
Palm Beach County Water Utilities Department

Eastern Hillsboro Canal - WTP #9 Aquifer Storage and Recovery Well PBCWUD Project No. 98 – 66B

Well Construction Report and Operational Testing Request

August 2003

			<u> </u>
Tlare Ta	oto Danin	og Dvilling	2.4
		ng Drilling	
		nt	
Constan	t-Kate Pı	ımp Test Water Sample Analysis	3-5
SECTION	4 CVC	LE TESTING PLAN	
			1.1
		ing and Paul Flughing	
		ring and Back Flushing	
		· Discharge Plan	
Keportin	ıg		4-3
SECTION	5 - CON	ICLUSIONS AND RECOMMENDATIONS	
SECTION	3 – 601	ICCOSIONS AND RECOMMENDATIONS	,
APPENDI	X – A	CONSTRUCTION PERMITS	
APPENDIX	• •	LITHOLOGIC DESCRIPTIONS	
APPENDI		GEOPHYSICAL LOGS	
APPENDI		CASING MILL CERTIFICATES	
APPENDI		CEMENTING RECORDS	
APPENDIX	_	DEVIATION SURVEY	
APPENDI		CORE DESCRIPTIONS	
APPENDI	_	PACKER TEST DATA	
APPENDIX		STEP-RATE PUMPING TEST DATA	
APPENDIX	-	BACKGROUND WATER QUALITY ANAYS	SIS
APPENDIX		CONSTANT-RATE PUMPING TEST DATA	
APPENDIX		PRESSURE TEST DATA	•
APPENDIX		VIDEO SURVEY	
APPENDIX		CERTIFICATION OF COMPLETION AND	AS-BUILT DRAWINGS
APPENDIX		COMPOSITE RAW WATER (INJECTATE)	-
APPENDIX		CYCLE TESTING TECHNICAL MEMORA	
LIST OF F	IGURES	;	
Figure			Following
Number		Title	Page
	_		
1-1	,	Location Map	1-1
1-2a, b	Site Dia		1-1
2-1	FAMW	Well Schematic	2-11
2-2	ASR W	'ell Schematic	2-14
3-1	Genera	lized Geology and Hydrology	3-4

SAW Pipes USA, Inc. P.O. Box 2349 Beylown, TX 77522-2349

P.O. DATE

(281) 383-3300

CUSTOMER

	THOMAS P	53187	•		3/7 5HIP	/00 TO :		TSL-7	752		Approve	ď.	-					7	-		
	BATON RO	JCE, 1	. ₩ 70	0805			AS PIPE		EEL		Date:								[17]		
٠		APIA	5L		,		EDITION				FACE BI ROOT B FRACTI WELD T	END: SAURE LOC ENSILE:	ATISFACTOR ATISFACTOR PATION: BASE META	RY AL				,	COPIC RADIO		
•	ITEM NO.			FERIAL I				MAT	HEA	TOAT	HYD	RO	YNELD		rensile PSI	ELON %	CWIDTH	C)-	WRPY ENERGY	DW1	ENERGY
		48° X Q A LON B. TRA C. WEL	375° 5 GITUDI NSVER	L GRADI NAL				DSAW	5G312	9	500 PSI 10 SECC (2,494)	CHOS	55.100 54,000 47,700	66	.500 .400 .600	40.0	1.497 1.490 1.474		CALINOT		
	HEAL NO.	C	Ma	P	8	13	Cu	Ni	Cr	Мо	A	N	- v -								TRENGTH
	PRODUCT PRODUCT	0.12 0.09 0.10	0.970	0.011		0.290					0.039 0.044 0.044									DETERMAN 0.5% EXT.	EDAT
														1							ا عنه سم
	Landy American State of State	I		J				J				YOU	SE MILL R P.O. #	Pal	m Bes	ich.	106		CEP	OP)	<u> </u>

METALLURGICAL AND PIPE TEST REPORT
P.O. NUMBER
This is to carify that the product described herein was munifactured, sampled, and tested in accordance with the specifications and requirements in such specifications.

SAW FORMING. 20

18155

TELEPHONE: (418) 288-1119 FAX: (410) 288-1119

CANADIAN PHOENIX STEEL PRODUCTS

DIVISION OF 1846781 ONTARIO LIMITED 288 HORNER AVENUE ETOBICOKE, ONTARIO, CANADA:

LABORATORY REPORT AND MILL TEST CERTIFICATE

DATE Dec.7/00	
DBC.7700	CUSTOMER Pipe & Piling Supplies
SPECIFICATION A139B	CUSTOMER'S P.O BLK-1125
DIA & WALL 34" O.D. X .375 WT	PHOENIX REF.# 00-3658
HYDROTEST 620 Par FOR 2 Min.	· Para

PHYSICAL PROPERTIES

المحسم	HEAT NO.	PIPE NO.	YIELD	TENGLE	V. ELONGATION	TRANSVERSE WELD TENSILE	BREAK LOCATION
Ч	· 7950P	3	467.00	73900	37.5	"77300	РM
j4	7955P	10	57800	81300	37.5	83900	PM
\sim	8064M	14	59400	83100	37.5	85800	PM
1	8163M	19	46200	67300	37.5	70500	PM
	121581	54	49000	74300	37.5	77100	РМ
]	,		10.15		

LADLE ANALYSIS CHEMICAL COMPOSITION

	HEAT NO	C	MN	8	P	8)	CR	N	CU	MO	AL
	7950P	20	-84	.006	.009	.23	.02	.01	.03	.010	.034
,~=	7मुङ्गु	-18	.83	.007	.009	,22	.01	.01	, 01		.036
7	.8064M	18	.89	.005	-011	231	.02	.01	.02		.038
\angle	8163M	.18	.86	.004	.011	. 22	.02	.01	.01	.010	-042
	121581	7.21	- 97	.003	,007	.04	.06	, 04	.12	.013	,041
	-				L	;		,			

The material fisted on this	i report has	s been tested in accordance	with the specification
shown above, A		•	-

Authorized Approve

YOUR P.O. # D74 - 04991

BARTOW STEEL REF. # 600

성 적 서 번 호 : CERTIFICATE NO

제 만 본 호... CONTRACT P/O NO

멁.

CATE OF 1551E

£ 7

SPECIFICATION

SCHMONTA B

E-8-04-269

APR. 28, 1958.

E.P.V. STEEL PIPE

API 5L X42/API SLB/ASTN AS3B

Z.3; 3

54208400

PADE - 1

사 증 명 서 (A)

MILL INSPECTION CERTIFICATE

THESE MILL TEST REPORTS APPLY TO

ELSTONER

현 대 강 관 주 식 회 사 HYUNDAL PIPE CO., LTD.

· 본사· 공장: 물산광역사 동구 영호등 265번지 표현고 교실도 LISAN PLANT: 125, YUNDO-DONG DINGKU, ULSAN METEOPOLITAN, KOFEA TEL: (62/287-2101-9 FAX-(62)237-8916 BIX HERE K SSTIR

#서울시우스 서울폭범시 중구 우호동 IT번지 · [100-LIZ호 SECUL OFFICE : \$77, MUKTO-DONG, JUNG-KU, SEOUL, KOREA TEL: 773-0522 FAX: 775 - 7095 TLX : HOPIPE K 14856, K 22956

[[[]]] G : G06D 경격시법 NUZZOT 4. / 보기 회사수 등 도 및 시 팀 5.7 3 9 1억 1 1213 COATING TEST 인 장 시 범 TENSTLE FEST 권 중 P 구입시집 *| 수 람 ENERGY SAFINGE 2517 중 안 변 문학원 군보석 참목경도 인 집 간 드 HTCHO. ELONGATION DIMENSION 07 QUAN-STATIC 3 MIT IN DE COLOR OF THE PERSON 져강변호 NELD [TENSILE FLUTAGE 1851 GRIEFI 11.51 P-11.571.1414C 11.51 WEIGHT azient Of DiP PIPE TITE STRENGTH , No. 검 × 부 및 × 길 HEAT NO. STREM TEST HEMARK TEST ERC CUTCIA X THICK X LENGTH: ENO दा⊁ CEAS **梁](** PCS (KG) kg fan' 36 KULE 1/2 × 1000 × 100 X KG ≫ 1 ×2 ₩ 3 **# 4** 75 14 7 8 1 2 5 30.3 47.8 50.5 BPEB 00 16" x .500" x42.000" 3, 157 157081 ₹ 406.4× 43100 68000 71800 x12.70m x 12.802V) 28.5 51.6 BPEB 00:24" A30385 48.9 150 x .375" x40.000" 309.024 83:0101010101 40500 89600 (510.0 x 9.53mm x 12.192M 29.3 40.0 52.3 A30387 41700 69700 74400 29.5 75 18 A30424 4200C 53500 30.5 50.2 A31749 47.0 43400 66900 71400 28.261 110 6 6 A29929 32.9 49.5 52.4 177 1 78 17 8 6 BPE3 00 24" x .500" x40,000" 331 45800 70400 (610.0 x12.70 x 12.1924) 38 117 1 77 20 A31747 72000 6770C 7.7 73 15 7 A32421 30.1 48.3 42800 58700 73100 707AL -) 313 610,442 Und ES Mimm Liberty 용고-NOTES ※1 Type of ups End 관중 NO Z NO : Norman Ecred 22.00 : Outside Germater S 5 0 : Good SPE : Stack Plan End Square-out 京 4 Can 日本日本 M. Nater、F.: Feel、F.: From Visual & Commencer Test 국안 및 국수검사 I GPE Sarranged Plan End Scotte ent Fig. Flattering or Panding Test 권형 또는 급형시험 Web Duckley Test 등접본 인선시형 SPEE : Bace Fam Erg Bereid # 3 OPER Garanged Pag Erd Samed # 11 Flaring Test 입회시험 : GTG : Gananeed Threaded & Coupled B S Neggestructive Test 리디피션시 RTC : Black Threaded & Coupled 空間 Ch.fs Test 迎条外内 본지고 lateld mean S. S. S. S. 를 IP Pleversa Flationing Test인경시월 는 12 Crush Test 중입사절 BVI : Black Victatio Lord 1 GV3 1514anises Versus John N 15 H : Heat (Lade) Analysis Willed, F : Product Grayes ABEd ETC. : Enumeled Treaded & Coupled E IS W: Wat Fart # ME 본 제품은 관련규칙에 합격되었음을 보증합니다. VE RETERY CERTIFY DUST THE HATERIAL DESCRIPTION DESERVE RAS RESEARCH. INSPECTION MANAGER SURVEYOR HPS-8.301-011-0LT 353×291 를 적 제 번 호: CERTIFCATENO

A S B Z COMPACT (PAC) NO S B B COMPACTITY

DATE OF ISSUE

SPECIFICATION

검 사 증 명 서(A)

MILL INSPECTION CERTIFICATE

수 요 가. CUSTOMER

E OT X

£4001000

AT SE XID/APT SERVASTI ASTRIASTE SASTR

FEB. 11, 2000.

E.R.W. STEEL PEPE

↑ 현대강관주식회사 HYUNDAI PIPE CO.,LTD.

· 문사·공장 : 울산왕역시 목구 업교통 265억지 原程(李고교교 HAND CFRCE. - 225, YUMPO DOMG, BUKHU, SUSAN , KOREA RUSAN FLANT) TEL28C4114 FAX (SEZ)287-8916 TX.HCP-PE K 53/76

 서울시무소녀 울특별시 중구 우고등 77번자 正面중·집군장 SECIL OFFICE 19 77, MUGYO-DONG, UCING-NU, SECIJL, NOREA YEL:3435-6500 FAX:775-7685

						J.	¥4	6 J.	1 1 3	1 GG	DOD N M	1-	-		민장시	724					<u> </u>	21	- 4		1961			152	A P
TYPE OF FRPE END	치 DIVE: 외 경 × 투 (CUTDA. × Th:	세 보 길 이	⇔ & OUAN- TRTY	중 힣 WEIGHT	中で HYOPO- STAJIC JEST	ADCONTEST OF	CHITY HEST OF	9 0	TEST NO.	THICKTMENT THE STATE OF THE STA	DIP	HARD HARD	저 김 선 호 HEAT NO.	PISEUSC	TENSILE 인 중 TENS STREET	FEST CLE	ELONGATION		Si	Mn	P	MICA S C		i	O V	ND	AL CE	Absorbat Edy (0	4C1
#1	-s2 as3	34	(PGS)	(KG)	tor Sical S	ANTA D	1001	See.	13.	COAT	Π- 145-	HIV		PSI	9-15 Jes [1] go2 Pf	736		177	I K	<u> </u>	× 10	000	,	£ 100	1		1000	70032	
3975	CD 24 x	.500° x42.000°	22	50.200	711	G	ត្ត្រី (G:	T	G		1	#752E	31.9	50.1	53.	2 38	19	2	79	10	8 1	1	1 /1	r:			į	
	(610.0m	x12.70mm x 12.802%)			1580	1								45400	71300	7570	Œ					1				j		1	L
	ioral ->		21	50,20	1	;	П	1	I		1 :	T					į		-			ţ						1	_
			1				1		1	3	1						-		1			<u> </u>	1	1	\perp			na Pra	_
						П	1		Ì	\$								1	•				1	_					_
							Ц	1	i	LI	Ц.	1				-	_		1	-		1	1 1	_	\perp			-	-
							1	IJ.	Ц			?				<u> </u>	-		1	ł·			1	_	-		1	_	Ļ
			;			1		-	Ш			<u> </u>		<u> </u>		<u> </u>		-		§		4						-	_
							11	:	11		11	!		ļ	_	1	<u>.</u>		1				1	_	-				-
			1 3			1	<u> </u>	$\downarrow \downarrow$	₩		1	<u> </u>		 -	1	<u>.</u>	-	-	-				+		1	-		+	_
i			 			!	11	11	3	<u> </u>	 	 	!	 	-	:	-		-			-	\dashv	- <u>f</u>	-	1 1	-		-
	-		! 			4	<u> </u>	H;	1:	7-	!-	 		<u> </u>		-	-	-	-			1	+	+				<u> </u>	-
		THESE	i l	TEST A	EEGS	-		100	1		 - 	!		<u>!</u>	+	+	-	H	!				1 1	+	-				\vdash
				1231 8		7 4 5	3 7			a-				1	+	-			!				+		- -				-
		YOUR	P.O. #		17.	7	Ļ	J)			<u>:</u>	<u> </u>		<u> </u>		<u></u>	-	i		,			لـلـ					_:	i
PEMAHK		8ART()W ST	EELAE	F.#					45																	V		
NOTES	[31] Type of the End 권종 X - B Glack - G Gabarund E E Enameliko	h y . Varnish - E t Ramoral Varnish - O L Owing Sciency - S . PE Goating - G . Colours County - A . Author County	X PE Ba Ser TE Tra TO TW SE Ser Ser W Van	o End se End sed End sed Coupling End End	8 5 G G → 8, Uses 1 G Hame	icod Cuca Tea Teas	dip To u Li u nimu S	다 공급 사건 검사적	조 연수) 0cms/m 0)사항 (사항) (사항)		(4)	Unit & HIM Westell & Denie Montpolation Crizer Test 3 Br Basse War	e (Hara) e (Hara) 합시면	। इंड ५ ग	수검수		FIELD	<u> </u>	dening It Tess	Electric services in the servi	ib Ng Tes	Sect 건선	* ⊆ ₩) 급설·41)	a 	1		
	SURVEYOR				E.CERT	icā.	THA!	LIH	EDE	338IPD	MA	ERA	2중합니다. PAS HERE SFECIFICA	IN SEE		:a					K	JAU.	V ASS	G	KET	EAM (e e	2 (AL MG (582 -	

MYUNDAI PIPE CO., LTD.

성 전 서 번 호 : CERTIFLATE LO :

GATE OF ISSUE

FO E TO

계 만 번 호. . CONTENT P/O NO COUNTRY

E-8-04-269

APR. 28. 1998.

E.R.V. STEEL PIPE

API SL XAZZAZI SLEZASTH ASSE

로,하다. Page 2 1

E4868400

TONS OF
Ξ
04 - 30
MED
10-01-130

건	사	증	명	서	(\mathbf{A})
	- '		0		\

MILL INSPECTION CERTIFICATE

[4 : 6:00

THESE MILL TEST REPORTS APPLY

TISTOMEN

대 강 관 주 식 회 사 HYUNDAI PIPE CO. LTD.

● 문사 - 공장: 출신당역시 중구 범포용 265번지 중됩正元교육교 비보자 라시다 : 255 '도사와 DONG 5000'에 나타서 시퍼로(POUTAL KOREA 대, 1050 조구(POUTAL RECOGNOS-SATS TUX 1056 KSUTS

◆세울사무소 서울특별시 중구 무교통 77번지 <u>□ 200</u>-3120 SECUL GOTICE: =77, MURYO-DUNG, JUNG-KO, SECUL, KOREA TEL . 773-0522 FAX : 775-1056 TLX : HDPIPE K 24856, K 22958

																																			_
말 증		Z.			¢-				수만시	5	7 8	4,3 3 (7)	i	2 15	도 C04	TING T	TEST			민 장 TENST	시 털	7			į	i Peu	iq Cal	con 성	₹ 105	195.) TICN		1775	PLCT		
TYPE		•	MEN		•	÷ gu	당	춤 감	ue non	3	HSI -	_{_	7 7 8		C) 선 무확함	13.51	<u></u>		감독점도	인 및 ' (E)	길을	٠ ١	Z.		Ì	Ì				}	ŧ	¥.2	ALC: USE	비크	
PIPE	2,	д×	두	ल{ अ	ચુ હા	TH	Y	WEIGHT	STATA	00	ž .	- ALERA	7	厚	William GF	(CIP		제공연호 HEAT NO.			ENGTH	13	าร์	c	รไม	ا ه	P 9	5 L	. Ne	0	May	10		REMARK	ļ
CK3		OUTCIA.	× TH	ЮK ×	LENGTH:					_ š	1	<u>_ا</u> ً_	E,	2 3	j:4(TEST	r	MEAT NO.	67/1	3	W	7	å			-		129	1		-	4		HEMARK	
# 1		_				IF	CSI	akos	kgia FSI	VISUAL L'ORCHSION P	1 10	1991 1199	ABBIG	1	17.71. 17.71.	THE S	#	1	Po	*g/=		15	34 3	<u> </u>	156	×	120	1	-3 ,	4 100	<u></u>	Men	E 34		1
	00 15"		3		x42.000		 2	3,157		7 2	C 5	2	1	1 6	92,71	1311	4	B57081	30.3			. 5		16		75 1	. 1-	16	ĺı	2	· 1	+-	+-		7
- E- CD	-						<u> </u>	3,13.	-	u vi	UG	<u>u</u>	÷	+		++	+-	1007001		6800	-	-	-30	110		13 1	1	+	+-	۲			+-		-
	[406	. 438			x 12.802Y		_;		2230	+;		+	H	+		 - +		ļ	43100	-	_		-	120	-	+	-	+	1	1. 1	1	+	+		-}
SPEB	00 24"				x40.0001		[80]	309,024		GO	GE	듸	H	+		H	1	A30385	28.5	48.9	!	-	401	118	1 '	75 1	3 18	13	12		F		+		-
	(610	, Cessa		9.53	x 32.1924	1			1:80		1	Ц.	1	\mathcal{H}		1 1	<u> </u>	<u> </u>	40500		-			+	- -	+		+	+	-		+-	+-		-1
										-		1	}	4		1 !	-	A30387	29.3		-	2.3	41	17	Iţ.	77!1	4 8	16	1	2	1 1	4	+-!		-
							_			1		-	!	Ш				1	41700	6970	_	-] [<u> </u>	-	-	+	<u> </u> _	Ļ	-	+			
	-						- [Ш				1		1		130424	29.5	48	2 57	2	40	12	Įį.	75 <u>:</u> 1	8 10	8	1	12	11	<u> </u>	1		_
											-	•							42000	6860	728	200	ŀ	į		<u> </u>			ţ_	;		ĺ			
				-			_[****						131743	30.5	47.	50	1.2	41	17;	1	61	9 k	18	11	2	1 Tr	. !			
	1									T		**	Í	П			7-	1	43-200	5690) 714	loci		*	BUT AND	_	-	ţ		1		į			_
8903	CO 24"		ж	.500"	x40.000°		131	298, 261	110	G G	66	GÌ						A29989	32.9	49.	5, 52	2.4	35	17	1	75 1	7 8	16	2	1	7 1	1	-]
	(610	Com			a x 12.1924	1			1560				10.0			TT	1		46300	7040	7	-			1			1	T		П	-			7
	1						1			1		+	1	1		11	1	A31747	31.9	1	7	-	38	17	1	77 2	0 5	5	2	1	1 10		-	The state of the s	
3	-						1		i	1		1	1	1		11	3			8770	-		-		1	i	1	!	1	1	1				7
	1-						寸		-	+		Ť	ti	Ħ		T		A32421	30.1	48.	1	Г	78	117	11	73 1	5 7	İR	1	2	1 10	Ť	ī		
į	1-					-				1	+	+	+	\dagger		11		TO CALL		6870	1	T	-	111	Ť	1	1	1	- 1 -		1	\dagger	1	7	7
	1							570 440		+	-H	+	H	귀			- 	†	1	0017	1 3	1	 -	+	\top	+		Ť	+		-		i		-
	TOTAL	->					<u>13!</u>	\$10, 442		-{-{	+	+	ᆉ	-		1 1	+-	 	-	<u> </u>	+	-+	-1	+	-	+			+-	+-1	H	+-	+		-
									{	-		+	╀	-		1:	+-				+	- -	+	+	╁	+	+	+	+-	\vdash	;	+-	+		-[
	-				-				}	- -		-	:-	+		1 3		 -	+		+	-3		+	+	+	<u>i</u>	+	+-	1 3		-	-		-
35.77-	i.	- 1. X	-1			1			-	1 1		\perp	Ц		34 65			<u> </u>	<u></u>			÷		$\perp \downarrow$		112.	단귀	1	<u></u>	1 1	buner!		1		4
		₩ Type o		-	PE (Galvanuts)										G. 0; : Fee			lg.seter	-	F @:0	bast			1	= 1							1 12 3	서수검	A}	1
		un End 3a			ER Sawan red												는 香	5.4.数	L					Ì	= 8						4 F 5				3
		Yearded & Co			C Gavenue				2 9	Noru	Cesta	acon	a 76	e5\$ 6	144				F 1	Dr.*1	Test 2	吾川	H		ž į	Fer	ing i	est.	oj t	시험					
		cteule leus			/ Garrana	Yelsek	Jan		k 12									Savera ?	श्राक्षाकर	Leaf	기시설				4 14		3254		14 E	갢부					
(536	:Enamero	d Freesded d	d Crisple	4			_		P-15									ig Hillen		eselva:	결연분	4, 2	7.70	eset.	الجعم	4 7	a E	색			1	-		<u> </u>	4
											. –					-		을 포출할										المح	,	Í	6		Ź	المعرث	1
	SU	ROYEVE			7			NOTE OF	E L		Y.,	WI	VIS	5 4	JE!	E DE	NA IS	ED REEN I	R SE	igner Igner									1	N5F	FC	ION	MA	MAGER	
-25	301-019	~ GL. T					٠		-									1	_ کاندا								-		************					1156 × 29	Gi

10-

00

8779

598

ទា<u>វ</u> ម

증 명

THESE MILL TEST REPORTS APPLY TO

MILL INSPECTION CERTIFICATE

되려지

E48664(3)

E-8-64-269

AFR. 28, 1998.

E.R.V. SEEL PIPE

APT SL MAZ/ART SLAVASTN ASSE

DATE OF ISSUE

COMMODATA

N E W S

PAGE : 1

CUSTONES

HYUNDAI PIPE CO. LTD.

SESSION FROM PART VIDEO BOLL DONS ALL CLEAN LEGO OLIM MITCH TEL DETERMINE - PROTECTION - SECTION TLY HOPPE KENTIE

* 선물 이 후 후 사용적이서 중을 수호용 12년과 <u>11년1</u>2-1220 SECUL OFFICE : STY, MINTO BONG, HIFE AD SECUL KOREA TAX : 775 - 7096 TEL: 173-9522

TLE : HOPSE & 24656 K 22956

BARTOW STEEL REF. # 111111 6 :COOD BOY N CUATAM TEST PENSILE TEST 4 4 2 8 年四人 副 平量 長 등 등 등 등 등 1521 전 103 등 1521 전 1034 DD 한 103 등 1621 TIPE 9415 1 8 T S MY IAB. DUM Œ۴ **斯拉图度 7003** · PANSUE WEIGHT SYATIC 337 STALLHOTH PIPE HEAT NO. BIALL REMARK METOIL & THICK & LEHSTHE EK. 201 m 14. Mps my/mi PSI (FOS) (AGI 4 9()di = 1 M Z M 4 75 16 1 BPIE (D. 16" 47.8 x .500" x42.000" 3, 257 25/081 71200 43:06 88000 1 406.400 M12.70m w 12.800% 78 15 10 SPE 100 24" 180 ABOSAS 309,034 m . 375" wel-000" F 810.0 40200 EDEGO: x 5.53m x 12.1926 2 1160 A36287 29.3 49.0 77114 1970 41700 A3024 29.5 1 75 13 16 68660 30.5 L31740 43400 32.9 78 77 8 5 131 256.201 343.4 82**82 80** 24" .500" #45.000" 43500 1 61G.Om 12.70m x 12.150f J A31719 A71749 68200 THE -) 510.442 South Balling & Smith 製工一編TES 本界Type of pipe End 記書 NO THEFFER STORE ST. DE : Cutado Demeso S S G : Cont Housed & Demonstrat Tax接受 Tax 海牙配外 1998 : Black Fram God Sarbre est 物面影响从TABLE, FTFest, LTIncha CPS : Calmains Pag End Symmetry West Crecies Total 雅亞家 대표시数 manus Bendary Test 初醇 显然 湿度污染 OPER Belierund Plan Ent Bemfot WILD : Black This End Barelot タリ Delt State 計算 を記 Resecta Filmening Text 5794数 Figure Test SAME UTC Salmoned Thousand & Googlet Northernaire Test HUNGH \$7.5 Bleet Breades & Craphs D: Sime Sime 2114 Bits Sheck Witness .. See 1904 Marcall Bentraviel, (VI Great Tost #SAM In 16 14 Tehan Lading Analyse Bellett, P. Predoct Analyse Marrie ETC TEnumbel Thousand & County ■図 W:W 神子の 書作表 본 제품은 정단규칙의 함격되었음을 효율됩니다 INSPECTION MANAGER SURVEYOR HPS-210:-419-017 195 × 196

A HYUNDAI PIPE COLLTO.

F. 51.701

FAMW

*300 F.W3/W3

TELEPHONE: (410) 200-1113 PAR: (410) 200-0001

CANADIAN PHOENIX STEEL PRODUCTS

EMBION OF SERVER ONTINIO LIMITED 300 HOFENER AVENUE ETCHIOQUE, ONTIANO, CANADA MEZ 4Y4

LABORATORY REPORT AND MILL TEST CERTIFICATE

DateDec.7/00	CUSTOMER Pipe & Piling Supplies
SPECIFICATION A1398	CUSTOMER'S P.O BLK-1125
DIA. 4 WALL 34 " 0.D. X .375 WT	PHOENO: REF. 00-3658
HYDROTEST 620 PM POR 2 Min.	of the second

PHYSICAL PROPERTIES

MEAT NO.	thereit has		ONAL TEST	*	TRANSVERSE	BREAK
HEAT NO.	PIPE NO.	AMELD	THE PARTY OF	PLONGATION	WELD TENSILE	LOCATION
7950P	1 3	48700	73900	137.5	77300	PM
7955P	10	57800	B1300	37.5	83900	PM
B064M	14	59400	83100	.37.5	85800	РМ
B163M	49	45200	67300	37.5	70600	PM
121581	54	49000.	74300 ·	37.5	77100	PM
				16.14		

LADLE ANALYSIS	CHEMICAL COMPOSIT	CON

E

HEAT NO	C	MM		<u> </u>	BI	CR	N.	<u>ou</u>	MO	AL
7950P	.20	.84	.006	.009	.23	.02	-01	.03	.010	.034
7955P	.18	-83	-007	.009	. 22	.01	.01	-01	~ ~ ~	.036
8064M	, 18	.89	.005	.011	.231	. 02	.01	.02		.038
8163M	, 18	.86	.004	.011	22	.02	.01	.01	.0,10	.042
121581	.21	.97	,003	.007	.04	.06	04	.12	.013	.04.1

The meterial listed on this report has been tested in accordance with the specification

M The Samer

YOUR P.O. # Plan Black Job BARTOW STEEL REF. # 34479

AMERICAN STL . PIPE

A DIVISION OF AMERICAN CAST IRON PIPE CO., P.O. BOX 2727, BIRMINGHAM, AL 35202-2727 OUALIFICATION REPORT OF SHIPMENT

DATE: 28/MOV/2000

S CUSTOMER ADDRESS:

CONSOLIDATED PIPE & SUPPLY COR

CUSTOMER ORDER NUMBER
S13-01362

HEG ORDER NOMEER

P O BOX 2472

BIRMINGHAM AL 15201

5104172

rinr	PIECES	FOOTAGE	SIZ	R	NALL		HIP. NO		RIPTION	N	SPECI	PICATI	BNO	GRADE	
l	106	4271.1	24.0	0	.375	ERW A	PI LINE	PIPE		,	API 5 ASTM ASME	Ā53		8X42 8 8	
HBAT	C MIN	, p	5	CA	gr	TI	CU	NI	МО	CR	<u> </u>	AL.	E	N	C.R.
5 = 0	.050 0.660 .060 0.659	0.013 0.		.018			0.017	0.009		0.026	0.007		0.000	0.000	
P= 0	.050 0.710	0.012 0.		.017			0.026	0.014		0.034	0.006		0.000	0.000	

MILL ETETS

PAGE 1 CONTINUED

H = 0.060 0.660 0.013 0.004 0.017 0.230 0.012 0.010 0.010 0.002 0.030 0.005 0.034 0.000 0.006 0.179 p = 0.066 0.656 0.011 0.004 0.015 0.216 0.012 0.022 0.012 0.005 0.028 0.004 0.031 0.000 0.000 0.185

MaWELD TEN. 67.5 KSI TEN. 67.0 KSI YIELD 54.5 KSI BEL 45.0 RB 85 HYDRO: 1180 PSI

ESSUE NO. 4

80986

LINE 1

2414 Csq, FAMW

TSSUE DATE: 01/17/1996

QD - AW) FOS5

ESSUE NO . : 4

DATE: 28/NOV/2000 HIPG ORDER NUMBER

CUSTOMER ORDER NUMBER

308	Costoner	name:	CONS	CADILIC	LBD 51	TPE &	SUPPLY	COR	S	13-0136	52		SI	04172		
	HEAT C A0P0541	MN LINE 1	P	S	СВ	Sí	TI	CU	IN	MO	CR	V	AL	В	N	C.E.
<u> </u>	H= 0.170 P= 0.165	0.860 0	.OLL 0	009 0	0.002	0.040	0.002	0.080	0.040	0.006	0.030	0.004	0.033	0.000	0.011	0.329
	M=WBLO TE						YIELD							1180 PS		0.320
	BOP5823 H= 0.180	CINE 1	010 0	007 (3 002	A 070	0 000	0.000	0.040	0 000	0.040	0 004	0 004	0 000	0 000	0.344
	P = 0.187	0.939 0	.012 0	.002 (000.0	0.062	0.001	0.086	0.046	0.010	0.045	0.003	0.020	0.000	0.000	
	M=WELD TE		5 KSI	TEN.	70.5	KSI	, ALEUD	52.5	K2 1	45F 18	.5 אט	87 HY	CURO:	T 180 5	5 £	
E	H = 0.190	LINE 1 0.840 0	.012 0	.007	2.003	0.050	0.002	0.090	0.050	0.006	0.040	0.004	0.028	0.000	0.011	0 349
-	P= 0.192 M=WELD T8		.013 0 5 KSI			0.054 0 KSI	0.001 Y[ELO			0.011 %EL 43				0.000 1180 PS		0.351

LEGEND ANALYSES:

A-Z - ADDITIONAL TESTING R - RETEST

L - LONGITUDINAL

H - HEAT ANALYSIS P - PRODUCT ANALYSIS T - TRANSITIONAL M. MECHANICAL PROPERTIES W - WELD LINE

HYDROSTATIC TEST: OK FLATTENING TEST. OK

ULTRASONIC CALIBRATION N.10 NOTCH

WE HEREBY CERTIFY THAT THE ABOVE FIGURES ARE CORRECT AS CONTAINED IN THE RECORDS OF THIS COMPANY, AND THAT THE PIPS WERE MANUFACTURED, TESTED AND INSPECTED IN COMPLIANCE WITH THE LATEST EDITION OF THE APPLICABLE SPECIFICATION, IN BIRMINGHAM. ALABAMA, U.S.A.

PAGE 2 END OF REPORT ISSUE DATE: 01/17/1996

00 - AW) £055

- STEBL PIPE

CLUENT:

Mr. Jeson Valk

PROJECTS

Tensile de Chemical Tes:

14" OD STO BAKE SMLS

CONSOLDATED PIPE & SUPPLY P.O. Box 2472

Birmingham, AL 35201

SALES ONDER NO.: 1511929-003

DATE:

REPORT NO ::

470-15056.001

REMARKS:

Sample was received from the elient on July 11, 2001

TEST METHOD:

ASTM A370 E8 ASTM 5415-95

TEST EQUIPMENT:

SATEC M400 HVL

ARL 5460 AES Spectromater

SPECIFICATIONS:

NA

				THE BUILT BY	A/LYS			
	AFRA	71710	TENERL	V125	TENELLE	4		
-	7 m2	LOAD	LOAD	TTRENGTH	SIBBIGLIA	KLONGATION	MTOTH	THICKNESS
	251	Disp.	Me	p.a.	gowi	2"	20:01:00:00:00:00:00	
	0.7000	9494	12948	47469	69763	33.4	\$7000	.4003

****	CHEVICAL AND YELL												
SAMPLE ID	C	Mu	P	s	此	0	NI	Ċ	٧	Mo	Al	79	NE
	}		A CONTRACTOR OF STREET, STREET	-	-	Clare -		A STATE OF THE PARTY.			Name of Street		
	.13	1.01	.005	\$12	_33	.03	٤١٤.	. p g	.001	,DZ	026	.000	000

Respectfully Submitted.

PROFESSIONAL SERVICE INDUSTRIES, INC.

Jonestan E Ma Project Manager

JEI:cyk

EZ CENTRON International Inc.

P.O. Gaza 464 himeral Wells, Temas 70051 (940) 325-134 PAX (840) 325-868

CASING TECHNICAL CALCULATIONS 6 5/8DEC.500

940 325 1346

TUBING DESCRIPTION:

INSIDE DIAMETER = 6.10"

OUTSIDE DIAMETER = 7.10" Nominal

WALL THICKNESS = 0.500" Nominal BOX DIAMETER = 9.00" Nominal

LENGTH - 29 1/2'

MADE-UP LENGTH = 29 1/8'

WEIGHT PER FOOT = 9.30 lbs

PHYSICAL PROPERTIES:

AXIAL MODULUS = 1.85 x 10⁶ psi HOOP MODULUS = 3.00 x 10⁶ psi ULTIMATE TENSILE = 120,000lbs SHORT TERM WEEP = 4500 psi POISSONS RATIO (AXIAL) = 0.45
AXIAL TENSILE STRENGTH = 16,000 PSI
ULTIMATE COLLAPSE = 1285 psi
AXIAL THREAD LOAD(ULT) = 150,000lbs

TUBING RATING CALCULATIONS:

RATED INTERNAL PRESSURE = 2000psi

Design Hoop Stress # 13500 Psi

 $W_T = (P_1 \times D_1) / (2S_H - P_1)$ where:

W_T = Reinforced Wall Thickness

P₁ = Internal Pressure S_N = Design Hoop Stress

 $W_{*} = (2000 \times 6.10)/(27000-2000) = 0.488 inches$

RATED AXIAL LOAD

*Maximum Allowable Strain = 2800 microinches $L_A = (E_A \times 0.0028) \times CSA$ where:

LA = Rated Axial Load

EA = Axial Modulus

CSA = Cross Sectional Area of Tube Body

 $L_A = 1.85 \times 10^6 \times .0028 \times 10.362 in^2 = 53675 lbs Allowable Load$

TUBING TECHNICAL CALCULATIONS 6 5/8DHC500(Cont'd)

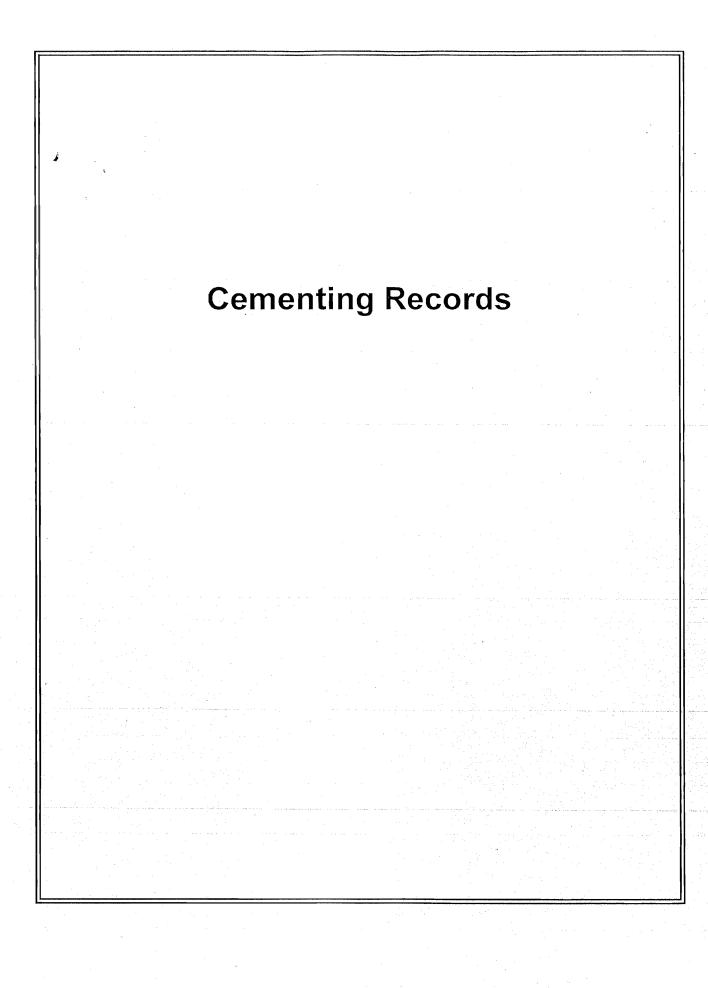
RATED HYDRAULIC COLLAPSE PRESSURE

CENTRON's Rating Protocol for Operating Collapse is Ultimate X 0.46

 $P_c = (T/D_o)^3 \times K$ where:

Pc = Ultimate Collapse Pressure (PSI)

D. = Outside Diameter of Tube Body


 $K = Constant = 8 \times 10^6$

The "K" factor was derived through actual hydraulic collapse testing of many sizes if GRE tubes.

 $P_C = (0.500/7, 10)^3 \times (8 \times 10^6) = 2793 \text{ psi } \times 0.46 = 1285 \text{ psi operating collapse.}$

20 Sept 2001

file:6 5/8DHC500

ASR Well

ASR CEMENTING RECORD

PROJECT: HILLSBORO ASR

WUD Project No.:	98-66B	

CONTRACTOR: Haskel Corp.

BID ITEM:

CASING SIZE: 34-inch surface casing

Α	В	С	D	Е	F	G	Н	l	J	K	L	M
DATE	STAGE NO.	CEMENT (ADDITIVES, BLENDS, MIXTURES)	YIELD (FT³/SK)	QUANTITY PUMPED (FT³)	FI	ETICAL LL FOOTAGE	TAG DEPTH PAD LEVEL	FI	UAL LL FOOTAGE	PERCENT FILLED J/G x 100	CUMULATIVE TOTAL (FT³)	INSPECTOR'S INITIALS
10/19/2001	1	Neat .	1.18	1323	250 0	250	0	250 - 0	250	100	1323	TGU
										_		
			ı									
			_									

ASR CEMENTING RECORD

PROJECT: HILLSBORO ASR

WUD Project No.:	98-66B

CONTRACTOR: Haskel Corp.

BID ITEM:

CASING SIZE: 24-inch final casing

Α	В	С	D	Ē	F	G	Н	1	J	K	L	M
DATE	STAGE NO.	CEMENT (ADDITIVES, BLENDS, MIXTURES)	YIELD (ft [*] /SK)	QUANTITY PUMPED (FT³)	THEOR FII INTERVAL		TAG DEPTH PAD LEVEL		UAL LL FOOTAGE	PERCENT FILLED J/G x 100	CUMULATIVE TOTAL (FT°)	INSPECTOR'S INITIALS
1/18/02	1	Neat	1.18	905	1010 636	374	901	1010-901	109	29	905	TGU
1/23/02	2	Neat	1.18	729	901-599	302	424	901-424	477	158	1634	TGU
1/29/02	3	Neat	1.18	621	424-204	220	128	424-128	296	135	2255	TGU
8/31/02	4	6%	1.18	176	128-67	61	36	128-36	92	151	2431	TGU
9/1/02	5	Neat	1.18	41	36-22	14	19.5	36-19.5	16.5	118	2472	TGU
9/2/02	6	Neat	1.18	41	19.5-5.5	14	3	19.5-3	16.5	118	2513	TGU
									{			

PROJECT: HILLSBORO ASR

WUD Project Na.;	98-66B
CONTRACTOR:	Haskel Corp.
BID ITEM:	
CASING SIZE:	24-inch surface casing

Α	В	C	D	E	F	G	Н	I	J	К	L	M
DATE	STAGE NO.	CEMENT (ADDITIVES, BLENDS, MIXTURES)	YIELD (FT³/SK)	QUANTITY PUMPED (FT³)	THEOR FI INTERVAL	ETICAL LL FOOTAGE	TAG DEPTH PAD LEVEL	ACTUAL FILL INTERVAL FOOTAGE		PERCENT FILLED J/G x 100	CUMULATIVE TOTAL (FT³)	INSPECTOR'S
6/1/01	1	Neat	2.1	810	245 0	245	0.5	245 - 0.5	235.5	96	810	TGU
		·										
												_

PROJECT: HILLSBORO ASR

WUD Project No.:	98-668

CONTRACTOR: Haskel Corp.

BID ITEM:

CASING SIZE: 14-inch intermediate casing

Α	В	С	D	E	F	G	Н	1	J	К	L	M						
DATE	STAGE NO.	CEMENT (ADDITIVES, BLENDS, MIXTURES)	YIELD (FT³/SK)	QUANTITY PUMPED (FT³)	THEOR FI INTERVAL		TAG DEPTH PAD LEVEL		ACTUAL FILL INTERVAL FOOTAGE		FILL		FILL		FILL		CUMULATIVE TOTAL (FT³)	INSPECTOR'S INITIALS
7/11/01	1	Neat	2.1	810	1014 - 590	424	464	1014 - 464	550	130	810	TGU						
7/12/01	2	Neat	2.1	770	464	404	0	464 - 0	464	115	1580	TGU						

PROJECT: HILLSBORO ASR

WUD Project No.:	98-66B
CONTRACTOR:	Haskel Corp.
BID ITEM:	

CASING SIZE: 6 5/8-inch final casing

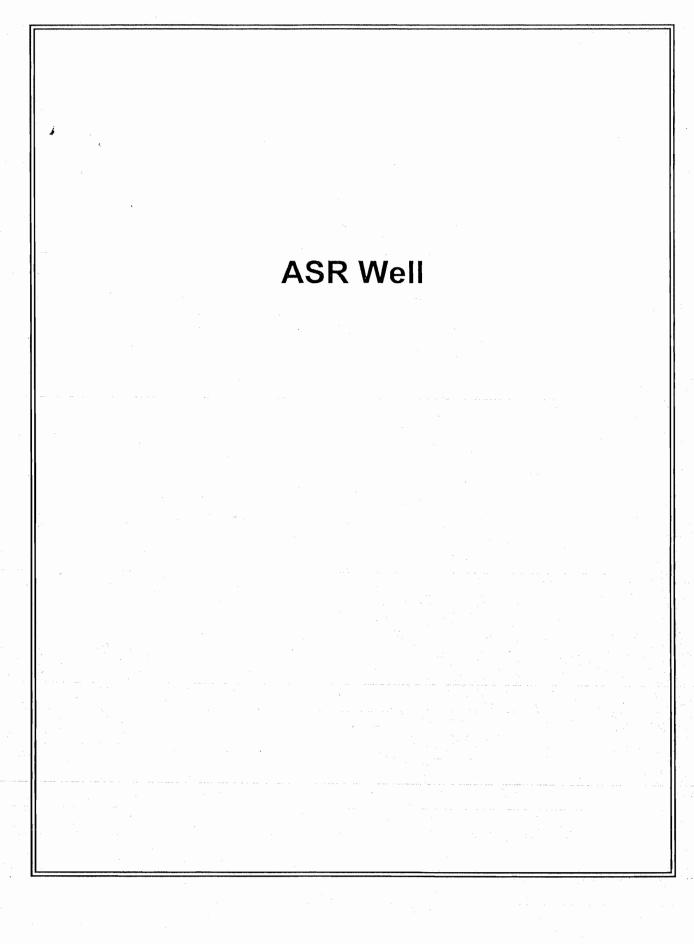
Α	В	С	D	E	F	G	Н	l l	J	K	L	M
DATE	STAGE NO.	CEMENT	YIELD (FT³/SK)	QUANTITY PUMPED (FT³)	Fi	ETICAL LL FOOTAGE	TAG DEPTH	ACTUAL FILL		PERCENT FILLED J/G x 100	CUMULATIVE TOTAL (FT³)	INSPECTOR'S INITIALS
	NO,	(ADDITIVES, BLENDS, MIXTURES)	(F13/SK)	(F15)	INTERVAL	POUTAGE	PAD LEVEL	INTERVAL	FOOTAGE	J/G X 100	(F1*)	
2/1/02	1	2% Bentonite	1.36	27	1007 - 968	39	997	1007 - 997	10	26	27	TGU
2/2/02	2	Neat	1.18	24	997 - 962	35	975	997 - 975	22	63	51	TGU
2/4/02	3	Neat	1.18	216	975 - 643	332	632	975 - 632	343	103	267	TGU
2/5/02	4	Neat	1.18	378	632 - 51	581	66	632 - 66	566	97	645	TGU
2/6/02	5	Neat	1.18	30	66 - 20	46	0	66 - 0	66	143	675	TGU

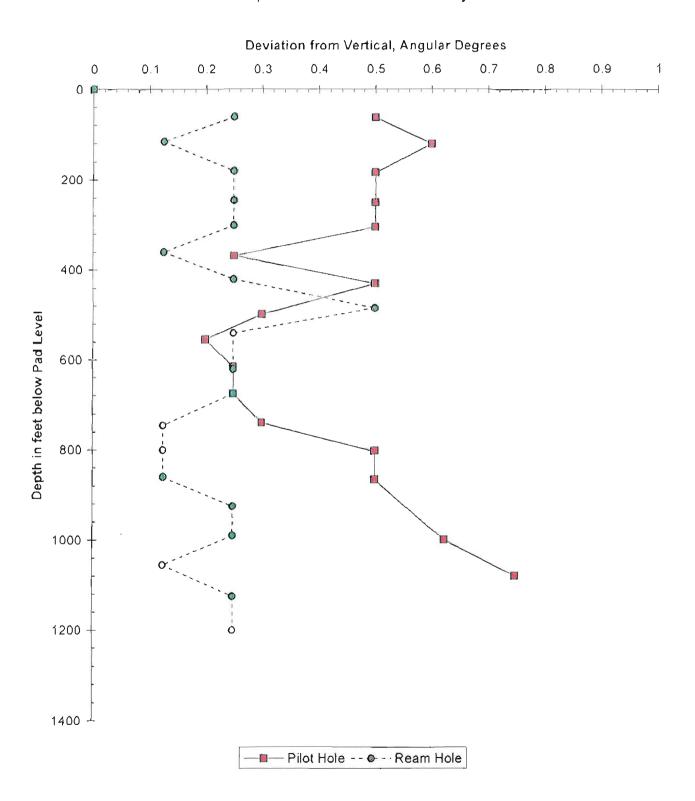
PROJECT: HILLSBORO ASR

WUD Project No.:	98-66B
CONTRACTOR:	Haskel Corp.

BID ITEM:

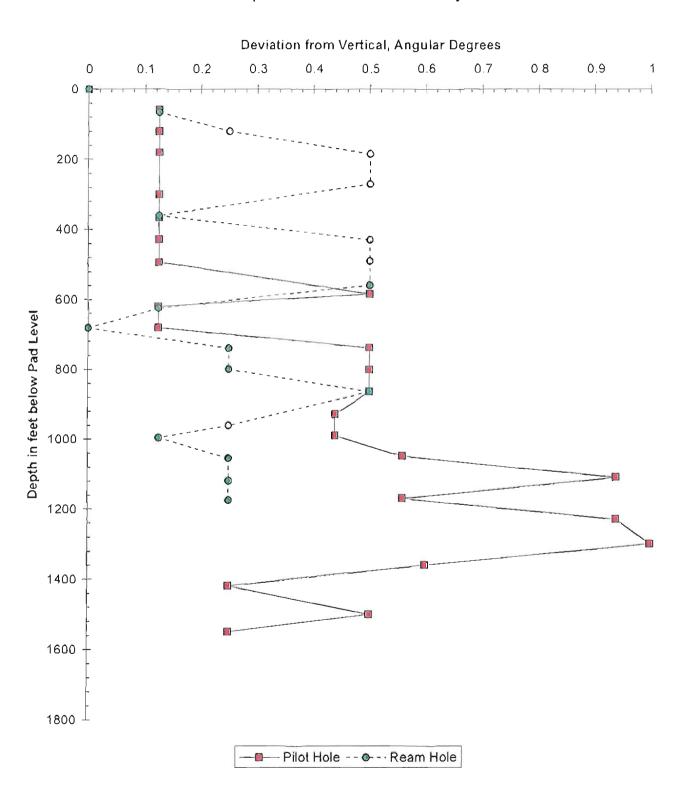
CASING SIZE: Plug Back of FAMW

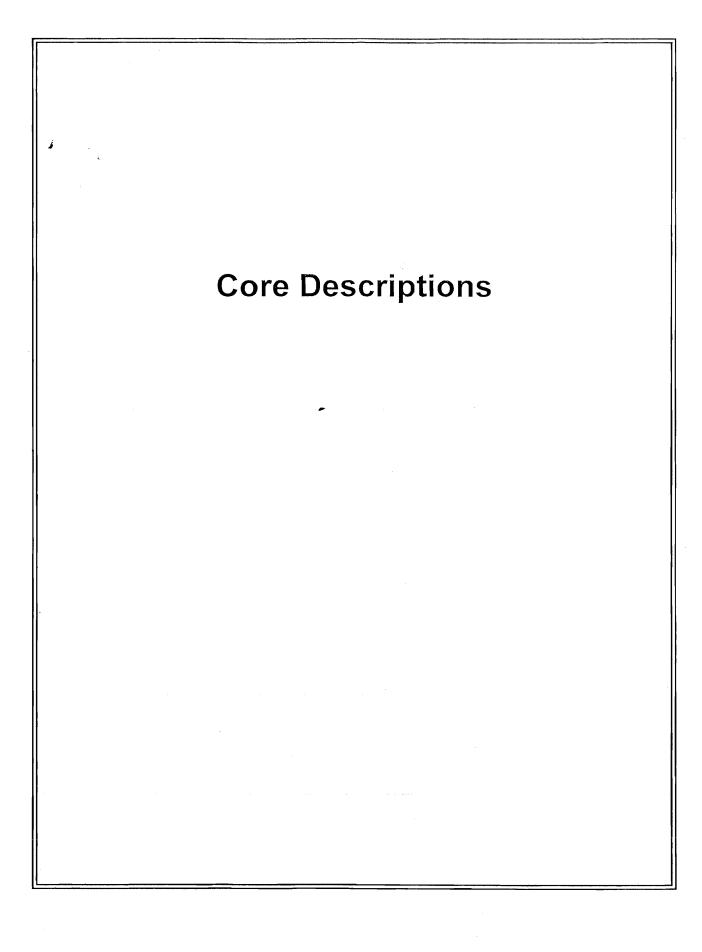



Peire Besch County Water Utilities ATTACH ALL CALCULATION SHEETS

Α	В	С	D	E	F	G	Н	I	l J		L	M
DATE	STAGE NO.	CEMENT (ADDITIVES, BLENDS, MIXTURES)	YIELD (FT°/SK)	QUANTITY PUMPED (FT³)	THEORI FIL INTERVAL		TAG DEPTH PAD LEVEL	ACTUAL FILL INTERVAL FOOTAGE		PERCENT FILLED J/G x 100	CUMULATIVE TOTAL (FT³)	INSPECTOR'S
11/27/01	1	Neat	1.18	243	1629-1324	305	1372	1629-1372	257	84	243	TGU
11/28/01	2	Neat	1.18	81	1372-1270	102	1290	1372-1290	82	80	324	TGU
12/3/01	3	Neat	1.18	40	1290-1240	50	1256	1290-1256	34	68	364	TGU
12/8/01	4	Neat	1.18	35	1256-1212	44	1232	1256-1232	24	55	399	TGU

Deviation Surveys




ASR Well
Pilot & Ream
Comparison of Deviation Surveys

FAMW

FAMW Well
Pilot & Ream
Comparison of Deviation Surveys

ASR Well

ASR CORE LOG

DATE(S): 11/2/01

PALM BEACH COUNTY WATER UTILITIES DEPARTMENT

HILLSBORO ASR WELL SYSTEM

WUD Project No.:	98 – 66B
CONTRACTOR:	Haskel Corp.

