

Engineering Well Completion Report Concentrate Disposal System

Prepared for:

City of Pompano Beach City Project No. 99-747 Bid No. K-17-01

Prepared by:

Hazen and Sawyer, P.C. In association with Water Technology Associates, Inc. Project No. 40368

May 2002

W= G-2942 NW = POMP_CMU1

City of Pompano Beach

Engineering Well Completion Report Concentrate Disposal System

Prepared for:

City of Pompano Beach City Project No.: 99-747

Bid No.: K-17-01

Prepared By:

Hazen and Sawyer, P.C. In Association with Water Technology Associates, Inc. Project No.: 40368

Hazen and Sawyer, P.C. 2101 Corporate Blvd. Boca Raton, FL 33431 561 997-8070 Fax: 561 997-8159

May 31, 2002

Joseph R. May, P.G. U. I. C. Program Manager STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION

Groundwater Section - U. I. C. Permitting 400 North Congress Avenue West Palm Beach, FL 33401

> City of Pompano Beach **UIC Class I Injection Well** Permit Number 0167214-001-UC Engineering Well Completion Report

Dear Mr. May:

In fulfillment of the above-reference permit and Florida Administrative Code 62-528, Hazen and Sawyer is pleased to submit the attached Well Completion Report on behalf of the City of Pompano Beach. The concentrate disposal well and monitor well are both located at the City of Pompano Beach Water Treatment Plant. This report presents the results of the construction and testing performed during the drilling of the concentrate disposal well and the associated monitor well.

As always, please feel free to call should you have any questions.

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for detiring the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violetions.

Utility Director

No. 35587

Very truly yours,

HAZEÑ AND SAWYER, P.C.

Albert Muniz, P.E. **Project Manager**

C. See distribution list

H&S - 40174 / 40368

Boca:40174I017.doc

CITY OF POMPANO BEACH WATER TREATMENT PLANT CONCENTRATE DISPOSAL WELL CONSTRUCTION

Distribution List

Joseph R. May, P.G.

State of Florida
Department of Environmental Protection
Groundwater Section - UIC
400 North Congress Avenue
West Palm Beach, Florida 33401
Telephone: (561) 681-6691

Daniel C. Phelps, P.G.

State of Florida
Department of Environmental Protection
Groundwater Section - UIC
400 North Congress Avenue
West Palm Beach, Florida 33401
Telephone: (561) 681-6778

Richard Deuerling, P.G.

State of Florida
Department of Environmental Protection
Bureau of Groundwater Protection - UIC
2600 Blair Stone Road
Tallahassee, Florida 32301
Telephone: (850) 921-9417

Ron Reese, P.G.

United States Geological Survey Water Resources Division 9100 Northwest 36th Street Suites 106 and 107 Miami, Florida 33178 Telephone: (305) 717-5821

Steven D. Anderson, P.G.

South Florida Water Management District Post Office Box 24680 3301 Gun Club Road West Palm Beach, Florida 33416 Telephone: (561) 753-2400, Ext. 4726

Garth D. Hinckle, Jr., P.E.

Broward County - Department of Natural Resources Protection 218 Southwest First Avenue Fort Lauderdale, Florida 33301 Telephone: (954) 519-1256

Nancy Marsh

Groundwater / UIC Section USEPA, Region IV 61 Forsyth Street, Southwest Atlanta, Georgia 30303-3104 Telephone: (404) 562-9450

William F. Flaherty, P.E.

City of Pompano Beach 1201 Northeast 5th Avenue Pompano Beach, Florida 33060 *Telephone:* (954) 786-4106

Randall E. Fowler, P.E.

City of Pompano Beach 1201 Northeast 5th Avenue Pompano Beach, Florida 33060 *Telephone:* (954) 786-4106

Albert Muniz, P.E.

Hazen and Sawyer, P.C. 2101 Corporate Boulevard Boca Raton, Florida 33431 *Telephone:* (561)997-8070

Michael W. Wengrenovich, P.E.

Hazen and Sawyer, P.C. 4000 Hollywood Boulevard Seventh Floor, North Tower Hollywood, Florida 33021 *Telephone:* (954) 987-0066

James A. Wheatley, P.G.

Water Technology Associates, Inc. 513 U.S. Highway 1, Suite 202 North Palm Beach, Florida 33408 *Telephone:* (561) 844-7436

Table of Contents

Chapter 1.0 -	Injection Well Program	
•	1.1 Introduction	1-1
	1.2 Purpose	
	1.3 Elements of the Injection Well Contract	
Chapter 2.0 -	Well Drilling and Construction	
onapto. mio	2.1 Well Construction	2-1
	2.2 Data Collection	
	2.3 Geologic Samples	
	2.4 Cores	
	2.5 Geophysical Logs	
	2.6 Video Surveys	
	2.7 Packer Tests	
	2.8 Packer Test Water Quality	
	2.9 Casing	
	2.10 Cement Bond Logs	
	2.11 Tubing and Packer	
	2.12 Monitoring Zone Depths	
Chapter 3.0 -	Subsurface Conditions	
Chapter 3.0 -		2.4
	3.1 Background	
	y	
	, , , , , , , , , , , , , , , , , , , ,	
		3-3
	· · · · · · · · · · · · · · · · · · ·	
	gp	
	3.5.7 Testing Quality Control Assurance	
	3.5.8 Criteria for Identification of Confining Units	
	3.6 Confinement Intervals	
	3.6.1 Interval From 1,680 to 1,830 Feet bpl	
	3.6.2 Interval From 1,900 to 2,025 Feet bpl	
	3.6.3 Confinement Summary	3-7

Chapter 4.0 -	Fina	Final Testing				
•	4.1	General	4-′			
	4.2	Background Water Quality	4-1			
	4.3	Mechanical Integrity Testing	4-1			
		4.3.1 Casing Pressure Test				
		4.3.2 Injection Well No. 1 Temperature Log				
		4.3.3 Injection Well No. 1 Television Survey				
		4.3.4 Injection Well No. 1 Radioactive Tracer Survey				
		4.3.5 MIT Conclusions				
	4.4	Injection Test				
Chapter 5.0 -	Find	Findings and Recommendations				
onapter 5.0	5.1	Findings	5.1			
		Conclusions				
		Recommendations				
	5.4					
	5.4	Well Operation, Maintenance and Future Testing				
		5.4.3 Injectivity Testing				
		5.4.4 Mechanical Integrity Testing				
		5.4.5 Waste Stream Analysis				
	5.5	Plugging and Abandonment Plan	5-5			
Tables	1	Core Depths				
	2	Hydraulic Conductivity Derived from Cores				
	3	Packer Test Development				
	4	Hydraulic Conductivity Derived from Packer Tests				
	5	Water Quality Analysis Results from Packer Tests				
	6	Plugging and Abandonment Cost Estimates				
Figures	1	Location Map				
· igaics	2	Well Location As-Built Site Plan				
	3	Injection Well As-Built Well Profile				
	4	Monitor Well As-Built Well Profile				
	5	Radioactive Tracer Survey Tool				
Appendices	Α	FDEP Construction Permit				
	В	Weight on Bit and Rate of Penetration				
	Č	Inclination Surveys				
	Ď	Geologic Logs				
	_	Injection Well				
		Monitor Well				
		MOINGE TTOI				

E Cores

Core Logs
Core Analysis

F Geophysical Logs

Geophysical Log Index

Flow Meter Analysis

Geophysical Logging Quality Control

Injection Well Geophysical Logs - (boxed separately in Box 1)

Monitor Well Geophysical Logs - (boxed separately in Box 2)

G Video Survey

Video Survey Log

VHS Tapes of Survey (boxed separately with geophysical logs)

H Packer Pumping Test Data and Graphs

Straddle Packer Test No. 1 - 1,631 to 1,647

Straddle Packer Test No. 2 - 1,731 to 1,747

Straddle Packer Test No. 3 – 1,931 to 1,947

Straddle Packer Test No. 4 - 1,679 to 1,695

Straddle Packer Test No. 5 - 1,811 to 1,827

Straddle Packer Test No. 6 – 1,519 to 1,550

Packer Test Quality Control Procedures

- I Packer Test Water Quality Laboratory Results
- J Log Derived Water Quality
- K Casing and Tubing Mill Certificates
- L Cement Reports
- M Casing and Tubing Pressure Tests
- N Positive Seal Packer Assembly
- O Background Water Quality Test Results

Injection Well Background Water Quality

Upper Monitor Zone Background Water Quality

Lower Monitor Zone Background Water Quality

Western Wellfield Background Water Quality

P Injection Test Data

1.0 Injection Well Program

1.1 Introduction

On March 22, 2001, the City of Pompano Beach was issued Permit No. 0167214-001-UC by the Florida Department of Environmental Protection (FDEP) for the construction of one 16-inch diameter Class-1 injection well (IW-1) and associated dual-zone deep monitor well (MW-1). A copy of the permit is included in Appendix A. The wells are located at the City of Pompano Beach Water Treatment Plant (WTP). A location map of the project site is presented in Figure 1.

The wells were constructed in accordance with contract documents prepared by Hazen and Sawyer (H&S) entitled Contract Documents for the Construction of the Concentrate Disposal Well, dated September 13, 2000. These plans and specifications for drilling one injection well and one dual-zone monitor well formed the basis of a contract between the City of Pompano Beach and Youngquist Brothers, Inc. (referred to hereinafter as "the Contractor").

H&S was retained by the City of Pompano Beach (City) to provide construction management services for the project. H&S utilized the services of Water Technologies Associates, Inc. (WTA) to provide partial field observation and hydrogeologic services. The H&S and WTA team is hereinafter referred to as "the Engineer". On-site supervision was provided by the Engineer during testing, geophysical logging, casing installation, and cementing operations. Construction phase responsibilities of the Engineer included obtaining FDEP approval on key elements of the project and reporting project progress weekly to the Technical Advisory Committee (TAC), which included members from the FDEP, the Broward County Department of Planning and Environmental Protection (BCDPEP), the South Florida Water Management District (SFWMD) and the United States Geological Society (USGS). The United States Environmental Projection Agency (EPA) is copied on TAC correspondence, but is not a member of the TAC.

1.2 Purpose

The purpose of this report is to summarize the information obtained during the construction and testing of IW-1 and MW-1. The following information is included in this report:

- Description of methods used to analyze the data
- Documentation of the approved casing setting depths and monitoring zones for MW-1
- Demonstration of mechanical integrity of the injection well
- Identification of confinement above the injection zone

 Verification that the well is suitable for the designed pumping rates to allow long term operational testing of the injection well.

1.3 Elements of the Injection Well Contract

The project specifications contained provisions for the construction and testing of the one injection well and the associated monitor well. The well design was based on the data obtained from other wells in the area. The 16-inch diameter injection well was constructed to approximately 3,000 feet below land surface. The deep dual-zone monitor well (also called the monitor well) was constructed to a total depth of 1,950 feet.

Provisions of the contract included:

- Monitoring depth, weight on bit, rate of penetration, inclination and drilling fluid during the drilling of the wells;
- Collecting and logging geologic cuttings (samples), to confirm lithologic boundaries and gross lithologic properties;
- Collecting and analyzing conventional cores to complement the geologic logging and to identify hydrologic properties of the lithologic formations;
- Conducting the following geophysical logs at various points during the well construction: X-Y
 caliper, gamma ray, fluid conductivity, dual induction, borehole compensated sonic/VDL,
 fluid resistivity, temperature, flowmeter and borehole televiewer;
- Conducting open hole video (television) survey;
- Conducting straddle packer and single packer tests in discrete zones of the injection well pilot hole to determine the hydrologic properties of lithologic units;
- Collecting and analyzing of water samples taken during the packer tests to determine water quality variations with depth;
- Conducting casing cement top temperature logs and cement bond logs on various casing strings during the cementing operations;
- Collecting and analyzing background water samples from the monitoring zones and the injection zones;

- Conducting a hydrostatic pressure test, video survey and radioactive tracer survey on the final casing string to determine mechanical integrity of the injection well; and
- Conducting a short-term injection test in the completed injection well to demonstrate the ability of the injection well system to accept concentrate at the design flow rate.

2.0 Well Drilling and Construction

2.1 Well Construction

The injection well was constructed prior to the construction of the dual-zone monitor well (i.e., IW–1 constructed prior to MW-1). The monitor well was constructed approximately 70 feet northwest of IW-1. Well locations are presented in Figure 2. During the drilling of the wells, geophysical logging and testing were performed. Well construction was in accordance with the FDEP construction permit. Refer to Appendix A for a copy of the permit.

The drilling of IW-1 and MW-1 proceeded generally as identified in the project specifications with modifications approved by FDEP. The project specifications identified an outline of a drilling plan with the intention of making modifications to the plan as site specific conditions warranted. The plan included setting steel casing at selected depths to maintain the formation during drilling and to facilitate the proposed testing.

To consistently record downhole depth, all well measurements are recorded in terms of depth below pad level (bpl). Actual depths of casings are identified in the profile of the completed well IW-1 and MW-1 presented in Figures 3 and 4, respectively. The injection well was constructed as generally follows:

- Drill a nominal 58-inch diameter borehole to approximately 125 feet bpl using the mud rotary method.
- Set and cement 50-inch diameter steel casing to a depth of 121 feet bpl.
- Drill a nominal 50-inch diameter borehole to approximately 1,030 feet bpl using the mud rotary method.
- Set and cement 42-inch diameter steel casing to a depth of 1,020 feet bpl.
- Drill a nominal 12½-inch diameter pilot hole to approximately 2,030 feet bpl using the reverse air method and core at depths selected by the Engineer.
- Backplug pilot hole with cement.
- Drill a nominal 42-inch diameter borehole to approximately 1,955 feet bpl using the reverse air method.
- Set and cement 34-inch diameter steel casing to a depth of 1,950 feet bpl

- Drill a nominal 12½-inch diameter pilot hole to approximately 3,000 feet bpl using the reverse air method and core at depths selected by the Engineer.
- Set cement plug at 2,525 feet bpl and back plug pilot hole with cement.
- Drill a nominal 34-inch diameter pilot hole to approximately 2,925 feet bpl using the reverse air method.
- Abandon lost nominal 34-inch diameter bottom hole assembly and 12½-inch diameter bit.
 Top of bottom hole assembly located at 2,901 feet bpl.
- Set and cement 24-inch diameter steel casing to a depth of 2,293 feet bpl.
- Set and cement a 16-inch diameter steel tubing and packer assembly at 2,273 feet bpl.

The drilling of MW-1 proceeded generally as identified in the project specifications. The depth of the monitor zones was based on the data collected during the drilling and testing of IW-1. The selection of the monitor zone depths is discussed later in the report. MW-1 was generally constructed as follows:

- Drill a nominal 32-inch diameter borehole to approximately 165 feet bpl using the mud rotary method.
- Set and cement in place 24-inch diameter steel casing at 160 feet bpl.
- Drill a nominal 24-inch diameter borehole to approximately 1,525 feet bpl using the mud rotary method.
- Set and cement in place 16-inch diameter steel casing at 1,520 feet bpl.
- Drill a nominal 16-inch diameter borehole to approximately 1,950 feet bpl using the reverse air method.
- Set and cement in place 6%-inch diameter steel casing at 1,900 feet bpl using cement baskets, filling the annular space of the final casing with cement from 1,900 to 1,550 feet bpl.

The upper monitor zone (UMZ) was established between 1,520 and 1,550 feet bpl and the lower monitor zone (LMZ) between 1,900 and 1,950 feet bpl. The upper outside 1,600 feet of the 6%-inch

diameter casing was coated with a corrosion resistant epoxy-phenolic compound. An as-built profile of the completed MW-1 is presented in Figure 4.

Pilot hole drilling at the Pompano Beach injection well site posed some construction challenges due to the fractured nature of the Boulder Zone and the cave—ins that occurred. For example, after completing the 12½—inch diameter pilot hole to a depth of 3,000 feet bpl geophysical logging was commenced. During the X–Y caliper/gamma ray logging on August 23, 2001 the geophysical logging tool became stuck at approximately 2,580 feet bpl, the depth where caverns were first encountered. The logging tool was successfully recovered on August 24, 2001, but on August 25, 2001, the flowmeter tool became stuck at a depth of approximately 2,620 feet bpl. The contractor was unable to retrieve the tool and a portion of the fishing tool was also lost during a recovery attempt. The flowmeter tool and fishing tool were both drilled out while reaming IW–1 to a nominal 34–inches in diameter.

In addition to the above, other challenges were presented while completing the well. In accordance with FDEP's request to set the 24-inch diameter casing at a depth of 2,920 feet bpl, the contractor began reaming the borehole to a nominal diameter of 34-inches. Due to the fractured and unstable nature of the formations encountered construction was slow with reaming and dredging operations continuing for a period of 29 working days. Reaming of the nominal 34-inch diameter continued until the bit was lost at a depth of approximately 2,714 feet bpl. Fishing operations enabled the contractor to recover and extract the bit from the borehole. A new nominal 34-inch diameter bottom hole assembly (BHA) was then constructed and the contractor resumed reaming operations.

The borehole was then reamed to a depth of 2,925 feet bpl. The contractor noticed resistance while tripping out the nominal 34–inch diameter bit. This resistance was likely the result of sloughing material in the upper portion of the borehole. While attempting to pull the drill string free the drill pipe parted from the bottom hole assembly at a depth of 2,730 feet bpl. The BHA dropped back to the bottom of the borehole (2,925 feet bpl) placing the top of the stabilizer at approximately 2,901 feet bpl. Unstable hole conditions necessitated that the borehole be re–reamed and dredged for approximately 23 working days before recovery operations could be initiated. A 12¼–inch diameter bit was tripped in to clean fallen material from the top of and alongside the BHA. Upon removing the drill pipe from the borehole it was discovered that the 12¼–inch bit, bit subs and approximately 13 feet of drill pipe had been lost in the borehole. The total length of the lost 12¼–inch assembly was approximately 18 feet. The top of the assembly was located at 2,890 feet bpl. After several unsuccessful attempts to recover them, the lost nominal 34–inch BHA and 12½–inch bit were abandoned in place.

In accordance with FDEP's request the 24-inch diameter casing was to be set at a depth of 2,920 feet bpl. As described above, extensive time was required to stabilize the borehole to this depth. A review of drilling operations, the video survey and geophysical logs revealed that the formations

from approximately 2,580 feet bpl to the total depth of the borehole were highly fractured. In addition the reamed borehole diameter between 2,300 and 2,580 feet bpl was generally greater than 70 inches with few ledges approaching the nominal bit diameter of 34 inches. These types of conditions are not amenable for obtaining a proper casing seat seal or casing cement bond. Thus a request to set the 24-inch diameter casing to 2293 feet bpl was made to and approved by FDEP. At 2,300 feet bpl the borehole diameter was approximately equal to the bit diameter, offering a suitable location for the installation of a bridge plug. After the bridge plug was installed, the 24-inch casing was successfully cemented in place. The cement bond log confirmed the cement seal. The 24-inch diameter casing was set to a depth of 2,293 feet bpl.

2.2 Data Collection

Data was collected during the construction of the wells using various methods and procedures as described in this Section. Independent testing and laboratory analyses performed by subcontractors of Youngquist Brothers, Inc. included the following: geophysical logging was performed by Florida Geophysical Logging, Inc., water quality analyses were performed by Sanders and Severn Trent Laboratories, and testing of rock cores was performed by Ardaman & Associates, Inc. and Core Labs.

Except as noted, measurements of footage in the wells are referenced to the pad level. The National Geologic Vertical Datum (NGVD) elevation of IW-1 and MW-1 are 19.67 and 19.67 feet, respectively. As-built elevations are shown on Figure 2 (see Appendix P for well head elevations and site survey).

Daily progress and activities were monitored and recorded. The Engineer prepared daily progress reports during well construction. The Contractor prepared independent daily reports. In addition to recording daily drilling progress, the reports included other pertinent drilling information such as drilling speed, weight on the drill bit, penetration rates, and relative hardness of the formations. Problems encountered during drilling were observed and noted. All activities related to the installation of well casings, cementing or other materials, as well as their quantities, were recorded. Detailed descriptions of test procedures and data collection, including results of inclination surveys to verify hole straightness, were recorded. The length and configuration of tools introduced into the borehole were noted. Copies of the daily and weekly progress reports were transmitted to the TAC members on a weekly basis. Graphs of the drilling weight on bit (WOB) and rate of penetration (ROP) are presented in Appendix B.

An inclination survey was conducted every 90 feet in the pilot and reamed holes to confirm plumbness requirements for the wells. The results from the inclination surveys are presented in Appendix C.

2.3 Geologic Samples

Samples of drilled cuttings were collected and analyzed from the drilling of the injection well and monitor well pilot holes. Circulation time (the time required for drilled cuttings to reach the surface) was calculated regularly to ensure that accurate sample depths were recorded. After initial examination, the Engineer's on-site personnel described the samples. A geologic description of each sample was entered into a log. The cuttings from the confining interval were classified in accordance with the scheme of Dunham (1962). These logs are presented in Appendix D. Two sets of drill cuttings were bagged in 10-foot intervals. After the wells were completed, the Contractor sent one set of these samples to the Florida Bureau of Geology in Tallahassee, Florida.

2.4 Cores

During the drilling of the injection well pilot hole, conventional core samples were collected. These samples were reviewed and select samples were sent to an independent laboratory for analysis. The results of the analyses are used to demonstrate confinement. Core depths were selected by the Engineer primarily on the basis of reviewing and interpreting information from other nearby wells, information obtained during the drilling of the injection well including weight on bit, rate of penetration, and lithology. The Contractor used 4-inch inside diameter core barrels for this project. Each core was approximately ten feet long. Cores from IW-1 were taken at the depths identified in Table 1.

Samples from each core were selected and sent for analysis to an independent laboratory, Ardaman and Associates. These samples were tested for several parameters including permeability, porosity and specific gravity. Core laboratory analysis results and geologic core descriptions are presented in Appendix E. A summary of the hydraulic conductivity from the laboratory analyses of the cores is presented in Table 2.

2.5 Geophysical Logs

At the completion of each stage of hole drilling, geophysical logs were conducted. The purpose of these logs was to assist in casing seat selection, identify confining sequences and to help identify the location of monitoring zones. The geophysical logs performed, including a brief description of the information provided by the logs, are as follows:

- X-Y Caliper Identification of hole diameter and hole geometry.
- Gamma Ray Measurement of the natural gamma ray radiation of the formation, used as a tie-in between logs.
- Dual Induction Log A resistivity log. Identifies differentiation between limestone and dolomite beds, and, along with the gamma ray log, is useful in the correlation of lithologic units.

- Borehole Compensated Sonic Variable Density Log (VDL) Identification of the confining sequences, as well as identification of zones that could cause problems during cementing.
- Flow Meter Surveys Determination of where fluid may be entering or exiting the borehole.
- Temperature Provides a profile of static and dynamic temperature of the borehole, may be useful in determining changes in fluid movement.
- Borehole Televiewer (BHTV) Determination of where structural features (bedding planes, fractures, vugs and voids) are located.
- Cement Top Temperature Verification of the annular space fill-up after each cementing stage.
- Cement Bond Log Used to assess the quality of the bond between the inner casing and the cement grout around the casing. The resulting curve of the log is a function of casing size and thickness, cement strength and thickness, degree of cement bonding and tool centering.

Geophysical logs, which were transmitted to TAC members on a weekly basis during construction, are presented in Appendix F, and are boxed separately. Box 1 contains logs from IW-1 and Box 2 contains logs from MW-1. For convenience, many of the same type of logs were merged together (e.g., the dual induction log for MW-1 presented in Box 2 is continuous from 251 to 1,850 feet bpl). Also in Appendix F is an index of the logs performed and a tabulation of the logs included in each box.

During the geophysical logging and testing of the well, the Engineer was on site to witness the logging and verify quality control procedures. The quality control maintained during the testing program was, to a large extent, provided by Florida Geophysical Logging, Inc. Industry standard quality control measures were observed and are documented on the logs. Detailed information of the tool calibration program utilized by Florida Geophysical Logging is also included in attached Appendix F.

2.6 Video Surveys

Video surveys were conducted and recorded in VHS format in the injection well pilot holes from 1,000 to 1,871 feet bpl, in the injection well pilot and reamed holes from 1,956 to 2,901, and in the injection tubing from land surface to 2,273 feet bpl. Video surveys were also performed on the dual—zone monitoring well from 1,520 to 1950 feet bpl. Color video surveys were made with the camera lens in two positions - downhole with a radial view and uphole with a horizontal rotating position. Air development was used to displace suspended solids from the well prior to performing the television

survey. The open hole survey allowed the reviewer to visually inspect the formations encountered in the borehole, as well as to observe potential fractures and water-producing zones. Acceptable picture clarity was obtained in the surveys. A log describing the formation and structural features observed in the open hole of the injection well and monitor well are presented in Appendix G. A copy of videotape survey is also included in Appendix G, however, for convenience, the tapes are boxed separately with the geophysical logs. Injection well IW-1 tapes are included in Box 1, and MW-1 tapes are included in Box 2.

2.7 Packer Tests

Straddle packer tests were performed after pilot hole construction of the injection well. Two inflatable packers (plugs) are set in the borehole and water is pumped from between the packers. Packer tests were conducted at intervals to either support demonstration of confinement, to determine water quality so as to define the base of the Underground Source of Drinking Water (USDW), or to identify potential monitoring zones. The packers were used to isolate zones to perform drawdown and recovery tests. The straddle packer intervals were selected based on reviewing and interpreting information from geophysical logs, lithology, cores and other packer tests. Six straddle packer tests were performed in IW-1. Two of the straddle packer tests performed in the injection well identified acceptable monitoring zones for MW-1

The packers were typically lowered into the pilot hole to the selected interval on the 7%-inch (outside) diameter drill pipe, inflated and seated against the formation. A 4-inch diameter submersible pump was lowered into the drill pipe approximately 200 feet to introduce stress on the isolated interval. Prior to starting the tests, each zone was developed free of any drilling fluids by means of air lifting and pumping until the specific conductance stabilized. Development time is identified in Table 3. The isolated zone was then allowed to recover from development before beginning the pumping test. During drawdown and recovery, water level measurements were obtained using a data logger attached to a pressure transducer (In-situ Hermit 2000-C). In addition to the hermit data logger, a battery-operated downhole pressure recorder was used for backup and quality control. The pressure transducer was lowered to a known depth. The method of analysis used on the data collected and recorded during the packer tests was the Modified Non-Equilibrium Formula derived by Cooper and Jacob (1946). The equation of the Cooper-Jacob method is as follows:

$$T = \frac{264Q}{\Delta s}$$

T = coefficient of transmissivity (gpd/ft)
Q = pumping rate (gpm)
Δs = change in drawdown over one log cycle (ft)

The calculated hydraulic conductivity from the packer tests are presented in Table 4. The raw packer test data and data plots are presented in Appendix H. Based on the stabilization of the fluid specific conductance prior to starting the packer tests and the drawdown characteristics of the data shown in this Appendix, all of the hydraulic conductivity values presented from the packer tests are considered valid.

2.8 Packer Test Water Quality

Water samples obtained during the packer tests were analyzed in the field for temperature and conductivity. These water samples were collected during the drawdown phase of the packer test and sent to an independent laboratory for additional analysis. The samples were analyzed and the results are presented in Appendix I. A compilation of the packer test water quality data is presented in Table 5. Log derived water graphs were prepared to compare to the packer test water quality data. This graph shows good correlation, and is presented in Appendix J.

2.9 Casing

Casing heat numbers stamped on the casing were verified with the mill certificates prior to running casing in the hole. Copies of the casing mill certificates are presented in Appendix K. Cementing plans for each casing string were proposed by the Contractor and reviewed by the Engineer prior to cementing. After accepting the proposed plan, casing was set and cemented. A copy of the cement reports for each casing run is presented in Appendix L.

Final casing installations were pressure tested for the injection well and the dual-zone monitor well. The 24-inch injection well casing was pressure tested first. The 16-inch injection well tubing was pressure tested next as part of the demonstration of mechanical integrity and is described in Section 4, Final Testing. The monitor well 16 and 6%-inch casings were then pressure tested.

On December 31, 2001, the injection well 24-inch casing was internally pressurized to 152.0 psi. A pressure increase of 0.25 psi was observed over the 60-minute test period. This increase represents a 0.2 percent change in the original pressure, which is within the allowable variance of 5 percent. A copy of the test gauge certification records and certified results of the hydrostatic pressure test are contained in Appendix M.

On January 11, 2002, the injection well 16-inch injection well tubing was internally pressurized to 153.0 psi. A pressure increase of 6.0 psi was observed over the 60-minute test period. This increase represents a 3.9 percent change in the original pressure, which is within the allowable variance. A copy of the test gauge certification records and certified results of the hydrostatic pressure test are contained in Appendix M.

On February 11, 2002, the monitor well 16-inch casing was internally pressurized to 151.0 psi. A pressure increase of 0.0 psi was observed over the 60-minute test period. This increase represents a 0.0 percent change in the original pressure, which is within 5.0 percent maximum allowable change. A copy of the test gauge certification records and certified results of the hydrostatic pressure test are contained in Appendix M.

On February 19, 2002, the monitor well 6%-inch injection well casing was internally pressurized to 156.0 psi. A pressure increase of 2.5 psi was observed over the 60-minute test period. This increase represents a 1.6 percent change in the original pressure, which is within 5.0 percent maximum allowable change. A copy of the test gauge certification records and certified results of the hydrostatic pressure test are contained in Appendix M.

2.10 Cement Bond Logs

Cement bond logs are used to assess the quality of the bond between the casing and the cement grout. The resulting curve of the log is a function of casing size and thickness, cement strength and thickness, degree of cement bonding and tool centering.

The travel time curve (left log track) is run to determine if the tool is properly centered. The critical travel time is the time recorded when the tool is centralized. Factors affecting the travel time curve are cycle skipping that can be caused by fast formation arrivals and formations that are so dense they actually have a faster transit time than the casing. The basic transit time of steel is slower than some dolomites and limestones. On the amplitude curves (center log track), a time gate is set at the time corresponding to the expected arrival of the casing signal, and the amplitude of the signal in that gate is recorded. A high amplitude indicates a larger casing signal, and therefore a poorer cement bond; a low amplitude indicates a good bond.

The variable density display (left log track) displays the entire wave signal. If there is no bond, an arrival is seen at the time corresponding to the casing velocity. As the cement becomes thicker and stronger (compressive strength), the casing signal becomes weaker.

On December 28, 2001, a cement bond log was performed in the injection well 24-inch casing. From the travel time log it can be seen that good tool centralization was maintained for the entire log. The variable density display shows no strong casing signal on any section of the 24-inch casing. The cement bond log conducted in IW-1 demonstrated that there is a good cement seal around the 24-inch diameter casing, and that there are no channels or conduits that would allow fluid movement adjacent to the casing.

On January 7, 2002, a cement bond log was performed in the monitor well 16-inch casing. From the travel time log it can be seen that good tool centralization was maintained for the entire log. The variable density display shows no strong casing signal on any section of the 16-inch casing. The

cement bond log conducted in MW-1 demonstrated that there is a good cement seal around the 16-inch diameter casing, and that there are no channels or conduits that would allow fluid movement adjacent to the casing.

On February 18, 2002, a cement bond log was performed in the monitor well 6%-inch casing. From the travel time log it can be seen that good tool centralization was maintained for the entire log. The variable density display shows no strong casing signal on any section of the 6%-inch casing. The cement bond log conducted in MW-1 demonstrated that there is a good cement seal around the 6%-inch diameter casing, and that there are no channels or conduits that would allow fluid movement adjacent to the casing.

2.11 Tubing and Packer

A positive seal packer was installed in the 24-inch casing at a depth of 2,273 feet bpl. The 16-inch injection tubing is seated on the packer and is centered by centralizers. The 16-inch tubing was then cemented in place to surface. A copy of the packer specifications is presented in Appendix N. An as-built profile of IW-1 is presented in Figure 3.

2.12 Monitor Zone Depths

The selection of monitor zones for MW-1 was established based on information available from the drilling and testing of IW-1, and was approved by FDEP. The upper monitor zone was established between 1,520 and 1,550 feet bpl and the lower monitor zone between 1,900 and 1,950 feet bpl. An as-built profile of MW-1 is presented in Figure 4.

3.0 Subsurface Conditions

3.1 Background

This section presents the site-specific geologic and hydrogeologic information obtained during this project and the results of various tests made during construction of IW-1 and MW-1.

3.2 Generalized Geologic Setting

A well-defined, extensive sequence of carbonate sediments is present at the City of Pompano Beach WTP site. This is consistent with information obtained from other projects in the area. The geologic units found during construction of the monitoring well satisfy the requirements of FAC Rule 62-528. Geophysical logging and testing confirmed the presence of a suitable confining sequence and suitable monitor zones. A brief description of the various geologic units follows.

From land surface to approximately 380 feet bpl, the sediments are comprised of limestone, sandy limestone, limey sandstone, sandy clay and varying amounts of unconsolidated shell and sand. The limestone and sandy limestone are a light gray to grayish olive packstone and grainstone. The limey sandstone is generally light gray to grayish yellow and olive, fine to medium-grained and slightly phosphatic. The sandy clay is grayish olive, soft, plastic and slightly calcareous with very fine to fine-grained quartz sand. Various amounts of shell and quartz sand are also present in these sediments.

The dissolution features and generally poor cementation apparent in the upper 380 feet of sediments give this unit the high permeability characteristic of the Biscayne Aquifer. These sediments are Pleistocene to Miocene in age and correspond to descriptions of the Anastasia and Plamico Sand formations.

From approximately 380 to 500 feet bpl, the sediment is predominantly composed of light olive gray, limestone and sandstone with abundant plastic clay. From 500 to about 1,000 feet bpl, the sediment is predominantly yellowish gray to olive plastic clay with very fine grained quartz sand with interbedded limestone occasionally present throughout the interval. The limestone varies from yellowish gray wackestone from 730 to 750 feet bpl to yellowish gray sandy clayey wackestone from 940 to 970. The sediments in the interval between approximately 380 and 1,000 feet bpl are Miocene to Late Eocene in age and correspond to the Hawthorn Formation.

From about 1,000 to 1,840 feet bpl, the sequence is composed almost entirely of limestone, typically a pale orange to grayish orange, fine to medium grained packstone. The limestone in this sequence is Middle to Late Eocene age and is delineated as part of the Avon Park Limestone.

Between 1,840 and 2,925 feet bpl, dolomite is interbedded with limestone, light to moderate yellowish-brown and fine to medium grained to cryptocrystalline. The limestone in this interval is generally very pale orange, pellodial or micritic, fine to medium grained and soft. The television surveys indicate that the dolomite in this zone exhibits extensive dissolution cavities as well as fracturing. The section is comprised of sediments of Early to Middle Eocene Age of the Avon Park Limestone.

The various formations penetrated by IW-1 and MW-1 correlate closely with those encountered in the other wells in the area, demonstrating the continuity and uniformity of the beds. A hydrogeologic cross section of the wells on site is presented in Appendix D.

3.3 Hydrogeologic Setting

The upper 380 feet of rock and sediments are Pleistocene and Upper Miocene sandstone, limestone, clay and unconsolidated sand and shell. These sediments comprise the Biscayne Aquifer that is used as a source of drinking water throughout South Florida.

Underlying the Biscayne Aquifer are approximately 610 feet of Miocene clay and limestone of the Hawthorn Formation that form a confining bed between the Biscayne Aquifer and the Oligocene to Eocene limestones and dolomites of the Floridan Aquifer. The clay and limestone confining sequence is called the Hawthorn Formation. Water from the Floridan Aquifer in South Florida contains concentrations of dissolved solids that exceed drinking water standards. The aquifer is not currently used as a main source of drinking water in Broward County; however, some water utilities have begun to use it.

Within the Eocene limestones, a confining sequence has been identified between 1,570 and 2,293 feet bpl as discussed later in Section 3.5. It consists of a thick sequence of dense limestone with some interbedded layers of dolomite and is discussed in greater detail later in this report. A hydrogeologic column is presented at the end of Appendix D.

3.4 Water Quality

Water samples were collected from isolated sections of the borehole during the straddle packer tests. The water samples from the packer tests were analyzed for selected parameters to establish background water quality and to identify the depth at where there is 10,000 mg/L of total dissolved solids (TDS).

The tests were conducted in intervals considered suitable as confining zones and intervals suitable as monitor zones. During the packer tests, a sample of the formation water from the tested interval was collected just prior to shutting off the pump, after significant development time. Water samples from the packer tests were analyzed for TDS, chloride, sulfate, specific conductivity, ammonia as nitrogen, nitrate as nitrogen, nitrite as nitrogen, total kjeldahl nitrogen, and total organic nitrogen.

Results of the laboratory analyses are presented in Appendix I. Table 5 summarizes the results of the laboratory analyses from the packer tests.

The base of the USDW is defined as water having less than 10,000 mg/l TDS. The base of the USDW was identified by performing water quality analysis on samples obtained from packer tests and geophysical log interpretation. Based on the water quality testing, the base of the USDW currently occurs 1,570 feet bpl. Also used in determining TDS is the dual induction geophysical log. From this log water quality can be derived. The log derived water quality data places the base of the USDW at 1,570 feet. This data is confirmed by the water quality results of the packer test conducted in IW-1 between 1,763 and 1,779 feet bpl, which yielded 10,500 mg/L total dissolved solids. A copy of the log derived water quality graph from IW-1 is attached and is presented in Appendix J.

3.5 Confinement Analysis

The approach to the evaluation of vertical confinement at the City of Pompano Beach WTP is as follows. Available borehole geophysical, geological data and open hole testing data were used to identify intervals from 1,570 (base of the USDW) to 3,000 feet bpl that exhibit confining properties. The vertical confinement provided by each interval was then evaluated. Particular attention was paid to locating beds of limestone, dolomite, clay or marl that have low matrix vertical hydraulic conductivities and are not penetrated by fractures and/or solution cavities. Such tight beds provide the primary vertical confinement of the injected concentrate.

3.5.1 Identification of Confining Units

The presence of satisfactory confining sequences between 1,570 and 3,000 feet bpl was established at the WTP during the drilling of IW-1. A letter previously submitted to the TAC documented the presence of this confinement on site. This letter from the Engineer is dated August 30, 2001 and is referred to as the "24-inch Casing Seat Request".

3.5.2 Geophysical Logs

The wire line geophysical logs for IW-1 were examined in detail for the presence of units of rock that could provide vertical confinement for injected fluids. A combination of sonic, caliper and resistivity logs was used to identify well-cemented limestone and/or dolomite beds that would be expected to have low matrix porosities and hydraulic conductivities. Borehole video surveying logs were used to locate fractures and/or cavernous zones that could be conduits for vertical fluid flow. Information on the orientation and thickness of beds was also obtained from the borehole video survey logs.

The development and conditioning of the wells prior to logging is not an issue for the sonic, caliper, gamma ray, temperature, resistivity and borehole video survey logs as these logs were designed to and are often run in mudded boreholes. Fine scale features, such as bed contacts, are readily

distinguishable on the borehole video survey log, which indicates that borehole conditions did not have a significant adverse effect on log quality.

Flowmeter, temperature, and fluid resistivity/conductivity logs provide information on the location of flow zones into wells and on changes in the salinity of formation water. Temperature and fluid resistivity/conductivity logs did not provide useful information concerning vertical confinement in the 2,000 to 3,000 feet bpl interval. Flowmeter logs are of limited value for identifying individual beds with low vertical hydraulic conductivities because a single zone of high hydraulic conductivity very often dominates the flow for the entire tested interval.

3.5.3 Characterization of Well Cuttings

Cuttings collected during the pilot hole drilling of in IW-1 (land surface to 3,000 feet bpl) were examined in detail for lithology, macroporosity (visible porosity) and apparent matrix hydraulic conductivity using a stereomicroscope. A copy of the geologic log is attached. The cuttings were grab samples collected at 10-foot intervals during the construction of the well. The lithology of the limestone cuttings was characterized using the limestone classification scheme of Dunham (1962). The most common grain types were silt to fine-sand sized rounded carbonate grains that are described as either peloids (fecal pellet-shaped grains of indeterminate origin) or as bioclasts (transported fossil fragments). The mineralogy of the samples (calcite versus dolomite) was confirmed by reaction with dilute hydrochloric acid. Dolomite was classified according to crystal size as being either cryptocrystalline (crystals are not visible with the low powered microscope) or microcrystalline (crystals are visible with the low-powered microscope), finely crystalline (1/64 to 1/16 mm) or medium crystalline (1/16 to 1/4 mm).

The macroporosity (visible porosity) of the samples was characterized as being either very low (< 2%), low (2-5%), moderate (5-15%), high (15-25%), or very high (>25%). The apparent matrix hydraulic conductivity was qualitatively evaluated as being very low to high based on the porosity, size of the pores, and likely degree of interconnection of the pores. Geological logs for each well are contained in Appendix D.

3.5.4 Core Examination and Data Analysis

The eight cores were taken from 1,725 to 2,030 feet bpl in IW-1. The lithology of the cores was evaluated to determine if there were any significant biases in the cutting samples. The well cuttings appeared to have somewhat less intergranular carbonate mud than the cores. In some limestone cuttings, the carbonate mud appeared to have been washed out of the samples during drilling. Some limestone cuttings, particularly grainstone and packstone lithologies, thus appear to be more porous than they actually are. The cores were also examined for the presence of fractures or solution features (vugs) that might be conduits for vertical fluid flow. A copy of the core descriptions is contained in Appendix E. Sections of each core were selected and submitted for laboratory

analysis for hydraulic conductivity. Results from the laboratory core analysis are summarized in Table 2. The complete laboratory analysis is presented in Appendix E.

3.5.5 Packer Test Data

Straddle packer test data collected during the drilling of IW-1 were analyzed for information on the hydraulic conductivity of potential confining units. The straddle packer data were analyzed using the Cooper and Jacob (1946) modification of the Theis (1935) non-equilibrium equation (i.e., the straight-line method). The transmissivity values calculated from both the pumping and recovery phase data for each test were similar.

It should be noted that the transmissivity and average hydraulic conductivities values calculated from the packer test data are largely a function of horizontal hydraulic conductivities. Packer test data thus tend to overestimate vertical hydraulic conductivities. For example, a packer test performed on an interval containing one or more high hydraulic conductivity beds interbedded between very low hydraulic conductivity beds would give a high transmissivity and average hydraulic conductivity value whereas the interval would have a very low vertical hydraulic conductivity. The results from each packer test are contained in Appendix H. A summarization of the results of the packer tests is shown in Table 4.

Two laboratory analyses were conducted on water samples collected from the packed off interval between 1,861 and 1,877 feet bpl. Although the test results indicated a zone of TDS, the water quality reported was greater than 10,000 (mg/L) Total Dissolved Solids. More specifically, the TDS results of 20,200 mg/L and 20,374 mg/L are well above the 10,000 mg/L threshold. Table 5 illustrates that water samples collected during the four packer tests conducted between 1,631 and 1,827 feet bpl yielded higher analytical values for TDS than did the interval between 1,861 and 1,877 feet bpl. The log derived water quality plot corroborates the laboratory results. In addition, the video survey of this zone indicated a horizontal fluid flow that is also evident on the flow meter log.

3.5.6 Stratigraphic Correlation

The geologic and geophysical logs of IW-1, and MW-1 indicates excellent correlation as would be expected from wells in such close proximity. An example of this excellent correlation can be seen when the dual induction logs from IW-1 and MW-1 are placed side by side. With the logs in this position, it can be seen that the logs are nearly identical. Examples of this can be seen on the gamma ray log with peaks at 1,520 feet bpl are at the same depth and of the same magnitude. This correlation can also be seen on the VDL and dual induction logs.

3.5.7 Testing Quality Control Quality Assurance

For each of the testing procedures conducted, quality control and quality assurance procedures were implemented and documented. A copy of the calibration theory and practice for the

geophysical logs conducted are contained in Appendix F. Quality control procedures for the packer testing are contained in Appendix H.

3.5.8 Criteria for Identification of Confinement Intervals

Beds or intervals of rock that are likely to offer good vertical confinement were identified using the following criteria:

- Low sonic transit times and derived sonic porosities.
- Variable density log (VDL) pattern consisting of either straight parallel vertical bands, where lithology is relatively uniform, or a "chevron" pattern of continuous parallel bands, where the formation consists of interbedded rock with differing densities and/or degrees of consolidation. Fractured rock typically has an irregular VDL log pattern.
- Low hydraulic conductivities calculated using packer pump test data.
- Low macroporosity (i.e., visible pore spaces) and a high degree of cementation (hardness) as observed in microscopic examination of cuttings and core samples.
- Borehole diameters on caliper logs close to the bit size. Fractured dolomite and limestone is commonly manifested by an enlarged borehole.
- Relatively high resistivities, which in the middle and lower Floridan Aquifer System are often indicative of tight dolomite and or limestone beds.
- Absence of evidence of fractures on the video survey and borehole televiewer log.

3.6 Confinement Intervals

The confinement properties of the strata between the base of the USDW (+/- 1,570 feet bpl) and 3,000 feet bpl was evaluated using the above criteria and data. The confining intervals are discussed below.

3.6.1 Interval From 1,680 to 1,830 Feet BPL

This interval consists predominantly of light-colored limestone and dolomitic limestones. Grainstones and packstones are the most common lithologies. The grainstones and packstones are interbedded with subsidiary beds of carbonate-mud rich lithologies (fossiliferous mudstones and wackestones). The borehole televiewer log indicates that the beds are horizontal and range in thickness from approximately 0.5 to 10 feet. The bedding appears to consist of stacked sequences of carbonate sand-rich (grainstones and packstones) and carbonate mud-rich (packstones to mudstones) limestones. The mudstone and wackestone beds, which have low macroporosities and are well cemented, can provide better vertical confinement than the thicker grainstone and packstone beds.

A packer tests was performed over the interval 1,679-1,695, 1,731-1,747 and 1,811-1,827 feet bpl within this confinement interval and yielded hydraulic conductivities ranging from 1.4×10^{-4} to 2.3×10^{-4} cm/sec. Laboratory analyses of hydraulic conductivities of cores collected over this interval ranged from 4.6×10^{-5} to 2.5×10^{-8} cm/sec. No evidence of vertical fractures or solution cavities was visible on the borehole televiewer log or the television survey video. The geological and geophysical data for this interval are characteristic of good vertical confinement.

3.6.2 Interval From 1,900 to 2,025 Feet BPL

This interval consists of interbedded light-colored limestones and dolomites. Grainstones and packstones are the most common lithologies. The grainstones and packstones are interbedded with subsidiary beds of carbonate-mud rich lithologies (fossiliferous mudstones and wackestones). The borehole televiewer log indicates that the beds are horizontal and range in thickness from approximately 0.5 to 10 feet. The bedding appears to consist of stacked sequences of carbonate sand-rich (grainstones and packstones) and carbonate mud-rich (packstones to mudstones) limestones. The mudstone and wackestone beds, which have low macroporosities and are well cemented, can provide better vertical confinement than the thicker grainstone and packstone beds.

A packer test was performed over the interval 1,931-1,947 feet bpl within this confinement interval and yielded hydraulic conductivities ranging from 3.7 x 10 $^{-5}$ to 4.1 x 10 $^{-5}$ cm/sec. Laboratory analyses of hydraulic conductivities of cores collected over this interval ranged from 1.1 x 10 $^{-3}$ to 6.0 x 10 $^{-10}$ cm/sec. No evidence of vertical fractures or solution cavities was visible on the borehole televiewer log or the television survey video. The geological and geophysical data for this interval are characteristic of good vertical confinement.

3.6.3 Confinement Summary

During the drilling and testing of these wells at the City of Pompano Beach WTP, an extensive program was implemented to identify confinement between the base of the USDW and the depth 3,000 feet bpl. A number of cores and packer tests were performed over a relatively small depth interval.

The limestones and dolomites present from 1,680 to 2,025 feet bpl in IW-1 have geological and geophysical characteristics indicative of good confinement. The available borehole televiewer and television surveys show no evidence of fractures or cavernous zones that could be conduits for the upward migration of injected concentrate. The majority of the 1,680 to 2,025 feet bpl interval consists of horizontally bedded, fossiliferous limestone. The limestones have visible porosities (i.e. macroporosities) estimated to range mostly between 0 and 15%. Sonic and core sample total porosities range mostly between 33 and 45%. The majority of the porosity of the limestones is microporosity (microporosity = total porosity minus macroporosity). Microporosity rocks, where

unfractured, typically have low hydraulic conductivities. The vertical hydraulic conductivity of core samples range from 3.5×10^{-10} to 2.5×10^{-3} cm/sec.

The combined hydrogeological, geological and geophysical data provide reasonable assurance that confinement exists below the USDW.

4.0 Final Testing

4.1 General

After the injection well construction was completed, the injection well was tested for mechanical integrity, which also included collection of background water samples from MW-1, and performance of a short-term injection test on IW-1. The mechanical integrity testing (MIT) includes a hydrostatic pressure test of the injection casing, a temperature log, a video survey and a radioactive tracer survey (RTS). The short-term injection test consisted of injecting raw groundwater from the City's western wellfield into the well for a twenty four-hour period.

4.2 Background Water Quality

Water samples were obtained from both the upper and lower monitor zones of MW-1, and from the IW-1 injection zone. Prior to sampling, the wells were developed by using the reverse air procedure then allowing the well to flow naturally for a minimum of three well volumes. The samples were analyzed for a variety of constituents to establish the "natural" or background quality of the water. Background water quality laboratory analytical results from the injection zones of IW-1 and the upper and lower monitor zones of MW-1 are presented in Appendix O.

Water samples of the western wellfield, and the reclaimed water treatment facility was also analyzed, and the results of the analyses are presented in Appendix O.

4.3 Mechanical Integrity Testing

In accordance with FAC Rule 62-528, the injection well was tested for mechanical integrity. Testing consisted of a hydrostatic pressure test of the injection casing, a temperature log, a television survey and a RTS. The hydrostatic pressure test, which was conducted at a pressure at least 50 percent greater than the maximum allowable operating pressure, identifies internal casing integrity. The temperature log identifies temperature variations in the well. The television survey provides visual verification of internal casing integrity. The radioactive tracer survey provides data on the external mechanical seal of the casing. The following describes the testing methods, results of the testing and presents the interpretation of the data collected during the mechanical integrity tests.

4.3.1 Casing Pressure Test

On December 31, 2001, the injection well 24-inch casing was internally pressurized to 152.0 psi. A pressure increase of 0.25 psi was observed over the 60-minute test period. This increase represents a 0.2 percent change in the original pressure, which is within the allowable change of 5 percent. A copy of the test gauge certification records and certified results of the hydrostatic pressure test are contained in Appendix M. Albert Muniz, P. E., and Dan Phelps, P.G. (FDEP) witnessed the casing pressure test.

On January 11, 2002, the injection well 16-inch injection well tubing was internally pressurized to 153.0 psi. A pressure increase of 6.0 psi was observed over the 60-minute test period. This increase represents a 3.9 percent change in the original pressure, which is within the allowable change of 5 percent. A copy of the test gauge certification records and certified results of the hydrostatic pressure test are contained in Appendix M. Albert Muniz, P. E., and Dan Phelps, P.G. (FDEP) witnessed this test.

4.3.2 Injection Well No. 1 Temperature Log

On March 22, 2002, Florida Geophysical Logging, Inc. conducted a temperature log on IW-1 from the surface to a total depth of 2,901 feet bpl. The temperature log showed a decline from about 75 degrees Fahrenheit to about 69 degrees Fahrenheit to a depth of 2,404 feet bpl. Below this point, the temperature decreases to about 57 degrees Fahrenheit to a total depth of 2,901 feet. James A. Wheatley, P.G. witnessed the test. A copy of the temperature log is contained in Appendix F.

4.3.3 Injection Well No. 1 Television Survey

Video surveys of IW-1 were performed on January 6, 2002, and January 11, 2002. The surveys were performed from pad level to a depth of 2,895 feet bpl. Water clarity was good, enabling the camera to capture clear images of the tubing interior, packer assembly, casing seat and open-hole section. The survey revealed that the tubing was in excellent condition. A video copy of the television survey is included in Appendix G.

4.3.4 Injection Well No. 1 Radioactive Tracer Survey

On March 22, 2002, a RTS was conducted on IW-1. A schematic of the logging tool is shown in Figure 5. The test began with Florida Geophysical Logging, Inc., conducting a background gamma ray log (GRL) and a casing collar locator (CCL). The background GRL was "memorized" and subsequently reprinted on each out-of-position logging run to serve as a means of comparison. Each logging run is identified by its name presented at the top of the log. After the completion of the background GRL, the logging tool ejector was calibrated to a 0.25 millicurie (mCi) per second discharge, and the reservoir was loaded with 10 mCi of radioactive lodine 131. James A. Wheatley, P.G., and Dan Phelps, P.G. (FDEP) witnessed the RTS test.

The first test conducted was a dynamic test (TEST #1). An injection rate of 45 gpm was established using potable water. For this test, the tracer ejector port was positioned five feet above the bottom of the casing (2,288 feet) and 1 MCi slug of tracer material was released under pumping conditions. Time drive monitoring was started upon release of the tracer. At about the 20-second mark, the middle detector (located 3.1 feet below the ejector) showed evidence of the slug dispersing downward from the ejector. At about the 4-minute mark, the bottom gamma ray detected the tracer slug. No increase in gamma detection by the top gamma ray detector was seen during the 60-minute monitoring period. The tools were then logged out of position (LOG OUT OF POSITION #1) to a depth of 2,077 feet bpl. Results of the log out position showed no indication of tracer material

movement up hole, however a small amount of residual tracer material released from the ejector port was detected at 2,230 feet bpl. The injection casing was then flushed with approximately 25,000 gallons of western well field raw water. Following the flushing, an out of log position was conducted (LOG AFTER FLUSH #1) from below the casing to 2,083 feet bpl. This log shows no indication of tracer material movement up hole. These results are interpreted as providing evidence that the casing integrity is sound and there are no channels behind the casing.

The next test conducted was a second dynamic test (TEST #2). An injection rate of 98 gpm was established using potable water. For this test, the tracer ejector port was positioned five feet above the bottom of the casing (2,288 feet) and 1 MCi slug of tracer material was released under pumping conditions. Time drive monitoring was started upon release of the tracer. At about the 20-second mark, the middle detector (located 3.1 feet below the ejector) showed evidence of the slug dispersing downward from the ejector. At about the 2-minute mark, the bottom gamma ray detected the tracer slug. No increase in gamma detection by the top gamma ray detector was seen during the 60-minute monitoring period. The tools were then logged out of position (LOG OUT OF POSITION #2) to a depth of 2,078 feet bpl. Results of the log out position showed no indication of tracer material movement up hole. The injection casing was then flushed with approximately 30,000 gallons of western well field raw water. Following the flushing, an out of log position was conducted (LOG AFTER FLUSH #2) from below the casing to 2,084 feet bpl. This log shows no indication of tracer material movement up hole. These results are interpreted as providing evidence that the casing integrity is sound and there are no channels behind the casing.

The third and final test conducted was also a dynamic test (TEST #3). An injection rate of 6,000 gpm was established using western well field raw water. For this test, the tracer ejector port was positioned five feet above the bottom of the casing (2,288 feet) and 4 MCi slug of tracer material was released under pumping conditions. Time drive monitoring was started upon release of the tracer. At about the 2-second mark, the middle detector (located 3.1 feet below the ejector) showed evidence of the slug dispersing downward from the ejector. At about the 4-second mark, the bottom gamma ray detected the tracer slug. No increase in gamma detection by the top gamma ray detector was seen during the 60-minute monitoring period. The tools were then logged out of position (LOG OUT OF POSITION #3) to a depth of 2,097 feet bpl. Results of the log out position showed no indication of tracer material movement up hole. These results are interpreted as providing evidence that the casing integrity is sound and there are no channels behind the casing.

Following the LOG OUT POSITION #3, the logging tool was lowered to a depth of 2,400 feet bpl and the remainder of the tracer material was released. The tools were then lowered to 2,600 feet and a final background log was conducted.

4.3.5 MIT Conclusions

Based on the results of the temperature log, hydrostatic pressure tests, video survey and radioactive tracer survey, IW-1 has demonstrated to have mechanical integrity.

4.4 Injection Test

On March 21, 2002, a controlled injection test was conducted on IW-1 utilizing raw groundwater from the City's western wellfield as the source of water for testing. The test consisted of a 24-hour background period, during which transducers were placed at a depth of 2,263 feet bpl in IW-1 to monitor bottom hole pressure changes. Transducers were also placed such that wellhead pressure changes of IW-1 and both zones of MW-1 could be monitored. After performing background monitoring, the 12-hour test was started. The injection test was conducted at two different injection rates. The first rate of 5,540 gpm (10.1 ft/sec) lasted 11 hours, while the injection rate was increased during the last hour of the test the rate was increased to 6,800 gpm (12.3 ft/sec). These injection rates represent the maximum anticipated flows when the water treatment plant is fully operational. Maximum injection pressures are estimated to be less than 90 psi. The maximum wellhead pressure during the test was 48 psi, which is well within the allowable 2/3 of the pressure test conducted on the annulus. Wellhead shut-in pressure is approximately 17 psi. A copy of the data obtained during the injection test as well as a site survey and wellhead elevations are presented in Appendix P. A summary of the injection rates and wellhead pressure is presented below:

Injection Rate (gpm)	Wellhead Pressure (psi)	Specific Injectivity (gpm/psi)
5,540	39.0	142.05
6,800	48.0	141.67

5.0 Findings and Recommendations

5.1 Findings

The following list summarizes the findings identified during the construction of the injection and monitor wells:

- The base of the USDW, the point where the water contains 10,000 mg/L TDS, occurs at 1,570 feet bpl.
- The confining sequence generally occurs between 1,570 feet and 2,293 feet bpl.
- Vertical hydraulic conductivity determined from core testing within the confining sequences ranged from 5.9x10⁻¹⁰ to 1.1x10⁻³ cm/sec.
- Hydraulic conductivity was determined from packer testing within the confining sequences ranging from 4.1x10⁻⁵ to 2.1x10⁻⁴ cm/sec.
- The data demonstrates the existence of an extremely transmissive injection zone below 2,293 feet bpl saturated with saline water (containing more than 10,000 mg/L TDS).
- The injection zone is capable of accepting the maximum design flowrate equivalent to a velocity of 12 feet per second in the wells at a reasonable injection pressure that will not promote fractures in the injection zone or confining sequences.
- IW-1 was successfully pressure tested at 153 psi (24-inch casing) and at 152 psi (16-inch tubing).
- The testing program has demonstrated that IW-1 has mechanical integrity.
- One dual-zone monitor well was drilled with the upper lower monitor zone located from 1,520 to 1,550 feet bpl, and the lower zone from 1,900 to 1,950 feet bpl.

5.2 Conclusions

The presence of favorable geologic conditions, a highly transmissive injection zone filled with water having greater than 10,000 mg/L TDS, suitable confining sequence, and suitable monitor zones will permit the use of injection wells for disposal. This well will be used to dispose concentrate from the nanofiltration WTP and backwash filter water from the reclaimed water facility at the City of Pompano Beach WTP in accordance with existing state and federal underground injection control regulations.

Based on the results of the geophysical logging and testing performed at the City of Pompano Beach WTP, IW-1 has mechanical integrity and is ready to begin operational testing.

5.3 Recommendations

Operation of the monitor well is to begin within one month after the construction of the surface facilities is complete. Injection well operation may begin operating under the construction permit after operational testing approval is issued by FDEP.

The following recommendations are in accordance with requirements of FAC Rule 62-528 for the safe operation of an injection well system. These procedures should be carried out conscientiously to ensure compliance with the injection well construction permit (refer to Appendix A) and all regulatory requirements and to ensure successful operation of the well. Additional information on monitoring and reporting data is discussed in Section 5.4.

- Dual-zone monitor well pressure is to be continuously monitored.
- Injection wellhead pressure is to be continuously monitored.
- Flow to injection well is to be continuously monitored.
- Dual zone monitor well water quality is to be monitored weekly.
- Waste stream (plant concentrate) water quality is to be monitored monthly.
- Injection well injectivity tests are to be performed quarterly.
- A complete analysis of the waste stream is to be performed yearly.
- Injection well mechanical integrity tests are to be performed every five years.
- The six shallow pad wells are to be maintained for future use.

5.4 Well Operation, Maintenance and Future Testing

When the injection well is operational, a variety of data will be collected to satisfy statutory/permit requirements and to assist in managing the system. This section discusses the basic requirements for data collection to maintain permit compliance during both the initial testing and long-term operation of the injection well system. Initially, the injection wells will be operating under the construction permits. Six months of operation are required before the City can apply for an operating permit. The construction permit for IW-1 expires March 21, 2006. It is essential that the

performance data collection begin upon operational startup to establish baseline information that both satisfies regulatory requirements and serves for future data comparison and performance analyses. These records should be permanently maintained.

5.4.1 Monitor Well Data Collection

The purpose of monitor zone data collection is to detect changes in water quality attributable to the injection of treated concentrate into the nearby injection well. To collect the water quality samples, the monitor zones at the dual-zone monitoring well will be equipped with two sampling pumps, one for each zone. Interconnection of piping from the different zones and wells is not permitted by FDEP. Prior to collecting water samples for analysis, at least three well volumes have to be pumped from the monitor zones. Well water is pumped to the sample sinks in the injection well pump station. Excess well water is discharged into the injection well pump station wetwell, and is pumped down the injection wells.

Dual-zone monitor well water quality is to be monitored through weekly samples from the two dual-zone monitor well zones which are to be collected and analyzed weekly for TOC, TDS, chloride, fluoride, ammonia, TKN, nitrate, nitrite, pH, specific conductance, total phosphorous, sulfate, temperature. Monthly sampling is required for gross alpha, radium 226, and radium 228. The results of these analyses are to be sent to the FDEP monthly.

Dual-zone monitor well water quality is to be monitored through monthly samples from the lower monitor well zone which are to be collected and analyzed monthly for calcium calculated hardness, calcium and magnesium calculated hardness, total hardness as CaCO3, iron, and gross alpha. The results of these analyses are to be sent to the FDEP monthly.

The pressure in both zones of the dual-zone monitor well is to be continuously monitored and recorded. Daily and monthly average, maximum and minimum pressures are to be reported to FDEP monthly.

5.4.2 Injection Well Data Collection

Beginning with the start of the use of injection well, injection records should be maintained to evaluate injection well performance.

The pressure at the injection wellhead is to be continuously monitored and recorded. Daily monthly average, maximum and minimum pressures are to be reported to FDEP monthly.

The flowrate into the injection well is to be continuously monitored and recorded. Daily average, maximum, and minimum flow rates, as well as the total volume of concentrate pumped into the well are to be reported to the FDEP on a monthly basis.

5.4.3 Injectivity Testing

Periodic determination of the injectivity of a well is used as a measure of the efficiency of a well and is a permit requirement as a management tool for the injection well system. The injectivity test involves injecting concentrate into a well at three (or more) injection rates and recording the injection pressure for each rate. The shut-in pressure of the injection well is to be measured before each different injection rate. The injectivity is calculated by dividing the injection rate by the required injection pressure (wellhead injection pressure minus shut-in wellhead pressure). The result is expressed as gallons per minute per pounds per square inch (mgd/psi).

Factors affecting the injection wellhead pressure are a function of:

- The density differential between concentrate and the formation water in the injection zone;
- The friction loss in the casing; and
- The bottom hole pressure (injection zone transmissivity).

The latter is fairly constant as long as the temperature and density of the injection and formation fluids remain constant. Friction loss in the casing and bottom hole pressure can vary as a result of changes in the flowrate, physical condition of the injection zone and physical condition of the pipe. In general, pressure builds slowly with time (for a given pumping rate) as the casing "ages". Similarly, plugging of an injection zone can cause a gradual pressure build-up over time. Testing is required to be conducted quarterly for the life of the well. The testing rates for injectivity testing should be established as soon as the well is placed in operation. The test procedure should be easily repeatable.

A specific injectivity test is required to be performed quarterly. The pumping rates should be established after the well is in operation. Flow to the wells and wellhead pressures are to be recorded during this period. Test results are to be reported to the FDEP upon completion of the testing.

5.4.4 Mechanical Integrity Testing

An injection well has mechanical integrity when there is no leak in the casing and no fluid movement into the underground source of drinking water through channels adjacent to the well bore. Mechanical integrity testing includes a pressure test, a radioactive tracer survey, a high resolution temperature log and a television survey. This testing will be used, along with the monitoring data of the upper and lower monitor zones, to demonstrate the absence of fluid movement above the injection zone.

An interim internal mechanical test consisting of a pressure test pursuant to Rule 62-528 is to be conducted half way between the standard five-year mechanical integrity test. Based on the date of testing during construction, the next interim internal mechanical test is to be performed on IW-1 on September 22, 2004. This interim test shall consist of pressure testing of the tubing (i.e., 16-inch diameter casing).

The injection well is to be tested for mechanical integrity every five years in accordance with FAC Rule 62-528. Based on the date of testing during construction, the next MIT to be performed on IW-1 is March 22, 2007. The proposed MIT plan must be approved by FDEP prior to performing mechanical integrity testing. Request for approval should be made approximately six months prior to the required completion date.

5.4.5 Waste Stream Analysis

Samples from the waste stream are to be collected and analyzed monthly for TOC, TDS, TSS, chloride, fluoride, ammonia, TKN, nitrate, nitrite, pH, specific conductance, total phosphorous, sulfate, temperature, gross alpha, radium 226, and radium 228. The results of these analyses are to be sent to the FDEP monthly. During operational testing and quarterly thereafter samples from the waste stream are to be collected and analyzed monthly for calcium calculated hardness, calcium and magnesium calculated hardness, total hardness as CaCO3, iron, and gross alpha.

5.5 Plugging and Abandonment Plan

In the event that an injection well has to be abandoned, the well must be effectively sealed (or plugged) to prevent upward migration of the injection zone fluid or the interchange of formation water through the borehole or along the casing. The plugging program will require the services of a qualified drilling contractor with equipment capable of installing drill pipe to a depth of 2,901 feet and pumping neat cement.

The following procedures would be followed to abandon an injection well:

- Obtain a permit from the FDEP.
- Suppress the wellhead pressure with drilling mud.
- Remove the wellhead assembly.
- Fill the open hole with crushed limestone.
- Place a sand cap on the crushed limestone to the bottom of the 24-inch casing.
- Fill the 24-inch casing with neat cement.

The following procedures would be followed to abandon the dual-zone monitor well:

- Obtain a permit from the FDEP.
- Suppress the wellhead pressure with drilling mud.
- Remove the wellhead assembly.
- Fill the deep zone and the 6% -inch diameter casing with neat cement grout.
- Fill the shallow zone and the 16-inch diameter casing with neat cement grout

Table 1
Core Depths for Concentrate Disposal Well IW-1
City of Pompano Beach

Depth (feet bpl)	Date
1,725 - 1,735	06/13/01
1,795 -1,805	06/14/01
1,876.5 - 1,887.5	06/16/01
1,920 - 1,930	06/18/01
1,960 - 1,970	06/19/01
1,975 - 1,985	06/19/01
2,000 - 2,010	06/20/01
2,020 - 2,030	06/21/01
	1,725 - 1,735 1,795 -1,805 1,876.5 - 1,887.5 1,920 - 1,930 1,960 - 1,970 1,975 - 1,985 2,000 - 2,010

Table 2
Hydraulic Conductivity Derived from Cores
City of Pompano Beach

Core	interval	Vertical (cm/sec)	Horizonta (cm/sec)
Core #2	1,795.8 – 1,796.3	4.6 X 10 ⁻⁵	6.8 X 10 ⁻⁵
	1,796.3 - 1,796.9	4.8 X 10 ⁻⁵	5.6 X 10 ⁻⁵
	1,801.9 — 1,802.6	2.5 X 10 ⁻⁵	9.8 X 10 ^{−6}
Core #3	1,878.5 – 1,879.1	2.8 X 10 ⁻⁸	3.5 X 10 ⁻¹⁰
	1,880.1 – 1,880.7	1.1 X 10 ⁻⁹	3.0 X 10 ⁻⁷
Core #4	1,922.3 – 1,922.7	7.5 X 10 ⁻⁴	8.9 X 10 ⁻⁴
	1,925.1 - 1,925.6	1.1 X 10 ⁻³	2.5 X 10 ⁻³
Core #5	1,960.0 – 1,960.6	2.7 X 10 ⁻⁵	7.7 X 10 ⁻⁵
	1,962.5 - 1,963.4	1.6 X 10 ⁻⁵	2.8 X 10 ⁻⁵
	1,965.2 – 1,966.0	1.9 X 10 ^{−6}	6.5 X 10 ⁻⁵
	1,967.0 — 1,967.4	2.9 X 10 ⁻⁴	2.2 X 10 ⁻³
Core #6	1,979.0 – 1,979.5	4.6 X 10 ⁻⁵	3.0 X 10 ⁻⁴
	1,982.3 – 1,982.9	5.3 X 10 ⁻⁶	9.4 X 10 ⁻⁶
	1,983.3 – 1,984.1	5.4 X 10 ⁻⁷	3.5 X 10 ⁻⁷
Core #7	2,000.0 – 2,001.1	7.4 X 10 ⁻⁹	6.0 X 10 ⁻¹⁰
	2,002.5 - 2,003.0	6.1 X 10 ⁻⁹	8.2 X 10 ⁻¹⁰
	2,007.1 – 2,007.9	9.4 X 10 ⁻⁹	1.2 X 10 ⁻⁹
Core #8	2,021.8 - 2,022.5	4.3 X 10 ⁻⁵	5.9 X 10 ⁻¹⁰
	2,022.9 - 2,023.4	3.3 X 10 ⁻⁶	8.5 X 10 ⁻¹⁰

Table 3
Straddle Packer Test Development
City of Pompano Beach

Depth (feet bpl)	Well	Time	Rate		<u>pment</u>
		(min)	(gpm)	Time (min)	Rate (gpm)
1,631 – 1,647	IW-1	90	166	270	78
1,731 – 1,747	IW-1	180	50	285	26
1,931 – 1,947	IW-1	510	23	270	5
1,679 – 1,695	IW-1	420	62	165	28
1,811 – 1,827	IW-1	420	46	300	18
1,519 - 1,550	IW-1	435	65	300	29
	1,731 - 1,747 1,931 - 1,947 1,679 - 1,695 1,811 - 1,827	1,731 – 1,747 IW-1 1,931 – 1,947 IW-1 1,679 – 1,695 IW-1 1,811 – 1,827 IW-1	1,731 – 1,747 IW-1 180 1,931 – 1,947 IW-1 510 1,679 – 1,695 IW-1 420 1,811 – 1,827 IW-1 420	1,731 – 1,747 IW-1 180 50 1,931 – 1,947 IW-1 510 23 1,679 – 1,695 IW-1 420 62 1,811 – 1,827 IW-1 420 46	1,731 – 1,747 IW-1 180 50 285 1,931 – 1,947 IW-1 510 23 270 1,679 – 1,695 IW-1 420 62 165 1,811 – 1,827 IW-1 420 46 300

Table 4
Hydraulic Conductivity Derived from Packer Tests
City of Pompano Beach

Depth Interval (feet bpl)	Well	Pumping Rate (gpm)	Maximum Drawdown (feet)	Drawdown Hydraulic Conductivity (cm/sec)	Drawdown Transmissivity (gpd/ft)	Recovery Hydraulic Conductivity (cm/sec)	Recovery Transmissivity (gpd/ft)
1,519 – 1,550 ⁽¹⁾	IW-1				••-	•=-	
1,631 – 1,647	IW-1	78	82.6	1.0 x 10 ⁻³	339	1.0 x 10 ⁻³	339
1,679 – 1,695	IW-1	28	141.8	2.1 x 10 ⁻⁴	72	2.3 x 10 ⁻⁴	78
1,731 – 1,747	IW-1	26	152.8	1.8 x 10 ⁻⁴	61	1.8 x 10 ⁻⁴	61
1,811 – 1,827	IW-1	18	121.3	1.6 x 10 ⁻⁴	54	1.4 x 10 ⁻⁴	47
1,861 – 1,877 ⁽¹⁾	IW-1						
1,931 - 1,947	IW-1	6	164.6	4.1 x 10 ⁻⁵	14	3.7 x 10 ⁻⁵	12


^{(1) -} Packer test used to obtain water quality data

Table 5
Water Quality Analysis from Packer Tests
City of Pompano Beach

0.64				
0.01	2,930	7,600	1.28	5,640
0.26	17,000	40,200	0.23	28,100
0.22	16,400	37,100	<0.25	29,900
0.17	19,000	46,600	0.35	32,600
0.09	20,000	48,800	0.33	35,100
3.02	9,850	42,100	4.60	20,374
4.02	9,840	32,000	4.97	20,200
0.15	16,400	46,100	0.16	34,500
	0.22 0.17 0.09 3.02 4.02	0.22 16,400 0.17 19,000 0.09 20,000 3.02 9,850 4.02 9,840	0.22 16,400 37,100 0.17 19,000 46,600 0.09 20,000 48,800 3.02 9,850 42,100 4.02 9,840 32,000	0.22 16,400 37,100 <0.25

Table 6
Plugging and Abandonment Cost Estimate

Task	Unit Cost	Plan Estimate
Injection Well		
Mobilization	\$20,000	\$20,000
Mechanical Integrity Test (MIT)	\$20,000	\$20,000
Crushed Limestone 4,000 cu ft	\$10/cu ft	\$40,000
Neat Cement		
10,000 cu ft	\$10/cu ft	\$100,000
20% Contingency		<u>\$36,000</u>
TOTAL		\$216,000
Dual Zone Monitor Well		
Mobilization	\$10,000	\$10,000
Neat Cement		
3,000 cu ft	\$10/cu ft	\$30,000
20% Contingency		<u>\$8,000</u>
TOTAL		\$48,000

ALBERT MUNIZ, P.E. Registration No. 35587

CONCENTRATE DISPOSAL SYSTEM POMPANO BEACH WTP

Key West

FIGURE

LOCATION MAP

SITE

PLAN

YOU'LOOUIST BROTHERS, INC. PAG AT WELL - +19.57 (MONITOR WELL) Had Roviewed this Shop Drawing/Submittal CONC. PAD YSU Section 213. #0/ 300 -04-8 0 Transported the # 05/ Date: 4/2/02 PAD AT WELL . +19.67 (INTESTION WELL) TYPICAL ELEVATION CONTROL STATION "V 234" CONC. PAD . S.79*44'25*E. 1868.42' 695378.2772 (FT) 946225.4237 (FT) NORTHING: EASTING:

LEGEND:

CONC. - CONCRETE

TT. FEET

MT.A METERS

INJECTION WELL

NORTHING: 695711.07 (FT)

LATTUDE: N 26"14"41.944"

LONGITUDE: W 80'07'14.425"

944386.88 (FT)

EASTING:

SURVEY PLAT

OF INJECTION WELLS LOCATED IN BROWARD COUNTY, FLORIDA

THIS PLAT PREPARED AS A SPECIFIC PURPOSE SURVEY FOR THE PURPOSE OF LOCATING THE INJECTION WELLS AND CONCRETE PAGS WITH ELEVATIONS.

BEARINGS AND COORDINATES SHOWN HEREON ARE STATE PLANE FOR THE FLORIDA EAST ZONE NAU 63/1990 ADJUSTMENT AND BASED ON GPS REAL-TIME TIES TO CONTROL STATION V 234".

ELEVATIONS SHOWN HEREON ARE BASED ON THE NATIONAL GEODETIC VERTICAL DATUM OF 1925 (NGVO 29), FROM TIES TO CONTROL STATION $\stackrel{\bullet}{\sim}$ 234' ELEVATION $\stackrel{\bullet}{\sim}$ +38.04'.

UNDERGROUND IMPROVEMENTS, BITUTIES AND/OR FOUNCATIONS WERE INTLUCATED UNLESS OTHERWISE NOTED.

DATE OF LAST FIELD WORK: 4-17-2002

FOR THE FIRM

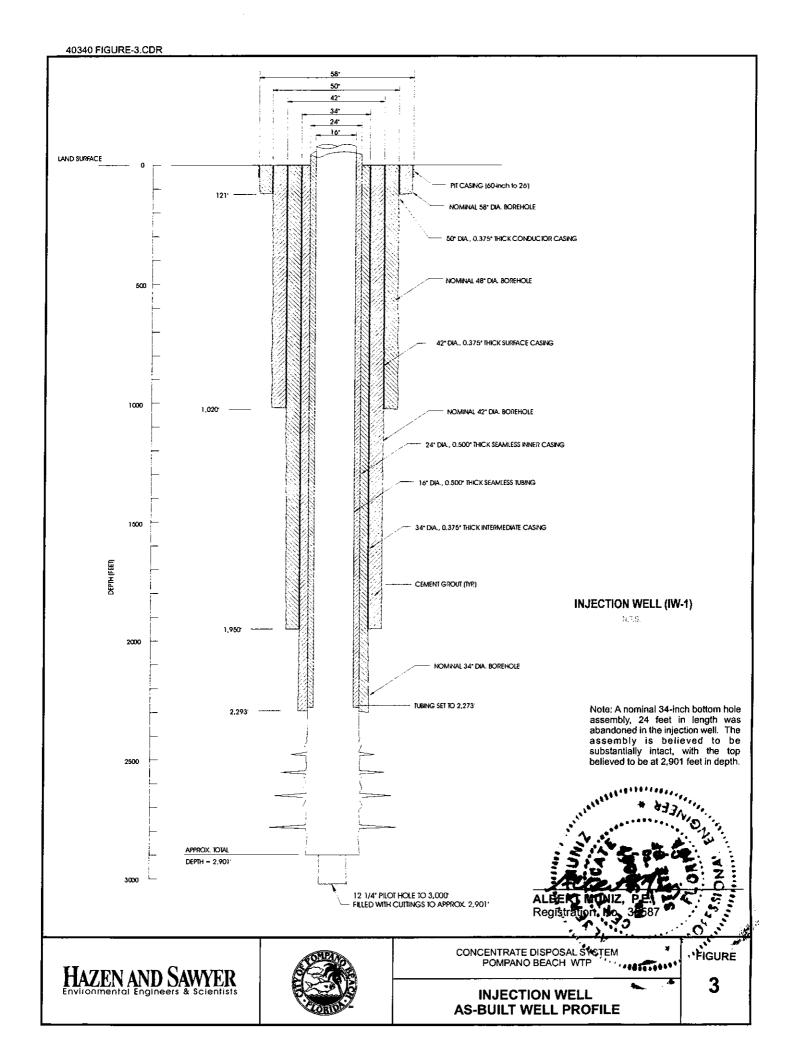
SCOTE M. SHORE PROFESSIONAL SURVEYOR AND MAPPER FLORIDA CERTIFICATE NO. LS# 5743

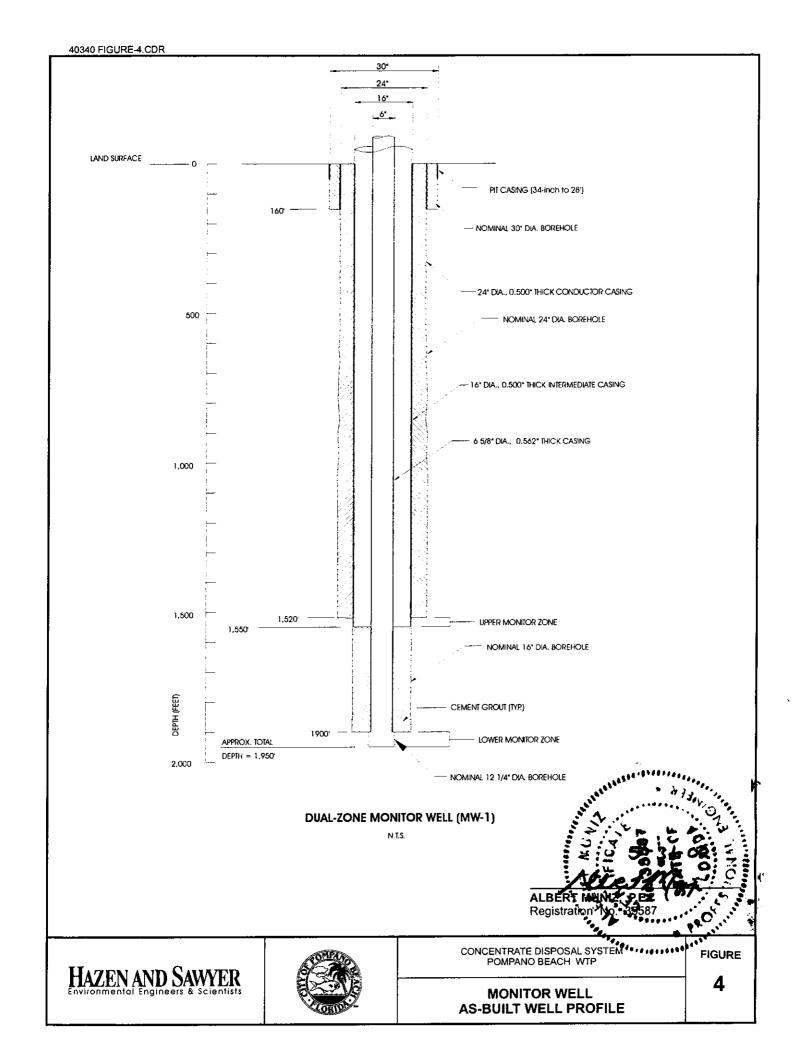
4-22-2002 DATE SIGNED:

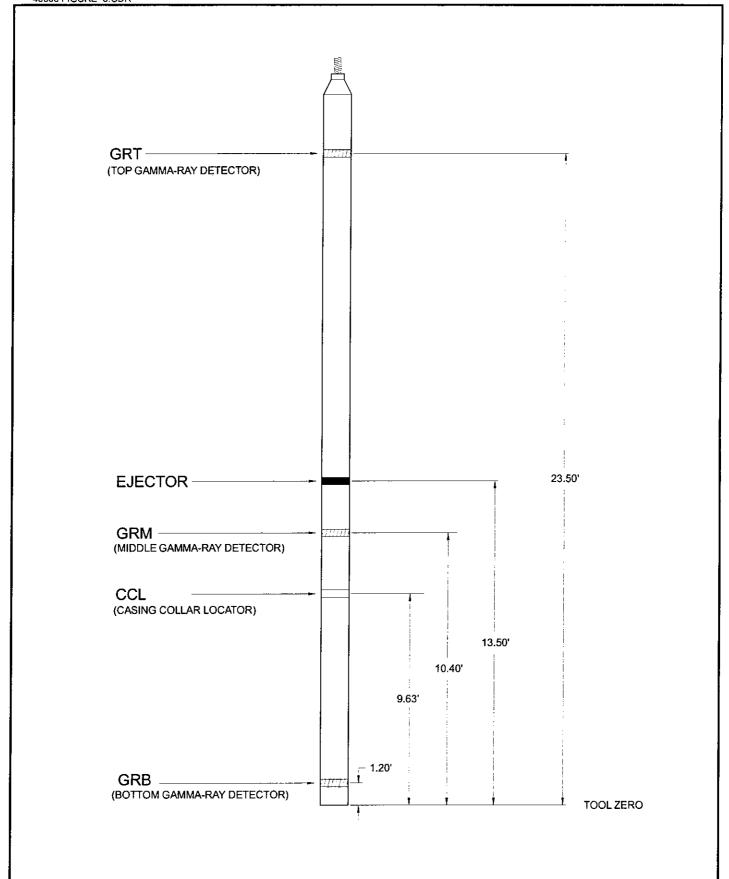
NOT VALID WITHOUT THE SIGNATURE AND THE ORIGINAL RAISED SEAL OF A PLORIDA LICENSED SURVEYOR AND MAPPER.

SPECIFIC PURPOSE SURVEY MERIDIAN SURVEYING & MAPPING LLC LAND SURVEYORS PLANNERS 1.80 7077

TALE:


PREPARED FOR:


YOUNGOUIST BROTHERS, INC.


www.meridianti.com

5245 RAMSEY WAY, SUITE #2 FORT MYERS, FLORIDA 33507 FHONE: (941) 275-8575 FAX: (841) 275-8457

	FLE HAVE	FEUD BOOK/PAS	FELD BOOK/PASE		2	SHOUT:	
١	27845R.DWG	54/	C2	2784		1.05	
i	STANCY DATE:	CHANN BY:	SCALE:	SHECKED BY	FRE NO. 15-1	4]	
į	4-17-2502	SMS	17= 30	TLM/SMS	1		

CONCENTRATE DISPOSAL SYSTEM POMPANO BEACH WTP

FIGURE

RADIOACTIVE TRACER SURVEY TOOL

APPENDIX A FDEP CONSTRUCTION PERMIT

Department of Environmental Protection

RECEIVED

HAZEN AND SAWYER, P.C.

Boca Roteal Florida

MAR 23 2001

40174 + 40368

Jeb Bush Governor Southeast District
P.O. Box 15425
West Palm Beach, Florida 33416
NOTICE OF PERMIT

JOB No.

David B. Struhs
Secretary

MAR 2 2 2001

CERTIFIED MAIL
RETURN RECEIPT REQUESTED

Broward County
UIC - City of Pompano Beach WTP
File Number: 0167214 - 001 - UC

Mr. William F. Flaherty, P.E., Utilities Director City of Pompano Beach 1201 N.E. 5th Avenue Pompano Beach, Fl. 33060

Dear Mr. Flaherty:

Enclosed is Permit Number 0167214-001-UC, to construct the City of Pompano Beach Water Treatment Plant's (WTP) Class I Injection Well, IW-1, issued pursuant to Section(s) 403.087, Florida Statutes and Florida Administrative Codes 62-4, 62-520, 62-528, 62-550, 62-522, 62-600, 62-601 & 62-660.

Any party to this Order (permit) has the right to seek judicial review of the permit pursuant to Section 120.68, Florida Statutes, by the filing of a Notice of Appeal pursuant to Rule 9.110, Florida Rules of Appellate Procedure, with the Clerk of the Department in the Office of General Counsel, Mail Stop 35, 3900 Commonwealth Blvd., Tallahassee, Florida 32399-3000; and by filing a copy of the Notice of Appeal accompanied by the applicable filing fees with the appropriate District Court of Appeal. The Notice of Appeal must be filed within thirty (30) days from the date this Notice is filed with the Clerk of the Department.

Should you have any questions, please contact Joe May, P.G. or Daniel C. Phelps, P.G., of this office, telephone (561) 681-6691 or (561) 681-6778, respectively.

Executed in West Palm Beach, Florida.

STATE OF FLORIDA
DEPARTMENT OF ENVIRONMENTAL PROTECTION

Mélissa L. Méeker

Director of District Management

Southeast District

Cc:

D.C. Phelps, FDEP/SED Ron Reese, USGS/Mia. Nancy March USEPA/Atl. Pyara Wilkhu, FDEP/SED Steve Anderson, SFWMD Albert Muniz, Hazen and Sawyer Richard Deuerling, FDEP/Tal. Garth Hinckle, BCDPEP

CERTIFICATE OF SERVICE

This is to certify that this NOTICE OF PERMIT and all copies were mailed before the close of business on $\frac{MAR}{2}$ $\frac{2}{2}$ $\frac{20}{10}$ to the listed persons.

Clerk Stamp	
FILING WIND ACKNOWLE	EDGMENT FILED, on this date, pursuant to the §120.52, Florida ent Clerk, receipt of which is hereby acknowledged.
Statutes, with the designated Departrhe	
MO July De MAX	MAR 2 2 2001
elerk	Date

Department of Environmental Protection

Jeb Bush Governor Southeast District P.O. Box 15425 West Palm Beach, Florida 33416

David B. Struhs Secretary

PERMITTEE: Mr. William F. Flaherty, P.E Utilities Director City of Pompano Beach 1201 N.E. 5th Avenue Pompano Beach, Fl. 33060 ID. NUMBER:

PERMIT: 0167214/PARU 2 220(200)

DATE OF ISSUE:
EXPIRATION DATE: MAR 2 1 2006

COUNTY: Broward

LATITUDE/LONGITUDE: 26°14'38.29"N/80°07'12.15"W

PROJECT: Construction permit for City of Pompano Beach WTP Class I Injection Well System IW-1

This permit is issued under the provisions of Chapter 403.087, Florida Statutes, and Florida Administrative Code (F.A.C.) Rules 62-4, 62-520, 62-528, 62-550, 62-522, 62-600, 62-601 and 62-660. The above named Permittee is hereby authorized to perform the work or construct the facility shown on the application and approved drawing(s), plans, and other documents attached hereto or on file with the Department and made a part hereof and specifically described as follows:

TO CONSTRUCT: One Class I Injection Well consisting of an internally coated 16-inch outside diameter (OD), 0.5-inch thick seamless steel tubing that will be fully cemented from land surface to an approximate depth of 2,980 feet below land surface (bls) inside a 24-inch diameter OD, 0.500-inch thick steel casing which will be cemented to an approximate depth of 3,000 ft. below land surface; for disposal and monitoring of up to 6.34 MGD (peak hour flow) of non-hazardous, membrane softening concentrate reject water via injection through an open hole interval between approximately 3,000 feet and the total depth of the well at approximately 3,500 feet. The injection interval is the "Boulder Zone" of the lower Oldsmar Formation. Injection Well IW-1 will be used as the primary disposal system for membrane softening concentrate reject water generated by the Water Treatment Plant. The confinement of the injection zone from overlying USDW aquifers is to be monitored by a dual zone monitoring well. Upon expansion of the capacity of the plant and approval by the Department the injection well may be operated at up to 7.93 MGD and 9.52 MGD, the maximum peak hour flows at 10 and 12 feet per second, per Chapter 62-528 F.A.C., allowed under normal operating conditions and during planned testing, maintenance, or emergency conditions respectively.

IN ACCORDANCE WITH: Application to construct received March 8, 2000, Request for Information (RFI-1) dated April 6, 2000, Response to RFI received May, 8, 2000, Requests for Information (RFI-2b) dated May 28, 2000 and June 2, 2000, RFI response received June 22, 2000, Request for Information (RFI-3) dated July 20, 2000, RFI response received August 30, 2000, Request for Information (RFI-4) dated September 18, 2000, RFI response received September 22, 2000, Request for Information (RFI-5) dated October 10, 2000, RFI response received October 13, 2000, informal Approval of the Alternative Design dated November 13, 2000, Letter of Completeness dated November 15, 2000, formal Approval of the Alternative Design dated November 13, 2000, public notice of the Draft Permit published in the Sun-Sentinel newspaper on Sunday December 24, 2000, consideration of public comment received as a result of the public meeting held on February 2, 2001 at 10:00 AM, and public notice of the Intent to Issue Permit published in the Sun-Sentinel newspaper on February 18, 2001.

LOCATED AT: The City of Pompano Beach Water Treatment Plant at 1201, NE 5th Avenue, Pompano Beach, Florida.

TO SERVE: The City of Pompano Beach Water Treatment Plant as the primary means of disposal of membrane softening concentrate reject waters.

SUBJECT TO: General Conditions 1-25 and Specific Conditions 1-10.

Mr. William F. Flaherty, P.E.

Utilities Director - City of Pompano Beach

City of Pompano Beach WTP

PROJECT: Class I Injection Well System IW-1

ID. NUMBER:

PERMIT/CERTIFICATION NUMBER: 0167214-001-UC

DATE OF ISSUE: MAR 2 2 2001

EXPIRATION DATE: 福启 (1) 2006

COUNTY: Broward

LATITUDE/LONGITUDE: 26°14'38.29"N/80°07'12.15"W

GENERAL CONDITIONS:

The following General Conditions are referenced in Florida Administrative Code Rule 62-528.307.

- 1. The terms, conditions, requirements, limitations and restrictions set forth in this permit are "permit conditions" and are binding and enforceable pursuant to section 403.141, F.S.
- This permit is valid only for the specific processes and operations applied for and indicated in the approved drawings or exhibits. Any unauthorized deviation from the approved drawings, exhibits, specifications, or conditions of this permit may constitute grounds for revocation and enforcement action.
- 3. As provided in subsection 403.087(7), F.S., the issuance of this permit does not convey any vested rights or exclusive privileges. Neither does it authorize any injury to public or private property or any invasion of personal rights, nor infringement of federal, state, or local laws or regulations. This permit is not a waiver of or approval of any other Department permit that may be required for other aspects of the total project which are not addressed in this permit.
- 4. This permit conveys no title to land, water, does not constitute State recognition or acknowledgment of title, and does not constitute authority for the use of submerged lands unless herein provided and the necessary title or leasehold interests have been obtained from the State. Only the Trustees of the Internal Improvement Trust Fund may express State opinion as to title.
- 5. This permit does not relieve the permittee from liability for harm to human health or welfare, animal, or plant life, or property caused by the construction or operation of this permitted source, or from penalties therefrom; nor does it allow the permittee to cause pollution in contravention of Florida Statutes and Department rules, unless specifically authorized by an order from the Department.
- 6. The permittee shall properly operate and maintain the facility and systems of treatment and control (and related appurtenances) that are installed and used by the permittee to achieve compliance with the conditions of this permit, or are required by Department rules. This provision includes the operation of backup or auxiliary facilities or similar systems when necessary to achieve compliance with the conditions of the permit and when required by Department rules.
- 7. The permittee, by accepting this permit, specifically agrees to allow authorized Department personnel, upon presentation of credentials or other documents as may be required by law and at reasonable times, access to the premises where the permitted activity is located or conducted to:
 - a. Have access to and copy any records that must be kept under conditions of this permit;
 - b. Inspect the facility, equipment, practices, or operations regulated or required under this permit; and
 - c. Sample or monitor any substances or parameters at any location reasonably necessary to assure compliance with this permit or Department rules. Reasonable time will depend on the nature of the concern being investigated.

Mr. William F. Flaherty, P.E.

Utilities Director - City of Pompano Beach

City of Pompano Beach WTP

PROJECT: Class I Injection Well System IW-1

ID. NUMBER:

PERMIT/CERTIFICATION NUMBER: 0167214-001-UC

DATE OF ISSUE: MAR 2 2 2001 EXPIRATION DATE: MAR 2 1 2006

COUNTY: Broward

LATITUDE/LONGITUDE: 26°14'38.29"N/80°07'12.15"W

GENERAL CONDITIONS:

- 8. If, for any reason, the permittee does not comply with or will be unable to comply with any condition or limitation specified in this permit, the permittee shall immediately provide the Department with the following information:
 - a. A description of and cause of noncompliance; and
 - b. The period of noncompliance, including dates and times; or, if not corrected the anticipated time the noncompliance is expected to continue, and steps being taken to reduce, eliminate, and prevent the recurrence of the noncompliance. The permittee shall be responsible for any and all damages which may result and may be subject to enforcement action by the Department for penalties or for revocation of this permit.
- 9. In accepting this permit, the permittee understands and agrees that all records, notes, monitoring data and other information relating to the construction or operation of this permitted source which are submitted to the Department may be used by the Department as evidence in any enforcement case involving the permitted source arising under the Florida Statutes or Department rules, except where such use is proscribed by sections 403.111 and 403.73, F.S. Such evidence shall only be used to the 'extent it is consistent with the Florida Rules of Civil Procedure and appropriate evidentiary rules.
- 10. The permittee agrees to comply with changes in Department rules and Florida Statutes after a reasonable time for compliance; provided, however, the permittee does not waive any other rights granted by Florida Statutes or Department rules.
- 11. This permit is transferable only upon Department approval in accordance with Rules 62-4.120 and 62-528.350, F.A.C. The permittee shall be liable for any non-compliance of the permitted activity until the transfer is approved by the Department.
- 12. This permit or a copy thereof shall be kept at the work site of the permitted activity.
- 13. The permittee shall comply with the following;
 - a. Upon request, the permittee shall furnish all records and plans required under Department rules. During enforcement actions, the retention period for all records shall be extended automatically unless the Department determines that the records are no longer required.
 - b. The permittee shall hold at the facility or other location designated by this permit records of all monitoring information (including calibration and maintenance records and all original strip chart recordings for continuous monitoring instrumentation) required by the permit, copies of all reports required by this permit, and records of all data used to complete the application for this permit. These materials shall be retained at least three years from the date of the sample, measurement, report, or application unless otherwise specified by Department rule.
 - c. Records of monitoring information shall include:
 - 1) the date, exact place, and time of sampling or measurements;

Mr. William F. Flaherty, P.E.

Utilities Director - City of Pompano Beach

City of Pompano Beach WTP

PROJECT: Class I Injection Well System IW-1 COUNTY: Broward

ID. NUMBER:

PERMIT/CERTIFICATION NUMBER: 0167214-001-UC DATE OF ISSUE: MAR 2 2 2001

EXPIRATION DATE: MAR 2 1 2006

LATITUDE/LONGITUDE: 26°14'38.29"N/80°07'12.15"W

GENERAL CONDITIONS:

- 2) the person responsible for performing the sampling or measurements;
- 3) the dates analyses were performed;
- 4) the person responsible for performing the analyses;
- 5) the analytical techniques or methods used;
- 6) the results of such analyses.
- d. The permittee shall furnish to the Department, within the time requested in writing, any information which the Department requests to determine whether cause exists for modifying, revoking and reissuing, or terminating this permit, or to determine compliance with this permit.
- e. If the permittee becomes aware that relevant facts were not submitted or were incorrect in the permit application or in any report to the Department, such facts or information shall be corrected promptly.
- 14. All applications, reports, or information required by the Department shall be certified as being true, accurate, and complete.
- 15. Reports of compliance or noncompliance with, or any progress reports on, requirements contained in any compliance schedule of this permit shall be submitted no later than 14 days following each scheduled date.
- 16. Any permit noncompliance constitutes a violation of the Safe Drinking Water Act and is grounds for enforcement action; for permit termination, revocation and reissuance, or modification; or for denial of a permit renewal application.
- 17. It shall not be a defense for a permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of this permit.
- 18. The permittee shall take all reasonable steps to minimize or correct any adverse impact on the environment resulting from noncompliance with this permit.
- 19. This permit may be modified, revoked and reissued, or terminated for cause, as provided in 40 C.F.R. sections 144.39(a), 144.40(a), and 144.41 (1998). The filing of a request by the permittee for a permit modification, revocation or reissuance, or termination, or a notification of planned changes or anticipated noncompliance, does not stay any permit condition.

Mr. William F. Flaherty, P.E.

Utilities Director - City of Pompano Beach.

City of Pompano Beach WTP

PROJECT: Class I Injection Well System IW-1

ID. NUMBER:

PERMIT/CERTIFICATION NUMBER: 0167214-001-UC

DATE OF ISSUE: MAC

EXPIRATION DATE: MAR 2 1 2006

COUNTY: Broward

LATITUDE/LONGITUDE: 26°14'38.29"N/80°07'12.15"W

GENERAL CONDITIONS:

- 20. The permitee shall retain all records of all monitoring information concerning the nature and composition of injected fluid until five years after completion of any plugging and abandonment procedures specified under Rule 62-528.435, F.A.C. The permittee shall deliver the records to the Department office that issued the permit at the conclusion of the retention period unless the permittee elects to continue retention of the records.
- 21. All reports and other submittals required to comply with this permit shall be signed by a person authorized under Rules 62-528.340(1) or (2), F.A.C. All reports shall contain the certification required in Rule 62-528.340(4), F.A.C.
- 22. The permittee shall notify the Department as soon as possible of any planned physical alterations or additions to the permitted facility. In addition, prior approval is required for activities described in Rule 62-528.410(1)(h).
- 23. The permittee shall give advance notice to the Department of any planned changes in the permitted facility or injection activity which may result in noncompliance with permit requirements.
- 24. The permittee shall report any noncornpliance which may endanger health or the environment including:
 - a. Any monitoring or other information which indicates that any contaminant may cause an endangerment to an underground source of drinking water; or
 - b. Any noncompliance with a permit condition or malfunction of the injection system which may cause fluid migration into or between underground sources of drinking water. Any information shall be provided orally within 24 hours from the time the permittee becomes aware of the circumstances. A written submission shall also be provided within 5 days of the time the permittee becomes aware of the circumstances. The written submission shall contain a description of the noncompliance and its cause, the period of noncompliance, including exact dates and times, and if the noncompliance has not been corrected, the anticipated time it is expected to continue; and the steps taken or planned to reduce, eliminate, and prevent reoccurrence of the noncompliance.
- 25. If injection is to continue beyond the expiration date of this permit the permittee shall apply for, and obtain an operation permit. If necessary to complete the two-year operational testing period, the permittee shall apply for renewal of the construction permit at least 60 days prior to the expiration date of this permit.

[THIS SPACE LEFT BLANK INTENTIONALLY]

Mr. William F. Flaherty, P.E Utilities Director - City of Pompano Beach City of Pompano Beach WTP

PROJECT: Class I Injection Well System IW-1

SPECIFIC CONDITIONS:

ID. NUMBER:

PERMIT/CERTIFICATION NUMBER: 0167214-001-UC

DATE OF ISSUE: 18-3-12-2001

EXPIRATION DATE:

COUNTY: Broward MAR 2 1 2006

LATITUDE/LONGITUDE: 26°14'38.29"N/80°07'12.15"W

1. General Requirements

- a. This permit is for construction of Class I injection well IW-1 and a dual zone monitor well MW-1. This permit does not authorize the construction of any other well or wells associated with the City of Pompano Beach Water Treatment Plant Injection Well System.
- b. The flow from the monitoring zones during well evacuation and sampling shall not be discharged to surface waters or the Underground Source of Drinking Water (USDW) aquifers. Measures shall be taken to insure that proper disposal of these waters occurs in compliance with local programs and Department rules.
- c. Reasonable precautions shall be taken to prevent contamination of the surficial aquifer due to spillage of formation and/or drilling fluids. Should the surficial aquifer be contaminated as a result of this modification, remediation of the surficial aquifer shall be the City's responsibility.
- d. In the event the well must be plugged and abandoned, the Permittee shall obtain an FDEP permit as required by Rule 62-528.460, F.A.C.
- e. No underground injection is allowed that causes or allows movement of fluid into an underground source of drinking water.
- f. The Permitee shall seek Department's approval, subsequent to the granting of operational testing approval, for the injection of reclaimed water under this permit as an emergency disposal option.

2. Site Requirements

- a. The measurement points for drilling and logging construction shall be surveyed and referenced to the National Geodetic Vertical Datum (NGVD) of 1983 prior to the onset of drilling activities for this injection well system.
- b. The injection well shall be surveyed for latitude and longitude and submitted on a site plan prior to commencement of construction activities.
- c. A drilling and system construction schedule shall be submitted to the Department, TAC, and EPA prior to site preparation for the injection well system.
- d. Permanent surficial aquifer wells identified as Pad Monitor Wells (PMWs) shall be located at the corners of the injection well drilling pad and identified by location number and pad location, i.e. N.W., N.E, S.W., and S.E.
 - 1) These wells shall be sampled and analyzed prior to the onset of drilling for chlorides (mg/L), conductivity (umho/cm), temperature, total dissolved solids (mg/L), and water level (relative to NGVD). Initial analyses must be submitted prior to the initiation of work on the Class I injection well.

Mr. William F. Flaherty, P.E.

Utilities Director - City of Pompano Beach

City of Pompano Beach WTP

PROJECT: Class I Injection Well System IW-1

ID. NUMBER:

PERMIT/CERTIFICATION NUMBER: 0167214-001-UC

MAR 2 12001 MAR 2 12006 DATE OF ISSUE: **EXPIRATION DATE:**

COUNTY: Broward

LATITUDE/LONGITUDE: 26°14'38.29"N/80°07'12.15"W

SPECIFIC CONDITIONS:

2) These wells are to be retained in service, sampled weekly for the above parameters during the construction phase and quarterly thereafter.

3) If located in a traffic area the well heads must be protected by a traffic bearing enclosure and cover. Individual covers must be specifically marked to identify the well and its purpose. A copy of the FDEP Southeast District Summary Sheet is attached for your use when reporting the above information.

