ROMP 25 LILY MONITOR WELL SITE HARDEE COUNTY, FLORIDA

PHASE TWO

EXPLORATORY DRILLING AND MONITOR WELL CONSTRUCTION

Geohydrologic Data Section
Resource Data Department
Southwest Florida Water Management District
November 1999

THE AMERICANS WITH DISABILITIES ACT INFORMATION

The Southwest Florida Water Management District (District) does not discriminate upon the basis of any individual's disability status. This non-discrimination policy involves every aspect of the District's functions including one's access to, participation, employment, or treatment in its programs or activities. Anyone requiring reasonable accommodations as provided for in The Americans With Disabilities Act should contact Della L. Haberle at (904) 796-7211 or 1-800-423-1476 (FLORIDA), extension 4222; TDD ONLY 1-800-231-6103 (FLORIDA); FAX (904)754-6885/

ROMP 25 LILY MONITOR WELL SITE HARDEE COUNTY, FLORIDA

PHASE TWO

EXPLORATORY DRILLING AND MONITOR WELL CONSTRUCTION

November 1999

The geological evaluations and interpretations contained in the *ROMP 25 Exploratory Drilling* and *Testing Report* have been prepared by or approved by a certified Professional Geologist in the State of Florida, in accordance with Chapter 492, Florida Statutes.

Michael T. Gates Professional Geologist License No. PG 0001799

Date: 11-10-1999

ROMP 25 LILY MONITOR WELL SITE HARDEE COUNTY, FLORIDA

PHASE TWO

EXPLORATORY DRILLING AND MONITOR WELL CONSTRUCTION

By M. T. Gates

Southwest Florida Water Management District

Resource Data Department

Timothy De Foe, Director

Geohydrologic Data Section

S. Greg McQuown, Manager

Southwest Florida Water Management District 2379 Broad Street Brooksville, Florida 34609-6899

November 1999

TABLE OF CONTENTS

1.0 INTRODU	CTION	. 1
2.0 SITE LOC	ATION	. 1
3.0 DATA CO	LLECTION METHODS	. 1
3.1	DEEP EXPLORATORY DRILLING	2
	3.1.1 Avon Park/Exploratory Well	
	3.1.2 Evaporite/Exploratory Well	
3.2	GROUND-WATER SAMPLING	. ૩ ૧
3.3	GEOPHYSICAL LOGGING	
4.0 GEOLOG	iY	. 5
4.1	UNDIFFERENTIATED SURFICIAL DEPOSITS	. 5
4.2	PEACE RIVER FORMATION	. 5
4.3	ARCADIA FORMATION	. 5
4.4	SUWANNEE LIMESTONE	. 6
4.5	OCALA LIMESTONE	
4.6	AVON PARK FORMATION	
	OGY	
5.1	SURFICIAL AQUIFER SYSTEM	
5.2	INTERMEDIATE AQUIFER SYSTEM	
5.3	UPPER FLORIDAN AQUIFER	
5.4	MIDDLE CONFINING UNIT	. 8
6.0 GROUND	-WATER QUALITY	. 9
7.0 MONITOR	R WELL CONSTRUCTION	10
7.1	PERMANENT SURFICIAL AQUIFER MONITOR WELL	
7.2	PERMANENT ARCADIA/IAS MONITOR WELL	10
7.3	PERMANENT SUWANNEE/UFA MONITOR WELL	11
7.4	TEMPORARY AVON PARK/UFA OBSERVATION WELL	
7.5	PERMANENT AVON PARK/UFA MONITOR WELL	
7.6	PERMANENT EVAPORITE MONITOR WELL	
8.0 SUMMAR	Y	12
0.0 DEFEDEN	1050	

TABLES

- 1. Field Analyses of Ground-water Samples Collected During Exploratory Drilling in the Avon Park Well.
- 2. Field Analyses of Ground-water Samples Collected During Exploratory Drilling in the Evaporite Well.
- 3. Laboratory Analyses of Ground-water Samples Collected During Exploratory Drilling in the Avon Park well.
- 4. Laboratory Analyses of Ground-water Samples Collected During Exploratory Drilling in the Evaporite Well.

FIGURES

- 1. General Location Map.
- 2. Project Location Map.
- 3. Well Site Location Map.
- 4. Monitor Well Site Diagram.
- 5. Avon Park Monitor Well During Exploratory Drilling.
- 6. Evaporite Monitor Well During Exploratory Drilling.
- 7. Wire-Line Bailer.
- 8. Off-bottom Packer.
- 9. Geophysical Logs Run During Exploratory Drilling.
- 10. Diagram of Site Hydrogeology.
- 11. Graph of Water Quality During Exploratory Drilling.
- 12. Diagram of Permanent Surficial Aquifer Monitor Well.
- 13. Diagram of Permanent Arcadia/IAS Monitor Well.
- 14. Diagram of Permanent Suwannee/UFA Monitor Well.
- 15. Diagram of Temporary Avon Park/UFA Observation Well.