Core Number 1

TOTAL DEPTH:

DRILLING METHOD:

Diamond Drilling

DRILLER(S):

DATUM POINT:

Pad Level

feet

Pad Level

DATUM POINT ELEVATION:

HYDROLOGIC UNITS: Hawthorn Group / Suwannee Limestone

% RECOVERY 20 %


CORED INTERVAL 971 - 996

1	DEPTH DEPTH (feet below pad) INTERVAL			DESCRIPTION	DRILLING COMMENTS
971	to	976	5.0	LIMESTONE 100%: Color – olive gray (5Y 4/1) to light olive gray (5Y 5/2). Texture – phosphatic wackestone to packstone, moderate induration. Grains – siliciclastic, biogenic, micritic, phosphate, microcrystalline to very coarse sand sized. Cement/Matrix – carbonate. Porosity – high (35%), intergranular. Permeability – high. Hardness – hard. Fossils – pelecypods, gastropods, foraminifera, corals, some agetized mollusks.	

Observer's initials	
C COOI VOI O MILLIAIS	

PBCWUD Core Log PAGE 1 of 1

ASR CORE LOG

DATE(S): 11/3/01

PALM BEACH COUNTY WATER UTILITIES DEPARTMENT

HILLSBORO ASR WELL SYSTEM

WUD Project No.:	98 – 66B
CONTRACTOR:	Haskel Corp.

Core Number 2

TOTAL DEPTH: 1,021 feet

DRILLING METHOD: Diamond Drilling

DRILLER(S):

DATUM POINT:

Festus

Pad Level

DATUM POINT ELEVATION:

HYDROLOGIC UNITS: Hawthorn Group / Suwannee Limestone

% RECOVERY 14 %

CORED INTERVAL 996 – 1,021

_	DEPTH DEPTH (feet below pad) INTERVAL			DESCRIPTION	DRILLING COMMENTS	
996	to	999.5	3.5	LIMESTONE 100%: Color – medium gray (N5) to light olive gray (5Y 6/1). Texture – phosphatic wackestone to packstone, moderate induration. Grains – siliciclastic, biogenic, micritic, phosphate, microcrystalline to very coarse sand sized. Cement/Matrix – micrite. Porosity – high (30%), intergranular and modic. Permeability – moderate. Hardness – hard. Fossils – pelecypods, gastropods, foraminifera, corals, mollusks, fossil recrystallization spary calcite.		

Observer's initials _____

PBCWUD Core Log PAGE 1 of 1

ASR CORE LOG

DATE(S): 11/3/01

PALM BEACH COUNTY WATER UTILITIES DEPARTMENT

HILLSBORO ASR WELL SYSTEM

WUD Project No.:	98 – 66B		
CONTRACTOR:	Haskei Corp.		

Core Number 3

TOTAL DEPTH: 1,046 feet DRILLING METHOD: Diamond Drilling DRILLER(S): Festus **DATUM POINT:** Pad Level **DATUM POINT ELEVATION: HYDROLOGIC UNITS:** Suwannee Limestone % RECOVERY 33.3 % **CORED INTERVAL** 1,021 - 1,046

DEPTH (feet below pad)		DEPTH INTERVAL	DESCRIPTION	DRILLING COMMENTS
1,021 to	1,028	7	LIMESTONE 100%: Color – light gray (N7). Texture –wackestone to packstone, well indurated, massive. Grains – micritic with fossil recrystallization, phosphate specs, microcrystalline to very fine sand sized. Cement/Matrix – micrite. Porosity – moderate (15%), modic. Permeability – low to moderate. Hardness – hard. Fossils – pelecypods, gastropods, mollusks.	

Observer's initials	

PBCWUD Core Log PAGE 1 of 1

FAMW

DATE(S): 6/23/01

PALM BEACH COUNTY WATER UTILITIES DEPARTMENT

HILLSBORO ASR WELL SYSTEM

WUD Project No.:	98 - 66B	
CONTRACTOR:	Haskel Corp.	

Core Number 1

TOTAL DEPTH:	964	feet
DRILLING METHOD:	Diamond Drilling	
DRILLER(S):	Festus	
DATUM POINT:	Pad Level	
DATUM POINT ELEVATION:	16.33	
HYDROLOGIC UNITS:	Hawthorn Group	
% RECOVERY	2.1 %	
CORED INTERVAL	940 - 964	

_	EPT below	H / pad)	DEPTH INTERVAL	DESCRIPTION	DRILLING COMMENTS
940	to	940.5	0.5	LIMESTONE 100%: Color – light olive gray (5Y 5/2). Texture – packstone, moderate to well indurated. Grains – siliciclastic, biogenic, micritic, microcrystalline to pebble sized. Cement/Matrix – carbonate. Porosity – low to moderate (15%). Permeability – low. Hardness – hard. Fossils – mollusks, bryozoans.	Drilled relatively quickly - 25 minutes total coring time, approximately 1 foot per minute.

|--|--|

DATE(S): 6/27/01

PALM BEACH COUNTY WATER UTILITIES DEPARTMENT

HILLSBORO ASR WELL SYSTEM

WUD Project No.: 98 – 668

CONTRACTOR: Haskel Corp.

Core Number 2

TOTAL DEPTH: 995 feet

DRILLING METHOD:

Diamond Drilling

Pestus

DRILLER(S): Festus
DATUM POINT: Pad Level

DATUM POINT ELEVATION: 16.33

HYDROLOGIC UNITS: Hawthorn Group / Suwannee Limestone

 % RECOVERY
 26.7 %

 CORED INTERVAL
 980 - 995

	DEPT below	H / pad)	DEPTH INTERVAL	DESCRIPTION	DRILLING COMMENTS
980	to	984	4.0	LIMESTONE 100%: Color – dark gray (N3) to very pale orange (10YR 8/2). Texture – phosphatic wackestone to packstone, moderate induration. Grains – siliciclastic, biogenic, micritic, phosphate, microcrystalline to very coarse sand sized. Cement/Matrix – carbonate. Porosity – moderate to high (35%), intergranular. Permeability – high. Hardness – hard. Fossils – pelecypods, foraminifera, corals, some agetized mollusks.	Drilled quickly – 20 minutes total coring time.

Observer's initials _____

DATE(S): 6/27/01

PALM BEACH COUNTY WATER UTILITIES DEPARTMENT

HILLSBORO ASR WELL SYSTEM

WUD Project No.:	98 – 66B
CONTRACTOR:	Haskel Corp.
CONTRACTOR.	Haskel Corp.

Core Number 3

TOTAL DEPTH:	1,005	feet
DRILLING METHOD:	Diamond Drilling	
DRILLER(S):	Festus	
DATUM POINT:	Pad Level	
DATUM POINT ELEVATION:	16.33	
HYDROLOGIC UNITS:	Suwannee Limestone	_
% RECOVERY	40.0 %	
CORED INTERVAL	995 – 1,005	-

i –)EPT below	H v pad)	DEPTH INTERVAL	DESCRIPTION	DRILLING COMMENTS
995	to	999	4.0	LIMESTONE 100%: Color – very light gray (N8) to medium gray (N5). Texture – phosphatic packstone, moderate induration. Grains – siliciclastic, biogenic, micritic, phosphate, fossil recrystalization, sparry calcite. Cement/Matrix – micrite. Porosity – moderate to high (30%), intergranular and moldic. Permeability – moderate. Hardness – moderate, slightly friable. Fossils – pelecypods, gastropods, skeletal fragments, dugong rib.	Began drilling with 2000 pounds (WOB) and increased to 4000 pounds after coring 5 feet – formation very hard, bit jumping.

Observer's initials	

DATE(S): 6/29/01

PALM BEACH COUNTY WATER UTILITIES DEPARTMENT

HILLSBORO ASR WELL SYSTEM

WUD Project No.:	98 – 66B
- CONTRACTOR	
CONTRACTOR:	Haskel Corp.

Core Number 4

TOTAL DEPTH: 1,026 feet DRILLING METHOD: Diamond Drilling DRILLER(S): Festus **DATUM POINT:** Pad Level **DATUM POINT ELEVATION:** 16.33 Suwannee Limestone **HYDROLOGIC UNITS:** 20.0 % % RECOVERY 1,005 – 1,026 CORED INTERVAL

1	EPT below	H v pad)	DEPTH INTERVAL	DESCRIPTION	DRILLING COMMENTS
1,006	to	1,010	4.0	LIMESTONE 100%: Color – very light gray (N8). Texture – wackestone to packstone, well indurated. Grains – microcrystalline to very coarse sand sized, phosphate specs, some recrystalization. Cement/Matrix – micrite. Porosity – moderate (15%), moldic. Permeability – low to moderate. Hardness – hard. Fossils – pelecypods, gastropods, mollusks (turitella).	

Observer's initials _____

DATE(S): 7/19/01

PALM BEACH COUNTY WATER UTILITIES DEPARTMENT HILLSBORO ASR WELL SYSTEM

WUD Project No.:	98 – 66B
CONTRACTOR:	Haskel Corp.

Core Number 5

TOTAL DEPTH:	1,065	teet
DRILLING METHOD:	Diamond Drilling	
DRILLER(S):	Greg File	_
DATUM POINT:	Pad Level	
DATUM POINT ELEVATION:	16.33	
HYDROLOGIC UNITS:	Suwannee Limestone	_
% RECOVERY	32.0 %	_
CORED INTERVAL	1,040 - 1,065	

	DEPT belov	'H v pad)	DEPTH INTERVAL	DESCRIPTION	DRILLING COMMENTS
1,040	to	1,048	8.0	LIMESTONE 100%: Color – light gray (N7). Texture – wackestone to packstone, well indurated. Grains – microcrystalline to very coarse sand sized, phosphate specs, some recrystalization. Cement/Matrix – micrite. Porosity – moderate (15%), moldic. Permeability – low to moderate. Hardness – hard. Fossils – pelecypods, gastropods, mollusks (turitella).	First foot of core cut fast, then hard rock – 50 minutes to cut 25 feet.

Observer's initials _____

DATE(S): 7/20/01

PALM BEACH COUNTY WATER UTILITIES DEPARTMENT HILLSBORO ASR WELL SYSTEM

WUD Project No.:	98 – 66B
CONTRACTOR:	Haskel Corp.

Core Number 6

TOTAL DEPTH:	1,090	feet
DRILLING METHOD:	Diamond Drilling	•
DRILLER(S):	Greg File	
DATUM POINT:	Pad Level	
DATUM POINT ELEVATION:	16.33	
HYDROLOGIC UNITS:	Avon Park Limestone	
% RECOVERY	0.0 %	
CORED INTERVAL	1,065 – 1,090	•

	EPT below	H / pad)	DEPTH INTERVAL	DESCRIPTION	DRILLING COMMENTS
1,065	to	1,065	0	LIMESTONE 100%: No recovery	15 minutes to cut 25 feet – very soft material.

Observer's initials _____

DATE(S): 7/21/01

PALM BEACH COUNTY WATER UTILITIES DEPARTMENT HILLSBORO ASR WELL SYSTEM

WUD Project No.:	98 – 66B
CONTRACTOR:	Haskel Corp.

Core Number 7

TOTAL DEPTH:	1,115	feet
DRILLING METHOD:	Diamond Drilling	
DRILLER(S):	Greg File	_
DATUM POINT:	Pad Level	
DATUM POINT ELEVATION:	16.33	
HYDROLOGIC UNITS:	Avon Park Limestone	
% RECOVERY	24.0 %	
CORED INTERVAL	1,090 – 1,115	

1 ~	EPT below	H / pad)	DEPTH INTERVAL	DESCRIPTION	DRILLING COMMENTS
1,090	to	1,096	6.0	LIMESTONE 100%: Color – very pale orange (10YR 8/2) to yellowish gray (5Y 8/1). Texture – packstone, poor to moderately indurated, friable. Grains – fine to very coarse sand sized, phosphate, some recrystalization. Cement/Matrix – micrite. Porosity – moderate (15%), intergranular and moldic. Permeability – low to moderate. Hardness – moderate. Fossils – echinoids, foraminifera, cones, spines, bryozoans.	

Observer's initials _____

DATE(S): 7/23/01

PALM BEACH COUNTY WATER UTILITIES DEPARTMENT

HILLSBORO ASR WELL SYSTEM

orp.

Core Number 8

TOTAL DEPTH: 1,140 feet Diamond Drilling DRILLING METHOD: DRILLER(S): Greg File Pad Level DATUM POINT: 16.33 DATUM POINT ELEVATION: HYDROLOGIC UNITS: Avon Park Limestone % RECOVERY 24.0 % CORED INTERVAL 1,115 – 1,140

	EPT below	H v pad)	DEPTH INTERVAL	DESCRIPTION	DRILLING COMMENTS
1,115	to	1,121	6.0	LIMESTONE 100%: Color – very pale orange (10YR 8/2). Texture – packstone with well lithified mudstone interclasts, poor to moderately indurated. Grains – micrite, biogenic, fine to very coarse sand sized. Cement/Matrix – micrite. Porosity – high (30%), intergranular, vugs, and moldic. Permeability – high. Hardness – moderate. Fossils – echinoids, mollusks.	

Observer's initials _____

PAGE 1 of 1 **PBCWUD Core Log**

DATE(S): 7/24/01

PALM BEACH COUNTY WATER UTILITIES DEPARTMENT

HILLSBORO ASR WELL SYSTEM

WUD Project No.:	98 – 66B
CONTRACTOR:	Haskel Corp.

Core Number 9

TOTAL DEPTH:	1,165	feet
DRILLING METHOD:	Diamond Drilling	
DRILLER(S):	Greg File	_
DATUM POINT:	Pad Level	
DATUM POINT ELEVATION:	16.33	_
HYDROLOGIC UNITS:	Avon Park Limestone	
% RECOVERY	32.0 %	_
CORED INTERVAL	1,140 – 1,165	_

DEPTH (feet below pad)		DEPTH INTERVAL	DESCRIPTION	DRILLING COMMENTS	
1,140	to	1,148	8.0	LIMESTONE 100%: Color – white (N9) to very pale orange (10YR 8/2). Texture – mudstone to wackestone (chalky) poorly lithified, poor to moderately indurated. Grains – clay to very fine sand sized. Cement/Matrix – micrite. Porosity – low (5%), intergranular and moldic. Permeability – low. Hardness – soft. Fossils – few foraminifera.	

Observer's initials	

DATE(S): 7/24/01

PALM BEACH COUNTY WATER UTILITIES DEPARTMENT HILLSBORO ASR WELL SYSTEM

WUD Project No.:	98 – 66B
CONTRACTOR:	Haskel Corp.

Core Number 10

TOTAL DEPTH:	1,190	feet
DRILLING METHOD:	Diamond Drilling	
DRILLER(S):	Greg File	
DATUM POINT:	Pad Level	
DATUM POINT ELEVATION:	16.33	_
HYDROLOGIC UNITS:	Avon Park Limestone	
% RECOVERY	12.0 %	
CORED INTERVAL	1,165 – 1,190	

_	22, ,,,		DEPTH INTERVAL	DESCRIPTION	DRILLING COMMENTS
1,165	to	1,168	8.0	LIMESTONE 100%: Color – white (N9) to moderate yellowish brown (10YR 5/4). Texture – wackestone to packstone with mudstone interbeds, poor to moderately indurated. Grains – very fine to coarse sand sized. Cement/Matrix – micrite. Porosity – low to moderate (10%), intergranular, vuggy, and moldic. Permeability – low to moderate. Hardness – moderate. Fossils – foraminifera.	25 minutes to cut core – 1 minute per foot.

Observer's i	nitials	

PAGE 1 of 1 **PBCWUD Core Log**

DATE(S): 7/25/01

PALM BEACH COUNTY WATER UTILITIES DEPARTMENT

HILLSBORO ASR WELL SYSTEM

WUD Project No.: _98 -	
CONTRACTOR: Hasi	rel Corp.

Core Number 11

TOTAL DEPTH: 1,215 feet Diamond Drilling **DRILLING METHOD:** Greg File DRILLER(S): Pad Level **DATUM POINT:** DATUM POINT ELEVATION: 16.33 Avon Park Limestone **HYDROLOGIC UNITS:** 4.0 % % RECOVERY 1,190 – 1,215 **CORED INTERVAL**

_	DEPTH DEPTH (feet below pad) INTERVAL		DEPTH INTERVAL	DESCRIPTION	DRILLING COMMENTS
1,190	to	1,191	1.0	LIMESTONE 100%: Color – white (N9) to very pale orange (10YR 8/2). Texture – wackestone (85%), carbonate mud (15%), well cemented. Grains – very fine to coarse sand sized. Cement/Matrix – micrite. Porosity – low. Permeability – low. Hardness – moderate. Fossils – pelecypods.	5 minutes to cut core – very soft formation.

Observer's initials _____

DATE(S): 7/26/01

PALM BEACH COUNTY WATER UTILITIES DEPARTMENT

HILLSBORO ASR WELL SYSTEM

WUD Project No.:	98 – 668
CONTRACTOR:	Haskel Corp.

Core Number 12

TOTAL DEPTH:	1,240	feet
DRILLING METHOD:	Diamond Drilling	
DRILLER(S):	Greg File	
DATUM POINT:	Pad Level	
DATUM POINT ELEVATION:	16.33	
HYDROLOGIC UNITS:	Avon Park Limestone	
% RECOVERY	2.0 %	
CORED INTERVAL	1,215 - 1,240	

		DEPTH INTERVAL	DESCRIPTION	DRILLING COMMENTS	
1,215	to	1,215.5	0.5	LIMESTONE 100%: Color - white (N9) to very pale orange (10YR 8/2). Texture - wackestone with some recrystalization, moderately indurated. Grains - very fine to coarse sand sized. Cement/Matrix - micrite. Porosity - low (10%), vuggy. Permeability - low. Hardness - moderate. Fossils - pelecypods.	25 minutes to cut core.

Observer's initials	

DATE(S): 7/27/01

PALM BEACH COUNTY WATER UTILITIES DEPARTMENT

HILLSBORO ASR WELL SYSTEM

WUD Project No.:	98 – 66B
CONTRACTOR	Heatral Corp
CONTRACTOR:	Haskel Corp.

Core Number 13

TOTAL DEPTH:

1,325

feet

DRILLING METHOD:

Diamond Drilling

DRILLER(S):

Greg File

DATUM POINT:

Pad Level

DATUM POINT ELEVATION:

16.33

HYDROLOGIC UNITS:

Avon Park Limestone

% RECOVERY

76.0 %

CORED INTERVAL

1,300 - 1,325

I -	EPT below		DEPTH INTERVAL	DESCRIPTION	DRILLING COMMENTS
1,300	to	1,319	19.0	LIMESTONE 100%: Color – white (N9) to very pale orange (10YR 8/2). Texture – wackestone to packstone with some recrystalization and laminations, moderately indurated. Grains – crystal, micrite, biogenic, microcrystalline to coarse sand sized, minor sparry calcite infilling. Cement/Matrix – micrite. Porosity – moderate, intergranular, vuggy, and moldic. Permeability – moderate. Hardness – moderate. Fossils – foraminifera, mollusks, echinoids.	

|--|

DATE(S): 7/28/01

PALM BEACH COUNTY WATER UTILITIES DEPARTMENT

HILLSBORO ASR WELL SYSTEM

WUD Project No.: 98 – 66B

CONTRACTOR: Haskel Corp.

Core Number 14

TOTAL DEPTH: 1,351 feet Diamond Drilling DRILLING METHOD: DRILLER(S): Greg File Pad Level **DATUM POINT: DATUM POINT ELEVATION:** 16.33 **HYDROLOGIC UNITS:** Avon Park Limestone % RECOVERY 12.0 % 1,326 - 1,351 **CORED INTERVAL**

1	 PTI	H pad)	DEPTH INTERVAL	DESCRIPTION	DRILLING COMMENTS
1,326	to	1,329	3.0	LIMESTONE 100%: Color – very pale orange (10YR 8/2). Texture – packstone, laminations, moderately indurated. Grains – micrite, biogenic, microcrystalline to coarse sand sized. Cement/Matrix – micrite. Porosity – low, intergranular, vuggy, and moldic. Permeability – moderate. Hardness – moderate. Fossils – foraminifera, mollusks, echinoids.	4000 pounds on bit — formation hard.

DATE(S): 7/30/01

PALM BEACH COUNTY WATER UTILITIES DEPARTMENT

HILLSBORO ASR WELL SYSTEM

WUD Project No.:	98 – 66B
CONTRACTOR:	Haskel Corp.

Core Number 15

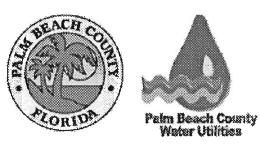
TOTAL DEPTH:	1,376	feet
DRILLING METHOD:	Diamond Drilling	
DRILLER(S):	Greg File	
DATUM POINT:	Pad Level	
DATUM POINT ELEVATION:	16.33	
HYDROLOGIC UNITS:	Avon Park Limestone	
% RECOVERY	56.0 %	
CORED INTERVAL	1,351 – 1,376	

_	EPT below		DEPTH INTERVAL	DESCRIPTION	DRILLING COMMENTS
1,351	to	1,365	14.0	LIMESTONE 100%: Color – very pale orange (10YR 8/2). Texture – packstone grading to wackestone with depth, laminations, moderately indurated. Grains – micrite, biogenic, microcrystalline to coarse sand sized. Cement/Matrix – carbonate mud increasing with depth. Porosity – moderate (20%), intergranular, increasing vugs with depth. Permeability – moderate. Hardness – moderate. Fossils – increasing number with depth, foraminifera, pelecypods.	

Ohserv	er's initial	C

DATE(S): 7/30/01

PALM BEACH COUNTY WATER UTILITIES DEPARTMENT


HILLSBORO ASR WELL SYSTEM

WUD Project No.:	98 – 66B
CONTRACTOR:	Haskel Corp.
CONTINACION.	riasker corp.

Core Number 16

TOTAL DEPTH:	1,401	feet
DRILLING METHOD:	Diamond Drilling	
DRILLER(S):	Greg File	
DATUM POINT:	Pad Level	
DATUM POINT ELEVATION:	16.33	
HYDROLOGIC UNITS:	Avon Park Limestone	
% RECOVERY	40.0 %	
CORED INTERVAL	1,376 - 1,401	

_	EPT below	H pad)	DEPTH INTERVAL	DESCRIPTION	DRILLING COMMENTS
1,376	to	1,386	10.0	LIMESTONE 100%: Color – grayish orange (10YR 7/4). Texture – packstone, moderately cemented, well indurated. Grains – micrite, biogenic, microcrystalline to coarse sand sized. Cement/Matrix –micrite. Porosity – moderate (25%), intergranular. Permeability – moderate. Hardness – moderate. Fossils – foraminifera, coral interclasts.	

DATE(S): 8/1/01

PALM BEACH COUNTY WATER UTILITIES DEPARTMENT

HILLSBORO ASR WELL SYSTEM

WUD Project No.:	98 – 66B		
CONTRACTOR	111-10		
CONTRACTOR:	Haskel Corp.		

Core Number 17

TOTAL DEPTH: 1,520 feet Diamond Drilling DRILLING METHOD: DRILLER(S): Greg File Pad Level **DATUM POINT: DATUM POINT ELEVATION:** 16.33 **HYDROLOGIC UNITS:** Avon Park Limestone 70.0 % **% RECOVERY** CORED INTERVAL 1,500 - 1,520

DEPTH DEPTH (feet below pad) INTERVAL			DESCRIPTION	DRILLING COMMENTS	
1,500	to	1,514	14.0	LIMESTONE 100%: Color – light gray (N7) to very pale orange (10YR 8/2). Texture – packstone to wackestone, poor to moderately cemented, poor to moderately indurated, friable, zones of laminations. Grains – micrite, biogenic, fine to coarse sand sized. Cement/Matrix – micrite. Porosity – high (25-30%), intergranular, minor vugs. Permeability – high. Hardness – moderate. Fossils – foraminifera, mollusks.	3000 pound on bit.

Observer's	initials

DATE(S): 8/6/01

PALM BEACH COUNTY WATER UTILITIES DEPARTMENT

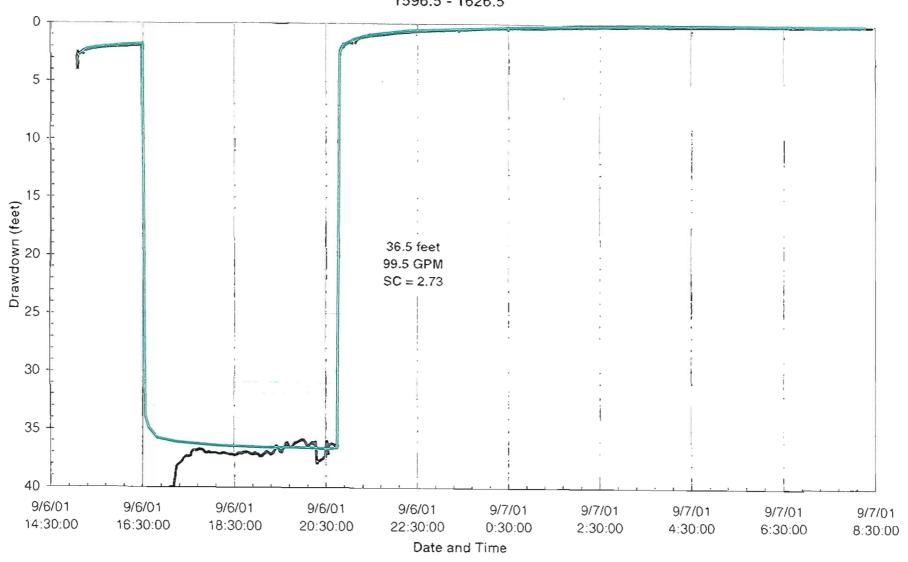
HILLSBORO ASR WELL SYSTEM

WUD Project No.: 98 – 668

CONTRACTOR: Haskel Corp.

Core Number 18

TOTAL DEPTH: 1,625 feet DRILLING METHOD: Diamond Drilling Greg File DRILLER(S): Pad Level DATUM POINT: 16.33 DATUM POINT ELEVATION: Avon Park Limestone **HYDROLOGIC UNITS:** 40.0 % % RECOVERY **CORED INTERVAL** 1,600 - 1,625


_	DEPTH DEPTH (feet below pad) INTERVAL			DESCRIPTION	DRILLING COMMENTS	
1,600	to	1,607	7.0	LIMESTONE 100%: Color – white (N9) to very pale orange (10YR 8/2). Texture – packstone to wackestone, poor to moderately cemented, poor to moderately indurated. Grains – sand sized. Cement/Matrix – carbonate. Porosity – high (25%), intergranular, vuggy, moldic. Permeability – high. Hardness – moderate. Fossils – foraminifera.		
1,607	to	1,610	3.0	LIMESTONE 100%: Color – medium bluish gray (5B 5/1) to yellowish gray (5Y 8/1). Texture – packstone to wackestone, well cemented, well indurated, moderately recrystalized. Grains – sand sized. Cement/Matrix – carbonate. Porosity – high (25%), intergranular, buggy, moldic. Permeability – high. Hardness – moderate. Fossils – foraminifera.		

Observer's	initials	

Packer Test Data and Water Quality

Hillsboro ASR Well System FAMW-1 Packer Test 1 1596.5 - 1626.5

Envirodyne Inc.

4805 N.W. 2nd Avenue Boce Raton, FL 33431 561-989-5225 edyne@bellsouth.net

CERTIFICATE OF ANALYSIS

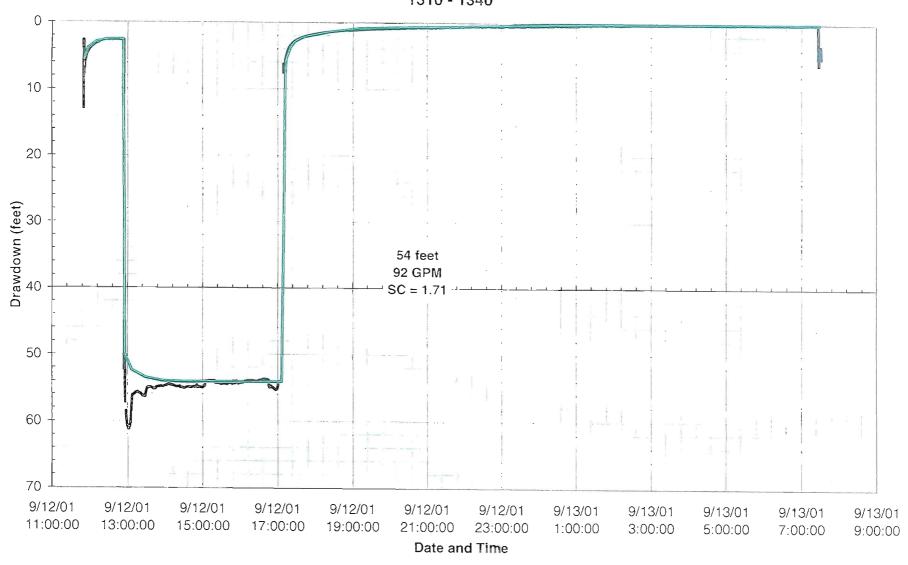
Collected by: Tom Uram

Integrity Well & Pump 159 Wind Hill Lane Winchester, VA 22602 September 20, 2001 Report: 2001/09100 Sample No: 2001/09100- 1

Attention: Ken Conner

Project: 089-01 Hillsboro ASR Monitoring Hillsboro Canal Boca Raton, FL

SAMPLE ID: FAMW-1 1600-1630


Collected on: 09/06/01 Received on: 09/10/01

PARAMETER RESULT METHOD DL UNITS DATE ANALYST Calcium 200 200.7 10 mg/L 09/11/01 YJC Magnesium 140 200.7 0.50 mg/L 09/11/01 YJC 200.7 47 Potassium 5.0 mg/L 09/11/01 YJC 700 200.7 Sodium 100 mg/L YJC 09/11/01 Bicarbonate 190 SM2320 0.01 mg/l_ 09/12/01 DNS SM4500CL-B Chloride 2400 20.0 mg/L 09/12/01 DNS Specific Conductance 8300 120.1 umhos/cm 09/12/01 JCB 350.1 Ammonia, as N 0.39 0.020 mg/L 09/13/01 DNS BDL 353.2 0.020 mg/L 09/10/01 DNS Nitrate, as Nitrogen pH (Laboratory) 7.7 150.1 pH Units 09/11/01 JMJ 870 375.4 Sulfate 125.0 mg/L 09/10/01 DINS Total Dissolved Solids 4600 160.1 10 mg/L 09/11/01 LML 351.2 0.10 mg/L **JCB** 1.1 09/17/01 Total Kjeldahl Nitrogen 1.1 351 + 3530.10 mg/L **JCB** 09/17/01 Total Nitrogen Phosphorus, Total 0.017 365.4 0.010 mg/L 09/18/01 **JCB**

QA/QC Review Description Limit

DL=Detection Limit

Hillsboro ASR Well System FAMW-1 Packer Test 2 1310 - 1340

Envirodyne Inc.

4805 N.W. 2nd Avenue Boca Raton, FL 33431 561-989-5225 edyne@bellsouth.net

CERTIFICATE OF ANALYSIS

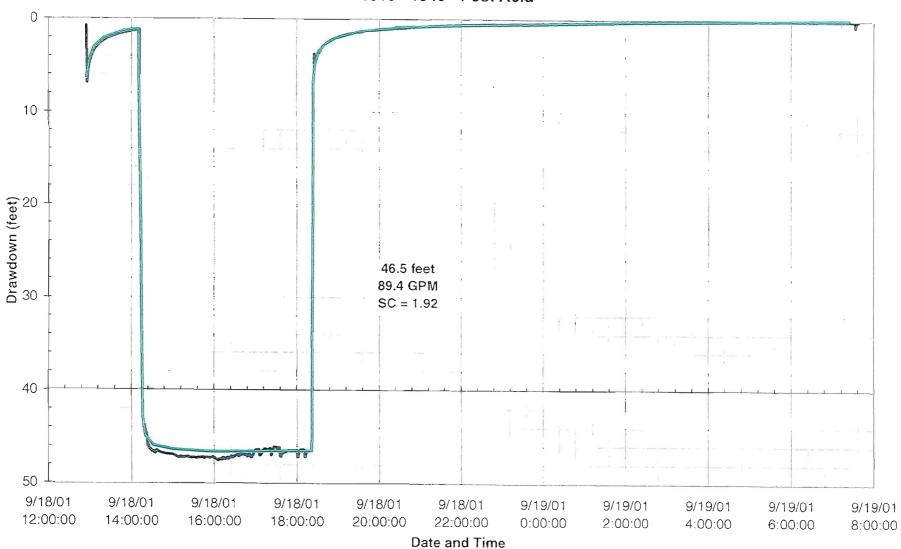
Integrity Well & Pump 159 Wind Hill Lane Winchester, VA 22602 September 19, 2001 Report: 2001/09162 Sample No: 2001/09162- 1

Attention: Ken Conner

Project: 089-01 Hillsboro ASR Monitoring Hillsboro Canal Boca Raten, FL

SAMPLE ID: FAMW-1 1310-1340

Collected by: Tom Uram Collected on: 09/12/01 Received on: 09/13/01


PARAMETER	RESULT	METHOD	DL UNITS	DATE	ANALYST
Calcium	110	200.7	1.0 mg/L	09/14/01	YJC
Magnesium	110	200.7	0.50 mg/L	09/14/01	YJC
Potassium	33	200.7	0.50 mg/L	09/14/01	A7C
Sodium	1300	200.7	100 mg/L	09/14/01	YJC
Bicarbonate	160	SM2320	0.01 mg/L	09/14/01	DNS
Chloride	2100	SM4500CL-B	20.0 mg/L	09/14/01	DNS
Specific Conductance	7300	120.1	µmhos/crn	09/14/01	LML
Ammonia, as N	0.33	350.1	0.020 mg/L	09/13/01	DNS
Nitrate, as Nitrogen	0.38	353.2	0.020 mg/L	09/14/01	DNS
pH (Laboratory)	7.7	150.1	pH Units	09/13/01	JMJ
Sulfate	660	375.4	100.0 mg/L	09/14/01	DNS
Total Dissolved Solids	4100	160.1	10 mg/L	09/17/01	DNS
Total Kjeldahl Nitrogen	1.1	351.2	0.10 mg/L	09/17/01	JCB
Total Nitrogen	1.48	351 + 353	0.10 mg/L	09/17/01	JÇB
Phosphorus, Total	0.018	365.4	0.010 mg/L	09/18/01	JCB

Analysis Performed in Accordance with E.P.A. Methods Laboratory Certification No. E86188

QA/QC Review
BDL=Below Detection Limit
DL=Detection Limit

Hillsboro ASR Well System FAMW-1 Packer Test 3 1310 - 1340 - Post Acid

0

Envirodyne Inc.

4805 N.W. 2nd Avenue Boca Raton, FL 33431 561-989-5225 adyne@bellsouth.net

CERTIFICATE OF ANALYSIS

Integrity Well & Pump 159 Wind Hill Lane Winchester, VA 22602

September 25, 2001 Report: 2001/09250 Sample No: 2001/09250- 1

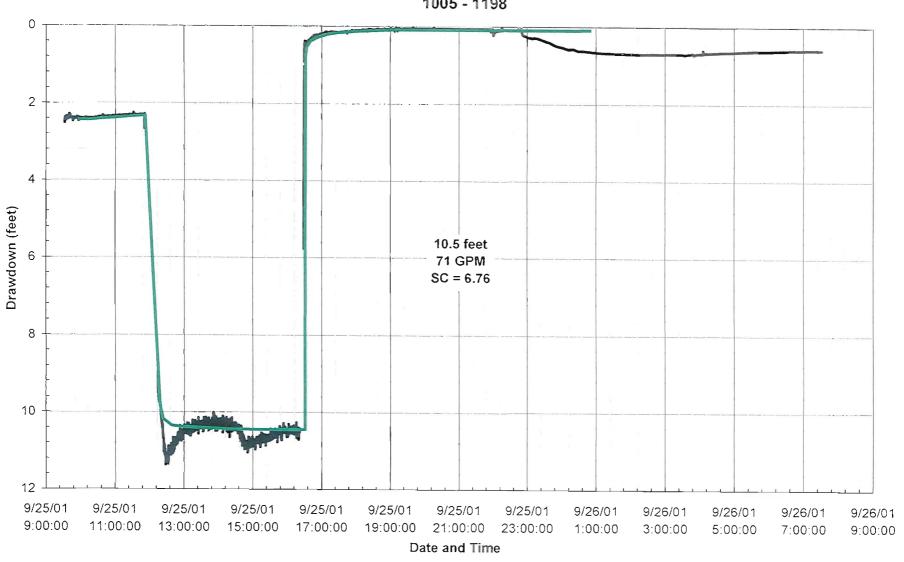
Attention: Ken Conner

SAMPLE ID: FAMW-1-1310-1340

Project: 089-01 Hillsboro ASR Monitoring PT3 Hillsboro Canal Boca Raton, FL

Collected by: Your Representative

Collected on: 09/18/01


Received on: 09/19/01

ANALVST

PARAMETER	RESULT	METHOD	DL UNITS	DATE
Calcium	150	200.7	10 mg/L	09/19/0

PARAMETER	RESULT	METHOD	DL UNITS	Date	ANALYST
Calcium	150	200.7	10 mg/L	09/19/01	MHA
Magnesium	120	200.7	5.0 mg/L	09/19/01	MHA
Potassium	34	200.7	5.0 mg/L	09/19/01	MHA
Sodium	660	200.7	100 mg/L	09/19/01	МНА
Bicarbonate	160	SM2320	0.01 mg/L	09/20/01	DNS
Chloride	2300	SM4500CL-B	2.0 mg/L	09/20/01	LML
Specific Conductance	6800	120.1	µmhos/cm	09/20/01	JMJ
Ammonia, as N	Las	350.1	0.020 mg/L	09/20/01	DNS
Nitrate, as Nitrogen	0.55	353.2	0.020 mg/L	09/20/01	DNS
pH (Laboratory)	7.5	150.1	pH Units	09/19/01	CMF
Sulfate	660	375.4	100.0 mg/L	09/20/01	DNS
Total Dissolved Solids	4200	160,1	10 mg/L	09/19/01	JCB
Total Kjeldahl Nitrogen	1.1	351.2	0.10 mg/L	09/21/01	JCB
Total Nitrogen	1.65	351+353	0.10 mg/L	09/21/01	JCB
Phosphorus, Total	BDL	365.4	0.010 mg/L	09/21/01	JCB

Hillsboro ASR Well System FAMW-1 Packer Test 4 1005 - 1198

Envirodyne Inc.

4805 N.W. 2nd Avenue Boca Raton, FL 33431 **561-989-5225** edyne@bellsouth.net

CERTIFICATE OF ANALYSIS

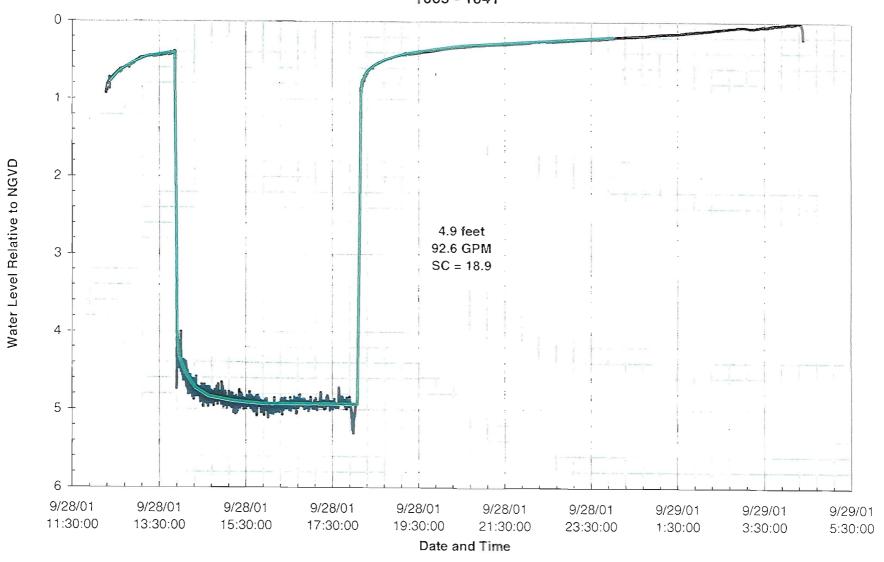
Collected by: Tom Uram

Integrity Well & Pump 159 Wind Hill Lane Winchester, VA 22602

October 3, 2001 Report: 2001/09391

Sample No: 2001/09391- 1

Attention: Ken Conner


Project: 089-01 Hillsboro ASR Monitoring PT4 Hillsboro Canal Boca Raton, FL

SAMPLE ID: FAMW-1 1005-1198

Collected on: 09/25/01 Received on: 09/28/01

PARAMETER	RESULT	METHOD	DL UNITS	DATE	ANALYST
Calcium	310	200.7	10 mg/L	09/28/01	YJC
Magnesium	160	200.7	5.0 mg/L	09/28/01	YJC
Potassium	40	200.7	0.50 mg/L	09/28/01	YJC
Sodium	1200	200.7	100 mg/L	09/28/01	YJC
Bicarbonate	410	SM2320	0.01 mg/L	10/03/01	DNS
Chloride	2200	SM4500CL-B	20.0 mg/L	09/28/01	DNS
Specific Conductance	6800	120,1	µmhos/cm	10/01/01	LML
Ammonia, as N	0.51	350.1	0.020 mg/L	10/02/01	JCB
Nitrate, as Nitrogen	BDL	353.2	0.020 mg/L	09/28/01	JCB
pH (Laboratory)	7.7	150.1	pH Units	09/29/01	LML
Sulfate	830	375.4	125.0 mg/L	10/02/01	JCB
Total Dissolved Solids	4300	160.1	10 mg/L	10/03/01	DNS
Total Kjeldahl Nitrogen	1.1	351.2	0.10 mg/L	10/02/01	DNS
Total Nitrogen	1.1	351 + 353	0.10 mg/L	10/02/01	DNS
Phosphorus, Total	0.15	365.4	0.010 mg/L	10/03/01	DNS

Hillsboro ASR Well System FAMW-1 Packer Test 5 1005 - 1041

Collected by: Festus Underwood

Envirodyne Inc.