3. Construction and Testing Requirements

- a. The Department shall be notified within forty-eight (48) hours after work has commenced.
- b. A revised set of contract documents, that include this permit and approved specification changes documented in all responses to requests for information (RFI's), shall be submitted to the Department, TAC, and EPA prior to construction.
- c. Blow-out preventers or the equivalent shall be installed on the respective wells prior to penetration of the Floridan Aquifer System.
- d. Hurricane Preparedness-Upon the issuance of a "Hurricane Watch" by the National Weather Service, the preparations to be made include but are not limited to the following:
 - 1) Secure all on-site salt and stockpiled additive materials to prevent surface and/or groundwater contamination.
 - 2) Properly secure drilling equipment and rig(s) to prevent damage to well(s) and on-site treatment process equipment as well as public property.
- e. The geophysical logging program to be accomplished during construction of the injection well will, at a minimum, include:
 - 1) Prior to setting the 42-inch casing: geophysical logs (caliper, gamma ray, Dual Induction) to confirm the base of the Hawthorn Group (approximately 1,000 feet below land surface), and to establish a mechanically secure casing-setting depth.
 - 2) To determine the 34-inch casing depth: Pilot hole geophysical logs (caliper, gamma ray, Dual Induction, borehole compensated sonic, borehole televiewer or television survey, pumping flowmeter, temperature, and fluid resistivity). These logs will be used for stratigraphic correlation, identification of confining units, and identification of producing intervals.
 - 3) To determine the final casing depth: Pilot hole geophysical logs (caliper, gamma ray, Dual Induction, borehole compensated sonic, borehole televiewer or television survey, pumping flowmeter, temperature, and fluid resistivity). These logs will be used for stratigraphic correlation, identification of confining units, and identification of producing intervals.

Mr. William F. Flaherty, P.E.

Utilities Director - City of Pompano Beach

City of Pompano Beach WTP

PROJECT: Class I Injection Well System IW-1 COUNTY: Broward

ID. NUMBER:

PERMIT/CERTIFICATION NUMBER: 0167214-001-UC

DATE OF ISSUE: MAR 2 2 2001

EXPIRATION DATE: MAR 2 1 2006

LATITUDE/LONGITUDE: 26°14'38.29"N/80°07'12.15"W

SPECIFIC CONDITIONS:

- 4) In the injection zone beneath the final casing, the following geophysical logs will be run: caliper, gamma ray, Dual Induction, borehole compensated sonic, borehole televiewer or television survey, pumping flowmeter, temperature, and fluid resistivity.
- 5) Caliper logs shall be run on all reamed holes.
- 6) Temperature logs shall be run after all cement stages that are completed without positive return at the surface, to identify cement top.
- Packer testing will be completed to determine water quality and evaluate formations, and will at minimum include the following:
 - 1) Shall be conducted below the base of the USDW to the top of the proposed injection horizon.
 - 2) Water samples shall be collected from each packer test, and analyzed for TDS, chlorides, specific conductivity, NH3 and total kjeldahl nitrogen (TKN). A five (5) gallon sample of formation fluid shall be collected at the end of each test for which a background sample unaffected by injection can be obtained. Samples should be labeled as to well number, depth, type of sample and shipped to Dr. James Cowart, Department of Geology, Florida State University, Tallahassee, FL 32304.
- q. The depth of the 10,000 mg\L total dissolved solids (TDS) interface shall be confirmed during drilling and testing. This shall be accomplished, interpreted, and analyzed by the following:
 - 1) Water samples from packer tests
 - 2) Geophysical logging upon reaching the total depth of the appropriate pilot hole interval using these logs: caliper, gamma ray, Dual Induction, borehole compensated sonic, pumping flowmeter, temperature, and fluid resistivity.
 - 3) Plots of sonic porosity and apparent formation fluid resistivity (RWA). Interpretation will include the calculation of sonic porosity and RWA, and provide the input parameters used.
- h. Confinement, at a minimum, shall be confirmed using directly measured lithologic properties, geophysical evidence, and tests performed while pumping the formation.
 - 1) Formation pumping tests shall include flow meter logs, packer tests, water quality sampling during packer tests, and analysis of drawdown curves measured during packer tests.
 - 2) For the purpose of confirming confinement, flow meter, temperature and fluid resistivity logs shall be run under pumping conditions in the pilot hole from the base of the surface casing to the potential confining unit immediately prior to the intersection of the top of the injection interval, so that the permeability of the zones within the base of the potential confining intervals can be evaluated.
 - 3) Other geophysical logs will be used as indirect evidence to deduce or correlate formation properties measured in pumping tests and direct lithologic sample analysis.

Mr. William F. Flaherty, P.E

Utilities Director - City of Pompano Beach

City of Pompano Beach WTP

PROJECT: Class I Injection Well System IW-1

ID. NUMBER:

PERMIT/CERTIFICATION NUMBER: 0167214-001-UC

DATE OF ISSUE: 2 2001

EXPIRATION DATE: MAR 2 1 2006

COUNTY: Broward

LATITUDE/LONGITUDE: 26°14'38.29"N/80°07'12.15"W

SPECIFIC CONDITIONS:

4) Lithologic properties measured in laboratory analyses of core samples shall include: Hydraulic conductivity (vertical and horizontal), Young's modulus/elastic modulus, formation factor, and Archie's cementation exponent and coefficient.

Mechanical Integrity:

- Injection is prohibited until the permittee affirmatively demonstrates that the well has mechanical integrity. Prior to operational testing the permittee shall establish, and thereafter maintain the mechanical integrity of the well at all times.
- 2) If the Department determines that the injection well lacks mechanical integrity, written notice shall be given to the permittee.
- 3) Within 48 hours of receiving written notice that the well lacks mechanical integrity, unless the Department requires immediate cessation of injection, the permittee shall cease injection into the well unless the Department allows continued injection pursuant to subparagraph 4. below.
- 4) The Department shall allow the permittee to continue operation of a well that lacks mechanical integrity if the permittee has made a satisfactory demonstration that fluid movement into or between underground sources of drinking water is not occurring.
- 5) Mechanical integrity of the injection well shall be determined pursuant to Rule 62-528.300 (6), (b)2, and (c), F.A.C.
 - a) The pressure test for the final casing shall be accepted if tested with a liquid filled casing at 1.5 times the expected maximum (sustained) operating pressure with a test tolerance of not greater than or equal to 5%.
 - b) Verification of pressure gauge calibration must be provided to the Department representative at the time of the test and in the certified test report.
- j. The interim internal mechanical test to be conducted half way between the standard 5 year mechanical integrity tests will consist of a pressure test pursuant to Rule 62-528.300(6)(b)2., F.A.C. as further specified in specific condition i. 5) a) and b) above. Department approval and TAC and EPA review of the interim mechanical integrity testing plan is required prior to its implementation.
- k. Department approval and TAC and EPA review pursuant to Chapter 62-528 F.A.C. is required for the following stages of construction:
 - 1) Intermediate injection well casing seat selection.
 - 2) Final injection well casing seat.

Mr. William F. Flaherty, P.E.

Utilities Director - City of Pompano Beach

City of Pompano Beach WTP

PROJECT: Class I Injection Well System IW-1 COUNTY: Broward

ID. NUMBER:

DATE OF ISSUE: MAR 2 2 2001

EXPIRATION DATE: MAR 2 1 2006

LATITUDE/LONGITUDE: 26°14'38.29"N/80°07'12.15"W

PERMIT/CERTIFICATION NUMBER: 0167214-001-UC

SPECIFIC CONDITIONS:

3) Proposed cementing procedures (cement volumes, no. of stages,) for the deep intermediate (34-inch) and final (24-inch) casing must be submitted with the caliper logs (reamed sections) for Department approval and TAC and EPA review.

- 4) Proposed cementing procedures (cement volumes, no. of stages,) for the cementing in of the injection tubing must be presented for Department approval and TAC and EPA review.
- 5) Injection testing.
- TAC meetings are scheduled on the second (2nd) and 4th Tuesday of each month subject to a five (5) working day prior notice and timely receipt of critical data by all TAC members. Emergency meetings may be arranged to avoid undue construction delays.
- m. Department approval at a scheduled TAC meeting shall be based on the permittee's presentation that shows compliance with the rules and this permit.
- n. The confinement of the injection zone in the injection well system from overlying aquifers is to be monitored by a dual zone monitor well and a regular monitoring program.

Quality Assurance/Quality Control Requirements

- a. Pursuant to Rule 62-528.440(5)(b) Florida Administrative Code (F.A.C.), the Professional Engineer(s) of Record shall certify all documents related to the completion of the Class I injection well system as a disposal facility. The Department shall be notified immediately of any change of the Engineer(s) of Record.
- b. All documents prepared for the geological/hydrogeological evaluation of this injection well system shall be signed and sealed by a Florida Licensed Professional Geologist or qualified Florida Licensed Professional Engineer.
- c. Continuous on-site supervision by qualified personnel (engineer or geologist) is required during all testing, geophysical logging, casing installation and cementing operations, and pilot hole water quality sampling.
- d. Proper operation and maintenance includes effective performance, adequate funding, adequate operator staffing and training, and adequate laboratory and process controls, including appropriate quality assurance procedures.
- e. The injection system shall be monitored in accordance with Rules 62-528.425(1)(g) and 62-528.430(2), F.A.C. Samples and measurements taken for the purpose of monitoring shall be representative of the monitored activity.

Mr. William F. Flaherty, P.E.

Utilities Director - City of Pompano Beach

City of Pompano Beach WTP

PROJECT: Class I Injection Well System IW-1 COUNTY: Broward

ID. NUMBER:

PERMIT/CERTIFICATION NUMBER: 0167214-001-UC

man 2 2 2001 DATE OF ISSUE: EXPIRATION DATE: MAR 2 1 2006

LATITUDE/LONGITUDE: 26°14'38.29"N/80°07'12.15"W

SPECIFIC CONDITIONS:

5. Reporting Requirements

a. All reports and surveys required by this permit shall be submitted concurrently to all the members of the Technical Advisory Committee and the United States Environmental Protection Agency USEPA), Region IV, Atlanta. The Technical Advisory Committee (TAC) shall consist of representatives from these agencies:

> Department of Environmental Protection, West Palm Beach and Tallahassee United States Geological Survey, Miami South Florida Water Management District, West Palm Beach Broward County Department of Planning and Environmental Protection

- b. The Department and other applicable agencies must be notified immediately, within twenty-four (24) hours of any unusual events occurring during construction, and in the event the permittee is temporarily unable to comply with the provisions of the permit (e.g. on-site spills, artesian flows, large volume circulation losses, equipment damage due to: fire, wind, and drilling difficulties).
 - 1) Notification shall be made in person, by telephone, or telegraph within 24 hours of event to the Department's Southeast District office.
 - 2) A written report describing the incident shall also be given to the Department within seventytwo (72) hours of the start of the event.
 - 3) In addition, a final written report shall be submitted to the Department within two (2) weeks of the event. The final report shall contain a complete description of the occurrence of the event, discuss its cause(s), and the steps being taken to prevent reoccurrence of the event.
- c. The Department shall be notified at least seventy-two (72) hours prior to all testing for mechanical integrity.
- d. All testing for mechanical integrity must be initiated during daylight hours, Monday through Friday.
- e. An interim internal mechanical integrity test shall be conducted 2.5 years after the full mechanical integrity test referenced in specific condition 3 i. above. This test shall be conducted as specified in specific condition 3.j above.
- f. A weekly submittal of construction progress reports covering the previous 7 day period shall be mailed every Friday. This report shall include at a minimum the following information:
 - 1) A cover letter summary of the daily engineer report, work log and a projection for activities in the next reporting period.
 - 2) Daily engineers report and work log with detailed descriptions of all testing, logging, and casing installation activities.
 - Driller's log.

Mr. William F. Flaherty, P.E.

Utilities Director - City of Pompano Beach

City of Pompano Beach WTP

PROJECT: Class I Injection Well System IW-1

ID. NUMBER:

PERMIT/CERTIFICATION NUMBER: 0167214-001-UC

DATE OF ISSUE: 基語 1.2 2001

EXPIRATION DATE:

COUNTY: Broward MAR 2 1 2006

LATITUDE/LONGITUDE: 26°14'38.29"N/80°07'12.15"W

SPECIFIC CONDITIONS:

- 4) Detailed description of any unusual construction-related events that occur during the reporting period.
- 5) Weekly water quality analysis and water levels for the drilling <u>pad monitor</u> wells. (See S.C. 2.d. 1 above)
- 6) A certified evaluation of all logging and test results must be submitted with test data.
- 7) Description of the formations encountered.
- 8) Details of cementing operations including the following information, for each stage of cement: cement slurry composition, specific gravity, pumping rate, volume of cement pumped, theoretical fill depth, actual tag depth and from, both the physical tag and the geophysical logs, a percent fill, and an explanation of any variation between actual versus theoretical fill. For each casing: Laboratory analysis of dry cement composition of a sample taken during the neat cement stage emplaced at the base of each casing.
- g. Upon completion of analysis of cores and sample cuttings recovered during the installation of the injection well, the Permittee will contact the Underground Injection Control Section of the Department of Environmental Protection in Tallahassee to arrange their transfer to the Florida State Geologic Survey.
- h. Casing seat recommendation shall include technical justification utilizing the following information:
 - 1) Geophysical logs with interpretations
 - 2) Water quality data
 - 3) Identification of confining units with interpretations
 - 4) Casing depth evaluation (mechanically secure formation, potential for grout seal).
 - 5) Identification of the base of the USDW using water quality, RWA plots, and log interpretations
- Injection test request shall contain the following justifications:
 - 1) Radioactive tracer test results
 - 2) Cement bond logs and interpretation
 - 3) Final downhole TV survey and interpretation
 - 4) Demonstration of mechanical integrity
 - 5) Demonstration of confinement
 - 6) Water quality analysis of injection fluid from every source
- j. The radioactive tracer testing request shall contain a description of source and quantity of water to be used to create a buoyant bubble in the injection zone.

Mr. William F. Flaherty, P.E.

Utilities Director - City of Pompano Beach

City of Pompano Beach WTP

PROJECT: Class I Injection Well System IW-1

ID. NUMBER:

PERMIT/CERTIFICATION NUMBER: 0167214-001-UC

DATE OF ISSUE 1 2 2001

EXPIRATION DATE: MAR 2 1 2006

COUNTY: Broward

LATITUDE/LONGITUDE: 26°14'38.29"N/80°07'12.15"W

SPECIFIC CONDITIONS:

k. A final report of the construction of the injection well, pursuant to 62-528.430(1)(e) F.A.C. shall be submitted no later than one hundred and twenty (120) days after commencement of operational testing. This report shall include, at a minimum, definitions of the injection interval, all relevant confining beds, the depth of the base of the USDW and all monitor zones, including all relevant data and interpretations.

6. Operational Testing Requirements

- a. Prior to operational testing, the permittee shall comply with the requirements of Rule 62-528.450(3)(a),(b), and (c), F.A.C. No injection shall be allowed without authorization from the Department.
- b. The operational testing of the Class I injection well system under this permit shall not commence without written authorization from the Department.
- c. Prior to operational testing approval, the following items must be submitted for TAC review and Department approval:
 - Certification of completion of well construction including as-built well construction drawings and specifications. The well construction drawings shall include a geologic stratigraphic cross section depicting the corresponding formations, the base of the USDW, and the boundaries of the confining and injection zone intervals.
 - 2) Results of the short term injection test with interpretation of the data. This test should be conducted for a minimum of twelve (12) hours at the maximum rate at which the well is to be permitted. Pressure/water level data from the injection well and both monitor zones shall be recorded continuously for at least twenty four (24) hours before the test and at least twelve (12) hours following the test. A detailed plan for this testing will be provided for UIC-TAC and USEPA review and Department approval prior to actual testing.
 - 3) A copy of the final television survey with interpretation.
 - 4) Geophysical logs with interpretations.
 - 5) Certification of mechanical integrity and interpreted test data.
 - 6) A description of the actual injection procedure including the anticipated maximum pressure and flow rate at which the well will be operated.
 - 7) Information concerning the compatibility of the injected waste with fluids in the injection zone and minerals in both the injection zone and the confining zone.
 - 8) Surface equipment (including pumping station, piping, and appurtenances) completion certified by the engineer of record.

Mr. William F. Flaherty, P.E.

Utilities Director - City of Pompano Beach

City of Pompano Beach WTP

PROJECT: Class I Injection Well System IW-1

ID. NUMBER:

PERMIT/CERTIFICATION NUMBER: 0167214-001-UC

DATE OF ISSUE: 6 2 200

EXPIRATION DATE: MAR 2 1 2006

COUNTY: Broward

LATITUDE/LONGITUDE: 26°14'38.29"N/80°07'12.15"W

SPECIFIC CONDITIONS:

- 9) Signed and sealed record "as-built" engineering drawings of the injection well system including the pump station, surface piping, appurtenances and equipment.
- 10) The well location must be surveyed by a Florida registered land surveyor for latitude and longitude and submitted on a site plan.
- 11) Draft operating and maintenance manual with emergency discharge management plan procedures. The emergency discharge system must be fully constructed and ready to operate prior to approval of operational testing.
- 12) Receipt and Departmental approval of the demonstration of confinement prepared providing confirmation of confinement and defining the injection and confining sequences utilizing data collected during the drilling, logging and testing of the injection well. The report shall include the results of hydraulic testing (permeability, porosity, etc.) on the cores from the confining interval. Please note that this report, prepared by a Florida Registered Professional Geologist or appropriately experienced Professional Engineer, shall be reviewed and updated as appropriate after the completion of any additional injection/monitor well pairs in the future.
- 13) Wastestream analysis for primary and secondary drinking water standards and minimum criteria parameters as attached.
- d. Prior to the authorization of operational testing by the Department, the Permittee will contact the Underground Injection Control Section of the Department, Southeast District, to arrange a site inspection. The inspection will determine if all equipment necessary to operate and monitor the injection well in compliance with the permit and Department rules has been installed. During the inspection, emergency procedures and reporting requirements shall be reviewed.
- e. Upon receipt of written authorization from the Department (S.C.6.b. above), the operational testing of the injection well system shall be subject to the following conditions:
 - The progress of the operational testing for the system shall extend for a six (6) month period and shall be reviewed during TAC meetings scheduled at least every three (3) months after operation has begun. Reports evaluating the system's progress must be submitted to each member of the TAC at least two (2) weeks prior to the scheduled meeting. The conditions for the operation testing period may be modified by the Department at each of these TAC review intervals.
 - 2) At no time shall hazardous waste or any fluids not specifically authorized by this permit be injected into this well.
 - 3) The flows to the injection well shall be monitored and controlled at all times to ensure the maximum pressure on the wellhead does not exceed sixty six (66) % of the tested pressure on the tubing and packer assembly and that the flow down the well does not exceed 6.34 MGD, the present capacity of the plant, except during planned testing, maintenance, or emergency conditions. Upon expansion of the capacity of the plant and approval by the Department the well may be operated at up to 7.93 MGD, peak hour flow at 10 feet per second, under normal operating conditions and 9.52 MGD, peak hour flow at 12 feet per second, during planned testing, maintenance, or emergency conditions. The well velocity shall not exceed 12 ft/sec under any circumstances and shall not exceed 10 ft/sec without written authorization from the Department.

Mr. William F. Flaherty, P.E.

Utilities Director - City of Pompano Beach

City of Pompano Beach WTP

PROJECT: Class I Injection Well System IW-1

ID. NUMBER:

PERMIT/CERTIFICATION NUMBER: 0167214-001-UC

DATE OF ISSUE:

EXPIRATION DATE: PART 2006

COUNTY: Broward

LATITUDE/LONGITUDE: 26°14'38.29"N/80°07'12.15"W

SPECIFIC CONDITIONS:

- 4) The injection well system must be monitored by continuous indicating, recording and totalizing devices for injectate flow rate and volume, injection pressure, and monitor zone pressure. All gauges and recording devices must be maintained in good operating condition and calibrated semi-annually at a minimum. The monitoring zone pressures or feet of head are to be referenced to NGVD and the monthly monitoring report shall indicate that pressures or feet of head are relative to NGVD.
- 5) The permitee shall notify the Department and obtain approval prior to any well work involving the removal of the well head or its main components or modification of the injection system, except in an emergency situation in which human health or property are at risk.
- 6) Any failure of the Class I injection well monitoring and recording equipment for a period of more than forty-eight (48) hours shall be reported immediately, within twenty-four (24) hours, to the Department. An interim written report describing the incident shall also be given to the Department within seventy-two (72) hours of the notification of the event. In addition, a final written report shall be sent to the Department within two (2) weeks of the event. The final report shall contain a complete description of the occurrence, discuss its cause(s) and the steps being taken to reduce, eliminate, and prevent recurrence of the event, and all other information deemed necessary by the Department.
- 7) The following injection well performance and monitoring zone data shall be recorded for the monitoring zones and the injection wells as indicated and reported to the Department in a Monthly Operating Report (MOR):
 - a) Injection well performance:
 - (1) Physical characteristics of the wastestream:
 - (a) Pressure:

 - * injection pressure, daily average (psig)
 * sustained (15 min.) injection pressure, daily max. (psig)
 * sustained (15 min.) injection pressure, daily min. (psig)
 * injection pressure, monthly average (psig)
 * sustained (15 min.) injection pressure, monthly max. (psig)
 * sustained (15 min.) injection pressure, monthly min. (psig)
 * monthly wellhead pressure with no flow(shut in) (psig)

(b) Volume:

- * monthly average daily flow volume (MG)
 * monthly max. of daily flow volume (MG)
 * monthly min. of daily flow volume (MG))
 * total monthly flow volume to injection well (MG)
 * total monthly flow volume to injection well (MG) from the municipal wastewater
- * total monthly flow volume to injection well (MG) from the reverse osmosis
- concentrate reject water stream * total daily flow volume to injection well (MG)

(c) Rate:

- * average daily flow rate to injection well (MGD)

 * maximum daily sustained (15 min.) flow rate to injection well (MGD)

 * minimum daily sustained (15 min.) flow rate to injection well (MGD)

 * monthly average daily flow rate to injection well (MGD)

 * monthly maximum daily sustained (15 min.) flow rate to injection well (MGD)

 * monthly maximum peak hour flow (MGD)

 * monthly minimum daily sustained flow rate to injection well (MGD)

ID. NUMBER: PERMITTEE: PERMIT/CERTIFICATION NUMBER: 0167214-001-UC Mr. William F. Flaherty, P.E. war 1 2 2001 DATE OF ISSUE: Utilities Director - City of Pompano Beach EXPIRATION DATE: 137 11 2006 City of Pompano Beach WTP PROJECT: Class I Injection Well System IW-1 COUNTY: Broward LATITUDE/LONGITUDE: 26°14'38.29"N/80°07'12.15"W SPECIFIC CONDITIONS: (2) Chemical characteristics of the total wastestream monthly: * carbon, total as C (TOC, mg/L) chloride (mg/L) fluoride, dissolved (mg/L) nitrogen, ammonia, total as N (mg/L)
nitrogen, total kjeldahl nitrogen as N (TKN, mg/L)
nitrogen, nitrate, total as N (mg/L) pH (standard units) * pri (standard drins)

* phosphorous, total as P (mg/L)

* residue, total filterable (TDS, mg/L)

* specific conductance (temperature compensated, umho/cm)

* sulfate, total as S04 (mg/L)

* temperature (°C)

* temperature dedical (TSS, mg/L) * total suspended solids (TSS, mg/L) (3) Chemical characteristics of the total wastestream monthly during operational testing and quarterly there after: * hardness, Ca calculated (mg/L)
* hardness, Ca & Mg calculated (mg/L)
* hardness, total as CaCO3 (mg/L) iron (mg/L) gross alpha (pCi/L) (4) Per the discretionary provisions of 62-520.440 FAC, if sampling for gross alpha particle activity, shows a response of 15 pioCuries per liter or greater — monthly sampling for the following chemical characteristics shall be implemented until a full 3 months of data shows that gross alpha has declined to below the threshold value: * gross alpha (pCi/L) * radium 226 (pCi/L) * radium 228 (pCi/L) b) Monitor well performance: (1) Physical characteristics - upper and lower monitor zones potentiometric surface height relative to NGVD (feet of head) or pressure (psig) referenced to NGVD * daily maximum sustained pressure (ft. NGVD or psig)
* daily minimum sustained pressure (ft. NGVD or psig)
* daily average pressure (ft. NGVD or psig)
* monthly maximum sustained pressure (ft. NGVD or psig)
* monthly minimum sustained pressure (ft. NGVD or psig)
* monthly average pressure (ft. NGVD or psig) (2) Chemical characteristics of the monitoring zones (to be sampled weekly): * carbon, total as C (TOC, mg/L) chloride (mg/L) fluoride, dissolved (mg/L) nitrogen, ammonia, total as N (mg/L)
nitrogen, total kjeldahl nitrogen as N (TKN, mg/L)
nitrogen, nitrate, total as N (mg/L)
pH (standard units) * phosphorous, total as P (mg/L)

* residue, total filterable (TDS, mg/L)

* specific conductance (temperature compensated, umho/cm)

sulfate, total as S04 (mg/L)

* temperature (°C)

Mr. William F. Flaherty, P.E.

Utilities Director - City of Pompano Beach

City of Pompano Beach WTP

PROJECT: Class I Injection Well System IW-1

SPECIFIC CONDITIONS:

ID. NUMBER:

PERMIT/CERTIFICATION NUMBER: 0167214-001-UC

DATE OF ISSUE:

EXPIRATION DATE: 1 2006

COUNTY: Broward

LATITUDE/LONGITUDE: 26°14'38.29"N/80°07'12.15"W

- (3) Chemical characteristics of the lower monitoring zone (to be sampled monthly):
 - * hardness, Ca calculated (mg/L)
 - * hardness, Ca & Mg calculated (mg/L)
 - * hardness, total as CaCO3 (mg/L)
 - * iron (mg/L)
 - ≛ gross aľpha (pCi/L)
- (4) Per the discretionary provisions of 62-520.440 FAC, if sampling for gross alpha particle activity, shows a response of 15 picoCuries per liter or greater monthly sampling for the following chemical characteristics shall be implemented until a full 3 months of data shows that gross alpha has declined to below the threshold value:

 - * gross alpha (pCi/L) * radium 226 (pCi/L) * radium 228 (pCi/L)
- Weekly sampling for chemical characteristics and monthly sampling for hardness, iron, gross alpha as described above will be continued for a minimum of four (4) months. At that point the Permittee may submit data for TAC and EPA review and Department approval to demonstrate that reasonable assurance of groundwater stability has been established in justification of any request to reduce the sampling frequency to monthly and quarterly respectively.
- g. A minimum of three (3) well volumes of fluid shall be evacuated from the monitor system prior to sampling for the chemical parameters listed above. All samples shall be analyzed by a statecertified laboratory. Sufficient purging shall have occurred when either of the following have occurred:
 - 1) pH, specific conductivity and temperature when sampled, upon purging the third or subsequent well volume, each vary less than 5% from that sampled upon purging the previous well volume; or
 - upon purging the fifth well volume.
- h. All required data submissions, including Monthly Operating Reports (MOR's), shall be clearly identified on each page with Facility Name, ID. Number, date of sampling/recording, operator's name, license and telephone number, and type of data shown (monitor zones will be identified by monitor well number and depth interval). The lead plant operator or higher official must sign and date each submittal. A copy of the Southeast District, UIC Section, MOR summary sheet is attached for your use.
- The permitee shall submit monthly to the Department the results of all injection well and monitor well data required by this permit no later than the last day of the month immediately following the month of record. The results shall be sent to the Department of Environmental Protection, Southeast District Office, 400 N. Congress Avenue, P.O. Box 15425, West Palm Beach, FL 33416. A copy of this report shall also be sent to the Department of Environmental Protection, Underground Injection Control Program, MS 3530, 2600 Blair Stone Road, Tallahassee, Florida 32399-2400.
- A qualified representative of the Engineer of Record must be present for the start-up operations.
- k. The Department must be notified in writing of the date of start-up of operations.

Mr. William F. Flaherty, P.E

Utilities Director - City of Pompano Beach

City of Pompano Beach WTP

PROJECT: Class I Injection Well System IW-1

SPECIFIC CONDITIONS:

ID. NUMBER:

PERMIT/CERTIFICATION NUMBER: 0167214-001-UC

DATE OF ISSUE: 444 2 200)

EXPIRATION DATE: MAR 2 1 2006

COUNTY: Broward

LATITUDE/LONGITUDE: 26°14'38.29"N/80°07'12.15"W

- I. A controlled monthly test of well injectivity (rate/pressure) shall be conducted in accordance with Rule 62-528.430(2)(c), F.A.C., with at least three (3) specified injection flow rates. The high rate should approach maximum design flow. The following data shall be recorded and reported at each injection rate:
 - * injection flow rate (MGD)
 - * injection pressure (psig)
 - * wellhead pressure with no flow (shut-in pressure in psig)
 - * monitor zone pressures (psig)

All readings shall be taken after a minimum five (5) minute period of stabilized flow.

Pursuant to Rule 62-528.430(2)(c), F.A.C., as part of the specific injectivity test, the well shall be shut-in for a period of time necessary to conduct a valid observation of pressure fall-off.

m. Individual wastestream analysis (24 hour composite sample) for the reverse osmosis concentrate reject water waste stream for primary and secondary drinking water standards and minimum criteria (Chapter 62-550, F.A.C.) must be submitted annually (sampled in February and submitted in April).

Surface Equipment

- a. The integrity of the monitor zone sampling system shall be maintained at all times. Sampling lines shall be clearly and unambiguously identified by monitoring zone at the point at which samples are drawn. All reasonable and prudent precautions shall be taken to insure that samples are properly identified by monitor zone and that samples obtained are representative of those zones. Sampling lines and equipment shall be kept free of contamination with independent discharges and no interconnections with any other lines.
- b. The surface equipment for the injection well system shall maintain compliance with Chapter 62-600, F.A.C. for water hammer control, screening, access for logging and testing, reliability and flexibility in the event of damage to the well and injectate piping. A regular program of exercising the valves integral to the well head shall be instituted. At a minimum, all valves integral to the well head shall be exercised during the regularly scheduled monthly injectivity testing.
- c. The injection well and monitoring well surface equipment and piping shall be kept free of corrosion at all times.
- d. Spillage onto the injection well pad during construction activities, and any waters spilled during mechanical integrity testing, other maintenance, testing or repairs to the system shall be contained by an impermeable wall around the edge of the pad and directed to a sump pump which in turn discharges to the pumping station wet well or via other approved means to the injection well system.

PERMITTEE:

Mr. William F. Flaherty, P.E.

Utilities Director - City of Pompano Beach

City of Pompano Beach WTP

PROJECT: Class I Injection Well System IW-1

ID. NUMBER:

PERMIT/CERTIFICATION NUMBER: 0167214-001-UC

DATE OF ISSUE: 3 2001

EXPIRATION DATE: MAR 2 1 2006

COUNTY: Broward

LATITUDE/LONGITUDE: 26°14'38.29"N/80°07'12.15"W

SPECIFIC CONDITIONS:

e. The injection well construction pad with impermeable perimeter retaining wall shall be maintained and retained in service for the life of the injection well. The injection and monitoring well pad(s) are not, unless specific approval is obtained from the Department, to be used for storage of any material or equipment at any time.

f. The surficial aquifer monitor wells installed at the corners of the injection well pad shall be secured, maintained, and retained in service.

8. Financial Responsibility

- a. The Permittee shall maintain the resources necessary to close, plug and abandon the injection and associated monitor wells, at all times [Rule 62-528.435(9), F.A.C.].
- b. The Permittee shall review annually the plugging and abandonment cost estimates. An increase of ten (10) percent or more over the cost estimate upon which financial responsibility is based shall require the Permittee to submit documentation to obtain an updated Certificate of Demonstration of Financial Responsibility.
- c. In the event the mechanism used to demonstrate financial responsibility should become invalid for any reason, the Permittee shall notify the Department of Environmental Protection in writing within fourteen (14) days of such invalidation. The Permittee shall then within thirty (30) days of said notification submit to the Department for approval new financial documentation in order to comply with Rule 62-528.435(9), F.A.C., and the conditions of this permit.

9. Signatories and Certification

- a. All reports and other submittals required to comply with this permit shall be signed by a person authorized under Rules 62-528.340(1) or (2), F.A.C.
- b. In accordance with Rule 62-528.340(4), F.A.C., all reports shall contain the following certification:

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

PERMITTEE:

Mr. William F. Flaherty, P.E.

Utilities Director - City of Pompano Beach

City of Pompano Beach WTP

PROJECT: Class I Injection Well System IW-1

LATIT

ID. NUMBER:

PERMIT/CERTIFICATION NUMBER: 0167214-001-UC

DATE OF ISSUE: were 2 200

EXPIRATION DATE: MAP 2.1 2006

COUNTY: Broward

LATITUDE/LONGITUDE: 26°14'38.29"N/80°07'12.15"W

SPECIFIC CONDITIONS: 10. Emergency Disposal

a. All applicable federal, state, and local permits shall be in place to allow for any alternate discharges due to emergency or planned outage conditions.

- b. Any proposed changes in emergency disposal methods shall be submitted for UIC-TAC and EPA review and Department approval prior to implementation.
- c. The alternate disposal method approved by the Department as a part of this permit shall be maintained in working order at all times.
- d. In the event of an emergency and/or discharge, or other abnormal event where the Permittee is temporarily unable to comply with any of the conditions of this permit due to breakdown of equipment, power outages, destruction by hazard or fire, wind, or by other cause, the Department shall be notified in person or by telephone within twenty-four (24) hours of the incident. A written report describing the incident shall also be submitted to the Department within five (5) days of the start of the incident. The written report shall contain a complete description of and discuss the cause of the emergency and/or discharge, and if it has been corrected, the anticipated time the discharge is to continue, the steps being taken to reduce, eliminate, and prevent recurrence of the event, and all other information deemed necessary by the Department.

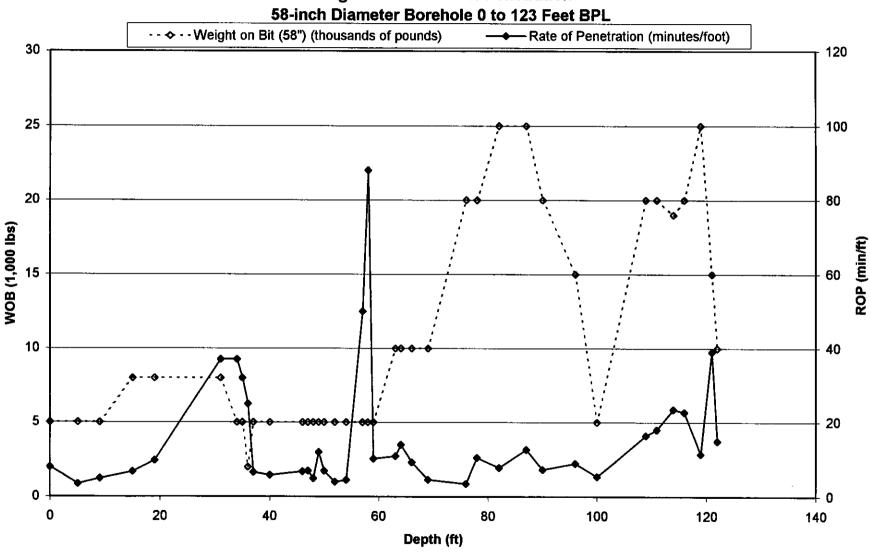
Issued this 27 day of Much, 2001

STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION

Melissa L. Meeker

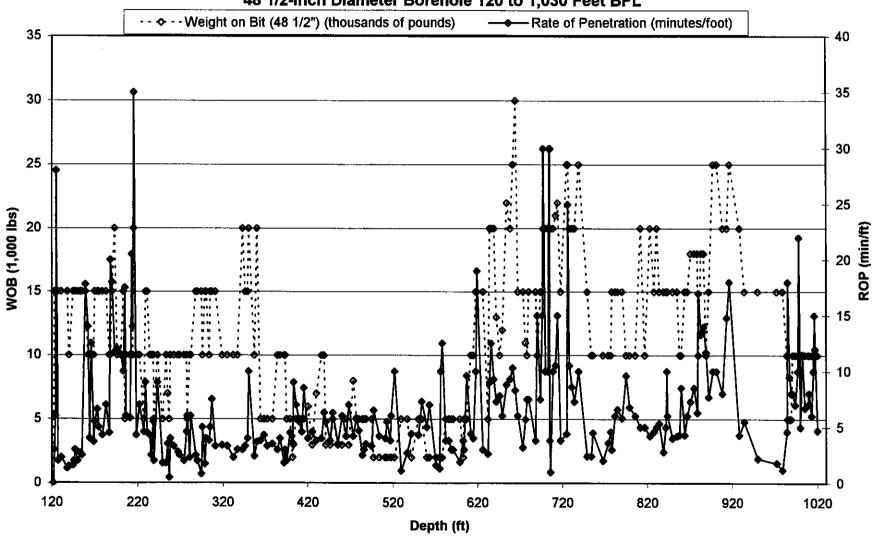
Date

Director of District Management

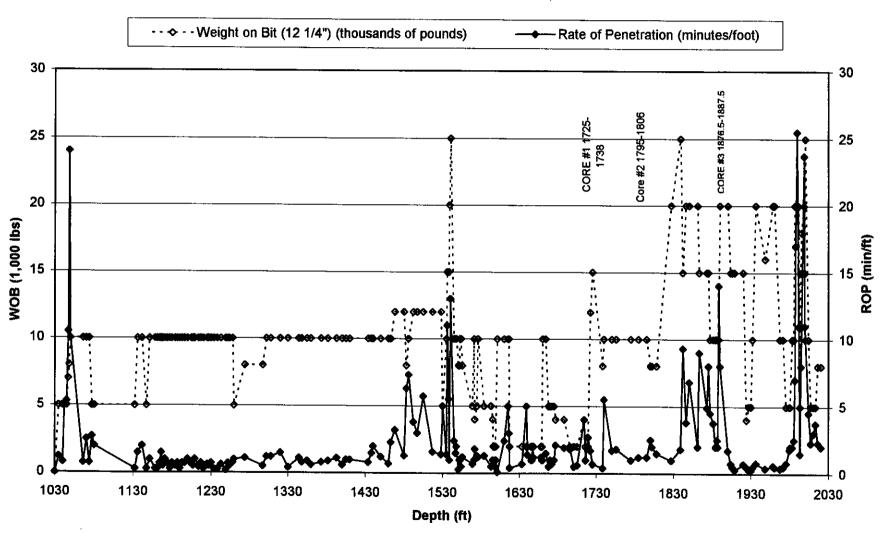

Southeast District

DA DOOR

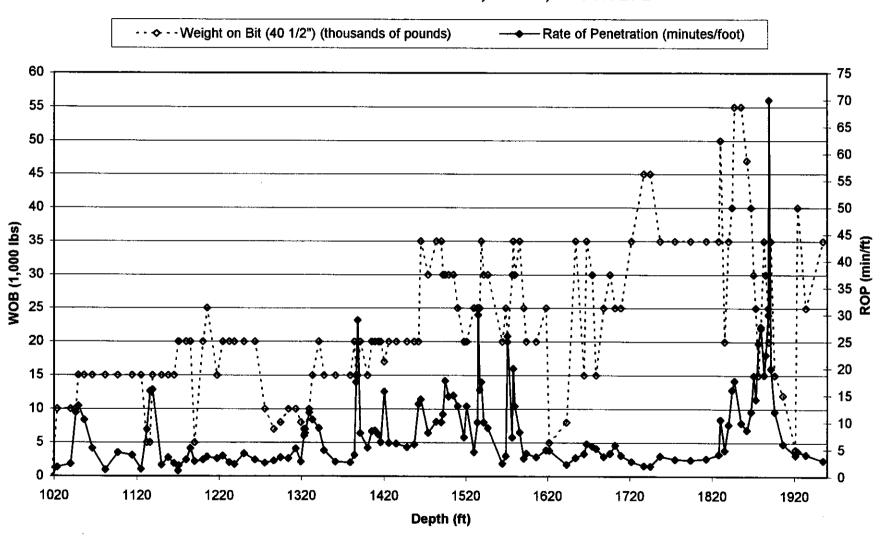
APPENDIX B WEIGHT ON BIT AND RATE OF PENETRATION

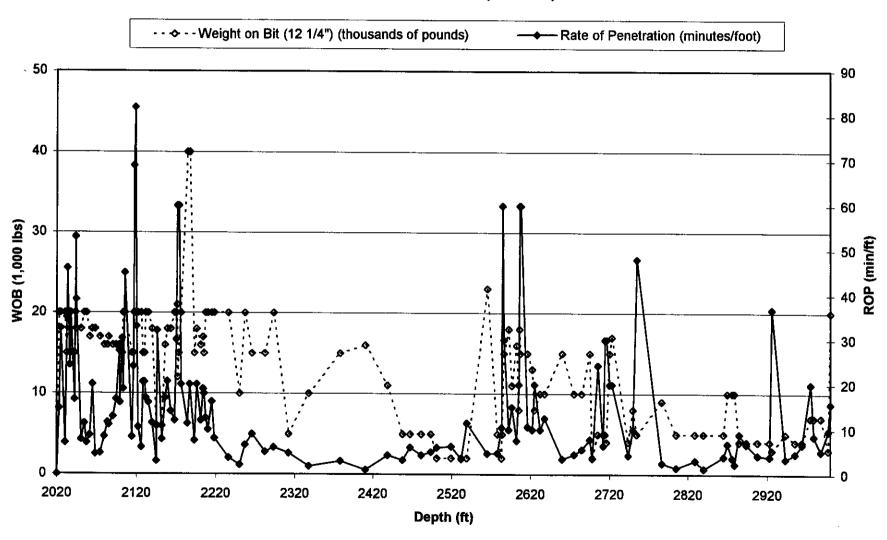

Injection Well

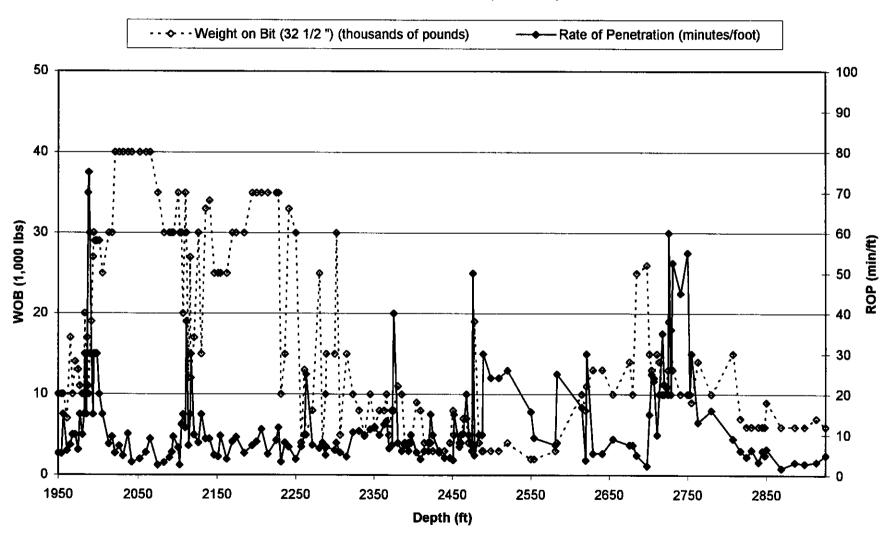
City of Pompano Beach Concentrate Disopsal Well W-1 Weight on Bit / Rate of Penetration



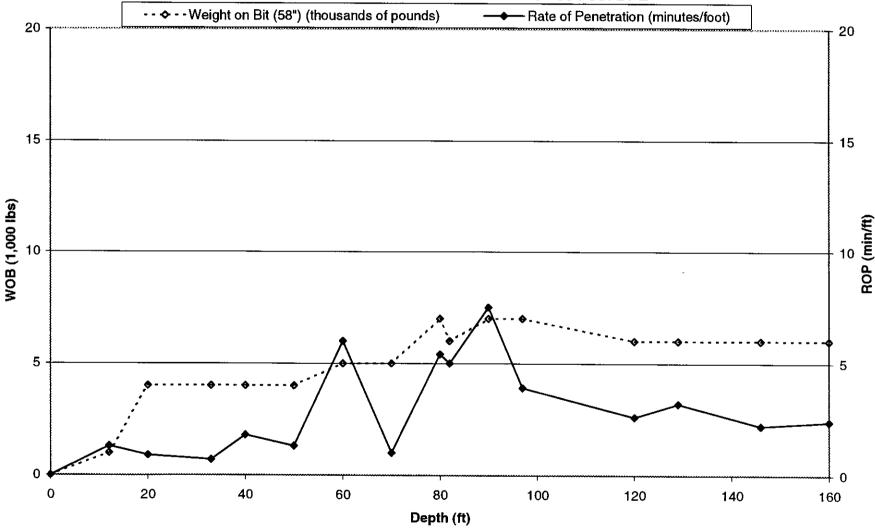
City of Pompano Beach Concentrate Disposal Well IW-1 Weight on Bit / Rate of Penetration


48 1/2-inch Diameter Borehole 120 to 1,030 Feet BPL


City of Pompano Beach Concentrate Disposal Well IW-1 Weight on Bit / Rate of Penetration 12 1/4-inch Diameter Pilot hole 1,030 to 2,000 Feet BPL

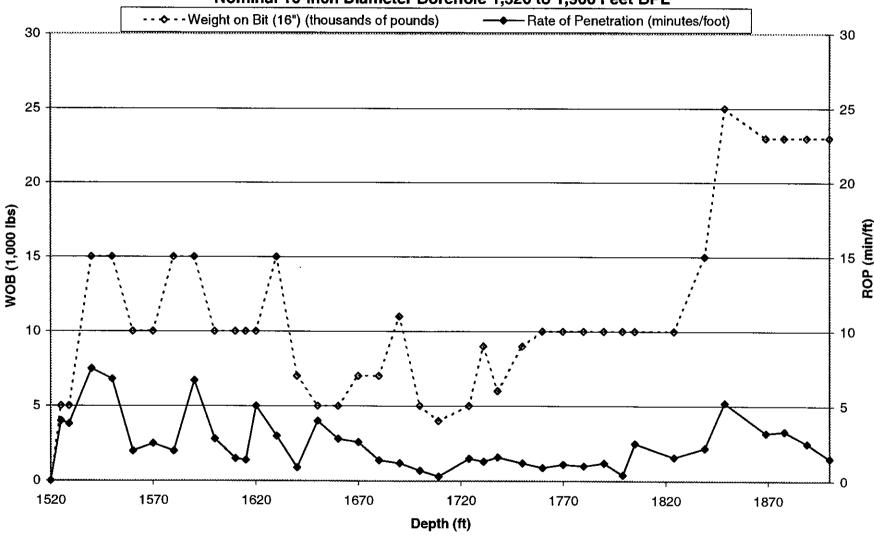

City of Pompano Beach Concentrate Disposal Well IW-1 Weight on Bit / Rate of Penetration 40 1/2-inch Diameter Borehole 1,030 to 1,955 Feet BPL

City of Pompano Beach Concentrate Disposal Well IW-1 Weight on Bit / Rate of Penetration 12 1/4-inch Diameter Pilot hole 2,020 to 3,000 Feet BPL


City of Pompano Beach Concentrate Disposal Well IW-1 Weight on Bit / Rate of Penetration Nominal 34-inch Diameter hole 1,950 to 2,925 Feet BPL

Dual-Zone Monitor Well

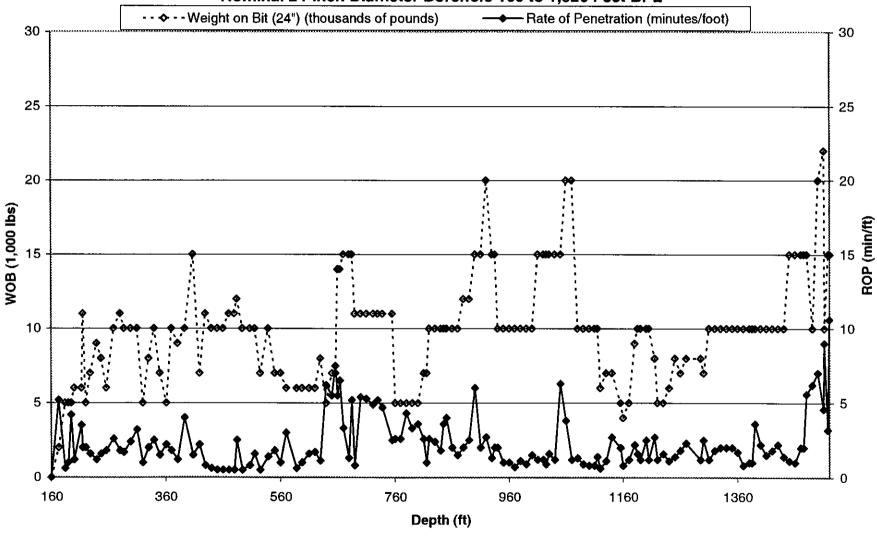
City of Pompano Beach Dual-Zone Monitoring Well MW-1 Weight on Bit / Rate of Penetration



MW-1 WOB-ROP 0 to 160 (34)

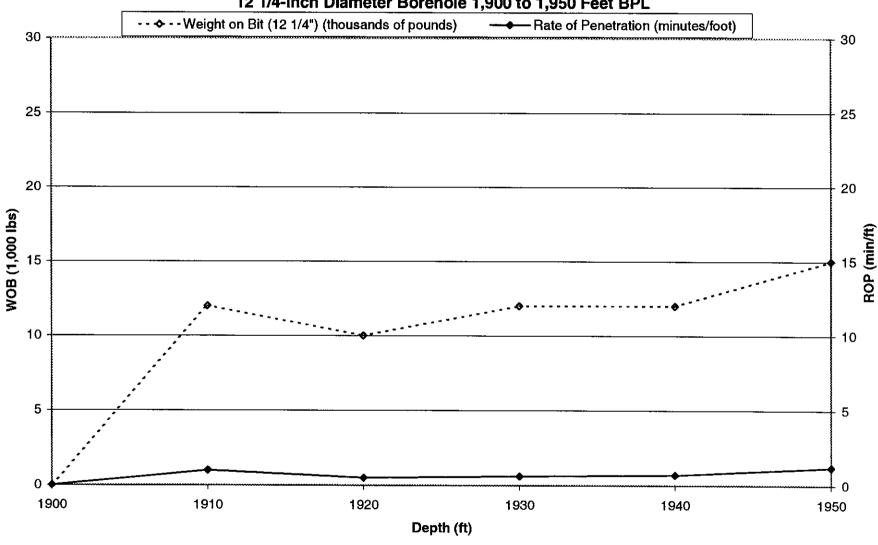
City of Pompano Beach Dual-Zone Monitoring Well MW-1

Weight on Bit / Rate of Penetration


Nominal 16-inch Diameter Borehole 1,520 to 1,900 Feet BPL

City of Pompano Beach Dual-Zone Monitoring Well MW-1

Weight on Bit / Rate of Penetration



City of Pompano Beach Dual-Zone Monitoring Well MW-1

Weight on Bit / Rate of Penetration

12 1/4-inch Diameter Borehole 1,900 to 1,950 Feet BPL

APPENDIX C INCLINATION SURVEYS

Appendix C Inclination Survey Concentrate Disposal Well IW-1 City of Pompano Beach

Depth (feet bpl)	Inclination (degrees)	Bit Size (inches)
90	0.000	58.5
180	0.250	48.5
270	0.125	48.5
360	0.250	48.5
450	0.250	48.5
540	0.250	48.5
630	0.250	48.5
720	0.500	48.5
810	0.250	48.5
900	0.300	48.5
990	0.300	48.5
1,080	0.250	12.25
1,170	0.250	12.25
1,260	0.400	12.25
1,350	0.500	12.25
1,440	0.300	12.25
1,530	0.300	12.25
1,620	0.300	12.25
1,710	0.400	12.25
1,800	0.350	12.25
1,890	0.250	12.25
1,980	0.250	12.25

Depth (feet bpl)	Inclination (degrees)	Bit Size (inches)
1080	0.250	40.5
1170	0.250	40.5
1260	0.250	40.5
1350	0.200	40.5
1440	0.250	40.5
1530	0.250	40.5
1620	0.375	40.5
1710	0.250	40.5
1800	0.270	40.5
1890	0.270	40.5
1980	0.350	12.25
2070	0.300	12.25
2160	0.240	12.25
2250	0.250	12.25
2340	0.260	12.25
2430	0.370	12.25
2520	0.300	12.25
2610	0.350	12.25
2700	0.350	12.25
2790	0.400	12.25
2880	0.400	12.25
2970	0.250	12.25

Depth (feet bpl)	Inclination (degrees)	Bit Size (inches)
2040	0.425	32.5
2130	0.250	32.5
2200	0.250	32.5
2310	0.250	32.5
2400	0.250	32.5
2490	0.250	32.5
2580	0.250	32.5

APPENDIX C

Inclination Survey Dual-Zone Monitoring Well MW-1 City of Pompano Beach

Depth (feet bpl)	Inclination (degrees)	Bit Size (inches)
90	0.260	32.5
180	0.250	22.5
270	0.370	22.5
360	0.250	22.5
450	0.350	22.5
540	0.300	22.5
630	0.400	22.5
720	0.300	22.5
810	0.150	22.5
900	0.250	22.5
990	0.250	22.5
1080	0.220	22.5
1170	0.240	22.5
1260	0.240	22.5
1350	0.350	22.5
1440	0.350	22.5
1530	0.400	14.75
1620	0.350	14.75
1710	0.300	14.75
1800	0.350	14.75
1890	0.125	14.75

APPENDIX D GEOLOGIC LOGS

Injection Well Geologic Log

Appendix D Geologic Log - (Drill Cuttings) Concentrate Disposal Well IW-1 City of Pompano Beach

Depth (ft)	Thickness (ft)	Sample Description
0-10	10	SAND SANDSTONE AND SANDY LIMESTONE – Sand 50%, colorless, very coarse to very fine grained, unconsolidated, poorly sorted, subrounded quartz. Sandstone 30%, moderate brown (5YR 4/4) fine to medium grained, friable, highly argillaceous. Sandy Limestone 20%, grayish yellow (5Y 8/4) to yellowish gray (5Y 7/2) medium grained to cryptocrystalline, moderately hard, partly pelloidal, packstone with abundant medium grained angular colorless quartz.
10-20	10	LIMESTONE – 100% Yellowish gray (5Y 8/1) medium to fine grained, moderately hard, occasionally sparry, fossiliferous packstone with colorless fine grained subangular quartz.
20–40	20	LIMESTONE AND SANDSTONE – Limestone 60%, Grayish orange (10YR 7/4), coarse to fine grained, moderately to poorly cemented, fossiliferous wackestone to packstone with shell fragments. Sand 40%, coarse to fine grained, subangular to subrounded, poorly sorted unconsolidated quartz.
40–70	30	SAND AND LIMESTONE – Sand 95%, very coarse grained, subangular to subrounded, unconsolidated quartz. Limestone 5%, grayish orange (10YR 7/4) fossiliferous packstone with shell fragments.
70–80	10	SANDY LIMSTONE AND SAND— Sandy Limestone 90%, very pale orange (10YR 8/2) to moderate yellowish brown (10YR 5/2) fine to coarse grained, moderately hard to hard, fossiliferous, mudstone to packstone with shell fragments. Sand 10%, coarse to medium grained, subangular to subrounded, some moderately cemented with calcite, mostly unconsolidated quartz.
80–90	10	SANDY LIMESTONE AND SAND – Sandy Limestone 95%, Grayish orange (10YR 7/4) fine to coarse grained, fossiliferous, soft to moderately hard packstone to grainstone with shell fragments. Sand 5%, coarse to medium grained, angular to subrounded, poorly cemented to unconsolidated quartz.
90–100	10	SANDY LIMESTONE AND SAND – Sandy Limestone 80%, greenish gray (5GY 6/1) to very light gray (N8) fine to coarse grained wackestone to grainstone with coarse to medium grained sand and trace phosphorite. Sand 10%, colorless, coarse grained, subangular to subrounded, unconsolidated quartz. Trace to little shell, shell fragments and organics.
100130	30	SANDY LIMESTONE AND SAND – Sandy Limestone 90%, Yellowish gray (5Y 8/1) to very pale orange (10YR 8/2) coarse to fine grained, mostly fossiliferous mudstone to packstone, with shell, shell fragments, and coarse to fine grained, subrounded sand. Sand 10%, medium to coarse grained, angular to rounded moderately to poorly cemented quartz. Trace light gray (N7) medium grained packstone.

Depth (ft)	Thickness (ft)	Sample Description
120–140	20	LIMY SANDSTONE AND SANDY LIMESTONE – Limy Sandstone 80%, Greenish gray (5GY 6/1) medium to fine grained, subrounded to rounded quartz, moderately to poorly sorted with coarse to fine grained, fossiliferous, moderately hard, with shell and little phosphorite, to medium grained, subrounded, moderately cemented. Sandy Limestone 20%, yellowish gray (5Y 7/2) fine to coarse grained, subrounded, moderately hard to hard wackestone with medium grained, subrounded, moderately sorted quartz sand. Trace phosphorite.
140–150	10	LIMY SANDSTONE – 100% Light olive gray (5Y 6/1) fine to medium grained, subrounded to rounded, well sorted with coarse grained wackestone, shell fragments and trace phosphorite.
150~160	10	SANDY LIMESTONE AND LIMY SANDSTONE — Sandy Limestone 80%, as above. Limy Sandstone 20%, yellowish gray (5Y 7/2) fine to coarse grained, subangular, colorless quartz in crystalline calcite matrix with shell fragments and trace phosphorite
160–200	40	LIMY SANDSTONE AND PHOSPHORITE – Limy Sandstone 95%, yellowish gray (5Y 8/1) to light olive gray (5Y 6/1) coarse to very fine grained, subrounded to rounded, moderately well sorted quartz with fine grained calcite and shell fragments. Phosphorite 5%, black (N9) medium grained, well sorted, moderately to well cemented.
200–220	20	SANDY LIMESTONE – 100% Light olive gray (5Y 6/1) to greenish gray (5GY 6/1) fine grained, wackestone, with mollusks and echinoids fragments with colorless, coarse to very fine grained, moderately sorted, angular to rounded quartz sand and trace phosphorite.
220-260	40	LIMY SANDSTONE – 100% Pale olive (10Y 6/2) to light olive gray (5Y 6/1) coarse to very fine grained, moderately hard to hard, angular to rounded, moderately to well sorted, slightly phosphatic quartz with 20% shell fragments and greenish gray (5GY 6/1) coarse to very fine grained, moderately sorted, angular to rounded limestone with trace phosphorite.
260–300	40	LIMY SANDSTONE – 100% Light olive gray (5Y 6/1) coarse to very fine grained, moderately cemented, angular to rounded, moderately to well sorted quartz with little shell fragments and trace interbedded coarse to very fined grained limestone. Trace Phosphorite.
300–310	10	LIMY SANDSTONE – 100% Light olive gray (5Y 6/1) medium to fine grained, angular to rounded, moderately to poorly cemented quartz with 30% Limestone, 15% shell fragments and trace phosphorite.
310–330	20	SANDY LIMESTONE – 100% Yellowish gray (5Y 8/1) to medium light gray (N6) medium to fine grained, moderately hard, fossiliferous packstone with colorless coarse to fine grained angular to rounded moderately sorted quartz sand and trace phosphorite.

Depth (ft)	Thickness (ft)	Sample Description
330–360	30	SANDY LIMESTONE AND LIMESTONE – Sandy Limestone 90%, yellowish gray (5Y 8/1) to light olive gray (5Y 5/2) medium to fine grained, moderately hard, fossiliferous wackestone with shell fragments and fine to medium grained angular to subangular quartz sand and trace phosphorite. Limestone 10%, white (N1) medium to fine grained moderately hard sandy packstone with little quartz sand.
360–380	20	LIMY SANDSTONE – 100% Light olive gray (5Y 5/2) to light olive gray (5Y 6/1) fine to coarse grained, moderately well cemented, angular to subangular quartz with carbonate mudstone, shell fragments and trace phosphorite.
380390	10	CLAYEY LIMY SANDSTONE – 100% Light olive gray (5Y 6/1) medium to very fine grained, subangular quartz, moderately well cemented, with abundant calcareous clay, shell fragments and little phosphorite.
390–400	10	CLAYEY LIMY SANDSTONE, SANDSTONE AND LIMESTONE – Clayey Limy Sandstone 80%, as above. Sandstone 10%, light gray (N7) very fine grained, very well cemented with shell fragments and phosphorite. Limestone 10%, yellowish gray (5Y 8/1) coarse grained hard sandy packstone.
400–500	100	CLAYEY SANDY LIMESTONE – 100% light olive gray (5Y 5/2) fine grained, moderately hard, fossiliferous wackestone with clay, fine to very fine grained sand and little phosphorite. Clay content increasing below 480 feet. Trace coarse grained packstone with coarse sand at 430 feet. Trace coarse grained packstone at 480 feet.
500–510	10	SANDY CLAY AND CLAYEY SANDY LIMESTONE — Sandy Clay 70%, light olive gray (5Y 5/2) soft, moderately plastic calcareous with very fine grained quartz sand and little phosphorite. Clayey Sandy Limestone 30%, as above.
510–550	40	SANDY CLAY - 100%, light olive gray (5Y 5/2) non-plastic, moderately firm, with abundant very fine grained sand.
550–580	30	SANDY CLAY AND LIMY SANDSTONE – Sandy Clay 70%, light olive gray (5Y 5/2) very soft, moderately plastic, with abundant fine grained quartz and little phosphorite. Limy Sandstone 30%, medium light gray (N6) fine grained, well cemented, with medium grained fossiliferous limestone and trace phosphorite.
580–630	50	SANDY CLAY – 100% Grayish olive (10Y 4/2) very soft, non–plastic, phosphatic, slightly calcareous with fine grained quartz.
630–650	20	SANDY CLAY – 100%, Yellowish gray (5Y 7/2) soft, low plasticity, slightly calcareous, with very fine grained quartz and little phosphorite.
650–660	10	SANDY CLAY – 100% Greenish gray (5GY 6/1) very soft, non plastic with very fine grained quartz and trace phosphorite.
660670	10	CLAYEY SAND - 100% Yellowish gray (5Y 7/4) very fine grained, unconsolidated quartz with clay.

Depth (ft)	Thickness (ft)	Sample Description
670–730	60	SANDY CLAY - 100% Pale olive (10Y 6/2) soft, low plasticity, calcareous, with very fine grained quartz sand. Occasional clayey sand lenses at 680 feet, trace limestone at 690 feet.
730750	20	SANDY CLAY AND LIMESTONE – Sandy Clay 70%, as above. Limestone 30%, yellowish gray (5Y 7/2) fine grained, moderately soft wackestone.
750–760	10	CLAY – 100% Yellowish gray (5Y 7/2) soft, low plasticity, silty, slightly phosphatic with trace chert.
760–800	40	SANDY CLAY - 100% Yellowish gray (5Y 7/2) stiff to hard, moderately plastic, slightly phosphatic with very fine grained quartz sand.
800–850	50	SANDY CLAY – 100% Pale olive (10Y 6/2) stiff to hard, moderately plastic with very fine grained quartz sand.
850–870	20	SANDY CLAY AND PHOSPHORITE – Sandy clay 80%, as above. Phosphorite 20%, black (N9) fine grained, hard, occurring as granules.
870–900	30	SANDY CLAY – 100% Pale olive (10Y 6/2) very stiff to hard, plastic, calcareous, with little fine grained limestone, and abundant very fine grained sand.
900–910	10	CLAY AND CHERT – Clay 90%, light olive gray (5Y 5/2) hard, plastic. Chert 10%, olive gray (5Y 3/2) very fine grained, very hard.
910–940	30	SANDY CLAY – 100% Pale olive (10Y 6/2) firm to hard, calcareous, with fine grained quartz sand and little phosphorite. Trace pale olive (10Y 6/2) clayey phosphatic Limestone at 930.
940–950	10	SANDY CLAYEY LIMESTONE – 100% Yellowish gray (5 Y 7/2) fine to medium grained, very soft to moderately soft, phosphatic wackestone with fine to medium grained quartz sand. Trace to few shell fragments and fossils.
950–970	20	SANDY CLAY AND SANDY CLAYEY LIMESTONE – Sandy Clay 80%, pale clive (10Y 6/2) soft, plastic with very fine grained quartz sand. Sandy Clayey Limestone 20% as above.
9701000	30	CLAYEY LIMESTONE AND SANDY CLAY – Clayey Limestone 70%, light olive gray (5Y 5/2) medium grained, hard fossiliferous, phosphatic wackestone. Sandy Clay 30%, as above.
1000–1030	30	LIMESTONE – 100%; 80% Yellowish gray (5Y 8/1) to medium grained moderately hard packstone. 20% Pale yellowish gray (5Y 9/1) cryptocrystalline, moderately hard carbonate mudstone.
1030–1040	10	LIMESTONE – 100% Yellowish gray (5Y 8/1) fine grained to cryptocrystalline, moderately hard wackestone to carbonate mudstone.

Depth (ft)	Thickness (ft)	Sample Description
1040–1050	10	LIMESTONE – 100%; 70% Greenish gray (5GY 6/1) fine to very coarse grained, moderately hard, slightly sparry, fossiliferous wackestone with trace casts. 30% Pale olive (10Y 6/2) fine to medium grained, moderately soft, fossiliferous, slightly phosphatic, slightly sandy packstone.
1050–1070	20	SANDSTONE AND LIMESTONE – Sandstone 60%, light olive gray (5Y 5/1) fine to medium grained, poorly sorted, poorly cemented, slightly phosphatic. Limestone 40%, yellowish gray (5Y 8/1) cryptocrystalline to coarse grained, fossiliferous, occasionally slightly sandy wackestone with trace molds. Trace forams.
1070–1160	90	LIMESTONE – 100% Very pale orange (10YR 8/2) medium grained, moderately soft to soft packstone with tests and forams. Trace dark gray (N3) very fine grained Limestone at 1140. Trace medium grained fossiliferous packstone at 1150.
1160-1200	40	LIMESTONE – 100% Very pale orange (10YR 8/2) to grayish orange (10YR 7/4) medium grained, moderately soft to moderately hard packstone with few forams.
1200–1270	70	LIMESTONE – 100%; 70% Very pale orange (10YR 8/2) to grayish orange (10YR 7/4) as above. 30% Yellowish gray (5Y 8/1) fine grained moderately soft to soft, slightly vuggy wackestone. Trace light olive gray hard carbonate mudstone at 1160.
1270–1380	110	LIMESTONE – 100% Pale yellowish brown (10YR 6/2) to yellowish gray (5Y 8/1) medium to fine grained, moderately soft packstone to rarely grainstone with 10% to 20% forams. Trace yellowish gray (5Y 8/1) highly vuggy carbonate mudstone at 1320. Trace medium light gray (N6) fine grained hard wackestone at 1360. Trace test at 1370.
1380–1410	30	LIMESTONE – 100%; 80% Yellowish gray (5Y 8/1) medium grained moderately soft pelloidal packstone. 20% Light gray (N7) hard carbonate mudstone. Trace forams. Trace interbedded Dolomitic Limestone at 1400.
1410–1430	20	LIMESTONE – 100%; 70% Yellowish gray (5Y 8/1) medium to fine grained, moderately soft, pelloidal packstone. 20% Very light gray (N8) cryptocrystalline, moderately hard carbonate mudstone. 10% Dark gray (N7) medium grained, hard, fossiliferous wackestone. Abundant forams.
1430 –1460	30	LIMESTONE – 100%; 80%–60% Yellowish gray (5Y 8/1) coarse to fine grained, moderately soft to moderately hard, pelloidal packstone to grainstone. 10%–20% Yellowish gray (5Y 8/1) cryptocrystalline, hard carbonate mudstone. 10%–20% Very light gray (N8) as above.
1460–1480	20	LIMESTONE AND DOLOMITE – Limestone 90%; 70% Very pale orange (10YR 8/2) to yellowish gray (5Y 8/1) fine to medium grained, moderately soft to moderately hard, pelloidal packstone/grainstone with trace Dolomitic laminations. 20% Medium dark gray (N4) to medium light gray (N6) fine grained, moderately hard, vuggy wackestone. Dolomite 10%, dark yellowish brown (10YR 4/2) microcrystalline, hard sucrossic.

Depth	Thickness	Sample Description
(ft)	(ft)	
1480–1500	20	LIMESTONE AND DOLOMITE – Limestone 90%; 70% Very pale orange (10YR 9/2) cryptocrystalline, moderately hard, very slightly vuggy carbonate mudstone. 30% Very pale orange (10YR 8/2) to light olive gray (5Y 6/1) medium to coarse grained, pelloidal packstone to grainstone. 20% Medium gray (N5) fine grained, hard wackestone. Dolomite 10%–20% as above.
1500–1510	10	LIMESTONE AND SANDSTONE – Limestone 70% as above. Sandstone 30%, moderate yellowish brown (10YR 5/4) fine to very fine grained, moderately cemented. Trace Dolomite as above.
1510–1520	10	LIMESTONE – 100%; 80% Very pale orange (10YR 8/2) fine to medium grained, moderately soft, fossiliferous packstone. 20% Pale yellowish brown (10YR 6/2) cryptocrystalline, hard, carbonate mudstone. Trace to little forams. Trace Sandstone as above.
1520–1530	10	LIMESTONE – 100%; 80% Yellowish gray (5Y 8/1) medium grained, moderately soft to moderately hard, fossiliferous, partly sparry packstone to rarely grainstone. 20% White (N9) to very light gray (N8) cryptocrystalline, moderately hard, slightly vuggy, carbonate, mudstone. Few forams and tests. Trace light olive gray (5Y 6/1) microcrystalline hard Dolomite.
1530–1550	20	LIMESTONE AND DOLOMITE – Limestone 70% as above. Dolomite 30% moderate yellowish brown (10YR 5/4) to dark yellowish brown (10YR 4/2) fine grained to microcrystalline, moderately hard to hard. Trace fine grained, slightly phosphatic Sandstone. Trace to few forams.
1550–1560	10	LIMESTONE – 100% Very pale orange (10YR 8/2) to pale yellowish brown (10YR 6/2) fine to medium grained, very soft to soft packstone with few forams.
1560–1580	20	LIMESTONE – 100%; 90% As above. 10% Medium dark gray (N4) very fine grained wackestone/packstone.
1580–1590	10	LIMESTONE – 100%; 60% Very pale orange (10YR 8/2) medium to fine grained, moderately soft packstone to grainstone. 20% Pale yellowish brown (10YR 6/2) cryptocrystalline, hard carbonate mudstone. 20% Pale yellowish brown (10YR 6/2) to grayish brown (5YR 3/2) fine to medium grained, hard, occasionally fossiliferous wackestone. Few flat forams up to 10 mm in diameter.
1590–1600	10	LIMESTONE – 100%; 90% Grayish orange (10YR 7/4) fine to medium grained, moderately soft, pelloidal, slightly fossiliferous packstone. 10% Very pale orange (10YR 8/2) cryptocrystalline, hard carbonate mudstone. Few forams and tests. Trace Dolomitic Limestone.
1600–1610	10	LIMESTONE – 100%; 80% Grayish orange (10YR 7/4) to very pale orange (10YR 8/2) fine grained, moderately soft to moderately hard, rarely slightly Dolomitic packstone. 20% Medium dark gray (N4) fine grained, hard wackestone to carbonate mudstone. Trace forams.

Depth (ft)	Thickness (ft)	Sample Description
1610–1630	20	LIMESTONE – 100%; 60% Very pale orange (10YR 8/2) fine to medium grained, moderately soft packstone. 30% Light olive gray (5Y 8/1) to light olive gray (5Y 6/1) medium grained, hard, fossiliferous wackestone to carbonate mudstone.
1630–1640	10	LIMESTONE – 100% Grayish orange (10YR 7/4) fine grained, soft to moderately soft packstone with abundant forams.
1640–1650	10	LIMESTONE – 100%; 90% Very pale orange (10YR 8/2) to pale yellowish brown (10YR 6/2) fine to medium grained, moderately hard packstone. 10% Pale yellowish brown (10YR 6/2) cryptocrystalline, hard, slightly vuggy carbonate mudstone.
16501660	10	LIMESTONE – 100%; 60% Very pale orange (10YR 8/2) to pale yellowish brown (10YR 6/2) as above. 30% Medium gray (N5) dominantly fine to medium grained, micritic, locally vuggy wackestone. 10% Pale yellowish brown (10YR 6/2) as above.
1660–1670	10	LIMESTONE ~ 100%; 60% Yellowish gray (5Y 8/1) fine grained, moderately soft wackestone. 30% Medium dark gray (N4) to olive gray (5Y 4/1) fine grained, hard, slightly vuggy, micritic wackestone. 10% Yellowish gray (5Y 8/1) cryptocrystalline, hard carbonate mudstone.
1670–1680	10	LIMESTONE- 100% Yellowish gray (5Y 8/1) to very pale orange (10YR 8/2) fine grained, moderately soft, slightly vuggy packstone. Trace to little medium dark gray (N4) wackestone as above.
1680–1700	20	LIMESTONE– 100%; 50% Olive gray (5Y 4/1) to dark gray (N3) fine to medium grained, soft to moderately hard, fossiliferous packstone to wackestone. 40% Very pale orange (10YR 8/2) to yellowish gray (5Y 8/1) fine to medium grained, moderately soft, pelloidal packstone. 10% Yellowish gray (5Y 8/1) to light gray (N7) cryptocrystalline, hard carbonate mudstone. Trace to few forams and test.
17001710	10	LIMESTONE – 100%; 90% Very pale orange (10YR 8/2) to grayish orange (10YR 7/4) fine to very fine grained, moderately soft, locally slightly Dolomitic, packstone to wackestone. 10% Pale olive gray (5Y 6/1) cryptocrystalline, hard, slightly vuggy carbonate mudstone. Few forams and test.
1710–1725	15	LIMESTONE – 100%; 70% Very pale orange (10YR 8/2) to pale yellowish brown (10YR 6/2) medium grained, moderately hard, fossiliferous, partly slightly Dolomitic grainstone to packstone. 20% Yellowish gray (5Y 8/1) hard, microcrystalline to cryptocrystalline, carbonate mudstone. 10% Medium gray (N5) fine grained, moderately hard to hard, fossiliferous wackestone. Few forams and test.
1725–1738	13	CORE # 1

Depth	Thickness	Sample Description
(ft)	(ft)	
1738–1785	57	LIMESTONE – 100%; 70% yellowish gray (5Y 8/1) to occasionally olive gray (5Y 4/1) fine to very fine grained, moderately soft to hard, well cemented, fossiliferous, partly sparry packstone. 30% Yellowish gray (5Y 8/1) to light olive gray (5Y 6/1) very fine grained wackestone to carbonate mudstone. Trace to few forams and test. Trace Dolomitic Limestone and neomorphic calcite.
1795–1806	11	CORE #2
1806–1810	4	LIMESTONE – 100%; 60% Yellowish gray (5Y 8/1) to light gray (N7) fine grained, hard wackestone. 40% Yellowish gray (5Y 8/1) fine to medium grained, moderately soft packstone. Trace soft Dolomitic packstone. Trace to few forams and tests.
1810–1840	30	LIMESTONE AND DOLOMITE – Limestone 90%–80%; 60% Pale yellowish brown (10YR6/2) to medium light gray (N6) fine grained, moderately hard wackestone to mudstone. 40% Pale yellowish brown (10YR 6/2) to medium light gray (N6) medium to fine grained, moderately soft packstone, percentage decreasing with depth. Dolomite 10%–20% Dark yellowish brown (10YR 4/2) very fine grained, fossiliferous, occasionally limy, percentage increasing with depth. Trace Dolomitic Limestone. Few tests and forams.
1840–1850	10	DOLOMITE – 100% Moderate yellowish brown (10YR 5/4) to rarely grayish black (N2) fine grained to microcrystalline, moderately hard to very hard, sucrosic. Trace very pale orange (10YR 8/2) fine to very fine grained, moderately hard, rarely micritic packstone to wackestone
1850–1876.5	26.5	DOLOMITE AND LIMESTONE - Dolomite 70%, as above. Limestone 30%, very pale orange (10YR 8/2) fine to very fine grained, moderately hard, rarely micritic packstone to wackestone.
1876.5–1887.5	11	CORE #3
1887.5–1900	12.5	DOLOMITE AND DOLOMITIC LIMESTONE – Dolomite 70%; 60% dark yellowish brown (10YR 4/2) to dusky yellowish brown (10YR 2/2), very fine grained, very hard, weakly vuggy, sucrosic. 40% Pale yellowish brown (10YR 6/2) cryptocrystalline, very hard. Dolomitic Limestone 30%, pale yellowish brown (10YR 6/2) cryptocrystalline, hard, slightly vuggy, carbonate mudstone with very fine grained Dolomite inclusions.
1900–1920	20	LIMESTONE, DOLOMITE AND DOLOMITIC LIMESTONE – Limestone 70%, very pale orange (10YR 8/2) fine to rarely medium grained, dominantly hard to rarely moderately hard, well indurated, occasionally dolomitic packstone to rarely wackestone. Dolomite 20%, dark yellowish brown (10YR 4/2) to dusky yellowish brown (10YR 2/2) fine grained to microcrystalline, very hard. Dolomitic Limestone 10%, pale yellowish brown (10YR 6/2) cryptocrystalline, very hard carbonate mudstone with microcrystalline Dolomite inclusions.
1920–1930	10	CORE #4

Depth (ft)	Thickness (ft)	Sample Description
1930–1940	10	LIMESTONE – 100%; 60% Very pale orange (10YR 8/2) medium grained, hard, well indurated, fossiliferous packstone with forams and tests. 30% Very pale orange (10YR 8/2) coarse to medium grained, moderately hard fossiliferous grainstone with forams. 10% Very pale orange (10YR 8/2) cryptocrystalline, hard weakly vuggy carbonate mudstone with trace neomorphic calcite.
1940–1950	10	LIMESTONE – 100%; 60% Very pale orange (10YR 8/2) cryptocrystalline, hard, rarely very weakly vuggy carbonate mudstone. 20% Very pale orange (10YR 8/2) hard, very fine grained wackestone. 10% Olive gray (5Y 4/1) cryptocrystalline, hard micritic mudstone. 10% White (N9) very soft, fossiliferous carbonate marl.
1950–1960	10	LIMESTONE – 100%; 80% Very pale orange (10YR 8/2) to grayish orange (10YR 7/4) fine to medium grained, moderately soft to occasionally moderately hard, well indurated, fossiliferous, partly Dolomitic packstone with forams. 20% Very pale orange (10YR 8/2) very fine grained, hard, vuggy wackestone. Abundant forams.
1960–1970	10	CORE #5
1970–1975	5	LIMESTONE – 100%; 60% Grayish orange (10YR 7/4) fine to medium grained, hard, fossiliferous packstone. 20% Medium dark gray (N4) microcrystalline to cryptocrystalline, very hard, weakly vuggy carbonate mudstone, vuggs occasionally lined with euhedral Dolomite rhombs. 20% Light olive gray (5Y 6/1) fine to medium grained, hard, fossiliferous wackestone with tests.
1975–1985	10	CORE #6
1985–2000	15	DOLOMITE – 100%; 90% Yellowish brown (10YR 5/2) coarse grained to cryptocrystalline, very hard with few crystal filled vuggs. 10% Black olive (5Y 2/1) medium grained, very hard.
2000–2010	10	CORE #7
2010–2020	10	DOLOMITE AND LIMESTONE – Dolomite 90%, dark yellowish brown (10YR 4/2) to grayish orange (10YR 7/4) microcrystalline, very hard, sucrosic. Limestone 10%, very pale orange (10YR 8/2) fine to occasionally medium grained, generally moderately soft, partly sparry packstone.
2020-2030	10	CORE #8
20302040	10	DOLOMITE AND DOLOMITE BRECCIA – 100%; 80% Moderate yellowish brown (10YR 5/4) microcrystalline, very hard, partly sucrosic. 10% Pale yellowish brown (10 YR 6/2) cryptocrystalline very hard. Dolomite Breccia 10%, moderate yellowish brown (10YR 5/4) to pale yellowish brown (10 YR 6/2), lighter colored angular fragments in darker colored matrix (matrix > clast supported) very hard.
2040–2070	30	DOLOMITE – 100%; 60%–80% Moderate yellowish brown (10YR 5/4) to pale yellowish brown (10 YR 6/2) cryptocrystalline to microcrocrystalline, very hard. 40%–20% Pale yellowish brown (10 YR 6/2) to grayish orange (10YR 7/4) microcrystalline to fine grained, moderately vuggy, moderately hard, partly sucrosic.

Depth (ft)	Thickness (ft)	Sample Description
2070–2140	70	DOLOMITE – 100%, Moderate yellowish brown (10YR 5/4) to dark yellowish brown (10YR 4/2) fine grained to cryptocrystalline, very hard, dominantly sucrosic, rarely weakly vuggy at 2120. Trace very pale orange (10 YR 8/2) Dolomitic Limestone at 2130.
21402160	20	DOLOMITE AND LIMESTONE – Dolomite 60%–80%, light olive gray (5Y 5/2) to moderate yellowish brown (10YR 5/4) dominantly very fine grained to cryptocrystalline, rarely medium to coarse grained, hard to very hard. Limestone 40%–20% very pale orange (10YR 8/2) fine grained, moderately soft, pelloidal grainstone to packstone occasionally containing medium grained euhedral Dolomite crystals. Trace tests. Trace very light gray (N8) fine grained, poorly cemented euhedral Dolomite 2160.
2160–2220	60	DOLOMITE AND LIMESTONE – Dolomite 80%, grayish orange (10YR 7/4) to dark yellowish orange (10YR 6/6) to moderate yellowish brown (10YR 5/4) fine grained to cryptocrystalline, grain size generally decreasing with depth, hard, well cemented, very well indurated, angular anhedral to uhedral rhomohedral Dolomite crystals. Limestone 20% very pale orange (10YR 8/2) fine grained to cryptocrystalline, soft to moderately hard wackestone to carbonate marl. Trace Dolomitic Limestone at 2210.
2220–2230	10	DOLOMITE AND DOLOMITIC LIMESTONE – Dolomite 70%, dominantly moderate yellowish brown (10YR 5/4) to dusky yellowish brown (10YR 2/2) medium grained to very fine grained, moderately to well cemented anhedral to uhedral rohmbohedral Dolomite crystals. Dolomitic Limestone 30%, very pale orange (10YR 8/2) medium grained moderately soft pelloidal packstone with anhedral and euhedral dolomite rhombs.
2230–2250	20	DOLOMITE AND LIMESTONE – Dolomite 60%, dark yellowish orange (10YR 6/6) as above. Limestone 40%, very pale orange (10YR 8/2) medium to fine grained, moderately soft partly Dolomitic grainstone to packstone.
2250–2270	20	DOLOMITE AND DOLOMITIC LIMESTONE – Dolomite 90%, dark yellowish brown (10YR 4/2) to rarely dusky yellowish brown (10YR 2/2) fine grained moderately well cemented, moderately hard anhedral to euhedral rhombahedral crystals. Dolomitic Limestone 10%, very pale orange (10YR 8/2) fine grained, moderately soft, moderately to highly Dolomitic grainstone to packstone.
2270–2280	10	DOLOMITIC LIMESTONE, DOLOMITE AND LIMESTONE – Dolomitic Limestone 40%, grayish orange (10YR 7/4) medium to fine grained, moderately soft to moderately hard, pelloidal, fossiliferous packstone with auhedral to euhedral rhombahedral crystal matrix. Dolomite 40%, moderate yellowish brown (10YR 5/4) medium to fine grained, anhedral to euhedral rohomhedral crystals, poorly to moderately cemented. Limestone 20%, very pale orange (10YR 8/2) very fine to medium grained, moderately soft to very soft packstone to carbonate marl.
2280–2290	10	DOLOMITE AND LIMESTONE – Dolomite 90% as above. Limestone 10% as above.

Depth (ft)	Thickness (ft)	Sample Description
2290–2300	10	DOLOMITE – 100% Moderate yellowish brown (10YR 5/4) medium to very fine grained, anhedral to euhedral rohombehedral crystals, poorly to moderately well cemented with few distinct to prominent mottles.
2300–2310	10	DOLOMITE AND LIMESTONE — Dolomite 50%, as above. Limestone 50%, very pale orange (10YR 8/2) medium to fine grained, moderately hard to moderately soft, pelloidal, partly sparry, partly Dolomitic packstone to grainstone.
2310–2320	10	LIMESTONE AND DOLOMITE – Limestone 90%, very pale orange (10YR 8/2) dominantly fine to very fine grained to rarely medium grained, moderately hard to weakly to moderately soft, pelloidal, fossiliferous, partly sparry grainstone to packstone. Dolomite 10%, moderate yellowish brown, microcrystalline to cryptocrystalline, very hard.
2320-2500	180	LIMESTONE –100% as above. Trace forams at 2330. Trace to little grayish orange (10YR 7/4) very fine grained to cryptocrystalline Dolomite. Trace Dolomite below 2400. Little Dolomitic Limestone and trace tests at 2500.
2500–2520	20	LIMESTONE AND DOLOMITE – Limestone 60%, very pale orange (10YR 8/2) medium to fine grained, moderately hard to rarely soft, pelloidal packstone with trace tests. Dolomite 40%, dark yellowish orange (10YR 6/8) medium to fine grained, anhedral to euhedral, crystals moderately cemented, partly limy.
2520-2540	20	LIMESTONE AND DOLOMITE – Limestone 60% as above. Dolomite 40% moderate yellowish brown (10YR 5/4) to dark yellowish orange (10YR 6/6) medium to very fine grained, hard, partly limy. Trace very pale orange (10YR 8/2) cryptocrystalline carbonate mudstone.
2540–2600	60	DOLOMITE AND LIMESTONE – Dolomite 70%–90%, as above. Limestone 30%–10%, very pale orange (10YR 8/2) medium to fine grained, moderately soft, weakly to moderately indurated, dominantly packstone to grainstone with minor amounts of very pale orange (10YR 8/2) carbonate mudstone.
2600–2610	10	LIMESTONE AND DOLOMITE – Limestone 50%–40%, very pale orange (10YR 8/2) medium to fine grained, moderately soft to moderately hard packstone to grainstone, 10%, very pale orange (10YR 8/2) cryptocrystalline, hard, carbonate mudstone. Trace tests. Dolomite 50%, dark yellowish orange (10YR 6/6) dominantly microcrystalline to cryptocrystalline, moderately hard to hard, partly sucrosic.
2610–2630	20	DOLOMITE – 100% Moderate yellowish brown (10YR 5/4) to dark yellowish orange (10YR 6/6) fine grained to microcrystalline, hard, partly sucrosic with distinct mottles common at 2620.
2630–2680	50	DOLOMITE AND LIMESTONE – Dolomite 90%–80%, dark yellowish orange (10YR 6/6) to rarely moderate yellowish brown (10YR 5/4) fine grained to cryptocrystalline, hard, sucrosic. Limestone 10%–20%, very pale orange (10YR 8/2) medium to fine grained, soft to moderately soft, pelioidal grainstone to packstone.

Depth (ft)	Thickness (ft)	Sample Description
2680–2740	60	DOLOMITE – 100% Moderate yellowish brown (10YR 5/4) very fine grained to cryptocrystalline, grain decreasing with depth, hard to very hard sucrosic. Trace pale yellowish brown (10YR 6/2) and dusky yellowish brown (10YR 2/2) Dolomite below 2730. Pale yellowish brown component rarely slightly glauconitic at 2730.
2740–2750	10	DOLOMITE – 100% Dark yellowish brown (10YR 4/2) to moderately yellowish brown (10YR 5/4) to pale yellowish brown (10YR 6/2) medium grained to cryptocrystalline, very well sorted, larger grains dominantly euhedral crystals, pale yellowish brown component rarely slightly glauconitic.
2750–2760	10	DOLOMITE AND LIMESTONE – Dolomite 70%; 60%as above. 10% Dark yellowish brown (10YR 4/2) to moderate yellowish brown (10YR 5/4) to rarely dusky yellowish brown (10 YR 2/2) coarse to medium grained, euhedual to subhedral rohomohedral crystals, moderately to very well indurated. Dusky yellowish brown component limy. Limestone 30%–20%, very pale orange (10YR 8/2) very fine grained, moderately hard, very well indurated wackestone. 10% very pale orange (10YR 8/2) medium to fine grained, moderately soft, pelloidal, slightly fossiliferous packstone. Trace tests.
2760–2780	20	LIMESTONE – 100%; 70% Very light gray (N8) to yellowish gray (5Y 8/1) cryptocrystalline, hard, weakly vuggy carbonate mudstone. 30% Very pale orange (10YR 8/2) medium to fine grained, moderately soft to hard, packstone to wackestone.
2780–2950	170	LIMESTONE – 100% Very pale orange (10YR 9/2) medium to fine grained, soft to moderately hard, pelloidal grainstone to packstone. Trace tests. Trace to little moderate yellowish brown (10YR 5/4) cryptocrystalline to fine grained Dolomite from 2830 to 2860.
2950–3000	50	LIMESTONE AND DOLOMITE— Limestone 70%; 60% as above. 10% Pale ofive gray (5Y 7/1) cryptocrystalline, hard, carbonate mudstone vuggy and fractured at 2970, fractures and vuggs healed and filled with neomorphic calcite. Dolomite 30% moderate yellowish brown (10YR 5/4) cryptocrystalline to very fine grained, very hard.

Appendix D Geologic Log - (Drill Cuttings) Dual-Zone Monitor Well MW-1 **City of Pompano Beach**

Depth	Thickness	Sample Description
(ft)	(ft)	Jampie Description
0-10	10	SANDY LIMESTONE, SANDSTONE AND ORGANICS – Sandstone 60%, grayish yellow (5Y 8/4) to yellowish gray, medium grained to cryptocrystalline, moderately hard, partly pelloidal packstone with abundant medium grained, angular, colorless quartz. Sandstone 30%, grayish orange (5YR 7/2) fine to medium grained, moderately cemented. Organics 10%.
10-20	10	SANSTONE AND SANDY LIMESTONE – Sandstone 50%, moderate brown (5YR 4/4) fine to medium grained, friable, highly argillaceous. Sandy Limestone 50%, as above.
20–40	20	LIMESTONE – 100% Grayish orange (10YR 7/4), medium to fine grained, moderately hard, occasionally sparry, fossiliferous packstone with colorless fine grained subangular quartz. Trace shell fragments.
40–50	10	SANDY LIMESTONE – 100% Grayish orange. (10YR 7/4) medium grained, moderately hard, fossiliferous packstone with abundant colorless, fine grained, subangular quartz.
50–70	20	SANDY LIMESTONE AND LIMY SANDSTONE – Sandy Limestone 70%, as above. Limy Sandstone 30%, very pale orange (10YR 8/2) fine to rarely coarse grained, subangular moderately hard, with little to some detrital carbonate.
70–100	30	SANDY LIMESTONE AND SAND – Sandy Limestone 90%, very pale orange (10YR 8/2) to moderate yellowish brown (10YR 5/2) fine to coarse grained, moderately hard to hard, fossiliferous mudstone to packstone with shell fragments and abundant fine to medium grained subangular quartz sand. Sand 10%, coarse to medium grained, subangular to subrounded, poorly cemented to unconsolidated
100–130	30	SANDY LIMESTONE AND LIMY SANDSTONE – Sandy Limestone 70%, yellowish gray (5Y 8/1) to very pale orange (10YR 8/2) coarse to fine grained, fossiliferous carbonate mudstone to packstone with shell fragments and coarse to fine grained subrounded quartz. Limy. Sandstone 30%, yellowish gray (5Y 7/2) fine to medium grained, moderately cemented with little to abundant detrital carbonate
130–150	20	LIMY SANDSTONE – 100% Greenish gray (5GY 6/1) medium to fine grained, subrounded to rounded quartz, moderately to poorly sorted moderately hard with detrital carbonate, shell fragments and little phosphorite.

D-1B

Depth (ft)	Thickness (ft)	Sample Description
150–160	10	SANDY LIMESTONE AND LIMY SANDSTONE – Sandy Limestone. 80%, light olive gray (5Y 6/1) fine to medium grained, moderately hard, fossiliferous wackestone with shell fragments and trace phosphorite. Limy Sandstone 20%, yellowish gray (5Y 7/2) fine to coarse grained, subangular, colorless quartz in calcite wackestone with shell fragments. Trace phosphorite.
160–200	40	LIMY SANDSTONE - 100% Light olive gray (5Y 6/1) coarse to very fine grained, subrounded to rounded, well sorted quartz with fine shell fragments crystalline carbonate and trace phosphorite.
200–220	20	LIMY SANDSTONE AND SANDY LIMESTONE – Limy Sandstone 90%, as above. Sandy Limestone 10%, yellowish gray (5Y 8/1) fine to medium grained, hard, fossiliferous wackestone with colorless medium to very fine grained quartz sand and trace phosphorite
220-260	40	LIMY SANDSTONE – 100% Pale olive (10Y 6/2) to light olive gray (5Y 6/1) medium to very fine grained, friable to moderately hard, angular to rounded, moderately to well sorted, slightly phosphatic quartz with 20% shell fragments and detrital carbonate.
260–300	40	LIMY SANDSTONE – 100% Light olive gray (5Y 5/2) coarse to very fine grained, moderately cemented, angular to rounded, moderately to well sorted quartz with moderate to moderately large sized shell fragments and trace phosphorite. Trace sparry mudstone at 270.
300310	10	LIMESTONE – 100% Yellowish gray (5Y 7/2) very coarse to medium grained, moderately hard fossiliferous, highly sparry slightly phosphatic, slightly sandy packstone.
310–330	20	SANDY LIMESTONE – 100% Yellowish gray (5Y 8/1) medium to very fine grained. Moderately hard, fossiliferous, packstone with colorless, coarse to fine grained, angular to rounded quartz sand and trace phosphorite.
330–360	30	SANDY LIMESTONE AND LIMESTONE – Sandy Limestone 90%, yellowish gray (5Y 8/1) to light olive gray (5Y 5/2) medium to fine grained, moderately hard, fossiliferous wackestone with shell fragments and fine to medium grained quartz sand and trace phosphorite. Limestone 10% white (N1) medium to fine grained moderately hard sandy packstone
360–390	30	LIMY SANDSTONE – 100% Light olive gray (5Y 5/2) to light olive gray (5Y 6/1) fine to coarse grained, poorly sorted, moderately cemented, angular to subangular quartz with abundant carbonate mudstone, shell fragments and trace phosphorite.
380–400	20	LIMY SANDSTONE – 100% Light olive gray (5Y 5/2) fine grained, subangular quartz, moderately well cemented, with detrital carbonate, shell fragments and trace phosphorite.

D-2B

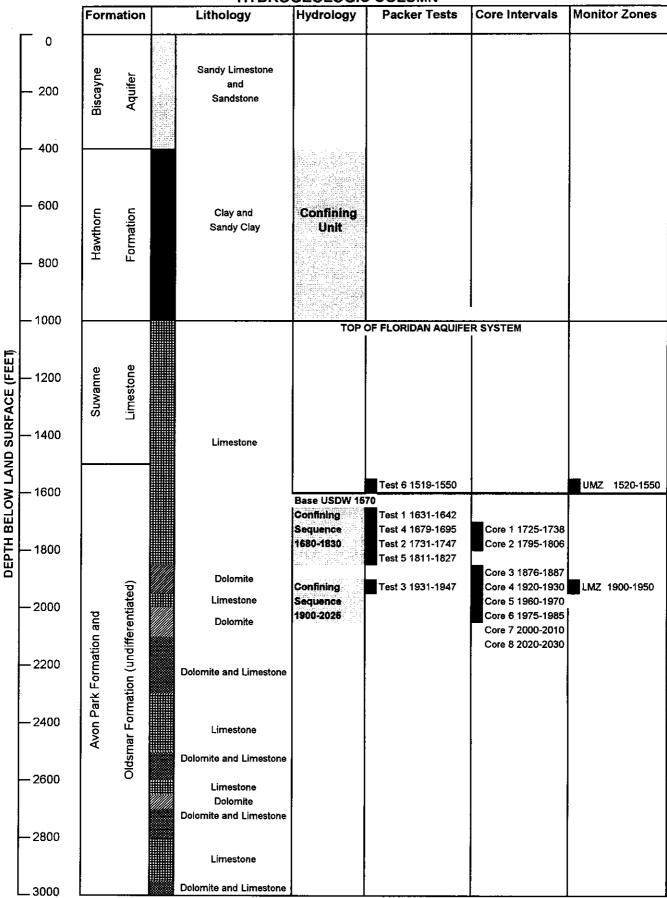
Depth (ft)	Thickness (ft)	Sample Description
400–500	100	CLAYEY SANDY LIMESTONE – 100% Light offive gray (5Y 5/2) fine grained, moderately soft, fossiliferous wackestone with clay, fine to very fine grained quartz sand and little phosphorite. Trace coarse grained sandy packstone at 430 and 480 feet. Clay content increasing below 480 feet.
500–510	10	SANDY CLAY AND CLAYEY SANDY LIMESTONE – Sandy Clay 70%, light olive gray (5Y 5/2) soft, moderately plastic calcareous with very fine grained quartz sand and little phosphorite. Clayey Sandy Limestone 30%, as above.
510–540	30	SANDY CLAY – 100%, Light olive gray (5Y 5/2) non-plastic, moderately firm, with abundant very fine grained quartz sand.
540–580	30	SANDY CLAY AND LIMY SANDSTONE – Sandy Clay 70%, light olive gray (5Y 5/2) very soft, moderately plastic, with abundant fine grained quartz sand and little phosphorite. Limy Sandstone 30%, medium light gray (N6) fine grained, well cemented, with medium grained fossiliferous limestone and trace phosphorite.
580–600	20	SANDY CLAY – 100% Grayish olive (10Y 4/2) very soft, non-plastic, phosphatic, slightly calcareous with fine grained quartz sand.
600–630	30	SANDY CLAY AND LIMESTONE – Sandy Clay 70% to 90%, grayish olive (10Y 4/2) moderately soft, moderately plastic, calcareous, phosphatic with very fine grained quartz sand. Limestone 30% to 10%, pale greenish yellow (10Y 8/2) very fine to medium grained hard sparry packstone.
630–650	20	CLAYEY SAND – 100% Yellowish gray (5Y 7/2) very fine grained, very poorly cemented to unconsolidated quartz with abundant clay and trace phosphorite.
650–670	20	SANDY CLAY – 100% Pale olive (10Y 6/2) moderately stiff, plastic slightly phosphatic with very fine grained quartz sand.
670–700	30	CLAYEY SAND - 100% Yellowish gray (5Y 7/2) very fine grained, unconsolidated quartz with abundant clay.
700–730	30	SANDY CLAY – 100% Yellowish gray (5Y 7/2) moderately soft to firm, moderately plastic, calcareous, slightly phosphatic with very fine grained quartz sand.
730–760	30	SANDY CLAY AND LIMESTONE – Sandy Clay 60% to 70% as above. Limestone. 40% to 30% yellowish gray (5Y 7/2) fine to medium grained, moderately hard sparry wackestone.
760–770	10	CLAYEY LIMESTONE – 100% Yellowish gray (5Y 7/2) medium grained, soft, pelloidal packstone.
770–800	30	SANDY CLAY – 100% Yellowish gray (5Y 7/2) to light olive gray (5Y 5/2) stiff to hard, moderately plastic, calcareous, with very fine grained quartz sand.

Depth (ft)	Thickness (ft)	Sample Description
800–910	110	SANDY CLAY – 100% Pale olive (10Y 6/2) stiff to hard, moderately plastic with very fine grained quartz sand. Trace chert at 840
910–920	10	SANDY CLAY AND LIMESTONE – Sandy Clay 60%, as above. Limestone 40%, pale greenish yellow (10Y 8/2) very fine grained, moderately hard packstone. Trace olive gray (5Y 3/2) very fine grained very hard chert
920–930	10	LIMESTONE AND PHOSPHORITE – Limestone 80%, yellowish gray (5Y 7/2) fine to very fine grained, very soft carbonate marl. Phosphorite 20%, light olive brown (5Y 5/6) medium grained, unconsolidated
930–940	10	LIMY SANDY CLAY – 100% Pale olive (10Y 6/2) firm, plastic, with very fine grained quartz sand, and carbonate marl as above
940–950	10	SANDY CLAYEY LIMESTONE – 100% Yellowish gray (5 Y 7/2) fine to medium grained, very soft to moderately soft, phosphatic wackestone with fine to medium grained quartz sand
950970	20	SANDY CLAY AND SANDY CLAYEY LIMESTONE – Sandy Clay 70%, pale olive (10Y 6/2) soft, plastic with very fine grained quartz sand. Sandy Clayey Limestone 30%, as above.
970–1000	30	CLAYEY LIMESTONE AND SANDY CLAY – Clayey Limestone 70%, light olive gray (5Y 5/2) medium grained, hard fossiliferous, phosphatic wackestone. Sandy Clay 30%, as above.
1000–1110	110	LIMESTONE – 100%; 80% Yellowish gray (5Y 8/1) medium grained, moderately hard packstone with trace forms. 20% Pale yellowish gray (5Y 9/1) cryptocrystalline, moderately hard carbonate mudstone.
1110–1120	10	LIMY SANDSTONE AND LIMESTONE — Limy Sandstone 70%, grayish olive (10Y 4/2) fine grained, moderately to poorly cemented, slightly phosphatic with detrital carbonate. Limestone 30%, light yellowish gray (5Y 6/2) fine grained, hard sparry to very sparry wackestone with molds and tests.
1120–1130	10	LIMESTONE – 100% Very pale orange (10YR 8/2) medium grained, moderately soft pelloidal packstone.
1130–1150	20	LIMESTONE – 100%; 80% Medium bluish gray (5B 5/1) microcrystalline to cryptocrystalline, hard sparry carbonate mudstone with little neomorphic calcite. 20% as above.
1150–1160	10	LIMESTONE – 100% Very pale orange (10YR 8/2) to grayish orange (10YR 7/4) medium grained, moderately soft to moderately hard packstone with few forams
1160–1200	40	LIMESTONE – 100% Very pale orange (10YR 8/2) to grayish orange (10YR 7/4) medium grained, moderately soft to moderately hard packstone with few forams.

Depth (ft)	Thickness (ft)	Sample Description
1200–1270	70	LIMESTONE – 100%; 70% Very pale orange (10YR 8/2) to grayish orange (10YR 7/4) as above. 30% Yellowish gray (5Y 8/1) fine grained moderately soft to soft, slightly vuggy wackestone. Trace light olive gray hard carbonate mudstone at 1160.
1270–1380	110	LIMESTONE – 100% Pale yellowish brown (10YR 6/2) to yellowish gray (5Y 8/1) medium to fine grained, moderately soft packstone to rarely grainstone with 10% to 20% forams. Trace yellowish gray (5Y 8/1) highly vuggy carbonate mudstone at 1320. Trace medium light gray (N6) fine grained hard wackestone at 1360. Trace test at 1370.
1380–1410	30	LIMESTONE – 100%; 80% Yellowish gray (5Y 8/1) medium grained moderately soft pelloidal packstone. 20% Light gray (N7) hard carbonate mudstone. Trace forams. Trace interbedded Dolomitic Limestone at 1400.
1410–1430	20	LIMESTONE – 100%; 70% Yellowish gray (5Y 8/1) medium to fine grained, moderately soft, pelloidal packstone. 20% Very light gray (N8) cryptocrystalline, moderately hard carbonate mudstone. 10% Dark gray (N7) medium grained, hard, fossiliferous wackestone. Abundant forams.
1430 –1460	30	LIMESTONE – 100%; 80%–60% Yellowish gray (5Y 8/1) coarse to fine grained, moderately soft to moderately hard, pelloidal packstone to grainstone. 10%–20% Yellowish gray (5Y 8/1) cryptocrystalline, hard carbonate mudstone. 10%–20% Very light gray (N8) as above.
1460–1480	20	LIMESTONE AND DOLOMITE – Limestone 90%; 70% Very pale orange (10YR 8/2) to yellowish gray (5Y 8/1) fine to medium grained, moderately soft to moderately hard, pelloidal packstone/grainstone with trace Dolomitic laminations. 20% Medium dark gray (N4) to medium light gray (N6) fine grained, moderately hard, vuggy wackestone. Dolomite 10%, dark yellowish brown (10YR 4/2) microcrystalline, hard sucrossic.
1480–1500	20	LIMESTONE AND DOLOMITE – Limestone 90%; 70% Very pale orange (10YR 9/2) cryptocrystalline, moderately hard, very slightly vuggy carbonate mudstone. 30% Very pale orange (10YR 8/2) to light olive gray (5Y 6/1) medium to coarse grained, pelloidal packstone to grainstone. 20% Medium gray (N5) fine grained, hard wackestone. Dolomite 10%–20% as above.
1500–1510	10	LIMESTONE AND SANDSTONE – Limestone 70% as above. Sandstone 30%, moderate yellowish brown (10YR 5/4) fine to very fine grained, moderately cemented. Trace Dolomite as above.
1510–1520	10	LIMESTONE – 100%; 80% Very pale orange (10YR 8/2) fine to medium grained, moderately soft, fossiliferous packstone. 20% Pale yellowish brown (10YR 6/2) cryptocrystalline, hard, carbonate mudstone. Trace to little forams. Trace Sandstone as above.