Expirpt.wpd İV

- 16. Diagram of Permanent Avon Park/UFA Monitor Well (with liner installed).
- 17. Diagram of Permanent Evaporite/Middle Confining Unit Well.

APPENDIX

A. ROMP 25 Lithologic Log.

Expirpt.wpd V

1.0 INTRODUCTION

The ROMP 25 (WRAP S-6) Lily well site is one of six Regional Observation and Monitor-Well Program (ROMP) well sites constructed for the Southern District Water Resource Assessment Project (SDWRAP). The SDWRAP is a long-term study of the ground-water systems in DeSoto County, Hardee County, and portions of Charlotte, Polk, and Sarasota Counties (Figure 1).

The ROMP 25 Well Site was obtained by the Southwest Florida Water Management District (SWFWMD) in February 1994 for construction of a multiple well monitor site. Drilling, testing, and monitor well construction at ROMP 25 was planned in three phases. The first phase involved core drilling from land surface to 1,048 feet below land surface (bls) to define the stratigraphy and hydrology of the site. This phase began December 1995 and was completed in May 1996. The results are presented in ROMP 25 Phase One Core Drilling and Testing (Gates, 1998). The exploratory drilling and monitor well construction phase of the project began in August 1996 and continued on an intermittent basis until March 1998. The last phase of the work, aquifer performance testing was completed in March of 1999. The aquifer performance data will be presented in ROMP 25 Phase Three - Aquifer Performance Testing.

2.0 SITE LOCATION

The ROMP 25 (WRAP S-6) Lily well site is located in Hardee County, southwest of Zolfo Springs, Florida (Figure 2). The well site is located on the south side of Roberts Road in the northeast quarter of Section 9, Township 36 South, Range 23 East at latitude 27° 21' 59", longitude 82° 00' 25.5" (Figure 3). Land surface elevation at the well site is approximately 85 feet above the National Geodetic Vertical Datum of 1929 (NGVD). Figure 4 presents the well site layout and monitor well locations.

3.0 DATA COLLECTION METHODS

Mud-rotary and reverse-air methods of drilling were used for the exploratory drilling and testing at ROMP 25. The mud-rotary method was used until circulation was lost or until ground-water

sampling was required. The reverse-air method was used for ground-water sampling and for drilling in highly permeable zones. Ground-water samples were either collected with a stainless steel bailer lowered through the drill rods, or directly from the reverse-air discharge hose during drilling. All ground-water samples were collected in accordance with ROMP Water Quality Sampling Protocol.

3.1 DEEP EXPLORATORY DRILLING

The deep exploratory drilling (below 1,048 feet bls) at ROMP 25 was completed in two phases. The first phase of drilling was performed by the SWFWMD-owned Speed Star SS-40 drill rig, from August 1996 to March 1997. The second phase was performed by Diversified Drilling Corporation in November of 1998. Diversified Drilling Corporation was contracted by the District to extend the total depth of the Avon Park well from 1,556 feet bls to 1,775 feet bls. The exploratory drilling was performed to determine the stratigraphy, permeable zones, ground-water quality, salt-water interface, and the top of the middle confining unit (evaporites). The exploratory drilling was performed during the construction of the Avon Park and Evaporite monitor wells.

3.1.1 Avon Park/Exploratory Well

The Avon Park/exploratory well (Figure 5) was the first well constructed during the exploratory drilling. Drilling on the Avon Park well began August 20, 1996. A 29-inch borehole was drilled from land surface to 84 feet bls using the mud-rotary method. Eighty-four feet of 24-inch welded steel casing was installed and grouted to land surface. A 23-inch borehole was then drilled from 84 feet bls to 300 feet bls using the mud-rotary method. Three-hundred feet of 18-inch welded steel casing was installed and grouted to land surface. A 17-inch borehole was then drilled from 300 feet bls to 960 feet bls using the mud-rotary method. Seven-hundred forty-two feet of 12-inch welded steel casing was installed and grouted from 960 to 218 feet bls. Reverse-air drilling with an 11-inch bit was used below 960 feet bls to allow ground-water sampling. Drill cuttings were collected continuously below 1,048 feet and ground-water samples were collected each time a new drill rod was added (approximately every 30 feet). Exploratory drilling continued in the Avon Park to a depth of 1,556 feet bls. In November 1998

Explirat, wad 2

Diversified Drilling Corporation drilled from 1,556 feet bls to 1,785 feet bls using the reverse air method. The drilling was performed to intercept the *highly permeable zone* (Wolansky, et.al, 1980) of the Avon Park Formation.

