CLASS I INJECTION WELL OPERATION PERMIT APPLICATION OKEECHOBEE LANDFILL, INC. OKEECHOBEE, FLORIDA

Jul<mark>y 2011</mark>

Prepared by:

L.S. Sims & Associates, Inc. 1530 U.S. Highway 1 Rockledge, Florida 32955 (321) 504-4046 CLASS I INJECTION WELL OPERATION PERMIT APPLICATION OKEECHOBEE LANDFILL, INC. OKEECHOBEE, FLORIDA

Jul<mark>y 2011</mark>

Prepared by:

L.S. Sims & Associates, Inc. 1530 U.S. Highway 1 Rockledge, Florida 32955 (321) 504-4046

Elle

James E. McGrath, P.G. Florida P.G. No. 961

CLASS I INJECTION WELL OPERATION PERMIT APPLICATION OKEECHOBEE LANDFILL, INC. OKEECHOBEE, FLORIDA Permit No. 040842-022 UC

TABLE OF CONTENTS

Page

1.0	INTRO	DDUCTION	1
	1.1 1.2	Project Overview Area of Review	
2.0	SUMM	IARY OF INFORMATION OBTAINED DURING CONSTRUCTION	2
	2.1	Lithologic & Geophysical Logs	
	2.2	Straddle Packer Tests	4
	2.3	Core Collection and Analysis	5
	2.4	Mechanical Integrity Tests	6
		2.4.1 Radioactive Tracer Survey	7
	2.5	Short-Term Injection Test	9
	2.6	Fluid Compatibility	9
3.0	AS-BU	JILT RECORD DRAWINGS	10
4.0	ENGIN	NEER'S CERTIFICATION OF WELL CONSTRUCTION COMPLETION	11
4.0 5.0	ENGIN OPEA	NEER'S CERTIFICATION OF WELL CONSTRUCTION COMPLETION TION & MAINTENANCE MANUAL/FINANCIAL RESPONSIBILITY	11
4.0 5.0 6.0	ENGIN OPEA PROP	NEER'S CERTIFICATION OF WELL CONSTRUCTION COMPLETION TION & MAINTENANCE MANUAL/FINANCIAL RESPONSIBILITY OSED MONITORING & REPORTING	11 11 11
4.0 5.0 6.0	ENGIN OPEA PROP 6.1	NEER'S CERTIFICATION OF WELL CONSTRUCTION COMPLETION TION & MAINTENANCE MANUAL/FINANCIAL RESPONSIBILITY OSED MONITORING & REPORTING Injection Well Data	11 11 11
4.0 5.0 6.0	ENGIN OPEA PROP 6.1 6.2	NEER'S CERTIFICATION OF WELL CONSTRUCTION COMPLETION TION & MAINTENANCE MANUAL/FINANCIAL RESPONSIBILITY OSED MONITORING & REPORTING Injection Well Data Monitor Well Sampling	11 11 11 11
4.0 5.0 6.0	ENGIN OPEA PROP 6.1 6.2 6.3	NEER'S CERTIFICATION OF WELL CONSTRUCTION COMPLETION TION & MAINTENANCE MANUAL/FINANCIAL RESPONSIBILITY OSED MONITORING & REPORTING Injection Well Data Monitor Well Sampling Injectate Sampling	11 11 11 11 12 13
4.0 5.0 6.0	ENGIN OPEA PROP 6.1 6.2 6.3 6.4	NEER'S CERTIFICATION OF WELL CONSTRUCTION COMPLETION TION & MAINTENANCE MANUAL/FINANCIAL RESPONSIBILITY OSED MONITORING & REPORTING Injection Well Data Monitor Well Sampling Injectate Sampling Specific Injectivity Testing	11 11 11 11
4.05.06.07.0	ENGIN OPEA PROP 6.1 6.2 6.3 6.4 SITE S	NEER'S CERTIFICATION OF WELL CONSTRUCTION COMPLETION TION & MAINTENANCE MANUAL/FINANCIAL RESPONSIBILITY OSED MONITORING & REPORTING Injection Well Data Monitor Well Sampling Injectate Sampling Specific Injectivity Testing	11 11 11 12 13 14 14
 4.0 5.0 6.0 7.0 8.0 	ENGIN OPEA PROP 6.1 6.2 6.3 6.4 SITE S CASIN	NEER'S CERTIFICATION OF WELL CONSTRUCTION COMPLETION TION & MAINTENANCE MANUAL/FINANCIAL RESPONSIBILITY OSED MONITORING & REPORTING Injection Well Data Monitor Well Sampling Injectate Sampling Specific Injectivity Testing SURVEY	11 11 11 12 13 14 14 15
4.05.06.07.08.0	ENGIN OPEA PROP 6.1 6.2 6.3 6.4 SITE S CASIN 8.1	NEER'S CERTIFICATION OF WELL CONSTRUCTION COMPLETION TION & MAINTENANCE MANUAL/FINANCIAL RESPONSIBILITY OSED MONITORING & REPORTING Injection Well Data Monitor Well Sampling Injectate Sampling Specific Injectivity Testing SURVEY IG MILL CERTIFICATES IW-I Casing Data	11 11 11 12 13 14 14 15 15

TABLE OF CONTENTS (Cont'd.)

9.0	OPERA	ATIONAI	L TESTING DATA
	9.1	Flow	
		9.1.1	Alternate Discharge
	9.2	Well-H	ead Pressures16
	9.3	Injectiv	ity Testing 17
	9.4	Monito	r Zone Water Levels
	9.5	Water	Quality Data19
		9.5.1	Lower Monitor Zone 19
		9.5.2	Upper Monitor Zone
		9.5.3	Injectate

FIGURES

- 1. Site Location Map
- 2. Site Plan
- 3. Area Of Review Map
- 4. Cross Section A-A'
- 5. Cross Section B-B'
- 6. Injection Well As-Built Construction Details
- 7. Deep Monitor Well Construction Details

APPENDICES

- A Permit Application Form, No. 62-528.900 (1)
- B As-Built Drawings / Engineer's Certification
- C O&M Manual Update / Financial Responsibility / Deed Documents
- D Mill Certificates
- E Operational Testing Data / TDS Laboratory Letter / Annual DWS Analytical

1.2 Area of Review

The Area of Review (AOR) limit of 4-miles provided with the Construction and Testing permit application is conservatively large given the relatively low injection rates at the OLI facility and the high transmissivity of the injection zone. A 1-mile AOR is suitable and appropriate for this site and the change in the radius of the area of review is reflected below in the calculation of the radius of influence. The updated well inventory data is tabulated below and an updated well location Map is presented as **Figure 3**.

Area of Review = $\sqrt{V/pi}$ X aq thickness X porosity = 4113.88 feet = 0.779144493 mile V = volume after 20 years injection at design rate = 32,850,000,000 gallons Aquifer thickness = 413 feet Porosity = 20%

Map ID	Owner	Diameter (inches)	Well Depth (feet)	Use Aquifer	
1	OLI Injection Well	10.75	3150	Waste Disposal	Lower Floridan Aq.
2	OLI DMW	4	1850/1700	Monitoring	Upper Floridan Aq.
3	OLI ADMIN COMPLEX	4	130	PWS	Surficial Aq.
4	ROBERT CAPOTE	4	140	Irrigation	Surficial Aq.

2.0 SUMMARY OF INFORMATION OBTAINED DURING CONSTRUCTION

The testing program conducted during construction of the OLI Injection System verified confinement through physical examination of the drilled sample cuttings, packer pumping tests evaluation, core analysis, geophysical log interpretation, video survey analysis, radioactive tracer survey (RTS) analysis and the short-term injection test analysis. These tests helped identify the Avon Park Formation and upper Oldsmar Formation (2,290 to 2,740 feet below land surface) that serve as the Primary Confining Unit separating the injection zone from the overlying Underground Source of Drinking Water (USDW). Packer test water quality data and total dissolved solids (TDS) derived from the geophysical logs identified the base of the USDW at approximately 1,770 feet below land surface (bls). An injection zone capable of accepting the Okeechobee Landfill, Inc. injectate was identified below the Primary Confining Unit in the lower Oldsmar Formation (2,737 to 3,150 feet bls).

The following summary of the information collected during construction of IW-I and MW-I is submitted in support of the OLI Injection Well Operation Permit as required by Section 62-528.455 FAC. Specific references are provided for information required by this section of the rule that has been previously submitted to the FDEP.

2.1 Lithologic & Geophysical Logs

Lithologic logs of IW-I and MW-I were previously submitted to the FDEP in the following reports:

-Request for Final Casing-Setting Depth Approval Class I Injection Well Construction Okeechobee Landfill, Inc. Okeechobee, Florida FDEP Permit No. 040842-017-UC, L.S. Sims & Associates, Inc., October 14, 2008, Appendix A.

-*Class I Injection Well Construction Monitoring Zone Requests, Okeechobee Landfill, Inc. Okeechobee, Florida, FDEP Permit No. 040842-019-UC,* L.S. Sims & Associates, Inc., May 9, 2008, Appendix A.

-Operational Testing Request Okeechobee Landfill, Inc. Class I Injection Well System Okeechobee, Florida, L.S. Sims & Associates, Inc., July 1, 2009, Appendix C.

Geophysical Logs for IW-I and MW-I were previously submitted to the FDEP in the following reports:

-Request for Final Casing-Setting Depth Approval Class I Injection Well Construction Okeechobee Landfill, Inc. Okeechobee, Florida FDEP Permit No. 040842-017-UC, L.S. Sims & Associates, Inc., October 14, 2008, Appendix C; and Appendix D.

-*Class I Injection Well Construction Okeechobee Landfill, Inc. FDEP Permit No. 040842-017-UC Injection Test Request,* L.S. Sims & Associates, Inc., May 29, 2009, Appendix A; Appendix B; and Appendix C.

-Operational Testing Request Okeechobee Landfill, Inc. Class I Injection Well System Okeechobee, Florida, L.S. Sims & Associates, Inc., July 1, 2009, Attachment.

The geophysical logs conducted on the pilot-holes included; natural gamma ray, caliper, fluid conductivity, temperature (static and Δ T), flowmeter (dynamic and static), dual induction, and sonic. The logs were correlated with the lithologic logs derived from the cuttings examination and core analysis. Using these logs, the following geologic formations and hydrogeologic units were identified at the OLI Injection Well System and are represented in the geologic cross sections presented as **Figure 4** and **Figure 5** along the lines A-A' and B–B' as shown on **Figure 1**:

Geologic Units			
Depth (bls)	Geologic Units		
0 to 140	Undifferentiated Marine Terrace Deposits		
140 to 670	Hawthorn Group		
670 to 800	Ocala Limestone		
800 to 2,290	Avon Park Formation		
2,290 to 3,150	Oldsmar Formation		
3,150 to 3,506	Cedar Keys		
H	lydrogeologic Units		
Depth (bls)	Hydrogeologic Units		
0 to 140	Surficial Aquifer System		
140 to 800	Intermediate Confining Unit		
800 to 2290	Upper Floridan Aquifer System		
2290 to 2737	Primary Confining Unit		
2737 to 3150	Lower Floridan Aquifer System		

Table 2.1 Hydrogeologic Units Identified Using Site Logs

2.2 Straddle Packer Tests

During construction of IW-I and MW-I a total of 13 straddle packer tests were conducted at various depths within the pilot holes of each well. The details of these tests have been provided in the following previous correspondence and reports:

-Request for Final Casing-Setting Depth Approval Class I Injection Well Construction Okeechobee Landfill, Inc. Okeechobee, Florida FDEP Permit No. 040842-017-UC, L.S. Sims & Associates, Inc., October 14, 2008, Section 2.2; and Appendix B.

-*Class I Injection Well Construction Monitoring Zone Requests, Okeechobee Landfill, Inc. Okeechobee, Florida,* L.S. Sims & Associates, Inc., May 9, 2008, pgs. 7–10; Table 2; and Appendix C.

-Operational Testing Request Okeechobee Landfill, Inc. Class I Injection Well System Okeechobee, Florida, L.S. Sims & Associates, Inc., July, 2009, Section 13.2.

The packer test results were utilized to determine the hydraulic characteristics of the Primary Confining Unit. The following table summarizes the depth and interval of straddle packer tests completed in the injection well pilot-hole from 1,746 feet to 2,724 feet bls. Horizontal hydraulic conductivity (K) and transmissivity estimates are also included in the table.

Table 2.2	Summary of	f Straddle	Packer '	Test Data
	Summary U	Duadaic	I achei	I CSt Data

OLI EW-1 Packer Test Program							
Packer Test No.	Date	Depth Interval Tested	Q gpm	Pumping K (cm/sec)	Pumping T (cm ² /sec)	Recovery K (cm/sec)	Recovery T (cm²/sec)
1	4/22/08	1898-1922	21	1.1 X 10 ⁻⁴	7.8 X 10 ⁻²		
2	4/23/08	1858-1882	35	4.1 X 10 ⁻³	3.0		
3	4/24/08	1818-1842	71	1.2 X 10 ⁻³	0.85		
4	4/25/08	1774-1798	40	2.1 X 10 ⁻⁴	0.15		
5	4/26/08	1746-1770	22	2.0 X 10 ⁻⁶		1.7 X 10 ⁻⁴	0.12
C1	9/02/08	2324-2342	0			3.8 X 10 ⁻¹⁰	2.0 X 10 ⁻⁷
C2	9/03/08	2608-2626	1			3.6 X 10 ⁻⁶	2.0 X 10 ⁻³
C3	9/06/08	2706-2724	15			1.1 X 10 ⁻⁴	4 X 10 ⁻¹¹
C4	9/07/08	2480-2497	4.3			6.2 X 10 ⁻⁵	3.2 X 10 ⁻²
C5	9/07/08	2206-2223	32			2.1 X 10 ⁻⁴	0.11

The packer testing showed most of the tested intervals within the Avon Park and upper Oldsmar Formations should be suitable for confinement of the injection zone.

2.3 Core Collection and Analysis

A total of 10 cores were collected during drilling of the IW-I pilot hole between depths of 1,950 to 2,707 feet bls. The details of the core test procedures and laboratory test results have been previously submitted to FDEP in the following previous correspondence and reports:

-Request for Final Casing-Setting Depth Approval Class I Injection Well Construction Okeechobee Landfill, Inc. Okeechobee, Florida FDEP Permit No. 040842-017-UC, L.S. Sims & Associates, Inc., October 14, 2009, Section 2.1; Table 1; and Appendix A.

-Class I Injection Well Construction Monitoring Zone Requests, Okeechobee Landfill, Inc. Okeechobee, Florida, L.S. Sims & Associates, Inc., May 9, 2008, Table 4.

-Operational Testing Request Okeechobee Landfill, Inc. Class I Injection Well System Okeechobee, Florida, L.S. Sims & Associates, Inc., July, 2009, Section 13.4; Table 13.2; Table 13.3; and Appendix D.

Core samples were used to obtain lithologic descriptions of undisturbed (compared to drilled sample cuttings) samples of the formation. Sections of each core were sent to a laboratory where K values were measured. The core results showed very low vertical K values for sections of the formation comprising the Primary Confining Unit. The following table summarizes the depth of the core samples and vertical K values measured by the testing laboratory.

Dopth (ft) PDI *	Hydraulic Conductivity (K)			
Depth (It) BFL*	Vertical	Horizontal		
2054	4.7e-10	3.3e-9		
2112	6.7e-11			
2167	9.3e-6	1.3e-5		
2211	5.5e-5	5.2e-5		
2262	2.1e-8	1.9e-5		
2326	5.4e-8	7.1e-8		
2390	1.3e-4	2.0e-4		
2424	6.9e-10	1.6e-10		
2502	9.1e-5	1.4e-4		
2585	3.5e-6	4.0e-6		
2592	1.7e-5	4.8e-7		

Table 2.3	Summary	of Core	Test	Results
	2			

*Below Pad Level

2.4 Mechanical Integrity Tests

The details of the Mechanical Integrity Tests (MIT) conducted on IW-I and MW-I have been provided in the following previous reports submitted to FDEP:

-Class I Injection Well Construction Okeechobee Landfill, Inc. FDEP Permit No. 040842-017-UC Injection Test Request, L.S. Sims & Associates, Inc., May 29, 2009, page 6; Appendix C; and Appendix D.

-Operational Testing Request Okeechobee Landfill, Inc. Class I Injection Well System Okeechobee, Florida, L.S. Sims & Associates, Inc., July 2009, Section 6.0.

Mechanical integrity of IW-I has been verified and demonstrated using results of multiple MIT including, hydrostatic pressure tests of the intermediate casing, the final casing string, and the annular space between the final casing string and the FRP tubing. The mechanical integrity of IW-I has also been verified by the cement bond logs (CBL) and

radioactive tracer surveys (RTS) conducted in the well. Data collected during the short term injection test also confirms the well's mechanical integrity. A summary of the mechanical integrity tests conducted to date is provided in the table below:

Mechanical Integrity Test	Date	Result
Pressure test 26" casing IW	06/16/08	Passed at 70 psi
Video inside 26" Casing	08/31/08	No visible defects in casing
CBL 16" casing IW	11/17/08	Good Bond
Pressure test 16" casing IW	11/21/09	Passed at 102 psi
Video inside 16" Casing IW	11/26/08	No visible defects in casing
CBL 16" casing DMW	12/28/08	Good Bond
Pressure test 10-34" annulus IW	12/31/08	Passed at 101 psi
Pressure test 16" casing DMW	12/31/08	Passed at 95 psi
Video inside 16" Casing DMW	01/07/09	No visible defects in casing
Pressure test 6-5/8" DMW	01/14/09	Passed at 50 psi
Video inside 6-5/8" DMW	01/21/09	No visible defects in casing
Video inside 11-3/4" IW	01/21/09	No visible defects in casing
RTS Injection Well	05/19/09	Good, no upward tracer movement

 Table 2.4
 Summary of Mechanical Integrity Test

2.4.1 Radioactive Tracer Survey

Information regarding the radioactive tracer survey test procedures and test results have been previously submitted to FDEP in the following documents:

-*Class I Injection Well Construction Okeechobee Landfill, Inc. FDEP Permit No. 040842-022-UC Injection Test Request,* June 2009, and *Mechanical Integrity Test Report* L.S. Sims & Associates, Inc., May 2009, Section 3.6, page 12 and Appendix A.

All Webbs Enterprises, Geophysical Logging Division conducted RTS tests on May 19, 2009. A diagram of the tool used to complete the surveys is shown in the RTS Log. The RTS tool was equipped with three gamma detectors and two ejection ports for the radioactive tracer (Iodine 131). Documentation for the radioactive Iodine 131 demonstrating that the material was within the half-life specifications was provided in the MIT Report. The tool assembly was equipped with a casing collar locator (CCL) and a temperature sensor.

The wellhead was fitted with a stand pipe and stripper-head assembly for use during the RTS testing. A background Gamma Ray Temperature log was run from the total depth of 3,150 feet bls to surface on May 18, 2009. The temperature log displayed a gradual increase in temperature from 75.0° F at land surface to 96.4° F at the total depth of the well. The absence of temperature anomalies or abrupt changes in fluid temperature indicates that water movement is not occurring in the well when the injection pumps are turned off. The background logs were run with the injection well under static conditions (no flow). The CCL log on the RTS tool was used to locate the bottom of the 16-inch casing at 2,737 feet bls and to position the RTS tool for the radioactive tracer surveys.

Two dynamic tracer tests were run for this MIT program. Dynamic conditions were established with a flow rate of 46 gallons per minute (gpm) [fluid velocity of five (5) feet per minute]. The flow rate was established using a calibrated 1-inch diameter flow-meter. A copy of the flow-meter's calibration certificate was provided with the MIT Report.

The first of two RTS began on Thursday morning May 19, 2009. The RTS tool was loaded with 6 cubic centimeters (cc) of Iodine 131. The RTS tool was positioned so that the ejector port was located 5 feet above the casing shoe. The top (GRT) and middle (GRM) gamma ray detectors were positioned within the 16-inch casing and the bottom gamma ray detector (GRB) was positioned in the open hole. A flow rate of approximately 46 gpm was established using fresh water from the supply well located approximately 800 feet northwest of the injection well. Time-drive gamma monitoring was then commenced and 1.0 millicurie (mCi) of radioactive Iodine ejected. Tracer was detected at the middle detector GRM, located below the ejector ports approximately 20 seconds after ejection. The tracer slug was detected at the bottom detector GRB after approximately 1.5 minute. The tracer was never detected at the top detector GRT, located above the ejector ports, during 60 minutes of time-drive monitoring. The RTS was then logged out of position to 2,500 feet bls. A Gamma Ray response of about 30 API units was detected at 2,717 feet bls by the GRB detector and attributed to Tool Dribble which is a very small volume of radioactive iodine that escapes the RTS when the tool bumps into the packer while logging out of position. The gamma ray response can be identified as tool dribble because it is not detected by GRT when logging out of position.

The injection well was then flushed with about 20,000 gallons of fresh water (nearly 2 casing volumes). The log after flush (LAF) was completed from 2,500 feet bls to below the bottom of the casing. A 10 API gamma ray response was observed by all detectors at this depth when logging after flush. The RTS tool was then repositioned as in the previous test. A flow rate of 47 gpm was established and a second dynamic test was conducted. Time-drive gamma monitoring commenced and another 1.0 mCi of radioactive Iodine ejected for the second test. Tracer was detected at the middle detector

GRM, located below the ejector ports approximately 20 seconds after ejection. The tracer slug was detected at the bottom detector GRB after approximately 1.5 minute. The tracer was never detected at the top detector GRT, located above the ejector ports, during 30 minutes of time-drive monitoring. The RTS was then logged out of position to 2,500 feet bls. A Gamma Ray response of about 25 API units was detected at 2,717 feet bls by the GRB detector and again attributed to Tool Dribble. The tool was lowered to a depth of about 3,150 feet bls. The well was flushed at a rate of approximately 400 gpm and the remaining tracer material was ejected at this depth during the flush. When the flush was complete the final gamma log was run from 3,150 feet to land surface.

2.5 Short-Term Injection Test

Information regarding the short-term injection test procedures and test results has been previously submitted to FDEP in the following documents:

-Class I Injection Well Construction Okeechobee Landfill, Inc. FDEP Permit No. 040842-022-UC Injection Test Request, L.S. Sims & Associates, Inc., June 2009, page 4.

-Operational Testing Request Okeechobee Landfill, Inc. Class I Injection Well System Okeechobee, Florida, L.S. Sims & Associates, Inc., July 2009, Section 3.0; section 13.7; Table 3.1; Figure 3.1.

During the injection test no pressure build-up was observed in the injection zone and there was no indication of a change in pressure in the upper or lower monitor zone before, during or after the test. The absence of a response to injection in either of the two monitoring zones demonstrates that the sequence of rocks between 2,290 and 2,737 feet bls should provide effective confinement.

A thorough review of available data from all of the tests described in this section confirm the presence and effectiveness of a thick confining sequence of rocks between 2,290 and 2,737 bls. The confining sequence of rocks collectively possesses sufficient thickness and areal extent, and appropriate lithologic and hydrologic characteristics to prevent the upward migration of injected fluids from the injection zone resulting in impacts to the USDW.

2.6 Fluid Compatibility

The Okeechobee Landfill, Inc. injectate is compatible with the injection zone formation water at the site for purposes of successful operation of the Class I injection well system. The following table shows a comparison of the major dissolved constituents in the injection zone formation water at the OLI site and in the Okeechobee Landfill, Inc. injectate.

Parameter	Injection Zone 1/14/2009	Injectate 2009	Injectate 4/2011
Chloride (mg/L)	20,000	3,588	4,700
Calcium (mg/L)	NM	250	200
Bicarbonate (mg/L) as CaCO3	NM	4,099	< 5000
Iron (mg/L)	0.48	209	2.0
Magnesium (mg/L)	NM	88	120
Ammonia as N (mg/L)	NM	780	1300
Total kjeldahl nitrogen as N (mg/L)	NM	718	1700
Nitrate as N (mg/L)	< 0.0075	0.2	0.31
gross alpha (pCi/L)	200	15.5	12
radium 226 (pCi/L)	46	2.2	1.4
radium 228 (pCi/L)	0.4	2.9	0.5
pH (standard units)(field)	7.30	7.5	7.26
Phosphorous, total as P (mg/L)	NM	5.7	11
Potassium (mg/L)	NM	925	1600
Total dissolved solids (mg/L)	32,000	7,725	14,000
Sodium (mg/L)	10,000	1,684	3100
Specific Conductance (umohs/cm)(field)	33100	17,831	27,400
Sulfate (mg/L)	2700	451	180
Temperature •C (field)	31.5	21.2	27.6
Total suspended solids (mg/L)	NM	42.0	46

Table 2.6 Injection Zone and Injectate Water Quality Comparison

The pH of the fluids is similar (within 1 standard pH unit). The total phosphorous, and nitrate levels in the injectate are higher than in the injection zone formation water but should not result in operational problems. The remaining principal constituents in the injectate are less than the levels in the injection zone formation water.

3.0 AS-BUILT RECORD DRAWINGS

The As-Built Record Drawings sealed by the Engineer of Record were previously submitted to FDEP in the following document:

-Operational Testing Request Okeechobee Landfill, Inc. Class I Injection Well System Okeechobee, Florida, L.S. Sims & Associates, Inc., July 2009, Appendix A.

Copies of the As-Built Record Drawings are provided in Appendix B.

4.0 ENGINEER'S CERTIFICATION OF WELL CONSTRUCTION COMPLETION

The certification of well completion by the Engineer of Record was previously submitted to FDEP in the following document:

-Operational Testing Request Okeechobee Landfill, Inc. Class I Injection Well System Okeechobee, Florida, L.S. Sims & Associates, Inc., July 2009, Appendix A.

A copy of the engineer's certificate of completion is provided in Appendix B.

5.0 OPERATION & MAINTENANCE MANUAL/FINANCIAL RESPONSIBILITY

The Operation & Maintenance (O&M) Manual for the OLI Injection System was prepared and submitted by L.S. Sims & Associates, Inc. in July 2009. The O&M Manual includes the actual injection procedures and emergency discharge procedures for the system which are currently in place and operational. Since the O&M Manual submittal to the FDEP in July 2009, the only operational change requiring updating pertain to substitution of compressed air from an electric air compressor for the nitrogen bottle previously used to maintain pressure in the annular system. The revised pages of the O&M Manual (page 5 and page 9) are provided in **Appendix C**.

The Plugging & Abandonment Plan (P&A) was updated for the O&M Manual in July, 2010 to reflect As-Built specifics (e.g. depths, etc.). The anticipated P&A costs were updated in April 2011 to ensure sufficient that financial responsibility vehicles would cover these costs. A copy of the financial responsibility instrument and updated P&A cost estimate is included in **Appendix C**.

6.0 PROPOSED MONITORING & REPORTING

The proposed monitoring and reporting program during system operation under the FDEP Operation Permit will be similar to the monitoring and reporting currently being conducted during the test operational period. The injectate flow rates, injectate pH, well-head pressures, annulus pressures and monitor zone well-head pressures will continue to be entered into a programmable logic controller (PLC). Monthly Operating Reports (MORs) will continue to be submitted to the FDEP on forms provided by the Department as an attachment to Construction Permit No. 0040842-022-UC. The MORs will be submitted by last day of the month immediately following the month of record.

6.1 Injection Well Data

The injection well operating data is archived as real time analog values to the OLI Utilities database via the PLC. OLI's standard is that these values get captured at 60 sec intervals. This data will be used to generate reports and plots of critical system data for operations management and regulatory reporting.

This data is displayed, and reports created using proprietary software. The following data will be reported on the MORs:

- Injectate flow rate in million gallons per day (daily maximum, daily minimum, daily average, monthly maximum, monthly minimum and monthly average)
- Injectate volume in million gallons (totalizer reading ,daily volume injected, monthly maximum, monthly minimum and monthly average)
- Annulus pressure (daily maximum, daily minimum, daily average, monthly maximum, monthly minimum and monthly average)
- Well-head pressure (daily maximum, daily minimum, daily average, monthly maximum, monthly minimum and monthly average)
- Deep and shallow monitor zone water levels (daily maximum, daily minimum, daily average, monthly maximum, monthly minimum and monthly average)

6.2 Monitor Well Sampling

The monitor zones will be sampled monthly in accordance with Chapter 62-58.450(3)(d) FAC. The sampling parameters will be as specified by FDEP Construction Permit No. 0040842-022-UC:

Upper Zone	Lower Zone
Chloride (mg/L)	Chloride (mg/L)
Calcium (mg/L)	Calcium (mg/L)
Bicarbonate (mg/L) as CaCO3	Sodium (mg/L)
Iron (mg/L)	Magnesium (mg/L)
Magnesium (mg/L)	Bicarbonate (mg/L) as CaCO3
Ammonia as N (mg/L)	Iron (mg/L)
Total kjeldahl nitrogen as N (mg/L)	Ammonia as N (mg/L)
Nitrate as N (mg/L)	Total kjeldahl nitrogen as N (mg/L)
Nitrite as N (mg/L)	Nitrate as N (mg/L)
pH (standard units)(field)	Nitrite as N (mg/L)
Phosphorous, total as P (mg/L)	pH (standard units) (field)
Potassium (mg/L)	Phosphorous, total as P (mg/L)
Total dissolved solids (mg/L)	Potassium (mg/L)
Sodium (mg/L)	Total dissolved solids (mg/L)
Specific Conductance (umohs/cm)(field)	Specific Conductance (umohs/cm)(field)
Sulfate (mg/L)	Sulfate, total as SO4 (mg/L)
Temperature •C (field)	gross alpha (pCi/L)
	radium 226 (pCi/L)
	radium 228 (pCi/L)
	Temperature •C (field)

The upper and lower monitor zones are each equipped with a 2.5-inch submersible pump. Prior to sample collection, the pumps will be activated until 5 casing volumes have been purged from each zone. Purge water will be routed back to the OLI injection well. Samples will be collected directly from the pump discharge line from each of the monitor zones.

6.3 Injectate Sampling

The injectate will be sampled monthly for the parameters specified by FDEP Construction Permit No. 0040842-022-UC:

 Table 6.3 FDEP Sampling Parameters

Chloride (mg/L)
Calcium (mg/L)
Bicarbonate (mg/L) as CaCO3
Iron (mg/L)
Magnesium (mg/L)
Ammonia as N (mg/L)
Total kjeldahl nitrogen as N (mg/L)
Nitrate as N (mg/L)
gross alpha (pCi/L)
radium 226 (pCi/L)
radium 228 (pCi/L)
pH (standard units)(field)
Phosphorous, total as P (mg/L)
Potassium (mg/L)
Total dissolved solids (mg/L)
Sodium (mg/L)
Specific Conductance (umohs/cm)(field)
Sulfate (mg/L)
Temperature •C (field)
Total suspended solids (mg/L)

A 24-hour composite sample of the injectate will be collected annually. This sample will be analyzed for the Primary and Secondary Drinking Water Standards (Chapter 62-550 FAC with exceptions noted in the OLI operating permit). Grab samples of the injectate will be collected for the volatile organic compounds and biologic parameters. Test results will be submitted to FDEP within 120 days of sample collection.

6.4 Specific Injectivity Testing

Injectivity Tests will continue to be conducted monthly during operation of the injection system. Test results will be submitted on the appropriate FDEP form as part of the MOR.

The test procedures for the OLI System are as follows:

- Shut-in well for a minimum of 30 minutes (turn off flow and shut injectate pump valves).
- Record shut-in static well-head pressure (at 10 sec., 20 sec., 30 sec., and 30 minutes after shut-in).
- Record initial totalizer flow reading.
- Open injectate pump valve and establish constant flow rate using the maximum flow rate that can be repeated on a monthly basis.
- Record flow rate and well-head pressure every 2 minutes for 10 minutes.
- Record final totalizer flow reading.
- Shut well in (turn off injectate pumps and shut valve) and record pressure fall off until static pressure is reached (minimum of 5 minutes).
- Exercise well-head values manually

The specific injectivity index will then be calculated by dividing the constant injection rate by the change in the injection pressure (well-head pressure minus the static or nonpumping pressure). Injectivity testing will be conducted at the same injection rate so that test comparisons can be made. Water levels in both monitor zones will be recorded before, during and after injectivity testing.

Injectivity Index = . <u>Injection rate</u> Injection pressure – Shut-in pressure

7.0 SITE SURVEY

A copy of the As-Built site survey is included in **Appendix B**. Okeechobee Landfill, Inc. has recorded the survey with the Okeechobee County Property Appraisers Office. A copy of the receipt for that filing is included in **Appendix C**.

8.0 **CASING MILL CERTIFICATES**

The casings used for construction of IW-I and MW-I conform to the American Society for Testing and Materials (ASTM) Designation A 53/A 53M-02 for seamless steel casings; ASTM Designation A 139-00 for spiral weld steel casing; and ASTM Designation D 2996-01 for FRP tubing. Copies of the mill certificates for casing used for well construction are included in Appendix D.

The casings used for construction of IW-I are as follows:

IW-I Casing String	Casing Interval
42-inch NPS Conductor Casing	0 – 250 ft
36-inch NPS Surface Casing	0 - 674 ft
26-inch NPS Intermediate Casing	0 - 1,994 ft
16-inch NPS Injection Casing	0 - 2,737 ft
10.72-inch FRP Tubing	0 – 2723 ft
NDC Nominal Ding size	ft East Rolow Land Curfage

Table 8.1 IW-I Casing Data

NPS-Nominal Pipe size

ft-Feet Below Land Surface

The casings used for construction of MW-I are as follows:

Table 8.2 MW-I Casing Data

MW-I Casing String	Casing Interval
34-inch NPS Conductor Casing	0 – 251 ft
24-inchNPS Surface Casing	0 - 684 ft
16-inch NPS Upper Monitor Zone Casing	0 - 1,789 ft
6-5/8-inch Lower Monitor Zone FRP Tubing	0 - 1,960 ft

9.0 OPERATIONAL TESTING DATA

The data collected during the first 20 months of operational testing is presented in tabular and graphical form in Appendix E. The operational data collected during this time demonstrates that the well is functioning as designed in accordance with FDEP regulations and permit conditions.

9.1 Flow

Injectate average daily flow rates ranged between zero (0) and approximately 609,000 gallons per day (gpd) during the operational test period from October 16, 2009 to May 31, 2011. The OLI landfill typically operates all year long but generates leachate at a higher rate during the rainy season from June through December. Leachate is collected and temporarily stored on site in lined and covered ponds; the ponds can store approximately two weeks leachate. Typically, the leachate is allowed to accumulate two to three days before the injection well is used to dispose of the waste water. As a result, the injection well is operated approximately three days each week. The flow data collected during the operational test period covers more than twelve months and is representative of the flows expected in the future. The current flow rates are much less than the injection rate of 3.16 mgd. Monthly injected volumes are graphically depicted in **Appendix E**.

9.1.1 <u>Alternate Discharge</u>

During scheduled maintenance and testing of the injection well system (e.g. 5-year MIT) the injection well system will be offline. During this time the wastewater will be stored in the lined and covered ponds. If required, flows from the landfill can be diverted to the Waste Management owned and operated landfill in Pompano Beach, Florida by tanker truck as disposed prior to injection well operation. Detailed information regarding emergency disposal methods is included in Section 2.4 of the facilities O&M Manual (Operation and Maintenance Manual, Injection Well System, Okeechobee Landfill, Inc. Okeechobee, Florida; L.S. Sims & Associates, Inc., July, 2009).

9.2 Well-Head Pressures

The injection well-head pressures recorded during the operational test period generally ranged between -4 and 27 pounds per square inch (psi) with the average being 1.6 psi. The maximum pressures (peak pressure sustained for at least 15 minutes) recorded was 27.0 psi and the minimum pressures recorded (minimum pressure sustained for 15 minutes) were negative numbers. It should be noted that during the first several months of operation, a valve on the well-head was kept partially closed to ensure the pH meter that continuously monitors injectate pH was kept wet. It was determined in August 2010 that the pH meter was immersed sufficiently in the injectate stream without the valve being partially closed and the practice was discontinued. With the valve partially closed, backpressure against the waste stream was generated and resulted in an artificially elevated well-head pressure,

The OLI injection well has a much higher surface elevation than most injection well systems in Florida. As a result, the potentiometric surface of the lower Floridan Aquifer System (injection zone) at the site is about 50 feet below ground surface. When only one injection pump is operating (flow rate below 300 gpm) the falling water in the injection tubing creates a vacuum and is reflected by the negative injection pressures that are common at the OLI facility. The average well-head pressures do not correlate with the average flow rates as a result of the artificially elevated injection pressure early in operational testing and the naturally low elevation of the injection zone potentiometric surface. Additionally, the recorded well-head pressures are much less than the maximum permitted well-head pressure of 72.6 psi (66% of the injection casing and injection tubing annulus mechanical integrity test pressure).

After some initial adjustments in late 2009 and early 2010, including replacing nitrogen with compressed air to adjust annular pressure in Mid February, 2010, the annular pressure was maintained between 55 to 79 psi. From March 2010 to the close of this reporting period (May 31, 2011) the annular pressure remained fairly constant with an average of 61.9 psi. No fluid was added to the annulus during the first 20 months of test operation. A graph of the well-head pressures recorded from the systems start up through May, 2011 is provided in **Appendix E**. Annular pressure changes appear seasonal and it is suspected that these pressure changes would correlate with ambient temperature and the temperature of injectate but the temperature data is not available to verify this.

9.3 Injectivity Testing

OLI's injection well is rather unique in that the well-head pressure is typically zero (0) if read from the analog gauge on the wellhead and the injection rates are relatively low. The digital gauge that is used to record well-head pressures for monthly operating reports record negative pressures as well as positive pressures. Negative pressures are common at the OLI facility because a vacuum is created by the falling water in the injection well casing. As can be seen below in the fall-off test during the May 4, 2011 Injectivity Test, negative pressures persist after the injection pumps are turned off and the valves are closed isolating the well from the injection pumps and piping.

Time	Start (Min)	Shut-In Pressure (psig)
13:01	0	-10.7
	0.5	-10.6
	1	-10.2
	1.5	-10.3
	2	-10.0
	3	-10.1
	4	-10.0
13:06	5	-10.0

1able 7.5 $105t$ $105t$ $105t$ $107t$ $101t$ $101t$ $101t$ $101t$ $101t$ $101t$ $101t$
--

During the May 4, 2011 Injectivity test the well-head pressure was -4.7 psi prior to turning off the injection pumps, when the pumps were turned off and the valve shut, the water column in the well continued to fall increasing the vacuum pressure in the well-head to -10.7 psi. This fluctuation in the pressure is typical for a confined aquifer after turning of a pump. After 5 minutes, the shut-in pressure increased to -10.0 psi and would likely continue for several more minutes. The shut-in pressure data confirm that the injection zone has high transmissivity and there is very little stress being placed on the aquifer as a result of injection.

A summary table and corresponding graphic chart of the monthly injectivity testing results are provided in **Appendix E**.

9.4 Monitor Zone Water Levels

During the first 20 months of operation the upper monitoring zone water levels ranged between 17.3 to 27.2 feet NAVD(1988). The average elevation during operational tsting was 21.5 feet. The lower monitoring zone water levels generally ranged between 3.0 to 10.8 feet NAVD(1988) during this reporting period with an average elevation of 6.7 feet during operational testing.

During October and November 2009, data recording errors made water level measurements unavailable until November 18, 2009. Subsequent data recording errors plagued the system throughout the first 12 months of operational testing. Various equipment and software failures accounted for the data gaps during this time frame. The causes for lapses in data collection and / or recording have included software glitches in the database recording computer and equipment failure due to power surges. One significant data gap occurred after a direct lightning strike to the well's PLC panel which destroyed several instruments and the radio equipment used to transmit the data to the recording computer.

In March 2011 a fiber optic cable was installed to transmit the operational data to the database computer which has eliminated most of the data collection and storage issues. At present, a new SCADA (supervisory control and data acquisition) system is in design and scheduled to be installed at the site before the end of 2011. The replacement system is expected to be significantly more reliable.

Submersible Pumps were replaced in April 2011. At that time, the level sensors were removed with the pumps and recalibrated. Water level data reflects this service and is evident in the graph of this data presented in **Appendix E**.

9.5 Water Quality Data

9.5.1 Lower Monitor Zone

During the first 20 months of operation the lower monitoring zone was sampled every week for 34 weeks and then monthly for an additional 12 months. (total samples n = 46). The average (\overline{x}) total dissolved solids (TDS) concentration in these samples is approximately 26,000 milligrams per liter (mg/L). As depicted on the graph in **Appendix** E, the TDS concentrations were generally stable and consistent until May 2010. Subsequently, TDS concentrations showed a general decline over time. Quality assurance questions arose over the TDS data due to related measurements (Chloride, Sodium, and Specific Conductance, etc.) not showing similar changes in concentration during this same time frame. After several months of discussions on this issue, the contracted laboratory, TestAmerica initiated an investigation and eventually determined that a new laboratory technician, who started in May 2010 utilized dilution techniques on high TDS samples which resulted in erroneous TDS values. A letter from the laboratory addressing this issue and proposed changes in procedures for high TDS samples is included in **Appendix E.** The major dissolved cations and anions in the lower monitoring zone formation water include chloride (Cl), sodium (Na), sulfate (SO4), magnesium (Mg), calcium (Ca), potassium (K), and bicarbonate (HCO3).

The principal constituents in the lower monitoring zone samples are Na ($\bar{x} = 10,700$ mg/L; n = 46) and Cl ($\bar{x} = 20,000$ mg/L; n = 46). These constituents typically comprise approximately 85% of the TDS in the lower monitoring zone samples. Due to the issues with recent TDS analyses, the proportions are not reflected in the most recent data for TDS. Both the Na and Cl concentrations were generally stable and consistent over the first 20 months of operation.

Other major dissolved constituents (SO4, Mg, Ca, K, and HCO3) in the lower monitoring zone formation water were also generally stable and consistent over the first 20 months of operation.

Several forms of nitrogen are monitored in the lower monitoring zone formation water including nitrite (NO2), nitrate (NO3), ammonia (NH3) and total kjeldahl nitrogen (TKN). The NO2 and NO3 compounds are basically absent in the lower monitoring zone samples. The NH3 concentrations have generally maintained initial values averaging 0.363 mg/L. The TKN levels also generally maintained initial values with an average of 0.67 mg/L. The highest TKN value measured was 3.90 mg/L on November 24, 2009. The lowest concentration measured was below the Method Detection Limit (MDL) and occurred six times during operational testing, the most recent occurred in May, 2010. Overall, NH3 and TKN are expected to maintain average concentrations as the impacts of the initial drilling operations appear to have subsided.

9.5.2 Upper Monitor Zone

During the first 20 months of operation the upper monitoring zone was also sampled every week for 34 weeks followed by monthly sample collection for 12 months (total samples n = 46). The average total dissolved solids (TDS) concentration in these samples is $\bar{x} = 18,500 \text{ mg/L}$. As depicted on the graph in **Appendix E**, the TDS concentrations showed variability during the first three months of operation but remained comparatively stable after that until May 2010 when the quality assurance problems with TDS values described in the previous section arose. The decrease in TDS values after May 2010 is attributed to the inappropriate dilution technique used by the laboratory technician. There was no similar change in associated inorganic analytes (eg. Chloride, Sodium, Specific Conductance) during the same time frame. As previously discussed, the laboratory has altered dilution techniques and has implemented a re-training program for analysts.

