

City of Hollywood

Engineering Well Completion Report City of Hollywood Southern Regional WWTP Injection Well Effluent Disposal System

Prepared for City of Hollywood City Project No. 95-9713

Prepared by: HAZEN AND SAWYER Environmental Engineers & Scientists

In Association with Water Technologies Associates, Inc. Project No. 4304

August 2003

ï

PERMIT/CERTIFICATION NO. 156419-001-UC DATE OF ISSUE: APR 1 5 2002 EXPIRATION DATE: APR 1 4 2004 PROJECT: IW-1, IW-2 and MW-1

GENERAL CONDITIONS:

The following General Conditions are referenced in Florida Administrative Code Rule 62-528.307.

- 1. The terms, conditions, requirements, limitations and restrictions set forth in this permit are "permit conditions" and are binding and enforceable pursuant to Section 403.141, F.S.
- This permit is valid only for the specific processes and operations applied for and indicated in the approved drawings or exhibits. Any unauthorized deviation from the approved drawings, exhibits, specifications, or conditions of this permit may constitute grounds for revocation and enforcement action.
- 3. As provided in subsection 403.087(7), F.S., the issuance of this permit does not convey any vested rights or exclusive privileges. Neither does it authorize any injury to public or private property or any invasion of personal rights, nor infringement of federal, state, or local laws or regulations. This permit is not a waiver of or approval of any other Department permit that may be required for other aspects of the total project which are not addressed in this permit.
- 4. This permit conveys no title to land, water, does not constitute State recognition or acknowledgment of title, and does not constitute authority for the use of submerged lands unless herein provided and the necessary title or leasehold interests have been obtained from the State. Only the Trustees of the Internal Improvement Trust Fund may express State opinion as to title.
- 5. This permit does not relieve the permittee from liability for harm to human health or welfare, animal, or plant life, or property caused by the construction or operation of this permitted source, or from penalties therefrom; nor does it allow the permittee to cause pollution in contravention of Florida Statutes and Department rules, unless specifically authorized by an order from the Department.
- 6. The permittee shall properly operate and maintain the facility and systems of treatment and control (and related appurtenances) that are installed and used by the permittee to achieve compliance with the conditions of this permit, or are required by Department rules. This provision includes the operation of backup or auxiliary facilities or similar systems when necessary to achieve compliance with the conditions of the permit and when required by Department rules.
- 7. The permittee, by accepting this permit, specifically agrees to allow authorized Department personnel, upon presentation of credentials or other documents as may be required by law and at reasonable times, access to the premises where the permitted activity is located or conducted to:
 - a. Have access to and copy any records that must be kept under conditions of this permit;
 - b. Inspect the facility, equipment, practices, or operations regulated or required under this permit; and
 - c. Sample or monitor any substances or parameters at any location reasonably necessary to assure compliance with this permit or Department rules.

Reasonable time will depend on the nature of the concern being investigated.

- 8. If, for any reason, the permittee does not comply with or will be unable to comply with any condition or limitation specified in this permit, the permittee shall immediately provide the Department with the following information:
 - a. A description of and cause of noncompliance; and
 - b. The period of noncompliance, including dates and times; or, if not corrected the anticipated time the noncompliance is expected to continue, and steps being taken to reduce, eliminate, and prevent the recurrence of the noncompliance. The permittee shall be responsible for any and all

PERMIT/CERTIFICATION NO 156419-001-UC DATE OF ISSUE: EXPIRATION DATE: APR 1 4 2002 PROJECT: IW-1, IW-2 and MW-1

damages which may result and may be subject to enforcement action by the Department for penalties or for revocation of this permit.

- 9. In accepting this permit, the permittee understands and agrees that all records, notes, monitoring data and other information relating to the construction or operation of this permitted source which are submitted to the Department may be used by the Department as evidence in any enforcement case involving the permitted source arising under the Florida Statutes or Department rules, except where such use is proscribed by Sections 403.111 and 403.73, F.S. Such evidence shall only be used to the extent it is consistent with the Florida Rules of Civil Procedure and appropriate evidentiary rules.
- 10. The permittee agrees to comply with changes in Department rules and Florida Statutes after a reasonable time for compliance; provided, however, the permittee does not waive any other rights granted by Florida Statutes or Department rules.
- 11. This permit is transferable only upon Department approval in accordance with rules 62-4.120 and 62-528.350, F.A.C. The permittee shall be liable for any non-compliance of the permitted activity until the transfer is approved by the Department.
- 12. This permit or a copy thereof shall be kept at the work site of the permitted activity.
- 13. The permittee shall comply with the following;
 - a. Upon request, the permittee shall furnish all records and plans required under Department rules. During enforcement actions, the retention period for all records shall be extended automatically unless the Department determines that the records are no longer required.
 - b. The permittee shall hold at the facility or other location designated by this permit records of all monitoring information (including calibration and maintenance records and all original strip chart recordings for continuous monitoring instrumentation) required by the permit, copies of all reports required by this permit, and records of all data used to complete the application for this permit. These materials shall be retained at least three years from the date of the sample, measurement, report, or application unless otherwise specified by Department rule.
 - c. Records of monitoring information shall include:
 - 1) the date, exact place, and time of sampling or measurements;
 - 2) the person responsible for performing the sampling or measurements;
 - 3) the dates analyses were performed;
 - the person responsible for performing the analyses;
 - 5) the analytical techniques or methods used;
 - 6) the results of such analyses.
 - d. The permittee shall furnish to the Department, within the time requested in writing, any information which the Department requests to determine whether cause exists for modifying, revoking and reissuing, or terminating this permit, or to determine compliance with this permit.
 - e. If the permittee becomes aware that relevant facts were not submitted or were incorrect in the permit application or in any report to the Department, such facts or information shall be corrected promptly.
- 14. All applications, reports, or information required by the Department shall be certified as being true, accurate, and complete.
- 15. Reports of compliance or noncompliance with, or any progress reports on, requirements contained in any compliance schedule of this permit shall be submitted no later than 14 days following each scheduled date.

PERMIT/CERTIFICATION NO...156419-001-UC DATE OF ISSUE: APR 1 4 2004 PROJECT: IW-1, IW-2 and MW-1

- 16. Any permit noncompliance constitutes a violation of the Safe Drinking Water Act and is grounds for enforcement action; for permit termination, revocation and reissuance, or modification; or for denial of a permit renewal application.
- 17. It shall not be a defense for a permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of this permit.
- 18. The permittee shall take all reasonable steps to minimize or correct any adverse impact on the environment resulting from noncompliance with this permit.
- 19. This permit may be modified, revoked and reissued, or terminated for cause, as provided in 40 CFR Sections 144.39(a), 144.40(a), and 144.41 (1998). The filing of a request by the permittee for a permit modification, revocation or reissuance, or termination, or a notification of planned changes or anticipated noncompliance, does not stay any permit condition.
- 20. The permittee shall retain all records of all monitoring information concerning the nature and composition of injected fluid until five years after completion of any plugging and abandonment procedures specified under Rule 62-528.435, F.A.C. The permittee shall deliver the records to the Department office that issued the permit at the conclusion of the retention period unless the permittee elects to continue retention of the records.
- 21. All reports and other submittals required to comply with this permit shall be signed by a person authorized under Rules 62-528.340(1) or (2), F.A.C. All reports shall contain the certification required in Rule 62-528.340(4), F.A.C.
- 22. The permittee shall notify the Department as soon as possible of any planned physical alterations or additions to the permitted facility. In addition, prior approval is required for activities described in Rule 62-528.410(1)(h), F.A.C.
- 23. The permittee shall give advance notice to the Department of any planned changes in the permitted facility or injection activity which may result in noncompliance with permit requirements.
- 24. The permittee shall report any noncompliance which may endanger health or the environment including:
 - a. Any monitoring or other information which indicates that any contaminant may cause an endangerment to an underground source of drinking water; or
 - b. Any noncompliance with a permit condition or malfunction of the injection system which may cause fluid migration into or between underground sources of drinking water.

Any information shall be provided orally within 24 hours from the time the permittee becomes aware of the circumstances. A written submission shall also be provided within 5 days of the time the permittee becomes aware of the circumstances. The written submission shall contain a description of the noncompliance and its cause, the period of noncompliance, including exact dates and times, and if the noncompliance has not been corrected, the anticipated time it is expected to continue; and the steps taken or planned to reduce, eliminate, and prevent reoccurrence of the noncompliance.

PERMIT/CERTIFICATION NO. 156419-001-UC DATE OF ISSUE: APR 1 5 2002 EXPIRATION DATE: APR 1 4 2004 PROJECT: IW-1, IW-2 and MW-1

1. GENERAL REQUIREMENTS

a) This permit is to construct and operationally test the City of Hollywood Southern Regional WWTP Class I injection wells, IW-1, IW-2 and an associated dual zone Floridan Aquifer monitor well, MW-1. This permit does not authorize the construction or testing of any other well or wells associated with the City of Hollywood Southern Regional WWTP, except as specified in this permit.

b) If injection is to continue beyond the expiration date of this permit the permittee shall apply for, and obtain an operation permit. If necessary to complete the two-year operational testing period, the permittee shall apply for renewal of the construction permit at least 60 days prior to the expiration date of this permit.

c) Proper operation and maintenance includes effective performance, adequate funding, adequate operator staffing and training, and adequate laboratory and process controls, including appropriate quality assurance procedures.

d) The permittee shall give advance notice to the Department of any planned changes in the permitted facility or injection activity which may result in noncompliance with permit requirements.

e) Pursuant to Rule 62-4.080(3), F.A.C., a permittee may request that a permit be extended as a modification of an existing permit. A request for an extension is the responsibility of the permittee and shall be submitted to the Department before the expiration of the permit. In accordance with Rule 62-4.070(4), F.A.C., a permit cannot be extended beyond the maximum 5 year statutory limit. Should operational testing need to continue beyond 5 year limit of this permit, the permittee must renew this construction permit.

2. SITE REQUIREMENTS

a) The measurement points for drilling and logging construction shall be surveyed and referenced to the National Geodetic Vertical Datum (NGVD) of 1983 prior to the onset of drilling activities for this injection well system.

b) The injection wells shall be surveyed by a Florida registered land surveyor for latitude and longitude and submitted on a site plan prior to commencement of construction activities.

c) A drilling and system construction schedule shall be submitted to the Department, the Underground Injection Control - Technical Advisory Committee (UIC-TAC) and the United States Environmental Protection Agency (USEPA), Region IV, Atlanta (special advisor to the UIC-TAC) prior to site preparation for the injection well system.

d) Four permanent surficial aquifer monitor wells, identified as Pad Monitor Wells (PMWs), shall be located at the corners of the injection well drilling pad(s) and identified by location number and pad location, i.e. NW, NE, SW, and SE. If located in a traffic area, the well head(s) must be protected by a traffic bearing enclosure and cover. Individual cover(s) must lock and be specifically marked to identify the well and its purpose.

i) These wells shall be sampled and analyzed prior to the onset of drilling for chlorides (mg/L), conductivity (µmhos/cm), temperature, and water level (relative to NGVD). Initial analyses must be submitted prior to the initiation of work.

ii) These wells are to be retained in service, sampled weekly for the above parameters during the construction phase and quarterly thereafter.

iii) These wells shall also be sampled 48 hours prior to any maintenance, testing or repairs to the system which represent an increased potential for accidental discharge to the surficial aquifer.

iv) The results of these analyses shall be submitted to the Department within 30 days of the completion of the activity.

A copy of the FDEP Southeast District Summary Sheet is attached for your use when reporting the above information.

3. CONSTRUCTION AND TESTING REQUIREMENTS

a) The Department shall be notified within 48 hours after work has commenced.

b) A revised set of contract documents that includes this permit and approved specification changes documented in all responses to requests for information (RFIs) shall be submitted to the Department, the UIC-TAC and the USEPA prior to construction.

c) Blow-out preventers or equal shall be installed on the wells prior to penetration of the Floridan Aquifer System.

d) Monitor Well MW-1 shall not be drilled below the base of the Hawthorn Group, until testing to determine the lower limit of the Underground Source of Drinking Water (USDW) in the injection well pilot hole is completed and the results are submitted to the Department for approval.

e) Hurricane Preparedness - Upon the issuance of a "Hurricane Watch" by the National Weather Service, the preparations to be made shall include but are not limited to the following:

i) Secure all on-site chemicals, and other stockpiled additive materials to prevent surface and/or aroundwater contamination.

ii) Properly secure drilling equipment and rig(s) to prevent damage to well(s) and on-site treatment process equipment as well as public property.

f) UIC-TAC and USEPA review and Department approval are required for the following stages of construction and testing, pursuant to Chapter 62-528, F.A.C.

i) Final updated contract documents, and project startup date

ii) Pre-construction monitoring data, results and interpretation of the shallow pad monitoring wells

ii) Intermediate injection well casing seat(s)

iii) Monitor zone selection and casing seat(s)

iii) Final injection well casing seat(s)

iv) Proposed cementing procedures (including cement volumes, number of stages) for the intermediate and final casing must be submitted with the caliper logs (reamed sections)

v) Short term injection testing

vi) Operational testing.

PERMIT/CERTIFICATION NO. 156419-001-UC DATE OF ISSUE: APR 1 5 2002 EXPIRATION DATE: APR 1 4 2004 PROJECT: IW-1, IW-2 and MW-1

g) The formation evaluation program shall consist of the construction and geophysical logging program, the formation core sampling program and the packer testing program.

h) The construction and geophysical logging program shall be implemented in accordance with this permit and as proposed in the submittals dated January 2001 "Construction Permit Application - Southern Regional Wastewater Treatment Plant Deep Well Injection System for the City of Hollywood, Florida" and the "Response to RFI on IW-1 and IW-2 Permit Application Hollywood Southern Regional WWTP" dated September 13, 2001. All depths specified are approximate. Exact depths will be determined based on field conditions and are subject to the conditions of this permit. The program shall, at a minimum, include:

Injection Wells IW-1 and IW-2

58-inch hole (0-200 feet bpl): caliper, gamma ray, temperature

Cement 50-inch casing (0-200 feet bpl): temperature (after each cement stage)

50-inch borehole (160-1000 feet bpl): caliper, gamma ray, temperature

Cement 42-inch casing (0-1000 feet bpl): temperature (after each cement stage)

12-inch pilot hole (1000-2000 feet bpl):

caliper, gamma ray, dual induction, borehole compensated w/VDL, temperature-static and dynamic, fluid resistance-static and pumping, flowmeter-static and pumping, video survey (downhole and radial color TV survey with rotating lens), borehole televiewer

42-inch borehole (1000-2000 feet bpl): caliper, gamma ray, temperature

Cement 34-inch casing (0-2000 feet bpl): temperature-static, after each cement stage

12-inch pilot hole (2000-3000 feet bpl):

caliper, gamma ray, dual induction, borehole compensated w/VDL, temperature-static and dynamic, fluid resistivity-static and pumping, flowmeter-static and pumping, video survey (downhole and radial color TV survey with rotating lens), borehole televiewer

Ream 34-inch hole (2000-3000 feet bpl): caliper, gamma ray, temperature

Cement 24-inch casing (0-3000 feet bpl):

temperature-static, after each cement stage, cement bond log with variable density display before cementing and after cementing

Complete well (3000 to 3500 feet bpl):

caliper, gamma ray, dual induction, borehole compensated w/VDL, temperature-static, fluid resistivity-static, video survey (downhole and radial color TV survey with rotating lens)

PERMIT/CERTIFICATION NO. 156419-001-UC DATE OF ISSUE: APR 1 5 2002 EXPIRATION DATE: APR 1 4 2004 PROJECT: IW-1, IW-2 and MW-1

Monitor Well MW-1

- 32-*inch borehole (0-200 feet bpl):* caliper, gamma ray, temperature
- Cement 24-inch casing (0-200 feet bpl): temperature-static, after each cement stage

24-inch borehole (160-1450 feet bpl): caliper, gamma ray, dual induction, borehole compensated w/VDL

Cement 16-inch casing (0-1400 feet bpl) for upper monitoring zone: temperature-static, after each cement stage, cement bond log with variable density display before cementing and after cementing

16-inch borehole (1400-1700 feet bpl):

caliper, gamma ray, dual induction, borehole compensated w/VDL, temperature-static and dynamic, fluid resistivity-static and pumping, flowmeter-static and pumping, video survey (downhole and radial color TV survey with rotating lens), borehole televiewer

Cement 6-inch casing (0-1650 feet bpl) for lower monitoring zone:

temperature-static, after each cement stage, cement bond log with variable density display before cementing and after cementing

The pumping logs for IW-1, IW-2 and MW-1 shall be run while pumping the borehole at a rate that adequately stresses the confining units, as shown by head loss across the beds, and allows the log interpreter to clearly identify the confining beds.

i) The formation core sampling program shall be implemented in accordance with this permit and as proposed in the submittals dated January 2001 "Construction Permit Application - Southern Regional Wastewater Treatment Plant Deep Well Injection System for the City of Hollywood, Florida" and the "Response to RFI on IW-1 and IW-2 Permit Application Hollywood Southern Regional WWTP" dated September 13, 2001. Exact depths will be determined based on field conditions and are subject to the conditions of this permit. The program shall, at a minimum, include five cores per injection well, taken from the base of the USDW to the top of the injection interval, at intervals which are to be field determined.

j) The packer testing program shall be implemented in accordance with this permit and as proposed in the submittals dated January 2001 "Construction Permit Application - Southern Regional Wastewater Treatment Plant Deep Well Injection System for the City of Hollywood, Florida" and the "Response to RFI on IW-1 and IW-2 Permit Application Hollywood Southern Regional WWTP" dated September 13, 2001. The program shall, at a minimum, include eight packer tests per injection well, at intervals which are to be field determined:

i) At least one straddle packer test conducted in each prospective monitor zone.

ii) At least 4 straddle packer tests conducted from the lowermost zone of the USDW to the top of the proposed injection horizon. These packer tests shall be used for the demonstration of confinement. For this reason the packer tests will be performed in the anticipated confining zones, from the base of the USDW to the top of the injection interval.

iii) Water samples shall be collected from each packer test, and analyzed for total dissolved solids, chlorides, conductivity, total nitrogen, nitrate, nitrite, organic nitrogen, ammonia, total Kjeldahl nitrogen and sulfate. A 5 gallon water sample from intervals where sufficient water is available,

PERMIT/CERTIFICATION NO. 156419-001-UC DATE OF ISSUE: APR 1 5 2002 EXPIRATION DATE: APR 1 4 2004 PROJECT: IW-1, IW-2 and MW-1

shall be collected at the end of the packer test. These samples shall be shipped to the Underground Injection Control Section of the Department of Environmental Protection, in Tallahassee.

k) The depth of the USDW and the background water quality of the monitor zones shall be determined during drilling and testing. Determination of the depth of the USDW, as a minimum, shall include:

i) Water samples from packer tests with analysis and interpretation

ii) Geophysical logging upon reaching the total depth of the appropriate pilot hole interval using the following logs: caliper, gamma, dual induction, borehole compensated sonic, pumping flow meter, temperature, and fluid resistivity.

iii) Plots of sonic porosity and apparent formation fluid resistivity (RWA). Interpretation will include the calculation of sonic porosity and RWA, and the input parameters used will be provided.

I) The confinement of the injection zone in the injection well system from overlying aquifers shall be monitored by the dual zone monitor well and a regular monitoring program. The lower interval is to be ideally positioned in a transmissive interval below the lowermost USDW, (i.e., where ground water has greater than 10,000 mg/L total dissolved solids, at an appropriate point above the injection interval and major confining units) to monitor for reasonable assurance of vertical confinement of injected fluids and external mechanical integrity of the injection wells. The upper interval shall ideally be positioned in a transmissive interval immediately above the base of the lowermost USDW, (i.e., where ground water has less than 10,000 mg/L total dissolved solids). If a sufficiently transmissive zone is not present below the lowermost 10,000 mg/L TDS interface and above the top of the injection horizon, as defined by testing during drilling, a sufficiently transmissive zone above the base of the lowermost USDW shall be utilized as the lower monitor zone and the upper monitor zone shall be established in lowermost interval within the USDW. The data and analysis supporting the selection of these monitoring intervals must be submitted to the Department, the UIC-TAC and the USEPA, Region IV, Atlanta after the collection, interpretation and analysis of all pertinent cores, geophysical logs and analysis of fluid samples. The hydrogeologic evaluation of the proposed monitoring zone will be submitted only after the collection, interpretation and analysis of all pertinent cores, packer tests, geophysical logs and analysis of fluid samples. The final selection of the specific upper and lower monitoring intervals shall be approved by the Department.

m) To identify the upper and lower monitoring zones, as a minimum, the following information from the injection well shall be analyzed, interpreted and submitted: borehole televiewer, the permeability of the transition zone in the vicinity of the USDW, packer test data including water quality (total dissolved solids, chloride, ammonia, total Kjeldahl nitrogen, and conductivity), the specific capacity of the upper and lower monitor zones, and the identification of the base of the USDW.

n) Recommended casing depths in IW-1, IW-2 and the monitor intervals in MW-1 shall be accompanied by technical justification, geophysical logs with engineering and geological interpretations and water quality data. Department approval shall be based on the permittee's presentation that shows compliance with Department rules and this permit.

o) Confinement shall be demonstrated using, at a minimum, directly measured lithologic properties, geophysical evidence, and tests performed while pumping the formation, as described in items i) through iv) below:

i) Formation tests shall include flow meter logs, packer tests, water quality sampling during packer tests, and analysis of drawdown curves measured during packer tests. These tests shall be conducted under pumping conditions to directly measure hydraulic properties of the confining beds.

ii) For the purpose of determining confinement, flow meter, temperature and fluid resistivity logs shall be run in the pilot hole from the base the USDW to the potential confining unit immediately

PERMIT/CERTIFICATION NO. 156419-001-UC DATE OF ISSUE: APR 1 5 2002 EXPIRATION DATE: APR 1 4 2004 PROJECT: IW-1, IW-2 and MW-1

prior to the intersection of the top of the injection interval, under pumping conditions, at a pumping rate that adequately stresses the confining beds (as demonstrated by head loss across the beds), so that the permeability of the zones within the potential confining intervals can be evaluated.

iii) Other geophysical logs will be used as indirect evidence to deduce or correlate formation properties measured in pumping tests and direct lithologic sample analysis.

iv) Lithologic properties measured in laboratory analyses of core samples shall include: hydraulic conductivity (vertical and horizontal) Young's modulus/elastic modulus formation factor, Archie's cementation exponent and coefficient, and specific gravity.

p) If effluent is encountered or suspected during pilot hole drilling and testing, the Department shall be notified immediately by telephone and in writing and immediate appropriate precautionary measures shall be taken to prevent any upward fluid movement. These measures include pumping barite through the drill rod to form a density balance plug to prevent any upward fluid movement. The permittee will then provide full documentation of the event to the Department which will include, but not be limited to, geophysical logging, packer testing and thief sampling. If the presence of effluent is confirmed, the permittee will notify the Department of its plan to place a cement plug or drillable packer assembly just above the documented presence of effluent, prior to continuation of testing of the pilot hole.

q) Mechanical integrity of the injection well system shall be determined pursuant to Rule 62-528.300(6)(b)2, and (c), F.A.C.

i) The pressure test shall be accepted if tested with a liquid filled casing at 1.5 times the expected operating pressure with a test tolerance of not greater than + or - 5 percent.

ii) Verification of pressure gauge calibration must be provided to the Department representative at the time of the test and in the certified test report.

iii) Pad monitor wells shall be sampled and waters analyzed for water depth, chloride, total dissolved solids, temperature and conductivity one week prior to the onset of the mechanical integrity testing. (A copy of the SED reporting sheet is attached.)

r) UIC-TAC meetings are scheduled on the second and fourth Tuesday of each month subject to a five working day prior notice and timely receipt of critical data by all UIC-TAC members and the USEPA. Emergency meetings may be arranged when justified to avoid undue construction delays.

s) Department approval at a scheduled UIC-TAC meeting shall be based on the permittee's presentation that shows compliance with Department rules and this permit.

t) No drilling operations shall begin without an approved disposal site for drilling fluids, cuttings, or waste. It shall be the permittee's responsibility to obtain the necessary approval(s) for disposal prior to the start of construction.

u) Waters spilled during construction or testing shall be contained and properly disposed.

v) An interpretation of all test results and geophysical logs must be submitted with all submittals.

PERMIT/CERTIFICATION NO. 156419-001-UC DATE OF ISSUE: ACA 10 2002 EXPIRATION DATE: APR 1 4 2004 PROJECT: IW-1, IW-2 and MW-1

4. QUALITY ASSURANCE/QUALITY CONTROL REQUIREMENTS

a) Pursuant to Rule 62-528.440(5)(b), F.A.C., the Professional Engineer(s) of Record shall certify all documents related to the completion of the Class I injection well system (including the associated Floridan Aquifer monitor well) as a disposal facility. The Department shall be notified immediately of any change of the Engineer(s) of Record.

b) In accordance with Chapter 492, F.S., all documents prepared for the geological/hydrogeological evaluation of this injection well system shall be signed and sealed by a Florida Licensed Professional Geologist or qualified Florida Registered Professional Engineer.

c) Continuous on-site supervision by qualified personnel (engineer and/or geologist) is required during all testing, geophysical logging and cementing operations.

5. REPORTING REQUIREMENTS

a) All reports and surveys required by this permit shall be submitted concurrently to all the members of the Technical Advisory Committee and the United States Environmental Protection Agency, Region IV, Atlanta (UIC-TAC). The UIC-TAC shall consist of representatives from these agencies:

Department of Environmental Protection, West Palm Beach and Tallahassee United States Geological Survey (USGS), Miami South Florida Water Management District (SFWMD), West Palm Beach Broward County Department of Natural Resources Protection (BCDNRP) Special Advisors to the UIC-TAC: US Environmental Protection Agency (USEPA), Region IV, Atlanta

b) The Department and other applicable agencies must be notified of any unusual or abnormal events occurring during construction, and in the event the Permittee is temporarily unable to comply with the provisions of the permit (e.g., on-site spills, artesian flows, large volume circulation losses, equipment damage due to: fire, wind and drilling difficulties, etc.). Any information shall be provided orally within 24 hours from the time the permittee becomes aware of the circumstances. A written submission shall also be provided within 5 days of the time the permittee becomes aware of the circumstances. The written submission shall contain a description of the noncompliance and its cause, the period of noncompliance, including exact dates and times, and if the noncompliance has not been corrected, the anticipated time it is expected to continue; and the steps taken or planned to reduce, eliminate, and prevent reoccurrence of the noncompliance.

c) The Department shall be notified at least 72 hours prior to all testing for mechanical integrity.

d) All testing for mechanical integrity must be initiated during normal business hours, Monday through Friday.

e) The permittee shall submit weekly construction progress reports no later than the 7th day immediately following the week of record. These reports shall include, at a minimum, the following information:

i) A cover letter summary of the daily engineer report, driller's log and a projection for activities in the next reporting period.

ii) Daily engineers reports and work log with detailed descriptions of all drilling progress, cementing, testing, logging, and casing installation activities with appropriate interpretations.

PERMIT/CERTIFICATION NO. 156419-001-UC DATE OF ISSUE: 402 EXPIRATION DATE: 457 14 2007 PROJECT: IW-1, IW-2 and MW-1

iii) Lithologic and geophysical logs and water quality test results, with interpretations.

iv) An interpretation of all test results and geophysical logs as they relate to the week's activities, submitted with the latest test results and logs, submitted under ii) and iii) above.

v) Detailed description of any unusual construction-related events that occur during the reporting period.

vi) Weekly water quality analysis and water levels for the four pad monitor wells. [See Specific Condition (SC) 2d]

vii) A certified evaluation of all logging and test results must be submitted with test data.

viii) Description of the formations encountered.

ix) Details of cementing operations including the following information, for each stage of cement: cement slurry composition, specific gravity, pumping rate, volume of cement pumped, theoretical fill depth, actual tag depth. And from both the physical tag and the geophysical logs, a percent fill, and an explanation of any variation between actual versus theoretical fill. For each casing, laboratory analysis of dry cement composition of a sample taken during the neat cement stage emplaced at the base of each casing.

x) An evaluation and interpretation of all test results shall be submitted with all test data.

f) Upon completion of analysis of cores and sample cuttings recovered during the construction of the monitor well and the injection well, the permittee shall contact the Underground Injection Control Section of the Department of Environmental Protection in Tallahassee to arrange for their transfer to the Florida State Geologic Survey.

g) Casing seat requests, as a minimum, shall include technical justification utilizing the following information:

Lithologic and geophysical logs with interpretations Water quality data

vvater quality data

Identification of confining units Identification of monitoring zones

Drilling rate and weight on bit data, with interpretations related to the casing seat

Casing depth evaluation (mechanically secure formation, potential for grout seal)

Identification of the base of the USDW using water quality, RWA plots, and log interpretations

h) The injection test request shall, as a minimum, include technical justification utilizing the following:

Cement bond logs and interpretation (prior to, as well as, following the cementing of the tubing) Temperature logs performed after each cementing stage

Theoretical versus actual cement calculations

Final downhole TV survey with interpretation

Water quality analysis of injection fluid from every source

Planned injection procedures

All required weekly progress report information must be current, and received by the Department Certification of mechanical integrity and test results, with interpretation, including a copy of all logs and final video survey

PERMIT/CERTIFICATION NO. 156419-001-UC DATE OF ISSUE: APA 1.5 2002 EXPIRATION DATE: APR 1.4 2004 PROJECT: IW-1, IW-2 and MW-1

i) Monitor zone requests shall, as a minimum, include technical justification utilizing the following:

Identification of the base of the USDW Identification of confining beds Water quality of proposed monitor zone Transmissivity or specific capacity of proposed monitor zone Packer test drawdown curves and interpretation

k) A final report of the construction and testing of the injection well and dual zone monitor well, shall be submitted no later than 120 days after commencement of operational testing, pursuant to Rule 62-528.430(1)(e), F.A.C. This report shall include, as a minimum, definitions of the injection interval, all relevant confining beds, the depth of the base of the USDW and all monitor zones, including all relevant data and interpretations.

6. OPERATIONAL TESTING REQUIREMENTS

a) The operational testing of the Class I injection well system under this permit shall not commence without written authorization from the Department.

b) Operational testing. Prior to operational testing, the permittee shall comply with the requirements of Rule 62-528.450(3)(a), (b) and (c), F.A.C.

c) Prior to operational testing approval, the following items must be submitted (with a request for operational testing approval) for UIC-TAC and USEPA review and Department approval:

i) Certification of completion of well construction and well construction drawings. The well construction drawings shall include a geologic stratigraphic cross section depicting the corresponding formations, the base of the USDW, and the boundaries of the confining and injection zone intervals.

ii) Data from the short term injection testing with interpretation, conducted pursuant to Rules 62-528.405(3)(a), 62-528.410(7)(e) and 62-528.450(3)(a)2., F.A.C. Each well shall first be tested for integrity of construction, and shall be followed by a short term injection test of such duration to allow for the prediction of the operating pressure. This test shall be conducted for a minimum of 24 hours at the maximum rate at which the well is to be permitted. Pressure/water level data from the injection well and both monitor zones shall be recorded continuously for at least 24 hours before the test and at least 12 hours following the test.

iii) A copy of the borehole television survey with interpretation.

iv) Lithologic and geophysical logs with interpretations.

v) Certification of mechanical integrity and interpretation of the test data.

vi) A description of the actual injection procedure including the anticipated maximum pressure and flow rate at which the well will be operated under normal and emergency conditions.

vii) Information concerning the compatibility of the injected waste with fluids and minerals in the receiving zone.

PERMIT/CERTIFICATION NO. 156419-001-UC DATE OF ISSUE: 2002 EXPIRATION DATE: AFR 1 4 2004 PROJECT: IW-1, IW-2 and MW-1

viii) Surface equipment (including pumping station, piping, pressure gauges and flow meters, and all appurtenances) completion certified by the engineer of record. Calibration certificates for pressure gauges and flow meters shall also be submitted.

ix) Signed and sealed record "as-built" engineering drawings of the injection well system including all well construction, the pump station, subsurface and surface piping and equipment, and appurtenances. These drawings shall include the location of sampling points for injectate and the dual monitor zone samples.

x) Draft operating and maintenance manual, including a description of water hammer control, with emergency discharge management plan procedures. The emergency discharge system must be fully constructed and operational prior to approval of operational testing.

xi) The demonstration of confinement prepared providing confirmation of confinement and defining the injection and confining sequences utilizing data collected during the drilling, logging and testing of the injection well and dual zone monitor well. The report shall include the results of hydraulic testing (permeability, porosity, etc.) on the cores, and shall be reviewed and updated as appropriate after the completion of any additional injection/monitor well pairs in the future from the confining interval. This submittal shall be prepared, signed, and sealed by a Florida Registered Professional Geologist or qualified Registered Professional Engineer.

xii) Wastestream analysis, sampled within 6 months of the request for operational testing, for Primary and Secondary Drinking Water Standards (62-550, F.A.C.) and Minimum Criteria Parameters (62-520, F.A.C.) as attached.

xiii) Background water quality data from the monitor and injection zones, analyzed for primary and secondary drinking water standards (62-550, F.A.C.) and minimum criteria parameters (62-520, F.A.C.) as attached.

xiii) A controlled monthly test of well injectivity (rate/pressure) shall be conducted in accordance with Rule 62-528.430(2)(d), F.A.C. The rate should approach maximum design flow. For reporting the injectivity test results, a summary sheet and sample graph from the FDEP Southeast District UIC Section is attached. The injectivity test results shall be reported to the Department in the MORs. The following data shall be recorded and reported at each injection rate:

i) injection flow rate (MGD)

ii) injection pressure (psig)

iii) wellhead pressure with no flow (shut-in pressure in psig)

iv) monitor zone pressures (psig)

All readings shall be taken after a minimum 5 minute period of stabilized flow.

Pursuant to Rule 62-528.430(2)(d), F.A.C., as part of the specific injectivity test, the well shall be shut-in for a period of time necessary to conduct a valid observation of pressure fall-off.

xiv) Other data obtained during well construction needed by the Department to evaluate whether the well will operate in compliance with Department Rules.

d) Prior to the authorization of operational testing by the Department, the permittee shall contact the Underground Injection Control Section of the Department, Southeast District, to arrange for a site inspection. The inspection will determine if all equipment has been installed, in compliance with the permit and Department rules, that is necessary to operate and monitor the injection well. During the inspection, emergency procedures and reporting requirements shall be reviewed.

7. OPERATIONAL TESTING CONDITIONS

a) Upon receipt of written authorization from the Department (SC 6a), the operational testing of the injection well system shall be subject to the following conditions:

b) The progress of the operational testing for the system shall extend for a 6 month period and may be reviewed during UIC-TAC meetings scheduled by the permittee at 3 months and 6 months after operational testing has begun. Reports evaluating the system's progress must be submitted to each member of the UIC-TAC and the USEPA, Region IV, Atlanta at least 2 weeks prior to the scheduled UIC-TAC meeting. The conditions for the operational testing period may be modified by the Department at each of these UIC-TAC review intervals.

c) Mechanical Integrity

i) Injection is prohibited until the permittee affirmatively demonstrates that the well has mechanical integrity. Prior to operational testing the permittee shall establish, and thereafter maintain the mechanical integrity of the well at all times.

ii) If the Department determines that the injection well lacks mechanical integrity, written notice shall be given to the permittee.

iii) Within 48 hours of receiving written notice that the well lacks mechanical integrity, unless the Department requires immediate cessation of injection, the permittee shall cease injection into the well unless the Department allows continued injection pursuant to iv) below.

iv) The Department shall allow the permittee to continue operation of a well that lacks mechanical integrity if the permittee has made a satisfactory demonstration that fluid movement into or between USDWs is not occurring.

d) Any failure of the Class I injection well monitoring and recording equipment for a period of more than 48 hours shall be reported within 24 hours to the Department. An written report describing the incident shall also be given to the Department within 5 days of the start of the event. The final report shall contain a complete description of the occurrence, a discussion of its cause(s) and the steps being taken to reduce, eliminate, and prevent recurrence of the event, and all other information deemed necessary by the Department.

e) No underground injection is allowed that causes or allows movement of fluid into an underground source of drinking water.

f) The permittee shall report any noncompliance which may endanger health or the environment, including:

i) Any monitoring or other information which indicates that any contaminant may cause an endangerment to an underground source of drinking water; or

ii) Any noncompliance with a permit condition or malfunction of the injection system which may cause fluid migration into or between underground sources of drinking water.

PERMIT/CERTIFICATION NO. 156419-001-UC DATE OF ISSUE: APR 1.5 2002 EXPIRATION DATE: APR 1.4 2004 PROJECT: IW-1, IW-2 and MW-1

iii) Any information shall be provided orally within 24 hours of the time the permittee becomes aware of the circumstances. A written submission shall also be provided within 5 days of the time the permittee becomes aware of the circumstances. The written condition shall contain a written description of the noncompliance and its cause, the period of noncompliance, including exact dates and times, and if the noncompliance has not been corrected, the anticipated time it is expected to continue; and the steps taken or planned to reduce, eliminate, and prevent reoccurrence of the noncompliance.

g) The injection well system shall be monitored in accordance with Rules 62-528.425(1)(g) and 62-528.430(2), F.A.C. Samples and measurements taken for the purpose of monitoring shall be representative of the monitored activity. The following injection well performance and monitor zone data shall be recorded and reported in the Monthly Operating Report (MOR) as indicated below.

- (i) Injection well performance:
 - (1) Physical characteristics of the injection well:

Flow rate parameters:

- average daily flow rate to injection well (MGD)
- daily maximum sustained (15 minutes minimum) flow rate injection well (MGD)
- daily minimum sustained (15 minutes minimum) flow rate to injection well (MGD)
- monthly average of the daily flow rates to injection well (MGD)
- monthly maximum (peak hour) flow rate to injection well (MGD)
- monthly minimum flow rate to injection well (MGD)

Volume parameters:

- total daily flow to injection well (MG)
- monthly average of the daily flow volumes to injection well (MG)
- monthly maximum of the daily flow volumes to injection well (MG)
- monthly minimum of the daily flow volumes to injection well (MG).

Pressure parameters:

Injection pressure parameters:

- daily average injection pressure at injection well (psig)
- daily maximum sustained (15 minutes minimum) injection pressure at injection well (psig)
- daily minimum sustained (15 minutes minimum) injection pressure at injection well (psig)
- monthly average injection pressure at injection well (psig)
- monthly maximum sustained injection pressure at injection well (psig)
- monthly minimum sustained injection pressure at injection well (psig)

Miscellaneous:

- monthly wellhead pressure with no flow (shut-in pressure, psig)
- (2) Chemical characteristics of the wastestream from the wet well sampled weekly:
 - residue, total filterable (total dissolved solids, TDS) (mg/L)
 - chloride (mg/L)
 - specific conductance (temperature compensated, umhos/cm)
 - fecal coliform (# of colonies/100 ml)
 - total suspended solids (TSS) (mg/L)
 - nitrogen, ammonia, total as N (ammonia) (mg/L)
 - nitrogen, total Kjeldahl as N (TKN) (mg/L)
 - nitrogen, nitrate, total as N (nitrate) (mg/L)
 - phosphorous, total as P (mg/L)
 - pH (standard units)
 - temperature (°F)
 - sulfate, total as SO4 (mg/L)
 - sodium (mg/L)

PERMIT/CERTIFICATION NO. 156419-001-UC DATE OF ISSUE: APR 1.5 2002 EXPIRATION DATE: APR 1.4 2004 PROJECT: IW-1, IW-2 and MW-1

The MORs shall indicate monthly averages.

- (ii) Monitor well performance:
 - (3) Physical characteristics upper and lower monitor zones potentiometric surface or water table height relative to NGVD of 1983 (feet of head) or pressure (psig) referenced to NGVD of 1983:
 - daily maximum pressure or water level (as appropriate)
 - daily minimum pressure or water level (as appropriate)
 - daily average pressure or water level (as appropriate)
 - monthly maximum pressure or water level (as appropriate)
 - monthly minimum pressure or water level (as appropriate)
 - monthly average pressure or water level (as appropriate)
 - (4) Chemical characteristics of the upper and lower monitor zones sampled weekly:
 - residue, total filterable (total dissolved solids, TDS) (mg/L)
 - chloride (mg/L)
 - specific conductance (temperature compensated, umhos/cm)
 - nitrogen, ammonia, total as N (ammonia) (mg/L)
 - nitrogen, total Kjeldahl as N (TKN) (mg/L)
 - nitrogen, nitrate, total as N (nitrate) (mg/L)
 - phosphorous, total as P (mg/L)
 - fecal coliform (#of col/100 ml)
 - pH (standard units)
 - temperature (°F)
 - sulfate, total as SO4 (mg/L)
 - sodium (mg/L)

The MORs shall also indicate monthly averages.

h) Weekly sampling as described above will be continued for a minimum of 6 months. At that time the permittee may submit data for UIC-TAC and USEPA review and Department approval to demonstrate that reasonable assurance of groundwater stability has been established in justification of any written request to reduce the sampling frequency to monthly sampling.

i) A wastestream analysis (24 hour composite sample) for primary and secondary drinking water standards (Chapter 62-550, F.A.C.) and minimum criteria, see attached list, must be submitted annually (sampled 30 days after startup of the WTP and submitted within 120 days of the sampling date). VOC parameters and biological parameters shall be sampled either in-situ or grab.

PERMIT/CERTIFICATION NO. 156419-001-UC DATE OF ISSUE: APR 1 5 2002 EXPIRATION DATE: APR 1 4 2004 PROJECT: IW-1, IW-2 and MW-1

j) A minimum of 3 well volumes of fluid shall be evacuated from the monitor systems prior to sampling for the chemical parameters listed above. All samples shall be analyzed by a state-certified laboratory. Sufficient purging shall have occurred when either of the following have occurred:

i) pH, specific conductivity <u>and</u> temperature when sampled, upon purging the third or subsequent well volume, each vary less than 5% from that sampled upon purging the previous well volume; or

ii) upon purging the fifth well volume

k) The flow to the injection well at the wellhead shall be monitored and controlled at all times to ensure the maximum fluid velocity down the well does not exceed that rate at which the well was tested, proposed to be a peak hourly flow rate of 10 feet per second-during normal operation, and when the permittee provides the Department with reasonable assurances that higher velocities will not compromise the integrity or operation of the injection well, then the injection well may be operated at 12 feet per second during planned testing, maintenance, or emergency conditions.

I) The pressure at the well head shall be monitored and controlled at all times to ensure the maximum pressures on the final casing and the tubing and packer does not exceed 66 percent of the mechanical integrity test pressures.

m) Pursuant to Rule 62-528.425(1)(b), F.A.C., the injection well system shall be monitored at all times by continuous indicating, recording and totalizing devices for flow rate and volume, and the pressure in all monitoring zones. The permittee shall calibrate all pressure gauges, flowmeters, chart recorders, and other related equipment associated with the injection well system on an annual basis. The permittee shall maintain all monitoring equipment and shall ensure that the monitoring equipment is calibrated and in proper operating condition at all times. Laboratory equipment, methods, and quality control will follow EPA guidelines as expressed in Standard Methods for the Examination of Water and Wastewater. The pressure gauges, flow meter, and chart records shall be calibrated using standard engineering methods. The monitoring zone pressures shall be referenced to the National Geodetic Vertical Datum (NGVD) of 1983, and the MOR shall reference the pressures to NGVD.

n) A qualified representative of the Engineer of Record must be present for the start-up operations.

o) All required data submissions, including Monthly Operating Reports (MORs), shall be clearly identified on each page with Facility Name, ID Number, permit number, date of sampling/recording, operator's name, license and telephone number, and type of data shown. (Monitor zones will be identified by monitor well number and depth interval.) The lead plant operator or higher official must sign and date each submittal. An approved copy (MOR summary sheet) from the FDEP Southeast District, UIC Section is attached for your use.

p) The permittee shall submit monthly to the Department the results of all injection well and monitor well data required by this permit no later than the last day of the month immediately following the month of record. The results shall be sent to the Florida Department of Environmental Protection, Southeast District, Underground Injection Control Section, Post Office Box 15425, West Palm Beach, Florida, 33416. A copy of this report shall also be sent to the Florida Department of Environmental Protection, Underground Injection Control Program, MS 3530, 2600 Blair Stone Road, Tallahassee, Florida, 32399-2400.

q) The Department must be notified in writing of the date of start-up of operations.

PERMIT/CERTIFICATION NO. 156419-001-UC DATE OF ISSUE: APR 1 5 2002 EXPIRATION DATE: APR 1 4 2004 PROJECT: IW-1, IW-2 and MW-1

8. SURFACE EQUIPMENT

a) The surface equipment for the injection well system shall maintain compliance with Chapter 62-600, F.A.C. for water hammer control, screening, access for logging and testing, reliability and flexibility in the event of damage to the well and concentrate piping. A regular program of exercising the valves integral to the well head shall be instituted. At a minimum, all valves integral to the injection well system shall be exercised during the regularly scheduled quarterly injectivity testing.

b) The injection well and monitoring well surface equipment and piping shall be kept free of corrosion at all times.

c) Spillage onto the injection well pad during construction activities, and any waters spilled during mechanical integrity testing, other maintenance, testing or repairs to the system shall be contained by an impermeable wall around the edge of the pad and directed to a sump pump which in turn discharges to the pumping station wet well or via other approved means to the injection well system.

d) The injection well construction pad with impermeable perimeter retaining wall shall be maintained and retained in service for the life of the injection well. The injection and monitoring well pad(s) are not, unless specific approval is obtained from the Department, to be used for storage of any material or equipment at any time.

e) The four surficial aquifer monitor wells installed at the corners of the injection well pad shall be secured, maintained, and retained in service.

f) The integrity of the monitor zone sampling systems shall be maintained at all times. Sampling lines shall be clearly and unambiguously identified by monitoring zone at the point at which samples are drawn. All reasonable and prudent precautions shall be taken to insure that samples are properly identified by monitor zone and that samples obtained are representative of those zones. Sampling lines and equipment shall be kept free of contamination with independent discharges and no interconnections with any other lines.

9. FINANCIAL RESPONSIBILITY

a) The permittee shall maintain the resources necessary to close, plug and abandon the injection and associated monitor wells, at all times, Rule 62-528.435(9), F.A.C.

b) The permittee shall review annually the plugging and abandonment cost estimates. An increase of 10 percent or more over the cost estimate upon which financial responsibility is based shall require the permittee to submit documentation to obtain an updated Certificate of Demonstration of Financial Responsibility.

c) In the event the mechanism used to demonstrate financial responsibility should become invalid for any reason, the permittee shall notify the Department of Environmental Protection in writing within 14 days of such invalidation. The permittee shall then within 30 days of said notification submit to the Department for approval new financial documentation in order to comply with Rule 62-528.435(9), F.A.C., and the conditions of this permit.

PERMIT/CERTIFICATION NO. 156419-001-UC DATE OF ISSUE: AFR 1 3 2002 EXPIRATION DATE: APR 1 4 2004 PROJECT: IW-1, IW-2 and MW-1

10. EMERGENCY DISPOSAL

a) All applicable federal, state, and local permits shall be in place to allow for any alternate discharges due to emergency or planned outage conditions.

b) Any proposed changes in emergency disposal methods shall be submitted for UIC-TAC and USEPA review and Department approval prior to implementation.

c) The alternate disposal method shall be maintained in working order at all times.

d) In the event of an emergency and/or discharge, or other abnormal event where the permittee is temporarily unable to comply with any of the conditions of this permit due to breakdown of equipment, power outages, destruction by hazard or fire, wind, or by other cause, the Department shall be notified in person or by telephone within 24 hours of the incident. A written report describing the incident shall also be submitted to the Department within 5 days of the start of the incident. The written report shall contain a complete description of and discuss the cause of the emergency and/or discharge, and if it has been corrected, the anticipated time the discharge is to continue, the steps being taken to reduce, eliminate, and prevent recurrence of the event, and all other information deemed necessary by the Department.

11. SIGNATORIES AND CERTIFICATION REQUIREMENTS

a) All reports and other submittals required to comply with this permit shall be signed by a person authorized under Rules 62-528.340(1) or (2), F.A.C.

b) In accordance with Rule 62-528.340(4), F.A.C., all reports shall contain the following certification:

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

5th day of 4pr 2002 Issued this

STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION

Melissa L. Meeker / ^ Director of District Management

SOUTHEAST DISTRICT UIC SECTION

SURFICIAL AQUIFER MONITOR WELL QUARTERLY REPORT

TIME

INJECTION WELL #_____

SAMPLING DATE

LOCATION	PMW#1 NE CORNER	NW CORNER	SE CORNER	SW CORNER
ELEVATION OF TOC (NGVD)				
DEPTH TO WATER (TOC)			4	
WATER LEVEL (NGVD)				
CHILORIDES (MG/L.)		E .		
CONDUCTIVITY (UMHOS)				
TEMPERATURE				

ANALYZED BY: PHONE #_____

THE REAL PROPERTY OF LEVEL

;

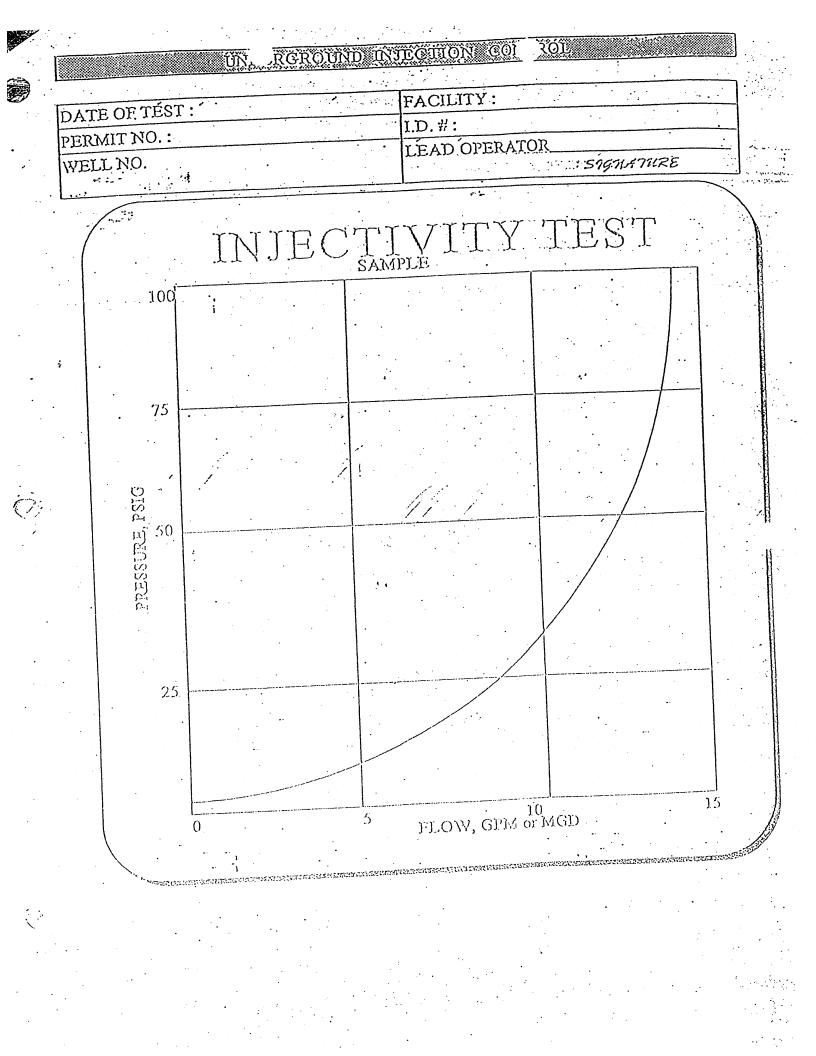
SAMPLED BY:____ TITLE_____

THE PROPERTY AND ADDRESS OF THE PROPERTY ADDRESS OF THE PROPER

SITE PLAN OF PMW LOCATIONS

NEW PROPERTY

UNDERGROUND INJECTION CONTROL INJECTIVITY TESTING SUMMARY SHEET


FACILITY			TÌME			и. Ч.	
Deep Injection Well System	· · · · · · · · · · · · · · · · · · ·			START	SHUT-	IN PRESSURE	
Injectivity Testing	-			MINS AFTER SHUT -IN	CALIBRA GAUGE	ATED PRESSURE AT WELL HEAD	3
Injection Well No. :				01101 -114		(PSI)	
DATE OF TEST:				10			
FDER PERMIT No.:]			20			
	•			30			
Signature of Lead Operator Were Wellhcad Valves Exercised	YES	NO	9772-10-10-10-11-10-10-10-10-10-10-10-10-10-			<u></u>	
YYERE YYEIIIICAL VALVES ISKER CISCE							
COLUMN: 1 2 3	4	5	6	7 PRESSIDE	8 INJECTIVITY	9 UPPER MONITOR	
COLUMEN: I 2 3 TIME INJECTION WELL PUMP SHUT-IN NUMBER(S PRESSURE AFTER ON-LINE 30 MINUTES	4 INJECTION 5) RATE	5 Injection Press minutes of		7 PRESSURE DIFFERENTIAL (Col 5 - Col 2)	8 INJECTIVITY INDEX (Col 4 divide by Col 7)	ZONE IN FEET OF	LOWER MONITOP
COLUMN: 1 2 3 TIME INJECTION WELL PUMP SHUT-IN NUMBER(S PRESSURE AFTER ON-LINE	4 INJECTION 5) PATE (gpm) 01			DIFFERENTIAL	INDEX	ZONE IN FEET OF HEAD ABOVE NGVD	LOWER MONITOR ZONE IN FEET OF HEAD ABOVE NGVD
COLUMEN: I 2 3 TIME INJECTION WELL PUMP SHUT-IN NUMBER(S PRESSURE AFTER ON-LINE 30 MINUTES	4 INJECTION 5) PATE (gpm) 01	minutes of CADIBRATED GAUGE AT INJECTION	PUMPING PRESSURE RECORDER	DIFFERENTIAL (Col S - Col 2) FROM CALIBRATED PRESSURE GAUGE AT INJECTION WELLHEAD	INDEX (Col 4 givide by Col 7) FROM CALIBRATED PRESSURE GAUGE AT INJECTION WELLHEAD	ZONE IN FEET OF HEAD ABOVE NGVD	LOWER MONITOR ZONE IN FEET OF HEAD ABOVE NGVD
COLDUTYIN: 1 2 3 TIME INJECTION WELL PUMP SHUT-IN NUMBER(S PRESSURE AFTER ON-LINE 30 MINUTES	4 INJECTION 5) PATE (gpm) 01	Minutes of CALIBRATED GAUGEAT INJECTION WELLHEAD	PUMPING PRESSURE RECORDER	DIFFERENTIAL (Col S - Col 2) FROM CALIBRATED PRESSURE GAUGE AT INJECTION WELLHEAD	INDEX (Col 4 givide by Col 7) FROM CALIBRATED PRESSURE GAUGE AT INJECTION WELLHEAD	ZONE IN FEET OF HEAD ABOVE NGVD	LOWER MONITOR ZONE IN FEET OF HEAD ABOVE NGVD
COLDUTYIN: 1 2 3 TIME INJECTION WELL PUMP SHUT-IN NUMBER(S PRESSURE AFTER ON-LINE 30 MINUTES	4 INJECTION PATE (gpm) or (mgd)	minutes of CALIBRATED GAUGE AT INJECTION WELLHEAD (PSI)	PRESSURE RECORDER (PSI)	DIFFERENTIAL (Col S - Col 2) FROM CALIBRATED PRESSURE GAUGE AT INJECTION WELLHEAD	INDEX (Col 4 givide by Col 7) FROM CALIBRATED PRESSURE GAUGE AT INJECTION WELLHEAD	ZONE IN FEET OF HEAD ABOVE NGVD	LOWER MONITOR ZONE IN FEET OF HEAD ABOVE NGVD

2. FOR MORE INFORMATION REGARDING EXECUTION OF THIS TEST CONSULT THE INJECTIVITY TESTING PROTOCOL IN THE O&M MANUAL

INJECTION RATE (GPM) (COLUMN 4)

NOTES 1. INJECTIVITY INDEX (GPMTSI) =

> (INJECTION PRESSURE (PSI) - (SHUT-IN PRESSURE (PSI) (COLUMN 5) (COLUMN 2)

PRIMARY STANDARDS DRINKING WATER STANDARDS / Updated September 1998

PARAMETER	
Machlor	Ethylene dichloride (1,2-Dichloroethane)
Alachlor	Fluoride
Aldicarb	Glyphosate (Roundup)
Aldicarb sulfoxide	
Aldicarb sulfone	Gross Alpha
Aroclors (Polychlorinated Biphenyls or PCB's)	Heptachlor
Alpha, Gross	Heptachlor Epoxide
Antimony	Hexachlorobenzene (HCB)
Arsenic	gamma-Hexachlorocyclohexane (Lindane)
Atrazine	Hexachlorocyclopentadiene
Barium 🥥	Lead
Benzene	Lindane (gamma-Hexachlorocyclohexane)
Benzo(a)pyrene	Mercury
Beryllium	Methoxychlor
Bis(2-ethylhexyl) adipate (Di(2-ethylhexyl)	Methylene chloride (Dichloromethane)
adipate)	Monochlorobenzene (Chlorobenzene)
Bis(2-ethylhexyl) phthalate (Di(2-ethylhexyl)	Nickel
phthalate)	Nitrate (as N)
Cadmium	Nitrite (as N)
Carbofuran	Total Nitrate + Nitrite (as N)
Carbon Tetrachloride (Tetrachloromethane)	Oxamyl
Chlordane	Pentachlorophenol
Chlorobenzene (Monochlorobenzene)	Perchloroethylene (Tetrachloroethylene)
Chloroethylene (Vinyl Chloride)	Picloram
Chromium	Polychlorinated biphenyl (PCB or Aroclors)
Coliforms, Total	Radium
Cyanide	Roundup (Glyphosate
2,4-D (2,4-Dichlorophenoxyacetic acid)	Selenium
Dalapon (2,2-Dichloropropionic acid)	Silver
Dibromochloropropane (DBCP)	Silvex (2,4,5-TP)
1,2-Dibromoethane (EDB, Ethylene Dibromide)	Simazine
1,2-Dichlorobenzene (o-Dichlorobenzene)	Sodium
1,4-Dichlorobenzene (p-Dichlorobenzene or Para	Styrene (Vinyl benzene)
Dichlorobenzene)	Tetrachloroethylene (Perchloroethylene)
1,2-Dichloroethane (Ethylene dichloride)	fetrachloromethane (Carbon Tetrachloride)
1,1-Dichloroethylene (Vinylidene chloride)	Thallium
cis-1,2-Dichloroethylene (1,2-Dichlorethylene)	Toluene
trans-1,2-Dichloroethylene (1,2-Dichlorethylene)	Toxaphene
Dichloromethane (Methylene chloride)	2,4,5-TP (Silvex)
1,2-Dichloropropane	1,2,4-Trichlorobenzene
Di(2-ethylhexyl) adipate (Bis(2-ethylhexyl)	1,1,1-Trichloroethane
adipate)	1,1,2-Trichloroethane
Di(2-ethylhexyl) phthalate (Bis(2-ethylhexyl)	Trichloroethylene (Trichloroethene, TCE)
	Trihalomethanes, Total
phthalate) Dinoseb	Vinyl Chloride (Chloroethylene)
	Xylencs (total)
Digust Top (Tabulana dibramida, 4.2 Dibrayaaathana)	Action (mar)
EDB (Ethylene dibromide, 1,2-Dibromoethane)	
Endothall	
Endrin	
Ethylbenzene	

SECONDARY DRINKING WATER STANDARDS

Aluminum Chloride . Color Copper Corrosivity Ethylbenzene Fluoride Foaming Agents (MBAS) Iron Manganese Odor pH Silver Sulfate Toluene Total Dissolved Solids (TDS) Xylenes ... Zinc

MUNICIPAL WASTEWATER MINIMUM CRITERIA GROUND WATER MONITORING PARAMETERS

INORGANICS

Ammonia Nitrogen (organic) Orthophosphate (soluble) Phosphorus Total Kjeldahl Nitrogen

VOLATILE ORGANICS Chloroethane

Chloroform

para-Dichlorobenzene

1,2-Dichloroethylene (cis-1,2-Dichloroethylene or trans-1,2-Dichloroethylene)

Base/Neutral Organics Anthracene

Butylbenzylphthallate Dimethylphthallate Naphalene Phenanthrene

PESTICIDES AND PCBs Aldrin Dieldrin Dioxin

Acid Extractables 2 Phenol

Other

2-chlorophenöl Phenol 2,4;6-trichlorophenol

Conductivity Biological Oxygen Demand Temperature PRIMARY STANDARDS DRINKING WATER STANDARDS Updated September 1998

PARAMETER

Ethylene dichloride (1,2-Dichloroethane) Alachior Fluoride Aldicarb Glyphosate (Roundup) Aldicarb sulfoxide Gross Alpha Aldicarb sulfone Heptachlor Aroclors (Polychlorinated Biphenyls or PCB's) Heptachlor Epoxide Alpha, Gross Hexachlorobenzene (HCB) Antimony gamma-Hexachlorocyclohexane (Lindane) Arsenic Hexachlorocyclopentadiene Atrazine Lead Barium Lindane (gamma-Hexachlorocyclohexane) Benzene Mercury Benzo(a)pyrene Methoxychlor Beryllium Methylene chloride (Dichloromethane) Bis(2-ethylhexyl) adipate (Di(2-ethylhexyl) Monochlorobenzene (Chlorobenzene) adipate) Nickel .Bis(2-ethylhexyl) phthalate (Di(2-ethylhexyl) Nitrate (as N) phthalate) Nitrite (as N) Cadmium Total Nitrate + Nitrite (as N) Carbofuran Oxamyl Carbon Tetrachloride (Tetrachloromethane) Pentachlorophenol Chlordane · Perchloroethylene (Tetrachloroethylene) Chlorobenzene (Monochlorobenzene) Picloram Chloroethylene (Vinyl Chloride) Polychlorinated biphenyl (PCB or Aroclors) Chromium Radium Coliforms, Total Roundup (Glyphosate Cyanide Selenium 2,4-D (2,4-Dichlorophenoxyacetic acid) Dalapon (2,2-Dichloropropionic acid) Silver. Silvex (2,4,5-TP) Dibromochloropropane (DBCP) Simazine 1,2-Dibromoethane (EDB, Ethylene Dibromide) Sodium 1,2-Dichlorobenzene (o-Dichlorobenzene) Styrene (Vinyl benzene) 1.4-Dichlorobenzene (p-Dichlorobenzene or Para Tetrachloroethylene (Perchloroethylene) Dichlorobenzene) Tetrachloromethane (Carbon Tetrachloride) 1.2-Dichloroethane (Ethylene dichloride) 1,1-Dichloroethylene (Vinylidene chloride) Thallium cis-1,2-Dichloroethylene (1,2-Dichlorethylene) Toluene trans-1,2-Dichloroethylene (1,2-Dichlorethylene) Toxaphene 2,4,5-TP (Silvex) Dichloromethane (Methylene chloride) 1,2,4-Trichlorobenzene 1.2-Dichloropropane Di(2-ethylhexyl) adipate (Bis(2-ethylhexyl) 1,1,1-Trichloroethane 1,1,2-Trichloroethane adipate) Trichloroethylene (Trichloroethene, TCE) Di(2-ethylhexyl) phthalate (Bis(2-ethylhexyl) Trihalomethanes, Total phthalate) Vinyi Chloride (Chloroethylene) Dinoseb Xylenes (total) Diquat EDB (Ethylene dibromide, 1,2-Dibromoethane) Endothall -Endrin Ethylbenzene

SECONDARY DRINKING WATER STANDARDS

Aluminum Chloride Color Copper Corrosivity Ethylbenzene Fluoride Foaming Agents (MBAS) Iron Manganese

Odor pH

Silver

Sulfate Toluene

Total Dissolved Solids (TDS)

Xylenes

Zinc

MUNICIPAL WASTEWATER MINIMUM CRITERIA GROUND WATER MONITORING PARAMETERS

INORGANICS

Ammonia Nitrogen (organic) Orthophosphate (soluble) Phosphorus Total Kjeldahl Nitrogen

VOLATILE ORGANICS Chloroethane

Chloroform para-Dichlorobenzene

ί.,

1,2-Dichloroethylene (cis-1,2-Dichloroethylene or trans-1,2-Dichloroethylene)

Base/Neutral Organics Anthracene Butylbenzylphthallate Dimethylphthallate Naphalene

Phenanthrene

PESTICIDES AND PCBs Aldrin Dieldrin Dioxin

Acid Extractables

2-chlorophenol Phenol 2,4,6-trichlorophenol

Other

Conductivity Biological Oxygen Demand Temperature

IDERGROUND INJECTION CONTRAT, MONTHLY OPERATING REPORT

Facility Name: CITY	OF HOLLYWOOD SOUTH	IERN REGIONAL	
Injection Well Description: CLAS	SS I INJECTION WELL	IW-1	
Permit #: 156419-001-L Facility ID#: 156419 Injection Well ID #: 196419-IW-1	IC		of Issuance: ation Date:
Permitted Peak Hour Flow Rate, MGD:	18.6 Max	Permitted Inj Pressure, PS	SIG: 0
Injection Interval: 3000 to 3500	ft Casir	ng Diameter, Inch:	24
Associated Monitoring Zonc(s):			
Monitoring Zone ID#	Description		
156419-MW-1-U upper zone of du	ual zone monitoring well MW-1		
156419-MW-1-L lower zone of du	al zone monitoring well MW-1		
OPERATOR'S NAME:		E-MAIL:	
		Value	Units
Parameter Flow Rate AVG			MGD
Flow Rate MAX, (Peak Hour)	•	·	MGD
Flow Rate MIN	•		MGD
Flow Volume Total, Monthly			MG
Flow Volumes AVG			MG
Flow Volumes MAX			MG
Flow Volumes MIN			MG
Injection Pressure AVG			PSIG
Injection Pressure MAX (Sustained)			PSIG
Injection Pressure MIN (Sustained)	•		PSIG
Monthly Well-Head Pressure with No Flow (Shut-In)		PSIG
······································			

LEAD PLANT OPERATOR (Name):____

(Signature): _

ì

IDERGROUND INJECTION CONTRAC, MONTHLY OPERATING REPORT

Facility Name: CITY C Injection Well Description: CLAS	OF HOLLYWOOD SOUTH		
Permit #: 156419-001-U		Date of Iss	suance:
		Expiration	n Date:
	• · · · · · · · · · · · · · · · · · · ·	*	
njection, wen ib ".		Dennities I In: Dropaumo DEIC.	0
Permitted Peak Hour Flow Rate, MGD:		Permitted Inj Pressure, PSIG:	
Injection Interval: 3000 to 3500 f	a Casin	ng Diameter, Inch: 24	<u> </u>
Associated Monitoring Zone(s):			
Monitoring Zone ID#	Description		
156419-MW-1-U upper zone of du	al zone monitoring well MW-1		
156419-MW-1-L lower zone of du	al zone monitoring well MW-1		
OPERATOR'S NAME:	DATE OF SAM	IPLING / RECORDING:	
OPERATOR'S NAME:			
OPERATOR'S NAME: OPERATOR'S LICENSE NO: OPERATOR'S PHONE:			Units
OPERATOR'S NAME: OPERATOR'S LICENSE NO: OPERATOR'S PHONE: Parameter		E-MAIL:	Units MGD
OPERATOR'S NAME: OPERATOR'S LICENSE NO: OPERATOR'S PHONE: Parameter Flow Rate AVG		E-MAIL:	
OPERATOR'S NAME: OPERATOR'S LICENSE NO: OPERATOR'S PHONE: Parameter Flow Rate AVG Flow Rate MAX , (Peak Hour)		E-MAIL: Value	MGD
OPERATOR'S NAME: OPERATOR'S LICENSE NO: OPERATOR'S PHONE: Parameter Flow Rate AVG Flow Rate MAX , (Peak Hour) Flow Rate MIN		E-MAIL: Value	MGD MGD
OPERATOR'S NAME: OPERATOR'S LICENSE NO: OPERATOR'S PHONE: Parameter Flow Rate AVG Flow Rate MAX , (Peak Hour) Flow Rate MIN Flow Volume Total, Monthly		E-MAIL: Value	MGD MGD MGD
OPERATOR'S NAME: OPERATOR'S LICENSE NO: OPERATOR'S PHONE: Parameter Flow Rate AVG Flow Rate MAX , (Peak Hour) Flow Rate MIN Flow Volume Total, Monthly Flow Volumes AVG		E-MAIL: Value	MGD MGD MGD MG
OPERATOR'S NAME: OPERATOR'S LICENSE NO: OPERATOR'S PHONE: Parameter Flow Rate AVG Flow Rate MAX , (Peak Hour) Flow Rate MIN Flow Volumes Total, Monthly Flow Volumes AVG Flow Volumes MAX		E-MAIL: Value	MGD MGD MGD MG MG
OPERATOR'S NAME: OPERATOR'S LICENSE NO: OPERATOR'S PHONE: Parameter Flow Rate AVG Flow Rate MAX , (Peak Hour) Flow Rate MIN Flow Volume Total, Monthly Flow Volumes AVG Flow Volumes MAX Flow Volumes MIN		E-MAIL: Value	MGD MGD MGD MG MG MG
OPERATOR'S NAME: OPERATOR'S LICENSE NO: OPERATOR'S PHONE: Parameter Flow Rate AVG Flow Rate MAX , (Peak Hour) Flow Rate MIN Flow Volume Total, Monthly Flow Volumes AVG Flow Volumes MAX Flow Volumes MIN Injection Pressure AVG		E-MAIL: Value	MGD MGD MGD MG MG MG
OPERATOR'S NAME: OPERATOR'S LICENSE NO: OPERATOR'S PHONE: Parameter Flow Rate AVG Flow Rate MAX , (Peak Hour) Flow Rate MIN Flow Volume Total, Monthly Flow Volumes AVG Flow Volumes MAX Flow Volumes MIN	FAX :	E-MAIL: Value	MGD MGD MG MG MG MG PSIG

LEAD PLANT OPERATOR (Name):_

(Signature)	:
(Signature)	•

Date:

L ERGROUND INJECTION CONTRC MONTHLY OPERATING REPORT

Facility Name: Sampling Point :	CITY OF HOLLYWO	DOD SOUTHERN REGIONAL /-1 AND IW-2		
Facility D#:	156419	Permit Number:	156419-001-UC	
- -		Issue Date:		
Wet Well'ID#:	156419-WW-1	Expiration Date:		
	•	Expiration Date.		
Associated Injection V	Vell(s):		•	
Injection Well ID#	Injection Well Descript	ion		
156419-IW-2	CLASS I INJECTION WE	ELL IW-2		
196419-IW-1	CLASS I INJECTION WE	ELL IW-1		
OPERATOR'S NAME: OPERATOR'S LICENSE I OPERATOR'S PHONE:		FAX :	E-MAIL:	
Parameter		Sampling Frequency	Value ·	Units
Chloride		Weekly .		mg/L
Fecal Coliform, MPN, EC	MED, 44.5C (tube 31614)	,Weekly		# col/100 mL
Nitrogen, Ammonia, Total		Weekly		mg/L as N
Nitrogen, Nitrate, Total as		Weekly		mg/L as N
Nitrogen, Total Kjeldahl as	s N	Weekly		mg/L as N
pH		Weekly		s.u.
Phosphorus, Total as P		Weekly		mg/L as P
Residue, Total Filterable (dried at 180 C)	Weekly		mg/L
Sodium		Weekly		mg/l_
Specific Conductance (To	mperature Compensated)	Weekly .		umhos/cm
Sulfate, Total as SO4		Weekly		rng/L as SO4
Temperature, Water		Weekly		deg C
Total Suspended Solids (rss)	Weekly		mg/L

LEAD PLANT OPERATOR (Name):

(Signature:)

Date:

INDERGROUND INJECTION CONT VL

MONTHLY OPERATING REPORT

Facility Name: CITY OF HOLL'	WOOD SOUT	THERN REGIONAL		•••.
Monitoring Well/Zone: upper zone of a	lual zone mor	nitoring well MW-1		
Facility ID#: 156419	•	Permit Nu	nber: 156	419-001-UC
Monitoring Well ID#: 156419-MW-1-U		Issue Date:		
As Identified in the Permit: upper monitoring zo	ne of monitoring w	vell MW-1 Expiration	Date:	. •
Monitoring Interval: 1400 to 1450 ft		• • • •		
Associated Injection Well(s):		•		
	otion		•	
		· · · ·		
		•		
196419-IW-1 CLASS I INJECTION V	VELL IW-1			
THE FOLLOWING IS TO BE COMPLETE	D BY THE PEF	RMITTEE:		· · ·
REPORT MONTH / YEAR:	DATE	OF SAMPLING / RECORDING:		
OPERATOR'S NAME:				· •
OPERATOR'S LICENSE NO:				
OPERATOR'S PHONE: FA	X:	E-MAIL:		
Physical Characteristics Parameter	Recording Frequency	Reporting Requirements	Value	Units
Well-Head Monthly Minimum Pressure	Conlinous	Daily Min / Monthly Min of Daily		PSIG
Well-Head Monthly Average Pressure	Continous	Daily Avg / Monthly Avg of Dail	/	PSIG
Well-Head Monthly Maximum Pressure	Continous	Daily Max / Monthly Max of Dai	ly	PSIG
Chemical Characteristics Parameter	Sampling Frequency	Reporting Requirements	Value	Units
Chloride	Weekly	Weekly / Monthly A		mg/L
Fecal Coliform, MPN, EC MED, 44.5C (tube 31614)	Weekly	Weekly / Monthly A		# col/100 mL
Nitrogen, Ammonia, Total as N	Weekly	Weekly / Monthly A	<u> </u>	mg/L as N
Nitrogen, Nitrate, Total as N	Weekly			mg/L as N
Nitrogen, Total Kjeldahl as N	Weekly			mg/L as N ⊊ u
pH	Weekly	• •		s.u. mali as P
Phosphorus, Total as P	Weekly			mg/L as P
Residue, Total Filterable (dried at 180 C)	Weekly	· · ·		mg/L
Sodium	Weekly	• •		mg/L
Specific Conductance (Temperature Compensated)	Weekly			umhos/cm
Sulfate, Total as SO4	Weekly		<u></u>	mg/L as SO4
Temperature, Water	Weekly	Weekly / Monthly A		deg C

LEAD PLANT OPERATOR (Name):_

LOSSED DESCRIPTION OF THE PROPERTY OF THE PROPERTY

(Signature:)

Date:

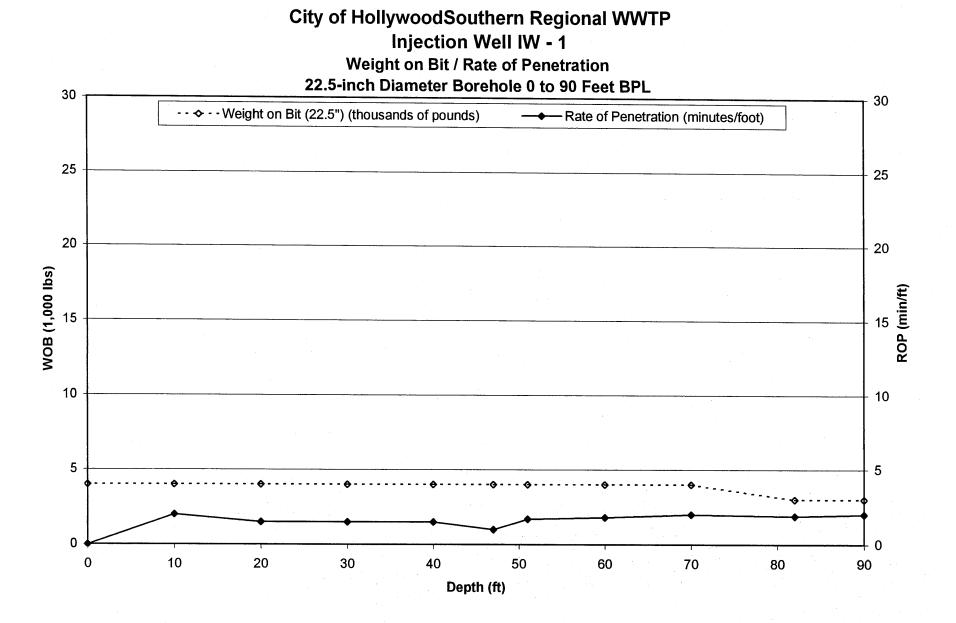
and a subscription of the subscription of the

INDERGROUND INJECTION CON" OL MONTHLY OPERATING REPORT

Facility Name: CITY OF HOLL	LYWOOD SOUTHERN REGIONAL					
Monitoring Well/Zone: lower zone of	lower zone of dual zone monitoring well MW-1					
Facility ID#: 156419	•		Permit Number:	156419-001-UC		
Monitoring Well ID#: 156419-MW-1-L	•	*	Issue Date:			
As Identified in the Permit: lower zone of dual	zone monitoring w	ell MW-1	Expiration Date:			
Monitoring Interval: 1650 to 1700 ft	•	· ·				
Associated Injection Well(s):						
Injection Well ID# Injection Well Descr	iption		•	. ·		
156419-IW-2 CLASS I INJECTION N	WELL IW-2		. .			
196419-IW-1 CLASS I INJECTION	WELL IW-1					
THE FOLLOWING IS TO BE COMPLETE	D BY THE PE	RMITTEE:				
REPORT MONTH / YEAR:	DATE	OF SAMPLING / REC	ORDING:			
OPERATOR'S NAME:						
OPERATOR'S LICENSE NO:						
	\X:	E-MAIL				
Physical Characteristics	Recording	Reporting	· · · · · · · · · · · · · · · · · · ·			
Parameter	Frequency	Requirements	Val	ue Units /		
Well-Head Monthly Average Pressure	Continous	Daily Avg / Monthly	Avg of Daily	PSIG		
Well-Head Monthly Maximum Pressure	Continous	Daily Max / Monthl	y Max of Daily	PSIG		
Well-Head Monthly Minimum Pressure	Continous	Daily Min / Monthly	Min of Daily	PSIG		
Chemical Characteristics Parameter	Sampling Frequency	Reporting Requirements	Value	Units		
Chloride	Weekly	Weekly / Monthl	YA	mg/L		
Fecal Coliform, MPN, EC MED, 44.5C (tube 31614)	Weekly	Weekly / Monthl		# col/100 mL		
Nitrogen, Ammonia, Total as N	Weekly	Weekly / Monthl		mg/L as N		
Nitrogen, Nitrate, Total as N	Weekly	Weekly / Monthly		-		
Nitrogen, Total Kjeldahl as N	Weekly	Weekly / Monthl				
pH	Weekly	Weekly / Monthly		" D		
Phosphorus, Total as P	Weekly	Weekly / Monthly		-		
Residue, Total Filterable (dried at 180 C)	Weekly	Weekly / Monthly		-		
Sodium	Weekly	Weekly / Monthly				
Specific Conductance (Temperature Compensated)	Weekly	Weekly / Monthly Weekly / Monthly				
Sulfate, Total as SO4	Weekly	•		-		
Temperature, Water	Weekly	Weekly / Monthly	///	deg C		

LEAD PLANT OPERATOR (Name):.

LAMPRON BRITSCHICK CONTRACTOR

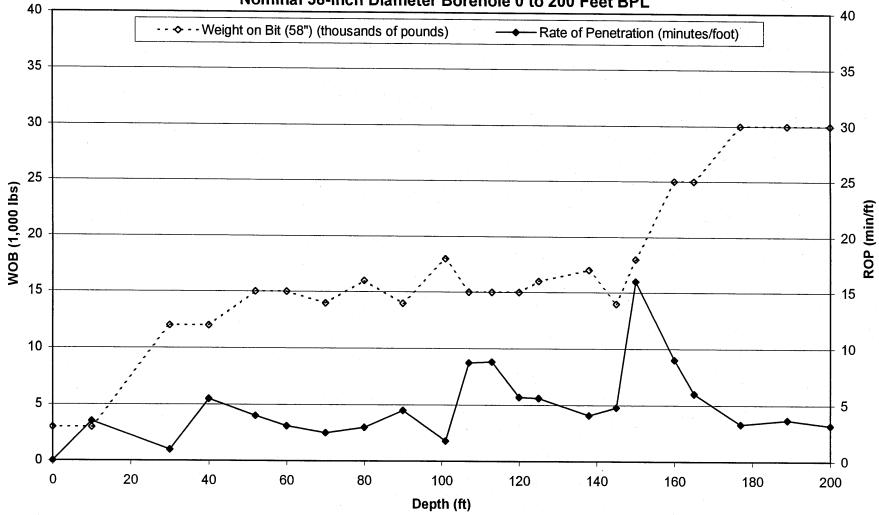

CONTRACTOR OF THE OWNER OWNER OWNER OWNER OWNE

NEED CONSERVATION CONTRACTOR

(Signature:) Date:

Appendix B Weight on Bit / Rate of Penetration Graphs

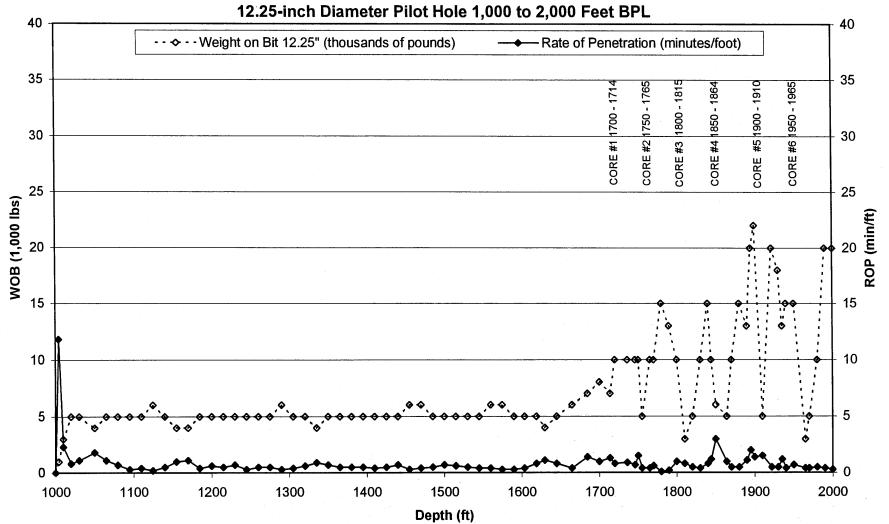
Injection Well No. 1 (IW-1) – Drilling Data Weight on Bit / Rate of Penetration


City of Hollywood Effluent Disposal System Southern Regional WWTP Injection Wells

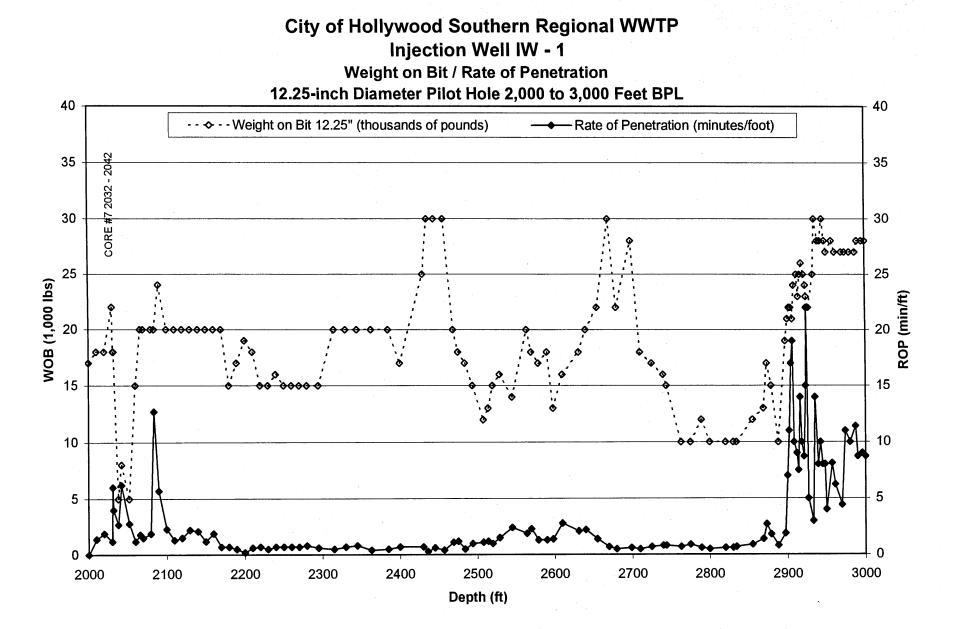
Injection Well IW - 1

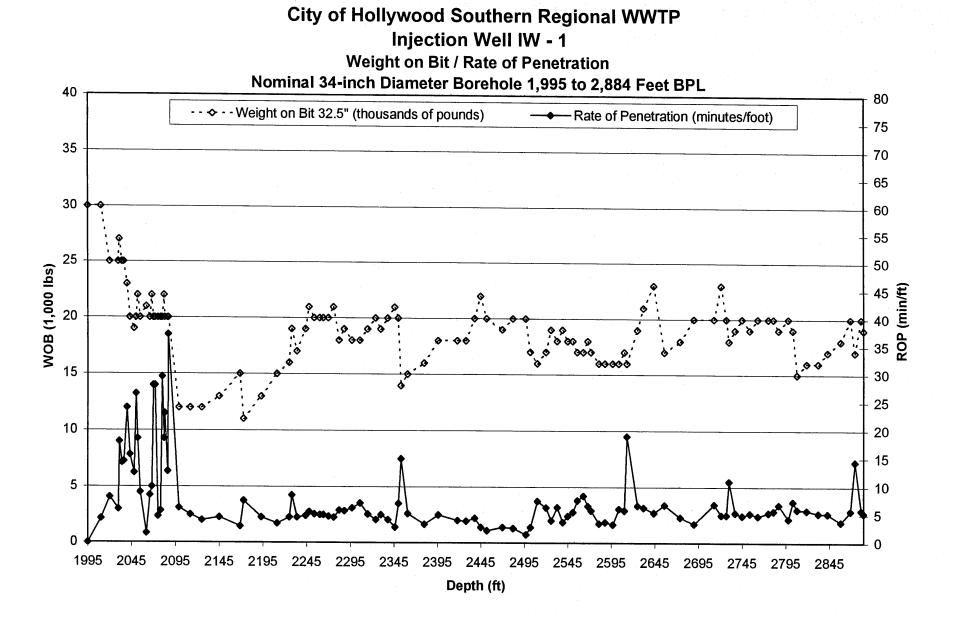
Weight on Bit / Rate of Penetration

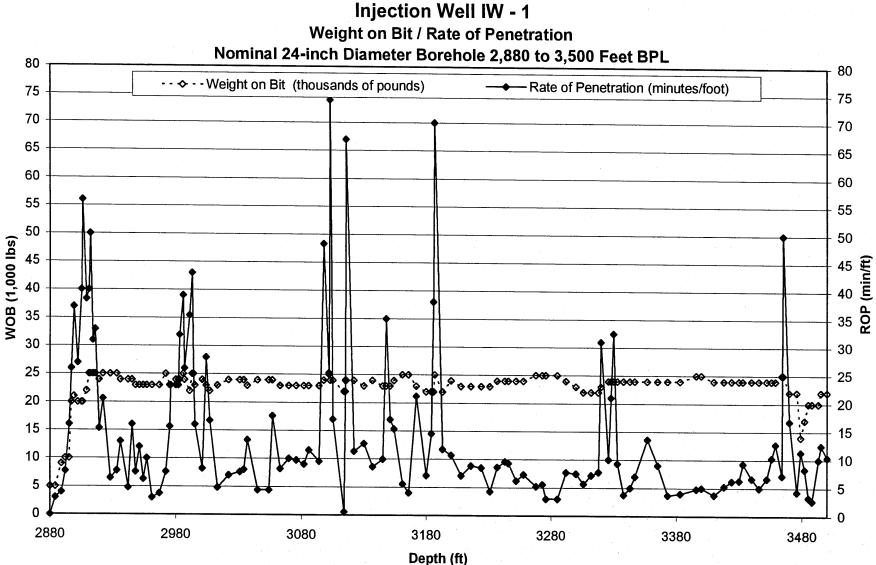
Nominal 58-inch Diameter Borehole 0 to 200 Feet BPL


Injection Well IW - 1 Weight on Bit / Rate of Penetration Nominal 50-inch Diameter Borehole 200 to 1,000 Feet BPL - - - → - - Weight on Bit (50") (thousands of pounds) -Rate of Penetration (minutes/foot) WOB (1,000 lbs) , ROP (min/ft) ۵ م م Depth (ft)

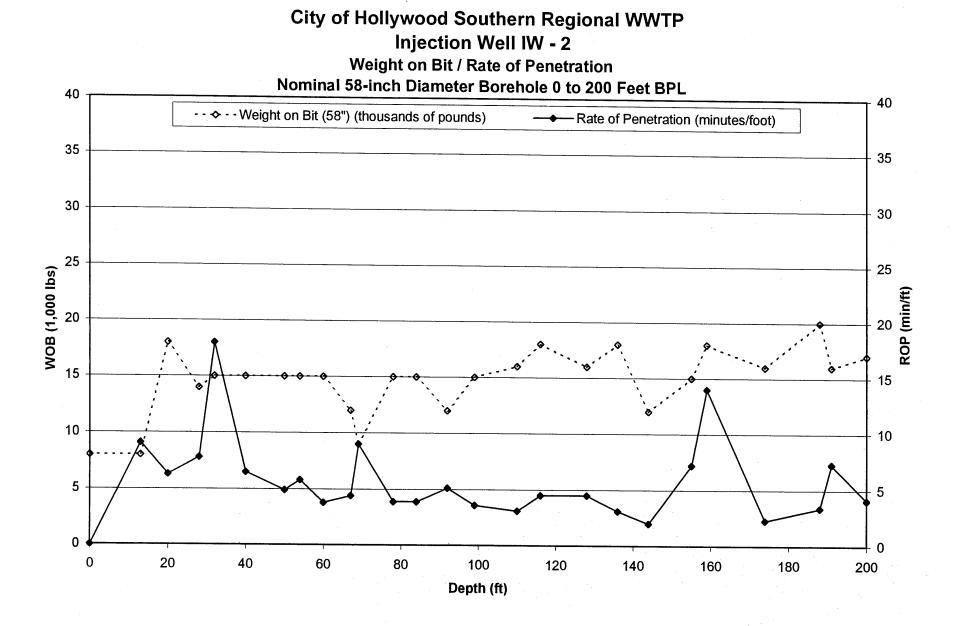
City of Hollywood Southern Regional WWTP


City of Hollywood Southern Regional WWTP


Injection Well IW - 1


Weight on Bit / Rate of Penetration

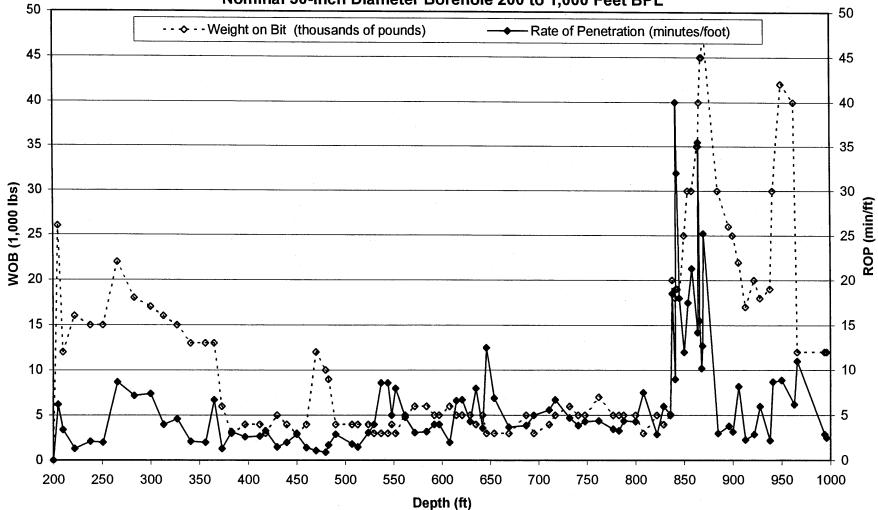
City of Hollywood Southern Regional WWTP Injection Well IW - 1 Weight on Bit / Rate of Penetration Nominal 42-inch Diameter Borehole 1,000 to 1,995 Feet BPL -- - Veight on Bit Nominal 42" (thousands of pounds) - Rate of Penetration (minutes/foot) -----WOB (1,000 lbs) 20 (min/ft) Depth (ft)



City of Hollywood Southern Regional WWTP

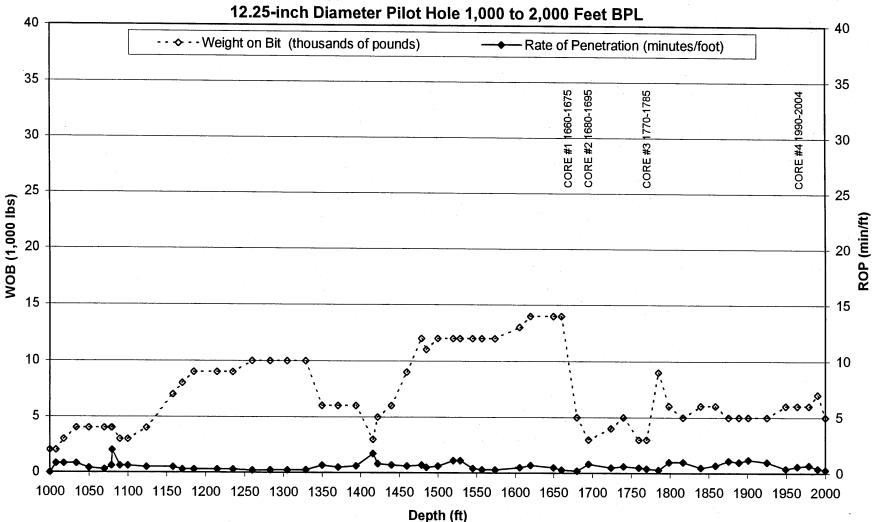
IW-1 2880 to 3500 24 inch Graph

Injection Well No. 2 (IW-2) – Drilling Data Weight on Bit / Rate of Penetration

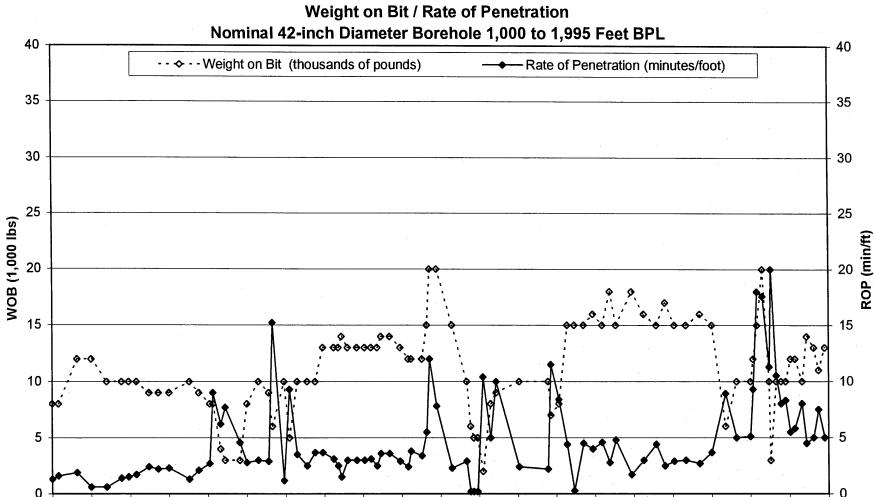


City of Hollywood Southern Regional WWTP

Injection Well IW - 2

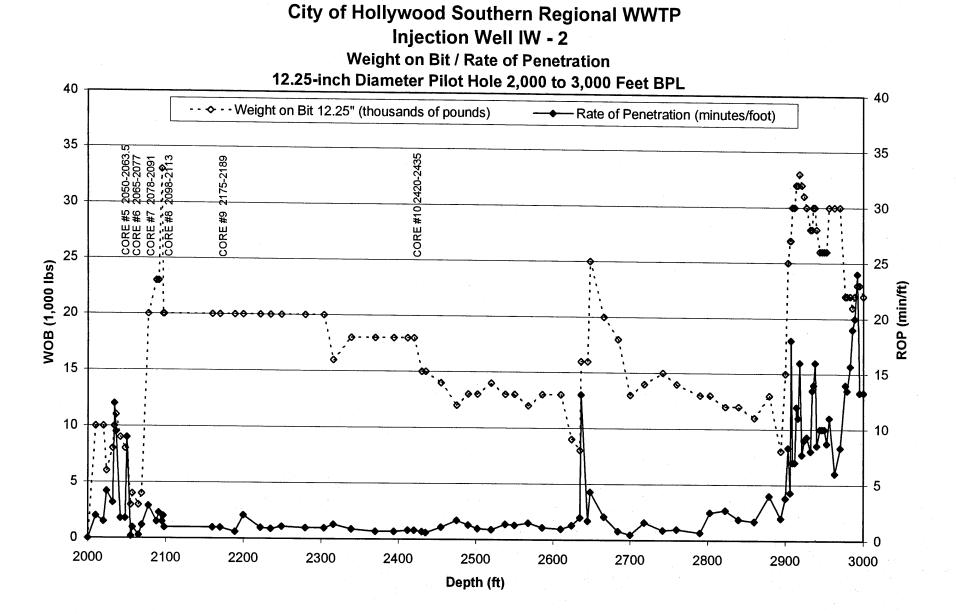

Weight on Bit / Rate of Penetration

Nominal 50-inch Diameter Borehole 200 to 1,000 Feet BPL

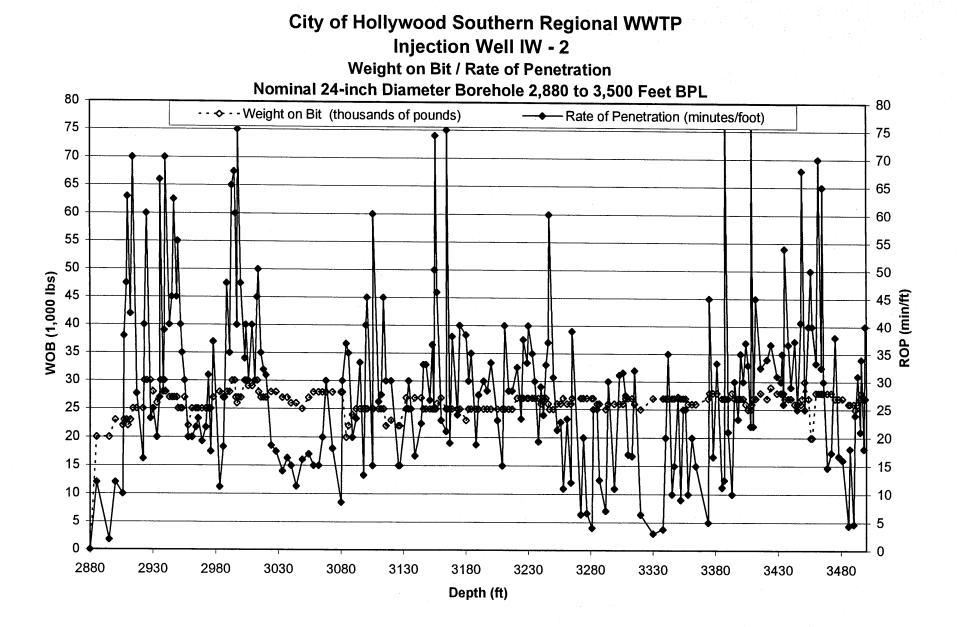

City of Hollywood Southern Regional WWTP Injection Well IW - 2

Weight on Bit / Rate of Penetration

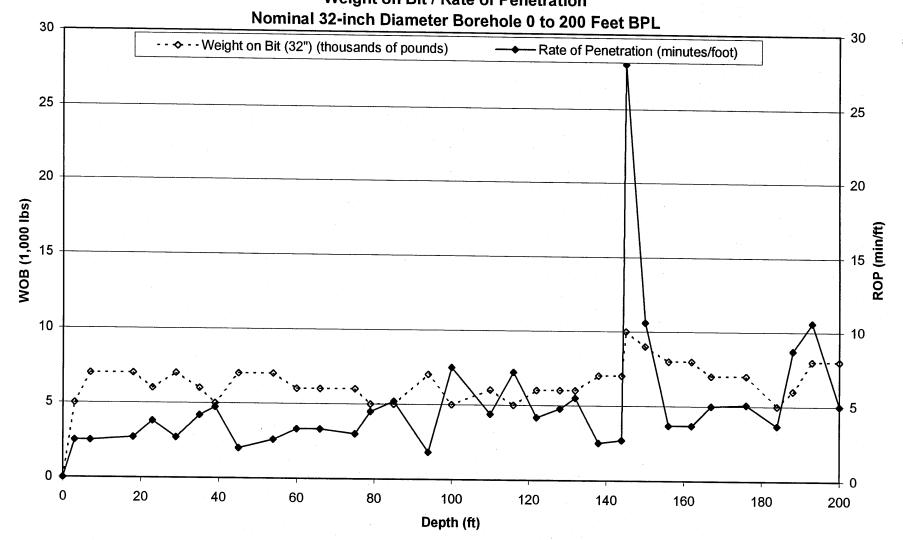
City of Hollywood Southern Regional WWTP

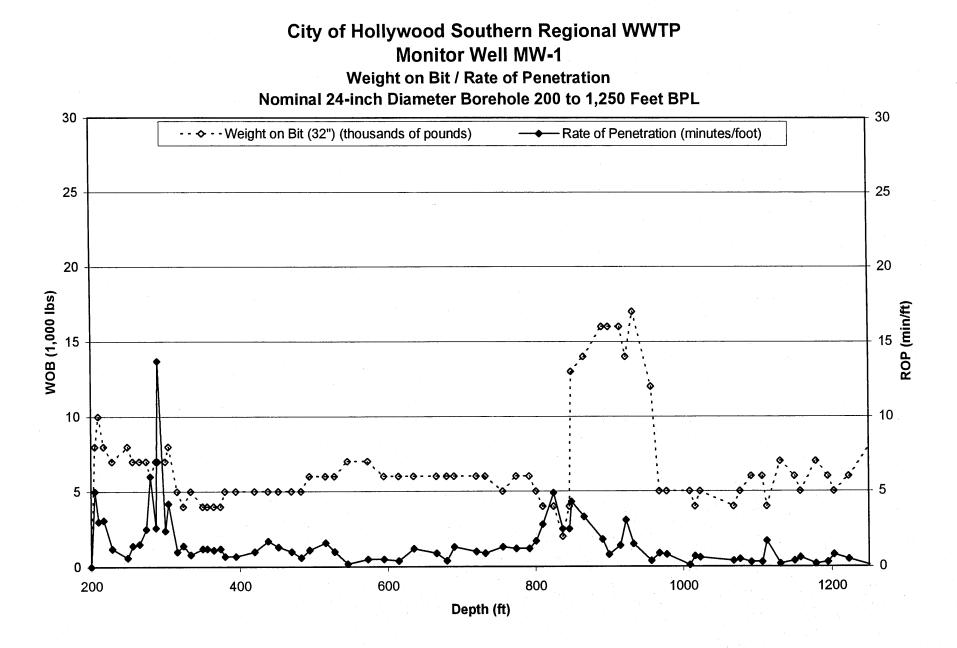

Injection Well IW - 2

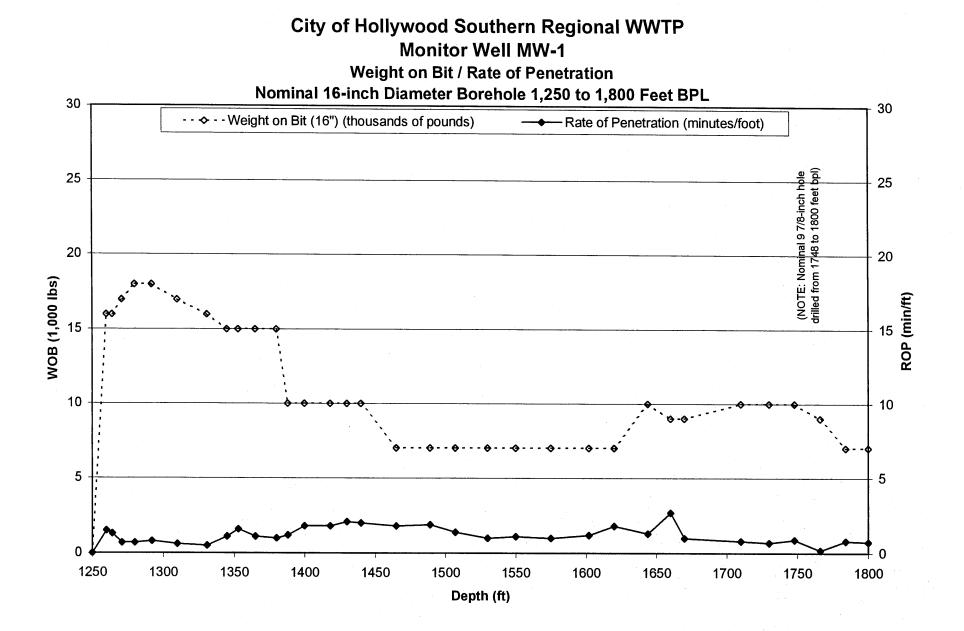
1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500 1550 1600 1650 1700 1750 1800 1850 1900 1950 2000 Depth (ft)


> City of Hollywood Effluent Disposal System Southern Regional WWTP Inje

0


Injection Well IW - 2 Weight on Bit / Rate of Penetration Nominal 34-inch Diameter Borehole 2,000 to 2,885 Feet BPL $- \diamond - -$ Weight on Bit (thousands of pounds) WOB (1,000 lbs) ROP (min/ft) Ø ĠΦ Depth (ft)


City of Hollywood Southern Regional WWTP



Monitor Well No. 1 (MW-1) – Drilling Data Weight on Bit / Rate of Penetration

City of Hollywood Southern Regional WWTP Monitor Well MW-1 Weight on Bit / Rate of Penetration

City of Hollywood Effluent Disposal System Southern Regional WWTP Injection Wells

Appendix C Inclination Surveys

Injection Well No. 1 (IW-1) – Drilling Data Inclination Surveys

APPENDIX C INCLINATION SURVEY INJECTION WELL IW-1 CITY OF HOLLYWOOD

Depth (feet bpl)	Inclination (degrees)	Bit Size (inches)
90	0.375	58
180	0.375	58
270	0.200	48 1/2
360	0.300	48 1/2
450	0.200	48 1/2
540	0.300	48 1/2
630	0.250	48 1/2
720	0.300	48 1/2
810	0.350	48 1/2
900	0.250	48 1/2
990	0.375	48 1/2
1090	0.250	12 1/4
1180	0.200	12 1/4
1270	0.150	12 1/4
1360	0.300	12 1/4
1450	0.260	12 1/4
1540	0.350	12 1/4
1630	0.400	12 1/4
1720	0.100	12 1/4
1810	0.300	12 1/4
1090	0.200	40 1/2
1180	0.125	40 1/2

Depth (feet bpl)	Inclination (degrees)	Bit Size (inches)
1270	0.250	40 1/2
1360	0.275	40 1/2
1450	0.375	40 1/2
1540	0.250	40 1/2
1630	0.300	40 1/2
1720	0.200	40 1/2
1810	0.375	40 1/2
1900	0.250	40 1/2
1990	0.200	40 1/2
2080	0.300	12 1/4
2170	0.500	12 1/4
2260	0.550	12 1/4
2350	0.250	12 1/4
2440	0.250	12 1/4
2530	0.250	12 1/4
2620	0.200	12 1/4
2710	0.300	12 1/4
2800	0.400	12 1/4
2890	0.200	12 1/4
2980	0.250	12 1/4
2080	0.250	32 1/2
2170	0.300	32 1/2
2260	0.300	32 1/2
2350	0.200	32 1/2
2440	0.125	32 1/2
2530	0.200	32 1/2
2620	0.260	32 1/2

Depth (feet bpl)	Inclination (degrees)	Bit Size (inches)
2710	0.200	32 1/2
2800	0.200	32 1/2
2970	0.300	22 1/2
3060	0.200	22 1/2
3150	0.300	22 1/2
3240	0.250	22 1/2
3330	0.250	22 1/2
3420	0.250	22 1/2

Injection Well No. 2 (IW-2) – Drilling Data Inclination Surveys

APPENDIX C INCLINATION SURVEY INJECTION WELL IW-2 CITY OF HOLLYWOOD

 Depth (feet bpl)	Inclination (degrees)	Bit Size (inches)
 90	0.250	58
180	0.250	58
270	0.300	48 1/2
360	0.200	48 1/2
450	0.250	48 1/2
540	0.300	48 1/2
630	0.300	48 1/2
720	0.150	48 1/2
810	0.300	48 1/2
900	0.250	48 1/2
990	0.250	48 1/2
	0.000	10.4/4
1080	0.200	12 1/4
1170	0.250	12 1/4
1260	0.150	12 1/4
1350	0.300	12 1/4
1440	0.300	12 1/4
1530	0.300	12 1/4
1620	0.300	12 1/4
1710	0.250	12 1/4
1800	0.225	12 1/4
1890	0.250	12 1/4
1080	0.250	40 1/2

Depth (feet bpl)	Inclination (degrees)	Bit Size (inches)
1170	0.250	40 1/2
1260	0.300	40 1/2
1350	0.200	40 1/2
1440	0.200	40 1/2
1530	0.350	40 1/2
1620	0.250	40 1/2
1710	0.250	40 1/2
1800	0.150	40 1/2
1890	0.250	40 1/2
1980	0.350	40 1/2
2080	0.300	12 1/4
2170	0.250	12 1/4
2260	0.250	12 1/4
2350	0.350	12 1/4
2440	0.250	12 1/4
2530	0.250	12 1/4
2620	0.350	12 1/4
2710	0.350	12 1/4
2800	0.300	12 1/4
2890	0.350	12 1/4
2980	0.300	12 1/4
2080	0.200	32 1/2
2170	0.250	32 1/2
2260	0.250	32 1/2
2350	0.250	32 1/2
2440	0.250	32 1/2
2530	0.400	32 1/2

Depth (feet bpl)	Inclination (degrees)	Bit Size (inches)
2620	0.250	32 1/2
2710	0.200	32 1/2
2800	0.300	32 1/2
2890	0.300	22 1/2
2980	0.200	22 1/2
3070	0.200	22 1/2
3160	0.300	22 1/2
3250	0.250	22 1/2
3340	0.300	22 1/2
3430	0.200	22 1/2
3490	0.350	22 1/2

Monitor Well No. 1 (MW-1) – Drilling Data Inclination Surveys

APPENDIX C INCLINATION SURVEY MONITOR WELL MW-1 CITY OF HOLLYWOOD

Depth (feet bpl)	Inclination (degrees)	Bit Size (inches)
90	0.200	32 1/2
180	0.200	32 1/2
270	0.250	22 1/2
360	0.300	22 1/2
450	0.300	22 1/2
540	0.250	22 1/2
630	0.350	22 1/2
720	0.300	22 1/2
810	0.250	22 1/2
900	0.200	22 1/2
990	0.150	22 1/2
1080	0.350	22 1/2
1170	0.300	22 1/2
1340	0.300	14 3/4
1430	0.250	14 3/4
1520	0.350	14 3/4
1610	0.300	14 3/4
1700	0.200	14 3/4
1790	0.250	9 7/8

Appendix C Inclination Survey MW-1

Injection Well No. 1 (IW-1) – Lithology Geologic Log

GEOLOGIC LOG (Drill Cuttings)

CITY OF HOLLYWOOD EFFLUENT DISPOSAL SYSTEM

SOUTHERN REGIONAL WWTP

INJECTION WELL IW - 1

Depth	Thickness	Sample Description
(ft)	(ft)	
0 - 10	10	LIMESTONE – 100%; 90% Dark yellowish brown (10YR 4/2), cryptocrystalline, hard, slightly sandy carbonate mudstone. 10% Very pale orange (10YR 8/2), very fine grained, sandy, partly sparry packstone. Trace Sandstone.
10 - 20	10	LIMESTONE – 100% Very pale orange (10YR 8/2), fine to medium grained, moderately soft, pelloidal, partly sparry packstone with shell and shell fragments.
20 – 30	10	SANDSTONE – 100% Light greenish gray (5GY 8/1), fine to medium grained, subangular, poorly cemented with calcite. Trace Sandy Limestone.
30 – 40	10	SANDSTONE AND LIMESTONE – Sandstone 90%, yellowish gray (5Y 7/2), medium to fine grained subangular to subrounded, well sorted, moderately cemented with calcite with trace detrital carbonate. Limestone 10%, moderate yellowish brown (10YR 5/4), coarse grained, moderately hard, sparry, fossiliferous packstone.
40 – 50	10	SANDSTONE AND LIMESTONE – Sandstone 60%, as above. Limestone 40%; 30% yellowish gray (5Y 8/1), medium grained, moderately hard pelloidal, partly sparry packstone. 10% Pale yellowish brown (10YR 6/2), microcrystalline to cryptocrystalline, sparry, hard carbonate mudstone.
50 – 80	30	SANDSTONE – 100% Yellowish gray (5Y 7/2), fine to medium grained, moderately hard to hard, moderately well to well cemented with some detrital carbonate.
80 – 140	60	SANDSTONE AND SANDY LIMESTONE – Sandstone 80%, as above. Sandy Limestone 20% yellowish gray (5Y 8/1), fine to medium grained, hard, sparry packstone with medium grained angular to subangular quartz sand.
140 – 160	20	SANDY LIMESTONE AND LIMESTONE – Sandy Limestone 90%, yellowish gray (5Y 7/2), medium to occasionally coarse grained, hard highly sparry fossiliferous wackestone with very fine to medium grained quartz sand. Limestone 10%, grayish yellow (5Y 8/4), cryptocrystalline, hard sparry carbonate mudstone.
160 – 210	50	LIMESTONE AND SANDY LIMESTONE – Limestone 80%, yellowish gray (5Y 7/2) to grayish orange (10YR 7/4), fine to coarse grained, hard pelloidal, fossiliferous, highly sparry, slightly sandy packstone. Sandy Limestone 20%, yellowish gray (5Y 7/2), medium grained, hard, pelloidal packstone with medium grained quartz sand. Trace tests.