3.1.2 Evaporite/Exploratory Well

Drilling began on the Evaporite/Exploratory well (Figure 6) on October 23, 1996. A 29-inch borehole was drilled from land surface to 84 feet bls using the mud-rotary method. Eighty-four feet of 24-inch welded steel casing was installed and grouted to land surface. A 23-inch borehole was then drilled from 84 feet bls to 300 feet bls using the mud-rotary method. Threehundred feet of 18-inch welded steel casing was installed and grouted to land surface. A 17inch borehole was then drilled from 300 feet bls to 960 feet bls using the mud-rotary method. Nine-hundred and sixty feet of 12-inch welded steel casing was installed into the borehole and grouted to land surface. Reverse-air drilling with an 11-inch bit was used below 960 feet bls. Drill cuttings were collected continuously and ground-water samples were collected at approximate 30 feet intervals below 1,556 feet bls. At some point during drilling, the bottom 87 feet of 12-inch steel casing broke off and slid down the borehole. The 87 feet of fallen casing lodged in the borehole between 1140 feet bls and 1227 feet bls. Drilling continued without incident and the casing was left in place at 1140 - 1227 feet bls. Drilling with the 11-inch bit was stopped at 1,866 feet bis and an off-bottom packer test was performed from 1,654 to 1,866 feet bls. A smaller 7.875-inch bit was used to drill from 1,866 feet bls to 1,896 feet bls. A 4-inch diameter core barrel was used to collect a solid core sample of the evaporitic sediments from 1,896 feet bls to 1,911 feet bls. Exploratory drilling was terminated at 1,911 feet bls.

3.2 GROUND-WATER SAMPLING

Split ground-water samples were collected at approximate 30 feet intervals while performing the exploratory drilling from 1,048 ft to 1,911 feet bls to characterize the water quality of the Upper Floridan aquifer. One sample was analyzed in the field for temperature, specific conductance, pH, chloride, sulfate, and density. The other sample was delivered to the District Environmental Chemistry Laboratory for more extensive analyses. Chain-of-Custody forms

were used to track the samples. Results of the ground-water sample analyses are presented in Section 6.0.

Ground-water samples were collected either directly from the discharge line during drilling or using a wire-line bailer. Figure 7 presents a diagram of the wire-line bailer. One off-bottom packer test was performed to obtain a water quality sample from the 1,654 to 1,866 feet interval. Figure 8 presents a diagram of the off-bottom packer. Tables 1 and 2 present a summary of the field water quality analyses and the collection method for ground-water samples obtained during deep exploratory drilling at ROMP 25. Tables 3 and 4 present the laboratory results and method of collection for ground-water samples collected during exploratory drilling.

3.3 GEOPHYSICAL LOGGING

Downhole geophysical logs were collected on the both the Avon Park and Evaporite wells during exploratory drilling. The logs were collected using the SWFWMD-owned Century® digital geophysical logging equipment. Figure 9 presents a merged log of the caliper and multi-function tools that were run in the Evaporite/Exploratory well. This well, at the time of logging, had 12-inch steel casing from land surface to 870 feet bls and an open hole interval from 870 feet bls to 1,911 feet bls (the broken section of 12-inch casing is seen on the caliper log from 1140 feet bls to 1227 feet bls).

Logging was recorded from the bottom of the borehole to the top. The *highly permeable zone* of the Avon Park Formation is indicated on the caliper log from 1,690 feet bls to 1,780 feet bls. The flow zone is indicated on the temperature (TEMP) log and the fluid resistivity [RES(FL)] log by a shift in the log trace at approximately 1,760 feet bls. The TEMP log shows a decrease in fluid temperature as the tool encounters the flow zone. The RES(FL) log shows an increase in fluid resistivity as the tool encounters the fresher, less conductive fluid in the flow zone.

4.0 GEOLOGY

The ROMP 25 well site is located on the Wicomico terrace, within the DeSoto Plain physiographic province, a division of the Mid-Peninsular zone of the Floridan Peninsula (White, 1970). Located within the SWFWMD Peace River Basin, ROMP 25 is west of Horse Creek, a tributary of the Peace River. The elevation at ROMP 25 is approximately 85 ft NGVD. The stratigraphy was defined from descriptions of the core samples collected during wire-line coring from land surface to 1,048 ft bls and from the drill cuttings and core collected during rotary drilling from 1,048 ft bls to 1,911 ft bls. Figure 10 depicts the geology and hydrology described at the ROMP 25 well site. The lithologic log for ROMP 25 is presented in Appendix A.