D-5B

Depth (ft)	Thickness (ft)	Sample Description
1520-1530	10	LIMESTONE – 100%; 80% Yellowish gray (5Y 8/1) medium grained, moderately soft to moderately hard, fossiliferous, partly sparry packstone to rarely grainstone. 20% White (N9) to very light gray (N8) cryptocrystalline, moderately hard, slightly vuggy, carbonate, mudstone. Few forams and tests. Trace light olive gray (5Y 6/1) microcrystalline hard Dolomite.
1530–1550	20	LIMESTONE AND DOLOMITE – Limestone 70% as above. Dolomite 30% moderate yellowish brown (10YR 5/4) to dark yellowish brown (10YR 4/2) fine grained to microcrystalline, moderately hard to hard. Trace fine grained, slightly phosphatic Sandstone. Trace to few forams.
1550–1560	10	LIMESTONE – 100% Very pale orange (10YR 8/2) to pale yellowish brown (10YR 6/2) fine to medium grained, very soft to soft packstone with few forams. Trace Dolomite as above.
1560–1580	20	LIMESTONE - 100%; 90% As above. 10% Medium dark gray (N4) very fine grained wackestone/packstone.
1580–1590	10	LIMESTONE – 100%; 60% Very pale orange (10YR 8/2) medium to fine grained, moderately soft packstone to grainstone. 20% Pale yellowish brown (10YR 6/2) cryptocrystalline, hard carbonate mudstone. 20% Pale yellowish brown (10YR 6/2) to grayish brown (5YR 3/2) fine to medium grained, hard, occasionally fossiliferous wackestone. Few flat forams up to 10 mm in diameter.
1590–1600	10	LIMESTONE – 100%; 90% Grayish orange (10YR 7/4) fine to medium grained, moderately soft, pelloidal, slightly fossiliferous packstone. 10% Very pale orange (10YR 8/2) cryptocrystalline, hard carbonate mudstone. Few forams and tests. Trace Dolomitic Limestone.
1600–1610	10	LIMESTONE – 100%; 80% Grayish orange (10YR 7/4) to very pale orange (10YR 8/2) fine grained, moderately soft to moderately hard, rarely slightly Dolomitic packstone. 20% Medium dark gray (N4) fine grained, hard wackestone to carbonate mudstone. Trace forams. Trace white (N9) very soft carbonate marl.
1610–1630	20	LIMESTONE – 100%; 60% Very pale orange (10YR 8/2) fine to medium grained, moderately soft packstone. 30% Light olive gray (5Y 8/1) to light olive gray (5Y 6/1) medium grained, hard, fossiliferous wackestone to carbonate mudstone.
1630–1640	10	LIMESTONE – 100% Grayish orange (10YR 7/4) fine grained, soft to moderately soft packstone with abundant forams.
1640–1650	10	LIMESTONE – 100%; 90% Very pale orange (10YR 8/2) to pale yellowish brown (10YR 6/2) fine to medium grained, moderately hard packstone. 10% Pale yellowish brown (10YR 6/2) cryptocrystalline, hard, slightly vuggy carbonate mudstone.


D-6B

Depth (ft)	Thickness (ft)	Sample Description
1650–1660	10	LIMESTONE – 100%; 60% Very pale orange (10YR 8/2) to pale yellowish brown (10YR 6/2) as above. 30% Medium gray (N5) dominantly fine to medium grained, micritic, locally vuggy wackestone. 10% Pale yellowish brown (10YR 6/2) as above.
1660–1670	10	LIMESTONE – 100%; 60% Yellowish gray (5Y 8/1) fine grained, moderately soft wackestone. 30% Medium dark gray (N4) to olive gray (5Y 4/1) fine grained, hard, slightly vuggy, micritic wackestone. 10% Yellowish gray (5Y 8/1) cryptocrystalline, hard carbonate mudstone. Trace tests.
1670–1680	10	LIMESTONE- 100% Yellowish gray (5Y 8/1) to very pale orange (10YR 8/2) fine grained, moderately soft, slightly vuggy packstone. Trace to little medium dark gray (N4) wackestone as above.
1680–1700	20	LIMESTONE- 100%; 50% Olive gray (5Y 4/1) to dark gray (N3) fine to medium grained, soft to moderately hard, fossiliferous packstone to wackestone. 40% Very pale orange (10YR 8/2) to yellowish gray (5Y 8/1) fine to medium grained, moderately soft, pelloidal packstone. 10% Yellowish gray (5Y 8/1) to light gray (N7) cryptocrystalline, hard carbonate mudstone. Trace to few forams and test.
1700–1710	10	LIMESTONE – 100%; 90% Very pale orange (10YR 8/2) to grayish orange (10YR 7/4) fine to very fine grained, moderately soft, locally slightly Dolomitic, packstone to wackestone. 10% Pale olive gray (5Y 6/1) cryptocrystalline, hard, slightly vuggy carbonate mudstone. Few forams and test.
1710–1740	30	LIMESTONE – 100%; 70% Very pale orange (10YR 8/2) to pale yellowish brown (10YR 6/2) medium grained, moderately hard, fossiliferous, partly vuggy, partly slightly Dolomitic grainstone to packstone. 20% Yellowish gray (5Y 8/1) hard, microcrystalline to cryptocrystalline, carbonate mudstone. 10% Medium gray (N5) fine grained, moderately hard to hard, fossiliferous wackestone. Few forams and test.
1740–1770	30	LIMESTONE – 100%; 70% yellowish gray (5Y 8/1) to occasionally olive gray (5Y 4/1) fine to very fine grained, moderately soft to hard, well cemented, fossiliferous, partly sparry packstone. 30% Yellowish gray (5Y 8/1) to light olive gray (5Y 6/1) very fine grained, partly vuggy wackestone to carbonate mudstone. Trace to few forams and test. Trace Dolomitic Limestone and neomorphic calcite.
1770–1790	20	LIMESTONE – 100%; 70% Yellowish gray (5Y 8/1) very fine grained, moderately hard, vuggy wackestone. 30% Yellowish gray (5Y 8/1) to occasionally olive gray (5Y 4/1) fine to very fine grained, moderately soft to hard, well cemented, fossiliferous, partly sparry packstone
1790–1810	20	LIMESTONE – 100%; 60% Yellowish gray (5Y 8/1) to light gray (N7) fine grained, hard wackestone. 40% Yellowish gray (5Y 8/1) fine to medium grained, moderately soft packstone. Trace soft Dolomitic packstone. Trace to few forams and tests.

D-7B

Depth (ft)	Thickness (ft)	Sample Description
1810–1840	30	LIMESTONE AND DOLOMITE – Limestone 90%–80%; 60% Pale yellowish brown (10YR6/2) to medium light gray (N6) fine grained, moderately hard wackestone to mudstone. 40% Pale yellowish brown (10YR 6/2) to medium light gray (N6) medium to fine grained, moderately soft packstone, percentage decreasing with depth. Dolomite 10%–20% Dark yellowish brown (10YR 4/2) very fine grained, fossiliferous, occasionally limy, percentage increasing with depth. Trace Dolomitic Limestone. Few tests and forams.
1840–1850	10	DOLOMITE – 100% Moderate yellowish brown (10YR 5/4) to rarely grayish black (N2) fine grained to microcrystalline, moderately hard to very hard, sucrosic. Trace very pale orange (10YR 8/2) fine to very fine grained, moderately hard, rarely micritic packstone to wackestone
1850–1880	30	DOLOMITE AND LIMESTONE – Dolomite 70%, as above. Limestone 30%, very pale orange (10YR 8/2) fine to very fine grained, moderately hard, rarely micritic packstone to wackestone.
1880–1900	20	DOLOMITE AND DOLOMITIC LIMESTONE – Dolomite 70%; 60% dark yellowish brown (10YR 4/2) to dusky yellowish brown (10YR 2/2), very fine grained, very hard, weakly vuggy, sucrosic. 40% Pale yellowish brown (10YR 6/2) cryptocrystalline, very hard. Dolomitic Limestone 30%, pale yellowish brown (10YR 6/2) cryptocrystalline, hard, slightly vuggy, carbonate mudstone with very fine grained Dolomite inclusions.
1900–1920	20	LIMESTONE, DOLOMITE AND DOLOMITIC LIMESTONE – Limestone 70%, very pale orange (10YR 8/2) fine to rarely medium grained, dominantly hard to rarely moderately hard, well indurated, occasionally dolomitic packstone to rarely wackestone. Dolomite 20%, dark yellowish brown (10YR 4/2) to dusky yellowish brown (10YR 2/2) fine grained to microcrystalline, very hard. Dolomitic Limestone 10%, pale yellowish brown (10YR 6/2) cryptocrystalline, very hard carbonate mudstone with microcrystalline Dolomite inclusions.
1920–1940	20	LIMESTONE – 100%; 60% Very pale orange (10YR 8/2) medium grained, hard, well indurated, fossiliferous packstone with forams and tests. 30% Very pale orange (10YR 8/2) coarse to medium grained, moderately hard fossiliferous grainstone with forams. 10% Very pale orange (10YR 8/2) cryptocrystalline, hard weakly vuggy carbonate mudstone with trace neomorphic calcite.
1940–1950	10	LIMESTONE – 100%; 60% Very pale orange (10YR 8/2) cryptocrystalline, hard, rarely very weakly vuggy carbonate mudstone. 20% Very pale orange (10YR 8/2) hard, very fine grained wackestone. 10% Olive gray (5Y 4/1) cryptocrystalline, hard micritic mudstone. 10% White (N9) very soft, fossiliferous carbonate marl.

CITY OF POMPANO BEACH WTP HYDROGEOLOGIC COLUMN

APPENDIX E CORES

GEOLOGIC LOG - CORE #1

CONCENTRATE DISPOSAL WELL IW-1 CITY OF POMPANO BEACH

Depth (ft)	Sample Description
1725.0 - 1732.0	No Recovery
1732.0 – 1734.0	LIMESTONE (100%) yellowish gray (5Y 8/1) massive, coarse grained, soft, very well indurated wackestone with fossils, forams and trace small (<1 mm) medium gray (N5) carbonate mudstone inclusions. Sharp wavy lower contact.
1734.0 – 1734.3	LIMESTONE (100%) medium light gray (N6) massive, moderately soft, cryptocrystalline, carbonate mudstone with grayish orange (10YR 7/4) medium grained, soft packstone lenses common. Upper 25mm of section vuggy with vuggs generally 1mm in diameter rarely to 5mm. Indistinct lower contact.
1734.3 – 1735.1	LIMESTONE (100%) yellowish gray (5Y 8/1) massive, hard, very well indurated, vuggy carbonate mudstone. Vuggs generally < 1mm in diameter. Sharp horizontal lower contact.
1735.1 – 1736.7	LIMESTONE (100%) yellowish gray (5Y 8/1) dominantly very fine grained to medium grained grading with depth to very fine grained, moderately soft, very well indurated wackestone. Degree of induration increasing with depth. Upper 0.5 feet of section weakly vuggy with forams common. Sharp horizontal lower contact.
1736.7- 1737.0	LIMESTONE (100%), medium light gray (N6), poorly indurated, massive fine to very fine grained soft carbonate mudstone. Irregular lower contact.
1783.5 – 1784.0	LIMESTONE (100%) yellowish gray (5Y 7/1) massive, moderately soft to moderately hard, cryptocrystalline, moderately vuggy carbonate mudstone. Vuggs generally <5mm in diameter. Occasional vertical burrows up to 20mm in length generally 2-5 mm in diameter.

End of Core

1

GEOLOGIC LOG - CORE #2

CONCENTRATE DISPOSAL WELL IW-1 CITY OF POMPANO BEACH

Depth (ft)	Sample Description
1795.0 – 1795.8	No Recovery
1795.8 – 1798.0	LIMESTONE (100%) massive, yellowish gray (5Y 8/1) dominantly very fine to coarse grained, very well indurated, poorly sorted moderately soft packstone.
1798.0 – 1798.7	LIMESTONE AND DOLOMITE – Limestone (95%) yellowish gray (5Y 8/1) very fine to medium grained, grain size increasing with depth, very well indurated, moderately soft, weakly vuggy packstone with trace medium gray (N5) lenses in upper portion of section. Dolomite (5%) dark yellowish brown (10YR 4/2) to dusky yellowish brown (10YR 2/2) cryptocrystalline occurring as thin wavy laminations.
1798.7 – 1800.5	LIMESTONE (100%) yellowish gray (5Y 8/1) massive, moderately soft, medium grained, very well indurated packstone. Sharp horizontal lower contact.
1800.5 – 1800.9	LIMESTONE (100%) yellowish gray (5Y 8/1) massive, very fine to fine grained, moderately hard, very well indurated, moderately vuggy (vuggs generally 1mm in diameter to rarely 5mm in diameter) wackestone.
1800.9– 1802.9	LIMESTONE (100%), yellowish gray (5Y 8/1) generally massive, weakly bedded in upper 0.2 feet of section, very fine to medium grained, poorly sorted packstone to wackestone. Sharp irregular lower contact.
1802.9 – 1803.2	LIMY DOLOMITE (100%) medium light gray (N6) to pale yellowish brown (10YR 6/2) bedded, cryptocrystalline, hard, weakly vuggy. Sharp wavy lower contact.
1803.2 – 1803.5	LIMESTONE (100%) yellowish gray (5Y 8/1) cryptocrystalline, hard, vuggy (vuggs generally less than 1 mm in diameter) carbonate mudstone with trace fossills to 5 mm in diameter and trace casts.
1803.5 – 1804.9	LIMESTONE (100%) yellowish gray (5Y 8/1) very fine to fine grained, moderately soft, very well indurated packstone to wackestone.

End of Core

1

GEOLOGIC LOG - CORE #3

CONCENTRATE DISPOSAL WELL IW-1 CITY OF POMPANO BEACH

Depth (ft)	Sample Description
1876.5 – 1877.5	No Recovery
1877.5 – 1879.2	DOLOMITE (100%) medium dark gray (N4) to light olive gray (5Y 6/1) to yellowish gray (5Y 7/2) cryptocrystalline, generally massive, very hard, weakly vuggy with vuggs generally 1mm to 5mm in diameter lined with microcrystalline crystals. Vugg size generally increasing with depth.
1879.2 – 1879.6	LIMY DOLOMITE (100%) moderate yellowish brown (10YR 5/4) massive, microcrystalline, very hard to hard, hardness decreasing with depth, weakly vuggy, vuggs generally 1mm in diameter. Carbonate content increasing with depth.
1879.6 – 1880.0	LIMESTONE (100%) light yellowish gray (5Y 9/1) massive, very fine grained to microcrystalline, moderately soft, very well indurated, slightly sparry packstone
1880.0 – 1880.2	LIMESTONE (100%) 70% light olive gray (5Y 6/1) massive, microcrystalline, hard highly vuggy crystalline carbonate. 30% light yellowish gray (5Y 9/1) microcrystalline, soft to very soft carbonate marl.
1880.2– 1880.3	LIMY DOLOMITE (100%) olive gray (5Y 4/1) massive microcrystalline to cryptocrystalline, very hard, vuggy, vuggs lined with neomorphic calcite crystals.
1880.3 – 1881.2	DOLOMITE (100%) moderate yellowish brown (10YR 5/4) to dark yellowish brown (10YR 4/2) generally massive, dominantly cryptocrystalline to very fine grained, very hard, vuggy, vuggs lined with very fine grained crystals.
1881.2 – 1884.1	DOLOMITE (100%) medium dark gray (N4) to moderate yellowish brown (10YR 5/4) generally massive with occasional faint bedding features, microcrystalline to cryptocrystalline, very hard, weakly vuggy with vuggs generally < 1mm in diameter to rarely 5mm in diameter.
1884.1 – 1884.5	DOLOMITE (100%) grayish orange (10YR 7/4) massive, very fine grained, very hard, weakly vuggy with vuggs generally < 1mm in diameter.

GEOLOGIC LOG - CORE #4

CONCENTRATE DISPOSAL WELL IW-1 CITY OF POMPANO BEACH

De	<u>pth</u>	<u>(ft)</u>

Sample Description

1920.0 – 1920.3 DOLOMITE (100%) pale yellowish brown (10YR 6/4) massive, cryptocrystalline, very hard, vuggy. Vuggs generally < 1mm in diameter to rarely 3mm in diameter.

1920.3 – 1926.5 LIMESTONE (100%) yellowish gray (5Y 8/1) medium to fine grained, moderately soft to moderately hard, massive, slightly fossiliferous, very well indurated packstone. Trace molds, few to some forams, foram content increasing with depth.

1926.5 – 1930.0 No recovery

End of Core

GEOLOGIC LOG - CORE #5

CONCENTRATE DISPOSAL WELL IW-1 CITY OF POMPANO BEACH

Depth (ft)	Sample Description
1960.0 1961.4	LIMESTONE (100%) yellowish gray (5Y 8/1) massive, fine grained, moderately soft, very well indurated packstone/wackestone. Sharp irregular lower contact.
1961.4 – 1962.1	LIMESTONE (100%) medium light gray (N6) to medium gray (N5) massive, cryptocrystalline, hard to very hard, weakly vuggy (vuggs generally 1mm in diameter) carbonate mudstone. Transitional lower contact through bottom 0.1 feet of unit.
1962.1 – 1966.0	LIMESTONE (100%) yellowish gray (5Y 8/1) generally massive, with faint laminations in upper 0.1 feet of unit and from 1,965.2 to 1,965.9, medium to very fine grained, grain size generally decreasing with depth, moderately soft, very well indurated packstone. Thick (10mm) light gray lamination at 1,923.4. Thin (1mm) Dolomite lens at 1,923.5. Sharp wavy lower contact
1966.0 – 1967.3	LIMESTONE (100%) yellowish gray (5Y 7/2) generally massive, very fine to coarse grained, moderately hard, moderately indurated, weakly vuggy wackestone. Transitional lower contact (laminated) through lower 0.4 feet of unit.
19673 – 1969.0	LIMESTONE (100%) yellowish gray (5Y 7/2) massive, medium to fine

End of Core

1

grained, moderately soft, very well indurated packstone.

GEOLOGIC LOG - CORE #6

CONCENTRATE DISPOSAL WELL IW-1 CITY OF POMPANO BEACH

Depth (ft)	Sample Description
1975.0 — 1975.9	LIMESTONE (100%) light yellowish gray (5Y 9/1) generally massive, medium to fine grained, moderately soft, very well indurated packstone with trace thin (1mm) Dolomitic laminations. Sharp wavy lower contact.
1975.9 – 1976.2	DOLOMITE (100%) pale yellowish brown (10YR 6/2) to dark yellowish brown (10YR 4/2) weakly laminated, microcrystalline to cryptocrystalline, very hard, very weakly vuggy, vuggs generally 1mm in diameter.
1976.2 – 1976.4	DOLOMITE AND LIMESTONE - Dolomite 60%, dark gray (N3) microcrystalline to cryptocrystalline, very hard, weakly vuggy. Limestone 40%, very light gray (N8) occurring as laminations and inclusions, cryptocrystalline, hard carbonate mudstone. Sharp horizontal lower contact.
1976.4 – 1980.1	LIMESTONE (100%) yellowish gray (5Y 8/1) massive, medium grained, moderately soft, very well indurated packstone. Medium gray (N5) 5mm carbonate mudstone lens at 1,979.8. Sharp horizontal lower contact.
1980.1 – 1980.5	LIMESTONE AND DOLOMITE – Limestone 90%, yellowish gray (5Y 8/1) to pale yellowish brown (10YR 6/2) laminated, medium grained, soft, very well indurated packstone/wackestone. Dolomite 10%, dark yellowish brown (10YR 4/2) occurring as laminations, cryptocrystalline, moderately soft. Dolomite content decreasing with depth.
1980.5 – 1981.2	LIMESTONE (100%) yellowish gray (5Y 7/2) massive, fine grained, moderately soft, very well indurated packstone.
1981.2 – 1981.6	DOLOMITE AND LIMESTONE – Dolomite 70%, medium dark gray (N4) cryptocrystalline, very hard, weakly vuggy. Limestone 30%, light gray (N7) lenses and inclusions, coarse to fine grained, hard wackestone.
1981.6 – 1982.2	LIMESTONE (100%) yellowish gray (5Y 8/1) to pale yellowish brown (10YR 6/2) thickly laminated, medium grained, soft, very well indurated packstone/wackestone.
1982.2 – 1983.4	LIMESTONE (100%) yellowish gray (5Y 7/2) massive, fine grained, moderately hard to moderately soft, hardness decreasing with depth, very

1

well indurated packstone with trace to few medium light gray (N6) hard carbonate mudstone lenses and inclusions.

1983.4 – 1994.1 DOLOMITIC LIMESTONE AND LIMY DOLOMITE (100%) yellowish gray (5Y 7/2) grading with depth to dark yellowish brown (10YR 4/2) massive, fine grained to cryptocrystalline, hard, very well indurated, very weakly vuggy packstone grading with depth to Limy Dolomite.

End of Core

APPENDIX E GEOLOGIC LOG - CORE #7

CONCENTRATE DISPOSAL WELL IW-1 CITY OF POMPANO BEACH

De	pth	(ft)

Sample Description

2000.0 - 2001.4DOLOMITE (100%) dominantly pale yellowish brown (10YR 6/2) to dark yellowish brown (10YR 4/2) massive, microcrystalline to cryptocrystalline. very hard, weakly vuggy, vuggs generally 1mm in diameter to rarely 3mm in diameter. Faint mottles in upper 0.2 feet of unit. DOLOMITIC LIMESTONE AND DOLOMITE - Dolomitic Limestone 70%, 2001.4 - 2002.3yellowish gray (5Y 7/2) massive, cryptocrystalline, very hard, very well indurated, weakly to moderately vuggy, highly Dolomitic carbonate mudstone. Dolomite 30%, moderate yellowish brown (10YR 5/4) very fine grained to microcrystalline, sucrosic, very hard. Sharp horizontal lower contact. 2002.3 - 2008.0DOLOMITE (100%) pale yellowish brown (10YR 6/2) to moderate yellowish brown (10YR 5/4) generally massive with few localized laminations. cryptocrystalline to microcrystalline, very hard, dominantly weakly to moderately weakly vuggy with highly vuggy zone in upper 0.2 feet of section. 2008.0 - 2009.3LIMY DOLOMITE (100%) yellowish gray (5Y 7/2) to pale yellowish brown (10YR 6/2) thinly bedded with faint to moderately prominent bedding features, cryptocrystalline, very hard. Dominantly very well indurated, locally

End of Core

vuggy, vuggs generally 2mm-5mm in diameter lined with euhedral rhombs.

GEOLOGIC LOG - CORE #8

CONCENTRATE DISPOSAL WELL IW-1 CITY OF POMPANO BEACH

Depth (ft)	Sample Description
2020.0 - 2020.9	LIMY DOLOMITE (100%) yellowish gray (5Y 8/1) to light olive gray (5Y 6/1) massive, cryptocrystalline, very hard, yellowish gray component occurring as very coarse grained inclusions and small lenses, weakly vuggy, vuggs generally 1mm in diameter. Few faint vertical fractures.
2020.9 – 2022.7	DOLOMITE (100%) pale yellowish brown (10YR 6/2) massive, microcrystalline to cryptocrystalline, very hard, very weakly vuggy, vuggs generally 1mm in diameter to moderately vuggy, vuggs 2mm to 4mm in diameter. Fully healed vertical and low angle fractures from 2,022.0 feet to 2,022.7 feet.
2022.7 – 2023.2	DOLOMITE (100%) 60% moderate yellowish brown (10YR 5/4) very fine grained, very hard, occurring as inclusions and small lenses with trace vuggs. 40% dark yellowish brown (10YR 4/2) cryptocrystalline, very hard.
2023.2 – 2024.4	DOLOMITE (100%) moderate yellowish brown (10YR 5/4) massive, cryptocrystalline, very hard, very well indurated to locally very weakly vuggy, occasional vertical to high angle fully healed fractures.
2024.4 - 2024.8	DOLOMITE (100%) moderate yellowish brown (10YR 5/4) to yellowish gray (5Y 8/1) laminated to thinly bedded, very fine grained to cryptocrystalline, very hard.
2024.8 – 2026.9	DOLOMITE (100%) moderate yellowish brown (10YR 5/4) microcrystalline to cryptocrystalline, very hard, very weakly vuggy, vuggs generally < 1mm in diameter to rarely 3mm in diameter
2026.9 – 2027.2	DOLOMITE (100%) olive gray (5Y 4/1) to rarely pale yellowish brown (10YR 6/2) massive, very fine grained to cryptocrystalline, very hard, moderately vuggy, vuggs generally 1mm to 3mm in diameter.

End of Core

1

Core Laboratory Analyses

November 14, 2001 File Number 01-131

Youngquist Brothers, Inc. 15465 Pine Ridge Road Fort Myers, Florida 33908 1987 to 1 AVE 1127/12/2019

Attention: Mr. Edward McCullers

Subject: Laboratory Testing, Rock Core Specimens, City of Pompano Beach Concentrate

Disposal Well IW-1

Gentlemen:

As requested, permeability, unconfined compression and specific gravity tests have been completed on nineteen rock core samples provided for testing by your firm from the City of Pompano Beach Concentrate Disposal Well IW-1. The permeability tests were performed in general accordance with ASTM Standard D 5084 "Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible-Wall Permeameter" using the constant-head method (Method A) and the falling-head with increasing tailwater level method (Method C). The unconfined compression tests were performed in general accordance with ASTM Standard D 2938 "Unconfined Compressive Strength of Intact Rock Core Specimens". Specific gravity was determined in general accordance with ASTM Standard D 854 "Specific Gravity of Soils".

Permeability Tests

The permeability test results are presented in Table 1 and Figure 1. The vertical permeability tests were performed first on specimens maintained at the as-received diameter and cut to lengths of 6.1 to 12.4 cm. After completing the vertical permeability tests, horizontal permeability test specimens were obtained by coring 5.0 cm diameter cylinders from the vertical specimens. The horizontal specimens were trimmed to lengths of 3.0 to 8.4 cm to provide flat, parallel ends. Since the vertical permeability test specimens were cored upon completion of testing to obtain horizontal permeability test specimens, the final moisture contents of the vertical test specimens were not measured. The dry densities and degrees of saturation of the vertical permeability test specimens, therefore, were estimated using final moisture contents from the corresponding horizontal permeability test specimens.

The vertical permeability test specimens were air-dried, deaired under vacuum, and then saturated with deaired tap water from the bottom upward while still under vacuum. After testing, the vertical specimens were maintained submerged in water until cored for the horizontal specimens and retested for measurement of horizontal hydraulic conductivity. Each specimen was mounted in a triaxial-type permeameter and encased within a latex membrane. The specimens were confined using an average isotropic effective confining stress of 30 lb/in² and permeated with deaired tap water under a back-pressure of 70 or 160 lb/in². Satisfactory saturation was verified by a B-factor equal to or greater than 95 percent, or a B-factor that remained relatively constant for two consecutive increments of applied cell pressure. The inflow to and outflow from each specimen were monitored with time, and the hydraulic conductivity was calculated for each recorded flow increment. The tests were continued until steady-state flow conditions were obtained, as evidenced

by an outflow/inflow ratio between 0.75 and 1.25, and until stable values of hydraulic conductivity were measured.

The final degree of saturation was calculated upon completion of testing using the final dry mass, moisture content and volume, and the measured specific gravity. Although some of the calculated final degrees of saturation are low (i.e. less than 95%), the B-factors indicate satisfactory saturation. The calculated final degrees of saturation are potentially affected by occluded voids within the specimens, surface irregularities, and the use of final moisture contents for vertical permeability test specimens from corresponding horizontal permeability test specimens.

Specific Gravity Tests

The specific gravity of each sample was determined on a representative approximately 100 gram specimen ground to pass the U.S. Standard No. 40 sieve. The specific gravity measured on each sample is presented in Table 1.

Total Porosity

The total porosity, n, of each permeability test specimen was calculated using the measured dry density, γ_d , and measured specific gravity, G_s , from the equation: $n = 1 - [\gamma_d/(G_s)(\gamma_w)]$ where $\gamma_w = unit$ weight of water. The calculated total porosities are presented in Table 1.

Unconfined Compression Tests

Sufficient core lengths were provided to perform unconfined compression tests on five of the samples. The specimens were cored to a diameter of 5.0 cm and trimmed to lengths of 9.9 to 10.3 cm to provide a length to diameter ratio of approximately 2, and then capped with sulfur capping compound. The specimens were loaded at a constant rate of axial deformation of 0.013 cm/minute. The specimens failed in 5.2 to 14.9 minutes in accordance with ASTM Standard D 2938 criteria of between 2 and 15 minutes. The unconfined compressive strength and Young's modulus determined from each test are summarized in Table 2. The stress-strain curves are presented in Figures 2 through 6.

If you have any questions about the test results or require additional testing services, please contact us.

Very truly yours,

ARDAMÁN & ASSOCIATES, INC.

Shawkat Ali, Ph.D., P.E. Project Engineer

Thomas S. Ingra, P.E. Senior Project Engineer

- ECENTED BUT 18 KMI

Florida Registration No. 31987

Youngquist Brothers, Inc. File Number 01-131
November 14, 2001

Table 1

PERMEABILITY TEST RESULTS

CITY OF POMPANO BEACH CONCENTRATE DISPOSAL INJECTION WELL IW-1

No Interval 7			Test Specimen	G _s		Initial (Condition	s		σ̄, (lb/in²)	ս _ե (lb/in²)	B Factor	Average Hydraulic	Fina	al Condition	ıs	Hydraulic
NO,	(feet)	Method*	Orientation		Length (cm)	Diameter (cm)	w <u>.</u> (%)	Y _d (lb/ft ³)	n	(lb/in²)	(lb/in²)	(%)	Gradient	w _c (%)	(ip\ti_3)	S (%)	Conductivity k ₂₀ (cm/sec)
	1795.8 -1796.3	4 4	Vertical Horizontal	2.73	10.54 7.68	9.66 5.04	22.1 21.9	103,2 105.3	0.39 0.38	30 30	70 70	90**	13 18	22.1 [†] 22.1	103.2 105.3	93 98	4.6x10 ⁻⁵ 6.8x10 ⁻⁵
2	1796.3 - 1796.9	A A	Vertical Horizontal	2.72	11.89 8.02	9.60 5.04	21.5 21.3	105.4 106.3	0.38 0.37	30 30	70 70	88** 85**	13 28	21.5 [†] 21.5	105,4 106,3	96 98	4.8x10 ⁻⁵ 5.6x10 ⁻⁵
	1801.9 - 1802.6	A A	Vertical Horizontal	2.71	10.36 7.80	9.52 5.04	19.5 19.3	110.9 110.3	0.34 0.35	30 30	70 70	89** 65**	13 28	19.5 [†] 19.5	110.9 110,3	100 99	2.5x10 ⁻⁵ 9.8x10 ⁻⁶
,	1878.5 -1879.1	A	Vertical Horizontal	2.85	7.14 8.00	9.95 5.04	1.3 1.5	168.0 169.9	0.06 0.04	30 30	160 160	96 76**	24 123	1.6 [†] 1.6	168.0 169.9	80 100	2.8x10 ⁻⁸ 3.5x10 ⁻¹⁰
3	1880.1 - 1880.7	A A	Vertical Horizontal	2.86	10.34 8.11	9.96 5.03	4.6 4.4	156.8 156.0	0.12 0.13	30 30	160 160	94** 100	68 23	4.8 [†] 4.8	156.8 156.0	100 96	1.1x10 ⁻⁸ 3.0x10 ⁻⁷
4	1922.3 -1922.7	υu	Vertical Horizontal	2.73	9.15 8.36	9.79 5.04	24.2 23.3	100.7 100.9	0.41 0.41	30 30	70 70	96 92**	1 2	24.2 [†] 24.2	100.7 100.9	96 96	7.5x10 ⁻⁴ 8.9x10 ⁻⁴
*	1925.1 - 1925.6	υυ	Vertical Horizontal	2.72	9.76 7.79	9.80 5.04	21.5 21.4	103.3 104.0	0.39 0.39	30 30	70 70	95 62**	1 1	21.5 [†] 21.5	103.3 104.0	91 92	1.1x10 ⁻³ 2.5x10 ⁻³
	1960.0 - 1960.6	A A	Vertical Horizontal	2.74	12.40 7.79	9,80 5.03	19.9 19.9	108.0 109.2	0.37 0.36	30 30	70 70	90** 88**	12 9	19.9 [†] 19.9	108.0 109.2	94 97	2.7x10 ⁻⁵ 7.7x10 ⁻⁵
	1962.5 - 1963.4	A A	Vertical Horizontal	2.75	11.15 8.40	9.76 5.04	18.5 18.3	111.3 111.5	0.35 0.35	30 30	70 160	81** 66**	13 37	18.5 [†] 18.5	111.3 111.5	94 94	1.6x10 ⁻⁵ 2.8x10 ⁻⁵
5	1965.2 - 1966.0	A A	Vertical Horizontal	2.72	8.23 7.91	9.71 5.04	16.7 16.7	114.8 115.3	0.32 0.32	30 30	70 160	82** 66**	18 22	16.7 [†] 16.7	114.8 115.3	95 96	1.9x10 ⁻⁶ 6.5x10 ⁻⁵
	1967.0 - 1967.4	C A	Vertical Horizontal	2.73	6.08 7.90	9.74 4.99	21.2 20.5	107.1 106.8	0.37 0.37	30 30	70 70	84** 100	2	21.2 [†] 21.2	107.1 106.8	98 97	2.9x10 ⁻⁴ 2.2x10 ⁻³
6	1979.0 - 1979.5	A C	Vertical Horizontal	2.74	10,48 7.93	9.66 5.04	21.2 21.1	107.7 106.6	0.37 0.38	30 30	70 70	91** 61**	12 2	21.2 [†] 21.2	107.7 106.6	99 96	4.6x10 ⁻⁵ 3.0x10 ⁻⁴

Youngquist Brothers, Inc. File Number 01-131 November 14, 2001

Table 1 (Continued)

PERMEABILITY TEST RESULTS CITY OF POMPANO BEACH CONCENTRATE DISPOSAL INJECTION WELL IW-1

Core	Core Depth	D-5084 Test Test Specimen		G _s		Initial (Conditions	\$		σ _{. 2}	ս _ь (lb/in ²)	B Factor	Average Hydraulic	Fina	l Condition	s	Hydraulic				
No.	NO I			(feet)				\\ \$\cup \cup \cup \cup \cup \cup \cup \cup	Length (cm)	Diameter (cm)	w _c (%)	Y _d (lb/ft ³)	n	(lb/in²)	(lb/in²)	(%)	Gradient	W _c (%)	Y _d (lb/ft ³)	S (%)	Conductivity k ₂₀ (cm/sec)
6	1982.3 - 1982.9	A A	Vertical Horizontal	2.73	11.68 7.92	9.80 5.05	14.8 13.9	118.5 119.8	0.30 0.30	30 30	160 70	78** 90**	15 19	15.0 [†] 15.0	118.5 119.8	94 97	5.3x10 ⁻⁶ 9.4x10 ⁻⁶				
	1983.3 -1984.1	A A	Vertical Horizontal	2.77	7.71 8.10	9.86 5.05	8.2 8.2	139.5 138.8	0.19 0.20	30 30	70 70	74** 82**	20 23	8.3 [†] 8.3	139.5 138.8	96 94	5.4x10 ⁻⁷ 3.5x10 ⁻⁷				
	2000.0 - 2001.1	A	Vertical Horizontal	2.83	9.73 7.98	10,08 5.03	1.7 2.8	156.9 157.5	0.11 0.11	30 30	160 160	92** 75**	69 123	3.3 [†] 3.3	156.9 157.5	74 77	7.4x10 ⁻⁹ 6.0x10 ⁻¹⁰				
7	2002.5 - 2003.0	A A	Vertical Horizontal	2.85	10.65 8.23	10.10 5.03	1.4 1.1	164.1 163.8	0.08 0.08	30 30	160 160	92** 55**	55 122	1.4 [†] 1.4	164.1 163.8	49 48	6.1x10 ⁻⁹ 8,2x10 ⁻¹⁰				
	2007.1 -2007.9	A A	Vertical Horizontal	2.84	10.39 7.58	10.08 5.04	2.6 2.7	158.9 158.4	0.10 0.11	30 30	160 160	97 90**	57 132	2.9 [†] 2.9	158.9 158.4	72 70	9.4x10 ⁻⁹ 1.2x10 ⁻⁹				
	2021.8 - 2022.5	A	Vertical Horizontal	2.85	9.34 4.63	10.12 5.04	1.6 1.0	164.7 165.3	0.07 0.07	30 30	160 160	96 74**	16 152	1.6 [†] 1.6	164.7 165.3	58 61	4.3x10 ⁻⁵ ^{††} 5.9x10 ⁻¹⁰				
8	2022.9 - 2023.4	A	Vertical Horizontal	2.85	7.22 3.00	10.12 5.03	1.4 1.3	167.8 169.4	0.06 0.05	30 30	160 160	91** 70**	35 141	1.5 [†] 1.5	167.8 169.4	71 86	3.3x10 ⁻⁶ ^{††} 8.5x10 ⁻¹⁰				

Where:

w_c = Moisture content; γ_d = Dry density; G_s = Specific gravity; n = Total Porosity; σ

_c = Average isotropic effective confining stress; u_b = Back-pressure; and S = Calculated degree of saturation using measured specific gravity.

C:\Youngquist\01-131 YOUNG ,wpd

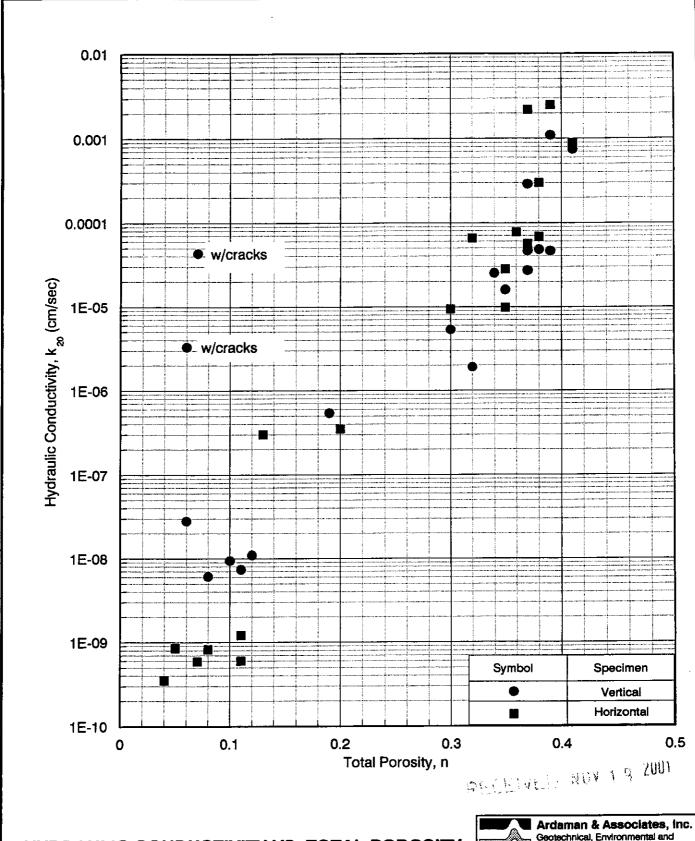
Method A=Constant-head test; Method C = Falling-head test with increasing tailwater level.

^{**} B-Factor remained relatively constant for two consecutive increments of applied cell pressure.

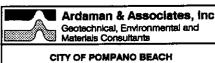
t Vertical permeability test specimen was cored upon completion of testing to obtain horizontal permeability test specimen. The final moisture content of the vertical test specimen was not measured, and was assumed to be the same as the horizontal permeability test specimen.

^{† †} Specimen displayed secondary porosity from visible cracks.

Youngquist Brothers, Inc. File Number 01-131 November 14, 2001

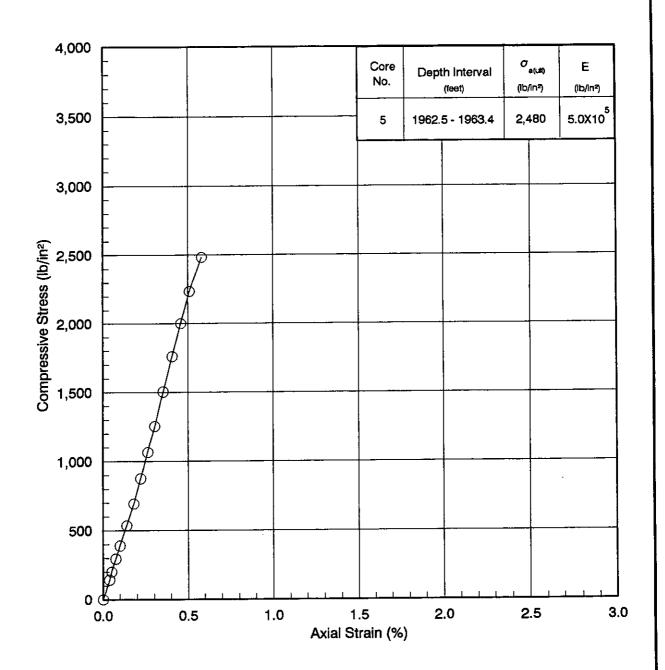

Table 2 **UNCONFINED COMPRESSION TEST RESULTS** CITY OF POMPANO BEACH CONCENTRATE DISPOSAL INJECTION WELL IW-1

Core Core		Speciı	w _c	Yd	Loading	ţ,	Unconfined Strength, o	Young's			
No.	Depth Interval (feet)	Length L (cm)	Diameter D (cm)	ĽD	(%Ĭ)	(lb/ft³)	Rate (cm/min)	i (min)		Corrected*	Modulus E(lb/in²)**
5	1962.5 - 1963.4	10.24	5.03	2.04	9.1	115.4	0.013	5.2	2,480	2,490	5.0x10 ⁵
5	1965.2 - 1966.0	10.28	5.03	2.04	1.8	123.6	0.013	5.3	2,660	2,670	5.0x10 ⁵
6	1983.3 - 1984.1	9.93	5.03	1.97	1.7	150.0	0.013	5.7	3,390	3,380	6.1x10 ⁵
7	2000.0 - 2001.1	10.06	5.05	1.99	1.3	159.0	0.013	14.7	13,880	13,870	8.0x10 ⁵
7	2007.1 - 200.7.9	10.24	5.05	2.03	0.7	169.8	0.013	14.9	14,510	14,540	8.0x10 ⁵


Where:

 w_c = Moisture content; y_d = Dry density; and t_f = Time to failure.

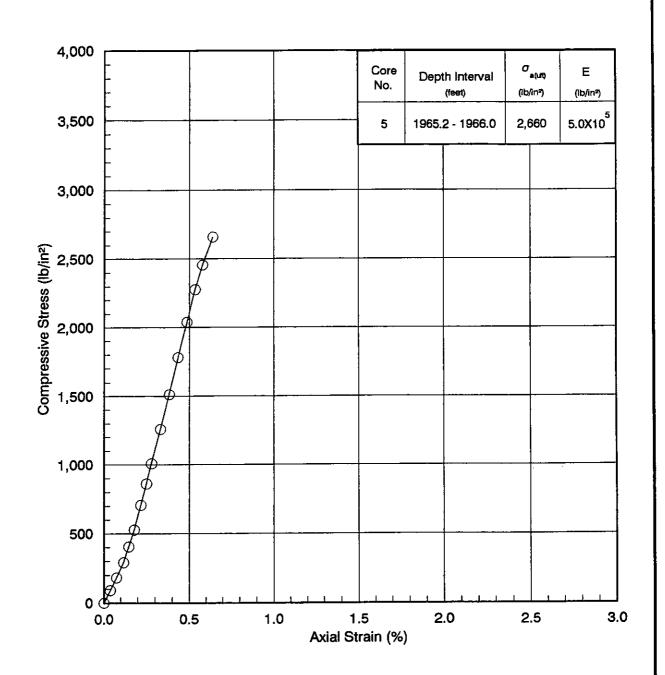
^{*} Unconfined compressive strength corrected to L/D ratio of 2 in accordance with ASTM Standard D 2938-86.
** Young's modulus calculated from slope of the straight-line portion of the stress-strain curve.


HYDRAULIC CONDUCTIVITY VS. TOTAL POROSITY

CONCENTRATE DISPOSAL WELL IW-1

YOUNGQUIST BROTHERS, INC.

11-14-01 FLE NO.: 01-131

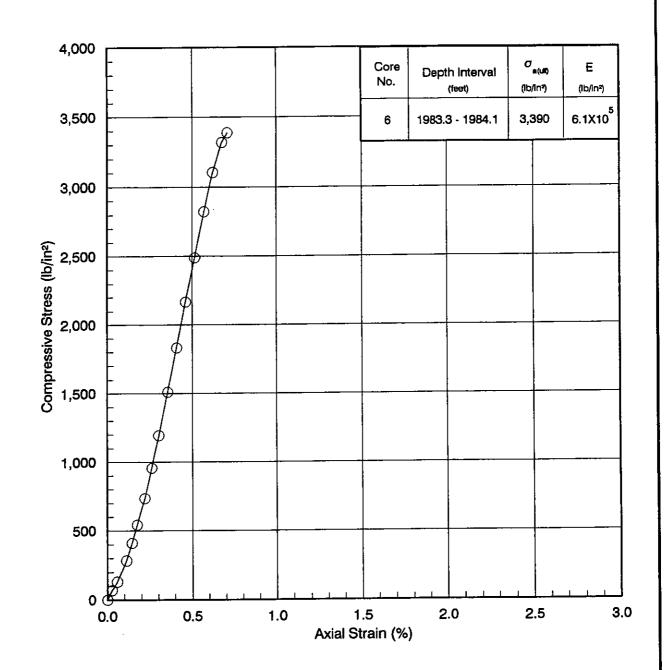


Ardaman & Associates, Inc.
Geotechnical, Environmental and
Metadala Consultants

CITY OF POMPANO BEACH CONCENTRATE DISPOSAL WELL IW-1

YOUNGQUIST BROTHERS, INC.

l ''						
DRAWN BY: S	4	CHECKEDE	Y:	SA	DATE:	11-14-01
FILE NO.: 01-131	APP	ROVED BY:	1	TIA.	ľ	ROUTE: 2


g 2001

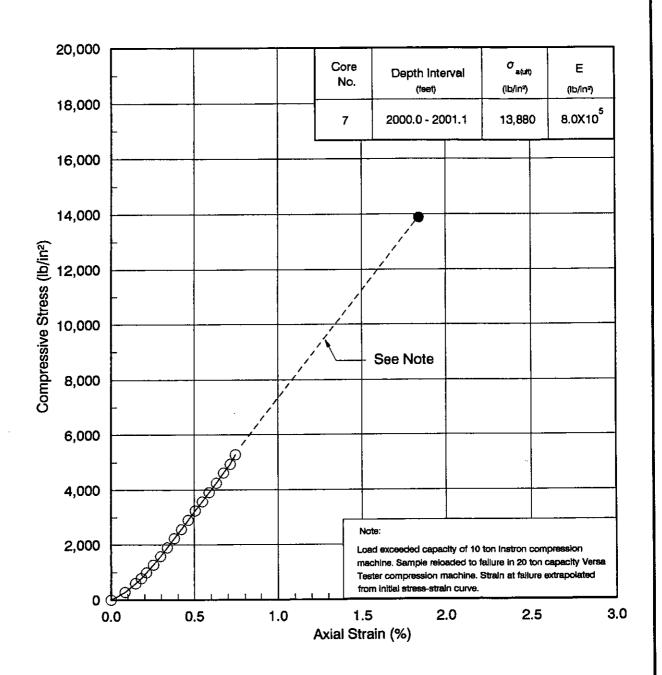
Ardaman & Associates, inc.
Geotechnical, Environmental and
Materials Consultants

CITY OF POMPANO BEACH CONCENTRATE DISPOSAL WELL IW-1

YOUNGQUIST BROTHERS, INC.

DRAWN BY:	S/		CHECKED E	ry: SA	DATE:	11-14-01
FILE NO.: 01-131		APPF	KOVED BY:	24		FIGURE:

1 1 4 1 4 1 4 1 6 100 C



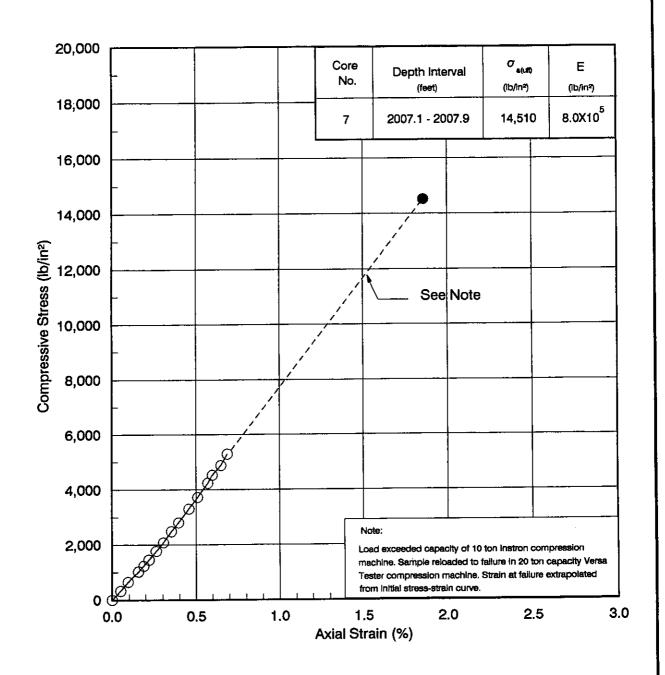
Ardaman & Associates, Inc. Geotechnical, Environmental and Materials Consultants

CITY OF POMPANO BEACH CONCENTRATE DISPOSAL WELL IW-1

YOUNGQUIST BROTHERS, INC.

1					
DRAWN BY:	SA	CHECKED BY:	SA	DATE:	11-14-01
FILE NO.:	APPI	امر: ROVED BY:			FIGURE:
01-131		~ #	A.	- 1	4

RECEIVED MAY 13 2001



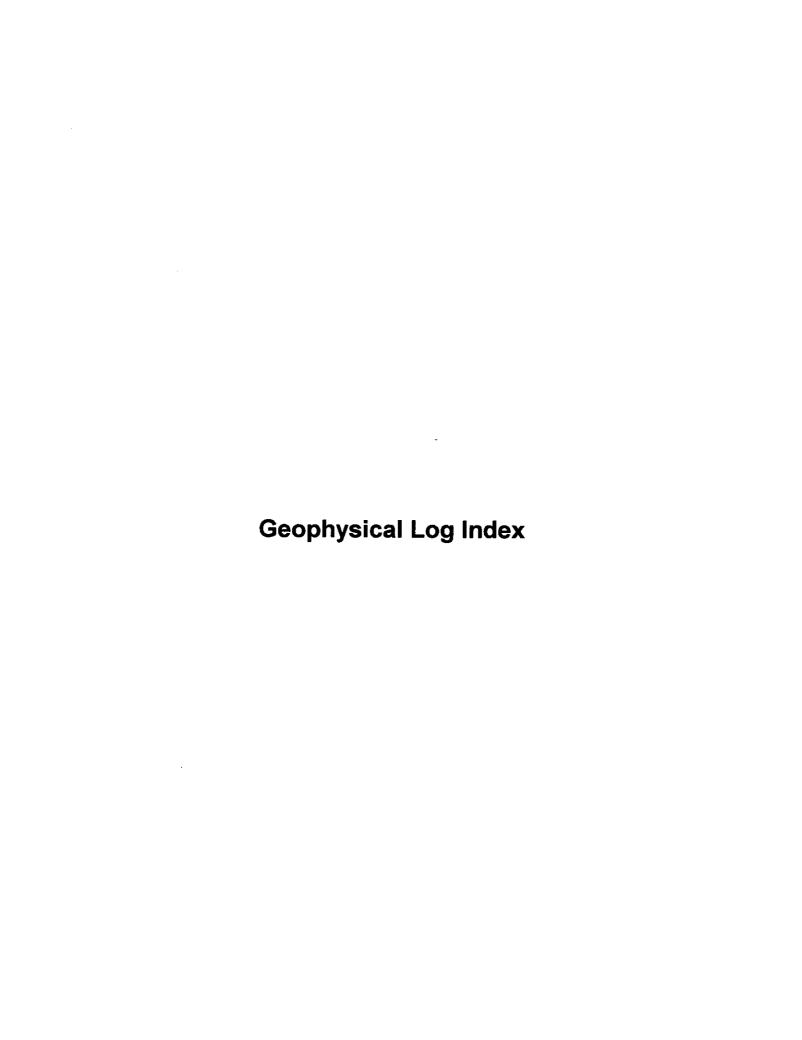
CITY OF POMPANO BEACH CONCENTRATE DISPOSAL WELL IW-1

YOUNGQUIST BROTHERS, INC.

DRAWN BY: SA CHECKED BY: SA DATE: 11-14-01
FIE NO.: APPROVED BY: TW FROUND:

01-131

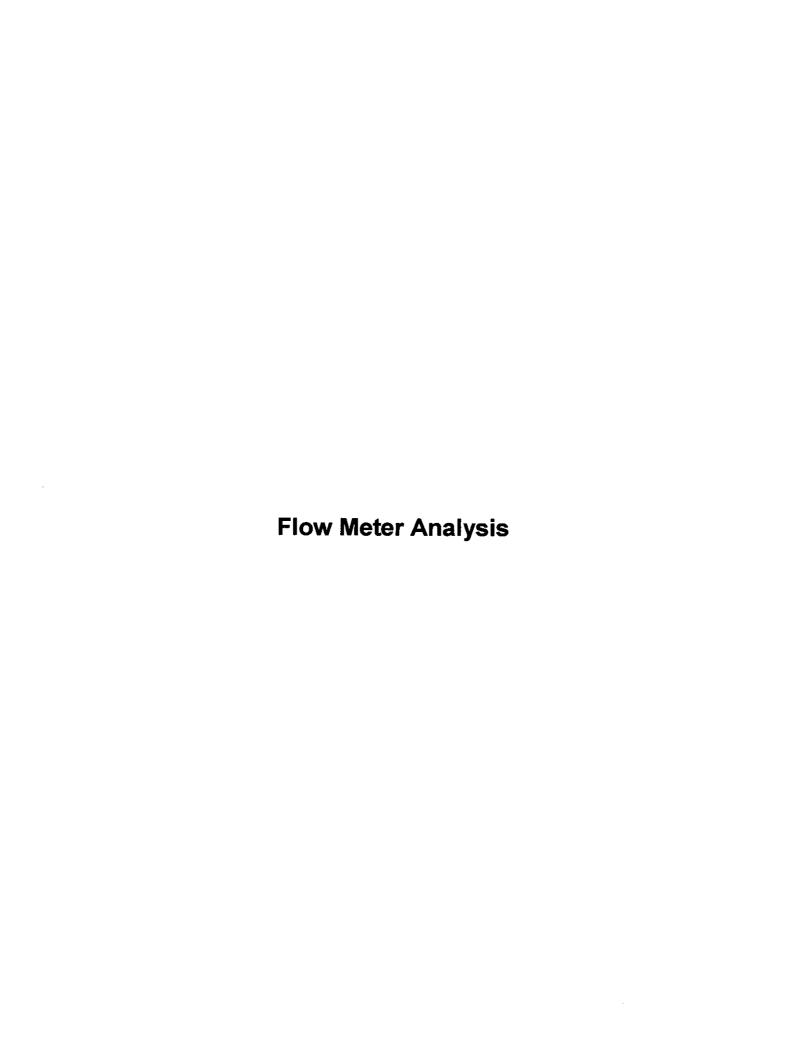
MECEIVED NOV 1 9 2001



CITY OF POMPANO BEACH CONCENTRATE DISPOSAL WELL IW-1

YOUNGQUIST BROTHERS, INC.

DRIAWN BY: SA CHECKED BY: SA DATE: 11-14-01
FILE NO: APPROVED BY: FROUNE: 6


APPENDIX F GEOPHYSICAL LOGS

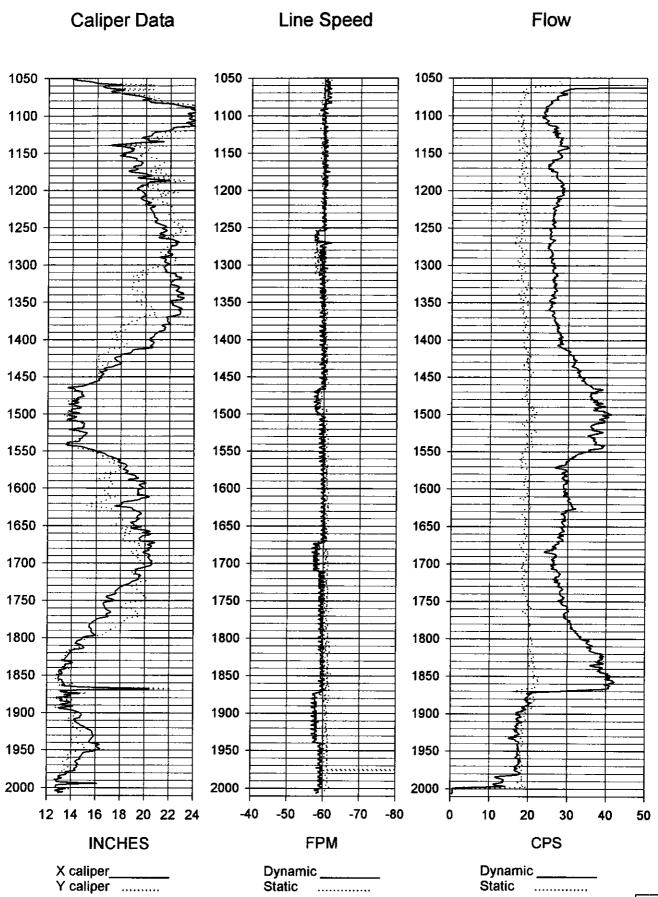
Appendix F Geophysical Logs Log Index

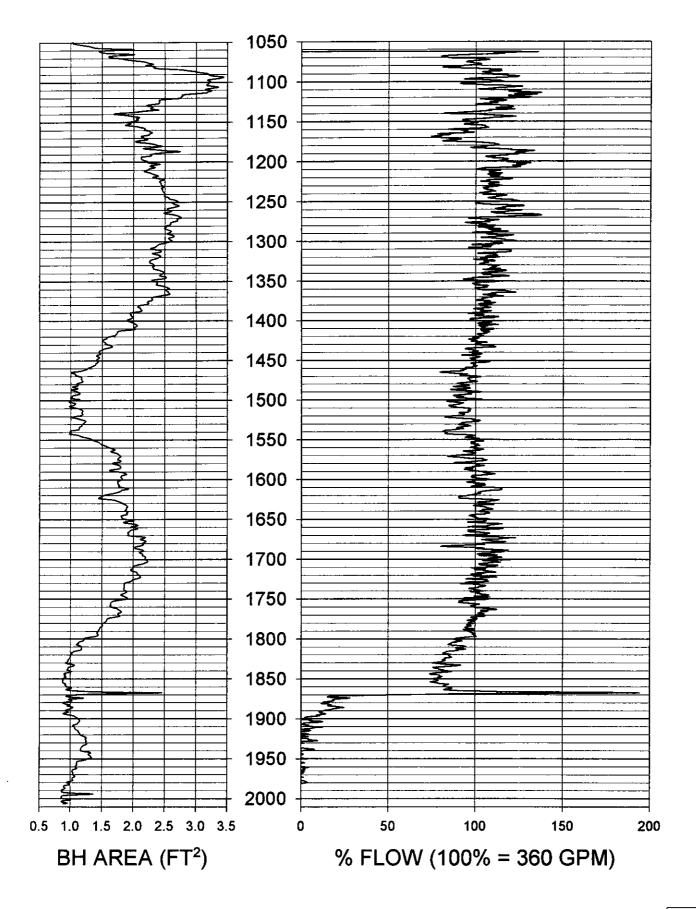
Well	Log	Date	Interval (feet bpl)	Borehole Diameter (inches)
IW-1	X–Y Caliper / Gamma Ray	June-5-01	121 – 1030	50
IW-1	Cement Temperature Log	June-6-01	Surface - 1,020	42
IW-1	X–Y Caliper / Gamma Ray	June-21-01	1,020 - 2,026	12.25
IW-1	Dual Induction LL3/SP	June-21-01	1,020 - 2,026	12.25
IW-1	Borehole Televiewer	June-21-01	1,020 - 2,026	12.25
IW-1	Borehole Compensated Sonic / VDL	June-22-01	1,020 - 2,026	12.25
IW-1	Flowmeter	June-22-01	1,020 - 2,026	12.25
IVV-1	Fluid Conductivity /Temperature	June-22-01	1,020 - 2,026	12.25
IW-1	X–Y Caliper / Gamma Ray	August-0501	1,020- 1,955	42
IW-1	Temperature (Cement Top)	August-07-01	1,020 – 1,955	34
IW-1	X–Y Caliper / Gamma Ray	August-21-01	1,950 – 2,977	12.25
IW-1	Dual Induction LL3/SP	August-21-01	1,950 - 2,977	12.25
IW-1	Borehole Televiewer	August-21-01	1,950 – 2,977	12.25
IW-1	Borehole Compensated Sonic / VDL	August-21-01	1,950 – 2,977	12.25
IW-1	Fluid Conductivity /Temperature	August-21-01	1,950 – 2,977	12.25
IW-1	Flowmeter	August-30-01	1,950 – 2,977	12.25
IW-1	X–Y Caliper / Gamma Ray	November-26-01	1,950 – 2,900	32.5
IW-1	Temperature (Cement Top)	December-20-02	0 - 2,293	24
IW-1 IW-1	Cement Bond Log	December-28-02	0 – 2,293	24
IW-1	Temperature (Cement Top)	January-06-02	0 - 2,273	16
IW-1	Cement Bond Log	January-7-02	0 – 2,273	16
IW-1	Temperature	March-22-02	0 – 2,091	16
IVV-1	Radioactive Tracer Survey	March-22-02	0 – 2,091	16
MW-1	X–Y Caliper / Gamma Ray	January-22-02	28 – 160	32.5
MW-1	Temperature (Cement Top)	January-23-02	0 – 160	24
MW-1	X–Y Caliper / Gamma Ray	January–30–02	160 – 1,520	22.5
MW-1	Dual Induction LL3/SP	January-30-02	160 – 1,520	22.5
MW–1	Borehole Compensated Sonic / VDL	January-30-02	160 – 1,520	22.5
MW-1	Temperature (Cement Top)	February-01-02	0 – 1,520	16
MW-1	X–Y Caliper / Gamma Ray	February-07-02	1,520 – 1,950	14.75
MW-1	Dual Induction LL3/SP	February-07-02	1,520 - 1,950	14.75
MW-1	Borehole Compensated Sonic / VDL	February-07-02	1,520 – 1,950	14.75

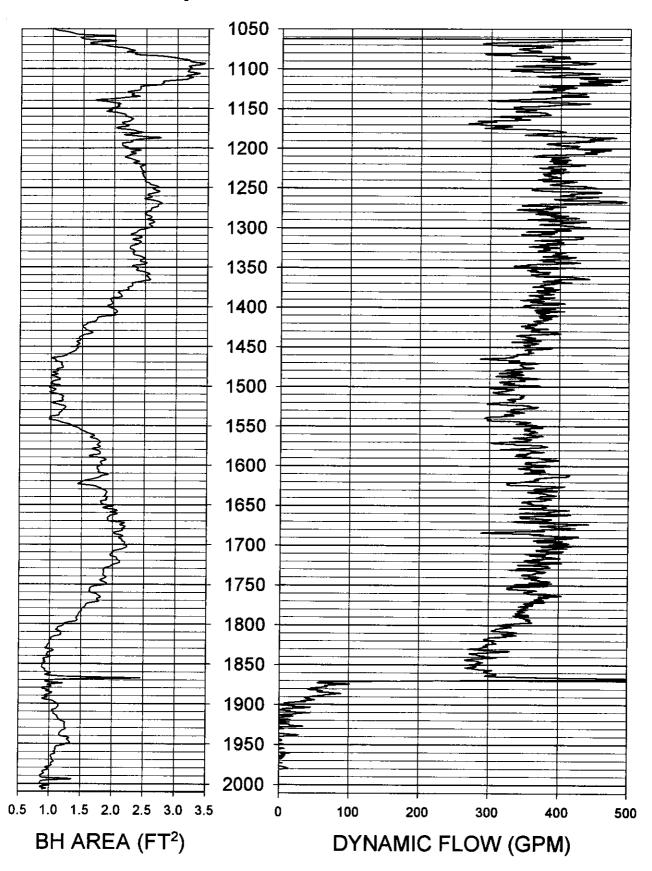
Well	Log	Date	interval (feet bpl)	Borehole Diameter (inches)
MW-1	Fluid Conductivity /Temperature	February-07-02	1,520 – 1,950	14.75
MW-1	Cement Bond Log	February-07-02	0 – 1,520	16
MW-1	Temperature (Cement Top)	February-16-02	0 1,900	6.625
MW-1	Cement Bond Log	February-18-02	0 – 1,915	6.625

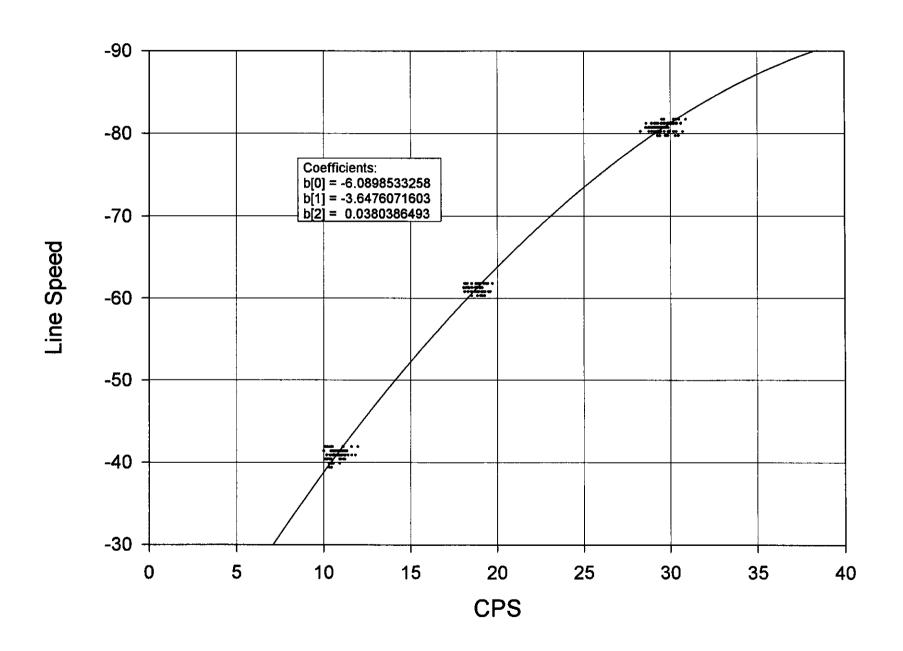
FLOWMETER ANALYSIS

POMPANO BEACH CONCENTRATE DISPOSAL WELL IW#1


On June 22, 2001 a downhole packer was set at 1058' to evaluate the open hole. A surface pump was used to pump water from the open hole at a dynamic flow rate of approximately 360 GPM. The following plots were generated from logging data collected by the flowmeter tool.


Figure 1 is a quick look interpretation consisting of 3 separate graphs: caliper (to compare borehole size to flowrate), line speed (for quality control), and flowrate (comparing the static down pass to the dynamic down pass). No positive separation between the static and dynamic flowrate curves is shown below the fracture at 1870', so no obvious flow is induced by the pump below this depth. Above 1870' however, we see a sudden change in the dynamic flowrate. This flow remains relatively constant(except for borehole size effects) extending upward and into the drillpipe supporting the packer at 1858'.

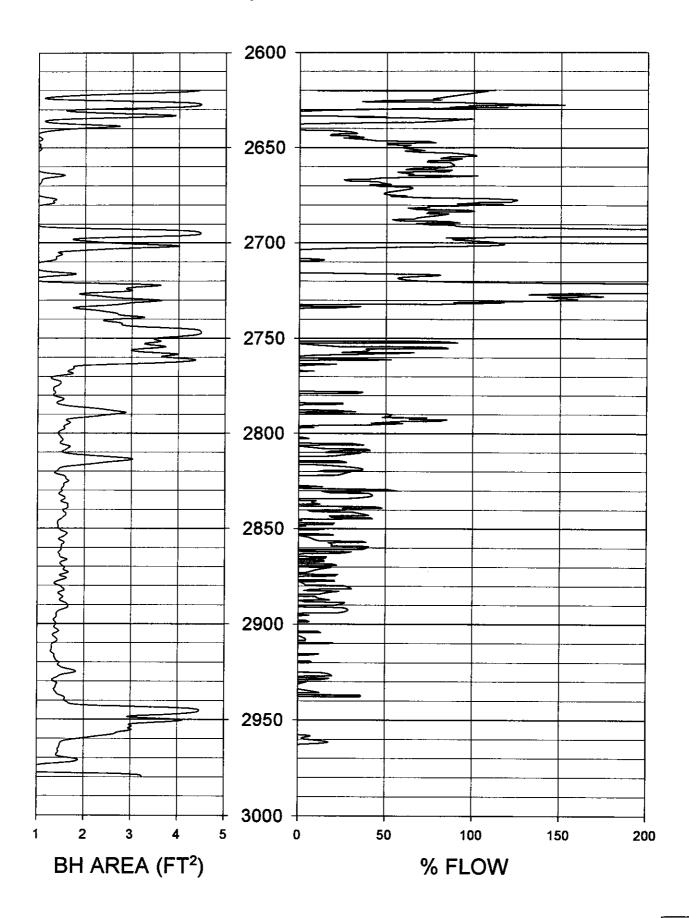

Figure 2 is the percent flow analysis of the dynamic pass. It indicates no flow from the bottom of the hole up to 1900' A small amount (roughly 20%) of flow appears to develop gradually above 1900' and up to the fractured interval near 1870'. All of the remaining flow (80%) occurs near 1870' and remains constant up to the packer.


Figure 3 is the total flow analysis of the dynamic pass. It mirrors the percent flow graph except that it is expressed in gpm.

In summary, the fractured interval near 1870' provides 80-100% of the flow being developed and pumped out of the open hole.

FLOWMETER ANALYSIS

POMPANO BEACH CONCENTRATE DISPOSAL WELL #1


On August 25, 2001 drillpipe was set at 2612' in order to evaluate the bottom of the open hole interval while staying below the formation trouble experienced just above 2612'. A surface pump was used to pump water from the open hole at a dynamic flow rate of approximately 240 GPM. The following plots were generated from logging data collected by the flowmeter tool.

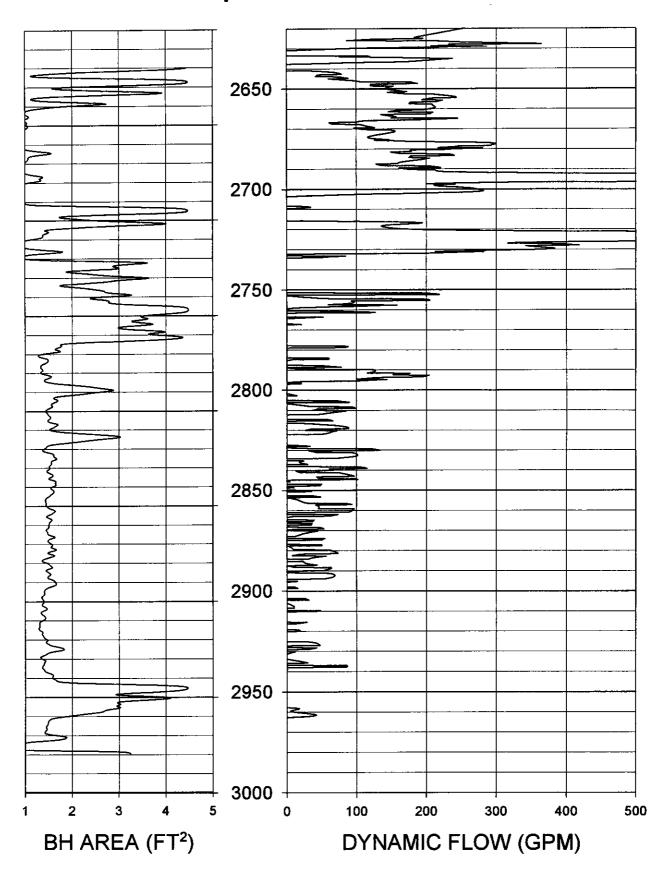
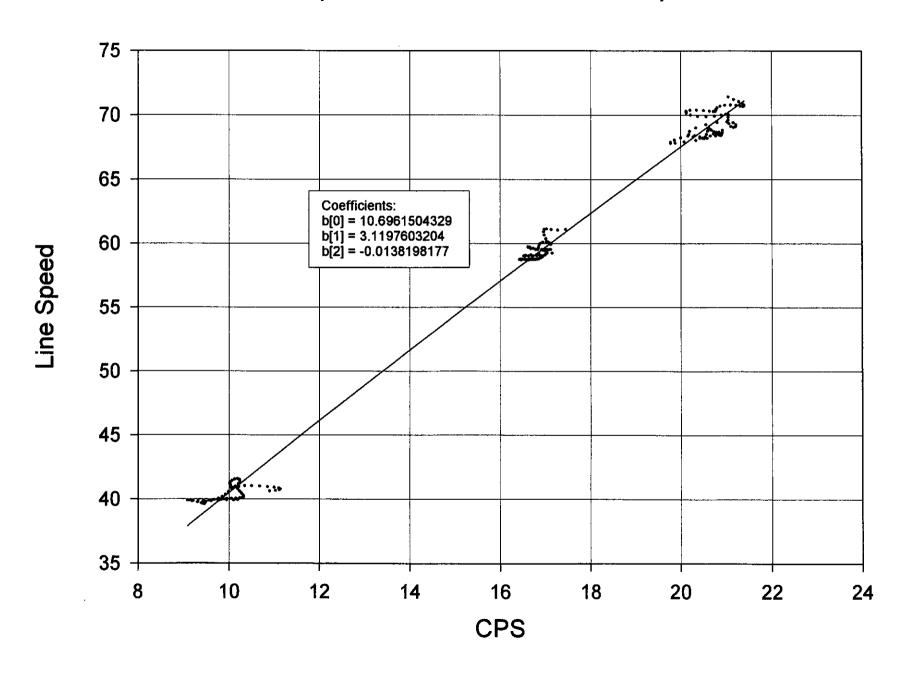

Figure 1 is a percent flow analysis of the dynamic pass. It indicates very little flow(< 25%) below 2750'. Some flow is developed in the fractured interval from 2700'-2750' Although the overall flow is low, 75-100% is developed above 2750' and remains constant into drillpipe.

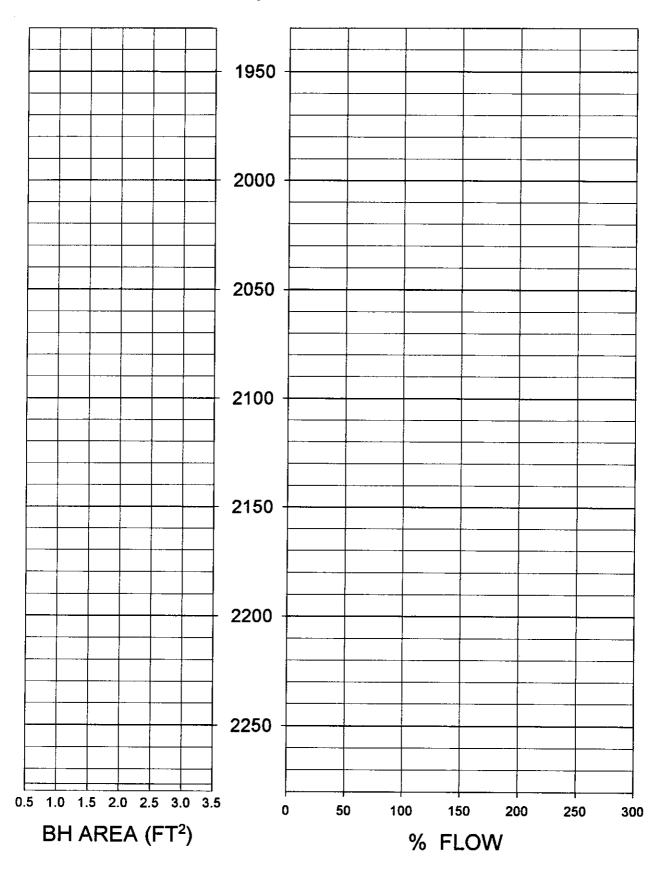
Figure 2 is the total flow analysis of the dynamic pass. It mirrors the percent flow graph except that it is expressed in gpm.

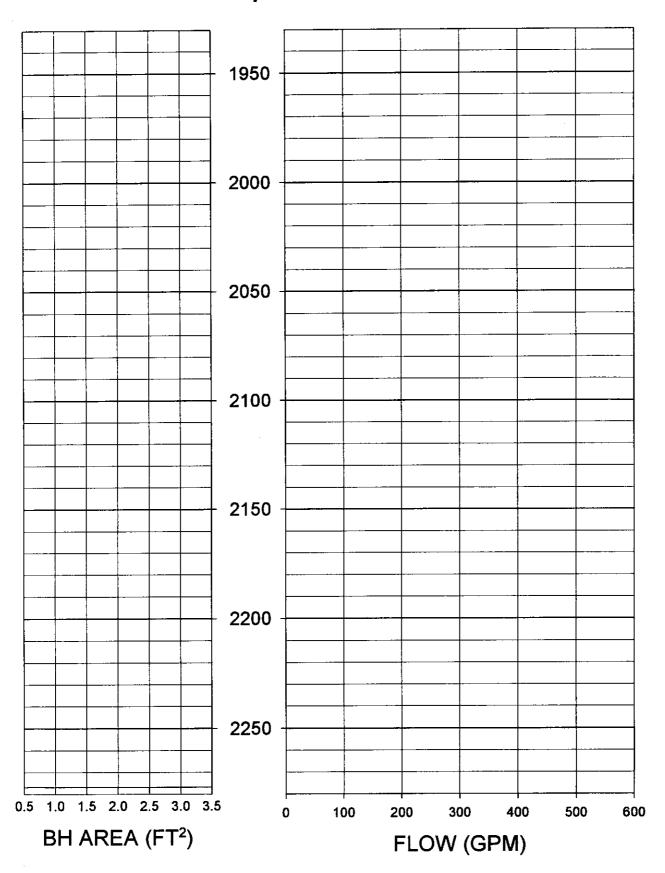

Figure 3 is a quick look interpretation consisting of 3 separate graphs: caliper (to compare borehole size to flowrate), line speed (for quality control), and flowrate (comparing the static up pass to the dynamic up pass). The small positive separation between the static and dynamic flowrate curves from 2840'-2910' is attributed to a difference in line speed. Actual positive separation occurs only above the large fractured interval at 2700' This flow remains relatively constant(except for borehole size effects) extending upward and into the drillpipe

In summary, the fractured interval at 2700' provides 80-100% of the flow being developed and pumped out of the open hole.

Pompano Beach CD#1 Run 6 Up Cals

FLOWMETER ANALYSIS


POMPANO BEACH CONCENTRATE DISPOSAL WELL #1


On August 30, 2001 flow logs were run on the open hole interval below casing at 1950' down to 2275. A surface pump was used to pump water from the open hole at a dynamic flow rate of approximately 240 GPM. The following plots were generated from logging data collected by the flowmeter tool.

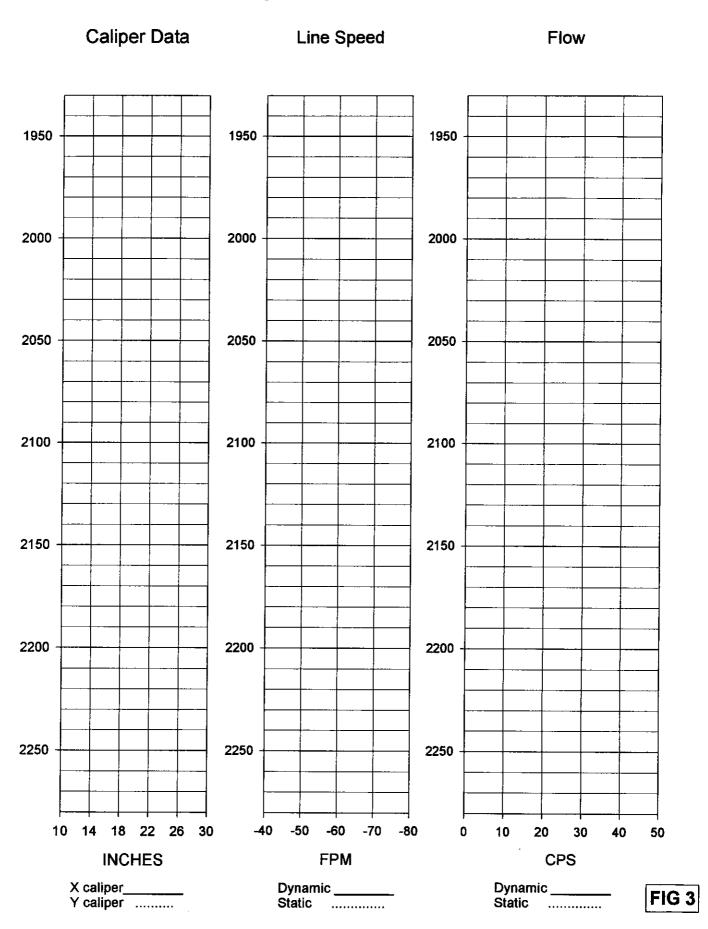
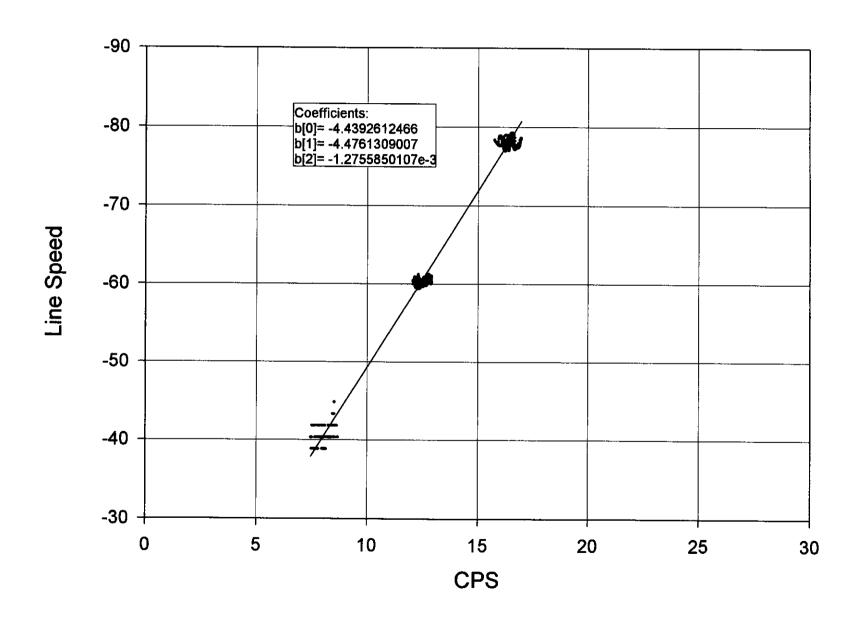

Figure 1 is a percent flow analysis of the dynamic pass. It indicates virtually no flow below 2150'. Flow gradually increases uphole above the prominent fracture at 2150' to account for approximately 30-40% of total flow before reaching the fractured interval at 2030' An additional 40-50% of total flow is developed from this interval. 100% of total flow is achieved just below 2010'

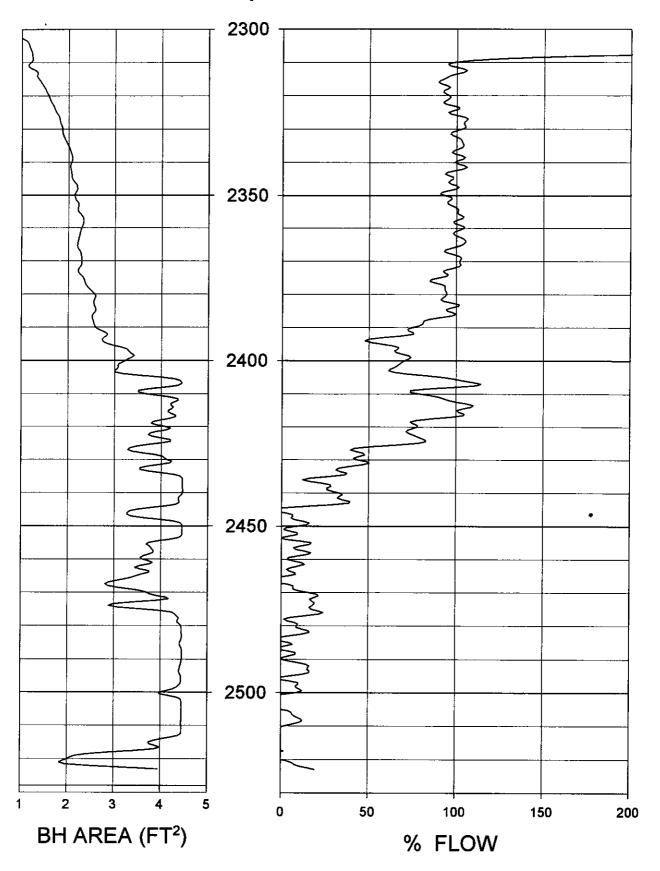
Figure 2 is the total flow analysis of the dynamic pass. It mirrors the percent flow graph except that it is expressed in gpm.

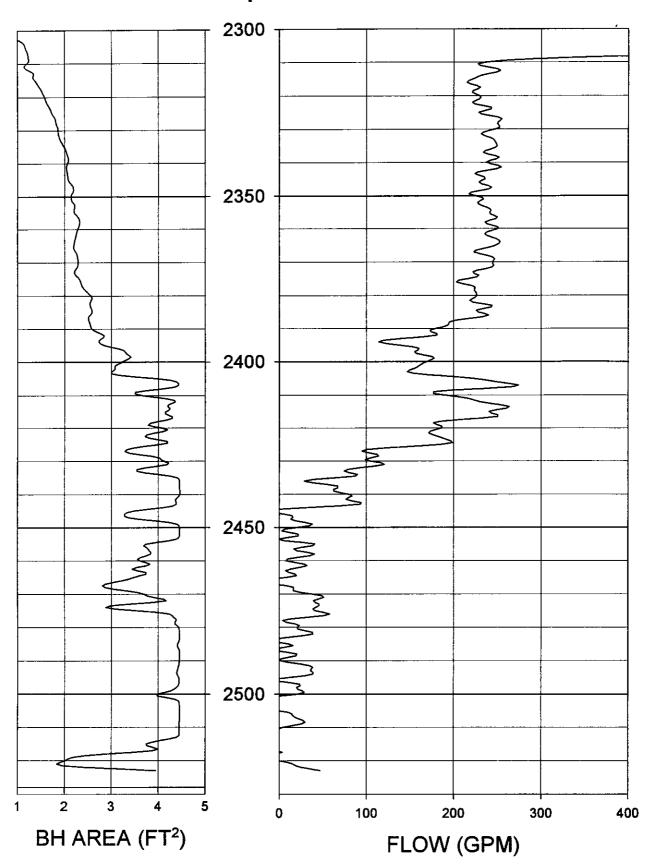

Figure 3 is a quick look interpretation consisting of 3 separate graphs: caliper (to compare borehole size to flowrate), line speed (for quality control), and flowrate (comparing the static down pass to the dynamic down pass). A small amount of flow above 2140' is evident from the positive separation between the static and dynamic flowrate curves. This separation increases sharply at 2030' and again just below 2010', indicating additional flow being developed at these two depths.

Pompano Beach CD#1 Run 7 Down Cals

FLOWMETER ANALYSIS

POMPANO BEACH CONCENTRATE DISPOSAL WELL #1


On August 30, 2001 drillpipe was hung below 2300' in order to run flow logs over the middle portion of the open hole interval. A surface pump was used to pump water from the open hole at a dynamic flow rate of approximately 240 GPM. The following plots were generated from logging data collected by the flowmeter tool.


Figure 1 is a percent flow analysis of the dynamic pass. It indicates virtually no flow below 2450'. Flow quickly increases uphole above roughly 2440', accounting for 75% of total flow above 2425'. The remaining 25% of total flow is developed from the fractures below 2390'.

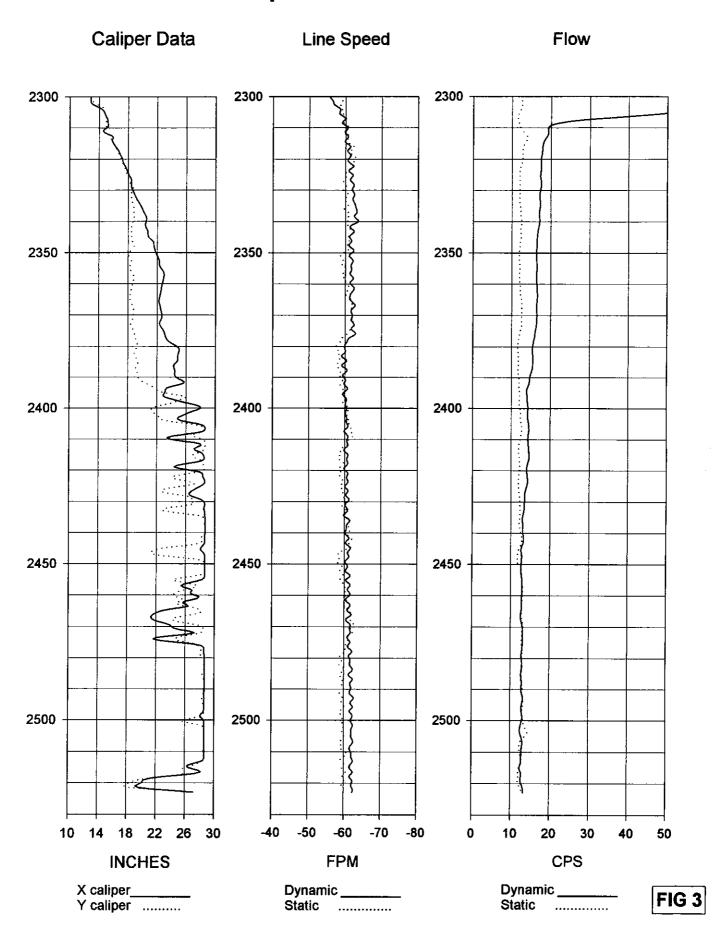
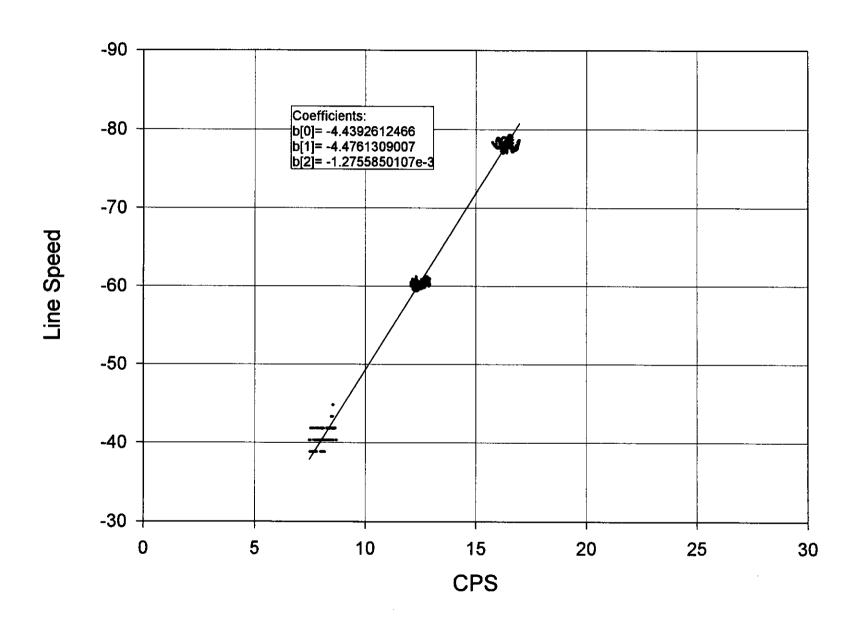

Figure 2 is the total flow analysis of the dynamic pass. It mirrors the percent flow graph except that it is expressed in gpm.

Figure 3 is a quick look interpretation consisting of 3 separate graphs: caliper (to compare borehole size to flowrate), line speed (for quality control), and flowrate (comparing the static down pass to the dynamic down pass). Flow appears to steadily increase uphole from just above 2440' and continues to grow.


In summary, all of the flow in this portion of the open hole is being developed from the 2395'-2450' fractured interval.

Pompano Beach CD#1 Run 7 Down Cals

Geophysical Logging Quality Control

LOGGING TOOLS

CALIBRATION THEORY AND PRACTICE

CALIBRATION

Few logging tools give a response immediately useful in formation evaluation. Logging tools generally exert some disturbance on the formation (pass electric current through it, bombard it with sub-atomic particles, etc.). The tools' detectors measure this disturbance after it has passed through the formation. This measurement may be made in counts per second, it is referred to as the raw measurement. Such responses are of limited interest to a geoscientist.

Calibration links this raw measurement to a useful formation property. All calibrations work on the same principle. A tool is placed in environments (usually two) of known physical property and the tool's responses in these environments are measured. An arithmetic relation (usually a straight line) between these points is constructed and used to convert actual measurements to calibrated values. For example, by recording the X-Y Caliper Tool's response (pulses per second, *raw measurement*) to rings of known size (inches, *calibrated measurement*); we can derive an equation that will allow measurement of an unknown hole diameter.

The Primary Standard for all logging tools is dependent on the physical property it has been designed to measure. This Primary Standard may be one of the following:

- API standard test pits, such as those found at the University of Houston.
- A test fixture from the tool manufacturer.
- Part of the tool's electronic circuitry.

Each Tool Section in this manual describes the primary standard adopted by Florida Geophysical Logging.

Manufacturing plants and operations bases use Secondary Standards when needed as it is impractical to calibrate, and re-calibrate, each tool in some primary standards such as the Houston API pits. These secondary calibrators are carefully referenced directly to the primary standard.

Some examples of these secondary Standards are:

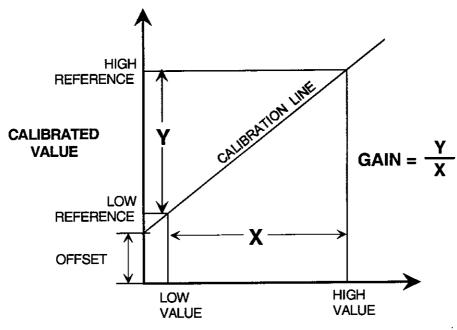
- The Natural Gamma Ray jig
- The Compensated Neutron water tank
- The Aluminum and Magnesium blocks for density calibrations

CALIBRATION TECHNIQUE

Some tools such as the X-Y Caliper Tool and the Fluid Resistivity Tool use multiple straight line segments to compute calibrated values. These tools use a modified version of the technique described below where a 2 point calibration scheme is described. The Flowmeter Tool is calibrated over 3 points and the data is fit to a quadratic equation.

We express a tool's linear response by:

$$y = mx + b$$
where $y = \text{calibrated response of the tool}$


$$m = \text{slope or gain of the tool}$$

$$x = \text{raw value from tool}$$

$$b = \text{intercept or offset}$$

This linear relationship between raw or measured values and calibrated values is shown

below:

RAW MEASUREMENT

$$Gain = \frac{High \, Cal - Low \, Cal}{High \, Meas - Low \, Meas} \tag{A}$$

Offset or Intercept = Low Cal
$$-$$
 (Gain \times Low Meas) (B)

VERIFICATION

A verification is exactly what it says it is,: it confirms that the tool response and calibration are still valid. It does not modify the relation between tool response and physical property measurement (i.e., the calibration).

Any verification method has to be fast, accurate, precise and rugged. They are normally done on the catwalk or drill floor, and take rig time.

DUAL INDUCTION TOOL (DIT)

The shop calibration of the Dual Induction Tool (DIT) involves placing the tool in a zero conductivity medium. This is accomplished by elevating the tool on tall wooden stands away from any metal or electrical fields (overhead or underground power lines). The height of the stands depends on ground conductivity which in turn is related to ground moisture content. A distance of 3 meters above the ground will normally remove any ground effect from the measurement. The tool zero conductivity signal is recorded for both deep and medium. Next a calibration loop of known conductivity is placed over the deep and medium sensor. The value of the loop is designed to represent a 500 mmho formation. This provides the "High Cal" value. Field verification is done to verify tool response in between master calibrations.

BOREHOLE COMPENSATED SONIC LOG (BHC)

The primary calibration for the BHC involves centralizing the tool in a section of water-filled steel casing and mechanically adjusting the spacers within the tool until the 4 individual transmitter to receiver pairs read the correct transit time for the 5 foot and 3 foot spacings. This procedure is done when the tool is built or whenever major repairs are performed on the transmitter/receiver section. Normal quality control procedures for all Compensated Sonic Logs requires logging the value of Delta T in the casing either on the way in the hole, or immediately after the logging run. This is an excellent verification that the entire system is functioning properly. Sometimes, this casing check is difficult in pipe that is well bonded. If possible the logging engineer should find a section of "free pipe" to record the casing check.

X-Y CALIPER TOOL (XYT)

The calibration of this is done by opening the caliper arms into two or more rings of known inside diameter, the smaller ring serves as the low calibrate value, the large ring is the high calibrate value. The gain and offset are calculated using the technique presented in the introduction. The size of the caliper rings used in the calibration and verification are selected based on the hole size that is being logged. Several size rings are available.

HIGH RESOLUTION TEMPERATURE TOOL (HRT)

The shop calibration of the HRT uses two water baths of different temperatures. The low temperature bath is chosen to be 32°F because logging a Deep Injection Well we often see borehole temperature in the 40° range. The high temperature bath is normally between 150°F and 212°F. The gain and offset are calculated using the technique presented in the introduction. All the tools Florida Geophysical Logging uses have fast response RTD sensors. The HRT is an extremely stable tool and requires calibration only after major repairs or component replacement. Because of the linearity of the sensor a single point verification made in the field will instantly tell if the tool is still in calibration and capable of recording accurate temperature. This verification should be done in a fluid that has reached temperature equilibrium.

FLUID CONDUCTIVITY TEMPERATURE TOOL (FCT)

The shop calibration of the fluid conductivity measurement involves placing the tool in a series of different salt solutions. The solutions are allowed to reach temperature and salinity equilibrium and are then measured with a precision digital conductivity meter. The tool is placed in each of the solutions and a multipoint calibration is made between tool output in pulses and fluid conductivity. The FCT is an extremely stable tool and requires calibration only after major repairs or component replacement. A single point verification made in the field will instantly tell if the tool is in calibration and capable of recording accurate fluid conductivity. This verification can be done with a water sample obtained from the well.

For calibration of the temperature tool see HRT section.

GAMMA RAY TOOL (GRT)

The primary calibration standard for all gamma ray tools is the API Gamma Ray Test Pit at the University of Houston. The API standard defines the difference between two radioactive formations as 200 Gamma Ray API units. After primary calibration, the tool is removed and moved to a distance away from the pit. A background reading in air is recorded. Next, a small radioactive source is placed at a fixed distance from the detector of the tool. By subtracting the background reading from the response to the radioactive source, a value in API units is assigned to the calibrator or Jig. This Jig can be used to calibrate other tools of similar design without taking it to the API test well.

FLOWMETER TOOL (FMT)

Quantitative analysis of flowmeter measurements requires calibration of the probe. Since the probe is a mechanical system utilizing components that are subject to wear (e.g. bearings) it must be calibrated before every use. Calibration is done by moving the tool at a known velocity through a static fluid column and measuring the number of pulses or counts output from the tool. It is important to calibrate the tool in the same diameter hole that the measurements will be made¹. Two different velocities are required to establish a calibration line. Florida Geophysical Logging uses three principal velocities (50, 70 and 100 fpm) to establish a calibration line. A second order linear fit of the calibration data is performed. By mathematically fitting a curve through the calibration data points it is possible to "back calculate" an unknown velocity if the number of counts are known. The equation is of the form:

$$V_{fm} = b_0 + (b_1 \times counts) + (b_2 \times counts^2)$$
 (3)

where b_0 , b_1 , and b_2 are the coeficients determined by the linear curve fit routine. Counts represent the raw signal from the flowmeter tool

¹ Application Of The Borehole Flowmeter Method To Measure Spatially Variable Hydraulic Conductivity At The MADE Site - Kenneth R. Rehfeldt, Illinois State Water Survey

APPENDIX G VIDEO SURVEY

Television Survey City of Pompano Beach Concentrate Disposal System Wells IW-1 & MW-1

Interval (feet bpl)	Observations Concentrate Disposal Well IW–1 Open Hole
1060–1072	Light colored generally massive Limestone: No fractures or caverns, weakly vuggy, minor washout at 1,065
1072–1276	Light colored generally massive Limestone: No fractures or caverns, generally well indurated, weakly vuggy from 1,111–1,140, minor washout at 1,143, moderately vuggy at 1,143, 1,152, 1,173 and from 1,185 to 1,195. Minor washout at 1,200. Thin dark lamination at 1,231.
1276–1400	Light colored generally massive Limestone: No fractures or caverns. Generally well indurated. Dark laminations at 1,298, 1,329 and 1,368.
14001417	Light colored massive Limestone: No fractures, vuggs or caverns. Well indurated.
1417–1460	Light colored Limestone: No fractures or caverns. Generally well indurated. Occasional dark vuggy laminations to thin beds. Weakly vuggy below 1,440. Minor washout at 1,460. Vuggy below 1,550.
1460–1495	Light colored generally massive Limestone: No fractures or caverns. Generally well indurated to weakly vuggy. Moderately vuggy to 1,464. Darker colored beds with rougher texture at 1,464 and 1,467. Dark horizontal laminations at 1,475. Thin dark horizontal beds at 1,479, 1,485 and 1,496.
1495–1508	Light colored Limestone: No fractures or caverns. Generally vuggy with minor to occasionally prominent bedding features and rare minor washouts.
1508–1520	Light colored massive Limestone: No fractures or caverns. Generally well indurated.
1520–1561	Light colored interbedded Limestone: No fractures or caverns. Generally well indurated to weakly vuggy. Occasional dark laminations. Coarser grained bed at 1,540. Interbedded Limestone and Dolomite at 1,546. Dark laminations at 1,561.
1561–1578	Light colored generally massive Limestone: No fractures, vuggs or caverns. Well indurated with few dark laminations.
1578–1587	Light colored Limestone: No fractures or caverns. Dark laminations common. Generally weakly vuggy. Highly vuggy from 1,585 to 1,587.
1587–1600	Light colored massive Limestone: No fractures or caverns. Generally well indurated
1600–1629	Light colored Limestone: No fractures or caverns. Laminated to thinly bedded. Weakly vuggy to 1,607, highly vuggy below 1,607. Darker bed at 1,614. Minor washout at 1,628.
1629–1663	Light colored generally massive Limestone: No fractures or caverns, vuggy. Few faint laminations. Dark lamination at 1,657.

