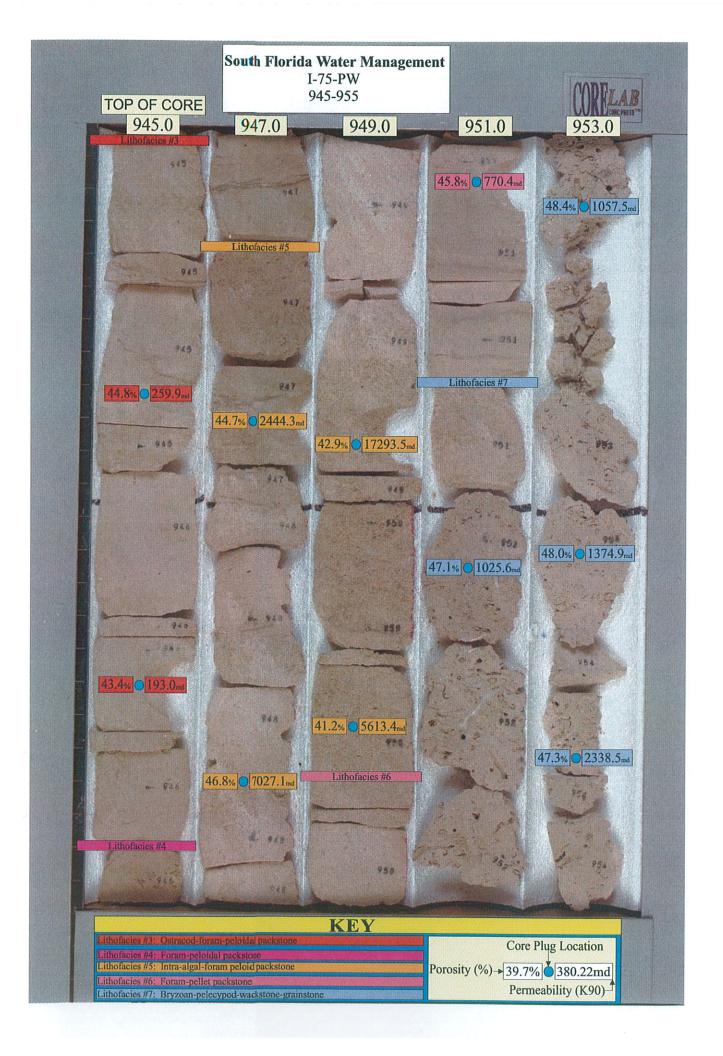
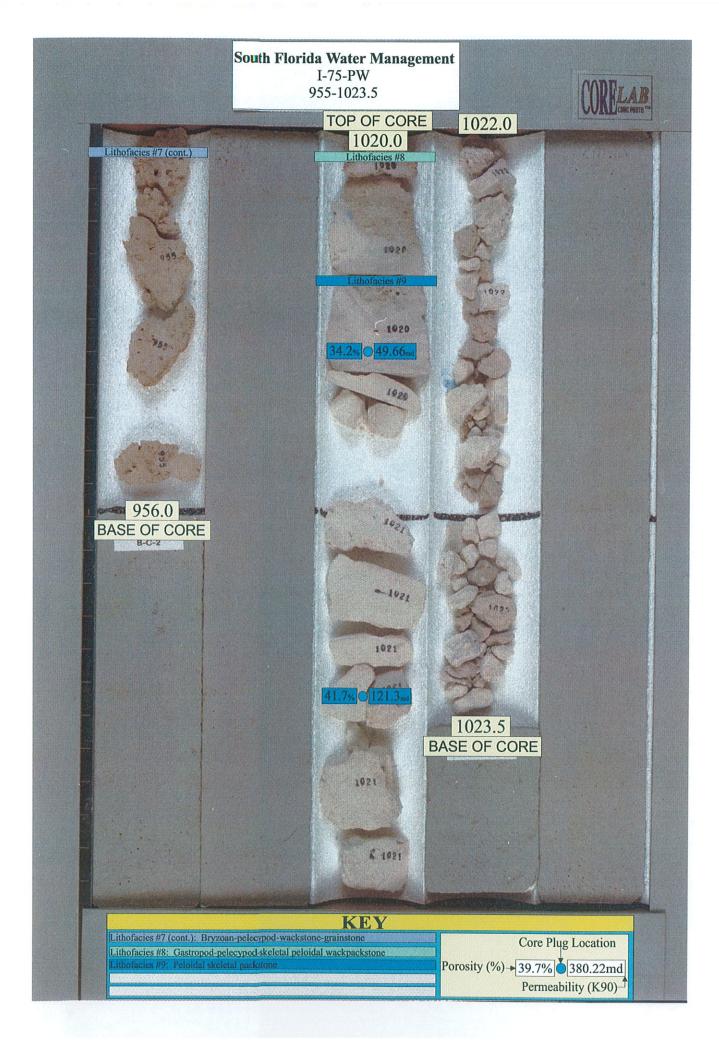
CORE ANALYSIS REPORT