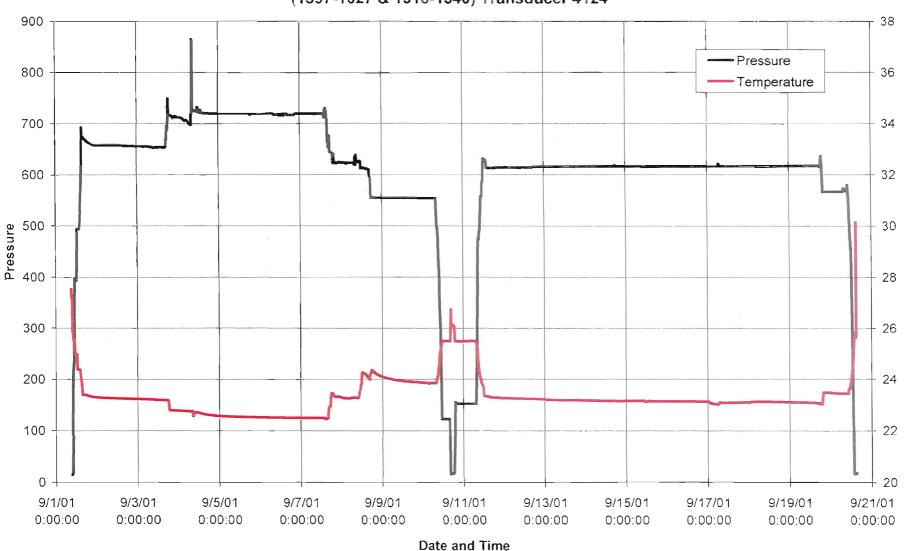
4805 N.W. 2nd Avenue Boce Raton, FL 33431 661-989-5225 edyna@bellsouth.net

CERTIFICATE OF ANALYSIS

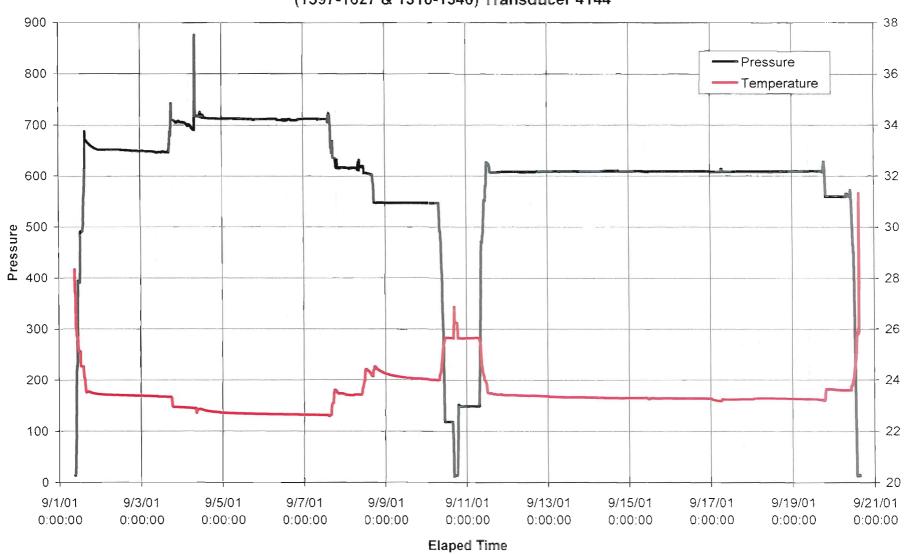
Integrity Well & Pump 159 Wind Hill Lane Winchester, VA 22602

October 9, 2001 Report: 2001/10003 Sample No: 2001/10003- 1

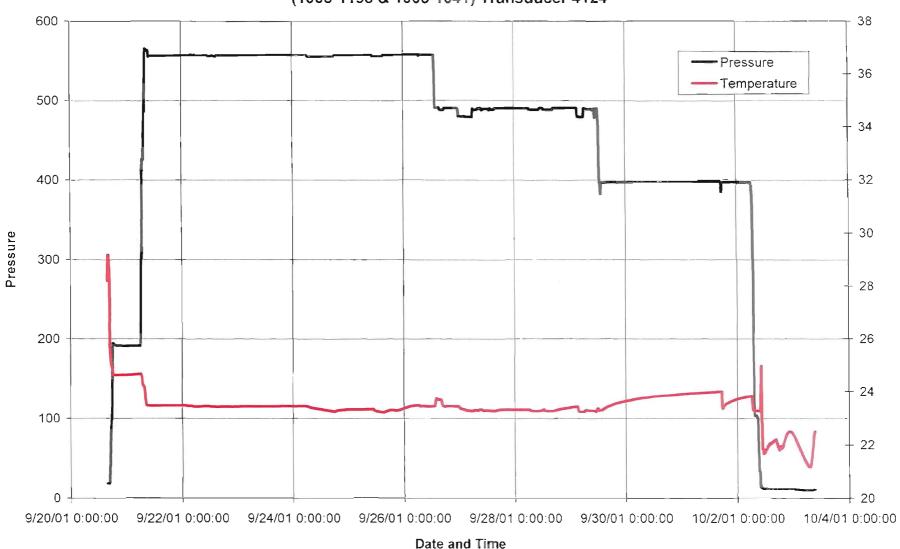
Attention: Ken Conner

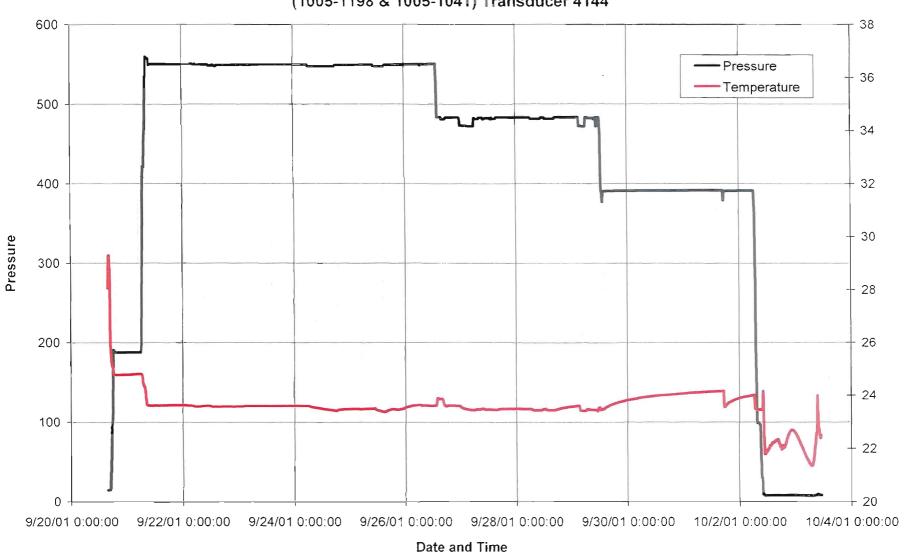

Project: 089-01 Hillsboro ASR Monitoring PT 5 Hillsboro Canal Boca Raton, FL

SAMPLE ID: FAMW-1 843-1041

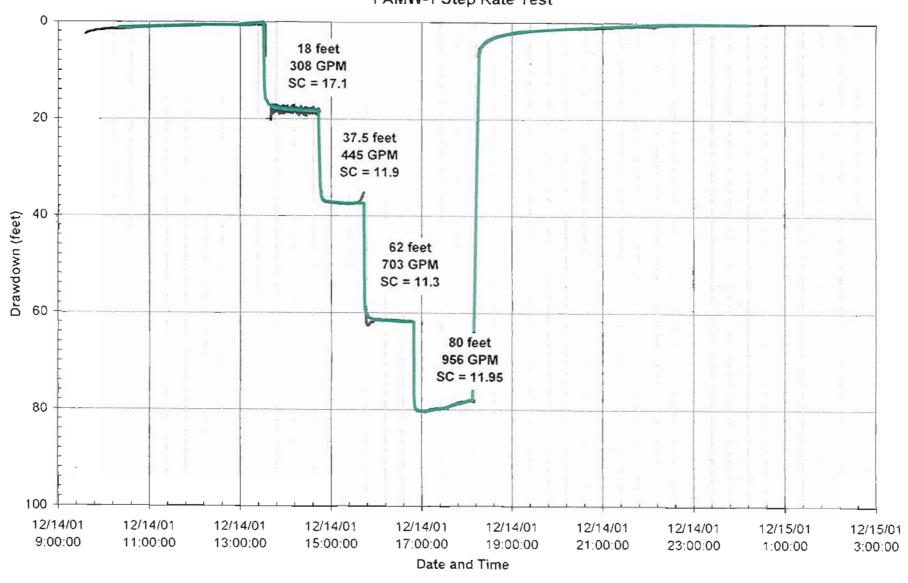

Collected on: 09/28/01 Received on: 10/01/01

PARAMETER	RESULT	METHOD	DL UNITS	DATE	ANALYST
Calcium	170	200.7	10 mg/L	10/01/01	YJC
Magnesium	140	200.7	5.0 mg/L	10/01/01	YJ¢
Potassium	39	200.7	0.50 mg/L	10/01/01	YJC
Sodium	1100	200.7	1000 mg/L	10/01/01	YJC
Bicarbonate	160	SM2320	0.01 mg/L	10/03/01	DNS
Chloride	2200	SM4500CL-B	10.0 mg/L	10/02/01	JMJ
Specific Conductance	7300	120.1	µmhos/cm	10/02/01	JMJ
Ammonia, as N	0.50	350.1	0.020 mg/L	10/02/01	JCB
Nitrate, as Nitrogen	1.8	353.2	0.020 mg/L	10/01/01	DNS
pH (Laboratory)	7.8	150.1	pH Units	10/02/01	LML
Sulfate	830	375.4	5.0 mg/L	10/03/01	JCB
Total Dissolved Solids	4200	160.1	10 mg/L	10/03/01	DNS
Total Kjeldahi Nitrogen	1.3	351.2	0.10 mg/L	10/08/01	DNS
Total Nitrogen	3.1	351+353	0.10 mg/L	10/08/01	DNS
Phosphorus, Total	BDL	365.4	0.010 mg/L	10/05/01	DNS


Hillsboro Canal ASR FAMW-1 - Packer Test 1, 2 & 3 (1597-1627 & 1310-1340) Transducer 4124


Hillsboro Canal ASR FAMW-1 - Packer Test 1, 2 & 3 (1597-1627 & 1310-1340) Transducer 4144

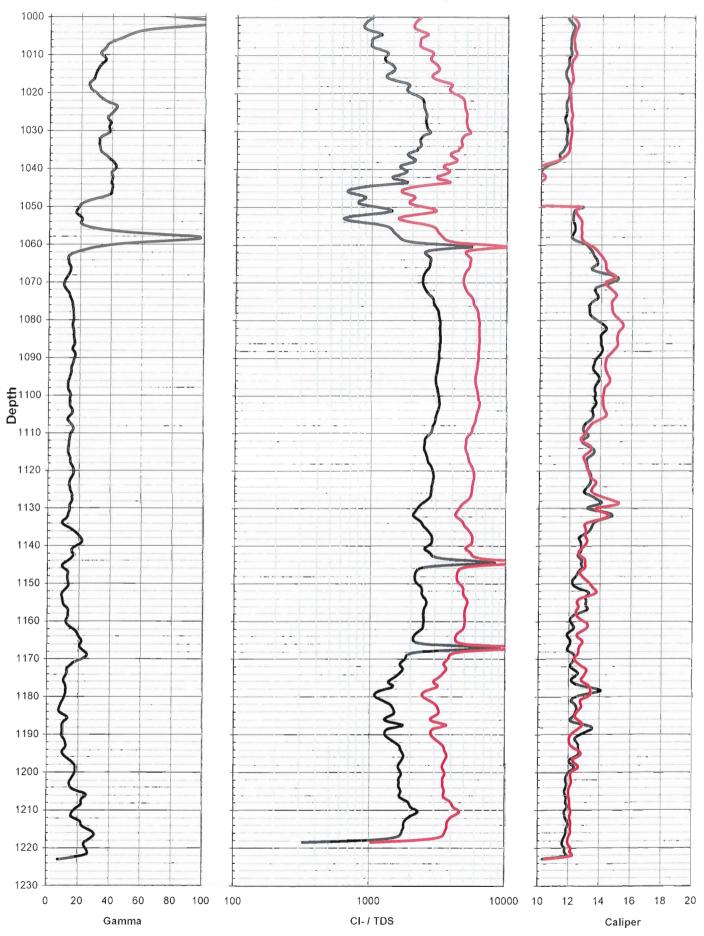
Hillsboro Canal ASR FAMW-1 - Packer Test 4 & 5 (1005-1198 & 1005-1041) Transducer 4124


Hillsboro Canal ASR FAMW-1 - Packer Test 4 & 5 (1005-1198 & 1005-1041) Transducer 4144

Step-Rate Pumping Test Data

FAMW

Hillsboro ASR Well System FAMW-1 Step Rate Test



Injection / Monitor Zone Water Quality

ASR Well (Injection Zone)

April 30, 2002

Palm Beach County Hillsboro ASR Well System - ASR-1 Log Derived Water Quality

Emperically derived (R-H, m=2.0, a=1.0) Non-Corrected RILD

4805 N.W. 2nd Avenue Boca Raton, FL 33431 561-989-5225 edyne@bellsouth.net

CERTIFICATE OF ANALYSIS

Integrity Well & Pump 159 Wind Hill Lane Winchester, VA 22602

Attention: Ken Conner

SAMPLE ID: FAMW

June 24, 2002 Report: 2002/04602 Sample No: 2002/04602- 1

Project: Eastern Hillsboro ASR Well Monitoring
Hillsboro Canal Boca Raton, FL

Collected by: Howard Ray Ledbetter

Collected on: 04/30/02

Received on: 04/30/02

PARAMETER	RESULT	METHOD	DL UNITS	DATE	ANALYST
2,3,7,8-TCDD (Dioxin)	BDL	1613B	0.00003 <i>μ</i> g/L	06/19/02	E87769
Aluminum	BDL	200.7	0.10 mg/L	05/01/02	МНА
Arsenic	BDL	200.7	0.010 mg/L	04/30/02	YJC
Barium	0.011	200.7	0.010 mg/L	04/30/02	YJC
Beryllium	BDL	200.7	0.0030 mg/L	04/30/02	YJC
Cadmium	BDL	200.7	0.0040 mg/L	04/30/02	YJC
Calcium	140	200.7	1.0 mg/L	05/01/02	МНА
Chromium	BDL	200.7	0.010 mg/L	04/30/02	YJC
Copper	BDL	200.7	0.010 mg/L	04/30/02	YJC
Iron	0.077	200.7	0.010 mg/L	05/01/02	МНА
Lead	BDL	200.7	0.0050 mg/L	04/30/02	YJC
Manganese	BDL	200.7	0.010 mg/L	04/30/02	YJC
Nickel	BDL	200.7	0.010 mg/L	04/30/02	YJC
Potassium	46	200.7	0.50 mg/L	05/01/02	МНА
Selenium	BDL	200.7	0.010 mg/L	04/30/02	YJC
Silver	BDL	200.7	0.010 mg/L	04/30/02	YJC
Sodium	1500	200.7	100 mg/L	05/01/02	МНА
Thallium	BDL	200.7	0.0020 mg/L	04/30/02	YJC

4805 N.W. 2nd Avenue Boca Raton, FL 33431 561-989-5225 edyne@bellsouth.net

CERTIFICATE OF ANALYSIS

Integrity Well & Pump 159 Wind Hill Lane Winchester, VA 22602 June 24, 2002 Report: 2002/04602 Sample No: 2002/04602- 1

Attention: Ken Conner

Project: Eastern Hillsboro ASR Well Monitoring Hillsboro Canal Boca Raton, FL

Collected by: Howard Ray Ledbetter

Collected on: 04/30/02 Received on: 04/30/02

SAMPLE ID: FAMW

PARAMETER	RESULT	METHOD	DL UNITS	DATE	ANALYST
Zinc	0.030	200.7	0.010 mg/L	05/01/02	МНА
Mercury	BDL	245.1	0.00020 mg/L	05/01/02	MHA
Dibromochloropropane (DBCP)	BDL	EPA 504.1	0.020 μg/L	05/02/02	CMM
1,2-Dibromoethane (EDB)	BDL	EPA 504.1	0.020 <i>μ</i> g/L	05/02/02	СММ
Benzo(a)pyrene	BDL	EPA 525.2	0.2 <i>μ</i> g/L	05/05/02	SPH
Di(2-ethylhexyl)adipate	BDL	EPA 525.2	1.0 <i>μ</i> g/L	05/05/02	SPH
Di(2-ethylhexyl)phthalate	BDL	EPA 525.2	1.0 <i>μ</i> g/L	05/05/02	SPH
Carbofuran	BDL	EPA 531.1	0.50 <i>μ</i> g/L	05/03/02	E84129
Oxamyl (Vydate)	BDL	EPA 531.1	0.50 <i>μ</i> g/L	05/03/02	E84129
Glyphosate	BDL	EPA 547	10 <i>μ</i> g/L	05/14/02	E84129
Endothall	BDL	EPA 548.1	20 <i>μ</i> g/L	05/08/02	E84129
Diquat	BDL	EPA 549.2	1.0 <i>μ</i> g/L	05/09/02	E84129
Antimony	BDL	6010B	0.0050 mg/L	04/30/02	YJC
Alkalinity, Total	150	310.1	1.0 mg/L	05/07/02	DNS
Bicarbonate	150	SM2320	0.01 mg/L	05/07/02	DNS
Biochemical Oxygen Demand	4.3	405.1	2.0 mg/L	05/01/02	JMJ
Carbon Dioxide	140	SM4500CO2D	mg/L	05/07/02	DNS
Chloride	2100	SM4500CL-B	10.0 mg/L	05/07/02	JMJ

4805 N.W. 2nd Avenue Boca Raton, FL 33431 *561-989-5225* edyne@bellsouth.net

CERTIFICATE OF ANALYSIS

Integrity Well & Pump 159 Wind Hill Lane Winchester, VA 22602

June 24, 2002 Report: 2002/04602

Sample No: 2002/04602- 1

Attention: Ken Conner

Project: Eastern Hillsboro ASR Well Monitoring

Hillsboro Canal Boca Raton, FL

Collected by: Howard Ray Ledbetter SAMPLE ID: FAMW

Collected on: 04/30/02 Received on: 04/30/02

PARAMETER	RESULT	METHOD	DL UNITS	DATE	ANALYST
Chemical Oxygen Demand	610	410.4	5.0 mg/L	05/07/02	DNS
Color	5	110.2	5 CU	05/01/02	JMJ
Specific Conductance	8300	120.1	µmhos/cm	05/02/02	JMJ
Corrosivity, L.S.I.	0.7445	SM2330B	L.I.	05/07/02	DNS
Cyanide, Total	BDL	335.2	0.0040 mg/L	05/03/02	JCB
Fluoride	0.96	SM4500F-C	0.10 mg/L	05/02/02	DNS
Gross Alpha	47±53	900.0	1.0 pCi/L	05/13/02	E84088
Hardness, Calcium as CaCO3	350	SM2340B	5.0 mg/L	05/01/02	MHA
Hardness, Magnesium	450	SM2340B	5.0 mg/L	05/01/02	МНА
Hardness, Total	803	SM2340B	10 mg/L	05/01/02	МНА
Hydrogen Sulfide	1.2	9030/376.2	0.08 mg/L	05/02/02	DNS
Surfactants	0.12	SM5540C	0.010 mg/L	05/02/02	DNS
Ammonia, as N	0.60	350.1	0.020 mg/L	05/02/02	JCB
Nitrite, as Nitrogen	BDL	353.2	0.020 mg/L	04/30/02	DNS
Nitrate, as Nitrogen	BDL	353.2	0.020 mg/L	04/30/02	DNS
Nitrate-Nitrite, as Nitrogen	BDL	353.2	0.020 mg/L	04/30/02	DNS
Odor	16	140.1	1 T.O.N.	05/01/02	JMJ
Orthophosphate, as P	0.038	365.1	0.010 mg/L	05/01/02	JMJ

4805 N.W. 2nd Avenue Boca Raton, FL 33431 561-989-5225 edyne@bellsouth.net

CERTIFICATE OF ANALYSIS

Integrity Well & Pump 159 Wind Hill Lane Winchester, VA 22602 June 24, 2002 Report: 2002/04602 Sample No: 2002/04602- 1

Attention: Ken Conner

SAMPLE ID: FAMW

Project: Eastern Hillsboro ASR Well Monitoring Hillsboro Canal Boca Raton, FL

Collected by: Howard Ray Ledbetter

Collected on: 04/30/02 Received on: 04/30/02

PARAMETER	RESULT	METHOD	DL UNITS	DATE	ANALYST
pH (Laboratory)	7.6	150.1	pH Units	04/30/02	JFT
Radium 226	1.7±0.2	903.1	0.1 pCi/L	05/13/02	E84088
Radium 228	0.5±0.5	RA-05	0.5 pCi/L	05/13/02	E84088
Sulfate	470	375.4	100.0 mg/L	05/02/02	DNS
Total Coliform Bacteria	<1	SM9222B	1 cfu/100 ml	04/30/02	DNS
Total Dissolved Solids	4400	160.1	10 mg/L	05/07/02	JCB
Total Kjeldahl Nitrogen	0.60	351.2	0.10 mg/L	05/06/02	DNS
Organic Nitrogen	BDL	351-350	0.50 mg/L	05/06/02	DNS
Phosphorus, Total	0.039	365.4	0.010 mg/L	05/06/02	DNS
Turbidity	6.7	180.1	0.10 ntu	05/01/02	JMJ

4805 N.W. 2nd Avenue Boca Raton, FL 33431 561-989-5225 edyne@bellsouth.net

CERTIFICATE OF ANALYSIS

Integrity Well & Pump 159 Wind Hill Lane Winchester, VA 22602 June 24, 2002 Report: 2002/04602 Sample No: 2002/04602- 1

Attention: Ken Conner

Project: Eastern Hillsboro ASR Well Monitoring

Hillsboro Canal Boca Raton, FL

Collected by: Howard Ray Ledbetter

Collected on: 04/30/02 Received on: 04/30/02

SAMPLE ID: FAMW

Date of Analysis: 05/02/02 Date of Extraction: 05/01/02

508 GROUP I UNREGULATED ORGANIC CONTAMINANTS

PARAMETER	RESULT	DL UNITS	ANALYST	
Aldrin	BDL	0.10 μg/L	CMM	
Dieldrin	BDL	0.10 μg/L	CMM	

4805 N.W. 2nd Avenue Boca Raton, FL 33431 561-989-5225 edyne@bellsouth.net

CERTIFICATE OF ANALYSIS

Integrity Well & Pump 159 Wind Hill Lane Winchester, VA 22602

June 24, 2002 Report: 2002/04602 Sample No: 2002/04602- 1

Attention: Ken Conner

Project: Eastern Hillsboro ASR Well Monitoring

Hillsboro Canal Boca Raton, FL

Collected by: Howard Ray Ledbetter

Collected on: 04/30/02

Received on: 04/30/02

Date of Analysis: 05/02/02 Date of Extraction: 05/01/02

SAMPLE ID: FAMW

508 ORGANOHALIDE PESTICIDES 62-550.310(2)(c) FAC

PARAMETER	RESULT	DL UNITS	ANALYST	
Chlordane	BDL	0.50 μg/L	CMM	
Endrin	BDL	$0.10 \mu \text{g/L}$	CMM	
Heptachlor	\mathtt{BDL}	$0.10 \mu \text{g/L}$	CMM	
Heptachlor epoxide	\mathtt{BDL}	$0.10 \mu \text{g/L}$	CMM	
Hexachlorobenzene	\mathtt{BDL}	$0.10~\mu\mathrm{g/L}$	CMM	
Lindane	\mathtt{BDL}	$0.10 \mu \text{g/L}$	CMM	
Methoxychlor	\mathtt{BDL}	$0.20 \mu \text{g/L}$	CMM	
Toxaphene	\mathtt{BDL}	$3.0 \mu \text{g/L}$	CMM	
PCB 1016	BDL	$0.50 \mu g/L$	CMM	
PCB-1221	\mathtt{BDL}	$0.50 \mu \mathrm{g/L}$	CMM	
PCB 1240	\mathtt{BDL}	$0.50 \mu \text{g/L}$	CMM	
PCB 1242	\mathtt{BDL}	$0.50~\mu \mathrm{g/L}$	CMM	
PCB 1248	BDL	$0.50~\mu\mathrm{g/L}$	CMM	
PCB 1254	\mathtt{BDL}	$0.50 \mu \text{g/L}$	CMM	
PCB 1260	\mathtt{BDL}	$0.50~\mu g/L$	CMM	

4805 N.W. 2nd Avenue Boca Raton, FL 33431 561-989-5225 edyne@bellsouth.net

CERTIFICATE OF ANALYSIS

Integrity Well & Pump 159 Wind Hill Lane Winchester, VA 22602 June 24, 2002 Report: 2002/04602

Sample No: 2002/04602- 1

Attention: Ken Conner

Project: Eastern Hillsboro ASR Well Monitoring

Hillsboro Canal Boca Raton, FL

Collected by: Howard Ray Ledbetter

Collected on: 04/30/02 Received on: 04/30/02

SAMPLE ID: FAMW

Date of Analysis: 05/03/02 Date of Extraction: 05/01/02

508.1 CHLORINATED PESTICIDES (62-550 FAC)

PARAMETER	RESULT	DL UNITS	ANALYST	
Alachlor	BDL	0.10 μg/L	CMM	
Atrazine Hexachlorocyclopentadiene	BDL BDL	3.0 µg/L 0.10 µg/L	CMM CMM	
Simazine	\mathtt{BDL}	$3.0 \mu g/L$	CMM	

4805 N.W. 2nd Avenue Boca Raton, FL 33431 561-989-5225 edyne@bellsouth.net

CERTIFICATE OF ANALYSIS

Integrity Well & Pump 159 Wind Hill Lane Winchester, VA 22602 June 24, 2002 Report: 2002/04602 Sample No: 2002/04602- 1

Attention: Ken Conner

Project: Eastern Hillsboro ASR Well Monitoring Hillsboro Canal Boca Raton, FL

Collected by: Howard Ray Ledbetter

Collected on: 04/30/02 Received on: 04/30/02

Date of Analysis: 05/05/02 Date of Extraction: 05/02/02

SAMPLE ID: FAMW

515.1 HERBICIDES (62-550 FAC)

PARAMETER	RESULT	DL UNITS	ANALYST	
Dalapon	BDL	0.50 μg/L	CMM	
Dinoseb	\mathtt{BDL}	$0.50 \mu \text{g/L}$	CMM	
Pentachlorophenol	BDL	$0.50 \mu \mathrm{g/L}$	CMM	
Picloram	\mathtt{BDL}	$0.50~\mu g/L$	CMM	
2,4-D	BDL	$0.50 \mu \text{g/L}$	CMM	
2,4,5-TP (Silvex)	BDL	$0.10 \mu \text{g/L}$	CMM	

4805 N.W. 2nd Avenue Boca Raton, FL 33431 561-989-5225 edyne@bellsouth.net

CERTIFICATE OF ANALYSIS

Integrity Well & Pump 159 Wind Hill Lane Winchester, VA 22602

June 24, 2002 Report: 2002/04602

Sample No: 2002/04602- 1

Attention: Ken Conner

Project: Eastern Hillsboro ASR Well Monitoring

Hillsboro Canal Boca Raton, FL

Collected by: Howard Ray Ledbetter

Collected on: 04/30/02 Received on: 04/30/02

SAMPLE ID: FAMW

Date of Analysis: 05/02/02

524.2 GROUP II UNREGULATED ORGANIC CONTAMINANTS

PARAMETER	RESULT	DL UNITS	ANALYST	
Bromobenzene	BDL	1.0 μg/L	EMH	
Bromodichloromethane	\mathtt{BDL}	$1.0 \mu \mathrm{g/L}$	EMH	
Bromoform	\mathtt{BDL}	$1.0 \mu g/L$	EMH	
Bromomethane	\mathtt{BDL}	$1.0 \mu g/L$	EMH	
Chloroethane	\mathtt{BDL}	$1.0 \mu g/L$	EMH	
Chloroform	\mathtt{BDL}	$1.0 \mu g/L$	EMH	
Chloromethane	\mathtt{BDL}	$1.0 \mu \text{g/L}$	EMH	
o-Chlorotoluene	\mathtt{BDL}	$1.0 \mu g/L$	EMH	
p-Chlorotoluene	\mathtt{BDL}	$1.0~\mu\mathrm{g/L}$	EMH	
Dibromochloromethane	\mathtt{BDL}	$1.0~\mu \mathrm{g/L}$	EMH	
Dibromomethane	\mathtt{BDL}	$1.0 \mu g/L$	EMH	
m-Dichlorobenzene	\mathtt{BDL}	$1.0 \mu g/L$	EMH	
Dichlorodifluoromethane	BDL	$1.0 \mu g/L$	EMH	
1,1-Dichloroethane	\mathtt{BDL}	$1.0 \mu g/L$	EMH	
2,2-Dichloropropane	\mathtt{BDL}	$1.0 \mu \text{g/L}$	EMH	
1,1-Dichloropropylene	BDL	$1.0 \mu \mathrm{g/L}$	EMH	
1,3-Dichloropropane	BDL	$1.0 \mu \text{g/L}$	EMH	
1,3-Dichloropropene	BDL	$1.0 \mu \text{g/L}$	EMH	
Methyl tert-butyl-ether (MTBE)	BDL	1.0 μg/L	EMH	
1,1,1,2-Tetrachloroethane	\mathtt{BDL}	$1.0 \mu \mathrm{g/L}$	EMH	
1,1,2,2-Tetrachloroethane	\mathtt{BDL}	$1.0 \mu g/L$	EMH	
Trichlorofluoromethane	\mathtt{BDL}	$1.0 \mu \mathrm{g/L}$	EMH	
1,2,3-Trichloropropane	BDL	$1.0 \mu g/L$	EMH	

4805 N.W. 2nd Avenue Boca Raton, FL 33431 561-989-5225 edyne@bellsouth.net

CERTIFICATE OF ANALYSIS

Integrity Well & Pump 159 Wind Hill Lane Winchester, VA 22602

June 24, 2002 Report: 2002/04602

Sample No: 2002/04602- 1

Attention: Ken Conner

Project: Eastern Hillsboro ASR Well Monitoring Hillsboro Canal Boca Raton, FL

Collected by: Howard Ray Ledbetter

Collected on: 04/30/02 Received on: 04/30/02

Date of Analysis: 05/02/02

SAMPLE ID: FAMW

524.2 TRIHALOMETHANES (THM'S)

PARAMETER	RESULT	DL UNITS	ANALYST	
Bromodichloromethane	BDL	$0.5 \mu g/L$	EMH	
Bromoform Chloroform	BDL	0.5 μ g/L 0.5 μ g/L	EMH EMH	
Dibromochloromethane	BDL	$0.5 \mu g/L$	EMH	
Total Trihalomethanes	BDL	μg/L	EMH	

4805 N.W. 2nd Avenue Boca Raton, FL 33431 561-989-5225 edyne@bellsouth.net

CERTIFICATE OF ANALYSIS

Integrity Well & Pump 159 Wind Hill Lane Winchester, VA 22602 June 24, 2002 Report: 2002/04602 Sample No: 2002/04602- 1

Attention: Ken Conner

Project: Eastern Hillsboro ASR Well Monitoring Hillsboro Canal Boca Raton, FL

Collected by: Howard Ray Ledbetter

Collected on: 04/30/02

Received on: 04/30/02

SAMPLE ID: FAMW

Date of Analysis: 05/02/02

524.2 VOLATILE ORGANIC COMPOUNDS (62-550)

PARAMETER	RESULT	DL UNITS	ANALYST	
Benzene	BDL	1.0 μg/L	EMH	
Carbon tetrachloride	\mathtt{BDL}	$1.0 \mu g/L$	EMH	
Chlorobenzene	\mathtt{BDL}	$1.0 \mu \text{g/L}$	EMH	
1,2-Dichlorobenzene	\mathtt{BDL}	$1.0 \mu g/L$	EMH	
1,4-Dichlorobenzene	BDL	$1.0 \mu g/L$	EMH	
1,2-Dichloroethane	BDL	$1.0 \mu g/L$	EMH	
1,1-Dichloroethene	\mathtt{BDL}	$1.0 \mu \text{g/L}$	EMH	
cis-1,2-Dichloroethene	\mathtt{BDL}	$1.0 \mu g/L$	EMH	
trans-1,2-Dichloroethene	BDL	$1.0 \mu g/L$	EMH	
Dichloromethane	\mathtt{BDL}	$1.0 \mu g/L$	EMH	
1,2-Dichloropropane	BDL	$1.0 \mu g/L$	EMH	
Ethylbenzene	BDL	$1.0 \mu g/L$	EMH	
Styrene	BDL	$1.0 \mu g/L$	EMH	
Tetrachloroethylene	BDL	$1.0 \mu \text{g/L}$	EMH	
Toluene	BDL	1.0 μg/L	EMH	
1,2,4-Trichlorobenzene	\mathtt{BDL}	1.0 μg/L	EMH	
1,1,1-Trichloroethane	\mathtt{BDL}	$1.0 \mu \text{g/L}$	EMH	
1,1,2-Trichloroethane	BDL	$1.0 \mu \text{g/L}$	EMH	
Trichloroethylene	BDL	1.0 μg/L	EMH	
Vinyl chloride	BDL	1.0 μg/L	EMH	
Xylenes, Total	BDL	$1.0 \mu \text{g/L}$	EMH	

4805 N.W. 2nd Avenue Boca Raton, FL 33431 561-989-5225 edyne@bellsouth.net

CERTIFICATE OF ANALYSIS

Integrity Well & Pump 159 Wind Hill Lane Winchester, VA 22602

June 24, 2002 Report: 2002/04602

Sample No: 2002/04602- 1

Attention: Ken Conner

Project: Eastern Hillsboro ASR Well Monitoring

Hillsboro Canal Boca Raton, FL

Collected by: Howard Ray Ledbetter

Collected on: 04/30/02 Received on: 04/30/02

SAMPLE ID: FAMW

Date of Analysis: 05/03/02

531.1 GROUP I UNREGULATED ORGANIC PESTICIDES

PARAMETER	RESULT	DL UNITS	ANALYST	
Aldicarb	\mathtt{BDL}	0.50 μg/L	E84129	
Aldicarb sulfone	\mathtt{BDL}	$0.50~\mu \mathrm{g/L}$	E84129	
Aldicarb sulfoxide	\mathtt{BDL}	$0.50~\mu \mathrm{g/L}$	E84129	
Carbaryl	\mathtt{BDL}	$0.50~\mu \mathrm{g/L}$	E84129	
3-Hydroxycarbofuran	\mathtt{BDL}	$0.50~\mu\mathrm{g/L}$	E84129	
Methomyl	\mathtt{BDL}	$0.50 \mu g/L$	E84129	

4805 N.W. 2nd Avenue Boca Raton, FL 33431 561-989-5225 edyne@bellsouth.net

CERTIFICATE OF ANALYSIS

Integrity Well & Pump 159 Wind Hill Lane Winchester, VA 22602

June 24, 2002 Report: 2002/04602

Sample No: 2002/04602- 1

Attention: Ken Conner

Project: Eastern Hillsboro ASR Well Monitoring

Hillsboro Canal Boca Raton, FL

Collected by: Howard Ray Ledbetter

Collected on: 04/30/02 Received on: 04/30/02

SAMPLE ID: FAMW

Date of Analysis: 05/04/02 Date of Extraction: 05/03/02

625 GROUP III UNREGULATED ORGANIC CONTAMINANTS

PARAMETER	RESULT	DL UNITS	ANALYST	
Butyl benzyl phthalate	BDL	1.0 µg/L	SPH	
2-Chlorophenol	\mathtt{BDL}	$1.0 \mu \text{g/L}$	SPH	
Di-n-butylphthalate	\mathtt{BDL}	$1.0 \mu \mathrm{g/L}$	SPH	
Diethylphthalate	\mathtt{BDL}	$1.0 \mu \text{g/L}$	SPH	
Dimethylphthalate	BDL	$1.0 \mu \mathrm{g/L}$	SPH	
Di-n-octyl phthalate	\mathtt{BDL}	$1.0 \mu \mathrm{g/L}$	SPH	
2,4-Dinitrotoluene	\mathtt{BDL}	$1.0 \mu \text{g/L}$	SPH	
Isophorone	\mathtt{BDL}	$1.0 \mu \text{g/L}$	SPH	
2-Methyl-4,6-dinitrophenol	\mathtt{BDL}	$1.0 \mu \mathrm{g/L}$	SPH	
Phenol	\mathtt{BDL}	$1.0 \mu \text{g/L}$	SPH	
2,4,6-Trichlorophenol	\mathtt{BDL}	$1.0 \mu \text{g/L}$	SPH	

4805 N.W. 2nd Avenue Boca Raton, FL 33431 561-989-5225 edyne@bellsouth.net

CERTIFICATE OF ANALYSIS

Integrity Well & Pump 159 Wind Hill Lane Winchester, VA 22602

June 24, 2002 Report: 2002/04602 Sample No: 2002/04602- 1

Attention: Ken Conner

Project: Eastern Hillsboro ASR Well Monitoring

Hillsboro Canal Boca Raton, FL

Collected by: Howard Ray Ledbetter

Collected on: 04/30/02 Received on: 04/30/02

Date of Analysis: 05/04/02 Date of Extraction: 05/03/02

SAMPLE ID: FAMW

625 MUNICIPAL WASTEWATER MINIMUM CRITERIA

PARAMETER	RESULT	DL UNITS	ANALYST	
Anthracene Naphthalene	BDL	1.0 μg/L 1.0 μg/L	SPH SPH	
Phenanthrene	BDL	1.0 μ g/L	SPH	

Analysis contained herein conform to EPA, Standard Methods and DEP approved methods per Envirodyne Comprehensive Quality Assurance Plan No. 890041. Subcontracted analyses are denoted by certification number in the analyst column. All relevant quality assurance samples were within specified control limits unless otherwise stated. Uncertainties for test results are available upon request. Envirodyne certifies its test results meet all requirements of the NELAC Standards, where applicable. For questions, please call the project manager at the number listed above.

This is the last page of the report. See bottom of page for total pages.

Project Manager

Quality Assurance Director

ASR Well (Injection Zone)

June 23, 2003

Palm Beach County Water Utilities Department

Water \ Wastewater Testing Laboratory

13026 Jog Rd., Bldg. K Delray Beach, FL 33446 (561) 638-5000

System 9

WATER QUALITY ANALYSIS

Sample Number: Al08567

Sample Location: ASR-1(E.Hillsboro Canal)

Analysis	Analysis Result(mg/L)	Qual.	Analytical Method	Det. Lt. (MDL)	Analysis Date	Analyst
Turbidity	0.19		SM 2130-B	0.05	6/23/2003	NF/RMS
Temp	24.0		SM 2550-B	0.1	6/23/2003	NF/RMS
Conduct.	6490		SM 2510-B	0.5	6/23/2003	NF/RMS
рН	7.64		EPA 150.1	0.01	6/23/2003	NF/RMS
Dissolved Oxygen	1.07		EPA 360.1	0.1	6/23/2003	NF/RMS

Palm Beach County Water Utilities Department

Water \ Wastewater Testing Laboratory

13026 Jog Rd., Bldg. K Delray Beach, FL 33446 (561) 638-5000

System 9

WATER QUALITY ANALYSIS

** Analysis contained herein conform to EPA, Standard Methods and DEP approved methods. Subcontracted analyses are denoted by certification number in the analyst column. All relevant quality assurance samples were within specified control limits unless otherwise stated. Uncertainties for test results are available upon request. Palm Beach County Water Utilities certifies its test results meets all requirements of the NELAC Standards, where applicable. For questions, please call the QA Officer or the Lab Manager at the phone number listed above.

Contact: Jaya Navani (561) 638-5000	
I do HEREBY CERTIFY that all attached analytical data are	correct.
QA Officer, Shree Kundalkar Laboratory Manager, Jaya Navani	Date: 8/27/07 Date: 8/27/07
COMPLIANCE INFORMATION	
Sample Collection Satisfactory:	Sample Analysis Satisfactory:
Resample Requested for:	Reason:
Person notified to resample:	Date Notified:
DEP/ACPHU Reviewing Official:	—— ———————————————————————————————————
Notice: The information contained in this report is confidential entity named above. If the reader of this communication is n	•

dissemination, distribution or copying of this information is prohibited. If you have received this communication in error, please immediately notify us at (561) 638-5000. Thank you.

Palm Beach County Water Utilities Department

Water \ Wastewater Testing Laboratory

13026 Jog Rd., Błdg. K Delray Beach, FL 33446 (561) 638-5000

System 9

WATER QUALITY ANALYSIS

Qualifier Codes

QUALIFIER	EXPLANATION
I	The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
J	Estimated value; value may not be accurate. This code shall be used in the following instances:
J1	Surrogate recovery limits have been exceeded;
J2	No known quality control criteria exists for the component;
Ј3	The reported value failed to meet the established quality control criteria for either precision or accuracy;
J4	The sample matrix interfered with the ability to make any accurate determination
J5	The data are questionable because of improper laboratory or field protocols (e.g. composite sample was collected instead of a grab sample).
О	Sampled, but analysis lost or not performed.
Q	Sample held beyond the accepted holding time. This code shall be used if the value is derived from a sample that was prepared or analyzed after the approved holding time restrictions for sample preparation or analysis.
T	Value reported is less than the laboratory method detection limit. The value is reported for informational purposes only – and shall not be used in statistical analysis.
U	Indicates that the compound was analyzed for but not detected, this symbol shall be used to indicate that the specified component was not detected. The value associated with the qualifier shall be the laboratory method detection limit. Unless requested by the client, less than the method detection limit values shall not be reported (see "T" above).
V	Indicates that the analyte was detected in both the sample and the associated method blank. Note: the value in the blank shall not be subtracted from associated samples.
Y	The laboratory analysis was from an improperly preserved sample. The data may not be accurate.
Z	Too many colonies were present (TNTC): the numeric value represent the filtration volume.
?	Data are rejected and should not be used. Some or all of the quality control data for the analyte were outside criteria, and the presence or absence of the analyte cannot be determined from the data.
D	Measurement was made in the field (i.e., in situ). This applies to any value (except pH, specific conductance, dissolved oxygen, temperature, total residual chlorine, transparency, or salinity) that was obtained under field conditions using approved analytical methods. If the parameter code specifies a field measurement e.g., "Field pH", this code is not required.

Palm Beach County Water Utilities Laboratory 13026 Jog Road Bldg K

Delray Beach, FL 33446

Attention: Jaya Navani

July 15, 2003 Report: 2003/06404 Sample No: 2003/06404- 1

Project: System 9 WTP ASR Project
22438 SW 7th Street Boca Raton, FL

SAMPLE ID: ASR Well-1 AI08567

Collected by: Ricky Sadarangani Noel Fleites

Collected on: 06/23/03

Received on: 06/23/03

		Noel Fleites				
PARAMETER	RESULT	METHOD	DL UNITS	DATE	ANALYST	
Aluminum	0.86	200.7	0.10 mg/L	06/27/03	KYT	
Arsenic	Ū	200.7	0.010 mg/L	06/24/03	APR	
Barium	0.015	200.7	0.010 mg/L	06/24/03	APR	
Beryllium	υ	200.7	0.0030 mg/L	06/24/03	APR	
Cadmium	υ	200.7	0.0040 mg/L	06/24/03	APR	
Chromium	υ	200.7	0.010 mg/L	06/24/03	APR	
Copper	υ	200.7	0.010 mg/L	06/24/03	APR	
Iron	1.5	200.7	0.010 mg/L	06/27/03	KYT	
Manganese	υ	200.7	0.010 mg/L	06/24/03	APR	
Nickel	υ	200.7	0.010 mg/L	06/24/03	APR	
Silver	υ	200.7	0.010 mg/L	06/24/03	APR	
Sodium	1300	200.7	100 mg/L	07/10/03	APR	
Zinc	0.016	200.7	0.010 mg/L	06/24/03	APR	
Antimony	U	200.8	0.0010 mg/L	07/01/03	APR	
Lead	υ	200.8	0.00020 mg/L	07/01/03	APR	
Selenium	0.010	200.8	0.0010 mg/L	07/01/03	APR	
Thallium	ប	200.8	0.00030 mg/L	07/01/03	APR	
Mercury	U	245.1	0.00003 mg/L	06/24/03	KYT	

Analyte Not Detected
DL Detection Limit

Palm Beach County Water Utilities Laboratory 13026 Jog Road Bldg K Delray Beach, FL 33446 July 15, 2003 Report: 2003/06404 Sample No: 2003/06404- 1

Project: System 9 WTP ASR Project

Attention: Jaya Navani

22438 SW 7th Street Boca Raton, FL

SAMPLE ID: ASR Well-1 AI08567 Collected by: Ricky Sadarangani Noel Fleites Collected on: 06/23/03 Received on: 06/23/03

PARAMETER	RESULT	METHOD	DL UNITS	DATE	ANALYST
Dibromochloropropane (DBCP)	υ	504.1	0.020 μg/L	06/27/03	СММ
1,2-Dibromoethane (EDB)	U	504.1	0.020 μ g/L	06/27/03	СММ
Benzo(a)pyrene	υ	525.2	0.20 μ g/L	06/25/03	SPH
Di(2-ethylhexyl)adipate	υ	525.2	1.0 <i>μ</i> g/L	06/25/03	SPH
Di(2-ethylhexyl)phthalate	υ	525.2	1.0 <i>μ</i> g/L	06/25/03	SPH
Carbofuran	υ	531.1	1.0 <i>μ</i> g/L	06/24/03	MLD
Oxamyl (Vydate)	U	531.1	1.0 <i>μ</i> g/L	06/24/03	MLD
Glyphosate	U	547	40 <i>μ</i> g/L	06/27/03	E86515
Endothall	υ	548.1	50 <i>μ</i> g/L	07/02/03	E86515
Diquat	U	549	1.44 <i>μ</i> g/L	07/08/03	E86515
Biochemical Oxygen Demand	70	405.1	2.0 mg/L	06/23/03	JGT
Chloride	1900	SM4500CL-	B 20 mg/L	06/24/03	DNS
Chemical Oxygen Demand	49	410.4	5.0 mg/L	06/24/03	DNS
Color	U	110.2	5 CU	06/24/03	JGT
Specific Conductance	5800	120.1	μmhos/cm	06/25/03	JNM
Cyanide, Total	U	335.4	0.0040 mg/L	06/26/03	JNM
Fluoride	0.92	SM4500F-0	0.10 mg/L	06/24/03	JMJ
Gross Alpha	5±3	900.0	1.0 pCi/L	06/30/03	E84088
Surfactants (as LAS, $MW = 340$)	0.24	425.1	0.010 mg/L	06/24/03	JGT

Analysis Performed in Accordance with E.P.A. Methods Laboratory Certification No. E86188

QA/QC Review
U=Analyte Not Detected
DL=Detection Limit

Palm Beach County Water Utilities Laboratory 13026 Jog Road Bldg K Delray Beach, FL 33446

SAMPLE ID: ASR Well-1 AI08567

July 15, 2003 Report: 2003/06404 Sample No: 2003/06404- 1

Attention: Jaya Navani

Project: System 9 WTP ASR Project
22438 SW 7th Street Boca Raton, FL

22438 SW /th Street Boca Raton, FL

Collected on: 06/23/03
Collected by: Ricky Sadarangani
Noel Fleites

Collected on: 06/23/03
Received on: 06/23/03

PARAMETER	RESULT	METHOD	DL UNITS	DATE	ANALYST
Ammonia, as N	0.73	350.1	0.020 mg/L	06/25/03	JGT
Nitrite, as Nitrogen	υ	353.2	0.020 mg/L	06/25/03	JGT
Nitrate, as Nitrogen	υ	353.2	0.020 mg/L	06/25/03	JGT
Nitrate-Nitrite, as Nitrogen	υ	353.2	0.020 mg/L	06/25/03	JGT
Odor	50	SM2150B	1 T.O.N.	06/24/03	JGT
pH (Laboratory)	7.6	150.1	pH Units	06/24/03	MM
Radium 226	0.7±0.1	903.1	0.1 pCi/L	07/08/03	E84088
Radium 228	0.5±0.5 U	RA-05	0.5 pCi/L	07/08/03	E84088
Sulfate	440	375.4	100 mg/L	06/24/03	JNM
Total Coliform Bacteria	<1	SM9222B	1 cfu/100 ml	06/23/03	JGT
Total Coliform Date & Time Sampled: 06/23/03 14:30 Total Coliform Date & Time Analyzed: 06/23/03 17:36					
Total Dissolved Solids	4100	160.1	10 mg/L	06/27/03	DNS
Total Kjeldahl Nitrogen	1.2	351.2	0.10 mg/L	06/30/03	JMJ
Organic Nitrogen	υ	351-350	0.50 mg/L	06/30/03	JMJ
Phosphorus, Total	0.12	365.4	0.010 mg/L	06/30/03	JMJ

4805 N.W. 2nd Avenue Boca Raton, FL 33431 561-989-5225

CERTIFICATE OF ANALYSIS

Palm Beach County Water Utilities Laboratory 13026 Jog Road Bldg K Delray Beach, FL 33446 July 15, 2003 Report: 2003/06404 Sample No: 2003/06404- 1

Attention: Jaya Navani

Project: System 9 WTP ASR Project

22438 SW 7th Street Boca Raton, FL

E2450 5W 7th Street Boca Raton, 1

SAMPLE ID: ASR Well-1 AI08567

Collected by: Ricky Sadarangani Noel Fleites Received on: 06/23/03

Collected on: 06/23/03

Date of Analysis: 06/28/03 Date of Extraction: 06/25/03

508 GROUP I UNREGULATED ORGANIC CONTAMINANTS

PARAMETER	RESULT	DL UNITS	ANALYST
Aldrin	บ	0.10 μg/L	CMM
Dieldrin	บ	0.10 μg/L	CMM

4805 N.W. 2nd Avenue Boca Raton, FL 33431 561-989-5225

CERTIFICATE OF ANALYSIS

Palm Beach County Water Utilities Laboratory 13026 Jog Road Bldg K Delray Beach, FL 33446

Projects System O WTD ASD Decicat

July 15, 2003 Report: 2003/06404 Sample No: 2003/06404- 1

Attention: Jaya Navani

Project: System 9 WTP ASR Project 22438 SW 7th Street Boca Raton, FL

Collected on: 06/23/03

SAMPLE ID: ASR Well-1 AI08567

Collected by: Ricky Sadarangani Noel Fleites Received on: 06/23/03

Date of Analysis: 06/28/03 Date of Extraction: 06/25/03

508 ORGANOHALIDE PESTICIDES 62-550.310(2)(c) FAC

PARAMETER	RESULT	DL UNITS	ANALYST	
Chlordane	υ	0.50 μg/L	CMM	
Endrin	U	$0.10 \mu \text{g/L}$	CMM	
Heptachlor	U	$0.10 \ \mu g/L$	CMM	
Heptachlor epoxide	U	$0.10 \mu \text{g/L}$	CMM	
Hexachlorobenzene	U	$0.10 \mu \text{g/L}$	CMM	
Lindane	Ū	$0.10 \mu \text{g/L}$	CMM	
Methoxychlor	U	$0.20 \mu \text{g/L}$	CMM	
Toxaphene	Ū	$1.0 \mu g/L$	CMM	
PCB 1016	U	$0.20 \mu \text{g/L}$	CMM	
PCB 1221	U	$0.20 \mu \text{g/L}$	CMM	
PCB 1240	U	$0.20 \mu \text{g/L}$	CMM	
PCB 1242	U	$0.20 \mu \text{g/L}$	CMM	
PCB 1248	Ū	$0.20 \mu \text{g/L}$	CMM	
PCB 1254	U	$0.20 \mu \text{g/L}$	CMM	
PCB 1260	υ	$0.20 \mu g/L$	CMM	

4805 N.W. 2nd Avenue Boca Raton, FL 33431 561-989-5225

CERTIFICATE OF ANALYSIS

Palm Beach County Water Utilities Laboratory 13026 Jog Road Bldg K Delray Beach, FL 33446

 $\sqrt{}$

July 15, 2003 Report: 2003/06404

Sample No: 2003/06404- 1

Attention: Jaya Navani

Project: System 9 WTP ASR Project

22438 SW 7th Street Boca Raton, FL

Collected on: 06/23/03

Sadarangani Received on: 06/23/03

SAMPLE ID: ASR Well-1 AI08567

Collected by: Ricky Sadarangani

Noel Fleites

Date of Analysis: 06/29/03 Date of Extraction: 06/25/03

508.1 CHLORINATED PESTICIDES (62-550 FAC)

PARAMETER	RESULT	DL UNITS	ANALYST	
Alachlor	U	0.10 μg/L	СММ	
Atrazine	ΰ	$1.0 \mu g/L$	CMM	
Hexachlorocyclopentadiene	ΰ	$0.10 \mu \text{g/L}$	CMM	
Simazine	Ū	$1.0 \mu g/L$	CMM	

4805 N.W. 2nd Avenue Boca Raton, FL 33431 561-989-5225

CERTIFICATE OF ANALYSIS

Palm Beach County Water Utilities Laboratory 13026 Jog Road Bldg K Delray Beach, FL 33446

July 15, 2003 Report: 2003/06404

Sample No: 2003/06404- 1

Attention: Jaya Navani

Project: System 9 WTP ASR Project

22438 SW 7th Street Boca Raton, FL

Collected on: 06/23/03 Received on: 06/23/03

SAMPLE ID: ASR Well-1 AI08567

Date of Analysis: 06/30/03 Date of Extraction: 06/27/03

Noel Fleites

Collected by: Ricky Sadarangani

515.1 HERBICIDES (62-550 FAC)

PARAMETER	RESULT	DL UNITS	ANALYST	
Dalapon	Ū	0.50 μg/L	CMM	3000
Dinoseb	ט	$0.50~\mu\mathrm{g/L}$	CMM	
Pentachlorophenol	υ	$0.50~\mu\mathrm{g/L}$	CMM	
Picloram	υ	$0.50 \mu \mathrm{g/L}$	CMM	
2,4-D	υ	$0.50~\mu\mathrm{g/L}$	CMM	
2,4,5-TP (Silvex)	υ	$0.10 \mu \text{g/L}$	CMM	

4805 N.W. 2nd Avenue Boca Raton, FL 33431 561-989-5225

CERTIFICATE OF ANALYSIS

Palm Beach County Water Utilities Laboratory 13026 Jog Road Bldg K Delray Beach, FL 33446

July 15, 2003 Report: 2003/06404 Sample No: 2003/06404- 1

Attention: Jaya Navani

Project: System 9 WTP ASR Project
22438 SW 7th Street Boca Raton, FL

Collected on: 06/23/03

SAMPLE ID: ASR Well-1 AI08567

Collected by: Ricky Sadarangani Noel Fleites Received on: 06/23/03

Date of Analysis:

06/25/03

524.2 GROUP II UNREGULATED ORGANIC CONTAMINANTS

PARAMETER	RESULT	DL UNITS	ANALYST
Bromobenzene	υ	$0.5~\mu \mathrm{g/L}$	JCB
Bromodichloromethane	U	$0.5 \mu g/L$	JCB
Bromoform	U	$0.5 \mu g/L$	JCB
Bromomethane	U	$0.5 \mu g/L$	JCB
Chloroethane	U	$0.5 \mu g/L$	JCB
Chloroform	U	$0.5 \mu g/L$	JCB
Chloromethane	U	$0.5~\mu\mathrm{g/L}$	JCB
o-Chlorotoluene	U	$0.5 \mu g/L$	JCB
p-Chlorotoluene	U	$0.5 \mu g/L$	JCB
Dibromochloromethane	υ	$0.5 \mu g/L$	JCB
Dibromomethane	U	$0.5~\mu\mathrm{g/L}$	JCB
m-Dichlorobenzene	U	$0.5~\mu\mathrm{g/L}$	JCB
Dichlorodifluoromethane	U	$0.5~\mu \mathrm{g/L}$	JCB
1,1-Dichloroethane	Ū	$0.5~\mu \mathrm{g/L}$	JCB
2,2-Dichloropropane	Ŭ	0.5 μ g/L	JCB
1,1-Dichloropropylene	U	$0.5~\mu \mathrm{g/L}$	JCB
1,3-Dichloropropane	U	$0.5~\mu \mathrm{g/L}$	JCB
1,3-Dichloropropene	U	0.5 μ g/L	JCB
Methyl tert-butyl-ether (MTBE)	Ŭ	$0.5~\mu \mathrm{g/L}$	JCB
1,1,1,2-Tetrachloroethane	U	$0.5~\mu \mathrm{g/L}$	JCB
1,1,2,2-Tetrachloroethane	U	$0.5~\mu\mathrm{g/L}$	JCB
Trichlorofluoromethane	Ū	$0.5 \mu g/L$	JCB
1,2,3-Trichloropropane	Ū	$0.5 \mu g/L$	JCB

4805 N.W. 2nd Avenue Boca Raton, FL 33431 561-989-5225

CERTIFICATE OF ANALYSIS

Palm Beach County Water Utilities Laboratory 13026 Jog Road Bldg K

Delray Beach, FL 33446

July 15, 2003 Report: 2003/06404

Sample No: 2003/06404- 1

Attention: Jaya Navani Project: System 9 WTP ASR Project

22438 SW 7th Street Boca Raton, FL

SAMPLE ID: ASR Well-1 AI08567

Collected by: Ricky Sadarangani

Noel Fleites

Collected on: 06/23/03

Received on: 06/23/03

Date of Analysis: 06/25/03

524.2 TRIHALOMETHANES (THM'S)

PARAMETER	RESULT	DL UNITS	ANALYST	
Bromodichloromethane	U	0.5 μg/L	JCB	
Bromoform	Ū	$0.5 \mu g/L$	JCB	
Chloroform	U	$0.5 \mu g/L$	JCB	
Dibromochloromethane	U	$0.5 \mu g/L$	JCB	
Total Trihalomethanes	υ	$0.5 \mu g/L$	JCB	

Palm Beach County Water Utilities Laboratory 13026 Jog Road Bldg K Delray Beach, FL 33446

