts and few pale yellowish brown (10YR 6/2) very soft carbonate mudstone lenses

.

GEOLOGIC LOG

Depth (feet)	Sample Geologic Description
1880 – 1881.4	LIMESTONE (100%), very pale orange (10YR 8/2), moderately indurated, massive, very fine to coarse grained well sorted with grain size increasing with depth, soft fossiliferious wackestone grading with depth to packstone. Sharp horizontal lower contact.
1881.4 – 1881.7	LIMESTONE (100%), medium light gray (N6), microcrystalline to cryptocrystalline, hard, moderately vuggy with vuggs averaging 2mm to 4mm carbonate Mudstone. Sharp horizontal lower contact.
1831.7 – 1833.4	LIMESTONE (100%), very pale orange (10YR 8/2), well indurated, fine grained to cryptocrystalline, moderately hard to moderately soft with many vuggs from 1881.7 to 1882 and from 1882.9 to 1883.4. Unit dominantly carbonate mudstone grading to wackestone and back to carbonate mudstone with depth. Irregular horizontal lower contact.
1883.4 – 1883.6	LIMESTONE (100%), medium gray (N6), massive, very fine grained to cryptocrystalline hard weakly vuggy carbonate mudstone.
1883.6 – 1885.2	LIMESTONE (100%), light gray (N7) grading to very pale orange (10YR 8/2), with depth, fine grained grading to coarse-grained soft fossilifeous weakly vuggy wackestone.

GEOLOGIC LOG

Depth (feet)	Sample Geologic Description
1930 – 1931.4	LIMESTONE (100%), grayish orange (10YR 7/4), moderately indurated, massive medium to fine grain soft fossilifeous packstone. Irregular lower contact.
1831 – 1931.4	LIMESTONE (100%), yellowish gray (5Y 8/1), well indurated, faint bedding exhibited by slight variations in color, fine grained to microcrystalline, moderately soft calcareous mudstone. Irregular lower contact.
1931.4 – 1932.2	LIMESTONE (100%), very pale orange (10YR 8/2), very well indurated, massive, coarse grained to dominantly cryptocrystalline, hard, fossilifeous, highly vuggy with vuggs averaging 1mm in diameter, packstone.

GEOLOGIC LOG

Depth (feet)	Sample Geologic Description
1980.0 1981.5	LIMESTONE (100%), pale yellowish gray (5Y 9/1), moderately indurated, massive, medium grained, soft, fossilifeous wackestone. Gradational lower contact.
1981.5 1981.7	LIMESTONE (100%), light gray (N7), well indurated, massive, medium grained, moderately soft, fossilifeous wackestone with pale yellowish gray (5Y 9/1), wackestone inclusions common. Sharp horizontal lower contact.
1981.7 – 1982.0	LIMESTONE (100%), pale yellowish gray (5Y 9/1), moderately indurated, massive, medium grained to cryptocrystalline, soft, fossilifeous, moderately vuggy carbonate mudstone.
1982.0 - 1983.0	LIMESTONE (100%), yellowish gray (5Y 8/1), moderately indurated, massive, very coarse to medium grained, soft, highly fossilifeous, weakly to moderately vuggy packstone.

GEOLOGIC LOG

Depth (feet)	Sample Geologic Description
2200 - 2204	No Recovery.
2204.2 - 2204.6	LIMESTONE (100%), medium dark gray (N5) massive, very fine grained to microcrystalling, hard carbonate mudstone. Indistinct lower contact.
2204.2 – 2204.6	LIMESTONE (100%), very pale orange (10YR 8/2) massive, well indurated coarse to medium grained, moderately soft, fossiliferous, moderately porous packstone with few forams. Sharp wavy horizontal lower contact.
2204.6 - 2204.9	LIMESTONE (100%), medium light gray (N6) massive, well indurated, moderately hard wackestone, gradational contact with lower unit.
2204.9 - 2206.7	LIMESTONE (100%), very pale orange (10YR 8/2) massive, well indurated, moderately soft, medium to fine grained, fossilifeous packstone with few forams. Irregular lower contact.
2206.7 – 2206.9	LIMESTONE 100%; 70%, pale yellowish brown (10YR 6/2) massive, fine to very fine grained, moderately hard, well indurated packstone. 30%, very light gray (N8) cryptocrystalline hard, weakly vuggy carbonate mudstone occurring as pebble sized up to 10mm to very coarse grained, subangular fragments. Fragments are moderately well sorted and decreasing in size with depth. Sharp horizontal lower contact.
2206.9 – 2207.9	LIMESTONE (100%), yellowish gray (5Y 8/1) generally massive, well indurated dominantly fine to medium grained, moderately soft, fossilifeous packstone/wackestone. Upper .1 foot of interval is moderately vuggy. Irregular lower contact.

GEOLOGIC LOG

CORE #7

Depth (feet)	Sample Geologic Description
2207.9 – 2209.9	DOLOMITE (100%), medium light gray (N6) in upper portion of interval grading to medium dark gray (N4) with depth. Generally massive, cryptocrystalline, very hard with yellowish gray (5Y 8/1) angular Dolomite fragments 1mm to 4mm across common. Upper .3 feet of section exhibiting moderate yellowish brown (10YR 5/4) cryptocrystalline, hard Dolomite lenses to 10mm with many medium sized yellowish gray (5Y 8/1) Dolomite fragments. Section is vuggy with elongated vuggs generally 1mm in diameter. Solution cavities present in upper .6 feet of segment oriented along vertical axis, 10- 20mm wide, vertical fracture apparent along solution cavities.

Lower .8 feet to .9 feet of segment exhibits solution cavities approximately 20mm to 30 mm in diameter lined with fine sized crystals. Lower contact gradational and laminated into Limestone in bottom .2 feet of section.

- 2209.2–2209.5 LIMESTONE (100%), very pale orange (10YR 8/2) medium to fine grained, moderately soft, well indurated packstone.
- 2209.5-2210.5 DOLOMITE (100%), dark yellowish brown (10YR 4/2) massive, fine grained to dominantly cryptocrystalline, very hard, weakly vuggy.

GEOLOGIC LOG

Depth (feet)	Sample Geologic Description
2275 – 2275.3	DOLOMITE – (100%) pale yellowish brown (10YR 6/2) massive, medium to fine grained, moderately hard, slightly calcareous. Gradational lower contact.
2275.3 – 2275.6	DOLOMITE – (100%) dark yellowish brown (10YR 4/2) massive, cryptocrystalline very hard with few pebbles sized dusky yellowish brown (10YR 2/2) inclusions through section. Sharp horizontal lower contact.
2275.6 – 2276.2	DOLOMITE – (100%) light olive gray (5Y 6/1) massive cryptocrystalline, very hard, weakly vuggy with vuggs generally 1mm to 2mm in diameter. Indistinct lower contact.
2276.2 – 2276.9	DOLOMITE – (100%) light olive gray (5Y $6/1$) to moderate yellowish brown (10YR $5/4$) massive medium grained to cryptocrystalline, very hard moderately vuggy. Irregular lower contact.
2276.9 – 2277.3	LIMESTONE (100%) very pale orange (10YR 8/2) massive, very fine-grained moderately soft packstone.
2277.3 – 2279.4	DOLOMITIC LIMESTONE – (100%) very pale orange (10YR 8/2) to pale yellowish brown (10YR 6/2) laminated with laminatious dominantly from less than 1mm to 10mm distinguished to amayimuyos exhibited by variation in color and dolomite content, cryptocrystalline moderately soft carbonate mudstone with fine to very fine grained euhedral dolomite crystals. Highly dolomitic between 2278.1 and 2278.2 with pebble sized limestone inclusion. Gradational lower contact through bottom .3 feet section.
2279.4 – 2280.9	DOLOMITE – (100%) dark yellowish brown (10YR 4/2) generally massive with weak bedding structures (fine laminations) exhibited by minor variation in color. Microcrystalline to cryptocrystalline, very hard, weakly to locally moderately vuggy with vuggs dominantly \approx 1mm in diameter to 5mm in diameter. Sharp horizontal lower contact.

GEOLOGIC LOG

Depth (feet)	Sample Geologic Description
2280.7 – 2281.1	DOLOMITIC LIMESTONE – (100%) yellowish gray (5Y 8/1) with fine light olive gray (5YR 6/1) dolomitic laminations less than 1mm thick common in upper .1 foot of section and decreasing with depth. Dominantly cryptocrystalline to very fine-grained moderately soft carbonate mudstone with few to common fine grained euhedral dolomite crystals. Gradational contact through lower .2 feet of section.
2281.1-2283.5	DOLOMITE – (100%) light olive gray (5YR 6/1) to dark yellowish brown (10YR 4/2) generally massive with occasional bedding features. Microcrystalline to cryptocrystalline hard to very hard. Section exhibits occasional bedding features distinguished by

- features. Microcrystalline to cryptocrystalline hard to very hard. Section exhibits occasional bedding features distinguished by variations in color and occurrence of vuggs at 2281. 8 to 2281.9 feet. Two high angle fully heald fractures located from 2281.9 to 2282.2 feet very thin slightly calcareous bed (10mm to 15mm) with fully healed horizontal fracture at 2282.2 to 2282.3 section is generally weakly vuggy with vuggs dominantly 1mm to 5mm indiameter moderately vuggy between 2282.3 to 2282.5. Lower .3 feet of section exhibits few vuggs 15 to 20mm in diameter and lined with fine grained dolomite crystals. Irregular lower contact.
- DOLOMITE (100%) dark gray (N3) to dark yellowish brown (10YR 4/2) massive, dark gray component is cryptocrystalline with dark yellowish brown component fine grained to cryptocrystalline and occurring as lenses from 5mm to 60mm thick. Section is very weakly vuggy in top of section with sparse vuggs approximately 1mm to 2mm in diameter grading to moderately vuggy with depth.

GEOLOGIC LOG

Depth	
(feet)	Sample Geologic Description

- 2445 2448.5 No Recovery.
- 2248.5 2451.9 LIMESTONE (100%), very pale orange (10YR 8/2) massive, coarse to fine-grained, well indurated, moderately soft, fossiliferous packstone with few grayish orange (10YR 7/4) moderately hard dolomitic limestone lenses up to 10mm thick scattered through section. Irregular lower contact.
- 2451.9-2452.1 LIMY DOLOMITE (100%) pale yellowish brown (10YR 6/2) to yellowish gray (5YR 8/1) massive fine grained to cryptocrystalline fossiliferous. Sharp horizontal lower contact.
- 2452.1 2453.8 DOLOMITE (100%) moderately yellowish brown (10YR 6/2) to pale yellowish brown (10YR 5/4) massive, microcrystalline, very hard. Top .3 feet of segment moderately fossiliferous and slightly calcareous. Section is weakly vuggy with vuggs generally less than 1mm to 2mm in diameter and rarely to 10mm in diameter. Gradational contact with through lower .4 feet of segment.
- 2453.8 2458 LIMESTONE (100%) yellowish gray (5Y 8/1) generally massive with slightly dolomitic laminations occasionally scattered throughout section. Dominantly very fine to medium grained. Moderately hard very well indurated weakly fossiliferous, very weakly vuggy packstone. Lower .3 feet of segment contains significant amount of white (N9) cryptocrystalline very soft chalky carbonate mudstone (marl).

GEOLOGIC LOG

	Depth (feet)	Sample Geologic Description
-	2519.0 - 2521.6	LIMESTONE - (100%), very pale orange (10YR 8/2) massive very well indurated moderately hard, dominantly fine to medium grained moderately vuggy packstone with few fossils to pebble size in top .5 feet of section. Vuggs generally 5mm in diameter to weakly vuggy below 2519.5 feet with vuggs generally less than 1mm in diameter, rarely to a maximum of 5mm in diameter. Indistinct lower contact.
	2521.6 – 2521.9	LIMESTONE - (100%), yellowish gray (5Y 8/1) massive, medium to coarse grained well indurated, moderately hard, weakly vuggy packstone with vuggs generally less than 1mm in diameter. Sharp horizontal lower contact.
	2521.9 – 2524.5	LIMESTONE - (100%), very pale orange (10YR 8/2) massive, dominantly fine to coarse grained, well indurated, moderately hard to hard, weakly vuggy fossiliferous packstone/wackestone with vuggs generally 1mm to 2mm in diameter. Gradational contact through lower .1 foot.
	2524.5 – 2525.5	LIMESTONE - (100%), yellowish gray (5Y 8/1) massive, well- indurated, medium grained moderately hard, fossiliferous, weakly vuggy packstone/wackestone with vuggs generally greater than 1mm in diameter. Gradational contact through lower .1 foot.
	2525.5 – 2529.7	LIMESTONE - (100%), very pale orange (10YR 8/2) massive, medium grained well to very well-indurated moderately soft to moderately hard weakly vuggy with vuggs generally 5mm to 10mm in diameter in upper .6 feet of segment to weakly vuggy with vuggs generally 1mm to 2mm in diameter weakly to moderately fossiliferous packstone.

GEOLOGIC LOG

CORE #11

Depth (feet)	Sample Geologic Description
2735 – 2739	No recovery.
2739.0 - 2740.0	LIMESTONE (100%), very pale orange (10YR 8/2) massive medium to fine grained very well indurated, moderately hard weakly fossiliferous packstone. Gradational contact through bottom .3 feet of section.
2740.0 - 2740.4	LIMESTONE (100%), yellowish gray (5Y 8/1) massive very well indurated moderately soft to moderately hard very fine-grained packstone/wackestone. Indistinct lower contact.
2740.4 – 2742.1	LIMESTONE (100%), yellowish gray (5Y 8/1) massive, fine to medium grained, very well indurated, moderately soft weakly fossiliferous packstone. Gradational contact through bottom .3 feet of section.
2742.1 – 2744.7	LIMESTONE (100%), light olive gray (5Y 6/1) to pale yellowish brown (10YR 6/2) massive cryptocrystalline, to medium grained very well indurated, very hard, very weakly vuggy carbonate mudstone grading to wackestone with depth. Pale yellowish brown component occurring as lenses 5mm to 15mm thick. Yellowish gray

(5Y 8/1) fine grained soft lens filling soution cavity at 2743 feet.

CONCENTRATE DISPOSAL WELL #1

GEOLOGIC LOG

CORE # 12

Depth (feet)	Sample Geologic Description
2790 - 2792.5	No recovery.
2792.5 – 2793.1	LIMESTONE (100%), dominantly yellowish gray (5Y 8/1) very fine grained, very well indurated, moderately soft packstone with lenses of very pale orange (10YR 8/2) medium grained, moderately soft packstone common. Lenses are up to 15mm thick in upper section, decreasing in thickness and occurrence with depth. Thin lamination of dark yellowish brown (10YR 4/2) cryptocrystalline carbonate mudstone at 2792.7 feet. Sharp horizontal lower contact.
2793.1 – 2793.6	LIMESTONE (100%), yellowish gray (5Y 8/1) to light gray (N8) massive, cryptocrystalline, very well indurated, very hard carbonate mudstone with vertical burrows approximately 5mm in diameter up to 90 mm long lined with anhedral and euhedral calcite crystals in upper .3 feet of segment. Irregular lower contact.
2793.6 – 2793.8	LIMESTONE (100%), very light gray (N8) massive, cryptocrystalline very well indurated very hard carbonate mudstone with lenses of and fractures fully healed with pale yellowish brown (10YR 6/2) very fine grained, very soft packstone and limestone breccia. Irregular lower contact.
2793.8 – 2794.2	LIMESTONE (100%), medium dark gray (N4) to dark gray (N3) massive cryptocrystalline, very well indurated, very hard micritic carbonate mudstone with few burrows generally 3mm in diameter to 10 mm in diameter. Burrows partially filled with yellowish gray (5Y 8/1) fine-grained soft wackestone. Irregular lower contact.
2794.2 – 2795.2	LIMESTONE (100%), yellowish gray (5Y 8/1) massive, fine to very coarse grained, moderately well sorted with grain size generally increasing with depth moderately soft to moderately hard moderately vuggy with vuggs less than 1mm to 2mm in diameter, packstone. Dark gray (N3) cryptocrystalline, hard lenses to 20mm thick and light olive gray (Y 6/1) very fine grained, very soft, with few fine grained anhedral and subhedral dolomite crystals. Gradation lower contact through lower .3 feet of section.

CONCENTRATE DISPOSAL WELL #1

GEOLOGIC LOG

CORE # 12

Depth (feet)	Sample Geologic Description
2795.2 – 2796.6	LIMESTONE (100%), medium light gray (5Y 8/1) to very pale orange (10YR 8/2) very fine to fine-grained very well indurated, moderately soft wackestone. Few dark gray (N3) cryptocrystalline, hard lenses at 2795.4 feet. Scour and fill structure at 2795.7 feet. Few shell fragments and fossils at 2796.0 feet. Fully healed horizontal fracture at 2796.4 feet.
2796.6 – 2796.8	LIMESTONE AND DOLOMITE – Limestone (60%), medium gray (N5) massive cryptocrystalline, very well indurated very hard moderately vuggy carbonate mudstone. Dolomite (40%), light gray (5Y 6/1) to yellowish gray (5Y 8/1) massive cryptocrystalline very hard. Indistinct lower contact.
2796.8 – 2797.0	LIMESTONE (100%), medium light gray (N6) to medium gray (N5) massive, fine grained, friable phosphatic wackestone. Indistinct lower contact.
2797.0 – 2797.6	LIMESTONE (100%), medium gray (N5) to very pale orange (10YR 8/2), massive, medium grained, very well indurated, moderately hard, vuggy wackestone with vuggs 1mm to 5mm in diameter. Gradational contact through lower .2 feet of section.
2796.6 - 2800.0	LIMESTONE (100%), very pale orange (10YR 8/2) massive, medium to fine grained, very well indurated, moderately soft packstone. Sharp horizontal lower contact.
2800.0 - 2801.1	LIMESTONE (100%), medium light gray (N6) to light gray (N7) generally massive, medium grained to cryptocrystalline, very well indurated, locally moderately vuggy packstone to carbonate mudstone. Gradational contact through lower .2 feet of section.

CONCENTRATE DISPOSAL WELL #1

GEOLOGIC LOG

CORE # 12

Depth (feet)	Sample Geologic Description
2801.1 – 2801.7	LIMESTONE (100%), yellowish gray (5Y 8/1) fine grained, very well indurated, hard, weakly vuggy with vuggs generally 1mm-5mm in diameter, trace 10mm diameter, wackestone grading to packstone with depth.

Core Analysis

RECEIVED MAY 4 1 2001

May 11, 2001 File Number 01-049

Youngquist Brothers, Inc. 15465 Pine Ridge Road Fort Myers, Florida 33908

Attention: Mr. Edward McCullers

Subject: Laboratory Testing, Rock Core Specimens, Cooper City Concentrate Disposal Injection Well IW-1

Gentlemen:

As requested, permeability, unconfined compression and specific gravity tests have been completed on twenty rock core samples provided for testing by your firm from the Cooper City Concentrate Disposal Injection Well IW-1. The permeability tests were performed in general accordance with ASTM Standard D 5084 "Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible-Wall Permeameter" using the constant-head method (Method A) and the falling-head with increasing tailwater level method (Method C). The unconfined compression test was performed in general accordance with ASTM Standard D 2938 "Unconfined General accordance with ASTM Standard D 854 "Specific Gravity of Soils".

Permeability Tests

The permeability test results are presented in Table 1. The vertical permeability tests were performed first on specimens maintained at the as-received diameter (except for three irregular shaped cores) and cut to lengths of 6.3 to 11.6 cm. After completing the vertical permeability tests, horizontal permeability test specimens were obtained by coring 3.2 to 5.0 cm diameter cylinders from the vertical specimens. The horizontal specimens were trimmed to lengths of 2.9 to 7.9 cm to provide flat, parallel ends. Since the vertical permeability test specimens, the final moisture contents of the vertical test specimens were not measured. The dry densities and degrees of saturation of the vertical permeability test specimens, therefore, were estimated using final moisture contents from the corresponding horizontal permeability test specimens.

The vertical permeability test specimens were air-dried, deaired under vacuum, and then saturated with deaired tap water from the bottom upward while still under vacuum. After testing, the vertical specimens were maintained submerged in water until cored for the horizontal specimens and retested for measurement of horizontal hydraulic conductivity. Each specimen was mounted in a triaxial-type permeameter and encased within a latex membrane. The specimens were confined using an average isotropic effective confining stress of 30 lb/in² and permeated with deaired tap water under a back-pressure of 70 or 160 lb/in². Satisfactory saturation was verified by a B-factor equal to or greater than 95 percent, or a B-factor that remained relatively constant for two consecutive increments of applied cell pressure. The inflow to and outflow from each specimen were monitored with time, and the hydraulic conductivity was calculated for each recorded flow increment. The tests were continued until steady-state flow conditions were obtained, as evidenced

by an outflow/inflow ratio between 0.75 and 1.25, and until stable values of hydraulic conductivity were measured.

The final degree of saturation was calculated upon completion of testing using the final dry mass, moisture content and volume, and the measured specific gravity. Although some of the calculated final degrees of saturation are low (i.e. less than 95%), the B-factors indicate satisfactory saturation. The calculated final degrees of saturation are potentially affected by occluded voids within the specimens, surface irregularities, and the use of final moisture contents for the vertical permeability specimens from the corresponding horizontal permeability specimens.

Specific Gravity Tests

The specific gravity of each sample was determined on a representative approximately 100 gram specimen ground to pass the U.S. Standard No. 40 sieve. The specific gravity measured on each sample is presented in Table 1.

Total Porosity

The total porosity, n, of each permeability test specimen was calculated using the measured dry density, γ_d , and measured specific gravity, G_s , from the equation: $n = 1 - [\gamma_d/(G_s)(\gamma_w)]$ where $\gamma_w = unit$ weight of water. The calculated total porosities are presented in Table 1.

Unconfined Compression Tests

Sufficient core length was provided to perform unconfined compression tests on only one of the samples. The specimen was cored to a diameter of 3.3 cm and trimmed to a length of 6.9 cm to provide a length to diameter ratio of approximately 2, and then capped with sulfur capping compound. The specimen was loaded at a constant rate of axial deformation of 0.013 cm/minute. The specimen failed in 4.9 minutes in accordance with ASTM Standard D 2938 criteria of between 2 and 15 minutes. The unconfined compressive strength and Young's modulus determined from the test are summarized in Table 2. The stress-strain curve is presented in Figure 1.

If you have any questions or require additional testing services, please contact us.

Very truly yours, ARDAMAN & ASSOCIATES, INC.

shankattu

Shawkat Ali, Ph.D., P.E. Project Engineer

Senior Project Engineer Florida Registration No. 31987

Table 1

PERMEABILITY TEST RESULTS COOPER CITY CONCENTRATE DISPOSAL INJECTION WELL IW-1

Core	Core Depth Interval	D-5084 Test	Test Specimen	G,	<u>, </u>	Initial (Condition	5		ਰ੍ਹ (lb/in ²)	us (Ib/in ²)	B Factor	Average Hydraulic	Fina	I Condition	\$	Hvdraulic
No.	(feet)	Method*	Orientation		Length (cm)	Diameter (cm)	₩ _c (%)	Y _d (lb/ft ³)	n	(lb/in⁴)	(lb/in²)	(%)	Gradient	W _c (%)	Y₄ (lb/ft ³)	S (%)	Conductivity k ₂₀ (cm/sec)
	2205.7 - 2206.2	0 U	Vertical Horizontal	2.72	8.24 7.20	9.58 5.02	22.9 22.1	101.5 101.2	0.40 0.40	30 30	70 70	80** 84**	2 3	24.4 [†] 24.4	101.5 101.2	99 98	2.7x10 ⁻⁴ 4.3x10 ⁻⁴
7	2207.2 - 2207.7	с с	Vertical Horizontal	2.72	10.54 7.19	9.65 5.01	22.8 22.6	104.4 103.7	0.39 0.39	30 30	70 70	93** 87**	2 3	22.8 † 22.8	104,4 103.7	99 97	2.8x10 ⁻⁴ 3.2x10 ⁻⁴
	2210.2 - 2210.5	A A	Vertical Horizontai	2.86	6.25 3.20	5.04 3.29	2.1 1.5	168.7 168.7	0.05 0.05	30 30	160 160	82** 74**	65 450	2.0 [†] 2.0	168.7 168.7	100 100	8.2x10 ⁻⁶ 2.0x10 ⁻¹⁰
	2276.2 - 2276.8	A A	Vertical Horizontal	2.86	11,60 7,63	10.10 5.02	3.4 3,3	161.0 161.4	0.10 0.10	30 30	160 160	95 97	74 89	3.5 † 3.5	161.0 161.4	93 95	1.7x10 ⁻⁹ 3.9x10 ⁻¹⁰
8	2277.3 - 2277.8	A A	Vertical Horizontal	2.76	10.28 7.86	10.03 5.03	9.4 10.1	133.0 134.5	0.23 0.22	30 30	160 160	95 100	24 26	10,1 [†] 10,1	133.0 134.5	95 100	5.5x10 ⁻⁷ 1.1x10 ⁻⁸
	2279.4 - 2279.8	A A	Vertical Horizontal	2.82	8.50 6.95	10.01 5.03	5.4 5.4	151.6 152.6	0.14 0.13	30 30	160 160	94** 100	88 30	5.4 [†] 5.4	151.6 152.6	95 100	1.0x10 ⁻⁷ 2.3x10 ⁻⁷
	2281.2 - 2281.8	A	Vertical	2.87	11.65	10.02	3.1	162.7	0.09	30	160	96	57	3.5	162.7	100	8.2x10 ⁻⁸
	2450.2 - 2450.5 (A)	с	Vertical	2.74	2.25	3.17	16.0	117.6	0.31	30	70	77**	8	16.2	117.6	98	9.9x10 ⁻⁵
	2450.2 - 2450.5 (B)	с	Vertical	2.74	2.65	3.24	13.6	121.5	0.29	30	70	81**	7	13.7	121.5	93	2.9x10 ⁻⁵
9	2452.8 - 2453.6	A	Vertical Horizontal	2.85	9.61 7.65	10.07 5.03	5.1 5.2	154.1 154.4	0.13 0.13	30 30	160 160	91** 92**	26 37	5.2 [†] 5.2	154.1 154.4	97 98	1.0x10 ⁻⁵ 1.4x10 ⁻⁵
B	2454.0 - 2454.4	A	Vertical Horizontal	2.74	7.27 7.76	9.97 5.03	8.9 9.0	134.5 134.8	0.21 0.21	30 30	160 160	87** 95	33 47	9.2 † 9.2	134.5 134.8	93 94	5.8x10 ⁻⁷ 8.9x10 ⁻⁷
	2456.0 - 2456.4	A	Vertical Horizontal	2.77	8.35 2.90	4.99 3.22	12.1 11.7	129.4 127.4	0.25 0.26	30 30	160 160	92** 93**	33 42	12.1 [†] 12.1	129.4 127.4	99 94	1.7x10 ⁻⁵ 1.3x10 ⁻⁵

Table 1 (Continued)

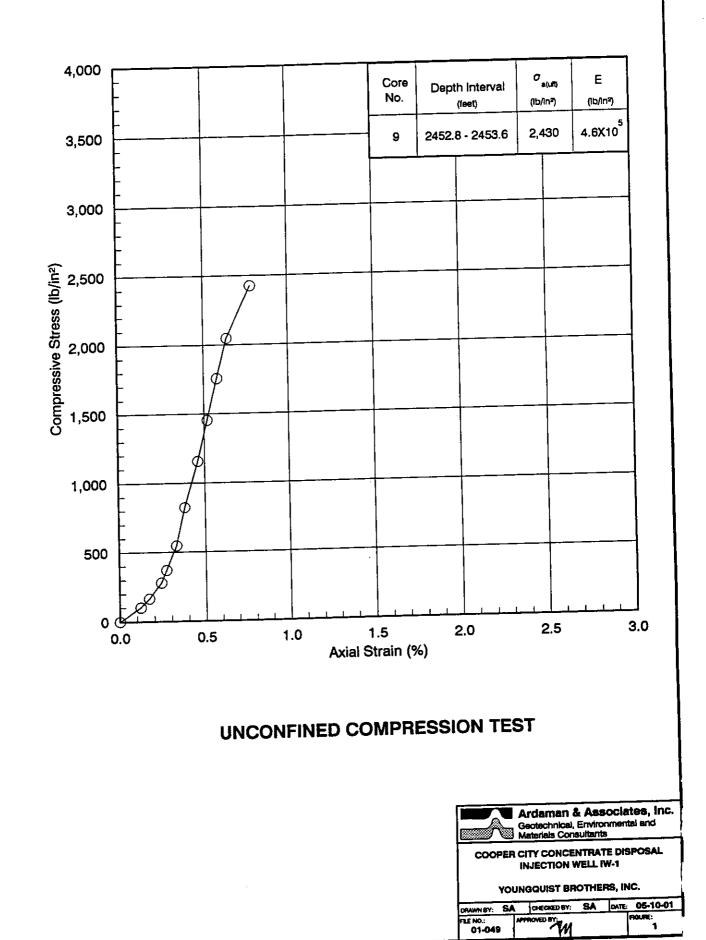
PERMEABILITY TEST RESULTS COOPER CITY CONCENTRATE DISPOSAL INJECTION WELL IW-1

Core Core Depth	D-5084 Test	Test	_		Initial C	Conditions	5		ਰ, (lb/in²)	ц. (lb/in ²)	B Average Factor Hydraulic		Final Conditions			Hydraulic	
No.	(feet)	Method*	Specimen Orientation	G _s	Length (cm)	Diameter (cm)	w _e (%)	Y∉_ (1b/ft³)	n	(lb/in²)	(lb/in ²)	(%)	Gradient	W _c (%)	Y₄ (ib/ft ³)	S (%)	Conductivity k ₂₀ (cm/sec)
	2520.2 - 2520.7	A C	Vertical Horizontal	2.75	9.68 7.74	9.93 5.02	5.9 8.0	139.5 140.9	0.19 0.18	30 30	160 70	95 87**	10 2	8.0 [†] 8.0	139.5 140.9	95 100	1.4x10 ⁻⁴ 1.5x10 ⁻⁴
10	2525.6 - 2526.3	C A	Vertical Horizontal	2.75	10.16 6.62	9.97 5.03	16.2 15.7	116.1 116.2	0.32 0.32	30 30	70 70	94** 88**	2 5	16.4 [†] 16.4	116.1 116.2	95 95	2.8x10 ⁻⁴ 1.6x10 ⁻³
.0	2528.3 - 2528.9	с с	Vertical Horizontal	2.77	10.10 7.10	9.95 5.01	13.2 14.8	119.9 120.7	0.31 0.30	30 30	70 70	90** 76**	2 3	15.1 † 15.1	119.9 120.7	95 97	1.5x10 ⁻⁴ 1.9x10 ⁻⁴
	2529.4 - 2529.9	A C	Vertical Horizontal	2.73	7.78 7.34	9.88 5.02	9.9 12.3	122.9 123.6	0.28 0.27	30 30	160 70	95 69**	48 3	13.5 † 13.5	122.9 123.6	95 97	1.2x10 ⁻⁴ 1.8x10 ⁻⁴
	2740.7 - 2741.1	A C	Vertical Horizontal	2.76	7.38 7.12	9.79 5.02	15.7 16.5	115.2 115.1	0.33 0,33	30 30	160 70	95 71**	18 3	17.2 [†] 17.2	115.2 115.1	96 95	2.9x10 ⁻⁴ 3.0x10 ⁻⁴
11	2743.6 - 2744.1	A A	Vertical Horizontal	2.76	7.10 7.63	10.02 5.04	6.4 6.3	146.3 145.8	0.15 0.15	30 30	160 160	96 93**	9 16	6.4 [†] 6.4	146.3 145.8	99 97	2.1x10 ⁻⁵ 3.6x10 ⁻⁷
	2795.9 - 2796.6	C C	Vertical Horizontal	2.76	9.59 6.92	10.03 5.02	21.4 23.8	101.9 103.6	0.41 0.40	30 30	70 70	94** 59**	2 2	23.8 [†] 23.8	101.9 103.6	95 99	8.2x10 ⁻⁵ 9.4x10 ⁻⁵
12	2799.3 - 2800.0	c c	Vertical Horizontal	2.75	11,36 6.89	9,98 5.02	25.4 24.9	99.8 100.1	0.42 0.42	30 30	70 70	94** 76**	2 3	25.4 [†] 25.4	99.8 100.1	97 98	7.9x10 ⁻⁴ 1.2x10 ⁻³
	2801.2 - 2801.7	C A	Vertical Horizontal	2.76	9.16 7.17	10.06 5.04	9.0 9.5	134.5 134.8	0.22 0.22	30 30	70 160	88** 97	2 24	9.5 [†] 9.5	134.5 134.8	93 94	4.1x10 ⁻⁴ 3.5x10 ⁻⁴

we = Moisture content; Ye = Dry density; Gs = Specific gravity; n = Total Porosity; of = Average isotropic effective confining stress; ue = Back-pressure; and S = Calculated degree of saturation using Where: measured specific gravity.

Method A=Constant-head test; Method C = Falling-head test with Increasing tailwater level. ٠

B-Factor remained relatively constant for two consecutive increments of applied cell pressure. **


Vertical permeability test specimen was cored upon completion of testing to obtain horizontal permeability test specimen. The final moisture content of the vertical test specimen was not measured, and t t was assumed to be the same as the horizontal permeability test specimen.

C:\Youngquist\01-049 YOUNG .wpd

Table 2

UNCONFINED COMPRESSION TEST RESULTS COOPER CITY CONCENTRATE DISPOSAL INJECTION WELL IW-1

Core	Core	Specimen Dimensions			w _c	Ya	Loading Rate	t,	Unconfined Strength,	Young's		
No.	Depth Interval (feet)	Length L (cm)	Diameter D (cm)	IJD	(%)	(Ib/ft³)	Rate (cm/min)	(min)	Measured	Corrected*	Modulus E(lb/in²)**	
9	2452.8 - 2453.6	6.93	3.26	2.13	0.1	151.4	0.013	4.9	2,430	2,440	4.6x10 ⁵	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												

Petroleum Services 6316 Windfern Houston, Texas 77040 USA Tel: 713-328-2673 Fax: 713-328-2170 www.corelab.com

FINAL REPORT OF ELECTRICAL PROPERTIES STUDY

Performed for:

Youngquist Brothers, Incorporated

Cooper City #1 Well

Florida

Core Laboratories File No.: HOU 010417

June 20, 2001

June 30, 2001

Youngquist Brothers, Incorporated 15465 Pine Ridge Road Fort Myers, Fl. 33908

Attention: Clay Ferguson

Subject: Formation Electrical Properties Study Company: Youngquist Brothers, Incorporated Well: Cooper City #1 Well Location: Florida

Dear Sir:

Presented in the following Final Report are the results of the electrical properties study performed on five core samples from the above referenced well. Formation Electrical Properties data are reported in this document.

Should there be any questions, or if I may be of further assistance, please do not hesitate to contact me personally at (713) 328-2409 or at the address below.

Sincerely,

Paul R. Martin Petrophysics Supervisor Core Laboratories - Houston

The analytical results, opinions or interpretations contained in this report are based upon information and material supplied by the client for whose exclusive and confidential use this report has been made. The analytical results, opinions or interpretations expressed represent the best judgment of Core Laboratones. Core Laboratones, however, makes no warranty or representation, express or implied, of any type, and expressive declamis same as to the productivity, proper oparations or profilableness of any ok, gas, coal or other mineral, property, well or sand in connection with which such report is used or relead upon for any reason whatsoever. This report shall not be reproduced, in whole or in part, without the written approval of Core Laboratones.

ELECTRICAL PROPERTIES

Five core plugs from Cooper City #1 Well, Florida were provided by Youngquist Brothers, Incorporated for formation electrical properties testing. The plugs were pressure saturated with a synthetic brine composition and inserted into resistivity cells at 800 psi confining pressure.

Resistivities were measured until stable on both the brine(Rw) and the brine saturated core plugs(Ro). The stable values were used to calculate the formation factors for each sample. These measurements were conducted at room temperature .

F = Ro / Rw

Following formation factor determination, a ceramic porous plate was inserted on the production face of the plugs. Humidified air was used to step desaturate the plugs at six pressures. Resistivities and water saturations were monitored during the desaturation process. The water saturations and resistivities were used to calculate the saturation exponent values.

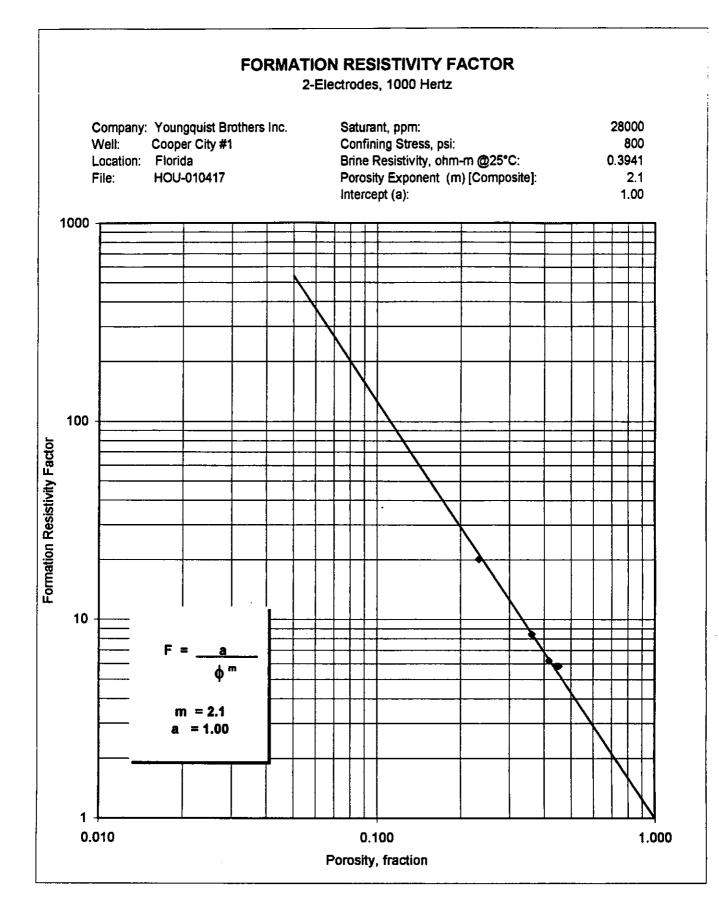
Upon completion of the ambient electrical properties measurements, the plugs were removed from their core holders, weighed, cleaned, dried confirming the final water saturations.

Formation factors and porosities from the five plugs were used to calculate a composite cementation exponent,m. These values are tabulated in the formation resistivity tables attached to this document. Cementation exponent data is also graphically displayed on the formation resistivity factor chart, also attached to the document.

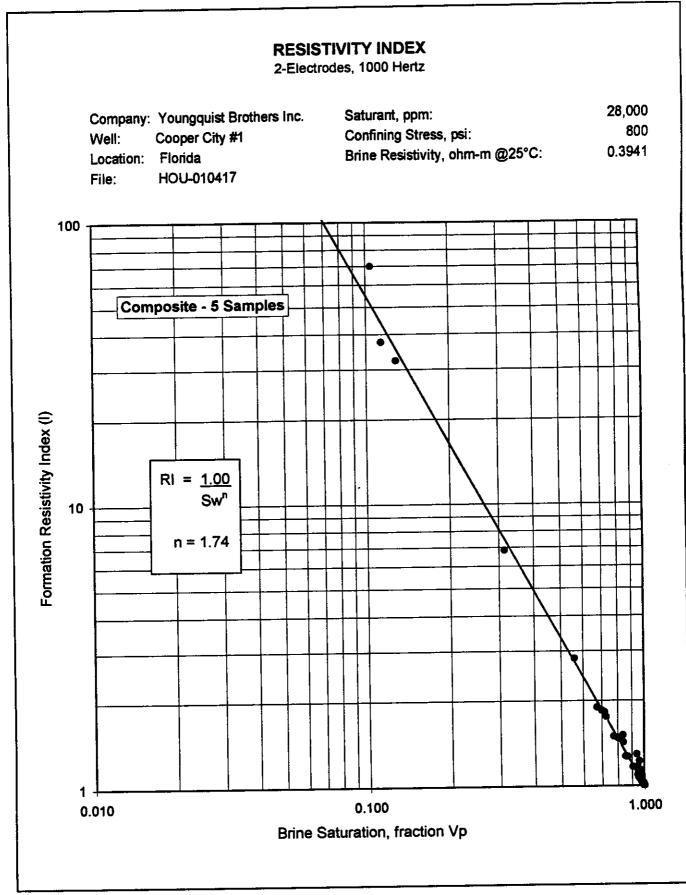
Temperature normalized core resistivities (Rt and Ro) using Arp's Equation were used to calculate the resistivity index for the core plugs. These indices and the brine saturation fraction from the desaturation point were input for the calculation of saturation exponent, n. Saturation exponent values are displayed in the formation factor and resistivity index tables for each sample tested. These values are graphically displayed for each plug tested.

RESULTS AND DISCUSSION

The results from the electrical properties testing are displayed on the attached tables and plots. The results obtained in this study indicate a composite m of 2.1. A composite n of 1.74 was determined from the confined data. These results are also displayed in the attached tables and charts.


FORMATION RESISTIVITY FACTOR

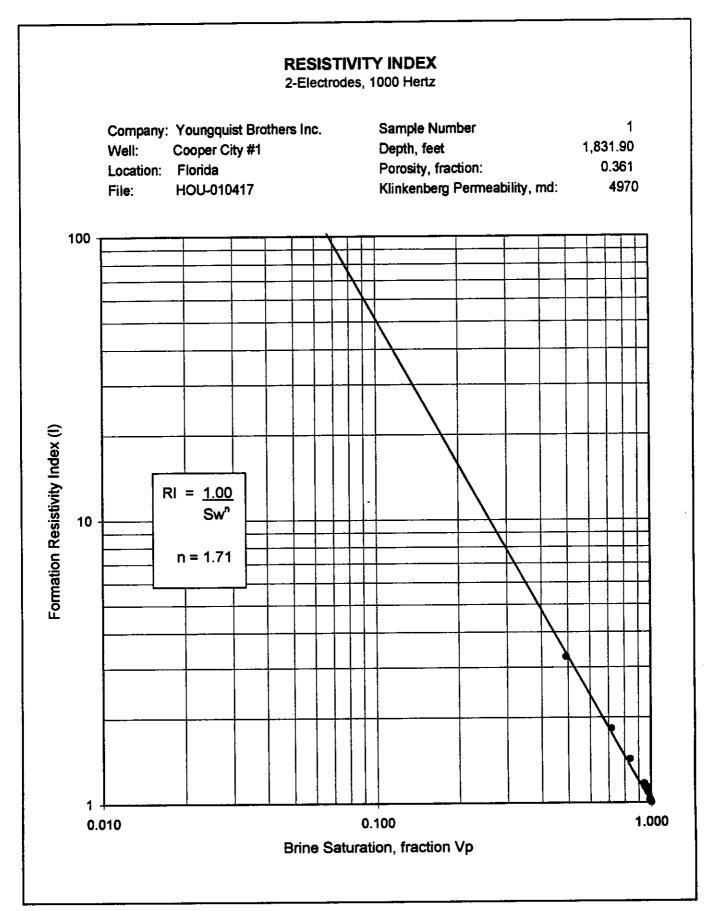
2-Electrodes, 1000 Hertz


Company: Youngquist Brothers Inc. Well: Cooper City #1 Location: Florida File: HOU-010417	Saturant, ppm: Confining Stress, psi: Brine Resistivity, ohm-m @25°C: Porosity Exponent (m) [Composite]: Intercept (a):	28,000 800 0.3941 2.10 1.00
--	---	---

Sample	Depth,	Grain Density	Klinkenberg Permeability	Porosity,	Formation Factor, (Apparent)				
Number	feet	gm/cc	md	fraction	Fa	Ro, ohm-m	m		
1	1831.90	2.71	4970	0.361	8.40	3.31	2.09		
2	1834.30	2.71	5250	0.444	5.82	2.29	2.17		
3	1843.65	2.71	2330 [.]	0.451	5.80	2.29	2.21		
4	1845.50	2.71	1450	0.417	6.19	2.44	2.08		
5	1846.50	2.70	3840	0.233	20.12	7.93	2.06		

.

Core Laboratories



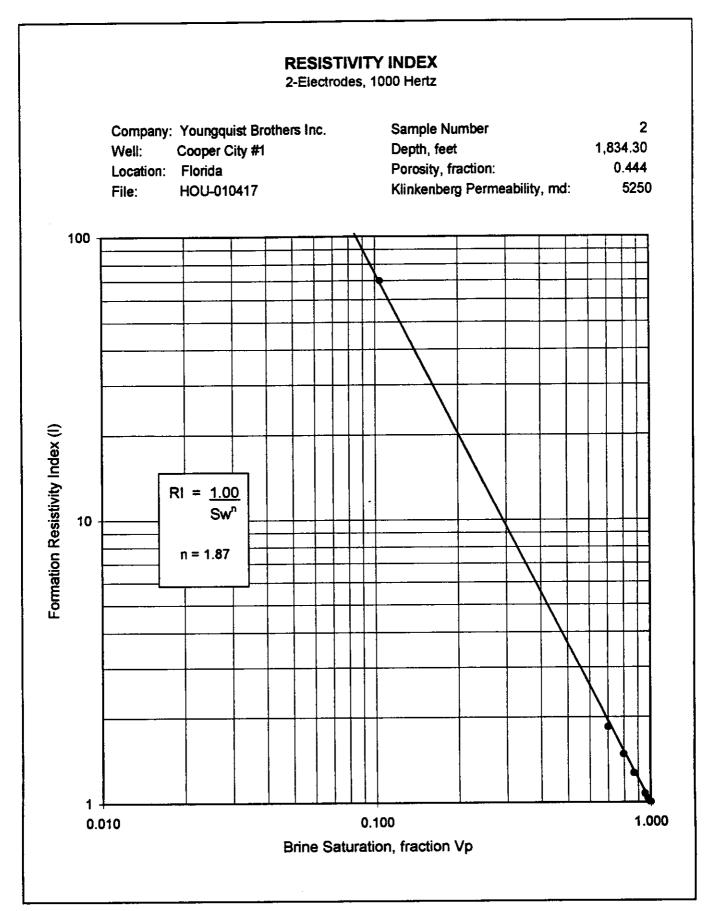
2-Electrodes, 1000 Hertz

Company: Youngquist Brothers Inc.	Sample number	1
Well: Cooper City #1	Depth, feet	1831.90
Location: Florida	Porosity, fraction:	0.361
File: HOU-010417	Klinkenberg Permeability, md:	4970
	Grain Density, gm/cc:	2.71
	Saturant, ppm:	28,000
	Net Confining Stress net, psi:	800
	Brine Resistivity, ohm-m @ 25°C:	0.3941
	Porosity Exponent (m) Composite:	2.10
	Y- Intercept (a):	1.00

Formatio	on Factor	Porosity Exponent	Brine Saturation	Resistivity Index	Saturation Exponent
Ro	F	m	fraction Vp	RI	n
3.31	8.40	2.09	1.000	1.00	1.71
3.31	0.40	2.09	0.997	1.00	1.71
			0.993	1.03	
			0.989	1.02	
			0.973	1.09	
			0.962	1. 14	
			0.945	1.17	
			0.838	1.42	
			0.717	1.82	
			0.491	3.26	

.

Core Laboratories

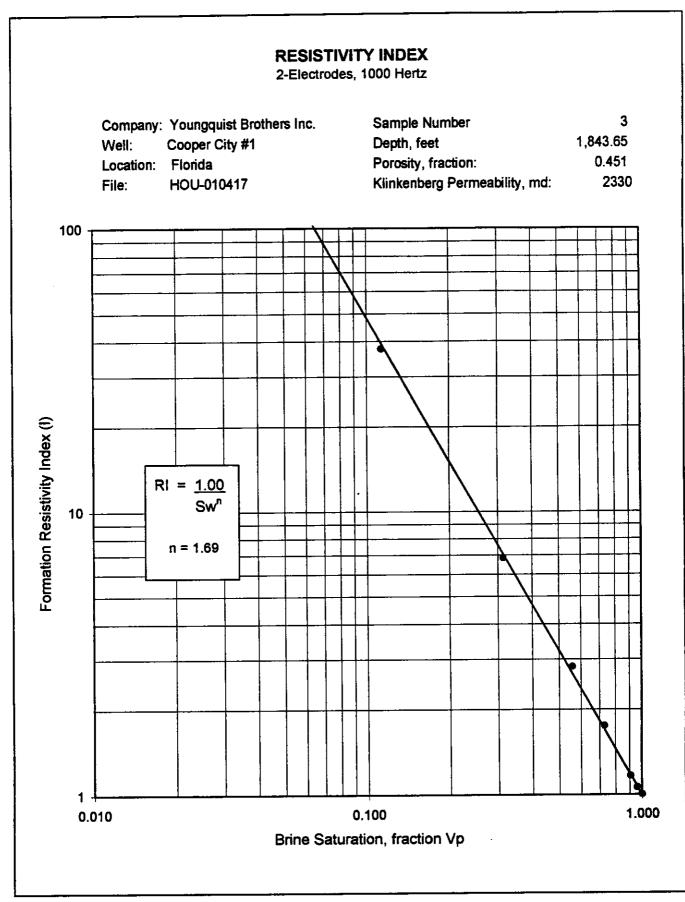

2-Electrodes, 1000 Hertz

Company: Youngquist Brothers Inc.	Sample number	2
Well: Cooper City #1	Depth, feet	1834.30
Location: Florida	Porosity, fraction:	0.444
File: HOU-010417	Klinkenberg Permeability, md:	5250
	Grain Density, gm/cc:	2.71
	Saturant, ppm:	28,000
	Net Confining Stress net, psi:	800
	Brine Resistivity, ohm-m @ 25°C:	0.3941
	Porosity Exponent (m) Composite:	2.10
	Y- Intercept (a):	1.00

Formati	Formation Factor		Brine Saturation	Resistivity Index	Saturation Exponent
Ro	F	m	fraction Vp	RI	n
2.29	5.82	2.17	1.000	1.00	1.87
2.20	0.01	_ ,	0.995	1.00	
			0.975	1.03	
			0.953	1.07	
			0.870	1.26	
			0.799	1.47	
			0.700	1.84	
			0.104	69.75	

•

.

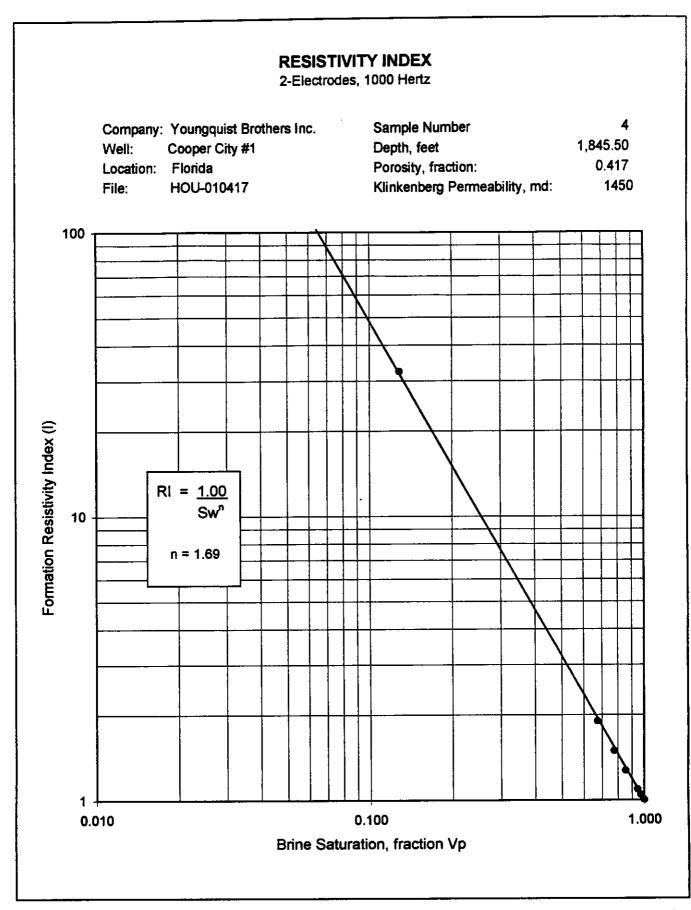

٠

2-Electrodes, 1000 Hertz

Company: Youngquist Brothers Inc.	Sample number	3
Well: Cooper City #1	Depth, feet	1843.65
Location: Florida	Porosity, fraction:	0.451
File: HOU-010417	Klinkenberg Permeability, md:	2330
	Grain Density, gm/cc:	2.71
	Saturant, ppm:	28,000
	Net Confining Stress net, psi:	800
	Brine Resistivity, ohm-m @ 25°C:	0.3941
	Porosity Exponent (m) Composite:	2.10
	Y- Intercept (a):	1.00

Formatio	on Factor	Porosity Exponent	Porosity Exponent Brine Saturation Resis		Saturation Exponent
Ro	F	m	fraction Vp	RI	n
2.29	5.80	2.21	1.000	1.00	1.69
			0.996	1.00	
			0.959	1.06	
			0.910	1.16	
			0.729	1.75	
			0.559	2.82	
			0.314	6.82	
			0.113	37.53	

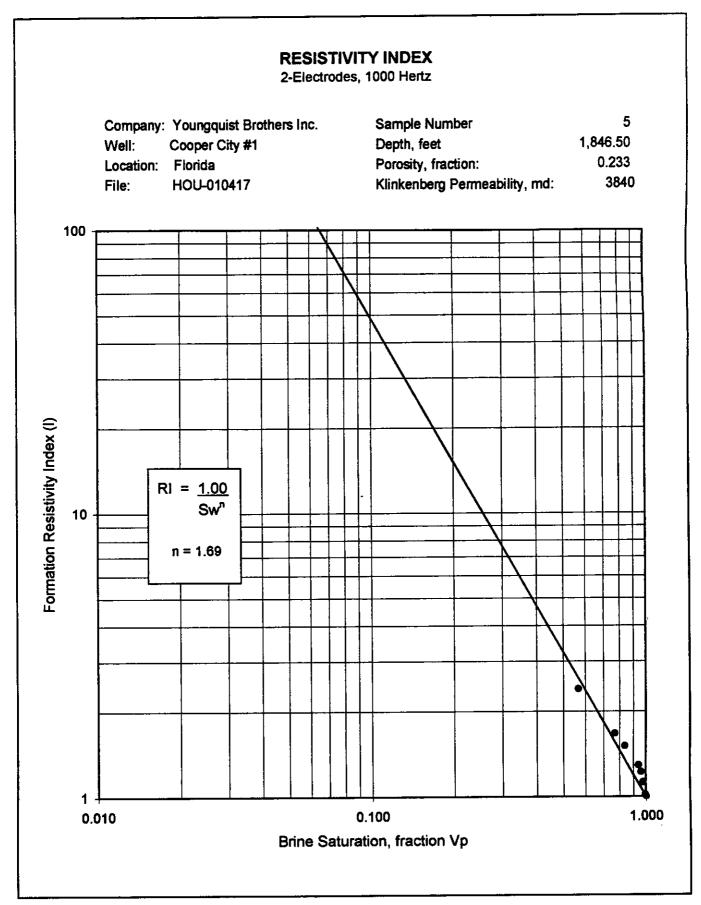
1



•

2-Electrodes, 1000 Hertz

Company: Youngquist Brothers Inc.	Sample number	4
Well: Cooper City #1	Depth, feet	1845.50
Location: Florida	Porosity, fraction:	0.417
File: HOU-010417	Klinkenberg Permeability, md:	1450
	Grain Density, gm/cc:	2.71
	Saturant, ppm:	28,000
	Net Confining Stress net, psi:	800
	Brine Resistivity, ohm-m @ 25°C:	0.3941
	Porosity Exponent (m) Composite:	2.10
	Y- Intercept (a):	1.00


Formati	Formation Factor		Exponent Brine Saturation Resistivity Index Saturatio	Saturation Exponent	
Ro	F	m [`]	fraction Vp	RI	n
2.44	6.19	2.08	1.000	1.00	1.69
			0.994	1.00	
			0.970	1.04	
			0.944	1.09	
			0.854	1.27	
			0.776	1.49	
			0.673	1.89	
			0.128	32.25	

2-Electrodes, 1000 Hertz

Company: You	ingquist Brothers Inc.	Sample number	5
Well: Coo	per City #1	Depth, feet	1846.50
Location: Flor	rida	Porosity, fraction:	0.233
File: HOU	U-010417	Klinkenberg Permeability, md:	3840
		Grain Density, gm/cc:	2.70
		Saturant, ppm:	28,000
		Net Confining Stress net, psi:	800
		Brine Resistivity, ohm-m @ 25°C:	0.3941
		Porosity Exponent (m) Composite:	2.10
		Y- Intercept (a):	1.00

Formatio	on Factor	Porosity Exponent Brine Saturation Resistivity Ind		Resistivity Index	Saturation Exponent
Ro	F	m İ	fraction Vp	RI	<u> </u>
7.93	20.12	2.06	1.000	1.000	1.69
			0.996	1.010	
			0.992	1.017	
			0.975	1.120	
			0.960	1.218	
			0.939	1.287	
			0.836	1.505	
			0.768	1.664	
			0.565	2.393	

Core Laboratories

APPENDIX F

GEOPHYSICAL LOGS

-

Geophysical Log Index

.

Appendix F – Geophysical Logs Geophysical Log Index City of Cooper City WTP/WTP

			Interval	Diameter
Well	Log	Date	(feet bpl)	(inches)
IW1	X-Y Caliper / Gamma ray	Dec-4-00	surface – 260	12 ¼
IW1	Dual Induction LL3 / SP	Dec-4-00	surface – 260	12 ¼
77771	X X Caliner / Commo roy	Dec-6-00	surface – 260	58 ½
IW1	X-Y Caliper / Gamma ray	Dec-7-00	surface – 250	58 1/2
IW1	Cement Top log	DCC-7-00	Surface 250	50 72
IW1	X-Y Caliper / Gamma ray	Dec-9-00	250 - 1027	58 ½
IW1	Dual Induction LL3 / SP	Dec-9-00	250 - 1027	58 ½
I IW1	X-Y Caliper / Gamma ray	Dec-20-00	250 – 995	48 ½
IW1 IW1	Cement Top log	Dec-21-00	surface – 995	48 1⁄2
1 1 1 1	Cement Top log	200 21 00		
IW1	X-Y Caliper / Gamma ray	Jan-4-01	985 – 2029	12 ¼
IW1	Dual Induction LL3 / SP	Jan-4-01	985 – 2029	12 1⁄4
IW1	Borehole Compensated Sonic / VDL	Jan-4-01	985 – 2029	12 1⁄4
IW1	Borehole Televiewer	Jan-4-01	985 - 2029	12 ¼
IW1	Fluid Conductivity / Temperature	Jan-15-01	1000 - 2022	12 ¼
IW1	Flowmeter	Jan-15-01	995 – 2005	12 1⁄4
13371	X-Y Caliper / Gamma ray	Jan-25-01	985 - 2010	40 1/2
IW1	Cement Top log	Jan-30-01	surface -2000	40 ½
IW1	Cement Top log	Juli 50 or		
IW1	X-Y Caliper / Gamma ray	Feb-8-01	2000 - 3000	12 ¼
IW1	Dual Induction LL3 / SP Borehole	Feb-8-01	2000 - 3000	12 ¼
IW1	Compensated Sonic / VDL	Feb-8-01	2000 - 3000	12 ¼
IW1	Borehole Televiewer	Feb-19-01	2000 - 3000	12 ¼
IW1	Fluid Conductivity / Temperature	Feb-20-01	2000 - 2982	12 ¼
IW1	Flowmeter	Feb-20-01	2000 - 2982	12 ¼
13371	X-Y Caliper / Gamma ray	Mar-06-01	2000 - 3410	32 1/2
IW1	High Temperature	Mar-06-01	2000 - 3410	32 1/2
IW1	rigii Temperature			
IW1	Cement Top log	Mar-16-01	2000 - 3410	22 1/2
IW1	Cement Bond log	Mar-23-01	2000 - 3410	22 1/2
IW1	X-Y Caliper/Gamma Ray	May-29-01	2900 - 3410	22 1/2
IW1	Compensated Sonic/VDL	May-29-01	2900 - 3410	22 1/2
IW1	Dual Induction LL3/SP	May-29-01	2900 - 3410	22 1/2
IW1	Fluid Conductivity/Temp	May-29-01	2900 - 3410	22 1/2
IW1	Flowmeter	May-30-01	2900 - 3410	22 1/2
IW1	High Resolution Temp	June-01-01	0-3410	
IW1	Radioactive Tracer Survey	June-01-01	0-3410	
				<u> </u>

Well	Log Date	Interva (feet bp		meter ches)
MW1	X-Y Caliper / Gamma ray	Apr-10-01	surface – 261	32 1/2
MW1	Dual Induction LL3 / SP	Apr-10-01	surface – 261	32 1/2
MW1	Cement Top log	Apr-11-01	surface – 240	32 1⁄2
MW1	X-Y Caliper / Gamma ray	Apr-14-01	251 - 1850	22 ½
MW1	Dual Induction LL3 / SP	Apr-14-01	251 - 1850	22 1⁄2
MW1	Borehole Compensated Sonic / VDL	Apr-14-01	251 - 1850	22 1⁄2
MW1	Fluid Conductivity/Temperature	Apr-14-01	251 - 1850	22 1/2
MW1	Cement Top log	Apr-21-01	surface – 1650	22 ½
MW1	X-Y Caliper / Gamma ray	Apr-24-01	surface – 1950	12 ¼
MW1	Dual Induction LL3 / SP Borehole	Apr-24-01	surface – 1950	12 ¼
MW1	Cement Bond log	Apr-24-01	surface – 1670	12 ¼
MW1	Cement Top log	May-4-01	surface – 1900	6 5/8
MW1	Cement Bond log	May-29	1595 - 1915	6 5/8

Appendix F-Geophysical Logs Log Index

Flow Meter Analysis

FLOWMETER ANALYSIS

COOPER CITY CONCENTRATE DISPOSAL WELL IW#1

On January 15, 2001 a packer was set @ approximately 1000' to evaluate the open hole flow using a dynamic flow rate of 650 GPM. The following plots were generated from logging data collected by the flowmeter tool.

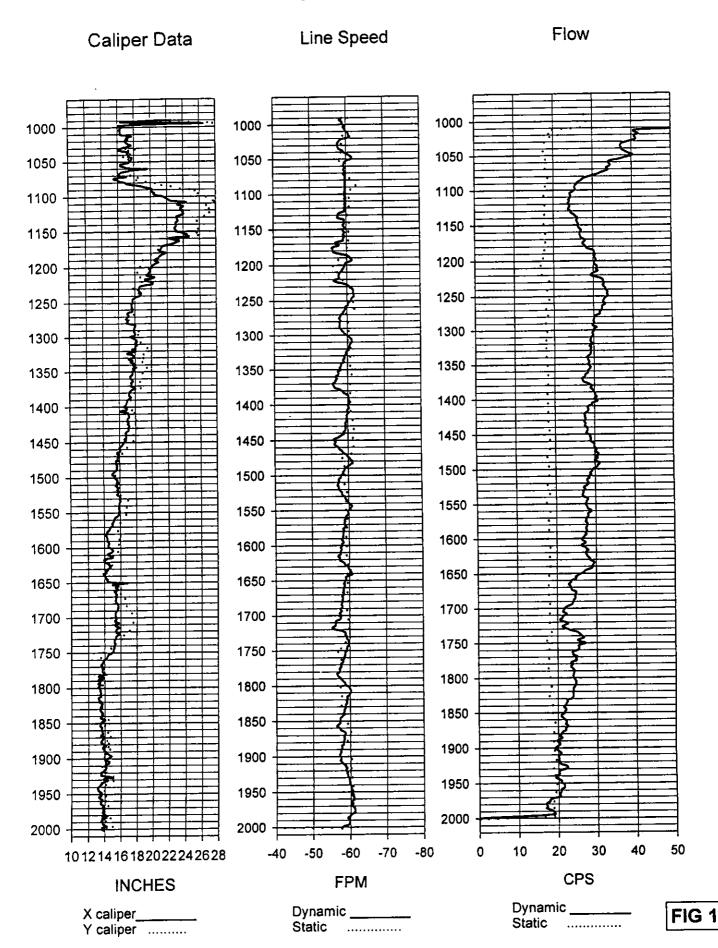
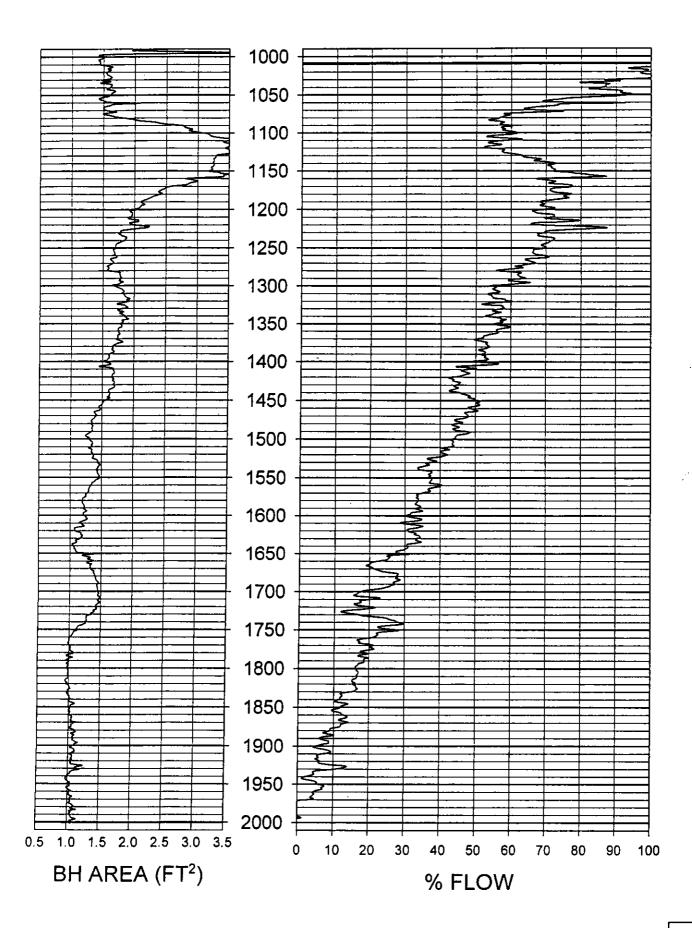
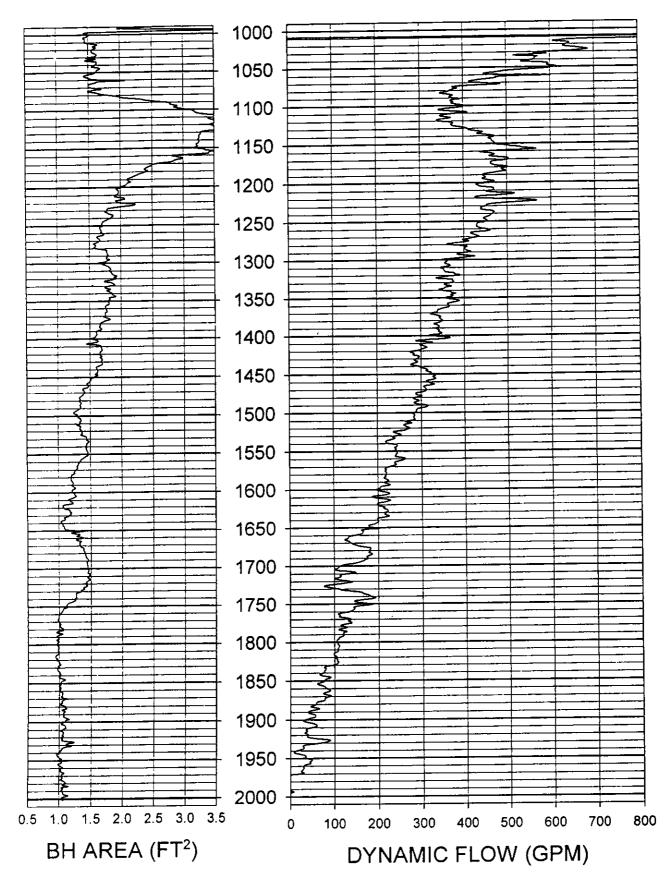

Figure 1 is a quick look interpretation comparing the static down pass to the dynamic down pass. It shows a very gradual separation between the static and dynamic passes above 1970, indicating flow above this depth, with virtually no flow present below 1970'.

Figure 2 is the percent flow analysis of the dynamic pass. It reaffirms the quick look presentation and shows a linear increase in flow extending from 1970' up to 1150'. The only deviation from this pattern is in the 100' interval between 1650' and 1750'. The reduction in flow during this interval is most likely due to the increased flow volume caused by the washout shown on the caliper curve. An even more prominent washout is observed from 1075'-1200'. The apparent decrease in flow above 1150' can be attributed to this change in borehole volume.

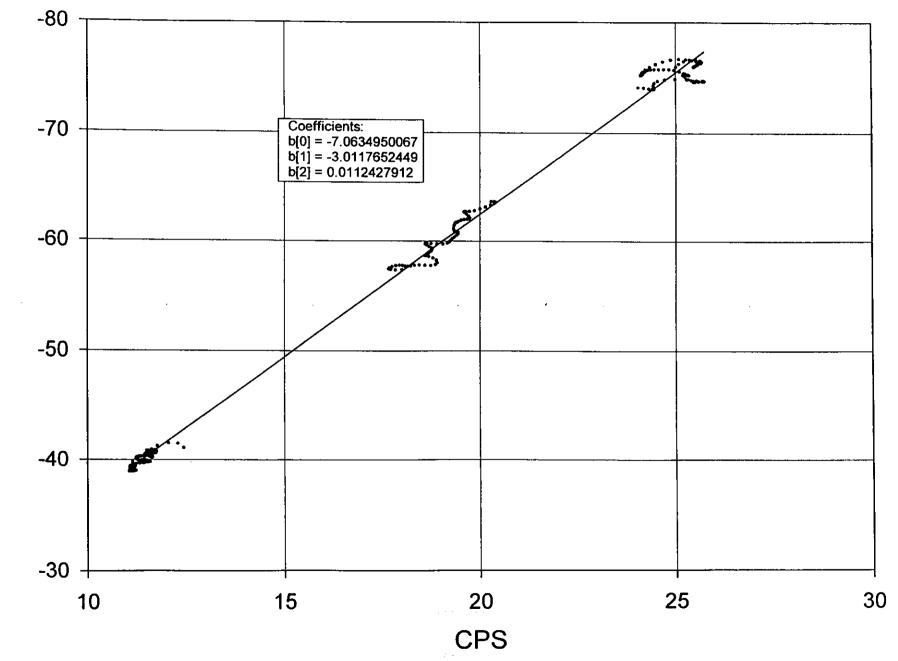
Roughly 50% of the total flow is being produced below a depth of 1400'. An additional 25% of flow is achieved between 1100' and 1400'. The remaining 25% of flow appears to be developed between 1000' and 1100'.


Figure 3 is the total flow analysis of the dynamic pass. It is the similar to the percent flow graph except that it is expressed in gpm.

Cooper City IW


Cooper City IW

N



.

CCIW Down Cals

Line Speed

Geophysical Logging Quality Control

LOGGING TOOLS

.

CALIBRATION THEORY AND PRACTICE

1

CALIBRATION

Few logging tools give a response immediately useful in formation evaluation. Logging tools generally exert some disturbance on the formation (pass electric current through it, bombard it with sub-atomic particles, etc.). The tools' detectors measure this disturbance after it has passed through the formation. This measurement may be made in counts per second, it is referred to as the raw measurement. Such responses are of limited interest to a geoscientist.

Calibration links this raw measurement to a useful formation property. All calibrations work on the same principle. A tool is placed in environments (usually two) of known physical property and the tool's responses in these environments are measured. An arithmetic relation (usually a straight line) between these points is constructed and used to convert actual measurements to calibrated values. For example, by recording the X-Y Caliper Tool's response (pulses per second, *raw measurement*) to rings of known size (inches, *calibrated measurement*); we can derive an equation that will allow measurement of an unknown hole diameter.

The Primary Standard for all logging tools is dependent on the physical property it has been designed to measure. This Primary Standard may be one of the following:

- API standard test pits, such as those found at the University of Houston.
- A test fixture from the tool manufacturer.
- Part of the tool's electronic circuitry.

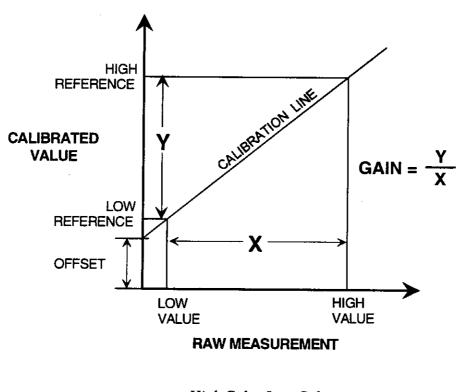
Each following Tool Section describes the primary standard adopted by Florida Geophysical Logging.

Manufacturing plants and operations bases use Secondary Standards when needed as it is impractical to calibrate, and re-calibrate, each tool in some primary standards such as the Houston API pits. These secondary calibrators are carefully referenced directly to the primary standard.

Some examples of these secondary Standards are :

- The Natural Gamma Ray jig
- The Compensated Neutron water tank
- The Aluminum and Magnesium blocks for density calibrations

CALIBRATION TECHNIQUE


Some tools such as the X-Y Caliper Tool and the Fluid Resistivity Tool use multiple straight line segments to compute calibrated values. These tools use a modified version of the technique described below where a 2 point calibration scheme is described. The Flowmeter Tool is calibrated over 3 points and the data is fit to a quadratic equation.

We express a tool's linear response by:

y = mx + bwhere y = calibrated response of the tool m = slope or gain of the tool x = raw value from tool b = intercept or offset

This linear relationship between raw or measured values and calibrated values is shown

below :

$$Gain = \frac{High Cal - Low Cal}{High Meas - Low Meas}$$
(A)
Offset or Intercept = Low Cal - (Gain × Low Meas) (B)

VERIFICATION

A verification confirms that the tool response and calibration are still valid. It does not modify the relation between tool response and physical property measurement (i.e., the calibration).

Any verification method has to be fast, accurate, precise and rugged. They are normally done on the catwalk or drill floor, and take rig time.

DUAL INDUCTION TOOL (DIT)

The shop calibration of the Dual Induction Tool (DIT) involves placing the tool in a zero conductivity medium. This is accomplished by elevating the tool on tall wooden stands away from any metal or electrical fields (overhead or underground power lines). The height of the stands depends on ground conductivity which in turn is related to ground moisture content. A distance of 3 meters above the ground will normally remove any ground effect from the measurement. The tool zero conductivity signal is recorded for both deep and medium. Next a calibration loop of known conductivity is placed over the deep and medium sensor. The value of the loop is designed to represent a 500 mmho formation. This provides the "High Cal" value. Field verification is done to verify tool response in between master calibrations.

BOREHOLE COMPENSATED SONIC LOG (BHC)

The primary calibration for the BHC involves centralizing the tool in a section of water-filled steel casing and mechanically adjusting the spacers within the tool until the 4 individual transmitter to receiver pairs read the correct transit time for the 5 foot and 3 foot spacings. This procedure is done when the tool is built or whenever major repairs are performed on the transmitter/receiver section. Normal quality control procedures for all Compensated Sonic Logs requires logging the value of Delta T in the casing either on the way in the hole, or immediately after the logging run. This is an excellent verification that the entire system is functioning properly. Sometimes, this casing check is difficult in pipe that is well bonded. If possible, the logging engineer finds a section of "free pipe" to record the casing check.

X-Y CALIPER TOOL (XYT)

The calibration of this tool is done by opening the caliper arms into two or more rings of known inside diameter, the smaller ring serves as the low calibrate value, the large ring is the high calibrate value. The gain and offset are calculated using the technique presented in the introduction. The size of the caliper rings used in the calibration and verification are selected based on the hole size that is being logged. Several size rings are available.

HIGH RESOLUTION TEMPERATURE TOOL (HRT)

The shop calibration of the HRT uses two water baths of different temperatures. The low temperature bath is chosen to be 32°F because when logging a Deep Injection Well we often see borehole temperature in the 40° range. The high temperature bath is normally between 150°F and 212°F. The gain and offset are calculated using the technique presented in the introduction. All the tools Florida Geophysical Logging uses have fast response RTD sensors. The HRT is an extremely stable tool and requires calibration only after major repairs or component replacement. Because of the linearity of the sensor a single point verification made in the field will instantly tell if the tool is still in calibration and capable of recording accurate temperature. This verification is done in a fluid that has reached temperature equilibrium.

FLUID CONDUCTIVITY TEMPERATURE TOOL (FCT)

The shop calibration of the fluid conductivity measurement involves placing the tool in a series of different salt solutions. The solutions are allowed to reach temperature and salinity equilibrium and are then measured with a precision digital conductivity meter. The tool is placed in each of the solutions and a multipoint calibration is made between tool output in pulses and fluid conductivity. The FCT is an extremely stable tool and requires calibration only after major repairs or component replacement. A single point verification made in the field instantly tells if the tool is in calibration and capable of recording accurate fluid conductivity. This verification is generally done with a water sample obtained from the well.

For calibration of the temperature tool see HRT section.

GAMMA RAY TOOL (GRT)

The primary calibration standard for all gamma ray tools is the API Gamma Ray Test Pit at the University of Houston. The API standard defines the difference between two radioactive formations as 200 Gamma Ray API units. After primary calibration, the tool is removed and moved to a distance away from the pit. A background reading in air is recorded. Next, a small radioactive source is placed at a fixed distance from the detector of the tool. By subtracting the background reading from the response to the radioactive source, a value in API units is assigned to the calibrator or Jig. This Jig is used to calibrate other tools of similar design without taking it to the API test well.

FLOWMETER TOOL (FMT)

Quantitative analysis of flowmeter measurements requires calibration of the probe. Since the probe is a mechanical system utilizing components that are subject to wear (e.g. bearings) it must be calibrated before every use. Calibration is done by moving the tool at a known velocity through a static fluid column and measuring the number of pulses or counts output from the tool. It is important to calibrate the tool in the same diameter hole that the measurements will be made¹. Two different velocities are required to establish a calibration line. Florida Geophysical Logging uses three principal velocities (50, 70 and 100 fpm) to establish a calibration line. A second order linear fit of the calibration data is performed. By mathematically fitting a curve through the calibration data points it is possible to "back calculate" an unknown velocity if the number of counts are known. The equation is of the form :

$$V_{fm} = b_0 + (b_1 \times counts) + (b_2 \times counts^2)$$
(3)

where b_0 , b_1 , and b_2 are the coefficients determined by the linear curve fit routine.

Counts represent the raw signal from the flowmeter tool

¹ Application Of The Borehole Flowmeter Method To Measure Spatially Variable Hydraulic Conductivity At The MADE Site - Kenneth R. Rehfeldt, Illinois State Water Survey

APPENDIX G

VIDEO SURVEY

Video Survey Log

Appendix G Video Survey Concentrate Disposal Well IW1

Interval (feet bpl)	Observations Concentrate Disposal Well IW1
2058 - 2157	Light colored Limestone: Generally massive, poorly to moderately vuggy, percentage of vuggs generally increasing with depth. Thin horizontal laminations 2058-2062. Thin darker vuggy bed at 2072. Mudstone lenses at 2099. Minor washouts at 2106. Mudstone lenses at 2119. Wavy laminations at 2121. Minor washout at 2135.
2157 - 2160	Dark to light colored Limestone: Horizontally laminated to thinly bedded, no fractures caverns or vuggs.
2160 - 2206	Generally massive light colored Limestone: Moderately vuggy at 2163 and 2167. Vuggy from 2185 to 2193. Dark laminations at 2199 and 2201.
2206 - 2211	Dark vuggy Dolomite
2211 – 2234	Light colored dominantly massive Limestone: No fractures or caverns. Dark thin bed at 2216. Dark lamination with angular breccia at 2218. Vuggy at 2220 and from 2224 to 2226. Lamination at 2231.
2234 - 2236	Dark gray laminated Dolomitic Limestone: No caverns, fractures or vuggs??? Orange thin Limestone bed at 2235.
2236 - 2272	Light colored dominantly massive Limestone: No fractures or caverns. Vuggy at 2265 and 2265, Dolomitic at 2260.
2272 – 2296	Dark colored Dolomite with interbedded Limestone: Dark vuggy Dolomite with shallow caverns 2289 to 2293. Thinly laminated from 2280 to 2289. Laminated Dolomite and Limestone at 2293 and 2295. Vuggy at 2295. Laminated Dolomite and Limestone 2295 to 2296.
2296 - 2323	Light colored dominantly massive Limestone: No fractures, caverns or vuggs. Thin coarser grained beds at 2993. Laminations at 2305. Dark colored inclusions at 2310.
2323 - 2330	Dark colored dominantly massive Limestone: Vuggy and fossiliferous with lenses grading 2323 to 2327. Coarser grained, fossiliferous and occasionally thinly bedded 2327 to 2323.
2330 - 2370	Dark colored Dolomitic Limestone with interbedded Limestone : Occasional shallow washouts. No fractures or caverns. Vuggy at 2330 and 2333. Abundant fossils at 2337.

Interval (feet bpl)	Observations Concentrate Disposal Well IW1
2370 - 2399	Light colored massive Limestone: Moderately vuggy to vuggy with shallow caverns at 2370 and 2377. Vuggy with shallow washouts 2390 to 2397.
2399 – 2419	Bedded Dolomite and Limestone: Massive gray to light brown massive vuggy Dolomite, no fractures 2399 to 2402. Massive light colored Limestone, no fractures vuggs or caverns, few minor washouts with occasional dolomite laminations 2402 to 2417. Light brown to dark gray massive Dolomite, no fractures, few shallow caverns, irregular lower contact 2417 to 2419.
2419 - 2450	Light colored massive Limestone: No fractures, occasional minor washouts, few to common dark dolomite lenses, moderately vuggy at 2443. Sharp horizontal lower contact.
2450 - 2451	Light brown Limy Dolomite: No vuggs, fractures or caverns, Gradational contact with lower unit.
2451 - 2458	Light colored massive Limestone: No fractures, vuggs or caverns, occasional minor washouts. Sharp horizontal contact with lower unit.
2458 - 2461	Dark gray Dolomite with light colored Limestone: No fractures, vuggs or caverns, occasional minor washouts.
2461 - 2498	Light colored massive Limestone: No fractures or caverns, locally weakly to moderately vuggy, occasional minor washouts.
2498 - 2500	Light colored massive Limestone: No fractures, vuggs or caverns, with dark Dolomite lenses common.
2500 - 2507	Dark brown to gray massive Dolomite: No fractures, vuggy, locally moderately cavernous with shallow caverns and washouts. Gradational laminated contact with lower unit.
2507 - 2605	Light colored dominantly massive Limestone: No fractures or caverns, generally weakly vuggy. Dolomite lenses common from 2507 to 2510. Thin Dolomitic bed at 2518. Moderately vuggy with shallow washouts at 2540. Thin Dolomite or Dolomitic Limestone bed at 2543. Moderately vuggy with shallow washouts from 2543 to 2550. Dark Dolomite lenses common from 2552 to 2555. Moderately vuggy from 2557 to 2566. Very well indurated from 2566 to 2591. Shallow washout at 2591. Laminations of very coarse material at 2593.
2605 - 2611	Dark colored massive Dolomitic Limestone: with Dolomite lenses common.

2605 – 2611 Dark colored massive Dolomitic Limestone: with Dolomite lenses common.

Interval	Observations
(feet bpl)	Concentrate Disposal Well IW1
2611 - 2701	Light colored dominantly massive Limestone: No fractures, generally very weakly vuggy. Moderately vuggy from 2622 to 2627. Thin bed of dark Dolomite at 2632. Slightly to moderately vuggy from 2637 to 2643. Minor washouts from 2643 to 2652. Moderately vuggy from 2664 to 2668. Metal imbedded in sidewall at 2683.

٠

Video Survey

(Video Tapes Are Boxed Separately With Geophysical logs)

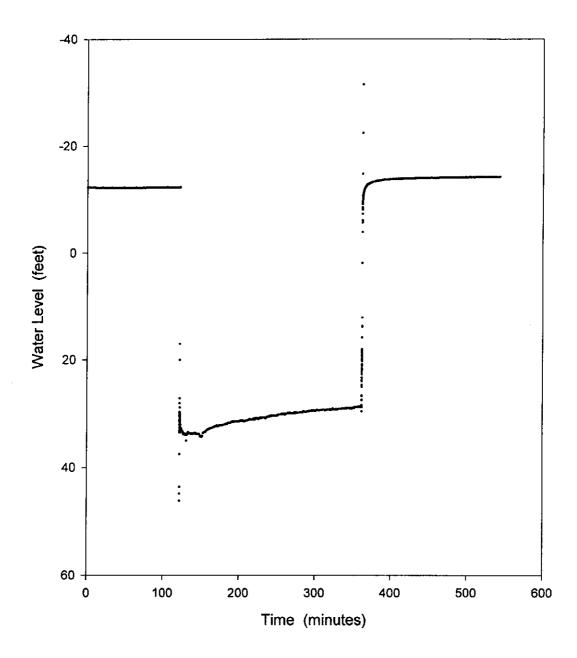
Appendix G Video Survey Dual-Zone Monitoring Well MW1

Interval	Observations
(feet bpl)	Upper Monitoring Zone MW1
1660 - 1710	Light colored generally massive Limestone: Generally medium grained. Dominantly well indurated. No vuggs, fractures or caverns. Dark bed with mudstone lenses at 1666. Coarser grained material with mudstone lenses at 1672. Dark lamination at 1681. Dark laminations at 1697. Thin dolomitic bed at 1709. View partially obscured by drilling filter cake.

Interval	Observations
(feet bpl)	Lower Monitoring Zone MW1
1900 – 1945	Light colored generally massive Limestone: Dominantly well indurated. Thin dark mudstone bed at 1914. Light laminations at 1917. Minor low angle fracture at 1920. Dark colored laminations at 1933

APPENDIX H

PACKER PUMPING TEST DATA AND GRAPHS

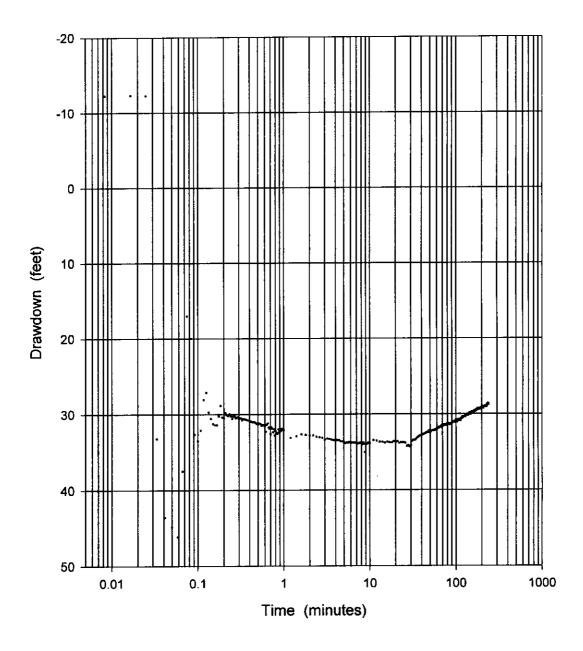

IW-1 Straddle Packer Test

1,660 - 1,710

IW 1

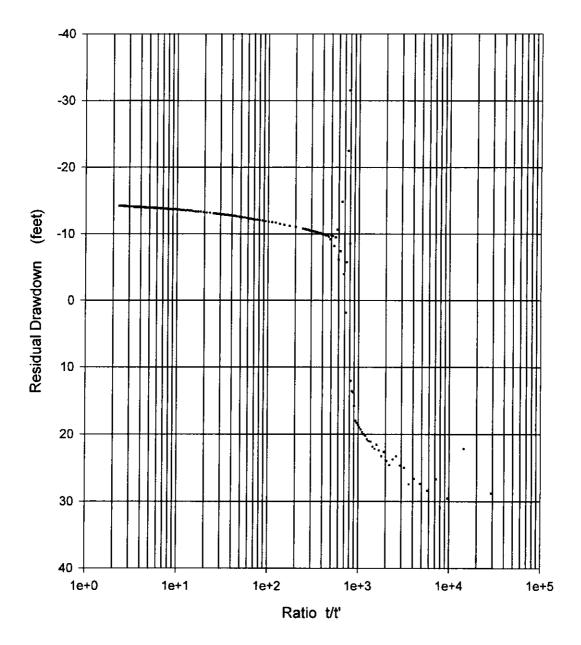
1660 - 1710

BACKGROUND, DRAWDOWN AND RECOVERY DATA



IW1

1660 - 1710


DRAWDOWN

IW1

1660 - 1710

•••

COOPER CITY IW1 1660 - 1710 BACKGROUND DATA

TIME	WATER LEVEL	TIME	WATER LEVEL	TIME	WATER LEVEL	TIME	WATER LEVEL
0	-12.253	0.75	-12.253	15	-12.175	80	-12.253
0.0083	-12.253	0.7666	-12.253	16	-12.175	81	-12.253
0.0166	-12.253	0.7833	-12.253	17	-12.175	82	-12.253
0.025	-12.253	0.8	-12.253	18	-12.175	83	-12.253
0.0333	-12.253	0.8166	-12.253	19	-12.253	84	-12.253
0.0416	-12.253	0.8333	-12.253	20	-12.253	85	-12.253
0.05	-12.253	0.85	-12.253	21	-12.175	86	-12.253
0.0583	-12.253	0.8666	-12.253	22	-12.175	87	-12.253 -12.253
0.0666	-12.253	0.8833	-12.253	23	-12.175 -12.175	88 89	-12.253
0.075	-12.253	0.9	-12.253 -12.253	24 25	-12.175	90	-12.253
0.0833	-12.253 -12.253	0.9166 0.9333	-12.253	26	-12.175	91	-12.253
0.0916 0.1	-12.253	0.95	-12.253	27	-12.175	92	-12.253
0.1083	-12.253	0.9666	-12.253	28	-12.175	93	-12.253
0.1166	-12.253	0.9833	-12.253	29	-12.175	94	-12.253
0.125	-12.253	1	-12.253	30	-12.175	95	-12.253
0.1333	-12.253	1.2	-12.253	31	-12.175	96	-12.253
0.1416	-12.253	1.4	-12.253	32	-12.253	97	-12.253
0.15	-12.253	1.6	-12.253	33	-12.175	98	-12.253
0.1583	-12.253	1.8	-12.253	34	-12.175	99	-12.253
0.1666	-12.253	2	-12.253	35	-12.175	100	-12.253
0.175	-12.253	2.2	-12.253	36	-12.175	101 102	-12.253 -12.253
0.1833	-12.253	2.4	-12.253	37 38	-12.175 -12.175	102	-12.253
0.1916	-12.253	2.6 2.8	-12.253 -12.253	39	-12.175	103	-12.253
0.2 0.2083	-12.253 -12.253	2.8	-12.253	40	-12.175	105	-12.331
0.2063	-12.253	3.2	-12.253	41	-12.175	106	-12.253
0.225	-12.253	3.4	-12.253	42	-12.175	107	-12.253
0.2333	-12.253	3.6	-12.253	43	-12.175	108	-12.253
0.2416	-12.253	3.8	-12.253	44	-12.175	109	-12.253
0.25	-12.253	4	-12.253	45	-12.175	110	-12.253
0.2583	-12.253	4.2	-12.253	46	-12.175	111	-12.253
0.2666	-12.253	4,4	-12.253	47	-12.175	112	-12.253
0.275	-12.253	4.6	-12.253	48	-12.253	113	-12.253
0.2833	-12.253	4.8	-12.253	49	-12.175 -12.175	114 115	-12.253 -12.253
0.2916	-12.253	5 5.2	-12.253 -12.253	50 51	-12.175	116	-12.253
0.3 0.3083	-12.253 -12.253	5.2 5.4	-12.253	52	-12.175	117	-12.253
0.3063	-12.253	5.6	-12.253	53	-12.175	118	-12.253
0.325	-12.253	5.8	-12.253	54	-12.175	119	-12.253
0.3333	-12.253	6	-12.253	55	-12.175	120	-12.253
0.35	-12.253	6.2	-12.253	56	-12.175	121	-12.253
0.3666	-12.253	6.4	-12.253	57	-12.175	122	-12.253
0.3833	-12.253	6.6	-12.253	58	-12.175	122	-12.253
0.4	-12.253	6.8	-12.253	59	-12.175		
0.4166	-12.253	7	-12.253	60	-12.175		
0.4333	-12.253	7.2	-12.253	61 62	-12.175 -12.175		
0.45	-12.253	7.4 7.6	-12.253 -12.253	63	-12.175		
0.4666 0.4833	-12.253 -12.253	7.8	-12.253	64	-12.253		
0.4833	-12.253	8	-12.253	65	-12.175		
0.5166	-12.253	8.2	-12.253	66	-12.175		
0.5333	-12.253	8.4	-12.253	67	-12.175		
0.55	-12.253	8.6	-12.253	68	-12.175		
0.5666	-12.253	8.8	-12.253	69			
0.5833	-12.253	9	-12.253	70	-12.175		
0.6	-12.253	9.2	-12.253	71	-12.175		
0.6166	-12.253	9.4	-12.253	72	-12.175		
0.6333	-12.253	9.6	-12.253	73 74			
0.65	-12.253 12.253	9.8 10	-12.253 -12.253	74			
0.6666 0.6833	-12.253 -12.253	10	-12.203	76			
0.0633	-12.253	12	-12.175	77			
0.7166	-12.253	13	-12.175	78			
0.7333	-12.253	14	-12.175	79			

COOPER CITY IW1 1660 - 1710 DRAWDOWN DATA

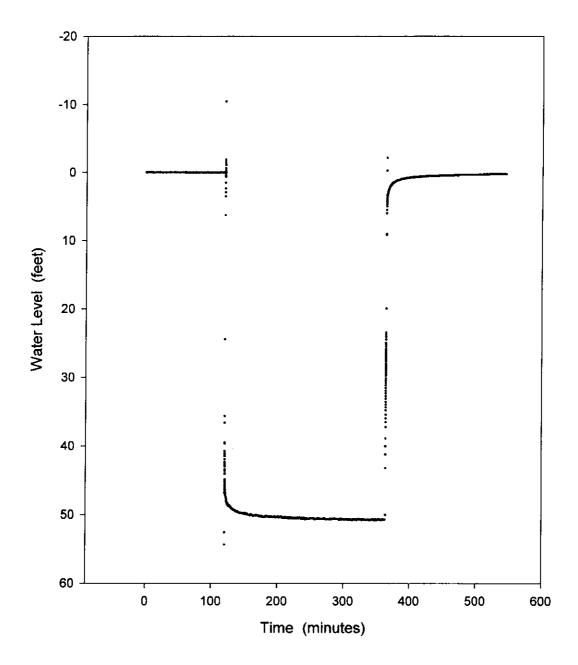
TIME	WATER LEVEL	TIME	WATER LEVEL	TIME	WATER LEVEL	TIME	WATER LEVEL	TIME	WATER LEVEL
0	-12.253	0.75	32.359	15	33.762	80	31.346	145	29.866
0.0083	-12.253	0.7666	31.97	16	33.684	81	31.268	146	29.866
0.0166	-12.331	0.7833	32.827	17	33.762	82	31.346	147	29.944
0.025	-12.253	0.8	32.204	18	33.762	83	31.268	148	30.022
0.0333	33.217	0.8166	32.437	19	33.606	84	31.346	149	29.944
0.0416	43.578	0.8333	32.593	20	33.684	85	31.424	150	29.944
0.05	44.824	0.85	32.515	21	33.606	86	31.346	151	29.788
0.0583	46.148	0.8666	31.97	22	33.84	87	31.346	152	29.944
0.0666	37.502	0.8833	32.204	23	33.762	88	31.268	153	29.71
0.075	17.004	0.9	32.282	24	33.762	89	31.268	154	29.866
0.0833	19.966	0.9166	32.204	25	33.762	90	31.191	155	29.866
0.0916	32.671	0.9333	31.97	26	33.84	91	31.191	156	29.788
0.1	33.528	0.95	31.892	27	34.23	92	31.035	157	29.788
0.1083	32.126	0.9666	31.97	28	34.152	93	31.035	158	29.788
0.1166	28.073	0.9833	32.126	29	34.307	94	31.113	159	29.71
0.125	27.138	1	32.126	30	34.152	95	31.113	160	29.788
0.1333	29.71	1.2	33.139	31	33.606	96	31.113	161	29.788
0.1416	30.567	1.4	32.905	32	33.45	97	30.957	162	29.788
0.15	31.268	1.6	32.671	33	33.45	98	30.957	163	29.554
0.1583	31.424	1.8	32.749	34	33.372	99	31.113	164	29.632
0.1666	31.424	2	32.827	35	33.217	100	30.801	165	29.632
0.175	30.255	2.2	32.827	36	33.061	101	30.879	166	29.71
0.1833	28.853	2.4	32.983	37	32.983	102	30.879	167	29.632
0.1916	30.411	2.6	33.061	38	32.905	103	30.87 9	168	29.632
0.2	30.489	2.8	33.139	39	32.827	104	31.035	169	29.554
0.2083	29.788	3	33.372	40	32.749	105	30.879	170	29.632
0.2166	30.1	3.2	33.217	41	32.749	106	30.723	171	29.476
0.225	30.177	3.4	33.294	42	32.671	107	30.879	172	29.476
0.2333	29.944	3.6	33.372	43	32.593	108	30.801	173	29.554
0.2416	30.255	3.8	33.45	44	32.593	109	30.723	174	29.398
0.25	30.567	4	33.372	45	32.515	110	30.723	175	29.476
0.2583	30.255	4.2	33.45	46	32.437	111	30.723	176	29.398
0.2666	30.255	4.4	33.45	47	32.359	112	30.723	177	29.398
0.275	30.489	4.6	33.606	48	32.437	113	30.879	178	29.476
0.2833	30.411	4.8	33.606	49	32.204	114	30.801	179	29.476
0.2916	30.411	5	33.684	50	32.359	115	30.645	180	29.398
0.3	30.645	5.2	33.84	51	32.359	116	30.567	181	29.242
0.3083	30.489	5.4	33.762	52	32.204	117	30.567	182	29.32
0.3166	30.489	5.6	33.762	53	32.204	118	30.567	183	29.32
0.325	30.801	5.8	33.684	54	32.204	119	30.411	184	29.398
0.3333	30.645	6	33.762	55	32.204	120	30.489	185	29.32
0.35	30.645	6.2	33.762	56	32.204	121	30.333	186	29.32
0.3666	30.723	6.4	33.762	57	32.126	122		187	29.32
0.3833	30.801	6.6	33.762	58	32.048	123	30.333	188	29.242
0.4	30.879	6.8	33.762	59	32.048	124	30.333	189	29.242
0.4166	30.957	7	33.84	60	32.048	125	30.411	190	29.242 29.242
0.4333	31.035	7.2	33.918	61	31.892	126	30.411	191 1 9 2	29.242
0.45	31.035	7.4	33.84	62	31.892	127		192	29.390
0.4666	31.113	7.6	33.84	63	31.892	128		195	29.32
0.4833	31.268	7.8	33.762	64	31.736	129 130		195	29.242
0.5	31.268	8	33.84	65	31.736 31.736	130		195	29.242
0.5166	31.191	8.2	33.996	66		131		190	29.242
0.5333	31.268	8.4	33.762	67	31.736			198	29.164
0.55	31.502	8.6	33.918 35.009	68 69	31.58 31.502	133 134		198	29.104
0.5666	31.424	8.8			31.502			200	29.242
0.5833	31.424	9	33.996	70 71	31.502	135 136	30.022	200	29.242
0.6	31.58	9.2	33.918		31.56	130	30.022	201	29.009
0.6166	32.282	9,4	33.84	72 73	31.424	137		202	29.242
0.6333	31.346	9.6	33.762	73 74	31.502	139		203	29.242
0.65	31.191	9.8	33.84	74 75	31.502	139		204	29.164
0.6666	31.736	10	33.84	75	31.424 31.424	140		205	29.164
0.6833	31.892	11	33.45	76 77	31. 424 31.502	141		200	29.164
0.7	32.593	12	33.528 33.684	78	31.502	142		208	29.242
0.7166	31.736 31.892	13 14	33.684 33.684	78 79	31.346	143		209	29.164
0.7333	31.092	14	33.004	19	01.040		20.044	200	

COOPER CITY IW1 1660 - 1710 DRAWDOWN DATA

TIME	WATER LÉVEL
210	29.086
211	29.086
212	29.086
213	29.086
214	29.009
215	29.086
216	29.009
217	29.009
218	29.009
219	28.931
220	29.009
22 1	28.931
222	28.931
223	28.931
224	29.009
225	28.931
226	28.931
227	29.086
228	28.931
229	28.853
230	28.931
231	28.775
232	28.775
233	28.697
234	28.775
235	28.697
236	28.619
237	28.697
238	28.619
239	28.775
240	28.697

COOPER CITY IW1 1660 - 1710 RECOVERY DATA

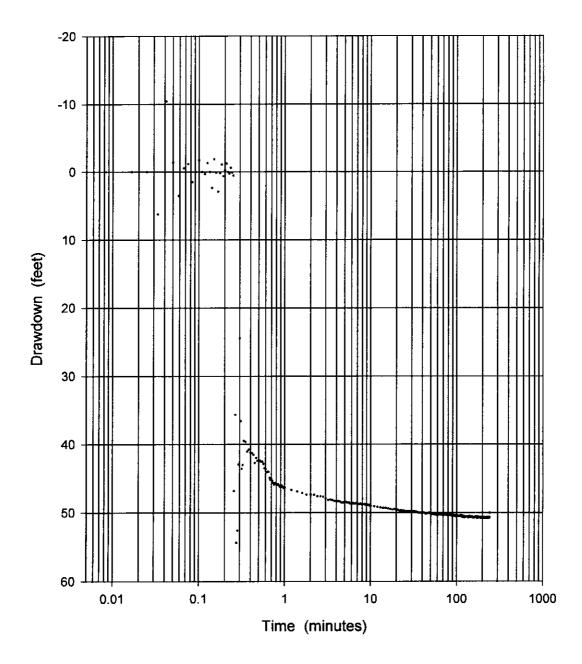
TIME	WATER LEVEL	TIME	WATER LEVEL	TIME	WATER LEVEL	TIME	WATER LEVEL	TIME	WATER LEVEL
0	28.697	0.75	-10.38	15	-13.346	80	-14.049	145	-14.205
0.0083	28.775	0.7666	-10.458	16	-13.346	81	-14.049	146	-14.205
0.0166	22.149	0.7833	-10.458	17	-13.424	82	-14.049	147	-14.127
0.025	29.554	0.8	-10.536	18	-13.502	83	-14.049	148	-14.205
0.0333	26.67	0.8166	-10.536	19	-13.502	84	-14.049	149	-14.205
0.0416	28.385	0.8333	-10.536	20	-13.58	85	-14.049	150	-14.205
0.05	27.372	0.85	-10.614	21	-13.502	86	-14.049	151	-14.205
0.0583	26.592	0.8666	-10.614	22	-13.58	87	-14.049	152	-14.205
0.0666	27.45	0.8833	-10.692	23	-13.58	88	-14.049	153	-14.205
0.075	24.956	0.9	-10.692	24	-13.58	89	-14.049	154	-14.205
0.0833	24.644	0.9166	-10.692	25	-13.658	90	-14.049	155	-14.205
0.0916	23.241	0.9333	-10.77	26	-13.658	91	-14.127	156	-14.205
0.1	23.708	0.95	-10.77	27	-13.658	92	-14.049	157	-14.205
0.1083	24.566	0.9666	-10.77	28	-13.736	93	-14.049	158	-14.205
0.1166	23.942	0.9833	-10.77	29	-13.736	94	-14.049	159	-14.205
0.125	22.617	1	-10.848	30	-13.736	95	-14.049	160	-14.205
0.1333	23.241	1.2	-11.082	31	-13.736	96	-14.049	161	-14.205
0.1416	22.383	1. 4	-11.238	32	-13.736	97	-14.049	162	-14.205
0.15	21.526	1.6	-11.394	33	-13.736	98	-14.127	163	-14.205
0.1583	22.149	1.8	-11.55	34	-13.736	99	-14.049	164	-14.205
0.1666	21.838	2	-11.707	35	-13.736	100	-14.049	165	-14.205
0.175	21.058	2.2	-11.785	36	-13.815	101	-14.127	166	-14.205
0.1833	20.98	2.4	-11.863	37	-13.815	102	-14.127	167	-14.205
0.1916	20.746	2.6	-11.941	38	-13.815	103	-14.127	168	-14.205
0.2	20.2	2.8	-12.019	39	-13.815	104	-14.127	169	-14.205
0.2083	19.966	3	-12.097	40	-13.815	105	-14.127	170	-14.205
0.2166	19.655	3.2	-12.175	41	-13.893	106	-14.127	171	-14.205
0.225	19.265	3.4	-12.175	42	-13.893	107	-14.127	172	-14.205
0.2333	18.953	3.6	-12.253	43	-13.815	108	-14.127	173	-14.205
0.2416	18.563	3.8	-12.331	44	-13.893	109	-14.127	174	-14.205
0.25	18.251	4	-12.331	45	-13.893	110	-14.127	175	-14.205
0.2583	17.939	4.2	-12.409	46	-13.893	111	-14.127	176	-14.205
0.2666 0.275	15.756 13.729	4.4 4.6	-12.487 -12.487	47 48	-13.893	112 113	-14.127	177	-14.205
0.275	13.573	4.8	-12.467	40	-13.893 -13.893	113	-14.127	178 179	-14.205
0.2033	12.013	4.0 5	-12.565	49 50	-13.893	115	-14.127 -14.127	180	-14.205 -14.205
0.2910	-8.584	5.2	-12.643	50	-13.971	115	-14.127	181	-14.205
0.3083	-31.544	5.4	-12.643	52	-13.893	117	-14.127	101	-14.203
0.3166	-22.482	5.6	-12,722	53	-13.893	118	-14.127		
0.325	-5.774	5.8	-12.722	54	-13.971	119	-14.127		
0.3333	1.794	6	-12.722	55	-13.971	120	-14.127		
0.35	-3.979	6.2	-12.8	56	-13.971	121	-14.127		
0.3666	-14.829	6.4	-12.8	57	-13.971	122	-14.127		
0.3833	-7.413	6.6	-12.8	58	-13.971	123	-14.127		
0.4	-6.165	6.8	-12.878	59	-13.971	124	-14.127		
0.4166	-10.692	7	-12.878	60	-13.971	125	-14.127		
0.4333	-9.521	7.2	-12.878	61	-13.971	126	-14.127		
0.45	-8.194	7.4	-12.878	62	-13.971	127	-14.127		
0.4666	-9.677	7.6	-12.956	63	-13.971	128	-14.127		
0.4833	-9.833	7.8	-12.956	64	-13.971	129	-14.127		
0.5	-9.209	8	-12.956	65	-13.971	130	-14.127		
0.5166	-9.599	8.2	-12.956	66	-13.971	131	-14.205		
0.5333	-9.911	8.4	-13.034	67	-13.971	132	-14.127		
0.55	-9.755	8.6	-13.034	68	-13.971	133	-14.127		
0.5666	-9.833	8.8	-13.034	69	-14.049	134	-14.127		
0.5833	-9.989	9	-13.034	70	-13.971	135	-14.127		
0.6	-9.989	9.2	-13.034	71	-14.049	136	-14.205		
0.6166	-9.989	9.4	-13.112	72	-14.049	137	-14.127		
0.6333	-10.145	9.6	-13.112	73	-14.049	138	-14.127		
0.65	-10.145	9.8	-13.112	74	-14.049	139	-14.127		
0.6666	-10.145	10	-13.112	75	-14.049	140	-14.205		
0.6833	-10.223	11	-13.19	76	-14.049	141	-14.205		
0.7	-10.301	12	-13.19	77	-14.049	142	-14.205		
0.7166	-10.301	13	-13.268	78	-14.049	143	-14.127		
0.7333	-10.38	14	-13.346	79	-14.049	144	-14.205		


IW-1 Straddle Packer Test

1,763 – 1,779

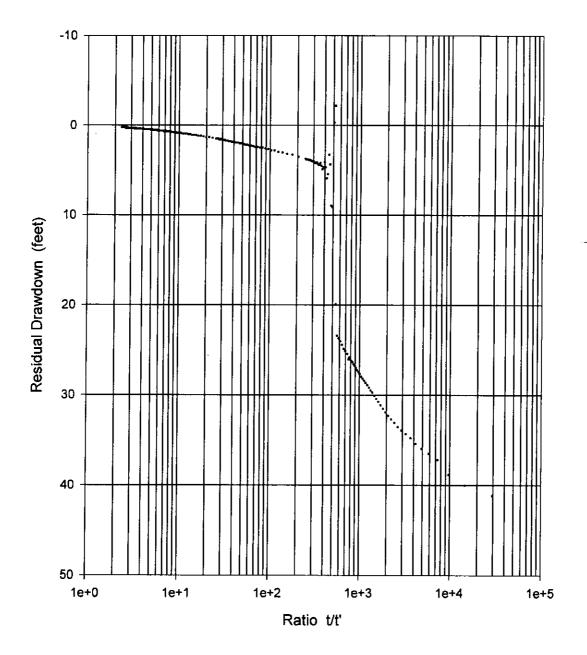
IW1

1763 - 1779


BACKGROUND, DRAWDOWN AND RECOVERY

IW1

1763 - 1779


DRAWDOWN

IW1

1763 - 1779

RESIDUAL DRAWDOWN vs t/t'

COOPER CITY 1763 - 1779 BACKGROUND DATA

TIME	WATER LEVEL	TIME	WATER LEVEL	TIME	WATER LÉVEL	TIME	WATER LEVEL
0.0083	0	0.7666	0	16	0	81	0
0.0166	Ō	0.7833	0	17	0	82	0
0.025	0	0.8	0	18	0	83	0
0.0333	0	0.8166	0	19	0	84	0
0.0416	0	0.8333	0	20	0	85	0
0.05	0	0.85	0	21	0	86	0
0.0583	0	0.8666	0	22	0.	87	0
0.0666	0	0.8833	0	23	0	88	0
0.075	0	0.9	0	24	0	89 90	0 0
0.0833	0	0.9166 0.9333	0 0	25 26	0 0	90	0
0.0916 0.1	0 0	0.95	0	20	0	92	ŏ
0.1083	0	0.9666	ŏ	28	õ	93	ŏ
0.1005	ŏ	0.9833	ŏ	29	õ	94	Õ
0.125	ŏ	1	-0.078	30	Ō	95	0
0.1333	ō	1.2	-0.078	31	0	96	0
0 1416	0	1.4	-0.078	32	0	97	0
0.15	0	1.6	-0.078	33	0	98	0
0.1583	0	1.8	0	34	0	99	0
0.1666	0	2	0	35	0	100	0
0.175	0	2.2	0	36	0	101	0
0.1833	0	2.4	-0.078	37	0	102	0
0.1916	0	2.6	0	38	0	103 104	0 0
0.2	0	2.8	-0.078	39 40	0 0	104	0
0.2083	-0.078 0	3 3.2	0 0	40 41	0	105	0
0.2166 0.225	-0.078	3.2 3.4	-0.078	42	0	100	Ő
0.225	-0.078	3.4	-0.078	43	õ	108	õ
0.2333	0.070	3.8	0	44	ŏ	109	ŏ
0.25	ŏ	4	Ō	45	Ō	110	0
0.2583	ō	4.2	-0.078	46	0	111	0
0.2666	-0.078	4.4	-0.078	47	0	112	0
0.275	-0.078	4.6	0	48	0	113	0
0.2833	0	4.8	-0.078	49	0	114	0
0.2916	0	5	0	50	0	115	0
0.3	0	5.2	0	51	0	116	0
0.3083	0	5.4	0	52	0	117 118	0 0
0.3166	0	5.6 5.8	-0.078	53 54	0 0	119	Ő
0.325 0.3333	-0.078 0	5.6	0	55	Ő	120	õ
0.3333	0	6.2	ŏ	56	õ	120	5
0.3666	ŏ	6.4	-0.078	57	õ		
0.3833	ō	6.6	0	58	0		
0.4	Ō	6.8	0	59	0		
0.4166	0	7	0	60	0		
0.4333	0	7.2	0	61	0		
0.45	0	7.4	0	62	0		
0.4666	0	7.6	0	63	0		
0.4833	0	7.8	0	64	0		
0.5	0	8	0	65	0		
0.5166	-0.078	8.2	0	66 67	0 0		
0.5333	0 0	8.4 8.6	-0.078 -0.078	68	0		
0.55 0.5666	-0.078	8.8	-0.078	69	0		
0.5833	-0.070	9	0	70	õ		
0.6	ŏ	9.2	õ	71	õ		
0.6166	-0.078	9.4	ō	72	0		
0.6333	0	9.6	Ō	73	0		
0.65	0	9.8	0	74	0		
0.6666	0	10	0	75	0		
0.6833	0	11	0	76	0		
0.7	0	12	0	77	0		
0.7166	0	13	0	78	0		
0.7333	0	14	0	79 80	0 0		
0.75	0	15	0	00	v		

COOPER CITY IW1 1763 - 1779 DRAWDOWN DATA

TIME	WATER LÉVEL	TIME.	WATER LEVEL	TIME	WATER LEVEL	TIME	WATER LEVEL	TIME	WATER LEVEL
0	0	0.75	45.865	15	49.293	80	50.306	145	50.618
0:0083	0	0.7666	45.709	16	49.371	81	50.228	146	50.618
0.0166	0	0.7833	45.631	17	49.449	82	50.384	147	50.618
0.025	0	0.8	45.787	18	49.527	83	50.384	148	50.618
0.0333	6.245	0.8166	45.865	19	49.449	84	50.306	149	50.618
0.0416	-10.464	0.8333	45.787	20	49.527	85	50.306	150	50.54
0.05	-1.405	0.85	45.943	21	49.605	86	50.228	151	50.618
0.0583	3.513	0.8666	46.021	22	49.683	87	50.384	152	50.54
0.0666	-0.546	0.8833	46.176	23	49.683	88	50.306	153	50.618
0.075 0.0833	-1.171 1.483	0.9 0.9166	46.021 46.176	24 25	49.683 49.761	89	50.462 50.384	154	50.696
0.0916	0	0.9333	46.021	25	49.761	90 91	50.364	155 156	50.696 50.618
0.0310	-1.717	0.95	46.176	27	49.761	92	50.306	157	50.618
0.1083	0	0.9666	46.332	28	49.761	93	50.462	158	50.618
0.1166	0.312	0.9833	46.41	29	49.839	94	50.462	159	50.696
0.125	-1.327	1	46.332	30	49.761	95	50.384	160	50.618
0.1333	0	1.2	46.644	31	49.917	96	50.384	161	50.618
0.1416	2.342	1.4	46.878	32	49,761	97	50.54	162	50.696
0.15	-1.873	1.6	47.11 1	33	49.917	98	50.384	163	50.618
0.1583	0.078	1.8	47.345	34	49.839	99	50.54	164	50.618
0:1666	2.888	2	47.345	35	49.917	100	50.462	165	50.618
0.175	0.156	2.2	47.345	36	49.994	101	50.384	166	50.618
0.1833	-1.093	2.4	47.579	37	49.994	102	50.462	167	50.54
0.1916 0.2	0.624 -0.234	2.6 2.8	47.579 47.657	38 39	49.994 50.072	103	50.462	168	50.618
0.2083	-0.234	2.0	47.891	39 40	49.917	104 105	50.54 50.462	169 170	50.618 50.618
0.2166	0	3.2	48.124	41	49.994	105	50.462	171	50.618
0.225	0.234	3.4	48.047	42	49.994	107	50.462	172	50.618
0.2333	-0.624	3.6	48.124	43	50.072	108	50:54	173	50.618
0.2416	0.078	3.8	48.28	44	50.15	109	50.462	174	50.774
0.25	0.546	4	48.28	45	50.072	110	50.462	175	50.618
0.2583	46.8	4.2	48.28	46	50.072	111	50.384	176	50.696
0.2666	35.654	4.4	48.358	47	50.072	112	50.54	177	50.54
0.275	54.357	4.6	48.514	48	49.994	113	50.462	178	50.696
0.2833	52.565	4.8	48.514	49	50.072	114	50.384	179	50.618
0.2916	42.903	5	48.358	50	50.072	115	50.462	180	50.618
0.3 0.3083	24.425 36.59	5.2 5.4	48.436 48.514	51 52	50.072 50.15	116 117	50.462 50.618	181 182	50.696 50.696
0.3166	43.527	5.6	48.514	53	50.228	118	50.462	183	50.696
0.325	42.981	5.8	48.67	54	50.228	119	50.462	184	50.696
0.3333	39.474	6	48.67	55	50.15	120	50.618	185	50.618
0.35	39.63	6.2	48.592	56	50.15	121	50.462	186	50.696
0.3666	41.033	6.4	48.67	57	50.306	122	50.54	187	50.696
0.3833	40.721	6.6	48.67	58	50.228	123	50.696	188	50.696
0.4	41.189	6.8	48.592	59	50.306	124	50.54	189	50.618
0.4166	41.267	7	48.67	60	50.306	125	50.54	190	50.696
0.4333	41.5	7.2	48.748	61	50.306	126	50.54	191	50.696
0.45 0.4666	42.669 41.968	7.4	48.748	62	50.306	127	50.618	192	50.696
0.4666	41.900	7.6 7.8	48.67 48.748	63 64	50.15 50.228	128 129	50.618 50.54	193	50.774 50.774
0.4000	42.436	8	48.748	65	50.228	130	50.54	194 195	50.618
0.5166	42.358	8.2	48.748	66	50.228	131	50.54	196	50.618
0.5333	42.514	8.4	48.748	67	50.306	132	50.54	1.97	50.696
0.55	42.514	8.6	48.748	68	50.306	133	50.54	198	50.618
0.5666	42.825	8.8	48.826	69	50.228	134	50.54	199	50.696
0.5833	43.449	9	48.82 0	70	50.306	13 5	50.54	200	50.774
0.6	43.605	9.2	48.826	71	50.228	136	50.54	201	50.696
0.6166	44.072	9.4	48.826	72	50.306	137	50.696	202	50.618
0.6333	43.994	9.6	48.904	73	50.306	138	50.618	203	50.618
0.65	43.994	9.8	48.826	74	50.306	139	50.618	204	50.696
0.6666	44.852	10	48.982	75	50.306	140	50.618	205	50.618
0.6833	45.163	11	49.059	76	50.228	141	50.54	206	50.618
0.7 0.7166	45.085 45.31 9	12	49.137 49.215	77	50.306	142	50.462	207	50.618
0.7333	45.631	13 14	49.215 49.293	78 79	50:384 50.306	1 4 3 144	50.618 50.54	208 209	50,774 50.696
0.1000	10.001	1-+	43.233	19	30.300	144	00.04	209	50.090

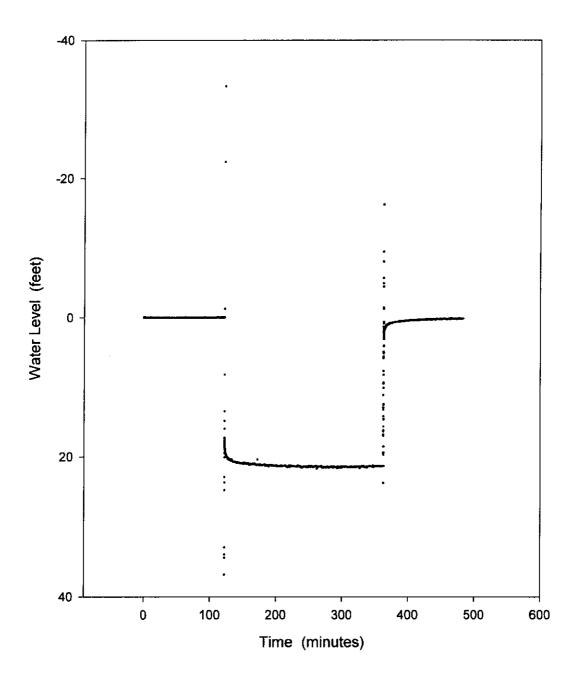
COOPER CITY IW1 1763 - 1779 DRAWDOWN DATA

TIME	WATER LEVEL
210	50.618
211	50.696
212	50.696
213	50.696
214	50.696
215	50,774
216	50.774
217	50.696
218	50.696
219	50.774
220	50.696
221	50.774
222	50.696
223	50.696
224	50.696
225	50.618
226	50.774
227	50.696
228	50.774
229	50.618
230	50.696
231	50.774
232	50.696
233	50.696
234	50.618
235	50.696
236	50.696
237	50.774
238	50.774
239	50.696
240	50.618
241	50.696
242	50.696
243	50.696
244	49.994

COOPER CITY IW1 1763 - 1779 RECOVERY DATA

TIME	WATER LEVEL	TIME	WATER LEVEL	TIME	WATER LEVEL	TIME	WATER LEVEL	TIME	WATER LEVEL
0	43.215	0.75	4.137	15	1.171	80	0.39	145	0.312
0.0083	41.189	0.7666	4.215	16	1.171	81	0.39	146	0.312
0.0166	40.019	0.7833	4.215	17	1.093	82	0.39	147	0.234
0.025	38.85	0.8	4.137	18	1.093	83	0.39	148	0.312
0.0333	37.213	0.8166	4.059	19	1.093	84	0.39	149	0.312
0.0416	36.512	0.8333	4.059	20	1.014	85	0.39	150	0.234
0.05	35.966	0.85	3.981	21	1.014	86	0.39	151	0.234
0.0583	35.42	0.8666	3.981	22	0.936	87	0.39	152	0.234
0.0666	34.796 34.329	0.8833 0.9	3.903	23	0.936 0.936	88	0.39 0.39	153	0.312 0.312
0.075 0.0833	33.939	0.9	3.903 3.903	24 25	0.936	89 90	0.39	154 155	0.312
0.0916	33.549	0.9333	3.825	26	0.858	91	0.39	156	0.234
0.1	33.081	0.95	3.825	27	0.858	92	0.39	157	0.234
0.1083	32.691	0.9666	3.825	28	0.858	93	0.39	158	0.234
0.1166	32.301	0.9833	3.825	29	0.858	94	0.39	159	0.234
0.125	31.912	1	3.747	30	0.78	95	0.39	160	0.234
0.1333	31.522	1.2	3.513	31	0.78	96	0.39	161	0.234
0.1416	31.132	1.4	3.278	32	0.78	97	0.39	162	0.234
0.15	30.742	1.6	3.2	33	0.78	98	0.39	163	0.234
0.1583	30.43	1.8	3.044	34	0.78	99	0.39	164	0.234
0.1666	30.118	2	2.966	35	0.702	100	0.39 0.39	165	0.234
0.175 0.1833	29.728 29.494	2.2 2.4	2.81 2.81	36 37	0.702 0.702	101 102	0.39	166 167	0.234 0.234
0.1835	29.182	2.6	2.654	38	0.702	102	0.312	168	0.234
0.2	28.87	2.8	2.576	39	0.702	104	0.312	169	0.234
0.2083	28.637	3	2.498	40	0.624	105	0.312	170	0.234
0.2166	28.403	3.2	2.498	41	0.624	106	0.39	171	0.234
0.225	28.169	3.4	2.42	42	0.702	107	0.312	172	0.234
0.2333	27.935	3.6	2.42	43	0.624	108	0.39	173	0.234
0.2416	27.623	3.8	2.342	44	0.624	109	0.312	174	0.234
0.25	27.467	4	2.264	45	0.624	110	0.312	175	0.234
0.2583	27.233	4.2	2.264	46	0.624	111	0.312	176	0.234
0.2666 0.275	26.999 26.765	4.4 4.6	2.186 2.186	47 48	0.624 0.624	112 113	0.312 0.312	177 178	0.234 0.234
0.273	26.609	4.8	2.100	40	0.624	113	0.312	178	0.234
0.2916	26.375		2.029	50	0.546	115	0.312	180	0.234
0.3	26.219	5.2	2.029	51	0.624	116	0.312	181	0.234
0.3083	26.063	5.4	2.029	52	0.546	117	0.312		
0.3166	25.829	5.6	1.951	53	0.546	118	0.312		
0.325	26.063	5.8	1.951	54	0.546	119	0.312		
0.3333	25.439	6	1.951	55	0.546	120	0.312		
0.35	25.127	6.2	1.873	56	0.546	121	0.312		
0.3666	24.893	6.4	1.873	57	0.546	122	0.312		
0.3833 0.4	24.425 24.035	6.6	1.873 1.795	58 59	0.546 0.546	123 124	0.312 0.312		
0.4166	24.035	6.8 7	1.795	59 60	0.468	124	0.312		
0.4333	23.411	7.2	1.795	61	0.468	125	0.312		
0.45	19.901	7.4	1.717	62	0.546	127	0.312		
0.4666	-2.186	7.6	1.717	63	0.468	128	0.312		
0.4833	-0.312	7.8	1.717	64	0.468	129	0.312		
0.5	9.133	8	1.639	65	0.468	130	0.312		
0.5166	8.977	8.2	1.639	66	0.468	131	0.312		
0.5333	4.371	8.4	1.639	67	0.468	132	0.312		
0.55	3.278	8.6	1.561	68	0.468	133	0.312		
0.5666	5.464	8.8	1.561	69 70	0.468	134	0.312		
0.5833 0.6	5.933 4.684	9 9.2	1.561 1.561	70 71	0.468 0.468	135 136	0.312 0.312		
0.6166	4.137	9.4	1.483	72	0.468	130	0.312		
0.6333	4.684	9.6	1.483	73	0.468	138	0.312		
0.65	4.918	9.8	1.483	74	0.468	139	0.312		
0.6666	4.528	10	1.483	75	0.468	140	0.312		
0.6833	4.215	11	1.405	76	0.468	141	0.234		
0.7	4.371	12	1.327	77	0.468	142	0.312		
0.7166	4.449	13	1.327	78	0.468	143	0.312		
0.7333	4.293	14	1.249	79	0.468	144	0.312		

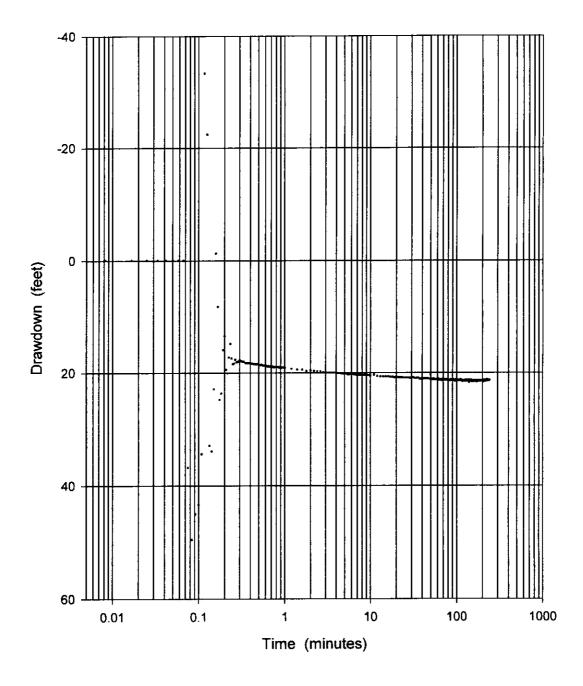
IW-1 Straddle Packer Test


1,800 - 1,850

.