1663–1836	Light colored interbedded Limestone: No fractures or caverns. Dominantly light colored interbedded with darker beds and laminations.
1836–1862	Dark orange bedded Dolomite: Generally well indurated. Coarser texture at 1,836. Minor cavern at 1,840. Vertical fracture from 1,848 to 1,850. Shallow cavern at 1,859.
1862–1865	Dark colored massive Dolomite: Highly fractured with blocky texture. Cavern from 1,865 to 1,869.
1865–1871	Light colored massive Limestone: No fractures, generally well indurated. Few Dolomite lenses. Cavern at 1,866.
1871–1956	No video
19561986	Light colored generally massive Limestone: Weakly vuggy to very well indurated with occasional weak bedding features. Closed horizontal fractures at 1,958 and 1,960.
1986–2023	Dark colored generally massive Dolomite: Very well indurated to weakly vuggy. Thin wavy laminations at 1,991. Closed horizontal fracture at 1,994, open vertical fracture at 1,997. Highly vuggy with open fractures and blocky texture at 2,009, 2,011, 2,013 and 2,016.
2023–2025	Light colored massive Limestone: Generally well indurated, washout at 2,024.
2023–2035	Dark colored highly fractured Dolomite: Blocky texture, cavernous at 2,027.
2035–2049	Dark colored generally massive Dolomite: Weakly to moderately vuggy, locally weakly to moderately fractured, shallow cavern at 2,038. Highly fractured at 2,049.
2049–2081	Dark to moderately light colored generally massive Dolomite: Moderately vuggy to vuggy with few low angle closed fractures. Moderately open moderately dipping fracture at 2,051 highly fractured at 2,053, 2,066 and 2,067. Thin breccia bed at 2,070. Blocky fractured zones at 2,073 and 2,074. Open high angle fracture at 2,076. Highly vuggy at 2,069.
2081–2086	Dark colored highly fractured Dolomite: Cavernous with blocky texture.
2086–2110	Dark to very dark colored massive Dolomite: Moderately vuggy. Open vertical fractures at 2,093 and 2,098, closed horizontal fracture at 2,099, open horizontal fracture at 2,103, healed horizontal fracture at 2,108
2110–2112	Light colored generally massive Limestone: No fractures vuggs or caverns. Thin dark wavy laminations at 2,111
2112–2141	Dark colored massive Dolomite: Well indurated, dominantly weakly vuggy. Highly vuggy at 2,113. Low to high angle open fractures from 2,119 to 2,125. Blocky texture with open fractures from 2,125 to 2,127.
2141–2149	Dark colored highly fractured Dolomite: Cavernous with blocky texture.
2149–2155	Light colored dominantly massive Limestone : Generally vuggy. Occasional closed horizontal fractures from 2,150 to 2,153. Shallow washout at 2,154.
2155-2160	Light colored dominantly massive Limestone: No fractures vuggs or caverns. Well

	indurated. Few dark laminations from 2,157 to 2,158.
2160–2176	Dark colored generally massive Dolomite: Generally moderately vuggy. Highly fractured with blocky texture at 2,160. Closed horizontal fracture at 2,161. Well indurated to weakly vuggy from 2,161 to 2,162. Highly fractured and cavernous with blocky texture at 2,167 and 2,169. Shallow cavern at 2,172. Closed vertical fractures at 2,173. High angle closed fracture at 2175.
2176-2182	Light colored Limestone interbedded with Dark Dolomite: Vuggy to highly vuggy from 2,176 to 2,180. Moderately open vertical fracture from 2,176 to 2,178. Dark shallow cavern at 2,179. High angle closed fracture at 2,178. Thin dark blocky bed at 2,180. Moderately vuggy with molds at 2,181.
2182-2183	Dark colored Dolomite: Highly fractured, cavernous, blocky texture.
2183-2189	Dark colored generally massive Dolomite: No caverns. Generally weakly to moderately vuggy. High angle fully healed fractures at 2,188.
2189-2190	Light colored massive Limestone: No fractures, caverns or vuggs
2190-2194	Dark colored Dolomite: Highly vuggy. Blocky texture at 2,190 and 2,191 Closed fractures from 2,191 to 2,194.
2194–2215	Dark colored Dolomite: Generally weakly to moderately vuggy. Blocky caverns at 2,195 and 2,196. Variable angle closed fractures at 2,199 and 2,200. Open horizontal fracture at 2,200. Closed vertical fracture at 2,201. Thin gray moderately vuggy beds at 2,200 and 2,202. Highly vuggy from 2,202 to 2,203. Closed vertical fracture at 2,204. Moderately fractured with blocky texture at 2,205. Highly vuggy with minor cavern at 2,206. Closed vertical fracture at 2,206. Low angle open fracture and minor washout at 2,208. Minor caverns at 2,211 and 2,212. Fractured with moderate caverns at 2,214.
2215-2218	Light Gray colored massive Limestone: Well indurated, weakly vuggy.
2218–2228	Dark colored Dolomite: Generally vuggy with some large diameter vuggs. Highly vuggy from 2,225 to 2,226. Moderately fractured with blocky texture at 2,219 and 2,222. Rough texture from 2,224 to 2,228.
2228-2230	Dark Dolomitic Limestone: Highly fractured, blocky texture, highly cavernous.
2230-2240	Light brown Limy Dolomite: Generally weakly to moderately vuggy. Moderately open vertical fractures at 2,234. Shallow cavern at 2,235. Open vertical fractures at 2,234.
2240–2254	Dark Massive Dolomite and Limestone: Moderately vuggy from 2,240 to 2,241, highly vuggy from 2,241 to 2,247. High angle closed fracture at 2,251.
2254–2261	Dark Massive Dolomite: Generally weakly to moderately vuggy, highly vuggy at 2,255. Closed low angle fracture at 2,260, high angle closed fracture at 2,261
2261–2266	Dark Gray Massive Dolomite: Highly fractured, highly cavernous, blocky texture.
2266–2274	Light Gray massive Dolomitic Limestone : Vuggy to highly vuggy. Gray limestone lens at 2,271. Open low angle fracture at 2,272.

2274-2276

Dark Gray Massive Dolomite: Highly fractured, highly cavernous, blocky texture.

2276–2284	Light Gray colored massive Limestone: Well indurated, vuggy below 2,282. Few minor washouts.
2284–2293	Dark Gray Massive Dolomite: No fractures from 2,284 to 2,286. Highly fractured, blocky texture. Vuggy to weakly vuggy
2293–2296	Light gray massive Limestone: Very well indurated with few minor washouts.
2296–2297	Dark Massive Dolomite: Very well indurated, moderately fractured.
2297–2310	Light gray massive Limestone: No fractures or caverns, vuggy to highly vuggy.
2310–2315	Dark orange massive Limy Dolomite: Vuggy to moderately vuggy, no fractures or caverns. Dolomite content increasing with depth.
2315–2403	Light colored generally massive Limestone : Generally vuggy to moderately vuggy with few minor washouts to 2,338. Dolomitic at 2,346. Well indurated from 2,355 to 2,364. Minor cavern at 2,375. Blocky texture and low angle open fracture at 2,377. High angle moderately open fracture at 2,380. Well indurated from 2,380 to 2,400. Open vertical fracture at 2,400
2403–2527	Light colored generally massive Limestone: Blocky texture at 2,405. Blocky texture moderately to highly fractured from 2,406 to 2,427. Shallow cavern at 2,406. Open vertical fracture at 2,411. Highly cavernous from 2,447 to 2,453. Open low angle fracture at 2,450. Well indurated with no fractures from 2,469 to 2,471. Well indurated variably fractured at 2,504. Dolomitic, fractured and blocky at 2,510. Highly fractured and blocky from 2,512 to 2,516 and from 2,518 to 2,521. Highly cavernous from 2,522 to 2,523.
2527–2535	Dark Dolomite with little light colored Limestone: Highly fractured with blocky texture.
2535-2582	Dark colored Dolomite Brown to dark brown. Highly fractured, blocky and cavernous.
2582-2586	Dark colored massive Dolomite: Brown to dark brown. Minor open fractures, weakly vuggy.
2586-2604	Dark colored Dolomite: Brown to dark brown. Highly fractured and blocky.
2604–2607	Dark colored massive Dolomite: Brown to dark brown. Few minor fractures, weakly vuggy.
2607–2628	Dark colored Dolomite: Brown to dark brown. Highly fractured, blocky and cavernous.
2628-2630	Dark colored massive Dolomite: Brown to dark brown. Moderately fractured, vuggy.
2630–2648	Dark colored generally massive Dolomite: Brown to dark brown. Several open fractures, vuggy with blocky texture. Highly fractured and cavernous from 2630 to 2633.
2648-2669	Dark colored generally massive Dolomite: Brown to dark brown. Well indurated, generally moderately vuggy with few minor caverns. Blocky at 2,655. High angle open

	fracture from 2,656 to 2,657. Open horizontal fracture at 2,658. Open vertical fracture from 2,659 to 2,664. Vuggy below 2,664. Blocky texture at 2,668.
2669-2673	Dark colored Dolomite: Brown to dark brown. Highly fractured, blocky.
2673-2679	Dark colored massive Dolomite: Brown to dark brown. Vuggy with some moderate caverns. Open vertical fracture from 2,674 to 2,678.
2679-2685	Dark colored Dolomite: Brown to dark brown. Generally highly fractured, blocky texture.
2685-2692	Dark colored massive Dolomite: Brown to dark brown. Generally vuggy with few open horizontal and high angle fractures.
2692-2715	Dark colored Dolomite: Brown to dark brown. Highly fractured, moderately cavernous, blocky.
2715–2733	Dark colored Dolomite: Brown to dark brown. Moderately to highly fractured, moderately vuggy, blocky with shallow caverns.
2733–2749	Dark colored Dolomite: Brown to dark brown. Generally well indurated. Highly fractured and blocky at 2,739. Weakly fractured at 2,741. Light colored Limestone lens at 2,744.
2749–2767	Light colored interbedded Limestone: Generally well indurated. Interbedded with gray limestone laminations and lenses
2749–2895	Light colored generally massive Limestone : Generally very well indurated. Dolomitic from 2,775 to 2,780. Closed high angle fracture at 2,788. Closed high angle fracture at 2,815. Closed horizontal fractures at 2,819. Weakly Dolomitic at 2832 and 2840. Closed horizontal fractures at 2,855 and 2,856. Closed vertical fracture at 2,871. Dolomite laminations at 2,877. Closed high angle fracture at 2,881. Dolomite laminations at 2,885. Closed horizontal fracture at 2,885. Closed high angle fracture at 2,889.
Interval (feet bpl)	Observations Concentrate Disposal Well IW–1 16–inch Diameter Tubing
0-2273	No visible defects or damage: Packer assembly appears to be properly set.

G-5

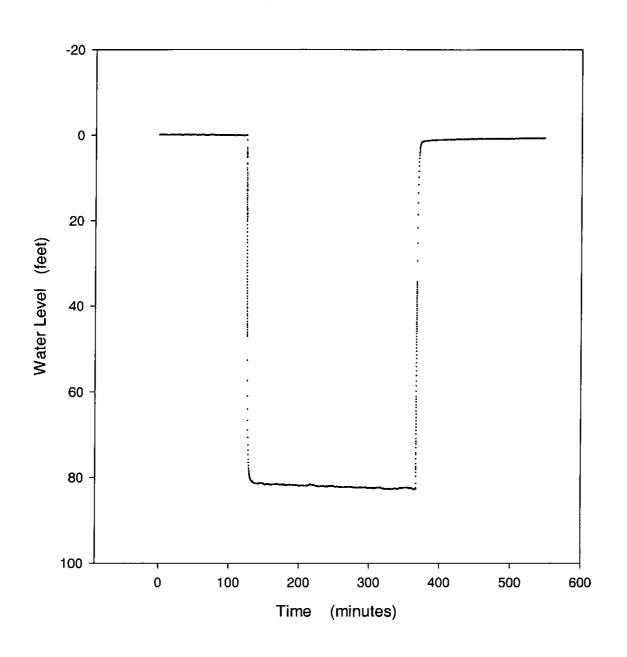
Interval (feet bpl)	Observations Dual-Zone Monitoring Well MW-1 Open Hole
1520–1536	Light colored generally massive Limestone: Dominantly well indurated to weakly vuggy. No, fractures or caverns. Thin Dolomite bed at 1,536.
1536–1545	Dark Dolomite interbedded with light Limestone: No fractures. Generally moderately vuggy. Light colored limestone beds at 1,537 and 1,539. Well indurated at 1,540. Vuggy to highly vuggy with minor caverns at 1,542. Interbedded Dolomite and Limestone from 1,544 to 1,545.
1545–1582	Light colored generally massive Limestone: Generally well indurated to weakly vuggy. No fractures or caverns. Dark lenses at 1,555. Dark laminations at 1,560. Washout at 1,562. Vuggy from 1,562 to 1,654. Minor washout at 1,582.
1582–1586	Dark colored massive Limestone: Vuggy, no fractures or caverns
1586–1663	Light colored generally massive Limestone: Generally well indurated. No fractures or caverns. Dark lenses at 1,603. Minor washout at 1,622. Dark lenses from 1,642 to 1,646. Weakly vuggy from 1,646 to 1,651. Dark bed at 1,657. Thin gray bed at 1,663.
1663–1666	Dark colored massive Limestone: Vuggy. No fractures or caverns.
1666–1809	Light colored Limestone : Generally well indurated. No fractures or caverns. Dark mudstone lenses at 1,679. Dark thin bed at 1,684. Dark lenses at 1,690. Weakly vuggy from 1,695 to 1,698. Dark lamination at 1,706. Dark mudstone lamination at 1,711. Dolomitic from 1,729 to 1,730. Thin vuggy Dolomite bed at 1,736. Dolomitic laminations at 1,750. Vuggy at 1,753. Dark thin Dolomite bed at 1,760. Dolomitic at 1,766. Dolomitic and weakly vuggy at 1,771, 1,784 and 1,788. Laminated and Dolomitic at 1,790.
1809–1840	Light Limestone interbedded with dark Dolomite: Generally well indurated. No fractures or caverns. Thick dark lamination at 1,821. Dark Dolomite beds at 1,829 and 1,838. Laminated Limestone and Dolomite from 1,839 to 1,840.
1840–1865	Dark colored Dolomite: No fractures or caverns. Generally highly vuggy. No fractures or caverns. Thin Limestone bed at 1,844. Limy from 1,845 to 1,852. Moderately to weakly vuggy from 1,863 to 1,865
1865–1868	Light colored bedded Limestone: No, fractures or caverns. Generally well indurated.
1868–1882	Dark colored Dolomite: No fractures or caverns. Generally well indurated to 1,870. Vuggy below 1,870. Rougher texture from 1,871 to 1,875. Moderate cavern at 1,880. Open low angle fractures at 1,880 and 1,883.
1882–1892	Light colored generally massive Limestone: Generally well indurated. No fractures or caverns. Thin laminations at 1,886.
1892–1893	Dark colored Dolomite: No fractures or caverns, vuggy.
1893–1900	Light colored generally massive Limestone: Generally well indurated. No fractures or caverns. Dolomitic inclusions at 1,894

1900–1915	Dark colored Dolomite: No fractures, moderately vuggy. Minor caverns at 1,913.
1915–1923	Light colored generally massive Limestone: Generally well indurated. No fractures or caverns.
1923–1925	Dark colored Dolomite: Well indurated. Blocky texture
1925–1950	Light colored generally massive Dolomitic Limestone: Generally well indurated. No fractures or caverns.

G-7

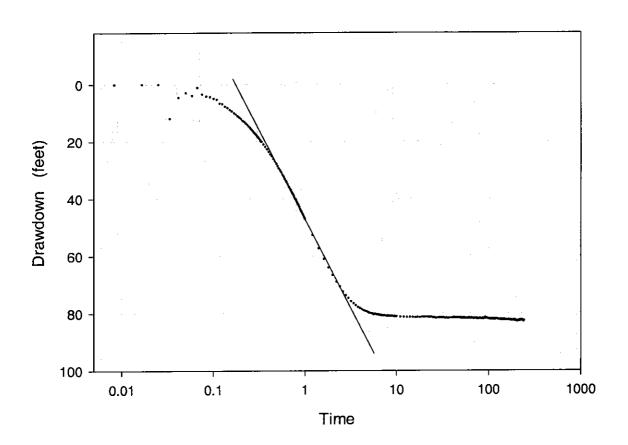
APPENDIX H PACKER TEST DATA AND GRAPHS

Project No.: 40368

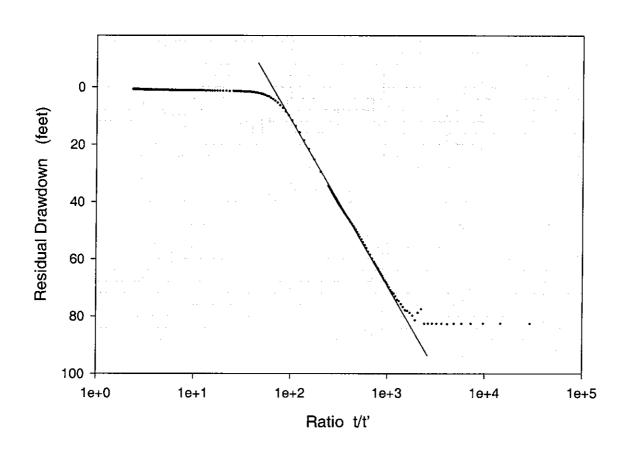

Appendix H

Straddle Packer Test No. 1 @ IW-1

1,631 - 1,647


POMPANO BEACH IW-1 1,631 - 1,647

BACKGROUND, DRAWDOWN AND RECOVERY


POMPANO BEACH IW-1 1631 - 1647

DRAWDOWN

POMPANO BEACH IW-1 1,631 - 1,647

RESIDUAL DRAWDOWN vs t/t'

POMPANO BEACH IW-1 1,631 - 1,647 BACKGROUND DATA

Time	Water Level	Time	Water Level	Time	Water Level	Time	Water Level
(minutes)	(feet)	(minutes)	(feet)	(minutes)	(feet)	(minutes)	(leet)
							_
0	-0.156	0.8166	-0.156	23	-0.078	92	0
0.0083	-0.156	0.8333	-0.156	24	-0.078	93	0
0.0166	-0.156	0.85	-0.156	25	-0.078	94	0
0.025	-0.156	0.8666	-0.156	26	-0.078	95 oc	0
0.0333	-0.156	0.8833	-0.156	27	-0.078	96	0
0.0416	-0.156	0.9	-0.156	28	-0.078	97	0
0.05	-0.156	0.9166	-0.156	29 30	-0.078	98 99	0 0
0.0583	-0.156	0.9333 0.95	-0.156	31	-0.078 -0.078	100	Ö
0.0666	-0.156	0.9666	-0.156 -0.156	32	0.076	101	ő
0.075 0.0833	-0.156 -0.156	0.9833	-0.156	33	Ö	102	Ö
0.0933	-0.156 -0.156	0.9633	-0.156	33 34	-0.078	103	0
0.0910	-0.156	1.2	-0.156	35	-0.078	104	Ö
0.1083	-0.156	1.4	-0.156	36	-0.078	105	Ŏ
0.1065	-0.156	1.6	-0.156	37	-0.078	106	ŏ
0.125	-0.156	1.8	-0.156	38	-0.078	107	ŏ
0.1333	-0.156	2	-0.156	39	-0.078	108	0.078
0.1416	-0.156	2.2	-0.156	40	-0.078	109	0
0.15	-0.156	2.4	-0.156	41	-0.078	110	Ô
0.1583	-0.156	2.6	-0.156	42	-0.078	111	ō
0.1666	-0.156	2.8	-0.156	43	-0.078	112	0
0.175	-0.156	3	-0.156	44	0	113	0
0.1833	-0.156	3.2	-0.156	45	-0.078	114	0
0.1916	-0.156	3.4	-0.156	46	-0.078	115	0
0.2	-0.156	3.6	-0.156	47	-0.078	116	0
0.2083	-0.156	3.8	-0.156	48	-0.078	117	0.078
0.2166	-0.156	4	-0.156	49	-0.078	118	0
0.225	-0.156	4.2	-0.156	50	-0.078	119	0
0.2333	-0.156	4.4	-0.156	51	-0.078	120	0.078
0.2416	-0.156	4.6	-0.156	52	-0.078	121	0.078
0.25	-0.156	4.8	-0.156	53	-0.078	122	0
0.2583	-0.156	5	-0.156	54	0	123	0
0.2666	-0.156	5.2	-0.156	55	-0.078	124	0
0.275	-0.156	5.4	-0.156	56	-0.078	125	0
0.2833	-0.156	5.6	-0.156	57	0		
0.2916	-0.156	5.8	-0.156	58	-0.078		
0.3	-0.156	6	-0.156	59	-0.078		
0.3083	-0.156	6.2	-0.156	60	-0.078		
0.3166	-0.156	6.4	-0.078	61	-0.078		
0.325	-0.156	6.6	-0.156	62	-0.078		
0.3333	-0.156	6.8	-0.156 -0.078	63	-0.0 7 8 -0.078		
0.35	-0.156	7 7.2		64 65	0.076		
0.3666	-0.156 0.156	7.2 7.4	-0.156 -0.156	66	0		
0.3833 0.4	-0.156 -0.156	7. 4 7.6	-0.156	67	0		
0.4166	-0.130	7.8	-0.156	68	ŏ		
0.4333	-0.156	8	-0.156	69	ő		
0.45	-0.156	8.2	-0.156	70	ő		
0.4666	-0.156	8.4	-0.156	71	-0.078		
0.4833	-0.156	8.6	-0.156	72	-0.078		
0.5	-0.156	8.8	-0.156	73	-0.078		
0.5166	-0.156	9	-0.078	74	-0.078		
0.5333	-0.156	9.2	-0.156	75	-0.078		
0.55	-0.156	9.4	-0.156	76	-0.078		
0.5666	-0.156	9.6	-0.156	77	-0.078		
0.5833	-0.156	9.8	-0.156	78	-0.078		
0.6	-0.156	10	-0.156	79	0		
0.6166	-0.156	11	-0.078	80	0		
0.6333	-0.156	12	-0.078	81	0		
0.65	-0.156	13	-0.078	82	-0.078		
0.6666	-0.156	14	-0.078	83	-0.078		
0.6833	-0.156	15	-0.078	84	-0.078		
0.7	-0.156	16	-0.078	85	0		
0.7166	-0.156	17	-0.078	86	0		
0.7333	-0.156	18	-0.078	87	-0.078		
0.75	-0.156	19	-0.078	88	0		
0.7666	-0.156	20	-0.078	89	0		
0.7833	-0.156	21	-0.078	90	0		

0.8

-0.156

22

-0.078

91

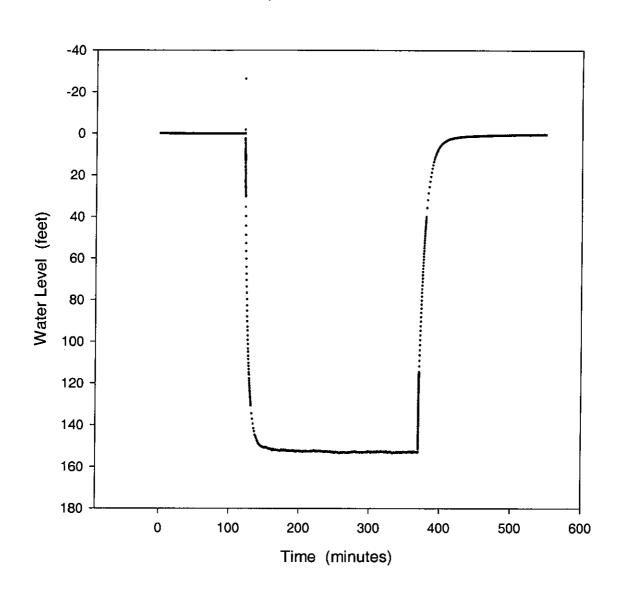
0

POMPANO BEACH IW-1 1,631 - 1,647 DRAWDOWN DATA

Time (minutes)	Water Level (feet)	Time (minutes)	Water Level (feet)	Time (minutes)	Water Level (feet)	Time (minutes)	Water Level (feet)	Time (minutes)	Water Level (feet)	Time (minutes)	Water Level (feet)
	, ,								00.00	000	00.00
0	0	0.8166	41.234	23	81.387	92	81.542	161	82.32	230 231	82.32 82.475
0.0083	0	0.8333 0.85	41.857 42.324	24 25	81.309 81.542	93 94	81.698 81.698	162 163	82.32 82.397	232	82.397
0.0166 0.025	0	0.8666	42.324	26 26	81.542	95	81.776	164	82.32	233	82.553
0.0333	11.933	0.8833	43.648	27	81.698	96	81.776	165	82.397	234	82.475
0.0416	4.524	0.9	44.193	28	81.62	97	81.776	166	82.242	235	82.475
0.05	2.886	0.9166	44.583	29	81.542	98	81.853	167	82.397	236	82.475
0.0583	3.9	0.9333	45.05	30	81.542	99	81.931	168	82.397	237	82.631
0.0666	1.092	0.95	45.595	31	81.62	100	82.009	169	82.32	238	82.631 82.864
0.075	3.354	0.9666 0.9833	46.14	32 33	81.542 81.62	101 102	82.009 81.931	170 171	82.32 82.242	239 240	82.786
0.0833 0.0916	4.134 4.29	1	46.607 47.074	33 34	81.698	103	82.086	172	82.475	241	82.708
0.0310	4.914	1.2	52.68	35	81.62	104	82.086	173	82.397	242	82.631
0.1083	5.226	1.4	57.35	36	81.698	105	82.086	174	82.397		
0.1166	6.63	1.6	61.008	37	81.62	106	82.086	175	82.475		
0.125	6.786	1.8	64.042	38	81.62	107	82.009	176	82.397		
0.1333	7.722	2	66.687	39	81.62	108	82.086	177	82.475		
0.1416	8.19	2.2	68.944	40	81.62	109	82.086 82.009	178 179	82.475 82.475		
0.15 0.1583	8.892 9.36	2.4 2.6	70.655 72.444	41 42	81.62 81.465	110 111	81.931	180	82.475		
0.1563	9.983	2.8	73.688	43	81.542	112	82.086	181	82.553		
0.175	10.451	3	74.699	44	81.62	113	82.086	182	82.475		
0.1833	11.075	3.2	75.788	45	81.542	114	82.164	183	82.475		
0.1916	11.543	3.4	76.488	46	81.62	115	82.009	184	82.553		
0.2	12.089	3.6	77.188	47	81.62	116	82.164	185	82.475		
0.2083	12.713	3.8	77.81	48	81.62	117	82.164	186	82.397		
0.2166	13.025	4	78.199	49	81.62	118	82.009 82.086	187 188	82.397 82.32		
0.225 0.2333	13.648	4.2 4.4	78.588 78.976	50 51	81.698 81.62	1 19 120	81.931	189	82.397		
0.2333	14.116 14.662	4.4	79.21	52	81.698	121	82.009	190	82.397		
0.25	15.13	4.8	79.443	53	81.698	122	82.009	191	82.32		
0.2583	15.675	5	79.754	54	81.542	123	82.009	192	82.32		
0.2666	16.221	5.2	79.909	55	81.776	124	82.009	193	82.475		
0.275	16.767	5.4	80.065	56	81.776	125	82.009	194	82.553		
0.2833	17.157	5.6	80.376	57	81.776	126	82.086	195	82.553		
0.2916	17.624	5.8 6	80.22 80.376	58 59	81.776 81.776	127 128	82.164 82.242	196 197	82.553 82.708		
0.3 0.3083	18.248 18.56	6.2	80.454	60	81.698	129	82.164	198	82.631		
0.3166	19.106	6.4	80.531	61	81.698	130	82.086	199	82.708		
0.325	19.651	6.6	80.531	62	81.62	131	82.164	200	82.708		
0.3333	20.119	6.8	80.687	63	81.776	132	82.164	201	82.631		
0.35	20.976	7	80.687	64	81.698	133	82.32	202	82.631		
0.3666	21.834	7.2	80.765	65	81.698	134	82.242	203	82.708		
0.3833	22.691	7.4	80.765	66 67	81.698	135 136	82.164 82.32	204 205	82.631 82.786		
0.4 0.4166	23.626 24.484	7.6 7.8	80.843 80.92	67 68	81.776 81.853	137	82.242	206	82.708		
0.4333	25.185	8	80.843	69	81.853	138	82.32	207	82.708		
0.45	26.12	8.2	80.843	70	81.776	139	82.32	208	82.786		
0.4666	26.978	8.4	80.92	71	81.853	140	82.32	209	82.708		
0.4833	27.757	8.6	80.998	72	81.776	141	82.242	210	82.631		
0.5	28.614	8.8	80.92	73	81.853	142	82.242	211	82.631		
0.5166	29.393	9	80.998	74 75	81.853 82.009	143 144	82.32 82.164	212 213	82,553 82,553		
0.5333 0.55	30.094 30.796	9.2 9.4	80.998 81.076	75 76	81.853	145	82.242	213	82.708		
0.5666	31.653	9.6	80.998	77	81.931	146	82.164	215	82.631		
0.5833	32.276	9.8	81,154	78	81.931	147	82.164	216	82.708		
0.6	33.055	10	81.076	79	81.853	148	82.32	217	82.708		
0.6166	33.756	11	81.231	80	81.853	149	82.164	218	82.631		
0.6333	34.38	12	81.309	81	81.853	150	82.32	219	82.475		
0.65	35.081	13	81.387	82	81.853	151	82.242	220 221	82.475 82.397		
0.6666 0.6833	35.782	14 15	81.387 81.387	83 84	81.931 81.931	152 153	82.242 82.32	221	82.553		
0.6833	36.483 37.028	16	81.465	85	81.931	154	82.397	223	82.475		
0.7166	37.729	17	81.387	86	81.853	155	82.32	224	82.397		
0.7333	38.274	18	81.465	87	81.853	156	82.397	225	82.397		
0.75	38.975	19	81.309	88	81.931	157	82.32	226	82.397		
0.7666	39.598	20	81.309	89	81.776	158	82.397	227	82.397		
0.7833	40.222	21	81.309	90	81.776	159	82.397	228	82.397		
0.8	40.611	22	81.309	91	81.62	160	82.397	229	82.397		

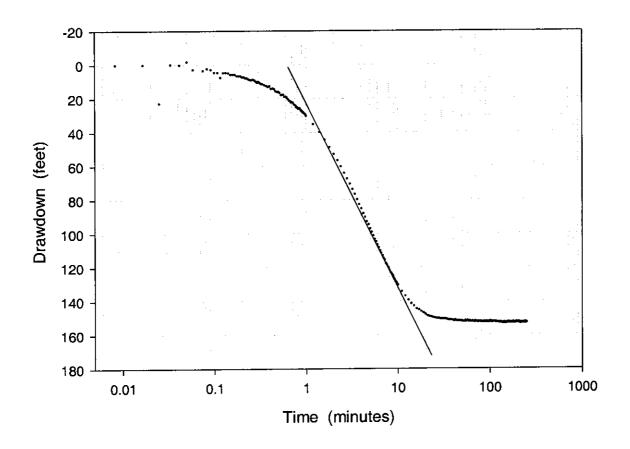
POMPANO BEACH IW-1 1,631 - 1,647 RECOVERY DATA

				MECOVE	חו אלות				
Time	Water Level	Time	Water Level						
(minutes)	(feet)	(minutes)	(feet)	(minutes)	(feet)	(minutes)	(feet)	(minutes	(feet)
0	82.553	0.8166	39.598	23	1.17	92	0.858	161	0.78
0.0083	82.553	0.8333	39.053	24	1.17	93	0.936	162	0.78
0.0166	82.475	0.85	38.586	25	1.248	94	0.936	163	0.702
0.025	82.553	0.8666	38.119	26	1.248	95	0.936	164	0.78
0.0333	82.631	0.8833	37.651	27	1.248	96	0.936	165	0.78
0.0416	82.631	0.9	37.106	28	1.17	97	0.858	166	0.78
0.05	82.631	0.9166	36.717	29	1.17	98	0.936	167	0.78
0.0583	82.708	0.9333	36.171	30	1.17	99	0.936	168	0.78
0.0666	82.631	0.95	35.704	31	1.17	100	0.936	169	0.78
0.075	82.553	0.9666	35.236	32	1.17	101	0.858	170	0.702
0.0833	82.553	0.9833	34.847	33	1.17	102	0.858	171	0.702
0.0916	82.553	1	34.38	34	1.17	103	0.936	172	0.702
0.1	82.631	1.2	29.471	35	1.17	104	0.858	173	0.78
0.1083	77.499	1.4	25.341	36	1,17	105	0.936	174	0.78
0.1166	78.821	1.6	21.678	37	1.17	106	0.936	175	0.78
0.125	81.387	1.8	18.56	38	1.092	107	0.936	176	0.78
0.1333	79.754	2	15.831	39	1.17	108	0.858	177	0.78
0.1416	78.821	2.2	13.57	40	1.092	109	0.936	178	0.702
0.15	78.121	2.4	11.621	41	1.092	110	0.858	179	0.78
0.1583	77.888	2.6	9.905	42	1.092	111	0.858	180	0.702
0.1666	76.799	2.8	8.502	43	1.092	112	0.858	181	0.702
0.175	75.71	3	7.254	44	1.092	113	0.858		
0.1833	74.699	3.2	6.318	45	1.014	114	0.936		
0.1916	74.233	3.4	5.46	46	1.092	115	0.858		
0.2	73.066	3.6	4.758	47	1.092	116	0.858		
0.2083					1.092				
	72.133	3.8	4.212	48		117	0.858		
0.2166	71.588	4	3.744	49	1.092	118	0.936		
0.225	70.966	4.2	3.276	50	1.014	119	0.858		
0.2333	69.877	4.4	3.042	51	1.092	120	0.858		
0.2416	69.021	4.6	2.73	52	1.092	121	0.858		
0.25	68.243	4.8	2.496	53	1.092	122	0.858		
0.2583	67.543	5	2.34	54	1.092	123	0.858		
0.2666	66.765	5.2	2.184	55	1.014	124	0.858		
0.275	65.987	5.4	2.106	56	1.014	125	0.858		
0.2833	65.209	5.6	1.95	57 50	1.014	126	0.858		
0.2916	64.509	5.8	1.872	58	1.014	127	0.858		
0.3	63.653	6	1.794	59	1.014	128	0.858		
0.3083	63.109	6.2	1.794	60	1.014	129	0.858		
0.3166	62.33	6.4	1.716	61	1.014	130	0.858		
0.325	61.708	6.6	1.638	62	1.014	131	0.858		
0.3333	61.085	6.8	1.638	63	1.014	132	0.858		
0.35	59.84	7	1.638	64	1.092	133	0.858		
0.3666	58.595	7.2	1.638	65	1.014	134	0.78		
0.3833	57.506	7.4	1.638	66	1.014	135	0.858		
0.4	56.26	7.6	1.56	67	1.014	136	0.858		
0.4166	55.171	7.8	1.56	68	1.014	137	0.858		
0.4333	54.159	8	1.56	69	1.014	138	0.858		
0.45	53.225	8.2	1.56	70	1.014	139	0.858		
0.4666	52.291	8.4	1.482	71	1.014	140	0.78		
0.4833	51.434	8.6	1.56	72	0.936	141	0.858		
0.5	50.578	8.8	1.482	73	1.014	142	0.858		
0.5166	49.799	9	1.482	74	0.936	143	0.858		
0.5333	49.099	9.2	1.482	75	0.936	144	0.78		
0.55	48.398	9.4	1.482	76	1.014	145	0.78		
0.5666	47.775	9.6	1.482	77	0.936	146	0.858		
0.5833	47.152	9.8	1.482	78	0.858	147	0.78		
0.6	46.451	10	1.404	79	1.014	148	0.78		
0.6166	45.906	11	1.482	80	0.936	149	0.78		
0.6333	45.361	12	1.404	81	0.936	150	0.858		
0.65	44.816	13	1.404	82	0.936	151	0.78		
0.6666	44.271	14	1.404	83	1.014	152	0.78		
0.6833	43.804	15	1.326	84	0.936	153	0.78		
0.7	43.181	16	1.326	85	0.936	154	0.78		
0.7166	42.714	17	1.326	86	0.936	155	0.78		
0.7333	42.169	18	1.326	87	0.936	156	0.78		
0.75	41.623	19	1.248	88	0.936	157	0.702		
0.7666	41.078	20	1.326	89	0.936	158	0.858		
0.7833	40.611								
		21	1.248	90	0.936	159	0.78		
8.0	40.066	22	1.248	91	0.936	160	0.78		

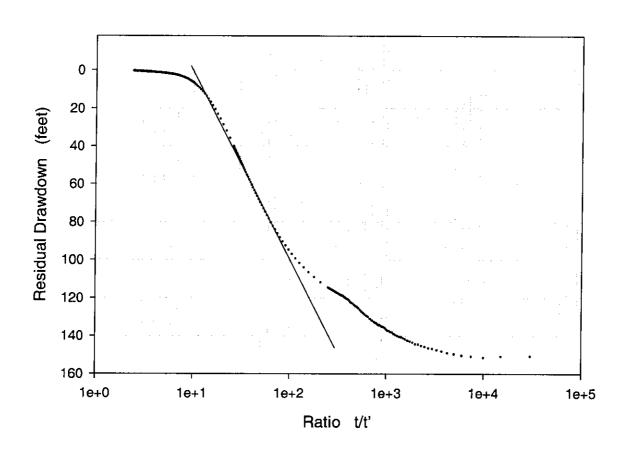

Appendix H

Straddle Packer Test No. 2 @ IW-1

1,731 - 1,747


POMPANO BEACH IW-1 1,731 - 1,747

BACKGROUND, DRAWDOWN AND RECOVERY


POMPANO BEACH IW-1 1731 - 1747

DRAWDOWN

POMPANO BEACH IW-1 1,731 - 1,747

RESIDUAL DRAWDOWN vs t/t'

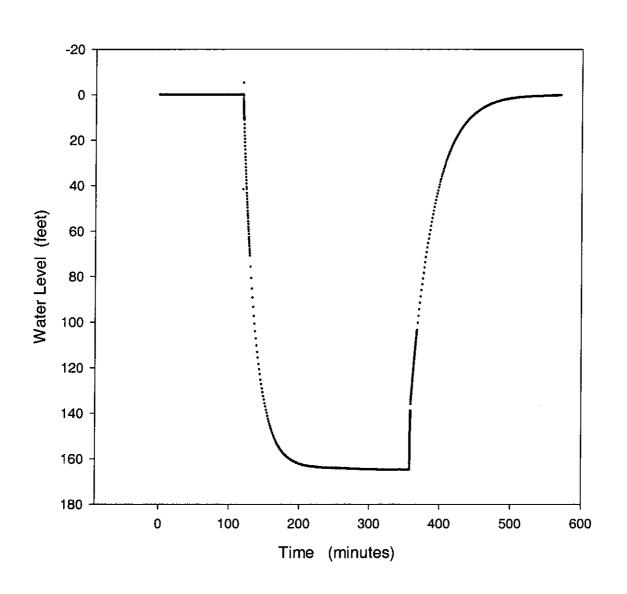
POMPANO BEACH IW-1 1,731 - 1,747 BACKGROUND DATA

			BACK	GROUND DATA			
Time	Water Level	Time	Water Level	Time	Water Level	Time	Water Level
		(minutes)	(feet)	(minutes)	(leet)	(minutes)	
(minutes)	(feet)	(minotes)	(reer)	(minutes)	(ieel)	(4111/10195)	(feet)
_							
0	-0.078	0.8166	-0.156	23	-0.078	92	0.078
0.0083	-0.078	0.8333	-0.078	24	-0.078	93	0.078
0.0166	-0.078	0.85	-0.078	25	0	94	0.078
0.025	-0.078	0.8666	-0.156	26	0	95	0.078
0.0333	-0.078	0.8833	-0.078	27	0	96	0.078
0.0416	-0.078	0.9	-0.078	28	0	97	0.078
0.05	-0.156	0.9166	-0.156	29	-0.078	98	0.078
0.0583	-0.078	0.9333	-0.078	30	0	99	0.078
0.0666	-0.078	0.95	-0.156	31	Ō	100	0.078
0.075	-0.078	0.9666	-0.078	32	-0.078	101	0.078
0.0833	-0.078	0.9833	-0.078	33	-0.078	102	0.078
0.0916	-0.078	1	-0.078	34	0	103	0.078
0.1	-0.156	1,2	-0.078	35	0	104	0.078
0.1083	-0.078	1.4	-0.078	36	0	105	0.078
0.1166	-0.078	1.6	-0.078	37	0	106	0.078
0.125	-0.078	1.8	-0.078	38	0	107	0.078
0.1333	-0.078	2	-0.156	39	0	108	0.078
0.1416	-0.156	2.2	-0.078	40	0	109	0.078
0.15	-0.156	2.4	-0.078	41	0	110	0.078
0.1583	-0.078	2.6	-0.078	42	ő		0.078
						111	
0.1666	-0.156	2.8	-0.078	43	0	112	0.078
0.175	-0.078	3	-0.156	44	0	113	0.078
0.1833	-0.078	3.2	-0.078	45	0	114	0.078
0.1916	-0.078	3.4	-0.156	46	-0.078	115	0.078
0.2	-0.156	3.6	-0.078	47	0.070	116	0.078
0.2083	-0.078	3.8	-0.078	48	0	117	0.078
0.2166	-0.156	4	-0.078	49	0	118	0.078
0.225	-0.078	4.2	-0.156	50	0	119	0.078
0.2333	-0.078	4.4	-0.078	51	0	120	0.078
0.2416	-0.078	4.6	-0.078	52	ŏ	121	0
						121	U
0.25	-0.156	4.8	-0.078	53	0		
0.2583	-0.078	5	-0.078	54	0		
0.2666	-0.156	5.2	-0.078	55	0		
0.275	-0.078	5.4	-0.078	56	0		
0.2833	-0.078	5.6	-0.078	57	ō		
0.2916	-0.078	5.8	-0.078	58	0		
0.3	-0.156	6	-0.078	59	0		
0.3083	-0.156	6.2	-0.078	60	0		
0.3166	-0.078	6.4	-0.078	61	0		
0.325	-0.156	6.6	-0.078	62	Ō		
0.3333	-0.078	6.8	-0.078	63	0		
0.35	-0.078	7	-0.078	64	0		
0.3666	-0.078	7.2	-0.078	65	0		
0.3833	-0.078	7.4	-0.078	66	0.078		
0.4	-0.078	7.6	-0.156	67	0		
0.4166	-0.078	7.8	-0.078	68	0.078		
0.4333	-0.078	8	-0.078	69	0		
0.45	-0.078	8.2	-0.078	70	0		
0.4666	-0.078	8.4	-0.078	71	0		
0.4833	-0.078	8.6	-0.078	72	0		
0.5	-0.078	8.8	-0.078	73	0		
0.5166	-0.078	9	-0.078	74	0		
0.5333	-0.078	9.2	-0.078	7 5	0		
0.55	-0.078	9.4	-0.156	76	0		
0.5666	-0.156	9.6	-0.078	77	0.078		
0.5833	-0.078	9.8	-0.078	78	0		
				79	ő		
0.6	-0.078	10	-0.078				
0.6166	-0.078	11	-0.078	80	0.078		
0.6333	-0.078	12	-0.078	81	0		
0.65	-0.078	13	0	82	0		
0.6666	-0.078	14	0	83	0.078		
0.6833	-0.156	15	-0.078	84	0.078		
0.7	-0.078	16	0	85	0.078		
0.7166	-0.078	17	-0.078	86	0.078		
0.7333	-0.078	18	0	87	0.078		
0.75	-0.078	19	0	88	0		
0.7666	-0.078	20	0	89	Ö		
0.7833	-0.078	21	Ö	90	0.078		
0.8	-0.156	22	0	91	0.078		

POMPANO BEACH IW-1 1,731 - 1,747 DRAWDOWN DATA

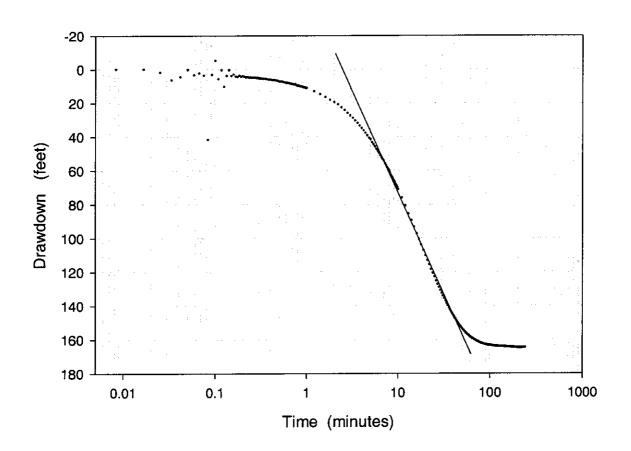
					DRAWDO	OWN DATA					
Time	Water Level	Time	Water Level	Time	Water Level	Time	Water Level	Time	Water Level	Time	Water Level
(minutes)	(leet)	(minutes)	(feet)	(minutes)	(feet)	(minutes)	(feet)	(minutes)	(feet)	(minutes)	(feet)
(ITIMATECO)	(IOU)	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(• • • • • •	` '						
0.0083	0	0.8333	25.881	24	149.91	93	152.545	162	152.855	231	153.01
0.0166	ŏ	0.85	25.881	25	150.065	94	152.545	163	153.01	232	153.01
0.025	22.764	0.8666	26.427	26	150.375	95	152.622	164	152.932	233	153.087
0.023	-0.156	0.8833	27.05	27	150.452	96	152.545	165	153.01	234	153.01
		0.0000	27.595	28	150.452	97	152.39	166	153.165	235	152.777
0.0416	0.078			29	150.84	98	152.7	167	152.932	236	152.855
0.05	-1.872	0.9166	27.829		150.762	99	152.467	168	153.01	237	152.777
0.0583	2.885	0.9333	28.374	30			152.39	169	153.01	238	152.777
0.0666	-26.3	0.95	28.608	31	150.607	100	152.157	170	153.242	239	152.932
0.075	3.431	0.9666	29.231	32	150.84	101				240	152.7
0.0833	2.339	0.9833	29.621	33	150.762	102	152.467	171	153.01	241	153.242
0.0916	2.807	1	30.244	34	150.995	103	152.622	172	153.087 152.932	242	153.087
0.1	4.601	1.2	35.229	35	151.15	104	152.622	173			152.622
0.1083	4.679	1.4	39.824	36	151.305	105	152.39	174	153.01	243	152.855
0.1166	7.564	1.6	44.418	37	151.227	106	152.7	175	153.01	244	
0.125	4.757	1.8	48.855	38	151.537	107	152.545	176	152.855	245	152.932
0.1333	4.679	2	52.824	39	151.46	108	152.39	177	153.087	246	152.932
0.1416	4.913	2.2	56.638	40	151.692	109	152.39	178	152.622	247	153.01
0.15	5.693	2.4	60.295	41	152.08	110	152.545	179	152.855	248	153.087
0.1583	5.771	2.6	64.184	42	151.46	111	152.467	180	152.777	249	152.855
0.1666	5.849	2.8	67.529	43	151.77	112	152.545	181	152.855		
0.175	6.551	3	70.562	44	151.925	113	152.545	182	153.165		
0.1833	6.628	3.2	73.673	45	151.847	114	152.777	183	152.7		
0.1916	6.628	3.4	76.628	46	151.77	115	152.855	184	152.932		
	7.174	3.6	79.815	47	152.002	116	152.622	185	153.087		
0.2		3.8	82.769	48	151.925	117	152.777	186	152.855		
0.2083	7.252	4	85.256	49	152.002	118	152.622	187	152.855		
0.2166	7.798				152.235	119	152.622	188	152.855		
0.225	7.798	4.2	88.132	50	152.235	120	152.7	189	152.7		
0.2333	8.5	4.4	90.307	51 50		121	152.7	190	153.087		
0.2416	8.812	4.6	92.949	52	152.312		152.777	191	152.622		
0.25	9.046	4.8	94.736	53	152.157	122		192	152.7		
0.2583	8.89	5	97.144	54	151.77	123	152.777				
0.2666	8.812	5.2	99.242	55	152.235	124	152.622	193	152.855		
0.275	9.28	5.4	101.261	56	152.157	125	152.932	194	152.7		
0.2833	9.903	5.6	103.436	57	151.77	126	152.855	195	152.855		
0.2916	10.605	5.8	104.911	58	152.235	127	153.087	196	152.622		
0.3	10.137	6	106.853	59	152.002	128	152.7	197	152.545		
0.3083	10.371	6.2	108.406	60	152.157	129	153.242	198	152.777		
0.3166	10.917	6.4	110.269	61	152.002	130	153.242	199	152.777		
0.325	11.307	6.6	111.667	62	152.39	131	153.087	200	152.777		
0.3333	11.463	6.8	113.219	63	152.312	132	152.855	201	152.932		
0.35	12.008	7	114.849	64	152.39	133	153.087	202	152.855		
	12.006	7.2	115.781	65	152.157	134	153.087	203	152.932		
0.3666		7.4	117.721	66	152.39	135	153.087	204	152.622		
0.3833	13.022			67	152.312	136	153.242	205	152.855		
0.4	12.71	7.6	118.808	68	152.467	137	153.397	206	153.242		
0.4166	14.191	7.8	120.05		152.467	138	153.32	207	152.932		
0.4333	13.957	8	121.214	69 70		139	152.932	208	152.932		
0.45	14.503	8.2	122.3	70	152.235 152.39	140	153.01	209	152.7		
0.4666	15.672	8.4	123.464	71			153.32	210	152.855		
0.4833	15.984	8.6	124.24	72	152.235	141	153.32	210	153.01		
0.5	16.14	8.8	125.249	73	152.622	142	153.32	211	153.32		
0.5166	16.53	9	126.413	74	152.467	143		212	153.475		
0.5333	17.933	9.2	127.266	75 75	152.777	144	152.932	213 214	153.475		
0.55	17.777	9.4	128.352	76	152.467	145	153.01				
0.5666	17.621	9.6	129.128	77	152.39	146	153.242	215	153.01		
0.5833	18.946	9.8	129.981	78	152.312	147	153.165	216	153.165		
0.6	18.868	10	130.679	79	152.39	148	153.32	217	153.242		
0.6166	19.335	11	134.48	80	152.7	149	153.242	218	153.165		
0.6333	20.193	12	137.117	81	152.39	150	152.932	219	152.855		
0.65	20.972	13	139.443	82	152.7	15 1	153.165	220	153.165		
0.6666	21.44	14	141.615	83	152.622	152	153.165	221	153.01		
0.6833	22.141	15	143.01	84	152.622	153	153.01	222	153.01		
0.0033	22.219	16	144.716	85	152.855	154	153.01	223	152.932		
		17	145.259	86	152.467	155	152.777	224	153.242		
0.7166	22.219		146.266	87	152.622	156	152.932	225	153.087		
0.7333	23.232	18		88	152.022	157	152.777	226	152.932		
0.75	23.699	19	147.119			158	152.855	227	153.165		
0.7666	24.089	20	147.972	89	152.39		152.622	228	152.855		
0.7833	25.18	21	148.824	90	152.7	159		229	152.855		
0.8	25.18	22	149.212	91	152.622	160	152.777	229	152.655		
0.8166	25.881	23	149.445	92	152.545	161	153.087	230	102.932		

POMPANO BEACH ·IW-1 1,731 - 1,747 RECOVERY DATA

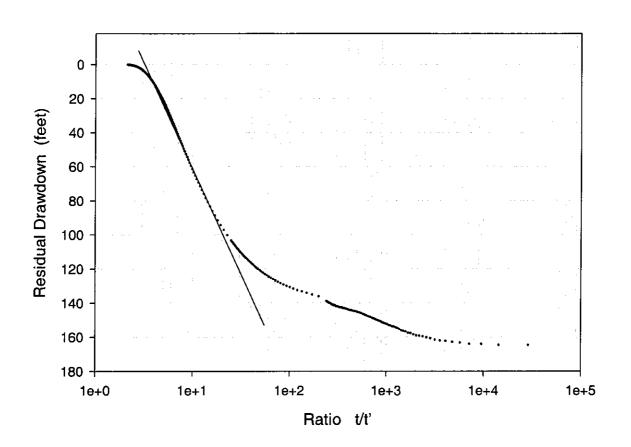

				HECOVE	HYDAIA					
Time	Water Level		Time	Water Level						
(minutes)	(feet)	(minutes)	(feet)	(minutes)	(feet)	(minutes)	(feet)	(n	ninutes)	(feet)
										• •
0	152.777	0.8166	117.178	23	10.215	92	0.935		161	0.467
0.0083	150.685	0.8333	117.023	24	9.28	93	0.935		162	0.467
0.0166	150.84	0.85	116.712	25	8.5	94	0.935		163	0.467
0.025	151.46	0.8666	116.402	26	7.798	95	0.857		164	0.467
0.0333	150.84	0.8833	116.169	27	7.174					
						96	0.857		165	0.467
0.0416	150.297	0.9	115.936	28	6.551	97	0.857		166	0.467
0.05	149.522	0.9166	115.703	29	6.083	98	0.857		167	0.311
0.0583	149.057	0.9333	115.47	30	5.615	99	0.857		168	0.467
0.0666	148.049	0.95	115.315	31	5.225	100	0.779		169	0.545
0.075	147.429	0.9666	115.082	32	4.835	101	0.857		170	0.389
0.0833	146.731	0.9833	114.772	33	4.523	102	0.857		171	0.467
0.0916	146.421	1	114,539	34	4.289	103	0.857		172	0.467
0.1	145.724	1.2	111.822	35	3.977	104	0.779		173	0.467
0.1083	145.104	1.4	109.104	36	3.743	105	0.779		174	0.467
0.1166	144.483	1.6	106.542	37	3.587	106	0.779		175	0.389
0.125	144.251	1.8	104.057	38	3.353					
						107	0.779		176	0.311
0.1333	143.32	2	101.65	39	3.197	108	0.779		177	0.311
0.1416	142.855	2.2	99.242	40	3.041	109	0.701		178	0.467
0.15	142.39	2.4	96.989	41	2.807	110	0.701		179	0.389
0.1583	141.692	2.6	94.736	42	2.729	111	0.779			
0.1666	141.149	2.8	92.561	43	2.651	112	0.701			
0.175	140.607	3	90.385	44	2.495	113	0.701			
0.1833	140.374	3.2	88.287	45	2.417	114	0.701			
0.1916	139.986	3.4	86.189	46	2.339	115	0.701			
0.2	139.443	3.6	84.168	47	2.261	116	0.701			
0.2083	138.978	3.8	82.225	48	2.183	117	0.701			
0.2166	138.125	4	80.359	49	2.027	118	0.701			
0.225	137.97	4.2	78.416	50	2.027	119	0.701			
0.2333	137.427	4.4	76.55	51	1.949	120	0.701			
0.2416	137.195	4.6	74.839	52	1.871	121	0.623			
0.25	136.497	4.8	73.051	53	1.871	122	0.623			
0.2583	135.721	5	71.34	54	1.793	123	0.623			
0.2666	135.256	5.2	69.707	55	1.793	124	0.623			
0.275	135.101	5.4	68.074	56	1.715	125	0.701			
0.2833	134.79	5.6	66.518	57	1.715	126	0.623			
0.2916	134.247	5.8	64.962	58	1.559	127	0.623			
0.3	134.247	6	63.484	59	1.559	128	0.623			
0.3083	133.705	6.2	62.006	60	1.559					
0.3166						129	0.623			
	133.162	6.4	60.528	61	1.481	130	0.545			
0.325	133.006	6.6	59.128	62	1.481	131	0.545			
0.3333	132.619	6.8	57.805	63	1.481	132	0.545			
0.35	131.765	7	56.482	64	1.481	133	0.623			
0.3666	130.99	7.2	55.159	65	1.403	134	0.623			
0.3833	129.981	7.4	53.914	66	1.403	135	0.545			
0.4	129.361	7.6	52.669	67	1.403	136	0.545			
0.4166	128.585	7.8	51.424	68	1.325	137	0.545			
0.4333	127.887	8	50.256	69	1.325	138	0.545			
0.45	127.111	8.2	49.166	70	1.247	139	0.545			
0.4666	126.257	8.4	47.999	71	1.247	140	0.467			
0.4833	125.404	8.6	46.909	72	1.247	141	0.545			
0.5	124.706	8.8	45.819	73	1.247	142	0.545			
0.5166	124.395	9	44.807		1.247					
				74		143	0.545			
0.5333	123.852	9.2	43.795	75 	1.169	144	0.467			
0.55	122.999	9.4	42.783	76	1.169	145	0.545			
0.5666	122.611	9.6	41.848	77	1.169	146	0.467			
0.5833	122.223	9.8	40.836	78	1.169	147	0.467			
0.6	121.602	10	39.98	79	1.091	148	0.467			
0.6166	120.903	11	35.619	80	1.091	149	0.467			
0.6333	120.593	12	31.88	81	1.091	150	0.467			
0.65	120.282	13	28.53	82	1.091	151	0.467			
0.6666	119.817	14	25.569	83	1.091	152	0.467			
0.6833	119.274	15	22.92	84	1.013	153	0.467			
0.7	118.808	16	20.582	85	1.013	154	0.467			
0.7166	118.808	17	18.556	86	1.013	155	0.467			
0.7333	118.497		16.685							
0.7333		18		87	1.013	156	0.623			
	118.265	19	15.049	88	1.013	157	0.545			
0.7666	117.954	20	13.567	89	1.013	158	0.545			
0.7833	117.644	21	12.32	90	0.935	159	0.467			
0.8	117,411	22	11.229	91	0.935	160	0.467			

Appendix H

Straddle Packer Test No. 3 @ IW-1


1,931 - 1,947

POMPANO BEACH
IW-1
1,931 - 1,947
BACKGROUNG. DRAWDOWN AND RECOVERY DATA


POMPANO BEACH IW-1 1931 - 1947

DRAWDOWN

POMPANO BEACH IW-1 1,931 - 1,947

RESIDUAL DRAWDOWN vs t/t'

POMPANO BEACH IW-1 1,931 - 1,947 BACKGROUND DATA

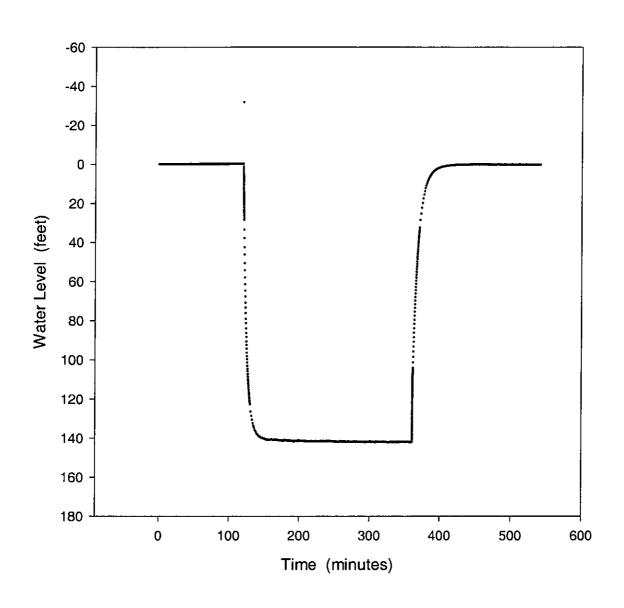
			BACKG	HOUND DATA		
Time	Water Level	Time	Water Level	Time Water Level	Time	Water Level
(minutes)	(leet)	(minutes)	(feet)	(minutes) (feet)	(minutes)	(feet)
0	-0.077	0.8166	-0.077	23 0	92	0
0.0083	-0.077	0.8333	-0.077	24 0	93	0
0.0166	-0.077	0.85	-0.077	25 0	94	-0.077
0.025	-0.077	0.8666	-0.077	26 0.077	95	0
					96	-0.155
0.0333	-0.077	0.8833	-0.077	27 0		
0.0416	-0.077	0.9	-0.077	28 0	97	-0.077
0.05	-0.077	0.9166	-0.077	29 0	98	0
0.0583	-0.077	0.9333	-0.077	30 -0.077	99	-0.077
0.0666	-0.077	0.95	-0.077	31 -0.077	100	-0.077
0.075	-0.077	0.9666	-0.077	32 -0.077	101	0
0.0833	-0.077	0.9833	-0.077	33 0	102	0
0.0000	-0.077	1	-0.077	34 0	103	-0.077
		1.2	-0.155	35 0	104	-0.077
0.1	-0.077					
0.1083	-0.077	1.4	-0.077	36 -0.077	105	-0.077
0.1166	-0.077	1.6	-0.077	37 0	106	-0.077
0.125	-0.077	1.8	-0.077	38 0	107	-0.077
0.1333	-0.077	2	-0.077	39 0	108	-0.077
0.1416	-0.077	2.2	-0.077	40 0	109	-0.077
0.15	-0.077	2.4	-0.077	41 -0.077	110	-0.077
0.1583	-0.077	2.6	-0.077	42 0	111	0
						-0.077
0.1666	-0.077	2.8	-0.077	43 0	112	
0.175	-0.077	3	-0.077	44 0	113	-0.077
0.1833	-0.077	3.2	-0.077	45 - 0.077	114	-0.077
0.1916	-0.077	3.4	-0.077	46 -0.077	115	-0.077
0.2	-0.155	3.6	-0.077	47 0	116	-0.077
0.2083	-0.077	3.8	-0.077	48 0	117	-0.077
0.2166	-0.077	4	0	49 -0.077	118	-0.077
		4.2	-0.077	50 0	119	-0.077
0.225	-0.077				119	-0.077
0.2333	-0.077	4.4	-0.077	51 0		
0.2416	-0.077	4.6	-0.077	52 0		
0.25	-0.077	4.8	-0.077	53 0		
0.2583	-0.077	5	-0.077	54 -0.077		
0.2666	-0.077	5.2	-0.077	55 0		
0.275	-0.077	5.4	-0.077	56 0		
0.2833	-0.077	5.6	-0.077	57 -0.077		
		5.8	-0.077	58 0		
0.2916	-0.077					
0.3	-0.077	6	-0.077	59 -0.077		
0.3083	-0.077	6.2	-0.077	60 -0.077		
0.3166	-0.077	6.4	-0.077	61 0		
0.325	-0.077	6.6	-0.077	62 -0.077		
0.3333	-0.077	6.8	-0.077	63 -0.077		
0.35	-0.077	7	-0.077	64 0		
0.3666	-0.077	7.2	-0.077	6 5 0		
0.3833	-0.077	7.4	-0.077	66 -0.077		
			-0.077			
0.4	-0.077	7.6		67 0		
0.4166	-0.077	7.8	-0.077	68 0		
0.4333	-0.077	8	-0.077	69 -0.077		
0.45	-0.077	8.2	-0.077	70 -0.077		
0.4666	-0.077	8.4	-0.077	71 0		
0.4833	-0.077	8.6	-0.077	72 -0.077		
0.5	-0.077	8.8	-0.155	73 0		
0.5166	-0.077	9	-0.077	74 -0.077		
0.5333	-0.077 -0.077	9.2	-0.077	75 -0.077		
0.55	-0.077	9.4	-0.077	76 -0.077		
0.5666	0	9.6	-0.077	77 -0.077		
0.5833	-0.077	9.8	-0.077	78 -0.077		
0.6	-0.077	10	-0.077	79 0		
0.6166	-0.077	11	-0.077	80 -0.077		
0.6333	-0.077	12	-0.077	81 -0.077		
0.65	-0.077	13	0	82 0		
0.6666	-0.077	14	Ö	83 0		
0.6833	-0.077	15	0	84 -0.077		
0.7	-0.077	16	0	85 0		
0.7166	-0.077	17	0	86 -0.077		
0.7333	-0.077	18	-0.077	87 0		
0.75	-0.077	19	-0.077	88 0		
0.7666	-0.077	20	0	89 -0.077		
0.7833	-0.077	21	ō	90 -0.077		
0.8	-0.077	22	Ö	91 -0.077		
0.0	0.011		~			

POMPANO BEACH IW-1 1,931 - 1,947 DRAWDOWN DATA

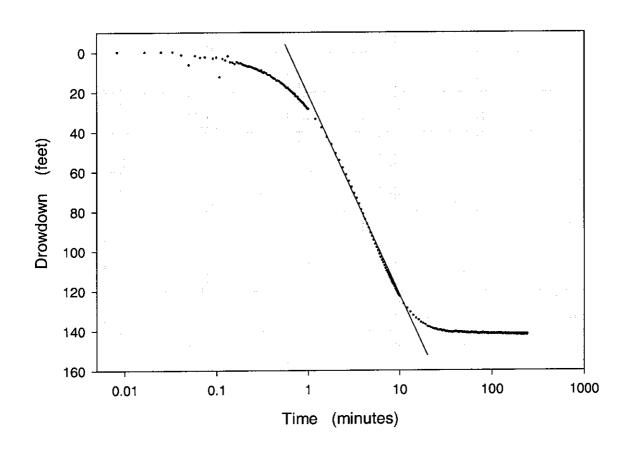
Time	Water Level	Time	Water Level	Time	Water Level	Time	Water Level	Time	Water Level	Time	Water Level
(minutes)	(feet)	(minutes)	(feet)	(minutes)	(feet)	(minutes)	(feet)	(minutes)	(feet)	(minutes)	(feet)
0	-0.155	0.8166	9.591	23	118.41	92	163.069	161	164.385	230	164.773
0.0083	-0.155	0.8333	9.825	24	120.738	93	162.991	162	164.463	231	164.773
0.0166	-0.155	0.85	10.058	25	122.911	94	163.146	163	164.308	232	164.773
0.025	1.637	0.8666	9.902	26	125.316	95	163.301	164	164.385	233	164.773
0.0333	6.238	0.8833	10.058	27	127.255	96	163.224	165	164.463	234	164.773
0.0416	4.445	0.9	10.37	28	129.117	97	163.301	166	164.463	235	164.773
0.05	0.233	0.9166	10.37	29	130.823	98	163.301	167	164.385	236	164.773
0.0583	3.275	0.9333	10.682	30	132.452	99	163.301	168	164.463	237	164.773
0.0666	2.183	0.95	10.526	31	134.081	100	163.456	169	164.54	238	164.773
0.0000	3.587	0.9666	10.838	32	135.632	101	163.379	170	164.54	239	164.618
	41.611	0.9833	10.994	33	137.105	102	163.379	171	164.463		
0.0833		1	10.994	34	138.579	103	163.379	172	164.54		
0.0916	3.041	1.2	12.943	35	139.819	104	163.611	173	164.54		
0.1	-5.304 5.614	1.4	14.658	36	141.215	105	163.611	174	164.618		
0.1083	5.614			37	142.455	106	163.611	175	164.54		
0.1166	0.389	1.6	16.294		143.618	107	163.688	176	164.618		
0.125	10.136	1.8	17.931	38		108	163.611	177	164.618		
0.1333	3.665	2	19.412	39	144.781 145.789	109	163.688	178	164.54		
0.1416	0.389	2.2	20.814	40				179	164.618		
0.15	3.743	2.4	22.529	41	146.719	110	163.611	180	164.54		
0.1583	2.885	2.6	24.087	42	147.649	111	163.766				
0.1666	4.055	2.8	25.879	43	148.579	112	163.843	181	164.463		
0.175	4.289	3	27.359	44	149.509	113	163.766	182	164.54		
0.1833	3.665	3.2	28.761	45	150.207	114	163.843	183	164.618		
0.1916	4.211	3.4	30.319	46	150.982	115	163.843	184	164.695		
0.2	3.977	3.6	31.877	47	151.679	116	163.921	185	164.618		
0.2083	4.211	3.8	33.357	48	152.377	117	163.921	186	164.695		
0.2166	4.679	4	34.759	49	153.074	118	163.998	187	164.695		
0.225	4.445	4.2	36.238	50	153.617	119	163.998	188	164.695		
0.2333	4.757	4.4	37.64	51	154.237	120	163.843	189	164.695		
0.2416	4.679	4.6	39.042	52	154.624	121	163.843	190	164.695		
0.25	4.835	4.8	40.599	53	155.166	122	163.998	191	164.618		
0.2583	4.835	5	41.533	54	155.709	123	163.921	192	164.695		
0.2666	4.835	5.2	43.246	55	156.174	124	163.998	193	164.695		
0.275	4.835	5.4	44.492	56	156.561	125	163.998	194	164.695		
0.2833	5.068	5.6	45.815	57	157.026	126	163.998	195	164.773		
0.2916	4.835	5.8	47.216	58	157.336	127	163.921	196	164.773		
0.3	5.224	6	48.384	59	157.723	128	163.998	197	164.85		
0.3083	5.224	6.2	49.551	60	158.111	129	164.076	198	164.85		
0.3166	5.38	6.4	51.108	61	158.343	130	163.921	199	164.85		
0.325	5.38	6.6	52.353	62	158.576	131	163.921	200	164.695		
0.3333	5.536	6.8	53.287	63	158.885	132	163.998	201	164.695		
0.35	5.536	7	54.299	64	159.273	133	164.076	202	164.85		
0.3666	5.614	7.2	55.699	65	159.428	134	164.076	203	164.773		
0.3833	5.926	7.4	56.866	66	159.583	135	163.998	204	164.85		
0.4	5.926	7.6	58.111	67	159.815	136	164.076	205	164.85		
0.4166	6.238	7.8	59.123	68	160.125	137	164.076	206	164.85		
0.4333	6.238	8	60.056	69	160.28	138	164.153	207	164.85		
0.45	6.316	8.2	61.301	70	160.435	139	164.076	208	164.773		
0.4666	6.55	8.4	62.701	71	160.667	140	163.998	209	164.85		
0.4833	6.706	8.6	63.635	72	160.9	141	164.153	210	164.773		
0.5	7.096	8.8	64.646	73	160.977	142	164.153	211	164.85		
0.5166	7.096	9	65.657	74	161.132	143	164.153	212	164.85		
0.5333	7.252	9.2	66.668	75	161.287	144	164.231	213	164.85		
0.55	7.33	9.4	67.835	76	161.442	145	164.231	214	164.85		
0.5666	7.564	9.6	68.846	77	161.752	146	164.076	215	164.773		
0.5833	7.72	9.8	69.857	78	161.674	147	164.076	216	164.773		
0.6	7.953	10	70.867	79	161.907	148	164.076	217	164.85		
0.6166	7.875	11	75.844	80	162.062	149	164.231	218	164.773		
0.6333	8.031	12	80.663	81	162.139	150	164.308	219	164.85		
0.65	8.187	13	85.327	82	162.294	151	164.308	220	164.773		
0.6666	8.265	14	89.29	83	162.294	152	164.308	221	164.773		
0.6833	8.577	15	93.252	84	162.449	153	164.308	222	164.773		
0.7	8.577	16	97.292	85	162.604	154	164.308	223	164.773		
0.7166	8.811	17	100.709	86	162.526	155	164.385	224	164.695		
0.7333	8.811	18	104.048	87	162.759	156	164.385	225	164.618		
0.75	8.733	19	107.154	88	162.836	157	164.385	226	164.695		
0.7666	9.279	20	110.26	89	162.914	158	164.385	227	164.773		
0.7833	9.513	21	113.132	90	162.836	159	164.385	228	164.773		
0.8	9.591	22	115.616	91	162.991	160	164.385	229	164.773		

POMPANO BEACH IW-1 1,931 - 1,947 RECOVERY DATA

				TILOGYE	LITTOATA				
Time	Water Level								
(minutes)	(feet)								
0	164.618	0.8166	141.292	23	69.312	92	7.875	161	0.701
0.0083	164.618	0.8333	140.982	24	67.29	93	7.642	162	0.779
0.0166	164.618	0.85	141.137	25	65.268	94	7.408	163	0.779
0.025	164.076	0.8666	140.905	26	63.246	95	7.174	164	0.779
0.0333	163.998	0.8833	140.517	27	61.379	96	6.94	165	0.701
						97		166	0.701
0.0416	163.224	0.9	140.129	28	59.512		6.706		
0.05	162.759	0.9166	139.897	29	57.722	98	6.472	167	0.623
0.0583	162.217	0.9333	139.974	30	55.933	99	6.316	168	0.623
0.0666	162.062	0.95	139.509	31	54.221	100	6.082	• 169	0.623
0.075	161.519	0.9666	139.277	32	52.586	101	5.848	170	0.623
0.0833	160.745	0.9833	139.044	33	50.952	102	5.692	171	0.545
0.0916	160.125	1	138.811	34	49.396	103	5.536	172	0.545
0.1	159.505	1,2	136.02	35	47.839	104	5.302	173	0.545
0.1083	159.118	1.4	134.934	36	46.36	105	5.146	174	0.545
0.1166	158.963	1.6	134.003	37	44.881	106	4.99	175	0.545
0.125	158.343	1.8	133.15	38	43.48	107	4.835	176	0.467
0.1333	157.568	2	132.375	39	42.156	108	4.679	177	0.467
0.1416	157.413	2.2	131.522	40	40.833	109	4.523	178	0.467
	156.639	2.4	130.668	41	39.509	110	4.367	179	0.467
0.15									
0.1583	156.329	2.6	129.893	42	38.263	111	4.211	180	0.467
0.1666	156.019	2.8	129.117	43	37.095	112	4.055	181	0.389
0.175	155.244	3	128.341	44	35.927	113	3.977	182	0.389
0.1833	154.624	3.2	127.488	45	34.837	114	3.821	183	0.389
0.1916	154.237	3.4	126.712	46	33.746	115	3.665	184	0.389
0.2	153.772	3.6	125.936	47	32.656	116	3.587	185	0.389
					31.643	117	3.509	186	0.389
0.2083	153.694	3.8	125.161	48					
0.2166	153.152	4	124.462	49	30.631	118	3.353	187	0.311
0.225	152.997	4.2	123.686	50	29.618	119	3.275	188	0.311
0.2333	152.377	4.4	122.911	51	28.683	120	3.119	189	0.311
0.2416	152.067	4.6	122.135	52	27.827	121	3.041	190	0.311
0.25	151.757	4.8	121.436	53	26.892	122	2.885	191	0.233
0.2583	151.524	5	120.66	54	26.113	123	2.885	192	0.233
							2.729	193	0.233
0.2666	150.982	5.2	119.884	55	25.256	124			
0.275	150.672	5.4	119.186	56	24.477	125	2.651	194	0.233
0.2833	150.362	5.6	118.487	57	23.62	126	2.573	195	0.233
0.2916	150.052	5.8	117.711	58	22.918	127	2.495	196	0.233
0.3	149.819	6	117.013	59	22.217	128	2.417	197	0.311
0.3083	149.509	6.2	116.314	60	21.516	129	2.261	198	0.233
0.3166	149.199	6.4	115.616	61	20.892	130	2.183	199	0.233
									0.233
0.325	148.967	6.6	114.84	62	20.269	131	2.183	200	
0.3333	148.657	6.8	114.141	63	19.723	132	2.027	201	0.155
0.35	148.114	7	113.52	64	19.1	133	2.027	202	0.155
0.3666	147.727	7.2	112.821	65	18.554	134	1.949	203	0.233
0.3833	147.184	7.4	112.123	66	17.931	135	1.949	204	0.155
0.4	146.797	7.6	111.424	67	17.385	136	1.871	205	0.155
0.4166	146.409		110.726	68	16.918	137	1.793	206	0.233
		7.8							
0.4333	145.866	8	110.104	69	16.372	138	1.715	207	0.155
0.45	145.556	8.2	109.328	70	15.827	139	1.637	208	0.155
0.4666	145.324	8.4	108.707	71	15.359	140	1.637	209	0.155
0.4833	145.014	8.6	108.008	72	14.891	141	1.481	210	0.155
0.5	144.781	8.8	107.31	73	14.424	142	1.481	211	0.077
0.5166	144.626	9	106.688	74	14.034	143	1.481	212	0.077
0.5333	144.394	9.2	105.99	75	13.566	144	1.403		
0.55	144.083	9.4	105.368	76	13.099	145	1.403		
0.5666	144.083	9.6	104.67	77	12.709	146	1.325		
0.5833	143.928	9.8	104.048	78	12.319	147	1.247		
0.6	143.541	10	103.427	79	11.929	148	1.247		
0.6166	143.386	11	100.321	80	11.54	149	1.169		
0.6333	143.153	12	97.214	81	11.15	150	1.169		
							1.091		
0.65	142.921	13	94.34	82	10.838	151			
0.6666	142.998	14	91.543	83	10.526	152	1.091		
0.6833	142.455	15	88.746	84	10.136	153	1.013		
0.7	142.61	16	86.026	85	9.825	154	1.013		
0.7166	142.378	17	83.461	86	9.513	155	0.935		
0.7333	142.455	18	80.897	87	9.279	156	0.935		
0.75	142.068	19	78.487	88	8.967	157	0.935		
0.7666	141.913	20	76.077	89	8.733	158	0.857		
0.7833	141.913	21	73.744	90	8.343	159	0.857		
0.8	141.603	22	71.489	91	8.109	160	0.857		

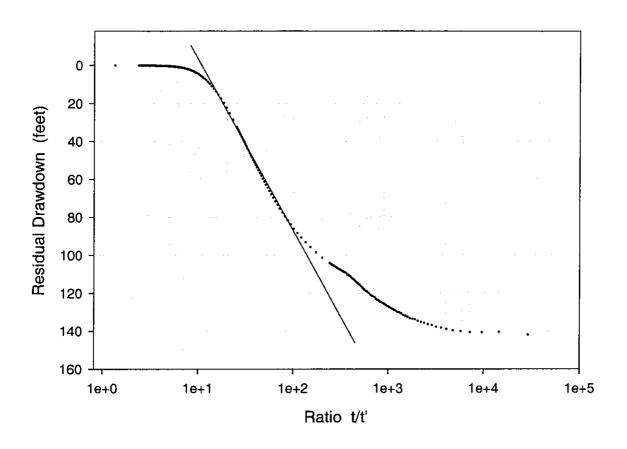

Appendix H

Straddle Packer Test No. 4 @ IW-1


1,679 - 1,695

POMPANO BEACH IW-1 1,679 - 1,695

BACKGROUND, DRAWDOWN AND RECOVERY DATA



POMPANO BEACH IW-1 1679 - 1695 DRAWDOWN

POMPANO BEACH IW-1 1,679 - 1,695

RESIDUAL DRAWDOWN vs t/t'

POMPANO BEACH IW-1 1,679 - 1,695 BACKGROUND DATA

			BAÇK	GROUND DATA			
Time	Water Level	Time	Water Level	Time	Water Level	Time	Water Level
(minutes)	(feet)	(minutes)	(leet)	(minutes)			
(minutes)	(reer)	(minutes)	(lear)	(minutes)	(feet)	(minutes)	(feet)
_							
0	-0.077	0.8166	-0.077	23	-0.077	92	-0.155
0.0083	-0.077	0.8333	-0.077	24	-0.077	93	-0.155
0.0166	-0.077	0.85	-0.077	25	-0.077	94	-0.155
			-0.077				
0.025	-0.077	0.8666		26	-0.077	95	-0.155
0.0333	-0.077	0.8833	-0.077	27	-0.077	96	-0.155
0.0416	-0.077	0.9	-0.077	28	-0.077	97	-0.155
0.05	-0.077	0.9166	-0.077	29	-0.077	98	-0.233
0.0583							
	-0.077	0.9333	-0.077	30	-0.077	99	-0.155
0.0666	-0.077	0.95	-0.077	31	-0.077	100	-0.233
0.075	-0.077	0.9666	-0.077	32	-0.077	101	-0.233
0.0833	-0.077	0.9833	-0.077	33	-0.077	102	-0.233
0.0916	-0.077	1	-0.077	34	-0.077	103	
							-0.233
0.1	-0.077	1.2	-0.077	35	-0.077	104	-0.233
0.1083	-0.077	1.4	-0.077	36	-0.077	105	-0.233
0.1166	-0.077	1.6	-0.077	37	-0.077	106	-0.233
0.125	-0.077	1.8	-0.077	38	-0.077	107	-0.233
0.1333	-0.077	2	-0.077	39	-0.077	108	-0.233
0.1416	-0.077	2.2	-0.077	40	-0.077	109	-0.233
0.15	-0.077	2.4	-0.077	41	-0.077	110	-0.233
0.1583	-0.077	2.6	-0.077	42	-0.077	111	-0.233
0.1666	-0.077	2.8	-0.077	43	-0.077	112	-0.233
0.175	-0.077	3	-0.077	44	-0.155	113	-0.233
0.1833	-0.077	3.2	-0.077	45	-0.155	114	-0.233
0.1916	-0.077	3.4	-0.077	46	-0.077	115	-0.233
0.2	-0.077	3.6	-0.077	47	-0.077	116	-0.233
0.2083	-0.077	3.8	-0.077	48	- 0.077	117	-0.311
0.2166	-0.077	4	-0.077	49	-0.077	118	-0.233
0.225	-0.077	4.2	-0.077	50	-0.077	119	-0.233
0.2333	-0.077	4.4	-0.077	51	-0.077	120	-0.233
0.2416	-0.077	4.6	-0.077	52	-0.077		
0.25	-0.077	4.8	-0.077	53	-0.155		
0.2583	-0.077	5	-0.077	54	-0.077		
0.2666	-0.077	5.2					
			-0.077	55	-0.077		
0.275	-0.077	5.4	-0.077	56	-0.077		
0.2833	-0.077	5.6	-0.077	57	-0.155		
0.2916	-0.077	5.8	-0.077	58	-0.155		
0.3	-0.077	6	-0.077	59			
					-0.155		
0.3083	-0.077	6.2	-0.077	60	-0.155		
0.3166	-0.077	6.4	-0.077	61	-0.155		
0.325	-0.077	6.6	-0.077	62	-0.155		
0.3333	-0.077	6.8	-0.077	63	-0.155		
0.35	-0.077	7	-0.077	64	-0.155		
0.3666	-0.077	7.2	-0.077	65	-0.155		
0.3833	-0.077	7.4	-0.077	66	-0.155		
0.4	-0.077	7.6	-0.077	67	-0.155		
0.4166	-0.077	7.8	-0.077	68	-0.155		
0.4333	-0.077	8	-0.077	69	-0.155		
0.45	-0.077	8.2	-0.077	70	-0.155		
0.4666	-0.077	8.4	-0.077	71	-0.155		
0.4833							
	-0.077	8.6	-0.077	72	-0.155		
0.5	-0.077	8.8	-0.077	73	-0.155		
0.5166	-0.077	9	-0.077	74	-0.155		
0.5333	-0.077	9.2	-0.077	75	-0.155		
0.55							
	-0.077	9.4	-0.077	76	-0.155		
0.5666	-0.077	9.6	-0.077	77	-0.155		
0.5833	-0.077	9.8	-0.077	78	-0.155		
0.6	-0.077	10	-0.077	79	-0.155		
0.6166	-0.077	11	-0.077	80	-0.155		
0.6333	-0.077	12	0	81	-0.155		
0.65	-0.077	13	0	82	-0.155		
0.6666	-0.077	14	-0.077	83	-0.155		
0.6833	-0.077	15	-0.077	84	-0.155		
0.7	-0.077	16	-0.077	85	-0.155		
0.7166	-0.077	17	-0.077	86	-0.155		
0.7333	-0.077	18	0	87	-0.155		
0.75	-0.077	19	-0.077	88	-0.233		
0.7666	-0.077						
		20	-0.077	89	-0.233		
0.7833	-0.077	21	-0.077	90	-0.233		
8.0	-0.077	22	-0.077	91	-0.155		

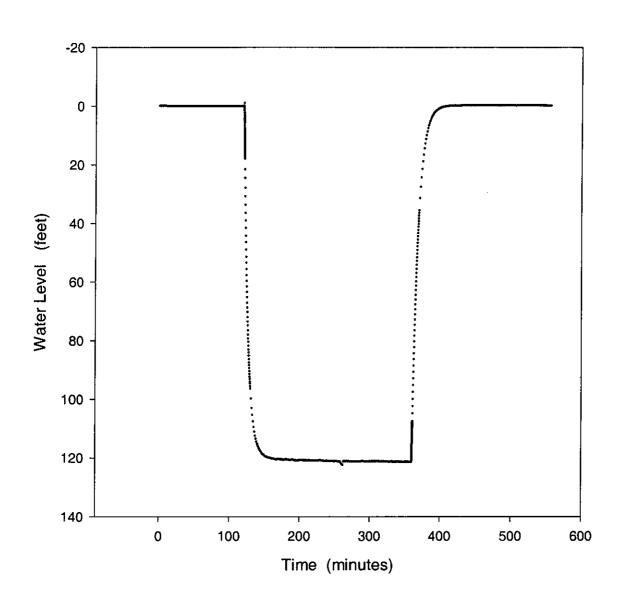
POMPANO BEACH IW-1 1,679 - 1,695 DRAWDOWN DATA

Time	Water Level (feet)	Time (minutes)	Water Level (feet)								
(minutes)	(leet)	(minotes)				, ,					
0	-0.311	0.8166	24.079	23	138.999	92	141.79	161	141.945	230	141.867
0.0083	-0.311	0.8333	24.391	24	139.31	93	141.635	162	141.79	231	141.867
0.0166	-0.311	0.85	24.78	25	139.387	94	141.712	163	141.867	232	142.1
0.025	-0.311	0.8666	25.248	26	139.93	95	141.712	164	141.867	233	141.867
0.0333	-0.311	0.8833	25.403	27	139.93	96	141.712	165	141.867	234	141.945 141.945
0.0416	1.169	0.9	26.104	28	139.93	97	141.712	166	141.867	235	142.022
0.05	6.158	0.9166	26.494	29	140.24	98	141.557	167	141.867	236	
0.0583	1.637	0.9333	26.961	30	140.085	99	141.712	168	141.867	237	142.177 142.022
0.0666	2.494	0.95	27.428	31	140.395	100	141.635	169	141.867	238 239	141.867
0.075	2.26	0.9666	28.051	32	140.705	101	141.712	170	142.1 141.867	240	142.177
0.0833	-31.831	0.9833	28.207	33	140.627	102	141.712	171 172	141.867	241	141.867
0.0916	2.962	1	28.441	34	140.86 140.782	103 104	141.79 141.557	172	142.1	241	141.007
0.1	2.338	1.2	33.502	35	140.762	104	141.712	174	142.022		
0.1083	12.315	1.4	37.784 42.532	36 37	140.00	106	141.712	175	142.1		
0.1166	3.118	1.6 1.8	46.267	38	140.937	107	141.635	176	142.022		
0.125	3.898 1.793	2	50.703	39	140.86	108	141.79	177	142.022		
0.1333 0.1416	4.833	2.2	54.281	40	140.705	109	141.79	178	141.945		
0.1410	4.989	2.4	58.015	41	140.627	110	141.712	179	142.022		
0.1583	5.69	2.6	61.515	42	140.782	111	141.557	180	142.022		
0.1666	4.755	2.8	64.703	43	140.937	112	141.557	181	141.712		
0.175	5.379	3	67.735	44	141.015	113	141.635	182	141.79		
0.1833	5.301	3.2	70.923	45	140.86	114	141.79	183	142.1		
0.1916	5.924	3.4	73.332	46	140.782	115	141.557	184	142.022		
0.2	6.236	3.6	76.13	47	140.782	116	141.635	185	141.867		
0.2083	6.47	3.8	79.083	48	141.092	117	141.635	186	142.022		
0.2166	6.938	4	81.259	49	141.015	118	141.635	187	141.945		
0.225	6.86	4.2	84.056	50	140.937	119	141.557	188	142.177		
0.2333	7.016	4.4	86.309	51	141.092	120	141.48	189	142.177		
0.2416	7.327	4.6	88.329	52	141.092	121	141.712	190	141.79		
0.25	7.561	4.8	90.737	53	141.247	122	141.557	191	141.867		
0.2583	7.951	5	92.446	54	141.247	123	141.557	192	141.867		
0.2666	8.107	5.2	94.387	55	141.325	124	141.48	193	141.867		
0.275	8.263	5.4	96.406	56	141.247	125	141.635	194	141.867		
0.2833	8.652	5.6	98.115	57	141.402	126	141.79	195	142.022		
0.2916	9.042	5.8	99.668	58	141.402	127	141.635	196	141.867		
0.3	9.276	6	101.376	59	141.17	128	141.79	197	141.867		
0.3083	8.964	6.2	103.084	60	141.015	129	141.712	198	141.945		
0.3166	9.899	6.4	104.558	61	141.092	130	141.712	199	141.945		
0.325	10.133	6.6	105.878	62	141.17	131	141.945	200 201	141.79 142.1	·	
0.3333	9.977	6.8	107.275	63	141.325 141.402	132	141.79 141.79	202	141.867		
0.35	10.523	7	108.672	64	141.402	133 134	141.79	203	142.022		
0.3666	11.302	7.2	109.992	65 6 6	141.402	135	141.867	204	141.945		
0.3833	11.38	7.4 7.6	110.923 112.087	67	141.17	136	141.867	205	142.1		
0.4 0.4166	12.159 12.939	7.8	113.251	68	141.402	137	141.867	206	142.1		
0.4333	13.25	8	114.337	69	141.48	138	141.867	207	142.177		
0.4555	14.03	8.2	115.501	70	141.402	139	141.557	208	142.177		
0.4666	14.185	8.4	116.355	71	141.557	140	141.712	209	142.1		
0.4833	14.419	8.6	117.053	72	141.557	141	141.712	210	141.945		
0.5	15.12	8.8	117.984	73	141.867	142	141.945	211	141.945		
0.5166	15.51	9	119.148	74	141.48	143	141.79	212	142.1		
0.5333	15.978	9.2	119.768	75	141.48	144	141.945	213	141.867		
0.55	16.601	9.4	120.777	76	141.402	145	141.79	214	142.177		
0.5666	17.224	9.6	121.553	77	141.402	146	141.79	215	141.945		
0.5833	17.847	9.8	122.251	78	141.635	147	141.945	216	142.022		
0.6	17.692	10	122.716	79	141.247	148	142.022	217	142.022		
0.6166	18.471	11	126.439	80	141.247	149	141.945	218	142.255		
0.6333	18.938	12	128.688	81	141.402	150	141.79	219	141.945		
0.65	19.483	13	130.704	82	141.557	151	141.635	220	142.177		
0.6666	19.795	14	132.41	83	141.557	152	141.945	221	142.022		
0.6833	20.496	15	133.728	84	141.402	153	141.867	222	141.79		
0.7	20.652	16	134.736	85	141.325	154	142.022	223	142,177		
0.7166	20.964	17	135.821	86	141.325	155	141.867	224	142.022		
0.7333	21.976	18	136.519	87	141.48	156	141.945	225	141.945 141.867		
0.75	22.21	19	137.062	88	141.712	157	141.945	226 227	141.867		
0.7666	22.288	20	137.914	89 90	141.557	158 159	141.79 141.712	228	142.022		
0.7833	23.223	21	138.147	90 91	141.48 141.712	160	141.712	229	141.945		
0.8	23.534	22	138.689	91	141.712	100	141.007	223	171.370		

POMPANO BEACH IW-1 RECOVERY DATA

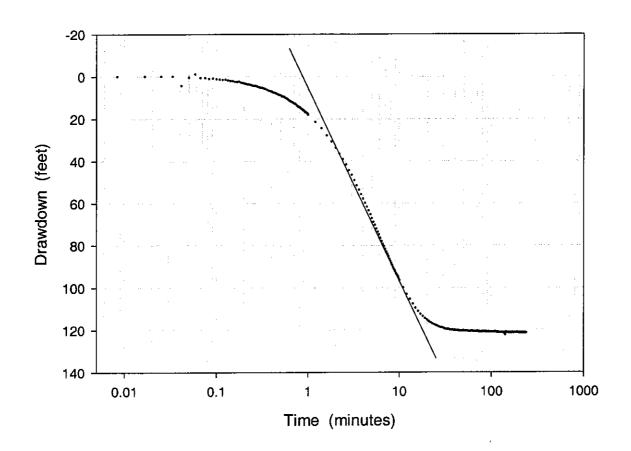
JVV-1
1,679 -1,695
RECOVERY DATA

				HECCVI	בחו שמות				
Time	Water Level	Time	Water Level	Time	Water Level	Time	Water Level	Time	Water Level
(minutes)	(feet)	(minutes)	(feet)	(minutes)	(feet)	(minutes)	(feet)	(minutes	(feet)
0	141.945	0.8166	106.965	23	7.093	92	0.155	161	0.155
0.0083	142.022	0.8333	106.654	24	6.392	93	0.233	162	0.155
0.0166	140.55	0.85	106.421	25	5.768	94	0.233	163	0.155
0.025	140.705	0.8666	106.111	26	5.223	95	0.233	164	0.155
0.0333	140.55	0.8833	105.878	27	4.677	96	0.233	165	0.155
0.0416	140.085	0.9	105.645	28	4.209	97	0.155	166	0.155
0.05	139.62	0.9166	105.412	29	3.82	98	0.155	167	0.155
0.0583	138.922	0.9333	105.17 9	30	3.508	99	0.155	168	0.155
0.0666	138.147	0.95	104.947	31	3.118	100	0.155	169	0.155
0.075	137.759	0.9666	104.636	32	2.884	101	0.155	170	0.077
0.0833	136.829	0.9833	104.403	33	2.65	102	0.155	171	0.155
0.0916	136.364	1	104.17	34	2.416	103	0.155	172	0.155
0.1	135.589	1.2	101.376	35	2.26	104	0.155	173	0.155
0.1083	135.279	1.4	98.58	36	2.105	105	0.155	174	0.155
0.1166	134.581	1.6	95.863	37	1.949	106	0.155		0.077
								175	
0.125	133.883	1.8	93.3	38	1.793	107	0.155	176	0.155
0.1333	133.65	2	90.815	39	1.637	108	0.155	177	0.155
0.1416	133.263	2.2	88.484	40	1.481	109	0.155	178	0.155
0.15	132.487	2.4	86.154	41	1.403	110	0.155	179	0.155
0.1583	131.945	2.6	83.901	42	1.325	111	0.155	180	0.077
0.1666	131.557	2.8	81.648	43	1.247	112	0.155		
0.175	130.704	3	79.55	44	1.169	113	0.155		
0.1833	130.239	3.2	77.451	45	1.091	114	0.155		
0.1916	130.006	3.4	75.431	46	1.013		0.155		
						115			
0.2	129.308	3.6	73.488	47	0.935	116	0.155		
0.2083	128.843	3.8	71.622	48	0.935	117	0.155		
0.2166	128.455	4	69.756	49	0.857	118	0.155		
0.225	127.912	4.2	67.968	50	0.779	119	0.155		
0.2333	127.525	4.4	66.18	51	0.779	120	0.077		
0.2416	126.982	4.6	64.47	52	0.701	121	0.155		
0.25	126.672	4.8	62.837	53	0.701	122	0.155		
0.2583	126.051	5	61.204	54	0.701	123	0.155		
		5.2			0.623				
0.2666	125.586		59.648	55		124	0.155		
0.275	125.198	5.4	58.093	56	0.623	125	0.155		
0.2833	124.81	5.6	56.615	57	0.623	126	0.155		
0.2916	124.578	5.8	55.137	58	0.545	127	0.155		
0.3	124.035	6	53.737	59	0.545	128	0.155		
0.3083	123.647	6.2	52.414	60	0.467	129	0.155		
0.3166	123.492	6.4	51.092	61	0.467	130	0.077		
0.325	123.026	6.6	49.769	62	0.467	131	0.155		
0.3333	122.173	6.8	48.446	63	0.467	132	0.155		
		7			0.467				
0.35	121.63		47.279	64		133	0.155		
0.3666	121.087	7.2	46.034	65	0.389	134	0.155		
0.3833	120.079	7.4	44.867	66	0.389	135	0.155		
0.4	119.225	7.6	43.777	67	0.389	136	0.155		
0.4166	118.682	7.8	42.61	68	0.389	137	0.155		
0.4333	117.984	8	41.598	69	0.389	138	0.155		
0.45	117.208	8.2	40.508	70	0.389	139	0.155		
0.4666	116.277	8.4	39.496	71	0.311	140	0.077		
0.4833	115,579	8.6	38.562	72	0.311	141	0.155		
0.5	114.958	8.8	37.55	73	0.311	142	0.155		
0.5166	114.337	9	36.616	74	0.311	143	0.155		
0.5333	113.639	9.2	35.76	75	0.311	144	0.155		
0.55	113.018	9.4	34.826	76	0.311	145	0.155		
0.5666	112.475	9.6	33.969	77	0.311	146	0.155		
0.5833	112.009	9.8	33.191	78	0.311	147	0.155		
0.6	111.233	10	32.412	79	0.311	148	0.155		
0.6166	110.845	11	28.519	80	0.311	149	0.155		
0.6333	110.302	12	25.248	81	0.233	150	0.077		
0.65	110.225	13	22.288	82	0.233	151	0.077		
0.6666	109.371	14	19.795	83	0.233	152	0.155		
0.6833	109.138	15	17.536	84	0.233	153	0.155		
0.7	108.905	16	15.588	85	0.233	154	0.155		
0.7166	108.595	17	13.874	86	0.233	155	0.155		
0.7333	108.284	18	12.315	87	0.233	156	0.155		
0.75	107.974	19	10.99	88	0.233	157	0.155		
0.7666	107.663	20	9.821	89	0.233	158	0.155		
0.7833	107.43	21	8.808	90	0.233	159	0.155		
0.8	107.198	22	7.873	91	0.155	160	0.077		
5.5				VI	5.100	100			

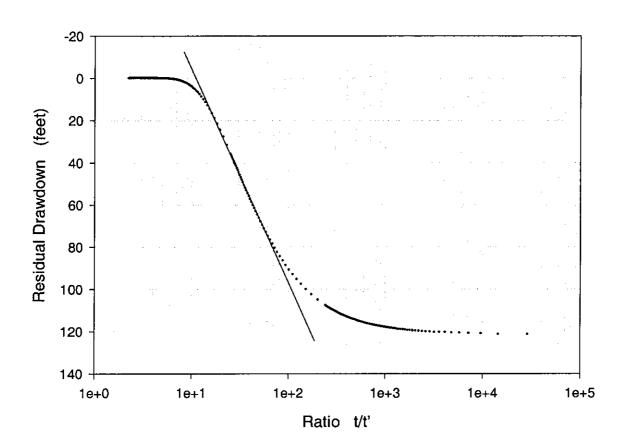

Appendix H

Straddle Packer Test No. 5 @ IW-1

1,811 - 1,827


POMPANO BEACH IW-1 1,811 - 1,827

BACKGROUND, DRAWDOWN AND RECOVERY


POMPANO BEACH IW-1 1811 -1827

DRAWDOWN

POMPANO BEACH IW-1 1,811 - 1,827

RESIDUAL DRAWDOWN vs t/t'

POMPANO BEACH IW-1 1811 - 1827 BACKGROUND DATA

			BACKG	ROUND DATA			
Time	Water Level	Time	Water Level	Time	Water Level	Time	Water Level
(minutes)	(feet)	(minutes)	(feel)	(minutes)	(feet)	(minutes)	
(maidles)	(ieer)	(IIIIIII)	(ieea)	(minutes)	(1661)	(minutes)	(feet)
					•		_
0	-0.077	0.8166	-0.077	23	0	92	0
0.0083	-0.077	0.8333	-0.077	24	0	93	0
0.0166	-0.077	0.85	-0.077	25	0	94	0
0.025	-0.077	0.8666	-0.077	26	0	95	0
0.0333	-0.077	0.8833	-0.077	27	Ö	96	ō
0.0416	-0.077	0.9	-0.077	28	0	97	0
0.05	-0.077	0.9166	-0.077	29	0	98	0
0.0583	-0.077	0.9333	-0.077	30	0	99	0
0.0666	-0.077	0.95	-0.077	31	0	100	0
0.075		0.9666	-0.077		ő		
	-0.077			32		101	0
0.0833	-0.077	0.9833	-0.077	33	0	102	0
0.0916	-0.077	1	-0.077	34	0	103	0.077
0.1	-0.077	1.2	-0.077	35	0	104	0
0.1083	-0.077	1.4	-0.077	36	ō	105	ō
0.1166	-0.077	1.6	-0.077	37	0	106	0
0.125	-0.077	1.8	-0.077	38	0	107	0
0.1333	-0.077	2	-0.077	39	0	108	0
0.1416	-0.077	2.2	-0.077	40	0	109	0
0.15	-0.077	2.4	-0.077	41	ŏ	110	ŏ
0.1583	-0.077	2.6	-0.077	42	0	111	0
0.1666	-0.077	2.8	-0.077	43	0	112	0
0.175	-0.077	3	-0.077	44	0	113	0
0.1833	-0.077	3.2	-0.077	45	0	114	0
0.1916	-0.077	3.4		46	ŏ		
			-0.077			115	0
0.2	-0.077	3.6	-0.077	47	0	116	0
0.2083	-0.077	3.8	-0.077	48	0	117	0
0.2166	-0.077	4	-0.077	49	0	118	0
0.225	-0.077	4.2	-0.077	50	0	119	-0.077
0.2333		4.4		51	ŏ	120	
	-0.077		-0.077			120	0
0.2416	-0.077	4.6	-0.077	52	0		
0.25	-0.077	4.8	-0.077	53	0		
0.2583	-0.077	5	-0.077	54	0		
0.2666	-0.077	5.2	-0.077	55	0		
0.275	-0.077	5.4	-0.077	56	ō		
0.2833	-0.077	5.6	-0.077	57	0		
0.2916	-0.077	5.8	-0.077	58	0		
0.3	-0.077	6	-0.077	59	0		
0.3083	-0.077	6.2	-0.077	60	0		
0.3166	-0.077	6.4	-0.077	61	ŏ		
0.325	-0.077	6.6	-0.077	62	0		
0.3333	-0.077	6.8	-0.077	63	0		
0.35	-0.077	7	- 0.077	64	0		
0.3666	-0.077	7.2	-0.077	65	0		
0.3833	-0.077	7.4	-0.077	66	ő		
0.4	-0.077	7.6	-0.077	67	0		
0.4166	-0.077	7.8	-0.077	68	0		
0.4333	-0.077	8	-0.077	69	0		
0.45	-0.077	8.2	-0.077	70	ō		
0.4666	-0.077	8.4	-0.077	71	ŏ		
0.4833	-0.077	8.6	-0.077	72	0		
0.5	-0.077	8.8	-0.077	73	0		
0.5166	-0.077	9	-0.077	74	0		
0.5333	-0.077	9.2	-0.077	75	ō		
0.55	-0.077	9.4	-0.077	76	ŏ		
0.5666	-0.077	9.6	-0.077	77	0		
0.5833	-0.077	9.8	-0.077	78	0		
0.6	-0.077	10	- 0.077	79	0		
0.6166	-0.077	11	0	80	0		
0.6333	-0.077	12	ŏ	81	ŏ		
0.65	-0.077	13	0	82	0		
0.6666	-0.077	14	0	83	0.077		
0.6833	-0.077	15	-0.077	84	0		
0.7	-0.077	16	0	85	0		
0.7166	-0.077	17	ŏ	86	ŏ		
0.7333							
	-0.077	18	0	87	0		
0.75	-0.077	19	0	88	0		
0.7666	-0.077	20	0	89	0		
0.7833	-0.077	21	0	90	0		
0.8	-0.077	22	0	91	0		
-	* *			= :			