Depth (ft)	Thickness (ft)	Sample Description
210 – 230	20	LIMESTONE AND SANDY LIMESTONE – Limestone 80%, yellowish gray (5Y 8/1), fine to coarse grained, hard, slightly sandy, sparry packstone with shell fragments. Sandy Limestone 20%, yellowish gray (5Y 7/2), medium grained, moderately soft grainstone/packstone with medium grained quartz sand. Trace coarse shell fragments.
230 – 290	60	LIMESTONE – 100% Yellowish gray (5Y 8/1), fine to medium grained, hard sparry, slightly sandy packstone/wackestone with trace fine grained phosphorite. Trace coarse shell fragments. Trace Clay below 270'.
290 – 350	60	LIMY SANDSTONE AND LIMESTONE – Limy Sandstone 90%, medium light gray (N6) to medium gray (N5), fine to medium grained with sparry matrix. Limestone 10%, yellowish gray (5Y 7/2), fine to medium grained, hard, sparry, slightly sandy packstone with trace fine grained phosphorite. Trace medium gray (N5) clay.
350 – 360	10	SANDY CLAYEY LIMESTONE AND LIMY SANDSTONE – Sandy Clayey Limestone 50%, light olive gray (5Y 5/2), fine to medium grained, moderately soft, phosphatic packstone with abundant fine grained quartz sand and Clay. Limy Sandstone 50%, light gray (N7) to light olive gray (5Y 5/2), fine to rarely coarse grained, moderately hard with abundant detrital carbonate and little clay. Trace large shell fragments.
360 – 440	80	CLAYEY SANDY LIMESTONE – 100% Pale olive (10Y 6/2), very fine to fine grained, moderately soft, slightly phosphatic wackestone with abundant clay and fine grained quartz sand.
440 – 500	60	SANDY CLAY AND CLAYEY LIMESTONE – Sandy Clay 50% to 60%, pale olive gray (10Y 6/2) to grayish yellow green (5GY 7/2), very soft, plastic, weakly calcareous, weakly phosphatic. Clayey Limestone 40% to 50%, pale olive gray (10Y 6/2), medium grained, moderately soft, friable, slightly phosphatic wackestone. Trace coarse shell fragments.
500 550	50	LIMY CLAY – 100% Pale olive (10Y 6/2), firm, non-plastic with abundant very fine to fine grained detrital carbonate and little to some very fine grained quartz sand.
550 – 560	10	SANDY CLAY – 100% Pale olive (10Y 6/2), firm, friable, non-plastic, highly calcareous with very fine grained quartz sand.
560 – 590	30	LIMY SANDY CLAY – 100% Pale olive (10Y 6/2), firm, friable, non- plastic with abundant very fine to fine grained detrital carbonate and very fine grained quartz sand.
590 – 610	20	SANDY LIMY CLAY – 100% Pale olive (10Y 6/2), firm to soft, non- plastic to rarely plastic, slightly phosphatic with abundant very fine to fine grained quartz sand and fine grained detrital carbonate.
610 – 670	30	SANDY LIMY CLAY – 100% Pale olive (10Y 6/2), firm, non-plastic, slightly phosphatic with abundant very fine to fine grained quartz sand and fine grained detrital carbonate.
670 – 700	30	SANDY CLAY – 100% Pale olive (10Y 6/2), soft, low plasticity, calcareous, slightly phosphatic with abundant very fine to fine grained sand.

Depth (ft)	Thickness (ft)	Sample Description
700 - 720	20	SANDY CLAY – 100% Pale olive (10Y 6/2), very soft, moderately plastic, cohesive, calcareous, phosphatic with very fine to fine grained quartz sand.
720 – 750	30	SANDY CLAY – 100% Pale olive (10Y 6/2), moderately firm to soft, low plasticity, calcareous, slightly phosphatic with very fine to fine grained quartz sand.
750 – 760	10	SANDY CLAY – 100% Pale olive (10Y 6/2), very soft, plastic cohesive, calcareous, slightly phosphatic with very fine to fine grained quartz sand.
760 – 770	10	SANDY CLAY – 100% Pale greenish yellow (10Y 8/2), soft moderately plastic, calcareous, moderately phosphatic, with very fine grained quartz sand.
770 – 780	10	SANDY CLAY – 100% Pale olive (10Y 6/2), very soft, plastic, cohesive, calcareous, slightly phosphatic with very fine to fine grained quartz sand.
780 – 810	30	SANDY CLAY – 100% Pale greenish yellow (10Y 8/2), soft, moderately plastic, calcareous, moderately phosphatic, with very fine grained quartz sand.
810 – 830	20	CLAY, CHERT AND CLAYEY LIMESTONE – Clay 90%, pale olive (10Y 6/2), soft to very soft, moderately plastic, calcareous, slightly phosphatic, with some very fine grained quartz sand. Chert 5%, olive gray (5Y 6/1) to olive black (5Y 2/1), fine grained with cryptocrystalline matrix, very hard. Clayey Limestone 5%, greenish gray (5GY 6/1), fine to medium grained, moderately hard, phosphatic wackestone/packstone with abundant Clay.
830 - 840	10	SANDY CLAY – 100% Grayish olive green (5GY 3/2), very stiff, low plasticity, phosphatic to highly phosphatic with very fine grained quartz sand and fine grained detrital carbonate.
840 - 860	20	CLAY – 100% Grayish olive (10Y 4/2), cohesive, very soft, high plasticity, slightly calcareous.
860 - 870	10	LIMESTONE - 100% White (N9) to olive gray (5Y 4/1), fine grained moderately hard, phosphatic packstone with micritic to sparry matrix, shell fragments and molds common.
870 - 890	20	LIMESTONE AND CLAY – Limestone 40% to 60%, as above. Clay 40% to 60%, pale olive (10Y 6/2), soft to very soft, moderately plastic to plastic, calcareous, slightly phosphatic. Trace black (N1) Chert.
890 - 900	10	CLAYEY LIMESTONE AND LIMESTONE – Clayey Limestone 70%, very light gray (N8) to pale olive (10Y 6/2), very fine to medium grained, soft to very soft, phosphatic wackestone. Limestone 30%, 20%, light olive gray (5Y 6/1) to olive gray (5Y 4/1), medium grained, moderately hard, phosphatic, partly sandy packstone/wackestone. 10% Yellowish gray (5Y 7/2), very fine grained, hard wackestone.

Depth	Thickness	Sample Description
(ft)	(ft)	
900 - 910	10	LIMESTONE - 100%; 50% Yellowish gray (5Y 7/2), fine grained, moderately hard, sandy, phosphatic packstone. 30% Yellowish gray (5Y 8/1), medium to coarse grained, moderately hard, pelloidal fossiliferous packstone. 20% Medium light gray (N6), medium grained, hard, fossiliferous wackestone.
910 - 920	10	LIMESTONE - 100%; 70% Medium light gray (N6), medium to coarse grained, fossiliferous, slight sparry, micritic wackestone. 30% Packstone as above.
920 - 970	50	LIMESTONE - 100%; 80% Yellowish gray (5Y 8/1), fine to occasionally medium grained, hard, fossiliferous wackestone to mudstone. 20% Wackestone as above.
970 - 990	20	LIMESTONE - 100%; 80% Very pale orange (10YR 8/2), medium grained, moderately hard, fossiliferous packstone. 20% Very light gray (N8), fine to very coarse grained, hard, fossiliferous wackestone. Trace to few forams. Trace olive black (5Y 2/1), fine grained hard Limy Dolomite at 980'.
990 - 1,000	10	LIMESTONE - 100% Yellowish gray (5Y 8/1), medium grained, soft to moderately hard, pelloidal packstone with few forams.
1,000 – 1,060	60	LIMESTONE AND SANDY LIMESTONE – Limestone 90% to 95%, yellowish gray (5Y 8/1), medium to coarse grained, soft to moderately hard, pelloidal packstone. Sandy Limestone 10% to 5%, moderate yellowish green (5GY 7/4), medium to coarse grained, moderately hard, sparry, weakly vuggy packstone with medium grained quartz sand, shell molds, casts and shell fragments. Forams common.
1,060 – 1,070	10	LIMESTONE - 100%; 70% Limestone, light greenish gray (5G 8/1), medium to coarse grained, hard to moderately hard, vuggy packstone. 30% Yellowish gray (5Y 8/1), medium to coarse grained, moderately hard, pelloidal packstone with calcite lined vugs and forams.
1,070 – 1,080	10	LIMESTONE – 100% Yellowish gray (5Y 8/1) to light greenish gray (5GY 8/1), microcrystalline to fine grained, moderately soft, locally vuggy mudstone to wackestone with trace phosphorite.
1,080 – 1,170	90	LIMESTONE – 100%; 80% Yellowish gray (5Y 7/2) to grayish orange (10YR 7/4), fine to medium grained, moderately soft to hard, pelloidal packstone. 20% Pale yellowish brown (10YR 6/2), cryptocrystalline hard carbonate mudstone. Trace Dolomitic Limestone at 1,160'. Few large fossils and shell fragments.
1,170 – 1,260	90	LIMESTONE 100% - Grayish orange (10YR 7/4) to rarely dark yellowish orange (10YR 6/6), medium to coarse grained, moderately soft, pelloidal packstone to grainstone with abundant unconsolidated forams.
1,260 – 1,300	40	LIMESTONE – 100%; 90% Yellowish gray (5Y 8/1), cryptocrystalline to fine grained, soft to moderately hard, mudstone to packstone with abundant forams. 10% Yellowish gray (5Y 7/2), fine to medium grained soft wackestone. Trace light olive gray (5Y 6/1), cryptocrystalline, hard, carbonate mudstone.

Depth	Thickness	Sample Description
(ft)	(ft)	
1,300 – 1,390	90	LIMESTONE – 100%; 60% to 70% Dominantly yellowish gray (5Y 8/1) packstone as above. 30% to 40% Medium light gray (N6), fine grained, hard to moderately hard, slightly sandy wackestone to packstone with fine grained quartz sand. Few fossils and shell fragments.
1,390 – 1,410	20	LIMESTONE - 100%; 80% Very pale orange (10YR 8/2), fine grained, moderately hard pelloidal packstone. 20% Pale yellowish brown (10YR 6/2), cryptocrystalline, hard, weakly vuggy packstone. Trace tests.
1,410 – 1,440	30	LIMESTONE – 100%; 80% to 60% Grayish orange (10YR 7/4), medium grained, moderately hard, pelloidal grainstone. 20% to 40% Pale yellowish brown (10YR 6/2) to light olive gray (5Y 6/1), cryptocrystalline, hard, partly weakly vuggy carbonate mudstone.
1,440 – 1,450	10	LIMESTONE - 100%; 60% Yellowish gray (5Y 8/1), medium grained, soft to moderately soft packstone. 20% Yellowish gray (5Y 8/1) to medium light gray (N6), very fine to fine grained, moderately hard, fossiliferous, micritic packstone. 20% Yellowish gray (5Y 8/1), cryptocrystalline to rarely very fine grained, hard, very weakly vuggy carbonate mudstone.
1,450 – 1,470	20	LIMESTONE – 100% Very pale orange (10YR 8/2), medium grained soft pelloidal packstone with abundant forams.
1,470 – 1,500	30	LIMESTONE – 100%; 70% Very pale orange (10YR 8/2), medium grained, moderately soft packstone. 30% Yellowish gray (5Y 7/2), cryptocrystalline, hard, carbonate mudstone with medium gray (N5), very fine grained to microcrystalline, hard packstone.
1,500 – 1,510	10	LIMESTONE – 100%; 50% Yellowish gray (5Y 8/1), fine to medium grained, moderately soft, pelloidal grainstone/packstone. 40% Yellowish gray (5Y 8/1), cryptocrystalline to rarely very fine grained hard carbonate mudstone with trace crystalline carbonate. 10% White (N9), very fine to fine grained, very soft carbonate marl.
1,510 – 1,520	10	LIMESTONE – 100% Yellowish gray (5Y 8/1), fine to medium grained, moderately soft, pelloidal packstone to wackestone with few forams.
1,520 – 1,530	10	LIMESTONE – 100%; 70% Medium light gray (N6) to medium gray (N5), fine to medium grained, moderately hard, fossiliferous grainstone to wackestone. 30% as above. Unconsolidated forams common.
1,530 – 1,540	10	LIMESTONE – 100%; 70% Yellowish gray (5Y 8/1), fine to medium grained, soft, pelloidal grainstone. 30% Olive black (5Y 2/1) cryptocrystalline, hard, silty carbonate mudstone. Abundant forams and few tests.
1,540 – 1,560	20	LIMESTONE – 100% Very pale orange (10YR 8/2), medium grained, soft pelloidal grainstone to wackestone with abundant forams and trace crystalline carbonate.

Depth	Thickness	Sample Description
(ft)	(ft)	
1,560 – 1,600	40	LIMESTONE – 100%; 80% Very pale orange (10YR 8/2), fine grained, moderately soft, pelloidal, slightly fossiliferous packstone. 20% Yellowish gray (5Y 8/1) to medium light gray (N6), cryptocrystalline to very fine grained, hard, fossiliferous carbonate mudstone to wackestone. Forams common to abundant.
1,600 – 1,620	20	LIMESTONE – 100% Pale yellowish brown (10YR 6/2) to very pale orange (10YR 8/2), fine to medium grained, soft pelloidal packstone. Forams and tests common. Trace shell fragments and crystalline carbonate.
1,620 – 1,630	10	LIMESTONE – 100% Very pale orange (10YR 8/2), fine to medium grained, soft to moderately soft pelloidal grainstone.
1,630 – 1,640	10	LIMESTONE – 100% Grayish orange (10YR 7/4) to light olive gray (5Y 6/1), fine grained, moderately soft packstone with forams.
1,640 – 1,660	20	LIMESTONE - 100%; 90% Very pale orange (10 YR 8/2), very fine to medium grained, moderately soft, pelloidal carbonate mudstone to packstone. 10% Light olive gray (5Y 6/1), cryptocrystalline hard carbonate mudstone. Forams common
1,660 – 1,670	10	LIMESTONE – 100% Very pale orange (10YR 8/2), dominantly fine to medium grained, moderately hard, partly weakly vuggy wackestone to packstone. Forams common.
1,670 – 1,720	50	LIMESTONE – 100%; 80% to 60% As above, percentage decreasing with depth. 20% to 40% Light olive gray (5Y 6/1) to medium light gray (N6), cryptocrystalline to fine grained, hard, partly weakly vuggy carbonate mudstone to wackestone, percentage increasing with depth. Unconsolidated forams common.
1,720 – 1,730	10	LIMESTONE – 100% Grayish orange (10YR 7/4), fine to medium grained, soft, pelloidal packstone to wackestone. Abundant unconsolidated forams and tests. Trace Dolomitic Limestone.
1,730 – 1,740	10	LIMESTONE – 100%; 70% As above. 30% Light gray (N7), fine grained, hard to rarely soft, partly weakly vuggy, partly micritic packstone to wackestone. Abundant unconsolidated forams.
1,740 – 1,750	10	LIMESTONE – 100%; 80% Yellowish gray (5Y 8/1) to very pale orange (10YR 8/2), very fine to medium grained, moderately hard to soft grainstone to packstone. 20% Very pale orange (10YR 8/2), cryptocrystalline, hard, partly weakly vuggy, rarely slightly sparry carbonate mudstone. Trace white (N9), very soft carbonate marl. Abundant forams.
1,750 – 1,760	10	LIMESTONE – 100%; 80% Very pale orange (10YR 8/2), fine to coarse grained, moderately soft, pelloidal grainstone to packstone. 20% Very pale orange (10YR 8/2), cryptocrystalline to very fine grained, hard, weakly vuggy carbonate mudstone. Abundant forams.
1,760 – 1,780	20	LIMESTONE – 100%; 90% Moderate yellowish brown (10YR 5/4), fine to medium grained, moderately soft, locally slightly Dolomitic packstone. 10% Light olive gray (5Y 6/1), coarse grained, hard wackestone with molds filled with crystalline carbonate.

Depth (ft)	Thickness (ft)	Sample Description
1,780 – 1,790	10	LIMESTONE AND SILTY LIMESTONE – Limestone 80%; 70% Moderate yellowish brown (10YR 5/4), medium grained, moderately hard grainstone. 10% Very pale orange (10YR 8/2), fine grained, moderately hard packstone. Forams common. Silty Limestone 20%; Black (N1), medium grained, moderately hard, silty, pelloidal packstone.
1,790 – 1,800	10	LIMESTONE – 100%; 90% Very pale orange (10YR 8/2), fine to medium grained, moderately soft to soft, pelloidal packstone to wackestone with occasional molds. 10% Light olive gray (5Y 6/1), fine grained, hard, micritic carbonate mudstone.
1,800 – 1,810	10	LIMESTONE – 100%; 80% Yellowish gray (5Y 7/2), fine to medium grained, soft, pelloidal to highly sparry packstone with dominantly grayish blue green (5BG 5/2) intraclasts. 20% Pale greenish yellow (10Y 8/2) to grayish yellow (5Y 8/4), microcrystalline to fine grained, slightly vuggy to vuggy, moderately hard wackestone to packstone. Trace white (N9), fine grained, hard carbonate mudstone and medium dark gray (N4), very soft argillaceous carbonate marl.
1,810 1,820	10	LIMESTONE – 100% Pale greenish yellow (10Y 8/2), fine to medium grained, soft, pelloidal wackestone. Trace medium light gray (N6), microcrystalline, slightly vuggy, hard carbonate mudstone.
1,820 – 1,840	20	LIMESTONE – 100%; 70% Yellowish gray (5Y 8/1), fine grained, soft, pelloidal wackestone. 30% Light greenish gray (5GY 8/1), fine grained, moderately hard, vuggy wackestone to packstone. Few unconsolidated forams.
1,840 – 1,850	10	LIMESTONE – 100; 80% Yellowish gray (5Y 8/1) to light greenish gray (5GY 8/1), fine grained, partly vuggy, locally oolitic/pelloidal wackestone. 20% Greenish gray (5G 6/1), cryptocrystalline to microcrystalline, hard, fossiliferous, sparry wackestone. Trace light olive gray (5Y 6/1) to yellowish gray (5Y 8/1), cryptocrystalline, hard, micritic carbonate mudstone.
1,850 – 1,870	20	LIMESTONE – 100%; 70% Yellowish gray (5Y 7/2) to medium gray (N5), medium to coarse grained, hard grainstone to rarely packstone. 30% Yellowish gray (5Y 8/1) to light olive gray (5Y 6/1), cryptocrystalline, hard, locally weakly vuggy carbonate mudstone. Forams common.
1,870 – 1,880	10	LIMESTONE 100% Very pale orange (10YR 9/2), fine to very fine grained, moderately hard, locally weakly vuggy wackestone to carbonate mudstone.
1,880 – 1,890	10	LIMESTONE – 100%; 70% As above. 30% Very pale orange (10YR 8/2), very fine to medium grained, soft to moderately soft packstone. Trace crystalline carbonate.
1,890 – 1,900	10	DOLOMITE AND LIMESTONE - Dolomite 50%, moderate yellowish brown (10YR 5/4), cryptocrystalline, hard, slightly limy. Limestone 50%; 40% very pale orange (10YR 8/2), very fine to medium grained, soft to moderately hard wackestone to carbonate mudstone with few forams and tests. 10% Medium light gray (N6), fine grained, hard grainstone.

Depth	Thickness	Sample Description
(ft)	(ft)	
1,900 – 1,910	10	LIMESTONE AND DOLOMITIC LIMESTONE – Limestone 80%, yellowish gray (5Y 8/1), very fine grained, hard, locally vuggy carbonate mudstone to wackestone. Trace white (N9), very soft carbonate marl. Dolomitic Limestone 20%, moderate yellowish brown (10YR 5/4) to pale yellowish brown (10YR 6/2), fine grained, soft carbonate mudstone with very thin to 4 mm dark yellowish brown (10YR 4/2) Dolomite laminations.
1,910 – 1,920	10	LIMESTONE 100%; 60% Very pale orange (10YR 8/2), medium grained, moderately soft, pelloidal, locally vuggy grainstone to packstone. 40% Grayish orange (10YR 7/4), medium to coarse grained, hard, highly sparry packstone/wackestone. Few forams.
1,920 – 1,930	10	LIMESTONE – 100% Very pale orange (10YR 8/2), fine to medium grained, moderately hard, pelloidal packstone with few forams.
1,930 – 1,940	10	LIMESTONE – 100% Yellowish gray (5Y 8/1), fine to very fine grained, moderately soft to moderately hard, pelloidal, fossiliferous packstone.
1,940 – 1,970	30	LIMESTONE - 100%; 50% to 60% White (N9) to very pale orange (10YR 8/2), microcrystalline to fine grained, moderately soft, pelloidal locally sparry, fossiliferous packstone. 40% to 50% Light greenish gray (5GY 8/1), fine to medium grained, moderately hard to hard, pelloidal wackestone. Trace greenish gray (5G 6/1) to medium bluish gray (5B 5/1), cryptocrystalline to very fine grained, hard carbonate mudstone. Abundant foram tests.
1,970 – 1,980	10	LIMESTONE – 100% White (N9) to very pale orange (10YR 8/2), microcrystalline to fine grained, moderately soft, pelloidal, locally sparry, fossiliferous packstone. Trace greenish gray (5G 6/1) to medium bluish gray (5B 5/1), hard, microcrystalline carbonate mudstone and light greenish gray (5GY 8/1), fine to medium grained, moderately hard, pelloidal wackestone.
1,980 – 2,010	30	LIMESTONE – 100% Light greenish gray (5GY 8/1), fine to medium grained, moderately hard, pelloidal, locally sparry wackestone to packstone. Trace greenish gray (5GY 8/1), hard microcrystalline carbonate mudstone.
2,010 - 2,020	10	LIMESTONE – 100%; 80% Yellowish gray (5Y 8/1), fine to medium grained, soft to moderately hard, pelloidal packstone. 20% Yellowish gray (5Y 8/1), cryptocrystalline, hard carbonate mudstone.
2,020 – 2,040	20	DOLOMITE AND LIMESTONE – Dolomite 80%; 60% Light olive gray (5Y 5/2) moderate yellowish brown (10YR 5/4) and olive black (5Y 2/1), fine grained to cryptocrystalline, hard to very hard, sucrosic, locally weakly vuggy. 10% Dark yellowish brown (10YR 4/4), medium grained to cryptocrystalline, hard. 10% Light olive gray (5Y 6/1), cryptocrystalline, very hard, weakly vuggy, vugs lined with very fine grained euhedral dolomite rhombs. Limestone 20%; 10% Yellowish gray (5Y 8/1), fine to medium grained, soft to moderately hard, pelloidal packstone. 10% Yellowish gray (5Y 8/1), fine to medium grained, soft to moderately hard, pelloidal, slightly to moderately Dolomitic packstone.

Depth (ft)	Thickness (ft)	Sample Description
2,040 - 2,050	10	DOLOMITE AND LIMESTONE – Dolomite 70% light olive gray (5Y 6/1) to dusky yellowish brown (10YR 2/2), very fine grained to cryptocrystalline, very hard, sucrosic. Limestone 30% very pale orange (10YR 8/2), medium to fine grained, moderately soft, rarely Dolomitic packstone. Trace medium gray (N5) to olive black (5Y 2/1) Limy Dolomite.
2,050 – 2,060	10	LIMESTONE – 100%; 70% Very pale orange (10YR 9/2), very fine grained to cryptocrystalline, hard carbonate mudstone. 30 % Very pale orange (10YR 8/2), medium to fine grained, moderately soft pelloidal packstone/grainstone.
2,060 - 2,070	10	DOLOMITE – 100%; 70% Moderate yellowish brown (10YR 5/4) to dark yellowish brown (10YR 4/2), very fine grained to cryptocrystalline, hard to very hard, locally very weakly vuggy, sucrosic. 30% Pale yellowish brown (10YR 6/2), fine to medium grained, moderately hard.
2,070 – 2,080	10	DOLOMITE AND CLAY – Dolomite 90% moderate yellowish brown (10YR 5/4) to dark yellowish brown (10YR 4/2), very fine grained to cryptocrystalline, hard to very hard, locally very weakly vuggy, sucrosic. Clay 10% olive gray (5Y 4/1) to medium bluish gray (5B 5/1), soft to moderately firm, moderately plastic, non calcareous, cohesive.
2,080 – 2,090	10	DOLOMITE AND LIMY DOLOMITE – Dolomite 60%, dark yellowish brown (10YR 4/2), cryptocrystalline, hard to very hard. Limy Dolomite 40%, grayish brown (5YR 3/2), cryptocrystalline to fine grained, hard to very hard with euhedral crystals common and with 5% very pale orange (10YR 8/2), carbonate mudstone matrix and trace tests. Trace Dolomitic Limestone.
2,090 – 2,120	30	LIMESTONE – 100% Grayish orange (10YR 7/4), fine to coarse grained, moderately soft to moderately hard, well indurated, pelloidal, partly Dolomitic packstone with few tests and fossils. Few to common forams.
2,120 – 2,160	40	LIMESTONE – 100% Grayish orange (10YR 7/4), medium to fine grained, moderately hard to moderately soft, well indurated, pelloidal, fossiliferous packstone to grainstone. Trace white (N9), very soft carbonate marl to 2140'. Trace to few forams. Trace Dolomite.
2,160 – 2,240	80	LIMESTONE – 100% Yellowish gray (5Y 8/1), fine to medium grained, moderately hard, moderately to well indurated, pelloidal, partly sparry slightly fossiliferous packstone with few forams.
2,240 – 2,250	10	LIMESTONE – 100% Very pale orange (10YR 8/2), dominantly fine to medium grained, moderately hard to hard, well indurated, pelloidal partly fossiliferous packstone with trace casts and molds.
2,250 – 2,310	10	LIMESTONE – 100% Yellowish gray (5Y 8/1), fine to medium grained, moderately hard, well indurated, pelloidal, partly fossiliferous, partly sparry packstone. Few to common forams. Trace tests. Trace white (N9), very soft carbonate marl at 2,300'.

Depth	Thickness (ft)	Sample Description
(ft) 2,310 - 2,340	30	LIMESTONE – 100%; 85% As above. 15% Light greenish gray (5GY 8/1), fine to medium grained, moderately hard to moderately soft, fossiliferous packstone. Abundant fossils.
2,340 – 2,350	10	LIMESTONE – 100% Very pale orange (10YR 8/2), dominantly fine to medium grained, moderately hard, partly fossiliferous packstone. Trace Dolomitic Limestone.
2,350 – 2,370	20	LIMESTONE – 100%, 90% Very pale orange (10YR 8/2), dominantly fine to medium grained, moderately hard, partly fossiliferous packstone. 10% Light gray (N7) to dark gray (N5), fine grained to microcrystalline, moderately hard to hard, slightly Dolomitic mudstone.
2,370 – 2,400	30	LIMESTONE – 100% Very pale orange (10YR 8/2), dominantly fine to medium grained, moderately hard, partly fossiliferous packstone. Few echinoid fossils to 10mm in diameter. Trace very light gray (N8), very soft carbonate marl.
2,400 2,410	10	LIMESTONE – 100%; 60% Very pale orange (10YR 8/2), dominantly fine to medium grained, moderately hard, partly fossiliferous packstone. 40% Light greenish gray (5GY 8/1), cryptocrystalline to microcrystalline moderately soft, well indurated wackestone to locally mudstone with few fossils. Few 5mm to 10 mm echinoid tests and shell fragments.
2,410 - 2,440	30	LIMESTONE - 100%; 90% to 95% Very pale orange (10YR 8/2), dominantly fine to medium grained, moderately hard, partly fossiliferous, weakly pelloidal to pelloidal packstone with trace tests. 10% to 5% Very pale orange (10YR 8/2) to light greenish gray (5GY 8/1), dominantly microcrystalline to cryptocrystalline, hard to moderately hard carbonate mudstone to wackestone. Trace grayish orange (10YR 7/4), cryptocrystalline, very hard Dolomite and white (N9) carbonate marl. Few echinoids up to 10mm in diameter. Trace Dolomitic Limestone at 2,440'.
2,440 - 2,470	30	LIMESTONE – 100%, Very pale orange (10YR 8/2), medium to fine grained, moderately hard, well indurated, pelloidal, partly fossiliferous packstone. Trace yellowish gray (5Y 7/2), fine grained, hard carbonate mudstone at 2,450'. Sparry at 2,470'.
2,470 - 2,490	20	LIMESTONE – 100%; 90% As above. 10% Dark greenish gray (5GY 4/1), cryptocrystalline, hard carbonate mudstone. Trace white (N9), remineralized shell fragments (calcite) at 2,490'.
2,490 - 2,500	10	LIMESTONE – 100%; Grayish orange (10YR 7/2) to pale yellowish brown (10YR 6/2), medium to fine grained, moderately soft to moderately hard, pelloidal, fossiliferous, locally sparry, well indurated packstone. Trace crystalline carbonate.
2,500 - 2,510	10	LIMESTONE AND DOLOMITIC LIMESTONE - Limestone 80%, very pale orange (10YR 8/2), fine to medium grained, moderately soft, well indurated, pelloidal packstone. Dolomitic Limestone 20%, Grayish orange (10YR 7/2) to pale yellowish brown (10YR 6/2), medium to fine grained, moderately soft to moderately hard, pelloidal, fossiliferous, locally sparry, well indurated packstone with 5% to 10% fine grained euhedral Dolomite crystals.

Depth (ft)	Thickness (ft)	Sample Description
2,510 – 2,520	10	LIMESTONE – 100% Very pale orange (10YR 8/2), fine to medium grained, moderately hard to hard, very well indurated, pelloidal, fossiliferous packstone to wackestone with little crystalline carbonate.
2,520 – 2,540	20	LIMESTONE AND DOLOMITIC LIMESTONE – Limestone 80%, As above. Dolomitic Limestone 20%, grayish orange (10 YR 7/4), fine to medium grained, hard, fossiliferous packstone with tests and 20% to 50% fine grained euhedral to anhedral Dolomite crystals.
2,540 – 2,550	10	LIMESTONE - 100%; 90% Very pale orange (10YR 8/2), fine to medium grained, hard, pelloidal, fossiliferous packstone. 10% Medium gray (N5), cryptocrystalline, hard carbonate mudstone. Trace Dolomitic Limestone as above.
2,550 – 2,560	10	LIMESTONE - 100% Yellowish gray (5Y 7/2), dominantly fine to medium grained, hard to rarely soft, well indurated, pelloidal, locally weakly Dolomitic packstone.
2,560 – 2,570	10	LIMY DOLOMITE AND LIMESTONE – Limy Dolomite 70%, moderate yellowish brown (10YR 5/4), fine grained, hard with 10% to 50% very pale orange (10YR 8/2), cryptocrystalline to medium grained Limestone and tests. Limestone 30%, very pale orange (10YR 8/2), fine grained, moderately hard to moderately soft, pelloidal packstone.
2,570 – 2,580	10	LIMESTONE – 100% Pale yellowish brown (10YR 6/2), fine to medium grained, moderately soft to moderately hard, well indurated, pelloidal, fossiliferous packstone with few tests. Trace Dolomitic Limestone.
2,580 – 2,590	10	LIMESTONE – 100% Very pale orange (10YR 8/2) to grayish orange (10YR 7/4), fine to medium grained, moderately hard, well indurated, pelloidal packstone.
2,590 – 2,610	20	LIMESTONE – 100% Very pale orange (10YR 8/2) to grayish orange (10YR 7/4), fine grained, moderately hard, very well indurated, packstone to wackestone with forams common. Trace to little medium gray (N5), cryptocrystalline hard carbonate mudstone.
2,610 - 2,620	10	LIMESTONE – 100%; 80% Yellowish gray (5Y 8/1), fine grained, moderately soft to moderately hard, pelloidal, fossiliferous packstone to rarely grainstone. 10% Moderate yellowish brown (10YR 5/4), cryptocrystalline, very hard carbonate mudstone. 10% Medium light gray (N6), very fine grained, moderately hard carbonate mudstone.
2,620 – 2,640	20	LIMESTONE – 100%; 50% Yellowish gray (5Y 8/1), fine to medium grained, moderately hard to hard, well indurated, fossiliferous packstone to grainstone. 30% Medium gray (N5), fine grained, hard, pelloidal packstone with few mudstone clasts. 20% Olive black (5Y 4/1), dominantly cryptocrystalline to rarely fine grained, very hard carbonate mudstone.
2,640 – 2,650	10	LIMESTONE – 100%; 80% Medium dark gray (N4), dark gray (N3), olive gray (5Y 4/1) and yellowish gray (5Y 8/1), cryptocrystalline, hard to very hard, locally very weakly vuggy carbonate mudstone. 20% Yellowish gray (5Y 8/1), fine to medium grained, moderately hard packstone. Trace galuconite.

Depth	Thickness	Sample Description
(ft)	(ft)	
2,650 - 2,660	10	LIMESTONE – 100%; 80% Yellowish gray (5Y 8/1), medium grained, moderately hard, pelloidal packstone. 20% Yellowish gray (5Y8/1), cryptocrystalline, hard carbonate mudstone.
2,660 – 2,670	10	LIMESTONE – 100% Grayish orange (10TR 7/3), very fine to fine grained, moderately hard, very well to well indurated, pelloidal packstone with little grainstone. Trace light olive gray (5Y 6/1), microcrystalline, moderately soft carbonate mudstone. Forams common.
2,670 – 2,710	40	LIMESTONE – 100%; 90% Very pale orange (10YR 8/2), fine to medium grained, moderately hard to hard, dominantly very well indurated, locally sparry packstone. 10% Yellowish gray (5Y 8/1), cryptocrystalline, hard carbonate mudstone. Few forams. Trace white (N9), very fine grained, very soft wackestone with carbonate marl matrix at 2,610'. Trace olive black (5Y 2/1), cryptocrystalline, hard carbonate mudstone below 2,700'.
2,710 - 2,720	10	LIMESTONE – 100% Yellowish gray (5Y 8/1), cryptocrystalline, hard, very well indurated, very weakly vuggy carbonate mudstone.
2,720 – 2,730	10	LIMESTONE – 100%; 80% As above. 20% Yellowish gray (5Y 8/1), fine grained, moderately hard pelloidal packstone.
2,730 – 2,740	10	LIMESTONE – 100%; 70% Very pale orange (10YR 8/2), fine grained, moderately soft, well indurated, pelloidal packstone. 30% Yellowish gray (5Y 8/1), cryptocrystalline, hard, very well indurated, very weakly vuggy carbonate mudstone.
2,740 - 2,770	30	LIMESTONE – 100% Very pale orange (10YR 8/2), dominantly fine to medium grained, moderately soft, pelloidal packstone.
2,770 – 2,780	10	LIMESTONE – 100%; 80% Very pale orange (10YR 8/2) to grayish orange (10YR 7/4), fine to medium grained, moderately soft packstone. 20% Light olive gray (5Y 6/1) to olive black (5Y 2/1), cryptocrystalline to microcrystalline, hard, locally vuggy carbonate mudstone.
2,780 – 2,810	30	LIMESTONE – 100%; 70% to 80% Very pale orange (10YR 9/2), microcrystalline to very fine grained, moderately soft, moderately indurated carbonate mudstone/wackestone. 20% to 30% Very pale orange (10YR 8/2), dominantly fine to medium grained, moderately hard, pelloidal, partly fossiliferous packstone. Few forams. Trace to little medium gray (N5) to dark gray (N4), microcrystalline Dolomitic carbonate marl with few prominent mottles.
2,810 – 2,830	20	LIMESTONE – 100%; 95% Very pale orange (10YR 8/2), dominantly fine to medium grained, moderately soft to moderately hard, pelloidal, partially weakly fossiliferous packstone. 5% Very pale orange (10YR 9/2) to yellowish gray (5Y 8/1), fine grained to microcrystalline, moderately hard mudstone to wackestone. Trace medium gray (N5), carbonate marl.

Depth	Thickness	Sample Description
(ft)	(ft)	
2,830 – 2,840	10	LIMESTONE – 100%; 80% Very pale orange (10YR 8/2), microcrystalline to very fine grained, moderately soft, moderately indurated carbonate mudstone/wackestone. 15% Medium dark gray (N4), microcrystalline, hard carbonate mudstone. 5% Very pale orange (10YR 8/1),, microcrystalline to very fine grained, hard to moderately hard, locally pelloidal carbonate mudstone to wackestone.
2,840 – 2,850	10	LIMESTONE – 100%; 80% Very pale orange (10YR 8/2), dominantly fine to medium grained, moderately soft to moderately hard, pelloidal, partially weakly fossiliferous packstone. 15% Light olive gray (5Y 6/1) to greenish gray (5GY 6/1), microcrystalline to very fine grained, moderately soft to moderately hard, weakly vuggy, slightly argillaceous carbonate mudstone. 5% Very pale orange (10YR 8/2), microcrystalline to very fine grained, hard to moderately hard, locally pelloidal mudstone to wackestone.
2,850 – 2,870	20	LIMESTONE - 100%; 60% Very pale orange (10YR 8/2), dominantly fine to medium grained, moderately soft to moderately hard, pelloidal, partially weakly fossiliferous packstone. 40% White (N9),, dominantly medium to coarse grained, soft, slightly fossiliferous, pelloidal packstone. Trace foram tests.
2,870 - 2,880	10	LIMESTONE AND DOLOMITE – Limestone 60%, white (N9), dominantly medium to coarse grained, soft to moderately hard pelloidal packstone. Dolomite 40%, pale yellowish brown (10YR 6/2) to locally dark greenish gray (5GY 4/1), varying to dark gray (N3), coarse grain sized crystals, hard to very hard, partly sucrosic.
2,880 - 2,890	10	DOLOMITE AND LIMESTONE – Dolomite 60%; 50% dark greenish gray (5GY 4/1) to dark gray (N3), microcrystalline, hard to very hard, sucrosic. 10% Pale yellowish brown (10YR 6/2), coarse grain sized, crystalline, hard. Limestone 40% very pale orange (10YR 8/2), fine to locally medium grained, soft to moderately hard packstone.
2,890 - 2,900	10	LIMESTONE AND DOLOMITE – Limestone 90%, white (N9), medium to coarse grained, soft to moderately hard, well indurated, pelloidal packstone. Dolomite 10%, dark greenish gray (5GY 4/1) to dark gray (N3), microcrystalline, very hard.
2,900 -2,910	10	DOLOMITE AND LIMESTONE – Dolomite 60%, light gray (N7) to greenish gray (5GY 6/1), cryptocrystalline to microcrystalline, very hard, very well indurated. Limestone 40%, very pale orange (10YR 8/2), medium to coarse grained, soft to moderately hard, pelloidal to oolitic packstone. Few shell fragments within matrix ranging from 2 mm to 10 mm.
2,910 - 2,920	10	DOLOMITIC LIMESTONE, LIMY DOLOMITE AND DOLOMITE – Dolomitic Limestone 80%, yellowish gray (5Y 8/1), cryptocrystalline to microcrystalline, hard, very well indurated, moderately vuggy mudstone to wackestone, vugs filled with grayish orange (10YR 7/4) Dolomite. Limy Dolomite 15%, medium gray (N5) to dark greenish gray (5GY 4/1), microcrystalline, hard, well indurated. Dolomite 5%, light olive gray (5Y 6/1) to very pale orange (10YR 8/2), microcrystalline to fine grained, very hard, locally sucrosic with thin Dolomite laminations.

N.

Depth	Thickness	Sample Description
(ft)	(ft)	
2,920 - 2,930	10	DOLOMITE AND LIMESTONE – Dolomite 95%, yellowish gray (5Y 8/1) to very pale orange (10YR 8/2), microcrystalline to fine grained, partially sucrosic, very hard, locally weakly vuggy. Limestone 5%, white (N9), cryptocrystalline to medium grained, moderately hard, partially pelloidal packstone.
2,930 - 2,940	10	DOLOMITE – 100%, 50% Yellowish gray (5Y 8/1) as above. Dolomite 50%; 30% Light olive gray (5Y 6/1), microcrystalline to fine grained crystalline carbonate, very hard, very well indurated. 20%, Grayish orange (10YR 7/4), microcrystalline to coarse grained, very hard euhedral crystals.
2,940 - 2,950	10	DOLOMITE AND LIMESTONE – Dolomite 80%, grayish orange (10YR 7/3), microcrystalline, very hard. Limestone 10%, very pale orange (10YR 8/2), fine grained, moderately hard to moderately soft, pelloidal packstone. 10% Limestone, very pale orange (10YR 8/2), very fine grained, hard wackestone.
2,950 - 2,960	10	DOLOMITE AND LIMESTONE – Dolomite 70%; 40% yellowish gray (5Y 8/2), dominantly cryptocrystalline to very fine grained, very hard, weakly vuggy, vugs filled with moderate yellowish brown (10YR 5/4), very fine grained Dolomite crystals. Occasional fully healed fractures filled with Dolomite crystals as above. Occasionally encrusted with medium grained subhedral to anhedral Dolomite crystals. 20% Dark yellowish brown (10YR 4/2), microcrystalline, very well indurated, very hard. 10% Light olive gray (5Y 6/1), microcrystalline, very hard, weakly vuggy. Limestone 30%, very pale orange (10YR 8/2), fine to medium grained, moderately hard packstone to grainstone with few forams.
2,960 – 3,000	40	DOLOMITE AND LIMESTONE – Dolomite 70% to 60%, pale yellowish brown (10YR 6/2), microcrystalline to cryptocrystalline, very hard, very well indurated. Limestone 30% to 40%, 20% to 30%, very pale orange (10YR 8/2), fine to medium grained, moderately soft to hard, pelloidal packstone to grainstone with trace molds. 10% Very pale orange (10YR 8/2), cryptocrystalline to very fine grained, hard, very well indurated carbonate mudstone. Trace foram tests.
3,000 – 3,010	10	DOLOMITE – 100% Yellowish brown (10YR 6/4), cryptocrystalline to fine grained, very hard.
3,010 – 3,020	10	DOLOMITE – 100%; 80% Grayish orange (10YR 8/4), cryptocrystalline to rarely very fine grained, very hard, weakly vuggy, vugs lined and filled with Dolomite crystals, local fractures fully healed with Dolomite crystals. 20% Olive gray (5Y 3/2) to light olive gray (5Y 5/2), microcrystalline to cryptocrystalline, very hard.
3,020 - 3,030	10	DOLOMITE – 100%; 80% Grayish orange (10YR 8/4), cryptocrystalline to rarely very fine grained, very hard, weakly vuggy, vugs lined and filled with Dolomite crystals, local fractures fully healed with Dolomite crystals. 20% Yellowish brown (10YR 6/4), coarse grained to cryptocrystalline, very hard, locally very weakly vuggy.

Depth	Thickness	Sample Description
(ft)	(ft)	
3,030 - 3,040	10	DOLOMITE – 100% Yellowish gray (5Y 8/1 to 5Y 7/1), microcrystalline to cryptocrystalline, very hard, slightly calcareous, locally weakly vuggy, vugs lined with fine to very fine grained euhedral Dolomite crystals with trace white (N9) Limestone inclusions.
3,040 - 3,060	20	DOLOMITE – 100% Moderate yellowish brown (10YR 5/4) to pale yellowish brown (10YR 6/2), microcrystalline to rarely locally medium grained, very hard, dominantly sucrosic with trace white (N9), Limestone. Few prominent mottles at 3,060'.
3,060 - 3,080	20	DOLOMITE – 100% Dark yellowish brown (10YR 4/2), light olive gray (5Y 6/1) and yellowish gray (5Y 8/1), cryptocrystalline to coarse grained euhedral crystals, very hard, local fractures fully healed with Dolomite crystals. Trace very light gray (N8), fractured hard Limestone at 3,070', fractures fully healed with very fine to fine grained Dolomite crystals. Trace white (N9) carbonate mudstone lenses at 3,080.
3,080 - 3,090	10	DOLOMITE – 100%; 60% Pale yellowish brown (10YR 6/2) to dark yellowish brown (10YR 6/2), cryptocrystalline to fine grained, very hard, locally fossiliferous. 40% Pale yellowish brown (10YR 6/2), cryptocrystalline, very hard, local fractures fully healed with Dolomite crystals.
3,090 - 3,110	20	DOLOMITE – 100%; 90% Light olive gray (5Y 6/1), cryptocrystalline, very hard. 10% Moderate yellowish brown (10YR 5/4), cryptocrystalline to medium grained, very hard euhedral to anhedral crystals.
3,110 - 3,120	10	DOLOMITE – 100% Dark yellowish brown (10YR 4/2) to pale yellowish brown (10YR 6/2), dominantly very fine grained to cryptocrystalline, rarely coarse grained, subhedral crystals, very hard, sucrosic.
3,120 - 3,130	10	DOLOMITE – 100%, Yellowish brown (10YR 5/2) to dark yellowish brown (10YR 4/2), cryptocrystalline to microcrystalline, very hard. Rare fractures healed with fine to medium euhedral Dolomite crystals.
3,130 - 3,140	10	DOLOMITE – 100%, Olive gray (5Y 5/1), dominantly cryptocrystalline vuggy with vugs filled with euhedral to subhedral, medium to coarse Dolomite crystals.
3,140 - 3,150	10	DOLOMITE – 100%; 70% Pale yellowish brown (10YR 6/2), fine grained to microcrystalline, sucrosic, very hard, slightly calcareous with few limestone inclusions. 30% Light olive gray (5Y 7/1), very fine grained to microcrystalline, very hard, slightly calcareous. Trace light olive gray (5Y 4/2 to 5/2),, fine grained, very hard, locally weakly vuggy Dolomite with coarse grained Dolomite crystals filling vugs.
3,150 - 3,160	10	DOLOMITE – 100%, Yellowish gray (5Y 8/1 to 7/1), microcrystalline to cryptocrystalline, very hard, slightly calcareous, locally weakly vuggy with vugs lined with fine to medium euhedral Dolomite crystals.

Depth	Thickness (ft)	Sample Description
(ft) 3,160 - 3,180	20	DOLOMITE – 100%, 70% Yellowish gray (5Y 7/2), microcrystalline to cryptocrystalline, very hard with few limestone inclusions. 20% Yellowish gray (5Y 7/2), cryptocrystalline to fine grained, commonly weakly vuggy and fractured, vugs and fractures healed with euhedral Dolomite crystals. 10% Light olive gray (5Y 5/2), medium grain sized, subhedral, very hard crystals. Trace white (N9), soft carbonate mudstone at 3,160'.
3,180 - 3,190	10	DOLOMITE – 100%, Yellowish gray (5Y 8/1) to light olive gray (5Y 7/1), cryptocrystalline, very hard with few distinct mottles and with fine to medium grained euhedral Dolomite crystals filling vugs and fractures.
3,190 - 3,210	20	DOLOMITE – 100%, Yellowish brown (10YR 5/2), dominantly cryptocrystalline to very fine grained, very hard, sucrosic.
3,210 - 3,220	10	DOLOMITE – 100%, Pale yellowish brown (10YR 6/2) to light olive gray (5Y 6/1), dominantly cryptocrystalline to very fine grained, very hard. Rare medium light gray (N6), very fine grained Limy Dolomite inclusions.
3,220 - 3,240	20	DOLOMITE – 100%, Dark yellowish brown (10YR 4/2 to 5/2), dominantly very fine grained to microcrystalline, rarely medium grained, very hard with little pale yellowish brown (10YR 6/2) and grayish orange (10YR 7/4), very fine grained to microcrystalline, hard Dolomite and rare fractures filled with euhedral to subhedral Dolomite crystals.
3,240 - 3,260	20	DOLOMITE - Olive gray (5Y 4/1 to 5/1), dominantly fine grained, hard, anhedral to subhedral crystals. Trace medium gray (N5), fine to medium grained, moderately hard, sucrosic, subhedral Dolomite crystals.
3,260 - 3,280	20	DOLOMITE – 100%, Dark yellowish brown (10YR 4/2) to yellowish brown (10YR 5/2), dominantly fine grained to very fine grained, locally medium grained, partially weakly vuggy, moderately hard with rare calcareous inclusions.
3,280 - 3,290	10	DOLOMITE – 100%, Pale orange (10YR 7/2), dominantly fine to very fine grained, locally coarse grained euhedral crystals, moderately hard, weakly indurated. Trace white (N9), microcrystalline, moderately soft carbonate mudstone.
3,290 - 3,300	10	DOLOMITE – 100%; 60% Pale orange (10YR 7/2) to very pale orange (10YR 8/2), dominantly fine grained, moderately hard subhedral crystals, locally weakly vuggy. 40% Dark yellowish brown (10YR 4/2) to yellowish brown (10YR 5/2), mostly fine grained, rarely coarse grained, moderately hard.
3,300 - 3,310	10	DOLOMITE – 100%; 60% Dark yellowish brown (10YR 4/2) to yellowish brown (10YR 5/2), dominantly fine grained, rarely subhedral coarse grained, hard, locally weakly vuggy with few very fine grained Dolomitic inclusions. 40% Pale orange (10YR 7/2), mostly fine grained to medium grained, moderately hard.

Depth	Thickness	Sample Description
(ft)	(ft)	
3,310 - 3,320	10	DOLOMITE – 100%, 90% Yellowish brown (10YR 5/2), dominantly fine grained anhedral to locally medium grained subhedral, moderately hard. 10% Dark yellowish brown (10YR 5/4), fine grained, hard.
3,320 - 3,340	20	DOLOMITE – 100% Moderate yellowish brown (10YR 5/4) to dark yellowish brown (10YR 4/2) and grayish orange (10YR 7/4), dominantly fine grained to microcrystalline, very hard, vuggy with vugs locally lined with medium grained euhedral Dolomite crystals. Few pale orange (10YR 7/2), fine grained, hard Dolomitic inclusions.
3,340 - 3,350	10	DOLOMITE – 100% Dark yellowish brown (10YR 4/2) to pale yellowish brown (10YR 6/2), microcrystalline to cryptocrystalline, very hard and sucrosic.
3,350 - 3,360	10	DOLOMITE – 100%; 50% Moderate yellowish brown (10YR 5/4), microcrystalline to very fine grained, moderately hard. 30% Dusky yellowish brown (10YR 2/2) to dark yellowish brown (10YR 4/2), very fine grained to microcrystalline, hard to very hard, weakly laminated, sucrosic with trace white (N9) Limestone inclusions. 20% Yellowish brown (10YR 4/4), fine grained, moderately hard, vuggy. Trace greenish black (5GY 2/1), fine to medium grained, hard, weakly vuggy Dolomite.
3,360 – 3,380	20	DOLOMITE – 100% Pale yellowish brown (10YR 4/2) to moderate yellowish brown (10 YR 5/4), microcrystalline to cryptocrystalline, hard to very hard, sucrosic.
3,380 – 3,390	10	DOLOMITE – 100% Dark yellowish brown (10YR 3/2), cryptocrystalline to microcrystalline, very hard, very weakly vuggy.
3,390 - 3,400	10	DOLOMITE – 100%; 80% Dusky yellowish brown (10YR 6/2 to 10YR 7/2), dominantly microcrystalline to cryptocrystalline, hard, locally weakly vuggy. 20% Yellowish brown (10YR 7/2), cryptocrystalline to microcrystalline, hard, weakly vuggy.
3,400 – 3,410	10	DOLOMITE – 100% Pale yellowish brown (10YR 6/2 to 10YR 7/2), dominantly cryptocrystalline to microcrystalline, hard, with rare closed fractures and vugs, vugs lined with medium to coarse grained euhedral to subhedral Dolomite crystals
3,410 – 3,420	10	DOLOMITE – 100%; 60% Dark yellowish brown (10YR 4/2), cryptocrystalline to microcrystalline, hard, with subhedral crystals. 40% Dark gray (N3), dominantly cryptocrystalline to microcrystalline, hard, with trace very pale orange (10YR 8/2), microcrystalline, hard, Limestone inclusions.
3,420 – 3,430	10	DOLOMITE – 100%; 85% Dark yellowish brown (10YR 4/2 to 10YR 5/2), dominantly fine grained to microcrystalline, very hard, sucrosic. 15% Pale yellowish brown (10YR 6/2), fine grained, moderately hard subhedral crystals, locally weakly laminated. Trace very pale orange (10YR 8/2), fine grained, moderately hard, sucrosic, slightly calcareous Dolomite

Depth	Thickness (ft)	Sample Description
(ft) 3,430 - 3,440	10	DOLOMITE – 100% Dusky yellowish brown (10YR 2/2) to dark yellowish brown (10YR 4/2), dominantly microcrystalline to cryptocrystalline, locally fine grained subhedral crystals, hard with rare Limestone inclusions. Trace dusky yellowish brown (10YR 2/2) to black (N1), coarse to medium grained, hard Dolomite.
3,440 – 3,450	10	DOLOMITE 100%; 90% Pale yellowish brown (10YR 6/2 to 10YR 7/2), microcrystalline to fine grained, hard, subhedral crystals. 10% Dark yellowish brown (10YR 4/2), microcrystalline to cryptocrystalline, rarely locally vuggy with rare fully healed fractures filled with dark yellowish brown (10YR 3/2), euhedral to subhedral coarse to medium grained Dolomite crystals.
3,450 – 3,460	10	DOLOMITE – 100%; 90% Pale yellowish brown (10YR 7/2), very fine grained to microcrystalline, hard, locally weakly vuggy, partly sucrosic. 10% Dark yellowish brown (10YR 4/2), dominantly microcrystalline to very fine grained subhedral crystals, hard to very hard, thinly laminated and fractured.
3,460 – 3,500	40	DOLOMITE – 100%; 70% Grayish orange (10YR 7/4), very fine grained to microcrystalline, hard, sucrosic, locally weakly vuggy. 30% Pale yellowish brown (10YR 6/2), fine grained, moderately hard, partly vuggy. Trace yellowish gray (5Y 8/1) to white (N9), very fine grained, moderately hard, slightly calcareous Dolomite.

Injection Well No. 2 (IW-2) – Lithology Geologic Log

•

GEOLOGIC LOG (Drill Cuttings)

CITY OF HOLLYWOOD EFFLUENT DISPOSAL SYSTEM

SOUTHERN REGIONAL WWTP

INJECTION WELL IW - 2

Depth	Thickness	Sample Description
(ft)	(ft)	
0 - 10	10	LIMESTONE AND ORGANICS – Limestone 95%, very pale orange (10YR 8/2) to yellowish gray (5Y 8/1), very fine grained to microcrystalline, hard, locally slightly sandy wackestone to packstone. Organics 5%, brownish black (5YR 2/1), soft. Trace medium grained quartz sand, crystalline carbonate and shell fragments.
10 - 20	10	LIMESTONE – 100% Very pale orange (10YR 8/2) to yellowish gray (5Y 8/1), fine to medium grained, hard, pelloidal packstone to rarely wackestone with trace tests.
20 - 30	10	SANDSTONE AND LIMESTONE – Sandstone 80%, yellowish gray (5Y 7/2), fine to coarse grained dominantly medium grained, subangular slightly phosphatic, quartz sandstone well cemented with calcite. Limestone 20%, as above.
30 - 40	10	LIMESTONE – 100%; 80% Pale yellowish brown (10YR 6/2) to moderate yellowish brown (10YR 5/4), microcrystalline to fine grained, moderately hard to hard, locally slightly sandy wackestone. 20% Pale yellowish brown (10YR 6/2), fine to medium grained, hard, fossiliferous, highly sparry packstone. Trace to little crystalline carbonate.
40 - 50	10	SANDY LIMESTONE AND LIMESTONE – Sandy Limestone 80%, pale yellowish brown (10YR 6/2) to yellowish gray (5Y 7/2), fine to medium grained, hard, highly sparry, locally weakly phosphatic grainstone to locally packstone with abundant colorless fine grained quartz sand. Limestone 20%, white (N9) to yellowish gray (5Y 9/1), microcrystalline to fine grained, locally cryptocrystalline, moderately hard to hard, fossiliferous packstone to locally grainstone.
60 - 90	30	LIMESTONE – 100% Yellowish gray (5Y 7/2) to locally dusky yellow (5Y 5/4 to 5Y 6/4), fine to coarse, dominantly medium grained, hard, locally phosphatic, highly sparry with subhedral to euhedral calcite crystals, grainstone to locally packstone to rarely wackestone with abundant colorless fine grained quartz sand. Trace white (N9), cryptocrystalline, very soft marl. Trace fine grained quartz Sandstone well cemented with calcite. Trace shell fragments and forams.
90 – 130	40	LIMESTONE – 100% Yellowish gray (5Y 6/2 to 5Y 7/2), fine to medium grained, hard, sparry grainstone to locally wackestone. Trace to little fine grained quartz sandstone cemented with calcite. Trace shell fragments.

Depth	Thickness	Sample Description
(ft)	(ft)	
130 – 150	20	SANDY LIMESTONE – 100% Yellowish gray (5Y 7/2 to 5Y 8/2), dominantly coarse to medium grained, moderately hard to hard, sparry, partially pelloidal, locally slightly phosphatic packstone to grainstone with medium grained subangular to subrounded quartz sand.
150 – 170	20	LIMESTONE AND SANDY LIMESTONE – Limestone 80% to 70%, yellowish gray (5Y 7/2) to grayish orange (10YR 7/4), fine to coarse grained, hard, pelloidal, fossiliferous, highly sparry, slightly phosphatic packstone. Sandy Limestone 20% to 30%, yellowish gray (5Y 7/2), medium grained, hard, pelloidal packstone with medium grained quartz sand and few shell fragments.
170 – 180	10	SANDY LIMESTONE AND LIMY SANDSTONE – Sandy Limestone 60%, light greenish gray (5GY 8/1), medium to coarse grained, hard, pelloidal, fossiliferous, slightly phosphatic packstone with fine to medium grained quartz sand. Limy Sandstone 40%, light olive gray (5Y 6/1), fine grained, hard, well cemented with calcite and with detrital carbonate.
180 – 190	10	LIMESTONE – 100% Yellowish gray (5Y 7/2), fine to coarse grained, hard, pelloidal fossiliferous, highly sparry, locally weakly vuggy, slightly phosphatic wackestone to packstone.
190 – 200	10	SANDY LIMESTONE AND LIMESTONE – Sandy Limestone 60%, yellowish gray (5Y 7/2) to light greenish gray (5GY 8/1), fine to medium grained, hard, pelloidal, slightly phosphatic packstone with fine to medium grained angular quartz sand. Limestone 40% as above.
200 – 210	10	LIMESTONE AND SHELL FRAGMENTS – Limestone 95%, light greenish gray (5GY 8/1), dominantly medium grained to microcrystalline, moderately hard, fossiliferous packstone to locally grainstone with abundant fine grained quartz sand. 5% Shell fragments and forams.
210 – 230	20	LIMESTONE – 100%; 70% Yellowish gray (5Y 8/1), medium to coarse grained, moderately hard, sparry packstone. 30% Yellowish gray (5Y 7/2), microcrystalline to cryptocrystalline, hard wackestone with little to abundant medium to coarse grained quartz sand. Shell fragments common.
230 - 250	20	LIMESTONE – 100% Yellowish gray (5Y 8/1), fine to coarse grained, hard sparry, weakly phosphatic, locally slightly sandy packstone.
250 – 260	10	SANDY LIMESTONE AND LIMESTONE – Sandy Limestone 60%, greenish gray (5GY 6/1 to 5GY 7/1), microcrystalline to cryptocrystalline, hard, weakly phosphatic wackestone with fine grained angular quartz sand. Limestone 40% as above.
260 - 350	90	LIMY SANDSTONE – 100% Greenish gray (5GY 6/1 to 5GY 7/1), fine grained, hard, well sorted, subangular to subrounded, well cemented with calcite, weakly phosphatic with fine to medium grained detrital carbonate. Locally weakly glauconitic at 330'. Few shell fragments at 350'.

Depth	Thickness	Sample Description
(ft)	(ft)	
350 - 360	10	LIMY SANDSTONE, CLAY AND SANDY LIMESTONE – Limy Sandstone 40%, as above. Clay 40%, pale olive (10Y 6/2), soft to moderately soft, moderately plastic, calcareous, slightly sandy and phosphatic. Sandy Limestone 20%, yellowish gray (5Y 7/2), cryptocrystalline to microcrystalline, hard, slightly phosphatic wackestone to packstone with abundant colorless fine to medium grained, subangular, moderately sorted quartz sand. Trace euhedral calcite crystals. Trace shell fragments.
360 - 370	10	SANDY LIMESTONE – 100% Yellowish gray (5Y 7/2), cryptocrystalline to microcrystalline, hard, phosphatic wackestone to packstone with abundant colorless, fine to medium grained rarely coarse grained, subangular, moderately sorted quartz sand. Few medium gray (N5) to medium light gray (N6), fine grained, well sorted, angular quartz sand well cemented with calcite.
370 - 380	10	CLAYEY SANDY LIMESTONE AND LIMY SANDSTONE – Clayey Sandy Limestone 60%, pale olive (10Y 6/2), very fine to fine grained, moderately soft, slightly phosphatic wackestone with abundant Clay and fine grained quartz sand. Limy Sandstone 40%, light medium gray (N6), fine grained, hard to very hard, well sorted, subangular to subrounded, well cemented with calcite, weakly phosphatic to locally phosphatic with little detrital carbonate.
380 - 450	70	CLAYEY LIMESTONE – 100% Pale olive (10Y 6/2) to pale greenish yellow (10Y 8/2), very fine to fine grained, moderately soft, slightly phosphatic to locally phosphatic wackestone with little clay.
450 - 500	50	CLAYEY SANDY LIMESTONE – 100% Pale olive (10Y 6/2), very fine to fine grained, moderately soft, slightly phosphatic to locally phosphatic wackestone to packstone with little Clay and abundant very fine grained quartz sand.
500 - 520	20	LIMY CLAY AND CLAYEY SANDY LIMESTONE – Limy Clay 70%, pale olive (10Y 6/2), moderately soft to soft, non-plastic, slightly phosphatic with abundant very fine grained sand and detrital carbonate. Clayey Sandy Limestone 30%, as above. Trace olive black (5Y 2/1) Chert at 510'.
520 - 550	30	LIMY CLAY – 100% Pale olive (10Y 6/2), moderately soft to soft, non- plastic to weakly plastic, slightly phosphatic with little very fine grained quartz sand and detrital carbonate.
550 - 690	140	SANDY LIMY CLAY – 100% Pale olive (10Y 6/2), moderately soft to firm, non-plastic, slightly phosphatic to locally weakly phosphatic, friable with abundant very fine grained quartz sand and very fine to fine grained detrital carbonate matrix.
690 - 700	10	SANDY CLAY – 100% Light olive gray (5Y 6/1), very soft to soft, non- plastic, non-cohesive, with very fine grained quartz sand and very fine to fine grained detrital carbonate.
700 - 730	30	SANDY CLAY – 100% Light olive gray (5Y 6/1), firm to soft, locally plastic, highly calcareous with abundant very fine grained quartz sand.

Depth (ft)	Thickness (ft)	Sample Description
730 - 740	10	SANDY LIMY CLAY – 100% Pale olive (10Y 6/2), firm to soft, friable non-plastic to low plasticity, slightly phosphatic with abundant very fine grained quartz sand and very fine to fine grained detrita carbonate. Trace crystalline quartz.
740 - 750	10	SANDY LIMY CLAY – 100% Pale olive (10Y 6/2), firm to very soft non-plastic to moderate plasticity, slightly phosphatic with abundan very fine grained quartz sand and very fine to fine grained detrita carbonate.
750 - 760	10	SANDY LIMY CLAY – 100% Pale olive (10Y 6/2), firm to soft, non plastic to low plasticity, slightly phosphatic with abundant very fine grained quartz sand and very fine to fine grained detrital carbonate.
760 - 780	20	SANDY LIMY CLAY – 100% Pale olive (10Y 6/2), very soft moderately plastic to plastic, non-cohesive, slightly phosphatic, highly calcareous with little very fine grained quartz sand.
780 - 800	20	LIMY CLAY AND PHOSPHORITE – Limy Clay 90%, pale olive (10% 6/2), very soft to locally firm, low-plasticity to plastic, phosphatic calcareous. Phosphorite 10%, brownish black (5YR 2/1) to black (N1), microcrystalline to cryptocrystalline, hard to very hard, clayer and slightly calcareous.
800 - 820	20	SANDY LIMY CLAY – 100% Pale greenish yellow (10Y 7/2), firm to very soft, non-plastic to plastic, cohesive to non-cohesive, moderatel phosphatic to highly phosphatic, calcareous with little very find grained quartz sand and abundant fine grained detrital carbonate Trace olive gray (5Y 3/2), cryptocrystalline, very hard Chert.
820 - 830	10	CLAY AND PHOSPHORITE – Clay 90%, grayish olive (10Y 5/2) soft, cohesive, highly plastic, locally weakly phosphatic, weakl calcareous, glauconitic. Phosphorite 10%, brownish black (5YR 2/1 to black (N1), microcrystalline to cryptocrystalline, hard to very hard slightly bituminous and weakly calcareous.
830 - 850	20	CLAY AND CHERT – Clay 90% As above. Chert 10% olive gray (5% 3/2), cryptocrystalline, very hard.
850 - 880	30	CLAY – 100% As above. Trace olive gray (5Y 3/2), cryptocrystalline very hard Chert and phosphorite.
880 - 900	20	LIMESTONE – 100% Light greenish gray (5GY 7/1 to 5GY 8/1) microcrystalline to very fine grained, moderately hard, locally slightl sandy, weakly clayey packstone with abundant fine grained phosphorite.
900 - 920	20	LIMESTONE – 100% Greenish gray (5GY 6/1 to 5Y 7/1) to light bluish gray (5B 8/1), microcrystalline to coarse grained, moderated hard to hard, locally sandy, locally highly phosphatic, fossiliferou packstone. Trace fossil burrows and white (N9) to very light gra (N8), cryptocrystalline, very soft, plastic marl. Trace forams.

/

Depth	Thickness	Sample Description
(ft)	(ft)	
920 - 940	20	LIMESTONE – 100%; 80% Medium light gray (N6), medium to coarse grained, hard, fossiliferous, slightly sparry, partly micritic packstone to wackestone. 20% Light olive gray (5Y 6/1) to yellowish gray (5Y 8/1), fine to medium grained, hard, fossiliferous wackestone. Trace forams and brownish black (5Y 2/1), cryptocrystalline, very hard Dolomite, and white (N9), very soft, plastic marl.
940 – 970	30	LIMESTONE AND MARL – Limestone 80%; 50% yellowish gray (5Y 8/1), fine to coarse grained, hard, pelloidal, locally sparry, slightly phosphatic packstone. 30% Light bluish gray (5B 7/1), fine to medium grained, hard, pelloidal wackestone to carbonate mudstone with frace casts. Marl 20%, white (N9), very soft.
970 – 980	10	LIMESTONE – 100%; 70% Yellowish gray (5Y 7/2), medium grained, hard, pelloidal packstone/wackestone. 30% Light bluish gray (5B 7/1), microcrystalline to fine grained, very hard, slightly phosphatic carbonate mudstone. Trace to few forams.
980 – 1,000	20	LIMESTONE – 100%; 60% Yellowish gray (5Y 8/1), fine to coarse grained, moderately soft, pelloidal, fossiliferous grainstone to packstone. 20% Yellowish gray (5Y 8/1), cryptocrystalline, hard carbonate mudstone. 20% Light bluish gray (5B 7/1), medium to very fine grained hard, phosphatic wackestone. Forams common.
1,000 1,020	20	LIMESTONE – 100% Very pale orange (10YR 8/2), medium to fine grained, moderately soft, pelloidal grainstone/packstone.
1,020 – 1,040	20	LIMESTONE – 100% Very pale orange (10YR 8/2), coarse to fine grained, moderately hard, pelloidal, slightly fossiliferous, locally sparry grainstone to packstone. Molds and burrows common at 1,040'.
1,040 1,050	10	LIMESTONE – 100%; 60% Very pale orange (10YR 8/2), fine grained, hard, fossiliferous, locally weakly vuggy wackestone to carbonate mudstone. 40% As above.
1,050 – 1,070	20	LIMESTONE 100%; 70% Pale grayish orange (10YR 8/4), very fine to fine grained, moderately soft wackestone. 30% Grayish orange (10YR 7/4), medium grained, soft, pelloidal grainstone. Abundant forams. Trace very pale orange (10YR 9/2), very soft carbonate marl.
1,070 – 1,080	10	LIMESTONE – 100% Medium gray (N5) to medium light gray (N6) to rarely to yellowish gray (5Y 7/2), medium to fine grained, moderately hard, pelloidal, fossiliferous, locally weakly vuggy grainstone to wackestone. Forams common.
1,080 – 1,090	10	LIMESTONE – 100%; 80% As above. 20% Very pale orange (10YR 9/2), cryptocrystalline, hard, weakly vuggy carbonate mudstone.
1,090 – 1,100	10	LIMESTONE – 100% Grayish orange (10YR 7/4), very fine to medium grained, moderately hard, fossiliferous packstone to wackestone.
1,100 – 1,110	10	LIMESTONE – 100% Pale yellowish brown (10YR 7/2), microcrystalline, hard, weakly vuggy carbonate mudstone.

Depth	Thickness	Sample Description
(ft)	(ft)	
1,110 – 1,150	40	LIMESTONE – 100% Yellowish gray (5Y 8/1) to pale yellowish brown (10YR 6/2), fine to medium grained, moderately soft to hard, pelloidal, locally fossiliferous packstone to wackestone with some casts and molds. Few to common forams and echinoids to 10 mm from 1,130' to 1,150'.
1,150 – 1,160	10	LIMESTONE – 100% Moderate yellowish brown (10YR 5/4), fine to medium grained, moderately hard, pelloidal, fossiliferous packstone with abundant forams.
1,160 – 1,170	10	LIMESTONE – 100%; 60% As above. 40% Pale yellowish brown (10YR 6/2), fine to medium grained, hard, fossiliferous, weakly vuggy wackestone to carbonate mudstone. Abundant forams.
1,170 – 1,180	10	LIMESTONE – 100% Pale yellowish brown (10YR 6/2 to 10YR 7/2), fine to medium grained, hard, pelloidal, fossiliferous, locally weakly vuggy packstone with abundant forams and common echinoids to 10 mm. Common fossil casts and molds.
1,180 – 1,200	20	LIMESTONE – 100%; 90% Pale yellowish brown (10YR 7/2), fine to medium grained, moderately hard to hard, pelloidal, fossiliferous, weakly vuggy packstone to locally wackestone with abundant forams. 10% Very light gray (N8) to white (N9), microcrystalline to fine grained, hard, locally vuggy to weakly vuggy, partly fossiliferous, pelloidal wackestone to locally packstone. Trace very pale orange (10YR 8/2 to 10YR 7/2), microcrystalline to cryptocrystalline, locally vuggy carbonate mudstone.
1,200 – 1,210	10	LIMESTONE – 100% Pale yellowish brown (10YR 7/2) to very pale orange (10YR 8/2), fine to medium grained, hard, pelloidal, weakly vuggy, fossiliferous to locally highly fossiliferous packstone.
1,210 – 1,250	40	LIMESTONE – 100%; 50% to 60% Pale yellowish brown (10YR 7/2) to very pale orange (10YR 8/2), fine to medium grained, hard, pelloidal, fossiliferous, weakly vuggy packstone. 50% to 40% Very pale orange (10YR 8/2 to 10YR 9/1), microcrystalline to very fine grained, hard, rarely weakly vuggy carbonate mudstone to locally wackestone. Abundant forams.
1,250 – 1,270	20	LIMESTONE – 100% Yellowish gray (5Y 8/1 to 5Y 9/1), microcrystalline to very fine grained, hard, partially pelloidal wackestone to rarely packstone. Few forams.
1,280 – 1,330	50	LIMESTONE – 100% Very pale orange (10YR 8/2 to 10YR 9/1), microcrystalline to fine grained, moderately hard, vuggy, fossiliferous packstone to locally wackstone. Abundant forams to 5 mm and few echinoids to 10 mm.
1,330 – 1,370	40	LIMESTONE – 100%; 70% Very pale orange (10YR 8/2), microcrystalline to very fine grained, hard, locally weakly vuggy to vuggy carbonate mudstone to wackestone. 40% Very pale orange (10YR 8/2 to 10YR 9/2) to yellowish gray (5Y 8/1), fine to medium grained, moderately hard, vuggy, fossiliferous packstone with abundant forams. Trace white (N9), very soft carbonate marl.

Depth	Thickness	Sample Description
(ft)	(ft)	· ·
1,370 – 1,410	10	LIMESTONE – 100%; 40% Yellowish gray (5Y 8/1), microcrystalline to very fine grained, hard, weakly vuggy wackestone. 30% Very pale orange (10YR 8/2), fine to medium grained, moderately hard, vuggy, fossiliferous packstone with forams. 30% Pale yellowish brown (10YR 6/2 to 10YR 7/2), cryptocrystalline to very fine grained, locally weakly vuggy carbonate mudstone. Trace medium dark gray (N4) to medium gray (N5), microcrystalline to fine grained, hard wackstone to carbonate mudstone and white (N9), cryptocrystalline, very soft carbonate marl.
1,410 – 1,420	10	LIMESTONE – 100%; 70% Grayish orange (10YR 7/4), microcrystalline to fine grained, soft to moderately soft, pelloidal packstone. 30% Very pale orange (10YR 8/2), fine grained, soft to very soft, locally weakly vuggy wackestone. Trace white (N9), very soft carbonate marl.
1,420 – 1,440	20	LIMESTONE – 100%; 80% to 60% Grayish orange (10YR 7/4), medium to fine grained, moderately hard, pelloidal packstone to grainstone. 20% to 40% Pale yellowish brown (10YR 6/2) to light olive gray (5Y 6/1), cryptocrystalline, hard, locally vuggy carbonate mudstone.
1,440 – 1,450	10	LIMESTONE – 100%; 50% Yellowish gray (5Y 8/1), medium grained, soft to moderately soft packstone to grainstone. 40% Yellowish gray (5Y 8/1), very fine to fine grained, moderately hard packstone to wackestone. Trace white (N9), very soft carbonate marl. 10% Light olive gray (5Y 8/1), fine to medium grained, hard, slightly phosphatic, slightly sandy packstone to wackestone.
1,450 – 1,460	10	LIMESTONE – 100%; 50% Very pale orange (10YR 9/2), fine to medium grained, moderately hard, pelloidal fossiliferous packstone/wackestone. 50% Pale yellowish brown (10YR 7/2), cryptocrystalline to fine grained, hard, pelloidal, weakly vuggy carbonate mudstone.
1,470 – 1,480	10	LIMESTONE – 100%; 60% Medium light gray (N6) to dark gray (N3), very fine to fine grained, hard, micritic packstone to wackestone. 20% Light gray (N7), medium grained, moderately hard grainstone. 20% Yellowish gray (5Y 8/1), fine grained, hard, weakly vuggy carbonate mudstone. Trace dark yellowish brown (10YR 4/2), very fine grained, hard Dolomite.
1,480 – 1,490	10	LIMESTONE – 100%; 70% Very pale orange (10YR 8/2), medium to fine grained, moderately soft packstone. 20% Light olive gray (5Y 7/1), medium grained, hard, micritic, locally vuggy wackestone/mudstone. Forams common.
1,490 – 1,500	10	LIMESTONE – 100%; 50% Medium light gray (N6) to grayish black (N2), cryptocrystalline to fine grained, hard, locally weakly vuggy carbonate mudstone. 50% Yellowish gray (5Y 8/1), very fine to fine grained, moderately hard wackestone.

۰.

Depth	Thickness	Sample Description
(ft)	(ft)	
1,500 - 1,510	10	LIMESTONE AND LIMY CLAY – Limestone 90%; 70% Very pale orange (10YR 8/2), fine grained, moderately hard wackestone with trace casts. 20% Light olive gray (5Y 7/1) to very light gray (N8), very fine grained, hard carbonate mudstone. Limy Clay, 10% dark yellowish brown (10YR 4/2), very soft, non-plastic with abundant fine grained detrital carbonate.
1,510 – 1,520	10	LIMESTONE – 100%; 80% Yellowish gray (5Y 8/1), cryptocrystalline to very fine grained, hard, locally weakly vuggy carbonate mudstone. 20% Yellowish gray (5Y 8/1) to very pale orange (10YR 8/2), fine to medium grained, hard, fossiliferous, locally pelloidal packstone. Few forams. Trace light gray (N7), fine grained, hard wackestone to packstone and yellowish gray (5Y 8/1), microcrystalline, very soft carbonate marl.
1,520 – 1,530	10	LIMESTONE – 100% Very pale orange (10YR 8/2), fine grained, hard, vuggy, pelloidal packstone to grainstone. Trace yellowish gray (5Y 8/1 to 5Y 9/1), microcrystalline to fine grained, hard, slightly vuggy carbonate mudstone to wackestone.
1,530 – 1,540		LIMESTONE AND LIGNITE – Limestone 90%; 70% Very pale orange (10YR 8/2), as above. 20% Very light gray (N7), cryptocrystalline to microcrystalline, hard, moderately vuggy carbonate mudstone to wackestone. Lignite 10%, black (N1), microcrystalline to fine grained, moderately hard, calcareous. Few forams up to 10 mm.
1,540 – 1,550	10	LIMESTONE – 100% Very pale orange (10YR 8/2), fine grained, hard, vuggy, pelloidal packstone to grainstone. Trace yellowish gray (5Y 9/1) to light gray (N7), microcrystalline to fine grained, hard, weakly vuggy carbonate mudstone to wackestone.
1,550 – 1,560	10	LIMESTONE – 100%; 50% Yellowish gray (5Y 9/1), cryptocrystalline to microcrystalline, hard, weakly vuggy wackestone to locally carbonate mudstone. 40% Very pale orange (10YR 8/2), fine grained, hard, vuggy, locally pelloidal packstone to grainstone. 10% Medium light gray (N6) to light gray (N7), microcrystalline to fine grained, hard, vuggy, moderately fossiliferous packstone.
1,560 – 1,570	10	LIMESTONE – 100%; 80% Very pale orange (10YR 8/2), very fine to fine grained, hard, vuggy pelloidal packstone. 10% Yellowish gray (5Y 8/1), fine grained, moderately hard, vuggy pelloidal packstone. 10% Medium light gray (N6) to light gray (N7), cryptocrystalline to fine grained, weakly vuggy to locally vuggy carbonate mudstone to wackestone.
1,570 – 1,580	10	LIMESTONE – 100% Very pale orange (10YR 8/2), fine grained, moderately hard, vuggy, pelloidal packstone with abundant forams to 10mm.
1,580 – 1,590	10	LIMESTONE – 100%; 50% Very pale orange (10YR 8/2), As above. 30% Very pale orange (10YR 8/2) to light olive gray (5Y 6/1), moderately hard, weakly vuggy, locally pelloidal, locally weekly glauconitic wackestone. 10% Medium gray to medium light gray (N6), fine grained, hard wackestone.

Depth	Thickness	Sample Description
(ft)	(ft)	
1,590 – 1,610	20	LIMESTONE – 100%; 85% Yellowish gray (5Y 8/1), fine grained, moderately hard to hard, weekly vuggy to locally moderately vuggy, partly pelloidal packstone. 15% Grayish black (N2) to rarely black (N1), fine to medium grained, hard, vuggy grainstone.
1,610 – 1,620	10	LIMESTONE – 100%; 50% Grayish orange (10YR 7/4 to 10YR 8/4), fine to medium grained, moderately hard, highly fossiliferous, vuggy pelloidal packstone to locally grainstone. 40% Grayish black (N2) to rarely black (N1), fine to medium grained, hard, vuggy grainstone. 10% White (N9), cryptocrystalline to microcrystalline, hard calcareous mudstone. Trace light gray (N7) to very light gray (N8), vuggy, packstone to grainstone. Abundant forams.
1,620 – 1,630	10	LIMESTONE – 100%; 90% Very pale orange (10YR 8/2 to 10YR 9/2), very fine to fine grained, moderately hard to hard, weakly vuggy to vuggy, partially pelloidal packstone to rarely wackestone. 10% Pale yellowish brown (10YR 6/2), fine grained, hard, vuggy to highly vuggy pelloidal grainstone to locally packstone. Trace medium dark gray (N4), fine to medium grained, hard grainstone.
1,630 – 1,640	10	LIMESTONE – 100%; 60%% Very pale orange (10YR 8/2 to 10YR 9/2), very fine to fine grained, moderately hard to hard, weakly vuggy to vuggy, partially pelloidal packstone to rarely wackestone. 40% Light gray (N6), fine grained, hard, pelloidal packstone to carbonate mudstone. Abundant forams.
1,640 – 1,650	10	LIMESTONE – 100%; 80% Medium gray (N5), very fine grained, hard locally partly pelloidal and vuggy packstone/wackestone. 20% Very pale orange (10YR 8/2), fine grained, moderately hard, vuggy pelloidal, highly fossiliferous packstone. Abundant forams.
1,650 – 1,660	10	LIMESTONE – 100%; 90% Yellowish gray (5Y 8/1) to very pale orange (10YR 9/2), fine to medium grained, moderately hard, weekly vuggy, pelloidal packstone. 10% Light olive gray (5Y 7/1), microcrystalline, hard, locally slightly vuggy carbonate mudstone. Abundant forams.
1,660 – 1,670	10	LIMESTONE – 100%; 85% Yellowish gray (5Y 9/1) to white (N9), very fine grained to microcrystalline, hard, vuggy to locally weakly vuggy carbonate mudstone, vugs locally filled with medium light gray (N6), grainstone. 10% Very pale orange (10YR 7/2 to 10YR 9/2), fine grained, moderately hard, fossiliferous, locally phosphatic, vuggy to weakly vuggy pelloidal packstone to grainstone with abundant forams. 10% Pale yellowish brown (10YR 6/2 to 10YR 7/2), fine grained, hard, locally weakly vuggy grainstone with little shell.
1,670 – 1,690	20	LIMESTONE – 100%; 50% Medium light gray (N6) to medium dark gray (N4), microcrystalline to very fine grained, hard, locally vuggy carbonate mudstone to locally wackestone. 50% Very pale orange (10YR 7/2 to 10YR 9/2), fine grained, moderately hard, fossiliferous, locally phosphatic, vuggy to weakly vuggy pelloidal packstone to grainstone with abundant forams.

.

Depth	Thickness	Sample Description
(ft)	(ft)	
1,690 – 1,710	20	LIMESTONE 100%; 90% Very pale orange (10YR 8/2) to grayish orange (10YR 7/4), fine to medium grained, moderately soft to moderately hard, pelloidal packstone to rarely grainstone. 10% Medium dark gray (N7) to yellowish gray (5Y 8/1), microcrystalline to rarely fine grained, hard, weakly vuggy carbonate mudstone to wackestone. Abundant forams.
1,710 – 1,720	10	LIMESTONE – 100%; 70% Grayish orange (10YR 7/4), cryptocrystalline to fine grained, moderately hard, locally weakly vuggy carbonate mudstone to packstone. 20% Light olive gray (5Y 6/1), cryptocrystalline, hard, vuggy carbonate mudstone. 10% Very pale orange (10YR 9/2), cryptocrystalline, moderately hard carbonate mudstone.
1,720 – 1,730	10	LIMESTONE AND MARL – Limestone 80% grayish orange (10YR 7/4), very fine grained, moderately soft to moderately hard, locally sparry packstone. Marl 20% bluish gray (5B 6/1), very soft, with detrital carbonate. Abundant forams from 1,730' to 1,750'.
1,730 – 1,750	20	Limestone – 100%; 90% Grayish orange (10YR 7/4) to yellowish gray (5Y 8/1), fine to medium grained, moderately hard packstone to wackestone. 10% Medium gray (N5), cryptocrystalline, hard carbonate mudstone. Abundant forams.
1,750 – 1,770	20	LIMESTONE – 100%; 80% Yellowish gray (5Y 8/1) to pale yellowish brown (10YR 6/2), fine grained, moderately soft to moderately hard packstone to rarely grainstone. 10% Light olive gray (5GY 6/1 to 5GY 7/1), cryptocrystalline to fine grained, hard carbonate mudstone to wackestone.
1,770 – 1,780	10	LIMESTONE – 100% Pale yellowish brown (10YR 6/2 to 10YR 7/2), very fine grained, soft, pelloidal packstone. Forams common.
1,780 1,810	30	LIMESTONE – 100%; 70% Very pale orange (10YR 8/2) to grayish orange (10YR 7/4), very fine to fine grained, moderately soft, pelloidal packstone to weakly vuggy wackestone with few forams. 30% Light olive gray (5Y 6/1) to medium light gray (N6), very fine grained to cryptocrystalline, moderately hard, partly micritic wackestone to carbonate mudstone. Trace Dolomitic Limestone, crystalline carbonate and tests at 1,810'.
1,810 – 1,830	20	LIMESTONE – 100%; 70% Very pale orange (10YR 8/2) to pale yellowish brown (10YR 7/2), fine to medium grained, soft, pelloidal fossiliferous packstone. 20% Yellowish gray (5Y 7/1), very fine grained to microcrystalline, soft wackestone. 10% Medium light gray (N6), cryptocrystalline, hard, locally vuggy carbonate mudstone. Abundant forams and tests.
1,830 – 1,840	10	LIMESTONE – 100%; 70% Yellowish gray (5Y 8/1), microcrystalline, hard, locally vuggy carbonate mudstone. 20% Yellowish gray (5Y 8/1), microcrystalline to fine grained, hard, weakly fossiliferous, partially pelloidal, slightly vuggy packstone/wackestone. 10% Medium gray (N5), fine grained, soft to moderately hard, slightly pelloidal packstone. Abundant forams.

Depth (ft)	Thickness (ft)	Sample Description
1,840 - 1,860	20	LIMESTONE – 100% Yellowish gray (5Y 8/1) to light olive gray (5Y 6/1), cryptocrystalline to microcrystalline, hard, slightly vuggy to vuggy carbonate mudstone. Abundant unconsolidated forams.
1,860 – 1,890	30	LIMESTONE – 100%; 70% to 80% Yellowish gray (5Y 8/1) to light olive gray (5Y 6/1), carbonate mudstone as above. 10% Yellowish gray (5Y 8/1), microcrystalline to fine grained, hard, weakly fossiliferous, partially pelloidal, slightly vuggy to vuggy packstone/wackestone. 10% to 20% Medium gray (N5), fine grained, moderately hard, moderately vuggy, partially pelloidal packstone/wackestone. Trace to little light bluish gray (5B 7/1 to 5B 8/1) to light gray (N7), cryptocrystalline to very fine grained, very soft, plastic, marl with little detrital carbonate between 1,870' and 1,890'. Abundant forams.
1,890 – 1,900	10	LIMESTONE – 100%; 40% Grayish orange (10YR 7/4) to pale orange (10YR 7/2), microcrystalline to very fine grained, moderately hard, carbonate mudstone to wackestone with little detrital carbonate. 40% Yellowish gray (5Y 8/1) to light olive gray (5Y 6/1), cryptocrystalline to microcrystalline, hard, weakly vuggy to vuggy carbonate mudstone. 10% Yellowish gray (5Y 8/1), microcrystalline to fine grained, hard, weakly fossiliferous, partly pelloidal, slightly vuggy to vuggy packstone/wackestone. 10% Medium gray (N5) to fine medium gray (N6), cryptocrystalline to fine grained, hard, locally vuggy, locally partly pelloidal carbonate mudstone to rarely packstone. Trace pale yellowish gray (10YR 6/2) to pale orange (10YR 7/2), microcrystalline, very soft, slightly plastic, cohesive marl. Forams common
1,900 — 1,940	40	LIMESTONE – 100%; 70% Yellowish gray (5Y 8/1) to very pale orange (10YR 8/2), microcrystalline to fine grained, hard, weakly fossiliferous, partly pelloidal, slightly vuggy to locally vuggy packstone to carbonate mudstone/wackestone. 30% Medium gray (N5) to medium light gray (N6), cryptocrystalline to microcrystalline, very hard, locally weakly vuggy, locally slightly Dolomitic carbonate mudstone with thin laminations of dark gray (N3) Dolomitic grainstone. Forams common. Trace echinoid fossils between 1,940' and 1,950'.
1,940 — 1,990	50	LIMESTONE – 100%; 60% to 70% Yellowish gray (5Y 8/1), cryptocrystalline to microcrystalline, hard, locally slightly vuggy carbonate mudstone. 40% to 30% Very pale orange (10YR 8/2) to pale orange (10YR 7/2), fine grained, moderately hard to hard, fossiliferous, moderately vuggy to vuggy, pelloidal packstone. Trace light olive gray (N7), cryptocrystalline, hard carbonate mudstone. Forams common.
1,990 – 2,000	10	LIMESTONE – 100% Yellowish gray (5Y 9/1) to very pale orange (10YR 9/2), locally pale yellowish brown (10YR 6/2), fine grained, moderately hard, fossiliferous, locally weakly vuggy, pelloidal packstone to locally sparry grainstone. Trace yellowish gray (5Y 9/1), cryptocrystalline, hard carbonate mudstone. Few forams and echinoid fossils.

Depth	Thickness	Sample Description
(ft)	(ft)	
2,000 - 2,010	10	DOLOMITE AND LIMESTONE – Dolomite 60%, light olive gray (5Y 6/1), microcrystalline to very fine grained, hard to very hard, locally sucrosic, locally limy. Limestone 40%, very pale orange (10YR 8/2), fine to medium grained, moderately hard, locally sparry pelloidal packstone with some tests and trace forams.
2,010 – 2,020	10	LIMY DOLOMITE, LIMESTONE AND DOLOMITE – Limy Dolomite 50%, olive gray (5Y 4/1) to light olive gray (5Y 6/1), cryptocrystalline to fine grained, hard to very hard, locally fossiliferous. Limestone 30%, as above. Dolomite 20%, as above.
2,020 – 2,030	10	LIMESTONE AND DOLOMITE – Limestone 70%; 50% very pale orange (10YR 8/2), fine to medium grained, moderately soft, pelloidal packstone to grainstone. 20% Light olive gray (5Y 6/1), cryptocrystalline to fine grained, hard fossiliferous wackestone. Dolomite 30%, yellowish gray (5Y 8/1), cryptocrystalline, very hard.
2,030 – 2,040	10	DOLOMITE – 100%; 60% Pale grayish orange (10YR 8/4), fine grained, hard to very hard, weakly vuggy, sucrosic. 40% Pale yellowish brown (10YR 6/2) to dark yellowish brown (10YR 4/2), microcrystalline to fine grained, very hard, locally partly sucrosic.
2,040 2,050	10	LIMY DOLOMITE, DOLOMITE AND LIMESTONE – Limy Dolomite 50%, light olive gray (5Y 6/1), very fine grained to cryptocrystalline, hard weakly vuggy. Dolomite 30%, yellowish gray (5Y 8/1), cryptocrystalline, hard. Limestone 20%, very pale orange (10YR 8/2), fine to medium grained, moderately hard, pelloidal packstone with forams common.
2,050 – 2,060	10	LIMESTONE AND DOLOMITE – Limestone 80%; 50% Yellowish gray (5Y 8/1), fine to medium grained, moderately hard, pelloidal, fossiliferous packstone with abundant medium grain sized forams. 30% Very light gray (N8), cryptocrystalline to microcrystalline, hard, very well indurated, locally vuggy, slightly Dolomitic carbonate mudstone. Dolomite 20%; 10% Medium gray (N5) to medium dark gray (N4), very fine grained to microcrystalline. hard, vuggy. 10% Light olive gray (5Y 5/2) to yellowish gray (5Y 6/2), fine to medium grained, locally microcrystalline, hard, well indurated to locally vuggy, locally sucrosic.
2,060 – 2,080	20	DOLOMITE – 100%; 50% Moderate yellowish brown (10YR 5/4), very fine grained to fine grained, hard, weakly vuggy, sucrosic. 40% Olive gray (5Y 4/1) to light olive gray (5Y 6/1), microcrystalline to fine grained, hard to very hard, very well indurated to vuggy. 10% Grayish black (N2) to dark gray (N3), microcrystalline, very hard, very well indurated.
2,080 – 2,090	10	DOLOMITE – 100%; 50% Moderate yellowish brown (10YR 5/4), very fine grained to fine grained, hard, weakly vuggy, sucrosic. 30% Olive gray (5Y 4/1) to locally dark yellowish brown (10YR 4/2), microcrystalline to very fine grained, very hard, very well indurated to locally weakly vuggy. 20% Pale yellowish brown (10YR 6/2) to yellowish brown (10YR 5/2), microcrystalline to cryptocrystalline, very hard, very well indurated to locally weakly vuggy.

Depth (ft)	Thickness (ft)	Sample Description
2,090 – 2,110	20	LIMESTONE – 100% Grayish orange (10YR 7/4) to pale yellowish brown (10YR 6/2), fine to medium grained, soft to moderately hard packstone/grainstone with abundant forams. Trace Dolomitic Limestone and trace medium gray (N5) carbonate mudstone.
2,110 – 2,170	60	LIMESTONE – 100%; 70% as above. 30% Grayish orange (10YR 7/4), fine to medium grained, moderately hard, locally sparry packstone. Forams common. Trace molds and casts. Trace medium dark gray (N4) carbonate mudstone at 2,140'.
2,170 – 2,270	100	LIMESTONE – 100% Very pale orange (10YR 8/2), fine to coarse grained, moderately hard to moderately soft, well indurated, pelloidal, fossiliferous packstone to grainstone. Trace black (N1) lignite at 2,180'; trace medium gray (N5) Dolomite at 2,190'. Trace molds at 2,220', trace white (N9) very soft carbonate marl at 2,230' and 2,250'.
2,270 – 2,300	30	LIMESTONE – 100% Very pale orange (10YR 8/2), fine to medium grained, moderately hard, pelloidal, partly fossiliferous, partly sparry, well indurated packstone.
2,300 – 2,320	20	LIMESTONE – 100%; 90% As above. 10% Very pale orange (10YR 8/2), very fine grained to cryptocrystalline, hard wackestone to carbonate mudstone. Few to common tests. Trace crystalline carbonate.
2,320 – 2,330	10	LIMESTONE – 100% Yellowish gray (5Y 8/1), fine to coarse grained, moderately hard, pelloidal, fossiliferous grainstone to packstone.
2,330 – 2,360	30	LIMESTONE – 100% Yellowish gray (5Y 8/1), fine to medium grained, moderately hard, pelloidal, fossiliferous grainstone to rarely packstone. Trace crystalline carbonate.
2,360 – 2,400	40	LIMESTONE – 100%; 70% As above. 30% Yellowish gray (5Y 8/1), fine to medium grained, moderately hard pelloidal packstone. Trace tests and echinoids to 10 mm in diameter.
2,400 – 2,430	30	LIMESTONE – 100% Very pale orange (10YR 8/2), fine to medium grained, moderately hard, pelloidal, fossiliferous packstone.
2,430 – 2,440	10	LIMESTONE – 100% Very pale orange (10YR 8/2), fine to medium grained, moderately soft to moderately hard, pelloidal packstone to grainstone. Trace Dolomitic Limestone. Trace olive gray (5Y 4/1), very fine grained, soft silty Sandstone.
2,440 – 2,490	50	LIMESTONE – 100%; 70% As above. 30% Yellowish gray (5Y 8/1), very fine to fine grained, hard, well indurated wackestone to packstone. Abundant tests and forams. Sparry at 2,470'.
2,490 – 2,500	10	LIMESTONE – 100% Yellowish gray (5Y 8/1), fine to medium grained, moderately hard, pelloidal, fossiliferous, locally sparry, generally well indurated packstone. Forams common.
2,500 – 2,510	10	LIMESTONE – 100% Grayish orange (10YR 7/4), fine grained, moderately hard to hard, pelloidal, fossiliferous packstone. Trace white (N9) remineralized (calcite) shell fragments.
2,510 – 2,520	10	LIMESTONE AND DOLOMITIC LIMESTONE – Limestone 80%, very pale orange (10YR 8/2) to yellowish gray (5Y 8/1), fine grained, moderately soft to hard, pelloidal, fossiliferous, locally sparry, well

Depth (ft)	Thickness (ft)	Sample Description
		indurated packstone. Dolomitic Limestone 20%, pale yellowish brown (10YR 6/2) to grayish orange (10YR 7/4), fine grained, moderately soft pelloidal packstone with 5% to 10% fine grained, euhedral Dolomite crystals.
2,520 – 2,530	10	LIMESTONE – 100% Very pale orange (10YR 8/2), fine to medium grained, hard to moderately hard, fossiliferous, locally very weakly vuggy, locally sparry wackestone/packstone.
2,530 – 2,560	30	LIMESTONE AND DOLOMITIC LIMESTONE – Limestone 80% yellowish gray (5Y 7/2), fine grained, moderately hard to moderately soft, pelloidal packstone. Dolomitic Limestone 20%, pale yellowish brown (10YR 6/2) to grayish orange (10YR 7/4), fine grained, moderately soft, pelloidal packstone with 10% to 40% euhedral to anhedral Dolomite crystals.
2,560 – 2,570	10	LIMESTONE, DOLOMITIC LIMESTONE AND LIMY DOLOMITE – Limestone 40%, pale grayish orange (10YR 8/4), fine to medium grained, moderately hard to moderately soft, pelloidal, fossiliferous, very well indurated packstone with tests common. Dolomitic Limestone 40%, as above. Limy Dolomite 20%, pale yellowish brown (10YR 6/2) to moderate yellowish brown (10YR 5/4), very fine to medium grained, hard. Trace dark yellowish brown (10YR 4/2), hard cryptocrystalline to very fine grained Dolomite.
2,570 – 2,590	20	LIMESTONE – 100% Very pale orange (10YR 8/1) to pale grayish orange (10YR 8/4), fine to medium grained, moderately hard, well indurated, pelloidal, fossiliferous packstone. Trace white (N9), very soft Marl.
2,590 – 2,610	20	LIMESTONE – 100%; 80% Yellowish gray (5Y 8/1), dominantly medium grained, moderately hard, pelloidal packstone. 10% Light olive gray (5Y 7/1), very fine to medium grained, hard, fossiliferous packstone to wackestone. 10% Dark gray (N3), fine to medium grained, hard, highly fossiliferous packstone to locally cryptocrystalline carbonate mudstone. Trace medium light gray (N6) to medium gray (N5), very soft marl. Trace to little olive gray (5Y 4/1), cryptocrystalline, very hard Dolomite.
2,610 – 2,620	10	LIMESTONE AND DOLOMITE; Limestone 90%; 80% Medium dark gray (N4), dark gray (N3), olive gray (5Y 4/1) and yellowish gray (5Y 8/1), cryptocrystalline, hard to very hard, locally weakly vuggy carbonate mudstone. 10% Yellowish gray (5Y 8/1), fine to medium grained, moderately hard packstone. Dolomite 10%, brownish gray (5YR 4/1) to olive gray (5Y 3/2), cryptocrystalline, very hard.
2,620 – 2,630	10	LIMESTONE AND DOLOMITE; Limestone 90%, as above. Dolomite 10%; 5% brownish gray (5YR 4/1), as above. 5% Yellowish gray (5Y 8/1), microcrystalline to cryptocrystalline, very hard. Trace dark yellowish brown (10YR 4/2) Dolomite with subhedral crystals. Trace white (N9), very soft carbonate marl.
2,630 – 2,640	10	LIMESTONE – 100%; 80% As above. 20% Very light gray (N8), medium to coarse grained, very soft wackestone with carbonate marl matrix.