Attention: Jaya Navani

July 15, 2003 Report: 2003/06404

Sample No: 2003/06404- 1

Project: System 9 WTP ASR Project

22438 SW 7th Street Boca Raton, FL

Collected on: 06/23/03

Received on: 06/23/03

SAMPLE ID: ASR Well-1 AI08567

Collected by: Ricky Sadarangani

Noel Fleites

Date of Analysis:

06/25/03

524.2 VOLATILE ORGANIC COMPOUNDS (62-550)

PARAMETER	RESULT	DL UNITS	ANALYST	
Benzene	Ü	0.5 μg/L	JCB	
Carbon tetrachloride	Ü	$0.5 \mu g/L$	JCB	
Chlorobenzene	U	$0.5 \mu \mathrm{g/L}$	JCB	
1,2-Dichlorobenzene	U	$0.5 \mu g/L$	JCB	
1,4-Dichlorobenzene	Ū	$0.5 \mu g/L$	JCB	
1,2-Dichloroethane	υ	$0.5 \mu g/L$	JCB	
1,1-Dichloroethene	Ū	$0.5 \mu g/L$	JCB	
cis-1,2-Dichloroethene	Ū	$0.5 \mu g/L$	JCB	
trans-1,2-Dichloroethene	ΰ	$0.5 \mu g/L$	JCB	
Dichloromethane	Ŭ	$0.5 \mu g/L$	JCB	
1,2-Dichloropropane	Ū	$0.5 \mu \text{g/L}$	JCB	
Ethylbenzene	Ŭ	$0.5 \mu g/L$	JCB	
Styrene	บ	$0.5 \mu g/L$	JCB	
Tetrachloroethylene	บ	$0.5 \mu \mathrm{g/L}$	JCB	
Toluene	ΰ	$0.5 \mu \text{g/L}$	JCB	
1,2,4-Trichlorobenzene	σ	$0.5 \mu g/L$	JCB	
1,1,1-Trichloroethane	U	$0.5 \mu g/L$	JCB	
1,1,2-Trichloroethane	บ	$0.5 \mu g/L$	JCB	
Trichloroethylene	ប	$0.5 \mu \mathrm{g/L}$	JCB	
Vinyl chloride	U	$0.5 \mu g/L$	JCB	
Xylenes, Total	U	$0.5 \mu g/L$	JCB	

4805 N.W. 2nd Avenue Boca Raton, FL 33431 561-989-5225

CERTIFICATE OF ANALYSIS

Palm Beach County Water Utilities Laboratory 13026 Jog Road Bldg K

Delray Beach, FL 33446

July 15, 2003 Report: 2003/06404

Sample No: 2003/06404- 1

Project: System 9 WTP ASR Project

22438 SW 7th Street Boca Raton, FL

Collected on: 06/23/03

Received on: 06/23/03

SAMPLE ID: ASR Well-1 AI08567

Collected by: Ricky Sadarangani

Noel Fleites

Date of Analysis: 06/24/03

Attention: Jaya Navani

531.1 GROUP I UNREGULATED ORGANIC PESTICIDES

PARAMETER	RESULT	DL UNITS	ANALYST	
Aldicarb	U	1.0 μg/L	MLD	
Aldicarb sulfone	U	$1.0 \mu \mathrm{g/L}$	MLD	
Aldicarb sulfoxide	U	$1.0 \mu g/L$	MLD	
Carbaryl	U	$1.0 \mu \mathrm{g/L}$	MLD	
3-Hydroxycarbofuran	U	$1.0 \mu g/L$	MLD	
Methomyl	ΰ	$1.0 \mu g/L$	MLD	

Palm Beach County Water Utilities Laboratory 13026 Jog Road Bldg K

Delray Beach, FL 33446

July 15, 2003 Report: 2003/06404 Sample No: 2003/06404- 1

Project: System 9 WTP ASR Project

22438 SW 7th Street Boca Raton, FL

Collected on: 06/23/03

Received on: 06/23/03

Collected by: Ricky Sadarangani Recei

SAMPLE ID: ASR Well-1 AI08567

Date of Analysis: 06/29/03 Date of Extraction: 06/27/03

Attention: Jaya Navani

625 GROUP III UNREGULATED ORGANIC CONTAMINANTS

PARAMETER	RESULT	DL UNITS	ANALYST
Butyl benzyl phthalate	U	1.0 μg/L	SPH
2-Chlorophenol	υ	$1.0 \mu \text{g/L}$	SPH
Di-n-butylphthalate	υ	$1.0~\mu \mathrm{g/L}$	SPH
Diethylphthalate	U	$1.0 \mu g/L$	SPH
Dimethylphthalate	ΰ	$1.0 \mu \text{g/L}$	SPH
Di-n-octyl phthalate	ΰ	$1.0 \mu \text{g/L}$	SPH
2,4-Dinitrotoluene	U	$1.0 \mu \text{g/L}$	SPH
Isophorone	ΰ	$1.0 \mu g/L$	SPH
2-Methyl-4,6-dinitrophenol	υ	$1.0 \mu g/L$	SPH
Phenol	Ŭ	$1.0 \mu \mathrm{g/L}$	SPH
2,4,6-Trichlorophenol	υ	$1.0 \mu g/L$	SPH

4805 N.W. 2nd Avenue Boca Raton, FL 33431 *561-989-5225*

CERTIFICATE OF ANALYSIS

Palm Beach County Water Utilities Laboratory 13026 Jog Road Bldg K Delray Beach, FL 33446

July 15, 2003 Report: 2003/06404

Sample No: 2003/06404- 1

Attention: Jaya Navani

Project: System 9 WTP ASR Project

22438 SW 7th Street Boca Raton, FL

Collected on: 06/23/03

Received on: 06/23/03

SAMPLE ID: ASR Well-1 AI08567

Collected by: Ricky Sadarangani Noel Fleites

Date of Analysis: 06/29/03 Date of Extraction: 06/27/03

625 MUNICIPAL WASTEWATER MINIMUM CRITERIA

PARAMETER	RESULT	DL UNITS	ANALYST
Anthracene	U	1.0 µg/L	SPH
Naphthalene	U	$1.0 \mu g/L$	SPH
Phenanthrene	U	$1.0~\mu \mathrm{g/L}$	SPH

Quality Control Report

EPA 525.2

Matrix Spike and Duplicate Analysis

Date: June 24, 2003 Batch No.: GC/MS052403k

Matrix: Water

Compound	RPD	Percent Recovery
Bütachlor	18.74%	104%
Atrazine	5.80%	76%
Hexachlorobenzene	10.69%	79%
Di(2-ethylhexyl)adipate	4.86%	70%
Di(2-ethylhexyl)phthalate	11.25%	73%
Benzo(a)pyrene	3.22%	124%

Quality Control Report

EPA 625

Matrix Spike and Duplicate Analysis

Date: June 29, 2003 Batch No.: GC/MS062403b

Matrix: water

Compound	RPD	Percent Recovery
Acenaphthene	7.35%	119%
N-Nitroso-di-n-propylamine	1.89%	120%
Pentachlorophenol	5.81%	161%
Phenol	0.44%	142%
Pyrene	2.45%	135%
1,4-Dichlorobenzene	2.50%	111%
1,2,4-Trichlorobenzene	2.43%	111%
2-Chlorophenol	1.83%	142%
2,4-Dinitrotoluene	5.26%	126%
4-Chloro-3-Methylphenol	8.17%	167%
4-Nitrophenol	18.82%	150%

^{*} Recoveries above established limits; possibly due to matrix interference. Samples did not show positive hits for these analytes

Quality Control Report

Matrix Spike and Duplicate Analysis

Date: June 29, 2003

Batch No.: GC/MS062403b

Matrix: water

Compound	RPD	Percent Recovery
Acenaphthene	7.35%	119%
N-Nitroso-di-n-propylamine	1.89%	120%
Pentachlorophenol	5,81%	161%
Phenol	0.44%	142%
Pyrene	2.45%	135%
1,4-Dichlorobenzene	2.50%	111%
1,2,4-Trichlorobenzene	2.43%	111%
2-Chlorophenol	1.83%	142%
2,4-Dinitrotoluene	5,26%	126%
4-Chloro-3-Methylphenol	8.17%	167%
4-Nitrophenol	18.82%	150%

Quality Control Report EPA 524.2

Matrix Spike and Duplicate

Date: June 24, 2003 Batch No.: GCMS1062403W

Matrix: WATER

Compound	RPD	Percent Recovery
Benzene	0.71%	105%
Chlorobenzene	2.04%	98%
1,1-Dichloroethene	5.63%	98%
Toluene	2.14%	105%
Trichloroethene	5.98%	113%
1,2-Dichloroethane Surr*	4.77%	92%
4-Bromofluorobenzene Surr*	4.90%	106%
1,2-Dichlorobenzene-d4 Surr*	2.00%	110%

Blank < 1.0 PPB Pass/Fail: PASS

Quality Control Report EPA 531.1

Matrix Spike and Duplicate Analysis

Date: 6/26/2003

Batch No.: L531.1062603

Matrix: LIQUID

Compound	RPD	Percent Recovery
Aldicarb Sulfoxide	1.59%	101%
Aldicarb Sulfone	0.10%	99%
Oxamyl	0.00%	101%
Methomyl	0.76%	105%
3-Hydroxycarbofuran	1.35%	96%
Aldicarb	2.06%	102%
Propoxur (Baygon)	1.55%	97%
Carbofuran	2.17%	97%
Carbaryl	1.48%	95%
Methiocarb	1.93%	93%

Quality Control Report EPA 504.1

Matrix Spike and Duplicate Analysis

Date: JUNE 27, 2003

Batch No.: EDB062603A

Compound	RPD	Percent Recovery
EDB	4.26%	94%
DBCP	4.08%	98%

Quality Control Report

Matrix Spike and Duplicate Analysis

Date: JULY 1, 2003 Batch No.: HERB062703A

Compound	RPD	Percent Recovery
Dalapon	0.00%	85%
Dinoseb	5.61%	89%
Pentachlorophenol	0.00%	110%
Picloram	23.01%	94%
2,4-D	5.83%	86%
2,4,5-TP (Silvex)	0.00%	108%
DCPA (Dachtal)	4.65%	110%

Quality Control Report

Matrix Spike and Duplicate Analysis

Date: JUNE 30, 2003

Batch No.: LPEST062503B

Compound	RPD	Percent Recovery
Alachlor	2.67%	125%
Atrazine	0.85%	117%
Hexachlorocyclopentadiene	0.00%	120%
Simazine	7.37%	122%

Quality Control Report

Matrix Spike and Duplicate Analysis

Date: JUNE 29,2003 Batch No.: LPEST062503A

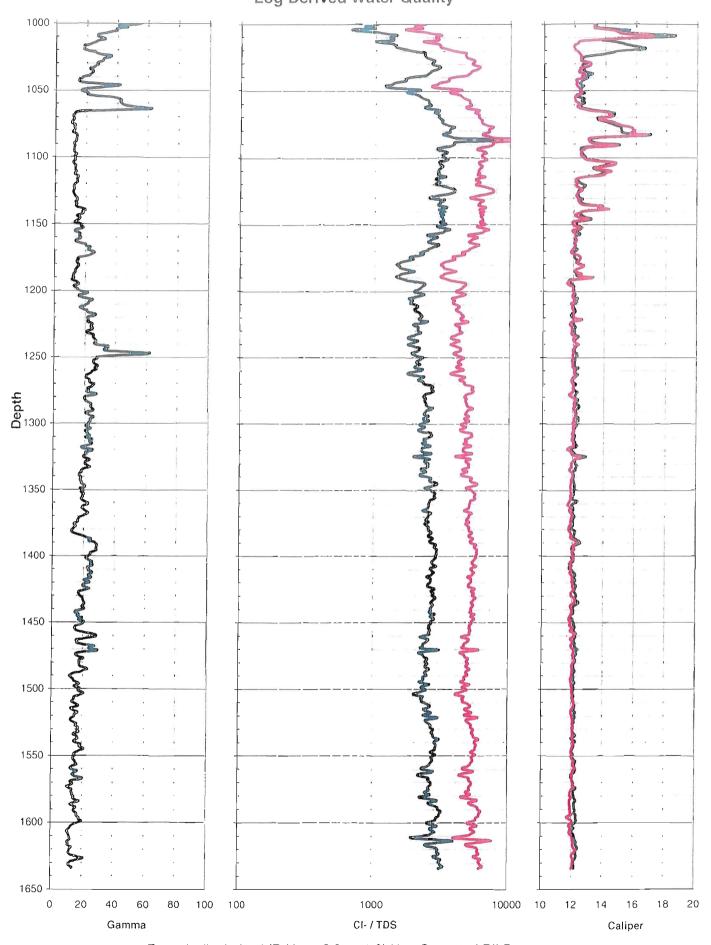
1	NRV
	100
) \

Compound	RPD	Percent Recovery
Chlordane	3.23%	103%
Endrin	0.00%	97%
Heptachlor	3.51%	95%
Heptachlor epoxide	3.08%	108%
Hexachlorobenzene	3.17%	105%
Lindane	3.08%	108%
Methaxychlor	3.17%	105%

CHAIN OF CUSTODY RECORD

AND
ANALYSIS REQUEST

Page _	1	_ of _	_1_


4805 NW 2nd Avenue • Boca Raton, FL 33431 (800) 713-7737 • Fax (561) 989-5204 edyne@bellsouth.net

			<	4					_					02)/100		_
PROJECT NU	JMBER	PROJEC*	NAME SYSP	· h	P.O. NUMI	BER		SAMPLE			PRES	SERVATI	VΕ		7	
		As	R PARK	eet (Permit) Compilance DALLA DEPOSE DOLLAR				TYPE	14.	/ /		/ /				
PROJECT LO	CATION	<u> </u>		Compliance				///			LYSES I	REQUES	TED		7	1
				FALM BEALH CHIN	TY				(8)	/ /	/	/	/ /	8		
CLIENT NAM	ır	CLIENT	DDRESS T	TER UTILITIES LABOR	ATORY		///			/ /		/ /			RUSH TAT (SURCHARGE)	
CLIENT NAW	IC.	CLIENT	1.	3026 JUG ROAD, BLD(3 BK≖	/	' / /		<u>v</u> / /	/ /	/ /			[\$]		
		DUONE	DEL	RAY BEACH, FLORIDA	33446	/8 /.		\\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	/ /	/ /			/ /	8		
		PHONE	LE INFORMA	174		-/8 /	[3] \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\		//	′ /		/ /	\\$	DUE DATE:		
NUMBER	DATE	TIME		IDENTIFICATION								/ /		<i>-</i>	MARKS	N
1	4/23/03	1430	Sis9 ASRI). PO# 1		-		V				Z	17	ATO E	35643] `
2	11	1300	· Florida	an Aginter Mozin	oel	~		\vee				7	7		35670	\ F
3				(1	Amw-i)											
4																
5											1					
6																
7																
8																
9																
10																
SAMPLE COL	LECTED BY	ARE THESE S	AMPLES LISTED OR C	HARACTE	ERIST	IC HAZ	ARDOUS	WASTE	? 🗆 YE	ES 🗀 I	10		TOTA	L OF ALL	1	
Noel 1	Fleites		ARE THESE S.	AMPLES FROM □ PET	ROLEUM		RY CLE	EANER O	R O OTH	HER SIT	E?		54	CON	TAINERS	J
SEND REPOR	RT TO (PERSON)		RE	INOUISHED BY	DATE	16	TIME		RI	ECEIVED	BY		٠ <u>.</u>	DATE	TIME	
JAVA	NAVAN	1	1	h	1/2-1		11	2/	7/	/-	I		1	-02 -0	11:40	
SAMPLES CO			, V	LOW _	4/23/0		loge	<u> ال</u> ا	<u> </u>				$- _{\mathcal{O}}$	1703	16:40	\dashv
LOG NUMBE	CT 4°C	<u> </u>	3 //		6-232	03/	17:09	3 4 m	niche	ll n	resco	ado	ĥ.	23.03	1709	
		ı	5					6		,		<u>-</u>	1			
1 6005	06402	Ţ	J		1			0					- 1		1	

FAMW (Monitor Zone)

December 18, 2001

Palm Beach County Hillsboro ASR Well System - FAMW-1 Log Derived Water Quality

Emperically derived (R-H, m=2.0, a=1.0) Non-Corrected RILD

4805 N.W. 2nd Avenue Boca Raton, FL 33431 561-989-5225 edyne@bellsouth.net

CERTIFICATE OF ANALYSIS

Integrity Well & Pump 159 Wind Hill Lane Winchester, VA 22602

January 10, 2002 Report: 2001/12345

Sample No: 2001/12345- 1

Attention: Ken Conner

Project: Eastern Hillsboro ASR Well Monitoring Hillsboro Canal Boca Raton, FL

Collected by: Festus Underwood SAMPLE ID: FAMW

Collected on: 12/18/01 Received on: 12/19/01

PARAMETER	RESULT	METHOD	DL UNITS	DATE	ANALYST
Aluminum	BDL	200.7	0.10 mg/L	12/20/01	MHA
Arsenic	BDL	200.7	0.010 mg/L	12/20/01	МНА
Barium	0.013	200.7	0.010 mg/L	12/20/01	МНА
Beryllium	BDL	200.7	0.0030 mg/L	12/20/01	МНА
Cadmium	BDL	200.7	0.0040 mg/L	12/20/01	MHA
Chromium	BDL	200.7	0.010 mg/L	12/20/01	МНА
Copper	BDL	200.7	0.010 mg/L	12/20/01	МНА
Iron	0.10	200.7	0.010 mg/L	12/20/01	МНА
Lead	BDL	200.7	0.0050 mg/L	12/20/01	МНА
Manganese	BDL	200.7	0.010 mg/L	12/20/01	МНА
Nickel	0.095	200.7	0.010 mg/L	12/20/01	MHA
Potassium	46	200.7	0.50 mg/L	12/20/01	MHA
Selenium	BDL	200.7	0.010 mg/L	12/20/01	MHA
Silver	BDL	200.7	0.010 mg/L	12/20/01	MHA
Sodium	1300	200.7	100 mg/L	12/20/01	MHA
Thallium	BDL	200.7	0.0020 mg/L	12/20/01	MHA
Zinc	0.087	200.7	0.010 mg/L	12/20/01	МНА
Mercury	BDL	245.1	0.00020 mg/L	12/24/01	МНА

Analysis Performed in Accordance with E.P.A. Methods Laboratory Certification No. E86188

QA/QC Review BDL=Below Detection Limit DL=Detection Limit

4805 N.W. 2nd Avenue Boca Raton, FL 33431 561-989-5225 edyne@bellsouth.net

CERTIFICATE OF ANALYSIS

Integrity Well & Pump 159 Wind Hill Lane Winchester, VA 22602 January 10, 2002 Report: 2001/12345 Sample No: 2001/12345- 1

Attention: Ken Conner

Project: Eastern Hillsboro ASR Well Monitoring

Hillsboro Canal Boca Raton, FL

SAMPLE ID: FAMW

Collected by: Festus Underwood Collected on: 12/18/01

Received on: 12/19/01

RESULT	METHOD	DL UNITS	DATE	ANALYST
BDL	EPA 504.1	0.020 µg/L	12/21/01	СММ
BDL	EPA 504.1	0.020 μg/L	12/21/01	CMM
BDL	EPA 525.2	0.2 μg/L	12/23/01	SPH
BDL	EPA 525.2	1.0 <i>μ</i> g/L	12/23/01	SPH
BDL	EPA 525.2	1.0 <i>µ</i> g/L	12/23/01	SPH
BDL	EPA 531.1	0.50 μ g/L	12/22/01	E84129
BDL	EPA 531.1	0.50 μ g/L	12/22/01	E84129
BDL	EPA 547	10 <i>μ</i> g/L	12/26/01	E84129
BDL	EPA 548.1	20 <i>µ</i> g/L	01/03/02	E84129
BDL	EPA 549.2	1.0 <i>μ</i> g/L	01/02/02	E84129
BDL	6010B	0.0050 mg/L	12/20/01	MHA
140	310.1	1.0 mg/L	12/20/01	DNS
140	SM2320	0.01 mg/L	12/20/01	DNS
5.8	405.1	2.0 mg/L	12/20/01	JCB
0.51	SM4500CO2D	mg/L	12/20/01	DNS
2300	SM4500CL-B	20.0 mg/L	12/20/01	JCB
81	410.4	5.0 mg/L	12/26/01	JCB
BDL	110.2	5 CU	12/20/01	JMJ
	BDL BDL BDL BDL BDL BDL BDL BDL BDL 2300 81	BDL EPA 504.1 BDL EPA 504.1 BDL EPA 525.2 BDL EPA 525.2 BDL EPA 525.2 BDL EPA 531.1 BDL EPA 531.1 BDL EPA 547 BDL EPA 548.1 BDL EPA 549.2 BDL 6010B 140 310.1 140 SM2320 5.8 405.1 0.51 SM4500C02D 2300 SM4500CL-B 81 410.4	BDL EPA 504.1 0.020 μg/L BDL EPA 504.1 0.020 μg/L BDL EPA 525.2 0.2 μg/L BDL EPA 525.2 1.0 μg/L BDL EPA 525.2 1.0 μg/L BDL EPA 531.1 0.50 μg/L BDL EPA 531.1 0.50 μg/L BDL EPA 547 10 μg/L BDL EPA 548.1 20 μg/L BDL EPA 548.1 20 μg/L BDL EPA 549.2 1.0 μg/L BDL 6010B 0.0050 mg/L 140 310.1 1.0 mg/L 140 SM2320 0.01 mg/L 5.8 405.1 2.0 mg/L 0.51 SM4500C02D mg/L 2300 SM4500CL-B 20.0 mg/L	BDL EPA 504.1 0.020 μg/L 12/21/01 BDL EPA 504.1 0.020 μg/L 12/21/01 BDL EPA 525.2 0.2 μg/L 12/23/01 BDL EPA 525.2 1.0 μg/L 12/23/01 BDL EPA 525.2 1.0 μg/L 12/23/01 BDL EPA 531.1 0.50 μg/L 12/22/01 BDL EPA 531.1 0.50 μg/L 12/22/01 BDL EPA 531.1 0.50 μg/L 12/22/01 BDL EPA 547 10 μg/L 12/26/01 BDL EPA 548.1 20 μg/L 01/03/02 BDL EPA 549.2 1.0 μg/L 01/02/02 BDL 6010B 0.0050 mg/L 12/20/01 140 310.1 1.0 mg/L 12/20/01 140 SM2320 0.01 mg/L 12/20/01 5.8 405.1 2.0 mg/L 12/20/01 0.51 SM4500CO2D mg/L 12/20/01 2300 SM4500CL-B 20.0 mg/L 12/20/01

4805 N.W. 2nd Avenue Boca Raton, FL 33431 561-989-5225 edyne@bellsouth.net

CERTIFICATE OF ANALYSIS

Integrity Well & Pump 159 Wind Hill Lane Winchester, VA 22602

January 10, 2002 Report: 2001/12345

Sample No: 2001/12345- 1

Attention: Ken Conner

Project: Eastern Hillsboro ASR Well Monitoring Hillsboro Canal Boca Raton, FL

Collected by: Festus Underwood

SAMPLE ID: FAMW

Collected on: 12/18/01

Received on: 12/19/01

PARAMETER	RESULT	METHOD	DL UNITS	DATE	ANALYST
Specific Conductance	8200	120.1	µmhos/cm	12/21/01	DNS
Corrosivity, L.S.I.	0.5136	SM2330B	L.I.	12/26/01	DNS
Cyanide, Total	BDL	335.2	0.0040 mg/L	12/20/01	JCB
Fluoride	1.1	SM4500F-C	0.10 mg/L	12/21/01	DNS
Gross Alpha	853±93	900.0	1.0 pCi/L	01/07/02	E84088
Hardness, Calcium as CaCO3	320	SM2340B	5.0 mg/L	12/20/01	MHA
Hardness, Magnesium	490	SM2340B	5.0 mg/L	12/23/01	MHA
Hardness, Total	819	SM2340B	1 mg/L	12/20/01	MHA
Hydrogen Sulfide	0.87	9030/376.2	0.04 mg/L	12/21/01	DNS
Surfactants (as LAS, MW = 340)	0.14	425.1	0.010 mg/L	12/20/01	JMJ
Ammonia, as N	0.61	350.1	0.020 mg/L	12/26/01	JCB
Nitrite, as Nitrogen	BDL	353.2	0.020 mg/L	12/20/01	JCB
Nitrate, as Nitrogen	BDL	353.2	0.020 mg/L	12/20/01	JCB
Nitrate-Nitrite, as Nitrogen	BDL	353.2	0.020 mg/L	12/20/01	JCB
Odor	16	140.1	1 T.O.N.	12/19/01	JMJ
Orthophosphate, as P	BDL	365.1	0.010 mg/L	12/20/01	DNS
pH (Laboratory)	7.6	150.1	pH Units	12/20/01	JMJ
Radium 226	4.6±0.2	903.1	0.1 pCi/L	01/03/02	E84088

Analysis Performed in Accordance with E.P.A. Methods Laboratory Certification No. E86188

QA/QC Review BDL=Below Detection Limit DL=Detection Limit

4805 N.W. 2nd Avenue Boca Raton, FL 33431 561-989-5225 edyne@bellsouth.net

CERTIFICATE OF ANALYSIS

Integrity Well & Pump 159 Wind Hill Lane Winchester, VA 22602 January 10, 2002 Report: 2001/12345

Sample No: 2001/12345- 1

Attention: Ken Conner

Project: Eastern Hillsboro ASR Well Monitoring

Collected by: Festus Underwood

Hillsboro Canal Boca Raton, FL

SAMPLE ID: FAMW

Collected on: 12/18/01 Received on: 12/19/01

PARAMETER	RESULT	METHOD	DL UNITS	DATE	ANALYST
Radium 228	0.5±0.5	RA-05	0.5 pCi/L	01/04/02	E84088
Sulfate	1000	375.4	125.0 mg/L	12/20/01	JCB
Total Coliform by MMO-MUG	Present	SM9223	1 cfu/100 ml	12/19/02	JMJ
Total Dissolved Solids	4400	160.1	10 mg/L	12/24/01	DNS
Total Kjeldahl Nitrogen	1.4	351.2	0.10 mg/L	12/24/01	JCB
Organic Nitrogen	0.79	351-350	0.50 mg/L	12/26/01	JCB
Phosphorus, Total	BDL	365.4	0.010 mg/L	12/24/01	JCB
Turbidity	0.90	180.1	0.10 ntu	12/20/01	DNS

4805 N.W. 2nd Avenue Boca Raton, FL 33431 561-989-5225 edyne@bellsouth.net

CERTIFICATE OF ANALYSIS

Integrity Well & Pump 159 Wind Hill Lane Winchester, VA 22602

January 10, 2002 Report: 2001/12345

Sample No: 2001/12345- 1

Attention: Ken Conner

Project: Eastern Hillsboro ASR Well Monitoring

Hillsboro Canal Boca Raton, FL

Collected by: Festus Underwood

Collected on: 12/18/01

Received on: 12/19/01

SAMPLE ID: FAMW

Date of Analysis: 12/22/01 Date of Extraction: 12/20/01

508 GROUP I UNREGULATED ORGANIC CONTAMINANTS

PARAMETER	RESULT	DL UNITS	ANALYST	
Aldrin	BDL	0.10 μg/L	CMM	
Dieldrin	BDL	0.10 μg/L	CMM	

4805 N.W. 2nd Avenue Boca Raton, FL 33431 561-989-5225 edyne@bellsouth.net

CERTIFICATE OF ANALYSIS

Integrity Well & Pump 159 Wind Hill Lane Winchester, VA 22602

January 10, 2002 Report: 2001/12345

Sample No: 2001/12345- 1

Attention: Ken Conner

Project: Eastern Hillsboro ASR Well Monitoring

Hillsboro Canal Boca Raton, FL

Collected by: Festus Underwood

Collected on: 12/18/01 Received on: 12/19/01

SAMPLE ID: FAMW

Date of Analysis: 12/22/01 Date of Extraction: 12/20/01

508 ORGANOHALIDE PESTICIDES 62-550.310(2)(c) FAC

PARAMETER	RESULT	DL UNITS	ANALYST	
Chlordane	BDL	0.50 μg/L	СММ	
Endrin	BDL	$0.10 \mu \text{g/L}$	CMM	
Heptachlor	\mathtt{BDL}	0.10 µg/L	CMM	
Heptachlor epoxide	BDL	$0.10 \mu \text{g/L}$	CMM	
Hexachlorobenzene	BDL	0.10 µg/L	CMM	
Lindane	\mathtt{BDL}	$0.10 \mu \text{g/L}$	CMM	
Methoxychlor	BDL	0.20 μg/L	CMM	
Toxaphene	\mathtt{BDL}	$3.0 \mu \text{g/L}$	CMM	
PCB 1016	BDL	$0.50 \mu g/L$	CMM	
PCB-1221	BDL	$0.50 \mu \text{g/L}$	CMM	
PCB 1240	\mathtt{BDL}	0.50 μg/L	CMM	
PCB 1242	BDL	0.50 μg/L	· CMM	
PCB 1248	BDL	0.50 μg/L	CMM	
PCB 1254	BDL	0.50 μg/L	CMM	
PCB 1260	BDL	0.50 μg/L	CMM	

4805 N.W. 2nd Avenue Boca Raton, FL 33431 561-989-5225 edyne@bellsouth.net

CERTIFICATE OF ANALYSIS

Integrity Well & Pump 159 Wind Hill Lane Winchester, VA 22602 January 10, 2002 Report: 2001/12345

Sample No: 2001/12345- 1

Attention: Ken Conner

Project: Eastern Hillsboro ASR Well Monitoring

Hillsboro Canal Boca Raton, FL

Collected by: Festus Underwood

Collected on: 12/18/01

Received on: 12/19/01

Date of Analysis: 12/22/01 Date of Extraction: 12/20/01

SAMPLE ID: FAMW

508.1 CHLORINATED PESTICIDES (62-550 FAC)

PARAMETER	RESULT	DL UNITS	ANALYST	
Alachlor	BDL	0.10 μg/L	CMM	
Atrazine	\mathtt{BDL}	$3.0 \mu \text{g/L}$	CMM	
Hexachlorocyclopentadiene	\mathtt{BDL}	$0.10~\mu\mathrm{g/L}$	CMM	
Simazine	\mathtt{BDL}	$3.0 \mu g/L$	CMM	

4805 N.W. 2nd Avenue Boca Raton, FL 33431 561-989-5225 edyne@bellsouth.net

CERTIFICATE OF ANALYSIS

Integrity Well & Pump 159 Wind Hill Lane Winchester, VA 22602

January 10, 2002 Report: 2001/12345

Sample No: 2001/12345- 1

Attention: Ken Conner

Project: Eastern Hillsboro ASR Well Monitoring Hillsboro Canal Boca Raton, FL

Collected on: 12/18/01

Received on: 12/19/01

SAMPLE ID: FAMW

Date of Analysis: 12/24/01 Date of Extraction: 12/21/01

515.1 HERBICIDES (62-550 FAC)

Collected by: Festus Underwood

PARAMETER	RESULT	DL UNITS	ANALYST	
Dalapon	\mathtt{BDL}	0.50 μg/L	СММ	
Dinoseb	BDL	$0.50 \mu \mathrm{g/L}$	CMM	
Pentachlorophenol	\mathtt{BDL}	$0.50~\mu \mathrm{g/L}$	CMM	
Picloram	\mathtt{BDL}	$0.50~\mu g/L$	CMM	
2,4-D	\mathtt{BDL}	$0.50 \mu \text{g/L}$	CMM	
2,4,5-TP (Silvex)	\mathtt{BDL}	$0.10~\mu \mathrm{g/L}$	CMM	

4805 N.W. 2nd Avenue Boca Raton, FL 33431 561-989-5225 edyne@bellsouth.net

CERTIFICATE OF ANALYSIS

Integrity Well & Pump 159 Wind Hill Lane Winchester, VA 22602

January 10, 2002 Report: 2001/12345

Sample No: 2001/12345- 1

Attention: Ken Conner

Project: Eastern Hillsboro ASR Well Monitoring

Hillsboro Canal Boca Raton, FL

Collected by: Festus Underwood

Collected on: 12/18/01

Received on: 12/19/01

SAMPLE ID: FAMW

Date of Analysis: 12/20/01

524.2 GROUP II UNREGULATED ORGANIC CONTAMINANTS

PARAMETER	RESULT	DL UNITS	ANALYST	
Bromobenzene	BDL	1.0 μg/L	EMH	
Bromodichloromethane	\mathtt{BDL}	$1.0 \mu \mathrm{g/L}$	EMH	
Bromoform	\mathtt{BDL}	$1.0 \mu \mathrm{g/L}$	EMH	
Bromomethane	\mathtt{BDL}	$1.0 \mu \mathrm{g/L}$	EMH	
Chloroethane	\mathtt{BDL}	$1.0~\mu \mathrm{g/L}$	EMH	
Chloroform	\mathtt{BDL}	$1.0~\mu\mathrm{g/L}$	EMH	
Chloromethane	\mathtt{BDL}	$1.0 \mu \mathrm{g/L}$	EMH	
o-Chlorotoluene	\mathtt{BDL}	$1.0 \mu \mathrm{g/L}$	EMH	
p-Chlorotoluene	\mathtt{BDL}	$1.0 \mu g/L$	EMH	
Dibromochloromethane	\mathtt{BDL}	$1.0~\mu\mathrm{g/L}$	EMH	
Dibromomethane	\mathtt{BDL}	$1.0 \mu \mathrm{g/L}$	EMH	
m-Dichlorobenzene	\mathtt{BDL}	$1.0 \mu \mathrm{g/L}$	EMH	
Dichlorodifluoromethane	\mathtt{BDL}	$1.0 \mu g/L$	EMH	
1,1-Dichloroethane	\mathtt{BDL}	$1.0 \mu \text{g/L}$	EMH	
2,2-Dichloropropane	BDL	$1.0 \mu g/L$	EMH	
1,1-Dichloropropylene	\mathtt{BDL}	$1.0 \mu g/L$	EMH	
1,3-Dichloropropane	\mathtt{BDL}	$1.0 \mu g/L$	EMH	
1,3-Dichloropropene	\mathtt{BDL}	$1.0~\mu\mathrm{g/L}$	EMH	
Methyl tert-butyl-ether (MTBE)	\mathtt{BDL}	$1.0~\mu\mathrm{g/L}$	EMH	
1,1,1,2-Tetrachloroethane	\mathtt{BDL}	$1.0 \mu g/L$	EMH	
1,1,2,2-Tetrachloroethane	\mathtt{BDL}	$1.0 \mu g/L$	EMH	
Trichlorofluoromethane	BDL	$1.0 \mu \text{g/L}$	EMH	
1,2,3-Trichloropropane	\mathtt{BDL}	$1.0 \mu g/L$	EMH	

4805 N.W. 2nd Avenue Boca Raton, FL 33431 561-989-5225 edyne@bellsouth.net

CERTIFICATE OF ANALYSIS

Integrity Well & Pump 159 Wind Hill Lane Winchester, VA 22602

January 10, 2002 Report: 2001/12345 Sample No: 2001/12345- 1

Attention: Ken Conner

Project: Eastern Hillsboro ASR Well Monitoring

Hillsboro Canal Boca Raton, FL

Collected by: Festus Underwood

Collected on: 12/18/01 Received on: 12/19/01

SAMPLE ID: FAMW

Date of Analysis: 12/20/01

524.2 TRIHALOMETHANES (THM'S)

PARAMETER	RESULT	DL UNITS	ANALYST	
Bromodichloromethane Bromoform Chloroform Dibromochloromethane Total Trihalomethanes	BDL BDL BDL BDL BDL	0.5 μg/L 0.5 μg/L 0.5 μg/L 0.5 μg/L μg/L	EMH EMH EMH EMH EMH	

4805 N.W. 2nd Avenue Boca Raton, FL 33431 561-989-5225 edyne@bellsouth.net

CERTIFICATE OF ANALYSIS

Integrity Well & Pump 159 Wind Hill Lane Winchester, VA 22602

January 10, 2002 Report: 2001/12345

Sample No: 2001/12345- 1

Attention: Ken Conner

Project: Eastern Hillsboro ASR Well Monitoring

Hillsboro Canal Boca Raton, FL

Collected by: Festus Underwood

Collected on: 12/18/01

Received on: 12/19/01

SAMPLE ID: FAMW

Date of Analysis: 12/20/01

524.2 VOLATILE ORGANIC COMPOUNDS (62-550)

PARAMETER	RESULT	DL UNITS	ANALYST	
Benzene	BDL	1.0 μg/L	EMH	_
Carbon tetrachloride	\mathtt{BDL}	$1.0 \mu \text{g/L}$	EMH	
Chlorobenzene	\mathtt{BDL}	$1.0 \mu g/L$	EMH	
1,2-Dichlorobenzene	\mathtt{BDL}	$1.0 \mu g/L$	EMH	
1,4-Dichlorobenzene	\mathtt{BDL}	$1.0 \mu \text{g/L}$	EMH	
1,2-Dichloroethane	\mathtt{BDL}	1.0 μg/L	EMH	
1,1-Dichloroethene	\mathtt{BDL}	$1.0 \mu g/L$	EMH	
cis-1,2-Dichloroethene	\mathtt{BDL}	1.0 μg/L	EMH	
trans-1,2-Dichloroethene	\mathtt{BDL}	$1.0 \mu g/L$	EMH	
Dichloromethane	BDL	1.0 μg/L	EMH	
1,2-Dichloropropane	\mathtt{BDL}	$1.0 \mu g/L$	EMH	
Ethylbenzene	BDL	$1.0 \mu \text{g/L}$	EMH	
Styrene	BDL	$1.0 \mu g/L$	EMH	
Tetrachloroethylene	\mathtt{BDL}	$1.0 \mu g/L$	EMH	
Toluene	\mathtt{BDL}	$1.0 \mu g/L$	EMH	
1,2,4-Trichlorobenzene	BDL	$1.0 \mu g/L$	EMH	
1,1,1-Trichloroethane	\mathtt{BDL}	1.0 μg/L	EMH	
1,1,2-Trichloroethane	\mathtt{BDL}	$1.0 \mu g/L$	EMH	
Trichloroethylene	BDL	$1.0 \mu \text{g/L}$	EMH	
Vinyl chloride	BDL	1.0 μg/L	EMH	
Xylenes, Total	BDL	$1.0 \mu g/L$	EMH	

4805 N.W. 2nd Avenue Boca Raton, FL 33431 561-989-5225 edyne@bellsouth.net

CERTIFICATE OF ANALYSIS

Integrity Well & Pump 159 Wind Hill Lane Winchester, VA 22602

January 10, 2002 Report: 2001/12345

Sample No: 2001/12345- 1

Attention: Ken Conner

Project: Eastern Hillsboro ASR Well Monitoring

Hillsboro Canal Boca Raton, FL

Collected by: Festus Underwood

Collected on: 12/18/01 Received on: 12/19/01

Date of Analysis: 12/22/01

SAMPLE ID: FAMW

531.1 GROUP I UNREGULATED ORGANIC PESTICIDES

PARAMETER	RESULT	DL UNITS	ANALYST	
Aldicarb	BDL	0.50 μg/L	E84129	
Aldicarb sulfone	\mathtt{BDL}	$0.50 \mu \text{g/L}$	E84129	
Aldicarb sulfoxide	\mathtt{BDL}	$0.50 \mu g/L$	E84129	
Carbaryl	\mathtt{BDL}	$0.50~\mu \text{g/L}$	E84129	
3-Hydroxycarbofuran	\mathtt{BDL}	$0.50~\mu \text{g/L}$	E84129	
Methomyl	\mathtt{BDL}	$0.50 \mu g/L$	E84129	

4805 N.W. 2nd Avenue Boca Raton, FL 33431 561-989-5225 edyne@bellsouth.net

CERTIFICATE OF ANALYSIS

Integrity Well & Pump 159 Wind Hill Lane Winchester, VA 22602

January 10, 2002 Report: 2001/12345

Sample No: 2001/12345- 1

Attention: Ken Conner

Project: Eastern Hillsboro ASR Well Monitoring

Hillsboro Canal Boca Raton, FL

SAMPLE ID: FAMW

Collected on: 12/18/01 Received on: 12/19/01

Date of Analysis: 12/21/01 Date of Extraction: 12/20/01

625 GROUP III UNREGULATED ORGANIC CONTAMINANTS

Collected by: Festus Underwood

PARAMETER	RESULT	DL UNITS	ANALYST	
Butyl benzyl phthalate	BDL	1.0 μg/L	SPH	
2-Chlorophenol	\mathtt{BDL}	$1.0~\mu \mathrm{g/L}$	SPH	
Di-n-butylphthalate	\mathtt{BDL}	$1.0 \mu g/L$	SPH	
Diethylphthalate	\mathtt{BDL}	$1.0 \mu g/L$	SPH	
Dimethylphthalate	\mathtt{BDL}	$1.0 \mu \text{g/L}$	SPH	
Di-n-octyl phthalate	BDL	$1.0 \mu \text{g/L}$	SPH	
2,4-Dinitrotoluene	\mathtt{BDL}	$1.0 \mu g/L$	SPH	
Isophorone	\mathtt{BDL}	$1.0 \mu \text{g/L}$	SPH	
2-Methyl-4,6-dinitrophenol	\mathtt{BDL}	$1.0 \mu \text{g/L}$	SPH	
Phenol	\mathtt{BDL}	$1.0 \mu \text{g/L}$	SPH	
2,4,6-Trichlorophenol	\mathtt{BDL}	$1.0 \mu g/L$	SPH	

4805 N.W. 2nd Avenue Boca Raton, FL 33431 561-989-5225 edyne@bellsouth.net

CERTIFICATE OF ANALYSIS

Integrity Well & Pump 159 Wind Hill Lane Winchester, VA 22602

January 10, 2002 Report: 2001/12345

Sample No: 2001/12345- 1

Attention: Ken Conner

Project: Eastern Hillsboro ASR Well Monitoring

Hillsboro Canal Boca Raton, FL

Collected on: 12/18/01

Received on: 12/19/01

SAMPLE ID: FAMW

Date of Analysis: 12/21/01 Date of Extraction: 12/20/01

625 MUNICIPAL WASTEWATER MINIMUM CRITERIA

Collected by: Festus Underwood

PARAMETER	RESULT	DL UNITS	ANALYST
Anthracene	BDL	1.0 µg/L	SPH
Naphthalene	BDL	1.0 µg/L	SPH
Phenanthrene	BDL	1.0 µg/L	SPH

Analysis contained herein conform to EPA, Standard Methods and DEP approved methods per Envirodyne Comprehensive Quality Assurance Plan No. 890041. Subcontracted analyses are denoted by certification number in the analyst column. All relevant quality assurance samples were within specified control limits unless otherwise stated. Uncertainties for test results are available upon request, Envirodyne certifies its test results meet all requirements of the NELAC Standards, where applicable. For questions, please call the project manager at the number listed above.

This is the last page of the report. See bottom of page for total pages.

Project Manager

Quality Assurance Director

FAMW (Monitor Zone)

June 23, 2003

Palm Beach County Water Utilities Department

Water \ Wastewater Testing Laborato

13026 Jog Rd., Blog. K Delray Beach, FL 33446 (561) 638-5000

Report Date: 8-25-2003 Report ID: 388 -2003

System Name: Palm Beach County Water Utility

System 9

LD. 4501332

Address: 22438 S.W. 7th Street

Boca Raton, FL, 33433

Phone: (561) 470-9788

Type (check one):

(X) Community

() Nontransient Noncommunity

(-) Noncommunity

SAMPLE INFORMATION

Sample Date:

6/23/2003

Sample Time: 1:00;00 PM

Sample Location: FAMW-1(E.Hillsboro Canal)

Sampler Name and Phone #;

(561) 638-5000

Laboratory Assistant \ Tech.

Check Type(s

Sampler's Signature

() Distribution

() Recheck of MCL

() Resample of Lab Invalidated Sample(s)

() Clearance

() Thm Max Res Time

() Plant Tap

() Distrib entry pt

(X) Raw

() Composite of Multiple Sites

LABORATORY CERTIFICATION INFORMATION

Palm Beach County Water Utilities Department Lab Name:

Address: 13026 Jog Road, Bldg. K Delray Beach, FL 33446

(561) 638-5000 Phone #:

DOH#: E56090 Expiration Date: 6/30/2004

ANALYSIS INFORMATION SAMPLE NUMBER A108566

Date Sample(s) Received: 6/23/2003

() Nitrate Only

() All 13

(X) Partial

Group(s) Analyzed Results attached for compliance with 62-550, F.A.C.:

() Nitrite Only

Inorganics-Volatile Organics-(X) All 17 (X) All 21 () Partial () Partial Group I Group II Unregulateds-

Unregulateds-(X) All 23 () Partial

Secondaries-

() Asbestos Only

(X) All 14 () Partial Group III Unregulateds-

(X) All 11 () Partial (X) Trihalomethanes

Pesticides / PCBs () All 30

(X) Partial

Radiochemicals-

(X) Single Sample

() Qtrly Composite

Palm Beach County Water Utilities Department

Water \ Wastewater Testing Laboratory

System 9

WATER QUALITY ANALYSIS

Sample Number: Al08566

Sample Location: FAMW-1(E.Hillsboro Canal)

Analysis	Analysis Result(mg/L)	Qual.	Analytical Method	Det. Lt. (MDL)	Analysis Date	Analyst
Turbidity	0.60		SM 2130-B	0.05	6/23/2003	NF/RMS
Temp	24.2		SM 2550-B	0.1	6/23/2003	NF/RMS
Conduct.	7690		SM 2510-B	0.5	6/23/2003	NF/RMS
рН	7.79		EPA 150.1	0.01	6/23/2003	NF/RMS
Dissolved Oxygen	1.12		EPA 360.1	0.1	6/23/2003	NF/RMS

CERTIFICATE OF ANALYSIS

Palm Beach County Water Utilities Laboratory 13026 Jog Road Bldg K Delray Beach, FL 33446

Attention: Jaya Navani

July 15, 2003 Report: 2003/06404 Sample No: 2003/06404- 2

Project: System 9 WTP ASR Project

22438 SW 7th Street Boca Raton, FL

SAMPLE ID: FAMW-1 AI08566 Collected by: Ricky Sadarangani
Noel Fleites Collected on: 06/23/03
Received on: 06/23/03

	Noel Fleites					
PARAMETER	RESULT	METHOD	DL UN	ITS	DATE	ANALYST
Aluminum	1.1	200.7	0.10 m	ng/L	06/27/03	KYT
Arsenic	υ	200.7	0.010 m	ng/L	06/24/03	APR
Barium	0.031	200.7	0.010 m	ng/L	06/24/03	APR
Beryllium	υ	200.7	0.0030 m	ng/L	06/24/03	APR
Cadmium	υ	200.7	0.0040 m	ng/L	06/24/03	APR
Chromium	υ	200.7	0.010 m	ng/L	06/24/03	APR
Copper	υ	200.7	0.010 m	ng/L	06/24/03	APR
Iron	1.1	200.7	0.010 m	ng/L	06/27/03	KYT
Manganese	υ	200.7	0.010 m	ng/L	06/24/03	APR
Nickel	υ	200.7	0.010 m	ng/L	06/24/03	APR
Silver	υ	200.7	0.010 m	ng/L	06/24/03	APR
Sodium	1300	200.7	100 m	ng/L	07/02/03	KYT
Zinc	0.015	200.7	0.010 n	ng/L	06/24/03	APR
Antimony	υ	200.8	0.0010 n	ng/L	07/01/03	APR
Lead	υ	200.8	0.00020 n	ng/L	07/01/03	APR
Selenium	0.012	200.8	0.0010 n	ng/L	07/01/03	APR
Thallium	σ	200.8	0.00030 n	ng/L	07/01/03	APR
Mercury	υ	245.1	0.00003 n	ng/L	06/24/03	KYT

Analysis Performed in Accordance with E.P.A. Methods Laboratory Certification No. E86188

QA/QC Review
U = Analyte Not Detected
DL = Detection Limit

4805 N.W. 2nd Avenue Boca Raton, FL 33431 561-989-5225

CERTIFICATE OF ANALYSIS

Palm Beach County Water Utilities Laboratory 13026 Jog Road Bldg K Delray Beach, FL 33446

July 15, 2003 Report: 2003/06404

USample No: 2003/06404- 2

Attention: Jaya Navani Project: System 9 WTP ASR Project

22438 SW 7th Street Boca Raton, FL

SAMPLE ID: FAMW-1 AI08566					ed on: 06/23/03 ed on: 06/23/03
PARAMETER	RESULT	METHOD	DL UNITS	DATE	ANALYST
Dibromochloropropane (DBCP)	υ	504.1	0.020 μg/L	06/27/03	СММ
1,2-Dibromoethane (EDB)	υ	504.1	0.020 <i>μ</i> g/L	06/27/03	СММ
Benzo(a)pyrene	υ	525.2	0.20 <i>μ</i> g/L	06/25/03	SPH
Di(2-ethylhexyl)adipate	υ	525.2	1.0 <i>μ</i> g/L	06/25/03	SPH
Di(2-ethylhexyl)phthalate	υ	525.2	1.0 <i>μ</i> g/L	06/25/03	SPH
Carbofuran	υ	531.1	1.0 <i>μ</i> g/L	06/24/03	MLD
Oxamyl (Vydate)	υ	531.1	1.0 <i>μ</i> g/L	06/24/03	MLD
Glyphosate	υ	547	40 μg/L	06/27/03	E86515
Endothall	υ	548.1	50 <i>μ</i> g/L	07/02/03	E86515
Diquat	U	549	1.44 <i>μ</i> g/L	07/08/03	E86515
Biochemical Oxygen Demand	46	405.1	2.0 mg/L	06/23/03	JGT
Chloride	2400	SM4500CL-I	B 20 mg/L	06/24/03	DNS
Chemical Oxygen Demand	160	410.4	5.0 mg/L	06/24/03	DNS
Color	U	110.2	5 CU	06/24/03	JGT
Specific Conductance	6800	120.1	µmhos/cm	06/25/03	JNM
Cyanide, Total	υ	335.4	0.0040 mg/L	06/26/03	JNM
Fluoride	0.84	SM4500F-0	0.10 mg/L	06/24/03	JMJ
Gross Alpha	1±3 U	900.0	1.0 pCi/L	06/30/03	E84088
Surfactants (as LAS, MW = 340)	0.22	425.1	0.010 mg/L	06/24/03	JGT 、

Analysis Performed in Accordance with E.P.A. Methods

Laboratory Certification No. E86188

QA/QC Review
U=Analyte Not Detected
DL=Detection Limit

4805 N.W. 2nd Avenue Boca Raton, FL 33431 561-989-5225

CERTIFICATE OF ANALYSIS

Palm Beach County Water Utilities Laboratory 13026 Jog Road Bldg K Delray Beach, FL 33446 July 15, 2003 Report: 2003/06404 Sample No: 2003/06404- 2