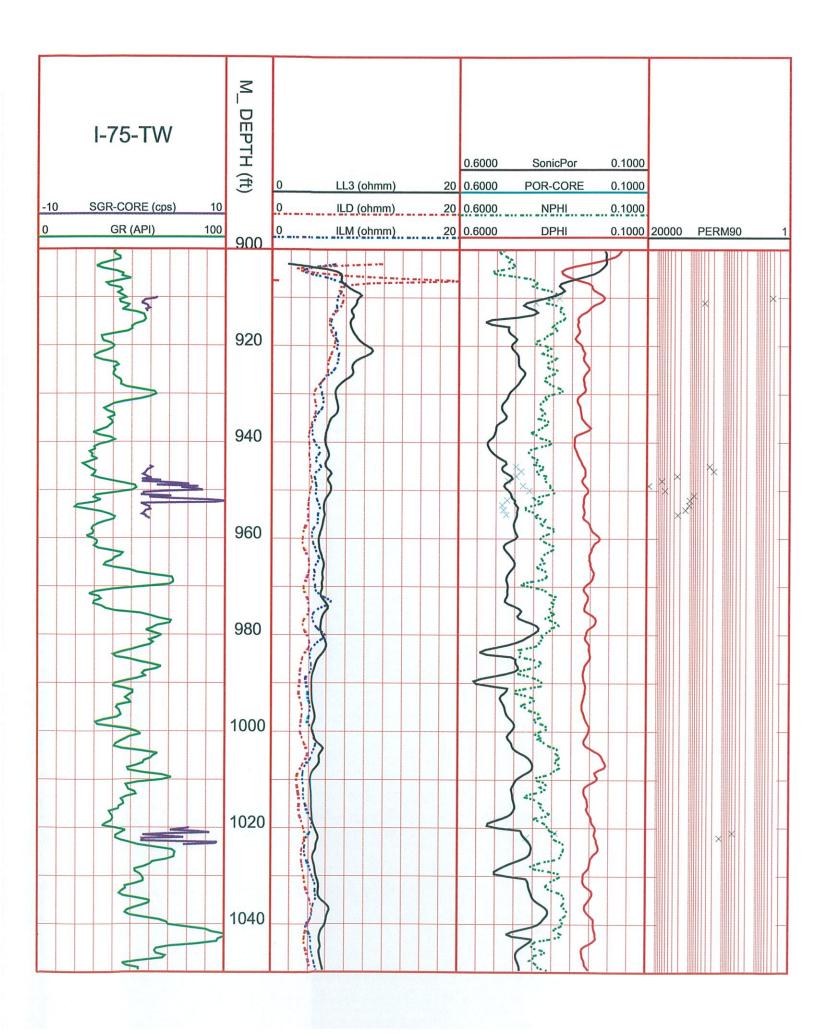
FOR

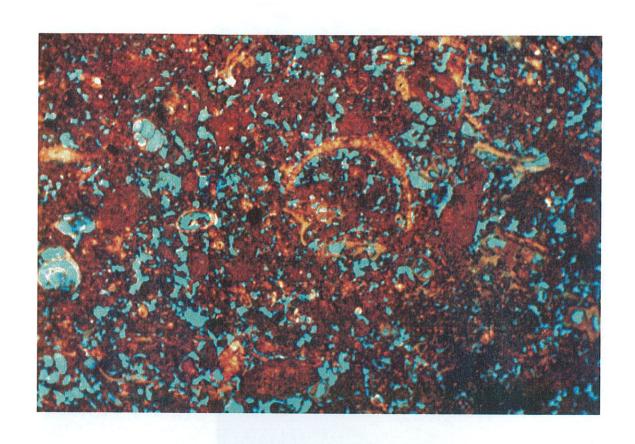
SOUTH FLORIDA WATER MANAGEMENT

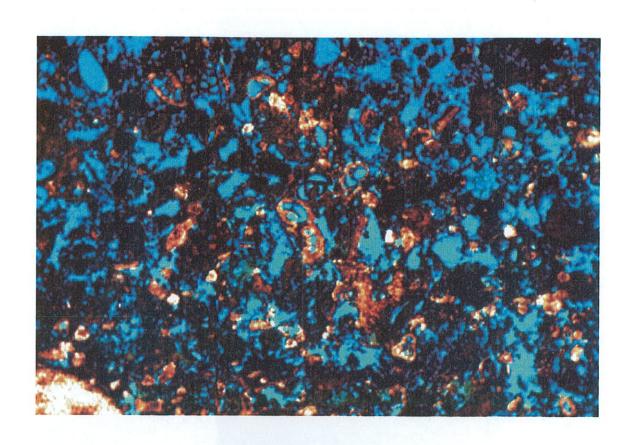
175-PW

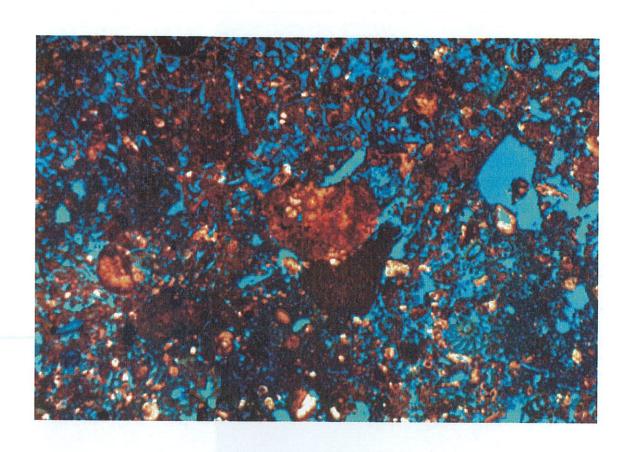

M.W. B's Copy


CORE ANALYSIS REPORT FOR SOUTH FLORIDA WATER MANAGEMENT

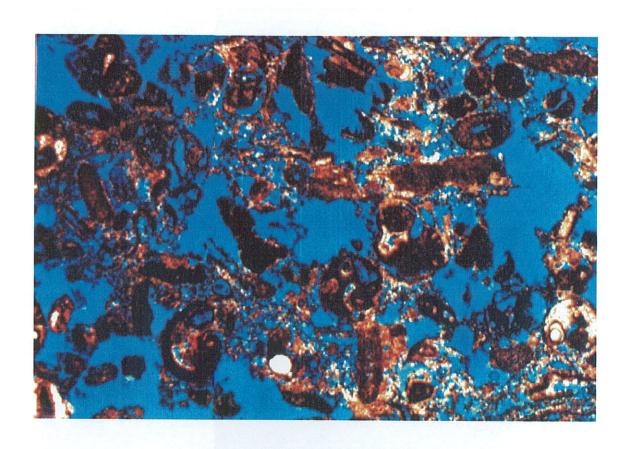

175-PW


These analyses, opinions or interpretations are based on observations and materials supplied by the client to whom; and for whose exclusive and confidential use; this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories (all errors and omissions excepted); but Core Laboratories and its officers and employees, assume no responsibility and make no warranty or representations, as to the productivity, proper operations, or profitableness of any oil, gas or other mineral well or formation in connection with which such report is used or relied upon.