Depth	Thickness (ft)	Sample Description
(ft) 2,640 - 2,670	30	LIMESTONE - 100%; 60% Medium dark gray (N4), dark gray (N3), olive gray (5Y 4/1) and yellowish gray (5Y 8/1), cryptocrystalline, hard to very hard, locally weakly vuggy carbonate mudstone. 40% Yellowish gray (5Y 8/1), fine to very fine grained, moderately hard, pelloidal, weakly fossiliferous packstone.
2,670 – 2,700	30	LIMESTONE - 100%; 80% Medium dark gray (N4), dark gray (N3), olive gray (5Y 4/1) and yellowish gray (5Y 8/1), cryptocrystalline, hard to very hard, locally weakly vuggy carbonate mudstone. 20% Light olive gray (5Y 6/1) to pale yellowish brown (10YR 6/2), fine to medium grained, moderately hard, pelloidal, fossiliferous grainstone to packstone. Trace to few forams and echinoids.
2,700 – 2,710	10	LIMESTONE – 100% Very pale orange (10YR 9/2), medium grained, moderately hard to rarely soft, pelloidal, fossiliferous packstone with few tests.
2,710 – 2,720	10	LIMESTONE - 100%; 90% As above. 10% Very pale orange (10YR 8/2), fine grained, hard, very weakly vuggy carbonate mudstone to wackestone. Trace medium dark gray (N4), hard carbonate mudstone.
2,720 – 2,730	10	LIMESTONE - 100%; 70% Very pale orange (10YR 9/2), medium grained, moderately hard to rarely soft, pelloidal, fossiliferous packstone with few tests. 30% Yellowish gray (5Y 8/1), fine grained, moderately hard, pelloidal packstone. Trace dark greenish gray (5GY 4/1), firm, weakly glauconitic Clay.
2,730 – 2,750	20	LIMESTONE – 100%; 60% to 70% Very pale orange (10YR 9/2), cryptocrystalline, hard carbonate mudstone. 40% to 30% Grayish orange (10YR 6/4) to very pale orange (10YR 8/2), fine to medium grained, hard, pelloidal packstone/grainstone. Trace white (N9), very soft carbonate Marl at 2,740'. Trace light olive gray (5Y 6/1), cryptocrystalline, hard carbonate mudstone.
2,750 – 2,770	20	LIMESTONE – 100%; 50% Very pale orange (10YR 8/2), fine to medium grained, moderately hard, pelloidal grainstone/packstone. 40% Very pale orange (10YR 8/2), fine grained, hard, well indurated packstone to wackestone. 10% Olive gray (5Y 6/1) and very pale orange (10YR 8/2), cryptocrystalline carbonate mudstone. Forams and tests common. Trace glauconite at 2,760'. Trace white (N9), very soft carbonate marl at 2,770'.
2,770 – 2,780	10	LIMESTONE - 100%; 80% Very pale orange (10YR 8/2) to grayish orange (10YR 7/4), medium grained, hard, pelloidal, slightly fossiliferous packstone to grainstone. 20% Very pale orange (10YR 8/2), cryptocrystalline to very fine grained packstone to wackestone. Trace mudstone as above.
2,780 – 2,790	10	LIMESTONE - 100%; 70% Very pale orange (10YR 8/2), fine grained, hard, pelloidal, packstone/wackestone. 30% Very pale orange (10YR 8/2), fine to medium grained, moderately hard, pelloidal packstone. Trace olive gray (5Y 4/1), cryptocrystalline hard carbonate mudstone.
2,790 – 2,810	20	LIMESTONE - 100% Very pale orange (10YR 8/2), fine to medium grained, soft to moderately soft, pelloidal, packstone to grainstone.

Depth	Thickness	Sample Description
(ft)	(ft)	
2810 - 2820	10	LIMESTONE – 100%; 70% Grayish orange (10YR 7/4), medium to rarely coarse grained, hard to moderately soft, pelloidal, fossiliferous grainstone to packstone. 30% Very pale orange (10YR 8/2), cryptocrystalline, hard, very weakly vuggy carbonate mudstone.
2,820 – 2,840	20	LIMESTONE – 100%; 90% Very pale orange (10YR 8/2), fine to medium grained, moderately hard, pelloidal, locally highly fossiliferous packstone. 10% mudstone as above.
2,840 - 2,870	30	LIMESTONE – 100% Very pale orange (10YR 8/2), fine to medium grained, moderately hard, pelloidal, locally highly fossiliferous packstone.
2,870 – 2,880	10	LIMY DOLOMITE AND LIMESTONE – Limy Dolomite 60%, yellowish gray (5Y 8/1), medium grained, hard, euhedral to anhedral crystals. Limestone 40%, very pale orange (10YR 8/2), fine grained, moderately soft, pelloidal packstone.
2,880 – 2,900	20	LIMESTONE – 100%; 60% Very pale orange (10YR 8/2), cryptocrystalline, hard, locally weakly vuggy carbonate mudstone with rare fractures fully healed with fine to medium grained euhedral Dolomite crystals. 40% Very pale orange (10YR 8/2), very fine grained, hard, pelloidal, locally very weakly Dolomitic packstone. Trace Limy Dolomite as above at 2,890'. Trace light olive gray (5Y 6/1), cryptocrystalline, hard, fractured Dolomite at 2,900'.
2,900 – 2,920	20	LIMESTONE – 100%; 70% Very pale orange (10YR 8/2) to yellowish gray (5Y 8/1), fine to medium grained, moderately hard to moderately soft, pelloidal packstone to rarely grainstone. 30% Very pale orange (10YR 8/2), cryptocrystalline, hard, weakly vuggy carbonate mudstone with rare fractures fully healed with fine to medium grained euhedral Dolomite crystals. Trace molds.
2,920 – 2,940	20	DOLOMITE AND LIMESTONE – Dolomite 80%, yellowish brown (10YR 6/4) to dark yellowish brown (10YR 4/2) to light olive gray (5Y 6/1), cryptocrystalline to very fine grained, very hard with trace fractures. Limestone 20%, very pale orange (10YR 8/2), very fine to fine grained, hard, pelloidal packstone. Trace tests.
2,940 – 2,970	30	DOLOMITE AND LIMESTONE – Dolomite 90% dark yellowish brown (10YR 4/2) to dark grayish orange (10YR 7/4), cryptocrystalline to microcrystalline to fine grained, very hard, sucrosic. Limestone 10% very pale orange (10YR 8/2), fine grained, moderately hard, pelloidal packstone to wackestone. Trace tests.
2,970 – 2,990	20	DOLOMITE AND LIMESTONE – Dolomite 90%, yellowish gray (5Y 8/1) to grayish orange (10YR 7/4), cryptocrystalline to medium grained, very hard, locally very weakly vuggy. Limestone 10%, very pale orange (10YR 8/2), fine grained, moderately hard pelloidal packstone.
2,990 – 3,000	10	DOLOMITE – 100% Light olive gray (5Y 6/1), cryptocrystalline to coarse grained, very hard, locally weakly fossiliferous.
3,000 – 3,010	10	DOLOMITE – 100% Pale yellowish brown (10YR 6/2) to yellowish brown (10YR 7/2), cryptocrystalline, very hard with rare fractures fully healed with fine to medium grained euhedral to subhedral Dolomite

-

Depth (ft)	Thickness (ft)	Sample Description
		crystals.
3,010 - 3,020	10	DOLOMITE – 100% Yellowish brown (10YR 5/2) to pale yellowish brown (10YR 6/2), microcrystalline, very hard
3,020 – 3,030	10	DOLOMITE – 100%; 75% Pale yellowish brown (10YR 6/2) to very pale yellowish brown (10YR 7/2), cryptocrystalline to microcrystalline, very hard. 20% Brownish gray (5YR 5/1) to locally medium dark gray (N4) cryptocrystalline, very hard. 5% Brownish gray (5YR 4/1) to dark gray (N3) microcrystalline to coarse grained very hard euhedral crystals.
3,030 – 3,040	10	DOLOMITE – 100% Very pale orange (10YR 8/2) to grayish orange (10YR 8/4), cryptocrystalline to rarely microcrystalline, very hard, locally weakly vuggy, vugs lined and filled with Dolomite crystals, locally fractured, fractures fully healed with moderate yellowish brown (10YR 5/4), medium grained euhedral Dolomite crystals.
3,040 – 3,050	10	DOLOMITE – 100%; 50% Pale yellowish brown (10YR 6/2), microcrystalline, very hard, locally fossiliferous, very weakly vuggy, vugs commonly filled with very fine grained Dolomite crystals. 50% Moderate yellowish brown (10YR 5/4) to dusky yellowish brown (10YR 2/2), very fine to coarse grained, very hard, sucrosic.
3,050 – 3,060	10	DOLOMITE – 100%; 70% Pale yellowish brown (10YR 6/2), cryptocrystalline, very hard, weakly vuggy and locally fractured, vugs and fractures filled with very fine to fine grained euhedral to subhedral Dolomite crystals. 30% Moderate yellowish brown (10YR 5/4), very fine to medium grained, very hard, sucrosic with trace breccia.
3,060 - 3,070	10	DOLOMITE – 100% Pale yellowish brown (10YR 6/2) to moderate yellowish brown (10YR 5/4), microcrystalline to fine grained, hard to very hard, locally sucrosic.
3,070 – 3,090	20	DOLOMITE – 100%; 50% Pale yellowish brown (10YR 6/2) to pale orange (10YR 7/2), cryptocrystalline, hard to very hard, locally weakly vuggy and fractured, vugs filled with very fine grained Dolomite crystals, fractures fully healed with moderate yellowish brown (10YR 5/4) fine grained euhedral Dolomite crystals. 50% Dark yellowish brown (10YR 4/2), cryptocrystalline to microcrystalline, very hard, locally weakly sucrosic, locally fractured, fractures healed with very fine grained Dolomite crystals or moderate yellowish brown (10YR 5/4) fine grained subhedral Dolomite crystals. Trace yellowish gray (5Y 8/1) to very pale orange (10YR 8/2), cryptocrystalline, very hard Dolomite.
3,090 – 3,100	10	DOLOMITE – 100%; 60% Pale yellowish brown (10YR 6/2) to pale orange (10YR 7/2), cryptocrystalline, very hard, locally weakly vuggy and fractured, vugs filled with very fine grained Dolomite crystals, fractures healed with moderate yellowish brown (10YR 5/4), fine grained subhedral Dolomite crystals. 40% Medium dark gray (N4) to medium gray (N3), cryptocrystalline, hard to very hard with rare fractures healed with moderate yellowish brown (10YR 5/4) fine grained subhedral Dolomite crystals.
3,100 – 3,110	10	DOLOMITE – 100%; 40% Pale yellowish brown (10YR 6/2) to pale orange (10YR 7/2) to very pale orange (10YR 6/2), cryptocrystalline,

Depth (ft)	Thickness (ft)	Sample Description
		hard, locally weakly vuggy and fractured, vugs filled with very fine grained Dolomite crystals, fractures healed with moderate yellowish brown (10YR 5/4), fine to coarse grained euhedral Dolomite crystals. 40% Grayish black (N2), dark gray (N3) to medium dark gray (N4), cryptocrystalline to microcrystalline, hard to very hard, locally sucrosic, weakly vuggy and fractured, vugs and fractures filled with yellowish gray (5Y 8/1), microcrystalline to fine grained Dolomite crystals. 20% Moderate yellowish brown (10YR 5/4), microcrystalline, very hard.
3,110 – 3,120	10	DOLOMITE – 100%; 60% Very pale yellowish brown (10YR 7/2), cryptocrystalline, very hard, locally weakly vuggy and fractured, vugs filled with very fine grained Dolomite crystals, fractures healed with moderate yellowish brown (10YR 5/4), fine grained euhedral to subhedral Dolomite crystals. 40% Moderate yellowish brown (10YR 5/4) to locally dark yellowish brown (10YR 4/2), microcrystalline, hard, weakly sucrosic, weakly vuggy and fractured, vugs filled with very fine grained Dolomite crystals, fractures healed with moderate yellowish brown (10YR 5/4), fine grained bolomite crystals, fractures healed with moderate yellowish brown (10YR 5/4), fine grained bolomite crystals, fractures healed with moderate yellowish brown (10YR 5/4), fine grained euhedral Dolomite crystals.
3,120 – 3,130	10	DOLOMITE – 100%; 70% Dark yellowish brown (10YR 4/2) to yellowish brown (10YR 5/2), microcrystalline, hard to very hard, locally weakly sucrosic. 30% Pale orange (10YR 7/2) to very pale orange (10YR 8/2), cryptocrystalline, very hard, rarely vuggy and fractured, vugs and fractures filled with microcrystalline Dolomite crystals.
3,130 – 3,140	10	DOLOMITE – 100% Pale yellowish brown (10YR 6/2) to yellowish brown (10YR 5/2), cryptocrystalline, hard, rare vugs partially to fully healed with moderate yellowish brown (10YR 5/4), very fine grained euhedral Dolomite crystals.
3,140 – 3,150	10	DOLOMITE - 30% Pale orange (10YR 7/2), cryptocrystalline to locally microcrystalline, hard to very hard, rarely vuggy, vugs filled with microcrystalline Dolomite crystals. Trace very pale orange (10YR 8/2), cryptocrystalline, very hard Dolomite.
3,150 – 3,160	10	DOLOMITE - 100%; 85% Very pale orange (10YR 8/2 to 10YR 9/2), cryptocrystalline, hard, weakly vuggy and fractured, vugs filled with microcrystalline Dolomite crystals, fractures healed with moderate yellowish (10YR 5/4), very fine grained subhedral to anhedral Dolomite crystals. 15% Yellowish brown (10YR 5/2), cryptocrystalline to locally microcrystalline, very hard, locally weakly sucrosic, rare fractures healed with fine to medium grained euhedral Dolomite crystals.
3,160 – 3,170	10	DOLOMITE – 100% Pale yellowish brown (10YR 6/2) to olive gray (5Y 5/1), cryptocrystalline to very fine grained, very hard, locally sucrosic. Trace yellowish gray (5Y 8/1) Dolomite breccia.
3,170 – 3,190	20	DOLOMITE – 100% Pale yellowish brown (10YR 6/2) to very pale orange (10YR 8/2), cryptocrystalline to microcrystalline, very hard. Trace moderate yellowish brown (10YR 5/4) fine to medium grained subhedral crystals.
3,190 – 3,200	10	DOLOMITE – 100% Pale yellowish brown (10YR 6/2) to moderate brown (5YR 3/4), microcrystalline to very fine grained, rarely fine

Depth (ft)	Thickness (ft)	s Sample Description
		grained, very hard, sucrosic.
3,200 – 3,210	10	DOLOMITE – 100% Dark yellowish brown (10YR 4/2,) cryptocrystalline to microcrystalline, very hard.
3,210 – 3,230	20	DOLOMITE 100%; 60% Pale yellowish brown (10YR 4/2,) cryptocrystalline to microcrystalline, very hard. 40% Grayish black (N2), cryptocrystalline to microcrystalline, very hard, slightly sucrosic.
3,230 - 3,240	10	DOLOMITE – 100% Pale yellowish brown (10YR 4/2), microcrystalline to very fine grained, very hard, slightly sucrosic.
3,240 – 3,250	10	DOLOMITE – 100% Dark yellowish brown (10YR 6/2) to locally dusky yellowish brown (10YR 2/2), microcrystalline to cryptocrystalline, hard to very hard, rarely vuggy, vugs filled with dark yellowish brown (10YR 6/2), euhedral to subhedral Dolomite crystals.
3,250 – 3,260	10	DOLOMITE – 100%; 80% Dark yellowish brown (10YR 6/2) as above. 20% Pale yellowish brown (10YR 6/2) to pale orange (10YR 7/2) microcrystalline to very fine grained, hard.
3,260 – 3,270	10	DOLOMITE – 100%; 80% Moderate yellowish brown (10YR 5/4), microcrystalline to cryptocrystalline, very hard. 20% Yellowish brown (10YR 4/4,) dominantly very fine to fine, rarely medium grained, hard, weakly vuggy.
3,270 – 3,280	10	DOLOMITE – 100% Dark yellowish brown (10YR 4/2) to moderate yellowish brown (10YR 5/4), fine grained, moderately hard to hard, sucrosic.
3,280 – 3,290	10	DOLOMITE 100%; 50% As above, weakly vuggy. 50% Dark yellowish brown (10YR 4/2), to moderate yellowish brown (10YR 5/4) microcrystalline, hard to very hard, weakly vuggy.
3,290 – 3,300	10	DOLOMITE – 100% Pale yellowish brown (10YR 6/2) to light olive gray (5Y 6/1), microcrystalline to very fine grained, hard to very hard.
3,300 – 3,310	10	DOLOMITE – 100% Moderate yellowish brown (10YR 5/4 to 10YR 6/4), dominantly microcrystalline to very fine rarely fine grained, hard, locally weakly vuggy, slightly sucrosic.
3,310 – 3,330	20	DOLOMITE – 100% Dark yellowish brown (10YR 3/2 to 10YR 4/2,) microcrystalline to very fine grained, rarely cryptocrystalline, hard, weakly vuggy, slightly sucrosic.
3,330 – 3,340	10	DOLOMITE – 100% Moderate yellowish brown (10YR 5/4 to 10YR 6/4,) dominantly microcrystalline to very fine, rarely fine grained, hard, weakly vuggy, sucrosic.
3,340 – 3,350	10	DOLOMITE 100% Olive gray (5Y 3/2) dark gray (N3) to dark yellowish brown (10YR 4/2), cryptocrystalline to locally microcrystalline, hard to moderately hard, locally mottled.
3,350 – 3,370	20	DOLOMITE – 100% Pale yellowish brown (10YR 6/2) to dark yellowish brown (10YR 4/2), microcrystalline to fine grained, very hard, locally sucrosic, locally very weakly vuggy at 3,370'.
3,370 – 3,380	10	DOLOMITE – 100%; 70% As above. 30% Dark yellowish brown (10YR 4/2), cryptocrystalline, very hard.

Depth	Thickness	Sample Description
(ft)	(ft)	
3,380 - 3,390	10	DOLOMITE – 100% Pale yellowish brown (10YR 6/2), dominantly cryptocrystalline to microcrystalline, hard to very hard, weakly vuggy with mottles, vugs lined to fully healed with very fine to medium grained euhedral to subhedral Dolomite crystals.
3,390 – 3,400	10	DOLOMITE – 100%; 90% Dark yellowish brown (10YR 4/2) to yellowish brown (10YR 5/2), dominantly very fine grained to locally microcrystalline, hard, locally weakly vuggy. 10% Dusky yellowish brown (10YR 2/2), very fine grained, hard to very hard, weakly vuggy, vugs filled with very fine grained euhedral to subhedral Dolomite crystals. Trace pale yellowish brown (10YR 6/2), cryptocrystalline to microcrystalline, very hard Dolomite.
3,400 – 3,410	10	DOLOMITE – 100% Dark yellowish brown (10YR 4/2) to olive gray (5Y 3/2), dominantly microcrystalline locally cryptocrystalline to very fine grained, hard to very hard, prominent mottles locally common.
3,410 – 3,420	10	DOLOMITE - 100% Light olive gray (5Y 6/1) to olive gray (5Y 4/1), cryptocrystalline, very hard, locally weakly vuggy, vugs filled and lined with Dolomite crystals, locally fractured, fractures fully healed with Dolomite crystals.
3,420 – 3,430	10	DOLOMITE – 100%; 80% Pale yellowish brown (10YR 6/2) to dark yellowish brown (10YR 4/2), microcrystalline to very fine grained, hard to very hard, locally sucrosic. 20% As above.
3,430 – 3,440	10	DOLOMITE – 100% Yellowish brown (10YR 5/2) to pale yellowish brown (10YR 6/2), cryptocrystalline to microcrystalline, very hard, locally vuggy and fractured, vugs lined with dark yellowish brown (10YR 4/2), very fine to coarse grained anhedral to subhedral Dolomite crystals, fractures fully healed with dusky yellowish brown (10YR 2/2) to dark yellowish brown (10YR 4/2) Dolomite crystals.
3,440 – 3,450	10	DOLOMITE – 100% Light olive gray (5Y 5/2 to 5Y 6/2), cryptocrystalline to locally microcrystalline, very hard, locally vuggy, vugs lined with olive gray (5Y 3/2) to greenish black (5GY 2/1), fine to medium grained euhedral to subhedral Dolomite crystals, locally fractured, fractures fully healed with greenish black (5GY 2/1) Dolomite crystals.
3,450 – 3,460	10	DOLOMITE – 100%Yellowish brown (10YR 5/2), pale yellowish brown (10YR 6/2) to pale orange (10YR 7/2), cryptocrystalline to microcrystalline, very hard, locally vuggy and fractured, vugs and fractures lined with dark yellowish brown (10YR 4/2) to grayish black (N2), fine grained anhedral to subhedral Dolomite crystals. Trace light olive gray (5Y 5/2 to 5Y 6/2) Dolomite as above.
3,460 – 3,470	10	DOLOMITE – 100% Pale orange (10YR 7/2), cryptocrystalline to locally microcrystalline, very hard.
3,470 – 3,480	10	DOLOMITE – 100%; 85% to 50% Pale yellowish brown (10YR 6/2), cryptocrystalline, very hard, locally vuggy and fractured, vugs and fractures lined with dusky yellowish brown (10YR 2/2), very fine to fine grained anhedral to subhedral Dolomite crystals. 15% to 50% Dark yellowish brown (10YR 5/2 to 10YR 4/2), cryptocrystalline to microcrystalline, very hard, locally vuggy, vugs lined with dusky yellowish brown (10YR 2/2) fine grained anhedral to subhedral

Depth (ft)	Thickness (ft)	Sample Description
		Dolomite crystals, fractures fully healed with grayish black (N2) Dolomite crystals.
3,480 – 3,490	10	DOLOMITE – 100%; 50% Pale yellowish brown (10YR 6/2) as above. 50% Dark yellowish brown (10YR 5/2 to 10YR 4/2) as above.
3,490 – 3,500	10	DOLOMITE – 100%; 50% Moderate yellowish brown (10YR 5/4), cryptocrystalline, very hard, locally vuggy and fractured, vugs and fractures lined with dusky yellowish brown (10YR 2/2), very fine grained anhedral to subhedral Dolomite crystals. 50% Dark yellowish brown (10YR 5/2 to 10YR 4/2), cryptocrystalline to microcrystalline, very hard, locally vuggy and fractured, vugs and fractures lined with dusky yellowish brown (10YR 2/2) to grayish black (N2), fine grained anhedral to subhedral Dolomite crystals.

Monitor Well No. 1 (MW-1) – Lithology Geologic Log

GEOLOGIC LOG (Drill Cuttings)

CITY OF HOLLYWOOD EFFLUENT DISPOSAL SYSTEM SOUTHERN REGIONAL WWTP

DUAL-ZONE MONITOR WELL MW-1

Depth (ft)	Thickness (ft)	Sample Description
0 - 20	20	LIMESTONE, AND ORGANICS - Limestone 97%, very pale orange (10YR 8/2) to yellowish gray (5Y 8/1), very fine grained to microcrystalline, hard, wackestone to packstone. Trace colorless, medium to coarse grained, angular to subrounded quartz sand. Organics 3%, brownish black (5YR 2/1) to black (N1), soft to moderately hard.
20 - 30	10	LIMESTONE – 100%; 60% Yellowish gray (5Y 7/2), very fine to fine grained, hard, sucrosic grainstone. 20% Very pale orange (10YR 8/2) to yellowish gray (5Y 8/1), very fine grained to microcrystalline, hard wackestone to packstone. Trace coarse grained crystalline carbonate. 20% Light olive gray (5Y 5/2) to dusky yellow (5Y 6/4), microcrystalline, hard, locally moderately vuggy mudstone to wackestone. Trace shell molds.
30 - 110	90	LIMESTONE – 100% Pale greenish yellow (10Y 8/2) to yellowish gray (5Y 7/2), dominantly medium, fine to coarse grained, hard, porous grainstone. Little dusky yellow (5Y 6/4) to olive gray (5Y 3/2), fine to medium grained, hard grainstone between 40' and 60'. Trace burrow molds between 40' and 50'. Trace yellowish gray (5Y 8/1 to 9/1), cryptocrystalline very hard packstone.
110 - 130	20	LIMESTONE – 100%; 50% to 60 As above. 50% to 40% Light yellowish gray (5Y 7/1 to 5Y 8/1), fine grained to locally microcrystalline, hard to very hard grainstone. Trace fossil coral fragments.
130 - 170	30	SANDY LIMESTONE AND LIMESTONE - Sandy Limestone 70%, light greenish gray (5GY 8/1), fine to coarse grained, moderately hard, sparry, partially pelloidal, locally phosphatic grainstone. Little colorless, medium to coarse grained, angular quartz sand. Limestone 30%, yellowish gray (5Y 7/1 to 5Y 8/1), very fine grained, very hard grainstone between 140' and 150'. Little white (N9), microcrystalline to cryptocrystalline, hard, locally vuggy carbonate mudstone.
170 - 190	20	LIMESTONE AND SANDY LIMESTONE – Limestone 70%, yellowish gray (5Y 7/2) to grayish orange (10YR 7/4), fine to coarse grained, hard, pelloidal, fossiliferous, highly sparry, slightly phosphatic packstone. Sandy Limestone 30%, yellowish gray (5Y 7/2), medium grained, hard, pelloidal packstone with medium grained quartz sand and few shell fragments. Trace tests.

2

Depth	Thickness	Sample Description
(ft)	(ft)	
190 - 200	10	SANDY LIMESTONE AND LIMESTONE – Sandy Limestone 70%, yellowish gray (5Y 7/2) to light greenish gray (5GY 8/1), dominantly medium grained, vuggy, slightly phosphatic, partially pelloidal packstone to grainstone with medium grained angular quartz sand and trace shell fragments. Limestone 20%, pale yellowish orange (10YR 9/6) to white (N9), microcrystalline to cryptocrystalline, moderately hard, highly fossiliferous, slightly sandy, highly vuggy locally well indurated packstone with shell fragments, fossil coral and forams. 10% Very pale orange (10YR 7/2 to 10YR 8/2), fine grained, very hard, slightly phosphatic grainstone.
200 - 210	10	LIMESTONE – 100% Light greenish gray (5GY 8/1) to yellowish gray (5Y 8/1), medium grained, moderately hard to hard, slightly sandy, locally vuggy, fossiliferous, partially pelloidal packstone to grainstone with colorless medium grained quartz sand and shell fragments.
210 - 220	10	CLAY AND LIMESTONE – Clay 80%, yellowish gray (5Y 7/2) to light olive gray (5Y 5/2), very soft. Limestone 20%, 15% yellowish gray (5Y 8/1), microcrystalline to cryptocrystalline, hard wackestone to packstone. 5% Grayish yellow green (5GY 6/2 to 5GY 7/2), fine grained, moderately soft, clayey, locally vuggy, highly phosphatic packstone to grainstone.
220 - 240	20	LIMESTONE AND SHELL FRAGMENTS – Limestone 90%, light greenish gray (5GY 8/1), fine to medium grained, moderately hard, fossiliferous, slightly sandy packstone to locally grainstone. Shell Fragments 10%, mollusks, foram fossils and other shell fragments.
240 - 250	10	LIMY SAND – 100% Colorless, dominantly medium grained, unconsolidated, mostly subrounded, well sorted quartz sand with 10% yellowish gray (5Y 8/1), fine to dominantly medium grained, hard, unconsolidated detrital carbonate. Few shell fragments.
250 - 310	60	LIMY SANDSTONE AND LIMESTONE – Limy Sandstone 90%, medium gray (N5) to medium light gray (N6), dominantly medium grained to fine, hard, well sorted, subangular well cemented phosphatic quartz sand, with abundant detrital carbonate. Induration increasing with depth. Limestone 10%, yellowish gray, microcrystalline to medium grained, hard, partially fossiliferous to fossiliferous, locally sparry, phosphatic packstone to locally grainstone. Trace shell fragments.
310 - 340	30	PHOSPHATIC LIMY SANDSTONE AND SANDY LIMESTONE – Phosphatic Sandy Limestone 70% to 80%, colorless, dominantly fine grained, hard, well sorted, dominantly subrounded quartz sand with light greenish gray (5GY 7/1 to 5GY 8/1), phosphatic limy matrix Limestone 20% to 30%, medium gray (N6), microcrystalline to medium grained, very hard, sandy, slightly phosphatic grainstone to locally packstone. Trace forams
350 - 360	10	LIMY SANDSTONE AND LIMESTONE – Limy Sandstone 80% medium light gray (N6) to medium gray (N7), fine to medium grained with sparry matrix. Limestone 20% yellowish gray (5Y 7/2), fine to medium grained, hard, sparry, sandy packstone with trace to little fine grained phosphorite. Trace shell fragments.

Depth	Thickness	Sample Description
(ft)	(ft)	
360 - 370	10	SANDY CLAYEY LIMESTONE AND LIMY SANDSTONE – Sandy Clayey Limestone 60%, light olive gray (5Y 5/2), fine to medium grained, moderately soft phosphatic packstone with abundant fine grained quartz sand and clay. Limy Sandstone 40%, light gray (N7 to light olive gray (5Y 5/2), fine to rarely coarse grained, moderately hard with abundant detrital carbonate and little clay. Trace shell fragments.
370 - 440	70	CLAYEY SANDY LIMESTONE – 100% Pale olive (10Y 6/2), very fine to fine grained, moderately soft, slightly phosphatic wackestone with abundant clay and fine grained quartz sand. Clay content increasing with depth.
440 - 450	10	SANDY CLAY AND CLAYEY LIMESTONE – Sandy Clay 50% to 60%, pale olive gray (10Y 6/2) to grayish yellow green (5GY 7/2) very soft, plastic, weakly calcareous, weakly phosphatic. Claye Limestone 40% to 50%, pale olive gray (10Y 6/2), medium grained moderately soft, friable, slightly phosphatic wackestone.
450 - 480	30	CLAYEY SANDY LIMESTONE – 100% Pale olive (10Y 6/2), very find to fine grained, moderately soft, slightly phosphatic wackestone with abundant clay and fine grained quartz sand. Clay content increasing with depth.
480 - 550	80	LIMY CLAY – 100% Pale olive (10Y 6/2), moderately soft to soft, non plastic, slightly phosphatic with abundant very fine grained quart sand and detrital carbonate.
550 - 700	150	SANDY LIMY CLAY – 100% Pale olive (10Y 6/2), firm to soft, non plastic to low plasticity, slightly phosphatic to locally moderately phosphatic, friable with abundant very fine to fine grained quartz sand and very fine to fine grained detrital carbonate.
700 - 730	30	SANDY LIMY CLAY – 100% Pale olive (10Y 6/2), firm to very soft low plasticity to plastic, slightly phosphatic to phosphatic, calcareous with very fine grained quartz sand.
730 - 760	30	SANDY LIMY CLAY – 100% Pale olive (10Y 6/2), firm to soft, non plastic to low plasticity, slightly phosphatic, friable with abundant ver fine to fine grained quartz sand and very fine to fine grained detrita carbonate.
760 - 780	20	SANDY LIMY CLAY – 100% Pale olive (10Y 6/2), firm to very sof low-plasticity to plastic, slightly phosphatic to locally phosphatic calcareous, with very fine grained quartz sand.
780 - 790	10	LIMY CLAY AND PHOSPHORITE – Limy Clay 80% pale olive (10% 6/2), firm to very soft, low plasticity to plastic, phosphatic, calcareous Phosphorite 20% brownish black (5YR 2/1) to black (N1) microcrystalline to cryptocrystalline, very hard, well cemented, clayer and slightly calcareous.
790 - 830	40	SANDY CLAY – 100% Pale greenish yellow (10Y 7/2), soft moderately plastic, calcareous, moderately phosphatic to phosphatic with very fine grained quartz sand.

Depth	Thickness	Sample Description							
(ft)	(ft)	SANDY CLAY 100% Gravish alive (10Y 5/2) very soft school							
830 – 860	30	SANDY CLAY – 100% Grayish olive (10Y 5/2), very soft, cohesive, highly plastic, slightly calcareous with very fine grained quartz sand. Trace olive black (5Y 2/1) very hard Chert at 860'.							
860 – 870	10	CLAY, LIMESTONE AND CHERT – Clay 60% As above. Limestone 20%, olive gray (5Y 4/1), fine grained, moderately hard, phosphatic, sparry packstone. Chert 10% black (N1), microcrystalline, weakly fossiliferous, very hard.							
870 – 890	20	LIMESTONE – 100% Greenish gray (5GY 6/1) to light bluish gray (5B 7/1), fine grained, moderately hard, slightly sandy, slightly phosphatic packstone.							
890 – 910	20	LIMESTONE - 100%; 50% Yellowish gray (5Y 7/2), fine grained, moderately hard, sandy, phosphatic packstone. 30% Yellowish gray (5Y 8/1), medium to coarse grained, moderately hard, pelloidal, fossiliferous packstone. 20% Medium light gray (N6), medium grained, hard, fossiliferous wackestone.							
910 – 920	10	LIMESTONE - 100%; 70% Medium light gray (N6), medium to coarse grained, fossiliferous, slight sparry, micritic wackestone. 30% Yellowish gray (5Y 7/2), fine grained, moderately hard, sandy, phosphatic packstone.							
920 - 940	20	LIMESTONE – 100%; 70% Greenish gray (5GY 6/1), medium to coarse grained, hard, fossiliferous, partly micritic packstone. 30% Yellowish gray (5Y 8/1), fine to medium grained, hard, fossiliferous wackestone. Trace shell casts.							
940 - 980	40	LIMESTONE – 100%; 60% Yellowish gray (5Y 8/1) to bluish gray (5B 6/1), fine to coarse grained, hard, locally sparry, locally micritic packstone to wackestone. Trace white (N9), very soft carbonate marl. Trace shell molds at 970' and casts at 980'.							
980 – 1,000	20	LIMESTONE – 100%; 40% Yellowish gray (5Y 8/1), fine grained, moderately soft, pelloidal, fossiliferous grainstone to packstone. 40% Light bluish gray (5B 7/1), medium to coarse grained, moderately hard, phosphatic, slightly glauconitic packstone to wackestone. 20% Yellowish gray (5Y 8/1), cryptocrystalline, moderately hard carbonate mudstone. Trace to little crystalline carbonate. Trace shell casts.							
1,000 – 1,020	20	LIMESTONE – 100% Yellowish gray (5Y 7/1), medium grained, moderately soft to moderately hard, pelloidal, locally fossiliferous packstone with few forams.							
1,020 – 1,040	20	LIMESTONE, SANDY LIMESTONE AND CHERT – Limestone 90%, yellowish gray (5Y 8/1), dominantly medium to coarse grained, moderately soft to moderately hard, pelloidal packstone. Sandy Limestone 5%, moderate yellowish green (5GY 7/4), medium to coarse grained, moderately hard to hard, sparry, phosphatic, weakly vuggy packstone with fine to medium grained quartz sand. Chert 5%, olive gray (5Y 6/1) to olive black (5Y 2/1), fine grained with cryptocrystalline matrix, very hard. Common fossils between 10 mm and 15 mm.							

Depth	Thickness	Sample Description
(ft)	(ft)	
1,040 – 1,050	10	LIMESTONE – 100% Light greenish gray (5G 8/1), medium to coarse grained, hard to moderately hard packstone.
1,050 – 1,070	20	LIMESTONE – 100%; 70% Limestone light greenish gray (5G 8/1), fine to dominantly medium grained, hard to moderately hard, weakly clayey packstone. 30% Yellowish gray (5Y 8/1), medium to coarse grained, moderately hard pelloidal packstone. Trace to little white (N9), very soft carbonate marl.
1,070 – 1,110	30	LIMESTONE –100% Yellowish gray (5Y 8/1) to light greenish gray (5GY 8/1), fine to medium grained, moderately soft, to moderately hard, locally sparry pelloidal packstone to wackestone with few forams. Locally phosphatic at 1090.
1,110 – 1,170	60	LIMESTONE –100% Yellowish gray (5Y 8/1) to pale yellowish brown (10YR 6/2), fine to medium grained, moderately soft to hard, pelloidal, locally fossiliferous packstone to wackestone with some casts and molds. Trace yellowish gray (5Y 7/2) to white (N9), carbonate marl at 1,120'. Trace pale yellowish brown ((10YR 6/2) to dark yellowish brown (10YR 4/2), microcrystalline to cryptocrystalline, hard glauconitic Limestone at 1,140'. Trace white (N9), very soft carbonate marl at 1,150'. Trace Dolomite at 1,170'.
1,170 – 1,220	50	LIMESTONE – 100% Moderate yellowish brown (10YR 5/4) to grayish orange (10YR 7/4), dominantly fine to medium grained, rarely coarse grained, moderately soft to hard, pelloidal packstone with few fossils and few to common forams. Trace Dolomitic Limestone from 1,180' to 1,190'.
1,220 – 1,260	40	LIMESTONE AND MARL – Limestone 80% to 90%; 50% to 70% grayish orange (10YR 7/4), medium to rarely coarse grained, moderately soft, pelloidal packstone to wackestone. 30% to 10% Pale yellowish brown (10YR 6/2) to light olive gray (5Y 4/1), cryptocrystalline to medium grained, hard, locally weakly vuggy, locally fossiliferous carbonate mudstone. Marl 20% to 10%, white (N9), very soft, carbonate marl with abundant forams.
1,260 – 1,280	20	LIMESTONE – 100%; 80% Yellowish gray (5Y 7/1 to 5Y 8/1), very fine to fine grained, locally weakly vuggy to vuggy, moderately hard packstone to wackestone with few forams. 20% Grayish orange (10YR 7/4), cryptocrystalline, hard, carbonate mudstone. Trace crystalline carbonate and few forams.
1,280 – 1,300	20	LIMESTONE – 100%; 80% Yellowish gray (5Y 8/1), cryptocrystalline to fine grained, moderately hard to moderately soft, locally vuggy wackestone to packstone. 10% to 20% Light olive gray (5Y 6/1, cryptocrystalline, hard carbonate mudstone. Abundant forams. Trace Dolomitic Limestone.
1,300 – 1,330	30	LIMESTONE – 100%; 80% Yellowish gray (5Y 8/1) wackestone to packstone as above. 20% Pale yellowish brown (10YR 6/2), medium to fine grained, moderately hard packstone to grainstone.

Depth	Thickness	Sample Description
(ft)	(ft)	
1,330 – 1,390	60	LIMESTONE – 100%; 60% Grayish orange (10YR 8/4), very fine to fine grained, moderately soft to moderately hard wackestone to packstone. 20% Light olive gray (5Y 6/1) to yellowish gray (5Y 8/1), to medium light gray (N6), cryptocrystalline to very fine grained, hard, locally vuggy carbonate mudstone. Trace forams at 1,370'.
1,390 – 1,400	10	LIMESTONE – 100%; 80% Very pale orange (10YR 8/2), fine grained, moderately hard pelloidal packstone. 20% Light gray (N7), fine to medium grained, hard, carbonate mudstone to wackestone.
1,400 – 1,410	10	LIMESTONE – 100%; 60% Grayish orange (10YR 8/4), medium grained, moderately hard pelloidal packstone. 20% Grayish orange (10YR 8/4), fine to medium grained, moderately hard wackestone. 20% -Yellowish gray (5Y 7/1), cryptocrystalline, hard, carbonate mudstone. Trace forams.
1,410 – 1,440	30	LIMESTONE – 100%; 80% to 60% Grayish orange (10YR 7/4), medium to fine grained, moderately hard pelloidal packstone to grainstone. 20% to 40% Pale yellowish brown (10YR 6/2) to light olive gray (5Y 6/1), cryptocrystalline, hard, partly vuggy carbonate mudstone.
1,440 – 1,450	10	LIMESTONE – 100%; 50% Yellowish gray (5Y 8/1), medium grained, soft to moderately soft packstone. 20% Yellowish gray (5Y 8/1) to medium light gray (N6), very fine to fine grained, moderately hard, fossiliferous, micritic packstone/wackestone. 20% Yellowish gray (5Y 8/1), cryptocrystalline to fine grained, hard, weakly vuggy carbonate mudstone. 10% Light olive gray (5Y 8/1), fine to medium grained, hard, fossiliferous packstone with fine to coarse grained colorless quartz sand. Forams common.
1450 – 1,460	10	LIMESTONE – 100% Very pale orange (10YR 8/2), fine to medium grained, moderately hard to moderately soft, pelloidal packstone to wackestone.
1,460 – 1,470	10	LIMESTONE – 100%; 60% Very pale orange (10YR 8/2), medium grained, moderately soft packstone. 30% Yellowish gray (5Y 7/2), cryptocrystalline, hard carbonate mudstone. 10% Medium gray (N5), very fine grained to microcrystalline, hard wackestone. Formas common
1,470 – 1,480	10	LIMESTONE – 100%; 50% Medium light gray (N6) to black (N1), cryptocrystalline to fine grained, hard, locally weakly vuggy carbonate mudstone with trace casts. 50% Yellowish gray (5Y 8/1), very fine to fine grained, moderately soft to moderately hard, rarely weakly Dolomitic wackestone to packstone.
1,480 – 1,500	20	LIMESTONE – 100%; 70% Very pale orange (10YR 8/2), medium to fine grained, moderately soft packstone. 20% Yellowish gray (5Y 7/2), cryptocrystalline, hard, carbonate mudstone. 10% Pale yellowish brown (10YR 6/2) to medium gray (N5), fine grained carbonate mudstone.
1,500 – 1,520	20	LIMESTONE – 100% Yellowish gray (5Y 8/1), fine to medium grained, moderately soft, pelloidal packstone to wackestone with few forams.

Depth	Thickness (ft)	s Sample Description
(ft)	(ft)	
1,520 – 1,550	30	LIMESTONE – 100%; 90% Pale yellowish brown (10YR 6/2) to pale orange (10YR 7/1), fine to medium grained, moderately soft to moderately hard, locally weakly vuggy to vuggy, pelloidal packstone to wackestone. 10% Yellowish gray (5Y 8/1), fine grained to locally cryptocrystalline, moderately hard to hard carbonate mudstone to wackestone.
1,550 – 1,590	40	LIMESTONE – 100%; 90% Pale orange (10YR 7/1) to very pale orange (10YR 8/2), fine grained, moderately soft, pelloidal, slightly fossiliferous packstone. 10% Light gray (N7) to medium dark gray (N4), cryptocrystalline to very fine grained, hard fossiliferous carbonate mudstone to wackestone. Forams common to abundant
1,590 – 1,600	10	LIMESTONE – 100%; 90% Medium light gray (N6), cryptocrystalline to very fine grained, hard, fossiliferous carbonate mudstone to wackestone. 10% Pale orange (10YR 7/1) to very pale orange (10YR 8/2), fine grained, moderately soft, pelloidal, slightly fossiliferous packstone.
1,600 – 1,620	20	LIMESTONE – 100%; 80% Pale orange (10YR 7/1) to very pale orange (10YR 8/2), fine grained, moderately soft, pelloidal, slightly fossiliferous packstone. 20% Medium light gray (N6), cryptocrystalline to very fine grained, hard fossiliferous carbonate mudstone to wackestone.
1,620 – 1,630	10	LIMESTONE – 100% Very pale orange (10YR 8/2), fine to medium grained, moderately soft pelloidal, slightly fossiliferous grainstone.
1,630 – 1,640	10	LIMESTONE – 100%; 90% Medium light gray (N6), cryptocrystalline to very fine grained, hard, fossiliferous carbonate mudstone to wackestone. 10% Pale orange (10YR 7/1), moderately soft, pelloidal packstone. Abundant forams.
1,640 – 1,670	30	LIMESTONE – 100% Pale orange (10YR 7/1) to very pale orange (10YR 8/2), fine to medium grained, moderately soft, pelloidal, fossiliferous packstone. Trace medium light gray (N6) Limestone. Few to abundant forams.
1,670 – 1,680	10	LIMESTONE – 100% Medium light gray (N6) to medium dark gray (N4), microcrystalline to very fine grained, hard, locally vuggy carbonate mudstone to locally wackestone with little pale orange (10YR 8/1), fossiliferous packstone and few forams.
1,680 – 1,710	30	LIMESTONE - 100%; 95% Pale orange (10YR 7/1) to very pale orange (10YR 8/2), fine to medium grained, moderately soft, pelloidal fossiliferous packstone. 5% Medium light gray (N6) to very light gray (N8), cryptocrystalline to microcrystalline, hard, locally vuggy carbonate mudstone. Abundant forams.
,710 — 1,730	20	LIMESTONE – 100% Very pale orange (10YR 8/2) to white (N9), microcrystalline to very fine grained, moderately hard, partly weakly vuggy carbonate mudstone to wackestone. Forams common. Trace light gray (N7), fine grained, hard to soft, partly micritic packstone to wackestone.

Depth (ft)	Thickness (ft)	Sample Description
1,730 – 1,740	10	LIMESTONE – 100% Grayish orange (10YR 7/4), fine to medium grained, moderately soft, pelloidal packstone to wackestone. Abundant unconsolidated forams and tests.
1,740 – 1,750	10	LIMESTONE – 100%; 80% Very pale orange (10YR 8/2), fine to medium grained, moderately hard. 20% Very pale orange (10YR 8/2), cryptocrystalline, hard, partly weakly vuggy, rarely slightly sparry carbonate mudstone. Forams common. Trace to little crystalline carbonate.
1,750 – 1,790	40	LIMESTONE – 100%; 80% to 70% Yellowish gray (5Y 8/1) to very pale orange (10YR 8/2), fine to medium grained, moderately hard to moderately soft packstone to rarely grainstone. 20% to 30% Light olive gray (5GY 6/1), cryptocrystalline, hard, locally weakly vuggy carbonate mudstone. Trace yellowish gray (5Y 7/2), microcrystalline to cryptocrystalline, very soft carbonate mudstone at 1,760'. Forams common to abundant.
1,790 – 1,800	10	LIMESTONE – 100%; 90% Very pale orange (10YR 8/2), very fine to fine grained moderately hard wackestone. 10% Light olive gray (5GY 6/1), cryptocrystalline, hard, locally weakly vuggy carbonate mudstone. Abundant forams and tests.

Appendix E Cores

`

t

Injection Well No. 1 (IW-1) – Lithology Core Geologic Log

GEOLOGIC LOG

WELL IW - 1

CORE #1

Depth (ft)

Sample Description

- 1700.0 1711.0 No Recovery
- 1711.0 1712.0 LIMESTONE (100%) yellowish gray (5Y 8/1) massive, fine to medium grained, soft, well indurated packstone with forams. Indistinct lower contact.
- 1712.0 1712.3 LIMESTONE (100%) yellowish gray (5Y 7/2) massive, very fine to fine grained, moderately soft, well indurated, wackestone. Poor core quality.
- 1712.3 1713.1 LIMESTONE (100%) very pale orange (10YR 8/2)) massive, fine to medium grained, moderately soft to moderately hard, well indurated, packstone with medium to coarse grain sized forams common in upper portion of unit to abundant in lower portion. Trace light gray (N7) to medium light gray (N^) hard, carbonate mudstone clasts from dominantly 1mm in diameter to rarely 4 mm in diameter throughout unit.
- 1713.1 1713.2 LIMESTONE (100%) yellowish gray (5Y 7/2) massive dominantly very fine to fine grained soft, well indurated packstone/wackestone with medium to coarse grain sized forams common. Indistinct lower contact.
- 1713.2 1713.7 LIMESTONE (100%), yellowish gray (5Y 8/1), massive, massive fine to medium grained moderately hard packstone with abundant fine to coarse grain sized forams. Gradational contact lower through lower .2 feet of unit..
- 1713.7 1713.8 LIMESTONE (100%) medium dark gray (N4) massive cryptocrystalline, hard, vuggy carbonate mudstone.

1713.8 - 1714.0LIMESTONE (100%) Yellowish gray (5Y 8/1) massive, fine grained, soft
well indurated packstone/wackestone.

GEOLOGIC LOG

WELL IW - 1

CORE #2

Depth (ft)

Sample Description

- 1750.0 1750.2 LIMESTONE (100%) yellowish gray (5Y 8/1) massive, fine grained to cryptocrystalline, moderately hard, vuggy with vugs to 1 mm in diameter carbonate mudstone with occasional molds and few forams. Indistinct lower contact. No Recovery
- 1750.2 1751.1LIMESTONE (100%) yellowish gray (5Y 8/1) massive, fine to medium
grained, soft, well indurated wackestone with trace light gray (N7)
cryptocrystalline hard carbonate mudstone clasts to 5 mm in diameter.
- 1751.1 1765.0 No Recovery

GEOLOGIC LOG

WELL IW - 1

CORE #3

Depth (ft)

Sample Description

- 1800.0 1804.3 No Recovery
- 1804.3 1805.4 LIMESTONE (100%) yellowish gray (5Y 8/1) massive, medium grained, moderately hard to moderately soft, moderately indurated packstone. Weakly vuggy in upper .4' of section. Trace to few forams and trace moderately soft mudstone clasts to 4mm in diameter throughout section. Indistinct lower contact.
- 1805.4 1805.8LIMESTONE (100%) yellowish gray (5Y 7/2) massive, medium to coarse
grained, moderately soft, moderately to poorly indurated packstone with
coarse grained to 5mm in diameter forams and tests common. Indistinct
lower contact.
- 1805.8 1805.9 LIMESTONE (100%) medium light gray (N6) cryptocrystalline, hard angular medium grained to 15mm carbonate mudstone clasts with yellowish gry (5Y 7/2) medium grained, moderately soft packstone matrix. Indistinct lower contact.
- 1805.9 1806.1LIMESTONE (100%0 medium gray (N5) to medium light gray (N6)massive, dominantly very fine to medium grained, soft, moderately wellindurated wackestone.Sharp horizontal lower contact.
- 1806.1 1806.9 LIMESTONE (100%) yellowish gray (5Y 8/1) massive, fine to medium grained, moderately hard, moderately indurated, weakley vuggy packstone with coarse grain sized forams.
- 1806.9 1807.3LIMESTONE (100%) yellowish gray (5Y 8/1) massive, very fine grained,
hard, well indurated, moderately vuggy with vugs dominantly 1 mm to

rarely 5 mm in diameter. Wackestone to carbonate mudstone. Poor core quality

- 1807.3 1807.5 LIMESTONE (100%) medium to light gray (N6) and yellowish gray (5Y
 8/1) massive to weakly laminated, moderately hard, well indurated, weakly vuggy packstone. Sharp horizontal lower contact.
- 1807.5 1807.7 LIMESTONE (100%) very pale orange (10YR 8/2) massive, fine grained, moderately hard, well indurated, vuggy with vugs generally< 1 mm in diameter, packstone.
- 1807.7 1808.2 LIMESTONE (100%) very pale orange (10YR 8/2) massive, fine grained, soft, friable, well indurated packstone. Poor core quality
- 1808.2 1809.5 LIMESTONE (100%) yellowish gray (5Y 7/2) massive, very fine to fine grained, grain size increasing with depth, soft to moderately hard, hardness increasing with depth, very well to well indurated packstone with 5% to 10% medium gray (N5) coarse grained grading with depth to 5 mm hard carbonate mudstone clasts. Indistinct lower contact.
- 1809.5 1810.0LIMESTONE (100%) yellowish gray (5Y 8/1) massive, fine to medium
grained, soft, well indurated, locally micritic and vuggy packstone
- 1810.0 1815.0 No Recovery

GEOLOGIC LOG

WELL IW - 1

CORE #4

Depth (ft)

Sample Description

- 1850.0 1854.2 No Recovery
- 1854.2 1854.6LIMESTONE (100%) yellowish gray (5Y 8/1) massive, fine to medium
grained, soft, very well indurated packstone. Indistinct lower contact.
- 1854.6 1854.7 LIMESTONE (100%) yellowish gray (5Y 8/1) massive, medium to coarse grained, hard, moderately indurated packstone with medium light gray (N6) hard, coarse grained to 10 mm in diameter angular carbonate mudstone clasts. Indistinct lower contact.
- 1854.7 1857.4 LIMESTONE (100%) yellowish gray (5Y 8/1) to yellowish gray (5Y 7/2) massive, fine to coarse grained, moderately soft to soft, well indurated, very weakly vuggy with vugs 1 mm to 3 mm in diameter, packstone to wackestone with few forams. Indistinct lower contact.
- 1857.4 1861.8 LIMESTONE (100%) yellowish gray (5Y 7/2) generally massive, dominantly coarse grained grading to medium grain sized with depth, moderately hard, moderately to well indurated with induration increasing with depth grainstone grading to packstone with depth with abundant forams, 10mm thick wackestone lamination at 1857.6 and thin, medium gray (N5) moderately hard carbonate mudstone laminations at 1860.0. Indistinct lower contact.
- 1861.8 1862.0 LIMESTONE (100%) yellowish gray (5Y 8/1) massive, fine grained, hard, moderately indurated, wackestone to carbonate mudstone with vertical boreholes to 2mm in diameter. Poor core quality.

1862.0 – 1862.9 LIMESTONE (100%) light gray (N7) weakly bedded, dominantly fine grained, hard, well indurated wackestone with few medium to coarse grained micritic packstone laminations to 15mm thick and yellowish gray (5Y 7/2) medium grained, soft packstone lenses in lower .5' of unit.

GEOLOGIC LOG

WELL IW - 1

CORE #5

Depth (ft) Sample Description

- 1900.0 1901.0 LIMESTONE (100%) yellowish gray (5Y 8/1) massive, very fine to medium grained, moderately soft, well indurated packstone to wackestone. Poor core quality.
- 1901.0 1901.3 LIMESTONE (100%) yellowish gray (5Y 8/1) generally massive, very fine grained, moderately soft, very well indurated wackestone with thin pale yellowish brown (10YR 6/2) dolomitic laminations in lower .1' of unit. Indistinct lower contact.
- 1901.3 1901.6DOLOMITE AND LIMESTONE Dolomite (70%) dark yellowish brown
(10YR 4/2) cryptocrystalline, moderately hard moderately indurated
interlaminated with Limestone (30%) as above. Indistinct lower contact.
- 1901.6 1901.9 LIMESTONE (100%) yellowish gray (5Y 8/1) generally massive, very fine grained, moderately soft, well indurated, wackestone with few moderate yellowish brown (10YR 5/4) dolomitic laminations to 3 mm thick. Indistinct lower contact.
- 1901.9 1903.0 LIMESTONE (100%) yellowish gray (5Y 8/1) generally massive, medium grained grading with depth to very fine grained, moderately soft moderately well indurated, packstone grading with depth to well indurated wackestone. Unit exhibits rare thin >1 mm dolomitic laminations. Indistinct lower contact.
- 1903.0 1903.8 LIMESTONE (100%) yellowish gray (5Y 8/1), fine grained, soft, well indurated, packstone with thin (10 mm) cryptocrystalline, moderately hard carbonate mudstone beds with trace vertical burrows to 3 mm in diameter.

1903.8 – 1904.1 DOLOMITE (100%) yellowish gray (5Y 7/2) with light olive gray (5Y 5/2) wavy laminations common, cryptocrystalline, very hard, moderately vuggy with vugs generally <1 mm in diameter to rarely 5 mm in diameter..

GEOLOGIC LOG

WELL IW - 1

CORE #6

Depth (ft)

Sample Description

- 1950.0 1957.6 No Recovery
- 1957.6 1958.6LIMESTONE (100%) very pale orange (10YR 8/2) massive, fine grained,
soft, well indurated wackestone. Sharp horizontal lower contact.
- 1958.9 1959.2LIMESTONE (100%) very pale orange (10YR 8/2) massive, fine grained,
moderately hard, well indurated, weakly vuggy wackestone. Poor core
quality.
- 1959. 2– 1961.1 LIMESTONE (100%) yellowish gray (5Y 8/1) massive, fine to medium grained, moderately soft, well indurated, packstone to wackestone with few tests. Hard carbonate mudstone lens at 1960.1. Sharp horizontal lower contact.
- 1961.1 1961.4LIMESTONE (100%) yellowish gray (5Y 7/2), massive, medium grained,
moderately soft, moderately indurated, packstone with few clasts to 5
mm in diameter. Sharp horizontal lower contact.
- 1961.4 1962.0LIMESTONE (100%) very pale orange (10YR 8/2) massive, fine grained,
hard, moderately indurated, weakly vuggy with vugs generally 1 mm in
diameter packstone with molds common. Indistinct lower contact.

1962.0 - 1965.0LIMESTONE (100%) very pale orange (10YR 8/2) generally massive,
fine to medium grained, moderately soft, well indurated packstone with
light olive gray (5Y 6/1) soft wackestone lamination at 1963.6

GEOLOGIC LOG

WELL IW - 1

CORE #7

Depth (ft)

Sample Description

- 2032.0 2032.8 DOLOMITE (100%) Slightly limy, pale yellowish brown (10YR 6/2) to olive gray (5Y 4/1) massive, cryptocrystalline, very hard, moderately vuggy, vugs dominantly <1mm in diameter to rarely 5mm in diameter. Indistinct lower contact.
- 2032.8 2033.6 DOLOMITE AND LIMESTONE Dolomite (95%) light bluish gray (5B 8/1) to light olive gray (5Y 5/2) weakly laminated, cryptocrystalline, very hard, weakly vuggy to vuggy, vugs 2mm to 4mm in diameter with olive gray (5Y 4/2) inclusions and 5 mm lamination in upper .15' of section. Limestone (5%) very pale orange (10YR 8/2) very fine grained, moderately soft packstone occurring as occasional lenses with maximum thickness of 10mm. Indistinct lower contact.
- 2033.6 2034.8 DOLOMITE (100%) Medium bluish gray (5B 5/1) to light olive gray (5Y 6/1) massive dominantly cryptocrystalline to fine grained very hard, vuggy, vugs to 10mm in diameter in upper .2' of section trending to weakly vuggy with vugs generally 1mm to 2mm with depth. Indistinct lower contact.
- 2034.8 2.35.7 DOLOMITE AND LIMY DOLOMITE Dolomite 90% medium bluish gray (5B 5/1) to light olive gray (5Y 6/1) cryptocrystalline, very hard, weakly to moderately vuggy with Limy Dolomite (10%) grayish orange (10YR 7/4) microcrystalline to very fine grained, very hard occurring as lenses
- 2035.7 2040.0 No Recovery

- 2040.0 2041.3 DOLOMITE (100%) Grayish orange (10YR 6/4) massive, cryptocrystalline, very hard, weakly vuggy, vugs generally 1mm in diameter
- 2041.3 2041.9 DOLOMITE (100%) Dark yellowish orange (10YR 6/6) to moderate yellowish brown (10YR 5/4) cryptocrystalline, very hard, weakly vuggy with distinct mottles common.

End of Core

.

Injection Well No. 1 (IW-1) – Lithology Core Analysis

Submittal Data FROM Youngquist Brothers, Inc. 15465 Pine Ridge Rd. Ft. Myers, FL. 33908 239-489-4444 Fax: 239-489-4545

Project

<u>City of Hollywood Southern Regional WWTP</u> Injection Well System

I have reviewed this submittal for general conformance with the design concepts and contract documents. Generally no conflict with materials or dimensions will arise from the approval of this shop drawing submittal.

Number of Copies: 7

Submittal Number: 13198-01-A

Specification Section Number: 13198

Item Submitted: Rock Cores Injection #1 IW-1

New Submittal:

 \square

Youngquist Brothers, Inc. Representative:

Resubmitted:

Transmittal Date: February 14, 2003

	Approved	
	Approved with changes	By:
	Rejected, Revise & Resubmit	
	Not Reviewed	Firm:
1		Date:

Ardaman & Associates, Inc.

Geotechnical, Environmental and Materials Consultants

February 4, 2003 File Number 02-188

Youngquist Brothers, Inc. 15465 Pine Ridge Road Fort Myers, Florida 33908

RECEIVED FEB - 6 2000

1.,

Attention: Mr. Edward McCullers

Subject: Laboratory Testing of Rock Core Specimens from City of Hollywood Waste Water Treatment Plant, Injection Well IW-1

Gentlemen:

As requested, permeability and specific gravity tests have been completed on sixteen rock core samples provided for testing by your firm from the City of Hollywood Injection Well IW-1. The permeability tests were performed in general accordance with ASTM Standard D 5084 "Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible-Wall Permeameter" using the constant-head method (Method A) and the falling-head with increasing tailwater level method (Method C). Specific gravity was determined in general accordance with ASTM Standard D 854 "Specific Gravity of Soils".

Due to the irregular shape and short length of the core samples, each of the requested tests (i.e., vertical permeability test, horizontal permeability test and unconfined compression test) could not be performed on each sample. Priority was given to obtaining specimens from the samples for vertical and horizontal permeability tests.

Permeability Tests

The permeability test results are presented in Table 1. The vertical permeability tests were performed first on specimens maintained at the as-received diameter (except for one sample from Core 6) and cut to lengths of 4.4 to 9.9 cm. After completing the vertical permeability tests, horizontal permeability test specimens were obtained from the samples (except for one sample from Core 6) by coring 3.2 or 5.1 cm diameter cylinders from the vertical specimens. The horizontal specimens were trimmed to lengths of 7.5 to 8.3 cm to provide flat, parallel ends. The final moisture contents of the vertical test specimens that were cored for horizontal test specimens were not measured. The dry densities and degrees of saturation of those vertical permeability test specimens, therefore, were estimated using final moisture contents from the corresponding horizontal permeability test specimens.

The vertical permeability test specimens were air-dried, deaired under vacuum, and then saturated with deaired tap water from the bottom upward while still under vacuum. After testing, the vertical specimens were maintained submerged in water until cored for the horizontal specimens and retested for measurement of horizontal hydraulic conductivity. Each specimen was mounted in a triaxial-type permeameter and encased within a latex membrane. The specimens were confined using an average isotropic effective confining stress of 30 lb/in² and permeated with deaired tap water under a back-pressure of 70 or 160 lb/in². Satisfactory saturation was verified by a B-factor equal-to-or greater than 95 percent, or a B-factor that remained relatively constant for two consecutive increments of applied

A. This Ence Drawing Sura cal

cell pressure. The inflow to and outflow from each specimen were monitored with time, and the hydraulic conductivity was calculated for each recorded flow increment. The tests were continued until steady-state flow conditions were obtained, as evidenced by an outflow/inflow ratio between 0.75 and 1.25, and until stable values of hydraulic conductivity were measured.

The final degree of saturation was calculated upon completion of testing using the final dry mass, moisture content and volume, and the measured specific gravity. Although some of the calculated final degrees of saturation are low (i.e. less than 95%), the B-factors indicate satisfactory saturation. The calculated final degrees of saturation are potentially affected by occluded voids within the specimens, surface irregularities, and the use of final moisture contents for vertical permeability test specimens from corresponding horizontal permeability test specimens.

Specific Gravity Tests

The specific gravity of each sample was determined on a representative approximately 100 gram specimen ground to pass the U.S. Standard No. 40 sieve. The specific gravity measured on each sample is presented in Table 1.

Total Porosity

The total porosity, n, of each permeability test specimen was calculated using the measured dry density, γ_d , and measured specific gravity, G_s , from the equation: $n = 1 - [\gamma_d/(G_s)(\gamma_w)]$ where $\gamma_w =$ unit weight of water. The calculated total porosities are presented in Table 1.

Unconfined compression tests on four samples are in progress. The test results will be forwarded next week.

If you have any questions about the test results, please contact us.

Very truly yours, ARDAMAN & ASSOCIATES, INC.

Shawkat Ali, Ph.D., P.E.

Quality Control Manager

VOWS

Thomas S. Ingra, P.**đ**. Laboratory Director Florida Registration No. 31987

SA/TSI/sa

Youngquist ′ thers, Inc. File Number J2-188 February 4, 2003

Table 1

PERMEABILITY TEST RESULTS CITY OF HOLLYWOOD WASTE WATER TREATMENT PLANT INJECTION WELL IW-1

Core No.	Sample No.	Depth Interval (feet)	D-5084 Test Method*	Test Specimen	Gs			Condition	s		σ (lb/in²)	• 2 U u 2	B Factor	Average Hydraulic				
				Orientation		Length (cm)	Diameter (cm)	W _c (%)	Y₄ (lb/ft ³)	n	(lb/in*)	(lb/in ²)	(%)	Gradient	w _c (%)	Y _d (lb/ft ³)	S (%)	 Hydraulic Conductivity k₂₀ (cm/sec)
1	1	1712.3 - 1713.1	A C	Vertical Horizontal	2.73	9.86 7.90	9.79 4.96	27.5 27.5	94.0 93.8	0.45 0.45	30 30	70 70	82** 87**	1 1	27.5 † 27.5	94.0 93.8	92 92	3.0x10 ⁻³ 3.7x10 ⁻³
	1	1804.7 - 1805.4	с с	Vertical Horizontal	2.74	8.12 8.07	9.88 5.02	29.9 29.9	91.5 91.5	0.46 0.47	30 30	70 70	86** 85**	1	29.9 † 29.9	91.5 91.5	94 94	1.3x10 ⁻³ 4.3x10 ⁻³
3	2	1806.0 - 1806.5	C C	Vertical Horizontal	2.73	9.07 7.50	9.46 5.02	19.8 19.8	103.7 109.0	0.39 0.36	30 30	70 70	93** 81**	1 2	19.8 [†] 19.8	103.7	84 96	1.1x10 ⁻³
	3	1808.2 - 1808.9	A A	Vertical Horizontal	2.74	9.47 8.28	9.74 5.02	9.5 9.5	132.5 132.0	0.23 0.23	30 30	160 70	96 78**	24 23	9.5 [†] 9.5	132.5 132.0	90	1.3x10 ⁻³ 5.7x10 ⁻⁶
4	1	1862.0 - 1862.5	C C	Vertical Horizontal	2.69	9.02 7.79	9.84 5.14	9.8 9.8	130.7 132.5	0.22 0.21	30 30	70 70	79** 90**	2	9.8 [†] 9.8	130.7	89 93	5.1x10 ⁻⁶ 6.3x10 ⁻⁴
· · · · · · · · · · · · · · · · · · ·	2	1862.5 - 1862.9	c c	Vertical Horizontal	2.70	8.98 7.91	9.82 5.13	10.1 10.1	128.3 124.4	0.24 0.26	30 30	70 70	76** 93**	2 2 2	9.8 10.1 [†] 10.1	132.5 128.3	99 87	3.2x10 ⁻³ 2.7x10 ⁻⁴
	1	1901.6 - 1901.9	A A	Vertical Horizontal	2.72	4.35 7.69	9.76 3.21	19.3 19.3	108.6 109.3	0.36 0.36	30 30	160 160	95 81**	54 23	19.3 [†]	124.4 108.6	77 93	1.8x10 ⁻³ 3.1x10 ⁻⁷
5	2	1902.1 - 1902.5	A A	Vertical Horizontal	2.71	8.03 7.72	9.62 5.10	23.3 23.3	101.0 97.3	0.40 0.42	30 30	70 70	73** 75**	9 18	19.3 23.3 †	109.3 101.0	95 94	6.7x10 ⁻⁶ ⁺⁺ 3.0x10 ⁻⁵
	3	1902.5 - 1903.0	A A	Vertical Horizontal	2.72	7.43 7.53	9.33 5.00	23.8 23.8	100.4 101.4	0.41 0.40	30 30	70 70 70	77** 78**	12 22	23.3 23.8 [†]	97.3 100.4	86 • 94	6.3x10 ⁻⁵
6	1	1962.4 - 1962.9	C C	Vertical Horizontal	2.70	7.97 7.74	9.61 5.01	28.2 28.2	95.2 95.0	0.43	30 30	70 70 70	77**	2	23.8 28.2 †	101.4 95.2	96 99	2.8x10 ⁻⁵ 5.7x10 ⁻⁴
	2	1962.9 - 1963.4	A	Vertical	2.73	7.49	3.12	20.8	98.2	0.42	30	70	79** 54**	2	28.2	95.0 98.2	99 77	6.3x10 ⁻⁴
7	1	2032.4 - 2032.7	A A	Vertical Horizontal	2.87	7.98 7.78	10.09 5.02	5.6 5.6	150.0 152.2	0.16 0.15	30 30	160 160	95 100	29 25	5.6 [†]	150.0 152.2	83 91	1.6x10 ⁻⁴ 1.7x10 ⁻⁷ 2.6x10 ⁻⁶
	2	2033.2 - 2033.6	с с	Vertical Horizontal	2.85	9.11 8.17	10.11 5.04	2.2 2.2	160.9 162.9	0.10 0.08	30 30	70 70	60** 80**	1 2	2.2 [†] 2.2	160.9 162.9	59 68	1.1x10 ⁻³ *** 8.0x10 ⁻⁴ ***

Table 1 (Continued)

PERMEABILITY TEST RESULTS CITY OF HOLLYWOOD WATER TREATMENT PLANT INJECTION WELL IW-1

Core	Sample	L Donth L Test L C		Test Specimen	G,	Initial Conditions				ō,	u	В	Average	Final Conditions				
No.	No.	(feet)	Method*	Orientation	U _s	Length (cm)	Diameter (cm)	w. (%)	Y _d (lb/ft³)	n	(lb/in²)	(lb/in²)	Factor (%)	Hydraulic Gradient	W _c (%)	Y₀ (lb/ft³)	S (%)	Hydraulic Conductivity k ₂₀ (cm/sec)
	3	2034.0 - 2034.4	A A	Vertical Horizontal	2.85	9.15 8.01	10.10 5.02	3.7 3.7	158.4 160.4	0.11 0.10	30 30	160 160	95 87**	60 52	3.7 [†] 3.7	158.4 160.4	86 97	1.4x10 ⁻⁸ 8.2x10 ⁻⁹
7	4	2034.8 - 2035.4	A A	Vertical Horizontal	2.86	9.68 8.16	10.08 5.03	3.7 3.7	156.1 158.6	0.13 0.11	30 30	160 160	95 	23 32	3.7 [†] 3.7	156.1 158.6	74 84	1.1x10 ⁻⁷ 2.0x10 ⁻⁸
	5	2041.2 - 2041.9	A A	Vertical Horizontal	2.88	8.43 8.16	10.06 5.02	3.5 3.5	157.7 160.4	0.12 0.11	30 30	160 160	90** 95	18 32	3.5 † 3.5	157.7 160.4	72 84	2.7x10 ⁻⁸ 1.2x10 ⁻⁸

w_e = Moisture content; y_d = Dry density; G_s = Specific gravity; n = Total Porosity; $\overline{\sigma}_e$ = Average isotropic effective confining stress; u_b = Back-pressure; and S = Calculated degree of saturation using measured Where: specific gravity.

Method A=Constant-head test; Method C = Falling-head test with increasing tailwater level. **

B-Factor remained relatively constant for two consecutive increments of applied cell pressure.

The specimens contained voids that resulted in the high hydraulic conductivity. *** t.

Vertical permeability test specimen was cored upon completion of testing to obtain horizontal permeability test specimen. The final moisture content of the vertical test specimen was not measured, and was assumed to be the same as the horizontal permeability test specimen. **†**†

Specimen had a crack extending through the entire length of the specimen that resulted from coring of the vertical specimen to obtain the horizontal specimen.

C:\Youngquist\02-188 YOUNG a.wpd

Youngquist Brothers, Inc.

CC:

- 5465 Pine Ridge Road Jrt Myers, Fl 33908

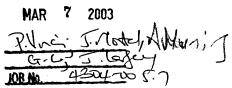
PROJECT: City of Hollywood

Hazen & Sawyer TO: Southern Regional WWTP 1621 North 14th Avenue Hollywood, Florida 33020

Glenn Cunningham **ATTN:**

WE ARE SENDING:	SUBMITTED FOR:	ACTION TAKEN:
Shop Drawings	Approval	Approved as Submitted
Letter	Your Use	Approved as Noted
Prints	As Requested	Returned After Loan
Change Order	Review and Comment	Resubmit
Plans		🔲 Submit
Samples	SENT VIA:	Returned
Specifications	Attached	Returned for Corrections
Other:	Separate Cover Via:	Due Date:

ITEM PACKAGE SUBMITTAL DRAWING


REV. ITEM NO. COPIES DATE DESCRIPTION

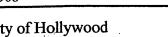
.

1

02/28/2003 Laboratories Testing of Rock Core Specimens Injection IW-1

Remarks:

Urifith for Signed:


TRANSMITTAL No. 00131

STATUS

Phone: 941-489-4444 Fax: 941-489-4545

> **DATE: 02/28/2003 REF:**

Cores Ardaman & Associates, Inc File Number 02-188

FIELD OFFICE

RECEIVED HAZEN AND SAWYER, P.C.

Ardaman & Associates, Inc.

Geotechnical, Environmental and Materials Consultants

February 25, 2003 File Number 02-188

Youngquist Brothers, Inc. 15465 Pine Ridge Road Fort Myers, Florida 33908

Attention: Mr. Edward McCullers

Subject: Laboratory Testing of Rock Core Specimens from City of Hollywood Waste Water Treatment Plant, Injection Well IW-1

Gentlemen:

As requested unconfined compression tests have been completed on four rock core samples provided for testing by your firm from the City of Hollywood Injection Well IW-1. The tests were performed in general accordance with ASTM Standard D 2938 "Unconfined Compressive Strength of Intact Rock Core Specimens". Due to the irregular shape and short length of the core samples, unconfined compression tests could not be performed on all of the originally requested sixteen samples. As specified, priority was given to obtaining specimens from the samples for the vertical and horizontal permeability tests. Accordingly, sufficient sample size was only available from four of the sixteen samples for unconfined compression tests.

Unconfined Compression Tests

The specimens were cored to diameters of 3.1 to 5.0 cm, trimmed to lengths of 7.3 to 10.2 cm to provide a length to diameter ratio of approximately 2, and then capped with sulfur capping compound. The specimens were loaded at a constant rate of axial deformation of 0.013 cm/minute. The specimens failed in 2.0 to 12.6 minutes in accordance with the ASTM Standard D 2938 criteria of between 2 and 15 minutes. The unconfined compressive strengths and Young's modulus determined from the tests are summarized in Table 1. The stress-strain curves are presented in Figures 1 through 4.

If you have any questions or require additional testing services, please contact us.

Very truly yours, ARDAMAN & ASSOCIATES, INC.

Shawkat th

Shawkat Ali, Ph.D., P.E. Quality Control Manager

SA/TSI/sa

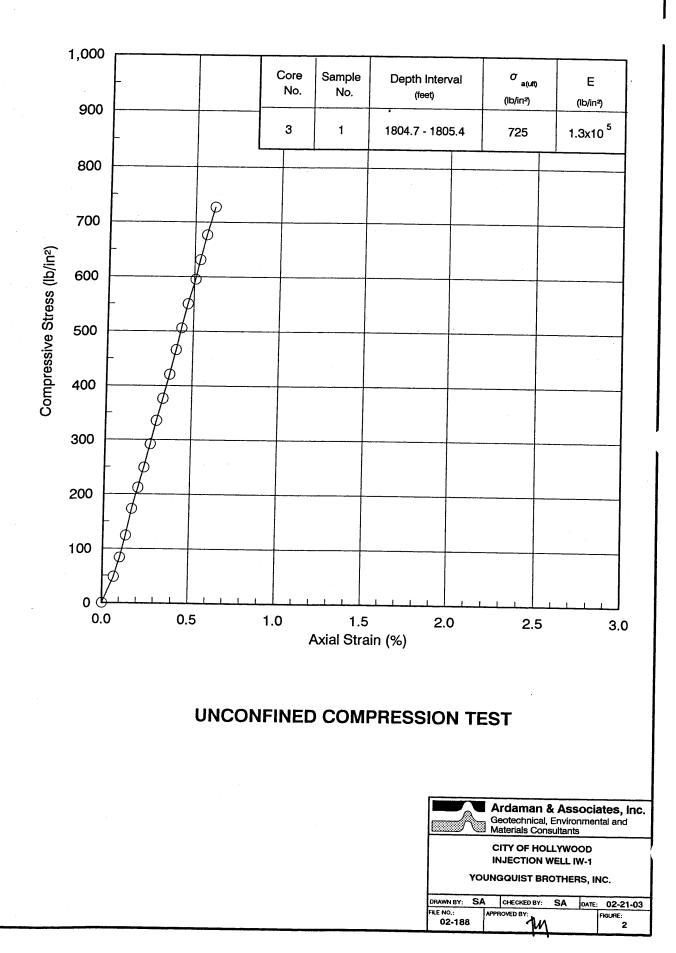
ngquist02-188 YOUNG

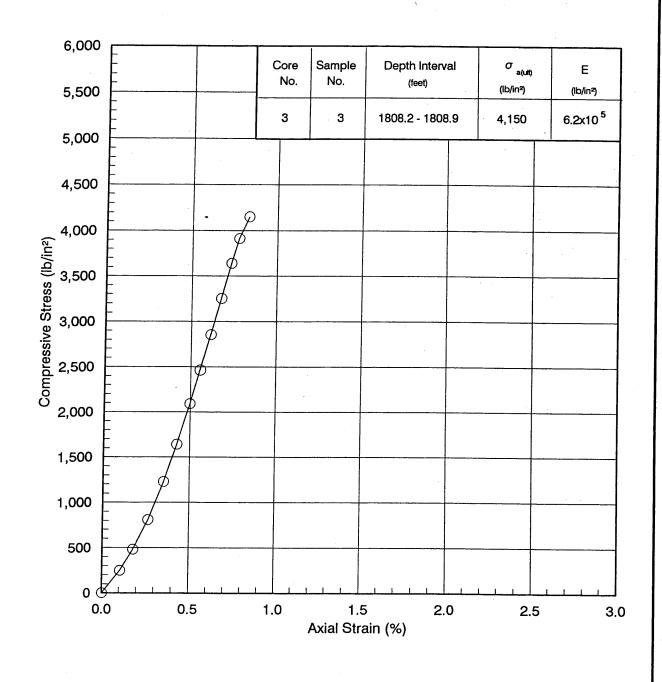
Thomas S. Ingra, P.E. Laboratory Director Florida Registration No. 31987

Table 1

UNCONFINED COMPRESSION TEST RESULTS CITY OF HOLLYWOOD WASTE WATER TREATMENT PLANT INJECTION WELL IW-1

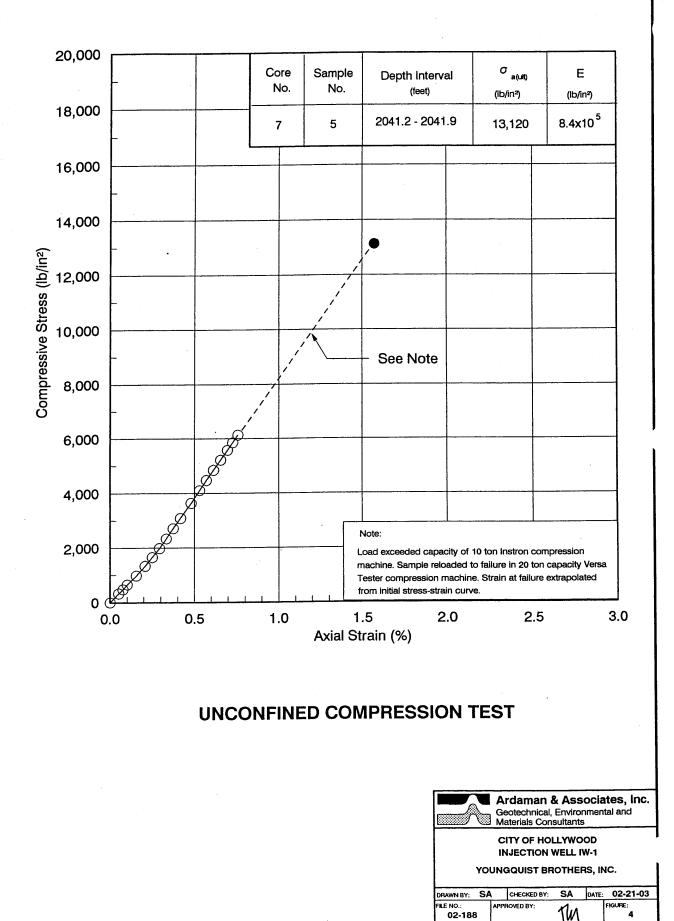
Core	Sample	Depth Interval	Specimen Dimensions			w.	Ya	Loading	t _r (min)	Unconfined Compressive Strength, σ _a (ult) (lb/in²)		Young's
No.	No.	(feet)	Length L (cm)	Diameter D (cm)	L/D	(%) (lb/ft ³) Rate	Measured	Corrected*		Modulus E (lb/in²)**		
1	1	1712.3 - 1713.1	7.74	3.20	2.42	18.1	88.3	0.013	2.0	575	585	2.0x10 ⁵
3	1	1804.7 - 1805.4	7.63	3.14	2.43	16.4	88.9	0.013	2.4	725	740	1.3x10 ⁵
3	3	1808.2 - 1808.9	7.28	3.25	2.24	2.3	129.6	0.013	4.8	4,150	4,205	6.2x10 ⁵
7	5	2041.2 - 2041.9	10.19	5.04	2.02	1.0	167.2	0.013	12.6	13,120	13,140	8.4x10 ⁵


 w_c = Moisture content; γ_d = Dry density; and t_f = Time to failure. Where:


* Unconfined compressive strength corrected to L/D ratio of 2 in accordance with ASTM Standard D 2938-86. ** Young's modulus calculated from slope of the straight-line portion of the stress-strain curve.

1,000 σ a(ult) Core Sample Depth Interval Е No. No. (feet) (lb/in²) (lb/in²) 900 2.0x10⁵ 1712.3 - 1713.1 575 1 1 800 700 Compressive Stress (Ib/in²) 600 φ 500 400 300 200 100 0 d 1.0 1.5 2.0 2.5 0.0 0.5 3.0 Axial Strain (%)

UNCONFINED COMPRESSION TEST


Ardaman & Associates, Inc. Geotechnical, Environmental and Materials Consultants								
YC	I	CITY OF HOL NJECTION V GQUIST BR	VELL	IW-1	с.			
RAWN BY: S	A	CHECKED BY:	SA	DATE:	02-21-03			
LE NO.: 02-188	APF	HOVED BY:	1		FIGURE: 1			

UNCONFINED COMPRESSION TEST

	" G	eotechnical, aterials Cons	Enviro	nmen	
YC	1	ITY OF HOL NJECTION N GQUIST BR	VELL	W-1	IC.
RAWN BY: SA	A	CHECKED BY:	SA	DATE:	02-21-03
ILE NO.: 02-188	APP	ROVED BY:	M		FIGURE: 3

Injection Well No. 2 (IW-2) – Lithology Core Geologic Log

GEOLOGIC LOG

WELL IW - 2

CORE #1

Depth (ft) Sample Description

- 1660.0 1660.6 LIMESTONE (100%) yellowish gray (5Y 9/1) to white (N9), massive, very fine grained to microcrystalline, moderately soft to moderately hard, weakly vuggy carbonate mudstone to wackestone with occasional burrows and molds.
- 1660.6 1661.6 LIMESTONE (100%) very pale orange (10YR 7/2 to 10YR 9/2) massive, very fine to medium grained, soft, fossiliferous, weakly vuggy, pelloidal packstone with forams. Sharp horizontal lower contact.
- 1661.6 1661.8 LIMESTONE (100%) medium light gray (N6), massive, cryptocrystalline to very fine grained, hard, vuggy carbonate mudstone. Sharp wavy lower contact.
- 1661.8 1662.5 LIMESTONE (100%) very pale orange (10YR 7/2 to 10YR 9/2), massive, dominantly very fine grained to microcrystalline, moderately soft to soft, packstone grading with depth to wackestone.
- 1662.5 1675.0 No Recovery.

GEOLOGIC LOG

WELL IW - 2

CORE #2

Depth (ft)

Sample Description

- 1680.0 1682.2 LIMESTONE (100%) very pale orange (10YR 8/2 to 10 YR 9/2) massive, dominantly fine to medium rarely coarse grained, very soft, moderately indurated, partly fossiliferous, locally very weakly vuggy, pelloidal packstone with abundant fine to coarse grain sized forams. Trace forams to 8mm and yellowish gray (5Y 8/1) cryptocrystalline, moderately soft carbonate mudstone inclusions at 1681.8
- 1682.2 1682.5 LIMESTONE (100%) light brownish gray (5YR 7/1) to medium light gray (N6) to medium dark gray (N4), massive cryptocrystalline, hard, weakly vuggy, very well indurated carbonate mudstone. Sharp wavy lower contact.
- 1682.5 1683.3 LIMESTONE (100%) very pale orange (10 YR 8/2) to medium light gray (N6) massive, dominantly fine to rarely medium to coarse grained, moderately hard, fossiliferous locally weakly vuggy packstone with abundant fine to coarse grain sized forams and other fossils. Common molds and casts between 1683.0 and 1683.2. Medium light gray component decreasing with depth.
- 1683.3 1683.6 LIMESTONE (100%) very pale orange (10YR 7/2), massive, dominantly fine to medium grained, moderately hard, locally weakly friable, pelloidal packstone with fine to coarse grain sized forams common.
- 1683.6 1683.8 LIMESTONE (100%) medium gray (N5) to medium light gray (N6) grading with depth to very pale orange (10YR 8/2), massive, fine grained grading with depth to medium to coarse grained, partly pelloidal, indurated packstone. Gradational contact with lower unit.

1683.8 – 1684.0 LIMESTONE (100%) very pale orange (10 YR 9/2) to white (N9) massive, microcrystalline, moderately hard to hard, weakly vuggy carbonate mudstone to locally wackestone

1684.0 – 1695.0 No recovery

GEOLOGIC LOG

WELL IW - 2

CORE #3

Depth (ft)

Sample Description

- 1770.0 1774.4 LIMESTONE (100%) pale yellowish brown (10YR 7/2) to pale orange (10YR 7/2) massive very fine grained, soft, very well indurated, pelloidal, locally weakly fossiliferous, very weakly vuggy, packstone to wackestone. Trace medium gray (N5) cryptocrystalline, hard carbonate mudstone lenses and inclusions to 2mm thick and trace forams.
- 1774.4 1775.5 LIMESTONE (100%) pale orange (10YR 7/2) grading with depth to yellowish brown (10YR 5/2) weakly bedded, dominantly medium grained, hard, pelloidal packstone to locally wackestone interbedded with thin wavy medium gray (N5) laminations grading with depth to dark gray (N3) packstone to wackestone. Vuggy 10mm to 20mm beds between 1775.3 and 1775.4. Gradational lower contact.
- 1775.5 1777.9 LIMESTONE (100%) pale yellowish brown (10YR 7/2) massive, very fine grained, soft pelloidal, very well indurated packstone to locally wackestone.
- 177.9 1778.2 LIMESTONE (100%) pale yellowish brown (10YR 6/2) grading with depth to yellowish brown (10 YR 5/2) generally massive to weekly bedded, dominantly fine to medium, rarely coarse grained, moderately hard, partly pelloidal packstone.
- 1778.2 1785.0 No recovery

GEOLOGIC LOG

WELL IW - 2

CORE #4

Depth (ft)

Sample Description

- 1990.0 1990.5 LIMESTONE (100%) yellowish gray (5Y 9/1) massive, microcrystalline to fine grained, moderately soft to moderately hard, locally weakly vuggy, partially pelloidal packstone/wackestone to locally carbonate mudstone. Few to common fine to medium grain sized forams.
- 1990.5–1993.1 LIMESTONE (100%) very pale orange (10YR 8/2) generally massive to locally very weakly bedded, dominantly very fine grained to medium grained, hard, partially pelloidal, rarely locally weakly vuggy wackestone to locally packstone. Few to common to abundant fine to medium grain sized forams. Trace to few veins to 3 mm filled with yellowish gray (5Y 9/1) microcrystalline to cryptocrystalline, very hard carbonate mudstone between 1991.3 and 1991.4.
- 1993.1 1993.5 LIMESTONE (100%) yellowish gray (5Y 9/1) fine grained, hard, wackestone grading with depth to cryptocrystalline, very hard, very vuggy carbonate mudstone. Indistinct contact between wackestone and carbonate mudstone at approximately 1993.2.
- 1993.5 2004.0 No recovery.

GEOLOGIC LOG

WELL IW - 2

CORE #5

Depth (ft)

Sample Description

- 2050.0 2051.0 LIMESTONE (100%) yellowish gray (5Y 8/1) massive, dominantly fine to medium grained, soft, well indurated, pelloidal, fossiliferous, locally sparry packstone with abundant fine to medium grain sized forams. Trace shell fragments.
- 2051.0 2051.2 LIMESTONE (100%) medium light gray (N6) to medium gray (N5), massive, microcrystalline to fine grained, moderately hard to hard, pelloidal, weakly fossiliferous, packstone with forams common. Common coarse grain sized yellowish gray (5Y 8/1), microcrystalline to cryptocrystalline carbonate mudstone to wackestone clasts and medium dark gray (N4), cryptocrystalline carbonate mudstone inclusions.
- 2051.2 2054.0 LIMESTONE (100%) yellowish gray (5Y 8/1), massive, dominantly fine to medium grained, moderately soft to moderately hard, well indurated, pelloidal, fossiliferous packstone with abundant fine to medium grain sized forams. Trace shell fragments. Sharp horizontal lower contact.
- 2054.0 2054.5 LIMESTONE (100%) very light gray (N8) to yellowish gray (5Y 8/1), massive, microcrystalline to very fine grained, moderately hard to hard, pelloidal, weakly fossiliferous, moderately vuggy packstone to wackestone. Trace very light gray (N8), microcrystalline carbonate mudstone inclusions and shell molds. Medium gray (N5), microcrystalline carbonate mudstone lenses to 5mm thick at 2054.3.
- 2054.5 2054.9 LIMESTONE (100%) massive, 50% yellowish gray (5Y 8/1), cryptocrystalline, hard, moderately vuggy carbonate mudstone with 50% light gray (5YR 6/1), microcrystalline to cryptocrystalline, moderately hard, weakly vuggy to vuggy carbonate mudstone to wackestone.

- 2054.9 2055.1 LIMESTONE (100%) massive 60% very light gray (N8) microcrystalline to very fine grained, hard carbonate mudstone with 40% light gray (N7) cryptocrystalline, hard angular carbonate mudstone inclusions to 25mm in diameter.
- 2055.1 2063.5 No Recovery.

GEOLOGIC LOG

WELL IW - 2

CORE #6

<u>Depth (ft)</u>

Sample Description

- 2065.0 2065.5 No Recovery
- 2065.5 2066.2 LIMESTONE (100%) yellowish gray (5Y 8/1) to very pale orange (10YR 8/2) massive, dominantly fine to medium grained, moderately soft pelloidal, weakly fossiliferous packstone with abundant medium grain sized forams. Indistinct lower contact.
- 2066.2 2066.5 DOLOMITE AND LIMESTONE olive gray (5Y 4/2), cryptocrystalline, very hard, weakly to moderately vuggy with yellowish gray (5Y 8/1) 2 mm to 5 mm diameter Dolomite inclusions and yellowish gray (5Y 8/1), cryptocrystalline, very hard, locally weakly vuggy 10 mm thick Limestone laminations intercalated into the Dolomite bedding. Few medium gray (N5) thin Limy Dolomite laminations at base of unit. Gradational lower contact.
- 2066.5 2068.4 LIMESTONE (100%) very pale orange (10YR 8/2) massive, very fine to medium grained, soft to moderately soft very well indurated pelloidal packstone. Gradational lower contact.
- 2068.4 2068.6 DOLOMITE (100%) grayish orange (10YR 7/4), cryptocrystalline, moderately hard to hard, weakly to moderately vuggy, sucrosic with sharp wavy lower contact.
- 2068.6 2069.7 DOLOMITE (100%) pale yellowish brown (10YR 6/2), generally massive, cryptocrystalline, very hard, locally weakly vuggy, locally weakly sucrosic with yellowish gray (5Y 8/1) Dolomite bedding 15 mm to 30 mm thick at 2068.7 and inclusions at 2068.9. Prominent brownish gray (5YR 4/1)

mottles common from 2069.2 to 2069.7. Closed local vertical fracture 50mm in length at 2068.7. Sharp wavy lower contact.

- 2069.7 2070.0 DOLOMITE (100%) yellowish gray (10YR 7/2) massive, microcrystalline to cryptocrystalline, very hard, weakly vuggy to locally vuggy with sucrosic texture. Indistinct lower contact.
- 2070.0 2072.1 DOLOMITE (100%) pale yellowish brown (10YR 6/2) to locally olive gray (5Y 3/2) massive, cryptocrystalline, very hard, locally weakly vuggy with sucrosic texture. Indistinct lower contact.
- 2072.1 2074.0 DOLOMITE (100%) 50% to 60% pale orange (10YR 7/2) cryptocrystalline, very hard, locally sucrosic and vuggy. 50% to 40% Dark gray (N3) to locally medium light gray (N6) cryptocrystalline, very hard, vuggy to locally highly vuggy. Trace to few medium light gray (N6) Dolomitic Limestone inclusions. Thin 2 mm to 3 mm yellowish gray (5Y 8/1) dolomitic limestone laminations and inclusions at 2072.5. Gradational lower contact.
- 2074.0 2074.4 DOLOMITE (100%) Light olive gray (5Y 5/7) with prominent dark gray (N3) mottles common, massive, dominantly cryptocrystalline to microcrystalline, very hard, locally weakly vuggy.
- 2074.4 2077.0 No Recovery.

GEOLOGIC LOG

WELL IW - 2

CORE #7

Depth (ft)

Sample Description

- 2078.0 2078.7 DOLOMITE (100%) pale yellowish brown (10YR 6/2 to dark yellowish brown (10YR 4/2) massive, cryptocrystalline, very hard, moderately vuggy, slightly sucrosic. Sharp horizontal lower contact.
- 2078.7 2078.8 DOLOMITE (100%) yellowish gray (5Y 8/1) to very pale orange (10YR 8/2) cryptocrystalline, very hard, very well indurated, with few medium dark gray (N4) lenses up to 2 mm. Sharp horizontal lower contact.
- 2078.8 2079.9 DOLOMITE (100%) olive gray (5Y 4/1) to dark yellowish brown (10YR 4/2) massive, cryptocrystalline, very hard, locally sucrosic texture, moderately vuggy with some 10 mm to 15 mm vugs. Indistinct lower contact
- 2080.0 2080.5 DOLOMITE (100%) moderate yellowish brown (10YR 5/4) to locally dark yellowish brown (10YR 4/2) massive, cryptocrystalline, very hard, weakly to moderately vuggy. Sharp horizontal lower contact.
- 2080.5 2080.7 DOLOMITE (100%) pale yellowish brown (10YR 6/2) massive, cryptocrystalline to fine grained, very hard, vuggy.
- 2080.7 2081.5 DOLOMITE (100%) olive gray (5Y 4/1) to locally pale orange (10YR 7/2) massive, cryptocrystalline, very hard, locally weakly vuggy. Sharp horizontal lower contact.
- 2081.5 2082.4 DOLOMITE (100%) medium gray (N5) to medium light gray (N6) massive, cryptocrystalline, very hard, locally very weakly vuggy with vugs decreasing with depth. Grayish orange (10YR 7/4) cryptocrystalline,

very hard vuggy 5mm thick lens at 2082.1. Sharp horizontal lower contact.

- 2082.4 2082.5 CLAY (100%) dark gray (N3) to medium dark gray (N4), slightly silty, firm, moderately plastic, very well indurated non-calcareous. Sharp horizontal lower contact.
- 2082.5 2082.8 DOLOMITE BRECCIA (100%) yellowish gray (5Y 7/2) cryptocrystalline, very hard generally subangular to subrounded clasts from 5mm to approximately 30 mm in diameter with light olive gray (5Y 6/1) very firm non-calcareous clay matrix. Indistinct lower contact.
- 2082.8 2084.2 DOLOMITE (100%) yellowish brown (10YR 6/2) massive, cryptocrystalline, very hard, very weakly vuggy with very pale orange (10YR 8/2), cryptocrystalline, very hard inclusions at 2083.2. Sharp horizontal lower contact.
- 2084.2 2084.8 DOLOMITE (100%) pale yellowish brown (10YR 6/2) to moderately yellowish brown (10YR 5/4) to locally dark yellowish brown (10YR 4/2) massive, cryptocrystalline, very hard, and weakly vuggy. Gradational lower contact.
- 2084.8 2085.9 DOLOMITE (100%) pale yellowish brown (10YR 6/2 to 10YR 7/2) massive, cryptocrystalline, very hard, very weakly vuggy to well indurated. Sharp horizontal lower contact.
- 2085.9 2088.0 DOLOMITE (100%) grayish orange (10YR 7/4) grading with depth to pale yellowish brown (10YR 6/2) massive, cryptocrystalline, very hard, moderately vuggy to 2086.3 grading with depth to very well indurated. Trace dusky yellowish brown (10YR 2/2) Dolomite inclusions and 1 mm to 2 mm laminations at 2087.0.

2088.0 – 2091.0 No Recovery.

GEOLOGIC LOG

WELL IW - 2

CORE #8

Depth (ft)

Sample Description

2098.0 – 2102.5 LIMESTONE (100%) grayish orange (10YR 7/4 to 10YR 8/4)) massive, dominantly fine grained, moderately soft to moderately hard, very well indurated, pelloidal, partially fossiliferous packstone with fine to medium grain sized forams common. Trace coarse grain sized forams and sparry shell fragments. Trace burrows partially healed with sparry calcite at 2099.3, and 2101.0. Few pale yellowish brown (10YR 6/2 to 10YR 7/2), microcrystalline, hard carbonate mudstone inclusions to 3mm at 2101.9, and 2103.0.

2102.5 – 2113.0 No recovery.

GEOLOGIC LOG

WELL IW - 2

CORE #9

Depth (ft)

Sample Description

2175.0 – 2181.0 LIMESTONE (100%) yellowish gray (5Y 8/1) massive, dominantly fine to medium grained, moderately soft to moderately hard, well indurated, pelloidal wackestone to packstone with rare grainstone lenses. Trace shell molds and fossil casts at 2175.5 and 2179. Trace thin microcrystalline carbonate mudstone lenses throughout section. Common fine to medium, rarely coarse grain sized forams throughout section. Trace shell molds and casts at 2178.8.

2181.0 - 2189.0 No recovery.

GEOLOGIC LOG

WELL IW - 2

CORE #10

Depth (ft)

Sample Description

- 2420.0 2424.3 LIMESTONE (100%) very pale orange (10YR 8/2) massive, dominantly fine to locally medium grained, moderately hard, pelloidal, fossiliferous, and very well indurated packstone locally grainstone. Medium to pebble grain sized forams and sparry shell fragments common to locally abundant. Trace burrows partially healed with sparry calcite and fossil casts. Pale yellowish brown (10YR 7/2), microcrystalline, hard carbonate mudstone pebble grain sized inclusions at 2420.2, 2421.0, and 2421.5.
- 2424.3 2426.1 LIMESTONE (100%) very pale orange (10YR 8/2) massive, dominantly very fine to locally fine to medium grained, moderately hard, pelloidal, well indurated packstone. Medium to pebble grain sized forams and sparry shell fragments common to locally abundant. Trace burrows, fossil molds and casts. Pebble grain sized, very pale orange (10YR 8/2) to pale yellowish brown (10YR 6/2), microcrystalline, hard carbonate mudstone inclusions at 2424.7, and 2425.3.
- 2426.1 2428.0 LIMESTONE (100%) very pale orange (10YR 8/2) massive, dominantly very fine, locally fine to medium grained, moderately soft to moderately hard, partially pelloidal, well indurated packstone to rarely grainstone. Few coarse to pebble grain sized forams. Trace shell fragments.
- 2428.0 2435.0 No Recovery.

Injection Well No. 2 (IW-2) – Lithology Core Analysis

Youngquist Brothers, Inc.

Expedition ®

CC:

15465 Pine Ridge Road

Myers, F1 33908

PROJECT: City of Hollywood

TO: Hazen & Sawyer 2101 Corporate Blvd., Suite 301 Boca Raton, Florida 33431

ATTN: John Largey

WE ARE SENDING:	SUBMITTED FOR:	ACTION TAKEN:
Shop Drawings	Approval	Approved as Submitted
Letter	Your Use	Approved as Noted
Prints	As Requested	Returned After Loan
Change Order	Review and Comment	Resubmit
Plans		Submit
Samples	SENT VIA:	Returned
Specifications	Attached	Returned for Corrections
Other:	Separate Cover Via:	Due Date:

Phone: 941-489-4444 Fax: 941-489-4545

ITEM PACKAGE SUBMITTAL DRAWING

REV. ITEM NO. COPIES DATE DESCRIPTION

STATUS

VED

RECEI

JOB No.

HAZEN AND SAWYER, P.C. Boca Raton, Florida

AUG 1 1 2003

1 07/07/2003 Laboratories Testing of Rock Core Specimens IW-2

Remarks:

DATE: 08/08/2003

REF: Cores Ardaman & Associates,Inc File Number 02-188

Signed: Marybeth Rios

TE. 08/08/2002

TRANSMITTAL No. 00144

June 25, 2003 File Number 02-188

Youngquist Brothers, Inc. 15465 Pine Ridge Road Fort Myers, Florida 33908

Attention: Mr. Edward McCullers

Subject: Laboratory Testing of Rock Core Specimens from City of Hollywood Southern Regional Waste Water Treatment Plant, Effluent Disposal Well IW-2

Gentlemen:

As requested, permeability, unconfined compression and specific gravity tests have been completed on twenty one rock core samples provided for testing by your firm from city of Hollywood Southern Regional Waste Water Treatment Plant Effluent Disposal Well IW-2. The permeability tests were performed in general accordance with ASTM Standard D 5084 "Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible-Wall Permeameter" using the constanthead method (Method A) and the falling-head with increasing tallwater level method (Method C). The unconfined compression tests were performed in general accordance with ASTM Standard D 2938 "Unconfined Compressive Strength of Intact Rock Core Specimens". Specific gravity was determined in general accordance with ASTM Standard D 854 "Specific Gravity of Soils".

Due to the irregular shape and short length of the core samples, each of the requested tests (i.e., vertical permeability test, horizontal permeability test and unconfined compression test) could not be performed on each sample. Priority was given to obtaining specimens from the samples for vertical and horizontal permeability tests.

Permeability Tests

The permeability test results are presented in Table 1. The vertical permeability tests were performed first on specimens maintained at the as-received diameter and cut to lengths of 5.8 to 10.3 cm. After completing the vertical permeability tests, horizontal permeability test specimens were obtained by coring 3.3 or 5.0 cm diameter cylinders from the vertical specimens. The horizontal specimens were trimmed to lengths of 6.4 to 8.3 cm to provide flat, parallel ends. The final moisture contents of the vertical test specimens were not measured. The dry densities and degrees of saturation of the vertical permeability test specimens, therefore, were estimated using final moisture contents from the corresponding horizontal permeability test specimens.

The vertical permeability test specimens were air-dried, deaired under vacuum, and then saturated with deaired tap water from the bottom upward while still under vacuum. After testing, the vertical specimens were maintained submerged in water until cored for the horizontal specimens and retested for measurement of horizontal hydraulic conductivity. Each specimen was mounted in a triaxial-type permeameter and encased within a latex membrane. The specimens were confined using an average isotropic effective confining stress of 30 lb/in² and permeated with deaired tap water under a back-pressure of 70 or 160 lb/in². Satisfactory saturation was verified by a B-factor equal to or greater than 95 percent, or a B-factor that remained relatively constant for two consecutive increments of applied

8008 S. Orange Avenue (32809), Post Offica Box 593003, Orlando, Florida 32859-3003 Phone (407) 955-3860 FAX (407) 859-8121 Offices in: Bartow, Cocoa, Fort Laudercale, Fort Myers, Miami, Orlando, Port Charlotte, Port St. Lucie, Sarasota, Tallahassee, Tampa, W. Palm Beach cell pressure. The inflow to and outflow from each specimen were monitored with time, and the hydraulic conductivity was calculated for each recorded flow increment. The tests were continued until steady-state flow conditions were obtained, as evidenced by an outflow/inflow ratio between 0.75 and 1.25, and until stable values of hydraulic conductivity were measured.

The final degree of saturation was calculated upon completion of testing using the final dry mass, moisture content and volume, and measured specific gravity. Although some of the calculated final degrees of saturation are low (i.e. less than 95%), the B-factors indicate satisfactory saturation. The calculated final degrees of saturation are potentially affected by occluded voids within the specimens, surface irregularities, and the use of final moisture contents for vertical permeability test specimens from corresponding horizontal permeability test specimens.

Specific Gravity Tests

The specific gravity of each sample was determined on a representative approximately 100 gram specimen ground to pass the U.S. Standard No. 40 sieve. The specific gravity measured on each sample is presented in Table 1.

Total Porosity

The total porosity, n, of each permeability test specimen was calculated using the measured dry density, γ_d , and measured specific gravity, G_s , from the equation: $n = 1 - [\gamma_d/(G_s)(\gamma_w)]$ where $\gamma_w =$ unit weight of water. The calculated total porosities are presented in Table 1.

Unconfined Compression Tests

An unconfined compression test was performed on one core sample. The test was performed on an air-dried specimen cored to a diameter of 5.0 cm and trimmed to a length of 9.6 cm to provide a length to diameter ratio of approximately 2, and then capped with sulfur capping compound. The specimen was loaded at a constant rate of axial deformation of 0.013 cm/minute. The specimen failed in 15.2 minutes in general accordance with the ASTM Standard D 2938 criteria of between 2 and 15 minutes. The unconfined compressive strength and Young's modulus determined from the test are summarized in Table 2. The stress-strain curve is presented in Figure 1.

If you have any questions about the test results or require additional testing services, please contact us.

Very truly yours, ARDAMAN & ASSOCIATES, INC.