4.1 UNDIFFERENTIATED SURFICIAL DEPOSITS

The Pliocene to Recent age undifferentiated surficial deposits are the uppermost geologic unit at the ROMP 25 well site. This unit is comprised of fine to medium grained, unconsolidated, quartz sand, with some interbedded silt, clay and organic matter. The undifferentiated surficial deposits extend from land surface to 45 feet bls.

4.2 PEACE RIVER FORMATION

The Peace River Formation is a lower Pliocene to Miocene age marine siliciclastic unit that lies unconformably below the undifferentiated surficial deposits. The Peace River Formation is part of the Hawthorn Group sediments described by Scott (1988). In the area of ROMP 25 the Peace River Formation is comprised of a thick sequence of inter-layered siliciclastics and carbonates extending from 45 feet bls to 107 feet bls. Quartz sand, sandy fossiliferous limestone, and interbedded phosphatic sand and clay make up the numerous beds within this unit.

4.3 ARCADIA FORMATION

The Arcadia Formation, middle-Miocene in age underlies the Peace River Formation and extends from 107 feet bis to 313 feet bis. The Arcadia Formation as described by Scott

5

(1988), consists primarily of limestone and dolostone, with some quartz sand, clay and phosphate grains. The Arcadia Formation, part of the Hawthorn Group sediments, includes the Tampa and Nocatee members in some areas of South Florida. In the area of ROMP 25 neither of these members were described. The Arcadia Formation is characterized by moderately indurated calcarenite, with interbedded clay, quartz sand, phosphatic sand and gravel, and some thin chert and dolostone lenses.

4.4 SUWANNEE LIMESTONE

The Suwannee Limestone is Oligocene in age and extends from 313 feet bls to 675 feet bls at the ROMP 25 well site. The Suwannee Limestone is distinguished from the overlying Arcadia Formation by the absence of phosphatic sediments. The Suwannee consists of a chalky, fossiliferous, calcarenite alternating with thin beds of clay and calcilutite. Permeable zones within the Suwannee are generally formed from fractures and fossil molds and casts. Mollusk and Foraminifera molds are very common.

4.5 OCALA LIMESTONE

Late Eocene in age, the Ocala Limestone extends from 675 feet bls to 976 feet bls at ROMP 25. The Ocala is a highly fossiliferous, fine-grained, poorly cemented shallow marine limestone. This limestone is predominantly a chalky, Foraminifera calcarenite or calcilutite with minor interbedded quartz sand and clay. Some thin dolostone lenses are also present. Common Foraminifera include *Lepidocyclina sp.* and *Nummulites sp.* Pelecypods, gastropods, milliolids, and echinoids are also common. In the ROMP 25 area the Ocala Limestone is generally of low permeability.

4.6 AVON PARK FORMATION

The Avon Park Formation is middle Eocene in age and extends from 976 feet bls to approximately 1,911 feet bls at the ROMP 25 wellsite. A thin bed of fine-grained, crystalline dolostone is present at the top of the Avon Park Formation near the Ocala Limestone contact. The Avon Park Formation is characterized by well indurated fossiliferous limestone and

dolostone and interbedded gypsum in the lower part of the formation. Well developed secondary porosity features are characteristic of the lower portions of the Avon Park Formation.

5.0 HYDROLOGY

The ROMP 25 well site hydrology was defined during initial wire-line coring and exploratory drilling. Aquifer systems were delineated from lithologic descriptions of permeable and non-permeable units, potentiometric levels, water quality data, and geophysical logs collected during drilling.

5.1 SURFICIAL AQUIFER SYSTEM

The surficial aquifer system (SAS) is an unconfined aquifer that extends from land surface to approximately 60 feet bls at the ROMP 25 well site. The SAS is comprised almost entirely of fine to medium grained quartz sands of the undifferentiated surficial deposits and Peace River Formation. The well sorted quartz sand, provide the high porosity and permeability of the SAS. The water level in the SAS ranges annually from two to six feet bls at ROMP 25. In May 1999 the water level of the surficial aquifer measured 6.2 feet bls (~ 80.2 feet NGVD).

5.2 INTERMEDIATE AQUIFER SYSTEM

The intermediate aquifer system (IAS) is a confined aquifer system that includes all transmissive and confining units between the overlying surficial aquifer and underlying UFA (Southeastern Geological Society, 1986). In the area of ROMP 25 the IAS is comprised of transmissive and confining units of the Peace River Formation and Arcadia Formation. Thickness of the IAS is approximately 253 feet and extends from 60 feet bls to 313 feet bls at the ROMP 25 well site.