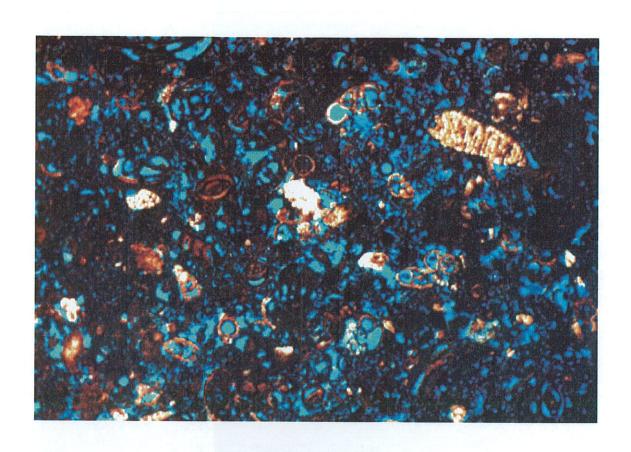



WELL: I-75-PW
DEPTH: 910.5
MAGNIFICATION: X40

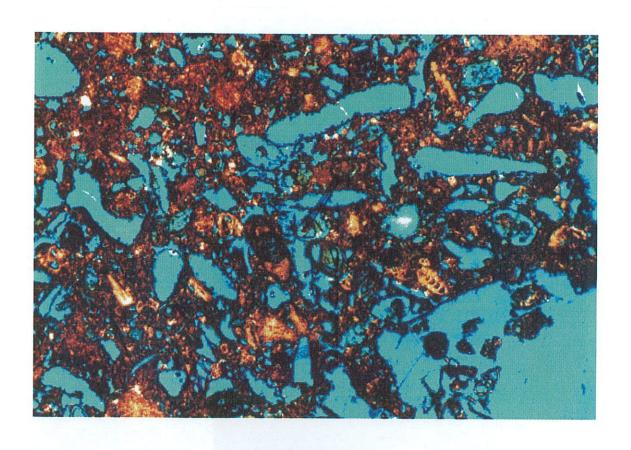
LITHOFACIES: FORAM-PELOIDAL PACKSTONE WITH GOOD VERY FINE-FINE INTERPARTICLE AND FAIR VUGGY MOLDIC INTRAPARTICLE POROSITY


WELL: I-75-PW
DEPTH: 947.2
MAGNIFICATION: X40

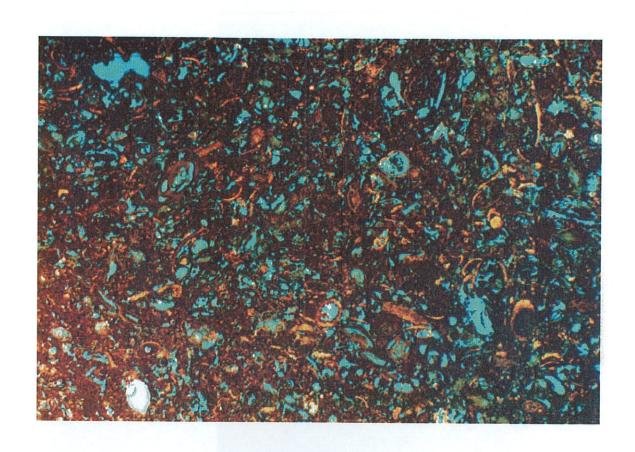
LITHOFACIES: SLIGHTLY GLAUCONITIC FORAM-PELOIDAL PACKSTONE WITH GOOD INTERPARTICLE VUGGY POROSITY


WELL: I-75-PW
DEPTH: 947.3
MAGNIFICATION: X20

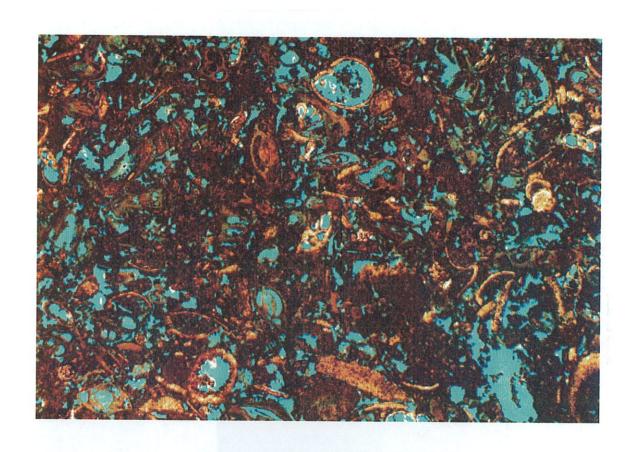
LITHOFACIES: ALGAL-INTERCLASTIC-FORAM-PELOIDAL PACKSTONE WITH GOOD INTERPARTICLE, VUG, AND MOLDIC POROSITY


WELL: I-75-PW
DEPTH: 950
MAGNIFICATION: X20

LITHOFACIES: FORAM-PELOIDAL PACKSTONE-GRAINSTONE WITH VERY GOOD VUGGY INTERPARTICLE, LARGE SECONDARY VUGS, AND "FLOATING GRAINS"