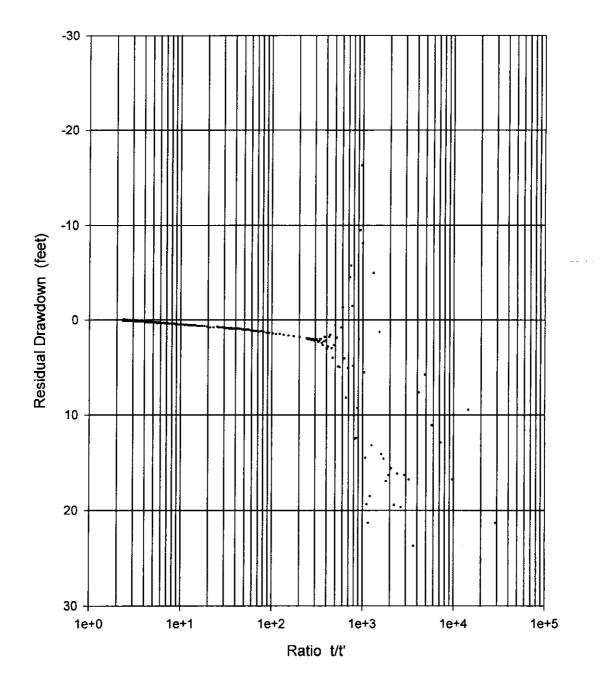
IW1

1800 - 1850


BACKGROUND, DRAWDOWN AND RECOVERY

IW1

1800 - 1850


DRAWDOWN DATA

IW1

1800 - 1850

RESIDUAL DRAWDOWN vs t/t'

COPPER CITY IW1 1800 - 1850 BACKGROUND DATA

TIME	WATER LEVEL	TIME	WATER LEVEL	TIME	WATER LEVEL	TIME	WATER LEVEL
0	0	0.75	-0.078	15	0	80	0
0.0083	õ	0.7666	0	16	0	81	0
0.0166	0	0.7833	0	17	0	82	0
0.025	-0.078	0.8	0	18	0	83	0
0.0333	0	0.8166	0	19	0	84	0
0.0416	0	0.8333	0	20	0	85	0 0
0.05	0	0.85	0	21 22	0	86 87	0
0.0583	0	0.8666 0.8833	0 0	22	0	88	Ő
0.0666 0.075	0 0	0.8833	0	23	ŏ	89	ŏ
0.0833	0	0.9166	Ő	25	õ	90	Ō
0.0916	õ	0.9333	õ	26	0	91	0
0.1	Õ	0.95	0	27	0	92	-0.078
0.1083	0	0.9666	0	28	0	93	0
0.1166	0	0.9833	0	29	0	94	0
0.125	-0.078	1	0	30	0	95	0
0.1333	0	1.2	0	31	0	96 97	0 0
0.1416	0	1.4	0	32 33	0 0	98	0
0.15	-0.078 -0.078	1.6 1.8	0	33	0	99	ŏ
0.1583 0.1666	-0.078	2	0	35	ŏ	100	ŏ
0.1866	0	2.2	-0.078	36	ō	101	Ō
0.1833	õ	2.4	0	37	Ó	102	0
0.1916	Ō	2.6	Ó	38	0	103	0
0.2	0	2.8	0	39	0	104	0
0.2083	0	3	0	40	0	105	0
0.2166	-0.078	3.2	0	41	0	106	0
0.225	0	3.4	0	42	0	107 108	0 0
0.2333	0	3.6	0	43 44	0 0	108	0
0.2416 0.25	0 0	3.8 4	0	44 45	0	110	-0.078
0.25	0	4.2	ŏ	46	ŏ	111	-0.078
0.2666	ő	4.4	ŏ	47	Ō	112	-0.078
0.275	ō	4.6	Ō	48	0	113	-0.078
0.2833	-0.078	4.8	0	49	0	114	0
0.2916	0	5	0	50	0	115	0
0.3	0	5.2	0	51	0	116	-0.078 -0.078
0.3083	-0.078	5.4	0	52 53	0 0	117 118	-0.078
0.3166	0	5.6 5.8	0 0	54 54	ő	119	-0.078
0.325 0.3333	0 -0.078	6	ŏ	55	õ	120	0
0.35	-0.010	6.2	õ	56	Ō	121	-0.078
0.3666	ō	6.4	Ō	57	0	122	-0.078
0.3833	Ō	6.6	0	58	0		
0.4	0	6.8	0	59	0		
0.4166	0	7	0	60	0		
0.4333	0	7.2	0	61	0 0		
0.45	0	7.4 7.6	0 0	62 63	-0.078		
0.4666 0.4833	0 0	7.8	ŏ	64	0		
0.4833	0	8	ő	65			
0.5166	õ	8.2	ō	66	0		
0.5333	ō	8.4	Ō	67	0		
0.55	0	8.6	0	68			
0.5666	0	8.8	0	69			
0.5833	0	9	0	70			
0.6	0	9.2	0	71	0		
0.6166	0	9.4	0 -0.078	72 73			
0.6333	0 -0.078	9.6 9.8	-0.078	74			
0.65 0.6666	-0.078	9.8 10	0	75			
0.6833	õ	10	Ő	76			
0.7	õ	12	ō	77	0		
0.7166	Ō	13	0	78			
0.7333	0	14	0	79	0		

COOPER CITY IW1 1800 - 1850 DRAWDOWN DATA

TIME	WATER LEVEL	TIME	WATER LEVEL	TIME	WATER LEVEL	TIME	WATER LEVEL	TIME	WATER LEVEL
0	-0.078	0.75	19.031	15	20.668	80	21.37	145	21.37
0.0083	-0.078	0.7666	18.953	16	20.668	81	21.292	146	21.37
0.0166	-0.078	0.7833	18.953	17	20.746	82	21.292	147	21.292
0.025	-0.078	0.8	18.953	18	20.746	83	21.292	148	21.526
0.0333	-0.078	0.8166	18.953	19	20.824	84	21.37	149	21.448
0.0416	-0.078	0.8333	18.953	20	20.746	85	21.37	150	21.526
0.05	-0.078	0.85	19.031	21	20.824	86	21.214	151	21.448
0.0583	-0.078	0.8666	19.109	22	20.824	87	21.292	152	21.448
0.0666	-0.078	0.8833	18.953	23	20.824	88	21.292	153	21.448
0.075	36.801	0.9	19.109	24	20.902 20.902	89 90	21.292 21.292	154 155	21.526 21.448
0.0833 0.0916	49.496 44.98	0.9166 0.9333	19.031 19.031	25 26	20.902	90	21.292	155 156	21.440
0.0310	43.344	0.95	19.031	20	20.902	92	21.214	150	21.448
0.1083	34.385	0.9666	19.031	28	20.902	93	21.292	158	21.526
0.1166	-33.341	0.9833	19.109	29	20.98	94	21.37	159	21.448
0.125	-22.404	1	19.109	30	20.824	95	21.448	160	21.448
0.1333	32.905	1.2	19.265	31	20.824	96	21.448	161	21.37
0.1416	33.918	1.4	19.421	32	20.902	97	21.37	162	21.37
0.15	22.851	1.6	19.421	33	20.98	98	21.214	163	21.448
0.1583	-1.326	1.8	19.655	34	20.98	99	21.448	164	21.37
0.1666	8.191	2	19.577	35	20.902	100	21.214	165	21.526
0.175	24.722	2.2	19.655	36	20.902	101	21.292	166	21.37
0.1833	23.63 15.912	2.4 2.6	19.733 19.733	37 38	21.058 21.136	102 103	21.292 21.37	167 168	21.448 21.448
0.1916 0.2	13,417	2.8	19.735	39	20.98	103	21.292	169	21.448
0.2083	19.421	3	19.811	40	21.058	105	21.292	170	21.448
0.2166	20.044	3.2	19.966	41	21.058	106	21.37	171	21.604
0.225	17.238	3.4	19.966	42	20.98	107	21.37	172	21.37
0.2333	14.82	3.6	19.966	43	21.058	108	21.37	173	21. 44 8
0.2416	17.3 94	3.8	19.966	44	20.98	109	21.37	174	21.526
0.25	18.407	4	19.966	45	21.058	110	21.37	175	21.526
0.2583	18.329	4.2	20.044	46	20.98	111	21.214	176	21.37
0.2666	17.627	4.4	20.044	47	21.058	112	21.37	177	21.448
0.275	18.095	4.6	20.122	48	21.058	113	21.292	178	21.526
0.2833	18.017	4.8	20.122	49	21.136	114	21.292	179 180	21.37 21.37
0.2916 0.3	17.93 9 17.705	5 5.2	20.122 20.122	50 51	20.356 21.058	115 116	21.448 21.37	181	21.37
0.3083	17.861	5.4	20.278	52	21.136	117	21.526	182	21.448
0.3166	17.939	5.6	20.278	53	21.214	118	21.448	183	21.37
0.325	18.017	5.8	20.2	54	21.058	119	21.448	184	21.37
0.3333	18.017	6	20.278	55	21.136	120	21.37	185	21.37
0.35	18.251	6.2	20.2	56	21.214	121	21.37	186	21.448
0.3666	18.251	6.4	20.278	57	21.214	122	21.37	187	21.448
0.3833	18.251	6.6	20.278	58	21.136	123	21.37	188	21.448
0.4	18.329	6.8	20.356	59	21.136	124	21.448	189	21.448
0.4166	18.329	7	20.356	60	21.136	125	21.37	190	21.448
0.4333	18.407	7.2	20.356 20.356	61 62	21.058	126 127	21.448 21.448	191 192	21.37 21.448
0.45 0.4666	18.407 18.485	7.4 7.6	20.356	63	21.292 21.292	127	21.292	193	21.440
0.4833	18.407	7.8	20.356	64	21.136	129	21.37	193	21.448
0.5	18.485	8	20.356	65	21.214	130	21.448	195	21.448
0.5166	18.641	8.2	20.434	66	21.214	131	21.292	196	21.448
0.5333	18.563	8.4	20.434	67	21.37	132	21.292	197	21.37
0.55	18.641	8.6	20.356	68	21.214	133	21.37	198	21.37
0.5666	18.719	8.8	20.434	69	21.136	134	21.448	199	21.448
0.5833	18.719	9	20.356	70	21.214	135	21.37	200	21.448
0.6	18.641	9.2	20.434	71	21.136	136	21.37	201	21.37
0.6166	18.719	9.4	20.434	72	21.214	137	21.37	202	21.37
0.6333	18.875	9.6	20.434 20.512	73	21.292 21.214	138 139	21.292 21.292	203 204	21.37 21.37
0.65 0.6666	18.797 18.875	9.8 10	20.512	74 75	21.214 21.292	139	21.292	204 205	21.37
0.6833	18.797	10	20.312	76	21.292	141	21.37	205	21.604
0.0033	19.031	12	20.59	77	21.214	142	21.448	207	21.37
0.7166	18.875	13	20.668	78	21.292	143	21.37	208	21.37
0.7333	18.875	14	20.668	79	21.214	144	21.37	209	21.292

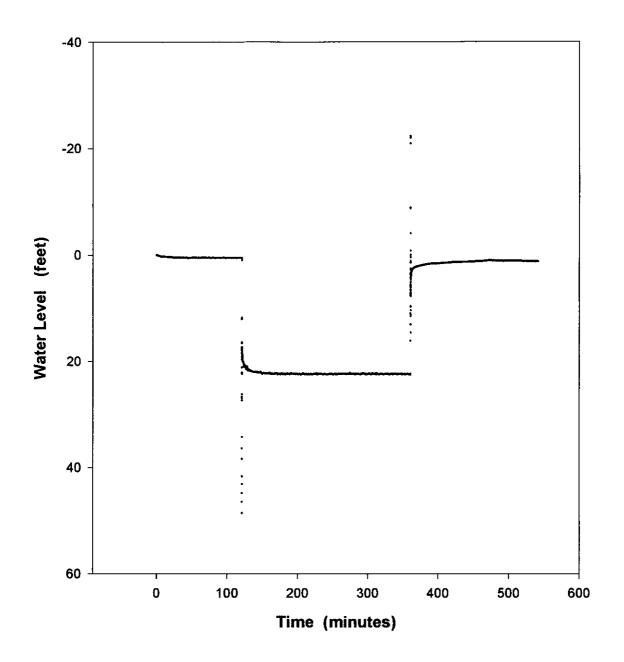
COOPER CITY IW1 1800 - 1850 DRAWDOWN DATA

TIME	WATER LEVEL
210	21.37
211	21.292
212	21.448
213	21.448
214	21.448
215	21.37
216	21.526
217	21.37
218	21.37
219	21.37
220	21.292
221	21.292
222	21.37
223	21.37
224	21.37
225	21.214
226	21.448
227	21.292
228	21.37
229	21.37
230	21.292
231	21.292
232	21.37
233	21.292
234	21.292
235	21.292
236	21.37
237	21.292
238	21.37
239	21.37
240	21.292
241	21.292

COPPER CITY IW1 1800 - 1850 RECOVERY

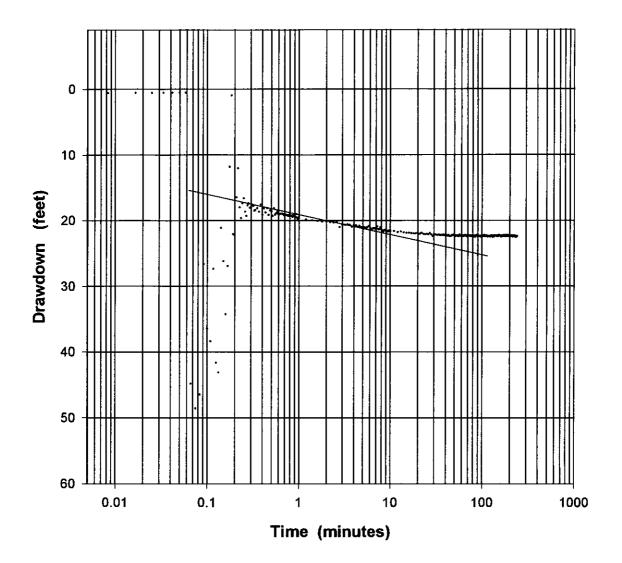
TIME	WATER LEVEL	TIME	WATER LEVEL	TIME	WATER LEVEL	TIME	WATER LEVEL	TIMÉ	WATER LEVEL
0	21.292	0.75	2.34	15	0.624	80	0.078	145	0.078
0.0083	21.292	0.7666	2.106	16	0.624	81	0.156	146	0.078
0.0166	9.439	0.7833	2.028	17	0.624	82	0.156	147	0
0.025	16.77	0.8	2.106	18	0.546	83	0.156	148	0
0.0333	12.871	0.8166	2.184	19	0.546	84	0.156	149	0
0.0416	11.077	0.8333	2.106	20	0.546	85	0.156	150	0.078
0.05	5.773	0.85	2.028	21	0.546	86	0.078	151	0
0.0583 0.0666	7.645	0.8666	2.028	22	0.546	87	0.156	152	0
0.0000	23.708 16.77	0.8833 0.9	2.106 2.028	23 24	0.468 0.546	88 89	0.156 0.156	153 154	0 0
0.0833	16.302	0.9166	2.028	25	0.468	90	0.078	155	0.078
0.0916	19.655	0.9333	1.95	26	0.468	91	0.078	156	0.078
0.1	16.146	0.95	2.028	27	0.468	92	0.078	157	0.078
0.1083	19.421	0.9666	2.028	28	0.468	93	0.078	158	0
0.1166	15.6	0.9833	1.95	29	0.468	94	0.156	159	0
0.125	16.302	1	1.95	30	0.468	95	0.156	160	0.078
0.1333	16.926	1.2	1.794	31	0.468	96	0.156	161	0
0.1416	14.586	1.4	1.716	32	0.39	97	0.156	162	0.078
0.15 0.1583	14.118	1.6	1.638	33	0.39	98	0.078	163	0.078
0.1565	1.248 -37.013	1.8 2	1.56 1.482	34 35	0.39 0.39	99 100	0.078 0.156	164 165	0 0
0.1000	-39.671	2.2	1.482	36	0.39	100	0.156	166	0
0.1833	4.994	2.4	1.404	37	0.39	102	0	167	Ö
0.1916	13.183	2.6	1.326	38	0.39	103	0.078	168	0.078
0.2	18.485	2.8	1.326	39	0.312	104	0.078	169	0.078
0.2083	21.292	3	1.248	40	0.312	105	0.078	170	-0.078
0.2166	19.343	3.2	1.17	41	0.312	106	0.078	171	0
0.225	14.508	3.4	1.248	42	0.312	107	0.078	172	0
0.2333	5.539	3.6	1.17	43	0.312	108	0.078	173	0.078
0.2416	-8.116	3.8	1.17	44	0.312	109	0.078	174	0.078
0.25 0.2583	-16.313 -9.521	4 4.2	1.092 1.092	45 46	0.312 0.312	110 111	0.156 0.156	175 176	0 0
0.2666	2.028	4.4	1.092	40	0.312	112	0.150	170	-0.078
0.275	9.283	4.6	1.014	48	0.312	113	0.078	178	0
0.2833	12.403	4.8	1.014	49	0.312	114	0	179	0.078
0.2916	12.481	5	1.014	50	0.312	115	0.078		
0.3	10.063	5.2	1.014	51	0.234	116	0.078		
0.3083	4.837	5.4	0.936	52	0.234	117	0.078		
0.3166	-1.482	5.6	0.936	53	0.312	118	0.078		
0.325 0.3333	-5.774 -4.526	5.8 6	0.936 0.936	54 55	0.312 0.234	119	0.078 0.078		
0.355	5.071	6.2	0.936	56	0.234	120 121	0.078		
0.3666	8.191	6.4	0.936	57	0.234	122	0.078		
0.3833	4.057	6.6	0.936	58	0.234	123	0.078		
0.4	-1.326	6.8	0.936	59	0.234	124	0.078		
0.4166	0.78	7	0.858	60	0.234	125	0		
0.4333	4.993	7.2	0.936	61	0.234	126	0.078		
0.45	4.915	7.4	0.858	62	0.234	127	0.078		
0.4666 0.4833	1.872 0.546	7.6 7.8	0.858 0.858	63	0.234 0.156	128 129	0.078		
0.4835	2.652	7.8 8	0.858	64 65	0.138	130	0.078 0		
0.5166	3.979	8.2	0.858	66	0.234	131	0.078		
0.5333	2.964	8.4	0.78	67	0.156	132	0		
0.55	1.56	8.6	0.78	68	0.156	133	0.078		
0.5666	1.794	8.8	0.78	69	0.156	134	0.078		
0.5833	2.808	9	0.78	70	0.234	135	0.078		
0.6	3.042	9.2	0.78	71	0.156	136	0		
0.6166	2.184	9.4	0.78	72	0.156	137	0		
0.6333	1.794	9.6 0 B	0.78	73	0.234	138	0.078		
0.65 0.6666	2.262 2.652	9.8 10	0.78 0.702	74 75	0.156 0.156	139 140	0.078		
0.6833	2.418	11	0.702	76	0.156	140	0 0		
0.7	2.028	12	0.78	70	0.156	142	0.078		
0.7166	2.028	13	0.702	78	0.234	143	0.078		
0.7333	2.262	14	0.624	79	0.156	144	0.078		

4

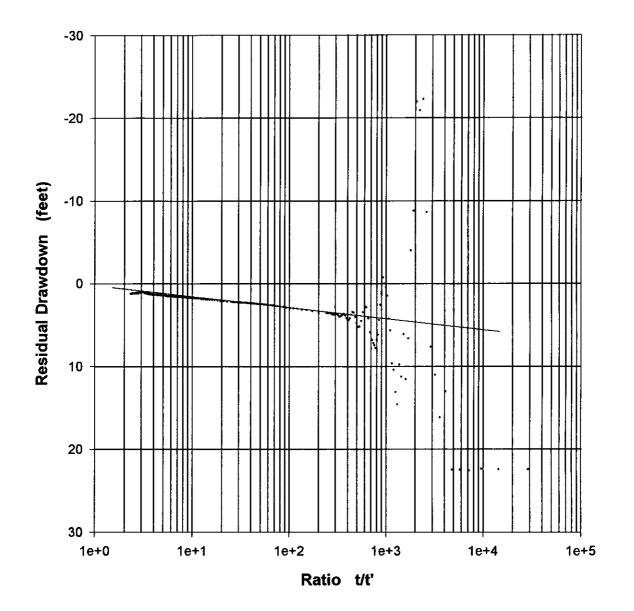

MW-1 Single Packer Test

1,900 - 1,950

Cooper City MW1 1900 - 1950


•

BACKGROUND, DRAWDOWN AND RECOVERY


Cooper City MW1 1900 - 1950

DRAWDOWN

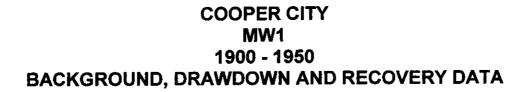
Cooper City MW1 1900 - 1950

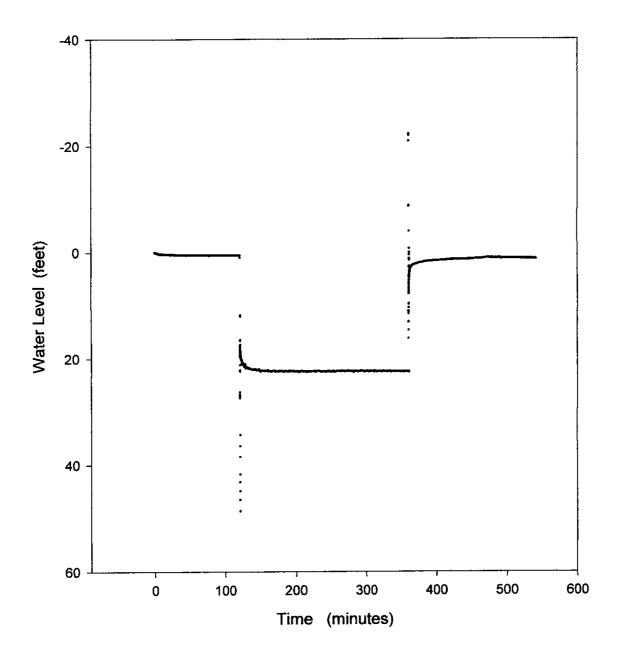
RESIDUAL DRAWDOWN VS t/t'

Cooper City MW1 1900 - 1950 RECOVERY DATA

Time	Water Level	Time	Water Level	Time	Water Level	Time	Water Level	Time	Water Level
0	22.438	0.75	3.708	15	1.996	80	1.362	145	1.141
0.0083	22.438	0.7666	3.645	16	1.965	81	1.362	146	1.141
0.0166	22.375	0.7833	3.645	17	1.933	82	1.331	147	1.141
0.025	22.565	0.8	3.676	18	1.933	83	1.331	148	1.141
0.0333	22.501	0.8166	3.74	19	1.87	84	1.299	149	1.141
0.0416	22.47	0.8333	3.74	20	1.87	85	1.299	150	1.172
0.05	13.058	0.85	3.708	21	1.806	86	1.299	151	1.141
0.0583	16.195	0.8666	3.645	22	1.806	87	1.299	152	1.141
0.0666	11.029	0.8833	3.581	23	1.774	88	1.267	153	1.141
0.075	7.638	0.9	3.549	24	1.774	89	1.267	154	1.141
0.0833	-8.653	0.9166	3.549	25	1.743	90 91	1.299 1.267	155 156	1,141 1,141
0.0916	-22.253	0.9333	3.581	26 27	1.743 1.711	92	1.236	158	1.141
0.1 0.1083	-20.89 -21.936	0.95 0.9666	3.581 3.581	28	1.711	93	1.236	158	1.172
0.1083	-8.811	0.9833	3.549	29	1.679	94	1.236	159	1.172
0.1100	-3.993	1	3.518	30	1.679	95	1.236	160	1.204
0.1333	6.624	1.2	3.328	31	1.648	96	1.204	161	1.204
0.1416	11.568	1.4	3.201	32	1.648	97	1.204	162	1.172
0.15	6.117	1.6	3.169	33	1.648	98	1.204	163	1.172
0.1583	11.251	1.8	3.042	34	1.648	99	1.204	164	1.172
0.1666	9.793	2	3.011	35	1.616	100	1.204	165	1.204
0.175	14.642	2.2	2. 94 7	36	1.616	101	1.172	166	1.204
0.1833	13.153	2.4	2.916	37	1.616	102	1.204	167	1.204
0.1916	10.427	2.6	2.82	38	1.616	103	1.172	168	1.204
0.2	9.666	2.8	2.789	39	1.584	104	1.172	169	1.204
0.2083	5.673	3	2.725	40	1.584	105	1.141	170 171	1.236 1.204
0.2166	4.247	3.2 3.4	2.694 2.662	41 42	1.616 1.584	106 107	1.109 1.077	172	1.204
0.225 0.2333	1.489 0.475	3.4 3.6	2.602	43	1.584	107	1.077	173	1.204
0.2355	0.475	3.8	2.599	44	1.553	109	1.077	174	1.236
0.25	-0.729	4	2.567	45	1.553	110	1.045	175	1.236
0.2583	1.172	4.2	2.535	46	1.521	111	1.014	176	1.236
0.2666	2.599	4.4	2.503	47	1.521	112	1.014	177	1.267
0.275	4.405	4.6	2.503	48	1.521	113	1.014	178	1.236
0.2833	6.18	4.8	2.472	49	1.521	114	1.014	179	1.236
0.2916	6.814	5	2.472	50	1.521	115	1.045	180	1.236
0.3	7.796	5.2	2.44	51	1.521	116	1.045	181	1.267
0.3083	7.448	5.4	2.408	52	1.521	117	1.077		
0.3166	7.194	5.6	2.408	53	1.489	118	1.045		
0.325	6.814	5.8	2.408	54	1.489 1.458	119 120	1.077 1.045		
0.3333 0.35	5.895 4.183	6 6.2	2.377 2.377	55 56	1.458	120	1.045		
0.35	4.163 2.884	6.4	2.377	57	1.458	122	1.109		
0.3833	2.662	6.6	2.345	58	1.426	123	1.077		
0.4	3.486	6.8	2.313	59	1.426	124	1.077		
0.4166	4.532	7	2.345	60	1.394	125	1.077		
0.4333	5.198	7.2	2.313	61	1.394	126	1.077		
0.45	5.229	7.4	2.313	62	1.394	127	1.077		
0.4666	4.754	7.6	2.313	63	1.362	128	1.077		
0.4833	4.025	7.8	2.282	64	1.394	129	1.077		
0.5	3.518	8	2.282	65	1.362	130	1.077		
0.5166	3.454	8.2	2.282	66	1.362	131	1.077		
0.5333	3.771	8.4	2.25	67	1.362 1.362	132 133	1.204 1.141		
0.55	4.183	8.6	2.25 2.25	68 69	1.362	134	1.109		
0.5666 0.5833	4.405 4.374	8.8 9	2.25	70	1.394	135	1.109		
0.5655	4.374	9.2	2.25	70	1.362	136	1.109		
0.6166	3.866	9.4	2.218	72	1.331	137	1.141		
0.6333	3.676	9.6	2.218	73	1.331	138	1.141		
0.65	3.676	9.8	2.187	74	1.331	139	1.109		
0.6666	3.803	10	2.187	75	1.331	140	1.172		
0.6833	3.93	11	2.155	76	1.331	141	1.1 41		
0.7	3.993	12	2.123	77	1.331	142	1.172		
0.71 6 6	3.961	13	2.06	78	1.331	143	1.141		
0.7333	3.835	14	2.028	79	1.331	144	1.141		

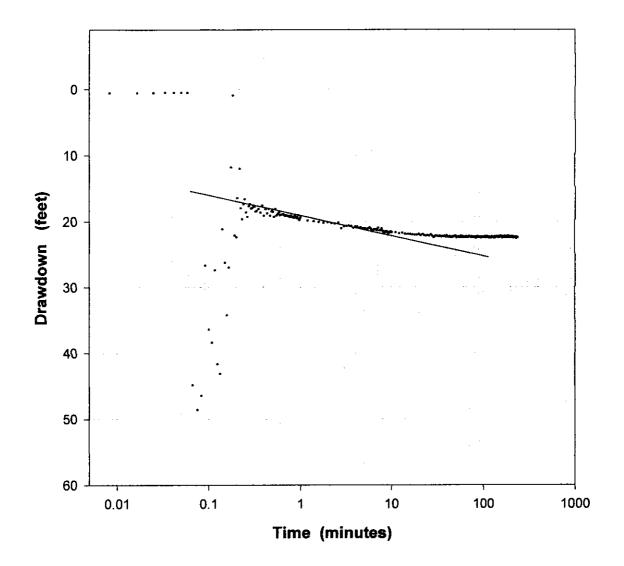
Cooper City MW1 1900 - 1950 DRAWDOWN DATA

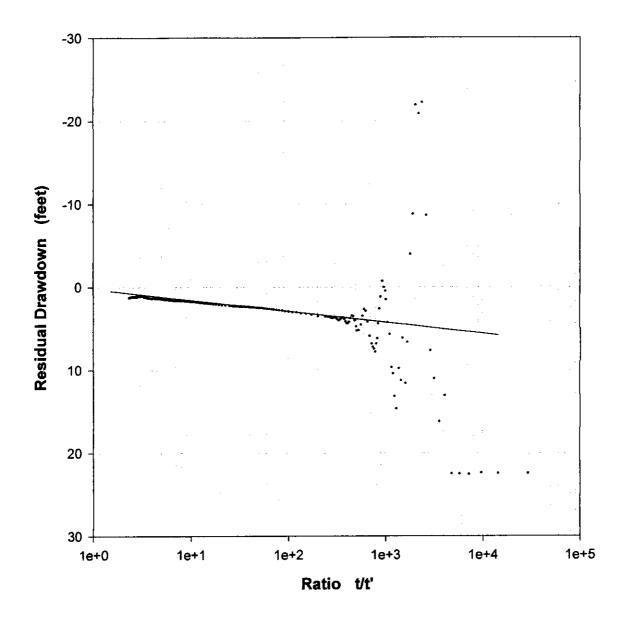

Time	WaterLevel	Time	WaterLevel	Time	WaterLevel	Time	WaterLevel
0	0.57	0.75	19.206	15	21.931	80	22.406
0.0083	0.57	0.7666	19.301	16	21.931	81	22.438
0.0166	0.57	0.7833	19.174	17	21.994	82	22.375
0.025	0.57	0.8	19.237	18	22.026	83	22.406
0.0333	0.538	0.8166	19.301	19	22.026	84	22.533
0.0416 0.05	0.538 0.538	0.8333 0.85	19.301 19.459	20 21	21.931 22.089	85 86	22.406 22.406
0.0583	0.538	0.8666	19.409	22	21.931	87	22.400
0.0666	44.839	0.8833	19.332	23	22.121	88	22.311
0.075	48.578	0.9	19.427	24	22.153	89	22.406
0.0833	46.455	0.9166	19.396	25	22.089	90	22.438
0.0916	26.684	0.9333	19.522	26	22.153	91	22.375
0.1	36.412	0.95	19.047	27	21.963	92	22.406
0.1083	38.408 27.381	0.9666	19.776	28	22.184	93	22.47
0.1166 0.125	41.671	0.9833 1	19.586 19.427	29 30	22.406 22.248	94 95	22.438 22.375
0.1333	-43.116	1.2	19.839	31	22.184	96	22.501
0.1416	-21.175	1.4	19.966	32	22.248	97	22.438
0.15	26.241	1.6	20.061	33	22.248	98	22.375
0.1583	34.257	1.8	20.188	34	22.216	99	22.406
0.1666	26.969	2	20.125	35	22.311	100	22.47
0.175	11.822	2.2	20.251	36	22.248	101	22.438
0.1833	0.95	2.4	20.315	37	22.248	102	22.438
0.1916 0.2	22.121 22.375	2.6 2.8	20.188 21.0 44	38 39	22.216 22.311	103 104	22.375 22.375
0.2083	16.448	3	20.727	40	22.311	104	22.375
0.2166	12.043	3.2	20.695	41	22.343	105	22.279
0.225	18.001	3.4	20.632	42	22.375	107	22.47
0.2333	19.649	3.6	20.695	43	22.279	108	22.47
0.2416	17.368	3.8	20.98	44	22.406	109	22.343
0.25	16.607	4	20.758	45	22.375	110	22.375
0.2583	18.635	4.2	20.79	46	22.406	111	22.311
0.2666	19.301	4.4	21.012	47	22.279	112	22.343
0.275 0.2833	17.684 17.368	4.6 4.8	20.885 21.075	48 49	22.311 22.216	113 114	22.343 22.438
0.2916	18.033	5	21.075	50	22.248	115	22.47
0.3	18.001	5.2	21.075	51	22.47	116	22.501
0.3083	17.558	5.4	21.17	52	22.343	117	22.406
0.3166	17.78	5.6	21.075	53	22.343	118	22.406
0.325	18.508	5.8	20.917	54	22.311	119	22.406
0.3333	18.382	6	21,17	55	22.438	120	22.438
0.35	18.128	6.2	21.456	56 57	22.406	121	22.47
0.3666 0.3833	18.667 17.558	6.4 6.6	21.265 21.234	57 58	22.216 22.406	122 123	22.501 22.438
0.4	19.111	6.8	21.234	59	22.406	123	22.438
0.4166	18.16	7	21.329	60	22.311	125	22.311
0.4333	18.762	7.2	20.98	61	22.343	126	22.438
0.45	18.128	7.4	21.392	62	22.47	127	22.343
0.4666	19.142	7.6	21.36	63	22.375	128	22.375
0.4833	18.445	7.8	21.075	64	22.406	129	22.438
0.5 0.5166	18.54 19.301	8 8.2	21.424 21.551	65 66	22.279 22.375	130	22.533
0.5333	18.128	8.4	21.331	67	22.375	131 132	22.406 22.375
0.55	19.111	8.6	21.487	68	22.438	133	22.438
0.5666	18.889	8.8	21.487	69	22.311	134	22.311
0.5833	18.667	9	21.614	70	22.279	135	22.501
0.6	19.047	9.2	21.772	71	22.343	136	22.438
0.6166	19.015	9.4	21.614	72	22.311	137	22.406
0.6333	18.952	9.6	21.709	73	22.343	138	22.375
0.65 0.6666	18.952 18.984	9.8 10	21.551 21.614	74 75	22.406 22.311	139 140	22.375 22.311
0.6833	10.904	11	21.614	75 76	22.311	140	22.311
0.0000	19.079	12	21.804	70	22.438	141	22.375
0.7166	19.142	13	21.741	78	22.343	143	22.343
0.7333	19.174	14	21.868	79	22.406	144	22.406


Cooper City MW1 1900 - 1950 DRAWDOWN DATA

Time	WaterLevel	Time	WaterLevel
145	22.311	210	22.47
146	22.311	211	22.47
147	22.375	212	22.406
148	22.375	213	22.343
149	22.438 22.311	214 215	22.406 22.501
150 151	22.406	215	22.301
152	22.311	217	22.406
153	22.343	218	22.375
154	22.216	219	22.375
155	22.375	220	22.375
156 157	22.343 22.343	221 222	22.47 22.47
157	22.343	223	22.375
159	22.343	224	22.438
160	22.438	225	22.438
161	22.375	226	22.406
162	22.501 22.311	227	22.375 22.501
163 1 64	22.311	228 229	22.501
165	22.375	230	22.438
166	22.343	231	22.438
167	22.438	232	22.406
168	22.438	233	22.565
169	22.375 22.438	234 235	22.47 22.406
170 171	22.438	235	22.400
172	22.279	237	22.438
173	22.279	238	22.47
174	22.311	239	22.47
175	22.406	240	22.438
176 177	22.47 22.375		
178	22.47		
179	22.406		
180	22.343		
181	22.343		
182 183	22.279 22.438		
184	22.430		
185	22.406		
186	22.279		
187	22.375		
188	22.406		
189 100	22.375		
190 191	22.438 22.279		
192	22.47		
193	22.311		
194	22.406		
195	22.47		
196 197	22.47 22.343		
198	22.375		
199	22.375		
200	22.375		
201	22.438		
202 203	22.47 22.438		
203	22.343		
205	22.343		
206	22.438		
207	22.375		
208	22.438 22.406		
209	22.400		

Cooper City MW1 1900 - 1950 BACKGROUND DATA

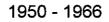

Time	Water Level	Time	Water Level	Tîme	Water Level	Time	Water Level
0	0	0.75	0.095	15	0.348	80	0.507
0.0083	0	0.7666	0.095	16	0.348	81	0.538
0.0166	0.031	0.7833	0.063	17	0.38	82	0.538
0.025	0.031	0.8	0.063	18	0.38	83	0.538
0.0333	0.031	0.8166	0.063	19	0.38	84	0.538
0.0416	0.031	0.8333	0.063	20	0.38	85	0.538
0.05	0.031	0.85	0.095	21	0.38	86	0.538
0.0583 0.0666	0.031 0.031	0.8666 0.8833	0.063 0.095	22 23	0.412 0.412	87 88	0.538 0.538
0.0000	0.031	0.8633	0.095	23	0.412	89	0.538
0.0833	0.031	0.9166	0.095	25	0.412	90	0.57
0.0916	0.031	0.9333	0.095	26	0.412	91	0.538
0.1	0.031	0.95	0.063	27	0.412	92	0.538
0.1083	0.031	0.9666	0.063	28	0.443	93	0.538
0.1166	0.031	0.9833	0.095	29	0.443	94	0.538
0.125	0	1	0.063	30	0.443	95	0.507
0.1333	0.031	1.2	0.063	31	0.475	96	0.538
0.1416	0.031	1.4	0.063	32	0.475	97	0.538
0.15	0	1.6	0.063	33	0.475	98	0.538
0.1583 0.1666	0.031 0.031	1.8 2	0.063 0.095	34	0.475 0.475	99 100	0.538
0.1000	0.031	2.2	0.095	35 36	0.475	100	0.538 0.538
0.1833	0.031	2.4	0.095	36	0.475	101	0.538
0.1916	0.031	2.6	0.126	38	0.475	103	0.538
0.2	0.031	. 2.8	0.126	39	0.475	104	0.57
0.2083	0.031	3	0.126	40	0.507	105	0.538
0.2166	0.031	3.2	0.158	41	0.507	106	0.57
0.225	0.031	3.4	0.158	42	0.475	107	0.57
0.2333	0.031	3.6	0.158	43	0.507	108	0.538
0.2416	0.031	3.8	0.126	44	0.507	109	0.538
0.25	0.031	4	0.158	45	0.538	110	0.538
0.2583 0.2666	0.031	4.2	0.19	46	0.507	111	0.538
0.2666	0.031 0.031	4.4 4.6	0.19 0.19	47 48	0.507 0.507	112 113	0.538 0.538
0.2833	0.031	4.8	0.19	49	0.507	114	0.538
0.2916	0.063	5	0.221	50	0.507	115	0.538
0.3	0.063	5.2	0.221	51	0.507	116	0.57
0.3083	0.063	5.4	0.253	52	0.507	117	0.57
0.3166	0.063	5.6	0.253	53	0.507	118	0.57
0.325	0.031	5.8	0.253	54	0.507	119	0.57
0.3333	0.063	6	0.253	55	0.475	120	0.57
0.35	0.031	6.2	0.253	56	0.507	121	0.57
0.3666 0.3833	0.063 0.063	6.4 6.6	0.285 0.316	57 58	0.507 0.507		
0.3633	0.063	6.8	0.316	59	0.538		
0.4166	0.063	7	0.316	60	0.507		
0.4333	0.063	7.2	0.316	61	0.538		
0.45	0.063	7.4	0.316	62	0.538		
0.4666	0.063	7.6	0.316	63	0.507		
0.4833	0.063	7.8	0.316	64	0.507		
0.5	0.063	8	0.316	65	0.507		
0.5166	0.063	8.2	0.316	66	0.507		
0.5333	0.063	8.4	0.316	67	0.507		
0.55	0.063	8.6	0.316	68	0.507		
0.5666 0.5833	0.063 0.063	8.8 9	0.316 0.316	69 70	0.507 0.507		
0.5555	0.095	9.2	0.316	70	0.538		
0.6166	0.095	9.4	0.316	72	0.538		
0.6333	0.095	9.6	0.348	73	0.507		
0.65	0.095	9.8	0.348	74	0.538		
0.6666	0.095	10	0.348	75	0.507		
0.6833	0.063	11	0.316	76	0.538		
0.7	0.095	12	0.316	77	0.538		
0.7166	0.095	13	0.348	78	0.538		
0.7333	0.063	14	0.348	79	0.538		


Cooper City MW1 1900 - 1950

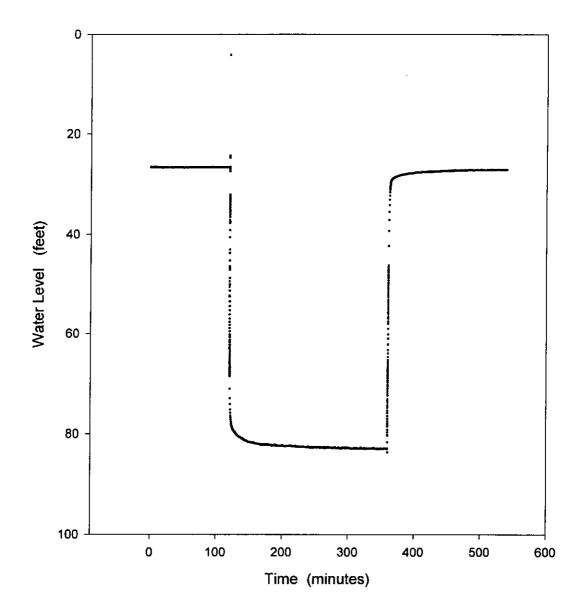
DRAWDOWN

Cooper City MW1 1900 - 1950

RESIDUAL DRAWDOWN VS t/t'

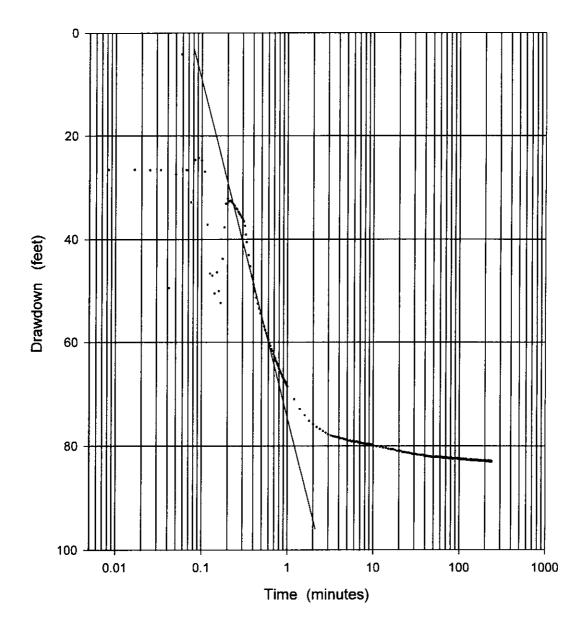


IW-1 Straddle Packer Test


1,950 - 1,966

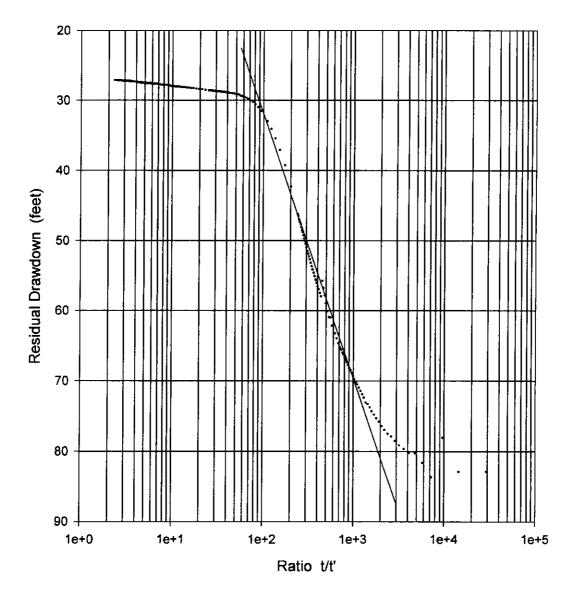
•

IW 1


BACKGROUND, DRAWDOWN AND RECOVERY DATA

IW 1

1950 - 1966


DRAWDOWN

IW 1

1950 - 1966

COOPER CITY IW1 1950-1966 DRAWDOWN DATA

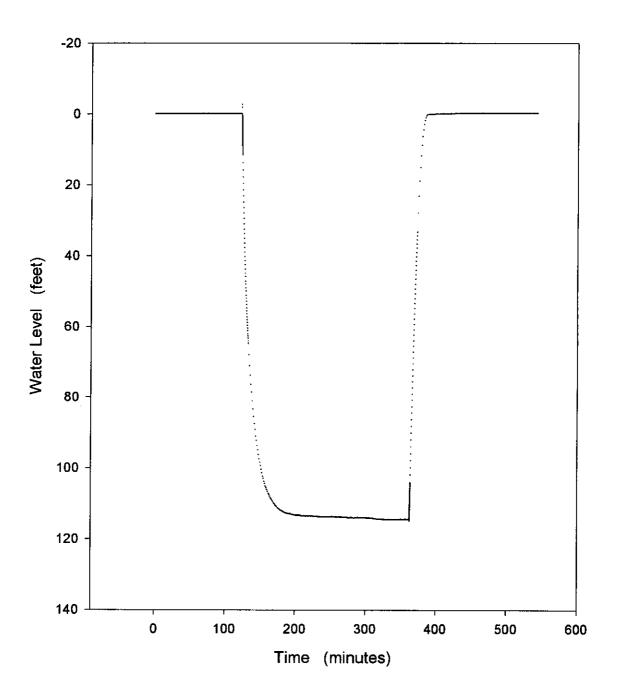
тіме	WATER LEVEL	TIME	WATER LEVEL	TIME	WATER LEVEL	TIME	WATER LEVEL	TIME	WATER LEVEL
0	26.606	0.75	63.852	15	80.509	80	82.298	145	82.609
0.0083	26.528	0.7666	64.242	16	80.586	81	82.22	146	82.765
0.0166	26.528	0.7833	64.631	17	80.586	82	82.298	147	82.765
0.025	26.606	0.8	65.098	18	80.742	83	82.376	148	82.609
0.0333	26.606	0.8166	65.487	19	80.898	84	82.376	149	82.687
0.0416	49.444	0.8333	65.799	20	80.82	85	82.454	150	82.687
0.05	27.386	0.85	66.11	21	80.898	86	82.376	151	82.609
0.0583	4.137	0.8666	66.422	22	81.131	87	82.376	152	82.687
0.0666	26.606	0.8833	66.733	23	81.131	88	82.376	153 154	82.687 82.687
0.075	32.766 24.656	0.9 0.9166	66.966 67.278	24 25	81.209 81.287	89 90	82.376 82.376	154	82.687
0.0833 0.0916	24.050	0.9333	67.511	26	81.287	91	82.298	156	82.765
0.0910	24.734	0.95	67.745	27	81.364	92	82.376	157	82.765
0.1083	26.918	0.9666	67.979	28	81.442	93	82.376	158	82.765
0.1166	37.131	0.9833	68.29	29	81.52	94	82.376	159	82.687
0.125	46.639	1	68.523	30	81.52	95	82.298	160	82.687
0.1333	47.029	1.2	71.014	31	81.52	96	82.454	161	82.609
0.1416	50.534	1.4	72.882	32	81.598	97	82.454	162	82.765
0.15	46.405	1.6	74.05	33	81.676	98	82.376	163	82.765
0.1583	50.067	1.8	75.139	34	81.676	99	82.376	164	82.765
0.1666	52.326	2	75.762	35	81.676	100	82.376	165	82.765
0.175	43.756	2.2	76.307	36	81.753	101	82.376	166	82.687
0.1833	37.677	2.4	76.696	37	81.676	102 103	82.531 82.531	167 168	82.765 82.843
0.1916	33.078	2.6	77.085 77.396	38 39	81.676 81.831	103	82.551	169	82.843
0.2 0.2083	32.064 32.61	2.8 3	77.390		81.909	105	82.454	170	82.765
0.2005	32.454	3.2	77.941	40	81.831	106	82.531	171	82.843
0.225	32.844	3.4	78.096	42	81.909	107	82.531	172	82.687
0.2333	33.156	3.6	78.174	43	81.909	108	82.531	173	82.765
0.2416	33.467	3.8	78.252	44	81.987	109	82.531	174	82.765
0.25	33.935	4	78.33	45	81.987	110	82.531	175	82.687
0.2583	34.169	4.2	78.486	46	81.987	111	82.531	176	82.843
0.2666	34.637	4.4	78.486	47	81.987	112	82.454	177	82.765
0.275	35.027	4.6	78.641	48	82.142	113	82.531	178	82.687
0.2833	35.338	4.8	78.719	49	82.142	114	82.531	179	82.765
0.2916	35.728	5	78.797	50	82.065	115	82.531	180	82.687
0.3	36.04	5.2	78.952	51	82.065	116 117	82.531 82.609	181 182	82.765 82.765
0.3083 0.3166	36.508 37.365	5.4 5.6	78.875 79.108	52 53	82.142 82.065	118	82.609	183	82.765
0.3165	39.08	5.8	79.03	54 54	81.987	119	82.531	184	82.843
0.3333	40.561	6	79.108	55	82.065	120	82.454	185	82.843
0.35	43.055	6.2	79.186	56	82.142	121	82.609	186	82.843
0.3666	45.236	6.4	79.108	57	82.065	122	82.609	187	82.843
0.3833	47.106	6.6	79.186	58	82.065	123	82.687	188	82.843
0.4	48.743	6.8	79.341	59	82.142	124	82.609	189	82.843
0.4166	50.067	7	79.341	60	82.065	125	82.687	190	82.765
0.4333	51.313	7.2	79.341	61	82.142	126	82.609	191	82.765
0.45	52.482	7.4	79.41 9	62	82.142	127	82.609	192	82.843
0.4666	53.495	7.6	79.497	63	82.22	128	82.687	193	82.765 82.843
0.4833	54.429	7.8	79.497	64	82.142 82.298	129 130	82.609 82.609	194 195	82.843
0.5 0.5166	55.286 56.143	8 8.2	79. 49 7 79.575	65 66	82.298	130	82.609 82.609	195	82.843
0.5333	56.922	8.4	79.575	67	82.230	132	82.609	197	82.843
0.555	57.623	8.6	79.575	68	82.142	133	82.687	198	82.843
0.5666	58.246	8.8	79.653	69	82.22	134	82.609	199	82.843
0.5833	58.869	9	79.73	70	82.298	135	82.609	200	82.687
0.6	59.492	9.2	79.653	71	82.142	136	82.609	201	82.843
0.6166	60.193	9.4	79.73	72	82.22	137	82.531	202	82.92
0.6333	60.66	9.6	79.73	73	82.298	138	82.765	203	82.843
0.65	61.283	9.8	79.808	74	82.298	139	82.609	204	82.843
0.6666	61.672	10	79.808	75	82.298	140	82.609	205	82.765
0.6833	62.217	11	80.042	76	82.376	141	82.687	206	82.92
0.7	62.684	12	80.12	77	82.298	142	82.687	207	82.92
0.7166	63.074	13	80.275	78 79	82.298	143 144	82.609 82.765	208 209	82.843 82.843
0.7333	63. 54 1	14	80.353	19	82.376	144	02.700	209	02.070

.

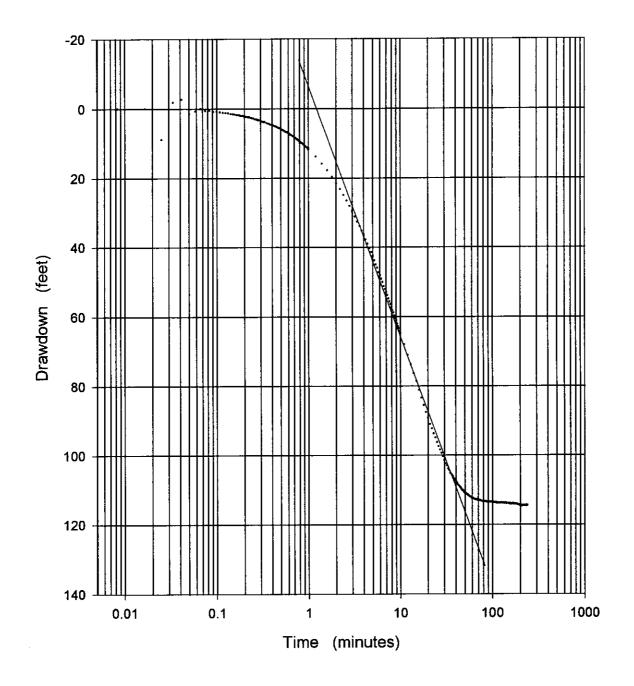
COOPER CITY IW1 1950-1966 DRAWDOWN DATA

TIME	WATER LEVEL
210	82.843
211	82.843
212	82.843
213	82.92
214	82.92
215	82.843
216	82.843
217	82.92
218	82.765
219	82.843
220	82.765
221	82.843
222	82.92
223	82.92
224	82.92
225	82.843
226	82.998
227	82.92
228	82.998
229	82.843
230	82.843
231	82.92
232	82.92
233	82.92
234	82.843
235	82.92
236	82.843
237	82.843
238	82.92
239	82.92
240	82.998

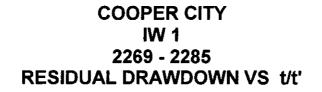
COOPER CITY IW1 1950-1966 RECOVERY DATA

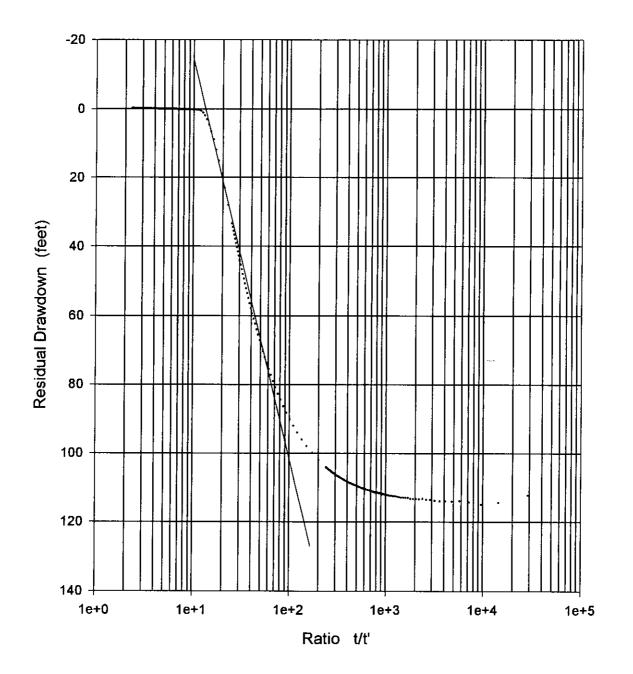

•

TIME	WATER LEVEL	TIME	WATER LEVEL	TIME	WATER LEVEL	TIME	WATER LEVEL	TIME	WATER LEVEL
0	82.92	0.75	52.248	15	28.244	80	27.308	145	27.152
0.0083	82.843	0.7666	51.859	16	28.244	81	27.308	146	27.152
0.0166	82.843	0.7833	51.469	17	28.166	82	27.308	147	27.152
0.025	78.019	0.8	50.924	18	28.166	83	27.308	148	27.152
0.0333	83.621	0.8166	50.457	19	28.088	84	27.308	149	27.152
0.0416	81.598	0.8333	50.067	20	28.088	85	27.308	150	27.074
0.05	80.275	0.85	49.677	21	28.088	86	27.308	151	27.152
0.0583	80.197	0.8666	49.21	22	28.01	87	27.308	152	27.152
0.0666	79.653	0.8833	48.743	23	28.01	88	27.308	153	27.152
0.075	79.108	0.9	48.431	24	28.01	89	27.308	154	27.074
0.0833	78.486	0.9166	48.041	25	28.01	90	27.308	155	27.152
0.0916	77.863	0.9333	47.574	26	27.932	91	27.23	156	27.074
0.1	77.474	0.95	47.262	27	27.932	92	27.308	157	27.074
0.1083	76.929	0.9666	46.951	28	27.932	93	27.308	158	27.074
0.1166	76.384	0.9833	46.483	29	27.854	94	27.308	159	27.074
0.125	75.762	1	46.171	30	27.776	95	27.23	160	27.074
0.1333	75.295	1.2	42.275	31	27.776 27.776	96 97	27.308 27.23	161 162	27.074 27.074
0.1416	74.75	1.4	39.236 37.053	32 33	27.776	98	27.23	163	27.074
0.15 0.1583	74,283 73,738	1.6 1.8	35.416	33	27.776	99	27.308	164	27.074
0.1583	73.272	2	34.091	35	27.776	100		165	27.074
0.175	73.038	2.2	33	36	27.776	101	27.23	166	27.074
0.1833	72.338	2.4	32.22	37	27.776	102		167	27.074
0.1916	71.871	2.6	31.518	38	27.698	103		168	27.074
0.2	71.404	2.8	30.973	39	27.698	104		169	27.074
0.2083	70.936	3	30.583	40	27.698	105		170	27.074
0.2166	70.469	3.2	30.271	41	27.62	106		171	27.074
0.225	70,158	3.4	30.037	42	27.62	107	27.23	172	27.074
0.2333	69.691	3.6	29.803	43	27.62	108	27.23	173	27.074
0.2416	69.302	3.8	29.647	44	27.62	109		174	27.074
0.25	68.835	4	29.491	45	27.62	110		175	27.074
0.2583	68.446	4.2	29.413	46	27.62	111		176	27.074
0.2666	68.134	4.4	29.335	47	27. 6 2	112	27.23	177	27.074
0.275	67.745	4.6	29.179	48	27.62	113		178	27.074
0.2833	67.356	4.8	29.101	49	27.62	114	27.23	179	27.074
0.2916	67.044	5	29.101	50	27.542	115		180	27.074
0.3	66.655	5.2	29.023	51	27.464	116			
0.3083	66.266	5.4	29.023	52	27.542 27.542	117 118			
0.3166	65.954 65.565	5.6 5.8	28.945 28.945	53 54	27.542	119			
0.325 0.3333	65.254	5.8	28.867	55	27.542	120			
0.3333	64.631	6.2	28.867	56	27.542	121			
0.3666	63.93	6.4	28.867	57	27.464	122			
0.3833	63.229	6.6	28.789	58	27.542	123			
0.4	62.061	6.8	28.789	59	27.464	124			
0.4166	62.139	7	28.789	60	27.464	125	27.152		
0.4333	60.971	7.2	28.789	61	27.464	126			
0.45	60.893	7.4	28.711	62	27.464	127			
0.4666	60.115	7.6	28.711	63	27.464	128			
0.4833	58.947	7.8	28.711	64	27.464	129			
0.5	57.856	8	28.711	65	27.464	130			
0.5166	56.766	8.2	28.711	66	27.464	131			
0.5333	55.753	8.4	28.633	67	27.386	132			
0.55	57.934	8.6	28.633	68	27.386	133			
0.5666	57.467	8.8	28.633	69	27.464	134			
0.5833	56.922	9	28.633	70	27.386 27.386	135 136			
0.6	56.532	9.2	28.555	71 72	27.386	136			
0.6166	55.987	9.4 9.6	28.555 28.555	72 73	27.386	137			
0.6333 0.65	55.598 55.052	9.6 9.8	28.555	73	27.386	139			
0.6666	55.052 54.585	9.0 10	28.555	75	27.386	140			
0.6833	54.118	11	28.478	76	27.386	141			
0.0033	53.65	12	28.4	77	27.386	142			
0.7166	53.183	13	28.4	78	27.308	143			
0.7333	52.638	14	28.322	79	27.386	144			


IW-1 Straddle Packer Test

2,269 - 2,285





COOPER CITY IW 1 2269 - 2285 DRAWDOWN

Cooper - Jacob Non-Equilibrim Analysis

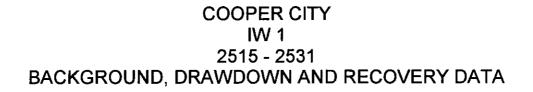
COOPER CITY IW 1 2269 - 2285 BACKGROUND DATA

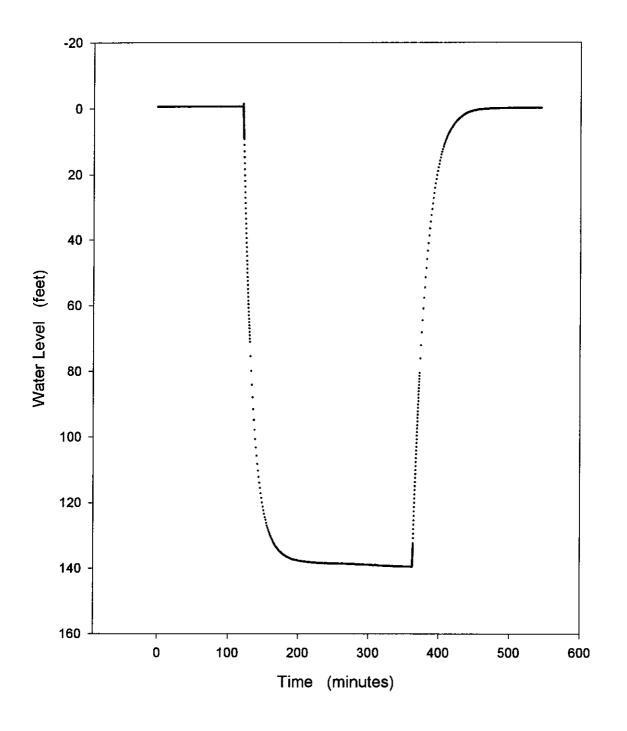
Time	Water Level	Time	Water Level	Time	Water Level	Time	Water Level
0	0	0.75	0	15	-0.031	80	-0.063
0.0083	õ	0.7666	õ	16	-0.031	81	-0.063
0.0166	0	0.7833	0	17	-0.031	82	-0.095
0.025	0	0.8	0	18	-0.031	83	-0.095
0.0333	0	0.8166	0	19	-0.031	84	-0.095
0.0416	0	0.8333	0	20	-0.031	85	-0.095
0.05	0	0.85	0	21	-0.063	86	-0.095
0.0583	0	0.8666	0	22	-0.063	87 88	-0.095 -0.095
0.0666	0	0.8833	0	23	-0.031	89	-0.095
0.075	0	0.9	0	24 25	-0.063 -0.063	90	-0.095
0.0833	0	0.9166 0.9333	0	26	-0.063	91	-0.095
0.0916 0.1	0 0	0.95	0	27	-0.063	92	-0.095
0.1083	0	0.9666	õ	28	-0.063	93	-0.063
0.1166	ő	0.9833	õ	29	-0.063	94	-0.095
0.125	õ	1	Ō	30	-0.063	95	-0.095
0.1333	õ	1.2	Ō	31	-0.063	96	-0.095
0.1416	Ō	1.4	0	32	-0.063	97	-0.095
0.15	0	1. 6	0	33	-0.031	98	-0.095
0.1583	0	1.8	0	34	-0.031	99	-0.095
0.1666	0	2	0	35	-0.063	100	-0.095
0.175	0	2.2	0	36	-0.063	101	-0.095
0.1833	0	2.4	0	37	-0.063	102	-0.095
0.1916	0	2.6	0	38	-0.063	103	-0.095
0.2	0	2.8	0	39	-0.063	104 105	-0.095 -0.095
0.2083	0	3	0	40	-0.063	105	-0.095
0.2166	0	3.2	0	41 42	-0.063 -0.063	100	-0.095
0.225	0	3.4	0	42	-0.063	107	-0.095
0.2333	0	3.6 3.8	0 0	43 44	-0.063	109	-0.095
0.2416	0 0	3.0 4	0	45	-0.063	100	-0.063
0.25 0.2583	0	4.2	ŏ	46	-0.031	111	-0.095
0.2666	õ	4.4	ŏ	47	-0.063	112	-0.095
0.275	Õ	4.6	Ō	48	-0.063	113	-0.095
0.2833	ō	4.8	0	49	-0.063	114	-0.095
0.2916	0	5	0	50	-0.063	115	-0.095
0.3	0	5.2	0	51	-0.063	116	-0.095
0.3083	0	5.4	0	52	-0.063	117	-0.095
0.3166	0	5.6	0	53	-0.063	118	-0.095
0.325	0	5.8	0	54	-0.063	119	-0.095
0.3333	0	6	0	55	-0.063	120 121	-0.095 -0.095
0.35	0	6.2	0	56 57	-0.063 -0.063	122	-0.063
0.3666	0	6.4	0 0	58	-0.063	123	-0.063
0.3833	0 0	6.6 6.8	0	59	-0.063	120	0.000
0.4 0.4166	0	7	ŏ	60	-0.063		
0.4333	õ	, 7.2	ŏ	61	-0.063		
0.45	õ	7.4	ŏ	62	-0.063		
0.4666	ō	7.6	Ō	63	-0.063		
0.4833	Ō	7.8	0	64	-0.063		
0.5	0	8	0	65	-0.063		
0.5166	0	8.2	0	66	-0.063		
0.5333	0	8.4	0	67	-0.095		
0.55	0	8.6	0	68	-0.095		
0.5666	0	8.8	0	69	-0.063		
0.5833	0	9	0	70	-0.063		
0.6	0	9.2	0	71 72	-0.063 -0.063		
0.6166	0	9.4	0	72	-0.095		
0.6333	0	9.6 9.8	0	74	-0.095		
0.65 0.6666	0 0	9.8 10	Ő	75	-0.095		
0.6833	0	10	-0.031	76	-0.095		
0.0033	0	12	-0.031	77	-0.095		
0.7166	ō	13	-0.031	78	-0.095		
0.7333	Ō	14	0	79	-0.095		
-							

COOPER CITY IW 1 2269 - 2285 DRAWDOWN DATA

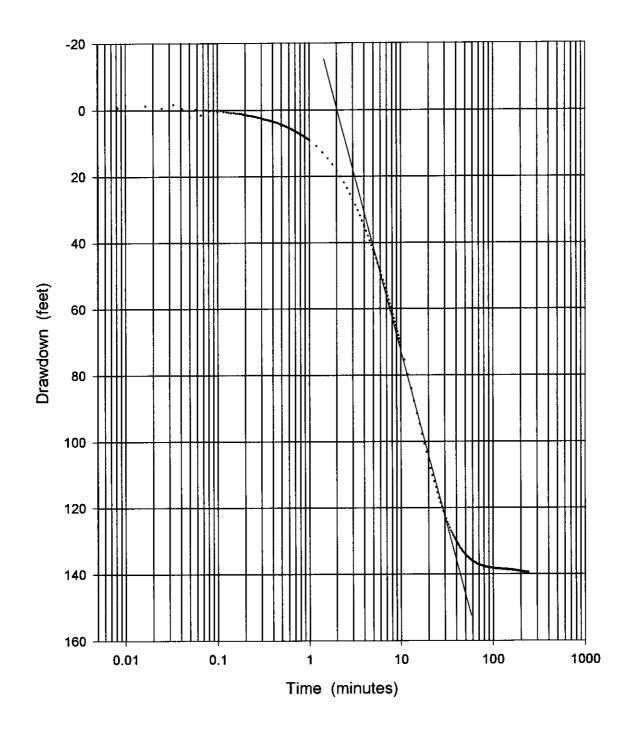
Time	Water Level	Time	Water Level	Τιτιθ	Water Level	Time	Water Level
0	-0.063	0.75	8.875	15	78.624	80	113.396
0.0083	-0.063	0.7666	8.938	16	81.122	81	113.396
0.0166	-0.063	0.7833	9.255	17	83.431	82	113.333
0.025	8.875	0.8	9.35	18	85.581	83	113.396
0.0333	-1.902	0.8166	9.636	19	87.573	84	113.333
0.0416	-2.726	0.8333	9.826	20	89.249	85	113.491
0.05	1.458	0.85	9.953	21	91.083	86	113.491
0.0583	0.634	0.8666	10.206	22	92.284	87	113.554
0.0666 0.075	0 0.507	0.8833 0.9	10.365 10.555	23 24	93.739 94.972	88 89	113.554 113.554
0.0833	0.307	0.9166	10.555	24	96.299	90	113.491
0.0916	0.792	0.9333	10.967	26	97.469	91	113.554
0.1	0.729	0.95	11.125	27	98.48	92	113.586
0.1083	0.951	0.9666	11.189	28	99.397	93	113.618
0.1166	1.077	0.9833	11.569	29	100.408	94	113.523
0.125	1.141	1	11.537	30	101.451	95	113.554
0.1333	1.236	1.2	13.851	31	102.4	96	113.618
0.1416	1.489	1.4	15.879	32	103	97	113.554
0.15 0.1583	1.553 1.616	1.6 1.8	17.812 19.586	33 34	103.853 104.422	98 99	113.586 113.554
0.1666	1.775	2	21.455	35	104.422	100	113.554
0.175	1.838	2.2	23.134	35	105.623	100	113.523
0.1833	1.997	2.4	24.908	37	106.097	102	113.554
0.1916	2.028	2.6	26.461	38	106.698	103	113.649
0.2	2.187	2.8	28.013	39	107.172	104	113.618
0.2083	2.25	3	29.533	40	107.519	105	113.681
0.2166	2.345	3.2	31.117	41	107.993	106	113.712
0.225	2.377	3.4	32.605	42	108.467	107	113.649
0.2333	2.599	3.6	33.841	43	108.752	108	113.712
0.2416	2.694	3.8	35.234	44	109.068	109	113.712
0,25 0.2583	2.757 3.011	4 4.2	36.532 37.767	45 46	109.384 109.763	110 111	113.712 113.807
0.2666	3.043	4.4	39.034	47	110.079	112	113.007
0.275	3.17	4.6	40.301	48	110.237	113	113.776
0.2833	3.265	4.8	41.409	49	110.616	114	113.839
0.2916	3.328	5	42.549	50	110.774	115	113.839
0.3	3.423	5.2	43.784	51	110.932	116	113.87
0.3083	3.613	5.4	44.955	52	111.216	117	113.839
0.3166	3.74	5.6	45.905	53	111.374	118	113.87
0.325 0.3333	3.804 3.804	5.8	47.203	54	111.501	119	113.807
0.335	3.80 4 4.121	6 6.2	48.026 49.071	55 56	111.722 111.848	120 121	113.87 113.839
0.3666	4.279	6.4	49.957	57	112.006	121	113.839
0.3833	4.564	6.6	51.191	58	112.101	123	113.807
0.4	4.628	6.8	52.014	59	112.259	124	113.776
0.4166	4.881	7	52.901	60	112.291	125	113.712
0.4333	5.072	7.2	53.787	61	112.48	126	113.807
0.45	5.262	7.4	54.736	62	112.512	127	113.776
0.4666	5.515	7.6	55.623	63	112.701	128	113.807
0.4833 0.5	5.642	7.8	56.351	64	112.733	129	113.807
0.5	5.896 6.086	8 8.2	57.3 58.123	65 66	112.796 112.796	130 131	113.744 113.776
0.5333	6.244	8.4	58.819	67	112.922	132	113.744
0.55	6.498	8.6	59.674	68	112.859	133	113.839
0.5666	6.688	8.8	60.465	69	112.986	134	113.776
0.5833	6.783	9	61.193	70	112.922	135	113.902
0.6	6.973	9.2	62.079	71	113.017	136	113.839
0.6166	7.163	9.4	62.711	72	113.144	137	113.839
0.6333	7.544	9.6	63.344	73	113.144	138	113.902
0.65	7.671	9.8	64.104 64.709	74	113.144	139	113.87
0.6666 0.6833	7.861 7.988	10 11	64.768 67.005	75 76	113.207	140	113.839
0.6833	7.988 8.273	12	67.995 71.096	76 77	113.27 113.333	141 142	113.902 113.902
0.7166	8.463	12	73.785	78	113.396	142	113.839
0.7333	8.621	14	76.315	79	113.365	140	113.933

COOPER CITY IW 1 2269 - 2285 DRAWDOWN DATA


Time	Water Level	Time	Water Level
145	113.902	210 211	114.565 114.534
146 147	113.902 113.933	212	114.565
148	113.933	213	114.565
149	113.965	214	114.565
150	113.933	215	114.597
151	113.997	216	114.534
152	113.965	217	114.597
153	113.997 114.155	218 219	114.565 114.565
154 155	114.155	219	114.565
156	114.028	221	114.629
157	113.997	222	114.502
158	114.028	223	114.565
159	114.06	224	114.565
160	114.123	225 226	114.565 114.534
161	114.155 114.123	220	114.534
162 163	114.123	228	114.565
164	114.06	229	114.565
165	114.06	230	114.565
166	114.06	231	114.534
167	113.997	232	114.629
168	114.06	233 234	114.565 114.439
169 170	114.028 114.091	234	114.565
171	114.06	236	114.502
172	114.028	237	114.502
173	114.06	238	114.502
174	114.06	239	114.534
175	114.091	240	114.534
176	114.091		
177 178	114.06 114.028		
179	114.155		
180	114.06		
181	114.155		
182	114.123		
183	114.091		
184 185	114.218 114.186		
186	114.218		
187	114.186		
188	114.218		
189	114.281		
190	114.313		
191	114.313 114.376		
192 193	114.370		
194	114.407		
195	114.439		
196	114.471		
197	114.439		
198	114.471		
199 200	114.407 114.502		
200	114.471		
202	114.534		
203	114.565		
204	114.502		
205	114.534		
206 207	114.534 114.534		
207	114.629		
209	114.565		


COOPER CITY IW 1 2269 - 2285 RECOVERY DATA

Time	Water Level	Time	Water Level	Time	Water Level	Time	Water Level	Time	Water Level
0	114.502	0.75	106.634	15	11.886	80	-0.126	145	-0.19
0.0083	112.227	0.7666	106.508	16	8.938	81	-0.126	146	-0.19
0.0166	114.344	0.7833	106.35	17	6.498	82	-0.095	147	-0.221
0.025	114.913	0.8	106.129	18	4.596	83	-0.126	148	-0.221
0.0333	114.186	0.8166	105.908	19	3.043	84	-0.095	149	-0.221
0.0416	113.839	0.8333	105.781	20	1.933	85	-0.095	150	-0.221
0.05	114.028	0.85	105.623	21	1.141	86	-0.126	151	-0.221
0.0583	113.933	0.8666	105.465	22	0.602	87	-0.126	152	-0.19
0.0666 0.075	113.933	0.8833	105.244	23	0.348	88	-0.126	153	-0.19
0.075	113.807 113.523	0.9 0.9166	105.086 104.928	24 25	0.253 0.221	89	-0.126	154	-0.221
0.0916	113.523	0.9333	104.926	25 26	0.221	90 91	-0.095 -0.126	155	-0.221
0.0310	113.144	0.95	104.58	20	0.19	92	-0.126	156 157	-0.221 -0.221
0.1083	113.365	0.9666	104.391	28	0.19	93	-0.126	157	-0.221
0.1166	113.27	0.9833	104.264	29	0.158	94	-0.126	159	-0.221
0.125	113.238	1	104.043	30	0.158	95	-0.158	160	-0.221
0.1333	113.238	1.2	101.989	31	0.126	96	-0.126	161	-0.19
0.1416	112.954	1.4	99.934	32	0.158	97	-0.126	162	-0.19
0.15	112.922	1.6	97.943	33	0.126	98	-0.158	163	-0.221
0.1583	112.891	1.8	96.015	34	0.095	99	-0.126	164	-0.221
0.1666	112.891	2	94.023	35	0.095	100	-0.126	165	-0.221
0.175	112.733	2.2	92.063	36	0.063	101	-0.158	166	-0.221
0.1833	112.543	2.4	90.135	37	0.095	102	-0.19	167	-0.221
0.1916	112.48	2.6	88.237	38	0.063	103	-0.158	168	-0.221
0.2 0.2083	112.48 112.322	2.8 3	86.372 84.475	39	0.095	104	-0.158	169	-0.221
0.2065	112.259	3.2	82.735	40 41	0.095 0.063	105 106	-0.158 -0.158	170	-0.221
0.225	112.205	3.4	80.869	41	0.083	105	-0.158	171 172	-0.253 -0.253
0.2333	112.101	3.6	79.098	43	0.031	107	-0.158	173	-0.255
0.2416	111 975	3.8	77.327	44	0.031	100	-0.158	174	-0.221
0.25	111.88	4	75.619	45	0.031	110	-0.158	175	-0.221
0.2583	111.785	4.2	73.911	46	0	111	-0.158	176	-0.221
0.2666	111.69	4.4	72.203	47	0	112	-0.126	177	-0.221
0.275	111.595	4.6	70.495	48	0	113	-0.158	178	-0.253
0.2833	111.532	4.8	68.881	49	0	114	-0.158	179	-0.221
0.2916	111.374	5	67.236	50	0	115	-0.158	180	-0.19
0.3	111.374	5.2	65.591	51	0	116	-0.19		
0.3083	111.248	5.4	64.04	52	-0.031	117	-0.19		
0.3166 0.325	111.248 111.09	5.6	62.427	53	-0.031	118	-0.158		
0.3333	111.027	5.8 6	60.908 59.389	54 55	0 -0.031	119	-0.19 -0.19		
0.35	110.774	6.2	57.87	56	-0.031	120 121	-0.19		
0.3666	110.648	6.4	56.414	57	-0.031	122	-0.126		
0.3833	110.49	6.6	54.926	58	-0.031	123	-0.19		
0.4	110.268	6.8	53.502	59	-0.063	124	-0.19		
0.4166	110.142	7	52.141	60	-0.063	125	-0.19		
0.4333	109.984	7.2	50.748	61	-0.031	126	-0.19		
0.45	109.794	7.4	49.355	62	-0.063	127	-0.19		
0.4666	109.605	7.6	48.026	63	-0.063	128	-0.19		
0.4833	109.352	7.8	46.633	64	-0.063	129	-0.158		
0.5	109.226	8	45.335	65	-0.095	130	-0.19		
0.5166	109.036	8.2	44.069	66	-0.095	131	-0.221		
0.5333 0.55	108.878	8.4	42.77	67	-0.063	132	-0.19		
0.55	108.72 108.562	8.6 8.8	41.536 40.301	68 69	-0.063 -0.095	133 134	-0.19		
0.5833	108.372	9	39.097	70	-0.095	135	-0.221 -0.158		
0.6	108.183	9.2	37.862	70	-0.063	136	-0.158		
0.6166	108.025	9.4	36.722	72	-0.095	137	-0.19		
0.6333	107.867	9.6	35.551	73	-0.095	138	-0.19		
0.65	107.709	9.8	34.442	74	-0.095	139	-0.158		
0.6666	107.488	10	33.366	75	-0.095	140	-0.158		
0.6833	107.33	11	27.949	76	-0.095	141	-0.19		
0.7	107.108	12	23.166	77	-0.095	142	-0.19		
0.7166	106.982	13	18.952	78	-0.126	143	-0.221		
0.7333	106.792	14	15.15	79	-0.126	144	-0.19		


IW-1 Straddle Packer Test

2,515 - 2,531

COOPER CITY IW 1 2515 - 2531 DRAWDOWN

Cooper - Jacob Non-Equilibrim Analysis

Ratio t/t'

COOPER CITY IW 1 2515 - 2531 BACKGROUND DATA

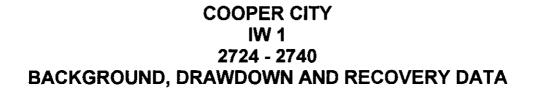
Time	Water Level	Time	Water Level	Time	Water Level	Time	Water Level
0	-0.602	0.75	-0.602	15	-0.602	80	-0.697
0.0083	-0.602	0.7666	-0.602	16	-0.634	81	-0.697
0.0166	-0.602	0.7833	-0.602	17	-0.634	82	-0.697
0.025	-0.602	0.8	-0.602	18	-0.634	83	-0.697
0.0333	-0.602	0.8166	-0.602	19	-0.634	84	-0.697
0.0416	-0.602	0.8333	-0.57	20	-0.634	85	-0.697
0.05	-0.602	0.85	-0.602	21	-0.665	86 87	-0.697 -0.697
0.0583	-0.602	0.8666	-0.602	22	-0.634	88	-0.665
0.0666	-0.602	0.8833	-0.602 -0.602	23 24	-0.665 -0.665	89	-0.697
0.075	-0.602 -0.602	0.9 0.9166	-0.602	25	-0.665	90	-0.697
0.0833 0.0916	-0.602	0.9333	-0.602	26	-0.665	91	-0.697
0.0910	-0.602	0.95	-0.57	27	-0.665	92	-0.697
0.1083	-0.602	0.9666	-0.602	28	-0.665	93	-0.697
0.1166	-0.602	0.9833	-0.602	29	-0.634	94	-0.697
0.125	-0.602	1	-0.57	30	-0.665	95	-0.697
0.1333	-0.602	1.2	-0.602	31	-0.665	96	-0.697
0.1416	-0.602	1.4	-0.602	32	-0.665	97	-0.697
0.15	-0.602	1.6	-0.57	33	-0.665	98	-0.697
0.1583	-0.602	1.8	-0.634	34	-0.665	99	-0.697 -0.697
0.1666	-0.602	2	-0.634	35	-0.665	100 101	-0.697
0.175	-0.602	2.2	-0.634 -0.634	36 37	-0.665 -0.665	102	-0.729
0.1833	-0.602	2.4 2.6	-0.634	38	-0.665	103	-0.697
0.1916	-0.602 -0.602	2.8	-0.634	39	-0.665	104	-0.697
0.2 0.2083	-0.602	3	-0.634	40	-0.665	105	-0.697
0.2166	-0.602	3.2	-0.634	41	-0.665	106	-0.697
0.225	-0.602	3.4	-0.634	42	-0.665	107	-0.697
0.2333	-0.602	3.6	-0.634	43	-0.665	108	-0.697
0.2416	-0.602	3.8	-0.634	44	-0.634	109	-0.697
0.25	-0.602	4	-0.634	45	-0.665	110	-0.729
0.2583	-0.602	4.2	-0.634	46	-0.665	111	-0.729
0.2666	-0.602	4.4	-0.634	47	-0.665 -0.665	112 113	-0.729 -0.697
0.275	-0.602	4.6	-0.634	48 49	-0.665	113	-0.729
0.2833	-0.602	4.8	-0.634 -0.634	49 50	-0.665	115	-0.729
0.2916 0.3	-0.602 -0.602	5 5.2	-0.634	51	-0.665	116	-0.729
0.3083	-0.602	5.4	-0.634	52	-0.697	117	-0.729
0.3166	-0.602	5.6	-0.634	53	-0.697	118	-0.697
0.325	-0.602	5.8	-0.634	54	-0.697	119	-0.729
0.3333	-0.602	6	-0.634	55	-0.665	120	-0.665
0.35	-0.602	6.2	-0.634	56	-0.697	121	-0.665
0.3666	-0.57	6.4	-0.634	57	-0.697		
0.3833	-0.602	6.6	-0.634	58	-0.697		
0.4	-0.57	6.8	-0.634	59	-0.697		
0.4166	-0.602	7	-0.634	60 61	-0.697 -0.665		
0.4333	-0.602	7.2 7.4	-0.634 -0.634	62	-0.665		
0.45 0.4666	-0.602 -0.602	7.6	-0.634	63	-0.665		
0.4833	-0.602	7.8	-0.634	64	-0.665		
0.5	-0.602	8	-0.634	65	-0.697		
0.5166	-0.602	8.2	-0.634	66	-0.697		
0.5333	-0.602	8.4	-0.634	67	-0.665		
0.55	-0.602	8.6	-0.634	68	-0.697		
0.5666	-0.602	8.8	-0.634	69	-0.697		
0.5833	-0.602	9	-0.634	70	-0.697		
0.6	-0.602	9.2	-0.634	71 72	-0.697 -0.697		
0.6166	-0.602	9.4	-0.634 -0.634	73	-0.697		
0.6333 0.65	-0.602 -0.602	9.6 9.8	-0.634	74	-0.665		
0.6666	-0.602	5.8 10	-0.634	75	-0.697		
0.6833	-0.602	11	-0.634	76	-0.697		
0.0033	-0.602	12	-0.634	77	-0.697		
0.7166	-0.602	13	-0.634	78	-0.697		
0.7333	-0.602	14	-0.634	79	-0.697		

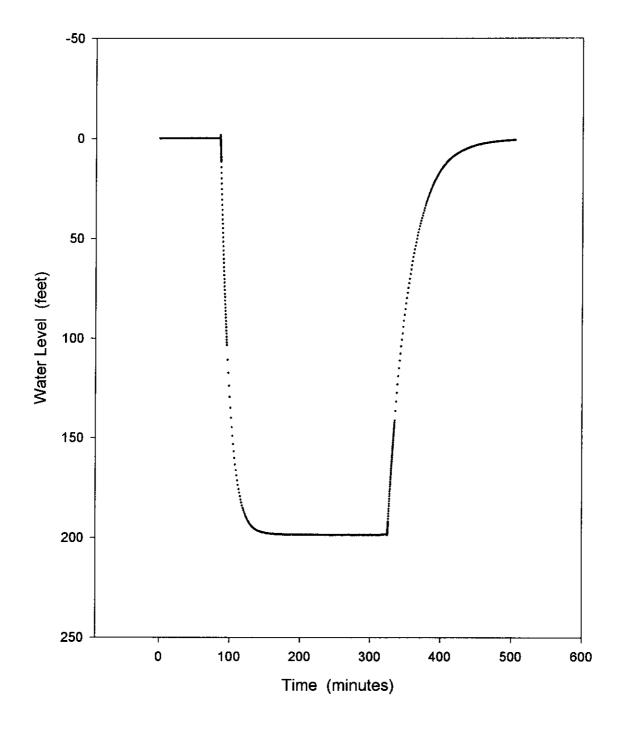
COOPER CITY IW 1 2515 - 2531 DRAWDOWN DATA

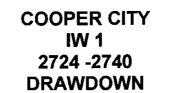
Time	Water Level	Time	Water Level	Time	Water Level	Time	Water Level
0	-0.665	0.75	6.846	15	91.521	80	137.709
0.0083	-0.665	0.7666	7.005	16	94.746	81	137.741
0.0166	-1.204	0.7833	7.1	17	97.812	82	137.741
0.025	-0.507	0.8	7.353	18	100.593	83	137.804
0.0333	-1.553	0.8166	7.48	19	103.153	84	137.835
0.0416	-0.348	0.8333	7.575	20	105.618	85	137.898
0.05	1.997	0.85	7.734	21	108.115	86	137.93
0.0583	-0.19	0.8666	7.924	22	110.2	87	137.93
0.0666 0.075	1.585 0	0.8833 0.9	8.051 8.241	23 24	112.064 113.865	88 89	137.962 137.993
0.0833	0.285	0.9166	8.368	25	115.445	90	138.025
0.0916	0.253	0.9333	8.494	26	117,119	91	138.056
0.1	0.348	0.95	8.684	27	118.509	92	138.088
0.1083	0.253	0.9666	8.843	28	119.899	93	138.088
0.1166	0.538	0.9833	8.97	29	121.162	94	138.151
0.125	0.665	1	9.128	30	122.299	95	138.151
0.1333	0.729	1.2	10.935	31	123.373	96	138.119
0.1416	0.919	1.4	12.836	32	124.415	97	138.214
0.15	0.824	1.6	14.674	33 34	125.205 126.121	98 99	138.183 138.214
0.1583 0.1666	0.982 1.014	1.8 2	16.48 18.318	34	127.005	100	138.246
0.175	1.141	2.2	20.155	36	127.668	100	138.309
0.1833	1.141	2.4	21.898	37	128.363	102	138.277
0.1916	1.363	2.6	23.608	38	128.931	103	138.277
0.2	1.394	2.8	25.382	39	129.531	1 04	138.34
0.2083	1.553	3	27.061	40	130.131	105	138.309
0.2166	1.68	3.2	28.677	41	130.637	106	138.372
0.225	1.743	3.4	30.292	42	131.079	107	138.372
0.2333	1.806	3.6	31.875	43	131.584	108	138.372
0.2416	1.902	3.8	33.459	44	132.057	109	138.435
0.25 0.2583	1.997 2.092	4 4.2	35.011 36.467	45 46	132.405 132.815	110 111	138.467 138.372
0.2565	2.155	4.4	37.956	40	133.194	112	138.467
0.275	2.25	4.6	39.412	48	133.478	113	138.467
0.2833	2.345	4.8	40.837	49	133.731	114	138.435
0.2916	2.409	5	42.167	50	134.078	115	138.467
0.3	2.535	5.2	43.528	51	134.268	116	138.498
0.3083	2.662	5.4	44.826	52	134.615	117	138.435
0.3166	2.757	5.6	46.283	53	134.804	118	138.498
0.325	2.852	5.8	47.454	54	135.025 135.215	119	138.467
0.3333 0.35	2.948 3.011	6 6.2	48.752 49.955	55 56	135.404	120 121	138.435 138.498
0.3666	3.169	6.4	49.900 51.284	57	135.594	122	138.467
0.3833	3.328	6.6	52.455	58	135.783	123	138.498
0.4	3.518	6.8	53.689	59	135.878	124	138.467
0.4166	3.645	7	54.924	60	136.067	125	138.498
0.4333	3.772	7.2	56.095	61	136.194	126	138.53
0.45	3.898	7.4	57.297	62	136.32	127	138.53
0.4666	4.089	7.6	58.5	63	136.446	128	138.498
0.4833	4.311	7.8	59.544	64 65	136.572	129	138.53
0.5 0.5166	4.501 4.596	8 8.2	60.652 61.791	65 66	136.636 136.793	130 131	138.467 138.498
0.5333	4.723	8.4	62.898	67	136.888	132	138.561
0.55	4.913	8.6	64.006	68	136.983	133	138.561
0.5666	5.103	8.8	65.018	69	137.078	134	138.53
0.5833	5.293	9	65.967	70	137.141	135	138.593
0.6	5.42	9.2	66.917	71	137.267	136	138.593
0.6166	5.515	9.4	67.992	72	137.299	137	138.561
0.6333	5.705	9.6	69.005	73	137.33	138	138.625
0.65	5.864	9.8	70.017	74	137.456	139	138.593
0.6666	6.086 6.181	10	70.966	75 76	137.425	140 141	138.625 138.625
0.6833 0.7	6.181 6.339	11 12	75.363 79.854	76 77	137.488 137.52	141	138.53
0.7166	6.529	12	84.091	78	137.551	143	138.656
0.7333	6.688	14	87.886	79	137.677	144	138.656
			. –				

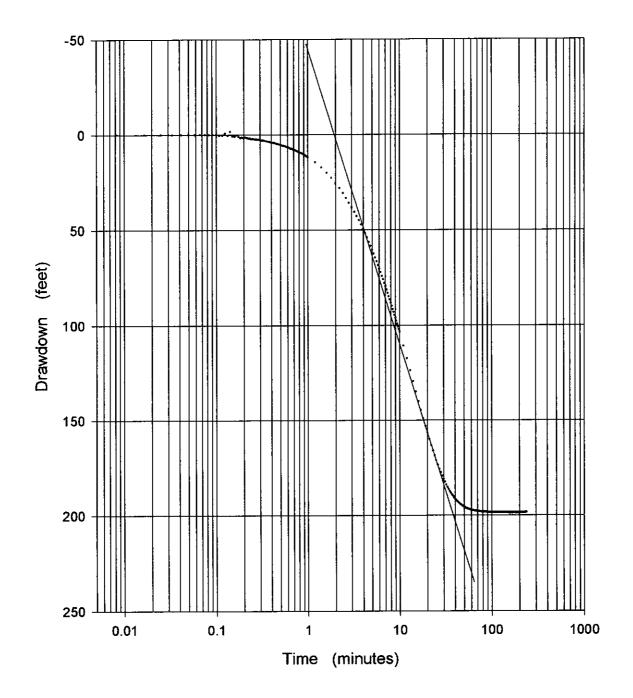
COOPER CITY IW 1 2515 - 2531 DRAWDOWN DATA

Time	Water Level	Time Water Level
1 A E	130 656	210 139.287
145 146	138.656 138.625	211 139.319
147	138.656	212 139.382
148	138.656	213 139.351
149	138.656	214 139.319
150	138.688	215 139.414
151	138.625	216 139.351
152	138.751	217 139.351
153	138.719	218 139.414
154	138.751	219 139.414
155	138.719	220 139.445 221 139.414
156 157	138.719 138.782	222 139.382
158	138.751	223 139.414
159	138.751	224 139.477
160	138.751	225 139.445
161	138.782	226 139.445
162	138.782	227 139.477
163	138.846	228 139.445
164	138.782	229 139.477
165	138.846	230 139.508
166	138.814	231 139.477 232 139.508
167 168	138.846 138.846	232 139.508 233 139.477
169	138.877	233 139.508
170	138.877	235 139.477
171	138.814	236 139.477
172	138.814	237 139.477
173	138.877	238 139.508
174	138.877	239 139.508
175	138. 94	240 139.477
176	138.94	241 139.54
177	138,909	242 139.477
178	138.909	
179	138.94 138.94	
180 181	138.94	
182	138.972	
183	139.035	
184	139.003	
185	139.003	
186	139.098	
187	139.098	
188	139.067	
189	139.035	
190	139.067	
191 192	139.035 139.098	
192	139.098	
193	139.193	
195	139,193	
196	139.193	
197	139.193	
198	139.161	
199	139.193	
200	139.193	
201	139.256	
202	139.193	
203 204	139.287	
204	139.224 139.256	
205	139,256	
207	139.287	
208	139.287	
209	139.256	

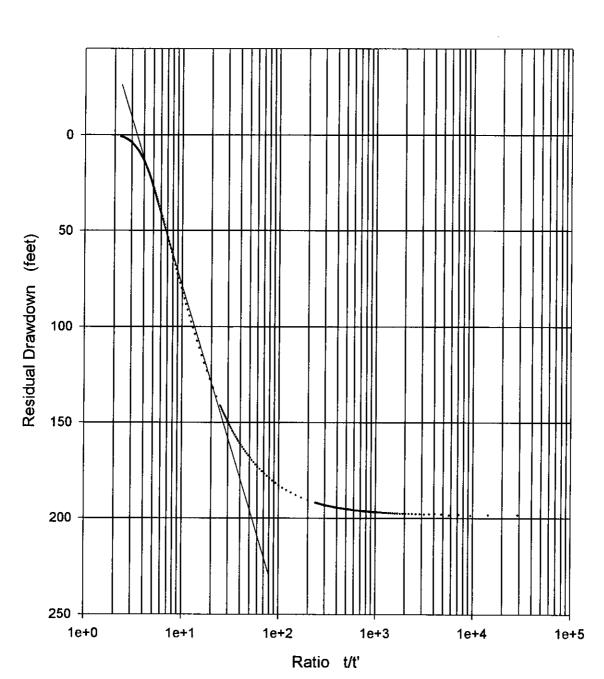

COOPER CITY IW 1 2515 - 2531 RECOVERY DATA


Time	Water Level	Time	Water Level	Time	Water Level	Time	Water Level	Time	Water Level
0	139.54	0.75	134.141	15	60.905	80	0.919	145	-0.285
0.0083	139.54	0.7666	134.015	16	57.582	81	0.855	146	-0.285
0.0166	139.54	0.7833	133.889	17	54.449	82	0.76	147	-0.285
0.025	139.477	0.8	133.763	18	51.347	83	0.729	148	-0.285
0.0333	139.382	0.8166	133.636	19	48.53	84	0.634	149	-0.285
0.0416	139.287	0.8333	133.541	20	45.839	85	0.602	150	-0.285
0.05	139.287	0.85	133.415	21	43.307	86	0.507	151	-0.285
0.0583	139.193	0.8666	133.289	22	40.995	87	0.475	152	-0.253
0.0666	139.224	0.8833	133.163	23	38.652	88	0.412	153	-0.285
0.075	138.972	0.9	133.068	24	36.467	89	0.412	154	-0.285
0.0833	139.035	0.9166	132.942	25	34.409	90	0.348	155	-0.285
0.0916	138.498	0.9333	132.815	26	32.446	91	0.317	156	-0.285
0.1	138.877	0.95	132.689	27	30.577	92	0.253	157	-0.285
0.1083	138.972	0.9666	132.563	28	28.835	93	0.221	158	-0.317
0.1166	138.782	0.9833	132.468	29	27.156	94	0.19	159	-0.317
0.125	138.909	1	132.342	30	25.636	95	0.158	160	-0.253
0.1333	138.656	1.2	130.858	31	24.052	96	0.158	161	-0.285
0.1416	138.34	1.4	129.468	32	22.658	97	0.126	162	-0.285
0.15	138.53	1.6	128.079	33	21.327	98	0.095	163	-0.317
0.1583	138.246	1.8	126.689	34	20.06	99	0.063	164	-0.317
0.1666	138.372	2	125.331	35	18.888	100	0.063	165	-0.285
0.175	138.183	2.2	123.973	36	17.747	101	0.031	166	-0.317
0.1833	138.277	2.4	122.647	37	16.702	102	0	167	-0.317
0.1916	138.151	2.6	121.32	38	15.688	103	0	168	-0.317
0.2	138.183	2.8	119.993	39	14.737	104	-0.031	169	-0.285
0.2083	138.088	3	118.698	40	13.85	105	-0.031	170	-0.285
0.2166	138.056	3.2	117.435	41	13.058	106	-0.031	171	-0.317
0.225	137.993	3.4	116.14	42	12.266	107	-0.063	172	-0.317
0.2333	137.898	3.6	114.876	43	11.473	108	-0.063	173	-0.317
0.2416	137.867	3.8	113.644	44	10.808	109	-0.095 -0.063	174 175	-0.317 -0.317
0.25 0.2583	137.804 137.741	4 4.2	112.38 111.18	45 46	10.206 9.604	110 111	-0.005	175	-0.317
0.2565	137.741	4.2 4.4	109.979	40	9.004	112	-0.126	170	-0.317
0.2000	137.614	4.6	108.747	48	8.526	113	-0.126	178	-0.317
0.2833	137.52	4.8	107.546	49	8.082	114	-0.126	179	-0.317
0.2916	137.488		106.377	50	7.575	115	-0.158	180	-0.317
0.3	137.425	5.2	105.207	51	7.1	116	-0.158	181	-0.317
0.3083	137.362	5.4	104.07	52	6.688	117	-0.158	182	-0.317
0.3166	137.299	5.6	102.932	53	6.276	118	-0.158		0.011
0.325	137.235	5.8	101.794	54	5.895	119	-0.19		
0.3333	137.172	6	100.688	55	5.547	120	-0.158		
0.35	137.046	6.2	99.55	56	5.198	121	-0.158		
0.3666	136.92	6.4	98.476	57	4.881	122	-0.1 9		
0.3833	136.793	6.6	97.401	58	4.596	123	-0.19		
0.4	136.667	6.8	96.326	59	4.342	124	-0.221		
0.4166	136.572	7	95.252	60	4.057	125	-0.19		
0.4333	136.446	7.2	94.177	61	3.803	126	-0.221		
0.45	136.32	7.4	93.134	62	3.55	127	-0.221		
0.4666	136.194	7.6	92.122	63	3.328	128	-0.221		
0.4833	136.067	7.8	91.079	64	3.138	129	-0.221		
0.5	135.9 4 1	8	90.067	65	2.948	130	-0.19		
0.5166	135.815	8.2	89.055	66	2.757	131	-0.221		
0.5333	135.688	8.4	88.044	67	2.567	132	-0.221		
0.55	135.562	8.6	87.063	68	2.377	133	-0.221		
0.5666	135.467	8.8	86.083	69	2.218	134	-0.253		
0.5833	135.341	9	85.103	70	2.06	135	-0.253		
0.6	135.215	9.2	84.154	71	1.933	136	-0.253		
0.6166	135.089	9.4	83.206	72	1.743	137	-0.253		
0.6333	134.962	9.6	82.289	73	1.616	138	-0.253		
0.65	134.868	9.8	81.372	74 75	1.489	139	-0.253		
0.6666	134.741	10	80.486 76.058	75	1.363 1.268	140 141	-0.221 -0.253		
0.6833	134.615	11	76.058 71.978	76 77	1.208	141 142	-0.253 -0.253		
0.7 0.7166	134.489 134.362	12 13	68.119	78	1.141	142	-0.285		
0.7333	134.268	14	64.417	78	0.982	143	-0.253		
0.7000	107.200	17	VT.T17	13	0.002	1	0.200		


IW-1 Straddle Packer Test


.

2,724 - 2,740



Cooper - Jacob Non-Equilibrim Analysis

COOPER CITY IW 1 2724 - 2740 RESIDUAL DRAWDOWN VS t/t'

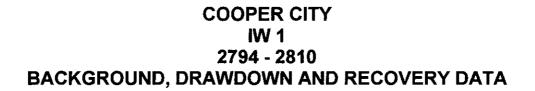
COOPER CITY IW 1 2724 - 2740 BACKGROUND DATA

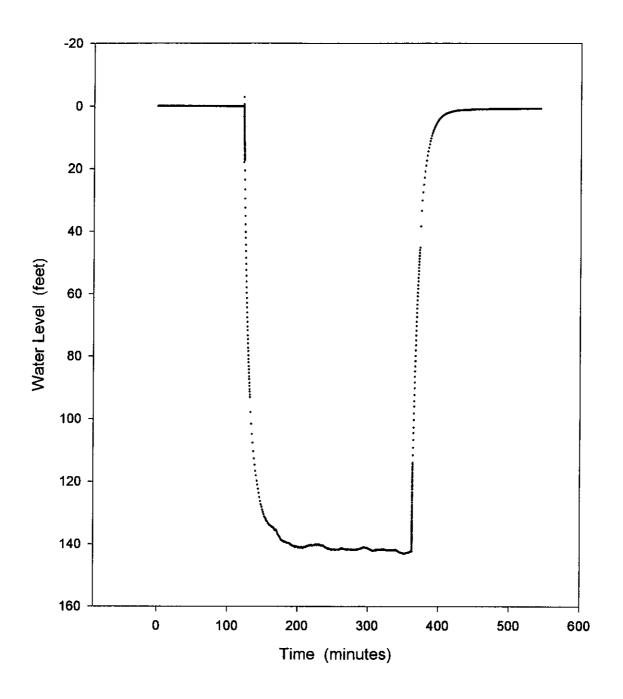
Time	Water Level	Time	Water Level	Time	Water Level	Time	Water Level
0	0	0.75	0	15	-0.031	80	-0.063
0.0083	0 0	0.7666	0.031	16	-0.031	81	-0.063
0.0166	ŏ	0.7833	0.031	17	-0.031	82	-0.063
0.025	ō	0.8	0.031	18	-0.063	83	-0.063
0.0333	0	0.8166	0	19	-0.063	84	-0.063
0.0416	0	0.8333	0	20	-0.063	85	0
0.05	0	0.85	0	21	-0.063	86	-0.031
0.0583	0	0.8666	0	22	-0.063		
0.0666	0	0.8833	0	23	0		
0.075	0	0.9	0	24	-0.031		
0.0833	0	0.9166	0	25	-0.063		
0.0916	0	0.9333	0	26 27	-0.063 -0.063		
0.1	0	0.95	0 0	28	-0.063		
0.1083	0	0.9666 0.9833	0	20	-0.063		
0.1166 0.125	0 0	0.9033	ŏ	30	-0.063		
0.1333	0	1.2	õ	31	-0.063		
0.1416	õ	1.4	0.031	32	-0.063		
0.15	õ	1.6	0	33	-0.063		
0.1583	õ	1.8	-0.031	34	-0.063		
0.1666	Ō	2	-0.031	35	-0.063		
0.175	0	2.2	-0.031	36	-0.063		
0.1833	0	2.4	-0.031	37	-0.063		
0.1916	0	2.6	-0.031	38	-0.031		
0.2	0	2.8	-0.031	39	-0.063		
0.2083	0	3	-0.031	40	-0.063		
0.2166	0	3.2	-0.031	41	-0.063		
0.225	0	3.4	0	42	-0.063		
0.2333	0	3.6	-0.031	43 44	-0.063 -0.063		
0.2416	0	3.8 4	-0.031 0	45	-0.063		
0.25 0.2583	0 0	4.2	-0.031	46	-0.063		
0.2563	0	4.4	-0.037	47	-0.063		•
0.275	õ	4.6	-0.031	48	-0.063		
0.2833	õ	4.8	-0.031	49	-0.063		
0.2916	Ō	5	0	50	-0.063		
0.3	0	5.2	0	51	-0.063		
0.3083	0	5.4	0	52	-0.063		
0.3166	0	5.6	0	53	-0.031		
0.325	0	5.8	0	54	-0.063		
0.3333	0	6	0	55	-0.063 -0.063		
0.35	0	6.2	-0.031 -0.031	56 57	-0.063		
0.3666	0	6.4 6.6	-0.031	58	-0.063		
0.3833 0.4	0 0	6.8	0	59	-0.063		
0.4166	0	7	Ö	60	-0.063		
0.4333	ŏ	7.2	ŏ	61	-0.063		
0.45	ŏ	7.4	ō	62	-0.063		
0.4666	Ō	7.6	-0.031	63	-0.063		
0.4833	Ō	7.8	0	64	-0.063		
0.5	0	8	0	65	-0.063		
0.5166	0	8.2	0	66	-0.063		
0.5333	0	8.4	0	67	-0.063		
0.55	0	8.6	0	68	-0.063		
0.5666	0	8.8	-0.031	69	-0.063		
0.5833	0	9	0	70 71	-0.063 -0.063		
0.6	0	9.2	0	71 72	-0.063		
0.6166	0	9.4 9.6	0	72	-0.063		
0.6333	0	9.8 9.8	0	74	-0.063		
0.65 0.6666	0	9.8 10	ů	75	-0.031		
0.6833	0	11	-0.031	76	-0.063		
0.0033	õ	12	-0.063	77	-0.063		
0.7166	ō	13	-0.063	78	-0.063		
0.7333	Õ	14	-0.063	79	-0.063		

COOPER CITY IW 1 2724 - 2740 DRAWDOWN DATA

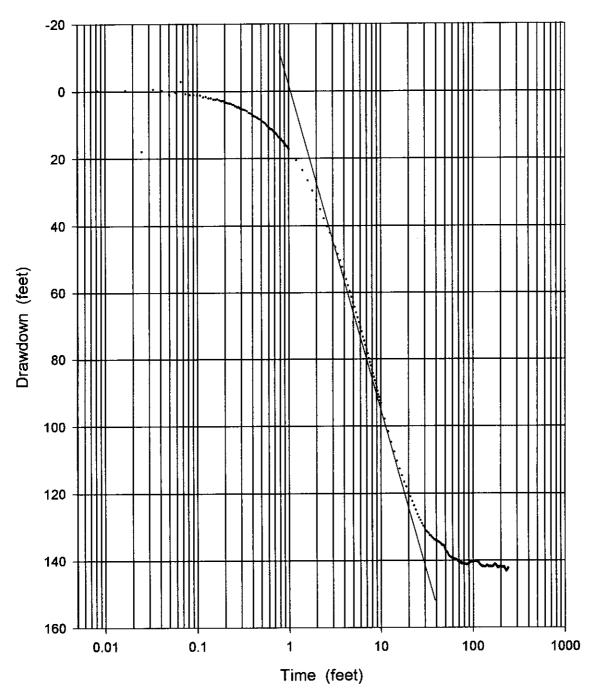
Time	Water Level	Time	Water Level	Time	Water Level	Time	Water Level
0	0	0.75	8.408	15	135.08	80	198.236
0.0083	ō	0.7666	8.631	16	140.169	81	198.141
0.0166	-0.031	0.7833	8.916	17	144.751	82	198.33
0.025	-0.031	0.8	9.075	18	149.048	83	198.204
0.0333	-0.031	0.8166	9.297	19	153.155	84	198.236
0.0416	-0.031	0.8333	9.455	20	156.724	85	198.236
0.05	0	0.85	9.646	21	160.104	86	198.267
0.0583	-0.031	0.8666	9.868	22	163.389	87	198.299
0.0666 0.075	0 0	0.8833 0.9	10.027 10.312	23 24	166.262 168.883	88 89	198.267 198.362
0.0833	0	0.9166	10.566	24	171.409	90	198.425
0.0916	-0.031	0.9333	10.756	26	173.682	91	198.393
0.1	0	0.95	11.01	27	175.798	92	198.393
0.1083	0.285	0.9666	11.359	28	177.597	93	198.393
0.1166	0.285	0.9833	11.486	29	179.365	94	198.362
0.125	-0.761	1	11.708	30	181.038	95	198.425
0.1333	0.476	1.2	14.405	31	182.521	96	198.488
0.1416	-1.682	1.4	17.196	32	184.004	97	198.393
0.15 0.1583	0.761 0.92	1.6 1.8	19.955 22.62	33 34	185.204 186.308	98 99	198.456 198.425
0.1565	0.92	2	25.379	34	187.381	100	198.425
0.175	0.983	2.2	27.979	36	188.297	100	198.393
0.1833	1.65	2.4	30.642	37	189.275	102	198.393
0.1916	1.364	2.6	33.306	38	189.969	103	198.393
0.2	1.745	2.8	35.81	39	190.789	104	198.362
0.2083	1.269	3	38.22	40	191.484	105	198.362
0.2166	1.523	3.2	40.597	41	192.052	106	198.425
0.225	1.904	3.4	42.784	42	192.683	107	198.456
0.2333	1.935	3.6	44.939	43	193.093	108	198.551
0.2416 0.25	2.316 2.031	3.8 4	47.221 49.503	44 45	193.535 194.039	109 110	198.488 198.425
0.2583	2.221	4.2	51.658	40	194.323	111	198.519
0.2666	2.348	4.4	53.907	47	194.67	112	198.456
0.275	2.348	4.6	56.157	48	195.018	113	198.456
0.2833	2.602	4.8	58.184	49	195.27	114	198.393
0.2916	2.507	5	60.307	50	195.68	115	198.488
0.3	2.633	5.2	62.303	51	195.806	116	198.551
0.3083	2.887	5.4	64.393	52	196.09	117	198.425
0.3166 0.325	2.887 3.014	5.6 5.8	66.389 68.416	53 54	196.343 196.406	118 119	198.519 198.488
0.3333	3.046	5.8 6	70.379	55	196.627	120	198.551
0.35	3.3	6.2	72.089	56	196.753	120	198.519
0.3666	3.585	6.4	74.021	57	196.816	122	198.488
0.3833	3.776	6.6	75.7 94	58	197.1	123	198.519
0.4	4.03	6.8	77.821	59	197.1	124	198.583
0.4166	4.22	7	79.372	60	197.226	125	198.488
0.4333	4.315	7.2	81.177	61	197.415	126	198.551
0.45	4.601	7.4	82.981	62	197.352	127	198.519
0.4666 0.4833	4.823 5.013	7.6 7.8	84.754 86.368	63 64	197.415 197.51	128 129	198.519 198.425
0.4033	5.236	8	88.109	65	197.573	130	198.425
0.5166	5.489	8.2	89.755	66	197.731	131	198.488
0.5333	5.711	8.4	91.496	67	197.762	132	198.583
0.55	5.87	8.6	93.015	68	197.762	133	198.551
0.5666	6.061	8.8	94.534	69	197.889	134	198.488
0.5833	6.346	9	96.211	70	197.92	135	198.583
0.6	6.568	9.2	97.73	71	197.983	136	198.583
0.6166	6.695	9.4	99.344	72	198.015	137	198.519
0.6333 0.65	7.044 7.266	9.6 9.8	100.768 102.16	73 74	197.952 198.109	138 139	198.519
0.6666	7.393	9.8 10	102.16	74 75	198.078	139	198.551 198.519
0.6833	7.584	10	110.86	76	198.046	141	198.583
0.7	7.869	12	117.565	77	198.141	142	198.583
0.7166	8.028	13	123.952	78	198.172	143	198.614
0.7333	8.282	14	129.611	79	198.236	1 44	198.614

COOPER CITY IW 1 2724 - 2740 DRAWDOWN DATA

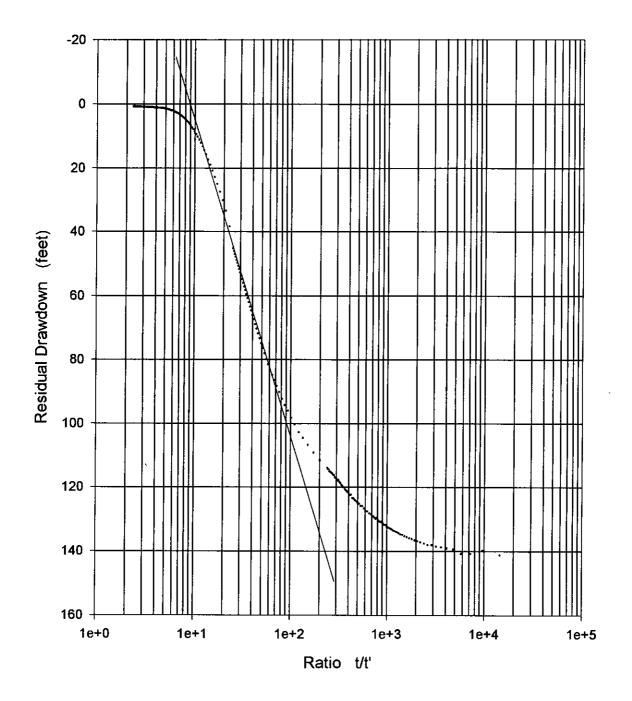

Time	Water Level	Time	Water Level
145	198.551	210	198.583
146	198.614	211	198.551
147	198.583	212	198.583
148	198.551	213	198.583
149	198.646	214	198.519
150	198.614	215	198.519
151	198.551	216 217	198.583 198.583
152 153	198.677 198.646	218	198.583
154	198.551	219	198.519
155	198.614	220	198.519
156	198.646	221	198.519
157	198.677	222	198.551
158	198.709	223	198.551
159	198.646	224	198.551
160	198.646	225	198.519 198.583
161	198.709 198.583	226 227	198.646
162 163	198.583	228	198.646
164	198.646	229	198.583
165	198.614	230	198.488
166	198.614	231	198.519
167	198.677	232	198.519
168	198.646	233	198.456
169	198.614	234	198.33 198.236
170 171	198.614 198.551	235 236	198.299
172	198.614	230	198.267
173	198.551	238	198.33
174	198.519	239	198.33
175	198.551		
176	198.614		
177	198.551		
178	198.519 198.583		
179 180	198.551		
181	198.646		
182	198.551		
183	198.583		
184	198.456		
185	198.519		
186	198.646		
187 188	198.583 198.583		
189	198.614		
190	198.551		
191	198.709		
192	198.551		
193	198.583		
194	198.583		
195 196	198.583 198.551		
197	198.583		
198	198.646		
199	198.583		
200	198.519		
201	198.677		
202	198.646		
203	198.614		
204 205	198.583 198.614		
205	198.519		
207	198.614		
208	198.583		
209	198.519		


COOPER CITY IW 1 2724 - 2740 RECOVERY DATA

Time	Water Level	Time	Water Level	Time	Water Level	Time	Water Level	Time	Water Level
				45					
0	198.299	0.75	193.535	15	119.146	80	13.294	145	1.967
0.0083	198.362	0.7666	193.408	16	115.13	81	12.882	146	1.935
0.0166	198.393	0.7833	193.314	17	111.303	82	12.501	147	1.872
0.025	198.677	0.8	193.188	18	107.696	83	12.057	148	1.84
0.0333	198.204	0.8166	193.093	19	104.027	84	11.645	149	1.777
0.0416	198.614	0.8333	192.998	20	100.768	85	11.327	150	1.713
0.05	197.983	0.85	192.904	21	97.509	86	10.947	151	1.745
0.0583	197.762	0.8666	192.777	22	94.313	87	10.661	152	1.65
0.0666	197.952	0.8833	192.651	23	91.243	88	10.28	153	1.586
0.075	197.983	0.9	192.556	24	88.268	89	9.931	154	1.555
0.0833	197.857	0.9166	192.462	25	85.324	90	9.614	155	1.523
0.0916	197.857	0.9333	192.336	26	82.538	91	9.329	156	1.459
0.1	197.731	0.95	192.241	27	79.815	92	9.075	157	1.428
0.1083	197.762	0.9666	192.115	28	77.219	93	8.821	158	1.396
0.1166	197.699	0.9833	192.02	29	74.718	94	8.567	159	1.364
0.125	197.636	1	191.925	30	72.343	95	8.313	160	1.364
0.1333	197.731	1.2	190.569	31	70.158	96	8.059	161	1.301
0.1416	197.541	1.4	189.275	32	67.782	97	7.901	162	1.269
0.15	197.478	1.6	188.013	33	65.534	98	7.615	163	1.237
0.1583	197.415	1.8	186.75	34	63.38	99	7.393	164	1.205
0.1666	197.352	2	185.488	35	61.289	100	7.171	165	1.174
0.175	197.321	2.2	184.225	36	59.293	101	6.981	166	1.142
0.1833	197.226	2.4	182.994	37	57.329	102	6.759	167	1.11
0.1916	197.226	2.6	181.7	38	55.428	102	6.568	168	1.079
0.1910	197.131	2.8	180.469	39	53.59	103	6.378	169	1.047
0.2083	197.1	3	179.238	40	51.911	105	6.187	170	1.047
0.2166	197.005	3.2	178.039	41	50.137	106	6.029	171	1.015
0.225	196.974	3.4	176.839	42	48.52	107	5.838	172	0.983
0.2333	196.911	3.6	175.64	43	46.936	108	5.68	173	0.952
0.2416	196.847	3.8	174.44	44	45.415	109	5.521	174	0.92
0.25	196.816	4	173.272	45	43.925	110	5.394	175	0.888
0.2583	196.721	4.2	172.104	46	42.499	111	5.204	176	0.856
0.2666	196.69	4.4	170.936	47	41.199	112	5.045	177	0.825
0.275	196.627	4.6	169.767	48	39.9	113	4.918	178	0.793
0.2833	196.595	4.8	168.631	49	38.6	114	4.791	179	0.793
0.2916	196.532	5	167.494	50	37.3	115	4.633	180	0.793
0.3	196.469	5.2	166.357	51	36.032	116	4.506		
0.3083	196.406	5.4	165.22	52	34.859	117	4.379		
0.3166	196.374	5.6	164.115	53	33.654	118	4.252		
0.325	196.311	5.8	162.978	54	32.481	119	4.125		
0.3333	196.248	6	161.873	55	31.403	120	4.03		
0.35	196.122	6.2	160.799	56	30.325	121	3.903		
0.3666	196.027	6.4	159.693	57	29.311	122	3.776		
0.3833	195.932	6.6	158.62	58	28.2 96	123	3.649		
0.4	195.806	6.8	157.546	59	27.345	124	3.554		
0.4166	195.712	7	156.472	60	26.425	125	3.459		
0.4333	195.585	7.2	155.398	61	25.537	126	3.363		
0.45	195.459	7.4	154.355	62	24.713	127	3.268		
0.4666	195.365	7.6	153.313	63	23.825	128	3.173		
0.4833	195.238	7.8	152.27	64	22.968	129	3.078		
0.5	195.144	8	151.228	65	22.176	130	3.046		
0.5166	195.049	8.2	150.154	66	21.414	131	2.951		
0.5333	194.954	8.4	149.143	67	20.717	132	2.824		
0.55	194.828	8.6	148.163	68	20.019	133	2.76		
0.5666	194.734	8.8	147.152	69	19.321	134	2.665		
0.5833	194.607	9	146.173	70	18.687	135	2.602		
0.6	194.513	9.2	145.13	71	18.021	136	2.538		
0.6166	194.418	9.4	144.213	72	17.481	137	2.443		
0.6333	194.292	9.6	143.234	73	16.847	138	2.38		
0.65	194.197	9.8	142.254	74	16.276	139	2.316		
0.6666	194.071	10	141.338	75	15.705	140	2.284		
0.6833	193.976	10	136.597	76	15.198	141	2.253		
0.0033	193.85	12	131.919	77	14.722	142	2.157		
0.7166	193.724	13	127.525	78	14.214	143	2.094		
0.7333	193.724	13	127.525	78	13.77	143	2.094		
0.7000	100.020	7	120.201	10	10.77	1.44	2.001		


IW-1 Straddle Packer Test

2,794 - 2,810


COOPER CITY IW 1 2794 - 2810 DRAWDOWN

Cooper - Jacob Non-Equilibrim Analysis

COOPER CITY IW 1 2794 - 2810 RESIDUAL DRAWDOWN

.

COOPER CITY IW 1 2794 - 2810 DRAWDOWN DATA

Time	Water Level	Time	Water Level	Time	Water Level	Time	Water Level
0	-0.19	0.75	13.121	15	110.387	80	141.021
0.0083	-0.19	0.7666	13.501	16	112.694	81	141.179
0.0166	-0.253	0.7833	13.786	17	114.684	82	141.084
0.025	17.937	0.8	13.881	18	116.611	83	141.21
0.0333	-0.538	0.8166	14.135	19	118.033	84	141.052
0.0416	-0.158	0.8333	14.515	20	119.738	85	141.115
0.05	0.982	0.85	14.864	21	121.002	86	141.305
0.0583	0.38	0.8666	14.927	22 23	122.36 123.686	87 88	141.115 141.052
0.0666	-2.853 0.792	0.8833 0.9	15.339 15.561	23 24	125.000	89	141.052
0.075 0.0833	1.109	0.9166	15.941	25	126.308	90	141.021
0.0916	1.109	0.9333	16.226	26	127.35	91	140.8
0.0010	1.172	0.95	16.321	27	128.076	92	140.737
0.1083	1.204	0.9666	16.67	28	129.055	93	140.674
0.1166	1.806	0.9833	17.145	29	129.781	94	140.579
0.125	1.711	1	17.303	30	130. 444	95	140.453
0.1333	2.123	1.2	20.567	31	131.202	96	140.484
0.1416	2.092	1.4	23.513	32	131.613	97	140.295
0.15	2.504	1.6	26.617	33	131.96	98 99	140.326 140.516
0.1583	2.472	1.8	29.594	34 35	132.592 132.749	100	140.453
0.1666	2.345	2 2.2	32.54 35.168	35	133.223	100	140.453
0.175 0.1833	2.662 2.948	2.2	37.86	30	133.539	102	140.358
0.1033	2.884	2.6	40.266	38	133.886	103	140.358
0.2	3.328	2.8	42.134	39	133.949	104	140.232
0.2083	3.391	3	44.414	40	134.139	105	140.2
0.2166	3.581	3.2	46.408	41	134.328	106	140.389
0.225	3.613	3.4	48.529	42	134.517	107	140.137
0.2333	3.772	3.6	50.46	43	134.581	108	140.295
0.2416	3.994	3.8	52.422	44	134.865	109	140.137
0.25	4.057	4	54.226	45	135.086	110	140.421 140.421
0.2583	4.374	4.2	56.094	46 47	135.528 135.37	111 112	140.484
0.2666	4.469 4.818	4.4 4.6	57.929 59.67	47 48	135.622	113	140.453
0.275 0.2833	4.659	4.8	61.347	49	136.159	114	140.61
0.2916	4.976	5	62.929	50	136.791	115	140.516
0.3	5.23	5.2	64.352	51	137.201	116	140.737
0.3083	5.293	5.4	66.029	52	137.485	117	140.895
0.3166	5.483	5.6	67.611	53	137.769	118	141.147
0.325	5.515	5.8	69.035	54	138.274	119	141.21
0.3333	5.61	6	70.585	55	138.685	120	141.273
0.35	5.927	6.2	71.787	56 57	138.811 139.032	121 122	141.431 141.589
0.3666	6.466 6.624	6.4 6.6	73.4 74.602	57 58	139.064	122	141.494
0.3833 0.4	6.941	6.8	75.93	59	139.316	124	141.557
0.4166	7.353	7	77.354	60	139.285	125	141.747
0.4333	7.575	7.2	78.366	61	139.411	126	141.715
0.45	7.829	7.4	79.789	62	139.506	127	141.873
0.4666	8.177	7.6	80.959	63	139.537	128	141.778
0.4833	8.367	7.8	81.971	64	139. 695	129	141.81
0.5	8.431	8	83.236	65	139.663	130	141.778
0.5166	9.033	8.2	84.248	66	139.727	131	141.778
0.5333	9.255	8.4	85.354	67	139.853 139.979	132 133	141.873 141.81
0.55 0.5666	9.508	8.6 8.8	86.429 87.346	68 69	140.326	134	141.81
0.5833	9.92 10.427	9.0 9	88.516	70	140.326	135	141.81
0.5655	10.427	9.2	89.528	71	140.484	136	141.841
0.6166	10.871	9.4	90.571	72	140.61	137	141.873
0.6333	11.283	9.6	91.33	73	140.674	138	141.747
0.65	11.283	9.8	92.31	74	140.61	139	141.557
0.6666	11.6	10	93.132	75	141.021	140	141.494
0.6833	11.98	11	97.842	76	140.831	141	141.557
0.7	12.392	12	101.634	77	140.831	142	141.4
0.7166	12.36	13	104.858	78 79	140.958 141.115	143 144	141.526 141.557
0.7333	12.677	14	107.67	19	171.110	1-4-4	

COOPER CITY IW 1 2794 - 2810 DRAWDOWN DATA

Time	Water Level	Time	Water Level
145	141.652	210	142.062
146	141.684	211	141.968
147	141.684	212	141.936
148	141.778	213	142.062
149	141.968	214	141.968
150	141.778	215	141.968
151	141.747	216	142.062
152 153	141.841 141.841	217 218	141.999 141.873
155	141.841	218	141.073
155	141.747	219	142.126
156	141.905	221	142.283
157	141.873	222	142.473
158	141.81	223	142.662
159	141.873	224	142.757
160	141.841	225	142.757
161	141.81	226	142.852
162	141.841	227	142.852
163	141.778	228	142.978
164 165	141.841 141.684	229 230	143.104 143.167
166	141.652	· 230	143.107
167	141.621	232	143.041
168	141.494	233	142.883
169	141.463	234	142.852
170	141.4	235	142.852
171	141.242	236	142.694
172	141.115	237	142.725
173	141.115	238	142.536
174	141.147	239	142.536
175	141.21	240	142.22
176 177	141.273 141.336	241	142.347
178	141.305		
179	141.494		
180	141.621		
181	141.621		
182	141.778		
183	141.905		
184	142.062		
185	142.126		
186 187	142.252 142.157		
188	142.157		
189	141.905		
190	142.094		
191	141.841		
192	141.873		
193	141.873		
194	141.873		
195	141.905		
196	141.841		
197 198	141.873 141.778		
199	141.778		
200	141.81		
201	141.747		
202	141.873		
203	141.873		
204	141.968		
205	141.905		
206	141.999		
207 208	141.968 141.999		
208	141.999		
200			

COOPER CITY IW 1 2794 - 2810 RECOVERY DATA

Time	Water Level	Time	Water Level	Time	Water Level	Time	Water Level	Time	Water Level
0	141.589	0.75	118.348	15	25.065	80	1.141	145	0.855
0.0083	140.137	0.7666	117.748	16	22.848	81	1.141	146	0.855
0.0166	141.273	0.7833	117.875	17	20.852	82	1.109	147	0.855
0.025	139.79	0.8	117.432	18	19.014	83	1.109	148	0.855
0.0333	140.8	0.8166	117.148	19	17.43	84	1.109	149	0.824
0.0416	140.8	0.8333	116.99	20	15.878	85	1.077	150	0.855
0.05	139.506	0.85	116.295	21	14.547	86	1.077	151	0.855
0.0583	139.095	0.8666	116.106	22	13.343	87	1.077	152	0.824
0.0666	138.748	0.8833	115.916	23	12.265	88	1.014	153	0.824
0.075	138.527	0.9	115.474	24	11.251	89	1.014	154 155	0.824 0.824
0.0833	138.117	0.9166	115.505	25	10.332 9.508	90 91	1.046 1.046	155	0.824
0.0916	138.085	0.9333	115.126	26 27	9.508 8.716	92	1.040	157	0.824
0.1 0.1083	137.643 137.233	0.95 0.9666	115.095 114.463	28	8.019	93	1.014	158	0.792
0.1083	136.885	0.9833	114.4	29	7.448	94 94	1.014	159	0.824
0.125	136.633	1	113.957	30	6.846	95	1.014	160	0.824
0.1333	136.191	1.2	111.588	31	6.339	96	1.014	161	0.855
0.1416	135.938	1.4	109.187	32	5.864	97	0.982	162	0.824
0.15	135.654	1.6	106.754	33	5.42	98	0.982	163	0.824
0.1583	135.307	1.8	104.573	34	5.039	99	1.046	164	0.824
0.1666	134.896	2	102.804	35	4.691	100	0.982	165	0.824
0.175	134.77	2.2	100.37	36	4.374	101	0.982	166	0.792
0.1833	134.423	2.4	98.284	37	4.089	102	0.982	167	0.824
0.1916	134.044	2.6	96.04	38	3.835	103	0.982	168 169	0.792 0.792
0.2	133.728	2.8	94.365	39	3.581	104 105	0.982 0.982	170	0.792
0.2083	133.476	3	92.373	40	3.391 3.169	105	0.982	170	0.792
0.2166	133.128	3.2 3.4	90.255 88.358	41 42	2.979	100	0.951	172	0.792
0.225 0.2333	132.876 132.655	3.4	86.493	43	2.852	108	0.951	173	0.824
0.2333	132.000	3.8	84.785	44	2.694	109	0.982	174	0.792
0.25	131.834	4	83.236	45	2.567	110	0.919	175	0.792
0.2583	131.771	4.2	81.528	46	2.44	111	0.919	176	0.792
0.2666	131.36	4.4	79.947	47	2.345	112	0.919	177	0.792
0.275	130.855	4.6	78.144	48	2.218	113	0.919	178	0.792
0.2833	130.855	4.8	76.5	49	2.155	114	0.919	179	0.792
0.2916	130.697	5	74.887	50	2.06	115	0.919	180	0.824
0.3	130.223	5.2	73.368	51	1.997	116	0.919		
0.3083	129.592	5.4	71.85	52	1.965	117	0.919 0.887		
0.3166	129.939	5.6	70.332	53	1.87	118 119	0.887		
0.325	129.56	5.8	68.971	54 55	1.806 1.743	120	0.887		
0.3333 0.35	129.213 128.581	6 6.2	67.421 66.061	56	1.68	120	0.919		
0.3666	128.202	6.4	64.669	57	1.648	122	0.951		
0.3833	127.634	6.6	63.435	58	1.616	123	0.919		
0.4	127.476	6.8	62.043	59	1.616	124	0.887		
0.4166	126.718	7	60.745	60	1.553	125	0.887		
0.4333	125.96	7.2	59.575	61	1.426	126	0.887		
0.45	125.897	7.4	58.277	62	1.394	127	0.887		
0.4666	125.202	7.6	57.17	63	1.363	128	0.887		
0.4833	12 4 .855	7.8	55.967	64	1.363	129	0.919		
0.5	124.476	8	54.828	65	1.331	130	0.887 0.887		
0.5166	124.097	8.2	53.72	66	1.331 1.299	131 132	0.887		
0.5333	123.56	8.4	52.676 51.663	67 68	1.299	133	0.887		
0.55	123.465	8.6	50.682	69	1.299	134	0.887		
0.5666 0.5833	122.391 122.518	8.8 9	49.7	70	1.267	135	0.887		
0.5655	122.518	9.2	48.782	71	1.236	136			
0.6166	121.444	9.4	47.864	72	1.236	137			
0.6333	121.16	9.6	46.946	73	1.204	138	0.855		
0.65	120.812	9.8	46.06	74	1.204	139			
0.6666	120.18	10	45.205	75	1.204	140			
0.6833	120.054	11	38.43	76	1.172	141			
0.7	119.549	12	33.49	77	1.204	142			
0.7166	119.296	13	30.165	78	1.172	143			
0.7333	118.727	14	27.504	79	1.141	144	0.655		

Packer Test Procedures and Quality Control

General

Check Pipe tally to make sure that packer or packers are set at correct depth.

Note date and time on all recorded data.

Observe the pressuring up of the packer or packers, noting pressure applied to packers.

Monitor and record pressure on packers periodically during all phases of test.

Identify elevation benchmark.

Development

Note time of start of development.

Note method of development (air lift, pumping, etc.)

Check and record conductivity of development fluid initially and thereafter (maximum every 15 minutes).

Visually observe and record turbidity of development fluid (maximum every 15 minutes).

Visually observe and estimate fluid development rate (maximum every 15 minutes).

Continue development until conductivity has stabilized for 45 to 60 minutes.

Background

Observe and record the installation depths of the transducers (inside drill pipe and annulus).

Check and record transducer readings (maximum every 15 minutes).

Official background does not start until stabilization from development has occurred.

Continue recording background for 2 hours.

Pumping Test

Prior to starting pumping measure and record water level in drill pipe and annulus (referenced to a known benchmark).

Observe and record water levels in drill pipe and annulus (maximum every 10 minutes).

Observe and record the pumping rate (maximum every 10 minutes).

Pumping shall continue for a minimum of 4 hours.

Just prior to ending pumping observe water sample collection in accordance with water sampling checklist.

After stopping pump observe and record total volume of water pumped.

Recovery

.

Observe and record water levels in drill pipe and annulus (maximum every 10 minutes).

Recovery shall continue for a minimum of 3 hours.

APPENDIX I

PACKER TEST WATER QUALITY LABORATORY RESULTS

INTAKE #: 540934

Date: 13-Feb-01

Youngquist Brothers, Inc. 15465 Pine Ridge Road Fort Myers, FL 33908-

	cker	
Cooper City	y	
Ground Wa	iter	
client		
1/11/01	14:30	
	Ground Wa	

Lab ID	Sample ID	Туре	Sample Date/Time					
Analysis			Method	Result	D. L.	Unit A	nalysis Date/Time	LabID:
N010434 16	60-1710	GRB	1/11/01					
Total Dissolved So	olids		EPA 160.1	4,500	5	mg/L	1/12/01	E84380
Chloride			SM4500Cl-B	2,400	100	mg/L	1/15/01	E84380
Sulfate			EPA 375.4	478	20	mg/L	1/15/01	E84380
Ammonia-N			EPA 350.1	0.57	0.02	mg/L	1/19/01	E83012
Nitrogen, Total Kj	eldahl		EPA 351.2	0.72	0.05	mg/L	2/8/01	E83012
Conductivity			EPA 120.1	7,190	1.0	umhos/cm	1/15/01	E84380
N010435 16	60-1710	GRB	1/11/01					
Total Dissolved Sc	olids		EPA 160.1	5,090	5	mg/L	1/12/01	E84380
Chloride			SM4500Cl-B	2,370	100	mg/L	1/15/01	E84380
Sulfate			EPA 375.4	469	20	mg/L	1/15/01	E84380
Ammonia-N			EPA 350.1	0.49	0.02	mg/L	1/19/01	E83012
Nitrogen, Total Kje	eldahl		EPA 351.2	0.54	0.05	mg/L	2/8/01	E83012
Conductivity			EPA 120.1	7,150	1.0	umhos/cm	1/15/01	E843 80
N010436 16	60-1710	GRB	1/11/01				-	
Total Dissolved So	olids		EPA 160.1	5,170	5	mg/L	1/12/01	E84380
Chloride			SM4500Cl-B	2,350	100	mg/L	1/15/01	E84380
Sulfate			EPA 375.4	485	20	mg/L	1/15/01	E84380
Ammonia-N			EPA 350.1	0.53	0.02	mg/L	1/19/01	E83012

HRS Certification#'s E84380(Nokomis) E85457(Ft. Myers)

Rpt form #7; Rev 1/1/96

Lab ID	Sample ID	Туре	Sample Date/Time					
Analysis	S		, Method	Result	D. L.	Unit An	alysis Date/Time	LablD:
Nitrogen, To	tal Kjeldahl		EPA 351.2	0.74	0.05	mg/L	2/8/01	E83012
Conductivity	,		EPA 120.1	7,120	1.0	umhos/cm	1/15/01	E843 80
N010437	1660-1710	GRB	1/11/01					
Total Dissolv	ved Solids		EPA 160.1	4,830	5	mg/L	1/12/01	E84380
Chloride			SM4500CI-B	2,370	100	mg/L	1/15/01	E84380
Sulfate			EPA 375.4	485	20	mg/L	1/15/01	E8438 0
Ammonia-N	ſ		EPA 350.1	0.52	0.02	mg/L	1/19/01	E8301 2
Nitrogen, To	otal Kjeldahl		EPA 351.2	0.55	0.05	mg/L	1/30/01	E83012
Conductivity	,		EPA 120.1	7,140	1.0	umhos/cm	1/15/01	E8438 0
N010438	1660-1710	GRB	1/11/01					
Total Dissol	ved Solids		EPA 160.1	4,780	5	mg/L	1/12/01	E8438 0
Chloride			SM4500C1-B	2,370	100	mg/L	1/15/01	E 8438 0
Sulfate			EPA 375.4	485	20	mg/L	1/15/01	E84380
Ammonia-N	I		EPA 350.1	0.53	0.02	mg/L	1/19/01	E83012
Nitrogen, To	otal Kjeldahl		EPA 351.2	0.57	0.05	mg/L	2/8/01	E83012
Conductivity	y		EPA 120.1	7,110	1.0	umhos/cm	1/15/01	E84380
N010439	1660-1710	GRB	1/11/01					
Total Dissol	ved Solids		EPA 160.1	4,820	5	mg/L	1/12/01	E84380
Chloride			SM4500Cl-B	2,320	100	mg/L	1/15/01	E84380
Sulfate			EPA 375.4	495	20	mg/L	1/15/01	E84380
Ammonia-N	1		EPA 350.1	0.53	0.02	mg/L	1/19/01	E83012
Nitrogen, To	otal Kjeldahl		EPA 351.2	0.59	0.05	mg/L	2/8/01	E83012
Conductivit	у		EPA 120.1	7,090	1.0	umhos/cm	1/15/01	E84 380
N010440	1660-1710	GRB	1/11/01					
Total Dissol	lved Solids		EPA 160.1	4,660	5	mg/L	1/12/01	E8438 0
Chloride			SM4500Cl-B	2,400	100	mg/L	1/15/01	E84380
Sulfate			EPA 375.4	463	20	mg/L	1/15/01	E84380
Ammonia-N	ł		EPA 350.1	0.52	0.02	mg/L	1/19/01	E83012
Nitrogen, To	otal Kjeldahl		EPA 351.2	0.61	0.05	mg/L	2/8/01	E83012
Conductivit	у		EPA 120.1	7,120	1.0	umhos/cm	1/15/01	E843 80

HRS Certification#'s E84380(Nokomis) E85457(Ft. Myers)

Lab ID	Sample ID	Туре	Sample Date/Time					
Analysis			Method	Result	D. L.	Unit Ar	alysis Date/Time	LabID:
N010441	1660-1710	GRB	1/11/01					
Total Dissolve	d Solids		EPA 160.1	4,670	5	mg/L	1/12/01	E84380
Chloride			SM4500Cl-B	2,400	100	mg/L	1/15/01	E84380
Sulfate			EPA 375.4	471	20	mg/L	1/15/01	E84380
Ammonia-N			EPA 350.1	0.52	0.02	mg/L	1/19/01	E83012
Nitrogen, Tota	l Kjeldahl		EPA 351.2	0.63	0.05	mg/L	2/8/01	E83012
Conductivity			EPA 120.1	7,170	1.0	umhos/cm	1/15/01	E84380

Comments:

Approved by:

Jebra A. Surelie

Debra Sanders Laboratory Director

Ę

1

بالمرجب - م	S	anders		СНА 7 <i>8</i> 0	IN-OF-	CUST	ΌĎ	Ŷ	REC	COF	D	,	1,~	PRO.	JECT ¥	5	40	93		
	. Le	oborator	ervices '	135) (of
					oort To:														GW	:
Client _ Addres		or City	·/		To:								110	-						
			· · · · · · · · · · · · · · · · · · ·	Pro	ject Name		Sth	ad	191	1 I	<u>acl</u>	115								
· · · · · · · · · · · · · · · · · · ·		Fax		Pro	ject Locati	on:							111		OUE	STED	DUE D	ATE:	1/15/	6)
	led By (PRINT)	clunt									ANAL REQU		KŠ	J.	Γ		[]	$\left \right $	1//	7.
Sampl Bottle #	ler Signature SA	MPLE DESCRIPTIO	ON	UI6	Sàmple TIME	TYPE	. .	JNPRESER	NO,	ç		J,	Ż	\$^ }	/				Sat	mple D #
			upth: 11010-1710	1/m/ör		G	4				k	\mathbf{x}	X		Í	ſſ	\uparrow	$\int \int$		
2		1										(11,-		11.	<u>à</u> -		NOIC	
3			<u> </u>	14	411														1000	• 5
											<u> </u>							<u> </u>	NOIC	<u>54</u> 3
⁻ 1 <u>9</u> -		<u></u>		$\left \right $	-				-				- -	+-				$\left\{ \right\}$		24
1					<u>S</u>			_			+++		╢			$\left - \right $		$\left\{ \begin{array}{c} \cdot \\ \cdot \end{array} \right\}$	NOI	
4		,							-	$\left \right $	┼╫		╢			$\left - \right $		$\left \right _{1}$	100	<u>04</u>
Y Bottle I		SHIPMENT METHOD E RETURNED / DATE	VIA	\vee	RELINO		ВҮ <i>./ А</i>	FEIL					ME	ACC	i - I - I - I - I - I - I - I - I - I -		AFFILI			04
#		- ALTOANED? DATE	· · ·		•	2.27												lai		/2
		COMMENTS:	COOLER #	Ĭ	1270 K	luc	Ũ.	li	ùç	,	11/0	14	1:3	~~~	T,	Byie	sht	·	1/11/01	
				<u> </u>											_	/				Τ
	,		COOLER SEAL INTACT Yes No										-							- <u>+</u>

1050 Endeavor Ct., Nokomis, FL 34275-3623 • (941)488-8103 • FAX 484-6774 1000 Gata muid, Full myers, rc 33912 • (741) 270-0337 • rrix (941) 290-0220

INTAKE #: 540825

Date: 09-Jan-01

Youngquist Brothers, Inc. 15465 Pine Ridge Road Fort Myers, FL 33908-

Project Name:	Packer - IW #	<i>‡</i> 1					
Project Location:	Cooper City WWTP						
Job ID:							
Sample Supply:	Ground Water						
Collector:	client						
Sample Received Date/Time:	1/7/01	12:30					

Lab ID	Sample ID	Туре	Sample Date/Time					
Analysi	S		Method	Result	D. L.	Unit An	alysis Date/Time	Lab11)
N010213	1763-1779	GRB	1/5/01				······································	
Chloride			SM4500CI-B	5,800	100	mg/L	1/8/01	E843 80
Sulfate			EPA 375.4	365	20	mg/L	1/8/01	E84380
Total Dissolv	ed Solids		EPA 160.1	10,500	5	mg/L	1/7/01	E84380
N010214	1763-1779	GRB	1/5/01					
Chloride			SM4500Cl-B	5,750	100	mg/L	1/8/01	E84380
Sulfate			EPA 375.4	339	20	mg/L	1/8/01	E84380
Total Dissolv	ed Solids		EPA 160.1	10,500	5	mg/L	1/7/01	E84380
N010215	1763-1779	GRB	1/5/01					
Chloride			SM4500C1-B	5,800	100	mg/L	1/8/01	E84380
Sulfate			EPA 375.4	352	20	mg/L	1/8/01	E84380
Total Dissolv	ed Solids		EPA 160.1	10,300	5	mg/L	1/7/01	E84380
N010216	1763-1779	GRB	1/5/01					
Chloride			SM4500Cl-B	5,900	100	mg/L	1/8/01	E84380
Sulfate			EPA 375.4	339	20	mg/L .	1/8/01	E84380
Total Dissolv	ed Solids		EPA 160.1	10,300	5	mg/L	1/7/01	E84380
N010217	1763-1779	GRB	1/5/01					
Chloride			SM4500CI-B	5,750	100	mg/L	1/8/01	E84380
Sulfate			EPA 375.4	342	5	mg/L	1/8/01	E84380

HRS Certification#'s E84380(Nokomis) E85457(Ft. Myers)

Lab ID	Sample ID	Туре	Sample Date/Time					
Analysis			Method	Result	D. L.	Unit Ana	LablD.	
Total Dissolv	· · · · · · · · · · · · · · · · · · ·		EPA 160.1	10,800	5	mg/L	1/7/01	E84380
N010218	1763-1779	GRB	1/5/01					
Chloride			SM4500CI-B	5,650	100	mg/L	1/8/01	E84380
Sulfate			EPA 375.4	333	20	mg/L	1/8/01	E84380
Total Dissolv	ved Solids		EPA 160.1	10,400	5	mg/L	1/7/01	E84380
N010219	1763-1779	GRB	1/5/01					
Chloride			A 300.0SM4500Cl-B	5,800	100	mg/L	1/8/01	E84380
Sulfate			EPA 375.4	330	20	mg/L	1/8/01	E84380
Total Dissol	ved Solids		EPA 160.1	10,300	5	mg/L	1/7/01	E84380
N010220	1763-1779	GRB	1/5/01					
Chloride			SM4500CI-B	6,000	100	mg/L	1/8/01	E84380
Sulfate			EPA 375.4	333	20	mg/L	1/8/01	E84380
Total Dissol	ved Solids		EPA 160.1	10,800	5	mg/L	1/7/01	E84380

Comments:

Approved by:

•

ibra A. Suretse A

Debra Sanders Laboratory Director

\$	Sanciers Laboratori	ies	τ:HΔĮ	N-OF-	CUST	0 0	V RE	:00 5	םּא		PRI	ಸುಕರಿ ಕ	Г Г 		Paç]e
Address Phone	Environmental Testing S VABros - Coop Fax	es City	Bill T P.O. : Proje	o: # ect Name	Bcke	2		Ta	, ≠ /		C F K	ield R	ner Typ eport #	e: #:		1-9
Sampler Si Bottle	By (PRINT) ignature		DATE	Sample	e Type	PF		ATIVES		SES EST		[]		Τ	77	7
#	Corper City I W		1-05-01		3	γþ		ĨĨ				Í	Í	<u> </u>	+	
																<u> </u>
-																u
				\mathbf{V}		V										- ve
Bottle Lot #	SHIPMENT METHOD OUT / DATE RETURNED DATE	VIA			iuished i		FILIAT	ION	j	E TIME	AC	CEPT No			IATION	
	COMMENTS:	COOLER #		Th	<u>r k</u>	2	t de		(-70)	1230		<i>1</i> .	B	R16+	łΤ	
		COOLER SEAL INTACT Yes No				· <u> </u>			<u> </u>							

· ;

1050 Endeavor Ct., Nokomis, FL 34275-3623 • (941)488-8103 • FAX 484-6774 16880 Gator Road, Fart Myers, FL 33912 • (941) 590-0337 • FAX (941) 590-0536

INTAKE #: 540955

Date: 01-Aug-01

Youngquist Brothers, Inc. 15465 Pine Ridge Road Fort Myers, FL 33908-

Project Name:	Straddle Pack	er
Project Location:	Cooper City	
Job ID:		
Sample Supply:	Ground Water	r
Collector:	client	
Sample Received Date/Time:	1/13/01	12:00

Lab ID	Sample ID	Туре	Sample Date/Time						
Analysis			Method		Result	D. L.	Unit A	nalysis Date/Time	LabID:
N010521	1800-1850	GRB	1/13/1901 1	0:00					
Total Dissolv	ed Solids		EPA	160.1	19,200	5	mg/L	1/13/01	E84380
Chloride			SM4500)Cl-B	10,500	50 0	mg/L	1/17/01	E84380
Sulfate			EPA	375.4	365	100	mg/L	1/17/01	E84380
Ammonia-N			EPA	350.1	0.67	0.02	mg/L	1/19/01	E83012
Nitrogen, Tot	tal Kjeldahl		EPA	351.2	0.76	0.05	mg/L	2/8/01	E83012
Conductivity			EPA	120.1	24,500	1.0	umhos/cm	1/16/01	E84380
N010522	1800-1850	GRB	1/13/1901 1	0:00					
Total Dissolv	ed Solids		EPA	160.1	17,000	5	mg/L	1/13/01	E84380
Chloride			SM450	OCI-B	10,500	500	mg/L	1/17/01	E84380
Sulfate			EPA	375.4	366	100	mg/L	1/17/01	E84380
Ammonia-N			EPA	350.1	0.68	0.02	mg/L	1/19/01	E83012
Nitrogen, To	tal Kjeldahl		EPA	351.2	0.68	0.05	mg/L	2/8/01	E83012
Conductivity			EPA	120.1	25,700	1.0	umhos/cm	1/16/01	E84380
N010523	1800-1850	GRB	1/13/1901 1	0:00				-	
Total Dissolv		U		160.1	17,200	5	mg/L	1/13/01	E84380
Chloride			SM450	0Cl-B	10,200	500	mg/L	1/17/01	E84380
Sulfate				375.4	352	100	mg/L	1/17/01	E84380
Ammonia-N				350.1	0.67	0.02	mg/L	1/19/01	E83012
/ 1101101114-11									

HRS Certification#'s E84380(Nokomis) E85457(Ft. Myers)

Rpt form #7; Rev 1/1/96

Lab ID	Sample ID	Туре	Sample Date/Time					
Analysis	S		Method	Result	D. L.	Unit A	nalysis Date/Time	LabID:
Nitrogen, To	tal Kjeldahl		EPA 351.2	0.69	0.05	mg/L	2/8/01	E83012
Conductivity			EPA 120.1	25,900	1.0	umhos/cm	1/16/01	E84380
N010524	1800-1850	GRB	1/13/1901 10:00					
Total Dissolv	ved Solids		EPA 160.1	18,400	5	mg/L	1/13/01	E84380
Chloride			SM4500Cl-B	10,000	500	mg/L	1/17/01	E84380
Sulfate			EPA 375.4	370	100	mg/L	1/17/01	E84380
Ammonia-N			EPA 350.1	0.68	0.02	mg/L	1/19/01	E83012
Nitrogen, To	tal Kjeldahl		EPA 351.2	1.18	0.05	mg/L	1/30/01	E83012
Conductivity			EPA 120.1	27,500	1.0	umhos/cm	1/16/01	E84380
N010525	1800-1850	GRB	1/13/1901 10:00					
Total Dissolv	ved Solids		EPA 160.1	12,200	5	mg/L	1/13/01	E84380
Chloride			SM4500Cl-B	10,200	500	mg/L	1/17/01	E84380
Sulfate			EPA 375.4	364	100	mg/L	1/17/01	E84380
Ammonia-N			EPA 350.1	0.68	0.02	mg/L	1/19/01	E83012
Nitrogen, Tot	tal Kjeldahl		EPA 351.2	0.69	0.05	mg/L	2/8/01	E83012
Conductivity			EPA 120.1	25,800	1.0	umhos/cm	1/16/01	E84380
N010526	1800-1850	GRB	1/13/1901 10:00					
Total Dissolv	ed Solids		EPA 160.1	23,000	5	mg/L	1/13/01	E84380
Chloride			SM4500Cl-B	10,000	500	mg/L	1/17/01	E84380
Sulfate			EPA 375.4	357	100	mg/L	1/17/01	E84380
Ammonia-N			EPA 350.1	0.67	0.02	mg/L	1/19/01	E83012
Nitrogen, Tot	tal Kjeldahl		EPA 351.2	0.71	0.05	mg/L	2/8/01	E83012
Conductivity			EPA 120.1	26,100	1.0	umhos/cm	1/16/01	E84380
N010527	1800-1850	GRB	1/13/1901 10:00					
Total Dissolv	ed Solids		EPA 160.1	15,900	5	mg/L	1/13/01	E84380
Chloride			SM4500C1-B	10,000	500	mg/L	1/17/01	E84380
Sulfate			EPA 375.4	364	100	mg/L	1/17/01	E84380
Ammonia-N			EPA 350.1	0.68	0.02	mg/L	1/19/01	E83012
Nitrogen, Tot	al Kjeldahl		EPA 351.2	0.70	0.05	mg/L	2/8/01	E83012
Conductivity			EPA 120.1	26,200	1.0	umhos/cm	1/16/01	E84380

HRS Certification#'s E84380(Nokomis) E85457(Ft. Myers)

Lab ID	Sample ID	Туре	Sample Date/Time					
Analysis	5		Method	Result	D. L.	Unit Analysis Date/Time		LabID:
N010528	1800-1850	GRB	1/13/1901 10:00		_			
Total Dissolv	ved Solids		EPA 160.1	16,700	5	mg/L	1/13/01	E84380
Chloride			SM4500Cl-B	10,500	500	mg/L	1/17/01	E84380
Sulfate			EPA 375.4	368	100	mg/L	1/17/01	E84380
Ammonia-N			EPA 350.1	0.67	0.02	mg/L	1/19/01	E83012
Nitrogen, To	tal Kjeldahl		EPA 351.2	0.70	0.05	mg/L	2/8/01	E83012
Conductivity			EPA 120.1	26,200	1.0	umhos/cm	1/16/01	E84380
				6				

Approved by:

Comments:

Craig Toler Laboratory Director

INTAKE #: 543827

Date: 16-May-01

Youngquist Brothers, Inc. 15465 Pine Ridge Road Fort Myers, FL 33908-

Project Name:	Packer Test		
Project Location:	Cooper City		
Job ID:			
Sample Supply:	Ground Water		1
Collector:	client		Ì
Sample Received Date/Time:	5/1/01	16:15	

Lab ID	Sample ID	Туре	Sample Date/Time					
Analysis		Method	Result	D. L.	Unit An	alysis Date/Time	LabID:	
N014439	1900-1950'	GRB	4/30/01					
Total Dissolv	ved Solids		EPA 160.1	27,400	5	mg/L	5/2/01	E843 80
Chloride			SM4500Cl-B	15,500	1,000	mg/L	5/3/01	E84380
Sulfate			EPA 300.0	680	3	mg/L	5/2/01	E84380
Ammonia-N			EPA 350.3	*		mg/L		E84380
Nitrogen, To	tal Kjeldahl		EPA 351.2	*		mg/L		E84380
Conductivity	,		EPA 120.1	38,200	1.0	umhos/cm	5/3/01	E84380

Approved by:

Comments:

*-Resample requested. Analyses reported on intake #543974.