The major dissolved cations and anions in the upper zone formation water also include CL, Na, SO4, Mg, Ca, K, and HCO3 but at lower concentrations than in the lower monitor zone. The principal constituents in the lower zone samples are also Na ($\bar{x} = 6,400 \text{ mg/L}$; n = 46) and Cl ($\bar{x} = 13,000 \text{ mg/L}$; n = 46). These constituents typically comprise approximately 85% of the TDS in the upper zone samples. Due to the issues with recent TDS analyses, the proportions are not reflected in the most recent data for TDS.

The Cl concentrations were generally stable and consistent over the first 20 months of operation except for a relatively high value of 21,000 mg/L reported for the October 29, 2009 sample and a relatively low value of 11,000 mg/L reported for the November 19, 2009 and April 14, 2010 samples. The SO4 concentrations were generally consistent over the first 20 months of operation with range of values between 950 and 2,500 mg/L and an average concentration of 1,414 mg/L.

The Na concentrations ranged from 6,000 to 7,000 mg/L during the first 20 months of operation. The average Sodium concentration was 6,472 mg/L. Other dissolved constituents (Mg and K) in the upper monitoring zone formation water also have remained relatively consistent during the first 20 months of operation.

The bicarbonate concentrations in the upper monitoring zone samples have remained relatively constant throughout the initial 20 months of operation. The lowest value of 55 mg/L was obtained in Feb 2011 and the highest sample result (140 mg/L) was observed in the sample collected in March, 2010. The laboratory inadvertently did not analyze for bicarbonate during the first two and one half monthly sampling events. Average bicarbonate concentration has been 114 mg/L during the first 20 months of operation and values have been consistently close to that concentration for the last 15 months.

The NH3 concentrations averaged 1.662 mg/L during the first 20 months of operation. A high value of 2.00 mg/L was measured in February, May and December 2010. The lowest value of 0.24 was detected in December 2009 and March of 2010. Concentrations have remained relatively stable near the average value for the last 13 months. The TKN concentrations in the upper monitoring zone samples varied during the first 20 months of test operation reaching a maximum concentration of 3.10 mg/L in the sample collected March 2010 and the lowest concentration measured was below the Method Detection Limit (MDL) and occurred twice in October 2009 and February 2010. The average TKN concentration was 1.35 mg/L during operational testing. The TKN concentrations appear to have stabilized and have remained below 2.0 mg/L since April 2010.

9.5.3 Injectate

During the first 20 months of operation the injectate was sampled every month (total samples n = 20). The average total dissolved solids (TDS) concentration in these samples is x = 7,000 mg/L. The total suspended solids (TSS) content ranged from 15.0 mg/L to 85 mg/L. The average TSS concentration was 47 mg/L during operational testing. The principal cations and anions in the injectate include HCO3 (x = 800 mg/L; n = 20), Na (x = 2,000 mg/L; n = 20), Cl (x = 4,000 mg/L; n = 20), and K (x = 1,200 mg/L; n = 20).

All of the monitored nitrogen compounds are generally present in the injectate. TKN concentrations ranged from 45 to 1,800 mg/L during the first 20 months of test operation. The NH3 levels ranged from 410 to 1,500 mg/L. The NO3 levels ranged from Below Detection Limit (0.005 = MDL/2) to 0.50 mg/L. A copy of the annual analytical laboratory test report for Primary and Secondary Drinking Water Standards from April 2011 is included in **Appendix E**.

Florida Department of Environmental Protection

Twin Towers Office Bldg., 2600 Blair Stone Road, Tallahassee, Florida 32399-2400

DEP Form No:	62-528.900(1)
Form Title:	Application to Construct/
Oper	rate/Abandon Class I, III,
01	r V Injection Well Systems
Effective Date	:
DEP Application	n No.:
	(Filled in by DEP)

APPLICATION TO CONSTRUCT/OPERATE/ABANDON CLASS I, III, OR V INJECTION WELL SYSTEMS

Part I. Directions

- A. All applicable items must be completed in full in order to avoid delay in processing this application. Where attached sheets or other technical documentation are utilized in lieu of the blank space provided, indicate appropriate cross-reference in the space and provide copies to the Department in accordance with C. below. Where certain items do not appear applicable to the project, indicate N/A in the appropriate spaces.
- B. All information is to be typed or printed in ink.
- C. Four (4) copies of this application and four (4) copies of supporting information such as plans, reports, drawings and other documents shall be submitted to the appropriate District/Subdistrict office. An engineering report is also required to be submitted to support this application pursuant to the applicable sections of Rule 62-528, F.A.C. The attached list* shall be used to determine completeness of supporting data submitted or previously received. A check for the application fee in accordance with Rule 62-4.050, F.A.C., made payable to the Department shall accompany the application.
- D. For projects involving construction, this application is to be accompanied by four (4) sets of engineering drawings, specifications and design data as prepared by a Professional Engineer registered in Florida, where required by Chapter 471, Florida Statutes.
- E. Attach 8 1/2" x 11" USGS site location map indicating township, range and section and latitude/longitude for the project.

PART II. General Information

Α.	Applicant Name	Tim Hawkins			Title	Area V	Vice I	President	
	Address 2700 NW	1 48 th Street							
	City Pompano Be	each		State	Florida		Zip	33073-0000	
	Telephone Number	(954) 984-20	35						
в.	Project Status:	New	\boxtimes	Existing					
	Modification	(specify)							

*"Engineering and Hydrogeologic Data Required for Support of Application to Construct, Operate and Abandon Class I, III, or V Injection Wells"

C. Well Type:
Exploratory Well
Test/Injection Well

DEP Form No: <u>62-528.900(1)</u> Form Title: <u>Application to Construct/</u> <u>Operate/Abandon Class I, III,</u> <u>or V Injection Well Systems</u> Effective Date: DEP Application No.: <u>(Filled in by DEP)</u>

- D. Type of Permit Application
 - Class I Test/Injection Well Construction and Testing Permit
 - 🛛 Class I Well Operation Permit
 - Class I Well Operation Repermitting
 - Class I Well Plugging and Abandonment Permit
 - Class III Well Construction/Operation/Plugging and Abandonment Permit
 - Class I Exploratory Well Construction and testing Permit
 - Class V Well Construction Permit
 - Class V Well Operation Permit
 - Class V Well Plugging and Abandonment Permit
 - Monitor Well Only
- E. Facility Identification:

Name Okeechobee Landfill, In	C

Facility Location:	Street	10800 NE 128 th Avenue
City Okeechobee		County Okeechobee
SIC Code(s) 495303		

F. Proposed facility located on Indian Lands: Yes 🗌 No 🛛

G. Well Identification:

Well No. 1 of 1 Wells (total #)

Purpose (Proposed Use) Disposal of landfill leachate

Well Location: Latitude: <u>N27°</u> 20′ 10.879 Longitude: <u>W80°</u> 41′ 25.799 (attach separate sheet(s), if necessary, for multiple wells)

Subpart B. General Project Description:

H. General Project Description: Describe the nature, extent and schedule of the injection well project. Refer to existing and/or future pollution control facilities, expected improvement in performance of the facilities and state whether the project will result in full compliance with the requirements of Chapter 403, F.S., and all rules of the Department. Attach additional sheet(s) if necessary or cross-reference the engineering report.

See Operation Permit Application Support Document

Application Support Document, L.S. Sims & Associates, Inc., June, 2011

DEP Form No: <u>62-528.900(1)</u> Form Title: <u>Application to Construct/</u> <u>Operate/Abandon Class I, III,</u> <u>or V Injection Well Systems</u> Effective Date: DEP Application No.: <u>(Filled in by DEP)</u>

PART III. Statement by Applicant and Engineer

A. Applicant

I, the owner/authorized representative* of <u>Okeechobee Landfill, Inc.</u>, certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment. I understand that this certification also applies to all subsequent reports submitted pursuant to this permit. Where construction is involved, I agree to retain the design engineer, or other professional engineer registered in Florida, to provide inspection of construction in accordance with Rule 62-528.455(1)(c), F.A.C.

Tim Hawkins, Area Vice President Name and Title (Please Type) (954) 984-2035 Telephone Number

*Attach a Letter of Authorization.

B. Professional Engineer Registered in Florida

This is to certify that the engineering features of this injection well have been designed/examined by me and found to be in conformity with modern engineering principles applicable to the disposal of pollutants characterized in the permit application. There is reasonable assurance, in my professional judgement, that the well, when properly maintained and operated, will discharge the effluent in compliance with all applicable statutes of the State of Florida and the rules of the Department. It is also agreed that the undersigned will furnish the applicant a set of instructions for proper maintenance and operation of the well.

NUMBER E. MA	Signed 199
We 046092	Roger E. Mayfield, P.E.
	Name (Please Type)
O THE OF	REM Associates, Inc.
THE GOOD ADE DE TOUR	Company Name (Please Type)
Mailing Address(Please Type)	, #209-355, Merritt Island, Florida 32952
Florida Registration No0046092	Date Phone No 8786

DEP Form No: <u>62-528.900(1)</u> Form Title: <u>Application to Construct/</u> <u>Operate/Abandon Class I, III,</u> <u>or V Injection Well Systems</u> Effective Date: DEP Application No.: <u>(Filled in by DEP)</u>

ENGINEERING AND HYDROLOGIC DATA REQUIRED FOR SUPPORT OF APPLICATION TO CONSTRUCT, OPERATE, AND ABANDON CLASS I, III, OR V INJECTION WELL SYSTEMS

The following information shall be provided for each type of permit application.

A. CLASS I TEST/INJECTION WELL CONSTRUCTION AND TESTING PERMIT

- 1. A map showing the location of the proposed injection wells of well field area for which a permit is sought and the applicable area of review. Within the area of review, the map must show the number or name, and location of all producing wells, injection wells, abandoned wells, dry holes, surface bodies of water, springs, public water systems, mines (surface and subsurface), quarries, water wells and other pertinent surface features including residences and roads. The map should also show faults, if known or suspected. Only information of public record and pertinent information known to the applicant is required to be included on this map.
- 2. A tabulation of data on all wells within the area of review which penetrate into the proposed injection zone, confining zone, or proposed monitoring zone. Such data shall include a description of each well's type, construction, date drilled, location, depth, record of plugging and/or completion, and any additional information the Department may require.
- 3. Maps and cross sections indicating the general vertical and lateral limits within the area of review of all underground sources of drinking water, their position relative to the injection formation and the direction of water movement, where known, in each underground source of drinking water which may be affected by the proposed injection.
- 4. Maps and cross sections detailing the hydrology and geologic structures of the local area.
- 5. Generalized maps and cross sections illustrating the regional geologic setting.
- 6. Proposed operating data.
 - (a) Average and maximum daily rate and volume of the fluid to be injected;
 - (b) Average and maximum injection pressure; and,
 - (c) Source and an analysis of the chemical, physical, radiological and biological characteristics of injection fluids.
- 7. Proposed formation testing program to obtain an analysis of the chemical, physical and radiological characteristics of and other information on the injection zone.
- 8. Proposed stimulation program.
- 9. Proposed injection procedure.
- 10. Engineering drawings of the surface and subsurface construction details of the system.

- 11. Contingency plans to cope with all shut-ins or well failures, so as to protect the quality of the waters of the State as defined in Rule 62-3 and 62-520, F.A.C., including alternate or emergency discharge provisions.
- 12. Plans (including maps) and proposed monitoring data to be reported for meeting the monitoring requirements in Rule 62-528.425, F.A.C.
- 13. For wells within the area of review which penetrate the injection zone but are not properly completed or plugged, the corrective action proposed to be taken under Rule 62-528.300(5), F.A.C.
- 14. Construction procedures including a cementing and casing program, logging procedures, deviation checks, proposed methods for isolating drilling fluids from surficial aquifers, proposed blowout protection (if necessary), and a drilling, testing and coring program.
- 15. A certification that the applicant has ensured, through a performance bond or other appropriate means, the resources necessary to close, plug or abandon the well as required by Rule 62-528.435(9), F.A.C.

B. CLASS I INJECTION WELL OPERATION PERMIT

- 1. A report shall be submitted with each application for a Class I Well operating permit, which shall include, but not be limited to, the following information:
 - (a) Results of the information obtained under the construction permit described in A. CLASS I TEST/INJECTION WELL CONSTRUCTION AND TESTING PERMIT, including:
 - All available logging and testing program data and construction data on the well or well field;
 - (2) A satisfactory demonstration of mechanical integrity for all new wells pursuant to Rule 62-528.300(6), F.A.C;
 - (3) The actual operating data, including injection pressures versus pumping rates where feasible, or the anticipated maximum pressure and flow rate at which the permittee will operate, if approved by the Department;
 - (4) The actual injection procedure;
 - (5) The compatibility of injected waste with fluids in the injection zone and minerals in both the injection zone and the confining zone; and,
 - (6) The status of corrective action on defective wells in the area of review.
 - (b) Record drawings, based upon inspections by the engineer or persons under his direct supervision, with all deviations noted;
 - (c) Certification of completion submitted by the engineer of record;
 - (d) If requested by the Department, operation manual including emergency procedures;
- (e) Proposed monitoring program and data to be submitted;
- (f) Proof that the existence of the well has been recorded on the surveyor's plan at the county courthouse; and,
- (g) Proposed plugging and abandonment plan pursuant to Rule 62-528.435(2), F.A.C.

C. CLASS I WELL OPERATION REPERMITTING

- 1. An updated map showing the location of the injection wells or well field area for which a permit is sought and the applicable area of review. Within the area of review, the map must show the number or name, and location of all producing wells, injection wells, abandoned wells, dry holes, surface bodies of water, springs, public water systems, mines (surface and subsurface), quarries, water wells and other pertinent surface features including residences and roads. The map should also show faults, if known or suspected. Only information of pubic record and pertinent information known to the applicant is required to be included on this map.
- 2. A tabulation of data on all wells within the area of review which penetrate into the injection zone, confining zone, or monitoring zone. Such data shall include a description of each well's type, construction, date drilled, location, depth, record of plugging and/or completion, and any additional information the Department may require.
- 3. Maps and cross sections indicating the general vertical and lateral limits within the area of review of all underground sources of drinking water, their position relative to the injection formation and the direction of water movement, where known, in each underground source of drinking water which may be affected by the injection.
- 4. Maps and cross sections detailing the hydrology and geologic structures of the local area.
- 5. Generalized maps and cross sections illustrating the regional geologic setting.
- 6. Contingency plans to cope with all shut-ins or well failures, so as to protect the quality of the waters of the State as defined in Rule 62-3 and 62-520, F.A.C., including alternate or emergency discharge provisions.
- 7. For wells within the area of review which penetrate the injection zone but are not properly completed or plugged, the corrective action proposed to be taken under Rule 62-528.300(5), F.A.C.
- 8. A certification that the applicant has ensured, through a performance bond or other appropriate means, the resources necessary to close, plug or abandon the well as required by Rule 62-528.435(9), F.A.C.
- 9. A report shall be submitted with each application for repermitting of Class I Well operation which shall include the following information:
 - (a) All available logging and testing program data and construction data on the well or well field;

- (b) A satisfactory demonstration of mechanical integrity for all wells pursuant to Rule 62-528.300(6), F.A.C.;
- (c) The actual operating data, including injection pressures versus pumping rates where feasible, or the anticipated maximum pressure and flow rate at which the permittee will operate, if approved by the Department;
- (d) The actual injection procedure;
- (e) The compatibility of injected waste with fluids in the injection zone and minerals in both the injection zone and the confining zone;
- (f) The status of corrective actin on defective wells in the area of review;
- (g) Record drawings, based upon inspections by the engineer or persons under his direct supervision, with all deviations noted;
- (h) Certification of completion submitted by the engineer of record;
- (i) An updated operation manual including emergency procedures;
- (j) Proposed revisions to the monitoring program or data to be submitted; and,
- (k) Proposed plugging and abandonment plan pursuant to Rule 62-528.435(2), F.A.C.

D. CLASS I WELL PLUGGING AND ABANDONMENT PERMIT

- 1. The reasons for abandonment.
- 2. A proposed plan for plugging and abandonment describing the preferred and alternate methods, and justification for use.
 - (a) The type and number of plugs to be used;
 - (b) The placement of each plug including the elevation of the top and bottom;
 - (c) The type and grade and quantity of cement or any other approved plugging material to be used; and,
 - (d) The method for placement of the plugs.
- 3. The procedure to be used to meet the requirements of Rule 62-528.435, F.A.C.

DEP Form No:		62-528.900(1)
Form Title:	Application	to Construct/
Ope	erate/Abandon	Class I, III,
c	or V Injection	n Well Systems
Effective Date	:	
DEP Applicatio	on No.:	
	(Fil	led in by DEP)

E. CLASS III WELLS CONSTRUCTION/OPERATION/PLUGGING AND ABANDONMENT PERMIT

Construction Phase

- 1. A map showing the location of the proposed injection wells or well field area for which a permit is sought and the applicable area of review. Within the area of review, the map must show the number or name, and location of all producing wells, injection wells, abandoned wells, dry holes, surface bodies of water, springs, public water system, mines (surface and subsurface), quarries, water wells and other pertinent surface features including residences and roads. The map should also show faults, if known or suspected. Only information of public record and pertinent information known to the applicant is required to be included on this map.
- 2. A tabulation of data on all wells within the area of review which penetrate into the proposed injection zone, confining zone, or proposed monitoring zone. Such data shall include a description of each well's type, construction, date drilled, location, depth, record of plugging and/or completion, and any additional information the Department may require.
- 3. Maps and cross sections indicating the general vertical and lateral limits within the area of review of all underground sources of drinking water, their position relative to the injection formation and the direction of water movement, where known, in each underground source of drinking water which may be affected by the proposed injection.
- 4. Maps and cross sections detailing the hydrology and geologic structures of the local area.
- 5. Generalized maps and cross sections illustrating the regional geologic setting.
- 6. Proposed operating data:
 - (a) Average and maximum daily rate and volume of the fluid to be injected;
 - (b) Average and maximum injection pressure; and,
 - (c) Source and an analysis of the chemical, physical, radiological and biological characteristics of injection fluids, including any additives.
- 7. Proposed formation testing program to obtain an analysis of the chemical, physical and radiological characteristics of and other information on the injection zone.
- 8. Proposed stimulation program.
- 9. Proposed injection procedure.
- 10. Engineering drawings of the surface and subsurface construction details of the system.

- 11. Contingency plans to cope with all shut-ins or well failures or catastrophic collapse, so as to protect the quality of the waters of the State as defined in Rule 62-3 and 62-520, F.A.C., including alternate or emergency discharge provisions.
- 12. Plans (including maps) and proposed monitoring data to be reported for meeting the monitoring requirements in Rule 62-528.425, F.A.C.
- 13. For wells within the area of review which penetrate the injection zone but are not properly completed or plugged, the corrective action proposed to be taken under Rule 62-528.300(5), F.A.C.
- 14. Construction procedures including a cementing and casing program, logging procedures, deviation checks, proposed methods for isolating drilling fluids from surficial aquifers, and a drilling, testing and coring program.
- 15. A certificate that the applicant has ensured, through a performance bond or other appropriate means, the resources necessary to close, plug or abandon the well as required by Rule 62-528.435(9), F.A.C.
- 16. Expected changes in pressure, native fluid displacement, direction of movement of injection fluid.
- 17. A proposed monitoring plan, which includes a plan for detecting migration of fluids into underground sources of drinking water, a plan to detect water quality violation in the monitoring wells, and the proposed monitoring data to be submitted.

Operation Phase

- 1. The following information shall be provided to the Department prior to granting approval for the operation of the well or well field:
 - (a) All available logging and testing program data and construction data on the well or well field;
 - (b) A satisfactory demonstration of mechanical integrity for all new wells pursuant to Rule 62-528.300(6), F.A.C.;
 - (c) The actual operating data, including injection pressure versus pumping rate where feasible, or the anticipated maximum pressure and flow rate at which the permittee will operate, if approved by the Department;
 - (d) The results of the formation testing program;
 - (e) The actual injection procedure; and,
 - (f) The status of corrective action on defective wells in the area of review.

Plugging and abandonment Phase

1. The justification for abandonment.

- 2. A proposed plan for plugging and abandonment describing the preferred and alternate methods.
 - (a) The type and number of plugs to be used;
 - (b) The placement of each plug including the elevation of the top and bottom;
 - (c) The type and grade and quantity of cement or any other approved plugging material to be used; and,
 - (d) The method for placement of the plugs.
- 3. The procedure to be used to meet the requirements of Rule 62-528.435, F.A.C.

F. EXPLORATORY WELL CONSTRUCTION AND TESTING PERMIT

- 1. Conceptual plan of the injection project. Include number of injection wells, proposed injection zone, nature and volume of injection fluid, and proposed monitoring program.
- 2. Preliminary Area of Review Study. Include the proposed radius of the area of review with justification for that radius. Provide a map showing the location of the proposed injection well or well field area for which a permit is sought and the applicable area of review. Within the area of review, the map must show the number or name, and location of all producing wells, injection wells, abandoned wells, dry holes, surface bodies of water, springs, public water systems, mines (surface and subsurface), quarries, water wells and other pertinent surface features including residences and roads. The map should also show faults, if known or suspected. Only information of public record and pertinent information known to the applicant is required to be included on this map.
- 3. Proposed other uses of the exploratory well.
- 4. Drilling and testing plan for the exploratory well. The drilling plan must specify the proposed drilling program, sampling, coring, and testing procedures.
- 5. Abandonment Plan.

DEP Form No: <u>62-528.900(1)</u> Form Title: <u>Application to Construct/</u> <u>Operate/Abandon Class I, III,</u> <u>or V Injection Well Systems</u> Effective Date: DEP Application No.: (Filled in by DEP)

G. CLASS V WELL CONSTRUCTION PERMIT

(This form should be used for Class V Wells instead of Form 62-528.900(3), F.A.C., when there is a need for a Technical Advisory Committee and an engineering report.)

- 1. Type and number of proposed Class V Wells:
 - Wells Receiving Domestic Waste
 - Desalination Process Concentrate Wells (Reverse Osmosis, etc.)
 - Aquifer Storage and Recovery Wells
 - Aquifer Remediation Wells
 - Salt-water Intrusion Barrier Wells
 - Cooling Water Return Flow Wells Open-looped System
 - Subsidence Control Wells
 - _____ Sand Backfill Wells
 - Experimental Technology Wells
 - Wells used to inject spent brine after halogen recovery
 - Radioactive Waste Disposal Wells*
 - Borehole Slurry Mining Wells
 - Other non-hazardous Industrial or Commercial Disposal Wells
 - (explain)

Other (explain)

*Provided the concentrations of the waste do not exceed drinking water standards contained in Chapter 62-550, F.A.C.

- 2. Project Description:
 - (a) Description and use of proposed injection system;
 - (b) Nature and volume of injected fluid (the Department may require an analysis including bacteriological analysis) in accordance with Rule 62-528.635(2)(b), F.A.C.; and,
 - (c) Proposed pretreatment.
- 3. Water well contractor's name, title, state license number, address, phone number and signature.

DEP Form No:		62-528.900(1)
Form Title: A	pplication	to Construct/
Opera	te/Abandon	Class I, III,
or	V Injectior	n Well Systems
Effective Date:		
DEP Application	No.:	
	(Fill	ed in by DEP)
DEF Application .	(Fill	ed in by DEP)

- 4. Well Design and Construction Details. (For multi-casing configurations or unusual construction provisions, an elevation drawing of the proposed well should be attached.)
 - (a) Proposed total depth;
 - (b) Proposed depth and type of casing(s);
 - (c) Diameter of well;
 - (d) Cement type, depth, thickness; and,
 - (e) Injection pumps (if applicable): gpm @ psi

Controls:

- 5. Water Supply Wells When required by Rule 62-528.635(1), F.A.C., attach a map section showing the locations of all water supply wells within a one-half (1/2) mile radius of the proposed well. The well depths and casing depths should be included. When required by Rule 62-528.635(2), F.A.C., results of bacteriological examinations of water from all water supply wells within one-half (1/2) mile and drilled to approximate depth of proposed well should be attached.
- 6. Area of review (When required by Rule 62-528.300(4), F.A.C.)

Include the proposed radius of the area of review with justification for that radius. Provide a map showing the location of the proposed injection well or well field area for which a permit is sought and the applicable area of review. Within the area of review, the map must show the number or name, and location of all producing wells, injection wells, abandoned wells, dry holes, surface bodies of water, springs, public water systems, mines (surface and subsurface), quarries, water wells and other pertinent surface features including residences and roads. The map should also show faults, if known or suspected. Only information of public record and pertinent information known to the applicant is required to be included on this map.

H. CLASS V WELL OPERATION PERMIT

(Final report of the construction that includes the following information may be submitted with the application to operate.)

1. Permit Number of Class V Construction Permit:

2. Owner's Name:

3. Type of Wells:

DEP Form No: Form Title: Application to Construct/ Operate/Abandon Class I, III, or V Injection Well Systems Effective Date: DEP Application No.: (Filled in by DEP)

4.	Construction	and	Testing	Summary:
	0011001001011	0.110.	100011-	

(a) Actual Dimensions:

Diameter		Well Depth		Casing Depth	
	(inches)		(feet)		(feet)
(b) Result o	f Initial Test	ing –			
5. Proposed Open	rating Data:				
(a) Injectio	n Rate (GPM);				
(b) Descript	ion of injecte	d waste; and,			
(c) Injectio	n pressure and	pump controls.			
6. Proposed Moni	itoring Plan (i	f any):			
(a) Number	of monitoring	wells;			
(b) Depth(s	5);				
(c) Paramet	cers;				
(d) Frequer	ncy of sampling	; and,			
(e) Instrume	ntation (if ap	plicable) Flow			
		Pressure			

- 1. Permit number of Class V construction or operating permit.
- 2. Type of well.
- 3. Proposed plugging procedures, plans and specifications.
- 4. Reasons for abandonment.

J. MONITOR WELL PERMIT

This section should be used only when application is made for a monitor well only. If a monitor well is to be constructed under a Class I, III, or V injection well construction permit, it is necessary to fill in this section.

- 1. A site map showing the location of the proposed monitor wells for which a permit is sought. The map must be to scale and show the number or name, and location of all producing wells, injection wells, abandoned wells, dry holes, water wells and other pertinent surface features including structures and roads.
- 2. Maps and cross sections indicating the general vertical and lateral limits within the area of review of all underground sources of drinking water, their position relative to the injection formation and the direction of water movement, where known, in each underground source of drinking water which may be affected by the proposed injection.
- 3. Maps and cross sections detailing the hydrology and geologic structures of the local area.
- 4. Generalized maps and cross sections illustrating the regional geologic setting.
- 5. Proposed formation testing program to obtain an anlysis of the chemical, physical and radiological characteristics of and other information on the monitor zone(s).
- 6. Proposed monitoring procedure.
- 7. Engineering drawings of the surface and subsurface construction details of the monitoring system.
- 8. Proposed monitoring data to be reported for meeting the monitoring requirements in Rule 62-528.425, F.A.C.
- 9. Construction procedures including a cementing and casing program, logging procedures, deviation checks, proposed methods for isolating drilling fluids from surficial aquifers, proposed blowout protection (if necessary), and a drilling, testing and coring program
- 10. Monitor Well Information:

🛛 On-site 🛛 Multizone 🗌 Single-zone
Regional Other (specify)
Proposed Monitoring Interval(s) 1790-1840, and 1960-2000
Distance and Direction From Associated Injection Well 100 feet east

July 5, 2011

Mr. Gardner Strasser, P.G. Florida Dept. of Environmental Protection Underground Injection Control 400 N. Congress Avenue West Palm Beach, Florida 33401

RE: Class I, Injection Well System Okeechobee Landfill, Okeechobee, Florida Permit No. 0040842-022-UC

Dear Mr. Strasser:

This is to certify that the construction of the injection well IW-1, monitor well MW-1 and surface equipment, have been completed in accordance with the plans and specifications submitted and approved by the Florida Department of Protection and in accordance with Chapter 62-528 of the FAC. Record drawings are enclosed.

If you should have any questions or wish to discuss this further, please call.

Sincerely,

Roger E. Mayfield, P.E. Registration No. 0046092

Attachments

_		1	2	3	4	5	6	7	8
_	A					OKEEC LEACH	HOBEE	LANDF Sposal	ILL IN INJE
			NASTE N	ANAGE	MENT				
	B		DRAMNG LI	ST		AS BUI	LT CON	DITIONS	S
-			GENERAL G—1 IW SLA	AB — DIMENSIONAL	PLAN				
	С		CIVIL C—1 LEACH	ATE TRANSFER PIPE	ELINE ROUTING				
_			STRUCTRUA S-1 STRUC S-2 IW SL/	L TURAL NOTES AB — STRUCTURAL	PLAN				
_	D		S-3 IW SL/ S-4 CURB S-5 CATCH S-6 CONST S-7 STORM S-8 SLAB S-9 LEACH S-10 IW SL	AB ELEVATION SCHE – SECTION A I BASIN – SECTION IRUCTION JOINT DET IWATER SUMP – SE ACCESS RAMP – SI IATE PUMP STATION AB – CONTROL JOI	MATIC B AIL – SECTION C CTION D ECTION E – STRUCTURAL PL/ NT PLAN	AN & DETAILS			
	E		PIPING/MEC P-1 WELLH P-2 MW W P-3 LEACH P-4 LEACH P-5 INJECT	CHANICAL EAD PIPING DETAIL ELLHEAD PIPING DET IATE PUMP STATION IATE PUMP STATION NON WELL PIPING PI	TAIL — PIPING PLAN — SECTION LAN				
-			P-6 inject P-7 annul P-8 dual	TON WELL PIPING SI LUS VESSEL & STOF ZONE MONITORING V	ECTION & DETAILS RMWATER PUMP WELL — INSTALLATIO	N DETAILS			
	F		instrumen I-1 proces	TATION SS & INSTRUMENTAT	TION DIAGRAM			RD	GER E. WAYFELD, P.E. FL 4461 REN ASSIGLATES, INC. TEFCATE OF AUTHORIZATION & 22 4270 ALONA AVE., #21-54K
-		1	2	3	4	5	6	7	

	1	2 Z	3	4	5		6	7	8
				S	TRUCT	URA	L NOTES		
A	1. APPLICABLE 2. THE CONTRA	BUILDING CODE: FLORI ACTOR SHALL VERIFY AL	DA BUILDING CODE 2007 L EXISTING DIMENSIONS	7. AND CONDITIONS.		11. TH UNDER LEAST SHALL	E CONTRACTOR SHALL ⁻ THIS CONTRACT. TEST SEVEN (7) DAYS OLD. BE PERFORMED PRIOR	TEST THE WATER-TIGHT ING SHALL BE PERFORM TESTING FOR STRUCTUR TO PLACING ANY BACK	NESS OF STRUC MED AFTER THE ES DESIGNED TH TILL AROUND TH
8	3. THE CONTRA THAT COMPLY APPROVED BY 4. DESIGN LOAI A. SLAB ON GR B. SEISMIC: C. WIND: D. ALLOWABLE	ACTOR SHALL USE NEW WITH DRAWINGS AND SP THE PROJECT ENGINEER DS: RADE: AASHTD HS20-4 ZONE 7 12 SOIL BEARING: 2,000	MATERIALS AND EMPLOY ECIFICATIONS. ANY DEV IN WRITING. 44 W/ 25% IMPACT FAC 1 5 MPH PSF	(CONSTRUCTION METHON MATIONS MUST BE TOR	S	STRUC OPERA PERIOI RAINFA CONTA PRESE	TURES SHALL BE TESTE TING LEVEL AND OBSER THE DROP IN WATER ALL SHALL NOT EXCEED INED IN WATER HOLDING NT ON WALLS OR OTHER IRE FLOOR SURFACES IN ATE BURLAP-POLYETHY	D FOR LEAKAGE BY FIL VING THE WATER LEVEL LEVEL AFTER ADJUSTME 1/10 OF 1 PERCENT DI G STRUCTURE, AND DAM R AREAS EXPOSED TO V N ACCORDANCE WITH AC LENE WITH WATER AND	LING THEM TO AT THE END C INT FOR EVAPO NORMAL VOLL P SPOTS OR SI /IEW.
C	5. THE FOLLOW INSTALLED: A. EXCAVATE T EXSPOSED SUB DELETERIOUS M B. THE SUBGRA TESTED BY AN TO BE RESPON NEEDING EXCAV ARE TO BE BRO	ING IS TO BE DONE WHI GRADE IS TO BE INSPECT IATERIAL. ANY SUCH M ADE IS TO BE COMPACTE INDEPENDENT SOILS EN SIBLE FOR OBTAINING A /ATION BELOW THE SUBC OUGHT TO THE ATTENTIO	ERE NEW STRUCTURES (STRUCTURE OR SLAB S TED FOR ANY TRASH, F ATERIAL IS TO BE REMO ED TO 95% OF MAXIMUM GINEER FOR COMPACTIO ND PAYMENT OF THESE GRADE FOR REMOVAL OF ON OF THE PROJECT EN	DR SLABS ARE TO BE STRUCTURAL FILL. THE ROOTS OR ANY OTHER OVED. I PROCTOR DENSITY AND N. THE CONTRACTOR IS SERVICES. ANY AREAS DELETERIOUS MATERIAL GINEER.) 5 -	FLOOR CHECK 13. CC QUALIF PERFO i. SAM WTH / ii. SLU AND C iii. AIR	SLAB AREAS, LAPPING AND ADD WATER DAIL NCRETE TESTING: THE IED INDEPENDENT TESTI RM THE INSPECTION ANI RM THE FOLLOWING REG PLING FRESH CONCRETE ASTM C94. MP: ASTM C143; ONE T NE FOR EACH SET OF S CONTENT: ASTM C231,	ENDS AND SIDES; MAIN Y AS NEEDED TO KEEP ONTRACTOR SHALL EN NG LABORATORY, APPR D TESTING SERVICES SP QUIRED TESTS: : ASTM C172, EXCEPT I TEST FOR EACH CONCRE STRENGTH TEST SPECIMI PRESSURE METHOD FO	ITAIN IN PLACE BURLAP SATUR, IPLOY AT HIS (OVED BY THE E ECIFIED IN ACI MODIFIED FOR S TTE LOAD AT P(ENS, R NORMAL WEIC
D	6. CODES AND - ACI 301 - - ACI 318 - - ACI 347 -	STANDARDS: COMPLY V STRUCTURAL CONCRETE BUILDING CODE REQUIRE RECOMMENDED PRACTIC	MTH THE FOLLOWING DO FOR BUILDINGS. EMENTS FOR REINFORCEI DE FOR CONCRETE FORM	CUMENTS, D CONCRETE, WORK.		FOR E OF CH IV. STF FOR E LABOR V. STR	VERY OTHER CONCRETE ANGES REQUIRES. RENGTH TEST SPECIMENS ACH COMPRESSIVE STRE ATORY CURED TEST SPE ENGTH TESTS: ASTM C3	LOAD AT POINT OF DIS S: ASTM C31; ONE SET INGTH TEST. CAST AND ECIMENS AS SPECIFIED I 39 FOR COMPRESSION S	OF FOUR STAN STORE CYLINDE N ASTM C31. TRENGTH TESTS
	7. MINIMUM COU SHALL BE IN A 8. DESIGN MIX: DESIGN MIX FOR INGREDIENTS AN REQUIREMENTS	NCRETE STRENGTH AT 2 CCORDANCE WITH ACI-3 AT LEAST 31 DAYS PR R CONCRETE TO THE PR ND PROPORTIONS WILL F	28 DAYS = 4,000 PSI. 318. NOR TO START OF PLAC ROJECT ENGINEER, INDICA RESULT IN A CONCRETE	ALL CONCRETE WORK ING CONCRETE, SUBMIT ATING THAT THE CONCRE MIX MEETING	ETE	Compf 100 C Resul vi. Cef Compl	RESSIVE STRENGTH TEST U YDS., OR FRACTION TH TS IN WRITING TO THE F RTIFIED LABORATORY RE Y OR DO NOT COMPLY	S REPRESENTING ALL C HEREOF (MINIMUM OF 5 PROJECT ENGINEER. PORT SHALL STATE WHI WITH THE SPECIFICATION	ONCRETE AND (TESTS REQUIRE ETHER THE REP N
E	9. REINFORCING A615 GRADE 60 10. MINIMUM CL	STEEL SHALL BE NEW O. WELDED WIRE FABRIC LEAR COVER OVER REINF	BILLET BARS, INTERMED C SHALL BE AS PER AS FORCING BARS SHALL BI	IATE GRADE AS PER AS STM A185. E AS FOLLOWS:	ТМ				
F	A. CONCRETE B. CONCRETE	AGAINST EARTH, UNFOR AGAINST FORMWORK: 2	MED: 3 INCHES. 2 INCHES.					RO	ER E. NAYFELD, P.E. FL. #44 REN ASSOCIATES, INC.
			7	4	-				TFICATE OF AUTHORIZATION # 2: 4270 Alona ave., #124–54k Winter Park, florida 32792
	1	2	3	4	5	I	6	/	8

	9			10		
						A
						в
						С
						D
			AS BU	LT CONDITI 5/24/09	DNS	E
, " 9	L.S.SIMS & ASSOCIATES	DRAWN BY CHK'D, BY DRAWNG T OKEECHOR LECHATE SECTION I AREA	REM TILE TILE LANDFILL IN REE LANDFILL IN B G NO.	IDATE 11/8/08 ENGR. APPR.	REN REV.	F
	9			10		

9 10	
HS SHEET TO 6" HDPE PIPING,	A
S PIPING. FLOW METER TO BE TOR.	В
TPING TO BE PROVIDED AND TOR. MINIMUM COVER 3—FT. BE NSTALLED BY CONTRACTOR.	С
INSTALLED BY CONTRACTOR.	D
NORTH NORTH PEA PEA AS BUILT CONDITIONS 6/24/09 BY DESKIN REM SDALE DRAWN BY DATE B/25/05	E
CHCD. BY REW ENGR. APPR. PEN	F

9 10	
THIS SHEET	A
ED BY CONTRACTOR.	В
TO BE PROVIDED AND INSTALLED BY "IPING, FLG—TO—FLG.	С
	D
NORTH REVA	E
Image: Second state	F

9 10	
OF WORK RACTOR TO INSTALL ON CONCRETE DRILLED/EPOXY ANCHOR BOLTS.	A
1" SS PIPING & VALVES. PING PAD. SEE DRAWING S-9 FOR G STAND. CONTRACTOR TO INSTALL ON PAD WITH DRILLED/EPOXY ANCHOR	В
	с
URIED	D
REVA REVA REVA AS BUILT CONDITIONS 6/24/2009 DESIGN REV SIDALE DRAWN BY DATE 9/25/08 CHCD, BY REV ENGR. APPR. REN	E
Bit ECCHORE LANDFLL INC. DKEECHOREE LANDFLL INC. LECHATE INILUS VESSEL & STORNWATER PLAPP AREA JOB ND. PL.S.SIMS D & ASSOCIATES D B 10	F

O&M Manual Update

Annulus Liquid Level

Annulus tank low level is input to the PLC. The PLC generates the following alarm condition:

• Annulus tank level too low

The above alarm is reported to the operators via the HMI. Alarm condition continues until acknowledged by the operator. This is a critical alarm and initiates shut-down of the leachate pumping system.

1.11.3 Disposal Well System Data Reporting & Recording

The following parameters are continually reported to the HMI via the PLC. These readings are displayed on the HMI screen.

- Leachate flow
- Well head pressure
- Annulus pressure
- DP (calculated by PLC)
- Leachate pH

The HMI software records the above values to a database which will be used to generate Monthly Operating Reports.

1.11.4 Monitoring Well Data Reporting & Recording

The following parameters are continually reported to the HMI via the PLC. These readings are displayed on the HMI screen.

- Deep monitoring well water level
- Shallow monitoring well water level

The HMI software records the above values to a database which will be used to generate Monthly Operating Reports.

2.0 OPERATION AND CONTROL

2.1 System Startup

2.1.1 <u>Annulus Monitoring System</u>

Following is the start-up procedure for the well annulus monitoring and pressurization system. It is assumed that the well annulus is full of water (treated with corrosion inhibitor) and is at atmospheric pressure. It is also assumed that all equipment has been checked for proper rotation and alignment, electrical & control connections have been verified and initial servicing and lubrication has been competed. If the annulus is under pressure or conditions are otherwise, startup steps should be modified accordingly.

- a) Open valves connecting annulus tank to well.
- b) Open valves for sight glass.
- c) Fill annulus tank with water to the 75% full level. Add proper amount of corrosion inhibitor. Verify water level with sight glass.
- d) Open valves for pressure devices (pressure gauges; pressure transducers)
- e) Open valves connecting air compressor to annulus tank.
- f) Adjust air compressor pressure regulator to bring pressure in annulus tank to the specified level.
- g) Verify that annulus tank pressure and water level are stable.
- h) Verify functionality of pressure transducer. Pressure reported via the HMI should be the same as pressure read on the pressure gauge.

2.1.2 <u>Leachate Pumps & Injection Well</u>

Following is the start-up procedure for the Leachate injection pumps and injection well. It is assumed that all equipment has been checked for proper rotation and alignment, electrical & control connections have been verified and initial servicing and lubrication has been competed. If conditions are otherwise, startup steps should be modified accordingly.

- a) Verify that pressure and pH device valves are open:
- b) Verify that sample valves are closed.
- c) Verify that air relief isolation valve is open.

Financial Responsibility

1001 Fannin, Suite 4000 Houston, Texas 77002 Phone: (713) 512-6282 Fax: (866) 239-7964 Email: <u>dmeals@wm.com</u>

DT: June 24, 2011

_Memorandum

UPS Priority

- **TO:** Jim Christiansen (321) 704-4162 Waste Management, Inc. 10800 NE 128th Street Okeechobee, FL 34972
- FR: Donna Meals
- **RE:** Okeechobee Landfill Bond # 1019108 Okeechobee Landfill - Trust # E15629OKEECH

Enclosed are the above referenced certified copies of the bond and trust you recently requested. Please keep a copy for your file and forward the original to the Obligee/Beneficiary.

If you have any questions, please feel free to contact me at 713-512-6282.

Enclosure

/ls

STATE OF FLORIDA

UNDERGROUND INJECTION CONTROL PERFORMANCE BOND

Date bond executed: Augus	t 28, 2006
Effective date: <u>August 15, 2</u>	2006
Principal: Okeechobee Landfi	II, Inc., 10800 NE 128th Avenue, Okeechobee, FL 34972
ែកមិនិន។ ស្រា	e and prefuses whereas of owner or observed)
Type of Organization:	Individual
	Joint Venture
	Partnership
	X Corporation
State of Incompanyion.	Florida
prace of incorporation;	
Surety(ies): Lexon Insurance	Company, 10002 Shelbyville Road, Louisville, KY 40223
	(vaugis) gud Pneiusaz Addiset(sz))
DEP/EPA ID Number:	0040842-010-SC
Facility Name & Address:	Okeechobee Landfill, Inc. 10800 NE 128th Avenue, Okeechobee, FL 34972
Plugging and Abandonment Amount Post-Closure Monitoring Amount:	:: \$250,000.00 \$ -0-
Total penal sum of bond:	\$ 250,000.00
Surety's bond number: 10'	19108

Performance Bond Page 1 of 5

Know All Persons By These Presents, That we, the Principal and Surety(ies) hereto are firmly bound to the Florida Pepartment of Environmental Protection (hereinafter called FDEP), in the above penal sum for the payment, of which we bind ourselves, our heirs, executors, administrators, successors, and assigns jointly and severally; provided that, where the Surety(ies) are corporations acting as co-sureties, we, the Sureties, bind ourselves in such sum "jointly and severally" only for the purpose of allowing a joint action or actions against any or all of us, and for all other purposes each Surety binds itself, jointly and severally with the Principal, for the payment of such sum only as is set forth opposite the name of such Surety, but if no limit of liability is indicated, the limit of liability shall be the full amount of the penal sun.