Attention: Java Navani

Project: System 9 WTP ASR Project
22438 SW 7th Street Boca Raton, FL

Collected on: 06/23/03 SAMPLE ID: FAMW-1 AI08566 Received on: 06/23/03 Collected by: Ricky Sadarangani Noel Fleites PARAMETER RESULT METHOD DLUNITS DATE ANALYST Ammonia, as N 0.89 350.1 0.020 mg/L 06/25/03 JGT Nitrite, as Nitrogen U 353.2 0.020 mg/L 06/25/03 JGT Nitrate, as Nitrogen U 353.2 0.020 mg/L 06/25/03 **JGT** Nitrate-Nitrite, as Nitrogen U 353.2 0.020 mg/L 06/25/03 JGT Odor 400 SM2150B 1 T.O.N. 06/24/03 **JGT** pH (Laboratory) 7.6 150.1 pH Units 06/24/03 MM Radium 226 4.1 ± 0.3 903.1 0.1 pCi/L 07/08/03 E84088 Radium 228 0.5±0.5 U **RA-05** 0.5 pCi/L 07/08/03 E84088 Sulfate 510 375.4 100 mg/L 06/24/03 JNM Total Coliform Bacteria <1 SM9222B 1 cfu/100 ml 06/23/03 JGT Total Coliform Date & Time Sampled: 06/23/03 13:00 Total Coliform Date & Time Analyzed: 06/23/03 17:37 **Total Dissolved Solids** 5000 160.1 10 mg/L 06/27/03 DNS Total Kjeldahl Nitrogen 1.5 351.2 0.10 mg/L06/30/03 JMJ Organic Nitrogen 0.61 351-350 0.50 mg/L 06/30/03 JMJ Phosphorus, Total 0.016 365.4 0.010 mg/L 06/30/03 JMJ

4805 N.W. 2nd Avenue Boca Raton, FL 33431 561-989-5225

CERTIFICATE OF ANALYSIS

Palm Beach County Water Utilities Laboratory 13026 Jog Road Bldg K Delray Beach, FL 33446 July 15, 2003 Report: 2003/06404 Sample No: 2003/06404- 2

Attention: Jaya Navani

Project: System 9 WTP ASR Project 22438 SW 7th Street Boca Raton, FL

Collected on: 06/23/03

Descined on: 06/23/03

SAMPLE ID: FAMW-1 AI08566

Collected by: Ricky Sadarangani Noel Fleites Received on: 06/23/03

Date of Analysis: 06/28/03 Date of Extraction: 06/25/03

508 GROUP I UNREGULATED ORGANIC CONTAMINANTS

PARAMETER	RESULT	DL UNITS	ANALYST
Aldrin	U	0.10 μg/L	CMM
Dieldrin	U	0.10 μg/L	CMM

4805 N.W. 2nd Avenue Boca Raton, FL 33431 561-989-5225

CERTIFICATE OF ANALYSIS

Palm Beach County Water Utilities Laboratory 13026 Jog Road Bldg K Delray Beach, FL 33446

July 15, 2003 Report: 2003/06404

Sample No: 2003/06404- 2

Attention: Jaya Navani

Project: System 9 WTP ASR Project 22438 SW 7th Street Boca Raton, FL

Collected on: 06/23/03

SAMPLE ID: FAMW-1 AI08566

Collected by: Ricky Sadarangani Noel Fleites

Received on: 06/23/03

Date of Analysis: Date of Extraction: 06/25/03

06/28/03

508 ORGANOHALIDE PESTICIDES 62-550.310(2)(c) FAC

PARAMETER	RESULT	DL UNITS	ANALYST	
Chlordane	Ū	0.50 μg/L	СММ	
Endrin	υ	$0.10~\mu \mathrm{g/L}$	CMM	
Heptachlor	ប	$0.10 \ \mu g/L$	CMM	
Heptachlor epoxide	ΰ	$0.10~\mu \mathrm{g/L}$	CMM	
Hexachlorobenzene	ប	$0.10~\mu\mathrm{g/L}$	CMM	
Lindane	υ	$0.10 \mu \text{g/L}$	CMM	
Methoxychlor	ΰ	$0.20 \mu \text{g/L}$	CMM	
Toxaphene	ប	$1.0 \mu \text{g/L}$	CMM	
PCB 1016	υ	$0.20~\mu\mathrm{g/L}$	CMM	
PCB 1221	υ	$0.20 \mu \text{g/L}$	CMM	
PCB 1240	υ	$0.20~\mu\mathrm{g/L}$	CMM	
PCB 1242	υ	$0.20~\mu\mathrm{g/L}$	CMM	
PCB 1248	υ	$0.20 \mu \text{g/L}$	CMM	
PCB 1254	υ	$0.20 \mu \text{g/L}$	CMM	
PCB 1260	υ	$0.20~\mu\mathrm{g/L}$	CMM	

4805 N.W. 2nd Avenue Boca Raton, FL 33431 561-989-5225

CERTIFICATE OF ANALYSIS

Palm Beach County Water Utilities Laboratory 13026 Jog Road Bldg K

Delray Beach, FL 33446

Date of Analysis:

Attention: Jaya Navani

July 15, 2003 Report: 2003/06404 Sample No: 2003/06404- 2

Project: System 9 WTP ASR Project

22438 SW 7th Street Boca Raton, FL

Collected on: 06/23/03

Received on: 06/23/03

SAMPLE ID: FAMW-1 AI08566

06/29/03

Date of Extraction: 06/25/03

508.1 CHLORINATED PESTICIDES (62-550 FAC)

Collected by: Ricky Sadarangani Noel Fleites

PARAMETER	RESULT	DL UNITS	ANALYST	
Alachlor	υ	0.10 μg/L	СММ	
Atrazine	U	$1.0 \mu g/L$	CMM	
Hexachlorocyclopentadiene	U	$0.10 \mu \text{g/L}$	CMM	
Simazine	U	$1.0~\mu\mathrm{g/L}$	CMM	

4805 N.W. 2nd Avenue Boca Raton, FL 33431 561-989-5225

CERTIFICATE OF ANALYSIS

Palm Beach County Water Utilities Laboratory 13026 Jog Road Bldg K Delray Beach, FL 33446

July 15, 2003 Report: 2003/06404

Sample No: 2003/06404- 2

Attention: Jaya Navani

Project: System 9 WTP ASR Project 22438 SW 7th Street Boca Raton, FL

Collected on: 06/23/03

SAMPLE ID: FAMW-1 AI08566

Collected by: Ricky Sadarangani Noel Fleites

Received on: 06/23/03

Date of Analysis: Date of Extraction: 06/27/03

06/30/03

515.1 HERBICIDES (62-550 FAC)

PARAMETER	RESULT	DL UNITS	ANALYST	
Dalapon	U	0.50 μg/L	CMM	
Dinoseb	υ	$0.50 \mu \text{g/L}$	CMM	
Pentachlorophenol	υ	$0.50 \mu \mathrm{g/L}$	CMM	
Picloram	υ	$0.50 \mu \mathrm{g/L}$	CMM	
2,4-D	υ	$0.50 \mu \mathrm{g/L}$	CMM	
2,4,5-TP (Silvex)	Ŭ	$0.10~\mu\mathrm{g/L}$	CMM	

4805 N.W. 2nd Avenue Boca Raton, FL 33431 561-989-5225

CERTIFICATE OF ANALYSIS

Palm Beach County Water Utilities Laboratory 13026 Jog Road Bldg K Delray Beach, FL 33446

SAMPLE ID: FAMW-1 AI08566

July 15, 2003 Report: 2003/06404 Sample No: 2003/06404- 2

Attention: Jaya Navani

Project: System 9 WTP ASR Project
22438 SW 7th Street Boca Raton, FL

ZZ458 SW 7th Street Boca Raton, FL

Collected on: 06/23/03 Collected by: Ricky Sadarangani Received on: 06/23/03

Date of Analysis: 06/25/03

524.2 GROUP II UNREGULATED ORGANIC CONTAMINANTS

Noel Fleites

PARAMETER	RESULT	DL UNITS	ANALYST	
Bromobenzene	υ	$0.5~\mu\mathrm{g/L}$	JCB	
Bromodichloromethane	U	$0.5 \mu \mathrm{g/L}$	JCB	
Bromoform	U	$0.5 \mu \text{g/L}$	JCB	
Bromomethane	U	$0.5 \mu \mathrm{g/L}$	JCB	
Chloroethane	U	$0.5 \mu \text{g/L}$	JCB	
Chloroform	ΰ	$0.5 \mu \text{g/L}$	JCB	
Chloromethane	U	$0.5 \mu \text{g/L}$	JCB	
o-Chlorotoluene	ΰ	$0.5 \mu g/L$	JCB	
p-Chlorotoluene	U	$0.5~\mu \mathrm{g/L}$	JCB	
Dibromochloromethane	υ	$0.5~\mu \mathrm{g/L}$	JCB	
Dibromomethane	Ū	$0.5~\mu\mathrm{g/L}$	JCB	
m-Dichlorobenzene	Ū	$0.5 \mu g/L$	JCB	
Dichlorodifluoromethane	U	$0.5 \mu g/L$	JCB	
1,1-Dichloroethane	U	$0.5 \mu g/L$	JCB	
2,2-Dichloropropane	บ	$0.5 \mu g/L$	JCB	
1,1-Dichloropropylene	Ū	$0.5 \mu g/L$	JCB	
1,3-Dichloropropane	U	$0.5 \mu g/L$	JCB	
1,3-Dichloropropene	U	$0.5 \mu g/L$	JCB	
Methyl tert-butyl-ether (MTBE)	U	$0.5 \mu g/L$	JCB	
1,1,1,2-Tetrachloroethane	U	$0.5 \mu g/L$	JCB	
1,1,2,2-Tetrachloroethane	U	$0.5 \mu \text{g/L}$	JCB	
Trichlorofluoromethane	υ	$0.5 \mu g/L$	JCB	
1,2,3-Trichloropropane	ΰ	$0.5 \mu g/L$	JCB	

4805 N.W. 2nd Avenue Boca Raton, FL 33431 *561-989-5225*

CERTIFICATE OF ANALYSIS

Palm Beach County Water Utilities Laboratory 13026 Jog Road Bldg K

Delray Beach, FL 33446

July 15, 2003 Report: 2003/06404

Sample No: 2003/06404- 2

Attention: Jaya Navani Project: System 9 WTP ASR Project

22438 SW 7th Street Boca Raton, FL

Collected on: 06/23/03

Received on: 06/23/03

SAMPLE ID: FAMW-1 AI08566

Date of Analysis: 06/25/03

524.2 TRIHALOMETHANES (THM'S)

Collected by: Ricky Sadarangani Noel Fleites

PARAMETER	RESULT	DL UNITS	ANALYST	
Bromodichloromethane	υ	$0.5~\mu \mathrm{g/L}$	JCB	
Bromoform	U	$0.5 \mu g/L$	JCB	
Chloroform	υ	$0.5 \mu \text{g/L}$	JCB	
Dibromochloromethane	Ū	$0.5 \mu g/L$	JCB	
Total Trihalomethanes	U	$0.5 \mu g/L$	JCB	

Palm Beach County Water Utilities Laboratory 13026 Jog Road Bldg K Delray Beach, FL 33446

SAMPLE ID: FAMW-1 AI08566

July 15, 2003 Report: 2003/06404 Sample No: 2003/06404- 2

Project: System 9 WTP ASR Project

22438 SW 7th Street Boca Raton, FL

Collected on: 06/23/03

Collected by: Ricky Sadarangani Noel Fleites

Received on: 06/23/03

Date of Analysis: 06/25/03

Attention: Jaya Navani

524.2 VOLATILE ORGANIC COMPOUNDS (62-550)

PARAMETER	RESULT	DL UNITS	ANALYST	
Benzene	Ū	0.5 μg/L	JCB	
Carbon tetrachloride	U	$0.5 \mu g/L$	JCB	
Chlorobenzene	U	$0.5 \mu g/L$	JCB	
1,2-Dichlorobenzene	U	$0.5 \mu g/L$	JCB	
1,4-Dichlorobenzene	U	$0.5 \mu g/L$	JCB	
1,2-Dichloroethane	υ	$0.5 \mu g/L$	JCB	
1,1-Dichloroethene	ΰ	$0.5 \mu g/L$	JCB	
cis-1,2-Dichloroethene	U	$0.5 \mu g/L$	JCB	
trans-1,2-Dichloroethene	ΰ	$0.5 \mu g/L$	JCB	
Dichloromethane	ΰ	$0.5 \mu g/L$	JCB	
1,2-Dichloropropane	Ū	$0.5 \mu g/L$	JCB	
Ethylbenzene	ΰ	$0.5~\mu\mathrm{g/L}$	JCB	
Styrene	υ	$0.5~\mu\mathrm{g/L}$	JCB	
Tetrachloroethylene	Ū	$0.5 \mu g/L$	JCB	
Toluene	σ	$0.5 \mu g/L$	JCB	
1,2,4-Trichlorobenzene	σ	$0.5 \mu g/L$	JCB	
1,1,1-Trichloroethane	U	$0.5 \mu g/L$	JCB	
1,1,2-Trichloroethane	ΰ	$0.5~\mu\mathrm{g/L}$	JCB	
Trichloroethylene	ΰ	$0.5 \mu g/L$	JCB	
Vinyl chloride	ΰ	$0.5~\mu\mathrm{g/L}$	JCB	
Xylenes, Total	U	$0.5 \mu g/L$	JCB	

4805 N.W. 2nd Avenue Boca Raton, FL 33431 561-989-5225

CERTIFICATE OF ANALYSIS

Palm Beach County Water Utilities Laboratory

13026 Jog Road Bldg K Delray Beach, FL 33446

July 15, 2003 Report: 2003/06404

Sample No: 2003/06404- 2

Attention: Jaya Navani Project: System 9 WTP ASR Project

22438 SW 7th Street Boca Raton, FL

Collected on: 06/23/03

Received on: 06/23/03

SAMPLE ID: FAMW-1 AI08566

Collected by: Ricky Sadarangani

Noel Fleites

Date of Analysis: 06/24/03

531.1 GROUP I UNREGULATED ORGANIC PESTICIDES

PARAMETER	RESULT	DL UNITS	ANALYST	
Aldicarb	U	1.0 μg/L	MLD	
Aldicarb sulfone	U	$1.0 \mu \mathrm{g/L}$	MLD	
Aldicarb sulfoxide	U	$1.0 \mu g/L$	MLD	
Carbaryl	U	$1.0 \mu \text{g/L}$	MLD	
3-Hydroxycarbofuran	U	$1.0 \mu g/L$	MLD	
Methomyl	U	$1.0 \mu \text{g/L}$	MLD	

Palm Beach County Water Utilities Laboratory 13026 Jog Road Bldg K Delray Beach, FL 33446

July 15, 2003 Report: 2003/06404 Sample No: 2003/06404- 2

Attention: Jaya Navani Project: System 9 WTP ASR Project

22438 SW 7th Street Boca Raton, FL

Collected on: 06/23/03

Received on: 06/23/03

SAMPLE ID: FAMW-1 AI08566

Collected by: Ricky Sadarangani

Noel Fleites

Date of Analysis: 06/29/03 Date of Extraction: 06/27/03

625 GROUP III UNREGULATED ORGANIC CONTAMINANTS

PARAMETER	RESULT	DL UNITS	ANALYST	
Butyl benzyl phthalate	U	1.0 μg/L	SPH	
2-Chlorophenol	U	$1.0 \mu g/L$	SPH	
Di-n-butylphthalate	U	$1.0 \mu \mathrm{g/L}$	SPH	
Diethylphthalate	U	$1.0 \mu g/L$	SPH	
Dimethylphthalate	U	$1.0 \mu \text{g/L}$	SPH	
Di-n-octyl phthalate	U	$1.0 \mu \text{g/L}$	SPH	
2,4-Dinitrotoluene	U	$1.0 \mu g/L$	SPH	
Isophorone	U	$1.0 \mu g/L$	SPH	
2-Methyl-4,6-dinitrophenol	U	$1.0 \mu g/L$	SPH	
Phenol	U	$1.0 \mu g/L$	SPH	
2,4,6-Trichlorophenol	υ	$1.0 \mu g/L$	SPH	

4805 N.W. 2nd Avenue Boca Raton, FL 33431 561-989-5225

CERTIFICATE OF ANALYSIS

Palm Beach County Water Utilities Laboratory 13026 Jog Road Bldg K

Delray Beach, FL 33446

July 15, 2003 Report: 2003/06404

Sample No: 2003/06404- 2

Attention: Jaya Navani **Project: System 9 WTP ASR Project**

22438 SW 7th Street Boca Raton, FL

Collected on: 06/23/03

SAMPLE ID: FAMW-1 AI08566

Collected by: Ricky Sadarangani

Noel Fleites

Received on: 06/23/03

Date of Analysis: 06/29/03 Date of Extraction: 06/27/03

625 MUNICIPAL WASTEWATER MINIMUM CRITERIA

PARAMETER	RESULT	DL UNITS	ANALYST
Anthracene	บ	1.0 μg/L	SPH
Naphthalene	บ	1.0 μg/L	SPH
Phenanthrene	บ	1.0 μg/L	SPH

cfu = Colony forming units

Analysis contained herein conform to EPA, Standard Methods and DEP approved methods. Subcontracted analyses are denoted by certification number in the analyst column. All relevant quality assurance samples were within specified control limits unless otherwise stated. Uncertainties for test results are available upon request. Envirodyne certifies that its test results meet all requirements of the NELAC standards, where applicable. For questions, please call the project manager at the number listed above.

This is the last page of the report. See bottom of page for total pages.

Project Manager

Quality Assurance Officer

Quality Control Report

Matrix Spike and Duplicate Analysis

Date: June 24, 2003 Batch No.: GC/MS052403k

Matrix: Water

Compound	RPD	Percent Recovery
Butachlor	18.74%	104%
Atrazine	5.80%	76%
Hexachlorobenzene	10.69%	79%
Di(2-ethylhexyl)adipate	4.86%	70%
Di(2-ethylhexyl)phthalate	11.25%	73%
Benzo(a)pyrene	3.22%	124%

Quality Control Report

Matrix Spike and Duplicate Analysis

Date: June 29, 2003 Batch No.: GC/MS062403b

Matrix: water

Compound	RPD	Percent Recovery
Acenaphthene	7,35%	119%
N-Nitroso-di-n-propylamine	1.89%	120%
Pentachlorophenol	5.81%	161% *
Phenol	0.44%	142%
Pyrene	2.45%	135% *
1,4-Dichlorobenzene	2.50%	111%
1,2,4-Trichlorobenzene	2.43%	111%
2-Chlorophenol	1.83%	142% *
2,4-Dinitrotoluene	5.26%	126%
4-Chloro-3-Methylphenol	8.17%	167% *
4-Nitrophenol	18.82%	150%

^{*} Recoveries above established limits; possibly due to matrix interference. Samples did not show positive hits for these analytes

Quality Control Report

Matrix Spike and Duplicate Analysis

Date: June 29, 2003 Batch No.: GC/MS062403b

Matrix: water

Compound	RPD	Percent Recovery
Acenaphthene	7.35%	119%
N-Nitroso-di-n-propylamine	1.89%	120%
Pentachlorophenol	5.81%	161%
Phenol	0.44%	142%
Pyrene	2.45%	135%
1,4-Dichlorobenzene	2.50%	111%
1,2,4-Trichlorobenzene	2.43%	111%
2-Chlorophenol	1.83%	142%
2,4-Dinitrotoluene	5.26%	126%
4-Chloro-3-Methylphenol	8.17%	167%
4-Nitrophenol	18.82%	150%

Quality Control Report

Matrix Spike and Duplicate

Date: June 24, 2003

Batch No.: GCMS1062403W

Matrix: WATER

Compound	RPD	Percent Recovery
Benzene	0.71%	105%
Chlorobenzene	2.04%	98%
1,1-Dichloroethene	5.63%	98%
Toluene	2.14%	105%
Trichloroethene	5.98%	113%

1,2-Dichloroethane Surr*4.77%92%4-Bromofluorobenzene Surr*4.90%106%1,2-Dichlorobenzene-d4 Surr*2.00%110%

Blank < 1.0 PPB Pass/Fail: PASS

Quality Control Report EPA 531.1

Matrix Spike and Duplicate Analysis

Date: 6/26/2003

Batch No.: L531.1062603

Matrix: LIQUID

Compound	RPD	Percent Recovery
Aldicarb Sulfoxide	1.59%	101%
Aldicarb Sulfone	0.10%	99%
Oxamyl	0.00%	101%
Methomyl	0.76%	105%
3-Hydroxycarbofuran	1.35%	96%
Aldicarb	2.06%	102%
Propoxur (Baygon)	1.55%	97%
Carbofuran	2.17%	97%
Carbaryl	1.48%	95%
Methiocarb	1.93%	93%

Quality Control Report

EPA 504.1

Matrix Spike and Duplicate Analysis

Date: JUNE 27, 2003 Batch No.: EDB062603A

Compound	RPD	Percent Recovery
EDB	4.26%	94%
DBCP	4.08%	98%

Quality Control Report EPA 515.1

Matrix Spike and Duplicate Analysis

Date: JULY 1, 2003 Batch No.: HERB062703A

Compound	RPD	Percent Recovery
Dalapon	0.00%	
Dinoseb	5.61%	89%
Pentachlorophenol	0.00%	110%
Picloram	23.01%	94%
2,4-D	5.83%	86%
2,4,5-TP (Silvex)	0.00%	108%
DCPA (Dachtal)	4.007a	110%

Quality Control Report

Matrix Spike and Duplicate Analysis

Date: JUNE 30, 2003 Batch No.: LPEST062503B

Compound	RPD	Percent Recovery
Alachlor	2.67%	125%
Atrazine	0.85%	117%
Hexachlorocyclopentadiene	0.00%	120%
Simazine	7.37%	122%

Quality Control Report EPA 508

Matrix Spike and Duplicate Analysis

Date: JUNE 29,2003 Batch No.: LPEST062503A

1	NRV
1	1/2>
	, /

Compound	RPD	Percent Recovery
Chlordane	3.23%	103%
Endrin	0.00%	97%
Heptachlor	3.51%	95%
Heptachlor epoxide	3.08%	108%
Hexachlorobenzene	3.17%	105%
Lindane	3.08%	108%
Methoxychlor	3.17%₁	105%

CHAIN OF CUSTODY RECORD

AND
ANALYSIS REQUEST

Page	}	of	
rage		01	 <u>'</u>

4805 NW 2nd Avenue • Boca Raton, FL 33431 (800) 713-7737 • Fax (561) 989-5204 edvne@hellsouth.net

			<	' , a													euyne @	Delisouth.ne	
PROJECT NU	JM8ER	PROJEC	T NAME	Joseph 9	(Permit	P.O. NUM	BER			MPLE YPE	in of	/	PRE	SERV	ATIVE	/			7
PROJECT LO	OCATION			PALN	M BEACH CO	UNTY					/ /	ANA	LYSES	REQL	JESTE	D /	SESS	RUSH TAT	
CLIENT NAM	Ε	CLIENT	ADDRESS	13026	IOG ROAD, B EACH, FLORI	LDG "K"	18/					//	//	//	//		DUE DATE:	(SURCHARGE))
			I F INFO	RMATION	1		/S/		₹ /	N /			/ ,	/ ,	/ .	/ ₹	DATE:	_	
NUMBER	DATE	TIME		IDENTIE	ICATION				4 /						7			MARKS	N
1	4/23/03	1430	5,59 AS	(01)000	?# j				\ \ \	,					2	?		8564	} `
2		1300	" F/	oridan Ag	wifer Moz	. Woel	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	4	\						Z	7	ATO :	8567	'ص
3						(FAMW-i)	_												
4																			
5																			
6											_						<u> </u>		
7									_										_
8		_)						
9									\perp										_
10																			
SAMPLE COL N.E.K.Y S'GE	LECTED BY	1		S LISTED OF									NO		54		L OF ALL TAINERS		
SEND REPOR	RT TO (PERSON)			REDINQUISH	HED BY	DATE		TIME		les see	REC	EIVED	BY	A SEE A	NEA	I THE	DATE	TIME	
	NAVAN INDITION		1 /	How		4/23/0	3	llott	0 2	1	J.	25)		1	(MRTN. 25 W)	16:40	
	CT 4°C		3) /2	1	6-23-	1	17:0		Thu	~h a D 1), M	(0) T	ad	A		3.03		
LOG NUMBER				<i>V</i>	· •	<u> </u>	//		' 	1100		υ (4,		ny	<u></u>	10, 5	<u>, , , , , , , , , , , , , , , , , , , </u>	1 20-	-
2003	: ,401	ł	5				1		6									1	

9W-0069 (Shallow Monitor Zone) June 26, 2003

Palm Beach County Water Utilities Department

Water \ Wastewater Testing Laboratory

13026 Jog Rd., Bldg. K Delray Beach, FL 33446 (561) 638-5000

Report Date: 8-25-2003 388 - 2003 Report ID:

System Name: Palm Beach County Water Utility System 9

Address: 22438 S. W. 7th Street

Boca Raton, FL. 33433

Phone:/(561) 470-9788

I.D. 4501332

Type (check one):

(X) Community

() Nontransient Noncommunity

() Noncommunity

SAMPLE INFORMATION

Sample Date:

6/26/2003

Sample Time: 1:30:00 PM

Sample Location: 9W-0069 (E.Hillsboro Canal)

Sampler Name and Phone #: Sampler's Signature:

(561) 638-5000

Title: Laboratory Assistant \ Tech.

Check Type(s

() Distribution

() Recheck of MCL

() Resample of Lab Invalidated Sample(s)

() Clearance

() Thm Max Res Time

() Plant Tap

() Distrib entry pt

(X) Raw

() Composite of Multiple Sites

LABORATORY CERTIFICATION INFORMATION

Lab Name: Palm Beach County Water Utilities Department

Address: 13026 Jog Road, Bldg. K

Delray Beach, FL 33446

Phone #:

(561) 638-5000

DOH#: E56090

Expiration Date: 6/30/2004

ANALYSIS INFORMATION SAMPLE NUMBER

Date Sample(s) Received: 6/26/2003

() Nitrate Only

Group(s) Analyzed Results attached for compliance with 62-550, F.A.C.:

() Nitrite Only

Inorganics-Volatile Organics-(X) All 17 (X) Ali 21 () Partial () Partial Group I Group II Unregulateds-Unregulateds-

(X) All 14 () Partial Group III Unregulateds-(X) All 11

Secondaries-

() Asbestos Only

Pesticides / PCBs () All 30

(X) Trihalomethanes

(X) Partial

Radiochemicals-(X) Single Sample () Qtrly Composite

() All 13 (X) Partial (X) All 23 () Partial

() Partial

Palm Beach County Water Utilities Department

Water \ Wastewater Testing Laboratory

13026 Jog Rd., Bldg. K Delray Beach, FL. 33446 (561) 638-5000

System 9

WATER QUALITY ANALYSIS

Sample Number: Al08806

Sample Location: 9W-0069 (E.Hillsboro Canal)

Analysis	Analysis Result(mg/L)	Qual.	Analytical Method	Det. Lt. (MDL)	Analysis Date	Analyst
Water Table Elevation	12.4		DEP SOP		6/26/2003	NF
Well Purged Volume	276		DÈP SOP		6/26/2003	NF
Turbidity	2.12		SM 2130-B	0.05	6/26/2003	NF
Dissolved Oxygen	3.40		EPA 360.1	0.1	6/26/2003	NF
Conduct.	733		SM 2510-B	0.5	6/26/2003	NF
Temp	25.4		SM 2550-B	0.1	6/26/2003	NF
рН	6.84		EPA 150.1	0.01	6/26/2003	NF

Tonor.

Palm Beach County Water Utilities Department

Water \ Wastewater Testing Laboratory

13026 Jog Rd., Bldg. K Delray Beach, FL 33446 (561) 638-5000

System 9

WATER QUALITY ANALYSIS

** Analysis contained herein conform to EPA, Standard Methods and DEP approved methods. Subcontracted analyses are denoted by certification number in the analyst column. All relevant quality assurance samples were within specified control limits unless otherwise stated. Uncertainties for test results are available upon request. Palm Beach County Water Utilities certifies its test results meets all requirements of the NELAC Standards, where applicable. For questions, please call the QA Officer or the Lab Manager at the phone number listed above.

Contact: Jaya Navani (561) 638-5000	
I do HEREBY CERTIFY that all attached analytical data are	correct.
QA Officer, Shree Kundalkar	dalc Date: 8/2)/07
Laboratory Manager, Jaya Navani	Date: 8-27-5
COMPLIANCE INFORMATION	
Sample Collection Satisfactory:	Sample Analysis Satisfactory:
Resample Requested for:	Reason:
Person notified to resample:	Date Notified:
DEP/ACPHU Reviewing Official:	
Notice: The information contained in this report is confidential entity named above. If the reader of this communication is not dissemination, distribution or copying of this information is not dissemination.	ot the recipient, you are hereby notified that any

error, please immediately notify us at (561) 638-5000. Thank you.

DEP cef0822203 Page: 3of 4 8-25-2003

Palm Beach County Water Utilities Department

Water \ Wastewater Testing Laboratory

13026 Jog Rd., Bldg. K Delray Beach, FL 33446 (561) 638-5000

System 9

WATER QUALITY ANALYSIS

Qualifier Codes

	QUALIFIER	EXPLANATION
	I	The reported value is between the laboratory method detection limit and the
}		laboratory practical quantitation limit.
	J	Estimated value; value may not be accurate. This code shall be used in the
	T-1	following instances:
	J1	Surrogate recovery limits have been exceeded;
	J2	No known quality control criteria exists for the component;
	J3	The reported value failed to meet the established quality control criteria for
		either precision or accuracy;
	J4	The sample matrix interfered with the ability to make any accurate
	~-	determination
[J5	The data are questionable because of improper laboratory or field protocols (e.g. composite sample was collected instead of a grab sample).
	O	Sampled, but analysis lost or not performed.
	Q	Sample held beyond the accepted holding time. This code shall be used if the value is derived from a sample that was prepared or analyzed after the approved holding time restrictions for sample preparation or analysis.
	Т	Value reported is less than the laboratory method detection limit. The value is reported for informational purposes only – and shall not be used in statistical analysis.
	Ü	Indicates that the compound was analyzed for but not detected, this symbol shall be used to indicate that the specified component was not detected. The value associated with the qualifier shall be the laboratory method detection limit. Unless requested by the client, less than the method detection limit values shall not be reported (see "T" above).
	V	Indicates that the analyte was detected in both the sample and the associated method blank. Note: the value in the blank shall not be subtracted from associated samples.
	Y	The laboratory analysis was from an improperly preserved sample. The data may not be accurate.
	Z	Too many colonies were present (TNTC): the numeric value represent the filtration volume.
	?	Data are rejected and should not be used. Some or all of the quality control data for the analyte were outside criteria, and the presence or absence of the analyte cannot be determined from the data.
	D	Measurement was made in the field (i.e., in situ). This applies to any value (except pH, specific conductance, dissolved oxygen, temperature, total residual chlorine, transparency, or salinity) that was obtained under field conditions using approved analytical methods. If the parameter code specifies a field measurement e.g., "Field pH", this code is not required.

4805 NW 2nd Avenue Boca Raton, FL 33431 Phone 561-989-5225 Fax 561-989-5204 edyne@bellsouth.net

August 27, 2003

Shree Kundalkar Palm Beach County Utilities 13026 Jog Road Bldg. K Delray Beach, FL 33446

RE: Envirodyne Report: 2003/06495.

Dear Shree,

Per your request Total Coliform data reported for Palm Beach County Sample AI08806 (Envirodyne Inc. report number 2003/06495) was reviewed August 27, 2003. Raw data records and calculations performed were verified, no anomalies were found. The data reported is true and accurate.

Please feel free to call me at (800) 713-7737 with questions or comments. Thank you for your continuing business.

Regards,

John Taylor QA Officer

Cc: Michael Rentoumis

Encl

Total Co...orm SM 9222 B

Initial Final

Analyst: 100 000

Date: 6/2/100 6/27/03

Time: 17:10 17130

Batch: 0306266

PS 35 Coliforn by NW205

Log #	Sample Description	Broth Lat #	mis	DF	# colonles	(#) x DF	Comments
16 Mcoss	Pas	MCOUPL			15	1 (1,1,2)	
102016	N.	1			41		
	Derk		/00	1	4		
0306495-1	Mark Maritar Well Monitor Well Monitor Well Blunk		1	100	5	500	
0306495-1	Man: torWell		10	10	54	540	
C306495-1	Monitorlehl		100	1	TNIC		
	Bluck		100	1	41		
COMCOIS	Pos	1			13		
-							
	-						•
•				1			
-			 	 			
		 	 				
——							
	+		 	 	 		
			 		-		
	 	-	<u> </u>				
		ļ		<u> </u>	 		
							<u> </u>

E007-87-80

Coliform Verification Logbook

SM 9222 D Broth Ref #

Initial

Analyst: Jar

Date: 6 27 0.3

Time: 15:25 12:50

Type: Tota

EC PAMOZ I

		-					
Facility			0 = 0 €			ma	
Envirodyne	Sample ID		35°C		3 35°C	EC 44.5°C	
Log#	Sample I.D.		48 hours	4 hours	48 hours	24 hours	Comments
	Positive	+		4			
10MCO16	Negative			-			
	Blank						
MC=491	Broth		~				
MC>49/ 034495-1	Montarna	+		+	,		
				,			
							· ·
						<u>"-</u>	
		,	·	·			
					•		
						•	
			-				
						_	

Envirodyne: 03/2003

Palm Beach County Water Utilities Laboratory

13026 Jog Road Bldg K Delray Beach, FL 33446

Attention: Jaya Navani

JB-7/28/0>

July 24, 2003 Report: 2003/06495 Sample No: 2003/06495- 1

Project: System 9 ASR Permit

22438 SW 7th Street Boca Raton, FL

SAMPLE ID: Monitoring Well AI08806 Collected by: Noel Fleites Jr.

Collected on: 06/26/03 Received on: 06/26/03

PARAMETER	RESULT	METHOD	DL UNITS	DATE	ANALYST
Aluminum	ט	200.7	0.10 mg/L	07/02/03	KYT
Arsenic	υ	200.7	0.010 mg/L	06/28/03	APR
Barium	0.024	200.7	0.010 mg/L	06/28/03	APR
Beryllium	υ	200.7	0.0030 mg/L	06/28/03	APR
Cadmium	υ	200.7	0.0040 mg/L	06/28/03	APR
Chromium	υ	200.7	0.010 mg/L	06/28/03	APR
Copper	υ	200.7	0.010 mg/L	06/28/03	APR
Iron	0.029	200.7	0.010 mg/L	07/02/03	KYT
Manganese	υ	200.7	0.010 mg/L	06/28/03	APR
Nickel	υ	200.7	0.010 mg/L	06/28/03	APR
Silver	ΰ	200.7	0.010 mg/L	06/28/03	APR
Sodium	16	200.7	1.0 mg/L	07/02/03	KYT
Zinc	0.012	200.7	0.010 mg/L	06/28/03	APR
Antimony	υ	200.8	0.0010 mg/L	07/01/Ó3	APR
Lead	υ	200.8	0.00020 mg/L	07/01/03	APR
Selenium	υ	200.8	0.0010 mg/L	07/01/03	APR
Thallium	υ	200.8	0.00030 mg/L	07/01/03	APR
Mercury	σ	245.1	0.00003 mg/L	06/30/03	KYT

Palm Beach County Water Utilities Laboratory 13026 Jog Road Bldg K Delray Beach, FL 33446

July 24, 2003 Report: 2003/06495 Sample No: 2003/06495- 1

Attention: Jaya Navani

Project: System 9 ASR Permit 22438 SW 7th Street Boca Raton, FL

SAMPLE ID: Monitoring Well A108806 Collected by: Noel Fleites Jr.

Collected on: 06/26/03 Received on: 06/26/03

PARAMETER	RESULT	METHOD	DL UNITS	DATE	ANALYST
Dibromochloropropane (DBCP)	υ	504.1	0.020 μg/L	07/03/03	CMM
1,2-Dibromoethane (EDB)	υ	504.1	0.020 <i>μ</i> g/L	07/03/03	СММ
Benzo(a)pyrene	ប	525.2	0.20 <i>μ</i> g/L	07/02/03	SPH
Di(2-ethylhexyl)adipate	σ	525.2	1.0 <i>μ</i> g/L	07/02/03	SPH
Di(2-ethylhexyl)phthalate	σ	525.2	1.0 <i>μ</i> g/L	07/02/03	SPH
Carbofuran	Ū	531.1	1.0 <i>μ</i> g/L	06/27/03	MLD
Oxamyl (Vydate)	U	531.1	1.0 <i>μ</i> g/L	06/27/03	MLD
Glyphosate	υ	547	40 μg/L	06/28/03	E86515
Endothall	U	548.1	50 <i>μ</i> g/L	07/07/03	E86515
Diquat	υ	549	1.44 μg/L	07/08/03	E86515
Biochemical Oxygen Demand	Ū	405.1	2.0 mg/L	06/27/03	JGT
Chloride	34	SM4500CL-	B 2.0 mg/L	06/27/03	JNM
Chemical Oxygen Demand	24	410.4	5.0 mg/L	06/27/03	LML
Color	30	110.2	5 CU	06/27/03	DNS
Specific Conductance	800	120.1	µmhos/cm	06/30/03	JNM
Cyanide, Total	υ	335.4	0.0040 mg/L	06/27/03	DNS
Fluoride	0.46	SM4500F-0	0.10 mg/L	06/27/03	LML
Gross Alpha	1±3 U	900.0	1.0 pCi/L	07/08/03	E84088
Surfactants (as LAS, MW = 340)	0.16	425.1	0.010 mg/L	06/27/03	JGT

Analysis Performed in Accordance with E.P.A. Methods Laboratory Certification No. E86188

QA/QC Review
U=Analyte Not Dete

Palm Beach County Water Utilities Laboratory 13026 Jog Road Bldg K Delray Beach, FL 33446

July 24, 2003 Report: 2003/06495 Sample No: 2003/06495- 1

Attention: Jaya Navani Project: System 9

Project: System 9 ASR Permit 22438 SW 7th Street Boca Raton, FL

SAMPLE ID: Monitoring Well AI08806 Collected by: Noel Fleites Jr.

Collected on: 06/26/03 Received on: 06/26/03

PARAMETER	RESULT	METHOD	DL UNITS	DATE	ANALYST
Ammonia, as N	0.48	350.1	0.020 mg/L	06/27/03	JGT
Nitrite, as Nitrogen	υ	353.2	0.020 mg/L	06/27/03	JGT
Nitrate, as Nitrogen	υ	353.2	0.020 mg/L	06/27/03	JGT _.
Nitrate-Nitrite, as Nitrogen	υ	353.2	0.020 mg/L	06/27/03	JGT
Odor	1	SM2150B	1 T.O.N.	06/27/03	DNS
pH (Laboratory)	7.0	150.1	pH Units	06/27/03	MM
Radium 226	0.3±0.1	903.1	0.1 pCi/L	07/15/03	E84088
Radium 228	0.5±0.5 U	RA-05	0.5 pCi/L	07/03/03	E84088
Sulfate	υ	375.4	5.0 mg/L	06/30/03	JNM
Total Coliform Bacteria	540	SM9222B	1 cfu/100 ml	06/26/03	JGT
Total Coliform Date & Time Sa Total Coliform Date & Time An					
Total Dissolved Solids	540	160.1	10 mg/L	06/30/03	DNS
Total Kjeldahl Nitrogen	0.73	351.2	0.10 mg/L	06/30/03	JMJ
Organic Nitrogen	ט	351-350	0.50 mg/L	06/30/03	LML
Phosphorus, Total	0.25	365.4	0.010 mg/L	06/30/03	LML

4805 N.W. 2nd Avenue Boca Raton, FL 33431 561-989-5225

CERTIFICATE OF ANALYSIS

Palm Beach County Water Utilities Laboratory 13026 Jog Road Bldg K Delray Beach, FL 33446

SAMPLE ID: Monitoring Well A108806 Collected by: Noel Fleites Jr.

July 24, 2003 Report: 2003/06495

Sample No: 2003/06495- 1

Attention: Jaya Navani

Project: System 9 ASR Permit

22438 SW 7th Street Boca Raton, FL

Collected on: 06/26/03

Received on: 06/26/03

Date of Analysis: 07/01/03 Date of Extraction: 07/01/03

508 GROUP I UNREGULATED ORGANIC CONTAMINANTS

PARAMETER	RESULT	DL UNITS	ANALYST
Aldrin	บ	0.10 μg/L	CMM
Dieldrin	บ	0.10 μg/L	CMM

SAMPLE ID: Monitoring Well AI08806 Collected by: Noel Fleites Jr.

4805 N.W. 2nd Avenue Boca Raton, FL 33431 561-989-5225

CERTIFICATE OF ANALYSIS

Palm Beach County Water Utilities Laboratory 13026 Jog Road Bldg K Delray Beach, FL 33446

July 24, 2003 Report: 2003/06495

Sample No: 2003/06495- 1

Attention: Jaya Navani

Project: System 9 ASR Permit

22438 SW 7th Street Boca Raton, FL

Collected on: 06/26/03

Received on: 06/26/03

Date of Analysis: 07/01/03 Date of Extraction: 07/01/03

508 ORGANOHALIDE PESTICIDES 62-550.310(2)(c) FAC

PARAMETER	RESULT	DL UNITS	ANALYST	
Chlordane	ש	0.50 μg/L	CMM	
Endrin	ប	$0.10 \mu \mathrm{g/L}$	CMM	
Heptachlor	ប	$0.10 \mu \mathrm{g/L}$	CMM	
Heptachlor epoxide	ប	$0.10~\mu\mathrm{g/L}$	CMM	
Hexachlorobenzene	σ	$0.10 \mu \text{g/L}$	CMM	
Lindane	ប	$0.10~\mu\mathrm{g/L}$	CMM	
Methoxychlor	U	$0.20~\mu \mathrm{g/L}$	CMM	
Toxaphene	ប	$1.0 \mu g/L$	CMM	
PCB 1016	ប	$0.20~\mu\mathrm{g/L}$	CMM	
PCB 1221	υ	$0.20~\mu \mathrm{g/L}$	CMM	
PCB 1240	ប	$0.20 \mu \text{g/L}$	CMM	
PCB 1242	ប	$0.20 \mu \text{g/L}$	CMM	
PCB 1248	ប	$0.20~\mu\mathrm{g/L}$	CMM	
PCB 1254	U	$0.20~\mu \mathrm{g/L}$	CMM	
PCB 1260	Ŭ	$0.20 \mu \text{g/L}$	CMM	

4805 N.W. 2nd Avenue Boca Raton, FL 33431 561-989-5225

CERTIFICATE OF ANALYSIS

Palm Beach County Water Utilities Laboratory 13026 Jog Road Bldg K Delray Beach, FL 33446

July 24, 2003 Report: 2003/06495

Sample No: 2003/06495- 1

Attention: Jaya Navani

Project: System 9 ASR Permit 22438 SW 7th Street Boca Raton, FL

Collected on: 06/26/03

SAMPLE ID: Monitoring Well AI08806 Collected by: Noel Fleites Jr. Received on: 06/26/03

Date of Analysis: Date of Extraction: 07/01/03

07/02/03

508.1 CHLORINATED PESTICIDES (62-550 FAC)

PARAMETER	RESULT	DL UNITS	ANALYST	
Alachlor	U	0.10 μ g/L	CMM	
Atrazine	ប	$1.0~\mu\mathrm{g/L}$	CMM	
Hexachlorocyclopentadiene	U	$0.10~\mu \mathrm{g/L}$	CMM	
Simazine	υ	$1.0 \mu g/L$	CMM	

Palm Beach County Water Utilities Laboratory 13026 Jog Road Bldg K Delray Beach, FL 33446

July 24, 2003 Report: 2003/06495

Sample No: 2003/06495- 1

Attention: Jaya Navani

Project: System 9 ASR Permit

22438 SW 7th Street Boca Raton, FL

Collected on: 06/26/03

Received on: 06/26/03

SAMPLE ID: Monitoring Well AI08806 Collected by: Noel Fleites Jr.

07/01/03 Date of Analysis: Date of Extraction: 06/27/03

515.1 HERBICIDES (62-550 FAC)

PARAMETER	RESULT	DL UNITS	ANALYST	
Dalapon	U	0.50 μ g/L	СММ	
Dinoseb	Ū	$0.50 \mu \text{g/L}$	CMM	
Pentachlorophenol	U	$0.50 \mu \text{g/L}$	CMM	
Picloram	υ	$0.50 \mu g/L$	CMM	
2,4-D	U	$0.50 \mu g/L$	CMM	
2,4,5-TP (Silvex)	U	$0.10~\mu g/L$	CMM	

Palm Beach County Water Utilities Laboratory 13026 Jog Road Bldg K Delray Beach, FL 33446

July 24, 2003 Report: 2003/06495

Sample No: 2003/06495- 1

Attention: Jaya Navani

Project: System 9 ASR Permit
22438 SW 7th Street Boca Raton, FL

Collected on: 06/26/03

Received on: 06/26/03

Date of Analysis:

06/27/03

SAMPLE ID: Monitoring Well AI08806 Collected by: Noel Fleites Jr.

524.2 GROUP II UNREGULATED ORGANIC CONTAMINANTS

PARAMETER	RESULT	DL UNITS	ANALYST	
Bromobenzene	σ	0.5 μg/L	ЕМН	
Bromodichloromethane	υ	$0.5 \mu \text{g/L}$	EMH	
Bromoform	ד	$0.5 \mu g/L$	EMH	
Bromomethane	ប	$0.5 \mu \mathrm{g/L}$	EMH	
Chloroethane	υ	$0.5 \mu \text{g/L}$	EMH	
Chloroform	U	$0.5 \mu \mathrm{g/L}$	EMH	
Chloromethane	ប	$0.5~\mu\mathrm{g/L}$	EMH	
o-Chlorotoluene	υ	$0.5~\mu\mathrm{g/L}$	EMH	
p-Chlorotoluene	Ŭ	$0.5 \mu \text{g/L}$	EMH	
Dibromochloromethane	U	$0.5 \mu \text{g/L}$	EMH	
Dibromomethane	σ	$0.5~\mu\mathrm{g/L}$	EMH	
m-Dichlorobenzene	บ	$0.5~\mu\mathrm{g/L}$	EMH	
Dichlorodifluoromethane	บ	$0.5 \mu \mathrm{g/L}$	EMH	
1,1-Dichloroethane	U	$0.5 \mu g/L$	EMH	
2,2-Dichloropropane	U	$0.5 \mu \text{g/L}$	EMH	
1,1-Dichloropropylene	U	$0.5 \mu g/L$	EMH	
1,3-Dichloropropane	Ū	$0.5 \mu g/L$	EMH	
1,3-Dichloropropene	U	$0.5 \mu \mathrm{g/L}$	EMH	
Methyl tert-butyl-ether (MTBE)	U	$0.5 \mu g/L$	EMH	
1,1,1,2-Tetrachloroethane	U	$0.5 \mu \mathrm{g/L}$	EMH	
1,1,2,2-Tetrachloroethane	U	$0.5 \mu g/L$	EMH	
Trichlorofluoromethane	U	$0.5 \mu g/L$	EMH	
1,2,3-Trichloropropane	U ·	$0.5 \mu g/L$	EMH	

4805 N.W. 2nd Avenue Boca Raton, FL 33431 561-989-5225

CERTIFICATE OF ANALYSIS

Palm Beach County Water Utilities Laboratory 13026 Jog Road Bldg K Delray Beach, FL 33446

July 24, 2003 Report: 2003/06495

Sample No: 2003/06495- 1

Attention: Jaya Navani

Project: System 9 ASR Permit

22438 SW 7th Street Boca Raton, FL

Collected on: 06/26/03

Received on: 06/26/03

Date of Analysis:

06/27/03

SAMPLE ID: Monitoring Well AI08806 Collected by: Noel Fleites Jr.

524.2 TRIHALOMETHANES (THM'S)

PARAMETER	RESULT	DL UNITS	ANALYST	
Bromodichloromethane	ָט	0.5 μg/L	ЕМН	
Bromoform	ប	0.5 μg/L	EMH	
Chloroform	ប	0.5 μg/L	EMH	
Dibromochloromethane	ט	0.5 μg/L	EMH	
Total Trihalomethanes	ט	0.5 μg/L	EMH	

4805 N.W. 2nd Avenue Boca Raton, FL 33431 561-989-5225

CERTIFICATE OF ANALYSIS

Palm Beach County Water Utilities Laboratory 13026 Jog Road Bldg K Delray Beach, FL 33446 July 24, 2003 Report: 2003/06495 Sample No: 2003/06495- 1

Attention: Jaya Navani

SAMPLE ID: Monitoring Well AI08806 Collected by: Noel Fleites Jr.

Project: System 9 ASR Permit

22438 SW 7th Street Boca Raton, FL

Collected on: 06/26/03

Received on: 06/26/03

Date of Analysis: 06/27/03

524.2 VOLATILE ORGANIC COMPOUNDS (62-550)

PARAMETER	RESULT	DL UNITS	ANALYST
Benzene	บ	0.5 μg/L	EMH
Carbon tetrachloride	U	$0.5 \mu \text{g/L}$	EMH
Chlorobenzene	U	$0.5 \mu \text{g/L}$	EMH
1,2-Dichlorobenzene	υ	$0.5 \mu g/L$	EMH
1,4-Dichlorobenzene	U	$0.5 \mu \text{g/L}$	EMH
1,2-Dichloroethane	ប	$0.5~\mu\mathrm{g/L}$	EMH
1,1-Dichloroethene	U	$0.5 \mu \mathrm{g/L}$	EMH
cis-1,2-Dichloroethene	Ū	$0.5~\mu\mathrm{g/L}$	EMH
trans-1,2-Dichloroethene	บ	$0.5 \mu g/L$	EMH
Dichloromethane	U	$0.5~\mu\mathrm{g/L}$	EMH
1,2-Dichloropropane	U	$0.5~\mu\mathrm{g/L}$	EMH
Ethylbenzene	ប	$0.5~\mu\mathrm{g/L}$	EMH
Styrene	Ŭ	$0.5~\mu\mathrm{g/L}$	EMH
Tetrachloroethylene	U	0.5 μg/L	EMH
Toluene	U	$0.5~\mu\mathrm{g/L}$	EMH
1,2,4-Trichlorobenzene	U	$0.5 \mu g/L$	EMH
1,1,1-Trichloroethane	U	$0.5 \mu \mathrm{g/L}$	EMH
1,1,2-Trichloroethane	U	$0.5 \mu \text{g/L}$	EMH
Trichloroethylene	Ū	$0.5 \mu \mathrm{g/L}$	EMH
Vinyl chloride	U	$0.5 \mu g/L$	EMH
Xylenes, Total	ט	$0.5 \mu g/L$	ЕМН

4805 N.W. 2nd Avenue Boca Raton, FL 33431 561-989-5225

CERTIFICATE OF ANALYSIS

Palm Beach County Water Utilities Laboratory 13026 Jog Road Bldg K Delray Beach, FL 33446

SAMPLE ID: Monitoring Well A108806 Collected by: Noel Fleites Jr.

July 24, 2003 Report: 2003/06495

Sample No: 2003/06495- 1

Attention: Jaya Navani

Project: System 9 ASR Permit

22438 SW 7th Street Boca Raton, FL

Collected on: 06/26/03

Received on: 06/26/03

Date of Analysis: 06/27/03

531.1 GROUP I UNREGULATED ORGANIC PESTICIDES

PARAMETER	RESULT	DL UNITS	ANALYST	
Aldicarb	U	$1.0~\mu\mathrm{g/L}$	MLD	
Aldicarb sulfone	U	$1.0 \mu \mathrm{g/L}$	MLD	
Aldicarb sulfoxide	U	$1.0 \mu \text{g/L}$	MLD	
Carbaryl	U	$1.0 \mu \text{g/L}$	MLD	
3-Hydroxycarbofuran	U	$1.0 \mu \mathrm{g/L}$	MLD	
Methomyl	Ŭ	$1.0 \mu g/L$	MLD	

Palm Beach County Water Utilities Laboratory 13026 Jog Road Bldg K Delray Beach, FL 33446

SAMPLE ID: Monitoring Well A108806 Collected by: Noel Fleites Jr.