Craig Toler Laboratory Director

HRS Certification#'s E84380(Nokomis) E85457(Ft. Myers)

Sonders	CHAIN-OF-CUSTODY RECORD									
Sanders Laboratories Environmental Testing Services	Report To:	Page of								
	Report To:	Sample Supply:GW								
Client Youngquist Kooper City Address	Bill To:	Customer Type:								
Address U		Field Report #:								
	Project Name									
Phone Fax										
Sampled By (PRINT) Client	PRESERVATIVES ANALYSES									
Sampler Signature	Sample X Sample Start Time Type Start ON H P									
Bottle SAMPLE DESCRIPTION		Sample								
Packer 1900-1950	4/30to GXXX J	14JJ NO1-4429								
Bottle Lot SHIPMENT METHOD # OUT / DATE RETURNED. DATE VIA	RELINQUISHED BY / AFFILIATION DATE TIN	E ACCEPTED BY / AFFILIATION DATE TIME								
		Ling hugher Stiller 1030								
COMMENTS: COOLER #	ana fuerda Marte.	15 Man In Clower 11/6, 11:05								
· ·										
COOLER SE INTACT Yes No	AL									

1050 Endeovor Ct., Nokomis, FL 34275-3623 • (941)488-8103 • FAX 484-6774

1000 Gaunnoad, 1011 Myels, 12 33912 - (941) 270-0337 - 1AX (7417 590-0220

INTAKE #: 543974

Date: 16-May-01

Youngquist Brothers, Inc. 15465 Pine Ridge Road Fort Myers, FL 33908-

Project Name:	Packer Test (Resample)							
Project Location:	Cooper City							
Job ID:								
Sample Supply:	Ground Water							
Collector:	client							
Sample Received Date/Time:	5/9/01	15:40						

Lab ID	Sample ID Type	Sample Date/Time						
Analysis		Method	Result	D. L.	Unit An	alysis Date/Time	LabID:	
N014697	1900-1950	4/27/01						
Ammonia-N		EPA 350.3	0.54	0.05	mg/L	5/10/01	E843 80	
Nitrogen, Total Kjeldahl		EPA 351.2	0.82	0.10	mg/L	5/15/01	E843 80	

Approved by:

Comments: Original sample- Intake #543827

Craig Toler Laboratory Director

HRS Certification#'s E84380(Nokomis) E85457(Ft, Myers)

٩

Sanders Laboratories				CHAIN-OF-CUSTODY RECORD										PROJECT							
	Laboratorie	25				į.	•													- <u></u>	of
	Environmental Testing Ser		Repo	ort To:	ED	<u>) (</u>	$\underline{\gamma}$		<u>اار</u>	er.	5			Samp	ole S	Suppl	ly:		6	āΨ	
Client	Young QUIST	PLO2	Bill To:									Customer Type:									
Address			P.O. #	P.O. # Project Name								Field Report #:									
						-	-		-					Kit #	<u> </u>					— <i>—</i>	
Phone	Fax		Proje	ct Locati	on:	<u>(`</u>	00	Pe	(<u>'</u>	7		•	REQ	UES'	TED	DUE	DAT	E:	5/1	<u>1/</u>
Sampleo	LIBY (PRINT) CLIENT		1				RESE				ALYS QUE		7	7	/	/	7	Τ,	7/	$\overline{7}$	7
Bottle	Signature	•		Sample		5	UNPRESERVED H,SO,	o			Å	Æ	4		/	//			//		
#	$\frac{1900 - 1950}{1900}$				TYPE	4.		É	Ĭ	+	//	1	А		-	-	-	-	┽	NOT	amı ID ə
	1100 11 20		1 1	<u> </u>	<u>†</u>				+-					\rightarrow	+			+	+-	1001	
					<u> </u>			$\left \right $		┼┤							_	+	<u> </u>	<u> </u>	
			ļ			-		╞╌┨	_			_									
	·																				
																		Τ			
		·····																	+		
	•		1												+			+	┽	+	
Bottle Lo	t SHIPMENT METHOD OUT / DATE RETURNED DATE	VIA		RELING	UISHED	BY / A	FFILI				DATE	TIME		CCEF	DTET	ן BV ו			ION	DATE	
· . #	OUT / DATE RETURNED DATE									5/9										5/9/01	
	COMMENTS:	COOLER #		2	IENT		<u>~</u>					124	T		<u>le1</u>	no	ļ	-	<u>v hi</u>	5/9/01	′′
			Stona function 5/9/01 Galer 5/9/01							1571								5/5/01	╉		
	-	COOLER SEAL		- (<u> </u>	u	<u>م</u>			19	101	1700			Γ.		<u>ri</u>	<u>91</u>	<u>nt</u>	17/01	
		INTACT Yes No					<u>.</u>			+	-										+
<u> </u>																					

1050 Endeavor Ct., Nokomis, FL 34275-3623 • (941)488-8103 • FAX 484-6774 10080 Cului Road, Luit Myeis, il 33712 - (941) 270-0327 - FAX (241) 590-0205

INTAKE #: 540872

Date: 12-Jan-01

Youngquist Brothers, Inc. 15465 Pine Ridge Road Fort Myers, FL 33908-

Project Name:	Straddle Pack	er
Project Location:	Cooper City	
Job ID:		
Sample Supply:	Ground Water	•
Collector:	client	
Sample Received Date/Time:	1/9/01	16:30

Lab ID	Sample ID	Туре	Sample 1	Date/Time					
Analysis			Me	thod	Result	D. L.	Unit .	Analysis Date/Time	LabID:
N010369	1950-1966	GRB	1/9/01	13:00					
Chloride			SN	44500CI-B	17,200	500	mg/l	L 1/11/01	E84380
Sulfate				EPA 375.4	950	100	mg/l	L 1/11/01	E84380
Total Dissolv	ed Solids			EPA 160.1	28,900	5	mg/I	L 1/10/01	E84380
Conductivity			l	EPA 120.1	41,200	1.0	umhos/cn	n 1/11/01	E84380
Nitrogen, Tot	al Kjeldahl		1	EPA 351.2	< 0.05	0.05	mg/I	L 1/11/01	E84380
Ammonia-N			1	EPA 350.3	<0.05	0.05	mg/I	1/11/01	E84380
N010370	1950-1966	GRB	1/9/01	13:00					
Chloride			SM	14500CI-B	17,200	500	mg/l	- 1/11/01	E84380
Sulfate			I	EPA 375.4	848	100	mg/I	- 1/11/01	E84380
Total Dissolve	ed Solids		I	EPA 160.1	29,100	5	mg/I	- 1/10/01	E84380
Conductivity			H	EPA 120.1	40,400	1.0	umhos/cm	ı 1/11/01	E84380
Nitrogen, Tota	al Kjeldahl		E	EPA 351.2	<0.05	0.05	mg/L	- 1/11/01	E84380
Ammonia-N			I	EPA 350.3	<0.05	0.05	mg/L	- 1/11/01	E84380
N010371	1950-1966	GRB	1/9/01	13:00			-		
Chloride			SM	4500Cl-B	16,700	500	mg/L	1/11/01	E84380
Sulfate			E	EPA 375.4	839	100	mg/L	. 1/11/01	E84380
Total Dissolve	d Solids		F	EPA 160.1	29, 800	5	mg/L	/ 1/10/01	E84380
Conductivity			E	EPA 120.1	41,700	1.0	umhos/cm	1/11/01	E84380

HRS Certification#'s E84380(Nokomis) E85457(Ft. Myers)

Rpt form #7; Rev 1/1/96

Lab ID	Sample ID	Туре	Sample Date/Time					
Analysis	5		Method	Result	D. L.	Unit An	alysis Date/Time	LabID:
Nitrogen, To	tal Kjeldahl		EPA 351.2	< 0.05	0.05	mg/L	1/11/01	E84380
Ammonia-N			EPA 350.3	<0.05	0.05	mg/L	1/11/01	E84380
N010372	1950-1966	GRB	1/9/01 13:00					
Chloride			SM4500Cl-B	16,700	500	mg/L	1/11/01	E84380
Sulfate			EPA 375.4	856	100	mg/L	1/11/01	E84380
Total Dissolv	ved Solids		EPA 160.1	30,100	5	mg/L	1/10/01	E84380
Conductivity	/		EPA 120.1	42,200	1.0	umhos/cm	1/11/01	E84380
Nitrogen, To	otal Kjeldahl		EPA 351.2	<0.05	0.05	mg/L	1/11/01	E84380
Ammonia-N			EPA 350.3	<0.05	0.05	mg/L	1/11/01	E84380
N010373	1950-1966	GRB	1/9/01 13:00					
Chloride			SM4500Cl-B	17,000	500	mg/L	1/11/01	E84380
Sulfate			EPA 375.4	887	100	mg/L	1/11/01	E84380
Total Dissol	ved Solids		EPA 160.1	31,200	5	mg/L	1/10/01	E84380
Conductivity	/		EPA 120.1	41,000	1.0	umhos/cm	1/11/01	E84380
Nitrogen, To	otal Kjeldahl		EPA 351.2	<0.05	0.05	mg/L	1/11/01	E84380
Ammonia-N	I		EPA 350.3	<0.05	0.05	mg/L	1/11/01	E84380
N010374	1950-1966	GRB	1/9/01 13:00					
Chloride			SM4500Cl-B	17,000	500	mg/L	1/11/01	E84380
Sulfate			EPA 375.4	898	100	mg/L	1/11/01	E84380
Total Dissol	ved Solids		EPA 160.1	31,400	2	mg/L	1/10/01	E84380
Conductivity	y		EPA 120.1	41,600	1.0	umhos/cm	1/11/01	E84380
Nitrogen, To	otal Kjeldahl		EPA 351.2	<0.05	0.05	mg/L	1/11/01	E84380
Ammonia-N	I		EPA 350.3	< 0.05	0.05	mg/L	1/11/01	E84380
N010375	1950-1966	GRB	1/9/01 13:00					
Chloride			SM4500Cl-B	17,000	500	mg/L	1/11/01	E84380
Sulfate			EPA 375.4	902	0.12	mg/L	1/11/01	E84380
Total Dissol	ved Solids		EPA 160.1	30,000	5	mg/L	1/10/01	E84380
Conductivity	y		EPA 120.1	41,600	1.0	umhos/cm	1/11/01	E84380
Nitrogen, To	otal Kjeldahl		EPA 351.2	<0.05	0.05	mg/L	1/11/01	E84380
Ammonia-N	1		EPA 350.3	<0.05	0.05	mg/L	1/11/01	E84380

HRS Certification#'s E84380(Nokomis) E85457(Ft. Myers)

•

Lab ID	Sample ID	Туре	Sample Date/Time					
Analysis			Method	Result	Ð. L.	Unit	Analysis Date/Time	LabID:

Comments:

Approved by:

-

1. Sindse

Debra Sanders Laboratory Director

.

Sanders A Laboratories	CHAIN-OF-CUSTODY RECORD	# 270872
Environmental Testing Services		Page of
Client Cooper City - VQ	Report To: <u>Milew, Izd. M.</u> Bill To:	Sample Supply: <u>G</u> W
Address	P.O. #	Customer Type:
Phone Fax	P.O. # Project Name Straddle Packer	Field Report #:
Sampled By (PRINT)	Project Location:	REQUESTED DUE DATE: 1-12-0
Sampled By (PRINT) Lieut	PRESERVATIVES ANALYSES	¥///////
Sampler Signature Bottle SAMPLE DESCRIPTION		\$^////////////////////////////////////
	Sample DATE TIME TYPE 및 방법 이 가 가 가 가 가 가 가 가 가 가 가 가 가 가 가 가 가 가	Sample ID #
C.C. Iw#1 Test#2 (1950-1966)	1-9-01 1300 g X X X X	- wol 0369
		0370
		037/
		6372
		0373
Bottle Lot		0375
# OUT / DATE RETURNED DATE VIA	RELINQUISHED BY / AFFILIATION DATE TIME	ACCEPTED BY / AFFILIATION DATE TIME
COMMENTS: COOLER #	Client 1-9-01	Vine Vine 1
COOLER #	Lina Judechio 19-01 16:35	man 4 1 4.00 14.00
		Celleta 1-9:01 11: 7
COOLER SEAL INTACT Yes No		· · · · · · · · · · · · · · · · · · ·
1050 Endeavor 1686 - Wtor Ficus	Ct., Nokomis, FL 3/075-3607 - (941) 103-81(- AX - 774 , Fort IVIVERS, FL 3/5912 • (941) 590-0337 • FAX (941) 500 0536	

. . .

.

.

INTAKE #: 541975

Date: 23-Feb-01

Youngquist Brothers, Inc. 15465 Pine Ridge Road Fort Myers, FL 33908-

Project Name:	Packer #8	
Project Location:	Cooper City	
Job ID:		
Sample Supply:	Ground Water	
Collector:	client	
Sample Received Date/Time:	2/20/01	12:45

Lab ID Sample ID Type	Sample Date/Time					
Analysis	Method	Result	D. L.	Unit A	nalysis Date/Time	LabID:
N012191a 2269-2285'						
Chloride	SM4500CI-B	18,700	500	mg/L	2/22/01	E84380
Sulfate	EPA 375.4	2,480	100	mg/L	2/23/01	E84380
Total Dissolved Solids	EPA 160.1	31,500	5	mg/L	2/20/01	E84380
N012191b 2269-2285'						
Chloride	SM4500Cl-B	18,500	1,000	mg/L	2/22/01	E84380
Sulfate	EPA 375.4	2,460	100	mg/L	2/23/01	E84380
Total Dissolved Solids	EPA 160.1	31,300	5	mg/L	2/20/01	E84380
N012191c 2269-2285'						
Chloride	SM4500CI-B	20,500	1,000	mg/L	2/22/01	E84380
Sulfate	EPA 375.4	2,450	100	mg/L	2/23/01	E84380
Total Dissolved Solids	EPA 160.1	30,700	5	mg/L	2/20/01	E84380
N012191d 2269-2285'						
Chloride	SM4500CI-B	18,500	1,000	mg/L	2/22/01	E84380
Sulfate	EPA 375.4	2,460	100	mg/L	- 2/23/01	E84380
Total Dissolved Solids	EPA 160.1	32,000	5	mg/L	2/20/01	E84380
N012191e 2269-2285'						
Chloride	SM4500CI-B	19,000	1,000	mg/L	2/22/01	E84380
Sulfate	EPA 375.4	2,480	100	mg/L	2/23/01	E84380

HRS Certification#'s E84380(Nokomis) E85457(Ft. Myers)

Rpt form #7; Rev 1/1/96

Lab ID	Sample ID Type	Sample Date/Time					
Analysis		Method	Result	D. L.	Unit A	analysis Date/Time	LabID:
Total Dissolve	d Solids	EPA 160.1	31,200	5	mg/L	2/20/01	E84380
N012191f	2269-2285'						
Chloride		SM4500C1-B	19,000	1,000	mg/L	2/22/01	E84380
Sulfate		EPA 375.4	2,460	100	mg/L	2/23/01	E84380
Total Dissolve	d Solids	EPA 160.1	32,300	5	mg/L	2/20/01	E84380
N012191g	2269-2285'						
Chloride		SM4500C1-B	19,500	1,000	mg/L	2/22/01	E84380
Sulfate		EPA 375.4	2,490	100	mg/L	2/23/01	E84380
Total Dissolve	d Solids	EPA 160.1	31,600	5	mg/L	2/20/01	E84380
N012191h	2269-2285'						
Chloride		SM4500Cl-B	19,000	1,000	mg/L	2/22/01	E84380
Sulfate		EPA 375.4	2,460	100	mg/L	2/23/01	E8438()
Total Dissolve	d Solids	EPA 160.1	30,400	5	mg/L	2/20/01	E84380

Approved by:

ubra A. Surder Æ

Debra Sanders Laboratory Director

HRS Certification#'s E84380(Nokomis) E85457(Ft. Myers)

.

Comments:

Sander Laborat	rs	CHAIN-OF-CUSTODY RECORD	PROJECT Page of
Client <u>4</u> <i>Q</i> - (copu (Address	ing Services	Report To: <u>Ed. M.</u> Bill To: P.O. # Project Name <u>Packler #</u> Project Location: <u>Coper Lity</u>	Sample Supply: 640 Customer Type:
Sampled By 1PRINT)		PRESERVATIVES ANALYSE REQUES	
Bottle # CC IW# 1 Pack (1)	1PTION er 世名 <i>,726</i> 9-2 <i>7</i> 55		Sample ID# N01 2191 A N01 2191 B N01 2191 C
			NOI219/ D NOI219/ E NOI219/ E NOI219/ F
Bottle Lot SHIPMENT METHOD # OUT / DATE RETURNED / DATE		RELINGUISHED BY / AFFILIATION DATE	NO121916 NO12191H
# OUT / DATE RETURNED / DATE COMMENTS:	VIA COOLER #	Ulyhono 2/20/01	
	COOLER SEAL INTACT Yes No		

1050 Endeavor Ct., Nokomis, FL 34275-3623 • (941)488-8103 • FAX 484-6774

÷ 1

16880 Gator Road, Fort Myers, FL 33912 • (941) 590-0337 • FAX (941) 590-0536

Date: 21-Feb-01

Youngquist Brothers, Inc. 15465 Pine Ridge Road Fort Myers, FL 33908-

Project Name:	Packer #7	
Project Location:	Cooper City	
Job ID:		
Sample Supply:	Ground Water	
Collector:	Mark Ocks	
Sample Received Date/Time:	2/16/01	9:30

Lab ID	Sample ID	Туре	Sample Date/Time				
Analysis			Method	Result	D. L.	Unit Analysis Date/Time	LabID:
N011992a	2515-2531	GRB	2/16/01 1:45				
Chloride			EPA SM4500B	20,500	1,000	mg/L 2/19/01	E84380
Sulfate			EPA 375.4	2,660	100	mg/L 2/16/01	E84380
Total Dissolv	ed Solids		EPA 160.1	34,500	5	mg/L 2/16/01.	E84380
N011992b	2515-2531	GRB	2/16/01 1:45				
Chloride			EPA SM4500B	20,500	1,000	mg/L 2/19/01	E84380
Sulfate			EPA 375.4	2,660	100	mg/L 2/16/01	E84380
Total Dissolv	ed Solids		EPA 160.1	34,950	5	mg/L 2/16/01	E84380
N011992c	2515-2531	GRB	2/16/01 1:45				
Chloride			EPA SM4500B	20,500	1,000	mg/L 2/19/01	E84380
Sulfate			EPA 375.4	2,650	100	mg/L 2/16/01	E84380
Total Dissolv	ed Solids		EPA 160.1	33,850	5	mg/L 2/16/01	E84380
N011992d	2515-2531	GRB	2/16/01 1:45				
Chloride			EPA SM4500B	20,000	1,000	mg/L 2/19/01	E84380
Sulfate			EPA 375.4	2,630	100	mg/L . 2/16/01	E84380
Total Dissolv	ed Solids		EPA 160.1	38450	5	mg/L 2/16/01	E84380
N011992e	2515-2531	GRB	2/16/01 1:45		·		
Chloride			EPA SM4500B	20,000	1,000	mg/L 2/19/01	E84380
Sulfate			EPA 375.4	2,640	100	mg/L 2/16/01	E84380

HRS Certification#'s E84380(Nokomis) E85457(Ft. Myers)

Page 1

Lab ID	Sample ID	Туре	Sample Date/Time	:				
Analysis			Method	Result	D. L.	Unit Ar	nalysis Date/Time	Lab1D:
Total Dissolve	ed Solids		EPA 160.1	33,100	5	mg/L	2/16/01	E84380
N011992f	2515-2531	GRB	2/16/01 1:45					
Chloride			EPA SM4500B	19,500	1,000	mg/Ľ	2/19/01	E84380
Sulfate			EPA 375.4	2,660	100	mg/L	2/16/01	E84380
Total Dissolve	d Solids		EPA 160.1	33,400	5	mg/L	2/16/01	E84380
N011992g	2515-2531	GRB	2/16/01 1:45					
Chloride			EPA SM4500B	19,500	1,000	mg/L	2/19/01	E84380
Sulfate			EPA 375.4	2,640	100	mg/L	2/16/01	E84380
Total Dissolve	d Solids		EPA 160.1	31,650	5	mg/L	2/16/01	E84380
N011992h	2515-2531	GRB	2/16/01 1:45					
Chloride			EPA SM4500B	20,000	1,000	mg/L	2/19/01	E84380
Sulfate			EPA 375.4	2,650	100	mg/L	2/16/01	E84380
Total Dissolve	d Solids		EPA 160.1	34,000	5	mg/L	2/16/01	E84380

Approved by:

lebra A. Sinde N

Debra Sanders Laboratory Director

HRS Certification#'s E84380(Nokomis) E85457(Ft. Myers)

.

Comments:

~ , ,		CHAIN-OF-CUSTODY RECORD	#
Sanders			Page
Environmental Testing Ser	vices	Report To: EdM	Sample Supply:
Client VQ-ComerCity		Bill To:	Customer Type:
Client <u>VQ-CorperCity</u> Address			Field Report #:
		P.O. # Project Name <u>Packer</u> # 7 Project Location: <u>CC WWTP</u>	Kit #
Phone Fax		Project Location: <u>CC WWT P</u>	REQUESTED DUE DATE: 2-19-
Sampled By (PRINT) Mark Ochs		PRESERVATIVES ANALYSES REQUEST	
Sampler Signature	12.	Sample Sa	
# CC. Iw #1 Packer		2-16-01 0145 A XX X	no!
			10/1
	,,, _,, _		اصع
			l l l l l l l l l l l l l l l l l l l
		X X X X X	
Bottle Lot SHIPMENT METHOD # OUT / DATE RETURNED / DATE	VIA	RELINQUISHED BY / AFFILIATION DATE TH	ME ACCEPTED BY / AFFILIATION DA
		Thek the 2 kd of	30 T. Bright 21
COMMENTS:	COOLER #		
	COOLER SEAL INTACT Yes No		

1050 Endeavor Ct., Nokomis, FL 34275-3623 • (941)488-8103 • FHI 484-0774 1688___tor F.___ Fort ___s, FL 32 • ___590 7 • f 341) 3536

• • .

INTAKE #: 541861

Date: 19-Feb-01

Youngquist Brothers, Inc. 15465 Pine Ridge Road Fort Myers, FL 33908-

Project Name:	Packer #5			
Project Location:	Cooper City			
Job ID:				
Sample Supply:	Ground Wate	ег		
Collector:	client			
Sample Received Date/Time:	2/13/01	11:30		

Lab ID	Sample ID	Туре	Sample Date/Time					
Analysi	5		Method	Result	D. L.	Unit Ar	alysis Date/Time	LabID:
N011954a	2724-2740	GRB	2/10/01					
Total Dissolv	ved Solids		EPA 160.1	35,200	5	mg/L	2/14/01	E84380
Chloride			SM4500CI-B	21,500	1,000	mg/L	2/15/01	E84380
Sulfate			EPA 375.4	2,820	100	mg/L	2/16/01	E84380
N011954b	2724-2740	GRB	2/10/01					
Total Dissolv	ved Solids		EPA 160.1	33,800	5	mg/L	2/14/01	E84380
Chloride			SM4500Cl-B	21,000	1,000	mg/L	2/15/01	E84380
Sulfate			EPA 375.4	2,790	100	mg/L	2/16/01	E84380
N011954c	2724-2740	GRB	2/10/01					
Total Dissolv	ed Solids		EPA 160.1	33,800	5	mg/L	2/14/01	E84380
Chloride			SM4500Cl-B	22,000	1,000	mg/L	2/15/01	E84380
Sulfate			EPA 375.4	2,830	100	mg/L	2/16/01	E84380
N011954d	2724-2740	GRB	2/10/01					
Total Dissolv	ed Solids		EPA 160.1	34,760	5	mg/L	2/14/01	E84380
Chloride			SM4500CI-B	20,000	1,000	mg/L .	2/15/01	E84380
Sulfate			EPA 375.4	2,740	100	mg/L	2/16/01	E84380
N011954e	2724-2740	GRB	2/10/01					
Total Dissolv	ed Solids		EPA 160.1	24,400	5	mg/L	2/14/01	E84380
Chloride			SM4500CI-B	20,500	1,000	mg/L	2/15/01	E84380

HRS Certification#'s E84380(Nokomis) E85457(Ft. Myers)

Lab ID	Sample ID	Туре	Sample Date/Time					
Analysi	S		Method	Result	D. L.	Unit An	alysis Date/Time	LabID:
Sulfate			EPA 375.4	2,730	100	mg/L	2/16/01	E84380
N011954f	2724-2740	GRB	2/10/01					
Total Dissolv	ved Solids		EPA 160.1	33,520	5	mg/L	2/14/01	E84380
Chloride			SM4500Cl-B	21,000	1,000	mg/L	2/15/01	E84380
Sulfate			EPA 375.4	2,820	100	mg/L	2/16/01	E84380
N011954g	2724-2740	GRB	2/10/01					
Total Dissolv	ved Solids		EPA 160.1	34,920	5	mg/L	2/14/01	E84380
Chloride			SM4500Cl-B	20,500	1,000	mg/L	2/15/01	E843 80
Sulfate			EPA 375.4	2,780	100	mg/L	2/16/01	E84380
N011954h	2724-2740	GRB	2/10/01					
Total Dissol	ved Solids		EPA 160.1	35,600	5	mg/L	2/15/01	E84380
Chloride			SM4500Cl-B	20,500	1,000	mg/L	2/15/01	E84380
Sulfate			EPA 375.4	2,830	100	mg/L	2/16/01	E84380

Comments:

Approved by:

•

lebra H. Surelse ĸ

Debra Sanders Laboratory Director

• .

Sanciers Laboratories	CHAIN-UF-CUSIODY HECOHD	Page of
Client <u>YQ - Coper C, +</u> Address Fax	Report To: <u>Fd. M.</u> Bill To: PO. # Project Name <u>Packer #5</u> Project Location: <u>CC WWTP</u>	Sample Supply:
Sampled By (PRINT) Client	PRESERVATIVES ANALYSES	
Sampler Signature Bottle SAMPLE DESCRIPTION #	Sample Sample Sample Sample Sample DATE TIME TYPE Sample TYPE	Semple
# BollecTest#5 (2724'-2746')	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Sample ID # 10 - 1954/A
	7-10-01	-1954B
\\ <i>\\\</i>	27000	-1954C
	28-01	-1954D
	2 700/	-1954E
	270 0/	-1954F
	2-10-01 9	-195 # G
Bottle Lot SHIPMENT METHOD # OUT / DATE RETURNED DATE VIA	RELINQUISHED BY / AFFILIATION DATE TIME	ACCEPTED BY AFFILIATION DATE TIME
	Think Ging Runchio 7/3/01 11.7	
COMMENTS: COOLER #		
· · · · · · · · · · · · · · · · · · ·		
COOLER SEA INTACT Yes No		

.

.

1050 Endeavor Ct., Nokomis, FL 34275-3623 • (941)488-8103 • FAX 484-6774 16880 Gator Road, Fort Myers, FL 33912 • (941) 590-0337 • FAX (941) 590-0536

INTAKE #: 541862

Date: 19-Feb-01

Youngquist Brothers, Inc. 15465 Pine Ridge Road Fort Myers, FL 33908-

Project Name:	Packer #6	
Project Location:	Cooper City	
Job ID:		
Sample Supply:	Ground Water	
Collector:	client	
Sample Received Date/Time:	2/13/01	11:30

Lab ID	Sample ID	Туре	Sample Date/Time					
Analysis	5		Method	Result	D. L.	Unit Analysis Date/Time		Lab1D:
N011955a	2794-2810	GRB	2/10/01					
Total Dissolv	red Solids		EPA 160.1	33,720	5	mg/L	2/14/01	E84380
Chloride			SM4500CI-B	20,000	1,000	mg/L	2/15/01	E84380
Sulfate			EPA 375.4	2,720	100	mg/L	2/16/01	E84380
N011955b	2794-2810	GRB	2/10/01					
Total Dissolv	red Solids		EPA 160.1	33,720	5	mg/L	2/14/01	E84380
Chloride			SM4500Cl-B	19,500	1,000	mg/L	2/15/01	E84380
Sulfate			EPA 375.4	2,700	100	mg/L	2/16/01	E84380
N011955c	2794-2810	GRB	2/10/01					
Total Dissolv	red Solids		EPA 160.1	33,360	5	mg/L	2/14/01	E84380
Chloride			SM4500Cl-B	21,000	1,000	mg/L	2/15/01	E84380
Sulfate			EPA 375.4	2,700	100	mg/L	2/16/01	E84380
N011955d	2794-2810	GRB	2/10/01					
Total Dissolv	ed Solids		EPA 160.1	33,440	5	mg/L	2/14/01	E84380
Chloride			SM4500Cl-B	20,000	1,000	mg/L .	2/15/01	E84380
Sulfate			EPA 375.4	2,690	100	mg/L	2/16/01	E84380
N011955e	2794-2810	GRB	2/10/01					
Total Dissolv	ed Solids		EPA 160.1	34,200	5	mg/L	2/14/01	E84380
Chloride			SM4500CI-B	20,500	1,000	mg/L	2/15/01	E84380

IIRS Certification#'s E84380(Nokomis) E85457(Ft. Myers)

Rpt form #7; Rev 1/1/96

Lab ID	Sample ID	Туре	Sample Date/Time					
Analysis	 i		Method	Result	D. L.	Unit An	alysis Date/Time	LabID:
Sulfate	·		EPA 375.4	2,700	100	mg/L	2/16/01	E84380
N011955f	2794-2810	GRB	2/10/01					
Total Dissolv	ed Solids		EPA 160.1	33,920	5	mg/L	2/14/01	E84380
Chloride			SM4500CI-B	20,000	1,000	mg/L	2/15/01	E84380
Sulfate			EPA 375.4	2,550	100	mg/L	2/16/01	E84380
N011955g	2794-2810	GRB	2/10/01					
Total Dissolv	ed Solids		EPA 160.1	33,360	5	mg/L	2/14/01	E84380
Chloride			SM4500CI-B	21,000	1,000	mg/L	2/15/01	E84380
Sulfate			EPA 375.4	2,690	100	mg/L	2/16/01	E84380
N011955h	2794-2810	GRB	2/10/01					
Total Dissolv	ed Solids		EPA 160.1	35,040	5	mg/L	2/15/01	E84380
Chloride			SM4500C1-B	18,500	1,000	mg/L	2/15/01	E84380
Sulfate			EPA 375.4	2,700	100	mg/L	2/16/01	E84380

Comments:

Approved by:

bra H. Surely Λ

Debra Sanders Laboratory Director

Sand- s	CHAIN-OF-CUSTODY RECOR	D PROJECT
Client Fax	Report To: <u>Fd. M</u> Bill To: PO. # Project Name <u>Packer</u> #6 Project Location: <u>CC</u> WWT	Sample Supply: G Customer Type:
Sampled By (PRINT) Cliew Sampler Signature Bottle #	PRESERVATIVES Sample DATE TIME TYPE Sample	ANALYSES REQUEST OF
Packer Test#6 (2794-281	$\begin{array}{c c} \hline & & \\ \hline \\ & & \\ \hline \\ \hline$	R* Sample ID# ID# X ID# ID ID#
		101-A5. 101-A5.
		<u>- 1953</u> <u>- 1953</u> <u>- 1953</u>
	- V 3 X X	
Bottle Lot SHIPMENT METHOD # OUT / DATE RETURNED : DATE VIA	- Clien! Ging Runchin	DATE TIME ACCEPTED BY / AFFILIATION DATE TIME $\frac{4}{13 _{01}}$ 11:30 T BY 19 ht $\frac{2}{13 _{01}}$ 11:30 T BY 19 ht $\frac{2}{13 _{01}}$ 11:30
	LER #	
INT Yes	R SEAL ACT No	

1

1

1050 Endeavor Ct., Nokomis, FL 34275-3623 • (941)488-8103 • FAX 484-6774 16 jatol _____, Fc_____ers, _____912 ____15 ____337 _____(941) -___0-05___

INTAKE #: 543973

Date: 16-May-01

Youngquist Brothers, Inc. 15465 Pine Ridge Road Fort Myers, FL 33908-

Project Name:	Packer Tes	t	
Project Location:	Cooper City	у	
Job ID:			
Sample Supply:	Ground Wa	ater	
Collector:	client		
Sample Received Date/Time:	5/9/01	15:40	

Lab ID	Sample ID	Туре	Sample Date/Time					
Analysis			Method	Result	D. L.	Unit A	nalysis Date/Time	LabID:
N014692	1763-1779							
Conductivity			EPA 120.1	13,300	1.0	umhos/cm	5/10/01	E84380
Ammonia-N			EPA 350.3	0.47	0.05	mg/L	5/10/01	E84380
Nitrogen, Tota	al Kjeldahl		EPA 351.2	0.99	0.05	mg/L	5/10/01	E84380
N014693	2724-2740							
Conductivity			EPA 120.1	36,700	1.0	umhos/cm	5/10/01	E84380
Ammonia-N			EPA 350.3	<0.05	0.05	mg/L	5/10/01	E84380
Nitrogen, Tota	al Kjeldahl		EPA 351.2	0.13	0.05	mg/L	5/10/01	E84380
N014694	2794-2810							
Conductivity			EPA 120.1	36,200	1.0	umhos/cm	5/10/01	E84380
Ammonia-N			EPA 350.3	0.08	0.05	mg/L	5/10/01	E84380
Nitrogen, Tota	l Kjeldahl		EPA 351.2	0.11	0.05	mg/L	5/10/01	E84380
N014695	2515-2531							
Conductivity			EPA 120.1	36,700	1.0	umhos/cm	5/10/01	E84380
Ammonia-N			EPA 350.3	0.05	0.05	mg/L	. 5/10/01	E84380
Nitrogen, Tota	l Kjeldahl		EPA 351.2	0.12	0.05	mg/L	5/10/01	E84380
N014696	2269-2285							
Conductivity			EPA 120.1	42,800	1.0	umhos/cm	5/10/01	E84380
Ammonia-N			EPA 350.3	0.52	0.05	mg/L	5/10/01	E84380

HRS Certification#'s E84380(Nokomis) E85457(Ft. Myers)

Rpt form #7; Rev 1/1/96

Lab ID	Sample ID	Туре	Sample Date/Time					
Analysis			Method	Result	D. L.	Unit An	alysis Date/Time	Lab1D:
Nitrogen, Tota	l Kjeldahi		EPA 351.2	0.69	0.1	mg/L	5/15/01	E843.50

Comments:

Approved by:

Gital

Craig Toler Laboratory Director

.

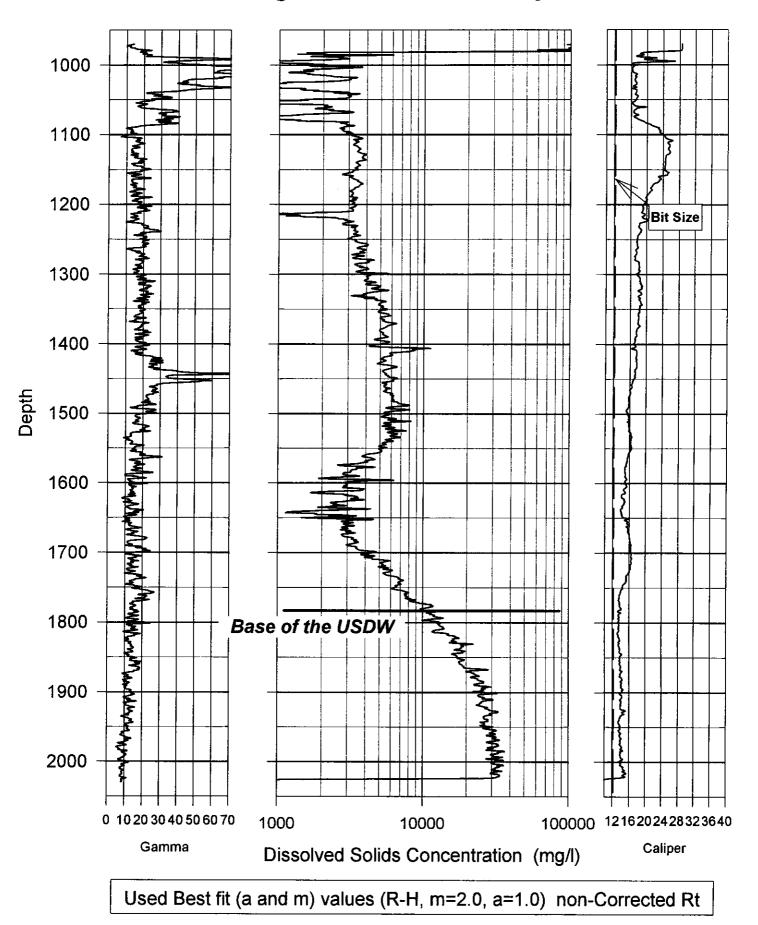
.

.

.

Sanders	CHAIN-OF-CUSTODY RECORD PROJECT	Page of
Client	Bill To: Custom P.O. # Field Re Project Name Packay Test	Supply: er Type: eport #: STED DUE DATE:
Sampled By (PRINT) CIIENT Sampler Signature	PRESERVATIVES ANALYSES Sample UNAUSSING OF UNAUSSING NAUSSING DATE TIME TYPE	
Bottle SAMPLE DESCRIPTION #1 1763-1779		Sample ID #
#5 2724-2740		<u>NOI-4692</u> 4693
#10 2794-2810		4694
#7 2515-2531 #8 2269-2285		4695,
+ 8 2209-220		4696
Bottle Lot SHIPMENT METHOD		
# OUT / DATE RETURNED DATE VIA	RELINQUISHED BY / AFFILIATION DATE TIME ACCEPTER C/IENT 5/4/61 1245 245	DBY/AFFILIATION DATE TIME ig Luceti 3/5/01 1245
COMMENTS: COOLER #	Spine fluteter 5/9/01 1540 G	19/01 1245
	in 5/1/0, 1700 T	Bright 5/5/01 1700
COOLER SEAL INTACT Yes No		

1050 Endeavor Ct., Nokomis, FL 34275-3623 • (941)488-8103 • FAX 484-6774 16880 Gator Road, Fort Myers, FL 33912 • (941) 590-0337 • FAX (941) 590-0536


. ···

APPENDIX J

LOG DERIVED WATER QUALITY GRAPHS

•

Cooper City - Concentrate Disposal Well #1 Log Derived Water Quality

APPENDIX K

CASING AND TUBING MILL CERTIFICATES

Submittal Data FROM Youngquist Brothers, Inc. 15465 Pine Ridge Rd. Ft. Myers, FL. 33908 941-489-4444 Fax: 941-489-4545 Project: Cooper City - 40340

Concentrate Disposal Well

I have reviewed this submittal for general conformance with the design concepts and contract documents. Generally no conflict with materials or dimensions will arise from the approval of this shop drawing submittal.

November 30. 2000

Number of Copies: 9

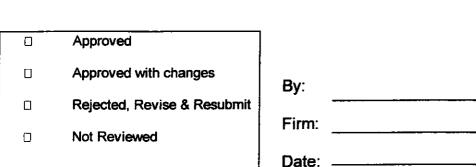
Submittal Number: 02852-06-A

Specification Section Number: 02852/2.05/B

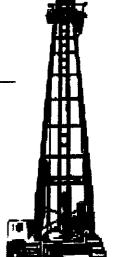
Item Submitted: 50" x .5" I/W Conductor Casing Mill Certifications

New Submittal:

Resubmittal:


Subcontractor:

Youngquist Brothers, Inc. Representative:


Guerry T. Harbin

Transmittal Date:

11-30-00

Firm:

Nov. 29. 2000 3:58PM

No. 1763 P. 2

A DEPENDABLE SOURCE YOU CAN COUNT ON

158 THIRD STREET . P.O. BOX 583 . MINEOLA . NY 11501 . TEL: 516.741.8398 . FAX: 516.741.8210

ATTN: <u>Greng Harbin</u> COMPANY: <u>Jourgquist</u> FAX#: <u>941 - 489-4545</u> PHONE# 516-741-8398 FAX #516-741-8210 TOLL FREE TELEPHONE # 800-272-8277

DATE: 11-29-2000

FROM: JENNIFER REYES

PIPE TALLY / PACKING SLIP

P.O. #: 208025-14

TOTAL	DESCRIPTION	NC). OF PCS		HEAT #
FOOTAGE					
251.0	5 Prax 50.2' 50" BPE A139B	57	40.2		8155P
	. 500 W SPIRAL WELD				79628
	-				
······································					··
	· · · ·				
	· · · · · · · · · · · · · · · · · · ·				
	······				
			_		
· 					
				ł	
				- InC	
		einnauis	t Brother	ving/Subir	iittal 2.05B
		reviewed th	NO. # 0285	2-06-A Date :	11/30/2000
	Y	BI / Seculi	# 12	Harbin	iittal 2.05 <u>B</u> 11/30/2000
		Signature:	Guerry	, Flais	

.

No. 1763 P. 3

TELEPHONE: (419 20-1113 TAE (11) 200 (21)

۰.

CANADIAN PHOEN **X STEEL PRODUCTS**

DIVISION OF TOGETH ONTARIO LAWTED 280 HORNER AVENUE ETOBICOLE, ONTARIO, CANADA 6Z 6YA

LABORATORY REPORT AND MILL TEST GERTIFICATE

DATENov.13/00	CUSTOMER
SPECIFICATION A1398	CUSTOMERS P.O 6545
DIA. & WALL 50"0.D	PHOENCK REF. 00-3654
HYDROTEST 560 PSI FOR 10 Sec.	and the second s

PROPERTES

HEAT NO.	PIPE NO.	LONGITI	I TENSLE	ELONGATION	TRANSVERSE WELD TENSILE	BREAK
8755P	4	51900	72300	50.0	75600	PM
7962P	2	62200	73100	30.D	76300	РМ
					• •	
			· · · · ·	•		
			·			
				14. A.		

LADLE ANALYSIS CHENIC/

ŕ.

<u>c</u>	MN	<u>\$</u>	N.P	8	CR	Ni	CU	NO	
. 17	. 86.	.008		25	_ 0 1		.01	.01	.042
.18	.83	.009	5005	. 25	.01	.01	.02	_01	.050
		<u> </u>	1						
			64. 1944						
			···	i					
		· · · · · · · ·				- ·			
	. 17	. 17 . 86	.17 .86 .008	.17 .86 .008 2011 .18 .83 .009 3005	.17 .86 .008 2011 .25 .18 .83 .009 2005 .25	.17 .86 .008 2011 .25 .01 .18 .83 .009 005 .25 .01	.17 .86 .0D8 2011 .25 .01 .01 .18 .83 .009 3005 .25 .01 .01 .18 .83 .009 3005 .25 .01 .01	.17 .86 .008 2011 .25 .01 .01 .01 .18 .83 .009 005 .25 .01 .01 .02 .18 .83 .009 .05 .25 .01 .01 .02	.17 .86 .008 .011 .25 .01 .01 .01 .01 .18 .83 .009 .005 .25 .01 .01 .02 .01 .18 .83 .009 .05 .25 .01 .01 .02 .01

The material listed on this report has been tested in accordance with the specification IJ; shown above.

£,

Authorized/Approval

Youngquist Brothers, Inc. Has reviewed this shop Drawing/Submittal YBI / Section No. <u># 02852-06-A 2.05B</u> Date: 11/30/2000 Transmittal #____ Guerry T. Harbin Signature: -

Submittal Data FROM Youngquist Brothers, Inc. 15465 Pine Ridge Rd. Ft. Myers, FL. 33908 941-489-4444 Fax: 941-489-4545

Project: <u>Cooper City - 40340</u> Concentrate Disposal Well

I have reviewed this submittal for general conformance with the design concepts and contract documents. Generally no conflict with materials or dimensions will arise from the approval of this shop drawing submittal.

November 29, 2000	Number of Copies: 9
Submittal Number: 02852-07-A	Α
Specification Section Number:	02852/2.05/C
Item Submitted: 42" x .375" I/M	/ Surface Casing Mill Certifications
New Submittal:	Resubmittal:
Subcontractor:	
Youngquist Brothers, Inc. Repr	
Approved with changes	By:
Rejected, Revise & Result	
Not Reviewed	Date:

NO. 4898 P. 2

VA55 The second s

PHONE# 516-741-8398 FAX #516-741-8210 TOLL FREE TELEPHONE # 800-272-8277

A DEPENDABLE SOURCE YOU CAN COUNT ON

DATE: 11-29- 00

FROM: JENNIFER REYES

ATTN .: <u>Sevenny Harben</u> COMPANY: Youngoust Bros FAX #: 041 - ... 489 - 4545 as reviewed this Shop Drawing/Submittal YBI / Section No. $\pm 02852-07-A 2.05C$ Date: 11/29/2000 YBI / Securit # Transmittal # Signature: Sueny /. Harbin P.O. #: 208035-14

PIPE TALLY / PACKING SLIP

TOTAL DESCRIPTION NO. OF PCS HEAT # FOOTAGE 5POXDIE 42"BRE APISLEZUE 192.2 561752 37.6 · 375W DS AL 38.2 561740 UD0896 37.9 for ! Comer . 37-8 UDOgi6 40.7 541772 APOXDIR 42" BE APISLAX42 16050 40.0 541768 · 375W DSAW 561698 39-8 oad 40.0 561767 Carner: Precision 40.7 561717 5PW>DIR 42" BPE APISLBX42 199.6 38.6 561773 ·375W DS AN 39.6 561755 40.7 <u>561717</u> 40.0 561727 ner: JRC 661695 40.7 ٠. ٠,

Cy

•

NO. 4898 P. 3"

ATTN .:

A DEPENDABLE SOURCE YOU CAN COUNT ON

158 THIRD STREET - P.O. BOX 583 - MINEOLA - NY 11501 - TEL: 516.741.8398 - FAX: 516.741.8210

PHONE# 516-741-8398 FAX #516-741-8210 TOLL FREE TELEPHONE # 800-272-8277

DATE: 11 - 29 - 50

FROM: JENNIFER REYES

COMPANY: <u>Voungquist Bus</u> FAX #: <u>941-489-4545</u>

4

PIPE TALLY / PACKING SLIP

P.O. #: 268035-14

TOTAL FOOTAGE	DESCRIPTION	N	O. OF PC	S	HEAT #
162-8	4Pm XDIR 42"BPE APISLAX42		40.7		561404
	3750 2500		40.7		400894
	Load 4		40.7		561717
	Camei: Decato		40.7	 	541727
157.6	4Prox DIR 42" BPE APISURX 42		40.7		UD0898
	· 3750 DSA		39-4	385	591767
			39.0		561747
				<u>-</u>	
	-			,	
<u></u>					
			·		

XUSTOMEN	BAW Pipes USA P.O. Box 2349 Baytows, TX 775 (281) 383-3300	12-2349	D. DATE		MET	rallu Umber	RGIC		D PIPE	TEST	REPOR	т	•			SAW FC	DRM NQ. 20	16242
VASS PIPE 158 Third P.O. Box Mineola, 1	STREET		<u>3/19/9</u> HIP TO: VASS	9 PIPE 8 OMER PI	754	<u>3-SJ</u>			o cardiy the nce with th		and all a second lines	ed harein wae mann aquhemente in such	factured, sa specification	577	le bled hi 	-		
	MATE	APRIL 18 RAL DESIC CATION AN TADE B700			MAT	HEA1 501752		FACE BE ROOT BE	end: Bat Re Loca Engile: 1 Ro	ISFACTOR	ay Al	tensile Psi	ËL ON	C WIDTH		ARPY ENERGY	GICAL METHOD DWV % SHE	· r
HEAT NO. 1752 OQUCT OQUCT	C WELD C 8/m D 150 0.530 0.150 0.950	P 9 0015 0.0 0.015 0.0 0.015 0.0	1 0.160	Cu		Cr	No	(MIN) AI 0.038 0.043 0.042	Fib -	58,100 58,100	0	70,700 72,800 70,400	34.0	1.499 1.480 1.461	ERT	IFIE	VIELO STR DETERMINI 0.5% Ext.	ength Ed at
														Ψ		PPY	7	

i. T NOV. 29. 2000 :: 9 PM VASS pipe

NO. 4898 5.

, N

9	P.O. Box 2349 Baylown, TX 77522-2349										SAW FORM	NO. 20 1621
STOMER	(201) 383-3300	P.O. DATE	MEI	ALLURGI	CAL AND PIPE	TEST REPO	RT					
_		F.U. OHIE	P.D. N	UMBER	This is to carlily the	Line product describe	od herein was manufact	ured, sennes	ed, and tests	d în		
VASS DTI	PE & STREL	2/10/00			accontraction shift fill	а сраснистория сказа з	cquirements in such the	ecificationa.		10		
	RD STREET	3/19/99	75	43-SJ	Approved:				-	them	b ar	
P.O. BOX					Date:						<u> </u>	
	, NY. 11501	VASS PIPE	& STR	RT.	L1819.	·				-71718	I I	
					·····						7	
	•	CUSTOMER	PICK-U	P								
		1										
	API SL APRIL	- 1995 4157 EDITIO	I. SR 15		GUIDED BEND TE FACE BEND: SAT ROOT BEND: SAT FRACTURE LOCA	ISFACTORY ISFACTORY TION:	WELD	SEAM INSP	ECTED BY I	PLOUR05COPIC	RADIOLOGICAL	AGETHOD
					WELD TEASILE: B	inse metal						
	MATERIAL DES		MAT	HEATILOT	HYORO	YIELO	TENSLE					
TEM NO.	SPECIFICATION (42" X 0.375" SL GRADE B		-			PSI	PSI	ELON	C WOTH	CHARP WSHEAR EN		OWIT
	A. LONGITUDINAL	184 <u>2</u>	DSAW	5G1T40	680 PSI					Two works I ch	ENUT	% SHEAR
	8. TRANSVERSE		1	1	10 SECONDS	54,100	75,400					
			1		(MDM)				1.521	1		
	C. WELD				(MDN)	60,400 52,900	76,400		1.502			
					(MDN)	60.400	76,000					
				i.	(MDN)	60.400	76,000		1.502			
					(AIDN)	60.400	76,000		1.502			
					(MDN)	60.400	76,000		1.502			
					(MDN)	60.400	76,000		1.502			
1FAT MO -	C.WELD	1 - 6 - 1				60.400	76,000		1.502			
	C.WELD	3 <u>84</u> <u>Cu</u>		Cr Ma		60.400	76,000		1.502			YELD STREAM
740	C. WELD C. WELD 0.160 0.050 0.014	0.020 0.210		Cr Ma		60,400 52,900	76,400 75,700		1.502			DETERMINED AT
740)DUCT	C. WELD C. WELD 0.160 0.050 0.014 0.160 0.970 0.019	0.020 0.210	Nł	Cr Ma		60,400 52,900	76,400 75,700		1.502			
740)DUCT	C. WELD C. WELD 0.160 0.050 0.014 0.160 0.970 0.019	0.020 0.210	Nf	Cr Ma	A) NB 0.027	60,400 52,900	76,400 75,700		1.502			DETERMINED AT
740 DUCT	C. WELD C. WELD 0.160 0.050 0.014 0.160 0.970 0.019	0.020 0.210	Nf	Cr Ma	A) Nik 0.027 0.027	60,400 52,900	76,400 75,700		1.502		FIFC	DETERMINED AT
740 DUCT	C. WELD C. WELD 0.160 0.050 0.014 0.160 0.970 0.019	0.020 0.210	NF	Cr Mo	A) Nik 0.027 0.027	60,400 52,900	76,400 75,700		1.502	ERTI	FIED	DETERMINED AT
740 DUCT	C. WELD C. WELD 0.160 0.050 0.014 0.160 0.970 0.019	0.020 0.210		Cr Mo	A) Nik 0.027 0.027	60,400 52,900	76,400 75,700		1.502	RTI	FIED	DETERMINED AT
HEAT NO 740 DEDUCT DEDUCT	C. WELD C. WELD 0.160 0.050 0.014 0.160 0.970 0.019	0.020 0.210		Cr Mo	A) Nik 0.027 0.027	60,400 52,900	76,400 75,700		1.502	RTI	FIED	
740 IDUCT	C. WELD C. WELD 0.160 0.050 0.014 0.160 0.970 0.019	0.020 0.210	Nf	Cr Mo	A) Nik 0.027 0.027	60,400 52,900	76,400 75,700		1.502	RTI	FIED	DETERMINED AT

τ

÷

.

NO. 4896 5.

....

-

USTOMER	Reylown, Tk 77522-2349 (281) 383-3300	P.O. DATE	ME	TALLURG		E TEST REPO	DRT				SAWFO	NO, 20
VASS PIPE	& STERI.					al the product do and	ed horein was manufa aquiremnia in such a	ctured, aamp peoficetions,	led, and leat	id in	* •	
150 THIRD	STREAT	3/19/99 5HIP TO:	75	43-SJ	Approved:				7	me	m-	
P.O. BOX	583 . NY. 11501	VASS PIPE	& STR	EL	Dala:			·		570	798	
		CUSTOMER I	'ICK-U	P	r.					·		· · · · · · · · · · · · · · · · · · ·
												·
	API 5L APRIL	1985 41ST EDITIO	N, SR 15		GUIDED BEND T FACE BEND: SA ROOT BEND: SA FRACTURE LOC/ VIELO TENSILE:	TISFACTORY TISFACTORY	WELD	8EAM INSF	ECTED BY I		OPIC RADIOLOGI	CAL METHOD
T	MATERIAL DES											
ITEM NO.	SPECIFICATION A SPECIFICATION A 12" X 0.375" SL GRADE BOI LONGITUDINAL		MAT	HEATALO	680 PSI	YIELD PSI	TENSILE	ELON %	C WIDTH	CH		ÓWIT
	L LONGITHINIDAL			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						TRANSPERT	ENERGY	W SHEA
1	TRANSVERSE				10 SECONDS (MIN)	55,200 56,000 50,000	69,500 70,500 67,709		[.483 1.499 1.478			
), TRANSVERSE 2. WELD					56,000	10,500		1.498			
NĖAT RO. ***	, TRANSVERSE 2. WELD	S Si Cu	NI	Cr k	₩AIRO)	56,000 50,000	70,500 97,700		1.498			
<u>HĖĄT RO.</u>	C TRANSVERSE	0.010 0.280		Cr k	₩AIRO)	56,000	10,500		1.498			VIELO STRE
1	, TRANSVERSE 2. WELD	0.010 0.200	Ni	Cr 1	HAIN) Ao Ai Nia	56,000 50,000	70,500 97,700		1.499			OETERMINED 0.5% Ext.
NÊÂT RO	0. TRANSVERSE 2. WELD 0. 710 0. 710 0. 030 0. 080	D.010 0.280	80	Cr 1	HAIN) Ao Al Nh C.041 0.045	56,000 50,000	70,500 97,700		1.499		IFIE	OETERMINED 0.5% Ext.

.

ĩ

.

-

VOV. 29. 2000 VASS DIDE

VC. 4898

ch S

8	SAV/ Pipu P.O. Box 2 Baytown, 1 (201) 383-	C349 FX 77522					MET	61 t 1 fE	BOIC				MOT		. ·				5/	W FORM N	i0. 20	163
CUSTOMER	10011-000-			P.O. D/	NE	<u> </u>	P.O. N.			This is to ce	rilly that if	NO DECODEL GEN	VICI albud herein we etremelopen br	i minufac In auch sp	Arred, earnple wolkeetons,	ed, and to	ested in		i=		·	
VASS PIP 158 Thir P.O. BOX MINEOLA,	D STREE 583	IT		3, SHIP T	VASS	PIPE 8	i stre	_		Approved: Date:							*	-7m 5715/	59			
	API	 5L	APRIL.	1985	• 	EDITION				GUIDED & FACE BEN ROOT BEN FRACTUR WELD TEN	D: SATIS	FACTORY FACTORY DN:		WELD		ECIED	BYPLI	 DUROSE D	PIC RADI	OLOGICAL	METHOD	
17EM NO. 1	5 47" X 0.37 A. LONGI B. TRANS C. WELO	PECIFIC ISI SL ÖF TUDINA SVERSE	L	NO GR			MAT	HEAT/		HYDRO 680 PSI 10 SECON (MIN)		ViELD PSI 57,000 58,600 53,400	TEN PSI 67,7 69,1 67,4	00		C W6D 1.508 1.490 1.471	1 1 1	CH/	irpy Emerica		DWS % SH	
HEAT NO. UDGDIG PRODUCT PRODUCT	C 9.049 9.050 0.050	1.010 1.000 1.000	0.020	\$ 0,018 0,017 0,015		<u>Cu</u>	- 14	Cr	Ma	AJ 0,042 0.042 0.041	Nb	<u> </u>	CE			C	;E	RT	IFI	ED	VIELD STI DETERMIN 0.5% EXT.	iêd A

•

.

NC. 4898 5.

~.1

NOV. 29. 2000 1:20 PM VASS pipe

USTOMER	P.O. Box 2340 Deutown, TX 77522-7349 (281) 363-3300		METAII	URGIC							SAW FOR	MINO. 20 F6
VASS PIPE 158 TRIRD P.O. BOX) STREET	P.O. DATE 3/19/99 SHOP TO: VASS PIPE CUSTOMER	7543-SJ & STEEL		LAND PIPE This is to serify their accordance with the Approved: Date:	The montheride service	DRT Med herein was manufeci requirements in such sp	ured, eamp collications.	fed. and fesh	- Im F1019	~ <u>1</u> 5	
	MATERIAL DES SPECIFICATION / 47 X 0.315 SL GRADE Ø/ A. LONGTVDIMAL B. TRANSVERSE	CRIPTION	4. SR 15	ATA.DT	GUIDED BEND TES FACE BEND: SATIS ROOT BEND: SATIS FRACTURE LOCATI WELD TENSILE: BA HYDRO BE PSI IO SECONDS MINI	FACTORY SFACTORY ION: USE IAETAL YELD PSI 54,300	TENSILE PS1 73,900	ELON %	C WIDTH	Т. сн	OPIC RADIOLOGICA ARPY ENERGY	AL METHOD
15AT 110." 772 IDUCT IOUGT	0.170 0.010 0.015	Š <u>Si</u> 0.020 0,170 0.020 0,160 0,020 0,160	M G		AJ Nb 0.045 0.052 0.054	59,300 53,000	78,300 73,600		1.600	ER	TIFIE	VIELD STRENGT DETERMINED AT 0.5% EXT.

4

03

8	SANY Pipe P.O. Box 2 Baylown, 1 (201) 363-3	349 X 7752					MET	ALLUR	IGICA	AL AND I		Fst af	DODT		•				SAVY FORM (10. 20 1626
VASS PII 158 Thip P.O. Boy Minbola,	RD STREE K 583	T		P.O.D	VASS		P.O. NL 754 ⊾ ST20	imger 43-sj Bl		This is to a	erlily Ital 8 with the	the number	detaribod	herein vas män viraments in suci	daciulad, se i specificalio	mpled, and i	eried h A-Sz S7-7	19		
	API					EDITION	SR 15			ROOT BET	D: SATIS	FACTORY		WEL	D SEAM INS	PECTED BY	FLOUROSC	OPIC F	FACHOLOGIC#	L HETHOD
	S 42° X 0, 37 A. LONGIT B. TRANS C. WELD	PECIFIC 57 SL GI UDINAL	JADE E	AND G	tion Rade		MAT DSAVV	HEAT		HYOR 680 PSI 10 SECON (MIN)		YIELD PSI 51,200 55,300 50,600		TERSILE PSI 73,300 72,700 72,400		C WIDTH 1 486 1.904 1.500	CH NSHEAR	ARPY ENERI	ġγ	Dwit 5 Shear
HEAT NO. 50 1769 PRODUCT PRODUCT	C 0.170 0.150 0.160	0.940	0.018	0.022	51 0.190 0.170 0.220	Cu	N	G	Mo	AI 0.043 0.043 0.064	Ы	V		C.E.		CI	ERT	TIF DF	FIED Y	VIELD STRENGT CETERMINED AT 0.5% Ext.

ŗ

.

.

STOMER	Geylawn, 1X 77622-2349 (281) 383-3300	P.O. DATE	MET	ALLURGI	CAL AND PIPE	TEST REPO	RT					782		
58 THIRD .O. BOX	: & STBEL) S TREET 583 NY. 11501	3/19/99 SHIP TO: VASS PIPE (CUSTOMBR P)	754 5 STRE	3-SJ	This is to cartily that the graduct descaled harefu was manufactured, sampled, and tested in accordance with the specifications and requirements to such specifications. Approved: Data: $57.7/9.3$									
····	API 9. APRIL MATERIAL DE		M. SA 15		Guided Bend Tex Face Bend: Sate Root Bend: Sate Root Bend: Sate Fracture Locat Weld Tensile: B	SFACTORY SFACTORY ION:	WELO	8EAM INSPE	CTED BY	FLOUROSCOP	NC RADIOL OCICA	METHOD		
TEM NO.	SPECIFICATION	AMD CRADE	MAT	HEATLOT	HYORO	71 <u>210</u> P31	TENSILE	ELON %	C WDTH			OWIT		
	A. LONGITUDINAL B. TRANSVERSE C. WELD			5G1653	680 PSI 10 SECONDS (MIN)	48.800 54,400 50,900	73,300 75,500 74,800	43.0 f. 38.0 t	.473 .481 .485	MSHEUR (M SHEAN		
EAT NO.	C Mn P 0.160 0.000 0.011	S SI Cu	NI	Cr Mo	A		C.E.							
PUCT DUCT	0.160 1.000 0.010	9.015 0.200 9.015 0.200			0.043				CE	ERT	IFIED	VIELD STRENGT DETERMINED AF D.5% EXT.		
									T		DV			

.

.

NOV. 29. 2000 1:20PM VASS pipe

NC. 4898 F. 10

	9	P.O. Bo	1, TX 775					MET	A () E					0007						GAIN FORM I	ID. 20 1626
0	USTOMER	(201) 30			P.Q. U	ATE		P.O. N	MEER	(GIC/	This is to	CHIN SI	EST RE the product specification	PORT described herein in and requireme	wie marziji Vo in such	ectured, ca (pecificatio	repled, and i	esled in	2		
	VASS PIPE				3	/19/9	9	754	3-SJ		Approved		•	•			 7	Jan Z			
	158 THIRD P.O. BOX MINEOLA,	583			ব্যমন্ত	10:	PIPE 6				Deter.	L						5/2	98		
	,						omer pi						3								
		AP	51_	APRIL	1995	4187	EDITION,	5R IS			FACE BE ROOT BE	end: Sati Re Locat	SFACTORY		WELD	SEAM UNS -	PECTED 81	FLOUROS	COPIC	RADIOLOGIC	
╞	ITEM NO.			RIAL DI				MAT	HEAT	λοτ _.	- HYO	RO	YIEL?			TELON	CWOIP		HARPY		OWIT
	1	A LON	375° 5L (31TVDIN 46VERSI	U,	<u>1 ANU (</u> 17(4)			CSAW	56 1767		680 PSI 10 SECC (MIN)	nida Nida	PSI 54,500 56,600 49,600	73, 73, 74, 72,	i00 100	38.0	1.488 1.491 1.528	KSHEAR		10 Y	N SHEAR
			-																	•	
5	HEAT NO.	C	Mn 0.870	P	3	Si 0.180	Cu	N	a	40	A!	Nb	V	C	-	<u> </u>				<u>1</u>	YIELD JTRENGT
P	RODUCT RODUCT	0.140	0.680	0.010	0.074	0.190 0.190 0.190					0.043	3									DETERMINED AT 0 TH EXT.
																	¢ I	ŧR		IED	
																			Jt	1 1	

۰.

ţ

۰.

.

NOV. 29. 2000 1:21PM

VASS pipe

,

NO. 4898

. . .

USTOMER	P-O. Box 2349 Baylown, TK 77522-2349 (201) 383-3300		META	LLURGIC	AL AND PIPE	TEST REPO)RT				SAW FOR	14 NO. 20 14
VASS P11 158 TH11 P.O. BOX	PE & STREL RD STREET X 583 , NY. 11501	P.O. DATE 3/19/99 SHIP TO: VASS PIPE CUSTOMER	754 6 STRE	83-8J 81.	This is to certify the	the product de well	ad herein was monufact lequisomente in such ap	larad, sempi ecliteatione.		A.S.	~~ 283	
	api sl april	1993 4151 EDITIO	N, 8R 16		GUIDED BEND TES FACE BEND: SATH ROOT BEND: SATH RACTURE LOCAT WELD TENSILE: BJ	SFACTORY SFACTORY ION:	WELO	SEAM INSP	ECTED BY F	LOUROSCO	PIC RADIOLOGICA	L METHOD
ļ	MATERIAL DES SPECIFICATION : 42" X 0.375" SL GRADE B A LONGTUDINAL 0. TRANSVERSE C. WELD		MAT DSAW 5	HEATILOT G1717	HYDRO 680 PSI 10 SECONDS (MIN)	VIELD P51 50,800 57,400 52,400	TENSILE PSI 73,400 75,100 72,600		C WIDTH 1.463 1.460 1.484	CHAI	RPY EMERGY	DWTT
Heät No 1717 100UCT 100UCT	0.140 1.000 0.016	S SI Cu 0.018 0.220 0.016 0.230 0.015 0.230		Cr Mo	Al 0.042 0.050 0.050		<u>C.E.</u>				IFIED	VIELD STRENGT DETERMINED AT 0.5% EXT.

.

j. P

.

-

-

NC: 4393

. יי ~

-

9	SAW Pipes P.O. Box 2: Baylown, T (201) 383-3	349 X 77522-7					MET	ALLU	RGIC	AI ANI			EDOR	Ŧ				SAW F	'ORM ND. 20	1827
JSTOMER VASS PIPB 158 THIRD P.O. BOX MINEOLA,) STREET 583			HIP TO Vi	- 9/99 -		7543 STERI	MBER		Thie is to	certify that ca with the	he consuct	deacribed i	i I herein was menuleci ulremente in such sp	urad, campi coffications.	od, and faster	4 2 m	97 97		
	1 . 1	ATERIA	PRIL 16	IPTION	·	XTICH,	SR 15	HEAT		FACE BE ROOT BE FRACTU	BEND TES ND: SATIS ND: SATIS RE LOCATH NSILE: BA	FACTORY FACTORY ON: SEMETAL					LOUROSCA	opic radiolog	SICAL METH	00
	SPI 47 N 0.373 A. LONGITI B. TRANSV G. WELD	JOINAL	ION AN	I GRAD	<u>E</u>			5G1773		680 PSI 10 SECO (MIN)		916LT PS1 54,400 57,700 52,700		TEASILE PSI 70,700 72,000 71,300		C WIDTH 1.495 1.504 1.500		ARPY JÉNERGY	,	DV/11 N SHEAN
HEAT NO. 51773 Roduct Roduct	0.170 0.150	D. 890	p 0.015 0. 0.015 0.	923 0. 018 0.	51 190 190	<u>Cu</u>	83	Cr	Mo	A] D.058 D.064 D.070				C.E.		CE	ERT	IFIE PY	DETE 9.5%	d strength Fruined at Ext.

.

بر ۱

. .

NOV. 29. 2000 1:21PM VASS pipe

> NC. 4893 :+) (•)

CUSTOMER VASS PIPE	SAW Pipes USA, P.O. Box 2349 Baylown, TX 7752 (281) 363-3300 E. &. STERI,	72-7349 P.(). OATE				RGIC	AL AND	CHINN IN	ti tita manda	and all and a second second		manufactured, such specific	Sampled,	and les	ited h.		SAVV FORM	NO, 20	1674
158 THIRD P.O. BOX) STREET	EI E		PIPE &	STEE			Approve Dale:	f: 						7	198	2			
		APRIL 199						FACE BE ROOT BE	END: SAT Relocat	SFACTOR	Υ γ	v	YELD GEAM II	ISPEC IEI	D BY FI	DUROS	COPIC RA	ADIGLOGIC	AL METHOD	
	MATER SPECIFIC 42" X 0.575" SL CR A. LONGITUDINAL 0. TRANEVERSE C. WELD	RIAL DESCR CATION AND RADE BX42	COADE		MAT DSAW	HEAT 5G1735		HYDF 660 PSi 10 SECO (MIN)		YIÊL PSI 50,500 57,200 50,300		TENGRE PSI 72,400 73,700 72,400	<u> </u>	0 1.307 0 1.303 1.303 1.308	ÖTH - 5	CH Shean	ARPY	·	own % Shee	
HEAT NO. 51755 RODUCT RODUCT	0.160 0.870	P \$ 0.016 0.02 0.013 0.01 0.015 0.02	0 180 5 0 180	Cu	18	à	Ma	Ał 0.057 0.046 0.038	Nb			<u>CE</u>		C	上	RT	IFI)P'	IED Y	Vield Stae Determine 0.5% ext.	NGTH

*

:

-

.

.

NOV. 29. 2000 1:21PM

VASS pipe

NC: 4898

7: -

USTOMER	P.Q. Box 2349 Baytown, TX 775 (261) 363-3300				ME	TALLU	RGIC	AL AN	D PIPE	TEST REP	22+				S	AW FORM	W ND, 20 162
VASS PIPE 158 THIRD P.O. BOX	STREET		9.0. DATE 3/19 3HIP TO:		F.441	43-SJ		111111111111111	io certity thi Nice with th	d the product de	UK1 school kerein was manu nd requirements in such	factured, i specificati	iampled, and laria.	testes in	·		
MINEOLA,	56J NY. 11501			SS PIPE STOMER 1				Date:						5771	99	_	
	API SL	APRIL	995 4181	EDITIO	N, SR 15	· · · · · · · · · · · · · · · · · · ·		FACE B ROOT B FRACTL	IEND: SAT /RE LOCAI	SFACTORY	WELO	SEAM INS	Pected by		COPIC RAI	DIOLOGIC	AL METHOD
	HAYE SPECIFH 42" X 0.375" SL G A. LONGITUDINAI B. TRANSVERSE C. WELD	CATION / RADE B/	CRIPTION IND GRAD AZ	<u>Ε</u>	DSAW	HEA1 561717		HYC 680 PSI 10 SEOC (MIN)		YIEL0 PSI 53,400 55,100 49,600	7645:LE P81 77,300 73,900 71,400	36.0	C WILTH 1.438 1.491 1.491 1.494	CR ISHEAR	ARPY [ENERGY		DWIT % Shean
NEAT NO. 1727 DDUCT DDUCT	C Mn Q 160 Q 660 Q 150 Q 660 Q 150 Q 660	0.014 0	8 Si 075 0.29 023 0.26 024 0.26		N	<u>Cr</u>	Mo	Ai 0.047 0.046			CE						YIELD GTREARTH DETERMINED AT 0.5% EAT
													CE	RT		ED	

لم م 1 NOV. 29. 2000 1:21PM

VASS pipe

NC. 4898 2.

ŝ

	P.O. Box 2349 Baylown, TN 77523-2349 (281) 383-3300		.	· · · ·									:	SAWFORM	NO. 20
įcustomea I		P.O. DATE	ME P.O.	TALLI	JRGIC	1100800	3 CRATING INC.	TEST REP(tured. Same	Ind and test		• •		
1 VASS PIPE 1 158 THIRD	STRERT	3/19/99 . SHIP TO:	75	43-5J		Арргона		E Upecilications and	requiremente in such sp requiremente in such sp	echications	4	- La	-		
P.O. BOX MINEOLA,	583 NY. 11501	VASS PIP	s & str	ET.		Date:						57-19			
		CUSTOMER					·····					/ /	7		••••
	API SL APRIL	1995 4181 EDF	100N, 5R 1	5		FACE BE ROOT B FRACTU	END: SAT	SFACTORY	Weld	SEAM INSI	PECTED BY	FLOUROSC	OPIC RAD	OLDGICAL	Metrod
ITEM NO.	MATERIAL DESC SPECIFICATION AI	ND CRAOK	MAT	HEAT	TAOT	HYDI	το	YIELD	TENSILE		r			_	
	42" X 0.375" SL GRADE BOC A. LONGITUDINAL 9. TRANSVERSE	42	DSAV	V 5G1404		880 PS1 10 SECO	NDS	PSI 48.900	PSI		CWDTH	CH %SHEAR	IARPY TENERG	<u> </u>	Divit W SHE
	C. WELD					(64164)		51,200 47,800	87,600 87,600 88,100	42.0	1.479 1.491 1.480				
MEAT NO. 501404	C Ma P 0.180 0.440 0.012	S SI Ci	Ni	Cr	Mo	AI	Nb	v	CE.		 		 		
PRODUCT PRODUCT	0.150 0.450 0.011 (0.140 0.440 0.010 (0.014 0.240				0.004							╏╼╴┠╸		VIELO STAL DE TERIANE 0.5% EXT.
						8.004					CF	RT	IFI	ED	
											Υ-	CC	b ph	(• •
1 1				1									1	•	

-

.

10. 4395

XOV. 29. 2000

: 22 PN

VASS pipe

د ت<u>ې</u>

	P.O. Bex 2340 Beylown, TX 77522-2341 (201) 383-3300	ı .									SAWFOR	IM NO. 20 78
USTOMER	(201) 303-3300	P.O. DATE	MET	ALLURG	CAL AND PIP	E TEST REPO	ORT					
		. WHIE	P.O. N	UMBER	This is to certify the	hal the senderst should		ured, same	ica, and teste	d in		
VASS PTP	E & ST <u>rel</u>	2/10/00			ECCOLORIDOS ANÍLI	ne specifications and	набрышануты мартаризсу ало начан мартаризсу ало начан мартаризсу	cifications.		7		•
158 THIR		3/19/99 SHIP TO:	75	<u>4)-sj</u>	Approved:				- A	1 m	~	
P.O. BOX	583				Date:				-		-	
MINEOLA,	NY. 11501	VASS PIPE	6 STR	21	DBI4:					5/101	9 9	
		1										
		CUSTOMER	PICK-U	P								
	,					•						
								•				•
•												
		• • • • • • •	- •		GUIDED BEND T	EGT-						
					FACE BEND: SA	TISFACTORY		EAU INC.			······································	
	API SI. April	- 1895 4187 EDITIO	AL SATIS		ROOT BEND: SA	TISFAC THRY			ELIED BAS		PIC RADIOLOGIC	al method
		•			WELD TENSILE:	RATUR: RASE METAL						
					1							
)	MATERIAL DE	SCRIPTION	MAT									
ITEM NO.	SPECIFICATION	AND GRADE	11041	HEATLOT	HYDRO	VIELD	TENSILE	ELON	C WIDTH	Сна	RPY -	1
'	42" X 0.375" SL GRADE B A. LONGITUDINAL	0(42	DSAW	UDOSM	600 PSI	<u>P\$I</u>		. *		%SHEAR	ENERGY	DWTT
l.	8. TRANSVERSE				ID SECONDS	53,100	70.300	68 0	1.483			
i	C. WELD				(MIN)	35,000						1
							70,400		1.492			
						49,500	70,600 66,600					
									1.492			
									1.492			
									1.492			
									1.492			
HEAT NO.									1.492			
<u>MEAT NO</u>	<u>C (Ma </u> P	5 Si Cu	14	<u> </u>	<u>AJ 16</u>	49,500			1.492			
0894	- C. Man P 0.099 1.110 0.014	0.011 0.320	14	Cr Ma	AJ 145 0.039	49,500	86, 600		1.492			VIELO STRENCI
HEAT NO 1994 Oduct Oduct	C Mis P 0.090 1.110 0.019 0.090 1.110 0.019	0.011 0.320	<u>Na</u>	Cr Ma	0.039	49,500	86, 600		1.492			VIELO STRENGI DETERNINED AT 0.5% EXT.
ODUCT	C Mis P 0.090 1.110 0.019 0.090 1.110 0.019	0.011 0.320	14	Cr Ma	0.039	49,500	86, 600		1.492			DETERMINED AT 0.5% EXT.
ODUCT	C Mis P 0.090 1.110 0.019 0.090 1.110 0.019	0.011 0.320	M	Cr Ma	0.039	49,500	86, 600		1.492			DETERMINED AT 0.5% EXT.
ODUCT	C Mis P 0.090 1.110 0.019 0.090 1.110 0.019	0.011 0.320	- 19	Cr Ma	0.039	49,500	86, 600		1.492	-81	IFIE	DETERMINED AT 0.5% EXT.
ODUCT	C Mis P 0.090 1.110 0.019 0.090 1.110 0.019	0.011 0.320	Fa	Cr Ma	0.039	49,500	86, 600		1.492	ERT	IFIE	DETERMINED AT 0.5% EXT.
ODUCT	C Mis P 0.090 1.110 0.019 0.090 1.110 0.019	0.011 0.320	- Fa	Cr Ma	0.039	49,500	86, 600		1.492	ERT	IFIE	DETERMINED AT 0.5% EXT.
OBM Couct	C Mis P 0.090 1.110 0.019 0.090 1.110 0.019	0.011 0.320	Ra	Cr Ma	0.039	49,500	86, 600		1.492	ERT	IFIEI)PY	DETERMINED AT 0.5% EXT.

ř

۰.

.

NOV. 29. 2000 :: 22PM VASS pipe

NC. 4898

.'' .

	9	P.O. Bo	ipara US/ nr 2349 n, T31 77:	A, Inc. 572-2348	1																SAWFORM	NQ. 20	
1		(201) 3(3-3300					ME.		beir													16285
	CUSTOMER				"]₽ 0. 	DATE		P.O. N	UMBER	RGI	- 11 IPAG 44 B	0 Cértifiv Bus	TEST	and the second se	RT I harefn was n prinsments lo s	ionufactured	, dampi	ed, and itas	ad In		····	••••••••••••••••••••••••••••••••••••••	·· ··
ļ	VASS PIPE 150 THIRD P.O. BOX) strei 583	FT			/ <u>19/9</u> P 70:	9	754	3-SJ		_Approve		— <u> </u>		·				the second				
	MINEOLA,	NY.]	1501				PIPE 6 OPER P1		L								-		57,0	<u>7</u> .99		 	
			 5L	APRIL	1995	416T	EDITION	L SR 15			FACE BI ROOT B	END: SAT	SFACTORY			WELD SEA		ECTED BY	FLOUROSC	OPIC R	IADIOLOGICAL	 Method	-
		A LONG 8. TRAN	SPECIFI 175° SL G 2TUDIN SVERSI	u	45105 00	ION RADE		MAT DSAW	HEAT		HYDI 890 PSI 10 SECO		YIELI PSI 54,000		TENSILI PSI 66,600		LON N 41.0	C WIOTH	CH TISHEAR	ARPY	RGY	DWITT 5HÈAR	••••••
		C. WELD									(MIN)		53,300 46.800		57,900 88,100		4 .0						
Ī	HEAT NO.	C 0.680	Mn 7.950	0.010	8 0.010	51	Cu	M	ũ	Mo	- 11	ND		r	C.E.								
P	RODUCT	030.0 030.0	0.990 0.990	0.019	6.0.13 0.013	0.260					0.031 0.031 0.032								·	-		VIELD YTRENG DETERMINED A 0.5% EXT.	TU .
												-		i				ĊE	RT	IF	IED		
_				i															CC	P	Y		

.

5

CUSTOMER VASS PIPE 158 THIRD P.O. BOX	STREET 503	P.O. DAYE 3/19/99 . 8HMP TO:	METALLURGH P.O. NUMBER 7543-SJ	This is to certify that	the product day ante-	RT ed furiello war menufactu ngubarmants lo such aper	rad, eampi discations,	ed, and task	4 m 577	SAWFORM	NO. 20 1623
MINEOLA,	RY, 11501 Api sl april	VASS PIPE 6 CUSTOMER PI 1005 4181 EQUID		GUIDED BEND TES FACE BEND: SATU ROOT BEND: SATU FRACTURE LOCAT WELD TENSILE: BA	SFACTORY SFACTORY ION:	WELD S	eam insp	ECTED AVI		DPIC RADIOLOGICAL	метноо
	MATERIAL DESC SPECIFICATION A 42" X 0.313" SL ORADE BA A. LONGTUDINGL 8. TRANSVERSE C. WELD	ND COLOC	MAT HEATLOT DSAW SOTTIT	HYDRO 600 PSI 10 SECONDS (MIN)	VIEL0 P31 34,800 60,900 52,200	TENSILE PSI 73,900 75,500 73,000	ELGN 54 42.0 40.0		CH 48HEAR	ARPY LÉNERGY	DWTT 95 ŠHEAR
HEAT NO. SGI747 PRODUCT PRODUCT	C Mn P 0.160 0.960 0.913 0.160 0.960 0.013 0.150 1.050 0.018	0.017 0.250	M Cr Mo	Ai Nb 0.039 0.049 0.047	v	C.E.		CE	RT	IFIED	VIELD SYRENGTA DETERMINED AT 0.9% EXT.

-

.

A DIVISI	ס אכ OF ו	up USX COP	PORATI		CC.		R PRO	UCTS				DATE)t
HILL ORDER/TEM					1110 1110 - 1110 - 1110 - 1110 - 1110 - 1110	RTIFIE	D TEST	REPO	XRT			TIME:	13:11:6	16 US
			SHIPPERS NO	2 100	PE B - IN ACC	P.O. HUMEN	NITH ISD 10	874/ENN	204/DIN	50045)		USS.UKK, USX	Lanswademants of	USX Com
DR12072					1123		ER		VEHICI	LEID.	<u> </u>			
BARTOW STEEL	SOLD TO	ADDRESS												
P D BOX 1789	INC				BARTO	W STE	MALTI EL TAM	ADDRES	5			VENDO		<u> </u>
BARTOW FL 336					PDF	X 17	SE INC	•			USS	TUBULAR PR		
	130-176	39			BARTO	W FL :	73020				219	9 EAST 28TH		
							23830-	1789			LDR	AIN, DH 1405	51.	
												(M)	55	
IPE CARBON S STM A106-X99 DOENDUM GRAD						SPECI	HEATION AN	DOMOE			_!			
STM A106-*99 DOENDUM GRAD R-01-75 *200	GRADE		API 5	L-×421	ND EDIT	ION DA	TED 1	/00 P	SI _ 2 J	CRAOR				
00ENDUM GRAD R-01-75 +200			USIENC	CIL AS	SME SA5	3-×199	B FDT	TTON	36-2 (20000	OXAUE	AND GR	ADE X42 ASTM	1 453	10
R-01-75 ×200	C U DL 0	P BUXE	PE BE	V 30 (DEG MEE	TING A	ALI TU			NODENDI	JM ASME 9	5A186-+1998		200-
01 /0 /200	0							C ULL	LICABI	LË REQL	JIREMENTS	S OF NACE OF	CUTITON	2000
										•		D OF MALE SI	ANDARD	
ADERIAL AS ROLL														
CALL AS ROLL						0.0: 7	4.000	690						
	1 '	SILE		1	71	<u> </u>	EXTE				in (mm) vince.	0.500 (12.7	88)	
PRODUCT ICENTIFICATION	755	T IVPE/	TEST	GAUGE	+	PSI	50		NGLE ISI	Y/T	ELLING S	HARDNESS	HIN HYDRO	·
			COND	GAUGE	MIN:	42000		Mile			an 2"	SCHE HRB	PSI	DWELL IS
9038 IA3060	CTDTA	7		IN	MAK	65000	i j	-	70000		Mile	MINE	1580	
	STRIP	17 I 7 B	AR	1.50		16800			18000		39	. BMUX: 108.0.	1290	
			XX XX	END	CE DATA	THIS	Currt		76090	0.62				
	1		1								1 45	.81 87.97.71		
				[T unin		SUCC	ЖX			45	.8 8 80.7	1580	
							SHEE	XX			+5	.8 8 80.7	1280	
							SHEE	XX			45	.e 890.7	1380	
							SHEE	XX			- 1 5	.8 880.7	1380	
LEGEND: L - LO	IONTUCHNAL		- RANSVERI			- - - - - - - - - - - - - - - - - - -		X X				.0 8 80,7	1380	
U - UP	IONTUCHINAL ET	NN	- TRANSVER	SE SE	OT - CLI SR - STF	ENCHED 1 T		××	AR - AS RC	RLED	9-BOD			
LEGEND: L-LO U-LP FRODUCT DENTIFICATION	IOITUCIINAL ET TYPE	NN	- RANSVERI	Se	OT - 09				AR-AS RC	ALED	8-800		1 3 8 0 Y - WELD	
	ET	NN	- TRANSVER	SE SE	OT - OU SR - STI	ENCHED 1 T	EMPERED							
PRODUCT DENTIFICATION	ET		- TRANSVERI - NORMALIZE C NU	SE ID P	07- QU 59- ST 5 SI	ENCHED & Y	EMPERED	3 140			8-800			
B3B A3050	ey Type		- TRANSVERT - NORMALIZE C MN	P P D10	017-000 59-511 5 50 000-01-22	ENCHED & T SS RELEV CU 502	EMPERED ISO NICO 192 S	3 MO		<i>N</i> V	8-8000	Ca CO		MAU
PRODUCT DENTIFICATION 1938	TYPE HEAT	N 	- TRANSVERI - NORMAL DE C NW 2 1214 7 1203	P D10 D09	01- cu 59- 51 5 54 005 22 005 22	ENCINED & T SSS RELIEV CU 502 502 502	EMPERED EO N C D2 S D2 S	а мо 35 192 55 192	-	* V 201	8-8000	Ce CO E0		MA)
B3B A3050	TYPE HEAT PROD	N 	- TRANSVERT - NORMALEE C MN - 8 1294 - 7 1293 B 1296	B10 2039	0005 22 005 21 005 21	ENCHED & V ESS RELEV CU 202 202 202 202	EMPERED EO N C D2 S D2 S	а мо 35 192 55 192	A 1937 1934	* v 201 201	8-8000	CO CO 2001		MA) .1
PRODUCT DENTIFICATION 1938	TYPE HEAT PROD	N 	- TRANSVERT - NORMALEE C MN - 8 1294 - 7 1293 B 1296	B10 2039	0005 22 005 21 005 21	ENCINED & T SS RELIEV CU 502 502 502 502	EMPERED EO N C D2 S D2 S	а мо 15 192 15 192 16 192	M 1937	* V 201	8-8000	Ce CO E0		MAX . 1 . 3 . 30
PRODUCT DENTIFICATION 1938	TYPE HEAT PROD	N 	- TRANSVERT - NORMALEE C MN - 8 1294 - 7 1293 B 1296	B10 2039	0005 22 005 21 005 21	ENCINED & T SS RELIEV CU 502 502 502 502	EMPERED EO M CO D2 S D2 S D2 S D2 S	а мо 15 192 15 192 16 192	A 1937 1934	* v 201 201	8-8000	CO CO 2001		MAX . 1 . 3 . 30
B3B A3050	TYPE HEAT PROD	N 	- TRANSVERT - NORMALEE C MN - 8 1294 - 7 1293 B 1296	B10 2039	0005 22 005 21 005 21	ENCINED & T SS RELIEV CU 502 502 502 502	EMPERED EO M CO D2 S D2 S D2 S D2 S	а мо 15 192 15 192 16 192	A 1937 1934	* v 201 201	8-8000	CO CO 2001		MAX .4 .3 .3
0.09 DENTRON 1038 1038 103050 038 103050	HEAT PROD PROD		B 1214 7 1203 B 1226	SE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	01-00 58-51 59-51 008-22 009-21 009-21 009-21 009-21 009-21	ENCHED & F SS RELIEV CU 502 502 502 134 I S	EMPERED EO NI CI D2 S D2 S D2 S SHEET	3 MO 35 192 35 192 36 192 36 192	M 937 934 934	* v 201 201	8-8000	CO CO 2001		MAX .4 .3 .3
0.09 DENTRICITION 1000 1000 1000 1000 1000 1000 1000 10	HEAT PROD PROD		B 1214 7 1203 B 1226	SE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	01-00 58-51 59-51 008-22 009-21 009-21 009-21 009-21 009-21	ENCHED & F SS RELIEV CU 502 502 502 134 I S	EMPERED EO NI CI D2 S D2 S D2 S SHEET	3 MO 35 192 35 192 36 192 36 192	M 937 934 934	* v 201 201	8-8000	CO CO 2001		MAX .4 .3 .3
0.09 DENTIFICATION 0838 1A3050 1038 1A3050	HEAT PROD PROD		B 1214 7 1203 B 1226	SE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	01-00 58-51 59-51 008-22 009-21 009-21 009-21 009-21 009-21	ENCHED & F SS RELIEV CU 502 502 502 134 I S	EMPERED EO NI CI D2 S D2 S D2 S SHEET	3 MO 35 192 35 192 36 192 36 192	M 937 934 934	* v 201 201	8-8000	CO CO 2001		MAV . 4 . 3 . 3
10.09 10	HEAT PROD PROD		- TRANSVER -NORMALEE 5 MN 8 1214 7 1203 8 1206 Xộx : : : : : : : : : : : : : : : : : : :	8 0 0 0 0 0 0 0 0 0 0 0 0 0	005 22 005 21 005 21 005 21 005 21 005 21 005 21 005 21 005 21 005 21 005 21	ENCHED & V SSPRELEV CU 202 22 22 22 22 22 22 22 22 22 22 22 22	102 102 102 102 102 102 102 102 102 102	3 MO 36 22 36 32 36 32 36 32 36 32 36 10 32	A 937 934 934	* v 2004 2001 2001	8-8000	2001 2001 2001 2001		CE- MA) . 41 . 37 . 36 . 36

PAGE 1 OF 2

#726 P.01/02

16144

2001,02-28

5. 21 1

5

MOTERAL CONC: AS ROLLED Distribution PLAT BEND COULT AND SCE Distribution PLAT BEND COULT AND SCE Distribution Distreadition Distribution Di	O.D.: 7.4.080 (5699.500) in limit Mikil 8.500 (12.700) in limit GRAIN Minit Collapse DR ISST TEMP SIZE FF:085 is SHEAR SIZE COLLAPSE DR ISST TEMP SIZE FF:085 is SHEAR SIZE COLLAPSE DR ISST TEMP SIZE ISST FF:085 is SHEAR SIZE COLLAPSE DR ISST TEMP SIZE ISST FF:085 is SHEAR SIZE COLLAPSE DEG.F III III III III III IIII IIII IIII IIII IIIII IIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	DR12072 01		SHPP	RS NO.		CER IN ACCOR	PO NUMB	VITIN 130 101 EA	74/EM182	04/DU0501	49)			·	155, USE,	USI (ve rad	emarka el US	Corpe
PRODUCT PLAT BEND GRAIN COLLAPSE DR TEST DEAD TEST FT USE SSB (12.700) B09B38 1A3050 DK SZE COLLAPSE DR TEST TEMP SZE TEST FT USE SSB B09B38 1A3050 DK XX* E ND OF DATA THIS SHEE SHE DEC.F I Z 3 A/5 I Z SSB LEGENC L-LONG/TUDINAL TO THANSVERSE B-BODY W - WELD MA2 HEAT AFECTED ACKE LEGENC L-LONG/TUDINAL TO THANSVERSE B-BODY W - WELD MA2 HEAT AFECTED ACKE TEST / NOMECTIONAL TO THANSVERSE B-BODY W - WELD MA2 HEAT AFECTED ACKE ULL LENGTH VISUAL TO THANSVERSE B-BODY W - WELD MA2 HEAT AFECTED ACKE ULL LENGTH VISUAL TO THANSVERSE B-BODY W - WELD MA2 HEAT AFECTED ACKE ULL LENGTH VISUAL TO THANSVERSE B-BODY W - WELD MA2 HEAT AFECTED ACKE ULL LENGTH VISU	24.000(509.500) in Innuil WALL 9.500 (12.700) in Innuil GRAIN OR TEST TEMP SZE TEST FT.USS 9.516.0 SZE OR TEST TEMP SZE TEST FT.USS 9.516.0 SZE OR TEST TEST ODEG.F FT.USS 9.516.0 9.00 XXY E ND OF DATA THIS SHEE XX FULL AR 101 119 109 110 70 90 90 7 YXY E ND OF DATA THIS SHEE XX FULL AR 101 119 109 110 70 90 90 7 YXY E ND OF DATA THIS SHEE XX V WELD MAZ MAZ MELD MAZ MELD MAZ MELD MAZ MELD	day Fotos	<u></u>				1123	lan		<u> </u>					_				
DENTIFICATION FLAT BEND GRAIN MBN COLLAPSE DR FEST YEMP SZE DEADERY VACION MANDARY FESTING B09B3B IA3050 OK SZE COLLAPSE DR FEST YEMP SZE FEST FFLUES Avis 5 SH B09B3B IA3050 OK XX E ND OF DATA THIS SHE VEST FULL AR 101 1 7 7 2 - <td< td=""><td>GRUN MBN COLLAPSE DR TEST TZMP SIZE TEST FTUBS % SHEAD XX COLLAPSE DR TEST TZMP SIZE TEST FTUBS % SHEAD XX E VD OF TATA THIS SHEE XX FULL AR 1 2 3 Arc 1 2 3 Arc XX E VD OF TATA THIS SHEE XX FULL AR 11 19 109 110 70 80 90 1 YX E VD OF TATA THIS SHEE XX FULL AR 101 109 110 70 80 90 1 T THMSVERISE B BODY W + WELD NN2 - HEAT AFFECTED ADNE TESTING / MERICETION INFORMATION YES </td><td></td><td></td><td>·</td><td><u> </u></td><td></td><td></td><td>ļ</td><td>24.002</td><td>(609.8</td><td>500)</td><td></td><td>in (mes)</td><td>WALL</td><td>8.50</td><td>0 (1)</td><td>2 7 59 59 1</td><td></td><td>in p</td></td<>	GRUN MBN COLLAPSE DR TEST TZMP SIZE TEST FTUBS % SHEAD XX COLLAPSE DR TEST TZMP SIZE TEST FTUBS % SHEAD XX E VD OF TATA THIS SHEE XX FULL AR 1 2 3 Arc 1 2 3 Arc XX E VD OF TATA THIS SHEE XX FULL AR 11 19 109 110 70 80 90 1 YX E VD OF TATA THIS SHEE XX FULL AR 101 109 110 70 80 90 1 T THMSVERISE B BODY W + WELD NN2 - HEAT AFFECTED ADNE TESTING / MERICETION INFORMATION YES			·	<u> </u>			ļ	24.002	(609.8	500)		in (mes)	WALL	8.50	0 (1)	2 7 59 59 1		in p
SALE COLLAPSE UH CSC ² TEMP SIZE TEST FTUBS N/G 1 2 3 A/G 1 1 0 1 0 1 0 1 0 1	SLE COLLAPSE INV TEMP SIZE TEST FTUBS N/S <	PRODUCT	FLAT	BEND	GRAIN	t,	MENI	 				CHARPY V.	HOTCH	APACT T	ESTING				
BØ9B3B I A3050 OK T B + 32 FULL AR 191 19 109 110 70 80 LEGENC: L-LONGUUDHAL T-THANSVERKE B-BODY W-WELD HAZ-HEAT AFFECTED ASNE TEST/ INSPECTION TEST/ INSPECTION VIL LENGTH VISUAL YES RESULTS / COMMENTS ULL LENGTH MP1 X OO X OO/ID L X IVT 18 82 NOT CH VILL LENGTH MP1 X OO X OO/ID L X IVT 18 82 NOT CH NO AREA INSPECTION (PLAIN END) MP1 UT UT UT UT IVT IVT	T B + 32 FULL AR 101 119 109 119 70 80 90 YX* END OF DATA THIS SHEE *** FULL AR 101 119 109 119 70 80 90 Y TENTING / INFECTION INFORMATION W - WELD MA2 - HEAT AFFECTED ADNE TENTING / INFECTION INFORMATION YES YES X OD X OD/ID L X INT OD X OD OD/ID L X UT		1		SIZE	COL	LAPSE	Dire	LOC	TEMP	SIZE	TEST		F			T	3 SHEAD	
XX: E VD OF DATA THIS SHEE FULL AR B1 119 109 110 70 80 LEGEND: L-LONGITUDINUL T THIS SHEE XX FULL AR B1 119 109 110 70 80 LEGEND: L-LONGITUDINUL T THRNSVERISE B BODY W - WELD MA2 - HEAT AFFECTED ZONE TEST / INSPECTION MA2 - HEAT AFFECTED ZONE TEST / INSPECTION VILL LENGTH VISUAL VES VILL LENGTH VISUAL X OD VILL LENGTH WPI VILL LENGTH WPI X OD VILL LENGTH WPI VILL LENGTH WPI VILL LENGTH WPI VILL LENGTH WPI OD OD OD OD VIL VIT	XX* E VD OF DATA THIS SHEE + 32 X* FULL AR 101 119 109 119 70 80 80 T TRANSVERSE 8 - BODY W - WELD MA2 - HEAT AFFECTED ZONE TEXTING / NEPECTED INFORMATION YES RESULTS / COMMENTS X OD X OD/ID L X NOT/CH OD OD/ID L UT UT IN 2.4% NOT/CH	09838 LA3050		+		+				DEC C			1	1 2	3	AVG		_	
TEST / INSPECTION YES TEST / INSPECTION TEST / INSPECTION TESTING / INSPECTION INFORMATION TESTING / INSPECTION INFORMATION TESTING / INSPECTION INFORMATION ULL LENGTH VISUAL VILL LENGTH VISUAL VILL LENGTH VISUAL X OD X </td <td>TERTING / INFECTION INFORMATION HA2 - HEAT AFFECTED ZONE YES RESULTS / COMMENTS X OD X X OD X OD OD/ID L X OD OD/ID L V/f MP UT UT</td> <td></td> <td>UK</td> <td></td> <td>жж. Е</td> <td>ND OF</td> <td>DATA</td> <td>Т 7 тн 1:</td> <td>B SHEE</td> <td>11 22</td> <td>T</td> <td>AR</td> <td>181</td> <td>119</td> <td>109</td> <td>119</td> <td>70</td> <td>98 98</td> <td></td>	TERTING / INFECTION INFORMATION HA2 - HEAT AFFECTED ZONE YES RESULTS / COMMENTS X OD X X OD X OD OD/ID L X OD OD/ID L V/f MP UT UT		UK		жж. Е	ND OF	DATA	Т 7 т н 1:	B SHEE	11 22	T	AR	181	119	109	119	70	98 98	
TEST / INSPECTION YES B - BODY W - WELD HA2 - HEAT AFFECTED ADRE TESTING / INSPECTION INFORMATION ULL LENGTH VISUAL VLL LENGTH VISUAL VLL LENGTH MPI X OD VLL LENGTH MPI VLL LENGTH UT VI VI VI VLL LENGTH MPI VLL LENGTH UT VI V	TERTING / INFECTION INFORMATION HA2 - HEAT AFFECTED ZONE YES RESULTS / COMMENTS X OD X X OD X OD OD/ID L X OD OD/ID L V/f MP UT UT	LEGEND: L-LONGIN	IDINAL		7. The														
TEST / INSPECTION YES Results / comments ULL LENGTH VISUAL X Results / comments ULL LENGTH E MI X 00 X 00/ID L X ULL LENGTH E MI X 00 X 00/ID L X IV ULL LENGTH MPI X 00 X 00/ID L X IV I	YES RESULTS / COMMENTS X 00 X 00/ID L X ID				1 - 11-941	OVERBE					W·WELD	Å- <u></u>	<u> </u>	HAZ - H					
ULL LENGTH VISUAL X RESULTS / COMMENTS ULL LENGTH EMI X OD X OD/ID L X IV ULL LENGTH MPI X OD X OD/ID L X IV ULL LENGTH MPI X OD X OD/ID L X IV ULL LENGTH UT OD OD/ID L X IV IV ND AREA INSPECTION (PLAN END) MP UT IV IV PECIAL END AREA (SEA) INSP. MP UT IV	X DO X OO X If If <thif< th=""> <thif< th=""> <thif< th=""> <</thif<></thif<></thif<>	TEST/#	SPECTON	<u> </u>			T Z		RECTION R	of OPH ADO	N						WE		
ULL LENGTH EMI X OD X OD X DO/ID L X IV ULL LENGTH MPI ULL LENGTH UT OD OD/ID L X IV IV VD AREA INSPECTION (PLAIN END) OD OD OD/ID L UY PECIAL END AREA (SEA) INSP. MP UT IV	X OO X OO/ID L X I/f 10.862 NOTCH OD OD/ID L X U/f 10.862 NOTCH OD OD/ID L V/f 10.862 NOTCH MP UT U/f U/f MP UT U/f U/f	ALL LENGTH VISUAL				_		· <u> </u>				PESULTS /	COMMEN	vits				·	
ULL LENGTH MP: 00	OD A OD/ID L X UT 18.862 NOTCH OD OD/ID L X UT 18.862 NOTCH OD OD/ID L VT 19.862 NOTCH MP UT UT UT	LL LENGTH EMI					<u> </u>									-			
VD AREA INSPECTION (PLAIN END) OD OD/ID UT PECIAL END AREA (SEA) INSP. MP UT UT RL LENGTH DRIFT MP UT UT	OD OD/ID L UT MP UT UT UT	ILL LENGTH MPI					 		<u> </u>	00/10		L <u>X</u>				0 112	Rever	·	
PECIAL END AREA (SEA) INSP. UTUUT_UUT_UUUT_UUT_UUT_UUT_UUT_UUT_UUT_UUTU		JUL LENGTH UT					<u> </u>												
IRL LENGTH DRIFT		O AREA INSPECTION (P	AIN END)				╂───					L		UT_					
		ELIAL END AHEA (SEA)	INSP.																
		CE CENSIN DHF I					 		MANDRE		<u> </u>								
interview GEE.																			
LL MELTING AND MANUE ACTUDY AND ADDITIONAL NOTES/COMMENTS		L MELTING AND	MANULAT	TINT	-			DDITIONA	LNOTES/CO	MAGITS						_			
OMPOUNDS ARE ADDED TO THE FIGHT AND AND AND THE USA. NO REPAIRS BY WELDING AN MERCINE	ADDITIONAL NOTES/COMMENTS	MPOUNDS ARE AD	DED TO	THE C		PLACE	EIN	THE U	SA. NO	REPAT	RS BY	MELOT			-				
F CONTAINMENT.	ADDITIONAL NOTES/COMMENTS						L MERC	CURY	BEARIN	G EQUI	PMENT	IS PR		10 PI 150			MERCI	URY	
THE ALCO MEET THE FOR A DOUBLE ROLING	ADDITIONAL NOTES/COMMENTS IG TOOK PLACE IN THE USA. NO REPAIRS BY WELDING, NO MERCURY OR MERCURY STEEL AND ALL MERCURY BEARING EQUIPMENT IS PROTECTED BY A DEVICE OF A	CONTAINMENT.		TOCMEN										120	ר ים	DOOR	ILE 80	JNDARY	
THE ACOU MEET THE REQUIREMENTS OF ACTIVE ALONG AND A	ADDITIONAL NOTES/COMMENTS IG TOOK PLACE IN THE USA. NO REPAIRS BY WELDING. NO MERCURY OR MERCURY STEEL AND ALL MERCURY BEARING EQUIPMENT IS PROTECTED BY A DOUBLE BOUNDARY INTS OF ASTM A105 GRADE C & ASME SA105 GRADE C	CONTAINMENT.	IE KEUU				- ALM-												
					T														
LL MELTING AND MANUFACTURING TOOK PLACE TH THE ADDITIONAL NOTES/COMMENTS		L MELTING AND	MANUFAC	TURIN			ر - الم	DITIONA	LNOTES/CO	MAENTS									
WHOUNDS ARE ADDED TO THE STEEL AND ALL MERCURY OF ALL AND ALL MERCURY OF MERCURY OF MERCURY	ADDITIONAL NOTES/COMMENTS	POUNDS ARE AD	JED TO	THE 5	TEEL AN	DALI	MED	10E U "HDV	DAL NU	REPAI	RS BY	WELDI	NG.	NO M	ERCU		MCOM		
TECHTAINMENT. IS PROTECTED BY A DOUBLE POINT	ADDITIONAL NOTES/COMMENTS							2014 1	BEARIA	G EQUI	PMENT	IS PR	OTEC	TED	BY A				
PLACE WEET THE THE THE VOULT RELATION	ADDITIONAL NOTES/COMMENTS	CONTAINMENT		TOCMEN		ASTM									0, 1	0000		JNDARY	
These meet the requirements of Active Allow States	ADDITIONAL NOTES/COMMENTS IG TOOK PLACE IN THE USA. NO REPAIRS BY WELDING. NO MERCURY OR MERCURY STEEL AND ALL MERCURY BEARING EQUIPMENT IS PROTECTED BY A DOUBLE BOUNDARY	CONTAINMENT.	IE KEUU				- ALM-												

#725 P. 02/02

16: 1S

B2-20 1000 TOTO TOTO TOTO

WEN TO:4/ LAY SALAGADED

TA/97/7A

.

.

PAGE

2 OF

2

DR12072 01).		SHIPPERS NO	l	1123	P.D. NUMP	R	T	YEHICL		—				are trademarks of L	
BARTOW STEEL I	SOLD TO A	DORESS						D ADDRES	s					VENDO		
0 BOX 1789	NC					NSTEI	EL INC	;				USS	าบยบ	LAR PRO	DUCTS	
BARTOW FL 3383	0- 1789)					93830-	- 1 799				2199	EAS	T ZBTH	ST.	
						-						LONA	IN.	OH 4405	55	
· · · · · · · · · · · · · · · · · · ·						SPECI	FICATION AP	D GRADE								······
IPE CARBON SM STM A106-++99	LS STD	PIPE	API 5	L-*42N	D EDIT	ION D	NTED 1	/80 P	SL-2 (SRADE E	AND	GRA		42 ASTN	AC2_V05	
STM A106	B BLK	BARE	D STENI PF FF	CIL AS V 90 D	ME SAS	3-×199	98 EDI	TION	2000	DDEND	MAS	ME S	106	-*1998	EDITION	2000
R-01-75 ×2800						ATKO A	NLL IN	is Hrr	LICABI	LE NEUL	INEM	ENTS	OFI	NACE ST	ANDARD	-
					e				T I	iese mil	LITES	TREP	ORTS	APPLY T	0	
······	·	· · · · ·		· ·				·		JR P.O. (2	12	o^-	7		· .
		i.e.P	7. A ST	ent def	. C.,,				BA	TS WOTF	EEL A	EF. #_			_	
COND: AS ROLL		SILE	- <u>1</u>				4.000				in (mm	WALL E	9.50	0 (12.7	80)	în tinvînê
PRODUCT	TEST		TEST COND.	GAUGE	1		ехт . . 50		PSI	Y/T	EL	ONB 1		WROMESS	PSI	PHELL SEC
			-	IN		12000		MARE	70066		1	MINE	MIN		1580	5
09839 IA3059	STRIP.	7778	AR	1.50	0	49208	.50	t	77580		<u> </u>	30.	_	100.0		
				END	OF DAT	N THIS	SHEE	† **						8 81.3	1580	5
	•		Í												[
	GITUDINAL		I - TRANSVE				<u> </u>									
U-UPS	ET		N - NORMALC	ED	<u></u>	HESS REL	_		AR - AS F	OLLED		B - BODY			W · WELD	
PRODUCT	TYPE	<u>├</u> †			5 5	<u></u>	NI	<u>C7 14</u>	<u> </u>	H V		11	CB	C00		CE.
9839	HEAT		1B 12	4 800		_			_							MAX 43
9839 1A3859	PROD	e r		6 202	004 2 005 2	102 102	193 103	28 D 28 D					201			38
99939 1A3859	PROD		19 12	5 087	005 22	192	293	28 20	2 2035 2 2034	90 90			20) 20)	6 Z - 1		. 40
				END (DE DATI	й тэнтэ	SHEE	T: X4			1		:			. 39
				j									:			
	1												:			
				!				<u>: :</u>								
*CE IS BASED ON THE	FOLLOWING	G EQUATIO	NS	C 1 / 1 M	10											

• İ 853 519 8779

FROM IBARTOW STEEL

NEL ORDER/ITEM ND.	<u> </u>	SHIPPE	R3 NO.	14 YFL	B IN ACCO	P.O. HUMB		174/EN102	M/DIUSDE	43)								Censoradien
OR12072 01					1123													
ATERIAL AS ROLLED)					IOD:	24.000	1			in (man) (WILL:						10 (mm)
	1			7		+	21.000			Chiefford			0.50	ð (12	2.700))		
PRODUCT	FLAT	HEND	ORAIN		COLLAPSE	De	TEST LOC.	TEMP	SIZE	CHARPY V-			STING		T		HEAR	
			JALE		COLLAPSE		LOC		34/2	DEST COND.	1	2	2	AMG .	11	Z	3	ANG
309839 LA3059	OK	1		+		+ -	1	DEG E		 		:			·			
		{	×× 1	- Nn	OF DAT	A 1	B SHEE	+ 32	FULL	AR	155	135	155	148	100	-75	100	92
<i></i>	i					<u> 1 'n </u>	a snee			· ·								
				1														
			-						1									
EGEND: L.LONGITU		L	1 - 794							<u> </u>								
						8 · BC	NSPECTION		W - WELD		_	HAZ -H	AT AFTE	CTED Z	ME			
TEST / M	SPECTION			T y	ES		NOPECTICA											
ULL LENGTH VISUAL				<u> </u>	x					RESULTS /	COMME	ពន			_			
ULL LENGTH EM				<u> </u>	X -	OD	x	00/10		LX								
ULL LENGTH MPI						<u> </u>						<u>и </u>		0.0/		LH 		
ULL LENGTH UT						00		00/10		L								
NO AREA INSPECTION (P PECIAL END AREA (SEA)	LAIN END					MPI		_៣						·	_			
				1	1	MPI		Û T			_	_						
				 														
						DRIF	T MANDA											
						DRIF	TMANDA											
ULL LENGTH DRIFT						· · · · ·		el size							·			
ULL LENGTH DRFT	MANUFA	TURIN	g took	. P1	ACE IN	ADOTRO	AL NOTES/	EL SIZE	IRS BY	WELDI	ING -				3			
ULL LÉNGTH DRIFT	MANUFA	TURIN	G TOOK	P1	ACE IN ALL ME	ADOTRO	AL NOTES/	EL SIZE	IRS BY	WELDI IS PE	ING.		ERCU BY A	JRY O	R ME	RCUR	Y	
LL MELTING AND OMPOUNDS ARE AD F CONTAINMENT,	MANUFAC DED TD					ADOTRON THE RCURY	USA. N BEARI	OMMENTE O REPA NG EQU	TEMENI	15 PF	OTEC	NO M TED	ERCU BY A	JRY O	R ME	RCUR	Y DARY	
LL MELTING AND OMPOUNDS ARE AD F CONTAINMENT,	MANUFAC DED TD					ADOTRON THE RCURY	USA. N BEARI	OMMENTE O REPA NG EQU	TEMENI	15 PF	OTEC	NO Þ Ted	ERCU BY A	JRY O DOU	R ME	RCUR	DARY	
ULL LENGTH DRIFT LL MELTING AND DMPOUNDS ARE AD F CONTAINMENT,	MANUFAC DED TD					ADOTRON THE RCURY	USA. N BEARI	OMMENTE O REPA NG EQU	TEMENI	15 PF	OTEC	NO Þ TED	ERCU BY A	JRY O	R ME Ble i	RCUR	DARY	
ULL LENGTH DRIFT LL MELTING AND DMPOUNDS ARE AD F CONTAINMENT,	MANUFAC DED TD					ADOTRON THE RCURY	USA. N BEARI	OMMENTE O REPA NG EQU	TEMENI	15 PF	OTEC	NO P TED	ERCU BY A	URY O	R ME	RCUR	IDARY	
ULL LENGTH DRFT	MANUFAC DED TD					ADOTRON THE RCURY	USA. N BEARI	OMMENTE O REPA NG EQU	TEMENI	15 PF	OTEC	NO P TED	ERCU BY A	URY O	R ME BLE I	RCUR BOUN	T DARY	
LL MELTING AND OMPOUNDS ARE AD F CONTAINMENT,	MANUFAC DED TD					ADOTRON THE RCURY	USA. N BEARI	OMMENTE O REPA NG EQU	TEMENI	15 PF	OTEC	NO P TED	ERCL BY A	URY O	R ME	RCUR	IDARY	
ULL LENGTH DRIFT	MANUFAC DED TD					ADOTRON THE RCURY	USA. N BEARI	OMMENTE O REPA NG EQU	TEMENI	15 PF	OTEC	NO P TED	BY A	JRY Q	RME	RCUR	DARY	
ULL LENGTH DRFT	MANUFAC DED TD HE REQL	JIREME	NTS OF	^	STM A1	ADOTED THE RCURY	USA. N BEARI	OMMENTE O REPA NG EQU	TEMENI	15 PF	OTEC	NO P TED	ERCU BY A	URY O	R ME	RCUR	DARY	
THIS IS TO CEATING AND THIS IS TO CEATING AND THIS IS TO CEATING AND AND PUTILIS TO CEATING THAT	MANUFAL DED TD HE REQU THE PRODUCT		NTS OF	AS MAE H TH		ADOTRIDI THE RCURY 36 GR	AL NOTES	EL SIZE	SA105	IS PE	ютес Е С	TED	BY A	URY O	RME	RCUR	DARY	
THE IS TO CEATING AND THE IS TO CEATING AND THE ALSO MEET T	MANUFAL DED TD HE REQU THE PRODUCT		NTS OF	AS MAE H TH		ADOTRIDI THE RCURY 36 GR	AL NOTES	EL SIZE	SA105	IS PE	ютес Е С	TED	BY A	URY O	RME	RCUR	DARY	
ULL LENGTH DRFT	MANUFAL DED TD HE REQU THE PRODUCT		NTS OF	AS MAE H TH		ADOTRIDI THE RCURY 36 GR	AL NOTES	EL SIZE	SA105	IS PE	ютес Е С	TED	BY A	URY O	RME	RCUR	DARY	
ULL LENGTH DRFT	MANUFAL DED TD HE REQU THE PRODUCT		NTS OF	AS MAE H TH		ADOTRIDI THE RCURY 36 GR	AL NOTES	EL SIZE	SA105	IS PE	ютес Е С	TED	BY A	URY O	RME	RCUR	DARY	
THE IS TO CENTRY THAT	MANUFAC DED TD HE REQU THE PRODUCT R INSPECTER EMENTS IN SL OF J. M Q.A.	LT DESCRE IN ACCOR IN ACCOR	NTS OF EO HEREN DAICE WIT	WAS HITH IGR .	MULTACIUM STM A11	ADUTHDI THE RCURY 26 GR	ADE C	THESE	MILL TE	ST REPO		TED	BY A	URY O	RME	RCUR	DARY	
THIS IS TO CERTIFY THAT SAMPLED TESTED AND/O THIS IS TO CERTIFY THAT	MANUFAC DED TD HE REQU THE PRODUCT R INSPECTER EMENTS IN SL OF J. M Q.A.	LT DESCRE IN ACCOR IN ACCOR	NTS OF EO HEREN DAICE WIT	WAS HITH IGR .		ADUTHDI THE RCURY 36 GR	ADE C	THESE	MILL TE	ST REPO		TED	BY A	JRY O	RME	RCUR	DARY	
THIS IS TO CERTIFY THAT SAMPLED TESTED AND/O THIS IS TO CERTIFY THAT	MANUFAC DED TD HE REQU THE PRODUCT R INSPECTER EMENTS IN SL OF J. M Q.A.	LT DESCRE IN ACCOR IN ACCOR	NTS OF EO HEREN DAICE WIT	WAS HITH IGR .	MULTACIUM STM A11	ADUTHDI THE RCURY 36 GR	ADE C	THESE	MILL TE	ST REPO		TED	BY A	JRY O	RME	RCUR	DARY	
ULL LENGTH DRFT	MANUFAC DED TD HE REQU THE PRODUCT R INSPECTER EMENTS IN SL OF J. M Q.A.	LT DESCRE IN ACCOR IN ACCOR	NTS OF EO HEREN DAICE WIT	WAS HITH IGR .	MULTACIUM STM A11	ADUTHDI THE RCURY 36 GR	ADE C	THESE	MILL TE	ST REPO		TED	BY A		R ME BLE		DARY	

	IEMINO. 2 101		SHIPPERS I	NO.		P.O. NUM	NATU ISI Deri	D 10474	/23302	VEHICI			·			USS.USIE, USE	are inademants of	USH Corp
	SOLD TO	ACORESS		·	112:	9												
BARTOW STEE	LINC				RADI	TOW ST	MA	L TO AD	DRESS				1			VENDO		
P O BOX 178 BARTOW FL 3	19 19	. .			PO	BOX 17	: E E _ E 7 R 9	ลเ						USS	TUB	ULAR PRO	DBHCTC	
	1930-118	19			BART	OW FI	3383	Ø-17	89				1	2199	E E AS	ST Z8TH	ST	
														LURP	ιN,	OH 4405	55	
PIPE CARBON ASTM ALD6-X ADDENDLM GR	SMLS ST	D PIPE	APT :	51-342 10	0 501		TOTON		-								_	
ASTM ALD6-X ADDENDUM GR MR-01-75 X2	99 GRADE	BQUA	D STE	NCIL AS	MESA	107 U	198 FI	170 1770	0 P5		GRA	DE B	AND	GRA	DE 🗲	42 ASTH	A53-x99	
ADDENDUM GR	ade B Bl. Nam	K BARE	PE B	EV 30 DI	eg me	ETING	ALL T	THE	APPL	ICAB	∧UU 1 F	RENDU	M AS	ME S	A1 06	5-×1998	EDITION	2000
												ACQU	1 1 6 6	12112	UF	NACE ST	ANDARD	
									тні	ESE M		fest f		-		- 70		
		••••	~													10		
- MATERIAL AC D		211 2		<u> </u>						K P.U.	#							
COND: AS R	OLLED TE	5117					24°. De	10 (60	19 .76	67) ⁼⁰	TEE	L'REF.	1 mm	-	50	0 (12 7		in (i
PRODUCT			2	4	1	NEU PC.	ExT				T	Y/T	- EL	ONG %		HARONESS	MININGRO	_
IDENTIFICATION	OPE	TTYPE/	TEST COND		MIN:	1200				51 70000			(NH)			ALE: HRB	PSI	INELL, (S
809028 TA300	STRIE	57775		IN	MAR	6500	8	-	1	10006		MAX:		에)는 고려	1		1580	t
		-7 17 B	AR 🖌	1.500 * END C		4830	7.5	01		75580		J. 64		45	2	E 100.0		
					ר יית	TA THIS	SISHE	ET ×	×		ł	ĺ]	0 01.0	1580	
1					ļ		Ī				Í.							
1																		
LEGENCE	· LONGITUDINAL	<u> </u>	1 - MANSV			OUENCHED (<u> </u>											
	UPSET			RED	281	STRESS REU	EVED			AR - AS R				8 · 19012Y			W - WELD	
PRODUCT CENTERCATION	TYPE			-+-+	<u> </u>		N	CR	MO	N	N	*	8	'n	CØ	60		CE
	HEAT	╋╼╌╉																MA
809028/	1 19800			11 009 08 009	80/2	5 201	102	25	ยเ	1041		908		1: 7	201	<u>†</u>	╾┟╍┼╸	
809028 809028 1A306	I PROD		:19 19	39 1288 	008 7	4 91	102 102	205	91 91	038		2001			9 01			E.]
809028 809028 1A306 809028 1A306			×	K END DI	F DAT	A HIS	SHE	ET. X	101 4	238		201			201			.3
809028 11306		1 1							-						:			
809028 11306								1										
809028 11306									:	1: 1			1		:			
809028 1A306 809028 1A306	DIE 570 LOUIS							:	:	I: J				1: 1				
809028 1A306 809028 1A306	THE FOLLOWIN	G EQUATIO	NISX CE	-C+(MN/6	5)+(C	R+MO+V)⁄5+		÷ CUN	[<u>]</u>					:			
809028 1 A 3 06 809028 1 A 3 06 1 A 3 06	THE FOLLOWIN	G EQUATION	NISX CE		5)+(C	R+MO+V)/5+	: (NT+	EU)	/15								