Whereas said Principal is required, under the Underground Injection Control (UIC) rules, Chapter 62-528, Florida Administrative Code, to have a permit or comply with requirements to operate under rule in order to own or operate each injection well and associated monitor well(s) identified above, and

Whereas said Principal is required to provide financial assurance for plugging and abandonment and/or post-closure monitoring as a condition of the permit or provisions to operate under rule, and

Whereas said Principal shall establish a standby trust fund as is required when a surery bond is used to provide such financial assurance;

Now, Therefore, the conditions of this obligation are such that if the Principal shall faithfully perform plugging and abandonment and/or post-closure monitoring, whenever required to do so, of each injection well and associated monitor well(s) for which this bond guarantees plugging and abandonment and/or post-closure monitoring, in accordance with the plugging and abandonment and/or post-closure monitoring plan and other requirements of the permit or provisions for operating under rule as may be amanded, pursuant to all applicable laws, statutes, rules, and regulations, as such laws, statutes, rules, and regulations may be amended,

Or, if the Principal shall provide alternate financial assurance and obtain the FDEP Secretary's written approval of such assurance, within 90 days after the date of notice of cancellation is received by both the Frincipal and the FDEP Secretary from the Surety(ies), then this obligation shall be null and void, otherwise it is to retain in full force and effect.

The Surety(iss) shall become liable on this bond obligation only when the Principal has failed to fulfill the conditions described above.

Ferformance Bond Fage 2 of 5

-10-

Upon notification by the FDEP Secretary that the Principal has been found in violation of the plugging and abandonment and/or post-closure monitoring requirements of Rule 62-528, Florida Administrative Code, for an injection well or associated monitor well(s) which this bond guarantees performance of plugging and abandonment and/or post-closure monitoring, the Surety(ies) shall either perform plugging and abandonment and/or post-closure monitoring in accordance with the plugging and abandonment and/or post-closure rule and other permit requirements of provisions for operating under rule and other requirements or place the amount for plugging and abandonment and/or post-closure monitoring into a standby trust fund as directed by the FDEP Secretary.

Upon notification by the FDEP Secretary that the Principal has failed to provide alternate financial assurance and obtain written approval of such assurance from the FDEP Secretary during the 90 days following receipt by both the Principal and the FDEP Secretary of a notice of cancellation of the bond, the Surety(ies) shall place the full amount guaranteed for the injection and monitor well(s) into the standby trust as directed by the FDEP Secretary.

The Surety(ies) hereby waive(s) notification of amendments to plugging and abandonment and/or post-closure monitoring plans, permits, applicable laws, statutes, rules, and regulations and agrees that no such amendment shall in any way alleviate its (their) obligation on this bond.

The liability of the Surety(ies) shall not be discharged by any payment or succession of payments hereunder, unless and until such payment or payments shall amount in the aggregate to the penal sum of the bond, but in no event shall the obligation of the Surety(ies) hereunder exceed the amount of said penal sum.

The Surety(ies) may cancel the bond by sending notice by certified mail to the permittee and to the FDEP Secretary, provided, however, that cancellation shall not occur during the 12C days beginning on the date of receipt of the notice of cancellation by both the Principal and the FDEP Secretary, as evidenced by the return receipts.

The Principal may terminate this bond by sending written notice to the Surety(ies), provided, however, that no such notice shall become effective until the Surety(ies) receive(s) written authorization for termination of the bond by the FDEP Secretary.

Principal and Surety(ies) hereby agree to adjust the penal sum of the bond yearly so that it guarantees a new plugging and abandonment and/or post-closure monitoring amount provided that the penal sum does not increase by more than 20 percent in any one year, and no decrease in the penal sum takes place without the written permission of the FDEP Secretary.

Performance Bond Page 3 of 5

-11-

In witness Whereof, The Principal and Surety(ies) have executed this Performance Bond and have affixed their seals on the date set forth above.

The persons whose signatures appear below hereby certify that they are authorized to execute this surety bond on behalf of the Principal and Surety(ies).

Principal Okeechobee Landfill, Inc.

[Signature(S)]

Donna L. Meals, Director, Financial Assurance

[Name(s)]

(Title(s))

Performance Bond Page 4 of 5

Corporate Surety(ies)

Lexon Insurance Company, 10002 Shelbyville Road, Louisville, KY 40223

State of Incorporation: Texas

Liability limit: \$250.000.00

SAgnature(#);

Julie Radican

Attorney-in-Fact

· .

[Corporate Seal]

[For every co-surety, provide signature(s), corporate seal, and other information in the same manner as for Surety above.]

Bond premium: \$625.00

Performance Bond Page 5 of 5

)

POWER OF ATTORNEY

LX- 020363

Lexon Insurance Company

KNOW ALL MEN BY THESE PRESENTS, that LEXON INSURANCE COMPANY, a Texas Corporation, with its principal office in Louisville, Kentucky, does hereby constitute and appoint:

Kathy Hobbs, Raymond M. Hundley, Jason D. Cromwell, James H. Martin, Sandra F. Harper, Myrtie Henry, Julie Radican, Virginia E. Woolridge

its true and lawful Attorney(s)-In-Fact to make, execute, seal and deliver for, and on its behalf as surety, any and all bonds, undertakings or other writings obligatory in nature of a bond.

This authority is made under and by the authority of a resolution which was passed by the Board of Directors of LEXON INSURANCE COMPANY on the 1st day of July, 2003 as follows:

Resolved, that the President of the Company is hereby authorized to appoint and empower any representative of the Company or other person or persons as Attorney-In-Fact to execute on behalf of the Company any bonds, undertakings, policies, contracts of indemnity or other writings obligatory in nature of a bond not to exceed \$2,500,000.00, Two-million five hundred thousand dollars, which the Company might execute through its duly elected officers, and affix the seal of the Company thereto. Any said execution of such documents by an Attorney-In-Fact shall be as binding upon the Company as if they had been duly executed and acknowledged by the regularly elected officers of the Company. Any Attorney-In-Fact, so appointed, may be removed for good cause and the authority so granted may be revoked as specified in the Power of Attorney.

Resolved, that the signature of the President and the seal of the Company may be affixed by facsimile on any power of attorney granted, and the signature of the Vice President, and the seal of the Company may be affixed by facsimile to any certificate of any such power and any such power or certificate bearing such facsimile signature and seal shall be valid and binding on the Company. Any such power so executed and sealed and certificate so executed and sealed shall, with respect to any bond of undertaking to which it is attached, continue to be valid and binding on the Company.

IN WITNESS THEREOF, LEXON INSURANCE COMPANY has caused this instrument to be signed by its President, and its Corporate Seal to be affixed this 2nd day of July, 2003.

LEXON INSURANCE COMPANY

BY

David E. Campbell President

ACKNOWLEDGEMENT

On this 2nd day of July, 2003, before me, personally came David E. Campbell to me known, who being duly sworn, did depose and say that he is the President of **LEXON INSURANCE COMPANY**, the corporation described in and which executed the above instrument; that he executed said instrument on behalf of the corporation by authority of his office under the By-laws of said corporation.

"OFFICIAL SEAL"
LYDIA J. DEJONG
MY COMMISSION EXPIRES 1/12/2007

Lydia J. DeJong Notary Public

CERTIFICATE

I, the undersigned, Secretary of LEXON INSURANCE COMPANY, A Texas Insurance Company, DO HEREBY CERTIFY that the original Power of Attorney of which the foregoing is a true and correct copy, is in full force and effect and has not been revoked and the resolutions as set forth are now in force.

Signed and Sealed at Lombard, Illinois this ______ Day of Quegust, 2006____

TEXAS INSURANCE COMPANY

ld D. Buchanan

Donald D. Buchanan Secretary

Bond No. 1019108 RIDER To be attached to and form a part of Performance Bond _____ Bond, No. 1019108 dated the 15th day of August 2006 __ issued by LEXON Insurance Company, 10002 Shelbyville Road, Louisville, KY 40223 as Surety, on behalf of Okeechobee Landfill, Inc., 10800 NE 128th Avenue, Okeechobee, FL 34972 _, as Principal, Two Hundred Fifty Thousand and 00/100 in the penal sum of _ Florida Department of Environmental Protection, Underground Injection Dollars (\$ 250,000.00), and in favor of 2600 Blair Stone Rd, Twin Towers, Office Bldg., Mail Station 3530, Tallahassee, FL 323 In consideration of the premium charged for the attached bond, it is hereby agreed that the attached bond be amended as follows: The bond penalty is increased as follows: Current Bond Amount: \$257,500.00 Total New Bond Amount: \$260,139.38 Provided, However, that the attached bond shall be subject to all its agreements, limitations and conditions except as herein expressly modified, and further that the liability of the Surety under the attached bond and the attached bond as amended by this rider shall not be cumulative. This rider shall become effective as of the <u>15th</u> day of <u>August</u> 2009 day of 20**09** <u>1st</u> July Signed, sealed and dated this _____ Okeechobee Landfill, Inc. WITNESS: By A

PRINCIPAL

WITNESS:

LEXON Insurance Company Bv

Donna L. Meals, Authorized Representative

Attomey-in-Fact

Sandra F. Harper

POWER OF ATTORNEY

Lexon Insurance Company

KNOW ALL MEN BY THESE PRESENTS, that **LEXON INSURANCE COMPANY**, a Texas Corporation, with its principal office in Louisville, Kentucky, does hereby constitute and appoint: Brook T. Smith, Kathy Hobbs, Raymond M. Hundley, Jason D. Cromwell, James H. Martin, *****

Sandra F. Harper, Myrtie F. Henry, Julie Radican, Virginia E. Woolridge, Deborah Neichter, Jill Kemp, Jackie C. Koestel, Sheryon Quinn **

its true and lawful Attorney(s)-In-Fact to make, execute, seal and deliver for, and on its behalf as surety, any and all bonds, undertakings or other writings obligatory in nature of a bond.

This authority is made under and by the authority of a resolution which was passed by the Board of Directors of LEXON INSURANCE COMPANY on the 1st day of July, 2003 as follows:

Resolved, that the President of the Company is hereby authorized to appoint and empower any representative of the Company or other person or persons as Attorney-In-Fact to execute on behalf of the Company any bonds, undertakings, policies, contracts of indemnity or other writings obligatory in nature of a bond not to exceed \$2,500,000.00, Two-million five hundred thousand dollars, which the Company might execute through its duly elected officers, and affix the seal of the Company thereto. Any said execution of such documents by an Attorney-In-Fact shall be as binding upon the Company as if they had been duly executed and acknowledged by the regularly elected officers of the Company. Any Attorney-In-Fact, so appointed, may be removed for good cause and the authority so granted may be revoked as specified in the Power of Attorney.

Resolved, that the signature of the President and the seal of the Company may be affixed by facsimile on any power of attorney granted, and the signature of the Vice President, and the seal of the Company may be affixed by facsimile to any certificate of any such power and any such power or certificate bearing such facsimile signature and seal shall be valid and binding on the Company. Any such power so executed and sealed and certificate so executed and sealed shall, with respect to any bond of undertaking to which it is attached, continue to be valid and binding on the Company.

IN WITNESS THEREOF, LEXON INSURANCE COMPANY has caused this instrument to be signed by its President, and its Corporate Seal to be affixed this 2nd day of July, 2003.

LEXON INSURANCE COMPANY

LX-58629

BY

David E. Campbell President

ACKNOWLEDGEMENT

On this 2nd day of July, 2003, before me, personally came David E. Campbell to me known, who being duly sworn, did depose and say that he is the President of **LEXON INSURANCE COMPANY**, the corporation described in and which executed the above instrument; that he executed said instrument on behalf of the corporation by authority of his office under the By-laws of said corporation.

"OFFICIAL SEAL" MAUREEN K. AYE Notary Public, State of Illinois My Commission Expires 09/21/09

Mam K Maureen K. A

CERTIFICATE

I, the undersigned, Secretary of LEXON INSURANCE COMPANY, A Texas Insurance Company, DO HEREBY CERTIFY that the original Power of Attorney of which the foregoing is a true and correct copy, is in full force and effect and has not been revoked and the resolutions as set forth are now in force.

Signed and Sealed at Lombard, Illinois this	1st Day of July, 20 09.
SURANCE	
	<u>^</u>
TEXAS	
COMPANY	Jona

D. Buchanan

Donald D. Buchanan Secretary

"WARNING: Any person who knowingly and with intent to defraud any insurance company or other person, files an application for insurance or statement of claim containing any materially false information, or conceals for the purpose of misleading, information concerning any fact material thereto, commits a fraudulent insurance act, which is a crime and subjects such person to criminal and civil penalties."

		Bond	No. 1019108	
	RIDER			
To be attached to and form a part of _Performance	ce Bond	Bond	l, No. <u>1019108</u>	
tted the 15th_ day of August 2006	issued by			
EXON Insurance Company, 10002 Shelbyville Road,	Louisville, KY 40223		as Surety, on behalf	of
Okeechobee Landfill, Inc., 10800 NE 128th Avenue,	Okeechobee, FL 34972		as Princi	pal.
Two Hundred Fifty Thousand an	d 00/100		· · · · · · · · · · · · · · · · · · ·	. ,
the penal sum of	orida Department of Envir	onmental Protectio	n, Underground Inject	tion Tallahassee
consideration of the premium charged for the attac	hed bond, it is hereby ag	reed that the attach	ed bond be amended a	15
llows:				
e bond penalty is increased as follows:		<u></u>		-
rrent Bond Amount: \$250,000.00				
rrent Bond Amount: \$250,000.00 tal New Bond Amount: \$257,500.00				
rrent Bond Amount: \$250,000.00 tal New Bond Amount: \$257,500.00				
Provided However, that the attached bond shall h	e subject to all its agreen	ente limitatione a	nd conditions excent a	
Provided, However, that the attached bond shall b berein expressly modified, and further that the liability	e subject to all its agreen ity of the Surety under th	nents, limitations an e attached bond an	nd conditions except a d the attached bond as	-
Provided, However, that the attached bond shall berein expressly modified, and further that the liabilitimended by this rider shall not be cumulative.	e subject to all its agreen ity of the Surety under the	ents, limitations and e attached bond and	nd conditions except a d the attached bond as 2008	5
Provided, However, that the attached bond shall b berein expressly modified, and further that the liabilitienended by this rider shall not be cumulative. This rider shall become effective as of the	e subject to all its agreen ity of the Surety under the h day of	ents, limitations and e attached bond and August	nd conditions except a d the attached bond as , <u>2008</u>	S
Provided, However, that the attached bond shall b berein expressly modified, and further that the liabilitiemended by this rider shall not be cumulative. This rider shall become effective as of theStrangle	e subject to all its agreen ity of the Surety under the h day of	ents, limitations a e attached bond an August July	nd conditions except a d the attached bond as , 2008 , 2008	s
Provided, However, that the attached bond shall berein expressly modified, and further that the liabilismended by this rider shall not be cumulative. This rider shall become effective as of theSigned, sealed and dated this	e subject to all its agreen ity of the Surety under the h day of	ents, limitations a e attached bond an August July	nd conditions except a d the attached bond as <u>2008</u> , 2008	5
Provided, However, that the attached bond shall berein expressly modified, and further that the liabilismended by this rider shall not be cumulative. This rider shall become effective as of theStates Signed, sealed and dated this	e subject to all its agreen ity of the Surety under the h day of	ents, limitations an e attached bond an August July	nd conditions except a d the attached bond as , 2008 , 2008	5
Provided, However, that the attached bond shall berein expressly modified, and further that the liabilitizen expressly modified and further that the liabilitizen the shall become effective as of the	e subject to all its agreen ity of the Surety under the h day of day of Okeeg	ents, limitations an e attached bond an <u>Auqust</u> <u>July</u> hobee Landfill, Inc	nd conditions except a d the attached bond as , 2008 , 2008	S
Provided, However, that the attached bond shall b berein expressly modified, and further that the liabilitizer in expressly modified, and further that the liabilitizer is the shall be cumulative. This rider shall become effective as of theStrong Signed, sealed and dated thisOth	e subject to all its agreen ity of the Surety under the h day of day of Okeec	ents, limitations an e attached bond an August July hobee Landfill, Inc	nd conditions except a d the attached bond as , 2008 , 2008	S
Provided, However, that the attached bond shall b berein expressly modified, and further that the liabilitized by this rider shall not be cumulative. This rider shall become effective as of theSigned, sealed and dated thisMthttp://witness:	e subject to all its agreen ity of the Surety under the h day of day of Okeec By	ents, limitations a e attached bond an August July hobee Landfill, Inc	nd conditions except a d the attached bond as , <u>2008</u> , <u>2008</u>	s
Provided, However, that the attached bond shall berein expressly modified, and further that the liabilitizer of the shall become effective as of the 15th Signed, sealed and dated this 10th WITNESS:	e subject to all its agreen ity of the Surety under the h day of day of day of Market Constraints Market Constraints Mar	ents, limitations an e attached bond an August July thobee Landfill, Inc	nd conditions except a d the attached bond as , 2008 , 2008 , 2008	s
Inrent Bond Amount: \$250,000.00 Ital New Bond Amount: \$257,500.00 Provided, However, that the attached bond shall berein expressly modified, and further that the liabilitimended by this rider shall not be cumulative. This rider shall become effective as of the Signed, sealed and dated this WITNESS: Munic Marka Plank WITNESS:	e subject to all its agreen ity of the Surety under the h day of day of day of RINCIPAL	ents, limitations an e attached bond an August July hobee Landfill, Inc ans L. Meals, Au ance Company	nd conditions except a d the attached bond as <u>2008</u> , 2008 , 2008	s
Arrent Bond Amount: \$250,000.00 Ital New Bond Amount: \$257,500.00 Provided, However, that the attached bond shall berein expressly modified, and further that the liabilitimended by this rider shall not be cumulative. This rider shall become effective as of the Signed, sealed and dated this WITNESS: Manie Maria WITNESS: Annie Maria	e subject to all its agreen ity of the Surety under the h day of day of day of RINCIPAL LEXON Insura	ents, limitations an e attached bond an August July hobee Landfill, Inc ans L. Meals, Au ance Company	nd conditions except a d the attached bond as , 2008 , 2008 , 2008	s

)

19

POWER OF ATTORNEY

) LX-40103 Lexon Insurance Company

KNOW ALL MEN BY THESE PRESENTS, that LEXON INSURANCE COMPANY, a Texas Corporation, with its principal office in Louisville, Kentucky, does hereby constitute and appoint: John B. Manus, Mary E. Joseph, Brook T. Smith, Kathy Hobbs, Raymond M. Hundley **

Jason D. Cromwell, James H. Martin, Sandra F. Harper, Myrtie F. Henry, Julie Radican, Virginia E. Woolridge, Deborah Neichter *********

its true and lawful Attorney(s)-In-Fact to make, execute, seal and deliver for, and on its behalf as surety, any and all bonds, undertakings or other writings obligatory in nature of a bond.

This authority is made under and by the authority of a resolution which was passed by the Board of Directors of LEXON INSURANCE COMPANY on the 1st day of July, 2003 as follows:

Resolved, that the President of the Company is hereby authorized to appoint and empower any representative of the Company or other person or persons as Attorney-In-Fact to execute on behalf of the Company any bonds, undertakings, policies, contracts of indemnity or other writings obligatory in nature of a bond not to exceed \$2,500,000.00, Two-million five hundred thousand dollars, which the Company might execute through its duly elected officers, and affix the seal of the Company thereto. Any said execution of such documents by an Attorney-In-Fact shall be as binding upon the Company as if they had been duly executed and acknowledged by the regularly elected officers of the Company. Any Attorney-In-Fact, so appointed, may be removed for good cause and the authority so granted may be revoked as specified in the Power of Attorney.

Resolved, that the signature of the President and the seal of the Company may be affixed by facsimile on any power of attorney granted, and the signature of the Vice President, and the seal of the Company may be affixed by facsimile to any certificate of any such power and any such power or certificate bearing such facsimile signature and seal shall be valid and binding on the Company. Any such power so executed and sealed and certificate so executed and sealed shall, with respect to any bond of undertaking to which it is attached, continue to be valid and binding on the Company.

IN WITNESS THEREOF, LEXON INSURANCE COMPANY has caused this instrument to be signed by its President, and its Corporate Seal to be affixed this 2nd day of July, 2003.

LEXON INSURANCE COMPANY

David E. Campbell President

ACKNOWLEDGEMENT

On this 2nd day of July, 2003, before me, personally came David E. Campbell to me known, who being duly sworn, did depose and say that he is the President of LEXON INSURANCE COMPANY, the corporation described in and which executed the above instrument; that he executed said instrument on behalf of the corporation by authority of his office under the By-laws of said corporation.

> "OFFICIAL SEAL" MAUREEN K. AYE Notary Public, State of Illinois My Commission Expires 09/21/09

Maureen K. Aye

CERTIFICATE

I, the undersigned, Secretary of LEXON INSURANCE COMPANY, A Texas Insurance Company, DO HEREBY CERTIFY that the original Power of Attorney of which the foregoing is a true and correct copy, is in full force and effect and has not been revoked and the resolutions as set forth are now in force.

Signed and Sealed at Lombard, Illinois this	Day of 20_08
LEURANCE C	
	Conald
	Don

Buchanar

ald D. Buchanan Secretarv

"WARNING: Any person who knowingly and with intent to defraud any insurance company or other person, files an application for insurance or statement of claim containing any materially false information, or conceals for the purpose of misleading, information concerning any fact material thereto, commits a fraudulent insurance act, which is a crime and subjects such person to criminal and civil penalties."

UNDERGROUND INJECTION CONTROL STANDBY TRUST FUND AGREEMENT TO DEMONSTRATE FINANCIAL ASSURANCE

ASSISTANT VICE PRESIDENT & TRUST OFFICE

Certified Copy

TRUST AGREEMENT, the "Agreement," entered into as of <u>August 28, 2006</u> by and between <u>Okeechobee Landfill, Inc.</u>, a <u>Florida Corporation</u>, the "Grantor," and <u>JPMorgan Chase Bank</u> "incorporated in the State of <u>New York</u>" a national bank," the "Trustee."

WHEREAS, the Florida Department of Environmental Protection, "FDEP," an agency of the State of Florida, has established certain regulations applicable to the Grantor, requiring that an owner or operator of injection and associated monitor well(s) shall provide assurance that funds will be available when needed for plugging and abandonment and/or post-closure monitoring of the injection and associated monitor well(s),

WHEREAS, the Grantor, acting through its duly authorized officers, has selected the Trustee to be the trustee under this agreement, and the Trustee is willing to act as trustee,

NOW, THEREFORE, the Grantor and the Trustee agree as follows:

Section 1. Definitions. As used in this Agreement:

- (a) The term "Grantor" means the permittee who enters into this Agreement and any successors or assigns of the Grantor.
- (b) The term "Trustee" means the Trustee who enters into this Agreement and any successor Trustee.
- (c) The term "FDEP" means the Florida Department of Environmental Protection, an Agency of the State of Florida or any successor thereof.
- (d) The term "facility" means any underground injection well and associated monitor well(s) or any other activity that is subject to regulation under the Underground Injection Control Program, Chapter 62-528, Florida Administrative Code.

<u>Section 2. Identification of Facilities and Cost Estimates.</u> This Agreement pertains to the facilities and cost estimates identified on attached Schedule A.

<u>Section 3.</u> Standby Trust. This Trust shall remain dormant until funded with the proceeds from the <u>Surety bond</u> as listed on Schedule B. The Trustee shall have no duties or responsibilities beyond safekeeping this Document. Upon funding this Trust shall become active and be administered pursuant to the terms of this instrument.

Section 4. Establishment of Fund. The Grantor and the Trustee hereby establish a trust fund, the "Fund," for the benefit of the FDEP. The Grantor and the Trustee intend that no third party have access to the Fund except as herein provided. The Fund is established initially as consisting of the property, which is acceptable to the Trustee, described in Schedule B attached hereto. Such property and any other property subsequently transferred to the Trustee is referred to as the Fund, together with all earnings and profits thereon, less any payments or distributions made by the Trustee pursuant to this Agreement. The Fund shall be held by the Trustee, IN TRUST, as hereinafter provided. The Trustee shall not be responsible nor shall it undertake any responsibility for the amount or adequacy of, nor any duty to collect from the Grantor, any payments necessary to discharge any liabilities of the Grantor established by the FDEP.

Section 5. Payment for Plugging and Abandonment. The Trustee shall make payments from the Fund as the FDEP Secretary shall direct, in writing, to provide for the payment of the costs of plugging and abandonment and/or post-closure monitoring of the injection well(s) covered by this Agreement. The Trustee shall reimburse the Grantor or other persons as specified by the FDEP Secretary from the Fund for plugging and abandonment and/or post-closure monitoring expenditures in such amounts as the FDEP Secretary shall direct in writing. In addition, the Trustee shall refund to the Grantor such amounts as the FDEP Secretary specifies in writing. Upon refund, such funds shall no longer constitute part of the Fund as defined herein.

Section 6. Payments Comprising the Fund. Payments made to the Trustee for the Fund shall consist of cash or securities acceptable to the Trustee and shall consist solely of proceeds from the <u>Surety Bond</u>.

Section 7. Trustee Management. The Trustee shall invest and reinvest the principal and income of the Fund and keep the Fund invested as a single fund, without distinction between principal and income, in accordance with general investment policies and guidelines which the Grantor may communicate in writing to the Trustee from time to time, subject, however, to the provisions of this Section. In investing, reinvesting, exchanging, selling, and managing the Fund, the Trustee shall discharge his duties with respect to the trust fund solely in the interest of the beneficiary and with the care, skill, prudence, and diligence under the circumstances then prevailing which persons of prudence, acting in a like capacity and familiar with such matters, would use in the conduct of an enterprise of a like character and with like aims; except that:

 (i) Securities or other obligations of the Grantor, or any other owner or operator of the facilities, or any of their affiliates as defined in the Investment Company Act of 1940, as amended, 15 U.S.C. ∋80a-2.(a), shall not be acquired or held, unless they are securities or other obligations of the Federal or State government;

- (ii) The Trustee is authorized to invest the Fund in time or demand deposits of the Trustee, to the extent insured by an agency of the Federal or State government; and
- (iii) The Trustee is authorized to hold cash awaiting investment or distribution uninvested for a reasonable time and without liability for the payment of interest thereon.

Section 8. Commingling and Investment. The Trustee is expressly authorized in its discretion:

- (a) To transfer from time to time any or all of the assets of the Fund to any common, commingled, or collective trust fund created by the Trustee in which the Fund is eligible to participate, subject to all of the provisions thereof, to be commingled with the assets of other trusts participating therein; and
- (b) To purchase shares in any investment company registered under the Investment Company Act of 1940, 15 U.S.C. ∋80a-1 et seq., including one which may be created, managed, underwritten, or to which investment advice is rendered or the shares of which are sold by the Trustee. The Trustee may vote such shares in its discretion.

<u>Section 9. Express Powers of Trustee.</u> Without in any way limiting the powers and discretions conferred upon the Trustee by the other provisions of this Agreement or by law, the Trustee is expressly authorized and empowered:

- (a) To sell, exchange, convey, transfer, or otherwise dispose of any property held by it, by public or private sale. No person dealing with the Trustee shall be bound to see to the application of the purchase money or to inquire into the validity or expediency of any such sale or other disposition;
- (b) To make, execute, acknowledge, and deliver any and all documents of transfer and conveyance and any and all other instruments that may be necessary or appropriate to carry out the powers herein granted;
- (c) To register any securities held in the Fund in its own name or in the Name of a nominee and to hold any security in bearer form or in book entry, or to combine certificates representing such securities with certificates of the same issue held by the Trustee in other fiduciary capacities, or to deposit or arrange for the deposit of such securities ln a qualified central depository even though, when so deposited, such securities may be merged and held in bulk in the name of the nominee of such depository with other securities deposited therein by another person, or to deposit or arrange for the deposit of any securities issued by the United States

Government, or any agency or instrumentality thereof, with a Federal Reserve Bank, but the books and records of the Trustee shall at all times show that all such securities are part of the Fund;

- (d) To deposit any cash in the Fund in interest-bearing accounts maintained or savings certificates issued by the Trustee, in its separate corporate capacity, or in any other banking institution affiliated with the Trustee, to the extent insured by an agency of the Federal or State government; and
- (e) To compromise or otherwise adjust all claims in favor of or against the Fund.

Section 10. Taxes and Expenses. All taxes of any kind that may be assessed or levied against or in respect of the Fund and all brokerage commissions incurred by the Fund shall be paid from the Fund. All other expenses incurred by the Trustee in connection with the administration of this Trust, including fees for legal services rendered to the Trustee, the compensation of the Trustee to the extent not paid directly by the Grantor, and all other proper charges and disbursements of the Trustee shall be paid from the Fund.

Section 11. Annual Valuation. The Trustee shall annually, at least 30 days prior to the anniversary date of establishment of the Fund, furnish to the Grantor and to the Secretary of the FDEP a statement confirming the value of the Trust. Any securities in the Fund shall be valued at market value as of no more than 60 days prior to the anniversary date of establishment of the Fund. The failure of the Grantor to object in writing to the Trustee within 90 days after the statement has been furnished to the Grantor and the FDEP Secretary shall constitute a conclusively binding assent by the Grantor, barring the Grantor from asserting any claim or liability against the Trustee with respect to matters disclosed in the statement.

Section 12. Advice of Counsel. The Trustee may from time to time consult with counsel, who may be counsel to the Grantor, with respect to any question arising as to the construction of this Agreement or any action to be taken hereunder. The Trustee shall be fully protected, to the extent permitted by law, in acting upon the advice of counsel.

Section 13. Trustee Compensation. The Trustee is authorized to charge against the principal of the Trust its published Trust fee schedule in effect at the time services are rendered.

Section 14. Successor Trustee. The Trustee may resign or the Grantor may replace the Trustee, but such resignation or replacement shall not be effective until the Grantor has appointed a successor trustee and this successor accepts the appointment. The successor trustee shall have the same powers and duties as those conferred upon the Trustee hereunder. Upon the successor trustee's acceptance of the appointment, the Trustee shall assign, transfer, and pay over to the successor trustee the funds and properties then constituting the Fund. If for any reason the Grantor cannot or does not act in the event of the resignation of the Trustee, the Trustee may apply to a court of competent jurisdiction for the appointment of a successor trustee or for instruction. The successor trustee shall specify the date on which it assumes administration of the trust in a writing sent to the Grantor, FDEP Secretary, and the present Trustee by certified mail 10 days before such change becomes effective. Any expenses incurred by the Trustee as a result of any of the acts contemplated by this Section shall be paid as provided in Section 10.

Section 15. Instructions to the Trustee. All orders, requests, and instructions by the Grantor to the Trustee shall be in writing, signed by such persons as are designated in the attached Exhibit A or such other designees as the Grantor may designate by amendment to Exhibit A. The Trustee shall be fully protected in acting without inquiry in accordance with the Grantor's orders, requests, and instructions. All orders, requests, and instructions by the FDEP Secretary to the Trustee shall be in writing, signed by the FDEP Secretary, or the designee, and the Trustee shall act and shall be fully protected in acting in accordance with such orders, requests, and instructions. The Trustee shall have the right to assume, in the absence of written notice to the contrary, that no event constituting a change or a termination of the authority of any person to act on behalf of the Grantor or the FDEP hereunder has occurred. The Trustee shall have no duty to act in the absence of such orders, requests, and instructions from the Grantor and/or the FDEP, except as provided for herein.

Section 16. Amendment of Agreement. This agreement may be amended by an instrument in writing executed by the Grantor, the Trustee, and the FDEP Secretary, or by the Trustee and the FDEP Secretary if the Grantor ceases to exist.

Section 17. Irrevocability and Termination. Subject to the right of the parties to amend this Agreement as provided in Section 16, this trust shall be irrevocable and shall continue until terminated at the written agreement of the Grantor, the Trustee and the FDEP Secretary, or by the Trustee and the FDEP Secretary if the Grantor ceases to exist. Upon termination of the Trust, all remaining trust property, less final trust administration expenses, shall be delivered to the Grantor.

Section 18. Immunity and Indemnification. The Trustee shall not incur personal liability of any nature in connection with any act or omission, made in good faith, in the administration of this Trust, or in carrying out any directions by the Grantor or the FDEP Secretary issued in accordance with this Agreement. The Trustee shall be indemnified and saved harmless by the Grantor or from the trust Fund, or both, from and against any personal liability to which the Trustee may be subjected by reason of any act or conduct in its official capacity, including all expenses reasonably incurred in its defense in the event the Grantor fails to provide such defense.

Section 19. Choice of Law. This Agreement shall be administered, construed, and enforced according to the laws of the State of Florida.

Section 20. Interpretation. As used in this Agreement, words in the singular include the plural and words in the plural include the singular. The descriptive headings for each Section of this Agreement shall not affect the interpretation or the legal efficacy of this Agreement.

IN WITNESS WHEREOF the parties have caused this Agreement to be executed by their respective officers duly authorized and their corporate seals to be hereunto affixed and attested as of the date first above written.

Donna L. Meals

Director, Financial Assurance

Attest:

Sident and Secretary [Title]

[Seal]

may ma	MAY NG
[Signature of Trustee]	VICE PRESIDENT
	RUST OFFICER

Attest:

In Blamante Trust Officer [Title]

[Seal]

SCHEDULE A

. . .

This Agreement demonstrates financial assurance for the following cost estimate(s) for the following facility(ies):

			Cost Estimates t	for Which
Identification			Financial Assura	ance Being
Number of		Address of	Demonstrated	by This
Facility	Name of Facility	Facility	Agreemo	ent
0040842-010-SC	Okeechobee Landfill, Inc.	10800 NE 128 th Ave., Okeechobee, FL 34972	Plugging and Abandonment	\$250,000
			Post-Closure Monitoring TOTAL	\$0.00 \$250,000

The cost estimates listed here were last adjusted on August 15, 2006.

SCHEDULE B

The Fund is established initially as consisting of the following property:

\$250,000.00 (Two Hundred Fifty Thousand and oo/100 dollars), as evidenced by Surety Bond Number 1019108 issued by Lexon Insurance Company, effective August 15,2006.

November 30, 2010

Tony Bishop Waste Management Okeechobee Landfill 10800 NE 128th Ave. Okeechobee, FL 34972

Re: Injection Well & Monitor Well

Dear Mr. Bishop,

Please be advised that the price that All Webb's Enterprises, Inc. previously provided you for the plugging and abandonment of the monitor well and/or injection well remains unchanged.

If you have any questions or comments, please do not hesitate to contact our office.

Sincerely,

Tami L. Wells

Tami L. Wells Contract Administrator

Cc: David W. Webb, President J.E McGrath, P.G., L.S. Simms and Associates

309 COMMERCE WAY, JUPITER, FLORIDA 33458 PHONE (561) 746-2079 FAX (561) 746-4199 allwebbs.com

Deed Documents

FILE NUM 2011005205 OR BK 00701 FG 0860 SHARON ROBERTSON, CLERK OF CIRCUIT COURT DKEECHOBEE COUNTY, FLORIDA RECORDED 05/25/2011 01:40:43 PM RECORDED 05/25/2011 01:40:43 PM RECORDED BY R Parrish Pas 0860 - 863; (4pgs)

Return to:

Charles Orcutt Okeechobee Landfill, Inc. 10800 NE 128 Avenue Okeechobee, FL 34972

Parcel ID Number: 1-13-36-36-0A00-00001-0000

NOTICE

LOCATION OF DEEP INJECTION WELL SITE

AT

OKEECHOBEE LANDFILL, INC.

10800 NE 128 AVENUE OKEECHOBEE, FL 34972

1

. .

OKEECHOBEE LANDFILL, INC. A WASTE MANAGEMENT COMPANY

10800 NE 128th Ave. Okeechobee, FL 34972 (863) 357-0111 (863) 357-0772 Fax

The attached Survey is recorded in the Okeechobee County Public Records at the request of the Florida Department of Environmental Regulation, in order to notify all interested parties of the location of the Deep Injection Well site located in the North ½ of Section 13, Township 36 South, Range 36 East, at Okeechobee Landfill, Inc., 10800 NE 128 Avenue, Okeechobee, Florida 34972.

OKEECHOBEE LANDFILL, INC.

B١ BISHOP, District Manager

STATE OF FLORIDA COUNTY OF OKEECHOBEE

The foregoing instrument was acknowledged before me this $\frac{\partial \mathcal{Y}^{\mathcal{H}}}{\partial \mathcal{Y}^{\mathcal{H}}}$ day of May, 2011 by TONY BISHOP, District Manager of Okeechobee Landfill, Inc., who is personally known to me and who did not take an oath.

Notary Public, State of Florida

My Commission: <u>5/18/12</u>

Bondert Three

Engineering 🗞 Planning 🐟 Surveying 🐟 Environmental 2035 VISTA PARKWAY, SUITE 100, WEST PALM BEACH, FL 33411 (866) 909–2220 phone (561) 687–1110 fax CERTIFICATE OF AUTHORIZATION No. LB 7055 ORLANDO – PORT ST. LUCIE – TAMPA www.wantmangroup.com

SPIECIIFIC PURPOSIE SORVEY

FOR THE BENEFIT OF:

Okeechobee Landfill, Inc.

SURVEYOR'S NOTES:

- The survey date is 05/09/11 and documented in 1. Field Book 290, Pages 47-49.
- This is a Special Purpose Survey, as defined in 2. Chapter 5J-17.050(10)(a)-(k) of the Florida Administrative Code. The purpose of this survey is to provide the location of a deep injection well and a duel zone groundwater monitoring well with elevations for recording purposes.
- 3. This survey map and report or the copies thereof are not valid without the signature and the original raised seal of a Florida licensed surveyor and mapper.
- Additions or deletions to survey maps or reports 4. by other than the signing party or parties is prohibited without written consent of the signing party or parties.
- 5. Copyright © 2011 by Wantman Group, Inc.
- 6. The bearings shown upon this survey are based on Grid North as established by the National Ocean Service ("NOS") through its program office National Geodetic Survey ("NGS") and the North line of the South one-half (S 1/2) of Section 13, Township 36 South, Range 36 East, Okeechobee County, Florida, said North line bears South 88"21'48" East and all other bearings recited hereon are relative thereto.

- 7. Elevations shown hereon are referenced to the National Geodetic Vertical Datum of 1929 (NGVD 29), as established by benchmark National Geodetic Survey Point "C-357" having a published elevation of 57.15 feet North American Vertical Datum 1988 (NAVD 88) and an elevation of 58.43 feet (NGVD 29) using a conversion value of +1.28 feet.
- 8. The coordinate system utilized hereon is relative to the Florida State Plane Coordinate System, East Zone, North American Datum of 1983, 2007 adjustment as established using Real-Time Kinematic Global Positioning System ("RTK GPS") survey methods using the private Lengemann of Florida L—Net Network of fixed base stations. Utilizing L-Net's single baseline solution using a LOCAL BASE and multi baseline solution using Virtual Reference Stations were utilized throughout this project. The corrected positions computed by these networks were verified through a redundancy of measurements on located survey control as well as consistent horizontal checks to established control points to verify their accuracies. All distances shown hereon are in US Survey Feet and decimals thereof.
- 9. Underground improvements, if any, were not located except as shown.
- 10. Interior improvements, if any, were not located except as shown.

LEGEND:

Elev.	= Elevation
ORB	= Official Records Book
Pg.	= Page
0 CR	= Okeechobee County Records
Ν	= Northing
Ε	= Easting
Lat	= Latitude
Long	= Longitude
UE	= Utility Easement

I HEREBY CERTIFY THAT THIS SURVEY WAS MADE UNDER MY RESPONSIBLE DIRECTION AND SUPERVISION, AND IS A CORRECT REPRESENTATION OF THE LAND SURVEYED.

DATE OF LAST FIELD WORK: 05/09/11

For The Firm Wantman Group, Inc.

BY: Senel DATE:

DEREK G. ZEMAN,

DATE:	REVISION:	BY:	PROFE FLORIL	PROFESSIONAL SURVEYOR AND MAPPER FLORIDA LICENSE NO. 5655												
			OFFICE	MRG	DATE	05/09/11	JOB	30610602.00								
			CHECKED	DGZ	SHEET	1 OF 2	DWG	60200_inj Well ASB								

Appendix C CASING MILL CERTIFICATES OKEECHOBEE LANDFILL, INC. OKEECHOBEE, FLORIDA

INJECTION WELL

- 48" Pit Pipe
- 250 feet 42" Conductor Casing
- 674 feet 36" Surface Casing
- 1994 feet 26" Intermediate Casing
- 2737 feet 16" Final Casing
- 2723 feet 10.72 FRP Liner

DUAL ZONE DEEP MONITOR WELL

- 42" Pit Pipe
- 251 feet 34" Conductor Casing
- 684 feet 24" Surface Casing
- 1789 feet 16" Final Casing/ Shallow Monitor Zone
- 1960 feet 6-5/8" FRP Deep Monitor Zone Tubing

NAYLOR PIPE COMPANY

1230 EAST NINETY-SECOND STREET • CHICAGO, ILLINOIS 60619-7997 TEL. (773) 721-9400 • FAX (773) 721-9494

TO WHOM IT MAY CONCERN:

RE: MCJUNKIN CORPORATION P.O. BOX 37226 JACKSONVILLE, FLORIDA YOUR ORDER NO. C0357735930DO NAYLOR PIPE CO. ORDER B-42800

This is to certify that the 36" O.D. 3/8" Wall Naylor Spiral Buttweld Steel Pipe furnished on the above order was manufactured in strict accordance with ASTM A-139, Grade B.