July 24, 2003 Report: 2003/06495 Sample No: 2003/06495- 1

Project: System 9 ASR Permit

22438 SW 7th Street Boca Raton, FL

Collected on: 06/26/03

Received on: 06/26/03

Date of Analysis: 06/29/03 Date of Extraction: 06/27/03

Attention: Jaya Navani

625 GROUP III UNREGULATED ORGANIC CONTAMINANTS

PARAMETER	RESULT	DL UNITS	ANALYST	
Butyl benzyl phthalate	U	1.0 μg/L	SPH	
2-Chlorophenol	υ	$1.0 \mu \mathrm{g/L}$	SPH	
Di-n-butylphthalate	U	$1.0 \mu \mathrm{g/L}$	SPH	
Diethylphthalate	ซ	$1.0 \mu \mathrm{g/L}$	SPH	
Dimethylphthalate	Ū	$1.0 \mu \mathrm{g/L}$	SPH	
Di-n-octyl phthalate	U	$1.0 \mu \text{g/L}$	SPH	
2,4-Dinitrotoluene	Ŭ	$1.0~\mu\mathrm{g/L}$	SPH	
Isophorone	Ū	$1.0 \mu \text{g/L}$	SPH	
2-Methyl-4,6-dinitrophenol	U	$1.0 \mu g/L$	SPH	
Phenol	U	$1.0 \mu g/L$	SPH	
2,4,6-Trichlorophenol	U	$1.0 \mu g/L$	SPH	

Envirodyne Inc.

4805 N.W. 2nd Avenue Boca Raton, FL 33431 561-989-5225

CERTIFICATE OF ANALYSIS

Palm Beach County Water Utilities Laboratory 13026 Jog Road Bldg K Delray Beach, FL 33446

SAMPLE ID: Monitoring Well AI08806 Collected by: Noel Fleites Jr.

July 24, 2003 Report: 2003/06495

Sample No: 2003/06495- 1

Attention: Jaya Navani

Project: System 9 ASR Permit

22438 SW 7th Street Boca Raton, FL

Collected on: 06/26/03

Received on: 06/26/03

Date of Analysis: 06/29/03 Date of Extraction: 06/27/03

625 MUNICIPAL WASTEWATER MINIMUM CRITERIA

PARAMETER	RESULT	DL UNITS	ANALYST
Anthracene	ט	1.0 μg/L	SPH
Naphthalene	ט	1.0 μg/L	SPH
Phenanthrene	ט	1.0 μg/L	SPH

4805 N.W. 2nd Avenue Boca Raton, FL 33431 561-989-5225

CERTIFICATE OF ANALYSIS

Palm Beach County Water Utilities Laboratory 13026 Jog Road Bldg K Delray Beach, FL 33446

July 24, 2003 Report: 2003/06495

Sample No: 2003/06495- 2

Attention: Jaya Navani

Project: System 9 ASR Permit

22438 SW 7th Street Boca Raton, FL

Collected on: 06/26/03

Collected by: Noel Fleites Jr. Received on: 06/26/03

SAMPLE ID: Trip Blank

Date of Analysis: 07/04/03

524.2 GROUP II UNREGULATED ORGANIC CONTAMINANTS

PARAMETER	RESULT	DL UNITS	ANALYST	
Bromobenzene	ប	0.5 μ g/L	EMH	
Bromodichloromethane	U	$0.5 \mu \text{g/L}$	EMH	
Bromoform	U	$0.5 \mu \text{g/L}$	EMH	
Bromomethane	ט	$0.5 \mu \text{g/L}$	EMH	
Chloroethane	U	$0.5 \mu \mathrm{g/L}$	EMH	
Chloroform	ΰ	$0.5 \mu g/L$	EMH	
Chloromethane	ប	$0.5 \mu \text{g/L}$	EMH	
o-Chlorotoluene	ប	$0.5~\mu\mathrm{g/L}$	EMH	
p-Chlorotoluene	ΰ	$0.5~\mu\mathrm{g/L}$	EMH	
Dibromochloromethane	U	$0.5 \mu \mathrm{g/L}$	EMH	
Dibromomethane	σ	$0.5 \mu \mathrm{g/L}$	EMH	
m-Dichlorobenzene	ប	$0.5~\mu\mathrm{g/L}$	EMH	
Dichlorodifluoromethane	σ	$0.5 \mu \text{g/L}$	EMH	
1,1-Dichloroethane	Ŭ	$0.5 \mu \mathrm{g/L}$	EMH	
2,2-Dichloropropane	U	$0.5 \mu g/L$	EMH	
1,1-Dichloropropylene	U	$0.5 \mu \text{g/L}$	EMH	
1,3-Dichloropropane	U	$0.5 \mu \text{g/L}$	EMH	
1,3-Dichloropropene	ับ	$0.5 \mu \mathrm{g/L}$	EMH	
Methyl tert-butyl-ether (MTBE)	U	$0.5 \mu g/L$	EMH	
1,1,1,2-Tetrachloroethane	U	$0.5 \mu g/L$	EMH	
1,1,2,2-Tetrachloroethane	U	$0.5 \mu \mathrm{g/L}$	EMH	
Trichlorofluoromethane	U	$0.5 \mu g/L$	EMH	
1,2,3-Trichloropropane	U	$0.5 \mu g/L$	EMH	

Envirodyne Inc.

4805 N.W. 2nd Avenue Boca Raton, FL 33431 561-989-5225

CERTIFICATE OF ANALYSIS

Palm Beach County Water Utilities Laboratory 13026 Jog Road Bldg K Delray Beach, FL 33446

July 24, 2003 Report: 2003/06495

Sample No: 2003/06495- 2

Attention: Jaya Navani

Project: System 9 ASR Permit
22438 SW 7th Street Boca Raton, FL

SAMPLE ID: Trip Blank

Collected by: Noel Fleites Jr.

Collected on: 06/26/03 Received on: 06/26/03

Date of Analysis:

07/04/03

524.2 TRIHALOMETHANES (THM'S)

PARAMETER	RESULT	DL UNITS	ANALYST	
Bromodichloromethane	ט	$0.5 \mu \text{g/L}$	EMH	
Bromoform	Ū	$0.5 \mu g/L$	EMH	
Chloroform	σ	$0.5 \mu g/L$	EMH	
Dibromochloromethane	ΰ	$0.5 \mu \text{g/L}$	EMH	
Total Trihalomethanes	U	$0.5 \mu g/L$	EMH	

CERTIFICATE OF ANALYSIS

Palm Beach County Water Utilities Laboratory 13026 Jog Road Bldg K Delray Beach, FL 33446

July 24, 2003 Report: 2003/06495

Sample No: 2003/06495- 2

Attention: Jaya Navani

Project: System 9 ASR Permit
22438 SW 7th Street Boca Raton, FL

Collected on: 06/26/03

Collected by: Noel Fleites Jr.

Received on: 06/26/03

Date of Analysis: 07/04/03

SAMPLE ID: Trip Blank

524.2 VOLATILE ORGANIC COMPOUNDS (62-550)

PARAMETER	RESULT	DL UNITS	ANALYST	
Benzene	υ	0.5 μg/L	EMH	
Carbon tetrachloride	Ŭ	$0.5 \mu g/L$	EMH	
Chlorobenzene	ប	$0.5 \mu \text{g/L}$	EMH	
1,2-Dichlorobenzene	Ŭ	$0.5 \mu g/L$	EMH	
1,4-Dichlorobenzene	ע	$0.5 \mu \text{g/L}$	EM H	
1,2-Dichloroethane	U	$0.5 \mu g/L$	EMH	
1,1-Dichloroethene	U	$0.5 \mu g/L$	EMH	
cis-1,2-Dichloroethene	U	$0.5 \mu \text{g/L}$	EMH	
trans-1,2-Dichloroethene	U	$0.5 \mu g/L$	EMH	
Dichloromethane	บ	$0.5 \mu \mathrm{g/L}$	E M H	
1,2-Dichloropropane	Ŭ	$0.5 \mu g/L$	EMH	
Ethylbenzene	U	$0.5 \mu g/L$	EMH	
Styrene	U	$0.5 \mu \text{g/L}$	EMH	
Tetrachloroethylene	U	$0.5 \mu g/L$	EMH	
Toluene	ΰ	$0.5 \mu \text{g/L}$	EMH	
1,2,4-Trichlorobenzene	U	$0.5 \mu g/L$	EMH	
1,1,1-Trichloroethane	ד	$0.5 \mu g/L$	EMH	
1,1,2-Trichloroethane	ប	$0.5 \mu g/L$	EMH	
Trichloroethylene	Ū	$0.5 \mu \mathrm{g/L}$	EMH	
Vinyl chloride	ΰ	$0.5 \mu g/L$	ЕМН	
Xylenes, Total	Ū	$0.5 \mu \text{g/L}$	EMH	

Envirodyne Inc.

4805 N.W. 2nd Avenue Boca Raton, FL 33431 561-989-5225

CERTIFICATE OF ANALYSIS

cfu = Colony forming units

Analysis contained herein conform to EPA, Standard Methods and DEP approved methods. Subcontracted analyses are denoted by certification number in the analyst column. All relevant quality assurance samples were within specified control limits unless otherwise stated. Uncertainties for test results are available upon request. Envirodyne certifies that its test results meet all requirements of the NELAC standards, where applicable. For questions, please call the project manager at the number listed above.

This is the last page of the report. See bottom of page for total pages.

Project Manager

Quality Assurance Officer

Quality Control Report EPA 504.1

Matrix Spike and Duplicate Analysis

Date: JULY 3, 2003 Batch No.: EDB070303A

Compound	RPD	Percent Recovery
EDB	4.26%	94%
DBCP	12.24%	98%

Quality Control Report

EPA 508.1

Matrix Spike and Duplicate Analysis

Date: JUJY 2, 2003 Batch No.: LPEST070103C

Compound	RPD	Percent Recovery
Alachlor	6.90%	97%
Atrazine	16.73%	92%
Hexachlorocyclopentadiene	10.53%	95%
Simazine	16.33%	82%

Quality Control Report

EPA 508

Matrix Spike and Duplicate Analysis

Date: JULY 2, 2003 Batch No.: LPEST070103B

Compound	RPD	Percent Recovery
Chlordane	2.67%	125%
Endrin	2.41%	138%
Heptachlor	2.67%	125%
Heptachlor epoxide	0.00%	127%
Hexachlorobenzene	2.74%	122%
Lindane	0.00%	123%
Methoxychlor	2.47%	135%

Quality Control Report EPA 531.1

Matrix Spike and Duplicate Analysis

Date: 6/26/2003

Batch No.: L531.1062603

Matrix: LIQUID

Compound	RPD	Percent Recovery	
Aldicarb Sulfoxide	1.59%	101%	
Aldicarb Sulfone	0.10%	99%	
Oxamyl	0.00%	101%	
Methomyl	0.76%	105%	
3-Hydroxycarbofuran	1.35%	96%	
Aldicarb	2.06%	102%	
Propoxur (Baygon)	1.55%	97%	
Carbofuran	2.17%	97%	
Carbaryl	1.48%	95%	
Methiocarb	1.93%	93%	

Quality Control Report

Matrix Spike and Duplicate

Date: July 4, 2003

Batch No.: GCMS1070303W

Matrix: WATER

Compound	RPD	Percent Recovery
Benzene	7.82%	112%
Chlorobenzene	0.49%	101%
1,1-Dichloroethene	0.66%	113%
Toluene	0.77%	98%
Trichloroethene	2.59%	106%
1,2-Dichloroethane Surr*	2.13%	94%
4-Bromofluorobenzene Surr*	10.32%	93%
2-Bromo-1-Chloropropane Surr*	1.24%	97%

Blank < 0.5 PPB Pass/Fail: PASS

Quality Control Report EPA 515.1

Matrix Spike and Duplicate Analysis

Date: JULY 1, 2003

Batch No.: HERB062703A

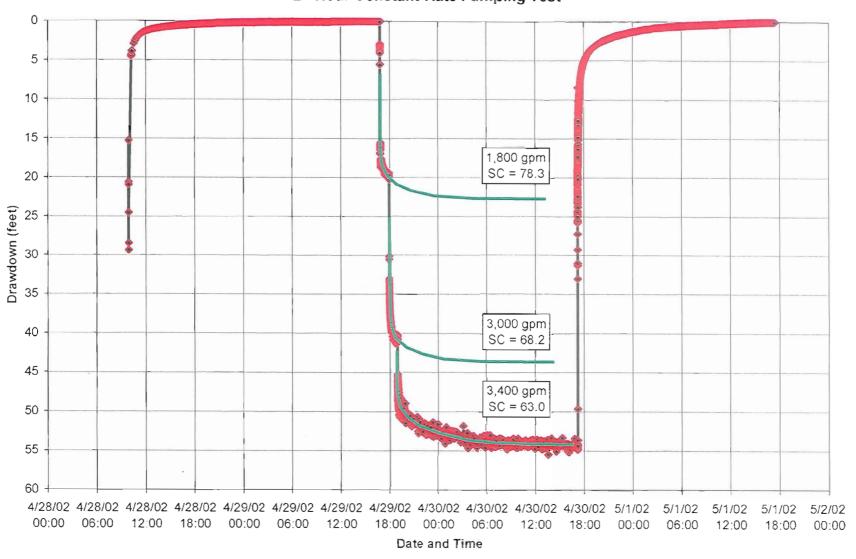
Compound	RPD	Percent Recovery
Dalapon		85%
Dinoseb	5.61%	89%
Pentachlorophenol	0.00%	110%
Picloram	23.01%	94%
2,4-D	5.83%	86%
2,4,5-TP (Silvex)	0.00%	108%
DCPA (Dachtal)	4.65%	110%

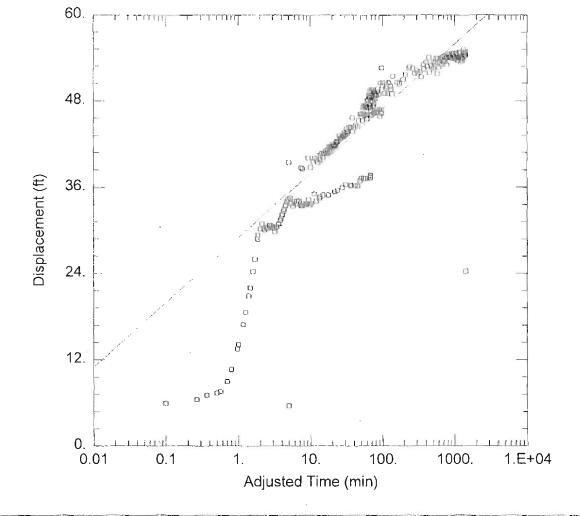
Envir dyne Inc.

CHAIN OF CU TODY RECORD

AND ANALYSIS REQUEST

Page ___ of ___


4805 NW 2nd Avenue • Boca Raton, FL 33431 (800) 713-7737 • Fax (561) 989-5204


							_				edyne & D	311300011,1100	
PROJECT NUMBER	PROJECT	NAME SYS9 Primit		P.O. NUMBER		SAMPLE TYPE		PR /	ESERVATIV	/E	/ /	7	
PROJECT LOGATION			PALM BEACH COU ER UTILITIES LABO					ANALYSES	REQUES	TED	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	RUSH TAT	
CLIENT NAME	CLIENT A	DDRESS 13	026 JOG ROAD, BL AY BEACH, FLORI	DG "K"							DUE DATE:	RUSH TAT URCHARGE)	
	SAMP	LE INFORMATIO	N	/ /	/~/ 4/5		/ "5/			/ 4			
NUMBER DATE	TIME	IDENT	TFICATION TO THE STATE OF THE S	1	111	1 1	1 1	1 1	1 1	1	REM	ARKS	
1 6/26/03 1	330	9 Monutarin	s Well gwa	(269)		 					ATO 8	306	\
2	,	Trip Blance	(No log #)				V				Cull		•
3											Rebbe	29	
4									1		Coc	,0	/
5											~ ~		
6		_									Log#a	dded	
7											6/26/03	per Rebb	ec
8											ļ · ·	Ad	
9												auli ana	
10											486		,
Noel Fleiter		ARE THESE SAMPL ARE THESE SAMPL							I NO	27	TOTAL CONT	OF ALL AINERS	
SEND REPORT TO (PERSON)	1	RELINQUI	SHED BY	DATE	TIME		REC	EIVED BY			DATE	TIME	
SAMPLES CONDITION	Ni	1		6-26-03	16:25	2 /) (F.	2	_	6-	2603	16:25	
INTACT YOU	-	300	*	6-26-03			chelle	There	ida			1700	
2003 01495	-	5				6							

Constant-Rate Pumping Test Data

Pumping Well (ASR)

Palm Beach County Water Utilities Department WTP No. 9 Eastern Hillsboro ASR Well 24-Hour Constant-Rate Pumping Test

Data Set: C:\TGU\Projects\Hillsboro ASR\Data\ASR\Pump Tests\CRT\AQTEST\ASR\ASR Cooper.aqt

Date: 10/22/02 Time: 08:01:41

PROJECT INFORMATION

Company: Palm Beach County WUD

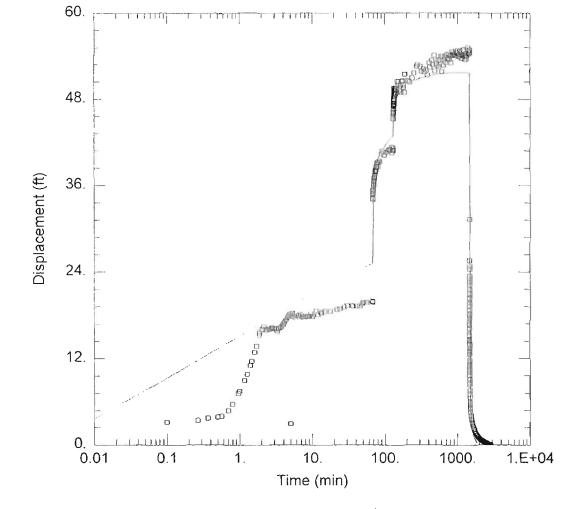
Project: 98-66B

Test Location: Hillsboro Canal

Test Well: ASR-1 Test Date: 4/30/02

AQUIFER DATA

Saturated Thickness: 225. ft Anisotropy Ratio (Kz/Kr): 1.


WELL DATA

Pump	Pumping Wells			Observation Wells		
Well Name	X (ft)	Y (ft)	Well Name	X (ft)	Y (ft)	
ASR-1	0	0	□ ASR-1	0	0	

SOLUTION

Aquifer Model: Confined Solution Method: Cooper-Jacob

T = 9.97E + 04 gal/day/ft S = 0.01263

Data Set: C:\...\ASR Hantush Jacob.aqt

Date: 10/22/02

Time: 08:01:58

PROJECT INFORMATION

Company: Palm Beach County WUD

Project: 98-66B

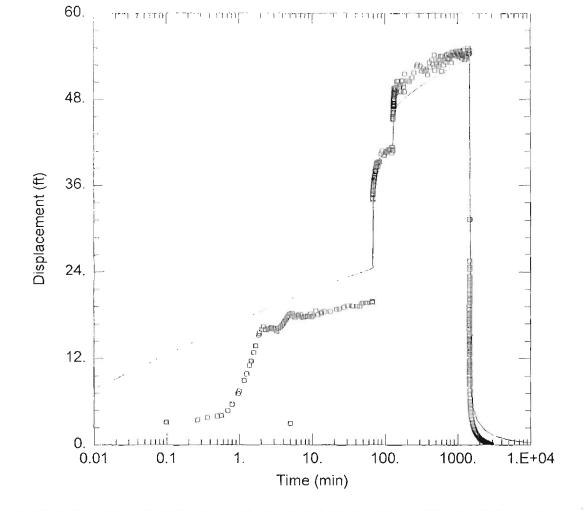
Test Location: Hillsboro Canal

Test Well: ASR-1 Test Date: 4/30/02

WELL DATA

Pumping Wells			Observation Wells			
Well Name	X (ft)	Y (ft)	Well Name	X (ft)	Y (ft)	
ASR-1	0	0	n ASR-1	0	0	

SOLUTION


Aquifer Model: Leaky

Solution Method: Hantush-Jacob

T = 8.067E + 04 gal/day/ft

S = 0.04527

r/B = 0.005322b = 225. ft Kz/Kr = 1.

Data Set: C:\...\ASR Hantush Leaky.aqt

Time: 08:01:22

PROJECT INFORMATION

Company: Palm Beach County WUD

Project: 98-66B

Date: 10/22/02

Test Location: Hillsboro Canal

Test Well: ASR-1 Test Date: 4/30/02

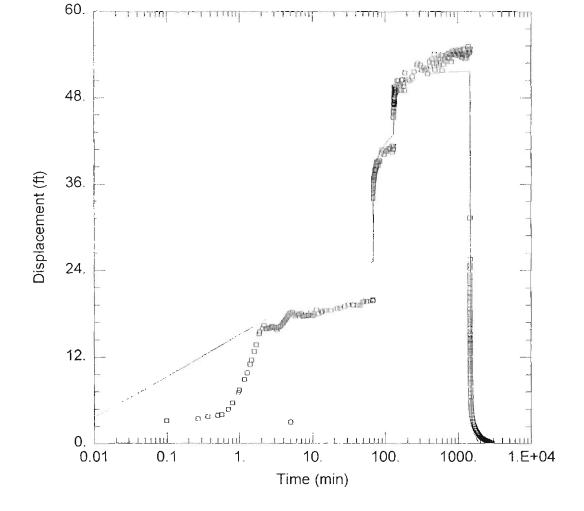
WELL DATA

Pumping vveils		Observation Wells				
Well Name	X (ft)	Y (ft)	Well Name	X (ft)	Y (ft)	
ASR-1	0	0	□ ASR-1	0	0	

SOLUTION

Aquifer Model: Leaky

Solution Method: Hantush


T = 9.809E + 04 gal/day/ft

S = 0.005053

S = 0.0008185

Kz/Kr = 1.

 $b = \overline{225. ft}$

Data Set: C:\TGU\Projects\Hillsboro ASR\Data\ASR\Pump Tests\CRT\AQTEST\ASR\ASR Hantush.aqt

Date: 10/22/02

Time: 08:02:29

PROJECT INFORMATION

Company: Palm Beach County WUD

Project: 98-66B

Test Location: Hillsboro Canal

Test Well: ASR-1 Test Date: 4/30/02

AQUIFER DATA

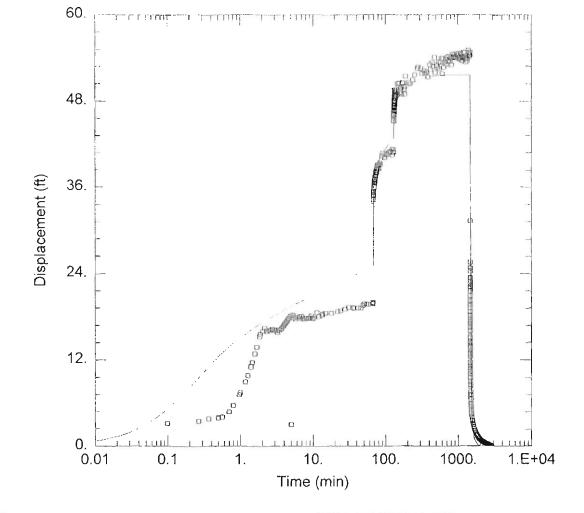
Saturated Thickness: 225. ft

Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Pumping Wells			Observation Wells			
Well Name	X (ft)	Y (ft)	Well Name	X (ft)	Y (ft)	
ASR-1	0	0	□ ASR-1	0	0	

SOLUTION


Aquifer Model: Confined

T = 8.067E+04 gal/day/ft

r/a = 0.005322

Solution Method: Hantush (Wedge)

S = 0.04527

Data Set: C:\TGU\Projects\Hillsboro ASR\Data\ASR\Pump Tests\CRT\AQTEST\ASR\ASR Moench.aqt

Date: 10/22/02

Time: 08:03:05

PROJECT INFORMATION

Company: Palm Beach County WUD

Project: 98-66B

Test Location: Hillsboro Canal

Test Well: ASR-1 Test Date: $\frac{ASR-1}{4/30/02}$

AQUIFER DATA

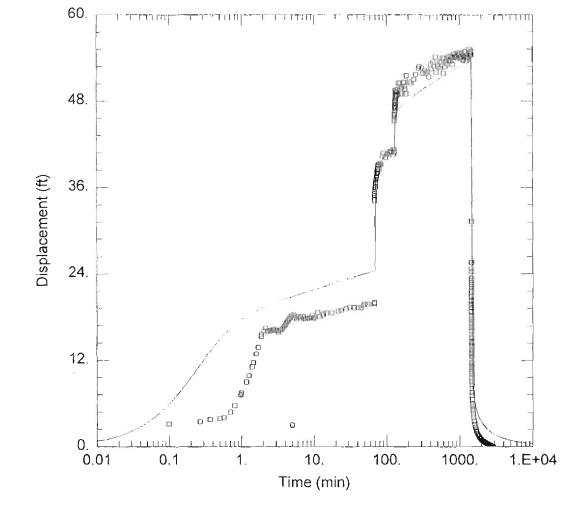
Saturated Thickness: 225. ft

Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Pumping Wells			Observation Wells				
X (ft)	Y (ft)	Well Name	X (ft)	Y (ft)			
0	0	□ ASR-1	0	0			
			X (ft) Y (ft) Well Name	X (ft) Y (ft) Well Name X (ft)			

SOLUTION


Aquifer Model: Leaky

T = 4.937E+04 gal/day/ft

r/B = 0.0004497Sw = -4.551 Solution Method: Moench (Case 1)

S = 7.094E-08S = 8.806

Rw = 0.0008762 ft

Data Set: C:\...\ASR Moench 2.aqt

Date: 10/22/02 Time: 08:02:49

PROJECT INFORMATION

Company: Palm Beach County WUD

Project: 98-66B

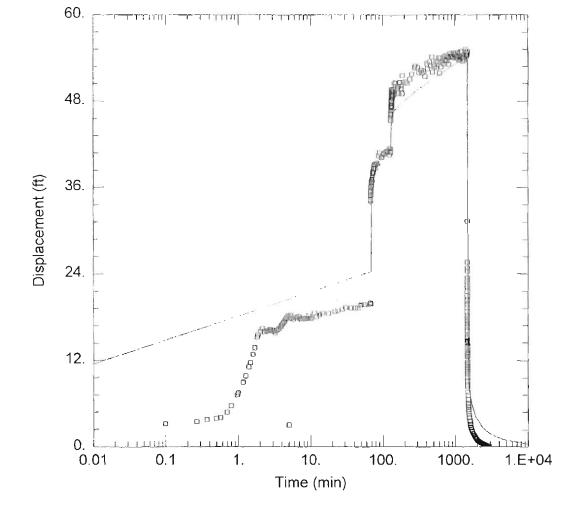
Test Location: Hillsboro Canal

Test Well: ASR-1 Test Date: 4/30/02

AQUIFER DATA

Saturated Thickness: 225. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA


Pumping Wells			Obs	servation Wells	
Well Name	X (ft)	Y (ft)	Well Name	X (ft)	Y (ft)
ASR-1	0	0	o ASR-1	0	0

SOLUTION

Aquifer Model: Leaky Solution Method: Moench (Case 2)

T = 7.685E+04 gal/day/ft S = 1.471E-07r/B = 1.004E-05 B = 9.291

Sw = -2.608 Rw = 0.00159 ft

Data Set: C:\TGU\Projects\Hillsboro ASR\Data\ASR\Pump Tests\CRT\AQTEST\ASR\ASR Neuman,aqt

Date: 10/22/02 Time: 08:03:23

PROJECT INFORMATION

Company: Palm Beach County WUD

Project: 98-66B

Test Location: Hillsboro Canal

Test Well: ASR-1 Test Date: 4/30/02

AQUIFER DATA

Saturated Thickness: 225. ft Anisotropy Ratio (Kz/Kr): 1.

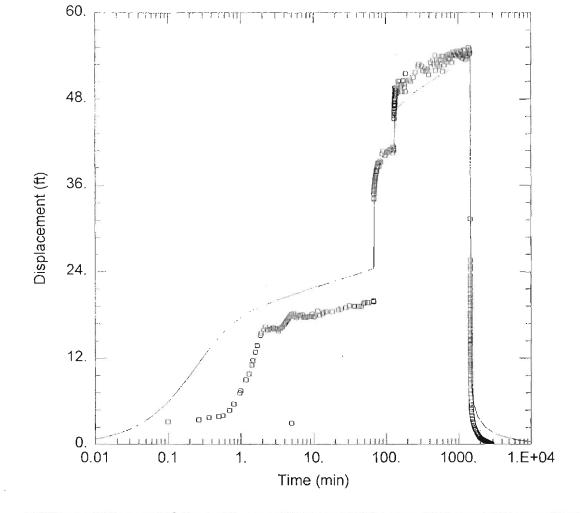
WELL DATA

Pumping Wells			Observation Wells			
Well Name	X (ft)	Y (ft)	Well Name	X (ft)	Y (ft)	
ASR-1	0	0	□ ASR-1	0	0	

SOLUTION

Aquifer Model: Leaky

T = 7.081E+04 gal/day/ft


r/B = 1.004E-05

T' = 1.077E + 09 gal/day/ft

Solution Method: Neuman-Witherspoon

S = 1.586E-07S = 5.426

S' = 1.E-10

Data Set: C:\TGU\Projects\Hillsboro ASR\Data\ASR\Pump Tests\CRT\AQTEST\ASR\ASR Papa.aqt

Date: 10/22/02 Time: 08:03:38

PROJECT INFORMATION

Company: Palm Beach County WUD

Project: 98-66B

Test Location: Hillsboro Canal

Test Well: ASR-1 Test Date: 4/30/02

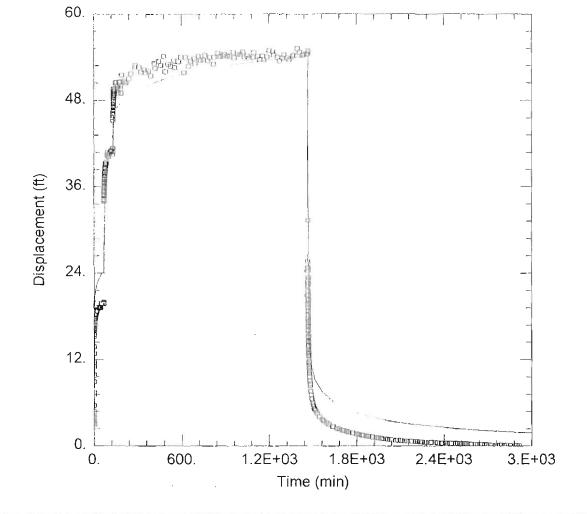
AQUIFER DATA

Saturated Thickness: 225. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Pumping Wells			Observation Wells			
Well Name	X (ft)	Y (ft)	Well Name	X (ft)	Y (ft)	
ASR-1	0	0	n ASR-1	0	0	

SOLUTION


Aquifer Model: Confined

Solution Method: Papadopulos-Cooper

T = 1.538E + 05 gal/day/ft

S = 0.03562

Rw = 0.02762 ft

Data Set: C:\TGU\Projects\Hillsboro ASR\Data\ASR\Pump Tests\CRT\AQTEST\ASR\ASR Theis.aqt

Date: 10/22/02 Time: 08:03:56

PROJECT INFORMATION

Company: Palm Beach County WUD

Project: 98-66B

Test Location: Hillsboro Canal

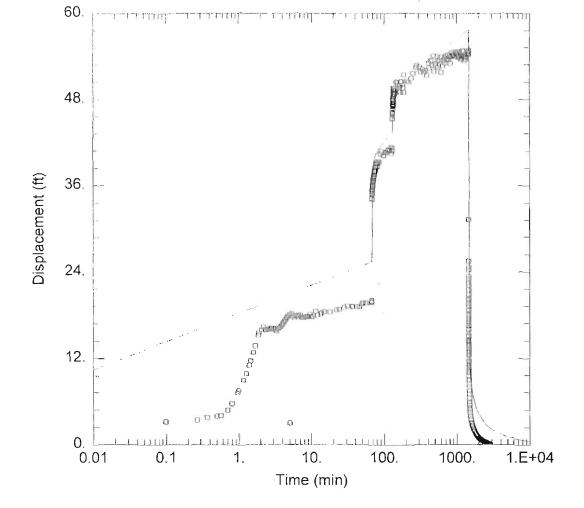
Test Well: ASR-1 Test Date: 4/30/02

WELL DATA

Pumping vveils			Observation vveils				
Well Name	X (ft)	Y (ft)	Well Name	X (ft)	Y (ft)		
ASR-1	0	0	□ ASR-1	0	0		

SOLUTION

Aquifer Model: Confined


Solution Method: Theis

T = 1.416E+05 gal/day/ft

S = 0.0001184

 $Kz/Kr = \overline{1}$

b = 225. ft

Data Set: C:\...\ASR TRM SRT.aqt

Date: 10/22/02

Time: 08:04:14

PROJECT INFORMATION

Company: Palm Beach County WUD

Project: 98-66B

Test Location: Hillsboro Canal

Test Well: ASR-1 Test Date: 4/30/02

AQUIFER DATA

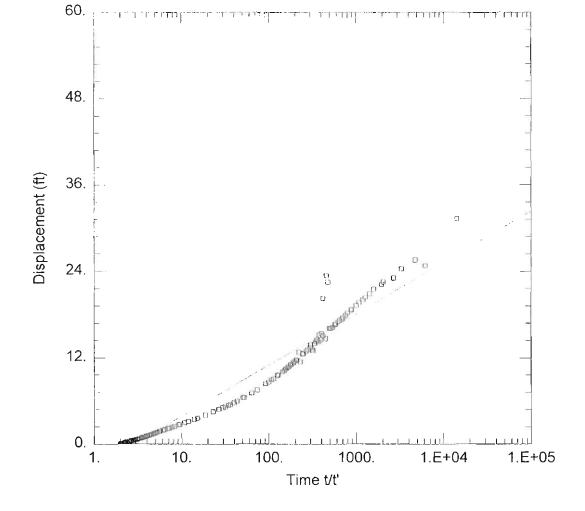
Saturated Thickness: 225. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Pumping Wells			Observation Wells			
Well Name	X (ft)	Y (ft)	Well Name	X (ft)	Y (ft)	
ASR-1	0	0	□ ASR-1	0	0	

SOLUTION

Aquifer Model: Confined


T = 1.213E+05 gal/day/ft

Sw = -0.9501

 $P = \frac{3}{3}$

Solution Method: Theis (Step Test)

S = 8.423E-05 $C = 0. min^2/ft^5$

Data Set: C:\TGU\Projects\Hillsboro ASR\Data\ASR\Pump Tests\CRT\AQTEST\ASR\ASR TRM.aqt

Date: 10/22/02

Time: 08:04:31

PROJECT INFORMATION

Company: Palm Beach County WUD

Project: 98-66B

Test Location: Hillsboro Canal

Test Well: ASR-1 Test Date: 4/30/02

AQUIFER DATA

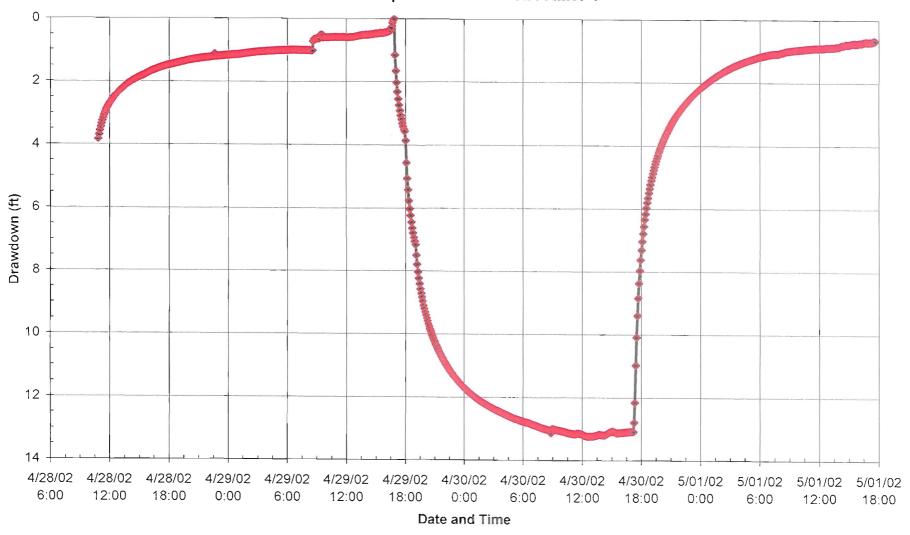
Saturated Thickness: 225. ft Anisotropy Ratio (Kz/Kr): 1.

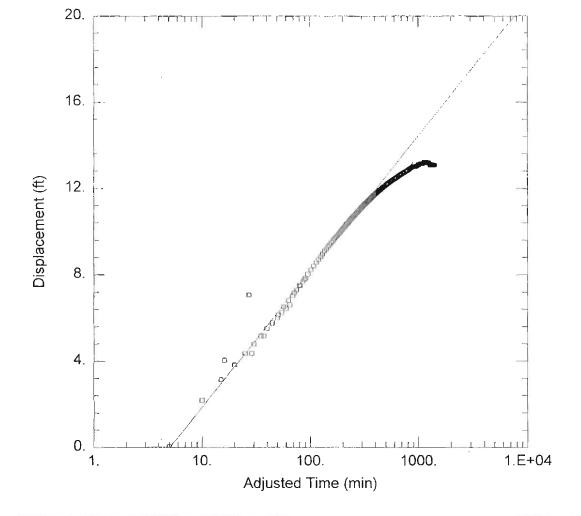
WELL DATA

 Pumping Wells
 Observation Wells

 Well Name
 X (ft)
 Y (ft)
 Well Name
 X (ft)
 Y (ft)

 ASR-1
 0
 0
 0
 0
 0


SOLUTION


Aquifer Model: Confined Solution Method: Theis (Recovery)

T = 1.261E+05 gal/day/ft S' = 2.859

Observation Well (FAMW)

Palm Beach County Water Utilities Department WTP No. 9 Eastern Hillsboro ASR Well 24-Hour Constant-Rate Pumping Test Floridan Aquifer Monitor Well FAMW-1

Data Set: C:\...\FAMW Cooper 2.aqt

Date: 10/22/02 Time: 08:11:22

PROJECT INFORMATION

Company: Palm Beach County WUD

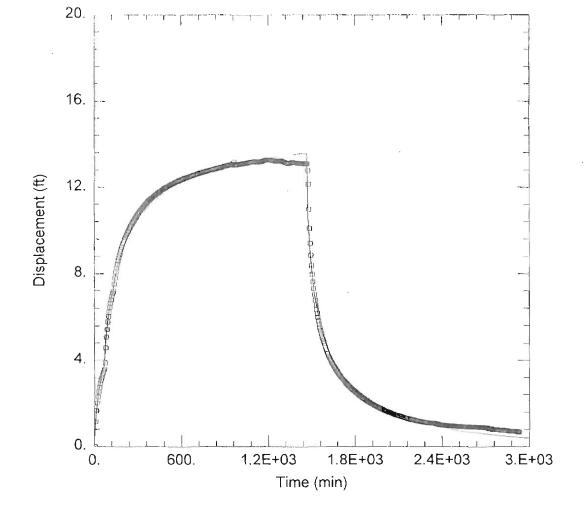
Project: 98-66B

Test Location: Hillsboro Canal.

Test Well: ASR-1 Test Date: 4/30/02

AQUIFER DATA

Saturated Thickness: 225. ft Anisotropy Ratio (Kz/Kr): 1.


WELL DATA

Pumping Wells		Observation Wells				
Well Name	X (ft)	Y (ft)	Well Name	X (ft)	Y (ft)	
ASR-1_	0	0	□ FAMW-1	758	0	

SOLUTION

Aquifer Model: Confined Solution Method: Cooper-Jacob

T = 1.426E+05 gal/day/ft S = 0.0002622

Data Set: C:\...\FAMW Hantush Jacob 2.aqt

Date: 10/22/02 Time: 08:13:13

PROJECT INFORMATION

Company: Palm Beach County WUD

Project: 98-66B

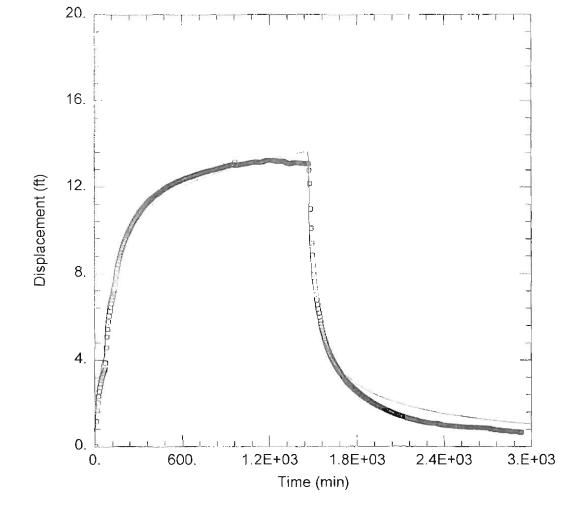
Test Location: Hillsboro Canal

Test Well: ASR-1 Test Date: 4/30/02

WELL DATA

Pumping Wells			Observation Wells		
Well Name	X (ft)	Y (ft)	Well Name	X (ft)	Y (ft)
ASR-1	0	0	□ FAMW-1	758	0

SOLUTION


Aquifer Model: Leaky

Solution Method: Hantush-Jacob

T = $\frac{1.327E+05}{0.1023}$ gal/day/ft r/B = $\frac{0.1023}{0.1023}$ S = 0.0002928

b = $\frac{0.1028}{225}$. ft

Kz/Kr = 1.

Data Set: C:\...\FAMW Hantush Leaky.aqt

Date: 10/22/02 Time: 08:14:59

PROJECT INFORMATION

Company: Palm Beach County WUD

Project: 98-66B

Test Location: Hillsboro Canal

Test Well: ASR-1 Test Date: 4/30/02

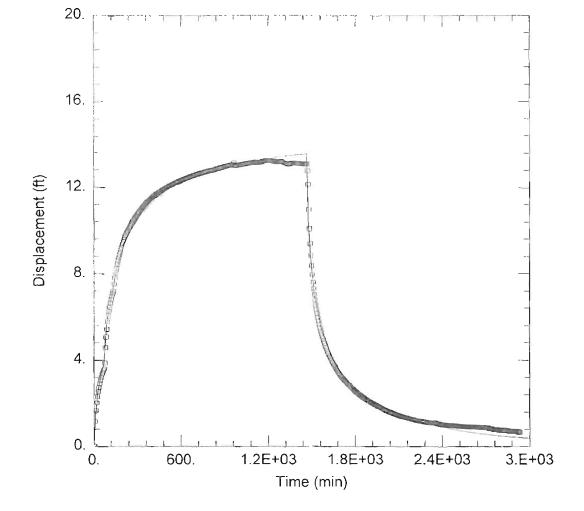
WELL DATA

Pumping vveils			Observation vveils				
Well Name	X (ft)	Y (ft)	Well Name	X (ft)	Y (ft)		
ASR-1	0	0	□ FAMW-1	758	0		

SOLUTION

Aquifer Model: Leaky

T = 1.469E+05 gal/day/ft


 $\varsigma = \overline{0.0304}$

o = 225. ft

Solution Method: Hantush

S = 0.0001292

 $Kz/Kr = \overline{1}$.

Data Set: C:\...\FAMW Hantush 2.aqt

Date: 10/22/02

Time: 08:12:42

PROJECT INFORMATION

Company: Palm Beach County WUD

Project: 98-66B

Test Location: Hillsboro Canal

Test Well: ASR-1 Test Date: 4/30/02

AQUIFER DATA

Saturated Thickness: 225. ft

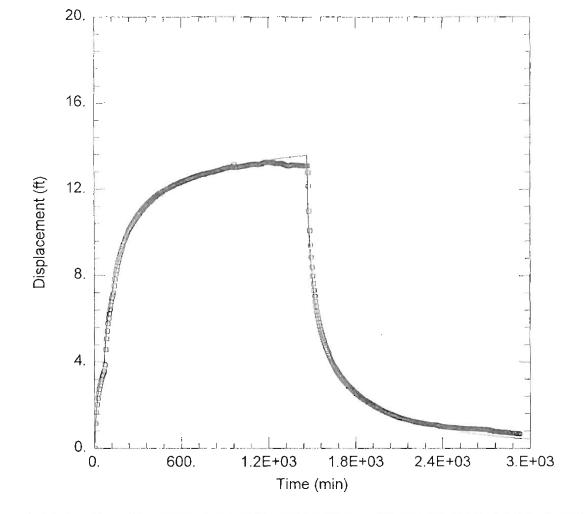
Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

	F	Pumping Wells	1	
Well N	lame	X (ft)	Y (ft)	Well Na
ASR-		0	0	□ FAMV

Well Name	,]	X (ft)	Y (ft)
□ FAMW-1		758	0

Observation Wells


SOLUTION

Aquifer Model: Confined

Solution Method: Hantush (Wedge) T = 1.47E+05 gal/day/ft

r/a = 0.1022

S = 0.0003242

Data Set: C:\...\FAMW Moench.aqt

Date: 10/22/02 Time: 08:16:32

PROJECT INFORMATION

Company: Palm Beach County WUD

Project: 98-66B

Test Location: Hillsboro Canal

Test Well: ASR-1 Test Date: 4/30/02

AQUIFER DATA

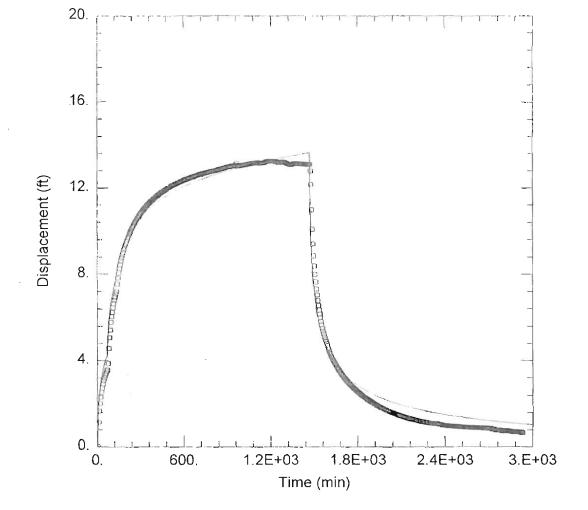
Saturated Thickness: 225. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Pumping vveils			Observation Wells		
Well Name	X (ft)	Y (ft)	Well Name	X (ft)	Y (ft)
ASR-1	0	0	□ FAMW-1	758	0

SOLUTION

Aquifer Model: Leaky


T = 1.438E+05 gal/day/ft

r/B = 0.08219

 $Sw = \overline{10}$.

Solution Method: Moench (Case 1)

S = 0.0002311 B = 0.002387RW = 1.E-05 ft

Data Set: C:\...\FAMW Moench 2.aqt

Date: 10/22/02 Time: 08:16:03

PROJECT INFORMATION

Company: Palm Beach County WUD

Project: 98-66B

Test Location: Hillsboro Canal

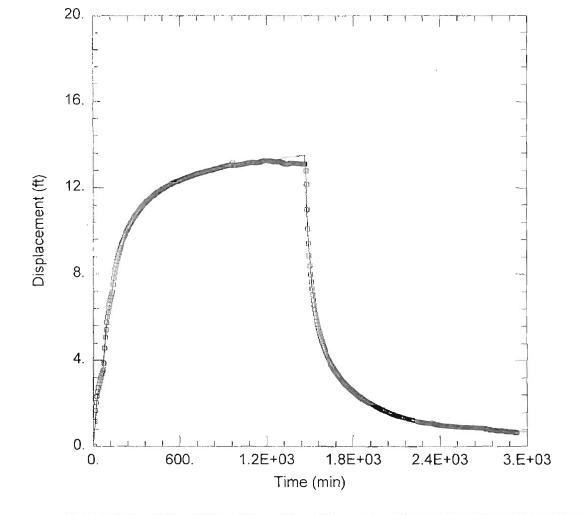
Test Well: ASR-1 Test Date: 4/30/02

AQUIFER DATA

Saturated Thickness: 225. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Pumping Wells			Observation Wells		
Well Name	X (ft)	Y (ft)	Well Name	X (ft)	Y (ft)
ASR-1	0	0	□ FAMW-1	758	0


SOLUTION

Aquifer Model: Leaky

T = 1.481E+05 gal/day/ft

r/B = 0.03472Sw = 10. Solution Method: Moench (Case 2)

S = 0.0001173 B = 0.03167RW = 1.E-05 ft

Data Set: C:\...\FAMW Neuman 3.aqt

Date: 10/22/02

D2 Time: 08:17:27

PROJECT INFORMATION

Company: Palm Beach County WUD

Project: 98-66B

Test Location: Hillsboro Canal

Test Well: ASR-1 Test Date: 4/30/02

AQUIFER DATA

Saturated Thickness: 225. ft

Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Pumping Wells		
Well Name	X (ft)	Y (ft)
ASR-1	0	0

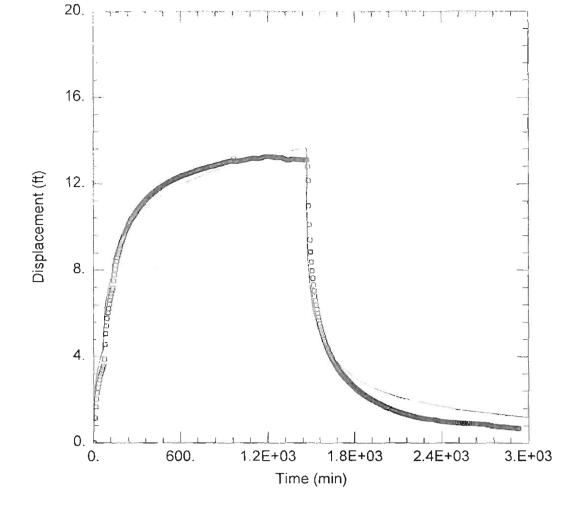
Well Name	X (ft)	Y (ft)
□ FAMW-1	758	0

Observation Wells

SOLUTION

Aquifer Model: Leaky

T = 1.015E+05 gal/day/ft


r/B = 0.2216

T' = 2.604E + 05 gal/day/ft

Solution Method: Neuman-Witherspoon

S = 0.0004049S = 0.001206

S' = 0.001127

Data Set: C:\...\FAMW PAPA 2.aqt

Date: 10/22/02

Time: 08:18:25

PROJECT INFORMATION

Company: Palm Beach County WUD

Project: 98-66B

Test Location: Hillsboro Canal

Test Well: ASR-1 Test Date: 4/30/02

AQUIFER DATA

Saturated Thickness: 225. ft

Anisotropy Ratio (Kz/Kr): 1.