Only one permeable zone was identified in the IAS at ROMP 25. The Arcadia Formation contained a poorly transmissive zone of calcilutite with moldic and intergranular porosity features from 107 to 145 feet bls. There were no significant permeable zones identified in the

Peace River Formation. In December 1998 the potentiometric surface of the IAS permeable zone measured 19.7 feet bls (66.0 feet NGVD).

5.3 UPPER FLORIDAN AQUIFER

The Upper Floridan aquifer in the vicinity of ROMP 25 extends from approximately 305 feet bls to approximately 1,840 feet bls. During core drilling, a water level drop of approximately 40 feet was noticed after drilling below 305 feet bls. This water level change occurred in the Arcadia Formation just above the Suwannee Limestone contact (313 feet bls). The base of the Upper Floridan aquifer occurs at approximately 1,840 feet bls in the Avon Park Formation and is formed by the middle confining unit. The Upper Floridan aquifer is comprised of the lower Arcadia Formation, Suwannee Limestone, Ocala Limestone, and Avon Park Formation.

Review of the lithologic and geophysical logs collected during coring indicate the permeable zones within the lower Arcadia and Suwannee Limestone occur between 305 and 400 feet bls. Below 400 feet bls, interbedded clay and less permeable calcilutite predominate. The lower Suwannee Limestone and the Ocala Limestone act as a semi-confining unit between the permeable zones in the upper Suwannee Limestone and the underlying Avon Park Formation.

Review of lithologic and geophysical logs collected during the deep exploratory drilling in the Avon Park Formation revealed relatively permeable beds of calcarenite and dolostone for the entire thickness of the Avon Park. The top of the *highly permeable dolostone zone* of the Upper Floridan Aquifer, previously mapped by Wolansky and others (1980) occurs at 1,690 feet bls. This highly fractured, transmissive zone extends from 1,690 feet bls to 1,785 feet bls. In May 1999 the potentiometric surface of the Upper Floridan aquifer measured 82.6 feet bls (3.5 feet NGVD).

5.4 MIDDLE CONFINING UNIT

In west-central Florida the middle confining unit is a low permeability unit that separates the predominantly freshwater Upper Floridan aquifer from the Lower Floridan aquifer containing salt-water (Ryder, 1985). The middle confining unit is comprised of evaporitic sediments with

very low transmissivities. At ROMP 25, the first evaporitic minerals were described at 1,790 feet bls in the Avon Park Formation. The evaporites appeared as interbedded crystals of gypsum in a dolostone matrix. Persistent beds of evaporite minerals were noted at 1,840 feet bls. Drilling continued to a total depth of 1,911 feet bls in the middle confining unit.

6.0 GROUND-WATER QUALITY

Ground-water samples were collected at 30 feet intervals from 1,058 ft to 1,556 ft bls while exploratory drilling in the Avon Park well and from 1,524 to 1,866 feet bls while drilling in the Evaporite monitor well. The results of ground-water quality samples collected during exploratory drilling are presented in Tables 1 through 4. Figure 11 presents graphs of the water quality trends during exploratory drilling. Water quality data previously collected while core drilling from land surface to 1,048 ft bls is presented in *Volume One - Core Drilling and Testing*.

Ground-water mineralization increased little with depth while drilling the Avon Park monitor well. Specific conductance values for ground-water samples collected while drilling increased from 1,854 umhos/centimeter (cm) at 1,058 ft bls to 2,430 umhos/cm at 1,556 ft bls (Table 3). Chloride concentrations remained at approximately 16 milligrams per liter (mg/l) for the same interval. Sulfate concentrations increased from 1,191 mg/l at 1,058 ft bls to 1,633 mg/l at 1,556 ft bls.

Ground-water samples collected while constructing the Evaporite monitor well also showed a minimal increase in mineralization with depth. Specific conductance values for ground-water samples increased from 2,310 umhos/cm at 1,524 feet bls to 2,680 umhos/cm at 1,866 feet bls. Chloride concentrations remained at approximately 16 mg/l for the same interval. Sulfate concentrations increased from 1,528 mg/l at 1,524 feet bls to 1,761 mg/l at 1,866 feet bls.

The results of the ground-water sampling indicate relatively low chloride concentrations exist for the entire Upper Floridan aquifer in this part of Hardee County. The salt-water interface (1,000 mg/l chloride isochlor) was not detected during drilling from land surface to the middle confining unit at 1,911 feet bls at ROMP 25.

7.0 MONITOR WELL CONSTRUCTION

Drilling and construction of the monitor wells at ROMP 25 was completed in three phases. The permanent surficial monitor well and the temporary dual zone IAS/UFA observation well were constructed during the coring phase of the project. The permanent Avon Park/UFA monitor well and the permanent Evaporite monitor well were constructed with the District-owned SS-40 drilling rig during the exploratory phase. The permanent Arcadia/IAS monitor well, permanent Suwannee/UFA monitor well, and the temporary Avon Park/UFA observation well were constructed by Diversified Drilling Corporation during the final phase of well construction at ROMP 25. All monitor well elevations were surveyed in May 1997 by the District Survey Section.