NAYLOR PIPE COMPANY

Michael Griffin/rp/mcjunkin.3.19.08

Subscribed and sworn to before me a Notary Public this 19th day of March, 2008.

osemary () NOTĂRY PUBLIC

· ·	******				<u>.</u>		÷ • • •	
	BETA STEEL COR	P				PAGE		of I
	6500 S. BOUNDA	RY ROAD				SHIPPE	R'S NO. 516533	3
	PORTAGE, IN 45	368		DATE PRINTED	7/10/2006	PARTN	0	
BETA STEEL				TIME PRINTED	12.07.50	INVOICI	NO. BETA	141090
				P. O. DATE (05/18/06	MILL O	RDER 10273	23
F BETA STELL	CORP			P. O. NO. 5391	1	PIČKUP	NO. 13455	58
0 6506 S. BO	UNDARY RUAD			BULLETIN(S): 5	9327			
M PORTAGE, I	46368			К. адарараны даны ала адаран түрө райна даны түрөөнөн каланан каланан каланан каланан каланан каланан каланан к	······································			
S Naylor Pipe L 1230 East 9 D CHICAGO, II T -	e Company 92nd Street 50619-7997			Nay 675 POF	vlor Pipe 55 Waterwa RTAGE, IN	Co. c/o F y Dr. 46368	eralloy	S H P T
			······			······		0
DACH TUMP SPOPPED	F.O.B. MILI		ROUTE/ CA	RRIER SLFP		CAR/ V	EHICLE ID.	
07/10/06	PORTAGE,		S&L/FMP	PORT		TRACT	OR: 9506	
12:06	INDIANA				~	TRAIL	EK: AB	
TRANS. MODE CTR	TARI	E WEIGHT L	BS. EXCLU	DED WEIGHT LBS.	B/L WEIGH	T LBS. FRE	IGHT TERMS C	05
CUSTOMER TRUCK			0	0	7	2,250 CO	LLECT	
M/P/L:LOAD MUS MARK BAC THREE BA	T BE TARPED H PIECE OR CO NDS THRU EYE	OIL WITH OF COIL	MATERIAL AND TWO	ID, WEIGHT, CIRCUMFERENTI	WIDTH AND TAL BANDS	GAUGE		
MATERIAL ID	EEAT NO.	DIMEN	SIONS		PCS	AC	TUAL	
346256	J0710	.3600	X 41.700)	1	36	,070	
346257	50710	.3600	x 41.700)	1	36	,180	
ORDER FORAL	• • • •				2	72	, 2.50	
				. • •			- '	
Made and Melte	d in the USA				(1 ×	0.10		
PEAT: JU/10 FNUARL1	C 0.15	MN 0.61	P 0.005	S 0.004	S1 0.02	CU 0.11	N1 0.04	
	CR	AL	MO	v	СВ	X	В	
- FNLARL1	0.04	0.027 SM	0.014 TI	0.001	0.002	0.009	0	
- FNLARL1	0.0024	0.01	0.001					
Reherst 94 C QA Representative	hare							

	<u> </u>				۱۹۰۰ - ۲۰۰۰ میراند. ۱۹۹۰ - ۲۰۰۰ - میراند.		[3*					
	BETA STEEL CORP					PAGE:	2	of 2				
	6500 S. BOUNDARY	ROAD				SHIPPER	s NO. 516322	2				
	PORTAGE, IN 4850			DATE PRINTED	7/3/2006	PART NO.						
BETA STEEL				TIME PRINTED 1	1:06:25	INVOICE N	O BETA	140864				
				P. O. DATE ()5/18/06	MILL ORD	ER 10273	23				
F BETA STEEL	CORP			P. O. NO. 5391	1	PICKUP N	0. 13434	13				
R 6500 S. BOU	NDARY ROAD			BULLETIN(S): 59	0185, 59262	<u></u>						
M PORPAGE, IN	46368			L								
S Naylor Pipe L 1230 East 9 D CHICAGO, IL T	Company 2nd Street 60619-7997			Nay 675 PO5	vlor Pipe Co 55 Waterway MTAGE, IN 4	5, c/o Fei Dr. 6368	ralloy	S H I P T O				
		r				CAR/ VE	PICLE (D.					
OWNERS IME SHIPPED	F.O.B. MILL		ROUTE/ CAR	RIER SEFP		mp h CTTO	p. 9506					
07703706	PORTAGE,		S&L/FMP/	PORT	TRAILE	R: AB						
11:05	INDIANA				DIA METCHE	100 2000	HT TERMS P	PD				
TRANS, MODE PP	TARE	WEIGHT LBS	a. Exclos	SD WEIGHT LBS.	230 DDE							
PREPAID TRUCK		()	0	103	,200 PRE	PALD	<u> </u>				
MATERIAL SHIPPH ORDER OF 1027323 M/P/L:LOAD MUS MARK EAC	ED AS: HOT RO REERED DIMENSJ 600 X 41.7000 T BE TARPED H PIECE OR CO	LLED BAN CONS) X COIL IL WITH	nd MIN MATERIAL	ID, WEIGHT,	WIDTH AND	GAUGE						
THREE BA	NDS THRU EYE	OF COIL	AND TWO (CIRCUMFERENT:	IAL BANDS							
NAMPETST 3.7 1935	u¢አጉ NO	DIMENS	TONS		PCS	ACT	UAL					
MATERIAL ID	72170	2600 1	Z /11 7000		1	36,3	320					
346260	01120	.3000 2	1 41,7000		1	36	320					
Made and Melte HEAT: J2178	d in the USA C	MN	р	S	SI	CU	NI					
- FNLARLI	0.14	0.75	0.008	0.006	0.02	0.16	0.07 B					
	CR 0 05	AL 0.026	мо 0.021	v 0.001	0.002	0.008	0					
T INDUSING.	CA	SN	TI									
- PNLARLI	0.0026	0.01	0.001									

and a second second

......

.....

Robert M. Chace

OKEECHOBEE LANDFILL, INC. OKEECHOBEE, FLORIDA

								IIII	=	1	}					"1	012	HSk	YP	IPF	PLANT	-10		40	4119	, Wolzh:	skya Vo	lgogra	d regi	on, Russ	la				7	ME 1 C	0F 2
								V	01.2			TRU	8 8 9						OJS	C	24/17				E	Fax; -mail: \	(784 /1Z @	(3) 25 SPRIN	-69-0/ T-V.co	e m.ru							
	HAMUPA CT				1.				HTLL	TEST	CERTI	FICAT																				=1					
1 VOL 404 1 VOL 1 RUS	ZHSKY PIS 119, VOLS GOGRAD RE SIA	PE PLAN CHSKY EGION	n ojsc		SPEC 12 DESCRIP CARBON YEAR 20 (2006 E ON), BE 16" x 0	STEEL 041X4 DITION VELLS .500*	D END	1041 OCDS: MLESS ASTH .B/C/ DS. 6,4 x	7. TH PIPE A106/A	K POJ S ACC A 106 SA 10	08-0 CORDIN H (20 6 (200	358 G TO 06 ED 4 ED1	API S ITICH TICH)	L PSL) GR. B /ASME	1 (43 //C/AS SA53	RD EI TH AS	DITION 53/A 5 04 EDI	/ 3M TI-																	-		
	HEAT NO				<u> </u>														SRTI	FICATE	₽ 975	DATE C	F ISS	STNE 26	.06.	2006									*		
SIRE	EEAT	LOT	OUAN				1.01		CH	MICA	L COH	POSIT	ION,	•			INTLL CONT	-1	IORI-	·	TERS	ILE TES	T	HA	RD-	1		IH	PACT	TEST		18	EAT B	1 1	TYDROST	TIC TEST	
	HENT	No	PIPE	LENGTH	WEIGHT TONS		1.	X		s	CT	NI	Cu	Но	TI	did	PROL		TA-	TEST	GL	· 'C'	KI	- TE	ST	ORI -	10-	SI-IT	1733	INPA	CT FS	AC-A	R8- D T- T	: [DURA-	PRES-	NOTE
	LOT No					10	0 100	100	1000	1000	100	100	100	100	100	100	No	1	ION	ICI-	PSI	UTS PS1		i la	RC	TICM		1	ic l	VALO	1	IRE IN	EVT		ISE-	SURE KG/CM2	· ·
						1 2 1 ma		0 29 1 min 106 max	30 max	30 BAX	40 max	40 max	40 max	15 max	4 max			2	3		wim 42000	7000	0 30	n m	ax 2.00	3	•	-							min 6	(HPa) min 157.10 (15.40)	-
1	2	3	4	5		7 .	9	10	11	12	13	14	15	16	17	18	19	120	21	22	23	24			26					·							
CR.B/X42 16 x0.500*406. x12.7MM API 5L,P8L1 GR.B/C	282411	3-1072	69	2747.80	103.920	H 18 P 18 P 18	123	43 43 43	1 7 7	3 4 4	8	10 10 10	18 18 18	3	0 0 0	000	3464		L	 K					26		28	29		- 32		3	34 3 047 H	5 	36 G	37 G	38 CARBON STEEL SEAMLESS PIPES
USIM A106 / ASTR USAKASIM USAKASIM USHE SA-106 USHE SA-53	11																4612				53041	7200	2 42											2)			API 51 (2004) ASTM A16 (2006) ASTM A51 (2006) ASTM A51 (2006) ASTM A51 (2006) ASTM A51 (2006) ASTM SAF 53 (2004) LASKTH: LASKTH: LASKTH: LASKTH: MUX 201-36-31 FT MUX104-31 (2006) FAKSURE FF 2230 FST HARONGES TEST HARONGES TEST IN ACCORDANCE WITH HACE MEDITS.
DESCRIPTION OF TESTS	VISUAL A DIMENSIO	UND 1	BEVELI		END'S PROTECTOR		NDES	TROCT	IVE	COAT	PING	T							!			l 	<u> </u>	 			LATT	EN ING	HAR	LING,							
	a		a		٩			a		4		-																	STE	CILING		LECTR	IC FOR	NACE	- 255		
DTES: 1: N: HEAT A 1: L: LOT TE 1: L: LONGIT 4: STRIP G: 5: V: 20m V. 6: F: loxlog	G: GOO NALYSIS, ST. M: HE JDINAL, T L/2 in, H U: 2mm U 4, 7: 10x	D P: PROE AT CONT : TRAMS : 3/4 J . B: 3m 7.5mm,	DUCT AS TROL TI SVIRSE in, N: m. U. C 6: 103	ALYSIS. BT, A: 1 in, K 1 4mm U 6.7mm, 1	C: CONTR ADDITION : 1 1/2 1 . E: 2002 5: 10x5mm	OL AN TEST, n, Si U FAS . 3:	Rt I Rt I 12 s 8 NOT	IS. R RECHE MR. TCH.	: REC CK TE 7: 2m 2: 10	HECK ST N V J Dx2.5	ANALY	SIS OTCH				*7: 1 *8: 1 *9: 1 UTI UTI *10.	E - ED HEAT 1 HI WE1 B: PII S: PII S: PII	CH V REAT FLU E BO E NA	ALUE. HENT, ORKSCI DY UT	A - J Q4T: ENI HJ FCR I ICKNES	AVERAGE GUENCHS AGNETIC LAMINATI SS UT	VALUE D & TE PARTIC	MPERE LE TE E1 PI	D ST. D PE EBS	(I: 1 05 77	LECTRO FOR 1	Q MAGNE ANTIN	TIC 1		• •	1 A	IC TE	 FT				
TOTA	I OUAN	TITY OF	P PIPES	69 P	CS NET	WEIGH	T 103	3.920	T I	ENGT	H 27	47.88	ft		*****						UTCH 12	.51				*****					A	21					
+ 7 - 4	÷									1	NE CO	PAIR	THAT	PIPE	S HAS	NO CR	CARRI	INAT:	T. H	Y HERO	URY AND		STAND	ARD EX	102	04.313		•••••		13/	OTH	- Siter	1	ŀ	AJAGER	- INSPE	CTION A

OKEECHOBEE LANDFILL, INC. OKEECHOBEE, FLORIDA

										Æ	7						"	OLZ	HSI	(Y P	IPE	PLANT	ru -	L	40411	9, Wolz	isiy, H	lgogra	d regio	n, Russi	a				PAGE 1	DF 2
									0		八 H S	K Y	TRU	B.N.	Y				_	OJS	c				° 3	Fax E-mail:	: (784 VIZ @	(3) 25 SPRIN	69-02 T-V.con	n.n						
VO 46 VO RU	MANUFACI LEHSKY PI 4119, VOI LOOGRAD I SSIA	TURER I IPE PLAN 2HSKY IBGION	NT CJS	c		SPEC 12 DESCRIP CARBON YEAR 20 (2006 g	38/72 TION STEEL 04)X4 DITIO	/POJ OF GO SZAJ 2, B/J N) GR	1041 OODS NLESS ASTM .B/C/	HILL 17. TH PIPE A106/	TEST K POI S ACO A 104 SA 10	CERT 0 8-0 CORDIN 6H (20 06 (200	NG TO	API DITION	SL PSI N) GR.1	L1 (43 B/C/AS E 8353	RD E	DITION 53/A S	/															······		
					1	16" x 0	, 500-	(40)	i,4 x	12,7	NH)																							27		
8775	UDAN N	-		1			11			CH	BUCA	L CON	POSIT	TION,	+			HTLL	1	IORT-	1	7000	DATE O	FISS	JE 26.06	.2008										
	1 TREAT	- No	TITY	LENG	TH. N	MET	l lc	151	IMa	1 2	8	! Cr	1 81	Cu	Mo	1 71	Nb	ROL	1	RN-	TEST	tl at	LCI		HARD-			IM	ACT TI	est		HEAT	1 #	HYDROST	TATIC TES	τ
	LOT M		-	S FEET		TOUS	100 	X 100	100	1000	x 1000	x 100	100	× 100	100	¥ 100	× 100	PROT.		ITI-	ISPE-	YS PSI	UTS PSI	-	HRC	ENTA	TCH	91- 73 18 73	ST HP C	VALUE	TURE	AT-	T	DUEA- TION (SE-	PRES- SURE KG/CH2	NOTE
···;····					_		1 843	uin	min 106 max	Bax	Bax	max	40	40 max	15 max	4 B4x			:	:	:	min 42000	min 7000	130.	0 22.00	;	\$	-	;		·	:	;.	min 5	(HPa) min 157.10	
B/X42 16	· · · · · · · · · · · · · · · · · · ·	· · · · · ·		5		f	7 8	9	10	11	12	13	14	15	16	17	10	19	20	21	1						-				l		(10)		(15.40)	1
.500*406.	4	1	1		1	1	H 19 P 19	25	44	1	2	2	10	18	1	0	0				 X					27	28 2	9 3	31	32	33	34	35	36	37	38
- 551 190 190 190 190 190 190 190 190 190 19											7	7						3465	L			52544	74015											G	G	ICARGON STEEL BERAMLESS FIF: ACCOGNING TO AFT 51 (2004) AFT 51 (2004) AFT 51 (2004) AFT 51 (2004) ASTM 53 (2006) ASME 5A-106(21) ASME 5A-106(2
OF	VISUAL A		BEVELTH	ICH I	PROT	D'S	NON	DEST	ROCT	WE	COAT	ING							1		1	!			<u> </u>		1	1		1	1		1			
																					<u> </u>				1		TEST	DRIN	MARKI	BC1	STREE	MAKI	NJ PR	DCESS -		
a	G: G00		0	1		9	1	9		1	q		1		1			1										-	STRNC.	DALTING	ELECT	RIC F	URNACI	8		
H: HEAT AN L: LOT TES L: LONGITU STRIP G: 1 V: 20m V. F: 10x10mm TOTAL	ALYSIS, T. H: HE DINAL, T /2 in, H U: 2mm U , 7: 10x	P: PROD AT CONT : TRANS : 3/4 1 B: 3m 7.5mm, FITY OF	VERSE D. N: U.C. GI 1020 PIPES	ALYSIS ST. A: 1 in, 1 : 4nc 1 6.7mm. 84 1	. C: ADDI K: 1 J. E: 5: 10 PCS	CONTRO TION T 1/2 in, 2mm U 0x5mm, NET NO	L ANAL EST. 1 FASE 3: 10	LYSIS R: RE NOTC DX3.3	. R: ICHEC H. F	RECH X TES 1 2mm 2: 10: T L	V PA	ANALYS	918 OTCH 70.79	ft		:	7: E 8: H 9: M DTB UTS 10: 1	- RAC EAI TR WET PIPE PIPE - NO	N VA EATN BOD HAL	LUE, I SNT, (RESCEN Y UT 1 L THI(54, 12	A - A OGT, NT MA FOR L CKWES 2 - N	VERAGE V OUENCHEE GHETIC I AMINATIC S UT OTCH 12.	ALUE ARTICLI W. UTE:	TEST PIPE	. IDMJ; 1 ENOS 07	FLECTRO	G MAGNET AMINAT	I TIC TE TION	a 57.07	01.7	CONIG 1	#ST				
											14	E CON	FIRM PAIR	THAT	PIPES	HAS I	NO CO	ARRIE	ATIO	H BY	MERCI	URY AND								ts/	131			******		**************

OKEECHOBEE LANDFILL, INC. OKEECHOBEE, FLORIDA

1	I	٧	1		D	Nb+V+T	IICu	Cr+Ho+W	i.v
1	I	x	1	x	I	x	I	×	
1	11	100	11	000	10	100	I	100	- 23
1	1		-I-		-1-		-I		
1	I	8	τ		I	15	I	100	
1	D	Max	1		I	max	I	MAX	1.5
ŀ	·1		-1-		-1-		·I ····		
11	II.	0	I	4	I	0.	T	44	1
11	ΡI	.0	Ι	4	r	0	I	40	- 93
II	IS	0	I	4	r		T	41	1.13

PAGE 2 OF 2

INE CONFIEM THAT FIFES HAS NO CONTAMINATION BY MERCURY AND NO REFAIR BY MELDING HAS BEEN CARRIED OUT. MIC COMPLY WITH THE STANDARD EN 10204.31B.

HAMAGER - INSPECTION VOLZHSKY PIPS FLANT DATE: 14-06-07-CAL

OKEECHOBEE LANDFILL, INC. OKEECHOBEE, FLORIDA

"VOLZHSKY PIPE PLANT" 0JSC

404119, Volzhsky, Volgograd region, Russia

PAGE 1 OF 2

										H S I		TAU	8 11 1						OJS	C				ł	Fax E-mail;	(7844 VIZ @	(3) 2: SPRI	5-69-02 VT-V.co	? m.ru							
K VOL2 4041 VOL0 RUSS	ASUFACTO HSKY PIP 19. VOL3 OGRAD RE IA	RER I E PLAN SIGN	7 OJSC		SPEC 1: DESCRI CARBON YEAR 2 (2006) CN), HI 16" x (238/7 PTION STBR DO4)I EDITI EVELL D. 560	2/90 OF L SE 42.B CN)G ED E * (4	8 104 000DS AMLES AMLES AMLES AMLES AMLES ASTH R.B/C. KDS. DE, 4 1	XILL 17, TM 8 PIPE Al04/ /ASHE × 12,7	TEST IK POJ IS ACC A 100 SA 10 HMI	CRRTI 08-0 CORDIN M (20 6 (200	IFICAT IS TO IG TO IG EDI	API S DITION	iL PSL () GR.B /ASNE	1 (43 /C/AS SA53	RD ED TM AS 1200	JTION J/A 5 4 EDI	/ 3M TI-	2														•••••			
•••••	FEAT NO	1		1	÷				~~~~~									ic	CERTIT	FICATE	₽ 977	DATE OF	ISSUE	26.06	.2008											
SISE	HBAT	LOT	OUAN-	1	NET	11-	19	i Mn	1.2	1.	I Cr	I NI	I Cu	I No	1 74	N/h	CONT	-	IORI-		TENSI	LE TEST		HARD-				HPACT	TEST		H	EAT	H 1	HYDROST	ATIC TEST	1
	HENT.	No	PIPES	PRET	TONS		x 1 1	x x	1000		× 100	× 100	× 100	× 100		¥ 100	PROT		TI-	SPE- CI-	YS PSI	UTS PSI	-	HRC	ENTA TION	- TCH	SI-IS	TEMP	VALU	CT FR	AC-A	ENT	7	DUEA- TION (SE- COMDS)	PRES- SURE KG/CH3 (HPa)	NOTE
						1 1	28 3	0 25 n uir 106 108	30 max	30 max	40 max	40 max	40 BAX	15 94x	a a a			2	3		min 42000	sin 70006	min 30.0	Bax 22.00	;	5	6						(10)	nin S	min 157.10 (15.40)	
1	2	3	4	5	6	7	1	10	11	12	13	14	15	16	17	18	19	20	21	22	21	24	25	26	27	28	19	30 3	1 32		3	34	35	36	37	
10.3007406.4 N 13.77NU API 1 1.7511 R.8/C STM AIG6 / I STM AIG6 / I I I I I I I I I I I I I I	202413	3-1074	29	1168.48	44.391			12 G		87	777			1 1		00	13966 13966 4620	L .			54890	73805	46.5										M	c	c	CARGON STEEL GRANCESS FIFES ACCOMPING TO APT 5L (2004) APT 5L (2004) ASTM AL06(2005) ASTM ASJ (2006) ASTM ASJ (2006) ASTM SA-106(200 ASTM SA-55 (1004 LENOTH: HIN 808+38-41 F MAX 208+35-41 F MAX 208+35-41 HYDRUGTTATIC INTENDATATIC INTENDATATIC INTENDATATIC INTENDATATIC INTENDATATIC INTENDATATIC INTEN MACE NEO17
DESCRIPTION OF TESTS	VISUAL) DIMENSIO	 0110 2140	BRVELI	NG TION	END'S PROTECTO	RS	ACONTRA THIS	STROC	TIVE	COA	TING													 -		FLATT	RN IN T	G[HA3	KING:		TREL	HAN	HI PR	00389 -		
	a	1	a		a	-		a			a																		ACILIN	- 1	LICTR	IC P	URMAC	38		
TES: 1 H: KEAT AND 1 L: LOT TES: 1 L: LONGITUS STRIP G: 1, 1 V: Jam V, 1 2 F: 10x10en TOTAL	G: GOC ALYEIS, T. H: EF DINAL, T /2 in, H U: 2em U , 7: 10x	D P: PROI AT CONT: TRAMIT: 3/4 J . B: 30 7.5mm, TITY 0	DUCT AN TROL TI AVERSE In, N: 6: 102 F PIPES	GALYSIG. EST. A. 1 is. K 2: 4xm U 66.7mm, 3 23 P	C: CONT ADDITION : 1 1/2 ; E: 2pm 5: 10x5m CS NET	ROL A TEST in, S U FA R, 3: WEIG	UBALY , R: 12 SE H 10x	SIS, RECH MM. 0TCH, 3.300	R: RE BCK TI F: 2: , 3: 1	LENG	ANALS	YSIS NOTCH 168.4	4 ft	T 912		*7: *8: *9: 07 *10:	E - E NKA7 M: NE B: PI S: PI S: PI	ACH T TREAT T FLA PS BO NOTCI	VALUE, INERT, DORSEC DDY D1 ALL TE 5 54,	. λ - . Ο4Τι ΟΚΗΤ Η Τ FOR HICKNE 12 -	AVERAGE OUENCHE AGNETIC LAMINATI SE UT NOTCH 12	VALUE D & TEM PARTICL CON, DTE	PERED E TEST : PIPE	T. XMI : E ENDS	ELBCT D7 For	G ROHAGH LAHIH	WTIC ATIO	1 T257.	а ит. в.: 		11C 11	57				

OKEECHOBEE LANDFILL, INC. OKEECHOBEE, FLORIDA

INE CONFIRM THAT FIRES HAS NO CONTAMINATION BY MERCURY AND NO REPAIR BY WELDING HAS BEEN CARRIED OUT. MIC COMPLY WITH THE STANDARD BY 10204.318.

5

CHENTO	AL		-				
CUMPUS	11	1007					

IIV	1	8	I	ND+V+1	NIC.	+Cr+Mo+W	-117
IIX	1	×	I	x	1	*	
I1II00	I	1000	OT	100	Ŧ	100	÷.
I [-I		-1		-T		. :
III	I		I	15	Ŧ	100	
I IMAX	I		I	BAX	Ŧ	200	:
I-I	-1		-1.		-T		:
THI 0	I	4	Ŧ		-	11	1
IPI 0	Ŧ		÷		-	30	4
TRT A	-		:		4	30	1
161 0			1		1	36	1
	**						

.....

PAGE 2 OF 2

HAMAJER - INSPECTION VOLZHSKY PIPE PLANT DATE: 14 06 08. MA

TOTK CEPTED

завод

NAYLOR PIPE COMPANY

1230 EAST NINETY-SECOND STREET • CHICAGO, ILLINOIS 60619-7997 TEL. (773) 721-9400 • FAX (773) 721-9494

TO WHOM IT MAY CONCERN:

RE: MCJUNKIN CORPORATION P.O. BOX 37226 JACKSONVILLE, FLORIDA YOUR ORDER NO. C0357744336DO NAYLOR PIPE CO. ORDER B-42796

This is to certify that the 26" O.D. 3/8" Wall Naylor Spiral Buttweld Steel Pipe furnished on the above order was manufactured in strict accordance with ASTM A-139, Grade B.

NAYLOR PIPE COMPANY

Michael Griffin/rp/mcjunkin.4.9.08

Subscribed and sworn to before me a Notary Public this 9th day of April, 2008.

OSPMWW()

NOTARY PUBLIC

3/31/2008

Report: 109 Version 1.8 12/18/2007

CERTIFIED REPORT OF CHEMICAL ANALYSIS AND MECHANICAL TESTS

ArcelorMittal

NAYLOR PIPI C/O NACME S 127TH ST CH	E STEEL PROCESS IICAGO IL	ING 429 WEST	Mittal Steel Riverdale 13500 South Perry Avenue Riverdale, IL 60827											
NAYLOR PIPI C/O NACME S 127TH ST CH	E C/O NACME STEEL PROCESSI IICAGO IL	NG 429 WEST	PO#: 54 SO#: 374 Shipped: 3/2	416/1 Invoic 4304 Carrie 2/2008	ce #: 0500011972 er: MITTAL RIVERD									
		na presidente de la composition de la Composition de la composition de la comp												
Coil	Thickness (in)	Width (in)	Weight (tons)	End Use	Reduction Ratio									
763406	0.360	48.875	16.2	SPIRAL BUTTWE	83.37% (6:1)									
763407	0.360	48.875	18.1	SPIRAL BUTTWE	83.37% (6:1)									
763408	0.360	48.875	17.6	SPIRAL BUTTWE	83.37% (6:1)									
763409	0.360	48.875	17.5	SPIRAL BUTTWE	83.37% (6:1)									
763410	0.360	48.875	20.1	SPIRAL BUTTWE	83.37% (6:1)									
G	irade	Part Nuo	ohar	Com	monts									
ASTM A139 G We certify that this mate or radioactive elements.	RD B MOD1 anal meets the provisions of the Elongation based on 2" gage	HB3604887-01 YBuy America' program. This mail tength.	ienal was noticed and man	ufactured in the USA. All products :	are strand cast and free of mercury									
Coil Yield	Tensile % El	Dir N-Value N-Ra	nge Hardness Ben	d Ft-lbs °F	Size Dir									
<u> 2003 (2007)</u> 2007		<u> Aleksen kar</u> f												
Heat C M	40 P S Si 7 .008 .005 .03	Cu Ni Cr M .05 .01 .03 .01	lo Cb V A1 I .000 .002 .02	N Sn B 1 8 .0047 .005 .0000 .000	1 Ca Sb O H 20.0020.0000									

We hereby certify the above is correct as contained in the records of the corporation

Peter Zal

Peter Gaudreau
APR-4-2008 04:18P FROM:708 544-8820 KIEH CO. EST. 1979

METALLURGICAL SERVICES (708) 544-8811 544-8820 FAX

> Naylor Pipe Company 1230 E. 92nd St. Chicago, IL 60619-7997

> > Attn : James Martin

TO:Naslor

P:2/4

We accept no responsibility nor ilability for results derived from misinformation, nor samplas not representative of the corresponding material, nor a limited sampling plan nor insufficient resting. The information broulded is for the private use of our client and may not be published without our expressed consent.

> Laboratory: 837 MANNHEIM RD. BELLWOOD, IL 60104 Date 04-Apr-2008 received 03-Apr-2008 Report 108 14100 c of pages Account 1302

P.O. 2441

our 29th year est. 197

Test report /

Sample	Y.S.	Τ.S.	%E
identity	lbs/in^2	lbs/in^2	2"
V81851 3/8"x48"	48,200	74,000	35.0
Mittal /A17856			

ASTM A252 gr3 45,000 min. requirements

.

66,000 20.00

This samples reported properties conform to the requirements of an ASTM A252 gr3 material.

0

CHRIS RAOPESSIONAL ENGINESS PATROPEDOS REGISTRATION JOSAED.

Mechanical:ASTM E8/A370 Y.S.O.2% offset []trans. *broke out of g.l. [1"g.1.

-

10/4/2006 **CERTIFIED REPORT OF CHEMICAL ANALYSIS** Report: 108 AND MECHANICAL TESTS Version 1.5

04/11/2006

Mittal Steel Riverdale NAYLOR PIPE 13500 South Perry Avenue C/O NACME STEEL PROCESSING 429 WEST Riverdale, IL 60827 127TH ST CHICAGO IL NAYLOR PIPE C/O NACME PO#: Invoice # 53959 C/O NACME STEEL PROCESSING 429 WEST SO#: 276121 Carrier: MITTAL RIVERD 127TH ST CHICAGO IL Shipped: 10/3/2006 **Reduction Ratio** Thickness (in) Weight (tons) End Use Coil Width (in) 716869 0.375 52.400 17.7 EXCESS 82.68% (6:1) Part Number Comments Grade 1021 HX3755240-01 We certify that this material meets the provisions of the 'Buy America' program. This material was melled and manufactured in the USA. All products are strand cast and free of mercury or radioactive elements. Elongation based on 2° gage length. N-Value N-Range Hardness Coll Yield Tenslie % EI Bend Ft-lbs °F Size Dir 716871 66.8 KSI 84.6 KSI 23.0 % 65.7 KSI 84.5 KSI 24.0 % c Si Co Ni Cr Mo Cb V AL Ν B Ti Ca Heai Mn Ρ \$ Sn 815481 .21 .03 .03 .00 .001 .004 .036 .0053 .002 .0000 .0030 .0020 ,96 .008 .001 .20 .01

We hereby certify the above is correct as contained in the records of the corporation

Glen Mellde-Glen McAdam

METALLURGICAL SERVICES (708) 544-8811 544-8820 FAX

> Naylor Pipe Company 1230 E. 92nd St. Chicago, IL 60619-7997

> > Attn : James Martin

We accept no respansibility nor liability for results derived from misintormation, nor samples nor representative of the corre-sponding material, nor a limited tampling plan nor insufficient testing. The information provided is for the private use of our citent and may not be published without our expressed consent.

Laboratory: 837 MANNHEM RD. BELLWOOD, IL 60104

22-Mar-2007 Date received ~ 21-Mar-2007 107 12059 a of a Report pages Account 1302

P.O. 2553

____ our 28th year est, 1979

Test report /

Sample	¥.S.	Τ.S.	%E
identity	lbs/in^2	lbs/in^2	2"
V63002 3/8"x48"	54,200	81,600	32.0
Mittal /B15481	·	·	

ASTM A252 gr3 45,000 66,000 20.00 min. requirements

> This samples reported properties conform to the requirements of an ASTM A252 gr3 material.

Mechanical:ASTM E8/A370 Y.S.O.2%offset []trans. *broke out of g.l. ;1 03-22-07P04:16 RCVD 03-22-07P04:10 CFND

	8			· · ·			·				J.	
	Producer	0A0 "X	арцызский трубн	ный завод'	P]	SC "Khar	tsyzsk Tı	ıbe Wo	rks"		1.5 A.S	Serie da ent
e popular e a Carlos L		ул Донег	і. Патона, 9, г.Харі ікой обл. 86703 УІ	цызск (РАИНА	Ďo	9, Paton netsk Reg.	n str. Khai 86703 Th	rtsyzsk ie UKR	AINE			
	Грузополучателі 65026, Украин морской торго	ь, адрес С а, г.Одесси вый порт,	onsignee, address a, Таможенная пл. 1, С США	Эдесский	Дата отгрузк The date of k Shipment Заказ-наряд Order №	nad 15.12.20 № 2491	Cucto Ceptu Mana accor ISO 9 API 9 ISO 1 OHS/	ема управл фицирован gement Sys dance with 3001:2000; J spec Q1-Sev 4001:2004; 4001:2004; AS 18001:11	ения të no станда; tem is certifie the Standards QCTV ISO 900 venth Edition: 999.	1898 DTAM Id.in D1:2001:		
	Baroн Waggon [№] 6(6723800			Контракт № Contract №	633 от 19.05.2005	Produ Produ the S API S API S	укция фицирован icts is certifi tandard Spec 5L:200 Spec 2B:200	на по станда ed in accorda 4 1.	pry toss ince with		
	CEPTION CERTIFICA	KAT KA' TE OF (HECTBA QUALITY № 388	31	Страница Раде	Страниц Pages	2 Согл	асно Ассо	ordina. DIN	50049 3.1B		
-	Hai Der	именование comination o	товара f product	Sta	НД покрытия indard for coati	g		НД Standard	труб d for pipes			
	Трубы стальн изготовленные ме Electric-welded ion method of s	ые электроса тодом дугово gitudinal steel ubmerged an	арные прямошовные, й сварки под слоем флюса pipes, manufactured by the c welding under flux	d · ·			API Sp	ec 5L P	SL 2 (43r	d edition)		e e e e teres
	Mapka стали Steel grade Класс прочности	Номер трубы Pipe number	Номер плавки Heat number	Диа- Т метр ш дюйм д Dia- Т	ол- Длина ина фут юйм Length nick- foot	Номер парт соеди Weld joint	гии сварного инения lot number	Номер партии покр. Lot	Гидрои Hydros press Стандар-	icn. давл. static test sure, psi Aльтерна-		
	Strength factor			meter n inch i	ess nch	Продольного Longitudinal	Поперечн. Transverse	coating	тное Standart	тивное Alternative		· ·
	Gr.B/X42 Gr.B/X42 Gr.B/X42 Gr.B/X42 Gr.B/X42 Gr.B/X42 Gr.B/X42 Gr.B/X42	667301 667101 667501 667126 667122 667122 667109 667117 667202	0276 0302 0278 0302 0302 0302 0302 0302	36 0. 36 0. 36 0. 36 0. 36 0. 36 0. 36 0. 36 0. 36 0. 36 0. 36 0. 36 0. 36 0. 36 0. 36 0.	375 38.2 375 38.8 375 38.3 375 39.3 375 39.2 375 39.2 375 39.2 375 39.2 375 39.2 375 39.3 375 39.3 375 39.3	6673 6671 6675 6671 6671 6671 6671 6672			790 790 790 790 790 790 790 790 790	•		
	FSI P.O. 1040157 Electric-welded sta According to data the results are sati The preservative of Welded joints are notches N5 and or sensitivity not less Tensile tests of me part of a specimer by section size 0, and straightness of Heat treatment of J FSI P.O. 1040157 Электросварные По результатам з – результаты удо На всю наружную Сварные соедине осуществлялась и отверстие диамет чувствительность методу контроля, Испытания механ АSTM АЗ70 с ши направлении про толщине металла подвергалась гид соединений не пр	700 sel pipes witi available fro isfactory. coating made UT examine e radially di than 2 % thi achanical pa 1,496 in., ir 394X0,394 in f pipes are a pipes and wi 700 стальные т авода поста влетворите: поверхнос ония всех тр на эталонно гром 1,6 мм в че хуже 2 Результать ических сво риной в исг сатки по AS 0,375 in. Да равлическо оизводилас	h one longitudinal weld, m m the mill-supplier, steel j a by black bitumen lacquer d along the whole length, d illed hole-diameter 1.6 mn ickness of welded joint. Fi rameters of metal and wel npact toughness test ware toughness test ware toughness test ware toughness test ware nated ibid thickness 0,500 (ccording to API 2B. Each elded joints was not perfor by to be a API 2B. Each elded joints was not perfor by to be a API 2B. Each elded joints was not perfor by to be a API 2B. Each elded joints was not perfor by to be a API 2B. Each elded joints was not perfor by to be a API 2B. Each elded joints was not perfor by to be a API 2B. Each elded joints was not perfor a API 2B. Each elded joints was not perfor by to a be a API 2B. Each elded joints was not perfor a API 2B. Each elded joints was not perfor by to a be a API 2B. Each elded joints was not perfor by to a be a API 2B. Each elded joints was not perfor by to a be a API 2B. Each elded joints was not perfor by to a be a API 2B. Each elded joints was not perfor a API 2B. Each elded joints was not perfor by to a Balance a API 2B. Each elded joints was not perfor a API 2B. Each elded joints was not	аde by the mett plate used for p is applied onto calibration of eq n. Repaired and ull circumference ded joints were e performed on 0 in. and 0,625 i pipe was subje- med. All pipes a м швом, изгото в которого изго вационное покр пролированы у тыре механиче участки сварн единения. Пол ов контроля – 1 соединения. Пол ов контроля – 1 соединения н ца 1,496 in., ис учении0,394х0, прямолинейнос держки под да ны металличес	род of arc weldin pe production v the whole extei uipment was pe dend sections of e of end metal of performed on specimens cut of n., 0,394x0,295 cied to hydrosta are equipped wi раленные мето товлены трубь рытие, выполнен иная окружноот удовлетворите а растяжение о пытания на уд 394 in при толш влением не ме жими протекто ded in waggon	ад under flux (S vas subjected nal surface. formed on refi f welded joints of all pipes was lat full-size sp out transversa at metal thickr tic testing, en h steel bevel p дом дуговой с , подвергалоя металла кон подвергалиса металла кон	SAW). to ultrasonic e were tested UT examine ecimens as p lly to the roll ness 0,375 in durance time protectors. варки под ф ультразвукс и ультразвукс и одно ра, ь радиологич цов всех тру сь на плоски: на образцах 0,500 in и 0,6 бованиями А д. Термообра иты фаски.	ехатіпаtіо ard, witch by radiolog d. NDT res er ASTM / ing directio a. Toleranc e - 10 sec люсом (S/ овому конт аком. орйка обор диально т вескому ма б подверг х полноме с, вырезан АРІ 2В. Ка ботка труб	оп over the v contains fou gical examin suits are sa 3370 with wi on as per As es on out-or min. AW). гролю по во рудования росверлени алась ульт алась ульт алась ульт арных обра: ных в попе б и сварны?	whole area - ar machined hation with atisfactory. dth in tested STM A370 f- roundness сей площади ное розя с розя с розя с развуковому ацах по речном при к		
F	Погружено і Количес. Юбщая д	в вагон лина Теор	масса Теор. масса	Loa Теорет. масса	ded in waggon Теорет. масса	Кач трубс доку	нество труб, менте, соот обованиям н	, указанны ветствует 1Д.	ых в насто г условиям	нщем и Контракта		
	шт труб,.ф	рут труб	5, фунт труб, кг	покрытия, кг	покрытие	1,KF The	a auglity of n	ines inclu	ided in this	Certificate		

311.6

8

44498

.

Quantity, Total length of Theor. mass pcs pipes, foot of pipes, lb of pipes, kg Theor. mass of coating, kg 20117 0

The quality of pipes included in this Certificate with coating, kg requirements of Standard.

.