WELL: I-75-PW
DEPTH: 951.4
MAGNIFICATION: X20

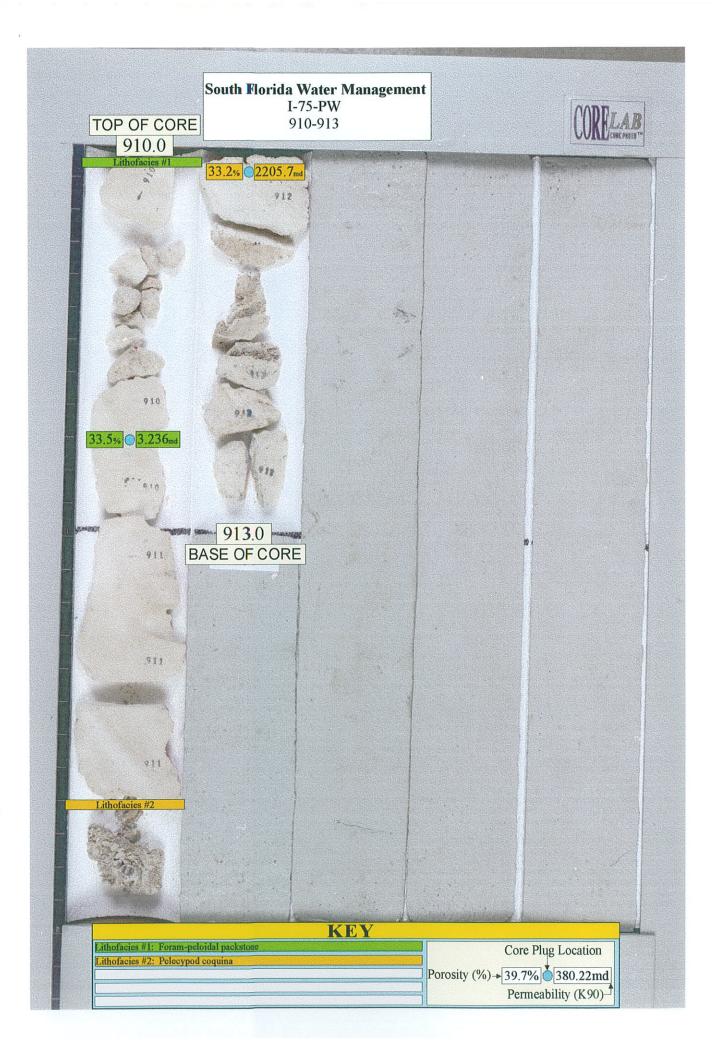
LITHOFACIES: PELOIDAL-FORAM PACKSTONE WITH FAIR VUGGY INTRAPARTICLE AND MOLDIC POROSITY