7.1 PERMANENT SURFICIAL AQUIFER MONITOR WELL

The permanent 4-inch surficial aquifer monitor well (Figure 12) was constructed in April 1996 using the District-owned CME drill rig. The construction details are presented in the *ROMP 25 Phase One - Core Drilling and Testing Report*. The survey point for the surficial monitor well is a notched black mark on the north side of the 4-inch casing. The elevation of the notch is 88.898 feet based on National Geodetic Vertical Datum (NGVD) of 1929.

7.2 PERMANENT ARCADIA/IAS MONITOR WELL

The permanent Arcadia monitor well (Figure 13) was constructed in February 1998 by the District contractor, Diversified Drilling, Inc. A 17-inch borehole was drilled from land surface to 84 feet bls using the mud-rotary drilling method. Eighty-four feet of 12-inch schedule 40 polyvinyl chloride (PVC) casing was installed in the borehole and pressure grouted in place. An 11.5-inch borehole was then drilled from 84 feet bls to 124 feet bls using the mud-rotary method. The reverse-air method of drilling was used to drill the 11.5-inch borehole from 124 feet bls to 147 feet bls. Eight-inch schedule 40 PVC 0.020-slot well screen was installed from 146 feet bls to 105 feet bls. Eight-inch schedule 40 PVC casing was installed from 105 to two feet above land surface. Six-twenty silica sand was installed from 147 feet bls to 99 feet bls. Bentonite pellets were installed from 99 feet bls to 95 feet bls. Portland cement grout was

10

installed in the annulus from 95 feet bls to land surface using the tremie-method of grouting. A locking steel cover and cement pad was installed around the well. The survey point for the Arcadia well is a notched black mark on the northwest edge of the 8-inch PVC casing. The elevation of the notch is 87.305 feet NGVD.

7.3 PERMANENT SUWANNEE/UFA MONITOR WELL

The permanent Suwannee well (Figure 14) was constructed from January to March, 1998 by the District contractor, Diversified Drilling, Inc. A 23-inch borehole was drilled from land surface to 84 feet bls using the mud-rotary method of drilling. Eighty-four feet of 18-inch welded steel casing was installed in the borehole and pressure grouted in place. A 17-inch borehole was then drilled from 84 feet bls to 300 feet bls using the mud-rotary method. Three-hundred and two feet of 12-inch schedule 40 PVC was installed in the borehole and pressure grouted in place. An 11-inch borehole was then drilled from 300 feet bls to a total depth of 676 feet bls using the reverse-air method of drilling. This well was lined with 6-inch schedule 40 PVC from 297 feet bls to two feet above land surface in August 1999 after completion of the aquifer performance test (APT). A locking steel cover and cement pad was installed around the well. The survey point for the Suwannee well is a notched black mark on the north edge of the 12-inch PVC well casing. The elevation of the notch is 87.623 feet NGVD.

7.4 TEMPORARY AVON PARK/UFA OBSERVATION WELL

The temporary Avon Park well (Figure 15) was constructed in February and March 1998 by the District contractor, Diversified Drilling, Inc. The well was constructed on a temporary easement located approximately 500 feet west of the permanent easement. A 17.5-inch borehole was drilled from land surface to 84 feet bls using the mud-rotary method. Eighty-four feet of 12-inch PVC casing was installed into the borehole and pressure grouted to land surface. An 11.5-inch borehole was drilled from 84 feet bls to 300 feet bls using the mud-rotary method. Three hundred feet of 8-inch PVC casing was installed and pressure grouted to land surface. A 7.625-inch borehole was drilled from 300 feet bls to 855 feet bls using the mud-rotary method. The reverse-air method of drilling was used for drilling the 7.625-inch borehole from 855 feet bls to 960 feet bls. A 5.625-inch borehole was drilled from 960 feet bls to 1,568 feet

bls using the reverse-air method. Nine-hundred and seventy-five feet of 2-inch PVC casing was installed and tremie grouted to land surface. Shale packers were attached to the PVC casing at 970 and 971 feet bls. Bentonite pellets were installed from 970 feet bls to 960 feet bls prior to tremie grouting. This well will be grouted to land surface and abandoned following the Avon Park APT.