WIT CUBUTONS TOTOPSNOOT

DEREASTER VUS ATTA

1

+

•

FROM I BARTOW STEEL

853 619 8779

2001.02-28

17101 #728 5.01/04

DRI 2072 01 ITZ USAR AS ROLLED 00 24.000 (509.500) m/mil (MLL 0.500 (12.700)) m/mil D0000CTON FLAT BSH0 COMAN 00 1221 m/mil (MLL 0.500) 12.700) m/mil D0000CTON FLAT BSH0 COMAN 00 1221 m/mil M/L 0.500 12.700) m/mil D0000CTON FLAT BSH0 COMAN 00 1221 111 60 607 63 D0000CTON FLAT BSH0 COMAN 00 ASE 0000 1221 111 60 607 63 D0000CTON FLAT BSH0 COMAN THIS SHEE No M/H 100 121 111 60 607 63 D0000CTON FLAT BSH0 COMAN M/H 100 M/H 100 M/H 100 121 111 60 60 70 63 LEGEND L-LONGTURMAL Y THANK MARCENER M/H 100 M/H 100 M/H	DRIZE DRIZE <th< th=""><th>A DIVISION C</th><th>-<u> </u></th><th></th><th>(</th><th>TYPE B</th><th>CER - Ni Accor</th><th>HOULDCE</th><th>WTNi 190 m</th><th>5 76 / Filmers</th><th></th><th></th><th></th><th></th><th>1</th><th>85 I ST</th><th></th><th>3:09</th><th></th><th></th><th></th></th<>	A DIVISION C	- <u> </u>		(TYPE B	CER - Ni Accor	HOULDCE	WTNi 190 m	5 76 / Filmers					1	85 I ST		3:09			
LEGENG L. LONGTRUON PLAT BEND COLUMNSK OP 24.8888(689.690) PLAT 9.598 (12.788) PLAT 2009028 NABRO COLUMNSK OP TAT BEND COLUMNSK OP TAT BEND COLUMNSK OP TAT BEND COLUMNSK OP TAT BEND COLUMNSK OP TAT DED.L TAT BEND TAT BEND COLUMNSK OP TAT DED.L TAT DED.L TAT TAT BEND TAT TAT BEND TAT TAT DED.L TAT	Market AS ROULED 11/23 Die 24.000(569.00) ************************************			SHIPPEI	RS NO.	Ī	1	P.Q. NUMD	X.R		/ WA315	48}						*30842	us el USX	Corporade	HT
PRODUCT FLAT BEND Character Order Call (B09) (B09) (B09) (B09) (B00) Pierry (WLL (D, 2/08)) Pierry (B00) B09902B 1A3061 OK FLAT BEND OCLAPSE OF TEST TEVE (STOR) FLAT FLAT BEND State (Stor) State	Difference No. 24.000 (E99.600) Novel (Mail Decision) Difference Difference <thdifference< th=""> <thdifference< th=""> <th< th=""><th>LATE ON AL</th><th></th><th><u> </u></th><th></th><th></th><th>1123</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>ר</th></th<></thdifference<></thdifference<>	LATE ON AL		<u> </u>			1123														ר
Image: Second multiple second	NOTIFIEST NUMBER NUMER NUMER NUMER<	LONG AS ROLLED	<u></u>				_	00.:	24 000	1/600 0		_	in lines 1	MAR I							
DESIGN PLAT BEND COLLAPSE OP TEST TUP SEE COLAPSE OP TEST TUP SEE COLAPSE OP TEST TUP SEE COLAPSE OP TUP SEE COLAPSE TUP COLAPSE TUP COLAPSE COLAPSE TUP COLAPSE COLAPSE TUP COLAPSE COLAPSE <td>DBMPREATION FLAT BED DBMPREATION DBMPREATION DBMPREATION B09002B 1A30001 DK MM END DF T B DF DF</td> <td>DDDDd</td> <td></td> <td></td> <td></td> <td>T</td> <td></td> <td>+</td> <td>27.000</td> <td>1009.6</td> <td></td> <td></td> <td></td> <td></td> <td>0.50</td> <td>0 (12</td> <td>2.70</td> <td>8)</td> <td>_</td> <td>in (mm)</td> <td>7</td>	DBMPREATION FLAT BED DBMPREATION DBMPREATION DBMPREATION B09002B 1A30001 DK MM END DF T B DF	DDDDd				T		+	27.000	1009.6					0.50	0 (12	2.70	8)	_	in (mm)	7
B0902B 1A3B61 OK PK END OF DATA THES ALL COME 1 2 3 AC 1 2 3 AC L660HD THEST (INSPECTION PK END OF DATA THEST SHEE B 0007 W WCLD WAZ HAR AFECTED 20% L660HD L-LONGTUDINAL THEMSKERE B 0007 W WCLD WAZ HAR AFECTED 20% L660HD L-LONGTUDINAL THEMSKERE B 0007 W WCLD WAZ HAR AFECTED 20% L660HD L-LONGTUDINAL THEMSKERE B 0007 W WCLD WAZ HAR AFECTED 20% ULL LENGTH VISUAL YES PESTING (NARFECTED) INFORMATION MAZ HAR AFECTED 20% ULL LENGTH MAR YES OD X OD/D L X'''' ULL LENGTH MAR X OD X OD/D L L''' THE UT ULL LENGTH MAR X OD MAR UT UT THE UT THE US AND MANUFACTURING TOOK PLACE IN THE USA. NO REPAIRS BY WELDING. NO MERCURY OR MERCURY MARCALEDA AREA (SEAD INSP. MAR UT UT THE USA. NO REPAIRS BY WELDING. NO MERCURY OR MERCURY OR MERCURY MCL LENGTH MAR MARCALESCOMMENTS MAR UT UT UT TH	B09922B 1A3861 OK Internet Intere Internet Internet I	IDENTFICATION	FLAT	BEND	GRAN	I	MA		TEST	·	<u> </u>	DRAMPY VI	NOTCHIN	IPACT TE	STNG						-
B099028 1A3061 OK Image: Second and a second a second and a second a second a second a second and a second a second a second a second a second a second	B09829 1A3861 OK HX E ND OF DATA THIS SHEEL KX FULL AR D4 189 121 111 00 06 72 0 63 LEDHC L-LONGERGENAL J. MANENDREL B-BOOK M. MAD MAX. HAA AFEGRD 2006 LEDHC L-LONGERGENAL J. MANENDREL B-BOOK M. MAD MAX. HAA AFEGRD 2006 LEDHC L-LONGERGENAL J. MANENDREL B-BOOK M. MAD MAX. HAA AFEGRD 2006 MULLENGTH WAR VIL MARKA MARCENDAL VIL MARKA MARCENDAL MAX. HAA AFEGRD 2006 MULLENGTH WAR VIL MARKA MARCENDAL VIL MARKA MARCENDAL MAX. HAA AFEGRD 2006 MULLENGTH WAR VILLENGTH WAR OO OD OD OD C. UT TB. MAX. AFEGRD 2006 MULLENGTH WAR MARKA MARCENDAL MARKA MARCENDAL MARKA MARCENDAL MAX. HAA AFEGRD 2006 MULLENGTH WAR OO OD OD C. OD MARKA MARCENDAL UT TB. MARKA MARCENDAL MULLENGTH WAR MARKA MARCENDAL MARKA MARCENDAL MARKA MARCENDAL MARKA MARCENDAL MULLENGTH WAR MARKA MARKA MARKA MARKANDREL OD Z. OD AREA ISBN MARKANDREL MARKA MARKANDREL MARKA MARENTHO ONER TO THE STEEL AND ALL MERCURY BEA				3605	00	DULAPSE		LOC	TEMP	512E	COND.	 		_				-EAA		-
Image: State of the state	Image: State and the state of the state	B09028 1A3061	or	┼──┤		╞──			·	DEG F				<u> </u>	<u>-</u>	AG	1-1-	2	3	ÂrG	1
LEGEND: L-LONGTUDENUL J. TRANSVENCE 0.000Y W. WELD NOZ-HEAT ATTECTED ZONE LEGEND: L-LONGTUDENUL J. TRANSVENCE 0.000Y W. WELD NOZ-HEAT ATTECTED ZONE LEGEND: L-LONGTUDENUL J. TRANSVENCE 0.000Y W. WELD NOZ-HEAT ATTECTED ZONE ULL LENGTH VILL TEST / INSPECTION VE3 RESULTS / COMMENTS ULL LENGTH X OD X. OD/D L X. IT ULL LENGTH FAMI X OD X. OD/D L X. IT ULL LENGTH MAP OD X. OD/D L VIT 10.00% NOTES ULL LENGTH MP MP UT DATE INT INT INT NO AREA INSPECTION (PLANE END) MP UT UT INT INT VECAL END AREA (SEA) NSP. MP UT INT INT INT JELLENGTH OTRES MP UT INT INT INT INT JELLENGTH OTRES MPALY ANDREL SZE INT INT INT INT INT JELLENGTH ORET ORFT MANDALL MPECTO	LEGERD L-LONGTORMAL 3 TRANSVICE 8-BOOY M - VELD MC - NAX AFFECTED ZAME LEGERD L-LONGTORMAL 3 TRANSVICE 8-BOOY M - VELD MC - NAX AFFECTED ZAME ULL ENGTH VISUAL YI TRANSVICE 8-BOOY M - VELD MC - NAX AFFECTED ZAME ULL ENGTH WARLE YI TRANSVICE 9-BOOY M - VELD MC - NAX AFFECTED ZAME ULL ENGTH WARLE YI OD COPTD L XIII - UI TRANSVICE ULL ENGTH WAR X OD COPTD L XIII - UI TRANSVICE ULL ENGTH WAR X OD COPTD L XIII - UI TRANSVICE ULL ENGTH WAR X OD COPTD L XIII - UI TRANSVICE ULL ENGTH WAR MARINE OD COPTD L UT				~~ ~			T	B	+ 32	FULL	AR	100	1.00			<u>† – – – – – – – – – – – – – – – – – – –</u>				
TEXT / INSPECTION YEST B · BOOY W · MOLD HAZ - HEAT AFFECTED ZONE TEXT HIG / INSPECTION ULL LENGTH VISUAL WEST / INSPECTION VEST / INSPECTION IPLAN END; OD OD //D VIIL LENGTH WIT NOT CHAINE END; OD //D UT VIIL LENGTH WIT NOT AREA (SEA) NSP: VIIT OD //D UT VIIT OD //D UT VIIT OD //D UT VIIT OD //D UT VIIT OD //D UT <td>TEST (INSPECTION IT TRANSVERGE 0.007 W. VRLD M.Z. HEAT AFEGTED 20xe TEST (INSPECTION YS RESMITS (COMBENTS) RESMITS (COMBENTS) ULL LENGTH EAR X OD X DD/D L_X L/T TB - 05 * NOTCH ULL LENGTH MARINA X OD X DD/D L_X L/T TB - 05 * NOTCH ULL LENGTH MARINA X OD 000/D L_X L/T TB - 05 * NOTCH VIL LENGTH MARINA X OD 000/D L_X L/T TB - 05 * NOTCH VIL LENGTH MARINA MARINA OD 000/D L_X L/T TB - 05 * NOTCH VIL LENGTH MARINA MARINA MARINA MARINA UT L/T L/T RECAL EDD AREA (SEAR NSPECTION (PLAN END) MARINA MARINA MARINA MARINA L/T L/T</td> <td></td> <td>1</td> <td> </td> <td>- 774 E</td> <td>ט טון</td> <td>IF DATA</td> <td>4 тні</td> <td>SHEE</td> <td>† xx</td> <td></td> <td></td> <td>101</td> <td>103</td> <td>121</td> <td></td> <td>60</td> <td>60</td> <td>70</td> <td>63</td> <td>4</td>	TEST (INSPECTION IT TRANSVERGE 0.007 W. VRLD M.Z. HEAT AFEGTED 20xe TEST (INSPECTION YS RESMITS (COMBENTS) RESMITS (COMBENTS) ULL LENGTH EAR X OD X DD/D L_X L/T TB - 05 * NOTCH ULL LENGTH MARINA X OD X DD/D L_X L/T TB - 05 * NOTCH ULL LENGTH MARINA X OD 000/D L_X L/T TB - 05 * NOTCH VIL LENGTH MARINA X OD 000/D L_X L/T TB - 05 * NOTCH VIL LENGTH MARINA MARINA OD 000/D L_X L/T TB - 05 * NOTCH VIL LENGTH MARINA MARINA MARINA MARINA UT L/T L/T RECAL EDD AREA (SEAR NSPECTION (PLAN END) MARINA MARINA MARINA MARINA L/T		1		- 7 74 E	ט טון	IF DATA	4 тні	SHEE	† xx			101	103	121		60	60	70	63	4
TENTHOLOGIN Y. TRANEWSFREE B. BOOY W. MOLD HAZ-HEAT AFFECTED ZONE TEST / INSPECTION TEST / INSPECTION VIII LENGTH VISUAL WES MESULAL MESULAL VIII LENGTH VISUAL MESULAL MESULAL VIII LENGTH VISUAL MESULAL VIII LENGTH VISUAL MESULAL VIII LENGTH VISUAL VIII LENGTH VISUAL <tr< td=""><td>TEXT (INSPECTION IT TRANSPIRE 0.0007 W. VRLO W.Z. (HAR AFEGTED 20NE TEXT (INSPECTION TEXT (INSPECTION YS RESULT RESULT WZ. (HAR AFEGTED 20NE ULL LENGTH EAM X OD X OD/D L_X L/T TB. 057 NUTCH ULL LENGTH WAT X OD X OD/D L_X L/T TB. 057 NUTCH ULL LENGTH WAT X OD 000/D L_X L/T TB. 057 NUTCH WILL LENGTH WAT X OD 000/D L_X L/T TB. 057 NUTCH WILL LENGTH WAT X OD 000/D L_X L/T TB. 057 NUTCH WILL LENGTH WAT X OD 000/D L_X L/T TB. 057 NUTCH WILL LENGTH WAT MAR UT UT UT UT UT UT WILL LENGTH WAT MAR UT MAR UT UT UT UT WILL LENGTH WAT MARCH NERS DIZE MAR UT MARCH NERS DIZE UT MARCH NERS DIZE UT LL HELT THE RAL ODES AND MARLY AL</td><td></td><td>Í I</td><td></td><td></td><td>•</td><td></td><td>1</td><td>1</td><td></td><td></td><td></td><td>ţ.</td><td></td><td></td><td></td><td>1</td><td>· [</td><td></td><td></td><td></td></tr<>	TEXT (INSPECTION IT TRANSPIRE 0.0007 W. VRLO W.Z. (HAR AFEGTED 20NE TEXT (INSPECTION TEXT (INSPECTION YS RESULT RESULT WZ. (HAR AFEGTED 20NE ULL LENGTH EAM X OD X OD/D L_X L/T TB. 057 NUTCH ULL LENGTH WAT X OD X OD/D L_X L/T TB. 057 NUTCH ULL LENGTH WAT X OD 000/D L_X L/T TB. 057 NUTCH WILL LENGTH WAT X OD 000/D L_X L/T TB. 057 NUTCH WILL LENGTH WAT X OD 000/D L_X L/T TB. 057 NUTCH WILL LENGTH WAT X OD 000/D L_X L/T TB. 057 NUTCH WILL LENGTH WAT MAR UT UT UT UT UT UT WILL LENGTH WAT MAR UT MAR UT UT UT UT WILL LENGTH WAT MARCH NERS DIZE MAR UT MARCH NERS DIZE UT MARCH NERS DIZE UT LL HELT THE RAL ODES AND MARLY AL		Í I			•		1	1				ţ.				1	· [
TEXT / INSPECTION YEST B · BOOY W · MOLD HAZ - HEAT AFFECTED ZONE TEXT HIG / INSPECTION ULL LENGTH VISUAL WEST / INSPECTION VEST / INSPECTION IPLAN END; OD OD //D VIIL LENGTH WIT NOT CHAINE END; OD //D UT VIIL LENGTH WIT NOT AREA (SEA) NSP: VIIT OD //D UT VIIT OD //D UT VIIT OD //D UT VIIT OD //D UT VIIT OD //D UT <td>TEST (INSPECTION IT TRANSVERGE 0.007 W MOL MCL. HAR AFEGTED ZONE TEST (INSPECTION YS RESMITS (COMMENTS) RESMITS (COMMENTS) ULL LENGTH EAR X OD X DD/D L X L/T TB. 0% NDTCH ULL LENGTH MP X OD X DD/D L X L/T TB. 0% NDTCH ULL LENGTH MP X OD QD/D L X L/T TB. 0% NDTCH NUL LENGTH MP X OD QD/D L X L/T TB. 0% NDTCH NUL LENGTH MP WILL ENGTH MP QD QD L/T L/T TB. 0% NDTCH NUL LENGTH MP QD QD/D L X L/T TB. 0% NDTCH NUL LENGTH MP QD QD/D L X L/T L/T TB. 0% NDTCH RECAL ED AND MANUFACTURIAG TOOK PLACE IN THE USA. NO REPAIRS BY WELDING. NO MERCURY OR MERCURY MR MCLARY OR MERCURY OR MERCURY RECURY OR MERCURY OR MERCURY F CONTAINENT THE SEQUIREMENTS OF ASTM AI05 GRADE C & ASME SAI06 GRADE C C NOTADARA SAI06 GRADE C FEE ALSO MEET THE RE</td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>!</td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td>	TEST (INSPECTION IT TRANSVERGE 0.007 W MOL MCL. HAR AFEGTED ZONE TEST (INSPECTION YS RESMITS (COMMENTS) RESMITS (COMMENTS) ULL LENGTH EAR X OD X DD/D L X L/T TB. 0% NDTCH ULL LENGTH MP X OD X DD/D L X L/T TB. 0% NDTCH ULL LENGTH MP X OD QD/D L X L/T TB. 0% NDTCH NUL LENGTH MP X OD QD/D L X L/T TB. 0% NDTCH NUL LENGTH MP WILL ENGTH MP QD QD L/T L/T TB. 0% NDTCH NUL LENGTH MP QD QD/D L X L/T TB. 0% NDTCH NUL LENGTH MP QD QD/D L X L/T L/T TB. 0% NDTCH RECAL ED AND MANUFACTURIAG TOOK PLACE IN THE USA. NO REPAIRS BY WELDING. NO MERCURY OR MERCURY MR MCLARY OR MERCURY OR MERCURY RECURY OR MERCURY OR MERCURY F CONTAINENT THE SEQUIREMENTS OF ASTM AI05 GRADE C & ASME SAI06 GRADE C C NOTADARA SAI06 GRADE C FEE ALSO MEET THE RE		1									!		1							1
TEXT / INSPECTION YEST B · BOOY W · MOLD HAZ - HEAT AFFECTED ZONE TEXT HIG / INSPECTION ULL LENGTH VISUAL WEST / INSPECTION VEST / INSPECTION IPLAN END; OD OD //D VIIL LENGTH WIT NOT CHAINE END; OD //D UT VIIL LENGTH WIT NOT AREA (SEA) NSP: VIIT OD //D UT VIIT OD //D UT VIIT OD //D UT VIIT OD //D UT VIIT OD //D UT <td>TEST (INSPECTION IT TRANSVERGE 0.007 W. VRLD M.Z. HEAT AFEGTED 20xe TEST (INSPECTION YS RESMITS (COMBENTS) RESMITS (COMBENTS) ULL LENGTH EAR X OD X DD/D L_X L/T TB - 05 * NOTCH ULL LENGTH MARINA X OD X DD/D L_X L/T TB - 05 * NOTCH ULL LENGTH MARINA X OD 000/D L_X L/T TB - 05 * NOTCH VIL LENGTH MARINA X OD 000/D L_X L/T TB - 05 * NOTCH VIL LENGTH MARINA MARINA OD 000/D L_X L/T TB - 05 * NOTCH VIL LENGTH MARINA MARINA MARINA MARINA UT L/T L/T RECAL EDD AREA (SEAR INSP MAR MARINA MARINA MARINA L/T L/T L/T L/T ILL INELTING AND MANUFACTURIAGE TOOK PLACE IN THE USA. NO REPAIRS BY WELDING. NO MERCURY OR MERCURY MARINA MARINA MARINA MARINA MARINA ILL MEET THE REQUIREMENTS OF ASTM AIDED GRADE C & ASME SAIDED GRADE C ASME SAIDED GRADE C MARINA MARINA</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td>1</td> <td></td> <td></td> <td>ĺ</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>i i</td>	TEST (INSPECTION IT TRANSVERGE 0.007 W. VRLD M.Z. HEAT AFEGTED 20xe TEST (INSPECTION YS RESMITS (COMBENTS) RESMITS (COMBENTS) ULL LENGTH EAR X OD X DD/D L_X L/T TB - 05 * NOTCH ULL LENGTH MARINA X OD X DD/D L_X L/T TB - 05 * NOTCH ULL LENGTH MARINA X OD 000/D L_X L/T TB - 05 * NOTCH VIL LENGTH MARINA X OD 000/D L_X L/T TB - 05 * NOTCH VIL LENGTH MARINA MARINA OD 000/D L_X L/T TB - 05 * NOTCH VIL LENGTH MARINA MARINA MARINA MARINA UT L/T L/T RECAL EDD AREA (SEAR INSP MAR MARINA MARINA MARINA L/T L/T L/T L/T ILL INELTING AND MANUFACTURIAGE TOOK PLACE IN THE USA. NO REPAIRS BY WELDING. NO MERCURY OR MERCURY MARINA MARINA MARINA MARINA MARINA ILL MEET THE REQUIREMENTS OF ASTM AIDED GRADE C & ASME SAIDED GRADE C ASME SAIDED GRADE C MARINA MARINA							1	1			ĺ							1		i i
TEST / INSPECTION MEX. MEX. AFFECTED 20NE TEST / INSPECTION MEX. MEX. AFFECTED 20NE ULL LENGTH EXA MEX. MAR. AFFECTED INTORNASION ULL LENGTH EXA NO	TEST / MSPECTON MAX - HAX ATECTED ZONE TEST / MSPECTON MAX - HAX ATECTED ZONE ULL LENGTH VISLAL NAME THE FAM VISLAL NETHING / MSPECTON INFORMATION ULL LENGTH MPT COD X COD/D L_X L/X L/X ULL LENGTH MPT COD COD/D L_X L/X L/	LEGENIX L-LONGITUE	NWL		J . TRAN	SVEREE		1)///	<u> </u>				L_İ					1		
ULL LENGTH VISUAL VES RESULTS / COMMENTS ULL LENGTH EMI X OD_X OD/TD_L_X UT	ULL LENGTH VISUAL VIS MESATS / COMMENTS ULL LENGTH EM X OD X D//D L X I/T TBL.032 NOTER ULL LENGTH EM X OD X OD//D L X I/T TBL.032 NOTER ULL LENGTH MAT X OD COD//D L X I/T TBL.032 NOTER ULL LENGTH MAT X OD COD//D L X I/T TBL.032 NOTER ULL LENGTH MAT OD COD OD//D L X I/T TBL.032 NOTER MORE ANSECTION BULK MENDS OD OD OD//D L X I/T TBL.032 NOTER MULL LENGTH MAT DAPS ANSECTION BULK MENDS MARA NASECTION BULK MENDS MARA NASECTION BULK MENDS I/T DAPS ANSECTION BULK MENDS FECHALEND AND MANUFACTURING TOOK PLACE IN THE USA. NO REPAIRS BY WELDING. NO MERCURY DR MERCURY NO MERCURY DR MERCURY DR MERCURY NO MERCURY DR MERCURY DR MERCURY I/T I/T <t< td=""><td></td><td>·</td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td>W-WELD</td><td></td><td></td><td>HAZ - HE</td><td>AT AFFE</td><td>CTED 20</td><td>NE</td><td></td><td></td><td></td><td>ł</td></t<>		·				_				W-WELD			HAZ - HE	AT AFFE	CTED 20	NE				ł
ULL LENGTH EMI A ULL LENGTH MPT OD X OD X OD X IVI 101.02 NOTCH ULL LENGTH MPT OD X OD X OD X IVI 101.02 NOTCH ULL LENGTH MPT OD CO OD/ID L VI 101.02 NOTCH ULL LENGTH MAPT OD MPT UT VI VI VI PECIAL END AREA (SEA) NSP. MPT UT VI VI VI VILL LENGTH DRIFT MPT UT VI VI VI VILL LENGTH DRIFT MPT UT VI VI VII VILL LENGTH DRIFT MPT UT VIII VIIII VIIII VIIIII VILL LENGTH DRIFT MPT UT VIIIII ORIFT MANDREL SIZE VIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	ULL LENGTH EM A OD X OD/D L VIT TOT <	TEST / INS	SPECTION			YES	7				•										1
ULL LENGTH MP A OD X OD/D L V/T TBL.0% NOTCH ULL LENGTH UT OD OD/D L V/T TBL.0% NOTCH ND AREA INSPECTION (PLAN END) MP UT V/T D PECAL END AREA (SEA) INSP MP UT V/T V/T ULL LENGTH ORIFT OD OD/D L V/T V/T ULL LENGTH ORIFT MP UT V/T V/T V/T ULL LENGTH ORIFT OD OD/ID L V/T V/T ULL LENGTH ORIFT MP UT V/T V/T V/T ULL LENGTH ORIFT ORIFT MANDREL SIZE V/T ORIFT MANDREL SIZE V/T ORIFT MANUFACTURING TOOK PLACE IN THE USA. NO REPAIRS BY WELDING. NO MERCURY OR MERCURY ALL MELTING AND MANUFACTURING TOOK PLACE IN THE USA. NO REPAIRS BY WELDING. NO MERCURY OR MERCURY FOONTAINMENT. FOONTAINMENT. IF CONTAINMENT. IF CONTAINMENT. IF CONTAINMENTS OF ASTM AI06 GRADE C & ASME SAI06 GRADE C THESE MULL TEST REPORTS APPLY TO YOUR P.O. # 32207 YOUR P.O. # 32207 YOUR	ULL LENGTH MAR A OD X OD/D L UT T0.024 NDTCH ND LAREA INSPECTION (PLAN END) OD OD OD OD/D L UT T0.024 NDTCH ND AREA INSPECTION (PLAN END) MAR MAR UT UT UT UT PECHL END AREA (SEA) NSP. MAR MP UT UT UT UT ULL LENGTH DAREA (SEA) NSP. MAR MP UT UT UT UT ULL LENGTH DAREA (SEA) NSP. MP UT	THE LENGTH VISUAL				Ť X						RESULTS /	COMMEN	ars -							•
ULL LENGTH UT OD	ULL LENGTH UT O O O O O O O O O O O O O O O O O O O					X	+	OD	- x	00/00											
NO AREA INSPECTION (PLAN END) OD OD OD/ID L UT PECIAL END AREA (SEA) INSP MP UT OD OD OD OD ULL LENGTH DARFT MP UT OD OD OD OD OD AND MP UT OD OD OD OD OD OD AND MP UT OD OD <t< td=""><td>NO TAREA INSPECTION (PLAN END) OD OD/ID L UT PECAL END AREA (SEA) NSP. MP UT UT WILL END THE AREA (SEA) NSP. MP UT OULL END THE AREA (SEA) NSP. MP UT ALL MELTING AND MANUFACTURING TOOK PLACE IN THE USA: NO REFAIRS BY WELDING. NO MERCURY DR MERCURY DR MERCURY DR MERCURY ONPOUNDS ARE ADDED TO THE STEEL AND ALL MERCURY BEARING EQUIPMENT IS PROTECTED BY A DOUBLE BOUNDARY IPE ALSO MEET THE REQUIREMENTS OF ASTM A10B GRADE C & ASME SAI06 GRADE C THE ALSO MEET THE REQUIREMENTS OF ASTM A10B GRADE C & ASME SAI06 GRADE C THESE MULL TEST REPORTS APPLY TO YOUR P.O. # 32.20.7 BARTOW STEEL REF. # SAME SAI000 MERCORE WIT THE SECONDON SAMESO THE MADON MERCHARD MASCHENT IN MANUFACTURED MARTOW STEEL REF. # DATE OF THE RECOVERED HEADON MERCOMENTS MANUFACTURED HARDON MERCOMENTS MAND HUMLES THE RECOVERED HARDON MERCOMENTS MANUFACTURED HARDON MERCOMENTS</td><td>ULL ENGTH UT</td><td>·</td><td></td><td></td><td></td><td></td><td></td><td></td><td>00/10</td><td><u> </u></td><td><u>X</u></td><td></td><td><u>л </u></td><td>T</td><td>9.0%</td><td>NOT</td><td>Сн</td><td></td><td></td><td></td></t<>	NO TAREA INSPECTION (PLAN END) OD OD/ID L UT PECAL END AREA (SEA) NSP. MP UT UT WILL END THE AREA (SEA) NSP. MP UT OULL END THE AREA (SEA) NSP. MP UT ALL MELTING AND MANUFACTURING TOOK PLACE IN THE USA: NO REFAIRS BY WELDING. NO MERCURY DR MERCURY DR MERCURY DR MERCURY ONPOUNDS ARE ADDED TO THE STEEL AND ALL MERCURY BEARING EQUIPMENT IS PROTECTED BY A DOUBLE BOUNDARY IPE ALSO MEET THE REQUIREMENTS OF ASTM A10B GRADE C & ASME SAI06 GRADE C THE ALSO MEET THE REQUIREMENTS OF ASTM A10B GRADE C & ASME SAI06 GRADE C THESE MULL TEST REPORTS APPLY TO YOUR P.O. # 32.20.7 BARTOW STEEL REF. # SAME SAI000 MERCORE WIT THE SECONDON SAMESO THE MADON MERCHARD MASCHENT IN MANUFACTURED MARTOW STEEL REF. # DATE OF THE RECOVERED HEADON MERCOMENTS MANUFACTURED HARDON MERCOMENTS MAND HUMLES THE RECOVERED HARDON MERCOMENTS MANUFACTURED HARDON MERCOMENTS	ULL ENGTH UT	·							00/10	<u> </u>	<u>X</u>		<u>л </u>	T	9.0%	NOT	Сн			
PECUL END AREA (SEA) INSP. MP UT ULL LENGTH DRIFT DRIFT MANDREL SIZE: ADDITIONAL NOTES/COMMENTS ALL MELTING AND MANUFACTURING TOOK PLACE IN THE USA. NO REPAIRS BY WELDING. NO MERCURY DR MERCURY COMPOUNDS ARE ADDED TO THE STEEL AND ALL MERCURY BEARING EQUIPMENT IS PROTECTED BY A DOUBLE BOUNDARY IF CONTAINMENT. IPE ALSO MEET THE REQUIREMENTS OF ASTM AI05 GRADE C & ASME SAI05 GRADE C THESE MULL TEST REPORTS APPLY TO YOUR P.O. # 32207	PECAL END AREA (SEA) NSP. MM UT ULL LENGTH DARFT ORFT MANDREL SIZE ADDITIONAL NOTESCOMEDING. ADDITIONAL NOTESCOMEDING. NULL LENGTH DARFT ADDITIONAL NOTESCOMEDING. ALL MEETING AND MANUFACTURING TOOK PLACE IN THE USA. NO REPAIRS BY WELDING. NO MERCURY OR MERCURY OR MERCURY OF CONTAINMENT. ILL MEETING AND THE STEEL AND ALL MERCURY BEARING EQUIPMENT IS PROTECTED BY A DOUBLE BOUNDARY IF CONTAINMENT. IPE ALSO MEET THE REQUIREMENTS OF ASTM AI0B GRADE C & ASME SAI06 GRADE C MARTINE PRODUCT RECORD VERTIME MANUFACTURED MARDIN REPERTIP WART THE PRODUCT RESORDED VERTIME MANUFACTURED MOD FUNCTION REPORTS MOD FUNCTION AND THE STORED VERTIME MANUFACTURED MARDIN REPERTIP WART THE PRODUCT RESORDED VERTIME MANUFACTURED MARDIN REPERT MARDIN REPERT MODING AND THE STORED VERTIME MANUFACTURED MARDIN REPERT MARDINE DESCRIPTION MARDIN REPERT MARDIN REPERT MARDIN REPERT MARDIN REPERT MARDIN REPERT	ND AREA INSECTION (N										•									1
ULL LENGTH DREFT MP UT OREFT MANDREL SZE: OREFT MANDREL SZE: NLL MELTING AND MANUFACTURING TOOK PLACE IN THE USA. NO REPAIRS BY WELDING. NO MERCURY OR MERCURY COMPOUNDS ARE ADDED TO THE STEEL AND ALL MERCURY BEARING EQUIPMENT IS PROTECTED BY A DOUBLE BOUNDARY FF CONTAINMENT. IPE ALSO MEET THE REQUIREMENTS OF ASTM A106 GRADE C & ASME SA106 GRADE C THESE MILL TEST REPORTS APPLY TO YOUR P.O. # 32.20.7	ULL LENGTH DRIFT UT DRIFT MANDREL SIZE: ADDITIONAL NOTES/COMMENTS ADDITIONAL NOTES/COMMENTS DAMPOLINDS ARE ADDED TO THE STEEL AND ALL MERCURY BEARING EQUIPMENT IS PROTECTED BY A DOUBLE BOUNDARY IF CONTAINMENT. IPE ALSO MEET THE REQUIREMENTS OF ASTM A100 GRADE C & ASME SA100 GRADE C THESE MULL TEST REPORTS APPLY TO YOUR P.O. # 32.20.7 BARTOW STEEL REF. #		ATLA CAMPA	_	ł.			00	÷	OD/ID									1.1.1		
DRIFT MANDREL SIZE: ADDITIONAL NOTES/COMMENTS COMPOUNDS ARE ADDED TO THE STEEL AND ALL MERCURY BEARING EQUIPMENT IS PROTECTED BY A DOUBLE BOUNDARY OF CONTAINMENT. IPE ALSO MEET THE REQUIREMENTS OF ASTM A105 GRADE C & ASME SA105 GRADE C THESE MILL TEST REPORTS APPLY TO YOUR P.O. # 32207	DREFT MANDREL SIZE: ADDITIONAL NOTESCOMMENTS DOMPOLINDS AND MANUFACTURING TOOK PLACE IN THE USA. NO REPAIRS BY WELDING. NO MERCURY OR MERCURY F CONTAINENT. IPE ALSO MEET THE REQUIREMENTS OF ASTM AIBB GRADE C & ASME SAIBB GRADE C THESE MILL TEST REPORTS APPLY TO YOUR P.O. #	PECIAL END AREA MEAN	AN END}				+		÷		I			T			·				
ADDITIONAL NOTES.COMMENTS ADDITIONAL NOTES.COMMENTS COMPOUNDS ARE ADDED TO THE STEEL AND ALL MERCURY BEARING EQUIPMENT IS PROTECTED BY A DOUBLE BOUNDARY OF CONTAINMENT. IPE ALSO MEET THE REQUIREMENTS OF ASTM A106 GRADE C & ASME SA106 GRADE C THESE MILL TEST REPORTS APPLY TO YOUR P.O. # 32207	ADDITIONAL NOTESCOMMENTS ADDITIONAL NOTESCOMMENTS COMPOUNDS ARE ADDED TO THE STEEL AND ALL MERCURY BEARING EQUIPMENT IS PROTECTED BY A DOUBLE BOUNDARY IF CONTAINMENT. IPE ALSO MEET THE REQUIREMENTS OF ASTM A106 GRADE C & ASME SA106 GRADE C THESE MILL TEST REPORTS APPLY TO YOUR P.O. #	PECIAL END AREA (SEA) I	AIN END}					MPI MPI	<u> </u>	TU				UT							
IPE ALSO MEET THE REQUIREMENTS OF ASTM A106 GRADE C & ASME SA106 GRADE C THESE MILL TEST REPORTS APPLY TO YOUR P.O. # 32207	IPE ALSO MEET THE REQUIREMENTS OF ASTM A106 GRADE C & ASME SA106 GRADE C THESE MILL TEST REPORTS APPLY TO YOUR P.O. # 32207 BARTOW STEEL REF. # THESE MILL TEST REPORTS APPLY TO YOUR P.O. # 32207 BARTOW STEEL REF. # PHENNED WIT THE PRODUCT DESCRIBED HEREIN WAS IMMULFACTURED AND FULFILS HE RECORRECENTS IN ACCOMPANCE WITH THE SPECIFICATION AND FULFILS HE RECORRECENTS IN ACCOMPANCE WITH THE SPECIFICATION PRE- B1/22/B1 DATE	PECIAL END AREA (SEA) I	AIN END}					MPI MPI		TU	l			<u></u>							u: 4u
IPE ALSO MEET THE REQUIREMENTS OF ASTM A106 GRADE C & ASME SA106 GRADE C THESE MILL TEST REPORTS APPLY TO YOUR P.O. # 32207	IPE ALSO MEET THE REQUIREMENTS OF ASTM A105 GRADE C & ASME SA105 GRADE C THESE MILL TEST REPORTS APPLY TO YOUR P.O. # 32207 BARTOW STEEL REF. # THESE MILL TEST REPORTS APPLY TO YOUR P.O. # 32207 BARTOW STEEL REF. # THESE MILL TEST REPORTS APPLY TO YOUR P.O. # 32207 BARTOW STEEL REF. # THESE MILL TEST REPORTS APPLY TO YOUR P.O. # 32207 BARTOW STEEL REF. # THESE MILL TEST REPORTS APPLY TO YOUR P.O. # 32207 BARTOW STEEL REF. # THESE MILL TEST REPORTS APPLY TO YOUR P.O. # 32207 BARTOW STEEL REF. # THESE MILL TEST REPORTS APPLY TO YOUR P.O. # 32207 BARTOW STEEL REF. # DATE PREMEDBY THE OFFICE OF J. MASSIMINO MGR. MET. & Q.A. USS TUBULAR PRODUCTS DATE DATE	PECIAL END AREA (SEA)	AIN END}					MPI MPI		TU	I I			UT							
IPE ALSO MEET THE REQUIREMENTS OF ASTM A106 GRADE C & ASME SA106 GRADE C THESE MILL TEST REPORTS APPLY TO YOUR P.O. #	IPE ALSO MEET THE REQUIREMENTS OF ASTM A105 GRADE C & ASME SA105 GRADE C THESE MILL TEST REPORTS APPLY TO YOUR P.O. # 32207 BARTOW STEEL REF. # DATE MILL THE PRODUCT DESCRIBED HEREIN WAS IMMULFACTURED SMMILLS THE REQUIREMENTS IN SUCH RESPECTS PRE-MILL THE RECORDER OF THE THE SPECIFICATION AND FULFILS THE RECORDER OF THE THE SPECIFICATION AND FULFILS THE RECORDER OF THE THE SPECIFICATION AND FULFILS THE RECORDER OF THE THE SPECIFICATION AND FULFILS THE RECORDER OF THE THE SPECIFICATION PREFINED BY THE OFFICE OF: J. MASSIMINO MIGR. MET. & Q.A. USS TUBULAR PRODUCTS DATE _ 01/22/01	PECIAL END AREA (SEA) I ULL LENGTH ORIFT	NSP.					MPI MPI DRIF1		UT UT L SIZE:	I										
THESE MILL TEST REPORTS APPLY TO YOUR P.O. # 32207	IPE ALSO MEET THE REQUIREMENTS OF ASTM A106 GRADE C & ASME SA106 GRADE C THESE MILL TEST REPORTS APPLY TO YOUR P.O. # 32207 BARTOW STEEL REF. # DATE MILL THE RECORDER HERE IN AS IMMUNICATIVED SAMPLED TESTER AND/ON INSPECTOR WITH THE SPECIFICATION AND FULLILS THE RECORRECTS IN ACCOMPANCE WITH THE SPECIFICATION AND FULLILS THE RECORRECTS OF ALL SECONDARY PREMARD BY THE OFFICE OF: J. MASSIMINO MGR. MET. & Q.A. USS TUBULAR PRODUCTS DATE	PECIAL END AREA (SEA) I ULL LENGTH ORIFT	NSP.					MPI MPI DRIFT	AL NOTES CO												
THESE MILL TEST REPORTS APPLY TO YOUR P.O. #	THESE MILL TEST REPORTS APPLY TO YOUR P.O. # 32207 BARTOW STEEL REF. # PREVIEW THE PRODUCT DESCREED HEREN WAS MANUFACTURED SWIFLED BY THE DESCREED HEREN WAS MANUFACTURED AND FULRILS THE RECURRENCE WITH THE STOCKARDN AND FULRILS THE RECURRENCE WITH THE STOCKARDN AND FULRILS THE RECURRENCE OF: J. MASSIMINO MGR. MET. 6 Q.A. USS TUBULAR PRODUCTS DATE BI/222/BI	PECIAL END AREA (SEA) I ULL LENGTH ORIFT	NSP.		TOOK	PLAC	EIN	MPI MPI DRIFT	AL NOTES CO		RS 8Y	WELDY									
THESE MILL TEST REPORTS APPLY TO YOUR P.O. #	THESE MULL TEST REPORTS APPLY TO YOUR P.O. # 32207 BARTOW STEEL REF. #BARTOW STEEL REF. #	DECIAL END AREA (SEA) I ULL LENGTH DREFT ALL MELTING AND M COMPOUNDS ARE ADD DF CONTAINMENT	ANUFAC	TURING THE ST	TOOK	PLAC D AL		MPI MPI DRIFT ADDITIONU THE U CURY	AL NOTESACO JSA. NO BEARIN	UTUT L SIZE: MMENTS REPAI	RS BY PMENT	WELDI IS PRI	NG.		ERCU	RY DR	T MET	RCURY			
THESE MILL TEST REPORTS APPLY TO YOUR P.O. #	THESE MULL TEST REPORTS APPLY TO YOUR P.O. # 32207 BARTOW STEEL REF. #BARTOW STEEL REF. #	DECIAL END AREA (SEA) I ULL LENGTH DREFT ALL MELTING AND M COMPOUNDS ARE ADD DF CONTAINMENT	ANUFAC	TURING THE ST	TOOK EEL AN	PLAC D AL	E IN L MER	MPI MPI DRIFT ADDITIONU THE U CURY	AL NOTESACO JSA. NO BEARIN	UTUT L SIZE: MMENTS REPAI	RS BY PMENT	WELDI IS PRI	NG.				R MET	RCURY	Y DARY		
THESE MILL TEST REPORTS APPLY TO YOUR P.O. #	THESE MILL TEST REPORTS APPLY TO YOUR P.O. # 32207 BARTOW STEEL REF. # BARTOW STEEL REF. # MOD PULALIS THE REQUIREMENTS IN GUIDANCE WITH THE SPECIFICATION AND PULALIS THE REQUIREMENTS IN GUIDANCE WITH THE SPECIFICATION PRE-WHED BY THE OFFICE OF: J. MASSIMINO MGR. MET. G Q.A. USS TUBULAR PRODUCTS DATE	DECIAL END AREA (SEA) I ULL LENGTH DREFT ALL MELTING AND M COMPOUNDS ARE ADD DF CONTAINMENT	ANUFAC	TURING THE ST IREMEN	TOOK EEL AN	PLAC D AL	E IN L MERI	MPI MPI DRIFT ADDITIONU THE U CURY	AL NOTESACO JSA. NO BEARIN	UTUT L SIZE: MMENTS REPAI	RS BY PMENT SAID5	WELDI IS PRI GRADE	NG.		ERCUI BY A	RY DR DOUE	R MET	RCUR	Y DARY		
YOUR P.O. #7	VOUR P.O. # <u>32207</u> BARTOW STEEL REF. # BARTOW STEEL REF. # BARTOW STEEL REF. # AND FULNUS THE RECHERCHER IN ACCORDANCE WITH THE SPECIFICATION AND FULNUS THE RECHERCHERTS IN SUCH RESPECTS PREPARED BY THE OFFICE OF J. MASSIMINO MGR. MET. 6 Q.A. USS TUBULAR PRODUCTS DATE <u>01/22/01</u>	DECIAL END AREA (SEA) I ULL LENGTH DREFT ALL MELTING AND M COMPOUNDS ARE ADD DF CONTAINMENT	ANUFAC	TURING THE ST IREMEN	TOOK EEL AN	PLAC D AL	E IN L MERO 1 AIDO	MPI MPI DRIFT ADDITIONU THE U CURY	AL NOTESACO JSA. NO BEARIN	UTUT L SIZE: MMENTS REPAI	RS BY PMENT SA106	WELDI IS PRI GRADE	NG.		ERCUI BY A		i met	RCUR	Ŷ		
YOUR P.O. #7	VOUR P.O. # <u>32207</u> BARTOW STEEL REF. # BARTOW STEEL REF. # BARTOW STEEL REF. # AND FULNUS THE RECHERCHER IN ACCORDANCE WITH THE SPECIFICATION AND FULNUS THE RECHERCHERTS IN SUCH RESPECTS PREPARED BY THE OFFICE OF J. MASSIMINO MGR. MET. 6 Q.A. USS TUBULAR PRODUCTS DATE <u>01/22/01</u>	DECUL END AREA (SEA) I ULL LENGTH DRIFT NLL MELTING AND M COMPOUNDS ARE ADD OF CONTAINMENT. IPE ALSO MEET TH	ANUFAC	TURING THE ST IREMEN	TOOK EEL AN	ASTM	1 110	MP DRIFT ADDITIONU ADDITIONU THE U CURY 5 GRA	AL NOTESICO JSA. NO BEARIN NDE C &	UTUT L SIZE: MMENTS REPAI G EQUI ASME	54105	GRADE	NG. T DTEC	NO MI		DODE	R MEI BLE E	RCUR	Ŷ		
	THIS IS TO CENTRY THE PRODUCT DESCRIBED HEREN WAS MANUFACTURED. SAMPLED TESTED AND/OR INSPECTED IN ACCORDANCE WITH THE SPECARCARON AND FURNES THE RECURRENCESTS IN SUCH RESPECTS PREPARED BY THE OFFICE OF: J. MASSIMINO MGR. MET. G Q.A. USS TUBULAR PRODUCTS DATE <u>B1/22/B1</u>	DECUL END AREA (SEA) I ULL LENGTH DRIFT NLL MELTING AND M COMPOUNDS ARE ADD OF CONTAINMENT. IPE ALSO MEET TH	ANUFAC	TURING THE ST IREMEN	TOOK EEL AN	ASTM	1 110	MP DRIFT ADDITIONU ADDITIONU THE U CURY 5 GRA	AL NOTESACO JSA. NO BEARIN NDE C &	UTUT UT L SIZE: MMENTS REPAI G EQUI ASME	SA105	GRADE		TED I		DODE	R MEI BLE E	RCUR	Y		
BARTOW STEEL REF. #	SAMPLED TESTER AND/OR HISPECTED IN ACCORDANCE WITH THE SPECIFICATION AND FURILIS THE REQUIREMENTS IN SUCH RESPECTS PREPARED BY THE OFFICE OF: J. MASSIMINO MGR. MET. G Q.A. USS TUBULAR PRODUCTS DATE <u>B1/22/B1</u>	DECUL END AREA (SEA) I ULL LENGTH DRIFT NLL MELTING AND M COMPOUNDS ARE ADD OF CONTAINMENT. IPE ALSO MEET TH	ANUFAC	TURING THE ST IREMEN	TOOK EEL AN	ASTM	1 110	MP DRIFT ADDITIONU ADDITIONU THE U CURY 5 GRA	AL NOTESACO JSA. NO BEARIN NDE C &	UTUT UT L SIZE: MMENTS REPAI G EQUI ASME	SA105	GRADE		TED I		DODE	R MET	RCUR	Ŷ		
	SAMPLED TESTER AND/OR HISPECTED IN ACCORDANCE WITH THE SPECIFICATION AND FURILS THE REQUIREMENTS IN SUCH RESPECTS PREPARED BY THE OFFICE OF: J. MASSIMINO MGR. MET. G Q.A. USS TUBULAR PRODUCTS DATE <u>B1/22/B1</u>	DECUL END AREA (SEA) I ULL LENGTH DRIFT NLL MELTING AND M COMPOUNDS ARE ADD OF CONTAINMENT. IPE ALSO MEET TH	ANUFAC	TURING THE ST IREMEN	TOOK EEL AN	ASTM	1 110	MP DRIFT ADDITIONU ADDITIONU THE U CURY 5 GRA	AL NOTESACO JSA. NO BEARIN NDE C &	UTUT UT L SIZE: MMENTS P REPAI G EQUI ASME ASME THES YOUR (5A106 E Mill : P.O. #	GRADE		TED I		DODE	REP BLE E	RCUR	Y		
	PREPARED BY THE OFFICE OF: J. MASSIMINO MGR. MET. G Q.A. USS TUBULAR PRODUCTS DATE <u>B1/22/B1</u>	PECIAL END AREA (SEA) I ULL LENGTH DRIFT ALL MELTING AND M OMPOUNDS ARE ADD OF CONTAINMENT. IPE ALSO MEET TH	NSP.	IREMEN	TS OF	ASTM	1 A10	MP MP DRIFT ADDITION THE U CURY 5 GRA	AL NOTESACO JSA. NO BEARIN NDE C &	UTUT UT L SIZE: MMENTS P REPAI G EQUI ASME ASME THES YOUR (5A106 E Mill : P.O. #	GRADE		TED I		DODE	REP BLE E	ROURY	Ŷ		
SAMPLED. TESTED AND/OR INSPECTED IN ACCORDANCE WITH THE SPECIFICATION	DATE BI/22/BI	THE IS TO CERTEY SHAFT	NSP.	DESCRIPTION	TS OF	ASTM	1 A10	MP MP DRIFT ADDITION THE U CURY 5 GRA	AL NOTESACO JSA. NO BEARIN NDE C &	UTUT UT L SIZE: MMENTS P REPAI G EQUI ASME ASME THES YOUR (5A106 E Mill : P.O. #	GRADE		TED I		DODE	R MER	RCURY	Y		
AND FURILS THE REDUREMENTS IN SUCH RESPECTS	DATE BI/22/BI	THE IS TO CERTERY SHUT TH SAMPLED TESTED AND THE STOCK	NSP.	DESCREER M ACCORDA M ACCORDA	TS OF	ASTM Is move		MP MP DRIFT ADDITION THE U CURY 5 GRA	AL NOTESACO JSA. NO BEARIN NDE C &	UTUT UT L SIZE: MMENTS P REPAI G EQUI ASME ASME THES YOUR (5A106 E Mill : P.O. #	GRADE		TED I		DODE	R MER	RCURY	Y		
AND FULRILS THE RECURRENENTS IN SUCH RESPECTS		THE IS TO CERTERY SHUT TH SAMPLED TESTED AND THE STOCK	NSP. ANUFAC ED TO T E REQUI E REQUI	DESCREEN MACCORD MACCORD MACCORD SSIMIA	D MEREN WA	ASTM S MANL		MP MP DRIFT ADDITION THE U CURY 5 GRA	AL NOTESACO JSA. NO BEARIN NDE C &	UTUT UT L SIZE: MMENTS P REPAI G EQUI ASME ASME THES YOUR (5A106 E Mill : P.O. #	GRADE		TED I		DODE	₹ MEI 3LE E	ROURY	Y		
AND FULRILS THE RECRIPTED IN SUCH RESPECTS	PAGE 2 OF 2	PECIAL END AREA (SEA) I ULL LENGTH DRIFT ALL MELTING AND M COMPOUNDS ARE ADD IF CONTAINMENT. IPE ALSO MEET TH SAMPLED TESTED ADAM AND FULFILLS THE REDUREM PREPARED BY THE OFFICE OF	NSP. ANUFAC ED TO T E REQUI E REQUI	DESCREEN MACCORD MACCORD MACCORD SSIMIA	D MEREN WA	ASTM S MANL		MP MP DRIFT ADDITION THE U CURY 5 GRA	AL NOTESACO JSA. NO BEARIN NDE C &	UTUT UT L SIZE: MMENTS P REPAI G EQUI ASME ASME THES YOUR (5A106 E Mill : P.O. #	GRADE		TED I		DODE	R MER	RCURY	Y		
AND FULRILS THE RECURRENTS IN SUCH RESPECTS	PAGE 2 UF 2	PECIAL END AREA (SEA) I ULL LENGTH DRIFT ALL MELTING AND M COMPOUNDS ARE ADD IF CONTAINMENT. IPE ALSO MEET TH SAMPLED TESTED ADAM AND FULFILLS THE REDUREM PREPARED BY THE OFFICE OF	NSP. ANUFAC ED TO T E REQUI E REQUI	DESCREEN MACCORD MACCORD MACCORD SSIMIA	D MEREN WA	ASTM S MANL		MP MP DRIFT ADDITION THE U CURY 5 GRA	AL NOTESACO JSA. NO BEARIN NDE C &	UTUT UT L SIZE: MMENTS P REPAI G EQUI ASME ASME THES YOUR (5A106 E Mill : P.O. #	GRADE		TED I		DODE	R MER	ROURY	Y		
AND FULRILS THE RECUIREMENTS IN SUCH RESPECTS	PAGE 2 OF 2	THIS IS TO CERTIFY SHUT TO SAMPLED TESTED AND THE SAMPLED TESTED AND THE SAMPLED TESTED AND/OR AND FULFILLS THE RECURREN PREPARED BY THE OFFICE OF	NSP. ANUFAC ED TO T E REQUI E REQUI	DESCREEN MACCORD MACCORD MACCORD SSIMIA	D MEREN WA	ASTM S MANL		MP MP DRIFT ADDITION THE U CURY 5 GRA	AL NOTESACO JSA. NO BEARIN NDE C &	UTUT UT L SIZE: MMENTS P REPAI G EQUI ASME ASME THES YOUR (5A106 E Mill : P.O. #	GRADE		TED I		DODE	R MER	ROURY	Y		
AND FULRILS THE RECURRENTS IN SUCH RESPECTS	PAGE 2 UF 2	PECIAL END AREA (SEA) I ULL LENGTH DRIFT ALL MELTING AND M COMPOUNDS ARE ADD F CONTAINMENT. IPE ALSO MEET TH SAMPLED TESTED ADAM AND FULFILLS THE REDUREM PREPARED BY THE OFFICE OF	NSP. ANUFAC ED TO T E REQUI E REQUI	DESCREEN MACCORD MACCORD MACCORD SSIMIA	D MEREN WA	ASTM S MANL		MP MP DRIFT ADDITION THE U CURY 5 GRA	AL NOTESACO JSA. NO BEARIN NDE C &	UTUT UT L SIZE: MMENTS P REPAI G EQUI ASME ASME THES YOUR (5A106 E Mill : P.O. #	GRADE		TED I		DODE	REP BLEE	ROURY	Y		
AND FULRILS THE RECURRENTIS IN SUCH RESPECTS	PAGE 2 OF 2	PECIAL END AREA (SEA) I ULL LENGTH DRIFT ALL MELTING AND M OMPOUNDS ARE ADD F CONTAINMENT. IPE ALSO MEET TH BASING TESTER AND/ON AND FURKLS THE REDUREM PREPARED BY THE OFFICE OF	NSP. ANUFAC ED TO T E REQUI E REQUI	DESCREEN MACCORD MACCORD MACCORD SSIMIA	D MEREN WA	ASTM S MANL		MP MP DRIFT ADDITION THE U CURY 5 GRA	AL NOTESACO JSA. NO BEARIN NDE C &	UTUT UT L SIZE: MMENTS P REPAI G EQUI ASME ASME THES YOUR (5A106 E Mill : P.O. #	GRADE		TED I		DODE	R MER	ROURY	Y		
AND FURILLS THE RECURRENTS IN SUCH RESPECTS		PECIAL END AREA (SEA) I ULL LENGTH DRIFT LL MELTING AND M OMPOUNDS ARE ADD F CONTAINMENT. IPE ALSO MEET TH PREMIED TESTER AND/ON AND FULKILS THE REDUREM PREFNNED BY THE OFFICE OF	NSP. ANUFAC ED TO T E REQUI E REQUI	DESCREEN MACCORD MACCORD MACCORD SSIMIA	D MEREN WA	ASTM S MANL		MP MP DRIFT ADDITION THE U CURY 5 GRA	AL NOTESACO JSA. NO BEARIN NDE C &	UTUT UT L SIZE: MMENTS P REPAI G EQUI ASME ASME THES YOUR (5A106 E Mill : P.O. #	GRADE		TED I		DODE	R MEI BLE E	ROURY	Y DARY		
AND FURILES THE RECURRENTIS IN SUCH RESPECTS PREPARED BY THE OFFICE OF: J. MASSIMINO MGR. MET. G Q.A. USS TUBULAR PRODUCTS DATE <u>B1/22/B1</u>		PECIAL END AREA (SEA) I ULL LENGTH DRIFT ALL MELTING AND M OMPOUNDS ARE ADD F CONTAINMENT. IPE ALSO MEET TH BASING TESTER AND/ON AND FURKLS THE REDUREM PREPARED BY THE OFFICE OF	NSP. ANUFAC ED TO T E REQUI E REQUI	DESCREEN MACCORD MACCORD MACCORD SSIMIA	D MEREN WA	ASTM S MANL		MP MP DRIFT ADDITION THE U CURY 5 GRA	AL NOTESACO JSA. NO BEARIN NDE C &	UTUT UT L SIZE: MMENTS P REPAI G EQUI ASME ASME THES YOUR (5A106 E Mill : P.O. #	GRADE		TED I			3. E		D AR Y		

rn,07/3n

.

THR IS THAT - SING M FROM STEEL

.

-963 619 8779

:;; ·

12190

EEL PRODUCTS CANADIAN PHOENIX ST

DIVISION OF IGASTON ONTARIO LIVETED 209 HORNER AVENUE ETOBICONE, ONTARIO, CANADA N42 4Y4

LABORATORY REPORT AND MILL TEST CERTIFICATE

	Bing & Piling Supplies
DATEDec.7/00	CUSTOMER Pipe & Piling Supplies
SPECIFICATION A1398	CUSTOMER'S P.OBLK-1125
SPECIFICATION TO THE MIT	
DIA & WALL 34" O.D. X . 375 WT	

HYDROTEST 620 PSI FOR 2 Min

12.5

.

PHYSICAL PROPERTIES

1

HEAT NO. PIPE NO. 7950P 3 7955P 10 8064M 14	48700	73900	FINGATION	77300	PM
7955P 10 8064M 14	48700	73900	-37.5		
7955P 10 8064M 14				83900	PM
8064M 14	57800	8'1300 -	37.5	85800	PM
800411	59400	83100	.37.5		РИ
	46200	67300	37,5	70600	
8163M 49	40200			77100	РМ
121581 54	49000	74300	37.5	///	1
	(*)	,	C. Carlo	James and a state of the state	

LADLE ANALYSIS

CHEMICAL COMPOSITION

				•			14	CU -	NO	AL
HEAT NO	C	MN	5	<u> </u>	8	CR	and the second second second second second second second second second second second second second second second	,03	.010	.034
the second second second second second second second second second second second second second second second se	. 20	.84	.006	009	.23	. 02	:01			.036
7950P			1	.009	. 22	.01	.01	.01		
7955P	.18	.83	.007	L	4			. 02	T	.038
		. 89	. 0.05_	.01.1_	23)	02	.01_			.042
8064M	.18		and the second division of the local divisio	.011	. 22	. 02	.01	.01	. 0.10	.042
8163M	.18	.86	.004	1.011		fringer		1	.013	.041
		1 07	.003	.007	,04	.06	1.04	4.12	╉╍┶╨┷┷	
121581	.21	.97	+	+	14	1			1	
	ł	1				-			_	

The material listed on this report has been tested in accordance with the specification

. . ..

.....

. ..

shown above men Autorizéa

.

** TOTAL PAGE 01 **

. .

CANADIAN PHOENIX STEEL PRODUCTS

CIVISION OF 1645MI ONTANIO LAUTED 200 HIGRNER AVENUE ETOBICONE, ONTARIO, CANADA

1.2

LABORATORY REPORT AND MILL TEXT CERTIFICATE

DATE Dec.7/0	0	CUSTOMER Pipe	e & Piling	Supplies
SPECIFICATION A1398		 CUSTOMER'S P.O.	BLK-1125	
DIA. & WALL 34" 0.D.	X.375 WT	 PHOENX REF		
	2 14 1 7			

HYDROTEST 620 PEIFOR 2 Min.

.

HYSICAL PROPERTIES

	PIPE NO.	LONGITU	DINAL TEST	H	TRANSVERSE	BREAK LOCATION
HEAT NO.	FIFE IGG		73900	\$37.5	77300	PM
7950P		48700	81300	37.5	83900	PX
7955P	10	57800		37.5	·85800	PM
8064M	14	59400	83100		70600	РИ
8163M	49	46200	67300	37,5	70800	
		49000:	74300 .	37.5	77100	РМ
121581	54	1910		the inter		

LADLE ANALYSIS

۰....

CHEMICAL COMPOSITION

	.006	009	23	.02	:01	.03	.010	.034
m	S	-009	1 43 1					
0.2								.036
1 .03	.007	.009	.22	.01	.01	.01		
				0.0	.01	.02		.038
. 89	.0.05	.01.1	23 1	. 02				.042
196	004	.011	.22	.02	.01	.01	. 410	
	+				1		.013	.041
.97	.003	.007	.04	,06	<u>+ 04</u>	┫╺╖┙╧╍╸	╋ ┍╹╱╧╝ ╼	
			1	ł		L	<u>1 </u>	
	.89 .86 .97	.86 .004	.86 .004 .011	.86 .004 .011 .22	.85 .004 .011 .22 .02	.89 .003 .011 .22 .02 .01 .86 .004 .011 .22 .02 .01	.89 .005 .011 .22 .02 .01 .01 .86 .004 .011 .22 .02 .01 .01	.89 .005 .011 .22 .02 .01 .01 .010 .86 .004 .011 .22 .02 .01 .01 .010

The material listed on this report has been lested in accordance with the specification

. . .

shown above Aportival

24 Company and a second second

• · · .

CANADIAN PHOENIX STEEL PRODUCTS

DIVISION OF 1005701 ONTARIO LIMITED 299 HORNER AVENUE ETOBICOKE, ONTARIO, CANADA M82 4Y4

11. 1

LABORATORY REPORT AND MILL TEST CERTIFICATE

DATE	Dec.7/00	CUSTOMER_P1	pe & Piling	Supplies
SPECIFICATIO	A1398	CUSTOMER'S P.	o BLK-1125	
	34" O.D. X .375 WT	PHOENIX REF.		
	620 Pai FOR 2 Min.			

PHYSICAL PROPERTIES

HEAT NO.	PIPE N <u>O.</u>	YIELD	DINAL TEST	K ELONGATION	TRANSVERSE WELD TENSILE	BREAK LOCATION
		48700	73900	37.5	77300	PM
<u>7950P</u> 795 <u>5</u> P	10	57800	81300	37.5	83900	PM
<u>7955</u> 8064M	14	59400	83100	.37.5	·85800	РМ
8163M	49	46200	67300	37:5	70600	PM
	┿╼╾╼┩	49000	7.4.300	37.5	77100	РМ
121581	54	49000		the inter		

LADLE ANALYSIS

· • ___

CHEMICAL COMPOSITION

	~	MN	٩	P	81	CR	NI	CU .	MO	AL
HEAT NO	<u> </u>		.006	.009	.23	. 02	:01	.03	.010	_034
7950P	. 20	.84					.01	.01		.036
7955P	.18	.83	.007	.009	. 22	.01		<u> </u>		
			. 0.05	.01.1	.23	02	.01_	.02		_038
8064M	<u>. 18</u>	.89			22	. 02	_01	.01	.0.10	.042
8163M	_18	- 86	.004	.011		- 02		╉╍╍╍	<u>}</u>	
1245.9.1	.21	.97	.003	.007	.04	.06	.04	, 12	.013	.041
121581	<u> </u>	+	+	1	1		1 .	}		
1	ł	1		I	1	1				

The material listed on this report has been tested in accordance with the specification

. . .

shown above Authorizéd الأميا

S	7	P.O. I	юх	1000	, HWY		ONE ST	ANY AR. TX 754					L TEST		9001 RE ORT	GISTE	red Q	UALIT	y syst	ГЕМ	Page 1 Print D: Serial #	ate: Of	
LSO: Linn: Hent: Loi:	010 1 331	3504	Ļ		Pro	oduct: collicati	09 1	6 5/8* 36 .562* W PE-BEV AP[5L X MANUF/	.39 XS 28 RG 3(4 32, EF	2]*-43') W	BR						Cus	tomer () tomer Ji tumer S	esource		TSLA72	20	
		_	T	HON		IPE ANI		L, ENC.						THO	MAS PU Tan Wa	'E AND	STEEL,				MTR C Sold Te Ship Te	o: 1	
L			D,	ATO	N RO	UCE LA	7854								D TX								
												_	L ANAL										
Hest Check Check		C 18 18 18	M 1.1 1.0 1.0	14 D9	P .008 .007 .007	S .003 .003 .003	Si .19 .18 .18	Cu .01 .01 .01	Ni .00 .01 .01	Cr .004 .007 .007	Mo .001 .003 .003	5a .001 .001 .001	.041 .037	∨ .075 .074 .073	B .0002 .0003 .0001	СЪ .036 .033 .032	Ti .002 .002 .002	Ca .0019 .0023 .0018	N .0027	0	CEO	נס	Pc.M
	, Pa	e ereta	à an	le dist		R NC 201		<u> </u>			MECTI	NK	AL PRO	PPRTU		-							
Ica	Dir			Not		Yield KSI		Tensile KSI	- 1	long % in <u>1*</u>	Area	2	Frach	ure	Y/T Ratio	Mar	n size ensile 7		RR				
] 2] 4	L		B	N		55.9		77.3		42.0		,			.722	Hyd	opse, PS rotest, P raing		0 RR- RR-				
						i.	pact To							1	L		H	réness				·	
Icsi 1 2 3 4	Dia		AC		Size		LUD	Energy	2 2	<u>KSbear</u>	Lat E	τp	Scale	<u>Q.D.</u>	M.W.	LD.	Yar	B	ody.	Webi	HA	Z	Surf
<u> </u>					 .	i	Remark	5						Inspeci	tions Per	formed			•		testance v		
4		-		Y	OUR	P.O. 4		IT REPO	<u> 26</u>									Fitz, E From This n		ine, and, a fice of: Z. Zfre Director	ods: E3. Ei ers, Eine, of Qual	ент, ла <u>ул</u> lity	در در در مرد م_رو

#262 P. 05/05

853 **612** 8779

04/05/01 THU 07:07 FAX 9414894545 FRUM : ERRTOW STEEL

ADUNCTULST BRUTHERS INC

검 사 증 명 서(4	()
-------------	----

MILL INSPECTION CERTIFICATE

현대강관주식회사 HYUNDAI PIPE CO.,LTD. *34+34: 234+47 3352537 35.54 0 HEAD DEFICE: P255 TUMPDOOMS BUR AU, ULSAN .HOREA NUSAN FLANT TEL20010 FAX:052207.0916 TLXHDPPE x 5375 • 본 사 · 공 장 : 4

・ 세子/オネク: 小倉 再型斗 逐子 孕 足 巻 77世 川 上 ● ● - 1,7 ● SEDLL OFFICE: # 77. MAGYD-BONG, JOCHO-W, SEDUL, KOPEA TEL 3455-3500 FAX: 775-2895

2 *					<u>. </u>																										
PE F	치 건 >	후 NENSION 후 세국일 대	iq e Cum	i i i i i i i i i i i i i i i i i i i	PTHI NYDRC STATE			1001)+ 도 1400 이 도 도 도	역시설 DBGRE 인물	<u>61</u> 20 5			ପ୍ର TENS ୧၂၂	<u>ае</u> п 3 3	EST	1 3			1	2	END	4 CAL	cov	105	non			8 ù. 19 U.P.	<u>, v</u>
ND	ŗ	+4	7177 (PCS)	(MG)	TEST		(Personal second	LT TEST	UTH LANG	83 8 70 0		57: 57: 14: HV	HEAT NO.	YJEL	D 5- 5- 5- 5- 5- 5- 5- 5- 5- 5- 5- 5- 5-		LE MIN T	_		c s :	і ^ї ма і	,	s	Cu	# (57 34	v) No -	i t ~ c	EI 분호 M	11111111111
ENR		x	<u>_</u>		P\$3		32	<u>8</u>	毕	¥-66		5- -		Ļ	si <u>)</u> (11	-	*	•	. . 17	• 1	100	i	1000	_	•	100	•		1980	<u>ته .</u> ۲۰۰۰	
	. 406. Bar	x12,70m x 12,802t	<u> </u>	<u> </u>	1 1	<u> </u>		÷		<u>دا</u>	-		D3120	L30	5 4	3	50.1	5 37	; ₎ ;	2	.75	. u	•	1	1	ZĪr	Ìr	: 1	:	·	
-			<u> </u>		<u> 1310 </u>	╉╂	┞┟╏	+		H		:	<u> </u>	B	<u>n ban</u>				:	<u>.</u>	[- 			·	Ì	:	;			-
i]			- <u>-</u>			┼┼╴	┟╂╂	┥┤			-+-	:	<u>\$13151</u>	<u> m</u>	7 46	<u>,7 i</u>	49,	<u>5 M</u>	. 1 7	<u>i</u>	17	: 15	6	I	2 •)	l Tr	Tr			_	7
:		-				Ηŕ	┢╂╂	╢	+			·	<u> </u>	- १२३	_		20:11	-	;	<u>.</u>	<u>i </u>		•	•	;	į	:				1
			- <u> </u> i		┝╼ ╍┨	th	┟┼┼	\mathbf{H}			-++	•	830141	<u>.</u> 33.				•	18	2	79	<u>11</u>	: <u>1</u> .	Ŀ	2	Ū	te		i		
						111	Hi	╁╂	+		┼┤		<u> </u>	176	_		3100	<u>i</u>	<u>.</u>	÷	<u>i</u>	L	1 .	:	1	1	į	i i	•		
						Ħ	HŤ	H	+	-	++	<u>+</u>	126783	32	<u>~</u>		89.5	1 1	<u>: 15</u>	<u>i</u>	65	IJ	9	1	<u>2 أ 1</u>	<u>h-</u>	Te		1		
į	01 <u>8></u>		1 33	75.761		Ħ	h i i	Ħ	Ħ	+	┼┼			1500	n kra	<u>ה</u>	IDACI	Í		;				_	<u> </u>	<u>.</u>	<u> </u>		:	:	
						\prod		Ħ	ÌÌ	+	+	<u> </u>				-+			•		[į	;	ļ	<u>;</u>			·	·	
			. 1			ĪT	T	ŤŤ	İ	1	11	÷	[i		<u>-</u> ;	-			!				-			<u> </u>			_	:	_
- <u>;</u>			<u> </u>			Π	T	1	Ħ	1-		:	i		-i-				÷	<u>.</u>			_		-	-		i			
: 1				·		Π		Ħ	Ť	1	11	•					¦		· .	ا ۲			:	•	+	<u>;</u>	<u>; ;</u>	+	<u>.</u>	:	_
<u>· :</u>						Ш		T	Π	1	ŤŤ	-				-	{	,	+	_			:		+	:	<u></u> ;		:		4
		<u></u>	1 1						R			:	Í	·		-†	- i	i		÷				<u>+</u> .	i 1		ו. דוו		<u> </u>		_
													YOU	R F			_	5.2	2	۲C	20)	-	YI		<u>.</u>		<u> </u>			
• 1	Type of pipe End 2	8		 [3]	2										V 81	EEI	. Al	EF.	#	đ	7	<u>0</u>	\mathcal{L}	, 	<u> </u>						
· ·	8 r 8: Dah r 3: Dahancasi r 6: Enametad	X Y Vanish A: Removal Vanish O: Oling Coarry F: PE Coeffig C: Samor Coarry A: Asphat Coarry	XX - PE (Pain - BE Bave - IC True - IC True - BL Bet - SE (Snin - VC Ven	Bra Eine Million Eine Million Eine Million Eine Fra Eine	C: Ci Make	ood Dugsty y Tugs 1 Trainne	· Fea g 문제시험 네 입니)접두 1 23	7 2^				IUnd Si 199 P Vosal & Diman Handsamusing Cosh Tast <u>20</u> B _ Repe Mase : 1	ian Fas Taskus (^)18	*** **		*	•	+ 10 + 10	Fue D-A Feve	et aj al urung a Tupi E irse Fil Vala P.	r bər 3-4 1 4 -4	ang 7 0 19 Jest	lana j	: 7 5	₩ 231	¥**¥				
8 3ç) -	SURVEYOR			ACCEPTE		COA	DANC	HE D E W1	ESC ITH 1	RIDED	ESCR	ERNAL)	SULCI. MS HEREIN PECIFICATI	DEE	D ORD	ER.					 -	2	L	AS	C		E TEA		20	L UGA.	
							Ŀ	HY	UND	AI PI	PEC	D., LT	D.																	5 . 205	ļ

KULLE 200 ?

,

e

11:01

80-3E

CERTIFICATE NO

ATE OF ESUE

ম:

4

ATE OF ISSUE

CCMMDDITY

PI SPECIFICATION

커버지 PAGE

E4055102

2001

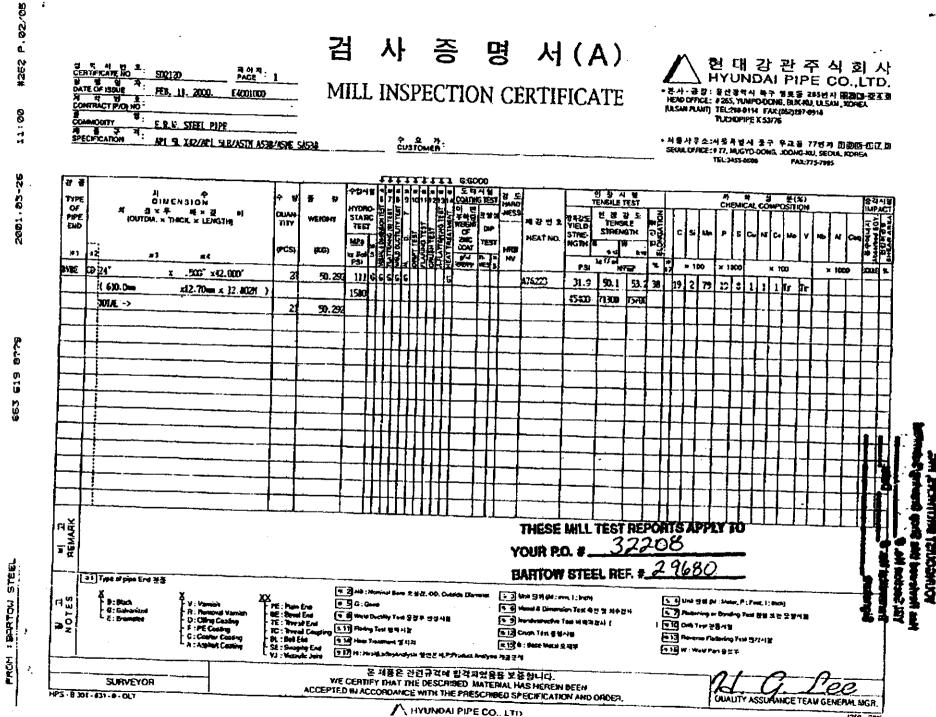
E.R.W. STEEL POPE

ASTN ASTRACTOR SHOTE

152 152 152	성 적 시 및 로 <u>CERTFICATE MO</u> E-B-CG-42 및 및 및 적 <u>Bolt M' GINE</u> 제 및 로 Courter / # B Courter / # B Courter / # B				검 M IL	L]	人 []/S	ł Pe					년 FIFICA		(A)			-4 540 M	23: 23: UNI:	171 894 171	JN 5국시 UMP0				E CC	ل إكل LT_C Muturi	D.
11.02	3 5	R/RT SLAVISTI ASUR	 	÷ 2 cuşre	21 10127_					0:00						•		+서	율시	무소	ALE ALE STI FEL	2028년 2795년 1 29월 2 1,1608 1,273	53778 53778 1 55-5 1 6-50 - 0522	가 가고 가 가고 NG, 기의	522204 5-7755 G-XU,SI	010 24 [] (203, 104 225 - 2	000 - 100 Ala	
2001, 03-26	ITPE 41 GF 01 ы E N S PPE 41 23 × # EN6 -000 FDML × THIC # 3 #2 3 3 3	4 - 21 01	9, 23 9, 10, 10 9, 10 9, 10 9, 10 9, 10 9, 10 9, 10 9, 10 9, 10 9, 10 9, 10 9, 10 9, 10 9, 10 10 10 10 10 10 10 10 10 10 10 10 10 1	SE SE WENCHT LIKG)	9214 3704 3717 723 MH		1 (4113445 45) 151 2 + 1515 100 11112 151 2 + 1515 100 11112 151 2	1)1,16144 1111	CANTH () CANTH ()	H 2 24 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2	NING 1 231 Dom REST		제 값 번 호 HEAT HD,	STREA GTA	е е те • те	-	K CLONDATION		Π	9 CHENI Am 1 X	T			V - Y	ENERCY BU] Emark].
-												<u> </u>	121713	32.6 46400			37		1	হাত্র	7	5 1	2					
													20711	30.3 13100	- 	51.0 7330	1	18	1	80/16	9	8		1 [r				-
6 	MPE2 00: 16" x .5	00" x12.000"	40	63.134	न्य								A31618	30.3 (3100 32.0	53000	730			-	75 14	1-	<u>8</u> 1	2.	· 1			·····	
619 91	(405.4m x12	.70mm x 12.8020()			2230								ATOMO	45500	49.3 70100 48.5	52.0 74700 53.2		ļ		00 19	L	0 1	2)	╏┤	+		
B.													367081	(3400 30.3	90.5 59000	72800		14		75 11 75 14	Ĺ		2					
ļ		20" z42.000'	-4	7,122	130	- 	50						A28406	43100 30.3	58000	I —		10	T	9 17		8 <u>1</u> 5 2	2					
ŀ		.70mm x 12.8021)	2058	696,222	1980										59100								┼╏				<u></u>	
E						╂╂			╁╏					TH	SE I	HLL	ES		 .FO	HT:		PIPE	Ŷŧ	0				
			-						╂					IOU	120			Кľ	4	お	Р	8	5					1 1
S 3	22-NOTES (1) Fyps at pps End BPE :Back Plan End Squaractul BPED : Black Plan End Baveled BFE :Black Flain End Baveled BFC :Stack Flain End Baveled BFC :Stack Victoria Juni	CPE : Cabaning Pain SPEB : Cabaning Phin CTC : Cabaning The	End Ba	v slod		Unit 5 Fleme	1953.64 Nine ar	, Man Bani	ler, F Fay X	2,00 : : Feet (11 관] (11 관]):N 1 三と	ch1	rhejer	ا {÷}) 6 : 5+	- <u>-</u>	1_	_ا_ل بو بو		Van S Vans	& Di	nensie	e Tes	(3) (특별 부 원;	¥ ≈1⊋3	 		!
	ETC "Essential Threadyd & Conpled	CY) (Cy) Cylined Yell	the Jone			Crush W : 14	Test e¥ ¥=	코 말시 〃 풍점	12 17	_		E.	Re-#34 Fi H : Heat n 보증합니:	138449 .3467 A	Test NZ	in 관통시 시월 	-		1	Flaning	3 T+>	나남부	니험					
FROM	SURVEYOR 3-3301-0+3-0.1	<u> </u>		VE HER MULEPHE			YNL.					i den D. Spe	RECEIN HA		<u>10.</u>							- 4	, MSPI	ECTIO		NAGE	in.	

A HYUNDAI PIPE CO. LTD.

.....


-150 × 210

2001,03-

YOUNGOULST BRUTHERS INC 963 613 8779

U4/U9/UL THU U7:U8 FAX 8414894545

UUNGQUIST BRUTHERS INC

8414684545

2

•

5

1710. 300

03/02/01 FRI 16:07 FAX 9414894545

YOUNGQUIST BROTHERS INC

002

	(VA	55
	7.2	er Zhel
:	č ., i	

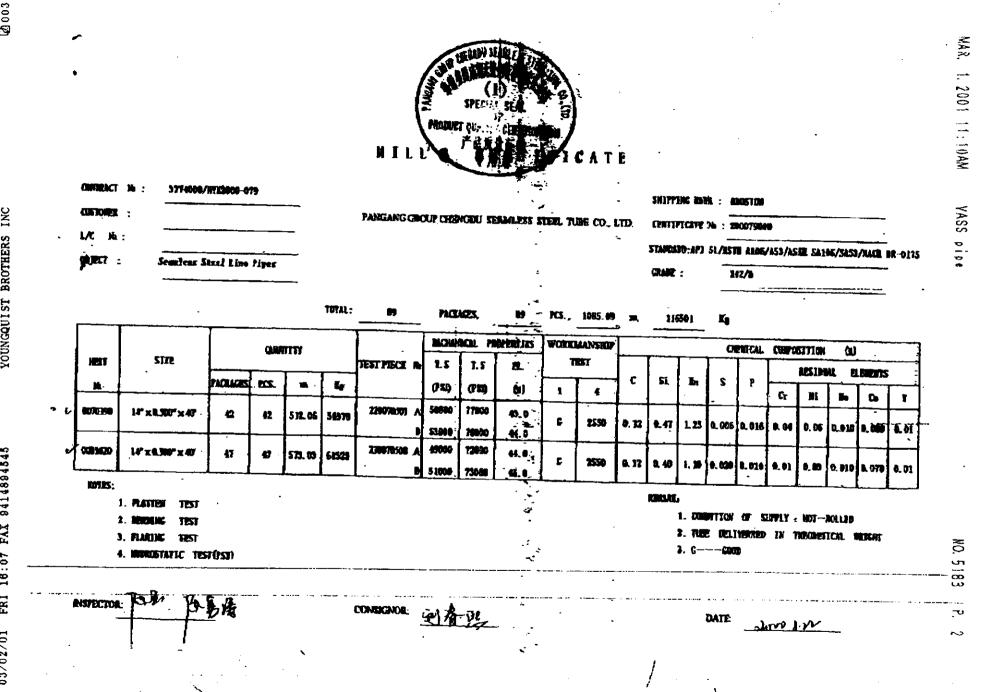
A DEPENDABLE SOURCE YOU CAN COUNT ON

av. 2102 (1. :

TOLL FREE PHONE: 800-272-8277PHONE: 516-741-8398FAX: 516-741-8210Email : V. Vass@worldnet.att.net

ATTN: Edward Mclu COMPANY: ungquis FAX#: 941-489-4545

DATE: 3-1-2001


FROM: JENNIFER REYES

TOTAL PAGES

EPE TALLY / PACKING SLIP/ MTR.

P.O. #: 208035 RELEASE # 20 24

TOTAL FOOTAGE	DESCRIPTION	"N	0. OF 70	স ্য	HEAT#
	load 1				· · · · · · · · · · · · · · · · · · ·
683.4	17 POR X402 14 BPE APISLES	17×	40.2		008162
	AS3B . SPON SMLS				007039
			·	•	
	Connei, RSC				
1. 7	load 2				
643.2	16 POXUDI 14 BPE APISUBI	16×	40.2		0081420
	ASBA ISBOW SMLS				1070398
		· · ·			
	Conner HUNT	·			
	1				
	Load 3				
643.2	16PLOY 40 2 14 BPE APISLE!	16 x	40.2		0081620
	ASER ISDOW SINCS				0070398
· ·					
	Load 4				
643.2	16 PEOX 40.2' 14 BPE APISHBI	16×1	10.2		00 81620
	A53B, SOON gmis				0070398
			·	·	

14 F	Submittal Data FROM quist Brothers, Inc. 5465 Pine Ridge Rd. 54. Myers, FL. 33908 -489-4444 Fax: 941-489-4545
Project: <u>C</u> Conc	<u>ooper City - 40340</u> centrate Disposal Well
I have reviewed this submittal for documents. Generally no conflict shop drawing submittal.	general conformance with the design concepts and contract with materials or dimensions will arise from the approval of this
October 20, 2000	Number of Copies:9
Submittal Number: 2582-05-A	
Specification Section Number: 285	2
Item Submitted: Mill Certification fo	r 60" M/W casing
New Submittal:	Resubmittal:
Subcontractor:	
Youngquist Brothers, Inc. Represent	ntative:
Guerry T. Harbin	Transmittal Date: 10-24-00
Approved with changes	By:
Rejected, Revise & Resubmit	Firm:
Not Reviewed	Date:

UNIVERSAL PIPE & STEEL SUPPLY, INC.

CERTIFICATE OF CHEMICAL ANALYSIS AND TESTS

Type of Materi	al <u>ASTM A - 139 GRADE B</u>			
Specification	منتبر المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد			
Buyer	Youngquist Brothers			
Shipped To		Date	10/19/00	

Heat No.	Gage and Size	Yield Point Ibs. PSi	Tensile STR. PSI
$ \rightarrow $	80' 60" X .375 Wall	35,602	68.420
	80' 34' X -375 Wall	36,918	69,120
· .			

"This Certified Test Report has been delivered to a cosignee of material purchased from Universal Pipe & Steel Supply, Inc. To avoid the possibility of misuse, on redelivery of the report to a third party, it must be recertified by and under the name of such cosignee."

The Chemical Analysis and Mechanical Test above is correct as contained in the records of the Company.

UNIVERSAL PIPE & STEEL SUPPLY, INC.

SIGNED

Youngquist Brothers, Inc. Has reviewed this Shop Drawing/Submittel YBI / Section No. # 15100-01-A Pate : 10/20/2000 Transmittal # Signature: -

•	Submittal Data FROM gquist Brothers, Inc. 15465 Pine Ridge Rd. Ft. Myers, FL. 33908 941-489-4444 Fax: 941-489-4545	
	<u>Cooper City - 40340</u> ncentrate Disposal Well	
I have reviewed this submittal for documents. Generally no conflic shop drawing submittal.	for general conformance with the design concepts an lict with materials or dimensions will arise from the ap	nd contract proval of this
October 20, 2000	Number of Copies:9	
Submittal Number: 2582-01-A		
Specification Section Number: 28	:852	
Item Submitted: Mill Certification	n for 34" M/W casing	
New Submittal:	Resubmittal:	
Subcontractor:		
Youngquist Brothers, Inc. Repres	esentative:	
Anths Guorne T. Harb		
Guerry T. Harb	bin Transmittal Date: <u>10-24-00</u>	
Approved		
Approved with changes	By:	
Rejected, Revise & Resubm		
Not Reviewed		

Date:

ŗ

Submitta

UNIVERSAL PIPE & STEEL SUPPLY, INC.

CERTIFICATE OF CHEMICAL ANALYSIS AND TESTS

Type of Materia	ASTM A - 139 GRADE B			
Specification	, 			
Buyer	Youngquist Brothers	1		
Shipped To		Date	10/19/00	-

Heat No.	Gage and Size	Yield Point Ibs. PSI	Tensile STR. PSI
	80' 60" X .375 Wall	35,602	68.420
	80' 34' X .375 Wall	36,918	69,120

"This Certified Test Report has been delivered to a cosignee of material purchased from Universal Pipe & Steel Supply, Inc. To avoid the possibility of misuse, on redelivery of the report to a third party, it must be recertified by and under the name of such cosignee."

The Chemical Analysis and Mechanical Test above is correct as contained in the records of the Company.

UNIVERSAL PIPE & STEEL SUPPLY, INC.

n 1/2 SIGNED

Youngquist Brothers, Inc. Has reviewed this shop Drawing/Submittal YBI / Section No. # 15100-01-A Date : 10/20/2000 Transmittal # Signature: Sueny/f. Harbin

Submittal Data FROM Youngquist Brothers, Inc. 15465 Pine Ridge Rd. Ft. Myers, FL. 33908 941-489-4444 Fax: 941-489-4545 Project: Cooper City - 40340 Concentrate Disposal Well		
I have reviewed this submittal for general conformance with the design concepts and contract documents. Generally no conflict with materials or dimensions will arise from the approval of this shop drawing submittal.		
October 20, 2000	Number of Copies:9	
Submittal Number: 2582-01-A		
Specification Section Number: 2852	2	
Item Submitted: Mill Certification for	r 34" M/W casing	
New Submittal:	Resubmittal:	
Subcontractor:		
Youngquist Brothers, Inc. Represer	ntative:	
Guerry T. Harbin	Transmittal Date: 10-24-00	
Approved with changes	By:	
Rejected, Revise & Resubmit	Firm:	
Not Reviewed	Date:	

•

UNIVERSAL PIPE & STEEL SUPPLY, INC.

CERTIFICATE OF CHEMICAL ANALYSIS AND TESTS

Type of Materi	al <u>ASTM A - 139 GRADE B</u>			
Specification		-		
Buyer	Youngquist Brothers	_		
Shipped To	······································	_ Date _	10/19/00	

Heat No.	Gage and Size	Yield Point Ibs. PSI	Tensile STR. PSI
	80' 60" X .375 Wall	35,602	68.420
$ \Rightarrow$	80' 34' X .375 Wall	36,918	69,120
			•

"This Certified Test Report has been delivered to a cosignee of material purchased from Universal Pipe & Steel Supply, Inc. To avoid the possibility of misuse, on redelivery of the report to a third party, it must be recertified by and under the name of such cosignee."

The Chemical Analysis and Mechanical Test above is correct as contained in the records of the Company.

UNIVERSAL PIPE & STEEL SUPPLY, INC.

<u>a</u> 1/1 SIGNED

Youngquist Brothers, Inc. Has reviewed this shop Drewing/Submittel YBI / Section No. # 15100-01-A Date : 10/20/2000 Transmittal #___ Signature: -GUERY

APPENDIX L

CEMENT REPORTS

Casing Diameter: Casing Depth: Bit Size: Cement Specification	50-inches 250 feet below pad level nominal 58-inch diameter : ASTM C 150 Type II
Number of Stages:	1
Cement Blend:	Neat 12% Bentonite
Cement Density:	Neat - 12.6 lb./gal 12% Bentonite - 12.6 lb./gal Theoretical Fill From Caliper Log: 1,642 - cubic feet Volume Pumped: Neat - 134 cubic feet 12% Bentonite – 1,728 cubic feet Total – 1,862 cubic feet
Percent Difference:	11.8

The 50-inch casing was cemented in one stage. The cement was circulated to surface and was visually confirmed. The difference in the theoretical and actual volume pumped is due to additional cement utilized to fill small irregularities in the borehole wall.

Certified by

Wheatley P.G. ,No 530 James

Casing Diameter: Casing Depth: Bit Size: Cement Specification	42-inches 985 feet below pad level Nominal 50-inch diameter : ASTM C 150 Type II
Number of Stages:	2
Cement Blend:	Neat
	12% Bentonite
Cement Density:	Neat - 15.6 lb./gal
-	12% Bentonite - 12.6 lb./gal
Theoretical Fill From	Caliper Log: 3,700 cubic feet
Volume Pumped:	Neat - 1,172 cubic feet
	12% Bentonite - 2,878 cubic feet
	Total - 4,050 cubic feet
Percent Difference:	8.7

The 42-inch casing was cemented in two stages. After each stage a temperature log was run downhole and the cement physically tagged to determine the actual fill. On the final stage the cement was circulated to surface and was visually confirmed. The difference in the theoretical and actual volume pumped is due to additional cement utilized to small irregularities in the borehole wall.

Certified by

A. Wheatley P.G., No. James 530

Casing Diameter: Casing Depth:	34-inches 2,000 feet below pad level
Bit Size:	Nominal 42-inch diameter
Cement Specification	: ASTM C 150 Type II
Number of Stages:	6
Cement Blend:	Neat
	12% Bentonite
Cement Density:	Neat - 15.6 lb./gal
·	12% Bentonite - 12.6 lb./gal
Theoretical Fill From	Caliper Log: 6,812 cubic feet
Volume Pumped:	Neat - 151cubic feet
	12% Bentonite - 8,202 cubic feet
	Total - 8,353 cubic feet
Percent Difference:	18.5

The 34-inch casing was cemented in six stages. After each stage a temperature log was run downhole and the cement physically tagged to determine the actual fill. On the final stage the cement was circulated to surface and was visually confirmed. The difference in the theoretical and actual volume pumped is due to additional cement utilized to fill spaces that exceed the maximum opening of the caliper tool and small irregularities in the borehole wall.

Certified by

. 530 James A. Wheatley P

Casing Diameter: Casing Depth: Bit Size: Cement Specification	24-inches 2,975 feet below pad level Nominal 32-inch diameter	
	8	
Number of Stages:	•	
Cement Blend:	Neat	
	12% Bentonite	
Cement Density:	Neat - 15.7 lb./gal	
•	12% Bentonite - 12.6 lb./gal	
Theoretical Fill From Caliper Log: 9636 cubic feet		
Volume Pumped:	Neat - 1,615 cubic feet	
•	12% Bentonite - 8,857 cubic feet	
	Total - 10,472 cubic feet	
Percent Difference:	8.0	

The 24-inch casing was cemented in eight stages. After each stage a temperature log was run downhole and the cement physically tagged to determine the actual fill. On the final stage the cement was circulated to surface and was visually confirmed. The difference in the theoretical and actual volume pumped is due to additional cement utilized to fill spaces that exceed the maximum opening of the caliper tool and small irregularities in the borehole wall.

Certified by

Wheatley P.G. 5 Jame

Monitor Well 1 Cement Report

Casing Diameter:	24-inches	
Casing Depth:	251 feet below pad level	
Bit Size:	Nominal 34-inch diameter	
Cement Specification:	ASTM C 150 Type II	
Number of Stages:	1	
Cement Blend:	Neat	
	12% Bentonite	
Cement Density:	Neat – 15.7 lb./gal	
·	12% Bentonite - 12.6 lb./gal	
Theoretical Fill From Caliper Log: 963 - cubic feet		
Volume Pumped:	Neat - 550 cubic feet	
	12% Bentonite – 471 cubic feet	
	Total – 1,021 cubic feet	
Percent Difference:	6.0	

The 24-inch casing was cemented in one stage. The cement was circulated to surface and was visually confirmed. The difference in the theoretical and actual volume pumped is due to additional cement utilized to fill small irregularities in the borehole wall.

Certified by

530 A. Wheatley P.G. .Nð James

Monitor Well 1 Cement Report

Casing Diameter: Casing Depth: Bit Size: Cement Specification	16-inches 1,660 feet below pad level Nominal 24-inch diameter	
Number of Stages:	5	
Cement Blend:	Neat	
	12% Bentonite	
Cement Density:	Neat – 15.7 lb./gal	
-	12% Bentonite - 12.6 lb./gal	
Theoretical Fill From Caliper Log: 2,294 - cubic feet		
Volume Pumped:	Neat - 196 cubic feet	
-	12% Bentonite – 1,862 cubic feet	
	Total – 2,058 cubic feet	
Percent Difference:	11.5	

The 16-inch casing was cemented in five stages. After each stage a temperature log was run downhole and the cement physically tagged to determine the actual fill. On the final stage the cement was circulated to surface and was visually confirmed

Certified by

Wheatley P.G., No. 530 James A

Monitor Well 1 Cement Report

6 5/8-inches Casing Diameter: 1,900 feet below pad level Casing Depth: Nominal 12 1/4-inch diameter Bit Size: Cement Specification: ASTM C 150 Type II Number of Stages: 3 Neat Cement Blend: Cement Density: Neat - 15.7 lb./gal Theoretical Fill From Caliper Log: 174 - cubic feet Neat - 248 cubic feet Volume Pumped: Total - 248 cubic feet 29.8 Percent Difference:

The 6 5/8-inch casing was cemented in three stages. After each stage a temperature log was run downhole and the cement physically tagged to determine the actual fill. The difference in the theoretical and actual volume pumped is due to additional cement utilized to fill spaces that exceed the maximum opening of the caliper tool and small irregularities in the borehole wall.

Certified by

WATER TECHNOLOGY ASSOCIATES, INC.

P.G. No. 53 Jam

APPENDIX M

CASING AND TUBING PRESSURE TESTS

•

j

Ì

Ì

Casing Hydrostatic Pressure Test Injection Well 1 – 24-inch Casing

Delta Time (minutes)	Pressure (psi)
0	152.0
5	152.0
10	152.0
15	152.0
20	152.0
25	152.0
30	152.0
35	152.0
40	152.0
45	152.0
50	152.0
55	152.0
60	152.0

March 26, 2001
Michael Wengrenovich P.E., H&S Len Fishkin P.G., FDEP
1C121
March 16, 2001
24 inches
2,955 ft (below land surface)
5% (7.6 psi)
0.0 psi
PRESSURE TEST PASSED

Certified by

HAZEN AND SAWYER, P.C.

Michael Wengrenovich, P.E., No. 34939

Casing/Annulus Hydrostatic Pressure Test Injection Well 1 – 14-inch Casing

Delta Time (minutes)	Pressure (psi)
0	155.0
5	155.0
-	155.0
10	
15	155.0
20	154.0
25	154.0
30	153.5
35	153.5
40	153.0
45	153.0
50	152.75
55	152.75
60	152.75

Date of Test	June 1, 2001
Witnesses	James A. Wheatley, P.G.
Gage Serial No.	1C121
Gage Certified On	March 16, 2001
Casing Diameter	14 inches
Packer Depth	2,955 ft (below land surface)
Allowable Pressure Change	5% (7.75 psi)
Actual Pressure Change	2.25 psi
Test Result	PRESSURE TEST PASSED

Certified by

HAZEN AND SAWYER, P.C.

James A. Wheatley PG

Casing Hydrostatic Pressure Test Monitor Well 1 – 16-inch Casing

Delta Time	Pressure	Delta Time	Pressure	
(minutes)	(psi)	(minutes)	(psi)	
0	89.75	65	89.75	
5	89.75	70	89.75	
10	89.75	75	89.75	
15	89.75	80	89.75	
20	8 9 .75	85	89.75	
25	89.75	90	89.75	
30	89.75	95	89.75	
35	89.75	100	89.75	
40	89.75	105	89.75	
45	89.75	110	89.75	
50	89.75	115	89.75	
55	89.75	120	89.75	
	89.75			
Date of Test	April 30, 2001			
Witnesses	John Largey, H& William Green, Y			
Gage Serial No.	IC123			
Gage Certified On	March 27, 2001			
Casing Diameter	16 inches			
Packer Depth	1,642 ft (below land surface)			
Allowable Pressure Change	5% (4.5 psi)			
Actual Pressure Change	0.0 psi			
Test Result	PRESSURE TEST PASSED			

Certified by

WATER TECHNOLOGY ASSOCIATES, INC.

James . Wheatley P Cooper City WTP/WWTP

.....

Í

Concentrate Disposal Well

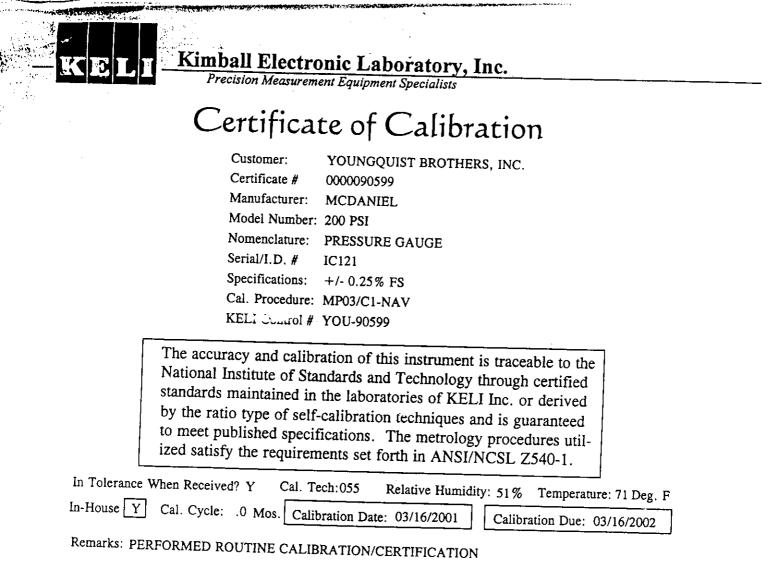
Casing Hydrostatic Pressure Test Injection Well 1 – 6 5/8-inch Casing

Delta Time	Pressure
(minutes)	(psi)
0	73.5
5	73.5
10	73.5
15	73.5
20	73.5
25	73.5
30	74.0
35	74.0
40	74.0
45	74.2
50	74.5
55	74.8
60	75.0

Date of Test	May 10, 2001

Witnesses Michael Wengrenovich, P.E., H&S Cameron Webster, YBI

- Gage Serial No. 8064187
- Gage Certified On March 16, 2001
- Casing Diameter 6 5/8 inches
- Allowable Pressure Change 5% (3.67 psi)
- Actual Pressure Change 1.5 psi


PRESSURE TEST PASSED

Certified by

HAZEN AND SAWYER, P.C.

Michael Wengrenovich, P.E. No. 34939

Test Result

I.D. # Standards Used

331	AMETEK T-150 DEPE WEACHE	Cal. Date	Cal. Due
	AMETEK T-150 DEAD WEIGHT TESTER	09/07/1999	09/06/2001

Quality Assurance

his report may not be reproduced, except in full, unless permission for the publication of an approved abstract is obtained in writing from KELI Labs., Inc.

Kimball Electronic Laboratory, Inc. 8081 West 21st Lane Hialeah, Florida 33016

 3081 West 21st Lane
 Hialeah, Florida 33016

 ph:(305)822-5792
 fax:(305)362-3125

Certificate of Test # 090599

Customer: YOUNGQUIST BROTHERS, INC. Manufacturer: MCDANIEL Nomenclature: PRESSURE GAUGE

KELI # YOU-90599 P.O.# UNK Model: 200 PSI S.N./I.D. IC121

Range	Nominal	Pre-Cal	Post-Cal	Low Limit High Limit
200 PSI	40	40.2	40.2	39.5 40.5
	80	80.1	80.1	79.5 80.5
	120	120.0	120.0	119.5 120.5
	160	160.0	160.0	159.5 160.5
	200	200.2	200.2	199.5 200.5

The accuracy and calibration of this instrument is traceable to the National Institute of Standards and Technology through certified standards maintained in the laboratories of KELI Labs., Inc. or derived by the ratio of self-calibration techniques and is guaranteed to meet published specifications. The metrology procedures utilized satisfy the requirements set forth in ANSI/NCSL 540-1.

Cal. Procedure:MP03/C1-NAV Specifications: +/- 0.25% FS Rcvd. in tol.?Y Temp. (F):71.0 R.H.% 51.0 Cal. Cycle: 0 days Calibration Date:03/16/2001 Calibration Due:03/16/2002 Cal. Tech: 055 In-House: Y Remarks: PERFORMED ROUTINE CALIBRATION/CERTIFICATION

I.D. # <u>Standards Used</u>

331 AMETEK T-150 DEAD WEIGHT TESTER

Cal. Date Cal. Due 09/07/1999 09/06/2001

Quality Assurance

This report may not be reproduced, except in full, unless permission for the publication of an approved abstract is obtained in writing from KELI Labs...Inc.

APPENDIX N

POSITIVE SEAL PACKER ASSEMBLY

YBI POSITIVE SEAL PACKER

INSTALLATION PROCEEDURE

- 1.) Run caliper log from 2,000 feet to total depth.
- 2.) Install bridge plug from 2,990 to 2,980 feet.
- 3.) Install 2,975 feet of 24" x .500" seamless casing with YBI-PSP hanger installed 20 feet from the bottom.
- 4.) Run inflatable packer below YBI-PSP hanger, inflate and conduct zero loss pressure test.
- 5.) Run cement tubing below inflatable packer.
- 6.) Pressure grout 24" casing.
- 7.) Remove tubing and inflated packer and trimmic cement stages as needed.
- 8.) Drill / Clean out plug and open hole to total depth.

OPERATING PROCEEDURE

- 1.) Fill annulus with corrosion inhibitor & pressurize.
- 2.) Maintain annulus pressure and fluid level as required by FDEP.
- 3.) Mechanical Integrity Test as required by FDEP.

Youngquist Brothers, Inc. <u>YBI Positive Seal Packer</u> <u>Technical Specification</u>

Construction

<u>Material</u>

t

1

ASTM A53 Grade B mild steel

Ring #1 Outer Mandrel

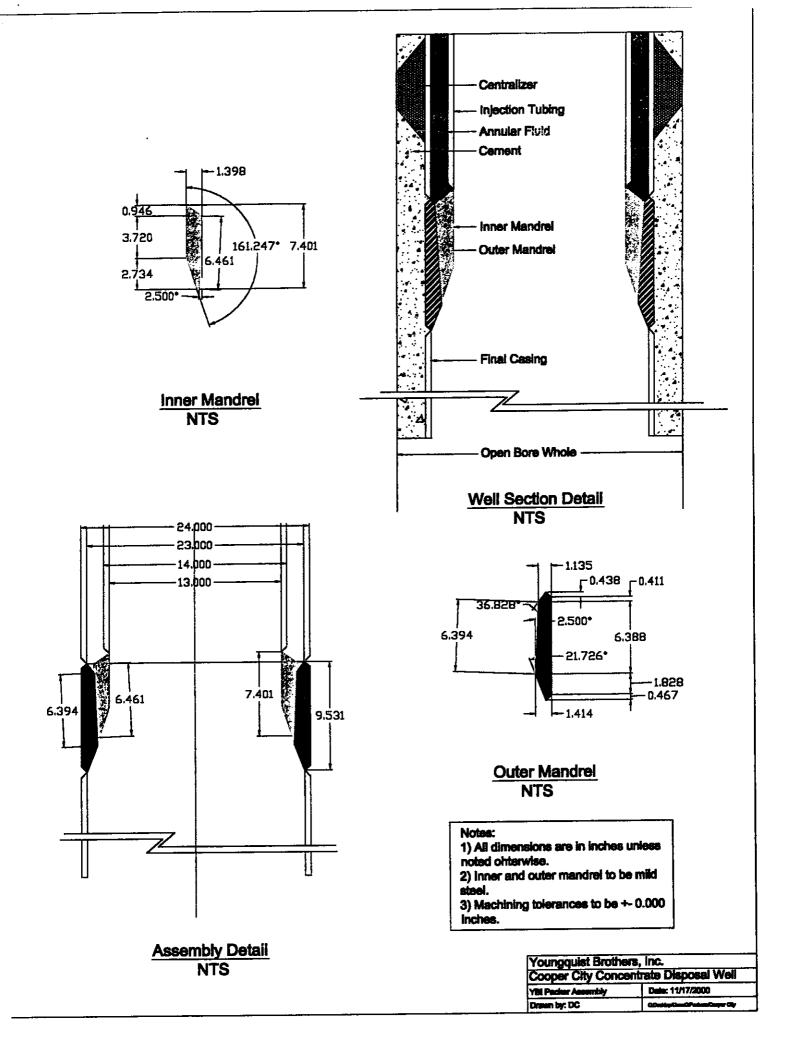
24" outside diameter with an inside taper of 2-1/2 degrees, end connections: weld x weld.

Collapse: 500 psi Burst: 2500 psi

Ring #2: Inner Mandrel

13" inside diameter with a diameter taper of 2-1/2 degrees, top connection beveled for welding.

Collapse	650psi
Burst:	3000psi


*Note-see attached drawings for detail dimensions.

Seal Surface

Ground and polished to 16 RMS.

Welding Procedures

As per contract specifications for 14" and 24" casings.

APPENDIX O BACKGROUND WATER QUALITY TEST RESULTS

Injection Well Background Water Quality

TABLE PRIMARY DRINKING WATER STANDARDS

Analytical Results for Cooper City (Injection Zone)

2,4.5-TP (Silvex) 2,4-D Alachlor Atrazine Benzo (a) pyrene Carbofuran Chlordane Dalapon Di (2-ethylhexyl) adipate Di (2-ethylhexyl) phthalate	mg/L mg/L MFL mg/L mg/L mg/L mg/L mg/L mg/L mg/L as N mg/L as N mg/L as N mg/L as N mg/L	0.006 0.005 7 2 0.004 0.005 0.1 0.2 4.0 0.015 0.002 0.1 10 10 0.05 160	ounds 0.002 0.0062 <0.170*** <0.0002 0.0028 <0.0004 <0.0002 <0.0004 <0.0002 <0.001 <0.001 <0.002 0.35 <0.01 0.35 <0.4	0.001 0.0056 0.17 0.000 0.0016 0.0004 0.002 0.006 0.100 0.01 0.001 0.002 0.05 0.01	6/21/01 6/26/01 6/21/01 6/21/01 6/21/01 6/21/01 6/21/01 6/27/01 6/13/01 6/27/01 6/13/01 6/21/01 7/6/01	SM3113B 200.7 100.2 200.7 200.7 200.7 200.7 200.7 4500CNE 340.2 SM3113B 245.1 200.7 353.2
Arsenic Asbestos Barium Barium Beryllium Cadmium Cadmium Constraints Chromium Constraints Constraints Constraints Constraints Constraints Chronium Constraints Constraints Constraints Chordane Constraints Chordane Constraints Chordane Constraints Chordane Constraints Chiordane Constraints	mg/L MFL mg/L mg/L as N mg/L as N mg/L mg/L mg/L	0.05 7 2 0.004 0.005 0.1 0.2 4.0 0.015 0.002 0.1 10 1 10 0.05 160	0.0062 <0.170*** <0.0002 0.0028 <0.0004 <0.002 <0.006 1 0.014 <0.001 <0.001 <0.002 0.35 <0.01 0.35	0.0056 0.17 0.000 0.0016 0.0004 0.002 0.006 0.100 0.01 0.001 0.001 0.002 0.05 0.01	6/21/01 6/26/01 6/21/01 6/21/01 6/21/01 6/21/01 6/21/01 6/21/01 6/21/01 6/21/01 6/21/01 6/21/01 6/21/01 6/21/01 6/21/01 7/6/01	200.7 100.2 200.7 200.7 200.7 200.7 200.7 4500CNE 340.2 SM3113B 245.1 200.7
Asbestos Barium Beryllium Cadmium Cadmium Chromium State Vitrate Vitrate Vitrite Fotal Nitrate & Nitrite Selenium Sodium Fhallium 2,4,5-TP (Silvex) 2,4-D Alachlor Atrazine Benzo (a) pyrene Carbofuran Chlordane Dalapon Di (2-ethylhexyl) adipate Di (2-ethylhexyl) phthalate	MFL mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/	7 2 0.004 0.005 0.1 0.2 4.0 0.015 0.002 0.1 10 1 10 0.05 160	<0.170**** <0.0002 0.0028 <0.0004 <0.002 <0.006 1 0.014 <0.001 <0.001 <0.002 0.35 <0.01 0.35	0.17 0.000 0.0016 0.0004 0.002 0.006 0.100 0.01 0.001 0.002 0.05 0.01	6/26/01 6/21/01 6/21/01 6/21/01 6/21/01 6/21/01 6/21/01 6/21/01 6/27/01 6/13/01 6/21/01 7/5/01	100.2 200.7 200.7 200.7 200.7 4500CNE 340.2 SM3113B 245.1 200.7
Barium Beryllium Cadmium Chromium Cyanide Chromium Cyanide Cya	MFL mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/	2 0.004 0.005 0.1 0.2 4.0 0.015 0.002 0.1 10 1 10 0.05 160	<0.0002 0.0028 <0.0004 <0.002 <0.006 1 0.014 <0.001 <0.002 0.35 <0.01 0.35	0.000 0.0016 0.0004 0.002 0.006 0.100 0.01 0.001 0.002 0.05 0.01	6/21/01 6/21/01 6/21/01 6/21/01 6/27/01 6/13/01 6/27/01 6/13/01 6/21/01 7/6/01	200.7 200.7 200.7 200.7 4500CNE 340.2 SM3113B 245.1 200.7
Beryllium Cadmium Cadmium Cadmium Chromium Cyanide Cyanide Cuoride Cada Generation Charaite Contract C	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L as N mg/L as N mg/L as N mg/L as N mg/L	0.004 0.005 0.1 0.2 4.0 0.015 0.002 0.1 10 1 10 0.05 160	0.0028 <0.0004 <0.002 <0.006 1 0.014 <0.001 <0.002 0.35 <0.01 0.35	0.0016 0.0004 0.002 0.006 0.100 0.01 0.001 0.002 0.05 0.01	6/21/01 6/21/01 6/21/01 6/21/01 6/27/01 6/13/01 6/21/01 7/6/01	200.7 200.7 200.7 4500CNE 340.2 SM3113B 245.1 200.7
Cadmium Chromium Cyanide Fluoride Fluoride Lead Mercury Nickel Nitrite Fotal Nitrate & Nitrite Selenium Sodium Fhallium P.4,5-TP (Silvex) 2,4-D Alachlor Atrazine Benzo (a) pyrene Carbofuran Chlordane Dalapon Di (2-ethylhexyl) adipate Di (2-ethylhexyl) phthalate	mg/L mg/L mg/L mg/L mg/L mg/L ss N mg/L as N mg/L as N mg/L mg/L mg/L	0.005 0.1 0.2 4.0 0.015 0.002 0.1 10 1 10 0.05 160	<0.0004 <0.002 <0.006 1 0.014 <0.001 <0.002 0.35 <0.01 0.35	0.0004 0.002 0.006 0.100 0.01 0.001 0.001 0.002 0.05 0.01	6/21/01 6/21/01 6/27/01 6/13/01 6/27/01 6/13/01 6/21/01 7/6/01	200.7 200.7 4500CNE 340.2 SM3113B 245.1 200.7
Chromium Cyanide Fluoride Lead Mercury Vickel Vitrate Nitrite Fotal Nitrate & Nitrite Selenium Sodium Fhallium P.4,5-TP (Silvex) 2,4-D Alachlor Atrazine Benzo (a) pyrene Carbofuran Chlordane Dalapon Di (2-ethylhexyl) adipate Di (2-ethylhexyl) phthalate	mg/L mg/L mg/L mg/L mg/L s N mg/L as N mg/L as N mg/L as N mg/L mg/L	0.1 0.2 4.0 0.015 0.002 0.1 10 1 10 0.05 160	<0.002 <0.006 1 <0.014 <0.001 <0.002 0.35 <0.01 0.35	0.002 0.006 0.100 0.01 0.001 0.002 0.05 0.01	6/21/01 6/27/01 6/13/01 6/27/01 6/13/01 6/21/01 7/6/01	200.7 4500CNE 340.2 SM3113B 245.1 200.7
Cyanide Fluoride Lead Mercury Vickel Nitrate Nitrite Fotal Nitrate & Nitrite Selenium Sodium Fhallium P.4,5-TP (Silvex) 2,4-D Alachlor Atrazine Benzo (a) pyrene Carbofuran Chlordane Dalapon Di (2-ethylhexyl) adipate Di (2-ethylhexyl) phthalate	mg/L mg/L mg/L mg/L mg/L s N mg/L as N mg/L as N mg/L as N mg/L mg/L	0.2 4.0 0.015 0.002 0.1 10 1 10 0.05 160	<0.006 1 0.014 <0.001 <0.002 0.35 <0.01 0.35	0.006 0.100 0.01 0.001 0.002 0.05 0.01	6/27/01 6/13/01 6/27/01 6/13/01 6/21/01 7/6/01	4500CNE 340.2 SM3113B 245.1 200.7
Fluoride Lead Fluoride Lead Mercury Vickel Vitrate Vitrate Vitrite Fotal Nitrate & Nitrite Selenium Sodium Fhallium Phallium Phallium Phallium Phallium Charbolor Atrazine Benzo (a) pyrene Carbofuran Thlordane Dalapon Di (2-ethylhexyl) adipate Di (2-ethylhexyl) phthalate	mg/L mg/L mg/L mg/L as N mg/L as N mg/L as N mg/L as N mg/L mg/L mg/L	4.0 0.015 0.002 0.1 10 1 10 0.05 160	1 0.014 <0.001 <0.002 0.35 <0.01 0.35	0.100 0.01 0.001 0.002 0.05 0.01	6/13/01 6/27/01 6/13/01 6/21/01 7/6/01	340.2 SM3113B 245.1 200.7
Lead Mercury Vickel Vitrate Nitrate Nitrite Fotal Nitrate & Nitrite Selenium Sodium Fhallium P.4,5-TP (Silvex) 2,4-D Alachlor Atrazine Benzo (a) pyrene Carbofuran Chlordane Dalapon Di (2-ethylhexyl) adipate Di (2-ethylhexyl) phthalate	mg/L mg/L mg/L mg/L as N mg/L as N mg/L as N mg/L mg/L mg/L	0.015 0.002 0.1 10 1 10 0.05 160	0.014 <0.001 <0.002 0.35 <0.01 0.35	0.01 0.001 0.002 0.05 0.01	6/27/01 6/13/01 6/21/01 7/6/01	SM3113B 245.1 200.7
Mercury Vickel Vitrate Vitrate Vitrate Vitrate Vitrite Fotal Nitrate & Nitrite Selenium Sodium Fhallium P.4,5-TP (Silvex) P.4-D Vachlor Atrazine Senzo (a) pyrene Carbofuran Chlordane Dalapon Di (2-ethylhexyl) adipate Di (2-ethylhexyl) phthalate	mg/L mg/L mg/L as N mg/L as N mg/L as N mg/L as N mg/L mg/L mg/L	0.002 0.1 10 1 10 0.05 160	<0.001 <0.002 0.35 <0.01 0.35	0.001 0.002 0.05 0.01	6/13/01 6/21/01 7/6/01	245.1 200.7
Mercury Vickel Vitrate Vitrate Vitrate Vitrate Vitrite Fotal Nitrate & Nitrite Selenium Sodium Fhallium P.4,5-TP (Silvex) P.4-D Vachlor Atrazine Senzo (a) pyrene Carbofuran Chlordane Dalapon Di (2-ethylhexyl) adipate Di (2-ethylhexyl) phthalate	mg/L mg/L as N mg/L as N mg/L as N mg/L as N mg/L mg/L mg/L	0.1 10 10 0.05 160	<0.002 0.35 <0.01 0.35	0.002 0.05 0.01	6/21/01 7/6/01	200.7
Vickel Vitrate Vitrate Vitrate Vitrate Vitrate Fotal Nitrate & Nitrite Selenium Sodium Fhallium Ptallium Ptallium Ptallium Ptachlor Atrazine Senzo (a) pyrene Carbofuran Chlordane Dalapon Di (2-ethylhexyl) adipate Di (2-ethylhexyl) phthalate	mg/L mg/L as N mg/L as N mg/L as N mg/L mg/L mg/L	0.1 10 10 0.05 160	<0.002 0.35 <0.01 0.35	0.002 0.05 0.01	7/6/01	
Vitrate Vitrate Vitrate Vitrate Vitrate Vitrite Fotal Nitrate & Nitrite Selenium Sodium Fhallium Pt,4,5-TP (Silvex) Pt,4-D Vachlor Atrazine Senzo (a) pyrene Carbofuran Chlordane Dalapon Di (2-ethylhexyl) adipate Di (2-ethylhexyl) phthalate	mg/L as N mg/L as N mg/L as N mg/L mg/L mg/L	10 1 10 0.05 160	0.35 <0.01 0.35	0.05 0.01	7/6/01	
Nitrite Fotal Nitrate & Nitrite Selenium Sodium Fhallium 2,4,5-TP (Silvex) 2,4-D Alachlor Atrazine Benzo (a) pyrene Carbofuran Chlordane Dalapon Di (2-ethylhexyl) adipate Di (2-ethylhexyl) phthalate	mg/L as N mg/L as N mg/L mg/L mg/L	1 10 0.05 160	<0.01 0.35	0.01		2.00.2
Fotal Nitrate & Nitrite Selenium Sodium Fhallium 2,4,5-TP (Silvex) 2,4-D Alachlor Atachlor Atachlor Carbofuran Chlordane Dalapon Di (2-ethylhexyl) adipate Di (2-ethylhexyl) phthalate	mg/L as N mg/L mg/L mg/L	10 0.05 160	0.35		6/12/01	354.1
Selenium Sodium Sodium Challium 2,4,5-TP (Silvex) 2,4-D Alachlor Atrazine Benzo (a) pyrene Carbofuran Chlordane Dalapon Di (2-ethylhexyl) adipate Di (2-ethylhexyl) phthalate	mg/L mg/L mg/L	0.05		0.05	6/18/01	353.2
Sodium Fhallium 2,4,5-TP (Silvex) 2,4-D Alachlor Alachlor Atrazine Benzo (a) pyrene Carbofuran Chlordane Dalapon Di (2-ethylhexyl) adipate Di (2-ethylhexyl) phthalate	mg/L mg/L	160		0.4	6/27/01	SM3113B
Fhallium 2,4,5-TP (Silvex) 2,4-D Alachlor Atrazine Benzo (a) pyrene Carbofuran Chlordane Dalapon Di (2-ethylhexyl) adipate Di (2-ethylhexyl) phthalate	mg/L	.	11,000	35	6/21/01	200.7
2,4,5-TP (Silvex) 2,4-D Alachlor Atrazine Benzo (a) pyrene Carbofuran Chlordane Dalapon Di (2-ethylhexyl) adipate Di (2-ethylhexyl) phthalate		0.002	<0.020	0.02	6/26/01	SM3113B
2,4.5-TP (Silvex) 2,4-D Alachlor Atrazine Benzo (a) pyrene Carbofuran Chlordane Dalapon Di (2-ethylhexyl) adipate Di (2-ethylhexyl) phthalate	1 conoraco	& Polychlorina			0.20.01	0.1101100
2,4-D Alachlor Altrazine Benzo (a) pyrene Carbofuran Chlordane Dalapon Di (2-ethylhexyl) adipate Di (2-ethylhexyl) phthalate	mg/L	0.05	<0.0250*	0.025	6/18/01	515.1
Alachlor Atrazine Benzo (a) pyrene Carbofuran Chlordane Dalapon Di (2-ethylhexyl) adipate Di (2-ethylhexyl) phthalate	mg/L	0.07	<0.362*	0.362	6/18/01	515.1
Atrazine Genzo (a) pyrene Carbofuran Chlordane Dalapon Di (2-ethylhexyl) adipate Di (2-ethylhexyl) phthalate	mg/L	0.002	<0.0625*	0.0625	6/15/01	507
Senzo (a) pyrene Carbofuran Chlordane Dalapon Di (2-ethylhexyl) adipate Di (2-ethylhexyl) phthalate	mg/L	0.002	<0.625*	0.625	6/15/01	507
Larbofuran Chlordane Dalapon Di (2-ethylhexyl) adipate Di (2-ethylhexyl) phthalate	mg/L mg/L	0.0002	<0.0400*	0.025	6/13/01	525.2
Chlordane Dalapon Di (2-ethylhexyl) adipate Di (2-ethylhexyl) phthalate	mg/L	0.04	<0.900*	0.9	6/19/01	531.1
Dalapon Di (2-ethylhexyl) adipate Di (2-ethylhexyl) phthalate	mg/L	0.002	<0.500*	0.5	6/15/01	508
Di (2-ethylhexyl) adipate Di (2-ethylhexyl) phthalate	mg/L	0.2	<0.625*	0.625	6/18/01	515.1
Di (2-ethylhexyl) phthalate	mg/L	0.4	<0.600*	0.6	6/13/01	525.2
	mg/L	0.006	<1.32*	1.32	6/13/01	525.2
	mg/L	0.0002	< 0.0200*	0.0200	6/14/01	504
,2-Dibromo-3-chloropropane	mg/L	0.002	<0.125*	0.125	6/18/01	515.1
Dioxin (2, 3, 7, 8, -TCDD)	mg/L	0.0000003	<0.125	0.125	6/20/01	SW8468280
		0,02	<4*	4	6/18/01	549.1
Diquat Endothall	mg/L	0.02	<5*	5	6/14/01	548.1
	mg/L					
indan Ethylene dibromide (EDB)	mg/L	0.002	<0.0100* <0.0100*	0.0100	6/15/01 6/14/01	508 504.1
Ethylene dibromide (EDB)	mg/L	0.00002	<0.0100*	2.40	6/14/01	547
Slyphosate Ieptachlor	mg/L	0.7	< 2.40*		6/13/01	
	mg/L			0.0540		508 508
leptachlor epoxide	mg/L	0.0002	<0.0245*	0.0245	6/15/01	
Iexachlorobenzene Iexcachlorocyclopentadiene	mg/L	0.001	<0.0100*	0.0100	6/15/01	508
	mg/L	0.05	< 0.0200*		6/15/01	508
indane	mg/L	0.0002	< 0.0240*	0.0240	6/15/01	508
Aethoxychlor	mg/L	0.04	< 0.250*	0.250	6/15/01	508
Dxamyl (vydate)	mg/L	0.2	<1.13*	1.13	6/19/01	531.1
Pentachiorophenol	mg/L	0.001	<0.0545*	0.0545	6/18/01	515.1
icionam	mg/L	0.5	<0.250*	0.250	6/18/01	515.1
olychlorinated biphenyl (PCB)	mg/L	0.0005	<0.250*	0.250	6/15/01	508
imazine		0.004	<0.176*	0.176	6/15/01	507

mg/L - milligrams per liter

MFL- million fibers per liter greater than 10 microns

TABLE (Continued) PRIMARY DRINKING WATER STANDARDS

Analytical Results for City of Cooper City (Injection Zone)

Parameter	Units	Maximum Contaminant Level	Lab Result	Detection Limit	Analysis Date	Method
	Vola	tile Organic Co	mpounds			
1,1,1-Trichloroethane	mg/L	0.2	<0.21000*	0.21000	6/14/01	524.2
1,1,2-Trichloroethane	mg/L	0.005	<0.23000*	0.23000	6/14/01	524.2
1,1-Dichloroethylene	mg/L	0.007	<0.02000*	0.02000	6/14/01	524.2
1,2,4-Trichlorobenzene	mg/L	0.07	< 0.22000*	0.22000	6/14/01	524.2
1,2-Dichlorethane	mg/L	0.003	< 0.02000*	0.02000	6/14/01	524.2
1,2-Dichloropropane	mg/L	0.005	< 0.33000*	0.33000	6/14/01	524.2
Benzene	mg/L	0.001	<0.05000*	0.05000	6/14/01	524.2
Carbon tetrachloride	mg/L	0.003	<0.29000*	0.29000	6/14/01	524.2
cis-1,2,-Dichloroethylene	mg/L	0.07	< 0.03000*	0.03000	6/14/01	524.2
Dichloromethane	mg/L	0.005	< 0.31000*	0.31000	6/14/01	524.2
Ethylbenzene	mg/L	0.7	<0.47000*	0.47000	6/14/01	524.2
Monochlorobenzene	mg/L	0.1	<0.23000*	0.23000	6/14/01	524.2
o-Dichlorobenzene	mg/L	0.6	< 0.05000*	0.05000	6/14/01	524.2
para-Dichlorobenzene	mg/L	0.075	< 0.02000*	0.02000	6/14/01	524.2
Styrene	mg/L	0.1	<0.47000*	0,47000	6/14/01	524.2
Tetrachloroethylene	mg/L	0.003	< 0.21000*	0.21000	6/14/01	524.2
Toluene	mg/L	1	< 0.41000*	0.41000	6/14/01	524.2
Total trihalomethanes (TTHM)	mg/L	0.10	< 0.360*	0.360	6/14/01	524.2
trans-1,2-Dichlorethylene	mg/L	0.1	<0.12000*	0.12000	6/14/01	524.2
Trichloroethylene	mg/L	0.003	<0.02000*	0.02000	6/14/01	524.2
Vinyl chloride	mg/L	0.001	< 0.29000*	0.29000	6/14/01	524.2
Xylenes (total)	mg/L.	10	< 0.24000	0.24000	6/14/01	524.2
	Pł	ysical Charact	eristics			
Turbidity	NTU	1				
	Micro	biological Cha	racteristics	·		
Total Coliform		<5% positive	absent	n/a	6/12/01	9222B
Fecal Coliform		<1		1		
		Radionuclio	les	·		
Combined Radium 226 & 228	pCi/L	5	2.3	0.1	6/27/01	EPA 903.1
Gross Alpha	pCi/L	15	<91.7	91.7	6/21/01	900.0
Man-made beta & photon emitters	mRem/yr	4		L		
		Treatment Che	micals			
Acrylamide		0.05% @1	L			
Epichlorohydrin		0.01% @20				

mg/L - milligrams per liter

pCi/L - picocurie per liter

m/Rem/yr - millirem per year

NTU - nephelometric turbidity unit

TABLE (Continued) SECONDARY DRINKING WATER STANDARDS

Analytical Results for City of Cooper City (Injection Zone)

Parameter	Units	Maximum Contaminant Level	Lab Result	Detection Limit	Analysis Date	Method
Aluminum	mg/L	0.2	< 0.040	0.040	6/21/01	200.7
Chloride	mg/L	250	17,800	15	6/19/01	300.0
Cotor	color units	15	83	1	6/13/01	110.3
Copper	mg/L	1	0.0178	0.0024	6/21/01	200.7
Fluoride	mg/L	2	1	0.100	6/13/01	340.2
Foaming Agents	mg/L	0.5	< 0.05	0.05	6/27/01	4500C
Iron	mg/L	0.3	< 0.06	0.06	6/27/01	SM3113B
Manganese	mg/L	0.05	0.0383	0.0002	6/21/01	200.7
Odor	TON	3	<1	i	6/13/01	140.1
рН	•	6.5-8.5	7.56	0.01	6/12/01	150.1
Silver	mg/L	0.1	< 0.002	0.002	6/21/01	200.7
Sulfate	mg/L	250	3240	15	6/19/01	300.0
Total Dissolved Solids (TDS)	mg/L	500	37200	5	6/12/01	160.1
Zinc	mg/L	5	0.015	0.004	6/21/01	200.7

mg/L - milligrams per liter

TON - threshold odor number

*results are in mg/L

**results are in ng/L

***results are in mill/L

Page: 1 of 8

Client Project: Cooper City Lab Project: N0106262 Report Date: 08/03/01

٠

Youngquist Brothers, Inc. 15465 Pine Ridge Road Ft. Myers, FL 33908

<u>Lab ID</u> N0106262-01	Sample De injection well grab					mple Source und Water	Sample Date/Time 6/12/01 10:00	A)
<u>Analysis</u>		<u>Method</u>	<u>Results</u> Qual	Detection Limit	<u>Units</u>	<u>AnalysisDate/Time</u>	<u>Analyst</u>	
1,1,1,2-Tetrachloroet	thane	524.2	<0.13000	0.13000	ug/L	6/18/01 12:40	ТА	
1.1.1-Trichloroethan	e ,	524.2	<0.21000	0.21000	ця/Ι.	6/18/0) 12:40	ТА	

1,1,1-Trichloroethane	524.2	<0.21000	0.21000	ug/L	6/18/01 12:40	TA
1,1,2,2-Tetrachloroethane	524.2	<0.33000	0.33000	ug/L	6/18/01 12:40	TA
1,1,2-Trichloroethane	524.2	<0.23000	0.23000	ug/L	6/18/01 12:40	TA
1,1-Dichloroethane	524.2	<0.02000	0.02000	ug/L	6/18/01 12:40	ТА
1,1-Dichloroethene	524.2	<0.02000	0.02000	ug/L	6/18/01 12:40	ТА
1,1-Dichloropropene	524.2	<0.06000	0.06000	ug/L	6/18/01 12:40	ТА
1,2,3-Trichloropropane	524.2	<0.39000	0.39000	ug/L	6/18/01 12:40	TA
1,2,4-Trichlorobenzene	524.2	<0.22000	0.22000	ug/L	6/18/01 12:40	ТА
1,2-Dibromo-3-chloropropane	504.1	< 0.0200	0.02000	ug/L	6/15/01 14:26	TA
1,2-Dichlorobenzene	524.2	<0.05000	0.05000	ug/L	6/18/01 12:40	TA
1,2-Dichloroethane	524.2	<0.02000	0.02000	ug/L	6/18/01 12:40	TA
1,2-Dichloropropane	524.2	<0.33000	0.33000	ug/L	6/18/01 12:40	ТА
1,3-Dichlorobenzene	524.2	<0.20000	0.20000	ug/L	6/18/01 12:40	TA
1,3-Dichloropropane	524.2	<0.05000	0.05000	ug/L	6/18/01 12:40	ТА
1,3-Dichloropropene	524.2	<0.21000	0.21000	ug/L	6/18/01 12:40	ТА
1,4-Dichlorobenzene	524.2	<0.02000	0.02000	ug/L	6/18/01 12:40	ТА
2,2-Dichloropropane	524.2	<0.38000	0.38000	ug/L	6/18/01 12:40	ТА

Page: 2 of 8

Client Project: Cooper City Lab Project: N0106262 Report Date: 08/03/01

Lab ID N0106262-01	Sample Descrip injection well grab	otion .		• • •		mple Source und Water	Sample Date/Time 6/12/01 10:00
<u>Analysis</u>	<u>Me</u>	thod Result	<u>S</u> Qual	Detection Limit	<u>Units</u>	<u>AnalysisDate/Time</u>	<u>Analyst</u>
2,4,5-TP (Silvex)	515	< 0.0250)	0.02500	ug/L	6/22/01 22:12	ТА
2,4,6-Trichlorophenol	62	5 < 4.46		4.46000	ug/L	6/21/01 20:15	ТА
2,4-D	515	.1 < 0.362		0.36200	ug/L	6/22/01 22:12	ТА
2,4-Dinitrotoluene	62	5 < 4.78		4.78000	ug/L	6/21/01 20:15	TA
2-Chlorophenol	62	5 < 4.10		4.10000	ug/L	6/21/01 20:15	TA
2-Chlorotoluene	524	.2 <0.3300	0	0.33000	ug/L	6/18/01 12:40	TA
2-Methyl-4,6-dinitrop	henol 62	5 < 4		4	ug/L	6/21/01 20:15	ТА
3-Hydroxycarbofuran	531	.1 < 1.13		1.13000	ug/L	6/20/01 8:53	TA
4-Chlorotoluene	524	.2 <0.2900	0	0.29000	ug/L	6/18/01 12:40	ТА
Alachlor	50	7 < 0.0625	5	0.0625	ug/L	6/20/01 1:11	TA
Aldicarb	531	.1 < 1.04		1.04000	ug/L	6/20/01 8:53	ТА
Aldicarb Sulfone	531	1 < 0.647		0.64700	ug/L	6/20/01 8:53	TA
Aldicarb Sulfoxide	531	.1 < 0.850		0.85000	ug/L	6/20/01 8:53	TA
Aldrin	50	8 < 0.052:	5	0.0525	ug/L	6/20/01 1:11	TA
Aluminum	200).7 < 0.040		0.040	mg/L	6/21/01 16:23	LH
Ammonia-N	350).3 < 0.05		0.05	mg/L	6/13/01 16:15	DH
Anthracene	62	5 <5		5	ug/L	6/21/01 20:15	TA
Antimony	SM31	13B 0.002		0.001	mg/L	6/21/01 13:49	LH
Arsenic	200	0.0062		0.0056	mg/L	6/21/01 16:23	LH
Asbestos	100).2 < 0.170	i	0.170	mill/L	6/26/01 0:00	EMSL
Atrazine	50	07 < 0.625	i	0.625	ug/L	6/20/01 1:11	TA

Page: 3 of 8

Client Project: Cooper City Lab Project: N0106262 Report Date: 08/03/01

Lab ID N0106262-01 Sample D injection wel grab	escription	. · · · ·			mple Source und Water	Sample Date/Time 6/12/01 10:00
<u>Analysis</u>	<u>Method</u>	Results Qual	Detection Limit	<u>Units</u>	AnalysisDate/Time	<u>Analyst</u>
Barium	200.7	< 0.0002	0.0002	mg/L	6/21/01 16:23	LH
Benzene	524.2	<0.05000	0.05000	ug/L	6/18/01 12:40	ТА
Benzo(a)pyrene	525.2	< 0.0400	0.0400	ug/L	6/19/01 14:39	ТА
Beryllium	200.7	0.0028	0.0016	mg/L	6/21/01 16:23	LH
Biochemical Oxygen Demand (5)	405.1	<1	1	mg/L	6/12/01 17:45	СС
Bromobenzene	524.2	<0.05000	0.05000	ug/L	6/18/01 12:40	ТА
Bromodichloromethane	524.2	< 0.360	0.360	ug/L	6/18/01 12:40	ТА
Bromoform	524.2	< 0.310	0.310	ug/L	6/18/01 12:40	ТА
Bromomethane	524.2	<0.29000	0.29000	ug/L	6/18/01 12:40	ТА
Butachlor	507	< 0.500	0.500	ug/L	6/20/01 1:11	ТА
Butylbenzylphthalate	625	< 2.55	2.55000	ug/L	6/21/01 20:15	ТА
Cadmium	200.7	< 0.0004	0.0004	mg/L	6/21/01 16:23	LH
Carbaryl	531.1	< 0.599	0.59900	ug/L	6/20/01 8:53	ТА
Carbofuran	531.1	< 0.900	0.90000	ug/L	6/20/01 8:53	ТА
Carbon Tetrachloride	524.2	<0.29000	0.29000	ug/L	6/18/01 12:40	ТА
Chemical Oxygen Demand	410.4	758	60	mg/L	7/5/01 16:00	DW
Chlordane	508	< 0.500	0.500	ug/L	6/20/01 1:11	ТА
Chloride	300.0	17800	15	mg/L	6/19/01 17:00	DW
Chlorobenzene	524.2	<0.23000	0.23000	ug/L	6/18/01 12:40	TA
Chloroethane	524.2	<0.29000	0.29000	ug/L	6/18/01 12:40	TA
Chloroform	524.2	< 0.160	0.160	ug/L	6/18/01 12:40	ТА

٠

Page: 4 of 8

Client Project: Cooper City Lab Project: N0106262 Report Date: 08/03/01

<u>Lab ID</u> N0106262-01	Sample Description injection well grab				<u>1ple Source</u> nd Water	Sample Date/Time 6/12/01 10:00
<u>Analysis</u>	<u>Method</u>	<u>Results</u> Qual	Detection Limit	<u>Units</u>	AnalysisDate/Time	<u>Analyst</u>
Chloromethane	524.2	<0.35000	0.35000	ug/L	6/18/01 12:40	ТА
Chromium	200.7	< 0.002	0.002	mg/L	6/21/01 16:23	LH
Cis-1,2-Dichloroether	ne 524.2	<0.03000	0.03000	ug/L	6/18/01 12:40	ТА
Color	110.3	83	1	PtCo units	6/13/01 13:50	DW
Conditional Gross Al	pha 900.0	<91.7	91.7	pCi/L	6/21/01 0:00	FRC
Conductivity	120.1	48100	0.1	umhos/cm	7/2/01 12:30	DW
Copper	200.7	0.0178	0.0024	mg/L	6/21/01 16:23	LH
Corrosivity	SM2330B	(-)6.06	N/A	NONE	6/12/01 15:06	LH
Cyanide, Total	4500CNE	< 0.006	0.00600	mg/L	6/27/01 12:42	ТА
Dalapon	515.1	< 0.625	0.62500	ug/L	6/22/01 22:12	ТА
Detergents (MBAS)	5540C	<0.05	0.05000	mg/L	6/14/01 8:00	SA
Di(2-ethylhexyl)adiir	bate 525.2	< 0.600	0.600	ug/L	6/19/01 14:39	ТА
Di(2-ethylhexyl)phth	alate 525.2	< 1.32	1.32	ug/L	6/19/01 14:39	ТА
Dibromochlorometha	ne 524.2	< 0.270	0.270	ug/L	6/18/01 12:40	ТА
Dibromomethane	524.2	<0.03000	0.03000	ug/L	6/18/01 12:40	ТА
Dicamba	515.1	< 0.0250	0.02500	ug/L	6/22/01 22:12	ТА
Dichlorodiflouromet	nane 524.2	<0.50000	0.50000	ug/L	6/18/01 12:40	ТА
Dieldrin	508	< 0.0270	0.0270	ug/L	6/20/01 1:11	ТА
Diethylphthalate	625	< 4.96	4.96000	ug/L	6/21/01 20:15	ТА
Dimethylphthalate	625	< 5	5	ug/L	6/21/01 20:15	TA
Di-n-butylphthalate	625	< 4.01	4.01000	ug/L	6/21/01 20:15	ТА

Page: 5 of 8

Client Project: Cooper City Lab Project: N0106262 Report Date: 08/03/01

<u>Lab ID</u> N0106262-01	Sample Description injection well grab				mple Source und Water	Sample Date/Time 6/12/01 10:00
<u>Analysis</u>	<u>Method</u>	<u>Results</u> Qual	Detection Limit	<u>Units</u>	AnalysisDate/Time	<u>Analyst</u>
Di-n-octylphthalate	625	< 2.43	2.43000	ug/L	6/21/01 20:15	ТА
Dinoseb	515.1	< 0.125	0.12500	ug/L	6/22/01 22:12	ТА
Dioxin	SW8468280	< 0.480	0.480	ng/L	6/27/01 0:00	STL
Diquat	549.1	< 4	4	ug/L	6/25/01 9:30	ТА
Endothall	548.1	< 5	5	ug/L	6/19/01 15:08	ТА
Endrin	508	< 0.0100	0.0100	ug/L	6/20/01 1:11	ТА
Ethylbenzene	524.2	<0.47000	0.47000	ug/L	6/18/01 12:40	ТА
Ethylene Dibromide	504.1	< 0.0100	0.01000	ug/L	6/15/01 14:26	ТА
Fluoride	340.2	1.0	0.1	mg/L	6/13/01 14:00	DW
Glyphosate	547	< 2.40	2.40	ug/L	6/18/01 6:24	ТА
Heptachlor	508	< 0.0540	0.0540	ug/L	6/20/01 1:11	ТА
Heptachlor Epoxide	508	< 0.0245	0.0245	ug/L	6/20/01 1:11	ТА
Hexachlorobenzene	508	< 0.0100	0.0100	ug/L	6/20/01 1:11	ТА
Hexachlorocyclopenta	diene 508	< 0.0200	0.0200	ug/L	6/20/01 1:11	ТА
Iron	200.7	< 0.060	0.060	mg/L	6/21/01 16:23	LH
Isophorone	625	< 7.26	7.26000	ug/L	6/21/01 20:15	ТА
Lead	SM3113B	0.014	0.010	mg/L	6/27/01 9:03	LH
Lindane	508	< 0.0240	0.0240	ug/L	6/20/01 1:11	ТА
Manganese	200.7	0.0383	0.0002	mg/L	6/21/01 16:23	LH
Mercury	245.1	< 0.001	0.001	mg/L	6/13/01 13:39	LH
Methomyl	531.1	< 0.254	0.25400	ug/L	6/20/01 8:53	ТА

Page: 6 of 8

Client Project: Cooper City Lab Project: N0106262 Report Date: 08/03/01

<u>Lab ID</u> N0106262-01	Sample Description injection well grab				n ple Source nd Water	Sample Date/Time 6/12/01 10:00
<u>Analysis</u>	Method	<u>Results</u> Qual	Detection Limit	<u>Units</u>	AnalysisDate/Time	<u>Analyst</u>
Methoxychlor	508	< 0.250	0.250	ug/L	6/20/01 1:11	ТА
Methylene Chloride	524.2	<0.31000	0.31000	ug/L	6/18/01 12:40	ТА
Methyl-Tert-Butyl -E	ther 524.2	<1.0000	1.0000	ug/L	6/18/01 12:40	ТА
Metolachlor	507	< 0.500	0.500	ug/L	6/20/01 1:11	ТА
Metribuzin	507	< 0.120	0.120	ug/L	6/20/01 1:11	ТА
Naphthalene	625	<5	5	ug/L	6/21/01 20:15	ТА
Nickel	200.7	< 0.002	0.002	mg/L	6/21/01 16:23	LH
Nitrate+Nitrite-N	353.2	0.35	0.05	mg/L	6/18/01 15:15	NL
Nitrate-N	353.2	0.35	0.05	mg/L	7/6/01 14:00	DH
Nitrite-N	354.1	<0.05	0.01	mg/L	6/12/01 14:00	NL
Nitrogen, Organic	351.2/350.3	0.30	0.05	mg/L	6/17/01 14:58	DH
Nitrogen, Total Kjeld	lahl 351.2	0.30	0.05	mg/L	7/17/01 14:58	DH
Odor	140.1	< 1	1	TON	6/13/01 14:00	DW
Oxamyl (Vydate)	531.1	< 1.13	1.13000	ug/L	6/20/01 8:53	ТА
РСВ	508	< 0.250	0.250	ug/L	6/20/01 1:11	ТА
Pentachlorophenol	\$15.1	< 0.0545	0.05450	ug/L	6/22/01 22:12	ТА
pH	150.1	7.56	0.01	pH units	6/12/01 14:00	DP
Phenanthrene	625	<5	5	ug/L	6/21/01 20:15	ТА
Phenol	625	< 3.01	3.01000	ug/L	6/21/01 20:15	ТА
Phenolics, Total	420.1	<0.004	0.00400	mg/L	6/27/01 13:38	ТА
Phosphorus, Total	6010B	0.050	0.010	mg/L	6/13/01 16:26	LH

·

Page: 7 of 8

Client Project: Cooper City Lab Project: N0106262 Report Date: 08/03/01

<u>Lab ID</u> N0106262-01	Sample Description injection well grab				n ple Source ind Water	Sample Date/Time 6/12/01 10:00
<u>Analysis</u>	Method	<u>Results</u> <u>Qual</u>	Detection Limit	<u>Units</u>	AnalysisDate/Time	<u>Analyst</u>
Picloram	515.1	< 0.250	0.25000	ug/L	6/22/01 22:12	ТА
Propachior	508	< 0.380	0.380	ug/L	6/20/01 1:11	ТА
Radium 226	903.1	2.3	0.1	pCi/L	6/27/01 0:00	FRC
Selenium	SM3113B	< 0.4	0.4	mg/L	6/27/01 15:56	LH
Silver	200.7	< 0.002	0.002	mg/L	6/21/01 16:23	LH
Simazine	507	< 0.176	0.176	ug/L	6/20/01 1:11	ТА
Sodium	200.7	11,000	35	mg/L	6/21/01 16:23	LH
Styrene	524.2	<0.47000	0.47000	ug/L	6/18/01 12:40	ТА
Sulfate	300.0	3240	15	mg/L	6/19/01 17:00	DW
Tetrachloroethene	524.2	<0.21000	0.21000	ug/L	6/18/01 12:40	ТА
Thallium	SM3113B	<0.020	0.020	mg/L	6/26/01 13:56	LH
Toluene	524.2	<0.41000	0.41000	ug/L	6/18/01 12:40	ТА
Total Coliform, MF	9222B	Absent	n/a	col/100ml	6/12/01 16:45	DP
Total Dissolved Solid	s 160.1	37200	5	mg/L	6/12/01 16:30	cc
Total THM	524.2	< 0.360	0.360	ug/L	6/18/01 12:40	ТА
Toxaphene	508	< 0.500	0.500	ug/L	6/20/01 1:11	ТА
trans-1,2-Dichloroethe	ene 524.2	<0.12000	0.12000	ug/L	6/18/01 12:40	ТА
Trichloroethene	524.2	<0.02000	0.02000	ug/L	6/18/01 12:40	ТА
Trichloroflouromethar	ne 524.2	<0.28000	0.28000	ug/L	6/18/01 12:40	ТА
Vinyl Chloride	524.2	<0.29000	0.29000	ug/L	6/18/01 12:40	ТА
Xylenes	524.2	<0.24000	0.24000	ug/L	6/18/01 12:40	ТА

Page: 8 of 8

Client Project: Cooper City Lab Project: N0106262 Report Date: 08/03/01

<u>Lab ID</u> N0106262-01	Sample Description injection well grab				mple Source and Water	Sample Date/Time 6/12/01 10:00
<u>Analysis</u>	<u>Method</u>	Results Oual 0.015	Detection Limit	<u>Units</u>	AnalysisDate/Time	<u>Analvst</u>
Zinc	200.7		0.004	mg/L	6/21/01 16:23	LH

Approved by:

.