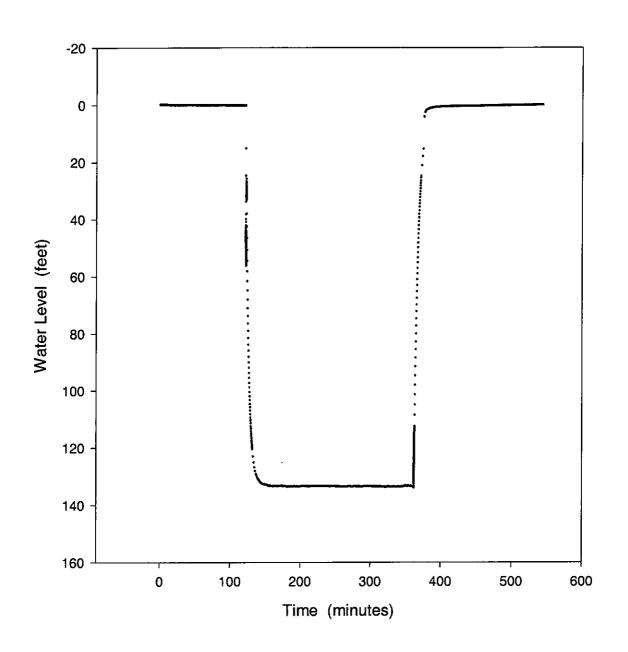
POMPANO BEACH IW-1

1,811 -1,827 DRAWDOWN DATA

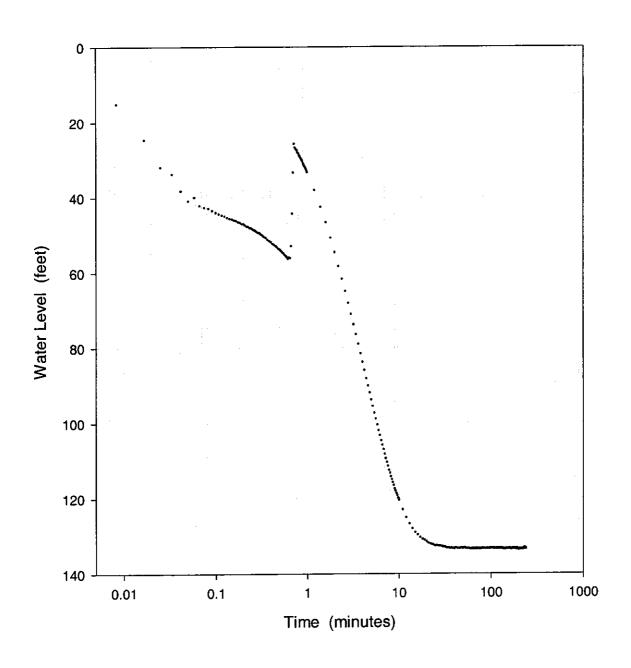
					DRAWD	ATAD NWC					
Time	Water Level	Time	Water Level	Time	Water Level	Time	Water Level	Time	Water Level	Time	Water Level
(minutes((feet)	(minutes((feet)	(minutes((feet)	(minutes((feet)	(minutes((feet)	(minutes((feet)
								464	404.000	000	404.004
0	-0.077	0.8166	14.573	23	117.037	92	120.915	161 162	121.226 121.226	230 231	121.381 121.226
0.0083	-0.077	0.8333	15.118	24 25	117.425 117.813	93 94	120.915 120.76	163	121.226	232	121.381
0.0166 0.025	-0.077 -0.077	0.85 0.8666	15.274 15.586	26	118.123	95	120.70	164	121.303	233	121.303
0.023	-0.077	0.8833	15.975	27	118.511	96	120.838	165	121.303	234	121.458
0.0416	4.287	0.9	16.131	28	118.821	97	120.915	166	121.226	235	121.303
0.05	0.389	0.9166	16.521	29	118.821	98	120.915	167	121.226	236	121.458
0.0583	-1.091	0.9333	16.91	30	118.976	99	120.838	168	121.303	237	121.381
0.0666	0.701	0.95	16.91	31	119.364	100	120.838	169	121.07	238	121.381
0.075	0.701	0.9666	17.222	32	119.519	101	120.915	170	121.07	239	121.381
0.0833	1.091	0.9833	17.689	33	119.674	102	120.838	171	121.07	240	121.381
0.0916	0.857	1	17.923	34	119.519	103	120.915	172	121.226		
0.1	1.169	1.2	21.506	35	119.829	104	120.915	173	121.303		
0.1083	1.403	1.4	24.465	36	119.907	105	120.915	174 175	121.303 121.303		
0.1166	1.481	1.6	27.892 30.773	37 38	119.907 119.907	106 107	120.915 120.915	175	121.303		
0.125 0.1333	1.403 1.714	1.8 2	33.653	39	120.14	108	120.915	177	121.303		
0.1333	2.026	2.2	36.455	40	120.062	109	120.76	178	121.226		
0.1410	2.104	2.4	39.024	41	120.217	110	120.683	179	121.303		
0.1583	2.416	2.6	41.592	42	120.217	111	120.838	180	121.148		
0.1666	2.494	2.8	44.316	43	120.295	112	120.915	181	121.226		
0.175	2.338	3	46.494	44	120.295	113	120.915	182	121.226		
0.1833	2.806	3.2	48.984	45	120.372	114	120.915	183	121.148		
0.1916	2.962	3.4	51.473	46	120.45	115	121.07	184	121.148		
0.2	3.118	3.6	53.496	47	120.528	116	121.07	185	121.303		
0.2083	3.429	3.8	55.674	48	120.528	117	121.07	186	121.148		
0.2166	3.507	4	57.774	49	120.372	118	120.993	187	121.226		
0.225	3.663	4.2	59.718	50	120.295	119 120	120.915 121.07	188 189	121.148 121.226		
0.2333	3.741	4.4	61.584 63.372	51 52	120.45 120.45	121	121.07	190	121.07		
0.2416	4.053 4.209	4.6 4.8	65.238	53	120.45	122	121.148	191	121.148		
0.25 0.2583	4.209	4.6 5	67.104	54	120.528	123	121.148	192	121.07		
0.2666	4.365	5.2	68.736	55	120.372	124	121.07	193	121.226		
0.275	4.521	5.4	70.213	56	120.528	125	121.07	194	121.148		
0.2833	4.832	5.6	72.001	57	120.683	126	121.07	195	121.303		
0.2916	4.988	5.8	73.555	58	120.605	127	121.07	196	121.226		
0.3	5.144	6	74.799	59	120.605	128	121.148	197	121.148		
0.3083	5.144	6.2	76.508	60	120.528	129	121.148	198	121.226		
0.3166	5.3	6.4	77.985	61	120.372	130	121.226	199	121.226		
0.325	5.534	6.6	79.306	62	120.45	131	121.07 121.07	200 201	121.148 121.226		
0.3333	5.69	6.8	80.393	63	120.605 120.605	132 133	121.148	201	121.303		
0.35	6.079	7 7.2	81.714 83.035	64 65	120.605	134	121.148	203	121.226		
0.3666 0.3833	6.469 6.703	7.4	84.045	66	120.683	135	121.226	204	121.226		
0.3633	7.093	7.6	85.132	67	120.605	136	121.226	205	121.303		
0.4166	7.482	7.8	86.375	68	120.683	137	121.226	206	121.226		
0.4333	7.638	8	87.463	69	120.683	138	121.226	207	121.226		
0.45	8.028	8.2	88.395	70	120.45	139	121.613	208	121.458		
0.4666	8.339	8.4	89.404	71	120.528	140	122.001	209	121.381		
0.4833	8.651	8.6	90.492	72	120.76	141	122.234	210	121.303		
0.5	8.807	8.8	91.423	73	120.838	142	122.389	211	121.226		
0.5166	9.352	9	92.355	74	120.683	143	121.303	212	121.148		
0.5333	9.43	9.2	93.132	75 70	120.838	144	120.993	213 214	121.381 121.303		
0.55	9.664	9.4	93.986	76	120.838	145 146	121.226 121.226	215	121.381		
0.5666	10.21	9.6	94.607 95.539	77 78	120.915 120.838	147	121.07	216	121.381		
0.5833 0.6	10.443 10.755	9.8 10	96.393	79	120.935	148	121.148	217	121.303		
0.6166	11.145	11	99.809	80	120.683	149	121.226	218	121.458		
0.6333	11.534	12	102.992	81	120.76	150	121.07	219	121.226		
0.65	11.768	13	105.32	82	120.683	151	121.148	220	121.303		
0.6666	12.08	14	107.571	83	120.76	152	121.226	221	121.226		
0.6833	12.391	15	109.511	84	120.76	153	121.226	222	121.458		
0.7	12.703	16	111.063	85	120.683	154	121.226	223	121.226		
0.7166	12.781	17	112.46	86	120.838	155	121.303	224	121.458		
0.7333	13.093	18	113.468	87	120.838	156	121.303	225	121.381		
0.75	13.638	19	114.477	88	120.76	157	121.226	226	121.303 121.381		
0.7666	14.028	20	115.175	89	120.838	158	121.303	227 228	121.381		
0.7833	14.339	21	115.951	90	120.76 120.838	159 160	121.303 121.303	22 0 22 9	121.456		
8.0	14.417	22	116.494	91	120.000	100	121.000	LEG	121.001		

POMPANO BEACH IW-1

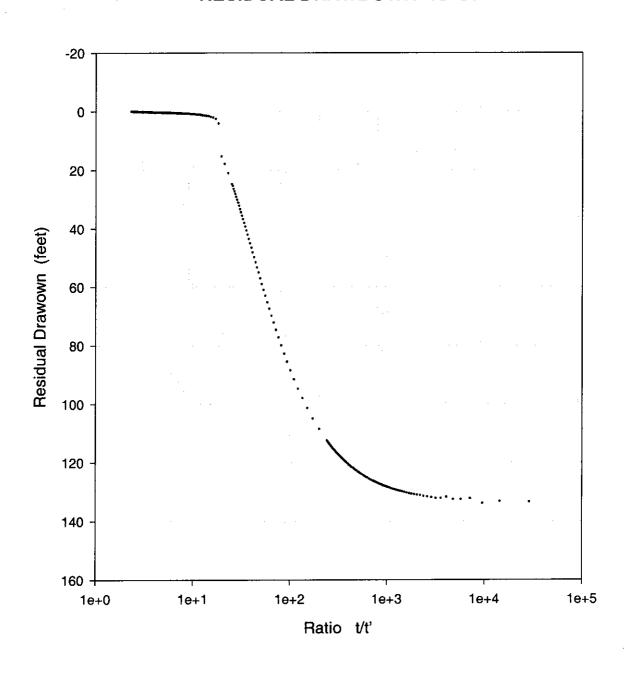
1,811 - 1,827 RECOVERY DATA


				NECOVE	HIDAIA				
Time	Water Level	Time	Water Level	Time	Water Level	Time	Water Level	Time	Water Level
(minutes)	(feet)	(minutes)	(feet)	(minutes)	(feet)	(minutes)	(feet)	(minutes)	(feet)
0	121.226	0.8166	109.899	23	6.625	92	-0.233	161	-0.233
0.0083	121.226	0.8333	109.666	24	5.846	93	-0.233	162	-0.233
0.0166	121.148	0.85	109.511	25	5.066	94	-0.233	163	-0.233
0.025	120.838	0.8666	109.278	26	4.443	95	-0.233	164	-0.233
0.0333	120.683	0.8833	109.045	27	3.897	96	-0.233	165	-0.233
0.0416	120.528	0.9	108.813	28	3.429	97	-0.233	166	-0.233
0.05	120.45	0.9166	108.58	29	2.962	98	-0.233	167	-0.233
0.0583	120.295	0.9333	108.425	30	2.572	99	-0.233	168	-0.233
0.0666	120.233	0.95	108.192	31	2.182	100	-0.233	169	-0.233
			103.152	32	1.948	101	-0.233	170	-0.233
0.075	120.14	0.9666			1,714	102	-0.233	171	-0.233
0.0833	119.985	0.9833	107.726	33					-0.233
0.0916	119.907	1	107.493	34	1.481	103	-0.233	172	
0.1	119.752	1.2	104.855	35	1.247	104	-0.233	173	-0.233
0.1083	119.597	1.4	102.371	36	1.091	105	-0.233	174	-0.233
0.1166	119.519	1.6	99.887	37	0.935	106	-0.233	175	-0.233
0.125	119.364	1.8	97.48	38	0.779	107	-0.233	176	-0.233
0.1333	119.287	2	95.151	39	0.701	108	-0.233	177	-0.233
0.1416	119.209	2.2	92.899	40	0.545	109	-0.233	178	-0.233
0.15	119.054	2.4	90.725	41	0.467	110	-0.233	179	-0.233
0.1583	118.899	2.6	88.55	42	0.389	111	-0.233	180	-0.233
0.1666	118.821	2.8	86.375	43	0.311	112	-0.311	181	-0.155
0.175	118.744	3	84.355	44	0.233	113	-0.311	182	-0.233
		3.2	82.336	45	0.233	114	-0.233	183	-0.155
0.1833	118.588			46	0.155	115	-0.233	184	-0.233
0.1916	118.433	3.4	80.316				-0.233	185	-0.155
0.2	118.356	3.6	78.373	47	0.155	116			-0.155
0.2083	118.201	3.8	76.508	48	0.077	117	-0.233	186	
0.2166	118.123	4	74.643	49	0.077	118	-0.233	187	-0.155
0.225	117.968	4.2	72.856	50	0	119	-0.233	188	-0.233
0.2333	117.89	4.4	71.068	51	0	120	-0.233	189	-0.155
0.2416	117.735	4.6	69.358	52	-0.077	121	-0.233	190	-0.155
0.25	117.658	4.8	67.648	53	-0.077	122	-0.233	191	-0.155
0.2583	117.502	5	66.016	54	-0.077	123	-0.233	192	-0.155
0.2666	117.425	5.2	64.461	55	-0.077	124	-0.233	193	-0.155
0.275	117.27	5.4	62.828	56	-0.077	125	-0.233	194	-0.155
0.2833	117.192	5.6	61.351	57	-0.077	126	-0.233	195	-0.155
0.2916	117.037	5.8	59.873	58	-0.155	127	-0.233	196	-0.155
	116.959	6	58.396	59	-0.155	128	-0.233		
0.3				60	-0.155	129	-0.233		
0.3083	116.804	6.2	56.996		-0.155	130	-0.233		
0.3166	116.727	6.4	55.596	61					
0.325	116.571	6.6	54.196	62	-0.155	131	-0.311		
0.3333	116.494	6.8	52.874	63	-0.155	132	-0.311		
0.35	116.261	7	51.629	64	-0.155	133	-0.233		
0.3666	116.028	7.2	50.384	65	-0.155	134	-0.233		
0.3833	115.796	7.4	49.14	66	- 0.155	135	-0.233		
0.4	115.563	7.6	47.895	67	-0.155	136	-0.233		
0.4166	115.33	7.8	46.728	68	-0.155	137	-0.233		
0.4333	115.097	8	45.561	69	-0.155	138	-0.233		
0.45	114.865	8.2	44.471	70	-0.155	139	-0.233		
0.4666	114.632	8.4	43.304	71	-0.233	140	-0.233		
0.4833	114.399	8.6	42.293	72	-0.233	141	-0.233		
0.4003		8.8	41.203	73	-0.233	142	-0.233		
	114.167				-0.233	143	-0.233		
0.5166	114.011	9	40.191	74 75			-0.233		
0.5333	113.779	9.2	39.257	75	-0.233	144			
0.55	113.546	9.4	38.324	76	-0.233	145	-0.233		
0.5666	113.313	9.6	37.39	77	-0.233	146	-0.233		
0.5833	113.08	9.8	36.455	78	-0.233	147	-0.233		
0.6	112.848	10	35.599	7 9	-0.233	148	-0.233		
0.6166	112.615	11	31.395	80	-0.233	149	-0.233		
0.6333	112.382	12	27.58	81	-0.233	150	-0.233		
0.65	112.149	13	24.31	82	-0.233	151	-0.233		
0.6666	111.916	14	21.428	83	-0.233	152	-0.233		
0.6833	111.761	15	18.858	84	-0.233	153	-0.233		
0.0000	111.528	16	16.599	85	-0.233	154	-0.233		
0.7166	111.296	17	14.495	86	-0.233	155	-0.233		
0.7100	111.063	18	12.781	87	-0.233	156	-0.233		
					-0.233 -0.233	157	-0.233		
0.75	110.83	19	11.223	88			-0.233 -0.233		
0.7666	110.597	20	9.898	89	-0.233	158			
0.7833	110.365	21	8.651	90	-0.233	159	-0.233		
0.8	110.132	22	7.56	91	-0.311	160	-0.233		

Appendix H


Straddle Packer Test No. 6 @ IW-1

1,519 - 1,550


POMPANO BEACH
IW-1
1,519 - 1,550
BACKGROUND, DRAWDOWN AND RECOVERY DATA

POMPANO BEACH IW-1 1,519 - 1,550 DRAWDOWN

POMPANO BEACH IW-1 1,519 - 1,550 RESIDUAL DRAWDOWN vs t/t'

POMPANO BEACH IW-1

1,519 - 1,550
BACKGROUND DATA

Time	Water Level	Time	Water Level	Time	Water Level	Time	Water Level
(minutes)	(feet)	(minutes)	(feet)	(minutes)	(feet)	(minutes)	(feet)
0 0000	-0.156 -0.156	0.8	-0.156	21 22	0 0	89 90	0.078 0.078
0.0083 0.0166	-0.156 -0.156	0.8166 0.8333	-0.156 -0.156	23	0	90 91	0.078
0.0100	-0.156	0.85	-0.130	24	0	92	0.078
0.0333	-0.156	0.8666	-0.156	25	Ö	93	0.156
0.0416	-0.156	0.8833	-0.156	26	ŏ	94	0.156
0.05	-0.15 6	0.9	-0.156	27	Ō	95	0.156
0.0583	-0.156	0.9166	-0.156	28	0	96	0.156
0.0666	-0.156	0.9333	-0.156	29	0	97	0.156
0.075	-0.156	0.95	-0.156	30	0	98	0.156
0.0833	-0.156	0.9666	-0.156	31	0	99	0.156
0.0916	-0.156	0.9833	-0.156	32	0	100	0.156
0.1	-0.156	1	-0.156	33	0	101	0.156
0.1083	-0.156	1.2	-0.156	34	0	102	0.156
0.1166 0.125	-0.156 -0.156	1.4 1.6	-0.156 -0.156	35 36	0 0	103 104	0.156 0.156
0.1333	-0.156	1.8	-0.156	37	0	105	0.156
0.1416	-0.156	2	-0.078	38	ő	106	0.156
0.15	-0.156	2.2	-0.156	39	ō	107	0.156
0.1583	-0.156	2.4	-0.156	40	0	108	0.156
0.1666	-0.156	2.6	-0.1 56	41	0	109	0.156
0.175	-0.156	2.8	-0.156	42	0	110	0.156
0.1833	-0.156	3	-0.156	43	0	111	0.156
0.1916	-0.156	3.2	-0.156	44	0	112	0.156
0.2	-0.078	3.4	-0.156	45	0	113	0.156
0.2083	-0.078	3.6	-0.156	46	0	114	0.156
0.2166	-0.156	3.8 4	-0.078	47	0	115 116	0.156
0.225 0.2333	-0.156 -0.156	4.2	-0.078 -0.078	48 49	0 0	117	0.234 0.156
0.2333	-0.156	4.4	-0.07 6 -0.156	50	Ö	118	0.134
0.25	-0.156	4.6	-0.156	51	ŏ	119	0.156
0.2583	-0.156	4.8	-0.156	52	0.078	120	0.156
0.2666	-0.078	5	-0.156	53	0.078	121	0.234
0.275	-0.156	5.2	-0.156	54	0.078	122	0.156
0.2833	-0.156	5.4	-0.078	55	0		
0.2916	-0.156	5.6	-0.156	56	0.078		
0.3	-0.156	5.8	-0.078	57	0		
0.3083	-0.156	6	-0.156	58	0.078		
0.3166 0.325	-0.156 -0.156	6.2 6.4	-0.156 -0.156	59 60	0.078 0.078		
0.3333	-0.156	6.6	-0.078	61	0.078		
0.35	-0.156	6.8	-0.156	62	0		
0.3666	-0.156	7	-0.078	63	0.078		
0.3833	-0.156	7.2	-0.078	64	0.078		
0.4	-0.156	7.4	-0.078	65	0.078		
0.4166	-0.156	7.6	-0.078	66	0.078		
0.4333	-0.156	7.8	-0.078	67	0.078		
0.45	-0.156	8	-0.078	68	0.078		
0.4666	-0.156	8.2	-0.078	69 70	0.078		
0.4833 0.5	-0.156 -0.156	8.4 8.6	-0.078 -0.156	70 71	0.078 0.078		
0.5166	-0.156	8.8	-0.130	72	0.078		
0.5333	-0.156	9	-0.078	73	0.078		
0.55	-0.156	9.2	-0.078	74	0.078		
0.5666	-0.156	9.4	-0.078	75	0.078		
0.5833	-0.156	9.6	-0.156	76	0.078		
0.6	-0.156	9.8	-0.078	77	0.078		
0.6166	-0.156	10	-0.078	78 78	0.078		
0.6333	-0.156	11	-0.078	79	0.078		
0.65	-0.156 0.156	12 13	-0.078 0.078	80 81	0.078		
0.6666 0.6833	-0.156 -0.156	13 14	-0.078 0	81 82	0.078 0.078		
0.0033	-0.156 -0.156	15	0	83	0.078		
0.7166	-0.156	16	ő	84	0.078		
0.7333	-0.156	17	-0.078	85	0.078		
0.75	-0.156	18	0	86	0.078		
0.7666	-0.156	19	0	87	0.078		
0.7833	-0.156	20	0	88	0.078		

POMPANO BEACH IW-1 1,519 - 1,550 DRAWDOWN DATA

				DRAWD	OWN DATA				
Time	Water Level	Time	Water Level	Time	Water Level	Time	Water Level	Time	Water Level
(minutes)	(feet)	(minutes)	(feet)	(minutes)	(feet)	(minutes)	(feet)	(minutes)	(feet) 133,403
0	0.156	0.7666	27.379	17	130.376 130.842	83 84	133.403 133.326	149 150	133.481
0.0083	15.136 24.65	0.7833 0.8	28.003 28.237	18 19	131.075	85	133.403	151	133.481
0.0166 0.025	31.9	0.8166	28.782	20	131.463	86	133.403	152	133.481
0.0333	33.771	0.8333	29.094	21	131.929	87	133.403	153	133,481
0.0416	38.213	0.85	29.562	22	132.084	88	133.403	154	133.481
0.05	40.863	0.8666	29.952	23	132.239	89	133.403	155	133.403
0.0583	39.928	0.8833	30.342	24	132.472	90	133.481	156	133.326
0.0666	42.109	0.9	30.887	25	132.627	91	133.403	157	133.403
0.075	42.655	0.9166	31.199	26	132.55	92	133.403	158	133.481 133.403
0.0833	42.888	0.9333	31.589	27	132.705	93 94	133.403 133.403	159 160	133.481
0.0916	43.434	0.95 0.9666	31,978 32,368	28 29	132.705 132.782	95	133.403	161	133.481
0.1 0.1083	43.979 44.369	0.9833	32.914	30	132.86	96	133.326	162	133,403
0.1065	44.68	1	33.226	31	132.938	97	133.403	163	133.559
0.125	44.914	1.2	37.979	32	133.015	98	133.326	164	133.481
0.1333	45.303	1.4	42.421	33	133.171	99	133.326	165	133.559
0.1416	45.615	1.6	46.55	34	133.171	100	133.248	166	133.559
0,15	45.771	1.8	50.678	35	133.171	101	133.248	167	133.559
0.1583	46.005	2	54.494	36	133.326	102	133.326	168	133.481
0.1666	46.16	2.2	58.232	37	133.248	103 104	133.326 133.326	169 170	133.403 133.403
0.175	46.472	2.4 2.6	61.579 64.849	38 39	133.326 133.326	105	133.326	171	133.403
0.1833 0.1916	46.628 47.017	2.8	68.04	40	133.403	106	133.403	172	133.403
0.1510	47.017	3	70.997	41	133.248	107	133.326	173	133.326
0.2083	47.329	3.2	73.721	42	133.248	108	133.326	174	133.326
0.2166	47.64	3.4	76.366	43	133.326	109	133.403	175	133,403
0.225	47.718	3.6	78.933	44	133,326	110	133.403	176	133.403
0.2333	48.03	3.8	81.5	45	133.326	111	133.403	177	133.403
0.2416	48.108	4	83.756	46	133.403	112	133.403	178	133.403 133.403
0.25	48.341	4.2	85.934	47 48	133.248	113 114	133.326 133.326	179 180	133.326
0.2583	48.575 48.731	4.4 4.6	88.111 90.055	49	133.248 133.326	115	133.403	181	133.481
0.2666 0.275	48.965	4.8	91.921	50	133.248	116	133.326	182	133.403
0.2833	49.198	5	93.787	51	133.248	117	133.326	183	133.481
0.2916	49.354	5.2	95.497	52	133.171	118	133.326	184	133.481
0.3	49.432	5.4	97.285	53	133.326	119	133,403	185	133.403
0.3083	49.666	5.6	98.84	54	133.403	120	133.248	186	133.559
0.3166	49.899	5.8	100.472	55	133.326	121	133.481	187	133.403
0.325	50.055	6	101.949	56	133.326	122	133.326	188 189	133.481 133.481
0.3333	50.366	6.2	103.27 104.669	57 58	133.326 133.403	123 124	133,326 133,403	190	133.481
0.35 0.3666	50.678 51.145	6.4 6.6	105.834	59	133.481	125	133.403	191	133.559
0.3833	51.457	6.8	107	60	133.559	126	133.403	192	133.326
0.4	51.768	7	108.243	61	133.559	127	133.403	193	133.559
0.4166	52.236	7.2	109.408	62	133.403	128	133.403	194	133.481
0.4333	52.547	7.4	110.418	63	133.559	129	133.481	195	133.481
0.45	52.859	7.6	111.428	64	133.481	130	133.481	196	133.559
0.4666	53.17	7.8	112.516	65	133.403	131	133.403	197 198	133.481 133.636
0.4833	53.56	8	113.293	66 67	133.559 133.481	132 133	133.481 133.403	199	133.714
0.5 0.5166	53.793 54.105	8.2 8.4	114.225 115.002	68	133.559	134	133.481	200	133.714
0.5333	54.105 54.494	8.6	115.778	69	133.403	135	133.559	201	133.559
0.55	54.806	8.8	116.555	70	133.326	136	133.636	202	133.636
0.5666	55.195	9	117.409	71	133.403	137	133.481	203	133.481
0.5833	55.506	9.2	118.031	72	133.481	138	133.559	204	133.481
0.6	55.818	9.4	118.73	73	133.403	139	133.481	205	133.481
0.6166	56.207	9.6	119.273	74	133.481	140	133.481	206	133.481
0.6333	55.896	9.8	119.895	75 76	133.481	141	133.481	207 208	133.636 133.481
0.65	56.051	10	120.438	76	133.481	142 143	133.559 133.481	208	133.481 133.559
0.6666	52.859	11 12	123.001 125.097	77 78	133.481 133.481	143	133.481	210	133.481
0.6833 0.7	44.213 33.303	13	126.805	78 79	133.403	145	133.559	211	133.481
0.7166	25.664	14	128.047	80	133.326	146	133.481	212	133.559
0.7333	26.678	15	129.057	81	133.326	147	133.403	213	133.559
0.75	27.067	16	129.678	82	133.403	148	133.403	214	133.636
Time	Water Level								
(minutee)	(foot)								

(minutes) (feet) 215 133.636

133.636

216

POMPANO BEACH IW-1 1,519 - 1,550 DRAWDOWN DATA

217	133.559
218	133.481
219	133.481
220	133.559
221	133.636
222	133.481
223	133.481
224	133.559
225	133.481
226	133.403
227	133.403
228	133.171
229	133.248
230	133.326
231	133.403
232	133.171
233	133.248
234	133.403
235	133.481
236	133.326
237	133.403
238	133.481
239	133.481
240	133.403

POMPANO BEACH IW-1 1,519 - 1,550 RECOVERY DATA

				RECOV	ERY DATA				
Time	Water Level	Time	Water Level	Time	Water Level	Time	Water Level	Time	Water Level
(minutes)	(feet)	(minutes)	(feet)	(minutes)	(feet)	(minutes)	(feet)	(minutes	
0	133.559	0.8	116.477	21	1.248	89	0.234	157	0
0.0083	133.403	0.8166	116.089	22	1.092	90	0.234	158	0
0.0166	133.248	0.8333	115.778	23	1.014	91	0.234	159 160	0 0
0.025	133.947	0.85	115.468	24	1.014	92	0.234 0.234	161	0
0.0333	132.239	0.8666	115.157	25 26	0.936	93 94	0.234	162	0
0.0416	132.55	0.8833	114.769	26 27	0.858 0.858	95	0.254	163	ő
0.05	132.55	0.9	114.458 114.147	27 28	0.656	96	0.156	164	ő
0.0583	131.773	0.9166 0.9333	113.836	29	0.78	97	0.234	165	Ö
0.0666 0.075	132.161 132.161	0.95	113.526	30	0.702	98	0.234	166	0
0.073	131.851	0.9666	113.137	31	0.624	99	0.156	167	0
0.0033	131.618	0.9833	112.827	32	0.624	100	0.156	168	0
0.0310	131.463	1	112.516	33	0.624	101	0.156	1 6 9	0
0.1083	131.152	1.2	108.554	34	0.624	102	0.156	170	0
0.1166	130.997	1.4	104.98	35	0.624	103	0.156	171	0
0.125	130.842	1.6	101.405	36	0.624	104	0.156	172	0
0.1333	130.687	1.8	97.985	37	0.546	105	0.156	173	-0.078
0.1416	130.531	2	94.72	38	0.546	106	0.156	174	-0.078
0.15	130.299	2.2	91.532	39	0.546	107	0.156	175	-0.078
0.1583	130.066	2.4	88.5	40	0.546	108	0.156	176	-0.078
0.1666	129.91	2.6	85.545	41	0.546	109	0.156	177	-0.078
0,175	129.678	2.8	82.745	42	0.546	110	0.156	178 179	-0.078 -0.078
0.1833	129.522	3	79.945	43	0.468	111 112	0.15 6 0.078	180	-0.078
0.1916	129.367	3.2	77.222	44 45	0.468 0.468	113	0.076	181	-0.078
0.2	129.134	3.4	74.654	45 46	0.468	114	0.156	182	-0.078
0.2083	128.979	3. 6 3.8	72.164 69.83	47	0.468	115	0.156	102	0.010
0.2166 0.225	128.824 128.591	4	67.495	48	0.468	116	0.156		
0.2333	128.436	4.2	65.238	49	0.468	117	0.156		
0.2333	128.203	4.4	63.058	50	0.39	118	0.156		
0.25	128.047	4.6	61.034	51	0.39	119	0.078		
0.2583	127.892	4.8	59.01	52	0.39	120	0.078		
0.2666	127.659	5	57.064	53	0.39	121	0.078		
0.275	127.504	5.2	55.039	54	0.39	122	0.078		
0.2833	127.349	5.4	53.326	55	0.39	123	0.156		
0.2916	127.116	5.6	51.535	56	0.39	124	0.078		
0.3	126.96	5.8	49.821	57	0.39	125	0.078		
0.3083	126.728	6	48.186	58	0.312	126	0.078		
0.3166	126.572	6.2	46.55	59	0.312	127	0.078		
0.325	126.417	6.4	44.992	60	0.39	128	0.078		
0.3333	126.184	6.6	43.512	61	0.39	129 130	0.078 0.078		
0.35	125.874	6.8	42.031	62 63	0.312 0.312	131	0.078		
0.3666	125.485	7	40.629 39.304	64	0.312	132	0.078		
0.3833	125.097	7.2 7.4	38.057	65	0.312	133	0.078		
0.4 0.4166	124.787 124.398	7. 4 7.6	36.811	66	0.312	134	0.078		
0.4333	124.386	7.8	35.564	67	0.312	135	0.078		
0.45	123.7	8	34.395	68	0.312	136	0.078		
0.4666	123.311	8.2	33.303	69	0.312	137	0.078		
0.4833	123.001	8.4	32.134	70	0.312	138	0.078		
0.5	122.613	8.6	31.121	71	0.312	139	0.078		
0.5166	122.302	8.8	30.108	72	0.312	140	0.078		
0.5333	121.914	9	29.094	73	0.234	141	0.078		
0.55	121.603	9.2	28.159	74	0.234	142	0		
0.5666	121.215	9.4	27.223	75	0.312	143	0		
0.5833	120.904	9.6	26.366	76 	0.312	144	0		
0.6	120.516	9.8	25.352	77	0.312	145	0		
0.6166	120.205	10	24.728	78 70	0.312	146	0		
0.6333	119.817	11	20.986	79	0.312	147	0 0		
0.65	119.506	12	17.788	80 81	0.312 0.312	148 149	0		
0.6666	119.118	13	15.292 4.058	81 82	0.312	150	0		
0.6833	118.807 118.497	14 15	4.058 2.497	83	0.234	151	ŏ		
0.7 0.7166		16	2.497	84	0.312	152	ŏ		
0.7333	118.108 117.798	17	1.795	85	0.234	153	ő		
0.7333	117.790	18	1.56	86	0.234	154	ō		
0.7666	117.099	19	1.404	87	0.234	155	0		
0.7833	116.788	20	1.326	88	0.234	156	0		

Packer Test Procedures and Quality Control

Packer Testing and Quality Control Procedures

General

Check Pipe tally to make sure that packer or packers are set at correct depth.

Note date and time on all recorded data.

Observe the pressuring up of the packer or packers, noting pressure applied to packers.

Monitor and record pressure on packers periodically during all phases of test.

Identify elevation benchmark.

Development

Note time of start of development.

Note method of development (air lift, pumping, etc.)

Check and record conductivity of development fluid initially and thereafter (maximum every 15 minutes).

Visually observe and record turbidity of development fluid (maximum every 15 minutes).

Visually observe and estimate fluid development rate (maximum every 15 minutes).

Continue development until conductivity has stabilized for 45 to 60 minutes.

Background

Observe and record the installation depths of the transducers (inside drill pipe and annulus).

Check and record transducer readings (maximum every 15 minutes).

Official background does not start until stabilization from development has occurred.

Continue recording background for 2 hours.

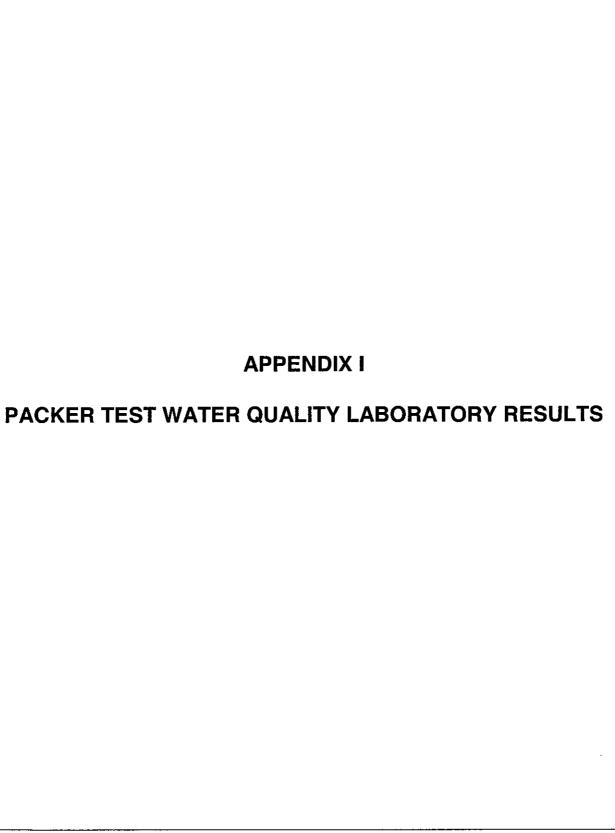
Pumping Test

Prior to starting pumping measure and record water level in drill pipe and annulus (referenced to a known benchmark).

Observe and record water levels in drill pipe and annulus (maximum every 10 minutes).

Observe and record the pumping rate (maximum every 10 minutes).

Pumping shall continue for a minimum of 4 hours.


Just prior to ending pumping observe water sample collection in accordance with water sampling checklist.

After stopping pump observe and record total volume of water pumped.

Recovery

Observe and record water levels in drill pipe and annulus (maximum every 10 minutes).

Recovery shall continue for a minimum of 3 hours.

Youngquist Brothers, Inc. 15465 Pine Ridge Road Ft. Myers, FL 33908 Page: 1 of 1

Client Project: Pompano Beach

Lab Project: N0106615 Report Date: 06/28/01

Lab ID	Sample Description	* Sample Source Sa	mple Date/Time	
N0106615-01	packer #1 1631-1647 grab	Ground Water	6/27/01 6:30	

<u>Analysis</u>	<u>Method</u>	Results	<u>Qual</u>	Detection Limit	<u>Units</u>	AnalysisDate/Time	Analyst
Ammonia-N	350.3	0.26		0.05	mg/L	6/28/01 15:00	DH
Chloride	4500Cl-B	17000		500	mg/L	6/28/01 12:00	DW
Conductivity	120.1	40200		0.1	umhos/cm	6/28/01 12:30	DW
Nitrogen, Total Kjeldahl	351.2	0.23*		0.05	mg/L	6/28/01 9:49	DH
Total Dissolved Solids	160.1	28100		5	mg/L	6/27/01 15:45	CC

Approved by:

Comments:

* Preliminary result

Craig Toler

Laboratory Director

CHAIN-OF-CUSTODY RECORD

Report To:

PROJECT #	Nolowels	
#	Notodus	J

Sample Supply:

1) , 0	report to.	•
ent Voungquist Bros dress FT Myers	Bill To: Customer Type:	
dress FT Myers	P.O. # Field Report #:	
	P.O. # Field Report #: Kit # Kit #	
one 941-489-4444 Fax	Project Location: REQUESTED DUE DATE: U28) [
Comean Webster	PRESERVATIVES ANALYSES / / / / / / / / / / / /	7
ampler Signature Var Webs	Sample DATE TIME TYPE \$\frac{1}{2} \frac{1}{2} \frac	
SAMPLE DESCRIPTION	DATE TIME TYPE & S S S S S S S S S S S S S S S S S S	mple D #
TDS (Kush)	6-27 630 G	
2 Chlorides	1 6	
3 Conductivity Ammonia		
Ammonia		
5 TKN		
Packer #1 (1631-1647)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	A
.,	V V V O	B
ottle Lot SHIPMENT METHOD # OUT / DATE RETURNED DATE VIA	RELINQUISHED BY / AFFILIATION DATE TIME ACCEPTED BY / AFFILIATION DATE	TIME
	Can Well 6-27 1013 Latter bing 5/2/6	11025
COMMENTS: COOLER #	Latter Ling 1505 / Will Club way	
Le bottler Fairs TO Barrier COOLER SEAL INTACT PROD or 6/28/01 Yes No		
Fairs TO BOTH & COOLER SEAL INTACT		
@ 1800 or 6/28/01 Yes No		
`^=1 Enc'	r Ct., " ' omis, C 74275 2403 • (041)488-8102 • FAY 184-6774	

Page: 1 of 1

Client Project: Pompano Beach

Lab Project: N0106617 **Report Date:** 06/28/01

IF INCEIVED 7 AUI

Youngquist Brothers, Inc. 15465 Pine Ridge Road Ft. Myers, FL 33908

Lab ID N0106617-01	Sample Description packer #2 1731-17 grab	DII			Sa 🛨 Sa	mple Source ound Water	Sample/Date 6/27/01	Time = 10:15
<u>Analysis</u>	Method	Results	Qual	Detection Limit	<u>Units</u>	AnalysisDate/Time	Analyst	
Ammonia-N	350.3	0.17		0.05	mg/L	6/28/01 15:00	DH	

<u>Analysis</u>	<u>Method</u>	Results	Qual	Detection Limit	<u>Units</u>	AnalysisDate/Time	<u>Analyst</u>
Ammonia-N	350.3	0.17		0.05	mg/L	6/28/01 15:00	DH
Chloride	4500CI-B	19000		500	mg/L	6/28/01 12:00	DW
Conductivity	120.1	46600		0.1	umhos/cm	6/28/01 12:30	DW
Nitrogen, Total Kjeldahl	351.2	0.35		0.05	mg/L	6/28/01 9:49	DH
Total Dissolved Solids	160.1	32600		5	mg/L	6/27/01 15:45	CC

Approved by:

Comments:

Craig Toler

Laboratory Director

RECEIVED JUL 0 2 2000

CHAIN-OF-CUSTODY RECORD

PROJECT	. 1 4	10111	
11100201	N 1 N	1 (1) 1414177	
#	[[][]	(1) lolo] 7	
TT .	NO	10 041	

		•
	Page	of

Page	c	of

Chvironmenta	resting services													(112	
U	0	Rep	ort To:							Sa	mple S	Supply	:	(<u> </u>	
Client lounguist	Dros	Bill 1	Го:		==					Cu	stome	r Type:	: <u></u>			
Client <u>lawaguist</u> Address <u>FT My</u>	ers	P.O.	#	\sim		_				Fie	eld Rep	ort #:				
		Proj	# ect Name	lone)ano	Pac	ker	#2		Kit	#				(-	1
Phone 941-489-4444	/ Fax	Proj	ect Location	on:						RE	QUES	TED D	UE DA	TE:	428	01
Sampled By (PRINT)					PRE	SERVA	TIVES	ANALY		//	//	//	//	7	7//	
Sampler Signature			Sample)	ESERV				[] []		7	//	//		//	
	SCRIPTION	DATE	Sample	TYPE	4.C	OS H	로			14	//	//		//	Sam ID	ple #
1 TDS	(Kush)	6-27	1015	6												"
Z Chlorid	es		1													
3 Conducti																
4 Ammonia	,															
5 TKN																
	· · · · · · · · · · · · · · · · · · ·															
Priker #	2 (1731-1747)							ХX	X						OIA	
((()	4	V	V					Х	γ					01 6	
Bottle Lot SHIPMENT N # OUT / DATE RETURNED	METHOD VIA		RELINC	UISHED E	BY / AFF	ILIATIO	NC	DATE	TIME	ACC	CEPTE	D BY / A	AFFILIA	TION	DATE	TIME
		1/	in l	elelu	15			6-27	1, 1075	K	n-t-	Ru	K.	va	900 kg	10.0
COMMEN	ITS: COOLER#		atky			•		102	XICA			71)	oon	4/3/01	16/6
Cun	10	1/	7	1	7	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1-1/2		1 100	31/M	<i>V</i>	Thy vi,	wij.	Hertol	ريم
Berz	COOLER SEAL									 		- · · · ·				
BC121 BC121	intact Yes No															
•	1050 6	e. N.														

Youngquist Brothers, Inc. 15465 Pine Ridge Road Ft. Myers, FL 33908 Page: 1 of 1

Client Project: Pompano Beach

Lab Project: N0106734 **Report Date:** 07/02/01

Lab ID N0106734-01	Sample Description packer #3 1931-194 grab		Alexandry Tillian Volume		Anna Coll Barre	nple Source ound Water	Sample Date 6/28/01	
<u>Analysis</u>	<u>Method</u>	Results	Qual	Detection Limit	<u>Units</u>	AnalysisDate/Time	Analyst	
Ammonia-N	350.3	0.15		0.05	mg/L	7/2/01 13:30	DH	
Chloride	300.0	16400		15	mg/L	7/1/01 15:50	DW	
Conductivity	120.1	46100		0.1	umhos/cm	7/2/01 12:30	DW	
Nitrogen, Total Kjeldahl	351.2	0.16		0.05	mg/L	6/30/01 15:30	NL	
Total Dissolved Solids	160.1	34500		5	mg/L	6/30/01 11:30	CC	

Approved by:

Comments:

Craig Toler

Laboratory Director

Sanders Laboratories Environmental Testing Services

CHAIN-OF-CUSTODY RECORD

PROJECT N000734

Page of

Environmental Testing Services Slient Nungquist Bros Address Ft Myers Phone 941-489-4444 Fax	Project Name Project Location: Packer # 3	Sample Supply: GW Customer Type: Field Report #: Kit # REQUESTED DUE DATE: 1201
Sampled By (PRINT) Cameron Webster Sampler Signature Court Webster	Sample DATE TIME TYPE 2 TO STATE TO ST	Sample
1 This (Rush) Packer#3 2 Chlorides Packer#3 3 Conductivity) Mo	DATE TIME TYPE \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Sample ID # OIA OIB
4 Ammonia (1931-1947) 5 TKN		
Bottle Lot # OUT / DATE RETURNED DATE VIA COMMENTS: COOLER # Faxed to Beth & Ed McCulle	RELINQUISHED BY / AFFILIATION DATE TIME 6-Z9-01 332 6-Z9-01 335	ACCEPTED BY / AFFILIATION DATE TIME ACCEPTED BY / AFFILIATION DATE ACCEPTED BY / AFFILIATION DATE
7/2@15:30 COOLER SEAL INTACT YES NO		

Youngquist Brothers, Inc.

15465 Pine Ridge Road Ft. Myers, FL 33908

Lab ID N0107262-01 Sample Description straddle packer #4 1679'-1695' grab

Sample Source Ground Water

Page: 1 of 1

Client Project: Pompano Beach

Lab Project: N0107262

Report Date: 07/16/01

Sample Date/Time 7/13/01 3:30

<u>Analysis</u>	Method	Results Qual	Detection Limit	<u>Units</u>	AnalysisDate/Time	<u>Analyst</u>
Ammonia-N	350.3	0.22	0.05	mg/L	7/16/01 13:00	RB
Chloride	4500Cl-B	16400	200	mg/L	7/16/01 11:30	DW
Conductivity	120.1	37100	0.1	umhos/cm	7/16/01 12:45	DW
Nitrogen, Total Kjeldahl	351.2	< 0.25	0.25	mg/L	7/16/01 11:40	DH
Total Dissolved Solids	160.1	29900	5	mg/L	7/13/01 16:15	CC

Approved by:

Comments:

Craig Toler/Lab Director Laura Sullivan/QA Officer

Kathrine Bartkiewicz/Lab Supervisor

RECEIVED JUL 18 2001

Sanders Laboratories Environmental Testing Services

CHAIN-OF-CUSTODY RECORD

PROJECT #	NO107262	
	<u> </u>	

	į į	ſ
Page	of /	

	VR I	_	Repo	rt To:	BMERO	u	<u> </u>	_	<u>J</u>	mm	4	Eo	()	, ,	Samp	ole S	uppl	ly: _		(-	\mathcal{W}	
Client _	<u> </u>		Bill To); <u> </u>	····						<u>_</u> '	nec	une	(15)	Custo	omei	г Тур	e: _				
Address	Ft Myers		P.O. #	<u> </u>		2_									Field	Rep	ort #	# :				
			Proje	ct Name	<u></u>	my	Da	no			, ,	/	,	_/	Kit #							·
Phone _	941-489-4444 Fax		Proje	t Name	on: <u>54</u>	ald	le_	Pace	10/	#4/	<u>/</u> 6	19-1	1693	•	REQ	UES	TED	DUE	DA1	ΓE: <u> </u>	1/25/0	<u>)i</u>
	ed By (PRINT) Delegator Webster					Р	RES	ERVA	TIVES	s Al	NALY	SES	7	7/		1	/ X	$\overline{/}$	7	$\overline{//}$	///	7
Sample	er Signature		DATE	Sample	,		RESER	ا ان			,	$\langle \rangle$		5/		200		\$\\\	//			
Bottle #	SAMPLE DESCRIPTION		DATE	TIME	TYPE	4°C	NN N	H 3S	克		[\sum_{k}	\$ <u>/</u> ^				/હ	γ,	/ /	/ /	Sar 10	mple) #
1	Straddle Packer#4	1679-1695	7-13-01	3 an	G						1	1									01	
2	1)		1				١						1	1							Ö	
3						1	1										1					
4	11					1	ı										1					
5	11	, , ·				1											١					
$\dot{\omega}$	1!					 			T		+-						i					
			'			+					+						Ť		<u>-</u>	_	_	
		***************************************				+	Н				+			-				i				
Bottle L	OUT / DATE RETURNED / DATE	VIA		RELING	UISHED	.l BY /	AFF	LIATI	ON		DAT		IME		CCE						DATE	TIME
			Caure	ron l	Valor	ter	/			7	-اترا- ا کر ا-	01/	2 15		HIL	i L	Z	Â	11	rio	7/13/01	1215
	COMMENTS:	COOLER#		va l	//			lu	-2	7	17/6	1/2/	(EL	201	Int	luc	د ا	M	mρ	on	7/13/0, -7/13/1	160
	Fest Stone of			-·· ··································											g -						<u></u>	
	HECETYEL JUL 18 21) COOLER SEAL INTACT Yes No							· · · · · · · · · · · · · · · · · · ·													
		1950 Endeava	rCt Nok	omis El	34975-3	6 93	• (0	24114	 .88-8	R103	• FA	Υ 48	<u>4-67</u>	74								

Youngquist Brothers, Inc. 15465 Pine Ridge Road Ft. Myers, FL 33908

Page: 1 of 1

Client Project: Pompano Beach

Lab Project: N0107344 Report Date: 07/19/01

Lab ID N0107344-01

Sample Description straddle packer #5

grab

Sample Source Ground Water

Sample Date/Time

7/18/01 5:00

<u>Analysis</u>	Method	Results Qual	Detection Limit	<u>Units</u>	AnalysisDate/Time	<u>Analyst</u>
Ammonia-N	350.3	0.09	0.05	mg/L	7/19/01 13:00	DH
2hloride	4500CI-B	20000	500	mg/L	7/19/01 9:30	DW
Conductivity	120.1	48800	0.1	umhos/cm	7/19/01 13:30	DW
Nitrogen, Total Kjeldahl	351.2	0.33	0.05	mg/L	7/19/01 11:40	DH
Cotal Dissolved Solids	160.1	35100	5	mg/L	7/18/01 17:30	CC

Approved by:

Comments:

Craig Toler/Lab Director Laura Sullivan/QA Officer

Kathrine Bartkiewicz/Lab Supervisor

FT JUL 2 5 7005

CHAIN-OF-CUSTODY RECORD

PROJECT	4	20.01
#	NOID	<u> 1344 . </u>

Page	of

	114		vebo	IL 10:							_			•	3 airi il	ile O	uppi	у _	$\Delta \mathcal{L}$	- 17			
lient	481		Bill To	o:							_			Customer Type:									
ddress	FT Myers		P.O. #	¥							_		Field Report #:										
	1		Proje	t Name	Pompa	no	5	Fran	dle	bel	er ti	^t 5	•	١	Kit#								
hone 94	1-489-4444 Fax		Proje	ct Locatio	on:	Po) Dry	pan	0		_			1	REQU	JES'	TED	DUE	DAT	E:	7/20/	0/	
	By (PRINT) (accepted Webs)	tel				Р	RES	ERV	ATIVES						$\overline{/}$	$\overline{/}$		7	7	7	///	7	
	ignature ban Weh		;	TYPE		RESER	ابہ		1	5/	/3/			[h/	/	//				//		_	
Bottle #	SAMPLE DESCRIPTION	N	DATE	TIME	TYPE	4°C	dNo	S E	로				%	1	7						S	ample ID#	
65	traddle Packer # 5	5	7-18-01	5am	6							1	1	1							OIA	101	в
	. 1811'-18	27 '																				-	
	7011 10	_ /	 				$ \cdot $				$ \cdot $		\dashv			寸				十			
			 			-		-	+	+		\dashv	\dashv		\dashv	\dashv				- -			
			<u> </u>					_			\sqcup		_		_	_							
														ļ									
														ļ	Ì		l						
1																			1			-	
		· · · · · · · · · · · · · · · · · · ·	 			-	H	\dashv		+	H			\dashv	+			\dashv	-				
Bottle Lot #	OUT / DATE RETURNED DATE	VIA		RELING	UISHED	BY / /	AFF	LIAT	ION		DATE		IME		CCE	PIE	BY.	/ AFF	ILIAT	1011	DATE		IME
			LCa	meran	لما	γο).	<u>হ</u>	ter			-18-	01	120	ئــــــــــــــــــــــــــــــــــــــ	M						>-18	0//	120
	COMMENTS:	COOLER #	(h)							5	h Kyr	21 /	640	1		4	Lic	· .	Da.	IMΩ	7/18/	61 11	' _a VD
			10	<u> </u>										\Box	1	<i></i>	4/11/	~	<u> </u>	1	177	1	-1-
3	·	COOLER SEAL INTACT Yes No													·								
	<u> </u>	10E0 Codesva	u Ch. Nale	i- Cl :	74075 74	4O7	- /	2412	100 0	107.4	. (0)		1 47	<u></u>						·	. 1		

Page: 1 of 1

Client Project: Pompano Beach

Lab Project: N0107525 **Report Date:** 07/30/01

KECEIVED AUG - 3 2001

Youngquist Brothers, Inc. 15465 Pine Ridge Road Ft. Myers, FL 33908

Lab ID N0107525-01 Sample Description
packer test 6 (1519-1550) iw-1

Sample Source Ground Water **Sample Date/Time** 7/19/01 0:00

grab

Analysis	Method	Results	Oual	Detection Limit	<u>Units</u>	AnalysisDate/Time	Analyst
Ammonia-N	350.3	0.65	J 5	0.05	mg/L	7/30/01 10:30	DH
Chloride	300.0	2800		3	mg/L	7/28/01 17:20	DW
Conductivity	120.1	7750		0.1	umhos/cm	7/30/01 10:30	DW
Nitrogen, Total Kjeldahl	351.2	0.77	J5	0.05	mg/L	7/28/01 13:34	DW
Total Dissolved Solids	160.1	6460	Q	5	mg/L	7/27/01 17:15	EC

Approved by:

Craig Toler/Lab Director Laura Sullivan/QA Officer

Kathrine Bartkiewicz/Lab Supervisor

Comments:

Qualifier codes: Q-Sample analyzed beyond accepted hold time. J5-sample analyzed from an improperly preserved container.

CHAIN-OF-CUSTODY RECORD

PROJECT	
#	N0107525

Page

		Repo	Report To: CAMERIN Webster											Sample Supply:						
lient	Youngguist.	Bill To	o:								(Custor	ner Ty	/pe: _						
ddres	ess	P.O. #	#								F	Field Report #:								
		Proje	ect Name Forge	nUC	130	neh					ŀ	Kit #								
hone	eFax	Proje	ect Name <u>Foupp</u> ect Location: <u>Fo</u>	404	NO	<i>السا</i>	p.				ı	REQUESTED DUE DATE: 1/30/01								
Samp	pled By (PRINT)		PRESERVATIVES ANALYSES REQUEST									W.X//////								
	pler Signature		Sample TIME TYPE		RESERV				B				X /	//	//	//	/			
Bottle #	SAMPLE DESCRIPTION	DATE	TIME TYPE	ဦ	3	Z H	보	1/	_	\mathbb{Z}_{i}	<u> </u>			\angle	_		Sam ID	nple #		
1	Prefer Test 6 (1519-1550) I	W-1 7/19/01	6	14				X	X	X	4	X) AIC	OIB		
																	'			
					7									1						
				1	\dashv	1							+	+		 -				
				╁╌╁	\dashv		- -	+	 			+	+	+	\square					
				\dashv	\dashv			++	\vdash		\vdash	+	+	+	H	+	 			
					\perp	-		1 -	-							\perp				
						_			<u> </u>			\perp		_						
Bottle #	le Lot SHIPMENT METHOD # OUT / DATE RETURNED : DATE VIA		RELINQUISHED	BY / A	AFFII	LIATIC	N	DAT	ГЕ	TIME	А	CCEP	TED 8	Y / AF	FILIA	TION	DATE	TIME		
			2/1		>	4.	5	7/27	10)	200	1	The		UK	1		72701			
	COMMENTS: COOLE	:R #	A THE					5/2/	W	50	1	l n i	. 1.	.C.	M	λ. 4Ω .	7/27/0	1520		
	PER CAMEZON - RUN TOS OUT OF HOLD							1				70	· ·	Mar Ca	500 ()		 11 ~ 11 ~	1.00		
	AND IVH, & TKN COOLER	SEAL						+												
	UNPRASERVED INTA	ст		······································				+					-	.			-			
		adaayar (t. Male	1000 CL 7/107E 7	407	- 10	41140	00 010	77 a CC	V 40	1 47	7/						_			

Youngquist Brothers, Inc. 15465 Pine Ridge Road Ft. Myers, FL 33908

Page: 1 of 1

Client Project: Pompano Beach

Lab Project: N0107040 Report Date: 07/03/01

HAZEN AND

Boca Raton, Francia

MAY 28 2002

JOB No.

107040-01

Sample Description packer #4 1861'-1877'

grab

Ground Water

Sample Source Sample Date Utime 6/29/01 10:00

alysis	Method	Results	Qual	Detection Limit	<u>Units</u>	AnalysisDate/Time	<u>Analyst</u>
monia-N	350.3	4.02		0.05	mg/L	7/3/01 12:15	NL
bride	300.0	9840		15	mg/L	7/3/01 9:50	DW
Conductivity	120.1	32000		0.1	umhos/cm	7/3/01 12:50	DW
ogen, Total	351.2	4.97		0.25	mg/L	7/3/01 18:41	NL
otal Dissolved Solids	160.1	20200		5	mg/L	7/2/01 17:30	CC

approved by:

Comments:

Final Report

Craig Toler

1, aboratory Director

Sanders Laboratories Environmental Testing Services

CHAIN-OF-CUSTODY RECORD

יייייייייייייייייייייייייייייייייייייי	
PROJECT	MAIN ALLIA
#	1 NOIO 7640

Page of

Client YB1	hepoit to.										٠	Sample Supply:							
	Project Name										Customer Type:								
Address	P.O.	#	- ^								Field Report #:								
	Proje	ect Name	_tack	ei s	<u> </u>						Kit #								
PhoneFax	Project Location: Por Dono 4 Company)	REQUESTED DUE DATE: 7461								
Sampled By (PRINT) Canteron Webster	PRESERVATIVES ANALYSES							1/	X.		$\overline{}$	7	//	//		7			
Sampler Signature)	,	ESERVED				14	/	7.3		$\langle \! \rangle$	//			/	//		
SAMPLE DESCRIPTION	DATE	Sample TIME	TYPE	℃	UNPRI	S. S	킬로	1	Z.	X	,*\\\	X	//	/ ,	/ /	/ /	//	Sar	nple
Placker # 4 1861-1877	1.	10 am		ì				ĺχ	X	X	X	1	1		1	T	T		
	نه ز		-	+		\top	11					^	7	_	- -	╁	+	01A/	alu Alu
				4	H	╬	1	-				C 1	4	_	_	_	┿.		
	<u> </u>										\perp	\perp	<u>. </u>			_ _			
6						+	+1												
						I													
			· · · ·		-						Ť	1	\dagger	7	十	\top	1		
The state of the s						+					\dashv	+	-	\dashv	-+		+-	 	 -
					\dashv	+	++	-					-	_	_ -		-	<u> </u>	
Bottle Lat SHIPMENT METHOD																			·
# OUT / DATE RETURNED / DATE VIA			JISHED B	Y / F	\FFIL	-IATI	ION	-	E T		,	CEP	TED	BY /	AFFI	LIATIO	: ИС	DATE	TIME
pick-up	wani	Weh					 	7.2	-O[\$20			<i>Q</i>	3/	1			7-7-0	1320
COMMENTS: COOLER #		01	all	1				7-2-	01 16	745	İ	1	1	111	T	MA) lh	10LT	
Kepon	(\top				1 10/1	.~\.\ ~ \.	<u></u>	200 E	<u>L. L. P.</u>	12701	104
FARAS TI COOLER SEAL								<u> </u>	+		 		 -						
REPORT FALLS TO COOLER SEAL INTACT VIS 413 1050 Forderwore			\$2					ļ				 .							
017/13/01 @ 1920 1050 Fodeovor	Ct., Nok	omis. FL 3	4975-36	93 •	• (94	1114	R8-810	ኝ • FA		1-57	1— 74		•			··			Ц

YOUNGQ002775 Cameron Webster Youngquist Brothers 15465 Pine Ridge Road Ft. Myers, FL 33908

Site Location/Project Pompano Beach GW Testing

Page 1 May 29, 2002 Submission # 106001523 Order # 189709 FDEP CompQAP# 990102 FL-DOH Certification# E86349,E86616

Sample I.D.: YB1 #5 1861-1877

Collected: 06/29/01 09:00 Received: 06/29/01 10:13 Collected by: Cameron Webster

PARAMETER	RESULT	UNITS	метнор	DETECTION LIMIT-RQL	DATE EXT.	DATE ANALY.	ANALYST
Specific Conductance {grab}	42100	umhos	120.1	1.0	06/29/2001	06/29/2001	MC
Residue, Total Filterable (TDS)	20374	mg/L	SM2540C (160.1)	1.0	06/29/2001	07/01/2001	SMP/IV
Chloride	9850	mg/L	300.0	1.0	06/29/2001	06/29/2001	MC
Nitrogen (Ammonia)	3.02	mg/L	350.1	0.04	06/29/2001	06/29/2001	кк
Nitrogen (Kjeldahl)	4.60	mg/L	351.2	0.1	06/29/2001	06/29/2001	кк
							<u> </u>

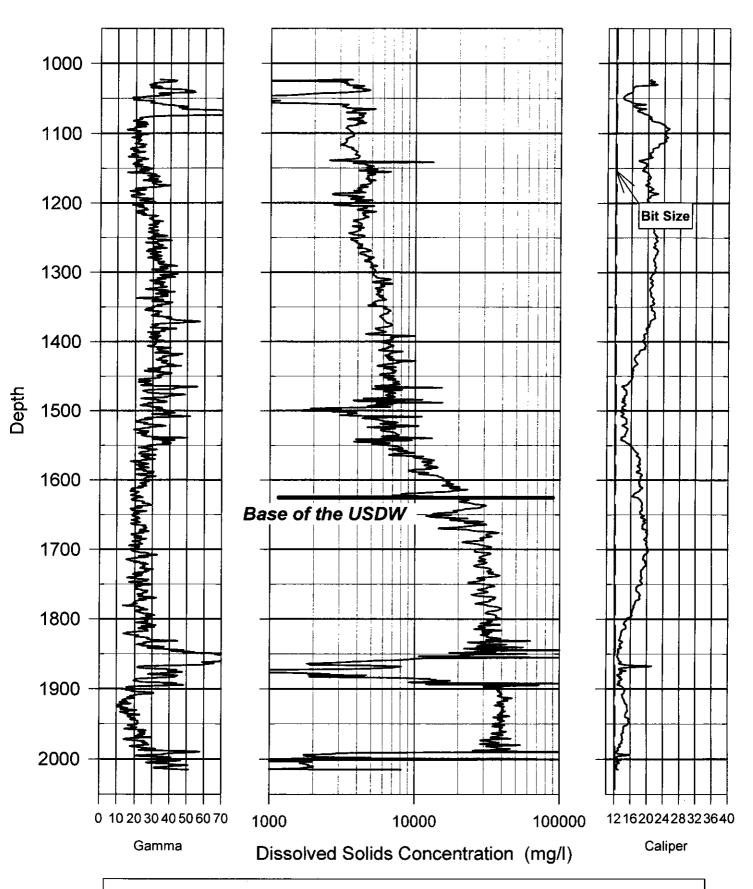
BDL: Indicates Analyte is Below Detection LimitMEDF: Matrix Effected Dilution Factor***

Work Subcontracted to Outside Labs Denoted by HRS Cert ID in Analyst Field

Qualifier following result conforms to FAC 62-160 Table 7***Unless otherwise noted, mg/Kg denotes wet weight*** ***62-770: If the MDL using the most sensitive and currently available technology is higher than a specific criterion, the PQL shall be used.

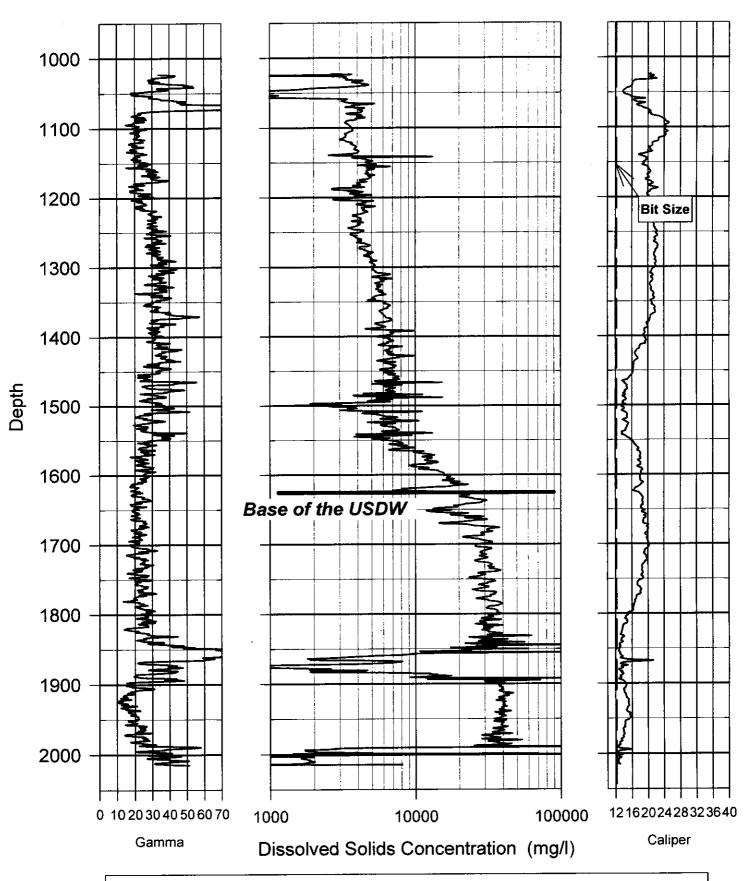
Certs:Al. =#41180, Ct. =#PH0217, Ks. =#E270 + E1245, Ky. =#90087, La. =#9601, Md. =#271, Ma. =#M-FL535 ND. =#R163, OK. =#9523, SC. =#96023, Tn. =#TN02826

	01/04-1122
Submination Code	100 1927
10.00	877093_
	720
Entered to lime:	

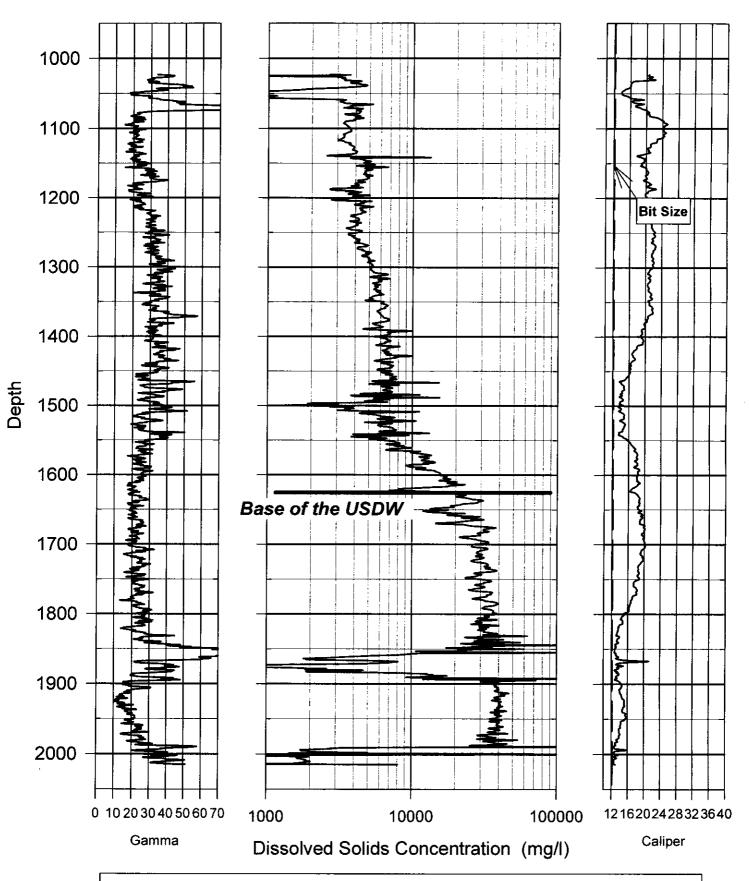

SEVERN TRENT LABORATORIES, INC. CHAIN OF CUSTODY RECORD (DEP 62-770.900 – modified form)

FDEP Facility No.
Page:of
Sampling CompQAP No.)

94	/ 87	107 <u>3 </u>	(054)	421 A	IEEO	. NA	T'I WAT	10200 USA TODAY • (800) LAB-8550	WAY, M	IIRAM <i>i</i> 154) 43	lR, FLORIDA 11-1959 + \$. 33025 Ample cus	STODY FA	X (954) 432-887	Sampling Comp((AP No.)											
	- 1. E - 2.01 C	<u>)</u>	(934) -						rellow –					Pink – Sampler Co	Approvat Date:_												
Repo	rt To:	11011151					Inc				rt To Address	: 1546	55 7	Time Ridge	o fed.												
Bill T	70.00	gquist	1210	; 	·					T ·	g Address:		rue		37,8												
-		Gw Tc	1.0							1	(954)	7		upar Beach													
			Web	- /			Phon I.C	41) 960-45	<i>v</i> o	FAY:	783-6	1745		, , , , , , , , , , , , , , , , , , , ,													
		MUSA	well	<u> </u>	Υ		Phone:					01()															
	nate Contact:	# . e C-4 .	N W8	<i>Co</i> .	T.=									·													
Sam	pled By (print):	A METO		- />>		- <i>/</i>	MATRIX	SAMPLE LOCAT	ION	sam #	pler's Signatu	re:	ANAL	rsis Required		Sample Condition											
I T E C M O DH P N D DATE TIME D COLLECTED COLLECTED CC							DW SW GW SED	JOB DESCRIPTI	iON ded e from	C O N T	(√) CHE	TEST9	E NAME O	ER OF ELOW CH TEST PERFORMED													
M				F L D	F L D	F L D	S EFF HW BIO SA	different site loca	rtion)	A I N E R	TDS. Conduc NH3.	Chloride firity. TKN.	ć,			Lot number of Sampling Containers Used											
1	YB1 #5	6/29	9:00				GW			6	V	W_															
2								,	<i>:</i>						<u> </u>												
3	_																										
4]							<u> </u>	<u> </u>														
5										ļ																	
6	•																										
7							<u> </u>			ļ		ļ															
8				_	_					<u> </u>		ļ															
9					ļ					<u> </u>			\bot														
10		<u> </u>		<u> </u>		<u> </u>				 _ _	<u> </u>					=1											
Spe	cial Comments:	·						Total # of Contain	ers:	6	QA/QC R	eport Neede			(See price guide	for applicable fees)											
											Report Fo		Standa		(specify)	17											
(1)	Relinquished by Signa	ture		Dat	j9.	-0		?) Relinquished by Sign	ature:			Date:		DUE DATE REQU Confirmation #	ESTED 1.154	5											
Con	npany:	· · · · · · · · · · · · · · · · · · ·	72	Tig		13		ompany:				Yime:		Coating Code	re 6/2	9/0/01/10											
(i)	Received by Signature): 		(9 3)	7	/4/	/ (2	?) Received by Signatu	re:			Date:		Misc. Charges													
Cor	npany: 57			Tin	ne;	73	c	отрапу:				Time:		SHADED	AREAS ARE FOR LAB U	The second secon											


APPENDIX J LOG DERIVED WATER QUALITY

Pompano Beach - Concentrate Disposal Well #1 Log Derived Water Quality


Used Best fit (a and m) values (R-H, m=2.0, a=1.0) non-Corrected Rt

Pompano Beach - Concentrate Disposal Well #1 Log Derived Water Quality

Used Best fit (a and m) values (R-H, m=2.0, a=1.0) non-Corrected Rt

Pompano Beach - Concentrate Disposal Well #1 Log Derived Water Quality

Used Best fit (a and m) values (R-H, m=2.0, a=1.0) non-Corrected Rt

APPENDIX K CASING AND TUBING MILL CERTIFICATES

Project No.: 40368

Injection Well Mill Certificates

Mill Certificates IW-1 50-inch Diameter Casing

TELEPHONE: (414) 259-11 (3

CANADIAN PHOENIX STEEL PROD PAX: (410) 269-6951

DIVERSION OF LOSSIES CHITARIO LIMITED 200 HORNER AVENUE ETOBICOKE, ONTARIO CANADA MOZ ey4

DATE May 15/01	THE THE PERSON OF THE PERSON O					
10/01	CUSTOMER					
SPECIFICATION A1398	CUSTOMER'S P.O 6631					
DIA. & WALL SOF D D X 375 NT						
HYDROTEST 420 PM FOR 1 Hin.	PHOENIX REF. 01-3645					
THE R.						

HEAT NO.	PIPE NO.	LONGITU YIELD	DINAL TEST	% ELONGATION	TRANSVERSE	BREAK		
2843T	4	51300	75600		WELD TENSILE	LOCATION		
28407	2	50600	74300	37.5 37.5	78700 77500	PM		
	╂╼╼┵					PM		
			-					
				<u> </u>				

LADLE	NALYS	13	CHEMICAL COMPOSITION								
HEAT NO	_c	MIN	#	P	Ġ)						
2843T	- 17	.88	.005	.007		CR	N	CU	MO	AL	
2840T	.18	-80	.003	+	.24	.03	-01	.02	.01	.036	
			1.003	.007	.21	1.01	-01	.01	.01		
							 			.033	
							 -				
			+								
			 			<u> </u>					
			1				-				
					_	L	1 1	! . !			

The material listed on this report has been tested in accordance with the specification

.adid SSAV MAY, 25, 2001 4:08PM

Mill Certificates IW-1 42-inch Diameter Casing

CANADIAN PHOENIX STEEL PRODUCTS

DIVISION OF 1045761 ONTARIO LIMITED 289 HORNER AVENUE ETOBICOKE, ONTARIO, CANADA M8Z 4Y4

LABORATORY REPORT AND MILL TEST CERTIFICATE

				-					7 7 7		<u> </u>		
DATE May 15/01							CUSTOMER Pipe & Piling Supplies						
SPECIFICATION A139B						CUSTOMER'S P.O 6631							
DIA & WALL 42" O.D. X .375 WT						PHOENIX REF.# 01-3646							
HYDROTE	sт ⁵⁰⁰	Ps	SI FQ	R_1 M	in.								
	PHYSICAL PROPERTIES												
LONGITUDINAL TEST HEAT NO. PIPE NO. YIELD I TENSILE										Bi LO(REAK CATION		
.8063M	3	\longrightarrow	54600		79900		37.5		83100			PM	
													
- · /							· 						
	-	\dashv											
·	 			- +				<u> </u>					
· · · · · · · · · · · · · · · · · · ·		<u> </u>								·	\bot		
LADLE ANALYSIS CHEMICAL COMPOSITION													
HEAT NO		MN	т	s	Р	SI	CR		NI	CU	MC	o _	AL
8063M	.17	8	38	.005	-010	.22	.01	<u> </u> .	01	.01		-	.034
. <u>-</u>	· · · · ·	 		 	-	<u> </u>							
		 	\dashv		 			_ _	_				
			\dashv	···	 		_						
			_		-	<u> </u>		<u> </u>					
	<u> </u>				<u> </u>								-

The material listed on this report has been tested in accordance with the specification shown above.

Authorized Approval

TELEPHONE: (418) MA-1119

CANADIAN PHOENIX STEEL PRODU

DIVISION OF 100001 ONTARIO LIMITED 368 HORNER AVENUE ETOBICONE ONTARIO CANADA

DATE MAY 15/01	EST CENTREATE
	CUSTOMER -
SPECIFICATION A1398	
DIA & WALL 42" 0.0. X .375 WT	CUSTOMER'S P.O 6631
	PHOENIX REF. 01-3646
HYDROTEST 500 PE FOR 1 Hin.	

HEATNO	PIPE NO.	LONGITU	TENALS	4	TRANSVERSE	BREAK
8063M	1 3	54600	79900	ELONGATION	WELD TENSILE	LOCATION
	1		A300	37.5	83100	PM
	 		l :			
ì	1 7					_
	+			<u> </u>		
7						
	 					
	1		71111			
				.		
į						

LADLE	NALYS	18	CHEMIC							
HEAT NO	<u> </u>	MN		P	8			٠,		
8053M	.17	. 88	.005	.010	. 22	CR	NI NI	CU .	MO	AL
				.010	. 22	.01	.01	-01	~ ~	. 0
			+							
		-	+]			_
			 					-		
 }						-				
he males			<u> </u>					1		

orial listed on this report has been tested in accordance with the specification

-NO' 6528

" sqiq SSAV" . MQTD:4 1005.25 YAM

TELEPHONE: (418) 256-1113 FAZ: (418) 256-281

CANADIAN PHOENIX STEEL PRODUCTS

UNISION OF ISMOST ONTARIO LIMITED 200 HORNER AVENUE ETOBICORE, ONTARIO, CANADA MOZ 474

LABORATORY REPORT AND MILL TEST CERTIFICATE

The state of the s
CUSTOMER
CUSTOMER'S P.O 6631
PHOENCE REF. 01-3546

PHYSICAL PROPERTIES

HEAT NO.	PIPE NO.	ALET D.	CHAL TEST	% ELONGATION	TRANSVERSE	BREAK	
8063M	3	54600	79900	37.5	WELD TENNILE	LOCATION	
25057	2	52700	78600	37.5	03100	PM	
Z843T	7	53900	80100	37.5	81900	PM	
	· mi pum			37.3	83500	PM	
/:							
/ '	 	-					

LADLE	ANALYSIS	CHEMICAL COMPOSITION
	ļ	THE PUMP OF INTE

	i												
HEAT NO	=	MN			완	GR	N		***				
8063M	. 17	.88	.005	.010	. 22	.01	1.01	CU	MO	AL			
2605T	. 17	.86	.005	.011	. 23	,01	·	-01	*	. 034			
2843T ·	.17		 			, 0 1	.01	.01	,01	. 035			
20431	- 17	.88	.005	.007	. 24	.03	.01	. 02	-01	. 036			
			1				 			. 430			
							 			-			
				······································		<u> </u>				ł			
	-						I . (. 7					

The material listed on this report has been tested in accordance with the specification

Authorized Approval

ζ 'a 6LÞL 'ON

and SSON 1445PM AASS DIDE

Mill Certificates IW-1 34-inch Diameter Casing

TELEPHONE: (416) 259-1113 FAX: (416) 259-6951

CANADIAN PHOENIX STEEL PRODUCTS

DIVISION OF 1045761 ONTARIO LIMITED 289 HORNER AVENUE ETOBICOKE, ONTARIO, CANADA M8Z 4Y4

LABORATORY REPORT AND MILL TEST CERTIFICATE

DATEJune 4/01	CUSTOMER Pipe & Piling Supplies
SPECIFICATION A 139B	CUSTOMER'S P.O 6631
DIA. & WALL 34" 0 D X 375 WT	PHOENIX REF.# 01-3696
HYDROTEST 620 PSI FOR 1 Min.	

PHYSICAL PROPERTIES

HEAT NO.	LO HEAT NO. PIPE NO. Y		DINAL TEST I TENSILE	% ELONGATION	TRANSVERSE WELD TENSILE	BREAK LOCATION
28447	9	53400	78600	37.5	81900	РМ
2605T	11	52600	78300	37.5	81700	PM
2604T	18	51500	75500	37.5	79100	PM
2840T	23	50800	74600	37.5	77900	PM
2842T	29	53100	78700	37.5	81900	P M
	<u> </u>					- " " "

LADLE ANALYSIS CHEMICAL COMPOSITION

HEAT NO	С	MN	S	P	SI	CR	NI	CU	MO	AL
2844T	.18	.87	.004	.007	.23	.02	.01	.01	.01	.042
2605T	.17	.86	.005	.011	.23	.01	.01	.01	.01	.035
2604T	.17	.83	006	0111	. 22	.01	.01	.01	.01	.036
2840T	.18	.80	.003	.007	.21	.01	.01	.01	.01	.033
2842T	.18	.86	.004	.006	.23	.02	.01	.01	.01	.035
										<u> </u>

The material listed on this report has been tested in accordance with the specification shown above.

Authorized Approval

Mill Certificates IW-1 24-inch Diameter Casing

U.S. STEEL GROUP U.S. STEEL GROUP OF USX CORPORATION

TUBULAR PRODUCTS CERTIFIED TEST REPORT

JATE: 09:20:17 USXX"

USS, USA, USX are beforearts of USA Corporation

(TYPE B - IN ACCORDANCE WITH ISO 10474/EN10204/DIN50049)

	1.1	7 D 90 Maria (1974)		- - - - - - - - - - 	
MILL DIDERVITEM NO.	SHIPPERS NO.	P.O. NUMBER	VEHICLE ID.		
DR 10368 08		6800-USS			
	O ADDRESS	MAR TO	ADDRESS	USS TUBULAR PRODUCTS 2199 EAST 28TH ST. LORAIN, OH 44055	
		GPECIFICATION AND	GRADE		
		GLECH ICES AND 14-			

PIPE CARBON SMLS STO PIPE API 5L-*41ST EDITION DTD 4/1/95 ASTM A53-*998 ASTM A106-*99 GRADE 8 TRIPLE STENCIL ASME SA53-*1998 EDITION 1999 ADDENDUM GRADE 8 BLK REG MILL COAT PE BEV 30 DEG

	TENSIC				VIELD	PSI	SI .50		PSI PSI		Y/T		ELONG 4		SCALE: HRB		MIN HYDRO PSI	CASTT (REC.
PRODUCT IDENTIFICATION	OREMANO!	TEST COND.	WOTH IN	MIN: MAX:	3	5000		MEN: MAX:		ଡଡଡଡ ି	M	l	N		MN: MAX:	100.0		
105990	STRIPZTZ		1.500 END (3300 THIS	,50 Shee			7500	B	. 60		744.1		75,3	890	
URDEND: L - LO U - UR PREDOUCT DENTIFICATION	DHORIUDINAL PSET TYPE	7 - TPIANSVE N - NORMALE C M				ICHED 1 85 REUR CU	TEMPERE VEO	O CF	MO	AR · AS AL	OLLEO		-	8 - BOOY	Ca	<u></u>	W · WELD	CE:
805990 805990 805990	HEAT PROD PROD	20 13	04 010 03- 010	008 008 007 0F D	23 22	92 92 92 THIS	92 92 92 92 SHE	197 197 197	201	237 2041 2039		20 20 20	ı		1001 1002 1000			

TUBULAR PRODUCTS CERTIFIED TEST REPORT

07/25/00 DATE: TIME:

08:20:17 USX

USS, USW, USW are instruments of USK Corporation

\odot	•		(4.43)	B . IN ACCOR		H 130 10474	1 FM 1850	4/UNDEW	-01		 - ·						
MILL ORDER/ITEM NO.		SHIPPE	IS NO.	h	NAMBER	į											
DR10360 08	1			6800-0						(mm)	Acre I :						Us (mor
MATERIAL AS ROLLE	n				0.0: 2	4.000(609.6	100)	M	ין ורונטון ו	MATEL:	0.50	0 (12	.700	7)	<u> </u>	
COID: AS ROLLE	- 1		1		 				CHARPY V-N	OTCH IN	INCT 1	STNG					
	l l	1		Alle		75.07		7	TEST COND.	Τ		T-LOS		L.		SHEAR	AAG
PRODUCT IDENTIFICATION	FLAT	BEND	grun Sve	NIN COLLAPSE	DOF	LOC	TEMP	SPZE	COND.	Γ	2	1	D'A	↓ 	2	3,	- 200
	1	1	1 1		J		DEG			 	<u> </u>	 	<u>i </u>	 	 		
805990	OK	1						ŀ		1	1	•		l	į	ŀ	1
000,70	J 5.	1	XX EN	OF DAT	d this	SHEET	HH	1	1	1		\		1	ļ		
· ·		1	-					1	1 .	·	}		1	1	1	1	
•	•].	ì	1	1			1	
		1	1 }		1			i	1	1			1	1			}
	•	l			<u> </u>			<u> </u>	<u></u>		1	<u> </u>	<u></u>	<u> </u>	J	L	<u> </u>
LEGEND: L-LONGI	TUDINAL		1 - TRANSV		8 - 900			W - WELL	<u> </u>		HAZ -	EAT N	ECTED A	UNE			
<u>_</u>					EUTONO / IN	SPECTION!	NFO PHILATH	M									
TEST /	MSPECTION		_	YES					RESULTS /	COTOY	EHTS						
FULL LENGTH VISUAL				Х									1 131 131	P7 - B1 F 3	T-11		
FULL LENGTH EMI				X	OD _	X	OD/ID		<u>ι_Χ</u>		_L/T_		ש.טו	7 NU	ILI		
FULL LENGTH MPI																	
FULL LENGTH UT		<u> </u>			OD .		OD/ID		L		L/T_						
END AREA INSPECTION	(PLAIN END)				MPI		Ut										
SPECIAL END AREA (SE	A) INSP.				MP1		Ut										
FULL LENGTH DRIFT					DRIF	MANOR	EL SIZE										
								_									
					ADDITION	AL NOTED/	XMMENT) . • • • •	ACT THE R	THE STATE	- 112	MEN	7116V	70 L	AE BP	ris V	
ALL MELTING AND	T MANUF A	CTURI	NG TOOK	PLACE IN	THE	JSA, N	O REP	AIRS I	SY WELD	ING	. NU	MEK	CORT	יו אט מוסוני	16 K L	LINDA	D.V
COMPOUNDS ARE		THE	STEEL AN	D ALL ME	RCURY	BEARI	NG EQ	UIPME	NI 15 P	HUII	FULF	ז ט ט	V 00	/UDL 0	: 00	יאמאט	
OF CONTAINMENT	•																
										_							
•																	
					•												

THIS IS TO CERTIFY THAT THE PRODUCT DESCRIBED HEREN WAS MANUFACTURED,
SAMPLED, TESTED AND/OR INSPECTED IN ACCORDANCE VITH THE SPECIFICATION
AND PULFILLS-THE REQUIREMENTS IN SUCH RESPECTS.

PREPARED BY THE OFFICE OF: J. MASSIMINO MGR. MET. & Q.A. USS TUBULAR PRODUCTS

DATE 07/25/00

TUBULAR PRODUCTS CERTIFIED TEST REPORT

DATE: 02/24/00

TIME: 13:52:57 USX

USS, USB . USK ave (rademarks of USK Corporatio

MILL ORDER/ITEM NO.		THE B - DE ACCORDANCE WITH ISO 1847	4/EN10104/DINE0049)	· · · · · · · · · · · · · · · · · · ·
DR06932 02	SHIPPERS NO.	P.O. NUMBER	VEHICLE 10.	
		6599~USS		
SOLD TO	ADDRESS	MAL TO A	DORESS	VENDOR
		1		USS TUBULAR PRODUCTS
		\		2199 EAST 28TH ST.
		1		LORAIN, OH 44055
			• •	
	_	l '	_	
		SPECIFICATION AND		

PIPE CARBON SMLS STO PIPE API 5L-*41ST EDITION DTD 4/1/95 GRADE B AND GRADE X42 ASTM A53-×98 ASTM A106-×97A GRADE B QUAD STENCIL ASME SA53-×1998 EDITION 1999 ADDENDUM ASME SA106-×1998 EDITION 1999 ADDENDUM ASME SA106-×1998 EDITION 1999 STANDARD MR-01-75

	TENSIL	E	1			WELL		1.000	(00					Idatel	MATT: 6	5.500) (1	Z.76	9 6)	. In Inte
PRODUCT IDENT FICATION	IEST TYPE		TEST OND.	GAVOE			PSI	,		TENS P:			7/1		DNG V		ARDNE		MIN HYDRO PSI	DIMENT (2E
		' '	ZONU.	HIOM IN	MAX:		12000		Wet:		50000	1	WAK:		MIN	MN.			1580	
03678	STRIPZTZ		7	1.50			14200	.50	MAN:		78500		. 56			5 MAX		0.0		1
183933	STRIP/T/	B AF		1.50 END			18900 THIS	50	ı	•	3 (600	_	60		41, 39,	ø		9.0	1580 1580	
																	<u>.</u> ·	I		
LEGEND: L - L V - L	ONGITUDINAL PSET	7 - 17/ 03 - N	WSVERSE			T · QUE	HCHED I	TEMPERE	 		AR - RA	OLLEG	, 		B - 800Y	ــــــــــــــــــــــــــــــــــــــ			W - WELD	
PRODUCT DENTFICATION	TYPE	C	MN	P		SI	a	_	ая	МО	AL	N	V	6	F	CB	ω			Ĉ€ ·
8367B	- 			- -	ļ						1 1					·				MA
9367B	PROD	24	.95 .96	[007		82	202	276	202	927		203		1:	201	ļ :	╅─	╼┼╼┼╸	
93678	PROD	25	26	007 007	007 007		02	ØZ	26	ØZ	1931		201		 	100		1	} [.4
83933	HEAT	25	∌6	919		24 26	92 92	102 102	96 96	92	831	•	991			200 l			·	. 4
83933	PROD	25	99	010			02	22	96	<u> </u>	Ø25		903		 	901	┞┋	-		
B3933	PROD	₹5	98	910	009	26	102	202	96	16 2	931 932		901] }	900				.4
	1 1	1:	> ≎<	END (DF D	ATA	THIS	SHEE	T 14						d. i	1200	1:		1 1	4

TUBULAR PRODUCTS CERTIFIED TEST REPORT 02/24/00

13:52:57 USX

. USB_USB_USK are redemants of USK Corporati

			(III)	ALE B - IN VCCC			74/0011120	H/OUTS	41								
MILL ORDER/ITEM NO.	T	SHIPPE	ISNO.		PO MUMBE	A											ſ
DR06932 02				6599	-USS		<u> </u>										
MAKERAL AS ROLLED					00:	24.000	(609.6	(000	in	(mm)	WLL:	0.50	0 (12	.700	ð)		in jes
	<u> </u>	T							CHARPY Y-N	OTCH IN							
PRODUCY IDENTIFICATION	FLAT	BEND	CANN 32ZE	COLLAPSE	246	IES!	TEUP	. SLZE	TEST OCNO.		F	T-LB3	<u> </u>	!		SHEM	AVG
IDENTS-ICA/IDN	'-"		32.ZE	COLLAPSE		j toc.	<u> </u>	1	J. OCRE.	 -'-	 	1 3	DAR	- '-	2		AVU
- 	ļ	 				1	_DEG_E	-		i	 -	i	i -	1	 	i	
A93679	OK						1	小 、	1	1			1	1	i		
A83933	OK	1	_	[_	_	l	1 '		1	1		1		1]		ļ
	j		KH E	NO OF DAT	THI THE	6 SHEE	T MM		1	1			i	1	ł	1	
•	1	l				1	l	l		-	İ	ı		1]	
				Į			1	1			1	ŀ	l .		1]	
LEGENT! L-LONGITUE	700463	<u> </u>	T - TRAN		8 - 80		ل	W · WELD	_	1	HAZ -M	FAT AFE	ECTED AX		ــــــــــــــــــــــــــــــــــــــ	L	└
CECETO: L'-LONGIO	MAN.		I - I MAR			NSPECTION	MARCHAN ATT		,		ripe - ti		LUILD	7-2			
· TEST / IN	SPECTION		· · ·	YES	1641EW / V		, n - 1 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-11	RESULTS /	COMME	NTS						
FULL LENGTH VISUAL		 	 }	- x													
FULL LENGTH EMI				$\frac{\hat{\mathbf{x}}}{\hat{\mathbf{x}}}$	OD.	X	, 00/ID		L X		L/T		10.0	. NO	TCH		
FULL LENGTH MPI	.—·					~~~							-				
FULL LENGTH UT					QD		00/10		ι		L/T_						<u> </u>
END AREA INSPECTION (PL	AIN END				MPI		UT										
SPECIAL END AREA (SEA)	INSP.				MPI		<u> </u>										
FULL LENGTH DRIFT					DRIF	T MANOR	EL SIZE:										
													· ·				
						NAL NOTE 6/1							•				
ALL MELTING AND																	
COMPOUNDS ARE AD	DER LO	THE	STEEL A	ND ALL M	ERICURY	BEARI	NG EQ	DIPMEN	IT IS PI	ROTE	CTEU	BY	V DOI	JBLE	BOL	INDAR	Υ .
OF CONTAINMENT.									•				•				
								•									
				-					1								
Į.										•							
ŀ																	
1																	
I																	

THE IS TO CERTIFY THAT THE PRODUCT DESCRIBED HEREIN WAS MANUFACTURED. SAMPLED, TESTED AND/OR INSPECTED IN ACCORDANCE WITH THE SPECIFICATION—AND FULLILLE THE REQUIREMENTS IN BUCH RESPECTS.

PREPARED BY THE OFFICE OF: J. MASSIMINO MGR. MET. & TOTAL USS TUBULAR PRODUCTS

02/24/00

TUBULAR PRODUCTS
CERTIFIED TEST REPORT

DATE: 03/13/00

TIME: 10:45:43 USX"

<u> </u>			,, <u>.</u>	TYPE 6 -	M ACCORD	ANCS WI	THIED MA	nerun Ma/SMam	;	a 1			Ų	54 USB, L	SX #10 1		XZU In U	Согренийся
MILL ORDERVITEM NO.	7	SHIPE	RS NO.	1		HAMBER		47 6 10 10 10 10	~/ U.	<u></u>	 .							
DR0885) 01				1	3717-U		•	ł										Į.
COME: AS ROLLED						A5.	4,000	(609.6	00)	W	(mm) V	WIL:	2.50	0 (12	. 709			' In (mm)
		1		T						CHAPT VIN	CITCH N				-			
PRODUCT EXENTERCATION	FLAT	BEND	OPAN SEZE		LAPSE	DIR	TEST	TEMP	SIZE		T		183		· · · · ·		9€M	
	1		36ZE	00	LAPER	5	LOC	IEND	34.k	TEST COMO.	1	2	3	AG	1	13	3	T AG
400574	 					·		DEG E	.		-							
A93674 A8367S	OK-			ì														
			HH [0 0	FDATA	THI	SHEE	нн										
I DOSAID.							_											
LEGEND: L-LONGINA	DINAL .		1 - 1FA	NEVERBE		D - 800	אל		W - WELD		-	HAZ - H	LAY AFF	ECTED 20	NE.			
					15	STIME / IN	SPECTION I	NO MAIN	H			٠.						
	SPECTION			YES		•				RESULTS /	COLGAE	rosi						
FULL LENGTH VISUAL				X	1													
FULL LENGTH EM				X	7	QD.	_X	OD/ID		LX		UT.		10.02	NO	TCH .		
FULL LENGTH MFI				<u> </u>	1										-			
FULL LENGTH UT						00		00/ID				וע						
END AREA INSPECTION (P	JUN END)			-		MA		UT.										
SPECIAL END AFIEA (SEA)	INSP.					MPT		UT								. "		
FULL LENGTH DRIFT						DEUF	MANDRI	L SUZE:										
													 -					
		-		•		AUDITON	AL NOTE I/C	TRACKTS										
ALC MECTING AND	MANUFA	CTURY	IG TOO	PIA	CE THE	TUE	IEA D	3 6 7	CYPIC IN									

COMPOUNDS ARE ADDED TO THE STEEL AND ALL MERCURY BEARING EQUIPMENT IS PROTECTED BY A DOUBLE BOUNDARY OF CONTAINMENT.

THIS IS TO CERTIFY THE THE PRODUCT DESCRIBED HEREN WAS MANUFACTURED.

SAMPLED, TESTED AND/OR INSPECTED IN ACCORDANCE WITH THE SPECIFICATION AND PULLFILLS THE REGULARMENTS IN SUCH PROPERTY.

PREPARED BY THE OFFICE OF: J. MASSIMINO MGR. MET. & Q.A. USS TUBULAR PRODUCTS

MTE -- 03/-1-3/-DO

TUBULAR PRODUCTS CERTIFIED TEST REPORT

DATE: 03/13/00

TIME: 10:45:43 USM

USS, USS, USB are redemarks of USX Corocration

MEL CADERVITEM NO.	SHIPPERS NO.	P.O. NUMBER	VEHICLE (D	
DR08851 01		6717-USS		YENDOR
SOLID TO A	DORESO	IMIL TO	ADDRESS	USS TUBULAR PRODUCTS 2199 EAST 28TH ST. LORAIN, OH 44055
		l l		

PIPE CARBON SMLS STO PIPE API 5L-×41ST EDITION DTD 4/1/95 GRADE 8 AND GRADE X42 ASTM A53-×998 ASTM A106-×99 GRADE 8 QUAD STENCIL ASME SA53-×1998 EDITION 1999 ADDENDUM ASME SA106-×1998 EDITION 1999 ADDENDUM GRADE 8 BLK REG MILL COAT PE BEV 30 DEG MEETING ALL THE APPLICABLE REQUIREMENTS OF NACE STANDARD MR-01-75

ANTERNAL AS ROLLI	TENSILE					YHELD	^{0D:} 24	ext \$	-	PSI		٧/		ELON ON 2'		HW	TURE 33 E: HRE	a	MN HYD PSI		NETT (MELL)
PRODUCT IDENTIFICATION	TEST TYPE!	TEST COND	. %	est.	iant.		969		HIPE		000	MA		Mr.	29.5	MN:	100	_[500	5
93675 93680	STRIP/T/B STRIP/T/B	AR		500 500		46	5600 3960 TH1S			76	1000 3500		58		41.6 41.6	1 :	3 78 9 77	. – 1		580 580	5
			J						<u></u>		A - A9 M	CUED		<u> </u>	- BODY	<u> </u>		1	M - METI	<u>_</u> _	
LEGENO. L-LC	INCITUDIVAL PSET	T - TRANS			9	R - STRE		VED					_			C8	00	Τ_		Τ.	CE.
				9	3	Y - QUEA R - STREE	SA MOUE	NED NED	DA .	MO	N.	M	V	•		C8	80				MA 5
PRODUCT DENTFICATION	PSET	N - NORM	NATED NATE	P 08	3	24	CU CU	NI NI	DA 207	MO 82	N. 826	N	v 2003		1	201					MA
<u> </u>	TYPE	N - NORM	28 29 29	508 508 508	3 004 000	24 26 26	SE NOUS	NI NI	29 127 126	82 92 92	N.	N	٧								MA .5

MILL TEST REPORTS EN 10204/3.J.B.

Certificate No.: 2000097B5

Standard: ASTM AS3/ASME SA53/

ASTM A106/ASME SA106/API 51

Grade: B

Date: FEB.15,2001

Pangang Group Chengdu Seamless Steel Tube Co., Ltd.

LOT2

Total:

45 Pcs.

511.48 m.

95615 Kgs

Heat No.	Size		Quant		Test Piece No.	Mecha	mical Prope	नधंद्ध	Wo	riuma	nshi	p Tes	<u>.</u>			Che	nical An	heic	(%)			
		Pcs.	Longth(m)	Weight(Kg)	rest ricec Mu.		T.S.(Mpa)				3	4 5	C	Si	Ma	8	D	C.	Ni Ni	Ma	<u> </u>	
0083305	24"x0.500"xDR1	16	180.47	33739	611010264 A	350	480	41			_	<u> </u>	1.						141	Mo	Cu	
				33737	611010264 B	345	475	42	C		- ['	G	0.19	0.22	0.44	0.020	0.015	0.02	0.04	0.01	0.08	0.0.
0083315	24"x0.500"xDRL	15	170.58	31898	611010263 A	340	470	41			1		1	<u> </u>							-	— <u> </u>
				31,720	61 1010263 B	340	475	42	G	- }	1	اف	0.19	0.23	0.50	0.026	0.014	0.02	0.04	0.01	B.07	0.0: =
0083323	24"x0.500"xDRL	14	160.43	29988	63 1020029 A	365	485	43	7		1		 									š
Notes:	<u></u>				631020929 B	180	495	43	C		10	3	0.18	0.24	0.50	0.007	0.013	0.01	0.03	0.01	0.05	0.01
NOTES.							Remarks:						<u></u>		i			لــــا		Ļi	L	

- 1. Flattening test
- 2. Bending test
- 3 Pipe flaring test
- 4. Hydrostatic teat
- 5. Non-destructive test

- 1. Condition of supply: hot rolled
- 2. Tubes deliveried in theoretical weight
- 3. NACE MR01-75(1995) with HRC Max 22.
- 4. G------Good
- 5. The weight is not weight

Inspector: Cheng Yo

WE CONFIRM THAT MATERIAL AND TOLERANCES ARE FULLY IN COMPLIANCE WITH ABOVE.

STEEL TUBE CO., LTD.

0ATE: 03/09/00 ?

COSE WHILE LISTE AND PROPERTY OF LISTE

ORGES) 61	De resident	6717-USS	APPENT IV	
WALF TO ACC		6844, 1D	CO-5-03	USS TUBULAR PRODUCTS 2199 EAST 28TH ST. LORAIN, OH 44855
E 748000 00 0		VEGETORIA NO		

PIPE CARBON SALS STD PIPE API SL-MAIST EDITION DTD 4/1/95 GRADE 8 AND GRADE X42 ASTM A53-M998 ASTM & A186-M99 GRADE B QUAD STENCIL ASME SA53-X1998 EDITION 1999 ADDENDUM ASME SA186-X1998 EBITION 1999 ADDENDUM GRADE B BLK REG MILL COAT PE BEY 30 DEG MEETING ALL THE APPLICABLE REQUIREMENTS OF NACE STANDARD MR-01-75

COME AS ROLL						2	4.000	(699.6	DB)		-	-LL: 0	. 500	(12.70	20)	
PROBLET	TENS) FEET	THE ST		PSI	.50	123-1		4/4	# Z	B 7	TH	LE HAB	PSI	Ţ
			COMP	E M	MARK	42000		April	50000	MAZ.	•	29.	1	196.0	1588	寸
Ne3878 998582	STRIP/	-	AR AR	1.58	d .	46688 47188 37A THIS	.50		81 5 00	0.58 0.58		48.0	4	8 78.0 9 78.0	1588	
LANDA L. L. L. L. L. L. L. L. L. L. L. L. L.	TWPE	_	Property Property S M		10	CARCION OF		G 140	## · ## ##	10 V		- 000v		œ <u> </u>	4-112	1=
					1 1]				•	1		[1 1	1 1	

TUBULAR PRODUCTS CERTIFIED TEST REPORT

DATE: 03/13/00 TIME: 10:45:43 USMX"

USS, USS, US R are redomarks of USX Coron atom

J	(1)	YPE B - BL ACCOMMANCE WITH ISO 184		
DROBES 1 01	SHIPPERS NO.	PA NUMBER 6717-USS	AEHCTE (IV	
SOLO TO AD	IORES#	MAL TO	ADDRESS	USS TUBULAR PRODUCTS 2199 EAST 28TH ST. LORAIN, OH 44055

SPECIFICATION AND GRADE

PIPE CARBON SMLS STO PIPE API SL-X41ST EDITION DTD 4/1/95 GRADE B AND GRADE X42 ASTM A53-X998 ASTM A106-X99 GRADE B QUAD STENCIL ASME SA53-X1998 EDITION 1999 ADDENDUM ASME SA106-X1998 EDITION 1999 ADDENDUM GRADE B BLK REG MILL COAT PE BEV 30 DEG MEETING ALL THE APPLICABLE REQUIREMENTS OF NACE STANDARD MR-01-75

MATERIAL AS ROLL	ED TENSICE		T .	1	YMELD PS	50		PSI		Y/T	(B) 2	NG %		ARONESS Le: HR		PSI	PAULT LIETS
PRODUCT IDENTIFICATION	ORENIMINON	COND.	RAW NI	MER.	4200		MAX:	5806	9	MAXC	V	rk 29.	MH: 5 MAX:			1500	5
183676 183680	STRIP/T/B STRIP/T/B	AR AR	1.50 1.50 × END	g	46601 48901 TH1 AT!	•	ļ	8900 7850	•	a. 58 a. 62		41	00	8 78 8 77	.7	1580 1580	
	DIGITUDINAL PAET	T - TRANSV N - NORMA			OLENCHED I - STRESS RE	TEASD			a mou			1 - 600	1 00	Ιœ	1	M - METD	CE.
PRODUCT IDENTIFICATION	TYPE	E	M P	5	# CU	N	CA	MO M	+	V	•	-					MA .5
AB3676	HEAT			004	24 82				26	200	3		90			_ { .	1.4
	PROD PROD	27	90 000	004	26 22	92	26	92 9	33 32	90	2	1:-	20	2			. 4
AB3676 AB3676		23	88 001	007	_		705 705	D2 D	27 33	90			90	* -		···	1.3
183676 183676 183680 183680	HEAT PROD	23		5 007	25 92 25 92		55		32	199		1:	00	1 1	-	I	1.4

Mill Certificates IW-1 16-inch Diameter Tubing

PANGANG-GROUND STATES OF RES. 111.52 M. SOURCE IN: 20087000 STATEST PRICE IN U.S. 1.52 M. SOURCE IN: 20087000 CHRISTIPE SAME/SASSANICE CHRIST PRICE IN U.S. 1.52 M. SOURCE IN U.S. 1851000 Ch. CHRISTIPE CO. LTD. CHRISTIPE CHRIST

70307 →

80665-

EES:

- 1: MATTER TEST
- 2. MORNIC TRSE
- 9. PLANSING TOST
- 4. EEPROSTATIC TEST (PS)

MINIOR POL PORT

COMSIGNOR:

122.92

刘春里

- 1. COMMETTON OF SUPPLY A HEST-MALL
- 2. THE MALINESSON IN THE PROPERTY CAN

DATE DEV 4. 32

Heat Nos. 80665/70307

Commodity: SEAMLESS CARBON STEEL PAGE

MILL TEST REPORTS EN 192040148.

Cerlificate No.: 200009782

Standard: ASTM ASVASME SASV

ASTM ADDIASME SANGAPISI

Grade: 1

Date: FEB.15.2001

Pungang Group Changila Seamlers Steel Tribe Co., Lid.