	ПОКАЗА	ТЕЛИ КА	AHECT	BA						,						IND	ICES (of QU	ALIT)	(
		Me Me	exаничес	жие сво properti	йства ме es of bas	талла e metal		·····	с. т. . м.	i.		Механи Mechar	ieckue lical p	свойст ropertie:	ва про s of Lo	одоль ngitu	ных сва dinal We	p H.'.coer Id Joints		
	Момер "	Времен.	Времен.	Предел	Относи	Энер	гия	Вязк.	COCT.		Номер	Времен	HOB 1	Энергия Удере	Ста	ати- кий	Тверд	ость. На JACE M	rdness R0175	-
	Неаt	сопрот, вдоль	Compor.	чести Уюги	удлине	уда Imp Ieneras	act	Shear	area,	%	Lot	ление Ultima	te er	Impact lergy. ft-	Ib Guid	иб Jed-	осн. металл	30Ha	метал	<u>m</u> al X
	i numosi	strength	strength	strength	Relative		ĸ	1 :CV				streng psl	h.	по Ц.Ш.	<u>be</u> te	nd t st	he area of base	возд. heat	coed weid	
		ps	psl	PU	tion, %	•	1	32°F		٩°				32°F		12.	metal	affected zone	meta	u i
	0276	I	78000	58000	35	75 69	66	80 8	0 80		6671	85000	. 44	49 5	2 s	at .	1	3	7	
	0278		76000	54000	39	94, 83	82	90 [°] 9	0 90		6672	84000	6	53 6	8 s	at	2	3	8 10	i
	0302		76000	55000	38	63 59	68	80 8	0 80		6673	81000	78	3 79 8	0 s	at	1	5	15	
	0002	•	75000	55000	40	59 66	-68	80 8	0.,80		6675	82000	- 56	5 51 5	2. s	at	1	3	12	
	- 0325		2.5		· · ·		:								•	· • • • •	. 2	3	11	
				· · · · ·	· ·							•	•					· · · ·		
	the state of the s				. :	:	:	• •			e dijt. F			2 ×						
				·	. •											• .	•	•		·.
			··· · .	•	·					· • • •									i.	
	Треб. контр.			• .										5.3		•	-	•	•	•
n de la Constante de la constan En estate	of Contract		·		1977 - 19 19	13-48 14 - 7								1.4			· · · · ·			_
		• •			72 - C 3		· .•	Хими Chemi	iческий ical co	rcocti nposit	ав, % lon, %	1		i an						
	Номер плавки	CE X100	C . S) 00 x10	₀₀ ,	P x1000	x1000	Nb \$x100	TI 0 x1000	Cu 0 x100	Cr x100	N X1	0	Мо x100	\$N Xf000	Ca x1000	B x100	00
· · · ·	Heat	Pcm							: :	969 S S F	(2314	••				• • •			·	
	0276	33 34 15 16	16 21 16 23	21 105	107 45 4 107 46 4	18 5 16 5	5 5	11 11 10 9	5.5	23, 2 19	24 18 17 7 14 1	7 1 1	2 2	2 1	1	•	55		2	2
-	0278 -	34 35 16 16	16 22 16 28	25 104 28 110	109-38 2 112-28 2	29 5 28: 3	4 1	12 13 11 11:	5 5	23 2	25 12 9 20 7 7	2 1	34	1 2 5.	1		57	•	2	2
	0302	31 31 15 16	15 21 16 22	21 90 22 88	89 49 4 87 44 4	14 7 13 6	7 1 6 1	14 13 12 12	5,5	10	0555	3 [°] 3 3 3	4.4	1 2	2 1		77	:		·
	0325	35 35 16 14	16 33 15 48	33 104 48 112	105.38:4 110.36	11 6 6 6	5 1 6 1	11 <u>12</u> 14 14	5.5. 5. (19)	10. Set	0 14 16	6 1 1 7 3 2	5 8	5	2 2	. ·	7.7	• •	•	
								y y y y												
·				•										8.0 <i>4</i> 0 					· · ·	
				• * • •						-1		n ta itu Nga sai					•			
)					•													•	+
· · · ·		···· · · ·	· · ·				· · ·	· ···			<u> </u>	·	1		· · ;		· ·	•	1	
•	Треб, контр. Requirement	 							•						•					
· · · · ·	of Contract				·		Ант	икорро	зионн		рытие		L				·	<u>_</u>	<u> </u>	.
en en e	Howen	Torula	48 1 114	ифп	· · ·	— М	aten	Antico иалы п		Coall	ng	Pea	ульта	ты испь	Тания	парт	ий ант	коррози	IOHHOD	0
	партии	наружно		ериал.	•		Coat	ing Mai	terials			Lots	antic	лок prrosive	соаtin	труб g of r	, не мен lpes tes	ee t results,	no les	s
	Tpy6	He Meh		de of ating	Основ	НОЙ	A	дгезион	нный	Гру	итовочн слой	ый Ди	элект ошн.	р. Про кВ v	чності даре. І	ь при Цж	Прочн	STE CBR	зи, H/c N/cm	M
	coating pipes	outer coal	ting mat	erials	Basic ia	ayer	A	thesive	layer	PI	imer laye	er Die soli	lectric ditv. k	al Impa V	ct strei	ngth,	J		5 ·	:
					.		i		:.	L					•					
* "				· ·						÷.								•		
		. ·		•		· ·			. *									A		
			·	• .		COM											_/			
								*	<u>.</u>							писи	<u>/s</u> /	\ ↓sign	atures:	
	•	REVIE	WED		ISPE.	2		ke li									<u> </u>	X3	`.`	•
<u>.</u>		PERFI	I FY	_			2	<u> </u> []							\vdash	48/		<u>121</u>		_
		13,12	. 200	6	- Le	gering	BUIP	»/ .							∠Nº	388	27		2/2	2
· I						<u>v</u>			·										<u>×`</u>	

	1	A.								治,	州市	螺旋	宦钢	管有降	限责任公	公司	J		ĨŦ	1 2016	日餘	<u></u> 止 立 法	17 21
)je								C	Lang 2 占叔	thon; 自留	Spira 乕	l Steel I 层 证 II	Pipe Co., I 日 土	td			此	t.wa/ 县·T	1 E \$97	35.) VY 14837 1	el Mil Vatio
	1020	5.									MIL	LTE	ST	CERTI	FICATE	1			1.3	11.1	Sur C		
客ド	' Customer	:	OZONE	INDUS	STRIES		* 2 - 20 - 2 - 2000 - 2	合同約	俞号 C	ontract	No.:	9 AUG 26 AUG .	OZ081	808008	2 2 2000 X 2000 X 2000 X 40	une # 2007	£ 2005 7 20	证书	编号 Cert	tificate	A:	NORTS-S-C	07081286
品名	i Product na	unc :	Spiral st	eel pipe				钢	级 Ste	eel Gra	ide:		Gr,B P	SLI				釗	站 Des	tinatio		MM USA	
Pipes	护号		规 格(Siz	c)	ģ	kfitQuant	ity	Ch	f	化学 / Compa	茂分 osition 〈	34)	physics	早接接头转 al properties (対型性能 of welding joints	phys	管体 fcal pre	物 理 档 operties	: fill of plpos	无损 NI	を 強 C D T	水压 试验	尺寸
No.	Heat Numbers	直径	厚度	长度	支数	总长度	总组织							正弯	反粤				冷弯			Hydrostatic (10s)	及外紀 size &
		0.D.	W.T.	lenth	Pieces	lonth	Welght	С	Mn	SI	р	8	o b Mpa	face-bend	back-bend	øs Mpa	o b Mpa	δ (%)	cold-bent	UT	RT	Мра	appearance
4	81_00108	in 16	In 0.976		(Pcs)	(ft)	(MT)	0.07	0.00	0.00	0.002	0.040		180°	180°	005			180°				
2	81-07529	24	0.375	30	34	1326	56.050	0.07	0.90	0.20	0.025	0.012	440	pass	pass	200	440	26	pass	pass	pass	0.8	pass
3	81-09195	24	0.375	39	6	234	10.050	0.08	0.97	0.20	0.075	0.015	405	0855	pass	315	445	34	0895	pass	pass	4.6	0988
4	82-07242	24	0.375	39	4	150	6.700	0.06	1.17	0.20	0.018	0.019	470	pass	pass	325	470	35	pass	pass	pass	4.6	pass
5	82-07364	24	0.375	39	8	3312	13.400	0.08	1.20	0.30	0.019	0.020	430	pass	pass	340	430	33	pass	pass	pass	4.6	pass
6	83-04971	24	0,375	39	-(32)	117	5.025	0.09	1.03	0.21	0,020	0.018	450	pass	pass	310	450	27	· pass	pass	pass	4.8 ,	pass
7	81-04971	24	0.375	39	2	78	3.350	0.09	0.98	0.20	0.020	0.018	440	pass	pass	300	440	23	рава	pass	pass	4,8	pass
8	81-09198	34 5	375	/39	1	39)	2.384	0.07	0.98	0.20	0.025	0.012	440	pass	pass	295	440	34	pass	pass	pass	3.2	pass
9	81-07520	681	0.875.	39	19	741)	45.296	0.09	0.96	0.21	0.020	0.020	485	pass	pass	350	485	30	разв	ព្រឧទទ	равя	3.2 more	pass
Total	1 M	the start			128	4992	199.663														AT VA	省有限页位	A SUN
玄证明:	本表所列产品	,均依才	· 才科规格:	制造及同	《验,并符合	出格之事	《求。													检验员 HNSPE	AFF EFOR:	一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	erte 用書
he Spi	Iral steel pip	es are	lested ad	cording	to API BL	. Gr.B an	d ASTM /	\139 G	r.B. T	his is l	o certify	that in a	ccordar	ice with the	relevant specifi	cation	s and o	contract	s.	计市面	彩	Elf Mr.	and a second

1		WTERP MPP	IPE	OJSC PIPE P 115 SU NOVOI	"INTERPIPE NO RODUCTION PL CHKOV STR. WOSKOVSK UKR	Vomoskovs Ant" Aine		INSPI Ant Shee	ECTION CER EN 10	RTIFICATE 2204/3.1	DATE CERT, NO DEL NOTE	07.04.	U 10x 80. 80x 80.
	CUSTOMER .	•			ANS AD	UNTERPIPE NMP	PREF number SALES		WORKS	Freight	carN p	ty of Gross acks weigh	s, 1b Network
	062/1{0				UICENCE He	PRODUCT DESC	CRIPTION BLC	ectric weld th EDITION	ed steel p 2004 Grad	ipes acc t le :B/X42	O.ASTM I	A53-06/API	801-04 55 PSL 2
1		· · · · · · · · · · · · · · · · · · ·	LeLONGI	IJOINAL ISTRAN	SVERSE B-BODY WWE	LD KV=CHARPY V=H	OTCH HA-HARDNESS VI	CKERS (10 KG LOAD)	DT-DROP WEIGH	TTEAR TEST	1	-	
I'II N	EM N OF	PRODUCT	HPAT N	LOP N via	Dimes ath: 1.5;1.5in ngth:7.874in	TENSILE TEST islons of spec thick type of te	inen ness: 0.358;0.3 at. piece: W-F,B	52in thick	IMPACT Umensions of width mess: 0.394	TROF f specimen 0.295in in	•	STREL MAN BASIC OX	KING PROCESS VGENE STREL C7C C7C
B	09 B10	B11-13	в08	C01 C02 C00 C10	Yeld strength Re Pai	Tensile strength kn Psi	Elonsation Hypre A& Psi C13	rdro Pla-Spe sure ce si- and mer ori-tyr enta tion C01 C40 D02 C02 C30	Test percissiv mpacti in +32°	temperature viscosity, pact2 Inpact +32°	/ °F Ft-lb]{Average +32°	OTHER T	ESIS
	30- 16irQ 1204-	Dx0.375in 42.0ft 6ft	3063964	32509. W T B T	59.000;45.000	78.000;78.000 75.000;77.000	36.0;36.0 1	xcś Br! KV	35; 39 33	3;35 32;38	33;27	ELATIENING T WELD LINE 10 UT SISE 16x RESIDURL 10.0-20 THE MINDRM HEAT TREATMEN SEM 1634°F Hardness Ro Weld repair	EST SMITSPACIOR 03 US-TESTED 0.375in N10 MACAUSTIZM .0 CALES TEMERATURE FOR NF OF THE WELD chwell < 22 HEC isn't permitted
107	71-C94 ANALYS LD-I CH-C	ADLE C	si	Mn	p s ·	N	Cu. Al	Ni Mo	Ti .	V. NB	ca	0 2r	CEV normal 0.43
He	aat N 306396 306396	54 LD 0.19 54 CH 0.21	0.28	0.53 D. 0.59 0.	008 0.004 0.	007 0.02	0.07 0.045 0.042	0.04 0.00	4 - 0.01 0.	007 - 01 <0.01	-		
	THESE RESULTS AR THE REQUIREMENT	E CERTIFIED BY IT S OF THE PRODUC	NTERPIPE NM CT DESCRIPT	PP AND COMPI	LY WITH	STAL OP CI	PARTMENT: ERTIFICATION	h Ale	ALURÉ	_ Бланк серии	2ж Ne 1	9999	201/202

	1	A.								治,	州市	螺旋	宦钢	管有降	限责任公	公司	J		ĨŦ	1 2016	日餘	<u></u> 止 立 法	17 21
)je								C	Lang 2 占叔	thou ; 1 倍	Spira 乕	l Steel I 层 证 II	Pipe Co., I 日 土	td			此	t.wa/ 县·T	1 E \$97	35.) VY 14837 1	el Mil Vatio
	1020	5.									MIL	LTE	ST	CERTI	FICATE	1			1.3	11.1	Sur C		
客ド	' Customer	:	OZONE	INDUS	STRIES		* 2 - 20 - 2 - 2000 - 2	合同約	俞号 C	ontract	No.:	9 AUG 26 AUG .	OZ081	808008	2 2 2000 X 2000 X 2000 X 40	une # 2007	£ 2005 7 20	证书	编号 Cert	tificate	A.	NORTS-S-C	07081286
品名	i Product na	unc :	Spiral st	eel pipe				钢	级 Ste	eel Gra	ide:		Gr,B P	SLI				釗	站 Des	tinatio		MM USA	
Pipes	护号		规 格(Siz	c)	ģ	kfitQuant	ity	Ch	f	化学 / Compa	茂分 osition 〈	34)	physics	早接接头转 al properties (対型性能 of welding joints	phys	管体 fcal pre	物 理 档 operties	: fill of plpos	无损 NI		水压 试验	尺寸
No.	Heat Numbers	直径	厚度	长度	支数	总长度	总组织							正弯	反粤				冷弯			Hydrostatic (10s)	及外紀 size &
		0.D.	W.T.	lenth	Pieces	lonth	Welght	С	Mn	SI	р	8	o b Mpa	face-bend	back-bend	øs Mpa	o b Mpa	δ (%)	cold-bent	UT	RT	Мра	appearance
4	81_00108	in 16	In 0.976		(Pcs)	(ft)	(MT)	0.07	0.00	0.00	0.002	0.040		180°	180°	005			180°				
2	81-07529	24	0.375	30	34	1326	56.050	0.07	0.90	0.20	0.025	0.012	440	pass	pass	200	440	26	pass	pass	pass	0.8	pass
3	81-09195	24	0.375	39	6	234	10.050	0.08	0.97	0.20	0.075	0.015	405	0855	pass	315	445	34	0895	pass	pass	4.6	0988
4	82-07242	24	0.375	39	4	150	6.700	0.06	1.17	0.20	0.018	0.019	470	pass	pass	325	470	35	pass	pass	pass	4.6	pass
5	82-07364	24	0.375	39	8	3312	13.400	0.08	1.20	0.30	0.019	0.020	430	pass	pass	340	430	33	pass	pass	pass	4.6	pass
6	83-04971	24	0,375	39	-(32)	117	5.025	0.09	1.03	0.21	0,020	0.018	450	pass	pass	310	450	27	· pass	pass	pass	4.8 ,	pass
7	81-04971	24	0.375	39	2	78	3.350	0.09	0.98	0.20	0.020	0.018	440	pass	pass	300	440	23	рава	pass	pass	4,8	pass
8	81-09198	34 5	375	/39	1	39)	2.384	0.07	0.98	0.20	0.025	0.012	440	pass	pass	295	440	34	pass	pass	pass	3.2	pass
9	81-07520	681	0.875.	39	19	741)	45.296	0.09	0.96	0.21	0.020	0.020	485	pass	pass	350	485	30	разв	ព្រឧទទ	равя	3.2 more	pass
Total	1 M	the start			128	4992	199.663														AT VA	省有限页位	A SUN
玄证明:	本表所列产品	,均依才	· 才科规格:	制造及同	《验,并符合	出格之事	《求。													检验员 INSPE	AFF EFOR:	一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	erte 用書
he Spi	Iral steel pip	es are	lested ad	cording	to API BL	. Gr.B an	d ASTM /	\139 G	r.B. T	his is l	o certify	that in a	ccordar	ice with the	relevant specifi	cation	s and o	contract	s.	计市面	彩	Elf Mr.	and a second

1		WTERP MPP	IPE	OJSC PIPE P 115 SU NOVOJ	"INTERPIPE NO RODUCTION PL CHKOV STR. WOSKOVSK UKR	Vomoskovs Ant" Aine		INSPI Ant Shee	ECTION CER EN 10	RTIFICATE 2204/3.1	DATE CERT, NO DEL NOTE	07.04.	U 10x 80. 80x 80.
	CUSTOMER .	•			ANS AD	UNTERPIPE NMP	PREF number SALES		WORKS	Freight	carN p	ty of Gross acks weigh	s, 1b Network
	062/1{0				UICENCE He SL-0304	PRODUCT DESC	CRIPTION BLC	ectric weld th EDITION	ed steel p 2004 Grad	ipes acc t le :B/X42	O.ASTM I	A53-06/API	801-04 55 PSL 2
1		· · · · · · · · · · · · · · · · · · ·	LeLONGI	IJOINAL ISTRAN	SVERSE B-BODY WWE	LD KV=CHARPY V=H	OTCH HA-HARDNESS VI	CKERS (10 KG LOAD)	DT-DROP WEIGH	TTEAR TEST	1	-	
I'II N	EM N OF	PRODUCT	HPAT N	LOP N win	Dimes ath: 1.5;1.5in ngth:7.874in	TENSILE TEST islons of spec thick type of te	inen ness: 0.358;0.3 at. piece: W-F,B	52in thick	IMPACT Umensions of width mess: 0.394	TROF f specimen 0.295in in	•	STREL MAN BASIC OX	KING PROCESS VGENE STREL C7C C7C
B	09 B10	B11-13	в08	C01 C02 C00 C10	Yeld strength Re Pai	Tensile strength kn Psi	Elonsation Hypres	rdro Pla-Spe sure ce si- and mer ori-tyr enta tion C01 C40 D02 C02 C30	Test percissiv mpacti in +32°	temperature viscosity, pact2 Inpact +32°	/ °F Ft-Jb 3!Average +32°	OTHER T	ESIS
	30- 16irQ 1204-	Dx0.375in 42.0ft 6ft	3063964	32509. W T B T	59.000;45.000	78.000;78.000 75.000;77.000	36.0;36.0 1	xcś Br! KV	35; 39 33	3;35 32;38	33;27	ELATIENING T WELD LINE 10 UT SISE 16x RESIDURL 10.0-20 THE MINDRM HEAT TREATMEN SEM 1634°F Hardness Ro Weld repair	EST SMITSPACIOR 03 US-TESTED 0.375in N10 MACAUSTIZM .0 CALES TEMERATURE FOR NF OF THE WELD chwell < 22 HEC isn't permitted
107	71-C94 ANALYS LD-I CH-C	ADLE C	si	Mn	p s ·	N	Cu. Al	Ni Mo	Ti .	V. NB	ca	0 2r	CEV normal 0.43
He	aat N 306396 306396	54 LD 0.19 54 CH 0.21	0.28	0.53 D. 0.59 0.	008 0.004 0.	007 0.02	0.07 0.045 0.042	0.04 0.00	4 - 0.01 0.	007 - 01 <0.01	-		
	THESE RESULTS AR THE REQUIREMENT	E CERTIFIED BY IT S OF THE PRODUC	NTERPIPE NM CT DESCRIPT	PP AND COMPI	LY WITH	STAL OP CI	PARTMENT: ERTIFICATION	h Ale	ALURÉ	_ Бланк серии	2ж Ne 1	9999	201/202

Operational Testing Data – Summary Tables & Graphs

SUMMARY OF INJECTATE LAB DATA OKEECHOBEE LANDFILL, INC., OKEECHOBEE, FLORIDA

MONTH	OCTOBER	NOVEMBER	DECEMBER	JANUARY	FEBRUARY	MARCH	APRIL	MAY
Sample Date	23-Oct-09	4-Nov-09	23-Dec-09	13-Jan-10	3-Feb-10	10-Mar-10	14-Apr-10	5-May-10
Chloride (mg/L)	4,600	5,100	2,300	3,500	4,900	3,700	3,200	1,900
Calcium (mg/L)	220	190		250	230	210	270	350
Bicarbonate (mg/L) as CaCO3	3,600	3,900		15,000	990	3,500	2.50	2,000
Iron (mg/L)	0.73	1.30		1.60	2.20	2.00	0.93	2.10
Magnesium (mg/L)	93	92		95	97	80	85	73
Ammonia as N (mg/L)	590	1,500	570	1,000	1,300	980	800	410
Total kjeldahl nitrogen as N (mg/L)	42	1,000	640	1,700	1,300	1,100	430	490
Nitrate as N (mg/L)	0.05	0.42	0.04	0.05	0.05	0.23	0.10	0.10
gross alpha (pCi/L)	17.00	15.00		21.00	23.00	4.00	-2.00	8.00
radium 226 (pCi/L)	6.43	8.70		1.56	2.90	1.80	3.00	1.60
radium 228 (pCi/L)	2.88	2.66		1.15	1.25	3.70	1.85	0.85
pH (standard units)	7.66	7.15	6.90	7.32	7.41	7.36	7.19	7.13
Phosphorous, total as P (mg/L)	1.3	12.0	4.7	6.0	17.0	7.9	3.5	4.2
Potassium (mg/L)	970	1,300		910	1,200	1,000	880	550
Total dissolved solids (mg/L)	6,100		5,400	10,000	10,000	10,000	8,300	5,900
Sodium (mg/L)	1,800	2,600		1,600	2,100	1,900	1,600	990
Specific Conductance (umohs/cm)	24,551	37,961	18,100	25,654	24,692	35,711	36,989	32,119
Sulfate (mg/L)	210	230	690	540	360	310	520	770
Temperature °C	26.9	31.3	19.5	12.9	20.7	18.4	25.0	25.0
Total suspended solids (mg/L)				46	14	50	15	85

mg/L - Milligrams Per Liter

Below laboratry detection limit. Rpt'd value is half MDL.

°C - Degrees Celsius

Monthly Analyses umhos/cm - Micro mhos (siemens) Per Centimeter NA = Not analyzed

Analyte detected between laboratory detection limit and the laboratory reporting limit.

SUMMARY OF INJECTATE LAB DATA OKEECHOBEE LANDFILL, INC., OKEECHOBEE, FLORIDA

MONTH	JUNE	JULY	AUGUST	SEPTEMBER	OCTOBER	NOVEMBER	DECEMBER	JANUARY
Sample Date	9-Jun-10	7-Jul-10	4-Aug-10	1-Sep-10	6-Oct-10	3-Nov-10	1-Dec-10	13-Jan-11
Chloride (mg/L)	2,900	3,300	4,500	4,300	3,900	4,800	5,200	5,300
Calcium (mg/L)	330	310	350	210	290	230	170	160
Bicarbonate (mg/L) as CaCO3	430	2.50	2.50	2.50	2.50	6,100	2.50	2.50
Iron (mg/L)	1.00	1.30	0.40	0.63	1.10	1.40	1.20	1.00
Magnesium (mg/L)	96	100	130	92	130	110	94	110
Ammonia as N (mg/L)	660	860	1,100	1,000	1,000	1,100	1,300	1,300
Total kjeldahl nitrogen as N (mg/L)	730	45	930	1,000	1,000	1,400	1,200	1,700
Nitrate as N (mg/L)	0.10	0.25	0.25	0.50	0.10	0.01	0.50	0.25
gross alpha (pCi/L)	8.75	16.50	18.50	6.50	-4.00	40.00	35.50	31.50
radium 226 (pCi/L)	0.76	1.90	4.80	5.10	2.70	4.10	4.40	1.20
radium 228 (pCi/L)	1.77	1.25	0.75	3.30	0.65	1.55	1.4	-0.30
pH (standard units)	7.18	7.25	7.35	7.39	7.40	7.73	7.37	7.40
Phosphorous, total as P (mg/L)	4.8	0.4	110.0	9.9	6.0	2.4	13.0	10.0
Potassium (mg/L)	870	1,000	1,200	350	1,600	1,300	1,500	1,400
Total dissolved solids (mg/L)	3,000	5,700	11,000	6,000	6,800	9,600	6,200	11,000
Sodium (mg/L)	1,500	1,800	2,200	610	2,600	2,500	2,700	2,500
Specific Conductance (umohs/cm)	13,864	16,752	19,751	21,172	20,857	22,000	25,145	25,412
Sulfate (mg/L)	550	250	190	200	270	190	37	72
Temperature °C	25.0	25.0	30.0	28.4	25.0	25.0	22.1	22.1
Total suspended solids (mg/L)	39	45	54	54	47	81	66	48

mg/L - Milligrams Per Liter

Monthly Analyses

Below laboratry detection limit. Rpt'd value is half MDL.

°C - Degrees Celsius

umhos/cm - Micro mhos (siemens) Per Centimeter NA = Not analyzed

Analyte detected between laboratory detection limit and the laboratory reporting limit.

SUMMARY OF INJECTATE LAB DATA OKEECHOBEE LANDFILL, INC., OKEECHOBEE, FLORIDA

MONTH	FEBRUARY	MARCH	APRIL	MAY			
Sample Date	2-Feb-11	9-Mar-11	6-Apr-11	4-May-11			
Chloride (mg/L)	5,100	5,400	5,300	5,200			
Calcium (mg/L)	200	140	200	210			
Bicarbonate (mg/L) as CaCO3	2.50	2.50	2.50	2.50			
Iron (mg/L)	1.60	1.10	0.81	0.47			
Magnesium (mg/L)	120	78	120	130			
Ammonia as N (mg/L)	1,500	1,400	1,300	1,500			
Total kjeldahl nitrogen as N (mg/L)	1,800	1,600	1,700	1,600			
Nitrate as N (mg/L)	0.25	0.25	0.25	0.25			
gross alpha (pCi/L)	21.50	12.50	10.50	13.50			
radium 226 (pCi/L)	2.65	0.35	3.00	-0.05			
radium 228 (pCi/L)	2.15	1.80	3.7	0.9			
pH (standard units)	7.22	7.15	7.20	7.35			
Phosphorous, total as P (mg/L)	11.0	12.0	11.0	12.0			
Potassium (mg/L)	1,500	1,900	1,600	1,500			
Total dissolved solids (mg/L)	5,000	4,200	5,700	6,500			
Sodium (mg/L)	2,700	3,500	2,700	2,900			
Specific Conductance (umohs/cm)	26,077	27,601	28,558	25,944			
Sulfate (mg/L)	86	25	89	91			
Temperature °C	21.0	24.0	23.2	25.8			
Total suspended solids (mg/L)	34	33	46	46			
	mg/L - Milligrams	Per Liter			Below laboratry detec	tion limit. Rpt'd value is	half MDL.

°C - Degrees Celsius

Monthly Analyses

umhos/cm - Micro mhos (siemens) Per Centimeter NA = Not analyzed

Analyte detected between laboratory detection limit and the laboratory reporting limit.

MONTH	OCTO	OBER		NOV	EMBER			DI	ECEMBER		
Sample Date	23-Oct-09	29-Oct-09	4-Nov-09	11-Nov-09	19-Nov-09	24-Nov-09	2-Dec-09	9-Dec-09	17-Dec-09	23-Dec-09	30-Dec-09
Chloride (mg/L)	12,000	21,000	12,000	12,000	11,000	13,000	13,000	14,000	19,000	13,000	13,000
Calcium (mg/L)				720							
Bicarbonate (mg/L) as CaCO3											
Iron (mg/L)				3.60							
Magnesium (mg/L)				680							
Ammonia as N (mg/L)	1.80	1.60	1.80		1.5	1.6	1.70	1.70	0.24	1.6	1.5
Total kjeldahl nitrogen as N (mg/L)	0.075	1.200	1.300		0.790	1.900	1.100	1.100	0.830	1.200	1.100
Nitrate as N (mg/L)	0.022	0.005	0.015	0.030	0.014	0.030	0.038	0.008	0.008	0.008	0.008
Nitrite as N (mg/L)	0.005	0.005	0.005	0.010	0.005	0.018	0.038	0.038	0.038	0.038	0.038
pH (standard units)	6.87	6.94	7.12	7.53	7.21	7.44	7.16	7.60	7.46	7.14	6.9
Phosphorous, total as P (mg/L)	1.10	0.22	0.24		0.85	2.3	0.99	0.44	3.8	0.91	0.2
Potassium (mg/L)				150							
Total dissolved solids (mg/L)	21,000	22,000	20,000	21,000	23,000	21000	21,000	21,000	31,000	19,000	20,000
Sodium (mg/L)				6,400							
Specific Conductance (umohs/cm)	34,762	34,629	34,904	27,000	34,522	22,000	20,000	35,000	52,000	32,400	34,814
Sulfate (mg/L)	1,300	1,600	1,300	1,300	950	1,500	1,300	1,400	2,500	1,400	1,300
Temperature °C	29.1	29.2	28.2	30.7	30.1	30.4	28.7	29.6	26.1	30.1	29.7
	mg/L - Milligram	ns Per Liter		Weekly Analys	es						

°C - Degrees Celsius Monthly Analyses umhos/cm - Micro mhos (siemens) Per Centin NA = Not analyzed

Analyte detected between laboratory detection limit and the laboratory reporting limit. Rpt'd value is half MDL.

MONTH		JAN	UARY			FEBR	UARY		MARCH					
Sample Date	6-Jan-10	13-Jan-10	20-Jan-10	27-Jan-10	3-Feb-10	10-Feb-10	17-Feb-10	24-Feb-10	3-Mar-10	10-Mar-10	17-Mar-10	24-Mar-10	31-Mar-10	
Chloride (mg/L)	13,000	13,000	14,000	13,000	13,000	13,000	12,000	13,000	13,000	13,000	12,000	12,000	12,000	
Calcium (mg/L)		650			670					750				
Bicarbonate (mg/L) as CaCO3		120			120					140				
Iron (mg/L)		4.8			4.6					4.9				
Magnesium (mg/L)		650			670					680				
Ammonia as N (mg/L)	1.7	1.9	1.9	1.7	2.0	1.5	1.8	1.9	0.24	1.60	1.60	1.70	1.60	
Total kjeldahl nitrogen as N (mg/L)	1.700	2.000	1.500	1.500	2.800	1.600	1.200	0.075	0.400	1.100	1.500	1.700	3.100	
Nitrate as N (mg/L)	0.008	0.035	0.005	0.031	0.037	0.220	0.013	0.020	0.025	0.180	0.016	0.130	0.068	
Nitrite as N (mg/L)	0.075	0.010	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.010	0.005	0.010	0.005	
pH (standard units)	6.98	6.94	6.88	6.95	6.98	6.90	6.95	7.48	7.43	7.03	7.35	7.11	6.98	
Phosphorous, total as P (mg/L)	0.012	0.035	0.012	0.043	0.38	0.08	0.12	1.20	0.095	0.22	0.05	0.05	0.01	
Potassium (mg/L)		160			160					150				
Total dissolved solids (mg/L)	1,300	33,000	18,000	19,000	1,500	21,000	19,000	16,000	20,000	23,000	20,000	20,000	20,000	
Sodium (mg/L)		6,200			6,200					6,400				
Specific Conductance (umohs/cm)	35,092	34,927	34,927	35,107	34,611	33,999	34,790	30,920	31,000	28,000	26,000	34,000	31,000	
Sulfate (mg/L)	1,300	1,300	1,400	1,400	1,400	1,500	1,400	1,300	1,300	1,400	1,100	1,300	1,200	
Temperature °C	27.3	29.6	29.6	29.7	29.2	29.2	28.8	30.5	27.7	30.1	29.4	31.0	29.3	
	mg/L - Milligrar	ns Per Liter		Weekly Analys	es	Below laboratry detect	tion limit. Rpt'd value	is half MDL.						

mg/L - Milligrams Per Liter °C - Degrees Celsius

Below laboratry detection limit. Rpt'd value is half MDL.

Monthly Analyses umhos/cm - Micro mhos (siemens) Per Centin NA = Not analyzed

Analyte detected between laboratory detection limit and the laboratory reporting limit.

SUMMARY OF UPPER MONITOR ZONE LAB DATA OKEECHOBEE LANDFILL INC., OKEECHOBEE, FLORIDA

MONTH		AP	RIL			M	AY		JU	NE	JULY
Sample Date	7-Apr-10	14-Apr-10	21-Apr-10	28-Apr-10	5-May-10	12-May-10	19-May-10	26-May-10	2-Jun-10	9-Jun-10	7-Jul-10
Chloride (mg/L)	13,000	11,000	13,000	13,000	13,000	12,000	13,000	13,000	12,000	13,000	14,000
Calcium (mg/L)		690			730					790	680
Bicarbonate (mg/L) as CaCO3		130			120					120	120
Iron (mg/L)		4.5			5.7					5.3	4.0
Magnesium (mg/L)		650			660					730	700
Ammonia as N (mg/L)	1.30	1.80	1.40	1.50	2.00	1.40	1.80	1.60	1.70	1.40	1.80
Total kjeldahl nitrogen as N (mg/L)	1.100	0.150	1.600	1.400	1.500	1.400	1.500	1.200	1.300	1.500	1.400
Nitrate as N (mg/L)	0.025	0.250	0.069	0.160	0.260	0.025	0.025	0.033	0.005	0.083	0.018
Nitrite as N (mg/L)	0.017	0.012	0.005	0.005	0.005	0.005	0.025	0.012	0.005	0.010	0.005
pH (standard units)	7.41	6.80	6.85	6.90	7.08	7.08	7.05	6.91	7.13	7.01	6.72
Phosphorous, total as P (mg/L)	0.09	0.91	0.06	0.02	0.042	0.012	0.012	0.04	0.061	0.04	0.13
Potassium (mg/L)		130			130					180	140
Total dissolved solids (mg/L)	20,000	21,000	18,000	19,000	20,000	18,000	20,000	18,000	24,000	11,000	17,000
Sodium (mg/L)		6,000			6,000					6,600	6,400
Specific Conductance (umohs/cm)	35,550	30,185	32,714	30,425	32,711	34,710	33,100	32,550	30,114	32,000	32,689
Sulfate (mg/L)	1,300	1,400	1,300	1,400	1,400	1,300	1,300	1,400	1,300	1,400	1,400
Temperature °C	31.3	30.4	30.2	29.2	31.3	30.3	31.3	30.3	30.7	30.8	29.9
	mg/L - Milligrai	ms Per Liter		Weekly Analys	es	Below laboratry deter	tion limit. Rpt'd value	is half MDL.			

Monthly Analyses

mg/L - Milligrams Per Liter

°C - Degrees Celsius umhos/cm - Micro mhos (siemens) Per Centin NA = Not analyzed Analyte detected between laboratory detection limit and the laboratory reporting limit.

MONTH	AUGUST	SEPTEMBER	OCTOBER	NOVEMBER	DECEMBER	JANUARY	FEBRUARY	MARCH	APRIL	MAY	
Sample Date	4-Aug-10	1-Sep-10	6-Oct-10	3-Nov-10	1-Dec-10	13-Jan-11	2-Feb-11	9-Mar-11	6-Apr-11	4-May-11	
Chloride (mg/L)	14000	15,000	13,000	14,000	14,000	13,000	12,000	12,000	13,000	14,000	
Calcium (mg/L)	680	690	720	620	660	600	620	640	630	620	
Bicarbonate (mg/L) as CaCO3	120	120	120	110	130	120	55	110	100	88	
Iron (mg/L)	4.0	5.9	4.8	4.4	5.1	4.9	11.0	4.4	5.7	5.9	
Magnesium (mg/L)	730	290	720	690	680	670	750	740	670	730	
Ammonia as N (mg/L)	1.80	1.80	1.80	1.80	2.00	1.80	1.60	1.50	1.70	1.70	
Total kjeldahl nitrogen as N (mg/L)	1.100	1.700	1.700	1.400	1.900	1.700	1.400	1.600	1.100	1.100	
Nitrate as N (mg/L)	0.005	0.005	0.025	0.005	0.005	0.005	0.005	0.005	0.025	0.025	
Nitrite as N (mg/L)	0.005	0.005	0.025	0.005	0.005	0.005	0.005	0.005	0.025	0.025	
pH (standard units)	7.07	7.19	7.07	7.52	7.67	7.66	6.73	6.85	6.14	7.73	
Phosphorous, total as P (mg/L)	1.50	0.048	0.034	0.036	0.039	0.24	0.12	0.012	0.012	0.06	
Potassium (mg/L)	150	63	170	210	210	160	180	150	150	160	
Total dissolved solids (mg/L)	21000	12,000	16,000	15,000	15,000	21,000	15,000	19,000	14,000	9,500	
Sodium (mg/L)	6700	6,600	7,000	7,000	6,100	6,400	6,500	6,900	6,400	6,700	
Specific Conductance (umohs/cm)	32,231	34,834	33,845	31,664	34,910	34,550	33,338	29,799	33,919	35,645	
Sulfate (mg/L)	1600	1,700	1,500	1,600	1,600	1,500	1,400	1,500	1,600	1,600	
Temperature °C	30.0	30.0	30.8	29.9	28.5	28.6	27.0	28.8	27.9	29.3	
	mg/L - Milligra	ams Per Liter		Weekly Analys	es	Below laboratry dete	ction limit. Rpt'd value	is half MDL.			

°C - Degrees Celsius

Below laboratry detection limit. Rpt'd value is half MDL. Analyte detected between laboratory detection limit and the laboratory reporting limit.

umhos/cm - Micro mhos (siemens) Per Centin NA = Not analyzed

Monthly Analyses

Page 4 of 4

MONTH	OCTO	OBER		NOVE	MBER		DECEMBER					
Sample Date	23-Oct-09	29-Oct-09	4-Nov-09	11-Nov-09	19-Nov-09	24-Nov-09	2-Dec-09	9-Dec-09	17-Dec-09	23-Dec-09	30-Dec-09	
Chloride (mg/L)	14,000	11,000	19,000	20,000	17,000	21000	20,000	21,000	12,000	18,000	20,000	
Calcium (mg/L)				620								
Sodium (mg/L)				11,000								
Magnesium (mg/L)				1,200								
Bicarbonate (mg/L) as CaCO3												
Iron (mg/L)				0.12								
Ammonia as N (mg/L)	0.30	0.20	0.44		0.06	0.53	0.18	0.63	1.40	0.37	0.24	
Total kjeldahl nitrogen as N (mg/L)	0.075	0.075	0.075		0.180	3.900	0.690	0.740	1.100	0.600	0.540	
Nitrate as N (mg/L)	0.016	0.005	0.022	0.030	0.005	0.030	0.038	0.008	0.008	0.008	0.008	
Nitrite as N (mg/L)	0.005	0.005	0.005	0.010	0.005	0.018	0.038	0.038	0.038	0.038	0.038	
pH (standard units)	7.51	7.22	7.25	7.43	7.30	7.36	7.20	7.41	7.45	6.94	7.18	
Phosphorous, total as P (mg/L)	2.200	2.400	3.600		1.800	0.770	0.650	0.340	0.150	0.830	0.490	
Potassium (mg/L)				460								
Total dissolved solids (mg/L)	26,000	31,000	17,000	29,000	32,000	33,000	33,000	33,000	16,000	26,000	29,000	
Specific Conductance (umohs/cm)	51,686	51,727	51,489	40,000	50,895	34,000	30,795	53,000	35,000	48,100	51,595	
Sulfate, total as SO4 (mg/L)	2,700	2,600	2,600	2,600	2,500	2,800	2,700	2,500	1,300	2,500	2,500	
gross alpha (pCi/L)	15			20								
radium 226 (pCi/L)	21.6			22.8								
radium 228 (pCi/L)	5.2			4.64								
Temperature °C	29.5	29.3	30.2	32.6	31.6	30.4	30.2	30.6	25.4	30.6	29.8	

mg/L - Milligrams Per Liter

°C - Degrees Celsius

Weekly Analyses Below laboratry detection limit. Rpt'd value is half MDL. Monthly Analyses

Analyte detected between laboratory detection limit and the

umhos/cm - Micro mhos (siemens) Per CentimNA = Not analyzed

laboratory reporting limit.

MONTH		JANUA	ARY			FEBR	UARY		MARCH				
Sample Date	6-Jan-10	13-Jan-10	20-Jan-10	27-Jan-10	3-Feb-10	10-Feb-10	17-Feb-10	24-Feb-10	3-Mar-10	10-Mar-10	17-Mar-10	24-Mar-10	31-Mar-10
Chloride (mg/L)	21,000	20,000	20,000	21,000	21,000	21,000	20,000	22,000	20,000	21,000	25,000	20,000	19,000
Calcium (mg/L)		530			570					590			
Sodium (mg/L)		11,000			10,000					11,000			
Magnesium (mg/L)		1,100			1,100					1,200			
Bicarbonate (mg/L) as CaCO3		110			120					110			
Iron (mg/L)		0.086			0.088					0.064			
Ammonia as N (mg/L)	0.27	0.25	0.23	0.26	0.51	0.23	0.22	0.27	0.24	1.40	0.38	0.25	0.23
Total kjeldahl nitrogen as N (mg/L)	0.690	3.500	0.340	0.400	2.200	0.580	0.310	0.150	0.430	0.260	0.380	0.580	0.350
Nitrate as N (mg/L)	0.038	0.025	0.079	0.013	0.046	0.069	0.010	0.012	0.025	0.280	0.014	0.110	0.068
Nitrite as N (mg/L)	0.075	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.010	0.005	0.005	0.005
pH (standard units)	7.10	7.09	7.10	7.01	7.31	7.29	7.23	7.07	7.23	7.24	7.07	7.25	7.15
Phosphorous, total as P (mg/L)	0.012	0.036	0.012	0.044	1.800	0.031	0.200	0.670	0.052	0.130	0.053	0.059	0.048
Potassium (mg/L)		380			400					400			
Total dissolved solids (mg/L)	26,000	16,000	29,000	28,000	24,000	30,000	28,000	25,000	33,000	29,000	32,000	33,000	30,000
Specific Conductance (umohs/cm)	51,622	51,475	51,400	51,526	52,000	48,000	49,000	49,000	49,000	46,000	41,000	54,000	58,000
Sulfate, total as SO4 (mg/L)	2,600	2,600	2,700	2,700	2,800	2,800	2,700	2,600	2,500	2,800	2,400	2,700	2,500
gross alpha (pCi/L)		30			-16.5					46			
radium 226 (pCi/L)		26.1			24.1					23.2			
radium 228 (pCi/L)		5.19			4.30					4.7			
Temperature °C	27.2	29.8	29.5	29.6	29.6	29.4	29.0	31.4	28.4	30.6	30.8	31.2	29.5
								•	•				

mg/L - Milligrams Per Liter

°C - Degrees Celsius

Below laboratry detection limit. Rpt'd value is half MDL.

Monthly Analyses

Weekly Analyses

Analyte detected between laboratory detection limit and

umhos/cm - Micro mhos (siemens) Per Cent NA = Not analyzed

the laboratory reporting limit.

MONTH		AP	RIL			M	AY		JU	JULY	
Sample Date	7-Apr-10	14-Apr-10	21-Apr-10	28-Apr-10	5-May-10	12-May-10	19-May-10	26-May-10	2-Jun-10	9-Jun-10	7-Jul-10
Chloride (mg/L)	21,000	19,000	22,000	21,000	22,000	21000	21,000	21,000	21,000	20,000	21,000
Calcium (mg/L)		580			620					600	470
Sodium (mg/L)		11,000			11,000					11,000	10,000
Magnesium (mg/L)		1,200			1,200					1,300	1,000
Bicarbonate (mg/L) as CaCO3		110			110					110	100
Iron (mg/L)		0.080			0.061					0.056	0.052
Ammonia as N (mg/L)	0.19	0.28	0.17	0.23	0.20	0.32	0.26	0.16	0.22	0.22	0.28
Total kjeldahl nitrogen as N (mg/L)	0.470	0.075	0.330	0.260	0.530	0.075	0.640	0.075	0.210	0.630	0.570
Nitrate as N (mg/L)	0.072	0.130	0.060	0.150	0.200	0.025	0.025	0.097	0.032	0.026	0.012
Nitrite as N (mg/L)	0.010	0.005	0.005	0.005	0.045	0.005	0.025	0.005	0.005	0.005	0.005
pH (standard units)	7.38	6.71	6.80	7.22	7.10	7.12	7.08	6.92	6.80	6.43	6.21
Phosphorous, total as P (mg/L)	0.120	1.800	0.060	0.160	0.065	0.100	0.012	1.900	0.081	0.100	0.075
Potassium (mg/L)		440			460					590	420
Total dissolved solids (mg/L)	27,000	32,000	NA	38,000	31,000	27,000	34,000	21,000	27,000		16,000
Specific Conductance (umohs/cm)	51,420	30,185	50,129	49,213	51,420	50,100	51,240	50,212	49,521	50,000	47,604
Sulfate, total as SO4 (mg/L)	2,500	2,700	2,900	2,800	2,700	2,700	2,900	2,600	2,700	2,800	2,600
gross alpha (pCi/L)		55			80					9.7	40.0
radium 226 (pCi/L)		23.5			23.4					20.3	22.0
radium 228 (pCi/L)		4.5			4.1					4.7	4.3
Temperature °C	31.1	30.3	30.5	30.4	30.3	30.1	31.1	30.7	31.4	30.1	30.9

mg/L - Milligrams Per Liter

°C - Degrees Celsius

 Weekly Analyses
 Below laboratry detection limit. Rpt'd value is half MDL.

 Monthly Analyses
 Analyte detected between laboratory detection limit and

Analyte detected between laboratory detection limit and the laboratory reporting limit.

umhos/cm - Micro mhos (siemens) Per Centim NA = Not analyzed

MONTH	AUGUST	SEPTEMBER	OCTOBER	NOVEMBER	DECEMBER	JANUARY	FEBRUARY	MARCH	APRIL	MAY	
Sample Date	4-Aug-10	1-Sep-10	6-Oct-10	3-Nov-10	1-Dec-10	13-Jan-11	2-Feb-11	9-Mar-11	6-Apr-11	4-May-11	
Chloride (mg/L)	22000	22,000	20,000	23,000	22,000	20,000	19,000	23,000	20,000	21,000	
Calcium (mg/L)	570	560	520	480	520	430	520	430	480	480	l
Sodium (mg/L)	11,000	10,000	11,000	11,000	10,000	10,000	11,000	11,000	11,000	11,000	l
Magnesium (mg/L)	1,200	460	1,100	1,100	1,100	1,100	1,200	1,200	1,000	1,100	l
Bicarbonate (mg/L) as CaCO3	110	100	100	100	100	100	110	86	110	93	
Iron (mg/L)	0.080	0.068	0.025	0.025	0.062	0.096	0.110	0.053	0.130	0.077	
Ammonia as N (mg/L)	0.20	0.42	0.39	0.38	0.92	0.81	0.40	0.28	0.27	0.29	l
Total kjeldahl nitrogen as N (mg/L)	0.350	0.670	0.880	0.320	0.720	1.000	0.375	1.300	0.450	0.75	l
Nitrate as N (mg/L)	0.005	0.005	0.025	0.005	0.050	0.050	0.050	0.005	0.025	0.025	
Nitrite as N (mg/L)	0.005	0.005	0.025	0.005	0.050	0.050	0.005	0.005	0.025	0.025	
pH (standard units)	7.00	6.82	6.87	6.85	7.09	7.10	6.88	6.49	6.29	6.94	l
Phosphorous, total as P (mg/L)	0.840	0.076	0.031	0.027	0.038	0.160	0.120	0.012	0.024	0.060	1
Potassium (mg/L)	420	180	440	390	390	470	530	420	390	410	l
Total dissolved solids (mg/L)	21,000	15,000	17,000	26,000	23,000	28,000	20,000	18,000		12,000	l
Specific Conductance (umohs/cm)	47,363	49,325	48,391	46,377	51,268	51,398	49,046	43,037	51,830	53,415	1
Sulfate, total as SO4 (mg/L)	2,900	3,000	2,600	2,900	2,900	2,700	2,700	2,700	2,800	2,800	1
gross alpha (pCi/L)	10.00	-35	35	5	60	90	60	105	40	80	
radium 226 (pCi/L)	25.5	20.1	21.5	22.5	22.5	22.8	20.0	20.90	20.6	19.2	l
radium 228 (pCi/L)	4.27	3.9	3.7	4.0	4.3	3.8	4.0	4.83	3.9	4.8	
Temperature °C	31.5	31.2	31.2	31.1	29.9	29.9	29.4	29.6	29.6	31.3	

mg/L - Milligrams Per Liter

°C - Degrees Celsius

 Weekly Analyses
 Below laboratry detection limit. Rpt'd value is half MDL.