Comments:

1. 4 ィ

Craig Poler/Lab Director Laura Sullivan/QA Officer Kathrine Bartkiewicz/Lab Supervisor

Amended Final Report

Upper Monitor Zone Background Water Quality

TABLE PRIMARY DRINKING WATER STANDARDS

Analytical Results for Cooper City (Upper Monitoring Zone)

Parameter	Units	Maximum Contaminant Level	Lab Result	Detection Limit	Analysis Date	Method			
		norganic Comp	ounds						
Antimony	mg/L	0.006	0.004	0.001	6/21/01	SM3113B			
Arsenic	mg/L	0.05	< 0.0056	0.0056	6/21/01	200.7			
Asbestos	MFL.	7	<0.170***	0.17	6/26/01	100.2			
Barium	mg/L	2	< 0.0002	0.0002	6/21/01	200.7			
Beryllium	mg/L	0.004	< 0.0016	0.0016	6/21/01	200.7			
Cadmium	mg/L	0.005	< 0.0004	0.0004	6/21/01	200.7			
Chromium	mg/L	0.1	< 0.0020	0.002	6/21/01	200.7			
Cyanide	mg/L.	0.2	< 0.006	0.006	6/14/01	SM4500CNE			
Fluoride	mg/L	4.0	1.1	0.100	6/12/01	340.2			
Lead	mg/L	0.015	< 0.010	0.01	6/27/01	SM3113B			
Mercury	mg/L	0.002	<0.001	0.001	6/13/01	245.1			
Nickel	mg/L	0.1	< 0.002	0.002	6/21/01	200.7			
Nitrate	mg/L as N	10	< 0.05	0.05	6/13/01	353.2			
Nitrite	mg/L as N	1	< 0.05	0.05	6/12/01	354.1			
Total Nitrate & Nitrite	mg/L as N	10	< 0.05	0.05	6/18/01	353.2			
Selenium	mg/L	0.05	< 0.4	0.4	6/27/01	SM3113B			
Sodium	mg/L	160	973	0.7	6/21/01	200.7			
Thallium	mg/L	0.002	< 0.020	0.02	6/26/01	SM3113B			
Pesticides & Polychlorinated Compounds									
2,4,5-TP (Silvex)	mg/L	0.05	<0.0250*	0.025	6/18/01	515.1			
2,4-D	mg/L	0.07	< 0.362*	0.362	6/18/01	515.1			
Alachlor	mg/L	0.002	<0.0625*	0.0625	6/15/01	507			
Atrazine	mg/L	0.003	<0.638*	0.638	6/15/01	507			
Benzo (a) pyrene	mg/L	0.0002	<0.0400*	0.04	6/14/01	525.2			
Carbofuran	mg/L	0.04	<0.900*	0.9	6/20/01	531.1			
Chlordane	mg/L	0.002	<0.500*	0.5	6/15/01	508			
Dalapon	mg/L	0.2	<0.625*	0.625	6/18/01	515.1			
Di (2-ethylhexyl) adipate	mg/L	0.4	<0.600*	0.6	6/14/01	525.2			
Di (2-ethylhexyl) phthalate	mg/L	0.006	<1.32*	1.32	6/14/01	525.2			
1,2-Dibromo-3-chloropropane	mg/L	0.0002	<0.0200*	0.0200	6/14/01	504			
Dinoseb	mg/L	0.007	<0.125*	0.125	6/18/01	515.1			
Dioxin (2, 3, 7, 8, -TCDD)	mg/L	0.0000003	<0.46**	0.125	6/20/01	SW8468280			
Diquat		0.02	<4*	4	6/18/01				
Endothall	mg/L	0.02	<5*	5	6/18/01	549.1			
Endrín	mg/L	0.1	<0.0100*	0.0100	6/14/01	<u>548.1</u>			
Ethylene dibromide (EDB)	mg/L	0.0002	<0.0100*						
Glyphosate	mg/L	0.00002	< 2.40*	0.0100	6/14/01	504.1			
Heptachlor	mg/L	0.7		2.40	6/18/01	547			
	mg/L		<0.0540*	0.0540	6/15/01	508			
Heptachlor epoxide	mg/L	0.0002	<0.0245*	0.0245	6/15/01	508			
Hexachlorobenzene	mg/L	0.001	<0.0100*	0.0100	6/15/01	508			
Hexcachlorocyclopentadiene	mg/L	0.05	<0.0200*	0.0200	6/15/01	508			
Lindane	mg/L	0.0002	<0.0240*	0.0240	6/15/01	508			
Methoxychlor	mg/L	0.04	<0.250*	0.025	6/15/01	508			
)xamyl (vydate)	mg/L	0.2	<1.13*	1.13	6/20/01	531.1			
Pentachlorophenol	mg/L	0.001	<0.0545*	0.0545	6/18/01	515.1			
Picloram	mg/L	0.5	<0.250*	0.250	6/18/01	515.1			
olychlorinated biphenyl (PCB)	mg/L	0.0005	<0.250*	0.250	6/15/01	508			
Simazine	mg/L	0.004	< 0.176*	0.176	6/15/01	507			
Toxaphene	mg/L	0.003	< 0.500*	0.500	6/15/01	508			

mg/L - milligrams per liter

MFL- million fibers per liter greater than 10 microns

•

TABLE (Continued) PRIMARY DRINKING WATER STANDARDS

Analytical Results for Cooper City (Upper Monitoring Zone)

Parameter	Units	Maximum Contaminant Level	Lab Result	Detection Limit	Analysis Date	Method
	Vola	tile Organic Co	mpounds			
1,1,1-Trichlorocthane	mg/L	0.2	<0.210*	0.21000	6/14/01	524.2
1,1,2-Trichloroethane	mg/L	0.005	<0.23000*	0.23000	6/14/01	524.2
1,1-Dichloroethylene	mg/L	0.007	< 0.02000*	0.02000	6/14/01	524.2
1,2,4-Trichlorobenzene	mg/L	0.07	<0.22000*	0.22000	6/14/01	524.2
1,2-Dichlorethane	mg/L	0.003	<0.02000*	0.02000	6/14/01	524.2
1,2-Dichloropropane	mg/L	0.005	<0.33000*	0.33000	6/14/01	524.2
Benzene	mg/L	0.001	<0.05000*	0.05000	6/14/01	524.2
Carbon tetrachloride	mg/L	0.003	<0.29000*	0.29000	6/14/01	524.2
cis-1,2,-Dichloroethylene	mg/L	0.07	<0.03000*	0.03000	6/14/01	524.2
Dichloromethane	mg/L	0.005	<0.31000*	0.31000	6/14/01	524.2
Ethylbenzene	mg/L	0.7	<0.47000*	0.47000	6/14/01	524.2
Monochlorobenzene	mg/L	0.1	<0.23000*	0.23000	6/14/01	524.2
o-Dichlorobenzene	mg/L	0.6	< 0.05000*	0.05000	6/14/01	524.2
para-Dichlorobenzene	mg/L	0.075	<0.02000*	0.02000	6/14/01	524.2
Styrene	mg/L	0.1	<0.47000*	0.47000	6/14/01	524.2
Tetrachloroethylene	mg/L	0.003	<0.21000*	0.21000	6/14/01	524.2
Toluene	mg/L	1	<0.41000*	0.41000	6/14/01	524.2
Total trihalomethanes (ITHM)	mg/L	0.10	<0.360*	0.360	6/14/01	524.2
trans-1,2-Dichlorethylene	mg/L	0.1	<0.12000*	0.12000	6/14/01	524.2
Trichloroethylene	mg/L	0.003	<0.02000*	0.02000	6/14/01	524.2
Vinyl chloride	mg/L	0.001	<0.29000*	0.29000	6/14/01	524.2
Xylenes (total)	mg/L	10	< 0.24000	0.24000	6/14/01	524.2
	Pl	nysical Charact	eristics	· · · · · · · · · · · · · · · · · · ·		
Turbidity	NTU	1				
	Micro	biological Cha	racteristics			
Total Coliform		< 5% positive	absent	n/a	6/11/01	9222B
Fecal Coliform		<1		1		
		Radionuclio	les	.		
Combined Radium 226 & 228	pCi/L	5	15.6/<1.0	0.1/1.0	6/26/01	903.1/Ra-05
Gross Alpha	pCi/L	15	19	7.2	6/16/01	900.0
Man-made beta & photon emitters	mRem/yr	4				
		Treatment Che	micals	·		- · -
Acrylamide		0.05% @1				
Epichlorohydrin		0.01% @20				1

mg/L - milligrams per liter

pCi/L - picocurie per liter

m/Rem/yr - millirem per year

NTU - nephelometric turbidity unit

TABLE (Continued) SECONDARY DRINKING WATER STANDARDS

Analytical Results for Cooper City (Upper Monitoring Zone)

Parameter	Units	Maximum Contaminant Level	Lab Result	Detection Limit	Analysis Date	Method
Aluminum	mg/L	0.2	<0.040	0.040	6/21/01	200.7
Chloride	mg/L	250	2350	15	6/19/01	300.0
Color	color units	15	20	1	6/12/01	110.3
Copper	mg/L	1	<00024	0.0024	6/21/01	200.7
Fluoride	mg/L	2	1.1	0.100	6/12/01	340.2
Foaming Agents	mg/L	0.5	0.028	0.02	6/13/01	5540C
Iron	mg/L	0.3	< 0.0600	0.06	6/21/01	EPA 200.7
Manganese	mg/L	0.05	0.008	0.0002	6/21/01	200.7
Odor	TON	3	1.40	1	6/11/01	140.1
рН		6.5-8.5	7.95	0.01	6/11/01	150.1
Silver	mg/L	0.1	< 0.002	0.002	6/21/01	200.7
Sulfate	mg/L	250	1720	15	6/19/01	300.0
Total Dissolved Solids (TDS)	mg/L	500	4100	5	6/11/01	160.1
Zinc	mg/L	5	< 0.004	0.004	6/21/01	200.7

mg/L - milligrams per liter

TON - threshold odor number

*results are in mg/L **results are in ng/L ***results are in mill/L

Youngquist Brothers, Inc. 15465 Pine Ridge Road Ft. Myers, FL 33908 Page: 1 of 8

Client Project: Cooper City Lab Project: N0106203 Report Date: 07/10/01

> RECEIVED HAZEN AND SAWYER, P.C. Boca Raton, Florida

> > AUG 20 2001

JOB No. 40340

<u>Lab ID</u> N0106203-01	Sample Description upper zone grab					mple Source bund Water	<u>Sample Date/Time</u> 6/11/01 6:45
<u>Analysis</u>		<u>Method</u>	<u>Results</u> Qual	Detection Limit	<u>Units</u>	<u>AnalysisDate/Time</u>	<u>Analyst</u>

1,1,1,2-Tetrachloroethane	524.2	<0.13000	0.13000	ug/L	6/14/01 10:39	ТА
1,1,1-Trichloroethane	524.2	<0.21000	0.21000	ug/L	6/14/01 10:39	TA
1,1,2,2-Tetrachloroethane	524.2	<0.33000	0.33000	ug/L	6/14/01 10:39	ТА
1,1,2-Trichloroethane	524.2	<0.23000	0.23000	ug/L	6/14/01 10:39	ТА
1,1-Dichloroethane	524.2	<0.02000	0.02000	ug/L	6/14/01 10:39	ТА
1,1-Dichloroethene	524.2	<0.02000	0.02000	ug/L	6/14/01 10:39	ТА
1,1-Dichloropropene	524.2	<0.06000	0.06000	ug/L	6/14/01 10:39	TA
1,2,3-Trichloropropane	524.2	<0.39000	0.39000	ug/L	6/14/01 10:39	TA
1,2,4-Trichlorobenzene	524.2	<0.22000	0.22000	ug/L	6/14/01 10:39	TA
1,2-Dibromo-3-chloropropane	504.1	< 0.0200	0.0200	ug/L	6/14/01 19:10	ТА
1,2-Dichlorobenzene	524.2	<0.05000	0.05000	ug/L	6/14/01 10:39	ТА
1,2-Dichloroethane	524.2	<0.02000	0.02000	ug/L	6/14/01 10:39	ТА
1,2-Dichloropropane	524.2	<0.33000	0.33000	ug/L	6/14/01 10:39	TA
1,3-Dichlorobenzene	524.2	<0.2000	0.20000	ug/L	6/14/01 10:39	TA
1,3-Dichloropropane	524.2	<0.05000	0.05000	ug/L	6/14/01 10:39	TA
1,3-Dichloropropene	524.2	<0.21000	0.21000	ug/L	6/14/01 10:39	TA
1,4-Dichlorobenzene	524.2	<0.02000	0.02000	ug/L	6/14/01 10:39	ТА
2,2-Dichloropropane	524.2	<0.38000	0.38000	ug/L	6/14/01 10:39	TA

Page: 2 of 8

Client Project: Cooper City Lab Project: N0106203 Report Date: 07/10/01

Lab ID N0106203-01	Sample De upper zone grab	escription				nple Source and Water	Sample Date/Time 6/11/01 6:45
<u>Analysis</u>		<u>Method</u>	<u>Results</u> Qual	Detection Limit	<u>Units</u>	AnalysisDate/Time	<u>Analyst</u>
2,4,5-TP (Silvex)		515.1	< 0.0250	0.0250	ug/L	6/18/01 20:43	ТА
2,4,6-Trichloropheno	t	625	<4.53	4.53	ug/L	6/15/01 21:02	TA
2,4-D		515.1	< 0.362	0.362	ug/L	6/18/01 20:43	TA
2,4-Dinitrotoluene		625	<4.85	4.85	ug/L	6/15/01 21:02	ТА
2-Chlorophenol		625	<4.16	4.16	ug/L	6/15/01 21:02	ТА
2-Chlorotoluene		524.2	<0.33000	0.33000	ug/L	6/14/01 10:39	ТА
2-Methyl-4,6-dinitrop	henol	625	<4.06	4.06	ug/L	6/15/01 21:02	ТА
3-Hydroxycarbofuran	l	531.1	< 1.13	1.13	ug/L	6/20/01 7:02	ТА
4-Chlorotoluene		524.2	<0.29000	0.29000	ug/L	6/14/01 10:39	ТА
Alachlor		507	< 0.0625	0.0625	ug/L	6/15/01 7:07	ТА
Aldicarb		531.1	< 1.04	1.04	ug/L	6/20/01 7:02	ТА
Aldicarb Sulfone		531.1	< 0.647	0.647	ug/L	6/20/01 7:02	ТА
Aldicarb Sulfoxide		531.1	< 0.850	0.850	ug/L	6/20/01 7:02	TA
Aldrin		508	< 0.0525	0.0525	ug/L	6/15/01 7:07	ТА
Aluminum		200.7	< 0.040	0.040	mg/L	6/21/01 13:48	LH
Ammonia-N		350.3	0.46	0.05	mg/L	6/11/01 16:15	DH
Anthracene		625	<5.08	5.08	ug/L	6/15/01 21:02	ТА
Antimony		SM3113B	0.004	0.001	mg/L	6/21/01 13:49	LH
Arsenic		200.7	< 0.0056	0.0056	mg/L	6/21/01 13:48	LH
Asbestos		100.2	< 0.170	0.170	mill/L	6/26/01 0:00	EMSL
Atrazine		507	< 0.625	0.625	ug/L	6/15/01 7:07	ТА

•

Page: 3 of 8

Client Project: Cooper City Lab Project: N0106203 Report Date: 07/10/01

Lab ID Sample D N0106203-01 upper zone grab	<u>escription</u>				mple Source und Water	Sample Date/Time 6/11/01 6:45
Analysis	<u>Method</u>	<u>Results</u> <u>Qual</u>	Detection Limit	<u>Units</u>	AnalysisDate/Time	<u>Analyst</u>
Barium	200.7	< 0.0002	0.0002	mg/L	6/21/01 13:48	LH
Benzene	524.2	<0.05000	0.05000	ug/L	6/14/01 10:39	ТА
Benzo(a)pyrene	525.2	< 0.0400	0.0400	ug/L	6/14/01 0:20	ŤA
Beryllium	200.7	< 0.0016	0.0016	mg/L	6/21/01 13:48	LH
Biochemical Oxygen Demand (5)	405.1	2	ì	mg/L	6/11/01 16:45	сс
Bromobenzene	524.2	<0.05000	0.05000	ug/L	6/14/01 10:39	ТА
Bromodichloromethane	524.2	< 0.360	0.36000	ug/L	6/14/01 10:39	ТА
Bromoform	524.2	< 0.310	0.31000	ug/L	6/14/01 10:39	ТА
Bromomethane	524.2	<0.29000	0.29000	ug/L	6/14/01 10:39	ТА
Butachlor	507	< 0.500	0.500	ug/L	6/15/01 7:07	ТА
Butylbenzylphthalate	625	<2.59	2.59	ug/L	6/15/01 21:02	ТА
Cadmium	200.7	< 0.0004	0.0004	mg/L	6/21/01 13:48	LH
Carbaryl	531.1	< 0.599	0.599	ug/L	6/20/01 7:02	ТА
Carbofuran	531.1	< 0.900	0.900	ug/L	6/20/01 7:02	ТА
Carbon Tetrachloride	524.2	<0.29000	0.29000	ug/L	6/14/01 10:39	ТА
Chemical Oxygen Demand	410.4	65	6	mg/L	6/18/01 15:00	DW
Chlordane	508	< 0.500	0.500	ug/L	6/15/01 7:07	ТА
Chloride	300.0	2350	15	mg/L	6/19/01 17:00	DW
Chlorobenzene	524.2	<0.23000	0.23000	ug/L	6/14/01 10:39	ТА
Chloroethane	524.2	<0.29000	0.29000	ug/L	6/14/01 10:39	TA
Chloroform	524.2	0.33000	0.16000	ug/L	6/14/01 10:39	ТА

Page: 4 of 8

Client Project: Cooper City Lab Project: N0106203 Report Date: 07/10/01

<u>Lab ID</u> N0106203-01	Sample D upper zone grab	<u>escription</u>				n ple Source and Water	Sample Date/Time 6/11/01 6:45
<u>Analysis</u>		<u>Method</u>	<u>Results</u> Qual	Detection Limit	<u>Units</u>	AnalysisDate/Time	<u>Analyst</u>
Chloromethane		524.2	<0.35000	0.35000	ug/L	6/14/01 10:39	ТА
Chromium		200.7	< 0.0020	0.002	mg/L	6/21/01 13:48	LH
Cis-1,2-Dichloroethe	ne	524.2	<0.03000	0.03000	ug/L	6/14/01 10:39	ТА
Color		110.3	20	1	PtCo units	6/12/01 12:40	DW
Conditional Gross Al	pha	900.0	19.0	7.20000	pCi/L	6/16/01 0:00	FRC
Conductivity		120.1	6660	0.1	umhos/cm	7/2/01 12:30	DW
Copper		200.7	< 0.0024	0.0024	mg/L	6/21/01 13:48	LH
Corrosivity		SM2330B	(+)0.07	N/A	NONE	6/12/01 15:06	LH
Cyanide, Total		4500CNE	< 0.006	0.006	mg/L	6/14/01 14:30	ТА
Dalapon		515.1	< 0.625	0.625	ug/L	6/18/01 20:43	ТА
Detergents (MBAS)		5540C	0.028	0.02000	mg/L	6/13/01 12:00	ТА
Di(2-ethylhexyl)adiip	oate	525.2	< 0.600	0.600	ug/L	6/14/01 0:20	ТА
Di(2-ethylhexyl)phth	alate	525.2	< 1.32	1.32	ug/L	6/14/01 0:20	ТА
Dibromochlorometha	ne	524.2	< 0.270	0.27000	ug/L	6/14/01 10:39	ТА
Dibromomethane		524.2	<0.03000	0.03000	ug/L	6/14/01 10:39	ТА
Dicamba		515.1	< 0.0250	0.0250	ug/L	6/18/01 20:43	TA
Dichlorodiflouromet	hane	524.2	<0.5000	0.50000	ug/L	6/14/01 10:39	ТА
Dieldrin		508	< 0.0270	0.0270	ug/L	6/15/01 7:07	ТА
Diethylphthalate		625	<5.04	5.04	ug/L	6/15/01 21:02	ТА
Dimethylphthalate		625	<5.08	5.08	ug/L	6/15/01 21:02	TA
Di-n-butylphthalate		625	<4.07	4.07	ug/L	6/15/01 21:02	ТА

•

Page: 5 of 8

Client Project: Cooper City Lab Project: N0106203 Report Date: 07/10/01

	ple Description zone				mple Source aund Water	Sample Date/Time 6/11/01 6:45
<u>Analysis</u>	<u>Method</u>	<u>Results</u> Qual	Detection Limit	<u>Units</u>	AnalysisDate/Time	<u>Analyst</u>
Di-n-octylphthalate	625	<2.47	2.47	ug/L	6/15/01 21:02	ТА
Dinoseb	515.1	< 0.125	0.125	ug/L	6/18/01 20:43	ТА
Dioxin	SW8468280	<0.46	0.46000	ng/L	6/20/01 0:00	STL
Diquat	549.1	< 4	4	ug/L	6/18/01 6:57	ТА
Endothall	548.1	< 5	5	ug/L	6/14/01 18:31	ТА
Endrin	508	< 0.0100	0.0100	ug/L	6/15/01 7:07	ТА
Ethylbenzene	524.2	<0.47000	0.47000	ug/L	6/14/01 10:39	ТА
Ethylene Dibromide	504.1	< 0.0100	0.0100	ug/L	6/14/01 19:10	ТА
Fluoride	340.2	1.1	0.1	mg/L	6/12/01 14:16	DP
Glyphosate	547	< 2.40	2.40	ug/L	6/18/01 5:47	ТА
Heptachlor	508	< 0.0540	0.0540	ug/L	6/15/01 7:07	ТА
Heptachlor Epoxide	508	< 0.0245	0.0245	ug/L	6/15/01 7:07	ТА
Hexachlorobenzene	508	< 0.0100	0.0100	ug/L	6/15/01 7:07	ТА
Hexachlorocyclopentadiene	508	< 0.0200	0.0200	ug/L	6/15/01 7:07	ТА
Iron	200.7	< 0.0600	0.0600	mg/L	6/21/01 13:48	LH
Isophorone	625	< 7.37	7.37	ug/L	6/15/01 21:02	ТА
Lead	SM3113B	< 0.010	0.010	mg/L	6/27/01 9:03	LH
Lindane	508	< 0.0240	0.0240	ug/L	6/15/01 7:07	ТА
Manganese	200.7	0.008	0.0002	mg/L	6/21/01 13:48	LH
Mercury	245.1	< 0.001	0.001	mg/L	6/13/01 13:39	LH
Methomyl	531.1	< 0.254	0.254	ug/L	6/20/01 7:02	TA

Page: 6 of 8

Client Project: Cooper City Lab Project: N0106203 Report Date: 07/10/01

<u>Lab ID</u> N0106203-01	Sample Description upper zone grab				n ple Source nd Water	Sample Date/Time 6/11/01 6:45
<u>Analysis</u>	Method	<u>Results</u> <u>Oual</u>	Detection Limit	<u>Units</u>	AnalysisDate/Time	<u>Analyst</u>
Methoxychlor	508	< 0.250	0.250	ug/L	6/15/01 7:07	ТА
Methylene Chloride	524.2	<0.31000	0.31000	ug/L	6/14/01 10:39	TA
Methyl-Tert-Butyl -Et	her 524.2	<0.27000	0.27000	ug/L	6/14/01 10:39	ТА
Metolachlor	507	< 0.500	0.500	ug/L	6/15/01 7:07	ТА
Metribuzin	507	< 0.120	0.120	ug/L	6/15/01 7:07	ТА
Naphthalene	625	<5.08	5.08	ug/L	6/15/01 21:02	TA
Nickel	200.7	< 0.002	0.002	mg/L	6/21/01 13:48	LH
Nitrate+Nitrite-N	353.2	<0.05	0.05	mg/L	6/18/01 13:30	NL
Nitrate-N	353.2	< 0.05	0.05	mg/L	6/13/01 11:30	DW
Nitrite-N	354.1	<0.05	0.01	mg/L	6/12/01 14:00	NL
Nitrogen, Organic	351.2/350.3	0.19	0.05	mg/L	6/13/01 13:35	DH
Nitrogen, Total Kjelds	hl 351.2	0.65	0.05	mg/L	7/13/01 13:35	DH
Odor	140.1	1.4	1	TON	6/11/01 14:30	DW
Oxamyl (Vydate)	531.1	< 1.13	1.13	ug/L	6/20/01 7:02	ТА
РСВ	508	< 0.250	0.250	ug/L	6/15/01 7:07	ТА
Pentachlorophenol	515.1	< 0.0545	0.0545	ug/L	6/18/01 20:43	TA
рН	150.1	7.95	0.01	std units	6/11/01 15:00	сс
Phenanthrene	625	<5.08	5.08	ug/L	6/15/01 21:02	TA
Phenol	625	<3.06	3.06	ug/L	6/15/01 21:02	ТА
Phenolics, Total	420.1	<0.004	0.00400	mg/L	6/27/01 13:38	TA
Phosphorus, Total	6010B	0.040	0.010	mg/L	6/12/01 16:21	LH

Page: 7 of 8

Client Project: Cooper City Lab Project: N0106203 Report Date: 07/10/01

Lab ID N0106203-01	Sample Description upper zone grab				nple Source and Water	Sample Date/Time 6/11/01 6:45
<u>Analysis</u>	Method	<u>Results</u> <u>Oual</u>	Detection Limit	<u>Units</u>	AnalysisDate/Time	<u>Analyst</u>
Picloram	515.1	< 0.250	0.250	ug/L	6/18/01 20:43	ТА
Propachlor	508	< 0.380	0.380	ug/L	6/15/01 7:07	ТА
Radium 226	903.1	15.6	0.10000	pCi/L	6/26/01 0:00	FRC
Radium 228	Ra-05	<1.0	1.00000	pCi/L	6/26/01 0:00	FRC
Selenium	SM3113B	<0.4	0.4	mg/L	6/27/01 15:56	LH
Silver	200.7	< 0.002	0.002	mg/L	6/21/01 13:48	LH
Simazine	507	< 0.176	0.176	ug/L	6/15/01 7:07	ТА
Sodium	200.7	973	0.700	mg/L	6/21/01 13:48	LH
Styrene	524.2	<0.47000	0.47000	ug/L	6/14/01 10:39	ТА
Sulfate	300.0	1720	15	mg/L	6/19/01 17:00	DW
Tetrachloroethene	524.2	<0.21000	0.21000	ug/L	6/14/01 10:39	ТА
Thallium	SM3113B	<0.020	0.020	mg/L	6/26/01 13:56	LH
Toluene	524.2	<0.41000	0.41000	ug/L	6/14/01 10:39	ТА
Total Coliform, MF	9222B	Absent	n/a	col/100ml	6/11/01 13:40	DP
Total Dissolved Solid	s 160.1	4100	5	mg/L	6/11/01 15:00	СС
Total THM	524.2	< 0.360	0.36000	ug/L	6/14/01 10:39	та
Toxaphene	508	< 0.500	0.500	ug/L	6/15/01 7:07	ТА
trans-1,2-Dichloroethe	ene 524.2	<0.12000	0.12000	ug/L	6/14/01 10:39	ТА
Trichloroethene	524.2	<0.02000	0.02000	ug/L	6/14/01 10:39	TA
Trichloroflouromethar	ne 524.2	<0.28000	0.28000	ug/L	6/14/01 10:39	ТА
Vinyl Chloride	524.2	<0.29000	0.29000	ug/L	6/14/01 10:39	TA

•

Page: 8 of 8

Client Project: Cooper City Lab Project: N0106203 Report Date: 07/10/01

<u>Lab ID</u> N0106203-01	Sample De upper zone grab					nple Source und Water	Sample Date/Time 6/11/01 6:45
<u>Analysis</u> Xylenes		<u>Method</u> 524.2	<u>Results</u> <u>Oual</u> <0.24000	Detection Limit 0.24000	<u>Units</u> ug/L	<u>AnalysisDate/Time</u> 6/14/01 10:39	<u>Analyst</u> TA
Zinc		200.7	< 0.004	0.004	mg/L	6/21/01 13:48	LH

Approved by:

Comments:

٨._ a.

Amended Final Report

Craig Toler/Lab Director Laura Sullivan/QA Officer Kathrine Bartkiewicz/Lab Supervisor

Lower Monitor Zone Background Water Quality

•

TABLE PRIMARY DRINKING WATER STANDARDS

Analytical Results for Cooper City (Lower Monitoring Zone)

Parameter	Units	Maximum Contaminant Level	Lab Result	Detection Limit	Analysis Date	Method
		norganic Com	pounds			
Antimony	mg/L	0.006	< 0.001	0.001	6/21/01	SM3113B
Arsenic	mg/L	0.05	< 0.0056	0.0056	6/21/01	200.7
Asbestos	MFL	7	< 0.170***	0.17	6/26/01	100.2
Barium	mg/L	2	< 0.0002	0.000	6/21/01	200.7
Beryllium	mg/L	0.004	0.0032	0.0016	6/21/01	200.7
Cadmium	mg/L	0.005	< 0.0004	0.0004	6/21/01	200.7
Chromium	mg/L	0.1	< 0.002	0.002	6/21/01	200.7
Cyanide	mg/L	0.2	<0.020	0.02	6/14/01	4500CNE
Fluoride	mg/L	4.0	0.9	0.100	6/12/01	340.2
Lead	mg/L	0.015	0.019	0.01	6/27/01	SM3113B
Метсигу	mg/L	0.002	< 0.001	0.001	6/13/01	245.1
Nickel	mg/L	0.1	< 0.002	0.002	6/21/01	200.7
Nitrate	mg/L as N	10	< 0.05	0.05	6/18/01	353.2
Nitrite	mg/L as N	1	<0.01	0.01	6/12/01	354.1
Total Nitrate & Nitrite	mg/L as N	10	< 0.05	0.05	6/18/01	353.2
Selenium	mg/L	0.05	<0.4	0.4	6/27/01	SM3113B
Sodium	mg/L	160	8200	35	6/21/01	200.7
Thallium	mg/L	0.002	< 0.020	0.02	6/26/01	SM3113B
	Pesticides	& Polychlorin	ated Compo	unds		
2,4,5-TP (Silvex)	mg/L	0.05	<0.0250*	0.025	6/18/01	515.1
2,4-D	mg/L	0.07	<0.362*	0.362	6/18/01	515.1
Alachlor	mg/L	0.002	<0.0625*	0.0625	6/15/01	507
Atrazine	mg/L	0.003	<0.625*	0.625	6/15/01	507
Benzo (a) pyrene	mg/L	0.0002	<0.0400*	0.04	6/13/01	525.2
Carbofuran	mg/L	0.04	<0.900*	0.9	6/19/01	531.1
Chlordane	mg/L	0.002	<0.500*	0.5	6/15/01	508
Dalapon	mg/L	0.2	<0.625*	0.625	6/18/01	515.1
Di (2-ethylhexyl) adipate	mg/L	0.4	<0.600*	0.6	6/13/01	525.2
Di (2-ethylhexyl) phthalate	mg/L	0.006	<1.32*	1.32	6/13/01	525.2
.2-Dibromo-3-chloropropane	mg/L	0.0002	<0.0200*	0.0200	6/14/01	504
Dinoseb	mg/L	0.007	<0.125*	0.125	6/18/01	515.1
Dioxin (2, 3, 7, 8, -TCDD)	mg/L	0.0000003	<0.240**	0.24	6/20/01	SW8468280
Diquat	mg/L	0.02	<4*	4	6/18/01	549.1
Endothall	mg/L	0.1	<5*	5	6/14/01	548.1
Endrin	mg/L	0.002	<0.0100*	0.0100	6/15/01	508
Ethylene dibromide (EDB)	mg/L	0.00002	<0.0100*	0.0100	6/14/01	504.1
Slyphosate	mg/L	0.7	<2.40*	2.40	6/13/01	547
Ieptachlor	mg/L	0.0004	<0.0540*	0.0540	6/15/01	508
Heptachlor epoxide	mg/L	0.0002	<0.0245*	0.0245	6/15/01	508
Iexachlorobenzene	mg/L	0.001	<0.0100*	0.0100	6/15/01	508
Iexcachlorocyclopentadiene	mg/L	0.05	<0.0200*	0.0200	6/15/01	508
indane	mg/L	0.0002	<0.0240*	0.0240	6/15/01	508
Methoxychlor	mg/L	0.04	<0.250*	0.250	6/15/01	508
Dxamyl (vydate)	mg/L	0.2	<1.13*	1.13	6/19/01	531.1
entachlorophenol	mg/L	0.001	<0.0545*	0.0545	6/18/01	515.1
Picloram	mg/L	0.5	<0.250*	0.250	6/18/01	515.1
olychlorinated biphenyl (PCB)	mg/L	0.0005	<0.250*	0.250	6/15/01	508
imazine	mg/L	0.004	<0.176*	0.176	6/15/01	507
Toxaphene	mg/L	0.003	<0.500*	0.500	6/15/01	508

mg/L - milligrams per liter

MFL- million fibers per liter greater than 10 microns

TABLE (Continued) PRIMARY DRINKING WATER STANDARDS

Analytical Results for Cooper City (Lower Monitoring Zone)

Parameter	Units	Maximum Contaminant Level	Lab Result	Detection Limit	Analysis Date	Method
	Vola	atile Organic C	ompounds			
1,1,1-Trichloroethane	mg/L	0.2	<0.21000*	0.21000	6/14/01	524.2
1,1,2-Trichloroethane	mg/L	0.005	<0.23000*	0.23000	6/14/01	524.2
1,1-Dichloroethylene	mg/L	0.007	<0.02000*	0.02000	6/14/01	524.2
1,2,4-Trichlorobenzene	mg/L	0.07	<0.22000*	0.22000	6/14/01	524.2
1,2-Dichlorethane	mg/L	0.003	<0.02000*	0.02000	6/14/01	524.2
1,2-Dichloropropane	mg/L	0.005	<0.33000*	0.33000	6/14/01	524.2
Benzene	mg/L	0.001	<0.05000*	0.05000	6/14/01	524.2
Carbon tetrachloride	mg/L	0.003	<0.29000*	0.29000	6/14/01	524.2
cis-1,2,-Dichloroethylene	mg/L	0.07	<0.03000*	0.03000	6/14/01	524.2
Dichloromethane	mg/L	0.005	<0.31000*	0.31000	6/14/01	524.2
Ethylbenzene	mg/L	0.7	<0.47000*	0.47000	6/14/01	524.2
Monochlorobenzene	mg/L	0.1	< 0.23000*	0.23000	6/14/01	524.2
o-Dichlorobenzene	mg/L	0.6	<0.05000*	0.05000	6/14/01	524.2
para-Dichlorobenzene	mg/L	0.075	<0.02000*	0.02000	6/14/01	524.2
Styrene	mg/L	0.1	<0.47000*	0.47000	6/14/01	524.2
Tetrachloroethylene	mg/L	0.003	<0.21000*	0.21000	6/14/01	524.2
Toluene	mg/L	1	<0.41000*	0.41000	6/14/01	524.2
Total tribalomethanes (TTHM)	mg/L	0.10	<0.360*	0.360	6/14/01	524.2
trans-1,2-Dichlorethylene	mg/L	0.1	<0.12000*	0.12000	6/14/01	524.2
Trichloroethylene	mg/L	0.003	<0.02000*	0.02000	6/14/01	524.2
Vinyl chloride	mg/L	0.001	<0.29000*	0.29000	6/14/01	524.2
Xylenes (total)	mg/L	10	< 0.24000	0.24000	6/14/01	524.2
	P	hysical Charac	teristics			
Turbidity	NTU	1				L
	Micro	biological Ch	aracteristics			
Total Coliform		<5% positive	present	n/a	6/11/01	9222B
Fecal Coliform		<1				l
		Radionucli	des			·•
Combined Radium 226 & 228	pCi/L	5	4.3/1.1	0.1/1.0	6/26/01	EPA 903.1/Ra-05
Gross Alpha	pCi/L	15	115	46.1	6/16/01	900.0
Man-made beta & photon emitters	mRem/yr	4				
		Treatment Che	emicals			
Acrylamide		0.05% @1				
Epichlorohydrin		0.01% @20				

mg/L - milligrams per liter

•

pCi/L - picocurie per liter

m/Rem/yr - millirem per year

NTU - nephelometric turbidity unit

TABLE (Continued) SECONDARY DRINKING WATER STANDARDS

Analytical Results for Cooper City (Lower Monitoring Zone)

Parameter	Units	Maximum Contaminant Level	Lab Result	Detection Limit	Analysis Date	Method
Aluminum	mg/L	0.2	< 0.040	0.040	6/21/01	200.7
Chloride	mg/L	250	14200	15	6/19/01	300.0
Color	color units	15	93	1	6/12/01	110.3
Copper	mg/L	1	0.0029	0.0024	6/21/01	200.7
Fluoride	mg/L	2	0.9	0.100	6/12/01	340.2
Foaming Agents	mg/L	0.5	0.038	0.02	6/13/01	5540C
Iron	mg/L	0.3	0.315	0.06	6/27/01	SM3113B
Manganese	mg/L	0.05	0.0335	0.0002	6/27/01	200.7
Odor	TON	3	1.00	1	6/11/01	140.1
pH		6.5-8.5	7.42	0.01	6/11/01	150.1
Silver	mg/L	0.1	< 0.002	0.002	6/21/01	200.7
Sulfate	mg/L	250	1890	15	6/19/01	300.0
Total Dissolved Solids (TDS)	mg/L	500	29600	5	6/11/01	160.1
Zinc	mg/L	5	0.009	0.004	6/21/01	200.7

mg/L - milligrams per liter

TON - threshold odor number

*results are in mg/L

**results are in ng/L

***results are in mill/L

Page: 1 of 8

Client Project: Cooper City Lab Project: N0106218 Report Date: 08/03/01

Youngquist Brothers, Inc. 15465 Pine Ridge Road Ft. Myers, FL 33908

<u>Lab ID</u> N0106218-01	Sample Description lower zone grab				mple Source bund Water	Sample Date/Time 6/11/01 7:00	<u>e</u>
<u>Analysis</u>	Method	<u>Results</u> Qual	Detection Limit	<u>Units</u>	AnalysisDate/Time	Analyst	

Analysis	Methon	<u>Results</u> <u>Vuai</u>	Detection Linit	<u>Units</u>	AnalysisDate/1 mie	Analyst
1,1,1,2-Tetrachloroethane	524.2	<0.13000	0.13000	ug/L	6/14/01 10:16	ТА
1,1,1-Trichloroethane	524.2	<0.21000	0.21000	ug/L	6/14/01 10:16	ТА
1,1,2,2-Tetrachloroethane	524.2	<0.33000	0.33000	ug/L	6/14/01 10:16	ТА
1,1,2-Trichloroethane	524.2	<0.23000	0.23000	ug/L	6/14/01 10:16	ТА
1,1-Dichloroethane	524.2	<0.02000	0.02000	ug/L	6/14/01 10:16	ТА
1,1-Dichloroethene	524.2	<0.02000	0.02000	ug/L	6/14/01 10:16	ТА
1,1-Dichloropropene	524.2	<0.06000	0.06000	ug/L	6/14/01 10:16	TA
1,2,3-Trichloropropane	524.2	<0.39000	0.39000	ug/L	6/14/01 10:16	ŤA
1,2,4-Trichlorobenzene	524.2	<0.22000	0.22000	ug/L	6/14/01 10:16	TA
1,2-Dibromo-3-chloropropane	504.1	< 0.0200	0.0200	ug/L	6/14/01 18:50	TA
1,2-Dichlorobenzene	524.2	<0.05000	0.05000	ug/L	6/14/01 10:16	TA
1,2-Dichloroethane	524.2	<0.02000	0.02000	ug/L	6/14/01 10:16	TA
1,2-Dichloropropane	524.2	<0.33000	0.33000	ug/L	6/14/01 10:16	TA
1,3-Dichlorobenzene	524.2	<0.20000	0.20000	ug/L	6/14/01 10:16	TA
1,3-Dichloropropane	524.2	<0.05000	0.05000	ug/L	6/14/01 10:16	ТА
1,3-Dichloropropene	524.2	<0.21000	0.21000	ug/L	6/14/01 10:16	TA
1,4-Dichlorobenzene	524.2	<0.02000	0.02000	ug/L	6/14/01 10:16	TA
2,2-Dichloropropane	524.2	<0.38000	0.38000	ug/L	6/14/01 10:16	ТА

Page: 2 of 8

Client Project: Cooper City Lab Project: N0106218 Report Date: 08/03/01

<u>Lab ID</u> N0106218-01	Sample De lower zone grab	escription				nple Source and Water	Sample Date/Time 6/11/01 7:00
<u>Analysis</u>		Method	<u>Results</u> Qual	Detection Limit	<u>Units</u>	<u>AnalysisDate/Time</u>	<u>Analyst</u>
2,4,5-TP (Silvex)		515.1	< 0.0250	0.0250	ug/L	6/18/01 20:15	ТА
2,4,6-Trichlorophenol	l	625	< 4.46	4.46000	ug/L	6/15/01 20:17	ТА
2,4-D		515.1	< 0.362	0.362	ug/L	6/18/01 20:15	ТА
2,4-Dinitrotoluene		625	< 4.78	4.78000	ug/L	6/15/01 20:17	ТА
2-Chlorophenol		625	< 4.10	4.10000	ug/L	6/15/01 20:17	ТА
2-Chlorotoluene		524.2	<0.33000	0.33000	ug/L	6/14/01 10:16	ТА
2-Methyl-4,6-dinitrop	henol	625	< 4	4	ug/L	6/15/01 20:17	ТА
3-Hydroxycarbofuran		531.1	< 1.13	1.13	ug/L	6/19/01 14:05	TA
4-Chlorotoluene		524.2	<0.29000	0.29000	ug/L	6/14/01 10:16	TA
Alachlor		507	< 0.0625	0.0625	ug/L	6/15/01 6:41	ТА
Aldicarb		531.1	< 1.04	1.04	ug/L	6/19/01 14:05	ТА
Aldicarb Sulfone		531.1	< 0.647	0.647	ug/L	6/19/01 14:05	ТА
Aldicarb Sulfoxide		531.1	< 0.850	0.850	ug/L	6/19/01 14:05	ТА
Aldrin		508	< 0.0525	0.0525	ug/L	6/15/01 6:41	ТА
Aluminum		200.7	< 0.040	0.040	mg/L	6/21/01 10:01	LH
Ammonia-N		350.3	0.38	0.05	mg/L	6/11/01 16:15	DH
Anthracene		625	<5	5	ug/L	6/15/01 20:17	ТА
Antimony		SM3113B	< 0.001	0.001	mg/L	6/21/01 13:49	LH
Arsenic		200.7	< 0.0056	0.0056	mg/L	6/21/01 10:01	LH
Asbestos		100.2	< 0.170	0.170	mill/L	6/26/01 0:00	EMSL
Atrazine		507	< 0.625	0.625	ug/L	6/15/01 6:41	ТА

•

Page: 3 of 8

Client Project: Cooper City Lab Project: N0106218 Report Date: 08/03/01

<u>Lab ID</u> N0106218-01	Sample De lower zone grab	<u>escription</u>				mple Source und Water	Sample Date/Time 6/11/01 7:00
<u>Analysis</u>		<u>Method</u>	<u>Results</u> <u>Qual</u>	Detection Limit	<u>Units</u>	AnalysisDate/Time	<u>Analyst</u>
Barium		200.7	< 0.0002	0.0002	mg/L	6/21/01 10:01	LH
Benzene		524.2	<0.05000	0.05000	ug/L	6/14/01 10:16	ТА
Benzo(a)pyrene		525.2	< 0.0400	0.0400	ug/L	6/13/01 23:50	ТА
Beryllium		200.7	0.0032	0.0016	mg/L	6/21/01 10:01	LH
Biochemical Oxygen (5)	Demand	405.1	1	1	mg/L	6/11/01 16:45	сс
Bromobenzene		524.2	<0.05000	0.05000	ug/L	6/14/01 10:16	ТА
Bromodichlorometha	ne	524.2	< 0.360	0.360	ug/L	6/14/01 10:16	ТА
Bromoform		524.2	< 0.310	0.310	ug/L	6/14/01 10:16	ТА
Bromomethane		524.2	<0.29000	0.29000	ug/L	6/14/01 10:16	ТА
Butachlor		507	< 0.500	0.500	ug/L	6/15/01 6:41	ТА
Butylbenzylphthalate		625	< 2.55	2.55000	ug/L	6/15/01 20:17	ТА
Cadmium		200.7	< 0.0004	0.0004	mg/L	6/21/01 10:01	LH
Carbaryl		531.1	< 0.599	0.599	ug/L	6/19/01 14:05	ТА
Carbofuran		531.1	< 0.900	0.900	ug/L	6/19/01 14:05	ТА
Carbon Tetrachloride		524.2	<0.29000	0.29000	ug/L	6/14/01 10:16	ТА
Chemical Oxygen De	mand	410.4	410	60	mg/L	6/26/01 14:00	DW
Chlordane		508	< 0.500	0.500	ug/L	6/15/01 6:41	ТА
Chloride		300.0	14200	15	mg/L	6/19/01 17:00	DW
Chlorobenzene		524.2	<0.23000	0.23000	ug/L	6/14/01 10:16	ТА
Chloroethane		524.2	<0.29000	0.29000	ug/L	6/14/01 10:16	ТА
Chloroform		524.2	< 0.160	0.160	ug/L	6/14/01 10:16	ТА

•

Page: 4 of 8

Client Project: Cooper City Lab Project: N0106218 Report Date: 08/03/01

Lab ID Samp N0106218-01 lower z grab	le Description one				n ple Source Ind Water	Sample Date/Time 6/11/01 7:00
<u>Analysis</u>	<u>Method</u>	<u>Results</u> Qual	Detection Limit	<u>Units</u>	<u>AnalysisDate/Time</u>	<u>Analyst</u>
Chloromethane	524.2	<0.35000	0.35000	ug/L	6/14/01 10:16	TA
Chromium	200.7	< 0.002	0.002	mg/L	6/21/01 10:01	LH
Cis-1,2-Dichloroethene	524.2	<0.03000	0.03000	ug/L	6/14/01 10:16	ТА
Color	110.3	93	1	PtCo units	6/12/01 12:40	DW
Conditional Gross Alpha	900.0	115.	46.10000	pCi/L	6/16/01 0:00	FRC
Conductivity	120.1	40800	0.1	umhos/cm	7/2/01 12:30	DW
Copper	200.7	0.0029	0.0024	mg/L	6/21/01 10:01	LH
Corrosivity	SM2330B	(-) 4.58	N/A	NONE	6/12/01 15:06	LH
Cyanide, Total	4500CNE	< 0.020	0.020	mg/L	6/14/01 14:30	TA
Dalapon	515.1	< 0.625	0.625	ug/L	6/18/01 20:15	ТА
Detergents (MBAS)	5540C	0.038	0.02000	mg/L	6/13/01 12:00	ТА
Di(2-ethylhexyl)adiipate	525.2	< 0.600	0.600	ug/L	6/13/01 23:50	TA
Di(2-ethylhexyl)phthalate	525.2	< 1.32	1.32	ug/L	6/13/01 23:50	TA
Dibromochloromethane	524.2	< 0.270	0.270	ug/L	6/14/01 10:16	TA
Dibromomethane	524.2	<0.03000	0.03000	ug/L	6/14/01 10:16	TA
Dicamba	515 .1	< 0.0250	0.0250	ug/L	6/18/01 20:15	ТА
Dichlorodiflouromethane	524.2	<0.50000	0.50000	ug/L	6/14/01 10:16	TA
Dieldrin	508	< 0.0270	0.0270	ug/L	6/15/01 6:41	ТА
Diethylphthalate	625	< 4.96	4.96000	ug/L	6/15/01 20:17	ТА
Dimethylphthalate	625	< 5	5	ug/L	6/15/01 20:17	ТА
Di-n-butylphthalate	625	< 4.01	4.01000	ug/L	6/15/01 20:17	TA

Page: 5 of 8

Client Project: Cooper City Lab Project: N0106218 Report Date: 08/03/01

Lab ID N0106218-01	Sample Description lower zone grab			<u>Sa</u> Gro	mple Source und Water	Sample Date/Time 6/11/01 7:00
<u>Analysis</u>	Method	<u>Results</u> Qual	Detection Limit	<u>Units</u>	AnalysisDate/Time	<u>Analyst</u>
Di-n-octylphthalate	625	< 2.43	2.43000	ug/L	6/15/01 20:17	ТА
Dinoseb	515.1	< 0.125	0.125	ug/L	6/18/01 20:15	ТА
Dioxin	SW8468280	< 0.240	0.240	ng/L	6/20/01 0:00	STL
Diquat	549.1	< 4	4	ug/L	6/18/01 6:35	ТА
Endothall	548.1	< 5	5	ug/L	6/14/01 18:12	ТА
Endrin	508	< 0.0100	0.0100	ug/L	6/15/01 6:41	ТА
Ethylbenzene	524.2	<0.47000	0.47000	ug/L	6/14/01 10:16	ТА
Ethylene Dibromide	504. i	< 0.0100	0.0100	ug/L	6/14/01 18:50	TA
Fluoride	340.2	0.9	0.1	mg/L	6/12/01 14:16	DP
Glyphosate	547	< 2.40	2.40	ug/L	6/13/01 9:49	ТА
Heptachlor	508	< 0.0540	0.0540	ug/L	6/15/01 6:41	ТА
Heptachlor Epoxide	508	< 0.0245	0.0245	ug/L	6/15/01 6:41	ТА
Hexachlorobenzene	508	< 0.0100	0.0100	ug/L	6/15/01 6:41	ТА
Aexachlorocyclopenta	diene 508	< 0.0200	0.0200	ug/L	6/15/01 6:41	ТА
Iron	200.7	0.315	0.06000	mg/L	6/21/01 10:01	LH
Isophorone	625	< 7.26	7.26000	ug/L	6/15/01 20:17	ТА
Lead	SM3113B	0.019	0.010	mg/L	6/27/01 9:03	LH
Lindane	508	< 0.0240	0.0240	ug/L	6/15/01 6:41	ТА
Manganese	200.7	0.0335	0.0002	mg/L	6/21/01 10:01	LH
Mercury	245.1	< 0.001	0.001	mg/L	6/13/01 13:39	LH
Methomyl	531.1	< 0.254	0.254	ug/L	6/19/01 14:05	ТА

•

Page: 6 of 8

Client Project: Cooper City Lab Project: N0106218 Report Date: 08/03/01

!

Lab ID N0106218-01	Sample D lower zone grab	<u>Description</u>			<u>San</u> Grou	n ple Source Ind Water	Sample Date/Time 6/11/01 7:00
<u>Analysis</u>		<u>Method</u>	<u>Results</u> <u>Qual</u>	Detection Limit	<u>Units</u>	AnalysisDate/Time	<u>Analyst</u>
Methoxychlor		508	< 0.250	0.250	ug/L	6/15/01 6:41	ТА
Methylene Chloride		524.2	<0.31000	0.31000	ug/L	6/14/01 10:16	ТА
Methyl-Tert-Butyl -E	ther	524.2	<0.27000	0.27000	ug/L	6/14/01 10:16	ТА
Metolachlor		507	< 0.500	0.500	ug/L	6/15/01 6:41	ТА
Metribuzin		507	< 0.120	0.120	ug/L	6/15/01 6:41	ТА
Naphthalene		625	<5	5	ug/L	6/15/01 20:17	ТА
Nickel		200.7	< 0.002	0.002	mg/L	6/21/01 10:01	LH
Nitrat c+ Nitrite-N		353.2	< 0.05	0.05	mg/L	6/18/01 13:30	NL
Nitrate-N		353.2	< 0.05	0.05	mg/L	6/18/01 13:30	DW
Nitrite-N		354.1	<0.05	0.01	mg/L	6/12/01 14:00	NL
Nitrogen, Organic		351.2/350.3	0.29	0.05	mg/L	6/13/01 13:35	DH
Nitrogen, Total Kjeld	ahl	351.2	0.67	0.05	mg/L	7/13/01 13:35	DH
Odor		140.1	1	1	TON	6/11/01 14:30	DW
Oxamyl (Vydate)		531.1	< 1.13	1.13	ug/L	6/19/01 14:05	ТА
РСВ		508	< 0.250	0.250	ug/L	6/15/01 6:41	ТА
Pentachlorophenol		515.1	< 0.0545	0.0545	ug/L	6/18/01 20:15	ТА
рН		150.1	7.42	0.01	std units	6/11/01 15:00	CC
Phenanthrene		625	<5	5	ug/L	6/15/01 20:17	ТА
Phenol		625	< 3.01	3.01000	ug/L	6/15/01 20:17	ТА
Phenolics, Total		420.1	<0.004	0.00400	mg/L	6/27/01 13:38	ТА
Phosphorus, Total		6010 B	0.027	0.010	mg/L	6/12/01 16:21	LH

Page: 7 of 8

Client Project: Cooper City Lab Project: N0106218 Report Date: 08/03/01

<u>Lab ID</u> N0106218-01	Sample Description lower zone grab				aple Source nd Water	Sample Date/Time 6/11/01 7:00
<u>Analysis</u>	Method	<u>Results</u> <u>Oual</u>	Detection Limit	<u>Units</u>	AnalysisDate/Time	<u>Analyst</u>
Picloram	515.1	< 0.250	0.250	ug/L	6/18/01 20:15	ТА
Propachlor	508	< 0.380	0.380	ug/L	6/15/01 6:41	ТА
Radium 226	903.1	4.3	0.10000	pCi/L	6/26/01 0:00	FRC
Radium 228	Ra-05	1.1	1.00000	pCi/L	6/26/01 0:00	FRC
Selenium	SM3113B	< 0.4	0.4	mg/L	6/27/01 15:56	LH
Silver	200.7	< 0.002	0.002	mg/L	6/21/01 10:01	LH
Simazine	507	< 0.176	0.176	ug/L	6/15/01 6:41	ТА
Sodium	200.7	8200	35	mg/L	6/21/01 10:01	LH
Styrene	524.2	<0.47000	0.47000	ug/L	6/14/01 10:16	ТА
Sulfate	300.0	1890	15	mg/L	6/19/01 17:00	DW
Tetrachloroethene	524.2	<0.21000	0.21000	ug/L	6/14/01 10:16	ТА
Thallium	SM3113B	<0.020	0.020	mg/L	6/26/01 13:56	LH
Toluene	524.2	<0.41000	0.41000	ug/L	6/14/01 10:16	TA
'Total Coliform, MF	9222B	Present	n/a	col/100ml	6/11/01 13:40	DP
Total Dissolved Solid	s 160.1	29600	5	mg/L	6/11/01 15:00	сс
Total THM	524.2	< 0.360	0.360	ug/L	6/14/01 10:16	TA
Toxaphene	508	< 0.500	0.500	ug/L	6/15/01 6:41	TA
trans-1,2-Dichloroethe	ene 524.2	<0.12000	0.12000	ug/L	6/14/01 10:16	TA
Trichloroethene	524.2	<0.02000	0.02000	ug/L	6/14/01 10:16	TA
Trichloroflourometha	ne 524.2	<0.28000	0.28000	ug/L	6/14/01 10:16	ТА
Vinyl Chloride	524.2	<0.29000	0.29000	ug/L	6/14/01 10:16	ТА

Page: 8 of 8

Client Project: Cooper City Lab Project: N0106218 Report Date: 08/03/01

<u>Lab ID</u> N0106218-01	Sample De lower zone grab	escription				nple Source und Water	Sample Date/Time 6/11/01 7:00
<u>Analysis</u> Xylenes		<u>Method</u> 524.2	<u>Results</u> <u>Oual</u> <0.24000	Detection Limit 0.24000	<u>Units</u> ug/L	<u>AnalysisDate/Time</u> 6/14/01 10:16	<u>Analyst</u> TA
Zinc		200.7	0.009	0.004	mg/L	6/21/01 10:01	LH

Approved by:

•

Comments:

へ 1A

Amended Final Report

Craig Joler/Lab Director Laura Sullivan/QA Officer Kathrine Bartkiewicz/Lab Supervisor

Plant Effluent Background Water Quality

Wastewater Effluent Composite Water Quality

Cooper City 40340 Concentrate Disposal System

Maria Allpiste

4650 SW 51st Street Davie, Florida 33314

Mr. Don Long City of Cooper City 11791 SW 49th Street Cooper City, Florida 33330

Site Location/Project City of Cooper City

Telephone 954-316-8792

February 15, 2001 FDER CompQap# 970157 HRS Certification#E86563

Sample ID: WW Comb Effluent Comp Collected: 01/08/01 Received: 01/09/01 Collected by: Cris Cummings

		INORGANIC 62-550.310 (PWS030)	(1)		· · · · · · · · · · · · · · · · · · ·		
Parameter ID	Name(MCL mg/L)	Analysis Result (mg/L)	Method	MDL	Date	Analyst ID	Lab ID
1005	Arsenic (.05)	<0.005	SM3113B	0.005	01/31/01	E56565	01023
1010	Barium (2)	0.010	SM3113B	0.005	01/29/01	E56565	01023
1015	Cadmium (.005)	<0.0010	SM3113B	0.001	01/31/01	E56565	01023
1020	Chromium (0.1)	< 0.005	SM3113B	0.005	01/19/01	E56565	01023
1024	Cyanide (0.2)	< 0.004	EPA375.4	0.004	01/31/01	E56565	01023
1025	Fluoride (4)	0.75	SM4500F	0.01	01/09/01	E86563	01023
1030	Lead (0.15)	< 0.005	SM3113B	0.005	01/31/01	E56565	01023
1035	Mercury (0.002)	< 0.001	EPA245.1	0.001	11/03/00	E56565	01023
1036	Nickel (0.1)	< 0.005	SM3113B	0.005	01/29/01	E56565	01023
1040	Nitrate (10)	5.05	SM4500NO3E	0.010	01/09/01	E86563	01023
1041	Nitrite (1)	0.02	SM4500NO2B	0.010	01/09/01	E86563	01023
1045	Selenium (0.05)	<0.005	SM3113B	0.005	02/01/01	E56565	01023
1052	Sodium (160)	47	SM3113B	1.0	01/31/01	E56565	01023
1074	Antimony (0.006)	< 0.005	SM3113B	0.005	01/29/01	E56565	01023
1075	Beryllium (0.004)	<0.001	SM3113B	0.001	01/29/01	E56565	01023
1085	Thailium (0.002)	< 0.001	EPA200.9	0.001	01/29/01	E56565	01023

***Work Subcontracted to Outside Labs Denoted by HRS Cert ID in analyst Field

Qualifier following result conforms to FAC 17-160 table 7

ND - Not Detectable

1

Maria Allpiste, Laboratory Director_

Maria Allpiste

4650 SW 51st Street Pavie, Florida 33314

> Mr. Don Long City of Cooper City 11791 SW 49th Street Cooper City, Florida 33330

Site Location/Project City of Cooper City Telephone 954-316-8792

February 15, 2001 FDER CompQap# 970157 HRS Certification#E86563

Sample ID: WW Comb Effluent Comp Collected: 01/08/01 Received: 01/09/01 Collected by: Cris Cummings

SECONDARY CHEMICAL ANALYSIS 62-550.320 (PWS031)											
Parameter ID	Name(MCL mg/L)	Analysis Result (mg/L)	Method	MDL	Date	Analyst ID	Lab ID				
1002	Aluminium (0.2)	0.056	SM3113B	0.20	01/31/01	E56565	01023				
1017	Chloride (250)	143	EPA325.3	1.0	01/09/01	E86563	01023				
1022	Copper (1)	<0.005	SM3113B	0.005	01/12/01	E56565	01023				
1025	Fluoride (2.0)	0.75	SM4500F	0.01	01/09/01	E86563	01023				
1028	Iron (0.3)	0.24	SM3113B	0.05	01/29/01	E56565	01023				
1032	Manganese (0.05)	0.010	SM3113B	0.005	01/12/01	E56565	01023				
1050	Silver (0.1)	<0.005	SM3113B	0.005	01/12/01	E56565	01023				
1055	Sulfate (250)	368	EPA300.0	1.0	01/09/01	E86563	01023				
1095	Zinc (5)	0.83	SM3113B	0.010	01/31/01	E86565	01023				
1905	Color (15 color units)	46.6	SM2021B	1.0	01/15/01	E86563	01023				
1920	Odor (3 threshold odor number)	<1.0	EPA140.1	1.0	01/09/01	E86563	01023				
1925	pH (6.5 - 8.5)	7.07	EPA150.1	1.0	01/09/01	E86563	01023				
1930	Total Dissolved Solids (500)	810	EPA160.1	10	01/11/01	E86563	01023				
2905	Foaming Agents (0.5)	0.094	EPA160.1	0.01	01/11/01	E86565	01023				

*** Work Subcontracted to Outside Labs Denoted by HRS Cert ID in analyst Field

Qualifier following result conforms to FAC 17-160 table 7

ND - Not Detectable

Maria Allpiste, Laboratory Director

ł,

Maria Allpiste

4650 SW 51st Street Davie, Florida 33314

> Mr. Don Long City of Cooper City 11791 SW 49th Street Cooper City, Florida 33330

Site Location/Project City of Cooper City Telephone 954-316-8792

February 15, 2001 FDER CompQap# 970157 HRS Certification#E86563

Sample ID: WW Comb Effluent Comp Collected: 01/08/01 Received: 01/09/01 Collected by: Cris Cummings

RADIOCHEMICAL ANALYSIS 62-550.310(5) (PWS033)											
Parameter ID	Name(MCL mg/L)	Analysis Result (pCi/L)	Method	Detection Limits	Date	Analyst ID	Lab ID				
4000	Radium 226	0.5±0.07	EPA903.1	N/A	01/23/01	E84025	01023				
4000	Radium 228	0.0±0.7	EERFRa-05	N/A	01/28/01	E84025	01023				
4000	Gross Alpha	12.5±2.1	EPA900.0	N/A	01/20/01	E84025	01023				

Work Subcontracted to Outside Labs Denoted by HRS Cert ID in analyst Field ***Qualifier following result conforms to FAC 17-160 table 7

ND - Not Detectable

Maria Allpiste, Laboratory Director_

Ł

Maria Allpiste

4650 SW 51st Street Navie, Florida 33314

> Mr. Don Long City of Cooper City 11791 SW 49th Street Cooper City, Florida 33330

Site Location/Project City of Cooper City Telephone 954-316-8792

February 15, 2001 FDER CompQap# 970157 HRS Certification#E86563

Sample ID: WW Comb Effluent Comp Collected: 01/08/01 Received: 01/09/01 Collected by: Cris Cummings

	VOLATILE ORGANIC ANALYSIS 62-550.310(2)(b) (PWS028)										
Parameter ID	Name(MCL ug/L)	Analysis Result (ug/L)	Method	MDL	Date	Analyst ID	Lab ID				
2378	1,2,4-Trichlorobenzene (70)	<0.5	502.2 502.2	0.5	01/11/01	E56565 E56565	01023				
2380 2955	cis-1,2-Dichloroethylene (70) Xylenes (10,000)	<0.5	502.2	0.5	01/11/01	E56565	01023				
2964 2968	Dichloromethane (5) o-Dichlorobenzene (600)	<0.5	502.2 502.2	0.5	01/11/01 01/11/01	E56565 E56565	01023 01023				
2969 2976	para-Dichlorobenzene (75) Vinyl chloride (1)	<0.5 <0.5	502.2 502.2	0.5	01/11/01	E56565 E56565	01023 01023				
2977 2979	1,1-Dichloroethylene (7) trans-1,2-Dichloroethylene (100)	<0.5 <0.5	502.2 502.2	0.5	01/11/01	E56565 E56565	01023				
2980	1,2-Dichloroethane (3)	<0.5	502.2 502.2	0.5	01/11/01	E56565 E56565	01023				
2981 2982	1,1,1-Trichloroethane (200) Carbon tetrachloride (3)	<0.5	502.2	0.5	01/11/01	E56565	01023				
2983 2984	1,2-Dichloropropane (5) Trichloroethylene (3)	<0.5	<u>502.2</u> 502.2	0.5	01/11/01	E56565 E56565	01023 01023				
2985	1,1,2-Trichloroethane (5)	<0.5 <0.5	502.2 502.2	0.5	01/11/01	E56565 E56565	01023				
2987 2989	Tertrachloroethylene (3) Monochlorobenzene (100)	<0.5	502.2	0.5	01/11/01	E56565	01023				
2990 2991	Benzene (1) Toluene (1,000)	<0.5	502.2 502.2	0.5	01/11/01	E56565 E56565	01023				
2992 2996	Ethylbenzene (700) Styrene (100)	<0.5 <0.5	502.2 502.2	0.5	01/11/01	E56565 E56565	01023 01023				

***Work Subcontracted to Outside Labs Denoted by HRS Cert ID in analyst Field

Qualifier following result conforms to FAC 17-160 table 7

ND - Not Detectable

Maria Allpiste Laboratory Director

4

Maria Allpiste

4650 SW 51st Street Davie, Florida 33314

> Mr. Don Long City of Cooper City 11791 SW 49th Street Cooper City, Florida 33330

Site Location/Project City of Cooper City Telephone 954-316-8792

February 15, 2001 FDER CompQap# 970157 HRS Certification#E86563

Sample ID: WW Comb Effluent Comp Collected: 01/08/01 Received: 01/09/01 Collected by: Cris Curmings

		CB CHEMI 0.310(2)(C) WS029)		SIS			
Parameter ID	Name(MCL ug/L)	Analysis Result (ug/L)	Method	MD L	Date	Analyst	Lab ID
2005	Endrin (2)	<0.20	EPA525.2	0.20	01/16/01	E56565	01023
2010	Lindane (.2)	<0.05	EPA525.2	0.05	01/16/01	E56565	01023
2015	Methoxychlor (40)	<0.20	EPA525.2	0.20	01/16/01	E56565	01023
2020	Toxaphene (3)	<0.20	EPA525.2	0.20	01/16/01	E56565	01023
2031	Dalapon (200)	<0.20	EPA515.1	0.20	01/19/01	E56565	01023
2032	Diquat (20)	<1.0	EPA549.1	1.0	01/15/01	E84129	01023
2033	Endothall (100)	<10	EPA548.1	10	01/15/01	E84129	01023
2034	Glyphosate (700)	<10	EPA547	10	01/17/01	E84129	01023
2035	Di(2-ethylhexyl)adipate (400)	<0.40	EPA525.2	0.40	01/16/01	E56565	01023
2036	Oxamyl (Vydate) (200)	<0.5	EPA531.1	0.5	01/24/01	E84129	01023
2037	Simazine (4)	<0.20	EPA525.2	0.20	01/16/01	E56565	01023
2039	Di(2-ethylhexyl)phthalate (6)	<0.40	EPA525.2	0.40	01/16/01	E56565	01023
2040	Picloram (500)	<0.25	EPA515.1	0.25	01/19/01	E56565	01023
2041	Dinoseb (7)	<0.12	EPA515.1	0.12	01/19/01	E56565	01023
2042	Hexachlorocyclopentadiene (50)	<0.20	EPA525.2	0.20	01/16/01	E56565	01023
2046	Carbofuran (40)	<0.5	EPA531.1	0.5	01/24/01	E84129	01023
2050	Atrazine (3)	<0.20	EPA525.2	0.20	01/16/01	E56565	01023
2051	Alachlor (2)	<0.40	EPA525.2	0.40	01/16/01	E56565	01023
2063	2,3,7,8-TCDD (Dioxin) (.00003)						
2065	Heptachlor (.4)	<0.20	EPA525.2	0.20	01/16/01	E56565	01023
2067	Heptachlor Epoxide (.2)	<0.20	EPA525.2	0.20	01/16/01	E56565	01023
2105	2,4-D (70)	<0.40	EPA515.1	0.40	01/19/01	E56565	01023

Work Subcontracted to Outside Labs Denoted by HRS Cert ID in analyst Field ***Qualifier following result conforms to FAC 17-160 table 7

ND - Not Detectable

Maria Allpiste, Laboratory Director_

5

Maria Allpiste

4650 SW 51st Street Davie, Florida 33314

Mr. Don Long City of Cooper City 11791 SW 49th Street Cooper City, Florida 33330

Site Location/Project City of Cooper City

Telephone 954-316-8792

February 15, 2001 FDER CompQap# 970157 HRS Certification#E86563

Sample ID: WW Comb Effluent Comp Collected: 01/08/01 Received: 01/09/01 Collected by: Cris Cummings

1

6

		PCB CHEMIC 550.310(2)(C) (PWS029)	CAL ANALYS	SIS			\
Parameter ID	Name(MCL ug/L)	Analysis Result (ug/L)	Method	MDL	Date	Analyst	Lab ID
2110 ,	2,4,5-TP (Silvex) (50)	<0.20	EPA515.1	0.20	01/19/01	E56565	00622
2274	Hexachlorobenzene (1)	<0.20	EPA525.2	0.20	01/16/01	E56565	00622
2306	Benzo(a)pyrene (.2)	<0.20	EPA525.2	0.20	01/16/01	E56565	00622
2326	Pentachlorophenol (1)	<0.20	EPA515.1	0.20	01/19/01	E56565	00622
2383	PCB (.5)	<0.10	EPA508	0.10	01/19/01	E56565	00622
2931	Dibromochloropropane (.2)	<0.05	EPA504.1	0.05	01/19/01	E56565	00622
2931	Ethylene dibromide	<0.50	EPA504.1	0.50	01/19/01	E56565	00622
2946	Chlordane (2)	<0.20	EPA525.1	0.20	01/16/01	E56565	00622

*** Work Subcontracted to Outside Labs Denoted by HRS Cert ID in analyst Field ***Qualifier following result conforms to FAC 17-160 table 7*** ND - Not Detectable

Maria Allpiste, Laboratory Director

Ł

Maria Allpiste

4650 SW 51st Street Davie, Florida 33314

> Mr. Don Long City of Cooper City 11791 SW 49th Street Cooper City, Florida 33330

Site Location/Project City of Cooper City Telephone 954-316-8792

February 15, 2001 FDER CompQap# 970157 HRS Certification#E86563

Sample ID: WW Comb Effluent Comp Collected: 01/08/01 Received: 01/09/01 Collected by: Cris Cummings

GROUND WATER MONITORING PARAMETERS

	BAS	E/NEU	FRAL OR	GANICS		
PARAMETER	RESULT	UNITS	METHOD	DETECTION LIMIT	DATE ANALY.	ANALYST
Anthracene	<5.0	ug/L	EPA8270	5.0	01/29/01	E56565
Butylbenzylphthalate	<5.0	ug/L	EPA8270	5.0	01/29/01	E56565
Dimethylphthalate	<5.0	ug/L	EPA8270	5.0	01/29/01	E56565
Naphalene	<5.0	ug/L	EPA8270	5.0	01/29/01	E56565
Phenanthrene	<5.0	Ug/L	EPA8270	5.0	01/29/01	E56565

	P	ESTICI	DES AND	PCBs		
PARAMETER	RESULT	UNITS	METHOD	DETECTION LIMIT	DATE ANALY.	ANALYST
Aldrin	<0.5	ug/L	EPA608	0.5	01/29/01	E56565
Dieldrin	<0.5	ug/L	EPA608	0.5	01/29/01	E56565
Dioxin (screen)	<5.0	ug/L	EPA608	5.0	01/29/01	E56565

***BDL; Indicates analyte is Below Detection Limit

***Work Subcontracted to Outside Lab Denoted by HRS Cert ID in Analyst Field

Laboratory Manager:

Our Laboratory is certified by Florida HRS (Lab#E86563). All data were determined in accordance with <u>Standard Methods for the Examination of Water and Wastewater 18th</u>Edition 1992.

ł

Maria Allpiste

4650 SW 51st Street Davie, Florida 33314

Mr. Don Long City of Cooper City 11791 SW 49th Street Cooper City, Florida 33330

Site Location/Project City of Cooper City

Telephone 954-316-8792

February 15, 2001 FDER CompQap# 970157 HRS Certification#E86563

Sample ID: WW Comb Effluent Comp Collected: 01/08/01 Received: 01/09/01 Collected by: Cris Cummings

GROUND WATER MONITORING PARAMETERS

	ACID EXTRACTABLES							
PARAMETER	RESULT	UNITS	METHOD	DETECTION LIMIT	DATE ANALY.	ANALYST		
2-Chlorophenol	<5.0	ug/L	EPA8270	5.0	01/29/01	E56565		
Phenol	<5.0	ug/L	EPA8270	5.0	01/29/01	E56565		
2,4,6-trichlorophenol	<5.0	ug/L	EPA8270	5.0	01/29/01	E56565		

OTHER										
PARAMETER	RESULT	UNITS	METHOD	DETECTION LIMIT	DATE ANALY.	ANALYST				
Conductivity	1200	Umhoms /cm	EPA120.1	0.01	01/09/01	MA				
Biological oxygen demand	BDL	mg/L	SM5210B	2.0	01/09/01	MA				
Chemical oxygen demand	36	mg/L	SM5210B	2.0	01/19/01	МА				
Temperature	23.1	C° .	EPA170.1	0.01	01/09/01	MA				

***BDL; Indicates analyte is Below Detection Limit

***Work Subcontracted to Outside Lab Denoted by HRS Cert ID in Analyst Field

Laboratory Manager: <u></u>

Our Laboratory is certified by Florida HRS (Lab#E86563). All data were determined in accordance with <u>Standard Methods</u> for the Examination of Water and Wastewater 18th Edition 1992.

1

Maria Allpiste

4650 SW 51st Street Davie, Florida 33314

Mr. Don Long City of Cooper City 11791 SW 49th Street Cooper City, Florida 33330

Site Location/Project City of Cooper City

Telephone 954-316-8792

February 15, 2001 FDER CompQap# 970157 HRS Certification#E86563

Sample ID: WW Comb Effluent Comp Collected: 01/08/01 Received: 01/09/01 Collected by: Cris Cummings

TRIHALOMETHANE ANALYSIS 62-550.310(2)(a) (PWS027)										
Parameter ID	Name(MCL mg/L)	Analysis Result (ug/L)	Method	MDL	Date	Analyst ID	Lab ID			
2950	Bromodichloromethane	<0.5	EPA502.2	0.5	01/11/01	E56565	01023			
2950	Dibromochloromethane	<0.5	EPA502.2	0.5	01/11/01	E56565	01023			
2950 '	Bromoform	<0.5	EPA502.2	0.5	01/11/01	E56565	01023			
2950	Chloroform	<0.5	EPA502.2	0.5	01/11/01	E56565	01023			
2950	Total Trihalomethanes	<0.5	EPA502.2	0.5	01/11/01	E56565	01023			

Work Subcontracted to Outside Labs Denoted by HRS Cert ID in analyst Field ***Qualifier following result conforms to FAC 17-160 table 7 ND - Not Detectable

Maria Allpiste, Laboratory Director_

Ļ

Maria Allpiste

4650 SW 51st Street Pavie, Florida 33314

Mr. Don Long City of Cooper City 11791 SW 49th Street Cooper City, Florida 33330

Site Location/Project City of Cooper City

Telephone 954-316-8792

February 15, 2001 FDER CompQap# 970157 HRS Certification#E86563

Sample ID: WW Comb Effluent Comp Collected: 01/08/01 Received: 01/09/01 Collected by: Cris Cummings

UNREGULATED GROUP I ANALYSIS 62-550.405 (PWS035)

Parameter ID	Name(MCL ug/L)	Analysis Result (ug/L)	Method	MDL	Date	Lab ID	
2043	Aldicarb Sulfoxide	< 0.50	531.1	0.50	01/24/01	E84129	
2045	Aldicarb Sulfone	<0.50	531.1	0.50	01/24/01	E84129	
2044	Aldicarb	<0.50	531.1	0.50	01/24/01	E84129	

ND - Not Detectable

*** Work Subcontracted to Outside Labs Denoted by HRS Cert ID in analyst Field

Qualifier following result conforms to FAC 17-160 table 7

ND - Not Detectable

Maria Allpiste, Laboratory Director

ł,

Maria Allpiste

4650 SW 51st Street Davie, Florida 33314

> Mr. Don Long City of Cooper City 11791 SW 49th Street Cooper City, Florida 33330

Site Location/Project City of Cooper City Telephone 954-316-8792

February 15, 2001 FDER CompQap# 970157 HRS Certification#E86563

Sample ID: WW Comb Effluent Comp Collected: 01/08/01 Received: 01/09/01 Collected by: Cris Cummings

GROUND WATER MONITORING PARAMETERS

INORGANICS											
PARAMETER	RESULT	UNITS	METHOD	DETECTION LIMIT	DATE ANALY.	ANALYST					
Nitrogen (Ammonia)	5.95	mg/L	SM4500NH3C	0.01	01/15/01	МА					
Nitrogen (Organic)	0.32	mg/L	CAL	0.10	02/13/01	МА					
Nitrogen (Kjeldahl)	6.27	mg/L	EPA351.3	0.10	01/16/01	МА					
Phosphorus, Total	0.85	Mg/L	SM4500P-E	0.02	01/11/01	МА					

VOLATILE ORGANICS										
PARAMETER	RESULT	UNITS	METHOD	DETECTION LIMIT	DATE ANALY.	ANALYST				
Chloroethane	<0.5	ug/L	EPA502.2	0.5	01/11/01	E56565				
Chloroform	<0.5	ug/L	EPA502.2	0.5	01/11/01	E56565				
Para-Dichlorobenzene	<0.5	ug/L	EPA502.2	0.5	01/11/01	E56565				
1,2-Dichloroethylene	<0.5	uġ/L	EPA502.2	0.5	01/11/01	E56565				

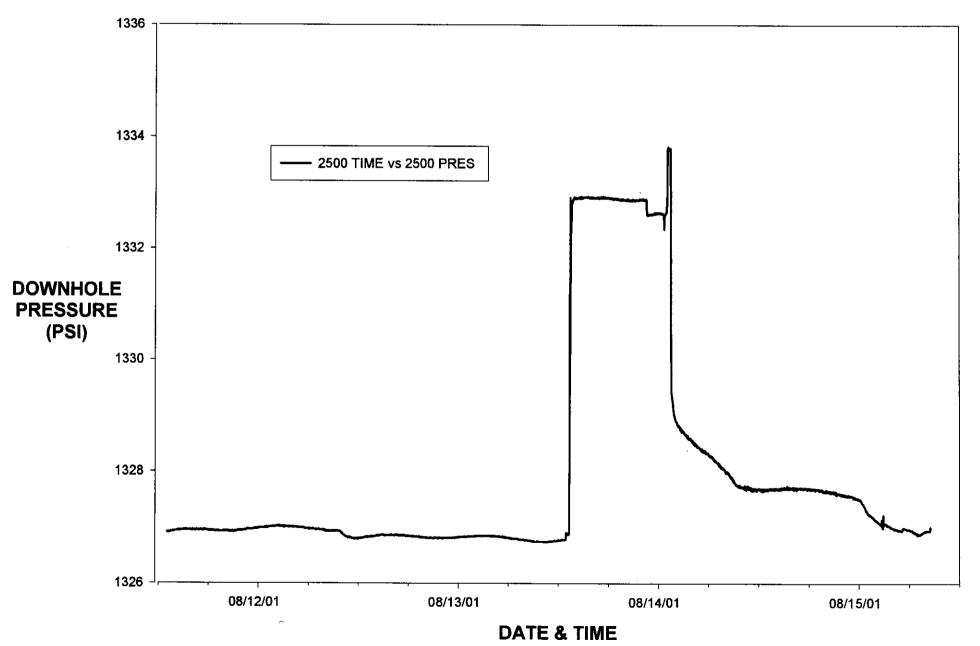
***BDL;Indicates analyte is Below Detection Limit

***Work Subcontracted to Outside Lab Denoted by HRS Cert ID in Analyst Field

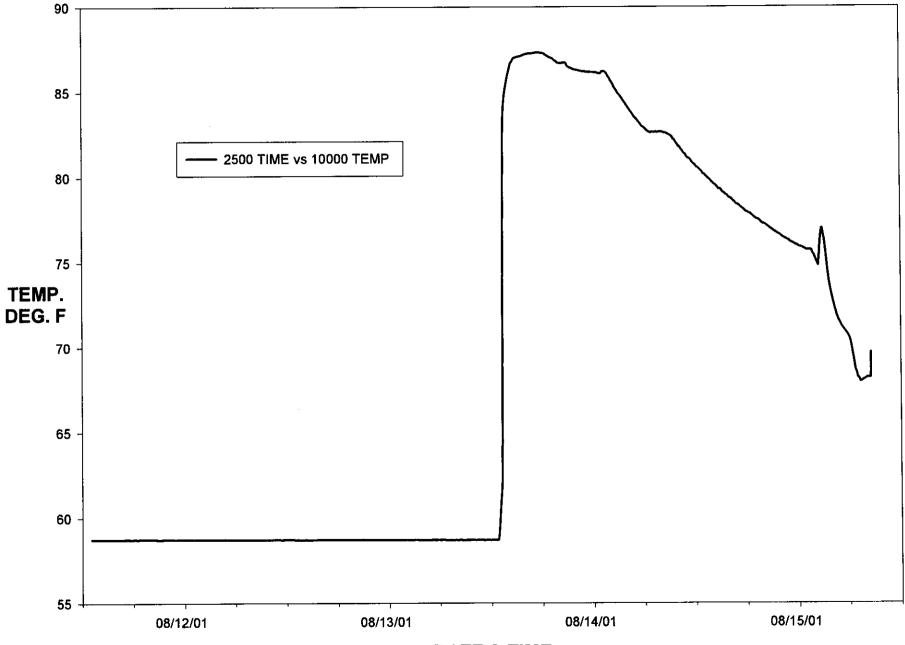
Laboratory Manager:

Our Laboratory is certified by Florida HRS (Lab#E86563). All data were determined in accordance with Standard Methods for the Examination of Water and Wastewater 18th Edition 1992.

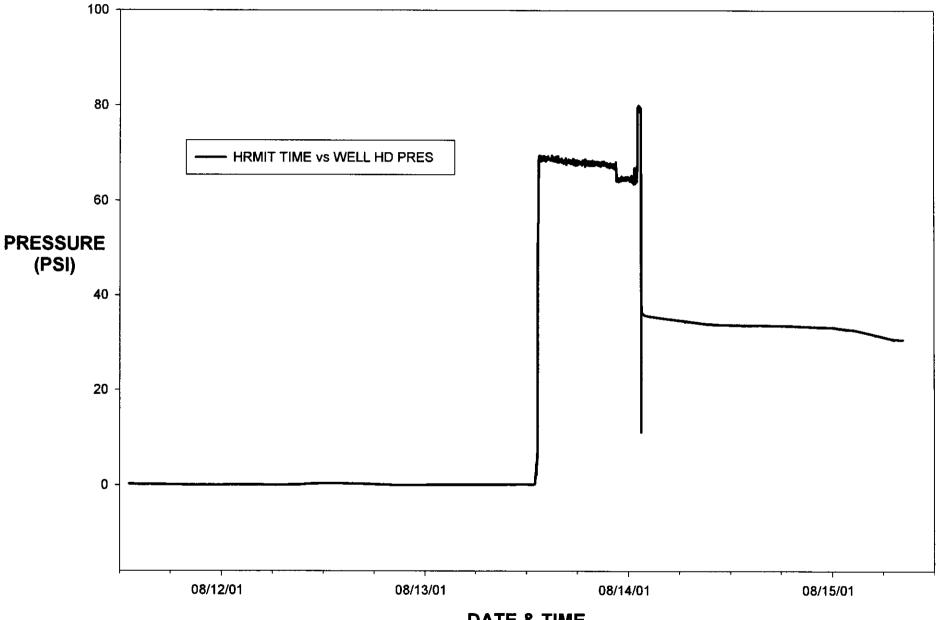
APPENDIX P INJECTION TEST DATA


.

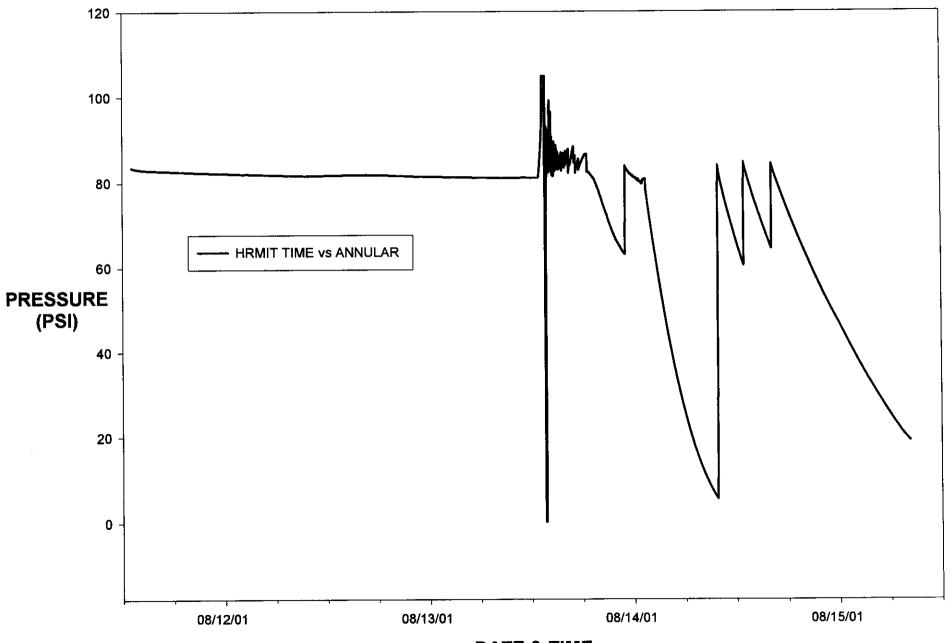
INJECTION TEST DATA


.

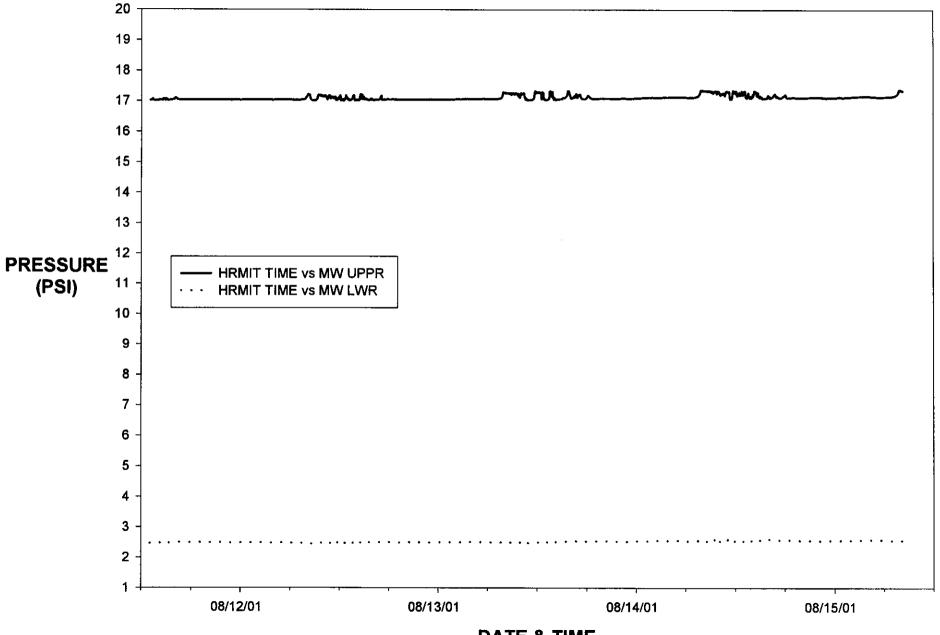
.


CCOPER CITY INJECTION WELL #1 DOWNHOLE PRESSURE

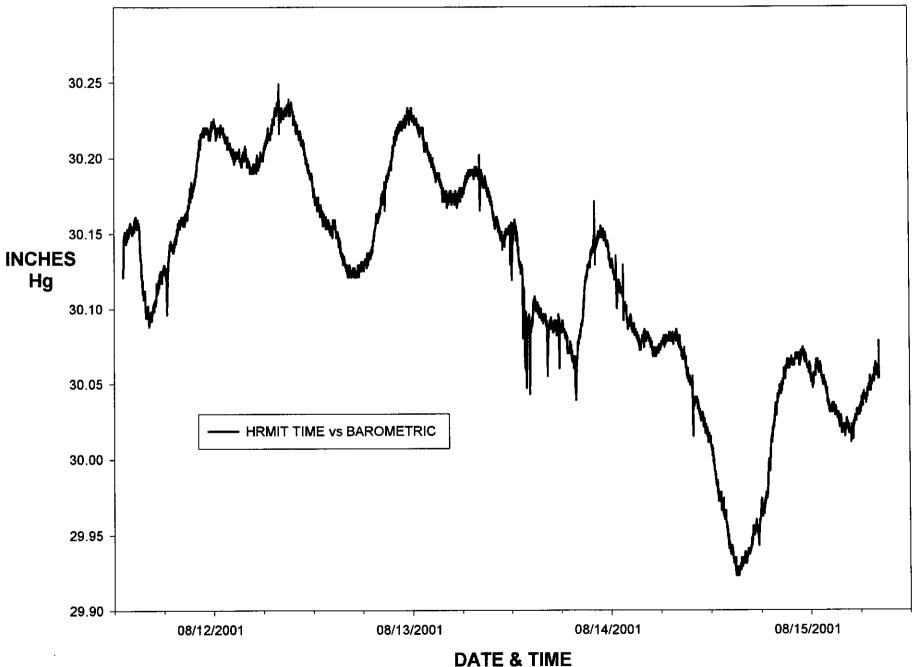
COOPER CITY INJECTION WELL #1 DOWNHOLE TEMPERATURE



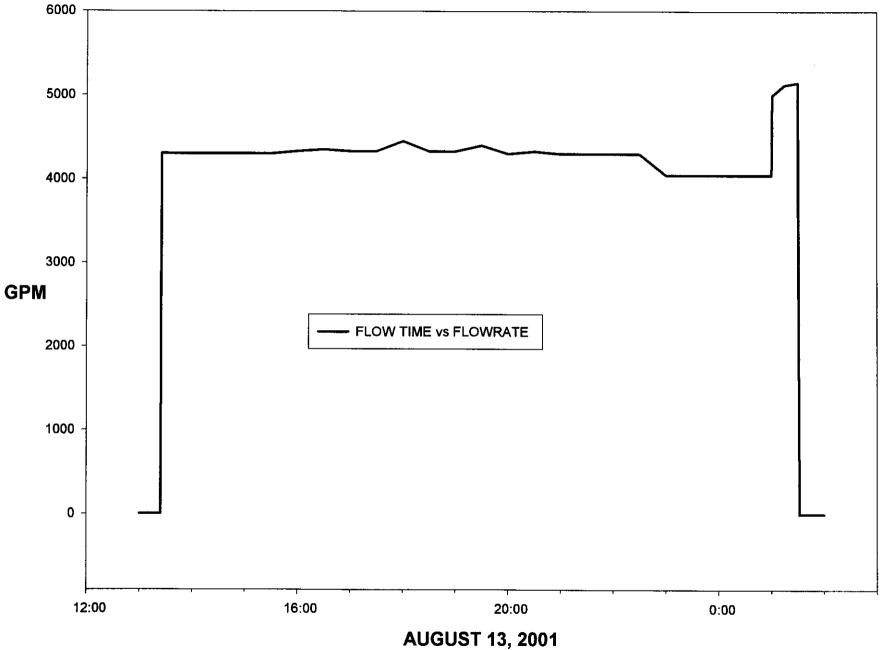
COOPER CITY INJECTION WELL #1 WELLHEAD PRESSURE


DATE & TIME

COOPER CITY INJECTION WELL #1 ANNULAR PRESSURE


DATE & TIME

COOPER CITY INJECTION WELL #1 MONITOR WELL PRESSURE


DATE & TIME

COOPER CITY INJECTION WELL #1 BAROMETRIC PRESSURE

COOPER CITY INJECTION WELL #1 INJECTION PHASE FLOWRATE

.

CITY of COOPER CITY INJECTION TEST DATA

Date/Time	Downhole Pressure (psi)	Downhole Temperature (deg F)	Wellhead Pressure (psi)	Upper Monitor Pressure (psi)	Lower Monitor Pressure (psi)	Barometric Pressure (inchs Hg)	Annular Pressure (psi)	Date/Time	Downhole Pressure (psi)	Downhole Temperature (deg F)	Welhead Pressure (psi)	Upper Monitor Pressure (psi)	Lower Monitor Pressure (psi)	Barometric Pressure (inchs Hg)	Annular Pressure (psi)
8/11/01 13:04:00	59.76 50.76	58.76	0.261	17.026	2.473	30.121	83.549	8/11/01 15:09:00	59.76	58.75	0.18	17.073	2.492	30.159 30.159	82.928
8/11/01 13:06:00 8/11/01 13:07:00	59.76 59.76	58.76 58.76	0.242	17.028 17.03	2.473 2.473	30.125 30.133	83.538 83.523	8/11/01 15:10:00 8/11/01 15:12:00	59.76 59.76	58.75 58.75	0.18 0.174	17.055 17.049	2.486 2.484	30.155	82.928 82.922
8/11/01 13:08:00 8/11/01 13:09:00	59.76 59.76	58.76 58.76	0.242 0.236	17.03 17.03	2.475 2.473	30.141 30.141	83.504 83.492	8/11/01 15:13:00 8/11/01 15:14:00	59.77 59.77	58.75 58.75	0.18 0.18	17.051 17.04	2.49 2.484	30.155 30.157	82.922 82.922
8/11/01 13:10:00 8/11/01 13:12:00	59.76 59.76	58.76 58.76	0.236 0.242	17.03 17.032	2.475 2.475	30.145 30.147	83.479 83.466	8/11/01 15:15:00 8/11/01 15:16:00	59.77 59.78	58.74 58.74	0.18 0.18	17.028 17.023	2.482 2.481	30.155 30.157	82.922 82.922
8/11/01 13:13:00	59.77	58.76	0.236	17.032	2.475	30.145	83.447	8/11/01 15:18:00	59.78	58.74	0.18	17.03	2.482 2.484	30.153	82.922
8/11/01 13:14:00 8/11/01 13:15:00	59.77 59.77	58.76 58.76	0.236 0.236	17.032 17.034	2.473 2.473	30.149 30.145	83.435 63.422	8/11/01 15:19:00 8/11/01 15:20:00	59.77 59.77	58.74 58.75	0.18 0.18	17.047 17.058	2.488	30.155 30.153	82.922 82.915
8/11/01 13:18:00 8/11/01 13:18:00	59.78 59.78	58.76 58.76	0.236	17.038 17.04	2.475 2.477	30.147 30.151	83.409 83.397	8/11/01 15:21:00 8/11/01 15:22:00	59.77 59.76	58.75 58.75	0.192 0.192	17.066 17.056	2.497 2.495	30.155 30.1 5 1	82.909 82.909
8/11/01 13:19:00 8/11/01 13:20:00	59.77 59.77	58.78 58.76	0.236	17.04 17.041	2.475 2.471	30.151 30.147	83.39 83.378	8/11/01 15:24:00 8/11/01 15:25:00	59.76 59.76	58.75 58.75	0.186 0.192	17.051 17.053	2.49 2.486	30.149 30.147	82.903 82.903
8/11/01 13:21:00	59.77	58.76	0.236	17.055	2.471	30.147	83.385	8/11/01 15:26:00	59.78	58.75	0.199	17.066	2.492	30.147	82.896
8/11/01 13:22:00 8/11/01 13:24:00	59.77 59.76	58.76 58.76	0.236 0.242	17.064 17.06	2.475 2.479	30.145 30.147	83.359 83.346	8/11/01 15:27:00 8/11/01 15:28:00	59.77 59.77	58.75 58.75	0.199 0.199	17.055 17.069	2.495 2.497	30.143 30.141	82.896 82.69
8/11/01 13:25:00 8/11/01 13:26:00	59.76 59.76	58.76 58.76	0.248	17.064 17.069	2.488 2.494	30.147 30.145	83.333 83.327	8/11/01 15:30:00 8/11/01 15:31:00	59.77 59.77	58.75 58.75	0.205 0.211	17.058 17.06	2.501 2.507	30.137 30.137	82.89 82.89
8/11/01 13:27:00 8/11/01 13:28:00	59.76 59.76	58.75 58.75	0.255 0.255	17.058 17.047	2.494 2.488	30.145 30.145	83.321 83.314	8/11/01 15:32:00 8/11/01 15:33:00	59.77 59.77	58.75 58.75	0.211 0.217	17.06 17.049	2.488 2.494	30.133 30.135	82.884 82.877
8/11/01 13:30:00 8/11/01 13:31:00	59.76 59.75	58.75 58.75	0.255	17.038 17.032	2.484	30.143	83.308	8/11/01 15:34:00	59.77 59.77	58.75	0.217	17.032	2.494	30.133	82.877
8/11/01 13:32:00	59.75	58.75	0.255	17.028	2.481	30.143 30.147	83.302 83.295	8/11/01 15:36:00 8/11/01 15:37:00	59.77	58.75 58.75	0.211 0.211	17.023 17.023	2.488 2.486	30.133 30.131	82.877 82.884
8/11/01 13:33:00 8/11/01 13:34:00	59.75 59.74	58,75 58,75	0.255 0.248	17.026 17.025	2.479 2.479	30.147 30.147	83.289 63.283	8/11/01 15:38:00 8/11/01 15:39:00	59.77 59.77	58.75 58.75	0.211 0.211	17.025 17.026	2.484 2.482	30.131 30.129	82.884 82.884
8/11/01 13:38:00 8/11/01 13:37:00	59.74 59.74	58.75 58.75	0.248 0.248	17.025 17.025	2.477 2.477	30.149 30.145	83.278 83.27	8/11/01 15:40:00 8/11/01 15:42:00	59.77 59.77	58.75 58.75	0.211 0.211	17.026 17.026	2.482 2.484	30.125 30.121	82.89 82.89
8/11/01 13:38:00	59.74	58.75	0.248	17.025	2.477	30.145	83.264	8/11/01 15:43:00	59.77	58.75	0.211	17.028	2.484	30.123	82.89
8/11/01 13:39:00 8/11/01 13:40:00	59.74 59.74	58.75 58.76	0.242 0.242	17.026 17.028	2.475 2.475	30.151 30.147	83.257 83.245	8/11/01 15:44:00 8/11/01 15:45:00	59.76 59.76	58.75 58.75	0.217 0.211	17.03 17.03	2.484 2.484	30.121 30.119	82.89 82.89
8/11/01 13:42:00 8/11/01 13:43:00	59.74 59.75	58.76 58.76	0.236	17.026 17.026	2.475 2.473	30.153 30.149	83.238 83.232	8/11/01 15:46:00 8/11/01 15:48:00	59.76 59.76	58.75 58.75	0.211 0.211	17.03 17.03	2.484 2.484	30.121 30.117	82.896 82.896
8/11/01 13:44:00 8/11/01 13:45:00	59.75 59.75	58.76 58.75	0.236 0.236	17.026 17.026	2.475 2.473	30.149 30.151	83.232 83.226	8/11/01 15:49:00 8/11/01 15:50:00	59.76 59.76	58.75 58.75	0.211 0.205	17.032 17.03	2.484 2.484	30.117 30.114	82.89 82.89
8/11/01 13:46:00 8/11/01 13:48:00	59.76	58.75	0.236	17.026	2.473	30.149	83.219	8/11/01 15:51:00	59.76	58.75	0.205	17.032	2.484	30.119	82.89
8/11/01 13:49:00	59.76 59.76	58.75 58.75	0.23 0.23	17.026 17.03	2.473 2.475	30.149 30.149	83.213 83.213	8/11/01 15:52:00 8/11/01 15:54:00	59.76 59.76	58.75 58.75	0.20 5 0.199	17.03 17.032	2.484 2.488	30.11 30.114	82.89 82.89
8/11/01 13:50:00 8/11/01 13:51:00	59.76 59.76	58.75 58.75	0.23 0.224	17.028 17.03	2.475 2.473	30.147 30.149	83.207 83.2	8/11/01 15:55:00 8/11/01 15:56:00	59.76 59.76	58.75 58.75	0.199 0.109	17.032 17.034	2.486	30.114 30.11	82.89 82.89
8/11/01 13:52:00 8/11/01 13:54:00	59.76 59.75	58.75 58.76	0.224 0.217	17.028 17.028	2.473 2.473	30.149 30.149	83.194 83.194	8/11/01 15:57:00 8/11/01 15:58:00	59.76 59.76	58.75 58.75	0.199 0.199	17.036 17.036	2.488 2.486	30,11 30,108	82.89 82.89
8/11/01 13:55:00	59.75	58.76	0.217	17.028	2.475	30.149	83.188	8/11/01 18:00:00	59.76	58.75	0.192	17.036	2.488	30.106	82.89
8/11/01 13:56:00 8/11/01 13:57:00	59.75 59.75	58.76 58.76	0.217 0.217	17.028 17.026	2.473 2.473	30.149 30.151	83.181 83.175	8/11/01 16:01:00 8/11/01 18:02:00	59.76 59.76	58.75 58.75	0.192 0.192	17.038 17.036	2.488 2.488	30.108 30.108	82.884 82.877
8/11/01 13:58:00 8/11/01 14:00:00	59.75 59.74	58.76 58.76	0.211 0.211	17.026 17.026	2.473 2.473	30.151 30.155	83.169 83.162	8/11/01 16:03:00 8/11/01 16:04:00	59.76 59.76	58.75 58.75	0.192 0.186	17.038 17.038	2.488 2.488	30.108 30.11	82.877 82.877
8/11/01 14:01:00 8/11/01 14:02:00	59.74 59.75	58.76 58.76	0.211 0.205	17.028 17.026	2.475 2.477	30.153 30.155	83.156 83.143	8/11/01 16:06:00 8/11/01 16:07:00	59.76 59.76	58.75 58.75	0.186 0.186	17.038 17.038	2.488 2.488	30.11 30.11	82.871 82.871
8/11/01 14:03:00 8/11/01 14:04:00	59.75	58.76	0.205	17.028	2.479	30.155	83.15	8/11/01 16:08:00	59.76	58.75	0.186	17.038	2.488	30.108	82.871
8/11/01 14:06:00	59.75 59.75	58.76 58.76	0.205 0.199	17.028 17.028	2.479 2.479	30.157 30.153	83.137 83.131	8/11/01 16:09:00 8/11/01 16:10:00	59.76 59.77	58.75 58.75	0.186 0.188	17.038 17.04	2.488 2.488	30.11 30.108	82.865 82.865
8/11/01 14:07:00 8/11/01 14:08:00	59.75 59.75	58.76 58.76	0.199 0.199	17.028 17.028	2.477 2.479	30.155 30.157	63.124 83.124	8/11/01 16:12:00 8/11/01 16:13:00	59.77 59.77	58.75 58.75	0.188 0.18	17.04 17.04	2.49 2.49	30.112 30.104	82.865 82.858
8/11/01 14:09:00 8/11/01 14:10:00	59.75 59.78	58.76 58.76	0.199 0.199	17.03 17.03	2.479 2.479	30.153 30.151	83.118 83.118	8/11/01 16:14:00 8/11/01 16:15:00	59.77 59.77	58.75 58.75	0.18 0.188	17.041 17.041	2.49 2.492	30.104 30.102	82.858 82.852
8/11/01 14:12:00 8/11/01 14:13:00	59.76 59.76	58.75	0.192	17.03	2.479	30.153	83.112	8/11/01 16:16:00	59.77	58.74	0.18	17.041	2.492	30.098	82,852
8/11/01 14:14:00	59.76	58.76 58.76	0.192	17.03 17.032	2.479 2.479	30.155 30.151	83.105 83.099	8/11/01 16:16:00 8/11/01 16:19:00	59.77 59.77	58.75 58.75	0.188 0.188	17.041 17.043	2.492 2.494	30.098 30.1	82.852 82.848
8/11/01 14:15:00 8/11/01 14:16:00	59.75 59.75	58.76 58.76	0.192 0.192	17.03 17.032	2.479 2.479	30.151 30.153	83.099 83.093	8/11/01 18:20:00 8/11/01 18:21:00	59.77 59.77	58.75 58.75	0.18 0.174	17.043 17.045	2.494 2.494	30.094 30.096	82.848 82.848
8/11/01 14:18:00 8/11/01 14:19:00	59.75 59.75	58.76 58.76	0.192 0.192	17.032 17.032	2.481 2.481	30.151 30.151	83.093 83.086	8/11/01 16:22:00 8/11/01 16:24:00	59.77 59.77	58.75 58.75	0.18 0.18	17.045 17.047	2.494 2.494	30.098 30.096	82.839 82.839
8/11/01 14:20:00 8/11/01 14:21:00	59.75	58.76	0.192	17.03	2.479	30.151	83.08	8/11/01 16:25:00	59.76	58.75	0.174	17.049	2,495	30.094	82.839
8/11/01 14:22:00	59.75 59.75	58.76 58.76	0.192 0.186	17.032 17.032	2.479 2.479	30.151 30.149	83.074 83.074	8/11/01 16:26:00 8/11/01 16:27:00	59.76 59.76	58.75 58.75	0.174 0.18	17.051 17.053	2.495 2.495	30.1 30.094	82.833 82.833
8/11/01 14:24:00 8/11/01 14:25:00	59.76 59.76	58.76 58.76	0.186 0.186	17.034 17.032	2.481 2.481	30.151 30.153	83.087 83.087	8/11/01 16:28:00 8/11/01 16:30:00	59.76 59.75	58.75 58.75	0.18 0.18	17.058 17.064	2.497 2.497	30.094 30.094	82.827 82.827
8/11/01 14:28:00 8/11/01 14:27:00	59.76 59.77	58.78 58.75	0.18 0.18	17.034 17.036	2.481 2.479	30.149 30.151	83.061 83.055	8/11/01 16:31:00 8/11/01 16:32:00	59.76 59.76	58.75 58.75	0.18 0.18	17.066 17.066	2.495 2.497	30.094 30.096	82.827 82.82
8/11/01 14:28:00	59.77	58.75	0.18	17.036	2.479	30.151	83.048	8/11/01 16:33:00	59.78	58.75	0.18	17.069	2.497	30.094	82.82
8/11/01 14:30:00 8/11/01 14:31:00	59.77 59.77	58.75 58.75	0.18	17.036	2.481 2.479	30.151 30.151	63.048 63.042	8/11/01 16:34:00 8/11/01 16:36:00	59.76 59.76	58.75 58.75	0.174 0.174	17.075 17.079	2.497 2.497	30.096 30.1	82.82 82.814
8/11/01 14:32:00 8/11/01 14:33:00	59.77 59.77	58.75 58.75	0.174 0.18	17.038 17.038	2.479 2.479	30.155 30.151	83.036 83.036	8/11/01 18:37:00 8/11/01 18:38:00	59.76 59.77	58.75 58.75	0.18 0.18	17.081 17.084	2.497 2.495	30.096 30.096	82.814 82.814
8/11/01 14:34:00 8/11/01 14:38:00	59.77 59.77	58.75 58.75	0.18 0.18	17.038 17.038	2.481 2.479	30.153 30.155	83.029 83.029	8/11/01 18:39:00 8/11/01 18:40:00	59.77 59.77	58.75 58.75	0.18 0.18	17.083 17.084	2.495 2.495	30.102 30.098	82.808 82.808
8/11/01 14:37:00 8/11/01 14:38:00	59.76 59.76	58.76 58.76	0.174 0.174	17.034 17.036	2.477 2.479	30.155 30.151	83.023 83.017	8/11/01 18:42:00 8/11/01 18:43:00	59.77 59.77	58.75 58.75	0.174 0.18	17.09 17.107	2.495 2.497	30.098	82.806
8/11/01 14:39:00	59.76	58.76	0.174	17.036	2.477	30.155	83.017	8/11/01 16:44:00	59.77	58.75	0.18	17.09	2.499	30.096 30.092	82.808 82.801
8/11/01 14:40:00 8/11/01 14:42:00	59.76 59.78	58.76 58.76	0.174 0.174	17.036 17.043	2.479 2.479	30.157 30.159	83.01 83.01	8/11/01 16:45:00 8/11/01 16:46:00	59.77 59.77	58.75 58.75	0.18 0.18	17.098 17.084	2.497 2.499	30.092 30.088	82.808 82.808
8/11/01 14:43:00 8/11/01 14:44:00	59.75 59.75	58.76 58.76	0,174 0,174	17.041 17.03	2.479 2.477	30.155 30.157	83.01 83.004	8/11/01 16:48:00 8/11/01 16:49:00	59.77 59.77	58.75 58.75	0.18 0.188	17.099 17.096	2.505 2.508	30.092 30.09	82.808 82.801
8/11/01 14:45:00 8/11/01 14:46:00	59.75 59.75	58.78 58.78	0.168 0.174	17.028 17.026	2.477 2.477	30.159 30.159	83.004 83.01	8/11/01 16:50:00 6/11/01 16:51:00	59.77 59.77	58.75 58.75	0.186 0.186	17.092 17.092	2.503	30.09	82.801
8/11/01 14:48:00 8/11/01 14:49:00	59.75 59.75	58.78	0.174	17.028	2.475	30.159	83.004	8/11/01 16:52:00	59.77	58.75	0.186	17.088	2.501	30.09 30.094	82.801 82.801
8/11/01 14:50:00	59.76	58.76 58.76	0.168 0.168	17.026 17.026	2.475 2.475	30.161 30.159	83.004 82.998	8/11/01 16:54:00 8/11/01 16:55:00	59.77 59.77	58.76 58.76	0.188 0.186	17.088 17.088	2.501 2.501	30.092 30.094	82.795 82.795
8/11/01 14:51:00 8/11/01 14:52:00	59.76 59.77	58.76 58.76	0.168 0.168	17.026 17.028	2. 475 2.477	30.161 30.161	82.998 82.991	8/11/01 16:56:00 8/11/01 16:57:00	59.77 59.77	58.76 58.76	0.192 0.188	17.084 17.071	2.501 2.499	30.094 30.092	82.795 82.795
8/11/01 14:54:00 8/11/01 14:55:00	59.77 59.77	58.76 58.75	0.168 0.168	17.028 17.03	2.477 2.475	30.161 30.155	82.991 82.985	8/11/01 16:58:00 8/11/01 17:00:00	59.78 59.76	58.76 58.76	0.186 0.186	17.064 17.056	2.495 2.494	30.092 30.094	82.795 82.782
8/11/01 14:58:00	59.77	58.75	0.161	17.034	2.475	30.157	82.985	8/11/01 17:01:00	59.76	58.76	0.186	17.049	2.494	30.094	82.789
8/11/01 14:57:00 8/11/01 14:58:00	59.76 59.76	58.75 58.75	0.161 0.161	17.053 17.077	2.473 2.475	30.159 30.155	82.979 82.972	8/11/01 17:02:00 8/11/01 17:03:00	59.76 59.76	58.76 58.78	0.186 0.186	17.045 17.043	2.492 2.492	30.094 30.098	82.789 82.782
8/11/01 15:00:00 8/11/01 15:01:00	59.76 59.76	58.75 58.75	0.168 0.174	17.075 17.075	2.477 2.481	30.155 30.153	82.96 82.953	8/11/01 17:04:00 8/11/01 17:06:00	59.78 59.76	58.76 58.76	0.18 0.18	17.041 17.041	2.492 2.492	30.098 30.094	82.782 82.782
8/11/01 15:02:00 8/11/01 15:03:00	59.78 59.77	58.75 58.75	0.168	17.06 17.068	2.481 2.486	30.157 30.157	82.947 82.941	8/11/01 17:07:00 6/11/01 17:08:00	59.77 59.77	58.76 58.76	0.18	17.041 17.041	2.494	30.096	82.782
8/11/01 15:04:00	59.77	58.75	0.174	17.071	2.49	30.159	82.941	8/11/01 17:09:00	59,77	58.76	0.18	17.043	2.497	30.092	82.776 82.776
8/11/01 15:06:00 8/11/01 15:07:00	59.77 59.77	58.75 58.75	0.174 0.174	17.071	2.49 2.488	30.155 30.157	82.934 82.928	8/11/01 17:10:00 8/11/01 17:12:00	59.78 59.78	58.76 58.76	0.18 0.18	17.043 17.041	2.495 2.494	30.092 30.092	82.77 82.77
8/11/01 15:08:00	59.77	58,75	0.18	17.055	2.488	30.157	62.928	8/11/01 17:13:00	59.78	58.76	0.18	17.041	2.492	30.092	82.77

Date/Time	Downhole Pressure (psi)	Downhole Temperature (deg F)	Wellhead Pressure (psi)	Upper Monitor Pressure (psi)	Lower Monitor Pressure (psi)	Barometric Pressure (inchs Hg)	Annular Pressure (psi)	Date/Time	Downhole Pressure (psi)	Downhole Temperature (deg F)	Wellhead Pressure (psi)	Upper Monitor Pressure (psi)	Lower Monitor Pressure (psi)	Barometric Pressure (inchs Hg)	Annular Pressure (psi)
8/11/01 17:14:00	59.78	58.76	0.18	17.041	2.492	30,096	82.77	8/11/01 19:19:00		58.75	0.106	17.045	2.497	30.119	82.624
8/11/01 17:15:00 8/11/01 17:16:00		58.76 58.75	0.18 0.18	17.045 17.045	2.497 2.501	30.096 30.098	82.77 82.77	8/11/01 19:20:00 8/11/01 19:21:00		58.75 58.75	0.124 0.118	17.043 17.043	2.499 2.499	30.127 30.11	82.612 82.612
8/11/01 17:18:00	59.77	58.75	0.18	17.045	2.501	30.098	82.763	8/11/01 19:22:00	59.76	58.75 58.75	0.124 0.13	17.043 17.045	2.499 2.501	30.1 30.096	82.605 82.605
6/11/01 17:19:00 8/11/01 17:20:00		58.75 58.75	0.18 0.18	17.043 17.045	2.503 2.508	30.098 30.1	82.763 82.763	8/11/01 19:24:00 8/11/01 19:25:00	59.76	58.75	0.099	17.045	2.501	30.106	82.612
8/11/01 17:21:00	59.76	58.75	0.18	17.045	2.508	30.1 30.102	82.757 82.757	8/11/01 19:28:00 8/11/01 19:27:00		58.75 58.75	0.099 0.099	17.045 17.045	2.499 2.499	30.11 30.114	82.605 82.605
8/11/01 17:22:00 8/11/01 17:24:00		58.75 58.75	0.18 0.174	17.043 17.043	2.503 2.499	30.102	82.757	8/11/01 19:28:00	59.76	58.75	0.099	17.045	2.499	30.117	82.605
8/11/01 17:25:00		58.75 58.75	0.174 0.174	17.043 17.043	2.505 2.503	30.102 30.102	82.757 82.757	8/11/01 19:30:00 8/11/01 19:31:00		58.75 58.75	0.099 0.093	17.043 17.043	2.499 2.497	30.121 30.123	82.599 82.599
8/11/01 17:26:00 8/11/01 17:27:00		58.75	0.174	17.043	2.507	30.102	82.751	8/11/01 19:32:00	59.76	58.75	0.099	17.043	2.497	30.125	82.593
8/11/01 17:28:00 8/11/01 17:30:00		58.75 58.75	0,174 0,174	17.043 17.041	2.503 2.499	30,102 30,104	82.751 82.751	8/11/01 19:33:00 8/11/01 19:34:00		58.75 58.75	0.093 0.093	17.041 17.045	2.497 2.499	30.125 30.131	82.599 82.593
8/11/01 17:31:00	59.75	58.75	0.174	17.041	2.495	30.098	82.757	8/11/01 19:36:00 6/11/01 19:37:00		58.75 58.75	0.093 0.093	17.045 17.043	2.499 2.499	30.127 30.135	82.593 82.593
8/11/01 17:32:00 8/11/01 17:33:00		58.75 58.75	0.174 0.174	17.04 17.041	2.494 2.492	30.1 30.102	82.751 82.7 5 1	8/11/01 19:38:00	59.75	58.75	0.093	17.045	2.501	30.131	82.586
8/11/01 17:34:00	59.75	58.75	0.174	17.041 17.041	2.492 2.49	30.1 30.104	82.745 82.745	8/11/01 19:39:00 8/11/01 19:40:00		58.75 58.75	0.093 0.093	17.045 17.045	2.501 2.501	30.133 30.133	82.586 82.586
8/11/01 17:36:00 8/11/01 17:37:00	59.75	58.75 58.75	0.174 0.168	17.04	2.492	30.102	82.745	8/11/01 19:42:00	59.75	58.75	0.093	17.043	2.501 2.499	30.137 30.139	82.586 82.58
8/11/01 17:38:00 8/11/01 17:39:00		58.75 58.75	0.168 0.168	17.041 17.04	2.492 2.492	30.102 30.104	82.745 82.745	8/11/01 19:43:00 8/11/01 19:44:00		58.75 58.75	0.099 0.093	17.043 17.043	2.499	30.135	82.58
8/11/01 17:40:00	59.75	58.74	0.168	17.04	2.494	30.102	82.745 82.738	8/11/01 19:45:00 8/11/01 19:46:00		58.75 58.75	0.093 0.093	17.043 17.045	2.501 2.501	30.139 30.137	82.574 82.574
8/11/01 17:42:00 8/11/01 17:43:00		58.74 58.74	0.168 0.168	17.04 17.04	2.495 2.494	30.106 30.102	82.738	8/11/01 19:48:00	59.75	58.75	0.093	17.043	2.501	30,143	82.574
8/11/01 17:44:00) 59.76	58.74 58.74	0.174 0.174	17.041 17.04	2.495 2.495	30.104 30.102	82.738 82.738	8/11/01 19:49:00 8/11/01 19:50:00		58.75 58.75	0.093 0.087	17.045 17.043	2.501 2.501	30.139 30.139	82.574 82.567
8/11/01 17:45:00 8/11/01 17:46:00		58.74	0.168	17.041	2.497	30.106	82.732	8/11/01 19:51:00	59.75	58.75	0.087	17.045	2.501	30.139	82.587 82.567
8/11/01 17:48:00 8/11/01 17:49:00		58.74 58.75	0.168 0.168	17.043 17.045	2.503 2.507	30.106 30.104	82.732 82.732	8/11/01 19:52:00 8/11/01 19:54:00		58.75 58.75	0.067 0.087	17.045 17.045	2.499 2.499	30.141 30.139	82.587
8/11/01 17:50:00	59.77	58.75	0.168	17.045	2.507	30.106	82.732	8/11/01 19:55:00 8/11/01 19:58:00		58.75 58.75	0.087 0.087	17.045 17.045	2.499 2.499	30.141 30.145	82.567 82.567
8/11/01 17:51:00 8/11/01 17:52:00		58.75 58.75	0.168 0.168	17.045 17.043	2.505 2.501	30.108 30.11	82.726 82.726	8/11/01 19:57:00	59.76	58.75	0.087	17.045	2.499	30.141	82.567
8/11/01 17:54:00	59.77	58.75 58.75	0.168 0.188	17.041 17.041	2.499 2.497	30.112 30.117	82.728 82.728	8/11/01 19:58:00 8/11/01 20:00:00		58.75 58.75	0.087 0.087	17.043 17.045	2.499 2.499	30.141 30.139	82.567 82.561
8/11/01 17:55:00 8/11/01 17:58:00		58.75	0.168	17.04	2.501	30.11	82.719	8/11/01 20:01:00	59.77	58.75	0.087	17.045	2.501	30.143	82.561 82.561
8/11/01 17:57:00 8/11/01 17:58:00		58.75 58.75	0.168 0.168	17.045 17.043	2.505 2.501	30.117 30.11	82.719 82.719	8/11/01 20:02:00 8/11/01 20:03:00		58.75 58.75	0.087 0.087	17.043 17.045	2.501 2.501	30.141 30.143	82.561
8/11/01 18:00:00	59.77	58.75	0.168	17.041	2.501	30.112	82.719	8/11/01 20:04:00 8/11/01 20:06:00		58.75 58.75	0.087 0.087	17.045 17.045	2.501	30.141 30.139	82.555 82.555
8/11/01 18:01:00 8/11/01 18:02:00		58.75 58.75	0,161 0,161	17.041 17.041	2.503 2.501	30.112 30.11	82.719 82.719	8/11/01 20:07:00	59.76	58.75	0.087	17.045	2.501	30.1 39	82.555
8/11/01 18:03:00	59.77	58.75	0.161 0.168	17.041 17.041	2.497 2.497	30.11 30.112	82.719 82.719	8/11/01 20:08:00 8/11/01 20:09:00		58.75 58.75	0.087 0.081	17.045 17.043	2.499 2.499	30.139 30.141	82.548 82.548
8/11/01 18:04:00 8/11/01 18:06:00		58.75 58.75	0.161	17.04	2.497	30.114	82.713	8/11/01 20:10:00	59.75	58.75	0.081	17.047	2.499	30.143 30.143	82.548
8/11/01 18:07:00 8/11/01 18:08:00		58.75 58.75	0.161 0.155	17.04 17.04	2.497 2.495	30.112 30.114	82.713 82.713	8/11/01 20:12:00 8/11/01 20:13:00		58.75 58.75	0.081 0.081	17.043 17.047	2.501 2.501	30.143	82.548 82.548
8/11/01 18:09:00	0 59.76	58.75	0.161	17.04	2.497	30.117	82.713	8/11/01 20:14:00		58.75 58.75	0.081	17.047 17.045	2.501 2.501	30.141 30.143	82.542 82.542
8/11/01 18:10:00 8/11/01 18:12:00		58.75 58.75	0.161 0.161	17.04 17.04	2.497 2.499	30.114 30.119	82.713 82.713	8/11/01 20:15:00 8/11/01 20:16:00	59.75	58.75	0.081	17.045	2.501	30.141	82.542
8/11/01 18:13:00	59.76	58.75 58.76	0.149 0.149	17.04 17.038	2.499 2.499	30.119 30.117	82.713 82.707	8/11/01 20:18:00 8/11/01 20:19:00		58.75 58.75	0.081 0.081	17.045 17.047	2.501 2.503	30.143 30.137	82.536 82.536
8/11/01 18:14:00 8/11/01 18:15:00		58.76	0.149	17.04	2.497	30.114	82.707	8/11/01 20:20:00	59.75	58.75	0.081	17.047	2.505	30.139	82.536
8/11/01 18:16:00 8/11/01 18:18:00		58.76 58.76	0.149 0.149	17.04 17.038	2,497 2,495	30.117 30.121	62.7 82.7	8/11/01 20:21:00 8/11/01 20:22:00		58.75 58.75	0.081 0.081	17.047 17.049	2.507 2.507	30.137 30.141	82.536 82.536
8/11/01 18:19:00	59.76	58.76	0.149	17.038	2,494	30.123 30.117	82.7 82.694	8/11/01 20:24:00 8/11/01 20:25:00		58.75 58.75	0.081 0.081	17,049 17,049	2.508 2.508	30.139 30.139	82.529 82.529
8/11/01 18:20:00 8/11/01 18:21:00		58.75 58.75	0.143 0.143	17.038 17.038	2.492 2.492	30.121	82.694	8/11/01 20:26:00	59,76	58.75	0.081	17.049	2.508	30.139	82.529
8/11/01 18:22:00 8/11/01 18:24:00		58.75 58.74	0.143 0.137	17.038 17.038	2.492 2.492	30.121 30.121	82,694 82,694	8/11/01 20:27:00 8/11/01 20:28:00		58.75 58.75	0.081 0.081	17.051 17.051	2.508 2.505	30.139 30.143	82.523 82.523
8/11/01 18:25:00	D 59.76	58.74	0.137	17.036	2.49	30.123	82.688	8/11/01 20:30:00 8/11/01 20:31:00	59.77	58.75 58.75	0.081 0.081	17.051 17.051	2.501 2.499	30.145 30.145	82.523 82.523
8/11/01 18:26:00 8/11/01 18:27:00		58.74 58.74	0.137 0.137	17.036 17.036	2.488 2.488	30.123 30.125	82.688 82.681	8/11/01 20:32:00	59.76	58.75	0.081	17.051	2.495	30.141	82.523
8/11/01 18:28:00 8/11/01 18:30:00		58.74 58.74	0.137 0.137	17.036 17.036	2.488 2.492	30.125 30.125	82.688 82.681	8/11/01 20:33:00 8/11/01 20:34:00		58.75 58.75	0.081 0.081	17.049 17.049	2.495 2.495	30.141 30.143	82.517 82.523
8/11/01 18:31:0		58.74	0.137	17.036	2.49	30.123	82.675	8/11/01 20:36:00	59.75	58.75 58.75	0.081	17.049 17.049	2.495 2.494	30.147 30.143	82.523 82.523
8/11/01 18:32:00 8/11/01 18:33:00		58.74 58.75	0.13	17.036 17.038	2.49 2.494	30.125 30.123	82.675 82.875	8/11/01 20:37:00 8/11/01 20:38:00		58.75	0.081	17.049	2.494	30.145	82.517
8/11/01 18:34:00	0 59,76	58.75	0.13 0.13	17.038 17.038	2.492 2.495	30.123 30.121	82.675 82.669	8/11/01 20:39:00 8/11/01 20:40:00		58.75 58.75	0.081 0.081	17.049 17.049	2.494 2.495	30.143 30.143	82.517 82.517
8/11/01 18:36:00 8/11/01 18:37:00	0 59.76	58.75 58.75	0.13	17.038	2.495	30.123	82.669	8/11/01 20:42:00) 59.75	58.75	0.081	17.049	2.494	30.143	82.51
8/11/01 18:38:00 8/11/01 18:39:00		58.75 58.75	0.13	17.041 17.041	2.497 2.497	30.121 30.117	82.669 82.669	8/11/01 20:43:00 8/11/01 20:44:00		58.75 58.75	0.081 0.081	17.049 17.049	2.494 2.492	30.143 30.149	82.51 82.51
8/11/01 18:40:00	0 59.76	58.75	0.13	17.041	2.497	30.123 30.123	82.689 82.662	8/11/01 20:45:00 8/11/01 20:46:00	59.75	58.75 58.75	0.068 0.081	17.049 17.047	2.492 2.492	30.147 30.147	82.51 82.504
8/11/01 18:42:0 8/11/01 18:43:0		58.75 58.75	0.13 0.13	17.041 17.041	2.497 2.495	30.125	82.669	8/11/01 20:48:00	59.75	58.75	0.075	17.047	2.492	30.149	82.504
8/11/01 18:44:0 8/11/01 18:45:0		58.75 58.75	0.13 0.13	17.041 17.041	2.495 2.495	30.123 30.125	82.669 82.669	8/11/01 20:49:00 8/11/01 20:50:00		58.75 58.75	0.075 0.075	17.047 17.045	2.49 2.49	30.145 30.151	82.504 82.498
8/11/01 18:46:0	0 59.76	58.75	0.124	17.041	2.497	30.123	82,662	8/11/01 20:51:00	59.75	58.75	0.088 0.068	17.045 17.045	2.488 2.488	30.151 30.153	82.504 82.498
8/11/01 18:48:0 8/11/01 18:49:0		58.75 58.7 5	0.124 0.124	17.041 17.041	2.495 2.495	30.125 30.125	82.662 82.656	8/11/01 20:52:00 8/11/01 20:54:00) 59.75	58.75 58.75	0.068	17.045	2.486	30,153	82.498
8/11/01 18:50:0 8/11/01 18:51:0	0 59.75	58.75 58.75	0.124 0.124	17.041 17.041	2.495 2.495	30.123 30.127	82.656 82.656	8/11/01 20:55:00 8/11/01 20:56:00		58.75 58.75	0.068	17,043 17.045	2.488 2.488	30.153 30.149	82.491 62.498
8/11/01 18:52:0	0 59.74	58.75	0.124	17.041	2.495	30.125	82.65	8/11/01 20:57:00	59.76	58.75	0.068	17.045	2.488	30.149 30.153	82.491 82.491
8/11/01 18:54:0 8/11/01 18:55:0		58.75 58.75	0.124 0.124	17.041 17.041	2.495	30.125 30.127	82.65 82.65	8/11/01 20:58:00 8/11/01 21:00:00		58.75 58.75	0.068 0.068	17.043 17.043	2.486 2.486	30.153	82.491
8/11/01 18:56:0	0 59.74	58.75	0.124	17.041	2.494	30.123 30.125	82.643 82.643	8/11/01 21:01:00 8/11/01 21:02:00		58.75 58.75	0.068 0.068	17.045 17.043	2.488 2.488	30.151 30.157	82.491 82.485
8/11/01 18:57:0 8/11/01 18:58:0	0 59.74	58.75 58.75	0.118	17.041 17.041	2.492 2.492	30.129	82.643	8/11/01 21:03:00	59,78	58.75	0.068	17.043	2.488	30,153	82.485
6/11/01 19:00:0 6/11/01 19:01:0		58.75 58.75	0.112 0.112	17.041 17.04	2.494 2.494	30.129 30.127	82.637 82.637	8/11/01 21:04:00 8/11/01 21:06:00		58.75 58.75	0.068	17.043 17.043	2.488 2.488	30.153 30.153	82.479 82.479
8/11/01 19:02:0	0 59.75	58.75	0.112	17.041	2.494	30.127	82.637	8/11/01 21:07:00	59.76	58.75 58.75	0.062 0.068	17.043 17.043	2.486 2.488	30.153 30.153	82.479 82.479
8/11/01 19:03:0 8/11/01 19:04:0		58.75 58.75	0.112 0.112	17.041 17.041	2.494 2.495	30.129 30.127	82.637 82.631	8/11/01 21:08:00 8/11/01 21:09:00	59.75	58.75	0.068	17.043	2.488	30.157	82.479
8/11/01 19:06:0	0 59.76	58.75 58.75	0.112	17.041 17.041	2.497 2.495	30.125 30.127	82.631 82.631	8/11/01 21:10:00 8/11/01 21:12:00	59.75	58.75 58.75	0.068	17.043 17.043	2.488 2.488	30.153 30.155	82.479 82.472
8/11/01 19:07:0 8/11/01 19:08:0	0 59.76	58.75	0.106	17.043	2.495	30.123	82.631	8/11/01 21:13:00	0 59.75	58.75	0.068	17.043	2.488	30.159	82.472
8/11/01 19:09:0 8/11/01 19:10:0		58.75 58.75	0.106	17.043 17.043	2.497 2.495	30.127 30.123	82.624 82.631	8/11/01 21:14:00 8/11/01 21:15:00		58.75 58.75	0.068 0.062	17.043 17.043	2.488 2.49	30.159 30.153	82.472 82.466
8/11/01 19:12:0	0 59.76	58.75	0.112	17,043	2,497	30.121	82.624	8/11/01 21:16:0	D 5 9.75	58.75 58.75	0.062	17.043 17.043	2.49 2.492	30.157 30.153	82.466 82.468
8/11/01 19:13:0 8/11/01 19:14:0		58.75 58.75	0.106 0.106	17.043 17.045	2.495 2.495	30.121 30.123	82.631 82.631	8/11/01 21:18:0 8/11/01 21:19:0	0 59.75	58.75	0.062	17.043	2.492	30.157	82.466
8/11/01 19:15:0 8/11/01 19:16:0	0 59,76	58.75 58.75	0.112 0.106	17.043 17.047	2.497 2.497	30.121 30.121	82.624 82.624	8/11/01 21:20:00 8/11/01 21:21:00		58.75 58.75	0.062 0.062	17.043 17.043	2.494 2.495	30.155 30.157	82.466 82.466
8/11/01 19:18:0		58.75	0.106	17.047	2.497	30.121	82.624	8/11/01 21:22:0		58.75	0.082	17.047	2.495	30.155	82.46

Date/Time	Downhole Pressure (psi)	Downhole Temperature (deg F)	Wellhead Pressure (psi)	Upper Monitor Pressure (psł)	Lower Monitor Pressure (psi)	Barometric Pressure (inchs Hg)	Annular Pressure (psi)	Date/Time	Downhole Pressure (psi)	58.75 58.75 58.75	Wellhead Pressure (psi)	Upper Montor Pressure (psi)	Lower Monitor Pressure (psi)	Barometric Pressure (incns Hg)	Annular Pressure (psi)
8/11/01 21:24:00	59.74	58.74	0.062	17.047	2.495	30.155	82.48	8/11/01 23:28:00	59.73	58.74	0.05	17.051	2.501	30.186	82.327
8/11/01 21:25:00 8/11/01 21:26:00	59.75 59.75	58.74 58.74	0.068 0.062	17.047 17.047	2.495 2.495	30.157 30.159	82.46 82.46	8/11/01 23:30:00 8/11/01 23:31:00	59.73 59.74	58.74 58.74	0.05 0.05	17.051 17.051	2.501 2.501	30.184 30.186	82.32 82.32
8/11/01 21:27:00 8/11/01 21:28:00	59.75 59.75	58.74 58.74	0.062	17.045 17.047	2.495 2.495	30.157 30.157	82.453 82.453	8/11/01 23:32:00 8/11/01 23:33:00	59.74 59.74	58.74 58.74	0.05	17.051 17.051	2.503 2.503	30.186 30.188	82.32 82.314
8/11/01 21:30:00 8/11/01 21:31:00	59.75 59.75	58.75 58.75	0.062	17.045 17.047	2.497 2.499	30.157 30.161	82.453 82.453	8/11/01 23:34:00 8/11/01 23:38:00	59.74 59.74	58.74 58.74	0.05 0.05	17.051 17.051	2.501 2.501	30.188 30.188	82.314 82.314
8/11/01 21:32:00	59.75	58.75	0.062	17.047	2.497	30.159	82.46	8/11/01 23:37:00	59.74	58.74	0.05	17.051	2.501	30.188	82.314
8/11/01 21:33:00 8/11/01 21:34:00	59.75 59.75	58.75 58.75	0.062	17.045 17.047	2.499 2.499	30.159 30.161	62.447 82.453	8/11/01 23:38:00 8/11/01 23:39:00	59.74 59.74	58.74 58.74	0.05 0.05	17.051 17.051	2.501 2.503	30.19 30.192	82.314 82.308
8/11/01 21:36:00 8/11/01 21:37:00	59.75 59.75	58.75 58.75	0.062	17.047 17.047	2.499 2.499	30.159 30.159	82.453 82.453	8/11/01 23:40:00 8/11/01 23:42:00	59.74 59.75	58.74 58.74	0.0 5 0.05	17.049 17.051	2.501 2.501	30.19 30.188	82.301 82.301
8/11/01 21:38:00 8/11/01 21:39:00	59.75 59.76	58.75 58.75	0.062	17.047 17.047	2.499 2.499	30.159 30.157	82.447 82.447	8/11/01 23:43:00 8/11/01 23:44:00	59.75 59.75	58.74 58.74	0.05	17.051 17.051	2.503 2.503	30.192 30.192	82.301 82.301
8/11/01 21:40:00 8/11/01 21:42:00	59.76 59.76	58.7 5	0.062	17.047 17.047	2.497	30.157	82.447	8/11/01 23:45:00	59.75	58.74	0.056	17.049	2.501	30.196	82.301
8/11/01 21:43:00	59.76	58.75 58.75	0.062	17.047	2.497 2.497	30.159 30.159	82.447 82.447	8/11/01 23:46:00 8/11/01 23:48:00	59.75 59.75	58.74 58.75	0.056 0.05	17.051 17.049	2.499 2.499	30.192 30.198	82.301 82.295
8/11/01 21:44:00 8/11/01 21:45:00	59.76 59.76	58.75 58.75	0.062 0.062	17.047 17.047	2.497 2.497	30.155 30.161	82.447 82.441	8/11/01 23:49:00 8/11/01 23:50:00	59.75 59.75	58.75 58.75	0.05	17.049 17.049	2.499 2.497	30.198 30.198	82.295 82.295
8/11/01 21:46:00 8/11/01 21:48:00	59.76 59.76	58.75 58.75	0.062	17.047 17.047	2.497 2.497	30.157 30.181	82.441 82.441	8/11/01 23:51:00 8/11/01 23:52:00	59.75 59.75	58.75 58.75	0.05	17.049 17.049	2.497 2.497	30.198 30.2	82.295 82.295
8/11/01 21:49:00 8/11/01 21:50:00	59.75 59.75	58.74 58.74	0.062	17.047 17.047	2.497 2.497	30.161 30.157	82.441 82.441	8/11/01 23:54:00 8/11/01 23:55:00	59.75 59.75	58.74 58.74	0.05	17.047	2.495 2.495	30.198 30.2	82.289
8/11/01 21:51:00 8/11/01 21:52:00	59.75 59.75	58.74	0.062	17.047	2.499	30.157	82.434	8/11/01 23:56:00	59.75	58.74	0.05	17.047	2.495	30.2	82.289 82.289
8/11/01 21:54:00	59.75	58.74 58.74	0.056	17.047 17.047	2.499 2.499	30.157 30.159	82.434 82.434	8/11/01 23:57:00 8/11/01 23:58:00	59.75 59.74	58.74 58.74	0.043 0.056	17.047 17.045	2.495 2.495	30.2 30.204	82.289 82.289
8/11/01 21:55:00 8/11/01 21:56:00	59.75 59.75	58.74 58.74	0.062 0.062	17.047 17.049	2.499 2.499	30.157 30.157	82.434 82.434	8/12/01 8/12/01 00:01:00	59.74 59.74	58.74 58.74	0.043 0.056	17.047 17.047	2.495 2.495	30.202 30.2	82.289 82.282
8/11/01 21:57:00 8/11/01 21:58:00	59.75 59.75	58.74 58.74	0.062 0.062	17.049 17.049	2.501 2.501	30.159 30.157	82.428 82.428	8/12/01 00:02:00 8/12/01 00:03:00	59.74 59.74	58.74 58.73	0.043	17.045 17.045	2.495	30.206 30.206	82.282 82.282
8/11/01 22:00:00	59.75	58.75	0.056	17.049	2.501	30.155	82.428	8/12/01 00:04:00	59.74	58.73	0.056	17.045	2.495	30.206	82.282
8/11/01 22:01:00 8/11/01 22:02:00	59.75 59.75	58.75 58.75	0.056 0.056	17.047 17.049	2.499 2.499	30.159 30.163	82.428 82.422	8/12/01 00:06:00 8/12/01 00:07:00	59.75 59.75	58.73 58.73	0.043 0.043	17.045 17.045	2.495 2.495	30.204 30.208	82.276 82.276
8/11/01 22:03:00 8/11/01 22:04:00	59.76 59.76	58.75 58.75	0.05 0.056	17.047 17.049	2.499 2.501	30.159 30.163	82.422 82.422	8/12/01 00:08:00 8/12/01 00:09:00	59.75 59.75	58.74 58.74	0.043 0.043	17.045 17.043	2.494 2.494	30.212 30.21	82.276 82.276
8/11/01 22:06:00 8/11/01 22:07:00	59.76 59.76	58.75 58.75	0.05 0.056	17.047 17.047	2.501 2.501	30.157 30.161	82.422 82.415	8/12/01 00:10:00 8/12/01 00:12:00	59.76 59.76	58.74 58.74	0.043	17.045 17.045	2.495	30.21 30.212	82.276 82.27
8/11/01 22:08:00	59.76	58.75	0.05	17.049	2.501	30.163	82.415	8/12/01 00:13:00	59.76	58.74	0.05	17.045	2.495	30.208	82.27
8/11/01 22:09:00 8/11/01 22:10:00	59.76 59.75	58.75 58.74	0.05 0.05	17.049 17.049	2.501 2.501	30.163 30.161	82.415 82.409	8/12/01 00:14:00 8/12/01 00:15:00	59.76 59.76	58.74 58.74	0.05 0.05	17.045 17.043	2.494 2.494	30.208 30.206	82.27 82.27
8/11/01 22:12:00 8/11/01 22:13:00	59.75 59.75	58.74 58.74	0.056 0.05	17.049 17.049	2.501 2.501	30.161 30.159	82.409 82.415	8/12/01 00:18:00 8/12/01 00:18:00	59.76 59.76	58.74 58.74	0.043 0.05	17.043 17.043	2.494 2.494	30.206 30.212	82.27 82.27
8/11/01 22:14:00 8/11/01 22:15:00	59.75 59.75	58.74 58.74	0.05 0.05	17.049 17.049	2.501 2.501	30.159 30.163	82.409 82.409	8/12/01 00:19:00 B/12/01 00:20:00	59.76 59.76	58.74 58.74	0.043	17.043 17.041	2.494 2.492	30.208 30.212	82.263
8/11/01 22:16:00	59.75	58.74	0.05	17.049	2.501	30.163	82.409	8/12/01 00:21:00	59.76	58.74	0.05	17.041	2.49	30.214	82.263 82.263
8/11/01 22:18:00 8/11/01 22:19:00	59.74 59.74	58.74 58.74	0.05 0.05	17.049 17.049	2.501 2.501	30.165 30.161	82.403 82.409	8/12/01 00:22:00 8/12/01 00:24:00	59.76 59.76	58.74 58.74	0.043 0.05	17.041 17.041	2.49 2.49	30.216 30.214	82.257 82.251
8/11/01 22:20:00 8/11/01 22:21:00	59.74 59.74	58.74 58.74	0.05 0.056	17.049 17.049	2.501 2.501	30.163 30.161	82,403 82,403	8/12/01 00:25:00 8/12/01 00:26:00	59.76 59.76	58.74 58.74	0.05 0.05	17.041 17.041	2.492 2.49	30.216 30.216	82.251 82.251
8/11/01 22:22:00 8/11/01 22:24:00	59.74 59.74	58.74 58.75	0.05 0.05	17.049 17.049	2.501 2.501	30.163 30.159	82.403 82.396	8/12/01 00:27:00 8/12/01 00:28:00	59.76 59.76	58.74 58.74	0.05	17.041	2.492	30.214 30.214	82.244 82.244
8/11/01 22:25:00 8/11/01 22:28:00	59.75 59.75	58.75 58.75	0.05	17.049 17.049	2.501	30.163 30.163	82.396 82.396	8/12/01 00:30:00	59.76	58.74	0.05	17.041	2.49	30.214	82.244
8/11/01 22:27:00	59.76	58.75	0.05	17.049	2.501	30.163	82.39	8/12/01 00:31:00 8/12/01 00:32:00	59.75 59.75	58.74 58.74	0.05 0.05	17.041 17.041	2.49 2.488	30.216 30.214	82.244 82.244
8/11/01 22:28:00 8/11/01 22:30:00	59.78 59.76	58.75 58.75	0.05 0.05	17.049 17.049	2.503 2.503	30.167 30.169	82.39 82.39	8/12/01 00:33:00 8/12/01 00:34:00	59.75 59.75	58.74 58.74	0.05	17.041 17.04	2.49 2.492	30.216 30.214	82.244 82.244
8/11/01 22:31:00 8/11/01 22:32:00	59.76 59.75	58.75 58.75	0.05 0.05	17.049 17.049	2.501 2.503	30.167 30.167	82.384 82.384	8/12/01 00:38:00 8/12/01 00:37:00	59.74 59.74	58.74 58.74	0.05	17.04 17.041	2.492 2.49	30.216 30.214	82.238 82.238
8/11/01 22:33:00 8/11/01 22:34:00	59.75 59.75	58.74 58.74	0.05 0.05	17.049 17.049	2.503 2.503	30.167 30.169	82.384 82.384	8/12/01 00:38:00 8/12/01 00:39:00	59.74 59.74	58.74 58.74	0.05	17.041 17.041	2.49 2.49	30.218 30.216	82.238
8/11/01 22:36:00 8/11/01 22:37:00	59.74 59.74	58.74 58.74	0.05	17.049 17.049	2.503 2.503	30,167	82.377	8/12/01 00:40:00	59.74	58.74	0.05	17.04	2.49	30.218	82.236 82.238
8/11/01 22:38:00	59.74	58.74	0.05	17.047	2.503	30.167 30.169	82.377 82.377	8/12/01 00:42:00 8/12/01 00:43:00	59.74 59.74	58.74 58.74	0.05 0.05	17.04 17.04	2.49 2.49	30.216 30.216	82.238 82.238
8/11/01 22:39:00 8/11/01 22:40:00	59.74 59.74	58.74 58.74	0.05	17.047 17.047	2.501 2.501	30.174 30.171	82.377 82.371	8/12/01 00:44:00 8/12/01 00:45:00	59.75 59.75	58.74 58.74	0.05 0.05	17.041 17.041	2.49 2.49	30.22 30.216	82.238 82.232
8/11/01 22:42:00 8/11/01 22:43:00	59.75 59.75	58.74 58.74	0.05 0.05	17.047 17.047	2.499 2.503	30.174 30.174	82.371 82.371	8/12/01 00:46:00 8/12/01 00:48:00	59.75 59.75	58.74 58.74	0.056	17.041 17.04	2.49 2.49	30.216 30.214	82.232 82.232
8/11/01 22:44:00 8/11/01 22:45:00	59.75 59.75	58.74 58.74	0.05	17.047 17.049	2.503	30.18	82.371	8/12/01 00:49:00	59.75	58.74	0.056	17.041	2.49	30.216	82.232
8/11/01 22:46:00	59.76	58.74	0.05	17.051	2.499 2.503	30.174 30.178	82.365 82.358	8/12/01 00:50:00 8/12/01 00:51:00	59.75 59.75	58.74 58.74	0.056 0.058	17.041 17.041	2.49 2.49	30.214 30.216	82.232 82.225
8/11/01 22:48:00 8/11/01 22:49:00	59.76 59.75	58.74 58.74	0.05 0.05	17.051 17.051	2.503 2.503	30.174 30.174	82.385 82.358	8/12/01 00:52:00 8/12/01 00:54:00	59.75 59.75	58.74 58.74	0.056	17.04 17.04	2.49 2.488	30.218 30.218	82.225 82.225
8/11/01 22:50:00 8/11/01 22:51:00	59.75 59.75	58.74 58.74	0.05	17.051 17.051	2.501 2.501	30.178 30.171	82.358 82.352	8/12/01 00:55:00 8/12/01 00:56:00	59.75 59.75	58.74 58.74	0.056	17.04 17.04	2.488 2.488	30.216 30.218	82.225 82.225
8/11/01 22:52:00 8/11/01 22:54:00	59.75 59.75	58.74 58.74	0.05	17.049 17.051	2.505 2.501	30.174 30.178	82.352 82.358	8/12/01 00:57:00 8/12/01 00:58:00	59.75 59.76	58.74 58.74	0.056	17.04 17.04	2.488	30.218	82.219
8/11/01 22:55:00	59.75	58.74	0.05	17.051	2.505	30.174	82.358	8/12/01 01:00:00	59.76	58.74	0.058	17.04	2.488 2.488	30.22 30.22	82.219 82.219
8/11/01 22:56:00 8/11/01 22:57:00	59.75 59.75	58.74 58.74	0.05 0.05	17.051 17.051	2.505 2.503	30.18 30.178	82.358 82.358	8/12/01 01:01:00 8/12/01 01:02:00	59.76 59.76	58.74 58.74	0.056	17.04 17.04	2.488 2.488	30.216 30.216	82.219 82.219
8/11/01 22:58:00 8/11/01 23:00:00	59.75 59.75	58.74 58.74	0.05	17.049 17.051	2.503 2.503	30.184 30.18	82.352 82.352	8/12/01 01:03:00 8/12/01 01:04:00	59.76 59.76	58.74 58.73	0.056	17.041 17.04	2.488 2.49	30.216 30.218	82.219 82.219
8/11/01 23:01:00 8/11/01 23:02:00	59.75 59.75	58.74 58.74	0.05 0.05	17.051 17.051	2.503 2.503	30.176 30.178	82.352 82.352	8/12/01 01:06:00 8/12/01 01:07:00	59.76 59.76	58.73 58.73	0.058	17.041	2.49 2.492	30.218	82.219
8/11/01 23:03:00	59.75	58.74	0.05	17.051	2.503	30.182	82.346	8/12/01 01:08:00	59.75	58.73	0.062	17.041 17.041	2.494	30.218 30.216	82.213 82.219
8/11/01 23:04:00 8/11/01 23:08:00	59.75 59.75	58.74 58.74	0.05	17.051 17.051	2.503 2.503	30.178 30.174	82.346 82.346	8/12/01 01:09:00 8/12/01 01:10:00	59.75 59.75	58.73 58.73	0.062 0.062	17.041 17.04	2.495 2.495	30.22 30.218	82.213 82.213
8/11/01 23:07:00 8/11/01 23:08:00	59.75 59.75	58.74 58.74	0.05 0.05	17.053 17.051	2.505 2.505	30.176 30.18	82.346 82.346	8/12/01 01:12:00 8/12/01 01:13:00	59.75 59.75	58.73 58.73	0.056	17.041 17.041	2.495 2.495	30.218 30.216	82.213 82.206
8/11/01 23:09:00 8/11/01 23:10:00	59.76 59.76	58.74 58.74	0.05 0.05	17.053 17.053	2.505 2.505	30.176 30.182	82.339 82.346	8/12/01 01:14:00 8/12/01 01:15:00	59.75 59.75	58.73 58.73	0.062	17.04 17.041	2.495	30.22 30.218	82.206 82.206
8/11/01 23:12:00 8/11/01 23:13:00	59.76 59.76	58.74 58.74	0.05	17.053 17.053	2.505	30.18 30.182	82.346 82.346	8/12/01 01:16:00	59.75	58.73	0.056	17.041	2.495	30.216	82.206
8/11/01 23:14:00	59.75	58.74	0.05	17.053	2.503	30.178	82.339	8/12/01 01:18:00 8/12/01 01:19:00	59.76 59.76	58.73 58.74	0.062	17.041 17.041	2.495 2.494	30.216 30.216	82.2 82.2
8/11/01 23:15:00 8/11/01 23:16:00	59.75 59.75	58.74 58.74	0.05 0.05	17.053 17.053	2.503 2.505	30.18 30.182	82.346 82.339	8/12/01 01:20:00 8/12/01 01:21:00	59.76 59.76	58.74 58.74	0.062 0.062	17.041 17.041	2.494 2.494	30.218 30.22	82.2 82.2
8/11/01 23:18:00 8/11/01 23:19:00	59.74 59.74	58.74 58.74	0.05 0.05	17.053 17.053	2.503 2.503	30.18 30.182	82.339 82.339	8/12/01 01:22:00 8/12/01 01:24:00	59.76 59.76	58.74 58.74	0.062	17.041	2.494 2.494	30.216 30.218	82.2 82.2
8/11/01 23:20:00 8/11/01 23:21:00	59.74 59.74	58.74 58.74	0.05	17.053 17.051	2.503 2.503	30.18 30.182	82.333 82.333	8/12/01 01:25:00 8/12/01 01:26:00	59.76	58.74	0.062	17.041	2.494	30.218	82.2
8/11/01 23:22:00	59.73 59.73	58.74	0.05	17.053	2.501	30.182	82.333	8/12/01 01:27:00	59.76 59.76	58.75 58.75	0.062	17.041 17.041	2.494 2.494	30.216 30.218	82.194 82.194
8/11/01 23:24:00 8/11/01 23:25:00	59.73	58.74 58.74	0.05	17.051 17.051	2.501 2.501	30.182 30.188	82.327 82.333	8/12/01 01:28:00 8/12/01 01:30:00	59.76 59.76	58.75 58.75	0.062 0.062	17.041 17.041	2.494 2.494	30.216 30.216	82,194 82,194
8/11/01 23:26:00 8/11/01 23:27:00	59.73 59.73	58,74 58,74	0.05 0.05	17.051 17.051	2.501 2.501	30.184 30.182	82.327 82.327	8/12/01 01:31:00 6/12/01 01:32:00	59.76 59.76	58.75 58.75	D.062 0.062	17.041 17.041	2.484 2.494	30.218 30.212	82.194 82.194
								_		-					