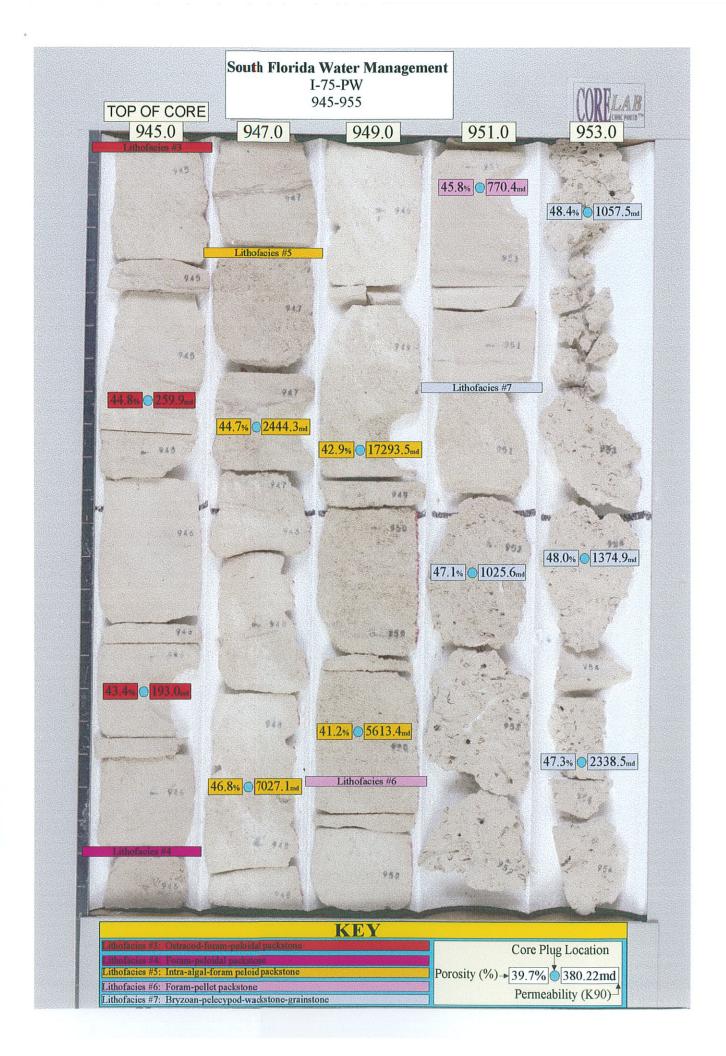

WELL: I-75-PW
DEPTH: 952.2
MAGNIFICATION: X20

LITHOFACIES: BRYOZOAN PELECYPOD COATED GRAIN PELOIDAL WACKESTONE-GRAINSTONE WITH GOOD VUGGY-MOLDIC POROSITY. NOTE: "FLOATING" COATINGS ARE INDICATIVE OF SECONDARY LEACHING.

WELL: I-75-PW DEPTH: 1020.3 MAGNIFICATION: X20

LITHOFACIES: SKELETAL PELOIDAL PACKSTONE




WELL: I-75-PW
DEPTH: 1021
MAGNIFICATION: X40

LITHOFACIES: PELOIDAL SKELETAL PACKSTONE, GLAUCONITIC WITH GOOD VUGGY, MOLDIC, AND INTRAPARTICLE POROSITY

Core Photo Index

WELL	DEPTH	INTERVAL	IMAGE NUMBER
IWSD-PW	882	889	Core18.cdr
	955	962.1	Core19.cdr
	1040	1049.7	Core20.cdr
	1060	1062.2	Core21.cdr
	1080	1089.1	Core22.cdr
	1090	1098	Core23.cdr
L2-PW	830	839.5	Core24.cdr
	1020	1029.8	Core25.cdr
	1190	1199.1	Core26.cdr
	1330	1339	Core27.cdr
	1480	1583.3	Core28.cdr
	1630	1711.3	Core29.cdr
I75-PW	910	913	Core30.cdr
	945	955	Core16.cdr
	955	1023.5	Core17.cdr

PETROLEUM SERVICES

September 8, 1997

SOUTH FLORIDA WATER MANAGEMENT 3301 Gun Club Road West Palm Beach, Florida 33416

File No.: Subject:

57181-17712 Core Analysis

I75-PW

Gentleman:

The subject well was cored using diamond coring equipment and water to obtain 4 inch diameter cores from 910 to 1022 feet from an unknown formation.

Core analysis data is presented in tabular and graphical form for your convenience. A porosity vs. permeability plot was prepared for statistical evaluation.

We trust these data will be useful in the evaluation of your property and thank you for the opportunity of serving you.

Very truly yours,

CORE LABORATORIES, INC.

John Sebian

Laboratory Supervisor

JS/ym

SOUTH FLORIDA WATER MANAGEMENT I75-PW File No. 57181-17712 Procedural Page

The cores were transported to Midland by Motor Freight.

A Core Spectral Gamma Log was recorded for downhole E-log correlation.

Core analysis was made from selected intervals requested on full diameter samples and plug samples when core condition necessitated.

Fluid removal was achieved by convection oven drying.

Full diameter porosity was determined by direct pore volume measurement using Boyle's law helium expansion. Bulk volume was measured by Archimedes Principle. Grain density was calculated from dry weight, bulk volume and pore volume measurements.

Grain Density = <u>Dry Weight</u>
Bulk Vol. - Pore Vol.

One inch diameter plugs had direct grain volume measurement using Boyle's law helium expansion. Bulk volume was measured by Archimedes Principle on samples after cleaning. Porosity was calculated using bulk volume and grain volume measurements.

Porosity = <u>Bulk Vol. - Grain Vol.</u> X 100 Bulk Vol.

Two samples, number one and number two, were selected for stress pore volume measurement at 400 PSI net confining pressure. Stress pore volume data indicates minimal to null pore volume reduction.

Steady State Air Permeability on full diameter samples was measured in two horizontal directions and vertically while the core was confined in a Hassler rubber sleeve at 400 net confining stress. Plug permeability was measured in the horizontal direction and confined at 400 net stress.

The core was double slabbed and boxed after analysis.