 Monthly Analyses
 Analyte detected between laboratory detection limit and

Analyte detected between laboratory detection limit and the laboratory reporting limit.

umhos/cm - Micro mhos (siemens) Per Centim NA = Not analyzed

laboratory reporting limit.

Appendix E

Sample Date	Daily injected volume	Average Well Head Pressure	Average Annular	Average Flow Rate	Average UMZ Water Level Measurements	Average LMZ Water Level Measurements
(m/d/y)	MG	(PSI)	(PSI)	(GPM)	(FT NAVD 1988)	(FT NAVD 1988)
10/01/09	0.00000					
10/02/09	0.00000					
10/03/09	0.00000					
10/04/09	0.00000					
10/05/09	0.00000					
10/06/09	0.00000					
10/07/09	0.00000					
10/08/09	0.00000					
10/09/09	0.00000					
10/10/09	0.00000					
10/11/09	0.00000					
10/12/09	0.00000					
10/13/09	0.00000					
10/14/09	0.00000					
10/15/09	0.00000					
10/16/09	0.12881			89		
10/17/09	0.00000			0		
10/18/09	0.00000			0		
10/19/09	0.11828			82		
10/20/09	0.12501			87		
10/21/09	0.12350			86		
10/22/09	0.14244			99		
10/23/09	0.15771			110		
10/24/09	0.00000			0		
10/25/09	0.00000			0		
10/26/09	0.13097			91		
10/27/09	0.13903			97		
10/28/09	0.17572			122		
10/29/09	0.14730			102		
10/30/09	0.14000			97		
10/31/09	0.00000			0		
11/01/09	0.12203			85		
11/02/09	0.12203			85		
11/03/09	0.12203			85		
11/04/09	0.12915			90		
11/05/09	0.11237			78		
11/06/09	0.00000			0		
11/07/09	0.00000			0		
11/08/09	0.00000			0		
11/09/09	0.04400			31		
11/10/09	0.18048			125		
11/11/09	0.13217			92		
11/12/09	0.00000			0		
11/13/09	0.00000			0		
11/14/09	0.00000			0		
11/15/09	0.00000			0		

Sample Date	Daily injected volume	Average Well Head Pressure	Average Annular	Average Flow Rate	Average UMZ Water Level Measurements	Average LMZ Water Level Measurements
(m/d/y)	MG	(PSI)	(PSI)	(GPM)	(FT NAVD 1988)	(FT NAVD 1988)
11/16/00	0.00000			0		
11/16/09	0.00000			0		
11/17/09	0.00000	5.0	<i>E</i>	0		
11/18/09	0.00000	5.0	50.1	0	26.02	
11/19/09	0.12073	5.1	57.5	84	20.02	
11/20/09	0.00000	2.9	56.4	0	25.37	
11/21/09	0.00000	2.9	56.9	0	25.08	
11/22/09	0.00000	2.7	55.9	0	24.87	
11/23/09	0.15415	4.0	55.9	107	24.40	0.70
11/24/09	0.04022	4.3	56.5	28	22.98	8.38
11/25/09	0.00094	3.0	55.2	l	22.05	7.74
11/26/09	0.00000	2.9	55.3	0	21.87	7.46
11/27/09	0.00000	2.8	55.1	0	21.63	7.11
11/28/09	0.00000	2.7	49.1	0	21.55	6.97
11/29/09	0.00000	2.9	38.9	0	21.73	7.12
11/30/09	0.00000	3.0	34.1	0	21.80	7.17
12/01/09	0.00000	3.0	30.8	0	21.80	7.14
12/02/09	0.13693	9.2	24.9	95	21.73	7.39
12/03/09	0.12754	8.8	48.0	89	21.75	7.42
12/04/09	0.12429	8.2	56.2	86	21.48	7.11
12/05/09	0.00562	3.2	56.2	4	21.57	7.18
12/06/09	0.00000	2.8	56.4	0	21.55	7.16
12/07/09	0.13592	11.8	56.1	94	21.79	7.40
12/08/09	0.14627	11.8	56.2	102	21.10	7.22
12/09/09	0.16172	14.7	56.8	112	21.38	8.04
12/10/09	0.22642	18.5	56.1	157	22.20	8.32
12/11/09	0.02902	4.7	56.0	20	21.82	7.87
12/12/09	0.00000	3.0	56.4	0	21.83	7.86
12/13/09	0.00000	3.2	57.0	0	21.97	7.97
12/14/09	0.12092	12.1	55.9	84	22.01	7.99
12/15/09	0.12821	12.7	56.2	89	21.99	7.95
12/16/09	0.21909	19.8	56.0	152	21.94	7.88
12/17/09	0.20488	19.0	55.9	142	21.97	7.97
12/18/09	0.12429	14.0	55.8	86	22.36	8.31
12/19/09	0.00000	2.8	56.1	0	22.26	8.16
12/20/09	0.00000	2.6	55.8	0	22.01	7.96
12/21/09	0.20966	18.0	45.7	146	21.94	7.84
12/22/05	0.23042	27.0	49.4	160	21.16	7.75
12/23/09	0.17359	7.2	57.0	121	22.00	8.80
12/24/09	0.00000	3.0	57.8	0	22.96	9.23
12/25/09	0.00000	3.0	56.6	0	22.87	9.11
12/26/09	0.00000	2.7	56.0	0	22.57	8.76
12/27/09	0.00000	2.7	56.3	0	22.46	8.61
12/28/09	0.16756	1.3	56.1	116	22.61	8.75
12/29/09	0.29950	1.1	55.6	208	21.54	8.09
12/30/09	0.32966	0.9	57.6	22.9	21.98	8.70
12/31/09	0.26270	1.0	56.4	182	24.04	9.39

PSI - Pounds Per Square Inch

MG - Million Gallons

Sample Date	Daily injected volume	Average Well Head Pressure	Average Annular	Average Flow Rate	Average UMZ Water Level Measurements	Average LMZ Water Level Measurements
(m/d/y)	MG	(PSI)	(PSI)	(GPM)	(FT NAVD 1988)	(FT NAVD 1988)
01/01/10	0.23374	0.9	55.9	162	24.94	9.05
01/02/10	0.11180	1.2	51.0	78	24.68	8.77
01/03/10	0.06585	1 3	34.9	46	24 46	8.52
01/04/10	0.04089	1.6	30.8	28	24.36	8.44
01/05/10	0.05106	1.7	58.2	35	22.06	7.35
01/06/10	0.04702	1.2	42.0	33	23.65	8.02
01/07/10	0.00000	0.9	29.7	0	24.66	8.51
01/08/10	0.00000	0.0		0		
01/09/10	0.00089	0.7	18.8	1	23.85	7.72
01/10/10	0.00000	0.8	16.5	0	23.64	7.50
01/11/10	0.00000	1.2	36.6	0	23.49	7.33
01/12/10	0.05337	1.6	53.2	37	21.92	6.73
01/13/10	0.26684	1.4	45.3	185	23.26	7.57
01/14/10	0.00000	2.4	62.7	0	24.43	8.29
01/15/10	0.00000	2.5	69.2	0	24.41	8.21
01/16/10	0.00000	2.5	70.3	0	24.47	8.23
01/17/10	0.00000	2.6	71.6	0	24.61	8.34
01/18/10	0.00000	2.3	64.4	0	24.38	8.07
01/19/10	0.05324	2.0	54.5	37	22.66	7.39
01/20/10	0.27988	0.7	47.6	194	24.11	8.31
01/21/10	0.38737	0.1	46.3	269	25.35	9.09
01/22/10	0.14791	0.5	61.0	103	25.24	8.95
01/23/10	0.00000	0.0		0		
01/24/10	0.00000	0.0		0		
01/25/10	0.00112	0.5	76.5	1	25.03	8.59
01/26/10	0.04971	0.8	64.6	35	23.33	7.68
01/27/10	0.23294	0.4	55.5	162	23.73	7.93
01/28/10	0.00000	0.6	53.9	0	25.40	9.10
01/29/10	0.00000	0.6	54.4	0	25.25	8.95
01/30/10	0.00000	0.7	55.0	0	25.41	9.06
01/31/10	0.00000	0.4	52.9	0	25.13	8.74
02/01/10	0.28298	0.4	51.1	197	25.14	8.72
02/02/10	0.28882	0.4	53.8	201	23.78	8.26
02/03/10	0.29133	0.6	54.7	202	24.80	8.85
02/04/10	0.26417	0.1	52.8	183	25.90	9.54
02/05/10	0.21582	0.5	55.6	150	25.91	9.50
02/06/10	0.00000	1.2	57.0	0	25.84	9.37
02/07/10	0.00000	0.7	52.2	0	25.50	9.00
02/08/10	0.00000	1.2	52.8	0	25.64	9.12
02/09/10	0.05009	1.1	54.0	35	24.36	8.56
02/10/10	0.29234	0.3	53.1	203	25.29	9.24
02/11/10	0.00000	2.2	52.1	0	25.97	9.61
02/12/10	0.00394	2.3	51.5	3	26.03	9.62
02/13/10	0.00000	2.1	51.0	0	25.74	9.28
02/14/10	0.00000	1.6	51.6	0	25.58	9.09
02/15/10	0.00000	1.8	53.6	0	25.84	9.32

PSI - Pounds Per Square Inch

MG - Million Gallons

Sample Date	Daily injected volume	Average Well Head Pressure	Average Annular	Average Flow Rate	Average UMZ Water Level Measurements	Average LMZ Water Level Measurements
(m/d/y)	MG	(PSI)	(PSI)	(GPM)	(FT NAVD 1988)	(FT NAVD 1988)
02/16/10	0.05127	1.5	52.2	36	24.51	8.64
02/17/10	0.25591	0.6	51.6	178	25.28	9.16
02/18/10	0.23320	1.0	52.4	162	26.16	9.75
02/19/10	0.41519	-0.4	52.8	288	25.94	9.47
02/20/10	0.55740	-1.3	53.8	387	26.01	9.51
02/21/10	0.15543	1.0	55.8	108	26.04	9.52
02/22/10	0.00014	1.8	59.6	0	26.22	9.66
02/23/10	0.05086	1.7	65.1	35	24.73	9.00
02/24/10	0.24320	0.9	61.3	169	25.93	9.82
02/25/10	0.00000	2.6	52.5	0	26.40	9.95
02/26/10	0.00000	2.6	52.6	0	26.10	9.59
02/27/10	0.00061	2.4	50.7	0	25.99	9.42
02/28/10	0.00000	2.6	52.0	0	26.00	9.41
03/01/10	0.00061	2.7	52.8	0	26.03	9.41
03/02/10	0.00000	-0.4	51.5	0	24.75	8.97
03/03/10	0.23944			166		
03/04/10	0.52885			367		
03/05/10	0.25212			175		
03/06/10	0.00000			0		
03/07/10	0.00000			0		
03/08/10	0.00000			0		
03/09/10	0.00000			0		
03/10/10	0.07126			49		
03/11/10	0.20427			142		
03/12/10	0.00000			0		
03/13/10	0.00000			0		
03/14/10	0.00000			0		
03/15/10	0.01322	6.1	56.9	9	26.62	9.96
03/16/10	0.20476	1.9	54.6	142	24.72	10.35
03/17/10	0.31554	0.1	54.3	219	26.10	10.83
03/18/10	0.24895	0.8	53.7	173	26.86	10.41
03/19/10	0.00001	1.3	53.6	0	26.63	10.13
03/20/10	0.36292	1.2	54.1	252	26.59	10.06
03/21/10	0.25283	1.5	56.9	176	26.67	10.11
03/22/10	0.01677	2.6	58.6	12	26.62	10.03
03/23/10	0.05064	3.0	61.1	35	25.18	9.29
03/24/10	0.34449	0.3	55.9	239	26.38	10.18
03/25/10	0.10317	1.8	56.4	72	27.17	10.79
03/26/10	0.00031	3.1	60.3	0	27.11	10.67
03/27/10	0.00000	3.0	59.1	0	26.86	10.38
03/28/10	0.00756	2.8	59.4	5	26.87	10.36
03/29/10	0.00000	1.8	56.5	0		
03/30/10	0.00000	5.6	56.4	0		
03/31/10	0.23683	2.9	56.1	164		

Sample Date	Daily injected volume	Average Well Head Pressure	Average Annular	Average Flow Rate	Average UMZ Water Level Measurements	Average LMZ Water Level Measurements
(m/d/v)	MG	(PSI)	(PSI)	(GPM)	(FT NAVD 1988)	(FT NAVD 1988)
(,,,,,,,,,		()	()	()	(,	()
04/01/10	0.00000	0.7	54.1	0		
04/02/10	0.20896	-0.4	53.7	145	23.00	7.31
04/03/10	0.00000	0.0		0		
04/04/10	0.00000	0.0		0		
04/05/10	0.16387	0.4	55.3	114	23.11	7.40
04/06/10	0.29476	4.1	54.5	205	22.82	7.38
04/07/10	0.47211	0.0	52.3	328		6.98
04/08/10	0.16484	0.0	42.5	114		
04/09/10	0.00000	0.0	57.5	0		6.66
04/10/10	0.00000	2.5	59.4	0		
04/11/10	0.00000	2.5	59.4	0		
04/12/10	0.24227	0.5	56.5	168	21.81	7.03
04/13/10	0.13523	1.9	58.0	94	20.89	6.27
04/14/10	0.19543	1.9	59.3	136	22.39	7.00
04/15/10	0.00000	2.7	58.1	0	23.04	7.42
04/16/10	0.00000	2.7	58.2	0	22.82	7.15
04/17/10	0.00051	2.7	58.0	0	22.77	7.07
04/18/10	0.00036	2.6	57.2	0	22.73	7.01
04/19/10	0.00000	2.7	58.0	0	22.77	7.03
04/20/10	0.02901	0.0	55.8	20	24.88	5.90
04/21/10	0.07654	0.0		53		
04/22/10	0.16275	0.0		113		
04/23/10	0.38294	0.0		266		
04/24/10	0.00000	0.0		0		
04/25/10	0.00000	0.0		0		
04/26/10	0.31548	0.0	51.2	219		6.60
04/27/10	0.30266	0.0	50.6	210		5.52
04/28/10	0.00000	0.0		0		
04/29/10	0.00000	0.0		0		
04/30/10	0.00000	0.0		0		
05/01/10	0.00000	1.6	55.3	0	21.83	6.72
05/02/10	0.56470		55.5	392		6.35
05/03/10	0.18898	-1.8	55.9	131	21.27	7.05
05/04/10	0.60873	5.8	57.4	423	22.20	6.85
05/05/10	0.15722	2.9	57.7	109	22.99	7.37
05/06/10	0.00000	2.9	56.5	0	23.80	7.91
05/07/10	0.00183	2.8	55.4	1	23.46	7.55
05/08/10	0.00000	2.9	54.9	0	23.29	7.36
05/09/10	0.00000	2.9	53.8	0	23.11	7.16
05/10/10	0.27064	2.4	51.7	188	22.94	6.99
05/11/10	0.15581	2.7	53.3	108	21.56	6.16
05/12/10	0.02256	2.1	53.5	16	22.46	6.84
05/13/10	0.13874	2.9	53.1	96	23.08	7.32
05/14/10	0.00000	2.9	53.4	0	22.77	6.96
05/15/10	0.00000	2.9	53.4	0	22.61	6.78

Sample Date	Daily injected volume	Average Well Head Pressure	Average Annular	Average Flow Rate	Average UMZ Water Level Measurements	Average LMZ Water Level Measurements
(m/d/y)	MG	(PSI)	(PSI)	(GPM)	(FT NAVD 1988)	(FT NAVD 1988)
05/14/10	0.00042	2.0	52.0	0	22 54	
05/16/10	0.00042	2.8	52.0	0	22.54	0.00
05/17/10	0.11632	1.8	50.7	81	22.55	6.64
05/18/10	0.22106	1.9	53.4	154	21.38	5.98
05/19/10	0.23173	1.7	54.6	161	22.34	6.73
05/20/10	0.14807	1.5	53.3	103	23.10	7.37
05/21/10	0.00000	3.0	53.6	0	22.79	7.00
05/22/10	0.00000	3.0	53.5	0	22.62	6.79
05/23/10	0.00000	3.0	53.8	0	22.54	6.69
05/24/10	0.13977	1.3	52.4	97	22.50	6.63
05/25/10	0.05976	3.0	53.3	42	21.31	5.77
05/26/10	0.03685	3.4	56.6	26	22.15	6.51
05/27/10	0.00000	2.9	56.4	0	22.49	7.01
05/28/10	0.00409	2.9	54.8	3	22.19	6.67
05/29/10	0.00000	2.9	54.4	0	22.06	6.51
05/30/10	0.00055	2.9	55.3	0	21.95	6.38
05/31/10	0.00121	2.9	55.4	1	21.89	6.29
06/01/10	0.49521	2.8	54.5	344	20.87	5.61
06/02/10	0.22025	2.7	55.0	153	21.97	6.39
05/03/10	0.47369	2.6	56.4	329	22.75	7.12
06/04/10	0.06628	2.9	57.8	46	22.53	6.85
06/05/10	0.00181	2.8	56.5	1	22.39	6.68
06/06/10	0.00000			0		
06/07/10	0.00000			0		
06/08/10	0.27074		59.5	188	23.30	5.35
06/09/10	0.28372	3.1	60.1	197	22.34	6.92
06/10/10	0.00058	3.0	61.6	0	22.84	7.41
06/11/10	0.00043	0.0	62.1	0		6.84
06/12/10	0.00040	0.0	60.8	0		6.08
06/13/10	0.00000	3.0	63.2	0	22.46	6.92
06/14/10	0.38160	4.1	64.3	265	22.46	6.90
06/15/10	0.37788	4.1	66.3	262	22.38	6.80
06/16/10	0.00043	3.1	65.7	0	22.28	6.68
06/17/10	0.00159	3.0	63.6	1	22.18	6.54
06/18/10	0.00079	2.9	62.8	1	22.12	6.47
06/19/10	0.00087	2.9	62.7	1	22.12	6.46
06/20/10	0.00339	2.9	61.7	2	22.14	6.47
06/21/10	0.38709	3.8	62.0	269	22.21	6.54
06/22/10	0.32704	4.0	63.5	227	22.20	6.52
06/23/10	0.00000	3.1	63.6	0	22.23	6.53
06/24/10	0.00047	3.1	63.3	0	22.24	6.53
06/25/10	0.13850	3.7	63.3	96	22.23	6.52
06/26/10	0.0000	3.1	63.6	0	22.26	6.59
06/27/10	0.00000	0.0		0		
06/28/10	0.00000	0.0		0		
06/29/10	0.00000	0.0		0		
06/30/10	0.00000	0.0		0		

PSI - Pounds Per Square Inch

MG - Million Gallons

Sample Date	Daily injected volume	Average Well Head Pressure	Average Annular	Average Flow Rate	Average UMZ Water Level Measurements	Average LMZ Water Level Measurements
(m/d/y)	MG	(PSI)	(PSI)	(GPM)	(FT NAVD 1988)	(FT NAVD 1988)
07/01/10	0.00000	0.0		0		
07/02/10	0.00000	0.0		0		
07/02/10	0.00000	0.0		0		
07/03/10	0.00000	0.0		0		
07/04/10	0.00000	0.0	(1.1	0	22.24	6.5.4
07/05/10	0.34705	0.8	61.1	241	22.20	6.54
07/06/10	0.06128	-0.7	60.0	43	21.14	5.98
07/07/10	0.18991	0.6	62.0	132	21.27	7.02
07/08/10	0.14650	0.9	61.5	102	21.61	7.42
07/09/10	0.15169	0.8	62.5	105	21.41	7.18
07/10/10	0.00000	0.9	63.0	0	21.33	7.06
07/11/10	0.00000	0.9	62.4	0	21.28	6.99
07/12/10	0.00000	0.8	62.4	0	21.25	6.94
07/13/10	0.00000	0.9	62.3	0	21.18	6.85
07/14/10	0.00000	0.9	62.2	0	21.12	6.77
07/15/10	0.00000	0.9	62.3	0	21.10	6.73
07/16/10	0.00000	0.9	61.9	0	21.02	6.64
07/17/10	0.00000	0.9	61.9	0	20.99	6.60
07/18/10	0.00000	0.9	61.8	0	20.99	6.59
07/19/10	0.24421	-1.9	62.8	170	20.99	6.57
07/20/10	0.08924	-0.2	64.0	62	20.90	6.47
07/21/10	0.00000	0.9	63.1	0	20.81	6.37
07/22/10	0.41409	0.2	63.3	288	20.76	6.31
07/23/10	0.11987	0.2	62.5	83	20.72	6.27
07/24/10	0.00000	0.9	62.8	0	20.75	6.29
07/25/10	0.00000	0.8	62.7	0	20.74	6.29
07/26/10	0.00000	0.8	62.8	0	20.76	6.29
07/27/10	0.00129	0.9	62.6	1	20.75	6.26
07/28/10	0.00000	0.9	62.9	0	20.75	6.27
07/29/10	0.00000	0.9	63.2	0	20.76	6.28
07/30/10	0.00000	0.9	63.2	0	20.82	6.32
07/31/10	0.00000	0.9	63.0	0	20.83	6.32
08/01/10	0.18300	3.2	62.8	127	20.79	6.29
08/02/10	0.00000	3.0	62.0	0	20.66	6.15
08/03/10	0.20743	1.6	63.7	144	20.03	5.65
08/04/10	0.29564	0.8	64.7	205	20.56	6.44
08/05/10	0.36732	0.1	65.5	255	20.85	6.72
08/06/10	0.09667	2.2	66.4	67	20.65	6.50
08/07/10	0.00000	3.0	64.6	0	20.52	6.33
08/08/10	0.00096	2.8	62.8	1	20.43	6.20
08/09/10	0.00073	3.0	63.1	1	20.50	6.25
08/10/10	0.00070	3.0	62.5	0	20.48	6.22
08/11/10	0.00159	3.0	63.4	1	20.53	6.26
08/12/10	0.00000	3.1	65.2	0	20.64	6.35
08/13/10	0.00000	3.2	66.0	0	20.70	6.41
08/14/10	0.00000	3.2	65.9	0	20.66	6.36
08/15/10	0.00000	3.0	65.0	0	20.63	6.31

PSI - Pounds Per Square Inch

MG - Million Gallons

Sample Date	Daily injected volume	Average Well Head Pressure	Average Annular	Average Flow Rate	Average UMZ Water Level Measurements	Average LMZ Water Level Measurements
(m/d/y)	MG	(PSI)	(PSI)	(GPM)	(FT NAVD 1988)	(FT NAVD 1988)
08/16/10	0 27954	1 1	65.4	194	20.66	6 31
08/17/10	0.11885	1.1	64.3	83	19.92	5.93
08/18/10	0.11005	1.1	67.8	181	20.61	6.26
08/19/10	0.11094	2.4	69.3	77	20.62	6.24
08/20/10	0.00001	3.1	68.8	,,,	20.62	6.29
08/21/10	0.00001	3.0	67.1	5	20.63	6.23
08/22/10	0.00007	3.6	65.5	2	20.05	6.24
08/23/10	0.00227	J.0	66.2	2	20.69	6.28
08/24/10	0.00000	4.0 5.4	65.6	0	20.09	6.28
08/25/10	0.00209	3.4	67.6	2 40	20.71	6.22
08/26/10	0.03733	5.0	60.5	208	20.71	6.22
08/27/10	0.42691	3.2	70.7	127	20.77	6.01
08/27/10	0.17039	3.2	70.7	125	20.85	0.41
08/28/10	0.00000	3.0	70.4	0	20.86	6.43
08/29/10	0.00000	3.0	69.8	0	20.81	6.38
08/30/10	0.00000	2.9	69.6	0	20.81	6.37
08/31/10	0.03775	2.1	69.0	26	20.59	5.97
09/01/10	0.19142	2.3	70.6	129	21.08	7.04
09/02/10	0.20699	2.7	70.9	140	21.25	7.57
09/03/10	0.00000	3.1	72.1	0	20.95	7.23
09/04/10	0.00000	3.1	72.7	0	20.82	7.07
09/05/10	0.00387	3.0	72.3	3	20.72	6.94
09/06/10	0.00346	4.7	69.2	3	20.55	
09/07/10	0.34333	5.4	69.2	230	20.43	
09/08/10	0.31999	3.6	71.7	218	20.68	
09/09/10	0.00154	3.0	72.6	1	20.77	6.62
09/10/10	0.00000	3.1	74.1	0	20.86	6.69
09/11/10	0.00000	3.1	74.8	0	20.87	6.70
09/12/10	0.00000	3.1	75.2	0	20.89	6.71
09/13/10	0.11888	2.6	75.1	80	20.89	6.69
09/14/10	0.00000	3.1	75.1	0	20.85	6.63
09/15/10	0.37486	5.7	76.0	259	20.80	6.57
09/16/10	0.37037	5.3	76.9	253	20.83	6.61
09/17/10	0.25397	4.3	76.2	172	20.84	6.61
09/18/10	0.00000	2.9	75.9	0	20.78	6.52
09/19/10	0.00000	3.0	75.5	0	20.75	6.49
09/20/10	0.14524	2.0	75.0	100	20.75	6.47
09/21/10	0.15328	2.2	75.5	158	20.65	6.36
09/22/10	0.00950	3.0	76.5	0	20.59	6.30
09/23/10	0.00000	0.0	76.2	0	20.50	6.20
09/24/10	0.00076	0.0	76.0	1	20.45	6.15
09/25/10	0.00044	0.0	76.9	0	20.53	6.22
09/26/10	0.00001	0.0	77.7	0	20.63	6.33
09/27/10	0.00052	0.0	77.1	0	20.66	6.36
09/28/10	0.16282	1.5	76.3	103	20.71	6.39
09/29/10	0.00126	0.0	75.1	0	20.92	6.61
09/30/10	0.22776	1.1	76.6	157	20.96	6.65

PSI - Pounds Per Square Inch

MG - Million Gallons

Sample Date	Daily injected volume	Average Well Head Pressure	Average Annular	Average Flow Rate	Average UMZ Water Level Measurements	Average LMZ Water Level Measurements
(m/d/y)	MG	(PSI)	(PSI)	(GPM)	(FT NAVD 1988)	(FT NAVD 1988)
10/01/10	0.16877	1.9	76.7	117	20.88	6.57
10/02/10	0.00000	0.0	78.2	0	20.95	6.64
10/03/10	0.00000	0.0	77.8	0	20.86	6.54
10/04/10	0.00000	3.2	77.0	0	20.76	6.42
10/05/10	0.31392	1.2	74.5	218	20.44	5.89
10/06/10	0.28184	1.2	72.2	195	20.99	6.73
09/07/10	0.18041	2.2	67.7	125	21.07	7.10
10/08/10	0.00000	3.1	70.0	0	20.82	6.79
10/09/10	0.00000	5.1	70.0	0	20.65	6.61
10/10/10	0.00000		69.2	0	20.58	6.50
10/11/10	0.38628	2.1	65.6	268	20.51	6.41
10/12/10	0.03634	1 7	65.7	25	20.40	6.27
10/13/10	0.00000	,	68.5	0	20.36	6.22
10/14/10	0.00000		69.0	0	20.30	6.13
10/15/10	0.00000		69.3	0	20.21	6.04
10/16/10	0.00000		64.0	0	20.04	5.85
10/17/10	0.00000		59.6	0	20.01	5.00
10/18/10	0.00000		57.4	0	20.01	5.78
10/19/10	0.00000		57.5	0	20.02	5.79
10/20/10	0.00000		58.6	0	19.99	5.77
10/21/10	0.00000		59.7	0	19.92	5.68
10/22/10	0.00000		59.4	0	19.72	5.50
10/23/10	0.00000		60.1	0	19.64	5.38
10/24/10	0.00000		61.5	0	19.65	5 39
10/25/10	0.38014	2.3	59.5	264	19.70	5.43
10/26/10	0.46951	2.4	59.8	326	19.67	5.40
10/27/10	0.01408	1.0	62.2	9	19.55	5.27
10/28/10	0.00000	0.0	64.3	0	19.49	5.19
10/29/10	0.0000	-0.1	64.4	0	19.42	5.10
10/30/10	0.00000	-0.2	64.3	0	19.28	4.96
10/31/10	0.00000	-0.1	63.4	0	19.29	4.97
11/01/10	0.00000	-0.1	62.7	0	19.25	4.91
11/02/10	0.00000	-0.2	61.9	0	19.21	4.86
11/03/10	0.07771	1.4	64.0	54	19.78	5.79
11/04/10	0.00209	3.0	62.5	1	19.72	5.86
11/05/10	0.00000	0.2	59.0	0	19.72	5.42
11/06/10	0.00000			0		
11/07/10	0.00000			0		
11/08/10	0.00000			0		
11/09/10	0.00000			0		
11/10/10	0.00000			0		
11/11/10	0.00000	0.1	56.5	0	19.19	5.05
11/12/10	0.00000	-0.4	56.9	0	19.03	4.83
11/13/10	0.00000	-0.4	55.2	0	19.01	4.80
11/14/10	0.00000	-0.4	55.6	0	19.07	4.87
11/15/10	0.23909	-1.2	53.3	166	19.13	4.93

Sample Date	Daily injected volume	Average Well Head Pressure	Average Annular	Average Flow Rate	Average UMZ Water Level Measurements	Average LMZ Water Level Measurements
(m/d/y)	MG	(PSI)	(PSI)	(GPM)	(FT NAVD 1988)	(FT NAVD 1988)
11/16/10	0.55602	3.0	53 3	307	10.31	1.97
11/10/10	0.33092	-3.9	56.2	100	19.31	4.07
11/17/10	0.27010	-4.0	50.2	188	19.22	4.70
11/10/10	0.00000	-0.5	57.0	0	10.95	4.70
11/19/10	0.00000	-0.5	57.0	0	10.70	4.33
11/20/10	0.00000	-0.5	54.5	0	18.08	4.40
11/21/10	0.00000	-0.4	50.9	0	18.71	4.48
11/22/10	0.00000	-0.5	59.1	0	18.75	4.52
11/23/10	0.00000	-1.0	56.2	0	18.65	4.35
11/24/10	0.00000			0		
11/25/10	0.00000			0		
11/26/10	0.00000			0		
11/27/10	0.00000			0		
11/28/10	0.00000	2.4	FO D	0	10.51	4.50
11/29/10	0.00000	-0.6	58.2	0	18.76	4.50
11/30/10	0.02172	-0.9	59.7	15	18.69	4.31
12/01/10	0.16519	-1.0	55.3	115	19.03	4.80
12/02/10	0.24952	-2.0	51.4	173	18.96	5.07
12/03/10	0.00000	-0.7	52.2	0	18.71	4.79
12/04/10	0.00000	-0.6	52.2	0	18.63	4.69
12/05/10	0.00000	-0.6	51.6	0	18.64	4.68
12/06/10	0.00000	-0.9	50.7	0	18.43	4.44
12/07/10	0.00000	-1.0	50.8	0	18.20	4.17
12/08/10	0.00000	-0.8	52.5	0	18.11	4.07
12/09/10	0.00000	-0.9	50.7	0	17.99	3.95
12/10/10	0.00000	-0.4	54.0	0	18.25	4.24
12/11/10	0.00000	-0.6	53.2	0	18.10	4.04
12/12/10	0.00000	-0.6	52.5	0	18.20	4.11
12/13/10	0.08375	-0.5	55.4	58	18.30	4.31
12/14/10	0.15102	-1.7	52.1	105	17.64	3.46
12/15/10	0.14161	-1.6	52.9	98	17.43	3.22
12/16/10	0.00098	-0.6	56.2	1	17.37	3.18
12/17/10	0.00000	-0.5	55.0	0	17.45	3.29
12/18/10	0.00000	-0.6	53.5	0	17.62	3.45
12/19/10	0.00000	-0.6	52.7	0	17.71	3.52
12/20/10	0.36470	-2.5	51.0	253	17.62	3.42
12/21/10	0.21305	-1.8	54.8	148	17.73	3.53
12/22/10	0.00000	-0.5	55.0	0	17.81	3.60
12/23/10	0.10563	-1.0	53.8	73	17.90	3.70
12/24/10	0.00000	-0.5	54.1	0	17.86	3.65
12/25/10	0.00000	-0.5	55.0	0	18.04	3.81
12/26/10	0.00000	-0.8	51.9	0	17.90	3.68
12/27/10	0.00025	-1.0	51.2	0	17.56	3.30
12/28/10	0.35283	-3.3	51.0	245	17.32	3.04
12/29/10	0.17152	-2.2	55.6	119	17.28	3.02
12/30/10	0.00000	-0.5	54.9	0	17.35	3.11
12/31/10	0.00000	-0.4	54.3	0	17.46	3.22

PSI - Pounds Per Square Inch MG - Million Gallons FT - Feet NAVD 1988 - North Atlantic Vertical Datum, 1988

Sample Date	Daily injected volume	Average Well Head Pressure	Average Annular	Average Flow Rate	Average UMZ Water Level Measurements	Average LMZ Water Level Measurements
(m/d/y)	MG	(PSI)	(PSI)	(GPM)	(FT NAVD 1988)	(FT NAVD 1988)
01/01/11	0.00000	-0.4	53.8	0	17 55	3 33
01/02/11	0.00000	-0.4	54.8	0	17.55	3.72
01/03/11	0.00000	0.0	53.8	0	17.54	3.42
01/04/11	0.00000	0.0	52.7	0	17.55	3.20
01/04/11	0.00000	-1.0	50 3	0	17.39	3.40
01/05/11	0.00000	-0.7	56.5	0	17.75	J.49
01/06/11	0.00404	-4.4	53.5	135	17.65	3.40
01/07/11	0.19402	-2.1	52.7	135	17.96	5.20
01/08/11	0.00000	-0.7	54.6	0	18.09	5.42
01/09/11	0.00000	-0.7	53.3	0	17.99	2.32
01/10/11	0.24788	-1.9	54.9	172	18.14	3.57
01/11/11	0.00000	-0.5	63.4	0	18.12	3.97
01/12/11	0.03539	-2.0	55.0	24	17.76	3.12
01/13/11	0.21299	-2.5	52.4	146	18.06	3.74
01/14/11	0.00000	-0.7	55.3	0	18.22	4.58
01/15/11	0.00000	-0.5	54.9	0	18.09	4.50
01/16/11	0.00000	-0.5	54.6	0	18.11	4.55
01/17/11	0.00000	-0.5	54.3	0	18.17	4.65
01/18/11	0.00000	-0.5	53.9	0	18.19	4.71
01/19/11	0.00000	-0.4	55.3	0	18.25	4.78
01/20/11	0.00000	-0.4	54.8	0	18.25	4.80
01/21/11	0.00029	-0.3	55.2	0	18.38	4.93
01/22/11	0.00000	-0.7	52.3	0	18.28	4.83
01/23/11	0.00000	-0.8	52.0	0	18.08	4.60
01/24/11	0.16980	-1.7	52.8	117	18.20	4.73
01/25/11	0.00000	-0.4	61.4	0	18.42	4.96
01/26/11	0.35017	-3.9	55.2	240	18.34	4.87
01/27/11	0.36279	-3.5	52.5	252	18.38	4.91
01/28/11	0.00000	-0.8	52.9	0	18.43	4.95
01/29/11	0.00000	-0.7	53.8	0	18.47	4.99
01/30/11	0.00000	-0.7	53.2	0	18.52	5.05
01/31/11	0.00000	-0.6	53.2	0	18.64	5.17
02/01/11	0.00000	-0.5	53.5	0	18.75	5.28
02/02/11	0.15689	-1.6	53.6	109	19.00	5.44
02/03/11	0.00000	-0.3	59.6	0	19.05	5.62
02/04/11	0.00000	-0.2	63.5	0	19.01	5.56
02/05/11	0.00000	-0.3	65.1	0	18.90	5.56
02/06/11	0.00000	-0.3	66.1	0	18.93	5.47
02/07/11	0.00000	-0.3	66.8	0	18.84	5.35
02/08/11	0.00000			0		
02/09/11	0.00000	-0.4	55.8	0	18.72	5.20
02/10/11	0.00000	-0.4	56.9	0	19.10	5.38
02/11/11	0.00000	-0.7	51.1	0	18.71	5.18
02/12/11	0.00000	-0.7	51.3	0	18.60	5.07
02/13/11	0.00000	-0.6	52.7	0	18.64	5.10
02/14/11	0.00000	-0.5	52.9	0	18.74	5.20
02/15/11	0.00000	-0.5	52.8	0	18.74	5.19

PSI - Pounds Per Square Inch MG - Million Gallons FT - Feet NAVD 1988 - North Atlantic Vertical Datum, 1988

Sample Date	Daily injected volume	Average Well Head Pressure	Average Annular	Average Flow Rate	Average UMZ Water Level Measurements	Average LMZ Water Level Measurements
(m/d/y)	MG	(PSI)	(PSI)	(GPM)	(FT NAVD 1988)	(FT NAVD 1988)
02/16/11	0.21804	-1.9	54.3	151	18.79	5.26
02/17/11	0.05260	-0.7	60.0	37	18.76	5.22
02/18/11	0.17363	-1.4	56.9	121	18.75	5.21
02/19/11	0.00000	-0.3	59.3	0	18.79	5.25
02/20/11	0.00000	-0.4	57.5	0	18.76	5.20
02/21/11	0.07061	-0.8	55.4	49	18.85	5.29
02/22/11	0.00000	-0.3	56.2	0	18.83	5.28
02/23/11	0.00000	-0.3	57.8	0	18.77	5.22
02/24/11	0.00000	-0.3	59.0	0	18.90	5.18
02/25/11	0.00000	-0.3	60.1	0	18.60	5.10
02/26/11	0.00000	-0.4	59.5	0	18.60	5.00
02/27/11	0.00000	-0.3	59.0	0	18.60	5.00
02/28/11	0.00000	-0.3	58.7	0	18.70	5.10
03/01/11	0.00061	2.7	52.8	0	26.03	9.41
03/02/11	0.00000	-0.4	51.5	0	24.75	8.97
03/03/11	0.23944			166		
03/04/11	0.52885			367		
03/05/11	0.25212			175		
03/06/11	0.00000			0		
03/07/11	0.00000			0		
03/08/11	0.00000			0		
03/09/11	0.00000			0		
03/10/11	0.07126			49		
03/11/11	0.20427			142		
03/12/11	0.00000			0		
03/13/11	0.00000			0		
03/14/11	0.00000			0		
03/15/11	0.01322	6.1	56.9	9	26.62	9.96
03/16/11	0.20476	1.9	54.6	142	24.72	10.35
03/17/11	0.31554	0.1	54.3	219	26.10	10.83
03/18/11	0.24895	0.8	53.7	173	26.86	10.41
03/19/11	0.00001	1.3	53.6	0	26.63	10.13
03/20/11	0.36292	1.2	54.1	252	26.59	10.06
03/21/11	0.25283	1.5	56.9	176	26.67	10.11
03/22/11	0.01677	2.6	58.6	12	26.62	10.03
03/23/11	0.05064	3.0	61.1	35	25.18	9.29
03/24/11	0.34449	0.3	55.9	239	26.38	10.18
03/25/11	0.10317	1.8	56.4	72	27.17	10.79
03/26/11	0.00031	3.1	60.3	0	27.11	10.67
03/27/11	0.00000	3.0	59.1	0	26.86	10.38
03/28/11	0.00756	2.8	59.4	5	26.87	10.36
03/29/11	0.00000	1.8	56.5	0		
03/30/11	0.00000	5.6	56.4	0		
03/31/11	0.23683	2.9	56.1	164		

Sample Date	Daily injected volume	Average Well Head Pressure	Average Annular	Average Flow Rate	Average UMZ Water Level Measurements	Average LMZ Water Level Measurements
(m/d/y)	MG	(PSI)	(PSI)	(GPM)	(FT NAVD 1988)	(FT NAVD 1988)
04/01/11	0.19142	2.30	70.65	129.3	21.08	7.04
04/02/11	0.20699	2.67	70.89	139.9	21.25	7.57
04/03/11	0.00000	3.06	72.12	0.0	20.95	7.23
04/04/11	0.00000	3.11	72.73	0.0	20.82	7.07
04/05/11	0.00387	3.00	72.30	3.0	20.72	6.94
04/06/11	0.00346	4.73	69.18	3.0	20.55	
04/07/11	0.34333	5.38	69.15	229.7	20.43	
04/08/11	0.31999	3.56	71.69	217.7	20.68	
04/09/11	0.00154	3.01	72.62	1.1	20.77	6.62
04/10/11	0.00000	3.07	74.06	0.0	20.86	6.69
04/11/11	0.00000	3.08	74.75	0.0	20.87	6.70
04/12/11	0.00000	3.10	75.19	0.0	20.89	6.71
04/13/11	0.11888	2.65	75.14	79.6	20.89	6.69
04/14/11	0.00000	3.06	75.09	0.0	20.85	6.63
04/15/11	0.37486	5.73	76.05	258.6	20.80	6.57
04/16/11	0.37037	5.27	76.92	252.5	20.83	6.61
04/17/11	0.25397	4.33	76.23	171.9	20.84	6.61
04/18/11	0.00000	2.94	75.90	0.0	20.78	6.52
04/19/11	0.00000	2.96	75.50	0.0	20.75	6.49
04/20/11	0.14524	2.01	75.01	100.0	20.75	6.47
04/21/11	0.15328	2.25	75.54	157.5	20.65	6.36
04/22/11	0.00950	2.99	76.48	0.0	20.59	6.30
04/23/11	0.00000		76.23	0.0	20.50	6.20
04/24/11	0.00076		76.00	0.5	20.45	6.15
04/25/11	0.00044		76.88	0.2	20.53	6.22
04/26/11	0.00001		77.66	0.0	20.63	6.33
04/27/11	0.00052		77.09	0.2	20.66	6.36
04/28/11	0.16282	1.50	76.27	102.9	20.71	6.39
04/29/11	0.00126		75.06	0.4	20.92	6.61
04/30/11	0.22776	1.10	76.60	156.9	20.96	6.65
05/01/11	0.00000	2.65	67.55	0.0	18.13	4.74
05/02/11	0.00000	2.23	68.44	0.0	18.10	4.70
05/03/11	0.03519	2.37	68.82	24.4	18.14	3.99
05/04/11	0.16965	3.34	68.18	117.8	18.64	4.90
04/05/11	0.45681	3.24	65.70	317.2	18.35	5.27
05/06/11	0.34012	4.26	65.67	236.2	18.10	4.98
05/07/11	0.00000	2.21	68.71	0.0	17.97	4.82
05/08/11	0.00000	3.57	70.68	0.0	17.94	4.76
05/09/11	0.17171	2.74	69.34	119.2	17.88	4.69
05/10/11	0.00000	3.50	70.31	0.0	17.77	4.55
05/11/11	0.00000	2.76	71.90	0.0	17.70	4.46
05/12/11	0.00000	2.99	72.49	0.0	17.60	4.37
05/13/11	0.00000	2.47	72.89	0.0	17.56	4.29
05/14/11	0.00000	2.47	72.05	0.0	17.52	4.23
05/15/11	0.00097	1.11	71.20	0.7	17.57	4.27

FT - Feet

.