Date/Time	Downhole Pressure (psi)	Downhole Temperature (deg F)	Wellhead Pressure (psi)	Upper Monitor Pressure (psi)	Lawer Monitor Pressure (psi)	Barometric Pressure (inchs Hg)	Annular Pressure (psi)	Date/Time	Downhole Pressure (psi)	Downhole Temperature (deg F)	Wellhead Pressure (psi)	Upper Monitor Pressure (psi)	Lower Monitor Pressure (psi)	Barometric Pressure (inchs Hg)	Annular Pressure (psi)
8/12/01 01:33:00	59.76	58.7 5	0.068	17.041	2.495	30.214	82.187	8/12/01 03:38:00	59.75	58.74	0.087	17.045	2.492	30.218	82.086
8/12/01 01:34:00 8/12/01 01:36:00	59.76 59.75	58.75 58.75	0.062 0.068	17.043 17.043	2.495 2.494	30.214 30.218	82.194 82.187	8/12/01 03:39:00 8/12/01 03:40:00	59.75 59.75	58.74 58.74	0.087 0.087	17.043 17.043	2.494 2.492	30.216 30.214	82.086 82.086
8/12/01 01:37:00	59.75	58.75	0.068	17.043	2.495	30.218	82.187 82.187	8/12/01 03:42:00 8/12/01 03:43:00	59.74 59.74	58.74 58.74	0.087 0.087	17.043 17.045	2.494 2.494	30.216 30.216	82.086 82.086
8/12/01 01:38:00 8/12/01 01:39:00	59.75 59.75	58.75 58.75	0.068 0.062	17.043 17.043	2.494 2.495	30.212 30.216	82.187	6/12/01 03:44:00	59,73	58.73	0.087	17.043	2.494	30.214	82.08
8/12/01 01:40:00 8/12/01 01:42:00	59.75 59.75	58.75 58.75	0.068	17.041 17.041	2.494 2.495	30.218 30.218	82.167 82.187	8/12/01 03:45:00 8/12/01 03:46:00	59.73 59.73	58.73 58.73	0.087 0.087	17.043 17.043	2.494 2.494	30.216 30.214	82.086 82.08
8/12/01 01:43:00	59,75	58.75	0.068	17.041	2.494	30.212	82.181	8/12/01 03:48:00	59.72	58.73 58.73	0.087 0.087	17.045 17.045	2.494 2.494	30.214 30.212	82.08 82.08
8/12/01 01:44:00 8/12/01 01:45:00	59.75 59.75	58.75 58.74	0.068	17.041 17.041	2.494 2.494	30.212 30.216	82.181 82.181	8/12/01 03:49:00 8/12/01 03:50:00	59.72	58.73	0.087	17.045	2.494	30.216	82.08
8/12/01 01:46:00 8/12/01 01:48:00	59.75	58.74 58.74	0.068 0.068	17.041 17.043	2.494 2.494	30.214 30.216	82.181 82.175	8/12/01 03:51:00 8/12/01 03:52:00	59.73 59.73	58.73 58.73	0.087 0.087	17.045 17.043	2.494	30.212 30.212	82.08 82.08
8/12/01 01:49:00	59.75	58.74	0.068	17.043	2.494	30.22	82.175	8/12/01 03:54:00	59.72	58.73	0.087 0.093	17.045 17.045	2.494 2.494	30.21 30.212	82.08 82.073
8/12/01 01:50:00 8/12/01 01:51:00		58.74 58.74	0.068 0.068	17.041 17.041	2.492 2.492	30.216 30.218	82.175 82.175	8/12/01 03:55:00 8/12/01 03:58:00	59.72 59.72	58.73 58.73	0.087	17.045	2.495	30.214	82.073
8/12/01 01:52:00 8/12/01 01:54:00		58.73 58.73	0.068	17.041 17.041	2.492 2.49	30.218 30.22	82.175 82.168	8/12/01 03:57:00 8/12/01 03:58:00		58.73 58.73	0.093	17.045 17.045	2.495 2.495	30.21 30.214	82.073 82.073
8/12/01 01:55:00	5 9.76	58.73	0.068	17.04	2.49	30.224	82.175	8/12/01 04:00:00	59,72	58.73	0.087 0.093	17.045 17.045	2.495 2.495	30.212 30.21	82.073 82.073
8/12/01 01:56:00 8/12/01 01:57:00		58.73 58.73	0.068	17.041 17.04	2.48B 2.49	30.22 30.22	82.168 82.168	8/12/01 04:01:00 8/12/01 04:02:00		58.73 58.74	0.087	17.045	2.494	30.21	82.073
8/12/01 01:58:00 8/12/01 02:00:00		58.73 58.73	0.068	17.04 17.04	2.49 2.49	30.218 30.222	82.168 82.162	8/12/01 04:03:00 8/12/01 04:04:00		58.74 58.74	0.093	17.043 17.045	2.494 2.494	30.212 30.212	82.067 82.067
8/12/01 02:01:00	59.76	58.73	0.068	17.04	2.488	30.22	82.168	8/12/01 04:06:00	59.75	58.74 58.74	0.087	17.043 17.045	2.492	30.212 30.21	82.087 82.087
8/12/01 02:02:00 8/12/01 02:03:00		58.73 58.73	0.068	17.04 17.04	2.488 2.49	30.222 30.22	82.168 82.162	8/12/01 04:07:00 8/12/01 04:08:00	59,76	58.74	0.087	17.043	2.492	30.212	82.067
8/12/01 02:04:00 8/12/01 02:06:00	59.75	58.73 58.73	0.068	17.04 17.04	2.49 2.488	30.222 30.22	82.162 82.162	8/12/01 04:09:00 8/12/01 04:10:00		58.74 58.75	0.093 0.087	17.045 17.045	2.492 2.494	30.21 30.212	82.067 82.067
8/12/01 02:07:00	59.75	58.73	0.068	17.04	2.49	30.224	82.162	8/12/01 04:12:00	59.76	58.75	0.093 0.093	17.045 17.045	2.494 2.494	30.21 30.206	82.067 82.067
8/12/01 02:08:00 8/12/01 02:09:00		58.73 58.74	0.075	17.04 17.04	2.49 2.49	30.222 30.222	82.162 82.162	8/12/01 04:13:00 8/12/01 04:14:00	59.76	58.75 58.75	0.093	17.045	2.495	30.214	82.081
8/12/01 02:10:00 8/12/01 02:12:00	59.75	58.74 58.74	0.075 0.075	17.04 17.04	2.49 2.492	30.22 30.224	82.162 82.156	8/12/01 04:15:00 8/12/01 04:16:00		58.75 58.75	0.093	17.045 17.045	2,495 2,495	30.212 30.21	82.061 82.061
8/12/01 02:13:00	59.75	58.74	0.075	17.04	2.49	30.22	82.156	8/12/01 04:18:00	59.75	58.75	0.093	17.045	2.495	30.21	82.061
8/12/01 02:14:00 8/12/01 02:15:00		58.74 58.74	0.075 0.068	17.04 17.04	2.49 2.49	30.226 30.226	82.156 82.156	8/12/01 04:19:00 8/12/01 04:20:00		58.74 58.74	0.093 0.093	17.043 17.045	2.497 2.497	30.208 30.21	82.054 82.054
8/12/01 02:16:00	59.75	58.74	0.075 0.075	17.04 17.04	2.488 2.488	30.224 30.224	82.156 82.158	8/12/01 04:21:00 8/12/01 04:22:00		58.74 58.74	0.093	17.045 17.045	2.497 2.497	30.21 30.21	82.054 82.054
8/12/01 02:18:00 8/12/01 02:19:00	59.75	58.74 58.74	0.075	17.04	2.488	30.22	82.156	8/12/01 04:24:00	59.74	58.74	0.093	17.045	2.497	30.21	82.054
8/12/01 02:20:00 8/12/01 02:21:00		58.74 58.74	0.075	17.04	2.49 2.49	30.22 30.22	82.149 82.149	8/12/01 04:25:00 8/12/01 04:26:00		58.74 58.74	0.093 0.093	17.045 17.045	2.497 2.497	30.206 30.208	82.054 82.048
8/12/01 02:22:00	59.76	58.74	0.075	17.04	2.49	30.222	82.149	8/12/01 04:27:00 8/12/01 04:28:00	59.75	58.74 58.74	0.093 0.093	17.047 17.045	2,499 2,499	30.21 30.208	82.048 82.048
8/12/01 02:24:00 8/12/01 02:25:00		58.74 58.74	0.075 0.075	17.04 17.04	2.49 2.49	30.222 30.222	82.149 82.149	8/12/01 04:30:00	59.75	58.74	0.093	17.047	2.499	30.208	82.048
8/12/01 02:26:00 8/12/01 02:27:00		58.74 58.74	0.075	17.04 17.04	2.49 2.49	30.222 30.222	82.149 82.143	8/12/01 04:31:00 8/12/01 04:32:00		58.74 58.74	0.093	17.047 17.047	2.497 2.497	30.206 30.208	82.048 82.048
8/12/01 02:28:00	59.75	58.74	0.075	17.04	2.492	30.22	82.143	8/12/01 04:33:00	59.74	58.74 58.74	0.093	17.047 17.045	2.497 2.495	30.208 30.206	82.048 82.048
8/12/01 02:30:00 8/12/01 02:31:00		58.73 58.73	0.075	17.04 17.04	2.492 2.492	30.218 30.216	82.143 82.143	8/12/01 04:34:00 8/12/01 04:36:00	59.73	58.74	0.093	17.045	2.495	30.21	82.048
8/12/01 02:32:00 8/12/01 02:33:00		58.73 58.73	0.075 0.081	17.041 17.041	2.494 2.494	30.22 30.212	82.143 82.143	8/12/01 04:37:00 8/12/01 04:38:00		58.74 58.74	0.093 0.093	17.045 17.045	2.494 2.494	30.206 30.206	82.042 82.042
8/12/01 02:34:00	59.76	58.73	0.075	17.041	2.495	30.218	82.143	8/12/01 04:39:00 8/12/01 04:40:00	59.73	58.74 58.75	0.093 0.093	17.045 17.045	2.495 2.494	30.208 30.206	82.042 82.042
8/12/01 02:38:00 8/12/01 02:37:00	59.75	58.73 58.73	0.081 0.075	17.041 17.041	2.495 2.495	30.216 30.216	82.137 82.137	8/12/01 04:42:00	59.74	58.75	0.093	17.047	2.494	30.204	82.042
8/12/01 02:38:00 8/12/01 02:39:00		58.73 58.73	0.075	17.043 17.041	2.494 2.495	30.214 30.214	82.137 82.137	8/12/01 04:43:00 8/12/01 04:44:00		58.75 58.74	0.093 0.093	17.047 17.045	2.494 2.494	30.204 30.204	82.042 82.035
8/12/01 02:40:00	59.74	58.73	0.081	17.043	2.494	30.216	82.137	8/12/01 04:45:00 8/12/01 04:46:00	59.74	58.74 58.74	0.093 0.093	17.045 17.045	2.494 2.495	30.206 30.206	82.042 82.035
8/12/01 02:42:00 8/12/01 02:43:00		58.73 58.74	0.081 0.081	17.043 17.043	2,494 2,494	30.216 30.214	82.13 82.13	8/12/01 04:48:00	59.73	58.74	0.093	17.045	2.495	30.208	82.035
8/12/01 02:44:00 8/12/01 02:45:00		58.74 58.74	0.081 0.081	17.041 17.043	2.495 2.494	30.214 30.218	82.13 82.13	8/12/01 04:49:00 8/12/01 04:50:00		58.74 58.74	0.093 0.099	17.045 17.045	2.494 2.495	30.202 30.206	82.035 82.035
8/12/01 02:46:00	59.74	58.74	0.081	17,041	2.494	30.218	82.13	8/12/01 04:51:00 8/12/01 04:52:00	59.73	58.73 58.73	0.093 0.093	17.045 17.045	2.495 2.495	30.204 30.206	82.035 82.035
8/12/01 02:48:00 8/12/01 02:49:00		58.74 58.74	0.081 0.081	17.041 17.041	2.492 2.492	30.218 30.218	82.124 62.13	8/12/01 04:54:00	59.73	58.73	0.099	17.045	2.495	30.202	82.029
8/12/01 02:50:00 8/12/01 02:51:00		58.74 58.74	D.081 0.081	17.041 17.041	2.492 2.494	30.22 30.22	82.124 82.124	8/12/01 04:55:00 8/12/01 04:58:00	59.74 59.74	58.73 58.73	0.093	17.045 17.045	2.495 2.497	30.204 30.204	82.029 82.029
8/12/01 02:52:00	59.75	58.74	0.081	17.041	2.494 2.492	30.218 30.218	82.124 82.124	8/12/01 04:57:00 8/12/01 04:58:00		58.73 58.73	0.099 0.099	17.047 17.045	2.497 2.497	30.2 30.204	82.029 82.029
8/12/01 02:54:00 8/12/01 02:55:00	59.75	58.74 58.74	0.081	17,041	2.494	30.22	82.124	8/12/01 05:00:00	59.75	58.73	0.099	17.045	2.499	30.202	82.023
8/12/01 02:56:00 8/12/01 02:57:00		58.74 58.74	0.081 0.081	17.041 17.041	2.494 2.494	30.22 30.218	82.118 82.118	8/12/01 05:01:00 8/12/01 05:02:00		58.73 58.73	0.093 0.093	17.047 17.047	2.499 2.499	30.204 30.206	82.023 82.029
8/12/01 02:58:00 8/12/01 03:00:00	59.74	58.74 58.74	0.081	17.041 17.041	2.492 2.492	30.218 30.218	82.118 82.118	8/12/01 05:03:00 8/12/01 05:04:00	59.76	58.74 58.74	0.093 0.099	17.049 17.047	2.501 2.499	30.2 30.202	82.023 82.023
8/12/01 03:01:00	59.75	58.74	0.081	17.041	2.492	30.22	82.118	8/12/01 05:06:00	59.76	58.74	0.099	17.049	2.499	30.202	82.023
8/12/01 03:02:00 8/12/01 03:03:06		58.74 58.74	0.081	17.041 17.041	2.492 2.492	30.218 30.218	82.118 82.111	8/12/01 05:07:00 8/12/01 05:08:00		58.74 58.73	0.099 0.099	17.047 17.047	2.501 2.499	30.2 30.204	82.023 82.023
8/12/01 03:04:00 8/12/01 03:06:00	59.76	58.74 58.74	0.081	17.041 17.041	2.492 2.492	30.218 30.218	82.118 82.118	8/12/01 05:09:00 8/12/01 05:10:00		58.73 58.73	0.099 0.099	17.047 17.047	2.497 2.497	30.198 30.202	82.016 82.016
8/12/01 03:07:00	59.76	58.74	0.087	17.041	2.492	30.216	82.111	8/12/01 05:12:00	59.77	58.73	0.099	17.047	2.497	30.2	82.016
8/12/01 03:08:00 8/12/01 03:09:00		58.74 58.74	0.081 0.081	17.041 17.041	2.494 2.494	30.214 30.218	82.111 82.111	8/12/01 05:13:00 8/12/01 05:14:00		58.73 58.74	0.099 0.099	17.047 17.047	2.497 2.497	30.196 30.2	82.016 82.016
8/12/01 03:10:00	59.75	58.74 58.74	0.081 0.087	17.041 17.041	2.494 2.494	30.216 30.216	82.111 82.111	8/12/01 05:15:00 8/12/01 05:16:00		58.74 58.74	0.108	17.047 17.047	2.497 2.497	30.198 30.202	82.016 82.016
8/12/01 03:12:00 8/12/01 03:13:00	59.75	58.74	0.087	17.041	2.495	30.22	82.105	8/12/01 05:18:00	59.75	58.74	0.099	17.047	2.495	30.198	82.01
8/12/01 03:14:00 8/12/01 03:15:00		58.74 58.74	0.081 0.081	17.041 17.041	2.494 2.494	30.222 30.222	82.105 82.105	8/12/01 05:19:00 8/12/01 05:20:00		58.74 58.74	0.099 0.099	17.047 17.047	2.495 2.495	30.202 30.2	82.01 82.01
8/12/01 03:18:00	59.76	58.74	0.081 0.081	17.041 17.041	2.495 2.494	30.22 30.218	82.105 82.105	8/12/01 05:21:00 8/12/01 05:22:00		58.73 58.73	0.099 0.099	17.045 17.047	2.492 2.495	30.204 30.204	82.01 82.01
8/12/01 03:18:00 8/12/01 03:19:00	59.76	58.74 58.74	0.081	17.041	2.494	30.218	82.099	8/12/01 05:24:00	59.76	58.73	0.099	17.047	2.495	30.198	82.01
8/12/01 03:20:00 8/12/01 03:21:00		58.74 58.74	0.081 0.081	17.041 17.041	2.494 2.494	30.22 30.22	82.105 82.099	8/12/01 05:25:00 8/12/01 05:28:00		58.73 58.73	0.099 0.099	17.047 17.047	2.495 2.495	30.204 30.2	82.01 82.01
8/12/01 03:22:00	59.76	58.74	0.081	17.041 17.045	2.495	30.218 30.218	82.099 82.099	8/12/01 05:27:00 8/12/01 05:28:00	59.76	58.73 58.73	0.099	17.045 17.047	2.497 2.495	30.2 30.2	82.01 82.004
8/12/01 03:24:00 8/12/01 03:25:00	59,76	58.74 58.74	0.087 0. 087	17.045	2,495 2,495	30.22	82.099	8/12/01 05:30:00	59.76	58.73	0.099	17.047	2.497	30.202	82.004
8/12/01 03:26:00 8/12/01 03:27:00		58.74 58.74	0.081 0.087	17.045 17.041	2.494 2.494	30.218 30.218	82.099 82.092	8/12/01 05:31:00 8/12/01 05:32:00		58.74 58.74	0.099 0.099	17.047 17.047	2.497 2.495	30.2 30.202	82.004 82.004
8/12/01 03:28:00	59.76	58.74	0.081	17.043	2.494	30.216	82.092	8/12/01 05:33:00 8/12/01 05:34:00	59.75	58.74 58.74	0.099 0.099	17.045 17.047	2.497 2.497	30.204 30.202	81.998 81.998
8/12/01 03:30:00 8/12/01 03:31:00	59.75	58.74 58.74	0.087 0.087	17.043 17.043	2.494 2.494	30.22 30.218	82.092 82.086	8/12/01 05:36:00	59.75	58.74	0.099	17.047	2.497	30.202	81.998
8/12/01 03:32:00 8/12/01 03:33:00		58.74 58.74	0.087 0.087	17.043 17.043	2.494 2.492	30.216 30.218	82.092 82.092	8/12/01 05:37:00 8/12/01 05:38:00		58.74 58.74	0.099 0.099	17.045 17.045	2.497 2.497	30.2 30.202	81.998 81.998
8/12/01 03:34:00 8/12/01 03:36:00	59.75	58.74 58.74	0.087 0.087	17.043 17.043	2.492 2.492	30.22 30.218	82.092 82.086	8/12/01 05:39:00 8/12/01 05:40:00	59.75	58.74 58.74	0.099 0.099	17.045 17.047	2.497 2.497	30.202 30.204	81.998 81.991
8/12/01 03:37:00		58.74	0.087	17.043	2.492	30.22	82.086	8/12/01 05:42:00		58.74	0.093	17.047	2.497	30.204	81.991

Date/Time	Downhole Pressure (psi)	Downhole Temperature (deg F)	Weilhead Pressure (psi)	Upper Monitor Pressure (psi)	Lower Monitor Pressure (psi)	Barometric Pressure (inchs Hg)	Annular Pressure (psi)	Date/Time	Downhole Pressure (psi)	Downhole Temperature (deg F)	Wellhead Pressure (psi)	Upper Monitor Pressure (psi)	Lower Monitor Pressure (psi)	Barometric Pressure (inchs Hg)	Annular Pressure (psi)
8/12/01 05:43:00	59.75	58.74	0.099	17.047	2.499	30.204	81.991	8/12/01 07:48:00 8/12/01 07:49:00	59.76 59.78	58.74 58.74	0.081 0.081	17.047 17.047	2.494 2.494	30.19 30.192	81.884 81.884
8/12/01 05:44:00 8/12/01 05:45:00	59.75 59.75	58.73 58.73	0.099 0.099	17.047 17.047	2.499 2.499	30.204 30.202	81.991 81.991	8/12/01 07:50:00	59.76	58.74	0.081	17.045	2,497	30.19	81.877
8/12/01 05:46:00 8/12/01 05:48:00	59.75 59.75	58.73 58.73	0.099 0.099	17.047 17,047	2.499 2.499	30.202 30.2	81.991 81.985	8/12/01 07:51:00 8/12/01 07:52:00	59.75 59.75	58.74 58.74	0.081 0.081	17.047 17.047	2.494 2.497	30.19 30.192	81.877 81.877
8/12/01 05:49:00 8/12/01 05:50:00	59.75 59.75	58.73 58.73	0.099	17.047 17.047	2.499 2.499	30.202 30.204	81.985 81.985	8/12/01 07:54:00 8/12/01 07:55:00	59.75 59.75	58.74 58.74	0.081 0.081	17.047 17.045	2.494 2.494	30.19 30.194	81.877 81.877
8/12/01 05:51:00	59.75	58.73	0.099	17.047	2.499	30.2	81.985	8/12/01 07:56:00	59.74	58.73 58.73	0.075	17.045 17.045	2,494	30.192 30.192	81.877 81.871
8/12/01 05:52:00 8/12/01 05:54:00	59.75 59.75	58.73 58.73	0.099 0.099	17.047 17.047	2.499 2.499	30.202 30.2	81.985 81.985	8/12/01 07:57:00 8/12/01 07:58:00	59.73	58.73	0.075	17.045	2.49	30.196	81.871
8/12/01 05:55:00 8/12/01 05:56:00	59.75 59.76	58.73 58.73	0.099 0.099	17.047 17.047	2.501 2.499	30.206 30.202	81.985 81.985	8/12/01 08:00:00 8/12/01 08:01:00	59.73 59.73	58.73 58.73	0.081 0.075	17.045 17.045	2.492 2.494	30.192 30.196	81.871 81.871
8/12/01 05:57:00 8/12/01 05:58:00	59.76 59.76	58.73 58.73	0.099 0.093	17.049 17.049	2.501 2.501	30.198 30.2	\$1.972 81.972	8/12/01 08:02:00 8/12/01 08:03:00	59.74 59.74	58.73 58.73	0.081 0.081	17.045 17.045	2.494 2.494	30.192 30.19	81.871 81.865
8/12/01 06:00:00	59.76	58.73	0.099	17.049	2.501	30.2	81.966	8/12/01 08:04:00	59.74	58.74 58.74	0.081	17.047 17.047	2.495	30.194 30.194	81.865 81.865
8/12/01 06:01:00 8/12/01 06:02:00	59.76 59.76	58.73 58.73	0.099 0.099	17.049 17.051	2.501 2.499	30.2 30.2	81.979 81.966	8/12/01 08:06:00 8/12/01 08:07:00	59.74 59.74	58.74	0.075	17.047	2.495	30.194	81,858
8/12/01 06:03:00 8/12/01 06:04:00	59.75 59.75	58.73 58.73	0.099 0.099	17.051 17.051	2.497 2.494	30.2 30.198	81.979 81.968	8/12/01 08:08:00 8/12/01 08:09:00	59.74 59.74	58.74 58.74	0.075 0.075	17.045 17.045	2.494 2.494	30.196 30.196	81.858 81.858
8/12/01 06:06:00 8/12/01 06:07:00	59.75 59.75	58.73 58.74	0.099 0.099	17.051 17.051	2.494 2.49	30.198 30.198	81,966 81,966	8/12/01 08:10:00 8/12/01 08:12:00	59.75 59.75	58.74 58.74	0.081 0.075	17.045 17.045	2.494 2.494	30.196 30.196	81.858 81.858
8/12/01 06:08:00	59.75	58.74	0.099	17.051	2.492	30.196	81.966	8/12/01 08:13:00	59.75 59.75	58.74 58.74	0.075	17.045 17.045	2.494 2.494	30.194 30.194	81.858 81.858
8/12/01 06:09:00 8/12/01 06:10:00	59.75 59.75	58.74 58.74	0.099 0.099	17_053 17.053	2.49 2.49	30.198 30.196	81.965 81.966	8/12/01 08:14:00 8/12/01 08:15:00	59.75	58.74	0.075	17.045	2.494	30.192	81.852
8/12/01 06:12:00 8/12/01 06:13:00	59.76 59.76	58.74 58.74	0.099 0.099	17.053 17.053	2.49 2.488	30.198 30.196	81.96 81.96	8/12/01 08:16:00 8/12/01 08:18:00	59.75 59.75	58.74 58.74	0.075 0.075	17.045 17.045	2.494 2.494	30.194 30.192	81.852 81.852
8/12/01 06:14:00 8/12/01 06:15:00	59.76 59.76	58.74 58.74	0.106	17.053 17.053	2.488 2.488	30.194 30.194	81.96 81.96	8/12/01 08:19:00 8/12/01 08:20:00	59.75 59.75	58.73 58.73	0.075 0.075	17.047 17.049	2.494 2.495	30.194 30.196	81.852 81.852
8/12/01 06:16:00	59.76	58.74	0,106	17.053	2.486	30,196	81.96	8/12/01 08:21:00 8/12/01 08:22:00	59.74 59.74	58.73	0.075	17.049 17.049	2.499 2.499	30.192 30.194	81.852 81.852
8/12/01 06:18:00 8/12/01 06:19:00	59.76 59.76	58.74 58.74	0.099 0.106	17.051 17.053	2.486 2.486	30.194 30.196	81.96 81.96	8/12/01 08:24:00	59.74	58.73 58.73	0.075	17.049	2.499	30.19	81.852
8/12/01 05:20:00 8/12/01 05:21:00	59.76 59.76	58.74 58.74	0.099 0.099	17.051 17.051	2.484 2.484	30.202 30.196	81.953 81.953	8/12/01 08:25:00 8/12/01 08:26:00	59.74 59.74	58.73 58.73	0.075 0.075	17.049 17.049	2.499 2.499	30.192 30.196	81.846 81.846
8/12/01 06:22:00 8/12/01 06:24:00	59.75 59.75	58.74 58.74	0.099	17.053 17.053	2.484 2.484	30.2 30.202	81.953 81.953	8/12/01 08:27:00 8/12/01 08:28:00	59.73 59.73	58.73 58.73	0.068 0.075	17.049 17.049	2.497 2.495	30.196 30.196	81.846 81.846
8/12/01 06:25:00	59.75	58.74	0.099	17.053	2.484	30.2	81.953	8/12/01 08:30:00	59.73	58.73	0.068	17.049	2.495	30.198	81.846 81.839
8/12/01 06:26:00 8/12/01 06:27:00	59.75 59.75	58.74 58.74	0.099 0.099	17.053 17.053	2.484 2.484	30.2 30.198	81.953 81.947	8/12/01 08:31:00 8/12/01 08:32:00	59.73 59.73	58.73 58.73	0.068	17.047 17.047	2.494 2.494	30.202 30.198	81.839
8/12/01 06:28:00 8/12/01 06:30:00	59.75 59.75	58.74 58.74	0.099 0.099	17.055 17.055	2.484 2.484	30.202 30.2	81.947 81.947	8/12/01 08:33:00 8/12/01 08:34:00	59.74 59.74	58.73 58.73	0.075 0.068	17.047 17.047	2.494 2.494	30.194 30.198	81.839 81.839
8/12/01 06:31:00 8/12/01 06:32:00	59.75 59.76	58.74 58.74	0.099	17.056 17.056	2.482 2.482	30.204 30.2	81.941 81.947	8/12/01 08:38:00 8/12/01 08:37:00	59.74 59.74	68.73 58.73	0.068 0.068	17.047 17.049	2.494 2.495	30.198 30.194	81.839 81.833
8/12/01 06:33:00	59.76	58.74	0.099	17.056	2.482	30.2	81.941	8/12/01 08:38:00	59.74	58.73	0.068	17.049	2.497	30.196	81.833
8/12/01 06:34:00 8/12/01 06:36:00	59.76 59.76	58.74 58.74	0.106 0.099	17.056 17.056	2.482 2.484	30.2 30.198	81.941 81.941	8/12/01 08:39:00 8/12/01 08:40:00	59.74 59.75	58.73 58.73	0.068 0.068	17.049 17.051	2.497 2.501	30,198 30,192	81.833 81.833
8/12/01 06:37:00 8/12/01 06:38:00	59.76 59.76	58.73 58.73	0.106 0.099	17.058 17.055	2.488 2.488	30.198 30.2	81.941 81.941	8/12/01 08:42:00 8/12/01 08:43:00	59.75 59.75	58.73 58.73	0.075 0.068	17.053 17.053	2.501 2.501	30.194 30.192	81.827 81.827
8/12/01 06:39:00 8/12/01 06:40:00	59.75 59.75	58.73 58.73	0.099	17.053 17.047	2.488 2.481	30.202 30.198	81.934 81.934	8/12/01 08:44:00 8/12/01 08:45:00	59.75 59.75	58.73 58.73	0.068 0.075	17.053 17.055	2.501 2.501	30,194 30,196	81.827 81.827
8/12/01 06:42:00	59.75	58.73	0.099	17.045	2.477	30.202	81.934	8/12/01 08:46:00	59.75	58.73	0.068	17.058	2.501	30.194	81.827
8/12/01 06:43:00 8/12/01 06:44:00	59.75 59.74	58.73 58.73	0.099 0.099	17,041 17.04	2.473 2.473	30.202 30.206	81.934 81.934	8/12/01 08:48:00 8/12/01 08:49:00		58.73 58.73	0.068 0.068	17.058 17.058	2.495 2.494	30,198 30,194	81.82 81.82
8/12/01 06:45:00 8/12/01 06:46:00	59.74 59.74	58.73 58.73	0.099 0.099	17.038 17.038	2.471 2.471	30.208 30.204	81.934 81.934	8/12/01 08:50:00 8/12/01 08:51:00	59.74 59.74	58.73 58.73	0.068 0.066	17.058 17.056	2.49 2.488	30.194 30.196	81.82 81.82
8/12/01 06:48:00 8/12/01 06:49:00	59.73	58.73 58.73	0.099	17.038 17.038	2.475 2.475	30.204 30.204	81.928 81.934	8/12/01 08:52:00 8/12/01 08:54:00	59.74 59.74	58.73 58.73	0.068 0.068	17.055 17.053	2.486 2.484	30.194 30.2	81.82 81.814
8/12/01 06:50:00	59.74	58.73	0.099	17.038	2.475	30.204	81.928	8/12/01 08:55:00	59,74	58.73	0.068	17.053	2.484	30.198	81.814
8/12/01 06:51:00 8/12/01 06:52:00	59.74 59.74	58.74 58.74	0.099 0.099	17.038 17.038	2.475 2.475	30.204 30.204	81.934 81.928	8/12/01 08:56:00 8/12/01 08:57:00	59.74 59.74	58.73 58.73	0.068 0.068	17.049 17.047	2.482 2.482	30.198 30.2	81.814 81.814
8/12/01 06:54:00 8/12/01 06:55:00	59.74 59.74	58.74 58.74	0.099 0.099	17.038 17.038	2.475 2.475	30.208 30.204	81.934 81.934	8/12/01 08:58:00 8/12/01 09:00:00	59.74 59.75	58.73 58.73	0.068 0.068	17.045 17.045	2.481 2.482	30.2 30.2	81.814 81.814
8/12/01 08:56:00 8/12/01 08:57:00	59.75 59.75	58.74 58.74	0.093	17.038 17.038	2.477 2.475	30.2 30.2	81.928 81.928	8/12/01 09:01:00 8/12/01 09:02:00	59.75 59.75	58.73 58.73	0.068 0.068	17.045 17.045	2.482 2.482	30.204 30.2	81.814 81.808
8/12/01 06:58:00	59.75	58.74	0.093	17.038	2.477	30.2	81.928	6/12/01 09:03:00	59.75	58.73	0.068	17.045	2.484	30.202	81.808
8/12/01 07:00:00 8/12/01 07:01:00	59.75 59.75	58.74 58.74	0.099 0.099	17.04 17.04	2.477 2.481	30.2 30.198	81.928 81.928	8/12/01 09:04:00 8/12/01 09:06:00	59.75 59.75	58.73 58.73	0.068 0.068	17.045 17.045	2.482 2.482	30.2 30.202	81.808 81.801
8/12/01 07:02:00 8/12/01 07:03:00		58.74 58.74	0.099	17.04 17.041	2.481 2.482	30.198 30.194	81.928 81.928	8/12/01 09:07:00 8/12/01 09:08:00	59.75 59.75	58.73 58.73	0.068 0.068	17.045 17.045	2,482 2,482	30.198 30.198	81.808 81.808
8/12/01 07:04:00 8/12/01 07:06:00	59.73	58.74 58.74	0.093	17.041 17.041	2.482 2.484	30.198 30.196	81.928 81.928	8/12/01 09:09:00 8/12/01 09:10:00	59.75 59.75	58.73 58.73	0.068 0.068	17.047 17.047	2.482 2.481	30.2 30.198	81.808 81.801
8/12/01 07:07:00	59.74	58.74	0.093	17.041	2.484	30,196	81.922	8/12/01 09:12:00	59.75	58.73	0.068	17.045	2.481	30.202	81.801
8/12/01 07:08:00 8/12/01 07:09:00	59.74	58.74 58.74	0.093 0.093	17.041 17.041	2.484 2.484	30.2 30.198	81.922 81.922	8/12/01 09:13:00 8/12/01 09:14:00	59.75 59.75	58.73 58.73	0.068	17.047 17.045	2.481 2.481	30.198 30.198	81.801 81.801
8/12/01 07:10:00 8/12/01 07:12:00		58.74 58.74	0.093	17.041 17.041	2.484 2.486	30.196 30.196	81.922 81.922	8/12/01 09:15:00 8/12/01 09:18:00	59.75 59.75	58.73 58.73	0.062 0.068	17.047 17.045	2.481 2.481	30.2 30.202	81.801 81.795
8/12/01 07:13:00 8/12/01 07:14:00	59.75	58.74 58.74	0.093	17.041 17.041	2.486 2.486	30.194 30.194	81.922 81.915	8/12/01 09:18:00 8/12/01 09:19:00	59.75 59.74	58.73 58.73	0.062	17.045 17.045	2.479 2.479	30.2 30.2	81.795 61.795
8/12/01 07:15:00	59.76	58.74	0.093	17.041	2.488	30.194	81.915	8/12/01 09:20:00	59.74	58.72	0.068	17.045	2.479	30.202	81.795
8/12/01 07:16:00 8/12/01 07:18:00	59.76	58.73 58.73	0.093	17.041 17.041	2.488 2.488	30.196 30.194	81.915 81.915	8/12/01 09:21:00 8/12/01 09:22:00		58.72 58.72	0.062	17.045 17.045	2.479 2.479	30.2 30.202	81.795 81.789
6/12/01 07:19:00 8/12/01 07:20:00		58.73 58.73	0.087 0.087	17.041 17.041	2.488 2.488	30.196 30.198	81.909 81.909	8/12/01 09:24:00 8/12/01 09:25:00		58.72 58.72	0.062	17.045 17.045	2.477 2.477	30.198 30.202	81.789 81.789
8/12/01 07:21:00 8/12/01 07:22:00	59.76	58.73 58.73	0.087 0.087	17.043 17.043	2.49 2.49	30.196 30.194	81.909 81.909	8/12/01 09:26:00 8/12/01 09:27:00	59.75	58.73 58.73	0.062 0.062	17.045 17.045	2.477 2.477	30.202 30.202	81.789 81.789
8/12/01 07:24:00	59.76	58.73	0.087	17.043	2.49	30.198	81.903	8/12/01 09:28:00	59.75	58.73	0.062	17.043	2.475	30.204	81.789
8/12/01 07:25:00 8/12/01 07:26:00	59.76	58.73 58.73	0.087 0.087	17.043 17,043	2.492 2.492	30,196 30,196	81.903 81.903	8/12/01 09:30:00 8/12/01 09:31:00		58.73 58.73	0.062	17.043 17.043	2.477 2.479	30.206 30.204	81.782 81.782
8/12/01 07:27:00 8/12/01 07:28:00		58.74 58.74	0.087 0.087	17.043 17.043	2.494 2.492	30.19 30.19	61.903 81.903	8/12/01 09:32:00 8/12/01 09:33:00	59.75 59.7 5	58.73 58.73	0.062 0.062	17.041 17.041	2.479 2.481	30.204 30.204	81.782 81.782
8/12/01 07:30:00 8/12/01 07:31:00	59.75	58.74 58.74	0.087	17.043 17.043	2.492 2.49	30.192 30.192	81.903 81.896	8/12/01 09:34:00 8/12/01 09:36:00	59.75	58.73 58.73	0.062	17.041 17.041	2.481 2.481	30.208 30.206	81.782 81.782
8/12/01 07:32:00	59.75	58.74	0.087	17.043	2.49	30.192	81.896	8/12/01 09:37:00	59.75	58.73	0.062	17.041	2.482	30.208	81.77
8/12/01 07:33:00 8/12/01 07:34:00	59.75	58.74 58.74	0.087 0.081	17.043 17.045	2.492 2.492	30.192 30.192	61.896 81.896	8/12/01 09:38:00 8/12/01 09:39:00	59.75	58.73 58.74	0.062 0.062	17.041 17.041	2.482 2.482	30.208 30.21	81.782 81.77
8/12/01 07:38:00 8/12/01 07:37:00		58.74 58.74	0.087 0.087	17.045 17.045	2.492 2.494	30.194 30.19	81.896 81.896	8/12/01 09:40:00 8/12/01 09:42:00		58.74 58.74	0.062	17.04 17.04	2.482 2.482	30.206 30.208	81.77 81.77
8/12/01 07:38:00 8/12/01 07:39:00	59.75	58.73 58.73	0.081	17.045 17.045	2.494 2.492	30.194 30.192	81.896 81.89	8/12/01 09:43:00 8/12/01 09:44:00	59.75	58.74 58.74	0.062	17.04 17.04	2.484 2.482	30.21 30.208	81.763 81.77
8/12/01 07:40:00	59.75	58.73	0.081	17.045	2.494	30.192	81.89	8/12/01 09:45:00	59.74	58.74	0.056	17.04	2.484	30.208	81.763
8/12/01 07:42:00 8/12/01 07:43:00	59.75	58.73 58.73	0.081 0.081	17.045 17.045	2.494 2.494	30.192 30.194	81.89 81.884	8/12/01 09:46:00 8/12/01 09:48:00	59.74	58.74 58.74	0.062 0.056	17.04 17.041	2.484 2.486	30.21 30.212	81.763 81.763
8/12/01 07:44:00 8/12/01 07:45:00	59.75	58.73 58.73	0.081 0.081	17.045 17.045	2.494 2.494	30.19 30.19	81.884 81.884	8/12/01 09:49:00 8/12/01 09:50:00	59.73 59.73	58.73 58.73	0.062 0.062	17.041 17.04	2.486 2.486	30.21 30.208	81.763 81.763
8/12/01 07:46:00		58.73	D.081	17.045	2.494	30.19	61.884	8/12/01 09:51:00		58.73	0.062	17.041	2.486	30.21	81.763

Date/Fime	Downhole Pressure (psi)	Downhole Temperature (deg F)	Weilhead Pressure (psi)	Upper Monitor Pressure (psi)	Lower Monitor Pressure (psi)	Barometric Pressure (inchs Hg)	Annular Pressure (psi)	Date/Time	Downhole Pressure (psi)	Downhole Temperature (deg F)	Wellhead Pressure (psi)	Upper Monitor Pressure (psi)	Lower Monitor Pressure (psi)	Barometric Pressure (inchs Hg)	Annular Pressure (psi)
8/12/01 09:52:00		58.73	0.062	17.04	2.486	30.212	81.757	8/12/01 11:57:00		58.73	0.099	17.212	2.479	30.231	81.643
8/12/01 09:54:00 8/12/01 09:55:00	59.73 59.73	58.73 58.73	0.056 0.062	17.04 17.04	2.488 2.488	30.21 30.21	81.757 81.757	8/12/01 11:58:00 8/12/01 12:00:00	59.75	58.73 58.73	0.099 0.106	17.218 17.225	2.477 2.482	30.224 30.228	81.649 81.649
8/12/01 09:56:00 8/12/01 09:57:09		58.73 58.74	0.056 0.056	17.04 17.04	2.486 2.488	30.214 30.214	81.757 81.757	8/12/01 12:01:00 8/12/01 12:02:00		58.74 58.74	0.106 0.106	17.225 17.212	2.482 2.486	30.226 30.233	81.643 81.643
8/12/01 09:58:00	59.74	58.74	0.056	17.04 17.04	2,486 2,486	30.212 30.21	81.751 81.751	8/12/01 12:03:00 8/12/01 12:04:00	59.78	58.74 58.74	0.106 0.106	17.212 17,212	2.481 2.481	30.228 30.226	81.643 81.643
8/12/01 10:00:00 8/12/01 10:01:00	59.75	58.74 58.74	0.056 0.056	17.04	2.486	30.214	81.751	8/12/01 12:06:00	59.76	58.74	0.106	17.208	2.481	30.228	81.656
8/12/01 10:02:00 8/12/01 10:03:00		58.74 58.74	0.05	17.04 17.038	2.486 2.486	30.216 30.214	81.751 81.751	8/12/01 12:07:00 8/12/01 12:08:00		58.74 58.73	0.112 0.112	17.208 17.208	2.482 2.482	30.233 30.231	81.649 81.649
8/12/01 10:04:00 8/12/01 10:06:00		58.74 58.74	0.05 0.05	17.04 17.038	2.486 2.486	30.216 30.22	81.744 81.744	8/12/01 12:09:00 8/12/01 12:10:00		58.73 58.73	0.118 0.112	17.204 17.203	2.481 2.479	30.231 30.231	81.649 81.649
8/12/01 10:07:00	59.75	58.73	0.05	17.038	2.486	30.218 30.216	81.744 81.744	8/12/01 12:12:00 8/12/01 12:13:00	59.76	58.73 58.73	0.118 0.118	17.199 17.203	2.481 2.481	30.231 30.228	81.649 81.649
8/12/01 10:08:00 8/12/01 10:09:00	59.75	58.73 58.73	0.05 0.05	17.038 17.038	2.484 2.484	30.214	81.744	8/12/01 12:14:00	59.76	58.73	0.124	17.201	2.482	30.228	81.649
8/12/01 10:10:00 8/12/01 10:12:00		58.73 58.73	0.05	17.038 17.038	2.484 2.486	30.214 30.216	81.738 81.738	8/12/01 12:15:00 8/12/01 12:16:00		58.74 58.74	0.118 0.124	17.178 17.148	2.482 2.477	30.228 30.226	81.649 81.649
8/12/01 10:13:00 8/12/01 10:14:00		58.73 58.73	0.05 0.05	17.04 17.04	2.486 2.488	30.216 30,216	81.744 81.738	8/12/01 12:18:00 8/12/01 12:19:00		58.74 58.74	0.118 0.124	17.12 17.096	2.475 2.471	30.231 30.228	81.649 81.649
8/12/01 10:15:00	59.75	58.73	0.05	17.04	2.488	30.212	81.738	8/12/01 12:20:00 8/12/01 12:21:00	59.76	58.73 58.73	0.118	17.073	2.462 2.48	30.228 30.226	81.643 81.643
8/12/01 10:18:00 8/12/01 10:18:00	59.75	58.73 58.73	0.05 0.05	17.04 17.04	2.488 2.49	30.216 30.212	81.738 81.738	8/12/01 12:22:00	59.76	58.73	0.118	17.055	2.458	30.231	81.649
8/12/01 10:19:00 8/12/01 10:20:00		58.73 58.73	0.05	17.041 17.041	2.49 2.49	30.212 30.212	81.738 81.738	8/12/01 12:24:00 8/12/01 12:25:00		58.73 58.73	0.118 0.118	17.053 17.047	2.458 2.458	30.226 30.231	81.643 81.643
8/12/01 10:21:00 8/12/01 10:22:00		58.73 58.73	0.05 0.05	17.043 17.041	2,49 2,49	30.212 30.212	81.738 81.738	8/12/01 12:28:00 8/12/01 12:27:00		58.73 58.73	0.124 0.124	17.045 17.041	2.458 2.458	30.228 30.228	81.637 81.637
8/12/01 10:24:00	59.75	58.73	0.062	17.041	2.488	30.212	81.732	8/12/01 12:28:00 8/12/01 12:30:00	59.77	58.73 58.73	0.124	17.038 17.034	2.456 2.456	30.231 30.231	81.637 81.637
8/12/01 10:25:00 8/12/01 10:26:00	59.75	58.73 58.73	0.05 0.05	17.04 17.04	2.488 2.486	30.214 30.216	81.732 81.732	8/12/01 12:31:00	59.77	58.73	0.118	17.03	2.458	30.231	\$1.637
8/12/01 10:27:00 8/12/01 10:28:00		58.73 58.73	0.05 0.05	17.038 17.038	2.484 2.484	30.212 30.216	81.732 81.732	8/12/01 12:32:00 8/12/01 12:33:00		58.73 58.73	0.124 0.118	17.028 17.026	2.458 2.458	30.228 30.231	81.637 81.83
8/12/01 10:30:00 8/12/01 10:31:00	59.75	58.73 58.73	0.05 0.05	17.036 17.038	2.484 2.482	30.216 30.218	81.732 81.725	8/12/01 12:34:00 8/12/01 12:36:00		58.73 58.73	0.118 0.118	17.026 17.025	2.458 2.46	30.233 30.231	81.63 81.637
8/12/01 10:32:00	59.75	58.73	0.05	17.038	2.484	30.216	81.725	8/12/01 12:37:00	59.78	58.73	0.118	17.026 17.028	2.464 2.468	30.228 30.231	81.637 81.63
8/12/01 10:33:00 8/12/01 10:34:00	59.75	58.73 58.73	0.05 0.05	17.036 17.038	2.482 2.484	30.218 30.22	81.725 81.725	8/12/01 12:38:00 8/12/01 12:39:00	59.78	58.73 58.73	0.118 0.118	17.026	2.466	30.228	81.63
8/12/01 10:36:00 8/12/01 10:37:00		58.73 58.73	0.05	17.038 17.038	2.486 2.486	30.218 30.218	81.725 81.725	8/12/01 12:40:00 8/12/01 12:42:00	59.78 59.77	58.73 58.73	0.118 0.118	17.026 17.025	2.466 2.466	30.231 30.228	81.63 81.63
8/12/01 10:38:00 8/12/01 10:39:00	59.76	58.73 58.73	0.05	17.038 17.038	2.486 2.486	30.216 30.222	81.719 81.719	8/12/01 12:43:00 8/12/01 12:44:00		58.73 58.73	0,118 0.118	17.025 17.023	2.466 2.466	30.228 30.231	81.63 81.63
8/12/01 10:40:00	59,76	58.73	0.05	17.038	2.486	30.22	81.719	8/12/01 12:45:00	59.76	58.73	0.124	17.023	2.466	30.228	81.63
8/12/01 10:42:00 8/12/01 10:43:00		58.73 58.73	0.05	17.038 17.038	2.484 2.486	30.218 30.22	81.719 81.719	8/12/01 12:46:00 8/12/01 12:48:00	59.76	58.73 58.73	0.118 0.118	17.023 17.023	2.468 2.468	30.228 30.228	81.624 81.624
8/12/01 10:44:00 8/12/01 10:45:00		58.73 58.74	0.05 0.05	17.038 17.038	2.486 2.484	30.22 30.22	81.719 81.719	8/12/01 12:49:00 8/12/01 12:50:00		58.73 58.73	0.118 0.118	17.023 17.025	2.469 2.473	30.231 30.231	81.624 81.624
8/12/01 10:46:00 8/12/01 10:46:00	59.75	58.74 58.74	0.05	17.038 17.038	2.484 2.484	30.226 30.224	81.713 81.713	8/12/01 12:51:00 8/12/01 12:52:00		58.73 58.73	0.13 0.118	17.025 17.025	2.475 2.473	30.228 30.235	81.624 81.624
8/12/01 10:49:00	59,75	58.74	0.05	17.038	2.484	30.222	81.713	8/12/01 12:54:00	59.76	58.73	D.13	17.023	2.471	30.233	81.824
8/12/01 10:50:00 8/12/01 10:51:00	59.75	58.74 58.74	0.05 0.05	17.038 17.04	2.486 2.488	30.222 30.224	81.706 81.706	8/12/01 12:55:00 8/12/01 12:58:00	59.75	58.73 58.72	0.118 0.118	17.021 17.021	2.469 2.469	30.233 30.231	81.624 81.824
8/12/01 10:52:00 8/12/01 10:54:00		58.74 58.74	0.043 0.05	17.041 17.041	2.488 2.488	30.226 30.226	81.706 81.706	8/12/01 12:57:00 8/12/01 12:58:00		58.72 58.72	0.13 0.118	17.021 17.021	2.468 2.469	30.235 30.231	81.624 81.624
8/12/01 10:55:00 8/12/01 10:56:00	59.75	58.74 58.74	0.05 0.043	17.043 17.045	2.488	30.226 30.222	81.708 81.708	8/12/01 13:00:00 8/12/01 13:01:00	59.75	58.72 58.72	0.13 0.13	17.021 17.021	2.471 2.473	30.233 30.231	81.624 81.624
8/12/01 10:57:00	59,75	58.73	0.056	17.045	2.484	30.224	81.7	8/12/01 13:02:00	59.75	58.72	0.13	17.023	2.475	30.233	81.618
8/12/01 10:58:00 8/12/01 11:00:00		58.73 58.73	0.056 0.056	17.047 17.047	2.481 2.479	30.222 30.226	81.7 81.7	8/12/01 13:03:00 8/12/01 13:04:00	59,75	58.72 58.72	0.13 0.13	17.021 17.023	2.475 2.481	30.233 30.233	81.618 81.618
8/12/01 11:01:00 8/12/01 11:02:00		58.73 58.73	0.056 0.056	17.047 17.047	2.477 2.475	30.228 30.226	81.7 81.7	8/12/01 13:06:00 8/12/01 13:07:00		58.72 58.72	0.13 0.13	17.025 17.026	2.486 2.484	30.235 30.239	81.611 81.618
8/12/01 11:03:00 8/12/01 11:04:00		58.73 58.73	0.058 0.056	17.047 17.045	2.475 2.473	30.228 30.231	81.694 81.694	8/12/01 13:08:00 8/12/01 13:09:00		58.72 58.72	0.13 0.13	17.026 17.03	2.484 2.481	30.231 30.233	81.611 81.611
8/12/01 11:06:00	59.75	58.73	0.056	17.047	2.475	30.231	81.694	8/12/01 13:10:00	59.76	58.72 58.72	0.137	17.032 17.04	2.481 2.482	30.231 30.231	81.611
8/12/01 11:07:00 8/12/01 11:08:00	59.76	58.73 58.73	0.056 0.056	17.047 17.051	2.475 2.473	30.228 30.233	81.694 81.694	8/12/01 13:12:00 8/12/01 13:13:00	59,76	58.72	0.137 0.137	17.041	2.484	30,228	81.611 81.811
8/12/01 11:09:00 8/12/01 11:10:00	59.76 59.76	58.73 58.73	0.056 0.056	17.051 17.051	2.473 2.471	30.228 30.231	81.694 81.687	8/12/01 13:14:00 8/12/01 13:15:00	59.76 59.76	58.73 58.73	0.143 0.143	17.053 17.053	2.481 2.481	30.228 30.231	81.611 81.611
8/12/01 11:12:00 8/12/01 11:13:00		58.73 58.73	0.062 0.056	17.053 17.049	2.471 2.471	30.228 30.231	81.694 81.687	8/12/01 13:16:00 8/12/01 13:18:00		58.73 58.73	0.143 0.143	17.058 17.068	2.482 2.482	30.231 30.231	81.611 81.605
8/12/01 11:14:00	59.77	58.73	0.056	17.051	2.473	30.228	81.687	8/12/01 13:19:00	59.76	58.73	0.149	17.075	2.481	30.228	81.605
8/12/01 11:15:00 8/12/01 11:16:00	59.77	58.73 58.73	0.062 0.062	17.051 17.053	2.475 2.477	30.231 30.233	81.687 81.687	8/12/01 13:20:00 8/12/01 13:21:00	59.76	58.72 58.72	0.149 0.155	17.086 17.101	2.488 2.492	30.233 30.233	81.605 81.605
8/12/01 11:18:00 8/12/01 11:19:00		58.73 58.73	0.058 0.062	17.055 17.055	2.473 2.471	30.233 30.233	81.681 81.687	8/12/01 13:22:00 8/12/01 13:24:00		58.72 58.72	0.155 0.155	17.12 17.143	2.49 2.492	30.233 30.231	81.605 81.605
8/12/01 11:20:00 8/12/01 11:21:00	59.77	58.72 58.72	0.062	17.055 17.056	2.475 2.479	30.228 30.233	81.681 81.687	8/12/01 13:25:00 8/12/01 13:26:00	59.77	58.72 58.72	0.161 0.161	17.163 17.174	2.492 2.488	30.235 30.233	81.599 81.599
8/12/01 11:22:00	59.77	58.72	0.062	17.055	2.482	30.231	81.681	8/12/01 13:27:00	59.77	58.72	0.161 0.168	17.186	2.486	30.231	81.599
8/12/01 11:24:00 8/12/01 11:25:00	59.77	58.72 58.72	0.062	17.058 17.056	2.486 2.486	30.233 30.233	81.681 81.681	8/12/01 13:28:00 8/12/01 13:30:00	59.77	58.72 58.72	0.168	17.201 17.203	2.486 2.488	30.235 30.237	81.599 81.599
8/12/01 11:26:00 8/12/01 11:27:00		58.72 58.72	0.062 0.068	17.058 17.056	2.484 2.484	30.237 30.233	81.681 81.681	8/12/01 13:31:00 8/12/01 13:32:00		58.72 58.72	0.168 0.174	17.203 17.197	2.488 2.488	30.233 30.231	81.599 81.599
8/12/01 11:28:00 8/12/01 11:30:00		58.73 58.73	0.068 0.068	17.058 17.06	2.484 2.484	30.233 30.233	81.681 81.681	8/12/01 13:33:00 8/12/01 13:34:00		58.72 58.72	0.174 0.18	17.195 17.195	2.486 2.486	30.235 30.231	81.599 81.599
8/12/01 11:31:00	59,78	58.73	0.068	17.062	2.482	30.237	81.681	8/12/01 13:36:00 8/12/01 13:37:00	59.77	58.72	0.18	17.195	2.482	30.233	81.599
8/12/01 11:32:00 8/12/01 11:33:00	59.76	58.73 58.72	0.068 0.068	17.066 17.064	2.481 2.475	30.237 30.237	81.675 81.675	8/12/01 13:38:00	59.77	58.72 58.72	0.18 0.18	17.193 17.195	2.479 2.479	30.231 30.231	81.599 81.599
8/12/01 11:34:00 8/12/01 11:36:00		58.72 58.72	0.075 0.068	17.071 17.077	2.477 2.479	30.235 30.235	81.675 81.675	8/12/01 13:39:00 8/12/01 13:40:00		58.72 58.72	0.168 0.192	17.191 17.193	2.479 2.475	30.231 30.231	81.605 81.605
8/12/01 11:37:00 8/12/01 11:38:00	59.75	58.73 58.73	0.075 0.075	17.084	2.479 2.479	30.231 30.235	81.662 81.662	8/12/01 13:42:00 8/12/01 13:43:00	59.77	58.72 58.72	0.192	17.184 17.173	2.471 2.471	30.231 30.228	81.605 81.605
8/12/01 11:39:00	59.75	58.73	0.093	17.103	2.477	30.241	81.662	8/12/01 13:44:00	59.77	58.72	0.192	17.176	2.473	30.228	81.605
8/12/01 11:40:00 8/12/01 11:42:00	59.75	58.73 58.73	0.081	17.111 17.118	2.477 2.475	30.249 30.241	81.662 81.662	8/12/01 13:45:00 8/12/01 13:46:00	59.77	58.72 58.72	0.205	17.173 17.18	2.475 2.477	30.231 30.222	81.605 81.605
8/12/01 11:43:00 8/12/01 11:44:00		58.73 58.73	0.112 0.087	17.122 17.124	2.481 2.486	30.237 30.216	81.649 81.656	8/12/01 13:48:00 8/12/01 13:49:00		58.72 58.72	0.205 0.205	17.189 17.189	2.484 2.484	30.226 30.226	81.599 81.599
8/12/01 11:45:00 8/12/01 11:46:00	59.75	58.73 58.73	0.081 0.087	17.126 17.126	2.488 2.488	30.224 30.226	81.656 81.658	8/12/01 13:50:00 8/12/01 13:51:00	59.77	58.72 58.72	0.211	17.191 17.176	2.482 2.475	30.222 30.228	81.605 81.605
8/12/01 11:48:00	59.75	58.74	0.087	17,131	2.484	30.228	81.656	8/12/01 13:52:00	59.77	58.72	0.211	17.171	2.475	30.228	81.599
8/12/01 11:49:00 8/12/01 11:50:00	59.76	58.74 58.74	0.087 0.087	17.135 17.148	2.482 2.482	30.228 30.226	81.649 81.649	8/12/01 13:54:00 8/12/01 13:55:00	59.77	58.72 58.72	0.217 0.217	17.161 17.159	2.477 2.477	30.226 30.228	81.605 81.605
8/12/01 11:51:00 8/12/01 11:52:00		58.74 58.74	0.093 0.093	17.159 17.169	2.481 2.481	30.228 30.228	81.649 81.649	8/12/01 13:58:00 8/12/01 13:57:00		58.72 58.72	0.217 0.224	17.163 17.169	2.481 2.481	30.226 30.224	81.605 81.605
8/12/01 11:54:00 8/12/01 11:55:00	59.76	58.74 58.74	0.093 0.099	17.18 17.189	2.481 2.484	30.228 30.226	81.649 81.649	8/12/01 13:58:00 8/12/01 14:00:00	59.77	58.72 58.72	0.224	17.159 17.169	2.479 2.482	30.222 30.224	81.605 81.605
8/12/01 11:56:00		58.73	0.093	17.199	2.482	30.228	81.649	8/12/01 14:01:00		58.72	0.224	17.176	2.482	30.222	81.599

Date/Time	Downhole Pressure (psi)	Downhole Temperature (deg F)	Weilhead Pressure (psi)	Upper Monitor Pressure (psi)	Lower Monitor Pressure (psi)	Barometric Pressure (inchs Hg)	Annutar Pressure (psi)	Date/Time	Downhole Pressure (psi)	Downhole Temperature (deg F)	Wellhead Pressure (psi)	Upper Monitor Pressure (psi)	Lower Monitor Pressure (psi)	Barometric Pressure (inchs Hg)	Annular Pressure (psi)
8/12/01 14:02:00	59.77	58.72	0.23	17.184	2.484	30.224	81.605	8/12/01 16:07:00	59.76	58.72	0.366	17.026	2.466	30.188	81.662
8/12/01 14:03:00 8/12/01 14:04:00	59.77 59.77	58.72 58.72	0.23 0.23	17.176 17.163	2.477 2.473	30.224 30.222	81.605 81.605	8/12/01 16:08:00 8/12/01 16:09:00	59.76 59.76	58.73 58.73	0.372 0.372	17.026 17.028	2.464 2.466	30.188 30.188	81.668 81.668
8/12/01 14:08:00 8/12/01 14:07:00	59.77 59.77	58.72 58.72	0.236	17,171 17,169	2.473 2.473	30.224 30.218	81.605 81.605	8/12/01 16:10:00 8/12/01 16:12:00	59.76 59.76	58.73 58.73	0.379 0.379	17.038 17.053	2.475 2.486	30.188 30.186	81.668 81.668
8/12/01 14:08:00	59.77	58.72	0.242	17.159	2.471 2.473	30.224	81.611	8/12/01 18:13:00	59.76 59.76	58.73 58.73	0.385	17.073 17.043	2.494 2.473	30.186 30.188	81.668 81.668
8/12/01 14:09:00 8/12/01 14:10:00	59.77 59.77	58.73 58.73	0.242 0.242	17.15 17.146	2.473	30.218 30.216	81.611 81.611	8/12/01 16:14:00 8/12/01 16:15:00	59.76	58.73	0.379	17.028	2.484	30.188	81.668
8/12/01 14:12:00 8/12/01 14:13:00	59.77 59.77	58.73 58.73	0.248	17.139 17.137	2.473 2.471	30.218 30.216	81.611 81.618	8/12/01 18:16:00 8/12/01 16:18:00	59.76 59.76	58.73 58.73	0.379 0.385	17.041 17.058	2.477 2.49	30.188 30.186	81.668 81.668
8/12/01 14:14:00 8/12/01 14:15:00	59.77 59.77	58.73 58.72	0.248 0.242	17.137 17.148	2.471 2.469	30.218 30.22	81.605 61.811	8/12/01 16:19:00 8/12/01 16:20:00	59.76 59.76	58.73 58.73	0.379 0.379	17.062 17.069	2.488 2.482	30.188 30.186	81.668 81.668
8/12/01 14:16:00	59.77	58.72	0.248	17.152	2,489	30.22	81.605	8/12/01 16:21:00	59.76	58.73	0.385	17.084	2.485	30.188	81.668
8/12/01 14:18:00 8/12/01 14:19:00	59.76 59.76	58.72 58.72	0.255 0.255	17.154 17.189	2.469 2.473	30.22 30.22	81.611 81.611	8/12/01 16:22:00 8/12/01 16:24:00	59.76 59.76	58.73 58.72	0.385 0.385	17.09 17.088	2.488 2.484	30.188 30.19	81.668 81.668
8/12/01 14:20:00 8/12/01 14:21:00	59.76 59.76	58.72 58.72	0.255 0.255	17.176 17.169	2.475 2.473	30.22 30.222	81.611 81.611	8/12/01 16:25:00 8/12/01 16:26:00	59.75 59.75	58.72 58.72	0.385	17.09 17.116	2.486 2.484	30,188 30,184	81.875 81.868
8/12/01 14:22:00	59.75	58.72	0.255	17.171	2.473	30.22	81.611	8/12/01 16:27:00	59.75	58.72	0.385	17.118	2.484	30.188	81.675
8/12/01 14:24:00 8/12/01 14:25:00	59.75 59.75	58.72 58.72	0.261 0.261	17.161 17.174	2.471 2.473	30.218 30.218	81.611 81.618	8/12/01 16:28:00 8/12/01 16:30:00	59.74 59.74	58.72 58.72	0.385 0.385	17.09 17.079	2.482 2.484	30.184 30.188	81.675 81.675
8/12/01 14:28:00 8/12/01 14:27:00	59.75 59.75	58.72 58.72	0.267 0.267	17.174 17.158	2.473 2.471	30.218 30.216	81.605 81.611	8/12/01 16:31:00 8/12/01 16:32:00	59.75 59.75	58.72 58.72	0.391 0.391	17.066 17.09	2.482 2.49	30.182 30.182	81.675 81.675
8/12/01 14:28:00	59.75	58.72	0.273	17.148	2.469	30.218	81.611	8/12/01 16:33:00	59.75	58.71	0.391	17.101	2.484	30.18	81.681
8/12/01 14:30:00 8/12/01 14:31:00	59.75 59.75	58.72 58.72	0.273 0.273	17.144 17.158	2.471 2.473	30.216 30.216	81.611 81.618	8/12/01 16:34:00 8/12/01 16:36:00	59.76 59.76	58.71 58.71	0.391 0.391	17.109 17.116	2.484 2.486	30.18 30.178	81.681 81.681
8/12/01 14:32:00 8/12/01 14:33:00	59.74 59.74	58.72 58.72	0.273 0.279	17.165 17.161	2.475 2.473	30.216 30.214	81.618 81.624	8/12/01 16:37:00 8/12/01 16:38:00	59.76 59.76	58.71 58.71	0.391 0.391	17.126 17.141	2.486 2.486	30.18 30.178	81.681 81.675
8/12/01 14:34:00 8/12/01 14:36:00	59.74 59.74	58.72 58.72	0.279	17.171	2.471 2.475	30.216 30.212	81.624 81.618	8/12/01 16:39:00 8/12/01 16:40:00	59.76 59.76	58.71 58.72	0.391 0.397	17.185 17.182	2.492 2.497	30.178 30.174	81.675 81.681
8/12/01 14:37:00	59.74	58.72	0.279	17.144	2.473	30.218	81.624	8/12/01 16:42:00	59.77	58.72	0.397	17.185	2.492	30.178	81.681
8/12/01 14:38:00 8/12/01 14:39:00	59.74 59.74	58.72 58.72	0.279 0.279	17.131 17.129	2.471 2.473	30.216 30.214	81.624 81.618	8/12/01 16:43:00 8/12/01 16:44:00	59.77 59.77	58.72 58.72	0.397 0.397	17.122 17.058	2.488 2.482	30.178 30.18	81.681 81.681
8/12/01 14:40:00 8/12/01 14:42:00	59.74 59.75	58.72 58.72	0.286 0.286	17.137 17.111	2.477 2.469	30.216 30.214	81.624 81.624	8/12/01 16:45:00 8/12/01 16:46:00	59.77 59.77	58.72 58.72	0.397 0.391	17.03 17.013	2.469 2.462	30.178 30.176	81.687 81.681
8/12/01 14:43:00	59.75	58.72	0.286	17.114	2.473	30.216	81.624	8/12/01 18:48:00	59.7 6	58.72	0.385	17.015	2.466	30.176	81.687
8/12/01 14:44:00 8/12/01 14:45:00	59.76 59.76	58.72 58.72	0.286 0.288	17.098 17.075	2.473 2.48	30.218 30.214	81.624 81.63	8/12/01 16:49:00 8/12/01 16:50:00	59.76 59.76	58.72 58.72	0.391 0.397	17.025 17.028	2.477 2.482	30.176 30.176	81.687 81.687
8/12/01 14:46:00 8/12/01 14:48:00	59.76 59.77	58.72 58.72	0.292 0.292	17.055 17.047	2.455 2.453	30.212 30.212	81.624 81.63	8/12/01 16:51:00 8/12/01 16:52:00	59.76 59.76	58.72 58.72	0.391 0.391	17.021 17.028	2.479 2.484	30.176 30.169	81.687 81.694
8/12/01 14:49:00	59.77	58.72	0.292	17.051	2.456	30.214	81.63	8/12/01 16:54:00	59,75	58.72	0.391	17.026	2.486	30.171	81.687
8/12/01 14:50:00 8/12/01 14:51:00	59.77 59.77	58.72 58.72	0.292 0.292	17.055 17.058	2.468 2.475	30.214 30.216	81.63 81.63	8/12/01 16:55:00 8/12/01 16:56:00	59.75 59.75	58.72 58.72	0.391 0.391	17.038 17.047	2.49 2.488	30.171 30.171	81.687 81.687
8/12/01 14:52:00 8/12/01 14:54:00	59.77 59.78	58.72 58.71	0.292 0.298	17.077 17.096	2.482 2.479	30.212 30.212	81.624 81.624	8/12/01 16:57:00 8/12/01 16:58:00	59.75 59.75	58.72 58.72	0.404 0.391	17.058 17.034	2.494 2.475	30.169 30.171	81.694 81.687
8/12/01 14:55:00	59.78	58.71	0.298	17.114	2.481	30,208	81.624	8/12/01 17:00:00	59.75	58.72	0.404	17.03	2.475	30.174	81.694
8/12/01 14:56:00 8/12/01 14:57:00	59.78 59.78	58.71 58.71	0.298 0.298	17.135 17.141	2.479 2.479	30.214 30.21	81.624 81.624	8/12/01 17:01:00 8/12/01 17:02:00	59.75 59.75	58.72 58.72	0.404 0.404	17.038 17.028	2.479 2.475	30.171 30.169	81.694 81.694
8/12/01 14:58:00 8/12/01 15:00:00	59.78 59.78	58.71 58.71	0.298 0.304	17.15 17.165	2.481 2.482	30.21 30.208	81.624 81.624	8/12/01 17:03:00 8/12/01 17:04:00	59.75 59.75	58.72 58.72	0.397 0.397	17.019 17.03	2.469 2.477	30.171 30.171	81.694 81.687
8/12/01 15:01:00 8/12/01 15:02:00	59.78 59.78	58.71 58.71	0.304 0.304	17.18 17.18	2.486 2.488	30.208 30.208	61.63 61.63	8/12/01 17:08:00 8/12/01 17:07:00	59.75 59.75	58.72 58.72	0.397 0.397	17.045 17.043	2.486 2.482	30.169 30.171	81,687 81,687
8/12/01 15:03:00	59.78	58.71	0.304	17.178	2.482	30.21	61.63	8/12/01 17:08:00	59.75	58.72	0.404	17.045	2.481	30.171	81.694
8/12/01 15:04:00 8/12/01 15:06:00	59.78 59.77	58.71 58.71	0.31 0.31	17.174 17.174	2.479 2.479	30.212 30.212	81.63 81.63	8/12/01 17:09:00 8/12/01 17:10:00	59.75 59.74	58.72 58.72	0.404 0.404	17.051 17.03	2.482 2.473	30.171 30.171	81.687 81.694
8/12/01 15:07:00 8/12/01 15:08:00	59.77 59.77	58.71 58,71	0.31 0.317	17.178 17.18	2.481 2.479	30.21 30.21	81.63 81.624	8/12/01 17:12:00 8/12/01 17:13:00	59.74 59.75	58.72 58.72	0.397 0.391	17.019 17.008	2.468 2.46	30.169 30.165	81.694 81.694
8/12/01 15:09:00 8/12/01 15:10:00	59.77 59.77	58.71	0.317	17.182	2.482	30.212	81.624	8/12/01 17:14:00	59.75	58.72	0.397	17.021	2.469	30,167	81.694
8/12/01 15:12:00	59.77	58.71 58.71	0.317 0.323	17.159 17.163	2.473 2.468	30.212 30.21	81.63 81.63	8/12/01 17:15:00 8/12/01 17:16:00	59.75 59.75	58.72 58.72	0.397 0.397	17.028 17.036	2.477 2.481	30.167 30.169	81.7 81.694
8/12/01 15:13:00 8/12/01 15:14:00	59.77 59.77	58.71 58.72	0.329 0.329	17.165 17.12	2.477 2.473	30.212 30.206	81.63 81.63	8/12/01 17:18:00 8/12/01 17:19:00	59.75 59.74	58.72 58.72	0.397 0.397	17.047 17.058	2.484 2.481	30.169 30.169	81.694 81.7
8/12/01 15:15:00 8/12/01 15:16:00	59.77 59.77	58.72 58.72	0.323 0.323	17.081 17.07 5	2.458 2.46	30.206 30.206	81.637 81.637	6/12/01 17:20:00 8/12/01 17:21:00	59.74 59.74	58.72 58.72	0.397 0.397	17.075 17.077	2.482 2.482	30.169 30.174	81.694 81.7
8/12/01 15:18:00	59.77	58.72	0.329	17.081	2.466	30.206	81.637	8/12/01 17:22:00	59.74	58.72	0.404	17.069	2.479	30,171	81.7
8/12/01 15:19:00 8/12/01 15:20:00	59.77 59.77	58.72 58.72	0.329 0.329	17.111 17.099	2.477 2.468	30.21 30.206	81.637 81.643	8/12/01 17:24:00 8/12/01 17:25:00	59.74 59.74	58.72 58.72	0.404 0.404	17.051 17.068	2.475 2.486	30.169 30.169	81,7 81.7
8/12/01 15:21:00 8/12/01 15:22:00	59.77 59.77	58.72 58.72	0.329 0.335	17.098 17.118	2.468 2.481	30.204 30.202	81.643 81.643	8/12/01 17:26:00 8/12/01 17:27:00	59.74 59.74	58.72 58.71	0.404 0.404	17.081 17.073	2.492 2.486	30.169 30.167	81.7 81.706
8/12/01 15:24:00 8/12/01 15:25:00	59.78	58.72	0.329	17.128	2.482	30.202	81.643	8/12/01 17:28:00	59.74	58.71	0.404	17.083	2.492	30.167	81.7
8/12/01 15:28:00	59.78 59.78	58.72 58.72	0.335 0.335	17.111 17.105	2.479 2.479	30.202 30.202	81.637 81.637	8/12/01 17:30:00 8/12/01 17:31:00	59.74 59.74	58.71 58.71	0.404 0.404	17.122 17.141	2.488 2.49	30.165 30.165	81.706 81.7
8/12/01 15:27:00 8/12/01 15:28:00	59.78 59.78	58.72 58.72	0.335 0.341	17.101 17.114	2.479 2.484	30.204 30.2	81.837 81.837	8/12/01 17:32:00 8/12/01 17:33:00	59.75 59.75	58.71 58.71	0.41 0.404	17.182 17.15	2.49 2.494	30.165 30.167	81.706 81.7
8/12/01 15:30:00 8/12/01 15:31:00	59.78 59.77	58.72 58.72	0.341 0.341	17.131 17.133	2.484 2.482	30.202 30.202	81.637 81.643	8/12/01 17:34:00 8/12/01 17:38:00	59.75 59.75	58.72 58.72	0.41 0.404	17.12 17.109	2.49 2.49	30.167 30.161	61.706
8/12/01 15:32:00	59.77	58.72	0.341	17.128	2.481	30.2	81.643	8/12/01 17:37:00	59.75	58.72	0.41	17.114	2.488	30.169	81.7 81.706
8/12/01 15:33:00 8/12/01 15:34:00	59.77 59.77	58.72 58.72	0.341 0.348	17.122 17.135	2.482 2.479	30,198 30,196	81.643 81.649	8/12/01 17:38:00 8/12/01 17:39:00	59.75 59.75	58.72 58.72	0.404 0.41	17.109 17.122	2.488 2.492	30.167 30.169	81.706 61.7
8/12/01 15:36:00 8/12/01 15:37:00	59.77 59.77	58.72 58.72	0.348 0.348	17.116 17.113	2.482 2.482	30.196 30.2	81.643 81.643	8/12/01 17:40:00 8/12/01 17:42:00	59.75 59.75	58.72 58.72	0.404 0.41	17.09 17.079	2.488 2.488	30.167 30.165	81.7 81.706
8/12/01 15:38:00	59.76	58.73	0.348	17.118	2.481	30.196	81.643	8/12/01 17:43:00	59.75	58.72	0.404	17.092	2.488	30.167	81.694
8/12/01 15:39:00 8/12/01 15:40:00	59.76 59.76	58.73 58.73	0.354	17.139 17.126	2.481 2.47 9	30.198 30.198	81.649 81.643	8/12/01 17:44:00 6/12/01 17:45:00	59.75 59.75	58.72 58.72	0.41 0.41	17.071 17.064	2.486 2.488	30.169 30.165	81.7 81.7
8/12/01 15:42:00 8/12/01 15:43:00	59.76 59.76	58.73 58.73	0.36	17.118 17.101	2.479 2.479	30.2 30.196	81.643 81.643	8/12/01 17:46:00 8/12/01 17:48:00	59.75 59.74	58.72 58.72	0.41 0.41	17.088 17.041	2.494 2.484	30,165 30,165	81.706 81.706
8/12/01 15:44:00 8/12/01 15:45:00	59.76 59.76	58.73 58.73	0.36	17.09 17.079	2.479 2.477	30.196 30.194	81.649 81.649	8/12/01 17:49:00 8/12/01 17:50:00	59.74 59.74	58.72 58.72	0.404 0.41	17.041 17.066	2.488 2.488	30.165 30.161	81.706 81.706
8/12/01 15:46:00	59.76	58.73	0.36	17.077	2.475	30.194	81.649	8/12/01 17:51:00	59.74	58.72	0.41	17.071	2.488	30.161	81.706
8/12/01 15:48:00 8/12/01 15:49:00	59.76 59.76	58.73 58.72	0.38	17.09 17.084	2.481 2.479	30.194 30.196	81.649 81.649	8/12/01 17:52:00 8/12/01 17:54:00	59.74 59.74	58.72 58.72	0.41 0.41	17.062 17.047	2.499 2.49	30.161 30.161	81.706 81.706
8/12/01 15:50:00 8/12/01 15:51:00	59.76 59.76	58.72 58.72	0.366 0.366	17.083 17.079	2.477 2.477	30.192 30.196	81.656 81.649	8/12/01 17:55:00 8/12/01 17:58:00	59.74 59.74	58.72 58.72	0.41 0.41	17.03 17.028	2.481 2.481	30.183 30.165	81.706 81.713
8/12/01 15:52:00 8/12/01 15:54:00	59.76 59.76	58.72 58.72	0.372 0.366	17.103 17.116	2.481 2.486	30.192 30.192	81.649	8/12/01 17:57:00	59.74	58.72	0.41	17.028	2.479	30,159	81.713
8/12/01 15:55:00	59.76	58.72	0.366	17.124	2.484	30.19	81.656 81.662	8/12/01 17:58:00 8/12/01 18:00:00	59.74 59.74	58.73 58.73	0.41 0.404	17.028 17.04	2.481 2.49	30.159 30.161	81.713 81.713
8/12/01 15:56:00 8/12/01 15:57:00	59.76 59.77	58.72 58.72	0.372 0.372	17.131 17.133	2.482 2.481	30.196 30.192	81.656 81.662	8/12/01 18:01:00 8/12/01 18:02:00	59.74 59.74	58.73 58.73	0.41 0.41	17.041 17.025	2.49 2.477	30.157 30.157	81.719 81.719
8/12/01 15:58:00 8/12/01 16:00:00	59.77 59.77	58.72 58.72	0.372 0.372	17.135 17.124	2.481 2.481	30.19 30.19	81.656 81.656	8/12/01 18:03:00 8/12/01 18:04:00	59.74 59.74	58.73 58.73	0.404 0.397	17.017 17.015	2.473 2.475	30.155 30.155	81.719 81.725
8/12/01 16:01:00	59.76	58.72	0.372	17.12	2.479	30.19	81.656	8/12/01 18:06:00	59.74	58.73	0.404	17.023	2.481	30.181	81.725
8/12/01 16:02:00 8/12/01 16:03:00	59.76 59.76	58.72 58.72	0.379 0.379	17.086 17.049	2.482 2.469	30.192 30.192	81.662 81.662	8/12/01 18:07:00 8/12/01 18:08:00	59.74 59.75	58.73 58.73	0.397 0.397	17.025 17.015	2.477 2.469	30.159 30.157	81.725 81.725
8/12/01 16:04:00 8/12/01 16:06:00	59.76 59.76	58.72 58.72	0.372 0.372	17.026 17.028	2.458 2.462	30.19 30.19	81.662 81.662	8/12/01 18:09:00 8/12/01 18:10:00	59.75 59.75	58.73 58.73	0.397 0.397	17.013 17.023	2.466 2.475	30.161 30.157	81.725 81.732

Date/Time	Downhole Pressure (psi)	Downhole Temperature (deg F)	Wellhead Pressure (psi)	Upper Monitor Pressure (psi)	Lower Monitor Pressure (psi)	Barometric Pressure (inchs Hg)	Annular Pressure (psi)	Date/Time	Downhole Pressure (psi)		Wellhead Pressure (psi)	Upper Monitor Pressure (psi)	Lower Monitor Pressure (psi)	Barometric Pressuré (inchs Hg)	Annular Pressure (psi)
8/12/01 18:12:00	59.75	58.73	0.397	17.032	2.488	30,163	81.725	8/12/01 20:16:0		58.71	0.354	17.058	2.494 2.494	30.147 30.141	81.757 81.751
8/12/01 18:13:00		58.73 56.73	0.397 0.397	17.034 17.04	2.495 2.495	30.161 30.157	81.725 81.725	8/12/01 20:16:0 8/12/01 20:19:0		58.71 58.71	0.36 0.354	17.058 17.051	2.495	30.147	81.751
8/12/01 18:14:00 8/12/01 18:15:00		58,73	0.397	17.04	2.495	30.157	81.725	8/12/01 20:20:0	0 59.75	58.71	0.354	17.053	2.494	30.143	81.751
8/12/01 18:16:00		58.73 58.72	0.397 0.397	17.038 17.047	2.488 2.495	30.159 30.157	81.725 81.725	8/12/01 20:21:0 8/12/01 20:22:0		58.71 58.72	0.354 0.354	17.056 17.079	2.495 2.494	30.145 30.143	81.757 81.757
8/12/01 18:18:00 8/12/01 18:19:00		58.72	0.397	17.04	2.492	30.159	81.725	8/12/01 20:24:0	0 59.75	58.72	0.354	17.084	2.497	30.147	81.757 81.763
8/12/01 18:20:00	59.76	58.72	0.397 0.397	17.053 17.058	2.495 2.494	30.157 30.159	81.725 81.725	8/12/01 20:25: 8/12/01 20:26:1		58.72 58.72	0.354 0.354	17.081 17.066	2.499 2.497	30.141 30.145	81.763
8/12/01 18:21:00 8/12/01 18:22:00		58.72 58.72	0.397	17.055	2.488	30.155	81.732	8/12/01 20:27:0	0 59.75	58.72	0.354	17.055	2.494	30.141	81.77
8/12/01 18:24:00		58.71	0.397 0.397	17.062 17.068	2.49 2.492	30.159 30.153	81.732 81.732	8/12/01 20:28:0 8/12/01 20:30:0		58.72 58.72	0.348 0.354	17.058 17.047	2,497 2,49 5	30.143 30.145	81.77 81.776
8/12/01 18:25:00 8/12/01 18:26:00		58.71 58.71	0.397	17.075	2.49	30.155	81.732	8/12/01 20:31:1	0 59.75	58.72	0.348	17.051	2,495	30.141	81.776
8/12/01 18:27:00		58.71 58.71	0.397 0.397	17.084 17.101	2.485 2.492	30.161 30.159	81.732 81.732	8/12/01 20:32:1 8/12/01 20:33:1		58.72 58.72	0.348 0.348	17.049 17.053	2.495 2.497	30.137 30.141	81.782 81.782
8/12/01 18:28:00 8/12/01 18:30:00		58.71	0.397	17.126	2.49	30.159	81.732	8/12/01 20:34:0	0 59.75	58.72	0.348	17.051	2.497	30.141	81.789
8/12/01 18:31:0		58.71	0.397 0.397	17.129 17.122	2.49 2.484	30.153 30.157	81.732 81.732	8/12/01 20:36: 8/12/01 20:37:0		58.72 58.72	0.348 0.348	17.055 17.056	2.497 2.501	30.137 30.139	81.782 81.782
8/12/01 18:32:0 8/12/01 18:33:0		58.71 58.71	0.397	17.169	2.492	30,155	81.732	8/12/01 20:38:	0 59.75	58.72	0.348	17.049	2.497	30.135	81.789
8/12/01 18:34:00		58.71 58.71	0.397	17.156 17.109	2.49 2.477	30.157 30.155	81.732 81.725	8/12/01 20:39:0 8/12/01 20:40:0		58.72 58.72	0.348	17.04 17.032	2.497 2.495	30.137 30.135	81.789 81.769
8/12/01 18:38:00 8/12/01 18:37:00		58.71	0.397	17.105	2.477	30,159	81.732	8/12/01 20:42:	0 59.75	58.72	0.348	17.032	2,499	30.135	81.795
8/12/01 18:38:00 8/12/01 18:39:00		58.71 58.71	0.397 0.404	17.111 17.113	2.481 2.484	30.153 30.159	81.732 81.732	8/12/01 20:43: 8/12/01 20:44:		58.72 58.72	0.341 0.341	17.034 17.032	2.495	30.135 30.137	81.795 81.795
8/12/01 18:40:00		58.71	0.404	17.188	2.501	30.157	81.725	8/12/01 20:45:	0 59.76	58.72	0.341	17.032	2.495	30.137	81.795
8/12/01 18:42:0 8/12/01 18:43:0		58.71 58.71	0.404 0.404	17.184 17.152	2.497 2.492	30.159 30.155	61.725 81.725	8/12/01 20:46: 8/12/01 20:46:		58.72 58.72	0.341 0.341	17.036 17.032	2.499	30.137 30.133	81.795 81.795
8/12/01 18:44:0		58.71	0.416	17.075	2.482	30.159	81.732	8/12/01 20:49:	0 59.76	58.72	0.341	17.026	2.499	30.135	81.801
8/12/01 18:45:0		58.71 58.71	0.404 0.397	17.038 17.023	2.473 2.468	30.159 30.159	81.732 81.732	8/12/01 20:50: 8/12/01 20:51:		58.72 58.72	0.335 0.335	17.03 17.032	2.499 2.499	30.135 30.137	81.801 81.801
8/12/01 18:46:0 8/12/01 18:48:0	59.77	58.71	0.397	17.023	2.471	30.157	81.732	8/12/01 20:52:	0 59.76	58.73	0.335	17.03	2.499	30.131	81.801
8/12/01 18:49:0 8/12/01 18:50:0		58.71 58.72	0.397 0.397	17.019 17.021	2.471 2.473	30.159 30.157	81.732 81.738	8/12/01 20:54: 8/12/01 20:55:		58.73 58.73	0.335 0.335	17.036 17.038	2.499 2.501	30.135 30.135	\$1.808 81.808
8/12/01 18:51:0	59.76	58.72	0.404	17.019	2.473	30.155	81.738	8/12/01 20:58:	0 59.75	58.73	0.335	17.034	2.501	30.133	81.808
8/12/01 18:52:0/ 8/12/01 18:54:0/		58.72 58.72	0.391 0.391	17.025 17.026	2.481 2.484	30.155 30.157	81.738 81.738	8/12/01 20:57: 8/12/01 20:58:		58.72 58.72	0.329 0.329	17.034 17.03	2.501 2.501	30.129 30.135	81.808 81.808
8/12/01 18:55:0	59.76	58.72	0.391	17.026	2.484	30.153	81.744	8/12/01 21:00:	0 59.75	58.72	0.329	17.03	2.501 2.501	30.135 30.133	81.808 81.808
8/12/01 18:56:0 8/12/01 18:57:0		58.72 58.72	0.397 0.397	17.036 17.036	2.492 2.488	30.157 30.155	81.738 81.744	8/12/01 21:01: 8/12/01 21:02:		58.72 58.72	0.329	17.032 17.036	2.501	30.133	81.814
8/12/01 18:58:0	59.76	58.72	0.397	17.04	2.495	30.151	81.744	8/12/01 21:03:	0 59.75	58.72	0.323	17.032	2.501	30.135	81.808 81.808
8/12/01 19:00:0 8/12/01 19:01:0		58.72 58.72	0.397 0.397	17.04 17.047	2.495 2.497	30.151 30.151	81.744 81.744	8/12/01 21:04: 8/12/01 21:06:		58.72 58.72	0.323 0.323	17.038 17.047	2.501 2.503	30.131 30.133	81.808
8/12/01 19:02:0	3 59,78	58.72	0.397	17.047	2.499	30.151	81.744	8/12/01 21:07:		58.72	0.329	17.053	2.503 2.503	30.129 30.131	81.808 81.808
8/12/01 19:03:0 8/12/01 19:04:0		58.72 58.72	0.397 0.404	17.04 17.032	2.495 2.486	30.153 30.151	81.744 81.744	8/12/01 21:08: 8/12/01 21:09:		58.72 58.71	0.323 0.329	17.062 17.081	2.508	30,133	81.814
8/12/01 19:06:0	0 59.75	58.72	0.397	17.025	2.481	30.155	81.744	8/12/01 21:10: 8/12/01 21:12:		58.71 58.71	0.323 0.323	17.069 17.056	2.508 2.507	30.129 30.129	81.814 81.814
8/12/01 19:07:0 8/12/01 19:08:0		58.72 58.72	0.397 0.391	17.019 17.023	2.475 2.477	30.149 30.149	81.751 81.744	8/12/01 21:13:		58.71	0.323	17.053	2.505	30.131	81.814
8/12/01 19:09:0	D 59.74	58.72	0.391	17.015	2.477	30,149 30,149	81.751 81.751	8/12/01 21:14: 8/12/01 21:15:		58.71 58.71	0.323	17.064 17.069	2.508 2.507	30.129 30.129	81.814 81.814
8/12/01 19:10:0 8/12/01 19:12:0		58.72 58.72	0.391 0.391	17.023 17.032	2.486 2.49	30.149	81.744	8/12/01 21:16:	0 59.75	58.71	0.323	17.053	2.505	30.129	81.814
8/12/01 19:13:0		58.72 58.72	0.391 0.385	17.045 17.043	2.499 2.499	30.149 30.149	81.751 81.751	8/12/01 21:18: 8/12/01 21:19:		58.71 58.71	0.323 0.323	17.047 17.047	2.503 2.503	30.129 30.127	81.82 81.814
8/12/01 19:14:0 8/12/01 19:15:0		58.72	0.385	17.041	2.497	30.151	81.744	8/12/01 21:20:	0 59.75	5 8.71	0.323	17.043	2.503	30.129	81.814
8/12/01 19:18:0 8/12/01 19:18:0		58.72 58.72	0.385	17.036 17.03	2.49 2.486	30.153 30.153	81.744 81.744	8/12/01 21:21: 8/12/01 21:22:		58.71 58.72	0.317 0.317	17.047 17.056	2.503 2.505	30.129 30.127	81.814 81.814
8/12/01 19:19:0	59.75	58.71	0.379	17.028	2.481	30.155	81.744	8/12/01 21:24:	0 59.76	58.72	0.323	17.041	2.505	30.125	81.814
8/12/01 19:20:0 8/12/01 19:21:0		58.71 58.71	0.379	17.025	2.475 2.473	30.153 30.155	81.751 81.751	8/12/01 21:25: 8/12/01 21:26:		58.72 58.71	0.317 0.317	17.03 17.03	2.499 2.499	30.129 30.127	81.814 81.814
8/12/01 19:22:0	0 59.75	58.71	0.366	17.025	2.473	30.151	81.751	8/12/01 21:27:	0 59.76	58.71	0.317	17.034	2.501	30.125	81.814
8/12/01 19:24:0 8/12/01 19:25:0		58.71 58.71	0.366 0.36	17.025 17.025	2.475 2.477	30.147 30.153	81.751 81.751	8/12/01 21:28: 8/12/01 21:30:		58.71 58.71	0.317 0.317	17.032 17.028	2.503 2.501	30.127 30.127	81.814 81.814
8/12/01 19:26:0	0 59.75	58.71	0.36	17.021	2.477	30.153	81.757	8/12/01 21:31: 8/12/01 21:32:		58.71 58.72	0.31 0.31	17.028 17.028	2.501 2.501	30.127 30.123	81.814 81.814
8/12/01 19:27:0 8/12/01 19:28:0		58.71 58.71	0.38	17.023 17.04	2.479 2.486	30.155 30.155	81.751 81.763	8/12/01 21:33:		58.72	0.31	17.028	2.501	30.127	81.82
8/12/01 19:30:0	0 59.75	58.71	0.36	17.055	2.497	30.159	81.757 81.751	8/12/01 21:34: 8/12/01 21:36:		58.72 58.72	0.31 0.304	17.03 17.03	2.501 2.501	30.123 30.129	81.814 81.814
8/12/01 19:31:0 8/12/01 19:32:0		58.71 58.71	0.36 0.354	17.083 17.124	2.49 2.492	30.155 30.155	81.744	8/12/01 21:37:	0 59.76	58.72	0.31	17.036	2.503	30.125	81.82
8/12/01 19:33:0	0 59.75	58.71	0.36	17.158	2.499 2.49	30.153 30.157	81.744 81.744	8/12/01 21:38: 8/12/01 21:39:		58.72 58.72	0.31 0.304	17.04 17.03	2.507 2.503	30.121 30.123	81.82 81.82
8/12/01 19:34:0 8/12/01 19:36:0	0 59.7 5	58.71 58.71	0.354 0.354	17.154 17.191	2.494	30.155	81.738	8/12/01 21:40:	0 59.75	58.72	0.304	17.03	2.501	30.123	81.82
8/12/01 19:37:0	0 59.75	58.71 58.71	0.354	17.214 17.214	2.495 2.494	30.155 30.157	81.738 81.738	8/12/01 21:42: 8/12/01 21:43:		58.71 58.71	0.304 0.304	17.028 17.03	2.501 2.501	30.121 30.123	81.82 81.82
8/12/01 19:38:0 8/12/01 19:39:0	0 59.75	58.71	0.354	17.208	2.501	30.155	\$1.738	8/12/01 21:44:	10 59.75	5 8.71	0.298	17.032	2.501	30.127	81.82
8/12/01 19:40:0 8/12/01 19:42:0	0 59.75	58.71 58.71	0.36 0.36	17.203 17.189	2.503 2.505	30.155 30.155	81.738 81.738	8/12/01 21:45: 8/12/01 21:46:		58.71 58.71	0.304 0.304	17.038 17.04	2.503 2.505	30.123 30.125	81.82 81.82
8/12/01 19:43:0	0 59.75	58.71	0.36	17.133	2.503	30.157	81.738	8/12/01 21:48:	0 59.75	58.71	0.298	17.045	2.505	30.123	81.82
8/12/01 19:44:0 8/12/01 19:45:0		58.71 58.71	0.36 0.354	17.069 17.086	2.488 2.488	30.155 30.159	81.738 81.738	8/12/01 21:49: 8/12/01 21:50:		58.71 58.71	0.298 0.298	17.053 17.043	2.507 2.505	30.125 30.125	81.814 81.814
8/12/01 19:46:0	0 59.75	58.72	0.38	17.144	2.49	30.155	81.738	8/12/01 21:51:	0 59.75	58.71	0.298	17.04	2.505	30.127	81.82
8/12/01 19:48:0 8/12/01 19:49:0		58.72 58.71	0.36 0.36	17.204 17.208	2.494 2.497	30.155 30.155	81.738 81.738	8/12/01 21:52: 8/12/01 21:54:		58.71 58.71	0.298 0.298	17.041 17.045	2.507 2.508	30.125 30.129	81.82 81.82
8/12/01 19:50:0	0 59.75	58.71	0.36	17.199	2.494	30.153	81.738	8/12/01 21:55:	00 59.75	58.71	0.298	17.038	2.507	30.129	81.82
8/12/01 19:51:0 8/12/01 19:52:0		58.71 58.71	0.36	17.199 17.203	2.495 2.495	30.155 30.151	81.738 81.738	8/12/01 21:56: 8/12/01 21:57:		58.71 58.71	0.298 0.298	17.034 17.038	2.503 2.505	30.127 30.121	81.82 81.82
8/12/01 19:54:0	0 59.76	58.71	0.36	17.204	2.495	30.151	81.738	8/12/01 21:58:	00 59.75	58.71	0.298	17.034	2.503	30.125	81.82
8/12/01 19:55:0 8/12/01 19:56:0		58.71 58.71	0.366	17.201 17.105	2.494 2.499	30.151 30.151	81.738 81.744	8/12/01 22:00: 8/12/01 22:01:		58.71 58.71	0.298 0.292	17.038 17.045	2.505 2.507	30.123 30.125	81.82 81.82
8/12/01 19:57:0	0 59.76	58.71	0.36	17.062	2.486	30.151	81.744	8/12/01 22:02:	00 59.78	58.71	0.298	17.043	2.507	30.123 30.125	81.827 81.827
8/12/01 19:58:0 8/12/01 20:00:0		58.71 58.71	0.36	17.068 17.094	2.49	30.147 30.149	81.744 81.744	8/12/01 22:03 8/12/01 22:04:		58.71 58.71	0.298 0.298	17.043 17.038	2.507 2.507	30.125 30.123	81.827 81.827
8/12/01 20:01:0	0 59.76	58.71	0.38	17.083	2.492	30.151	81.744	8/12/01 22:06	00 59.78	58.71	0.292	17.041	2.508	30.123	81.827
8/12/01 20:02:0 8/12/01 20:03:0		58.71 58.71	0.36	17.101 17.073	2.492 2.49	30.149 30.149	81.744 81.744	8/12/01 22:07 8/12/01 22:08		58.71 58.71	0.298 0.292	17.041 17.036	2.508 2.505	30.123 30.121	81.833 81.827
8/12/01 20:04:0	0 59.75	58.71	0.36	17.096	2.49	30.151	81.744	8/12/01 22:09	00 59.75	58.71	0.292	17.034	2.505	30.123	81.827
8/12/01 20:06:0 8/12/01 20:07:0		58.71 58.71	0.36 0.36	17.129 17,141	2.492 2.497	30.147 30.147	81.744 81.751	8/12/01 22:10 8/12/01 22:12		58.71 58.72	0.292 0.286	17.036 17.034	2.507 2.505	30.121 30.125	81.827 81.827
8/12/01 20:08:0	0 59.75	58.71	0.36	17.098	2.492	30.151	81.751	8/12/01 22:13	DD 59.75	58.72	0.279	17.034	2.503	30.121	81.827
8/12/01 20:09:0 8/12/01 20:10:0		58.71 58.71	0.36 0.36	17.113 17.103	2.492 2.492	30.151 30.149	81.751 81.757	8/12/01 22:14 8/12/01 22:15		58.72 58.72	0.279 0.273	17.038 17.03	2.499 2.494	30.121 30.123	81.827 81.827
8/12/01 20:12:0	0 59.75	58.71	0.36	17.062	2.494	30,147	81.751	8/12/01 22:16	DD 59.75	58.72	0.273	17.036	2.497	30.125	81.827
8/12/01 20:13:0 8/12/01 20:14:0		58.71 58.71	0.36	17.047 17.053	2.494 2.495	30.149 30.145	81.757 81.757	8/12/01 22:18 8/12/01 22:19		58.72 58.72	0.273 0.279	17.049 17.051	2.505 2.507	30.123 30.123	81.827 81.827
8/12/01 20:15:0		58.71	0.354	1 7.049	2.495	30.147	81.757	8/12/01 22:20	00 59.75	58.72	0.273	17.053	2.501	30.123	81.827

.

Date/Time	Downhole Pressure (psi)	Downhole Temperature (deg F)	Wellhead Pressure (psi)	Upper Monitor Pressure (psi)	Lower Monitor Pressure (psi)	Barometric Pressure (inchs Hg)	Annular Pressure (psi)	Date/Time	Downhole Pressure (psi)	Downhole Temperature (deg F)	Weilhead Pressure (psi)	Upper Monitor Pressure (psi)	Lower Monitor Pressure (psi)	Barometno Pressure (inchs Hg)	Annular Pressure (psi)
8/12/01 22:21:00	59.75	58.72	0.273	17.055	2.501	30.127	81.827	8/13/01 00:26:00	59.74	58.72	0.174	17.06	2.508	30.133	81.744
8/12/01 22:22:00 8/12/01 22:24:00	59.75 59.75	58.72 58.72	0.273 0.273	17.056 17.062	2.505 2.507	30.123 30.123	81.82 81.82	8/13/01 00:27:00 8/13/01 00:28:00	59.74 59.74	58.72 58.72	0.174 0.168	17.053 17.047	2.507 2.505	30.129 30.137	81.738 81.738
8/12/01 22:25:00 8/12/01 22:26:00	59.75 59.75	58.72 58.72	0.273	17.064 17.075	2.508 2.51	30.125 30.125	81.82 81.82	8/13/01 00:30:00 8/13/01 00:31:00	59.74 59.74	58.72 58.72	0.174 0.168	17.045 17.045	2.505 2.505	30.133 30.133	81.732 81.732
8/12/01 22:27:00	59.76	58.72	0.273	17.086	2.512	30.127	81.827	8/13/01 00:32:00	59.74	58.72	0.168	17.047	2.505	30.135	81.732
8/12/01 22:28:00 8/12/01 22:30:00	59.76 59.76	58.71 58.71	0.273 0.273	17.094 17.101	2.514 2.514	30.123 30.123	81.827 81.82	8/13/01 00:33:00 8/13/01 00:34:00	59.74 59.74	58.72 58.72	0.168 0.168	17.051 17.049	2.507 2.508	30.131 30.129	81.725 81.725
8/12/01 22:31:00 8/12/01 22:32:00	59.76 59.76	58.71 58.71	0.273 0.273	17.114 17.128	2.512 2.51	30.123 30.123	81.82 81.82	8/13/01 00:36:00 8/13/01 00:37:00	59.74 59.74	58.72 58.72	0.168 0.168	17.047 17.047	2.507 2.507	30.133 30.133	81.732
8/12/01 22:33:00	59.76	58.71	0.273	17.131	2.508	30.123	81.82	8/13/01 00:38:00	59.74	58.72	0.155	17.047	2.505	30.131	81.725 81.725
8/12/01 22:34:00 8/12/01 22:36:00	59.76 59.76	58.71 58.71	0.273 0.273	17.141 17.146	2.508 2.505	30.121 30.121	81.82 81.82	8/13/01 00:39:00 8/13/01 00:40:00	59.74 59.74	58.72 58.72	0.168 0.161	17.049 17.049	2.508 2.505	30.135 30.135	81.725 81.725
8/12/01 22:37:00	59.75 59.75	58.71	0.273	17.15	2.503	30.123	81.82	8/13/01 00:42:00	59.74	58.71	0.155	17.047	2.505	30.133	81.725
8/12/01 22:38:00 8/12/01 22:39:00	59.75 59.75	58.71 58.71	0.273 0.273	17.165 17.161	2.503 2.503	30.123 30.127	81.82 81.827	8/13/01 00:43:00 8/13/01 00:44:00	59.74 59.75	58.71 58.71	0.155 0.155	17.047 17.049	2.507 2.507	30.137 30.135	81.719 81.719
8/12/01 22:40:00 8/12/01 22:42:00	59.75 59.74	58.71 58.71	0.273 0.273	17_169 17_105	2.501 2.505	30.123 30.123	81.827 81.827	8/13/01 00:45:00 8/13/01 00:46:00	59.75 59.75	58.71 58.71	0.155 0.155	17.049 17.051	2.507 2.507	30.135 30.135	81.719 81.713
8/12/01 22:43:00	59.74	58.71	0.273	17.055	2.497	30.123	81.827	8/13/01 00:48:00	59.75	58.71	0.155	17.055	2.508	30.133	81.713
8/12/01 22:44:00 8/12/01 22:45:00	59.74 59.74	58.71 58.71	0.267 0.267	17.036 17.034	2.488 2.486	30.121 30.121	81.827 81.827	8/13/01 00:49:00 8/13/01 00:50:00	59.75 59.74	58.71 58.71	0.155 0.149	17.049 17.047	2.508 2.508	30.133 30.135	81.713 81.713
8/12/01 22:48:00 8/12/01 22:48:00	59.74 59.74	58.71 58.71	0.261 0.261	17.034 17.036	2.488 2.495	30.123 30.121	81.827 81.827	8/13/01 00:51:00 8/13/01 00:52:00	59.74 59.74	58.71 58.71	0.155 0.149	17.051 17.047	2.51 2.507	30.137 30.137	81.706 81.706
8/12/01 22:49:00	59.74	58.71	0.261	17.038	2.501	30.123	81.827	8/13/01 00:54:00	59.74	58.71	0.149	17.045	2.507	30.137	81.706
8/12/01 22:50:00 6/12/01 22:51:00	59.74 59.74	58.71 58.71	0.255 0.255	17.04 17.043	2.503 2.503	30.123 30.123	81.82 81.82	8/13/01 00:55:00 8/13/01 00:56:00	59.74 59.74	58.71 58.71	0.149 0.149	17.045 17.043	2.507 2.507	30.133 30.135	81.7 81.7
8/12/01 22:52:00 8/12/01 22:54:00	59.74 59.73	58.71 58.71	0.248 0.248	17.041 17.043	2.505 2.505	30.121	81.82	8/13/01 00:57:00	59.74	58.71	0.149	17.043	2.507	30.133	81.7
8/12/01 22:55:00	59.74	58.71	0.248	17.04	2.501	30.125 30.125	81.82 81.82	8/13/01 00:58:00 8/13/01 01:00:00	59.74 59.74	58.7 58.71	0.149 0.143	17.045 17.045	2.505 2.505	30.133 30.139	81.694 81.7
8/12/01 22:56:00 8/12/01 22:57:00	59.74 59.74	58.71 58.71	0.242 0.242	17.04 17.04	2.501 2.503	30.123 30.123	81.82 81.82	8/13/01 01:01:00 8/13/01 01:02:00	59.74 59.74	58.71 58.71	0.143 0.143	17.045 17.045	2.505 2.505	30.137 30.137	81.7 81.694
8/12/01 22:58:00	59.74 59.74	58.71	0.242	17.038	2.503	30.123	81.82	8/13/01 01:03:00	59.74	58.71	0.143	17.045	2.505	30.137	81.694
8/12/01 23:00:00 8/12/01 23:01:00	59.74	58.71 58.71	0.248 0.248	17.045 17.047	2.505 2.507	30.121 30.123	81.82 81.82	8/13/01 01:04:00 8/13/01 01:06:00	59.74 59.74	58.71 58.71	0.143 0.143	17.045 17.045	2.505 2.505	30.135 30.139	81.687 81.687
8/12/01 23:02:00 8/12/01 23:03:00	59.74 59.74	58.71 58.71	0.242	17.04 17.043	2.505 2.505	30.125 30.125	81.82 81.814	8/13/01 01:07:00 8/13/01 01:08:00	59.74 59.74	58.71 58.71	0.137 0.143	17.045 17.045	2.505 2.503	30.137 30.139	81.687 81.687
8/12/01 23:04:00	59.74	58.71	0.242	17.041	2.505	30.123	81.82	8/13/01 01:09:00	59.74	58.71	0.143	17.045	2.501	30.139	81,681
8/12/01 23:08:00 8/12/01 23:07:00	59.74 59.74	58.71 58.71	0.236 0.242	17.049 17.058	2.503 2.505	30.129 30.125	81.814 81.814	8/13/01 01:10:00 8/13/01 01:12:00	59.74 59.74	58.71 58.71	0.137 0.137	17.045 17.04 5	2.501 2.499	30.141 30.139	81.681 81.681
8/12/01 23:08:00 8/12/01 23:09:00	59.73 59.73	58.71 58.71	0.236	17.056 17.053	2.505 2.505	30.127 30.125	81.814 81.814	8/13/01 01:13:00 8/13/01 01:14:00	59,74 59,74	58.71 58.71	0.137 0.124	17.045 17.045	2.499 2.495	30.137	81.681
8/12/01 23:10:00	59.73	58.71	0.23	17.051	2.507	30.129	81.814	8/13/01 01:15:00	59.74	58.71	0.124	17.045	2,495	30.139 30.145	81.675 81.675
8/12/01 23:12:00 8/12/01 23:13:00	59.73 59.73	58.72 58.72	0.23	17.041 17.038	2.507 2.505	30.123 30.125	81.82 81.82	8/13/01 01:16:00 8/13/01 01:18:00	59.74 59.74	58.71 58.71	0.124 0.124	17.045 17.045	2.495 2.495	30.141 30.143	81.668 81.675
8/12/01 23:14:00 8/12/01 23:15:00	59.73 59.73	58.72 58.72	0.23 0.23	17.038 17.038	2.505 2.503	30.127 30.121	81.82	8/13/01 01:19:00	59.74	58.71	0.124	17.045	2.494	30,143	81.662
8/12/01 23:18:00	59.73	58.72	0.224	17.04	2.503	30.125	81.82 81.82	8/13/01 01:20:00 8/13/01 01:21:00	59.74 59.74	58.71 58.71	0.124 0.118	17.045 17.045	2.495 2.495	30.145 30.145	81.675 81.668
8/12/01 23:18:00 8/12/01 23:19:00	59.74 59.74	58.72 58.72	0.224 0.224	17.04 17.04	2.503 2.503	30.125 30.129	81.814 81.814	8/13/01 01:22:00 8/13/01 01:24:00	59.74 59.74	58.71 58.71	0.118 0.118	17.045 17.045	2.497 2.495	30.145 30.147	81.668 81.668
8/12/01 23:20:00 8/12/01 23:21:00	59.74 59.74	58.72 58.72	0.23	17.043	2.503	30.125	81.814	8/13/01 01:25:00	59.74	58.71	0.118	17.045	2.497	30.149	81.668
8/12/01 23:22:00	59.74	58.72	0.23	17.045	2.503 2.505	30.127 30.125	81.814 81.814	8/13/01 01:26:00 8/13/01 01:27:00	59,74 59,74	58.71 58.71	0.118 0.112	17.045 17.045	2.497 2.497	30.147 30.145	81.662 81.662
8/12/01 23:24:00 8/12/01 23:25:00	59.74 59.74	58.71 58.71	0.23 0.23	17.051 17.047	2.503 2.503	30,129 30,129	81.814 81.814	8/13/01 01:28:00 8/13/01 01:30:00	59.74 59.74	58.71 58.71	0.118 0.112	17.047 17.047	2.499 2.499	30.151 30.147	81.662 81.656
8/12/01 23:26:00	59.74	58.71	0.23	17.047	2.503	30.125	81.814	8/13/01 01:31:00	59,74	58.71	0.112	17.047	2.499	30.151	81.656
8/12/01 23:27:00 8/12/01 23:28:00	59.74 59.74	58.71 58.71	0.23 0.23	17.045 17.049	2.501 2.501	30.129 30.125	81.814 81.808	8/13/01 01:32:00 8/13/01 01:33:00	59.74 59.74	58.71 58.71	0.112	17.047 17.047	2.499 2.499	30.151 30.151	81.656 81.656
8/12/01 23:30:00 8/12/01 23:31:00	59.74 59.74	58.71 58.71	0.23 0.23	17.053 17.062	2.503 2.503	30.127 30.127	81.808 81.808	8/13/01 01:34:00 8/13/01 01:36:00	59.74 59.74	58.71 58.71	0.10 0 0.106	17.047 17.047	2.499 2.499	30.153 30.153	81.649 81.649
8/12/01 23:32:00	59.74	58.71	0.23	17.064	2.505	30.129	81.808	8/13/01 01:37:00	59.74	58.71	0.106	17.047	2.499	30.153	81.643
8/12/01 23:33:00 8/12/01 23:34:00	59.74 59.74	58.71 58.71	0.23 0.224	17.06 17.058	2.505 2.505	30.127 30.131	81.808 81.808	8/13/01 01:38:00 8/13/01 01:39:00	59.74 59.74	58.71 58.7	0.106 0.106	17.047 17.047	2.501 2.503	30.153 30.153	81.643 81.643
8/12/01 23:36:00 8/12/01 23:37:00	59.74 59.74	58.71 58.71	0.23 0.224	17.06 17.064	2.505 2.505	30.129 30.129	81.808 81.808	8/13/01 01:40:00 8/13/01 01:42:00	59.74 59.74	58.7 58.7	0.099 0.099	17.047 17.047	2.503 2.503	30.155 30.155	81.649
8/12/01 23:38:00	59.74	58.72	0.23	17.064	2.505	30.125	81.801	8/13/01 01:43:00	59.75	58.7	0.093	17.047	2.501	30.157	81.643 81.643
8/12/01 23:39:00 8/12/01 23:40:00	59.74 59.74	58.72 58.72	0.23 0.224	17.064 17.06	2.505 2.505	30.127 30.131	81.801 81.795	8/13/01 01:44:00 8/13/01 01:45:00	59.75 59.75	58.71 58.71	0.093 0.087	17.047 17.047	2.505 2.501	30.157 30.159	81.643 81.643
8/12/01 23:42:00 8/12/01 23:43:00	59.74 59.74	58.72 58.72	0.224	17.055 17.055	2.503 2.505	30.129 30.127	81.795 81.801	8/13/01 01:46:00 8/13/01 01:48:00	59.75 59.75	58.71 58.71	0.087 0.087	17.047	2.501 2.501	30.161	81.637
8/12/01 23:44:00	59.74	58.72	0.224	17.047	2.503	30.131	81.801	8/13/01 01:49:00	59.75	58.71	0.087	17.045	2.501	30.161 30.163	81.637 81.63
8/12/01 23:45:00 8/12/01 23:46:00	59.74 59.74	58.72 58.71	0.217 0.217	17.041 17.041	2.501 2.503	30.127 30.127	81.801 81.801	8/13/01 01:50:00 8/13/01 01:51:00	59.75 59.75	58.72 58.72	0.087 0.087	17.045 17.047	2.501 2.501	30.159 30.159	81.63 81.63
8/12/01 23:48:00 8/12/01 23:49:00	59.74 59.75	58.71 58.71	0.224	17.043 17.041	2.503 2.503	30.131 30.129	81.795 81.795	8/13/01 01:52:00	59.75 59.75	58.72	0.087	17.047	2.501	30.161	81.63
8/12/01 23:50:00	59.75	58.71	0.217	17.041	2.501	30.131	81.795	8/13/01 01:54:00 8/13/01 01:55:00	59.75	58.72 58.72	0.087 0.081	17.047 17.047	2.503 2.503	30.161 30.163	81.624 81.624
8/12/01 23:51:00 8/12/01 23:52:00	59.75 59.75	58.71 58.71	0.211 0.211	17.041 17.043	2.501 2.503	30.127 30.127	81.789 81.789	8/13/01 01:56:00 8/13/01 01:57:00	59.75 59.74	58.72 58.72	0.081 0.087	17.047 17.047	2.503 2.503	30.159 30.181	81.624 81.618
8/12/01 23:54:00 8/12/01 23:55:00	59.75 59.75	58.71 58.71	0.211 0.211	17.045 17.045	2.505 2.503	30.129 30.127	81.789 81.769	8/13/01 01:58:00 8/13/01 02:00:00	59.74 59.74	58.71 58.71	0.081	17.047	2.503	30.161	81.618
8/12/01 23:56:00	59.75	58.71	0.211	17.045	2.503	30.129	81.782	8/13/01 02:01:00	59.74	58.71	0.081	17.049 17.049	2.503 2.505	30.159 30.157	81.618 81.618
8/12/01 23:57:00 8/12/01 23:58:00	59.75 59.75	58.71 58.71	0.211 0.205	17.043 17.041	2.499 2.497	30.125 30.131	81.782 81.782	8/13/01 02:02:00 8/13/01 02:03:00	59.74 59.74	58.71 58.72	0.081 0.081	17.049 17.049	2.503 2.505	30.157 30.161	61.618 61.624
8/13/01 8/13/01 00:01:00	59.75 59.75	58.71 58.71	0.205	17.041 17.041	2.499 2.503	30.129 30.131	81.782	8/13/01 02:04:00	59.74	58.72	0.081	17.049	2.505	30.159	81.618
8/13/01 00:02:00	59.75	58.71	0.192	17.045	2.505	30.131	81.782 81.776	8/13/01 02:06:00 8/13/01 02:07:00	59.74 59.74	58.72 58.72	0.081 0.081	17.049 17.049	2.503 2.503	30.161 30.161	81.618 81.618
8/13/01 00:03:00 8/13/01 00:04:00	59.75 59.75	58.71 58.71	0.188 0.192	17.045 17.047	2.507 2.508	30.131 30.129	81.776 81.77	8/13/01 02:08:00 8/13/01 02:09:00	59.73 59.73	58.71 58.71	0.075	17.049 17.049	2.503 2.503	30.159	81.611
8/13/01 00:06:00	59.75	58.71	0.192	17.045	2.505	30.131	81.77	8/13/01 02:10:00	59.73	58.71	0.075	17.049	2.505	30.163 30.165	81.611 81.605
8/13/01 00:07:00 8/13/01 00:08:00	59.75 59.75	58.71 58.71	0.186 0.186	17.043 17.045	2.505 2.508	30.131 30.131	81.77 81.77	8/13/01 02:12:00 8/13/01 02:13:00	59.73 59.73	58.71 58.71	0.075 0.075	17.049 17.049	2.505 2.503	30.163 30.161	81.605 81.605
8/13/01 00:09:00 8/13/01 00:10:00	59.75 59.75	58.71 58.71	0.186 0.186	17.049 17.055	2.507 2.507	30.133 30.131	81.763 81.77	8/13/01 02:14:00	59.73 59.73	58.71	0.075	17.051	2.505	30,163	81.605
8/13/01 00:12:00	59.75	58.71	0.186	17.055	2.507	30.133	61.77	8/13/01 02:15:00 8/13/01 02:16:00	59.73	58.71 58.71	0.068 0.068	17.049 17.049	2.505 2.505	30.181 30.163	81.605 81.599
8/13/01 00:13:00 8/13/01 00:14:00	59.75 59.75	58.71 58.71	0.186 0.18	17.047 17.045	2.507 2.505	30.131 30.131	81.763 81.757	8/13/01 02:18:00 8/13/01 02:19:00	59.73 59.73	58.71 58.71	0.068	17.049 17.049	2.507 2.505	30.163 30.163	81.599 81.599
8/13/01 00:15:00 8/13/01 00:16:00	59.75 59.75	58.71 58.71	0.18	17.045	2.507	30.133	81.757	8/13/01 02:20:00	59.73	58.71	0.068	17.049	2.505	30.167	81.599
8/13/01 00:18:00	59.75	58.71	0.18 0.18	17.045 17.047	2.505 2.507	30.131 30.131	81.751 81.757	8/13/01 02:21:00 8/13/01 02:22:00	59.73 59.74	58.71 58.71	0.062 0.062	17.049 17.049	2.505 2.505	30.167 30.163	81.592 81.592
8/13/01 00:19:00 8/13/01 00:20:00	59.75 59.75	58.71 58.71	0.18 0.18	17.053 17.053	2.507 2.507	30.131 30.131	81.751 81.751	8/13/01 02:24:00 8/13/01 02:25:00	59.74 59.74	58.71 58.71	0.062	17.049 17.049	2.505 2.507	30.165	81.592
8/13/01 00:21:00	59.75	58.71	0.18	17.056	2.507	30.133	81.751	8/13/01 02:26:00	59.74	58.71	0.062	17.049	2.505	30.165 30.169	81.599 81.592
8/13/01 00:22:00 8/13/01 00:24:00	59.75 59.75	58.71 58.71	0,174 0,174	17.064 17.058	2.508 2.507	30.127 30.129	81.744 81.744	8/13/01 02:27:00 8/13/01 02:28:00	59.74 59.74	58.71 58.71	0.062	17.049 17.049	2.505 2.505	30.167 30.169	81.592 81.592
8/13/01 00:25:00	59.75	58.72	0, 174	17.055	2.507	30.131	81.744	8/13/01 02:30:00	59.74	58.71	0.062	17.049	2.505	30.174	81.588

Date/Time	Downhole Pressure (psi)	Downhole Temperature (deg F)	Wellhead Pressure (psi)	Upper Monitor Pressure (psi)	Lower Monitor Pressure (psi)	Barometric Pressure (inchs Hg)	Annular Pressure (psi)	Date/Time	Downhole Pressure (psi)	Downhole Temperature (deg F)	Welhead Pressure (psi)	Upper Monitor Pressure (psi)	Lower Monitor Pressure (psi)	Barometric Pressure (inchs Hg)	Annular Pressure (psi)
8/13/01 02:31:00	59.74	58.71	0.062	17.049	2.505	30.171	81.586	8/13/01 04:36:00 8/13/01 04:37:00	59.74 59.74	58.71 58.71	0.037 0.037	17.053 17.053	2.503 2.503	30.21 30.212	81.447 81.447
8/13/01 02:32:00 8/13/01 02:33:00	59.74 59.74	58.71 58.71	0.062 0.056	17.049 17.049	2.505 2.505	30.171 30.174	81.586 81.58	8/13/01 04:38:00	59.74	58.7	0.037	17.053	2.503	30.212	81.447
8/13/01 02:34:00 8/13/01 02:36:00	59.74 59.74	58.71 58.71	0.062 0.058	17.049 17.051	2.505 2.505	30.174 30.176	81.58 81.58	8/13/01 04:39:00 8/13/01 04:40:00	59.74 59.74	58.7 58.7	0.037 0.037	17.053 17.053	2.503 2.501	30.218 30.214	81.44 81.44
8/13/01 02:37:00	59.74	58.71	0.056	17.051	2.507	30.174	81.58	8/13/01 04:42:00	59.74	58.7	0.037	17.053 17.053	2.501 2.501	30.214 30.216	81.44 81.44
8/13/01 02:38:00 8/13/01 02:39:00	59.74 59.74	58.71 58.71	0.056 0.058	17.051 17.051	2.507 2.505	30.174 30.176	81.573 81.573	8/13/01 04:43:00 8/13/01 04:44:00	59.74 59.74	58.7 58.7	0.037	17.053	2.499	30.216	81.434
8/13/01 02:40:00 8/13/01 02:42:00	59.74 59,74	58.71 58.7	0.062	17.051 17.051	2.505 2.507	30.171 30.169	81.573 81.573	8/13/01 04:45:00 8/13/01 04:46:00	59.74 59.74	58.7 58.7	0.037 0.037	17.053 17.053	2.499 2.501	30.218 30.212	81.434 81.434
8/13/01 02:43:00	59.74	58.7	0.056	17.051	2.507	30.174	81.573	8/13/01 04:48:00	59.74	58.7	0.037	17.053 17.051	2.501	30.216 30.22	81.434 81.428
8/13/01 02:44:00 8/13/01 02:45:00	59.74 59.74	58.7 58.7	0.058 0.058	17.051 17.051	2.505 2.505	30.174 30.178	81.573 81.587	8/13/01 04:49:00 8/13/01 04:50:00	59.74 59.74	58.7 58.7	0.037 0.037	17.051	2.499	30.214	81.434
8/13/01 02:48:00	59.74 59.74	58.7 58.7	0.056 0.056	17.051 17.051	2.507 2.507	30.176 30.178	81.567 81.567	8/13/01 04:51:00 8/13/01 04:52:00	59.74 59.74	58.7 58.7	0.037 0.037	17.049 17.049	2.499 2.501	30.22 30.22	81.428 81.428
8/13/01 02:49:00	59.74	58.71	0.056	17.051	2.507	30.174	81.561	8/13/01 04:54:00 8/13/01 04:55:00	59.74 59.74	58.71 58.71	0.037 0.037	17.049 17.049	2.497 2.501	30.22 30.22	81.428 81.428
8/13/01 02:50:00 8/13/01 02:51:00	59.74 59.74	58.71 58.71	0.056	17.051 17.051	2.507 2.507	30.174 30.171	61.561 81.561	8/13/01 04:56:00	59.74	58.71	0.037	17.049	2.497	30.22	81.421
8/13/01 02:52:00 8/13/01 02:54:00	59.74 59.74	58.71 58.71	0.056 0.056	17.051 17.051	2.507 2.507	30.176 30.176	81.561 81.561	8/13/01 04:57:00 8/13/01 04:58:00	59.74 59.74	58.71 58.71	0.043 0.037	17.049 17.049	2.501 2.497	30.218 30.216	81.421 81.421
8/13/01 02:55:00	59.74	58.71	0.056	17.051	2.507	30.178	81.554	8/13/01 05:00:00 8/13/01 05:01:00	59.74 59.74	58.71 58.71	0.037 0.043	17.049 17.049	2.497 2.497	30.218 30.222	81.421 81.421
8/13/01 02:56:00 8/13/01 02:57:00	59.74 59.74	58.71 58.71	0.056 0.062	17.051 17.049	2.507 2.507	30.178 30.184	81.561 81.548	8/13/01 05:02:00	59.74	58.71	0.043	17.053	2.497	30.216	81.421
8/13/01 02:58:00 8/13/01 03:00:00	59.74 59.74	58.71 58.71	0.081 0.075	17.051 17.051	2.507 2.507	30.176 30.169	81.548 81.548	8/13/01 05:03:00 8/13/01 05:04:00	59.74 59.74	58.71 58.71	0.043 0.043	17.053 17.051	2.497 2.497	30.218 30.22	81.415 81.415
8/13/01 03:01:00	59.74	58.71	0.075	17.047	2.507	30.165 30.169	81.542 81.548	8/13/01 05:06:00 8/13/01 05:07:00	59.74 59.74	58.71 58.71	0.043	17.051 17.051	2.495 2.495	30.218 30.22	81.415 81.421
8/13/01 03:02:00 8/13/01 03:03:00	59.74	58.71 58.71	0.05 0.05	17.051 17.049	2.507	30.176	81.548	8/13/01 05:08:00	59.75	58.71	0.043	17.051	2.495	30.218	81.421
8/13/01 03:04:00 8/13/01 03:06:00	59.74 59.74	58.71 58.71	0.05	17.049 17.049	2.505 2.505	30.178 30.178	81.548 81.542	8/13/01 05:09:00 8/13/01 05:10:00	59.75 59.75	58.71 58.71	0.043 0.043	17.051 17.051	2.495 2.495	30.222 30.22	81.421 81.415
8/13/01 03:07:00	59.74	58.71	0.05 0.05	17.051 17.049	2.505 2.507	30.178 30.184	81.542 81.542	8/13/01 05:12:00 8/13/01 05:13:00	59.75 59.75	58.71 58.71	0.043	17.051 17.051	2.495 2.495	30.222 30.22	81.415 81.415
8/13/01 03:08:00 8/13/01 03:09:00	59.74 59.74	58.71 58.71	0.05	17.051	2.505	30.184	81.535	8/13/01 05:14:00	59.75	58.71	0.043	17.053	2.497	30.218	81.415
8/13/01 03:10:00 8/13/01 03:12:00	59.74 59.74	58.71 58.71	0.05 0.05	17.049 17.049	2.505 2.505	30.164 30.18	81.535 81.535	8/13/01 05:15:00 8/13/01 05:16:00	59.75 59.74	58.71 58.71	0.043 0.043	17.053 17.053	2.495 2.495	30.224 30.222	81.415 81.409
8/13/01 03:13:00 8/13/01 03:14:00		58.71 58.71	0.043 0.043	17.049 17.049	2.507 2.503	30.184 30.188	81.535 81.535	8/13/01 05:18:00 8/13/01 05:19:00	59.74 59.75	58.71 58.71	0.043	17.053 17.051	2.497 2.497	30.222 30.222	81.409 81.409
8/13/01 03:15:00	59.74	58.71	0.043	17.049	2.507	30.184	81.529	8/13/01 05:20:00	59.75	58.71	0.043	17.051	2.495	30.222	81.409 81.402
8/13/01 03:16:00 8/13/01 03:18:00		58.71 58.71	0.043	17.049 17.049	2.503 2.503	30.184 30.188	81.535 81.535	8/13/01 05:21:00 8/13/01 05:22:00	59.75 59.75	58.71 58.71	0.043	17.051 17.053	2.495 2.495	30.222 30.222	81.402
8/13/01 03:19:00 8/13/01 03:20:00		58.71 58.71	0.043 0.043	17.049 17.049	2.503 2.505	30.186 30.184	81.535 81.529	8/13/01 05:24:00 8/13/01 05:25:00	59.75 59.75	58.71 58.71	0.05 0.043	17.053 17.053	2.495 2.497	30.224 30.22	81.402 81.402
8/13/01 03:21:00	59.75	58.71	0.043	17.051	2.505	30.186	81.529	8/13/01 05:28:00	59.75	58.71	0.043	17.053 17.053	2.497 2.495	30.222 30.224	81.402 81.402
8/13/01 03:22:00 8/13/01 03:24:00		58.71 58.71	0.043 0.043	17.049 17.049	2.505 2.505	30.186 30.188	81.529 81.523	8/13/01 05:27:00 8/13/01 05:28:00	59.75 59.75	58.71 58.71	0.05 0.05	17.053	2.497	30.224	81.396
8/13/01 03:25:00 8/13/01 03:26:00		58.71 58.71	0.043	17,049 17.049	2.505 2.505	30.188 30.188	81.523 81.523	8/13/01 05:30:00 8/13/01 05:31:00	59.75 59.75	58.7 58.7	0.05 0.05	17.053 17.053	2.497 2.497	30.224 30.222	81.402 81.396
8/13/01 03:27:00	59.75	58.71	0.043	17.047	2.505 2.505	30.188 30.188	81.523 81.516	8/13/01 05:32:00 8/13/01 05:33:00	59.75 59.74	58.7 58.71	0.05 0.05	17.053 1 7.053	2.497 2.497	30.222 30.218	81.39 6 81.396
8/13/01 03:28:00 8/13/01 03:30:00		58.71 58.71	0.043 0.043	17.047 17.047	2.505	30.19	81.516	8/13/01 05:34:00	59.74	58.71	0.05	17,053	2.497	30.222	81.396
8/13/01 03:31:00 8/13/01 03:32:00		58.71 58.71	0.043	17.049 17.049	2.503 2.505	30.186 30.188	81.516 81.516	8/13/01 05:36:00 8/13/01 05:37:00	59.74 59.74	58.71 58.71	0.05 0.05	17.053 17.055	2.497 2.499	30.22 30.224	81.396 81.39
8/13/01 03:33:00	59.75	58.7	0.043	17.049 17.049	2.505	30.188 30.19	81.51 81.51	8/13/01 05:38:00 8/13/01 05:39:00	59.74 59.74	58.71 58.71	0.05 0.056	17.055 17.055	2.499 2.497	30.222 30.222	81.39 81.39
8/13/01 03:34:00 8/13/01 03:36:00	59.75	58.7 58.7	0.043 0.043	17.051	2.503	30.188	81.51	8/13/01 05:40:00	59.74	58.71	0.05	17.055	2,499	30.22	81.39
8/13/01 03:37:00 8/13/01 03:38:00		58.7 58.7	0.043	17.051 17.051	2.503 2.505	30.19 30.192	81.51 81.51	8/13/01 05:42:00 8/13/01 05:43:00		58.71 58.71	0.05 0.056	17.055 17.055	2.499 2.497	30.222 30.222	81.39 81.39
8/13/01 03:39:00 8/13/01 03:40:00	59.75	58.7 58.7	0.037 0.043	17.051 17.051	2.505 2.505	30.192 30.192	81.504 81.504	8/13/01 05:44:00 8/13/01 05:45:00		58.71 58.71	0.056 0.056	17.055 17.055	2.497 2.499	30.224 30.224	81.396 81.396
8/13/01 03:42:00	59.74	58.7	0.043	17.051	2.505	30.194	81.504	8/13/01 05:46:00	59.75	58.71	0.05	17.055	2.497	30.22	81.396
8/13/01 03:43:00 8/13/01 03:44:00		58.7 58.7	0.043	17.051 17.051	2.505 2.503	30.192 30.192	81.504 81.504	8/13/01 05:48:00 8/13/01 05:49:00		58.71 58.71	0.056 0.056	17.055 17.055	2,499 2,499	30.222 30.226	81.39 81.39
8/13/01 03:45:00 8/13/01 03:46:00		58.7 58.7	0.043 0.043	17.049 17.051	2.503 2.505	30.192 30,194	81.497 81.497	8/13/01 05:50:00 8/13/01 05:51:00	59.75 59.75	58.71 58.71	0.056	17.055 17.055	2.497 2.497	30.224 30.222	81.39 81.39
8/13/01 03:48:00	59.74	58.7	0.043	17.051	2.505	30.194	81.491	8/13/01 05:52:00	59,78	58.71 58.71	0.056	17.055 17.055	2.499	30.224	81.39 81.39
8/13/01 03:59:00	59.74	58.7 58.7	0.043 0.043	17.051 17.051	2.505 2.505	30.192 30.194	61.504 81.504	8/13/01 05:54:00 8/13/01 05:55:00	59.78	58.71	0.056	17.053	2.499	30.226	81.383
8/13/01 03:51:00 8/13/01 03:52:00		58.7 58.71	0.043 0.043	17.051 17.051	2.505	30.194 30.196	81.504 81.497	8/13/01 05:56:00 8/13/01 05:57:00		58.71 58.71	0.056	17.053 17.053	2.499 2.497	30.226 30.222	81.39 81.383
8/13/01 03:54:00	59.75	58.71	0.043	17.051 17.051	2.505	30.192 30.198	81.497 81.497	8/13/01 05:58:00 8/13/01 06:00:00	59.76	58.71 58.71	0.056 0.056	17.053 17.053	2.497 2.497	30.228 30.228	81.383 81.383
8/13/01 03:55:00 8/13/01 03:56:00	59.75	58.71 58.71	0.043	17.051	2.505	30.194	81.497	8/13/01 06:01:00	59.76	58.71	0.056	17.053	2.495	30.226	81.383
8/13/01 03:57:00 8/13/01 03:58:00		58.71 58.71	0.043 0.043	17.051 17.051	2.505 2.505	30,196 30,192	81.491 81.491	8/13/01 06:02:00 8/13/01 06:03:00	59.76	58.71 58.71	0.058 0.056	17.055 17.055	2.497 2.497	30.22 30.226	81.383 81.383
8/13/01 04:00:00 8/13/01 04:01:00	59.74	58.71 58.71	0.043 0.043	17.051 17.049	2.505 2.505	30.196 30.2	81.491 81.485	8/13/01 06:04:00 8/13/01 06:08:00		58.7 58.71	0.062 0.056	17.055 17.053	2.497 2.497	30.222 30.222	81.377 81.377
8/13/01 04:02:00	59.75	58.71	0.043	17.051	2.505	30.2	81.485	8/13/01 06:07:00	59.75	58.71 58.71	0.056	17.053 17.053	2.499 2.497	30.222 30.226	81.383 81.377
8/13/01 04:03:00 8/13/01 04:04:00		58.71 58.71	0.043	17.051 17.051	2.505 2.503	30.198 30.2	81.491 81.485	8/13/01 08:08:00 8/13/01 08:09:00	59.75	58.71	0.062	17.053	2.497	30.222	81.377
8/13/01 04:06:00 8/13/01 04:07:00		58.71 58.7	0.037 0.031	17.051 17.049	2.505 2.503	30.2 30.202	81.485 81.478	8/13/01 06:10:00 8/13/01 06:12:00		58.71 58.71	0.062	17.051 17.051	2.497 2.497	30.224 30.226	81.377 81.377
8/13/01 04:08:00	59.74	58.7	0.037	17.049	2.503	30.204	81.478	8/13/01 06:13:00 8/13/01 06:14:00	59.75	58.71 58.71	0.062 0.062	17.051 17.053	2.497 2.497	30.224 30.228	81.371 81.371
8/13/01 04:09:00 8/13/01 04:10:00		58.7 58.7	0.037 0.037	17.049 17.049	2.503 2.505	30.2 30.204	81.478 81.472	8/13/01 06:15:00	59.76	58.71	0.062	17.053	2.497	30.228	81.371
8/13/01 04:12:00 8/13/01 04:13:00		58.7 58.7	0.037 0.031	17.049 17.049	2.503 2.503	30.208 30.208	81.472 81.472	8/13/01 06:16:00 8/13/01 06:18:00		58.71 58.71	0.062 0.062	17.053 17.051	2.497 2.497	30.228 30.228	81.371 81.371
8/13/01 04:14:00	59.74	58.7 58.7	0.031 0.037	17.049 17.049	2.503 2.503	30.208 30.204	61.472 81.466	8/13/01 06:19:00 8/13/01 06:20:00	59.75	58.71 58.71	0.062 0.062	17.051 17.051	2.495 2.497	30.228 30.233	81.371 81.364
8/13/01 04:15:00 8/13/01 04:16:00	59.75	58.71	0.037	17.051	2.503	30.208	81.472	8/13/01 06:21:00	59.75	58.71	0.062	17.051	2.495	30.226	81.364
8/13/01 04:18:00 8/13/01 04:19:00		58.71 58.71	0.037	17.049 17.049	2.503 2.503	30.206 30.206	81.466 81.466	8/13/01 06:22:00 8/13/01 06:24:00		58.72 58.72	0.062 0.062	17.051 17.049	2.495 2.495	30.228 30.233	81.364 81.364
8/13/01 04:20:00 8/13/01 04:21:00	59.75	58.71 58.71	0.037	17.049 17.049	2.503 2.503	30.208 30.21	81.468 81.466	8/13/01 06:25:00 8/13/01 06:26:00	59.75	58.72 58.72	0.062 0.062	17.049 17.049	2.495 2.497	30.228 30.228	81.364 81.358
8/13/01 04:22:00	59.75	58.71	0.037	17.047	2.503	30.208	81.459	8/13/01 06:27:00	59.75	58.72	0.062	17.049	2.495	30.228	81.364
8/13/01 04:24:00 8/13/01 04:25:00		58.7 58.7	0.037 0.031	17.047 17.049	2.503 2.503	30.212 30.214	81.459 81.459	8/13/01 06:28:00 8/13/01 06:30:00		58.72 58.72	0.062 0.062	17.051 17.049	2.497 2.497	30.228 30.226	81.358 81.358
8/13/01 04:26:00 8/13/01 04:27:00	59.74	58.7 58.7	0.037 0.031	17.049 17.049	2.503 2.503	30.21 30.214	81.459 81.459	8/13/01 08:31:00 8/13/01 06:32:00		58.72 58.71	0.062 0.062	17.049 17.049	2.497 2.497	30.231 30.226	81.358 81.358
8/13/01 04:28:00	59.74	58.7	0.031	17.049	2.503	30.21	81.453	8/13/01 06:33:00	59.75	58.71	0.068	17.049	2.497	30.228	81.352
8/13/01 04:30:00 8/13/01 04:31:00	59.74	58.7 58.7	0.037 0.037	17.049 17.051	2.503 2.503	30.212 30.208	81.453 81.453	8/13/01 08:34:00 8/13/01 08:36:00	59.74	58.71 58.71	0.068 0.068	17.049 17.049	2.497 2.497	30.228 30.222	81.352 81.352
8/13/01 04:32:00 8/13/01 04:33:00		58.7 58.71	0.037 0.037	17.051 17.051	2.505 2.503	30.21 30.212	81.447 81.447	8/13/01 08:37:00 8/13/01 08:38:00		58.71 58.71	0.068 0.068	17.049 17.049	2.497 2.497	30.228 30.228	81.352 81.352
8/13/01 04:34:00		58.71	0.037	17.053	2.503	30.212	81.447	8/13/01 06:39:00		58.71	0.068	17.049	2.497	30.228	81.352