The slabs were photographed under natural light and ultraviolet light. Negatives were scanned and written to compact discs.

The core will remain at our Midland facility (thirty days free of charge) as we await further disposition instructions.

PETROLEUM SERVICES

Hydrostatic Core Holder - 400 Net Overburden Pressure

COMPANY:

South Florida Water Management

WELL:

175-PW

SAMPLE NO	PLUG DEPTH (feet)	DATA SOURCE	K(air) (md)	POR (%)	GD (gm/cc)	Description
1 1 1	910.8 910.8 910.8	Original Ambient Porosity Second Ambient Porosity 400 N.O.B. Porosity	3.24	33.5 33.7 33.8	2.69 2.69 2.69	Lim, vug, foss
2 2 2	911.3 911.3 911.3	Original Ambient Porosity Second Ambient Porosity 400 N.O.B. Porosity	380	39.7 39.7 39.5	2.70 2.70 2.70	Lim. vug, foss

CORE LABORATORIES

Company : SOUTH FLORIDA WATER MANAGEMENT

Well: 175-PW

Location : Co, State :

Field : Formation :

Coring Fluid : Elevation :

File No.: 57181-17712

Date : 8-6-97 API No. :

Analysts: FULLINWIDER

CORE ANALYSIS RESULTS

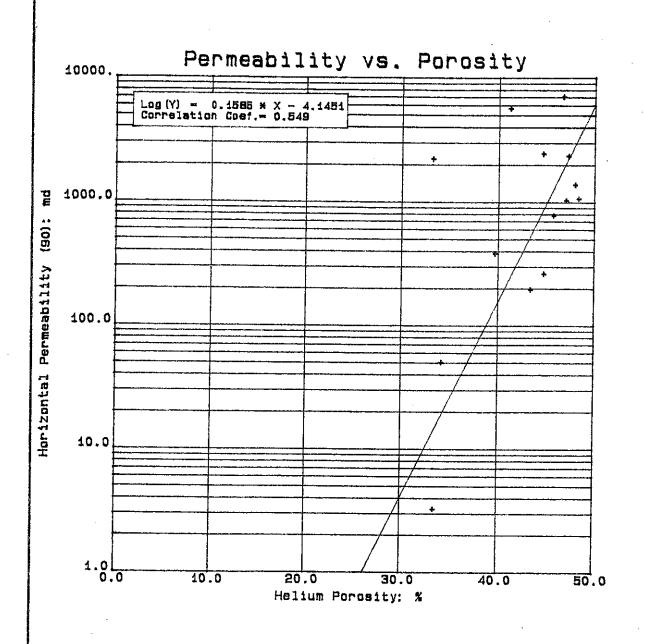
SAMPLE NUMBER		DEPTH	PERMEABILITY		DODOCITY	ODATH		
NU	MBER	ft	(MAXIMUM) Kair md	(90 DEG) Kair md	(VERTICAL) Kair md	POROSITY (HELIUM) %	GRAIN DENSITY gm/cc	DESCRIPTION
		-	CORE	VO. 1 910.	0-913.0 REC		<u> </u>	<u></u>
*	1 2 3	910.8 911.3 912.5- 12.7		3.24 380. 2206.		33.5 39.7 33.2	2.69 2.70 2.71	Lim vug foss Lim vug foss Lim vug foss
			CORE NO). 2 945.0	-956.0 REC 1	F F ′		
* * *	4 5 6 7 8 9 10 11 12 13 14	945.0- 45.4 946.3- 46.6 947.3- 47.6 948.7 949.4- 49.8 950.3- 50.7 951.0- 51.4 952.1 953.1 954.3 954.7- 54.9	6662.	260. 193. 2444. 7027. 17294. 5613. 770. 1026. 1057. 1375. 2339.	5759.	44.8 43.4 44.7 46.8 42.9 41.2 45.8 47.1 48.0 47.3	2.71 2.70 2.71 2.71 2.71 2.72 2.71 2.71 2.71 2.70 2.71	Lim pp Lim pp Lim sli/vug Lim sli/vug Lim sli/vug Lim sli/vug Lim vug foss Lim vug foss Lim vug foss Lim vug foss
			CORE NO.	3-1020.0	-1023.5 REC	35′		
*	15 16	1020.7- 20.9 1021.5	1697.	49.7 121.	1.81	34.2 41.7	2.72 2.71	Lim vug foss Lim vug foss