LOTI

Tatal:

mra,

402.34 m

49199 Kes

_				(Decenii)			Med	naical Prope	ritz	Works		sio To	si .				sical Ap				,,	<u> </u>
	Hest No.	Size		Quanti (cristman)	Weight Eat	Test Piece No.	YAM	TS(Mpa)	EL (K)	1 2	9	d.	C	31	Ma	8	P	α	Ni	Mo	a	V
1				-		231929457 A		470		6		ø	D 20	023	0.54	2012	0.016	9.02	0.04	CO I	10.0	0.02
V	DL5376	16"x4.500"xDRL	33	402.34	49399	23 1029457 B	330	465	46		丄				<u>. </u>	L		<u>. </u>	<u> </u>		L	

Notes:

- 1. Fintening lest
- 2. Bending test
- 3. Pipe flating test
- 4. Hydrestalic lest
- 5. Non-destructive test

Remade:

- 1. Condition of supply: hot relied
- 2. Tubes delivered in theoretical weight
- 3. NACE MR91-75(1995) with HRC Max 22.
- 4. G------Good
- S. The weight is not weight

Inspector: Cheng Yu

WE COMPRIM THAT MATERIAL AND TOLERANCES ARE FULLY IN COMPLIANCE WITH ABOVE.

學物集與**成都无幾**例管有限责任公司 PANGANG GROVP CHENGDU SEAMLESS STEEL TUBE CO.,LTD.

U. 93UY

3774000/HTX2000-079

Seamless Steel Line Pipes

TUBE CO., LTD. PANGANG GROV

SHIPPING WARK: HOUSTON

CERTIFICATE No : 200079009

STANDARD: API 5L/ASTN A106/A53/ASNE SA106/SA53/NACE NR-0175

GRADE :

145/8

TOTAL:

PACKAGES,

- PCS., 731.52 m.

90180

					IVING:		1 (24)-					-									
\Box		Γ					NACHAN	ICAL PR	OPERTIES	WORK	(ANSHIP				CKI	ENICAL	COMPOS	ITION	<u>(K)</u>		
1	ı	ł	QUAN	TITY	• ,			T. S	EL.	π	डा							RESIDAN	il ei	EMENTS	
ТАЗН	SIZE	L			,	TEST PIECE 16	1.3					, C	Si	Un	S	P	Cr	Ni	1.o	Cu	Ÿ
16		PACKAGES	PCS.	m	K _f	1	(PSI)	(PSI)	(X)	1	4									 -	r
- 10				1		220079299 A	53000	72000	10.0~		2230	6 . 13	0.52	1, 13	0:006	 0.019	0.04	0.04	0.010	0.070	0.01
008153/2	16" x 0.500" x 40'	10	10	121.92	[5030	P	50000	73000	46.0	- #2 ¹⁵	2230	V. 13	0.00			<u> </u>	<u> </u>		 	 	
<u></u>		 -		├		210070294 A		78000	43.0					1	0.010	- n 018	0.06	0 04	0.010	0. D50	Į.
50120081	16" x 0.500" x 40"	50	50	609.60	75 150		1	1	1	d C.	2230	0, 14	0.42	1.17	A' ATA	0.010	0,00				L
1	I	1	1	1	ŀ	I F	5 1000	17000	44.0	1	l	L	<u> </u>			جـــــــــــــــــــــــــــــــــــــ	4				

NOTES:

CONTRACT No :

CUSTOMER :

L/C No :

OBJECT :

- I. FLATTEN TEST
- IEST
- TEST 1. FLARING
- 4. HYDROSTATIC TEST (PSI)

CONSIGNOR

REMARKI

- 1. CONDITION OF SUPPLY : HOT-ROLLED
- 2. TUBE DELIVERRED IN THEORETICAL WEIGHT
- 3. C---C000

2000 8 2V

INSPECTOR: Part.

Heat No. 31552

Železárny Chomutov a. s. závod Válcovny trub Alast C - Allest Nr. - Corolicate No - Cerolicat No: Objednista & - Besida Nr. - Order No - Nr de M Insperachi curamat MILL TEST CERTIFICATE Abrahmen pril mugnis DIN 50049/3.1 B inspection Certificate 3778300 1521/01 EN 10204/3.1 B Cardinasi da Réception Code: 00/42/282 Zikazna - Basiefer - Customer - Chent Zakara C. - Bestell Nr. - Ordar No - Commande No 11/38-835716-1 Ocelové bazzšvé trubky – Nahūose Stanirohra – Seamless steel tubes – Tubes en aciars sans soudure Test pressure Technické polsovky - Průlgrandisgen/Antorokrangen - Technické requirements/Demand - Exigences techniques; ASME SA '53 API 5L - 00 PSL 1 ASTM A 53/ A53M-99b ASME SA 106 - 98 ASTM A 106 - 99 Dis - Entropechand - According to - Salon; Material - Wersstoff - Material - Matière: Vydání - Ausgabe - Edition - Edition; ASTM A 53 1999 Grade B ASTM A 106 ASME SA 106 1999 Grade B 1998 Grade B API 5L 2000 Grade B/X42 PSL 1 Sav dodávsy – Listeraistand – Stats of delivery – Etat de Evraison: Seamless steel pipes acc. to API 5L-00/Gr.B/X42 PSL 1, ASTM A-53/A53M-99b, Gr.B/ASME SA, Gr.B, ASTM A106-99, Gr.B/ASME SA 106, Gr.B Hot rolled Lacguer, beveled ends, lengths: 11, 3-13, 1m (37-43 ft) Způsob zpracování tavby – Erschmelzungsart – Melling process – Procédé d'élaboration: electric steel Značeni – Kennzsichnung – Marking – Marquage: Raziko znake - Stempel des Sachverständigen - Inspector's stamp - Poincon de l'expert VT-Czech Rep. 5L 0286 API, 2.2001; TK API 5L; B/X42, ASME SA 106B/SA 53B, 16" Sch40, S, Heat No, Tested 2230 PSI, Znak výrobce - Herstefferezeichen - Brand of the manufacturer - Marque du fabricant 82,77 LBS/FT, Vass Pipe P.O.9517 NJ VΤ Rossah dodávky – Umlang dar Lizierung – Extent of material delivery – Liste descriptive Voeni dak Rozmiry Tavas Listo Celková dělka Celegy's honology Skupina Kusy Drucaproba Schmeltz Nr. Dimensionen Stücke Gesamflände Gesaminasse Las Dimensions Heat fin Hyar, test Total mass Lot Pieces Total length Essai hydraulique Longueur totale Masse totale Dimensions M* Coulés Pièces Lot psi [mm] ft t 2230 9406.4×12.70 31198 384.84 14,900 10 5 sec. 16"x 0.500" / Length 37-43 ft/ Dopinující údaje – Zusátzicho Angaben – Additional remarks – Autres remarques: 550496 Mercury Free and No Weld Repair. Visual inspection and dimensional check without objection. Výsledký zkoušsk uvedených v příloze odpovídají sjednaným podmínkám – Die bestelten Anlordatungen sind It. Anglagen criúlit – The requirements are Julilited as per Annex – Les conditions Zeferérny Chomutev 2.5. indiquées dans l'annexe sont satisfaisant Character Rection andva 1269/53 DEG:180:R6708715 rátes vélcoray treb P. 7.5.2001 <u> Characte Lieutiza (178</u> Chomutov Zodpovědní osobu – Der Werkssachverstandige – Inspector-Le responsable Coe - Datum - Date - Date

Schmidera Mizzelava

Pidona – Anlage – Annex – Annexe; L Výsledzy zkaušek – Ergebnis dar Prülungen – Test restilts – Résultats des tests

		Žel	ezárr	ný Ch	omut	ov a.	s. zá	vod \	Válcov	ny tru	ıb		
Pfilons - M	ilige – Annes	-Anneza			Výsledky 2	koušek – E	rgabnis de	r Prülunge	n – Test ses	sults — Rásul	itals des te	حاء	
Alest L - A	itlest Nr. — Ce	rilicate No -	- Centilicat N	·•	1521/	D1		Ze dne - Ve	om – Dzied – D		.5.2001		
		·	 	Mechanic	ke zkoušky – A	lechanische P	rělungen – Mo	chanical lesis	– Tesis měcha		···		
	<u> </u>]			,	· · · ·	1	1				1	
Skupina Lot Lot	Cisto mouthy Probe III. Tresson	Öxto trvby Schnelte Hz. Hett No	N* Covits	Tagus Na Oicke Takkmess	Šile Ø Breite Ø Wisth Ø	Odbervorta Constitution Specimen Presenta	Ziel, itolou Prülemotradu Test kemperadus Femperatus de taat	Med thun Sirect/Dehngrener O Yield pulm/Proof sitess C Umite d'elestekt	Prynost v tshu Zugirsejski Vasile s jengih Ritkienes i k vrotso	tahosa Brehdahang Elongsson Atongement	Kontrakca Brocheinschnörnng Reduceden et srea Gontraccton	Naturová práce Schloga del: Energie de reptera	Vrab. houlevastost Katoschigzihigkeit Empedistength Raffense
<u> </u>	35.57	2 2 2 z	ž	Epaiseur	Largeur Ø	Direction		<u> </u>	Rm	2"		 	_
Requir		 		mm	"-		r	psi	psi	%	*	1	J. cm²
A 106	A 53	Gr.			1	Q	20	35000	60000	16.5			
API	5L 5L	Gr.I						35000 42000	60000	27.0 27.0		 	
API	lan -	A 42						42000	00000	21.0		 	
	15383		t < 20 ·		1 -	Q	20	44515	70760	31.0			
•	•	•	•	en - Technolo Atisfied	gical lesus — Te	TR fechvologi	caes:						
						isammensetzv	ng – Chemica	composition •	- Composition	chimique (%)			,
Tavba Cislo Schmelze Ho Heat No Requir	1	, ;	he	at anal	ysis (S) / pr	oduct :	analysis	5 (X)	ļva	v	Ti	Nb
min. A	A 53	0.30	0.29	0.10	0.03	5 0.035	0.40	0.40	0.40	0.15	0.08		
max.A	Gr.B	0.28	1.20		0.03	0.030	,				1	<u> </u>	
max.A			1.30			0.030							
31198 31198 31198	3 K	0.18 0.18 0.17	0.79 0.79 0.79	5	0.013	0.01	2	0.04	0.12	0.02	0.000	0.002	0.002
L - Poděl - L	Jngs – Nong	– En longu	eur: O - Pric	në = Quer = Tr	avers - En Iras	/EIS				Želez	árny Ci	ខេត្តជាវិទ្ធា	a.s.

R

Železárny Cherousos 2.8. Chommos Tecensonos Inc9761 ② DiCOSC 4508715 závad Villousos trab Chomutos 1864 az 4773

4		
	U.	
(U88)	Λ	(

S. STEEL GROUP DIVISION OF USK CORPORATION CERTIFIED TEST REPORT

09/17/99

TUBULAR PRODUCTS

UNIE: 03/1//33 TIME: 09:18:44 USX USS, USW, USX me trademarks of USX Corporation

			ĮT1	/7EB-(N ACCORD	ANCE WIT	M (30 t047	4/EN10204	/01N5164	8}							
MILL CROER/ITEM NO.	1	SHPFEF	13 NO.		₽.	O. NUMBER	,				_						
DR03525 05	<u> </u>			٦	37972-	-0											
COND: AS ROLLED						OD:	5.000(406.4	90)	in (PORT VALL	0.50	00 (12	. 700	ð)		in (mm
	<u> </u>									CHATIPY V-NO	CHEMPACT	TE STORG					
PRUDIACT		BEND	GRAN		AN .	DIR	TEST LUC.	TEMP	SITE	TES1		FTLBS				SVEAR	
DENTIFICATION	FLAT	BERU	SIZE	ดอน	LAPSE	241	LUC.			CCNO.	1 1	1 3	AVG	1	2	7	AVS
		L						DEG		, - -	j -	-i	-	1	-	·	i
AB2671 .	OK							į			- }		ł				
]	HK E	וס פון	DATA	Y THE	SHEET	XX	l		- 1	1	1	}			1
		İ]	,	·	1		Ì	1	1				
•	İ		1			1 1	1	l	Į		- [- 1					1
	}	ì	ļ			1		}]		l l	•	1			}	
LEGENO: L-LONGITUS	I NAI	<u> </u>) TPAN	SVERSE		B - 601	DY	<u> </u>	M · METD	اـــــــــــــــــــــــــــــــــــــ	HAZ	- IKEAT AF	FECTED M	DHE		<u> </u>	1
trans.					ग	ESTING / IN	(SPECTION I	HEORMATIO	М		ī						
test / In	SPECTION			YES						RESULTS / C	OMMENTS						
FULL LENGTH VISUAL				$-\mathbf{x}$													
FULL LENGTH EMI				X		OD _	X	OD/ID		L	U)	<u> </u>	ט.טו	Z NO	TCH		
FULL LENGTH MPI																	
FULL LENGTH UT					_	00		OD/ID		<u> </u>	1./1						
END AREA INSPECTION IPL						MPI .		<u> </u>	==-								
SPECIAL END AREA (SEA)	INSP.				_{	MPI	Y MANDRI	UT									
FULL LENGTH DRIFT						UNIF	INMAPA	CC SIZE.						_			_
																	
						ADECTION	UL NOTES/C	ETHEMAN		·		. –					
ALL MELTING AND	MANUFA	CTURI	NG TOOK	PLA	CE IN	THE	USA. N	O REPA	IRS B	A MECDI	NG. NI	MER	CURY	OR M	ERCL	JRY	
COMPOUNDS ARE AD	DED TO	THE	STEEL A	A DN	LL ME	RCURY	BEART	NG EQL	JIPMEN	T IS PR	OTECTI	ED BY	A DO	UBL E	BOL	INDA	RΥ
OF CONTAINMENT.							į							•			
															•		
							-										
											Modus		•				
					 					Has Revis						0	
THIS IS TO CERTIFY THE	THE PRO	OUGT DESC	ABED HERE	YAS M	ANUFACIUI	HED,				YBI/Sed				_	27-	Ħ	
SAMPLED TESTED AND/ AND FULLILLE THE REGU	ON INSPECT	EO IN MA	JUNUATELE TIE	IN INC	arcultical	NAME OF				Transmi		64	Date:		//8/	67	
										Signatur	•		U.F		•		
PREPARED BY THE OFFIC	EOR.		CULSKI I	MC.D	MET	E			•				•				
	F	1. MIR					_										

V.S. STEEL	GROUP	
(nga) v DINIZION	GROUP OF USX CORPORATI	ON

TUBULAR PRODUCTS CERTIFIED TEST REPORT

TIME: 09:18:44 USX"

USS, USK, USA are trademarks of USA Corporation

LALL DROEN/MEMNO.		are n - in secondrusts attained Md)	4/EMIDSD4/D[N50043}	- A manufacture of manufacture of manufacture of the boundary
DR03525 05	SHIPTERS NO.	Р.О. МУМВЕЯ 97972—0	VEHICLE (2).	
				VENDOR USS TUBULAR PRODUCTS 2199 EAST ZBTH ST, LORAIN, OH 14055
IPF CARRON EMIE CT	D BIRE AGY C: NA	SPECIFICATION AND	ORADE	

PIPE CARBON SMLS STD PIPE API SL-X41ST EDITION DTO 4/1/95 GRADE B AND GRADE X4Z ASTM A53-X98 ASTM A106-X97A GRADE B QUAD STENCIL ASME SA53-X1998 EDITION 1998 ADDENOUM ASME SA106-X1998 EDITION 1998 ADDENDUM GRADE B CARBON EQUIVALENT ON REAT ANALYSIS .40 MAX BASED ON C+MN OVER 6 + (CR+MO+V) OVER 5 + (CU+NI) OVER 15 BLK REG MILL COAT PE BEV 30 DEG MEETING ALL THE APPLICABLE REQUIREMENTS OF NACE

MARIE AS ROLL	TENSILE		, 			CVD:							(12 (12 (12 (12 (12 (12 (12 (12 (12 (12	WALL: 6) . SØ6	()2	. 70	70)		in (mr
FRODUCT IDENTIFICATION	IEAT TYPE/	<u>7€81</u>	GAUGE WIDTH		AIET	•	EXTY		TENS	ILE .		¥/J	ELI ())A	DNG %		UPDNES		MIN HYDE	10	OHELL ISC
- CANDA	OPENIANCH	COND.	MIDIN	JAN.	4	PSI 2000		MAK		51 50000		AN:		947	MAN	HA	B	PSI		
182671 :	STRIP/T/B	AR KH	1 . 500 END (16000 This		ð		73000		0.63		29. 43.) 00 0 76	. 0	22	1	
LEGEND: L · LO V · UP PRODUCT DENTFICATION	NOTLOWAL BET TYPE	T - TRANSVER H - HORMALEX C MM	D	12	T - 01 E N - 81R1 S1	NCHED A S& AFLIE	TEMPERI VED	CR CR	ио	AR - AB RO	H	,	B	B - 800Y	CB	со	 	W - WELD		GE
NBZ671 NBZ671 NBZ671	HEAT PROD PROD	17 19 20 19 18 10	9 000 2 000	006 007	23 22	Ø2 Ø2 Ø2 THIS	102 202 202 SHE	05 05 05	DI DI	Ø45 Ø46 Ø44		902 900 900			1001 1001 1001					

DECIMAL POSITIONS FOR ELEMENTS ARE INDICATED BY THE LEFT MARGIN, VERTICAL DOTTED LINE OR DECIMAL POINT.

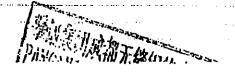
Commodity: SEAMLESS CARBON STEEL PIPE

PATE TENEDU SEAMESS

MILL TEST REPORTS EN 10204/3.LB. Certificate No.: 2000097A

Standard: ASTM ASS/ASME SASS/

ASTM A 106/ASMB SA 106/API SL


Grade: <u>B/X42</u>

POPH

Pangang Group Chengdu Semniers Steel Tube Co., Ltd.

Total:

	o:		Quanti	iy	Test Piece No.	Mecha	nical Proper	tics .	Wot	con	ashiq	r T es t				Chem	ical Am	ا فلدول	(%)			
Heat No.	Size	Pcs.	Length(m)	Weight(Kg)	1631 FIBCS 140.	Y.S.(Mpa)	T.S.(Mpa)	BL(%)		3	1 4	6	C	5i	Mu	S	P	C	N	Mo	Cu	
10026767	12-3/4"x0.375"x40ft		24.38	IBOO	220120288 A	335	485	42	a	П	T_{c}	Γ	0.22	0.23	0.44	0.019	0.023	0.02	0.03	ומח	0.04) o
1020301	12-3/4 XV.373 K4U(I)		24,30	1800	220120288 B	335	480	40)				V.45	0.53	0.44	0.015	V,023	VI VA	0.03	V.V.		Ľ
0083246	8-5/8"x0.322"x40ft	104	(267.97	53950	130120046 A	375	515_	38	G		1	3	0.20	0.27	0.53	0.013	0.011	0.01	0.05	001	0.09	la
0003240	Q-3/8 NO.322 NOUS	107	1207.57	33730	130120048 B	375	525	39	٦	Ł			0.20	J.27	0,33	0.013	0.011	4.01	0.03	V.V.	0.03	Ľ
D083247	8-5/8"x0.322"x40ft	100	1219.20	51875	130120049 A	375	515	36	al		١,	٦	0.22	0.33	0.55	0,013	0.013	0.02	0.05	0.01	0.09	la
0043247	0-5/0 NO.322 NYON		1217.00	310,3	130120049 B	345	490	36	۲			_ـــــــــــــــــــــــــــــــــــــ	V	0.52	5.55	0,013	0.015	V.V2	V.03	10.0	4.07	Ľ
0083307	6-5/8"x0,280"x40ft	65	792.48	22399	120120150 A	315	530	31	ام ا		1	اه	0.20	0.25	0.54	0.018	0.014	0.02	0.04	0.01	0.07	I,
0003307	0-3/0 AU.200 A10/		,,,,,,,,		120120150 B	310	525	37			`	<u></u>	0.24	0,23	0.54	0.010	50.7	V.U4	U.04	4.91	U.U.	Ľ
0083308	6-5/8"x0.280"x40ft	175	2133.60	60305	120120148 A	325	525	33	_		1	٦	0.22	0:24	0.54	0.013	0.016	A //2	0.04	0.01	0.04	Γ
0003300	0-3/6 AU.200 ATOR		2133.00	00303	120120148 B	- 330	540	40				<u>"</u>	V.24	V.24	4.54	0.013	0.016	0.02	0.05	9.01	0.07	ľ
0083309	6-5/8"x0.432"x40R	136	1658.11	70584	120120181 A	315	520	30	0		\Box	اه	0,22	0.23	0.50	0.014	0.014	0.00	2.22			t.
	V 310 X01130 X1011		1030,11	70301	120120181 B	320	530	36	Ľ			١.	0,24	0.23	0.50	0.014	0.016	0.02	0.05	0.02	U. 07	ľ
0083265	10-3/4"x0.365"x40m	60	731.52	44100	140120072 A	335	500	37	2	П	\Box	٥٢	0.21	0.25	0.53	0.016	0013	٠		4 4 4		t
				-	140120072 B	330	505	34	Ľ		\perp L		V.Z1	0.43	0.53	0.015	0.013	10,01	0.04	10.0	0.06	ľ
0083253	8-5/8"x0.500"x400	57	694.94	44916	120120057 A	410	540	42	O		\Box	al	0.14	0.47	4 177	0.015	0014	1				t
				1	1120120057 B	435	540	41	Ľ			<u>-1</u>	רו,ע	0,47	1.17	0.017	0.014	0,02	0.05	0.02	0.02	ľ
0082725	14"x0.500"x40A	37	451.10	48433	211010027 A	350	535	44	0		T_{i}	o l	0.14	0.49	1.24	0017	0014	1				t
	 	 _			Z1101002/B	355	535	44	Ľ]		<u> </u>	10.17	V.77	1.47	0.017	0.014	0.04	0.05	0.02	9.07	ľ
0082757	14"x0.375"x40R	50	609.60	49550	230110128 A	330	505	41	0			G	0.21	0.21	0.54	0.010	004	201		1		1
	 	 			230110128 B	350	500	36	Ľ			<u> </u>	V.21	V-41	0.54	0.010	0.016	0,01	9.04	10.0	0.00	1
0083325	14"x0.375"x40ft	44	536.45	43604	241010024 A	335	495	40	la			G	0.21	0.04	0.77	0.014	10000	1	.	<u> </u>	t	†
	-	 	-	1	241010024 B	335	495	41	Ľ			ال	0.21	0.24	0.54	0.014	0.013	0.02	0.04	0.01	0.01	Ц
0080632	. 12-3/4"x0.500"x40f	1 21	341.38	33264	210120372 A	355	510	47	10		Т	a	0.12	0.42	1.18	0.016	0.000	1	1	1	1	1
		 		,	210120372 B	360	510	44	Ľ			<u> </u>	10.12	0.44	1.10	0.010	0.009	0.04	0.05	0.01	0.07	4
-0081927	- 12-3/4"x0:500"x40f	3150	609.60	5940	220120375 A	370	520	44	n	I _		al-	1,,,	0.40			1			 	1	. †
		-	ļ	-	220120375 B	380	515	46	۲			41	10.17	0.40	1.31	0.010	0,014	0.04	0.04	0.01	0.01	١Į
0081552	16"x0,500"x40ff	- 50	09,60	7515	221010043 A	345	510	48		I		a	0.14	0.40	1. 1.4.	A 200	- A-A		1	1		1
					221010043 B	355	515	44	٦٧	Ŀ		٦	10.17	10.50	7.15	1 v.zuu	0.018	0.04	0.03	0.01	[D. T) [

					Indiana A	270	526	47	$\neg \tau$	7		T		1	0.012	0.017	0.00	اممرا	201	0.07	0.01
10001563	16"x0,500"x40fl	3	36.58		221010042 A	370	525	47	O	1	0	0.1	6 0.45	1.16	ן אינטיען	0,017	U.V2	4.05	0.01	0.01	
0081563	ווטייא טעל,טא"פן	٦,	30.34		221010042 B	340	510			╼	┝╾╂╴			1					2.21	0.00	1 10.0
} 			241.70	31908	610120112 A	375	495	36	G	1	lol	0.1	9 0.22	0.48	0.024	0.026	0.02	0.04	0.01	עט.טן	ָּ וֹט.טּוּ
S0021739	16"x0.375"x40ft	28	341.39	31000	610120112 B	375	510	40			Ц.	4						<u> </u>		 	 ;
├─── ┤					1610120110 A	380	530	40	اما	1	lol	Ìo.	IB \ 0.26	0.54	0.017	0.017	0.01	0,04	0,01	0.12	0.01
S0021787	16"x0.375"x40N	25	304.80		610120110 B	375	520	33			Ш			1-		!	 	 	 	-	 -
├ ──	- <u></u>				630120106 A	385	515_	40	6		ol	lo.	21 0,24	0.58	0.019	0.021	0.03	0.12	0.01	0.14	0.01
50021791	16"x0.375"x40ft	26	316.99		630120106 B	385	515	40		_l_	1		1 0,0			-		<u> </u>	 	↓	 -
\		-			610120117 A	395	520	36		T	G	_ (o.	22 0 23	0.60	0.011	0.022	0.05	0.08	0.01	0.11	0.01
S0021794	16"x0.375"x40ft	21	256,03	\$3830	610120117 B	395	550	30	וייו	\bot			22 0.2.	0.00	0.01.			L		 	↓
					220120289 A	330	480	40	L	\top	G		21 0.2	0.50	0.011	0.020	0.02	0.02	0.01	6.04	0.0
P0015422	12-3/4°x0.375"x40ft	50	609.60	1	I ZZULZDZBY N	1 343	485	41	ا۲۱	<u>l</u>		Į v.	21 0.2	0.50	0.011	0.000			1	\	 ,
					220120291 A	325	480	41		丁	اه	_	19 0.2	10.51	0.021	0.015	l a na	0.04	1 0.01	0.03	0.0
P0016466	12-3/4"x0.375"x40fi	50	609.60	45000	220120291 B	335	480	42	191	1	191	ľ	17 4.2	10.51	0,021	0,013	0,07	0,07	-		1 ,

Notes:

1, Flattening test

2. Bending test

3. Pipe flaring test

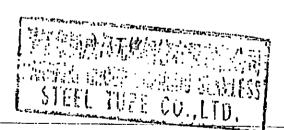
4. Hydrostatic test

5. Non-destructive test

Remarks:

1. Condition of supply: hot rolled
2. Tubes deliveried in theoretical weight

3. NACE MR01-75(1995) with HRC Max 22.


TOE CO LID.

5. The weight is not weight

Inspector: Cheng Yu

WE CONFIRM THAT MATERIAL AND TOLERANCES ARE FULLY IN COMPLIANCE WITH ABOVE.

YOUNGOUIST BROTHERS, INC. Has Reviewed this Shop Drawing/Submittal

Commodity: SEAMLESS CARBON STEEL PIPE

MILL TEST REPORTS

EN 10204/J.L.B.

Certificate No.: 2000097BZ

Standard: ASTM A53/ASME SA53/

ASTM A106/ASME SA106/API 5L

Grade: B

Date: FEB.15.2001

Pangang Group Changdu Seamless Steel Tube Co., Ltd.

LOT2

Total:

33 Pcs.,

49599 Kgs

402.34 m.

		•													•								~ ₹
ſ				Quanti	ity	T - 1 21 1 1-	Mecha	nical Prope	rtics	Wor	kma	nsh	p Te	4			Chen	oical Ad	alysis	<u>(%) </u>			
Ţ	Hest No.	Size	Pcs.	Length(m)	Weight(Kg)	Test Piece No.	Y.S.(Mpa)	T:S.(Mpa)	EL.(%)	1	2	3	4 !	C	Si	aM	8	P	Cr	Ni	Mo	Cu	V
ا,	015376	LAUL B AGON. TO DIT	33	402.34	49599	231020457 A	320	470	46	7			G	0 20	0 22	0.54	0.012	0.016	ດກ	l n na	0.01	o or	002
1	, פונכנט	16"x0.500"xDRL	33	402.34	7777	231020457 B	330	465	46	الا	_1		Ц.		10.23	المرادي ا	0.012	0.010	0.00	V,V	0.01	0.00	

Notes:

- 1. Flattening test
- 2. Bending test
- 3. Pipe flaring test
- 4. Hydrostatic test
- 5. Non-destructive test

Remarks;

- 1. Condition of supply: hot rolled
- 2. Tubes deliveried in theoretical weight
- 3. NACE MR01-75(1995) with HRC Max 22.
- 4. G-----Good
- 5. The weight is net weight

Inspector: Cheng Yu

WE CONFIRM THAT MATERIAL AND TOLERANCES ARE FULLY IN COMPLIANCE WITH ABOVE.

學例集团成都无幾何管有限责任公司 PANGANG GROUP CHENGDU SEAMLESS STEEL TUBE CO.,LTD.

Heat No. 81563

09/17/99

TUBULAR PRODUCTS

CERTIFIED TEST REPORT

EB-IN ACCORDANCE WITH ISO (0474/EN10204/OINESEAS)

ואט	DD 777	
TIME:	09:18:44	USX

USS, USB, USX me trademarks of USX Corporation

			14	IFE. D -	IN TAPPAREN	MORE III	IN IAU IAIL	4) IMINIA	II WIII VE									
MILL ORDER/ITEM HO.		SHPPE	NO.		P.(D. NUMBER	•											ļ
DRØ3525 ØS	ł				97972-	0												
COND: AS ROLLED						OD.:	6.000	406.4	00)	h	Immi Ve	ur ().50	0 (12	. 70	3)		la (mm)
										CHARPY V-N	OTCHUMP	ACT TE	STUG					
PRUDANCT ROENTIFICATION	FLAT	BEND	GRAIN	l	MN	DEN	TEST LUC.	TEMP	SIZE	TEST CCNO.	L		LBS		I		VEAR	EVG.
RENTIFICATION	,		SUE	CEL	LAPSE		LUC.			LCHO.	 	1_	<u>J</u>	AVG	1-	2	<u></u>	AVU
				 		 ,		DEG		,	 i			 -	t		·i	
A82671 .	OK]		•	ļ		()					1 1		
		}	** E	וס פול	F DATA	Тнх і	SHEE	HH		İ	1 1	i		1	ŀ	1 1	1	
-				1		ļ		}			1 1			1				
			ļ					1			1 1					1		
	Į.	ļ	İ					1	1	•	1 1			ļ		1 1	ı İ	
	ł	ļ	Į.	ŀ		'	1		}	i	1		ĺ	j	1	1 1		
LEGENO: L-LONGITUE	NAL.		1 - TPAIN	SVERSE		B - 80	DY		M - METD		i	WZ - 11	EAT AFF	ECTED &	DHE			
				··	77	STING I	VSPECTION!	PFORMATIO	1			î						
CEST / INS	SPECTION			YES					-	RESULTS /	DOMMEN	ПВ						
FULL LENGTH VISUAL				<u> x</u>	- 													
FULL LENGTH EMI				X		QD	Х	OD/ID		L		UT	\mathbf{x}^{-}	10.0	Z NO	TCH		
FULL LENGTH MAY																		
FULL LENGTH UT				├		00		OD/ID		1		L/T						
END AREA INSPECTION (PL	AIM ENIM			 		MPi		UT					===.					
SPECIAL END AREA (SEA)				 	- 	MPI		UT										
FULL LENGTH DRIFT	moi.			 			Y MANDA			 		÷						
And Chically and				ļ											_			
				 														
				·		ADECTION	UL NOTES/	COMMENTS										
ALL MELTING AND	MANUFA	CTURI	NG TOOK	PLA	CE IN	THE	USA. N	O REPA	IRS B	Y WELD	ING.	NO	MERC	URY	OR M	ERCU	MY	
COMPOUNDS ARE AD	DED TO	THE	STEEL A	AND A	LL ME	RCURY	BEART	NG EQ	JIPMEN	T IS P	ROTEC	TED	BY	A DO	UBLE	BOU	NOAR	Y
OF CONTAINMENT.	_ 						•								-			
							·											
(
1																		
ļ							•											
1							-											
										•					-			
										TU	UNGCI			•				
										100				uning/s			0	
THE IS TO CERTEY THE	THE PHOD	UCT DESC	RUED KEREY	N YAS M	ANUFACTUR	EO.				YEI/50	illen M			85	<u> </u>	27-	H_{\perp}	
SAMPLED TESTED AND/ SAMPLED TESTED AND/ THIS IS TO CEMIEVE INV	OT INSPECT	ED IN ACC	COMUNIALE VI	(14 (14C)	arcurical	K,AM				Transm	Mad No		<u> </u>	_Date:		18/	ŏ7	
WAN ARREST INCUSTOR										Signat:	#t		10	1 E		/		
PREPARED BY THE OFFICE	E.OF:			. 45 5			. :		٠									-
·	F.J	T, MIK	CULSKI	MGK.	Mil.	<u>&</u>												

TUBULAR PRODUCTS CERTIFIED TEST REPORT

TIME: 09:18:44 USX:

			•	-	-	•
USS HEM	***	 	 		45	

	(7)	IPE A - IN ACCORDANCE WITH ISO 1947	74/EN10204/DIN50049)	USS, USM, USA are tradomarks of USA Corporation
DRØ3525 ØS	SHIPPERS NO.	7.0. NUMBER 97972—D	VEHICLE ID.	
		,		VENDOR USS TUBULAR PRODUCTS 2199 EAST 28TH ST, LORAIN, OH 14055
		SPECIFICATION AND	ORADE	

PIPE CARBON SMLS STD PIPE API SL-X41ST EDITION DTO 4/1/95 GRADE B AND GRADE X4Z ASTM A53-X98 ASTM A106-X97A GRADE B QUAD STENCIL ASME SA53-X1998 EDITION 1998 ADDENDUM ASME SA106-X1998 EDITION 1998 ADDENDUM GRADE B CARBON EQUIVALENT ON REAT ANALYSIS .40 MAX BASED ON C+MN OVER 6 + (CR+MO+V) OVER 5 + (CU+NI) OVER 15 BLK REG MILL COAT PE BEV 30 DEG MEETING ALL THE APPLICABLE REQUIREMENTS OF NACE

MATERIAL AS ROLL						6.000	(406	. 400)				pr (m.cr)	WALL: 6	. 506	(12	. 700)		in Cons
PRODUCT IDENTIFICATION	JENT LASEA	TEST COND.	GAUGE WIDTH		YELD	ERT %		ALEMST		Y/T		ELO ØX	NG 4		UPDNESS	ММ НУОР	10	DAELL 1520
(DENTIFICATION	drentanch	CONO.		Kut Man:	PS 1 42000		MHK: MAIC	PSI 600	00	MAX			HA)F	MANE	HAI	PSI 22:		
NBZ671	STRIP/T/8	AR ##	IN 1.500 END (46000 TA THIS	. 50 SHEE		730	00	Ð.(59	- · ·	29. 43.	3	100 8 76	.0		
LEGENO: L - LOI V - UP	KONTADOVAL BET	T - TRANSVER N - NORMALIZI		at sn	- OLIENCHED & - STRESS ACUI	TEMPEREI		AR - /	9 ROL	LEO			- BODY	<u> </u>	 -	M - METO		
PRODUCT DEMTFICATION	TYPE	C	7	3	51 CU	PAF	CPA	NO A	1	M	٧	В	n	CB	co			GE.
NB2671 NB2671 NB2671	HEAT PROD PROD	17 19 20 19 18 19	3 008 2 008	006 007	24 Ø2 23 Ø2 22 Ø2 TA THIS	102 202 202 531 EE	Ø5 Ø5	0 0 0 0	45 46 44	ķ	900 900	-		201 201				(AM 16. 16. 16.

I OF ...

MILL TEST REPORTS

EN 10204/3.I.B.

Certificate No.: 2000097B2

Stendard: ASTM A53/ASME SA53/

ASTM A106/ASME SA106/APLSL

Grade: B

Date: FEB.15,2001

Pangang Group Chengdu Seamless Steel Tube Co., Ltd.

LOT2

Total:

33 Pcs.,

402.34 m.

49599 Kgs

																							-7
ı	Hest No.	Size	Des	Quant		Test Piece No.		nical Prope			kraen				· -		Chen	ical An	alvsis	(%)		*******	ے۔ آئ
١			PCS.	Length(m)	Acidad(Y5)		Y.S.(Mpa)	T.S.(Mpa)	EL.(%)	\Box	2 3	14	5	C	Si	Mn	S	Ъ	10	Ni i	Mo	_ 	
į	0180528	16"x0.500"xDRL	33	402.34	1 47774	231020457 A	320	470	46		7	1_	Ħ						-	141		Cu	
ı						231020457 B	330	465	46	V		G	1	0.20	0.23	0.54	0.012	0.016	0.02	0.04	0.01	0.08	0.02
	Notes:		•																	1 '	•	İ	1 1

- 1. Flattening test
- 2. Bending test
- 3. Pipe flaring test
- 4. Hydrostatic test
- 5. Non-destructive test

Remarks:

- 1. Condition of supply: hot rolled
- 2. Tubes deliveried in theoretical weight
- 3. NACE MR01-75(1995) with HRC Max 22.
- 4. G------Good
- 5. The weight is net weight

Inspector: Cheng Yu

WE CONFIRM THAT MATERIAL AND TOLERANCES ARE FULLY IN COMPLIANCE WITH ABOVE.

華紹集团成都无缝钢管有限责任公司 PANGAING GROUP CHENGDU SEAMLESS STEEL TUBE CO.,LTD.

7. GY 10 F.

10003

Mill Certificates MW-1 34-inch Diameter Casing

CANADIAN PHOENIX STEEL PRODUCTS

DIVISION OF 1045761 ONTARIO LIMITED 289 HORNER AVENUE ETOBICOKE, ONTARIO, CANADA M8Z 4Y4

LABORATORY REPORT AND MILL TEST CERTIFICATE

DATE June 4/01	CUSTOMER Pipe & Piling Supplies
SPECIFICATION_A139B	CUSTOMER'S P.O 6631
DIA. & WALL 34" 0. D. X 375 WT	PHOENIX REF.# 01-3696
HYDROTEST 620 PSI FOR 1 Min.	

PHYSICAL PROPERTIES

HEAT NO.	PIPE NO.	LONGITU YIELD	IDINAL TEST	% ELONGATION	TRANSVERSE WELD TENSILE	BREAK LOCATION
2844T	9	53400	78600	37.5	81900	РМ
2605T	11	52600	7.8300	37.5	81700	PM
2604T	18	51500	75500	37.5	79100	PM
2840T	23	50800	74600	37.5	77900	PM
2842T	29	53100	78700	37.5	81900	РМ

LADLE ANALYSIS	CHEMICAL COMPOSITION
----------------	----------------------

HEAT NO	С	MN	s	Р	SI	CR	NI	CU	MO	AL
2844T	.18	.87	.004	.007	.23	.02	.01	.01	.01	.042
2605T	.17	.86	.005	.011	.23	.01	.01	.01	.01	.035
2604T	.17	.83	.006	011	.22	.01	.01	.01	.01	.036
28401	. 18	.80	.003	.007	.21	.01	.01	.01	.01	.033
28421	. 18	.86	.004	.006	.23	.02	.01	.01	.01	.035
	•					····				

The material listed on this report has been tested in accordance with the specification shown above.

Authorized Approval

Mill Certificates MW-1 24-inch Diameter Casing

TUBULAR PRODUCTS CERTIFIED TEST REPORT

DATE: 03/13/00 TIME: 10:45:43 USX

USA USB, USA pre tradements of USA Corporation

(TYPE 8 - M ACCORDANCE WITH 190 10414/EN18204/DINS8849) MILL ORDER/ITEM NO. SHAPPERS NO. PO HAMBER OR08951 01 6717-USS MITERIAL OD: 24,000(609,600) 0.500 (12.700) AS ROLLED CHARPY VANCTON MIRACT TESTING 1 SELA PRODUCT MAN CONLAPSE TEMP FLAT **BENO** 40 DENTERCATION COMO. 3 AN 2 7 3 DEG E AB3674 OK: **AB3675** OK MM END OF DATA THIS SHEET MM HAZ - HEAT AFFECTED ZONE W . WELD LEGEND: L-LONGITUDINAL 1 - TRANSVERSE B - BODY TERTIME / INSPECTION INFORMATION REMAIN / DOMESTATE TEST / INSPECTION YES FULL LENGTH VISUAL х TO. OX NOTCH FULL LENGTH EM 00/10 FULL LENGTH MPI FULL LENGTH UT 00/10 END AREA INSPECTION (FLAIN END) ш SPECIAL END AFEA (SEA) INSP. MPI FULL LENGTH DRIFT DRIFT MANDREL SIZE

ADDITIONAL NOTE I/COVAENTS

ALL MELTING AND MANUFACTURING TOOK PLACE IN THE USA. NO REPAIRS BY WELDING. NO MERCURY OR MERCURY COMPOUNDS ARE ADDED TO THE STEEL AND ALL MERCURY BEARING EQUIPMENT IS PROTECTED BY A DOUBLE BOUNDARY OF CONTAINMENT.

THIS IS TO CERTIFY THE THE PRODUCT DESCRIBED HEREN WAS MANUFACTURED.

SAMPLED TESTED AND/OR INSPECTED IN ACCORDANCE WITH THE SPECIFICATION AND FULFILLS THE REQUIREMENTS IN SUCH PROPERTS.

PREPRARED BY THE OFFICE OF: J. MASSIMINO MGR. MET. & Q.A. USS TUBULAR PRODUCTS

MILL TEST REPORTS EN 10204/3.I.B.

Certificate No.: 2000097B5

Standard: ASTM AS3/ASME SA53/

ASTM A106/ASME SA106/API 5L

Crade: 📙

Date: FEB.15,2001

LOT2

Total:

45 Pcs.

511.48 m.

95615 Kgs

Pangang Group Changdu Scamiess Steel Tube Co., Ltd.

Heat No.	Size		Quant		Test Piece No.		unical Prope			orium	ולפתו	p Ti	34				Che	nical Ap	alysis	(%)			
		Pcs.	Length(m)	Weight (Kg)	1631 11606 (10.	Y.S.(Mpa)	T.S.(Mpa)	EL.(9	0 1	2	3	4	5	C	Si	Ma	S	P	Cr	Ń	Mo	Cu	V
0083305	24"x0.500"xDRL	16	180.47	33739	EL (OIOZEA A	350	480	41		Ť	H	Ť							1				 -
	27		109.77	33737	611010264 B	345	475	42	ط د	Į į		G	10	ן עו.	0.22	0.44	0.020	0.015	0.02	0.04	0.01	0.08	0.0;
0083315	24"x0.500"kDRL	15	170.58	21000	611010263 A	340	470	41					1								 -		┯,
				31046	61 1010263 B	340	475	42	76	j.		G	10	.19	0.23	0.50	0.026	0.014	0.02	0.04	0.01	8.07	0.0
0083323	24"x0.500"xDRL	14	160.43	20080	63 1020029 A	365	485	43					_									ļ	
			100.75	17700	631020929 B	380	495	43	⊢G	1		9	10.	. 15	0.24	0.50	0.007	0.013	0.01	0.03	0.01	0.05	0.01
Votes:							Remarks	· · · · ·			٠						<u> </u>	<u> </u>				L	L

- 1. Flattening test
- 2. Bending test
- 3. Pipe flaring test
- 4. Hydrostatic test
- 5. Non-destructive test

- 1. Condition of supply: hot rolled
- 2. Tubes deliveried in theoretical weight
- 3. NACE MR01-75(1995) with HRC Max 22.
- 4. G------Good
- 5. The weight is not weight

Inspector: Chene Yu

WE CONFIRM THAT MATERIAL AND TOLERANCES ARE FULLY IN COMPLIANCE WITH ABOVE.

STEEL TUBE CO., LTD.

5

6579 ~|

O

Mill Certificates MW-1 16-inch Diameter Casing

Certificate Number Customer PO

4222 11315

Paragon Industries, Inc. Rt.3 Box 331A

Sapulpa, Oklahoma, 74066

Phone: (918) 291-4459 Fax: (918) 291-0918

Higway 117 5 Miles East of Saputpa, OK

7.00 M

PLANT

Melted and Manufactured in the USA

Results relate only to items tested. Test report not to be reproduced without written approval of Quality Assurance.

Manufactured by Electric Resistance Weld (Type E)

Customer	VASS PIPE & STEEL CO.	Product	Specifications
 Customer	158 THIRD ST. P.O.BOX 583	10 X :000 0E:00" · =:0E 0	ASIM ALGO VI
	MINEOLA, NY 11501-		

MATERIAL TEST REPORT

			Charles of the contract			ezair e vete							
Heat Number	Steel Order		Yield Stren	gih Tens	lle Strength Psi	Elongatio inc	on % In 2 hes		t Type ion/Tensile	Test Co	endition	Gauge	Width
715685	3457		61590		73890	39.	5%	Strip/Tran	sverse/Body	As R	offed	1	5
B15486	3457		63020		75610	40.	0%	Strip/Tran	sverse/Body	As F	olled	1.	5
815488	3457		57240		74490	39.	5%	Strip/Tran	sverse/Body	As P	olled	1	.5
715687	3457	,	58100		75200	46.	5%	Strip/Tran	sverse/Body	As F	lolled	1	.5
815489	3456		52710		71990	37.	5%	Strip/Tran	sverse/Body	As F	loTed		.5
B15484	3457		55650		71910	43.	.0%	Strip/Tran	sverse/Body	As F	lolled		.5
815487	3457		58680		79040	40.	0%	Strip/Tran	sverse/Body	As F	tolled	1	.5
					日を意思	THE BY	THE VENT	16					
Heat Number	Mill Control	C	MN	P	S	Si	Cr	Ni	Mo	Cu	V	Al	Ca
715685	Heat	0.220	0.820	0.011	0.006	0.012	0.038	0.055	0.017	0.099	0.002	0.024	0.002
	Product	0.209	0.826	0.011	0.006	0.031	0.042	0.058	0.020	0.110	0.002	0.021	100.0
815486	Heat	0.220	0.900	0.014	0.004	0.015	0.063	0.052	0.015	0.092	0.004	810.0	0.002
2.2.00	Product	0.197	0.879	0.017	0.006	0.034	0.065	0.054	0.018	0.100	0.003	0.016	0.001
							0.063	0.053	6.012	0.002	0.002	0.025	1 0 002

Heat Number	MHI CONTROL	С	MIN	l P	5	91	Lr I	1/1	1410	Cu	<u> </u>	<u>~u</u>	<u> </u>
715685	Heat	0.220	0.820	0.011	0.006	0.012	Q.03B	0.055	0.017	0.099	0.002	0.024	0.002
	Product	0.209	0.826	0.011	0.006	0.031	0.042	0.058	0.020	0.110	0.002	0.021	0.001
615486	Heat	0.220	0.900	0.014	0.004	0.015	0.063	0.052	0.015	0.092	0.004	810.0	0.002
	Product	0.197	0.879	0.017	0.006	0.034	0.065	0.054	0.019	0.100	0.003	0.016	0.001
B15488	Heat	0.220	0.840	0.014	0.007	0.014	0.063	0.052	0.013	0.092	0.002	0.025	0.002
	Product	0.184	0.843	0.017	0.009	0.033	0.064	0.055	0.018	0.104	0.002	0.023	0.001
715687	Heat	0.220	0.830	0.012	0.002	0.017	0.037	0.054	0.015	0.095	0.003	0.026	0.002
	Product	0.197	0.834	0.016	0.004	0.037	0.042	0.058	0.020	0.109	0.002	0.024	0.001
815469	Heat	0.210	0.870	0.012	0.003	0.021	0.065	0.054	0.015	0.094	0.003	0.027	0.002
	Product	0.191	0.885	0,017	0.005	0.041	0.066	0.058	0.019	0.108	0.002	0.022	0.001
045494		0.210	0.840	0.011	0.007	0.016	0,045	0.050	0.014	0.086	0.003	0.024	0.002
815484	Heat		0.835	0.013	0.007	0.042	0.047	0.053	0.017	0.096	0.002	0.021	0.001
	Product	0.176		}		0.022	0.085	0.051	0.014	0.090	0.003	0.019	0.003
615487	Heat	0.220	0.950	. 0.017	0.003	 			 	0.104	0.002	0.016	0.001
	Product	0.192	0.935	0.021	0.004	0.042	0.085	0.056	0.018	1 0.104	0.002	4.010	4.001

615467	Heat	0.220	0.950	. 0.017	0.003	0.022	0.085	0.051	0.014	0.090	0.003	0.019	C.00.5
	Product	0.192	0.935	0.021	0.004	0.042	0.085	0.056	0.018	0.104	0.002	0.016	0.001
TEST / INSPECTION		<u> </u>		Comment				• • •	· · · •				
Hydrostalic Test PSI		N/A	Ø 5 aecs										
Flattening Test		N/A		Ì									
Ultrasonic weldline (NDT)		N/A .125	.125 DH	1									•
Full Length VI	<u>sual</u>	YE9-		ļ			·						
Full Length Drift		N/A	\$120	Man appelled the	ant the arodi	uct described	l above has t	seen manufus	tured. Samp	led, Inspected	and tested	in accordanc	e to the
Heat Treat Mir	n. Temperature	N/A	degrees	referenced t	specification	and / or ord	er, and is in	compliance w	ith all require	ments.	QA De	partment	
PNTR				1	<u>·</u>								11/01

YOUNGQUIST BROTHERS, INC.

Has Reviewed this Shop Drawing/Sub YBI/Section No. # 028 52-

Transmittal No. # 027 Date:

Signature

3762809/16/X09 - 106

Senalera Steel Line Piper

COMBAGE IN :

CUSTONUU :

1/0 18:

GUECE :

M L L L' S

TEATE LOATE

CHERODU SEADURES ESPERATURE CO., LTD.

attime Marking 941 - 469-4545

SHAPPING MARK & RIGH

CURTIFICATE THE : WHI

STANDARD: API SLIASTO

CHADE: Yan

TOTAL THE PACKAGES, 3 49 PC.5 1.1 222137 12 MACHARICAL PROPERTIES MORKMANSHIP (16) QUARTITY TEST SIZE Y. S T. S 31世人工 HEST PIECE AND R1... Si ħ,r 5 PACKAGES PCS. 1.1. Κĸ (PSI) (PSU (8) 141 1 4 019110047 A 56600 78100 30.0 \$9971R71 16" N 0.375" N 40" 25 25 1000 28400 2800 0.700.:23 0.43 0.016 69900 12000 39, 0 629330049 A 49300 68900 41.0 59221851 .35" x .0.375" x 40/ .12 12 490 13637 G2800 0. 20 0.27 0.021 0.46 48600 70300 35,0 639110034 A 52200 70300 30.0 35911774 16" H 0 562" K 40" 25 26 1000 28400 2000 0.49 0.28 0.40 0.01953700 70300 7 () U ' 2.39110630 A 50000 74700 44. 0 9971411 10" x 0,500" x 47 21 21 1080 40391 (: 2000 0.15 0,46 1. 33 O. OOA 49300 14700 44,0 349110460 A 54400 71800 40.0 9931319 4" x 0.337" x 40" 12 G0 2400 16332 G 28600.10 0.21 0. 63 10.01549300 10300 40.0 A BCF01166E. 52900 17500 40.0 5281319 4" x 0.337" x 40 32 160 0400 43552 C: 2.000 0.18 0.24 0.54 0.016 32900 **12500** 30.0 629100312 A 52900 73200 39.0 18" N 0.375" N 40" 59921E69 28 28 1120 35868 C. 2800 0.21 0.24 [0.42, 0.019]\$2900 71100 39,0 GEPTODATA A 50000 09000 34.0 20031R16 18" x 0.375" x 40" 15377 2000 0.70 0,21 0,40 [6,020 500. 100 11.0

MALLL'S

Y I CATE

COMBUNCT 14: 3762890/IF/X09-106 : DEKOTZIE) 1/C 14:

Secules Steel Line Piper

CHENODU SEAMULES. SPECIAQUE CO., LID.

SHIPPING WARK LUBBITTOR

CHELIBICALE IF : PRINOUS I

STARDARO: API 5L/ASIR A106/A53/ASIR SA106/RASIA RACHI BR-0175

CRADE :

						Ισισε	- 113	PACKA	,22D,	710	PCS.	1396	0 I	Γ,	2.01	vi i						
1	1			CANII	114			MACRAM	ICAL 11	OPERTIES	WORKE	CATISTRE				(16	MATEL.	Court	 11469			
117.	AT	SIZE				·	PEST PECE: 16	Y. S	T.S	ia	n	12 L							ne stou .	AL LE	erionia. Balcinisi	
1	1		PACKACES	PCS.	Fſ	Řε		(PSI)	(PSI)	(x)	,]	4	C	Si	и.,	ŗ	į į.	te	lf a	No.	1	
1992	1871	16" H 0.375" H 40" .	25	25	1000	28400	₫19110047 A	56500	76100	30.0	- c	7800									- ta	
					 -	 		60200		30.0			0, 20	0.23	0. 43	0.016	0.017	0.01	0 01	0.010	0.050	0.61
200	1601	,14° × ,0.3,75° × 46'	.12	12	490	13632		19300	,68900 70300	47.0 35.0	[G]	2800	0. 30	6, 27	0.46	0.621	0. 010	0, 03	0,64	0.010	0, 110	0. 01
3992	1774	16" x 10,562" x 40"	26	25	1000	28400	633110034		70300	30.0						 			~		·	
\			 -		 -			53700	70300	3 (: U · ·		1900	0.10	0.28	0.18	0.019	0.075	0.01	0.01	0.010	0. 616	0.60
997	1451	16" x 0,500" x 47	27	21	3080	40581		1	74700	11.0	G	2800	0. 15	0.46	1.53	0.008	0.019	0, 01	0.4.6		ii. 080	
1			·i	<u> </u>		·\	1	49300	74100	44,0_			<u>-</u> .							1	5. 080	1 1
775	1319	4° x 0,337° x 40′	12	eo.	2400	16332	J49110460 J	19300	71800	10.0	. 6	2860	0.10	0.24	0.54	0.016	0.013	0.03	1		0, 040	1 1
998	1319	4° × 0,337" × 40	32	160	0400	43652	339)10419	- I	12500	40.0	-		···-									
}			\	100	B 400	13054		22900	72500	30.0	1 6	2000	0.48	0, 24	0.54	0, 016	0.013	0. 03	0.04	0.010	0. មិធីប	0.01
199.	23 54/3	18* w 0,375* n 40	28	28	1120	35868	619100311	52900	73200	39.0		2000	0.11	0.24	0 43	0.040	0 020					
			-	ļ	-	·	.	62900	71100	22.0			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	11. 21	11. 11	0.019	0.016	0. 07	i .		0,630	[0, 01]
2002	1839	18" x 0.375" x 417	12	12	480	153 72	1	1		34.0	6	2800	0.20	0,21	0, 40	0.020	0.011	0, 05	l	0.010	0. 170	
, Hi	nes:		J	1	.1	1	!	1 51500 .	1.4 (100	1 41.0	1	ł	ł .	Ī	,	}				1		

GIJECT :

.1. PLATTER TEST

2. DENDING TEST

CAL FLARING TEST

"T. Merostable that (est)

I. COMOTITOR OF AMERICA HAT SHOULED

2. YORK DRETYCHOOD IN THE CHECKL ARICHI

3. C -----(00)0

REBUARE.

17. 2.10 DA'D'

M

VALLOUREC & MANNESMANN TUBES

64 ruc de Leval BP 139 59620 Aulauye-Ayateries FRANCE

(č): 03.27.69.66.00 fax: 03.27.69.67.10 MATERIAL TEST REPORT

ISO 9001

INSPECTION CERTIFICATE EN 10204 3.1.B

M. T. R. FN 10204 3 LB LIDDREI: 23-01-103044 3 / 4

HARDNESS ROCKWELL < OR = 22 GUARANTEE

(C40-C02-C41)

CHARPY V TRANSVERSE IMPACT TEST / FLEXION PAR CHOC EN TRAVERS CHARPY V

(C00) Tex	(B08) Hest	H.T.	•	•	C03) emp.	width	thick épais.	sect.	(C42) E1	(C42) E2	(C42) E3	(C43) mean moy.
Essai MIN.	coniéé	lot t.H	n. :		0	larg.	cpars.		29.0	29.0	29.0	41.0
MAX.					·c	innen	M Dr	cm2		,	, j	
12402	93656	633		· .	0	10.00	10.00	9.80		142.2	164.1	149.3
82405A	03559	634			0	10.00	10.00	0.80	158.7	151.0	158,1	155.9

(D61-D99)

NON DESTRUCTIVE TESTS / CONTROLES NON DESTRUCTIFS

•	7,17 - 7,110						
	in-se .	test rate contrôle	specification spécification	conditions conditions	pressure pression psi	hold time darée sec	rcank résultat
:	ICCC INCIDIONOUS CO.	100% LOT 100% LOT		LONG:EXT 5% WALL THICKNESS LONG:EXT 5% DE L'EPAISSEUR			BON BON
3	HYDROSTATIC TEST	100% LOT			2230		OK BON
ş	EPREUVE HYDROSTATIQUE APPEARANCE & DIMENSIONS ASPECT & DIMENSIONS	100% LOT					BON -

(CSA-CSE)

TECHNOLOGICAL TESTS / ESSAIS TECHNOLOGIQUES

	a) heist	result
	neture Cossis	résultat
	FLATTENING TEST	CNX
Ì	APLATISSEMENT	BON

30, 5170

	j.s.	STEEL	GRO	OUP	
(BBI)	A DI	ND12IV	OF	USX	CORPORATION

TUBULAR PRODUCTS CERTIFIED TEST REPORT

TIME: 09:18:44 USX:

USS, USM, USH are trademarks of USA Commenter

	sie a . In weensmitter affall in M4)	4\5minxa4\TM20042)	
SHIPPERS NO.	Р.О. МУМВЕП 97972—0	VEHICLE IA	
			VENDOR USS TUBULAR PRODUCTS 2199 EAST 28TH ST, LORAIN, OH 14055
	SPECIFICATION AND	ORABE	
		SHIPTERS NO. P.O. NUMBER 97972-0	97972-0

PIPE CARBON SMLS STO PIPE API SL-#41ST EDITION DTO 4/1/95 GRADE B AND GRADE X42 ASTM A53-#98 ASTM A106-#97A GRADE B QUAD STENCIL ASME SA53-#1998 EDITION 1998 ADDENOUM ASME SA106-#1998 EDITION 1998 ADDENDUM GRADE B CARBON EQUIVALENT ON HEAT ANALYSIS .40 MAX BASED ON C+MN OVER 6 + (CR+MO+V) OVER 5 + (CU+NI) OVER 15 BLK REG MILL COAT PE BEV 30 DEG MEETING ALL THE APPLICABLE REQUIREMENTS OF NACE

MATERIAL AS ROLL	EO					OD: 1	6.00	0 (40	6.40	10)			(mm)	WILL D	500	(12.	700	in (mr
	TENSIC	1			YIELD		EXTY		TENSI		,	// T	FLO	NG %		ANDNESS	MIN HYDRO	DHEIT ISC
PRODUCT IDENTFICATION	LEST TYPE	Y YES	BE GAUG	H WONE		New Y	<u> </u>						0)4	1	SGA	L E :	1	1
				MAN	4	PS1 2000		MANC MANC		I 0000		IAN:	ı		WAF	HRB	PSI	
			1	N			 	-		-				29.	MAN.	100.1	2230	<u> </u>
102671	STRIP/T/	8 AR	1.5	0d	•	6000	.50	Ø	7	BOOD	פו	. 63		43.1	1	8 76.6	. 1	1
:			** END	olf (MTA	THIS	SHE	E† ×			•			, , ,	7	U /U.1	2730	ł
		į.		- 1			Ì	ļ			•				1		1	
	ļ.	j	- 1	- 1			İ	j			1	- 1			ı			}
	1	1		-		•	!	l l							1			Ī
LEGENO: L · LO! V · VP:	KOITUDINAL	T - TRANS N-NORM	NERSE		OT - OLE	NEMED A	TEMPER	ED.		JR - AS RO	L	L		- BODY	ــــــــــــــــــــــــــــــــــــــ		W - WELD	<u> </u>
		C	MN P	1:	311 - 31100 31	COL	AFD	QA	МО							·		
PRODUCT DENTIFICATION	TYPE	 -			 			un	MU	AL	N	V	8	n	CB	CD		CE.
	1	1 1	ŀ	ŀ	1	1 (1 1) 1	1
																		
			-	1	11.	:	:	-;-	:	1				1		╿╸ ┈├┈		
 AB2671	HEAT	17	123 20	9 007	24	92	102	05	D 1	045		992	 		ga.		- -	.41
•	HEAT			9 007		Ø2	102			Ø45		002	 		100 l			.40
A82671		17 20	שמ במנו	8 000	23	202	10 Z	Ø 5	bi	946		1000			1001			.3(
A82671	PROD	20 18	שמ במנו	8 800 8 80	23		90 Z	Ø5	bi	14 1								.3(
A82671	PROD	20 18	103 00	8 800 8 80	23	Ø2 Ø2	90 Z	Ø5	ØI ØI	946		1000			1001		•	.3(
AB2671 AB2671 AB2671	PROD	26 18	103 00	8 800 8 80	23	Ø2 Ø2	90 Z	Ø5	ØI ØI	946		1000	·		1001			

CEECT(MN/6)+(CRTMUTV)/5+ (NI+CU)/15

DECIMAL POSITIONS FOR ELEMENTS ARE INDICATED BY THE LEFT MARGIN, VERTICAL DOTTED LINE OR DECIMAL POINT.

ommodity: SEAMLESS CARBON STEEL PIPE

MILL TEST REPORTS EN 10204/3.I.B. Certificate Na: 2000097A

Btandard: ASTM ASS/ASME SASS/

ASTM A 106/ASMB SA 106/API 5L

Grade: B/X42

POPH

Pangang Group Chengdu Semiless Steel Tube Co., Ltd.

Total:

			Quanti	ly	Test Piece No.		nical Prope		Wa	_	_	_	_			Chen	deal Am	_	_		_
Heat No.	Size	Pcs.		Weight(Kg)	1 621 F16C8 140.	Y.S.(Mpa)	T.S.(Mpa)	BL(%)	\Box	2	1	4	<u> </u>	<u> 8i</u>	Man	3_	P	ď	וא	Mo	C
				1800	つつれてつのフロタ A	335	485	42	a			0	0.2	0.23	0.44	0.019	0.023	0.02	0.03	0.01	0.04
20026363	12-3/4"x0.375"x40R	2	24,38	1900	220120288 B	335	460	40	Ľ			ت			J		414	***			
	A 5 // C 3 2 2 2 4 A A	104	1267.07	53950	130120048 A	375	515	38	اها		▎▐	al	0.2	0 0.27	0.53	0.013	0.011	0.01	0.05	0.01	0.03
0083246	8-5/8"x0.322"x40ft	104	1267.97	7,730	130120048 B	375	525	39	Ľ						1	1				-	
D083247	8-5/8"x0.322"x40ft	100	1219.20	51875	130120049 A	375	515	36	a	l '		a	0.2	2 0.33	0.55	0.013	0.013	0.02	0.05	0.01	امو
0003277	0-3/6 AV.322 AVII	100	1217.20	,,,,,	130120049 B	345	490	36	Ľ	<u> </u>	Ш	1					-	-			
0083307	6-5/8"x0.280"x40ft	65	792.48	22199	120120150 A	315	530	31	la			G	0.5	0 0.25	0.54	0.018	0.014	0.02	0.04	0.01	0.0
0063307	U-3/8 AV.200 A4081		//2		120120150 B	310	525	37	L	L	Ш					1	1		****	****	
0083308	6-5/8"x0.280"x40ft	175	2133.60	60305	120120148 A	325	525	33	اها	1		a	0.3	2 0:24	0.54	0.013	0.016	0.02	0.05	0.01	100
0003301	0-3/0 AV.100 A70A	1			120120148 B	. 330	540	40	Ľ			Ц				4.0.0	5.0.5	4.02	0.03	0.01	
0083309	6-5/8"x0.432"x40ft	136	1658.11	70384	120120181 A	315	520	18	la.	l		اها	0.	2 0.2	0.50	0.014	0.016	0.02	0.05	0.02	0.0
		_			120120181 B	320	530	36	Ļ	!	┡	Ľ				V			0.03	0.00	
0083265	10-3/4"x0.365"x40ft	60	731.52	44100	140120072 A	335	500	37	-l G			a	l c.	1 0.2	0.53	0.015	0.013	0.01	0.04	0.01	0.0
	 	} —	├ ──	 	140120072 B	330	505	34	╄-	L	! _				-	-	-	-	7.00	7.5	
0083253	8-5/8"x0,500"x40ñ	57	694.94	44916	120120057 A	410	540	42	40			a	0.	4 0.4	/ 1.17	0.017	0.014	0.02	0.05	0.02	اما
		┼─	 	 	120120057 B	435 350	540	41	╂	╀	₩	 		-		1	-	<u> </u>	1	V.V.	
0082725	14"x0.500"x40R	37	451.10	48433	211010027 B	355	535	44	40	1	•	0	0.	14 0.4	1.24	0.017	0.014	0,04	0.05	0.02	رماي
———	 	1-			210110128 A	330	505	41	┿	╁┈	╁╌	┝	┝╾┝╌		∸			-	4	1	
0082757	14"x0.375"x408	50	609,60	49550	230110128 B	350	500	36	- 0	1	Į.	0	0.	1 0.2	1 0.54	0.010	0.016	0.01	0.04	10.01	ı la.
		+ -			241010024 A	335	495	40	┿	┿	╂╾	╂─					 	-	_		<u> </u>
.0083325	14"x0.375"x40R	44	536.45	4360	241010024 B		495	41	40	1	ı	G	0.	21 0.2	4 0.54	0.014	0.013	0.92	2 0.04	I 0.01	ı la
0000633	142 2445-0 5008-400			2004	210120372 A		510	1 47	╅	+	+	┰	₩				╂	┥—	-	-	1
ANBOOT	. 12-3/4"x0.500"x40!	a 2:	8 341.38	3326	210120372 B		310	44	- a	1	1	6	0	12 0.4	2 1.18	3 0.016	0.009	0.0	4 0.0:	s 0.01	1 0
0001003	1 12 7/49 0 5005 400		(00.00	(040	220120375 A		520	44	1	:†=	十	†	 	<u> </u>	_			╬		╬	- -
70001721	/- 12-3/4"x0:500"x40/	R 5	0 609.60	5940	220120375 B		515	46	70	7		10	1_0	14 0.4	0 1.3	120.0	0,014	0.0	1 0.0	4 T U.O	1/0
DOBACC		1	0 600.64	7646	221010041 A	345	510	46			1	1					- 	+			┿
0081557	l 16*x0,500*x40ft	73	0 609:60	7565	221010043 B		515	44	79	וי	["	70	1.10	14 0.	0 1.0	5" "0.20	0.018	0,0	4 0.0	0.0 E	T T

ONIE: ON III 33 TIME: 09:18:44 USX

USS, USE, USK are trademarks of USK Corporation

			įri	17E B -	N ACCOPU	ANCE WI	TH (30 1047	4/IN10104	METHON!	9)	<u> </u>				·		
MILL ORDER/ITEM NO.		SHPPE	NO.		P.(D. NUMBER	•										
DR03525 05	l				97972-	-0											
MIERIAL AS ROLLED						OD.:	6.000(406.4	00)	in	(mm) YAL	ė 0.50	00 (12	. 700	3)		in (mm
OND.	γ	T	<u> </u>			 				CHATIPY V-NO	TCH WPAC	1 TESTING					
PRUDACT		BEND	GRAIN		WN	DER	IEST LUC	TEMP	SIZE	1651		FTIBS		Ţ		SHEAR	AVG.
DENTFICATION	FLAT	(BEAU	24ZE	CS	LÀPSE		LOC.	100		CCHO.	! - 	1 3	Arg	1	2	<u>, , , , , , , , , , , , , , , , , , , </u>	AVU
	 	<u> </u>				} ,	· · · · · · ·	DEG	<u> </u>			 	-i -	1	i	·i	
A82671 .	OK	ŀ] [ļ		1	- [!		
	·		HK E	40 O	F DATA	THE	SHEE	XX		Ì	1 1	- [1	1		l	}
		1				1	j '	1				- 1	1	ŀ			1
•		1	}			1		i		ŀ	1 1	- }	1	ŀ	1	Į	1
	1	1	İ			1	<u> </u>	1			1 1		1	1]	
LEGENO: L-LONGITU	nelal	<u> </u>) I - TRAIN	SVERSE		B - 80	DA	J	M - METD	<u> </u>	1 — Н	Z - HEAT A	TECTED Z	DHE			<u></u>
TEOCHO. C-LONGINO	DIVA.						NSFECTION	NFORMATIO	И								
1EST / IN	SPECTION	, ,,, , , , , , , , , , , , , , , , , 		YES			_	-		#25ULTS / !	DOMMENT						
ULL LENGTH VISUAL		-		X													
VLL LENGTH EMI				X		OD	_X_	OD/ID		<u> </u>	U	<u>т х</u>	10.0	% NU	ICH		
FULL LENGTH MAI										·							
FULL LENGTH UT					_\	OD		OD/ID		<u> </u>	L/	<u>' </u>					
END AREA INSPECTION (P		<u> </u>				MPI MP3		₩ <u></u>									
SPECIAL END AREA (SEA) FULL LENGTH DRIFT	INSP.						Y MANDR			·_ · · · · · · · · · · · · · · · · · ·		: -					
PULL LENGTH DHIFT						5.40						^					
· · · · · · · · · · · · · · · · · · ·																	
						ADECIO	NAL NOTES/	ETHEMAO					-	T		TRU.	
ALL MELTING AND	MANUFA	CTURI	NG TOOK	(PL/	CE IN	THE	USA, N	O REPA	AIHS B	Y WELDI	LNG, N	IN WEN	CURY	א אט אומו ב	ほれいし	JN T INDAI	1 V
COMPOUNDS ARE AL	DOED TO) THE	STEEL A	AND F	ILL ME	KCURY	BFWHI	HO EV	DIFFIEN	1 13 F	WIEL	וט טו	A 00	ODL C		JHUN	· ·
OF CONTAINMENT.							į										
							•										
										10	UNGQUI	ST BROT	HERS, I	NC.			
										- Has Revi							
THE IS TO CERTIFY TH	ORT THE PRO	DUCT DESI	CABED HEREI	N YAS I	MANUFACIU	NEO,				YE4/300	ction No.	:ف_0	<u> </u>	<u> </u>	07-	θ	
CAMBIED TERIER AND	いわめ いくりそん	TEO IN AC	COPUIATILE VI	any the	SPECIFICA	TION				Transm	Attal Ma.	04	Date:		1/8/	187	
AND FULLIFIE THE REGI	TAGENSEL 12 M	K SUNITES	ir EAI3.				١.			Signata	NO		n +	- /	<i>r 1</i>		
PREPARED BY THE OFFI	CE OF:			Mar di	MET	.		• • • •	•				•				-
			KULSKI														

TUBE CO., LTD. PANGANG GRO

3774000/HY12000-079

t/C Na : ¹

OBJECT : Seamless Steel Line Pipes SHIPPING MARK: HOUSTON

CERTIFICATE N: 200079009

STANDARD: API 5L/ASTN A106/A53/ASNE SA106/SA53/NACE NR-0175

GRADE :

142/8

TOTAL:

60

PACKAGES,

60 - PCS. 731.52 m.

90180

				•				-		•		<u> </u>							(11)		\neg
$\Box \angle \Box$							KACHAN	ICAL PR	OPERTIES	WORK	ANSHIP		·		CKE	HICAL	COMPOS	17108	(K)		
			MAUD	TITY	,			T.S	EL.	TI	গ্ৰ							RESIDU	al el	enents.	
HEAT	SIZE			,		Test Piece 16	Y. S	"",	Lab.	! -		C	Si	Hn.	S	P	Cr	Ni	10	Cu	Y
16		PACKAGES	602	п	K _C	!	(PSI)	(PSI)	(%)	1	4										
10						220070299 A	59900	72000	10.0-	,	2230	0. 13	0.52	1, 13	0:006	0.019	0,04	0.04	0.010	0.070	0.01
008155/2	16" x 0.500" x 40"	10	10	121. 92	15030	B	l	73000	46.0	وگو	_ 0000	V. 13	0.05						ļ	{	
		ļ		 		 		78000	43.0			Γ		1.17	0.00	0.018	0.06	0.04	0.010	0.060	0.01
50120081	16" x 0.500" x 40	50	50	609.60	75 150	210070294 A	ì	1	1	G.	2230	0, 14	0.42	1.17	0.013	V. V16	0,00	_			
			1	!		8	5 1000	11000	44.0	<u> 1 · </u>	<u> </u>	┗	<u> </u>		ــــــــــــــــــــــــــــــــــــــ						

NOTES:

CONTRACT No :

CUSTOMER :

- TEST I. FLATTEN
- IEST 2. BENDING
- TEST 3. PLARING
- 1. HYDROSTATIC TEST (PS1)

CONSIGNOR:

REMARKI

- 1. CONDITION OF SUPPLY : HOT-ROLLED
- 2. TUBE DELIVERRED IN THEORETICAL WEIGHT
- 3. G----G00D

7000 8 2V

Heat No. 31552

70307 80665-

Heat Nos. 80665/70307

CUSTOMER:

L/C NO.:

LAP1027A

COMMODITY: 15,224 FEET PRIME NEWLY

MANUFACTURED ELECTRIC RESISTANCE WELDED PIPE(ERW)IN ACCORDANCE WITH THE LATEST EDITION OF API SL GRADE B AND ASTM ASS GRADE B AND ASME SASS

GRADE B

YIEH LOONG ENTERPRISE CO.,LTD.

CERTIFICATE

٠.

YL-10138

NO. :

APR 15 2001

SHIPPING DATE:

APR 15 2001

MILL TEST CERTIFICATES

	DIMEN.			<u> </u>					CHIN	(ICA)	LCO	4P. %	1				TENSO	e t es t	:	WELD	PLA-	ZINC	
OR SPECIFICATION	STON ENSIFE- CTION	WEL-CHT MT	ULT.	R.T.	H.T. PSI	-	Min 00	_	S 000	V	Mo		NL 00	Cr		Y.P. Kg/mmi	M.T.S. Kg/mai		W.T.S. Kg/mm	DUCTI- LITY TEST	THEN	COAT- ING TIEST	RESULT
API SL GRADE B'ASTM AS3 GRADE B'ASME SAS3 GRADE B 6"X0.280"X402" (120PCS) ✓	ОК	41.475	ΟK		1805	10	72	10	8	ı	1	ı	,	ı	1	33.8		35.8			ок		OK.
API SL GRADE B/ASTM AS3 GRADE B/ASME SA53 GRADE B 8"X0.322"X40'2" (114PCS) ✓	ок	59.299	ок		1564	9	70	10	,	ı	1	2	1	1	1	33.9	48.5	35.2	53.0		ОК		ОК
API 51. GRADE H/ASTM A53 GRADE B/ASME SA53 GRADE B 16"X0.500"X40'2" (53PCS) /	ок	79.932	ОK		1322	12	74	9	7	1	1	1	ı	1	1	33.5	47.4	35.2	53.4		ОК		OK
API 51. GRADE B/ASTM A53 GRADE B/ASME SA53 GRADE B 16"X0.250"X40'2" (92PCS)	ок	70,497	ок		839	11	72	8	8	1	1	ı	1	ı.	ı	33.5	47.3	35.6	52.9		ок		ОК
					:												1 1						
		r							Yi	eh	L	no	() E	nt	rp	rise (7 ·	ю., L	td.					
									•••	•••	•••	ď	*	5	M	and .	•••••	•••					
																	Jang Jang		Want Stand			Janes Janes	

Quality Assurance Department

We hereby certify that the material described herein has been manufactured and tested with satisfactory results in accordance with the requirement of the above material specification.

TEL: 886-7-787-1581 FAX: 886-7-787-1554

REMARK:

APPLICANT'S NAME:....

J.AND N14016

ALL PIPES ABOVE MENTION ARE BLACK PLAIN END (BPE)

AND LACQUER COATING.

WE HEREBY CERTIFYING THAT MATERIAL IS IN ACCORDANCE WITH API 5L GRADE B AND ASTM A53 GRADE B AND ASME SA53 GRADE B.

					221010042 A	370	525	47_	اه	\prod	g	0.16	0.45	1.16	0.012	0,617	0.02	0.04	10.0	0.07	0.01
0081563	16"x0,500"x40R	3	36.58	4509	221010042 A	340	510	43	4	╀		-									0.01
	<u> </u>		241.20	11808	610120112 A 610120112 B	373	495	36 40	G	1 1	0	0.19	0.22	0.48	0.024	0.026	0.02	5.65	0,01		
5002173	16"x0.375"x40ft	28	341.39			375 310	510 510	40		H	_ -	0.18	0.26	0.54	0.017	0.017	0.01	0,04	0.01	0.12	0.0
3002178	16"x0.375"x40ft	25	304.80	28400	610120110 A 610120110 B	375	520	33	9		G	0.10	0.20		ļ	-	}		├	├ -	
3002176	10 X0:313 X10				CANADAINE A	385	515	40	G	11	G	0.21	0.24	0.5B	0.019	0.021	0,03	0.12	0.01	0.14	0.0
5002179	16"x0.375"x40ft	26	316.99	73336	630120106 B	305	515	40	-	╄┦		╂	 	 	-	† 	1	000	0.01	1011	
		21	256,03	23856	610120117 A	393	520	36	0		G	0.22	0.27	0.60	0.011	0.022	0.05	V.VB	0.01	<u> </u>	
S002179	4 16"x0.375"x40ft		230,03		610120117 B	395 330	550 480	40	╁	+-		1	0.27	0.50	0.013	0.020	0.02	0.02	0.01	0.04	0.0
P001542	2 12-3/4"x0.375"x40R	50	609.60	4500	220120289 A 220120289 B	325	485	41			G	0.21	0.27	0.50				╄┈	┼—	╫	+-
\				400	0 220120291 A		480	41	a		o\	0.19	0.22	0.51	0.021	0,015	0.04	0.04	10,0	0.03	0.0
P001646	6 12-3/4"x0.375"x40ft	50	609.60	4300	220120291 B	J35	480	42						ــــــــــــــــــــــــــــــــــــــ	ــــــــــــــــــــــــــــــــــــــ		ــــــــــــــــــــــــــــــــــــــ	<u> </u>	ــــــــــــــــــــــــــــــــــــــ	حسل	

Notes:

1. Flattening test 2. Bending test

3. Pipe flaring test

4. Hydrostatic test

5. Non-destructive test

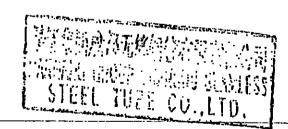
Inspector: Cheng Yu

Remarks:

1. Condition of supply: hot rolled

2. Tubes deliveried in theoretical weight

3. NACE MRD1-75(1995) with HRC Max 22.


TO CO. LID.

4. G------Good

5. The weight is net weight

WE CONFIRM THAT MATERIAL AND TOLERANCES ARE FULLY IN COMPLIANCE WITH ABOVE.

YOUNGOUIST BROTHERS, INC. Has Reviewed this Shop Drawing/Submittal YBI/Section No. # () 2852

MILL TEST REPORTS

•										,			•			:				•	1,3,3,00
Commodity	r: SEAMLESS CAI	RBON	I STEEL PI	PE		ı	MILL TE En 1	ST RE		S						ente No. ord: <u>AST</u> <u>ASTM</u>	M A53	/A\$M	E SAS		1. L
LOT2				Total:	33 Pcs.,	Pangang Gr 402.34 m	oup Chengd	u Seamless 199 Kgs	Steel T	abe (Co., Lad				Grade: Date: [B EB.15.2	2001				TOOUT TO THE
Heat No.	Size	9	Quant		Test Piece No.		nical Prope		Workin	1005	nip Tes		<u> </u>		Chen	nical An	alysis	(%)			
0180528 Notes:	16"x0.500"xDRL			Weight(Kg) 49599	231020457 A 231020457 B	Y.S.(Mpa) 320 330	T.S.(Mpa) 470 465	EL.(%) 46 46	1 2 G	3	4 5 G	0.20	Si 0.23	Mn 0.54	S 0.012	P 0.016	Cr 0.02	Ni 0.04	Mo 0.01	Cu 0.08	V 0.02

- 1. Flattening test
- 2. Bending test
- 3. Pipe flaring test
- 4. Hydrostatic test
- 5. Non-destructive test

Remarks:

- 1. Condition of supply: hot rolled
- 2. Tubes deliveried in theoretical weight
- 3. NACE MR01-75(1995) with HRC Max 22.
- 4. G-----Good
- 5. The weight is net weight

Inspector: Cheng Yu

WE CONFIRM THAT MATERIAL AND TOLERANCES ARE FULLY IN COMPLIANCE WITH ABOVE.

Mill Certificates MW-1 65%-inch Diameter Casing

Formular 12A, rev. 2 E 002057

Page 2 of 2.

Manufacturer
SC PETROTUB SA
A.V. ROMAN - IASI KM. 333,
Z.I.P. 5350 - ROMAN
ROMANIA

Mill Test Report acc. to DIN 50049-3.1.B and E.N. 10204/31B/91

NO. B 1247 ____Date: 02.07.2001

		GAUGE LONGITUDINAL		· · · · · · · · · · · · · · · · · · ·
Heat No.	Standard	Length Inch	Width Inch	Thickness Inch
P121378	API 5L ASTM/ASME	2 2	1.000 0.748	0.570 0.559
P121383	API 5L ASTM/ASME	2 2	1.000 0.752	0.543
P111416	API 5L ASTM/ASME	2	1.000	0.553 0.555
	TISTING ASIVES		0.752	0.546
•				

Heat No.	Chemical Composition Bulletin No.	Mechanical Properties Bulletin No.	Hardness Test HB Bulletin No.	Hardness Test HRC Bulletin No.	Flattening test Bulletin No.
P121378	1451	788/464B	18	4473	325
P121383	1451	788/464B	81	4473	325
P111416	1451	788/464B	81	4473	325
					; ·
			·		•

e certify our sole responsibility that the materials which this difficate relates to are in conformity with specification purements.

GENERAL MANAGER
Dr. Eng. Bassan Romano Dorel

Chief Inspection Dept. Eng. Nicolau Constantin

Eng Mordianu Ale

APPENDIX L CEMENT REPORTS

APPENDIX L

Cement Reports

Concentrate Disposal Well IW-1 City of Pompano Beach

Conductor Casing

Casing Diameter:

50-inches

Casing Depth: Bit Size:

121 feet below pad level Nominal 58-inch diameter

Cement Specification:

ASTM C 150 Type II

Number of Stages:

. . .

Cement Blend:

Neat

Cement Density:

Neat - 15.6 lb./gal

Theoretical Fill From Caliper Log:

N/A

Volume Pumped:

Neat – 1,032 cubic feet Total – 1,032 cubic feet

Percent Difference:

N/A

The 50-inch casing was cemented in one stage. The cement was circulated to surface and was visually confirmed. The difference in the theoretical and actual volume pumped is due to additional cement utilized to fill small irregularities in the borehole wall.

Surface Casing

Casing Diameter:

42-inches

Casing Depth:

1,020 feet below pad level Nominal 50-inch diameter

Bit Size: Cement Specification:

ASTM C 150 Type II

Number of Stages:

1

Cement Blend:

Neat

Cement Density:

12% Bentonite Neat - 15.6 lb./gal

Cement Density.

12% Bentonite - 12.6 lb./gal

Theoretical Fill From Caliper Log:

4,124 cubic feet

Volume Pumped:

Neat - 842 cubic feet

12% Bentonite - 3,085 cubic feet

Total - 3.927 cubic feet

Percent Difference:

5%

The 42-inch casing was cemented in one stage. The cement was circulated to surface and was visually confirmed. The difference in the theoretical and actual volume pumped is due to small irregularities in the borehole wall.

Intermediate Casing

Casing Diameter:

34-inches

Casing Depth:

1,950 feet below pad level Nominal 42-inch diameter

Bit Size: Cement Specification:

ASTM C 150 Type II

Number of Stages:

7

Cement Blend:

Neat

Cement Density:

12% Bentonite Neat - 15.6 lb./gal

12% Bentonite - 12.6 lb./gal

Theoretical Fill From Caliper Log:

8.227 cubic feet

Volume Pumped:

Neat - 583 cubic feet

12% Bentonite - 10,662 cubic feet

Total - 11,245 cubic feet

Percent Difference:

27%

The 34-inch casing was cemented in seven stages. After each stage a temperature log was run downhole and the cement physically tagged to determine the actual fill. On the final stage the cement was circulated to surface and was visually confirmed. The difference in the theoretical and actual volume pumped is due to additional cement utilized to fill spaces that exceed the maximum opening of the caliper tool and small irregularities in the borehole wall.

Inner Casing

Casing Diameter: 24-inches

Casing Depth: 2,293 feet below pad level Bit Size: Nominal 32-inch diameter

Cement Specification: ASTM C 150 Type II

Number of Stages: 10 Cement Blend: Neat

Cement Density: 12% Bentonite
Neat - 15.7 lb./gal

12% Bentonite - 12.6 lb./gal

Theoretical Fill From Caliper Log: 6,786 cubic feet

Volume Pumped: Neat - 1,689 cubic feet

12% Bentonite - 7,125 cubic feet

Total - 8,814 cubic feet

Percent Difference: 23%

The 24-inch casing was cemented in ten stages. After each stage a temperature log was run downhole and the cement physically tagged to determine the actual fill. On the final stage the cement was circulated to surface and was visually confirmed. The difference in the theoretical and actual volume pumped is due to additional cement utilized to fill spaces that exceed the maximum opening of the caliper tool and small irregularities in the borehole wall.

Tubing

Tubing Diameter:

16-inches

Tubing Depth Depth:

2,273 feet below pad level

Cement Specification:

ASTM C 150 Type II

Number of Stages: Cement Blend:

Neat

12% Bentonite

Cement Density:

Neat - 15.7 lb./gal 12% Bentonite - 12.6 lb./gal

Theoretical Fill:

3,384 cubic feet

Volume Pumped:

Neat - 345 cubic feet

12% Bentonite - 3,074 cubic feet

Total - 3,419 cubic feet

Percent Difference:

1%

The 16-inch tubing was cemented in six stages. After each stage a temperature log was run downhole and the cement physically tagged to determine the actual fill. On the final stage the cement was circulated to surface and was visually confirmed. The difference in the theoretical and actual volume pumped is due to additional cement pumped to confirm returns at the surface.

APPENDIX L

Cement Reports

Dual-Zone Monitor Well MW-1 City of Pompano Beach

Conductor Casing

Casing Diameter:

24-inches

Casing Depth:

163 feet below pad level Nominal 34-inch diameter

Bit Size: Cement Specification:

ASTM C 150 Type II 1

Number of Stages:

Cement Blend: Cement Density: Neat

Theoretical Fill From Caliper Log:

Neat - 15.7 lb./gal 507 cubic feet

Volume Pumped:

Neat - 517 cubic feet

Total - 517 cubic feet

Percent Difference:

2%

The 24-inch casing was cemented in one stage. The cement was circulated to surface and was visually confirmed. The difference in the theoretical and actual volume pumped is due to additional cement utilized to fill small irregularities in the borehole wall.

Intermediate Casing

Casing Diameter:

16-inches

Casing Depth:

1,520 feet below pad level Nominal 24-inch diameter

Bit Size:

Cement Specification: Number of Stages:

ASTM C 150 Type II

Cement Blend:

Neat

Cement Density:

12% Bentonite Neat - 15.6 lb./gal

12% Bentonite - 12.7 lb./gal

Theoretical Fill From Caliper Log:

2,192 cubic feet

Volume Pumped:

Neat - 449 cubic feet

12% Bentonite - 1,682 cubic feet

Total – 2,131 cubic feet

Percent Difference:

3%

The 16-inch casing was cemented in three stages. After each stage a temperature log was run downhole and the cement physically tagged to determine the actual fill. On the final stage the cement was circulated to surface and was visually confirmed. The difference in the theoretical and actual volume pumped is due to small irregularities in the borehole wall.

Inner Casing

Casing Diameter:

65%-inches

Casing Depth:

1,900 feet below pad level Nominal 16-inch diameter

Bit Size:

Cement Specification:

ASTM C 150 Type II

Number of Stages: Cement Blend:

10 Neat

Cement Density:

Neat - 15.7 lb./gal

Theoretical Fill From Caliper Log:

511 cubic feet

Volume Pumped:

Neat - 576 cubic feet

Total - 576 cubic feet

Percent Difference:

11%

The 6%-inch casing was cemented in five stages. After each stage a temperature log was run downhole and the cement physically tagged to determine the actual fill. The difference in the theoretical and actual volume pumped is due to additional cement utilized to small irregularities in the borehole wall.

Casing Hydrostatic Pressure Test Injection Well No. 1 – 24–inch Casing

Delta Time (minutes)	Pressure (psi)
0	152.0
5	152.0
10	152.0
15	152.0
20	152.0
25	152.0
30	152.0
35	152.25
40	152.25
45	152.25
50	152.25
55	152.25
60	152.25

Date of Test 12/31/01

Witnesses Albert Muniz H&S
John Largey H&S

Cameron Webster YBI

Gage Serial No. IC 123
Gage Certified On 12/27/01
Casing Diameter 24-inches

Packer Depth 2,268 ft (below pad level)

Allowable Pressure Change 5% (7.6 psi)
Actual Pressure Change 0.2% (0.25psi)

Test Result PRESSURE TEST PASSED

Certified by

Hazen and Sawyer, P.C.

Albert Muniz, P.E., No. 35587

APPENDIX M CASING AND TUBING PRESSURE TESTS

Casing Hydrostatic Pressure Test Injection Well No. 1 – 16-inch Casing

Delta Time (minutes)	Pressure (psi)
0	153.0
5	153.5
10	154.0
15	154.0
20	155.5
25	155.5
30	156.0
35	156.5
40	157.0
45	157.5
50	158.0
55	158.0
60	159.0

Date of Test

1/11/02

Witnesses

Dan Phelps FDEP Albert Muniz H&S

John Largey H&S

Gage Serial No. Gage Certified On **Tubing Diameter**

IC123 12/27/01 16-inches

Packer Depth

2,263 (below pad level)

Allowable Pressure Change 5% (7.65psi) Actual Pressure Change

3.9% (6.0 psi)

Test Result

PRESSURE TEST PASSED

M-2

Certified by

Hazen and Sawyer, P.C.

Casing Hydrostatic Pressure Test Dual-Zone Monitoring Well No. 1 - 16-inch Casing

Delta Time (minutes)	Pressure (psi)
0	151.0
5	151.0
10	151.0
15	151.0
20	151.0
25	151.0
30	151.0
35	151.0
40	151.0
45	151.0
50	151.0
55	151.0
60	151.0

Date of Test

2/11/02

Witnesses

Albert Muniz H&S

John Largey H&S

Gage Serial No. Gage Certified On

IC120 2/6/02 16-inches

Casing Diameter Packer Depth

1,495 (below pad level)

Allowable Pressure Change 5% (7.55psi) Actual Pressure Change

0.0% (0.0 psi)

Test Result

PRESSURE TEST PASSED

Certified by

Hazen and Sawyer, P.C.

Casing Hydrostatic Pressure Test Dual-Zone Monitoring Well No. 1 - 6%-inch Casing

Delta Time	Pressure
(minutes)	(psi)
0	156.0
5	156.0
10	156.0
15	155.5
20	155.0
25	155.0
30	155.0
35	154.5
40	154.5
45	154.0
50	154.0
55	154.0
60	153.5

Date of Test

2/19/02

Witnesses

Albert Muniz H&S

John Largey H&S

Gage Serial No. Gage Certified On Casing Diameter

NSN₂ 2/18/02 65/4-inches

Packer Depth

1,886 (below pad level)

Allowable Pressure Change 5% (7.8psi) Actual Pressure Change

2.7% (2.5 psi)

Test Result

PRESSURE TEST PASSED

Certified by

Hazen and Sawyer, P.C.

Precision Measurement Equipment Specialists

Certificate of Calibration

Customer:

YOUNGQUIST BROTHERS, INC.

Certificate #

100764

Manufacturer:

MCDANIEL

Model Number: 200 PSI

Nomenclature: TEST GAUGE

Serial/I.D. #

IC123

Specifications:

+/- 0.25% FS

Cal. Procedure: MP16/G2

KELI Control # YOU-90777

The accuracy and calibration of this instrument is traceable to the National Institute of Standards and Technology through certified standards maintained in the laboratories of KELI Inc. or derived by the ratio type of self-calibration techniques and is guaranteed to meet published specifications. The metrology procedures utilized satisfy the requirements set forth in ANSI/NCSL Z540-1.

In Tolerance When Received? N

Cal. Tech:091

Relative Humidity: 51%

Temperature: 73 Deg. F

Cal. Cycle: 12 Mos.

Calibration Date: 12/27/2001

Calibration Due: 12/27/2002

Remarks: ADJUSTED TO MEET MANUFACTURERS SPECIFICATIONS

Standards Used

I.D. #					Cal. Date	Cal. Due
609	DRESSER	PTE-1	PRESSURE	CALIBRATOR	06/21/2001	06/21/2002
610	DRESSER	HSQ-2	PRESSURE	TRANSDUCER	06/22/2001	06/22/2002

8081 West 21st Lane ph:(305)822-5792

Hialeah, Florida 33016 fax:(305)362-3125

Certificate of Test #100764

Customer: YOUNGQUIST BROTHERS, INC.

Manufacturer: MCDANIEL Nomenclature: TEST GAUGE

KELI# YOU-90777 Model: 200 PSI

P.O.# STOCK

S.N./I.D. IC123

Range	Nominal	Pre-Cal	1	Post-Cal	Low Limit High	Limit
200	40	38.80 out of	tol.	39.90	39.5	40.5
PSI	80	77.45 out of	tol.	80.00	79.5	80.5
	120	117.35 out of	tol.	120.20	119.5	120.5
	160	157.25 out of	tol.	160.30	159.5	160.5
	200	197.20 out of	tol.	200.40	199.5	200.5

The accuracy and calibration of this instrument is traceable to the National Institute of Standards and Technology through certified standards maintained in the laboratories of KELI Labs., Inc. or derived by the ratio of self-calibration techniques and is guaranteed to meet published specifications. The metrology procedures utilized satisfy the requirements set forth in ANSI/NCSL 540-1.

Cal. Procedure: MP16/G2

Specifications:+/- 0.25% FS

Rcvd. in tol.? N Temp. (F):73.0 R.H. %51.0

Cal. Cycle:365 days Calibration Date: 12/27/2001 Calibration Due: 12/27/2002 Cal. Tech: 091 In-House: Y

Remarks: ADJUSTED TO MEET MANUFACTURERS SPECIFICATIONS

Standards Used I.D. #

DRESSER PTE-1 PRESSURE CALIBRATOR

609 DRESSER HSO-2 PRESSURE TRANSDUCER Cal. Date Cal. Due

06/21/2001 06/21/2002

06/22/2001 06/22/2002

Precision Measurement Equipment Specialists

Certificate of Calibration

Customer:

YOUNGQUIST BROTHERS, INC.

Certificate #

102241

Manufacturer:

MCDANIEL

Model Number: 200 PSI

Nomenclature: TEST GAUGE

Serial/I.D. #

IC120

Specifications:

+/- 0.25%

Cal. Procedure: MP16/G2

KELI Control # YOU-86816

The accuracy and calibration of this instrument is traceable to the National Institute of Standards and Technology through certified standards maintained in the laboratories of KELI Inc. or derived by the ratio type of self-calibration techniques and is guaranteed to meet published specifications. The metrology procedures utilized satisfy the requirements set forth in ANSI/NCSL Z540-1.

In Tolerance When Received? Y

Cal. Tech:091

Relative Humidity: 48%

Temperature: 68 Deg. F

In-House Y Cal. Cycle: 12 Mos. Calibration Date: 02/06/2002

Calibration Due: 02/06/2003

Remarks: PERFORMED ROUTINE CALIBRATION/CERTIFICATION

Standards Used

I.D. # 391

EATON UPS 3000BAA PRESSURE INDICATOR

Cal. Date

Cal. Due

12/13/2001

12/13/2002

8081 West 21st Lane ph:(305)822-5792

Hialeah, Florida 33016 fax:(305)362-3125

Lertificate of Test #102241 Customer: YOUNGQUIST BROTHERS, INC.

KELI# YOU-86816

Manufacturer: MCDANIEL Nomenclature: TEST GAUGE Model: 200 PSI S.N./I.D. IC120

P.O.# STOCK-021

Range	Nominal	Pre-Cal	Post-Cal	Low Limit High Limit	
0-200 PSI	40	40	40	37.5 42.5	
	80	80	80	77.5 82.5	
	120	120	120	117.5 122.5	
	160	160	160	157.5 162.5	
	200	200	200	197.5 202.5	

The accuracy and calibration of this instrument is traceable to the National Institute of Standards and Technology through certified standards maintained in the laboratories of KELI Labs., Inc. or derived by the ratio of self-calibration techniques and is guaranteed to meet published specifications. The metrology procedures utilized satisfy the requirements set forth in ANSI/NCSL 540-1.

Cal. Procedure: MP16/G2

Specifications: +/- 0.25%

Temp. (F):68.0 R.H.% 48.0

In-House: Y

Cal. Date: 02/06/2002 Cal. Due: 02/06/2003

Rcvd. in tol.? Y Tech: 091

Remarks: PERFORMED ROUTINE CALIBRATION/CERTIFICATION

I.D. #

Standards Used

Cal. Due Cal. Date

391

EATON UPS 3000BAA PRESSURE INDICATOR

12/13/2001 12/13/2002

Quality Assurance

Precision Measurement Equipment Specialists

Certificate of Calibration

Customer:

YOUNGQUIST BROTHERS, INC.

Certificate #

102834

Manufacturer:

MCDANIEL

Model Number: 200 PSI

Nomenclature: TEST GAUGE

Serial/I.D.#

NSN2

Specifications: 0-200 PSI. +/- .025% FS.

Cal. Procedure: MP16/G2

KELI Control # YOU-02834

The accuracy and calibration of this instrument is traceable to the National Institute of Standards and Technology through certified standards maintained in the laboratories of KELI Inc. or derived by the ratio type of self-calibration techniques and is guaranteed to meet published specifications. The metrology procedures utilized satisfy the requirements set forth in ANSI/NCSL Z540-1.

In Tolerance When Received? Y

Cal. Tech:088

Relative Humidity: 50% Temperature: 70 Deg. F

In-House Y

Cal. Cycle: 12 Mos.

Calibration Date: 02/18/2002

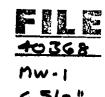
Calibration Due: 02/18/2003

Remarks: PERFORMED ROUTINE CALIBRATION/CERTIFICATION

Standards Used

I.D. # 412

EATON UPS 3000DA PRESSURE INDICATOR


Cal. Date

Cal. Due

12/13/2001 12/13/2002

ph:(305)822-5792

Hialeah, Florida 33016 fax:(305)362-3125

Lertificate of Test #102834

Customer: YOUNGQUIST BROTHERS, INC.

Manufacturer: MCDANIEL Nomenclature: TEST GAUGE KELI# YOU-02834

Model: 200 PSI S.N./I.D. NSN2

P.O.# UKN

Range	Nominal	Pre-Cal	Post-Cal	Low Limit High Li	mit
0-200 PSI	40	39.5	39.5	37.5 4	2.5
	во	79.5	79.5	77.5 8	2.5
	120	120.3	120.3	117.5 12	2.5
	160	160.5	160.5	157.5 16	2.5
	200	200.5	200.5	197.5 20	2.5

The accuracy and calibration of this instrument is traceable to the National Institute of Standards and Technology through certified standards maintained in the laboratories of KELI Labs., Inc. or derived by the ratio of self-calibration techniques and is guaranteed to meet published specifications. The metrology procedures utilized satisfy the requirements set forth in ANSI/NCSL 540-1.

Cal. Procedure: MP16/G2

Specifications: 0-200 PSI. +/- .025% FS.

Temp. (F):70.0 R.H. % 50.0

In-House: Y

412

Cal. Date: 02/18/2002 Cal. Due: 02/18/2003

Rovd. in tol.? Y Tech: 088

Remarks: PERFORMED ROUTINE CALIBRATION/CERTIFICATION

Standards Used I.D. #

EATON UPS 3000DA PRESSURE INDICATOR

Cal. Date Cal. Due

12/13/2001 12/13/2002

APPENDIX N POSITIVE SEAL PACKER ASSEMBLY

City of Pompano Beach Concentrate Disposal Well System

Technical Specification For YBI Positive Seal Packer

Engineer:

Hazen and Sawyer

2101 Corporate Blvd.

white No. 02852-004 FORMULA Boca Raton, Florida 33431

ontractiv. 40368 FORMULA S CORRECTED

Section REVISE AND RESUBBIT

Checking of shop drawing is limited to general design and eneral arrangement only and is not intended to be a verification of compliance with all requirements. Engineer's review shall not relieve the Contractor from the responsibility of details of design, correct dimensions for proper fitting, the satisfactory and safe performance of the work, coordination with others' enformance, or any other requirement of the Contract.

HAZEN AND SAWYER, P.C

Aller Min 2-6-02

Submitted By:

Youngquist Brothers, Inc.

15465 Pine Ridge Road

Fort Myers, Florida 33908

Phone: (941) 489-4444

Fax: (941) 489-4545

YOUNGQUIST BROTHERS, INC.

Has Reviewed this Shop Drawing/Submittal

YBI/Section No. # 0 2 5 2 - / 2 - / 7

Transmittal No. # 0 2 4 Date: 1 30 / 0 2

Signature

Technical Specification For YBI Positive Seal Packer

Material

ASTM A53 Grade B, Mild Steel

Ring #1 Outer Mandrel

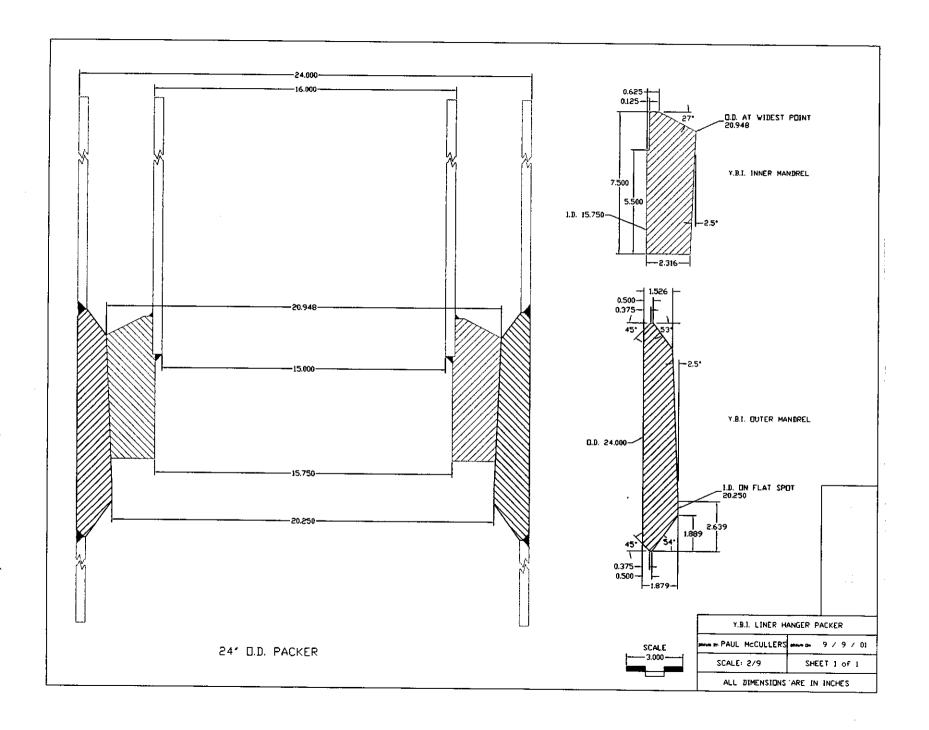
24" outside diameter with an inside taper of 2 ½ degrees, connections: weld X weld.