Shank

Shawkat Ali, Ph.D., P.E. Quality Control Manager

Thomas S. Ingra, P.E. Laboratory Director Florida Registration No. 31987

(

Table 1

PERMEABILITY TEST RESULTS CITY OF HOLLYWOOD SOUTHERN REGIONAL WASTE WATER TREATMENT PLANT, EFFLUENT DISPOSAL WELL IW-2

Core No.	Sample No.	interval (feet)	D-5084 Test Method*	Test Specimen Orientation	G,	<u> </u>	·	Conditio	ns	Initial Conditions		u.	В	B Average	Final Conditions			T
		1770.0 -				Length (cm)	Diameter (cm)	w _c (%)	V. (ID/ft ⁻)	n	σ. (Ib/in²)	ບ. (ຟລາກ ²)	Factor (%)	Hydraulic Gradient	w _e	w _e y _e s		Hydraulic Conductivity
	1	1770.5	C A	Vertical Horizontal	2.72	7.62 7.79	9.48 5.10	23.0	103.2	0.39	30	70	56**		(%)	Υ. (١b/ft ⁻³)	(%)	k ₂₀ (cm/sec
3	2	1772.3 - 1772.7	C A	Vertical Horizontal	2.71	9.18	9.74	23.0 24.3	103.2 101.8	0.39	30 30	160 70	89	18 20	23.0 ¹ 23.0	103.2 103.2	97 97	3.3x10 ⁻⁵ 4.3x10 ⁻⁵
	3	1773.3 - 1773.8	A	Vertical	2.71	8.09 7.08	5.10 9.77	24.3 22.9	101.1	0.40	30	160	93** 77**	2 23	24.3 † 24.3	101.8 101.1	100 98	1.9x10 ⁻⁴ 2.3x10 ⁻⁴
	4	1776.3-	C .	Horizontal Vertical		7.97	3.27	22.9	100.5 103.5	0.41 0.39	30 30	160 160	95 80**	17 25	22.0 [†] 22.9	100.5 103.5	91 96	1.7x10 ⁻⁵
-		1776.6	C	Horizontal	2.72	5.79 7.44	9.73 3.26	22.9 22.9	103.3 103.2	0.39 0.39	30 30	70 70	77== 99	2 20	22.9 [†] 22.9	103.3	97	2.2x10 ⁻⁵ 1.4x10 ⁻⁴
•	1	1991.1	C C	Vertical Horizontal	2.71	8.11 8.13	9.71 5.09	26.8 25.8	97.5 97.7	0.42 0.42	30	70	100	2	25.8 1	103.2 97.5	97	1.9x10 ⁻⁴
	2	1991.6 - 1991.9	C A	Vertical Horizontal	2.71	6.37 6.27	9.74	25.4	97.5	0.42	30 30	70 70	91	1	25.8	97.5	95 96	4.3x10 ⁻⁴ 3.9x10 ⁻⁴
	1	2052.6 - 2053.2	C C	Vertical	2.71	9.88	3.25 9.68	25.4 25.0	98.6 99.5	0.42	30	160	84** 97	2 38	25.4 ¹ 25.4	97.5 98.6	94 96	1.1x10 ⁻⁴ 3.4x10 ⁻⁴
5	2	2054.1 -	c	Horizontal Vertical		7.98	5.09	25.0	98.8	0.41 0.42	30 30	70 70	69** 85**	1 2	25.0 ¹ 25.0	99.5 98.6	97 95	1.9x10 ⁻³ 2.1x10 ⁻³
-+		2054,5	C	Horizontal	2.72	8.64 8.10	9.99 5.10	21.9 21.9	104.9 104.3	0.38 0.39	30 30	70 70	91** 73**	2 2	21.91	104.9	97	1.5x10 ⁻⁴
	1	2065.5 - 2065.9	C A	Vertical Horizontal	2.72	7.79 7.10	9.82 5.10	18.6 18.6	107.8 108.7	0.36	30	70	93**	2	21.9 18.6 T	104,3	96	2.9x10 ⁻³
	2	2067.3 - 2067.9	Â	Vertical Horizontal	2.72	9.04	9.81	22.0	108.2	0.36	30	160	100	20	18.6	107.8 108.7	88 90	5.8x10 ⁻⁶ 6.9x10 ⁻⁵
	3	2067.9 -	A	Vertical		8.15	5.10	22.0	105.4	0.37 0.38	30 30	160 160	96 96	36 21	22.0 1 22.0	106.2 105.4	100 98	5.7x10 ⁻⁵ 6.5x10 ⁻⁵
$\left \right $		2068.3	A	Horizontal	2.73	9.17 8.06		21.9 21.9	106.8 106.0	0.37	30 30	160 160	96 94**	2	21.9 1	106.8	100	3.5x10 ⁻⁵
	•	2068.4- 2069.1	C A	Vertical Horizontal	2.83	9.78 7.27	10.00 5.03	3.1 3.1	160.8 161.1	0.09	30	70	77	27	21.9 3.1 ¹	106.0 160.8	98	5.0x10 ⁻⁶
	5	2069.1- 2069.6		Vertical Horizontel	2.84	6.70	9.98	1.9	168.3	0.09	30 30	160	82-	34	3.1	161.1	90 92	3.8x10 ⁻⁷ 3.2x10 ⁻⁷
						8.31	3.27	1.9	167.2	0.06	30	160 1 80	82** 78**	55 56	1.9 1	168.3 167.2	100 88	2.9x10 ⁻⁰ 9.3x10 ⁻⁰

Table 1 (cont'd)

PERMEABILITY TEST RESULTS CITY OF HOLLYWOOD SOUTHERN REGIONAL WASTE WATER TREATMENT PLANT, EFFLUENT DISPOSAL WELL IW-2

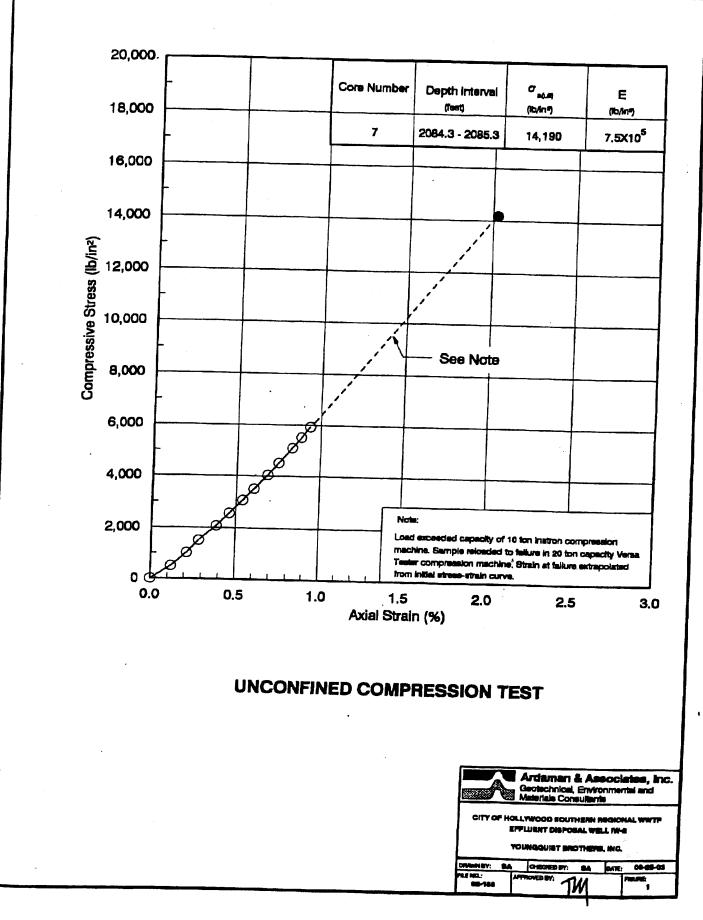
Core No.	No. No. Inte	interval Test		Test Specimen	G,		Initial	Condition	16		ō.	11	В	Average	Fin	al Conditio	18	
		(1961)	(feet)	Method*	Orientation		Length (cm)	Diameler (cm)	w. (%)	Y₄ (1b/ft³)	n	σ, (80/1n²)	(1b/in²)	Factor (%)	Hydraulic Gradient	w _c (%)	Υ _{4 3} (16/11 ³)	S (%)
	1	2081.1 - 2081.6	Â	Vertical Horizontal	2.85	8.37 7.33	9.94 5.02	3.5 3.5	159.8 159.8	0.10 0.10	30 30	160 1 0 0	92**	50	3.5 T	159.8	88	1.8x10 ⁻⁹
	2	2081.6 - 2082.1	A	Vertical Horizontal	2.85	9.57 7.47	10.01	2.8	161.7	0.09	30	150	95 88**	32 56	3.5 2.8 ¹	159.0	86	2.5x10 ⁻⁹
7	3	2084.3 -	A	Vertical			5.03	2.8	162.6	0.09	30	160	94**	72	2.8	161.7 162.6	79 85	1.3x10 ⁻⁰ 4.7x10 ⁻¹⁰
		2085.3	A	Horizontal	2.85	10.29 7.88	10.01 5.03	1.4 1.4	183.9 164.2	80.0 80.0	30 30	160 160	97** 75**	58 56	1.4 [†] 1.4	163.9 164.2	46	1.4x10 ⁻⁶
	4	2085.3 - 2085.8	A A	Vertical Horizontal	2.83	9.89 7.73	10.04 5.04	1.9 1.9	182.3 163.1	0.08	30	160	91	57	1.9 1	162.3	47 63	8.7x10 ⁻⁹ 2.5x10 ⁻⁹
	5	2087.4 - 2088.0	A	Vertical	2.82	9.58	9.95	1.8	166.3	80.0	30	160	90**	108	1.9	163.1	67	1.3/10-4
A			•	Horizontal	2.02	7.89	5.03	1.8	164.5	0.05 0.07	30 30	160 160	89** 81**	43 107	1.8 ¹ 1.8	166.3 164.5	88 71	9.6x10 ⁻¹⁰ 7.0x10 ⁻¹⁰
	1	2100.8- 2101.2	C A	Vertical Horizontal	2.71	6.61 8.27	9.56 3.26	17.1 17.1	114.4 112.3	0.32 0.34	30 30	70 160	88** 91**	2 24	17.1 1	114.4	97	1.0x10 ⁻⁴
9	1	2175.9- 2176.3	· C	Vertical	2.73	8.05	9.90	21.0	108.5	0.37					17.1	112.3	92	1.5x10 ⁻⁴
			С	Horizontal	a./5	8.35	5.07	21.0	106.8	0.37	30 30	70 70	98 82**	1 2	21.0 [†] 21.0	106.5 106.8	96 96	1.3x10 ⁻³ 2.8x10 ⁻³
10	1	2422.4- 2422.8	C A	Vertical Hortzontal	2.72	9.21 8.12	9.76 5.08	17.1 17.1	115.8 114.5	0.32 0.33	30 30	70 160	95** 96	1 52	17.1 *	115.8	100	2.0x10 ⁻⁴

wity; G, = Specific gravity; n = Total Porosity; o, = Average isotropic effective confining stress; u, = Back-pressure; and S = Calculated degree of saturation using measured • Ye specific gravity.

Method A=Constant-head test; Method C = Falling-head test with increasing tailwater level. 1

B-Factor remained relatively constant for two consecutive increments of applied cell pressure.

Vertical permeability test specimen was cored upon completion of testing to obtain horizontal permeability test specimen. The final moisture content of the vertical test specimen was not measured, and was assumed to be the same as the horizontal permeability test specimen.


C: Woungquieto2-188 YOUNG: .wpd

Youngquist Brothers, Inc. File Number 02-188 June 25, 2003

Table 2

UNCONFINED COMPRESSION TEST RESULTS CITY OF HOLLYWOOD SOUTHERN REGIONAL WASTE WATER TREATMENT PLANT, EFFLUENT DISPOSAL WELL IW-2

Core Number	Depth Interval	Spec			Londing		Unconfined Compressive	Young's Madukus			
	(ft)	Length L (cm)	Diameter D (cm)	L/D	w. (%)	Yu (10/ft²)	Rate (cm/min)	t, (min)	Strength, o,(ull) (ib/in²)	Young's Modulus, E (lb/in²)*	
7.	2084.3 - 2085.3	9.60	5.10	1.88	0.9	164.7	0.013	15.2	14,190	7.5x10 ⁵	
Where: w _c = * Young's me	Where: $w_c = Moisture content; \gamma_d = Dry density; and l_f = Time to failure.* Young's modulus calculated from slope of the straight-line portion of the stress-strain curve.$										

•

Injection Well No. 1 (IW-1) – Geophysical Logs Geophysical Logs Index

APPENDIX F GEOPHYSICAL LOGS INDEX CITY OF HOLLYWOOD SOUTH COUNTY REGIONAL WWTP

Log	Date	Interval (feet bpl)	Borehole Diameter (inches)
Injection Well 1 (IW-1)			
V. V. Coliner / Commo Pov	6/20/02	0-200	58.5
X–Y Caliper / Gamma Ray	6/20/02	0-200	58.5
Temperature	0/20/02	0 200	00.0
Temperature (Cement Top)	6/20/02	0-200	52" csg
X–Y Caliper / Gamma Ray	7/02/02	200-1000	48.5
Temperature	7/02/02	200-1000	48.5
Temperature			
Temperature (Cement Top)	7/04/02	0-999	42" csg
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
X–Y Caliper / Gamma Ray	7/14/02	1000-2000	121⁄4
Dual Induction LL3/SP	7/14/02	1000-2000	121⁄4
Borehole Televiewer	7/14/02	1000-2000	121⁄4
Borehole Compensated Sonic / VDL	7/14/02	1000-2000	12¼
Flowmeter	7/14/02	1000-2000	121⁄4
Fluid Conductivity /Temperature	7/14/02	1000-2000	12¼
Television Survey	7/28-30/02	1050-1985	12¼
	0/40/00	1000-2000	40.5
X–Y Caliper / Gamma Ray	8/12/02	1000-2000	40.5
Temperature	8/12/02	1000-2000	40.5
Temperature (Cement Top)	8/12-16/02	0-1990	34" csg
X–Y Caliper / Gamma Ray	8/23/02	2000-3000	121⁄4
Dual Induction LL3/SP	8/23/02	2000-3000	121⁄4
Borehole Televiewer	8/23/02	2000-3000	121/4
Borehole Compensated Sonic / VDL	8/23/02	2000-3000	121⁄4
Fluid Conductivity /Temperature	8/23/02	2000-3000	121/4
	8/23/02	2000-3000	121/4
Flowmeter	8/26-27/02	2022-2987	121/4
Television Survey	0/20-21102		12./4
X–Y Caliper / Gamma Ray	9/16/02	2000-2884	32.5
Temperature	9/16/02	2000-2884	32.5
Temperature (Cement Top)	9/18-21/02 & 10/24/02	0-2880	24" csg

Log	Date	interval (feet bpl)	Borehole Diameter (inches)
X–Y Caliper / Gamma Ray Dual Induction LL3/SP	10/03/02	3000-3500 3000-3500	22.5 22.5
Borehole Compensated Sonic / VDL	10/03/02	3000-3500	22.5
Fluid Conductivity /Temperature	10/03/02	3000-3500	22.5
Television Survey	10/3/02 & 4/12/03	0–3415	24" csg, Open Hole
Temperature (High Resolution)	01/13/03	0–3500	24" csg, Open Hole
Radioactive Tracer Survey	01/14/03	0–3500	24" csg, Open Hole
Cement Bond Log	04/12/03	0-2880	24" csg

Injection Well No. 2 (IW-2) – Geophysical Logs Geophysical Logs Index

APPENDIX F GEOPHYSICAL LOGS INDEX CITY OF HOLLYWOOD

SOUTH COUNTY REGIONAL WWTP

Log	Date	Interval (feet bpl)	Borehole Diameter (inches)
Injection Well 2 (IW-2)	40/00/00		
X–Y Caliper / Gamma Ray	12/03/02	0-200	58.5
Temperature	12/03/02	0-200	58.5
Temperature (Cement Top)	12/04/02	0-200	50" csg
X X Coliner / Commo Poy	12/14/02	200–1000	48.5
X–Y Caliper / Gamma Ray	12/14/02	200-1000	48.5
Temperature	12/14/02	200-1000	46.0
Temperature (Cement Top)	12/16/02	0-999	42" csg
X–Y Caliper / Gamma Ray	12/30/02	1000-2000	121⁄4
Dual Induction LL3/SP	12/30/02	1000-2000	121/4
Borehole Televiewer	12/30/02	1000-2000	121/4
Borehole Compensated Sonic / VDL	12/30/02	1000-2000	121/4
Flowmeter	12/30/02	1000-2000	121/4
Fluid Conductivity /Temperature	12/30/02	1000-2000	121⁄4
Television Survey	01/09/03	1000-2000	121/4
X–Y Caliper / Gamma Ray	02/03/03	1000-2000	40.5
Temperature	02/03/03	1000-2000	40.5
Temperature (Cement Top)	2/4–7/03	0-1990	34" csg
X–Y Caliper / Gamma Ray	02/18/03	1990-3000	121⁄4
Dual Induction LL3/SP	02/19/03	1990-3000	121⁄4
Borehole Televiewer	02/19/03	1990-3000	12¼
Borehole Compensated Sonic / VDL	02/19/03	1990-3000	121⁄4
Fluid Conductivity /Temperature	02/19/03	1990-3000	121⁄4
Flowmeter	02/19/03	1990-3000	121⁄4
Television Survey	02/27–28/03	2000-3000	12¼
X–Y Caliper / Gamma Ray	03/19/03	1990-2885	32.5
Temperature	03/19/03	1990-2885	32.5
Temperature (Cement Top)	3/22–25/03 & 04/16/03	0-2880	24" csg
Cement Bond Log	04/11/03	0-2880	24" csg
X–Y Caliper / Gamma Ray	04/11/03	2880-3500	22.5

Log	Date	Interval (feet bpl)	Borehole Diameter (inches)
	04/11/03	2880-3500	22.5
Dual Induction LL3/SP		2880-3500	22.5
Borehole Compensated Sonic / VDL	04/11/03		
Fluid Conductivity /Temperature	04/11/03	2880-3500	22.5
Television Survey	05/08/03	0-3500	24 csg, Open Hole
Temperature (High Resolution)	05/08/03	0-3500	24 csg, Open Hole
Radioactive Tracer Survey	05/08/03	0-3500	24 csg, Open Hole

Monitor Well No. 1 (MW-1) – Geophysical Logs Geophysical Logs Index

.

,

APPENDIX F GEOPHYSICAL LOGS INDEX CITY OF HOLLYWOOD

SOUTH COUNTY REGIONAL WWTP

Log	Date	Interval (feet bpl)	Borehole Diameter (inches)
Dual-Zone Monitor Well 1 (MW-1)			
X–Y Caliper / Gamma Ray	10/15/02	0-200	32.5
Temperature	10/15/02	0-200	32.5
Temperature (Cement Top)	10/16/02	0-200	24" csg
X–Y Caliper / Gamma Ray	10/31/02	200-1250	22.5
Dual Induction LL3/SP	10/31/02	200-1250	22.5
Borehole Televiewer	10/31/02	200-1250	22.5
Borehole Compensated Sonic / VDL	10/31/02	200-1250	22.5
Temperature	10/31/02	200-1250	22.5
Temperature (Cement Top)	11/02/02 & 11/27/02	0-1250	16" csg
Cement Bond Log	11/05/02	0-1250	16" csg
	11/02/02	1250-1800	14 ^{3/4} & 9 ^{7/8}
Television Survey	11/03/02		14×9 $14^{3/4} \& 9^{7/8}$
X-Y Caliper / Gamma Ray	11/05/02 & 11/14/02	1250-1800	
Dual Induction LL3/SP	11/05/02	1250-1800	14 ^{3/4} & 9 ^{7/8}
Borehole Televiewer	11/05/02	1250-1800	14 ^{3/4} & 9 ^{7/8}
Borehole Compensated Sonic / VDL	11/05/02	1250-1800	14 ^{3/4} & 9 ^{7/8}
Fluid Conductivity /Temperature	11/05/02	1250-1800	14 ^{3/4} & 9 ^{7/8}
Flowmeter	11/05/02	1250-1800	14 ^{3/4} & 9 ^{7/8}
	11/15/00	0.1750	65/" 005
Cement Bond Log (Background)	11/15/02	0-1750	65%" csg
Temperature (Cement Top)	11/16 -18/02	0-1750	6 ⁵ / ₈ " csg
Cement Bond Log	12/12/02	950-1750	6⁵⁄₃" csg

Injection Well No. 1 (IW-1)– Geophysical Logging Flowmeter Analysis

HOLLYWOOD IW-1 Upper Interval

30.

Flow Log Analysis

On July 14, 2002 flow logs were run under static and dynamic conditions to evaluate flow below casing at 999' to the bottom of the hole at 2000'. Water was being pumped out of the well at a dynamic flow rate of approximately 350 GPM.

Figure 1 is the quick look interpretation comparing the static down pass to the dynamic down pass. The line speed plot is shown for quality control. A caliper plot is also shown on this page for comparison.

The quick look flow plot shows both the static and dynamic passes overlapping from the bottom of the hole up to 1090', indicating no flow below this depth. The dynamic curve increases abruptly from 1080-1090' opposite a small fracture shown on the caliper plot.

Figure 2 is the percent flow analysis of the dynamic pass. It reaffirms the quick look presentation. Zero flow is evident below 1090'. A sudden increase in flow occurs from 1080'-1090', briefly bringing the total flow to 100%. Just above 1080' the flow falls off slightly before becoming steady near 1060' and above.

Figure 3 is the dynamic flow analysis presented in gallons per minute. It mirrors the percent flow analysis presentation but displays the flow in terms of the actual flow rate.

All of the flow being developed from this portion of the open hole is being generated from the 1055'-1090' interval.

HOLLYWOOD IW-1

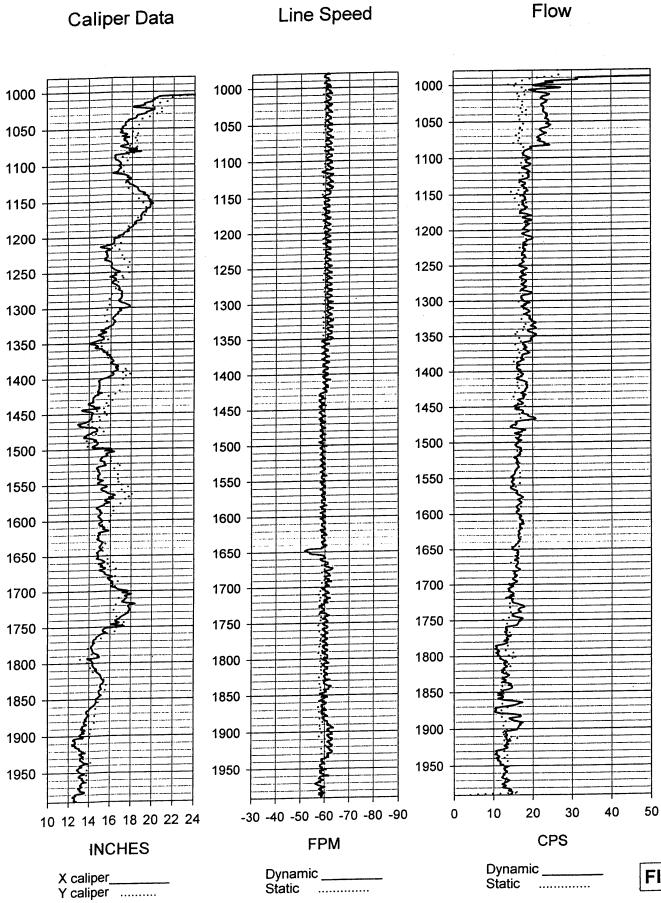
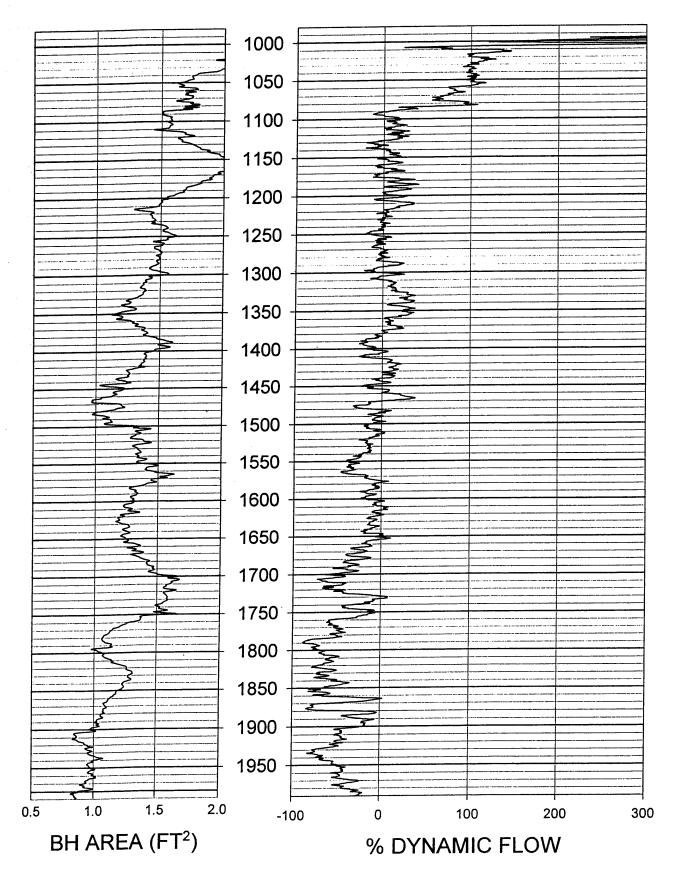
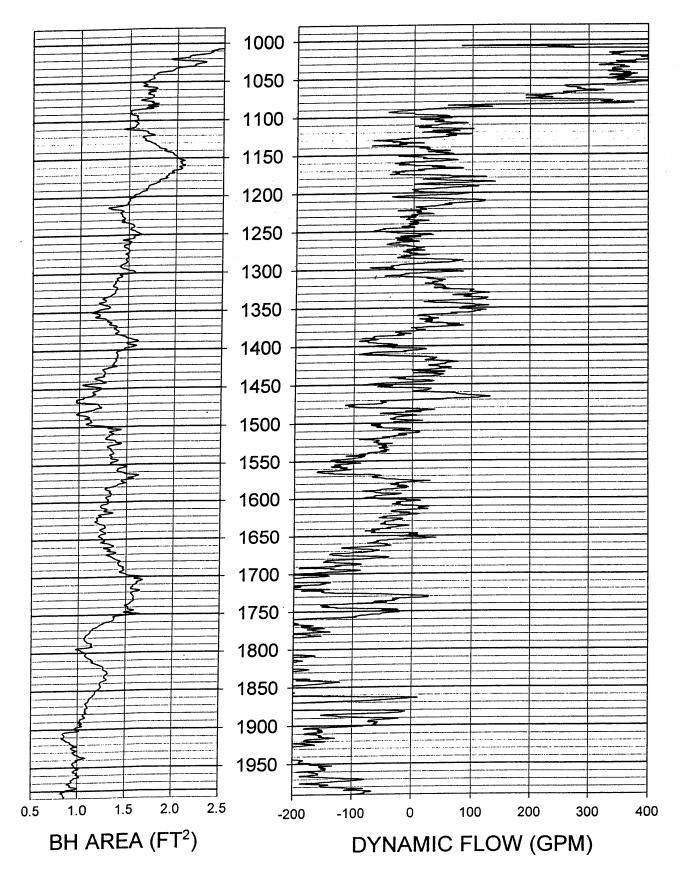
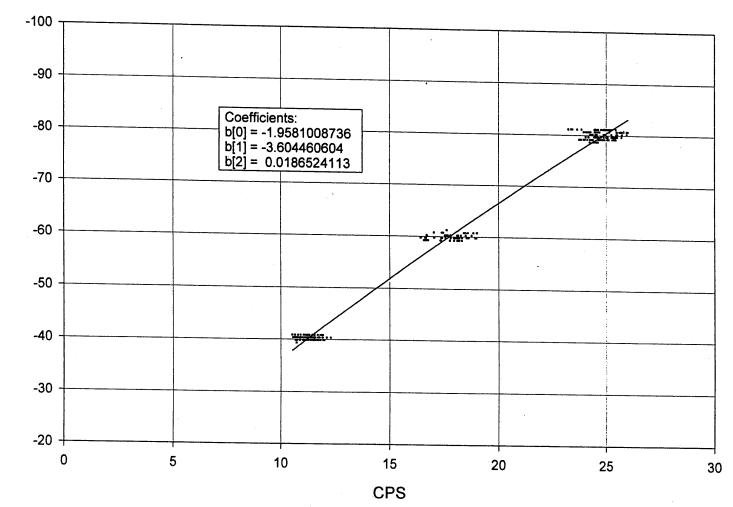





FIG 1

Hollywood IW-1 Run 5 Down Cals

Line Speed

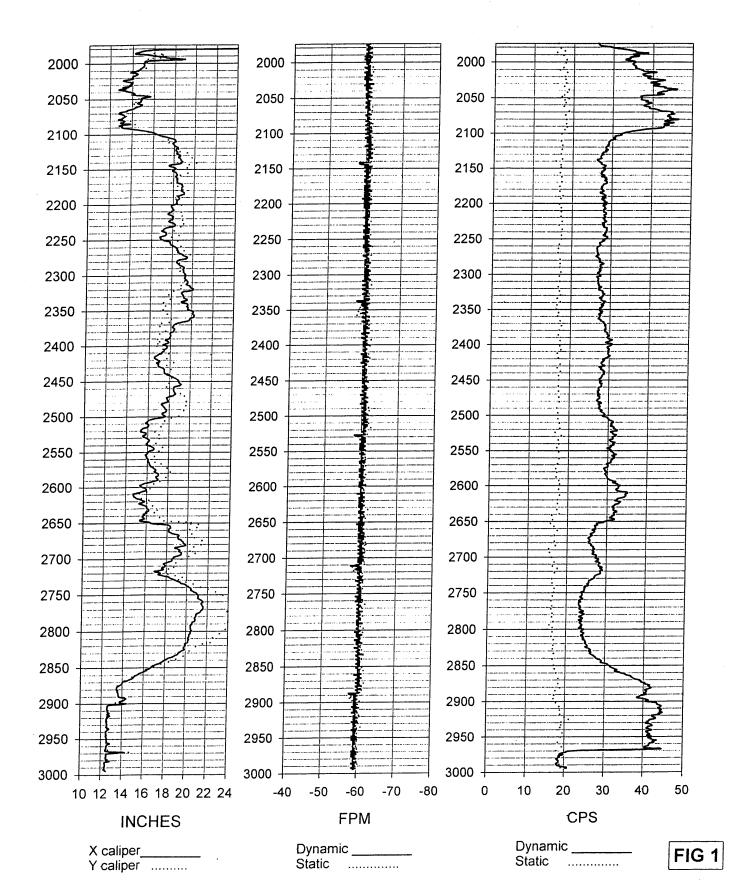
Injection Well No. 2 (IW-1)– Geophysical Logging Flowmeter Analysis

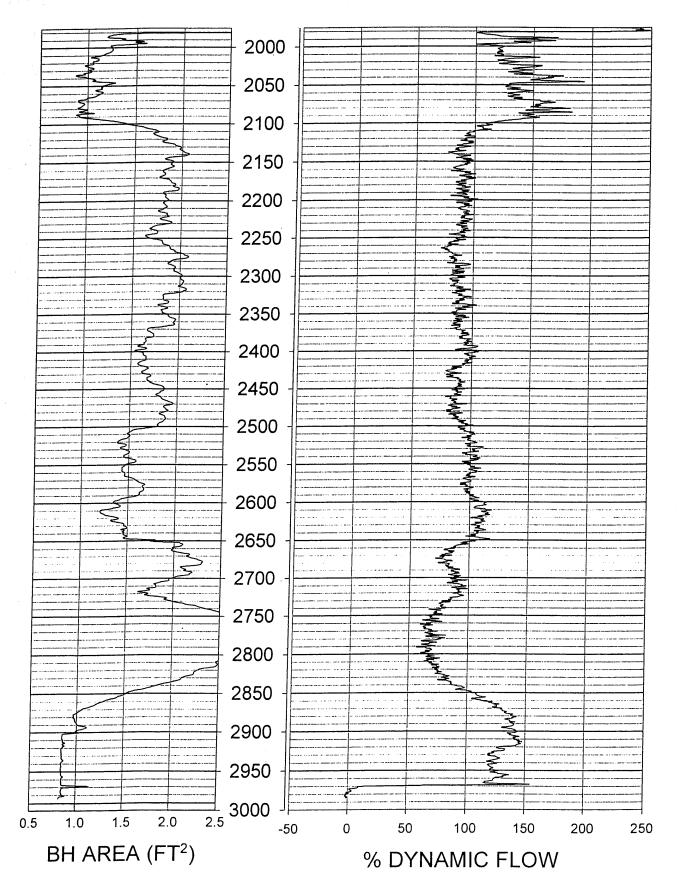
Lower Interval Flow Log Analysis

On February 19, 2003 flow logs were run under static and dynamic conditions to evaluate flow below the 34-inch casing at 1990' to the bottom of the hole at 3000'. Water was being pumped out of the well at a dynamic flow rate of approximately 450 GPM.

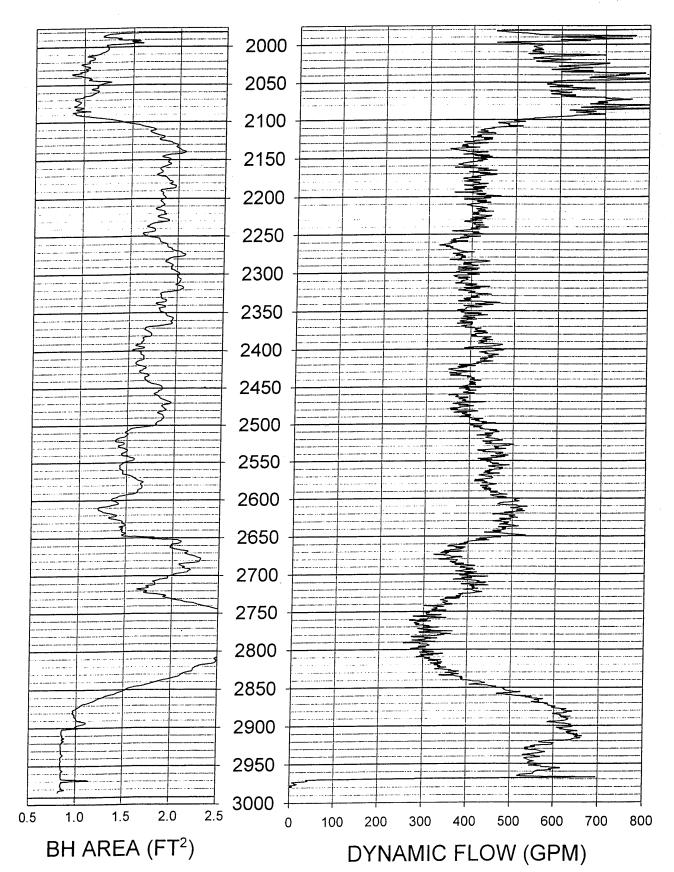
Figure 1 is the quick look interpretation comparing the static down pass to the dynamic down pass. The line speed plot is shown for quality control. A caliper plot is also shown on this page for comparison.

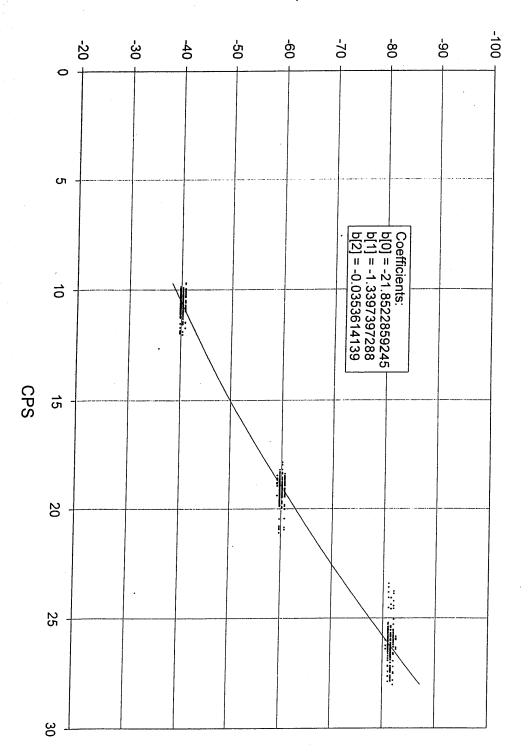
The quick look flow plot shows both the static and dynamic passes overlapping from the bottom of the hole up to 2970', indicating no flow below this depth. The dynamic curve increases abruptly at approximately 2970' opposite a small fracture shown on the caliper plot.


Figure 2 is the percent flow analysis of the dynamic pass. It reaffirms the quick look presentation. Zero flow is evident below 2970'. A sudden increase in flow occurs at that depth which brings the flow to above 100%. Total flow continues to flirt with the 100% range all the way up from this point to inside of casing. Areas that seem to read slightly above and below 100% are being influenced by changes in caliper size that deviate from bit size.


Figure 3 is the dynamic flow analysis presented in gallons per minute. It mirrors the percent flow analysis presentation but displays the flow in terms of the actual flow rate.

Caliper Data


Line Speed


Flow

Line Speed

Hollywood IW-2 Run 8 Down Cals

Geophysical Logging

Quality Control and Quality Assurance Procedures

15465 Pine Ridge Road - Fort Myers, Florida (941) 489-0044 Fax (941) 489-4545

LOGGING TOOLS

CALIBRATION THEORY AND PRACTICE

1

CALIBRATION

Few logging tools give a response immediately useful in formation evaluation. Logging tools generally exert some disturbance on the formation (pass electric current through it, bombard it with sub-atomic particles, etc.). The tools' detectors measure this disturbance after it has passed through the formation. This measurement may be made in counts per second, it is referred to as the raw measurement. Such responses are of limited interest to a geoscientist.

Calibration links this raw measurement to a useful formation property. All calibrations work on the same principle. A tool is placed in environments (usually two) of known physical property and the tool's responses in these environments are measured. An arithmetic relation (usually a straight line) between these points is constructed and used to convert actual measurements to calibrated values. For example, by recording the X-Y Caliper Tool's response (pulses per second, *raw measurement*) to rings of known size (inches, *calibrated measurement*); we can derive an equation that will allow measurement of an unknown hole diameter.

The Primary Standard for all logging tools is dependent on the physical property it has been designed to measure. This Primary Standard may be one of the following:

- API standard test pits, such as those found at the University of Houston.
- A test fixture from the tool manufacturer.
- Part of the tool's electronic circuitry.

Each following Tool Section describes the primary standard adopted by Florida Geophysical Logging.

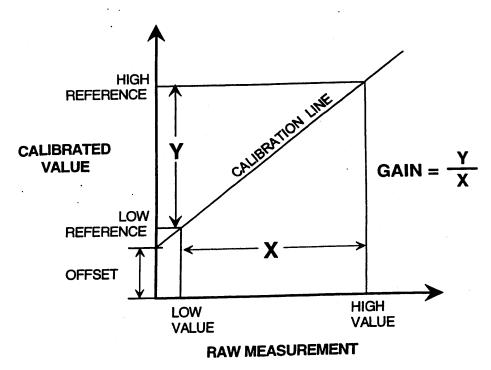
Manufacturing plants and operations bases use Secondary Standards when needed as it is impractical to calibrate, and re-calibrate, each tool in some primary standards such as the Houston API pits. These secondary calibrators are carefully referenced directly to the primary standard.

Some examples of these secondary Standards are :

- The Natural Gamma Ray jig
- The Compensated Neutron water tank
- The Aluminum and Magnesium blocks for density calibrations

....

CALIBRATION TECHNIQUE


Some tools such as the X-Y Caliper Tool and the Fluid Resistivity Tool use multiple straight line segments to compute calibrated values. These tools use a modified version of the technique described below where a 2 point calibration scheme is described. The Flowmeter Tool is calibrated over 3 points and the data is fit to a quadratic equation.

We express a tool's linear response by:

y = mx + bwhere y = calibrated response of the tool m = slope or gain of the tool x = raw value from tool b = intercept or offset

This linear relationship between raw or measured values and calibrated values is shown

below:

$$Gain = \frac{High \, Cal - Low \, Cal}{High \, Meas - Low \, Meas}$$
(A)
Offset or Intercept = Low Cal - (Gain × Low Meas) (B)

VERIFICATION

A verification confirms that the tool response and calibration are still valid. It does not modify the relation between tool response and physical property measurement (i.e., the calibration).

Any verification method has to be fast, accurate, precise and rugged. They are normally done on the catwalk or drill floor, and take rig time.

DUAL INDUCTION TOOL (DIT)

The shop calibration of the Dual Induction Tool (DIT) involves placing the tool in a zero conductivity medium. This is accomplished by elevating the tool on tall wooden stands away from any metal or electrical fields (overhead or underground power lines). The height of the stands depends on ground conductivity which in turn is related to ground moisture content. A distance of 3 meters above the ground will normally remove any ground effect from the measurement. The tool zero conductivity signal is recorded for both deep and medium. Next a calibration loop of known conductivity is placed over the deep and medium sensor. The value of the loop is designed to represent a 500 mmho formation. This provides the "High Cal" value. Field verification is done to verify tool response in between master calibrations.

BOREHOLE COMPENSATED SONIC LOG (BHC)

The primary calibration for the BHC involves centralizing the tool in a section of water-filled steel casing and mechanically adjusting the spacers within the tool until the 4 individual transmitter to receiver pairs read the correct transit time for the 5 foot and 3 foot spacings. This procedure is done when the tool is built or whenever major repairs are performed on the transmitter/receiver section. Normal quality control procedures for all Compensated Sonic Logs requires logging the value of Delta T in the casing either on the way in the hole, or immediately after the logging run. This is an excellent verification that the entire system is functioning properly. Sometimes, this casing check is difficult in pipe that is well bonded. If possible, the logging engineer finds a section of "free pipe" to record the casing check.

X-Y CALIPER TOOL (XYT)

The calibration of this tool is done by opening the caliper arms into two or more rings of known inside diameter, the smaller ring serves as the low calibrate value, the large ring is the high calibrate value. The gain and offset are calculated using the technique presented in the introduction. The size of the caliper rings used in the calibration and verification are selected based on the hole size that is being logged. Several size rings are available.

HIGH RESOLUTION TEMPERATURE TOOL (HRT)

The shop calibration of the HRT uses two water baths of different temperatures. The low temperature bath is chosen to be 32°F because when logging a Deep Injection Well we often see borehole temperature in the 40° range. The high temperature bath is normally between 150°F and 212°F. The gain and offset are calculated using the technique presented in the introduction. All the tools Florida Geophysical Logging uses have fast response RTD sensors. The HRT is an extremely stable tool and requires calibration only after major repairs or component replacement. Because of the linearity of the sensor a single point verification made in the field will instantly tell if the tool is still in calibration and capable of recording accurate temperature. This verification is done in a fluid that has reached temperature equilibrium.

FLUID CONDUCTIVITY TEMPERATURE TOOL (FCT)

The shop calibration of the fluid conductivity measurement involves placing the tool in a series of different salt solutions. The solutions are allowed to reach temperature and salinity equilibrium and are then measured with a precision digital conductivity meter. The tool is placed in each of the solutions and a multipoint calibration is made between tool output in pulses and fluid conductivity. The FCT is an extremely stable tool and requires calibration only after major repairs or component replacement. A single point verification made in the field instantly tells if the tool is in calibration and capable of recording accurate fluid conductivity. This verification is generally done with a water sample obtained from the well.

For calibration of the temperature tool see HRT section.

GAMMA RAY TOOL (GRT)

The primary calibration standard for all gamma ray tools is the API Gamma Ray Test Pit at the University of Houston. The API standard defines the difference between two radioactive formations as 200 Gamma Ray API units. After primary calibration, the tool is removed and moved to a distance away from the pit. A background reading in air is recorded. Next, a small radioactive source is placed at a fixed distance from the detector of the tool. By subtracting the background reading from the response to the radioactive source, a value in API units is assigned to the calibrator or Jig. This Jig is used to calibrate other tools of similar design without taking it to the API test well.

15465 Pine Ridge Road - Fort Myers, Florida (941) 489-0044 Fax (941) 489-4545

FLOWMETER TOOL (FMT)

Quantitative analysis of flowmeter measurements requires calibration of the probe. Since the probe is a mechanical system utilizing components that are subject to wear (e.g. bearings) it must be calibrated before every use. Calibration is done by moving the tool at a known velocity through a static fluid column and measuring the number of pulses or counts output from the tool. It is important to calibrate the tool in the same diameter hole that the measurements will be made¹. Two different velocities are required to establish a calibration line. Florida Geophysical Logging uses three principal velocities (50, 70 and 100 fpm) to establish a calibration line. A second order linear fit of the calibration data is performed. By mathematically fitting a curve through the calibration data points it is possible to "back calculate" an unknown velocity if the number of counts are known. The equation is of the form :

 $V_{fm} = b_0 + (b_1 \times counts) + (b_2 \times counts^2)$ (3)

where b_0 , b_1 , and b_2 are the coefficients determined by the linear curve fit routine. Counts represent the raw signal from the flowmeter tool

¹ Application Of The Borehole Flowmeter Method To Measure Spatially Variable Hydraulic Conductivity At The MADE Site - Kenneth R. Rehfeldt, Illinois State Water Survey

7

Appendix G Video Surveys

Injection Well No. 1 (IW-1) – Drilling Data Video Survey

APPENDIX F VIDEO SURVEYS CITY OF HOLLYWOOD SOUTH COUNTY REGIONAL WWTP INJECTION WELL IW-1

Interval (feet bpl)	Observations Injection Well 1 (IW-1)
1,048–1,073	Light colored generally massive Limestone: No fractures or caverns. Generally well indurated, weakly vuggy, finer grained thin bed at 1,054, minor washout at 1,062, lighter colored thin vuggy bed at 1,064.
1,073–1,083	Light colored Limestone: No fractures or caverns. Dominantly light gray vuggy mudstone interbedded with light colored limestone as above.
1,083–1,106	Light colored massive Limestone: No fractures, vugs or caverns. Generally very well indurated, few dark gray mudstone inclusions at 1,092.
1,106–1,120	Light colored Limestone: No fractures, or caverns. Generally well indurated with few mudstone clasts from 1,106 to 1,107, thin gray mudstone bed at 1,107, few mudstone clasts from 1,107 to 1,108, weakly vuggy bed from 1,109 to 1,111.
1,120–1,213	Light colored generally massive Limestone: No fractures or caverns. Generally well indurated with few minor washouts. Few gray mudstone clasts from 1,120 to 1,121, thin dark horizontal lamination at 1,125, slightly washed out from 1,152 to 1,153, washouts at 1,175 and 1,182.
1,213–,1349	Light colored generally massive Limestone: No fractures or caverns. Generally well to very well indurated. Thin gray wackestone/mudstone bed and lenses at 1,215, dark horizontal mudstone laminations at 1,219 and 1,227, dark gray mudstone lens at 1,231, thin dark gray mudstone beds at 1,255 and 1,256, gray mudstone lens at 1,264. Minor washout at 1,282. Borehole predominantly coated with filter cake from 1,288 to 1,349.
1,349–1,450	Light colored generally massive Limestone: No fractures or caverns. Observation partially obscured by filter cake. Dominantly well indurated, thin horizontal gray wackestone bed at 1,349, thin gray vuggy horizontal mudstone bed at 1,366, minor washout at 1,368, light gray very well indurated wackestone/mudstone bed at 1,369, weakly vuggy at 1,425, minor washouts at 1,423 and 1,442.
1,450–1,478	Light orange colored generally massive Limestone: No fractures or caverns. Generally well indurated, thin gray horizontal bed at 1,475.
1,478–1,482	Gray colored massive Limestone: No fractures, vugs or caverns. Well indurated, weakly vuggy.
,1482–1,487	Light colored massive Limestone: No fractures, vuggs or caverns. Well to very well indurated.
1,487–1,496	Gray to dark gray colored massive Limestone: No fractures, vugs or caverns. Well indurated, minor washout at 1,491.
1,496–1,504	Light colored generally massive Limestone: No fractures, vugs or caverns. Generally well indurated, thin very light colored bed at 1,499.

Interval (feet bpl)	Observations Injection Well 1 (IW-1)
1,504–1,506	Very light colored massive Limestone: No fractures, vugs or caverns. Very fine grained, very well indurated.
1,506–1,524	Light colored massive Limestone: No fractures, vugs or caverns. Well indurated.
1,524–1,563	Light colored generally massive Limestone: No fractures, vugs or caverns. Very well indurated, dominantly light colored interbedded with darker beds and laminations. Few dark horizontal laminations at 1,524, minor washout at 1,542, thin dark beds at 1,530 and 1,547 thin mudstone bed at 1,549.
1,563–1,700	Light colored Limestone: No fractures or caverns. Observation partially obscured by filter cake. Generally very well indurated, dominantly light colored interbedded with darker beds and laminations. Thin dark horizontal mudstone beds at 1,569 and 1,569, dark mudstone lenses at 1,581 and 1,583, dark thin laminations at 1,605, weakly vuggy and micritic at 1,612, Thin horizontal mudstone beds at 1,617, dark thin horizontal lamination at 1,619, mudstone clasts common at 1,620 and 1,626, thin dark horizontal lamination at 1,637, few mudstone clasts at 1,655, thin dark mudstone beds at 1,644, 1,661 and 1,664, mudstone lenses at 1,684, mudstone bed from 1,692 to 1,694.
1,700–1,900	Light colored Limestone: No fractures or caverns. Generally well to very well indurated, dominantly light colored occasionally interbedded with darker beds and laminations. Thin gray horizontal beds at 1,720 and 1,722, thin gray horizontal rough textured beds at 1,735 and 1,738, few gray clasts at 1,740, gray horizontal laminations at 1,740, gray wavy laminations at 1,745, gray horizontal bed at 1,753, thin gray beds at 1,755 and 1,761, laminated light orange and gray limestone from 1,764 to 1,765, gray mudstone lens at 1,781, gray lamination at 1,784, minor washouts at 1,786 and 1,791, thin coarser grained bed at 1,805, very well indurated below 1,851, few minor to moderate washout from 1,851 to 1,877, darker mudstone lens at 1,882, few mudstone clasts at 1,895, sharp low angle contact at 1,897.
1,900-1,905	Light colored massive Limestone: No fractures, vugs or caverns. Well indurated with few minor washouts, gray mudstone lens at 1,902.
1,905–1,907	Laminated light colored Limestone and dark colored Dolomite: No fractures, vugs or caverns. Very well indurated with horizontal laminations.
1,907–1,985	Light colored generally massive Limestone: No fractures or caverns. Very well to moderately well indurated, minor washouts at 1,911, minor to moderate washouts from 1,913 to 1,923 thin coarser grained bed at 1,933, thin vuggy zone at 1,944, few moderate vugs at 1,951, washouts at 1.976, thin coarser grained bed at 1,983.
1,985–2,022	No Video
2,022–2,028	Light colored generally massive Limestone: No fractures, vugs or caverns. Well indurated. Thin dark bed at 2,025.
2,028–2,044	Dark colored massive Dolomite: Minor cavern at 2,029, light colored very well indurated bed from 2,030 to 2,031, thin washed out bed at 2,032, open vertical fracture from 2,033 to 2,034, closed high angle fracture at 2,035, poorly indurated and partially washed out from 2,035 to 2,039. Moderate to large cavern from 2,036 to 2,038, closed low angle fracture at 2,039, darker colored dominantly weakly vuggy to vuggy from 2,040 to 2,044. Sharp wavy lower contact at 2,044.

Interval (feet bpl)	Observations Injection Well 1 (IW-1)
2,044–2,062	Light colored generally massive Limestone: Dominantly very well indurated, thin wavy washed out bed at 2,046, well to moderately indurated at 2,052 and 2,055, minor washout at 2,055. Sharp horizontal lower contact at 2,062.
2,062–2,091	Dark colored generally massive Dolomite: Generally very well indurated, minor caverns and fractures at 2,064, 2,070 and 2,076, weakly vuggy to vuggy with minor caverns at 2,076, high angle fracture at 2,077, minor low angle to high angle closed fractures from 2,078 to 2,079, moderate cavern with blue gray clay colored clay at 2,079, weakly vuggy at 2,079 and 2,081, moderate cavern at 2,081 with low angle to high angle moderately open fractures, closed horizontal fractures at 2,082, weakly vuggy with high angle open fractures at 2,083, closed horizontal fracture and minor cavern at 2,084, closed high angle fracture and vuggy at 2,085, minor cavern and occasional large vugs at 2,085, blocky texture at 2,087.
2,091–2,556	Light colored dominantly massive Limestone: No fractures or caverns. Dominantly very well to well indurated, dolomitic or micritic from 2,090 to 2,093, faint darker lamination at 2,100, moderately indurated with minor washouts from 2,123, to 2,130, minor washouts at 2,158, dark lens at 2,170, fossil cast at 2,175, minor washout at 2,184, few dark lenses from 2,190 to 2,191, minor washout at 2,195, fossil cast at 2,219, thin dark lamination at 2,278, minor washout at 2,282, few light colored clasts at 2,308, very small very dark lenses at 2,312 and 2,317, thin dark lamination and small dark lenses at 2,324, thin dark lamination at 2,368, shell fragments at 2,373, light colored rounded clasts at 2,377, dark wavy lamination at 2,383, thin darker lens at 2,385, shell fragments at 2,391,thin darker bed at 2,413, molds at 2,444, minor washout at 2,453, small dark lens at 2,458 and 2,496, dark lamination at 2,503, molds at 2,520 and2,521, dark lamination at 2,548.
2,556–2,596	Light to moderately light colored massive Limestone: No fractures or caverns. Dominantly very well indurated, dark lenses at 2,556 and 2,560, light gray lenses at 2,565, weakly vuggy at 2,572 and 2,571, minor washouts at 2,572, 2,591 and 2,593.
2596–2607	Light colored massive Limestone: No fractures or caverns. Well indurated, locally weakly to moderately vuggy.
2,607–2,616	Gray to light gray colored Limestone: No fractures or caverns. Faint bedding features, generally very well indurated with occasional vugs.
2,616–2,633	Light colored weakly bedded Limestone: No caverns. Generally very well indurated, minor washout at 2,620, dark gray vuggy bed from 2,624 to 2,625 fully healed horizontal fracture at 2,626.
2,633–2,660	Light gray and light orange colored interbedded Limestone: Micritic from 2,632 to 2635, vuggy at 2,638, light gray colored and very well indurated from 2,638 to 2,640, dark to light gray colored, very well indurated to weakly vuggy from 2,640 to 2,641, rough texture at 2,641, light colored and very well indurated from 2,641 to 2,643, gray colored and very well indurated from 2,643 to 2,645, light colored and very well indurated from 2,645 to 2,647, sharp horizontal contact at 2,647, shallow cavern, moderately fractured with blocky texture at 2,648, gray very well indurated mudstone bed at 2,656.

~.

Interval (feet bpl)	Observations Injection Well 1 (IW-1)
2,660-2,871	Light colored weakly bedded Limestone: No fractures or caverns. Generally well to very well indurated, thin gray moderately vuggy bed at 2,661, thin gray mudstone bed at 2,668, very light colored thin beds at 2,669 and 2,670 very light colored thin wavy lamination at 2,672, weakly vuggy from 2,672 to 2,673, dark colored lenses at 2,675 and 2,684, very light mudstone or marl lenses at 2,687, mudstone bed at 2,715 weakly vuggy from 2,719 to 2,722, mudstone lenses at 2,727, thin dark colored beds at 2,732, and 2,735 minor washout at 2,736, thin dark bed at 2,737, thin weakly vuggy bed at 2,774, thin coarser grained bed at 2,777, very well indurated at 2,800, thin mudstone bed at 2,805, few dark lenses at 2,807, very well indurated from 2,810 to 2,822, minor washout at 2,863, thin dark vuggy dolomite and dolomitic limestone bed at 2,866, dolomitic limestone at 2,871.
2,871–2,875	Dark colored massive Dolomite: Very well indurated, Vuggy with occasional variable fractures and blocky texture, shallow cavern at 2,874.
2,875-2,890	Light colored Limestone and Dolomite: No fractures vugs or caverns. Very well to well indurated. Dolomitic limestone from 2,875 to 2,876, thin dolomite bed at 2,877, limestone and dolomite from 2,877 to 2,878, dark colored laminations at 2,880, thin light colored wavy bed at 2,882.
2,890-2,931	Dark colored Dolomite: Generally very well indurated to weakly vuggy. Cavernous and highly fractured with blocky texture from 2,892 to 2,898, shallow cavern at 2,900, light colored lens at 2,901, thin breccia beds at 2,904 and 2,905, crystal lined vugs at 2,907, shallow cavern with crystal lined vugs at 2,911, shallow cavern at 2,913, variable angle closed fractures at 2,914, thin washed out limestone bed at 2,920, shallow cavern with crystal lined vugs at 2,927.
2,931-2,936	Light to dark colored Dolomite: Weakly laminated and vuggy at 2,930 and 2,936.
2,936-2,946	Moderately light colored Dolomite : Generally well indurated to weakly vuggy. High angle closed fracture at 2940, pen vertical fracture at 2,942.
2,946-2,948	Dark colored cavernous Dolomite: Highly fractured with blocky texture.
2,948-2,955	Moderately light to moderately dark colored Dolomite: Generally very well indurated to weakly vuggy with closed fractures common. Moderately closed horizontal fracture at 2,949, closed vertical fracture at 2,949, closed vertical fracture at 2,950, thin breccia bed at 2,953, very well indurated from 2,953 to 2,954
2,955-2,967	. Moderately dark colored generally massive Dolomite: Moderately vuggy to vuggy from 2,954 to 2,959, open high angle to horizontal fractures at 2,960, closed variable angle fractures from 2,960 to 2,962, open horizontal fractures at 2,962, few closed low to high angle from 2,963 to 2,967.
2,967-2,970	Dark colored cavernous Dolomite: Highly fractured with blocky texture, moderate caverns from 2,967 to 2,969.
2,970-3,003	Moderately dark colored Dolomite: Generally massive to weakly bedded, moderately vuggy to very well indurated. Sharp horizontal contacts at ,2971 and 2,972, crystal lined vugs at 2,972, variable angle closed fractures at 2,974 and ,2978, open horizontal fracture with minor cavern at 2,989, open horizontal fracture at 2,995.

Interval (feet bpl)	Observations Injection Well 1 (IW-1)
3,003-3,011	Moderately dark colored Dolomite: Generally massive, dominantly well indurated to weakly vuggy, light colored wavy laminations at 3,010, open high angle fracture at 3,011.
3,011-3,016	Dark colored cavernous Dolomite: Highly fractured with blocky texture.
3,016-3,025	Light colored Dolomite: Generally massive and vuggy, vuggs commonly lines with crystals. Few closed variable angle fractures. Dark lenses at 3,018.
3,025-3,035	Light colored massive Dolomite: Weakly vuggy to very well indurated, fully healed high angle and horizontal fractures at 3,030, closed horizontal fractures at 3,033.
3,035-3,057	Light colored Dolomite: Generally massive to locally weakly bedded, closed fractures common, moderately vuggy to well indurated, vuggy from 3035 to 3037, thin dark beds at 3,038 and 3039, few dark laminations at ,3040 moderate angled moderately open fracture at 3,054.
3,057-3,059	Dark colored Dolomite: Massive, well indurated to weakly vuggy, closed fractures common.
3,059-3,067	Dark colored Dolomite: Generally massive and vuggy, closed fractures common. Highly vuggy at 3,062, wavy laminations at 3,064, open horizontal fracture at 3,065, open moderate angle fracture at 3,066.
3,067-3,095	Light colored Dolomite: Generally massive, moderately to highly vuggy. Moderate angle fracture at 3,068, open horizontal fracture at 3085, fully healed high angle fractures at 3,089, closed low angle fracture at 3089, open horizontal fractures at 3,090 and 3,093, closed variable angle fractures from 3,094 to 3,095.
3,095-3,096	Dark colored cavernous Dolomite: Highly fractured with blocky texture.
3,096-3,109	Light to dark colored massive Dolomite: Moderately to highly vuggy, vugs commonly lined with crystals, variable angle moderately open to closed fractures common.
3,109-3,130	Dark colored highly cavernous Dolomite: Highly fractured with blocky texture.
3,130-3,135	Dark colored Dolomite: Generally massive, highly vuggy, local blocky texture, variable angle closed fractures common.
3,135-3,144	Dark colored Dolomite: Well indurated to vuggy, healed horizontal fracture at 3,137, laminated from 3,140 to 3,141 and from 3,143 to 3,144
3,144-3,200	Light to dark colored massive Dolomite: Generally vuggy to highly vuggy, large vugs lined with crystals common. Shallow cavern at 3,150, wavy laminations at 3,151, open low angle fracture at 3,156, thin clastic bed with dark gray matrix at 3,173, closed high angle fracture at 3,187, dark mottles at 3,188, and 3,191, closed horizontal fracture at 3,196.
3,200-3,225	Moderately dark colored massive Dolomite: Weakly vuggy to well indurated. Few closed vertical to high angle fractures, vuggy at 3,219, fully healed high angle fracture at 3,221, thin dark wavy bed at 3,225.
3,225-3,230	Dark colored weakly bedded Dolomite: Highly vuggy to vuggy. Wavy laminations at 3,226, closed horizontal fracture at 3,227, faint thin darker bed at 3,228.

Interval (feet bpl)	Observations Injection Well 1 (IW-1)
3,230-3,248	Moderately dark colored Dolomite: Generally massive, dominantly well indurated to weakly vuggy. Thin dark horizontal bed at 3,232, very well indurated at 3,237, minor cavern at 3,237, fully healed vertical fracture at 3,238, closed low angle fracture at 3,240, closed horizontal fracture at 3,241, closed moderate angle fracture at 3,246.
3,248-3,251	Moderately dark colored massive Dolomite: Highly vuggy with large crystal lined vugs.
3,251-3,268	Light colored generally massive Dolomite: Moderately vuggy to vuggy, vugs occasionally lined with crystals. Thin dark laminations at 3,255, open horizontal fracture at 3,259, faint thin gray horizontal bed at 3,265.
3,268-3,293	Dark colored generally massive Dolomite: Dominantly very well indurated to locally weakly vuggy. Closed vertical fracture at 3,268, thin light beds at 3,270 and 3,274, darker lamination at 3,280, minor cavern at 3,283, vuggy from 3,286 to 3,287.
3,293-3,310	Light colored generally massive Dolomite: Dominantly moderately vuggy. Highly vuggy at 3,293, healed high angle fracture at 3,293, open horizontal fracture at 3,298, closed hi angle fracture at 3,300, healed low angle fracture at 3,301, moderate cavern at 3,307, laminations at 3,310.
3,310-3,328	Moderately dark colored generally massive Dolomite : Very well to well indurated, closed to moderately open fractures common. Thin light colored wavy lamination at 3,311, open horizontal fracture with minor cavern at 3,318, open vertical fractures from 3,322 to 3,326.
3,328-3,355	Light colored massive Dolomite with little Limestone: Highly vuggy to vuggy. High angle moderately open fractures at 3,347, open vertical fractures from 3,351 to 3,353, light Limestone lenses and thin bed at 3,354.
3,335-3,468	Light colored Dolomite interbedded with dark colored Dolomite : Vuggy to very well indurated. Dark beds at 3,356 and 3,358, sharp horizontal contact at 3,358, light colored limestone lenses from 3,358 to 3,360, high angle closed fractures at 3,359, very well indurated from 3,363 to 3,365, faint laminations at 3,366, dark laminations at 3,369, dark bed at 3,375, vuggy at 3,375, closed horizontal fracture at 3,375, vuggy at 3,375, closed horizontal at 3378, wavy contact at 3380, dark laminations at 3382, moderately vuggy with crystal lined vugs at 3,388, 3,391, 3,393 and 3,396, sharp horizontal contact at 3,409, blocky texture at 3,410. Light colored limestone lens at 3,411, weakly to moderately vuggy from 3,411 to 3,418, closed horizontal fracture at 3,418, dark colored laminations at 3,419 and from 3,423 to 3,424, wavy contact at 3,424, highly fractured with blocky texture at 3,433, closed variable angle fractures from 3,433 to 3,436, minor cavern at 3,441, closed fractures common from 3,445 to 3,450, hi angle moderately open fracture at 3,456, sharp horizontal contact at 3,456, open variable angle fractures from 3,463 to 3,464, open fracture at 3,467.
3,468-3,492	Light colored massive Dolomite: Very well indurated to locally vuggy with vugs lined with crystals. Occasional closed vertical fractures from 3,490 to 3,491.
3,492-3,500	Dark colored massive Dolomite: Highly vuggy to vuggy, vugs commonly lines with crystals with occasional gray lenses.

-

Injection Well No. 2 (IW-2) – Drilling Data Video Survey

APPENDIX F VIDEO SURVEYS CITY OF HOLLYWOOD SOUTH COUNTY REGIONAL WWTP INJECTION WELL IW-2

Interval (feet bpl)	Observations Injection Well 2 (IW-2)
1,018–1,072	Light colored generally massive Limestone: No fractures vugs or caverns. Generally well to very well indurated. Thin light colored bed at 1,028, thin light lamination at 1,038, minor washouts at 1,045 and 1,049, coarser grained beds at 1,050 and 1,061, rougher texture at 1,069, wavy contacts at 1,117 and 1,121, trace gray mudstone clasts at 1,123, few faint laminations from 1,123 to 1,124, trace mudstone clasts at 1,125 and 1,126
1,072–1,080	Light colored Limestone: No fractures or caverns. Dominantly light gray massive, vuggy mudstone interbedded with light colored very well indurated limestone as above from 1,076 to 1,078. Sharp horizontal contact at 1,078.
1,080–1,106	Light colored generally massive Limestone: No fractures or caverns. Generally very well indurated, minor washout at 1,082, thin weakly vuggy bed at 1,090, faint wavy laminations at 1,097, weakly vuggy at 1,101, minor washout at 1,103.
1,106–1,115	Light colored generally massive Limestone: No fractures, or caverns. Generally well indurated to locally weakly vuggy with few minor washouts. Thin light colored bed at 1,111.
1,115–1,217	Light colored generally massive Limestone: No fractures or caverns, locally weakly bedded. Generally very well indurated. Wavy contacts at 1,117 and 1,121, minor washouts at 1,123, gray mudstone clast at 1,123, few faint laminations from 1,123 to 1,124, trace gray mudstone clasts at 1,125 and 1,126, weakly vuggy and washed out at 1,150, thin vuggy bed at 1,165, minor washout at 1,172, faint wavy lamination at 1,187, vuggy with minor washout at 1,194, faint laminations at 1,199, washout at 1,201, thin light colored horizontal bed at 1,209, weakly vuggy with minor washout at 1,217.
1,217–1,365	Light colored Limestone: No fractures or caverns, massive to weakly bedded. Generally well to very well indurated. Observations partially obscured by filter cake. Thin light colored bed at 1,223, vuggy bed at 1,228, weakly vuggy to vuggy mudstone/wackestone from 1,252 to 1,254, low angle dark brown wavy laminations at 1,270, gray weakly vuggy mudstone bed at 1,273, faint laminations at 1,287, washout at 1,332, thin dark colored wavy laminations at 1,333, weakly laminated at 1,335, gray lenses at 1,346, light gray vuggy mudstone bed at 1,348, gray vuggy mudstone lens at 1,363.
1,365–1,421	Light colored generally massive Limestone: No fractures vugs, or caverns, locally weakly bedded. Dominantly well indurated, observation partially obscured by filter cake. Gray lenses at 1,375, minor washouts at 1,380 and 1,387, thin gray mudstone beds at 1,390 and 1,410, weakly washed out bed from 1,419 to 1,421.
1,421-1,423	Gray colored massive Limestone: No caverns, generally vuggy to well indurated.
1,423-1,438	Light colored generally massive Limestone No caverns, generally well indurated. Thin washed out bed at 1,424, closed horizontal fracture at 1,425, thin gray weakly vuggy mudstone bed at 1,429, thin gray well indurated mudstone bed at 1,432, gray mudstone lenses at 1,435.

Interval (feet bpl)	Observations Injection Well 2 (IW-2)
1,438-1,441	Gray colored massive Limestone: No fractures or caverns. Locally vuggy with locally blocky texture.
1,441–1,460	Light colored generally massive Limestone: No fractures or caverns. Generally well indurated, observations partially obscured by filter cake. Thin light colored very well indurated bed at 1,451, thin gray vuggy mudstone bed from 1,452 to 1,453, weakly vuggy gray mudstone bed at 1,458.
1,460-1,465	Gray colored massive Limestone: No fractures or caverns. Generally weakly vuggy with locally blocky texture.
1,465-1,484	Interbedded light to gray colored Limestone: No fractures, vuggs or caverns. Dominantly light colored, well to very well indurated. Thin gray mudstone beds at 1,466, 1,473, 1,476, and 1,477, dark gray lenses at 1,478, thin washed out bed at 1,478.
1,484–1,487	Gray colored massive Limestone: No fractures, vugs or caverns. Well indurated mudstone.
1,487–1,492	Light colored generally massive Limestone: No fractures, vuggs or caverns. Well to very well indurated, observations partially obscured by filter cake. Thin light colored lamination at 1,489
1,492–1,498	Gray to dark gray colored massive Limestone: No fractures or caverns. Well indurated, minor washout at 1,495, vuggy from 1,496 to 1,498 with rough texture, sharp horizontal contact at 1,498.
1,498–1,599	Light colored generally massive Limestone: No fractures, vugs or caverns. Generally well indurated. Dark gray mudstone bed at 1,505, darker colored very well indurated, faintly laminated bed from 1,522 to 1,524, faint horizontal contact at 1,524, gray colored inclusions at 1,5401, gray very well indurated bed from 1,45 to 1,546, wavy horizontal contact at 1,546, thin gray coarse grained beds at 1,547, thin light colored coarse grained beds at 1,555, moderately thin gray bed at 1,580.
1,599–1,837	Light colored Limestone interbedded with gray colored Limestone: No fractures or caverns. Generally very well indurated, dominantly light colored interbedded with darker beds and laminations. Dark colored laminations at 1,602 and 1,608, gray colored bed with sharp upper contact at 1,612, wavy laminations at 1,619, thin gray mudstone bed at 1,621, thin gray weakly vuggy mudstone bed at 1,627, weakly vuggy at 1,631, faint laminations from 1,634 to 1,635, dark to light gray wavy laminations at 1,638, weakly vuggy at 1,639, light gray bed with locally blocky texture from 1,645 to 1,646, gray mudstone bed from 1,653 to 1,655, gray weakly vuggy mudstone bed from 1,664 to 1,665, thin light colored locally weakly vuggy bed at 1,670, gray weakly vuggy bed from 1,678 to 1,679, gray vuggy mudstone bed from 1,683 to 1,685, light gray mudstone beds with sharp upper contacts at 1,687 and 1689,light gray weakly vuggy beds at 1,693, 1,698 and from 1,701 to 1,702, light gray mudstone lenses at 1,704, 1,707 and 1,710, light gray well indurated bed at 1,713, light gray vuggy mudstone bed at 1,724, weakly vuggy mudstone bed at 1,752 and 1,754, gray colored clasts at 1,756, gray laminations from 1,760 to 1,761, gray laminations from 1,760 to 1,761, gray laminations to thin beds from 1,763 to 1,765,laminated at 1,767 and 1,778, light gray vuggy bed at 1,792, thin mudstone bed with wavy upper contact at 1,798, gray to dark gray mudstone beds at 1,798 and from 1,800 to 1,801, gray clasts at 1,805, mudstone bed with minor washouts at 1,808, thin gray bed at 1,814, gray mudstone lenses at 1,822 and 1,828, thin gray weakly vuggy

Interval (feet bpl)	Observations Injection Well 2 (IW-2)
	beds at 1,831, dark gray weakly vuggy mudstone bed at 1,834.
1,837–1,904	Light colored Limestone: No fractures or caverns. Generally very well to well indurated, dominantly light colored interbedded with thin darker beds and laminations, observation partially obscured by filter cake. Gray very well indurated mudstone bed at 1,838, dark gray lenses from 1,840 to 1,841, thin gray bed at 1,844, gray mudstone bed with sharp horizontal contact at 1,845, gray mudstone clasts at 1,851, thin dark gray mudstone bed at 1,896, gray very well indurated mudstone bed at 1,899, vuggy from 1,900 to 1,903.
1,904–1,907	Laminated light colored Limestone and dark colored Dolomite: No fractures, vugs or caverns. Very well indurated with horizontal laminations.
1,907–1,911	Gray colored generally massive Limestone: No fractures, vugs or caverns. Well indurated mudstone. Very thin dark laminations at 1,908
1,911–1,990	Light colored Limestone: No fractures or caverns, generally massive with thin gray beds common. Generally well to very well indurated, observations partially obscured by filter cake. Moderately indurated from 1,911 to 1,920, gray lenses at 1,917 and 1,919, minor washouts from 1,921 to 1,922, gray lenses at 1,923, gray weakly vuggy bed at 1,925, moderately indurated with larger sized grains at 1,925 and 1,927, gray clasts at 1,928 and 1,930, gray vuggy mudstone bed at 1,934, weakly vuggy with gray lenses at 1,938, small mudstone clasts at 1,941, thin light gray moderately vuggy bed at 1,944, moderately indurated at 1,955, thin gray mudstone beds at 1,953, 1,954 and 1,955, thin coarser grained bed at 1,958, thin gray vuggy bed at 1,960, gray mudstone inclusions at 1,977,minor washout at 1,979, thin vuggy bed at 1,981, gray mudstone lenses at 1,983.
1,990-2,001	No Video
2,001-2,015	Light colored generally massive Limestone: No fractures or caverns. Moderately to well indurated. Thin gray lenses at 2,005, thin weakly vuggy bed at 2,013.
2,015-2,035	Light colored Limestone with gray colored Dolomite interbeds: No fractures, vugs or caverns. Dominantly light colored moderately to well indurated Limestone. Thin gray Dolomite beds at 2,017 and 2,025, gray dolomite bed at 2,028, thin gray Dolomite beds at 2,034.
2,035-2,051	Dark to light colored Dolomite with little Limestone: Thin light colored washed out Limestone bed at 2,037, weakly vuggy at 2,037 and 2,040, very well indurated from 2,042 to 2,043, vuggy to highly vuggy from 2,043 to 2,050, light colored partially washed out Limestone lenses at 2,045 and 2,049, minor cavern or washed out Limestone bed at 2,050, blocky texture at 2,051.
2,051-2,070	Light colored generally massive Limestone with few Dolomite interbeds: No fractures or caverns. Generally very well indurated, moderate washouts at 2,051 and 2,054, gray Dolomite bed at 2,056, gray vuggy mudstone bed from 2,060 to 2,061, minor washouts at 2,062 and 2,063, weakly vuggy at 2,067, dark thin vuggy Dolomite bed at 2,069, sharp wavy lower contact.
2,070-2,098	Dark colored generally massive Dolomite: Generally weakly vuggy. Fully closed local

2,070-2,098 **Dark colored generally massive Dolomite:** Generally weakly vuggy. Fully closed local high angle fracture at 2,075, dominantly highly vuggy at 2,076 and 2,081, washed out

ţ

Interval (feet bpl)	Observations Injection Well 2 (IW-2)
	Limestone bed at 2,082, blocky texture at 2,084, closed horizontal fracture with locally blocky texture at 2,085, highly vuggy from 2,085 to 2,087, washed out light colored Limestone bed from 2,089 to 2,090, very well indurated from 2,089 to 2,091, thin partially washed out Limestone bed at 2,093, thin Limestone bed at 2,094, laminated Dolomite and Limestone from 2,095 to 2,098.
2,098-2,599	Light colored dominantly massive Limestone: Generally well to very well indurated. Thin gray bed at 2,128, minor washout at 2,155, thin dark weakly vuggy beds at 2,166 and 2,170, fossil casts and minor washout at 2,172, minor washout at 2,306, weakly vuggy at 2,312, minor washout at 2,327, moderate washout at 2,335, thin coarser grained bed at 2,339, thin darker colored beds at 2,361 and 2,370, weakly vuggy at 2,393, thin gray bed at 2,415, minor washout at 2,422, observations partially obscured by filter cake from 2,432 to 2,454, very weakly vuggy at 2,498, fully healed vertical fracture at 2,527, moderately indurated at 2,553, few lighter colored lenses at 2,564, minor washouts at 2,575, 2,589 and 2,597.
2,599-2,629	Light to dark colored Limestone with few Dolomite interbeds: No fractures or caverns. Dominantly moderately to well indurated, gray blocky textured mudstone bed from 2,600 to 2,601, wavy gray well indurated bed at 2,601, gray mudstone inclusions at 2,603, very well indurated at 2,606 and 2,611, gray mudstone bed at 2,612, vuggy at 2,614, Limestone and Dolomite at 2,616, gray colored Dolomite beds with blocky texture at 2,621 and 2,626
2,629-2,661	Dominantly light to gray colored interbedded Limestone: No fractures or caverns. Gray and moderately vuggy from 2,629 to 2,631, light colored and very well indurated from 2,630 to 2,638, gray colored highly vuggy beds at 2,638 and 2,644, light colored and well indurated from 2,644 to 2,645 with sharp lower contact, gray vuggy micritic bed from 2,645 to 2,647, light colored and well indurated from 2,647 to 2,649 with sharp lower contact, gray and moderately vuggy from 2,649 to 2,650, light colored and very well indurated from 2,650 to 2,652, gray vuggy with blocky texture at 2,653, gray with light colored inclusions at 2,254 and 2,257, light colored with minor washouts from 2,657 to 2,660, gray colored and weakly vuggy from 2,660 to 2,661.
2,661-2,673	Light colored massive Limestone: No fractures vugs or caverns. Very well indurated
2,670-2,870	Light colored weakly bedded Limestone: Generally well to moderately indurated. Vuggy at 2,679 and 2,682, minor washout at 2,691, light gray bed from 2,673 to 2,674, faint thin bed at 2,687, vuggy at 2,691 and from 2,713 to 2,719, minor washout at 2,713, weakly to moderately vuggy at 2,720, 2,721 and from 2,725 to 2,727, minor washout at 2,734, weakly vuggy at 2,772 and 2,779, moderately indurated at 2,789, thin light gray bed at 2,791, very well indurated at 2,789, very light colored poorly indurated bed at 2,796, thin very light colored bed at 2,798, weakly vuggy at 2,802, faint bedding at 2,812, thin lighter colored bed at 2,815, light gray wavy laminations at 2,818, generally very well to well indurated from 2,800 to 2,847, thin lighter colored beds at 2,844 and 2.848, well indurated from 2,848 to 2,870, minor washout at 2,859, fully closed low angle fracture at 2,865, minor washout at 2,867.
0.070.0.004	Light colored Lineations with interhedded Delemiter Consultance Utations to the

2,870-2,881 Light colored Limestone with interbedded Dolomite: Generally well indurated. Dark moderately vuggy Dolomite bed at 2,871, Dolomitic Limestone at 2,872, moderately vuggy Limy Dolomite from 2,877 to 2,878, vuggy at 2,879, thin dark brown Dolomite bed at 2,880, Dolomitic with variable angle closed fractures from 2,878 to 2,880, thin dark highly vuggy Dolomite bed at 2,881.

2,881-2,904 **Light colored generally massive Limestone with interbedded Dolomite:** Generally well to very well indurated. Closed horizontal fracture at 2,881,highly vuggy mudstone

Interval (feet bpl)	Observations Injection Well 2 (IW-2)
	bed from 2,883 to 2,884, Dolomitic Limestone bed at 2,886, open horizontal fracture at 2,888, closed low angle fracture at 2,891, variably fractured and healed with Dolomite at 2,896, dark Dolomite lenses at 2,899, thin darker colored bed at 2,901, moderate washout at 2,902
2,904-2,940	Light to dark colored Dolomite with interbedded light colored Limestone: Weakly vuggy Limestone bed at 2,906, light colored Limestone lenses at 2,908, Dolomitic Limestone breccia bed from 2,911 to 2,912, thin washed out Limestone bed at 2,913, high angle moderately closed fracture at 2,913, well indurated Limestone bed at 2,916, open horizontal crystal lined fracture and moderate cavern at 2,917, thin Limestone bed at 2,918, highly fractured with blocky texture at 2,920, thin Limestone bed at 2,921, crystal lined vugs at 2,922, minor cavern at 2,923, closed vertical fracture at 2,925, vuggy at 2,925, Limestone lenses at 2,927 and 2,931, thin Limestone bed at 2,933, minor cavern at 2,933, moderately vuggy Limestone bed from 2,936 to 2,937, closed high angle fracture and moderate cavern at 2,937, large crystal lined vugs at 2,939, thin vuggy Limestone bed at 2,940.
2,940-2,987	Light to dark colored generally massive Dolomite : Generally weakly to moderately vuggy. Crystal lined vugs at 2,940, well indurated to very weakly vuggy from 2,050 to 2,059, thin dark bed at 2,951, closed low angle fracture at 2,952, closed high angle fracture at 2,953, closed low angle fracture at 2,958, shallow cavern at 2,959, closed high angle fracture at 2,962, well indurated to weakly vuggy from 2,962 to 2,965, closed high angle and horizontal fractures at 2,964, fully healed moderate angle fracture at 2,965, open low angle and closed high angle fractures at 2,965, weakly bedded and vuggy with variable angle closed fractures from 2,966 to 2,967. High angle closed fractures at 2,967 and 2,968.
2,987-3,032	Light colored generally massive Dolomite: Generally well indurated. Open low angle fracture at 3,013, closed horizontal fractures at 3,017 and 3,016, moderately vuggy at 3,018 and 3,020, open horizontal fractures at 3,027 and 3,024, closed high angle fractures at 3,025, 3,027 and 3,029, faint wavy laminations at 3,029.
3,032-3,062	Dark to moderately dark colored massive fractured Dolomite: Highly fractured, highly vuggy with blocky texture and moderate caverns.
3,062-3,068	Light to moderately dark colored massive Dolomite: Moderately vuggy. Open high angle fractures at 3,063 and 3,067
3,068-3,087	Dark to moderately dark colored massive fractured Dolomite: Generally weakly vuggy. Highly fractured with blocky texture. Highly vuggy from 3,082 to 3,087
3,115-3,120	Light to dark colored massive Dolomite: Highly vuggy, vugs commonly lined with Dolomite crystals.
3,120-3,126	Light colored Dolomite Breccia: Light colored angular breccia with dark colored matrix. Open to closed fractures common.
3,126-3,132	Moderately light colored massive Dolomite: Generally vuggy to highly vuggy. Crystal lined vugs at 3,129, fractured with blocky texture at 3,130.
3,132-3,158	Light colored generally massive Dolomite: Generally weakly to moderately vuggy. Thin laminations at 3,137 and 3,140, highly vuggy at 3,148, closed vertical fractures from 3,148 to 3,154.

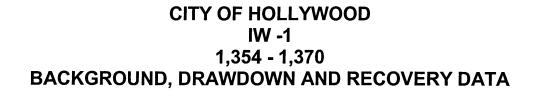
Interval (feet bpl)	Observations Injection Well 2 (IW-2)
3,158-3,264	Light colored generally massive Dolomite: Generally well indurated to vuggy. Open horizontal fracture at 3,158, locally moderately fractured and vuggy from 3,161 to 3,167, shallow crystal lined cavern at 3,170, vuggy at 3,170, open horizontal fracture at 3,173, shallow crystal lined cavern at 3,175, vuggy 3,180, variable angle moderately closed fractures from 3,208 to 3,219, minor caverns at 3,214 and 3,216, thin laminations at 3,217 minor cavern at 3,223, few closed vertical fractures at 3,224 and 3,228, highly vuggy from 3,231 to 3,237 and from 3,240 to 3,257, locally fractured with blocky texture at 3,258, high vuggy with crystal lined vugs from 3,240 to 3,257, closed vertical fractures from 3,261 to 3,264.
3,264-3,270	Dark colored massive Dolomite: Generally vuggy to well indurated. Shallow cavern at 3,264, open high angle fracture at 3,266, highly vuggy with few closed fractures at 3,269.
3,270-3,312	Moderately dark colored generally massive Dolomite: Generally weakly to moderately vuggy. Highly vuggy at 3,273, closed vertical fractures from 3,270 to 3,272, highly vuggy at 3,279 and 3,283 and from 3,286 to 3,288, low angle closed fracture at 3,291, Highly vuggy from 3,292 to 3,294, closed variable angle fractures from 3,297 to 3,309,thin dark colored bed at 3,300, highly vuggy at 3,311.
3,312-3,336	Dark colored massive Dolomite: Highly vuggy to vuggy, moderate angle closed fracture at 3,322.
3,336-3,373	Moderately light colored Dolomite with darker colored Dolomite interbeds: Generally well indurated. Moderately fractured and vuggy at 3,338, dark horizontal lamination at 3,342, closed to moderately open fractures from 3,340 to 3,342, dark vuggy bed from 3,343 to 3,345, closed horizontal fracture at 3,345, dark colored horizontal bed at 3,348, wavy laminations at 3,352, closed high angle fractures from 3,353 to 3,354, thin dark horizontal bed at 3,355, thin dark beds from 3,361 to 3,369.
3,373-3,379	Moderately dark colored massive Dolomite: Vuggy with large vugs common. Moderate cavern at 3,375 highly fractured with blocky texture at 3,377 and 3,378.
3,379-3,443	Moderately light colored Dolomite with darker colored Dolomite interbeds: Generally well indurated to vuggy. Dark colored well indurated bed at 3,380, darker colored and vuggy from 3,381 to 3,383, closed vertical fractures at 3,386, moderate cavern at 3,388, closed vertical fractures at 3,388 and 3,389, fractured with moderate cavern at 3,393, thin dark colored bed at 3,397, highly vuggy from 3,399 to 3,406 with moderate cavern at 3,403, closed horizontal fracture at 3,405, thin dark colored bed at 3,407, dark colored wavy laminations at 3,408 and 3,410, thin dark horizontal laminations at 3,411, highly vuggy with fractures common from 3,414 to 3,416, vuggy from 3,432 to 3,443.
3,443-3,457	Dark colored highly fractured massive Dolomite: Highly fractured and cavernous with blocky texture, caverns occasionally lined with crystals.
3,457-3,489	Light colored generally massive Dolomite: Generally vuggy to moderately vuggy. Open vertical and horizontal fractures from 3,465 to 3,472, moderately fractured to fractured from 3,475 to 3,488, highly vuggy from 3,482 to 3,488, dark blocky textured bed at 3,486.
3,489-3,493	Dark colored highly fractured massive Dolomite: Highly fractured and cavernous with blocky texture.

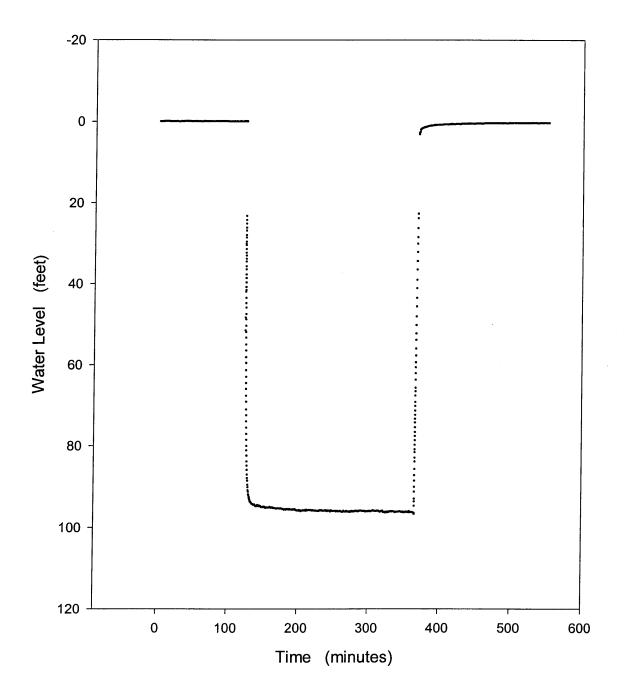
Monitor Well No. 1 (MW-1) – Drilling Data Video Survey

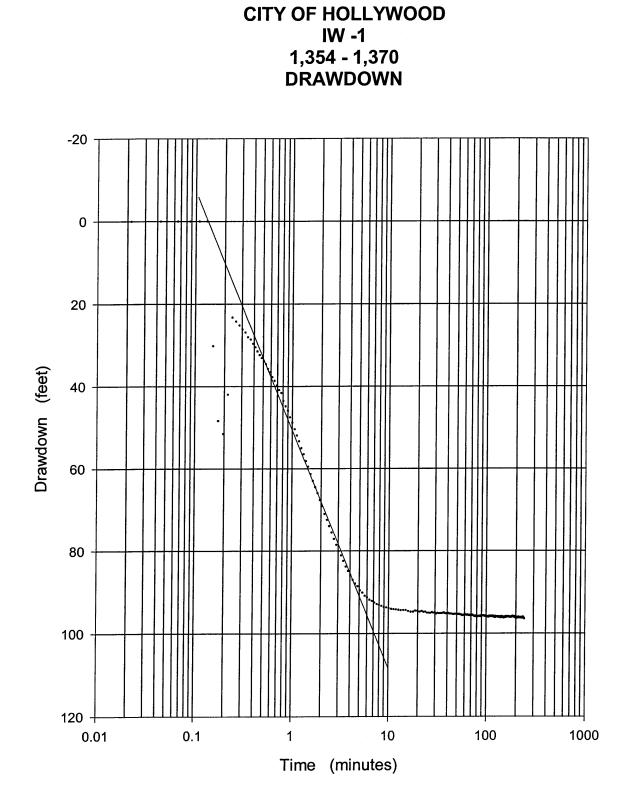
-

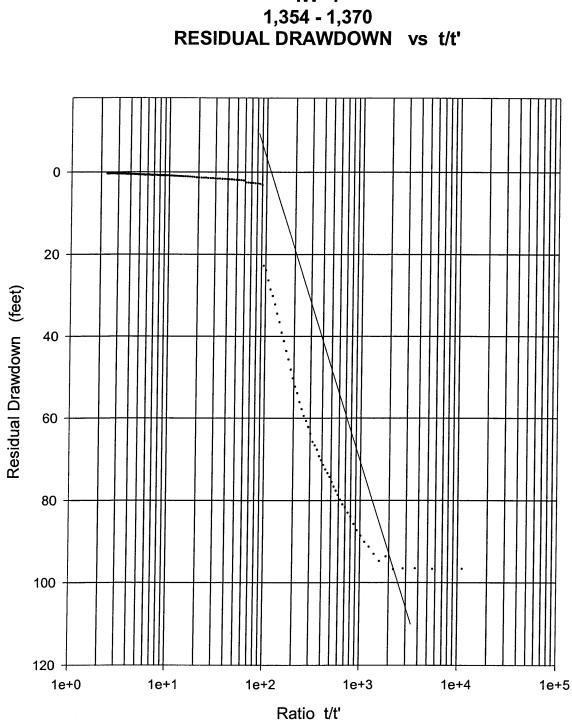
APPENDIX F VIDEO SURVEYS CITY OF HOLLYWOOD SOUTH COUNTY REGIONAL WWTP DUAL ZONE MONITORING WELL MW-1

Interval (feet bpl)	Observations Dual-Zone monitor Well 1 (IW-1)
1,251–1,344	Light colored generally massive Limestone: No fractures or caverns. General rough wall texture. Vuggy low angle bedding at 1,312 and between 1,316 and 1,322. Thin laminations at 1,333 and 1,335. Occasional inclusions and lens of dark grayish carbonate mudstone from 1,329 to 1,330, and at 1,333. Minor washouts from 1,329 to 1,330, at 1,339, 1,287, and 1,285.
1,344–1,461	Light colored generally massive Limestone: No fractures or caverns, generally well indurated with thin horizontal gray laminations at 1,349, 1,370, and 1,425, and occasional thin gray beds from 1,353 to 1,354. Gray vuggy mudstone between 1,364 and 1,365 with sharp contact upper and gradational contact at base. Grayish colored very well indurated wackestone/mudstone from 1,368 to 1,370, 1,375 to 1,377, and 1,389 to 1,391. Large vugs from 1,440 and 1,441. Minor washouts from 1,417 to 1,418 and 1,449 to 1,451.
1,461–1,476	Light orange colored generally massive Limestone: No fractures, vugs or caverns. Generally well indurated with thin dark laminations at 1,463, and minor washouts at 1,465, 1,470, and 1,472.
1,476–1,480	Gray colored massive Limestone: No fractures, vugs or caverns. Well indurated, weakly vuggy with minor washout at 1,480.
1,481–1,499	Light colored massive Limestone: No fractures, vugs or caverns. Generally well indurated. Orange grayish to gray carbonate mudstone bedding between 1,490 and 1,493 with sharp contact at top and gradational lower contact. Grayish inclusions between 1,492 and 1,493 and minor washouts at 1,482, from 1,487 to 1,488, 1,494 to 1,495 and at 1,497.
1,499–1,511	Orange grayish to gray Limestone: No fractures or caverns. Moderate rough texture. Vuggy thin bedding at 1,485, 1,504, 1,508 and from 1,512 to 1,513. Thin light orange mudstone laminations at 1,507. Dark gray mudstone inclusions at 1,505 and minor washouts from 1,494 to 1,495, 1,502 to 1,503.
1,511–1,528	Light colored Limestone: No fractures or caverns. Generally massive and well indurated. Thin darker colored beds at 1,523, 1,525, 1,526 and 1,527 to 1,528. Inclusions of dark gray mudstone at 1,512, 1,512, and 1,524. Minor washouts from 1,512 to 1,514.
1,528–1,590	Pale orange colored Limestone: No fractures or caverns. Generally massive, very well indurated with gray laminations to thin beds at 1,529, 1,539, 1,544, 1,547 and 1,559. Vuggy beds from 1,553 to 1,555, 1,566, 1,569, 1,572, 1,578, 1,581 and 1,583. Gray colored beds from 1,543 to 1,546 with sharp upper contact and gradational lower. Dark grayish mudstone Inclusions at 1,527, 1,530, 1,541 and 1,561. Minor washouts between 1,530 and 1,532, 1,553 and 1,554 and 1,586.


Interval (feet bpl)	Observations Dual-Zone monitor Well 1 (IW-1)
1,590–1,774	Light colored interbedded Limestone: No fractures or caverns. Generally massive and very well indurated, weakly vuggy at 1,595. 1,658, 1,630, 1,680 and 1,707. Medium gray bedding at 1,609 and 1,615. Pale orange, moderately thick beds from 1,618 to 1,623, 1,681 to 1,683, and 1,691 to 1,692, generally with sharp upper contact and gradational lower contact. Pale orange mudstone beds from 1,696 to 1,697. Thin laminations from 1,610 to 1,617, 1,635 to 1,636, and at 1,646, 1,670, 1,683, 1,698, and 1,773. Gray mudstone inclusions from 1,624 to 1,625, 1,929, 1,719, and from 1,255 to 1,756. Minor washouts at 1,627, 1,643, and 1,685.
1,774–1,794	Moderately dark colored generally massive Limestone: No fractures, vugs or caverns. Poor visibility. Moderately indurated with occasional very thin laminations from 1,774 to 1,775 and minor washout at 1,778.