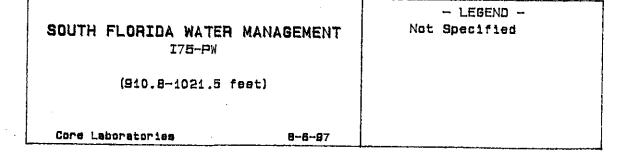
CORE LABORATORIES

Company : SOUTH FLORIDA WATER MANAGEMENT Well : 175-PW

Field

Formation


File No.: 57181-17712


Date : 8-6-97

CORE ANALYSIS RESULTS

SAMPLE	DEPTH		PERMEABILI	TY	DODOCETY		
SAMPLE NUMBER	521111	(MAXIMUM) Kair	(90 DEG)	(VERTICAL)	POROSITY (HELIUM)	GRAIN DENSITY	DESCRIPTION
	<u>ft</u>	md	Kair md	md md	%	gm/cc	

INDICATES PLUG ANALYSIS

CORE LABORATORIES

Company : SOUTH FLORIDA WATER MANAGEMENT

Well : I75-PW

Field

Formation : NOT SPECIFIED

File No.: 57181-17712

Date : 8-6-97

TABLE I

SUMMARY OF CORE DATA

ZONE AND CUTOFF		CHARACTERISTICS REMAINING AFTER CUTOFFS						
ZONE: Identification Not S	ipecified	ZONE: Number of Samples	14	PERMEABILITY:				
Top Depth	910.8 ft 1021.5 ft	Thickness Represented -	8.4 ft	Flow Capacity Arithmetic Average	15236.1 1814.	md-f md		
Number of Samples	15	POROSITY:		Geometric Average	565. 26.1	md		
DATA TYPE:		Storage Capacity	365.6 ∳-ft	Minimum	3.24	md md		
Porosity	(HELIUM)	Arithmetic Average	43.5 %	Maximum	7027.	md		
Permeability (90 D	EG) Kair	Minimum	33.2 %	Median	1042.	md		
CUTOFFS:		Maximum	48.4 %	Standard Dev. (Geom)	K·10 ^{±0.883}	md		
		Median	44.7 %		-			
Porosity (Minimum) Porosity (Maximum)	0.0 % 100.0 %	Standard Deviation	±5.6 %	HETEROGENEITY (Permeabili	ty):			
Permeability (Minimum)	0.0100 md	GRAIN DENSITY:		Dykstra-Parsons Var	0.773			
Permeability (Maximum)	10000. md			Lorenz Coefficient	0.773			
Water Saturation (Maximum)	•	Arithmetic Average	2.71 gm/cc		0.000			
Oil Saturation (Minimum) -		Minimum	2.69 gm/cc	AVERAGE SATURATIONS (Pore	Volume):			
Grain Density (Minimum)	2.00 gm/cc	Maximum	2.72 gm/cc	(1000				
Grain Density (Maximum)	3.00 gm/cc	Median	2.71 gm/cc	0il				
Lithology Excluded	NONE	Standard Deviation	±0.01 gm/cc	Water				

LITHOLOGICAL ABBREVIATIONS

THE FIRST WORD IN THE DESCRIPTION COLUMN OF THE CORE ANALYSIS REPORT DESCRIBES THE ROCK TYPE. FOLLOWING ARE ROCK MODIFIERS IN DECREASING ABUNDANCE AND MISCELLANEOUS DESCRIPTIVE TERMS.

DISTRIBUTION OF FINAL REPORTS

3 COPIES 1 CD DISC SOUTH FLORIDA WATER MANAGEMENT

ATTN: MICHAEL BENNETT

3301 GUN CLUB ROAD

WEST PALM BEACH FL 33416

2 COPIES

1 SET OF PHOTOS

1 CD DISC

COLLIER CONSULTING

ATTN: HUGHBERT COLLIER 741 WEST COLLEGE STREET

STEPHENVILLE TX 76401

COMPLETION COREGRAPH

SOUTH FLORIDA WATER MANAGEMENT 175-PW

Vertical Scale 5.00 in = 100.0 ft

(910.8-1021.5 feet)

Core Laboratories

8-6-97


SPECTRAL CORE GAMMA LOG

SOUTH FLORIDA WATER MANAGEMENT

175-PW

Vertical Scale 5.00 in = 100.0 ft

(910.8-1021.5 feet)