7.5 PERMANENT AVON PARK/UFA MONITOR WELL

Well construction for the permanent Avon Park well (Figure 5) is described in Section 3.1.1. A cement pad and locking steel cover was installed around the well. The survey point for the Avon Park well is a notched black mark on the north edge of the 18-inch steel casing. The elevation of the notch is 86.804 feet NGVD. This well is scheduled to be lined with 6-inch PVC and tremie grouted from 960 feet bls to land surface in 2000. Figure 16 present a diagram of the permanent Avon Park well with the PVC liner installed.

7.6 PERMANENT EVAPORITE MONITOR WELL

Well construction for the permanent Evaporite well is described in Section 3.1.2. The survey point for the Evaporite well is a notched black mark on the north edge of the 6-inch PVC casing. The elevation of the notch is 88.482 feet NGVD. Figure 17 presents the as-built diagram for the permanent Evaporite well.

8.0 SUMMARY

The deep exploratory drilling and monitor well construction at ROMP 25 began in August 1996 and was completed in March 1998. Previous core drilling to a depth of 1,048 feet bls was performed from December 1995 to May 1996. Deep exploratory drilling and testing below 1,048 was performed to define the stratigraphy and hydrology of the Floridan aquifer. Drilling to a total depth of 1,911 feet bls was performed to determine the top of the middle Floridan confining unit. Drill cuttings were collected and archived for lithologic description. Groundwater samples were collected at approximately 30 ft intervals for water quality profiling with depth.

The results of the ground-water sampling and geophysical logging performed during exploratory drilling indicate the highly permeable zone of the Upper Floridan zone occurs from 1,690 ft bls to 1,785 ft bls. The salt-water interface was not encountered during drilling to 1,911 feet bls. Chloride concentrations did not exceed 19 mg/l. Specific conductance of the ground-water at 1,866 was 2,680 umhos/cm.

Permanent monitor wells were constructed to monitor the surficial, intermediate, and Floridan aquifers. A 4-inch surficial monitor well, an 8-inch intermediate aquifer monitor well, a 6-inch Suwannee/UFA monitor well, a 6-inch Avon Park/UFA monitor well, and a 6-inch Evaporite/middle confining unit monitor well are located on the permanent easement.

9.0 REFERENCES

Gates, M. T., 1998, ROMP 25 Lily Monitor Well Site, Hardee County, Florida, Phase One, Core Drilling and Testing: Southwest Florida Water Management District.

Ryder, P.D., 1985, *Hydrology of the Floridan Aquifer System in West-Central Florida*: United States Geological Survey Professional Paper 1403-F.

Southeastern Geological Society Ad Hoc Committee on Florida Hydrostratigraphic Unit Definition, 1986, *Florida Hydrogeologic Units*: Florida Geological Survey Special Publication No. 28.

Scott, T.M., 1988, *The Lithostratigraphy of the Hawthorn Group (Miocene) of Florida*: Florida Geological Survey Bulletin No. 59.

White, W.A., 1970, *Geomorphology of the Florida Peninsula*: Florida Bureau of Geology, Geological Bulletin No. 51.

Wolansky, R.M., et. al., 1980, Configuration of the Top of the Highly Permeable Dolomite Zone of the Floridan Aquifer, Southwest Florida Water Management District: United States
Geological Survey Water Resource Investigations 80-443, 1 sheet.

TABLES

Table 1. Field Analyses of ROMP 25 Groundwater Samples Collected During Exploratory Drilling (12" Steel casing 0-960' bis Avon Park well)¹

Date (D/M/Y)	Time	Sample Depth (ft bls)	Specific Cond. (umohs)	Water Temp (celcius)	Water Density (g/cm ³⁾	CL	SO4	рН	Sample Collection Method	Split to Lab ?
		,	(,	(,						
		1	r · · · · · · · · · · · · · · · · · · ·		T	I			I a	
26-Sep-1996	1230	1058	1860	30.1	NA	NA NA	NA NA	7.62	Discharge	Y
30-Sep-1996	1430	1090	1928	30.4	NA	NA	NA .	6.88	Discharge	Y
30-Sep-1996	1630	1120	1810	30.2	NA NA	NA	NA	9.01	Discharge	Y
30-Sep-1996	1700	1120	2120	29.4	NA	NA	NA.	8.60	Bailer	Y
30-Sep-1996	1855	1151	1880	30.5	NA	NA	NA	9.86	Discharge	Υ
1-Oct-1996	800	1151	2880	29.0	NA .	NA	NA	11.20	Bailer	Υ
1-Oct-1996	1045	1182	1940	30.0	NA	NA	NA	8.90	Bailer	Y
1-Oct-1996	1420	1213	1891	29.1	NA	NA	NA	9.96	Bailer	Υ
1-Oct-1996	1750	1244	1937	30.8	NA	NA	NA	7.65	Bailer	Υ
2-Oct-1996	1510	1307	2060	30.9	NA	NA	NA	8.39	Bailer	Y
2-Oct-1996	1710	1339	2220	31.3	NA	NA	NA	7.96	Discharge	Υ
2-Oct-1996	725	1370	2200	31.2	NA	NA	NA	7.93	Discharge	Y
3-Oct-1996	1010	1401	2280	31.3	NA	NA	NA	7.71	Discharge	Υ
3-Oct-1996	1230	1431	2260	31.6	NA	NA	NA	7.60	Discharge	Υ
8-Oct-1996	1500	1464	2520	31.4	NA.	NA	NA	7.48	Discharge	Υ
9-Oct-1996	800	1494	2300	29.5	NA	NA	NA	7.13	Bailer	Υ
9-Oct-1996	1000	1525	2440	31.2	NA	NA	NA	7.50	Discharge	Υ
9-Oct-1996	1305	1556	2460	31.4	NA	NA	NA	7.49	Discharge	Υ