٠


Appendix H Packer Pumping Test Data and Graphs


Injection Well No. 1 (IW-1) – Packer Tests Packer Test Data

Injection Well No. 1 (IW-1) – Packer Tests 1,354 – 1,370

CITY OF HOLLYWOOD IW -1

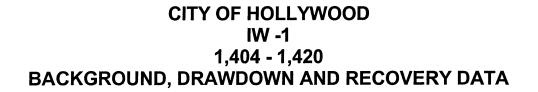
CITY OF HOLLYWOOD IW -1 1,354 - 1,370 BACKGROUND DATA

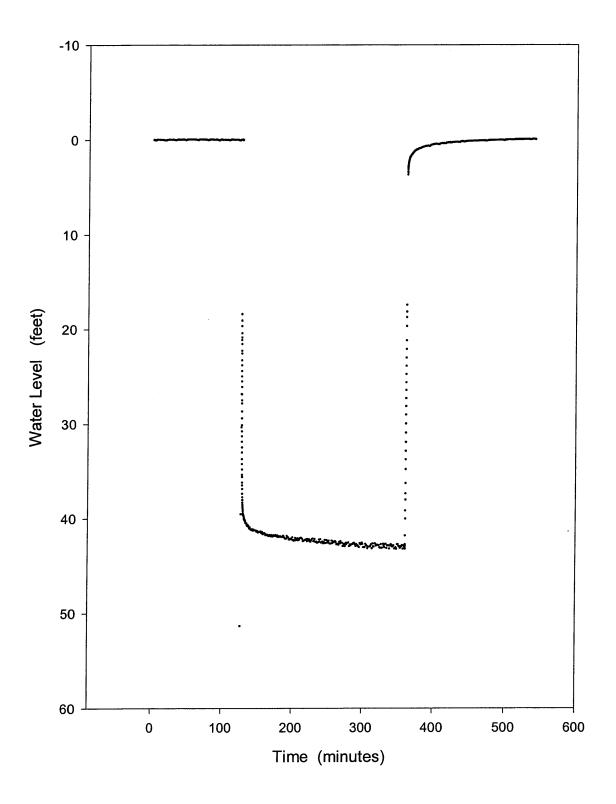
Water Level

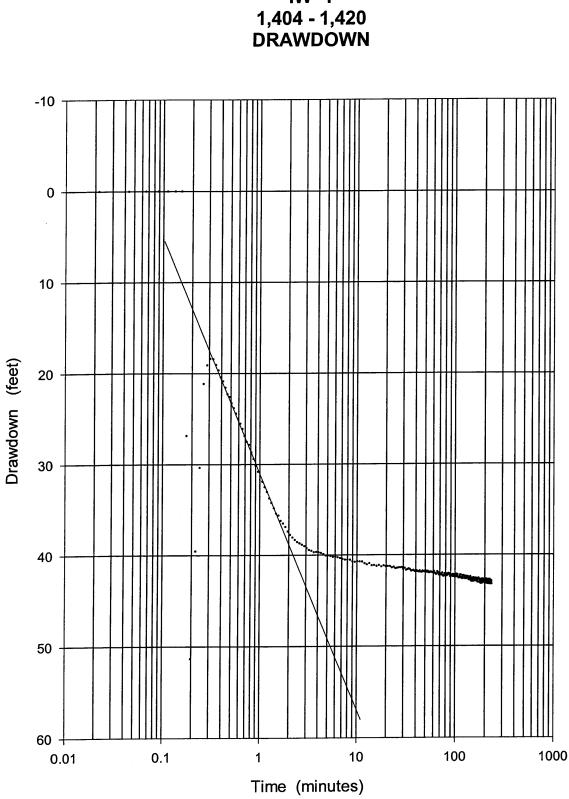
-0.014 -0.029 -0.058 -0.072 -0.029 0 0 0 -0.101 -0.072 -0.072 -0.072 -0.072 -0.058

Time	Water Level	Time	Water Level	Time
0	0	20.838	-0.014	110.838
0.0218	ō	21.838	-0.029	111.838
0.0437	-0.014	22.838	-0.014	112.838
0.0655	-0.014	23.838	-0.072	113.838
0.0873	-0.014	24.838	-0.043	114.838
0.1092	-0.014 -0.014	25.838 26.838	-0.029 0.043	115.838 116.838
0.131 0.1528	-0.014	27.838	0.045	117.838
0.1747	-0.014	28.838	0.014	118.838
0.1965	0	29.838	-0.058	119.838
0.2183	-0.014	30.838	0	120.838
0.2402	0	31.838	-0.029	121.838
0.262 0.2838	-0.014 -0.014	32.838 33.838	-0.087 -0.029	122.838 123.838
0.2030	-0.014	34.838	-0.072	123.030
0.3275	-0.014	35.838	-0.043	
0.3493	-0.014	36.838	-0.13	
0.3712	-0.014	37.838	-0.101	
0.393	-0.014	38.838	-0.058	
0.4148	-0.014	39.838 40.838	-0.058 -0.101	
0.4367 0.4588	-0.014 -0.014	41.838	-0.072	
0.4823	-0.014	42.838	-0.087	
0.5072	-0.014	43.838	-0.058	
0.5335	0	44.838	-0.029	
0.5615	0	45.838	-0.058	
0.5912	0	46.838 47.838	-0.029 -0.072	
0.6225 0.6557	-0.014	48.838	-0.058	
0.6908	0	49.838	-0.087	
0.7282	0	50.838	-0.058	
0.7677	0.029	51.838	-0.014	
0.8095	-0.029	52.838	-0.072	
0.8538 0.9008	0.029 -0.014	53.838 54.838	-0.072 0.014	
0.9507	-0.029	55.838	-0.029	
1.0033	-0.043	56.838	-0.087	
1.0592	-0.029	57.838	0	
1.1183	-0.014	58.838	0.029	
1.181	-0.029	59.838	0.014 -0.072	
1.2473 1.3177	-0.029 -0.029	60.838 61.838	-0.072	
1.3922	-0.014	62.838	0	
1.4712	-0.029	63.838	-0.087	
1.5548	-0.029	64.838	-0.043	
1.6433	-0.014	65.838	-0.072	
1.7372 1.8365	-0.029 -0.029	66.838 67.838	-0.072 0.014	
1.9418	-0.029	68.838	-0.087	
2.0533	-0.014	69.838	-0.043	
2.1715	-0.029	70.838	-0.043	
2.2967	-0.014	71.838	-0.043	
2.4292 2.5697	-0.014 -0.014	72.838 73.838	-0.043 -0.029	
2.7185	-0.014	74.838	-0.043	
2.876	-0.014	75.838	-0.043	
3.0428	-0.014	76.838	-0.043	
3.2197	-0.014	77.838	-0.043	
3.407	-0.014	78.838 79.838	-0.087 -0.101	
3.6053 3.8155	-0.014 -0.014	80.838	-0.101	
4.0382	-0.014	81.838	-0.058	
4.274	-0.014	82.838	-0.043	
4.5238	-0.014	83.838	-0.043	
4.7885	-0.014	84.838	-0.101	
5.0688 5.3657	-0.014 -0.043	85.838 86.838	-0.101 -0.087	
5.6802	-0.058	87.838	-0.087	
6.0133	-0.072	88.838	-0.087	
6.3662	-0.072	89.838	-0.072	
6.74	-0.072	90.838	-0.043	
7.136	-0.072	91.838	-0.043	
7.5553 7.9997	-0.072 -0.072	92.838 93.838	-0.116 -0.087	
8.4703	-0.072	94.838	-0.043	
8.9688	-0.072	95.838	-0.043	
9.4968	-0.072	96.838	-0.058	
10.0562	-0.072	97.838	-0.014	
10.6487	-0.072	98.838	-0.029 -0.014	
11.2762 11.941	-0.058 -0.058	99.838 100.838	-0.014 -0.014	
12.6452	-0.072	101.838	0	
13.391	-0.029	102.838	-0.029	
14.181	-0.029	103.838	0	
15.0178	-0.014	104.838	0	
15.9043 16.8433	0 -0.029	105.838 106.838	-0.087 -0.029	
17.838	-0.029	107.838	-0.029	
18.838	0	108.838	-0.058	
19.838	-0.029	109.838	-0.029	

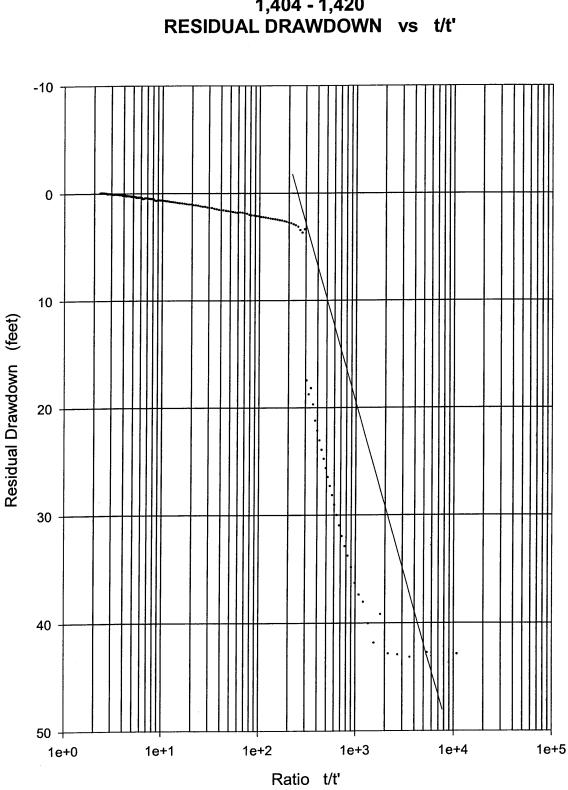
CITY OF HOLLYWOOD IW -1 1,354 - 1,370 DRAWDOWN DATA


Time	Water level	Time	Water level	Time	Water level	Time	Water level
0	0	20.8347	94.784	110.8347	95.779	200.8347	96.37
0.0217	-0.014	21.8347	94.61	111.8347	95.923	201.8347	96.327
0.0433	-0.014	22.8347	94.812	112.8347	95.866	202.8347	96.154
0.065 0.0867	-0.029 -0.029	23.8347 24.8347	94.74 95.029	113.8347 114.8347	95.88 95.88	203.8347 204.8347	96.327 96.14
0.1083	-0.029	25.8347	95.043	115.8347	95.779	205.8347	96.269
0.13	-0.014	26.8347	95.072	116.8347	95.779	206.8347	96.111
0.1517	30.19	27.8347 28.8347	94.899 95.029	117.8347 118.8347	95.995 96.024	207.8347 208.8347	96.082 96.067
0.1733 0.195	48.378 51.538	29.8347	94.971	119.8347	95.851	209.8347	96.154
0.2167	41.969	30.8347	95.231	120.8347	95.923	210.8347	96.024
0.2383	23.275	31.8347	95.087 95.159	121.8347	95.88 96.154	211.8347 212.8347	96.082 96.096
0.26 0.2817	24.242 25.181	32.8347 33.8347	95.159 95.159	122.8347 123.8347	95.793	212.8347	96.154
0.3033	26.162	34.8347	95.13	124.8347	95.909	214.8347	96.284
0.325	26.884	35.8347	95.072	125.8347	95.967	215.8347	96.197
0.3467 0.3683	27.996 28.588	36.8347 37.8347	94.957 95.159	126.8347 127.8347	96.01 95.938	216.8347 217.8347	96.226 96.168
0.3003	29.627	38.8347	95.231	128.8347	95.923	218.8347	96.168
0.4117	30.479	39.8347	95.058	129.8347	95.938	219.8347	96.154
0.4333	31.46	40.8347 41.8347	95.087 95.26	130.8347 131.8347	96.082 96.01	220.8347 221.8347	96.082 96.096
0.4555 0.479	32.37 33.092	42.8347	95.20	132.8347	95.938	222.8347	96.125
0.5038	33.857	43.8347	95.274	133.8347	96.053	223.8347	96.197
0.5302	34.55	44.8347	95.288	134.8347	96.082	224.8347	96.255
0.5582 0.5878	35.748 36.469	45.8347 46.8347	95.375 95.389	135.8347 136.8347	96.053 95.938	225.8347 226.8347	96.14 96.313
0.6192	37.74	47.8347	95.288	137.8347	96.024	227.8347	96.241
0.6523	38.606	48.8347	95.288	138.8347	96.154	228.8347	96.284
0.6875	39.703	49.8347 50.8347	95.346 95.375	139.8347 140.8347	96.212 96.154	229.8347 230.8347	96.125 96.212
0.7248 0.7643	40.858 41.565	51.8347	95.375 95.361	140.8347	95.909	231.8347	96.241
0.8062	43.499	52.8347	95.303	142.8347	96.053	232.8347	96.183
0.8505	44.813	53.8347	95.404	143.8347	96.125	233.8347 234.8347	96.284 96.01
0.8975 0.9473	45.895 47.497	54.8347 55.8347	95.476 95.462	144.8347 145.8347	96.154 95.952	234.8347 235.8347	96.327
1	48.796	56.8347	95.649	146.8347	96.082	236.8347	96.212
1.0558	50.384	57.8347	95.563	147.8347	96.067	237.8347	96.226
1.115	51.943	58.8347 59.8347	95.534 95.664	148.8347 149.8347	96.183 96.082	238.8347 239.8347	96.255 96.342
1.1777 1.244	53.314 55.031	60.8347	95.476	150.8347	96.269	240.8347	96.37
1.3143	56.489	61.8347	95.476	151.8347	96.039	241.8347	96.471
1.3888	58.163	62.8347	95.519	152.8347	96.14		
1.4678 1.5515	59.548 61.338	63.8347 64.8347	95.591 95.476	153.8347 154.8347	95.967 96.096		
1.64	62.983	65.8347	95.591	155.8347	96.039		
1.7338	64.513	66.8347	95.635	156.8347	96.154		
1.8332 1.9385	65.97 67.658	67.8347 68.8347	95.649 95.534	157.8347 158.8347	95.981 95.88		
2.05	69.13	69.8347	95.678	159.8347	95.967		
2.1682	71.049	70.8347	95.591	160.8347	96.067		
2.2933	72.478	71.8347 72.8347	95.505 95.577	161.8347 162.8347	95.938 96.082		
2.4258 2.5663	73.979 75.523	73.8347	95.779	163.8347	95.923		
2.7152	77.066	74.8347	95.779	164.8347	95.923		
2.8727	78.524	75.8347	95.88 95.866	165.8347 166.8347	95.866		
3.0395 3.2163	80.039 81.092	76.8347 77.8347	95.866 95.736	167.8347	95.938 95.923		
3.4037	82.434	78.8347	95.923	168.8347	96.01		
3.602	83.848	79.8347	95.779	169.8347	96.01		
3.8122 4.0348	84.872 85.882	80.8347 81.8347	96.039 95.88	170.8347 171.8347	95.923 96.01		
4.2707	87.036	82.8347	95.88	172.8347	96.14		
4.5205	87.916	83.8347	95.765	173.8347	96.024		
4.7852	88.537 89.547	84.8347 85.8347	95.837 95.909	174.8347 175.8347	96.111 95.981		
5.0655 5.3623	90.109	86.8347	95.75	176.8347	96.111		
5.6768	90.888	87.8347	95.923	177.8347	96.01		
6.01	91.235	88.8347	95.678 95.837	178.8347 179.8347	95.967 96.111		
6.3628 6.7367	91.855 92.129	89.8347 90.8347	95.779	180.8347	96.067		
7.1327	92.519	91.8347	95.721	181.8347	95.938		
7.552	92.879	92.8347	95.736	182.8347	95.866		
7.9963 8.467	93.096 93.355	93.8347 94.8347	95.779 95.721	183.8347 184.8347	95.822 95.952		
8.9655	93.644	95.8347	95.793	185.8347	95.923		
9.4935	93.702	96.8347	95.88	186.8347	95.981		
10.0528	93.875	97.8347	95.736 95.837	187.8347 188.8347	95.995		
10.6453 11.2728	94.062 94.149	98.8347 99.8347	95.837 95.866	188.8347 189.8347	95.894 95.938		
11.9377	94.221	100.8347	95.894	190.8347	95.909		
12.6418	94.307	101.8347	95.851	191.8347	95.967		
13.3877 14.1777	94.408 94.351	102.8347 103.8347	95.938 95.938	192.8347 193.8347	96.125 96.183		
14.1777	94.351 94.365	103.8347	96.039	194.8347	95.995		
15.901	94.582	105.8347	95.967	195.8347	95.995		
16.84	94.784	106.8347 107.8347	95.981 95.765	196.8347 197.8347	95.909 96.269		
17.8347 18.8347	94.784 94.524	107.8347	95.765 95.779	197.8347	96.209 96.212		
19.8347	94.567	109.8347	95.851	199.8347	96.168		


CITY OF HOLLYWOOD IW -1 1,354 - 1,370 RECOVERY DATA


Time	Water Level	Time	Water Level	Time	Water Level
0	96.471	20.8347	0.967	110.8347	0.418
0.0217	96.63	21.8347		111.8347	0.404
0.0433		22.8347		112.8347	0.404
0.065 0.0867	96.514 96.572	23.8347 24.8347		113.8347 114.8347	0.404 0.404
0.1083	96.731	25.8347		115.8347	0.404
0.13	93.643	26.8347	0.851	116.8347	0.404
0.1517	94.711	27.8347	0.837	117.8347	0.404
0.1733 0.195	92.994 91.263	28.8347 29.8347	0.822	118.8347	0.418
0.195	90.08	30.8347	0.808 0.793	119.8347 120.8347	0.404 0.404
0.2383	88.594	31.8347	0.793	121.8347	0.404
0.26	87.252	32.8347	0.808	122.8347	0.404
0.2817	85.723	33.8347	0.808	123.8347	0.389
0.3033 0.325	83.905 82.967	34.8347 35.8347	0.793 0.75	124.8347	0.432
0.325	81.611	36.8347	0.736	125.8347 126.8347	0.432 0.461
0.3683	80.933	37.8347	0.721	127.8347	0.389
0.39	79.807	38.8347	0.707	128.8347	0.375
0.4117	78.682	39.8347	0.707	129.8347	0.375
0.4333 0.4555	77.629 76.619	40.8347 41.8347	0.692 0.721	130.8347 131.8347	0.36 0.36
0.4555	75.493	42.8347	0.736	132.8347	0.36
0.5038	74.31	43.8347	0.721	133.8347	0.36
0.5302	73.372	44.8347	0.678	134.8347	0.36
0.5582	72.449	45.8347	0.663	135.8347	0.36
0.5878 0.6192	71.366 70.226	46.8347 47.8347	0.649 0.649	136.8347 137.8347	0.36 0.36
0.6523	69.231	48.8347	0.649	138.8347	0.36
0.6875	67.658	49.8347	0.635	139.8347	0.36
0.7248	66.59	50.8347	0.663	140.8347	0.36
0.7643	65.724	51.8347	0.692	141.8347	0.346
0.8062 0.8505	63.747 62.145	52.8347 53.8347	0.678 0.635	142.8347 143.8347	0.36 0.346
0.8975	60.688	54.8347	0.62	144.8347	0.346
0.9473	59.447	55.8347	0.606	145.8347	0.346
1	57.787	56.8347	0.606	146.8347	0.346
1.0558	56.07	57.8347	0.606	147.8347	0.346
1.115 1.1777	53.905 52.346	58.8347 59.8347	0.62 0.635	148.8347 149.8347	0.346
1.244	50.282	60.8347	0.649	150.8347	0.346 0.331
1.3143	48,146	61.8347	0.562	151.8347	0.346
1.3888	45.649	62.8347	0.577	152.8347	0.346
1.4678	43.585	63.8347	0.562	153.8347	0.346
1.5515 1.64	41.146 39.082	64.8347 65.8347	0.562 0.548	154.8347 155.8347	0.331 0.331
1.7338	36.541	66.8347	0.548	156.8347	0.331
1.8332	34.448	67.8347	0.548	157.8347	0.331
1.9385	32.196	68.8347	0.534	158.8347	0.331
2.05	30.146	69.8347	0.534	159.8347	0.331
2.1682 2.2933	28.544 26.306	70.8347 71.8347	0.534 0.519	160.8347	0.331
2.4258	23.837	72.8347	0.519	161.8347 162.8347	0.317 0.331
2.5663	22.74	73.8347	0.519	163.8347	0.331
2.7152	3.147	74.8347	0.505	164.8347	0.317
2.8727	2.83	75.8347	0.505	165.8347	0.331
3.0395 3.2163	2.714 2.671	76.8347 77.8347	0.505 0.505	166.8347 167.8347	0.317 0.331
3.4037	2.598	78.8347	0.519	168.8347	0.331
3.602	2.584	79.8347	0.534	169.8347	0.404
3.8122	2.526	80.8347	0.548	170.8347	0.389
4.0348	2.483	81.8347	0.548	171.8347	0.331
4.2707 4.5205	2.006 1.934	82.8347 83.8347	0.476 0.476	172.8347 173.8347	0.331 0.317
4.7852	1.876	84.8347	0.476	174.8347	0.317
5.0655	1.862	85.8347	0.476	175.8347	0.331
5.3623	1.804	86.8347	0.461	176.8347	0.331
5.6768 6.01	1.746	87.8347 88.8347	0.461	177.8347	0.331
6.3628	1.732 1.703	89.8347	0.49 0.49	178.8347 179.8347	0.317 0.317
6.7367	1.66	90.8347	0.519	180.8347	0.317
7.1327	1.617	91.8347	0.519	181.8347	0.331
7.552	1.573	92.8347	0.447	182.8347	0.36
7.9963	1.559 1.53	93.8347 94.8347	0.447 0.432	183.8347	0.375
8.467 8.9655	1.55	95.8347	0.432	184.8347 185.8347	0.302 0.36
9.4935	1.472	96.8347	0.432	. 30.0047	0.00
10.0528	1.429	97.8347	0.432		
10.6453	1.342	98.8347	0.418		
11.2728	1.371	99.8347	0.418		
11.9377 12.6418	1.342 1.313	100.8347 101.8347	0.432 0.418		
13.3877	1.284	102.8347	0.432		
14.1777	1.169	103.8347	0.418		
15.0145	1.126	104.8347	0.404		
15.901 16.84	1.097	105.8347	0.418		
16.84 17.8347	1.068 1.024	106.8347 107.8347	0.404 0.418		
18.8347	1.01	108.8347	0.404		
19.8347	0.996	109.8347	0.404		

Injection Well No. 1 (IW-1) – Packer Tests 1,404 – 1,420


,

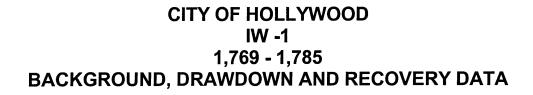
CITY OF HOLLYWOOD IW -1

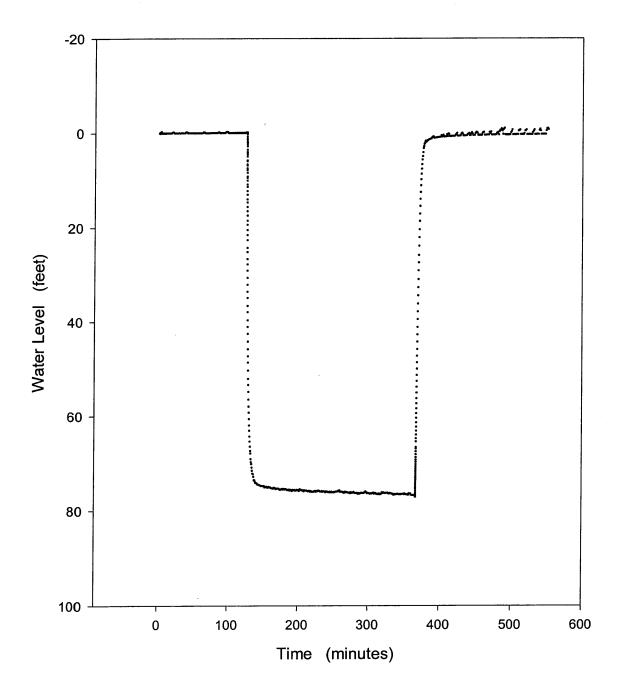
CITY OF HOLLYWOOD IW -1 1,404 - 1,420 RESIDUAL DRAWDOWN vs t/t'

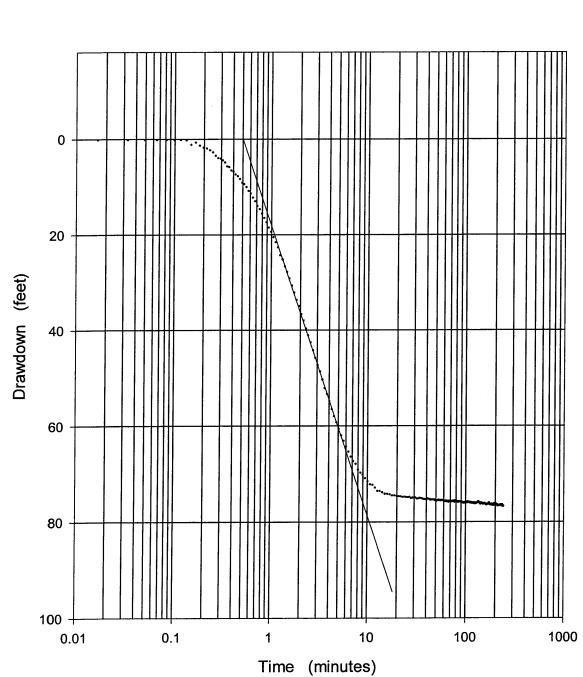
CITY OF HOLLYWOOD IW -1 1,404 - 1,420 BACKGROUND DATA

Time	Water Level	Time Water Level	Time Water Level
0	0	20.8347 -0.029	110.8347 -0.043
0.0217	-0.014	21.8347 -0.043	111.8347 -0.058
0.0433	-0.014	22.8347 -0.029 23.8347 0.029	112.8347 -0.029 113.8347 -0.029
0.065 0.0867	-0.014 -0.014	23.8347 -0.029 24.8347 -0.029	114.8347 -0.029
0.1083	-0.014	25.8347 -0.029	115.8347 -0.029
0.13	-0.014	26.8347 -0.043	116.8347 -0.029
0.1517 0.1733	-0.014 -0.014	27.8347 -0.029 28.8347 -0.014	117.8347 -0.029 118.8347 -0.029
0.195	-0.014	29.8347 0.014	119.8347 -0.029
0.2167	-0.014	30.8347 0	120.8347 0.014
0.2383	-0.014 -0.014	31.8347 0.014 32.8347 -0.029	121.8347 0.029 122.8347 0.043
0.2817	-0.014	33.8347 -0.043	123.8347 -0.029
0.3033	-0.014	34.8347 -0.043 35.8347 -0.043	124.8347 -0.029 125.8347 -0.043
0.325 0.3467	-0.014 -0.014	36.8347 -0.029	126.8347 0.029
0.3683	-0.014	37.8347 -0.043	
0.39	-0.014 -0.014	38.8347 -0.043 39.8347 -0.043	
0.4117 0.4333	-0.014	40.8347 -0.043	
0.4555	-0.014	41.8347 -0.043	
0.479 0.5038	-0.014 -0.014	42.8347 -0.043 43.8347 -0.029	
0.5302	-0.014	44.8347 0.014	
0.5582	-0.014	45.8347 0.014	
0.5878 0.6192	-0.014 -0.014	46.8347 -0.043 47.8347 -0.043	
0.6523	-0.014	48.8347 -0.043	
0.6875	-0.014	49.8347 -0.058	
0.7248 0.7643	-0.014 0.014	50.8347 -0.058 51.8347 -0.058	
0.8062	0.029	52.8347 -0.058	
0.8505	0.014	53.8347 -0.058	
0.8975 0.9473	0.029 0.029	54.8347 -0.058 55.8347 -0.058	
1	0.014	56.8347 -0.058	
1.0558	0.029	57.8347 -0.058 58.8347 -0.043	
1.115 1.1777	0.029 0.029	58.8347 -0.043 59.8347 -0.043	
1.244	0.029	60.8347 -0.014	
1.3143	0.029	61.8347 -0.014 62.8347 0	
1.3888 1.4678	0.029 0.029	63.8347 -0.043	
1.5515	0.029	64.8347 -0.058	
1.64 1.7338	0.029 0.029	65.8347 -0.058 66.8347 -0.058	
1.8332	0.014	67.8347 -0.058	
1.9385	0.029	68.8347 -0.043	
2.05 2.1682	0.029 0.029	69.8347 -0.058 70.8347 -0.058	
2.2933	0.029	71.8347 -0.043	
2.4258	0.029 0.029	72.8347 -0.043 73.8347 -0.043	
2.5663 2.7152	0.029	74.8347 -0.014	
2.8727	0.029	75.8347 -0.014	
3.0395 3.2163	0.043 0.029	76.8347 0.014 77.8347 0.014	
3.4037	0	78.8347 -0.043	
3.602	-0.014	79.8347 -0.043	
3.8122 4.0348	-0.014 -0.014	80.8347 -0.043 81.8347 -0.058	
4.2707	-0.014	82.8347 -0.043	
4.5205 4.7852	-0.014 -0.014	83.8347 -0.043 84.8347 -0.029	
4.7652	-0.014	85.8347 -0.029	
5.3623	-0.029	86.8347 -0.029	
5.6768 6.01	-0.029 -0.014	87.8347 -0.043 88.8347 -0.043	
6.3628	-0.014	89.8347 -0.043	
6.7367	-0.014	90.8347 0	
7.1327 7.552	-0.029 -0.014	91.8347 0.014 92.8347 0.043	
7.9963	-0.014	93.8347 -0.029	
8.467	-0.014	94.8347 -0.043 95.8347 -0.043	
8.9655 9.4935	-0.014 -0.014	96.8347 -0.043	
10.0528	-0.014	97.8347 -0.029	
10.6453 11.2728	-0.014 -0.029	98.8347 -0.029 99.8347 -0.029	
11.2728	-0.029	100.8347 -0.029	
12.6418	-0.029	101.8347 -0.029	
13.3877 14.1777	-0.029 0	102.8347 -0.029 103.8347 -0.029	
15.0145	0.014	104.8347 -0.029	
15.901	0.029	105.8347 0 106.8347 0.014	
16.84 17.8347	0.014 0.029	106.8347 0.014 107.8347 0.029	
18.8347	-0.014	108.8347 -0.014	
19.8347	-0.029	109.8347 -0.043	

CITY OF HOLLYWOOD IW -1 1,404 - 1,420 DRAWDOWN DATA

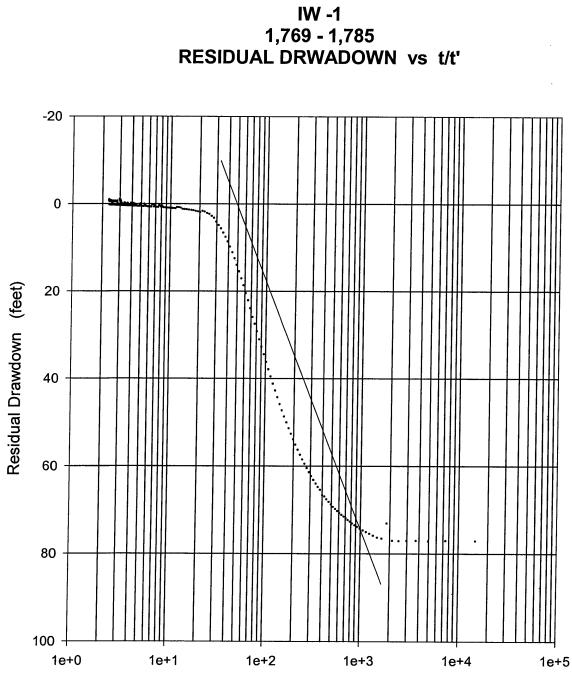

•


Time	Water Level	Time	Water Level	Time	Water Level	Time	Water Level
0	0	20.838	41.246	110.838	42.501	200.838	43.122
0.0218	0	21.838	41.246	111.838	42.227	201.838	43.079
0.0437	-0.014	22.838	41.39	112.838	42.458	202.838	42.675
0.0655 0.0873	-0.014 -0.014	23.838 24.838	41.318 41.477	113.838 114.838	42.184 42.559	203.838 204.838	42.848 43.05
0.1092	-0.014	25.838	41.419	115.838	42.516	205.838	42.703
0.131	-0.014	26.838	41.39	116.838	42.444	206.838	42.689
0.1528	0	27.838	41.404	117.838	42.631	207.838	43.136
0.1747	26.854	28.838	41.361	118.838	42.53	208.838	42.877
0.1965 0.2183	51.32 39.542	29.838 30.838	41.549 41.433	119.838 120.838	42.27 42.602	209.838 210.838	42.833 42.862
0.2402	30.362	31.838	41.664	121.838	42.27	211.838	43.18
0.262	21.138	32.838	41.578	122.838	42.559	212.838	42.891
0.2838	19.102	33.838	41.534	123.838	42.343	213.838	42.732
0.3057	18.395	34.838	41.592	124.838	42.545	214.838	42.804
0.3275	18.423	35.838 36.838	41.765 41.708	125.838 126.838	42.343 42.646	215.838 216.838	42.978 42.963
0.3493 0.3712	19.059 19.665	37.838	41.679	127.838	42.646	217.838	42.862
0.393	20.416	38.838	41.794	128.838	42.646	218.838	43.18
0.4148	20.863	39.838	41.837	. 129.838	42.343	219.838	43.165
0.4367	21.571	40.838	41.736	130.838	42.602	220.838	43.064
0.4588	22.278	41.838 42.838	41.823 41.881	131.838 132.838	42.429 42.458	221.838 222.838	43.209 42.732
0.4823 0.5072	22.581 23.289	43.838	41.736	133.838	42.501	223.838	42.732
0.5335	23.823	44.838	41.881	134.838	42.386	224.838	42.92
0.5615	24.415	45.838	41.895	135.838	42.501	225.838	42.963
0.5912	24.992	46.838	41.751	136.838	42.732	226.838	43.122
0.6225	25.512	47.838	41.837	137.838	42.732	227.838	42.949
0.6557 0.6908	26.104 26.883	48.838 49.838	41.852 41.736	138.838 139.838	42.675 42.776	228.838 229.838	42.963 42.833
0.7282	20.003	50.838	41.78	140.838	42.487	230.838	43.209
0.7677	27.836	51.838	41.91	141.838	42.646	231.838	42.862
0.8095	28.688	52.838	41.78	142.838	42.386	232.838	42.978
0.8538	29.409	53.838	41.953	143.838	42,559	233.838	43.209
0.9008 0.9507	30.146 30.795	54.838 55.838	41.953 41.866	144.838 145.838	42.574 42.905		
1.0033	31.315	56.838	41.866	146.838	42.675		
1.0592	31.892	57.838	41.938	147.838	42.732		
1.1183	32.498	58.838	41.953	148.838	42.934		
1.181	33.033	59.838	41.924	149.838	42.574		
1.2473 1.3177	33.725 34.245	60.838 61.838	41.809 41.982	150.838 151.838	42.732 42.588		
1.3922	34.822	62.838	42.068	152.838	42.574		
1.4712	35.4	63.838	42.141	153.838	42.53		
1.5548	35.616	64.838	42.112	154.838	42.934		
1.6433	36.223	65.838	41.837	155.838	42.747		
1.7372 1.8365	36.511 36.901	66.838 67.838	42.011 41.982	156.838 157.838	42.848 42.747		
1.9418	37.392	68.838	42.227	158.838	42.718		
2.0533	37.767	69.838	42.213	159.838	42.718		
2.1715	38.056	70.838	42.112	160.838	42.602		
2.2967	38.33	71.838	42.155	161.838	42.574		
2.4292 2.5697	38.547 38.691	72.838 73.838	42.227 41.982	162.838 163.838	42.718 42.905		
2.7185	38.85	74.838	42.256	164.838	42.703		
2.876	39.008	75.838	42.357	165.838	42.862		
3.0428	39.225	76.838	42.299	166.838	42.833		
3.2197	39.441	77.838	42.054	167.838	42.963		
3.407 3.6053	39.528 39.687	78.838 79.838	42.299 42.213	168.838 169.838	43.035 42.617		
3.8155	39.658	80.838	42.097	170.838	42.747		
4.0382	39.672	81.838	42.314	171.838	42.732		
4.274	39.745	82.838	42.141	172.838	42.559		
4.5238	39.874	83.838	42.242	173.838 174.838	42.718		
4.7885 5.0688	40.048 40.033	84.838 85.838	42.054 42.039	174.838	43.035 43.05		
5.3657	40.12	86.838	42.068	176.838	43.007		
5.6802	40.206	87.838	42.155	177.838	42.689		
6.0133	40.163	88.838	42.386	178.838	42.804		
6.3662	40.25	89.838	42.357	179.838	42.891		
6.74 7.136	40.336 40.452	90.838 91.838	42.285 42.256	180.838 181.838	43.151 42.992		
7.5553	40.452	92.838	42.242	182.838	42.978		
7.9997	40.495	93.838	42.169	183.838	42.992		
8.4703	40.524	94.838	42.4	184.838	42.905		
8.9688	40.712	95.838 96.838	42.169	185.838 186.838	42.747		
9.4968 10.0562	40.769 40.697	96.838 97.838	42.314 42.198	186.838	43.165 42.66		
10.0562	40.097	98.838	42.429	188.838	42.949		
11.2762	40.74	99.838	42.458	189.838	42.992		
11.941	40.914	100.838	42.285	190.838	42.66		
12.6452	41.044	101.838	42.155	191.838	42.66		
13.391 14.181	40.914 41.145	102.838 103.838	42.126 42.415	192.838 193.838	42.877 42.776		
14.161	41.145	103.838	42.415	193.838	42.776		
15.9043	41.217	105.838	42.155	195.838	42.833		
16.8433	41.116	106.838	42.472	196.838	42.833		
17.838	41.274	107.838	42.444	197.838	43.05		
18.838 19.838	41.173 41.26	108.838 109.838	42.559 42.545	198.838 199.838	43.122 42.732		
	71.20	100.000					


CITY OF HOLLYWOOD IW -1 1,404 - 1,420 RECOVERY DATA

Time	Water level	Time	Water level	Time	Water level
0	43.209	20.8347	0.78	110.8347	0.102
0.0217	42.877	21.8347	0.751	111.8347	0.116
0.0433	42.733	22.8347	0.722	112.8347	0.073
0.065	43.166	23.8347 24.8347	0.708	113.8347	0.058
0.0867 0.1083	42.935 42.848	25.8347	0.679 0.665	114.8347 115.8347	0.058 0.058
0.1003	39.182	26.8347	0.65	116.8347	0.038
0.1517	41.823	27.8347	0.636	117.8347	0.044
0.1733	40.034	28.8347	0.621	118.8347	0.044
0.195	38.042	29.8347	0.636	119.8347	0.044
0.2167	37.392	30.8347	0.679	120.8347	0.029
0.2383 0.26	36.31 34.837	31.8347 32.8347	0.65 0.549	121.8347 122.8347	0.044
0.2817	33.784	33.8347	0.52	122.8347	0.029 0.029
0.3033	32.903	34.8347	0.506	124.8347	0.029
0.325	31.95	35.8347	0.491	125.8347	0.029
0.3467	30.969	36.8347	0.477	126.8347	0.029
0.3683	30.002	37.8347	0.463	127.8347	0.029
0.39 0.4117	29.063 28.168	38.8347 39.8347	0.463 0.434	128.8347 129.8347	0.015 0.015
0.4333	27.317	40.8347	0.434	130.8347	0.015
0.4555	26.465	41.8347	0.434	131.8347	0.015
0.479	25.642	42.8347	0.463	132.8347	0.015
0.5038	24.776	43.8347	0.491	133.8347	0.015
0.5302	23.924	44.8347	0.491	134.8347	0.029
0.5582	23.044	45.8347 46.8347	0.405 0.39	135.8347	0.058
0.5878 0.6192	22.134 21.21	40.0347 47.8347	0.39	136.8347 137.8347	0.044 0
0.6523	19.694	48.8347	0.361	138.8347	ŏ
0.6875	18.178	49.8347	0.361	139.8347	Ō
0.7248	18.756	50.8347	0.39	140.8347	-0.014
0.7643	17.457	51.8347	0.361	141.8347	-0.014
0.8062	3.365	52.8347 52.8347	0.39 0.376	142.8347	-0.014 -0.014
0.8505 0.8975	3.668 3.437	53.8347 54.8347	0.376	143.8347 144.8347	-0.014
0.9473	3.119	55.8347	0.304	145.8347	-0.028
1	2.989	56.8347	0.289	146.8347	-0.014
1.0558	2.888	57.8347	0.275	147.8347	-0.028
1.115	2.787	58.8347	0.275	148.8347	-0.028
1.1777	2.73	59.8347	0.26 0.304	149.8347	-0.028
1.244 1.3143	2.657 2.6	60.8347 61.8347	0.304	150.8347 151.8347	-0.028 -0.043
1.3888	2.542	62.8347	0.26	152.8347	-0.043
1.4678	2.513	63.8347	0.246	153.8347	-0.043
1.5515	2.455	64.8347	0.246	154.8347	-0.028
1.64	2.412	65.8347	0.246	155.8347	-0.043
1.7338 1.8332	2.383 2.354	66.8347 67.8347	0.232 0.232	156.8347 157.8347	-0.043 -0.043
1.9385	2.334	68.8347	0.232	158.8347	-0.043
2.05	2.267	69.8347	0.217	159.8347	-0.043
2.1682	2.224	70.8347	0.217	160.8347	-0.043
2.2933	2.195	71.8347	0.246	161.8347	-0.043
2.4258	2.138	72.8347	0.246	162.8347	-0.043
2.5663 2.7152	2.109 2.065	73.8347 74.8347	0.246 0.174	163.8347 164.8347	-0.057 -0.057
2.8727	2.036	75.8347	0.174	165.8347	-0.057
3.0395	1.993	76.8347	0.159	166.8347	-0.057
3.2163	1.892	77.8347	0.159	167.8347	-0.057
3.4037	1.849	78.8347	0.174	168.8347	-0.057
3.602	1.805	79.8347 80.8347	0.203 0.217	169.8347	-0.072
3.8122 4.0348	1.777 1.82	81.8347	0.217	170.8347 171.8347	-0.072 -0.043
4.2707	1.777	82.8347	0.145	172.8347	-0.028
4.5205	1.733	83.8347	0.145	173.8347	-0.028
4.7852	1.675	84.8347	0.13	174.8347	-0.057
5.0655	1.647	85.8347	0.13	175.8347	-0.072
5.3623 5.6768	1.618 1.574	86.8347 87.8347	0.13 0.13	176.8347 177.8347	-0.072 -0.072
6.01	1.546	88.8347	0.116		-0.072
6.3628	1.531	89.8347	0.116		-0.057
6.7367	1.473	90.8347	0.13	180.8347	-0.043
7.1327	1.43	91.8347	0.116		
7.552	1.358	92.8347	0.116		
7.9963	1.343 1.314	93.8347 94.8347	0.116 0.102		
8.467 8.9655	1.314	94.8347 95.8347	0.102		
9.4935	1.228	96.8347	0.102		
10.0528	1.185	97.8347	0.102		
10.6453	1.127	98.8347	0.102		
11.2728	1.098	99.8347	0.102		
11.9377 12.6418	1.083 1.026	100.8347 101.8347	0.087 0.087		
13.3877	1.026	101.8347	0.087		
14.1777	0.997	103.8347	0.073		
15.0145	0.954	104.8347	0.073		
15.901	0.925	105.8347	0.073		
16.84 17.8347	0.896 0.867	106.8347 107.8347	0.073 0.073		
17.8347	0.838	107.8347	0.075		
19.8347	0.795	109.8347	0.102		

Injection Well No. 1 (IW-1) – Packer Tests 1,769 – 1,785



.

CITY OF HOLLYWOOD IW -1 1,769 - 1,785 DRAWDOWN

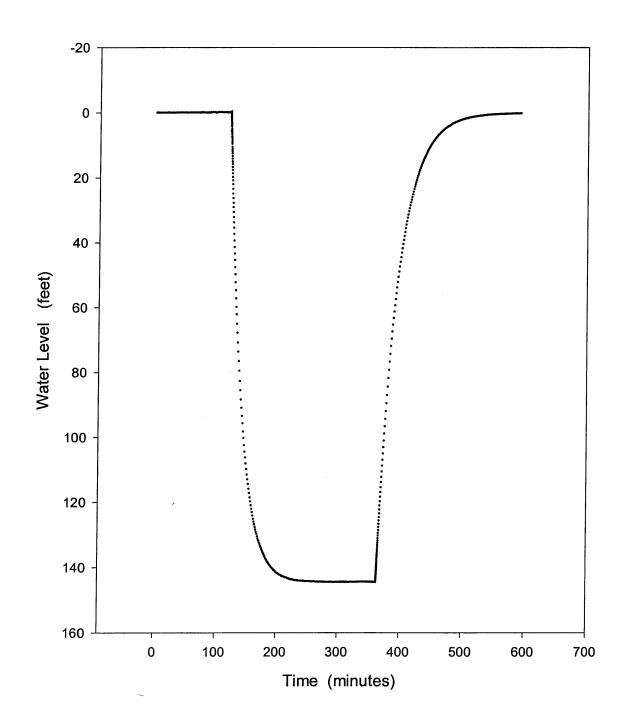
CITY OF HOLLYWOOD

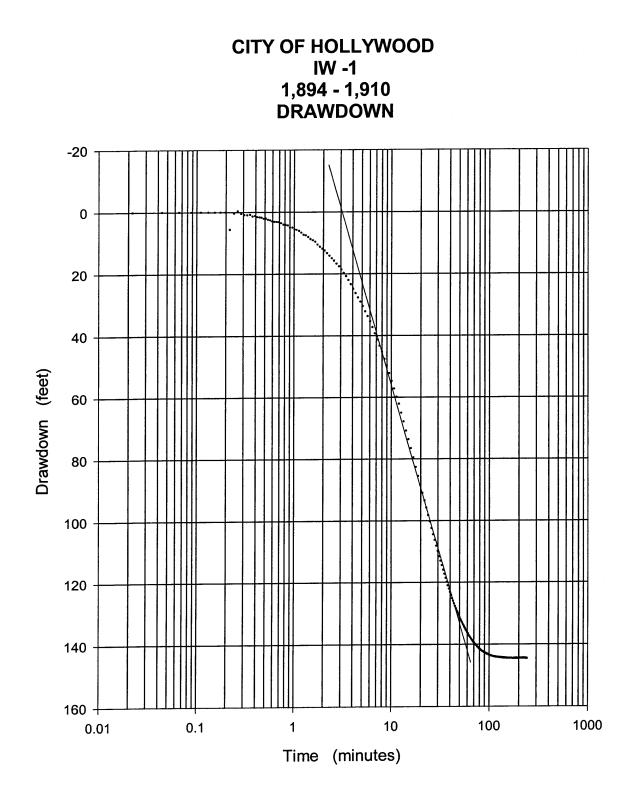
Ratio t/t'

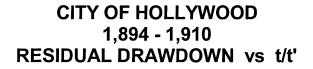
CITY OF HOLLYWOOD IW -1 1769-1785 BACKGROUND DATA

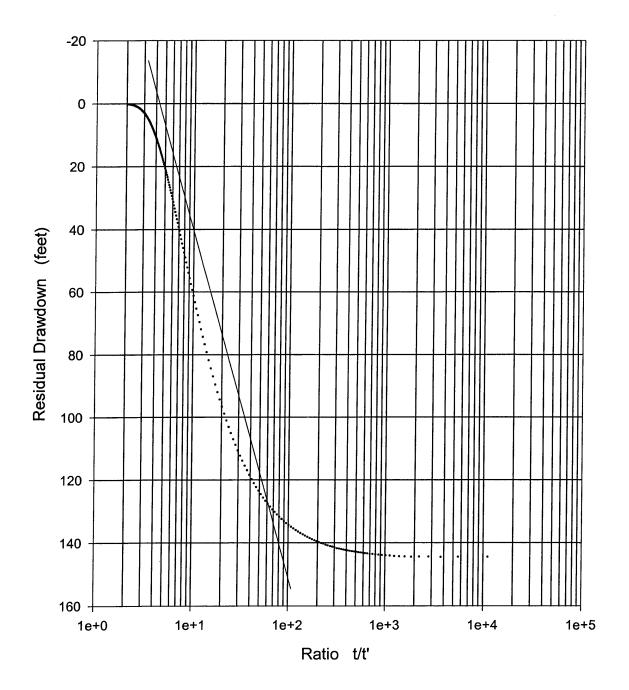
Time	Water Level	Time	Water Level	Time W	/ater Level
0	0	15.8882	0.029		-0.043
0.0163	0.101	16.8272	0.029		-0.058 -0.058
0.0327 0.049	0.101 0.101	17.8218 18.8218	-0.144 -0.173		-0.043
0.0653	0.087	19.8218	-0.202		-0.058
0.0817	0.101 0.101	20.8218 21.8218	0.029 0.029		-0.058 -0.058
0.098 0.1143	0.087	22.8218	0.014		-0.058
0.1307	0.087	23.8218	0.029		-0.058 -0.058
0.147 0.1633	0.087 0.101	24.8218 25.8218	0.029 0.029		-0.058
0.1797	0.101	26.8218	0.014		-0.058
0.196 0.2123	0.101 0.087	27.8218 28.8218	0.014 0.029		-0.058 -0.058
0.2287	0.087	29.8218	0.014	119.8218	-0.058
0.245	0.087	30.8218 31.8218	0.014 0.014		-0.058 -0.058
0.2613 0.2777	0.087 0.101	32.8218	0.014	122.8218	-0.13
0.294	0.101	33.8218	0.014		-0.202 -0.217
0.3103 0.3267	0.101 0.101	34.8218 35.8218	0.014 0	124.0210	-0.217
0.3433	0.087	36.8218	-0.173		
0.361 0.3797	0.101 0.101	37.8218 38.8218	-0.217 -0.173		
0.3995	0.087	39.8218	0.014		
0.4205	0.101	40.8218	0 0.014		
0.4427 0.4662	0.087 0.087	41.8218 42.8218	0.014		
0.491	0.058	43.8218	0		
0.5173 0.5453	0.029 0.043	44.8218 45.8218	0		
0.575	0.029	46.8218	-0.014		
0.6063	0.115	47.8218	0 0		
0.6395 0.6747	-0.058 0.014	48.8218 49.8218	-0.014		
0.712	0.014	50.8218	-0.014		
0.7515 0.7933	-0.043 -0.029	51.8218 52.8218	-0.014 -0.014		
0.8377	-0.101	53.8218	-0.014		
0.8847	-0.072	54.8218	-0.014 -0.014		
0.9345 0.9872	-0.058 -0.101	55.8218 56.8218	-0.014		
1.043	-0.087	57.8218	-0.014		
1.1022 1.1648	-0.115 -0.144	58.8218 59.8218	-0.014 -0.014		
1.2312	-0.087	60.8218	-0.029		
1.3015	-0.159	61.8218 62.8218	-0.202 -0.159		
1.376 1.455	-0.159 -0.115	63.8218	-0.159		
1.5387	-0.144	64.8218	-0.014		
1.6272 1.721	-0.159 -0.173	65.8218 66.8218	-0.014 -0.029		
1.8203	-0.159	67.8218	-0.014		
1.9257 2.0372	-0.159 -0.202	68.8218 69.8218	-0.029 -0.014		
2.1553	-0.245	70.8218	-0.029		
2.2805 2.413	-0.159 -0.245	71.8218 72.8218	-0.029 -0.029		
2.5535	-0.26	73.8218	-0.029		
2.7023	-0.217	74.8218 75.8218	-0.029 -0.029		
2.8598 3.0267	-0.217 0.058	76.8218	-0.029		
3.2035	0.058	77.8218	-0.029		
3.3908 3.5892	0.058 0.043	78.8218 79.8218	-0.029 -0.029		
3.7993	0.043	80.8218	-0.029		
4.022 4.2578	0.043 0.043	81.8218 82.8218	-0.029 -0.144		
4.5077	0.043	83.8218	-0.188		
4.7723	0.043 0.043	84.8218 85.8218	-0.159 -0.014		
5.0527 5.3495	0.043	86.8218	-0.029		
5.664	0.043	87.8218	-0.029 -0.029		
5.9972 6.35	0.043 0.043	88.8218 89.8218	-0.029		
6.7238	0.043	90.8218	-0.029		
7.1198 7.5392	0.043 0.043	91.8218 92.8218	-0.043 -0.043		
7.9835	0.043	93.8218	-0.173		
8.4542	0.043 0.029	94.8218 95.8218	-0.26 -0.231		
8.9527 9.4807	0.029	96.8218	-0.289		
10.04	0.029	97.8218	-0.029 -0.043		
10.6325 11.26	0.029 0.029	98.8218 99.8218	-0.043		
11.9248	0.029	100.8218	-0.043		
12.629 13.3748	0.029 0.029	101.8218 102.8218	-0.043 -0.043		
14.1648	0.029	103.8218	-0.043		
15.0017	0.029	104.8218	-0.058		

CITY OF HOLLYWOOD IW -1 1,769 -1,785 DRAWDOWN DATA


Time	Water Level	Time	Water Level	Time	Water Level	Time	Water Level
0	0	15.8882	74.16	105.8218	75.805	195.8218	76.31
0.0163	0.144	16.8272	74.261	106.8218	75.92	196.8218	76.151
0.0327	0.159	17.8218	74.478	107.8218 108.8218	75.992 75.978	197.8218 198.8218	76.252 76.339
0.049 0.0653	0.159 0.144	18.8218 19.8218	74.492 74.564	109.8218	75.863	199.8218	76.295
0.0817	0.144	20.8218	74.651	110.8218	76.064	200.8218	76.266
0.098	0.159	21.8218	74.694 74.781	111.8218 112.8218	75.92 75.935	201.8218 202.8218	76.281 76.238
0.1143 0.1307	0.159 0.231	22.8218 23.8218	74.766	113.8218	75.964	203.8218	76.396
0.147	1.169	24.8218	74.809	114.8218	76.108	204.8218	76.44
0.1633	0.722	25.8218 26.8218	74.853 74.781	115.8218 116.8218	75.92 75.964	205.8218 206.8218	76.324 76.382
0.1797 0.196	1.328 1.79	27.8218	75.069	117.8218	76.05	207.8218	76.382
0.2123	1.949	28.8218	74.939	118.8218	76.093	208.8218 209.8218	76.483 76.483
0.2287 0.245	2.324 2.757	29.8218 30.8218	74.997 74.925	119.8218 120.8218	76.137 76.007	210.8218	76.685
0.245	3.465	31.8218	75.141	121.8218	76.18	211.8218	76.656
0.2777	3.955	32.8218	75.127 74.997	122.8218 123.8218	76.18 75.992	212.8218 213.8218	76.526 76.569
0.294 0.3103	4.071 4.446	33.8218 34.8218	75.069	124.8218	76.137	214.8218	76.569
0.3267	4.894	35.8218	75.084	125.8218	76.18	215.8218	76.512 76.483
0.3433	5.702	36.8218 37.8218	75.228 75.242	126.8218 127.8218	76.079 76.122	216.8218 217.8218	76.512
0.361 0.3797	5.861 6.554	38.8218	75.3	128.8218	75.992	218.8218	76.598
0.3995	6.799	39.8218	75.329	129.8218	76.021 75.964	219.8218 220.8218	76.541 76.598
0.4205	7.391 7.766	40.8218 41.8218	75.141 75.199	130.8218 131.8218	75.992	221.8218	76.512
0.4427 0.4662	8.329	42.8218	75.242	132.8218	75.819	222.8218	76.541
0.491	9.109	43.8218	75.43 75.329	133.8218 134.8218	75.906 75.718	223.8218 224.8218	76.497 76.483
0.5173 0.5453	9.427 10.018	44.8218 45.8218	75.358	135.8218	76.036	225.8218	76.584
0.575	10.827	46.8218	75.314	136.8218	76.007	226.8218	76.396 76.541
0.6063	11.346	47.8218 48.8218	75.343 75.502	137.8218 138.8218	76.064 76.021	227.8218 228.8218	76.569
0.6395 0.6747	12.227 12.992	49.8218	75.588	139.8218	76.122	229.8218	76.598
0.712	13.973	50.8218	75.588	140.8218 141.8218	76.281 76.108	230.8218 231.8218	76.613 76.699
0.7515 0.7933	14.637 15.59	51.8218 52.8218	75.459 75.387	141.8218	76.007	232.8218	76.382
0.8377	16.499	53.8218	75.545	143.8218	76.151	233.8218	76.44
0.8847	17.409	54.8218	75.415 75.545	144.8218 145.8218	76.064 76.137	234.8218 235.8218	76.411 76.699
0.9345 0.9872	18.506 19.372	55.8218 56.8218	75.459	146.8218	76.165	236.8218	76.728
1.043	20.498	57.8218	75.43	147.8218	76.238	237.8218 238.8218	76.742 76.742
1.1022	21.551 22.648	58.8218 59.8218	75.502 75.661	148.8218 149.8218	76.151 76.339	239.8218	76.8
1.1648 1.2312	24.279	60.8218	75.632	150.8218	76.122	240.8218	76.714
1.3015	25.145	61.8218 62.8218	75.675 75.56	151.8218 152.8218	76.252 76.223	241.8218	76.685
1.376 1.455	26.632 27.786	63.8218	75.762	153.8218	76.151		
1.5387	29.114	64.8218	75.574 75.661	154.8218 155.8218	76.079 76.223		
1.6272 1.721	30.615 32.101	65.8218 66.8218	75.863	156.8218	76.295		
1.8203	33.617	67.8218	75.574	157.8218	76.295 76.252		
1.9257 2.0372	34.93 36.633	68.8218 69.8218	75.733 75.733	158.8218 159.8218	76.295		
2.1553	37.931	70.8218	75.617	160.8218	76.454		
2.2805	39.663 41.063	71.8218 72.8218	75.776 75.675	161.8218 162.8218	76.324 76.454		
2.413 2.5535	42.535	73.8218	75.588	163.8218	76.367		
2.7023	44.18	74.8218 75.8218	75.733 75.646	164.8218 165.8218	76.324 76.238		
2.8598 3.0267	45.796 47.297	76.8218	75.848	166.8218	76.266		
3.2035	48.638	77.8218	75.487	167.8218	76.339 76.31		
3.3908	50.341	78.8218 79.8218	75.56 75.574	168.8218 169.8218	76.223		
3.5892 3.7993	52.101 53.371	80.8218	75.747	170.8218	76.122		
4.022	54.843	81.8218	75.762 75.689	171.8218 172.8218	75.978 76.151		
4.2578 4.5077	56.488 57.974	82.8218 83.8218	75.92	173.8218	76.367		
4.7723	59.243	84.8218	75.689	174.8218	76.252		
5.0527	60.614	85.8218 86.8218	75.747 75.747	175.8218 176.8218	76.295 76.353		
5.3495 5.664	61.97 63.081	87.8218	75.762	177.8218	76.483		
5.9972	64.322	88.8218	75.877	178.8218 179.8218	76.367 76.411		
6.35 6.7238	65.36 66.442	89.8218 90.8218	75.906 75.834	180.8218	76.382		
7.1198	67.366	91.8218	75.834	181.8218 182.8218	76.281 76.238		
7.5392 7.9835	67.9 69.111	92.8218 93.8218	76.021 75.877	182.8218	76.483		
8.4542	69.746	94.8218	75.964	184.8218	76.31		
8.9527	70.15	95.8218 96.8218	76.079 75.992	185.8218 186.8218	76.324 76.454		
9.4807 10.04	70.886 71.549	96.8218 97.8218	76.021	187.8218	76.44		
10.6325	72.155	98.8218	75.906	188.8218	76.555 76.468		
11.26 11.9248	72.271 72.833	99.8218 100.8218	75.877 76.021	189.8218 190.8218	76.396		
12.629	72.033 73.554	101.8218	75.834	191.8218	76.598		
13.3748	73.54	102.8218 103.8218	75.978 75.848	192.8218 193.8218	76.541 76.44		
14.1648 15.0017	73.829 74.132	104.8218	75.762	194.8218	76.151		


CITY OF HOLLYWOOD IW -1 1,769 - 1,785 RECOVERY DATA


Time	Water Level	Time	Water Level	Time	Water Level
0	76.685	15.8882	1.429	105.8218	0.404
0.0163	77.089	16.8272	1.357	106.8218	0.39
0.0327	77.017	17.8218		107.8218	0.39
0.049 0.0653	77.118 76.988	18.8218 19.8218		108.8218 109.8218	0.39
0.0817	77.046	20.8218		110.8218	0.376 0.376
0.098	77.06	21.8218		111.8218	0.043
0.1143	77.002	22.8218		112.8218	-0.043
0.1307	73.05	23.8218		113.8218	-0.159
0.147 0.1633	76.526 76.281	24.8218 25.8218		114.8218 115.8218	0.376 -0.303
0.1797	75.848	26.8218		116.8218	-0.606
0.196	75.401	27.8218		117.8218	-0.577
0.2123	75.026	28.8218		118.8218	-0.866
0.2287	74.622 74.247	29.8218 30.8218	0.91	119.8218	-0.462
0.245 0.2613	73.843	31.8218	0.881 0.866	120.8218 121.8218	0.246 -0.779
0.2777	73.454	32.8218	0.852	122.8218	-1.025
0.294	73.064	33.8218	0.505	123.8218	0.361
0.3103	72.675	34.8218	0.809	124.8218	0.347
0.3267 0.3433	72.271 71.881	35.8218 36.8218	0.505 0.404	125.8218 126.8218	0.361 0.347
0.361	71.506	37.8218	0.794	127.8218	0.347
0.3797	71.102	38.8218	0.765	128.8218	0.347
0.3995	70.67	39.8218	0.751	129.8218	0.347
0.4205	70.222	40.8218	0.751	130.8218	0.332
0.4427 0.4662	69.746 69.256	41.8218 42.8218	0.303 0.693	131.8218 132.8218	-0.086 -0.274
0.491	68.736	43.8218	0.145	133.8218	-0.678
0.5173	68.131	44.8218	0.26	134.8218	0.332
0.5453	67.539	45.8218	0.708	135.8218	0.332
0.575	66.933	46.8218	0.693	136.8218	0.318
0.6063 0.6395	66.63 65.433	47.8218 48.8218	0.679 0.664	137.8218 138.8218	0.318 0.332
0.6747	64.755	49.8218	0.664	139.8218	0.318
0.712	63.976	50.8218	0.65	140.8218	0.318
0.7515	63.153	51.8218	0.635	141.8218	0.318
0.7933 0.8377	62.302 61.379	52.8218 53.8218	0.621 0.361	142.8218 143.8218	-0.462 -0.548
0.8847	60.441	54.8218	0.303	143.8218	-0.664
0.9345	59.46	55.8218	0.029	145.8218	0.318
0.9872	58.45	56.8218	0.607	146.8218	0.318
1.043	57.382	57.8218	0.592	147.8218	0.318
1.1022 1.1648	56.271 55.088	58.8218 59.8218	0.592 0.578	148.8218 149.8218	0.303 0.303
1.2312	53.876	60.8218	0.578	150.8218	0.087
1.3015	52.621	61.8218	0.188	151.8218	-0.433
1.376	51.366	62.8218	-0.014	152.8218	-0.548
1.455	50.009	63.8218	0.202	153.8218	-0.678
1.5387 1.6272	48.668 47.268	64.8218 65.8218	0.563 0.549	154.8218 155.8218	0.303 0.289
1.721	45.839	66.8218	0.549	156.8218	0.289
1.8203	44.267	67.8218	0.534	157.8218	0.289
1.9257	42.737	68.8218	0.534	158.8218	0.289
2.0372 2.1553	41.164 39.519	69.8218 70.8218	0.52 0.26	159.8218 160.8218	0.289 0.289
2.2805	37.874	71.8218	0.217	161.8218	0.289
2.413	36.2	72.8218	0.072	162.8218	-0.144
2.5535	34.439	73.8218	0.52		-0.404
2.7023 2.8598	32.708 30.99	74.8218 75.8218	0.52 0.159		-0.693
3.0267	29.143	76.8218	-0.115	165.8218 166.8218	0.289 0.289
3.2035	27.44	77.8218	0.173	167.8218	0.274
3.3908	25.867	78.8218	0.491	168.8218	0.274
3.5892 3.7993	23.89 22.085	79.8218 80.8218	0.491 0.477	169.8218	0.274
4.022	22.085	81.8218	0.087		0.274 -0.548
4.2578	18.636	82.8218	-0.187		-0.808
4.5077	17.077	83.8218	-0.115		-0.476
4.7723	15.46	84.8218	-0.014		0.274
5.0527 5.3495	13.959 12.487	85.8218 86.8218	0.462 0.462	175.8218 176.8218	0.26 0.26
5.664	11.087	87.8218	0.462	177.8218	0.26
5.9972	9.802	88.8218	0.448	178.8218	0.26
6.35	8.633	89.8218	0.448	179.8218	0.26
6.7238 7.1198	7.565 6.597	90.8218 91.8218	0.448 0.029	180.8218	0.26
7.5392	5.63	91.8218	-0.115		0.476 0.924
7.9835	4.894	93.8218	-0.173		0.981
8.4542	4.086	94.8218	0.433		0.751
8.9527	3.205	95.8218	0.433		
9.4807 10.04	2.786 2.31	96.8218 97.8218	0.433 0.419		
10.6325	2.137	98.8218	0.419		
11.26	1.805	99.8218	0.419		
11.9248	1.646	100.8218	0.404		
12.629	1.906		-0.144		
13.3748 14.1648	1.761 1.631	102.8218 103.8218	0.043 -0.231		
15.0017	1.516	104.8218	0.419		

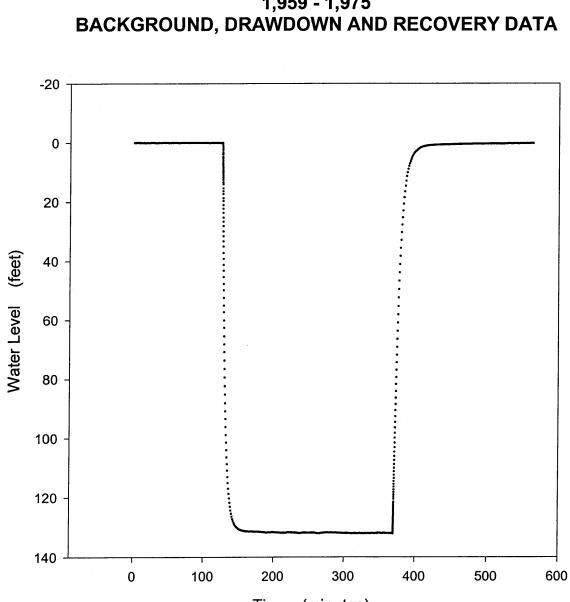

Injection Well No. 1 (IW-1) – Packer Tests 1,894 – 1,910

CITY OF HOLLYWOOD IW -1 1,894 - 1,910 BACKGROUND, DRAWDOWN AND RECOVERY DATA

CITY OF HOLLYWOOD IW -1 1,894 - 1,910 BACKGROUND DATA

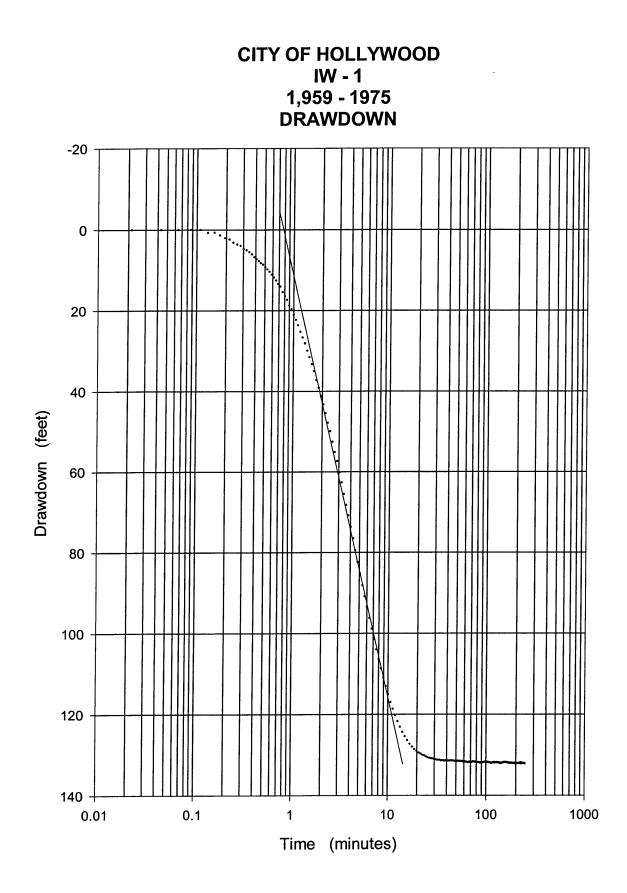
,

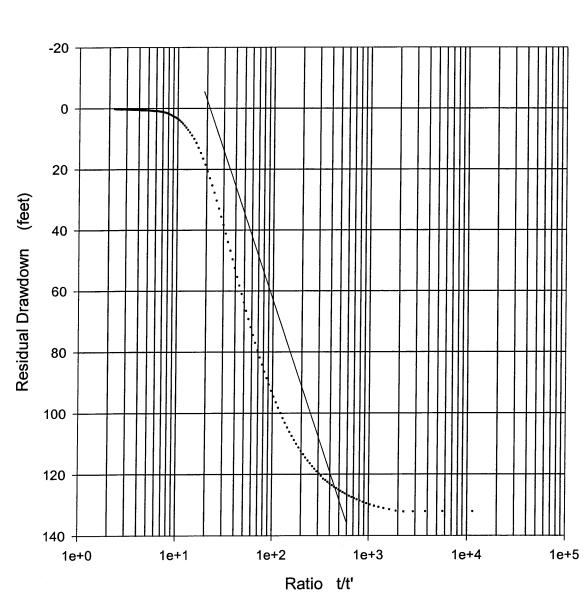
Time	Water Level	Time	Water Leve	l Time	Water Level
0	0	20.838	-0.029	110.838	-0.13
0.0218	Ō	21.838	-0.029	111.838	-0.159
0.0437	-0.014	22.838	-0.043	112.838	-0.159
0.0655	-0.014	23.838	-0.043	113.838	-0.13 -0.13
0.0873 0.1092	-0.014 -0.014	24.838 25.838	-0.043 -0.043	114.838 115.838	-0.101
0.1092	-0.014	26.838	-0.058	116.838	-0.101
0.1528	-0.014	27.838	-0.029	117.838	-0.217
0.1747	-0.014	28.838	-0.029	118.838	-0.159
0.1965	-0.014	29.838	-0.043	119.838	-0.173
0.2183	-0.014 -0.014	30.838 31.838	-0.043 -0.115	120.838	-0.101
0.2402	-0.014	32.838	-0.087		
0.2838	-0.014	33.838	-0.087		
0.3057	-0.014	34.838	-0.029		
0.3275	-0.014	35.838	-0.043		
0.3493 0.3712	-0.014 -0.014	36.838 37.838	-0.058 -0.058		
0.393	-0.014	38.838	-0.058		
0.4148	-0.014	39.838	-0.072		
0.4367	-0.014	40.838	-0.058		
0.4588	-0.014	41.838	-0.058		
0.4823 0.5072	-0.014 -0.014	42.838 43.838	-0.058 -0.058		
0.5335	-0.014	44.838	-0.101		
0.5615	-0.014	45.838	-0.087		
0.5912	-0.014	46.838	-0.072		
0.6225	-0.014	47.838	-0.115		
0.6557 0.6908	-0.014 -0.014	48.838 49.838	-0.101 -0.029		
0.7282	-0.014	50.838	-0.058		
0.7677	0.029	51.838	-0.072		
0.8095	-0.043	52.838	-0.072		
0.8538	-0.014	53.838 54.838	-0.058 -0.072		
0.9008 0.9507	-0.043 -0.043	55.838	-0.072		
1.0033	-0.043	56.838	-0.058		
1.0592	-0.043	57.838	-0.115		
1.1183	-0.043	58.838	-0.115		
1.181	-0.043 -0.043	59.838 60.838	-0.115 -0.115		
1.2473 1.3177	-0.043	61.838	-0.115		
1.3922	-0.043	62.838	-0.115		
1.4712	-0.043	63.838	-0.115		
1.5548	-0.043	64.838	-0.115		
1.6433 1.7372	-0.043 -0.043	65.838 66.838	-0.115 -0.072		
1.8365	-0.043	67.838	-0.101		
1.9418	-0.043	68.838	-0.101		
2.0533	-0.043	69.838	-0.087		
2.1715	-0.043	70.838	0.029		
2.2967 2.4292	-0.043 -0.043	71.838 72.838	-0.159 -0.188		
2.5697	-0.043	73.838	-0.202		
2.7185	-0.043	74.838	-0.101		
2.876	-0.043	75.838	-0.101		
3.0428	-0.043	76.838 77.838	-0.101 -0,115		
3.2197 3.407	-0.058 0.014	78.838	-0.101		
3.6053	0.014	79.838	-0.115		
3.8155	0.014	80.838	-0.101		
4.0382	0.014	81.838	-0.014		
4.274	0	82.838 83.838	-0.101 -0.101		
4.5238 4.7885	0 0	84.838	-0.159		
5.0688	ŏ	85.838	-0.029		
5.3657	-0.014	86.838	-0.043		
5.6802	-0.014	87.838	-0.217		
6.0133	-0.014 -0.014	88.838 89.838	-0.188 -0.217		
6.3662 6.74	-0.014	90.838	-0.231		
7.136	-0.014	91.838	-0.188		
7.5553	-0.014	92.838	-0.159		
7.9997	-0.029	93.838	-0.202		
8.4703 8.9688	-0.014 -0.029	94.838 95.838	-0.188 -0.029		
9.4968	-0.029	96.838	-0.058		
10.0562	-0.029	97.838	-0.058		
10.6487	-0.029	98.838	-0.173		
11.27.62	-0.029	99.838	-0.231 -0.202		
11.941 12.6452	-0.029 -0.029	100.838 101.838	-0.202 -0.188		
13.391	-0.029	102.838	-0.231		
14.181	-0.029	103.838	-0.202		
15.0178	-0.014	104.838	-0.217		
15.9043	-0.014	105.838 106.838	-0.188 -0.173		
16.8433 17.838	-0.029 -0.087	106.838	-0.173		
18.838	-0.072	108.838	-0.144		
19.838	-0.072	109.838	-0.13		


CITY OF HOLLYWOOD IW -1 1,894 - 1,910 DRAWDOWN DATA

Time	Water Level	Time	Water Level	Time	Water Level	Time	Water Level
0	0	20.838	90.993	110.838	143.897	200.838	144.444
0.0218	-0.029	21.838	93.445	111.838	143.897	201.838	144.387
0.0437	-0.043	22.838	95.738	112.838	143.926	202.838	144.444
0.0655	-0.043	23.838	98.219	113.838	143.954	203.838 204.838	144.387 144.473
0.0873	-0.043	24.838 25.838	100.281 102.43	114.838 115.838	143.926 144.012	204.838	144.473
0.1092	-0.043 -0.043	26.838	102.43	116.838	144.041	206.838	144.459
0.131 0.1528	-0.043	27.838	106.252	117.838	144.026	207.838	144.459
0.1747	-0.043	28.838	108.126	118.838	144.041	208.838	144.416
0.1965	-0.043	29.838	109.828	119.838	144.07	209.838	144.459
0.2183	5.587	30.838	111.53	120.838	144.084	210.838	144.401
0.2402	0.318	31.838	112.986	121.838	144.113 144.113	211.838 212.838	144.416 144.416
0.262 0.2838	-0.404 0.491	32.838 33.838	114.442 115.913	122.838 123.838	144.084	213.838	144.387
0.2050	0.808	34.838	117.211	124.838	144.214	214.838	144.344
0.3275	0.895	35.838	118.552	125.838	144.171	215.838	144.387
0.3493	0.765	36.838	119.777	126.838	144.199	216.838	144.372
0.3712	1.314	37.838	120.96	127.838	144.185	217.838 218.838	144.344 144.372
0.393	1.169	38.838	122.055 123.079	128.838 129.838	144.228 144.185	219.838	144.372
0.4148	1.516 1.646	39.838 40.838	123.079	130.838	144.228	220.838	144.401
0.4367 0.4588	1.689	41.838	125.141	131.838	144.185	221.838	144.401
0.4823	2.079	42.838	125.977	132.838	144.185	222.838	144.387
0.5072	2.021	43.838	126.799	133.838	144.199	223.838	144.401
0.5335	2.396	44.838	127.621	134.838	144.243	224.838	144.344 144.329
0.5615	2.584	45.838	128.399	135.838 136.838	144.243 144.358	225.838 226.838	144.329
0.5912	2.902 3.075	46.838 47.838	129.163 129.769	137.838	144.3	227.838	144.43
0.6225 0.6557	3.147	48.838	130.504	138.838	144.372	228.838	144.372
0.6908	3.176	49.838	131.182	139.838	144.271	229.838	144.43
0.7282	3.522	50.838	131.744	140.838	144.243	230.838	144.459
0.7677	4.028	51.838	132.306	141.838	144.228	231.838	144.416
0.8095	4.057	52.838	132.796 133.344	142.838 143.838	144.315 144.329	232.838 233.838	144.416 144.43
0.8538 0.9008	4.259 4.937	53.838 54.838	133.834	144.838	144.344	234.838	144.43
0.9507	4.98	55.838	134.31	145.838	144.401	235.838	144.43
1.0033	5.558	56.838	134.815	146.838	144.344	236.838	144.416
1.0592	5.731	57.838	135.319	147.838	144.358	237.838	144.56
1.1183	6.049	58.838	135.694	148.838	144.329	238.838 239.838	144.459 144.488
1.181	6.583	59.838 60.838	136.127 136.458	149.838 150.838	144.444 144.444	240.838	144.531
1.2473 1.3177	7.305 7.507	61.838	136.948	151.838	144.372	241.838	144.473
1.3922	8.055	62.838	137.338	152.838	144.372		
1.4712	8.705	63.838	137.626	153.838	144.372		
1.5548	9.08	64.838	137.943	154.838	144.416		
1.6433	9.6	65.838	138.246	155.838 156.838	144.416 144.416		
1.7372 1.8365	10.509 11.202	66.838 67.838	138.592 138.866	157.838	144.416		
1.9418	11.823	68.838	139.154	158.838	144.444		
2.0533	12.472	69.838	139.37	159.838	144.444		
2.1715	13.338	70.838	139.572	160.838	144.416		
2.2967	14.132	71.838	139.904 140.105	161.838 162.838	144.459 144.459		
2.4292 2.5697	14.984 15.749	72.838 73.838	140.264	163.838	144.488		
2.7185	16.716	74.838	140.509	164.838	144.473		
2.876	17.568	75.838	140.783	165.838	144.43		
3.0428	18.65	76.838	140.855	166.838	144.473		
3.2197	19.733	77.838	141.042 141.316	167.838 168.838	144.473 144.43		
3.407 3.6053	20.743 21.999	78.838 79.838	141.417	169.838	144.444		
3.8155	23.37	80.838	141.561	170.838	144.459		
4.0382	24.871	81.838	141.763	171.838	144.444		
4.274	26.242	82.838	141.864	172.838	144.488		
4.5238	27.685	83.838	141.965	173.838 174.838	144.502 144.488		
4.7885 5.0688	29.027 30.499	84.838 85.838	142.138 142.239	175.838	144.459		
5.3657	32.13	86.838	142.325	176.838	144.488		
5.6802	33.718	87.838	142.383	177.838	144.416		
6.0133	35.363	88.838	142.599	178.838	144.444		
6.3662	37.282	89.838	142.643	179.838	144.502		
6.74	39.317	90.838	142.758 142.758	180.838 181.838	144.416 144.488		
7.136 7.5553	41.352 43.314	91.838 92.838	142.756	182.838	144.43		
7.9997	45.277	93.838	142.96	183.838	144.43		
8.4703	47.542	94.838	143.104	184.838	144.358		
8.9688	49.706	95.838	143.046	185.838	144.517		
9.4968	52.159	96.838	143.089	186.838 187.838	144.401 144.517		
10.0562 10.6487	54.641 57.166	97.838 98.838	143.176 143.291	187.838	144.517		
10.6487	59.792	99.838	143.32	189.838	144.43		
11.941	62.1	100.838	143.435	190.838	144.372		
12.6452	64.985	101.838	143.479	191.838	144.502		
13.391	67.813	102.838	143.551	192.838	144.517		
14.181	70.828	103.838	143.637 143.709	193.838 194.838	144.344 144.43		
15.0178 15.9043	73.598 76.497	104.838 105.838	143.709	194.838	144.43		
16.8433	79.483	105.838	143.666	196.838	144.488		
17.838	82.628	107.838	143.724	197.838	144.502		
18.838	85.527	108.838	143.796	198.838 199.838	144.488		
19.838	88.368	109.838	143.825	199.030	144.416		

CITY OF HOLLYWOOD IW -1 1,894 - 1,910 RECOVERY DATA


Time	Water Level	Time	Water Level	Time Water Level	Time Water Level
0	144.473	20.8347	74.319	110.8347 4.23	200.8347 0.346
0.0217	144.502	21.8347	71.924	111.8347 4.1	201.8347 0.332
0.0433	144.444	22.8347	69.645	112.8347 4.042	202.8347 0.317
0.065 0.0867	144.516 144.43	23.8347 24.8347	67.438 65.303	113.8347 3.941 114.8347 3.811	203.8347 0.317 204.8347 0.303
0.1083	144.415	25.8347	63.24	115.8347 3.609	204.8347 0.303 205.8347 0.303
0.13	144.473	26.8347	61.234	116.8347 3.493	206.8347 0.289
0.1517	144.372	27.8347	59.315	117.8347 3.407	207.8347 0.274
0.1733	144.329	28.8347	57.425	118.8347 3.277	208.8347 0.274
0.195 0.2167	144.242 144.084	29.8347 30.8347	55.579 53.833	119.8347 3.19 120.8347 3.089	209.8347 0.274 210.8347 0.26
0.2383	143.997	31.8347	52.145	121.8347 3.003	211.8347 0.274
0.26	143.911	32.8347	50.514	122.8347 2.916	212.8347 0.332
0.2817	143.81	33.8347	48.913	123.8347 2.815	213.8347 0.216
0.3033	143.695	34.8347	47.369	124.8347 2.728	214.8347 0.202
0.325 0.3467	143.608 143.522	35.8347 36.8347	45.911 44.468	125.8347 2.656 126.8347 2.569	215.8347 0.216 216.8347 0.231
0.3683	143.406	37.8347	43.083	127.8347 2.512	217.8347 0.245
0.39	143.305	38.8347	41.727	128.8347 2.425	218.8347 0.216
0.4117	143.204	39.8347	40.413	129.8347 2.338	219.8347 0.216
0.4333 0.4555	143.104 143.003	40.8347 41.8347	39.158 37.917	130.8347 2.281 131.8347 2.237	220.8347 0.144 221.8347 0.173
0.4333	142.902	42.8347	36.719	132.8347 2.18	222.8347 0.202
0.5038	142.801	43.8347	35.565	133.8347 2.064	223.8347 0.216
0.5302	142.686	44.8347	34.439	134.8347 2.035	224.8347 0.187
0.5582	142.57	45.8347 46.8347	33.371	135.8347 1.949 136.8347 1.905	225.8347 0.187
0.5878 0.6192	142.426 142.296	40.0347 47.8347	32.303 31.293	136.8347 1.905 137.8347 1.848	226.8347 0.187 227.8347 0.115
0.6523	142.167	48.8347	30.297	138.8347 1.79	228.8347 0.173
0.6875	142.008	49.8347	29.359	139.8347 1.747	
0.7248	141.849	50.8347	28.435	140.8347 1.689	
0.7643 0.8062	141.749 141.489	51.8347 52.8347	27.541 26.704	141.8347 1.646 142.8347 1.646	
0.8505	141.273	53.8347	25.881	143.8347 1.617	
0.8975	141.071	54.8347	25.058	144.8347 1.487	
0.9473	140.84	55.8347	24.236	145.8347 1.458	
1	140.61	56.8347	23.427 22.691	146.8347 1.415	
1.0558 1.115	140.35 140.105	57.8347 58.8347	21.97	147.8347 1.371 148.8347 1.342	
1.1777	139.802	59.8347	21.277	149.8347 1.299	
1.244	139.514	60.8347	20.613	150.8347 1.27	
1.3143	139.211	61.8347	19.963	151.8347 1.227	
1.3888 1.4678	138.894 138.534	62.8347 63.8347	19.343 18.736	152.8347 1.198 153.8347 1.169	
1.5515	138.159	64.8347	18.13	154.8347 1.111	
1.64	137.77	65.8347	17.582	155.8347 1.083	
1.7338	137.366	66.8347	17.019	156.8347 1.054	
1.8332 1.9385	136.934 136.472	67.8347 68.8347	16.485 15.965	157.8347 1.025 158.8347 0.996	
2.05	135.997	69.8347	15.474	159.8347 0.967	
2.1682	135.478	70.8347	14.984	160.8347 0.938	
2.2933	134.944	71.8347	14.522	161.8347 0.924	
2.4258 2.5663	134.382 133.777	72.8347 73.8347	14.06 13.627	162.8347 0.895 163.8347 0.866	
2.3003	133.142	74.8347	13.266	164.8347 0.837	
2.8727	132.479	75.8347	12.847	165.8347 0.88	
3.0395	131.787	76.8347	12.472	166.8347 0.794	
3.2163	131.052	77.8347	11.981	167.8347 0.823 168.8347 0.736	
3.4037 3.602	130.244 129.437	78.8347 79.8347	11.606 11.245	168.8347 0.736 169.8347 0.736	
3.8122	128.558	80.8347	10.899	170.8347 0.707	
4.0348	127.62	81.8347	10.552	171.8347 0.693	
4.2707	126.669	82.8347 83.8347	10.22	172.8347 0.678 173.8347 0.722	
4.5205 4.7852	125.66 124.593	83.8347 84.8347	9.888 9.6	173.8347 0.722 174.8347 0.592	
5.0655	123.454	85.8347	9.282	175.8347 0.606	
5.3623	122.315	86.8347	8.993	176.8347 0.563	
5.6768 6.01	121.06 119.763	87.8347 88.8347	8.719 8.459	177.8347 0.563 178.8347 0.563	
6.3628	118.378	89.8347	8.185	179.8347 0.505	
6.7367	116.951	90.8347	7.925	180.8347 0.534	
7.1327	115.466	91.8347	7.68	181.8347 0.52	
7.552	113.894	92.8347	7.449	182.8347 0.52	
7.9963 8.467	112.279 110.592	93.8347 94.8347	7.203 7.001	183.8347 0.505 184.8347 0.491	
8.9655	108.818	95.8347	6.77	185.8347 0.476	
9.4935	107.016	96.8347	6.554	186.8347 0.447	
10.0528	105.083	97.8347	6.352	187.8347 0.462	
10.6453 11.2728	103.093 101.031	98.8347 99.8347	6.164 5.962	188.8347 0.462 189.8347 0.433	
11.9377	98.882	100.8347	5.789	190.8347 0.433	
12.6418	96.647	101.8347	5.601	191.8347 0.433	
13.3877	94.354	102.8347	5.428	192.8347 0.404	
14.1777 15.0145	92.003 89.565	103.8347 104.8347	5.255 5.096	193.8347 0.39 194.8347 0.39	
15.0145	89.505 86.998	104.8347	5.090 4.937	194.8347 0.39	
16.84	84.431	106.8347	4.793	196.8347 0.375	
17.8347	81.777	107.8347	4.634	197.8347 0.361	
18.8347 19.8347	79.223	108.8347	4.504	198.8347 0.346 199.8347 0.332	
19.8347	76.728	109.8347	4.36	199.8347 0.332	


Injection Well No. 1 (IW-1) – Packer Tests 1,959 – 1,975

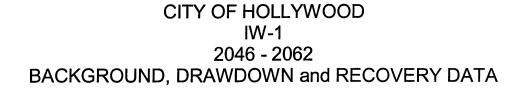
CITY OF HOLLYWOOD IW -1 1,959 - 1,975 BACKGROUND, DRAWDOWN AND RECOVERY DATA

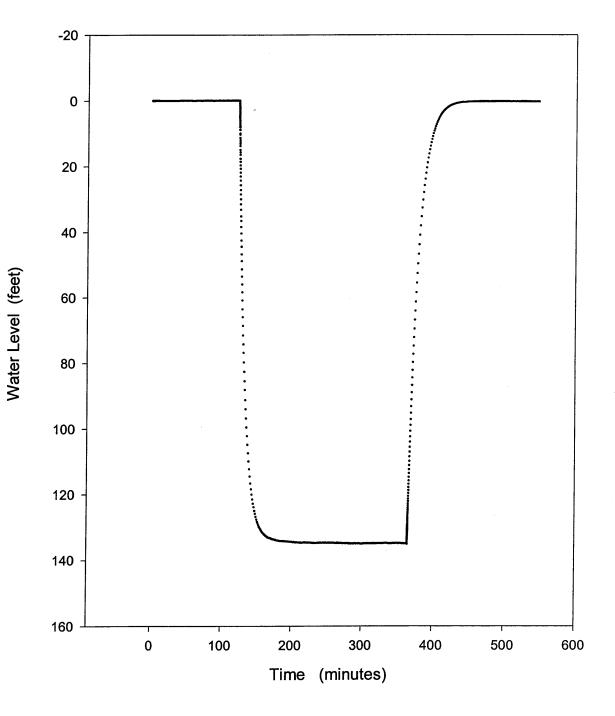
Time (minutes)

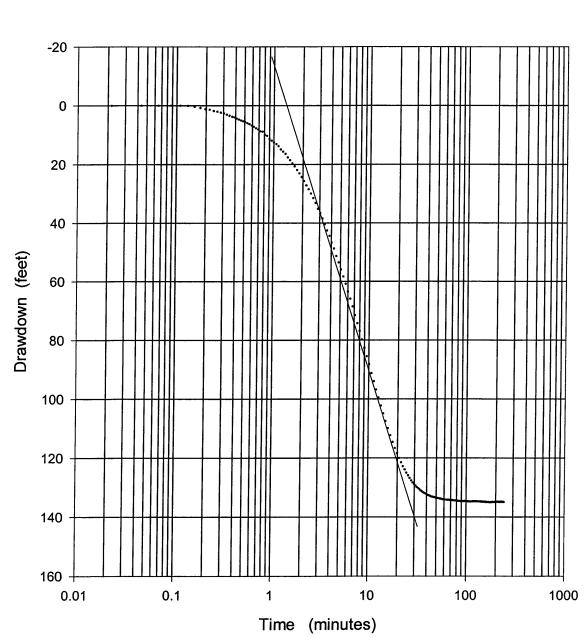
CITY OF HOLLYWOOD IW -1 1,959 - 1,975 RESIDUAL DRAWDOWN vs t/t'

CITY OF HOLLYWOOD IW-1 1959 - 1975 BACKGROUND DATA

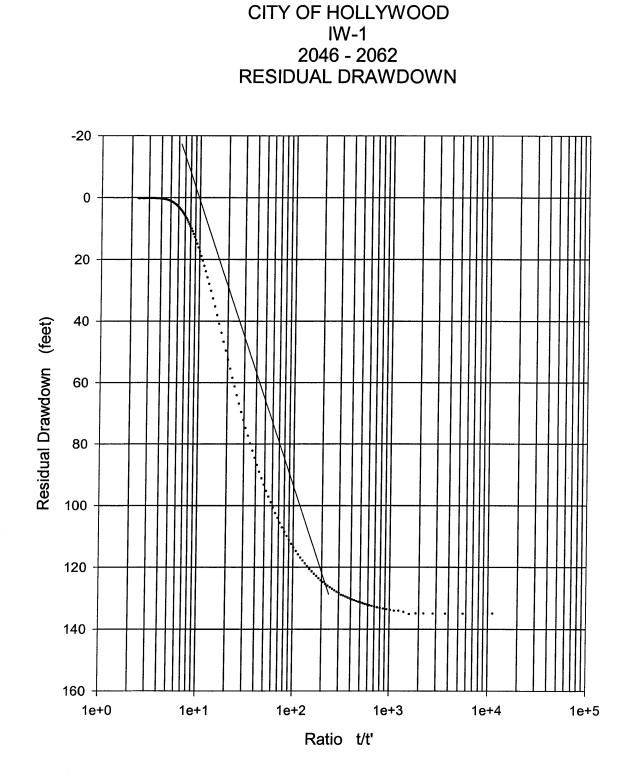
Time	Water Level	Time	Water Level	Time	Water Level
0	0	20.8347	-0.029	110.8347	-0.029
0.0217	Ō	21.8347	-0.029	111.8347	-0.029
0.0433	0	22.8347	-0.029	112.8347	-0.043
0.065	0	23.8347	-0.043	113.8347	-0.029
0.0867 0.1083	0	24.8347 25.8347	-0.043 -0.043	114.8347 115.8347	-0.043 -0.029
0.13	ŏ	26.8347	-0.043	116.8347	-0.029
0.1517	0.014	27.8347	-0.029	117.8347	-0.029
0.1733	0	28.8347	-0.029	118.8347	-0.029
0.195 0.2167	0	29.8347 30.8347	-0.029 0.029	119.8347 120.8347	-0.014 0.014
0.2383	ŏ	31.8347	0.029	121.8347	0.029
0.26	0	32.8347	-0.029	122.8347	-0.014
0.2817	0	33.8347	-0.014	123.8347	-0.014
0.3033 0.325	0.014 0	34.8347 35.8347	-0.029 -0.043	124.8347	0.029
0.3467	ŏ	36.8347	-0.043		
0.3683	0.014	37.8347	-0.029		
0.39	0	38.8347	-0.043		
0.4117 0.4333	0 0.014	39.8347 40.8347	-0.043 -0.043		
0.4555	0.014	41.8347	-0.043		
0.479	0	42.8347	-0.043		
0.5038	0.014	43.8347	-0.043		
0.5302	0	44.8347 45.8347	-0.043 -0.043		
0.5582 0.5878	ŏ	46.8347	-0.043		
0.6192	Ō	47.8347	-0.029		
0.6523	-0.014	48.8347	0.014		
0.6875	-0.014 -0.014	49.8347 50.8347	0.014 0.029		
0.7248 0.7643	-0.072	51.8347	-0.029		
0.8062	0.014	52.8347	-0.043		
0.8505	0.014	53.8347	-0.043		
0.8975	0.029 0.029	54.8347 55.8347	-0.029 -0.043		
0.9473 1	0.029	56.8347	-0.043		
1.0558	0.029	57.8347	-0.043		
1.115	0.014	58.8347	-0.043		
1.1777	0.014 0.014	59.8347 60.8347	-0.043 -0.014		
1.244 1.3143	0.014	61.8347	0		
1.3888	0.014	62.8347	0.029		
1.4678	0.014	63.8347	0		
1.5515	0.014 0	64.8347 65.8347	-0.029 -0.043		
1.64 1.7338	0	66.8347	-0.043		
1.8332	-0.029	67.8347	-0.043		
1.9385	-0.029	68.8347	-0.043		
2.05 2.1682	0.014 -0.029	69.8347 70.8347	-0.043 -0.043		
2.2933	-0.029	71.8347	-0.043		
2.4258	-0.014	72.8347	-0.043		
2.5663	-0.029	73.8347	-0.043		
2.7152 2.8727	-0.043 -0.043	74.8347 75.8347	-0.043 -0.029		
3.0395	-0.043	76.8347	0.014		
3.2163	-0.087	77.8347	0.014		
3.4037	-0.101	78.8347	-0.029		
3.602 3.8122	-0.101 -0.087	79.8347 80.8347	-0.043 -0.043		
4.0348	-0.058	81.8347	-0.043		
4.2707	-0.058	82.8347	-0.043		
4.5205	-0.043	83.8347	-0.043		
4.7852 5.0655	-0.043 -0.043	84.8347 85.8347	-0.043 -0.043		
5.3623	-0.029	86.8347	-0.043		
5.6768	-0.029	87.8347	-0.043		
6.01	-0.029	88.8347	-0.043		
6.3628 6.7367	0 -0.014	89.8347 90.8347	-0.043 -0.043		
7.1327	-0.014	91.8347	-0.043		
7.552	-0.014	92.8347	-0.014		
7.9963	-0.014	93.8347 04 8347	0		
8.467 8.9655	-0.014 -0.014	94.8347 95.8347	0.014 -0.014		
9.4935	0	96.8347	-0.029		
10.0528	-0.014	97.8347	-0.043		
10.6453	-0.014	98.8347 99.8347	-0.029 -0.043		
11.2728 11.9377	-0.014 -0.014	100.8347	-0.043		
12.6418	-0.029	101.8347	-0.043		
13.3877	-0.014	102.8347	-0.043		
14.1777	-0.029	103.8347 104.8347	-0.043 0		
15.0145 15.901	0.014 0.043	104.8347	0.029		
16.84	0.043	106.8347	0.029		
17.8347	-0.043	107.8347	-0.029		
18.8347 19.8347	-0.014 -0.029	108.8347 109.8347	-0.029 -0.029		
10.0347	0.028	103.0347	0.020		


CITY OF HOLLYWOOD IW-1 1959 - 1975 DRAWDOWN DATA


Time	Water Level	Time	Water Level	Time	Water Level	Time	Water Level
0	0	20.8313	129.492	110.8313	131.943	200.8313	
0.0215	0	21.8313	129.752	111.8313	131.986	201.8313	
0.043 0.0645	-0.029 -0.029	22.8313 23.8313	130.04 130.213	112.8313 113.8313	132.059 132.001	202.8313 203.8313	
0.086	-0.029	24.8313	130.444	114.8313	131.943	204.8313	132.059
0.1075	-0.029	25.8313	130.631	115.8313	131.929	205.8313	132.059
0.129	0.693	26.8313	130.761	116.8313	131.9	206.8313	132.087
0.1505	0.65	27.8313	130.905	117.8313	131.857 131.857	207.8313 208.8313	132.087 132.044
0.172 0.1935	1.328 2.007	28.8313 29.8313	130.92 131.021	118.8313 119.8313	131.929	209.8313	132.073
0.215	2.31	30.8313	131.121	120.8313	131.871	210.8313	132.044
0.2365	3.133	31.8313	131.251	121.8313	131.857	211.8313	132.087
0.258	3.58	32.8313	131.251	122.8313	131.914	212.8313	132.073
0.2795 0.301	3.912 4.721	33.8313 34.8313	131.251 131.395	123.8313 124.8313	131.886 131.886	213.8313 214.8313	132.102 132.015
0.3225	4.995	35.8313	131.381	125.8313	131.886	215.8313	132.03
0.344	5.471	36.8313	131.367	126.8313	131.886	216.8313	132.073
0.3655	6.005	37.8313	131.467	127.8313	131.929	217.8313	132.073
0.387	6.77 7.247	38.8313 39.8313	131.381 131.424	128.8313 129.8313	131.857 131.9	218.8313 219.8313	132.102 132.059
0.4085 0.43	7.723	40.8313	131.439	130.8313	131.871	220.8313	132.001
0.4522	8.171	41.8313	131.424	131.8313	131.871	221.8313	132.044
0.4757	8.546	42.8313	131.467	132.8313	131.9	222.8313	132.131
0.5005	9.181	43.8313 44.8313	131.381 131.41	133.8313 134.8313	131.871 131.914	223.8313 224.8313	131.842 131.958
0.5268 0.5548	9.758 10.336	45.8313	131.496	135.8313	131.972	225.8313	131.972
0.5845	11.057	46.8313	131.439	136.8313	132.03	226.8313	132.001
0.6158	11.765	47.8313	131.511	137.8313	132.044	227.8313	132.015
0.649	12.486	48.8313	131.554	138.8313	132.116 132.087	228.8313 229.8313	132.044 132.087
0.6842 0.7215	13.353 14.002	49.8313 50.8313	131.496 131.554	139.8313 140.8313	132.007	230.8313	132.03
0.761	15.402	51.8313	131.496	141.8313	132.059	231.8313	132.001
0.8028	16.34	52.8313	131.511	142.8313	131.958	232.8313	132.03
0.8472	17.293	53.8313	131.554	143.8313 144.8313	131.972 131.929	233.8313 234.8313	132.015 132.059
0.8942	18.707 19.602	54.8313 55.8313	131.54 131.568	145.8313	131.929	235.8313	132.102
0.9967	21.017	56.8313	131.626	146.8313	131.943	236.8313	132.073
1.0525	22.258	57.8313	131.554	147.8313	131.871	237.8313	132.087
1.1117	23.6	58.8313	131.655 131.64	148.8313 149.8313	131.842 131.828	238.8313 239.8313	132,087 132.073
1.1743 1.2407	25.231 26.645	59.8313 60.8313	131.655	150.8313	131.813	240.8313	132.116
1.311	28.103	61.8313	131.684	151.8313	131.828	241.8313	132.102
1.3855	29.907	62.8313	131.713	152.8313	131.77	242.8313	132.073
1.4645	31.509	63.8313	131.77	153.8313 154.8313	131.828 131.828	243.8313 244.8313	132.059 132.159
1.5482 1.6367	33.27 34.987	64.8313 65.8313	131.828 131.828	155.8313	131.828	244.0313	152.155
1.7305	37.209	66.8313	131.785	156.8313	131.842		
1.8298	39.186	67.8313	131.756	157.8313	131.799		
1.9352	41.25	68.8313	131.785 131.727	158.8313 159.8313	131.828 131.9		
2.0467 2.1648	43.212 45.42	69.8313 70.8313	131.799	160.8313	131.886		
2.29	47.786	71.8313	131.741	161.8313	131.886		
2.4225	49.893	72.8313	131.727	162.8313	131.842		
2.563 2.7118	52.49 55.102	73.8313 74.8313	131.626 131.741	163.8313 164.8313	131.871 131.857		
2.8693	57.338	75.8313	131.713	165.8313	131.914		
3.0362	60.137	76.8313	131.684	166.8313	131.958		
3.213	62.662	77.8313	131.785	167.8313	131.943		
3.4003 3.5987	65.532 68.23	78.8313 79.8313	131.756 131.799	168.8313 169.8313	131.986 131.943		
3.8088	70.841	80.8313	131.813	170.8313	131.986		
4.0315	73.712	81.8313	131.813	171.8313	131.943		
4.2673	76.539	82.8313 83.8313	131.828 131.828		132.015 131.986		
4.5172 4.7818	79.453 82.367	84.8313	131.886		132.015		
5.0622	85.222	85.8313	131.914	175.8313	132.001		
5.359	88.122	86.8313	131.9		132.044		
5.6735 6.0067	90.876 93.487	87.8313 88.8313	131.9 131.9		132.015 131.943		
6.3595	95.467 96.198	89.8313	131.929		132.087		
6.7333	98.895	90.8313	131.857	180.8313	132.015		
7.1293	101.447	91.8313	131.9	181.8313	132.03		
7.5487 7.993	104 106.423	92.8313 93.8313	131.886 131.857		132.059 132.073		
8.4637	108.73	94.8313	131.785		132.087		
8.9622	110.936	95.8313	131.741	185.8313	132.102		
9.4902	113.07	96.8313	131.713		132.087		
10.0495 10.642	115.089 116.992	97.8313 98.8313	131.756 131.77		132.087 132.073		
11.2695	118.708	99.8313	131.77		132.087		
11.9343	120.265	100.8313	131.741	190.8313	132.03		
12.6385	121.736	101.8313	131.857		132.102 132.073		
13.3843 14.1743	123.106 124.345	102.8313 103.8313	131.77 131.813		132.073		
15.0112	125.427	104.8313	131.828		132.087		
15.8977	126.407	105.8313	131.799		132.116		
16.8367	127.301	106.8313	131.857 131.857		132.073 132.044		
17.8313 18.8313	127.993 128.599	107.8313 108.8313	131.886		132.044		
19.8313	129.06		131.972		132.159		


CITY OF HOLLYWOOD 1959 - 1975 IW-1 RECOVERY DATA

Time	Water Level	Time	Water Level	Time	Water Level
0	0	20.8313	-125.086	110.8313	
0.0215	0	21.8313	-125.837	111.8313	
0.043 0.0645	-0.014 -0.029	22.8313 23.8313	-126.515 -127.136	112.8313 113.8313	
0.086	0.014	24.8313	-127.67	114.8313	
0.1075	0.043	25.8313	-128.132	115.8313	-131.784
0.129	-0.202 -0.663	26.8313	-128.522	116.8313	
0.1505 0.172	-0.003	27.8313 28.8313	-128.854 -129.157	117.8313 118.8313	
0.1935	-1.456	29.8313	-129.373	119.8313	-131.784
0.215	-1.86	30.8313	-129.59	120.8313	-131.755
0.2365 0.258	-2.263 -2.682	31.8313 32.8313	-129.807 -130.037	121.8313 122.8313	-131.755
0.2795	-3.085	33.8313	-130.225	123.8313	-131.741
0.301	-3.474	34.8313	-130.384	124.8313	-131.799
0.3225	-3.893	35.8313	-130.514	125.8313	-131.813
0.344 0.3655	-4.296 -4.7	36.8313 37.8313	-130.629 -130.745	126.8313 127.8313	-131.813 -131.813
0.387	-5.075	38.8313	-130.831	128.8313	-131.828
0.4085	-5.478	39.8313	-130.904	129.8313	-131.828
0.43	-5.882	40.8313	-130.961	130.8313	-131.828
0.4522 0.4757	-6.3 -6.704	41.8313 42.8313	-131.034 -131.077	131.8313 132.8313	-131.828 -131.828
0.5005	-7.151	43.8313	-131.135	133.8313	-131.842
0.5268	-7.598	44.8313	-131.163	134.8313	-131.842
0.5548 0.5845	-8.045 -8.549	45.8313 46.8313	-131.207 -131.25	135.8313 136.8313	-131.842
0.6158	-9.112	47.8313	-131.265	137.8313	-131.842 -131.842
0.649	-9.66	48.8313	-131.293	138.8313	-131.856
0.6842	-10.265	49.8313	-131.322	139.8313	-131.856
0.7215 0.761	-10.654 -11.62	50.8313 51.8313	-131.322 -131.308	140.8313 141.8313	-131.871 -131.871
0.8028	-12.356	52.8313	-131.308	142.8313	-131.856
0.8472	-13.105	53.8313	-131.366	143.8313	-131.871
0.8942 0.944	-13.913 -14.778	54.8313 55.8313	-131.394 -131.409	144.8313	-131.871 -131.856
0.9967	-15.715		-131.423	145.8313 146.8313	-131.828
1.0525	-16.638		-131.438	147.8313	-131.828
1.1117 1.1743	-17.619 -18.657		-131.452 -131.467	148.8313	-131.813
1.2407	-19.738		-131.467	149.8313 150.8313	-131.828 -131.799
1.311	-20.892	61.8313	-131.481	151.8313	-131.828
1.3855 1.4645	-22.089 -23.343		-131.496	152.8313	-131.813
1.5482	-23.343	64.8313	-131.496 -131.51	153.8313 154.8313	-131.813 -131.885
1.6367	-26.025		-131.524	155.8313	-131.9
1.7305	-27.482		-131.524	156.8313	-131.9
1.8298 1.9352	-28.996 -30.553		-131.539 -131.539	157.8313 158.8313	-131.9 -131.914
2.0467	-32.212		-131.553	159.8313	-131.914
2.1648	-33.914		-131.553		-131.914
2.29 2.4225	-35.716 -37.562		-131.568 -131.582		-131.914 -131.885
2.563	-39.495		-131.553		-131.842
2.7118	-41.514		131.539		-131.842
2.8693 3.0362	-43.591 -45.754		·131.553 ·131.553		-131.914 -131.914
3.213	-48.048		131.611		-131.929
3.4003	-50.341		131.625		-131.929
3.5987 3.8088	-52.721 -55.173		131.625 131.625		-131.943 -131.943
4.0315	-57.698	81.8313	-131.64		-131.943
4.2673	-60.28	82.8313	-131.64		-131.871
4.5172 4.7818	-62.92 -65.617	83.8313 84.8313 -	-131.64 131.654		-131.856 -131.914
5.0622	-68.358		131.654		131.929
5.359	-71.157	86.8313 -	131.669	176.8313	131.943
5.6735 6.0067	-73.942 -76.755		131.669 131.669		131.957
6.3595	-79.669		131.683		131.957 131.943
6.7333	-82.526	90.8313 -	131.683	180.8313 -	131.957
7.1293	-85.369		131.683		131.929
7.5487 7.993	-88.211 -91.025		131.698 131.698		131.885 131.885
8.4637	-93.825	94.8313 -1	131.712		132.015
8.9622	-96.567		131.712		131.929
9.4902 10.0495 -	-99.251 101.877		131.712 131.726		131.957 131.957
10.642 -	104.432		131.712		131.957
	106.871		31.726	189.8313 -	131.972
	109.238 111.504		31.726 31.741		131.972 131.972
	113.654		31.741		131.972
14.1743 -	115.646	103.8313 -1	31.712		131.929
	117.494 119.226		31.698		
	120.799		31.683 31.741		
17.8313 -	122.113	107.8313 -1	31.741		
	123.253 124.249		31.755 31.755		
10.0010 •		108.0313 *1	01.100		

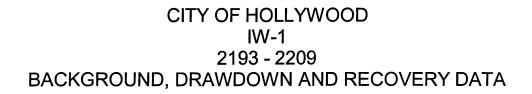

Injection Well No. 1 (IW-1) – Packer Tests 2,046 – 2,062

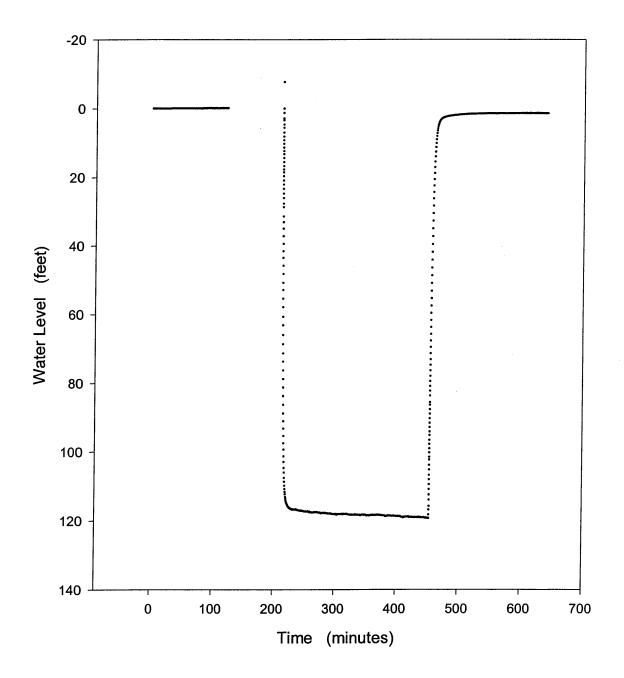
CITY OF HOLLYWOOD IW-1 2046 -2062 DRAWDOWN

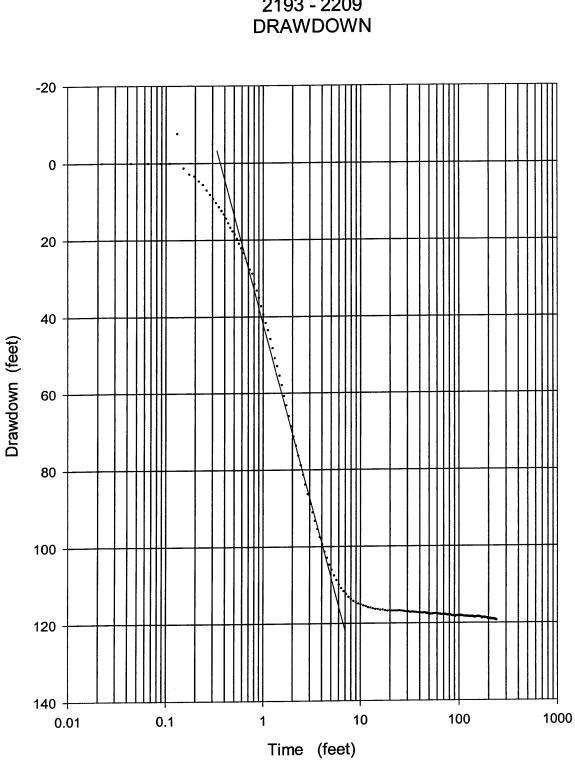
CITY OF HOLLYWOOD IW-1 2046 - 2062 BACKGROUND DATA

Time	Water Level	Time	Water Level	Time	Water Level
0.0000	0	6.7400	-0.043	70.8380	-0.072
0.0218	0	7.1360	-0.043	71.8380	-0.072
0.0437	0	7.5553	-0.043	72.8380	-0.072
0.0655	-0.014	7.9997	-0.043	73.8380	-0.115
0.0873	-0.014	8.4703	-0.014	74.8380	-0.087
0.1092	-0.014	8.9688	-0.014	75.8380	-0.101
0.1310	-0.014	9.4968	-0.043	76.8380	-0.115
0.1528	-0.014	10.0562	-0.043 -0.043	77.8380	-0.115
0.1747	-0.014	10.6487 11.2762	-0.043	78.8380 79.8380	-0.087 -0.101
0.1965 0.2183	0 -0.014	11.9410	-0.043	80.8380	-0.115
0.2402	-0.014	12.6452	-0.043	81.8380	-0.087
0.2620	-0.014	13.3910	-0.043	82.8380	-0.115
0.2838	-0.014	14.1810	-0.043	83.8380	-0.072
0.3057	0	15.0178	-0.043	84.8380	-0.087
0.3275	-0.014	15.9043	-0.043	85.8380	-0.043
0.3493	-0.014	16.8433	-0.058	86.8380	-0.043
0.3712	-0.014	17.8380	-0.043	87.8380	-0.087
0.3930	-0.014	18.8380	-0.043	88.8380	-0.087
0.4148	-0.014	19.8380	-0.043	89.8380	-0.087
0.4367	-0.014	20.8380	-0.058	90.8380	-0.087
0.4588	-0.014	21.8380	-0.043	91.8380	-0.087
0.4823	-0.014 -0.014	22.8380 23.8380	-0.058 -0.058	92.8380 93.8380	-0.087 -0.115
0.5072 0.5335	-0.014 -0.014	23.8380	-0.058	94.8380	-0.115
0.5555	-0.014	25.8380	-0.058	95.8380	-0.101
0.5912	-0.014	26.8380	-0.058	96.8380	-0.087
0.6225	-0.014	27.8380	-0.058	97.8380	-0.101
0.6557	0	28.8380	-0.058	98.8380	-0.101
0.6908	-0.014	29.8380	-0.058	99.8380	-0.115
0.7282	0	30.8380	-0.058	100.8380	-0.101
0.7677	0	31.8380	-0.058	101.8380	-0.101
0.8095	0	32.8380	-0.029	102.8380	-0.101
0.8538	0	33.8380	-0.029	103.8380	-0.101
0.9008	0.014	34.8380	-0.014	104.8380	-0.13
0.9507	0	35.8380	-0.029	105.8380	-0.13
1.0033	0	36.8380	-0.029 -0.058	106.8380 107.8380	-0.101 -0.101
1.0592 1.1183	0 0	37.8380 38.8380	-0.058	108.8380	-0.087
1.1810	0	39.8380	-0.058	109.8380	-0.058
1.2473	ŏ	40.8380	-0.072	110.8380	-0.058
1.3177	Ō	41.8380	-0.043	111.8380	-0.13
1.3922	0	42.8380	-0.072	112.8380	-0.13
1.4712	0	43.8380	-0.072	113.8380	-0.13
1.5548	0	44.8380	-0.072	114.8380	-0.13
1.6433	0	45.8380	-0.072	115.8380	-0.115
1.7372	0	46.8380	-0.072	116.8380	-0.115
1.8365	0	47.8380 48.8380	-0.072	117.8380 118.8380	-0.115 -0.115
1.9418 2.0533	0 0	49.8380	-0.072 -0.043	119.8380	-0.115
2.0555	0	50.8380	-0.043	120.8380	-0.115
2.2967	õ	51.8380	-0.072	121.8380	-0.101
2.4292	õ	52.8380	-0.087	122.8380	-0.087
2.5697	0	53.8380	-0.072		
2.7185	0	54.8380	-0.087		
2.8760	0.043	55.8380	-0.072		
3.0428	0	56.8380	-0.058		
3.2197	0	57.8380	-0.058		
3.4070	-0.029	58.8380	-0.029		
3.6053	-0.029	59.8380	-0.043		
3.8155	-0.029 -0.029	60.8380 61.8380	-0.058 -0.101		
4.0382 4.2740	-0.029 -0.043	62.8380	-0.101		
4.2740	-0.043	63.8380	-0.072		
4.7885	-0.040	64.8380	-0.101		
5.0688	-0.029	65.8380	-0.101		
5.3657	-0.043	66.8380	-0.101		
5.6802	-0.043	67.8380	-0.101		
6.0133	-0.043	68.8380	-0.058		
6.3662	-0.043	69.8380	-0.058		

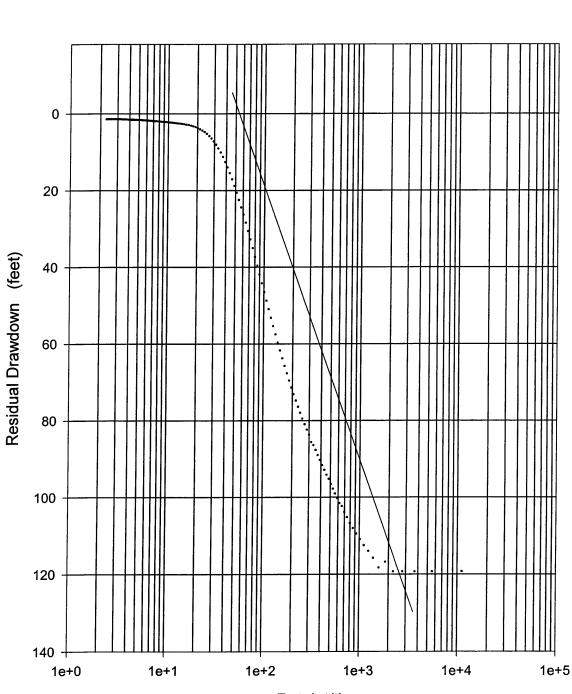
City of Hollywood IW-1 2046 -2062 DRAWDOWN DATA