SUMMARY OF INJECTION WELL DATA OKEECHOBEE LANDFILL, INC., OKEECHOBEE, FLORIDA

Sample Date	Daily injected volume	Average Well Head Pressure	Average Annular	Average Flow Rate	Average UMZ Water Level Measurements	Average LMZ Water Level Measurements
(m/d/y)	MG	(PSI)	(PSI)	(GPM)	(FT NAVD 1988)	(FT NAVD 1988)
05/16/11	0.12605	2.99	68.39	87.5	17.61	4.30
05/17/11	0.00000	3.24	67.50	0.0	17.65	4.33
05/18/11	0.01898	3.37	65.94	13.2	17.53	3.80
05/19/11	0.33701	3.85	64.48	234.0	17.89	3.37
05/20/11	0.42162	3.37	63.43	292.8	17.98	3.35
05/21/11	0.40648	3.67	66.58	282.3	18.11	3.35
05/22/11	0.19191	4.23	69.80	133.3	18.15	3.29
05/23/11	0.05901	3.40	71.51	41.0	18.29	4.15
05/24/11	0.00000	1.16	71.49	0.0	18.10	4.86
05/25/11	0.00000	0.21	71.29	0.0	17.82	4.55
05/26/11	0.00000	0.04	71.37	0.0	17.63	4.33
05/27/11	0.00000	(0.11)	71.72	0.0	17.51	4.18
05/28/11	0.00001	(0.87)	72.13	0.0	17.42	4.08
05/29/11	0.00006	(0.83)	72.85	0.0	17.34	3.98
05/30/11	0.00371	(0.31)	73.04	2.6	17.26	3.88
05/31/11	0.03961	2.65	73.23	27.5	17.34	3.01
min	0.00000	-4.4	16.5	0.0	17.3	3.0
max	0.60873	27.0	78.2	422.7	27.2	10.8
avg	0.08095	1.7	60.1	57.6	21.2	6.5

Water elevation data includes measurements during monthly well development for sample collection.

Potentiometric surface elevation data includes measurements during monthly well development for sample collection

TestAmerica TDS Letter (6/28/11)

June 28, 2011

Mr. Jim McGrath Waste Management 1530 U.S. Highway 1 Rockledge, FL 32955

Re: Total Dissolved Solids (TDS) Historicals Okeechobee Injection Wells

Dear Mr. McGrath:

This letter provides a summary of TestAmerica Savannah's investigation into samples analyzed for Total Dissolved Solids (TDS) via SM2540C in support of Waste Management's Okeechobee Injection Wells Project. The results reported for TDS since May 2010 were questioned as they were not consistent with historical values reported for this site. These more recent values indicate a negative bias, and the laboratory was requested to re-evaluate this procedure.

An investigation was initiated to determine the source of this trend, and the Department Manager re-evaluated the data associated with these sampling events. As indicated in the original Waste Management inquiry, a personnel change was made in May 2010, which coincided with the start of the low biased trend and indicates analyst technique needs to be closely evaluated. Review of the data indicates these samples routinely have high conductivity, and as such are typically performed using lesser volumes (i.e., 5mL) to provide a final TDS residue of less than 200mg. It was determined that using a reduced volume of sample resulted in lower final values as there is an insufficient volume to thoroughly rinse the filter.

As a result of this investigation, a change in procedure has been initiated. Going forward, when sample conductivities indicate a reduced sample volume must be used, an additional volume of reagent water (~20mL) will be incorporated and filtered with the sample. Tests have been performed using this new technique on samples from this site, and the results obtained were higher (~30000mg/L) and more in line with those results seen historically. This change in procedure will be incorporated into the laboratory's SOP, and re-training of all analysts will be performed to ensure consistent implementation and technique.

We are confident that the corrective action outlined above will improve our performance for this method. If you have any questions regarding this matter or have any further items you would like to discuss with the laboratory, please feel free to contact me at (912) 354-7858 ext. 3055 or via email at andrea.teal@testamericainc.com.

Sincerely,

andre Jal

Andrea Teal Quality Assurance Manager TestAmerica Savannah

Annual DWS Analytical Results

Date issued: May 5, 2011

To: Jim McGrath L.S. Sims & Associates 1530 US 1 Rockledge, FL 32955

Client:L.S. Sims & AssociatesWorkorder ID:Okeechobee Landfill InjectateReceived:4/13/11 14:15

[2042955]

Dear Jim McGrath;

Analytical results presented in this report have been reviewed for compliance with the HBEL, Inc. Quality Systems Manual and have been determined to meet applicable Method guidelines and Standards referenced in the July 2003 National Environmental Laboratory Accreditation Program (NELAP) Quality Manual unless otherwise noted. The Analytical Results within these report pages reflect the values obtained from tests performed on Samples As Received by the laboratory unless indicated differently.

FDOH Safe Drinking Water Act, Clean Water Act and RCRA Certification #'s:

E96080, E83509

Questions regarding this report should be directed to the Report Signatory at (772) 465-8584 referencing the HBEL Workorder ID [Number].

Respectfully submitted,

Eric Charest HBEL, Inc. Laboratory Manager

Note: This report is not to be copied, except in full, without the expressed written consent of HBEL, Inc.

2340 SW Poma Drive Palm City, FL 34990 FDOH # E96080

4155 St. Johns Pkwy Suite 1300 Sanford, FL 32771 FDOH # E83509

Printed: 5/5/2011

HBEL, Inc.

____.

2340 SW Poma Drive, Palm City, FL 34990 Phone: (772) 465-8584 Fax: (772) 467-1584

Client: L.S. Sims & Associates Workorder ID: Okeechobee Landfill Injectate Received: 4/13/11 14:15

i

2340 SW Poma Drive

Palm City, FL 34990

Quality Control Summary

[2042955]

MB=Method Bl	ank LCS=Laboratory Control Sample	LCSD=Laboratory Control Sample Duplicate	MS=Matrix Spike MSD=Matrix Spike Duplicate DUP=Sample Duplicate
HBEL Sample		Method Narratives (If Appl	icable)
Number	Sample ID Analytical	Method	Description
		Quality Control Summary	
Method HBE	<u>L Batch Analyte</u>	Analytical Issue	
<u>EPA 505</u>			
PE	ST5730		
2042955001	Decachlorobiphenyl	Surrogate - Outside acceptance Limits	S.
Thallium-Furnace	<u>e-</u>		
ME	TA10569		
2042955001	Thallium	Accuracy - Outside acceptance limits	in the MS.
2042955001	Thallium	Accuracy - Outside acceptance limits	in the MSD.

Page 2 of 9

HBEL, Inc. 2340 SW Poma Drive, Palm City FL 34990

Phone: (772) 465-8584 Fax: (772) 467-1584

Client: L.S. Sims & Associates

CERTIFICATE OF ANALYSIS

Workorder ID: Okeechobee Landfill Injectate

[2042955]

Parameter	Qualifier	Result	Units	Reporting Limit	Method	Laborator Batch	y Prep Date/Time	Analyzed Date/Time	Analys	Lab t ID
Laboratory ID: Sample ID:	2042955001 Composite				Sampled: 04/13, Matrix: Water	/11 9:40 Resul	Receive	d: 04/13/11 Wet Weight F	14:15 Basis	· · · · · · · · · · · · · · · · · · ·
Gross Alpha	1	12 +/- 5.2	pCi/L		EPA 00-02	SAL1262		04/27/11 10:28	SAL	E8/120
рН	Q 7	7.58	SU	0.200	EPA 150.1	WCGE33967	7	04/17/11 14:30	GG	E06080
Aluminum	1	16	mg/L	0.011	EPA 200.7	META10557	04/25/11 9:47	04/26/11 11:14	SP	E96080
Antimony	C	0.039	mg/L	0.0035	EPA 200.7	META10557	04/25/11 9:47	04/26/11 11:14	SP	E00000
Arsenic	C	0.36	mg/L	0.0026	EPA 200.7	META10557	04/25/11 9:47	04/26/11 11:14	SP	E96080
Barium	0	0.098	mg/L	0.0010	EPA 200.7	META10557	04/25/11 9:47	04/26/11 11:14	SP	E96080
Beryllium	0	0.00040	mg/L	0.00010	EPA 200.7	META10557	04/25/11 9:47	04/26/11 11:14	SP	E00000
Cadmium	0	0.00038	mg/L	0.00020	EPA 200.7	META10557	04/25/11 9:47	04/26/11 11:14	SP	E96080
Chromium	0	.32	mg/L	0.00060	EPA 200.7	META10557	04/25/11 9:47	04/26/11 11:14	SP	E30000
Copper	0	.0071	mg/L	0.0010	EPA 200.7	META10557	04/25/11 9:47	04/26/11 11:14	SP	E96080
Iron	2	2.0	mg/L	0.0050	EPA 200.7	META10557	04/25/11 9:47	04/26/11 11:14	SP	E96080
Lead	0	.0038	mg/L	0.0029	EPA 200.7	META10557	04/25/11 9:47	04/26/11 11:14	SP	E96080
Manganese	0	.35	mg/L	0.0020	EPA 200.7	META10557	04/25/11 9:47	04/26/11 11:14	SP	Egenen
Nickel	0	.15	mg/L	0.0016	EPA 200.7	META10557	04/25/11 9:47	04/26/11 11:14	SP	E96080
Selenium	0	.018	mg/L	0.0043	EPA 200.7	META10557	04/25/11 9:47	04/26/11 11:14	SP	
Silver	0	.00067	mg/L	0.00050	EPA 200.7	META10557	04/25/11 9:47	04/27/11 16:42	SP	E96080
Sodium	3	100	mg/L	2.5	EPA 200.7	META10557	04/25/11 9:47	04/28/11 14:40	SP.	E96080
Zinc	0	.70	mg/L	0.0050	EPA 200.7	META10557	04/25/11 9:47	04/26/11 11:14	SP	E96080
Mercury	0.	.00024 U	mg/L	0.00024	EPA 245.1	META10546	04/14/11 12:47	04/15/11 11:46	SP	E06080
Thallium	0.	.0012 U	mg/L	0.0012	EPA 279.2	META10569	04/26/11 15:07	04/29/11 11:17	SP	E96080
Chloride	4	700	mg/L	250	EPA 300.0	IC8762		04/14/11 3:29	JL	E96080
Sulfate	1	80	mg/L	70	EPA 300.0	IC8762		04/14/11 3:29	JI	E06080
Nitrate as N	0.	.31	mg/L	0.0075	EPA 353.2	CALC5894		04/14/11 13:45	ĎН	E96080
Nitrate/Nitrite as N	0.	.48	mg/L	0.075	EPA 353.2	AUTO19247		04/14/11 12:20	JL	E96080
Nitrite as N	0.	.17	mg/L	0.080	EPA 353.2	AUTO19248		04/13/11 18:01	JL	E96080
1,2-Dibromo-3- chloropropane	0.	0035 U	ug/L	0.0035	EPA 504.1	PEST5728	04/20/11 11:00	04/20/11 23:34	JL	E96080
1,2-Dibromoethane	0.	0046 U	ug/L	0.0046	EPA 504.1	PEST5728	04/20/11 11:00	04/20/11 23:34	JL	E96080
Chlordane	0.	13 U	ug/L	0.13	EPA 505	PEST5730	04/19/11 12:00	04/19/11 23:03	JL	200000
Endrin	0.	099 U	ug/L	0.099	EPA 505	PEST5730	04/19/11 12:00	04/19/11 23:03	JI I	-000000 E96080
gamma-BHC (Lindan	e) 0.	019 U	ug/L	0.019	EPA 505	PEST5730	04/19/11 12:00	04/19/11 23:03	JE	-90000
Heptachlor	0.	035 U	ug/L	0.035	EPA 505	PEST5730	04/19/11 12:00	04/19/11 23:03	.il i	200000
Heptachlor epoxide	0.0	027 U	ug/L	0.027	EPA 505	PEST5730	04/19/11 12:00	04/19/11 23:03	JL F	200000
Methoxychlor	0.6	043 U	ug/L.	0.043	EPA 505	PEST5730	04/19/11 12:00	04/19/11 23:03		-00000
PCB	0.1	13 U	ug/L	0.13	EPA 505	PEST5730	04/19/11 12:00	04/19/11 23:03		200000
Toxaphene	0.:	59 U	ug/L	0.59	EPA 505	PEST5730	04/19/11 12:00	04/19/11 23:03	.ll 5	190000 196080
2,4,5-TP	0.1	19 U	ug/L	0.19	EPA 515.1	PEST5731	04/18/11 8:00	04/21/11 23:47	л с .Ш г	206090
2,4 D	0.2	22 U	ug/L	0.22	EPA 515.1	PEST5731	04/18/11 8:00	04/21/11 23:47	⊑ . ⊑	190000
Dalapon	2.3	3 U	ug/L	2.3	EPA 515.1	PEST5731	04/18/11 8:00	04/21/11 23:47	.) - E	190000
Dinoseb	0.2	23 U	ug/L	0.23	EPA 515.1	PEST5731	04/18/11 8:00	04/21/11 23:47	이다. 탄 네 - 트	100000
Pentachlorophenol	0.3	39 U	ug/L	0.39	EPA 515.1	PEST5731	04/18/11 8:00	04/21/11 23:47	JL E	.90080 E96080

2340 SW Poma Drive Pe^Im City, FL 34990 FL OH # E96080

4155 St. Johns Pkwy Suite 1300 Sanford, FL 32771 FDOH # E83509

Printed: 5/5/2011

Page 3 of 9

HBEL, nc. 2340 SW Poma Drive, Palm City FL 34990 Phone: (772) 465-8584 Fax: (772) 467-1584

Client: L.S. Sims & Associates

CERTIFICATE OF ANALYSIS

[2042955]

Client: L.S. Sin	ns & Associates		Work	Okeechobee Landfill Injectate						
Parameter	Qualifier Result	Units	Reporting Limit	Method	Laboratory Batch	Prep Date/Time	Analyzed Date/Time	Analys	Lab I D	
Picloram	0.23 U	ug/L	0.23	EPA 515.1	PEST5731	04/18/11 8:00	04/21/11 23:47	' JL	E96080	
Alachlor	0.60 U	ug/L	0.60	EPA 525.2	SVOC2983	04/18/11 5:00	05/3/11 14:18	WR	E96080	
Atrazine	0.47 U	ug/L	0.47	EPA 525.2	SVOC2983	04/18/11 5:00	05/3/11 14:18	WR	E96080	
Benzo(a)pyrene	0.069 U	ug/L	0.069	EPA 525.2	SVOC2983	04/18/11 5:00	05/3/11 14:18	WR	E96080	
bis(2-ethylhexyl)phthalate	0.83 U	ug/L	0.83	EPA 525.2	SVOC2983	04/18/11 5:00	05/3/11 14:18	WR	E96080	
Di(2-ethylhexyl)adipate	0.67 U	ug/L	0.67	EPA 525.2	SVOC2983	04/18/11 5:00	05/3/11 14:18	WR	E96080	
Hexachlorobenzene	0.30 U	ug/L	0.30	EPA 525.2	SVOC2983	04/18/11 5:00	05/3/11 14:18	WR	E96080	
Hexachlorocyclopentadier	ne 0.23 U	ug/L	0.23	EPA 525.2	SVOC2983	04/18/11 5:00	05/3/11 14:18	WR	E96080	
Simazine	0.62 U	ug/L	0.62	EPA 525.2	SVOC2983	04/18/11 5:00	05/3/11 14:18	WR	E96080	
3-Hydroxycarbofuran	0.44 U	ug/L	0.44	EPA 531.1	HPLC2790		04/25/11 22:07	JJM	E96080	
Aldicarb	0.54 U	ug/L	0.54	EPA 531.1	HPLC2790		04/25/11 22:07	JJM	E96080	
Aldicarb sulfone	0.45 U	ug/L	0.45	EPA 531.1	HPLC2790		04/25/11 22:07	JJM	E96080	
Aldicarb sulfoxide	0.36 U	ug/L	0.36	EPA 531.1	HPLC2790		04/25/11 22:07	JJM	E96080	
Carbaryl	0.53 U	ug/L	0.53	EPA 531.1	HPLC2790		04/25/11 22:07	JJM	E96080	
Carbofuran	0.41 U	ug/L	0.41	EPA 531.1	HPLC2790		04/25/11 22:07	JJM	E96080	
Methomyl	0.42 U	ug/L	0.42	EPA 531.1	HPLC2790		04/25/11 22:07	JJM	E96080	
Oxamyl	0.13 U	ug/L	0.13	EPA 531.1	HPLC2790		04/25/11 22:07	JJM	E96080	
Glyphosate	13 U	ug/L	13	EPA 547	HPLC2789		04/21/11 10:54	JL	E96080	
Endothall	2.8 U	ug/L	2.8	EPA 548.1	SVOC2982	04/18/11 9:00	04/28/11 19:25	WR	E96080	
Diquat	1.9 U	ug/L	1.9	EPA 549.2	HPLC2791	04/19/11 12:00	04/25/11 13:14	JJM	E96080	
Radium 226	1.4 +/- 0.19	pCi/L		EPA 903.1	SAL1262		04/29/11 15:16	SAL	E84129	
Radium 228	0.5 U +/- 0.3	pCi/L		RA-05	SAL1262		04/28/11 16:59	SAL	E84129	
Color	8800	CU	1.8	SM2120 B	WCGE33946		04/13/11 13:10	DWC	E96080	
Total Dissolved Solids	14000	mg/L	403	SM2540 C	WCGE33947		04/14/11 8:10	DWC	E96080	
Fluoride	0.099	mg/L	0.024	SM4500F C	WCGE34000		04/26/11 11:00	GG	E96080	
Surfactants as LAS, Mol.wt.340	9.3	mg/L	0.080	SM5540 C	SAL1258		04/14/11 16:15	SAL	E84129	

2340 SW Poma Drive Palm City, FL 34990 FDOH # E96080

4155 St. Johns Pkwy Suite 1300 Sanford, FL 32771 FDOH # E83509

Page 4 of 9

Printed: 5/5/2011

HBEL, Inc. 2340 SW Poma Drive, Palm City FL 34990 Phone: (772) 465-8584 Fax: (772) 467-1584

Client: L.S. Sims & Associates

CERTIFICATE OF ANALYSIS

Workorder ID: Okeechobee Landfill Injectate

[2042955]

Laboratory (D: 2042955002 Grab Sampled: 04/3/11 9.4.15 Resoluts reported on Wet Weight Basis 1.1.1.2:Tetrachloroethane 0.18 U UgL 0.18 EPA5242 VOCS418 04/23/11.05 WR E0608 1.1.2:Tetrachloroethane 0.31 U ugL 0.13 EPA5242 VOCS418 04/23/11.05 WR E0608 1.1.2:Tetrachloroethane 0.31 U ugL 0.13 EPA5242 VOCS418 04/23/11.05 WR E0608 1.1.2:Tetrachloroethane 0.35 U ugL 0.35 EPA5242 VOCS418 04/23/11.05 WR E66080 1.1-Dichlorophane 0.26 U ugL 0.35 EPA5242 VOCS418 04/23/11.05 WR E66080 1.2.3:Trichlorophane 0.26 U ugL 0.26 EPA5424 VOCS418 04/23/11.05 WR E66080 1.2.3:Trichlorophane 0.26 U ugL 0.12 EPA5424 VOCS418 04/23/11.05 WR E66080 1.2.3:Trichlorophane 0.26 U ugL	Parameter	Quali	fier Result	Units	Reporting Limit	Method	Laboratory Batch	Prep Date/Time	Analyzed Date/Time	Analys	Lab t ID
1,1,1,1-Trichonomethane 0.18 EPA 524.2 VOC3118 0425110.58 VMR E96080 1,1,1-Trichonomethane 0.31 u.g/L 0.13 EPA 524.2 VOC3118 0425110.58 VMR E96080 1,1,2,7-Cristrahlocomethane 0.35 U.g/L 0.13 EPA 524.2 VOC3118 0425110.58 VMR E96080 1,1,2-Trichonomethane 0.35 U.g/L 0.22 EPA 524.2 VOC3118 0425110.58 VMR E96080 1,1-Dichloromethane 0.35 U.g/L 0.26 EPA 524.2 VOC3118 0425110.58 VMR E96080 1,1-Dichloromethane 0.35 U.g/L 0.12 EPA 524.2 VOC3118 0425110.58 VMR E96080 1,2-Trichlorophane 0.26 U.ug/L 0.12 EPA 524.2 VOC3118 0425110.58 VMR E96080 1,2-Dichlorophane 0.15 U.ug/L 0.17 EPA 524.2 VOC3118 0425110.58 VMR E96080 1,2-Dichlorophane 0.24 U.ug/L 0.34 EPA 524.2	Laboratory ID: Sample ID:	2042955(Grab	002			Sampled: 04/13/1 Matrix: Water	1 9:40 Results	Received	: 04/13/11 Wet Weight I	<i>14:15</i> Basis)
1,1,1-Tickionosthane 0,31 EPA 2422 V0C3/H8 0425/H1058 WE EB0080 1,12,2-Tickiolacethane 0,13 ug/L 0,22 EPA 524.2 V0C3/H8 0425/H1058 WE EB0080 1,12-Tickiolacethane 0,35 Ug/L 0,22 EPA 524.2 V0C3/H8 0425/H1058 WE EB0080 1,1-Dichlorechane 0,35 Ug/L 0,35 EPA 524.2 V0C3/H8 0425/H1058 WE EB0080 1,1-Dichlorephone 0,35 Ug/L 0,26 EPA 524.2 V0C3/H8 0425/H1058 WE EB0080 1,2,3-Tichlorophone 0,26 Ug/L 0,26 EPA 524.2 V0C3/H8 0425/H1058 WE EB0080 1,2,3-Tichlorophone 0,12 Ug/L 0,15 EPA 524.2 V0C3/H8 0425/H1058 WE EB0080 1,2-Dichlorophone 0,17 Ug/L 0,17 EPA 524.2 V0C3/H8 0425/H1058 WE EB0080 1,3-Dichlorophone 0,32 Ug/L 0,32	1,1,1,2-Tetrachloro	oethane	0.18 U	ug/L	0.18	EPA 524.2	VOC3418		04/25/11 0:58	WR	FORMAN
1,1,2,2-fritzichloroefhane 0,13 ugL 0,13 EPA 524.2 VOC3418 04/25/11 0.58 WR EB0000 1,1,2-Trichloroefhane 0,25 ug/L 0,23 EPA 524.2 VOC3418 04/25/11 0.58 WR E50000 1,1-Dichloroefname 0,35 Ug/L 0,35 EPA 524.2 VOC3418 04/25/11 0.58 WR E50000 1,1-Dichloroefname 0,26 Ug/L 0,26 EPA 524.2 VOC3418 04/25/11 0.58 WR E50000 1,2,3-Trichloroberzene 0,12 Ug/L 0,12 EPA 524.2 VOC3418 04/25/11 0.58 WR E50000 1,2,3-Trichloroberzene 0,12 Ug/L 0,12 EPA 524.2 VOC3418 04/25/11 0.58 WR E50000 1,2-Dichloroeprane 0,24 Ug/L 0,24 EPA 524.2 VOC3418 04/25/11 0.58 WR E50000 1,3-Dichloroberzene 0,37 Ug/L 0,24 EPA 524.2 VOC3418 04/25/11 0.58 WR E50000 1,3-Dichloroberzene<	1,1,1-Trichioroetha	ane	0.31 U	ug/L	0.31	EPA 524.2	VOC3418		04/25/11 0:58	WR	E06080
1,12-Trichioncethane 0.22 U ug/L 0.22 EPA 524.2 VGC3118 042511 0.58 WE E96080 1,1-Dichiorcethane 0.35 U ug/L 0.35 EPA 524.2 VGC3118 042511 0.58 WE E96080 1,1-Dichiorcethene 0.35 U ug/L 0.26 EPA 524.2 VGC3118 042511 0.58 WE E96080 1,2.3-Trichioropropane 0.26 U ug/L 0.26 EPA 524.2 VGC3118 042511 0.58 WE E96080 1,2.4-Trichioropropane 0.15 U ug/L 0.15 EPA 524.2 VGC3118 042511 0.58 WE E96080 1,2.4-Trichioropropane 0.14 U ug/L 0.15 EPA 524.2 VGC3118 042511 0.58 WE E96080 1,2.4-Trichioropropane 0.34 U ug/L 0.17 EPA 524.2 VGC3118 042511 0.58 WE E96080 1,3-Dichioropropane 0.34 U ug/L 0.32 EPA 524.2 VGC3118 042511 0.58 WE E96080 1,4-Dichioropropane 0.32 U ug/L 0.32 EPA 524.2 VGC3118 <td< td=""><td>1,1,2,2-Tetrachlord</td><td>pethane</td><td>0.13 U</td><td>ug/L</td><td>0.13</td><td>EPA 524.2</td><td>VOC3418</td><td></td><td>04/25/11 0:58</td><td>WR</td><td>E06080</td></td<>	1,1,2,2-Tetrachlord	pethane	0.13 U	ug/L	0.13	EPA 524.2	VOC3418		04/25/11 0:58	WR	E06080
1.1-Dichlorophane 0.35 U ugl_ 0.35 EPA 524.2 VOC3118 042511 0.58 WE EB6020 1.1-Dichlorophone 0.26 U ugl_ 0.26 EPA 524.2 VOC3118 042511 0.58 WE EB6020 1.2.3-Trichlorophone 0.26 U ugl_ 0.26 EPA 524.2 VOC3118 042511 0.58 WE E96020 1.2.3-Trichlorophone 0.26 U ugl_ 0.12 EPA 524.2 VOC3118 042511 0.58 WE E96020 1.2-Dichlorobenzene 0.15 U ugl_ 0.15 EPA 524.2 VOC3118 042511 0.58 WE E96020 1.2-Dichlorobenzene 0.24 U ugl_ 0.21 EPA 524.2 VOC3118 042511 0.58 WE E96020 1.3-Dichlorobenzene 0.34 U ugl_ 0.34 EPA 524.2 VOC3118 042511 0.58 WE E96020 1.3-Dichloropopane 0.34 U ugl_ 0.34 EPA 524.2 VOC3118 042511 0.58 WE E96020 1.3-Dichloropopane 0.20 U ugl_ 0.20 EPA 524.2 VOC3118 042511 0.58 <td>1,1,2-Trichloroetha</td> <td>ane</td> <td>0.22 U</td> <td>ug/L</td> <td>0.22</td> <td>EPA 524.2</td> <td>VOC3418</td> <td></td> <td>04/25/11 0:58</td> <td>WR</td> <td>EGEORO</td>	1,1,2-Trichloroetha	ane	0.22 U	ug/L	0.22	EPA 524.2	VOC3418		04/25/11 0:58	WR	EGEORO
1.1-Dichloropene 0.35 U ugl 0.35 EPA 54.2 VOC3418 04/23/11.65 WR E96080 1.1-Dichloropropene 0.26 U ugl 0.26 EPA 54.2 VOC3418 04/25/11.058 WR E96080 1.2-Dichlorophorpane 0.26 U ugl 0.26 EPA 54.2 VOC3418 04/25/11.058 WR E96080 1.2-Dichlorophane 0.15 U ugl 0.12 EPA 54.2 VOC3418 04/25/11.058 WR E96080 1.2-Dichlorophane 0.24 U ugl 0.21 EPA 54.2 VOC3418 04/25/11.058 WR E96080 1.3-Dichlorophone 0.34 U ugl 0.24 EPA 54.2 VOC3418 04/25/11.058 WR E96080 1.3-Dichlorophone 0.32 U ugl 0.32 EPA 54.2 VOC3418 04/25/11.058 WR E96080 1.3-Dichlorophone 0.32 U ugl 0.32 EPA 54.2 VOC3418 04/25/11.058 WR E96080 1.3-Dichlorophone 0.20 U	1,1-Dichloroethane	è	0.35 U	ug/L	0.35	EPA 524.2	VOC3418		04/25/11 0:58	WR	E06080
1.1-Dichloropropene 0.26 U ug/L 0.26 EPA 54.2 VOC3418 04/25/11 0.58 WR E96080 1.2.3-Trichloropropane 0.26 U ug/L 0.26 EPA 54.2 VOC3418 04/25/11 0.58 WR E96080 1.2.4-Trichloropherzene 0.15 U ug/L 0.12 EPA 54.2 VOC3418 04/25/11 0.58 WR E96080 1.2-Dichlorophane 0.24 U ug/L 0.21 EPA 54.2 VOC3418 04/25/11 0.58 WR E96080 1.3-Dichlorophane 0.24 U ug/L 0.24 EPA 524.2 VOC3418 04/25/11 0.58 WR E96080 1.3-Dichloropropane 0.32 U ug/L 0.32 EPA 524.2 VOC3418 04/25/11 0.58 WR E96080 1.3-Dichloropropane 0.32 U ug/L 0.32 EPA 524.2 VOC3418 04/25/11 0.58 WR E96080 1.3-Dichloropropane 0.32 U ug/L 0.20 EPA 524.2 VOC3418 04/25/11 0.58 WR E96080 2.2-Dichloroprop	1,1-Dichloroethene	;	0.35 U	ug/L	0.35	EPA 524.2	VOC3418		04/25/11 0:58	WR	EGEORO
1.2.3-Trichloropropane 0.26 U ug/L 0.26 EPA 524.2 VOC3418 Out2/11 D58 WR E90800 1.2.4-Trichloroberizene 0.15 U ug/L 0.16 EPA 524.2 VOC3418 O4/25/11 D58 WR E90800 1.2.Dichloroberizene 0.15 U ug/L 0.21 EPA 524.2 VOC3418 O4/25/11 D58 WR E90800 1.2.Dichloropropane 0.24 U ug/L 0.24 EPA 524.2 VOC3418 O4/25/11 D58 WR E90800 1.3.Dichloropropane 0.34 U ug/L 0.34 EPA 524.2 VOC3418 O4/25/11 D58 WR E90800 1.3.Dichloropropane 0.32 U ug/L 0.34 EPA 524.2 VOC3418 O4/25/11 D58 WR E90800 1.3.Dichloropropane 0.20 U ug/L 0.20 EPA 524.2 VOC3418 O4/25/11 D58 WR E90800 2.2-Dichloropropane 0.20 U ug/L 0.20 EPA 524.2 VOC3418 O4/25/11 D58 WR E90800 2.2-Dichloroprop	1,1-Dichloroproper	ie	0.26 U	uq/L	0.26	EPA 524.2	VOC3418		04/25/11 0:58	WR	E90000
1.2.4-Trichlorobenzene 0.12 U ug/L 0.12 EPA 524.2 VOC3418 04/25/11 058 WR ES6080 1.2.Dichlorobenzene 0.15 U ug/L 0.21 EPA 524.2 VOC3418 04/25/11 058 WR E96080 1.2-Dichloropropane 0.24 U QL EPA 524.2 VOC3418 04/25/11 058 WR E96080 1.3-Dichloropropane 0.34 U QL 0.17 EPA 524.2 VOC3418 04/25/11 058 WR E96080 1.3-Dichloropropane 0.34 U QL 0.17 EPA 524.2 VOC3418 04/25/11 058 WR E96080 1.4-Dichloropropane 0.32 U QL 0.18 EPA 524.2 VOC3418 04/25/11 058 WR E96080 1.4-Dichloropropane 0.20 U QL 0.20 EPA 524.2 VOC3418 04/25/11 058 WR E96080 2-Chlorobluene 0.20 U QL 0.20 EPA 524.2 VOC3418 04/25/11 058 <td>1,2,3-Trichloroprop</td> <td>ane</td> <td>0.26 U</td> <td>ug/L</td> <td>0.26</td> <td>EPA 524.2</td> <td>VOC3418</td> <td></td> <td>04/25/11 0:58</td> <td>WR</td> <td>E90000</td>	1,2,3-Trichloroprop	ane	0.26 U	ug/L	0.26	EPA 524.2	VOC3418		04/25/11 0:58	WR	E90000
1,2-Dichlorobenzene 0.15 U ug/L 0.15 EPA 524.2 VOC3418 04/25/11 0.58 WR E96080 1,2-Dichlorophane 0.24 U ug/L 0.24 EPA 524.2 VOC3418 04/25/11 0.58 WR E96080 1,3-Dichlorophane 0.24 U ug/L 0.24 EPA 524.2 VOC3418 04/25/11 0.58 WR E96080 1,3-Dichlorophane 0.34 U ug/L 0.34 EPA 524.2 VOC3418 04/25/11 0.58 WR E96080 1,3-Dichlorophane 0.32 U ug/L 0.34 EPA 524.2 VOC3418 04/25/11 0.58 WR E96080 2,2-Dichlorophane 0.20 U ug/L 0.20 EPA 524.2 VOC3418 04/25/11 0.58 WR E96080 2,2-Dichlorophane 0.20 U ug/L 0.20 EPA 524.2 VOC3418 04/25/11 0.58 WR E96080 2,2-Dichlorophane 0.20 U ug/L 0.20 EPA 524.2 VOC3418 04/25/11 0.58 WR E96080 2,-Dichlorophane	1,2,4-Trichlorobenz	zene	0.12 U	ua/L	0.12	EPA 524.2	VOC3418		04/25/11 0:58	WR	E90000
1.2-Dichloroethane 1.2 ug/L 0.21 EPA 524.2 VOC3418 04221110.58 WR E96080 1.2-Dichloropropane 0.24 U ug/L 0.24 EPA 524.2 VOC3418 04251110.58 WR E96080 1.3-Dichloropropane 0.34 U ug/L 0.17 EPA 524.2 VOC3418 04251110.58 WR E96080 1.3-Dichloropropane 0.32 U ug/L 0.32 EPA 524.2 VOC3418 04251110.58 WR E96080 1.4-Dichloropropane 0.32 U ug/L 0.32 EPA 524.2 VOC3418 04251110.58 WR E96080 2-2-Dichloropropane 0.20 U ug/L 0.20 EPA 524.2 VOC3418 04251110.58 WR E96080 2-Dichloropropane 0.20 U ug/L 0.20 EPA 524.2 VOC3418 0425110.58 WR E96080 2-Dichloropropane 0.20 U ug/L 0.20 EPA 524.2 VOC3418 0425110.58 WR E96080 2-Dichloropropane 0.22 U	1,2-Dichlorobenzer	ne	0.15 U	uq/L	0.15	EPA 524.2	VOC3418		04/25/11 0:58	WR	E90000
1,2-Dichloropropane 0.24 U ug/L 0.24 EPA 524.2 VOC3418 04/25/11 0.58 WR E96080 1,3-Dichloropropane 0.34 U ug/L 0.34 EPA 524.2 VOC3418 04/25/11 0.58 WR E96080 1,3-Dichloropropane 0.34 U ug/L 0.34 EPA 524.2 VOC3418 04/25/11 0.58 WR E96080 1,4-Dichloropropane 0.32 U ug/L 0.34 EPA 524.2 VOC3418 04/25/11 0.58 WR E96080 1,4-Dichloropropane 0.20 U ug/L 0.20 EPA 524.2 VOC3418 04/25/11 0.58 WR E96080 2,2-Dichloropropane 0.20 U ug/L 0.20 EPA 524.2 VOC3418 04/25/11 0.58 WR E96080 2,-Dichloropropane 0.20 U ug/L 0.20 EPA 524.2 VOC3418 04/25/11 0.58 WR E96080 2,-Chlorobluene 0.20 U ug/L 0.22 EPA 524.2 VOC3418 04/25/11 0.58 WR E96080 Bromolorm	1,2-Dichloroethane	÷	1.2	ua/L	0.21	EPA 524.2	VOC3418		04/25/11 0.58	WR	E06090
1,3-Dichlorophenzene 0.17 Ug/L 0.17 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 1,3-Dichloropropane 0.34 U ug/L 0.34 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 1,3-Dichloropropane 0.32 U ug/L 0.32 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 2,2-Dichloropropane 0.20 U ug/L 0.20 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 2,2-Dichloropropane 0.20 U ug/L 0.20 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 2,-Chlorobluene 0.20 U ug/L 0.20 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Benzene 6.4 ug/L 0.22 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Bromodichloromethane 0.26 U ug/L 0.26 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Bromodichloromethane	1,2-Dichloropropan	e	0.24 U	ua/L	0.24	EPA 524.2	VOC3418		04/25/11 0:58	WR	E90000
1,3-Dichloropropane 0.34 U ug/L 0.34 EPA 524.2 VOC3418 04/25/11.038 WR E96080 1,3-Dichloropropane 0.32 U ug/L 0.32 EPA 524.2 VOC3418 04/25/11.038 WR E96080 1,4-Dichloropropane 0.20 U ug/L 0.20 EPA 524.2 VOC3418 04/25/11.058 WR E96080 2-Dichloropropane 0.20 U ug/L 0.20 EPA 524.2 VOC3418 04/25/11.058 WR E96080 2-Dichloropropane 0.20 U ug/L 0.20 EPA 524.2 VOC3418 04/25/11.058 WR E96080 2-Dichloropropane 0.20 U ug/L 0.20 EPA 524.2 VOC3418 04/25/11.058 WR E96080 Bromobanzene 0.22 U ug/L 0.26 EPA 524.2 VOC3418 04/25/11.058 WR E96080 Bromobanzene 0.34 U ug/L 0.34 EPA 524.2 VOC3418 04/25/11.058 WR E96080 Bromobanzene 0.34 U	1,3-Dichlorobenzer	ie	0.17 U	ug/L	0.17	EPA 524.2	VOC3418		04/25/11 0.58	WR	E06080
1,3-Dichloropropene 0.32 U ug/L 0.32 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 1,4-Dichlorobenzene 4.7 ug/L 0.18 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 2,2-Dichloropropane 0.20 U ug/L 0.20 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 2,2-Dichloropropane 0.20 U ug/L 0.20 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 2,Chlorobluene 0.20 U ug/L 0.20 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Benzene 6.4 ug/L 0.15 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Bromolomethane 0.26 U ug/L 0.26 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Bromolom 0.15 U ug/L 0.26 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Bromolom 0.16 U ug/L 0.36 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 <td>1,3-Dichloropropan</td> <td>е</td> <td>0.34 U</td> <td>ua/L</td> <td>0.34</td> <td>EPA 524.2</td> <td>VOC3418</td> <td></td> <td>04/25/11 0:58</td> <td>WR</td> <td>E90000</td>	1,3-Dichloropropan	е	0.34 U	ua/L	0.34	EPA 524.2	VOC3418		04/25/11 0:58	WR	E90000
1.4-Dichlorobenzene 4.7 ug/L 0.18 EPA 524.2 VOC3418 0422511 0.58 WR E96080 2.2-Dichloropropane 0.20 U ug/L 0.20 EPA 524.2 VOC3418 0422511 0.58 WR E96080 2.Chlorotoluene 0.20 U ug/L 0.20 EPA 524.2 VOC3418 0422511 0.58 WR E96080 4-Chlorotoluene 0.20 U ug/L 0.20 EPA 524.2 VOC3418 0422511 0.58 WR E96080 Benzene 6.4 ug/L 0.15 EPA 524.2 VOC3418 0422511 0.58 WR E96080 Bromobenzene 0.22 U ug/L 0.22 EPA 524.2 VOC3418 0422511 0.58 WR E96080 Bromodichloromethane 0.36 U ug/L 0.15 EPA 524.2 VOC3418 0422511 0.58 WR E96080 Chlorobenzene 0.17 U ug/L 0.16 EPA 524.2 VOC3418 0422511 0.58 WR E96080 Chlorobenzene 0.17 U ug/L 0.36 EPA 524.2 VOC3418 0422511 0.58 WR E96080	1,3-Dichloropropen	е	0.32 U	ug/L	0.32	EPA 524.2	VOC3418		04/25/11 0.58	WR	E90000
2,2-Dichloropropane 0,20 U ug/L 0,20 EPA 524.2 VOC3418 O4/25/11 0:58 WR E96080 2-Chlorotoluene 0,20 U ug/L 0,20 EPA 524.2 VOC3418 O4/25/11 0:58 WR E96080 4-Chlorotoluene 0,20 U ug/L 0,20 EPA 524.2 VOC3418 O4/25/11 0:58 WR E96080 Benzene 6.4 ug/L 0,22 EPA 524.2 VOC3418 O4/25/11 0:58 WR E96080 Bromodichloromethane 0.26 U ug/L 0,26 EPA 524.2 VOC3418 O4/25/11 0:58 WR E96080 Bromodichloromethane 0.26 U ug/L 0,34 EPA 524.2 VOC3418 O4/25/11 0:58 WR E96080 Bromodichloromethane 0.34 U ug/L 0,34 EPA 524.2 VOC3418 O4/25/11 0:58 WR E96080 Chlorobenzene 0.17 U ug/L 0.36 EPA 524.2 VOC3418 O4/25/11 0:58 WR E96080 Chlorobenzene 0.23 U <td>1,4-Dichlorobenzer</td> <td>ne</td> <td>4.7</td> <td>ug/L</td> <td>0.18</td> <td>EPA 524.2</td> <td>VOC3418</td> <td></td> <td>04/25/11 0:58</td> <td>WR</td> <td>E06080</td>	1,4-Dichlorobenzer	ne	4.7	ug/L	0.18	EPA 524.2	VOC3418		04/25/11 0:58	WR	E06080
2-Chlorotoluene 0.20 U ug/L 0.20 EPA 524.2 VOC3418 04/25/11 0:58 WR E56080 4-Chlorotoluene 0.20 U ug/L 0.20 EPA 524.2 VOC3418 04/25/11 0:58 WR E56080 Benzene 6.4 ug/L 0.15 EPA 524.2 VOC3418 04/25/11 0:58 WR E56080 Bromobenzene 0.22 U ug/L 0.26 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Bromoform 0.15 U ug/L 0.15 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Bromoform 0.15 U ug/L 0.34 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Carbon tetrachloride 0.36 U ug/L 0.36 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Chlorobenzene 0.17 U ug/L 0.36 EPA 524.2 VOC3418 04/25/11 0:58 WR	2,2-Dichloropropan	е	0.20 U	ug/L	0.20	EPA 524.2	VOC3418		04/25/11 0:58	WR	E90000
4-Chlorotoluene 0.20 U ug/L 0.20 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Benzene 6.4 ug/L 0.15 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Bromobenzene 0.22 U ug/L 0.22 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Bromobenzene 0.26 U ug/L 0.26 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Bromobenzene 0.34 U ug/L 0.15 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Carbon tetrachloride 0.36 U ug/L 0.36 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Chlorobenzene 0.17 U ug/L 0.36 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Chlorobenzene 0.17 U ug/L 0.36 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Chlorobenane 0.23 U ug/L	2-Chlorotoluene		0.20 U	ug/L	0.20	EPA 524.2	VOC3418		04/25/11 0:58	WR	E90000
Benzene 6.4 ug/L 0.15 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Bromobenzene 0.22 U ug/L 0.22 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Bromodichloromethane 0.26 U ug/L 0.26 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Bromoform 0.15 U ug/L 0.34 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Bromoform 0.34 U ug/L 0.36 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Chlorobenzene 0.17 U ug/L 0.36 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Chlorobenzene 0.36 U ug/L 0.36 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Chlorobenzene 0.36 U ug/L 0.24 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Chloromethane 0.23 U ug/L <	4-Chlorotoluene		0.20 U	ug/L	0.20	EPA 524.2	VOC3418		04/25/11 0:58	WR	E06080
Bromobenzene 0.22 U ug/L 0.22 EPA 524.2 VOC3418 04/25/11 0.58 WR E96080 Bromodichloromethane 0.26 U ug/L 0.26 EPA 524.2 VOC3418 04/25/11 0.58 WR E96080 Bromodichloromethane 0.15 U ug/L 0.15 EPA 524.2 VOC3418 04/25/11 0.58 WR E96080 Bromotermethane 0.34 U ug/L 0.34 EPA 524.2 VOC3418 04/25/11 0.58 WR E96080 Carbon tetrachioride 0.36 U ug/L 0.36 EPA 524.2 VOC3418 04/25/11 0.58 WR E96080 Chlorobenzene 0.17 U ug/L 0.17 EPA 524.2 VOC3418 04/25/11 0.58 WR E96080 Chloroform 0.24 U ug/L 0.24 EPA 524.2 VOC3418 04/25/11 0.58 WR E96080 Chloroform 0.24 U ug/L 0.25 EPA 524.2 VOC3418 04/25/11 0.58 WR E96080 Cibromethane 0.25 U	Benzene		6.4	ug/L	0.15	EPA 524.2	VOC3418		04/25/11 0:58	WR	E06080
Bromodichloromethane 0.26 ug/L 0.26 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Bromoform 0.15 ug/L 0.34 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Bromoform 0.34 ug/L 0.34 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Carbon tetrachloride 0.36 ug/L 0.36 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Chlorobenzene 0.17 Ug/L 0.36 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Chlorobenzene 0.36 Ug/L 0.36 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Chloroform 0.24 Ug/L 0.24 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 cis-1,2-Dichloroethene 0.25 Ug/L 0.25 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Dibromochloromethane 0.15 Ug/L <td>Bromobenzene</td> <td></td> <td>0.22 U</td> <td>ug/L</td> <td>0.22</td> <td>EPA 524.2</td> <td>VOC3418</td> <td></td> <td>04/25/11 0:58</td> <td>WR</td> <td>E90000</td>	Bromobenzene		0.22 U	ug/L	0.22	EPA 524.2	VOC3418		04/25/11 0:58	WR	E90000
Bromoform 0.15 U ug/L 0.15 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Bromomethane 0.34 U ug/L 0.34 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Carbon tetrachloride 0.36 U ug/L 0.36 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Chlorobenzene 0.17 U ug/L 0.17 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Chlorobenzene 0.36 U ug/L 0.17 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Chloroform 0.24 U ug/L 0.36 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Chloromethane 0.32 U ug/L 0.23 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Chloromethane 0.23 U ug/L 0.25 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Dibromorethane 0.15 U ug/L <td>Bromodichlorometh</td> <td>ane</td> <td>0.26 U</td> <td>ug/L</td> <td>0.26</td> <td>EPA 524.2</td> <td>VOC3418</td> <td></td> <td>04/25/11 0:58</td> <td>WR</td> <td>E96080</td>	Bromodichlorometh	ane	0.26 U	ug/L	0.26	EPA 524.2	VOC3418		04/25/11 0:58	WR	E96080
Bromomethane 0.34 U ug/L 0.34 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Carbon tetrachloride 0.36 U ug/L 0.36 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Carbon tetrachloride 0.36 U ug/L 0.17 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Chlorobenzene 0.17 U ug/L 0.36 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Chlorobetnane 0.36 U ug/L 0.36 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Chloromethane 0.24 U ug/L 0.24 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Chloromethane 0.23 U ug/L 0.25 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Dibromochloromethane 0.20 U ug/L 0.20 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Dibrlorodifluoromethane 0.	Bromoform		0.15 U	ug/L	0.15	EPA 524.2	VOC3418		04/25/11 0:58	WR	
Carbon tetrachloride 0.36 ug/L 0.36 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Chlorobenzene 0.17 ug/L 0.36 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Chlorobenzene 0.36 ug/L 0.36 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Chloroethane 0.36 U ug/L 0.24 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Chloroethane 0.23 U ug/L 0.23 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Chloromethane 0.23 U ug/L 0.23 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Dibromochloromethane 0.25 U ug/L 0.25 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Dibromochloromethane 0.20 U ug/L 0.21 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Dichorodifluoromethane 0.28 U <td>Bromomethane</td> <td></td> <td>0.34 U</td> <td>ug/L</td> <td>0.34</td> <td>EPA 524.2</td> <td>VOC3418</td> <td></td> <td>04/25/11 0:58</td> <td>WR</td> <td>E90000</td>	Bromomethane		0.34 U	ug/L	0.34	EPA 524.2	VOC3418		04/25/11 0:58	WR	E90000
Chlorobenzene 0.17 U Ug/L 0.17 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Chloroethane 0.36 U ug/L 0.36 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Chloroethane 0.24 U ug/L 0.24 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Chloromethane 0.23 U ug/L 0.23 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Chloromethane 0.23 U ug/L 0.25 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 cis-1,2-Dichloroethene 0.25 U ug/L 0.25 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Dibromochloromethane 0.15 U ug/L 0.20 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Dichlorodifluoromethane 0.20 U ug/L 0.20 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Ethylbenzene 16	Carbon tetrachloride	е	0.36 U	ug/L	0.36	EPA 524.2	VOC3418		04/25/11 0.58	WR	E06080
Chloroethane 0.36 U ug/L 0.36 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Chloroform 0.24 U ug/L 0.24 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Chloroform 0.23 U ug/L 0.23 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Chloromethane 0.25 U ug/L 0.25 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Dibromochloromethane 0.15 U ug/L 0.25 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Dibromochloromethane 0.15 U ug/L 0.20 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Dibromochloromethane 0.20 U ug/L 0.28 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Dichlorodifluoromethane 0.28 U ug/L 0.28 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Ethylbenzene 16	Chlorobenzene		0.17 U	ug/L	0.17	EPA 524.2	VOC3418	1	04/25/11 0:58	WR	E90000
Chloroform 0.24 U ug/L 0.24 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Chloromethane 0.23 U ug/L 0.23 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 cis-1,2-Dichloroethene 0.25 U ug/L 0.25 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Dibromochloromethane 0.15 U ug/L 0.25 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Dibromochloromethane 0.15 U ug/L 0.15 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Dibromochloromethane 0.20 U ug/L 0.20 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Dichlorodifluoromethane 0.28 U ug/L 0.28 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Ethylbenzene 16 ug/L 0.17 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Methyl-tert-butyl-ether	Chloroethane		0.36 U	ua/L	0.36	EPA 524.2	VOC3418		04/25/11 0.58	WR	E06080
Chloromethane 0.23 U ug/L 0.23 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 cis-1,2-Dichloroethene 0.25 U ug/L 0.25 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Dibromochloromethane 0.15 U ug/L 0.15 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Dibromochloromethane 0.20 U ug/L 0.20 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Dibromomethane 0.20 U ug/L 0.20 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Dichlorodifluoromethane 0.28 U ug/L 0.28 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Ethylbenzene 16 ug/L 0.17 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Methyl-tert-butyl-ether 0.13 U ug/L 0.43 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Styrene <td< td=""><td>Chloroform</td><td></td><td>0.24 U</td><td>ug/L</td><td>0.24</td><td>EPA 524.2</td><td>VOC3418</td><td></td><td>04/25/11 0:58</td><td>WR</td><td>E90000</td></td<>	Chloroform		0.24 U	ug/L	0.24	EPA 524.2	VOC3418		04/25/11 0:58	WR	E90000
cis-1,2-Dichloroethene 0.25 U ug/L 0.25 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Dibromochloromethane 0.15 U ug/L 0.15 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Dibromochloromethane 0.20 U ug/L 0.20 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Dibromomethane 0.20 U ug/L 0.20 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Dichlorodifluoromethane 0.28 U ug/L 0.28 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Ethylbenzene 16 ug/L 0.17 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Methyl-tert-butyl-ether 0.13 U ug/L 0.43 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Styrene 0.17 U ug/L 0.13 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Toluene 35 <td>Chloromethane</td> <td></td> <td>0.23 U</td> <td>ug/L</td> <td>0.23</td> <td>EPA 524.2</td> <td>VOC3418</td> <td>i</td> <td>04/25/11 0:58</td> <td>WR</td> <td>E90000</td>	Chloromethane		0.23 U	ug/L	0.23	EPA 524.2	VOC3418	i	04/25/11 0:58	WR	E90000
Dibromochloromethane 0.15 U ug/L 0.15 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Dibromomethane 0.20 U ug/L 0.20 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Dibromomethane 0.28 U ug/L 0.28 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Dichlorodifluoromethane 0.28 U ug/L 0.28 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Ethylbenzene 16 ug/L 0.17 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Methylene chloride 0.43 U ug/L 0.13 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Methyl-tert-butyl-ether 0.13 U ug/L 0.13 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Styrene 0.17 U ug/L 0.17 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Toluene 35	cis-1,2-Dichloroethe	ene	0.25 U	uq/L	0.25	EPA 524.2	VOC3418	(04/25/11 0:58	WR	E06080
Dibromomethane 0.20 U ug/L 0.20 U ug/L 0.20 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Dichlorodifluoromethane 0.28 U ug/L 0.28 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Ethylbenzene 16 ug/L 0.17 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Methylene chloride 0.43 U ug/L 0.43 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Methylene chloride 0.43 U ug/L 0.43 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Methyl-tert-butyl-ether 0.13 U ug/L 0.13 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Styrene 0.17 U ug/L 0.17 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Tetrachloroethene 0.26 U ug/L 0.26 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Toluene <td>Dibromochlorometh</td> <td>ane</td> <td>0.15 U</td> <td>ug/L</td> <td>0.15</td> <td>EPA 524.2</td> <td>VOC3418</td> <td>(</td> <td>04/25/11 0·58</td> <td>WR</td> <td>E30000</td>	Dibromochlorometh	ane	0.15 U	ug/L	0.15	EPA 524.2	VOC3418	(04/25/11 0·58	WR	E30000
Dichlorodifluoromethane 0.28 U ug/L 0.28 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Ethylbenzene 16 ug/L 0.17 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Methylene chloride 0.43 U ug/L 0.43 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Methylene chloride 0.43 U ug/L 0.43 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Methyl-tert-butyl-ether 0.13 U ug/L 0.13 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Styrene 0.17 U ug/L 0.17 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Tetrachloroethene 0.26 U ug/L 0.26 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Toluene 35 ug/L 0.26 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Total THMs 0.15 U <t< td=""><td>Dibromomethane</td><td></td><td>0.20 U</td><td>ua/L</td><td>0.20</td><td>EPA 524.2</td><td>VOC3418</td><td>ſ</td><td>)4/25/11 0:58</td><td>WR</td><td>E90000</td></t<>	Dibromomethane		0.20 U	ua/L	0.20	EPA 524.2	VOC3418	ſ)4/25/11 0:58	WR	E90000
Ethylbenzene 16 ug/L 0.17 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Methylene chloride 0.43 U ug/L 0.43 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Methylene chloride 0.43 U ug/L 0.43 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Methyl-tert-butyl-ether 0.13 U ug/L 0.13 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Styrene 0.17 U ug/L 0.17 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Tetrachloroethene 0.26 U ug/L 0.26 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Toluene 35 ug/L 0.26 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Total THMs 0.15 U ug/L 0.26 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Total Xylenes 36 ug/L	Dichlorodifluorometi	hane	0.28 U	ua/L	0.28	EPA 524,2	VOC3418)4/25/11 0·58	W/R	E90000
Methylene chloride 0.43 U ug/L 0.43 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Methyl-tert-butyl-ether 0.13 U ug/L 0.13 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Styrene 0.17 U ug/L 0.17 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Tetrachloroethene 0.26 U ug/L 0.26 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Toluene 35 ug/L 0.26 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Total THMs 0.15 U ug/L 0.26 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Total THMs 0.15 U ug/L 0.15 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Total Xylenes 36 ug/L 0.15 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080	Ethylbenzene		16	ua/L	0.17	EPA 524.2	VOC3418	()4/25/11 0:58	WR	E06000
Methyl-tert-butyl-ether 0.13 U ug/L 0.13 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Styrene 0.17 U ug/L 0.17 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Tetrachloroethene 0.26 U ug/L 0.26 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Toluene 35 ug/L 0.26 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Toluene 35 ug/L 0.26 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Total THMs 0.15 U ug/L 0.15 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Total Xylenes 36 ug/L 0.41 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080	Methylene chloride		0.43 U	ua/L	0.43	EPA 524.2	VOC3418	(1/25/11 0:58	WR	E90000
Styrene 0.17 U ug/L 0.17 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Tetrachloroethene 0.26 U ug/L 0.26 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Toluene 35 ug/L 0.26 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Toluene 35 ug/L 0.26 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Total THMs 0.15 U ug/L 0.15 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Total Xylenes 36 ug/L 0.41 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080	Methyl-tert-butyl-eth	er	0.13 U	ua/L	0.13	EPA 524.2	VOC3418	ſ)4/25/11 0·58	WR	E90000
Tetrachloroethene 0.26 U ug/L 0.26 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Toluene 35 ug/L 0.26 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Total THMs 0.15 U ug/L 0.15 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Total THMs 0.15 U ug/L 0.15 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Total Xylenes 36 ug/L 0.41 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080	Styrene		0.17 U	ua/L	0.17	EPA 524,2	VOC3418	(4/25/11 0:58	WR	E90000
Toluene 35 ug/L 0.26 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Total THMs 0.15 U ug/L 0.15 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Total THMs 0.15 U ug/L 0.15 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Total Xylenes 36 ug/L 0.41 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080	Tetrachloroethene		0.26 U	ua/L	0.26	EPA 524.2	VOC3418	ſ)4/25/11 0:58	\//R	290000
Total THMs 0.15 U ug/L 0.15 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080 Total Xylenes 36 ug/L 0.41 EPA 524.2 VOC3418 04/25/11 0:58 WR E96080	Toluene		35	ua/L	0.26	EPA 524.2	VOC3418	r	4/25/11 0.58	WP	290000 290000
Total Xylenes 36 ug/L 0.41 EPA 524.2 VOC3418 04/25/11 0.58 WR EQ6090	Total THMs		0.15 U	ua/L	0.15	EPA 524.2	VOC3418	c r	4/25/11 0.58	WP	200000
	Total Xylenes		36	ug/L	0.41	EPA 524.2	VOC3418	0	4/25/11 0:58	WR	290000