Collapse: 288 psi Burst: 833 psi

Ring # 2: Inner Mandrel

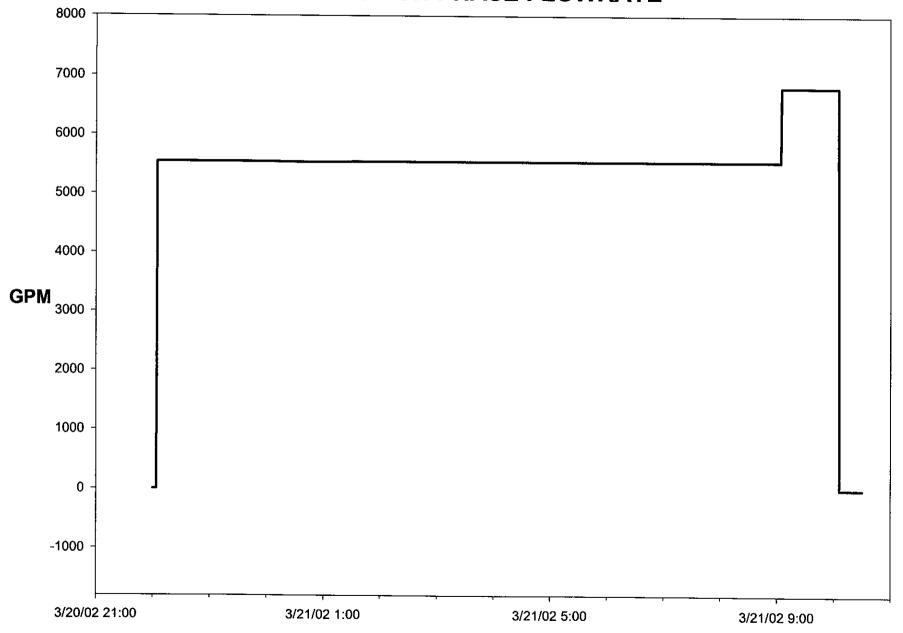
15" inside diameter, outside diameter tapered of 2 ½ degrees to fit Ring # 1 (Outer Mandrel).

Collapse: 972 psi Burst: 1,250 psi

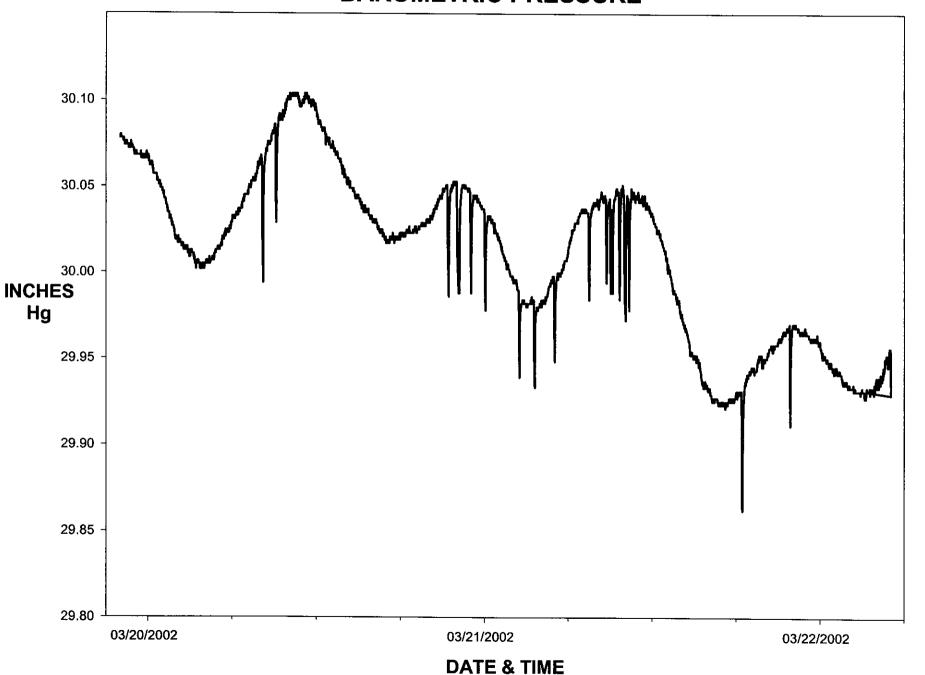

Note: see attached drawing for detail dimensions.

Seal Surface

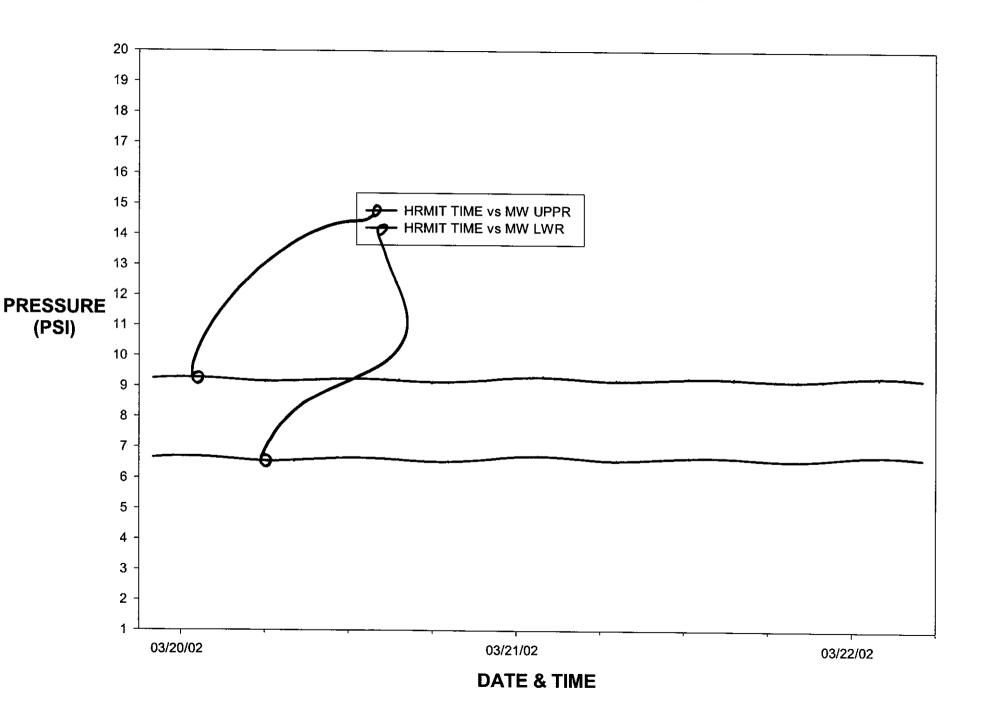
Machined & polished to 16 RMA.


Welding Procedures

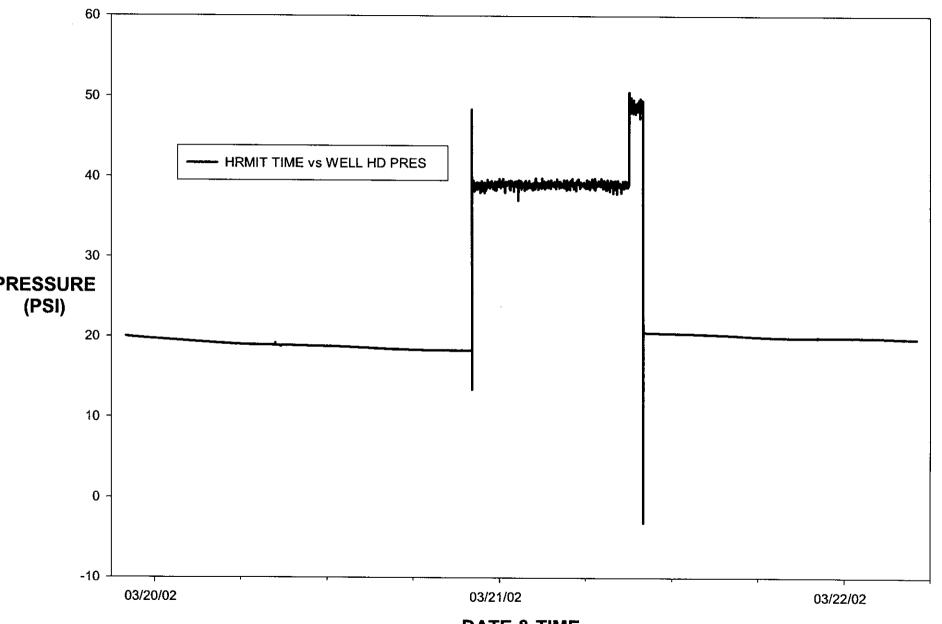
As per approved project-welding procedures, by certified welders.


APPENDIX P INJECTION TEST DATA

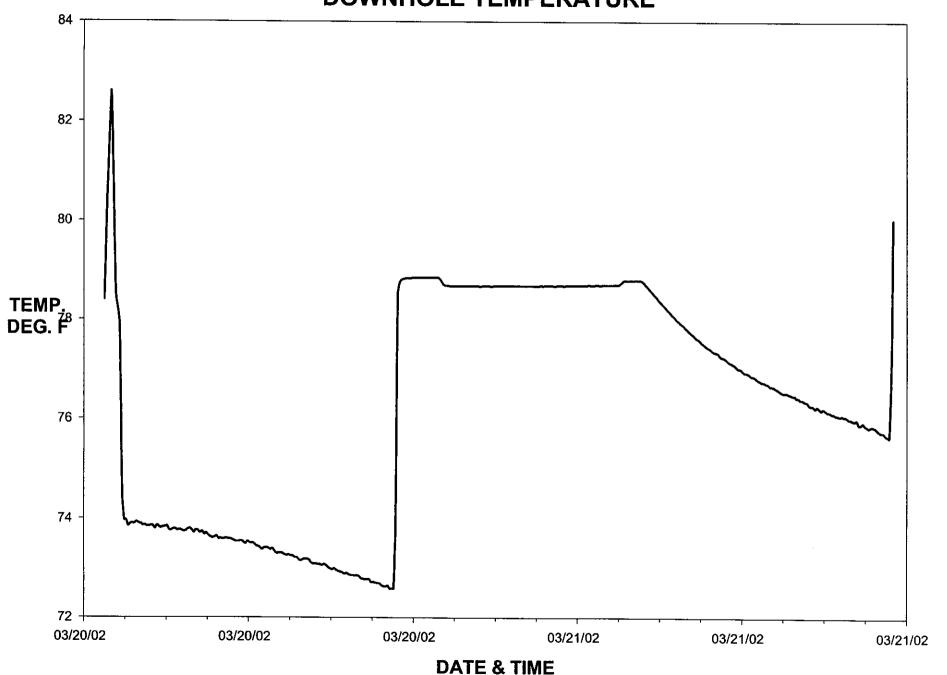
POMPANO BEACH INJECTION WELL #1 INJECTION PHASE FLOWRATE



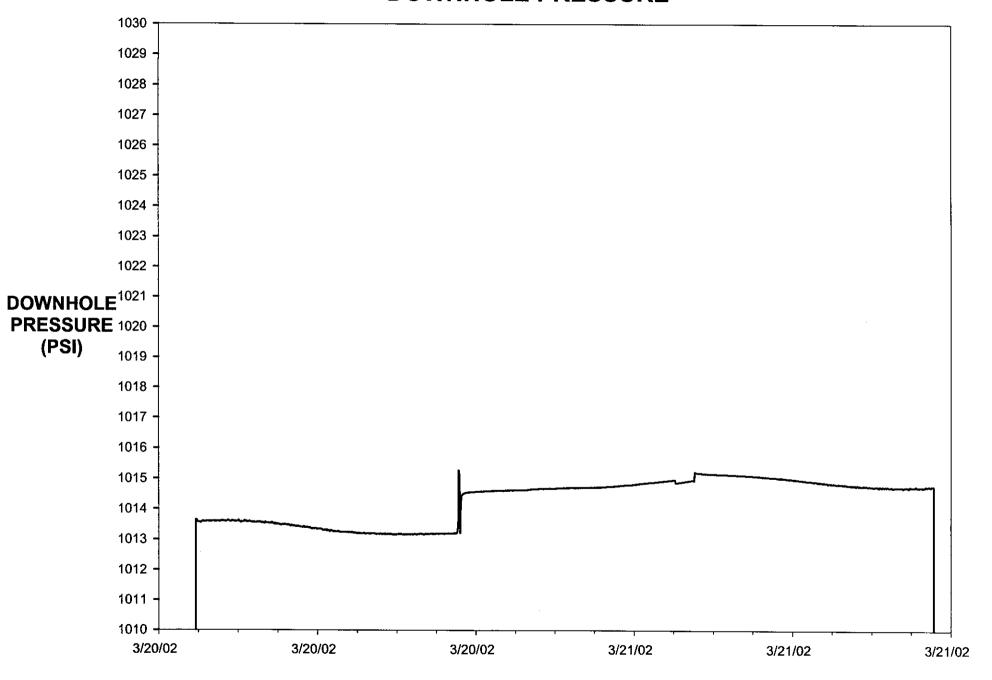
DATE & TIME


POMPANO BEACH INJECTION WELL #1 BAROMETRIC PRESSURE

POMPANO INJECTION WELL #1 MONITOR WELL PRESSURE



POMPANO BEACH INJECTION WELL #1 WELLHEAD PRESSURE



DATE & TIME

POMPANO BEACH INJECTION WELL #1 DOWNHOLE TEMPERATURE

POMPANO BEACH INJECTION WELL #1 DOWNHOLE PRESSURE

DATE & TIME

	W 1	MW UPPER	NW LOWER	BAROMETRIC		RV 1	MW UPPER	MW LOWER	
Date Time	{psi}	(psi)	(psl)	Inches Hg	Date Time	(psi)	(psi)	(p#l)	
3/19/02 22:00	19,974	9.324	6.725	29.945	3/19/02 23:29	19.737	9.356	6.763	
V19/02 22:01	19.968	9.324	6.725	29.945	3/19/02 23:30 3/19/02 23:31	19.737	9.356	6.764	
3/19/02 22:02	19.961	9.324	6.725	29.943		19.73	9.357	6.764	
3/19/02 22:03	19.961	9.325	6.727	29.943	3/19/02 23:32 3/19/02 23:33	19,724 19,724	9.356 9.359	6.763	
3/19/02 22:04	19.955	9.324	6.727	29.943	3/19/02 23:34			6.763	
3/19/02 22:05	19.949	9.327	6.728	29.943	3/19/02 23:35	19.724	9.357	6.764	
3/19/02 22:06	19.949	9.327	6.729	29.943		19.718	9.356	6.764	
3/19/02 22:07	19.943	9.326	6.729	29.943	3/19/02 23:36	19.718	9.357	6.764	
3/19/02 22:08	19.936	9.327	6.729	29.943	3/19/02 23:37	19.712	9.357	6.764	
3/19/02 22:09	19.936				3/19/02 23:38	19.712	9.356	6.764	
		9.329	6.73	29.943	3/19/02 23:39	19.712	9.356	6.763	
3/19/02 22:10	19.93	9.327	6.73	29.943	3/19/02 23:40	19.712	9.356	6.764	
3/19/02 22:11	19.93	9.329	6.733	29.943	3/19/02 23:41	19.712	9.355	6.763	
3/19/02 22:12	19.924	9.33	6.733	29.941	3/19/02 23:42	19.712	9.356	6.763	
3/19/02 22:13	19.924	9.33	6.734	29.941	3/19/02 23:43	19.699	9.356	6.764	
3/19/02 22:14	19.924	9.331	6.734	29.941	3/19/02 23:44	19.699	9.359	6.764	
3/19 /02 22 :15	19.918	9.331	6.734	29.941	3/19/02 23:45	19.718	9.355	6.764	
3/19/02 22:16	19.911	9.331	6.735	29.941	3/19/02 23:46	19,699	9.357	6.764	
3/19/02 22:17	19.911	9.331	6.734	29.939	3/19/02 23:47	19.693	9.356	6.764	
3/19/02 22:18	19.911	9.334	6.737	29.941	3/19/02 23:48	19.693	9.357	6.764	
3/19/02 22:19	19,899	9.332	6.737	29.939	3/19/02 23:49	19,693	9.356	6.764	
3/19/02 22:20	19.905	9.334	6.738	29.939	3/19/02 23:50	19.693	9.359	6.764	
3/19/02 22:21	19.899	9.334	6.739	29.941	3/19/02 23:51				
3/19/02 22:22	19.893	9.336	6.739	29.939		19.687	9.359	6.764	
19/02 22:23	19.893	9.335	6.739	29.939 29.939	3/19/02 23:52	19.687	9.357	6.764	
V19/02 22:23	19.893				3/19/02 23:53	19.68	9.359	6.764	
		9.336	6.74	29.941	3/19/02 23:54	19.674	9.356	6.764	
/19/02 22:25	19.893	9.336	6.739	29.941	3/19/02 23:55	19.674	9.357	6.764	
/19/02 22:26	19.886	9.336	6.742	29.941	3/19/02 23:56	19.674	9.357	6.764	
1/19/02 22:27	19.88	9.337	6.74	29.939	3/19/02 23:57	19.668	9.357	6.764	
3/19/02 22:28	19.88	9.337	6.742	29.939	3/19/02 23:58	19.668	9.359	6.764	
1/19/02 22:29	19.874	9.339	6.742	29.937	3/19/02 23:59	19.668	9.359	6.764	
/19/02 22:30	19.874	9.337	6.743	29.939	3/20/02 0:00	19.668	9.357	6.764	
/19/02 22:31	19.861	9.339	6.743	29.939	3/20/02 0:01	19.662	9.359	6.764	
/19/02 22:32	19.855	9.339	6.744	29.937	3/20/02 0:02	19.668	9.359	6.764	
/19/02 22:33	19.855	9.34	6.744	29.939	3/20/02 0:03	19.662	9.359	6.764	
/19/02 22:34	19,849	9,34	6.745	29.939	3/20/02 0:04	19.662	9.359	6.764	
1/19/02 22:35	19.849	9.34	6.745	29.939	3/20/02 0:05	19.662	9.357	6.764	
/19/02 22:36	19.849	9.344	6.745	29.939	3/20/02 0:06	19.655	9.357		
/19/02 22:37	19.849	9.34	6.745	29.941	3/20/02 0:07	19.649		6.764	
/19/02 22:38	19.83	9.345	6.747	29.939	3/20/02 0:08		9.357	6.764	
/19/02 22:39	19.824	9.34	6.748	29.939		19.655	9.359	6.764	
/19/02 22:40	19.837	9.345	6.748	29.939	3/20/02 0:09	19.649	9.357	6.764	
/19/02 22:41	19.837	9.34	6.749	29.939	3/20/02 0:10	19.643	9.354	6.764	
1/19/02 22:42	19.837	9.345			3/20/02 0:11	19.649	9.369	6.764	
/19/02 22:43			6.748	29.939	3/20/02 0:12	19.637	9.355	6.764	
	19.837	9.345	6.749	29.939	3/20/02 0:13	19.643	9.36	6.764	
/19/02 22:44	19.83	9.345	6.749	29.939	3/20/02 0:14	19.637	9.359	6.764	
19/02 22:45	19.83	9.345	6.75	29.937	3/20/02 0:15	19.637	9.357	6.764	
/19/02 22:46	19.83	9.346	6.75	29.937	3/20/02 0:16	19.637	9.357	6.764	
/19/02 22:47	19.824	9.346	6.75	29.939	3/20/02 0:17	19.63	9.359	6.764	
/19/02 22:48	19.824	9.346	6.752	29.939	3/20/02 0:18	19.637	9.359	6.764	
19/02 22:49	19.818	9.347	6.752	29.939	3/20/02 0:19	19.63	9.357	6.764	
19/02 22:50	19.818	9.346	6.752	29.939	3/20/02 0:20	19.637	9.359	6.764	
19/02 22:51	19.818	9.347	6.753	29.937	3/20/02 0:21	19.624	9.357	6.764	
19/02 22:52	19.812	9.347	6.753	29.937	3/20/02 0:22	19.624	9.357	6.764	
19/02 22:53	19.805	9.349	6.753	29.935	3/20/02 0:23	19.624	9.357	6.764	
19/02 22:54	19.799	9.349	6.754	29.939	3/20/02 0:24	19.612	9.359	6.764	
19/02 22:55	19.799	9.349	6.754	29.937	3/20/02 0:25	19.618	9.357		
19/02 22:56	19.799	9.349	6.755	29.935	3/20/02 0:26	19.612	9.359	6.764 6.764	
19/02 22:57	19.799	9.349	6.755	29.935	3/20/02 0:27			6.764	
19/02 22:58	19.799	9.35	6.755	29.933		19.612	9.359	6.764	
19/02 22:59	19.799	9.35	6.757	29.935	3/20/02 0:28	19.612	9.357	6.764	
19/02 23:00	19.793	9.35	6.757	29.935	3/20/02 0:29	19.612	9.357	6.763	
19/02 23:01	19.793				3/20/02 0:30	19.606	9.357	6.764	
19/02 23:01		9.351	6.757	29.935	3/20/02 0:31	19.612	9.357	6.764	
	19.787	9.354	6.757	29.935	3/20/02 0:32	19.606	9.357	6.763	
19/02 23:03	19.787	9.354	6.758	29.933	3/20/02 0:33	19.599	9.356	6.763	
19/02 23:04	19.787	9.354	6.758	29.935	3/20/02 0:34	19.599	9.356	6.763	
19/02 23:05	19.78	9.351	6.758	29.935	3/20/02 0:35	19.599	9.356	6.763	
19/02 23:06	19.787	9.351	6.759	29.935	3/20/02 0:36	19.599	9.359	6.764	
19/02 23:07	19.78	9.354	6.759	29.935	3/20/02 0:37	19.599	9.356	6.763	
19/02 23:08	19.78	9.354	6.759	29.933	3/20/02 0:38	19.599	9.357	6.763	
19/02 23:09	19.774	9.354	6.759	29.933	3/20/02 0:39	19.593	9.357	6.763	
19/02 23:10	19.774	9.354	6.76	29.933	3/20/02 0:40	19.593	9.356	6.763	
19/02 23:11	19.768	9.355	6.76	29.935	3/20/02 0:41	19.587			
19/02 23:12	19.78	9.352	6.759	29.933	3/20/02 0:41 3/20/02 0:42		9.359	6.763	
19/02 23:13	19.774	9.351	6.762	29.931		19.587	9.357	6.763	
19/02 23:14	19.768	9.354	6.762	29.931	3/20/02 0:43	19.587	9.357	6.763	
9/02 23:15	19.768	9.355	6.762		3/20/02 0:44	19.581	9.357	6.763	
19/02 23:16	19.762	9.355		29,935	3/20/02 0:45	19.581	9.356	6.763	
			6.762	29.935	3/20/02 0:46	19.581	9.359	6.763	
19/02 23:17	19.755	9.355	6.762	29.931	3/20/02 0:47	19.581	9.356	6.762	
19/02 23:18	19.749	9.356	6.762	29.931	3/20/02 0:48	19.568	9.357	6.762	
19/02 23:19	19.749	9.356	6.762	29.931	3/20/02 0:49	19.568	9.356	6.762	
19/02 23:20	19.755	9.355	6.762	29.933	3/20/02 0:50	19.568	9.357	6.762	
19/02 23:21	19.755	9.356	6.762	29.931	3/20/02 0:51	19.568	9.356	6.762	
19/02 23:22	19.749	9.355	6.762	29.933	3/20/02 0:52	19.562	9.357	6.762	
19/02 23:23	19.749	9.356	6.762	29.933	3/20/02 0:53				
19/02 23:24	19.749	9.355	6.763	29.933		19.562	9.356	6.76	
	19.743	9.356	6.763	29.933	3/20/02 0:54	19.562	9.356	6.762	
		9.356	6.762		3/20/02 0:55	19.562	9.355	6.76	
19/02 23:25 19/02 23:26			0.702	29.933	3/20/02 0:56	19.562	9.356	6.76	
9/02 23:26	19.743				コンロれつ ひぶつ				
19/02 23:26 19/02 23:27 19/02 23:28	19.743 19.743 19.737	9.356 9.356	6.763 6.763	29.933 29.933	3/20/02 0:57 3/20/02 0:58	19.562 19.556	9.355 9.354	6.76 6.76	

	₩1	MW UPPER	MW LOWER	BAROMETRIC		W 1	MW UPPER	MW LOWER	BAROMETRIC
Date Time	P\$1	PSI	PSI	Inches Hg	Date Time	PSI	PSI	PSI	Inches Hg
3/20/02 0:59 3/20/02 1:00	19.549 19.549	9.354 9.355	6.759 6.759	29.915 29.915	3/20/02 2:29 3/20/02 2:30	19.35 19.35	9.329 9.329	6.727 6.727	29.878
3/20/02 1:01	19.549	9.356	6.759	29.915	3/20/02 2:31	19.35	9.329	6.727 6.725	29.88 29.88
3/20/02 1:02	19.543	9.354	6.759	29.915	3/20/02 2:32	19.356	9.329	6.725	29.878
3/20/02 1:03	19.537	9.354	6.759	29.911	3/20/02 2:33	19.35	9.325	6.723	29.88
3/20/02 1:04	19.543	9.354	6.758	29.913	3 /20/ 02 2:34	19.343	9.327	6.725	29.88
3/20/02 1:05 3/20/02 1:06	19.537 19.524	9.356	6.759	29.913	3/20/02 2:35	19.343	9.326	6.724	29.878
3/20/02 1:07	19.524	9.354 9.354	6.758 6.758	29.913 29.911	3/20/02 2:36 3/20/02 2:37	19.337 19.337	9.326 9.325	6.723 6.723	29.878 29.878
3/20/02 1:08	19.518	9.355	6.758	29.911	3/20/02 2:38	19.337	9.324	6.722	29.878
3/20/02 1:09	19.518	9.354	6.758	29.909	3/20/02 2:39	19.337	9.324	6.722	29.878
3/20/02 1:10	19.524	9.352	6.757	29.909	3/20/02 2:40	19.331	9.322	6.722	29.878
3/20/02 1:11	19.512	9.351	6.757	29.909	3/20/02 2:41	19.325	9.322	6.72	29.88
3/20/02 1:12 3/20/02 1:13	19.512 19.512	9.352 9.352	6.757 6.757	29.907 29.909	3/20/02 2:42 3/20/02 2:43	19.331 19.331	9.322 9.322	6.719 6.718	29.878 29.88
3/20/02 1:14	19.512	9.352	6.757	29.909	3/20/02 2:43	19.325	9.321	6.718	29.876
3/20/02 1:15	19.512	9.352	6.757	29.909	3/20/02 2:45	19.318	9.321	6.718	29.878
3/20/02 1:16	19.506	9.351	6.755	29.907	3/20/02 2:46	19.318	9.32	6.718	29.878
3/20/02 1:17	19.506	9.352	6.755	29.907	3/20/02 2:47	19.318	9.32	6.717	29.878
3/20/02 1:18 3/20/02 1:19	19.506 19.499	9.351 9.352	6.755 6.755	29.907 29.905	3/20/02 2:48	19.312	9.32	6.715	29.88
3/20/02 1:19	19.506	9.352	6.755	29,905	3/20/02 2:49 3/20/02 2:50	19.312 19.306	9.317 9.319	6.715 6.715	29.878 29.878
3/20/02 1:21	19.499	9.351	6.754	29.905	3/20/02 2:51	19.306	9.319	6.715	29.878
3/20/02 1:22	19.499	9.351	6.754	29.903	3/20/02 2:52	19.3	9.317	6.714	29.878
3/20/02 1:23	19.493	9.351	6.754	29.903	3/20/02 2:53	19.3	9.316	6.714	29.876
3/20/02 1:24 3/20/02 1:25	19.493 19.487	9.35 9.351	6.754	29.903	3/20/02 2:54	19.306	9.316	6.713	29.878
3/20/02 1:26	19.487	9.351	6.754 6.753	29.901 29.901	3/20/02 2:55 3/20/02 2:56	19.3 19.3	9.316 9.316	6.713 6.713	29.878 29.876
3/20/02 1:27	19.481	9.351	6.753	29.903	3/20/02 2:57	19.287	9.315	6.712	29.876
3/20/02 1:28	19.481	9.351	6.753	29.901	3/20/02 2:58	19.293	9.316	6.712	29.876
3/20/02 1:29	19.481	9.35	6.753	29.901	3/20/02 2:59	19.293	9.315	6.712	29.874
3/20/02 1:30 3/20/02 1:31	19.481	9.349	6.753	29.899	3/20/02 3:00	19.287	9.315	6.71	29.876
3/20/02 1:32	19.481 19.481	9.35 9.349	6.753 6.752	29.899 29.899	3/20/02 3:01 3/20/02 3:02	19.287 19.293	9.315 9.312	6.709 6.709	29.874
3/20/02 1:33	19.474	9.349	6.752	29.897	3/20/02 3:03	19.287	9.312	6.708	29.876 29.876
3/20/02 1:34	19.474	9.349	6.752	29.897	3/20/02 3:04	19.281	9.312	6.708	29.876
3/20/02 1:35	19.474	9.349	6.752	29.899	3/20/02 3:05	19.275	9.312	6.705	29.876
3/20/02 1:36	19.474	9.349	6.752	29.899	3/20/02 3:06	19.275	9.309	6.704	29.876
3/20/02 1:37 3/20/02 1:38	19.474 19.468	9.349 9.349	6.75 6.75	29.897 29.895	3/20/02 3:07	19.275	9.309	6.704	29.876
3/20/02 1:39	19.462	9.349	6.75	29.895	3/20/02 3:08 3/20/02 3:09	19.275 19.268	9.307 9.307	6.704 6.703	29.876 29.874
3/20/02 1:40	19.456	9.349	6.75	29.895	3/20/02 3:10	19.268	9.309	6.703	29.876
3/20/02 1:41	19.456	9.347	6.749	29.895	3/20/02 3:11	19.262	9.309	6.702	29.876
3/20/02 1:42	19.456	9.347	6.75	29.893	3/20/02 3:12	19.262	9.309	6.702	29.874
3/20/02 1:43 3/20/02 1:44	19.449 19.456	9.346 9.347	6.749 6.748	29.893 29.893	3/20/02 3:13	19.256	9.307	6.7	29.876
3/20/02 1:45	19.449	9.344	6.748	29.895	3/20/02 3:14 3/20/02 3:15	19.262 19.256	9.306 9.306	6.7 6.702	29.876 29.874
3/20/02 1:46	19.443	9.349	6.748	29.891	3/20/02 3:16	19.256	9.304	6.699	29.876
3/20/02 1:47	19.431	9.35	6.749	29.891	3/20/02 3:17	19.25	9.306	6.699	29.874
3/20/02 1:48	19.437	9.339	6.747	29.891	3/20/02 3:18	19.25	9.306	6.699	29.872
3/20/02 1:49 3/20/02 1:50	19.437 19.437	9.341 9.344	6.747	29.891	3/20/02 3:19	19.256	9.304	6.698	29.87
3/20/02 1:51	19.437	9.344	6.745 6.745	29.891 29.891	3/20/02 3:20 3/20/02 3:21	19.25 19.25	9.305 9.302	6.698 6.697	29.87 29.87
3/20/02 1:52	19.431	9.342	6.745	29.886	3/20/02 3:22	19.243	9.304	6.697	29.868
3/20/02 1:53	19.431	9.341	6.744	29.888	3/20/02 3:23	19.237	9.301	6.697	29.87
3/20/02 1:54	19.431	9.342	6.744	29.884	3/20/02 3:24	19.237	9.302	6.695	29.87
3/20/02 1:55	19.431	9.342	6.744	29.886	3/20/02 3:25	19.231	9.302	6.695	29.87
3/20/02 1:56 3/20/02 1:57	19.431 19.431	9.342 9.341	6.744 6.743	29.886 29.884	3/20/02 3:26	19.231	9.3	6.693	29.866
3/20/02 1:58	19.424	9.341	6.743	29.884	3/20/02 3:27 3/20/02 3:28	19.231 19.225	9.301 9.299	6.694 6.693	29.87 29.868
3/20/02 1:59	19.424	9.341	6.743	29.882	3/20/02 3:29	19.218	9.3	6.693	29.87
3/20/02 2:00	19.418	9.34	6.742	29.886	3/20/02 3:30	19.225	9.301	6.693	29.868
3/20/02 2:01	19.424	9.34	6.742	29.886	3/20/02 3:31	19.225	9.299	6.692	29.87
3/20/02 2:02 3/20/02 2:03	19.418 19.418	9.34 9.341	6.742 6.739	29.884 29.886	3/20/02 3:32 3/20/02 3:33	19.218	9.297 9.297	6.69	29.87
3/20/02 2:04	19.412	9.337	6.739	29.884	3/20/02 3:33 3/20/02 3:34	19.218 19.218	9.297	6.689 6.689	29.87 29.87
3/20/02 2:05	19.412	9.337	6.739	29.882	3/20/02 3:35	19.218	9.294	6.688	29.872
3/20/02 2:06	19.406	9.339	6.738	29.882	3/20/02 3:36	19.218	9.295	6.688	29.87
3/20/02 2:07	19.412	9.337	6.737	29.882	3/20/02 3:37	19.218	9.299	6.687	29.87
3/20/02 2:08 3/20/02 2:09	19.406	9.337	6.738	29.884	3/20/02 3:38	19.15	9.289	6.687	29.87
3/20/02 2:10	19.406 19.406	9.337 9.337	6.737 6.735	29.882 29.882	3/20/02 3:39 3/20/02 3:40	19.206 19.212	9.296 9.294	6.687	29.868
3/20/02 2:11	19.406	9.336	6.735	29.882	3/20/02 3:41	19.212	9.292	6.685 6.684	29.87 29.868
3/20/02 2:12	19.4	9.337	6.735	29.882	3/20/02 3:42	19.206	9.294	6.684	29.868
3/20/02 2:13	19.393	9.335	6.735	29.88	3/20/02 3:43	19.2	9.294	6.683	29.868
3/20/02 2:14	19.393	9.334	6.734	29.882	3/20/02 3:44	19.2	9.291	6.683	29.868
3/20/02 2:15 3/20/02 2:16	19.387 19.381	9.335 9.334	6.733 6.733	29.882	3/20/02 3:45	19.2	9.291	6.683	29.868
3/20/02 2:17	19.381	9.334	6.733	29.882 29.882	3/20/02 3:46 3/20/02 3:47	19.2 19.187	9.291 9.29	6.682 6.682	29.868 29.868
3/20/02 2:18	19.375	9.332	6.732	29.884	3/20/02 3:48	19.187	9.29	6.682	29.868 29.868
3/20/02 2:19	19.375	9.332	6.732	29.882	3/20/02 3:49	19.187	9.29	6.68	29.87
3/20/02 2:20	19.375	9.332	6.732	29.882	3/20/02 3:50	19.187	9.289	6.679	29.868
3/20/02 2:21 3/20/02 2:22	19.375	9.331	6.73	29.882	3/20/02 3:51	19.187	9.289	6.679	29.87
3/20/02 2:23	19.375 19.375	9.332 9.331	6.73 6.73	29.882 29.88	3/20/02 3:52 3/20/02 3:53	19.181	9.287	6.678	29.868
3/20/02 2:24	19.362	9.331	6.729	29.88 29.88	3/20/02 3:53 3/20/02 3:54	19.181 19.175	9.289 9.286	6.678 6.677	29.868 29.868
3/20/02 2:25	19.362	9.332	6.728	29.88	3/20/02 3:55	19.169	9.284	6.677	29.868
3/20/02 2:26	19.356	9.329	6.728	29.88	3/20/02 3:56	19.169	9.284	6.675	29.868
3/20/02 2:27	19.35	9.33	6.728	29.878	3/20/02 3:57	19.169	9.277	6.675	29.87
3/20/02 2:28	19.356	9.329	6.728	29.88	3/20/02 3:58	19.162	9.291	6.675	29.868

	W1	MW UPPER	MW LOWER	BAROMETRIC		FW 1	MW UPPER	MW LOWER	BAROMETRIC
Date Time	PSI	PSI	PSI	Inches Hg	Date Time	PSI	P\$I	PSI	inches Hg
3/20/02 3:59 3/20/02 4:00	19.162 19.162	9.287	6.674	29.868	3/20/02 5:29	19.006	9.241	6.623	29.884
3/20/02 4:01	19.162	9.281 9.282	6.674 6.673	29.868 29.868	3/20/02 5:30 3/20/02 5:31	19.006 19.006	9.241 9.242	6.623	29.888
3/20/02 4:02	19.156	9.281	6.673	29.87	3/20/02 5:32	19.000	9.238	6.623 6.623	29.888 29.888
3/20/02 4:03	19.156	9.282	6.672	29.868	3/20/02 5:33	19	9.238	6.622	29.884
3/20/02 4:04	19.156	9.279	6.672	29.868	3/20/02 5:34	19	9.238	6.622	29.891
3/20/02 4:05	19.156 19.156	9.281	6.669	29.87	3/20/02 5:35	19	9.238	6.622	29.888
3/20/02 4:06 3/20/02 4:07	19.156	9.28 9.279	6.668 6.668	29.872 29.87	3/20/02 5:36	18.994	9.238	6.62	29.888
3/20/02 4:08	19.15	9.277	6.667	29.87	3/20/02 5:37 3/20/02 5:38	18.994 18.994	9.238 9.236	6.619 6.62	29.888 29.891
3/20/02 4:09	19.144	9.277	6.665	29.87	3/20/02 5:39	18.994	9.236	6.619	29.888
3/20/02 4:10	19.144	9.276	6.665	29.87	3/20/02 5:40	18.987	9.236	6.619	29.891
3/20/02 4:11	19.144	9.277	6.665	29.87	3/20/02 5:41	18.987	9.236	6.619	29.891
3/20/02 4:12 3/20/02 4:13	19.144 19.144	9.277 9.277	6.664 6.664	29.87 29.872	3/20/02 5:42	18.981	9.235	6.618	29.891
3/20/02 4:14	19.137	9.276	6.662	29.87	3/20/02 5:43 3/20/02 5:44	18.987 18.987	9.236 9.236	6.618 6.619	29.888 29.888
3/20/02 4:15	19,137	9.274	6.663	29.87	3/20/02 5:45	18.987	9.235	6.618	29.891
3/20/02 4:16	19.131	9.274	6.662	29.87	3/20/02 5:46	18.981	9.236	6.618	29.888
3/20/02 4:17	19.131	9.272	6.662	29.872	3/20/02 5:47	18.981	9.236	6.618	29.891
3/20/02 4:18 3/20/02 4:19	19,131 19,137	9.276 9.271	6.66 6.66	29.87 29.87	3/20/02 5:48	18.981	9.236	6.618	29.888
3/20/02 4:19	19.125	9.272	6.66	29.872	3/20/02 5:49 3/20/02 5:50	18.981 18.981	9.234 9.236	6.618 6.617	29.891
3/20/02 4:21	19.131	9.272	6.659	29.87	3/20/02 5:51	18.981	9.236	6.617	29.893 29.891
3/20/02 4:22	19.125	9.27	6.658	29.872	3/20/02 5:52	18.981	9.235	6.617	29.893
3/20/02 4:23	19.125	9.271	6.658	29.87	3/20/02 5:53	18.975	9.235	6.617	29.893
3/20/02 4:24	19.119	9.271	6.658	29.87	3/20/02 5:54	18.975	9.235	6.617	29.893
3/20/02 4:25 3/20/02 4:26	19.119 19.112	9.27 9.27	6.658 6.657	29.872 29.872	3/20/02 5:55	18.969	9.235	6.615	29.895
3/20/02 4:27	19.112	9.269	6.655	29.87	3/20/02 5:56 3/20/02 5:57	18.975 18.969	9.233 9.233	6.615 6.615	29.895 29.895
3/20/02 4:28	19.112	9.269	6.655	29.87	3/20/02 5:58	18.969	9.234	6.614	29.897
3/20/02 4:29	19.112	9.267	6.654	29.872	3/20/02 5:59	18.963	9.231	6.614	29.895
3/20/02 4:30	19.106	9.267	6.654	29.872	3/20/02 6:00	18.963	9.231	6.615	29.897
3/20/02 4:31	19.106	9.267	6.654	29.872	3/20/02 6:01	18.969	9.245	6.614	29.897
3/20/02 4:32 3/20/02 4:33	19.106 19.1	9.265 9.265	6.653 6.653	29.872 29.872	3/20/02 6:02	18.963	9.233	6.614	29.897
3/20/02 4:34	19.106	9.265	6.652	29.874	3/20/02 6:03 3/20/02 6:04	18.963 18.969	9.231 9.234	6.614 6.614	29.897
3/20/02 4:35	19.1	9.265	6.65	29.872	3/20/02 6:05	18.963	9.231	6.614	29.895 29.895
3/20/02 4:36	19.1	9.264	6.65	29.874	3/20/02 6:06	18.963	9.231	6.613	29.899
3/20/02 4:37	19.094	9.265	6.652	29.874	3/20/02 6:07	18.963	9.234	6.614	29.897
3/20/02 4:38	19.094	9.264	6.65	29.872	3/20/02 6:08	18.963	9.231	6.612	29.897
3/20/02 4:39 3/20/02 4:40	19.094 19.094	9.265 9.264	6.65 6.649	29.874 29.872	3/20/02 6:09	18.956	9.233	6.613	29.897
3/20/02 4:41	19.094	9.262	6.648	29.874 29.874	3/20/02 6:10 3/20/02 6:11	18.95 18.956	9.233	6.613	29.897
3/20/02 4:42	19.094	9.261	6.648	29.872	3/20/02 6:12	18.956	9.231 9.233	6.613 6.613	29.897 29.897
3/20/02 4:43	19.087	9.261	6.647	29.874	3/20/02 6:13	18.95	9.231	6.613	29.897
3/20/02 4:44	19.081	9.26	6.647	29.876	3/20/02 6:14	18.95	9.233	6.613	29.899
3/20/02 4:45	19.081	9.261	6.645	29.874	3/20/02 6:15	18.95	9.233	6.613	29.899
3/20/02 4:46 3/20/02 4:47	19.081 19.075	9.26 9.26	6.645 6.645	29.876	3/20/02 6:16	18.944	9.23	6.612	29.899
3/20/02 4:48	19.075	9.257	6.644	29.876 29.876	3/20/02 6:17 3/20/02 6:18	18.95 18.95	9.233	6.612	29.901
3/20/02 4:49	19.069	9.257	6.643	29.876	3/20/02 6:19	18.95	9.233 9.234	6.613 6.613	29.901 29.899
3/20/02 4:50	19.075	9.256	6.643	29.878	3/20/02 6:20	18.944	9.231	6.613	29.899
3/20/02 4:51	19.069	9.257	6.643	29.878	3/20/02 6:21	18.944	9.233	6.613	29.899
3/20/02 4:52 3/20/02 4:53	19.069 19.075	9.257 9.255	6.642 6.642	29.878	3/20/02 6:22	18.944	9.231	6.614	29.899
3/20/02 4:54	19.094	9.28	6.64	29.878 29.876	3/20/02 6:23 3/20/02 6:24	18.944 18.938	9.231	6.613	29.899
3/20/02 4:55	19.062	9.256	6.64	29.876	3/20/02 6:25	18.938	9.231 9.231	6.612 6.613	29.901 29.899
3/20/02 4:56	19.062	9.256	6.639	29.878	3/20/02 6:26	18.938	9.233	6.614	29.899
3/20/02 4:57	19.05	9.255	6.639	29.878	3/20/02 6:27	18.938	9.233	6.614	29.903
3/20/02 4:58	19.056	9.254	6.638	29.88	3/20/02 6:28	18.938	9.23	6.613	29.903
3/20/02 4:59 3/20/02 5:00	19,056 19,056	9.252 9.252	6.638 6.637	29.88	3/20/02 6:29	18.938	9.233	6.613	29.899
3/20/02 5:01	19.056	9.252	6.638	29.88 29.878	3/20/02 6:30 3/20/02 6:31	18.938 18.938	9.234 9.231	6.613 6.613	29.901 29.903
3/20/02 5:02	19.056	9.252	6.637	29.882	3/20/02 6:32	18.925	9.231	6.613	29.903 29.901
3/20/02 5:03	19.056	9.252	6.635	29.878	3/20/02 6:33	18.931	9.233	6.614	29.901
3/20/02 5:04	19.044	9.252	6.635	29.878	3/20/02 6:34	18.931	9.233	6.613	29.903
3/20/02 5:05 3/20/02 5:06	19.044 19.044	9.251 9.25	6.637 6.635	29.88	3/20/02 6:35	18.931	9.23	6.613	29.903
3/20/02 5:07	19.044	9.25	6.635	29.878 29.88	3/20/02 6:36 3/20/02 6:37	18.931 18.931	9.234	6.613	29.901
3/20/02 5:08	19.044	9.25	6.633	29.878	3/20/02 6:38	18.925	9.231 9.231	6.614 6.614	29.903 29.903
3/20/02 5:09	19.044	9.25	6.633	29.88	3/20/02 6:39	18.925	9.233	6.614	29.903
3/20/02 5:10	19.037	9.25	6.633	29.88	3/20/02 6:40	18.925	9.233	6.614	29.905
3/20/02 5:11 3/20/02 5:12	19.037	9.249	6.632	29.878	3/20/02 6:41	18.925	9.234	6.614	29.905
3/20/02 5:13	19.031 19.031	9.247 9.246	6.632 6.63	29.878 29.88	3/20/02 6:42 3/20/02 6:43	18.931	9.233	6.614	29.905
3/20/02 5:14	19.031	9.247	6.63	29.882	3/20/02 6:43 3/20/02 6:44	18.925 18.925	9.233 9.231	6.614 6.613	29.905 29.905
3/20/02 5:15	19.031	9.246	6.629	29.882	3/20/02 6:45	18.919	9.231	6.613	29.905 29.905
3/20/02 5:16	19.031	9.245	6.629	29.882	3/20/02 6:46	18.919	9.233	6.614	29.907
3/20/02 5:17	19.031	9.246	6.628	29.884	3/20/02 6:47	18.913	9.234	6.614	29.907
3/20/02 5:18 3/20/02 5:19	19.025 19.025	9.244 9.244	6.628	29.884	3/20/02 6:48	18.913	9.233	6.614	29.907
3/20/02 5:19	19.025	9.2 44 9.244	6.627 6.627	29.884 29.884	3/20/02 6:49 3/20/02 6:50	18.919	9.23	6.614	29.907
3/20/02 5:21	19.025	9.242	6.627	29.882	3/20/02 6:50 3/20/02 6:51	18.913 18.919	9.23 9.23	6.614 6.612	29.909 29.909
3/20/02 5:22	19.012	9.244	6.627	29.884	3/20/02 6:52	18.919	9.23	6.613	29.909 29.909
3/20/02 5:23	19.012	9.241	6.625	29.886	3/20/02 6:53	18.913	9.23	6.614	29.907
3/20/02 5:24	19.006	9.242	6.625	29.886	3/20/02 6:54	18,913	9.231	6.614	29.909
3/20/02 5:25 3/20/02 5:26	19.012 19.012	9.242 9.241	6.625 6.624	29.886	3/20/02 6:55	18.913	9.234	6.614	29.909
3/20/02 5:27	19.012	9.241	6.624 6.624	29.886 29.884	3/20/02 6:56 3/20/02 6:57	18.913	9.233	6.614	29.907
3/20/02 5:28	19.012	9.236	6.624	29.891	3/20/02 6:57 3/20/02 6:58	18.913 18.919	9.233 9.233	6.614 6.615	29.909 29.909
					0.25/02 0.00	.0.0 10	U.200	3.010	23.303

	W 1	MW UPPER	HW LOWER	BAROMETRIC		W1	MW UPPER	MW LOWER	BAROMETRIC
Date Time	PSI	P\$I	P\$1	Inches Hg	Data Time	PSI	P\$1	PSI	Inches Hg
3/20/02 6:59 3/20/02 7:00	18.913 18.913	9.234 9.235	6.615 6.615	29.909 29.911	3/20/02 8:31 3/20/02 8:32	18.856 18.856	9.255 9.256	6.648 6.649	29.935 29.937
3/20/02 7:01	18.913	9.233	6.615	29.911	3/20/02 8:33	18.85	9.256	6.65	29.93 <i>1</i> 29.939
3/20/02 7:02	18.913	9.234	6.615	29.911	3/20/02 8:34	18.863	9.256	6.65	29.939
3/20/02 7:05	18.906	9.24	6.617	29.913	3/20/02 8:35	18.856	9.256	6.65	29.941
3/20/02 7:06	18.906	9.235	6.618	29.913	3/20/02 8:36	18.85	9.257	6.65	29.939
3/20/02 7:07 3/20/02 7:08	18.9 18.919	9.235 9.235	6.617 6.617	29.911 29.913	3/20/02 8:37 3/20/02 8:38	18.856 18.856	9.257	6.65	29.939
3/20/02 7:09	18.9	9.235	6.618	29.913	3/20/02 8:39	18.856	9.26 9.262	6.652 6.654	29.941 29.941
3/20/02 7:10	18.906	9.236	6.618	29.913	3/20/02 8:40	18.85	9.257	6.652	29.941
3/20/02 7:11	18.906	9.236	6.619	29.913	3/20/02 8:41	18.85	9.259	6.653	29.941
3/20/02 7:12	18.9	9.236	6.619	29.913	3/20/02 8:42	18.856	9.26	6.654	29.941
3/20/02 7:13	18.9	9.236	6.618	29.913	3/20/02 8:43	18.838	9.26	6.654	29.939
3/20/02 7:14 3/20/02 7:15	18.906 18.9	9.235 9.235	6.618 6.619	29.913 29.913	3/20/02 8:44 3/20/02 8:45	18.813 18.781	9.26 9.259	6.654 6.654	29.941 29.941
3/20/02 7:16	18.906	9.238	6.619	29.913	3/20/02 8:46	18.757	9.262	6.655	29.943
3/20/02 7:17	18.9	9.238	6.62	29.913	3/20/02 8:47	18.757	9.26	6.655	29.941
3/20/02 7:18	18.894	9.238	6.62	29.917	3/20/02 8:48	18.725	9.257	6.655	29.943
3/20/02 7:19	18.9	9.24	6.62	29.915	3/20/02 8:49	18,707	9.265	6.655	29.945
3/20/02 7:20 3/20/02 7:21	18.9 18.894	9.24 9.238	6.622 6.622	29.915 29.915	3/20/02 8:50	18.844	9.261	6.657	29.943
3/20/02 7:22	18.888	9.241	6.622	29.917	3/20/02 8:51 3/20/02 8:52	18.838 18.825	9.26 9.257	6.657 6.657	29.948 29.945
3/20/02 7:23	18.9	9.242	6.623	29.917	3/20/02 8:53	18.825	9.262	6.657	29.948
3/20/02 7:24	18.9	9.241	6.623	29.915	3/20/02 8:54	18.838	9.26	6.659	29.943
3/20/02 7:25	18.9	9.241	6.623	29.919	3/20/02 8:55	18.838	9.261	6.659	29.945
3/20/02 7:26 3/20/02 7:27	18.894 18.9	9.241 9.241	6.624	29.917 29.917	3/20/02 8:56	18.844	9.26	6.657	29.945
3/20/02 7:28	18.906	9.242	6.624 6.625	29.919	3/20/02 8:57 3/20/02 8:58	18.838 18.844	9.26 9.267	6.659	29.945
3/20/02 7:29	18.894	9.241	6.625	29.919	3/20/02 8:59	18.838	9.261	6.662 6.659	29.948 29.945
3/20/02 7:30	18.9	9.244	6.625	29.919	3/20/02 9:00	18.838	9.26	6.66	29.95
3/20/02 7:31	18.888	9.247	6.625	29.917	3/20/02 9:01	18.838	9.266	6.66	29.945
3/20/02 7:32	18.894	9.242	6.628	29.917	3/20/02 9:02	18.838	9.265	6.662	29.95
3/20/02 7:33	18.888	9.244	6.628	29.919	3/20/02 9:03	18.838	9.271	6.66	29.95
3/20/02 7:34 3/20/02 7:35	18.888 18.888	9.249 9.242	6.628 6.629	29.919 29.919	3/20/02 9:04 3/20/02 9:05	18.831	9.262	6.663	29.952
3/20/02 7:36	18.875	9.224	6.627	29.919	3/20/02 9:06 3/20/02 9:06	18.838 18.831	9.269 9.265	6.663 6.663	29.952 29.952
3/20/02 7:37	18.894	9.246	6.628	29.917	3/20/02 9:07	18.844	9.261	6.662	29.966
3/20/02 7:38	18.888	9.246	6.629	29.921	3/20/02 9:08	18.85	9.262	6.662	29.948
3/20/02 7:39	18.888	9.245	6.629	29.921	3/20/02 9:09	18.838	9.261	6.662	29.937
3/20/02 7:40	18.888	9.246	6.629	29.919	3/20/02 9:10	18.85	9.269	6.663	29.931
3/20/02 7:41 3/20/02 7:42	18.888	9.247	6.629	29.919	3/20/02 9:11	18.819	9.265	6.663	29.929
3/20/02 7:43	18.888 18.888	9.246 9.247	6.63 6.629	29.919 29.923	3/20/02 9:12 3/20/02 9:13	18.825	9.266	6.664	29.939
3/20/02 7:44	18.888	9.247	6.63	29.921	3/20/02 9:13 3/20/02 9:14	18.825 18.825	9.266 9.265	6.664 6.665	29.941 29.948
3/20/02 7:45	18.894	9.246	6.632	29.923	3/20/02 9:15	18.825	9.272	6.667	29.948
3/20/02 7:46	18.888	9.25	6.632	29.921	3/20/02 9:16	18.813	9.269	6.665	29.952
3/20/02 7:47	18.881	9.246	6.633	29.923	3/20/02 9:17	18.825	9.274	6.667	29.954
3/20/02 7:48	18.888	9.246	6.633	29.923	3/20/02 9:18	18.819	9.271	6.667	29.956
3/20/02 7:49 3/20/02 7:50	18.888 18.881	9.25 9.247	6.633 6.634	29.923 29.925	3/20/02 9:19	18.819	9.271	6.668	29.958
3/20/02 7:51	18.881	9.25	6.634	29.925	3/20/02 9:20 3/20/02 9:21	18.813 18.819	9.27 9.271	6.667 6.667	29.958 29.958
3/20/02 7:52	18.888	9.249	6.634	29.925	3/20/02 9:22	18.813	9.272	6.667	29.96
3/20/02 7:53	18.881	9.249	6.635	29.925	3/20/02 9:23	18.813	9.274	6.667	29.958
3/20/02 7:54	18.881	9.25	6.635	29.927	3/20/02 9:24	18.813	9.275	6.668	29.958
3/20/02 7:55 3/20/02 7:56	18.875	9.25	6.635	29.927	3/20/02 9:25	18.813	9.272	6.668	29.956
3/20/02 7:57	18.875 18.875	9.25 9.251	6.637 6.637	29.929 29.929	3/20/02 9:26	18.813	9.271	6.667	29.96
3/20/02 7:58	18.881	9.256	6.637	29.927	3/20/02 9:27 3/20/02 9:28	18.819 18.813	9.274 9.274	6.669 6.67	29.958 29.958
3/20/02 7:59	18.875	9.262	6.635	29.927	3/20/02 9:29	18.806	9.269	6.668	29.96
3/20/02 8:00	18.875	9.252	6.635	29.929	3/20/02 9:30	18.813	9.271	6.669	29.958
3/20/02 8:01	18.875	9.25	6.638	29.929	3/20/02 9:31	18.806	9.272	6.67	29.958
3/20/02 8:02	18.875	9.252	6.638	29.929	3/20/02 9:32	18.813	9.272	6.67	29.958
3/20/02 8:03 3/20/02 8:04	18.875 18.875	9.252 9.252	6.638 6.639	29.927 29.931	3/20/02 9:33 2/20/02 0:34	18.806	9.274	6.672	29.958
3/20/02 8:05	18.875	9.252	6.639	29.931	3/20/02 9:34 3/20/02 9:35	18.806 18.813	9.272 9.277	6.673 6.673	29.96 29.96
3/20/02 8:06	18.888	9.213	6.635	29.927	3/20/02 9:36	18.8	9.274	6.674	29.96 29.96
3/20/02 8:07	18.875	9.254	6.639	29.931	3/20/02 9:37	18.8	9.272	6.672	29.96
3/20/02 8:08	18.875	9.252	6.64	29.929	3/20/02 9:38	18.806	9.279	6.674	29.96
3/20/02 8:09 3/20/02 8:10	18.894 18.888	9.252	6.64	29.941	3/20/02 9:39	18.8	9.274	6.674	29.96
3/20/02 8:11	18.888	9.252 9.252	6.64 6.642	29.923 29.915	3/20/02 9:40 3/20/02 9:41	18.806 18.806	9.276	6.674	29.96
3/20/02 8:12	18.881	9.252	6.642	29.909	3/20/02 9:41	18.794	9.28 9.274	6.675 6.673	29.96 29.96
3/20/02 8:13	18.863	9.254	6.64	29.897	3/20/02 9:43	18.8	9.276	6.675	29.962
3/20/02 8:14	18.869	9.256	6.643	29.911	3/20/02 9:44	18.8	9.277	6.675	29.962
3/20/02 8:15	18.869	9.255	6.643	29.919	3/20/02 9:45	18.8	9.274	6.674	29.96
3/20/02 8:16 3/20/02 8:17	18.863	9.256	6.643	29.923	3/20/02 9:46	18.8	9.276	6.677	29.962
3/20/02 8:18	18.863 18.863	9.259 9.256	6.644 6.644	29.929 29.929	3/20/02 9:47	18.794	9.276	6.677	29.96
3/20/02 8:19	18.856	9.256 9.256	6.644	29.929	3/20/02 9:48 3/20/02 9:49	18.794 18.794	9.275	6.677 6.670	29.964 29.964
3/20/02 8:20	18.856	9.255	6.644	29.931	3/20/02 9:50	18.794	9.277 9.2 7 6	6.679 6.678	29.964 29.964
3/20/02 8:21	18.856	9.255	6.644	29.933	3/20/02 9:51	18.788	9.272	6.678	29.962
3/20/02 8:22	18.856	9.256	6.645	29.933	3/20/02 9:52	18.806	9.276	6.678	29.964
3/20/02 8:23	18.863	9.255	6.645	29.933	3/20/02 9:53	18.788	9.275	6.679	29.966
3/20/02 8:24 3/20/02 8:25	19.125 18.881	9.257 9.256	6.647 6.649	29.935	3/20/02 9:54	18.8	9.277	6.68	29.964
3/20/02 8:26	18.831	9.256 9.257	6.648 6.648	29.935 29.937	3/20/02 9:55 3/20/02 9:56	18.788	9.277	6.679	29.964
3/20/02 8:27	18.844	9.255	6.647	29.935	3/20/02 9:56 3/20/02 9:57	18.8 18.788	9.277 9.277	6.68 6.68	29.966 29.964
3/20/02 8:28	18.825	9.254	6.648	29.937	3/20/02 9:58	18.794	9.277	6.68	29.964 29.964
3/20/02 8:29	18.863	9.256	6.648	29.937	3/20/02 9:59	18.794	9.279	6.682	29.966
3/20/02 8:30	18.844	9.257	6.649	29.935	3/20/02 10:00	18.781	9.277	6.682	29.966

5.t. 5	M f	MW UPPER	MW LOWER	BAROMETRIC		W1		MW LOWER	
3/20/02 10:01	18.794	9.286	6.683	29.968	3/20/02 11:31	781 18.719	9.304	6.712	29.966
3/20/02 10:02	18.788	9.28	6.682	29.966	3/20/02 11:32	18.719	9.3	6.712	29.966
3/20/02 10:03	18.794	9.277	6.682	29.968	3/20/02 11:33	18.719	9.302	6.712	29.968
3/20/02 10:04	18.788	9.28	6.683	29.964	3/20/02 11:34	18.719	9.304	6.712	29.968
3/20/02 10:05	18.788	9.282 9.28	6.683	29.968	3/20/02 11:35	18.719	9.304	6.712	29.966
3/20/02 10:06 3/20/02 10:07	18.788 18.788	9.28 9.28	6.683 6.684	29.968 29.968	3/20/02 11:36 3/20/02 11:37	18.719 18.719	9.305 9.305	6.713 6.713	29.968 29.966
3/20/02 10:08	18.788	9.28	6.684	29.964	3/20/02 11:38	18.713	9.307	6.712	29.966
3/20/02 10:09	18.788	9.281	6,685	29.97	3/20/02 11:39	18.713	9.307	6.712	29.964
3/20/02 10:10	18.788	9.284	6.685	29.97	3/20/02 11:40	18.713	9.306	6.714	29.966
3/20/02 10:11	18.781	9.281	6.684	29.966	3/20/02 11:41	18.713	9.307	6.714	29.966
3/20/02 10:12 3/20/02 10:13	18.788 18.788	9.284 9.289	6.685 6.688	29.968 29.966	3/20/02 11:42 3/20/02 11:43	18.713	9.307	6.714	29.966
3/20/02 10:14	18.781	9.28	6.685	29.968	3/20/02 11:43	18.707 18.707	9.307 9.306	6.714 6.714	29.964 29.966
3/20/02 10:15	18.781	9.28	6.687	29.966	3/20/02 11:45	18.707	9.311	6.715	29.966
3/20/02 10:16	18.781	9.282	6.687	29.966	3/20/02 11:46	18.713	9.314	6.714	29.968
3/20/02 10:17 3/20/02 10:18	18.781	9.284	6.688	29.968	3/20/02 11:47	18.707	9.312	6.714	29.968
3/20/02 10:18	18.781 18.781	9.286 9.287	6.688 6.689	29.968 29.968	3/20/02 11:48 3/20/02 11:49	18.707	9.312 9.312	6.714	29.968
3/20/02 10:20	18.781	9.284	6.689	29.968	3/20/02 11:49 3/20/02 11:50	18.707 18.707	9.31	6.714 6.714	29.968 29.968
3/20/02 10:21	18,775	9.284	6.688	29.97	3/20/02 11:51	18.7	9.311	6.714	29.966
3/20/02 10:22	18.775	9.286	6.69	29.97	3/20/02 11:52	18,7	9.311	6.714	29.966
3/20/02 10:23	18.775	9.286	6.688	29.968	3/20/02 11:53	18.694	9.306	6.714	29.964
3/20/02 10:24 3/20/02 10:25	18.775 18.769	9.291 9.286	6.689 6.689	29.97 29.97	3/20/02 11:54	18.7	9.305	6.714	29.964
3/20/02 10:26	18.781	9.294	6.692	29.97	3/20/02 11:55 3/20/02 11:56	18.7 18.7	9.312 9.316	6.715 6.717	29.964 29.964
3/20/02 10:27	18.775	9.292	6.692	29.968	3/20/02 11:57	18.7	9.315	6.717	29.966
3/20/02 10:28	18.763	9.289	6.69	29.968	3/20/02 11:58	18.694	9.314	6.715	29.966
3/20/02 10:29	18.775	9.292	6.693	29.972	3/20/02 11:59	18.694	9.311	6.718	29.964
3/20/02 10:30 3/20/02 10:31	18.769 18.775	9.292 9.295	6.693 6.692	29.97 29.97	3/20/02 12:00	18.694	9.312	6.718	29.966
3/20/02 10:32	18.769	9.294	6.693	29.968	3/20/02 12:01 3/20/02 12:02	18.694 18.694	9.312 9.314	6.718 6.718	29.964 29.964
3/20/02 10:33	18.769	9.295	6.694	29.97	3/20/02 12:03	18.694	9.314	6.718	29.964
3/20/02 10:34	18.769	9.296	6.694	29.972	3/20/02 12:04	18.688	9.312	6.718	29.962
3/20/02 10:35	18.769	9.292	6.693	29.97	3/20/02 12:05	18.688	9.312	6.718	29.962
3/20/02 10:36 3/20/02 10:37	18.769 18.769	9.296 9.295	6.695 6.694	29.97 29.968	3/20/02 12:06	18.682	9.31	6.718	29.96
3/20/02 10:38	18,763	9.292	6.695	29.968	3/20/02 12:07 3/20/02 12:08	18.688 18.688	9.307 9.314	6.718 6.719	29.96 29.958
3/20/02 10:39	18.763	9.296	6.695	29.968	3/20/02 12:09	18.688	9.31	6.718	29.958
3/20/02 10:40	18.763	9.297	6.698	29.97	3/20/02 12:10	18.682	9.314	6.72	29.956
3/20/02 10:41	18.763	9.3	6.698	29.97	3/20/02 12:11	18.688	9.311	6.718	29.958
3/20/02 10:42 3/20/02 10:43	18.763 18.763	9.299 9.302	6.697	29.966	3/20/02 12:12	18.682	9.311	6.719	29.956
3/20/02 10:44	18.763	9.297	6.698 6.698	29.97 29.968	3/20/02 12:13 3/20/02 12:14	18.682 18.682	9.314 9.311	6.719 6.72	29.956 29.956
3/20/02 10:45	18.763	9.297	6.698	29.968	3/20/02 12:15	18.675	9.307	6.718	29.956
3/20/02 10:46	18.763	9.301	6.699	29.968	3/20/02 12:16	18.675	9.307	6.719	29.958
3/20/02 10:47	18.757	9.296	6.7	29.966	3/20/02 12:17	18.675	9.31	6.72	29.958
3/20/02 10:48 3/20/02 10:49	18.757 18.763	9.3 9.3	6.699	29.966	3/20/02 12:18	18.669	9.31	6.719	29.958
3/20/02 10:50	18.763	9.3	6.7 6.702	29.966 29.964	3/20/02 12:19 3/20/02 12:20	18.675 18.669	9.311 9.311	6.72 6.719	29.958 29.954
3/20/02 10:51	18.757	9.301	6.702	29.966	3/20/02 12:21	18.669	9.31	6.719	29.956 29.956
3/20/02 10:52	18.757	9.302	6.703	29.964	3/20/02 12:22	18.669	9.312	6.72	29.954
3/20/02 10:53	18.757	9.296	6.702	29.966	3/20/02 12:23	18.663	9.31	6.72	29.956
3/20/02 10:54 3/20/02 10:55	18.757 18.763	9.299	6.702	29.964	3/20/02 12:24	18.669	9.314	6.722	29.956
3/20/02 10:56	18.75	9.3 9.299	6.704 6.703	29.964 29.964	3/20/02 12:25 3/20/02 12:26	18.663 18.663	9.31	6.719	29.954
3/20/02 10:57	18.763	9.3	6.704	29.966	3/20/02 12:27	18.663	9.31 9.311	6.719 6.72	29.954 29.954
3/20/02 10:58	18.763	9.302	6.704	29.964	3/20/02 12:28	18.663	9.311	6.719	29.954
3/20/02 10:59	18.75	9.297	6.704	29.962	3/20/02 12:29	18.663	9.31	6.72	29.952
3/20/02 11:00	18.75	9.295	6.704	29.964	3/20/02 12:30	18.663	9.314	6.72	29.954
3/20/02 11:01 3/20/02 11:02	18.744 18.75	9.304 9.304	6.705 6.705	29.966 29.966	3/20/02 12:31	18.657	9.309	6.719	29.952
3/20/02 11:03	18.757	9.296	6.705	29.964	3/20/02 12:32 3/20/02 12:33	18.663 18.663	9.31 9.314	6.72 6.719	29.952 29.954
3/20/02 11:04	18.744	9.3	6.707	29.966	3/20/02 12:34	18.657	9.31	6.72	29.954 29.952
3/20/02 11:05	18.744	9.3	6.707	29.966	3/20/02 12:35	18.657	9.314	6.72	29.954
3/20/02 11:06	18.744	9.297	6.707	29.966	3/20/02 12:36	18.65	9.314	6.72	29.956
3/20/02 11:07 3/20/02 11:08	18.744 18.744	9.3 9.299	6.707 6.707	29.966 29.964	3/20/02 12:37 3/20/02 12:38	18.65	9.314	6.72	29.956
3/20/02 11:09	18.744	9.3	6.707	29.966	3/20/02 12:38 3/20/02 12:39	18.65 18.65	9.31 9.314	6.719 6.72	29.954 29.952
3/20/02 11:10	18.744	9.299	6.708	29.968	3/20/02 12:40	18.644	9.311	6.719	29.952
3/20/02 11:11	18.744	9.3	6.707	29.966	3/20/02 12:41	18.65	9.311	6.72	29.952
3/20/02 11:12	18.738	9.299	6.707	29.968	3/20/02 12:42	18.65	9.312	6.719	29.948
3/20/02 11:13 3/20/02 11:14	18.738 18.744	9.299	6.707	29.966	3/20/02 12:43	18.644	9.312	6.72	29.948
3/20/02 11:15	18.738	9.299 9.299	6.707 6.708	29.97 29.968	3/20/02 12:44 3/20/02 12:45	18.644 18.644	9.317 9.314	6.72 6.719	29.95
3/20/02 11:16	18.738	9.301	6.707	29.968	3/20/02 12:45	18.644	9.314	6.719 6.719	29,95 29,95
3/20/02 11:17	18.732	9.3	6.708	29.97	3/20/02 12:47	18.644	9.314	6.72	29.95
3/20/02 11:18	18.732	9.3	6.707	29.968	3/20/02 12:48	18.638	9.311	6.719	29.948
3/20/02 11:19 3/20/02 11:20	18.732 18.738	9.299 9.304	6.708	29.97	3/20/02 12:49	18.638	9.311	6.718	29.948
3/20/02 11:21	18.732	9.304	6.708 6.709	29.968 29.968	3/20/02 12:50 3/20/02 12:51	18.632	9.312	6.719	29.95
3/20/02 11:22	18.732	9.301	6.709	29.968	3/20/02 12:51 3/20/02 12:52	18.638 18.632	9.315 9.314	6.722 6.72	29.95 29.95
3/20/02 11:23	18.725	9.299	6.709	29.968	3/20/02 12:53	18.632	9.311	6.719	29.948
3/20/02 11:24	18.732	9.301	6.709	29.966	3/20/02 12:54	18.638	9.314	6.719	29.948
3/20/02 11:25 3/20/02 11:26	18.725	9,301	6.709	29.968	3/20/02 12:55	18.632	9.312	6.718	29.95
3/20/02 11:27	18.725 18.725	9.304 9.302	6.71 6.709	29.968 29.968	3/20/02 12:56 3/20/02 12:57	18.632	9.311	6.718	29.948
3/20/02 11:28	18.725	9.304	6.71	29.968	3/20/02 12:57 3/20/02 12:58	18.632 18.632	9.312 9.311	6.717 6.718	29.948 29.948
3/20/02 11:29	18.725	9.302	6.71	29.968	3/20/02 12:59	18.632	9.314	6.718	29.948 29.948
3/20/02 11:30	18.719	9.302	6.712	29.968	3/20/02 13:00	18.625	9.311	6.717	29.945

	W 1	MM UPPER	MW LOWER	BAROMETRIC		W 1		MW LOWER	BAROMETRIC
3/20/02 13:01	18.625	9,311	6.717	29.948	3/20/02 14:31	18.494	9.286	6.688	Inches Hg
3/20/02 13:02	18.625	9.311	6.717	29.945	3/20/02 14:32	18,501	9.287	6.688	29.927 29.925
3/20/02 13:03	18.619	9.314	6.717	29.945	3/20/02 14:33	18.494	9.267	6.687	29.927
3/20/02 13:04	18.619	9.311	6.717	29.945	3/20/02 14:34	18.494	9.295	6.687	29.929
3/20/02 13:05	18.625	9.314	6.717	29.945	3/20/02 14:35	18.488	9.262	6.685	29.929
3/20/02 13:06 3/20/02 13:07	18.619 18.613	9.309 9.309	6.715 6.717	29.948 29.948	3/20/02 14:36 3/20/02 14:37	18.488	9.285	6.685	29.927 29.927
3/20/02 13:08	18.613	9.311	6.717	29.948	3/20/02 14:37 3/20/02 14:38	18.488 18.488	9.286 9.281	6.685 6.684	29.927
3/20/02 13:09	18.613	9.309	6.715	29.95	3/20/02 14:39	18,482	9.281	6.684	29.927
3/20/02 13:10	18.613	9.31	6.715	29.945	3/20/02 14:40	18.482	9.281	6.684	29.927
3/20/02 13:11 3/20/02 13:12	18.613	9.309	6.715	29.945	3/20/02 14:41	18.482	9.285	6.684	29.925
3/20/02 13:12	18.613 18.607	9.31 9.307	6.715 6.714	29.948 29.945	3/20/02 14:42 3/20/02 14:43	18.482 18.482	9.285 9.281	6.683 6.683	29.925
3/20/02 13:14	18.607	9.31	6.714	29.948	3/20/02 14:44	18.476	9.279	6.683	29.925 29.923
3/20/02 13:15	18.6	9.307	6.714	29.945	3/20/02 14:45	18.476	9.28	6.682	29.927
3/20/02 13:16	18.607	9.307	6.715	29.945	3/20/02 14:46	18.476	9.28	6.68	29.923
3/20/02 13:17	18.6	9.309	6.714	29.945	3/20/02 14:47	18.476	9.281	6.682	29.921
3/20/02 13:18 3/20/02 13:19	18.6 18.594	9.307 9.31	6.714 6.714	29.945 29.945	3/20/02 14:48	18.469	9.279	6.68	29.919
3/20/02 13:20	18.6	9.305	6.713	29.943	3/20/02 14:49 3/20/02 14:50	18.469 18.469	9.279 9.276	6.679 6.679	29.923 29.921
3/20/02 13:21	18.594	9.305	6.712	29.945	3/20/02 14:51	18.469	9.277	6.678	29.921
3/20/02 13:22	18.594	9.309	6.713	29.945	3/20/02 14:52	18.469	9.28	6.678	29.923
3/20/02 13:23	18.594	9.307	6.713	29.943	3/20/02 14:53	18.463	9.275	6.679	29.923
3/20/02 13:24 3/20/02 13:25	18.588 18.594	9.306 9.30 6	6.712 6.712	29.943 29.943	3/20/02 14:54	18.463	9.274	6.675	29.923
3/20/02 13:26	18.588	9.307	6.712	29.943	3/20/02 14:55 3/20/02 14:56	18.463 18.463	9.275 9.275	6.678 6.677	29.921
3/20/02 13:27	18.588	9.309	6.712	29.943	3/20/02 14:57	18.457	9.274	6.675	29.921 29.923
3/20/02 13:28	18.582	9.301	6.712	29.943	3/20/02 14:58	18.457	9.272	6.675	29.923
3/20/02 13:29	18.582	9.307	6.712	29.943	3/20/02 14:59	18.457	9.272	6.675	29.923
3/20/02 13:30	18.582	9.305	6.712	29.943	3/20/02 15:00	18.457	9.274	6.674	29.921
3/20/02 13:31 3/20/02 13:32	18.582 18.582	9.304 9.305	6.71 6.71	29.943 29.941	3/20/02 15:01 3/20/02 15:02	18.451	9.271	6.673	29.923
3/20/02 13:33	18.575	9.305	6.709	29.943	3/20/02 15:03	18.451 18.444	9.271 9.271	6.673 6.673	29.925 29.923
3/20/02 13:34	18.575	9.304	6.709	29.943	3/20/02 15:04	18.451	9.274	6.673	29.921
3/20/02 13:35	18.575	9.302	6.709	29.939	3/20/02 15:05	18.451	9.274	6.673	29.921
3/20/02 13:36	18.575	9.304	6.708	29.941	3/20/02 15:06	18.444	9.27	6.67	29.921
3/20/02 13:37 3/20/02 13:38	18.575 18.569	9.304 9.305	6.709 6.709	29,941	3/20/02 15:07	18,444	9.272	6,67	29.921
3/20/02 13:39	18.569	9.302	6.708	29.941 29.939	3/20/02 15:08 3/20/02 15:09	18.444 18.444	9.269 9.272	6.67 6.67	29.921 29.921
3/20/02 13:40	18.563	9.299	6.707	29.941	3/20/02 15:10	18.438	9.272	6.669	29.921
3/20/02 13:41	18.569	9.301	6.707	29.937	3/20/02 15:11	18.438	9.27	6.669	29.921
3/20/02 13:42	18.563	9.304	6.708	29.941	3/20/02 15:12	18.444	9.27	6.669	29.919
3/20/02 13:43 3/20/02 13:44	18.563 18.563	9.3 9.301	6.707 6.705	29.939	3/20/02 15:13	18.438	9.266	6.667	29.921
3/20/02 13:45	18.557	9.301	6.705	29.939 29.939	3/20/02 15:14 3/20/02 15:15	18.438 18.432	9.272 9.265	6.669 6.667	29.917 29.921
3/20/02 13:46	18.557	9.299	6.705	29.939	3/20/02 15:16	18.432	9.269	6.667	29.921
3/20/02 13:47	18.557	9.302	6.705	29.937	3/20/02 15:17	18.432	9.27	6.665	29.917
3/20/02 13:48	18.557	9.299	6.705	29.939	3/20/02 15:18	18.432	9.267	6.664	29.917
3/20/02 13:49 3/20/02 13:50	18.557 18.557	9.301 9.301	6.705 6.707	29.937 29.937	3/20/02 15:19	18.432	9.266	6.665	29.917
3/20/02 13:51	18.551	9.3	6.704	29.937	3/20/02 15:20 3/20/02 15:21	18.426 18.426	9.266 9.266	6.664 6. 6 64	29.917 29.917
3/20/02 13:52	18.551	9.297	6.704	29.937	3/20/02 15:22	18.419	9.262	6.663	29.917
3/20/02 13:53	18.551	9.296	6.703	29.935	3/20/02 15:23	18.419	9.264	6.662	29.915
3/20/02 13:54	18.544	9.302	6.704	29.935	3/20/02 15:24	18.426	9.262	6.663	29.917
3/20/02 13:55 3/20/02 13:56	18.551 18.544	9.299 9.299	6.703	29.937	3/20/02 15:25	18.426	9.264	6.662	29.917
3/20/02 13:57	18.544	9.3	6.703 6.703	29.935 29.935	3/20/02 15:26 3/20/02 15:27	18.419	9.264	6.66	29.917
3/20/02 13:58	18.544	9.301	6.703	29.935	3/20/02 15:28	18.419 18.419	9.262 9.264	6.659 6.659	29.917 29.915
3/20/02 13:59	18.538	9.299	6.702	29.933	3/20/02 15:29	18.413	9.261	6.659	29.915
3/20/02 14:00	18.538	9.296	6.702	29.935	3/20/02 15:30	18.419	9.261	6.66	29.917
3/20/02 14:01 3/20/02 14:02	18.544 18.538	9.299 9.299	6.702	29.933	3/20/02 15:31	18.413	9.262	6.659	29.917
3/20/02 14:03	18.532	9.295	6.7 6.7	29.935 29.933	3/20/02 15:32	18.401	9.262	6.658	29.917
3/20/02 14:04	18.532	9.295	6.7	29.933	3/20/02 15:33 3/20/02 15:34	18.413 18.401	9.259 9.277	6.654 6.658	29.915 29.913
3/20/02 14:05	18.532	9.297	6.7	29.935	3/20/02 15:35	18.401	9.24	6.658	29.915
3/20/02 14:06	18.532	9.296	6.699	29.933	3/20/02 15:36	18.401	9.26	6.657	29.915
3/20/02 14:07 3/20/02 14:08	18.526	9.294	6.698	29.931	3/20/02 15:37	18.394	9.259	6.655	29.915
3/20/02 14:09	18.532 18.532	9.296 9.295	6.698 6.697	29.933 29.933	3/20/02 15:38 3/20/03 15:30	18.394	9.254	6.654	29.913
3/20/02 14:10	18.532	9.295	6.697	29.931	3/20/02 15:39 3/20/02 15:40	18.394 18.388	9.256 9.255	6.654 6.652	29.913 29.913
3/20/02 14:11	18.526	9.295	6.698	29.933	3/20/02 15:41	18.394	9.254	6.65	29.913
3/20/02 14:12	18.526	9.295	6.697	29.931	3/20/02 15:42	18.394	9.254	6.65	29.911
3/20/02 14:13	18.519	9.295	6.695	29.931	3/20/02 15:43	18.388	9.255	6.65	29.917
3/20/02 14:14 3/20/02 14:15	18.519 18.519	9.294	6.697	29.931	3/20/02 15:44	18.388	9.252	6.65	29.915
3/20/02 14:16	18.519	9.294 9.294	6.695 6.695	29.931 29.931	3/20/02 15:45 3/20/02 15:46	18.388	9.252	6.649	29.915
3/20/02 14:17	18,513	9.292	6.695	29.929	3/20/02 15:46 3/20/02 15:47	18.382 18.382	9.251 9.251	6.648 6.649	29.913 29.913
3/20/02 14:18	18.513	9.291	6.694	29.929	3/20/02 15:48	18.382	9.25	6.648	29.913
3/20/02 14:19	18.513	9.29	6.694	29.929	3/20/02 15:49	18.382	9.251	6.647	29.913
3/20/02 14:20 3/20/02 14:21	18.513	9.294	6.695	29.931	3/20/02 15:50	18.382	9.252	6.647	29.911
3/20/02 14:21 3/20/02 14:22	18.513 18.507	9.29 9.289	6.693 6.693	29.931 29.929	3/20/02 15:51 3/20/02 15:53	18.376	9.25	6.645	29.911
3/20/02 14:23	18.513	9.291	6.693	29.929	3/20/02 15:52 3/20/02 15:53	18.376 18.376	9.249 9.251	6.644 6.644	29.909 29.911
3/20/02 14:24	18.507	9.29	6.69	29.927	3/20/02 15:54	18.369	9.249	6.644	29.911
3/20/02 14:25	18.507	9.291	6.693	29.929	3/20/02 15:55	18.369	9.249	6.644	29.909
3/20/02 14:26	18.507	9.287	6.689	29.929	3/20/02 15:56	18.369	9.249	6.643	29.911
3/20/02 14:27 3/20/02 14:28	18.501 18.501	9.29 9.29	6.689 6.689	29.927	3/20/02 15:57	18.369	9.247	6.643	29.909
3/20/02 14:29	18.501	9.29 9.287	6.689 6.689	29.925 29.927	3/20/02 15:58 3/20/02 15:59	18.369	9.244	6.642 6.642	29.909
3/20/02 14:30	18.494	9.286	6.688	29.925	3/20/02 15:59 3/20/02 16:00	18.369 18.369	9.245 9.249	6.642 6.642	29.909 29.909
					0/20/02 10.00	,000	0.270	0.0-72	20.000

	FW 1	MW UPPER	MW LOWER	BAROMETRIC		W 1	MM UPPER	MW LOWER	BAROMETRIC	
Cate Time	PSI	P\$1	PBI	Inches Hg	Date Time	P\$I	PSI	PSI	Inches Hg	
3/20/02 16:01	18.369	9.244	6.64	29.909	3/20/02 17:31	18.295	9.216	6.604	29.895	
3/20/02 16:02	18.369	9.244	6.64	29.907	3/20/02 17:32	18.295	9.215	6.603	29.893	
3/20/02 16:03	18.363	9.242	6.64	29.909	3/20/02 17:33	18.301	9.218	6.604	29.893	
3/20/02 16:04 3/20/02 16:05	18.363 18.363	9.245 9.242	6.64 6.639	29.907 29.909	3/20/02 17:34 3/20/02 17:35	18.295 18.295	9.218	6.604	29.893	
3/20/02 16:06	18.363	9.244	6.638	29.907	3/20/02 17:36	18.295	9.216 9.218	6.603 6.603	29.891 29.891	
3/20/02 16:07	18.363	9.242	6.638	29.905	3/20/02 17:37	18.295	9.219	6.603	29.888	
3/20/02 16:08	18.357	9.24	6.638	29.909	3/20/02 17:38	18.295	9.218	6.603	29.891	
3/20/02 16:09	18.357	9.242	6.637	29.907	3/20/02 17:39	18.295	9.216	6.603	29.893	
3/20/02 16:10	18.357	9.242	6.635	29.909	3/20/02 17:40	18.295	9.218	6.603	29.888	
3/20/02 16:11	18.357	9.241	6.635	29.909	3/20/02 17:41	18.288	9.216	6.602	29.893	
3/20/02 16:12	18.363	9.242	6.635	29.907	3/20/02 17:42	18.295	9.215	6.599	29.888	
3/20/02 16:13	18.357	9.244	6.635	29.909	3/20/02 17:43	18.288	9,216	6.602	29.891	
3/20/02 16:14	18.357	9.242	6.634	29.907	3/20/02 17:44	18.288	9.216	6.599	29.893	
3/20/02 16:15	18.357	9.24	6.634	29.905	3/20/02 17:45	18.288	9.216	6.599	29.891	
3/20/02 16:16	18.357	9.241 9.24	6.634	29.907	3/20/02 17:46	18.288	9.215	6.6	29.888	
3/20/02 16:17 3/20/02 16:18	18.357 18.351	9.239	6.634 6.633	29.907 29.905	3/20/02 17:47 3/20/02 17:48	18.288	9.215	6.599	29.891	
3/20/02 16:19	18.357	9.239	6.632	29.907	3/20/02 17:49	18.295 18.288	9.216 9.213	6.599 6.599	29.891 29.891	
3/20/02 16:20	18.351	9.24	6.633	29.905	3/20/02 17:50	18.288	9.215	6.599	29.891	
3/20/02 16:21	18.351	9.241	6.632	29.905	3/20/02 17:51	18.288	9.213	6.598	29.888	
3/20/02 16:22	18.351	9.236	6.63	29.905	3/20/02 17:52	18.295	9.215	6.598	29.891	
3/20/02 16:23	18.351	9.238	6.63	29.905	3/20/02 17:53	18.288	9.216	6.599	29.888	
3/20/02 16:24	18.351	9.236	6.63	29.903	3/20/02 17:54	18.288	9.216	6.598	29.891	
3/20/02 16:25	18.351	9.235	6.629	29.903	3/20/02 17:55	18.288	9.211	6.598	29.891	
3/20/02 16:26	18,345	9.238	6.629	29.903	3/20/02 17:56	18.295	9.186	6.599	29.891	
3/20/02 16:27	18.345	9.24	6.628	29.903	3/20/02 17:57	18.282	9.215	6.598	29.888	
3/20/02 16:28	18.345	9.235	6.629	29.903	3/20/02 17:58	18.288	9.214	6.597	29.888	
3/20/02 16:29	18.345	9.238	6.628	29.901	3/20/02 17:59	18.288	9.213	6.598	29.891	
3/20/02 16:30	18.345 18.338	9.238	6.629 6.627	29.901	3/20/02 18:00	18.288	9.215	6.598	29.888	
3/20/02 16:31 3/20/02 16:32	18.338	9.236 9.233	6.627 6.627	29.901	3/20/02 18:01	18.282	9.216	6.598 6.509	29.888	
3/20/02 16:32	18.338	9.235	6.625	29.901 29.901	3/20/02 18:02 3/20/02 18:03	18.282	9.215	6.598	29.888	
3/20/02 16:34	18.338	9.235	6.625	29.901	3/20/02 18:03	18,282 18,288	9.214 9.216	6.598 6.598	29.891 29.888	
3/20/02 16:35	18.338	9.236	6.625	29.899	3/20/02 18:05	18.282	9.216	6.597	29.886	
3/20/02 16:36	18.338	9.233	6.625	29.899	3/20/02 18:06	18.282	9.214	6.597	29.888	
3/20/02 16:37	18.338	9.233	6.625	29.901	3/20/02 18:07	18.282	9.214	6.597	29.886	
3/20/02 16:38	18.338	9.234	6.625	29.899	3/20/02 18:08	18.282	9.215	6.597	29.888	
3/20/02 16:39	18.338	9.233	6.623	29.899	3/20/02 18:09	18.282	9.216	6.597	29.888	
3/20/02 16:40	18.338	9.233	6.623	29.899	3/20/02 18:10	18.27	9.215	6.597	29.888	
3/20/02 16:41	18.332	9.231	6.622	29.899	3/20/02 18:11	18.282	9.215	6.597	29.891	
3/20/02 16:42	18.338	9.233	6.622	29.899	3/20/02 18:12	18.276	9.213	6.597	29.891	
3/20/02 16:43	18.332	9.231	6.622	29.901	3/20/02 18:13	18.276	9.214	6.597	29.888	
3/20/02 16:44	18.338	9.231	6.62	29.901	3/20/02 18:14	18.276	9.215	6.597	29.888	
3/20/02 16:45	18.332	9.231	6.62	29.897	3/20/02 18:15	18.276	9.213	6.597	29.888	
3/20/02 16:46 3/20/02 16:47	18.338 18.326	9,231 9,23	6.62 6.62	29.901 29.899	3/20/02 18:16	18.276	9.214	6.597	29.888	
3/20/02 16:48	18.332	9.228	6.619	29.897	3/20/02 18:17	18.276	9.215	6.597	29.888	
3/20/02 16:49	18.326	9.231	6.619	29.897	3/20/02 18:18 3/20/02 18:19	18.27 18.276	9.216 9.215	6.597	29.891	
3/20/02 16:50	18.326	9.225	6.618	29.897	3/20/02 18:20	18.276	9.214	6.597 6.597	29.886 29.888	
3/20/02 16:51	18.326	9.229	6.618	29.895	3/20/02 18:21	18.276	9.21	6.597	29.886	
3/20/02 16:52	18.32	9.229	6.618	29.895	3/20/02 18:22	18.27	9.209	6.597	29.888	
3/20/02 16:53	18.32	9.225	6.617	29.895	3/20/02 18:23	18.27	9.21	6.597	29.891	
3/20/02 16:54	18.326	9.229	6.617	29.895	3/20/02 18:24	18.27	9.214	6.597	29.891	
3/20/02 16:55	18.326	9.226	6.615	29.895	3/20/02 18:25	18.27	9.214	6.597	29.888	
3/20/02 16:56	18.326	9.224	6.617	29.895	3/20/02 18:26	18.27	9.214	6.597	29.888	
3/20/02 16:57	18.326	9.226	6.615	29.895	3/20/02 18:27	18.27	9.213	6.595	29.888	
3/20/02 16:58 3/20/02 16:59	18.326 18.326	9.226	6.615 6.614	29.893	3/20/02 18:28	18.27	9.215	6.597	29.888	
3/20/02 17:00	18.326	9.224 9.226	6.614 6.614	29.893 29.893	3/20/02 18:29	18.27	9.215	6.597	29.888	
3/20/02 17:01	18.326	9.224	6.614	29.893	3/20/02 18:30 3/20/02 18:31	18.27 18.27	9.213	6.597 6.597	29.888	
3/20/02 17:02	18.32	9.225	6.614	29.893	3/20/02 18:31 3/20/02 18:32	18.27 18.27	9.214 9.214	6.597 6.597	29.891 29.888	
3/20/02 17:03	18.32	9.229	6.612	29.895	3/20/02 18:33	18.27	9.214	6.597	29.888	
3/20/02 17:04	18.32	9.226	6.614	29.893	3/20/02 18:34	18.27	9.214	6.597	29.891	
3/20/02 17:05	18.326	9.228	6.612	29.891	3/20/02 18:35	18.263	9.215	6.597	29.891	
3/20/02 17:06	18.32	9.225	6.613	29.891	3/20/02 18:36	18.27	9.216	6.595	29.888	
3/20/02 17:07	18.32	9.229	6.612	29.891	3/20/02 18:37	18.27	9.21	6.597	29.891	
3/20/02 17:08	18.32	9.224	6.612	29.891	3/20/02 18:38	18.263	9.214	6.597	29.888	
3/20/02 17:09	18.307	9.225	6.61	29.891	3/20/02 18:39	18.263	9.215	6.597	29.888	
3/20/02 17:10 3/20/02 17:11	18.307	9.221	6.61	29.891	3/20/02 18:40	18.263	9.215	6.597	29.888	
3/20/02 17:11	18.307 18.307	9.224 9.223	6.61 6.61	29.893 29.891	3/20/02 18:41	18.263	9.214	6.597	29.888	
3/20/02 17:13	18.313	9.223	6.609	29.893	3/20/02 18:42 3/20/02 18:43	18.27	9.215	6.597 6.507	29.888	
3/20/02 17:14	18.301	9.223	6.609	29.893	3/20/02 18:43 3/20/02 18:44	18.263 18.263	9.215 9.215	6.597 6.597	29.888	
3/20/02 17:15	18.307	9.22	6.609	29.891	3/20/02 18:45	18.263	9.215 9.214	6.597 6.597	29.888 29.888	
3/20/02 17:16	18.307	9.221	6.609	29.893	3/20/02 18:46	18.263	9.214	6.597	29.888	
3/20/02 17:17	18.307	9.22	6.608	29.891	3/20/02 18:47	18.263	9.214	6.597	29.888	
3/20/02 17:18	18.313	9.223	6.608	29.895	3/20/02 18:48	18.263	9.214	6.597	29.886	
3/20/02 17:19	18.313	9.221	6.608	29.891	3/20/02 18:49	18.263	9.215	6.597	29.888	
3/20/02 17:20	18.307	9.22	6.608	29.891	3/20/02 18:50	18.263	9.213	6.598	29.888	
3/20/02 17:21	18.301	9.22	6.607	29.893	3/20/02 18:51	18.263	9.214	6.598	29.888	
3/20/02 17:22	18.301	9.218	6.608	29.893	3/20/02 18:52	18.263	9.214	6.597	29.888	
3/20/02 17:23	18.301	9.218	6.607	29.895	3/20/02 18:53	18.2 6 3	9.214	6.598	29.888	
3/20/02 17:24	18.301	9.218	6.607	29.893	3/20/02 18:54	18.263	9.215	6.598	29.888	
3/20/02 17:25	18.301	9.218	6.605	29.891	3/20/02 18:55	18.263	9.215	6.598	29.891	
3/20/02 17:26 3/20/02 17:27	18.301	9.216	6.605	29.893	3/20/02 18:56	18.263	9.215	6.595	29.891	
3/20/02 17:27	18.301	9.218	6.604	29.893	3/20/02 18:57	18.263	9.215	6.598	29.888	
3/20/02 17:29	18.295 18.301	9.218 9.218	6.604	29.893	3/20/02 18:58	18.263	9.215	6.597	29.888	
3/20/02 17:30	18.295	9.216	6.604 6.604	29.893 29.895	3/20/02 18:59	18.257	9.215	6.595	29.891	
		J.2.10	V.007	20.000	3/20/02 19:00	18.257	9.215	6.597	29.888	

	W1	MW UPPER	MW LOWER	BAROMETRIC			W 1	MW UPPER	MW LOWER	BAROMETRIC
Date Time	PSI	Pśl	PSI	inches Hg		Date Time	PSI	PSI	PSI	Inches Hg
3/20/02 19:01	18.263	9.215	6.597	29.888		3/20/02 20:31	18.245	9.24	6.627	29.903
3/20/02 19:02	18.257	9.216	6.597	29.888		3/20/02 20:32	18.245	9.24	6.627	29.905
3/20/02 19:03	18.263	9.216	6.597	29.891		3/20/02 20:33	18.245	9.241	6.628	29.905
3/20/02 19:04	18.257	9.214	6.597	29.888		3/20/02 20:34	18.245	9.241	6.628	29.907
3/20/02 19:05	18.257	9.214	6.598	29.893		3/20/02 20:35	18.245	9.241	6.628	29.905
/20/02 19:06	18.257	9.235	6.597	29.891		3/20/02 20:36	18.245	9.242	6.629	29.905
/20/02 19:07	18.245	9.205	6.602	29.891		3/20/02 20:37	18.245	9.242	6.629	29.905
/20/02 19:08	18.27	9.216	6.599	29.891		3/20/02 20:38	18.245	9.241	6.629	29.905
/20/02 19:09 /20/02 19:10	18.27 18.251	9.231 9.213	6.599 6.599	29.891		3/20/02 20:39	18.245	9.242	6.63	29.907
		9.216		29.893		3/20/02 20:40	18.245	9.244	6.63	29.907
20/02 19:11	18.251 18.251	9.215	6.599 6.599	29.891		3/20/02 20:41 3/20/02 20:42	18.245	9.245	6.632	29.907
20/02 19:12 20/02 19:13	18.257	9.219	6.599	29.893 29.893			18.245	9.244	6.632	29.907
/20/02 19:13 /20/02 19:14	18.251	9.218	6.599	29.893		3/20/02 20:43 3/20/02 20:44	18.245 18.245	9.246 9.242	6.632 6.633	29.907 29.907
/20/02 19:15	18.251	9.218	6.599	29.893		3/20/02 20:45	18.251	9.247	6.633	29.909
20/02 19:16	18,251	9.216	6.598	29.893		3/20/02 20:45	18.245	9.247	6.634	29.909
20/02 19:17	18.257	9.22	6.599	29.893		3/20/02 20:47	18.245	9.249	6.634	29.907
20/02 19:18	18.257	9.219	6.599	29.893		3/20/02 20:48	18.245	9.249	6.634	29.907
20/02 19:19	18.251	9.218	6.599	29.895		3/20/02 20:49	18.245	9.25	6.635	29.909
20/02 19:20	18.257	9.218	6.599	29.893		3/20/02 20:50	18.245	9.249	6.635	29.909
20/02 19:20	18.251	9.218	6.6	29.893		3/20/02 20:51	18.245	9.25		
20/02 19:22	18.251	9.219	6.6	29.893					6.635	29.909
0/02 19:22	18.251	9.211	6.602	29.895		3/20/02 20:52 3/20/02 20:53	18.245 18.245	9.249 9.247	6.637 6.637	29.911 29.911
0/02 19:23	18.257	9.233	6.602	29.895		3/20/02 20:53	18.251	9.247	6.638	
0/02 19:24	18.245	9.233	6.599	29.895		3/20/02 20:55	18.245	9.201	6.639	29.909
20/02 19:26	18.245	9.216	6.602	29.895 29.895		3/20/02 20:55 3/20/02 20:56	18.245 18.245	9.251		29.909
20/02 19:27	18.251	9.221	6.6	29.895 29.895		3/20/02 20:57	18.245	9.252	6.639 6.639	29.911 29.907
20/02 19:28	18.251	9.216	6.602	29.895		3/20/02 20:58	18.245	9.252	6.64	
20/02 19:29	18.245	9.219	6.6	29.893		3/20/02 20:59	18.245	9.25 9.251	6.64	29.911
20/02 19:29	18.245	9.219	6.602	29.893		3/20/02 20:59 3/20/02 21:00	18.245	9.251	6.64	29.911
20/02 19:30	18.245	9.22	6.6	29.895 29.895		3/20/02 21:00 3/20/02 21:01	18.245 18.245	9.252 9.251		29.913
20/02 19:32	18.245	9.218	6.6	29.893		3/20/02 21:02	18.245	9.251	6.642 6.642	29.913 29.913
20/02 19:33	18.245	9.218	6.602	29.895		3/20/02 21:02	18.245	9.255	6.643	29.913
0/02 19:33	18.245	9.221	6.602	29.895		3/20/02 21:04	18.245	9.252	6.643	29.913
0/02 19:35	18.245	9.216	6.603	29.895		3/20/02 21:05	18.245	9.254	6.643	29.915
0/02 19:36	18.245	9.218	6.603	29.895		3/20/02 21:06	18.245	9.254	6.644	29.915
20/02 19:37	18.245	9.223	6.603	29.895		3/20/02 21:07	18.245	9.256	6.644	29.913
20/02 19:38	18.245	9.218	6.603	29.895		3/20/02 21:08	18.245	9.254	6.645	29.913
0/02 19:39	18.245	9.219	6.603	29.895		3/20/02 21:09	18.245	9.255	6.645	29.915
0/02 19:40	18.251	9.224	6.604	29.893		3/20/02 21:10	18.251	9.256	6.647	29.913
20/02 19:41	18.251	9.224	6.604	29.895		3/20/02 21:11	18.245	9.256	6.647	29.913
0/02 19:42	18.251	9.223	6.604	29.893		3/20/02 21:12	18.245	9.256	6.648	29.913
0/02 19:43	18.251	9.225	6.605	29.893		V20/02 21:13	18.245	9.257	6.648	29.915
0/02 19:44	18.251	9.224	6.605	29.895		720/02 21:14	18.245	9.257	6.648	29.915
0/02 19:45	18.245	9.226	6.607	29.895		3/20/02 21:15	18.245	9.257	6.649	29.917
0/02 19:46	18.245	9.225	6.607	29.895		V20/02 21:16	18.245	9.26	6.649	29.915
0/02 19:47	18.251	9.224	6.607	29.895		V20/02 21:17	18.245	9.259	6.65	29.915
0/02 19:48	18.251	9.229	6.607	29.893		/20/02 21:18	18.245	9.26	6.652	29.915
0/02 19:49	18.245	9.224	6.608	29.895		V20/02 21:19	18.251	9.264	6.653	29.917
0/02 19:50	18.251	9.225	6.608	29.895		/20/02 21:20	18.245	9.264	6.653	29.917
0/02 19:51	18.245	9.228	6.608	29.895		V20/02 21:21	18.245	9.264	6.654	29.917
20/02 19:52	18.251	9.221	6.609	29.897		/20/02 21:22	18.245	9.261	6.654	29.915
0/02 19:53	18.251	9.226	6.609	29.897		1/20/02 21:23	18.195	9.26	6.653	29.915
0/02 19:54	18.245	9.225	6.609	29.899		720/02 21:24	18.213	9.26	6.653	29.905
0/02 19:55	18.245	9.224	6.61	29.897		/20/02 21:25	18.251	9.264	6.654	29.901
0/02 19:56	18.245	9.228	6.61	29.895		/20/02 21:26	18.257	9.261	6.655	29.895
0/02 19:57	18.245	9.229	6.61	29.897		/20/02 21:27	18.238	9.265	6.657	29.878
0/02 19:58	18.251	9.229	6.61	29.897		/20/02 21:28	18.251	9.262	6.658	29.897
0/02 19:59	18.245	9.228	6.612	29.897		/20/02 21:29	18.245	9.267	6.659	29.905
0/02 20:00	18.245	9.229	6.612	29.897		/20/02 21:30	18.245	9.27	6.659	29.909
0/02 20:01	18.245	9.231	6.612	29.899		V20/02 21:31	18.238	9.266	6.66	29.911
0/02 20:02	18.245	9.231	6.613	29.899		/20/02 21:32	18.238	9.27	6.66	29.913
0/02 20:03	18.245	9.23	6.613	29.897		/20/02 21:33	18.245	9.267	6.662	29.915
0/02 20:04	18.238	9.231	6.613	29.897		/20/02 21:34	18.251	9.272	6.662	29.915
0/02 20:05	18.245	9.231	6.615	29.897		/20/02 21:35	18.245	9.271	6.663	29.915
0/02 20:06	18.245	9.231	6.615	29.897		/20/02 21:36	18.245	9.269	6.664	29.915
0/02 20:07	18.245	9.23	6.614	29.897		/20/02 21:37	18.245	9.269	6.664	29.915
0/02 20:08	18.245	9.231	6.617	29.899		/20/02 21:38	18.251	9.274	6.664	29.915
0/02 20:09	18.245	9.234	6.617	29.897		/20/02 21:39	18.245	9.276	6.665	29,917
0/02 20:10	18.245	9.234	6.617	29.899		/20/02 21:40	18.251	9.275	6.667	29.917
0/02 20:11	18.245	9.231	6.617	29.899		/20/02 21:41	18.245	9.272	6.667	29.917
0/02 20:12	18.245	9.231	6.618	29.899		/20/02 21:42	18.251	9.275	6.668	29.917 29.917
0/02 20:12	18.245	9.235	6.618	29.899		/20/02 21:43	18.245	9.276	6.668	29.917
0/02 20:14	18.245	9.234	6.618	29.901		/20/02 21:43 /20/02 21:44	18.245	9.275	6.669	29.917 29.917
0/02 20:15	18.251	9.233	6.619	29.899		/20/02 21:44 /20/02 21:45	18.251	9.275	6.67	29.917 29.917
0/02 20:16	18.245	9.238	6.619	29.901		/20/02 21:45 /20/02 21:46	18.251	9.276	6.669	29.917 29.917
0/02 20:17	18.245	9.235	6.619	29.899		/20/02 21:47	18.238	9.301	6.673	
0/02 20:18	18.245	9.235	6.62	29.899		/20/02 21:47 /20/02 21:48	18.245			29.919 29.919
0/02 20:19	18.245	9.234	6.62	29.901		/20/02 21:48 /20/02 21:49		9.276	6.672 6.672	
0/02 20:19 10/02 20:20	18.245	9.235	6.62	29.901			18.251	9.274	6.672	29.919
20/02 20:21	18.245	9.238	6.622	29.901		/20/02 21:50 /20/02 21:51	18.245	9.28	6.673	29.919
20/02 20:21	18.245	9.238					18.245	9.277	6.673	29.919
			6.623	29,901		/20/02 21:52	18.251	9.279	6.674	29.919
20/02 20:23	18.245	9.238	6.623	29.901		/20/02 21:53	18.245	9.277	6.674	29.919
20/02 20:24 20/02 20:25	18.245	9.235	6.623	29.903		/20/02 21:54	18.251	9.28	6.674	29.919
	18.245	9.239	6.623	29.901		/20/02 21:55	18.251	9.277	6.675	29.919
20/02 20:26	18.245	9.234	6.624	29.903		/20/02 21:56	18.257	9.279	6.677	29.919
20/02 20:27	18.245	9.239	6.625	29.903		/20/02 21:57	18.245	9.281	6.677	29.919
0/02 20:28	18.245	9.241	6.625	29.905		/20/02 21:58	18.257	9.282	6.678	29.919
10/02 20:29 10/02 20:20	18.251	9.238	6.625	29.903		/20/02 21:59	18.251	9.282	6.678	29.919
0/02 20:30	18.245	9.24	6.625	29.905	3.	/20/02 22:00	18.245	9.282	6.679	29.919