Time	Water Level	Time	Water Level	Time	Water Level	Time	Water Level	Time	Water Level
0	0	6.7367	68.59	70.8347	134.248	140.8347	134.854	210.8347	134.839
0.0217	-0.014	7.1327	71.547	71.8347	134.364	141.8347	134.782	211.8347	134.782
0.0433	-0.014	7.5520	74.274	72.8347	134.306	142.8347	134.681	212.8347 213.8347	134.868 134.854
0.0650	-0.014	7.9963	76.87	73.8347 74.8347	134.349 134.378	143.8347 144.8347	134.825 134.767	213.6347 214.8347	134.897
0.0867 0.1083	-0.014 0	8.4670 8.9655	79.784 82.611	75.8347	134.378	145.8347	134.811	215.8347	134.926
0.1005	0.014	9.4935	85.51	76.8347	134.45	146.8347	134.839	216.8347	134.998
0.1517	0.361	10.0528	88.193	77.8347	134.421	147.8347	134.767	217.8347	134.883
0.1733	0.794	10.6453	91.265	78.8347	134.421	148.8347	134.825	218.8347	134.926
0.1950	1.169	11.2728	93.99	79.8347	134.522	149.8347	134.811	219.8347	134.94
0.2167	1.343	11.9377	96.832	80.8347	134.537	150.8347	134.883	220.8347	134.911
0.2383	1.776	12.6418	99.543	81.8347 82.8347	134.479 134.565	151.8347 152.8347	134.839 134.825	221.8347 222.8347	134.868 134.811
0.2600 0.2817	2.007 2.367	13.3877 14.1777	102.239 104.85	83.8347	134.638	153.8347	134.868	223.8347	134.897
0.3033	2.613	15.0145	107.431	84.8347	134.551	154.8347	134.926	224.8347	134.911
0.3250	3.06	15.9010	109.925	85.8347	134.551	155.8347	134.825	225.8347	134.868
0.3467	3.407	16.8400	112.305	86.8347	134.652	156.8347	134.868	226.8347	134.839
0.3683	3.768	17.8347	114.568	87.8347	134.638	157.8347	134.854	227.8347	134.811
0.3900	4.013	18.8347	116.659	88.8347	134.638	158.8347	134.955	228.8347 229.8347	134.868 134.911
0.4117	4.374	19.8347 20.8347	118.461 120.047	89.8347 90.8347	134.666 134.58	159.8347 160.8347	134.969 134.868	229.8347	134.839
0.4333 0.4555	4.677 5.009	20.8347	121.518	91.8347	134.724	161.8347	134.969	231.8347	134.811
0.4790	5.327	22.8347	122.816	92.8347	134.695	162.8347	134.969	232.8347	134.854
0.5038	5.5	23.8347	123.897	93.8347	134.666	163.8347	134.955	233.8347	134.897
0.5302	5.947	24.8347	125.007	94.8347	134.652	164.8347	134.969	234.8347	134.998
0.5582	6.308	25.8347	125.901	95.8347	134.609	165.8347	134.969	235.8347	134.883
0.5878	6.756	26.8347	126.795	96.8347	134.594	166.8347	134.984	236.8347 237.8347	134.897 134.969
0.6192	7.218	27.8347	127.631 128.338	97.8347 98.8347	134.666 134.638	167.8347 168.8347	134.911 134.911	237.8347	134.969
0.6523 0.6875	7.709 8.069	28.8347 29.8347	128.828	99.8347	134.652	169.8347	134.969	239.8347	134.955
0.7248	8.748	30.8347	129.404	100.8347	134.724	170.8347	134.94	240.8347	134.897
0.7643	8.849	31.8347	129,909	101.8347	134.71	171.8347	134.969	241.8347	134.94
0.8062	9.96	32.8347	130.298	102.8347	134.666	172.8347	135.012		
0.8505	10.278	33.8347	130.659	103.8347	134.666	173.8347	134.926		
0.8975	11.288	34.8347 35.8347	131.077	104.8347 105.8347	134.738 134.695	174.8347 175.8347	134.984 134.969		
0.9473 1.0000	11.923 12.53	36.8347	131.379 131.711	106.8347	134.753	176.8347	135.027		
1.0558	13.093	37.8347	131.87	107.8347	134.811	177.8347	135.056		
1.1150	13.8	38.8347	132.129	108.8347	134.767	178.8347	134.984		
1.1777	14.955	39.8347	132.273	109.8347	134.753	179.8347	135.041		
1.2440	15.662	40.8347	132.504	110.8347	134.782	180.8347 181.8347	134.911 134.955		
1.3143	16.427	41.8347 42.8347	132.691 132.792	111.8347 112.8347	134.811 134.811	182.8347	134.955		
1.3888 1.4678	17.625 18.548	43.8347	132.994	113.8347	134.796	183.8347	134.955		
1.5515	19.645	44.8347	133.124	114.8347	134.753	184.8347	134.897		
1.6400	20.67	45.8347	133.138	115.8347	134.71	185.8347	134.998		
1.7338	21.882	46.8347	133.268	116.8347	134.753	186.8347	134.911		
1.8332	23.037	47.8347	133.311	117.8347	134.666	187.8347 188.8347	134.984 134.955		
1.9385 2.0500	24.264 25.664	48.8347 49.8347	133.383 133.556	118.8347 119.8347	134.738 134.695	189.8347	134.926		
2.0500	27.136	50.8347	133.556	120.8347	134.724	190.8347	134.969		
2.2933	28.449	51.8347	133.643	121.8347	134.724	191.8347	134.94		
2.4258	29.921	52.8347	133.657	122.8347	134.695	192.8347	134.926		
2.5663	31.465	53.8347	133.744	123.8347	134.695	193.8347	134.955		
2.7152	33.125	54.8347	133.859	124.8347	134.767 134.652	194.8347 195.8347	134.854 134.984		
2.8727 3.0395	35.145 36.574	55.8347 56.8347	133.816 133.931	125.8347 126.8347	134.052	195.8347	134.904		
3.2163	38.421	57.8347	134.018	127.8347	134.724	197.8347	134.94		
3.4037	40.355	58.8347	134.003	128.8347	134.738	198.8347	134.911		
3.6020	42.519	59.8347	134.046	129.8347	134.695	199.8347	134.926		
3.8122	44.409	60.8347	134.147	130.8347	134.767	200.8347	134.883		
4.0348	46.747	61.8347	134.176	131.8347	134.71	201.8347	134.897		
4.2707	48.781	62.8347 63.8347	134.162	132.8347 133.8347	134.753 134.753	202.8347 203.8347	134.839 134.926		
4.5205 4.7852	51.321 53.543	64.8347	134.191 134.191	134.8347	134.755	203.8347	134.911		
5.0655	55.938	65.8347	134.263	135.8347	134.767		134.854		
5.3623	58.333	66.8347	134.176	136.8347	134.71	206.8347	134.897		
5.6768	60.843	67.8347	134.248	137.8347	134.738	207.8347	134.911		
6.0100	63.541	68.8347	134.306	138.8347	134.782	208.8347	134.868		
6.3628	65.936	69.8347	134.277	139.8347	134.825	209.8347	134.811		


CITY OF HOLLYWOOD IW-1 2048 - 2062 RECOVERY DATA


Time	Water Level	Time	Water Level	Time	Water Level	Time	Water Level
0	134.94	6.7367	82.178	70.8347	0.534	140.8347	0.173
0.0217	134.94	7.1327	79.769	71.8347	0.505	141.8347	0.202
0.0433	134.969	7.5520	77.288	72.8347	0.462	142.8347	0.202
0.0650	134.954	7.9963	74.778	73.8347	0.447	143.8347	0.202
0.0867 0.1083	134.969 134.926	8.4670 8.9655	72.167 69.556	74.8347 75.8347	0.418 0.404	144.8347 145.8347	0.202 0.187
0.1300	134.911	9.4935	66.815	76.8347	0.375	146.8347	0.202
0.1517	135.113	10.0528	64.089	77.8347	0.39	147.8347	0.202
0.1733	134.421	10.6453	61.304	78.8347	0.375	148.8347	0.202
0.1950	134.032	11.2728	58.477	79.8347	0.361	149.8347	0.202
0.2167	134.032	11.9377	55.505 52.576	80.8347	0.303	150.8347	0.202
0.2383 0.2600	133.787 133.585	12.6418 13.3877	52.576 49.618	81.8347 82.8347	0.303 0.274	151.8347 152.8347	0.187 0.202
0.2817	133.369	14.1777	46.718	83.8347	0.274	153.8347	0.216
0.3033	133.152	15.0145	43.789	84.8347	0.26	154.8347	0.231
0.3250	132.922	15.9010	40.888	85.8347	0.245	155.8347	0.231
0.3467	132.706	16.8400	38.046	86.8347	0.245	156.8347	0.187
0.3683	132.489	17.8347	35.217	87.8347	0.231	157.8347	0.187
0.3900 0.4117	132.287 132.057	18.8347 19.8347	32.576 30.152	88.8347 89.8347	0.231 0.231	158.8347 159.8347	0.187 0.187
0.4333	131.855	20.8347	27.886	90.8347	0.216	160.8347	0.187
0.4555	131.624	21.8347	25.793	91.8347	0.216	161.8347	0.187
0.4790	131.408	22.8347	23.816	92.8347	0.202	162.8347	0.202
0.5038	131.177	23.8347	22.027	93.8347	0.202	163.8347	0.187
0.5302	130.918	24.8347	20.381	94.8347	0.202	164.8347	0.187
0.5582 0.5878	130.658 130.384	25.8347 26.8347	18.837 17.394	95.8347 96.8347	0.202 0.202	165.8347 166.8347	0.202 0.202
0.6192	130.096	27.8347	16.095	97.8347	0.187	167.8347	0.187
0.6523	129.808	28.8347	14.853	98.8347	0.187	168.8347	0.216
0.6875	129.462	29.8347	13.771	99.8347	0.187	169.8347	0.216
0.7248	129.13	30.8347	12.703	100.8347	0.187	170.8347	0.231
0.7643	128.914	31.8347	11.735	101.8347	0.187	171.8347	0.216
0.8062 0.8505	128.337 127.962	32.8347 33.8347	10.826 9.974	102.8347 103.8347	0.187 0.173	172.8347 173.8347	0.231 0.245
0.8975	127.472	34.8347	9.224	104.8347	0.187	174.8347	0.216
0.9473	126.997	35.8347	8.545	105.8347	0.173	175.8347	0.216
1.0000	126.492	36.8347	7.853	106.8347	0.173	176.8347	0.245
1.0558	125.958	37.8347	7.203	107.8347	0.187	177.8347	0.26
1.1150	125.411	38.8347	6.611 6.12	108.8347	0.173	178.8347 179.8347	0.245 0.202
1.1777 1.2440	124.834 124.214	39.8347 40.8347	5.644	109.8347 110.8347	0.173 0.173	180.8347	0.202
1.3143	123.551	41.8347	5.182	111.8347	0.202	181.8347	0.202
1.3888	122.859	42.8347	4.763	112.8347	0.216	182.8347	0.245
1.4678	122.138	43.8347	4.388	113.8347	0.216		
1.5515	121.359	44.8347	4.056	114.8347	0.187		
1.6400 1.7338	120.552 119.658	45.8347 46.8347	3.724 3.435	115.8347 116.8347	0.173 0.173		
1.8332	118.778	47.8347	3.161	117.8347	0.173		
1.9385	117.856	48.8347	2.916	118.8347	0.173		
2.0500	116.861	49.8347	2.685	119.8347	0.173		
2.1682	115.851	50.8347	2.468	120.8347	0.173		
2.2933	114.741 113.617	51.8347 52.8347	2.281	121.8347	0.173		
2.4258 2.5663	112.42	53.8347	2.107 1.934	122.8347 123.8347	0.173 0.173		
2.7152	111.165	54.8347	1.79	124.8347	0.173		
2.8727	109.867	55.8347	1.645	125.8347	0.173		
3.0395	108.498	56.8347	1.516	126.8347	0.173		
3.2163	107.056	57.8347	1.4	127.8347	0.173		
3.4037	105.585	58.8347	1.299	128.8347	0.173		
3.6020 3.8122	103.999 102.427	59.8347 60.8347	1.198 1.111	129.8347 130.8347	0.173 0.173		
4.0348	102.427	61.8347	1.025	131.8347	0.173		
4.2707	98.922	62.8347	0.953	132.8347	0.173		
4.5205	97.12	63.8347	0.88	133.8347	0.173		
4.7852	95.202	64.8347	0.823	134.8347	0.173		
5.0655	93.197 91.135	65.8347 66.8347	0.75 0.693	135.8347 136.8347	0.173		
5.3623 5.6768	91.135 89	67.8347	0.649	130.8347	0.173 0.173		
6.0100	86.793	68.8347	0.606	138.8347	0.173		
6.3628	84.5	69.8347	0.577	139.8347	0.173		

Injection Well No. 1 (IW-1) – Packer Tests 2,193 – 2,209


i

CITY OF HOLLYWOOD IW-1 2193 - 2209 DRAWDOWN

CITY OF HOLLYWOOD IW-1 2193 - 2209 RESIDUAL DRAWDOWN

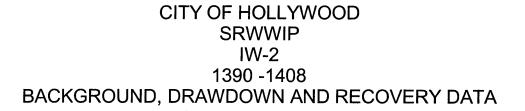
Ratoi t/t'

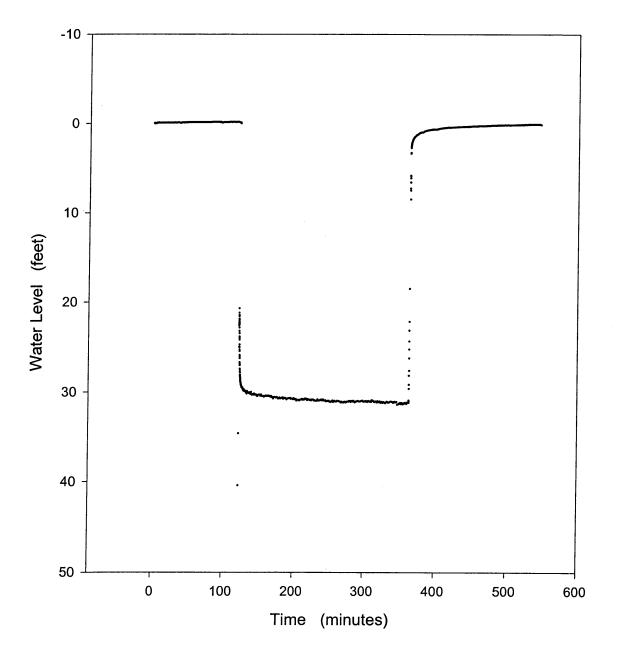
CITY OF HOLLYWOOD IW-1 2193 - 2209 BACKGROUND DATA

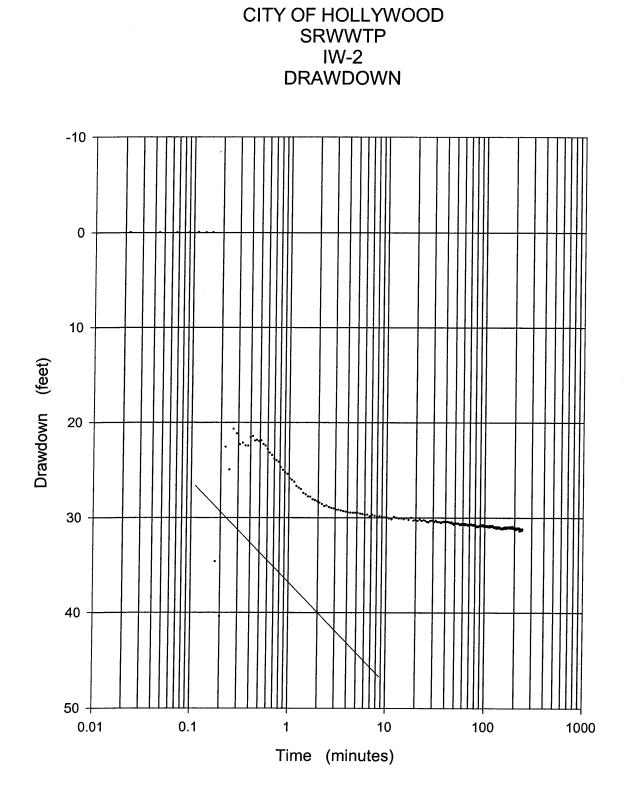
Time	Water Level	Time	Water Level	Time	Water Level
0	0	8.9688	-0.029	80.838	-0.115
0.0218	Ō	9.4968	-0.029	81.838	-0.115
0.0437	0	10.0562	-0.043	82.838	-0.115
0.0655	0	10.6487	-0.043	83.838	-0.115
0.0873	0	11.2762	-0.043	84.838	-0.115
0.1092 0.1310	0 0	11.9410 12.6452	-0.043 -0.029	85.838 86.838	-0.115 -0.101
0.1528	0 0	13.3910	-0.043	87.838	-0.13
0.1747	-0.014	14.1810	-0.043	88.838	-0.115
0.1965	0	15.0178	-0.043	89.838	-0.115
0.2183	0	15.9043	-0.043	90.838	-0.13
0.2402	0	16.8433	-0.043	91.838	-0.13
0.2620	0 0	17.8380 18.8380	-0.043 -0.043	92.838 93.838	-0.13 -0.13
0.2838 0.3057	0	19.8380	-0.043	94.838	-0.13
0.3275	ō	20.8380	-0.043	95.838	-0.13
0.3493	0	21.8380	-0.043	96.838	-0.115
0.3712	-0.014	22.8380	-0.043	97.838	-0.101
0.3930	-0.014	23.8380	-0.043	98.838	-0.13
0.4148	0	24.8380 25.8380	-0.043 -0.043	99.838 100.838	-0.13 -0.13
0.4367 0.4588	o	26.8380	-0.043	101.838	-0.13
0.4823	õ	27.8380	0	102.838	-0.13
0.5072	0	28.8380	-0.014	103.838	-0.13
0.5335	0	29.8380	-0.058	104.838	-0.101
0.5615	0	30.8380	-0.058	105.838	-0.087
0.5912	0	31.8380	-0.058	106.838 107.838	-0.087 -0.13
0.6225 0.6557	0 0	32.8380 33.8380	-0.058 -0.072	107.838	-0.13
0.6908	õ	34.8380	-0.072	109.838	-0.144
0.7282	Ō	35.8380	-0.058	110.838	-0.144
0.7677	0.014	36.8380	-0.058	111.838	-0.144
0.8095	0.014	37.8380	-0.072	112.838	-0.144
0.8538	0	38.8380	-0.058	113.838	-0.144 -0.144
0.9008 0.9507	0 0.014	39.8380 40.8380	-0.072 -0.072	114.838 115.838	-0.144 -0.144
1.0033	0.014	41.8380	-0.072	116.838	-0.144
1.0592	0.014	42.8380	-0.072	117.838	-0.115
1.1183	0.014	43.8380	-0.072	118.838	-0.144
1.1810	0.014	44.8380	-0.072	119.838	-0.144
1.2473	0.014	45.8380	-0.072	120.838	-0.101
1.3177 1.3922	0 0	46.8380 47.8380	-0.087 -0.072	121.838	-0.13
1.4712	õ	48.8380	-0.072		
1.5548	0.014	49.8380	-0.072		
1.6433	0	50.8380	-0.072		
1.7372	0.014	51.8380	-0.072		
1.8365	0.014	52.8380 53.8380	-0.072 -0.072		
1.9418 2.0533	0.014 0.014	54.8380	-0.072		
2.1715	0.014	55.8380	-0.072		
2.2967	0.014	56.8380	-0.072		
2.4292	0.014	57.8380	-0.072		
2.5697	0.014	58.8380 59.8380	-0.072 -0.087		
2.7185 2.8760	0.014 0.014	60.8380	-0.072		
3.0428	0.014	61.8380	-0.087		
3.2197	-0.029	62.8380	-0.087		
3.4070	-0.043	63.8380	-0.087		
3.6053	-0.043	64.8380	-0.072		
3.8155	-0.043	65.8380	-0.087		
4.0382 4.2740	-0.043 -0.043	66.8380 67.8380	-0.087 -0.087		
4.5238	-0.043	68.8380	-0.087		
4.7885	-0.043	69.8380	-0.087		
5.0688	-0.029	70.8380	-0.087		
5.3657	-0.029	71.8380	-0.087		
5.6802	-0.029	72.8380	-0.101 -0.101		
6.0133 6.3662	-0.029 -0.043	73.8380 74.8380	-0.101 -0.101		
6.7400	-0.043	75.8380	-0.101		
7.1360	-0.043	76.8380	-0.101		
7.5553	-0.043	77.8380	-0.072		
7.9997	-0.029	78.8380	-0.014		
8.4703	-0.043	79.8380	-0.072		

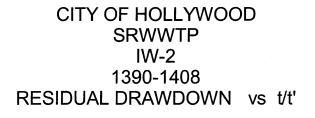
CITY OF HOLLYWOOD IW-1 2193 - 2209 DRAWDOWN DATA

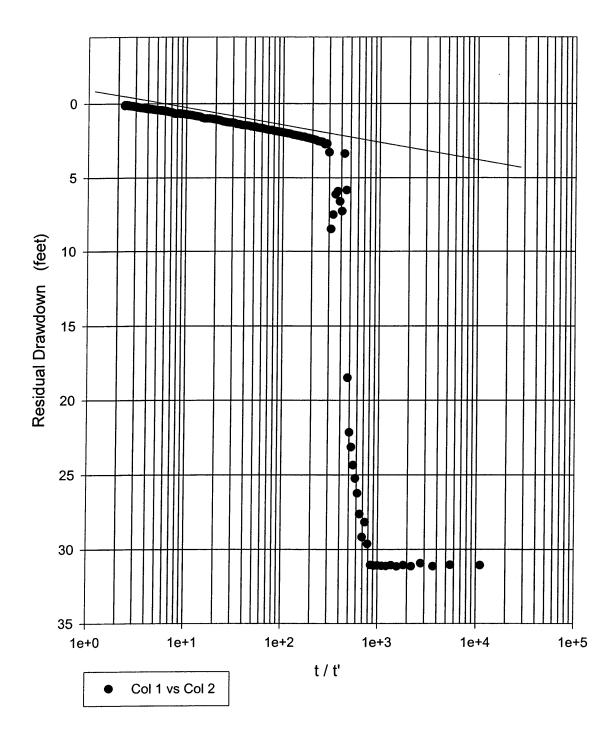
Time	Water Level	Time	Water Level	Time	Water Level	Time	Water Level	Time	Water Level
•	0	8.9655	114.57	80.8347	117.872	155.8347	118.42	230.8347	119.084
0 0.0217	0 0.014	9.4935	114.57	81.8347	117.887	156.8347	118.348	231.8347	119.141
0.0217	0.014	10.0528	115.061	82.8347	118.031	157.8347	118.391	232.8347	119.069
0.0650	0	10.6453	115.392	83.8347	118.074	158.8347	118.319	233.8347	119.069
0.0867	ō	11.2728	115.58	84.8347	118.132	159.8347	118.348	234.8347	119.228
0.1083	0.014	11.9377	115.854	85.8347	118.132	160.8347	118.406	235.8347	119.228
0.1300	-7.695	12.6418	115.969	86.8347	118.103	161.8347	118.406	236.8347	119.285
0.1517	1.256	13.3877	116.171	87.8347	118.132	162.8347	118.42	237.8347	119.228
0.1733	2.858	14.1777	116.344	88.8347	118.175	163.8347	118.478	238.8347	119.343
0.1950	3.364	15.0145	116.33	89.8347	118.06	164.8347	118.464	239.8347	119.242
0.2167	4.663	15.9010	116.546	90.8347 91.8347	118.089 118.319	165.8347 166.8347	118.521 118.492	240.8347	119.271
0.2383	5.572 6.987	16.8400 17.8347	116.488 116.676	91.8347	118.146	167.8347	118.521		
0.2600 0.2817	8.156	18.8347	116.791	93.8347	118.103	168.8347	118.55		
0.3033	9.224	19.8347	116.676	94.8347	118.132	169.8347	118.608		
0.3250	10.278	20.8347	116.791	95.8347	118.103	170.8347	118.781		
0.3467	11.375	21.8347	116.762	96.8347	118.103	171.8347	118.709		
0.3683	12.371	22.8347	116.805	97.8347	118.117	172.8347	118.68		
0.3900	13.28	23.8347	116.805	98.8347	118.146	173.8347	118.665		
0.4117	14.363	24.8347	116.704	99.8347	118.045	174.8347	118.55		
0.4333	15.561	25.8347	116.805	100.8347	118.074	175.8347 176.8347	118.579		
0.4555	16.73	26.8347	116.82	101.8347 102.8347	118.204 118.031	177.8347	118.608 118.593		
0.4790	17.697 18.52	27.8347 28.8347	116.906 116.993	102.8347	118.074	178.8347	118.579		
0.5038 0.5302	19.631	29.8347	117.036	104.8347	118.146	179.8347	118.579		
0.5582	20.916	30.8347	117.022	105.8347	118.117	180.8347	118.694		
0.5878	22.099	31.8347	117.108	106.8347	118.074	181.8347	118.694		
0.6192	23.369	32.8347	117.166	107.8347	118.074	182.8347	118.608		
0.6523	24.741	33.8347	117.036	108.8347	118.132	183.8347	118.608		
0.6875	26.068	34.8347	117.151	109.8347	118.175	184.8347	118.622		
0.7248	27.699	35.8347	117.166	110.8347	118.218	185.8347 186.8347	118.68		
0.7643	28.738	36.8347 37.8347	117.166 117.296	111.8347 112.8347	118.305 118.291	187.8347	118.723 118.665		
0.8062 0.8505	31.451 33.14	38.8347	117.296	113.8347	118.291	188.8347	118.752		
0.8505	35.03	39.8347	117.353	114.8347	118.334	189.8347	118.737		
0.9473	37.209	40.8347	117.31	115.8347	118.233	190.8347	118.723		
1.0000	39.432	41.8347	117.353	116.8347	118.319	191.8347	118.709		
1.0558	41.596	42.8347	117.382	117.8347	118.334	192.8347	118.752		
1.1150	43.53	43.8347	117.324	118.8347	118.291	193.8347	118.781		
1.1777	45.824	44.8347	117.281	119.8347	118.348	194.8347	118.723		
1.2440	48.219	45.8347	117.339	120.8347	118.319	195.8347 196.8347	118.925 118.983		
1.3143	50.817 52.88	46.8347 47.8347	117.526 117.397	121.8347 122.8347	118.204 118.305	197.8347	118.997		
1.3888 1.4678	55.39	48.8347	117.613	123.8347	118.377	198.8347	118.925		
1.5515	57.915	49.8347	117.555	124.8347	118.305	199.8347	119.112		
1.6400	60.743	50.8347	117.642	125.8347	118.291	200.8347	118.983		
1.7338	63.181	51.8347	117.656	126.8347	118.334	201.8347	118.954		
1.8332	66.009	52.8347	117.642	127.8347	118.319	202.8347	118.896		
1.9385	68.663	53.8347	117.656	128.8347	118.348	203.8347	118.882		
2.0500	71.332	54.8347	117.555	129.8347 130.8347	118.42	204.8347 205.8347	118.867 118.882		
2.1682	73.727 76.309	55.8347 56.8347	117.57 117.555	131.8347	118.464 118.334	205.8347	118.867		
2.2933 2.4258	78.804	57.8347	117.526	132.8347	118.305	207.8347	118.838		
2.5663	81.271	58.8347	117.512	133.8347	118.305	208.8347	118.968		
2.7152	83.809	59.8347	117.555	134.8347	118.305	209.8347	119.084		
2.8727	86.334	60.8347	117.584	135.8347	118.406	210.8347	118.939		
3.0395	88.843	61.8347	117.671	136.8347	118.348		118.997		
3.2163	91.093	62.8347	117.685	137.8347	118.305	212.8347	118.983		
3.4037	93.285	63.8347	117.656	138.8347	118.348	213.8347	118.997 119.011		
3.6020	95.405	64.8347	117.685	139.8347 140.8347	118.492 118.536	214.8347 215.8347	118.983		
3.8122 4.0348	97.525 99.386	65.8347 66.8347	117.829 117.858	140.8347	118.464	216.8347	119.04		
4.0348	101.333	67.8347	117.786	142.8347	118.435		119.069		
4.5205	102.933	68.8347	117.757	143.8347	118.42	218.8347	118.983		
4.7852	104.707	69.8347	117.743	144.8347	118.579	219.8347	119.026		
5.0655	106.048	70.8347	117.728	145.8347	118.507		119.055		
5.3623	107.562	71.8347	117.858	146.8347	118.42	221.8347	119.026		
5.6768	108.73	72.8347	117.743	147.8347	118.363		119.084		
6.0100	109.884	73.8347	117.786	148.8347	118.435		119.011		
6.3628	110.85	74.8347	117.872	149.8347	118.406		118.968 118.997		
6.7367	111.658	75.8347 76.8347	117.93 117.872	150.8347 151.8347	118.334 118.492		119.098		
7.1327 7.5520	112.35 113.143	76.8347 77.8347	117.988	152.8347	118.377		119.069		
7.9963	113.662	78.8347	117.944	153.8347	118.406		119.112		
8.4670	114.21	79.8347	117.944		118.377		119.141		


CITY OF HOLLYWOOD IW-1 2193 - 3309 RECOVERY DATA


Time	Water Level	Time	Water Level	Time	Water Level	Time	Water Level
0	119.271	8.4670	6.482	78.8347	1.516	152.8347	1.4
0.0217	119.329	8.9655	5.847	79.8347	1.53	153.8347	1.415
0.0433	119.329	9.4935	5.269	80.8347	1.53	154.8347	1.444
0.0650	119.3	10.0528	4.793	81.8347	1.516	155.8347	1.429
0.0867	119.285	10.6453	4.403	82.8347	1.501	156.8347	1.4
0.1083	116.82	11.2728	4.057	83.8347	1.516	157.8347	1.386
0.1300	118.291	11.9377	3.768	84.8347	1.487	158.8347	1.386
0.1517	115.782	12.6418	3.479	85.8347	1.501	159.8347	1.386 1.386
0.1733	113.994	13.3877	3.277	86.8347	1.501	160.8347 161.8347	1.371
0.1950	112.508	14.1777	3.118 2.959	87.8347 88.8347	1.487 1.472	162.8347	1.4
0.2167	110.922 109.495	15.0145 15.9010	2.839	89.8347	1.472	163.8347	1.4
0.2383 0.2600	109.495	16.8400	2.728	90.8347	1.458	164.8347	1.4
0.2800	106.798	17.8347	2.656	91.8347	1.472	165.8347	1.386
0.3033	105.241	18.8347	2.584	92.8347	1.458	166.8347	1.4
0.3250	103.885	19.8347	2.526	93.8347	1.487	167.8347	1.386
0.3467	102.328	20.8347	2.469	94.8347	1.487	168.8347	1.4
0.3683	101.578	21.8347	2.411	95.8347	1.444	169.8347	1.386 1.386
0.3900	100.28	22.8347	2.368	96.8347	1.472	170.8347 171.8347	1.386
0.4117	99.083	23.8347	2.324 2.281	97.8347 98.8347	1.444 1.472	172.8347	1.386
0.4333	97.799	24.8347 25.8347	2.238	99.8347	1.444	173.8347	1.386
0.4555 0.4790	96.617 95.232	26.8347	2.209	100.8347	1.472	174.8347	1.386
0.4790	93.232 94.194	27.8347	2.18	101.8347	1.458	175.8347	1.386
0.5302	92.882	28.8347	2.137	102.8347	1.458	176.8347	1.386
0.5582	91.656	29.8347	2.122	103.8347	1.458	177.8347	1.386
0.5878	90.3	30.8347	2.093	104.8347	1.458	178.8347	1.386
0.6192	89.002	31.8347	2.064	105.8347	1.415	179.8347	1.386 1.415
0.6523	87.689	32.8347	2.035	106.8347	1.444	180.8347 181.8347	1.415
0.6875	86.42	33.8347	2.021	107.8347 108.8347	1.444 1.429	182.8347	1.444
0.7248	85.641	34.8347 35.8347	1.992 1.963	109.8347	1.415	183.8347	1.386
0.7643	83.723 82.353	36.8347	1.949	110.8347	1.415	184.8347	1.415
0.8062 0.8505	80.939	37.8347	1.949	111.8347	1.415	185.8347	1.429
0.8975	79.482	38.8347	1.963	112.8347	1.444	186.8347	
0.9473	77.968	39.8347	1.934	113.8347	1.444		
1.0000	76.395	40.8347	1.877	114.8347	1.444		
1.0558	74.765	41.8347	1.862	115.8347	1.429		
1.1150	73.121	42.8347	1.848	116.8347	1.444 1.458		
1.1777	71.375	43.8347	1.819 1.805	117.8347 118.8347	1.458		
1.2440	69.543 67.607	44.8347 45.8347	1.79	119.8347	1.487		
1.3143 1.3888	67.697 65.749	46.8347	1.776	120.8347	1.444		
1.3668	63.773	47.8347	1.761	121.8347	1.429		
1.5515	61.753	48.8347	1.747	122.8347	1.429		
1.6400	59.675	49.8347	1.732	123.8347	1.429		
1.7338	57.526	50.8347	1.718	124.8347	1.429		
1.8332	55.376	51.8347	1.718	125.8347	1.429		
1.9385	53.197	52.8347	1.703	126.8347 127.8347	1.429 1.429		
2.0500	50.961	53.8347 54.8347	1.675 1.689	128.8347	1.415		
2.1682 2.2933	48.724 46.474	55.8347	1.646	129.8347	1.429		
2.4258	44.179	56.8347	1.631	130.8347	1.429		
2.5663	41.899	57.8347	1.631	131.8347	1.429		
2.7152	39.591	58.8347	1.646	132.8347	1.415		
2.8727	37.296	59.8347	1.617	133.8347	1.415		
3.0395	35.016	60.8347	1.602	134.8347	1.415		
3.2163	32.765	61.8347	1.617	135.8347	1.415 1.415		
3.4037	30.571	62.8347 63.8347	1.617 1.617	136.8347 137.8347	1.415		
3.6020	28.377 26.27	64.8347	1.602	138.8347	1.415		
3.8122 4.0348	24.394	65.8347	1.574	139.8347	1.415		
4.0348	22.475	66.8347	1.588	140.8347	1.415		
4.5205	20.613	67.8347	1.602	141.8347	1.415		
4.7852	18.823	68.8347	1.631	142.8347	1.415		
5.0655	17.105	69.8347	1.559	143.8347	1.4		
5.3623	15.518	70.8347	1.574	144.8347	1.415		
5.6768	14.002	71.8347	1.559 1.545	145.8347 146.8347	1.4 1.4		
6.0100	12.616	72.8347 73.8347	1.545	140.8347	1.415		
6.3628 6.7367	11.288 10.119	74.8347	1.545	148.8347	1.415		
6.7367 7.1327	9.051	75.8347	1.545	149.8347	1.4		
7.5520	8.084	76.8347	1.559	150.8347	1.4		
7.9963	7.232	77.8347	1.516	151.8347	1.4		


Injection Well No. 2 (IW-2) – Packer Tests Packer Test Data


Injection Well No. 2 (IW-2) – Packer Tests 1,390 – 1,408


e

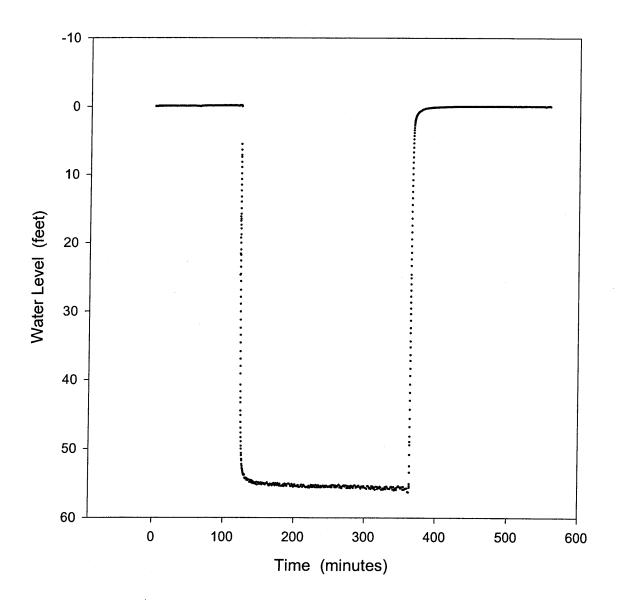
CITY OF HOLLYWOOD SRWWTP IW-2 1390-1408 BACKGROUND

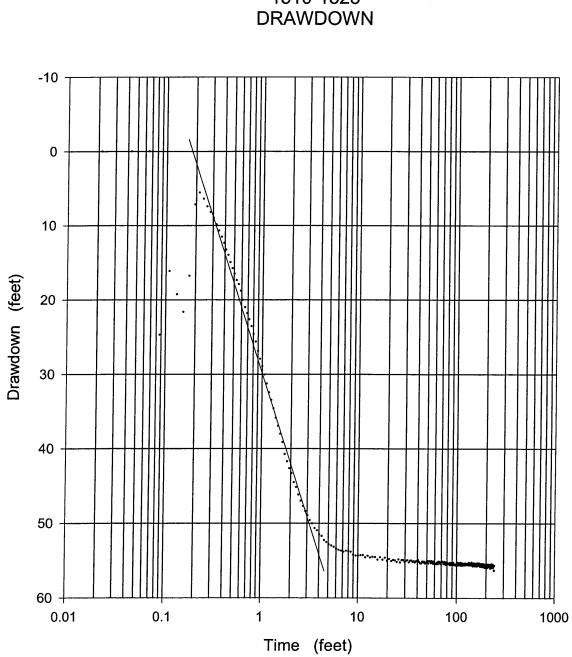
Time	Water Level	Time	Water Level	Time	Water Level
0	0	20.8413	-0.072 -0.072	110.841 111.841	
0.022 0.044	0	21.8413 22.8413	-0.072	112.841	
0.066	-0.014	23.8413	-0.072	113.841	
0.088 0.11	-0.014 -0.014	24.8413 25.8413	-0.087 -0.087	114.841 115.841	
0.132	-0.014	26.8413	-0.087	116.841	
0.154	-0.014	27.8413	-0.087	117.841	
0.176 0.198	-0.014 -0.014	28.8413 29.8413	-0.101 -0.087	118.841 119.841	
0.22	-0.014	30.8413	-0.087	120.841	3 -0.116
0.242	-0.029 -0.014	31.8413 32.8413	-0.087 -0.101	121.841 122.841	
0.264	-0.029	33.8413	-0.101	122.041	0.007
0.308	-0.014	34.8413	-0.101		
0.33 0.352	-0.014 -0.014	35.8413 36.8413	-0.072 -0.043		
0.374	-0.029	37.8413	-0.043		
0.396	-0.014	38.8413 39.8413	-0.101 -0.101		
0.418 0.44	-0.014 -0.014	40.8413	-0.101		
0.4622	-0.029	41.8413	-0.087		
0.4857 0.5105	-0.014 -0.014	42.8413 43.8413	-0.101 -0.101		
0.5368	-0.014	44.8413	-0.116		
0.5648	-0.014	45.8413	-0.101		
0.5945 0.6258	-0.014 -0.014	46.8413 47.8413	-0.116 -0.116		
0.659	-0.014	48.8413	-0.116		
0.6942	-0.014 -0.014	49.8413 50.8413	-0.116 -0.116		
0.7315 0.771	-0.014	51.8413	-0.13	-	
0.8128	0	52.8413	-0.13	•	
0.8572 0.9042	0	53.8413 54.8413	-0.13 -0.13		
0.954	0	55.8413	-0.13		
1.0067 1.0625	0 0	56.8413 57.8413	-0.13 -0.13		
1.1217	õ	58.8413	-0.13		
1.1843	0	59.8413	-0.13		
1.2507 1.321	0	60.8413 61.8413	-0.13 -0.13		
1.3955	õ	62.8413	-0.13		
1.4745	0.014 0	63.8413 64.8413	-0.13 -0.13		
1.5582 1.6467	0	65.8413	-0.13		
1.7405	0	66.8413	-0.13		
1.8398 1.9452	0	67.8413 68.8413	-0.13 -0.144		
2.0567	ŏ	69.8413	-0.144		
2.1748	0	70.8413 71.8413	-0.144 -0.144		
2.3 2.4325	-0.014 -0.014	72.8413	-0.144		
2.573	-0.014	73.8413	-0.144		
2.7218 2.8793	-0.014 -0.014	74.8413 75.8413	-0.144 -0.144		
3.0462	-0.014	76.8413	-0.13		
3.223 3.4103	-0.014 -0.058	77.8413 78.8413	-0.144 -0.144		
3.6087	-0.058	79.8413	-0.144		
3.8188	-0.058	80.8413	-0.144		
4.0415 4.2773	-0.058 -0.058	81.8413 82.8413	-0.159 -0.159		
4.5272	-0.058	83.8413	-0.159		
4.7918 5.0722	-0.058 -0.072	84.8413 85.8413	-0.159 -0.159		
5.369	-0.072	86.8413	-0.159		
5.6835	-0.058	87.8413	-0.159		
6.0167 6.3695	-0.072 -0.072	88.8413 89.8413	-0.159 -0.159		
6.7433	-0.072	90.8413	-0.159		
7.1393	-0.058	91.8413 92.8413	-0.159 -0.144		
7.5587 8.003	-0.058 -0.058	93.8413	-0.144 -0.159		
8.4737	-0.058	94.8413	-0.13		
8.9722 9.5002	-0.058 -0.072	95.8413 96.8413	-0.087 -0.087		
9.0002 10.0595	-0.072	97.8413	-0.13		
10.652	-0.058	98.8413 99.8413	-0.144 -0.144		
11.2795 11.9443	-0.072 -0.072	99.8413 100.8413	-0.144 -0.144		
12.6485	-0.072	101.8413	-0.144		
13.3943 14.1843	-0.072 -0.072	102.8413 103.8413	-0.144 -0.144		
15.0212	-0.072	104.8413	-0.144		
15.9077	-0.072	105.8413	-0.144 -0.159		
16.8467 17.8413	-0.072 -0.072	106.8413 107.8413	-0.159 -0.159		
18.8413	-0.087	108.8413	-0.159		
19.8413	-0.072	109.8413	-0.144		

CITY OF HOLLYWOOD SRWWTP IW-2 1390-1408 DRAWDOWN

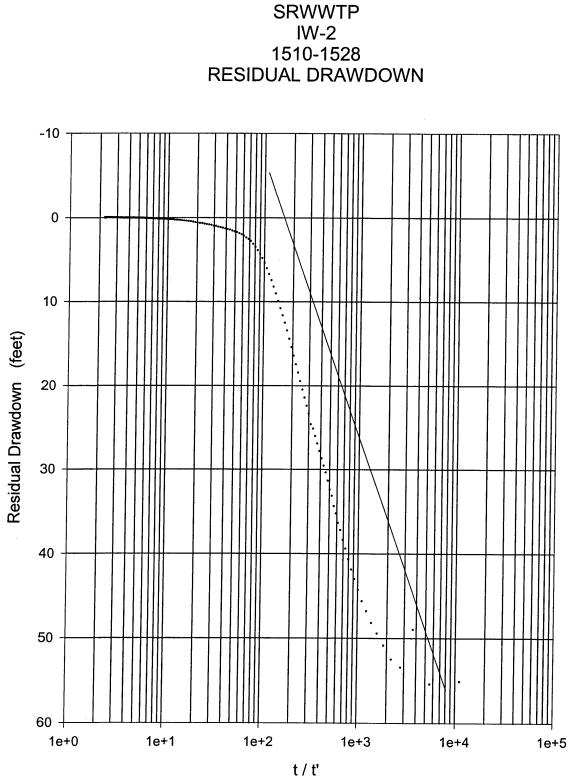
Time	Water Level	Time	Water Level	Time	Water Level	Time	Water Level
0	0	20.8447	30.318	110.8447	30.968	200.8447	31.184
0.0222	-0.029	21.8447	30.174	111.8447	30.809	201.8447	31.141
0.0443	-0.014	22.8447	30.318	112.8447	30.953	202.8447	31.098
0.0665	-0.014	23.8447	30.26	113.8447	30.968	203.8447	31.213
0.0887 0.1108	-0.029 -0.043	24.8447 25.8447	30.289 30.434	114.8447 115.8447	30.924 30.881	204.8447 205.8447	31.126 31.126
0.133	-0.043	26.8447	30.462	116.8447	30.838	205.8447	31.120
0.1552	-0.014	27.8447	30.318	117.8447	30.939	207.8447	31.242
0.1773	34.605	28.8447	30.289	118.8447	30.924	208.8447	31.155
0.1995	40.393	29.8447	30.304	119.8447	30.823	209.8447	31.083
0.2217	22.581 24.977	30.8447 31.8447	30.434 30.289	120.8447 121.8447	30.953 30.953	210.8447 211.8447	31.098 31.184
0.2438 0.266	20.69	32.8447	30.448	122.8447	30.924	212.8447	31.155
0.2882	21.18	33.8447	30.448	123.8447	31.04	213.8447	31.126
0.3103	22.321	34.8447	30.448	124.8447	31.011	214.8447	31.069
0.3325	22.162	35.8447	30.535 30.448	125.8447 126.8447	30.968	215.8447	31.069 31.083
0.3547 0.3768	22.451 22.465	36.8447 37.8447	30.448	127.8447	31.011 30.968	216.8447 217.8447	31.112
0.399	21.57	38.8447	30.39	128.8447	31.054	218.8447	31.184
0.4212	21.44	39.8447	30.448	129.8447	31.112	219.8447	31.098
0.4433	21.931	40.8447	30.448	130.8447	31.054	220.8447	31.069
0.4655 0.489	21.844 21.989	41.8447 42.8447	30.405 30.448	131.8447 132.8447	31.054 30.953	221.8447 222.8447	31.141 31.126
0.5138	21.903	43.8447	30.462	133.8447	31.112	223.8447	31.098
0.5402	22.292	44.8447	30.535	134.8447	31.054	224.8447	31.401
0.5682	22.465	45.8447	30.448	135.8447	30.968	225.8447	31.357
0.5978	22.826	46.8447	30.592	136.8447	31.025	226.8447	31.343
0.6292 0.6623	23.201 23.461	47.8447 48.8447	30.564 30.737	137.8447 138.8447	31.069 31.054	227.8447 228.8447	31.256 31.213
0.6975	23.822	49.8447	30.564	139.8447	30.968	229.8447	31.343
0.7348	23.981	50.8447	30.564	140.8447	30.982	230.8447	31.199
0.7743	24.169	51.8447	30.592	141.8447	31.011	231.8447	31.314
0.8162	24.717	52.8447	30.607	142.8447	31.04 31.069	232.8447	31.357
0.8605 0.9075	25.006 25.28	53.8447 54.8447	30.564 30.636	143.8447 144.8447	31.155	233.8447 234.8447	31.242 31.271
0.9573	25.439	55.8447	30.751	145.8447	31.069	235.8447	31.184
1.01	25.887	56.8447	30.693	146.8447	31.141	236.8447	31.256
1.0658	26.045	57.8447	30.607	147.8447	31.155	237.8447	31.314
1.125 1.1877	26.247	58.8447 59.8447	30.722 30.693	148.8447 149.8447	31.155 31.083	238.8447 239.8447	31.17 ′31.17
1.1077	26.695 26.868	60.8447	30.665	150.8447	31.083	240.8447	31.184
1.3243	27.012	61.8447	30.607	151.8447	31.17		
1.3988	27.417	62.8447	30.766	152.8447	31.112		
1.4778	27.561	63.8447	30.65	153.8447	31.054		
1.5615 1.65	27.778 27.806	64.8447 65.8447	30.708 30.665	154.8447 155.8447	31.054 31.083		
1.7438	28.081	66.8447	30.751	156.8447	30.997		
1.8432	28.167	67.8447	30.823	157.8447	30.982		
1.9485	28.283	68.8447	30.737	158.8447	31.112		
2.06 2.1782	28.413 28.571	69.8447 70.8447	30.708 30.693	159.8447 160.8447	31.04 30.997		
2.3033	28.788	71.8447	30.693	161.8447	31.054		
2.4358	28.716	72.8447	30.665	162.8447	30.968		
2.5763	28.889	73.8447	30.766	163.8447	31.054		
2.7252 2.8827	28.976	74.8447 75.8447	30.737 30.751	164.8447 165.8447	31.141 31.054		
3.0495	29.033 29.178	76.8447	30.809	166.8447	31.083		
3.2263	29.163	77.8447	30.693	167.8447	31.025		
3.4137	29.25	78.8447	30.78	168.8447	30.982		
3.612	29.322	79.8447	30.823	169.8447	31.011		
3.8222 4.0448	29.365 29.452	80.8447 81.8447	30.766 30.968	170.8447 171.8447	31.04 31.054		
4.2807	29.466	82.8447	30.896	172.8447	31.04		
4.5305	29.495	83.8447	30.896		30.997		
4.7952	29.481	84.8447	30.881		30.982		
5.0755 5.3723	29.481 29.568	85.8447 86.8447	30.953 30.881		30.953 31.069		
5.6868	29.566	87.8447	30.867		31.069		
6.02	29.712	88.8447	30.809	178.8447	31.04		
6.3728	29.669	89.8447	30.766		30.997		
6.7467	29.856	90.8447	30.881		31.054		
7.1427 7.562	29.683 29.798	91.8447 92.8447	30.823 30.852		31.011 31.098		
8.0063	29.9		30.737		30.982		
8.477	29.842	94.8447	30.78	184.8447	31.011		
8.9755	29.842		30.751		31.069		
9.5035 10.0628	29.957 29.928	96.8447 97.8447	30.91 30.794		31.025 31.098		
10.0628	29.928		30.794		30.91		
11.2828	30.174		30.838		30.939		
11.9477	29.9	100.8447	30.91	190.8447	30.997		
12.6518	30.001		30.867		31.098		
13.3977 14.1877	30.073 30.073		30.939 30.838		31.112 31.04		
14.1877	30.073		30.836		31.04		
15.911	30.044		30.852		31.155		
16.85	30.217	106.8447	30.953	196.8447	31.011		
17.8447	30.001		30.924		31.126		
18.8447 19.8447	30.304 30.232		30.968 30.968		31.112 31.04		

CITY OF HOLLYWOOD SRWWTP IW-2 1390-1408 RECOVERY


.


Time	Water Level	Time	Water Level	Time	Water Level
0	31.184	20.838		110.838	0.245
0.0218 0.0437	31.069 31.04	21.838 22.838	0.808 0.78	111.838 112.838	0.231 0.231
0.0655	31.141	23.838	0.765	113.838	0.216
0.0873	30.939	24.838	0.751	114.838	0.216
0.1092 0.131	31.141 31.069	25.838 26.838	0.736 0.722	115.838 116.838	0.202 0.202
0.1528	31.155	27.838	0.707	117.838	0.202
0.1747 0.1965	31.069 31.126	28.838 29.838	0.693 0.678	118.838 119.838	0.202 0.202
0.2183	31.112	30.838	0.693	120.838	0.202
0.2402	31.083	31.838	0.65	121.838	0.188
0.262 0.2838	31.097 31.054	32.838 33.838	0.664 0.65	122.838 123.838	0.188 0.188
0.3057	29.625	34.838	0.664	124.838	0.188
0.3275 0.3493	28.167 29.163	35.838 36.838	0.678 0.65	125.838 126.838	0.188 0.188
0.3493	27.619	37.838	0.65	120.038	0.188
0.393	26.233	38.838	0.606	128.838	0.188
0.4148 0.4367	25.237 24.356	39.838 40.838	0.577 0.563	129.838 130.838	0.188 0.173
0.4588	23.143	41.838	0.563	131.838	0.159
0.4823	22.162	42.838	0.548	132.838	0.173
0.5072 0.5335	18.481 5.833	43.838 44.838	0.534 0.52	133.838 134.838	0.173 0.173
0.5615	3.364	45.838	0.505	135.838	0.159
0.5912 0.6225	7.263 6.598	46.838 47.838	0.491 0.491	136.838 137.838	0.159 0.173
0.6557	5.905	48.838	0.476	138.838	0.173
0.6908	6.122	49.838	0.476	139.838	0.173
0.7282 0.7677	7.494 8.475	50.838 51.838	0.462 0.447	140.838 141.838	0.159 0.159
0.8095	3.277	52.838	0.433	142.838	0.159
0.8538	2.7	53.838	0.462	- 143.838	0.159
0.9008 0.9507	2.729 2.584	54.838 55.838	0.447 0.447	144.838 145.838	0.159 0.159
1.0033	2.556	56.838	0.433	146.838	0.144
1.0592	2.527	57.838	0.433	147.838	0.144
1.1183 1.181	2.454 2.411	58.838 59.838	0.433 0.433	148.838 149.838	0.144 0.144
1.2473	2.368	60.838	0.419	150.838	0.144
1.3177	2.325	61.838	0.419	151.838	0.13
1.3922 1.4712	2.296 2.238	62.838 63.838	0.404 0.404	152.838 153.838	0.13 0.13
1.5548	2.223	64.838	0.404	154.838	0.13
1.6433	2.18 2.151	65.838 66.838	0.39	155.838	0.13
1.7372 1.8365	2.131	67.838	0.39 0.39	156.838 157.838	0.13 0.115
1.9418	2.093	68.838	0.375	158.838	0.13
2.0533 2.1715	2.036 2.007	69.838 70.838	0.375 0.375	159.838 160.838	0.115
2.2967	1.978	71.838	0.361	161.838	0.101 0.115
2.4292	1.949	72.838	0.361	162.838	0.115
2.5697 2.7185	1.92 1.891	73.838 74.838	0.361 0.361	163.838 164.838	0.115 0.101
2.876	1.862	75.838	0.346	165.838	0.101
3.0428	1.834	76.838	0.361	166.838	0.101
3.2197 3.407	1.776 1.776	77.838 78.838	0.346 0.346	167.838 168.838	0.101 0.101
3.6053	1.747	79.838	0.346	169.838	0.101
3.8155	1.704	80.838	0.332	170.838	0.101
4.0382 4.274	1.66 1.646	81.838 82.838	0.346 0.332	171.838 172.838	0.101 0.086
4.5238	1.617	83.838	0.332	173.838	0.101
4.7885 5.0688	1.559 1.559	84.838 85.838	0.317 0.317	174.838	0.086
5.3657	1.559	85.838	0.317	175.838 176.838	0.101 0.101
5.6802	1.487	87.838	0.317	177.838	0.086
6.0133 6.3662	1.473 1.458	88.838 89.838	0.303 0.303	178.838 179.838	0.086 0.086
6.74	1.429	90.838	0.303	180.838	0.086
7.136	1.386	91.838	0.289	181.838	0.115
7.5553 7.9997	1.372 1.299	92.838 93.838	0.289 0.289	182.838	0.13
8.4703	1.285	94.838	0.289		
8.9688	1.27	95.838	0.274		
9.4968 10.0562	1.256 1.227	96.838 97.838	0.274 0.274		
10.6487	1.198	98.838	0.274		
11.2762	1.141	99.838	0.26		
11.941 12.6452	1.097	100.838 101.838	0.274 0.26		
13.391	1.039	102.838	0.26		
14.181 15.0178	1.011	103.838	0.26		
15.0178 15.9043	0.996 0.996	104.838 105.838	0.26 0.26		
16.8433	0.996	106.838	0.245		
17.838 18.838	0.953 0.881	107.838 108.838	0.245 0.245		
19.838	0.852	109.838	0.245		

Injection Well No. 2 (IW-2) – Packer Tests 1,510 – 1,528


1

CITY OF HOLLYWOOD SRWWTP IW-2 1510-1528 DRAWDOWN .

CITY OF HOLLYWOOD

- 24

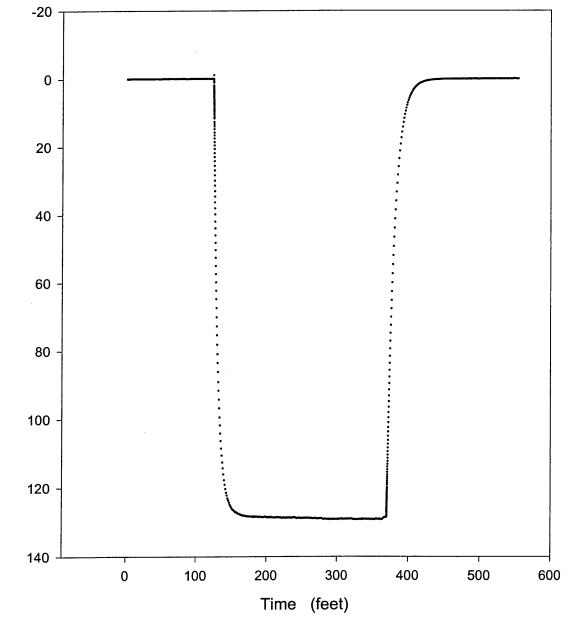
CITY OF HOLLYWOOD SRWWTP IW-2 1510-1528 BACKGROUND

Water Level

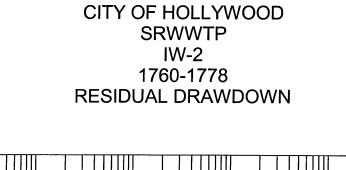
-0.144 -0.144 -0.144 -0.144 -0.115 -0.101 -0.087 -0.159 -0.159 -0.159 -0.173 -0.13

Time	Water Level	Time	Water Level	Time
0	0	20.838	-0.072	110.838
0.0218	0	21.838	-0.072	111.838
0.0437	-0.014	22.838	-0.072	112.838
0.0655	-0.014 -0.014	23.838 24.838	-0.072 -0.087	113.838 114.838
0.0873 0.1092	-0.014	25.838	-0.087	115.838
0.131	-0.014	26.838	-0.087	116.838
0.1528	-0.029	27.838	-0.087	117.838
0.1747	-0.014	28.838	-0.058	118.838
0.1965	-0.014	29.838 30.838	-0.058 -0.058	119.838 120.838
0.2183 0.2402	-0.014 -0.029	31.838	-0.058	121.838
0.262	-0.014	32.838	-0.058	
0.2838	-0.029	33.838	-0.058	
0.3057	-0.014	34.838	-0.072	
0.3275	-0.014	35.838 36.838	-0.072 -0.072	
0.3493 0.3712	-0.014 -0.014	37.838	-0.072	
0.393	-0.014	38.838	-0.072	
0.4148	-0.014	39.838	-0.058	
0.4367	-0.014	40.838	-0.072	
0.4588 0.4823	-0.014 -0.014	41.838 42.838	-0.058 -0.058	
0.5072	-0.014	43.838	-0.058	
0.5335	-0.014	44.838	-0.058	
0.5615	-0.014	45.838	-0.058	
0.5912	-0.014	46.838 47.838	-0.072 -0.058	
0.6225 0.6557	-0.014 -0.014	47.838	-0.072	
0.6908	-0.014	49.838	-0.072	
0.7282	-0.014	50.838	-0.072	
0.7677	-0.014	51.838	-0.072	
0.8095	0	52.838 53.838	-0.072 -0.072	
0.8538 0.9008	-0.014 -0.014	54.838	-0.072	
0.9507	-0.014	55.838	-0.072	
1.0033	-0.014	56.838	-0.058	
1.0592	0	57.838	-0.043	
1.1183	-0.014 0	58.838 59.838	-0.043 -0.043	
1.181 1.2473	-0.014	60.838	-0.043	
1.3177	0	61.838	-0.029	
1.3922	0	62.838	-0.014	
1.4712	0	63.838	-0.014	
1.5548	0	64.838 65.838	-0.087 -0.087	
1.6433 1.7372	-0.014	66.838	-0.087	
1.8365	0	67.838	-0.101	
1.9418	0	68.838	-0.101	
2.0533	0	69.838 70.838	-0.101 -0.101	
2.1715 2.2967	0	70.838	-0.101	
2.4292	ŏ	72.838	-0.115	
2.5697	Ō	73.838	-0.115	
2.7185	0	74.838	-0.115	
2.876 3.0428	0	75.838 76.838	-0.115 -0.115	
3.2197	õ	77.838	-0.115	
3.407	-0.043	78.838	-0.13	
3.6053	-0.043	79.838	-0.101	
3.8155	-0.043	80.838	-0.101	
4.0382	-0.043	81.838 82.838	-0.115 -0.115	
4.274 4.5238	-0.043 -0.058	83.838	-0.115	
4.7885	-0.058	84.838	-0.115	
5.0688	-0.058	85.838	-0.115	
5.3657	-0.058	86.838	-0.115 -0.13	
5.6802 6.0133	-0.058 -0.058	87.838 88.838	-0.13	
6.3662	-0.058	89.838	-0.13	
6.74	-0.058	90.838	-0.13	
7.136	-0.058	91.838	-0.13	
7.5553	-0.058	92.838	-0.13	
7.9997 8.4703	-0.058 -0.029	93.838 94.838	-0.13 -0.13	
8.9688	-0.029	95.838	-0.13	
9.4968	-0.058	96.838	-0.144	
10.0562	-0.058	97.838	-0.13	
10.6487	-0.058	98.838	-0.144	
11.2762	-0.072 -0.072	99.838 100.838	-0.13 -0.13	
11.941 12.6452	-0.072 -0.072	100.838	-0.13	
13.391	-0.072	102.838	-0.13	
14.181	-0.043	103.838	-0.144	
15.0178	-0.072	104.838	-0.144	
15.9043	-0.072	105.838 106.838	-0.144 -0.144	
16.8433 17.838	-0.058 -0.072	107.838	-0.144	
18.838	-0.072	108.838	-0.13	
19.838	-0.043	109.838	-0.144	

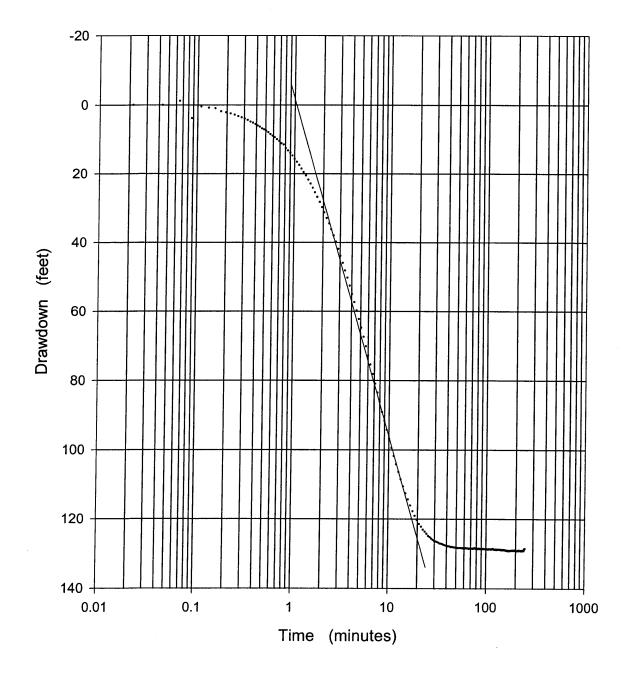
CITY OF HOLLYWOOD SRWWTP IW-2 1510-1528 DRAWDOWN


Time	Water Level	Time	Water Level	Time	Water Level	Time	Water Level
0	0	20.8347	54.772	110.8347	55.623	200.8347	55.493
0.0217	-0.014	21.8347	55.061	111.8347	55.349	201.8347	55.609
0.0433	-0.014	22.8347	54.902	112.8347	55.652	202.8347	55.941
0.065	-0.014	23.8347	54.96	113.8347	55.306	203.8347	55.926
0.0867	24.684	24.8347	55.176	114.8347	55.594	204.8347	55.768
0.1083	16.153	25.8347	54.844	115.8347	55.623	205.8347	55.926
0.13	19.271	26.8347	55.234	116.8347	55.407	206.8347	55.753
0.1517 0.1733	21.609 16.788	27.8347 28.8347	54.916 54.916	117.8347 118.8347	55.623 55.508	207.8347 208.8347	55.566 55.869
0.1733	7.16	29.8347	55.162	119.8347	55.349	209.8347	55.493
0.2167	5.544	30.8347	55.017	120.8347	55.407	210.8347	55.493
0.2383	6.381	31.8347	54.916	121.8347	55.609	211.8347	55.753
0.26	7.435	32.8347	55.219	122.8347	55.407	212.8347	55.811
0.2817	8.171	33.8347	54.988	123.8347	55.566	213.8347	55.811
0.3033 0.325	8.936 9.86	34.8347 35.8347	54.974 55.162	124.8347 125.8347	55.349 55.465	214.8347 215.8347	55.825 55.58
0.3467	10.683	36.8347	55.061	126.8347	55.566	216.8347	55.508
0.3683	11.534	37.8347	55.234	127.8347	55.479	217.8347	55.609
0.39	12.357	38.8347	55.061	128.8347	55.537	218.8347	55.912
0.4117	13.266	39.8347	55.017	129.8347	55.421	219.8347	55.537
0.4333	13.988	40.8347	54.916	130.8347	55.58	220.8347	56.027
0.4555	14.955 15.764	41.8347 42.8347	55.176 55.364	131.8347 132.8347	55.32 55.623	221.8347 222.8347	55.782 55.739
0.479 0.5038	16.514	43.8347	55.364	133.8347	55.277	223.8347	55.984
0.5302	17.38	44.8347	55.104	134.8347	55.306	224.8347	55.652
0.5582	17.914	45.8347	55.234	135.8347	55.32	225.8347	55.537
0.5878	18.795	46.8347	55.118	136.8347	55.594	226.8347	55.436
0.6192	20.022	47.8347	55.364	137.8347	55.32	227.8347	55.537
0.6523	21.003	48.8347	55.248	138.8347	55.623	228.8347	55.594
0.6875 0.7248	21.811 22.634	49.8347 50.8347	55.003 55.075	139.8347 140.8347	55.392 55.479	229.8347 230.8347	55.768 55.58
0.7643	23.543	51.8347	55.349	141.8347	55.306	231.8347	55.594
0.8062	24.583	52.8347	55.017	142.8347	55.219	232.8347	55.926
0.8505	25.622	53.8347	55.104	143.8347	55.652	233.8347	55.522
0.8975	26.892	54.8347	55.32	144.8347	55.45	234.8347	55.941
0.9473	27.931	55.8347	55.017	145.8347	55.681	235.8347	55.825 55.782
1 1.0558	28.941 30.053	56.8347 57.8347	55.162 55.407	146.8347 147.8347	55.739 55.479	236.8347 237.8347	55.782 55.782
1.115	31.251	58.8347	55.104	148.8347	55.392	238.8347	55.753
1.1777	32.448	59.8347	55.407	149.8347	55.335	239.8347	56.273
1.244	33.473	60.8347	55.407	150.8347	55.493	240.8347	56.33
1.3143	34.599	61.8347	55.349	151.8347	55.364	241.8347	55.638
1.3888	35.869	62.8347	55.436	152.8347 153.8347	55.349 55.724		
1.4678 1.5515	36.965 38.019	63.8347 64.8347	55.205 55.45	154.8347	55.407		
1.64	39.13	65.8347	55.089	155.8347	55.71		
1.7338	40.732	66.8347	55.176	156.8347	55.71		
1.8332	41.713	67.8347	55.378	157.8347	55.421		
1.9385	42.637	68.8347	55.436	158.8347	55.739		
2.05 2.1682	43.301 44.498	69.8347 70.8347	55.133 55.089	159.8347 160.8347	55.364 55.58		
2.1082	44.498	71.8347	55.104	161.8347	55.45		
2.4258	46.158	72.8347	55.205	162.8347	55.724		
2.5663	46.995	73.8347	55.45	163.8347	55.436		
2.7152	47.687	74.8347	55.45	164.8347	55.306		
2.8727	48.365 48.957	75.8347 76.8347	55.133 55.291	165.8347 166.8347	55.32 55.667		
3.0395 3.2163	49.606	77.8347	55.551	167.8347	55.522		
3.4037	50.039	78.8347	55.248	168.8347	55.566		
3.602	50.66	79.8347	55.19	169.8347	55.421		
3.8122	50.963	80.8347	55.45	170.8347	55.349		
4.0348	51.525	81.8347	55.436	171.8347	55.566		
4.2707 4.5205	51.727 52.276	82.8347 83.8347	55.364 55.493	172.8347 173.8347	55.638 55.796		
4.5205	52.536	84.8347	55.277	174.8347	55.465		
5.0655	52.853	85.8347	55.58	175.8347	55.479		
5.3623	52.983	86.8347	55.566	176.8347	55.623		
5.6768	53.17	87.8347	55.493	177.8347	55.421		
6.01	53.416	88.8347	55.263	178.8347	55.638		
6.3628 6.7367	53.56 53.675	89.8347 90.8347	55.248 55.58	179.8347 180.8347	55.71 55.724		
7.1327	53.82	91.8347	55.306	181.8347	55.84		
7.552	53.69	92.8347	55.263	182.8347	55.421		
7.9963	53.748	93.8347	55.45	183.8347	55.407		
8.467	53.82	94.8347	55.58	184.8347	55.551		
8.9655 9.4935	54.224 54.339	95.8347 96.8347	55.609 55.58	185.8347 186.8347	55.796 55.71		
9.4935 10.0528	54.339 54.325		55.493	187.8347	55.84		
10.6453	54.281		55.638	188.8347	55.436		
11.2728	54.253		55.407	189.8347	55.667		
11.9377	54.57	100.8347	55.667	190.8347	55.479		
12.6418	54.368		55.537	191.8347	55.811		
13.3877	54.584		55.263	192.8347 193.8347	55.638 55.955		
14.1777 15.0145	54.498 54.512		55.566 55.306		55.508		
15.901	54.873		55.594		55.522		
16.84	54.556	106.8347	55.32	196.8347	55.854		
17.8347	54.887		55.349	197.8347	55.58		
18.8347	54.613		55.609		55.638 55.768		
19.8347	55.017	109.8347	55.263	199.8347	55.768		

CITY OF HOLLYWOOD SRWWTP IW-2 1510-1528 RECOVERY


Time	Water Level	Time	Water Level	Time	Water Level
0	55.638	20.838		110.838	-0.028
0.0218	55.104	21.838		111.838	-0.014
0.0437 0.0655	55.422 48.986	22.838 23.838		112.838 113.838	-0.014 -0.028
0.0873	53.445	24.838		114.838	-0.014
0.1092	52.507	25.838		115.838	-0.014
0.131 0.1528	50.862 49.448	26.838 27.838		116.838 117.838	-0.014 -0.028
0.1528	48.207	28.838	0.145	118.838	-0.028
0.1965	46.822	29.838		119.838	-0.028
0.2183	45.624	30.838	0.131 0.131	120.838	-0.014 -0.028
0.2402	44.297 42.998	31.838 32.838	0.131	121.838 122.838	-0.028
0.2838	41.858	33.838	0.116	123.838	-0.028
0.3057	40.646	34.838	0.116	124.838	-0.028
0.3275 0.3493	39.39 38.351	35.838 36.838	0.116 0.087	125.838 126.838	-0.014 -0.028
0.3712	37.197	37.838	0.102	127.838	-0.028
0.393	36.345	38.838	0.087	128.838	-0.028
0.4148	35.22	39.838 40.838	0.087 0.073	129.838 130.838	-0.028 -0.028
0.4367 0.4588	34.368 33.142	41.838	0.073	131.838	-0.028
0.4823	32.406	42.838	0.073	132.838	-0.043
0.5072	31.323	43.838	0.058	133.838	-0.028
0.5335 0.5615	30.356 29.562	44.838 45.838	0.058 0.058	134.838 135.838	-0.028 -0.028
0.5912	28.682	46.838	0.058	136.838	-0.028
0.6225	27.816	47.838	0.044	137.838	-0.028
0.6557	26.921	48.838	0.044	138.838	-0.028
0.6908 0.7282	26.026 25.146	49.838 50.838	0.044 0.044	139.838 140.838	-0.028 -0.028
0.7677	24.626	51.838	0.03	141.838	-0.028
0.8095	23.342	52.838	0.03	142.838	-0.043
0.8538	22.389	53.838 54.838	0.03 0.015	143.838 144.838	-0.028 -0.028
0.9008 0.9507	21.422 20.455	55.838	0.03	145.838	-0.028
1.0033	19.459	56.838	0.015	146.838	-0.028
1.0592	18.435	57.838	0.015 0.015	147.838	-0.028
1.1183 1.181	17.439 16.414	58.838 59.838	0.015	148.838 149.838	-0.028 -0.043
1.2473	15.403	60.838	0.015	150.838	-0.043
1.3177	14.407	61.838	0.001	151.838	-0.043
1.3922 1.4712	13.426 12.502	62.838 63.838	0.001 0.001	152.838 153.838	-0.028 -0.028
1.5548	11.636	64.838	0.001	154.838	-0.028
1.6433	10.784	65.838	0.001	155.838	-0.028
1.7372	9.918	66.838	0.001 0.001	156.838	-0.043 -0.028
1.8365 1.9418	9.023 8.2	67.838 68.838	0.001	157.838 158.838	-0.028
2.0533	7.435	69.838	-0.014	159.838	-0.043
2.1715	6.713	70.838	-0.014	160.838	-0.043
2.2967 2.4292	6.021 5.371	71.838 72.838	-0.014 -0.014	161.838 162.838	-0.043 -0.043
2.5697	4.794	73.838	0.001	163.838	-0.043
2.7185	4.288	74.838	0.001	164.838	-0.043
2.876 3.0428	3.87 3.48	75.838 76.838	0.001 0.001	165.838 166.838	-0.043 -0.028
3.2197	3.119	77.838	0.001	167.838	-0.043
3.407	2.772	78.838	0.001	168.838	-0.028
3.6053 3.8155	2.541 2.354	79.838 80.838	0.001 0.001	169.838 170.838	-0.043 -0.043
4.0382	2.152	81.838	0.001	171.838	-0.043
4.274	1.978	82.838	0.001	172.838	-0.028
4.5238	1.849	83.838	-0.014 0.001	173.838	-0.043
4.7885 5.0688	1.704 1.632	84.838 85.838	0.001	174.838 175.838	-0.028 -0.043
5.3657	1.531	86.838	-0.014	176.838	-0.043
5.6802	1.415	87.838	0.001	177.838	-0.043
6.0133 6.3662	1.358 1.286	88.838 89.838	-0.014 0.001	178.838 179.838	-0.043 -0.043
6.74	1.199	90.838	-0.014	180.838	-0.043
7.136	1.141	91.838	-0.014	181.838	-0.043
7.5553	1.069	92.838	0.001	182.838	-0.043
7.9997 8.4703	0.982 0.953	93.838 94.838	0.001 0.001	183.838 184.838	-0.043 -0.043
8.9688	0.867	95.838	0.001	185.838	-0.043
9.4968	0.809	96.838	0.001	186.838	0.001
10.0562 10.6487	0.766 0.722	97.838 98.838	0.001 -0.014	187.838 188.838	0.03 0.015
11.2762	0.65	99.838	0.001	189.838	-0.043
11.941	0.636	100.838	0.001	190.838	-0.043
12.6452	0.593	101.838	-0.014	191.838	-0.028
13.391 14.181	0.549 0.463	102.838 103.838	-0.014 0.001	192.838 193.838	-0.057 -0.057
15.0178	0.419	104.838	-0.014	194.838	0.001
15.9043	0.39	105.838	-0.014		
16.8433 17.838	0.362 0.333	106.838 107.838	-0.028 -0.014		
18.838	0.333	108.838	-0.014		
19.838	0.275	109.838	-0.014		


Injection Well No. 2 (IW-2) – Packer Tests 1,760 – 1,778


Water Level (feet)

t / ť

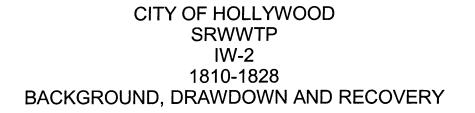
CITY OF HOLLYWOOD SRWWTP IW-2 1760-1778 DRAWDOWN

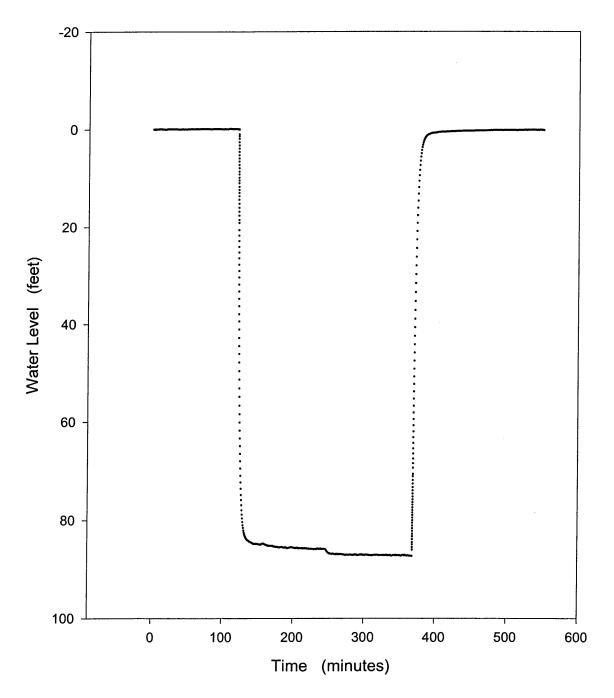
CITY OF HOLLYWOOD SRWWTP IW-2 1760-1778 BACKGROUND

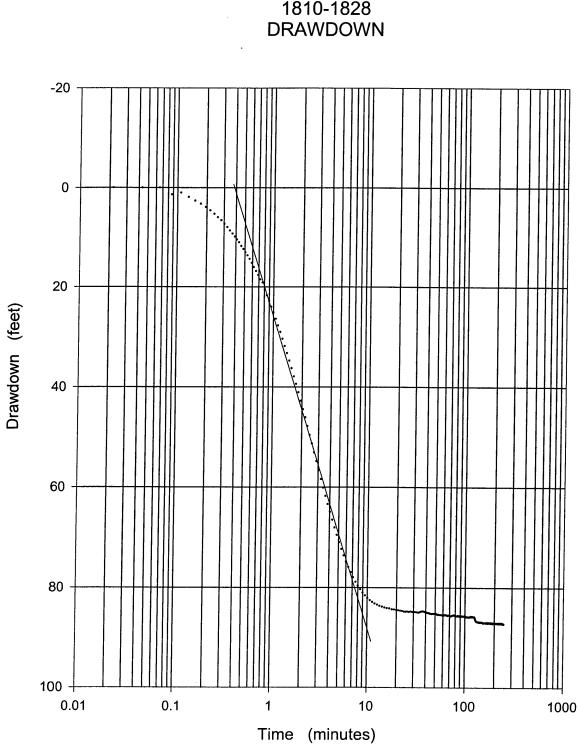
Time	Water Level	Time	Water Level		Time	Water Level
0	0	20.8347	-0.043	11	0.8347	-0.115
0.0217	0	21.8347	-0.043		1.8347	-0.115
0.0433	0	22.8347	-0.043		2.8347	-0.115
0.065	-0.014	23.8347	-0.043		3.8347	-0.115
0.0867	0	24.8347	-0.043		4.8347	-0.101 -0.072
0.1083 0.13	-0.014 -0.014	25.8347 26.8347	-0.043 -0.043		5.8347 6.8347	-0.072
0.1517	-0.014	27.8347	-0.058		7.8347	-0.058
0.1733	-0.014	28.8347	-0.043		8.8347	-0.043
0.195	-0.014	29.8347	-0.043		9.8347	-0.101
0.2167	-0.014	30.8347	-0.043	12	0.8347	-0.115
0.2383	-0.014	31.8347	-0.043		1.8347	-0.115
0.26	-0.014	32.8347	-0.058	12	2.8347	-0.087
0.2817	-0.014	33.8347	-0.058			
0.3033	-0.014	34.8347 35.8347	-0.043 -0.058			
0.325 0.3467	-0.029 -0.014	36.8347	-0.058			
0.3407	-0.014	37.8347	-0.058			
0.39	-0.014	38.8347	-0.058			
0.4117	-0.014	39.8347	-0.058			
0.4333	-0.014	40.8347	-0.058			
0.4555	-0.014	41.8347	-0.058			
0.479	-0.029	42.8347	-0.058			
0.5038	-0.014	43.8347	-0.058			
0.5302	-0.029	44.8347 45.8347	-0.058 -0.014			
0.5582 0.5878	-0.014 -0.014	46.8347	-0.014			
0.6192	-0.014	47.8347	-0.014			
0.6523	-0.014	48.8347	-0.058			
0.6875	-0.014	49.8347	-0.072			
0.7248	-0.014	50.8347	-0.087			
0.7643	0.014	51.8347	-0.101			
0.8062	0.014	52.8347	-0.101			
0.8505	0.014	53.8347	-0.101			
0.8975	0.014 0.014	54.8347 55.8347	-0.087 -0.087			
0.9473 1	0.014	56.8347	-0.087			
1.0558	0.014	57.8347	-0.101			
1.115	0.014	58.8347	-0.087			
1.1777	0.014	59.8347	-0.101			
1.244	0.014	60.8347	-0.087			
1.3143	0.014	61.8347	-0.101			
1.3888	0.014	62.8347	-0.101			
1.4678	0.014	63.8347 64.8347	-0.101 -0.101			
1.5515 1.64	0.029 0.014	65.8347	-0.101			
1.7338	0.014	66.8347	-0.087			
1.8332	0.014	67.8347	-0.087			
1.9385	0.014	68.8347	-0.087			
2.05	0.029	69.8347	-0.101			
2.1682	0.014	70.8347	-0.087			
2.2933	0.014	71.8347	-0.101			
2.4258	0.014 0.014	72.8347 73.8347	-0.087 -0.101			
2.5663 2.7152	0.014	74.8347	-0.101			
2.8727	0.014	75.8347	-0.087			
3.0395	0.014	76.8347	-0.101			
3.2163	-0.014	77.8347	-0.101			
3.4037	-0.029	78.8347	-0.087			
3.602	-0.029	79.8347	-0.101			
3.8122	-0.029	80.8347	-0.101			
4.0348	-0.029	81.8347 82.8347	-0.087 -0.087			
4.2707 4.5205	-0.029 -0.043	82.8347 83.8347	-0.087 -0.058			
4.7852	-0.043	84.8347	-0.029			
5.0655	-0.043	85.8347	-0.029			
5.3623	-0.043	86.8347	-0.087			
5.6768	-0.029	87.8347	-0.087			
6.01	-0.043	88.8347	-0.101			
6.3628	-0.043	89.8347	-0.087			
6.7367	-0.043	90.8347 91.8347	-0.101			
7.1327 7.552	-0.043 -0.043	91.8347 92.8347	-0.101 -0.101			
7.9963	-0.043	93.8347	-0.101			
8.467	-0.043	94.8347	-0.101			
8.9655	-0.043	95.8347	-0.101			
9.4935	-0.043	96.8347	-0.101			
10.0528	-0.043	97.8347	-0.101			
10.6453	-0.043	98.8347	-0.115			
11.2728	-0.043	99.8347	-0.101			
11.9377	-0.043 -0.058	100.8347	-0.115 -0.101			
12.6418 13.3877	-0.058 -0.058	101.8347 102.8347	-0.101			
14.1777	-0.043	103.8347	-0.101			
15.0145	-0.043	104.8347	-0.101			
15.901	-0.058	105.8347	-0.115			
16.84	-0.058	106.8347	-0.101			
17.8347	-0.058	107.8347	-0.115			
18.8347	-0.058	108.8347	-0.115			
19.8347	-0.043	109.8347	-0.115			

CITY OF HOLLYWOOD SRWWTP IW-2 1760-1778 DRAWDOWN

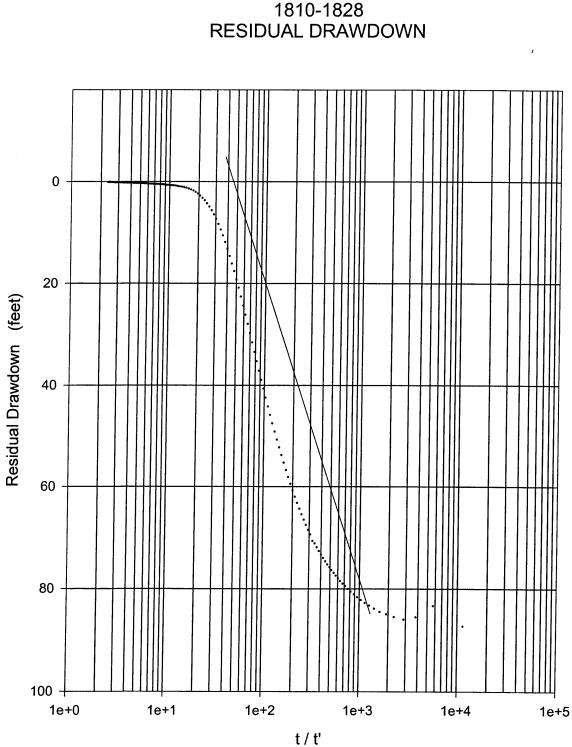
Time	Water Level	Time	Water Level	Time	Water Level	Time	Water Level
0	0	20.8347	121.445	110.8347	128.668	200.834	7 129.215
0.0217		21.8347	122.223	111.8347	128.668	201.834	
0.0433		22.8347	123.103	112.8347	128.812	202.834	
0.065 0.0867	-1.169 3.869	23.8347 24.8347	123.65 124.27	113.8347 114.8347	128.725 128.74	203.834 204.834	
0.1083		25.8347	124.876	115.8347	128.61	205.8347	
0.13	0.823	26.8347	125.236	116.8347	128.682	206.8347	129.244
0.1517		27.8347	125.64	117.8347	128.567	207.8347	
0.1733		28.8347 29.8347	126.029 126.332	118.8347 119.8347	128.61 128.754	208.8347 209.8347	
0.195 0.2167	2.18 2.497	30.8347	126.433	120.8347	128.855	210.8347	
0.2383	2.858	31.8347	126.635	121.8347	128.869	211.8347	
0.26	3.277	32.8347	126.779	122.8347	128.783	212.8347	
0.2817	3.623	33.8347	127.067 127.096	123.8347 124.8347	128.768 128.812	213.8347 214.8347	
0.3033 0.325	4.013 4.403	34.8347 35.8347	127.183	124.0347	128.783	215.8347	
0.3467	4.865	36.8347	127.356	126.8347	128.826	216.8347	
0.3683	5.182	37.8347	127.471	127.8347	128.927	217.8347	
0.39	5.558		127.615 127.658	128.8347 129.8347	128.783 128.855	218.8347 219.8347	
0.4117 0.4333	6.005 6.323		127.817	130.8347	128.869	220.8347	
0.4555	6.828	41.8347	127.86	131.8347	128.783	221.8347	
0.479	7.131		127.875	132.8347	128.812	222.8347	129.143
0.5038	7.535 7.954		128.062 128.019	133.8347 134.8347	128.783 128.783	223.8347 224.8347	129.1 129.129
0.5302 0.5582	8.502		128.062	135.8347	128.826	225.8347	129.259
0.5878	8.964		128.134	136.8347	128.783	226.8347	129.187
0.6192	9.412		128.163	137.8347	128.812	227.8347	129.114
0.6523 0.6875	9.989 10.48		128.221 128.206	138.8347 139.8347	128.783 128.884	228.8347 229.8347	129.244 129.259
0.7248	11.158		128.278	140.8347	128.927	230.8347	129.158
0.7643	11.519	51.8347	128.365	141.8347	128.826	231.8347	129.215
0.8062	12.573		128.365	142.8347	128.869	232.8347	129.071
0.8505 0.8975	13.237 13.901		128.336 128.322	143.8347 144.8347	128.884 128.985	233.8347 234.8347	129.057 129.158
0.9473	14.723		128.379	145.8347	128.913	235.8347	129.086
1	15.719		128.394	146.8347	128.869	236.8347	129.1
1.0558	16.556		128.35 128.48	147.8347 148.8347	128.841 128.941	237.8347 238.8347	129.201 129.071
1.115 1.1777	17.466 18.519		120.40	149.8347	128.956	239.8347	129.143
1.244	19.53		28.509	150.8347	128.956	240.8347	129.215
1.3143	20.526		128.35	151.8347	128.999	241.8347	129.172
1.3888	21.767 22.921		28.394 28.466	152.8347 153.8347	128.927 128.941	242.8347 243.8347	128.999 128.783
1.4678 1.5515	24.134		28.394	154.8347	128.913	245.0347	128.624
1.64	25.476		28.394	155.8347	128.898	245.8347	128.639
1.7338	26.832		28.581	156.8347	128.97	246.8347	128.567
1.8332 1.9385	28.261 29.82		28.509 28.466	157.8347 158.8347	128.999 129.114	247.8347	128.538
2.05	31.306		28.408	159.8347	129.143		
2.1682	32.937	70.8347 1	28.509	160.8347	129.086		
2.2933	34.51		28.567	161.8347	129.1		
2.4258 2.5663	36.198 37.988		28.509 28.595	162.8347 163.8347	129.071 129.172		
2.7152	39.777		28.495	164.8347	129.1		
2.8727	41.884		28.408	165.8347	129.187		
3.0395 3.2163	43.86 45.924		28.379 28.538	166.8347 167.8347	129.114 129.244		
3.4037	48.131		28.581		129.172		
3.602	50.238		28.581		129.158		
3.8122	52.532		28.466 28.668		129.172		
4.0348 4.2707	54.97 57.336		28.552	171.8347 172.8347	129.158 129.1		
4.5205	59.746	83.8347 1	28.581	173.8347	129.201		
4.7852	62.256		28.451		129.158		
5.0655 5.3623	64.737 67.377		28.639 28.639		129.201 129.172		
5.6768	70.118		28.624	177.8347	129.172		
6.01	72.787	88.8347 12	28.624	178.8347	129.172		
6.3628	75.383		28.624		129.215		
6.7367 7.1327	78.167 80.908		28.639 28.668		129.086 129.114		
7.552	83.475		28.567		129.114		
7.9963	86.129		28.581	183.8347	129.071		
8.467	89.086 91.624		28.538 28.61		128.999 129.086		
8.9655 9.4935	91.624 94.206		20.01		129.000		
10.0528	96.744	97.8347 12	8.682	187.8347	129.1		
10.6453	99.426		8.639		129.071		
11.2728 11.9377	101.748 104.156		8.711 8.797	189.8347 190.8347 1	129.1 29.114		
12.6418	106.348		8.711	191.8347 1	29.042		
13.3877	108.525		8.668		29.143		
14.1777 15.0145	110.587 112.592		8.668 8.812		29.086 29.028		
15.0145	112.592		8.783		29.028		
16.84	116.081	106.8347 12	8.725	196.8347 1	28.999		
17.8347	117.753		8.653		29.028		
18.8347 19.8347	119.094 120.334		28.74 8.696	198.8347 1 199.8347	28.999 129.1		


CITY OF HOLLYWOOD SRWWTP IW-2 1760-1778 RECOVERY


.


Time	Water Level	Time	Water Level	Time	Water Level
0.0040	400 497	20.838	15.662	109.838	0.044
0.0218 0.0437	128.437 128.278	20.838	14.175	110.838	0.058
0.0655	128.451	22.838	12.804	111.838	0.044
0.0873	128.278	23.838	11.577	112.838	0.044
0.1092	127.976	24.838	10.466	113.838	0.015
0.131	127.832 127.313	25.838 26.838	9.455 8.56	114.838 115.838	0.015 0.015
0.1528 0.1747	127.125	27.838	7.738	116.838	0
0.1965	126.851	28.838	7.002	117.838	0.015
0.2183	126.563	29.838	6.338	118.838	0.015
0.2402	126.26	30.838	5.731	119.838	0.015
0.262	125.957 125.712	31.838 32.838	5.183 4.692	120.838 121.838	0
0.2838 0.3057	125.424	33.838	4.259	122.838	ŏ
0.3275	125.136	34.838	3.855	123.838	0.015
0.3493	124.862	35.838	3.494	124.838	0
0.3712	124.573	36.838	3.162	125.838 126.838	0
0.393 0.4148	124.285 124.011	37.838 38.838	2.873 2.599	120.838	0.044
0.4367	123.737	39.838	2.368	128.838	0.029
0.4588	123.434	40.838	2.151	129.838	0.044
0.4823	123.16	41.838	1.964	130.838	0
0.5072	122.858	42.838	1.776	131.838 132.838	0 -0.014
0.5335 0.5615	122.555 122.209	43.838 44.838	1.617 1.473	133.838	-0.014
0.5912	121.877	45.838	1.343	134.838	-0.014
0.6225	121.488	46.838	1.227	135.838	-0.014
0.6557	121.113	47.838	1.112	136.838	-0.014
0.6908	120.681	48.838	1.025	137.838	-0.014
0.7282 0.7677	120.234 119.945	49.838 50.838	0.968 0.867	138.838 139.838	-0.014 -0.014
0.8095	119.196	51.838	0.78	140.838	-0.028
0.8538	118.662	52.838	0.708	141.838	0
0.9008	118.085	53.838	0.65	142.838	-0.028
0.9507	117.465	54.838	0.607	143.838	-0.014
1.0033 1.0592	116.845 116.197	55.838 56.838	0.549 0.506	144.838 145.838	-0.014 -0.014
1.1183	115.49	57.838	0.462	146.838	-0.014
1.181	114.74	58.838	0.419	147.838	0.015
1.2473	113.962	59.838	0.39	148.838	-0.014
1.3177	113.154	60.838	0.376	149.838	-0.014
1.3922	112.303 111.395	61.838 62.838	0.332 0.318	150.838 151.838	-0.014 -0.014
1.4712 1.5548	110.458	63.838	0.304	152.838	-0.014
1.6433	109.463	64.838	0.275	153.838	-0.014
1.7372	108.41	65.838	0.26	154.838	-0.014
1.8365	107.314	66.838	0.231	155.838	-0.014
1.9418 2.0533	106.175 104.978	67.838 68.838	0.217 0.203	156.838 157.838	-0.014 -0.014
2.0535	104.970	69.838	0.188	158.838	-0.014
2.2967	102.397	70.838	0.174	159.838	-0.028
2.4292	100.998	71.838	0.203	160.838	-0.014
2.5697	99.556	72.838	0.217	161.838	-0.014
2.7185 2.876	98.056 96.47	73.838 74.838	0.188 0.13	162.838 163.838	-0.028 -0.014
3.0428	94.84	75.838	0.13	164.838	0
3.2197	93.124	76.838	0.116	165.838	0
3.407	91.379	77.838	0.101	166.838	-0.028
3.6053	89.562	78.838	0.101	167.838	-0.014
3.8155	87.629 85.697	79.838 80.838	0.087 0.087	168.838 169.838	-0.028 -0.028
4.0382 4.274	83.663	81.838	0.087	170.838	-0.014
4.5238	81.557	82.838	0.073	171.838	-0.028
4.7885	79.394	83.838	0.073	172.838	0
5.0688	77.158	84.838	0.073	173.838 174.838	0
5.3657 5.6802	74.85 72.499	85.838 86.838	0.058 0.087	175.838	0.029
6.0133	70.075	87.838	0.058	176.838	-0.028
6.3662	67.608	88.838	0.101	177.838	-0.043
6.74	65.084	89.838	0.044	178.838	-0.043
7.136	62.516	90.838	0.044 0.044	179.838 180.838	-0.043 -0.057
7.5553 7.9997	59.905 57.265	91.838 92.838	0.044	181.838	-0.028
8.4703	54.552	93.838	0.029	182.838	-0.028
8.9688	51.898	94.838	0.029	183.838	0
9.4968	49.199	95.838	0.029	184.838	0
10.0562	46.501	96.838	0.029		
10.6487 11.2762	43.832 41.134	97.838 98.838	0.029 0.058		
11.2762	41.134 38.493	99.838	0.058		
12.6452	35.838	100.838	0.015		
13.391	33.226	101.838	0.029		
14.181	30.672	102.838	0.029		
15.0178	28.218	103.838 104.838	0.044 0		
15.9043 16.8433	25.794 23.412	104.838 105.838	0.029		
17.838	21.19	106.838	0.015		
18.838	19.169	107.838	0.015		
19.838	17.322	108.838	0.044		

Injection Well No. 2 (IW-2) – Packer Tests 1,810 – 1,828

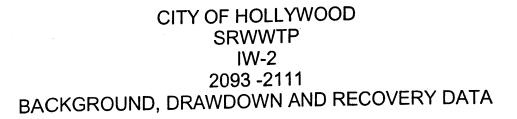

.