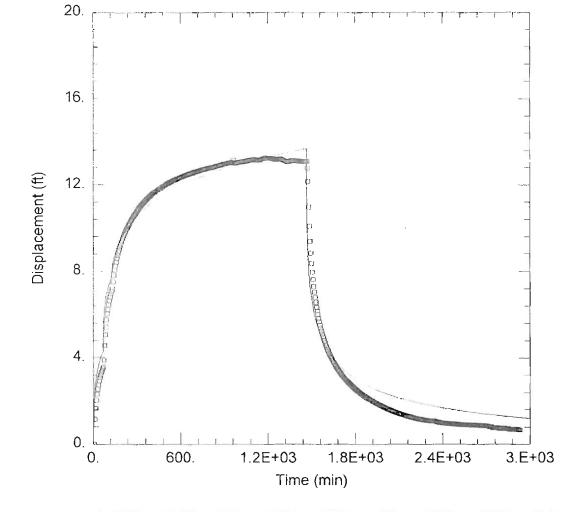
WELL DATA

PL PL	imping Wells		
Well Name	X (ft)	Y (ft)	Well
ASR-1	0	0	□ FA

Well Name	X (ft)	Y (ft)
□ FAMW-1	758	0

Observation Wells

SOLUTION


Aquifer Model: Confined

T = 2.141E+05 gal/day/ft

Rw = 1.E-05 ft

Solution Method: Papadopulos-Cooper

S = 6.067E-05

CONSTANT RATE PUMPING TEST

Data Set: C:\...\FAMW Theis 2.aqt

Date: 10/22/02 Time: 08:19:33

PROJECT INFORMATION

Company: Palm Beach County WUD

Project: 98-66B

Test Location: Hillsboro Canal

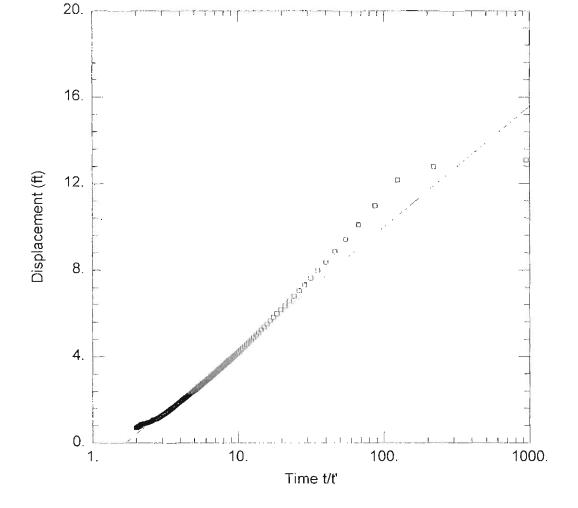
Test Well: ASR-1 Test Date: 4/30/02

WELL DATA

P	umping vveils		Ob	Observation Wells		
Well Name	X (ft)	Y (ft)	Well Name	X (ft)	Y (ft)	
ASR-1	0	0	□ FAMW-1	758	0	

SOLUTION

Aquifer Model: Confined


Solution Method: Theis

T = 2.132E + 05 gal/day/ft

S = 6.223E-05

 $Kz/Kr = \overline{1}$.

 $b = \overline{225. ft}$

CONSTANT RATE PUMPING TEST

Data Set: C:\...\FAMW TRM.aqt

Date: 10/22/02

Time: 08:20:24

PROJECT INFORMATION

Company: Palm Beach County WUD

Project: 98-66B

Well Name

ASR-1

Test Location: Hillsboro Canal

Test Well: ASR-1 Test Date: 4/30/02

AQUIFER DATA

Saturated Thickness: 225. ft

Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Pumping Wells

X (ft)
Y (ft)
0
0

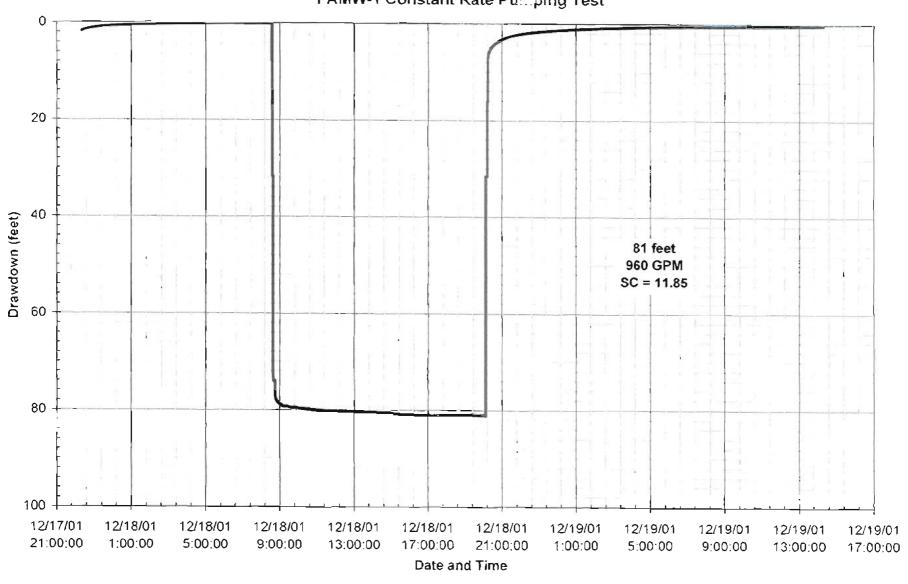
 Well Name
 X (ft)
 Y (ft)

 □ FAMW-1
 758
 0

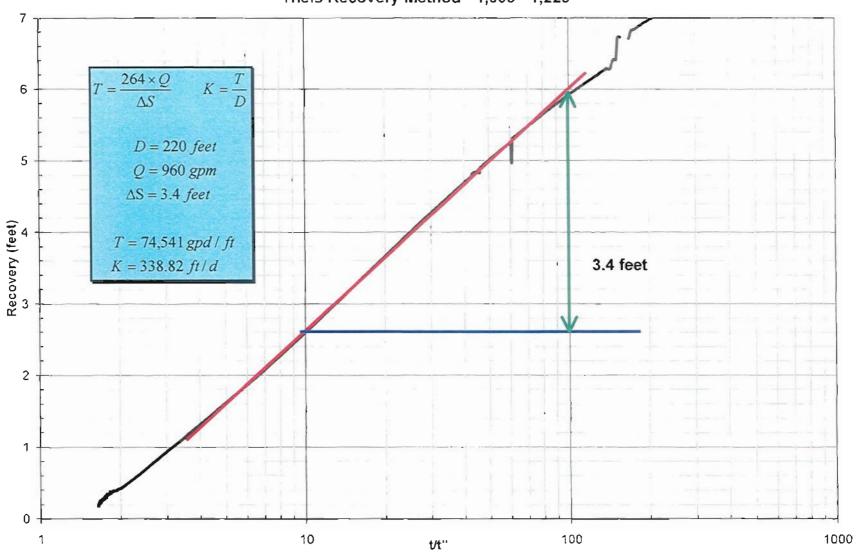
Observation Wells

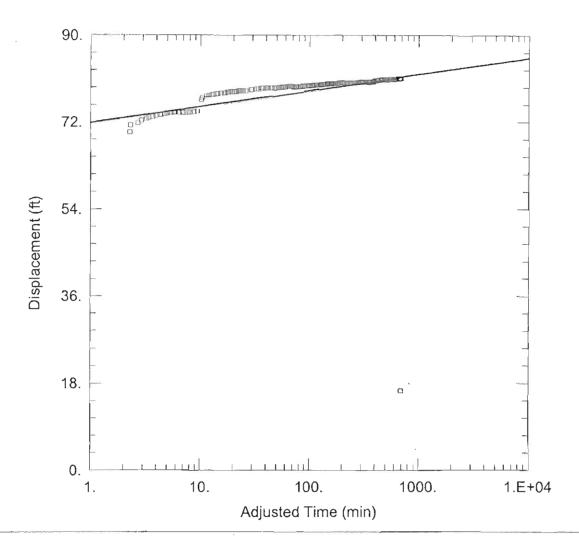
SOLUTION

Aquifer Model: Confined


Solution Method: Theis (Recovery)

T = 1.599E + 05 gal/day/ft


S' = 1.674


Pumping Well (FAMW)

Palm Beach County Water Utilities Department FAMW-1 Constant Rate Pumping Test

Palm Beach County Water Utilities Department FAMW-1 Constant Rate Pumping Test Theis Recovery Method - 1,005 - 1,225

Data Set: C:\TGU\Projects\Hillsboro ASR\Data\FAMW\Pump Tests\CRT\Agtest\Cooper.aqt

Date: 02/28/03 Time: 11:14:02

PROJECT INFORMATION

Company: PAlm Beach County WUD

Client: Palm Beach County

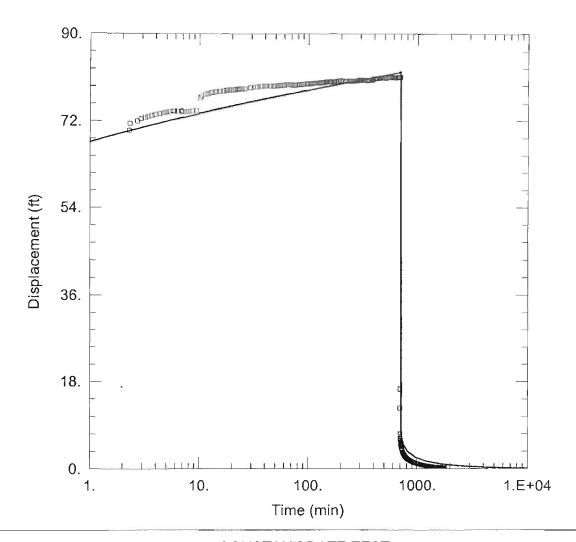
Project: 98-66B

Test Location: Hillsboro Canal

Test Well: FAMW-1 Test Date: 12/18/01

AQUIFER DATA

Saturated Thickness: 220. ft Anisotropy Ratio (Kz/Kr): 1.


WELL DATA

Pui	umping Wells Observation Wells				
Well Name	X (ft)	Y (ft)	Well Name	X (ft)	Y (ft)
FAMW-1	0	0	□ FAMW-1	0	0 .

SOLUTION

Aquifer Model: Confined Solution Method: Cooper-Jacob

T = 7.583E + 04 gal/day/ft S = 1.903E - 20

Data Set: C:\TGU\Projects\Hillsboro ASR\Data\FAMW\Pump Tests\CRT\Aqtest\Hantush.aqt

Date: 02/28/03 Time: 11:24:34

PROJECT INFORMATION

Company: PAlm Beach County WUD

Client: Palm Beach County

Project: 98-66B

Test Location: Hillsboro Canal

Test Well: FAMW-1 Test Date: 12/18/01

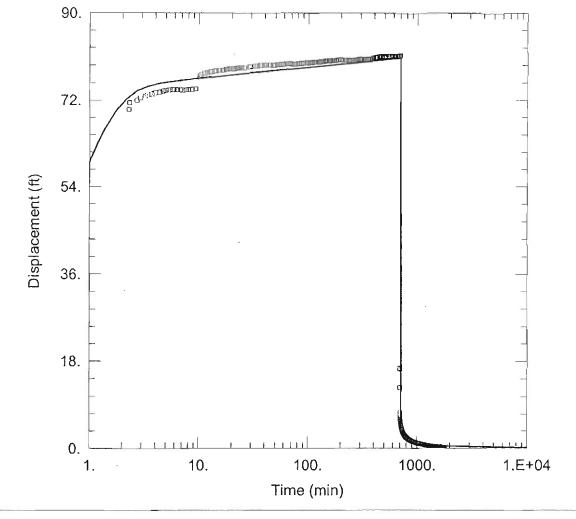
WELL DATA

Pumping Wells			Observation Wells		
Well Name	X (ft)	Y (ft)	Well Name	X (ft)	Y (ft)
FAMW-1	0	0	□ FAMW-1	Ó	0

SOLUTION

Aquifer Model: Leaky

T = 3.127E+04 gal/day/ft


 $\beta = 1.E-05$

b = $\frac{112.50}{220. \text{ ft}}$

Solution Method: Hantush

= 7.315E-08

Kz/Kr = 1.

Data Set: C:\TGU\Projects\Hillsboro ASR\Data\FAMW\Pump Tests\CRT\Agtest\Moench.aqt

Date: 02/28/03 Time: 11:33:21

PROJECT INFORMATION

Company: PAlm Beach County WUD

Client: Palm Beach County

Project: 98-66B

Test Location: Hillsboro Canal

Test Well: FAMW-1
Test Date: 12/18/01

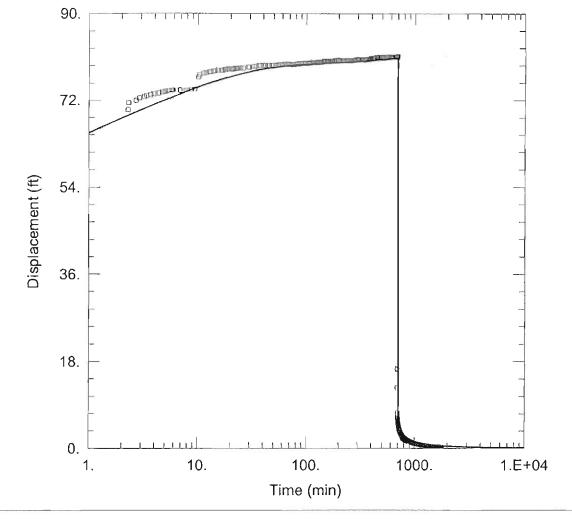
AQUIFER DATA

Saturated Thickness: 220. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

	Pumping Wells		Observation Wells		
Well Name	X (ft)	Y (ft)	Well Name	X (ft)	Y (ft)
FAMW-1	0	0	□ FAMW-1	0	0

SOLUTION


Aquifer Model: Leaky

Sw = 10.

Solution Method: Moench (Case 2)

T = 5.801E+04 gal/day/ft r/B = 1.E-05

S = 4.698E-07 S = 0.5481Rw = 1.152E-05 ft

Data Set: C:\TGU\Projects\Hillsboro ASR\Data\FAMW\Pump Tests\CRT\Aqtest\Neuman.aqt

Date: 02/28/03 Time: 11:35:39

PROJECT INFORMATION

Company: PAlm Beach County WUD

Client: Palm Beach County

Project: 98-66B

Test Location: Hillsboro Canal

Test Well: FAMW-1 Test Date: 12/18/01

AQUIFER DATA

Saturated Thickness: 220. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

P	umping Wells		Observation Wells		
Well Name	X (ft)	Y (ft)	Well Name	X (ft)	Y (ft)
FAMW-1	0	0	□ FAMW-1	Ō	0

SOLUTION

Aquifer Model: Leaky Solution Method: Neuman-Witherspoon

T = 2.428E+04 gal/day/ft S = 1.101E-05 R = 1.101E-05

T' = $\overline{6.815E+04}$ gal/day/ft S' = $\overline{0.0002725}$

Data Set: C:\TGU\Projects\Hillsboro ASR\Data\FAMW\Pump Tests\CRT\Aqtest\Papa.aqt

Date: 02/28/03 Time: 11:37:06

PROJECT INFORMATION

Company: PAIm Beach County WUD

Client: Palm Beach County

Project: 98-66B

Test Location: Hillsboro Canal

Test Well: FAMW-1 Test Date: 12/18/01

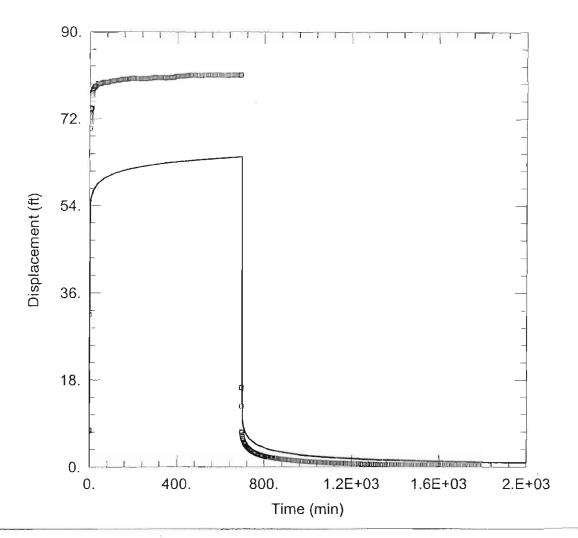
AQUIFER DATA

Saturated Thickness: <u>220.</u> ft Anisotropy Ratio (Kz/Kr): <u>1.</u>

WELL DATA

	Pumping Wells		Obs	Observation Wells		
Well Name	X (ft)	Y (ft)	Well Name	X (ft)	Y (ft)	
FAMW-1	0	0	□ FAMW-1	0	0	

SOLUTION


Aquifer Model: Confined

Solution Method: Papadopulos-Cooper

T = 8.684E + 04 gal/day/ft

S = 1.E-10

Rw = 1.E-05 ft

Data Set: C:\TGU\Projects\Hillsboro ASR\Data\FAMW\Pump Tests\CRT\Agtest\Theis.agt

Date: 02/28/03 Time: 11:25:23

PROJECT INFORMATION

Company: PAlm Beach County WUD

Client: Palm Beach County

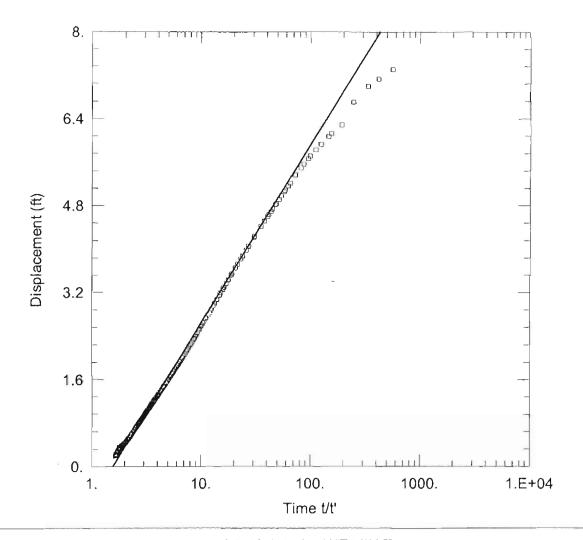
Project: 98-66B

Test Location: Hillsboro Canal

Test Well: FAMW-1 Test Date: 12/18/01

WELL DATA

) _ F	Pumping Wells			Observation Wells	
Well Name	X (ft)	Y (ft)	Well Name	X (ft)	Y (ft)
FAMW-1	0	0	□ FAMW-1	0	0


SOLUTION

Aquifer Model: Confined

Solution Method: Theis

T = 5.731E+04 gal/day/ft Kz/Kr = 1.

S = 1.E-10b = 220. ft

Data Set: C:\TGU\Projects\Hillsboro ASR\Data\FAMW\Pump Tests\CRT\Agtest\TRM.agt

Date: 02/28/03 Time: 11:25:35

PROJECT INFORMATION

Company: PAlm Beach County WUD

Client: Palm Beach County

Project: 98-66B

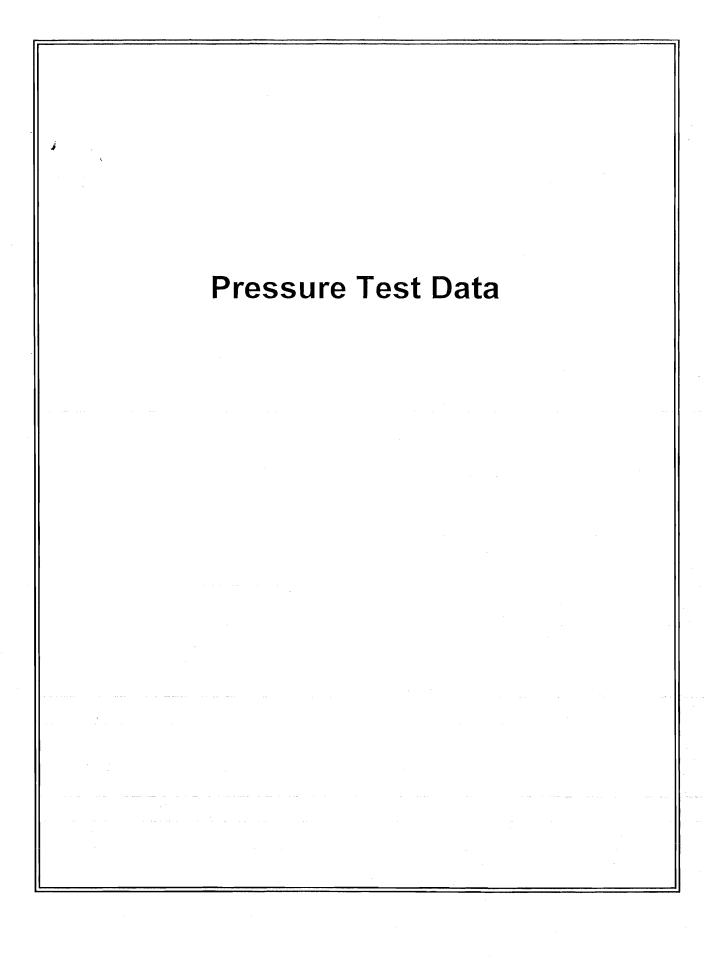
Test Location: Hillsboro Canal

Test Well: FAMW-1
Test Date: 12/18/01

AQUIFER DATA

Saturated Thickness: 220. ft

Anisotropy Ratio (Kz/Kr): 1.


WELL DATA

Pumpin	g Wells		Obs		
Well Name	X (ft)	Y (ft)	Well Name	X (ft)	Y (ft)
FAMW-1	0	0	□ FAMW-1	0	0

SOLUTION

Aquifer Model: Confined Solution Method: Theis (Recovery)

T = 7.727E + 04 gal/day/ft S' = 1.568

ASR Well

APPENDIX

INJECTION WELL PRESSURE TEST 24" FINAL CASING

Location: Well:

Palm Beach County

Hillsboro ASR

Date:

February 4, 2002

Contractor:

Haskel Corp.

	Casing	Packer		Casing	Packer
Time	Pressure	Pressure	Time	Pressure	Pressure
40.00	440.0				
12:30	149.0				
12:35	149.0				
12:40	148.5				
12:45	148.2				
12:50	148.0				
12:55	148.0				
13:00	148.0				
13:05	147.8				
13:10	147.5				
13:15	147.5				
13:20	147.2				
13:25	147.0				
13:30	147.0				
10.00					

Witnessed By:

Pressure Decrease:

Certified By: Homon A- Ulow Thomas G. Uram, P.G., Hydrologist

1.34%

Water Needed For Pressure Test

Volume from the Compressability of Water	
K = Bulk Modulus of Elasticity (compressability of water)	320000
dP = Test Pressure Wt = Wall Thickness Dod - OD of Casing h = length of casing to be tested	150 0.5 24, 975
dV = Change in Volume of 1 cubic foot of Water	0.0004688
Vid = Volume of Water Inside the Casing	2813.12
Vc = Volume Change	1.32
Vcg = Volume Change in Gallons	9.86
Volume from the Stretching of the Casing	
Ks = Elasticity of Steel	30000000
q = Outward Stress due to Internal Pressure	3600
s = Resulting Strain	0.0001200
Ci = Initial Circumference	75.40
Cf = Final Circumference	75.41
Dn = New Casing Diameter	24.00
Vi = Initial Casing Volume	3063.05
Vf = Final Casing Volume	3063.79
V = Casing Volume Change	0.74
Vg = Casing Volume Change in Gallons	5.50

15.36

Total Volume of Water Needed

Test Report No.: T0332.123

CERTIFICATION OF ACCURACY

H. O. Trerice Co. 12950 W, 8 Mile Rd. Oak Park, MI 48237-3288 Phone: (248) 399-8000

Customer.	Steven C. Underwoo	d	_		This instrument has been B40.1 against a calibra National Institute of Standa	tion standa	ard traceab	le to the
Customer Order No.:	Verbal (Tom Uram)		_		Caliabration Standard:	Heise 3	0"-200 PS	31
Trerice Order No.:	707824				Serial No.:	CMM 22	2778	
					Test Report No.:			
Temperature:	79 F		_		NIST Test Report No.:			
Humidity:	N/A		_					
Instrument Make:	Trerice		_					
Model & Size:	D82LFB 2.5"							
Serial No.:	G1610							
Stated Accuracy:	% of Full Scale +/-	1.50%						
Range:	PSI	0	160					
	Unit of Measure	Low	High					
CALIBRATION	l personal de la companya de la comp	STEDIN	ISTRUME	NT FINA	AL CALIBRATION RE	ADINGS		
STANDARD	UP SCALE	DEVIA'	TION from S		DOWN SCALE	DEVIAT	10N from S	
READING	READING	PSI	% of Full Scale	Disposition PASS 1 FAIL	READING	PSI	% of Full Scale	Disposition PASS / FAIL
120.0	118.0	-2.0	-1.25%	PASS	118.0	-2.0	-1.25%	PASS
130.0	128.0	-2.0	-1.25%	PASS	128.0	-2.0	-1.25%	PASS
140.0	138.0	-2.0	-1.25%	PASS	138.0	-2.0	-1.25%	PASS
150.0	148.0	-2.0	-1.25%	PASS	148.0	-2.0	-1.25%	PASS
160.0	158.0	-2.0	-1.25%	PASS	158.0	-2.0	-1.25%	PASS
			-					
CAUTION TO USERS:		standard (urate during shipment despi ument was manufactured, it			
ypist Myn	Test Performed by:	Gerald	Marzette			Date:	02/07/02	
Proofed:	Test Supervisor.	John B	ieniek			Date:	02/07/02	

FAMW

APPENDIX

MONITOR WELL PRESSURE TEST 6 5/8" FINAL CASING

Location: Well:

Palm Beach County Hillsboro FAMW Date:

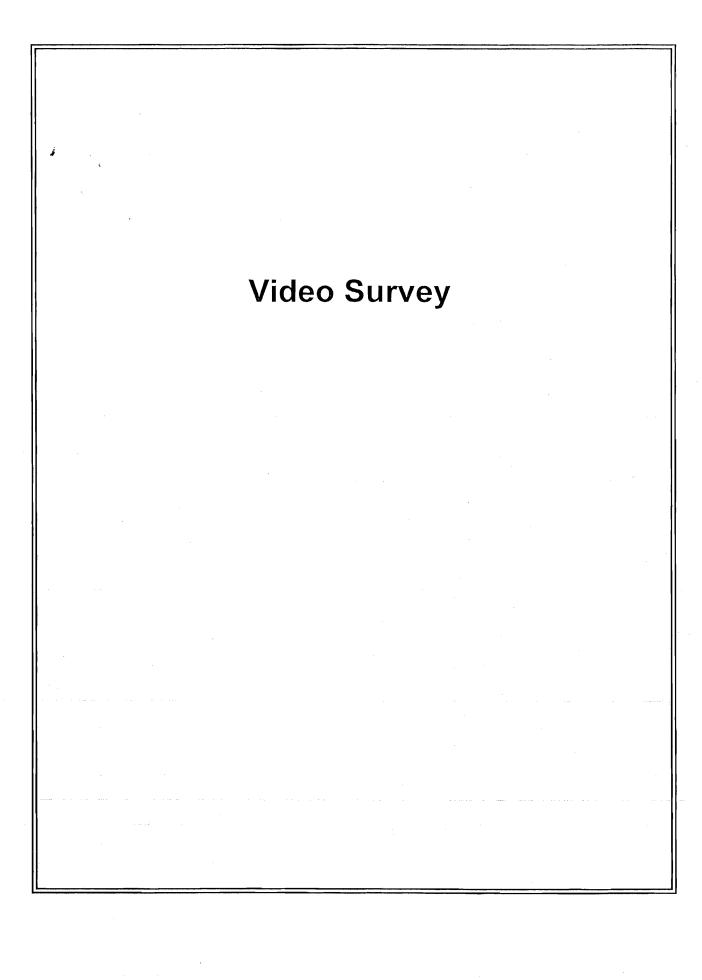
April 6, 2002

Contractor:

Haskel Corp.

Time Pressure Time Pressure 8:10 151.0 8:15 150.7 8:20 150.6 230 8:25 150.4 8:30 150.3 8:35 149.0 8:40 149.0	
8:15	
8:20	
8:25	
8:30 150.3 8:35 149.0	
8:35 149.0	
8:40 149.0	
8:45 148.0 223	
8:50 148.0	
8:55 147.8 220	
9:00 147.5	
9:05 147.4	
9:10 147.2 215	

Witnessed By: NA


Dan Phelps, P.G., FDEP

Pressure Decrease:

2.52%

Certified By:

Thomas G. Uram, P.G., Hydrologist

ASR Well

ASR VIDEO SURVEY

PR	0	JE	CT	•	HI	LL	.SB	0	R	0	ASR
----	---	----	----	---	----	----	-----	---	---	---	------------

WUD Project No.:

98-66B

CONTRACTOR:

Haskel Corp.

PROJECT MANAGER:

Brandon Selle

VIDEO CONTRACTOR:

MV Geophysical

DESCRIPTION OF OPERATIONS: Open Hole Video Log **TOTAL DEPTH:** 1,213

DEPTH	IN FEET	
From	То	OBSERVATIONS
1010		Bottom of casing - good cement at casing bottom.
1030		Enlarged borehole
1045	1055	Very rugose - numerous fossils
1058		Formation change - bedding plane
1060	1070	Very vuggular - rugose hole
1108		Laminations
1125		Formation change
1130		Formation change - numerous vugs
1144		Vugular.
1146		Gray banding - bedding plane
1148		Vugular.
1155	1174	Vuggy.
1175	1183	Very vuggular - rugose hole
1184	1191	Very vuggular - rugose hole
1198		Large vugs
1199		Bedding plane
1199	1213	Chalky white appearance - smooth hole
1213		Cloudy water - stop down log

ASR VIDEO SURVEY

DATE(S): _____ 27-Apr-02

PROJECT: HILLSBORO ASR

WUD Project No.: 98

98-66B

CONTRACTOR:

Haskel Corp.

PROJECT MANAGER:

Brandon Selle

VIDEO CONTRACTOR:

TOTAL DEPTH:

MV Geophysical

1,225

DESCRIPTION OF OPERATIONS:

Final Video Log - Post acid

DEPTH	IN FEET	
From	То	OBSERVATIONS
0		Ground Level
27		Casing joint
47		Casing joint
87		Casing joint
96		Casing joint
126		Casing joint
168		Casing joint
210		Casing joint .
250		Casing joint
291		Casing joint
330		Casing joint
370		Casing joint
410		Casing joint
450		Casing joint
490		Casing joint
530	÷	Casing joint
570		Casing joint
610		Casing joint
650		Casing joint
690		Casing joint
730		Casing joint
770		Casing joint

	T	
810		Casing joint
850		Casing joint
890		Casing joint
931		Casing joint
971		Casing joint
1010		Bottom of casing - good cement at casing bottom.
1011	1020	Formation gray/white, vuggy.
1020	1042	Formation white, chalky, slightly rugose.
1042	1058	Very vuggy with large holes.
1058		Gray limestone ring with vugs.
1061	1104	Formation change, white/chalky, smooth gauge hole, tight.
1069	1069	Vuggy.
1104		Formation change, buff colored, rougher hole.
1108		Tan ring.
1112		Tan ring.
1114	-	Increase in vugs.
1118		Increase in rugosity.
1118	1122	White/chalky, gauge hole.
1122	1124	Vugs.
1125	1142	White/chalky, gauge hole.
1128	1130	Vugs.
1132		Vuggy ring.
1136		Vuggy ring.
1139		Vuggy ring.
1142		Formation change, layers of tan to brown limestone within white/chalky limestone.
		Layers at 1142 - 1143 1167 - 1168
		1147 Large vugs. 1169 Vugs
		1158 - 1159 1170
		1161 1173
		1163 - 1165
1174		Vugs.
1176		Vuggy and rugose.
1178		Bedding plane.
1190		Vuggy and rugose, water cloudy.
1225		Bottom of hole

FAMW VIDEO SURVEY

P	R	0	J	E	C	T	:	HI	LL	.S	B	0	R	0	A	S	R
---	---	---	---	---	---	---	---	----	----	----	---	---	---	---	---	---	---

WUD Project No.:

98-66B

CONTRACTOR:

Haskel Corp.

PROJECT MANAGER:

Brandon Selle

VIDEO CONTRACTOR:

MV Geophysical

TOTAL DEPTH:

1,628

DESCRIPTION OF OPERATIONS: Open Hole Video Log

DEPTH	IN FEET	
From	То	OBSERVATIONS
1002		Bottom of casing - good cement at casing bottom.
1010		Secondary porosity - vugs and fossil casts and molds visible.
1015		Oval hole - looks to be a dual hole.
1056		Vugular.
1060		Washout.
1073		Minor vugs.
1090		Slight washout.
1095		Vuggy.
1100		Increasing in gray colored limestone.
1128		Fracture.
1137	1145	Numerous vugs - rugose hole.
1142		White and chalky looking.
1145	1155	Numerous vugs.
1170	1178	Numerous vugs - rugose hole.
1188	1200	Numerous vugs - rugose hole - increase in gray limestone.
1214		Laminations.
1240		Rugose hole - more vugs.
1243		Laminations.
1260		Formation appears tighter - decrease in vuggy texture.
1275		Laminations.
1323		Washout.
1335		Vugs.

1400	1404	Laminations.
1409		Thin gray limestone beds.
1412		Unconformity with thin laminations.
1422		Formation change - unconformity.
1424	1450	Layers of gray limestone and buff colored limestone.
1455		Laminations.
1456	1460	Layers of gray limestone and buff colored limestone - 1/2 foot intervals.
1460	1462	Laminations.
1464		Bands of gray limestone - laminations.
1485		Bands of gray limestone - appears to be an unconformity.
1488		Bands of gray limestone.
1500		Bands of gray limestone.
1515		Bands of gray limestone - appears to be an unconformity.
1518		
1525	1530	Laminations and bands of gray limestone.
1538	_	Bands of gray limestone.
1546		Bands of gray limestone.
1551		Bands of gray limestone.
1553		Bands of gray limestone.
1557		Laminations.
1564		Bands of gray limestone.
1566		Bands of gray limestone.
1568		
1594		Laminations.
1598		Fracture.
1615		Formation change - mainly buff colored limestone.
1625		Increasing in gray colored limestone.
1628		Bottom of borehole - fill.
	· <u> </u>	
4		

FAMW VIDEO SURVEY

DATE(S):	19-Apr-02

HILLSBORO ASR PROJECT:

WUD Project No.:

98-66B

CONTRACTOR:

Haskel Corp.

PROJECT MANAGER:

Brandon Selle

VIDEO CONTRACTOR:

MV Geophysical

DESCRIPTION OF OPERATIONS:

TOTAL DEPTH:

1,230

Final Video Log

DEPTH	N FEET	
From	To	OBSERVATIONS
0		Gate valve.
25		Casing joint.
53		Casing joint.
81		Casing joint.
110		Casing joint.
139		Casing joint.
168	_	Casing joint.
197		Casing joint.
226		Casing joint.
254		Casing joint.
283		Casing joint.
311		Casing joint.
340		Casing joint.
369		Casing joint.
396		Casing joint.
427		Casing joint.
456		Casing joint.
485		Casing joint.
514	_	Casing joint.
543		Casing joint.
572		Casing joint.
601		Casing joint.

630		Casing joint.
658		Casing joint.
688		Casing joint.
717		Casing joint.
746		Casing joint.
775		Casing joint.
803		Casing joint.
832		Casing joint.
861		Casing joint.
890		Casing joint.
919		Casing joint.
948		Casing joint.
997		Casing joint.
1005		Casing bottom.
1005	1014	Large borehole at base of casing.
1060	1065	Washout.
1098		Vuggy - water entry - turbulent.
1110		Vuggy.
1149		Good flow.
1182	1184	Big borehole - washout.
1190		Cloudy - no flow.
1207		End log - cloudy water.
,		
		Entire borehole very rugose - not gauge.
		Under reamer grooves visible throughout open hole interval.
		Formation appears white and chalky.

		· · · · · · · · · · · · · · · · · · ·

Certificate of Completion, Well completion Reports, and As-Built drawings

Palm Beach County Water Utilities Department WTP No. 9 – Hillsboro Canal ASR Well System

Certification of Completion

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Gary Dernlan, P.E.

Director, Water Utilities

Date__

arry Johnson, P.E.

Project Engineer

Date <u>8/5/0</u>-

Thomas G. Uram, P.G.

Project Hydrogeologist

WELL COMPLETION REPORT	WELL PERMIT NO.							
FORM 0124	SFWMD	WATER	USE	PER	MIT	NO.	50-00135-W	
Rev. 11/90								
721m Beach County 2065 Prairie	Road	West f	alm	Bea	ch	FL	33406	
Palm Beach County 2065 Prairie Robert McEven FL-2166		City	1,01	0			25 ASR-1	
Contractor's Signature License No. C	ompletion Date	•	Casing I	Depth		Tota	al Depth Well #	
TYPE OF WORK: Construct (X) Repair () Abandon ()		Grout	Casing & Screen		Depth (ft)		DRILL CUTTINGS LOG Examine cuttings every 20 ft. or at formation changes Give color, grain size, and	
WELL USE: Domestic Well () Public (X) Monitor () Test () Irrigation () Fire Well () Other	Thick- ness & Depth		meter Depth	type of material Note cavities, depth to producing zones.				
METHOD: Rotary with MUD (X) or Air (X), Cable Tool (), Jet ()			48	35	O	30	SAND-Orange to Brown, Fine-gr.	
Casing Driven (), Other			34	235	30		LIMESTONE - Gray to Y. Brown	
STATIC WATER LEVEL - 35 Ft. below top of casing			24	1,010		200	SHELL- White to Pale Orange	
PUMPING WATER LEVEL 19 Ft. after 24 Hrs. at 3,400 G	PM			-	200	230	LIMESTONE - as above	
PUMP SIZE 300 H.P. CAPACITY 4,000 GPM							SHELL- as above	
PUMP TYPE Sulam. INTAKE DEPTH 120						230	CLAY - Olive Gray	
From top of ground					230		CLAY-Olive Gray to Yellowis-Gray	
LOCATION	T						LIMESTONE Gray Packstone	
	(970	SHELL - Lt. Brown to Pale Orange	
Loçated Near					970		LIMESTONE - Med to Lt Olive	
County Palm Beach	1 1						Gray, Wackestone to Packstone	
	1 1	Number of bags			1,060	1,140	LIMESTONE - Ble Yellowish Brow	
NE NE 35 475 41E W W Section Township Range		2,202		<u></u>	1,140		LIMESTONE - V. Pale Orange	
1/4 1/4 Section Township Range		2,202				1,225	mudstone to wackestone	
26°20′61.35″ 80°13′21,20″ Latitude-Longitude		lv. () PVC ()Fiberglass ()						
		Screen	Type	<u> </u>	1/1/	SIC	ot size N/A	
Cuttings sent to District? (X) Yes		Screen	ed fro	m	NIV	(1	ft.) toN/A(ft.)	

() No

from site location on permit application.

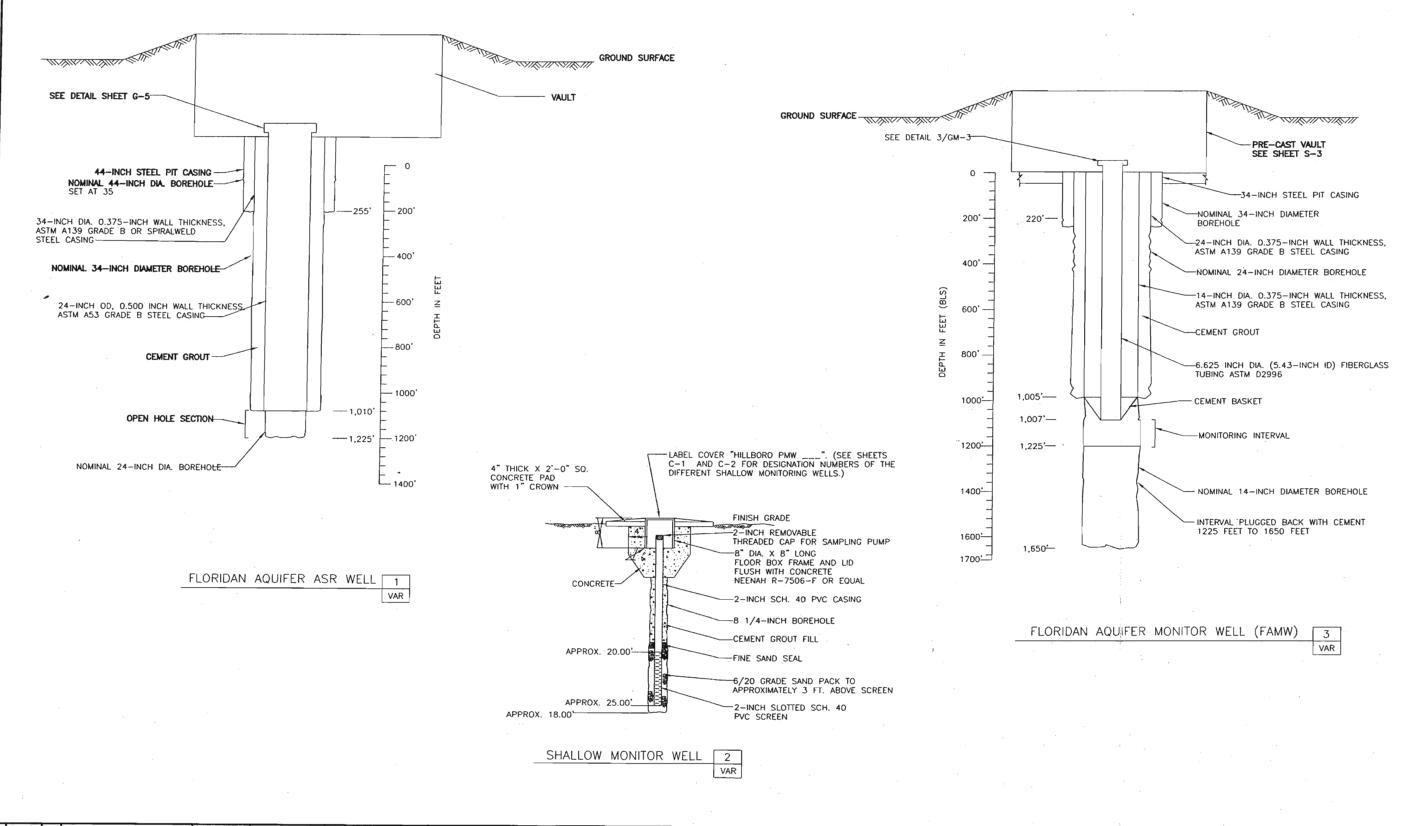
e: PWS Wells attach a site map if well location is different

LOCATE IN SECTION

Type of grout with % additives ______
Water: Clear (X) Colored () Sulphur () Salty (X) Iron ()
Conductivity __6,850__ Chlorides __1,740__ mg/l

nev. 11/90				_				the state of the s
Palm Beach County 206	5 Prairie	Road	West F	alm	Bea	ch_	FL	
Sobert III Ewen	FL-2166			1,00	5	.:	State	225 FAMW-1
Contractor's Signature Lice	ense No.	Completion Date		Casing D	Depth		Tota	al Depth Well #
TYPE OF WORK: Construct (X Repair () Abandon () WELL USE: Domestic Well () Public () Monitor (X) Test () Irrigation () Fire Well () Other			Grout	Casing & Screen Diameter & Depth		Depth (ft)		DRILL CUTTINGS LOG Examine cuttings every 20 ft. or at formation changes
			Thick- ness & Depth			From	То	Give color, grain size, and type of material Note cavities, depth to producing zones.
METHOD: Rotary with MUD (X) or Air (), Cab	le Tool (), Jet ()	-		34	35	0	30	SAND-Pale Drange to Brown, Fine
Casing Driven (), Other				24	220	_	40	SAND- as above w SHELL
STATIC WATER LEVEL 34 Ft. below top of				14	1,005			LIMESTONE - Y. Bown to Gray
PUMPING WATER LEVEL 50 Ft. after 11.		_ GPM		65/8	1,005		210	SHELL - White to Pale Orange
PUMP SIZE H.P. CAPACITY						20		LIMESTONE - Gray, Packstone to Grans
PUMP TYPE NA INTAKE DEPTH Prom	top of ground							CLAY - Yellow Brown, Low Perm
							280	SHELL - White to Pale Change Host
LOCATION	 					280	670	CLAY- Olive to Y. Gray
Located Near						670		CLAY-P.Olive to Y.Gray
		1	<u> </u>				940	LIMESTONE - Y. Gray, Microcryst
County Ralm Beach			Number					LIMESTONE - Gray, Whickestone foul
700			of bags			995	1215	LIMESTONE-Lt. Gray Wacke/Pack
NE NE 35 478 41E			586			1215		LIMESTONE - White to Pale Orange
% Section Township Range 26° 19' 58.85" 80° 13' 13.37"		1 1	200				1650	Ackstone to Wackestone
Latitude-Longitude								() PVC ()Fiberglass (X)
Cuttings sent to District? (X) Yes			Screene	d fro	ա <u> </u>	[A_	(f	t.) to(ft.)
() No	LOCATE IN SECT	TION	Type of	grout	with	% add	litives	·

WELL PERMIT NO.


SFWMD WATER USE PERMIT NO. 50-00135-W

WELL COMPLETION REPORT

"'nte: PWS Wells attach a site map if well location is different

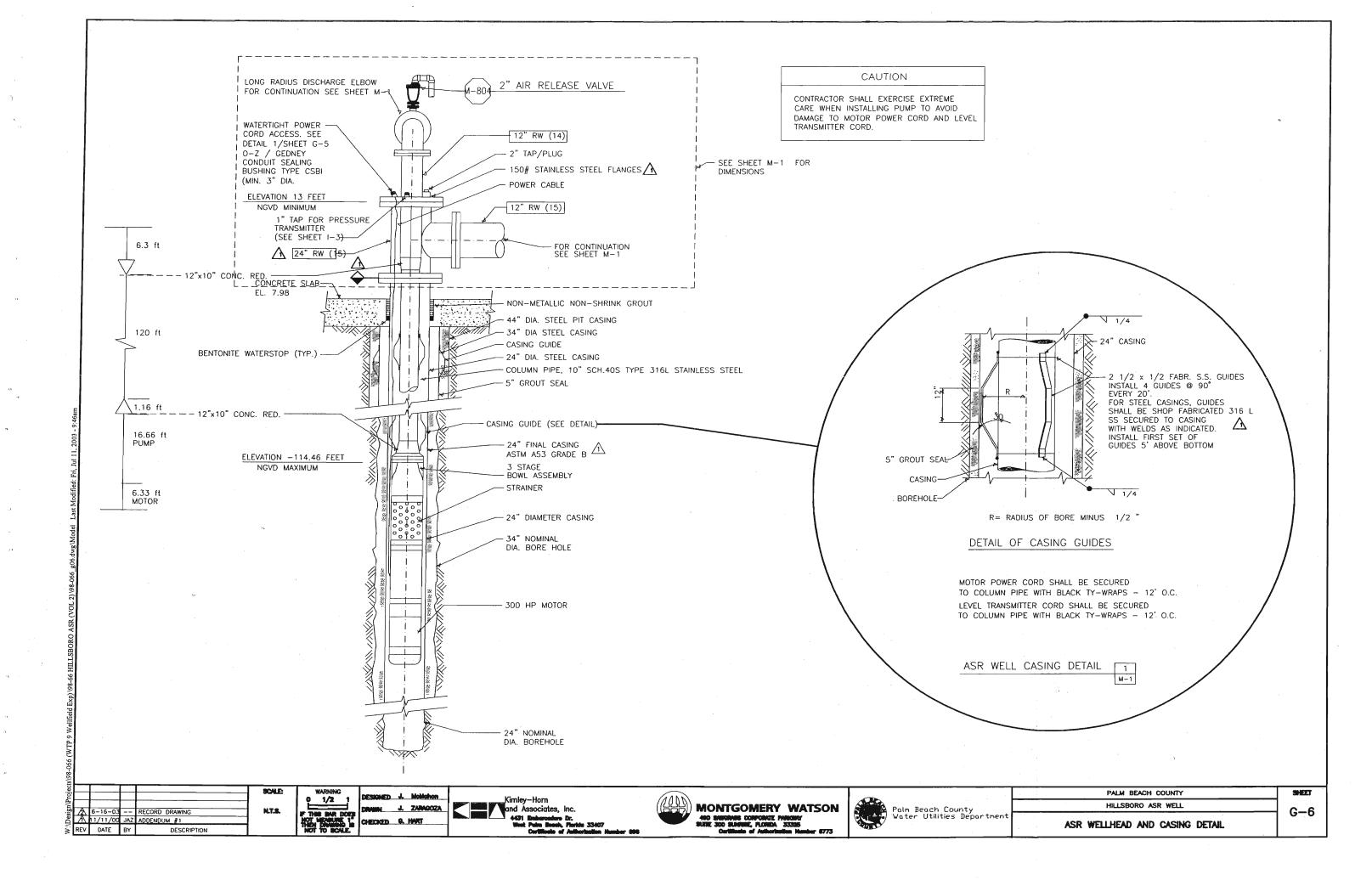
from site location on permit application.

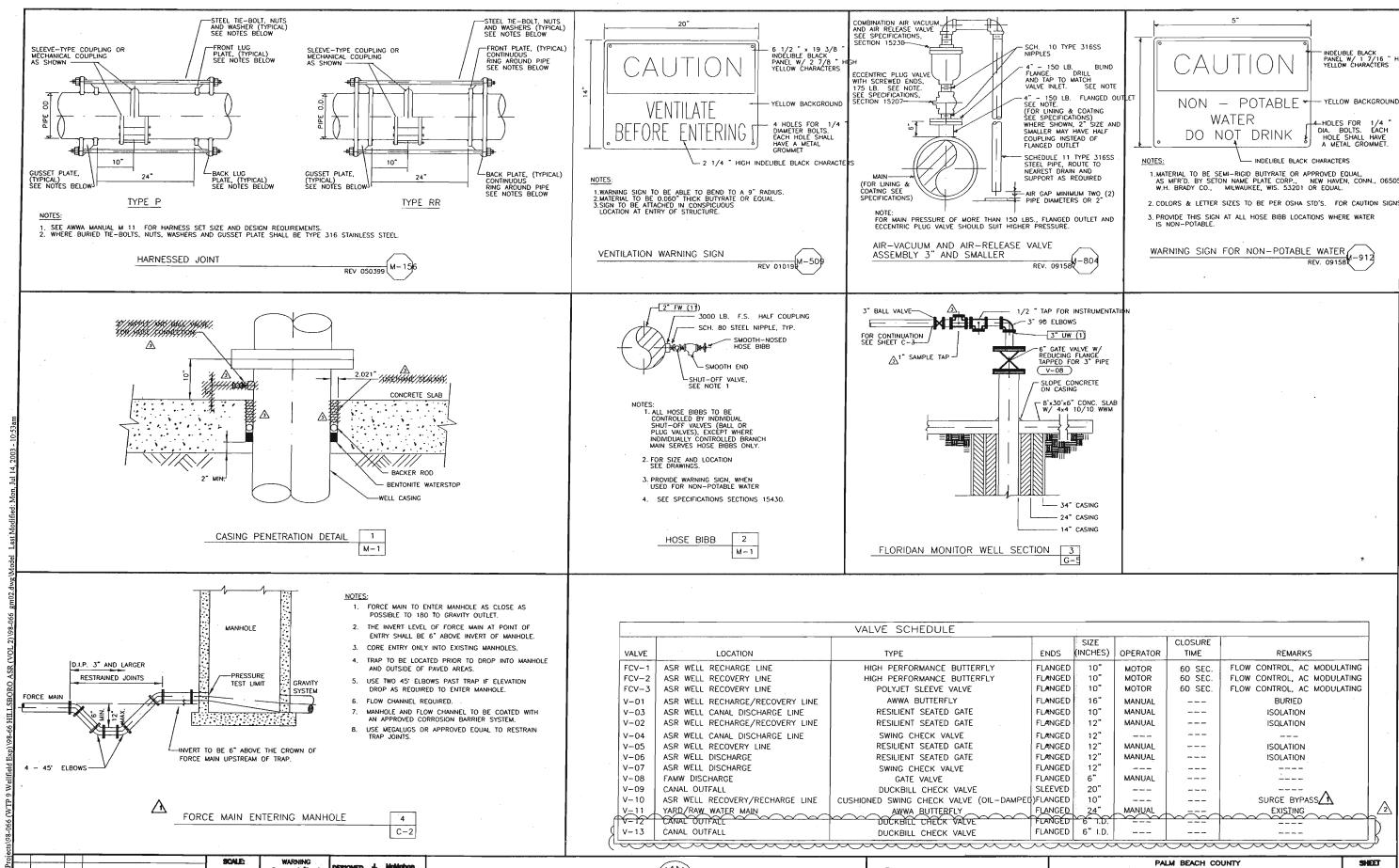
Water: Clear (X) Colored () Sulphur () Salty (X) Iron () Conductivity _____ mg/l

1/2 1

CHECKED & HART

Kimley—Horn and Associates, Inc.