2340 SW Poma Drive Palm City, FL 34990 FDOH # E96080 4155 St. Johns Pkwy Suite 1300 Sanford, FL 32771 FDOH # E83509

ì

Printed: 5/5/2011

Page 5 of 9

CERTIFICATE OF ANALYSIS

[2042955]

Client: L.S. Sims & Associates Workord

Workorder ID: Okeechobee Landfill Injectate

Parameter	Qualifier	Result	Units	Reporting Limit	Method	Laboratory Batch	Prep Date/Time	Analyzed Date/Time	Analyst	Lab ID
trans-1,2-Dichloroethene		0.30 U	ug/L	0.30	EPA 524.2	VOC3418		04/25/11 0:58	WR	E96080
Trichloroethene		0.17 U	ug/L	0.17	EPA 524.2	VOC3418		04/25/11 0:58	WR	E96080
Trichlorofluoromethane		0.40 U	ug/L	0.40	EPA 524.2	VOC3418		04/25/11 0:58	WR	E96080
Vinyl chloride		0.25 U	ug/L	0.25	EPA 524.2	VOC3418		04/25/11 0:58	WR	E96080
Odor		240000	T.O.N.	1.0	SM2150 B	WCGE33950		04/13/11 14:45	DWC	E96080
Cyanide		0.047	mg/L	0.023	SM4500CN E	WCGE33965	04/15/11 9:30	04/15/11 16:13	GG	E96080
Background on Total Coli	Z	0.1 MLS FILTERED	CFU/100mL	1000	SM9222 B	MICR15221		04/13/11 15:28	GG	E96080

i.

Printed: 5/5/2011

HBEL, Inc. 2340 SW Poma Drive, Palm City FL 34990 Phone: (772) 465-8584 Fax: (772) 467-1584

Client: L.S. Sims & Associates

CERTIFICATE OF ANALYSIS

Workorder ID: Okeechobee Landfill Injectate

[2042955]

Parameter	Qualifi	er Result	Units	Reporting Limit	Method	Laboratory Batch	Prep Ana Date/Time Date	lyzed e/Time	Analys	Lab ID
Laboratory ID: Sample ID:	20429550 Trip Blank	03 K			Sampled: 04/1 Matrix: Water	3/11 9:40 Results	Received: 04	//13/11 Neight [14:15 Basis	·
1,1,1,2-Tetrachloro	ethane	0.18 U	ug/L	0.18	EPA 524.2	VOC3418	04/25	5/11 1:33	WR	F96080
1,1,1-Trichloroetha	ne	0.31 U	ug/L	0.31	EPA 524.2	VOC3418	04/25	/11 1:33	WR	E96080
1,1,2,2-Tetrachloro	ethane	0.13 U	ug/L	0.13	EPA 524.2	VOC3418	04/25	/11 1:33	WR	E96080
1,1,2-Trichloroetha	ne	0.22 U	ug/L	0.22	EPA 524.2	VOC3418	04/25	/11 1:33	WR	E96080
1,1-Dichloroethane		0.35 U	ug/L	0.35	EPA 524.2	VOC3418	04/25	/11 1:33	WR	E96080
1,1-Dichloroethene		0.35 U	ug/L	0.35	EPA 524.2	VOC3418	04/25	/11 1:33	WR	E96080
1,1-Dichloropropen	е	0.26 U	ug/L	0.26	EPA 524.2	VOC3418	04/25	/11 1:33	WR	E96080
1,2,3-Trichloroprop	ane	0.26 U	ug/L	0.26	EPA 524.2	VOC3418	04/25	/11 1:33	WR	E96080
1,2,4-Trichlorobenz	ene	0.12 U	ug/L	0.12	EPA 524.2	VOC3418	04/25	/11 1:33	WR	E96080
1,2-Dichlorobenzen	ie	0.15 U	ug/L	0.15	EPA 524.2	VOC3418	04/25	/11 1:33	WR	E96080
1,2-Dichloroethane		0.21 U	ug/L	0.21	EPA 524.2	VOC3418	04/25	/11 1:33	WR	E96080
1,2-Dichloropropane	e	0.24 U	ug/L	0.24	EPA 524.2	VOC3418	04/25	/11 1:33	WR	E96080
1,3-Dichlorobenzen	е	0.17 U	ug/L	0.17	EPA 524.2	VOC3418	04/25/	/11 1:33	WR	E96080
1,3-Dichloropropane	е	0.34 U	ug/L	0.34	EPA 524.2	VOC3418	04/25/	/11 1:33	WR	E96080
1,3-Dichloropropene	е	0.32 U	ug/L	0.32	EPA 524.2	VOC3418	04/25/	11 1:33	WR	E96080
1,4-Dichlorobenzen	е	0.18 U	ug/L	0.18	EPA 524.2	VOC3418	04/25/	11 1:33	WR	E96080
2,2-Dichloropropane	9	0.20 U	ug/L	0.20	EPA 524.2	VOC3418	04/25/	11 1.33	WR	E96080
2-Chlorotoluene		0.20 U	ug/L	0.20	EPA 524.2	VOC3418	04/25/	11 1:33	WR	E96080
4-Chlorotoluene		0.20 U	ug/L	0.20	EPA 524.2	VOC3418	04/25/	11 1:33	WR	E96080
Benzene		0.15 U	ug/L	0.15	EPA 524.2	VOC3418	04/25/	11 1:33	WR	E96080
Bromobenzene		0.22 U	ug/L	0.22	EPA 524.2	VOC3418	04/25/	11 1:33	WR	E96080
Bromodichlorometha	ane	0.26 U	ug/L	0.26	EPA 524.2	VOC3418	04/25/	11 1:33	WR	E96080
Bromoform		0.15 U	ug/L	0.15	EPA 524.2	VOC3418	04/25/	11 1:33	WR	E96080
Bromomethane		0.34 U	ug/L	0.34	EPA 524.2	VOC3418	04/25/	11 1:33	WR	E96080
Carbon tetrachloride	9	0.36 U	ug/L	0.36	ÉPA 524.2	VOC3418	04/25/	11 1:33	WR	E96080
Chlorobenzene		0.17 U	ug/L	0.17	EPA 524.2	VOC3418	04/25/	11 1:33	WR	E96080
Chloroethane		0.36 U	ug/L	0.36	EPA 524.2	VOC3418	04/25/	11 1:33	WR	F96080
Chloroform		0.24 U	ug/L	0.24	EPA 524.2	VOC3418	04/25/	11 1:33	WR	E96080
Chloromethane		0.23 U	ug/L	0.23	EPA 524.2	VOC3418	04/25/1	11 1:33	WR	F96080
cis-1,2-Dichloroethe	ne	0.25 U	ug/L	0.25	EPA 524.2	VOC3418	04/25/1	11 1:33	WR	E96080
Dibromochlorometha	ane	0.15 U	ug/L	0.15	EPA 524.2	VOC3418	04/25/1	11 1:33	WR	E96080
Dibromomethane		0.20 U	ug/L	0.20	EPA 524.2	VOC3418	04/25/1	1 1:33	WR	E96080
Dichlorodifluorometh	iane	0.28 U	ug/L	0.28	EPA 524.2	VOC3418	04/25/1	1 1:33	WR	E96080
Ethylbenzene		0.17 U	ug/L	0.17	EPA 524.2	VOC3418	04/25/1	1 1:33	WR	E96080
Methylene chloride		0.43 U	ug/L	0.43	EPA 524.2	VOC3418	04/25/1	1 1:33	WR	E96080
Methyl-tert-butyl-ethe	ег	0.13 U	ug/L	0.13	EPA 524.2	VOC3418	04/25/1	1 1:33	WR	E96080
Styrene		0.17 U	ug/L	0.17	EPA 524.2	VOC3418	04/25/1	1 1:33	WR	E96080
Tetrachloroethene		0.26 U	ug/L	0.26	EPA 524.2	VOC3418	04/25/1	1 1:33	WR	-96080
Toluene		0.26 U	ug/L	0.26	EPA 524.2	VOC3418	04/25/1	1 1:33	WR	-96080
Total THMs		0.15 U	ug/L	0.15	EPA 524.2	VOC3418	04/25/1	1 1:33	WR	-96080
Total Xylenes		0.41 U	ug/L	0.41	EPA 524.2	VOC3418	04/25/1	1 1:33	WR [E96080

2340 SW Poma Drive Palm City, FL 34990 FDOH # E96080

4155 St. Johns Pkwy Suite 1300 Sanford, FL 32771 FDOH # E83509

Printed: 5/5/2011

Page 7 of 9

HBEL, Inc. 2340 SW Poma Drive, Palm City FL 34990 Phone: (772) 465-8584 Fax: (772) 467-1584

CERTIFICATE OF ANALYSIS

[2042955]

<i>Client:</i> L.S. Sin	ns & Associate	es	Wor	korder ID:	Okeechobee Landfill Injectate							
Parameter	Qualifier Result	Units	Reporting Limit	Method	Laboratory Batch	Prep Date/Time	Analyzed Date/Time	Analyst	Lab ID			
trans-1,2-Dichloroethene	0.30 U	ug/L	0.30	EPA 524.2	VOC3418		04/25/11 1:33	WR	E96080			
Trichloroethene	0.17 U	ug/L	0.17	EPA 524.2	VOC3418		04/25/11 1:33	WR	E96080			
Trichlorofluoromethane	0.40 U	ug/L	0.40	EPA 524.2	VOC3418		04/25/11 1:33	WR	E96080			
Vinyl chloride	0.25 U	ug/L	0.25	EPA 524.2	VOC3418		04/25/11 1:33	WR	E96080			

¹Result Qualifiers: U = Not Detected I = Analyte detected between the Laboratory Method Detection Limit and Laboratory Reporting Limit Applicable Florida Department of Environmental Protection Qualifiers defined below. Statement of Estimated Uncertainty available upon request.

Q Sample held beyond the accepted holding time.

Z Too many colonies were present (TNTC), the numeric value represents the filtration volume.

	HBEL, Inc. Environmental Testing Services Phone (772) 465-8584 Fax (772) 467-1584						Chain-of-Custody and Agreement to Perform Services					Le	Laboratory not responsible for omitted information <u>x</u> FDOH 1D # E96080 Southeast Florida 2340 SW Poma Drive Palm City, FL 34990						
Company:	Okeechob	ee Landfill					Method(s) of <u>Self</u>	Star and a star							FDOH ID # E83509 Central Florida				
Address:	10800 NE ⁻	128 Ave										4155 St. Johns Pkwy, Suite 1300				kwy, Suite 1300			
City/State	Okeechob				Zin	24070	email:			For	.ab Us	se Only	1						
Discus	ORCCONDR		. <u>.</u>	_	_ rh.	34572		femp Che	erature cked	dil	⊅ °C		Cu	stody S Intact	eals	LAB# Z	742955		
Phone:							Standard Laboratory	CH.	N	PRI	ESERV			Ŷ	N				
Client Con	lient Contact: Jim McGrath							N	NaOH	<u> </u>			н	ST	N	Presen	ation Key		
Project Na	me:	Injectate	Com	posit	e		Or			ANALYS	SES RE		TED			H=Hyclrochloric Acid N⇔Nitric Acid	P=Phosphoric Acid		
Sampled B	iv:	Jim Norto	m				Rush in Business Days	ХĮ.	A_	Ą	AI .	\mathcal{B}	Q	\mathcal{D}_{-}	C123	S=Sulfuric Acid	Thiosulfate		
			10	1	Ś	SAMD				rite, ulfate H,			M		pha, '228	SH=Sodium Hydroxide	U=Unpreserved		
LAB ID	COLLE		le Tyr	* XX	itainer	OAWF	LE DESCRIPTION	nd 2 als	nide	de, S de, D Cotol	S			_ Eo	s Al 226	с́омі			
	DATE TIME B AN AS				As Wi	I Appear On Report	1°a Metä	Cyal	Nitrat Chori Flouri TDS,	MBA	- PO	200	Tota	Gros Rad					
	4-13-11	9:40	С	sw	ې لوک	N Composite		1		1	1		W		3		······		
	4	9:40	G	sw	د ک	Grab			1		·	1	2	1					
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			DI	3	Trip Blank	· · · · · · · · · · · · · · · · · · ·					<u> </u>	<u>م</u>	!					
																· <u> </u>			
																······································			
a de la compañía de la																			
				· · ·												<u> </u>	·		
			<u> </u>														······································		
	* Sample Type	G=Grab C=	Comp	osite			** Matnx: S=Solid S1=Studge	DW=D	tinking V	/ater GW≓G	round W	ater SV	/=Surfac	ce Wate	r WW=1	Wastewater M≖Marin	18		
<b>D</b>	RELINQUIS	HED BY 🦯				R	ELINQUISHED BY		-		RELIN	QUISH	ED BY			· · · · · · · · · · · · · · · · · · ·			
of	DATE/TIME	bv				D					DATE/	TIME				A			
Pag 9	DATE/TIME					R	ATE/TIME				RECE		DR/HB		TODY	Be all	aa		
Distribution: WHITE with REPORT; YELLOW for FILE; PINK to CLIENT; GOLD for						for SAMPLER					1		ĢALL (L	CHAIN	NPAGE 1	of 2			
																······································			
	HBEL, Inc. Environmental Testing Services Phone (772) 465-8584 Fax (772) 467-1584							Chain-of-Custody and Agreement to Perform Services					ALL POINT PEN Laboraton LESS HARD <u>X</u> ETELY FILL OUT I GREYED AREAS NT LEGIBLY				ry not responsible for omitted information FDOH ID # E96080 Southeast Florida 2340 SW Poma Drive Palm City, FL 34990		
-----------------	-----------------------------------------------------------------------------------------	-------------	----------	--------	---------	-----------	-------------------	----------------------------------------------------------	--------------------	--------------------	---------------------	--------------------------------------------------	-------------------------------------------------------------------------------------------------	--------------------------	----------------	-----------------------------------------------------	----------------------------------------------------------------------------------------------------------------------------------	--------------------------	---
Company:	Okeechob	ee Landfill					Method(s) of Self						6				FDOH ID # E83509		
Address:	10800 NE	128 Avenue	•								BORATO ^S	I.				4155 St. Johns Pkwy, Suite 1300 Sanford El 22771			
City/State	Okeechob	ee, FL			_Zip:	34972	email:	Temp	erature	For ature -7/		or Lab Use Only / Cust		stody S	eals				
Phone:	Fax:					Sta	Che Alle	cked N	<u> </u>	<u>₽°C</u> in Y			Intact Y	N	LAB # <u>2</u>	096733			
Client Cont	ent Contact: Jim McGrath					<b>X</b>	Around Time	07	07	F	RESER	VATIVE				Prese	Nation Key		
Project Nar	roject Name: Injectate Composite							Or	51	SI			ST	S			H=Hydrochloric Acid	P=Phosphoric Acid	
Sampled P		lim Norto					Rush in	Business Days	84	81	BZ BZ	BB	BY	85			N≍Nitric Acid S=Sulfuric Acid	ST=Sodium Thiosulfate	
	y.		11 *2	1			Requires La	boratory Approval	548			tes)	ate)	lat),			SH≍Sodium Hydroxide	U=Unpreserved	
LABID	COLLE		le Typ	‡ ≚	tainers	SAMP	LE DESC	RIPTION	505/	-	~	1 ama	phos	Diqu	,				
	DATE	TIME	Samp	MATR	# Con	As Wi	ll Appear (	On Report	504/	515.	525.1	531. ⁻ (Carb	647 (Glyp	549 ( NO _x					
	4-13-11	9:40	С	sw	11	Composite			6	1	1	1	1	1					1
																			┨
																			1
																			-
																			┨
								<u> </u>											┥
																			┥
																		·····	-
											····								┥
							;				".						· · ·		┨
	Sample Type	G=Grab C=	Camp	osite			** Matrix	S=Solid SL=Sludge	DW=Dnn	king Wa	ter GW	-Ground	Water S	SW⇔Sur	tace Wa	iter WW	L V≓Wastewater M⊭	Marine	
Ре 9∤	RELINQUISHED BY						RELINQUISHE	D BY	<b>Trible Line</b>			RELING	UISHE	D BY					Ĩ
2 S							DATE/TIME					DATE/TIME							
Pa												RECEIVED FOR HREL CUSTODY BY						UT .	
Distribution: V	ibution: WHITE with REPORT; YELLOW for FILE; PINK to CLIENT; G						LD for SAMPLER					DATE/TIME // // // // // // // // // // // // //					of 2		

2340 SW Poma Drive

# **Field Data Sheet**



Project Name:	Okeecho	be	e Landfill				D	ate Sample	ed:	4/13/2011	_	Pa	ge 1 of	2
Sample Type:	WW		SW	X	GW		DW	DI	Π	Sludae	Sed	TT	S	oil
Sample Site Ident	ification:	Îr	ijectate We	ə//					·			<u> </u>		2.11
Sampling Method	Grab	Γ	Comp.	X	1 MW		Bailer	Pump						·
Sampling Equipm	ent:	IS	CO Comp	05	ite Sample	r								
Site & Weather Co	onditions:	N	/arm / Sun	ny	/ Breezy						w			
Field Instrument	Beginning	l		v	erification	X	C	alibration					Slope	
pH Meter	YES		Buffer		4.0	4.0	)9	7.0	6.	98	10.0	10.	00	
Conductivity Meter	YES		Buffer	Γ	147			1412	14	22	12900			
Turbidity Meter	YES		Buffer	Γ	1.0	0.9	)7	10.0	10	.03	20			
DO Meter	NO		Buffer		Air Cal	Ad	just	100.00%	Fr	om	95.70%			
Chlorimeter	YES		Buffer		0.21	0.2	1	0.91	0.8	<b>89</b>	1.62	1.5	8	1157
									1	Well Dia	meter		Aultipli	er
Field Filtered	Yes	Γ	No	X	]				ł	1 5 inches		-	0	00
Field Decon	Yes	x	No		Í				ŀ	2 inches			0	16
Duplicate	Yes	<b> </b>	No	$\overline{\mathbf{x}}$					h	4 inches			0	65
	·		1		3				ł	6 inches			1	.46
Parameter	Sample C	on	tainers			1	pH che	ck				<b></b> _		
Nutrient	Plastic – H	128	SO4	-		<2								
Metals	Plastic – F	IN	03		<del>-</del>	<2		X						
Sulfide	Plastic –N	аÕ	H/Zn Aceta	ate		>1;	2							
Cyanide	Plastic -N	aO	H/Ascorbic	A	cid	>12	2	X						
Bacteriological	Na ₂ S ₂ O ₃ (	DV	V NO Chlor	in	e Res)			X						
Oil & Grease	Glass - H	21				<2								
TOC	Glass H(	21		••		<2								
TRPH	Glass - HC	2				<2								
VOA	Glass – H					<2								
SVOC	Glass – (D	W	NO Chlorir	ne	Res)	-		X						
Phenols	Glass – H2	250	04			<2		~						
Other	unpreserve	ed						X						
Field Instrument	Ending			V	erification	x	Ca	libration						
oH Meter	NO		Buffer		4.0	4.0	6	7.0	6.9	6	10.0	10.0	)0	
Conductivity Meter	NO		Buffer		147			1412	14	12	12900			
Turbidity Meter	NO		Buffer		1.0	0.9	9	10.0	10.	10	20			
DO Meter	NO		Buffer			Adj	ust	100.00%	Fro	om .	92.10%			·
Chlorimeter	NO		Buffer		0.21	0.2		0.90	0.8	7	1.62	1.5	İ	falas:
General Site Info	rmation an	d (	Comments	:										
Next Event	Annual													
C.O.C. #	2042955													
Field Book #	21 page 1	56	and 157											
Sampled By (Print)	Jim Norto	n				Sar	npler(s)	Q		27-4	7			_
Affiliation	HBEL, Inc					Sig	natures(s)	Pn	-T	1 1027				
Southeast Florida					Central Flori	ida					- t		ACCRED	

 Palm City, FL 34990
 Sanford, FL 32771

 FDOH #E96080
 FDOH #E83509

 C:\Documents and Settings\bennorth\Local Settings\Temporary Internet Files\OLK8C\Okeechobee Landfill SW 041311

4155 St. Johns Pkwy, Suite 1300

# ANALYTICAL FIELD DATA

Project Name: Date Sampled:	(OL) Annua 4/13/2011	al Injectate	Well Comj	posite		Page 2 of 2 C.O.C.# 2042955							
LOCATION	Time	pH (SU)	Temperature (°C)	Specific Conductivity (umhos)	D.O. (mg/L)	Turbidity (NTUs)	Residual Chlorine (mg/L)	Comments					
Composite	9:40												
Grab	9:40	7.26	27.60	27400.0	2.18	70.60	0.00	see notes below					

## Notes:

Grab for grab samples and field readings

Sampled By (Print)	Jim Norton	Sampler(s)	Jun Nortin	
Affiliation	HBEL, Inc	Signatures(s)		

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218



#### HBEL, Inc. 2340 Poma Drive

Palm City, FL 34990

April 15, 2011 Work Order: 1103256

Laboratory Report

Project Name		2042	955					
Sample Description Matrix SAL Sample Number Date/Time Collected Collected by Date/Time Received		2042955 001 Other aqueous 1103256-01 04/13/11 09:40 Client 04/14/11 09:50						
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed	Ву
Inorganics								
Surfactants (MBAS,mw342)	mg/L	9.3	SM 5540C	8.0	5.0		04/14/11 16:15	SMD

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

SOLUCIO NACCOROLINE

Work Order: 1103256

April 15, 2011

HBEL, Inc. 2340 Poma Drive Palm City, FL 34990

### * Qualifiers, Notes and Definitions

Results followed by a "U" indicate that the sample was analyzed but the compound was not detected. Results followed by "I" indicate that the reported value is between the laboratory method detection limts and the laboratory practical quantitation limit.

A statement of estimated uncertainty of test results is available upon request.

For methods marked with **, all QC criteria have been met for this method which is equivalent to a SAL certified method.

Test results in this report meet all the requirements of the NELAC standards. Any applicable qualifiers are shown below. Questions regarding this report should be directed to Client Services at 813-855-1844.

Francis I. Daniels, Laboratory Director Leslie C. Boardman, Q.A. Manager

1	IBEL, Inc.					2340 SW P	HI oma Drive, Palı Fax: (7 CHAIN OF C	3EL, Inc. m City, FL 72) 467-158 USTODY R	4990, 772 4 ECORD	2-465-8584			Subcontracting Form 001A REV 002 Effective Date 03/15/11	
]	Receiving The sam	Laborato	ry: <u>5A</u> be shipped l	L by Fea	1.6	{	to arrive on	14 4.13.11 O	/	tat: <u>5</u>	Tel		103256	
	HBEL, I	nc.				<u> </u>			T	ANALYSIS F	REQUIRED	COLLEC	TION REMARKS	
	PROJECT N	ame: Zo	042955							PRESERV	ATIVE			
									u					
	SAMPLE TY MATRIX: D	PE: Composi	te = C, Grab = G, = DW, Groundwat	er = GW, Sur	Preservat H ₂ SO ₄ = face Water	ive: HCl = H, HN S, NaOH = SH, Ut = SW, Wastewate	$O_3 = N, Na_2S_2O_3 = 0$ ppreserved = U T = WW, Soil or solver the solution of the soluti	ST, ids ≈ S,	SAG					
	Waste = W, Client Code,	Dii =0 Matrix	COLLECT	TION TIME	туре	HBEL SAMPLE ID # Bottles							PLE COMMENTS	
ØÌ	SIMS	۲.	4.13.11	0940	Ċ	20429	755.001	1	V			* Lezchab	9	
	· · · · · · · · · · · · · · · · · · ·	······································				12	50ml 7	, Cor	<b>)</b>					
	- Au	RE RE	INQUISHED BY:			date 4 • <i>1 3 • 11</i> date	TIME 1600 TIME	FED	EX LABC	RECEIVED BY	Y: RECEIVED BY :	4/12 		950 G-14-1

0.0

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218



#### HBEL, Inc. 2340 Poma Drive

Palm City, FL 34990

May 2, 2011 Work Order: 1103383

Laboratory Report

Project Name		20429	55					
Sample Description Matrix SAL Sample Number Date/Time Collected Collected by Date/Time Received		2042955001 Other aqueous 1103383-01 04/13/11 09:40 Client 04/18/11 15:30						
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed	Ву
Radiochemistry								
Gross Alpha (Incl. Uranium)	pCi/L	12 ± 5.2	EPA 00-02	2.5	2.5	04/25/11 09:00	04/27/11 10:28	ARM
Radium-226	1.4 ± 0.19	EPA 903.1	0.1	0.1	04/20/11 16:30	04/29/11 15:16	KTC	
Radium-228	pCi/L	0.5±0.3 U	EPA Ra-05	0.5	0.5	04/20/11 16:30	04/28/11 16:59	KTC

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

HBEL, Inc. 2340 Poma Drive Palm City, FL 34990

#### * Qualifiers, Notes and Definitions

Results followed by a "U" indicate that the sample was analyzed but the compound was not detected. Results followed by "I" indicate that the reported value is between the laboratory method detection limts and the laboratory practical quantitation limit.

A statement of estimated uncertainty of test results is available upon request.

For methods marked with **, all QC criteria have been met for this method which is equivalent to a SAL certified method.

Test results in this report meet all the requirements of the NELAC standards. Any applicable qualifiers are shown below. Questions regarding this report should be directed to Client Services at 813-855-1844.



Work Order: 1103383

May 2, 2011

Findad

HBEL, Inc.					2340 SW P	HI oma Drive, Pal Fax: (7 CHAIN OF C	3EL, In m City, (72) 467 USTOI	ic. FL 34 7-1584 DY RE	990, 772 CORD	2-465-8	584				Subc E	ontracting ] ffective Da	Form 001A REV 002 te 03/15/(1
Receivin	teceiving Laboratory: <u>SAL</u>																
The sa	mples are to	be shipped b	y Fee	1. C	×	to arrive on	4.1	18.11		TA	T: 5	Hd.					
<b>1</b>															110	<u>338</u>	3
HBEL	, Inc.	0-0				AN	ALYSIS R	EQUIRED		COLLECTION REMARKS							
PROJECT	NAME: ZO	42933									PRESERV	ATIVE		-			
), . 1									2	N	Ν						
					······································				K.					-			
SAMPLE	TYPE: Composi	te = C, Grab = G,		Preserva H2SO4 =	tive: HCl = H, HNG S, NaOH = SH, Un	$D_3 = N, Na_2S_2O_3 = 0$ preserve(1 = U	ST,		20/0	22	23	1					
MATRIX Waste = V	Drinking Water V, Oil =0	= DW, Groundwate	r = GW, Sur	face Water	= SW, Wastewater	= WW, Soil or soli	ids = S,		250	20	70						
Client Code	MATRIX	COLLECTI	ON , TIME	TYPE	HBEL	SAMPLE ID	<u> </u>	n Boider	びえ	H) C	$ \tilde{\mathcal{L}} $			}	SAMPLE CO	MMENTS	
SIMS	4*	4.13.11	0940	C	2042	155 001		3	V	$\overline{\mathbf{V}}$	$\mathbf{V}$			40	zution -	Letch	ati
<u> </u>		<u> </u>				···· <u></u> ··· <u>·</u> ··· ·							<u></u>		<u></u>		
					311	P, HNO	3										
	<u></u>													-+		·	
		<u> </u>															
}		1						<u> </u>	}								
	1									$\square$	$\backslash$	)					}
4	huit	NQUISHED BY:			DATE 4.15.11	тыв [600	FGDGX RECTIVED AT						- 4 [DATE]	1 1	30		
	RE	LINQUISHED BY:			DATE	TIME	LABORATORY NAME AND RECEIVED BY :					····	DATE		IME		

,

Page 3 of 3