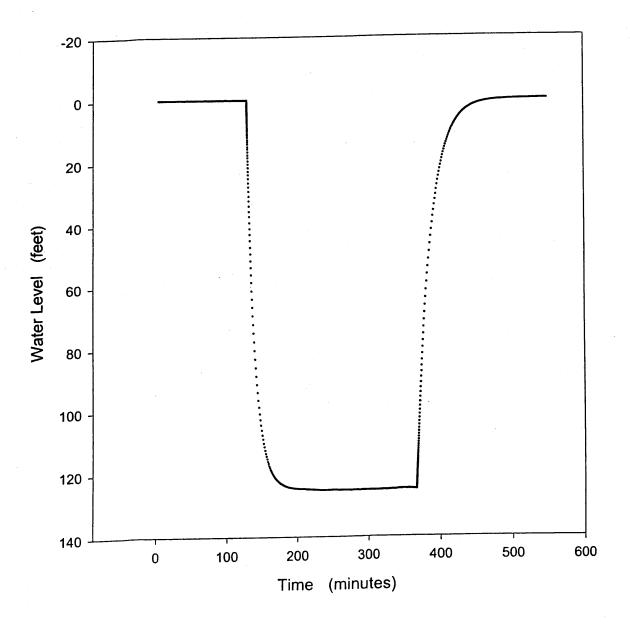
CITY OF HOLLYWOOD SRWWTP IW-2 1810-1828 DRAWDOWN

CITY OF HOLLYWOOD SRWWTP IW-2 1810-1828

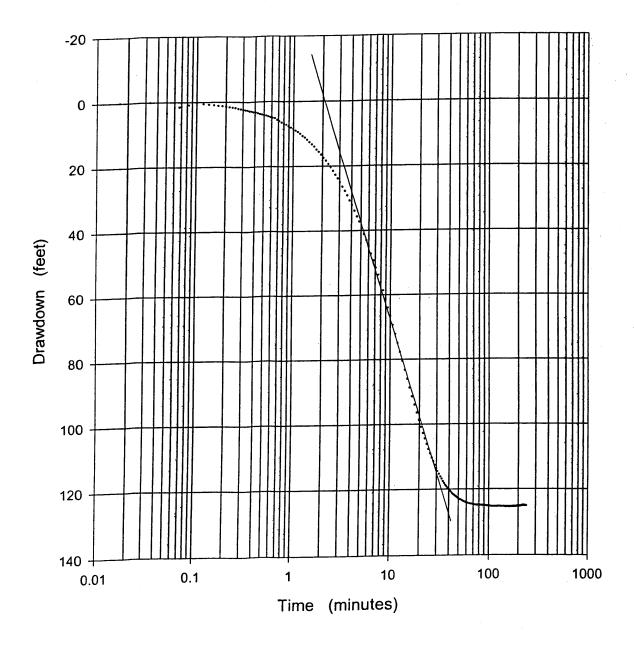
CITY OF HOLLYWOOD SRWWTP IW-2 1810-1828 BACKGROUND

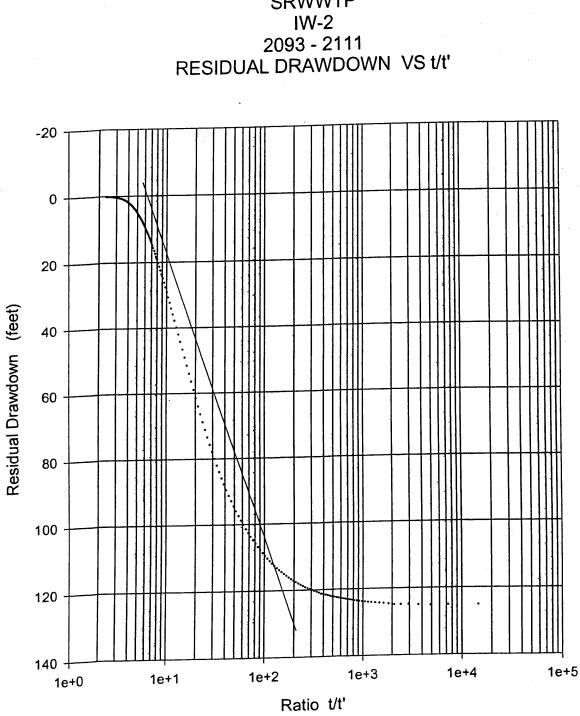
Time 1	Water Level	Time	Water Level	Time	Water Level
0	0	20.8347	-0.072	110.8347	-0.13
0.0217	-0.014	21.8347	-0.072	111.8347	-0.115
0.0433	-0.014	22.8347	-0.058	112.8347 113.8347	-0.13 -0.13
0.065 0.0867	-0.029 -0.029	23.8347 24.8347	-0.058 -0.058	114.8347	-0.13
0.1083	-0.029	25.8347	-0.058	115.8347	-0.13
0.13	-0.029	26.8347	-0.058	116.8347	-0.13
0.1517	-0.029	27.8347	-0.043	117.8347 118.8347	-0.101 -0.087
0.1733	-0.029 -0.029	28.8347 29.8347	-0.072 -0.058	119.8347	-0.087
0.195 0.2167	-0.023	30.8347	-0.072	120.8347	-0.087
0.2383	-0.029	31.8347	-0.072		
0.26	-0.029	32.8347	-0.072		
0.2817 0.3033	-0.043 -0.029	33.8347 34.8347	-0.043 -0.043		
0.3033	-0.043	35.8347	-0.029		
0.3467	-0.029	36.8347	-0.014		
0.3683	-0.029	37.8347	-0.043 -0.014		
0.39 0.4117	-0.029 -0.043	38.8347 39.8347	-0.072		
0.4333	-0.043	40.8347	-0.058		
0.4555	-0.029	41.8347	-0.043		
0.479	-0.029	42.8347	-0.014		
0.5038 0.5302	-0.029 -0.029	43.8347 44.8347	-0.072 -0.043		
0.5582	-0.029	45.8347	-0.043		
0.5878	-0.029	46.8347	-0.014		
0.6192	-0.029	47.8347	-0.072 -0.087		
0.6523 0.6875	-0.029 -0.029	48.8347 49.8347	-0.087		
0.7248	-0.029	50.8347	-0.087		
0.7643	0	51.8347	-0.087		
0.8062	0	52.8347 53.8347	-0.101 -0.101		
0.8505 0.8975	0	54.8347	-0.072		
0.9473	ō	55.8347	-0.087		
1	0	56.8347	-0.087		
1.0558	0 0	57.8347 58.8347	-0.087 -0.101		
1.115 1.1777	0 0	59.8347	-0.087		
1.244	0	60.8347	-0.101		
1.3143	0	61.8347	-0.087		
1.3888 1.4678	0	62.8347 63.8347	-0.101 -0.087		
1.5515	õ	64.8347	-0.087		
1.64	0	65.8347	-0.101		
1.7338	0	66.8347	-0.101 -0.101		
1.8332 1.9385	0	67.8347 68.8347	-0.101		
2.05	0.014	69.8347	-0.101		
2.1682	0	70.8347	-0.115		
2.2933 2.4258	0 0.014	71.8347 72.8347	-0.101 -0.101		
2.5663	0.014	73.8347	-0.101		
2.7152	0	74.8347	-0.115		
2.8727	0.014	75.8347	-0.101		
3.0395 3.2163	0.014 -0.014	76.8347 77.8347	-0.101 -0.115		
3.4037	-0.043	78.8347	-0.115		
3.602	-0.029	79.8347	-0.072		
3.8122	-0.043	80.8347 81.8347	-0.058 -0.043		
4.0348 4.2707	-0.043 -0.043	82.8347	-0.101		
4.5205	-0.043	83.8347	-0.115		
4.7852	-0.043	84.8347	-0.101		
5.0655 5.3623	-0.043 -0.043	85.8347 86.8347	-0.115 -0.115		
5.6768	-0.043	87.8347	-0.115		
6.01	-0.043	88.8347	-0.115		
6.3628	-0.043	89.8347	-0.115		
6.7367 7.1327	-0.058 -0.043	90.8347 91.8347	-0.115 -0.115		
7.552	-0.058	92.8347	-0.115		
7.9963	-0.058	93.8347	-0.115		
8.467	-0.058	94.8347 95.8347	-0.087 -0.087		
8.9655 9.4935	-0.058 -0.058	95.8347 96.8347	-0.058		
10.0528	-0.058	97.8347	-0.072		
10.6453	-0.058	98.8347	-0.072		
11.2728	-0.058 -0.058	99.8347 100.8347	-0.058 -0.13		
11.9377 12.6418	-0.058 -0.043	101.8347	-0.13		
13.3877	-0.043	102.8347	-0.087		
14.1777	-0.058	103.8347	-0.072		
15.0145 15.901	-0.029 -0.014	104.8347 105.8347	-0.072 -0.058		
16.84	-0.014	106.8347	-0.13		
17.8347	0	107.8347	-0.144		
18.8347	-0.058	108.8347 109.8347	-0.144 -0.13		
19.8347	-0.072	103.0047	00		


CITY OF HOLLYWOOD SRWWTP IW-2 1810-1828 DRAWDOWN


Time	Water Level	Time	Water Level	Time	Water Level	Time	Water Level
0	0	20.8347	84.498	110.8347	85.869	200.8347	87.08
0.0217	-0.014	21.8347	84.628	111.8347	85.84	201.8347	87.152
0.0433	-0.014	22.8347	84.671	112.8347	85.883	202.8347	87.08
0.065	-0.014 1.357	23.8347 24.8347	84.801 84.816	113.8347 114.8347	85.796 85.753	203.8347 204.8347	87.109 87.095
0.0867 0.1083	0.982	25.8347	84.787	115.8347	85.825	205.8347	87.123
0.13	1.862	26.8347	84.845	116.8347	85.84	206.8347	87.109
0.1517	2.584	27.8347	84.787	117.8347	85.825	207.8347	87.08
0.1733	3.234	28.8347	84.801	118.8347	85.753	208.8347 209.8347	87.138 87.138
0.195 0.2167	3.883 4.547	29.8347 30.8347	84.888 84.873	119.8347 120.8347	85.84 85.84	210.8347	87.095
0.2383	5.24	31.8347	84.902	121.8347	85.84	211.8347	87.051
0.26	5.918	32.8347	84.931	122.8347	85.825	212.8347	87.167
0.2817 0.3033	6.539 7.246	33.8347 34.8347	84.974 84.873	123.8347 124.8347	85.869 85.84	213.8347 214.8347	87.123 87.152
0.3055	7.896	35.8347	84.787	125.8347	85.984	215.8347	87.123
0.3467	8.603	36.8347	84.729	126.8347	86.2	216.8347	87.051
0.3683	9.195	37.8347	84.744	127.8347	86.417	217.8347	87.181
0.39 0.4117	9.83 10.408	38.8347 39.8347	84.816 84.931	128.8347 129.8347	86.575 86.647	218.8347 219.8347	87.21 87.181
0.4333	10.97	40.8347	84.931	130.8347	86.748	220.8347	87.152
0.4555	11.721	41.8347	85.046	131.8347	86.792	221.8347	87.095
0.479	12.356	42.8347	85.032	132.8347	86.792 86.835	222.8347 223.8347	87.095 87.123
0.5038 0.5302	12.977 13.626	43.8347 44.8347	85.162 85.162	133.8347 134.8347	86.849	224.8347	87.066
0.5582	14.348	45.8347	85.234	135.8347	86.806	225.8347	87.167
0.5878	15.156	46.8347	85.176	136.8347	86.82	226.8347	87.095
0.6192	15.993	47.8347 48.8347	85.191 85.191	137.8347 138.8347	86.893 86.921	227.8347 228.8347	87.152 87.167
0.6523 0.6875	16.802 17.61	49.8347	85.22	139.8347	86.864	229.8347	87.095
0.7248	18.519	50.8347	85.191	140.8347	86.936	230.8347	87.167
0.7643	19.125	51.8347	85.306	141.8347	86.864	231.8347	87.21
0.8062 0.8505	20.612 21.723	52.8347 53.8347	85.393 85.335	142.8347 143.8347	86.907 86.878	232.8347 233.8347	87.21 87.109
0.8975	22.863	54.8347	85.421	144.8347	86.936	234.8347	87.095
0.9473	24.032	55.8347	85.436	145.8347	86.921	235.8347	87.066
1	25.201	56.8347	85.407	146.8347	86.864	236.8347 237.8347	87.195 87.066
1.0558 1.115	26.414 27.727	57.8347 58.8347	85.421 85.494	147.8347 148.8347	86.893 86.936	238.8347	87.123
1.1777	29.026	59.8347	85.494	149.8347	86.95	239.8347	87.181
1.244	30.382	60.8347	85.508	150.8347	86.936	240.8347	87.253
1.3143 1.3888	31.825 33.268	61.8347 62.8347	85.45 85.45	151.8347 152.8347	87.008 87.037	241.8347 242.8347	87.152 87.181
1.4678	34.769	63.8347	85.436	153.8347	87.08	243.8347	87.195
1.5515	36.284	64.8347	85.479	154.8347	87.066	244.8347	87.268
1.64	37.929 39.416	65.8347 66.8347	85.537 85.58	155.8347 156.8347	87.008 87.037	245.8347 246.8347	87.253 87.224
1.7338 1.8332	41.09	67.8347	85.551	157.8347	87.051	247.8347	87.282
1.9385	42.821	68.8347	85.508	158.8347	87.051		
2.05	44.495 46.097	69.8347 70.8347	85.494 85.652	159.8347 160.8347	87.008 87.037		
2.1682 2.2933	47.857	71.8347	85.681	161.8347	87.037		
2.4258	49.603	72.8347	85.638	162.8347	87.051		
2.5663	51.32	73.8347 74.8347	85.58 85.551	163.8347 164.8347	87.066 87.095		
2.7152 2.8727	53.109 54.854	75.8347	85.537	165.8347	87.022		
3.0395	56.658	76.8347	85.479	166.8347	86.95		
3.2163	58.404	77.8347	85.465	167.8347	87.022		
3.4037 3.602	60.12 61.765	78.8347 79.8347	85.522 85.551	168.8347 169.8347	86.965 87.08		
3.8122	63.352	80.8347	85.566	170.8347	87.109		
4.0348	64.924	81.8347	85.667	171.8347	87.08		
4.2707	66.468 67.007	82.8347	85.681 85.623	172.8347	87.051 87.037		
4.5205 4.7852	67.997 69.483	83.8347 84.8347	85.623 85.595	173.8347 174.8347	86.979		
5.0655	70.954	85.8347	85.652	175.8347	87.022		
5.3623	72.31	86.8347	85.609	176.8347	86.979		
5.6768 6.01	73.594 74.849	87.8347 88.8347	85.739 85.652	177.8347 178.8347	87.066 86.994		
6.3628	75.887	89.8347	85.696	179.8347	87.095		
6.7367	76.926	90.8347	85.696	180.8347	87.109		
7.1327	77.95	91.8347	85.739	181.8347	87.008		
7.552 7.9963	78.859 79.638	92.8347 93.8347	85.652 85.71	182.8347 183.8347	87.008 87.051		
8.467	80.359	94.8347	85.724	184.8347	87.066		
8.9655	81.022	95.8347	85.71	185.8347	87.022		
9.4935 10.0528	81.57 82.104	96.8347 97.8347	85.681 85.71	186.8347 187.8347	87.152 87.08		
10.0528	82.508	98.8347	85.724	188.8347	87.152		
11.2728	82.869	99.8347	85.782	189.8347	87.08		
11.9377	83.2	100.8347	85.782	190.8347	87.138		
12.6418 13.3877	83.417 83.662	101.8347 102.8347	85.753 85.854	191.8347 192.8347	87.167 87.08		
14.1777	83.806	103.8347	85.854	193.8347	87.08		
15.0145	83.979	104.8347	85.854	194.8347	87.08		
15.901	84.095	105.8347 106.8347	85.825 85.854	195.8347 196.8347	87.051 87.095		
16.84 17.8347	84.152 84.325	106.8347	85.854	196.8347	87.095		
18.8347	84.369	108.8347	85.897	198.8347	87.051		
19.8347	84.455	109.8347	85.854	199.8347	87.066		

CITY OF HOLLYWOOD SRWWTP IW-2 1810-1828 RECOVERY


Time	Water Level	Time	Water Level	Time	Water Level
0	87.282	20.8347	0.982	110.8347	0.159
0.0217	87.282	21.8347	0.938	111.8347	0.159
0.0433	83.33	22.8347	0.823	112.8347	0.159
0.065	85.522	23.8347 24.8347	0.779 0.751	113.8347 114.8347	0.144 0.159
0.0867 0.1083	85.998 85.479	25.8347	0.736	115.8347	0.159
0.13	84.945	26.8347	0.722	116.8347	0.159
0.1517	84.484	27.8347	0.678	117.8347	0.159
0.1733	83.864	28.8347	0.664 0.664	118.8347 119.8347	0.159 0.144
0.195 0.2167	83.258 82.768	29.8347 30.8347	0.664	120.8347	0.144
0.2383	82.205	31.8347	0.577	121.8347	0.144
0.26	81.657	32.8347	0.563	122.8347	0.159
0.2817	81.109	33.8347 34.8347	0.548 0.534	123.8347 124.8347	0.173 0.159
0.3033 0.325	80.561 80.042	35.8347	0.548	125.8347	0.13
0.3467	79.493	36.8347	0.505	126.8347	0.159
0.3683	78.989	37.8347	0.491	127.8347	0.13
0.39	78.469 77.95	38.8347 39.8347	0.505 0.491	128.8347 129.8347	0.13 0.13
0.4117 0.4333	77.416	40.8347	0.476	130.8347	0.13
0.4555	76.868	41.8347	0.476	131.8347	0.159
0.479	76.349	42.8347	0.462	132.8347	0.15 9 0.13
0.5038 0.5302	75.801 75.224	43.8347 44.8347	0.462 0.447	133.8347 134.8347	0.13
0.5582	74.618	45.8347	0.433	135.8347	0.13
0.5878	73.983	46.8347	0.433	136.8347	0.159
0.6192	73.32	47.8347	0.419	137.8347	0.13 0.13
0.6523 0.6875	72.613 71.877	48.8347 49.8347	0.419 0.404	138.8347 139.8347	0.13
0.7248	71.113	50.8347	0.404	140.8347	0.115
0.7643	70.622	51.8347	0.39	141.8347	0.115
0.8062	69.382	52.8347	0.375	142.8347 143.8347	0.159 0.173
0.8505 0.8975	68.459 67.492	53.8347 54.8347	0.375 0.375	144.8347	0.173
0.9473	66.468	55.8347	0.375	145.8347	0.115
1	65.429	56.8347	0.361	146.8347	0.115
1.0558	64.318	57.8347 58.8347	0.346 0.346	147.8347 148.8347	0.115 0.115
1.115 1.1777	63.179 61.981	59.8347	0.346	149.8347	0.115
1.244	60.741	60.8347	0.346	150.8347	0.115
1.3143	59.457	61.8347	0.346	151.8347	0.115
1.3888 1.4678	58.115 56.73	62.8347 63.8347	0.332 0.318	152.8347 153.8347	0.144 0.115
1.5515	55.287	64.8347	0.332	154.8347	0.101
1.64	53.801	65.8347	0.318	155.8347	0.101
1.7338	52.286	66.8347	0.318	156.8347	0.101 0.13
1.8332 1.9385	50.742 49.17	67.8347 68.8347	0.318 0.303	157.8347 158.8347	0.101
2.05	47.539	69.8347	0.303	159.8347	0.101
2.1682	45.88	70.8347	0.289	160.8347	0.101
2.2933	44.206	71.8347 72.8347	0.289 0.289	161.8347 162.8347	0.101 0.101
2.4258 2.5663	42.475 40.686	73.8347	0.289	163.8347	0.101
2.7152	38.94	74.8347	0.289	164.8347	0.087
2.8727	37.136	75.8347	0.274	165.8347	0.087
3.0395 3.2163	35.289 33.456	76.8347 77.8347	0.274 0.274	166.8347 167.8347	0.087 0.101
3.4037	31.594	78.8347	0.274	168.8347	0.101
3.602	29.762	79.8347	0.274	169.8347	0.087
3.8122	27.943	80.8347	0.26	170.8347	0.101 0.115
4.0348 4.2707	26.154 24.364	81.8347 82.8347	0.274 0.26	171.8347 172.8347	0.115
4.5205	22.589	83.8347	0.26	173.8347	0.087
4.7852	20.857	84.8347	0.245	174.8347	0.13
5.0655 5.3623	19.197 17.581	85.8347 86.8347	0.245 0.245	175.8347 176.8347	0.101 0.087
5.3623	16.08	87.8347	0.245	177.8347	0.101
6.01	14.608	88.8347	0.245	178.8347	0.101
6.3628	13.179	89.8347	0.245	179.8347 180.8347	0.115 0.115
6.7367 7.1327	11.851 10.552	90.8347 91.8347	0.231 0.231	181.8347	0.115
7.552	9.397	92.8347	0.231		
7.9963	8.315	93.8347	0.231		
8.467	7.304	94.8347 95.8347	0.231 0.231		
8.9655 9.4935	6.424 5.615	96.8347	0.231		
10.0528	4.879	97.8347	0.231		
10.6453	4.244	98.8347	0.216		
11.2728 11.9377	3.652 3.176	99.8347 100.8347	0.216 0.216		
12.6418	2.743	101.8347	0.216		
13.3877	2.338	102.8347	0.216		
14.1777	2.021	103.8347	0.216 0.202		
15.0145 15.901	1.761 1.545	104.8347 105.8347	0.202		
16.84	1.371	106.8347	0.173		
17.8347	1.213	107.8347	0.144		
18.8347 19.8347	1.111 1.039	108.8347 109.8347	0.188 0.188		
10.0047		100.00 //			


Injection Well No. 2 – Packer Tests 2,093 – 2,111

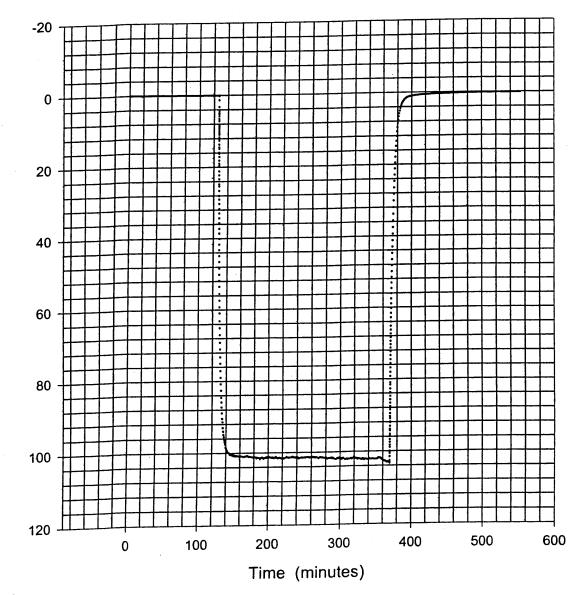
CITY OF HOLLYWOOD SRWWTP IW-2 2093 - 2111 DRAWDOWN

CITY OF HOLLYWOOD SRWWTP

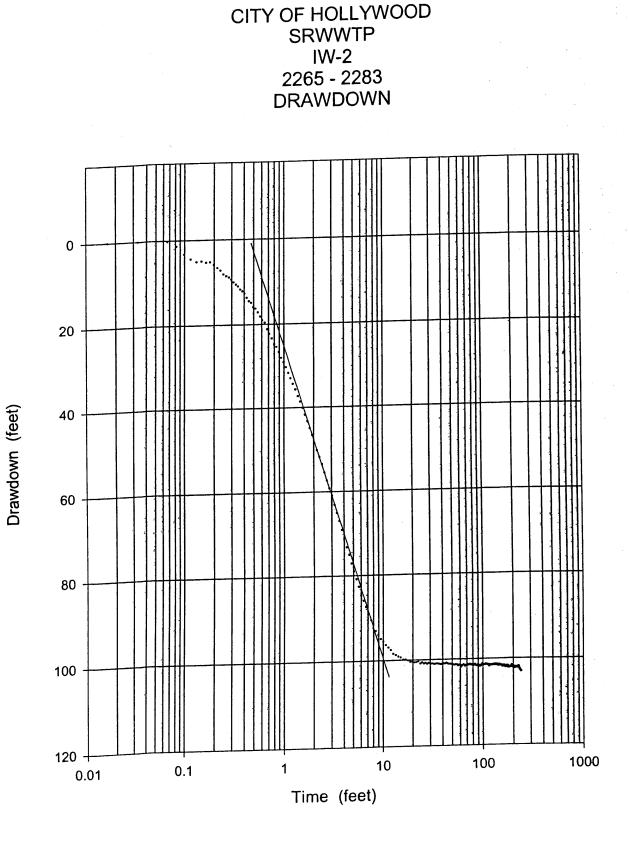
CITY OF HOLLYWOOD SRWWTP 2093 - 2111 BACKGROUND DATA

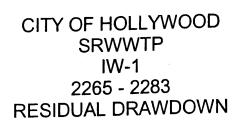
•	Wayer Level	Time	Wayer Level	Time	Wayer Level
Time	-	6.7305	-0.029	75.8285	-0.058
0	0	7.1265	-0.029	76.8285	-0.058
0.0167	-0.014	7.5458	-0.029	77.8285	-0.043
0.0333	-0.014	7.9902	-0.029	78.8285	-0.043
0.05	-0.014 -0.029	8.4608	-0.029	79.8285	-0.058
0.0667	-0.029	8.9593	-0.029	80.8285	-0.058
0.0833	-0.029	9.4873	-0.029	81.8285	-0.072
0.1	-0.029	10.0467	-0.029	82.8285	-0.072
0.1167 0.1333	-0.029	10.6392	-0.029	83.8285	-0.058
0.15	-0.029	11.2667	-0.029	84.8285	-0.058
0.1667	-0.029	11.9315	-0.043	85.8285	-0.072 -0.058
0.1833	-0.014	12.6357	-0.043	86.8285 87.8285	-0.058
0.2	-0.014	13.3815	-0.043	88.8285	-0.058
0.2167	-0.029	14.1715	-0.043 -0.043	89.8285	-0.043
0.2333	-0.029	15.0083 15.8948	-0.029	90.8285	-0.029
0.25	-0.029	16.8338	-0.014	91.8285	-0.058
0.2667	-0.029	17.8285	-0.014	92.8285	-0.072
0.2833	-0.029 -0.029	18.8285	-0.029	93.8285	-0.072
0.3	-0.029	19.8285	-0.043	94.8285	-0.087
0.3167	-0.014	20.8285	-0.043	95.8285	-0.058
0.3333 0.35	-0.014	21.8285	-0.043	96.8285	-0.058
0.3677	-0.029	22.8285	-0.029	97.8285	-0.058
0.3863	-0.029	23.8285	-0.058	98.8285	-0.058 -0.058
0.4062	-0.014	24.8285	-0.058	99.8285 100.8285	-0.058
0.4272	-0.029	25.8285	-0.058	101.8285	-0.058
0.4493	-0.029	26.8285	-0.058 -0.029	102.8285	-0.058
0.4728	-0.029	27.8285 28.8285	-0.058	103.8285	-0.058
0.4977	-0.029	29.8285	-0.058	104.8285	-0.058
0.524	-0.029	30.8285	-0.029	105.8285	-0.043
0.552	-0.014 -0.014	31.8285	-0.043	106.8285	-0.058
0.5817	-0.014	32.8285	-0.043	107.8285	-0.043
0.613 0.6462	-0.014	33.8285	-0.029	108.8285	-0.058
0.6813	-0.014	34.8285	-0.029	109.8285	-0.072 -0.072
0.7187	-0.014	35.8285	-0.043	110.8285 111.8285	-0.043
0.7582	-0.014	36.8285	-0.029 -0.043	112.8285	-0.058
0.8	-0.014	37.8285 38.8285	-0.043	113.8285	-0.072
0.8443	0	39.8285	-0.058	114,8285	-0.058
0.8913	-0.014	40.8285	-0.072	115.8285	-0.043
0.9412	-0.014 -0.014	41.8285	-0.072	116.8285	-0.043
0.9938	-0.014	42.8285	-0.058	117.8285	-0.058
1.0497 1.1088	-0.014	43.8285	-0.043	118.8285	-0.043
1.1715	-0.014	44.8285	-0.043	119.8285	-0.029 -0.043
1.2378	-0.014	45.8285	-0.043	120.8285 121.8285	-0.029
1.3082	-0.014	46.8285	-0.043 -0.043	122.8285	-0.058
1.3827	-0.014	47.8285 48.8285	-0.043	123.8285	-0.072
1.4617	-0.014	49.8285	-0.058		
1.5453	0	50.8285	-0.058		
1.6338	0 0.014	51.8285	-0.058		
1.7277	0.014	52.8285	-0.058		
1.827 1.9323	0.014	53. 8285	-0.072		
2.0438	0.014	54.8285	-0.072		
2.162	0.014	55.8285	-0.058		
2.2872	0.014	56.8285	-0.058		
2.4197	0.014	57.8285	-0.058		
2.5602	0.014	58.8285	-0.058 -0.058		
2.709	0.014	59.8285 60.8285	-0.038		
2.8665	0.014	61.8285	-0.058		
3.0333	0	62.8285	-0.058		
3.2102	0	63.8285	-0.058		
3.3975	0 0	64.8285	-0.043		
3.5958	0	65.8285	-0.072		
3.806	-0.029	66.8285	-0.072		
4.0287 4.2645	-0.014	67.8285	-0.072		
4.2043	0	68.8285	-0.058		
4.779	-0.029	69.8285	-0.058		
5.0593	-0.014	70.8285	-0.058		
5.3562	-0.029	71.8285	-0.058		
5.6707	-0.029	72.8285 73.8285	-0.058 -0.058		
6.0038	-0.029	73.8285	-0.058		
6.3567	-0.029				

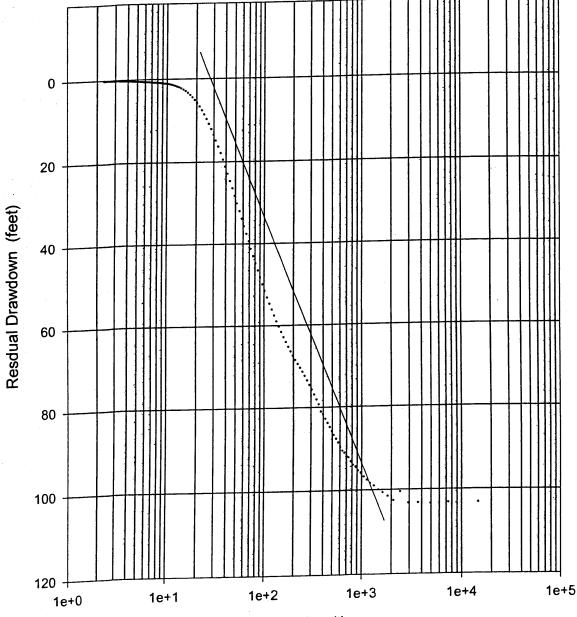
CITY OF HOLLYWOOD SRWWTP IW-2 2093 - 2111 DRAWDOWN DATA


		Time	Water Level	Time	Water Level	Time	Water Level	Time	Water Level
Time	Water Level	Time				150.8285	125.467	225.8285	124.962
	0	6.7305	49.326	75.8285	124.861	151.8285	125.438	226.8285	124.976
0	ŏ	7.1265	51.598	76.8285	124.861	152.8285	125.352	227.8285	125.02
0.0167	-0.014	7.5458	53.797	77.8285	124.818	153.8285	125.337	228.8285	125.02
0.0333	3.274	7.9902	56.14	78.8285	124.861	154.8285	125.352	229.8285	125.063
0.05	1.463	8.4608	58.584	79.8285	124.904	155.8285	125.352	230.8285	124.962
0.0667	0.855	8.9593	61.376	80.8285	124.89		125.352	231.8285	124.919
0.0833		9.4873	63.979	81.8285	124.919	156.8285		232.8285	125.092
0.1	0.043	10.0467	66.596	82.8285	124.875	157.8285	125.366	233.8285	124.991
0.1167	0.58	10.6392	69.372	83.8285	124.919	158.8285	125.323	234.8285	125.005
0.1333	0.739	11.2667	72.191	84.8285	124.904	159.8285	125.409 125.381	235.8285	125.034
0.15	0.869	11.9315	74.938	85.8285	124.904	160.8285		236.8285	125.063
0.1667	1.116	12.6357	77.742	86.8285	124.948	161.8285	125.438	237.8285	125.106
0.1833	1.174	13.3815	80.532	87.8285	124.962	162.8285	125.453 125.395	238.8285	125.106
0.2	1.376 1.536	14.1715	83.293	88.8285	125.005	163.8285	125.355	239.8285	125.121
0.2167		15.0083	86.067	89.8285	125.077	164.8285	125.323	240.8285	125.121
0.2333	1.666	15.8948	88.799	90.8285	124.948	165.8285	125.352	241.8285	125.077
0.25	1.753	16.8338	91.486	91.8285	125.049	166.8285	125.323	242.8285	125.121
0.2667	2.057	17.8285	.94	92.8285	125.049	167.8285 168.8285	125.366	212.0200	
0.2833	2.347	18.8285	96.5	93.8285	125.049	169.8285	125.381		
0.3	2.477	19.8285	98.724	94.8285	125.049	170.8285	125.395		
0.3167	2.55	20.8285	100.877	95.8285	125.135	170.8285	125.381		
0.3333	2.825	21.8285	102.769	96.8285	125.15	172.8285	125.366		
0.35	2.883	22.8285	104.444	97.8285	125.092	173.8285	125.366		
0.3677	3.158	23.8285	106.076	98.8285	125.135	174.8285	125.352		
0.3863	3.231	24.8285	107.68	99.8285	125.193	175.8285	125.323		
0.4062	3.492	25.8285	108.979	100.8285	125.193	176.8285	125.424		
0.4272 0.4493	3.752	26.8285	110.308	101.8285	125.207	177.8285	125.308		
0.4493	3.912	27.8285	111.405	102.8285	125.178	178.8285	125.337		
0.4720	4.071	28.8285	112.546	103.8285	125.222 125.279	179.8285	125.366		
0.524	4.274	29.8285	113.571	104.8285	125.275	180.8285	125.323		
0.552	4.535	30.8285	114.452	105.8285 106.8285	125.251	181.8285	125.366		
0.5817	4.795	31.8285	115.275	107.8285	125.337	182.8285	125.381		
0.613	5.027	32.8285	116.098 116.762	108.8285	125.265	183.8285	125.366		
0.6462	5.114	33.8285	117.499	109.8285	125.323	184.8285	125.366		
0.6813	5.679	34.8285 35.8285	118.09	110.8285	125.308	185.8285	125.381		
0.7187	6.012	36.8285	118.711	111.8285	125.294	186.8285	125.352		
0.7582	6.447	37.8285	119.13	112.8285	125.352	187.8285	125.366		
0.8	6.809	38.8285	119.621	113.8285	125.308	188.8285	125.366		
0.8443	7.142	39.8285	120.054	114.8285	125.308	189.8285	125.337		
0.8913	7.606	40.8285	120.473	115.8285	125.323	190.8285	125.308		
0.9412	8.04 8.417	41.8285	120.79	116.8285	125.294	191.8285	125.352 125.337		
0.9938	8.982	42.8285	121.165	117.8285	125.323	192.8285 193.8285	125.337		
1.0497	9.416	43.8285	121.469	118.8285		193.8285	125.236		
1.1088	9.967	44.8285	121.714	119.8285	125.308	195.8285	125.323		
1.1715 1.2378	10.647	45.8285	122.003	120.8285	125.366	196.8285	125.251		
1.3082	11.125	46.8285	122.162	121.8285	125.308 125.265	197.8285	125.294		
1.3827	11.821	47.8285	122.421	122.8285	125.279	198.8285	125.279		
1.4617	12.574	48.8285	122.638	123.8285 124.8285	125.294	199.8285	125.323		
1.5453	13.24	49.8285	122.811	125.8285	125.236	200.8285	125.308		
1.6338	13.935	50.8285	123.028	126.8285	125.265	201.8285	125.265		
1.7277	14.848	51.8285	123.186	127.8285	125.279	202.8285	125.352		
1.827	15.557	52.8285	123.259	128.8285		203.8285	125.265		
1.9323	16.426	53.8285	123.417	129.8285	125.251	204.8285	125.207		
2.0438	17.44	54.8285	123.591	130.8285	125.265	205.8285	125.294		
2.162	18.294	55.8285	123.692	131.8285	125.337	206.8285	125.207		
2.2872	19.351	56.8285	123.836	132.8285	125.337	207.8285	125.236		
2.4197	20.365	57.8285	123.908	133.8285	125.294	208.8285	125.251		
2.5602	21.509	58.8285	124.067	134.8285	125.352	209.8285	125.135		
2.709	22.682	59.8285	124.067	135.8285	125.352	210.8285	125.193		
2.8665	23.811	60.8285	124.211	136.8285	125.308	211.8285	125.222		
3.0333	24.998	61.8285	124.255 124.37	137.8285	125.337	212.8285	125.222		
3.2102	26.388	62.8285	124.37	138.8285	125.352	213.8285	125.15		
3.3975	27.691	63.8285 64.8285	124.399	139.8285	125.294	214.8285	125.15		
3.5958	29.095	65.8285	124.514	140.8285	125.308	215.8285	125.092		
3.806	30.673	66.8285	124.529	141.8285	125.294	216.8285	125.077		
4.0287	32.178	67.8285	124.572	142.8285	125.337	217.8285	125.063		
4.2645	33.843	68.8285	124.587	143.8285	125.352	218.8285	125.02		
4.5143	35.623	69.8285	124.688	144.8285	125.337	219.8285	124.962		
4.779	37.215	70.8285	124.673	145.8285	125.352	220.8285	125.092		
5.0593		71.8285	124.76	146.8285	125.366	221.8285	125.106		
5.3562	41.151 43.004	72.8285	124.789	147.8285	125.381	222.8285	124.976 125.02		
5.6707		73.8285	124.832	148.8285	125.323	223.8285 224.8285			
6.0038 6.3567		74.8285	124.76	149.8285	125.453	229.0200			
0.0007									

CITY OF HOLLYWOOD SRWWTP iW-2 2093 - 2111 RECOVERY DATA


T i	Water Level	Time	Water Level	Time	Water Level	Time	Water Level
Time		6.3533	87.802	73.8252	2.753	147.8252	0.247
0.	125.121	6.7272	85.967	74.8252	2.594	148.8252	0.247
0.0165	125.193	7.1232	84.016	75.8252	2.478	149.8252	0.232
0.033	125.164	7.5425	82.036	76.8252	2.362	150.8252	0.232
0.0495	125.208 125.078	7.9868	79.983	77.8252	2.246	151.8252	0.232
0.066 0.0825	124.89	8.4575	77.873	78.8252	2.145	152.8252	0.232 0.218
0.0020	124.933	8.956	75.705	79.8252	2.043	153.8252 154.8252	0.218
0.1155	124.948	9.484	73.478	80.8252	1.956 1.913	155.8252	0.218
0.132	124.63	10.0433	71.208	81.8252 82.8252	1.797	156.8252	0.218
0.1485	124.471	10.6358 11.2633	68.837 66.452	83.8252	1.724	157.8252	0.189
0.165	124.385	11.9282	64.008	84.8252	1.652	158.8252	0.189
0.1815	124.255	12.6323	61.52	85.8252	1.565	159.8252	0.189
0.198	124.168 124.053	13.3782	58.989	86.8252	1.478	160.8252	0.189
0.2145 0.231	123.923	14.1682	56.415	87.8252	1.406	161.8252 162.8252	0.189 0.174
0.2475	123.822	15.005	54.028	88.8252	1.362	163.8252	0.174
0.264	123.692	15.8915	51.569	89.8252 90.8252	1.304 1.275	164.8252	0.174
0.2805	123.562	16.8305	49.11 46.621	91.8252	1.232	165.8252	0.174
0.297	123.461	17.8252 18.8252	40.021	92.8252	1.159	166.8252	0.174
0.3135	123.331	19.8252	41.977	93.8252	1.116	167.8252	0.174
0.33	123.216 123.1	20.8252	39.835	94.8252	1.058	168.8252	0.16
0.3467 0.3643	122.97	21.8252	37.78	95.8252	1.014	169.8252 170.8252	0.16 0.16
0.383	122.855	22.8252	35.869	96.8252	0.957 0.928	171.8252	0.145
0.4028	122.725	23.8252	34.046	97.8252 98.8252	0.928	172.8252	0.145
0.4238	122.609	24.8252 25.8252	32.309 30.673	99.8252	0.855	173.8252	0.16
0.446	122.436	26.8252	29.11	100.8252	0.826	174.8252	0.145
0.4695	122.292	27.8252	27.604	101.8252	0.812	175.8252	0.145
0.4943	122.133 121.96	28.8252	26.186	102.8252	0.783	176.8252	0.145 0.131
0.5207 0.5487	121.758	29.8252	24.883	103.8252	0.754	177.8252 178.8252	0.131
0.5783	121.584	30.8252	23.666	104.8252 105.8252	0.725 0.725	179.8252	0.131
0.6097	121.368	31.8252	22.479 21.335	106.8252	0.681	180.8252	0.16
0.6428	121.252	32.8252 33.8252	20.293	107.8252	0.667	181.8252	0.16
0.678	120.906 120.661	34.8252	19.279	108.8252	0.652	182.8252	0.16
0.7153 0.7548	120.386	35.8252	18.323	109.8252	0.609		
0.7967	120.097	36.8252	17.397	110.8252	0.594 0.58		
0.841	119.794	37.8252	16.528 15.688	111.8252 112.8252	0.551		
0.888	119.477	38.8252 39.8252	14.92	113.8252	0.536		
0.9378	119.159 118.798	40.8252	14.196	114.8252	0.522		
0.9905 1.0463	118.408	41.8252	13.487	115.8252	0.507		
1.1055	118.019	42.8252	12.806	116.8252	0.493 0.507		
1.1682	117.6	43.8252	12.169	117.8252 118.8252	0.493		
1.2345	117.167	44.8252 45.8252	11.56 10.995	119.8252	0.493		
1.3048	116.705	46.8252	10.431	120.8252	0.449		
1.3793	116.214 115.665	47.8252	9.924	121.8252	0.435		
1.4583 1.542	115.117	48.8252	9.417	122.8252	0.42		
1.6305	114.553	49.8252	8.968	123.8252	0.406 0.391		
1.7243	113.947	50.8252	8.519	124.8252 125.8252	0.391		
1.8237	113.326	51.8252 52.8252	8.098 7.693	126.8252	0.377		
1.929	112.647	53.8252	7.316	127.8252	0.377		
2.0405	111.94 111.203	54.8252	6.969	128.8252	0.362		
2.1587	110.409	55.8252	6.606	129.8252	0.348		
2.2838 2.4163	109.601	56.8252	6.302	130.8252	0.348		
2.5568	108.748	57.8252	5.998	131.8252	0.348 0.334		
2.7057	107.839	58.8252	5.694	132.8252 133.8252	0.334		
2.8632	106.9	59.8252 60.8252	5.419 5.158	134.8252	0.319		
3.03	105.889	61.8252	4.912	135.8252	0.319		
3.2068	104.849	62.8252	4.651	136.8252	0.305		
3.3942	103.766 102.625	63.8252	4.448	137.8252	0.305		
3.5925 3.8027	102.025	64.8252	4.216	138.8252	0.29		
4.0253	100.169	65.8252	4.028	139.8252	0.276		
4.2612	98.869	66.8252	3.84 3.666	140.8252 141.8252	0.276		
4.511	97.482	67.8252 68.8252	3.000	142.8252	0.276		
4.7757	96.023	69.8252	3.318	143.8252	0.261		
5.056	94.506	70.8252	3.144	144.8252	0.261		
5.3528 5.6673	92.931 91.299	71.8252	3.014	145.8252	0.261		
6.0005	89.579	72.8252	2.869	146.8252	0.261		


Injection Well No. 2 – Packer Tests 2,265 – 2,283



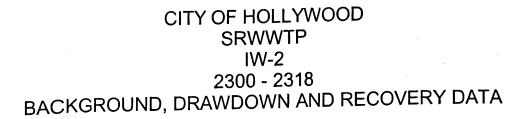
Water Level (feet)

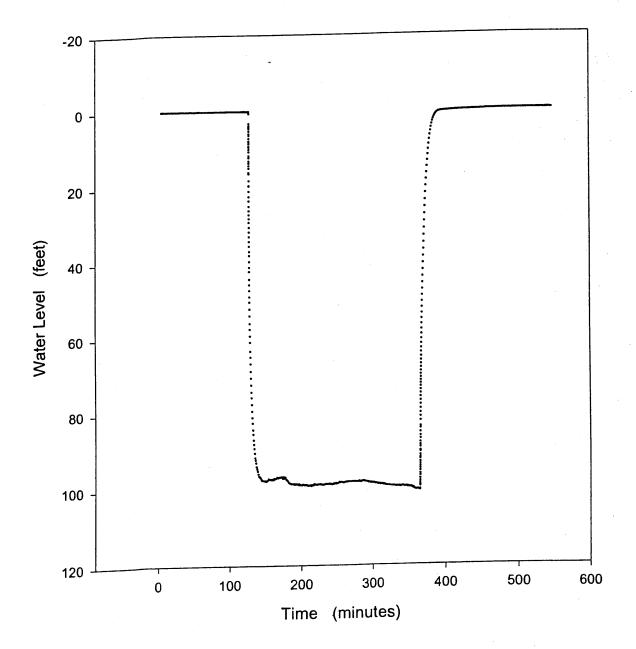
Ratio t/t'

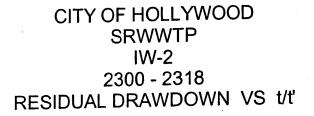
.

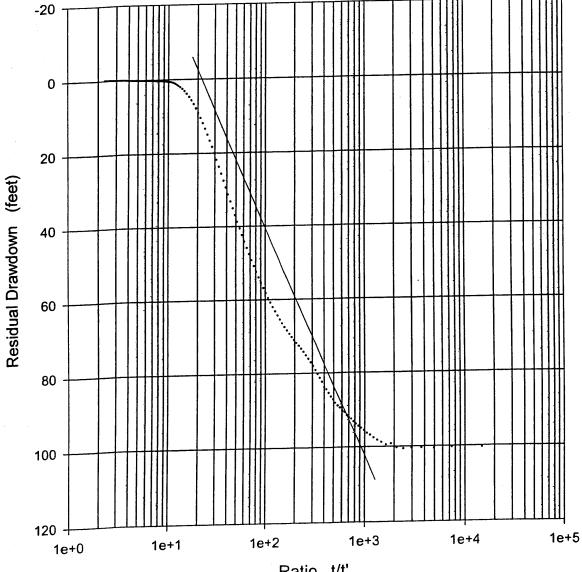
CITY OF HOLLYWOOD SRWWTP IW-2 2265 - 2283

Time	Water Level	Time Water Level	Time	Water Level
	•	6.7272 0	75.8252	0.043
0	0	7.1232 0	76.8252	0.043
0.0165	-0.014 -0.014	7.5425 0	77.8252	0.043
0.033	-0.014	7.9868 0.014	78.8252	0.043
0.0495 0.066	-0.014	8.4575 0.014	79.8252	0.043
0.0825	-0.014	8.956 0	80.8252	0.043
0.099	-0.014	9.484 0.014	81.8252	0.043
0.1155	-0.014	10.0433 0	82.8252	0.043
0.132	-0.014	10.6358 0	83.8252 84.8252	0.043 0.043
0.1485	-0.014	11.2633 0.014 11.9282 0	85.8252	0.043
0.165	0	11.9282 0 12.6323 0	86.8252	0.043
0.1815	-0.014	13.3782 0	87.8252	0.043
0.198	-0.014 -0.014	14.1682 0	88.8252	0.043
0.2145 0.231	-0.014	15.005 0	89.8252	0.043
0.2475	-0.014	15.8915 0.014	90.8252	0.043
0.264	-0.014	16.8305 0	91.8252	0.043
0.2805	-0.014	17.8252 0.014	92.8252 93.8252	0.058 0.072
0.297	-0.014	18.8252 0.029 19.8252 0.014	94.8252	0.072
0.3135	-0.014	20.8252 0.029	95.8252	0.087
0.33	-0.014	21.8252 0.029	96.8252	0.087
0.3467	0 -0.014	22.8252 0	97.8252	0.058
0.3643 0.383	-0.014	23.8252 0	98.8252	0.087
0.4028	0	24.8252 0.014	99.8252	0.087
0.4238	-0.014	25.8252 0.014	100.8252	0.101
0.446	-0.014	26.8252 0.014	101.8252	0.101 0.101
0.4695	0	27.8252 0 28.8252 0.014	102.8252 103.8252	0.072
0.4943	-0.014	29.8252 0	104.8252	0.058
0.5207	-0.014 -0.014	30.8252 0	105.8252	0.058
0.5487 0.5783	-0.014	31.8252 0	106.8252	0.058
0.6097	-0.014	32.8252 0.014	107.8252	0.058
0.6428	0.014	33.8252 0.014	108.8252	0.058
0.678	0.014	34.8252 0.014	109.8252	0.058 0.058
0.7153	0.014	35.8252 0.014 36.8252 0.014	110.8252 111.8252	0.058
0.7548	0.014	36.8252 0.014 37.8252 0.014	112.8252	0.058
0.7967	0.014	38.8252 0.014	113.8252	0.058
0.841	0.014 0.029	39.8252 0.014	114.8252	0.058
0.888 0.9378	0.014	40.8252 0.014	115.8252	0.072
0.9905	0.029	41.8252 0.014	116.8252	0.072
1.0463	0.029	42.8252 0	117.8252	0.058 0.058
1.1055	0.029	43.8252 0.014 44.8252 0	118.8252 119.8252	0.035
1.1682	0.029	44.8252 0 45.8252 0.014	120.8252	0.087
1.2345	0.029	46.8252 0.014	121.8252	0.101
1.3048	0.029 0.014	47.8252 0.014	122.8252	0.087
1.3793 1.4583	0.029	48.8252 0.029	123.8252	0.087
1.542	0.029	49.8252 0.043	124.8252	0.101
1.6305	0.029	50.8252 0.043	125.8252	0.101
1.7243	0.029	51.8252 0.043 52.8252 0.029	126.8252	0.101
1.8237	0.014	52.8252 0.029 53.8252 0.029		
1.929	0.014 0.029	54.8252 0.029		
2.0405	0.029	55.8252 0.029		
2.1587 2.2838	0.029	56.8252 0.029		
2.4163	0.029	57.8252 0.029		
2.5568	0.029	58.8252 0.029		
2.7057	0.029	59.8252 0.029		
2.8632	0.014	60.8252 0.029 61.8252 0.058		
3.03	0.029	62.8252 0.072		
3.2068	0.029 0.029	63.8252 0.058		
3.3942 3.5925	0.029	64.8252 0.058		
3.8027	ŏ	65.8252 0.072		
4.0253	Ō	66.8252 0.043		
4.2612	0	67.8252 0.029		
4.511	-0.014	68.8252 0.029 69.8252 0.043		
4.7757	-0.014	69.8252 0.043 70.8252 0.029		
5.056	0.014	71.8252 0.043		
5.3528	0 0.014	72.8252 0.043		
5.6673 6.0005	-0.014	73.8252 0.043		
6.3533	0	74.8252 0.043		
0.0000	-			

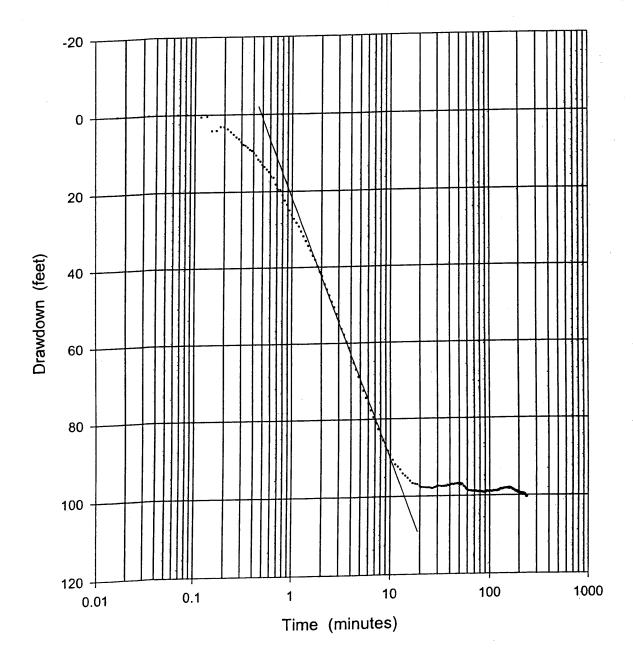

CITY OF HOLLYWOOD SRWWTP IW-2 2265 - 2283 DRAWDOWN DATA


		Time	Water Level	Time	Water Level	Time	Water Level	Time	Water Level
Time	Water Level					150.8252	101.606	225.825	2 102.04
	•	6.7272	87.317	75.8252	101.274	151.8252	101.635	226.825	2 101.794
0	0 0.014	7.1232	88.935	76.8252	101.39	152.8252	101.635	227.825	2 101.852
0.0165	0.014	7.5425	90.481	77.8252	101.462 101.26	153.8252	101.491	228.825	
0.033	5.187	7.9868	91.435	78.8252	101.447	154.8252	101.837	229.825	
0.0495	0.261	8.4575	93.01	79.8252 80.8252	101.577	155.8252	101.924	230.825	
0.066 0.0825	1.376	8.956	94.007	81.8252	101.433	156.8252	101.751	231.825	
0.0825	3.26	9.484	94.932	82.8252	101.462	157.8252	101.65	232.825	
0.1155	4.434	10.0433	95.539	83.8252	101.13	158.8252	101.679	233.825	
0.132	5.1	10.6358	96.362 96.969	84.8252	101.433	159.8252	101.606	234.825	
0.1485	4.97	11.2633	97.561	85.8252	101.549	160.8252	101.751	235.825	
0.165	5.259	11.9282 12.6323	98.457	86.8252	101.606	161.8252	101.491	236.825	
0.1815	5.187	13.3782	98.746	87.8252	101.476	162.8252	101.852	238.825	
0.198	5.882	14.1682	99.107	88.8252	101.375	163.8252	101.621 101.837	239.825	
0.2145	6.607	15.005	99.353	89.8252	101.549	164.8252	101.968	240.825	
0.231	7.201	15.8915	99.873	90.8252	101.462	165.8252 166.8252	102.04	241.825	
0.2475	8.07	16.8305	99.844	91.8252	101.606	167.8252	102.04	242.825	
0.264	8.504	17.8252	100.104	92.8252	101.736	168.8252	101.852		
0.2805	8.838 9.359	18.8252	100.422	93.8252	101.476	169.8252	101.707		
0.297	9.996	19.8252	100.436	94.8252	101.765 101.606	170.8252	101.895		
0.3135	10.547	20.8252	100.61	95.8252	101.491	171.8252	101.621		
0.33 0.3467	10.952	21.8252	100.523	96.8252 97.8252	101.39	172.8252	101.621		
0.3643	11.677	22.8252	100.364	98.8252	101.144	173.8252	101.837		
0.383	12.097	23.8252	100.855	99.8252	101.361	174.8252			
0.4028	12.618	24.8252	100.581 100.913	100.8252		175.8252			
0.4238	13.661	25.8252 26.8252	100.513	101.8252		176.8252			
0.446	14.472	20.0252	101	102.8252		177.8252			
0.4695	14.863	28.8252	100.754	103.8252		178.8252			
0.4943	15.906	29.8252	100.87	104.8252		179.8252			
0.5207	16.254	30.8252	100.942	105.8252		180.8252 181.8252			
0.5487	17.137	31.8252	100.913	106.8252		182.8252			
0.5783	18.151 19.005	32.8252	101.101	107.8252		183.8252			
0.6097	19.005	33.8252	101	108.8252		184.8252			
0.6428	21.163	34.8252	100.899	109.8252 110.8252		185.8252			
0.678 0.7153	22.278	35.8252	100.971	110.8252		186.8252			
0.7548	23.378	36.8252	101.029	112.8252		187.8252			
0.7967	24.812	37.8252	101.13 101.072	113.8252		188.8252			
0.841	25.42	38.8252 39.8252		114.8252		189.8252			
0.888	26.679	40.8252		115.8252		190.8252			
0.9378	28.055	41.8252		116.8252		191.8252		4	
0.9905	29.097	42.8252		117.8252		192.8252 193.8252			
1.0463	30.313	43.8252		118.8252		193.8252			
1.1055	31.717 32.977	44.8252	100.971	119.8252		195.8252			
1.1682	A 4 95 9	45.8252		120.8252		196.8252			
1.2345		46.8252		121.8252 122.8252		197.8252			
1.3048 1.3793	a= 00	47.8252		123.8252		198.8252			
1.4583		48.8252		124.8252		199.8252			
1.542	40.141	49.8252		125.8252		200.8252			
1.6305	41.733	50.8252 51.8252		126.8252		201.8252			
1.7243	43.267	52.8252		127.8252	2 101.346	202.8252			
1.8237	44.946	53.8252		128.8252		203.8252			
1.929	46.581	54.8252		129.8252		204.8252			
2.0405		55.8252		130.8252		205.825			
2.1587		56.8252	101.577	131.8252		207.825			
2.2838		57.8252		132.8252		208.825			
2.4163		58.8252		133.8252	-	209.8252			
2.5568		59.8252		134.8252 135.8252		210.825			
2.7057 2.8632		60.8252		136.8252		211.825	2 102.213		
2.0032	60.961	61.8252		137.8252		212.825			
3.2068		62.8252		138.8252		213.825			
3.3942	65.082	63.8252 64.8252		139.8252		214.825			
3.5925	67.035	64.8252 65.8252		140.8252		215.825			
3.8027	69.16	66.8252		141.8252	2 101.491	216.825			
4.0253	3 71.04	67.8252		142.8252		217.825			
4.2612		68.8252		143.8252		218.825			
4.511		69.8252		144.8252		219.825 220.825			
4.7757		70.8252	101.173	145.8252		221.825			
5.056		71.8252		146.8252		222.825			
5.3528		72.8252		147.8252		223.825			
5.6673 6.000		73.8252		148.8252 149.8252		224.825		ł	
6.353	- or o	74.8252	101.13	143.0232	00.0				
0.000									


CITY OF HOLLYWOOD SRWWTP IW-2 2265 - 2283 RECOVERY DATA


		T :	Water Level	Time	Water Level	Time	Water Level
Time	Water Level	Time				150.8252	2 0.188
0	103.051	6.7272	19.497	75.8252	0.434 0.434	151.825	
0.0165	103.138	7.1232	17.904	76.8252	0.434	152.825	
0.033	103.138	7.5425	16.34	77.8252 78.8252	0.42	153.825	
0.0495	103.354	7.9868 8.4575	14.877 13.472	79.8252	0.405	154.825	
0.066	103.167	8.4575 8.956	12.14	80.8252	0.405	155.8253	
0.0825	103.195	9.484	10.88	81.8252	0.405	156.8252	0.173
0.099	100.523	10.0433	9.706	82.8252	0.391	157.825	
0.1155	102.574	10.6358	8.62	83.8252	0.391	158.825	
0.132	101.52 100.653	11.2633	7.62	84.8252	0.391	159.825	
0.1485	99.974	11.9282	6.708	85.8252	0.376	160.825	
0.165 0.1815	98.977	12.6323	5.867	86.8252	0.376	161.825 162.825	
0.198	98.327	13.3782	5.129	87.8252	0.362	163.8252	
0.2145	97.561	14.1682	4.448	88.8252 89.8252	0.362	164.825	
0.231	96.796	15.005	3.868 3.347	90.8252	0.362	165.825	
0.2475	95.842	15.8915 16.8305	2.926	91.8252	0.347	166.8252	0.159
0.264	95.308	17.8252	2.564	92.8252	0.347	167.825	
0.2805	94.397	18.8252	2.274	93.8252	0.347	168.8252	
0.297	93.964 93.126	19.8252	2.014	94.8252	0.347	169.825	
0.3135	92.143	20.8252	1.825	95.8252	0.347	170.825	
0.33 0.3467	91.955	21.8252	1.651	96.8252	0.347	171.825 172.825	
0.3643	91.031	22.8252	1.521	97.8252	0.333	173.8252	
0.383	90.481	23.8252	1.376	98.8252	0.318 0.318	174.8252	
0.4028	89.614	24.8252	1.289	99.8252 100.8252	0.318	175.825	
0.4238	88.559	25.8252	1.202 1.144	101.8252	0.333	176.8252	
0.446	87.663	26.8252 27.8252	1.086	102.8252	0.333	177.8252	
0.4695	86.739	28.8252	1.072	103.8252	0.333	178.825	
0.4943	85.77 84.773	29.8252	1.043	104.8252	0.318	179.825	
0.5207	83.776	30.8252	1.014	105.8252	0.304	180.825	
0.5487 0.5783	82.735	31.8252	0.927	106.8252	0.289	181.825 182.825	
0.6097	81.651	32.8252	0.912	107.8252	0.289 0.289	183.8252	
0.6428	81.029	33.8252	0.883	108.8252 109.8252	0.289	100.010	
0.678	79.266	34.8252 35.8252	0.855 0.84	110.8252	0.275		
0.7153	78.095	36.8252	0.811	111.8252	0.275		
0.7548	76.881	37.8252	0.797	112.8252	0.26		
0.7967	75.652 74.553	38.8252	0.797	113.8252	0.275		
0.841 0.888	73.397	39.8252	0.782	114.8252	0.26		
0.9378	72.327	40.8252	0.739	115.8252	0.26		
0.9905	71.329	41.8252	0.724	116.8252 117.8252	0.26 0.26		
1.0463	70.346	42.8252	0.71 0.695	118.8252	0.26		
1.1055	69.406	43.8252 44.8252	0.681	119.8252	0.26		
1.1682	68.408	45.8252	0.666	120.8252	0.26		
1.2345	67.382 66.311	46.8252	0.652	121.8252	0.26		
1.3048	65.198	47.8252	0.637	122.8252	0.246		
1.3793 1.4583	64.041	48.8252	0.623	123.8252	0.246		
1.542	62.841	49.8252	0.637	124.8252	0.246 0.246		
1.6305	61.597	50.8252	0.623	125.8252 126.8252	0.246		
1.7243	60.295	51.8252 52.8252	0.608 0.594	127.8252	0.231		
1.8237	58.964	53.8252	0.579	128.8252	0.217		
1.929	57.561	54.8252	0.579	129.8252	0.231		
2.0405	56.129 54.668	55.8252	0.579	130.8252	0.231		
2.1587	54.668 53.12	56.8252	0.55	131.8252	0.217		
2.2838	51.529	57.8252	0.55	132.8252	0.231		
2.4163 2.5568	49.923	58.8252	0.521	133.8252	0.231		
2.7057	48.274	59.8252	0.521	134.8252	0.217		
2.8632	46.566	60.8252	0.507	135.8252	0.217 0.202		
3.03	44.844	61.8252	0.507	136.8252 137.8252	0.202		
3.2068	43.065	62.8252 63.8252	0.507 0.492	138.8252	0.202		
3.3942	41.256	63.8252 64.8252	0.492	139.8252	0.217		
3.5925	39.418	65.8252	0.492	140.8252	0.202		
3.8027	37.58	66.8252	0.463	141.8252	0.217		
4.0253	35.727 33.86	67.8252	0.463	142.8252	0.202		
4.2612 4.511	32.021	68.8252	0.463	143.8252	0.202		
4.511	30.139	69.8252	0.463	144.8252	0.202		
5.056	28.315	70.8252	0.449	145.8252	0.202		
5.3528	26.491	71.8252	0.449	146.8252 147.8252	0.202 0.202		
5.6673	24.696	72.8252 73.8252	0.449 0.449	147.6252	0.202		
6.0005	22.9	73.8252	0.449	149.8252	0.188		
6.3533	21.177	,					

Injection Well No. 2 – Packer Tests 2,300 – 2,318



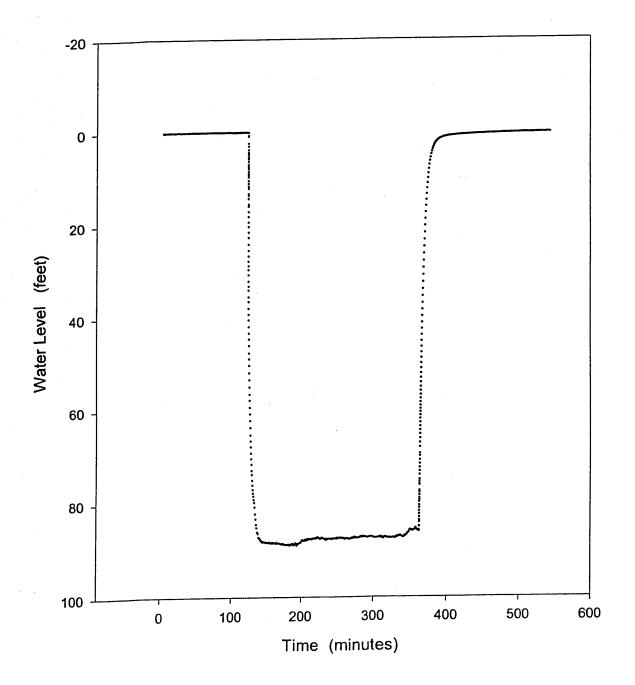
Ratio t/t'

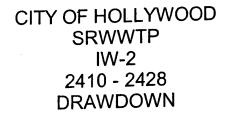
CITY OF HOLLYWOOD SRWWTP IW-2 2300 - 2318 DRAWDOWN

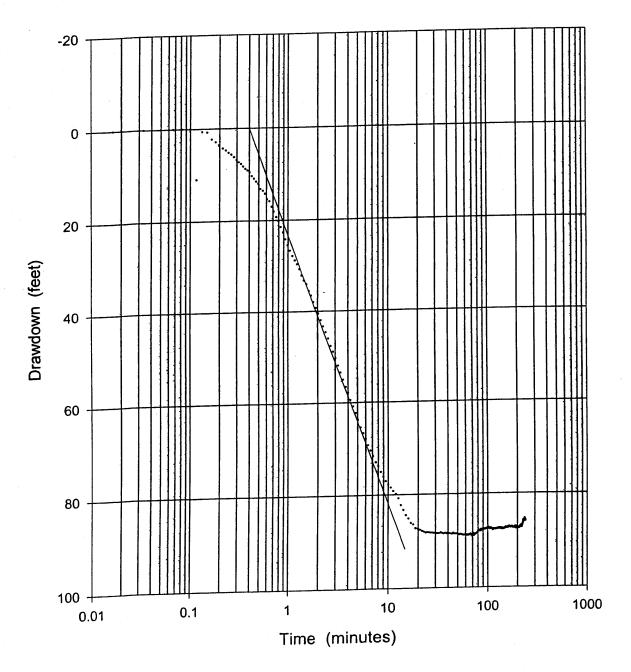
CITY OF HOLLYWOOD SRWWTP IW-2 230 - 2318 BACKGROUND DATA

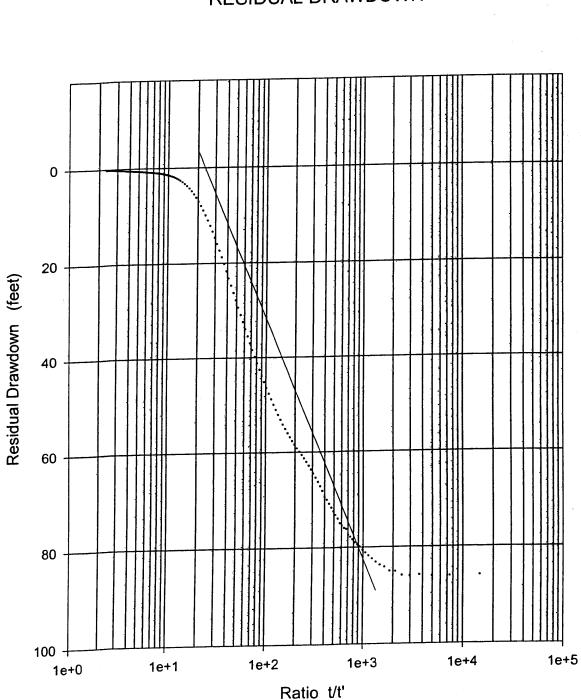
Time	Water Level	Time	Water Level	Time	Water Level
•	0	6.7272	0	75.8252	0
0	-0.014	7.1232	0	76.8252	0
0.0165	-0.014	7.5425	0	77.8252	0.014
0.0495	-0.014	7.9868	0	78.8252	0 0.029
0.066	-0.014	8.4575	0	79.8252 80.8252	0.029
0.0825	-0.014	8.956	0	81.8252	0.014
0.099	-0.014	9.484	0	82.8252	0
0.1155	-0.014	10.0433 10.6358	Ő	83.8252	-0.014
0.132	-0.014	11.2633	Ő .	84.8252	-0.014
0.1485	-0.014	11.9282	0	85.8252	0
0.165	-0.014 -0.014	12.6323	0	86.8252	0
0.1815	-0.014	13.3782	0	87.8252	0.014
0.2145	-0.014	14.1682	0	88.8252	0.014 -0.014
0.231	-0.014	15.005	0	89.8252 90.8252	0.014
0.2475	-0.014	15.8915 16.8305	0.029 0.014	91.8252	õ
0.264	-0.014	17.8252	0.029	92.8252	-0.014
0.2805	-0.014	18.8252	0.014	93.8252	0
0.297	-0.014	19.8252	· 0	94.8252	-0.014
0.3135	-0.014 -0.014	20.8252	0	95.8252	-0.014
0.33 0.3467	-0.014	21.8252	0	96.8252	-0.014
0.3407	-0.014	22.8252	0	97.8252	0
0.383	-0.014	23.8252	0	98.8252 99.8252	-0.014 -0.014
0.4028	-0.014	24.8252	-0.014 0	100.8252	-0.014
0.4238	-0.014	25.8252 26.8252	0 0	101.8252	0
0.446	-0.014	27.8252	-0.014	102.8252	-0.014
0.4695	-0.014	28.8252	0	103.8252	-0.014
0.4943	-0.014 -0.014	29.8252	0	104.8252	-0.014
0.5207 0.5487	-0.014	30.8252	-0.014	105.8252	0
0.5783	-0.014	31.8252	0.014	106.8252	-0.014 -0.014
0.6097	-0.014	32.8252	0.014	107.8252 108.8252	-0.014
0.6428	0.014	33.8252	0.029 0.014	109.8252	-0.014
0.678	0.014	34.8252 35.8252	-0.014	110.8252	-0.014
0.7153	0.014	36.8252	0.014	111.8252	-0.014
0.7548	0.029 0.014	37.8252	0.029	112.8252	-0.014
0.7967	0.014	38.8252	0.014	113.8252	-0.014
0.841 0.888	0.014	39.8252	-0.014	114.8252	-0.014
0.9378	0.029	40.8252	-0.029	115.8252 116.8252	-0.014 0.014
0.9905	0.014	41.8252	-0.014 0	117.8252	0.014
1.0463	0.014	42.8252 43.8252	õ	118.8252	0.029
1.1055	0.014	44.8252	ō	119.8252	0.014
1.1682	0.029 0.014	45.8252	0	120.8252	0
1.2345	0.014	46.8252	0	121.8252	0.014
1.3048 1.3793	0.014	47.8252	0.029	122.8252	0.014
1.4583	0.014	48.8252	0		
1.542	0.014	49.8252	0 -0.014		
1.6305	0.014	50.8252 51.8252	-0.014		
1.7243	0.014	52.8252	-0.014		
1.8237	0.029 0	53.8252	-0.014		
1.929	0.014	54.8252	0		
2.0405 2.1587	0.029	55.8252	0		
2.2838	0.029	56.8252	0		
2.4163	0	57.8252	0		
2.5568	0	58.8252 59.8252	0		
2.7057	0	60.8252	0		
2.8632	0	61.8252	ō		
3.03	-0.014	62.8252	0		
3.2068	-0.014 -0.014	63.8252	0		
3.3942 3.5925	-0.029	64.8252	0		
3.5925	-0.014	65.8252	0		
4.0253	-0.014	66.8252	0		
4.2612	0	67.8252	0 0		
4.511	0	68.8252 69.8252	0		
4.7757	0	70.8252	0		
5.056	0	71.8252	Ö		
5.3528	0	72.8252	Ō		
5.6673	0	73.8252	0		
6.0005 6.3533	0 0	74.8252	0		
0.0000	-				

CITY OIF HOLLYWOOD SRWWTP IW-2 2300 - 2318 DRAWDOWN DATA


				Time	Water Level	Time	Water Level		Time	Water Level
Time	Water Level	Time	Water Level			150.8252	98.21		225.8252	99.554
	•	6.7272	79.525	75.8252	99.019	151.8252	98.254	-	226.8252	99.713
0	0 0	7.1232	81.188	76.8252	99.12	152.8252	98.268		227.8252	99.771
0.0165	0	7.5425	82.676	77.8252	98.875 98.889	153.8252	98.225		228.8252	99.828
0.033 0.0495	-0.014	7.9868	84.425	78.8252 79.8252	99.019	154.8252	98.239		229.8252	99.698
0.0495	-0.014	8.4575	85.581	80.8252	99.12	155.8252	98.225		230.8252	99.886
0.0825	-0.014	8.956	87.113 88.255	81.8252	98.918	156.8252	98.008		231.8252	100.059 99.929
0.099	-0.014	9.484 10.0433	89.339	82.8252	98.947	157.8252	98.268		232.8252 233.8252	99.925 100.247
0.1155	0.609	10.6358	90.582	83.8252	99.164	158.8252	98.181		234.8252	100.406
0.132	0.493	11.2633	91.781	84.8252	99.063	159.8252 160.8252	98.369 98.08		235.8252	100.392
0.1485	4.173	11.9282	92.359	85.8252	99.265	161.8252	98.037		236.8252	100.478
0.165	4.158 3.159	12.6323	93.11	86.8252	99.236	162.8252	98.124		237.8252	100.377
0.1815	3.159	13.3782	94.122	87.8252 88.8252	99.12 99.048	163.8252	98.023		238.8252	100.406
0.198 0.2145	3.753	14.1682	94.7	89.8252	99.337	164.8252	98.181		239.8252	100.507
0.231	4.535	15.005	95.292 96.029	90.8252	99.135	165.8252	98.225		240.8252	100.45
0.2475	5.172	15.8915 16.8305	96.636	91.8252	99.034	166.8252	98.268		241.8252	100.45
0.264	5.882	17.8252	96.823	92.8252	99.149	167.8252	98.283 98.254			
0.2805	6.346	18.8252	96.968	93.8252	98.745	168.8252 169.8252	98.254 98.47			
0.297	7.128	19.8252	97.358	94.8252	98.933	170.8252	98.384			
0.3135	7.823 8.041	20.8252	97.705	95.8252	98.904	171.8252	98.47			
0.33	8.519	21.8252	97.734	96.8252	98.947 99.048	172.8252	98.629			
0.3467 0.3643	9,156	22.8252	97.806	97.8252 98.8252	98.904	173.8252	98.413			
0.383	9.417	23.8252	97.835	99.8252	98.846	174.8252				
0.4028	9.967	24.8252	97.791 97.965	100.8252		175.8252				
0.4238	10.605	25.8252 26.8252	98.008	101.8252		176.8252				
0.446	11.662	27.8252	97.806	102.8252	98.817	177.8252				
0.4695	12.169	28.8252	97.69	103.8252		178.8252 179.8252				
0.4943	13.038 13.559	29.8252	97.387	104.8252		180.8252				
0.5207	14.24	30.8252	97.445	105.8252 106.8252		181.8252				
0.5487 0.5783	14.921	31.8252	97.445	107.8252		182.8252	98.817			
0.6097	16.065	32.8252	97.56 97.488	108.8252		183.8252				
0.6428	16.398	33.8252 34.8252	97.575	109.8252		184.8252				
0.678	18.194	35.8252	97.43	110.8252		185.8252				
0.7153	19.512	36.8252	97.589	111.8252		186.8252 187.8252				
0.7548	19.613	37.8252	97.228	112.8252		188.8252				
0.7967	21.018 22.408	38.8252	97.315	113.8252		189.8252				
0.841 0.888	23.537	39.8252	97.344	114.8252 115.8252		190.8252				
0.9378	25	40.8252	97.185	116.8252		191.8252				
0.9905	26.187	41.8252 42.8252	96.968 97.083	117.8252		192.825				
1.0463	27.229	43.8252	97.141	118.8252	2 98.889	193.825				
1.1055		44.8252	96.939	119.8252		194.8253 195.8253				
1.1682		45.8252	96.968	120.8252		195.825				
1.2345		46.8252	96.953	121.8252		197.825				
1.3048 1.3793		47.8252	96.809	122.8252 123.8252		198.825				
1.4583		48.8252	96.953	124.8252		199.825				
1.542	35.611	49.8252	97.271 96.823	125.8252		200.825				
1.6305	37.015	50.8252 51.8252	97.242	126.8252	2 98.644	201.825				
1.7243		52.8252	96.925	127.8252		202.825 203.825				
1.8237		53.8252	96.968	128.8252		203.825				
1.929		54.8252	97.502	129.8252		205.825				
2.0405 2.1587		55.8252	97.661	130.8252 131.8252		206.825				
2.1507		56.8252		132.8252		207.825				
2.4163		57.8252	98.167 98.413	133.8252		208.825				
2.5568		58.8252 59.8252		134.8252		209.825				
2.7057	7 50.559	60.8252	98.586	135.8252	2 98.441	210.825				
2.8632		61.8252		136.8252		211.825				
3.03	54.219	62.8252		137.8252		212.825 213.825				
3.2068		63.8252	98.759	138.825		213.825				
3.3942		64.8252		139.8252		215.825				
3.5925 3.8027		65.8252		140.8252 141.8252		216.825	2 99.554			
4.0253		66.8252		141.825		217.825				
4.2612		67.8252		143.825		218.825				
4.511	66.933	68.8252 69.8252		144.825	2 98.225	219.825				
4.775	7 68.899	70.8252		145.825	2 98.225	220.825				
5.056		71.8252		146.825		221.825 222.825				
5.352		72.8252		147.825		223.825				
5.667		73.8252	99.048	148.825		224.825				
6.000 6.353		74.8252	98.962	149.825	£ 30.100					
0.000	-									


CITY OF HOLLYWOOD SRWWTP IW-2 2300 - 2318 RECOVERY DATA


		Time	Water Level	Time	Water Level	Time	Water Level
Time	Water Level			75 0019	0.073	150.8218	-0.13
0	100.45	6.7238	27.49	75.8218 76.8218	0.073	151.8218	-0.13
0.0163	100.45	7.1198 7.5392	25.594 23.74	77.8218	0.058	152.8218	-0.13
0.0327	100.407	7.9835	21.844	78.8218	0.073	153.8218	
0.049	100.609	8.4542	20.062	79.8218	0.058	154.8218 155.8218	-0.13 -0.144
0.0653	100.464 100.479	8.9527	18.296	80.8218	0.058	156.8218	
0.0817 0.098	100.667	9.4807	16.601	81.8218	0.044 0.044	157.8218	
0.1143	100.407	10.04	14.965	82.8218 83.8218	0.044	158.8218	~
0.1307	99.251	10.6325	13.386 11.88	84.8218	0.044	159.8218	
0.147	99.554	11.26 11.9248	10.475	85.8218	0.015	160.8218	
0.1633	98.803	12.629	9.142	86.8218	0.015	161.8218	
0.1797	98.225 97.604	13.3748	7.882	87.8218	0.044	162.8218 163.8218	
0.196 0.2123	96.838	14.1648	6.723	88.8218	0.029	164.8218	
0.2123	96.318	15.0017	5.68	89.8218 90.8218	0.023	165.8218	
0.245	95.581	15.8882	4.738 3.883	91.8218	-0.014	166.8218	
0.2613	94.96	16.8272 17.8218	3.159	92.8218	-0.014	167.8218	
0.2777	94.397	18.8218	2.565	93.8218	-0.014	168.8218	
0.294	93.804 93.197	19.8218	2.072	94.8218	-0.029	169.8218 170.8218	
0.3103 0.3267	92.432	20.8218	1.667	95.8218	-0.014 -0.014	171.8218	
0.3433	92.085	21.8218	1.348	96.8218 97.8218	-0.014	172.8218	
0.361	91.478	22.8218	1.087 0.884	98.8218	-0.029	173.8218	
0.3797	90.611	23.8218 24.8218	0.754	99.8218	-0.014	174.8218	
0.3995	90.307	25.8218	0.623	100.8218	-0.029	175.8218	
0.4205	89.397	26.8218	0.58	101.8218	-0.029	176.8218 177.8218	
0.4427	88.833 88.111	27.8218	0.537	102.8218	-0.029	178.821	
0.4662 0.491	87.143	28.8218	0.479	103.8218	-0.029 -0.029	179.821	
0.5173	86.377	29.8218	0.45	104.8218 105.8218	-0.043	180.821	3 -0.144
0.5453	85.423	30.8218 31.8218	0.435 0.406	106.8218	-0.043	181.821	
0.575	84.411	32.8218	0.392	107.8218	-0.043	182.821	
0.6063	83.862	33.8218	0.377	108.8218	-0.043	183.821	-0.13
0.6395	82.402 81.333	34.8218	0.363	109.8218	-0.043		
0.6747 0.712	80.335	35.8218	0.348	110.8218	-0.043 -0.058		
0.7515	79.222	36.8218	0.334	111.8218 112.8218	-0.043		
0.7933	78.124	37.8218	0.334 0.305	113.8218			
0.8377	77.112	38.8218 39.8218	0.305	114.8218			
0.8847	76.114	40.8218	0.305	115.8218			
0.9345	75.174 74.249	41.8218	0.29	116.8218			
0.9872 1.043	73.367	42.8218	0.261	117.8218			
1.1022	72.572	43.8218	0.261	118.8218 119.8218			
1.1648	71.806	44.8218	0.261 0.261	120.8218			
1.2312	71.025	45.8218 46.8218	0.247	121.8218			
1.3015	70.186	47.8218	0.232	122.8218			
1.376	69.319 68.379	48.8218	0.232	123.8218			
1.455 1.5387	67.439	49.8218	0.218	124.8218			
1.6272	66.441	50.8218	0.203	125.8218 126.8218			
1.721	65.4	51.8218	0.203 0.203	127.8218			
1.8203	64.316	52.8218 53.8218	0.203	128.8218			
1.9257	63.188	54.8218	0.189	129.8218	-0.072		
2.0372	62.016	55.8218	0.174	130.8218			
2.1553	60.787 59.528	56.8218	0.174	131.8218			
2.2805 2.413	58.198	57.8218	0.16	132.8218			
2.413	56.824	58.8218	0.16	133.8218 134.8218			
2.7023	55.406	59.8218	0.16 0.145	135.8218			
2.8598	53.945	60.8218 61.8218	0.145	136.8218			
3.0267		62.8218	0.131	137.8218	-0.101		
3.2035		63.8218	0.131	138.8218			
3.3908 3.5892		64.8218	0.131	139.8218			
3.5692		65.8218	0.131	140.8218 141.8218			
4.022	44.135	66.8218	0.131 0.145	142.8218			
4.2578		67.8218 68.8218	0.145	143.8218			
4.5077		69.8218	0.116	144.8218	-0.115		
4.7723		70.8218	0.102	145.8218			
5.0527		71.8218	0.102	146.8218			
5.3495 5.664	35.047	72.8218	0.087	147.8218			
5.9972		73.8218	0.087	148.8218 149.8218			
6.35	29.372	74.8218	0.087	143.0210			


Injection Well No. 2 – Packer Tests 2,410 – 2,428

CITY OF HOLLYWOOD SRWWTP IW-2 2410 - 2428 RESIDUAL DRAWDOWN

CITY OF HOLLYWOOD SRWWTP IW-1 2410 - 2428 BACKGROUND DATA

Time	Water Level	Time	Water Level	Time	Water Level
Time		c 7070	-0.014	75.8252	-0.087
0	0	6.7272 7.1232	-0.014	76.8252	-0.101
0.0165	0	7.5425	-0.014	77.8252	-0.087
0.033	-0.014	7.9868	-0.014	78.8252	-0.101
0.0495	-0.014 -0.014	8.4575	-0.014	79.8252	-0.087 -0.087
0.066	-0.014	8.956	-0.014	80.8252 81.8252	-0.087
0.0825 0.099	-0.014	9.484	-0.014	82.8252	-0.101
0.1155	-0.014	10.0433 10.6358	-0.014 -0.029	83.8252	-0.101
0.132	-0.014	11.2633	-0.029	84.8252	-0.101
0.1485	-0.014	11.9282	-0.029	85.8252	-0.087
0.165	-0.014 -0.014	12.6323	-0.029	86.8252	-0.101 -0.101
0.1815 0.198	-0.014	13.3782	-0.029	87.8252 88.8252	-0.087
0.2145	-0.014	14.1682	-0.014 -0.014	89.8252	-0.087
0.231	-0.014	15.005 15.8915	-0.014	90.8252	-0.101
0.2475	-0.014	16.8305	-0.014	91.8252	-0.101
0.264	-0.014 -0.014	17.8252	-0.029	92.8252	-0.101
0.2805	-0.014	18.8252	-0.029	93.8252 94.8252	-0.101 -0.087
0.297 0.3135	-0.014	19.8252	-0.043	94.8252	-0.101
0.33	-0.014	20.8252	-0.043 -0.043	96.8252	-0.072
0.3467	-0.014	21.8252 22.8252	-0.043	97.8252	-0.058
0.3643	-0.014	23.8252	-0.029	98.8252	-0.058
0.383	-0.014 -0.014	24.8252	-0.014	99.8252	-0.072 -0.087
0.4028 0.4238	-0.014	25.8252	-0.029	100.8252 101.8252	-0.058
0.446	-0.014	26.8252	-0.029 -0.029	102.8252	-0.072
0.4695	-0.014	27.8252 28.8252	-0.029	103.8252	-0.058
0.4943	-0.014	29.8252	-0.043	104.8252	-0.058
0.5207	-0.014 -0.014	30.8252	-0.043	105.8252	-0.087 -0.087
0.5487	-0.014	31.8252	-0.058	106.8252 107.8252	-0.087
0.5783 0.6097	-0.014	32.8252	-0.058 -0.058	108.8252	-0.087
0.6428	0	33.8252 34.8252	-0.058	109.8252	-0.087
0.678	0	35.8252	-0.058	110.8252	-0.087
0.7153	0 0.014	36.8252	-0.058	111.8252	
0.7548	0.014	37.8252	-0.058	112.8252 113.8252	
0.7967 0.841	0	38.8252	-0.072	114.8252	
0.888	0.014	39.8252 40.8252	-0.072 -0.072	115.8252	
0.9378	0	40.8252	-0.072	116.8252	
0.9905	0.014	42.8252	-0.072	117.8252	
1.0463	0 0	43.8252	-0.072	118.8252	
1.1055 1.1682	Ő	44.8252	-0.072	119.8252 120.8252	
1.2345	0.014	45.8252	-0.072 -0.087	120.0202	
1.3048	0.014	46.8252 47.8252	-0.058		
1.3793	0.014	48.8252	-0.043		
1.4583	0 0.014	49.8252	-0.043		
1.542	0.014	50.8252	-0.058		
1.6305 1.7243	^	51.8252	-0.072		
1.8237		52.8252 53.8252	-0.072 -0.072		
1.929	0.014	54.8252			
2.0405	4	55.8252	-0.087		
2.1587		56.8252	-0.058		
2.2838 2.4163		57.8252			
2.5568		58.8252	-0.058 -0.043		
2.7057		59.8252 60.8252			
2.8632		61.8252	-0.072		
3.03	0	62.8252			
3.2068		63.8252	-0.087		
3.3942		64.8252	-0.087		
3.5925 3.8027	· .	65.8252	-0.087 -0.072		
4.0253	-0.014	66.8252 67 8252			
4.2612	-0.014	67.8252 68.8252			
4.511			-0.087		
4.7757		70.8252	-0.087		
5.056 5.3528		71.8252	-0.087		
5.6673	-0.014	72.8252			
6.000	5 -0.014	73.8252			
6.353	3 -0.014	14.0202			

CITY OF HOLLYWOOD SRWWTP IW-2 2410 - 2428 DRAWDOWN DATA

`

						T M	/ater Level	Time	Water Level
		Time	Water Level	Time	Water Level	Time V	ALCI LEVO,		00 500
Time	Water Level			75.8252	88.586	150.8252	87.531	225.8252	
0	0	6.7272	70.459	76.8252	88.586	151.8252	87.487	226.8252 227.8252	
0.0165	0	7.1232	71.631 72.99	77.8252	88.412	152.8252	87.227	228.8252	
0.033	0	7.5425 7.9868	73.828	78.8252	88.398	153.8252	87.487 87.357	229.8252	
0.0495	-0.014	8.4575	75.071	79.8252	88.109	154.8252 155.8252	87.401	230.8252	
0.066	-0.014	8.956	76.112	80.8252	87.849	156.8252	87.516	231.8252	
0.0825	-0.014	9.484	77.066	81.8252	87.993	157.8252	87.502	232.8252	
0.099	-0.014 10.938	10.0433	77.833	82.8252	88.022 88.051	158.8252	87:458	233.8252	
0.1155	0.623	10.6358	78.469	83.8252 84.8252	87.733	159.8252	87.43	234.8252	
0.132 0.1485	0.753	11.2633	79.206	85.8252	87.921	160.8252	87.3	235.8252 236.8252	
0.1465	2.289	11.9282	79.827 80.796	86.8252	87.979	161.8252	87.155	230.8252	
0.1815	2.898	12.6323	82.27	87.8252	87.661	162.8252	87.256 87.343	238.825	
0.198	3.695	13.3782 14.1682	83.34	88.8252	87.849	163.8252 164.8252	87.097	239.825	
0.2145	4.26	15.005	84.481	89.8252	87.603	165.8252	87.271	240.825	
0.231	4.68	15.8915	85.204	90.8252	87.704	166.8252	87.184	241.825	2 85.84
0.2475	5.216 5.621	16.8305	86.143	91.8252	87.675 87.632	167.8252	87.213		
0.264	6.186	17.8252	86.461	92.8252 93.8252	87.82	168.8252	87.227		
0.2805 0.297	6.853	18.8252	87.271	94.8252	87.56	169.8252	87.343		
0.257	7.287	19.8252	87.415 87.617	95.8252	87.574	170.8252	87.372		
0.33	7.678	20.8252 21.8252	87.863	96.8252	87.632	171.8252	87.343 87.271		
0.3467	8.243	22.8252	88.022	97.8252	87.516	172.8252 173.8252	87.285		
0.3643	8.736	23.8252	88.253	98.8252	87.43	174.8252	87.155		
0.383	9.098	24.8252	88.167	99.8252	87.589 87.487	175.8252	87.227		
0.4028	9.518 10.315	25.8252	88.21	100.8252 101.8252	87.242	176.8252	87.227		
0.4238	10.894	26.8252	88.282	102.8252		177.8252	87.213		
0.4695	11.531	27.8252	88.268 88.354	103.8252	87.43	178.8252	87.328		
0.4943	11.981	28.8252 29.8252	88.326	104.8252	87.661	179.8252	87.43 87.386		
0.5207	13.125	30.8252	88.427	105.8252		180.8252 181.8252	87.473		
0.5487	13.53	31.8252	88.412	106.8252		182.8252	87.444		
0.5783	14.182	32.8252	88.427	107.8252		183.8252	87.458		
0.6097	15.384 15.819	33.8252	88.253	108.8252 109.8252		184.8252	87.386		
0.6428 0.678	17.021	34.8252	88.398	110.8252		185.8252	87.415		
0.7153	18.078	35.8252	88.513 88.441	111.8252		186.8252	87.357		
0.7548	19.294	36.8252 37.8252	88.369	112.8252	87.906	187.8252	87.256 87.343		
0.7967	20.25	38.8252		113.8252		188.8252 189.8252	87.169		
0.841	21.466	39.8252		114.8252		190.8252	87.516		
0.888	22.639 24.116	40.8252	88.47	115.8252		191.8252	87.415		
0.9378	25.434	41.8252		116.8252 117.8252		192.8252	87.589		
0.9905 1.0463	26.635	42.8252		118.8252		193.8252	87.3		
1.1055	27.808	43.8252		119.8252		194.8252	87.227		
1.1682	28.792	44.8252 45.8252		120.8252		195.8252	87.372 87.3		
1.2345	29.617	46.8252		121.8252		196.8252 197.8252	87.415		
1.3048		47.8252		122.8252		198.8252	87.473		
1.3793		48.8252	88.542	123.8252		199.8252	87.458		
1.4583	34.032	49.8252		124.8252 125.8252		200.8252	87.531		
1.542 1.6305		50.8252		126.8252		201.8252	87.386		
1.7243		51.8252		127.8252		202.8252	87.444		
1.8237	37.984	52.8252 53.8252		128.8252	87.415	203.8252 204.8252	87.487 87.473		
1.929	39.286	54.8252		129.8252		204.8252	87.444		
2.0405		55.8252		130.8252		205.8252	87.386		
2.1587		56.8252		131.825		207.8252	87.43		
2.2838 2.4163		57.8252		132.8252 133.8252		208.8252	87.545		
2.4163		58.8252		134.8252		209.8252	87.458		
2.7057		59.8252		135.825		210.8252	87.227		
2.8632		60.8252		136.825		211.8252	87.126 87.271		
3.03	50.298	61.8252 62.8252		137.825	2 87.646	212.8252 213.8252	87.097		
3.206		63.8252		138.825		213.8252	87.083		
3.394		64.8252	88.802	139.825		215.8252	86.938		
3.592		65.8252	88.831	140.825		216.8252			
3.802		66.8252		141.825 142.825		217.8252			
4.025 4.261		67.8252		143.825		218.8252			
4.201		68.8252		144.825		219.8252			
4,775	7 62.275	69.8252 70.8252		145.825	2 87.69	220.8252			
5.056	63.779	70.8254		146.825	2 87.589	221.8252 222.8252			
5.352	8 65.384	72.8252		147.825		222.8252			
5.667		73.825		148.825		224.8252			
6.000		74.825		149.825	2 01.300				
6.353	0 00.200	1							

CITY OF HOLLYWOOD SRWWTP IW-2 2410 - 2428 RECOVERY DATA

		Time	Water Level	Time	Water Level	Time	Water Level
Time	Water Level			75.821	8 0.536	150.8218	0.232
0	85.84	6.7238	20.221	76.821		151.8218	0.232
0.0163	85.927	7.1198 7.5392	18.773 17.354	77.821		152.8218	0.232
0.0327	86.086	7.9835	15.992	78.821	8 0.521	153.8218	0.246 0.232
0.049	86.086	8.4542	14.66	79.821		154.8218 155.8218	0.232
0.0653	85.854	8.9527	13.4	80.821		156.8218	
0.0817	86.057 85.912	9.4807	12.169	81.821		157.8218	
0.098 0.1143	85.088	10.04	11.053	82.821 83.821		158.8218	0.232
0.1307	85.031	10.6325 11.26	9.953 8.939	84.821		159.8218	
0.147	84.164	11.9248	7.983	85.821	8 0.478	160.8218	
0.1633	83.715	12.629	7.084	~ 86.821		161.8218 162.8218	
0.1797	83.094 82.4	13.3748	6.259	87.821		163.8218	
0.196	81.779	14.1648	5.534	88.821 89.821	-	164.8218	
0.2123 0.2287	81.128	15.0017	4.868	90.821		165.8218	0.217
0.245	80.593	15.8882 16.8272	4.274 3.767	91.821	-	166.8218	
0.2613	79.842	17.8218	3.318	92.821	8 0.449	167.8218	
0.2777	79.437	18.8218	2.941	93.821		168.8218 169.8218	
0.294	79.018 78.367	19.8218	2.622	94.821		170.8218	
0.3103 0.3267	77.833	20.8218	2.362	95.821 96.821		171.8218	0.203
0.3433	77.413	21.8218	2.159 1.97	97.821		172.8218	
0.361	76.199	22.8218 23.8218	1.825	98.821		173.8218	
0.3797	76.011	24.8218	1.71	99.821		174.8218 175.8218	
0.3995	75.491 74.985	25.8218	1.594	100.82		176.8218	·
0.4205	74.905	26.8218	1.492	101.82		177.821	
0.4427	73.235	27.8218	1.434	102.82 103.82		178.821	3 0.174
0.491	72.484	28.8218	1.376 1.304	103.82		179.821	
0.5173	71.688	29.8218 30.8218	1.246	105.82		180.821	
0.5453	70.879	31.8218	1.173	106.82		181.821	3 0.188
0.575	70.026	32.8218	1.13	107.82			
0.6063	69.491 68.132	33.8218	1.087	108.82			
0.6395 0.6747	67.163	34.8218	1.058	109.82 110.82			
0.712	66.252	35.8218	1.043 1	111.82			
0.7515	65.341	36.8218 37.8218	0.985	112.82			
0.7933	64.487	38.8218	0.956	113.82	18 0.362		
0.8377		39.8218	0.927	114.82			
0.8847		40.8218	0.927	115.82			
0.9345 0.9872	a 4 677	41.8218	0.884	116.82 117.82			
1.043	60.554	42.8218	0.884 0.869	118.82			
1.1022	59.888	43.8218 44.8218	0.855	119.82	18 0.333		
1.1648		45.8218	0.84	120.82			
1.2312		46.8218	0.811	121.82			
1.3015 1.376	FO 007	47.8218	0.811	122.82 123.82			
1.455	55.983	48.8218	0.797	124.82			
1.5387	55.115	49.8218 50.8218	0.768 0.753	125.82			
1.6272	54.175	51.8218	0.724	126.82			
1.721	53.177	52.8218	0.724	127.82			
1.8203		53.8218	0.724	128.82			
1.9257 2.0372	10.004	54.8218	0.71	129.82 130.82			
2.0372		55.8218	0.695 0.695	131.82			
2.280	5 47.679	56.8218 57.8218	0.681	132.82	18 0.29		
2.413		58.8218	0.666	133.82	18 0.29		
2.553		59.8218	0.666	134.82			
2.702		60.8218	0.652	135.82			
2.8598 3.026		61.8218	0.637	136.82 137.82			
3.203		62.8218	0.637 0.623	138.82			
3.390	B 38.418	63.8218 64.8218	0.623	139.82	18 0.261		
3.589	2 36.985	65.8218	0.608	140.82	18 0.275		
3.799		66.8218	0.608	141.82			
4.022		67.8218	0.594	142.82			
4.257 4.507		68.8218	0.579	143.82 144.82			
4.507		69.8218	0.579	144.82			
5.052	7 27.866	70.8218	0.579 0.565	146.82			
5.349	5 26.317	71.8218 72.8218	0.565	147.82	18 0.246		
5.664		73.8218	0.565	148.82			
5.997		74.8218	0.55	149.82	18 0.246		
6.35	£ 1.7£1						

Packer Tests

Packer Testing Quality Control Procedures

ł

General

Check Pipe tally to make sure that packer or packers are set at correct depth.

Note date and time on all recorded data.

Observe the pressuring up of the packer or packers, noting pressure applied to packers.

Monitor and record pressure on packers periodically during all phases of test.

Identify elevation benchmark.

Development

Note time of start of development.

Note method of development (air lift, pumping, etc.)

Check and record conductivity of development fluid initially and thereafter (maximum every 15 minutes).

Visually observe and record turbidity of development fluid (maximum every 15 minutes).

Visually observe and estimate fluid development rate (maximum every 15 minutes).

Continue development until conductivity has stabilized for 45 to 60 minutes.

Background

Observe and record the installation depths of the transducers (inside drill pipe and annulus).

Check and record transducer readings (maximum every 15 minutes).

Official background does not start until stabilization from development has occurred.

Continue recording background for 2 hours.

Pumping Test

Prior to starting pumping measure and record water level in drill pipe and annulus (referenced to a known benchmark).

Observe and record water levels in drill pipe and annulus (maximum every 10 minutes).

Observe and record the pumping rate (maximum every 10 minutes).

1

Pumping shall continue for a minimum of 4 hours.

Just prior to ending pumping observe water sample collection in accordance with water sampling checklist.

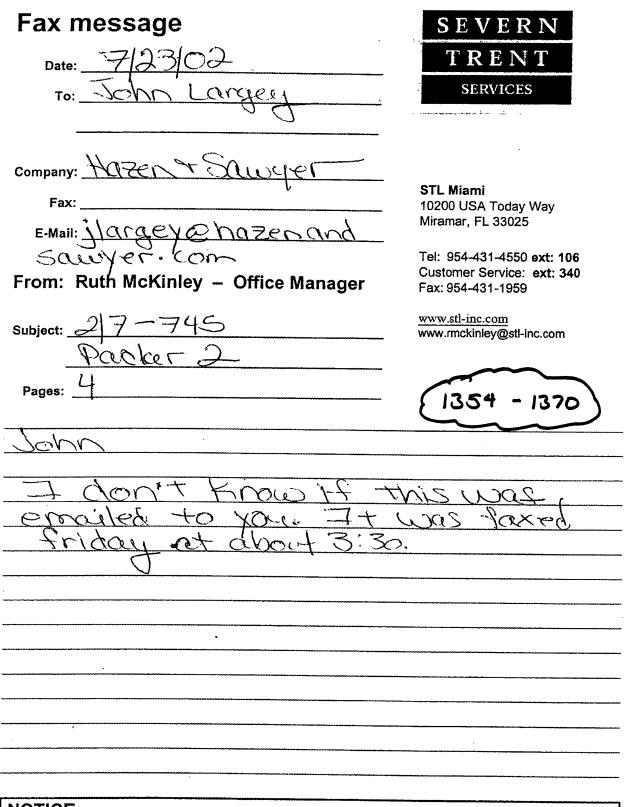
After stopping pump observe and record total volume of water pumped.

Recovery

Observe and record water levels in drill pipe and annulus (maximum every 10 minutes).

Recovery shall continue for a minimum of 3 hours.

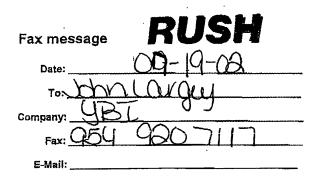
Appendix I Packer Test Water Quality Laboratory Results


Injection Well No. 1 (IW-1) – Packer Testing Packer Test Water Quality

.

. .

Injection Well No. 1 (IW-1) – Packer Tests 1,354 – 1,370


NOTICE: THE MESSAGE CONTAINED IN THIS FAX IS INTENDED ONLY FOR THE PERSONAL AND CONFIDENTIAL USE OF THE RECIPIENT (S) NAMED ABOVE. This message may be a client communication and as such is Privileged and Confidential. If the reader of this message is not the intended recipient or an agent responsible for delivering it to the intended recipient, you are hereby notified that you have received this document in error and that any review, dissemination, distribution or copying of this message is STRICTLY PROHIBITED. If you have received this communication in error, please notify us immediately by telephone and return the original message to us by mail. THANK YOU.

*** TRANSMISSION REPORT ***

PRINT TIME O	7/19 '02 15:24	ID:	FAX:]***	**2AP 18	R1 I
TIMER=:					v		
FILE START No. TIME	MODE	LOCATION		store. Page	TX/RX Page	TOTAL. TIME	CODE
030 07/19 15	:22 TX	9549207117		3		02'27"	ΟK

ERROR PAGE=

.

From:	Zuzan Franco - Customer Service
Subject:	Sh# 27-16
oubject.	
-	
Pages:	3WCOVER

SEVERN
TRENT
SERVICES

STL Miami 10200 USA Today Way Miramar, FL 33025

Tel: 954-431-4550 ext: 111 Customer Service: ext: 340 Fax: 954-431-1959

www.st!-inc.com www.zfranco@stl-inc.com

NOTICE: THE MESSAGE CONTAINED IN THIS FAX IS INTENDED ONLY FOR THE PERSONAL AND CONFIDENTIAL USE OF THE RECIPIENT (S) NAMED ABOVE. This message may be a client communication and as such is Privileged and Confidential. If the reader of this message is not the intended recipient or an agent responsible for delivering it to the intended recipient, you are hereby notified that you have received this document in error and that any review, dissemination, distribution or copying of this message is STRICTLY PROHIBITED. If you have received this communication in error, please notify us immediately by telephone and return the original message to us by mail. THANK YOU.

STL Miami

Page 1 July 23, 2002 Submission # 207000745 Order # 60003 FDEP CompQAP# 990102 FL-DOH Certification# E86349, E86616

Sample I.D.: IW-1 Pkr.2 1354-1370 Collected: 07/17/02 00:00 **Received:** 07/17/02 16:00 Collected by: Chris Harp

PARAMETER RESULT UNITS METHOD DETECTION DATE DATE ANALYST LIMIT-RQL EXT. ANALY. Specific Conductance {grab} 11040 umhos 120.1 1.0 07/18/2002 07/18/2002 EH Residue, Total Filterable (TDS) 6992 mg/L SM2540C (160.1) 1.0 07/18/2002 07/19/2002 NM/EH 300.0 07/18/2002 07/19/2002 Chloride 3650 mg/L 1.0 SMF Nitrate (as N) BDL mg/L 300.0 0.05 07/18/2002 07/18/2002 RDB/MF itrite (as N) BDL 300.0 0.05 07/18/2002 07/19/2002 SMF/RD mg/L mg/L Sulfate 510 300.0 1.0 07/18/2002 07/19/2002 MF Nitrogen (Ammonia) as N .569 350.1 0.04 07/19/2002 07/19/2002 DTD/SM mg/1. Nitrogen (Kjeldahl) as "N" 351.2 07/19/2002 07/19/2002 1.14 mg/L 0.1 SM/DD Nitrogen (Total Organic) .571 mg/L 351.2 0.1 07/19/2002 07/19/2002 SM/DD Nitrogen, Total as "N" 353+351 CALC. 1.14 mg/L 0.1 07/18/2002 07/19/2002 SMF/SM

BDL: Indicates Analyte is Below Detection LimitMEDF: Matrix Effect Dilution Factor***

Work Subcontracted to Outside Labs Denoted by HRS Cert ID in Analyst Field ***Qualifier following result conforms to FAC 62-160 Table 7*****Unless otherwise noted, mg/Kg denotes wet weight*** ***62-770: If the MDL using the most sensitive and currently available technology is higher than a specific criterion, the PQL shall be used.

Certs: Ct. =#PH0217, La. =#9601, Md. =#271, Ma. =#M-FL535 OK. =#9523, SC. =#96023, Tn. =#TN02826, P.R. =FL-00535

These test results meet all the requirements of NELAC. All questions regarding this test report should be directed to the STL representitive who signed this report or the QC department.

Project Manager

YOUNGQ002775 John Largey Youngquist Brothers 15465 Pine Ridge Road Ft. Myers, FL 33908

Site Location/Project Hollywood WWTP IW-1 Hollywood IW-1 Pkr.2 1354-1370

			(954) 4	31-4			1	STODY RECORD (D 0200 USA TODAY WAY, N (800) LAB-8550 • FAX (9	IRAM/	R, FLORIDA	33025			75	oling CompQAP	No.)
			Original -	Retur	n w/R	eport	•	Yellow -	Lab Co	py ·			Pink - Sampler Co	1	vvai dale;	
por	tTo: John	LArge	/ ·				·····		Repo	ort To Address	= 1/arg	ey (D hazen	, und	SAWYTA	, co~1.
III To	UOT	Hott	·····	•			• •		Billir	g Address:		/	•			:
rojec	ct Number/Name: //	6 llywoo	d In	1-1	ŕ	PAC /	ken j	2 1354-13	70	÷		:	iite Location: 140	lly wood	IWWI	-P IW-1
Project Contact: John Largey Phone: (954) 920 9272								4)920 9272	FAX	954)920	7117			/		
tern	nate Contact: Cr.	MERON	Nebste	. r			Phone: (?4	41) 560 4510	FAX:							
amp	led By (print): Ch	ris H	Arp.				. •	•	Sam	pler's Signatu	ire:		· .			
	SAMPLE ID	DATE COLLECTED	TIME	рH	T E M P °C	C O N D	MAYRIX DW SW GW SED	SAMPLE LOCATION JOB DESCRIPTION (optional if needed when samples are from	# C O N T	(⁄) CHE(TESTS !	NAME O	SIS REQUIRED R METHOD NUMB IN LARGE BOXES F E ITEMS NEED EAC	BELOW _	RFORMED	Sector Condition Sector Condition (Res. Sector Condition Sector Condition
		COLLECTED	CULLECTED	 F L D	F L D	F L D	SED S EFF HW BIO SA	different site location)	A I N E R S	Annowin Chloride	Organic N: troyeu Total N: troyeu	Nite	tel Sulfate	TKN	TOS	Lot number of Sampling Containers Used
	IW-1 PACKARZ						GW		10	$\langle \mathcal{I} \rangle$	10	$\overline{\mathcal{O}}$		N.	K	·
2	1354-1370						:				;****	• • • • •	·	•		
•							: .		· .							,
•				<u> </u>				Rush	<u> </u>		· ·					
5								F F	ļ							
5	<u> </u>	ļ		<u> </u>	·			P5167	·	· · · · ·		· · ·	·			
				 		<u>.</u>		151-	·						-	
3	l		TQ O	1	<u>↓</u> `	<u> </u>	· · · · · · · · · · · · · · · · · · ·		<u> · · ·</u>							
2		1+00	1803	P	-	- ·								•		
0		PITS	¥	<u> </u>	I	Ľ	· · ·	Total # of Containers:	10		eport Needed?		Yes No) /500 -	Tice guide for	applicable fees)
pec	ial Comments:	1001							1/0	Report Fo		Standar		r (specify)		
1) R	lejinquished by Signat	ure: >		Data 7	: -17-	-07	- (2)	College of the signature:	1a	el_	Date:	- c Z	DUE DATE REQU			· · · ·
om	pany: Y.B.	J.		Tim	•:] ^L	149	% Con	npany: <u>572</u>			Time:		Coating Coder		\mathcal{L}	0/1/b
	eceived by Signature	fara	,	Dat	<u>-/</u>	20	2 (2)	Received by Signature:	γ / γ		Date: 7//	7/07	Mise. Charges.	*		
Com	pany:	- / `	,	Tim			- 10-	npany:	11)	Time: //	KD	SUADED	APEAC ADE	FOR LAB USE	ONTE

Injection Well No. 1 (IW-1) – Packer Tests 1,404 – 1,420

Fax message	SEVERN
Date: 07-22-02	TRENT
To: Sanlargey	SERVICES
Company: HORN 450004	STL Miami
Fax: <u>954- 457-9940</u>	10200 USA Today Way Miramar, FL 33025
E-Mail: JUGLY CO. HOLENONS	LUGAR CON
From: Zuzan Franco - Customer Service	Tel: 9 54 -431-4550 ext: 111 Customer Service: ext: 340 Fax: 954-431-1959
Subject: $SUD # 27 - 1093$	www.stl-inc.com www.zfrancestlevealLED
Pages: <u>31000000</u>	TADTO
Banctie ako naivr	1 Eval
gran burg	J TCIXCO
	(1404 - 1420)

as such is Privileged and Confidential. If the reader of this message is not the intended recipient or an agent responsible for delivering it to the intended recipient, you are hereby notified that you have received this document in error and that any review, dissemination, distribution or copying of this message is STRICTLY PROHIBITED. If you have received this communication in error, please notify us immediately by telephone and return the original message to us by mail. THANK YOU.

STL Miami

Page 1 July 22, 2002 Submission # 207000692 Order # 59727 FDEP CompQAP# 990102 FL-DOH Certification# E86349,E86616

Sample I.D.: IW1 Packer #1 1404-1420 07/16/02 Collected: 09:00 **Received:** 07/16/02 17:00 Collected by: Chris Harp

PARAMETER	RESULT	UNITS	METHOD	DETECTION LIMIT-RQL	DATE EXT.	DATE ANALY.	ANALYST
Specific Conductance {grab}	18600	umhos	120.1	1.0	07/17/2002	07/17/2002	DMO
Residue, Total Filterable (TDS)	13640	mg/L	SM2540C (160.1)	1.0	07/17/2002	07/18/2002	EH
Chloride	7170	mg/L	300.0	1.0	07/19/2002	07/19/2002	SMF
Nitrate (as N)	3.74	mg/L	300.0	0.05	07/17/2002	07/17/2002	SMF/RD
Nitrite (as N)	BDL	mg/L	300.0	0.05	07/17/2002	07/19/2002	MF
Sulfate	560	mg/L	300.0	1.0	07/17/2002	07/19/2002	MF
Nitrogen (Ammonia) as N	.576	mg/L	350.1	0.04	07/17/2002	07/17/2002	SM/DD
Nitrogen (Kjeldahl) as "N"	2.23	mg/L	351.2	0.1	07/17/2002	07/18/2002	SM/DD
Nitrogen (Total Organic)	1.65	mg/L	351.2	0.1	07/18/2002	07/18/2002	SM
Nitrogen, Total as "N"	5.97	mg/L	353+351 CALC.	0.1	07/17/2002	07/19/2002	SM/MF/

BDL: Indicates Analyte is Below Detection LimitMEDF: Matrix Effect Dilution Factor*** ***Work Subcontracted to Outside Labs Denoted by HRS Cert ID in Analyst Field***

Qualifier following result conforms to FAC 62-160 Table 7***Unless otherwise noted, mg/Kg denotes wet weight*** ***62-770: If the MDL using the most sensitive and currently available technology is higher than a specific criterion,

the PQL shall be used.

Certs: Ct. = #PH0217, La. = #9601, Md. = #271, Ma. = #M-FL535 OK. = #9523, SC. = #96023, Tn. = #TN02826, P.R. = FL-00535 These test results meet all the requirements of NELAC. All questions regarding this test report should be directed to the STL representitive who signed this report or the QC department.

maria E. Castelluro

Laboratory Manager

YOUNGQ002775 John Largey Youngquist Brothers 15465 Pine Ridge Road Ft. Myers, FL 33908

Site Location/Project Hollywood WWTP IW1 Hollywd IW1 Packer#1 1404-1420

Subm	ission Code: 0.2/	7-692		SEVERN TRENT LABORATORIES, INC. CHAIN OF CUSTODY RECORD (DEP 62-770.900 – modified form)													FDEP Facility No Page:of		
Order	ne 59 ed to lims: 4	1 <u>27)</u> 2	(954) 4	431-4	550	• NA		10200 USA TODAY WAY, M (800) LAB-8550 • FAX (9				STODY F	AX (954) 432	8675	Sampling C Approva D	CompQAP No.)		
	·		Original -	Retur	n w/R	lepor	t	Yellow -	Lab Co	by			Pink – Sample						
Report To: Dohn Largey @ hnzew and Report To Address: Jlargey @ hnzew and											1 AND	sury.	rrCor	7.					
Bill To: YB] Project Number/Name: Holly wood IW 1 Packer # 1 1404' - 1420' Site Location: Holly wood Site Location: Holly wood																			
	oct Number/Name: H	·····	1W 1		ľ	ack	er .	1 1404' - 14	20				Site Location:	Holly	wood	WWT	P INI		
Proje	ect Contact: Jo		gey				Phone:	4	FAX:			~							
		unteron	Webs	ter			Phone:		FAX:								:		
Samp	pled By (print): (hris	Harp.	•				· · · · · · · · · · · · · · · · · · ·	11	pler's Signatu	re:		····			Remarks			
I T E	SAMPLE ID	DATE	TIME Collected	рH	T E M P	C O N D	MATRIX DW SW GW SED	SAMPLE LOCATION JOB DESCRIPTION (optional if needed when samples are from	# C 0 N T	(√) CHEC	TESTS	E NAME	YSIS REQUIRED OR METHOD NL IN LARGE BOX LE ITEMS NEED	IMBER OF	v		nole Condition en Received ma <u>s</u> and <i>Con</i> ection		
M				 F L D	 F L D	 F L D	S EFF HW BIO SA	different site location)	A I N E R S	Ammonia Chloxide	Organic Nitrogen Total Nitrogen	Nitra Nitri		F K	MF	D5 '	ot number of Sampling Containers Used		
1	IW1 lacker 1								10	Ø	\oslash	V	2 0	1 (1	$\mathcal{O}($	\checkmark			
2	1404-1420	7-16.62	4 am			ļ	GW	· · · · · · · · · · · · · · · · · · ·				ļ		:					
3					•		 												
4							·	·	 										
5 6								· · · ·											
7						 													
8						 	<u> </u>		+							· · ·			
9	PORS	180	\$ 0 —				- 1 0							•	* ·	. :			
10	~		.0		7	7	16	7									;		
Spec	ial Comments: P	lease,	Kush		Τ	V	/	Total # of Containers:		QA/QC Re	port Needed	?	Yes N	lo ((See price g	uide for appli	cable fees}		
					~`		Due			Report Fo	rmat:	Standa	rd O	ther (spec	cify)				
(1) Relinquished by Signature: Date: (2) Relinquished by Signature: .au .au 7-16-02 .au							4	Date: 7_16-	-02_	DUE DATE R Confirmatio		D							
Company: KBI Time: 3 30 Company: 5.76						<u>~</u>	0	Time:		Coating Cod				Q71/D					
(1) Received by Signature: Date: 16-07 (2) Received by Signature: Date: 1/0/02 Misc. Charges																			
Com	Company: Time: / 7.7 Company: Shaded AREAS ARE FOR LAB USE ONLY																		

Injection Well No. 1 (IW-1) – Packer Tests 1,769 – 1,785

.

RLH	
Fax message	SEVERN
Date: 7/3/102	TRENT
To: John Largey	SERVICES
Company: (alhaquist	
Fax: $1-941-489-4545$ E-Mail: $1-954-920-2724$	STL Miami 10200 USA Today Way Miramar, FL 33025
From: Kathy Williams - Customer Service	Tel: 954-431-4550 ext: 105 Customer Service: ext: 340 Fax: 954-431-1959
Subject: <u>SUDH 2/7-1265</u> RUSD # DV67	www.stl-inc.com www.kkwilliams@stl-inc.com
Pages: 3 WICOUR	
E-MAILED	\
1/31/02/14)
ilaracu a hazenande	ALINER, COM
	yer. with
NOTICE: THE MESSAGE CONTAINED IN THIS FAX IS INTENDED	O ONLY FOR THE PERSONAL AND

CONFIDENTIAL USE OF THE RECIPIENT (S) NAMED ABOVE. This message may be a client communication and as such is Privileged and Confidential. If the reader of this message is not the intended recipient or an agent responsible for delivering it to the intended recipient, you are hereby notified that you have received this document in error and that any review, dissemination, distribution or copying of this message is STRICTLY PROHIBITED. If you have received this communication in error, please notify us immediately by telephone and return the original message to us by mail. THANK YOU.