	N/ 1	MW UPPER	MW LOWER	BAROMETRIC		W 1	MW UPPER	MW LOWER	BAROMETRIC
Date Time	PSI	PSI	PSI	Inches Hg	Date Time	PSI	PSI	PSI	Inches Hg
3/20/02 22:01	18.245	9.284	6.679	29.919	3/20/02 22:22	38.715	9.295	6.697	29.915
3/20/02 22:02	18.245	9.285	6.679	29.919	3/20/02 22:23	38.459	9.302	6.698	29.917
3/20/02 22:03	18.201	9.282	6.68	29.923	3/20/02 22:24	38.39	9.302	6.698	29.917
3/20/02 22:04	18.257	9.286	6.68	29.917	3/20/02 22:25	38,846	9.297	6.699	29.917
3/20/02 22:04	18.251	9.286	6.68	29.919	3/20/02 22:26	38.984	9.306	6.7	29.917
3/20/02 22:04	18.251	9.284	6.68	29.917	3/20/02 22:27	38.984	9.307	6.7	29.919
3/20/02 22:04	18.238	9.284	6.68	29.917	3/20/02 22:28	38.465	9.305	6.702	29.919
3/20/02 22:04	18.238	9.285	6.68	29.917	3/20/02 22:29	38,815	9.309	6.703	29.917
3/20/02 22:04	18.238	9.285	6.68	29.917	3/20/02 22:30	38.921	9.309	6.703	29.917
3/20/02 22:04	18.238	9.287	6.68	29.917	3/20/02 22:31	38.928	9.304	6.704	29.919
3/20/02 22:04	18.232	9.285	6.68	29.915	3/20/02 22:32	39.459	9.305	6.705	29.919
3/20/02 22:04	18.245	9.284	6.68	29.915	3/20/02 22:33	38.728	9.309	6.707	29.919
3/20/02 22:04	18.238	9.282	6.68	29.917	3/20/02 22:34	38.796	9.307	6.707	29.919
3/20/02 22:04	18.238	9.284	6.68	29.915	3/20/02 22:35	39.053	9.314	6.708	29.917
3/20/02 22:04	18.238	9.284	6.68	29.915	3/20/02 22:36	38.753	9.309	6.708	29.917
3/20/02 22:04	18.245	9.282	6.68	29.915	3/20/02 22:37	38.778	9.31	6.709	29.917
3/20/02 22:04	18.232	9.285	6.68	29.915	3/20/02 22:38	38.571	9.311	6.71	29.917
3/20/02 22:04	18.238	9.284	6.68	29.915	3/20/02 22:39	39.128	9.306	6.712	29.917
3/20/02 22:04	18.238	9.284	6.679	29.913	3/20/02 22:40	39.04	9.319	6.712	29.917
3/20/02 22:04	18.232	9.284	6.68	29.913	3/20/02 22:41	38.44	9.314	6.713	29.915
3/20/02 22:04	18.238	9.284	6.68	29.911	3/20/02 22:42	39.515	9.315	6.713	29.917
3/20/02 22:04	18.238	9.285	6.68	29.913	3/20/02 22:43	38.34	9.314	6.715	29.915
3/20/02 22:04	18.238	9.284	6.68	29.913	3/20/02 22:44	38.59	9.316	6.715	29.915
3/20/02 22:04	18.238	9.286	6.68	29.913	3/20/02 22:45	38.715	9.32		

	DOWNHOLE	DOWNHOLE		DOWNHOLE	DOWNHOLE	DOWNHOLE DOWNHOLE		DOWNHOLE	DOWNHOLE
Date Time	(psi)	Temp (F)	Date Time	(psi)	Temp (F)	Date Time (psi) Temp (F)	Date Time	(psi)	Temp (F)
3/20/02 8:00	16.31	78.4	3/20/02 9:48	1013.6	73.88	3/20/02 11:36 1013.59 73.77	3/20/02 13:24	1013.49	73.64
3/20/02 8:01 3/20/02 8:02	16.31 16.32	78.66 78.92	3/20/02 9:49 3/20/02 9:50	1013.59 1013.61	73.88 73.87	3/20/02 11:37 1013.58 73.77 3/20/02 11:38 1013.57 73.78	3/20/02 13:25	1013.49	73.64
3/20/02 8:04	16.26	79.43	3/20/02 9:52	1013.6	73.86	3/20/02 11:40 1013:58 73:78	3/20/02 13:26 3/20/02 13:28	1013.48 1013.47	73.65 73.64
3/20/02 8:05	16.25	79.67	3/20/02 9:53	1013.58	73.87	3/20/02 11:41 1013.58 73.77	3/20/02 13:29	1013.47	73.63
3/20/02 8:06	16.23	79.91	3/20/02 9:54	1013.59	73.87	3/20/02 11:42 1013.56 73.77	3/20/02 13:30	1013.48	73.62
3/20/02 8:07	16.24	80.16	3/20/02 9:55	1013.6	73.87	3/20/02 11:43 1013.56 73.77	3/20/02 13:31	1013.48	73.61
3/20/02 8:08 3/20/02 8:10	16.27 16.24	80.4 80.82	3/20/02 9:56 3/20/02 9:58	1013.6 1013.6	73.87 73.87	3/20/02 11:44 1013.57 73.76 3/20/02 11:46 1013.56 73.75	3/20/02 13:32	1013.47	73.6
3/20/02 8:11	16.24	81	3/20/02 9:59	1013.6	73.87	3/20/02 11:46 1013,56 73,75 3/20/02 11:47 1013,56 73,75	3/20/02 13:34 3/20/02 13:35	1013.47 1013.48	73.59 73.59
3/20/02 8:12	16.23	81.18	3/20/02 10:00	1013.6	73.86	3/20/02 11:48 1013.57 73.75	3/20/02 13:36	1013.47	73.6
3/20/02 8:13	16.22	81.36	3/20/02 10:01	1013.59	73.86	3/20/02 11:49 1013.57 73.75	3/20/02 13:37	1013.45	73.6
3/20/02 8:14	16.22	81.54	3/20/02 10:02	1013.6	73.85	3/20/02 11:50 1013.55 73.74	3/20/02 13:38	1013.44	73.6
3/20/02 8:16 3/20/02 8:17	16.28 16.29	81.9 82.08	3/20/02 10:04 3/20/02 10:05	1013.6 1013.59	73.85 73.85		3/20/02 13:40	1013.45	73.6
3/20/02 8:18	16.27	82.26	3/20/02 10:06	1013.59	73.85 73.85		3/20/02 13:41 3/20/02 13:42	1013.46 1013.47	73.6 73.59
3/20/02 8:19	16.27	82.44	3/20/02 10:07	1013.59	73.85		3/20/02 13:43	1013.47	73.59
3/20/02 8:20	16.13	82.61	3/20/02 10:08	1013.61	73.85		3/20/02 13:44	1013.45	73.59
3/20/02 8:22	15.79	82.44	3/20/02 10:10	1013.61	73.85		3/20/02 13:46	1013.45	73,59
3/20/02 8:23	15.58	82.08	3/20/02 10:11	1013.61	73.85		3/20/02 13:47	1013.44	73.59
3/20/02 8:24 3/20/02 8:25	18.41 24.24	81.72 81.36	3/20/02 10:12 3/20/02 10:13	1013.62 1013.61	73.85 73.85		3/20/02 13:48	1013.45	73.59
3/20/02 8:26	31.36	81.01	3/20/02 10:14	1013.6	73.86		3/20/02 13:49 3/20/02 13:50	1013.45 1013.45	73.59 73.6
3/20/02 8:28	88.03	80.29	3/20/02 10:16	1013.61	73.86	and the second s	3/20/02 13:52	1013.44	73.6
3/20/02 8:29	126.98	79.92	3/20/02 10:17	1013.61	73.86		3/20/02 13:53	1013.43	73.6
3/20/02 8:30	137.75	79.56	3/20/02 10:18	1013.61	73.86		3/20/02 13:54	1013.44	73.6
3/20/02 8:31	137.78	79.2	3/20/02 10:19	1013.61	73.86		3/20/02 13:55	1013.43	73.6
3/20/02 8:32 3/20/02 8:34	137.7 137.58	78.84 78,44	3/20/02 10:20 3/20/02 10:22	1013.6 1013.58	73.86 73.85		3/20/02 13:56	1013.42	73.6
3/20/02 8:35	137.57	78.4	3/20/02 10:23	1013.59	73.84		3/20/02 13:58 3/20/02 13:59	1013.43 1013.44	73.6 73.6
3/20/02 8:36	137.56	78.36	3/20/02 10:24	1013.6	73.83		3/20/02 14:00	1013.43	73.59
3/20/02 8:37	137.55	78.32	3/20/02 10:25	1013.6	73.81		3/20/02 14:01	1013.42	73.59
3/20/02 8:38	137.55	78.28	3/20/02 10:26	1013.6	73.8		3/20/02 14:02	1013.43	73.59
3/20/02 8:40	137.53	78.18	3/20/02 10:28	1013.61	73.8		3/20/02 14:04	1013.43	73.59
3/20/02 8:41 3/20/02 8:42	137.52 137.51	78.13 78.07	3/20/02 10:29 3/20/02 10:30	1013.62 1013.63	73.82 73.83		3/20/02 14:05	1013.43	73.59
3/20/02 8:43	141.67	78.02	3/20/02 10:31	1013.62	73.84		3/20/02 14:06 3/20/02 14:07	1013.42 1013.43	73.59 73.59
3/20/02 8:44	213.21	77.96	3/20/02 10:32	1013.62	73.86		3/20/02 14:08	1013.43	73.5 9
3/20/02 8:46	466.59	77.34	3/20/02 10:34	1013.6	73.86		3/20/02 14:10	1013.41	73.58
3/20/02 8:47	593.05	76.77	3/20/02 10:35	1013.59	73.86		3/20/02 14:11	1013.42	73.58
3/20/02 8:48	719.77	76.21	3/20/02 10:36	1013.59	73.85		3/20/02 14:12	1013.42	73.57
3/20/02 8:49 3/20/02 8:50	845.47 966.16	75.64 75.07	3/20/02 10:37 3/20/02 10:38	1013,58 1013,58	73.84 73.84		3/20/02 14:13	1013.42	73.57
3/20/02 8:52	1013.64	74.41	3/20/02 10:40	1013.59	73.83		3/20/02 14:14 3/20/02 14:16	1013.4 1013.4	73.57 73.56
3/20/02 8:53	1013.65	74.32	3/20/02 10:41	1013.61	73.82		3/20/02 14:17	1013.42	73.56
3/20/02 8:54	1013,64	74.23	3/20/02 10:42	1013.62	73.82		3/20/02 14:18	1013.41	73.55
3/20/02 8:55	1013.62	74.14	3/20/02 10:43	1013.6	73.82		3/20/02 14:19	1013.43	73.55
3/20/02 8:56	1013.63	74.05	3/20/02 10:44	1013.6	73.81		3/20/02 14:20	1013.42	73.55
3/20/02 8:58 3/20/02 8:59	1013.57 1013.56	73.96 73.97	3/20/02 10:46 3/20/02 10:47	1013.61 1013.61	73.82 73.82		3/20/02 14:22	1013.39	73.54
3/20/02 9:00	1013.56	73.97	3/20/02 10:47	1013.61	73.82		3/20/02 14:23 3/20/02 14:24	1013.41 1013.4	73.54 73.54
3/20/02 9:01	1013.56	73.97	3/20/02 10:49	1013.59	73.83		3/20/02 14:25	1013.4	73.54
3/20/02 9:02	1013.57	73.97	3/20/02 10:50	1013.6	73.83		3/20/02 14:26	1013.39	73.54
3/20/02 9:04	1013.56	73.95	3/20/02 10:52	1013.6	73.83		3/20/02 14:28	1013.4	73.54
3/20/02 9:05 3/20/02 9:06	1013.56 1013.56	73.93 73.91	3/20/02 10:53	1013.59	73.83		3/20/02 14:29	1013.41	73.54
3/20/02 9:07	1013.54	73.88	3/20/02 10:54 3/20/02 10:55	1013.59 1013.59	73.83 73.83		3/20/02 14:30	1013,4	73.54
3/20/02 9:08	1013.55	73.86	3/20/02 10:56	1013.59	73.84		3/20/02 14:31 3/20/02 14:32	1013.39 1013.39	73.54 73.54
3/20/02 9:10	1013.57	73.85	3/20/02 10:58	1013.6	73.84		3/20/02 14:34	1013.39	73.55
3/20/02 9:11	1013.58	73.86	3/20/02 10:59	1013.6	73.84	3/20/02 12:47 1013.52 73.73	3/20/02 14:35	1013.39	73.55
3/20/02 9:12	1013.6	73.87	3/20/02 11:00	1013.6	73.84		3/20/02 14:36	1013.39	73.55
3/20/02 9:13 3/20/02 9:14	1013.6 1013.6	73.88 73.89	3/20/02 11:01 3/20/02 11:02	1013.63 1013.63	73.85 73.85		3/20/02 14:37	1013.38	73.55
3/20/02 9:16	1013.6	73.9	3/20/02 11:02 3/20/02 11:04	1013.63	73.85 73.84		3/20/02 14:38 3/20/02 14:40	1013.39 1013.37	73.55 73.55
3/20/02 9:17	1013.58	73.9	3/20/02 11:05	1013.58	73.82		3/20/02 14:40	1013.37	73.55 73.55
3/20/02 9:18	1013.58	73.9	3/20/02 11:06	1013.57	73.8		3/20/02 14:42	1013.35	73.54
3/20/02 9:19	1013.58	73.91	3/20/02 11:07	1013.57	73.79	3/20/02 12:55 1013.5 73.71 :	3/20/02 14:43	1013.36	73.54
3/20/02 9:20	1013.58	73.91	3/20/02 11:08	1013.55	73.77		3/20/02 14:44	1013.35	73.53
3/20/02 9:22 3/20/02 9:23	1013.59 1013.59	73.91 73.9	3/20/02 11:10 3/20/02 11:11	1013.59 1013.58	73.76 73.76		3/20/02 14:46	1013.36	73.52
3/20/02 9:24	1013.6	73.9	3/20/02 11:12	1013.58	73.76		3/20/02 14:47 3/20/02 14:48	1013,36	73.51
3/20/02 9:25	1013.59	73.9	3/20/02 11:13	1013.57	73.76		3/20/02 14:49	1013.36 1013.35	73.51 73.5
3/20/02 9:26	1013.6	73.9	3/20/02 11:14	1013.57	73.76		3/20/02 14:50	1013.35	73.5
3/20/02 9:28	1013.6	73.9	3/20/02 11:16	1013.58	73.77	3/20/02 13:04 1013.5 73.66	3/20/02 14:52	1013.36	73.5
3/20/02 9:29 3/20/02 9:30	1013.61 1013.6	73.91	3/20/02 11:17	1013.59	73.77		3/20/02 14:53	1013.36	73.51
3/20/02 9:31	1013.6	73.92 73.92	3/20/02 11:18 3/20/02 11:19	1013.6 1013.62	73.78 73.78		3/20/02 14:54	1013.37	73.52
3/20/02 9:32	1013.59	73.93	3/20/02 11:19	1013.62	73.78 73.79		3/20/02 14:55 3/20/02 14:56	1013.37 1013.37	73.53 73.54
3/20/02 9:34	1013.58	73.93	3/20/02 11:22	1013.59	73.79		3/20/02 14:58	1013.37	73.54 73.54
3/20/02 9:35	1013.59	73.93	3/20/02 11:23	1013.59	73.79		3/20/02 14:59	1013.34	73.54
3/20/02 9:36	1013.61	73.92	3/20/02 11:24	1013.6	73.79	3/20/02 13:12 1013.48 73.62 :	3/20/02 15:00	1013.34	73.53
3/20/02 9:37 3/20/02 9:38	1013.59	73.92	3/20/02 11:25	1013.58	73.79	3/20/02 13:13 1013.48 73.62 3	3/20/02 15:01	1013.35	73.53
3/20/02 9:38	1013.58 1013.59	73.91 73.91	3/20/02 11:26 3/20/02 11:28	1013.57	73.79 73.70		3/20/02 15:02	1013.35	73.52
3/20/02 9:41	1013.6	73.9	3/20/02 11:28 3/20/02 11:29	1013.59 1013.59	73.79 73.78		3/20/02 15:04	1013.35	73.51
3/20/02 9:42	1013.6	73.9	3/20/02 11:30	1013.58	73.77		3/20/02 15:05 3/20/02 15:06	1013.34 1013.35	73.51 73.51
3/20/02 9:43	1013.61	73.9	3/20/02 11:31	1013.59	73.77		3/20/02 15:07	1013.35	73.51
3/20/02 9:44	1013.61	73.9	3/20/02 11:32	1013.58	73.76	3/20/02 13:20 1013.49 73.62 3	3/20/02 15:08	1013.35	73.51
3/20/02 9:46 3/20/02 9:47	1013.6	73.9	3/20/02 11:34	1013.59	73.76		3/20/02 15:10	1013.34	73.51
512-STUZ 9.41	1013.6	73.89	3/20/02 11:35	1013.6	73.77	3/20/02 13:23 1013.49 73.63	3/20/02 15:11	1013.34	73.51

	HOLE DOW	NAT OLE		DOMMHOLE	DOWNHOLE		DOWNHOLE	DOWNHOLE		DOWNHOLE	DOWNHOLE
Date Time (psi		mp (F)	Date Time	(p#l)	Temp (F)	Date Time	(p±l)	Temp (F)	Date Time	(psi)	Temp (F)
3/20/02 15:12 1013 3/20/02 15:13 1013		3.51 3.51	3/20/02 17:00 3/20/02 17:01	1013.22 1013.22	73.26 73.26	3/20/02 18:48 3/20/02 18:49		73.05 73.04	3/20/02 20:36 3/20/02 20:37	1013.19 1013.18	72.78 72.78
3/20/02 15:14 1013		3.51	3/20/02 17:02	1013.22	73.26	3/20/02 18:50		73.03	3/20/02 20:38	1013.18	72.78
3/20/02 15:16 1013		3.49	3/20/02 17:04	1013.2	73.25	3/20/02 18:52	1013.17	73.02	3/20/02 20:40	1013.19	72.78
3/20/02 15:17 1013		3.49	3/20/02 17:05	1013.21	73.25	3/20/02 18:53		73.01	3/20/02 20:41	1013.19	72.78
3/20/02 15:18 1013 3/20/02 15:19 1013		3.48 3.47	3/20/02 17:06 3/20/02 17:07	1013.21 1013.22	73.25 73.25	3/20/02 18:54 3/20/02 18:55		73.01 73	3/20/02 20:42 3/20/02 20:43	1013.19 1013.2	72.78 72.78
3/20/02 15:20 1013		3.46	3/20/02 17:08	1013.22	73.25	3/20/02 18:56		73	3/20/02 20:44	1013.2	72.78
3/20/02 15:22 1013		3.45	3/20/02 17:10	1013.21	73.25	3/20/02 18:58		72.99	3/20/02 20:46	1013.19	72.78
3/20/02 15:23 1013		3.45	3/20/02 17:11	1013.21	73.24	3/20/02 18:59		72.99	3/20/02 20:47	1013.2	72.78
3/20/02 15:24 1013		3.45	3/20/02 17:12	1013.21	73.23	3/20/02 19:00		72.98	3/20/02 20:48	1013.19	72.78
3/20/02 15:25 1013 3/20/02 15:26 1013		3.45 3.44	3/20/02 17:13 3/20/02 17:14	1013.2 1013.2	73.23 73.22	3/20/02 19:01 3/20/02 19:02	1013.17 1013.17	72.98 72.98	3/20/02 20:49 3/20/02 20:50	1013.18 1013.19	72.78 72.78
3/20/02 15:28 1013		3.44	3/20/02 17:14	1013.21	73.22	3/20/02 19:04	1013.17	72.98	3/20/02 20:52	1013.19	72.77
3/20/02 15:29 1013		3.44	3/20/02 17:17	1013.2	73.22	3/20/02 19:05	1013.18	72.98	3/20/02 20:53	1013.18	72.76
3/20/02 15:30 1013		3.43	3/20/02 17:18	1013.21	73.22	3/20/02 19:06	1013.19	72.99	3/20/02 20:54	1013.18	72.75
3/20/02 15:31 1013: 3/20/02 15:32 1013:		3.43 3.43	3/20/02 17:19	1013.21	73.22	3/20/02 19:07	1013.19	72.99	3/20/02 20:55	1013.18	72.74
3/20/02 15:32 1013. 3/20/02 15:34 1013		3.41	3/20/02 17:20 3/20/02 17:22	1013.22 1013.21	73.22 73.21	3/20/02 19:08 3/20/02 19:10	1013.19 1013.18	73 73	3/20/02 20:56 3/20/02 20:58	1013.18 1013.19	72.72 72.72
3/20/02 15:35 1013		3.4	3/20/02 17:23	1013.21	73.2	3/20/02 19:11	1013.17	72.99	3/20/02 20:59	1013.2	72.72
3/20/02 15:36 1013.		3.4	3/20/02 17:24	1013.19	73.19	3/20/02 19:12	1013.18	72.98	3/20/02 21:00	1013.2	72.72
3/20/02 15:37 1013.		3.39	3/20/02 17:25	1013.19	73.18	3/20/02 19:13	1013.19	72.98	3/20/02 21:01	1013.2	72.72
3/20/02 15:38 1013. 3/20/02 15:40 1013		3.38 3.38	3/20/02 17:26 3/20/02 17:28	1013.19 1013.2	73.18 73.16	3/20/02 19:14	1013.18	72.97 72.96	3/20/02 21:02	1013.2	72.73
3/20/02 15:41 1013		3.39	3/20/02 17:29	1013.21	73.16	3/20/02 19:16 3/20/02 19:17	1013.17 1013.17	72.96 72.96	3/20/02 21:04 3/20/02 21:05	1013.2 1013.2	72.73 72.72
3/20/02 15:42 1013		3.4	3/20/02 17:30	1013.2	73.16	3/20/02 19:18	1013.17	72.96	3/20/02 21:06	1013.19	72.72
3/20/02 15:43 1013.		3.4	3/20/02 17:31	1013.21	73.16	3/20/02 19:19	1013.17	72. 9 5	3/20/02 21:07	1013.19	72.71
3/20/02 15:44 1013.		3.41	3/20/02 17:32	1013.21	73.16	3/20/02 19:20	1013.16	72.95	3/20/02 21:08	1013.19	72.71
3/20/02 15:46 1013. 3/20/02 15:47 1013.		3.42 3.42	3/20/02 17:34 3/20/02 17:35	1013.21 1013.21	73.16 73.17	3/20/02 19:22 3/20/02 19:23	1013.18 1013.17	72.94 72.94	3/20/02 21:10 3/20/02 21:11	1013.2 1013.2	72.71
3/20/02 15:48 1013.		3.42	3/20/02 17:36	1013.21	73.17	3/20/02 19:24	1013.17	72.94	3/20/02 21:12	1013.2	72.71 72.71
3/20/02 15:49 1013.		3.42	3/20/02 17:37	1013.19	73.17	3/20/02 19:25	1013.17	72.94	3/20/02 21:13	1013.2	72.71
3/20/02 15:50 1013.		3.42	3/20/02 17:38	1013.18	73.18	3/20/02 19:26	1013.17	72.93	3/20/02 21:14	1013.2	72.7
3/20/02 15:52 1013. 3/20/02 15:53 1013.		3.42 3.42	3/20/02 17:40	1013.21	73.19	3/20/02 19:28 3/20/02 19:29	1013.18	72.93	3/20/02 21:16	1013.2	72.7
3/20/02 15:54 1013.		3.42	3/20/02 17:41 3/20/02 17:42	1013.2 1013.2	73.19 73.19	3/20/02 19:30	1013.17 1013.18	72.93 72.92	3/20/02 21:17 3/20/02 21:18	1013.2 1013.2	72.7 72.7
3/20/02 15:55 1013.		3.42	3/20/02 17:43	1013.2	73.19	3/20/02 19:31	1013.17	72.92	3/20/02 21:19	1013.21	72.7
3/20/02 15:56 1013.		3,41	3/20/02 17:44	1013.2	73.19	3/20/02 19:32	1013.17	72.92	3/20/02 21:20	1013.21	72.7
3/20/02 15:58 1013.		3.41	3/20/02 17:46	1013.2	73.19	3/20/02 19:34	1013.18	72.91	3/20/02 21:22	1013.2	72.69
3/20/02 15:59 1013. 3/20/02 16:00 1013.		3.4 3.39	3/20/02 17:47 3/20/02 17:48	1013.2 1013.2	73.19 73.19	3/20/02 19:35 3/20/02 19:36	1013.18 1013.18	72.91 72.9	3/20/02 21:23	1013.2	72.69
3/20/02 16:01 1013.		3.39	3/20/02 17:49	1013.2	73.19	3/20/02 19:37	1013.15	72.9 72.9	3/20/02 21:24 3/20/02 21:25	1013.19 1013.19	72.68 72.67
3/20/02 16:02 1013.		3.38	3/20/02 17:50	1013.2	73.19	3/20/02 19:38	1013.18	72.89	3/20/02 21:26	1013.2	72.66
3/20/02 16:04 1013.		3.38	3/20/02 17:52	1013.2	73.18	3/20/02 19:40	1013.18	72.89	3/20/02 21:28	1013.2	72.65
3/20/02 16:05 1013. 3/20/02 16:06 1013.		3.39 3.39	3/20/02 17:53	1013.2	73.18	3/20/02 19:41	1013.18	72.89	3/20/02 21:29	1013.2	72.65
3/20/02 16:07 1013.		3.4	3/20/02 17:54 3/20/02 17:55	1013.2 1013.19	73.18 73.17	3/20/02 19:42 3/20/02 19:43	1013.17 1013.18	72.9 72.9	3/20/02 21:30 3/20/02 21:31	1013.2 1013.2	72.65 72.64
3/20/02 16:08 1013.		3.4	3/20/02 17:56	1013.19	73.17	3/20/02 19:44	1013.18	72.91	3/20/02 21:32	1013.21	72.64
3/20/02 16:10 1013.		3.4	3/20/02 17:58	1013.18	73.16	3/20/02 19:46	1013.18	72.9	3/20/02 21:34	1013.2	72.63
3/20/02 16:11 1013:		3.39	3/20/02 17:59	1013.18	73.14	3/20/02 19:47	1013.18	72.9	3/20/02 21:35	1013.2	72.63
3/20/02 16:12 1013.: 3/20/02 16:13 1013.:		3.38 3.37	3/20/02 18:00 3/20/02 18:01	1013.19 1013.19	73.13 73.12	3/20/02 19:48 3/20/02 19:49	1013.18 1013.16	72.89 72.89	3/20/02 21:36 3/20/02 21:37	1013.21 1013.21	72.63
3/20/02 16:14 1013.		3.36	3/20/02 18:02	1013.19	73.11	3/20/02 19:50	1013.10	72.88	3/20/02 21:38	1013.21	72.63 72.63
3/20/02 16:16 1013.	.25 73	3.34	3/20/02 18:04	1013.19	73.1	3/20/02 19:52	1013.18	72.88	3/20/02 21:40	1013.21	72.63
3/20/02 16:17 1013.:		3.33	3/20/02 18:05	1013.19	73.1	3/20/0 2 19:53	1013.18	72.87	3/20/02 21:41	1013.21	72.63
3/20/02 16:18 1013.; 3/20/02 16:19 1013.;		3.32 3.32	3/20/02 18:06 3/20/02 18:07	1013.19	73.1	3/20/02 19:54	1013.18	72.87	3/20/02 21:42	1013.21	72.64
3/20/02 16:20 1013.		3.31	3/20/02 18:08	1013.18 1013.19	73.09 73. 0 9	3/20/02 19:55 3/20/02 19:56	1013.19 1013.18	72.87 72.86	3/20/02 21:43 3/20/02 21:44	1013.21 1013.21	72.65 72.65
3/20/02 16:22 1013.		3.3	3/20/02 18:10	1013.2	73.09	3/20/02 19:58	1013.18	72.86	3/20/02 21:46	1013.2	72.65
3/20/02 16:23 1013.		3.3	3/20/02 18:11	1013.19	73.09	3/20/02 19:59	1013.18	72.86	3/20/02 21:47	1013.2	72.63
3/20/02 16:24 1013.:		3.3	3/20/02 18:12	1013.19	73.09	3/20/02 20:00	1013.18	72.86	3/20/02 21:48	1013.2	72.62
3/20/02 16:25 1013.: 3/20/02 16:26 1013.:		3.31 3.31	3/20/02 18:13 3/20/02 18:14	1013.18	73.09 73.09	3/20/02 20:01 3/20/02 20:02	1013.16 1013.17	72.86	3/20/02 21:49	1013.2	72.61
3/20/02 16:28 1013.:		3.31	3/20/02 18:16	1013.18 1013.18	73.09	3/20/02 20:04	1013.17	72.86 72.86	3/20/02 21:50 3/20/02 21:52	1013.21 1013.21	72.59 72.58
3/20/02 16:29 1013.:	.25 73	3.31	3/20/02 18:17	1013.19	73.09	3/20/02 20:05	1013.18	72.86	3/20/02 21:53	1013.22	72.59
3/20/02 16:30 1013.:		3.31	3/20/02 18:18	1013.19	73.09	3/20/02 20:06	1013.18	72.86	3/20/02 21:54	1013.22	72.59
3/20/02 16:31 1013.: 3/20/02 16:32 1013.:		3.31 3.31	3/20/02 18:19 3/20/02 18:20	1013.19 1013.19	73.08 73.08	3/20/02 20:07 3/20/02 20:08	1013.19 1013.19	72.85 72.85	3/20/02 21:55	1013.2	72.59
3/20/02 16:34 1013.		3.31	3/20/02 18:22	1013.19	73.08 73.08	3/20/02 20:10	1013.19	72.85 72.85	3/20/02 21:56 3/20/02 21:58	1013.21 1013.21	72.59 72.59
3/20/02 16:35 1013.:		3.31	3/20/02 18:23	1013,19	73.08	3/20/02 20:11	1013.19	72.85	3/20/02 21:59	1013.21	72.59
3/20/02 16:36 1013.		3.31	3/20/02 18:24	1013.19	73.08	3/20/02 20:12	1013.19	72.85	3/20/02 22:00	1013.21	72.59
3/20/02 16:37 1013.3			3/20/02 18:25	1013.2	73.08	3/20/02 20:13	1013.19	72.86	3/20/02 22:01	1013.22	72.58
3/20/02 16:38 1013.3 3/20/02 16:40 1013.3		3.3 3.3	3/20/02 18:26 3/20/02 18:28	1013.19 1013.17	73.08 73.08	3/20/02 20:14 3/20/02 20:16	1013.19 1013.19	72.86 72.86	3/20/02 22:02	1013.22	72.58
3/20/02 16:41 1013.			3/20/02 18:29	1013.17	73.07	3/20/02 20:17	1013.19	72.85	3/20/02 22:04 3/20/02 22:05	1013.28 1013.34	72.8 73.02
3/20/02 16:42 1013.3	24 73	3.29	3/20/02 18:30	1013.17	73.07	3/20/02 20:18	1013.18	72.85	3/20/02 22:06	1013.43	73.25
3/20/02 16:43 1013.3			3/20/02 18:31	1013.18	73.07	3/20/02 20:19	1013.18	72.85	3/20/02 22:07	1013.77	73.47
3/20/02 16:44 1013.; 3/20/02 16:46 1013.;			3/20/02 18:32	1013.19	73.06	3/20/02 20:20	1013.18	72.85	3/20/02 22:08	1015.28	73.69
3/20/02 16:47 1013.			3/20/02 18:34 3/20/02 18:35	1013.19 1013.19	73.06 73.07	3/20/02 20:22 3/20/02 20:23	1013.17 1013.17	72.84 72.83	3/20/02 22:10 3/20/02 22:11	1015.14 1014.85	74.68 75.45
3/20/02 16:48 1013.2	.23 73		3/20/02 18:36	1013.18	73.07	3/20/02 20:24	1013.17	72.82	3/20/02 22:12	1013.22	76.21
3/20/02 16:49 1013.2	.22 73	3.27	3/20/02 18:37	1013.18	73.07	3/20/02 20:25	1013.18	72.81	3/20/02 22:13	1013.67	76.98
3/20/02 16:50 1013.2			3/20/02 18:38	1013.19	73.08	3/20/02 20:26	1013.19	72.8	3/20/02 22:14	1014.09	77.75
3/20/02 16:52 1013.2 3/20/02 16:53 1013.2			3/20/02 18:40 3/20/02 18:41	1013.18 1013.19	73.08	3/20/02 20:28	1013.18	72.79 72.70	3/20/02 22:16	1014.42	78.56
3/20/02 16:54 1013.2			3/20/02 18:42	1013.19	73.08 73.07	3/20/02 20:29 3/20/02 20:30	1013.18 1013.19	72. 7 9 72.79	3/20/02 22:17 3/20/02 22:18	1014.44 1014.46	78.59 78.63
3/20/02 16:55 1013.2			3/20/02 18:43	1013.19	73.07	3/20/02 20:31	1013.19	72.79 72.79	3/20/02 22:19	1014.46	78.67
3/20/02 16:56 1013.2		.27	3/20/02 18:44	1013.18	73.07	3/20/02 20:32	1013.19	72.79	3/20/02 22:20	1014.49	78.71
3/20/02 16:58 1013.2 3/20/02 16:59 1013.2			3/20/02 18:46	1013.18	73.06	3/20/02 20:34	1013.18	72.78	3/20/02 22:22	1014.51	78.76
	£1 13	.27	3/20/02 18:47	1013.18	73.05	3/20/02 20:35	1013.19	72.78	3/20/02 22:23	1014.51	78.77

Project No.: 40368 2 of 6

DOW	MNHOLE C	OWNHOLE		DOWNHOLE	DOWNHOLE		DOWNHOLE	DOWNSHOLE		DOMMHOLI	DOWNHOLE
	(psl)	Temp (P)	Date Time	(psl)	Temp (F)	Date Time		Temp (F)	Date Tim		Temp (F)
	014.52 014.52	78.78 78.79	3/21/02 0:12	1014.61	78.85	3/21/02 2:00	1014.66	78.68	3/21/02 3:48		78.68
	014.53	78.8	3/21/02 0:13 3/21/02 0:14	1014.61 1014.61	78.85 78.85	3/21/02 2:01 3/21/02 2:02	1014.66 1014.66	78.68 78.68	3/21/02 3:49 3/21/02 3:50		78.68 78.68
3/20/02 22:28 10		78.81	3/21/02 0:16	1014.61	78.84	3/21/02 2:04	1014.66	78.68	3/21/02 3:50		78.68
	14.54	78.81	3/21/02 0:17	1014.61	78.83	3/21/02 2:05	1014.66	78.68	3/21/02 3:53		78.68
	14.54	78.82	3/21/02 0:18	1014.61	78.82	3/21/02 2:06	1014.66	78.68	3/21/02 3:54	1014.7	78.68
3/20/02 22:31 10 3/20/02 22:32 10)14.54)14.54	78.82 78.82	3/21/02 0:19	1014.61	78.82	3/21/02 2:07	1014.66	78.68	3/21/02 3:55		78.68
3/20/02 22:34 10		78.83	3/21/02 0:20 3/21/02 0:22	1014,61 1014,61	78.81 78.79	3/21/02 2:08 3/21/02 2:10	1014.66 1014.67	78.68 78.68	3/21/02 3:56		78.68
3/20/02 22:35 10		78.83	3/21/02 0:23	1014.6	78.78	3/21/02 2:11	1014.66	78.68	3/21/02 3:58 3/21/02 3:59		78.68 78.68
	14.55	78.83	3/21/02 0:24	1014.61	78.76	3/21/02 2:12	1014.67	78.68	3/21/02 4:00		78.68
	14.55	78.83	3/21/02 0:25	1014.61	78.75	3/21/02 2:13	1014.67	78.67	3/21/02 4:01		78.68
	14.55	78.83	3/21/02 0:26	1014.61	78.74	3/21/02 2:14	1014.67	78.67	3/21/02 4:02	1014.7	78.68
)14.55)14.55	78.84 78.84	3/21/02 0:28	1014.61	78.72	3/21/02 2:16	1014.67	78.67	3/21/02 4:04		78.68
3/20/02 22:42 10		78.84	3/21/02 0:29 3/21/02 0:30	1014.62 1014.61	78.71 78.71	3/21/02 2:17 3/21/02 2:18	1014.67	78.67	3/21/02 4:05		78.68
	14.56	78.84	3/21/02 0:31	1014.62	78.7	3/21/02 2:19	1014.67 1014.67	78.67 78.67	3/21/02 4:06 3/21/02 4:07		78.68 78.68
3/20/02 22:44 10		78.84	3/21/02 0:32	1014.61	78.7	3/21/02 2:20	1014.67	78.67	3/21/02 4:08		78.68
	114.56	78.84	3/21/02 0:34	1014.61	78.69	3/21/02 2:22	1014.67	78.68	3/21/02 4:10		78.68
	14.56	78.84	3/21/02 0:35	1014.62	78.69	3/21/02 2:23	1014.67	78.68	3/21/02 4:11		78.68
	14.56 14.56	78.84 78.84	3/21/02 0:36 3/21/02 0:37	1014.62	78.69	3/21/02 2:24	1014.67	78.68	3/21/02 4:12		78.68
3/20/02 22:50 10		78.84	3/21/02 0:38	1014.62 1014.61	78.69 78.69	3/21/02 2:25 3/21/02 2:26	1014.67 1014.67	78.68 78.68	3/21/02 4:13		78.68
	14.56	78.84	3/21/02 0:40	1014.62	78.69	3/21/02 2:28	1014.67	78.68	3/21/02 4:14 3/21/02 4:16		78.68 78.68
3/20/02 22:53 10	14.56	78.84	3/21/02 0:41	1014.61	78.69	3/21/02 2:29	1014.67	78.68	3/21/02 4:17		78.68
	14.56	78.84	3/21/02 0:42	1014.62	78.69	3/21/02 2:30	1014.67	78.68	3/21/02 4:18		78.68
	14.56	78.84	3/21/02 0:43	1014,62	78.69	3/21/02 2:31	1014.67	78.68	3/21/02 4:19	1014.7	78.68
	14.56 14.57	78.84 78.85	3/21/02 0:44	1014.62	78.69	3/21/02 2:32	1014.67	78.68	3/21/02 4:20		78.68
	14.57	78.85	3/21/02 0:46 3/21/02 0:47	1014.62 1014.62	78.68 78.68	3/21/02 2:34	1014.68	78.68	3/21/02 4:22		78.68
	14.57	78.85	3/21/02 0:48	1014.62	78.68	3/21/02 2:35 3/21/02 2:36	1014.68 1014.67	78.68 78.68	3/21/02 4:23 3/21/02 4:24		78.68
	14.57	78.85	3/21/02 0:49	1014.62	78.68	3/21/02 2:37	1014.68	78.68	3/21/02 4:25		78.68 78.68
	14.57	78.85	3/21/02 0:50	1014.62	78.68	3/21/02 2:38	1014.68	78.68	3/21/02 4:26		78.68
	14.57	78.85	3/21/02 0:52	1014.61	78.68	3/21/02 2:40	1014.68	78.68	3/21/02 4:28	1014.71	78.68
	14.57 14.57	78.85 78.85	3/21/02 0:53	1014.62	78.68	3/21/02 2:41	1014.68	78.68	3/21/02 4:29		78.68
	14.57	78.85	3/21/02 0:54 3/21/02 0:55	1014.62 1014.62	78.68 78.68	3/21/02 2:42 3/21/02 2:43	1014.68 1014.68	78.68 78.68	3/21/02 4:30		78.68
	14.57	78.85	3/21/02 0:56	1014.62	78.68	3/21/02 2:44	1014.68	78.68	3/21/02 4:31 3/21/02 4:32	1014.71 1014.71	78.68 78.68
	14.58	78.85	3/21/02 0:58	1014.62	78.68	3/21/02 2:46	1014.68	78.67	3/21/02 4:34	1014.71	78.68
	14.57	78.85	3/21/02 0:59	1014.62	78.68	3/21/02 2:47	1014.68	78.67	3/21/02 4:35		78.68
3/20/02 23:12 101		78.85	3/21/02 1:00	1014.62	78.68	3/21/02 2:48	1014.68	78.67	3/21/02 4:36	1014.71	78.68
3/20/02 23:13 101 3/20/02 23:14 101		78.85 78.85	3/21/02 1:01	1014.62	78.68	3/21/02 2:49	1014.68	78.67	3/21/02 4:37	1014.71	78.68
3/20/02 23:16 101		78.85	3/21/02 1:02 3/21/02 1:04	1014.62 1014.62	78.68 78.68	3/21/02 2:50 3/21/02 2:52	1014.68 1014.68	78.67	3/21/02 4:38	1014.71	78.68
	14.58	78.85	3/21/02 1:05	1014.62	78.68	3/21/02 2:53	1014.68	78. 6 7 78.67	3/21/02 4:40 3/21/02 4:41	1014.71 1014.71	78.68 78.68
	14.58	78.85	3/21/02 1:06	1014.62	78.68	3/21/02 2:54	1014.68	78.68	3/21/02 4:42	1014.71	78.68
	14.58	78.85	3/21/02 1:07	1014.62	78.68	3/21/02 2:55	1014.68	78.68	3/21/02 4:43	1014.71	78.68
	14.58 14.58	78.85	3/21/02 1:08	1014.62	78.68	3/21/02 2:56	1014.68	78.68	3/21/02 4:44	1014.71	78.68
	14.58	78.85 78.85	3/21/02 1:10 3/21/02 1:11	1014.62 1014.62	78.68 78.68	3/21/02 2:58	1014.68	78.68	3/21/02 4:46	1014.71	78.68
	14.58	78.85	3/21/02 1:12	1014.62	78.68	3/21/02 2:59 3/21/02 3:00	1014.68 1014.68	78.68 78.68	3/21/02 4:47 3/21/02 4:48	1014.71 1014.71	78.68 78.68
3/20/02 23:25 101	14.58	78.85	3/21/02 1:13	1014.62	78.68	3/21/02 3:01	1014.68	78.68	3/21/02 4:49	1014.71	78.68
	14.58	78.85	3/21/02 1:14	1014.62	78.68	3/21/02 3:02	1014.68	78.68	3/21/02 4:50	1014.72	78.68
	14.59	78.85	3/21/02 1:16	1014.62	78.68	3/21/02 3:04	1014.68	78.68	3/21/02 4:52	1014.71	78.68
	14.59 14.59	78.85 78.85	3/21/02 1:17	1014.62	78.68	3/21/02 3:05	1014.69	78.68	3/21/02 4:53	1014.71	78.68
	14.59	78.85	3/21/02 1:18 3/21/02 1:19	1014.62 1014.62	78.68 78.68	3/21/02 3:06 3/21/02 3:07	1014.69 1014.69	78.68 78.68	3/21/02 4:54	1014.71	78.68
	14.59	78.85	3/21/02 1:20	1014.62	78.68	3/21/02 3:08	1014.69	78.68	3/21/02 4:55 3/21/02 4:56	1014.71 1014.71	78.68 78.68
	14.59	78.85	3/21/02 1:22	1014.62	78.68	3/21/02 3:10	1014.69	78.68	3/21/02 4:58	1014.72	78.68
	14.59	78.85	3/21/02 1:23	1014.62	78.68	3/21/02 3:11	1014.69	78.68	3/21/02 4:59	1014.72	78.68
3/20/02 23:36 101		78.85	3/21/02 1:24	1014.62	78.68	3/21/02 3:12	1014.69	78.68	3/21/02 5:00	1014.72	78.68
3/20/02 23:37 101 3/20/02 23:38 101		78.85 78.85	3/21/02 1:25 3/21/02 1:26	1014.63 1014.63	78.68 78.68	3/21/02 3:13	1014.69	78.68	3/21/02 5:01	1014.72	78.68
3/20/02 23:40 101		78.85	3/21/02 1:28	1014.63	78.68	3/21/02 3:14 3/21/02 3:16	1014.69 1014.69	78.68 78.68	3/21/02 5:02 3/21/02 5:04	1014.72	78.68 79.69
3/20/02 23:41 101	14.59	78.85	3/21/02 1:29	1014.62	78.68	3/21/02 3:17	1014.69	78.68	3/21/02 5:05	1014.71 1014.72	78.68 78.68
		78.85	3/21/02 1:30	1014.63	78.68	3/21/02 3:18	1014.69	78.68	3/21/02 5:06	1014.72	78.68
		78.85	3/21/02 1:31	1014.63	78.68	3/21/02 3:19	1014.69	78.68	3/21/02 5:07	1014.72	78.68
		78.85 78.85	3/21/02 1:32 3/21/02 1:34	1014.63 1014.63	78.68 78.68	3/21/02 3:20	1014.69	78.68	3/21/02 5:08	1014.72	78.68
		78.85	3/21/02 1:35	1014.63	78.68 78.68	3/21/02 3:22 3/21/02 3:23	1014.69 1014.69	78.68 78.68	3/21/02 5:10	1014.72	78.68
3/20/02 23:48 101	14.6	78.85	3/21/02 1:36	1014.63	78.68	3/21/02 3:24	1014.69	78.68	3/21/02 5:11 3/21/02 5:12	1014.72 1014.72	78.68 78.68
		78.85	3/21/02 1:37	1014.63	78.68	3/21/02 3:25	1014.69	78.68	3/21/02 5:13	1014.72	78.69
		78.85	3/21/02 1:38	1014.64	78.68	3/21/02 3:26	1014.7	78.68	3/21/02 5:14	1014.72	78.69
		78.85 78.85	3/21/02 1:40 3/21/02 1:41	1014.64	78.68	3/21/02 3:28	1014.7	78.68	3/21/02 5:16	1014.72	78.69
		78.85	3/21/02 1:41 3/21/02 1:42	1014.64 1014.64	78.68 78.68	3/21/02 3:29 3/21/02 3:30	1014.69 1014.69	78.68 78.68	3/21/02 5:17	1014.72	78.69
3/20/02 23:55 101	14.6	78.85	3/21/02 1:43	1014.64	78.68	3/21/02 3:31	1014.69	78.68 78.68	3/21/02 5:18 3/21/02 5:19	1014.72 1014.72	78.68 78.68
3/20/02 23:56 101	14.6	78.85	3/21/02 1:44	1014.64	78.68	3/21/02 3:32	1014.69	78.68	3/21/02 5:20	1014.72	78.68
3/20/02 23:58 1014		78.85	3/21/02 1:46	1014.65	78.68	3/21/02 3:34	1014.69	78.68	3/21/02 5:22	1014.72	78.68
3/20/02 23:59 101/ 3/21/02 0:00 101/		78.85 78.85	3/21/02 1:47	1014.65	78.68	3/21/02 3:35	1014.7	78.68	3/21/02 5:23	1014.73	78.68
		78.85 78.85	3/21/02 1:48 3/21/02 1:49	1014.65	78.68	3/21/02 3:36	1014.7	78.68	3/21/02 5:24	1014.73	78.69
3/21/02 0:02 1014		78.85	3/21/02 1:50	1014.65 1014.65	78.68 78.68	3/21/02 3:37 3/21/02 3:38	1014,7 1014,7	78.68 78.68	3/21/02 5:25 3/21/02 5:26	1014.73	78.69
3/21/02 0:04 101	14.6	78.85	3/21/02 1:52	1014.65	78.68	3/21/02 3:40	1014.7	78.68	3/21/02 5:28	1014.73 1014.73	78.69 78.69
3/21/02 0:05 1014		78.85	3/21/02 1:53	1014.65	78.68	3/21/02 3:41	1014.7	78.68	3/21/02 5:29	1014.73	78.69
3/21/02 0:06 1014		78.85	3/21/02 1:54	1014.65	78.68	3/21/02 3:42	1014.69	78.68	3/21/02 5:30	1014.73	78.69
3/21/02 0:07 1014 3/21/02 0:08 1014		78.85 78.85	3/21/02 1:55 3/21/02 1:56	1014.66	78.68 78.68	3/21/02 3:43	1014.7	78.68	3/21/02 5:31	1014.73	78.69
3/21/02 0:10 1014		78.85	3/21/02 1:56 3/21/02 1:58	1014.66 1014.66	78.68 78.68	3/21/02 3:44 3/21/02 3:46	1014.7 1014.7	78.68 78.68	3/21/02 5:32	1014.73	78.69
3/21/02 0:11 1014		78.85	3/21/02 1:59	1014.66	78.68	3/21/02 3:47	1014.7	78.68 78.68	3/21/02 5:34 3/21/02 5:35	1014.73 1014.73	78.69 78.69
					-				32 HOL 0.00	,014.70	. 0.00

		DOWNHOLE		DOWNSHOLE	DOWNHOLE	DOWNHOLE DOWNHOLE		DOWNHOLE	DOWNHOLE
Date Time		Temp (F)	Date Time	(pxl)	Temp (F)	Date Time (psi) Temp (F)	Date Time	(psl)	Temp (F)
3/21/02 5:36 3/21/02 5:37		78.69	3/21/02 7:24	1014.84	78.69		3/21/02 11:00	1015.16	78.38
3/21/02 5:38		78.69 78.69	3/21/02 7:25 3/21/02 7:26	1014.85	78.69		3/21/02 11:01	1015.16	78.37
3/21/02 5:40		78.69	3/21/02 7:28	1014.84 1014.85	78.69 78.69		3/21/02 11:02	1015.15	78.36
3/21/02 5:41		78.69	3/21/02 7:29	1014.85	78.69		3/21/02 11:04 3/21/02 11:05	1015.15 1015.16	78.35 78.34
3/21/02 5:42		78.69	3/21/02 7:30	1014.85	78.69		3/21/02 11:06	1015.16	78.34
3/21/02 5:43		78.69	3/21/02 7:31	1014.85	78.7		3/21/02 11:07	1015.16	78.33
3/21/02 5:44	1014.74	78.69	3/21/02 7:32	1014.85	78.7		3/21/02 11:08	1015.15	78.32
3/21/02 5:46		78.69	3/21/02 7:34	1014.85	78.7		3/21/02 11:10	1015.15	78.3
3/21/02 5:47		78.69	3/21/02 7:35	1014.85	78.7	3/21/02 9:23 1014.89 78.79	3/21/02 11:11	1015.15	78.3
3/21/02 5:48		78.69	3/21/02 7:36	1014.86	78.7		3/21/02 11:12	1015.15	78.29
3/21/02 5:49 3/21/02 5:50		78.68	3/21/02 7:37	1014.86	78.7		3/21/02 11:13	1015.15	78.28
3/21/02 5:52		78.68 78.68	3/21/02 7:38 3/21/02 7:40	1014.86	78,7		3/21/02 11:14	1015.15	78.27
3/21/02 5:53		78.68	3/21/02 7:41	1014,86 1014.86	78.69 78.69		3/21/02 11:16	1015.15	78.26
3/21/02 5:54		78.68	3/21/02 7:42	1014.86	78.69		3/21/02 11:17 3/21/02 11:18	1015.15 1015.15	78.25 78.24
3/21/02 5:55		78.68	3/21/02 7:43	1014.86	78.69		3/21/02 11:19	1015.15	78.24 78.24
3/21/02 5:56	1014.75	78.68	3/21/02 7:44	1014.86	78.69		3/21/02 11:20	1015.15	78.23
3/21/02 5:58		78.68	3/21/02 7:46	1014.87	78.69		3/21/02 11:22	1015.15	78.21
3/21/02 5:59		78.68	3/21/02 7:47	1014.87	78.69		3/21/02 11:23	1015.14	78.2
3/21/02 6:00		78.68	3/21/02 7:48	1014.87	78.69		3/21/02 11:24	1015.14	78.19
3/21/02 6:01 3/21/02 6:02	1014.75 1014.75	78.69 78.69	3/21/02 7:49	1014.87	78.69		3/21/02 11:25	1015.14	78.19
3/21/02 6:04		78.69	3/21/02 7:50 3/21/02 7:52	1014.87 1014.87	78.69 78.7		3/21/02 11:26	1015.14	78.18
3/21/02 6:05		78.69	3/21/02 7:53	1014.87	78.7 78.7		3/21/02 11:28	1015.14	78.16
3/21/02 6:06	1014.76	78.69	3/21/02 7:54	1014.88	78.7	and the second s	3/21/02 11:29 3/21/02 11:30	1015.15 1015.14	78.16
3/21/02 6:07	1014.76	78.69	3/21/02 7:55	1014.88	78.7		3/21/02 11:31	1015.14	78.15 78.14
3/21/02 6:08	1014.76	78.69	3/21/02 7:56	1014.88	78.7		3/21/02 11:32	1015.14	78.14
3/21/02 6:10	1014.76	78.69	3/21/02 7:58	1014.88	78.7		3/21/02 11:34	1015.14	78.12
3/21/02 6:11	1014.76	78.69	3/21/02 7:59	1014.88	78.7	3/21/02 9:47 1014.93 78.79	3/21/02 11:35	1015.14	78.11
3/21/02 6:12	1014.76	78.69	3/21/02 8:00	1014.88	78.7		3/21/02 11:36	1015.14	78.1
3/21/02 6:13	1014.77	78.69	3/21/02 8:01	1014.88	78.7		3/21/02 11:37	1015.15	78.1
3/21/02 6:14 3/21/02 6:16	1014.76 1014.76	78.69 78.69	3/21/02 8:02 3/21/02 8:04	1014.88 1014.89	78.7		3/21/02 11:38	1015.14	78.09
3/21/02 6:17	1014.77	78.69	3/21/02 8:05	1014.89	78.7 78.69		3/21/02 11:40	1015.14	78.07
3/21/02 6:18	1014.77	78.69	3/21/02 8:06	1014.89	78.69		3/21/02 11:41	1015.14	78.07
3/21/02 6:19	1014.77	78.68	3/21/02 8:07	1014.89	78.69		3/21/02 11:42 3/21/02 11:43	1015.14 1015.14	78.06 78.05
3/21/02 6:20	1014.77	78.68	3/21/02 8:08	1014.89	78.69		3/21/02 11:44	1015.14	78.05 78.05
3/21/02 6:22	1014.77	78.68	3/21/02 8:10	1014.89	78.69		3/21/02 11:46	1015.13	78.03
3/21/02 6:23	1014.77	78.68	3/21/02 8:11	1014.89	78.69		3/21/02 11:47	1015.13	78.02
3/21/02 6:24	1014.77	78.68	3/21/02 8:12	1014.9	78.7		3/21/02 11:48	1015.13	78.01
3/21/02 6:25	1014.78	78.68	3/21/02 8:13	1014.9	78.7		3/21/02 11:49	1015.13	78
3/21/02 6:26 3/21/02 6:28	1014.77 1014.78	78.69 78.69	3/21/02 8:14	1014.9	78.7		3/21/02 11:50	1015.13	78
3/21/02 6:29	1014.78	78.69	3/21/02 8:16 3/21/02 8:17	1014.9	78.7		3/21/02 11:52	1015.13	77.98
3/21/02 6:30	1014.78	78.69	3/21/02 8:18	1014.9 1014.9	78.7 78.7		3/21/02 11:53	1015.13	77.98
3/21/02 6:31	1014.78	78.69	3/21/02 8:19	1014.91	78.7		3/21/02 11:54 3/21/02 11:55	1015.13 1015.13	77.97 77.97
3/21/02 6:32	1014.78	78.69	3/21/02 8:20	1014,91	78.7		3/21/02 11:56	1015.13	77.96
3/21/02 6:34	1014.79	78.69	3/21/02 8:22	1014.91	78.7	A MALANE AND A A A A A A A A A A A A A A A A A A	3/21/02 11:58	1015.13	77.95
3/21/02 6:35	1014.79	78.69	3/21/02 8:23	1014.91	78.7		3/21/02 11:59	1015.13	77.94
3/21/02 6:36	1014.79	78.69	3/21/02 8:24	1014.91	78.7	3/21/02 10:12 1015.19 78.76 3	3/21/02 12:00	1015.13	77.93
3/21/02 6:37	1014.79	78.69	3/21/02 8:25	1014.91	78.7		3/21/02 12:01	1015.13	77.93
3/21/02 6:38 3/21/02 6:40	1014.79 1014.8	78.69 78.69	3/21/02 8:26	1014.91	78.7		3/21/02 12:02	1015.13	77.92
3/21/02 6:41	1014.8	78.69	3/21/02 8:28 3/21/02 8:29	1014.92 1014.91	78.7		3/21/02 12:04	1015.13	77.91
3/21/02 6:42	1014.8	78.69	3/21/02 8:30	1014.92	78.7 78.7		3/21/02 12:05	1015.13	77.9
3/21/02 6:43	1014.79	78.69	3/21/02 8:31	1014.92	78.7		3/21/02 12:06	1015.13	77.9
3/21/02 6:44	1014.8	78.69	3/21/02 8:32	1014.92	78.7		3/21/02 12:07 3/21/02 12:08	1015.13 1015.13	77.89 77.89
3/21/02 6:46	1014.8	78.69	3/21/02 8:34	1014.92	78.7	***	3/21/02 12:10	1015.13	77.87
3/21/02 6:47	1014.8	78.69	3/21/02 8:35	1014.92	78.7		3/21/02 12:11	1015.12	77.87
3/21/02 6:48	1014.8	78.69	3/21/02 8:36	1014.92	78.7		721/02 12:12	1015.12	77.86
3/21/02 6:49	1014.8	78.69	3/21/02 8:37	1014,92	78.7	3/21/02 10:25 1015.18 78.66 3	3/21/02 12:13	1015.13	77.85
3/21/02 6:50 3/21/02 6:52	1014.8 1014.8	78.69	3/21/02 8:38	1014.93	78.7		3/21/02 12:14	1015.12	77.84
3/21/02 6:53	1014.8	78.69 78.69	3/21/02 8:40 3/21/02 8:41	1014.93 1014.93	78.7		1/21/02 12:16	1015.12	77.83
3/21/02 6:54	1014.8	78.69	3/21/02 8:41 3/21/02 8:42	1014.93	78.7 78.7		V21/02 12:17	1015.12	77.82
3/21/02 6:55	1014.8	78.69	3/21/02 8:43	1014.93	78.7		V21/02 12:18 V21/02 12:19	1015.12	77.82
3/21/02 6:56	1014.81	78.69	3/21/02 8:44	1014.93	78.7		721/02 12:19 721/02 12:20	1015.12 1015.11	77.81 77.81
3/21/02 6:58	1014.81	78.69	3/21/02 8:46	1014.94	78.7		721/02 12:20 721/02 12:22	1015.11	77.79
3/21/02 6:59	1014.81	78.69	3/21/02 8:47	1014.94	78.7		V21/02 12:23	1015.11	77.78
3/21/02 7:00	1014.81	78.69	3/21/02 8:48	1014.94	78.7		/21/02 12:24	1015.12	77.78
3/21/02 7:01	1014.81	78.69	3/21/02 8:49	1014.94	78.71	3/21/02 10:37 1015.17 78.57 3.	/21/02 12:25	1015.11	77.77
3/21/02 7:02	1014.81	78.69	3/21/02 8:50	1014.94	78.71		/21/02 12:26	1015.11	77.76
3/21/02 7:04 3/21/02 7:05	1014.82 1014.82	78.69 78.69	3/21/02 8:52	1014.95	78.71		/21/02 12:28	1015.12	77.75
3/21/02 7:06	1014.82	78.69	3/21/02 8:53 3/21/02 8:54	1014.94 1014.94	78.71 78.71		/21/02 12:29	1015.11	77.74
3/21/02 7:07	1014.82	78.69	3/21/02 8:55	1014.94	78.71 78.7		/21/02 12:30	1015.11	77.74
3/21/02 7:08	1014.82	78.69	3/21/02 8:56	1014.95	78.7		/21/02 12:31 (21/02 12:32	1015.11	77.73
3/21/02 7:10	1014.82	78.69	3/21/02 8:58	1014.95	78.7	****	/21/02 12:32 /21/02 12:34	1015.11 1015.11	77.72 77.71
3/21/02 7:11	1014.83	78.69	3/21/02 8:59	1014.95	78.7		/21/02 12:35	1015.11	77.71
3/21/02 7:12	1014,83	78.69	3/21/02 9:00	1014.95	78.71		/21/02 12:36	1015.11	77.7
3/21/02 7:13	1014.83	78.69	3/21/02 9:01	1014.96	78.71	3/21/02 10:49 1015.16 78.47 3	/21/02 12:37	1015.11	77.69
3/21/02 7:14	1014.83	78.69	3/21/02 9:02	1014.96	78.71	3/21/02 10:50 1015.16 78.47 3/	/21/02 12:38	1015.1	77.69
3/21/02 7:16 3/21/02 7:17	1014.84 1014.83	78.69	3/21/02 9:04	1014.96	78.71		/21/02 12:40	1015.1	77.68
3/21/02 7:17	1014.83	78.69 78.69	3/21/02 9:05	1014.92	78.72		/21/02 12:41	1015.1	77.67
3/21/02 7:19	1014.84	78.69	3/21/02 9:06 3/21/02 9:07	1014.86 1014.87	78.73 78.73		/21/02 12:42	1015.1	77.66
3/21/02 7:20	1014.84	78.69	3/21/02 9:08	1014.87	78.74		/21/02 12:43	1015.1	77.65
3/21/02 7:22	1014.84	78.69	3/21/02 9:10	1014.86	78.75		/21/02 12:44 /21/02 12:46	1015.1 1015.1	77.65 77.63
	1014.84	78.69	3/21/02 9:11	1014.86	78.76		/21/02 12:46 /21/02 12:47	1015.1	77.63 77.63
									. 1.00

City of Pompano Beach

Injection Test

DOWNHOLE DOWNHOLE	DOWNSHOLE DOWNSHOLE	DOWNHOLE DOWNHOLE		
Date Time (psi) Temp (F)	Date Time (psi) Temp (F)	Date Time (psi) Temp (F)	Date Time	(psi) Temp (F)
3/21/02 12:48 1015.1 77.62	3/21/02 14:36 1015.01 77.1	3/21/02 16:24 1014.87 76.66	3/21/02 18:12	1014.76 76.32
3/21/02 12:49 1015.1 77.62	3/21/02 14:37 1015 77.09	3/21/02 16:25 1014.88 76.66	3/21/02 18:13	1014.76 76.31
3/21/02 12:50 1015.09 77.61 3/21/02 12:52 1015.1 77.61	3/21/02 14:38 1015 77:09 3/21/02 14:40 1015 77:08	3/21/02 16:26 1014.88 76.66 3/21/02 16:28 1014.88 76.65	3/21/02 18:14 3/21/02 18:16	1014.76 76.3 1014.79 76.28
3/21/02 12:53 1015.09 77.6	3/21/02 14:41 1015 77.07	3/21/02 16:29 1014.88 76.65	3/21/02 18:17	1014.79 76.28 1014.78 76.28
3/21/02 12:54 1015.1 77.6	3/21/02 14:42 1015 77.06	3/21/02 16:30 1014.87 76.65	3/21/02 18:18	1014.77 76.28
3/21/02 12:55 1015.1 77.59	3/21/02 14:43 1014.99 77.06	3/21/02 16:31 1014.87 76.65	3/21/02 18:19	1014.76 76.27
3/21/02 12:56 1015.1 77.59 3/21/02 12:58 1015.1 77.57	3/21/02 14:44 1014.99 77.05 3/21/02 14:46 1014.99 77.03	3/21/02 16:32 1014.85 76.65	3/21/02 18:20	1014.76 76.27
3/21/02 12:59 1015.1 77.57 3/21/02 12:59 1015.09 77.57	3/21/02 14:45 1014:99 77:03 3/21/02 14:47 1014:99 77:03	3/21/02 16:34 1014.86 76.64 3/21/02 16:35 1014.86 76.63	3/21/02 18:22 3/21/02 18:23	1014.77 76.27 1014.78 76.27
3/21/02 13:00 1015.09 77.56	3/21/02 14:48 1014.99 77.02	3/21/02 16:36 1014.87 76.63	3/21/02 18:24	1014.75 76.27
3/21/02 13:01 1015.09 77.55	3/21/02 14:49 1014.98 77.02	3/21/02 16:37 1014.86 76.62	3/21/02 18:25	1014.76 76.27
3/21/02 13:02 1015.08 77.54	3/21/02 14:50 1014.99 77.01	3/21/02 16:38 1014.85 76.62	3/21/02 18:26	1014.76 76.26
3/21/02 13:04 1015.09 77.53 3/21/02 13:05 1015.09 77.53	3/21/02 14:52 1014.98 77.01 3/21/02 14:53 1014.99 77.01	3/21/02 16:40 1014.86 76.61 3/21/02 16:41 1014.86 76.61	3/21/02 18:28 3/21/02 18:29	1014.76 76.26 1014.76 76.25
3/21/02 13:06 1015.09 77.52	3/21/02 14:54 1014.99 77.01	3/21/02 16:42 1014.86 76.61	3/21/02 18:30	1014.75 76.24
3/21/02 13:07 1015.09 77.52	3/21/02 14:55 1014.99 77.01	3/21/02 16:43 1014.85 76.6	3/21/02 18:31	1014.75 76.23
3/21/02 13:08 1015:08 77:51	3/21/02 14:56 1014.99 77	3/21/02 16:44 1014.86 76.6	3/21/02 18:32	1014.75 76.22
3/21/02 13:10 1015.08 77.5 3/21/02 13:11 1015.08 77.49	3/21/02 14:58 1014.98 77 3/21/02 14:59 1014.98 76.99	3/21/02 16:46 1014.85 76.59 3/21/02 16:47 1014.83 76.58	3/21/02 18:34	1014.76 76.22
3/21/02 13:12 1015.08 77.49	3/21/02 15:00 1014.97 76.98	3/21/02 16:48 1014.84 76.58	3/21/02 18:35 3/21/02 18:36	1014.78 76.23 1014.78 76.23
3/21/02 13:13 1015.08 77.48	3/21/02 15:01 1014.98 76.97	3/21/02 16:49 1014.85 76.57	3/21/02 18:37	1014.76 76.24
3/21/02 13:14 1015.08 77.47	3/21/02 15:02 1014.97 76.97	3/21/02 16:50 1014.84 76.57	3/21/02 18:38	1014.76 76.25
3/21/02 13:16 1015.08 77.46 3/21/02 13:17 1015.07 77.46	3/21/02 15:04 1014.97 76.95	3/21/02 16:52 1014.84 76:56	3/21/02 18:40	1014.76 76.25
3/21/02 13:18 1015.08 77.45	3/21/02 15:05 1014.97 76.95 3/21/02 15:06 1014.96 76.94	3/21/02 16:53 1014.84 76:55 3/21/02 16:54 1014.84 76:55	3/21/02 18:41 3/21/02 18:42	1014.75 76.24 1014.76 76.24
3/21/02 13:19 1015.08 77.45	3/21/02 15:07 1014.97 76.94	3/21/02 16:55 1014.84 76.55	3/21/02 18:43	1014.77 76.23
3/21/02 13:20 1015.08 77.44	3/21/02 15:08 1014.98 76.93	3/21/02 16:56 1014.83 76.54	3/21/02 18:44	1014.76 76.22
3/21/02 13:22 1015.07 77.43	3/21/02 15:10 1014.96 76.93	3/21/02 16:58 1014.84 76:53	3/21/02 18:46	1014.75 76.21
3/21/02 13:23 1015.07 77.43 3/21/02 13:24 1015.07 77.43	3/21/02 15:11 1014.97 76.93 3/21/02 15:12 1014.97 76.93	3/21/02 16:59 1014.83 76:53 3/21/02 17:00 1014.82 76:53	3/21/02 18:47	1014.74 76.2
3/21/02 13:25 1015.07 77.42	3/21/02 15:13 1014.96 76.93	3/21/02 17:00 1014:82 76:53	3/21/02 18:48 3/21/02 18:49	1014.74 76.2 1014.75 76.19
3/21/02 13:26 1015.07 77.42	3/21/02 15:14 1014.95 76.93	3/21/02 17:02 1014.83 76.53	3/21/02 18:50	1014.75 76.18
3/21/02 13:28 1015.06 77.41	3/21/02 15:16 1014.96 76.92	3/21/02 17:04 1014.84 76.53	3/21/02 18:52	1014.76 76.18
3/21/02 13:29 1015.06 77.4 3/21/02 13:30 1015.07 77.4	3/21/02 15:17 1014.96 76.92 3/21/02 15:18 1014.96 76.91	3/21/02 17:05 1014.84 76.53	3/21/02 18:53	1014.75 76.19
3/21/02 13:31 1015.07 77:39	3/21/02 15:18 1014.96 76.91 3/21/02 15:19 1014.95 76.91	3/21/02 17:06 1014.83 76.53 3/21/02 17:07 1014.83 76.53	3/21/02 18:54 3/21/02 18:55	1014.75 76.19 1014.74 76.2
3/21/02 13:32 1015.06 77.38	3/21/02 15:20 1014.95 76.91	3/21/02 17:08 1014.83 76.53	3/21/02 18:56	1014.74 76.21
3/21/02 13:34 1015.06 77,37	3/21/02 15:22 1014.95 76.9	3/21/02 17:10 1014.82 76.53	3/21/02 18:58	1014.75 76.21
3/21/02 13:35 1015.06 77.37 3/21/02 13:36 1015.06 77.36	3/21/02 15:23 1014.95 76.89	3/21/02 17:11 1014.82 76.53	3/21/02 18:59	1014.74 76.2
3/21/02 13:37 1015:06 77:36	3/21/02 15:24 1014.95 76.88 3/21/02 15:25 1014.95 76.88	3/21/02 17:12 1014.82 76.52 3/21/02 17:13 1014.82 76.52	3/21/02 19:00	1014.74 76.19
3/21/02 13:38 1015.07 77:35	3/21/02 15:26 1014.95 76.87	3/21/02 17:14 1014.82 76.51	3/21/02 19:01 3/21/02 19:02	1014.75 76.19 1014.75 76.18
3/21/02 13:40 1015.06 77.35	3/21/02 15:28 1014.95 76.86	3/21/02 17:16 1014.82 76.51	3/21/02 19:04	1014.73 76.17
3/21/02 13:41 1015.06 77.35	3/21/02 15:29 1014.94 76.86	3/21/02 17:17 1014.82 76.5	3/21/02 19:05	1014.73 76.17
3/21/02 13:42 1015.05 77.34 3/21/02 13:43 1015.05 77.34	3/21/02 15:30 1014,95 76.86 3/21/02 15:31 1014,94 76.86	3/21/02 17:18 1014.81 76.5 3/21/02 17:19 1014.82 76.5	3/21/02 19:06	1014.73 76.16
3/21/02 13:44 1015.05 77.34	3/21/02 15:32 1014.93 76.86	3/21/02 17:19 1014.62 76.5	3/21/02 19:07 3/21/02 19:08	1014.73 76.15 1014.73 76.15
3/21/02 13:46 1015.06 77.34	3/21/02 15:34 1014.93 76.85	3/21/02 17:22 1014.81 76.49	3/21/02 19:10	1014.74 76.14
3/21/02 13:47 1015.05 77.33	3/21/02 15:35 1014.93 76.85	3/21/02 17:23 1014.81 76.49	3/21/02 19:11	1014.75 76.14
3/21/02 13:48 1015.05 77.33 3/21/02 13:49 1015.05 77.33	3/21/02 15:36 1014.93 76.85 3/21/02 15:37 1014.93 76.84	3/21/02 17:24 1014.81 76.48	3/21/02 19:12	1014.75 76.14
3/21/02 13:50 1015.05 77.33	3/21/02 15:38 1014.94 76.84	3/21/02 17:25 1014.82 76.48 3/21/02 17:26 1014.82 76.48	3/21/02 19:13 3/21/02 19:14	1014.74 76.14 1014.74 76.14
3/21/02 13:52 1015.03 77.31	3/21/02 15:40 1014.93 76.83	3/21/02 17:28 1014.81 76.47	3/21/02 19:16	1014.75 76.14
3/21/02 13:53 1015.03 77.3	3/21/02 15:41 1014.92 76.82	3/21/02 17:29 1014.82 76.47	3/21/02 19:17	1014.74 76.13
3/21/02 13:54 1015.04 77.29 3/21/02 13:55 1015.03 77.28	3/21/02 15:42 1014.92 76.81 3/21/02 15:43 1014.91 76.81	3/21/02 17:30 1014.82 76.47	3/21/02 19:18	1014.73 76.13
3/21/02 13:56 1015.04 77.27	3/21/02 15:43 1014,91 76.81 3/21/02 15:44 1014,92 76.8	3/21/02 17:31 1014.81 76.47 3/21/02 17:32 1014.8 76.47	3/21/02 19:19 3/21/02 19:20	1014.72 76.12 1014.72 76.12
3/21/02 13:58 1015.04 77.25	3/21/02 15:46 1014.92 76.79	3/21/02 17:34 1014.8 76.47	3/21/02 19:22	1014.72 76.12
3/21/02 13:59 1015.05 77.25	3/21/02 15:47 1014.91 76.79	3/21/02 17:35 1014.8 76.46	3/21/02 19:23	1014.71 76.11
3/21/02 14:00 1015.05 77.25	3/21/02 15:48 1014.92 76.78	3/21/02 17:36 1014.8 76.45	3/21/02 19:24	1014.72 76.11
3/21/02 14:01 1015.04 //.25 3/21/02 14:02 1015.05 77.24	3/21/02 15:49 1014.92 76.78 3/21/02 15:50 1014.91 76.77	3/21/02 17:37 1014.82 76.44 3/21/02 17:38 1014.82 76.43	3/21/02 19:25	1014.73 76.11
3/21/02 14:04 1015.03 77.24	3/21/02 15:52 1014.92 76.77	3/21/02 17:40 1014.8 76.43	3/21/02 19:26 3/21/02 19:28	1014.74 76.11 1014.73 76.1
3/21/02 14:05 1015.03 77.24	3/21/02 15:53 1014.91 76.76	3/21/02 17:41 1014.8 76.43	3/21/02 19:29	1014.72 76.1
3/21/02 14:06 1015.03 77.23 3/21/02 14:07 1015.03 77.23	3/21/02 15:54 1014.91 76.76	3/21/02 17:42 1014.8 76.43	3/21/02 19:30	1014.73 76.09
3/21/02 14:07 1015.03 77.23 3/21/02 14:08 1015.03 77.23	3/21/02 15:55 1014.92 76.75 3/21/02 15:56 1014.92 76.75	3/21/02 17:43 1014.79 76.42 3/21/02 17:44 1014.79 76.42	3/21/02 19:31	1014.72 76.09
3/21/02 14:10 1015.03 77.22	3/21/02 15:58 1014.91 76.74	3/21/02 17:44 1014.79 76.42 3/21/02 17:46 1014.79 76.42	3/21/02 19:32 3/21/02 19:34	1014.74 76.08 1014.74 76.08
3/21/02 14:11 1015.03 77.22	3/21/02 15:59 1014.9 76.74	3/21/02 17:47 1014.79 76.41	3/21/02 19:35	1014.73 76.08
3/21/02 14:12 1015.02 77.21	3/21/02 16:00 1014.9 76.74	3/21/02 17:48 1014.79 76.41	3/21/02 19:36	1014.73 76.08
3/21/02 14:13 1015.02 77.21 3/21/02 14:14 1015.02 77.2	3/21/02 16:01 1014.91 76.74 3/21/02 16:02 1014.9 76.74	3/21/02 17:49 1014.79 76.4 3/21/02 17:50 1014.79 76.39	3/21/02 19:37	1014.73 76.07
3/21/02 14:16 1015.02 77.19	3/21/02 16:04 1014.9 76.74	3/21/02 17:50 1014.79 76:39 3/21/02 17:52 1014.78 76:39	3/21/02 19:38 3/21/02 19:40	1014.72 76.07 1014.73 76.07
3/21/02 14:17 1015.02 77.18	3/21/02 16:05 1014.89 76.73	3/21/02 17:53 1014.79 76.39	3/21/02 19:41	1014.73 76.07
3/21/02 14:18 1015.02 77.18 3/21/02 14:19 1015.01 77.17	3/21/02 16:06 1014.9 76.73	3/21/02 17:54 1014.79 76:39	3/21/02 19:42	1014.74 76.06
3/21/02 14:19 1015.01 77.17 3/21/02 14:20 1015.01 77.16	3/21/02 16:07 1014.91 76.72 3/21/02 16:08 1014.9 76.72	3/21/02 17:55 1014.78 76.39 3/21/02 17:56 1014.78 76.39	3/21/02 19:43	1014.74 76.06
3/21/02 14:22 1015.02 77.15	3/21/02 16:06 10 14:9 76:72	3/21/02 17:56 1014.78 76:39 3/21/02 17:58 1014.77 76:38	3/21/02 19:44 3/21/02 19:46	1014.72 76.06 1014.73 76.06
3/21/02 14:23 1015.01 77.15	3/21/02 16:11 1014.9 76.71	3/21/02 17:59 1014.78 76.38	3/21/02 19:47	1014.73 76.06
3/21/02 14:24 1015.01 77.14	3/21/02 16:12 1014.9 76.71	3/21/02 18:00 1014.79 76.37	3/21/02 19:48	1014.74 76.06
3/21/02 14:25 1015.03 77.14 3/21/02 14:26 1015.02 77.13	3/21/02 16:13 1014.9 76.71	3/21/02 18:01 1014.78 76.37	3/21/02 19:49	1014.73 76.07
3/21/02 14:28 1015.01 77.13	3/21/02 16:14 1014.89 76.71 3/21/02 16:16 1014.88 76.7	3/21/02 18:02 1014.78 76:36 3/21/02 18:04 1014.77 76:35	3/21/02 19:50	1014.73 76.07
3/21/02 14:29 1015.02 77.12	3/21/02 16:17 1014.89 76.69	3/21/02 18:04 1014.77 76:35 3/21/02 18:05 1014.77 76:35	3/21/02 19:52 3/21/02 19:53	1014.72 76.07 1014.72 76.06
3/21/02 14:30 1015.01 77.12	3/21/02 16:18 1014.88 76.69	3/21/02 18:06 1014.77 76.35	3/21/02 19:54	1014.72 76.06
3/21/02 14:31 1015.01 77.12	3/21/02 16:19 1014.88 76.68	3/21/02 18:07 1014.79 76.35	3/21/02 19:55	1014.72 76.06
3/21/02 14:32 10:15:01 77:11 3/21/02 14:34 10:15 77:1	3/21/02 16:20 1014.88 76.67 3/21/02 16:22 1014.89 76.66	3/21/02 18:08 1014.79 76:35	3/21/02 19:56	1014.72 76.05
3/21/02 14:35 1015.01 77.1	3/21/02 16:23 1014.87 76.66	3/21/02 18:10 1014.76 76.34 3/21/02 18:11 1014.76 76.33	3/21/02 19:58 3/21/02 19:59	1014.73 76.05 1014.72 76.05
		record	J. 1.02 (9.03	1917.12 19.00

		DOWNHOLE		DOWNHOLE	DOWNHOLE
Date Time		Temp (F)	Date Time	(psi)	Temp (F)
3/21/02 20:00		76.05	3/21/02 21:48	1014.73	75.74
3/21/02 20:01 3/21/02 20:02		76.05	3/21/02 21:49	1014.73	75.74
3/21/02 20:04		76.05 76.04	3/21/02 21:50 3/21/02 21:52	1014.74 1014.75	75.74 75.73
3/21/02 20:05		76.03	3/21/02 21:53	1014.75	75.72
3/21/02 20:06		76.03	3/21/02 21:54	1014.74	75.71
3/21/02 20:07		76.02	3/21/02 21:55	1014.75	75.7
3/21/02 20:08		76.01	3/21/02 21:56	1014.74	75.69
3/21/02 20:10		76	3/21/02 21:58	1014.74	75.68
3/21/02 20:11		76	3/21/02 21:59	1014.73	75.68
3/21/02 20:12		76 76	3/21/02 22:00	1014.75	75.67
3/21/02 20:13 3/21/02 20:14		76 76	3/21/02 22:01 3/21/02 22:02	1014.75 1014.75	75.67
3/21/02 20:16		76	3/21/02 22:04	1014.76	75.66 75.66
3/21/02 20:17		75.99	3/21/02 22:05	1014.76	75.65
3/21/02 20:18		75.99	3/21/02 22:06	1014.76	75.65
3/21/02 20:19		75.99	3/21/02 22:07	1014.75	75.64
3/21/02 20:20		75.98	3/21/02 22:08	1014.72	75.64
3/21/02 20:22		75.98	3/21/02 22:10	944.9	75.84
3/21/02 20:23 3/21/02 20:24		75.97 75.07	3/21/02 22:11	836.79	76.05
3/21/02 20:25		75.97 75.97	3/21/02 22:12 3/21/02 22:13	724.09 609.52	76.26 76.47
3/21/02 20:26		75.96	3/21/02 22:14	494.71	76.68
3/21/02 20:28		75.97	3/21/02 22:16	262.02	77.52
3/21/02 20:29		75.97	3/21/02 22:17	144.64	78.14
3/21/02 20:30	1014.72	75.98	3/21/02 22:18	52.17	78.77
3/21/02 20:31	1014.72	75.98	3/21/02 22:19	33.62	79.39
3/21/02 20:32		75.99	3/21/02 22:20	23.63	80.02
3/21/02 20:34 3/21/02 20:35		75.98			
3/21/02 20:36		75.96 75.94			
3/21/02 20:37	1014.71	75.93			
3/21/02 20:38		75.91			
3/21/02 20:40	1014.71	75.89			
3/21/02 20:41	1014.72	75.89			
3/21/02 20:42	1014.72	75.89			
3/21/02 20:43	1014.72	75.89			
3/21/02 20:44 3/21/02 20:46	1014.73 1014.73	75.9			
3/21/02 20:47	1014.73	75.9 75.91			
3/21/02 20:48	1014.72	75.92			
3/21/02 20:49	1014.72	75.92			
3/21/02 20:50	1014.71	75.93			
3/21/02 20:52	1014.69	75.93			
3/21/02 20:53	1014.7	75.92			
3/21/02 20:54	1014.72	75.91			
3/21/02 20:55 3/21/02 20:56	1014.73 1014.74	75.9 75.89			
3/21/02 20:58	1014.71	75.88			
3/21/02 20:59	1014.71	75.87			
3/21/02 21:00	1014.72	75.87			
3/21/02 21:01	1014.73	75.86			
3/21/02 21:02	1014.72	75.86			
3/21/02 21:04	1014.71	75.85			
3/21/02 21:05	1014.72	75.85			
3/21/02 21:06 3/21/02 21:07	1014.72 1014.72	75.84 75.84			
3/21/02 21:08	1014.72	75.83			
3/21/02 21:10	1014.73	75.83			
3/21/02 21:11	1014.73	75.84			
3/21/02 21:12	1014.73	75.84			
3/21/02 21:13	1014.75	75.85			
3/21/02 21:14	1014.74	75.85			
3/21/02 21:16	1014.73	75.86			
3/21/02 21:17 3/21/02 21:18	1014.72 1014.72	75.86 75.86			
3/21/02 21:19	1014.72	75.86			
3/21/02 21:20	1014.72	75.85			
3/21/02 21:22	1014.71	75.85			
3/21/02 21:23	1014.73	75.85			
3/21/02 21:24	1014.72	75.84			
3/21/02 21:25	1014.71	75.84			
3/21/02 21:26	1014.73	75.84			
3/21/02 21:28 3/21/02 21:29	1014.73	75.83			
3/21/02 21:30	1014.73 1014.72	75.82 75.81			
3/21/02 21:31	1014.72	75.81 75.81			
3/21/02 21:32	1014.71	75.8			
3/21/02 21:34	1014.72	75.79			
3/21/02 21:35	1014.73	75.78			
3/21/02 21:36	1014.7	75.77			
3/21/02 21:37	1014.71	75.77			
3/21/02 21:38	1014.72	75.76			
3/21/02 21:40 3/21/02 21:41	1014.73 1014.73	75.75 75.75			
3/21/02 21:42	1014.73	75.75 75.75			
3/21/02 21:43	1014.75	75.74 75.74			
3/21/02 21:44	1014.74	75.74			
3/21/02 21:46	1014.74	75.74			
3/21/02 21:47	1014.74	75.74			

Project No.: 40368 6 of 8

Transducer Calibration Report
City of Pompano Beach Injection Test

Calibration Report

210 S. Third Street, Laramie, Wyoming 82070 U.S.A. (TEL) 1-800-446-7488, 307-742-8213 (FAX) 307-721-7598

Visit us on the Internet at www.in-situ.com!

Report Number:

2001101614000306

Calibration Result:

PASSED

2001-10-16
PXD-261
689.5 kPa (100 PSI) Gauge
In-Situ
306

Calibration Procedures and Equipment Used:

1. Automated software calibration procedures used

Range of Applied Temperatures: 4.53 C to 29.38 C

Range of Applied Pressures:

-0.1172 kPa (-0.0170 PSI) to 689.4771 kPa (100.0002 PSI)

Calibration Coefficients:

Linearity	0.1327
Scale	100.1588
Offset	-0.0292

PASS/FAIL Criteria:

Thermal Hysteresis (%FS)

	Applied Pressure		Current mA	\neg	
Zero Response	-0.1172 kPa (-0.0	170 PSI)	4.004	PASSED	
Full Scale Response	689.4771 kPa (10	0.0002 PSI)	19.958	PASSE	
	Minimum	Maxim	um	7	
Temperature Stability (%FS)	-0.091	0.085	· · · · · · · · · · · · · · · · · · ·	PASS	
Repeatability at 15 C (%FS)	-0.008	0.012		PASSE	
				_ 	
Hysteresis (%FS)	0.020			PASS	

Test Performed By:	JMD	Test Verified By:		
--------------------	-----	-------------------	--	--

PASSED

0.006

Calibration Report

210 S. Third Street, Laramie, Wyoming 82070 U.S.A. (TEL) 1-800-446-7488, 307-742-8213 (FAX) 307-721-7598

Visit us on the Internet at www.in-situ.com!

Report Number: 2001090502005604

Calibration Result:

PASSED

2001-09-05
PXD-261
689.5 kPa (100 PSI) Gauge
In-Situ
5604
-

Calibration Procedures and Equipment Used:

1. Automated software calibration procedures used

Range of Applied Temperatures:

5.11 C to 29.89 C

Range of Applied Pressures:

0.0552 kPa (0.0080 PSI) to 689.4812 kPa (100.0008 PSI)

Calibration Coefficients:

Linearity	0.3515
Scale	99.7492
Offset	0.1600

PΔ	22	/F	ш	Cri	ter	ia·

	Applied Pressure		Current mA	
Zero Response	0.0552 kPa (0.008	30 PSI)	3.976	PASSED
Full Scale Response	689.4812 kPa (10	0.0008 PSI)	19.958	PASSED
	Minimum	Maximu	ım	7
Temperature Stability (%FS)	-0.082	0.096		PASSED
Repeatability at 15 C (%FS)	-0.004	0.010		PASSED
Hysteresis (%FS)	0.010			PASSED
Thermal Hysteresis (%FS)	0.015			PASSED

Test Performed By:	DJK	Test Verified By:		
--------------------	-----	-------------------	--	--

Calibration Report

210 S. Third Street, Laramie, Wyoming 82070 U.S.A. (TEL) 1-800-446-7488, 307-742-8213 (FAX) 307-721-7598

Visit us on the Internet at www.in-situ.com!

Report Number:

2001120220005323

Calibration Result:

PASSED

2001-12-02
PXD-261
137.9 kPa (20 PSI) Gauge
In-Situ
5323

Calibration Procedures and Equipment Used:

1. Automated software calibration procedures used

Applied Pressure

Range of Applied Temperatures:

4.88 C to 29.89 C

Range of Applied Pressures:

0.0097 kPa (0.0014 PSI) to 137.8958 kPa (20.0001 PSI)

Current mA

Calibration Coefficients:

Linearity	0.1299
Scale	19.7035
Offset	-0.0407

PASS/FAIL Criteria:

			Carronting	
Zero Response	0.0097 kPa (0.00°	14 PSI)	4.035	PASSED
Full Scale Response	137.8958 kPa (20.0001 PSI)		20.166	PASSED
	Minimum	Maxim	um	⊒
Temperature Stability (%FS)	-0.135	0.027		PASSED
Repeatability at 15 C (%FS)	-0.006	0.006		PASSED
Hysteresis (%FS)	0.010			PASSED
Thermal Hysteresis (%FS)	0.008			PASSED

Test Performed By:	JMD	Test Verified By:	
--------------------	-----	-------------------	--

Calibration Report

210 S. Third Street, Laramie, Wyoming 82070 U.S.A. (TEL) 1-800-446-7488, 307-742-8213 (FAX) 307-721-7598

Visit us on the Internet at www.in-situ.com!

Report Number: | 2001120220000472

Calibration Result:

PASSED

Calibration Date:	2001-12-02
Model:	PXD-261
Full Scale Pressure Range:	137.9 kPa (20 PSI) Gauge
Manufacturer:	In-Situ
Serial Number:	472

Calibration Procedures and Equipment Used:

1. Automated software calibration procedures used

Range of Applied Temperatures: 4.88 C to 29.89 C

Range of Applied Pressures: 0.0097 kPa (0.0014 PSI) to 137.8958 kPa (20.0001 PSI)

Calibration Coefficients:

Linearity	0.0957
Scale	19.8250
Offset	-0.1433

				teria	

	Applied Pressure	Current mA	
Zero Response	0.0097 kPa (0.0014 PSI)	4.117	PASSED
Full Scale Response	137.8958 kPa (20.0001 PSI)	20.178	PASSED

	Minimum	Maximum	
Temperature Stability (%FS)	-0.160	-0.033	PASSED
Repeatability at 15 C (%FS)	-0.007	0.007	PASSED

Hysteresis (%FS)	0.012	PASSED
Thermal Hysteresis (%FS)	0.014	PASSED

Test Performed By:	JMD	Test Verified By:	
•	l i	· - · · · · · · · · · · · · · · ·	

Calibration Report

210 S. Third Street, Laramie, Wyoming 82070 U.S.A. (TEL) 1-800-446-7488, 307-742-8213 (FAX) 307-721-7598

Visit us on the Internet at www.in-situ.com!

Report Nu	ımber:
-----------	--------

2001092122005076

Calibration Result:

PASSED

Calibration Date:	2001-09-21	
Model:	PXD-261	
Full Scale Pressure Range:	137.9 kPa (20 PSI) Gauge	
Manufacturer:	In-Situ	
Serial Number:	5076	

Calibration Procedures and Equipment Used:

1. Automated software calibration procedures used

Range of Applied Temperatures:

4.99 C to 29.84 C

Applied Pressure

0.028

Range of Applied Pressures:

0.3378 kPa (0.0490 PSI) to 137.8993 kPa (20.0006 PSI)

Current mA

Calibration Coefficients:

Linearity	0.1150
Scale	19.9247
Offset	-0.0785

PASS/FAIL Criteria:

Thermal Hysteresis (%FS)

Zero Response	0.3378 kPa (0.049		4.102 20.031	PASSED PASSED
Full Scale Response	137.8993 kPa (20.0006 PSI)		20.031	PASSED
	Minimum	Maxim	um	
Temperature Stability (%FS)	-0.081	0.092		PASSED
Repeatability at 15 C (%FS)	-0.006	0.010		PASSED
Ulvetarasia (P/ES)	10044			PASSED
Hysteresis (%FS)	0.014			FASSLD

		Ì		
Test Performed By:	JMD	Test Verified By:		
restrenonned by.	JITID	lest vermed by.		

PASSED

Calibration Report

210 S. Third Street, Laramie, Wyoming 82070 U.S.A. (TEL) 1-800-446-7488, 307-742-8213 (FAX) 307-721-7598

Visit us on the Internet at www.in-situ.com!

Report Number:

2001092122000462

Calibration Result:

PASSED

Calibration Date:	2001-09-21	····
Model:	PXD-261	
Full Scale Pressure Range:	137.9 kPa (20 PSI) Gauge	
Manufacturer:	In-Situ	
Serial Number:	462	

Calibration Procedures and Equipment Used:

1. Automated software calibration procedures used

Range of Applied Temperatures:

4.99 C to 29.84 C

Applied Pressure

0.3378 kPa (0.0490 PSI)

Range of Applied Pressures:

0.3378 kPa (0.0490 PSI) to 137.8993 kPa (20.0006 PSI)

Current mA

3.977

Calibration Coefficients:

Linearity	0.1226
Scale	19.8711
Offset	0.0783

PASS/FAIL Criteria:

Zero Response

Full Scale Response	137.8993 kPa (20	.0006 PSI) 19.943	PASSED
	Minimum	Maximum	
Temperature Stability (%FS)	-0.135	0.026	PASSED
Repeatability at 15 C (%FS)	-0.008	0.008	PASSED

Hysteresis (%FS)	0.009	<u>PASSED</u>
Thermal Hysteresis (%FS)	0.019	PASSED

Test Performed By:	JMD	Test Verified By:	

PASSED

WATER METER ACCURACY TEST REPORT

_		SERIAL	LESIM	T	
<u></u>	MAKE	1	LOW	INT.	HIGH
#	MAKE	NUMBER	FLOW	FLOW	FLOW
1	2"	USAGES			
2	USG	BEFORE	<u> </u>		<u> </u>
3	MTRS	TEST			
4			<u> </u>		
5		SR# 2849837	101.0	101.1	100.7
6	USAGES	1088700			
7			<u> </u>		
8		SR # 2738503	99.1	99.8	99.5
9	USAGES	259200	<u> </u>		
10			<u> </u>		
11	USAGES	SR # 2363373	100.0	105.5	107.0
12		956000	ļ. <u></u>		
13			5 GPM	8 GPM	<u>65 GPM</u>
14		,	<u> </u>		
15		USAGES	<u> </u>		
16		AFTER			
17		TESTED	ļ		
18					
19	<u> </u>	SR# 2849837			
20		1089100			
21					_
22		SR #2738503			
23		260100		,	
24					
25		SR # 2363373	100.7	100.6	99.6
26		957500	<u></u>		
27			<u> 5 GPM</u>	<u>8 GPM</u>	<u>65 GPM</u>
28				<u></u>	
29					
30	·			-	
31					
32					
33					
34		<u>_</u>			
35					
36					
37					
38					
39		-			
40					
41	Γ				
42					
43					
44					
45					
46					
47					
48			₹		

1001 McKesson Dr. Longview, TX 75604 (903) 297-0635 (800) 765-6518 FAX (903) 297-5963 RMA # 5007

CUSTOMER: YOUNGQUIST BROS INC.

TEST DATE: 9/24/01
TESTER: STEVE WHITE

NOTE:

Accuracy limits according to AWWA C708-96

* 97% - 103% for Low Flows

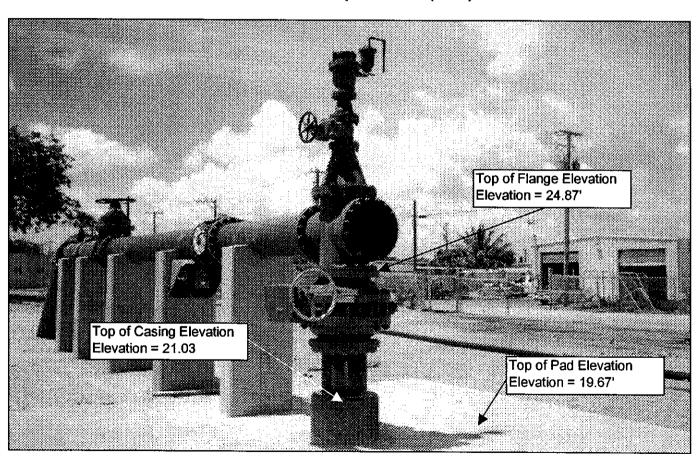
* 98.5% - 101.5% for Intermediate and High Flows

*Accuracy limits for meters removed from service according to M-6 Manual Table 5-1

*80% - 104.0% for Low Flows

*96% - 102.0% for Intermediate and High Flows

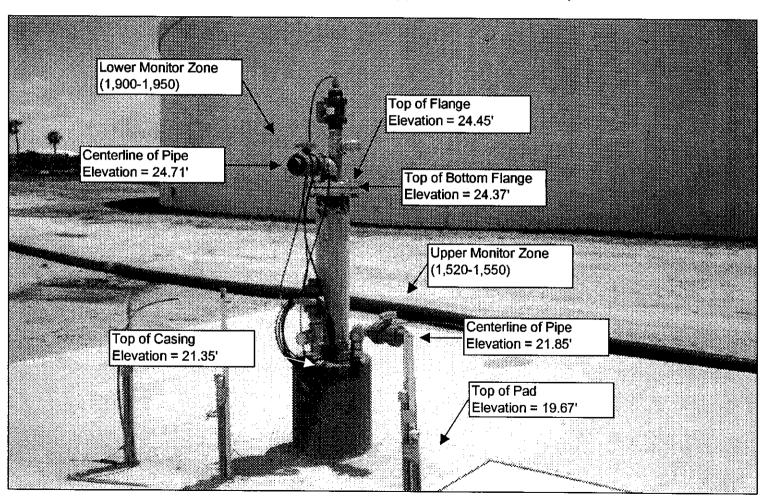
METERTEST RECORD


963052-Z

	OZONE INDII	0770150 000	6			D	ATE
· .	YOUNGQUIST	BROS.			SHOWN II TO THE B BELIEF. OF REGULARLY IS TRACEAS OF ST	TIFY THAT THE TENTH IS REPORT AND AN ACCURACE TO THE NATION AND ARDS & TECH	RE CORRECT WLEDGE AND IS CERTIFIED BY OF 0.2% AND NAL INSTITUTE NOLOGY.
FINAL TOTA	LIZER READING	<u>-</u>			BY:		·
FLOW RAT	TE:	STED ACCURAC	Y	FLOW RATE		NEW ACCURACY	'
G.P.M.	% ACCURACY	GEARS	INDEX	G.P.M	% ACCURACY	GEARS	INDEX
2992.2	00.01	39J/24D	.8487				```
1531.4	00.01	11	11	in the second			
338.4	98.1	11	11				
<u></u>		·					:
	D AVERAGE		· ·	•		TESTE	D INDEX
		// SPEC. I.D.	1	- 4.285		<u> </u>	
	PE I.D	STD. I.D.?		* STI	D. INDEX	=NEW IND	EX
CUSTO	MER PIPE SIZE		O.D	12.200	I.D	%	AS GEARED
	•	SF	PECIFICATION	ini	DEX	METER CHANG	SE GEARS
METER	SIZE/MODEL NO.	12" M	ODEL ML	-03		SEE.	. •
TOTALI	ZER DIAL	1000 (GALLONS			A/B = ABO\	/E
	TOR DIAL ZER GEARING		256/1			GEAR RATIO	
PROP. SIZE .		TYPE			_ BEARINGS		
ACCESSORIE	S						
 ,							·
BUILT BY				DATE BU	JILT		
NU DATE		INV NO .		CKD. BY '_			

City of Pompano Beach Concentrate Disposal System

Project No. 40368


Concentrate Disposal Well (IW-1)

City of Pompano Beach Concentrate Disposal System

Project No. 40368

Concentrate Disposal Well (MW-1 Upper and Lower Zones)

NAD 83/90 SEOGRAPHIC COORDINATE - N 26'14'38.52405" W 080'06'54.25868" NAD 83/90 STATE PLANE COORDINATE - FLORIDA EAST ZONE NORTHING: 211,951.723 (MT) LATITUDE: N 26"14"42.569" LONGITUDE: W 80"07'14.719" EASTING: 288,410.086 (MT) YOUNGOUIST BROTHERS, INC. PAD AT WELL = +19.67 (MONITOR WELL) Has Reviewed this Shop Drawing/Submittal CONC. PAD YBI/Section No. #0/ 300 -04-A Transmittal No. # 0 5/ Date: 4/25/02 Signature PAD AT WELL = +19.67 (INTECTION WELL) TYPICAL ELEVATION CONTROL STATION "V 234" CONC. PAD o S.79°44'25°E. 1868.42' NORTHING: 695378.2772 (FT) EASTING: 946225.4237 (FT) INJECTION WELL NORTHING: 695711.07 (FT) LEGEND: EASTING: 944386.88 (FT)

FT.= FEET

MT. = METERS

CONC.= CONCRETE

PREPARED FOR:

YOUNGQUIST BROTHERS, INC.

DESIGNATION - V 234

- AD2599 STATE/COUNTY - FL/BROWARD

USGS QUAD - POMPANO BEACH (1983)

INJECTION WELL

NORTHING: 695773.97 (FT)

944359.68 (FT)

LATITUDE: N 26"14"41.944"

LONGITUDE: W 80'07'14.425"

EASTING:

THE COORDINATES SHOWN HEREON WERE BASED ON GPS REAL-TIME TIES TO "V 234" CONTROL STATION.

SURVEY PLAT

OF INJECTION WELLS LOCATED IN BROWARD COUNTY, FLORIDA

NOTES:

THIS PLAT PREPARED AS A SPECIFIC PURPOSE SURVEY FOR THE PURPOSE OF LOCATING THE INJECTION WELLS AND CONCRETE PADS WITH ELEVATIONS.

BEARINGS AND COORDINATES SHOWN HEREON ARE STATE PLANE FOR THE FLORIDA EAST ZONE NAO 83/1990 ADJUSTMENT AND BASED ON GPS REAL-TIME TIES TO CONTROL STATION "V 234".

ELEVATIONS SHOWN HEREON ARE BASED ON THE NATIONAL GEODETIC VERTICAL DATUM OF 1929 (NGVD 29), FROM TIES TO CONTROL STATION "V 234" ELEVATION = +18.04'.

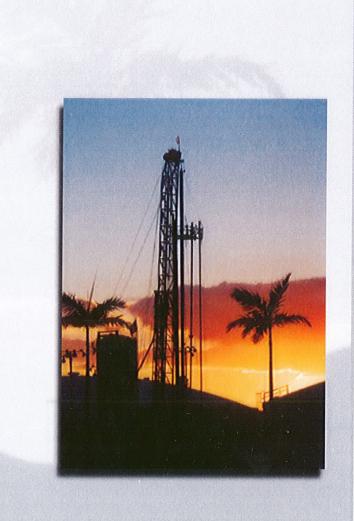
UNDERGROUND IMPROVEMENTS, UTILITIES AND/OR FOUNDATIONS WERE NOT LOCATED UNLESS OTHERWISE NOTED.

DATE OF LAST FIELD WORK:

4-17-2002

FOR THE FIRM:

SCOTT M. SHORE PROFESSIONAL SURVEYOR AND MAPPER FLORIDA CERTIFICATE NO. LS# 5743


DATE SIGNED:

4-22-2002

NOT VALID WITHOUT THE SIGNATURE AND THE ORIGINAL RAISED SEAL OF A FLORIDA LICENSED SURVEYOR AND MAPPER.

TITLE: SPECIFIC PURPOSE SURVEY 5245 RAMSEY WAY, SUITE #2 FORT MYERS, FLORIDA 33907 PHONE: (941) 275-8575 FAX: (941) 275-8457 SURVEYING & MAPPING, LLC LAND SURVEYORS PLANNERS LB# 7071 www.meridianfl.com

ILE NAME: FIELD BOOK/PAGE:			PROJECT NO.:		SHEET:
2784SR.DWG 54/02		2784		<u>1_0F_1_</u>	
SURVEY DATE:	DRAWN BY:	SCALE:	CHECKED BY:	FILE NO. (5-	T-R)
4-17-2002	SMS	1"≖ 30"	TLM/SMS		