Date/Time	Downhole Pressure (psi)	Downhole Temperature (deg F)	Wellhead Pressure (psi)	Upper Monitor Pressure (psi)	Lower Monitor Pressure (psi)	Barometric Pressure (inchs Hg)	Annular Pressure (psi)	Date/Time	Downhole Pressure (psi)	Downhole Temperature (deg F)	Wellhead Pressure (psi)	Upper Monitor Pressure (psi)	Lower Monitor Pressure (psi)	Barometric Pressure (Inchs Hg)	Annular Pressure (psi)
8/13/01 06:40:00		58.7	0.068	17.049	2.497	30.228	81.352	8/13/01 08:45:00	59.75	58.7	0.093	17.056	2.505	30.204	81.282
8/13/01 06:42:00 8/13/01 06:43:00		58.7 58.7	0.068	17.049 17.047	2.497 2.497	30.231 30.231	81.352 81.352	8/13/01 08:46:00 8/13/01 08:48:00	59.75 59.75	58.7 58.7	0.093 0.093	17.056 17.056	2.505 2.507	30.208 30.208	81.282 81.282
8/13/01 06:44:00	59.73	58.7	0.068	17.047	2.497	30.231	81.352	8/13/01 08:49:00	59.75 59.75	58.7	0.093	17.055 17.056	2.505 2.507	30.208 30.208	81.276 81.276
8/13/01 06:45:00 8/13/01 06:48:00		58.7 58.7	0.068 0.068	17.047 17.047	2.497 2.497	30.228 30.228	81.346 81.346	8/13/01 08:50:00 8/13/01 08:51:00	59.75	58.7 58.7	0.093	17.055	2.507	30.204	81.276
8/13/01 06:48:00 8/13/01 06:49:00	59.73 59.73	58.69 58.69	0.068 0.068	17.047 17.047	2.497 2.497	30.231 30.233	81.348 81.346	8/13/01 08:52:00 8/13/01 08:54:00	59.75 59.74	58.7 58.7	0.093 0.093	17.055 17.058	2.507 2.507	30.204 30.208	81.276 81.282
8/13/01 06:50:00	59.73	58.7	0.068	17.047	2.497	30.231	81.346	8/13/01 08:55:00	59.75	58.7	0.093	17.056	2.507	30.21	81.276
8/13/01 06:51:00 8/13/01 06:52:00	59.73 59.73	58.7 58.7	0.068 0.068	17.047 17.047	2.497 2.497	30.228 30.231	81.346 81.346	8/13/01 08:56:00 8/13/01 08:57:00	59.75 59.7 5	58.71 58.71	0.099	17.058 17.056	2.507 2.507	30.208 30.208	81.276 81.276
8/13/01 06:54:00 8/13/01 06:55:00		58.7 58.7	0.068	17.047 17.047	2.497 2.497	30.233 30.228	81.346 81.339	8/13/01 08:58:00 8/13/01 09:00:00	59.75 59.75	58.71 58.71	0.093	17.056 17.056	2.505 2.507	30.208 30.21	81.276 81.27
8/13/01 06:56:00	59.73	58.7	0.068	17.047	2.497	30.226	81.339	8/13/01 09:01:00	59.75	58.71	0.099	17.055	2.507	30.208	81.27
8/13/01 06:57:00 8/13/01 06:58:00	59.73 59.73	58.7 58.7	0.075	17.047 17.047	2.497 2.499	30.228 30.228	81.339 81.339	8/13/01 09:02:00 8/13/01 09:03:00	59.75 59.75	58.71 58.71	0.093	17.055 17.055	2.505 2.507	30.208 30.208	81.276 81.27
8/13/01 07:00:00 8/13/01 07:01:00	59.73 59.73	58.7 58.7	0.075 0.075	17.047 17.047	2.499 2.499	30.226 30.224	81.339 81.346	8/13/01 09:04:00 8/13/01 09:06:00	59.75 59.75	58.71 58.7	0.093 0.093	17.055 17.055	2.505 2.505	30.21 30.206	81.27 81.27
8/13/01 07:02:00	59.73	58.7	0.075	17.049	2.499	30.224	81.339	8/13/01 09:07:00	59.75	58.71	0.093	17.053	2.505	30.21	81.27
8/13/01 07:03:00 8/13/01 07:04:00	59.73 59.73	58.7 58.7	0.075 0.075	17.047 17.049	2.499 2.499	30.226 30.228	81.339 81.339	8/13/01 09:08:00 8/13/01 09:09:00	59.75 59.75	58.71 58.71	0.099	17.053 17.053	2.507 2.505	30.21 30.208	81.263 81.263
8/13/01 07:08:00 8/13/01 07:07:00	59.73 59.73	58.7 58.7	0.075 0.075	17.049 17.049	2.499 2.490	30.226 30.224	81.339 81.339	8/13/01 09:10:00 8/13/01 09:12:00	59.75 59.75	58.71 58.71	0.099 0.093	17.055 17.055	2.505 2.505	30.206 30.206	81.263 81.263
8/13/01 07:08:00	59.74	58.7	0.075	17.049	2.499	30.224	81.339	8/13/01 09:13:00	59.74	58.71	0.099	17.055	2.507	30.204	81.263
8/13/01 07:09:00 8/13/01 07:10:00	59.74 59.74	58.7 58.7	0.081 0.075	17.049 17.051	2.501 2.501	30.224 30.224	81.339 81.339	8/13/01 09:14:00 8/13/01 09:15:00	59.74 59.74	58.71 58.71	0.099 0.099	17.055 17.055	2.507 2.508	30.208 30.206	81.263 81.263
8/13/01 07:12:00 8/13/01 07:13:00	59.74 59.74	58.7	0.075 0.075	17.049 17.049	2.501 2.501	30.224	81.339	8/13/01 09:16:00 8/13/01 09:18:00	59.74 59.74	58.71	0.093	17.058	2.508	30.202	81.263
8/13/01 07:14:00	59.75	58.7 58.7	0.081	17.049	2.501	30.226 30.226	81.333 81.339	8/13/01 09:19:00	59.74	58.71 58.71	0.099 0.099	17.056 17.058	2.508 2.508	30.204 30.204	81.263 81.263
8/13/01 07:15:00 8/13/01 07:16:00	59.75 59.75	58.7 58.71	0.081 0.081	17.049 17.049	2.501 2.499	30.228 30.224	81.333 81.333	8/13/01 09:20:00 8/13/01 09:21:00	59.74 59.74	58.71 58.7	0.099 0.099	17.056 17.056	2.508 2.508	30.204 30.204	81.257 81.257
8/13/01 07:18:00	59.75	58.7	0.081	17.049	2.501	30.224	81.333	8/13/01 09:22:00	59.74	58.7	0.099	17.058	2.508	30.204	81.263
8/13/01 07:19:00 8/13/01 07:20:00	59.75 59.75	58.7 58.7	0.081 0.081	17.051 17.051	2.499 2.501	30.222 30.224	81.333 81.327	8/13/01 09:24:00 8/13/01 09:25:00	59.74 59.74	58.7 58.71	0.099	17.058 17.058	2.508 2.508	30.202 30.204	81.263 81.263
8/13/01 07:21:00 8/13/01 07:22:00	59.75 59.75	58.7 58.7	0.081 0.081	17.051 17.051	2.501 2.501	30.224 30.222	81.333 81.327	8/13/01 09:26:00 8/13/01 09:27:00	59.74 59.74	58.71 58.71	0.106	17.058 17.058	2.508 2.508	30.2 30.204	81.257 81.257
8/13/01 07:24:00	59.75	58.69	0.081	17.053	2.501	30.222	81.327	8/13/01 09:28:00	59.74	58.71	0.099	17.058	2.508	30.2	81.257
8/13/01 07:25:00 8/13/01 07:26:00	59.74 59.74	58.69 58.7	0.081 0.081	17.051 17.051	2.501 2.501	30.222 30.224	81.327 81.327	8/13/01 09:30:00 8/13/01 09:31:00	59.74 59.74	58.71 58.71	0.099 0.099	17.058 17.058	2.508 2.508	30.2 30.198	81.257 81.257
8/13/01 07:27:00 8/13/01 07:28:00	59.74 59.74	58.7 58.7	0.081 0.081	17.049 17.051	2.501 2.501	30.222 30.226	81.327 81.327	8/13/01 09:32:00 8/13/01 09:33:00	59.74 59.74	58.71 58.71	0.106 0.108	17.058 17.058	2.508 2.508	30.198 30.2	81.251 81.251
8/13/01 07:30:00	59,74	58.7	0.081	17.049	2.501	30.222	81.32	8/13/01 09:34:00	59.75	58.71	0.106	17.058	2.508	30.2	81.251
8/13/01 07:31:00 8/13/01 07:32:00	59.74 59.74	58.7 58.7	0.081 0.081	17.051 17.049	2.501 2.501	30.224 30.226	81.314 81.314	8/13/01 09:36:00 8/13/01 09:37:00	59.75 59.75	58.71 58.71	0.106 0.099	17.058 17.058	2.508 2.51	30.202 30.202	81.251 81.251
8/13/01 07:33:00 8/13/01 07:34:00	59.74 59.74	58.7 58.7	0.087 0.087	17.049 17.049	2.501 2.501	30.226 30.226	81.314 81.314	8/13/01 09:38:00	59.75 59.75	58.71	0.099	17.06	2.51	30.2	81.251
8/13/01 07:36:00	59.74	58.7	0.081	17.049	2.501	30.222	81.314	8/13/01 09:39:00 8/13/01 09:40:00	59.75	58.71 58.71	0.099 0.099	17.06 17.062	2.51 2.512	30.2 30.202	81.251 81.251
8/13/01 07:37:00 8/13/01 07:38:00	59.74 59.74	58.7 58.7	0.087 0.087	17.049 17.051	2.503 2.501	30.224 30.224	81.314 81.314	8/13/01 09:42:00 8/13/01 09:43:00	59.74 59.74	58.71 58.71	0.099 0.106	17.062 17.064	2.512 2.514	30.2 30.196	81.251 81.251
8/13/01 07:39:00 8/13/01 07:40:00	59.74	58.7	0.087	17.051	2.501	30.226	81.314	8/13/01 09:44:00	59.74	58.71	0.108	17.066	2.512	30.196	81.251
8/13/01 07:42:00	59.74 59.74	58.7 58.71	0.087 0.087	17.051 17.051	2.501 2.503	30.222 30.222	81.314 81.308	8/13/01 09:45:00 8/13/01 09:48:00	59.74 59.74	58.71 58.71	0.108 0.108	17.066 17.066	2.514 2.514	30,198 30,198	81.244 81.244
8/13/01 07:43:00 8/13/01 07:44:00	59.74 59.74	58.71 58.71	0.087 0.087	17.051 17.051	2.503 2.501	30.224 30.22	81.314 81.308	8/13/01 09:48:00 8/13/01 09:49:00	59.74 59.74	58.71 58.71	0.106 0.106	17.066 17.066	2.514 2.514	30.194 30.196	81.244 81.244
8/13/01 07:45:00	59.74	58.71	0.087	17.051	2.503	30.222	81.308	8/13/01 09:50:00	59.74	58.71	0.106	17.068	2.514	30,198	81.244
8/13/01 07:46:00 8/13/01 07:48:00	59.74 59.74	58.71 58.71	0.087 0.087	17.053 17.053	2.503 2.503	30.22 30.22	81.308 81.308	8/13/01 09:51:00 8/13/01 09:52:00	59.74 59,74	58.71 58.71	0.106 0.106	17.068 17.068	2.516 2.514	30,196 30,198	81.244 81.244
8/13/01 07:49:00 8/13/01 07:50:00	59.74 59.74	58.71 58.71	0.087 0.087	17.053 17.053	2.503 2.503	30.22 30.218	81.308 81.308	8/13/01 09:54:00 8/13/01 09:55:00	59.73 59.73	58.71 58.71	0.106 0.106	17.068 17.068	2.514 2.514	30.194 30.194	81.244 81.238
8/13/01 07:51:00	59.74	58.71	0.087	17.053	2.503	30.222	81.308	8/13/01 09:56:00	59.73	58.71	0.106	17.068	2.512	30,196	81.238
8/13/01 07:52:00 8/13/01 07:54:00	59.74 59.74	58.71 58.71	0.087 0.087	17.053 17.051	2.503 2.503	30.218 30.22	81.308 81.308	8/13/01 09:57:00 8/13/01 09:58:00	59.73 59.73	58.71 58.71	0.10 6 0.106	17.066 17.066	2.512 2.512	30.2 30.196	81.238 81.238
8/13/01 07:55:00 8/13/01 07:56:00	59.74 59.74	58.71 58.7	0.093 0.087	17.051 17.051	2.503 2.503	30.218 30.216	81.308 81.306	8/13/01 10:00:00 8/13/01 10:01:00	59.73 59.73	58.71 58.71	0.112 0.106	17.066 17.066	2.51 2.51	30.194 30.196	81.238 81.238
8/13/01 07:57:00	59.74	58.7	0.093	17.051	2.503	30.222	81.301	8/13/01 10:02:00	59.73	58.71	0.106	17.064	2.51	30.196	81.238
8/13/01 07:58:00 8/13/01 08:00:00	59.74 59.74	58.7 58.7	0.093 0.087	17.051 17.051	2.501 2.501	30.218 30.216	81.301 81.301	8/13/01 10:03:00 8/13/01 10:04:00	59.73 59.73	58.71 58.71	0.106 0.108	17.066 17.062	2.508 2.508	30.196 30.192	81.238 81.238
8/13/01 08:01:00 8/13/01 08:02:00	59.74 59.74	58.7 58.7	0.093 0.087	17.051 17.051	2.501 2.503	30.218 30.22	81.301 81.301	8/13/01 10:08:00 8/13/01 10:07:00	59.73 59.73	58.7 58.7	0,106 0,108	17.062 17.06	2.508 2.508	30.192	81.238 81.238
8/13/01 08:03:00	59.74	58.7	0.093	17.051	2.503	30.216	81.301	8/13/01 10:08:00	59.73	58.7	0.106	17.06	2.507	30.192 30.192	81.238
8/13/01 08:04:00 8/13/01 08:06:00	59.74 59.74	58.7 58.71	0.093 0.093	17.051 17.051	2.503 2.503	30.214 30.216	81.301 81.301	8/13/01 10:09:00 8/13/01 10:10:00	59.73 59.73	58.7 58.7	0.106	17.06 17.06	2.507 2.507	30.192 30.19	81.238 81.232
8/13/01 08:07:00 8/13/01 08:08:00	59.74 59.74	58.71 58.71	0.093 0.093	17.051 17.051	2.503 2.503	30.218 30.218	81.301 81.295	8/13/01 10:12:00 8/13/01 10:13:00	59.74 59.74	58.7 58.71	0.112	17.08 17.06	2.505 2.505	30.194 30.194	81.238 81.232
8/13/01 08:09:00	59.74	58.71	0.093	17.051	2.503	30.218	81.301	8/13/01 10:14:00	59.74	58.71	0.106	17.06	2.503	30.192	81.238
8/13/01 08:10:00 8/13/01 08:12:00	59.74 59.74	58.71 58.71	0.093 0.093	17.051 17.051	2.503 2.503	30.216 30.216	81.301 81.295	8/13/01 10:15:00 8/13/01 10:18:00	59.74 59.74	58.71 58.71	0.112 0.112	17.06 17.06	2.503 2.503	30.188 30.192	81.232 81.232
8/13/01 08:13:00 8/13/01 08:14:00	59.74 59,74	58.71 58.71	0.093 0.093	17.051 17.051	2.501 2.501	30.218 30.218	81.295 81.295	8/13/01 10:18:00 8/13/01 10:19:00	59.74 59.74	58.72 58.71	0.112	17.08 17.06	2.503 2.503	30.192 30.188	81.232 81.232
8/13/01 08:15:00	59.74	58.71	0.087	17.051	2.503	30.22	61.295	8/13/01 10:20:00	59.74	58.71	0.112	17.06	2.503	30.188	81.232
8/13/01 08:16:00 8/13/01 08:18:00	59.74 59.74	58.71 58.71	0.087 0.087	17.051 17.051	2.503 2.503	30.218 30.22	81.295 81.295	8/13/01 10:21:00 8/13/01 10:22:00	59.74 59.74	58.71 58.71	0.112 0.112	17.06 17.06	2.505 2.507	30.188 30.186	81.225 81.232
8/13/01 08:19:00 8/13/01 08:20:00	59.75 59.75	58.71 58.71	0.087 0.099	17.051 17.049	2.503 2.503	30.22 30.216	81.295 81.295	8/13/01 10:24:00 8/13/01 10:25:00	59.74	58.71	0.112	17.06	2.507	30.184	81.225
8/13/01 08:21:00	59.75	58.71	0.087	17.049	2.503	30.22	81.295	8/13/01 10:26:00	59.74 59.74	58.71 58.71	0.112 0.112	17.06 17.062	2.508 2.508	30.186 30.188	81.225 81.225
8/13/01 08:22:00 8/13/01 08:24:00	59.75 59.75	58.71 58.71	0.087 0.099	17.049 17.049	2.501 2.501	30.22 30.22	81.295 81.289	8/13/01 10:27:00 8/13/01 10:28:00	59.74 59.74	58.71 58.71	0.112 0.112	17.062 17.062	2.508 2.508	30.188 30.188	81.225 81.225
8/13/01 08:25:00 8/13/01 08:28:00	59.75 59.75	58.71	0.087	17.049	2.503	30.22	81.295	8/13/01 10:30:00	59.74	58.71	0.112	17.064	2.508	30.188	81.225
8/13/01 08:27:00	59.75	58.71 58.71	0.093	17.049 17.049	2.501 2.503	30.216 30.218	81.295 81.289	8/13/01 10:31:00 8/13/01 10:32:00	59.74 59.74	58.71 58.71	0.112 0.112	17.064 17.064	2.508 2.508	30.188 30.19	81.225 81.225
8/13/01 08:28:00 8/13/01 08:30:00	59.75 59.75	58.71 58.71	0.093 0.093	17.051 17.051	2.503 2.503	30.218 30.216	81.289 81.289	8/13/01 10:33:00 8/13/01 10:34:00	59.74 59.74	58.71 58.71	0.112 0.112	17.064 17.064	2.508 2.507	30.188 30.188	81.225 81.219
8/13/01 08:31:00	59.75	58.71	0.093	17.051	2.503	30.218	81.289	8/13/01 10:36:00	59.74	58.71	0.112	17.064	2.508	30.19	81.219
8/13/01 08:32:00 8/13/01 08:33:00	59.75 59.75	58.71 58.71	0.093 0.093	17.051 17.051	2.503 2.503	30.218 30.218	81.289 81.289	8/13/01 10:37:00 8/13/01 10:38:00	59.74 59.74	58.71 58.71	0.112 0.112	17.064 17.064	2.508 2.508	30.188 30.188	81.219 81.219
8/13/01 08:34:00 8/13/01 08:36:00	59.75 59.75	58.71 58.71	0.093 0.093	17.051 17.051	2.503 2.503	30.212 30.22	81.289 81.289	8/13/01 10:39:00 8/13/01 10:40:00	59.74 59.74	58.71 58.71	0.112 0.112	17.064 17.064	2.508 2.508	30.166 30.186	81.219
8/13/01 08:37:00	59.75	58.7	0.093	17.051	2.505	30.212	81.289	8/13/01 10:42:00	59.74	58.71	0.112	17.066	2.508	30.188	81.219 81.219
8/13/01 08:38:00 8/13/01 08:39:00	59.75 59.75	58.7 58.7	0.093 0.093	17.053 17.053	2.505 2.505	30.214 30.214	81.282 81.282	8/13/01 10:43:00 8/13/01 10:44:00	59.74 59.74	58.71 58.71	0.112 0.112	17.066 17.066	2.51 2.508	30.188 30.188	81.219 81.219
8/13/01 08:40:00 8/13/01 08:42:00	59.75 59.75	58.7 58.7	0.093	17.053 17.053	2.505	30.21	81.282	8/13/01 10:45:00	59.74	58.71	0.112	17.066	2.508	30.19	81.219
8/13/01 08:43:00	59.75	58.7	0.093	17.056	2.505	30.212 30.212	81.282 81.282	8/13/01 10:48:00 8/13/01 10:48:00	59.74 59.74	58.71 58.71	0.112 0.112	17.066 17.068	2.51 2.51	30.186 30.186	81.213 81.213
8/13/01 08:44:00	59.75	58.7	0.093	17.056	2.505	30.208	81.282	8/13/01 10:49:00	59.74	58.71	0.112	17.068	2.51	30.186	81.213

Date/Time	Downhole Pressure (psi)	Downhole Temperature (deg F)	Wellhead Pressure (psi)	Upper Monitor Pressure (psi)	Lower Monitor Pressure (psi)	Barometric Pressure (inchs Hg)	Annular Pressure (psi)	Date/Time	Downhole Pressure (psi)	Downhole Temperature (deg F)	Wellhead Pressure (psi)	Upper Monitor Pressure (psi)	Lower Montor Pressure (psi)	Barometric Pressure (Inchs Hg)	Annular Pressure (psi)
8/13/01 10:50:00		58.71	0.112	17.068	2.51	30.186	81.213 81.213	8/13/D1 12:55:00 8/13/01 12:58:00		59.34 59.48	0.112 0.118	17.068 17.069	2.51 2.51	30.171 30.171	81.143 81.143
8/13/01 10:51:00 8/13/01 10:52:00	59.74 59.74	58.71 58.71	0.112 0.112	17.069 17.069	2.51 2.51	30.186 30.19	81.213	8/13/01 12:57:00	60.3	59.63 59.77	0.118 0.118	17.069	2.51 2.51	30.171 30.171	81.137 81.143
8/13/01 10:54:00 8/13/01 10:55:00	59.74 59.74	58.71 58.71	0.112	17.071 17.071	2.51 2.51	30.184 30.186	81.213 81.213	8/13/01 12:58:00 8/13/01 13:00:00	60.7	60.04	0.112	17.069	2.51	30.171	81.137
8/13/01 10:56:00 8/13/01 10:57:00	59.74	58.7 58.7	0.112 0.112	17.071 17.071	2.51 2.51	30.188 30.184	81.206 81.206	8/13/01 13:01:00 8/13/01 13:02:00		60.17 60.29	0.112 0.112	17.069 17.069	2.51 2.508	30.174 30.174	81.137 81.137
8/13/01 10:58:00	59.74	58.7	0.112	17.073	2.51	30.186	61.206 81.208	8/13/01 13:03:00 8/13/01 13:04:00	61.09	60.41 60.54	0.112 0.112	17.069 17.069	2.51 2.51	30.174 30.171	81.137 81.137
6/13/01 11:00:00 8/13/01 11:01:00		58.7 58.7	0.112 0.112	17.073 17.071	2.512 2.512	30.182 30.186	81.206	8/13/01 13:06:00	81.47	60.78	0.112	17.071 17.071	2.51 2.51	30.176 30.176	81.137 81.137
8/13/01 11:02:00 8/13/01 11:03:00		58.7 58.7	0.118	17.071 17.071	2.512 2.512	30.182 30.182	81.206 81.206	8/13/01 13:07:00 8/13/01 13:08:00	61.69	60.9 61.02	0.112	17.071	2.508	30.169	81.137
8/13/01 11:04:00	59.74	58.71 58.7	0.112 0.118	17.071 17.073	2.512 2.512	30.182 30.184	81.206 81.2	8/13/01 13:09:00 8/13/01 13:10:00		61.14 61.26	0.112 0.112	17.071 17.069	2.508 2.508	30.174 30.174	81.137 81.13
8/13/01 11:06:00 8/13/01 11:07:00	59.74	58.7	0.112	17.071	2.512	30.182 30.18	81.2 81.2	8/13/01 13:12:00 8/13/01 13:13:00		61.52 61.85	0.112 0.112	17.071 17.071	2.508 2.508	30.174 30.178	81.13 81.13
8/13/01 11:08:00 8/13/01 11:09:00		58.7 58.7	0.118 0.112	17.071 17.071	2.512 2.51	30.184	61.2	8/13/01 13:14:00	62.37	61.79 61.93	0.112	17.071 17.073	2.508 2.51	30.174 30.178	81.13 81.13
8/13/01 11:10:00 6/13/01 11:12:00		58.69 58.69	0.118 0.118	17.071 17.073	2.512 2.51	30.18 30.182	81.2 81.2	8/13/01 13:15:00 8/13/01 13:16:00	82.59	62.06	0.112	17.073	2.51	30.174	81.124
8/13/01 11:13:00 8/13/01 11:14:00	59.74	58.7 58.7	0.118 0.118	17.073 17.073	2.512 2.512	30.182 30.182	81.2 81.2	8/13/01 13:18:00 8/13/01 13:19:00		64.5 66.8	0.112 0.112	17.077 17.077	2.508 2.51	30.174 30.174	61.124 81.13
8/13/01 11:15:00	59.74.	58.7	0.112	17.073 17.073	2.512 2.512	30.182 30.18	81.2 81.2	8/13/01 13:20:00 8/13/01 13:21:00		69.1 71.4	0.112 0.116	17.077 17.077	2.51 2.51	30.171 30.169	81.124 81.13
8/13/01 11:16:00 8/13/01 11:18:00	59.74	58.7 58.71	0.118 0.118	17.073	2.514	30.18	81.2	8/13/01 13:22:00	69.01	73.7 77.21	0.112 0.112	17.077 17.073	2.51 2.51	30.171 30.169	81.124 81.124
8/13/01 11:19:00 8/13/01 11:20:00		58.71 58.71	0.118 0.118	17.073 17.073	2.512 2.512	30,178 30,178	81.194 81.2	8/13/01 13:24:00 8/13/01 13:25:00	74.41	78.41	0.112	17.073	2.512	30.169 30.169	81.124 81.124
8/13/01 11:21:00 8/13/01 11:22:00	59.73	58.71 58.71	0.118 0.118	17.071 17.071	2.512 2.512	30.174 30.171	81.194 81.2	8/13/01 13:26:00 8/13/01 13:27:00	78.54	79.61 60.82	0.112 0.112	17.073 17.073	2.51 2.51	30.169	81.124
8/13/01 11:24:00	59.74	58.71 58.71	0.118	17.071	2.512 2.512	30.178 30.176	81.2 81.194	B/13/01 13:28:00 8/13/01 13:30:00		82.02 83.39	0.112	17.073 17.073	2.512 2.512	30.167 30.169	81.124 81.124
8/13/01 11:25:00 8/13/01 11:28:00	59.74	58.71	0.118	17.069	2.512	30.178	81.194	8/13/01 13:31:00 8/13/01 13:32:00	83.35	83.55 83.72	0.112 0.112	17.077 17.077	2.51 2.512	30.169 30.176	81.118 81.118
8/13/01 11:27:00 8/13/01 11:28:00		58.71 58.71	0.118 0.118	17.069 17.068	2.512 2.514	30.18 30.176	81,194 81,194	8/13/01 13:33:00	84.04	83.88	0.112	17.077	2.512	30.171	81.118 61.111
8/13/01 11:30:00 8/13/01 11:31:00		58.71 58.71	0.118 0.118	17.068 17.068	2.514 2.514	30.174 30.176	81.194 81.187	8/13/01 13:34:00 8/13/01 13:36:00		84.04 84.29	0.118 0.112	17.077 17.077	2.51 2.512	30.169 30.171	81.111
8/13/01 11:32:00 8/13/01 11:33:00	59.75	58.71 58.71	0.118 0.118	17.068 17.068	2.514 2.514	30.176 30.176	81.194 81.194	8/13/01 13:37:00 8/13/01 13:38:00		84.38 84.47	0.112 0.112	17.077 17.077	2.51 2.51	30.171 30.176	81.111 81.111
8/13/01 11:34:00	59.75	58.71	0.118	17.068	2.514	30.176	81.194	8/13/01 13:39:00 8/13/01 13:40:00	85.21	84.56 64.66	0.112 0.112	17.073 17.071	2.51 2.512	30.174 30.176	81.111 81.118
8/13/01 11:36:00 8/13/01 11:37:00		58.71 58.71	0.118 0.118	17.068 17.068	2.514 2.516	30.171 30.174	81.187 81.187	8/13/01 13:42:00	85.53	84.81	0.112	17.075	2.51	30.176 30.171	81.111 81.111
8/13/01 11:38:00 8/13/01 11:39:00		58.71 58.71	0.11B 0.118	17.068 17.068	2.514 2.516	30.176 30.174	81.187 81.194	6/13/01 13:43:00 8/13/01 13:44:00		84.87 84.93	0.112 0.112	17.071 17.071	2.512 2.512	30.176	81.111
8/13/01 11:40:00) 59.75	58.71 58.7	0.118	17.068 17.068	2.516 2.514	30.176 30.171	81.187 81.187	8/13/01 13:45:00 8/13/01 13:46:00		84.98 85.04	0.106 0.112	17.075 17.075	2.512 2.512	30.178 30.176	81.111 81.111
8/13/01 11:42:00 8/13/01 11:43:00	59.75	58.7	0.118	17.066	2.514	30,174	81.187	8/13/01 13:48:00 8/13/01 13:49:00	85.96	85.15 85.2	0.112 0.112	17.075 17.075	2.512 2.512	30.176 30.176	81.105 81.099
8/13/01 11:44:00 8/13/01 11:45:00		58.7 58.7	0.118 0.118	17.066 17.066	2.514 2.516	30.174 30.178	81.187 61.187	8/13/01 13:50:00	86.07	85.25	0.106	17.075	2.512 2.512	30.176 30.18	81.105 81.105
8/13/01 11:46:00 8/13/01 11:48:00		58.7 58.7	0.118 0.118	17.066 17.066	2.516 2.514	30.171 30.176	81.181 81.181	8/13/01 13:51:00 8/13/01 13:52:00		85.3 85.35	0.106 0.112	17.075 17.075	2.512	30.178	81.105
8/13/01 11:49:00	59.74	58.7 58.7	0.118 0.118	17.066 17.068	2.514 2.514	30.176 30.174	81.181 81.181	8/13/01 13:54:00 8/13/01 13:55:00		85.44 85.49	0.106 0.112	17.077 17.075	2.514 2.512	30.178 30.176	81.105 81.105
8/13/01 11:50:00 8/13/01 11:51:00	59.74	58.7	0.118	17.068	2.518	30.171 30.174	81.181 81.181	8/13/01 13:56:00 8/13/01 13:57:00	86.37	85.53 85.58	0.112 0.112	17.075 17.071	2.512 2.512	30,178 30,171	81.099 81.105
8/13/01 11:52:0 8/13/01 11:54:0	59.74	58.7 58.7	0.118 0.118	17.088 17.088	2.514 2.516	30.176	81.181	8/13/01 13:58:00	86.46	85.63	0,106 0,112	17.071 17.069	2.512	30.178 30.178	81.099 81.099
8/13/01 11:55:00 8/13/01 11:56:00		58.7 58.7	0.118 0.118	17.068 17.068	2.514 2.516	30.174 30.174	81.175 81.175	8/13/01 14:00:00 8/13/01 14:01:00	86.59	85.71 85.75	0.112	17.071	2.512	30.178	81.099
8/13/01 11:57:00 8/13/01 11:58:00		58.7 58.7	0.118 0.118	17.068 17.069	2.516 2.516	30.178 30.176	81.175 81.175	8/13/01 14:02:00 8/13/01 14:03:00		85.79 85.83	0.106	17.069 17.069	2.512 2.51	30.178 30.18	81.099 81.099
8/13/01 12:00:0	59.73	58.7 56.7	0.118 0.118	17.069 17.069	2.516 2.518	30.174 30.174	81.175 81.175	8/13/01 14:04:00 8/13/01 14:06:00		85.87 85.95	0.106 0.106	17.069 17.068	2.51 2.51	30.178 30.18	81.099 81.099
8/13/01 12:01:0 8/13/01 12:02:0	D 59.74	58.7	0.118	17.071	2.518	30.167	81.175	8/13/01 14:07:00 6/13/01 14:08:00	88.83 (85.98 86.02	0.106 0.106	17.068 17.068	2.508 2.507	30.178 30.18	81.099 81.099
8/13/01 12:03:0 8/13/01 12:04:0		58.71 58.71	0.118 0.118	17.071 17.071	2.518 2.518	30.171 30.171	81.175 81.175	8/13/01 14:09:00	9.88 0	86.05	0.106	17.068	2.507	30.178	81.099
8/13/01 12:06:0 8/13/01 12:07:0		58.71 58.71	0.118 0.118	17.071 17.071	2.518 2.52	30,169 30,169	81.168 81.175	8/13/01 14:10:00 8/13/01 14:12:00	0 87	86.08 86.15	0.106 0.106	17.068 17.068	2.507 2.505	30.178 30.178	81.092 81.092
8/13/01 12:08:0 8/13/01 12:09:0	D 59.74	58.71 58.71	0.118 0.118	17.069 17.071	2.52 2.52	30,169 30,171	81.175 81.168	8/13/01 14:13:00 8/13/01 14:14:00		86.18 86.21	0.106 0.106	17.068 17.066	2.507 2.503	30.176 30.176	81.092 81.092
8/13/01 12:10:0	0 59.74	58.71	0.118	17.071	2.52	30,171	81.168 81.162	8/13/01 14:15:00 8/13/01 14:16:00	87.1	86.24 86.27	0.112 0.106	17.066 17.066	2.505 2.505	30.174 30.174	81.092 81.092
8/13/01 12:12:0 8/13/01 12:13:0	0 59.73	58.71 58.71	0.118 0.118	17.073 17.071	2.518 2.518	30.171 30.176	81.168	8/13/01 14:18:00	0 87.19	86.34	0.106	17.066	2.50 5 2.503	30.18 30.176	81.092 81.092
8/13/01 12:14:0 8/13/01 12:15:0		58.71 58.71	0.118 0.118	17.071 17.071	2.518 2.518	30.174 30.189	81.168 81.162	B/13/01 14:19:00 B/13/01 14:20:00	D 87.24	86.38 88.42	0.112 0.112	17.066 17.066	2.501	30.176	81.092
8/13/01 12:18:0 8/13/01 12:18:0	0 59.73	58.71 58.71	0.118 0.118	17.071 17.071	2.514 2.512	30.174 30.174	81.162 81.182	8/13/01 14:21:00 8/13/01 14:22:00		66.46 66.5	0,106 0,106	17.068 17.064	2.501 2.499	30.178 30.176	81.092 81.092
8/13/01 12:19:0 8/13/01 12:20:0	0 59.73	58.71 58.71	0.118	17.071 17.071	2.512 2.512	30.176 30.171	81.162 81.162	8/13/01 14:24:00 8/13/01 14:25:00		86.57 86.6	0.106 0.106	17.064 17.064	2.495 2.495	30.178 30.176	81.092 81.086
8/13/01 12:21:0	0 59.73	58.71	0.118	17.071	2.51	30,171	61.162	8/13/01 14:26:0	D 87.41	86.63 88.65	0.106	17.064	2.495 2.495	30.178 30.176	81.088 81.088
8/13/01 12:22:0 8/13/01 12:24:0		58.71 58.71	0.112 0.118	17.071 17.071	2.508 2.508	30.176 30.174	81.162 81.162	8/13/01 14:27:0 8/13/01 14:28:0	0 87.47	86.68	0.106	17.064	2.499	30.176	81.086
8/13/01 12:25:0 8/13/01 12:26:0		58.71 58.71	0.112 0.118	17,071 17,071	2.508 2.508	30.171 30.174	81.162 81.162	8/13/01 14:30:0 8/13/01 14:31:0		86.72 86.72	0.106 0.106	17.064 17.064	2.499 2.501	30.178 30.178	81.086 81.086
8/13/01 12:27:0	0 59.74	58.71 58.71	0.118 0.112	17.071 17.073	2.507	30.178 30.178	81.156 81.156	8/13/01 14:32:0 8/13/01 14:33:0	0 67.59	86.73 86.74	0.106 0.106	17.064 17,066	2.501 2.501	30.18 30.182	81.086 81.08
8/13/01 12:28:0 8/13/01 12:30:0	0 59.74	58.71	0.118	17.071	2.505	30.176	81.156	8/13/01 14:34:0	0 87.66	86.75	0.106 0.108	17.068 17.066	2.501 2.501	30.184 30.18	81.08 81.08
8/13/01 12:31:0 8/13/01 12:32:0	0 59.74	58.71 58.71	0.118 0.118	17.069 17.069	2.503 2.503	30.174 30.174	81.156 81.156	8/13/01 14:36:0 8/13/01 14:37:0	0 87.72	86.77 86.79	0.099	17.066	2.499	30.184	81.08
8/13/01 12:33:0 8/13/01 12:34:0		58.71 58.7	0.118 0.118	17.069 17.069	2.503 2.505	30.176 30.176	81.158 81.156	8/13/01 14:38:0 8/13/01 14:39:0	0 87.75	86.6 88.62	0.106	17.064 17.064	2.501 2.499	30.184 30.182	81.08 81.08
8/13/01 12:36:0 8/13/01 12:37:0	0 59.74	58.7 58.71	0.118 0.118	17.069	2.505 2.507	30.174 30.178	81.156 81.156	6/13/01 14:40:0 8/13/01 14:42:0		86.83 86.86	0.099 0.106	17.064 17.064	2.501 2.501	30.182 30.182	81.073 81.073
8/13/01 12:38:0	0 59.75	58.71	0.118	17.068	2.507	30.171 30.176	81.149 81.156	8/13/01 14:43:0 8/13/01 14:44:0	0 87.81	86.88 86.9	0.099 0.099	17.084 17.084	2.499 2.501	30.188 30.182	81.073 81.073
8/13/01 12:39:0 8/13/01 12:40:0	0 59.75	58.71 58.71	0,118	17.068	2.507	30.176	81.158	8/13/01 14:45:0	0 87.85	86.92 86.93	0.099	17.064	2.501 2.501	30.188 30.188	81.073 81.073
8/13/01 12:42:0 8/13/01 12:43:0		58.71 58.71	0.118 0.118	17.068 17.068	2.508	30.169 30.174	81.149 81.149	8/13/01 14:48:0 8/13/01 14:48:0	0 87.89	86.96	0.108	17.084	2.501	30.188	81.067
8/13/01 12:44:0 8/13/01 12:45:0	0 59.75	58.71 58.71	0.118 0.112	17.068 17.068	2.508	30.171 30.171	81.149 81.149	8/13/01 14:49:0 8/13/01 14:50:0		86.96 66.97	0.099 0.099	17.066 17.066	2.499 2.501	30.188 30.186	81.067 81.067
8/13/01 12:46:0	0 59.74	58.71	0.112	17.066	2.507	30.171 30.174	81.143 81.143	8/13/01 14:51:0 8/13/01 14:52:0	0 87.92	86.98 86.99	0.099 0.099	17.066 17.068	2.501 2.501	30.188 30.188	81.067 81.067
8/13/01 12:48:0 8/13/01 12:49:0	0 59.75	58.76 58.82	0.112	17.066	2.508	30.176	81.143	8/13/01 14:54:0	0 87.94	87	0.099	17.066	2.501 2.503	30.188 30.184	61.067 81.067
8/13/01 12:50:0 8/13/01 12:51:0	0 59.75	58.88 58.94	0.118 0.118	17.066 17.066	2.508	30.171 30.171	81.143 81.143	8/13/01 14:55:0 8/13/01 14:56:0	0 87.95	87 87.01	0.099	17.066	2.503	30.166	81.087
8/13/01 12:52:0 8/13/01 12:54:0		58.99 59.19	0.118 0.112	17.066 17.068		30.174 30.176	61.143 81.143	8/13/01 14:57:0 8/13/01 14:58:0		87.01 87.01	0.099 0.099	17.066 17.064	2.501 2.501	30,184 30,19	81.067 81.067

Date/Time	Downhole Pressure (psi)	Downhole Temperature (deg F)	Wellhead Pressure (psi)	Upper Monitor Pressure (psi)	Lower Monitor Pressure (psi)	Barometric Prassure (inchs Hg)	Annutar Pressure (psi)	Date/Time	Downhole Pressure (psi)	Downhole Temperature (deg F)	Wellhead Pressure (psi)	Upper Monitor Pressure (psi)	Lower Monitor Pressure (psi)	Barometric Pressure (inchs Hg)	Annular Pressure (psi)
8/13/01 15:00:00	87.97	87.02	0.099	17.064	2.501	30.188	81.067	8/13/01 17:04:00	88.22	87.28	0.143	17.264	2.488	30.186	80.978
8/13/01 15:01:00 8/13/01 15:02:00	87.98 87.98	87.02 87.02	0.099 0.099	17.064 17.064	2.501 2.501	30.186 30.188	81.061 81.061	8/13/01 17:06:00 8/13/01 17:07:00	88.23 88.23	87.28 87.29	0,149 0,149	17.251 17.261	2.488 2.488	30.19 30 188	80.978 80.978
8/13/01 15:03:00 8/13/01 15:04:00	87.98 87.99	87.02 87.03	0.099 0.099	17.064 17.064	2.501 2.501	30.186 30.19	81.061 81.061	8/13/01 17:08:00 8/13/01 17:09:00	88.24 88.24	87.29 87.29	0.155 0.149	17.259 17.266	2.49 2.49	30.188 30.186	80.978 80.978
8/13/01 15:08:00	87.99	87.03 87.04	0.099 0.099	17.064 17.066	2.501 2.501	30,188 30,186	81.061 81.061	8/13/01 17:10:00 8/13/01 17:12:00	88.24 88.25	87.3 87.3	0.149 0.149	17.266 17.261	2.49 2.492	30.184 30.186	80.978 80.978
8/13/01 15:07:00 8/13/01 15:08:00	68	87.04	0.099	17.066	2.501	30.19	81.061	8/13/01 17:13:00	88.25	87.3	0.149	17.262	2.492	30.184	80.985
8/13/01 15:09:00 8/13/01 15:10:00	88 88	87.04 87.05	0.099 0.099	17.068 17.068	2.501 2.503	30.19 30.192	81.061 81.054	8/13/01 17:14:00 8/13/01 17:15:00	88.25 88.25	87.3 87.3	0.149 0.149	17.251 17.253	2.494 2.494	30.186 30.182	80.985 80.985
8/13/01 15:12:00 8/13/01 15:13:00	88.01 88.01	87.05 87.06	0.099 990.0	17.068 17.068	2.503 2.503	30.19 30.192	81.054 81.054	8/13/01 17:16:00 8/13/01 17:18:00	88.25 88.25	87.31 87.31	0.149 0.149	17.262 17.262	2.497 2.497	30.184 30.18	80.978 80.978
8/13/01 15:14:00 8/13/01 15:15:00	88.02 88.02	87.08 87.07	0.099 0.099	17.069	2.503	30.192 30.19	81.054 81.054	8/13/01 17:19:00 8/13/01 17:20:00	88.26 88.26	87.31 87.31	0.149 0.149	17.251 17.255	2.499 2.501	30.18 30.18	80.978 80.978
8/13/01 15:16:00	88.03	87.07	0.093	17.069	2.503	30.19	81.054	8/13/01 17:21:00	88.26	87.31	0.149	17.286	2.503	30.186	80.978
8/13/01 15:18:00 8/13/01 15:19:00	88.03 88.03	87.08 87.08	0.099 0.099	17.069 17.068	2.503 2.505	30.188 30.188	81.054 81.048	8/13/01 17:22:00 8/13/01 17:24:00	88.26 88.26	87.32 87.32	0.149 0.149	17.262 17.262	2.503 2.503	30.182 30.182	80.978 80.978
8/13/01 15:20:00 8/13/01 15:21:00	88.03 88.03	87.08 87.08	0.099 0.099	17.068 17.068	2.503 2.503	30.192 30.192	81.054 81.048	8/13/01 17:25:00 8/13/01 17:26:00	88.26 88.26	87.32 87.32	0.149 0.149	17.253 17.255	2.501 2.503	30.184 30.184	80.978 80.978
8/13/01 15:22:00 8/13/01 15:24:00	88.03 88.03	87.08 87.08	0.099 0.099	17.068	2.503	30.192 30.192	81.048 81.048	8/13/01 17:27:00 8/13/01 17:28:00	88.26 88.26	67.32 87.32	0.143 0.149	17.259 17.251	2.503 2.499	30.18 30.184	80.985 80.978
8/13/01 15:25:00	88.03	87.08	0.093	17.069	2.503	30.192	81.048	8/13/01 17:30:00	88.26	87.32	0.149	17.257	2.495	30.182	80.978
8/13/01 15:26:00 8/13/01 15:27:00	88.03 88.04	87.08 87.08	0.099 0.099	17.069 17.069	2.505 2.503	30.188 30.19	81.042 81.042	8/13/01 17:31:00 8/13/01 17:32:00	88.27 86.27	87.32 67.32	0.149 0.149	17.259 17.234	2.494 2.488	30.182 30.188	80.978 80.978
8/13/01 15:28:00 8/13/01 15:30:00	88.04 88.04	87.08 87.09	0.099 0.099	17.073 17.073	2.505 2.505	30.192 30.192	81.048 81.048	8/13/01 17:33:00 8/13/01 17:34:00	88.27 88.28	87.33 87.33	0.149 0.149	17.225 17.218	2.488 2.488	30.18 30.186	80.985 80.985
8/13/01 15:31:00 8/13/01 15:32:00	88.04 88.05	87.09 87.09	0.099 0.099	17.073 17.073	2.505 2.505	30.19 30.192	81.042 81.042	8/13/01 17:36:00 8/13/01 17:37:00	86.28 88.28	87.33 87.34	0.149 0.149	17.216 17.212	2.488 2.488	30.184 30.182	80.978 80.978
8/13/01 15:33:00	88.05	87.1	0.099	17.073	2.505	30.192	81.042	8/13/01 17:38:00	88.28	87.34	0.149	17.218	2.488	30.184	80.978
8/13/01 15:34:00 8/13/01 15:38:00	88.05 88.06	87.1 87.1	0.099 0.099	17.073 17.073	2.505 2.505	30,192 30,192	81.042 81.042	8/13/01 17:39:00 8/13/01 17:40:00	88.28 88.29	87.34 87.34	0.149 0.149	17.218 17.231	2.488 2.49	30.188 30.18	80.985 80.978
8/13/01 15:37:00 8/13/01 15:38:00	88.06 88.06	87.11 87.11	0.099 0.099	17.073 17.075	2.505 2.503	30.19 30.192	81.035 81.042	8/13/01 17:42:00 8/13/01 17:43:00	88.29 88.29	87.34 87.34	0.155 0.155	17.24 17.253	2.492	30.18 30.182	80.978 80.985
8/13/01 15:39:00 8/13/01 15:40:00	88.06 88.06	87.11 87.11	0.099 0.099	17.073 17.075	2.501 2.501	30.192 30.192	81.042 81.035	8/13/01 17:44:00 8/13/01 17:45:00	88.29 88.29	87.34 87.34	0.155 0.155	17.255 17.242	2.495 2.495	30.184 30.182	80.985 80.985
8/13/01 15:42:00	88.06	87.11	0.099	17.075	2.497	30.192	81.035	8/13/01 17:46:00	88.28	87.33	0.155	17.247	2.497	30.18	80.985
8/13/01 15:43:00 8/13/01 15:44:00	88.07 88.07	87.12 87.12	0.099 0.099	17.075 17.077	2.497 2.495	30.192 30.19	81.035 81.035	8/13/01 17:48:00 8/13/01 17:49:00	88.28 88.28	87.33 87.33	0.149 0.149	17.255 17.257	2.501 2.501	30.178 30.178	80.985 80.985
8/13/01 15:45:00 8/13/01 15:46:00	88.07 88.07	87.12 87.12	0.106 0.106	17.077 17.079	2.495 2.495	30.19 30.19	81.035 81.035	8/13/01 17:50:00 8/13/01 17:51:00	88.28 88.27	87.32 87.32	0.149 0.149	17.257 17.24	2.501 2.499	30.18 30.176	80.985 80.985
8/13/01 15:48:00 8/13/01 15:49:00	88.08 88.08	87.13 87.14	0.106 0.106	17.081 17.079	2.495 2.494	30.19 30.192	81.035 81.035	8/13/01 17:52:00 8/13/01 17:54:00	88.27 88.27	87.32 87.31	0.149 0.149	17.246 17.249	2.499 2.499	30.18 30.178	80.985 80.985
8/13/01 15:50:00	88.09	87.14	0.106	17.081	2.494	30.188	81.029	8/13/01 17:55:00	68.27	87.31	0.149	17.244	2.497	30.18	80.985
8/13/01 15:51:00 8/13/01 15:52:00	88.09 88.09	87.15 87.15	0.106 0.106	17.081 17.083	2.492 2.492	30.188 30.19	81.029 81.029	8/13/01 17:56:00 8/13/01 17:57:00	88.26 88.26	87.31 87.3	0.149 0.149	17.253 17.257	2.494 2.492	30.174 30.176	80.978 80.978
8/13/01 15:54:00 8/13/01 15:55:00	88.1 88.11	87.18 87.17	0.106 0.106	17.084 17.086	2.494 2.494	30.192 30.188	81.029 81.029	8/13/01 17:58:00 8/13/01 18:00:00	88.26 88.25	87.3 87.3	0.149 0.149	17.257 17.247	2.492 2.492	30.178 30.178	80.985 80.985
8/13/01 15:56:00 8/13/01 15:57:00	88.11 88.12	87.17 87.18	0.106 0.106	17.086 17.088	2.495 2.499	30.186 30.186	81.029 81.029	8/13/01 18:01:00 8/13/01 18:02:00	88.25 88.25	87.3 87.3	0.149 0.149	17.24 17.242	2.49 2.49	30.18 30.174	80.978 80.985
8/13/01 15:58:00	88.12	87.18	0.106	17.088	2.499	30.188	81.029	8/13/01 18:03:00	88.25	87.29	0.149	17.231	2.488	30.176	80.985
8/13/01 16:00:00 8/13/01 16:01:00	88.13 88.13	87.19 87.19	0.106 0.112	17.09 17.09	2,499 2,495	30.19 30.188	81.029 81.029	8/13/01 18:04:00 8/13/01 18:08:00	88.25 88.24	87.29 87.29	0.149 0.149	17.219 17.232	2.488 2.49	30.178 30.178	80.985 80.985
8/13/01 16:02:00 8/13/01 16:03:00	88.14 88.14	87.19 87.19	0.106 0.106	17.092 17.094	2.495 2.495	30.19 30.19	81.023 81.023	8/13/01 18:07:00 8/13/01 18:08:00	88.24 88.24	87.29 87.3	0.149 0.149	17.238 17.244	2.49 2.492	30.178 30.176	80.985 80.991
8/13/01 16:04:00 8/13/01 16:06:00	88.14 88.15	87.2 87.2	0.106 0.112	17.098 17.096	2.499 2.499	30.192 30.194	81.023 81.029	8/13/01 18:09:00 8/13/01 18:10:00	88.24 88.24	87.3 87.3	0.149 0.149	17.244 17.251	2.49 2.488	30.178 30.178	80.978 80.978
8/13/01 16:07:00 8/13/01 16:08:00	88.15 88.15	87.2 87.21	0.112	17.098	2.503	30.188 30.192	81.023 81.023	8/13/01 18:12:00 8/13/01 18:13:00	88.25 88.25	87.3 87.3	0.149 0.143	17.244	2.497	30.174 30.176	80.985
8/13/01 16:09:00	88.15	87.21	0.112	17.099 17.105	2.508	30.188	81.023	8/13/01 18:14:00	88.25	87.3	0.155	17.251	2.495	30.171	80.978 80.985
8/13/01 16:10:00 8/13/01 16:12:00	88.16 88.16	87.21 87.22	0.112	17.114 17.12	2.512 2.508	30.188 30.188	81.023 81.023	8/13/01 18:15:00 8/13/01 18:16:00	88.25 88.25	87.29 87.29	0.155 0.149	17.255 17.249	2.495 2.497	30.174 30.174	80.985 80.991
8/13/01 16:13:00 8/13/01 16:14:00	88.17 88.17	87.22 87.22	0.112	17.126 17.131	2.505 2.503	30.188 30,188	81.016 81.023	8/13/01 18:18:00 8/13/01 18:19:00	88.25 88.24	87.29 87.28	0.149 0.155	17.244 17.244	2.495 2.497	30.171 30.171	80.985 80.991
8/13/01 16:15:00 8/13/01 16:16:00	88.17 88.17	87.23 87.23	0.118 0.118	17.133	2.499 2.501	30.188 30.188	81.01 81.01	8/13/01 18:20:00 8/13/01 18:21:00	88.24 88.23	87.28 87.27	0.149 0.149	17.257 17.246	2.501 2.501	30.174 30.174	80.991 80.991
8/13/01 16:18:00	88.17	87.23	0.118	17.159	2.501	30.188	81.01	8/13/01 18:22:00	88.23	87.27	0.149	17.249	2.505	30.169	80.991
8/13/01 16:19:00 8/13/01 16:20:00	88.17 88.17	87.23 87.23	0.118 0,118	17.178 17.193	2.501 2.501	30.19 30.19	81.01 81.01	8/13/01 18:24:00 8/13/01 18:25:00	88.22 68.21	87.25 87.25	0.155 0.149	17.247 17.236	2.497 2.492	30.174 30.169	80.991 80.985
8/13/01 16:21:00 8/13/01 16:22:00	88.17 88.17	87.23 87.23	0.118 0.118	17.218 17.242	2.503 2.508	30.194 30.19	61.01 81.004	8/13/01 18:26:00 8/13/01 18:27:00	88.21 88.2	87.24 87.24	0.149 0.149	17.231 17.244	2.492 2.494	30.171 30.169	80.985 80.985
8/13/01 16:24:00 8/13/01 16:25:00	88.18 88.18	87.23 87.24	0.118 0.118	17.266 17.291	2.512 2.512	30.19 30.192	81.004 81.004	8/13/01 18:28:00 8/13/01 18:30:00	88.2 88.18	87.23 87.22	0.149 0.149	17.251 17.253	2.497 2.492	30.169 30.171	80.991 80.991
8/13/01 16:28:00	88.18 88.18	87.24	0.124	17.277	2.508	30.19	81.004	8/13/01 18:31:00	88.18	87.21	0.149	17.246	2.49	30.171	80.991
8/13/01 16:27:00 8/13/01 16:28:00	88.19	87.25 87.25	0.124	17.276 17.276	2.507	30.19 30.188	61.004 81.004	8/13/01 18:32:00 8/13/01 18:33:00	88.17 88.17	87.21 87.2	0.149 0.149	17.216 17.193	2.484	30.171 30.171	80.997 80.997
8/13/01 16:30:00 8/13/01 16:31:00	88.19 88.2	87.26 87.28	0.13 0.149	17.283 17.268	2.503 2.501	30.188 30.192	80.997 81.004	8/13/01 18:34:00 8/13/01 18:36:00	88.16 88.15	87.19 87.18	0.149 0.155	17.178 17.191	2.481 2.484	30.167 30.167	80.997 80.997
8/13/01 16:32:00 8/13/01 16:33:00	88.2 88.21	87.27 87.27	0.149 0.149	17.279 17.272	2.499 2.501	30.188 30.188	81.004 81.004	8/13/01 18:37:00 8/13/01 18:38:00	88.15 88.14	87.17 87.17	0.149 0.155	17.184 17.206	2.482 2.486	30.167 30.165	60.997 80.985
8/13/01 16:34:00 8/13/01 16:36:00	88.21 88.22	87.27 87.28	0.149 0.155	17.268 17.277	2.503 2.507	30.19 30.188	80.997 80.997	8/13/01 18:39:00 8/13/01 18:40:00	88.13 88.13	87.16 87.16	0.155 0.155	17.225 17.232	2.486 2.484	30.163 30.165	81.004 81.004
8/13/01 16:37:00	88.22	87.28	0.155	17.266	2.51	30.188	80.997	8/13/01 18:42:00	88.12	87.15	D. 161	17.221	2.482	30.161	80.997
8/13/01 16:38:00 8/13/01 16:39:00	88.22 88.22	87.28 87.28	0.155 0.155	17.276 17.274	2.508 2.508	30.186 30.188	80.997 80.997	8/13/01 18:43:00 8/13/01 18:44:00	88.11 88.11	87.15 87.14	0, 161 0, 161	17.206 17.184	2.479 2.479	30.163 30.161	81.004 81.004
8/13/01 18:40:00 8/13/01 16:42:00	88.22 88.23	87.28 87.28	0.155 0.155	17.27 17.259	2.508 2.507	30.188 30.188	80.997 80.997	8/13/01 18:45:00 8/13/01 18:46:00	88.11 88.11	87.14 87.14	0.161 0.161	17.15 17.139	2.477 2.477	30.159 30.163	81.004 81.01
8/13/01 16:43:00 8/13/01 16:44:00	88.22 88.22	87.28 87.28	0.149	17.27	2.503 2.501	30.186 30.188	80.997 80.997	8/13/01 18:48:00 8/13/01 18:49:00	88.1 88.09	87.13 87.12	0.161 0.161	17.131 17.122	2.477 2.479	30.163 30.159	81.01 61.01
8/13/01 16:45:00	88.22	87.28	0.18	17.277	2.499	30.202	80.985	8/13/01 18:50:00	88.09	87.12	0.161	17.118	2.481	30.161	81.01
8/13/01 16:46:00 8/13/01 16:48:00	88.22 88.22	87.27 87.27	0.174 0.174	17.276 17.255	2.503 2.503	30.194 30.184	80.978 80.991	8/13/01 18:51:00 8/13/01 18:52:00	88.08 88.07	87.11 87.1	0.168 0.161	17.111 17.113	2.481 2.484	30.159 30.157	81.01 81.016
8/13/01 16:49:00 8/13/01 18:50:00	88.22 88.22	87.28 87.28	0.149 0.149	17.264 17.274	2.503 2.503	30.165 30.176	80.991 80.991	8/13/01 18:54:00 8/13/01 18:55:00	88.06 88.06	87.09 87.08	0.161 0.161	17.118 17.152	2.492 2.494	30.157 30.159	81.016 81.016
8/13/01 16:51:00 8/13/01 16:52:00	88.23 88.23	87.28 87.28	0.149 0.149	17.255 17.257	2.503	30.178 30.176	80.991 80.991	8/13/01 18:56:00 8/13/01 18:57:00	88.05 88.05	87.08 87.07	0.161 0.161	17.182 17.208	2.495	30.155	81.016
8/13/01 16:54:00	88.23	87.28	0.143	17.251	2.499	30.178	80.991	8/13/01 18:58:00	88.04	87.06	0.161	17.247	2.505	30.153	81.01 81.016
8/13/01 16:55:00 8/13/01 16:56:00	88.22 88.22	87.28 87.28	0.143 0.149	17.259 17.261	2.497 2.495	30.18 30.184	80.991 80.991	8/13/01 19:00:00 8/13/01 19:01:00	88.03 88.03	87.05 87.05	0.155 0.155	17.246 17.259	2.512 2.514	30.153 30.153	81.01 81.01
8/13/01 16:57:00 8/13/01 16:58:00	88.22 88.22	87.28 87.28	0.143 0.143	17.264 17.266	2.494 2.494	30.184 30.188	80.991 80.991	8/13/01 19:02:00 8/13/01 19:03:00	88.02 88.02	87.05 87.04	0.161 0.155	17.259 17.262	2.505 2.501	30.157 30.157	81.016 81.016
8/13/01 17:00:00 8/13/01 17:01:00	88.22 88.22	87.28 87.28	0.143 0.143	17.259 17.259	2.49 2.49	30.188 30.186	80.985 80.978	8/13/01 19:04:00 8/13/01 19:06:00	88.01 88	87.04 87.03	0.161 0.155	17.246 17.232	2.495	30.153 30.157	81.01 81.01
8/13/01 17:02:00	88.22	87.28	0.149	17.262	2.49	30.192	80.978	8/13/01 19:07:00	88	87.03	0.155	17.214	2.486	30.157	81.01
8/13/01 17:03:00	88.22	87.28	0.143	17.264	2.49	30.19	80.978	8/13/01 19:08:00	87.99	87.03	0.155	17.24	2.499	30.157	81.004

Date/Time	Downhole Pressure (psi)	Downhole Temperature (deg F)	Wellhead Pressure (psi)	Upper Monitor Pressure (psi)	Lower Monitor Pressure (psi)	Barometric Pressure (inchs Hg)	Annular Pressure (psi)	Date/Time	Downhole Pressure (psi)	Downhole Temperature (deg F)	Wellhead Pressure (psi)	Upper Monitor Pressure (psi)	Lower Montor Pressure (psi)	Barometric Pressure (inchs Hg)	Annular Pressure (psi)
8/13/01 19:09	87.99	87.02	0.155	17.244	2.494	30.155	81.01	8/13/01 21:14:00 8/13/01 21:15:00		88.49 86.48	0.168 0.161	17.311 17.291	2.51 2.508	30.129 30.145	80.997 81.004
8/13/01 19:10:00 8/13/01 19:12:00	87.98 87.97	87.02 87.01	0.155 0.149	17.251 17.242	2.499 2.503	30.157 30.159	81.01 81.01	8/13/01 21:16:00	87.36	86.48	0.161	17.302	2.507	30.147	80.997
8/13/01 19:13:00 8/13/01 19:14:00	87.97 87.96	87.01 87.01	0.149 0.149	17.242 17.244	2.507 2.501	30.155 30.161	81.01 81.01	8/13/01 21:18:00 8/13/01 21:19:00		86.47 86.46	0.161 0.161	17.3 17.289	2.507 2.505	30.147 30.149	81.004 80.997
8/13/01 19:15:00	87.96	87	0.149	17.231	2.495	30.155 30.155	81.004 81.01	8/13/01 21:20:00 8/13/01 21:21:00		86.46 86.45	0.161 0.168	17.294 17.294	2.505 2.503	30.149 30.149	80.997 81.004
8/13/01 19:16:00 8/13/01 19:18:00	87.95 87.95	87 86.99	0.149 0.149	17.247 17.253	2.505 2.507	30,157	81.01	8/13/01 21:22:00	87.34	86.45	0.192	17.289	2.505	30.157 30.133	80.997 80.997
8/13/01 19:19:00 8/13/01 19:20:00	87.95 87.95	86.99 86.99	0.149 0.149	17.248 17.247	2.505 2.503	30.155 30.157	81.004 81.01	8/13/01 21:24:00 8/13/01 21:25:00		86.44 86.43	0.186 0.186	17.283 17.285	2.503 2.501	30.123	80.997
8/13/01 19:21:00	87.95	86.98	0.149 0.149	17.249 17.242	2.497 2.494	30.157 30.159	81.01 81.01	8/13/01 21:26:00 8/13/01 21:27:00		86.43 86.42	0.186 0.186	17.289 17.287	2.501 2.501	30.121 30.119	80.991 80.997
8/13/01 19:22:00 8/13/01 19:24:00	87.94	86.98 86.97	0.149	17.238	2.492	30.155	81.004	8/13/01 21:28:00 8/13/01 21:30:00	87.32	88.42 86.41	0.161 0.161	17.278 17.274	2.501	30.131 30.137	80.997 80.997
8/13/01 19:25:00 8/13/01 19:26:00		86.96 86.96	0.143 0.155	17.249 17.264	2.492 2.488	30.157 30.151	81.004 81.004	8/13/01 21:31:00	87.31	86.41	0.161	17.266	2.501	30.141	80.997
8/13/01 19:27:00 8/13/01 19:28:00		88.95 86.94	0.155 0.149	17.242 17.234	2.488 2.49	30.157 30.157	81.004 81.01	8/13/01 21:32:00 8/13/01 21:33:00		86.41 86.41	0.181 0.181	17.266 17.279	2.501 2.503	30.143 30.143	81.004 81.004
8/13/01 19:30:00	87.91	88.93	0.155	17.232	2.494	30.155	81.01 81.01	6/13/01 21:34:00 8/13/01 21:36:00		86.41 86.4	0.181 0.161	17.296 17.292	2.507 2.505	30.143 30.147	81.004 81.004
8/13/01 19:31:00 8/13/01 19:32:00	87.89	86.92 86.91	0.155 0.155	17.186 17.15	2.488 2.482	30.151 30.155	81.016	8/13/01 21:37:00	87.3	86.39	0.161	17.294 17.298	2.507	30.145 30.149	81.004 80.997
8/13/01 19:33:00 8/13/01 19:34:00		86.9 86.89	0.155 0.155	17.133 17.129	2.488 2.488	30.151 30.155	81.016 81.016	8/13/01 21:38:00 8/13/01 21:39:00		86.38 86.38	0.161 0.161	17.292	2.512	30.147	80.997
8/13/01 19:38:00 8/13/01 19:37:00	87.85	86.87 86.86	0.155 0.155	17.116 17.094	2.49 2.49	30.155 30.153	81.018 81.018	8/13/01 21:40:00 8/13/01 21:42:00		86.37 86.36	0.161 0.161	17.294 17.294	2.521 2.518	30.149 30.153	80.997 80.997
8/13/01 19:38:00	87.84	86.86	0.155	17.105	2.495	30,149	81.023	8/13/01 21:43:00 8/13/01 21:44:00	87.28	86.36 86.36	0.161 0.149	17.294 17.287	2.521 2.52	30.155 30.153	80.997 80.997
8/13/01 19:39:00 8/13/01 19:40:00		86.85 86.85	0.155 0.155	17.101 17.077	2.49 2.482	30.153 30.151	81.018 81.023	8/13/01 21:45:00	87.27	86.36	0.155	17.283	2.521	30.157	80.991
8/13/01 19:42:00 8/13/01 19:43:00		86.84 86.83	0.149 0.149	17.053 17.062	2.475 2.486	30.151 30.147	81.016 81.023	8/13/01 21:46:00 8/13/01 21:48:00		86.35 86.35	0.155 0.155	17.294 17.291	2.52 2.52	30.153 30.155	80.997 81.004
8/13/01 19:44:00	87.81	86.83	0.155	17.079 17.098	2.49 2.494	30.149 30.151	81.016 81.023	8/13/01 21:49:00 8/13/01 21:50:00		86.34 86.34	0.155 0.155	17.292 17.289	2.516 2.52	30.157 30.155	81.004 81.004
8/13/01 19:45:00 8/13/01 19:46:00	87.8	86.83 86.82	0.155	17.09	2.492	30.149	81.023	6/13/01 21:51:00 8/13/01 21:52:00	87.25	86.34 86.33	0.149 0.149	17.279 17.277	2.525	30.155 30.159	81.004 81.004
8/13/01 19:48:00 8/13/01 19:49:00		86.81 86.8	0.155 0.155	17.079 17.064	2.486 2.479	30.151 30.145	81.023 81.029	8/13/01 21:54:00	87.24	86.33	0.149	17.291	2.523	30.155	81.004
8/13/01 19:50:00 8/13/01 19:51:00		86.8 86.79	0.155 0.155	17.051 17.047	2.477 2.475	30.147 30.149	81.029 81.035	8/13/01 21:55:00 8/13/01 21:58:00		86.33 86.33	0.149 0.155	17.279 17.282	2.518 2.521	30.157 30.153	81.004 81.01
8/13/01 19:52:00	87.78	86.79	0.161	17.064	2.488	30.147	81.035 81.035	8/13/01 21:57:00		86.33 86.33	0.155 0.155	17.184 17.122	2.507 2.501	30.153 30.155	81.004 81.004
8/13/01 19:54:00 8/13/01 19:55:00		86.77 86.76	0.161 0.161	17.06 17.058	2.482 2.477	30.147 30.145	81.042	8/13/01 22:00:00	87.24	86.33	0.161	17.081	2.499	30.153	81.01
8/13/01 19:56:00 8/13/01 19:57:00		86.75 86.74	0.174 0.174	17.047 17.043	2.475 2.477	30.149 30.151	81.048 81.048	8/13/01 22:01:00 8/13/01 22:02:00		86.32 88.32	0.161 0.155	17.066 17.083	2.495 2.499	30.149 30.155	81.01 81.01
8/13/01 19:58:00 8/13/01 20:00:00	87.74	86.73 86.72	0.174 0.174	17.036 17.034	2.477 2.477	30.149 30.149	81.048 81.054	8/13/01 22:03:00 8/13/01 22:04:00		86.31 86.31	0.155 0.155	17.114 17.141	2.503 2.505	30.145 30.153	81.01 81.01
8/13/01 20:01:00	87.72	86.71	0.174	17.032	2.477	30.147	81.054	8/13/01 22:06:00 8/13/01 22:07:00	87.23	86.3 86.3	0.155	17.188 17.244	2.505 2.508	30.151 30.149	81.016 81.016
8/13/01 20:02:00 8/13/01 20:03:00	87.71	86.71 86.71	0.174 0.174	17.032 17.03	2.477 2.479	30.145 30.139	81.054 81.054	8/13/01 22:08:00	87.23	86.3	0.161	17.3	2.508	30.149	81.016
8/13/01 20:04:00 8/13/01 20:06:00		86.71 80.7	0.174 0.174	17.034 17.032	2.479 2.481	30.145 30.145	81.054 81.054	8/13/01 22:09:00 8/13/01 22:10:00		86.3 86.3	0.155 0.155	17.277 17.277	2.51 2.518	30,149 30,145	81.023 81.018
8/13/01 20:07:00 8/13/01 20:08:00	87.69	86.7 86.7	0.174 0.174	17.032	2.482 2.484	30.143 30.145	81.061 81.054	8/13/01 22:12:00 8/13/01 22:13:00		86.3 86.29	0.155 0.155	17.285 17.285	2.52 2.527	30.151 30.149	81.023 81.023
8/13/01 20:09:00	87.68	86.7	0.174	17.034	2.488	30.143	81.054	8/13/01 22:14:00	87.21	86.29 86.29	0.155 0.155	17.261 17.203	2.52 2.512	30.147 30.143	81.023 81.029
8/13/01 20:10:00 8/13/01 20:12:00		86.7 86.7	0.18 0.174	17.034 17.032	2.492 2.49	30.145 30.145	81.061 81.061	8/13/01 22:15:00 8/13/01 22:16:00	87.21	86.29	0.155	17.154	2.508	30.145	81.035
8/13/01 20:13:00 8/13/01 20:14:00		86.7 86.7	0.174 0.186	17.034 17.038	2.488 2.481	30.147 30.145	81.061 81.061	8/13/01 22:18:00 8/13/01 22:19:00		86.29 86.29	0.158 0.155	17.122 17.099	2.507 2.507	30.141 30.139	81.029 61.035
8/13/01 20:15:00 8/13/01 20:16:00	87.64	86.7 86.7	0.186 0.186	17.038 17.034	2.482 2.484	30_145 30.147	81.061 81.067	8/13/01 22:20:00 8/13/01 22:21:00		86.29 86.28	0.174 0.161	17.081 17.069	2.505 2.503	30.139 30.137	81.035 81.035
8/13/01 20:18:00	87.62	86.7	0.186	17.038	2.484	30.147	81.073	8/13/01 22:22:00	87.2	86.28 88.28	0.155 0.192	17.09 17.099	2.503 2.508	30.141 30.137	81.035 81.08
8/13/01 20:19:00 8/13/01 20:20:00		86.7 86.7	0.186 0.192	17.038 17.038	2.488 2.492	30.147 30.145	81.073 81.08	8/13/01 22:24:00 8/13/01 22:25:00	87.2	86.27	0.18	17.081	2.503	30.135	81.149
8/13/01 20:21:00 8/13/01 20:22:00		86.7 86.7	0.186 0.192	17.038 17.038	2.492 2.494	30.147 30.141	81.08 81.08	8/13/01 22:28:00 8/13/01 22:27:00		86.27 86.27	0.192 0.205	17.073 17.06	2.503 2.501	30.133 30.133	81.327 81.637
8/13/01 20:24:00 8/13/01 20:25:00	87.6	86.7 86.7	0.186	17.04 17.04	2.495 2.495	30.149 30.145	81.08 81.08	8/13/01 22:28:00 8/13/01 22:30:00		86.26 86.26	0.205 0.199	17.053 17.045	2.501 2.499	30.131 30.131	82.073 82.358
8/13/01 20:26:00	87.59	86.7	0.186	17.04	2.497	30.147	81.08	8/13/01 22:31:00	87.18	86.25 66.25	0.205	17.04 17.04	2.499	30.129	82,789 83,169
8/13/01 20:27:00 8/13/01 20:28:00		88.7 86.7	0.186 0.186	17.04	2.497 2.499	30.151 30.149	81.08 81.08	8/13/01 22:32:00 8/13/01 22:33:00	87.18	86.25	0.292	17.041	2.499	30.129	83.606
8/13/01 20:30:00 8/13/01 20:31:00		86.7 88.71	0,186 0.186	17.04 17,041	2.499 2.501	30.149 30.149	81.073 81.073	8/13/01 22:34:00 8/13/01 22:36:00		86.24 88.24	0.484 0.819	17.043 17.041	2.499 2.499	30.129 30.129	84.038 84.498
8/13/01 20:32:00	87.56	86.71 86.71	0.186	17.041	2.503 2.505	30.149 30.149	81.067 81.067	8/13/01 22:37:00 8/13/01 22:38:00		86.24 86.24	1.062 1.8	17.043 17.043	2.501 2.503	30.131 30.127	85.005 85.549
8/13/01 20:33:00 8/13/01 20:34:00	67.55	86.71	0.186	17.043	2.503	30.147	81.067	8/13/01 22:39:00	87.16	86.24 86.23	2.098 2.458	17.043 17.045	2.507 2.508	30.131 30.129	86.094 86.845
8/13/01 20:36:00 8/13/01 20:37:00	0 87.54	86.71 86.71	0.18 0.18	17.043 17.045	2.503 2.503	30.151 30.153	81.067 81.061	6/13/01 22:40:00 6/13/01 22:42:00	87.18	86.23	2.639	17.047	2.508	30.125	87.215
8/13/01 20:38:00 8/13/01 20:39:00	87.53	86.71 86.71	0.18 0.18	17.047 17.047	2.505 2.505	30.151 30.149	81.054 81.054	8/13/01 22:43:00 8/13/01 22:44:00	87.16	86.23 86.23	3.054 3.458	17.047 17.045	2.508 2.505	30.123 30.127	87.823 88.45
8/13/01 20:40:00 8/13/01 20:40:00	0 87.52	86.7 86.7	0.18	17.049 17.049	2.505	30.151 30.149	81.048 81.048	8/13/01 22:45:00 8/13/01 22:46:00	3 87.16	86.23 86.23	3.551 4.588	17.045 17.047	2.503 2.505	30.125 30.125	88.418 89.571
8/13/01 20:43:00	3 87.51	86.71	0.18	17.053	2.505	30,153	81.048	8/13/01 22:48:00	87.16	86.23 86.22	2.223	17.045 17.047	2.505	30.125 30.123	90.413 90.857
8/13/01 20:44:00 8/13/01 20:45:00		86.71 86.71	0.18 0.174	17.055 17.06	2.505 2.507	30.149 30.153	81.042 81.048	8/13/01 22:49:00 8/13/01 22:50:00	87.15	86.22	4.681	17.047	2.507	30.125	91.376
8/13/01 20:46:00 8/13/01 20:48:00		86.71 88.71	0.174 0.174	17.064 17.068	2.507 2.508	30,149 30,153	81.042 81.042	8/13/01 22:51:00 8/13/01 22:52:00		86.22 86.21	5.017 5.383	17.043 17.049	2.507 2.51	30.127 30.123	91.94 92.675
8/13/01 20:49:00	0 87.49	86.71 86.71	0.174 0.174	17.068 17.073	2.512 2.516	30,149 30,151	81.042 81.035	8/13/01 22:54:00 8/13/01 22:55:00	87.15	86.21 86.21	4.806 7.389	17.049 17.051	2.512 2.514	30.129 30.125	93.499 94.5
8/13/01 20:50:00 8/13/01 20:51:00	D 87.48	86.71	0.174	17.079	2.518	30.153	81.042	6/13/01 22:56:00	0 87.14	86.21 86.21	14.527 51.304	17.053 17.055	2.514 2.514	30.125 30.127	96.61 104.852
8/13/01 20:52:0 8/13/01 20:54:0	D 87.47	86.71 86.71	0.174 0.174	17.09	2.518 2.518	30.149 30.149	81.029 81.029	8/13/01 22:57:00 8/13/01 22:58:00	87.13	86.21	48.899	17.058	2.514	30.125	104.852
8/13/01 20:55:0 8/13/01 20:56:0		86.71 86.71	0.168 0.174	17.114 17.137	2.518 2.516	30.149 30.151	81.029 81.023	8/13/01 23:00:00 8/13/01 23:01:00		86.21 86.21	52.956 58.659	17.064 17.071	2.518 2.516	30.125 30.102	104.852 104.852
8/13/01 20:57:0 8/13/01 20:58:0	0 87.45	86.71 86.71	0.174 0.174	17.161 17.191	2.514 2.512	30.151 30.153	81.023 81.016	8/13/01 23:02:00 8/13/01 23:03:00	87.13	86.21 88.21	64.297 65.001	17.073 17.077	2.518 2.518	30.09 30.08	104.846 104.846
6/13/01 21:00:00	0 87.43	86.68	0.168	17.227	2.518	30.153	81.016	8/13/01 23:04:00	87.13	86.21	66.919	17.081 17.094	2.514 2.518	30.106 30.108	104.846 104.846
6/13/01 21:01:00 6/13/01 21:02:00	D 87.42	86.66 88.64	0.168 0.168	17.264 17.294	2.523 2.521	30.151 30.153	81.016 61.016	8/13/01 23:06:0 8/13/01 23:07:0	0 87.13	86.21 86.21	68.713 69.206	17.135	2.521	30.11	104.846
8/13/01 21:03:0 8/13/01 21:04:0	0 87.41	86.62 86.6	0.168 0.168	17.33 17.324	2.52 2.52	30.155 30.153	81.01 81.01	6/13/01 23:08:0 6/13/01 23:09:0		86.21 86.21	68.982 69.543	17.221 17.317	2.527 2.538	30.114 30.11	104.848 104.852
8/13/01 21:06:0	0 87.39	86.56 86.55	0.168	17.321 17.313	2.516 2.514	30.155 30.155	81.01 81.01	8/13/01 23:10:0 8/13/01 23:12:0	D 87.13	88.2 86.2	69.312 68.975	17.313 17.315	2.536 2.54	30.114 30.11	104.852 104.852
8/13/01 21:07:0 8/13/01 21:08:0	0 87.39	86.54	0.161	17.255	2.51	30.155	81.01	8/13/01 23:13:0	D 87.13	86.2	69.275	17.321	2.533	30.112 30.1	104.652
8/13/01 21:09:0 8/13/01 21:10:0	87.38	86.53 80.52	0.161 0.161	17.289 17.315	2.514 2.516	30.153 30.151	81.01 81.004	8/13/01 23:14:0 8/13/01 23:15:0	0 87.12	86.19 86.19	68.913 68.52	17.322 17.322	2.529 2.531	30.084	104.852 104.846
8/13/01 21:12:0 8/13/01 21:13:0	0 87.37	86.51 86.5	0.192 0.192	17.304 17.294	2.516 2.514	30.145 30.133	80.997 80.997	8/13/01 23:16:0 8/13/01 23:16:0		86.19 66.18	68.283 68.401	17.317 17.309	2.533 2.531	30.078 30.07	104.848 104.839
		-													

Date/Time	Downhole Pressure (psi)	Downhole Temperature (deg F)	Wellhead Pressure (psi)	Upper Monitor Pressure (psi)	Lower Monitor Pressure (psi)	Barometric Pressure (inchs Hg)	Annutar Pressure (psi)	Date/Time	Downhole Pressure (psi)	Downhole Temperature (deg F)	Wellhead Pressure (psi)	Upper Monitor Pressure (psi)	Lower Monitor Pressure (psi)	Barometric Pressure (inchs Hg)	Annular Pressure (psi)
8/13/01 23:19:00	87.12	86.18	68.632	17.307	2.534	30.068	104.839	8/14/01 01:24:00	87.12	86.2	68.464	17.109	2.531	30.098	83.175
8/13/01 23:20:00 8/13/01 23:21:00	87.11 87.11	86.18 86.18	68.832 68.95	17.311 17.292	2.536 2.534	30.064 30.06	0.141 104.833	8/14/01 01:25:00 8/14/01 01:26:00	87.12 87.12	86.2 85.2	68.539 68.732	17.113 17.118	2.534 2.536	30.098 30.096	83.694 84.397
8/13/01 23:22:00 8/13/01 23:24:00	87.11 87.11	86.18 86.17	69.487 69.262	17.307 17.3	2.533 2.533	30.084 30.094	104.833 104.833	8/14/01 01:27:00 8/14/01 01:28:00	87.13 87.13	86.2 86.2	68.882 68.62	17.122 17.128	2.536 2.538	30.094 30.094	85.036 85.524
8/13/01 23:25:00	87.11	86.17	69.425	17.249	2.529	30.098	89.14	8/14/01 01:30:00	87.1	88.19	68.826	17.129	2.538	30.094	83.219
8/13/01 23:26:00 8/13/01 23:27:00	87.11 87.11	86.17 86.17	68.645 69.262	17.18 17.158	2.516 2.518	30.098 30.074	84.239 7.494	8/14/01 01:31:00 8/14/01 01:32:00	87.07 87.04	86.19 86.19	68.67 68.701	17.131 17.137	2.538 2.538	30.094 30.1	83.688 84.188
8/13/01 23:28:00 8/13/01 23:30:00	87.11 87.1	86.17 86.17	68.37 68.638	17.203 17.229	2.52 2.525	30.062 30.057	0.141 91.408	8/14/01 01:33:00 8/14/01 01:34:00	87.01 86.98	86.19 86.18	69.325 68.27	17.143 17.145	2.538 2.536	30.094 30.098	84.998 85.505
8/13/01 23:31:00 8/13/01 23:32:00	87.1 87.1	86.17 86.17	68.707 69.237	17.255	2.529	30.07 30.053	88.519	8/14/01 01:36:00	86.92	86.18	68.22	17.154	2.536	30.1	86.031
8/13/01 23:33:00	87.1	86.16	68.932	17.306	2.536	30.047	92.998 88.519	8/14/01 01:37:00 8/14/01 01:38:00	86,88 86,84	86.17 86.16	69.081 68.314	17.159 17.167	2.538 2.538	30.1 30.1	86.651 86.936
8/13/01 23:34:00 8/13/01 23:36:00	87.1 87.09	86.16 86.16	68.894 69.069	17.294 17.306	2.536 2.534	30.062 30.076	85.252 89.647	8/14/01 01:39:00 8/14/01 01:40:00	86.8 86.76	86.15 86.14	68.183 69.187	17.165 17.173	2.54	30.098 30.096	84.226 82.599
8/13/01 23:37:00 8/13/01 23:38:00	87.09 87.09	86.16 86.16	69.175 68.95	17.264 17.152	2.523 2.521	30.084 30.088	81.282 85.239	8/14/01 01:42:00 8/14/01 01:43:00	86.7 86.68	86.12 86.1	68.314 69.081	17.18 17.191	2.542 2.544	30.094 30.096	82.998 83.587
8/13/01 23:39:00 8/13/01 23:40:00	87.09 87.09	85.16 86.15	69.1 68.564	17.107 17.088	2.52	30.088 30.09	89.051	8/14/01 01:44:00	86.65	86.08	88.433	17.21	2.547	30.096	83.998
8/13/01 23:42:00	87.09	86.16	68.769	17.09	2.52 2.514	30.092	90.857 82.896	8/14/01 01:45:00 8/14/01 01:46:00	86.63 86.61	86.07 86.05	68.433 68.882	17.229 17.255	2.549 2.551	30.092 30.092	84.454 84.789
8/13/01 23:43:00 8/13/01 23:44:00	87.09 87.09	86.16 86.16	69.032 69.462	17.084 17.079	2.514 2.52	30.092 30.092	88.797 90.318	8/14/01 01:48:00 8/14/01 01:49:00	88.58 86.57	86.02 86	69.406 68.17	17.281 17.307	2.551 2.549	30.096 30.094	83.852 84.467
8/13/01 23:45:00 8/13/01 23:46:00	87.09 87.09	86.16 86.16	69 175 68.975	17.071 17.064	2.518 2.518	30.09 30.094	82.637 86.341	8/14/01 01:50:00 8/14/01 01:51:00	86.56 86.56	85.99 85.98	68.832 68.408	17.334 17.334	2.547 2.547	30.096 30.096	84.91 85.429
8/13/01 23:48:00 8/13/01 23:49:00	87.09 87.09	86.17 85.17	69.032 68.757	17.051 17.064	2.512 2.514	30.094 30.094	89.615 82.088	8/14/01 01:52:00	86.55	85.97	69.032	17.33	2.544	30.094	85.739
8/13/01 23:50:00	87.09	86.16	68.838	17.092	2.521	30.092	85.087	8/14/01 01:54:00 8/14/01 01:55:00	86.52 86.51	85.94 85.92	68.732 68.408	17.326 17.324	2.542 2.544	30.094 30.094	86.17 86.74
8/13/01 23:51:00 8/13/01 23:52:00	87.1 87.1	86.16 86.16	68.988 68.794	17.114 17.111	2.529 2.527	30.092 30.094	88.323 84.15	8/14/01 01:56:00 8/14/01 01:57:00	86.49 86.48	85.91 85.89	68.127 68.595	17.319 17.326	2.544 2.549	30.092 30.09	84.289 84.745
8/13/01 23:54:00 8/13/01 23:55:00	87.1 87.1	86.16 86.16	69.481 68.495	17.083 17.062	2.521 2.516	30.092 30.09	84.992 88.165	8/14/01 01:58:00 8/14/01 02:00:00	86.46 86.43	85.88 85.85	68.607 68.769	17.339 17.334	2.551 2.549	30.094 30.096	85.264 85.828
8/13/01 23:56:00 8/13/01 23:57:00	87.1 87.1	86.16 86.16	68.532	17.053	2.512	30.096	90.85	8/14/01 02:01:00	86.41	85.84	68.42	17.294	2.544	30.094	88.043
8/13/01 23:58:00	87.1	86.1 6	69.106 68.863	17.049 17.049	2.514 2.512	30.09 30.064	93.676 96.426	8/14/01 02:02:00 8/14/01 02:03:00	86.39 86.37	85.83 85.82	68.439 68.507	17.255 17.232	2.536 2.536	30.094 30.094	88.581 83.289
8/14/01 8/14/01 00:01:00	87.09 87.09	86.16 86.16	69.038 69.007	17.049 17.049	2.512 2.514	30.055 30.049	99.114 84.239	8/14/01 02:04:00 8/14/01 02:06:00	88.35 86.31	85.81 85.78	68.451 68.264	17.21 17.221	2.533 2.533	30.094 30.096	83.833 84.163
8/14/01 00:02:00 8/14/01 00:03:00	87.09 87.09	86.16 86.16	69.194 68.358	17.047 17.051	2.518 2.514	30.043 30.072	86.949 89.457	8/14/01 02:07:00 8/14/01 02:08:00	86.3 86.29	85.76 85.74	68.389 68.532	17.219 17.212	2.536 2.534	30.094 30.092	84.676 85.087
8/14/01 00:04:00 8/14/01 00:06:00	87.09 87.09	86.16 86.15	68.957 68.944	17.053 17.053	2.52 2.52	30.078 30.086	91.934 82.58	8/14/01 02:09:00 8/14/01 02:10:00	86.27	85.72	68.607	17.186	2.534	30.094	85.328
8/14/01 00:07:00	87.08	86.15	68.876	17.053	2.521	30.082	85.024	8/14/01 02:12:00	86.26 86.23	85.7 85.66	68.776 68.557	17.165 17.15	2.531 2.529	30.094 30.096	85.727 86.214
8/14/01 00:08:00 8/14/01 00:09:00	87.08 87.08	86.15 86.15	68.751 68.52	17.055 17.053	2.516 2.514	30.088 30.088	87.278 89.501	8/14/01 02:13:00 8/14/01 02:14:00	86.21 88.19	85.65 85.64	68.507 68.464	17.135 17.118	2.527 2.527	30.094 30.096	88.429 88.752
8/14/01 00:10:00 8/14/01 00:12:00	87.08 87.08	86.15 86.15	68.776 69.038	17.053 17.055	2.514 2.516	30.084 30.088	91.839 94.284	8/14/01 02:15:00 8/14/01 02:16:00	86.17 86.15	85.62 85.61	88.52 68.72	17.109 17.103	2.527 2.525	30.096 30.096	87.259 83.954
8/14/01 00:13:00 8/14/01 00:14:00	87.08 87.08	86.15 86.14	68.726 69.256	17.056	2.516 2.516	30.09 30.09	96.426 84.011	8/14/01 02:18:00 8/14/01 02:19:00	86.12 86.1	85.59 85.57	68.083	17.101	2.525	30.094	84.321
8/14/01 00:15:00	87.08	86.14	68.632	17.056	2.516	30.092	82.175	8/14/01 02:20:00	86.09	85.56	68.938 68.345	17.096 17.092	2.527 2.529	30.096 30.09	84.739 84.954
8/14/01 00:16:00 8/14/01 00:18:00	87.08 87.08	86.14 86.14	69.032 68.769	17.058 17.08	2.516 2.518	30.092 30.09	84.239 86.335	8/14/01 02:21:00 8/14/01 02:22:00	86.08 86.06	85.55 85.54	68.233 68.713	17.088 17.086	2.529 2.533	30.092 30.092	85.271 85.6
8/14/01 00:19:00 8/14/01 00:20:00	87.07 87.07	86.14 86.14	68.944 68.688	17.058 17.058	2.518 2.52	30.092 30.092	88.329 90.508	8/14/01 02:24:00 8/14/01 02:25:00	86.03 86.02	85.51 85.5	68.401 68.239	17.092 17.092	2.534 2.536	30.09 30.088	85.967 86.246
8/14/01 00:21:00 8/14/01 00:22:00	87.07 87.07	86.14 86.14	69.05 68.794	17.06 17.058	2.523 2.521	30.09 30.094	81.58 83.207	8/14/01 02:26:00 8/14/01 02:27:00	86 85.99	85.48 85.47	68.439 68.464	17.094 17.098	2.536 2.536	30.09	86.581
8/14/01 00:24:00 8/14/01 00:25:00	87.07 87.07	86.14	69.4	17.06	2.523	30.088	85.353	8/14/01 02:28:00	85.97	85.45	88.507	17.099	2.536	30.092 30.092	84.796 85.271
8/14/01 00:28:00	87.07	86.14 86.14	68.963 68.944	17.06 17.06	2.527 2.529	30.092 30.092	87.198 88.855	8/14/01 02:30:00 8/14/01 02:31:00	85.95 85.94	85.42 85.4	68.252 68.451	17.099 17.099	2.538 2.538	30.088 30.088	85.423 85.891
8/14/01 00:27:00 8/14/01 00:28:00	87.06 87.06	86.14 86.14	68.932 68.876	17.062 17.064	2.527 2.529	30.096 30.096	88.557 83.245	8/14/01 02:32:00 8/14/01 02:33:00	85.93 85.93	85.37 85.35	68.601 68.339	17.101 17.113	2.538 2.536	30.09 30.08	86.138 86.297
8/14/01 00:30:00 8/14/01 00:31:00	87.06 87.06	86.14 86.13	68.963 68.957	17.064 17.062	2.529 2.527	30.096 30.098	84.676 86.411	8/14/01 02:34:00 8/14/01 02:36:00	85.92 85.9	85.33 85.29	68.52 67.859	17.129 17.135	2.536	30.064 30.062	86.613 86.93
8/14/01 00:32:00 8/14/01 00:33:00	87.06 87.06	86.13 86.13	68.826 68.807	17.064	2.527	30.104	81.32	8/14/01 02:37:00	85.9	85.28	68.564	17.133	2.538	30.055	87.113
8/14/01 00:34:00	87.06	86.13	68.826	17.066	2.527 2.529	30.104 30.106	83.447 84.91	8/14/01 02:38:00 8/14/01 02:39:00	85.89 85.88	85.26 85.25	68.358 68.482	17.133 17.15	2.538 2.538	30.068 30.074	87.417 87.759
8/14/01 00:36:00 8/14/01 00:37:00	87.06 87.05	86.12 86.12	68.769 68.944	17.066 17.066	2.529 2.529	30.104 30.106	86.486 88.057	8/14/01 02:40:00 8/14/01 02:42:00	85.87 85.85	85.23 85.21	68.333 68.414	17.163 17.156	2.542 2.54	30.08 30.084	82.099 82.333
8/14/01 00:38:00 8/14/01 00:39:00	87.05 87.05	86.12 86.11	68.913 68.801	17.068 17.068	2.531 2.531	30.106 30.104	89.468 82.333	8/14/01 02:43:00 8/14/01 02:44:00	85.84 85.82	85.2 85.18	88.395 68.457	17.154 17.169	2.542 2.542	30.084 30.08	82.732 83.08
8/14/01 00:40:00 8/14/01 00:42:00	87.05 87.04	86.11 86.11	68.783 68.813	17.066 17.066	2.529 2.529	30.106 30.106	83.865 85.157	8/14/01 02:45:00 8/14/01 02:48:00	85.8 85.79	85.17 85.16	66.476 68.589	17.167 17.154	2.544	30.082	83.302
8/14/01 00:43:00	87.04	86.1	66.638	17.064	2.531	30.104	86.48	8/14/01 02:48:00	85.76	85.14	68.277	17.139	2.542 2.538	30.086 30.086	83.46 83.878
8/14/01 00:44:00 8/14/01 00:45:00	87.04 87.04	86.1 86.1	68.564 68.95	17.066 17.066	2.531 2.531	30.104 30.108	82.586 83.757	8/14/01 02:49:00 8/14/01 02:50:00	85.74 85.73	85.12 85.11	68.295 68.258	17.122 17.129	2.538 2.538	30.084 30.088	84.061 84.183
8/14/01 00:46:00 8/14/01 00:48:00	87.04 87.03	86.1 85.1	68.869 68.826	17.068 17.069	2.531 2.531	30.106 30.106	84.979 82.896	8/14/01 02:51:00 8/14/01 02:52:00	85.72 85.7	85.09 85.08	68.408 68.027	17.152 17.159	2.542 2.544	30.086 30.09	84.574 84.821
8/14/01 00:49:00 8/14/01 00:50:00	87.03 87.03	86.1 86,1	69.025 68.545	17.069 17.069	2.533 2.533	30.104 30.106	84.131 85.119	8/14/01 02:54:00 8/14/01 02:55:00	85.68 85.87	85.05 85.04	68.994 68.389	17.154 17.144	2.544 2.542	30.088 30.09	85.106 85.233
8/14/01 00:51:00 8/14/01 00:52:00	87.03 87.03	86.09 86.09	69.038 68.557	17.071	2.533	30.104 30.098	86.284 87.417	8/14/01 02:56:00	85.65	85.03	68.414	17.159	2.542	30.092	84.087
8/14/01 00:54:00	87.02	86.09	68.707	17.075	2.534	30.1	88.69	8/14/01 02:57:00 8/14/01 02:58:00	85.84 85.83	85.02 85	68.595 67.615	17.169 17.191	2.548 2.547	30.088 30.086	84.498 84.498
8/14/01 00:55:00 8/14/01 00:56:00	87.02 87.02	86.09 86.09	68.545 68.975	17.077 17.079	2.534 2.534	30.102 30.102	82.814 83.821	8/14/01 03:00:00 8/14/01 03:01:00	85.6 85.59	84.98 84.96	68.501 68.551	17.223 17.24	2.547 2.548	30.092 30.088	84.821 84.916
8/14/01 00:57:00 8/14/01 00:58:00	87.02 87.01	88.08 86.08	69.543 68.514	17.079 17.079	2.534 2.533	30.098 30.1	84.796 85.809	8/14/01 03:02:00 8/14/01 03:03:00	85.58 85.57	84.95 84.94	68.351 68.528	17.238 17.24	2.542 2.542	30.09 30.09	85.334
8/14/01 01:00:00 8/14/01 01:01:00	87.01 87.01	86.08	69.194	17.081	2.534	30.104	86.708	8/14/01 03:04:00	85.55	84.92	68.302	17.216	2.538	30.088	85.487 85.752
8/14/01 01:02:00	87.01	86.09 86.09	68.813 68.539	17.081	2.534 2.536	30.1 30.1	87.785 83.473	8/14/01 03:06:00 8/14/01 03:07:00	85.52 85.5	84.9 84.89	68.345 68.333	17.200 17.188	2.536 2.534	30.092 30.094	85.891 86.037
8/14/01 01:03:00 8/14/01 01:04:00	87.01 87.01	86.09 86.09	68.551 68.589	17.094 17.098	2.536 2.54	30.102 30.104	64.619 85.511	8/14/01 03:08:00 8/14/01 03:09:00	85.48 85.47	84.88 84.87	68.451 68.283	17.159 17.137	2.534 2.533	30.092 30.092	86.259 86.455
8/14/01 01:06:00 8/14/01 01:07:00	87.02 87.04	86.11 88.13	68.539 68.72	17.105 17.107	2.544 2.544	30.104 30.102	86.366 87.126	8/14/01 03:10:00 8/14/01 03:12:00	85.45 85.42	84.86 84.84	67.996 68.501	17.118 17.114	2.531	30.09 30.092	86.619 86.708
8/14/01 01:08:00 8/14/01 01:09:00	87.05 87.06	86.14 86.16	68.726 68.776	17.111	2.544	30.1 30.102	85.834	8/14/01 03:13:00	85.42	84.83	68.345	17.12	2.533	30.088	87.094
8/14/01 01:10:00	87.07	86.16	69.169	17.111	2.538	30.104	86.803 82.965	8/14/01 03:14:00 8/14/01 03:15:00	85.42 85.41	84.82 84.81	68.139 68.401	17.128 17.135	2.533 2.533	30.09 30.088	87.259 87.253
6/14/01 01:12:00 8/14/01 01:13:00	87.08 87.09	86.2 86.2	68.726 68.751	17.109 17.113	2.536 2.536	30.1 30.1	83.783 84.935	8/14/01 03:16:00 8/14/01 03:18:00	85.41 85.39	84.81 84.79	68.37 68.726	17.146 17.154	2.533 2.536	30.09 30.088	87.468 87.601
8/14/01 01:14:00 8/14/01 01:15:00	87.1 87.11	86.2 86.2	68.482 69.231	17.109 17.105	2.534 2.534	30.096 30.1	85.568 86.183	8/14/01 03:19:00 8/14/01 03:20:00	85.38 85.37	84.77 84.76	88.077 68.445	17.18 17.203	2.538 2.538	30.086 30.09	87.861 87.924
8/14/01 01:16:00 8/14/01 01:18:00	87.12 87.13	86.2 86.2	68.358 68.439	17.105 17.105	2.533 2.533	30.102 30.1	84.834 82.934	8/14/01 03:21:00 8/14/01 03:22:00	85.36 85.34	84.74 84.73	68.389	17.208	2.538	30.088	88.158
8/14/01 01:19:00 8/14/01 01:20:00	87.13 87.12	86.2	68.863	17.103	2.533	30.102	83.675	8/14/01 03:24:00	85.32	84.7	68.607 68.645	17.201 17.193	2.538 2.538	30.088 30.084	88.247 88.361
8/14/01 01:21:00	87.12	86.2 86.2	88.482 88.451	17.103	2.531	30.098 30.098	84.46 85.195	8/14/01 03:25:00 8/14/01 03:26:00	85.31 85.3	84.69 84.68	68.67 68.077	17.208 17.203	2.538 2.54	30.086 30.086	84.606 84.524
8/14/01 01:22:00	87.12	86.2	68.457	17.105	2.531	30.096	85.866	8/14/01 03:27:00	85.28	84.66	68.376	17.204	2.542	30.086	84.676

Date/Time	Downhole Pressure (psi)	Downhole Temperature (deg F)	Weilhead Pressure (psi)	Upper Monitor Pressure (psi)	Lower Monitor Pressure (psi)	Barometric Pressure (inchs Hg)	Annular Pressure (psi)	Date/fime	Downhole Pressure (psi)	Downhole Temperature (deg F)	Wellhead Pressure (psi)	Upper Monitor Pressure (psi)	Lower Monitor Pressure (psi)	Barometric Pressure (inchs Hg)	Annular Pressure (psi)
8/14/01 03:28:00		84.65	68.314	17.199	2.54	30.084	85.093 85.144	8/14/01 05:33:00 8/14/01 05:34:00	83,89 83,88	\$3.19 \$3.18	68.439 88.501	17.086 17.083	2.548 2.546	30.07 30.07	82.149 82.143
8/14/01 03:30:00 8/14/01 03:31:00		84.63 84.61	68.177 68.42	17.203 17.216	2.542 2.542	30.088 30.088	85.309	8/14/01 05:36:00	83,86	83.16	88.002	17.081 17.083	2.544 2.546	30.07 30.074	82.086 82.143
8/14/01 03:32:00 8/14/01 03:33:00		84.6 84.59	68.227 66.37	17.218 17.218	2.54 2.542	30.088 30.09	85.416 85.594	8/14/01 05:37:00 8/14/01 05:38:00		83.15 83.13	68.289 67.266	17.081	2.544	30.07	82.004
8/14/01 03:34:00	85.23	84.57	67.883	17.212	2.544	30.086	85.701 85.999	8/14/01 05:39:00 8/14/01 05:40:00		83.12 83.11	68.813 68.033	17.079 17.079	2.544	30.074 30.07	81.871 82.099
8/14/01 03:38:00 8/14/01 03:37:00		84.55 84.53	68.401 68.445	17.21 17.216	2.544 2.544	30.092 30.088	86.081	8/14/01 05:42:00	83.77	83.09	67.74	17.083	2.544	30.074 30.072	81.966 81.885
8/14/01 03:38:00 8/14/01 03:39:00		84.52 84.5	68.383 68.195	17.223 17.204	2.546 2.544	30.092 30.088	66.252 82.08	8/14/01 05:43:00 8/14/01 05:44:00		83.08 83.06	68.482 67.927	17.084 17.086	2.544 2.546	30.07	81.814
8/14/01 03:40:00	85.15	84.49	67.859	17.187	2.54 2.538	30.09 30.086	82.422 82.479	8/14/01 05:45:00 8/14/01 05:46:00		83.05 83.04	67.64 68.202	17.086 17.086	2,546 2,546	30.074 30.074	81.808 81.77
8/14/01 03:42:00 8/14/01 03:43:00		84.46 84.45	68.239 68.27	17.152 17.152	2.538	30.088	82.643	8/14/01 05:48:00	83.7	83.01	87.64	17.084 17.086	2.546 2.546	30.074 30.072	81.599 81.706
8/14/01 03:44:00 8/14/01 03:45:00		84,44 84,43	68.146 68.401	17.144 17.139	2.538 2.538	30.092 30.088	82.839 83.046	8/14/01 05:49:00 8/14/01 05:50:00	\$3.69 \$3.68	83 82.99	68.464 87.952	17.084	2.546	30.074	81.592
8/14/01 03:46:00	85.1	84.42	68.264	17.126	2.538 2.538	30.088 30.088	83.143 83.251	8/14/01 05:51:00 8/14/01 05:52:00		82.98 82.97	67.784 87.848	17.084 17.083	2.546 2.546	30.072 30.078	81.599 81.573
8/14/01 03:48:00 8/14/01 03:49:00	85.08	84.4 84.39	68.514 68.507	17.105 17.098	2.536	30.086	83.466	8/14/01 05:54:00	83.65	82.96	67.721	17.083	2.546 2.546	30.074 30.074	81.485 81.377
8/14/01 03:50:00 8/14/01 03:51:00		84.38 84.36	68.002 68.208	17.092 17.088	2.536 2.536	30.088 30.088	83.593 83.776	8/14/01 05:55:00 8/14/01 05:56:00	83.64	82.96 82.96	68.077 67.621	17.084	2,546	30.07	81.333
8/14/01 03:52:00	85.05	84.35	67,983 68,545	17.084 17.086	2.536 2.538	30.066 30.084	63.947 84.061	8/14/01 05:57:00 8/14/01 05:58:00		82.96 82.96	68.064 68.214	17.083 17.083	2.546 2.547	30.074 30.07	81.301 81.301
8/14/01 03:54:00 8/14/01 03:55:00	85	84.33 84.31	68.364	17.088	2.54	30.082	84.106	8/14/01 06:00:00	83.61	82.95	68.064 67.99	17.081 17.081	2.548 2.548	30.076 30.072	81.168 81.251
8/14/01 03:56:00 8/14/01 03:57:00		84.3 84.29	67.89 68.894	17.088 17.086	2.54 2.54	30.086 30.082	84.207 84.422	8/14/01 06:01:00 8/14/01 06:02:00	83.58	82.94 82.93	67.971	17.084	2.548	30.07	81.143
8/14/01 03:58:00 8/14/01 04:00:00	84.95	84.27 84.25	68.351 68.158	17.088 17.086	2.54 2.54	30.082 30.084	84.825 84.72	8/14/01 06:03:00 8/14/01 06:04:00		82.93 82.92	67.915 68.408	17.084 17.086	2,547 2.547	30.068 30.07	81.092 81.08
8/14/01 04:01:00	84.91	84.23	68.532	17.086	2.54	30.082	84.713	8/14/01 08:06:00	83.53	82.9 82.89	68.071 67.484	17.084 17.083	2.547 2.547	30.066 30.066	80.871 81.016
8/14/01 04:02:00 8/14/01 04:03:00		84.22 84.21	68.557 67.621	17.083 17.077	2.542 2.54	30.082 30.086	84.948 85 188	8/14/01 08:07:00 8/14/01 06:08:00	83.51	82.88	68.208	17.084	2.547	30.072	80.902
8/14/01 04:04:00 8/14/01 04:06:00	84.87	84.2 84.17	68.239 67.952	17.075 17.071	2.538 2.538	30.086 30.086	85.283 85.429	8/14/01 06:09:00 8/14/01 06:10:00		82.87 82.86	68.239 67.621	17.084 17.084	2.547 2.547	30.068 30.07	80.807 80.985
8/14/01 04:07:00	84.84	84.16	68.264	17.069	2.536	30.092	62.795	8/14/01 06:12:00	83.48	82.84	68.358 67.958	17.084 17.083	2.547 2.547	30.066 30.064	80.719 80.719
8/14/01 04:08:00 8/14/01 04:09:00		84.15 84.13	68.17 68.121	17.069 17.068	2.536 2.536	30.092 30.092	82.871 83.048	8/14/01 06:13:00 8/14/01 06:14:00	83.47	82.83 82.82	67.915	17.084	2.547	30.064	80.662
8/14/01 04:10:00 8/14/01 04:12:00	84.83	84.12 84.09	68.657 68.139	17.068 17.069	2.534 2.536	30.092 30.096	83.238 83.409	8/14/01 06:15:00 8/14/01 06:16:00		82.81 82.8	67.696 68.351	17.084 17.086	2.547 2.547	30.064 30.068	80.649 80.668
8/14/01 04:13:00	84.78	84.08	68.37	17.071	2.538	30.092	83.447	8/14/01 06:18:00	83,44	82.78 82.78	67.447 87.827	17.088 17.09	2.549 2.549	30.064 30.068	80.687 80.491
8/14/01 04:14:00 8/14/01 04:15:00		84.07 84.05	68.507 68.507	17.071 17.071	2.536 2.536	30.092 30.092	83.53 83.65	8/14/01 06:19:00 8/14/01 06:20:00		82.77	67.852	17.09	2.549	30.068	80.383
8/14/01 04:18:00 8/14/01 04:18:00	84.73	84.04 84.02	68.058 67.902	17.069 17.069	2.534 2.534	30.094 30.08	83.783 83.776	8/14/01 06:21:00 8/14/01 06:22:00		82.76 82.76	67.759 67.802	17.088 17.088	2.551 2.549	30.066 30.064	80.257 80.2
8/14/01 04:19:00	3 84.7	84	67.453	17.071	2.536	30.064	83.966	8/14/01 06:24:00 8/14/01 06:25:00	83.41	82.74 82.74	68.002 67.74	17.088 17.086	2.549 2.549	30.06 30.06	80.054 80.086
8/14/01 04:20:00 8/14/01 04:21:00		83.99 83.98	68.046 68.039	17.071 17.073	2.536 2.538	30.06 30.072	84.175 64.163	8/14/01 06:26:00	83.4	82.73	67.422	17.088	2.555	30.062	79.864
8/14/01 04:22:00	84.69	83.96 83.94	68.408 67.896	17.075 17.081	2.538 2.538	30.08 30.082	84.327 84.359	8/14/01 06:27:00 8/14/01 06:28:00		82.72 82.71	68.333 68.133	17.086 17.086	2.549 2.551	30.066 30.068	79.738 79.712
8/14/01 04:25:00	84.65	83.93	68.395	17.083	2.54	30.088	84.492	8/14/01 06:30:00 8/14/01 06:31:00	83.37	82.7 82.69	68.245 68.008	17.088 17.088	2.551 2.549	30.066 30.066	79.599 79.662
8/14/01 04:26:00 8/14/01 04:27:00		83.91 83.9	67.84 68.57	17.084 17.084	2.538 2.538	30.084 30.086	84.6 84.65	8/14/01 08:32:00	83.36	82.69	67.472	17.088	2.551	30.062	79.542
8/14/01 04:28:00 8/14/01 04:30:00		83.89 83.87	67.777 68.146	17.086 17.086	2.54 2.54	30.086 30.088	84.701 84.695	8/14/01 06:33:00 8/14/01 06:34:00		82.68 82.67	68.046 67.79 6	17.088 17.088	2.551 2.551	30.066 30.068	79.624 79.447
8/14/01 04:31:0	0 84.56	83.86	68.489	17.094 17.098	2.542 2.542	30.084 30.086	84.684 84.941	8/14/01 06:36:00		82.66 82.66	68.033 68.389	17.088 17.086	2.551 2.551	30.051 30.049	79.244 79.263
8/14/01 04:32:00 8/14/01 04:33:00		83.85 83.85	67.547 88.351	17. 10 9	2.546	30.086	64.859	8/14/01 06:38:00	83.33	82.66	67.94	17.088	2.551	30.045	78.972 79.042
8/14/01 04:34:00 8/14/01 04:36:00		83.84 83.82	68.433 67.933	17.113 17.118	2,547 2,553	30.084 30.088	85.226 85.195	8/14/01 06:39:00 8/14/01 06:40:00		82.66 82.65	67.977 68.495	17.086 17.088	2.551 2.551	30.043 30.043	79.029
8/14/01 04:37:00	D 84.5	83.81 83.79	67.659 68.233	17.131 17.141	2.555 2.551	30.09 30.088	85.125 85.176	8/14/01 06:42:00 8/14/01 06:43:00		82.65 82.64	67.696 67.896	17.086 17.09	2.551 2.549	30.039 30.039	78.877 78.75
8/14/01 04:38:00 8/14/01 04:39:00	0 84.49	83.78	68.252	17.148	2.547	30.09	85.239	8/14/01 06:44:00	83.3	82.64	68,133	17.09	2.551 2.551	30.051 30.055	78.542 78.535
8/14/01 04:40:0 8/14/01 04:42:0		83.76 83.74	68.127 68.295	17.15 17.159	2.546 2.544	30.09 30.084	85.448 85.511	8/14/01 06:45:00 8/14/01 06:46:00	83.29	82.64 82.63	67.877 67.99	17.092 17.09	2.549	30.057	78.497
8/14/01 04:43:0 8/14/01 04:44:0		83.73 83.71	68.482 67.952	17.167 17.167	2.54 2.54	30.088 30.092	85.625 85.777	8/14/01 06:48:00 8/14/01 06:49:00		82.63 82.63	68.121 67.447	17.09 17.088	2.551 2.549	30.057 30.064	78.472 78.289
8/14/01 04:45:0	0 84.42	83.7	68.308	17 173	2.538	30.09	85.676	8/14/01 08:50:00	83.28	82.63 82.63	67.528 87 915	17.088	2.551 2.549	30.062 30.068	78.244 78.143
8/14/01 04:46:0 8/14/01 04:46:0		83.69 83.67	68.108 68.033	17.188 17.189	2.538	30.09 30.092	85.834	8/14/01 06:51:00 8/14/01 06:52:00	83.27	82.62	67.596	17.088	2.549	30.066	78.149
8/14/01 04:49:0 8/14/01 04:50:0		83.65 83.64	68.358 68.114	17.176 17.174	2.536 2.536	30.088 30.09	85.961 85.822	8/14/01 06:54:00 8/14/01 06:55:00		82.63 82.63	68.039 67.834	17.088 17.088	2.549 2.547	30.068 30.068	77.94 77.839
8/14/01 04:51:0	84.36	83.62	67.809	17.167	2.538	30.088	85.885	8/14/01 06:56:00 6/14/01 06:57:00	83.27	82.63 82.63	67.915 67.921	17.088 17.088	2.549 2.549	30.068 30.074	77.827 77.554
8/14/01 04:52:0 8/14/01 04:54:0	0 84.32	83.61 83.58	68.046 68.158	17.161 17.159	2.538 2.538	30.09 30.086	86.202 86.322	8/14/01 06:58:00	83.27	82.64	67.865	17.086	2.547	30.072	77.605
8/14/01 04:55:0 8/14/01 04:56:0		83.57 83.55	68.033 68.233	17.158 17.161	2.538 2.538	30.086 30.088	86.221 86.335	8/14/01 07:00:00 8/14/01 07:01:00		82.64 82.65	68.314 67.484	17.084 17.086	2.547 2.547	30.078 30.076	77.403 77.453
8/14/01 04:57:0	0 84.28	83.54 83.52	67.609 68.096	17.152 17.146	2.538	30.086 30.086	86.335 86.404	8/14/01 07:02:00 8/14/01 07:03:00	83,26	82.65 82.65	67.915 68.039	17.086 17.088	2.549 2.549	30.076 30.078	77.263 77.048
8/14/01 04:58:0 8/14/01 05:00:0	0 84.24	83.5	87.759	17,141	2.538	30.084	68,265	8/14/01 07:04:00	83.25	82.66	68.015	17.088	2.549	30.078	77.099
8/14/01 05:01:0 8/14/01 05:02:0		83.5 83.49	68.202 68.021	17.141 17.129	2.538 2.54	30.086 30.084	66.328 86.309	8/14/01 07:06:00 8/14/01 07:07:00		82.66 82.66	67.908 68.033	17.088 17.088	2.549 2.546	30.076 30.078	76.941 76.947
8/14/01 05:03:0	0 84.2	83.49 83.49	68.177 67.821	17.12 17.111	2.54 2.538	30.086 30.084	86.392 86.335	8/14/01 07:08:00 8/14/01 07:09:00		82.65 82.65	67.821 67.596	17.09 17.09	2.546 2.546	30.08 30.08	76.827 76.637
8/14/01 05:04:0 8/14/01 05:06:0	D 84.16	83.47	68.108	17.109	2.538	30.084	86.512	8/14/01 07:10:00	83.28	82.65	67.871	17.09	2.547	30.082 30.08	76.65 76.58
8/14/01 05:07:0 8/14/01 05:08:0		83.46 83.46	68.064 68.015	17.111 17.111	2.538 2.54	30.084 30.082	86.429 86.404	8/14/01 07:12:00 8/14/01 07:13:00		82.65 82.64	67.752 68.233	17.092 17.092	2.546 2.547	30.08	76.428
8/14/01 05:09:0 8/14/01 05:10:0	0 84.12	83.45 83.44	68.177 68.083	17.113 17.113	2.54 2.54	30.08 30.082	86.385 86.411	8/14/01 07:14:00 8/14/01 07:15:00		82.64 82.64	68.089 67.927	17.092 17.092	2.547 2.547	30.082 30.08	76.251 76.169
8/14/01 05:12:0	0 84.09	83.42	87.54	17.107	2.54	30.084	86.398	8/14/01 07:16:00	83.3	82.64	68.015	17.09 17.09	2.546 2.546	30.08 30.08	75.941 75.985
8/14/01 05:13:0 8/14/01 05:14:0		83.4 83.39	67.709 87.74	17.103 17.094	2.54 2.538	30.082 30.084	86.429 86.411	8/14/01 07:18:00 8/14/01 07:19:00	0 83.29	82.64 82.64	68.264 68.064	17.09	2.548	30.08	75.821
8/14/01 05:15:0 8/14/01 05:16:0	0 84.06	83.38 83.37	67.933 68.564	17.09 17.088	2.538 2.538	30.082 30.084	88.531 82,339	8/14/01 07:20:00 8/14/01 07:21:00		82.64 82.65	67.746 67.927	17.09 17.09	2.548 2.547	30.084 30.086	75.852 75.669
8/14/01 05:18:0	0 84.02	83.34	68.42	17.088	2.536	30.08	82.434	8/14/01 07:22:0 8/14/01 07:24:0	0 83.27	82.65 82.65	67.759 67.748	17.09 17.09	2.547 2.546	30.086 30.086	75.561 75.348
8/14/01 05:19:0 8/14/01 05:20:0	0 84	83.33 83.32	67.752 68.002	17.084 17.09	2.538 2.54	30.06 30.08	82.384 82.314	8/14/01 07:25:0	0 83.26	82.65	68.227	17.088	2.547	30.084	75.346
8/14/01 05:21:0 8/14/01 05:22:0	0 83.99	83.31 63.3	67.859 68.383	17.09 17.09	2.54 2.542	30.082 30.08	82.327 82.365	8/14/01 07:26:0 8/14/01 07:27:0		82.68 82.66	67.846 67.74	17.088 17.09	2.547 2.548	30.088 30.086	75.163 75.169
8/14/01 05:24:0	0 83.96	83.28	68.258	17.088	2.542	30.078	82.346	8/14/01 07:28:0 8/14/01 07:30:0	0 83.26	82.66 82.66	67.484 67.49	17.09 17.088	2.547 2.547	30.09 30.088	74.935 74.84
8/14/01 05:25:0 8/14/01 05:26:0	0 83.95	83.27 83.26	68.158 68.102	17.088 17.084	2.542 2.542	30.082 30.076	82.542 82.314	8/14/01 07:31:0	0 83.28	82.65	67.621	17.09	2.546	30.09	74.878
8/14/01 05:27:0 8/14/01 05:28:0		83.25 83.24	68.383 67.958	17.083 17.081	2.542 2.542	30.074 30.072	82.346 82.208	8/14/01 07:32:0 8/14/01 07:33:0		82.65 82.64	67.578 67.827	17.09 17.09	2.547 2.547	30.09 30.09	74.701 74.587
8/14/01 05:30:0 8/14/01 05:31:0	0 83.92	83.22 83.21	68.015 67.815	17.077 17.083	2.542 2.542	30.07 30.072	82.352 82.137	8/14/01 07:34:0 8/14/01 07:38:0	0 83.25	82.64 82.64	67.434 67.634	17.09 17.09	2.546 2.546	30.09 30.088	74.454 74.385
8/14/01 05:32:0		83.2	68.564	17.083	2.546	30.072	82.143	8/14/01 07:37:0		82.64	68.164	17.09	2.547	30.09	74.372

Date/Time	Downhole Pressure (psi)	Downhole Temperature (deg F)	Weilhead Pressure (psi)	Upper Monitor Pressure (psi)	Lower Monitor Pressure (psi)	Barometric Pressure (inchs Hg)	Annular Pressure (psi)	Dats/Time	Downhole Pressure (psi)	Downhole Temperature (deg F)	Wellhead Pressure (psi)	Upper Monitor Pressure (psi)	Lower Monitor Pressure (psi)	Barometric Pressure (inchs Hg)	Annular Pressure (psi)
8/14/01 07:38:00	83.27	82.64	67.472	17.092	2.547	30.092	74.366	8/14/01 09:43:00	82.64	82.12	67.746	17.099	2.529	30.143	85.354
8/14/01 07:39:00 8/14/01 07:40:00	83.27 83.28	82.64 82.64	67.809 67.885	17.092 17.092	2.547 2.547	30.09 30.092	74.062 74.018	8/14/01 09:44:00 8/14/01 09:45:00	82.63 82.62	82.1 82.09	67.416 67.484	17.099 17.099	2.529 2.529	30.141 30.143	65.234 65.145
8/14/01 07:42:00 8/14/01 07:43:00	83.28 83.28	82.64 82.65	67.665 67.485	17.092 17.092	2.547 2.547	30.092 30.092	73.777 73.866	8/14/01 09:46:00 8/14/01 09:48:00	82.61 82.58	82.07 82.04	67.434 67.18	17.099 17.099	2.529 2.531	30.143 30.147	65.019 64.867
8/14/01 07:44:00 8/14/01 07:45:00	83.27 83.27	82.65 82.85	68.015 67.64	17.09 17.09	2.547 2.547	30.094 30.094	73.701 73.568	8/14/01 09:49:00 8/14/01 09:50:00	82.55 82.53	82.03 82.02	67.484 66.698	17.101 17.101	2.529 2.529	30.143 30.143	54.924 64.949
8/14/01 07:46:00	83.26	82.65	67.759	17.092	2.546	30.1	73.594	8/14/01 09:51:00	82.5	82.01	67.609	17.101	2.531	30.145 30.145	64.785 64.88
8/14/01 07:48:00 8/14/01 07:49:00	83.26 83.26	82.66 82.66	67.896 67.285	17.088 17.09	2.546 2.546	30.096 30.1	73.398 73.309	8/14/01 09:52:00 8/14/01 09:54:00	82.48 82.44	81.99 81.97	67.135 66.948	17.101 17.101	2.531	30.147	64.703
8/14/01 07:50:00 8/14/01 07:51:00	83.26 83.27	82.67 82.67	67.996 67.69	17.086 17.088	2.546 2.544	30.098 30.106	73.183 73.183	8/14/01 09:55:00 8/14/01 09:56:00	82.43 82.42	81.96 81.95	67.291 67.185	17.099 17.099	2.529 2.531	30.147 30.145	64.633 64.867
8/14/01 07:52:00 8/14/01 07:54:00	83.27 83.28	82.68 82.68	67.965 67.902	17.088 17.086	2.546 2.544	30.104 30.104	73.05 72.892	8/14/01 09:57:00 8/14/01 09:58:00	82.41 82.41	81.94 81.93	86.898 88.158	17.098 17.098	2.529 2.531	30.149 30.147	64.671 64.387
8/14/01 07:55:00	83.28	82.67	67.777	17.088	2.544	30.108	72.93	8/14/01 10:00:00	82.38	81.9	66.667	17.098	2.529	30.145	64.431
8/14/01 07:56:00 8/14/01 07:57:00	83.28 83.28	82.67 82.66	67.977 68.239	17.086 17.086	2.546 2.544	30.106 30.11	72.721 72.752	8/14/01 10:01:00 8/14/01 10:02:00	82.37 82.35	81.88 81.86	66.43 67.01	17.096 17.094	2.529 2.531	30.151 30.149	64.323 64.323
8/14/01 07:58:00 8/14/01 08:00:00	83.29 83.29	82.66 82.65	67.927 67.528	17.086 17.086	2.544 2.544	30.112 30.114	72.563 72.449	8/14/01 10:03:00 8/14/01 10:04:00	82.34 82.32	81.84 81.82	65.862 64.309	17.096 17.094	2.529 2.529	30.149 30.151	64.121 64.102
8/14/01 08:01:00 8/14/01 08:02:00	83.3 83.3	82.65 82.65	67.709 68.17	17.086 17.086	2.542 2.544	30.112 30.117	72.411 72.196	8/14/01 10:06:00 8/14/01 10:07:00	82.31 82.31	81.8 81.8	64.141 64.265	17.092 17.092	2.529 2.529	30.149 30.149	64.045 64.001
8/14/01 08:03:00 8/14/01 08:04:00	83.3 83.31	82.65 82.65	67.752 67.703	17.086 17.086	2.542 2.544	30.114 30.119	72.329 72.031	8/14/01 10:08:00 8/14/01 10:09:00	82.31 82.31	81.8 81.8	65.139 64.858	17.092	2.529	30.149 30.149	64.033
8/14/01 08:06:00	83.3	82.65	67.927	17.084	2.542	30.117	71.93	8/14/01 10:10:00	82.31	81.81	64.796	17.092	2.529	30.151	63.919 63.824
8/14/01 08:07:00 8/14/01 08:08:00	83.29 83.29	82.65 82.65	67.609 67.734	17.084 17.084	2.542 2.542	30.117 30.121	71.867 71.734	8/14/01 10:12:00 8/14/01 10:13:00	82.29 82.28	81.8 81.79	64.415 64.739	17.092 17.09	2.529 2.529	30.151 30.147	63.95 63.799
8/14/01 08:09:00 8/14/01 08:10:00	83.28 83.27	82.65 82.65	67.896 67.871	17.084 17.084	2.542 2.542	30.119 30.119	71.595 71.494	8/14/01 10:14:00 8/14/01 10:15:00	82.26 82.25	81.78 81.77	64.889 64.209	17.09 17.09	2.529 2.531	30.151 30.151	63.761 63.622
8/14/01 08:12:00 8/14/01 08:13:00	83.25 83.24	82.65 82.65	67.503 67.752	17.084 17.086	2.544	30.121	71.253	8/14/01 10:16:00 8/14/01 10:18:00	82.24 82.22	81.77 81.74	64.665	17.09	2.529	30.151	63.729
8/14/01 08:14:00	83.24	82.65	67.748	17.086	2.542 2.542	30.119 30.121	71.285 71.209	8/14/01 10:19:00	82.22	61.72	64.44 64.521	17.09 17.09	2.529 2.531	30.151 30.153	63.546 63.476
8/14/01 08:15:00 8/14/01 08:16:00	83.23 83.22	82.65 82.64	67.547 88.339	17.084 17.088	2.544 2.544	30.119 30.121	71.121 70.95	8/14/01 10:20:00 8/14/01 10:21:00	82.21 82.21	81.7 81.69	64.128 64.746	17.088 17.088	2.531 2.529	30.151 30.153	63.438 63.54
8/14/01 08:18:00 8/14/01 08:19:00	83.21 83.22	82.64 82.63	67.553 68.114	17.086 17.084	2.544 2.544	30.123 30.121	70.716 70.785	8/14/01 10:22:00 8/14/01 10:24:00	82.21 82.19	81.67 81.64	64.696 64.515	17.088 17.086	2.529 2.531	30.155 30.153	63.438 63.331
8/14/01 08:20:00 8/14/01 08:21:00	83.23 83.23	82.63 82.63	67.865 67.965	17.084 17.083	2.542	30.125 30.121	70.583 70.577	8/14/01 10:25:00 8/14/01 10:25:00	82.18 82.17	81.63 81.63	64.577 64.534	17.088 17.088	2.531 2.531	30.151 30.151	63.192
8/14/01 08:22:00	83.24	82.62	67.59	17.083	2.542	30.125	70.507	8/14/01 10:27:00	82.16	81.62	64.64	17.086	2.531	30.151	63.23 63.198
8/14/01 08:24:00 8/14/01 08:25:00	83.24 83.25	82.62 82.61	67.728 68.027	17.083 17.084	2.542 2.542	30.125 30.127	70.324 70.279	8/14/01 10:28:00 8/14/01 10:30:00	82.14 82.12	81.61 81.59	64.571 64.521	17.086 17.086	2.533 2.533	30.149 30.151	63.072 63.065
8/14/01 08:26:00 8/14/01 08:27:00	83.25 83.25	82.61 82.6	67.671 67.509	17.083 17.084	2.542 2.542	30.127 30.125	70.286 70.077	8/14/01 10:31:00 8/14/01 10:32:00	82.11 82.1	81.58 81.56	64.103 64.571	17.084 17.086	2.533 2.533	30.149 30.147	63.211 63.072
8/14/01 08:28:00 8/14/01 08:30:00	83.25 83.24	82.6 82.6	68.089 67.79	17.086	2.542 2.542	30.129 30.129	70.014 69.862	8/14/01 10:33:00 8/14/01 10:34:00	82.09 82.07	81.55 81.54	64.203	17.084	2.533	30.147	62.977
8/14/01 08:31:00	83.23	82.6	67.416	17.088	2.542	30.127	69.792	8/14/01 10:38:00	82.06	81.52	64.583 64.82	17.086 17.086	2.533 2.533	30.151 30.149	62.933 62.971
8/14/01 08:32:00 8/14/01 08:33:00	83.23 83.22	82.6 82.6	67.759 67.703	17.086 17.086	2,542 2,542	30.127 30.127	69.754 69.596	8/14/01 10:37:00 8/14/01 10:38:00	82.06 82.06	81.51 81.49	64.334 64.908	17.086 17.086	2.534 2.534	30.151 30.147	64.532 76.257
8/14/01 08:34:00 8/14/01 08:36:00	83.21 83.2	82.6 82.59	68.008 67.54	17.086 17.086	2.542 2.542	30.129 30.129	69.603 69.426	8/14/01 10:39:00 8/14/01 10:40:00	82.06 82.07	81.48 81.47	84.515 84.253	17.086 17.086	2.533 2.533	30.149 30.151	83.783 83.831
8/14/01 08:37:00 8/14/01 08:38:00	83.2 83.21	82.59 82.59	67.49 87.534	17.084 17.086	2.542 2.542	30.127 30.127	69.305 69.35	8/14/01 10:42:00 8/14/01 10:43:00	82.06 82.05	81.45 81.43	64.515 64.428	17.086 17.084	2.533 2.534	30.153 30.149	83.561
8/14/01 08:39:00	83.21	82.59	67.815	17.084	2.538	30.129	69.053	8/14/01 10:44:00	82.04	81.42	64,409	17.084	2.534	30.149	83.454 83.365
8/14/01 08:40:00 8/14/01 08:42:00	83.21 83.21	82.58 82.58	67.584 67.497	17.084 17.084	2.538 2.538	30.131 30.131	69.034 68.819	8/14/01 10:45:00 8/14/01 10:46:00	82.03 82.03	81.41 81.4	64.571 64.328	17.084 17.084	2.534 2.536	30.149 30.149	83.409 83.131
8/14/01 08:43:00 8/14/01 08:44:00	83.2 83.2	82.57 82.57	67.172 67.671	17.084 17.084	2.538 2.54	30.127 30.131	68.806 68.863	8/14/01 10:48:00 8/14/01 10:49:00	82 81,98	81.38 81.37	65.157 64.509	17.084 17.084	2.536 2.536	30.149 30.145	83.232 83.105
8/14/01 08:45:00 8/14/01 08:46:00	83.2 83.19	82.56 82.56	67.353 67.933	17.084	2.54 2.538	30.127 30.127	68.673 68.572	8/14/01 10:50:00 8/14/01 10:51:00	81.96 81.95	81.37 81.36	64.459 64.59	17.083 17.084	2.536 2.536	30.147 30.149	83.112 83.061
8/14/01 08:48:00	83.19	82.55	67.416	17.084	2.538	30.129	68.408	8/14/01 10:52:00	81.93	81.36	64.995	17.083	2.536	30.149	82.922
8/14/01 08:49:00 8/14/01 08:50:00	83.19 83.19	82.55 82.55	67.291 67.154	17.083 17.083	2.538 2.538	30.133 30.133	68.477 68.338	8/14/01 10:54:00 8/14/01 10:55:00	81.9 81.9	81.34 81.33	64.521 64.49	17.083 17.084	2.536 2.538	30.147 30.149	82.808 82.89
8/14/01 08:51:00 8/14/01 08:52:00	83.19 83.19	82.54 82.54	67.846 67.378	17.084 17.084	2.538 2.538	30.135 30.133	68.344 68.268	8/14/01 10:58:00 8/14/01 10:57:00	81.89 81.89	81.32 81.31	64.964 64.484	17.086 17.084	2.538 2.536	30.147 30.151	82.757 82.738
8/14/01 08:54:00 8/14/01 08:55:00	83.18 83.18	82.53 82.52	67.409 67.422	17.084 17.083	2.538 2.538	30.137 30.135	68.085 68.123	8/14/01 10:58:00 8/14/01 11:00:00	81.88 81.86	81.3 81.27	64.839 64.671	17.086 17.086	2.538 2.538	30.149 30.147	82.732 82.561
8/14/01 08:56:00	83.17 83.16	82.52	67.297	17.083	2.538	30.135	68.053	8/14/01 11:01:00	81.84	81.25	64.359	17.086	2.538	30.147	82.485
8/14/01 08:57:00 8/14/01 08:58:00	83.16	82.51 82.5	67.653 67.347	17.083 17.081	2.538 2.538	30.139 30.137	67.8 67.819	8/14/01 11:02:00 8/14/01 11:03:00	81.82 81.8	81.23 81.21	84.434 64.452	17.088 17.088	2.54 2.54	30.145 30.149	82.498 82.479
8/14/01 09:00:00 8/14/01 09:01:00	83.15 83.14	82.49 82.49	87.54 87.16	17.079 17.079	2.536 2.536	30.135 30.137	67.845 67.68	8/14/01 11:04:00 8/14/01 11:06:00	81.79 81.78	81.19 81.17	64.639 64.527	17.088 17.088	2.54 2.54	30.147 30.143	82.384 82.39
8/14/01 09:02:00 8/14/01 09:03:00	83.14 83.13	82.49 82.49	67.235 67.459	17.077 17.077	2.538 2.538	30.137 30.139	67.604 67.465	8/14/01 11:07:00 8/14/01 11:08:00	81.79 81.8	81.16 81.15	64.827 64.983	17.088 17.088	2.54 2.542	30.145 30.143	82.295 82.409
8/14/01 09:04:00 8/14/01 09:06:00	83.13 83.12	82.48 82.48	66.979 67.041	17.077 17.075	2.538	30.137 30.139	67.44 67.459	8/14/01 11:09:00 8/14/01 11:10:00	81.81 81.82	81.14	64.883 64.989	17.09	2.542	30.145	82.333
8/14/01 09:07:00	83.11	82.47	67.391	17.075	2.538	30.137	67.137	8/14/01 11:12:00	81.8	81.13 81.12	64.371	17.09	2.542 2.542	30.143 30.141	82.308 82.118
8/14/01 09:08:00 8/14/01 09:09:00	83.11 83.11	82.47 82.46	67.328 67.952	17.075 17.075	2.538 2.538	30.137 30.139	67.111 67.105	8/14/01 11:13:00 8/14/01 11:14:00	81.77 81.74	81.12 81.12	64.353 64.739	17.09 17.09	2.542 2.542	30,141 30,145	82.035 82.124
8/14/01 09:10:00 8/14/01 09:12:00	83.1 83.09	82.46 82.44	67.652 67.852	17.075 17.077	2.538 2.538	30.141 30.137	66.941 66.96	8/14/01 11:15:00 8/14/01 11:16:00	81.71 81.67	81.12 81.12	64.914 64.677	17.09 17.09	2.542 2.542	30.143 30.143	81.852 82.073
8/14/01 09:13:00 8/14/01 09:14:00	83.09 83.08	82.43 82.42	67.465 67.759	17.075 17.077	2.538 2.538	30.139 30.141	66.852 66.846	8/14/01 11:18:00 8/14/01 11:19:00	81.64 81.64	81.11 81.11	64.677 64.621	17.09 17.088	2.544	30.141 30.145	81.89 81.852
8/14/01 09:15:00	83.07	82.41	67.534	17.079	2.538	30.141	66.719	8/14/01 11:20:00	81.64	81.1	64.602	17.088	2.542	30.145	81.96
8/14/01 09:16:00 8/14/01 09:18:00	83.07 83.03	82.4 82.38	67.603 67.553	17.077 17.079	2.538 2.538	30.141 30.145	66.568 66.587	8/14/01 11:21:00 8/14/01 11:22:00	81.64 81.63	61.09 61.08	64.49 64.983	17.088 17.086	2.544 2.542	30.145 30.141	81.915 81.852
8/14/01 09:19:00 8/14/01 09:20:00	83 82.98	82.37 82.37	67.216 67.472	17.077 17.077	2.534 2.533	30.141 30.143	86.555 66.346	8/14/01 11:24:00 8/14/01 11:25:00	61.62 81.6	81.07 81.06	64.509 64.315	17.086 17.086	2.542 2.544	30.143 30.143	81.744 81.96
8/14/01 09:21:00 8/14/01 09:22:00	82.95 82.92	82.36 82.38	67.49 67.16	17.079 17.081	2.531 2.531	30.147 30.147	66.466 68.321	8/14/01 11:26:00 8/14/01 11:27:00	81.58 81.57	81.06 81.06	65.001 64.689	17.088	2.546	30,141	61.725
8/14/01 09:24:00	82.88	82.33	67.253	17.081	2.529	30.149	66.327	8/14/01 11:28:00	B1.55	81.05	64.49	17.088	2.544	30.139 30.141	81.706 81.605
8/14/01 09:25:00 8/14/01 09:26:00	82.86 82.85	82.31 82.29	67.678 67.353	17.083 17.083	2.527 2.527	30.149 30.171	66.087 66.182	8/14/01 11:30:00 8/14/01 11:31:00	81.53 81.52	81.03 81.01	64.44 64.428	17.088 17.09	2.546 2.547	30.139 30.133	61.713 81.643
8/14/01 09:27:00 8/14/01 09:28:00	82.83 82.82	82.26 82.24	67.072 67.422	17.084 17.083	2.525 2.527	30.153 30.149	66.106 65.929	8/14/01 11:32:00 8/14/01 11:33:00	81.52 81.51	61 80.98	64.708 64.845	17.09 17.092	2.546 2.547	30.137 30.135	81.516 61.605
8/14/01 09:30:00 8/14/01 09:31:00	82.79 82.77	82.22 82.22	67.49 67.241	17.086	2.525	30.143 30.129	65.853 65.929	8/14/01 11:34:00	81.5	80.96	64.502	17.094	2.547	30.133	81.523
8/14/01 09:32:00	82.76	82.22	67.559	17.09	2.523	30.139	65.878	8/14/01 11:36:00 8/14/01 11:37:00	81.49 81.48	80.94 80.93	64.852 64.846	17.098 17.098	2.549 2.549	30.135 30.137	81.643 61.51
8/14/01 09:33:00 8/14/01 09:34:00	82.74 82.72	82.22 82.22	67.322 67.784	17.094 17.094	2.523 2.523	30.139 30.143	65.841 65,67	8/14/01 11:38:00 8/14/01 11:39:00	81.47 81.48	80.92 80.91	64.627 64.945	17.098 17.098	2.549 2.547	30.131 30.133	81.459 81.434
8/14/01 09:36:00 8/14/01 09:37:00	82.7 82.69	82.21 82.2	66.991 67.565	17.098 17.098	2.523 2.523	30.143 30.139	65.657 65.543	8/14/01 11:40:00 8/14/01 11:42:00	81.45 81.43	80.9 80.87	85.076 64.845	17.096 17.094	2.547 2.547	30.133 30.131	81.421 81.415
8/14/01 09:38:00 8/14/01 09:39:00	82.69 82.68	82.18 82.17	66.923 67.434	17.099 17.101	2.525 2.527	30.143	65.55	8/14/01 11:43:00	81.42	80.88	64.933	17.096	2.547	30.131	81.44
8/14/01 09:40:00	82.67	82.16	66.923	17.101	2.527	30.141 30.143	65.404 65.373	8/14/01 11:44:00 8/14/01 11:45:00	81.41 81.4	80.85 80.83	64.902 64.596	17.096 17.096	2.547 2.548	30.129 30.129	81.377 81.491
8/14/01 09:42:00	82.65	82.14	67.485	17.099	2.527	30.143	65.392	8/14/01 11:48:00	81.38	80.82	64.777	17.096	2.547	30.127	81.263

Date/Time	Downhole Pressure (psi)	Downhole Temperature (deg F)	Wellhead Pressure (psi)	Upper Monitor Pressure (psi)	Lower Monitor Pressure (psi)	Barometric Pressure (inchs Hg)	Annutar Pressure (psi)	Date/Time	Downhole Pressure (psi)	Downhole Temperature (deg F)	Weilhead Pressure (psi)	Upper Monitor Pressure (psi)	Lower Monitor Pressure (psi)	Barometric Pressure (inchs Hg)	Annular Pressure (psi)
8/14/01 11:48:00	81.37	80.8	64.565	17.096	2.547	30.127	81.175	8/14/01 13:52:00		79.78 79.76	36.034 36.015	17.124 17.124	2.558 2.558	30.102 30.104	74.195 73. 94 8
8/14/01 11:49:00 8/14/01 11:50:00	81.36 81.35	80.8 80.8	84.502 84.446	17.096 17.096	2.547 2.547	30.127 30.127	81.32 81.181	8/14/01 13:54:00 8/14/01 13:55:00	80.35	79.75	35.99	17.124	2.557	30.102	73.701
8/14/01 11:51:00 8/14/01 11:52:00	81.34 81.34	80.79 80.79	64.671 64.939	17.096 17.098	2.547 2.547	30.129 30.127	81.257 81.162	8/14/01 13:56:00 8/14/01 13:57:00		79.74 79.73	35.971 35.953	17.126 17.126	2.558 2.56	30.102 30.1	73.455 73.208
8/14/01 11:54:00	81.32	80.78	64.939	17.098	2.548	30.129 30.129	81.27 81.149	8/14/01 13:58:00 8/14/01 14:00:00	80.31	79.72 79.71	35.934 35.915	17.126 17.126	2.56 2.56	30.098 30.1	72.967 72.714
8/14/01 11:55:00 8/14/01 11:56:00	61.31 81.3	80.77 80.76	64.485 64.92	17.098 17.098	2.547 2.546	30.129	81.042	8/14/01 14:01:00	80.29	79.7	35.903	17.126 17.126	2.56 2.56	30.098 30.1	72.474 72.227
8/14/01 11:57:00 8/14/01 11:58:00		80.75 80.74	64.147 64.272	17.099 17.099	2.546 2.546	30.127 30.133	81.149 81.086	8/14/01 14:02:00 8/14/01 14:03:00		79.7 79.69	35.884 35.866	17.126	2.58	30.102	71.987
8/14/01 12:00:00 8/14/01 12:01:00	81.26	80.72 80.71	64.87 64.627	17.099 17.098	2.546 2.546	30.127 30.129	81.168 81.08	8/14/01 14:04:00 8/14/01 14:06:00		79.68 79.67	35.853 35.841	17.128 17.126	2.562 2.562	30.096 30.094	71.74 71.5
8/14/01 12:02:00	81.25	80.71	64.546	17.096	2.546 2.544	30.131 30.127	81.054 80.959	8/14/01 14:07:00 8/14/01 14:08:00		79.66 79.64	35.834 35.828	17.126 17.126	2.562 2.562	30.092 30.094	71.253 71.019
8/14/01 12:03:00 8/14/01 12:04:00		80.7 80.7	64.496 64.384	17.098 17.098	2.546	30.129	80.966	8/14/01 14:09:00	80.24	79.63	35.816	17.128	2.562 2.562	30.094 30.092	70.773 70.539
8/14/01 12:06:00 8/14/01 12:07:00		80.67 60.66	64.184 64.758	17.099 17.098	2.548 2.546	30.129 30.125	81.023 80.959	8/14/01 14:10:00 8/14/01 14:12:00	80.23	79.62 79.6	35.81 35.803	17.126 17.126	2.562	30.09	70.292
8/14/01 12:08:00 8/14/01 12:09:00	81.22	80.64 80.63	64.428 64.234	17.099 17.099	2.546 2.546	30.127 30.123	80.928 80.639	8/14/01 14:13:00 8/14/01 14:14:00		79.6 79.59	35.797 35.791	17.124 17.122	2.562 2.562	30.09 30.094	70.052 69.811
8/14/01 12:10:00	81.2	80.61	65.207	17.099	2.546	30.123 30.125	80.877 80.751	8/14/01 14:15:00 8/14/01 14:16:00		79.59 79.58	35.785 35.772	17.122 17.12	2.56 2.56	30.086 30.086	69.577 69.331
8/14/01 12:12:00 8/14/01 12:13:00		80.59 80.59	64.789 85.307	17.099 17.103	2.546	30.125	80.833	8/14/01 14:18:00 8/14/01 14:19:00	80.19	79.57 79.57	35.768 35.76	17.12 17.12	2.582 2.56	30.09 30.09	69.097 68.856
8/14/01 12:14:00 8/14/01 12:15:00		80.58 80.58	64.739 64.39	17 103 17 103	2.546 2.547	30.125 30.123	80.554 80.883	8/14/01 14:20:00	80.16	79.58	35.754	17.118	2.56	30.088	68.623
8/14/01 12:16:00 8/14/01 12:18:00		80.57 80.57	64.721 64.272	17.105 17.103	2.547 2.547	30.125 30.121	80.82 80.592	8/14/01 14:21:00 8/14/01 14:22:00		79.55 79.55	35.747 35.741	17.12 17.118	2.562 2.562	30.092 30.09	68.382 68.148
8/14/01 12:19:00	81.09	80.56 80.56	63.941 64.44	17.101 17.101	2.546	30.119 30.121	80.719 80.82	8/14/01 14:24:00 8/14/01 14:25:00		79.63 79.52	35.735 35.729	17.118 17.118	2.562 2.562	30.09 30.09	67.902 67.668
8/14/01 12:20:00 8/14/01 12:21:00	61.06	80.55	64.771	17.103	2.547	30.119	80,618	8/14/01 14:26:00 8/14/01 14:27:00	80.09	79.51 79.5	35.722 35.71	17.118 17.118	2.562 2.562	30.09 30.092	67.421 67.193
8/14/01 12:22:00 8/14/01 12:24:00		80.55 80.53	64.627 64.334	17.101 17.098	2.546 2.546	30.123 30.121	80.352 80.738	8/14/01 14:28:00	80.06	79.49	35.704	17.118	2.564	30.09	66.96
8/14/01 12:25:00 8/14/01 12:26:00		80.52 80.51	64.109 64.92	17.101 17.101	2.546 2.547	30.123 30.121	80,396 80,485	8/14/01 14:30:00 8/14/01 14:31:00		79.47 79.47	35.698 35.691	17.118 17.118	2.564 2.564	30.09 30.092	66.726 66.485
8/14/01 12:27:00 8/14/01 12:28:00	81.03	80.5 80.49	84.29 84.116	17.101 17.103	2.546 2.546	30.121 30.121	80.339 80.687	8/14/01 14:32:00 8/14/01 14:33:00		79.47 79.46	35.685 35.679	17.118 17.118	2.564 2.564	30.088 30.09	66.251 66.018
8/14/01 12:30:00	81.01	80.47	84,153	17.103	2.547	30.121	80.326 80.333	8/14/01 14:34:00 8/14/01 14:36:00	80.04	79.46 79.44	35.673 35.666	17.116 17.116	2.564 2.564	30.094 30.092	85.784 85.543
8/14/01 12:31:00 8/14/01 12:32:00		80.46 80.46	63.86 63.573	17,103 17,107	2.547 2.547	30.123 30.121	80,168	8/14/01 14:37:00	80.02	79.42	35.66	17.116	2.564	30.092	65.316
8/14/01 12:33:00 8/14/01 12:34:00		80.45 80.45	64.29 63.71	17.107 17.109	2.547 2.547	30.135 30.127	80.263 80.415	8/14/01 14:38:00 8/14/01 14:39:00	80	79.41 79.39	35.654 35.648	17.116 17.118	2.564 2.564	30.094 30.096	65.088 64.854
8/14/01 12:36:00 8/14/01 12:37:00	80.94	80.43 80.42	66.991 64.852	17.109 17.109	2.547 2.547	30.119 30.117	80.643 80.212	8/14/01 14:40:00 8/14/01 14:42:00		79.37 79.35	35.642 35.642	17.118 17.118	2.564 2.566	30.094 30.094	64.62 64.387
8/14/01 12:38:00	80.92	80.4	64.895	17,109	2.547	30.108	80.143 80.219	8/14/01 14:43:00 8/14/01 14:44:00	79.97	79.34 79.33	35.635 35.629	17.12 17.122	2.566 2.566	30.09 30.094	64.159 63.925
8/14/01 12:39:00 8/14/01 12:40:00		80.39 80.38	64.359 65.151	17.111 17.111	2.547 2.546	30.104 30.1	80.206	8/14/01 14:45:00	79.95	79.33	35.629	17.122	2.566	30.09	63.698
8/14/01 12:42:00 8/14/01 12:43:00		80.36 80.36	63.654 84.789	17.113 17.113	2.547 2.547	30.106 30.104	80.081 80.092	8/14/01 14:46:00 8/14/01 14:48:00	79.94	79.32 79.31	35.823 35.823	17.12 17.118	2.566	30.09 30,09	63.464 63.236
8/14/01 12:44:00 8/14/01 12:45:00	80.87	80.35 80.35	64.01 64.459	17.113 17.113	2.547 2.547	30.108 30,108	80.016 80.023	8/14/01 14:49:00 8/14/01 14:50:00		79.31 79.31	35.617 35.61	17.116 17.116	2.566 2.566	30.086 30.088	62.996 62.781
8/14/01 12:46:00	80.85	80.35	63.904	17.113	2.547	30.112 30.108	79.871 79.94	8/14/01 14:51:00 8/14/01 14:52:00	79.93	79.31 79.31	35.823 35.598	17.116 17.116	2.566 2.566	30.088 30.086	62.56 62.32
8/14/01 12:48:00 8/14/01 12:49:00	80.82	80.33 80.31	64.359 64.764	17.113 17.114	2.547 2.547	30.114	80.004	8/14/01 14:54:00	79.91	79.3	35.604	17.116	2.566	30.086 30.084	62.098 61.865
8/14/01 12:50:00 8/14/01 12:51:00		80.3 80.28	64.82 64.777	17.114 17.114	2.547 2.547	30.112 30.112	79.776 79.757	8/14/01 14:55:00 8/14/01 14:56:00	79.89	79.31 79.31	35.579 35.592	17.114	2.566	30.088	61.643
8/14/01 12:52:00 8/14/01 12:54:00	80.8	80.26 80.24	64.933 64.147	17.114 17.114	2.546 2.547	30.114 30.112	79.75 79.763	8/14/01 14:57:00 8/14/01 14:58:00		79.31 79.31	35.585 35.585	17.116 17.118	2.566 2.566	30.088 30.088	61.416 61.188
8/14/01 12:55:00	0 80.77	80.23 80.22	64.683 64.041	17.114 17.116	2.547 2.547	30.112 30.114	79.719 79.675	8/14/01 15:00:00 8/14/01 15:01:00		79.3 79.3	35.573 35.567	17.118 17.118	2.566 2.566	30.088 30.088	60.967 60.74
8/14/01 12:56:00 8/14/01 12:57:00	80.74	80.22	84.945	17,118	2.547	30.119	79.542	8/14/01 15:02:00	3 79.84	79.29 79.28	35.573 35.567	17.118 17.118	2.566	30.09 30.088	60.519 60.291
8/14/01 12:58:00 8/14/01 13:00:00		80.21 80.19	67.166 67.241	17.118 17.118	2.547 2.547	30.114 30.117	79.719 79.725	8/14/01 15:03:00 8/14/01 15:04:00	79.82	79.28	35.581	17.118	2.566	30.086	60.07
8/14/01 13:01:00 8/14/01 13:02:00		80.19 80.18	67.035 67.648	17.118 17.118	2.547 2.548	30.114 30.117	79.783 79.687	8/14/01 15:06:00 8/14/01 15:07:00	79.81	79.25 79.23	35.561 35.542	17.118 17.118	2.564 2.566	30.088 30.086	59.849 59.628
8/14/01 13:03:00 8/14/01 13:04:00	3 80.74	80,18 80,17	66.424 79.693	17.12 17.118	2.546 2.547	30.114 30.117	79.51 80.137	8/14/01 15:08:00		79.22 79.2	35.542 35.548	17.118 17.118	2.566 2.566	30.09 30.086	59.4 59.179
8/14/01 13:06:00	0 80.74	80.16	79.331	17.118	2.547	30.117 30.117	80.32 80.111	8/14/01 15:10:00 8/14/01 15:12:00	79.81	79.18 79.15	35.542 35.529	17.118 17.12	2.566 2.568	30.084 30.082	58.964 58.743
8/14/01 13:07:00 8/14/01 13:08:00	D 80.73	80.16 80.15	79.081 79.861	17.118 17.116	2.547 2.547	30,114	80.244	8/14/01 15:13:00	79.78	79.14	35.529	17.12	2.566	30.086	58.522 58.294
8/14/01 13:09:00 8/14/01 13:10:00		80.15 80.14	78.894 79.786	17.116 17.116	2.549 2.547	30.112 30.11	80.371 80.586	8/14/01 15:14:00 8/14/01 15:15:00	79.75	79.14 79.13	35.517 35.517	17.122 17.12	2.588 2.566	30.088 30.084	58.073
8/14/01 13:12:0 8/14/01 13:13:0	0 80.71	80.13 80.11	79.449 80.043	17.116 17.116	2.547 2.547	30.112 30.11	80.478 80.453	8/14/01 15:18:00 8/14/01 15:18:00		79.12 79.11	35.498 35.511	17.12 17.12	2.566 2.566	30.084 30.084	57.858 57.837
8/14/01 13:14:00	D 80.69	80.1	79.83	17.116 17.116	2.547	30.114 30.11	80.402 80.649	8/14/01 15:19:00 8/14/01 15:20:00		79.11 79.1	35.492 35.498	17.12 17.12	2.564 2.564	30.084 30.084	57.416 57.201
8/14/01 13:15:0 8/14/01 13:16:0	0 80.67	80.09 80.08	79.749 79.762	17.118	2.547	30.112	80.459	8/14/01 15:21:0 8/14/01 15:22:0	0 79.68	79.1 79.09	35.505 35.492	17.122 17.122	2.564 2.564	30.084 30.086	56.987 56.765
8/14/01 13:18:00 8/14/01 13:19:0	0 80.64	80.06 80.06	79.343 79.187	17.118 17.118	2.549 2.547	30.114 30.112	80.668 80.719	8/14/01 15:24:0	D 79.87	79.08	35.488	17.122	2.564	30.086	56.551
8/14/01 13:20:0 8/14/01 13:21:0	0 80.63	80.05 80.04	79.187 79.811	17.118 17.116	2.547 2.547	30.112 30.112	80.44 80.662	8/14/01 15:25:00 8/14/01 15:26:00	79.67	79.07 79.06	35.48 35.455	17.122 17.122	2.564 2.566	30.082 30.084	56.33 56.121
8/14/01 13:22:0 8/14/01 13:24:0	0 80.6	80.04 80.02	79.468 79.075	17.12 17.118	2.549 2.549	30.112 30.11	80.554 80.719	8/14/01 15:27:0 8/14/01 15:28:0	D 79.67	79.05 79.0 5	35.505 35.487	17.122 17.122	2.566 2.564	30.084 30.082	55.906 55.685
8/14/01 13:25:0	80.58	80.01	79.312	17.12	2.549	30.112	80.751	8/14/01 15:30:0 8/14/01 15:31:0	0 79.66	79.03 79.02	35.461 35.461	17.122 17.122	2.564 2.564	30.082 30.08	55.477 55.282
8/14/01 13:26:0 8/14/01 13:27:0	0 80.57	80 79.99	78.731 79.387	17.118 17.118	2.549 2.549	30.11 30.11	80,643 80,605	8/14/01 15:32:0	0 79.65	79.01	35.43	17.122	2.564	30.082	55.041
8/14/01 13:28:0 8/14/01 13:30:0		79.98 79.96	78.688 79.193	17.118 17.118	2.551 2.551	30.108 30.11	80.788 80.719	8/14/01 15:33:0 8/14/01 15:34:0	0 79.65	79 78.99	35.449 35.442	17.124 17.122	2.564 2.564	30.082 30.084	54.832 54.624
8/14/01 13:31:0 8/14/01 13:32:0	0 80.54	79.95 79.94	79 79.443	17.118 17.118	2.549 2.551	30.108 30.11	80.694 80.567	8/14/01 15:38:0 8/14/01 15:37:0		78.98 78.98	35.436 35.43	17.124 17.124	2.584 2.562	30.08 30. 08	54.409 54.195
8/14/01 13:33:0	0 80.51	79.93 79.93	11.216	17.12	2.551	30.108 30.129	77.447 78.788	8/14/01 15:38:0 8/14/01 15:39:0	0 79.61	78.97 76.97	35.43 35.424	17.124 17.124	2.564 2.562	30.08 30.082	53.992 53.778
8/14/01 13:34:0 8/14/01 13:38:0	0 80.48	79.91	37.994	17.12	2.551	30.121	77.953	8/14/01 15:40:0	0 79.58	78.97	35.417	17.126 17.128	2.564 2.562	30.08 30.078	53.569 53.361
8/14/01 13:37:0 8/14/01 13:38:0	0 80.46	79.91 79.9	36.189 36.27	17.12 17.122		30.11 30.092	77.688 77.308	8/14/01 15:42:0 8/14/01 15:43:0	0 79.58	78.96 78.95	35.411 35.405	17.128	2.584	30.08	53.146
8/14/01 13:39:0 8/14/01 13:40:0	0 80.45	79.9 79.89	36.426 36.295	17.122 17.122		30.102 30.098	77.017 78.732	8/14/01 15:44:0 8/14/01 15:45:0		78.95 78.95	35,405 35,393	17.128 17.128	2.564 2.562	30.082 30.08	52.938 52.729
8/14/01 13:42:0 8/14/01 13:43:0	0 80.41	79.88 79.87	36.289 36.258	17.124 17.124	2.553	30.098 30.1	76.48 76.207	8/14/01 15:46:0 8/14/01 15:48:0	0 79.54	78.94 78.92	35,386 35,38	17.131 17.131	2.562 2.564	30.078 30.08	52.521 52.319
8/14/01 13:44:0	0 80.39	79.86	36.233	17.124	2.555	30.1	75.947	8/14/01 15:49:0 8/14/01 15:50:0	0 79.52	78.91 78.9	35.343 35.386	17.131 17.131	2.564 2.562	30.076 30.078	52.11 51.908
8/14/01 13:45:0 8/14/01 13:46:0	0 80.36	79.85 79.84	38.195 36.171	17.126 17.124	2.557	30.1 30.098	75.707 75.447	8/14/01 15:51:0	0 70.51	78.88	35.38	17.128	2.562	30.08	51.7
8/14/01 13:48:0 8/14/01 13:49:0		79.82 79.81	36.139 36.115	17.124		30.1 30.1	75.194 74.941	8/14/01 15:52:0 8/14/01 15:54:0	0 79.49	78.87 78.85	35.388 35.374	17.128 17.126	2.562 2.562	30.078 30.076	51.498 51.296
8/14/01 13:50:0 8/14/01 13:51:0	0 80.36	79.8 79.79	36.083 36.071	17.122 17.124	2.557	30.102 30.104	74.688 74.448	8/14/01 15:55:0 8/14/01 15:58:0	0 79.48	78.84 78.83	35.381 35.361	17.126 17.128	2.562 2.562	30.076 30.072	51.087 50.885

.