STL Miami

Page 1 July 31, 2002 Submission # 207001265 Order # 63358 FDEP CompQAP# 990102 FL-DOH Certification# E86349,E86616

YOUNGQ002775 John Largey **Youngquist Brothers** 15465 Pine Ridge Road Ft. Myers, FL 33908

Site Location/Project Hollywood WWTP IW1,1621 N-14 Ave,Hollywood,33020 Hollywood IW1 Packer#5

Sample I.D.:	IW1 Packer	#5 1769-1785
Collected:	07/24/02	19:00
Received:	07/26/02	17:00
Collected by:	C. Harp	

PARAMETER	RESULT	UNITS	METHOD	DETECTION LIMIT-RQL	DATE EXT.	DATE ANALY.	ANALYST
Specific Conductance {grab}	436000	umhos	120.1	1.0	07/27/2002	07/27/2002	NMO
Residue, Total Filterable (TDS)	35708	mg/L	SM2540C (160.1)	1.0	07/29/2002	07/30/2002	RZ
Chloride	20830	mg/L	300.0	1.0	07/30/2002	07/30/2002	SMF
Nitrate (as N)	BDL	mg/L	300.0	0.05	07/27/2002	07/27/2002	SM
Nitrite (as N)	BDL	mg/L	300.0	0.05	07/27/2002	07/27/2002	SM.
Sulfate	2630	mg/L	300.0	1.0	07/27/2002	07/27/2002	SM
Nitrogen (Ammonia) as N	BDL	mg/L	350.1	0.04	07/30/2002	07/30/2002	DTD/SM
Nitrogen (Kjeldahl) as "N"	.391	mg/L	351.2	0.1	07/30/2002	07/31/2002	DTD/SM
Nitrogen (Total Organic)	.391	mg/L	351.2	0.1	07/30/2002	07/31/2002	DTD/SM
Nitrogen, Total as "N"	.391	mg/L	353+351 CALC.	0.1	07/30/2002	07/31/2002	DTD/SM

BDL: Indicates Analyte is Below Detection LimitMEDF: Matrix Effect Dilution Factor***

Work Subcontracted to Outside Labs Denoted by HRS Cert ID in Analyst Field ***Qualifier following result conforms to FAC 62-160 Table 7******Unless otherwise noted, mg/Kg denotes wet weight*** ***62-770: If the MDL using the most sensitive and currently available technology is higher than a specific criterion, the PQL shall be used.

Certs: Ct. =#PH0217, La. =#9601, Md. =#271, Ma. =#M-FL535

OK.=#9523, SC.=#96023, Tn.=#TN02826, P.R.=FL-00535 **These test results meet all the requirements of NELAC.All questions regarding this test report should be directed to the STL representative who signed this report or the QC department.

maria E. Castelluro

Laboratory Manager

	ena colo 22/27	e1165		SEVERN TRENT LABORATORIES, INC. FDEP Facility No. CHAIN OF CUSTODY RECORD (DEP 62-770.900 - modified form) Page:of														
	1.1.5 ≥ 4	An <u>I</u> rish			~~~~~			10200 USA TODAY WAY, N	AIRAM	AR, FLORIDA	33025	~~~~~			Sa		_of P No.)	
4.25 ACT 10	an a		(954)	431-4	1550	• N/	AT'L WAT	S (800) LAB-8550 · FAX (9	954) 4	31-1959 • S	AMPLE CUS	TODY F	AX (954) 432-86	675	Approval Date:		
			Original -	- Retu	rn w/l	Repor	t	Yellow -	Lab Co	ру			Pink — S	Sampler C				
Repor		Large	2J						Rep	ort To Address	: J Large	ey e	Hazen	+ 59	wyer	· Com		
Bill To: YB1 Project Number/Name: Hollywood 1w1 Packer#5 1769-1785 Site Location: Holbywood																		
		tolly was	d IW	1	Par			1769-1785	·					ntion: Ho	stywaa	1 WWTP	1101	
Projec	ct Contact: Ju	hn La	gey .					154-920-2972	FAX	954-92	0-7117	<u> </u>	621	N-13	<u>F'Ave</u>	. Ho	lywood	
		meron	webst	-er			Phone: 9	41-560-4510	FAX							33020		
Samp	led By (print):	hris A	Harp	1		r		T		pler's Signatu	re:						Printing and the state of the s	
					E	c	MATRIX	SAMPLE LOCATION JOB DESCRIPTION	#			, ANALY	YSIS REQ	UIRED			Sample Condition	
1				рH	M P	O N	DW SW		C O					OD NUME E BOXES			La lemp to La Cardo	
T E	SAMPLE ID	DATE COLLECTED	TIME COLLECTED		°c	D	GW SED	(optional if needed when samples are from	N T	(√) CHEC	K OFF WHIC	H SAMPL	E ITEMS	NEED EA	CH TEST	PERFORMED	Sealed to Cortige	
M						<i></i>	S EFF	different site location)	A	Ammonia	Organia	Nitra	te Ca	rductivit			Lot number of	
				F	FL	FL	HW BIO		N		Nitrogen			·	TKN	The	Sampling	
	1W 1_			D	D	D	SA		R	Chloride	Total Nítrogen	Nitri	7e 5.1	15-to	FILM	705	Containers Used	
1	Packer #5							62358	10	V	- Contraction		/	L L	~			
2	1769 - 1785	7-24-02	7pm				GW											
3				ļ				Kush #										
4													· .					
5 6								PJ 167										
7																		
8								2 Day Turnaroug	1									
9				<u>†</u>		<u> </u>												
10				1		 												
Speci	al Comments:				******			Total # of Containers:		QA/QC Re	port Needed?		Yes	No	(See	e price guide for	applicable fees)	
								\frown	/	Report For	rmat:	Standar	d	Othe	r (specify))		
(1) Re	linguished by Signatu	Ire:		Date	8: 	4 M-		Relinquished by Signature:		R	Date:			ATE REQU	JESTED			
	1/0			1-	26	-02		A MH	<u>ov i .</u>			02	Comr	mation #				
Comp	iany: JB	1		Time	Ð:		Co	mpany:	-(/	Time: 16.	25	Coatin	i de la compañía de l			<u> </u>	
							Date: 7/.	26/02	Mise	Charges								
Comp	pany:	ST TIME: 10 Company: 5T Time: 7:00 SHADED AREAS ARE FOR FAB USE ONLY.									oncy							

1 · ·

Injection Well No. 1 (IW-1) – Packer Tests 1,894 – 1,910

Fax message SEVERN Date: D-20-00 To: MCTICE: To: MCTICE: To: MESSAGE CONTAINED IN THIS FAX IS INTENDED ONLY FOR THE PERSONAL AND	RUSH	40
To: SERVICES Company: BTL Mianil Fax: 964 960 111 F-Mail: Magge Attain and the service From: Zuzan Franco - Customer Service Subject: SD # 30 - 901 Pages: 300 - 901 Pages: 100 - 100 NOTICE: The message contained in this Fax is intended only for the PERSONAL AND	-	SEVERN
Company: SBT Fax: 954 960 110 Fax: 9544314550 ext: 111 From: Zuzan Franco - Customer Service Subject: SD # 20 901 Pages: 30000 Pages: 30000 1894 - 1910 1894 - 1910 1894 - 1910 NOTICE: THE MESSAGE CONTAINED IN THIS FAX IS INTENDED ONLY FOR THE PERSONAL AND	Date: 07-02-00	TRENT
Fax: 954 950 10200 USA Today Way Binamic Miramar, FL 33025 Miramar, FL 33025 From: Zuzan Franco - Customer Service Tel: 954/31.4550 ext: 111 Subject: Subject: Subject: Subject: Pages: Subject: Www.sthinc.com Image: Image: Image: <	To: - In Crgey	SERVICES
Fax: 909 900 10200 USA Today Way Mirgmar, FL 33025 Mirgmar, FL 33025 Mirgmar, FL 33025 From: Zuzan Franco - Customer Service Tel: 954431-4550 ext: 111 Subject: 904 904 904 Pages: 904 904 904 Notice: 1000 1000 1000 Var. Std-431-1959 904 904 Var. Std-100 904 904 Marcel Std-100 904 904 Var. Std-100 904 904 Var. Std-100 904 904 Std-100 904 904	Company: <u>SBT</u>	STL Miami
E-Mail: Subject:	Fax: <u>454 680 710</u>	10200 USA Today Way
From: Zuzan Franco - Customer Service Subject: Subject: Pages: But of the page	E-Mail: <u>Margey of Halmon us</u>	augricon
NOTICE: THE MESSAGE CONTAINED IN THIS FAX IS INTENDED ONLY FOR THE PERSONAL AND	From: Zuzan Franco - Customer Service	Customer Service: ext: 340
NOTICE: THE MESSAGE CONTAINED IN THIS FAX IS INTENDED ONLY FOR THE PERSONAL AND	Subject: <u>Sb#2D-901</u>	
NOTICE: THE MESSAGE CONTAINED IN THIS FAX IS INTENDED ONLY FOR THE PERSONAL AND	Dy 167	www.zfranco@stl-inc.com
NOTICE: THE MESSAGE CONTAINED IN THIS FAX IS INTENDED ONLY FOR THE PERSONAL AND	Pages: 3UCOV	
NOTICE: THE MESSAGE CONTAINED IN THIS FAX IS INTENDED ONLY FOR THE PERSONAL AND		
NOTICE: THE MESSAGE CONTAINED IN THIS FAX IS INTENDED ONLY FOR THE PERSONAL AND		
		(1894-1910)
CONFIDENTIAL USE OF THE RECIPIENT (S) NAMED ABOVE. This message may be a client communication and		

CONFIDENTIAL USE OF THE RECIPIENT (S) NAMED ABOVE. This message may be a client communication and as such is Privileged and Confidential. If the reader of this message is not the intended recipient or an agent responsible for delivering it to the intended recipient, you are hereby notified that you have received this document in error and that any review, dissemination, distribution or copying of this message is STRICTLY PROHIBITED. If you have received this communication in error, please notify us immediately by telephone and return the original message to us by mail. THANK YOU.

STL Miami

Page 1 July 22, 2002 Submission # 207000901 Order # 60975 FDEP CompQAP# 990102 FL-DOH Certification# E86349,E86616

Sample I.D.: IW1 Packer #3 1896-1910 Collected: 07/19/02 09:45 07/19/02 12:20 Received: Collected by: C.Harp

PARAMETER	RESULT	UNITS	METHOD	DETECTION LIMIT-RQL	DATE EXT.	DATE ANALY.	ANALYST
Specific Conductance {grab}	48500	umhos	120.1	1.0	07/19/2002	07/19/2002	DMO
Residue, Total Filterable (TDS)	35100	mg/L	SM2540C (160.1)	1.0	07/19/2002	07/22/2002	RZ/EH
Chloride	23783	mg/L	300.0	1.0	07/22/2002	07/22/2002	RDB
Nitrate (as N)	6.34	mg/L	300.0	0.05	07/20/2002	07/22/2002	SM/RDB
Nitrite (as N)	BDL	mg/L	300.0	0.05	07/20/2002	07/22/2002	SM/RDB
Sulfate	2589	mg/L	300.0	1.0	07/20/2002	07/22/2002	SM/RDB
Nitrogen (Ammonia) as N	BDL	mg/L	350.1	0.04	07/22/2002	07/22/2002	SM/DD
Nitrogen (Kjeldahl) as "N"	BDL	mg/L	351.2	0.1	07/22/2002	07/22/2002	SM/DD
Nitrogen (Total Organic)	BDL	mg/L	351.2	0.1	07/22/2002	07/22/2002	SM/DD
Nitrogen, Total as "N"	6.34	mg/L	353+351 CALC.	0.1	07/20/2002	07/22/2002	SM/RDB
L	1					[L

BDL: Indicates Analyte is Below Detection LimitMEDF: Matrix Effect Dilution Factor***

Work Subcontracted to Outside Labs Denoted by HRS Cert ID in Analyst Field ***Qualifier following result conforms to FAC 62-160 Table 7******Unless otherwise noted, mg/Kg denotes wet weight*** ***62-770: If the MDL using the most sensitive and currently available technology is higher than a specific criterion,

the PQL shall be used.

Certs: Ct. =#PH0217, La. =#9601, Md. =#271, Ma. =#M-FL535 OK. =#9523, SC. =#96023, Tn. =#TN02826, P.R. =FL-00535 These test results meet all the requirements of NELAC. All questions regarding this test report should be directed to the STL representitive who signed this report or the QC department.

Coject Manager

YOUNGQ002775 John Largey Youngquist Brothers 15465 Pine Ridge Road Ft. Myers, FL 33908

Site Location/Project Hollywood WWTP IW1 Hollywood IW1

Subm	ssion code				СН	IAIN		VERN TRENT LA				ied form)			of
Order	e Chemister			131.4	550	• NA	T'L WATS	10200 USA TODAY WAY, M (800) LAB-8550 • FAX (9	IRAM/ 54) 43	AR, FLORIDA 31-1959 • SA	33025 MPLE CUST	TODY FAX (954) 432-86	75		? No.)
r Creoi Na India	n soline <u>Sol</u> ice		Original -			·····		Yellow -					k – Sampler C	Appro	val Date:	
Repor	to: John	Large	86	Retur		report	•			ey ort To Address:	Tha	rgay 4			awyer	· Com
Bill Te	1151	-Lage	4							ng Address:		-3-7	110000		<u> </u>	
Proje	<u></u>	ollywood	1115 1	1.	Par	ke	#3	1894-1910				Site	Location: Ho	lluword	WW	TP IN 1
Proje		1 1	raer =					154-920-2972	FAX	954-9z	0-711-			70000		
Alter		neron	Webst	2				41-560-4510	FAX			·				
Samp	led By (print):	Chrix	Hard						Sam	pler's Signatu	re:					
İ					T		MATRIX	SAMPLE LOCATION	#	Ī		ANALYSIS	REQUIRED			Sample Condition
					E M	С 0	DW	JOB DESCRIPTION	с		PLACE	NAME OR N	ETHOD NUM	BER OF		as Received
		DATE	TIME	рH	P	N D	SW GW	(optional if needed	0 N	(./) CHEC			LARGE BOXES		RFORMED	TempC Sealed Yes No.
E	SAMPLE ID	COLLECTED	COLLECTED		°C		SED S	when samples are from different site location)	T				Conductivity		1	
				_			EFF		î	Ammonia	Organie Nitrogén	Nitrate	Conquetivity	IF. S	1-	Lot number of Sampling
				Ľ	FL	FL	HW BIO		E	Chloride	Total	5.1		NKN)	TQS)	Containers
				D	Ø	D	SA		R S	the of the	Nitrogen	Nitrite	Sulfate			Used
1	IW1								Ю							
2	Packer #3															
3	1896-1910	7-19-02	945				Gu	0 t #								
4				ļ			ļ	Kush	ļ				<u> </u>		<u> </u>	
5						┡──	ļ		ļ					 		:
6						 		PJ 167								
7				+	<u> </u>			2 Day Turnaround					+		+	
8				+	<u> </u>			E VOLY I WINDOWN							1	
10	+			+						}			+		1	
	ial Comments:	<u>}</u>	1	-J	.L	I	.I	Total # of Containers:	1	QA/QC Re	port Needed?	· · · · · · · · · · · · · · · · · · ·	res No	(See p	rice guide for	applicable fees)
									1.	Report Fo	rmat:	Standard	Othe	er (specify)		
(1) 5	elinguished by Signat	ure:		Date			(2)	Pelinquished by Signature:			Date: 7-19-	1	UE DATE REQ			
	jan Weln	<u> </u>		7	-19	1-0	1/ 50	Janon Ja	NO	Y	1-19.	-04	<u>Confirmation</u> #			
Com	pany: YBI			Tim	e:		Co	mpany: 970	_	0	Time:		Coong Code			0/L/D
(1)	to eived by Signature:	NAN	ay	Dat	2:/	9-	02 (2)	Received by Signature:			Date:	<u>.</u>	disc. Culleges			
Com	ipany: S	TC	-6	Tim	ie: / (01	28 00	mpany STL			Time:		SHADED	AREAS ARE	FOR LAB USE	ONLY

Injection Well No. 1 (IW-1) – Packer Tests 1,959 – 1,975

•

RUSH Fax message SEVERN ΤΓΕΝΤ Date: SERVICES To: Company: STL Miami -CAC Fax: U 10200 USA Today Way Miramar, FL 33025 E-Mail: .com Tel: 954-431-4550 ext: 111 Customer Service: ext: 340 Zuzan Franco - Customer Service From: Fax: 954-431-1959 Subject: 🧲 1-1/1 \square www.stl-inc.com www.zfranco@stl-inc.com Pages: 2 - 1975 959 NOTICE: THE MESSAGE CONTAINED IN THIS FAX IS INTENDED ONLY FOR THE PERSONAL AND CONFIDENTIAL USE OF THE RECIPIENT (S) NAMED ABOVE. This message may be a client communication and as such is Privileged and Confidential. If the reader of this message is not the intended recipient or an agent responsible for delivering it to the intended recipient, you are hereby notified that you have received this document

as such is Privileged and Confidential. If the reader of this message is not the intended recipient or an agent responsible for delivering it to the intended recipient, you are hereby notified that you have received this document in error and that any review, dissemination, distribution or copying of this message is STRICTLY PROHIBITED. If you have received this communication in error, please notify us immediately by telephone and return the original message to us by mail. THANK YOU.

YOUNGQ002775 John Largey Youngquist Brothers 15465 Pine Ridge Road Ft. Myers, FL 33908

Site Location/Project Hollywood WWTP,1621 N-14 Ave,Hollywood,FL 33020 Hollywood IW1 Pkr #4 1959-1975

PARAMETER	RESULT	UNITS	METHOD	DETECTION LIMIT-RQL	DATE EXT.	DATE ANALY.	ANALYST
Specific Conductance {grab}	49200	umhos	120.1	1.0	07/26/2002	07/26/2002	SM
Residue, Total Filterable (TDS)	38980	mg/L	SM2540C (160.1)	1.0	07/25/2002	07/26/2002	NM/EH
Chloride	21670	mg/L	300.0	1.0	07/25/2002	07/25/2002	SMF
Nitrate (as N)	14.0	mg/L	300.0	0.05	07/25/2002	07/25/2002	SMF
Nitrite (as N)	BDL	mg/L	300.0	0.05	07/25/2002	07/25/2002	SMF
Sulfate	2948	mg/L	300.0	1.0	07/25/2002	07/25/2002	SMF
Nitrogen (Ammonia) as N	.042	mg/L	350.1	0.04	07/25/2002	07/25/2002	DTD
Nitrogen (Kjeldahl) as "N"	.349	mg/L	351.2	0.1	07/26/2002	07/26/2002	DTD
Nitrogen (Total Organic)	.307	mg/L	351.2	0.1	07/25/2002	07/26/2002	DTD
Nitrogen, Total as "N"	14.3	mg/L	353+351 CALC.	0.1	07/25/2002	07/26/2002	DTD
			······		1	1	

BDL: Indicates Analyte is Below Detection LimitMEDF: Matrix Effect Dilution Factor***

Work Subcontracted to Outside Labs Denoted by HRS Cert ID in Analyst Field ***Qualifier following result conforms to FAC 62-160 Table 7******Unless otherwise noted, mg/Kg denotes wet weight*** ***62-770: If the MDL using the most sensitive and currently available technology is higher than a specific criterion,

the POL shall be used.

Certs: Ct. =#PH0217, La. =#9601, Md. =#271, Ma. =#M-FL535

OK. =#9523, SC. =#96023, Tn. =#TN02826, P.R. =FL-00535 These test results meet all the requirements of NELAC. All questions regarding this test report should be directed to the STL representitive who signed this report or the QC department.

maria E. Castellaro

Laboratory Manager

SEVERN TRENT SERVICES

STL Miami

Page 1 July 26, 2002 Submission # 207001094 Order # 62344 FDEP CompQAP# 990102 FL-DOH Certification# E86349,E86616

Sample I.D.: IW1 Pkr #4 1959-1975 Collected: 07/23/02 16:00 07/24/02 15:00 **Received: Collected by: Chris Harp**

Solor	iksleri Cider	- 10.94			Cł	HAII		EVERN TRENT LA				fied fo	rm)		EP Facility No	
10 10 10 10 P	an a she Sa maran	and the second second	(954)	431-4	550	• N/	AT'L WATS	10200 USA TODAY WAY, M 6 (800) LAB-8550 + FAX (9	IRAM 54) 4:	AR, FLORIDA 31-1959 • S	33025 AMPLE CUS	TODY FA	X (954) 432-86	Sar	npiing CompQA	P No.)
	en feldingstytheitiste. Metrogeneratisfatur		Original -					Yellow		*****			Pink – Sampler C	Apr	proval Date:	
Repo	rt To: John	Large			·····				Repo	ort To Address	: J Lar	aly C	Hazen @ E	Sawye	r. Con	`
Bill T	o: YBI		7							ng Address:)			·	
Proje	ct Number/Name: H	ollywood	100 5	1	Par	ker	*4	1959'-1975'				s	iite Location: //	allywoo	d ww	TP IW1
Proje	ect Contact: 50	ihn L	argay					154-920-2972	FAX:	954-	920-71			14 Ave		wood
Alter	nate Contact: Co	meron	Webs	fer				41-560-4510	FAX						33020	
Sam	oled By (print):	Chris	Harp						Sam	pler's Signatu	re;					······································
	T		,		T		MATRIX	SAMPLE LOCATION	#			ANALY	SIS REQUIRED			Sample Condition
					E M	C O	DW	JOB DESCRIPTION	c		PLACE	NAME O	R METHOD NUME	BER OF		at Received
T		DATE	TIME	pH	P	N D	SW GW	(optional if needed	O N	(.⁄.) CHEC			IN LARGE BOXES		FREARMED	Temp Scaled Tes (Pb)
EM	SAMPLE ID	COLLECTED	COLLECTED		°C	1	SED S	when samples are from different site location)	T			11		`		
							EFF	different site location)	î/	Homonig	Dispute Nitrogen	NITTAT	2 Conductivity	Y		Lot number of
				FL	FL	FL	HW BIO		N U E			17		TKN	TDS	Sampling Containers
	14) 1			D	D	D	SA		R	Chloride	Nitroon	Nitrit	e/Sulfate)			Used
1	Packer # 4			1					10	10		R	1-1-	50	1 R	
2	1959'-1975'	7-23-02	4 pm				GW	0			$\overline{}$					
3			, , , , , , , , , , , , , , , , , , , ,					Kush #								
4						ŀ										
5							ļ	PJ 167								
6				ļ		ļ	ļ									
7	ļ			ļ	ļ	ļ		2 Day Turnaroud								
8						ļ		/								
9				_		ļ				ļ						
10	1			<u> </u>	L		<u> </u>									
Spec	ial Comments:							Total # of Containers:		H	port Needed?		Yes No	(See	price guide for	applicable fees)
	telinguisked by Signat			P -4			1		1	Report For		Standard		r (specify)		
(1)	and and the construction of the construction o	los		Date 7	-24	4-0	Z (2)	Religioushed by Signature:	An.	ant	Date:	1_07	DUE DATE REQU	UESTED		
6						a	m	Winand/1		-6-						
Com	pany: YB1			Time	e: //		Coi	mpany: STL		-	Time: 12.2	д	Coating Coder			Q/4/D
(1) F	Wallan	Jaro	ny	Date	- Z.	4-	02 (2)	Received by Signature:	>		Date:	H02	Mise Charges			
Com	pany: 9	TL	8	Tim	e: //	00	5 Coi	mpany:	12		Time: 15	OD	SHADEB	AREAS ARI	FOR LAR USE	ONLY

(TI 0040 10000)

Injection Well No. 1 (IW-1) – Packer Tests 2,046 – 2,062

RUSH	
Fax message	SEVERN
Date: 08-30-02	TRENT
To: the Largey	SERVICES
Company: HOREN & CULLER	
Fax: 454-020-710	STL Miami 10200 USA Today Way
E-Mail:	Miramar, FL 33025
	Tel: 954-431-4550 ext: 111 Customer Service: ext: 340
From: Zuzan Franco - Customer Service	Fax: 954-431-1959
Subject: $SUP + SP - US$	www.stl-inc.com www.zfranco@stl-inc.com
$\frac{1}{2}$	
Pages: $\underline{\mathcal{S}}$ $\underline{\mathcal{W}}$ $\underline{\mathcal{W}}$	E-MAILE
	$DC_{n-2}(x)$
	08-00-(
	·
	·
	······································
	······································
NOTICE: THE MESSAGE CONTAINED IN THIS FAX IS INTEND CONFIDENTIAL USE OF THE RECIPIENT (S) NAMED ABOVE. This mes	ED ONLY FOR THE PERSONAL A
as such is Privileged and Confidential. If the reader of this message is	not the intended recipient or an age
esponsible for delivering it to the intended recipient, you are hereby notifi	ed that you have received this docume
n error and that any review, dissemination, distribution or copying of this	message is STRICTLY PROHIBITED.

=

N

YOUNGQ002775 John Largey Youngquist Brothers 15465 Pine Ridge Road Ft. Myers, FL 33908

Site Location/Project Hollywood WWTP IW1,1621 N-14 Ave,Hollywood 33020 Hollywood IW 1 Packer #6

Sample I.D.:	IW 1 Packer	#6 2046-2062
Collected:	08/28/02	14:00
Received:	08/28/02	14:25
Collected by:	D.Williams	

FL-DOH Certification# E86349,E86616

Page 1

August 30, 2002

Order # 73870

Submission # 208001412

FDEP CompQAP# 990102

RESULT	UNITS	METHOD	DETECTION LIMIT-RQL	DATE EXT.	DATE ANALY.	ANALYST
53100	umhos	120.1	1.0	08/29/2002	08/29/2002	RDB
36700	mg/L	SM2540C (160.1)	1.0	08/28/2002	08/29/2002	EH
20200	mg/L	300.0	1.0	08/28/2002	08/30/2002	SMF
BDL	mg/L	300.0	0.05	08/28/2002	08/29/2002	SMF
BDL	mg/L	300.0	0.05	08/28/2002	08/29/2002	SMF
2672	mg/L	300.0	1.0	08/28/2002	08/29/2002	SMF
BDL	mg/L	350.1	0.04	08/29/2002	08/29/2002	DTD
BDL	mg/L	351.2	0.1	08/29/2002	08/29/2002	DTD
BDL	mg/L	351.2	0.1	08/29/2002	08/29/2002	DTD
BDL	mg/L	353+351 CALC.	0.1	08/28/2002	08/29/2002	SMF
	53100 36700 20200 BDL BDL 2672 BDL BDL BDL BDL BDL	53100 umhos 36700 mg/L 20200 mg/L BDL mg/L BDL mg/L 2672 mg/L BDL mg/L	S3100 umhos 120.1 36700 mg/L SM2540C (160.1) 20200 mg/L 300.0 BDL mg/L 350.1 BDL mg/L 351.2 BDL mg/L 351.2	RESOLT CULL LIMIT-RQL 53100 umhos 120.1 1.0 36700 mg/L SM2540C (160.1) 1.0 20200 mg/L 300.0 1.0 BDL mg/L 300.0 0.05 BDL mg/L 300.0 1.0 BDL mg/L 300.0 0.05 BDL mg/L 300.0 1.0 BDL mg/L 350.1 0.04 BDL mg/L 351.2 0.1 BDL mg/L 351.2 0.1	RESOLT CUILE LIMIT-RQL EXT. 53100 umhos 120.1 1.0 08/29/2002 36700 mg/L SM2540C (160.1) 1.0 08/28/2002 20200 mg/L 300.0 1.0 08/28/2002 BDL mg/L 300.0 0.05 08/28/2002 BDL mg/L 300.0 1.0 08/28/2002 BDL mg/L 350.1 0.04 08/29/2002 BDL mg/L 351.2 0.1 08/29/2002 BDL mg/L 351.2 0.1 08/29/2002	RESOLT CHARS LIMIT-RQL EXT. ANALY. 53100 umhos 120.1 1.0 08/29/2002 08/29/2002 36700 mg/L SM2540C (160.1) 1.0 08/28/2002 08/29/2002 20200 mg/L 300.0 1.0 08/28/2002 08/29/2002 BDL mg/L 300.0 0.05 08/28/2002 08/29/2002 BDL mg/L 350.1 0.04 08/29/2002 08/29/2002 BDL mg/L 351.2 0.1 08/29/2002 08/29/2002 BDL mg/L 351.2 0.1 08/29/2002 08/29/2002

BDL: Indicates Analyte is Below Detection LimitMEDF: Matrix Effect Dilution Factor***

Work Subcontracted to Outside Labs Denoted by HRS Cert ID in Analyst Field ***Qualifier following result conforms to FAC 62-160 Table 7*****Unless otherwise noted, mg/Kg denotes wet weight*** ***62-770: If the MDL using the most sensitive and currently available technology is higher than a specific criterion,

the PQL shall be used.

Certs: Ct. = #PH0217, La. = #9601, Md. = #271, Ma. = #M-FL535

OK. =#9523, SC. =#96023, Tn. =#TN02826, P.R. =FL-00535

**These test results meet all the requirements of NELAC.All questions regarding this test report should be directed to the STL representative who signed this report or the QC department.

maria & Castellars Laboratory Manager

Subr	lission Code: <u>02</u>	<u> 8-14</u>	Z		Cł	IAI		EVERN TRENT LA				fied for	m)	FDEF		of	
Orde	<u>⊪. 1</u> 3	840	(054)	A 21 A	EEA		771 34/67	10200 USA TODAY WAY, M FS (800) LAB-8550 • FAX (9	IRAM	AR, FLORIDA	33025			Sam	Sampling CompQAP No.)		
Ente	ed to līnis:	<u>8 A </u>									AMPLE CUS			Appr	Approval Date:		
Repo	rt To: Jihn	1 0	Original –	Retur	n w/F	Repor		Yellow –		opy ort To Address:	71		ink – Sampler Co	<u> </u>	<u> </u>		
Bill T		Larger	·							ing Address:	J Lara	304	Hazen and	Sawyer	<u> </u>	n	
Proje	ect Number/Name:	follywood	IW,	1	Pa	Ne:	#6	2046-2062	·			Si	te Location: /-	Tollyw	and h	WTP IW1	
Proje		$\alpha + z$	હારા					954-920 - 2972	FAX	. 954-92	0-711	7 16	21 N-14	I Ave		Hywood	
Alter	nate Contact: (umerion	L'Ueb:	ster	**			941-560-4510	FAX					33	020		
Sam	pled By (print):	pon li	illians.	T1						npler's Signatu	re:						
I T E M	SAMPLE ID	DATE COLLECTED	TIME COLLECTED	pН	T E M P °C	C O N D	MATRI) DW SW GW SED	JOB DESCRIPTION (optional if needed when samples are from	# C 0 N T		TESTS K OFF WHIC	NAME OR NEEDED II H SAMPLE	IS REQUIRED METHOD NUMB LARGE BOXES I ITEMS NEED EA	BELOW CH TEST PE	ERFORMED	Sample Condition. as Recolved TempC Sealed Yes No	
	JIN 1			F L D	F L D	F L D	S EFF HW BIO SA	different site location)	A I N E R S	at) 1.	Organic Nitrogen	Nitrate Nitrate	. 101	TKN	ITDS	Lot number of Sampling Containers Used	
1	Packer # 6	0.00	~						10	1 O	E		1 C	(10	73876	
2 3	2046-2062	8-28-02	2pn				Giv	Rusht									
4								nus/(**						- 10. 11 10.			
5								PJ 167							1		
6				ļ										-			
7				 		ļ	ļ	2 Day Turnersund	 								
8				+	<u> </u>			- Dut				<u> </u>	_				
9 10				+		┨───	<u> </u>	For 8-30.00				<u> </u>					
	ial Comments:	.	I	1	L	1	L	Total # of Containers:		QA/OC Rei	port Needed?	l ?	Yes No	(See 1	price guide for	applicable fees)	
							·			Report For	•	Standard		r (specify)			
(1)	Folinquished by Signat	ure		Date 8	= -2	8-0		2) Relinquished by Signature:			Date:		DUE DATE REQU				
Com	pany: YB	1		Tim		22	~	Company:			Time:		Coating Code			Q/1/0	
(1)1	Received by Signature:			Dat	?	ZŽ	100	2) Received by Signature:			Date:		Misc, Charges				
Com	pany	SIL	-	Time	e: / 	2	200	Company:			Time:		SHADED	AREAS ARE	FOR LAB USE	ONLY	

.

R 810 - 0

Injection Well No. 1 (IW-1) – Packer Tests 2,193 – 2,209

Fax message

SEVERN ΤR ENT Date: SERVICES Τa 10 Company: STL Miami Fax: 10200 USA Today Way Miramar, FL 33025 E-Mails Tel: 954-431-4550 ext: 111 Customer Service: ext: 340 Zuzan Franco - Customer Service From: Fax: 954-431-1959 Subject: www.stl-inc.com ww Pages: NOTICE: THE MESSAGE CONTAINED IN THIS FAX IS INTENDED ONLY FOR THE PERSONAL AND CONFIDENTIAL USE OF THE RECIPIENT (S) NAMED ABOVE. This message may be a client communication and as such is Privileged and Confidential. If the reader of this message is not the intended recipient or an agent responsible for delivering it to the intended recipient, you are hereby notified that you have received this document in error and that any review, dissemination, distribution or copying of this message is STRICTLY PROHIBITED. If

you have received this communication in error, please notify us immediately by telephone and return the original message to us by mail. THANK YOU.

YOUNG0002775 John Largey Youngquist Brothers 15465 Pine Ridge Road Ft. Myers, FL 33908

Site Location/Project Hollywood WWTP IW1,1621 N-14 AVE, Hollywood 33020 Holly.IW1 Packer #7 2193-2209

Sample I.D.:	IW	1 P	acker	#	7	2193-220	9
Collected:						:00	
Received:	08/	/30	/02	1	7	:00	
Collected by:	Don	W	'illiam	s			

FL-DOH Certification# E86349, E86616

Page 1

September 6, 2002

Order # 74869

Submission # 208001550

FDEP CompQAP# 990102

PARAMETER	RESULT	UNITS	METHOD	DETECTION LIMIT-RQL	DATE EXT.	DATE ANALY.	ANALYST
Specific Conductance {grab}	51300	umhos	120.1	1.0	09/02/2002	09/02/2002	RDB
Residue, Total Filterable (TDS)	34800 ·	mg/L	SM2540C (160.1)	1.0	08/31/2002	09/03/2002	EH
Chloride	21700	mg/L	300.0	1.0	09/03/2002	09/03/2002	RDB
Nitrate (as N)	0.80	mg/L	300.0	0.05	08/31/2002	08/31/2002	RDB/SM
Nitrite (as N)	BDL	mg/L	300.0	0.05	08/31/2002	08/31/2002	RDB/SM
Sulfate	2960	mg/L	300.0	1.0	09/03/2002	09/03/2002	RDB
Nitrogen (Ammonia) as N	BDL	mg/L	350.1	0.04	09/02/2002	09/02/2002	DTD
Nitrogen (Kjeldahl) as "N"	BDL	mg/L	351.2	0.1	09/02/2002	09/02/2002	DTD
Nitrogen (Total Organic)	BDL	mg/L	351.2	0.1	09/02/2002	09/02/2002	DTD
Nitrogen, Total as "N"	0.80	mg/L	353+351 CALC.	0.1	09/02/2002	09/02/2002	SM/DD

BDL: Indicates Analyte is Below Detection LimitMEDF: Matrix Effect Dilution Factor***

Work Subcontracted to Outside Labs Denoted by HRS Cert ID in Analyst Field ***Qualifier following result conforms to FAC 62-160 Table 7*****Unless otherwise noted, mg/Kg denotes wet weight*** ***62-770: If the MDL using the most sensitive and currently available technology is higher than a specific criterion, the PQL shall be used.

Certs: Ct. =#PH0217, La. =#9601, Md. =#271, Ma. =#M-FL535

OK. =#9523, SC. =#96023, Tn. =#TN02826, P.R. =FL-00535

**These test results meet all the requirements of NELAC.All questions regarding this test report should be directed to the STL representative who signed this report or the QC department.

Project Manager

											1					
Subr	ission Code: 02/8	-1581)		Cł	IAIN		EVERN TRENT LA				ied forı	m)		DEP Facility No	of
Orde	SIAND	29						10200 USA TODAY WAY, N							Sampling CompQAI	2 No.)
in de la lue Senderes	ed to lims:	A	(954) 4	431-4	550	• NA		6 (800) LAB-8550 • FAX (9				FODY FAX	(954) 432-8	875	Approval Date:	
			Original –	Retur	nw/F	Repor	t	Yellow -	Lab C	ору		P	ink – Sampler (1		
Repo		Largey						* *	Rep	port To Address:	TL	argen	A Har	en #2	Sawyer, Co	7 1
Bill T	1.01	<u> </u>			····			2193-2209	Billi	ing Address:		J 1			/	
	ct Number/Name:				Pac	Ker,	#7	2000 Patrice					e Location: Ho		od WWT	PIWI
Proje	et Contact: John							54-920-2972	FAX	x:954-920	<u> </u>	162	-1 N-14 1	Ave	Hollywoo	d
	nate Contact: Cam		lebster				Phone: 9	41-560-4510	FAJ	X:					33020	
Sam	pled By (print): ①어	n Will	ian s					· · · · · · · · · · · · · · · · · · ·	+	mpler's Signature):	·				
					T E	с	MATRIX	SAMPLE LOCATION JOB DESCRIPTION	#				IS REQUIRED			Sample Condition
1				pН	M P	0 N	DW SW		C O		TESTS I	NEEDED IN	METHOD NUM LARGE BOXES	BELOW		Temp. 2
T E	SAMPLE ID	DATE COLLECTED	TIME COLLECTED		°c	D	GW SED	(optional if needed when samples are from	N T				ITEMS NEED E	ACH TES	T PERFORMED	Sealed Yes, N
м							S EFF	different site location)	A	Armonia C) spare	Nitrati	e Conductivit	y		Lot number of
				F	F	F	HW BIO		Ň		N Sen		1 '		1 70.	Sampling Containers
	1 w 1			D	D	D	SA		R	Chleride	Total	Nitoit	KICH	IK	NIUS	Used
1	Packer #7					 			10		Antra BA) (-V)		$\overline{}$	
2	2193-2209	8-29-02	Zom				Giv		1.0			\sim	$+ \rightarrow$	$\uparrow \subseteq$		
3								Rush #								
4						ļ		K								
5				-	ļ			PJ 167								
6 7							<u> </u>									
8						 	┝	2 Day Turnaround	4							
9				+-		-	<u> </u>									,
10				1		<u> </u>			1							······
Spee	cial Comments: P(-	オシロ	58	I		•		Total # of Containers:		QA/QC Rep	ort Needed?		Yes No	(S	See price guide for	applicable fees)
										Report Form	nat:	Standard	Oth	er (speci	fy)	
(1)	Relinquished by Signati	/		Date 8-1		- 15		Relinquience by Signature:	Ø.	ad	Date:		DUE DATE REQ Confirmation #			
Com	pany: AB			Tim								1715	Coating Code:			Q/L/D
(1)	Received by Signature:	Wan	N	Date	819	30.	02 (2)	Received by Signature:	N.		Dates 30	Λ	Misc. Charges			
Corr	ipany:	Ψ,			•:10		1	ompany:	-5/	2	Time:	D	SHADE		ARE FOR LAB USE	ONLY

Injection Well No. 2 (IW-2) – Packer Testing Packer Test Water Quality

44

.

•

Injection Well No. 2 (IW-2) – Packer Tests 1,390 – 1,408

Townormal From: Kathy Williams Customer Service Ext: 105 Company: YOUNG QUIST Kkwilliams@stl-inc.com 1.947-499-4945 Fax: 1-954-920-7117 Date: 1-703 Email: Jargey @ha2enard Pages: 2 Plus cove Sawyer.com Subject: Sub # Rush #	Fax message	
Company: <u>HOUNGOUIST</u> kkwilliams@stl-inc.com 1.941-489-4545 Fax: <u>1-954-920-7117</u> Date: <u>1-703</u> Email: <u>Hargey @hazenand Pages: 2</u> Plus cove Sawyer, Com	Town	From: Kathy Williams
Fax: <u>1-954-920-7117</u> Date: <u>1-103</u> Email: <u>Jargey @hazenard</u> Pages: <u>2</u> Plus cove Sawyer, Com		Customer Service Ext: 105
Fax: <u>1-954-920-7117</u> Date: <u>1-103</u> Email: <u>Jargey @hazenard</u> Pages: <u>2</u> Plus cove Sawyer, Com	Company: Youngoust	kkwilliams@stl-inc.com
Sawyer.com		
\leq , $l = l + l$	Email: 1argey ahazen	Qrd Pages: Plus cove
Subject: Sub #	Sawyer.com	
	Subject: SUb #	
	Rush#	

This message contains information intended only for the use of the person named above. It may also be confidential and/or privileged. If you are not the intended recipient of this message you are hereby notified that you must not disseminate, copy or take any action in reliance on it. If you have received this message in error please contact STL Miami at 954-431-4550. The views expressed in this fax are not necessarily those of the company STL.

-

_

Severn Trent Laboratories Inc. STL Miami • 10200 USA Today Way, Miramar, FL 33025 Tel: 954-431-4550 Fax: 954-431-1959 • www.stl-inc.com

STL Miami

Page 1 January 7, 2003 Submission # 301000109 Order # 484 FDEP CompQAP# 990102 FL-DOH Certification# E86349,E86616

Sample I.D.: Packer #1 IW2 (1390-1408) 01/03/03 Collected: 00:00 **Received:** 01/03/03 17:00 Collected by: C.W.

PARAMETER	RESULT	UNITS	METHOD	DETECTION LIMIT-RQL	DATE EXT.	DATE ANALY.	ANALYST
Specific Conductance {grab}	16630	umhos	120.1	1.0	01/04/2003	01/04/2003	PR
Residue, Total Filterable (TDS)	9924	mg/L	SM2540C (160.1)	1.0	01/04/2003	01/05/2003	RZ
Chloride	7095	mg/L	300.0	1.0	01/04/2003	01/04/2003	RDB
Nitrate (as N)	BDL	mg/L	300.0	0.05	01/04/2003	01/04/2003	RDB
Nitrite (as N)	BDL	mg/L	300.0	0.05	01/04/2003	01/04/2003	RDB
Sulfate	537	mg/L	300.0	1.0	01/04/2003	01/04/2003	RDB
Nitrogen (Ammonia) as N	0.538	mg/L	350.1	0.04	01/06/2003	01/06/2003	DSR
Nitrogen (Kjeldahl) as "N"	0.837	mg/L	351.2	0.1	01/07/2003	01/07/2003	DSR
Nitrogen (Total Organic)	0.299	mg/L	351.2	0.1	01/07/2003	01/07/2003	DSR
Nitrogen, Total as "N"	0.837	mg/L	353+351 CALC.	0.1	01/07/2003	01/07/2003	DSR/RD

BDL: Indicates Analyte is Below Detection LimitMEDF: Matrix Effect Dilution Factor***

Work Subcontracted to Outside Labs Denoted by HRS Cert ID in Analyst Field ***Qualifier following result conforms to FAC 62-160 Table 7*****Unless otherwise noted, mg/Kg denotes wet weight*** ***62-770: If the MDL using the most sensitive and currently available technology is higher than a specific criterion,

the POL shall be used.

Certs:CT. = #PH0217, LA. = #9601, MD. = #271, MA. = #M-FL535

SC. =#96023, TN. =#TN02826, P.R. =FL-00535

**These test results meet all the requirements of NELAC.All questions regarding this test report should be directed to the STL representative who signed this report or the QC department.

maria E. Castellaro

Laboratory Manager

YOUNGQ002775 John Largey Youngquist Brothers 15465 Pine Ridge Road Ft. Myers, FL 33908

Site Location/Project Hollywood WWTP, IW2 Hollywood WWTP IW2 Packer#1

	on Code: 2//	12 780			~				VERN TRENT LA				C			P Facility No	
Statistics this his see	and the second	- 207				HAI	N UF		STODY RECORD (D				ried to	rm)	Page	e:	_of
Orders:	444		(954)	431-4	1550	• N/	AT'I W		10200 USA TODAY WAY, N (800) LAB-8550 • FAX (9					X (954) 432.86	Sam	pling CompQA	P No.)
Entered	to lims:	E-A-														roval Date:	
		1	Original -	Retu	rn w/	Repor	rt	-	Yellow -			·		Pink – Sampler C			
Report T	o: John	Largen									ort To Address	:].[argey	@ Hazen	and	Sawyer	. Com
Bill To:]	131									ng Address:				· · ·		,
		Hollywas		<u>11</u>	₽	<u> </u>	<u>52</u>		Packer # 1 1390	· · · · · · · · · · · · · · · · · · ·			<u> </u>	ite Location: H	lywood	1 NWTI	PIW2
Project (ngey						54-920-2972	FAX	954-920	<u>~7117</u>			/		
Alternate	e Contact: 📿	enern	Libs	te/			Phone	:23	39-560-4510	FAX							
Sampled	By (print):	<u> </u>	r		1	т				Sam	pler's Signatu	re:					
					T E	c	MATI	RIX	SAMPLE LOCATION JOB DESCRIPTION	#			ANALY	SIS REQUIRED			Semple Condition as Received
				pН	M P	0 N	DV SV			C O				R METHOD NUM			Temp 4
T		DATE	TIME	P 11		D	GV	1	(optional if needed	N	(√) CHEC			IN LARGE BOXES E ITEM <u>S NEED</u> E/		ERFORMED	Sealed Yes No
M	SAMPLE ID	COLLECTED	COLLECTED		°C		SE		when samples are from different site location)	T A		Acamic	Mitch	e Conductit	<u> </u>		
				F	F	F	EF				Homenia	Nitrogen		4 million	me	1 A	Lot number of
	ticker #1	4		L	L	LD	BIO			E				i link	(TKN)	(TDS)	Sampling Containers
lu	SZ 1390-1409						SA	`		R S	Chloride	Nitroger	Netrit	re Sulfate	\sum_{α}		Used
			ļ	ļ			60	>		8	Ø	S	\bigcirc		\bigcirc	Ø	484.
2			ļ		ļ	ļ											
3				<u> </u>	ļ	ļ	_		\rightarrow \rightarrow								
4		ļ		 	ļ	ļ			Kush								
5		<u> </u>	ļ		ļ	<u> </u>	<u> </u>		the second secon	ļ	 		ļ				
6		1	<u> </u>	<u> </u>	-	ļ			15003						ļ		
7	- Jean	ples,	Dec	¢ε	<u>۷۱</u>	<u>kc</u>	ta		1		 						
8	00	1131	BP	¢Ľ	TC.	1.	W.	ولا	ster	<u> </u>							
9			<u>' '</u>	ļ			11	4	3	<u> </u>							
10			L				<u> </u>		'EC			[<u> </u>				
Special	Comments:								Total # of Containers:	18	H	port Needed?	•	Yes No	(See	price guide for	applicable fees)
(1) =	michad by Ciarat			Det				(0)	Put and A	A	Report Fo	1	Standard		er (specify)		
	an Webe	/		Date	⊪։ Տ~Ն	>3		(2)	Relinquished by Signature:	Vin	~×	Date:	3.03	DUE DATE REQ Confirmation #	UESTED		
Company: XB Time: Company:						mpany:	ŶC	-	Time: 78	5.55	Coating Code:	il (Si te		Q/L/D			
(1) Rece	vived by Signature;	Villa	mg	Date	e:/.	3-0	23	(2)	Received by Signature:	ĒΑ)	Date: /		Misc. Charges			
Compan	/ \∕ ₩	84		Time	e: (<i>7:</i>	30	Cor	npany: 57	2		Time:	7:00	SHADED	AREAS ARE	FOR LAB USE	ONLY

m)

.....

i mittin at an -

.

1 1

CUURUI CICETI

Injection Well No. 2 (IW-2) – Packer Tests 1,510 – 1,528

ΕD

.

.

Fax message	
TO: John Largey	From: Zuzan Franco
	Customer Service Ext: 111
Company: HOZEN+Saufer	zfranco@stl-inc.com
Fax: <u>964 - 920 - 710</u>	Date: 1703
Email: 1 WORLY EMORENT	Pages: ŷŷ∕∖
Subject: $S(b + 3 1 - 14)$	10 PLSH # PULOT
	· · · · · · · · · · · · · · · · · · ·
	·

This message contains information intended only for the use of the person named above. It may also be confidential and/or privileged. If you are not the intended recipient of this message you are hereby notified that you must not disseminate, copy or take any action in reliance on it. If you have received this message in error please contact STL Miami at 954-431-4550. The views expressed in this fax are not necessarily those of the company STL.

Severn Trent Laboratories Inc. STL Miami • 10200 USA Today Way, Miramar, FL 33025 Tel: 954-431-4550 Fax: 954-431-1959 • www.stl-inc.com

SERVICES STL Miami

SEVERN TRENT

Page 1 January 7, 2003 Submission # 301000146 Order # 689 FDEP CompQAP# 990102 FL-DOH Certification# E86349,E86616

Youngquist Brothers 15465 Pine Ridge Road Ft. Myers, FL 33908

YOUNGQ002775

John Largey

Site Location/Project Hollywood WWTP IW2,1621 N-14 Ave. Hollywood,33020 Hollywood IW-2 Packer#2

Sample I.D.: IW-2 Packer#2 1510' 1528' 01/04/03 Collected: 04:00 **Received:** 01/04/03 12:00 Collected by: Dixon M.

PARAMETER	RESULT	UNITS	METHOD	DETECTION LIMIT-RQL	DATE EXT.	DATE ANALY.	ANALYST
Specific Conductance {grab}	43700	umhos	120.1	1.0	01/04/2003	01/04/2003	PR
Residue, Total Filterable (TDS)	29948	mg/L	SM2540C (160.1)	1.0	01/04/2003	01/05/2003	RZ
Chloride	22340	mg/L	300.0	1.0	01/04/2003	01/04/2003	RDB
Nitrate (as N)	BDL	mg/L	300.0	0.05	01/04/2003	01/04/2003	RDB
Nitrite (as N)	BDL	mg/L	300.0	0.05	01/04/2003	01/04/2003	RDB
Sulfate	1871	mg/L	300.0	1.0	01/04/2003	01/04/2003	RDB
Nitrogen (Ammonia) as N	0.106	mg/L	350.1	0.04	01/06/2003	01/06/2003	DSR
Nitrogen (Kjeldahl) as "N"	0.900	mg/L	351.2	0.1	01/07/2003	01/07/2003	DSR
Nitrogen (Total Organic)	0.794	mg/L	351.2	0.1	01/07/2003	01/07/2003	DSR
Nitrogen, Total as "N"	0.900	mg/L	353+351 CALC.	0.1	01/07/2003	01/07/2003	DSR/RD

BDL: Indicates Analyte is Below Detection LimitMEDF: Matrix Effect Dilution Factor*** ***Work Subcontracted to Outside Labs Denoted by HRS Cert ID in Analyst Field***

Qualifier following result conforms to FAC 62-160 Table 7***Unless otherwise noted, mg/Kg denotes wet weight*** ***62-770: If the MDL using the most sensitive and currently available technology is higher than a specific criterion,

> 10200 USA Today Way • Miramar, FL 33025 • Tel: 954 431 4550 • 800 LAB 8550 • Fax: 954 431 1959 • www.stl-inc.com STL Miami is a part of Severn Trent Laboratories, Inc.

the PQL shall be used. Ce

- ----

SC. =#96023, TN. =#TN02826, P.R. =FL-00535

**These test results meet all the requirements of NELAC.All questions regarding this test report should be directed to the STL representative who signed this report or the QC department.

masia E. Castelluro Laboratory Manager

=

100 100 10 10 AV	nssion Code: 3) s	A CARLES AND A C			C	HAI	N OF	SEVERN TRENT L CUSTODY RECORD (DEP 6	52-770.90	0 – modi	fied for	m)	Page	e;	of
1792 X 244	ed to lims:		(954)	431-	4550	• N	AT'L W/	10200 USA TODAY WAY, ATS (800) LAB-8550 • FAX	MIKAN (954) 4	AR, FLORIDA 131-1959 • S	AMPLE CUS	TODY FAX	(954) 432-88	375	pling CompQ/	
			Original	- Retu	irn w/	Repo	rt	Yellow	- Lab C	ору			ink – Sampler C	ору	roval Date:	
Repo Bill T	nt To: John 1 o: VRI	hargey							-	ort To Address	・フィ	largey	1@ Haze	n + s	owyer.	Com
Proje	ct Number/Name:	Hollywo	od I	w	-2		Park	er #2 1510'0		ing Address:	• • • • • • • • • • • • • • • • • • •	Sit	a location:	1. 16.		
Proje	ct Contact: Joh	· .						954-920-297		1:954 9	20 71					WWTPIW IV wasch
		neron	webs					941 560 4510	FA)					330		"y ward
Samp	led By (print): Djj	YON N	<u>700 I Clla</u>	~					Sar	npler's Signatu	re:				•	
I DATE TIME E SAMPLE ID COLLECTED COLLECT				pH P N D	MATR DW SW GW SED S	JOB DESCRIPTION (optional if needed when samples are from	# C O N T	(√) CHEC	ANALYSIS REQUIRED PLACE NAME OR METHOD NUMBER OF TESTS NEEDED IN LARGE BOXES BELOW ECK OFF WHICH SAMPLE ITEMS NEED EACH TEST PERFORMED				RFORMED	Sample Condition as Received Temp C. Sealed Yes No.		
	IW-2			FLD	F L D	F L D	S EFF HW BIO SA	different site location)	A I N E R S	Ammonia CHIOTATE	ЛI+rezcn		Sullate	TKN	TOS	Lot number of Sampling Containers Used
1	Packer #2								8							689.
2	1510' 1528'	1-4-03	HAM				6.1			╢						• • • • • • • • • • • • • • • • • • •
4						-		RusH #								
5				1,				PJ 167	-							+
6										1						<u>+</u>
7					ļ			2 Day Turnary	inel							
8					 				_	<u> </u>						
9 10					+	-		01/07/03					_			
┟Ŀ	ial Comments: P(2#2	18()2	5	L	I	I	Total # of Containers:	-	OA/OC Re	port Needed?	 ,	Yes No	(500 -		r applicable fees)
	f					····			77	Report For		Standard		r (specify)	nice guide for	applicable rees)
	elinquished by Signation	ure:		Date	е: 4-	<u>~</u> 2		(2) Keinquished by Signature	- AN	R.	Date:	1	DUE DATE REQU			
Com		ona		Tim		~		Company:	2		1.4.0 Time:		Conting Code:			<u></u>
(1) R	ceiver by Signature:	a Cings	and	Date	e: [_[_	j. L	53	(2) Received by Signature:		<u> </u>	Date:		Mist: Charges			
Comp	any:	Sty		Tìm	•: //		:	Company:			Time:		SHADED	AREASARE	OR LAB BSC	

B 1 8 81

a /

.....

a

•

1 I.

CTI 0040 /2 011

Injection Well No. 2 (IW-2) – Packer Tests 1,760 – 1,778

	M.E		ED
(management)		<u>11</u> -14-74-8	

Fax message

To: John	
----------	--

Company: VOUNGOULST
Fax: 1-954-920-7117
Email: Maracel @ hazen
Email: <u>jargey @ hazen</u> andsawyer.con

Customer	Service	Ext: 105
kkwilliams	@stl-inc.	com
Date:	1010)3
Pages:	2	Plus cover

From: Kathy Williams

Subject: <u>Sub # 311-255</u> Rush # P1003

This message contains information intended only for the use of the person named above. It may also be confidential and/or privileged. If you are not the intended recipient of this message you are hereby notified that you must not disseminate, copy or take any action in reliance on it. If you have received this message in error please contact STL Miami at 954-431-4550. The views expressed in this fax are not necessarily those of the company STL.

Severn Trent Laboratories Inc. STL Miami • 10200 USA Today Way, Miramar, FL 33025 Tel: 954-431-4550 Fax: 954-431-1959 • www.stl-inc.com

10200 USA Today Way • Miramar, FL 33025 • Tel: 954 431 4550 • 800 LAB 8550 • Fax: 954 431 1959 • www.stl-inc.com STL Miami is a part of Severn Trent Laboratories, Inc.

YOUNGQ002775 John Largey **Youngquist Brothers** 15465 Pine Ridge Road Ft. Myers, FL 33908

Site Location/Project Hollywood WWTP IW2, 1621-N 14 Ave. Hollywood WWTP IW2 Packer #3

STL Miami

Page 1 January 10, 2003 Submission # 301000252 Order # 1216 FDEP CompQAP# 990102 FL-DOH Certification# E86349,E86616

Sample I.D.: Packer #3 IW2 (1760-1778) 13:30 Collected: 01/07/03 **Received:** 01/07/03 17:00 Collected by: C.W.

PARAMETER RESULT UNITS METHOD DETECTION DATE DATE ANALYST LIMIT-ROL EXT. ANALY. Specific Conductance {grab} 49500 umhos 120.1 01/08/2003 01/08/2003 1.0 RDB Residue, Total Filterable (TDS) 37460 SM2540C (160.1) mg/L 1.0 01/08/2003 01/09/2003 YD 21170 Chloride mg/L 300.0 1.0 01/08/2003 01/08/2003 SMF BDL Nitrate (as N) mg/L 300.0 0.05 01/08/2003 01/08/2003 SMF Nitrite (as N) BDL mg/L 300.0 0.05 01/08/2003 01/08/2003 SMF Sulfate 2460 300.0 01/08/2003 01/08/2003 mg/L 1.0 SMF Nitrogen (Ammonia) as N BDL mg/L 350.1 0.04 01/10/2003 01/10/2003 DSR 0.223 Nitrogen (Kjeldahl) as "N" mg/L 351.2 01/08/2003 01/08/2003 0.1 DSR 0.223 351.2 01/10/2003 Nitrogen (Total Organic) mg/L 0.1 01/10/2003 DSR 0.223 Nitrogen, Total as "N" mg/L 353+351 CALC. 0.1 01/10/2003 01/10/2003 DSR

BDL: Indicates Analyte is Below Detection LimitMEDF: Matrix Effect Dilution Factor***

Work Subcontracted to Outside Labs Denoted by HRS Cert ID in Analyst Field

Qualifier following result conforms to FAC 62-160 Table 7**Unless otherwise noted, mg/Kg denotes wet weight*** ***62-770: If the MDL using the most sensitive and currently available technology is higher than a specific criterion,

the PQL shall be used.

Certs:CT. =#PH0217, LA. =#9601, MD. =#271, MA. =#M-FL535 SC. =#96023, TN. =#TN02826, P.R. =FL-00535

**These test results meet all the requirements of NELAC.All questions regarding this test report should be directed to the STL representative who signed this report or the QC department.

maria E. Castellaro Laboratory Manager

Subr	nission Code: <u>3/0</u>	1 = 2 4	22		C	HAII	SI N OF CI	EVERN TRENT LA	BOI EP 6	RATORIE 2-770.90	S , I NC. 0 – modi	fied fo	rm)	FDEP Facility No. Page:	
	n: <u>17.16</u>		(954)	431.4	1550	• N/	AT'I WAT	10200 USA TODAY WAY, N 5 (800) LAB-8550 • FAX (9	IRAM	AR, FLORIDA	33025		X (05 4) 400 0075	Sampling CompQ	
Ente	ed to lims;	=4												Approval Date:	
Repo	rt To: Jah		Original -	· Ketu	rn w/l	Repor	1	Yellow			~ 1		Pink – Sampler Copy		
Bill T		<u> </u>	rgey							ort To Address	<u> </u>	argey	C. Hazen	and <u>Sourger</u>	, lan
		ollywoo	1 1.1	NTF	<u> </u>	1.	12	Pluster in 1		ng Address:				// /	
			<u>a coc</u> (084			_/4	Phone: 9	120/00-14.3 1760-1 54-920-2972	<u>//8</u>	954-920	0 741-	S		lywood wu	TP IWZ
Alter		ameron	Jol C	br			Phone:		FAX		9-111		1621-N	14 Ave.	
Sam	pled By (print):	CW		<u>v</u>			Thomas R	27 CS1 360 780		pler's Signatu					33020
					Т		MATRIX	SAMPLE LOCATION	3an #	ipier s orgnatu		ANALY	SIS REQUIRED		Sample Condition
					E M	C O	DW	JOB DESCRIPTION	с				R METHOD NUMBER	05	as Received
T T		DATE	TIME	pH	P	N D	SW GW	(optional if needed	0 N		TESTS	NEEDED I	N LARGE BOXES BEI	OW	Temp 4 C
EM	SAMPLE ID	COLLECTED			°C	_	SED	when samples are from	T			\sim -	ITEMS NEED EACH	TEST PERFORMED	Sealed Yes(No)
							S EFF	different site location)	A(Annonia	NATiogen	N,+Ich	2 Conductivity).	;	Lot number of
	Packer# 3			FL	FL	F	HW BIO		N E					The second	Sampling Containers
	1W2 1760-1118	1-7-03	1304	D	D	D	SA		R	Chloride	Total Nitrogen	NE	ek Irte	KN/(1DS)	Used
1							GW		8	T		Ø	EL HERE	MA	1710
2									_0_						1-6-10
3															
4								Kush		ļ					
5 6			······.					07.007							
7								PJ 003							
8								DUC: 01/10/03							
9															+
10															
Spec	ial Comments:			·			1 <u></u>	Total # of Containers:	Я	QA/QC Re	port Needed?	L	Yes No	(See price guide for	r applicable fees)
	<u> </u>		\sim	_						Report Fo	rmat:	Standard	Other (s		
(1) R	elinquished by Signatu VAM	ibh	.	Date	: 7-0	マ	(2)	Relinguished by Signature:	1	· •2 - 1	Date:	- 3	DUE DATE REQUES	TED	· · · · · · · · · · · · · · · · · · ·
Com	110	1		/ Time			Cor	npany: STI	Æ	and	Time:	<u> </u>	Coating Code:		0/L/-0
(1) R	when by Signature:	, lor	any	Date	- 7-	- 0	3 (2)	Received by Signature:	E•r	7	Date: //	7/03.	Mise Charges		
Com	:any: 5	TL		Time	"/J	-5	C Con	npany: STC	2		Time: 17	2:00	SHADED ARE	AS ARE FOR LAB USE	DNY

• _

1

OTI COLO IN OLI

a transformation and the statement of th

Injection Well No. 2 (IW-2) – Packer Tests 1,810 – 1,828

To:

Fax message

RUSH

E-MAILED

From: Zuzan Franco

Customer Service Ext: 111

1 zfranco@stl-inc.com Company: Fax: Date: Pages: Email Subject:

This message contains information intended only for the use of the person named above. It may also be confidential and/or privileged. If you are not the intended recipient of this message you are hereby notified that you must not disseminate, copy or take any action in reliance on it. If you have received this message in error please contact STL Miami at 954-431-4550. The views expressed in this fax are not necessarily those of the company STL.

Severn Trent Laboratories Inc. STL Miami • 10200 USA Today Way, Miramar, FL 33025 Tel: 954-431-4550 Fax: 954-431-1959 • www.stl-inc.com

SEVERN TRENT SERVICES

STL Miami

Page 1 January 13, 2003 Submission # 301000322 Order # 1492 FDEP CompQAP# 990102 FL-DOH Certification# E86349,E86616

Sample I.D.: Packer #4 1810-1828 01/08/03 10:00 01/08/03 16:00 Collected by: C.W.

PARAMETER	RESULT	UNITS	METHOD	DETECTION LIMIT-RQL	DATE EXT.	DATE ANALY.	ANALYST	
Specific Conductance {grab}	51000	umhos	120.1	1.0	01/09/2003	01/09/2003	RDB	
Residue, Total Filterable (TDS)	38640	mg/L	SM2540C (160.1)	1.0	01/10/2003	01/13/2003	YD	
Chloride	23700	mg/L	300.0	1.0	01/09/2003	01/09/2003	SMF	
Nitrate (as N)	BDL	mg/L	300.0	0.05	01/09/2003	01/09/2003	SMF	
Nitrite (as N)	BDL	mg/L	300.0	0.05	01/09/2003	01/09/2003	SMF	
Sulfate	2800	mg/L	300.0	1.0	01/09/2003	01/09/2003	SMF	
Nitrogen (Ammonia) as N	BDL	mg/L	350.1	0.04	01/10/2003	01/10/2003	DSR	
Nitrogen (Kjeldahl) as "N"	0.462	mg/L	351.2	0.1	01/09/2003	01/09/2003	DSR	
Nitrogen (Total Organic)	0.462	mg/L	351.2	0.1	01/10/2003	01/10/2003	DSR	
Nitrogen, Total as "N"	0.46	mg/L	353+351 CALC.	0.1	01/09/2003	01/09/2003	SMF/DS	

BDL: Indicates Analyte is Below Detection LimitMEDF: Matrix Effect Dilution Factor*** ***Work Subcontracted to Outside Labs Denoted by HRS Cert ID in Analyst Field*** ***Qualifier following result conforms to FAC 62-160 Table 7******Unless otherwise noted, mg/Kg denotes wet weight***

***62-770: If the MDL using the most sensitive and currently available technology is higher than a specific criterion, the PQL shall be used.

Certs:CT. =#PH0217, LA. =#9601, MD. =#271, MA. =#M-FL535 SC. =#96023, TN. =#TN02826, P.R. =FL-00535

YOUNGQ002775

15465 Pine Ridge Road Ft. Myers, FL 33908

Site Location/Project

1621 N-14 Ave., Hollywood

Hollywood WWTP IW2 Packer #4

John Largey Youngquist Brothers

> **These test results meet all the requirements of NELAC.All questions regarding this test report should be directed to the STL representative who signed this report or the QC department.

Project Manager

Collected: **Received:**

Order Enter Repon Bill Tu Proje Proje	ct Number/Name: /	D Lorgi bilywood thn La	Original - 27 WWTP -7924	Retur	1550 rn w/l	• N/	N OF CU AT'L WATS rt Pauker Phone: 9	54-920-2972	EP 6 MIRAM 054) 4 Lab Co Rep Billi	2-770.90 AR, FLORIE 31-1959 • opy ort To Addre ng Address: : 954-9	DO — modi DA 33025 SAMPLE CUS	TODY FAX	(954) 432-8 nk – Sampler (<i>Hazer</i> Location: /	Pag 875 875 Copy <i>Copy</i> <i>Copy</i>	npling CompQA roval Date: ve	of P No.) Verr - Corn D 1602
		aneron - C. W	Webs	<u>te/</u>			Phone: 2	39-560-4510	FAX	:		H	<u>Hywood</u>	- F-L	- 3	3020
Samp I T E M	$\begin{array}{c c c c c c c c c c c c c c c c c c c $							SAMPLE LOCATION JOB DESCRIPTION (optional if needed when samples are from different site location)	San # C O N T A I E R S	(1) CH Ammonia (Ubside	PLACE TESTS ECK OFF WHIC	NAME OR IN NEEDED IN H SAMPLE I	REQUIRED METHOD NUM LARGE BOXES TEMS NEED E	BELOW	ERFORMED	Simple Condition as Reserved lemp Shaled Yes No Lot number of Sampling Containers Used
1		1-8-03	10 am				GW		8		1 V	-7				
2								2								
3								hush	ļ	 				<u> </u>		
4							-	# 25-		·						
6								• •								
7		+		<u> </u>		<u> </u>		003				<u> </u>				
8				1												
9																· · · · ·
10					<u> </u>											
Spec	ial Comments: $\mathcal{P}($	FA	202	\mathcal{O})			Total # of Containers:	18		Report Needed		res No		price guide for	applicable fees)
(1) R	elinquished by Signa	ture:	I	Date			(2)	Refinquished by Signature:	/	Report	Format: Date:	Standard	Oth	er (specify)		
`-'"	been We	/			S	C	3 1		A T	and		\sim	Confirmation #	· · · · ·	50	
Com	ilai			Tim				npany: STA			Time:	· for	oating Code:	a la la colo		÷ 0/E/D.
(1) R	ectived by Signature	1 April	ay	Date	e: 9	-0	3 (2)	Received by Signature:	_	\searrow	Dates	03	Aisa chiargas			
Com	bany: 27	V	0	Time	e: /_	51	7 Cor	npany:	57	2	Time		SRADEO	AREAS AND	FOR LAB USE	

II I BI II

Injection Well No. 2 (IW-2) – Packer Tests 2,093 – 2,111

Company: VOUNGOUIST kkwilliams@stl-inc.com $1-9.54-920-7117$ kkwilliams@stl-inc.com Fax: $1-9.41-489-4545$ Date: $2/26/03$	an an an ann an ann an an an	
Customer Service Ext: 1 Company: NOUNGOUIST kkwilliams@stl-inc.com 1-934-920-7117 Fax: J-941-489-4545 Date: 2/26/03 Email: jlargey @ hazen Pages: Z Plus of and Sawyer.com Subject: Sub # 312-1125 Rush # BH295 New reading confirmed. What was originally reported.	From: Kathy Williams	5
Fax: <u>1-941-489-455</u> Date: <u>2/06/05</u> Email: <u>jlargey @ hazen Pages</u> : <u>2</u> Plus of and sawyer.com Subject: <u>Sub # 312-1125</u> <u>Rush # BH295</u> <u>New reading confirmed.</u> <u>What was originally reported</u>		Ext: 10
Fax: 1-941-489-455 Date: 2/06/02 Email: jlargey@hazen Pages: 2 Plus o and Sawyer.com Subject: Sub # 312-1125 Rush # BH295 New reading confirmed. What was originally reported.	kkwilliams@stl-inc.co	om
Subject: Sub # 312-1125 Rush # BH295 New reading confirmed. What was originally reported.	Date:26/0	3
Subject: Sub# 312-1125 Rush # BH295 New reading confirmed. What was originally reported.	ch Pages: <u>Z</u>	Plus c
New reading confirmed.		
what was originally reported.	295	
	ally reported.	S.S.
		Customer Service kkwilliams@stl-inc.co Date: <u>2/26/0</u> Ch Pages: <u>2</u> Com -1125 295 295 200 200 200 200 200 200 200 20

This message contains information intended only for the use of the person named above. It may also be confidential and/or privileged. If you are not the intended recipient of this message you are hereby notified that you must not disseminate, copy or take any action in reliance on it. If you have received this message in error please contact STL Miami at 954-431-4550. The views expressed in this fax are not necessarily those of the company STL.

Severn Trent Laboratories Inc. STL Miami • 10200 USA Today Way, Miramar, FL 33025 Tel: 954-431-4550 Fax: 954-431-1959 • www.stl-inc.com

YOUNGQ002775 John Largey Youngquist Brothers 15465 Pine Ridge Road Ft. Myers, FL 33908

Site Location/Project Hollywood WWTP IW2,1621 N-14 AVE,Hollywood,FL33020 Hwd.WWTP IW2 Pkr # 5 2093-2111

Page 1 February 26, 2003 Submission # 302001125 Order # 15572 FDEP CompQAP# 990102 FL-DOH Certification# E86349,E86616

Sample I.D.: IW2 Pkr # 5 2093-2111 02/21/03 Collected: 05:00 **Received:** 02/21/03 10:55 Collected by: D. McLellan

PARAMETER	RESULT	UNITS	METHOD	DETECTION LIMIT-RQL	DATE EXT.	DATE ANALY.	ANALYST
Specific Conductance {grab}	50900	umhos	120.1	1.0	02/24/2003	02/24/2003	RDB
Residue, Total Filterable (TDS)	42120	mg/L	SM2540C (160.1)	1.0	02/25/2003	02/25/2003	SN/YD
Chloride	21280	mg/L	300.0	1.0	02/22/2003	02/22/2003	SMF/RZ
Nitrate (as N)	1.70	mg/L	300.0	0.05	02/22/2003	02/22/2003	SMF
Nitrite (as N)	BDL	mg/L	300.0	0.05	02/22/2003	02/22/2003	SMF
Sulfate	2680	mg/L	300.0	1.0	02/22/2003	02/22/2003	SMF/RZ
Nitrogen (Ammonia) as N	BDL	mg/L	350.1	0.04	02/22/2003	02/22/2003	DSR
Nitrogen (Kjeldahl) as "N"	0.159	mg/L	351.2	0.1	02/22/2003	02/22/2003	DSR
Nitrogen (Total Organic)	0.159	mg/L	351.2	0.1	02/22/2003	02/22/2003	DSR
Nitrogen, Total as "N"	1.86	mg/L	353+351 CALC.	0.1	02/24/2003	02/24/2003	DSR/MF

BDL: Indicates Analyte is Below Detection LimitMEDF: Matrix Effect Dilution Factor***

Work Subcontracted to Outside Labs Denoted by HRS Cert ID in Analyst Field

Qualifier following result conforms to FAC 62-160 Table 7**Unless otherwise noted, mg/Kg denotes wet weight*** ***62-770: If the MDL using the most sensitive and currently available technology is higher than a specific criterion,

the POL shall be used.

Certs:CT. = #PH0217, LA. = #9601, MD. = #271, MA. = #M-FL535

SC.=#96023, TN.=#TN02826, P.R.=FL-00535 **These test results meet all the requirements of NELAC.All questions regarding this test report should be directed to the STL representative who signed this report or the QC department.

Maria E. Castellard Laboratory Manager

2 State in	ssion Code:	-125			CI	HAII	S N OF (SEVERN TRENT LA	ABO EP 6	RATORIE 2-770.90	S, INC. 0 – modi	fied for	rm)			of
Contraction of the second of the second of the second second second second second second second second second s	s <mark>:</mark> K	A make I have by Come of A second state of the	(954)	431-4	4550	• N/	AT'L WA	10200 USA TODAY WAY, M TS (800) LAB-8550 • FAX (9	/IRAN 954) 4	IAR, FLORIDA 31-1959 • S	A 33025 AMPLE CUS	TODY FA	X (954) 432-867	Sam	pling CompQA	P No.)
Enter	ed to Ilms: 🔤		Original					Yellow -					Pink – Sampler Cop	Appr	oval Date:	
Repor		Largey							T		"J. La		Hazen and			m
Bill To	<u> </u>	<u> </u>							Bill	ing Address:		<u> </u>		Janaye		
1	t Number/Name: /	1	WWT	ρ	16	2	Pa	cker \$ 5 2093-					ite Location: Hc//	wood	WWTH	2 1WZ
	77-	n' Large					Phone:	954-920-2972	FA)	<u>:954-92</u>	20-7117	7 (021 N-14	Ave		
			Jebster				Phone:	239-560-4510	FAJ	(:			Hollywood	F	FL 3	53020
Samp	led By (print):	Dixon 1	<u>Mclellas</u>	<u>1.</u>	-			<u>.</u>		npler's Signatu	ire:		•		*	\sim
I T E M	SAMPLE ID	DATE COLLECTED	TIME COLLECTED	рH 	Т Е М Р °С	C O N D	MATRI DW SW GW SED S	X SAMPLE LOCATION JOB DESCRIPTION (optional if needed when samples are from different site location)	# C O N T A		TESTS CK OFF WHIC	NAME OF NEEDED I H SAMPLE	SIS REQUIRED R METHOD NUMBER N LARGE BOXES BE ITEMS NEED EACT	LOW	RFORMED	Sample Condition as Received Temp 3
	Packer 5 1WZ 2093-2111	0.2		F L D	F L D	F L D	EFF HW BIO SA		I N E R S	Chloride	Nitrogen	Niteit	e Conductivity e Subbate	TKN	TDS	Lot number of Sampling Containers Used
1 2		2-21-63	Som				Gu		6	0	0	C	r (r r)	\odot	~	
3								Rush#	 							
4				+-				BH-295								
5				1				Jact 7					_			
6										<u> </u>				· · · · · · · · · · · · · · · · · · ·		
7														<u>_</u>		
8				 							·					
9				<u> </u>												
10 Specia	al Comments:								 ,			L				
		·		. <u></u>				Total # of Containers:	Ģ	11	port Needed?		Yes No		rice guide for	applicable fees)
(1) Re	nguished by Signatu			Date 2 -		- 0 -	3 (2	2) Relinquished by Signature:		Report Fo	rmat: Date:	Standard	Other (DUE DATE REQUES Confirmation #	specify) STED		
Comp	any: YBI			Time		_/		ompany:			Time:		Coating Code:			0 //L/D
(1) Re	cerved by Signature:	Th	• •	Z	121	10	K (2	2) Received by Signature:			Date:		Misc: Charges			
Compa	any: STC	· VUK	um	Time	* /8	ý.'S	500	omeany: Mi			Time:		SHADED AR	EAS ARE I	OR LAB USE (

-

Injection Well No. 2 (IW-2) – Packer Tests 2,265 – 2,283

.

NG STL		
Fax message	age and a first set of the set of	
To: John	From: Kathy Williams	
	Customer Service	Ext: 105
Company: YOUNGQUIST \$954-920-7117	kkwilliams@stl-inc.co	m N つ
Fax: 1-9141-484-4545	Date: $2 27 $	5
Email: <u>lavger</u> hazenand Sawyer. Com	Pages: <u> </u>	_ Plus cover
Subject: <u>SUD # 312</u> .	-1245	
Kush # PU:	333	
	?	·····
		S
	• •	
		<u>,</u>
		<u></u>

This message contains information intended only for the use of the person named above. It may also be confidential and/or privileged. If you are not the intended recipient of this message you are hereby notified that you must not disseminate, copy or take any action in reliance on it. If you have received this message in error please contact STL Miami at 954-431-4550. The views expressed in this fax are not necessarily those of the company STL.

Severn Trent Laboratories Inc. STL Miami • 10200 USA Today Way, Miramar, FL 33025 Tel: 954-431-4550 Fax: 954-431-1959 • www.stl-inc.com

S

YOUNGQ002775 John Largev Youngquist Brothers 15465 Pine Ridge Road Ft. Myers, FL 33908

Site Location/Project Hollywood WWTP IW2,1621 N-14 AVE, Hollywood, FL33020 Hollywood WWTP IW2 Packer #6

Page 1 February 27, 2003 Submission # 302001245 Order # 16309 FDEP CompQAP# 990102 FL-DOH Certification# E86349,E86616

Sample I.D.: Packer 6 IW2 2265-2283 Collected: 02/24/03 12:00 **Received:** 02/24/03 15:31 Collected by: J. Jean

PARAMETER	RESULT	UNITS	METHOD	DETECTION LIMIT-RQL	DATE EXT.	DATE ANALY.	ANALYST
Specific Conductance {grab}	48800	umbos	120.1	1.0	02/25/2003	02/25/2003	SMF
Residue, Total Filterable (TDS)	43320	mg/L	SM2540C (160.1)	1.0	02/25/2003	02/26/2003	YD
Chloride	20300	mg/L	300.0	1.0	02/25/2003	02/25/2003	SMF
Nitrate (as N)	1.60	mg/L	300.0	0.05	02/25/2003	02/25/2003	SMF
Nitrite (as N)	BDL	mg/L	300.0	0.05	02/25/2003	02/25/2003	SMF
Sulfate	2680	mg/L	300.0	1.0	02/25/2003	02/25/2003	SMF
Nitrogen (Ammonia) as N	BDL	mg/L	350.1	0.04	02/27/2003	02/27/2003	DSR
Nitrogen (Kjeldahl) as "N"	0.217	mg/L	351.2	0.1	02/26/2003	02/26/2003	DSR
Nitrogen (Total Organic)	0.217	mg/L	351.2	0.1	02/27/2003	02/27/2003	DSR
Nitrogen, Total as "N"	1.82	mg/L	353+351 CALC.	0.1	02/26/2003	02/26/2003	SMF/DS

BDL: Indicates Analyte is Below Detection LimitMEDF: Matrix Effect Dilution Factor*** ***Work Subcontracted to Outside Labs Denoted by HRS Cert ID in Analyst Field***

Oualifier following result conforms to FAC 62-160 Table 7***Unless otherwise noted, mg/Kg denotes wet weight*** ***62-770: If the MDL using the most sensitive and currently available technology is higher than a specific criterion,

the POL shall be used.

Certs:CT.=#PH0217, LA.=#9601, MD.=#271, MA.=#M-FL535

SC.=#96023, TN.=#TN02826, P.R.=FL-00535 **These test results meet all the requirements of NELAC.All questions regarding this test report should be directed to the STL representative who signed this report or the QC department.

Maria E. Castellaros Laboratory Manager

	/ ission Code: 22	-1244			Cł	IAI	S N OF C	EVERN TRENT LA	ABOR EP 6	RATORIES 2-770.900	, INC. – modif	ied for	m)	FDEP F		.of
Orde	ale fritte state state Ale state state state state state		(954) 4	431-4	550	• NA	T'L WAT	10200 USA TODAY WAY, N S (800) LAB-8550 • FAX (9				FODY FAX	(954) 432-867	75	Sampling CompQAP No.)	
Enter	ed to lims:		Original –	Retur	'n w/R	lepor	t	Yellow -	Lab Co	ру		P	ink – Sampler Co		al Date:	
Repo		La	rgey						Rep	ort To Address:	J.L	argey	e Hazen o	nd Sa	wyer	. Com
Bill T									1	ng Address:				•1	·	
		tollywoo	d W	ωT	<u>ب</u>	י ד —	<u>1w2</u>	tacker # 6	T	65-22				lywood		JTP IWZ
	et Contact: Jo		rgey -	-			Phone: C			954-920	5-7117	1	<u>~21 -N</u>	- 14 Av.		77417
	nate Contact:	<u>Ameron</u> Jean	-	St	ح		Phone:	239-560-4510	FAX			l	Hollyw		FL	33020
Jain	neo by (print):	Jenn	Jean		T E M	C O	MATRIX	SAMPLE LOCATION JOB DESCRIPTION	Sam # C	pler's Signatur			IS REQUIRED			Sample Condition
I T E	SAMPLE ID	DATE COLLECTED	TIME COLLECTED	рH	P °C	N D	SW GW SED	(optional if needed when samples are from	O N T	(√) CHEC	TESTS I	NEEDED II	I LARGE BOXES E	BELOW	FORMED	Temp 3 4 C Sealed Yes (No
м	Packer 6			 F L D	F L D	 F L D	S EFF HW BIO SA	different site location)	A I N E R S	i u i i i i i i i i i i i i i i i i i i	Nitrogen	Niteda Niteda	e Conductivity ie Sulphate	TKN	TDS	Lot number of Sampling Containers Used
1		2-24-03	12 noon				GW	0 tot	6	15			5 (3)	\bigcirc	$\overline{(v)}$	
2								Kush.							\leq	
3				<u> </u>									-			
4				<u> </u>				PS 333	+							
6								diala								
7								Ar 103								
8				<u> </u>			ļ									
9					ļ		 									
10 Spec	ial Comments:	1	I	.1	L	I	1	Total # of Containers:	6	OA/OC Per	ort Needed?	ļ	Yes No	(See pri	ce guide for	applicable fees)
									Ψ	Report For		Standard		(specify)		
(1) F	telinquished by Signat			Date	e:		(2	2) Relinquished by Signature:			Date:		DUE DATE REQU Confirmation #			
Com	^{pany:} YB	Ι.		Tim	e:		c c	ompany:			Time:		Coating Code:			0//L/ D
(1) F	Received by Signature:			Date		14	105	Received by Signature:	(N)	, ,	Date 24	03	Misc. Charges			
Com	pany:	11		Tim	•3	:3	1/2	oluptary:	YI	u	Time	ฦ	SHADED	REAS ARE F	a be his bit bits to figs it	ONEY

STI .8242 (0800)

• • • • • • • • •

Injection Well No. 2 (IW-2) – Packer Tests 2,300 – 2,318

RN STL		
Fax message		rusł
To: JONN	From: Kathy William Customer Service	Ext: 105
Company: YOUNGDUIST 954-920-7117 Fax: 1-941-489-4545	kkwilliams@stl-inc.c	
Email: <u>Ilargey @hazer</u> and Sawyer.) Pages: <u>2</u> COM	Plus cov
Subject: Sub # 32- Bush # P	1293	
	<u></u>	

This message contains information intended only for the use of the person named above. It may also be confidential and/or privileged. If you are not the intended recipient of this message you are hereby notified that you must not disseminate, copy or take any action in reliance on it. If you have received this message in error please contact STL Miami at 954-431-4550. The views expressed in this fax are not necessarily those of the company STL.

Severn Trent Laboratories Inc. STL Miami • 10200 USA Today Way, Miramar, FL 33025 Tel: 954-431-4550 Fax: 954-431-1959 • www.stl-inc.com

YOUNG0002775 John Largey Youngquist Brothers 15465 Pine Ridge Road Ft. Myers, FL 33908

Site Location/Project Hollywood WWTP IW2 1621 N-14 AVE Hollywood FL33020 Hollwood WWTP IW2 Packer#7

Page 1 February 28, 2003 Submission # 302001293 Order # 16719 FDEP CompQAP# 990102 FL-DOH Certification# E86349,E86616

Sample I.D.: IW2 Packer#7 2300-2318 02/25/03 12:00 Collected: Received: 02/25/03 18:00 Collected by: C.Harp

PARAMETER	RESULT	UNITS	METHOD	DETECTION LIMIT-RQL	DATE EXT.	DATE ANALY.	ANALYST
Specific Conductance {grab}	50800	umhos	120.1	1.0	02/27/2003	02/27/2003	SN
Residue, Total Filterable (TDS)	41520	mg/L	SM2540C (160.1)	1.0	02/26/2003	02/27/2003	YD
Chloride	20180	mg/L	300.0	1.0	02/26/2003	02/26/2003	SMF
Nitrate (as N)	BDL	mg/L	300.0	0.5	02/26/2003	02/26/2003	SMF
Nitrite (as N)	BDL	mg/L	300.0	0.5	02/26/2003	02/26/2003	SMF
Sulfate	2600	mg/L	300.0	1.0	02/26/2003	02/26/2003	SMF
Nitrogen (Ammonia) as N	BDL	mg/L	350.1	0.04	02/27/2003	02/27/2003	DSR
Nitrogen (Kjeldahl) as "N"	0.174	mg/L	351.2	0.1	02/26/2003	02/26/2003	DSR
Nitrogen (Total Organic)	0.174	mg/L	351.2	0.1	02/27/2003	02/27/2003	DSR
Nitrogen, Total as "N"	0.174	mg/L	353+351 CALC.	0.1	02/26/2003	02/26/2003	SMF/DS
		· · · · · · · · · · · · · · · · · · ·					

BDL: Indicates Analyte is Below Detection LimitMEDF: Matrix Effect Dilution Factor***

Work Subcontracted to Outside Labs Denoted by HRS Cert ID in Analyst Field ***Qualifier following result conforms to FAC 62-160 Table 7*****Unless otherwise noted, mg/Kg denotes wet weight*** ***62-770: If the MDL using the most sensitive and currently available technology is higher than a specific criterion,

the POL shall be used. Cer

SC. =#96023, TN. =#TN02826, P.R. =FL-00535

**These test results meet all the requirements of NELAC.All questions regarding this test report should be directed to the STL representative who signed this report or the QC department.

Maria E. Castellard Laboratory Manager

1

1

Submission Code: 22-1293	CHAIN OF	SEVERN TRENT LA CUSTODY RECORD (D	BORATORIES, INC. EP 62-770.900 – modified form)	FDEP Facility No
Orders: UU772 Entered to lims: (95	4) 431-4550 • NAT'L W/	10200 USA TODAY WAY, N ATS (800) LAB-8550 • FAX (9	11RAMAR, FLORIDA 33025 54) 431-1959 • SAMPLE CUSTODY FAX (954) 43	Sampling CompQAP No.)
	al – Return w/Report	Yellow -	Lab Copy Pink – Samp	
Report To: John Larger		,	Report To Address: J. Largey & Haz	en and Sandyer. Com
Bill To: YB1		·	Billing Address:	
Project Number/Name: Hollywood Wu	STP IWZ Y	acker # 7 2300	- 2318 Site Location	Hollywood WITP IWZ
Project Contact: John Largey	Phone	954-920-2972	FAX: 954-920-7117 1621	N-14 Ave
Alternate Contact: Campson W	ebster Phone	239-560-4510	FAX: Hollyw	ovel FL 33020
Sampled By (print):	arp		Sampler's Signature:	
I T DATE TIME E SAMPLE ID COLLECTED COLLECT	ED C SEC	JOB DESCRIPTION (optional if needed	# ANALYSIS REQUIR C PLACE NAME OR METHOD I O TESTS NEEDED IN LARGE BO N (*) CHECK OFF WHICH SAMPLE ITEMS NET	NUMBER OF DXES BELOW
M Packer 7 2300- 1W2 2318	F F F HW L L L BIO D D D SA		A Autonia Draenic Nitrate Contr N E R. Chloride Total S. Chloride Nitragen Nitrite Sulta	TKN TDS Lot number of Sampling Containers Used
1 2-75-03 17 noc	<u>vn</u> 60		6 1 5 1 1	16719
3		- Lich the		
4		husri		
5		PT 333		
6				
7		2/27/03		
8				·
9				
10				
Special Comments:		Total # of Containers:	QA/QC Report Needed? Yes	No (See price guide for applicable fees)
			Report Format: Standard	Other (specify)
(1) Relinquished by Signature:	Date:	(2) Relinquished by Signature	Date: DUE DATE DUE DATE Confirmat	REQUESTED ion #
Company: YB1	Time:	Company: SA	Time: 16:53 Coating C	ode:0//L/D
(1) Regeiner ty Signature: (1)	Date 2.25.03	(2) Received by Signature	Date: 2/75 Misc. Cha	1997
Company:	Time:/6:/-0	Company:		IDED AREAS ARE FOR LAB USE ONLY
				10800 1858. IT?

.

Injection Well No. 2 (IW-2) – Packer Tests 2,410 – 2,428

SEVERN STL		
Fax message		
To: JOHN	From: Kathy Williams	
	Customer Service	Ext: 105
Company: 100160015T	kkwilliams@stl-inc.com Date: ろろゆう	n
Fax: <u>1-941-489-4895</u> Email: <u>1947-489-4895</u> Cand Source M	Pages:	Plus cover
	375 3	

This message contains information intended only for the use of the person named above. It may also be confidential and/or privileged. If you are not the intended recipient of this message you are hereby notified that you must not disseminate, copy or take any action in reliance on it. If you have received this message in error please contact STL Miami at 954-431-4550. The views expressed in this fax are not necessarily those of the company STL.

Severn Trent Laboratories Inc. STL Miami • 10200 USA Today Way, Miramar, FL 33025 Tel: 954-431-4550 Fax: 954-431-1959 • www.stl-inc.com

YOUNGQ002775 John Largey Youngquist Brothers 15465 Pine Ridge Road Ft. Myers, FL 33908

Site Location/Project Hollywood WWTP IW2 1621 N-14Ave Hollywood,FL 33020 WWTP IW2 Packer#8 2410-2428

Page 1 March 3, 2003 Submission # 302001375 Order # 17174 FDEP CompQAP# 990102 FL-DOH Certification# E86349,E86616

Sample I.D.: IW2 Paker#8 2300-2318 02/26/03 Collected: 15:00 **Received:** 02/26/03 18:45 Collected by: C.Harp

PARAMETER	RESULT	UNITS	METHOD	DETECTION LIMIT-RQL	DATE EXT.	DATE ANALY.	ANALYST
Specific Conductance {grab}	50400	umhos	120.1	1.0	02/27/2003	02/27/2003	SN
Residue, Total Filterable (TDS)	19040	mg/L	SM2540C (160.1)	1.0	02/27/2003	02/28/2003	YD
Chloride	21200	mg/L	300.0	1.0	02/27/2003	02/27/2003	SMF
Nitrate (as N)	BDL	mg/L	300.0	0.50	02/27/2003	02/27/2003	SMF
Nitrite (as N)	BDL	mg/L	300.0	0.50	02/27/2003	02/27/2003	SMF
Sulfate	2580	mg/L	300.0	1.0	02/27/2003	02/27/2003	SMF
Nitrogen (Ammonia) as N	BDL	mg/L	350.1	0.04	02/27/2003	02/27/2003	DSR
Nitrogen (Kjeldahl) as "N"	0.202	mg/L	351.2	0.1	02/28/2003	02/28/2003	DSR
Nitrogen (Total Organic)	0.202	mg/L	351.2	0.1	02/28/2003	02/28/2003	DSR
Nitrogen, Total as "N"	0.202	mg/L	353+351 CALC.	0.1	02/28/2003	02/28/2003	DSR

BDL: Indicates Analyte is Below Detection LimitMEDF: Matrix Effect Dilution Factor*** ***Work Subcontracted to Outside Labs Denoted by HRS Cert ID in Analyst Field*** ***Qualifier following result conforms to FAC 62-160 Table 7******Unless otherwise noted, mg/Kg denotes wet weight***

***62-770: If the MDL using the most sensitive and currently available technology is higher than a specific criterion,

the PQL shall be used.

Certs:CT. =#PH0217, LA. =#9601, MD. =#271, MA. =#M-FL535 SC. =#96023, TN. =#TN02826, P.R. =FL-00535

**These test results meet all the requirements of NELAC.All questions regarding this test report should be directed to the STL representative who signed this report or the QC department.

Maria E. Castellard

Subr	nission Code: $\frac{3/2}{2}$		SEVERN TRENT LABORATORIES, INC. CHAIN OF CUSTODY RECORD (DEP 62-770.900 – modified form)									FDEP Facility No Page:of				
Orde	(954)	10200 USA TODAY WAY, MIRAMAR, FLORIDA 33025 (954) 431-4550 • NAT'L WATS (800) LAB-8550 • FAX (954) 431-1959 • SAMPLE CUSTODY FAX (954) 432-8875								Samj	Sampling CompQAP No.)					
Entered to lims:														Appr	Approval Date:	
Repo	ort To: John	Largay	Original –	Ketu	m w/r	keport		Tellow -			5140		k – Sampler C	··· .		Can
Bill 1	110.	rander							Report To Address: J. Largey & Hazen and Sawyer . Com Billing Address:							
Proje	ect Number/Name: H	himing	WWTF		w 2	2	Pacille	#8 2410-24								
				<u>.</u>				54-920-2972	FAX: 954-920-7117 1621 N-14 Ave							
Alter	rnate Contact: 📿	Ineron	Web-	ster	•		Phone: 239 -560-4510			FAX: Hollywood					FL 33020	
Sam	pled By (print):	hris	Harp						Sampler's Signature:							
			١		T E	с	MATRIX	SAMPLE LOCATION JOB DESCRIPTION	# ANALYSIS REQUIRED					San		
1				nH	м	0	DW	JUB DESCRIPTION	C O				ETHOD NUM		as Received	
T E	SAMPLE ID			PH P N SW D GW °C SED				(optional if needed	Ň	(√) CHE					TEST PERFORMED Sealed Yes	
M		GOLLEGILD	COLLOTED				S EFF	when samples are from different site location)	Å	Ammonia	Diamic	Nitrate	Conliction		1	
	Pauker #8			F	F	F	HW		N		N. Fragen					Lot number of Sampling
	12 2300-			D	D	L D	BIO SA		E R S	Worite	Total	Nitrite	< IC.L.	TRN	TDS	Containers Used
1		2-2600	3pm				GW	17174	6	Janke	INITICE	Nitine	JUNER		-	
2								0.1#								
3								Kush							****	
4				<u> </u>	<u> </u>			04 0000								
5		L						1333	ļ							
6 7					<u> </u>										· · · · · · · · · · · · · · · · · · ·	
8													<u> </u>		-	
9				+		<u> </u>		<u>*</u>								
10				-								· · ·			+	
Special Comments: Total # o							Total # of Containers:	QA/QC Report Needed? Yes No (See price guide for applicable					[,] applicable fees)			
									1	Report Fo	ormat:	Standard	Othe	er (specify)		
(1) Relinquished by Signature: Date: (2) Relinquished by Signature:						Relinquished by Signature:	Date: DUE DATE REQUESTED DUE DATE REQUESTED Confirmation #									
Company: KB Time:					Coi	Company:			Time: /6	· 36 °	oating Code			<u> </u>		
(1) Received by Stendture: M Date					Dates 26				Date: 2/2663 Misc. Chargen							
Company:				Time: 15: 43 Company: STL-Min						AREAS ARE	FOR LAB USE	ONLY				

SUB#03/03-264 ORD#19579 RA

Phone (954) 920-2972 Fax (954) 920-7117 Youngquist Brothers HAZEN & SAWYER City of Hollywood Injection Well Field Office

-

To:	Sam	ple Custody/Emest	0	From:	John Largey	
Fax:	954	431 1959		Pages)	
Phone	1			Dates	3/6/2003	· · · · · · · · · · · · · · · · · · ·
Re:	Sam	iple ID: IW-2 Packer	#8 2410-2428	CC:		
	Subi	mission 302001375				
	Orde	er # 17 174	17 de 1441			
🗌 Urg	ent	For Review	🗆 Please Co	mment	🗆 Piezze Reply	🗌 Please Recycle

Please re-run the above referenced sample for Residue, Total Filterable (TDS). The rush number supplied by customer service is WK069 with a due date of 3/7/03. If you have any questions please call me at 954 920-2972.

John Largey

To: <u>bhn</u> From: Kathy Williams Customer Service Company: <u>JOUNGQUIST</u> 954-431-4550 extension: 1 Kkwilliams@stl-inc.com Date: 317/03 954-920-7117 Pages: 2 Email: <u>Jlarguy@hazehandSawyger</u> . COM Subject: <u>Sub # 313-264</u> <u>Rush # WILDLE9</u> <u>X SCapner is down - will</u> <u>email report as soon</u> <u>as wl can</u> . <u>Than #5</u>	Fax message	•
Company: 10006001ST 954-431-4550 extension: 11 Kkwilliams@stl-inc.com Date: 317/03 954-920-7117 Pages: 2 Email: Jargey@hazenandSawyer. Com Subject: Sub # 313-264 Rish # WILDLe9 X SCapper is down - will email report as soon as we can. Thanks!	· _	From: Kathy Williams
Kkwilliams@stl-inc.com Fax: Date:317_03 	·	Customer Service
Fax: Date:3/7/03 954-920-7/17 Pages:2 Email: Jarguy@hazehandSawyer. COM Subject: Sub # 313-264 COM Subject: Sub # WILDLE9 <u>X SCapner is down - will</u> <u>email report as soon</u> <u>as we can.</u> 	Company: JOUNGOUIST	954-431-4550 extension: 10
Fax: Date: 954-920-7117 Pages:2 Email: Jargy@hazenandSawyer. COM Subject: Sub # 313-264 COM Subject: Sub # WILDLe9 <u>X SCapner is down - will</u> <u>email report as soon</u> <u>as we can.</u> 	1-911-489-11515	_
Email: Jarguj@hazehandsawyer. com Subject: Sub # 313-264 Rish # WILDLE9 <u>* Scanner is down - will</u> <u>email report as soon</u> <u>as we can.</u> <u>Thanks</u>	•	Date: <u>3703</u>
Subject: Sub # 313-264 Rish # WILDLE9 <u>X SCanner is down - will</u> <u>email report as soon</u> <u>as we can.</u> <u>Thanks!</u>		
* Scanner is down - will email report as soon as we can. Thanks!	Email: Jarguyaha	<u>com</u>
<u>+ Scapper is down - will</u> email report as soon as we can. Thanks!		
email report as soon as we can. Thanks!	Subject: <u>ULD TT</u>	5-264
email report as soon as we can. Thanks!	Subject: DUD IT JI	2-264 269
email report as soon as we can. Thanks!	Subject: <u>JUD IT JI</u> <u>Rush & WILC</u>	5-264 169
as we can. Thanks!	Subject: <u>JUD IT JI</u> <u>Rush & WILC</u>	2-264 269
Thanks!	Rush # WILC	5 down - will
	* Scapner i email repo	5 down - will rtas soon
	* Scapper i email repo	s down - will rtas soon
	* Scapper i email repo	s down - will rtas soon
	X Scapper i email repo as we can Thanks!	s down - will rtas soon

This message contains information intended only for the use of the person named above. It may also be confidential and/or privileged. If you are not the intended recipient of this message you are hereby notified that you must not disseminate, copy or take any action in reliance on it. If you have received this message in error please contact STL Miami at 954-431-4550. The views expressed in this fax are not necessarily those of the company STL.

....

YOUNGQ002775 John Largey Youngquist Brothers 15465 Pine Ridge Road Ft. Myers, FL 33908

Site Location/Project Hollywood WWTP IW2 1621 N-14 Ave, Hollywood FL33020 **RELOG SUB # 302001375**

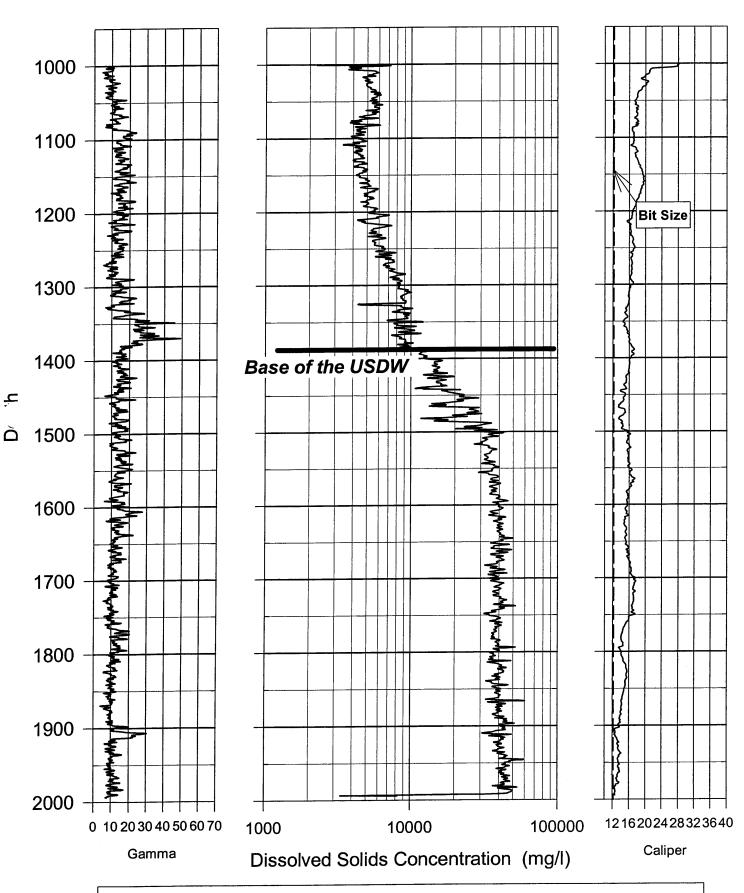
Page 1 March 7, 2003 Submission # 303000264 Order # 19579 FDEP CompQAP# 990102 FL-DOH Certification# E86349,E86616

Sample I.D.: 17174 (IW-2 Packer #8) 02/26/03 Collected: 15:00 02/26/03 16:45 **Received:** Collected by: C. Harp

PARAMETER	RESULT	UNITS	METHOD	DETECTION LIMIT-RQL	DATE EXT.	DATE ANALY.	ANALYST
Residue, Total Filterable (TDS)	40170	mg/L	SM2540C (160.1)	1.0	03/06/2003	03/07/2003	YD
						l	

BDL: Indicates Analyte is Below Detection LimitMEDF: Matrix Effect Dilution Factor*** ***Work Subcontracted to Outside Labs Denoted by HRS Cert ID in Analyst Field***

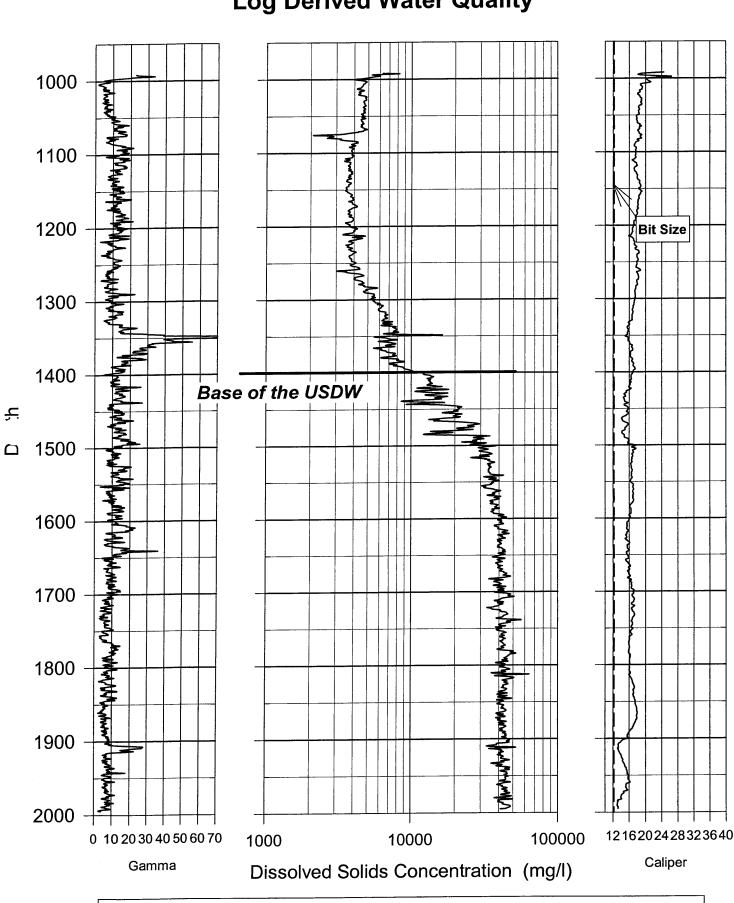
Qualifier following result conforms to FAC 62-160 Table 7***Unless otherwise noted, mg/Kg denotes wet weight*** ***62-770: If the MDL using the most sensitive and currently available technology is higher than a specific criterion, the PQL shall be used.


Certs:CT. =#PH0217, LA. =#9601, MD. =#271, MA. =#M-FL535 SC. =#96023, TN. =#TN02826, P.R. = FL-00535

**These test results meet all the requirements of NELAC.All questions regarding this test report should be directed to the STL representative who signed this report or the QC department.

Laboratory Marager

Appendix J Log Derived Water Quality


Injection Well No. 1 (IW-1) – Water Quality Log Derived Water Quality

HOLLYWOOD - Injection Well No. 1 Log Derived Water Quality

Used Best fit (a and m) values (R-H, m=2.0, a=1.0) non-Corrected Rt

Injection Well No. 2 (IW-2) – Water Quality Log Derived Water Quality

HOLLYWOOD - Injection Well #2 Log Derived Water Quality

Used Best fit (a and m) values (R-H, m=2.0, a=1.0) non-Corrected Rt