MONTGOMERY WATSON

PALM BEACH COUNTY HILLSBORO ASR WELL WELL CASING AND CONSTRUCTION DETAILS

G-5

6-16-03 — RECORD DRAWING

A 3/7/01 JRZ AFRATION MODIFICATIONS PER NPDES PERMIT

11/11/00 JRZ ADDENDUM #1

REV DATE BY DESCRIPTION

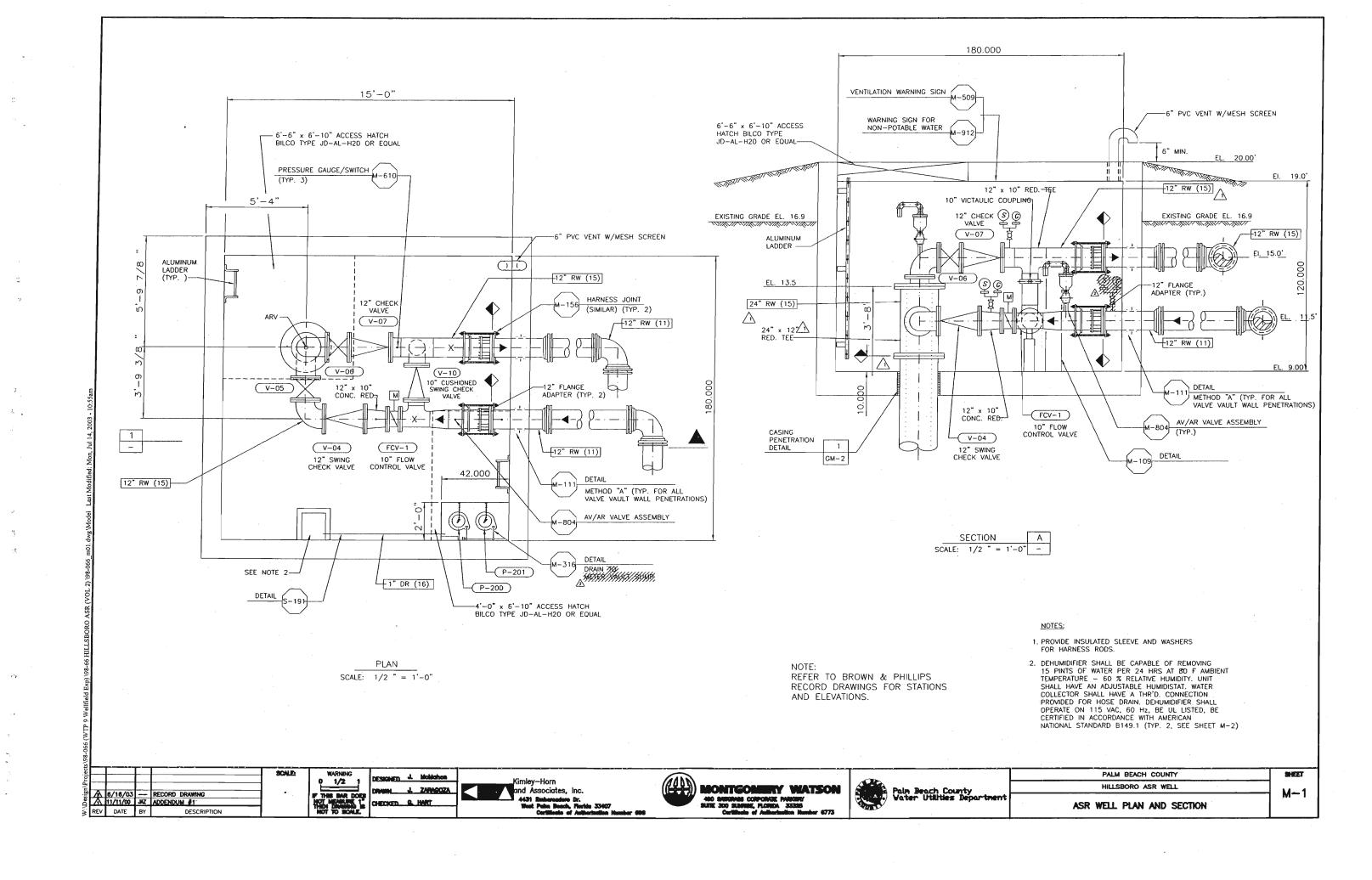
WARNING
0 1/2 1
F 11-86 BAR DOES
NOT MEASURE 1*
THEN DIVINING IS
NOT TO SCALE.

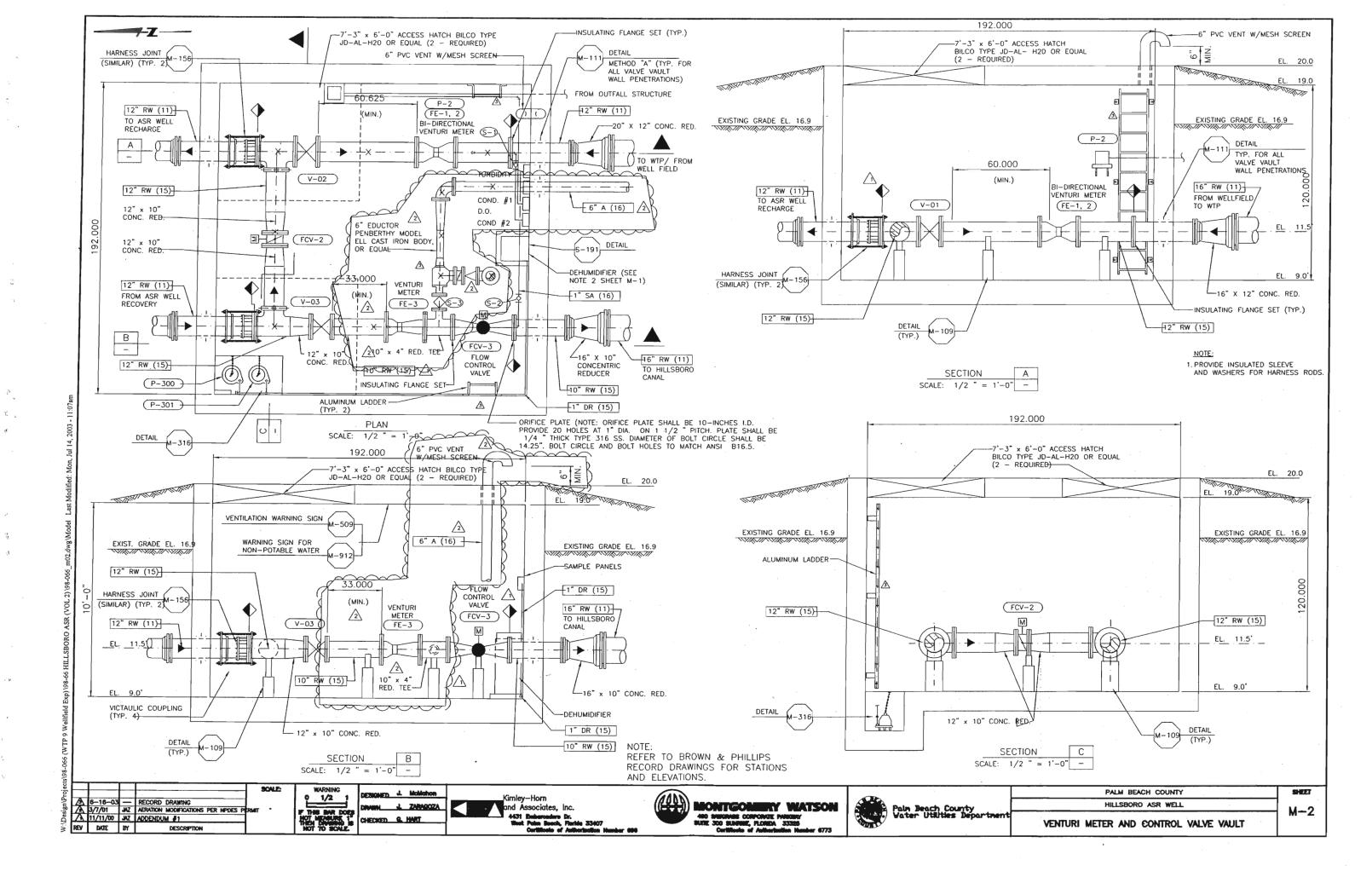
ARNING 1/2 1
BAR DOES BARNES IS DESIGNED 4. Moles BARNES IS CHECKED 9. HART

Moldahon
ZARAGOZA
HART

Kimley-Horn
and Associates, Inc.
4431 Embarcates Dr.
West Pain Beach, Plantie 33407
Certificate of Authorization Number

MONTGOMERY WATSON
460 SUIGNES CONFORME PARCENY
SURE 300 SUNDER, PLONEA 33328
Confiling of Authorising Names 67/3


Palm Beach County Water Utilities Department PALM BEACH COUNTY


HILLSBORO ASR WELL

DETAILS AND VALVE SCHEDULE

SHEET

GM-2

Composite Raw Water (Injectate) Quality Analysis

Tonor.

Palm Beach County Water Utilities Department

Water \ Wastewater Testing Laboratory

13026 Jog Rd., Bldg. K Delray Beach, FL 33446 (561) 638-5000

Report Date: 8-28-2003 Report ID: 560 -2003

System Name: Palm Beach County Water Utility System 9

Address: 22438 S.W. 7th Street Boca Raton, FL. 33433

Type (check one): (X) Community () Nontransient Noncommunity

SAMPLE INFORMATION

Check Type(s

Sample Date: 6/23/2003 Sample Time: 10:15:00 AM

Sample Location: Raw Composite

Sampler Name and Phone #: NF/RMS (561) 638-5000
Sampler's Signature: Kamel Sadarama Title: Laboratory Assistant \ Tech.

Sampler's Signature: Kameh Sadaramaa Title: Laboratory Assistant \ Tech.

() Clearance () Thm Max Res Time () Plant Tap

() ()

() Recheck of MCL

() Distrib entry pt (X) Raw () Composite of Multiple Sites

() Resample of Lab Invalidated Sample(s)

(X) Trihalomethanes

LABORATORY CERTIFICATION INFORMATION

Lab Name: Palm Beach County Water Utilities Department

() Distribution

Address: 13026 Jog Road, Bldg. K Delray Beach, FL 33446

Phone #: (561) 638-5000

() Nitrate Onl

DOH#: E56090 Expiration Date: 6/30/2004

ANALYSIS INFORMATION SAMPLE NUMBER A108561

Date Sample(s) Received: 6/23/2003

Group(s) Analyzed Results attached for compliance with 62-550, F.A.C.:

() Nitrite Only

Inorganics- Volatile Organics- Secondaries- Pesticides / PCBs

() Asbestos Only

(X) All 17 (X) All 21 (X) All 14 () All 30

() Partial () Partial (X) Partial

() Partial () Partial (X) Partial (X) Partial Group II Group III Radiochemicals—

Unregulateds- Unregulateds- Unregulateds- (X) Single Sample

() All 13 (X) All 23 (X) All 11 () Qtrly Composite (X) Partial () Partial

Palm Beach County Water Utilities Department

Water \ Wastewater Testing Laboratory

13026 Jog Rd., Bldg. K Delray Beach, FL 33446 (561) 638-5000

Contact: Jaya Navani (561) 638-5000

** Analysis contained herein conform to EPA, Standard Methods and DEP approved methods. Subcontracted analyses are denoted by certification number in the analyst column. All relevant quality assurance samples were within specified control limits unless otherwise stated. Uncertainties for test results are available upon request. Palm Beach County Water Utilities certifies its test results meets all requirements of the NELAC Standards, where applicable. For questions, please call the QA Officer or the Lab Manager at the phone number listed above.

I do HEREBY CERTIFY that all attached analytical data are	correct.
QA Officer, Shree Kundalkar	Date: 8/28/01
Laboratory Manager, Jaya Navani	Mc Date: 18.88-13
\bigcup	•
COMPLIANCE INFORMATION	
Sample Collection Satisfactory:	Sample Analysis Satisfactory:
Resample Requested for:	Reason:
Person notified to resample:	Date Notified:
DEP/ACPHU Reviewing Official:	
Notice: The information contained in this report is confidential entity named above. If the reader of this communication is not dissemination, distribution or copying of this information is preerror, please immediately notify us at (561) 638-5000. Thank	ot the recipient, you are hereby notified that any ohibited. If you have received this communication in

Palm Beach County Water Utilities Department

Water \ Wastewater Testing Laboratory

13026 Jog Rd., Bldg. K Delray Beach, FL 33446 (561) 638-5000

System 9

WATER QUALITY ANALYSIS

Sample Number: Al08561

Sample Location: Raw Composite

Analysis	Analysis Result(mg/L) Qual.	Analytical Method	Det. Lt. (MDL)	Analysis Date	Analyst
Conduct.	748	SM 2510-B	0.5	6/23/2003	NF/RMS
Temp	25.5	SM 2550-B	0.1	6/23/2003	NF/RMS
рН	7.09	EPA 150.1	0.01	6/23/2003	NF/RMS
Turbidity	0.10	SM 2130-B	0.05	6/23/2003	NF/RMS

Palm Beach County Water Utilities Department

Water \ Wastewater Testing Laboratory

13026 Jog Rd., Bldg. K Delray Beach, FL 33446 (561) 638-5000

System 9

WATER QUALITY ANALYSIS

Qualifier Codes

	QUALIFIER	EXPLANATION
[[I	The reported value is between the laboratory method detection limit and the
		laboratory practical quantitation limit.
	J	Estimated value; value may not be accurate. This code shall be used in the
	·	following instances:
	J1 '	Surrogate recovery limits have been exceeded;
	J2	No known quality control criteria exists for the component;
	Ј3	The reported value failed to meet the established quality control criteria for
		either precision or accuracy;
	J4	The sample matrix interfered with the ability to make any accurate determination
	J 5	The data are questionable because of improper laboratory or field protocols (e.g.
		composite sample was collected instead of a grab sample).
	O	Sampled, but analysis lost or not performed.
	Q	Sample held beyond the accepted holding time. This code shall be used if the
		value is derived from a sample that was prepared or analyzed after the approved
		holding time restrictions for sample preparation or analysis.
	T	Value reported is less than the laboratory method detection limit. The value is
		reported for informational purposes only – and shall not be used in statistical
i -		analysis. Indicates that the compound was analyzed for but not detected, this symbol shall
	U	be used to indicate that the specified component was not detected. The value
		associated with the qualifier shall be the laboratory method detection limit.
		Unless requested by the client, less than the method detection limit values shall
		not be reported (see "T" above).
	V	Indicates that the analyte was detected in both the sample and the associated
		method blank. Note: the value in the blank shall not be subtracted from
		associated samples.
		·
	Y	The laboratory analysis was from an improperly preserved sample. The data
		may not be accurate.
	Z	Too many colonies were present (TNTC): the numeric value represent the
L		filtration volume.
	?	Data are rejected and should not be used. Some or all of the quality control data
		for the analyte were outside criteria, and the presence or absence of the analyte
-		cannot be determined from the data.
	Ð	Measurement was made in the field (i.e., in situ). This applies to any value
		(except pH, specific conductance, dissolved oxygen, temperature, total residual chlorine, transparency, or salinity) that was obtained under field conditions
		using approved analytical methods. If the parameter code specifies a field
		measurement e.g., "Field pH", this code is not required.
	R	Significant rain in the past 48 hours. (Significant rain typically involves rain in
	1	excess of ½ inch within the past 48 hours). This code shall be used when the
		rainfall might contribute to a lower than normal value.
	!	Data deviates from historically established concentration ranges.

4805 NW 2nd Avenue Boca Raton, FL 33431

Phone 561-989-5225 Fax 561-989-5204 edyne@bellsouth.net

August 27, 2003

Shree Kundalkar Palm Beach County Utilities 13026 Jog Road Bldg. K Delray Beach, FL 33446

RE: Envirodyne Report: 2003/06403.

Dear Shree,

Per your request Sodium data reported for Palm Beach County Sample AI08561 (Envirodyne Inc. report number 2003/06403) was reviewed August 28, 2003. Review of raw data records showed a 1-10 dilution was made on this sample but was not calculated or reported. The reported result of 3.4 has been corrected to 34 mg/L on the amended report to be hand delivered tomorrow (8/29). I regret any inconvenience this may have caused. Thank you for allowing us to service Palm Beach County.

Please feel free to call me at (800) 713-7737 with questions or comments. Thank you for your continuing business.

Sincerely

Michael Rentoumis

President

Cc. Suzanne Chang QA Officer

4805 N.W. 2nd Avenue Boca Raton, FL 33431 561-989-5225 edyne@bellsouth.net

CERTIFICATE OF ANALYSIS

Palm Beach County Water Utilities Laboratory 13026 Jog Road Bldg K

Delray Beach, FL 33446

/ OPL 8/29/3

July 15, 2003 Report: 2003/06403B Amended Revision Date: August 28, 2003

Sample No: 2003/06403- 1

Attention: Jaya Navani

Project: System 9 WTP Annual Primary & Secondary DWS 22438 SW 7th Street Boca Raton, FL

SAMPLE ID: Raw Composite AI08561

Collected by: Ricky Sadarangani Noel Fleites Collected on: 06/23/03 Received on: 06/23/03

METHOD DL UNITS DATE PARAMETER RESULT ANALYST Aluminum 0.16 200.7 0.10 mg/L 06/27/03 KYT Arsenic U 200.7 0.010 mg/L APR 06/24/03 Barium 0.026 200.7 $0.010 \, \text{mg/L}$ 06/24/03 APR Beryllium U 200.7 0.0030 mg/L 06/24/03 APR Cadmium 200.7 0.0040 mg/L U 06/24/03 **APR** Chromium U 200.7 0.010 mg/L 06/24/03 APR Copper U 200.7 0.010 mg/L 06/24/03 APR Iron 0.83 200.7 0.010 mg/L 06/27/03 **KYT** Manganese U 200.7 0.010 mg/L 06/24/03 APR Nickel 200.7 U 0.010 mg/L APR 06/24/03 Silver U 200.7 0.010 mg/L 06/24/03 APR Sodium 200.7 34 1.0 mg/L 06/27/03 **KYT** Zinc 0.019 200.7 0.010 mg/L APR 06/24/03 Antimony 200.8 U 0.0010 mg/L 07/01/03 APR Lead U 200.8 0.00020 mg/L 07/01/03 **APR** Selenium TT 200.8 0.0010 mg/L 07/01/03 APR Thallium U 200.8 **APR** 0.00030 mg/L 07/01/03

U = Analyte not detected DL = Detection Limit

4805 N.W. 2nd Avenue Boca Raton, FL 33431 561-989-5225 edyne@bellsouth.net

CERTIFICATE OF ANALYSIS

Palm Beach County Water Utilities Laboratory 13026 Jog Road Bldg K Delray Beach, FL 33446 July 15, 2003 Report: 2003/06403B Amended Revision Date: August 28, 2003

Sample No: 2003/06403- 1

Attention: Jaya Navani

Project: System 9 WTP Annual Primary & Secondary DWS

22438 SW 7th Street Boca Raton, FL

SAMPLE ID: Raw Composite AI08561

Collected by: Ricky Sadarangani

Noel Fleites

Collected on: 06/23/03

Received on: 06/23/03

PARAMETER	RESULT	METHOD	DL UNITS	DATE	ANALYST
Mercury	U	245.1	0.00003 mg/L	06/24/03	KYT
Dibromochloropropane (DBCP)	υ	504.1	0.020 μg/L	06/27/03	СММ
1,2-Dibromoethane (EDB)	σ	504.1	0.020 <i>µ</i> g/L	06/27/03	СММ
Benzo(a)pyrene	υ	525.2	0.20 <i>μ</i> g/L	06/25/03	SPH
Di(2-ethylhexyl)adipate	υ	525.2	1.0 <i>μ</i> g/L	06/25/03	SPH
Di(2-ethylhexyl)phthalate	υ	525.2	1.0 <i>μ</i> g/L	06/25/03	SPH
Carbofuran	υ	531.1	1.0 <i>μ</i> g/L	06/24/03	MLD
Oxamyl (Vydate)	ΰ	531.1	1.0 <i>μ</i> g/L	06/24/03	MLD
Glyphosate	U	547	40 <i>µ</i> g/L	06/27/03	E86515
Endothall	υ	548.1	50 <i>μ</i> g/L	07/02/03	E86515
Diquat	σ	549	1.44 <i>µ</i> g/L	07/02/03	E86515
Biochemical Oxygen Demand	σ	405.1	2.0 mg/L	06/23/03	JGT
Bromate	υ	300.1	10 <i>μ</i> g/L	06/26/03	DNS
Chlorate	υ	300.0	0.20 mg/L	06/26/03	DNS
Chloride	50	SM4500CL-B	2.0 mg/L	06/24/03	DNS
Chlorite	υ	300.0	0.20 mg/L	06/26/03	DNS
Chemical Oxygen Demand	6.3	410.4	5.0 mg/L	06/24/03	DNS

U=Analyte not detected DL=Detection Limit

4805 N.W. 2nd Avenue Boca Raton, FL 33431 561-989-5225 edyne@bellsouth.net

CERTIFICATE OF ANALYSIS

Palm Beach County Water Utilities Laboratory 13026 Jog Road Bldg K Delray Beach, FL 33446 July 15, 2003 Report: 2003/06403B Amended Revision Date: August 28, 2003

Sample No: 2003/06403- 1

Attention: Java Navani

Project: System 9 WTP Annual Primary & Secondary DWS

22438 SW 7th Street Boca Raton, FL

SAMPLE ID: Raw Composite AI08561

Collected by: Ricky Sadarangani Noel Fleites Collected on: 06/23/03 Received on: 06/23/03

DATE PARAMETER RESULT METHOD DL UNITS ANALYST Color 25 110.2 5 CU 06/24/03 JGT Specific Conductance 670 120.1 µmhos/cm 06/25/03 MNL Cyanide, Total U 335.4 0.0040 mg/L 06/26/03 JNM Fluoride 0.33 SM4500F-C 0.10 mg/L06/24/03 JMJ Gross Alpha 900.0 1.0 pCi/L E84088 3 ± 2 06/30/03 Surfactants (as LAS, MW = 340) 0.10 425.1 0.010 mg/L 06/24/03 JGT Ammonia, as N 0.43 350.1 0.020 mg/L **JGT** 06/25/03 Nitrite, as Nitrogen U 353.2 0.020 mg/L 06/25/03 JGT Nitrate, as Nitrogen U 353.2 0.020 mg/L 06/25/03 **JGT** Nitrate-Nitrite, as Nitrogen U 353.2 0.020 mg/L 06/25/03 **JGT** Odor SM2150B 400 1 T.O.N. 06/24/03 JGT 150.1 pH (Laboratory) 7.1 pH Units 06/24/03 MM Radium 226 0.7 ± 0.1 903.1 0.1 pCi/L E84088 07/08/03 Radium 228 0.5±0.5 U **RA-05** 0.5 pCi/L 07/08/03 E84088 Sulfate 29 375.4 5.0 mg/L 06/24/03 JNM Total Coliform Bacteria SM9222B 1 cfu/100 ml <1 06/23/03 **JGT** Total Dissolved Solids 480 160.1 06/27/03 10 mg/L DNS

U=Analyte not detected DL=Detection Limit

4805 N.W. 2nd Avenue Boca Raton, FL 33431 561-989-5225 edyne@bellsouth.net

CERTIFICATE OF ANALYSIS

Palm Beach County Water Utilities Laboratory 13026 Jog Road Bldg K Delray Beach, FL 33446 July 15, 2003 Report: 2003/06403B Amended Revision Date: August 28, 2003

Sample No: 2003/06403- 1

Attention: Jaya Navani

Project: System 9 WTP Annual Primary & Secondary DWS

22438 SW 7th Street Boca Raton, FL

SAMPLE ID: Raw Composite AI08561

Collected by: Ricky Sadarangani

Noel Fleites

Collected on: 06/23/03

Received on: 06/23/03

PARAMETER	RESULT	METHOD	DL UNITS	DATE	ANALYST
Total Kjeldahl Nitrogen	0.94	351.2	0.10 mg/L	06/30/03	JMJ
Organic Nitrogen	0.51	351-350	0.50 mg/L	06/30/03	JMJ
Phosphorus, Total	0.027	365.4	0.010 mg/L	06/30/03	JMJ

4805 N.W. 2nd Avenue Boca Raton, FL 33431 561-989-5225 edyne@bellsouth.net

CERTIFICATE OF ANALYSIS

Palm Beach County Water Utilities Laboratory 13026 Jog Road Bldg K Delray Beach, FL 33446 July 15, 2003 Report: 2003/06403B Amended Revision Date: August 28, 2003

Sample No: 2003/06403- 1

Attention: Jaya Navani

Project: System 9 WTP Annual Primary & Secondary DWS

22438 SW 7th Street Boca Raton, FL

SAMPLE ID: Raw Composite AI08561

Collected by: Ricky Sadarangani

Noel Fleites

Collected on: 06/23/03

Received on: 06/23/03

Date of Analysis: 06/28/03 Date of Extraction: 06/25/03

508 GROUP I UNREGULATED ORGANIC CONTAMINANTS

PARAMETER	RESULT	DL UNITS	ANALYST
Aldrin	u	0.10 μg/L	CMM
Dieldrin	u	0.10 μg/L	CMM

4805 N.W. 2nd Avenue Boca Raton, FL 33431 561-989-5225 edyne@bellsouth.net

CERTIFICATE OF ANALYSIS

Palm Beach County Water Utilities Laboratory 13026 Jog Road Bldg K Delray Beach, FL 33446 July 15, 2003 Report: 2003/06403B Amended Revision Date: August 28, 2003

Sample No: 2003/06403- 1

Attention: Jaya Navani

Project: System 9 WTP Annual Primary & Secondary DWS

22438 SW 7th Street Boca Raton, FL

SAMPLE ID: Raw Composite AI08561

Collected by: Ricky Sadarangani

Noel Fleites

Collected on: 06/23/03 Received on: 06/23/03

Date of Analysis: 06/28/03 Date of Extraction: 06/25/03

508 ORGANOHALIDE PESTICIDES 62-550.310(2)(c) FAC

PARAMETER	RESULT	DL UNITS	ANALYST
Chlordane	Ŭ	0.50 μg/L	СММ
Endrin	U	$0.10~\mu\mathrm{g/L}$	CMM
Heptachlor	U	$0.10~\mu\mathrm{g/L}$	CMM
Heptachlor epoxide	ΰ	$0.10~\mu \mathrm{g/L}$	CMM
Hexachlorobenzene	U	$0.10~\mu \mathrm{g/L}$	CMM
Lindane	U	$0.10~\mu\mathrm{g/L}$	CMM
Methoxychlor	υ	$0.20 \mu \text{g/L}$	CMM
Toxaphene	U	$1.0 \mu \text{g/L}$	CMM
PCB 1016	Ü	$0.20~\mu \mathrm{g/L}$	CMM
PCB 1221	U	$0.20~\mu g/L$	CMM
PCB 1240	ប	$0.20~\mu \mathrm{g/L}$	CMM
PCB 1242	U	$0.20 \mu g/L$	CMM
PCB 1248	U	$0.20 \mu \text{g/L}$	CMM
PCB 1254	U	$0.20 \mu \text{g/L}$	CMM
PCB 1260	υ	$0.20 \mu \text{g/L}$	CMM

4805 N.W. 2nd Avenue Boca Raton, FL 33431 561-989-5225 edyne@bellsouth.net

CERTIFICATE OF ANALYSIS

Palm Beach County Water Utilities Laboratory 13026 Jog Road Bldg K Delray Beach, FL 33446

July 15, 2003 Report: 2003/06403B Amended Revision Date: August 28, 2003

Sample No: 2003/06403- 1

Attention: Jaya Navani

Project: System 9 WTP Annual Primary & Secondary DWS

22438 SW 7th Street Boca Raton, FL

Collected by: Ricky Sadarangani

Collected on: 06/23/03

SAMPLE ID: Raw Composite AI08561

Noel Fleites

Received on: 06/23/03

Date of Analysis: 06/29/03 Date of Extraction: 06/25/03

508.1 CHLORINATED PESTICIDES (62-550 FAC)

PARAMETER	RESULT	DL UNITS	ANALYST	
Alachlor Atrazine Hexachlorocyclopentadiene Simazine	ם ט ט	0.10 µg/L 1.0 µg/L 0.10 µg/L 1.0 µg/L	CMM CMM CMM CMM	

4805 N.W. 2nd Avenue Boca Raton, FL 33431 561-989-5225 edyne@bellsouth.net

CERTIFICATE OF ANALYSIS

Palm Beach County Water Utilities Laboratory 13026 Jog Road Bldg K Delray Beach, FL 33446 July 15, 2003 Report: 2003/06403B Amended Revision Date: August 28, 2003

Sample No: 2003/06403- 1

Attention: Jaya Navani

Project: System 9 WTP Annual Primary & Secondary DWS

22438 SW 7th Street Boca Raton, FL

SAMPLE ID: Raw Composite AI08561

Collected by: Ricky Sadarangani

Collected on: 06/23/03

Noel Fleites

Received on: 06/23/03

Date of Analysis: 06/30/03 Date of Extraction: 06/27/03

515.1 HERBICIDES (62-550 FAC)

PARAMETER	RESULT	DL UNITS	ANALYST	
Dalapon	υ	$0.50~\mu\mathrm{g/L}$	СММ	
Dinoseb	Ŭ	$0.50 \mu \text{g/L}$	CMM	
Pentachlorophenol	U	$0.50~\mu\mathrm{g/L}$	CMM	
Picloram	ប	$0.50 \mu \text{g/L}$	CMM	
2,4-D	Ŭ	$0.50~\mu\mathrm{g/L}$	CMM	
2,4,5-TP (Silvex)	U	$0.10~\mu \mathrm{g/L}$	CMM	

4805 N.W. 2nd Avenue Boca Raton, FL 33431 561-989-5225 edyne@bellsouth.net

CERTIFICATE OF ANALYSIS

Palm Beach County Water Utilities Laboratory 13026 Jog Road Bldg K Delray Beach, FL 33446 July 15, 2003 Report: 2003/06403B Amended Revision Date: August 28, 2003 Sample No: 2003/06403- 1

Attention: Jaya Navani

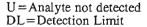
Project: System 9 WTP Annual Primary & Secondary DWS

22438 SW 7th Street Boca Raton, FL

SAMPLE ID: Raw Composite AI08561

Collected by: Ricky Sadarangani

Collected on: 06/23/03


Noel Fleites

Received on: 06/23/03

Date of Analysis: 06/25/03

524.2 GROUP II UNREGULATED ORGANIC CONTAMINANTS

PARAMETER	RESULT	DL UNITS	ANALYST	
Bromobenzene	ט	0.5 μg/L	JCB	
Bromodichloromethane	U	$0.5 \mu g/L$	JCB	
Bromoform	Ū	$0.5 \mu \mathrm{g/L}$	JCB	
Bromomethane	υ	$0.5 \mu \text{g/L}$	JCB	
Chloroethane	U	$0.5 \mu \mathrm{g/L}$	JCB	
Chloroform	ប	$0.5 \mu g/L$	JCB	
Chloromethane	U	$0.5 \mu \text{g/L}$	JCB	
o-Chlorotoluene	U	$0.5 \mu \mathrm{g/L}$	JCB	
p-Chiorotoluene	U	$0.5 \mu g/L$	JCB	
Dibromochloromethane	U	$0.5 \mu \mathrm{g/L}$	JCB	
Dibromomethane	Ū	$0.5 \mu g/L$	JCB	
m-Dichlorobenzene	υ	$0.5 \mu g/L$	JCB	
Dichlorodifluoromethane	σ	$0.5~\mu\mathrm{g/L}$	JCB	
1,1-Dichloroethane	U	$0.5~\mu \mathrm{g/L}$	JCB	
2,2-Dichloropropane	Ū	$0.5 \mu g/L$	JCB	
1,1-Dichloropropylene	ΰ	$0.5 \mu \mathrm{g/L}$	JCB	
1,3-Dichloropropane	υ	$0.5 \mu g/L$	JCB	
1,3-Dichloropropene	υ	$0.5 \mu g/L$	JCB	
Methyl tert-butyl-ether (MTBE)	U	$0.5~\mu \mathrm{g/L}$	JCB	
1,1,1,2-Tetrachloroethane	U	$0.5 \mu g/L$	JCB	
1,1,2,2-Tetrachloroethane	Ū	$0.5 \mu g/L$	JCB	
Trichlorofluoromethane	U	$0.5 \mu g/L$	JCB	
1,2,3-Trichloropropane	ט	$0.5 \mu g/L$	JCB	

4805 N.W. 2nd Avenue Boca Raton, FL 33431 561-989-5225 edyne@bellsouth.net

CERTIFICATE OF ANALYSIS

Palm Beach County Water Utilities Laboratory 13026 Jog Road Bldg K Delray Beach, FL 33446 July 15, 2003 Report: 2003/06403B Amended Revision Date: August 28, 2003

Sample No: 2003/06403- 1

Attention: Jaya Navani

Project: System 9 WTP Annual Primary & Secondary DWS

22438 SW 7th Street Boca Raton, FL

SAMPLE ID: Raw Composite AI08561

Collected by: Ricky Sadarangani

Noel Fleites

Collected on: 06/23/03

Received on: 06/23/03

Date of Analysis: 06/25/03

524.2 TRIHALOMETHANES (THM'S)

PARAMETER	RESULT	DL UNITS	ANALYST	
Bromodichloromethane	σ	0.5 μg/L	JCB	
Bromoform	บ	$0.5 \mu g/L$	JCB	
Chloroform	U	$0.5 \mu \text{g/L}$	JCB	
Dibromochloromethane	υ	$0.5 \mu \text{g/L}$	JCB	
Total Trihalomethanes	ប	μg/L	JCB	

4805 N.W. 2nd Avenue Boca Raton, FL 33431 561-989-5225 edyne@bellsouth.net

CERTIFICATE OF ANALYSIS

Palm Beach County Water Utilities Laboratory 13026 Jog Road Bldg K Delray Beach, FL 33446

July 15, 2003 Report: 2003/06403B Amended Revision Date: August 28, 2003

Sample No: 2003/06403- 1

Attention: Jaya Navani

Project: System 9 WTP Annual Primary & Secondary DWS

22438 SW 7th Street Boca Raton, FL

SAMPLE ID: Raw Composite AI08561

Collected by: Ricky Sadarangani

Collected on: 06/23/03

Noel Fleites

Received on: 06/23/03

Date of Analysis: 06/25/03

524.2 VOLATILE ORGANIC COMPOUNDS (62-550)

PARAMETER	RESULT	DL UNITS	ANALYST	
Benzene		0.5 μg/L	JCB	
Carbon tetrachloride	Ū	$0.5 \mu g/L$	JCB	
Chlorobenzene	Ū	$0.5 \mu g/L$	JCB	
1,2-Dichlorobenzene	Ū	$0.5 \mu \text{g/L}$	JCB	
1,4-Dichlorobenzene	Ū	$0.5 \mu g/L$	JCB	
1,2-Dichloroethane	U	$0.5 \mu g/L$	JCB	
1,1-Dichloroethene	U	$0.5 \mu g/L$	JCB	
cis-1,2-Dichloroethene	U	$0.5 \mu g/L$	JCB	
trans-1,2-Dichloroethene	U	$0.5 \mu g/L$	JCB	
Dichloromethane	U	$0.5 \mu g/L$	JCB	
1,2-Dichloropropane	U	0.5 μg/L	JCB	
Ethylbenzene	U	0.5 μg/L	JCB	
Styrene	U	$0.5 \mu g/L$	JCB	
Tetrachloroethylene	U	0.5 μg/L	JCB	
Toluene	U	0.5 μg/L	JCB	
1,2,4-Trichlorobenzene	Ū	0.5 μg/L	JCB	
1,1,1-Trichloroethane	U	$0.5 \mu g/L$	JCB	
1,1,2-Trichloroethane	ש	$0.5 \mu g/L$	JCB	
Trichloroethylene	U	$0.5 \mu g/L$	JCB	
Vinyl chloride	U	$0.5 \mu g/L$	JCB	
Xylenes, Total	Ü	$0.5 \mu g/L$	JCB	

4805 N.W. 2nd Avenue Boca Raton, FL 33431 561-989-5225 edyne@bellsouth.net

CERTIFICATE OF ANALYSIS

Palm Beach County Water Utilities Laboratory 13026 Jog Road Bldg K Delray Beach, FL 33446 July 15, 2003 Report: 2003/06403B Amended Revision Date: August 28, 2003

Sample No: 2003/06403- 1

Attention: Jaya Navani

Project: System 9 WTP Annual Primary & Secondary DWS

22438 SW 7th Street Boca Raton, FL

SAMPLE ID: Raw Composite AI08561

Collected by: Ricky Sadarangani

Collected on: 06/23/03

Noel Fleites

Received on: 06/23/03

Date of Analysis: 06/24/03

531.1 GROUP I UNREGULATED ORGANIC PESTICIDES

PARAMETER	RESULT	DL UNITS	ANALYST	
Aldicarb	U	1.0 μg/L	MLD	
Aldicarb sulfone	Ŭ	$1.0 \mu \text{g/L}$	MLD	
Aldicarb sulfoxide	Ŭ	$1.0 \mu g/L$	MLD	
Carbaryl	U	$1.0 \mu \mathrm{g/L}$	MLD	
3-Hydroxycarbofuran	U	$1.0 \mu g/L$	MLD	
Methomyl	U	$1.0 \mu g/L$	MLD	

U=Analyte not detected DL=Detection Limit

4805 N.W. 2nd Avenue Boca Raton, FL 33431 561-989-5225 edyne@bellsouth.net

CERTIFICATE OF ANALYSIS

Palm Beach County Water Utilities Laboratory 13026 Jog Road Bldg K Delray Beach, FL 33446

July 15, 2003 Report: 2003/06403B Amended Revision Date: August 28, 2003

Sample No: 2003/06403- 1

Attention: Jaya Navani

Project: System 9 WTP Annual Primary & Secondary DWS

22438 SW 7th Street Boca Raton, FL

SAMPLE ID: Raw Composite AI08561

Collected by: Ricky Sadarangani

Noel Fleites

Collected on: 06/23/03

Received on: 06/23/03

Date of Analysis: 06/29/03 Date of Extraction: 06/27/03

625 GROUP III UNREGULATED ORGANIC CONTAMINANTS

PARAMETER	RESULT	DL UNITS	ANALYST	
Butyl benzyl phthalate	υ .	1.0 μg/L	SPH	
2-Chlorophenol	U	$1.0 \mu \text{g/L}$	SPH	
Di-n-butylphthalate	σ	$1.0 \mu g/L$	SPH	
Diethylphthalate	U	$1.0 \mu g/L$	SPH	
Dimethylphthalate	ד	$1.0 \mu g/L$	SPH	
Di-n-octyl phthalate	U	$1.0 \mu \mathrm{g/L}$	SPH	
2,4-Dinitrotoluene	U	$1.0 \mu g/L$	SPH	
Isophorone	U	$1.0 \mu g/L$	SPH	
2-Methyl-4,6-dinitrophenol	บ	$1.0 \mu g/L$	SPH	
Phenol	υ	$1.0 \mu g/L$	SPH	
2,4,6-Trichlorophenol	U	$1.0 \mu g/L$	SPH	

U = Analyte not detected DL=Detection Limit

4805 N.W. 2nd Avenue Boca Raton, FL 33431 561-989-5225 edyne@bellsouth.net

CERTIFICATE OF ANALYSIS

Palm Beach County Water Utilities Laboratory 13026 Jog Road Bldg K Delray Beach, FL 33446 July 15, 2003 Report: 2003/06403B Amended Revision Date: August 28, 2003 Sample No: 2003/06403- 1

Attention: Jaya Navani

Project: System 9 WTP Annual Primary & Secondary DWS

22438 SW 7th Street Boca Raton, FL

1500 Nove

SAMPLE ID: Raw Composite AI08561

Collected by: Ricky Sadarangani

Collected on: 06/23/03

Noel Fleites

Received on: 06/23/03

Date of Analysis: 06/29/03 Date of Extraction: 06/27/03

625 MUNICIPAL WASTEWATER MINIMUM CRITERIA

PARAMETER	RESULT	DL UNITS	ANALYST	
Anthracene Naphthalene Phenanthrene	U U	1.0 μg/L 1.0 μg/L 1.0 μg/L	SPH SPH SPH	

Quality Control Report

EPA 625

Matrix Spike and Duplicate Analysis

Date: June 29, 2003 Batch No.: GC/MS062403b

Matrix: water

Compound	RPD	Percent Recovery
Acenaphthene	7,35%	119%
N-Nitroso-di-n-propylamine	1.89%	120%
Pentachlorophenol	5.81%	161%
Phenol	0.44%	142%
Pyrene	2.45%	135%
1,4-Dichlorobenzene	2.50%	111%
1,2,4-Trichlorobenzene	2.43%	111%
2-Chlorophenol	1.83%	142%
2,4-Dinitrotoluene	5.26%	126%
4-Chloro-3-Methylphenol	8.17%	167%
4-Nitrophenol	18.82%	150%

Quality Control Report

Matrix Spike and Duplicate Analysis

Date: June 29, 2003 Batch No.: GC/MS062403b

Matrix: water

Compound	RPD	Percent Recovery
Acenaphthene	7.35%	119%
N-Nitroso-di-n-propylamine	1.89%	120%
Pentachlorophenol	5,81%	161% *
Phenol	0.44%	142%
Pyrene	2.45%	135% *
1,4-Dichlorobenzene	2.50%	111%
1,2,4-Trichlorobenzene	2.43%	111%
2-Chlorophenol	1.83%	142% *
2,4-Dinitrotoluene	5.26%	126%
4-Chloro-3-Methylphenol	8.17%	167% *
4-Nitrophenol	18.82%	150%

^{*} Recoveries above established limits; possibly due to matrix interference. Samples did not show positive hits for these analytes

Quality Control Report

EPA 525.2

Matrix Spike and Duplicate Analysis

Date: June 24, 2003 Batch No.: GC/MS052403k

Matrix: Water

Compound	RPD	Percent Recovery
Butachlor	18.74%	104%
Atrazine	5.80%	76%
Hexachlorobenzene	10.69%	79%
Di(2-ethylhexyl)adipate	4.86%	70%
Dī(2-ethylhexyl)phthalate	11.25%	73%
Benzo(a)pyrene	3.22%	124%

Quality Control Report

EPA 524.2

Matrix Spike and Duplicate

Date: June 24, 2003 Batch No.: GCMS1062403W

Matrix: WATER

Compound	RPD	Percent Recovery
Benzene	0.71%	105%
Chlorobenzene	2.04%	98%
1,1-Dichloroethene	5.63%	98%
Toluene	2.14%	105%
Trichloroethene	5.98%	113%
1,2-Dichloroethane Surr*	4.77%	92%
4-Bromofluorobenzene Surr*	4.90%	106%
1,2-Dichlorobenzene-d4 Surr*	2.00%	110%

Blank < 1.0 PPB Pass/Fail: PASS

Quality Control Report EPA 531.1

Matrix Spike and Duplicate Analysis

Date: 6/26/2003

Batch No.: L531.1062603

Matrix: LIQUID

Compound	RPD	Percent Recovery
Aldicarb Sulfoxide	1.59%	101%
Aldicarb Sulfone	0.10%	99%
Oxamyl	0.00%	101%
Methomyl	0.76%	105%
3-Hydroxycarbofuran	1.35%	96%
Aldicarb	2.06%	102%
Propoxur (Baygon)	1.55%	97%
Carbofuran	2.17%	97%
Carbaryl	1.48%	95%
Methiocarb	1.93%	93%

Quality Control Report

Matrix Spike and Duplicate Analysis

Date: JUNE 27, 2003 Batch No.: EDB062603A Matrix: WATER

Compound	TH.	RPD	Percent Recovery
EDB		4.26%	94%
DBCP		4.08%	98%

Quality Control Report

EPA 515.1

Matrix Spike and Duplicate Analysis

Date: JULY 1, 2003 Batch No.: HERB062703A

Matrix: WATER

Compound Transfer of the Compound Transfer of	RPD	Percent Recovery
Dalapon	0.00%	85%
Dinoseb	5.61%	89%
Pentachlorophenol	0.00%	110%
Pícloram	23.01%	94%
2,4-D		86%
2,4,5-TP (Silvex)	0.00%	108%
DCPA (Dachtal)	4.65%	110%

Quality Control Report EPA 508.1

Matrix Spike and Duplicate Analysis

Date: JUNE 30, 2003 Batch No.: LPEST062503B

Matrix: WATER

Compound	RPD	Percent Recovery
Alachtor		125%
Atrazine	0.85%	117%
Hexachlorocyclopentadiene		120%
Simazine	7.37%	122%

Quality Control Report

EPA 508

Matrix Spike and Duplicate Analysis

Date: JUNE 29,2003 Batch No.: LPEST062503A

Matrix: WATER

Compound	RPD	Percent Recovery
Chlordane	3.23%	103%
Endrin	0.00%	97%
Heptachlor		95%
Heptachlor epoxide	3.08%	108%
Hexachlorobenzene	3.17%	105%
Lindane	3.08%	108%
Methoxychlor	3.1/%	105%

CHAIN OF CUL ODY RECORD

AND ANALYSIS REQUEST 4805 NW 2nd Avenue • Boca Raton, FL 33431 (800) 713-7737 • Fax (561) 989-5204

1 of 7

edyne@bellsouth.net P.O. NUMBER **VPRESERVATIVE** PROJECT NUMBER SAMPLE TYPE PROJECT LOCATION WATER UTILITIES LABORATORY 13026 JOG ROAD, BLDG "K" **RUSH TAT** (SURCHARGE) **CLIENT ADDRESS** CLIENT NAME DELRAY BEACH, FLORIDA 33446 PHONE DUE SAMPLE INFORMATION Sys 9 204138 WHY 2 3 30 TRIP BANK 5 6 7 8 9 10 3 SAMPLE COLLECTED BY NOW Fiertes ARE THESE SAMPLES LISTED OR CHARACTERISTIC HAZARDOUS WASTE? TYPES TO NO TOTAL OF ALL CONTAINERS ARE THESE SAMPLES FROM D PETROLEUM D DRY CLEANER OR D OTHER SITE? SEND REPORT TO (PERSON) RENINOUISHED BY ' TIME DATE DATE TIME RECEIVED BY 6-23-03 16:30 23/03/1640 INTACT YOU 6.23.03 1709 LOG NUMBER 5 2003 06403

PEMBROKE LABORATORIES, INC.

HRS # E84088 NELAC Certified

528 Gooch Road Fort Meade, Florida 33841

Ph (863) 285-8145 Fax (863) 285-7030

pembrokelab@earthlink.net

Envirodyne, Inc.

4805 NW 2nd Avenue Boca Raton, FL 33431

Attn: Michael Rentoumis

Date Received:

6/25/03

Time Received:

1630

Date Reported:

7/10/03

Lab Number	W 576 82	Sample ID 2003	0640	3 1	Sample Date / Time	6/23/03	1015
Parameter	Unit	Result	Code	Method	Analysis Date	Time	Analyst
Gross Alpha	pCi/l	3 ± 2		EPA 900	6/30/03	1150	CF
Ra226	pCi/l	0.7 ± 0.1		EPA 903.1	7/8/03	1315	CF
Ra228	pCi/l	$0.5~\pm~0.5$	U	RA-05	7/8/03	1156	CF
Lab Number V	W 57683	Sample ID 2003	06403	3 2	Sample Date / Time	6/23/03	0930

Parameter	Unit	Result	Code	Method	Analysis Date	Time	Analyst
Gross Alpha Ra226 Ra228	pCi/l pCi/l pCi/l	1 ± 1 0.1 ± 0.1 0.5 ± 0.5	U U	EPA 900 EPA 903.1 RA-05	6/30/03 7/8/03 7/8/03	1150 1315 1156	CF CF CF

Data Qualifier Codes: J4- Estimated Value / sample matrix interfered with the ability to make an accurate determination : U - Compound was analyzed for but not detected at the MDL

Certified by

S. GENE WHI

Laboratory Director

Kappa Laboratories, Inc.

2577 N.W. 74th Avenue • Miami, Florida 33122 Phone (305) 599-0199 • Fax (305) 592-1224 Mt. Sinai Medical Center • Biomedical Research
Pearlman Building
4300 Alton Road • Miami Beach, Florida 33140

REPORT DATE:

7/14/03

www.kappalabs.com

LABORATORY REPORT: Amended - 8/6/03

CLIENT:

Envirodyne, Inc.

4805 NW 2nd AVE

Boca Raton, FL 33431

SOURCE:

Water

SAMPLE DATE:

1015 6/23/03 1310 6/24/03

SAMPLE RECEIVED:

Client

SAMPLED BY:

Cher

JOB #: SAMPLE LOG #: 551892 D850

SAMPLE LD.

2003 06403-01

100

PARAMETER	RESULT	UNITS	METHOD	DETECTION	DATE	DATE	ANALYST
				LIMIT	EXT.	ANALY.	
E thall	BDL	μ g /l	548.1	50	6/30/03	7/2/03	DR
Diquat	BDL	μg/l	549	1.44	6/30/03	7/2/03	IF
Glyphosate	BDL	μg/l	547	40	6/27/03	6/27/03	IF .
Spike Recovery - Endothall	83	percent	Recovery Limits: 29-103%				
Spike Recovery - Diquat	72	percent	Recovery Limits: 25-1	30%			
Spike Recovery - Glyphosate	91	percent	Recovery Limits: 83-118%				

BDL: Below Detection Level

Kappa Laboratories has been inspected and is currently certified by the U. S. Department of Agriculture (USDA Microbiology-#0093); the Florida Dept. of Health, Drinking Water, including Microbiology, Pesticides and PCB's:

Environmental certification as Basic Environmental Laboratory (DOH #E86515) (FDEP CompQAP #940109);

Registered with the U.S.Food and Drug Administration (FDA-#1039389) and is an FDA Accepted Laboratory for Import Testing. Kappa Laboratory is currently a Contract Laboratory to the U.S. Centers for Disease Control (CDC), Atlanta, Georgia; Vessel Sanitation Program and is NELAC certified.

igned:/

Dr. Peter J. Kmieck

ir, Kappa Laboratories, Inc. (ا

RECEIVED

8/19/01

Cycle Testing Technical Memorandums