.

	Date/Time	Downhole Pressure (psi)	Downhole Temperature (deg F)	Wellhead Pressure (psi)	Upper Monitor Prassure (psi)	Lower Monitor Pressure (psi)	Barometric Pressure (inchs Hg)	Annular Pressure (psi)	Date/Time	Downhole Pressure (psi)	Downhole Temperature (deg F)	Wellhead Pressure (psi)	Upper Monitor Pressure (psi)	Lower Monitor Pressure (psi)	Barometric Pressure (inchs Hg)	Annular Pressure (psi)
Pred Pred <th< td=""><td>8/14/01 16:00:00</td><td>79.45</td><td>78.8</td><td>35.337</td><td>17.128</td><td>2.562</td><td>30.074</td><td>50.279</td><td>8/14/01 18:04:00</td><td>78.85</td><td>77.96</td><td>34.938</td><td>17.129</td><td>2.566</td><td>30.07</td><td>31.875</td></th<>	8/14/01 16:00:00	79.45	78.8	35.337	17.128	2.562	30.074	50.279	8/14/01 18:04:00	78.85	77.96	34.938	17.129	2.566	30.07	31.875
Heidel Med No. o. No. N	8/14/01 16:02:00	79.44	78.79	35.343	17.131	2.562	30.076	49.875	8/14/01 18:07:00	78.64	77.95	34.932	17.131	2.566	30.074	31.566
etted:international	8/14/01 16:04:00	79.43	78.78	35.33	17.131	2.582	30.072	49.471	8/14/01 18:09:00	78.63	77.94	34.92	17.133	2.564	30.072	31.263
deed: bited: bited: </td <td>8/14/01 16:07:00</td> <td>79.41</td> <td>78.78</td> <td>35.324</td> <td>17.131</td> <td>2.562</td> <td>30.078</td> <td>49.073</td> <td>8/14/01 18:12:00</td> <td>78.61</td> <td>77.92</td> <td>34.913</td> <td>17.133</td> <td>2.562</td> <td>30.072</td> <td>30.967</td>	8/14/01 16:07:00	79.41	78.78	35.324	17.131	2.562	30.078	49.073	8/14/01 18:12:00	78.61	77.92	34.913	17.133	2.562	30.072	30.967
def 1 is an antise is an antise is an antise is an antise is antit antise is antise is antit antit antise is antit antise is antit	8/14/01 16:09:00	79.39	78,77	35.312	17.131	2.56	30.078	48.676	8/14/01 18:14:00	78.6	77.9	34.907	17.133	2.562	30.072	30.664
ethed ethed <td>8/14/01 16:12:00</td> <td></td> <td></td> <td></td> <td>17.129</td> <td></td>	8/14/01 16:12:00				17.129											
Hend Link Link <thlink< th=""> Link Link <thl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thl<></thlink<>																
ethel ethel <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																
Hiele 16200 P.77 P.88 J.572 P.170 J.58 P.180			78.71	35,281		2.558	30.078	47.306	8/14/01 18:22:00	78.52	77.86	34.882	17.131	2.56	30.07	29.643
differ differ<	8/14/01 16:20:00	79.27	78.69	35.274	17.122	2.558	30.082	46.914	8/14/01 18:25:00	78.5	77.86	34.882	17.129	2.56	30.072	29.366
Hele Hele	8/14/01 16:22:00	79.28	78.67	35.268	17.12	2.558	30.08	46.529	8/14/01 18:27:00	78.49	77.86	34.864	17.129	2.558	30.074	29.082
Hardi (12710) 7.8.2 7.8.4 7.8.4 7.8.4 7.8.4 7.8.4 7.8.4 7.8.1 2.8.5 30.07 28.55 HARDI (12700) 7.2.5 7.8.4 33.211 7.8.4 30.01 4.1.01 32.01 2.8.5 30.01 4.1.01 32.01 2.8.5 30.01 4.1.01 32.01 2.8.5 30.01 4.1.01 32.01 2.8.5 30.01 4.1.01 32.01 2.8.5 30.01 4.1.01 32.01 2.8.5 30.01 4.1.01 30.01 4.1.01 30.01 4.1.01 30.01 4.1.01 30.01 4.1.01 30.01 4.1.01 30.01 4.1.01 30.01 4.1.01 30.01 4.1.01 30.01 4.1.01 30.01 4.1.01	8/14/01 16:25:00	79.27	78.64	35.256	17.124	2.558	30.08	46.138	8/14/01 18:30:00	78.47	77.85	34.864	17.131	2.558	30.072	28.792
Heldel 18200 P.22 P.23 P.24 P.23 P.24 P.24 P.23 P.24 P.24 P.25	8/14/01 16:27:00	79.25	78.62	35.249	17.128	2.558	30.08	45.765	8/14/01 18:32:00	78.45	77.83	34.857	17.131	2.558	30.072	28.502
Middi Middi Sizeli 7.22 7.29 3.221 7.73 3.440 7.74 7.74 3.460 7.15 2.263 3.007 7.74 Middi 15300 7.14 2.77 3.460 7.74 3.460 7.74 3.460 7.74 3.460 7.77	8/14/01 16:30:00	79.23	78.59	35.243	17.124	2.558	30.078	45.38	8/14/01 18:34:00	78.43	77.81	34.845	17.131	2.558	30.07	28.225
Ideal Ideal <th< td=""><td>8/14/01 16:32:00</td><td>79.22</td><td>78.59</td><td>35.231</td><td>17,128</td><td>2.558</td><td>30.082</td><td>45.002</td><td>8/14/01 18:37:00</td><td>78.41</td><td>77.78</td><td>34.845</td><td>17.131</td><td>2.558</td><td>30.072</td><td>27.941</td></th<>	8/14/01 16:32:00	79.22	78.59	35.231	17,128	2.558	30.082	45.002	8/14/01 18:37:00	78.41	77.78	34.845	17.131	2.558	30.072	27.941
Hilden 113-00 P19-10 P368 S221 P123 P234 P124	8/14/01 16:34:00	79.21	78.59	35.225	17.128	2.558	30.074	44.623		78.4						
IIII 001 IIII 001 IIII 001 IIII 001 IIII 001 IIII 001 IIII 001 IIII 001 IIII 001 IIIII 001 IIIIIIII 001 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	8/14/01 16:37:00	79.19														
bitesi bitesi<																
MI401 MI401 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>26.971</td></th<>																26.971
Hindii Hesso 77.12 77.84 34.00 77.25 34.00 77.25 34.00 77.25 34.00 77.25 34.00 77.25 34.00 77.25 34.00 77.25 34.00 77.25 34.00 77.25 34.00 77.25 34.00 77.25 34.00 77.25 34.00 77.25 34.00 77.25 34.00 77.25 34.00 77.25 34.00 35.00 34.00 35.00 34.00 35.00 34.00 35.00 34.00 35.00 34.00 35.00 34.00 35.00 34.00 35.00 34.00								43.323			77.7	34.814	17.128	2.557	30.074	26.694
Hideli B4800 7966 78.44 55.17 71.12 25.67 30.074 25.87 30.074 26.87 30.074 26.87 <th< td=""><td></td><td></td><td>78.47</td><td>35.187</td><td>17.129</td><td>2.558</td><td>30.08</td><td>42.951</td><td>8/14/01 18:50:00</td><td>78.34</td><td>77.68</td><td>34.808</td><td>17.128</td><td>2.557</td><td>30.072</td><td>26.423</td></th<>			78.47	35.187	17.129	2.558	30.08	42.951	8/14/01 18:50:00	78.34	77.68	34.808	17.128	2.557	30.072	26.423
uH UH <thuh< th=""> UH UH <thu< td=""><td>8/14/01 16:48:00</td><td>79.09</td><td>78.44</td><td>35.175</td><td>17.131</td><td>2.56</td><td>30.084</td><td>42.591</td><td>8/14/01 18:52:00</td><td>78.33</td><td>77.66</td><td>34.801</td><td>17.128</td><td>2.557</td><td>30.074</td><td>26.158</td></thu<></thuh<>	8/14/01 16:48:00	79.09	78.44	35.175	17.131	2.56	30.084	42.591	8/14/01 18:52:00	78.33	77.66	34.801	17.128	2.557	30.074	26.158
uf+det 16 17.40 16.27.00 77.63 37.76 17.76 17.28 28.75 30.77 17.85 37.76 17.85 37.76 17.85 37.76 17.85 37.76 17.85 37.76 17.85 37.76 17.85 37.76 17.82 25.85 30.77 35.78 17.78 37.78 37.78 37.78 37.78 37.78 37.78 37.78 37.78 37.78 37.78 37.78 <t< td=""><td>8/14/01 16:50:00</td><td>79.08</td><td>78.43</td><td>35.175</td><td>17.131</td><td>2.558</td><td>30.082</td><td>42.225</td><td>8/14/01 18:55:00</td><td>78.31</td><td>77.64</td><td>34.789</td><td>17.128</td><td>2.557</td><td>30.074</td><td>25.887</td></t<>	8/14/01 16:50:00	79.08	78.43	35.175	17.131	2.558	30.082	42.225	8/14/01 18:55:00	78.31	77.64	34.789	17.128	2.557	30.074	25.887
u14001 1155500 78.4 35.152 71.158 2.58 30.04 41.308 u1401 1180000 72.38 77.82 34.776 17.182 2.585 50.074 25.325 M1401 165000 70.05 74.4 35.151 17.182 2.585 30.074 2.523 M1401 165000 70.05 74.4 35.151 17.128 2.565 30.074 2.523 M1401 163700 70.05 74.4 35.151 17.128 2.565 30.074 4.461 M1401 170.050 70.07 74.39 35.151 17.128 2.562 30.084 44.051 844.401 109700 72.64 77.55 34.761 17.124 2.553 30.078 24.47 M1401 70.00 78.07 77.54 34.761 17.124 2.553 30.078 24.47 M1401 70.00 78.07 78.34 77.54 34.731 17.124 2.553 30.078 24.48 M1401 71.60 78.64 77.54 34.731 17.124 2.553	8/14/01 16:52:00	79.06	78.41	35,168	17.128	2.56	30.082	41.865	8/14/01 18:57:00	78.3	77.63	34.776	17.128	2.555	30.076	25.616
uHuden 11827:00 78.4 33.51 71.128 2.58 30.00 41.140 uHuden 1180:200 72.27 77.81 34.775 17.128 2.585 30.074 24.881 uHuel 11827:00 70.60 78.41 33.184 17.128 2.585 30.074 24.828 uHuel 11827:00 78.01 78.43 35.131 17.128 2.555 30.074 24.828 uHuel 11827:00 78.01 78.34 77.11 34.776 17.124 2.555 30.074 24.428 uHuel 1170:00 78.07 78.07 34.776 17.124 2.555 30.076 24.468 uHuel 1170:00 78.07 77.57 34.776 17.124 2.555 30.076 24.168 uHuel 1170:00 78.07 77.57 34.776 17.124 2.555 30.076 24.168 uHuel 1170:00 78.07 77.57 34.776 17.124 2.551 30.076 24.86 uHuel 1170:00 78.67 73.53 34.727 17.124 2.513 30.076 24.862 uHuel 1170:00 74.68	8/14/01 16:55:00	79.05	78.4	35.162	17.129	2.58	30.08	41.508	8/14/01 19:00:00	78.29	77.62	34.776	17.128	2.555	30.074	25.351
uHu60 17000 78.03 78.4 35.147 17.129 2.565 30.074 24.280 uHu61 77.00 78.29 77.69 34.775 17.129 2.555 30.074 24.702 uHu61 77.107 78.29 77.69 34.717 17.124 2.565 30.074 24.702 uHu61 77.200 78.90 34.751 77.124 2.565 30.074 24.702 uHu61 77.200 78.50 34.751 17.124 2.565 30.076 24.441 UHu61 77.80 34.751 77.124 2.555 30.076 24.441 UHu61 77.80 77.81 34.751 17.124 2.555 30.076 24.861 UHu61 77.80 77.81 34.751 77.124 34.751 77.124 34.751 77.124 34.751 77.124 34.751 77.124 34.751 77.124 34.751 77.124 34.751 77.124 34.751 77.124 34.751 77.124 34.751 77.124 34.751 77.124 34.751 77.124 <th< td=""><td>8/14/01 18:57:00</td><td>79.05</td><td>78.4</td><td>35.15</td><td>17.128</td><td>2.56</td><td>30.08</td><td>41.146</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	8/14/01 18:57:00	79.05	78.4	35.15	17.128	2.56	30.08	41.146								
uH401 178.20 78.24 77.53 34.751 17.129 25.53 30.076 24.244 uH401 77.57 34.751 17.129 25.53 30.076 24.344 uH401 77.57 34.751 17.124 25.53 30.076 24.344 uH401 77.57 34.751 17.124 25.53 30.076 24.344 uH401 77.57 34.751 17.124 25.53 30.076 24.186 uH401 77.58 34.751 17.124 25.55 30.077 24.186 uH401 77.50 34.751 17.124 25.55 30.077 24.86 uH401 77.53 34.727 17.124 25.51 30.078 24.86 uH401 77.53 34.727 17.122 25.51	8/14/01 17:00:00	79.03	78.4	35.144	17.128	2.58										
BH401 P1400 P260 P320 P1401 P1400 P220 P1475 P1478 P1	8/14/01 17:02:00															
bit 401 17.0000 78.28 77.56 34.751 17.124 2553 30.076 24.86 bit 401 17.000 78.97 77.38 35.119 17.131 2562 30.08 39.733 39.1401 191.1000 76.27 77.54 34.733 17.124 2553 30.076 24.86 bit 401 17.000 78.37 73.35 35.119 17.131 2564 30.08 39.733 39.1401 191.200 77.54 34.723 17.124 25.81 30.076 24.86 bit 401 17.300 78.85 78.35 35.100 17.133 25.84 30.08 30.233 bit 401 1181:500 78.18 77.23 34.727 17.122 25.81 30.076 23.462 bit 401 17.1000 78.89 78.33 35.11 17.133 25.84 30.08 38.622 814.01118.1500 78.18 77.51 34.721 17.12 25.84 30.08 23.625 bit 401 17.2000 78.83 78.33 35.11 17.133 25.84 30.088 35.23 814.01182.200 78.18 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>24.444</td></th<>																24.444
bit 4001 17.0800 78.27 77.54 34.733 17.124 2.581 30.076 2.38.68 bit 4001 17.080 78.98 78.35 33.106 17.133 2.564 30.08 38.28 bit 4011 17.130 2.641 30.076 2.38.68 bit 4001 17.100 78.87 78.33 37.27 17.122 2.551 30.076 2.38.68 bit 4001 17.100 78.87 78.33 37.27 17.122 2.551 30.076 2.38.68 bit 4001 17.100 78.87 78.33 31.71 17.133 2.564 30.08 38.622 Bit 4011 18.100 76.18 37.27 37.72												34.751	17.124	2.553	30.076	24.188
bit 101 17.100 78.46 78.45 35.100 17.13 2.564 30.08 39.033 bit 101 17.15 34.727 17.122 2.551 30.078 2.3556 bit 101 17.130 7.64 7.610 77.61 77.52 34.727 17.122 2.551 30.078 2.3556 bit 101 7.610 77.53 34.727 17.122 2.551 30.078 2.3423 bit 101 7.610 7.633 35.64 17.133 2.564 30.08 38.662 Bit 101 101.02.00 78.17 77.51 34.727 17.122 2.661 30.08 2.2674 bit 101 78.07 78.87 35.064 17.131 2.564 30.08 38.445 Bit 101 12.100 78.14 77.5 34.727 17.12 2.551 30.076 22.074 bit 101 78.87 78.268 30.767 17.112 2.551 30.076 22.074 bit 101 78.49 78.453 78.43						2.564	30.08	39.556	8/14/01 19:13:00	78.2	77.54	34.733	17.124	2.551	30.076	23.934
bit 101 17:100 76.84 76.22 35.1 17.133 2.564 300.68 38.802 bit 101 11:000 76.18 77.52 34.727 17.122 2.561 300.08 22.261 814401 17:1500 78.83 78.3 35.044 17.133 2.564 300.8 38.522 814401 11:000 78.11 77.51 34.727 17.12 2.549 300.8 22.298 33.45 814401 11:000 78.16 77.51 34.721 17.12 2.549 300.8 22.298 34.1401 17.1600 78.8 77.52 34.72 17.12 2.551 30.076 22.828 30.161 77.50 34.72 17.12 2.551 30.076 22.828 30.117 34.44 91.4101 12:200 78.13 77.51 34.72 17.12 2.551 30.078 22.474 814401 17:200 78.88 78.24 34.72 17.12 2.551 30.078 37.44 61.4011 18:200 76.14 77.53 34.730 17.122 2.551 30.078 2.744 84.831 17.122 2.551 30.078 2.744 84.831 17.122 </td <td>8/14/01 17:10:00</td> <td></td> <td>78.35</td> <td>35.106</td> <td>17.133</td> <td>2.564</td> <td>30.08</td> <td>39.203</td> <td>6/14/01 19:15:00</td> <td>78.19</td> <td>77.53</td> <td>34.727</td> <td>17.122</td> <td>2.551</td> <td>30.076</td> <td>23.682</td>	8/14/01 17:10:00		78.35	35.106	17.133	2.564	30.08	39.203	6/14/01 19:15:00	78.19	77.53	34.727	17.122	2.551	30.076	23.682
eH140117:500 78.83 78.3 35.094 17.133 2.564 30.06 38.222 eH140117:5200 78.17 77.51 34.727 77.12 2.549 30.076 23.758 8/H401117:800 78.9 78.27 35.088 17.131 2.564 30.062 38.8175 eH140119:2200 78.15 77.51 34.726 77.12 2.551 30.076 22.88 8/H401117:800 78.9 78.23 35.075 17.13 2.564 30.076 37.44 8/H40119:2500 78.14 77.5 34.726 17.12 2.551 30.076 22.85 8/H401117:200 78.87 76.24 35.056 17.12 2.564 30.078 37.44 8/H40119:2500 78.14 77.5 34.689 17.12 2.551 30.082 22.654 8/H401117:2500 78.81 77.82 34.680 17.122 2.564 30.078 37.494 8/H40119:2500 78.14 77.49 34.689 17.122 2.551 30.082 22.176 8/H40117:2500 78.81 77.83 74.64 34.681 17.122 <td< td=""><td>8/14/01 17:13:00</td><td>78.94</td><td>78.33</td><td>35.1</td><td>17.133</td><td>2.564</td><td>30.08</td><td>38.862</td><td>8/14/01 19:18:00</td><td>78.18</td><td>77.52</td><td>34.727</td><td>17.122</td><td>2.551</td><td>30.078</td><td>23.423</td></td<>	8/14/01 17:13:00	78.94	78.33	35.1	17.133	2.564	30.08	38.862	8/14/01 19:18:00	78.18	77.52	34.727	17.122	2.551	30.078	23.423
efri401 17:800 78.9 78.27 35.088 17:131 25.64 30.08 38.175 14401 19.2200 78.15 34.72 17.12 2.551 30.076 22.085 8/1401 17:000 78.89 78.28 35.075 17.13 2.564 30.076 22.64 8/1401 17:200 78.89 78.28 35.066 17.13 2.564 30.076 22.654 8/1401 17:200 78.87 78.24 35.066 17.12 2.554 30.076 22.322 8/1401 17:200 78.87 78.24 35.066 17.12 2.554 30.076 22.322 8/1401 17:200 78.87 78.22 35.066 17.13 2.564 30.076 37.453 8/1401 192.200 78.13 77.49 34.689 17.12 2.551 30.062 22.026 8/1401 17:200 78.83 78.2 35.068 17.131 2.568 30.076 38.825 6/1401 193.00 76.12 77.47 34.689 17.122 2.553 30.076 21.4	8/14/01 17:15:00	78.93	78.3	35.094	17.133	2.564	30.08	38.522	8/14/01 19:20:00	78.17	77.51	34.727	17.12	2.549	30.076	23.178
bf1401 172.000 78.89 78.29 35.075 17.129 2.564 30.078 37.44 07.401 172.55 34.733 17.122 2.551 30.08 22.654 014001 172.200 78.87 78.22 35.069 17.121 2.564 30.078 37.494 04401 192.000 78.14 77.5 34.768 17.122 2.551 30.08 22.644 014001 172.200 78.85 78.22 35.068 17.129 2.584 30.078 37.323 814001 192.000 78.14 77.49 34.683 17.122 2.551 30.082 22.176 014001 172.200 78.85 78.21 35.056 17.131 2.586 30.078 36.869 81401 193.000 78.12 77.47 34.683 17.122 2.553 30.076 21.8655 81401 193.00 78.12 77.47 34.683 17.128 2.553 30.076 21.867.44 193.00 78.12 77.47 34.683 17.128 2.555 30.076 21.874 34.441 193.00 78.12 77.	8/14/01 17:18:00	78.9	78.27	35.088	17,131	2.564	30.08	38.175	8/14/01 19:22:00	78.15	77.51	34.72	17.12	2.551	30.08	22.928
9/14(01) 17.2200 78.87 72.44 35.069 17.129 2.564 30.078 37.494 8/14(01) 19.2700 78.14 77.5 34.689 17.12 2.551 30.078 22.402 8/14(01) 17.2500 78.85 78.22 35.068 17.129 2.588 30.078 37.133 8/14(01) 19.30:00 78.13 77.46 34.689 17.122 2.553 30.078 22.176 8/14(01) 17.200 78.83 78.21 35.069 17.131 2.568 30.076 38.825 6/14(01) 19.30:00 78.12 77.46 34.689 17.124 2.553 30.076 2.1847 8/14(01) 17.300 78.82 78.19 35.098 17.131 2.566 30.08 36.461 6/14(01) 19.30:00 78.11 77.46 34.689 17.122 2.553 30.078 2.1477 8/14(01) 17.30 78.08 77.41 34.689 17.122 2.553 30.078 2.1477 8/14(01) 17.300 78.82 78.18 35.038 17.133 2.568	8/14/01 17:20:00	78.89	78.28	35.075	17.129	2.564	30.078	37.84	8/14/01 19:25:00	78.14	77.5	34.733	17.122	2.551	30.076	22.674
al/401 17.2500 78.85 78.22 35.056 17.129 2.568 30.078 37.153 21/401 19.30.06 78.13 77.46 34.683 17.122 2.553 30.062 22.176 8/1401 17.200 78.83 78.21 35.056 17.112 2.568 30.076 38.855 8/1401 19.30.07 78.12 77.47 34.688 17.124 2.553 30.076 21.843 8/1401 17.3000 78.82 78.19 35.056 17.131 2.566 30.08 36.655 8/1401 19.30.07 78.112 77.47 34.683 17.128 2.553 30.078 21.847 8/1401 17.3000 78.82 78.18 35.038 17.131 2.568 30.074 33.183 8/1401 19.300 78.11 77.43 34.664 17.128 2.555 30.078 21.897 8/1401 17.300 78.62 78.18 35.038 17.133 2.568 30.076 35.835 8/1401 19.300 78.04 77.13 34.627 17.128 2.555 30.076 21	8/14/01 17:22:00	78.87	78.24	35.069	17.129	2.564	30.078	37.494	8/14/01 19:27:00	78.14	77.5	34.689	17.12	2.551		
bit 4001 17.2000 78.84 78.21 35.086 17.131 2.586 30.078 38.825 81/4001 19.3100 78.13 77.46 34.680 17.124 2.553 30.078 22.056 61/4001 17.2200 78.83 76.21 35.094 17.129 2.566 30.076 38.825 81/4001 19.3200 78.12 77.47 34.680 17.128 2.553 30.076 21.847 61/4001 17.3000 78.62 78.18 35.038 17.131 2.566 30.067 38.183 81/4001 19.3000 78.11 77.44 34.691 17.128 2.555 30.078 21.897 81/4001 17.3300 78.62 78.16 35.038 17.133 2.568 30.076 35.899 81/401 19.3600 76.06 77.43 34.691 17.128 2.555 30.076 21.897 81/4001 17.300 78.82 78.16 35.025 17.13 2.568 30.076 35.894 81/401 19.400 76.06 77.33 34.627 17.128 2.555 30.076	8/14/01 17:25:00	78.85	78.22	35.056	17.129	2.566	30.078	37.153	8/14/01 19:30:00	78.13	77.49	34.683	17.122	2.553		
6/14/01 17.28:00 78.83 78.2 35.05 17.131 2.566 30.06 36.855 6/14/01 19:30:00 78.11 77.47 34.633 17.126 2.553 30.074 21.817 6/14/01 17:31:00 78.82 78.18 35.038 17.133 2.568 30.06 36.32 8/14/01 19:30:00 78.11 77.46 34.691 17.126 2.555 30.078 21.697 8/14/01 17:33:00 78.82 78.18 35.038 17.133 2.568 30.076 35.698 8/14/01 19:38:00 78.08 77.41 34.691 17.128 2.555 30.076 21:338 8/14/01 17:33:00 78.82 78.18 35.025 17.131 2.568 30.076 35.835 8/14/01 19:8:00 78.08 77.41 34.627 17.128 2.555 30.076 21:225 8/14/01 17:33:00 78.18 35.019 17.131 2.568 30.076 35.644 8/14/01 19:4:00 78.04 77.37 34.627 17.128 2.555 30.076 25.648 <td>8/14/01 17:27:00</td> <td>78.83</td> <td>78.21</td> <td>35.044</td> <td>17.129</td> <td>2.566</td> <td>30.076</td> <td>36.825</td> <td>8/14/01 19:32:00</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>30.076</td> <td>22.056</td>	8/14/01 17:27:00	78.83	78.21	35.044	17.129	2.566	30.076	36.825	8/14/01 19:32:00						30.076	22.056
b/1401 17.31:00 78.42 78.48 35.038 17.133 2.568 30.07 36.132 8/1401 19.38:00 78.17 77.43 34.691 17.128 2.555 30.078 21.697 8/1401 17.3200 78.82 78.16 35.038 17.133 2.568 30.074 35.999 8/1401 19.38:00 78.05 77.41 34.691 17.128 2.555 30.076 21.494 8/1401 17.3300 78.82 78.16 35.038 17.133 2.568 30.076 35.895 8/1401 19.38:00 78.07 77.4 34.691 17.128 2.555 30.076 21.697 8/1401 17.3100 78.81 78.14 35.025 17.133 2.568 30.076 35.895 8/1401 19.300 78.04 77.33 34.627 17.128 2.555 30.076 20.895 8/1401 19.42:00 78.04 77.35 34.627 17.128 2.555 30.076 20.895 8/1401 19.42:00 78.04 77.35 34.627 17.128 2.555 30.076 20.832	8/14/01 17:30:00	78.82	78.19	35.038	17.131	2.566					77.47	34.633	17.126	2.553	30.074	21.817
B/14(01) 17:33:00 78.62 78.17 35.019 17.133 2.568 30.076 35.999 B/14(01 19:36:00 78.08 77.41 34.852 17.128 2.555 30.076 21.338 B/14(01 17:36:00 78.81 78.15 35.025 17.131 2.568 30.076 35.855 B/14(01 19:36:00 78.06 77.33 34.627 17.128 2.555 30.076 21.225 B/14(01 17:36:00 78.1 78.11 78.14 35.025 17.131 2.568 30.076 35.507 B/14(01 19:40:00 78.06 77.37 34.427 17.128 2.555 30.076 20.985 B/14(01 17:36:00 78.01 77.31 34.427 17.128 2.555 30.076 20.985 B/14(01 17:36:00 78.01 77.34 34.627 17.128 2.555 30.076 20.985 B/14(01 17:42:00 78.8 78.1 34.991 17.128 2.568 30.076 35.021 B/14(01 19:4:00 78.04 77.33 34.612 17.128 2.555 30.078 20.933 B/14(01 17:4:00 78.77 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>8/14/01 19:36:00</td> <td>78.1</td> <td>77.44</td> <td>34.671</td> <td>17.128</td> <td>2.555</td> <td>30.078</td> <td>21.577</td>									8/14/01 19:36:00	78.1	77.44	34.671	17.128	2.555	30.078	21.577
b/14001 17:36:00 78.81 78.14 35.025 17.131 2.568 30.076 35.884 b/14001 19:40:00 78.06 77.39 34.827 17.128 2.555 30.076 21.099 b/14001 17:37:00 78.81 78.14 35.025 17.133 2.568 30.076 35.507 b/14001 19:42:00 76.04 77.37 34.627 17.128 2.555 30.076 20.985 b/14001 17:39:00 78.81 78.13 35.019 17.133 2.568 30.076 35.343 b/14011 19:42:00 78.04 77.35 34.462 17.128 2.555 30.076 20.985 b/14001 17:30:00 78.8 78.13 35.019 17.131 2.568 30.076 35.435 b/140119:45:00 78.04 77.33 34.615 17.126 2.555 30.078 20.683 b/14001 17:42:00 78.77 78.09 35.019 17.129 2.568 30.076 34.857 b/140119:45:00 78.03 77.33 34.615 17.126 2.555 30.078 20.383					17.133	2.568	30.074	35.999	8/14/01 19:38:00	78.08	77.41	34.652	17.128	2.555	30.078	21.338
a/14/00117.38:00 78.81 78.13 35.019 17.131 2.568 30.076 35.343 b/14/0119.43:00 78.04 77.36 34.484 17.126 2.555 30.076 20.866 b/14/0117.39:00 78.8 78.13 35.019 17.131 2.568 30.076 35.179 b/14/0119.44:00 78.04 77.35 34.454 17.126 2.555 30.076 20.866 b/14/0117.40:00 78.8 78.12 35.019 17.131 2.568 30.076 35.021 b/14/0119.46:00 78.03 77.33 34.615 17.126 2.555 30.078 20.833 b/14/0117.45:00 78.78 78.09 35 17.129 2.568 30.076 34.536 b/14/01 19:46:00 78.01 77.31 34.461 17.126 2.555 30.078 20.393 37.141 34.660 78.01 77.31 34.661 17.126 2.555 30.078 20.383 b/14/0117.45:00 78.77 78.09 35 17.129 2.568 30.072 34.536 b/14/01 19:46:00 78.01 77.31 34.656 17.126	8/14/01 17:36:00	78.81	78.15	35.025	17.131	2.568	30.076	35.664	8/14/01 19:40:00	78.06	77.39	34.627	17.128	2.555	30.076	21.099
d/14/011740:00 78.8 78.12 35.013 17.131 2.588 30.078 35.021 8/14/01 19.45:00 78.03 77.34 34.827 17.126 2.555 30.078 20.633 8/14/01 17/40:00 78.79 78.1 34.994 17.129 2.568 30.074 34.857 6/14/01 19.46:00 78.03 77.33 34.615 17.128 2.555 30.078 20.519 8/14/01 17/43:00 78.77 78.09 35.017 17.129 2.568 30.074 34.77 8/14/01 19.46:00 78.01 77.31 34.4633 17.124 2.555 30.068 20.289 8/14/01 17/45:00 78.77 78.09 35 17.129 2.568 30.074 34.527 8/14/01 19:50:00 77.91 77.31 34.633 17.126 2.557 30.068 20.28 8/14/01 17:46:00 78.75 78.07 34.994 17.129 2.568 30.074 34.324 6/14/01 19:50:00 77.99 77.33 34.556 17.128 2.557 30.08 20.186 8/14/01 17:46:00 78.75 78.07 34.994 17.1	8/14/01 17:38:00	78.81	78.13	35.019	17.131	2.568	30.078	35.343	8/14/01 19:43:00	78.04	77.36	34.484	17.126	2.555	30.076	20.866
B/1400117-43:00 78.78 78.09 35.019 17.129 2.588 30.074 34.7 8/1400119:48:00 78.01 77.31 34.484 17.126 2.555 30.062 20.383 8/14/0117:44:00 78.77 78.09 35 17.129 2.568 30.074 34.57 8/14/0119:48:00 78.01 77.31 34.483 17.124 2.555 30.062 20.383 8/14/0117:45:00 78.76 78.06 35 17.129 2.568 30.072 34.536 8/14/0119:500 77.99 77.31 34.636 17.124 2.557 30.082 20.383 8/14/0117:45:00 78.75 78.07 34.994 17.129 2.568 30.074 34.214 8/14/0119:51:00 77.98 77.3 34.566 17.128 2.558 30.078 20.059 8/14/0117:49:00 78.77 78.06 34.994 17.129 2.568 30.074 33.899 8/14/0119:51:00 77.95 77.29 34.556 17.128 2.558 30.078 19.928 8/14/0117:50:00 78.77 78.07 78.06 34.9976 <	8/14/01 17:40:00	78.8	78.12	35.013	17.131	2.566	30.078	35.021	8/14/01 19:45:00	78.03	77.34	34.627	17.128	2.555	30.078	20.633
b/14/01 17:45:00 78.76 78.08 35 17.129 2.588 30.072 34.372 b/14/01 19:50:00 77.99 77.3 34.596 17.126 2.557 30.078 20.166 b/14/01 17:46:00 78.73 78.07 34.994 17.129 2.568 30.072 34.372 b/14/01 19:50:00 77.99 77.3 34.615 17.126 2.557 30.078 20.166 b/14/01 17:46:00 78.73 78.06 34.994 17.129 2.568 30.072 34.312 b/14/01 19:50:00 77.99 77.3 34.615 17.126 2.557 30.078 20.166 b/14/01 17:45:00 78.77 78.05 34.984 17.128 2.568 30.074 33.899 b/14/01 19:50:00 77.95 77.28 34.563 17.128 2.558 30.078 19.828 17.101 17.50 78.77 78.05 34.984 17.128 2.568 30.074 33.899 b/14/01 19:50:00 77.95 77.28 34.557 17.128 2.558 30.078 19.828 b/14/01 17:50:00 78.77 78.07 78.06 78.07	8/14/01 17:43:00	78.78	78.09	35.019	17.129	2.566	30.074	34.7	8/14/01 19:48:00	78.01	77.31	34.484	17.126	2.555	30.082	20.393
d/1401 17.48:00 78.73 78.06 34.994 17.129 2.588 30.072 34.056 9/1401 19.52:00 77.97 77.28 34.585 17.128 2.557 30.08 19.948 8/1401 17.50:00 78.71 78.05 34.984 17.128 2.568 30.072 34.056 9/1401 19.52:00 77.97 77.28 34.583 17.128 2.557 30.08 19.948 8/1401 17.50:00 78.71 78.05 34.974 33.999 6/1401 19.50:00 77.95 77.28 34.583 17.128 2.558 30.074 19.719 8/1401 17.50:00 78.77 78.04 34.976 17.128 2.568 30.074 33.544 8/1401 19.50:00 77.95 77.27 34.553 17.128 2.558 30.078 19.719 8/1401 17.50:00 78.67 77.86 78.05 77.97 77.28 34.556 17.128 2.557 30.078 19.719 8/1401 17.55:00 78.67 78.68 78.01 34.976 17.128 <t< td=""><td>8/14/01 17:45:00</td><td>78.76</td><td>78.08</td><td>35</td><td>17.129</td><td>2.566</td><td>30.072</td><td>34.372</td><td>8/14/01 19:50:00</td><td>77.99</td><td>77.3</td><td>34.596</td><td>17.126</td><td>2.557</td><td>30.078</td><td>20,186</td></t<>	8/14/01 17:45:00	78.76	78.08	35	17.129	2.566	30.072	34.372	8/14/01 19:50:00	77.99	77.3	34.596	17.126	2.557	30.078	20,186
8/14/01 17.49:00 78.72 78.05 34.988 17.128 2.568 30.078 19.828 8/14/01 17.50:00 78.71 78.04 34.982 17.128 2.568 30.078 19.828 8/14/01 17.50:00 78.71 78.04 34.982 17.128 2.568 30.078 19.828 8/14/01 17.50:00 78.7 78.04 34.982 17.128 2.568 30.078 19.828 8/14/01 17.50:00 78.7 78.04 34.982 17.128 2.568 30.078 19.826 8/14/01 17.50:00 78.7 78.04 34.976 17.129 2.568 30.078 19.826 8/14/01 17.52:00 78.69 78.03 34.976 17.129 2.568 30.073 33.848 8/14/01 19:56:00 77.95 77.26 34.571 17.124 2.557 30.078 19.486 8/14/01 17:55:00 78.68 78.03 34.976 17.128 2.568 30.072 33.111 8/14/01 19:56:00 77.94 77.25 34.555 17.124	8/14/01 17:48:00	78.73	78.06	34.994	17.129	2.568	30.072	34.058	8/14/01 19:52:00	77.97	77.29	34.596	17.128			
8/14(01) 17:51:00 78.7 78.04 34.976 17.129 2.588 30.07 33.584 8/14(01) 19:56:00 77.95 77.27 34.577 17.128 2.558 30.078 19:096 8/14(01) 17:52:00 78.69 78.03 34.976 17.129 2.568 30.068 33.426 8/14(01) 19:57:00 77.94 77.25 34.571 17.126 2.557 30.078 19:486 8/14(01) 17:55:00 78.68 78.01 34.976 17.128 2.568 30.073 33.288 8/14(01) 19:57:00 77.94 77.25 34.571 17.124 2.557 30.078 19:473 8/14(01) 17:55:00 78.68 78.0 74.963 17.129 2.568 30.07 33.288 8/14(01) 20:00:00 77.94 77.25 34.555 17.124 2.557 30.078 19:373 8/14(01) 17:55:00 78.67 77.98 34.993 17.129 2.568 30.072 32:493 <t< td=""><td>8/14/01 17:50:00</td><td>78.71</td><td>78.04</td><td>34.982</td><td>17.128</td><td>2.568</td><td>30.074</td><td>33.741</td><td></td><td></td><td></td><td>34.583</td><td>17.128</td><td>2.558</td><td>30.078</td><td>19.826</td></t<>	8/14/01 17:50:00	78.71	78.04	34.982	17.128	2.568	30.074	33.741				34.583	17.128	2.558	30.078	19.826
B/14/01 17:55:00 78.88 78.01 34.976 17.128 2.568 30.07 33.286 B/14/01 19:58:00 77.94 77.25 34.571 17.124 2.557 30.078 19.373 8/14/01 17:55:00 78.68 78 34.963 17.129 2.568 30.072 33.211 B/14/01 19:58:00 77.94 77.25 34.551 17.124 2.557 30.078 19.373 8/14/01 17:55:00 78.67 77.88 34.963 17.129 2.568 30.072 32.953 8/14/01 10:100 77.94 77.25 34.565 17.124 2.557 30.078 19.159 8/14/01 17:55:00 78.67 77.98 34.963 17.131 2.568 30.072 32.953 8/14/01 20:02:00 77.95 34.565 17.122 2.557 30.078 19.159 8/14/01 15.756:00 78.67 77.96 34.963 17.131 2.568 30.072 32.864 8/14/01 20:03:	8/14/01 17:52:00	78.69	78.03	34.976					8/14/01 19:58:00		77.27	34.577	17.128	2.558	30.078	19.606
8/14/01 17:56:00 78.67 77.98 34.963 17.129 2.568 30.07 32.953 8/14/01 20:100 77.94 77.25 34.565 17.122 2.557 30.078 19.169 8/14/01 17.57:00 78.67 77.96 34.963 17.131 2.568 30.063 32.802 6/14/01 20:02:00 77.95 34.565 17.12 2.557 30.078 19.045 8/14/01 17.57:00 78.67 77.96 34.963 17.131 2.568 30.072 32.644 6/14/01 20:03:00 77.95 77.25 34.565 17.12 2.555 30.078 18.938 8/14/01 18.00:00 78.66 77.95 34.957 17.12 2.555 30.078 18.938 8/14/01 18.00:00 78.66 77.95 34.957 17.129 2.568 30.073 32.486 8/14/01 20:04:00 77.95 77.25 34.555 17.12 2.555 30.078 18.938 8/14/01					17.128	2.566	30.07	33.288	8/14/01 19:58:00	77.94	77.25	34.571	17,124	2.557	30.078	19.373
8/14/01 17:58:00 78.67 77.96 34.957 17.129 2.568 30.072 32.844 8/14/01 20:03:00 77.95 77.25 34.565 17.12 2.555 30.078 18.938 8/14/01 18:00:00 78.66 77.95 34.555 17.12 2.555 30.078 18.938 8/14/01 18:00:00 78.66 77.95 34.555 17.12 2.555 30.08 18.825	8/14/01 17:56:00	78.67	77.98	34.963	17.129	2.568	30.07	32.953	8/14/01 20:01:00	77.94	77.25	34.565	17.122	2.557	30.078	19.159
	8/14/01 17:58:00	78.67	77.96	34.957	17.129	2.568	30.072	32.644	8/14/01 20:03:00	77.95	77.25	34.565	17.12	2.555	30.078	18.938

Date/Time	Downhole Pressure (psi)	Downhole Temperature (deg F)	Weilhead Pressure (psi)	Upper Monitor Pressure (psi)	Lower Monitor Pressure (psi)	Barometric Pressure (inchs Hg)	Annular Pressure (psi)	Date/Time	Downhole Pressure (psi)	Downhole Temperature (deg F)	Wellhead Pressure (psi)	Upper Monitor Pressure (psi)	Lower Monitor Pressure (psi)	Barometric Pressure (inchs Hg)	Annular Pressure (psi)
8/14/01 20:07:00	77.94	77.25	34.546	17.12	2.555	30.08	18.604	8/14/01 22:12:00	77.22	76.5	34.148	17.328	2.547 2.549	30.072 30.072	9.363 9.312
8/14/01 20:08:00 8/14/01 20:09:00	77.93 77.92	77.25 77.25	34.54 34.54	17.12 17.12	2.555 2.555	30.078 30.082	18.497 18.384	8/14/01 22:13:00 8/14/01 22:14:00	77.21 77.21	76.49 76.48	34.142 34.135	17.328 17.328	2.553	30.072	9.256
8/14/01 20:10:00	77.91	77.25	34.527	17.12	2.557	30.082	18.277 18.17	8/14/01 22:15:00 8/14/01 22:16:00	77.2 77.19	78.48 78.47	34.129 34.129	17.322 17.328	2.555 2.555	30.07 30.072	9.149 9.105
8/14/01 20:12:00 8/14/01 20:13:00	77.9 77.89	77.24 77.23	34.527 34.546	17.122 17.122	2.557 2.557	30.082	18.063	8/14/01 22:18:00	77.17	76.46	34.129	17.337	2.551	30.07	9.048
8/14/01 20:14:00 6/14/01 20:15:00	77.88 77.88	77.22 77.21	34.509 34.515	17.126 17.126	2.558 2.558	30.084 30.082	17.956 17.855	8/14/01 22:19:00 8/14/01 22:20:00	77.16 77.15	76.46 76.45	34.123 34.117	17.321 17.322	2.551 2.549	30.07 30.07	8.985 8.891
8/14/01 20:16:00	77.87	77.21	34.509	17.129	2.56	30.082	17.748	8/14/01 22:21:00 8/14/01 22:22:00	77.14 77.12	76.45 76.45	34.117 34.11	17.322 17.337	2.549 2.551	30.066 30.068	8.84 8.778
8/14/01 20:18:00 8/14/01 20:19:00	77.85 77.84	77.19 77.18	34.509 34.503	17.131 17.133	2.562 2.562	30.082 30.082	17.641 17.54	8/14/01 22:24:00	77.11	76.44	34.104	17.336	2.553	30.074	8.689
8/14/01 20:20:00 8/14/01 20:21:00	77.82 77.81	77.17 77.16	34.503 34.496	17.133 17.133	2.562 2.562	30.084 30.08	17.452 17.37	8/14/01 22:25:00 8/14/01 22:26:00	77.11 77.11	76.43 76.42	34.117 34.104	17.326 17.328	2.553 2.551	30.07 30.066	8.627 8.576
8/14/01 20:22:00	77.79	77.15	34.49	17.135	2.562	30.08	17.269	8/14/01 22:27:00	77.11 77.11	76.42 76.41	34.104 34.088	17.336 17.332	2.553 2.555	30.068 30.066	8.475 8.425
8/14/01 20:24:00 8/14/01 20:25:00		77.14 77.13	34.49 34.484	17.137 17.137	2.562 2.562	30.08 30.078	17.156 17.068	6/14/01 22:28:00 8/14/01 22:30:00	77.11	76.4	34.092	17.321	2.557	30.066	8.375
8/14/01 20:26:00 8/14/01 20:27:00	77.76	77.13 77.13	34.484 34.478	17.139 17.1 41	2.562 2.564	30.082 30.078	16.955 16.835	8/14/01 22:31:00 8/14/01 22:32:00	77.11 77.11	76.39 76.39	34.092 34.079	17.332 17.332	2.557 2.56	30.068 30.066	8.274 8.224
8/14/01 20:28:00	77.7 5	77.12	34.478	17.143	2.562	30.08	16.747	8/14/01 22:33:00	77.11	76.38	34.073 34.079	17.326 17.337	2.558 2.564	30.064 30.068	8.18 8.117
8/14/01 20:30:00 8/14/01 20:31:00		77.11 77.1	34.471 34.465	17.143 17.143	2.564 2.562	30.08 30.078	16.627 16.545	8/14/01 22:34:00 8/14/01 22:36:00	77.11 77.1	76.38 76.37	34.073	17.326	2.564	30.062	8.035
8/14/01 20:32:00 8/14/01 20:33:00		77.1 77.09	34.459 34.459	17.144 17.148	2.562 2.58	30.078 30.062	16.438 16.35	8/14/01 22:37:00 8/14/01 22:38:00	77.09 77.09	76.37 76.38	34,079 34,061	17.336 17.315	2.562 2.568	30.068 30.06	7.978 7.922
8/14/01 20:34:00	77.72	77.08	34.447	17.148	2.562	30.08	16.23	8/14/01 22:39:00	77.08	76.36 76.36	34.067 34.061	17.33 17.332	2.573 2.581	30.062 30.062	7.834 7.783
8/14/01 20:36:00 8/14/01 20:37:00	77.71 77.71	77.07 77.08	34.44 34.434	17.148 17.148	2.562 2.582	30.078 30.08	16.149 16.035	8/14/01 22:40:00 8/14/01 22:42:00	77.07 77.05	76.35	34.061	17.33	2.575	30.06	7.733
8/14/01 20:38:00 8/14/01 20:39:00		77.05 77.05	34.434 34.422	17.15 17.152	2.562 2.56	30.08 30.082	15.953 15.84	8/14/01 22:43:00 8/14/01 22:44:00	77.04 77.04	76.34 76.34	34.048 34.042	17.309 17.294	2.57 2,558	30.06 30.06	7.632 7.595
8/14/01 20:40:00		77.04	34.422	17.152	2.56	30.08	15.752	8/14/01 22:45:00	77.03	76.33	34.042	17.298	2.56 2.56	30.055 30.06	7.551 7.444
8/14/01 20:42:00 8/14/01 20:43:00	77.7 77.69	77.02 77.02	34.422 34.415	17.154 17.156	2.558	30.08 30.084	15.639 15.557	8/14/01 22:46:00 8/14/01 22:48:00	77.02 77.01	76.33 78.32	34.048 34.054	17.283 17.294	2.566	30.055	7.393
8/14/01 20:44:00	77.68	77.01	34.415	17.158	2.562	30.08 30.082	15.443 15.362	8/14/01 22:49:00 8/14/01 22:50:00	77 76.99	76.31 76.31	33.974 34.098	17.311 17.328	2.579 2.592	30.06 30.057	7.355 7.261
8/14/01 20:45:00 8/14/01 20:46:00		77 77	34.409 34.409	17.163 17.167	2.564 2.558	30.08	15.248	8/14/01 22:51:00	78.99	76.3	33.998	17.33	2.575	30.053	7.223
8/14/01 20:48:00 8/14/01 20:49:00		76.98 76.98	34,403 34,403	17.171 17.174	2.56 2.562	30.08 30.076	15.173 15.066	8/14/01 22:52:00 8/14/01 22:54:00	76.98 76.97	76.3 76.29	34.042 34.017	17.322 17.313	2.583 2.577	30.06 30.055	7.179 7.123
8/14/01 20:50:00	77.63	76.98	34.397	17.178	2.562	30.08	14.977	8/14/01 22:55:00 8/14/01 22:58:00	76.96 76.96	76.29 76.29	34.023 34.023	17.309 17.298	2.575 2.566	30.06 30.055	7.041 6.997
8/14/01 20:51:00 8/14/01 20:52:00		76.97 76.97	34.391 34.391	17.182 17.185	2.562 2.562	30.082 30.082	14.87 14.782	8/14/01 22:57:00	76.96	76.29	34.017	17.285	2.56	30.055	6.94
8/14/01 20:54:00 8/14/01 20:55:00		76.96 76.95	34.391 34.378	17.191 17.195	2.562 2.562	30.08 30.08	14.713 14.6	8/14/01 22:58:00 8/14/01 23:00:00	76.95 76.95	76.29 76.28	34.017 34.017	17.302 17.294	2.568 2.564	30.055 30.051	6.852 8.821
8/14/01 20:56:00	77.62	76.94	34.378	17,199	2.562	30.082	14.524	8/14/01 23:01:00	76.94 76.94	76.26 76.24	34.017 34.017	17.276 17.262	2.557 2.555	30.055 30.053	8.77 8.676
8/14/01 20:57:00 8/14/01 20:58:00		76.93 76.92	34.378 34.372	17.206 17.214	2.562 2.564	30.08 30.082	14.411 14.329	8/14/01 23:02:00 8/14/01 23:03:00	76.94	76.23	34.005	17.272	2.558	30.051	8.844
8/14/01 21:00:00 8/14/01 21:01:00		76.91 76.91	34.366 34.359	17.225 17.236	2.564 2.568	30.082 30.08	14.222 14.14	8/14/01 23:04:00 8/14/01 23:08:00	76.93 76.93	76.21 76.19	34.011 33.998	17.274 17.298	2.557 2.566	30.051 30.055	6.588 8.544
8/14/01 21:02:00	77.61	76.91	34.359	17.247	2.57	30.08	14.021	8/14/01 23:07:00	76.93	76.19	33.998	17.298 17.321	2.57 2.584	30.053 30.051	6.468 6.418
8/14/01 21:03:00 8/14/01 21:04:00		76.91 76.91	34.378 34.353	17.255 17.262	2.57 2.571	30.082 30.082	13.951 13.876	8/14/01 23:08:00 8/14/01 23:09:00	76.92 76.92	76.19 76.19	33.998 33.992	17.332	2,597	30.051	6.374
8/14/01 21:06:00 8/14/01 21:07:00	77.58	78.89 76.89	34.347 34.347	17.276 17.292	2.571 2.573	30.08 30.084	13.762 13.687	8/14/01 23:10:00 8/14/01 23:12:00	76.92 76.91	76.19 76.19	33.992 33.992	17.326 17.328	2.599 2.557	30.055 30.051	6.292 6.246
8/14/01 21:08:00	77.56	76.88	34.341	17.311	2.575	30.082	13.611	8/14/01 23:13:00	76.91	76.18	33.986	17.328	2.558	30.049 30.051	6.204 6.122
8/14/01 21:09:00 8/14/01 21:10:00		76.87 76.86	34.335 34.335	17.334 17.354	2.577 2.573	30.082 30.082	13.504 13.429	8/14/01 23:14:00 8/14/01 23:15:00	76.9 76.89	76.17 76.17	33.986 33.98	17.319 17.324	2.586	30.049	6.091
8/14/01 21:12:00 8/14/01 21:13:00	77.52	76.84 76.83	34.335 34.322	17.339 17.352	2.581 2,586	30.078 30.082	13.315 13.253	8/14/01 23:16:00 8/14/01 23:18:00	76.89 76.88	78.18 78.15	33.98 33.974	17.322 17.321	2.57 2.577	30.051 30.049	6.04 5.959
8/14/01 21:14:00	77.51	76.82	34.322	17.352	2.592	30.082	13.177	8/14/01 23:19:00	76.87	76.15	33.974	17.321	2.57	30.049	5.934 5.877
8/14/01 21:15:00 8/14/01 21:16:00		76.82 76.81	34.322 34.316	17.358 17.356	2.594 2.597	30.086 30.084	13.064 12.994	8/14/01 23:20:00 8/14/01 23:21:00		76.14 76.14	33.974 33.974	17.322 17.328	2.566 2.566	30.051 30.049	5.789
8/14/01 21:18:00		76.8 76.8	34.303 34.303	17.38 17.352	2.597 2.597	30.082 30.08	12.913 12.812	8/14/01 23:22:00 8/14/01 23:24:00	76.86 76.85	76.13 76.13	33.967 33.967	17.317 17.328	2.581 2.592	30.051 30.049	5.757 5.713
8/14/01 21:19:00 8/14/01 21:20:00	77.46	76.79	34,303	17.358	2.596	30.082	12.73	8/14/01 23:25:00	76.84	76.12	33.967	17.321	2.584	30.051	5.632
8/14/01 21:21:00 8/14/01 21:22:00		76.79 76.79	34.303 34.291	17.352 17.351	2.594 2.594	30.084 30.082	12.681 12.554	8/14/01 23:26:00 8/14/01 23:27:00	76.83 76.82	76.12 76.11	33.961 33.974	17.321 17.321	2.584 2.575	30.049 30.049	5.613 5.569
8/14/01 21:24:00	77.44	76.78	34.291	17.339	2.594	30.08	12.491	8/14/01 23:28:00 8/14/01 23:30:00	76.82 76.81	76.11 76.1	33.967 33.974	17.294 17.247	2.557	30.047 30.051	5.518 5.437
8/14/01 21:25:00 8/14/01 21:26:00		76.77 78.76	34.291 34.285	17.352	2.594	30.082 30.078	12.378 12.315	8/14/01 23:31:00	76.8	76.09	33.961	17.236	2.546	30.053	8.803
8/14/01 21:27:00 8/14/01 21:28:00		76.76 76.75	34.285 34.272	17.345 17.352	2,594 2,597	30.078 30.08	12.201 12.138	8/14/01 23:32:00 8/14/01 23:33:00		76.09 76.08	33.992 33.967	17.249 17.276	2.553 2.568	30.047 30.055	15.267 23.367
8/14/01 21:30:00	77.42	76.74	34.272	17.345	2.599	30.078	12.069	8/14/01 23:34:00	76.79	76.08 76.07	33.98 33.967	17.287 17.296	2.557 2.562	30.043 30.031	32.846 43.475
8/14/01 21:31:00 8/14/01 21:32:00	77.4	76.73 76.73	34.26 34.266	17.338 17.349	2.601 2.588	30.078 30.08	11.949 11.893	8/14/01 23:36:00 8/14/01 23:37:00	76.78	76.06	33.967	17.324	2.577	30.025	54.795
8/14/01 21:33:00 8/14/01 21:34:00	77.4	76.73 76.73	34.26 34.254	17,349 17,337	2.592 2.59	30.082 30.08	11.824 11.723	8/14/01 23:38:00 8/14/01 23:39:00		76.06 76.05	33.961 33.955	17.313 17.326	2.575 2.577	30.015 30.031	66.658 78.883
8/14/01 21:36:00	77.38	76.72	34.254	17.341	2.571	30.08	11.666	8/14/01 23:40:00 8/14/01 23:42:00	78.76	76.04 76.03	33.924 33.987	17.324 17.321	2.584 2.588	30.035 30.039	83.903 83.555
8/14/01 21:37:00 8/14/01 21:38:00	77.37	76.71 76.7	34.254 34.247	17.334 17.349	2.564 2.558	30.078 30.076	11.584 11.49	8/14/01 23:43:00	76.75	76.03	33.949	17.326	2.588	30.037	83.283
8/14/01 21:39:00 8/14/01 21:40:00		76.69 76.69	34.241 34.235	17.349 17.337	2.555 2.553	30.074 30.08	11.414 11.358	8/14/01 23:44:00 8/14/01 23:45:00		76.03 76.02	33.955 33.949	17.321 17.313	2.592 2.594	30.037 30.039	83.023 82.77
8/14/01 21:42:00	77.35	76.67	34.229	17.339	2.547	30.078	11.251	8/14/01 23:46:00 8/14/01 23:48:00	76.73	76.02 76.01	33.949 33.942	17.326 17.326	2.596 2.577	30.039 30.039	82.58 82.358
8/14/01 21:43:00 8/14/01 21:44:00	77.33	76.67 76.66	34.241 34.235	17.334 17.347	2.547 2.547	30.082 30.078	11.188 11.075	8/14/01 23:49:00	76.72	76.01	33.942	17.321	2.581	30.039	82.168
8/14/01 21:45:00 8/14/01 21:46:00	77.32	76.66 76.65	34.222 34.222	17.334 17.337	2.547 2.548	30.076 30.078	11.024 10.955	8/14/01 23:50:00 8/14/01 23:51:00		78 76	33.942 33.936	17.306 17.3	2.56 2.551	30.035 30.037	81.972 81.782
8/14/01 21:48:00	77.31	76.65	34.229	17.345	2.546	30.074	10.854	8/14/01 23:52:00	78.71	76 75.99	33.942 33.936	17.259 17.253	2.54 2.546	30.039 30.041	81.586 81.434
8/14/01 21:49:00 8/14/01 21:50:00		76.64 76.64	34.229 34.21	17.332 17.339	2.548 2.547	30.078 30.074	10.796 10.722	8/14/01 23:54:00 8/14/01 23:55:00	76.69	75.99	33.936	17.247	2.546	30.041	81.263
8/14/01 21:51:00 8/14/01 21:52:00	77.32	76.64 76.64	34.216 34.21	17.337 17.330	2.546 2.546	30.072 30.072	10.621 10.565	8/14/01 23:56:00 8/14/01 23:57:00		75.98 75.98	33.93 33.936	17.238 17.236	2.542 2.54	30.041 30.041	81.08 80.915
8/14/01 21:54:00	77.32	76.63	34.21	17.339	2.546	30.072	10.508	8/14/01 23:58:00	76.67	75.98	33.93	17.203	2.529	30.039	80.776
8/14/01 21:55:00 8/14/01 21:56:00		76.63 76.62	34.204 34.198	17.343 17.339	2.547 2.547	30.072 30.074	10.401 10.338	8/15/01 8/15/01 00:01:00		75.97 75.98	33.93 33.924	17.204 17.203	2.534 2.527	30.041 30.039	80.605 80.434
8/14/01 21:57:00	77.3	76.61 76.61	34.185 34.191	17.343 17.33	2.549 2.549	30.074 30.068	10.275 10.181	8/15/01 00:02:00 8/15/01 00:03:00	76.68	75.95 75.96	33.924 33.924	17.204 17.199	2.527 2.527	30.039 30.039	80.295 80.13
8/14/01 21:58:00 8/14/01 22:00:00	77.27	76.59	34.185	17.336	2.547	30.072	10.118	8/15/01 00:04:00	78.88	75.94	33.924	17.208	2.534	30.039	79.997
8/14/01 22:01:00 8/14/01 22:02:00		76.58 76.57	34.173 34.185	17.336 17.337	2.549 2.547	30.072 30.07	10.055 9.961	8/15/01 00:06:00 8/15/01 00:07:00		75.93 75.92	33.918 33.918	17.232 17.216	2.536 2.534	30.041 30.037	79.826 79.656
8/14/01 22:03:00	77.24	76.56	34,185	17.334	2.544	30.072	9.898	8/15/01 00:08:00	76.67	75.92	33.918	17.236 17.255	2.54 2.544	30.041 30.039	79.529 79.358
8/14/01 22:04:00 8/14/01 22:06:00		76.55 76.53	34.166 34.166	17.324 17.334	2.544 2.542	30.07 30.07	9.841 9.747	8/15/01 00:09:00 8/15/01 00:10:00	76.68	75.91 75.91	33.911 33.918	17.251	2.542	30.037	79.231
8/14/01 22:07:00 8/14/01 22:08:00	77.22	76.53 76.52	34.16 34.16	17.326 17.322	2.544 2.544	30.07 30.066	9.684 9.577	8/15/01 00:12:00 8/15/01 00:13:00	76.68	75.9 75.9	33.911 33.911	17.244 17.238	2.533 2.533	30.041 30.037	79.073 78.94
8/14/01 22:09:00	77.22	78.52	34.154	17.322	2.546	30.072	9.528	8/15/01 00:14:00	76,69	75.9	33.911	17.229	2.533	30.039	78.782 78.662
8/14/01 22:10:00	77.22	78.51	34.148	17.332	2.549	30.07	9.47	8/15/01 00:15:00	76.69	75.9	33.911	17.223	2.533	30.037	10.002

Date/Time	Downhole Pressure (psi)	Downhole Temperature (deg F)	Wellhead Pressure (psi)	Upper Monitor Pressure (psi)	Lower Monitor Pressure (psi)	Barometric Pressure (inchs Hg)	Annular Pressure (psi)	Date/Time	Dawnhole Pressure (psi)	Downhole Temperature (deg F)	Wellhead Pressure (psi)	Upper Monitor Pressure (psi)	Lower Monitor Pressure (psi)	Barometric Pressure (inchs Hg)	Annutar Pressure (psi)
8/15/01 00:16:00	76.69	75.9	33.911	17.225	2.534	30.037	78.497	8/15/01 02:21:00	75.89	74.81	33.799	17.324	2.555	30.009	65.284
8/15/01 00:18:00 8/15/01 00:19:00	76.69 76.69	75.89 75.89	33.911 33.905	17.227 17.227	2.536 2.538	30.037 30.033	78.339 78.219	8/15/01 02:22:00 8/15/01 02:24:00	75.88 75.84	74.79 74.88	33.799 33.799	17.298 17.264	2.548 2.54	30.002 30.007	65.196 65.063
8/15/01 00:20:00 8/15/01 00:21:00	76.69 76.68	75.88 75.88	33.905 33.905	17.236 17.236	2.54 2.542	30.039 30.033	78.061 77.94	8/15/01 02:25:00 8/15/01 02:26:00	75.83 75.81	74.99 75.11	33.793 33.799	17.255 17.21	2.54 2.536	30.002 30.005	64.936 64.842
8/15/01 00:22:00	76.68	75.88	33.905	17.238	2.542	30.037	77.782	8/15/01 02:27:00	75.79	75.22	33.799	17.191	2.536	30.007	64.709
8/15/01 00:24:00 8/15/01 00:25:00	76.68 76.68	75.87 75.87	33.899 33.893	17.236 17.264	2.544 2.547	30.037 30.035	77.624 77.504	8/15/01 02:28:00 8/15/01 02:30:00	75.78 75.74	75.34 75.6	33.793 33.793	17.193 17.18	2.538 2.538	30.007 30.005	84.614 64.481
8/15/01 00:26:00 8/15/01 00:27:00	76.68 76.69	75.87 75.87	33.893 33.893	17.264 17.264	2.544 2.54	30.035 30.033	77.346 77.225	8/15/01 02:31:00 8/15/01 02:32:00	75.72 75,71	75.74 75.88	33.793 33.787	17.193 17.218	2.542 2.548	29.998 30.002	64.387 64.285
8/15/01 00:28:00	76.69 76.69	75.87 75.86	33.899 33.893	17.251 17.251	2.534 2.534	30.031 30.033	77.067 76.953	8/15/01 02:33:00 8/15/01 02:34:00	75.69 75.67	76.02 76.16	33.787 33.793	17.225 17.204	2.545	30.002 30	64.146 64.052
8/15/01 00:30:00 8/15/01 00:31:00	76.66	75.86	33.899	17.257	2.534	30.033	76,795	8/15/01 02:38:00	75.64	78.37	33.787	17,216	2.546	29.998	63.95
8/15/01 00:32:00 8/15/01 00:33:00	76.68 76.68	75.85 75.85	33.893 33.893	17.268 17.266	2.54 2.542	30.033 30.033	76.681 76.523	8/15/01 02:37:00 8/15/01 02:38:00	75.62 75.81	76.43 78.5	33.787 33.793	17.231 17.246	2.547 2.549	30 29.996	63.805 63.704
8/15/01 00:34:00 8/15/01 00:36:00	76.68 76.67	75.85 75.84	33.893 33.886	17.24 17.223	2.538 2.536	30.029 30.033	76.409 76.251	8/15/01 02:39:00 8/15/01 02:40:00	75.59 75.58	76.57 76.64	33.787 33.787	17.242 17.249	2.547 2.551	29.996 29.996	63.609 63.476
8/15/01 00:37:00	76.67	75.83	33.888	17.218	2.54	30.029	76.137	8/15/01 02:42:00	75.7	76.78	33.787	17.214	2.546	29.996	63.369
6/15/01 00:38:00 6/15/01 00:39:00	76.67 76.66	75.83 75.83	33.886 33.86	17.203 17.189	2.536 2.538	30.029 30.029	75.979 75.885	8/15/01 02:43:00 8/15/01 02:44:00	75.84 75.98	76.81 76.86	33.787 33.787	17.204 17.229	2.546 2.547	29.996 29.992	63.236 63.148
8/15/01 00:40:00 8/15/01 00:42:00	76.66 76.65	75.82 75.81	33.88 33.88	17.178 17.197	2.536 2.542	30.029 30.027	75.707 75.599	8/15/01 02:45:00 8/15/01 02:46:00	76.12 76.25	76.91 76.97	33.787 33.787	17.249 17.276	2.551 2.557	29.992 28.992	63.046 62.907
8/15/01 00:43:00 8/15/01 00:44:00	76.65 76.65	75.81 75.8	33.88 33.88	17.219 17.227	2.551 2.551	30.031 30.025	75.447 75.334	8/15/01 02:48:00 8/15/01 02:49:00	76.44 76.49	76.99 76.97	33.793 33.787	17.291 17.285	2.562 2.56	29.99 29.992	62.819 62.686
8/15/01 00:45:00	78.65	75.79	33.88	17.238	2.557	30.027	75.188	8/15/01 02:50:00	76.54	76.94	33.787	17.259	2.553	29.99	62.585
8/15/01 00:46:00 8/15/01 00:48:00	76.65 76.65	75.79 75.78	33.874 33.874	17.255 17.268	2.553 2.553	30.029 30.029	75.03 74.916	8/15/01 02:51:00 8/15/01 02:52:00	76.59 76.64	76.92 76.89	33.787 33.781	17.232 17.193	2.547 2.544	29.99 29.988	82.452 62.37
8/15/01 00:49:00 8/15/01 00:50:00	76.65 76.64	75.77 75.76	33.874 33.874	17.291 17.315	2.582 2.562	30.025 30.029	74.802 74.644	8/15/01 02:54:00 8/15/01 02:55:00	76.79 76.9	76.81 76.76	33.781 33.781	17.204 17.206	2.547 2.547	29.99 29.986	62.244 62.162
8/15/01 00:51:00 8/15/01 00:52:00	76.64 76.64	75.76 75.75	33.874 33.874	17.322 17.319	2.57	30.027 30.029	74,536 74,385	8/15/01 02:56:00 8/15/01 02:57:00	77.01 77.12	76.71 76.66	33.781 33.781	17.204	2.551	29.984 29.986	62.029 61.94
8/15/01 00:54:00	76.63	75.74	33.868	17.302	2.575 2.584	30.027	74.271	8/15/01 02:58:00	77.22	76.61	33.781	17.212 17.204	2.549	29.986	61.808
8/15/01 00:55:00 8/15/01 00:58:00	76.63 76.62	75.73 75.73	33.868 33.868	17.3 17.319	2.557 2.562	30.025 30.027	74.125 74.011	8/15/01 03:00:00 8/15/01 03:01:00	77.32 77.3	76.52 76.48	33.781 33.774	17.191 17.218	2.549 2.551	29.986 29.982	61.707 61.587
8/15/01 00:57:00 8/15/01 00:58:00	76.62 76.62	75.72 75.72	33.868 33.868	17.319 17.321	2.57 2.588	30.029 30.029	73.859 73.752	8/15/01 03:02:00 8/15/01 03:03:00	77.29 77.28	76.44 76.4	33.774 33.781	17.201 17.199	2.553 2.555	29.986 29.982	61.492 61.365
8/15/01 01:00:00	76.6	75.71	33.868	17.319	2.581	30.031	73.606	8/15/01 03:04:00	77.27	76.36	33.781	17.227	2.557	29.986	61.277
8/15/01 01:01:00 8/15/01 01:02:00	76,6 76,59	75.71 75.71	33.868 33.868	17.309 17.319	2.581 2.583	30.029 30.025	73.481 73.36	8/15/01 03:06:00 8/15/01 03:07:00	77.23 77.2	76.24 76.17	33.781 33.774	17.268 17.281	2.557 2.562	29.982 29.986	61.144 61.049
8/15/01 01:03:00 8/15/01 01:04:00	76.58 76.57	75.71 75.71	33.862 33.855	17.306 17.311	2.592 2.586	30.027 30.027	73.208 73.1	8/15/01 03:08:00 8/15/01 03:09:00	77.18 77.15	76.1 76.03	33.774 33.781	17.328 17.324	2.57 2.571	29.978 29.984	60.929 60.841
8/15/01 01:06:00 8/15/01 01:07:00	76.56 76.55	7 5 .71 75.71	33.862 33.855	17.317 17.311	2.596 2.577	30.029 30.027	72.955 72.847	8/15/01 03:10:00 8/15/01 03:12:00	77.13 77.07	75.96 75.82	33.774 33.774	17.304 17.306	2.562	29.982 29.98	60.714 60.62
8/15/01 01:08:00	76.55	75.71	33.862	17.302	2.581	30.023	72.702	8/15/01 03:13:00	77.03	75.75	33.781	17.279	2.557	29.98	60.5
8/15/01 01:09:00 8/15/01 01:10:00	76.54 76.54	75.71 75.71	33.862 33.855	17.317 17.309	2.579 2.583	30.021 30.025	72.556 72,449	8/15/01 03:14:00 8/15/01 03:15:00	77 76,97	75.68 75.61	33.774 33.774	17.27 17.272	2.555 2.555	29.978 29.972	60.405 60.266
8/15/01 01:12:00 8/15/01 01:13:00	76.53 76.52	75.71 75.71	33.855 33.855	17.302 17.289	2.579 2.568	30.025 30.023	72.31 72.208	8/15/01 03:18:00 8/15/01 03:18:00	76.93 76.86	75.54 75.38	33.781 33.781	17.257 17.247	2.555 2.553	29.978 29.978	65.746 78.042
8/15/01 01:14:00 8/15/01 01:15:00	76.51 76.51	75.71 75.71	33.855 33.855	17.298 17.317	2.564 2.56	30.023 30.025	72.044	8/15/01 03:19:00	76.81 76.76	75.29	33.793	17.229	2.551	29.976	84.638
8/15/01 01:16:00	76.5	75.71	33.855	17.289	2.551	30.027	71.917 71.791	8/15/01 03:20:00 8/15/01 03:21:00	78.72	75.2 75.11	33.768 33.774	17.204 17.223	2.549 2.551	29.974 29.976	84.429 84.22
8/15/01 01:18:00 8/15/01 01:19:00	76.49 76.49	75.71 75.71	33.849 33.849	17.307 17.317	2.549 2.551	30.025 30.021	71.664 71.538	8/15/01 03:22:00 8/15/01 03:24:00	78.67 76.58	75.02 74.85	33.768 33.774	17.238 17.257	2.553 2.553	29.978 29.978	84.049 83.897
8/15/01 01:20:00 8/15/01 01:21:00	76.48 76.48	75.71 75.71	33.849 33.849	17.264 17.201	2.54 2.531	30.023 30.023	71.411 71.304	8/15/01 03:25:00 8/15/01 03:28:00	76.53 76.48	74.77 74.89	33.774 33.762	17.277 17.306	2.555 2.557	29.972 29.976	83.745 83.812
8/15/01 01:22:00 8/15/01 01:24:00	76.47 76.46	75.71 75.71	33.855 33.849	17.143 17.124	2.527 2.527	30.017 30.021	71.198 71.051	8/15/01 03:27:00 6/15/01 03:28:00	76.43 76.38	74.6	33.774	17.321 17.311	2.562	29.974	83.485
8/15/01 01:25:00	76.46	75.71	33.855	17.099	2.523	30.021	70.937	8/15/01 03:30:00	76.27	74.52 74.38	33.774 33.774	17.306	2.562 2.558	29.974 29.974	83.333 83.226
8/15/01 01:28:00 8/15/01 01:27:00	78.45 76.45	75.71 75.71	33.843 33.843	17.088 17.077	2.525 2.525	30.023 30.021	70.836 70.684	8/15/01 03:31:00 8/15/01 03:32:00	76.22 76.17	74.31 74.24	33.762 33.768	17.296 17.319	2.566 2.577	29.972 29.974	83.08 82.966
8/15/01 01:28:00 8/15/01 01:30:00	78.44 76.43	75.71 75.71	33,855 33,843	17.066 17.064	2.527 2.531	30.021 30.023	70.577 70.463	8/15/01 03:33:00 8/15/01 03:34:00	76.12 76.06	74.18 74.11	33.762 33.762	17.304 17.311	2.577 2.568	29.974 29.972	82.814 82.707
8/15/01 01:31:00 8/15/01 01:32:00	76.43 76.43	75.71 75.71	33.843 33.837	17.066 17.064	2.533 2.534	30.019 30.021	70.305 70.216	8/15/01 03:36:00 8/15/01 03:37:00	75.95 75.89	73.99 73.93	33.762 33.762	17.319 17.321	2.566 2.57	29.974 29.976	82.567 82.466
8/15/01 01:33:00	76.42	75.71	33.843	17.066	2.534	30.017	70.084	8/15/01 03:38:00	75.83	73.87	33.762	17.321	2.57	29.978	82.32
8/15/01 01:34:00 6/15/01 01:36:00	76.42 76.4	75.69	33.843 33.843	17.064 17.064	2.529 2.533	30.021 30.019	69.957 69.805	8/15/01 03:39:00 8/15/01 03:40:00	75.77 75.71	73.82 73.76	33.762 33.756	17.279 17.247	2.568	29.976 29.966	82.213 82.08
8/15/01 01:37:00 8/15/01 01:38:00	76.4 76.39	75.66 75.64	33.843 33.837	17.066 17.066	2.534 2.534	30.017 30.021	69.698 69.596	8/15/01 03:42:00 8/15/01 03:43:00	75.6 75.54	73.66 73.62	33.762 33.758	17.204 17.15	2.562 2.555	29.97 29.97	61.979 81.833
8/15/01 01:39:00 8/15/01 01:40:00	76.38 76.37	75.61 75.59	33.837 33.837	17.064 17.075	2.536	30.021 30.019	69.451	8/15/01 03:44:00	75.48	73.58	33.758	17.135	2.555	29.966	81.725
8/15/01 01:42:00	76.35	75.55	33.83	17.098	2.547	30.015	69.312 69.223	8/15/01 03:45:00 8/15/01 03:46:00	75.43 75.37	73.53 73.49	33.756 33.756	17.135 17.144	2.558 2.564	29.972 29.97	81.592 81.491
8/15/01 01:43:00 8/15/01 01:44:00	76.35 76.34	75.53 75.52	33.83 33.83	17.107 17,114	2.555 2.558	30.019 30.015	69.084 68.983	8/15/01 03:48:00 8/15/01 03:49:00	75.28 75.2	73.4 73.36	33.756 33.756	17.152 17.139	2.568 2.584	29.97 29.972	81.358 81.251
8/15/01 01:45:00 8/15/01 01:46:00	78.33 78.33	75.5 75.48	33.83 33.83	17.146 17.184	2.564 2.57	30.015 30.017	68.844 68.749	8/15/01 03:50:00 8/15/01 03:51:00	75.14 75.09	73.31 73.28	33.756 33.756	17.124 17.118	2.558 2.558	29.972 29.972	81.118 81.016
8/15/01 01:48:00 8/15/01 01:49:00	76.31 76.31	75.46 75.44	33.83 33.824	17.231 17.246	2.581 2.577	30.011 30.015	68.61 68.471	8/15/01 03:52:00 8/15/01 03:54:00	75.03 74.93	73.22 73.14	33.75 33.756	17.114 17.105	2.558	29.97 29.97	80.877
8/15/01 01:50:00	76.3	75.43	33.824	17.268	2.579	30.015	68.37	8/15/01 03:55:00	74.88	73.11	33.75	17.105	2.557	29.97	80.769 80.675
8/15/01 01:51:00 8/15/01 01:52:00	76.29 76.29	75.42 75.41	33.824 33.824	17.296 17.345	2.586 2.599	30.015 30.011	68.243 68.136	8/15/01 03:56:00 8/15/01 03:57:00	74.83 74.78	73.07 73.04	33.756 33.75	17.116 17.124	2.558 2.562	29.968 29.964	80.542 80.447
8/15/01 01:54:00 8/15/01 01:55:00	76.27 76.26	75.37 75.35	33.824 33.824	17.341 17.338	2.594 2.597	30.015 30.013	67.997 67.895	8/15/01 03:58:00 8/15/01 04:00:00	74.73 74.63	73.01 72.94	33.75 33.75	17.139 17.163	2.577 2.575	29.97 29.966	80.307 80.212
8/15/01 01:56:00 8/15/01 01:57:00	76.25 76.24	75.33 75.31	33.818 33.812	17.343 17.332	2.605	30.013 30.017	67.763 67.63	8/15/01 04:01:00 8/15/01 04:02:00	74.59 74.55	72.9 72.86	33.75 33.75	17.193	2.581	29.974	80.08
8/15/01 01:58:00	76.23	75.29	33.818	17.321	2.601	30.013	67.529	8/15/01 04:03:00	74.5	72.82	33.75	17.189 17.219	2.586	29.962 29.966	79.978 79.852
8/15/01 02:00:00 8/15/01 02:01:00	76.21 76.2	75.25 75.23	33.812 33.812	17.324 17.334	2.597 2.588	30.015 30.011	67.396 67.307	8/15/01 04:04:00 8/15/01 04:06:00	74.46 74.38	72.78 72.71	33.75 33.75	17.259 17.262	2.584 2.581	29.964 29.964	79.757 79.618
8/15/01 02:02:00 8/15/01 02:03:00	76.18 76.17	75.21 75.19	33.818 33.818	17.322 17.292	2.568 2.557	30.015 30.015	67.162 67.061	8/15/01 04:07:00 8/15/01 04:08:00	74.34 74.3	72.87 72.84	33.743 33.743	17.268 17.255	2.584 2.586	29.962 29.966	79.491 79.402
8/15/01 02:04:00 8/15/01 02:06:00	78.16 78.13	75.17 75.13	33.812 33.812	17.281 17.302	2.551 2.551	30.015 30.013	66.922 66.827	8/15/01 04:09:00 8/15/01 04:10:00	74.26 74.23	72.6 72.57	33.743 33.787	17.218	2.581	29.96	79.269
8/15/01 02:07:00	78.12	75.11	33.812	17.326	2.555	30.011	66.688	8/15/01 04:12:00	74.15	72.5	33.75	17.204 17.193	2.581 2.577	29.962 29.964	79.2 79.073
8/15/01 02:08:00 8/15/01 02:09:00	76.1 76.08	75.08 75.08	33.812 33.812	17.324 17.332	2.564 2.571	30.013 30.015	66.561 68.454	8/15/01 04:13:00 8/15/01 04:14:00	74.11 74.08	72.46 72.43	33.743 33.743	17.169 17.144	2.57 2.57	29.962 29.96	78.934 78.833
8/15/01 02:10:00 8/15/01 02:12:00	76.07 76.04	75.04 75	33.812 33.812	17.334 17.315	2.577 2.57	30.013 30.013	66.359 66.22	8/15/01 04:15:00 8/15/01 04:16:00	74.04 74	72.39 72.36	33.75 33.743	17.12 17.126	2.558 2.562	29.964 29.964	78.744 78.611
8/15/01 02:13:00 8/15/01 02:14:00	76.02 76.01	74.98 74.97	33.806 33.806	17.319 17.319	2.57	30.009 30.009	66.125	8/15/01 04:18:00	73.93	72.29	33.743	17,124	2.582	29.962	78.485
8/15/01 02:15:00	75.99	74.95	33.806	17.324	2.568	30.009	65.992 65.853	8/15/01 04:19:00 8/15/01 04:20:00	73.9 73.88	72.27 72.24	33.75 33.743	17.107 17.101	2.557 2.557	29.966 29.96	78.3 9 78.27
8/15/01 02:16:00 8/15/01 02:18:00	75.98 75.95	74.93 74.89	33.806 33.799	17.291 17.253	2.58 2.553	30.007 30.007	65.765 65.626	8/15/01 04:21:00 8/15/01 04:22:00	73.83 73.8	72.21 72.18	33.743 33.737	17.111 17.113	2.558 2.566	29.958 29.958	78.181 78.054
8/15/01 02:19:00 8/15/01 02:20:00	75.93 75.91	74.86 74.84	33.799 33.799	17.283 17.315	2.553 2.56	30.007 30.009	65.518 65.43	8/15/01 04:24:00 8/15/01 04:25:00	73.73 73.7	72.12 72.08	33.737 33.737	17.114 17.15	2.568 2.579	29.958 29.958	77.94 77.852
				-											

Date/Time	Downhoie Pressure (psl)	Downhole Temperature (deg F)	Weilhead Pressure (psi)	Upper Monitor Pressure (psi)	Lower Montor Pressure (psi)	Barometric Pressure (inchs Hg)	Annular Pressure (psi)	Date/Time	Downhole Pressure (psi)	Downhole Temperature (deg F)	Wellhead Pressure (psi)	Upper Monitor Pressure (psi)	Lower Monitor Pressure (psi)	Barometric Pressure (inchs Hg)	Annular Pressure (psi)
8/15/01 04:26:00	73.67	72.05	33.737	17.158	2.577	29.956	77.719	8/15/01 06:31:00 8/15/01 06:32:00	71.24 71.2	69.26 69.2	33.706 33.706	17.098 17.098	2.575 2.575	29.929 29.935	67.118 67.029
8/15/01 04:27:00 8/15/01 04:28:00		72.01 71.97	33.737 33.737	17.158 17.133	2.573 2.566	29.954 29.956	77.624 77.504	8/15/01 06:33:00	71.16	69.15	33.706 33.706	17.096 17.096	2.577 2.575	29.931 29.931	66.934 66.852
8/15/01 04:30:00 8/15/01 04:31:00	73.54	71.91 71.88	33. 73 7 33.737	17.111 17.107	2.56 2.558	29.956 29.95	77.403 77.282	8/15/01 06:34:00 8/15/01 06:36:00	71.12 71.04	69.1 68.98	33.706	17.098	2.575	29.933	66.732
8/15/01 04:32:00	73.47	71.86	33,737	17.103	2.56	29.954 29.954	77.156 77.055	8/15/01 06:37:00 8/15/01 06:38:00	71 70.96	68.92 68.86	33.7 33.706	17.098 17.099	2.575 2.573	29.929 29.931	66.65 66.581
8/15/01 04:33:00 8/15/01 04:34:00		71.83 71.8	33.737 33.737	17.122 17.152	2.588 2.573	29.952	76.928	8/15/01 06:39:00	70.91	68.79 68.73	33.706 33.706	17.099 17.101	2.573 2.575	29.931 29.929	86.473 86.372
8/15/01 04:36:00 8/15/01 04:37:00	73.34	71.75 71.73	33.737 33.737	17.128 17.12	2.568 2.566	29.948 29.95	76.846 76.713	8/15/01 06:40:00 8/15/01 06:42:00	70.87 70.79	68.65	33.706	17.103	2.575	29.931	66.283
8/15/01 04:38:00	73.27	71.7	33.737	17.139 17.159	2.57 2.577	29.948 29.945	76.624 78.504	8/15/01 06:43:00 8/15/01 06:44:00	70.74 70.7	68.63 68.61	33.706 33.706	17.101 17.098	2.575 2.573	29.933 29.935	66.163 66.081
8/15/01 04:39:00 8/15/01 04:40:00		71.68 71.65	33.737 33.725	17.165	2.575	29.945	76.409	8/15/01 08:45:00	70.66 70.61	68.6 68.58	33.706 33.7	17.101 17.103	2.575 2.579	29.931 29.931	65.999 65.878
8/15/01 04:42:00 8/15/01 04:43:00		71.61 71.59	33.725 33.718	17.143 17.139	2.568 2.568	29.95 29.945	78.314 76.2	8/15/01 06:46:00 8/15/01 06:48:00	70.52	68.53	33.7	17.107	2.577	29.935	65.79
8/15/01 04:44:00	73.09	71.58	33.725 33.718	17.186 17.221	2.575 2.583	29.941 29.95	76.08 75.96	8/15/01 06:49:00 8/15/01 06:50:00	70.48 70.43	68.51 68.48	33.7 33.7	17.105 17.109	2.575 2.579	29.935 29.935	65.701 65.628
8/15/01 04:45:00 8/15/01 04:46:00	73.04	71.56 71.54	33.718	17.227	2.583	29.945	75.884	8/15/01 06:51:00 8/15/01 06:52:00	70.39 70.34	68.46 68.43	33.7 33.706	17.107 17.101	2.581 2.579	29.931 29.933	65.505 65.43
8/15/01 04:48:00 8/15/01 04:49:00		71.51 71.49	33.718 33.718	17.229 17.184	2.579 2.571	29.943 29.943	75.757 75.631	8/15/01 06:54:00	70.24	68.37	33.706	17.105	2.577 2.581	29.935 29.933	65.316 65.24
8/15/01 04:50:00 8/15/01 04:51:00	72.94	71.48 71.48	33.718 33.718	17.173 17.165	2.57 2.568	29.945 29.945	75.549 75.422	8/15/01 06:55:00 8/15/01 06:56:00		68.33 68.29	33.7 33.7	17.113 17.129	2.584	29.933	65.132
8/15/01 04:52:00	J 72.9	71.45	33.712	17.206	2.575	29.941 29.941	75.327 75.207	8/15/01 08:57:00 8/15/01 08:58:00		68.25 68.21	33.706 33.7	17.146 17.165	2.59 2.596	29.935 29.933	85.05 64.936
8/15/01 04:54:00 8/15/01 04:55:00		71.41 71.4	33.712 33.718	17.244 17.251	2.584 2.584	29.943	75.118	8/15/01 07:00:00	69.95	68.17	33.694 33.706	17.18 17.191	2.601 2.603	29.937 29.935	64.861 64.747
8/15/01 04:56:00 8/15/01 04:57:00		71.38 71.37	33.725 33.743	17.24 17.253	2.579 2.579	29.939 29.941	75.011 74.941	8/15/01 07:01:00 8/15/01 07:02:00	69.92	68.17 68.17	33.706	17.173	2.597	29.937	64.658
8/15/01 04:58:00	72.78	71.35	33.712	17.289 17.326	2.586 2.584	29.943 29.943	74.802 74.713	8/15/01 07:03:00 6/15/01 07:04:00		88.17 68.17	33.7 33.7	17.156 17.15	2.597 2.597	29.939 29.933	64.589 64,469
8/15/01 05:00:00 8/15/01 05:01:00	5 72.72	71.32 71.3	33.718 33.718	17,315	2.588	29.939	74.6	8/15/01 07:06:00	69.86	68.15 68.14	33.694 33.694	17.163 17.178	2.597 2.601	29.931 29.935	64.399 64.292
8/15/01 05:02:00 8/15/01 05:03:00		71.28 71.26	33.712 33.718	17.317 17.326	2.594 2.597	29.937 29.943	74.473 74.378	8/15/01 07:07:00 8/15/01 07:08:00	69.8	68.12	33.712	17.178	2.603	29.935	65.139
8/15/01 05:04:00 8/15/01 05:06:00	72.65	71.24 71.21	33.712 33.718	17.319 17.315	2.599 2.594	29.941 29.941	74.302 74.176	8/15/01 07:09:00 8/15/01 07:10:00		68.1 68.08	33.694 33.681	17.152 17.135	2.599 2.594	29.937 29.933	75.58 84.277
8/15/01 05:07:00	72.6	71.2	33.712	17.321	2.592	29.939	74.087 73.961	8/15/01 07:12:00 8/15/01 07:13:00	69.67	68.04 68.02	33.712 33.694	17.12 17.111	2.588 2.584	29.931 29.931	84.068 83.878
8/15/01 05:08:00 8/15/01 05:09:00		71.19 71.18	33.718 33.718	17.317 17.315	2.59 2.588	29.939 29.943	73.859	8/15/01 07:14:00	69.58	68	33.7	17.114	2.586	29.933 29.931	83.732 83.599
8/15/01 05:10:00 8/15/01 05:12:00		71.17 71.15	33.718 33.718	17.277 17.285	2.583 2.588	29.941 29.943	73.765 73.876	8/15/01 07:15:00 8/15/01 07:16:00		67.98 67.96	33.7 33.7	17.113 17.12	2.59	29.933	83.473
8/15/01 05:13:00	0 72.5	71.14	33.718	17.322 17.319	2.596	29.941 29.941	73.556 73.436	8/15/01 07:18:00 8/15/01 07:19:00		67.95 67.95	33.7 33.694	17.129 17.143	2.594 2.596	29.935 29.933	83.352 83.232
8/15/01 05:14:00 8/15/01 05:15:00		71.12 71.11	33.712 33.718	17.291	2.588	29.939	73.347	8/15/01 07:20:00	69.42	67.9 5	33.694 33.694	17.137 17.135	2.596 2.597	29.937 29.935	83.112 83.01
8/15/01 05:16:00 8/15/01 05:18:00		71.1 71.08	33.718 33.718	17.272 17.279	2.581 2.581	29.937 29.939	73.252 73.157	8/15/01 07:21:00 8/15/01 07:22:00	69.41	67.95 67.95	33.694	17.129	2.596	29.935	82.896
8/15/01 05:19:00	0 72.4	71.08 71.05	33.718 33.718	17.287 17.285	2.583 2.581	29.939 29.935	73.031 72.949	8/15/01 07:24:00 8/15/01 07:25:00		67.96 67.96	33.706 33.706	17.124 17.118	2.594 2.594	29.935 29.937	82.789 82.681
8/15/01 05:20:00 8/15/01 05:21:00	0 72.37	71.04	33.718	17.216	2.579	29.935	72.828	8/15/01 07:26:00	69.45	67.97 67.97	33.7 33.7	17.114 17.114	2.59 2.594	29.937 29.939	82.574 82.466
8/15/01 05:22:00 8/15/01 05:24:00		71.03 71	33.718 33.718	17.193 17.171	2.581 2.579	29.935 29.933	72.74 72.632	8/15/01 07:27:00 8/15/01 07:28:00	69.48	67.98	33.7	17.111	2.59	29.937	82.365
8/15/01 05:25:0 8/15/01 05:28:0		70.99 70.98	33.718 33.718	17.174 17.171	2.575 2.575	29.933 29.935	72.55 72.449	8/15/01 07:30:00 8/15/01 07:31:00		67.99 68	33.694 33.694	17.111 17.116	2.566 2.59	29.939 29.941	82.257 82.162
8/15/01 05:27:00	0 72.28	70.97	33.718	17.18	2.573	29.933 29.931	72.322	8/15/01 07:32:00 8/15/01 07:33:00		68 68.01	33.694 33.694	17.126 17.133	2.597 2.597	29.939 29.941	82.054 81.953
8/15/01 05:28:0/ 8/15/01 05:30:0/		70.96 70.94	33.712 33.712	17.203 17.229	2.581	29.931	72.126	8/15/01 07:34:00	69,59	68.01	33.694 33.694	17.135 17.135	2.599 2.599	29.941 29.939	81.852 81.757
8/15/01 05:31:00 8/15/01 05:32:00		70.92 70.91	33.712 33.712	17.259 17.281	2.59 2.586	29.935 29.933	72.05 71.924	8/15/01 07:36:00 8/15/01 07:37:00	69.84	68.03 68.03	33.694	17.137	2.597	29.937	81.849
8/15/01 05:33:00 8/15/01 05:34:00		70.9 70.88	33.718 33.712	17.212 17.186	2.579 2.575	29.931 29.935	71.829 71.74	8/15/01 07:38:00 8/15/01 07:39:00		68.04 68.04	33.694 33.694	17.139 17.141	2.599 2.601	29.939 29.941	81.554 81.453
8/15/01 05:36:0	0 72.16	70.66	33.712	17.174	2.577	29.931	71.62	8/15/01 07:40:00	69.7	68.04 68.06	33.694 33.687	17.141 17.146	2.601 2.601	29.937 29.937	81.358 81.251
8/15/01 05:37:0 8/15/01 05:38:0		70.85 70.83	33.712 33.712	17.167 17.158	2.577 2.581	29.935 29.929	71.525 71.411	8/15/01 07:42:00 8/15/01 07:43:00	69.75	68.06	33.687	17.156	2.605	29.939	81.158
8/15/01 05:39:0 8/15/01 05:40:0		70.82 70.81	33.712 33.712	17.173 17.144	2.581 2.577	29.931 29.933	71.317 71.234	8/15/01 07:44:00 8/15/01 07:45:00		68.07 68.07	33.75 33.687	17.161 17.174	2.609 2.605	29.939 29.941	81.061 80.959
8/15/01 05:42:0	0 72.09	70.79	33.712 33.712	17.137 17.137	2.581	29.929 29.935	71.146 71.019	8/15/01 07:46:00 8/15/01 07:48:00		68.08 68.09	33.694 33.687	17.173 17.178	2.605 2.603	29.939 29.939	80.858 80.763
8/15/01 05:43:0 8/15/01 05:44:0		70.78 70.77	33.712	17.135	2.581	29.927	70.937	8/15/01 07:49:00	69.83	68.09	33.687	17.189	2.605	29.939	80.682 80.573
8/15/01 05:45:0 8/15/01 05:46:0		70.76 70.75	33.712 33.712	17.129	2.581 2.581	29.923 29.927	70.842 70.722	8/15/01 07:50:00 8/15/01 07:51:00	69.88	68.1 68.1	33.681 33.681	17.204 17.204	2.607 2.609	29.939 29.941	80.466
8/15/01 05:48:0 8/15/01 05:49:0	0 72.01	70.72 70.71	33.706 33.712	17.118 17.137	2.579 2.584	29.925 29.927	70.634 70.507	8/15/01 07:52:00 8/15/01 07:54:00		68.11 68.12	33.681 33.681	17.206 17.208	2.605 2.607	29.941 29.941	80.377 80.276
8/15/01 05:50:0	0 71.99	70.7	33.712	17.154	2.588	29.923	70.431	8/15/01 07:55:00 8/15/01 07:58:00	69.92	88.12 68.13	33.681 33.681	17.218 17.208	2.607 2.605	29.941 29.943	80.187 80.086
8/15/01 05:51:0 8/15/01 05:52:0	0 71.96	70.68 70.87	33.706 33.712	17.178 17.184	2.592 2.588	29.925 29.923	70.317 70.229	8/15/01 07:57:00	69.95	68.13	33.681	17.218	2.607	29.943 29.945	79.997 79.896
8/15/01 05:54:0 8/15/01 05:55:0		70.64 70.63	33.708 33.712	17.148 17.143	2.583 2.584	29.923 29.925	70.14 70.02	8/15/01 07:58:00 8/15/01 08:00:00	69.99	68.14 68.15	33.881 33.875	17.223 17.229	2.607 2.607	29.943	79.801
8/15/01 05:58:0	0 71.91	70.61 70.6	33.712 33.706	17.139	2.588	29.925 29.925	89.938 69.856	8/15/01 08:01:00 8/15/01 08:02:00		68.15 68.16	33.675 33.675	17.24 17.229	2.607 2.605	29.948 29.943	79.7 79.611
8/15/01 05:57:0 8/15/01 05:58:0	0 71.89	70.58	33,706	17.124	2.581	29.923	69.729	8/15/01 08:03:00 8/15/01 08:04:00	70.03	68.16 68.17	33.669 33.675	17.208 17.201	2.599	29.948 29.945	79.51 79.415
8/15/01 06:00:0 8/15/01 06:01:0		70.54 70.51	33.7 33.706	17,114 17,124	2.581 2.581	29.923 29.925	69.647 69.533	8/15/01 08:06:00	70.07	88.18	33,875	17.197	2.599	29.948	79.32
8/15/01 06:02:0 8/15/01 06:03:0		70.49 70.48	33.706 33.708	17.118 17.118	2.583	29.925 29.927	69.438 69.356	8/15/01 08:07:00 8/15/01 08:08:00		68.18 68.18	33.669 33.669	17.193 17.189	2.599 2.597	29.945 29.95	79.225 79.13
8/15/01 08:04:0 8/15/01 06:06:0	0 71.81	70.44	33.694 33.706	17.137 17,141	2.59 2.594	29.929 29.925	69.236 69.147	8/15/01 08:09:00 8/15/01 08:10:00		68.18 68.18	33.669 33.669	17.169 17.15	2.596 2.592	29.948 29.948	79.042 78.94
8/15/01 06:07:0	0 71.77	70.38 70.35	33.7	17.129	2.588	29.927	69.065	8/15/01 08:12:00 8/15/01 08:13:00	0 70.14	68.18 68.18	33.669 33.662	17.144 17.143	2.59 2.588	29.95 29.95	78.852 78.757
8/15/01 06:08:0 8/15/01 06:09:0		70.32 70.29	33.7 33.712	17.128 17.105	2.59 2.588	29.927 29.927	68.964 68.856	8/15/01 08:14:00	0 70.16	68.18	33,669	17,146	2.588	29.952	78.656
8/15/01 06:10:0 8/15/01 06:12:0		70.25 70.17	33.7 33.7	17.086 17.083	2.581 2.575	29.923 29.927	68.749 68.66	8/15/01 08:15:00 6/15/01 08:16:00	0 70.18	68.18 68.18	33.662 33.662	17.148 17.148	2.59 2.588	29.956 29.954	78.567 78.472
8/15/01 08:13:0	0 71.68	70.13	33.7 33.7	17.086 17.084	2.57 2.57	29.925 29.927	68.566 68.477	8/15/01 08:18:00 8/15/01 08:19:00	0 70.19	68.18 68.18	33.662 33.662	17.154 17.161	2.592 2.594	29.95 29.954	78.377 78.282
8/15/01 06:14:0 8/15/01 06:15:0	0 71.66	70.08	33.708	17.086	2.568	29.927	68.389	8/15/01 08:20:00	0 70.21	68.18	33.656	17.171	2.596	29.95	78.194
8/15/01 06:16:0 8/15/01 06:18:0		69.98 69.89	33.7 33.706	17.088 17.094	2.571 2.575	29.927 29.927	68.3 68.18	8/15/01 08:21:00 8/15/01 08:22:00	0 70.22	68.18 68.18	33.662 33.662	17.148 17.143	2.59 2.588	29.952 29.952	78.099 78.01
8/15/01 06:19:0	0 71.59	69.83 69.78	33.7 33.7	17.088 17.09	2.571 2.573	29.927 29.927	68.085 68.009	8/15/01 08:24:00 8/15/01 08:25:00	0 70.24	68.18 68.18	33.656 33.656	17.143 17.141	2.588 2.588	29.95 29.95	77.909 77.82
8/15/01 06:20:0 8/15/01 06:21:0	0 71.55	69.73	33.706	17.094	2.575	29.927	87.889	8/15/01 08:26:00	0 70.25	68.18	33.656 33.656	17.141 17.137	2.588 2.588	29.95 29.95	77.725 77.637
8/15/01 06:22:0 8/15/01 06:24:0		89.68 69.59	33.706 33.7	17.092 17.096	2,573 2,575	29.929 29.929	67.8 67.699	8/15/01 08:27:0 8/15/01 08:28:0	0 70.27	68.18 68.18	33.65	17,141	2.588	29.952	77.542
8/15/01 06:25:0 8/15/01 06:26:0	71.44	69.54 69.5	33.706 33.706	17.096 17.094	2.573 2.571	29.931 29.927	67.623 67.497	8/15/01 08:30:00 8/15/01 08:31:00		68.92 69.66	33,858 33,658	17.129 17.12	2.584 2.583	29.954 29.952	77.447 77.358
8/15/01 06:27:0 8/15/01 08:28:0	0 71.38	69.45 69.41	33.7 33.7	17.094 17.094	2.571 2.57	29.927 29.927	67.415 67.333								
8/15/01 06:28.0		69.31	33.7	17.096	2.571	29.929	67.206								

INJECTION TEST CALIBRATION CERTIFICATES

Hazen and Sawyer, P.C. 2101 Corporate Blvd., Suite 301 Boca Raton, FL 33431

MEMORANDUM

OFFICE (561) 997-8070 FAX (561) 997-8159

- TO: Mike Wengrenovich/Hollywood John Largey/Boca Raton Jim Wheatley/West Palm Beach
- COPY: FILE 40174 & 40368
- FROM: Albert Muniz/Boca Raton
- **DATE:** August 13, 2001
- SUBJECT: City of Cooper City Concentrate Disposal System Injection Test Calibration Certificates

Attached please find a copy of the injection test calibration certificates for the injection test conducted on August 13, 2001.

		ROMETER		THA RO,	909 925 5		
۸				, r , r			963052-z
	ATED		MCTCD.	TEST RECO	BD	Banan	IAL NUMBER
	ATER			ILSI NLOO		· e	/21/2001
	PECIAL		D	, et al a start a start a start a start a start a start a start a start a start a start a start a start a start			DATE
	OZONE INDL	JSTRIES CO	<u>RP.</u>		SHOWN TO THE BELIEF. BEGULAF	BEST OF OUR K OUR TEST FACI ILY TO AN ACCU	T ARE CORRECT NOWLEDGE AND LITY IS CERTIFIED RACY OF 0.2% AN
(IP TO	SAME				OF	ABLE TO THE NA STANDARDS & T IATER SPEC	
		······································			VV	$\Lambda \Lambda$	ARENES
	· · · · · · · · · · · · · · · · · · ·					HX	~
NAL TOTALIZE	R READING	·			BY:		
	TE	STED ACCURACY	1	FLOW RATE		NEW ACCUP	RACY
FLOW RATE G.P.M.	% ACCURACY	GEARS	INDEX	G.P.M	% ACCURAC	CY GEARS	INDEX
2990.6	101.3	39J/24D	.8487				
1529.5	1						
	98.2						
			<u>. </u>			· · · · · · · · · · · · · · · · · · ·	
					1		
	· · · · · · · · · · · · · · · · · · ·						
TESTED /	AVERAGE			•			ESTED INDEX
	AVERAGE			•		T	
DESIRED	AVERAGE		•	- 4 285		N	EW INDEX
DESIRED SPEC, PIF	AVERAGE	SPEC. I.D	· · ·	4.285		N	
DESIRED	AVERAGE	SPEC. I.D	•	4.285		N	EW INDEX
DESIRED SPEC. PIP STD. PIPE	AVERAGE	SPEC. I.D.	- 4,285) *	STD. INDEX	N	ew Index
DESIRED SPEC. PIP STD. PIPE	AVERAGE PE 1.D E 1.D	((SPEC. I.D. STD. I.D. ²	- 4,285)*	STD. INDEX	N	ew Index
DESIRED SPEC. PIP STD. PIPE CUSTOM	AVERAGE	SPEC. I.D.	- 4.285 - 4.285 O.D. SPECIFICATION)*	STD. INDEX	N	EW INDEX W INDEX % AS GEARE CHANGE GEARS
DESIRED SPEC. PIP STD. PIPE CUSTOM	AVERAGE PE 1.D E 1.D	((SPEC. I.D. STD. I.D. ²	- 4.285 - 4.285 O.D. SPECIFICATION MODEL		STD. INDEX	N	EW INDEX
DESIRED SPEC. PIP STD. PIPE CUSTOM	AVERAGE PE 1.D E 1.D ER PIPE SIZE SIZE/MODEL NO.	((SPEC. I.D. STD. I.D. ²	- 4.285 - 4.285 O.D. SPECIFICATION MODEL		STD. INDEX	N	EW INDEX
DESIRED SPEC, PIP STD, PIPE CUSTOM METER S TOTALIZ	AVERAGE PE 1.D E1.D ER PIPE SIZE SIZE/MODEL NO. ER DIAL	((SPEC. I.D. STD. I.D. ²	- 4.285 - 4.285 O.D. SPECIFICATION MODEL		STD. INDEX	N	EW INDEX
DESIRED SPEC, PIF STD, PIPE CUSTOM METER S TOTALIZ INDICATO TOTALIZ	AVERAGE PE I.D EI.D ER PIPE SIZE SIZE/MODEL NO. ER DIAL OR DIAL ER GEARING	((SPEC. I.D. STD. I.D. ² 3 12'' 1000	- 4.285 - 4.285 O.D. SPECIFICATION MODEL D GALLON 256/		STD. INDEX	N	EW INDEX
DESIRED SPEC, PIP STD. PIPE CUSTOM METER S TOTALIZ INDICATO TOTALIZ PROP, SIZE -	AVERAGE PE I.D EI.D ER PIPE SIZE SIZE/MODEL NO. ER DIAL OR DIAL ER GEARING	((SPEC. I.D. STD. I.D. ² STD. I.D. ² (12" . 1000	- 4.285 - 4.285 O.D. SPECIFICATION MODEL D GALLON 256/		STD. INDEX	N 	EW INDEX
DESIRED SPEC, PIP STD. PIPE CUSTOM METER S TOTALIZ INDICATO TOTALIZ PROP, SIZE -	AVERAGE PE I.D EI.D ER PIPE SIZE SIZE/MODEL NO. ER DIAL OR DIAL ER GEARING	((SPEC. I.D. STD. I.D. ² STD. I.D. ² (12" . 1000	- 4.285 - 4.285 O.D. SPECIFICATION MODEL D GALLON 256/		STD. INDEX	N 	EW INDEX
DESIRED SPEC, PIP STD. PIPE CUSTOM METER S TOTALIZ INDICATO TOTALIZ PROP, SIZE -	AVERAGE PE I.D EI.D ER PIPE SIZE SIZE/MODEL NO. ER DIAL OR DIAL ER GEARING	((SPEC. I.D. STD. I.D. ² STD. I.D. ² (12" . 1000	- 4.285 - 4.285 O.D. SPECIFICATION MODEL D GALLON 256/	4.285 4.285 * N N N N N N N N N N N N N	STD. INDEX	N 	EW INDEX
DESIRED SPEC, PIP STD. PIPE CUSTOM METER S TOTALIZ INDICATO TOTALIZ PROP, SIZE _ ACCESSORIE	AVERAGE PE I.D EI.D ER PIPE SIZE SIZE/MODEL NO. ER DIAL OR DIAL ER GEARING	((SPEC. I.D. STD. I.D. ² 12'' 1000	- 4.285 - 4.285 O.D. SPECIFICATION MODEL D GALLON 256/	4.285 4.285 * N N N N N N N N N N N N N	STD. INDEX	N 	EW INDEX

210 S. Third Street, Laramie, Wyoming 82070 U.S.A. (TEL) 1-800-446-7488, 307-742-8213 (FAX) 307-721-7598

Visit us on the Internet at www.in-situ.com!

2001072604005037 **Report Number:**

Calibration Result:

PASSED

Calibration Date:	2001-07-26
Model:	PXD-261
Full Scale Pressure Range:	206.8 kPa (30 PSI) Gauge
Manufacturer:	In-Situ
Serial Number:	5037

Calibration Procedures and Equipment Used:

- 1. Digital Multi-Meter (DMM), HP 3457A, s/n 2703A11708
- 2. Multi-Channel Thermometer, Instrulab 4312A-15, s/n 41015
- 3. Platinum RTD, Instrulab 832, s/n 12067
- 4. Pressure Controller, Mensor PCS-400, s/n 180324
- 5. Automated software calibration procedures used

Range of Applied Temperatures: 4.54 C to 30.60 C -0.0014 kPa (-0.0002 PSI) to 206.8441 kPa (30.0002 PSI) **Range of Applied Pressures:**

Calibration Coefficients:

Linearity	0.2374
Scale	29.7360
Offset	0.0079

PASS/FAIL Criteria:

	Applied Pressure		Current mA	
Zero Response	-0.0014 kPa (-0.00	002 PSI)	3.997	PASSED
Full Scale Response	206.8441 kPa (30	.0002 PSI)	20.009	PASSED
	Minimum	Maxim	um	7
Temperature Stability (%FS)	-0.057	0.102		PASSED
Repeatability at 15 C (%FS)	-0.010	0.004		PASSED
Hysteresis (%FS)	0.005			PASSED
Thermal Hysteresis (%FS)	0.004			PASSED

Test Performed By:

Test Verified By:

© Copyright by In-Situ, Inc. 2001. All rights reserved. In-Situ, Win-Situ and miniTROLL are trademarks or registered trademarks of In-Situ Inc.

DJK

210 S. Third Street, Laramie, Wyoming 82070 U.S.A. (TEL) 1-800-446-7488, 307-742-8213 (FAX) 307-721-7598

Visit us on the Internet at www.in-situ.com!

Understanding the Transducer Calibration Report

Page 1 provides calibration information for your In-Situ pressure transducer. Page 2 provides an explanation of the results and a brief description of our rigid test procedures. We include this information so that you may have a better understanding of our calibration procedures relative to the high accuracy of our products. We take our published specifications seriously, and in most cases, the actual results of our calibration report exceed those specifications.

The Calibration Procedure

We run six separate cycles (nominally 5°C, 15°C, 30°C, 15°C, 15°C, and 15°C) to test the transducer's performance and ability to repeat readings at constant temperatures. For each cycle, the transducer is temperature-stabilized, then pressure readings are taken from 0 to full scale (FS) pressure and back to 0 in 10% FS steps (22 data points).

The transducer is optimized for operation at 15°C, a temperature that characterizes a majority of groundwater applications.

Calibration Coefficients

The transducer's coefficients are also found on the probe's data tag. These are the coefficients to enter into In-Situ's data loggers before running a test. Instructions for programming Linearity, Scale, and Offset may be found in the data logger operator's manual.

PASS/FAIL Criteria

"Deviation" refers to the difference between the transducer readings and our NIST-traceable (National Institute of Standards and Technology) pressure standard. mA = milliAmps, FS = Full Scale.

Zero Response: Response of the probe, in mA, when 0 PSI pressure is applied.

Full Scale Response: Response of the probe, in mA, when full scale pressure is applied.

Temperature Stability: Minimum and maximum % FS deviation over the first four cycles.

Repeatability at 15°C: Minimum and maximum % FS deviation over the last three cycles.

Hysteresis: Maximum difference between % FS deviations over the last three cycles.

Thermal Hysteresis: Maximum difference between % FS deviations between the first two 15°C cycles.

210 S. Third Street, Laramie, Wyoming 82070 U.S.A. (TEL) 1-800-446-7488, 307-742-8213 (FAX) 307-721-7598

Visit us on the Internet at www.in-situ.com!

Report Number: 2001080518006962

Calibration Result:

PASSED

Calibration Date:	2001-08-05
Model:	PXD-261
Full Scale Pressure Range:	206.8 kPa (30 PSI) Gauge
Manufacturer:	In-Situ
Serial Number:	6962

Calibration Procedures and Equipment Used:

1. Automated software calibration procedures used

Range of Applied Temperatures: Range of Applied Pressures: 4.82 C to 29.89 C -0.0043 kPa (-0.0006 PSI) to 206.8433 kPa (30.0001 PSI)

Calibration Coefficients:

Linearity	0.3144
Scale	29.5218
Offset	0.0928

PASS/FAIL Criteria:

	Applied Pressure		Current mA	
Zero Response	-0.0043 kPa (-0.0	006 PSI)	3.951	PASSED
Full Scale Response	206.8433 kPa (30	.0001 PSI)	20.037	PASSED
	Minimum	Maxim	um	7
Temperature Stability (%FS)	-0.106	0.057		PASSED
Repeatability at 15 C (%FS)	-0.010	0.007		PASSED
Hysteresis (%FS)	0.010	· · · · · · · · · · · · · · · · · · ·		PASSED
Thermal Hysteresis (%FS)	0.006			PASSED

Test Performed By:

Test Verified By:

:__

JMD

210 S. Third Street, Laramie, Wyoming 82070 U.S.A. (TEL) 1-800-446-7488, 307-742-8213 (FAX) 307-721-7598

Visit us on the Internet at www.in-situ.com!

Report Number: | 2001071807006142

Calibration Result:

PASSED

Calibration Date:	2001-07-18	
Model:	PXD-261	<u>_</u>
Full Scale Pressure Range:	689.5 kPa (100 PSI) Gauge	
Manufacturer:	In-Situ	
Serial Number:	6142	

Calibration Procedures and Equipment Used:

- 1. Digital Multi-Meter (DMM), HP 3457A, s/n 2703A11708
- 2. Multi-Channel Thermometer, Instrulab 4312A-15, s/n 41015
- 3. Platinum RTD, Instrulab 832, s/n 12067
- 4. Pressure Controller, Mensor PCS-400, s/n 180324
- 5. Automated software calibration procedures used

Range of Applied Temperatures:4.43 C to 30.41 CRange of Applied Pressures:-0.0552 kPa (-0.0080 PSI) to 689.4757 kPa (100.0000 PSI)

Calibration Coefficients:

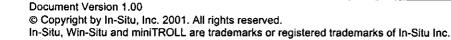
Linearity	0.1896
Scale	100.0195
Offset	-0.0167

PASS/FAIL Criteria:

	Applied Pressure		Current mA	
Zero Response	-0.0552 kPa (-0.00	080 PSI)	4.003	PASSED
Full Scale Response	689.4757 kPa (10	0.0000 PSI)	19.969	PASSED
<u> </u>	Minimum	Maximu	um	
Temperature Stability (%FS)	-0.105	0.123		PASSED
Repeatability at 15 C (%FS)	-0.004	0.006		PASSED
Hysteresis (%FS)	0.007			PASSED
Thermal Hysteresis (%FS)	0.002			PASSED

Test Performed By:

Test Verified By:


Document Version 1.00 © Copyright by In-Situ, Inc. 2001. All rights reserved.

TLS

In-Situ, Win-Situ and miniTROLL are trademarks or registered trademarks of In-Situ Inc.

Transducer

PASSED

DJK

Calibration Report

210 S. Third Street, Laramie, Wyoming 82070 U.S.A. (TEL) 1-800-446-7488, 307-742-8213 (FAX) 307-721-7598

Visit us on the Internet at www.in-situ.com!

Report Number: 2001022223007803

Calibration Result:

Calibration Date:	2001-02-22	
Model:	PXD-261	
Full Scale Pressure Range:	689.5 kPa (100 PSI) Gauge	
Manufacturer:	In-Situ	
Serial Number:	7803	<u></u>

Calibration Procedures and Equipment Used:

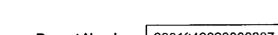
1. Automated software calibration procedures used

Range of Applied Temperatures: **Range of Applied Pressures:**

4.88 C to 30.07 C -0.0194 kPa (-0.0028 PSI) to 689.4771 kPa (100.0002 PSI)

Calibration Coefficients:

Linearity	0.4153
Scale	100.6131
Offset	0.3670


PASS/FAIL Criteria:

	Applied Pressure		Current mA	
Zero Response	-0.0194 kPa (-0.00	028 PSI)	3.941	PASSED
Full Scale Response	689.4771 kPa (10	0.0002 PSI)	19.780	PASSED
	Minimum	Maxim	um	٦
Temperature Stability (%FS)	-0.116	0.094		PASSED
Repeatability at 15 C (%FS)	-0.015	0.006		PASSED
Hysteresis (%FS)	0.014			PASSED
Thermal Hysteresis (%FS)	0.014			PASSED

Test Performed By:

Test Verified By:

In-Situ Inc.

210 S. Third Street, Laramie, Wyoming 82070 U.S.A. (TEL) 1-800-446-7488, 307-742-8213 (FAX) 307-721-7598

Visit us on the Internet at www.in-situ.com!

Report Number: 2001042820000307

In-Situ Inc.

Calibration Result:

PASSED

Calibration Date:	2001-04-28	
Model:	PXD-261	
Full Scale Pressure Range:	689.5 kPa (100 PSI) Gauge	
Manufacturer:	In-Situ	
Serial Number:	307	

Calibration Procedures and Equipment Used:

1. Automated software calibration procedures used

Range of Applied Temperatures: Range of Applied Pressures:

5.11 C to 29.95 C -0.0218 kPa (-0.0032 PSI) to 689.4771 kPa (100.0002 PSI)

Calibration Coefficients:

Linearity	0.3864
Scale	100.5307
Offset	0.4174

PASS/FAIL Criteria:

	Applied Pressure		Current mA	
Zero Response	-0.0218 kPa (-0.0032 PSI)		3.933	PASSED
Full Scale Response	689.4771 kPa (100.0002 PSI)		19.790	PASSED
	Minimum	Maxim	um]
Temperature Stability (%FS)	-0.061	0.028		PASSED
Repeatability at 15 C (%FS)	-0.012	0.006		PASSED
Hysteresis (%FS)	0.008			PASSED
Thermal Hysteresis (%FS)	0.033			PASSED
Thermal Hysteresis (701 O)	1 0.000			<u></u>

Test Performed By:

Test Verified By:

٤.,

JMD

Transducer

PASSED

Calibration Report

210 S. Third Street, Laramie, Wyoming 82070 U.S.A. (TEL) 1-800-446-7488, 307-742-8213 (FAX) 307-721-7598

Visit us on the Internet at www.in-situ.com!

2001022315007883 Report Number:

Calibration Result:

Calibration Procedures and Equipment Used:

1. Automated software calibration procedures used

Range of Applied Temperatures: **Range of Applied Pressures:**

4.76 C to 29.89 C -0.0229 kPa (-0.0033 PSI) to 689.4764 kPa (100.0001 PSI)

Calibration Coefficients:

Linearity	0.3691
Scale	99.3226
Offset	0.2979

PASS/FAIL Criteria:

Applied Pressure		Current mA]
-0.0229 kPa (-0.0033 PSI)		3.952	PASSED
689.4764 kPa (100.0001 PSI)		20.002	PASSED
Minimum	Maximu	m	
-0.104	0.088		PASSED
-0.014	0.010		PASSED
0.014			PASSED
0.027			PASSED
	-0.0229 kPa (-0.00 689.4764 kPa (10 Minimum -0.104 -0.014 0.014	-0.0229 kPa (-0.0033 PSI) 689.4764 kPa (100.0001 PSI) Minimum Maximu -0.104 0.088 -0.014 0.010	-0.0229 kPa (-0.0033 PS!) 3.952 689.4764 kPa (100.0001 PSI) 20.002 Minimum Maximum -0.104 0.088 -0.014 0.010

210 S. Third Street, Laramie, Wyoming 82070 U.S.A. (TEL) 1-800-446-7488, 307-742-8213 (FAX) 307-721-7598

Visit us on the Internet at www.in-situ.com!

Report Number: 2001043017000539

Calibration Result:

PASSED

Calibration Date:	2001-04-30
Model:	PXD-261
Full Scale Pressure Range:	206.8 kPa (30 PSI) Gauge
Manufacturer:	In-Situ
Serial Number:	539

Calibration Procedures and Equipment Used:

1. Automated software calibration procedures used

Range of Applied Temperatures: Range of Applied Pressures:

4.93 C to 29.61 C -0.0167 kPa (-0.0024 PSI) to 206.8434 kPa (30.0001 PSI)

Calibration Coefficients:

Quinoratio	
Linearity	0.3068
Scale	29.6254
Offset	0.0327

PASS/FAIL Criteria:

	Applied Pressure		Current mA	
Zero Response	-0.0167 kPa (-0.0024 PSI)		3.983	PASSED
Full Scale Response	206.8434 kPa (30.0001 PSI)		20.018	PASSED
	Minimum	Maxim	um	
Temperature Stability (%FS)	-0.054	0.027		PASSED
Repeatability at 15 C (%FS)	-0.008	0.006		PASSED
Hysteresis (%FS)	0.009			PASSED
Thermal Hysteresis (%FS)	0.014			PASSEE

Test Performed By:	JMD	Test Verified By:		1
	L			

210 S. Third Street, Laramie, Wyoming 82070 U.S.A. (TEL) 1-800-446-7488, 307-742-8213 (FAX) 307-721-7598

Visit us on the Internet at www.in-situ.com!

Report Number: 2001070900005110

Calibration Result:

PASSED

2001-07-09	
PXD-261	
206.8 kPa (30 PSI) Gauge	
In-Situ	
5110	· · · ·
	206.8 kPa (30 PSI) Gauge In-Situ

Calibration Procedures and Equipment Used:

- 1. Digital Multi-Meter (DMM), HP 3457A, s/n 2703A11708
- 2. Multi-Channel Thermometer, Instrulab 4312A-15, s/n 41015
- 3. Platinum RTD, Instrulab 832, s/n 12067
- 4. Pressure Controller, Mensor PCS-400, s/n 180324
- 5. Automated software calibration procedures used

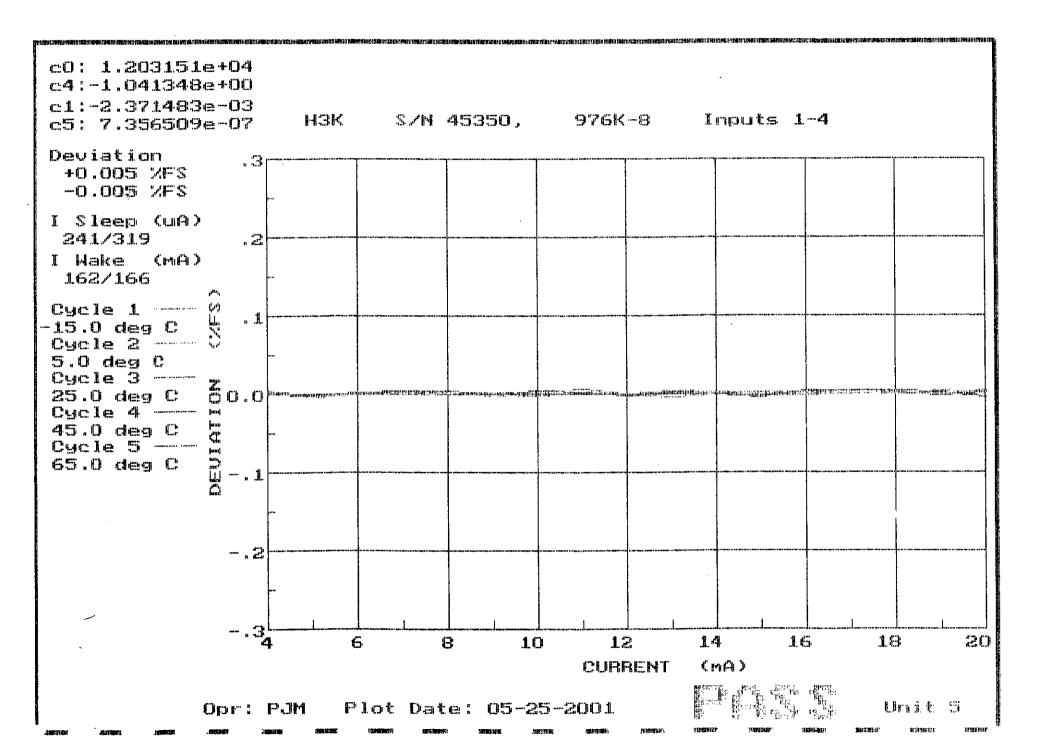
Range of Applied Temperatures:4.50 C to 30.50 CRange of Applied Pressures:-0.0028 kPa (-0.00)

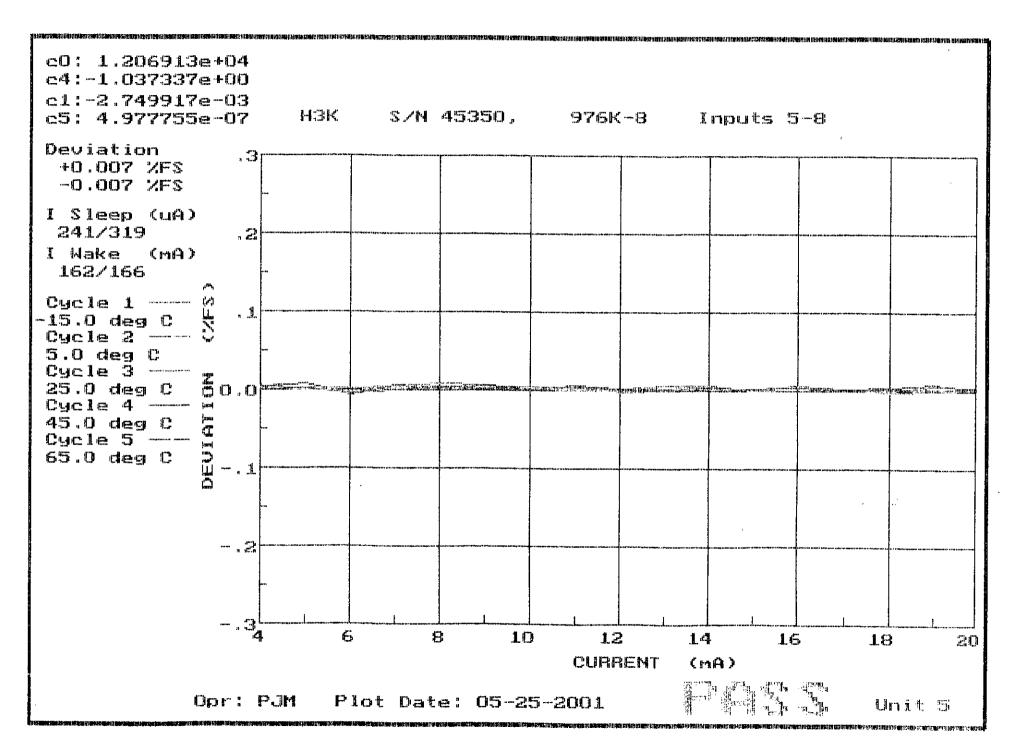
-0.0028 kPa (-0.0004 PSI) to 206.8434 kPa (30.0001 PSI)

Calibration Coefficients:

Linearity	0.2210
Scale	29.6471
Offset	-0.7035

PASS/FAIL Criteria:

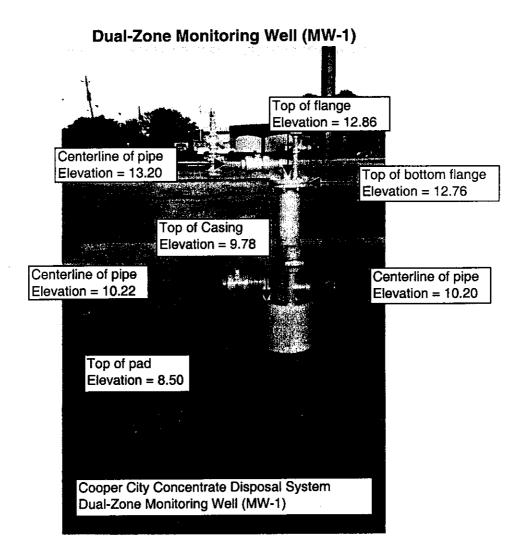

	Applied Pressure		Current mA	
Zero Response	-0.0028 kPa (-0.0004 PSI)		4.380	PASSED
Full Scale Response	206.8434 kPa (30.0001 PSI)		20.444	PASSED
	Minimum	Maxim	um	7
Temperature Stability (%FS)	-0.069	0.161		PASSED
Repeatability at 15 C (%FS)	-0.005	0.005		PASSED
Hysteresis (%FS)	0.007			PASSED
Thermal Hysteresis (%FS)	0.011	· · · · · · · · · · · · · · · · · · ·		PASSED


Test Performed By:

Test Verified By:

۲.

TLS



THE COORDINATES SHOW: TO "CHARLIE" CONTROL : survey plat DESIGNATION - CHARL PID - AD576 STATE/COUNTY - FL/BRI USGS QUAD - COOPE EXISTING WELL NAD 83/90 GEOGRAPHIC WATER TREATMENT FACILITY NORTHING: 629,693.14 (DCATED IN COOPER CITY, _OWARD COUNTY, FLORIDA AS A SPECIFIC PURPOSE SURVEY FOR THE PURPOSE OF WELL AT THE COOPER CITY WATER TREATMENT FACILITY DINATES. INATES SHOWN HEREON ARE STATE PLANE FOR THE AD 83/1990 ADJUSTMENT AND BASED ON GPS RTK ITROL STATION "CHARLIE". EREON ARE BASED ON THE NATIONAL GEODETIC VERTICAL D 29), FROM TIES TO CONTROL STATION "CHARLIE" /EMENTS, UTILITIES AND/OR FOUNDATIONS WERE NOT ERWISE SHOWN OR NOTED. EXISTING INJECTION FORK: 9-13-2001 NORTHING: 627681.; **GRASS AREA** EASTING: 885050. LATITUDE: N 26'03' LONGITUDE: W 80°187 TOP OF CASING BY: ELEVATION = +1(SCOTT M. SHORE PROFESSIONAL SURVEYOR AND MAPPER FLORIDA CERTIFICATE NO. LS# 5743 DATE SIGNED: __________ NATURE AND THE ORIGINAL RAISED SEAL OF A AND MAPPER. MONITOR WELL CONC PURPOSE SURVEY 5245 RAMSEY WAY, SUITE #2 FORT MYERS, FLORIDA 33907 PHONE: (941) 275-8575 FAX: (941) 275-8457 G & MAPPING, LLC LEGEND: **XVEYORS PLANNERS** www.meridianfl.com CONC = CONCRETELB# 7071 EOP = EDGE OF PAVEMENT = CATCH BASIN (/PAGE: PROJECT NO .: SHEET: 19/51 1675 _೧೯_ SCALE CHECKED BY: FILE NO. (S-T-R) '"= 30' SMS

. .

City of Cooper City

Concentrate Disposal System Project No. 40340