¹ All concentrations reported in mg/l unless otherwise noted

NA - Not Analyzed

Table 2. Field Analyses of ROMP 25 Groundwater Samples Collected During Exploratory Drilling (12" Steel casing 0-870' bls Evaporite Well)¹

Date	Time	Sample	Specific	Water	Water				Sample	Split
(D/M/Y)		Depth	Cond.	Temp	Density	CL	SO4	pН	Collection	to
` '		(ft bis)	(umohs)	(celcius)	(g/cm3)				Method	Lab ?
									·	
12-Dec-1996	900	1524	NA	NA	NA_	NA	NA_	NA NA	Discharge	Y
12-Dec-1996	1230	1555	NA	NA	NA NA	NΑ	NA	NA	Discharge	Y
12-Dec-1996	1510	1587	NA	NA	NA	NA	NA	NA	Discharge	Y
16-Dec-1996	1500	1581	2580	28.5	NA	NA	NA	7.71	Bailer	Y
16-Dec-1996	1830	1618	2680	30.4	NA	NA	NA	7.52	Bailer	Υ
17-Dec-1996	1210	1650	2730	30.7	NA	NA	NA	7.32	Bailer	Y
19-Dec-1996	830	1681	2710	27.8	NA	NA	NA	7.35	Bailer	Υ
8-Jan-1997	1450	1712	2720	28.6	NA	NA	NA	7.36	Bailer	Υ
9-Jan-1997	815	1743	2740	29.0	NA	NA	NA	7.34	Bailer	Υ
14-Jan-1997	830	1772	2710	26.2	NA	NA	NA	7.37	Bailer	Y
15-Jan-1997	1410	1806	2720	30.6	NA	NA	NA	7.26	Bailer	Y
16-Jan-1997	800	1837	2710	29.4	NA	NA	NA	7.21	Bailer	Υ
16-Jan-1997	1100	1866	2620	32.0	NA NA	NA.	NA	7.47	Discharge	Y
16-Jan-1997	1330	1866	2720	30.9	NA NA	NA	NA	7.19	Bailer	Υ
27-Jan-1997	1850	1654-1866	2690	30.1	NA.	NA NA	NA	7.53	Packer Test	Y

¹ All concentrations reported in mg/l unless otherwise noted

r25\explwq.wb3

NA - Not Analyzed

Table 3 Laboratory Analyses of Ground-water Samples Collected During Exploratory Drilling in Avon Park well (12" Steel Casing 0-960' bls)1

			_		γ-	_	,				_	г	_		_	_	_	_	_	_	
Collection	Discharge	Discharge	Discharge	Bailer	Discharge	Boiler	Daller	Batter	Bailer	Bailer	Bailer	Discharge	Discharge	Discharge	Discharge	Discharge	Bailer	Discharge	A SIE IN COLUMN	Discharge	
% NOI	-7.33	-7.73	5.97	4 68	1.5	650	70.8-	4.0	-5.71	-2.82	2.54	2.41	2.88	-1.2	-0.61	-7.12	-4 45	4 54		-3.23	
Hardness (CaCO3)	1143	1170	1070	1322	1128	2000	/67	1194	1126	1199	1271	1402	1406	1436	1453	1698	1513	1626	200	1667	
Fe (ug/l)	26	15	18	5	= =	- 6	77	15	56	33	61	8	30	23	30	7.1	204	2	2	47	
ŵ	1.	9	σ	· =	- 4	ď	3	9	9	10	5	: =	=	Ē	ç	G	5	2 5	2	9	
es Z	14	17	. 4	2 4	2 9	2	16	14	17	5	1		5 5	2 4	5	5 5	2 ;	₫ !	13	13	
¥	4	u	9 4	,	0	+	7	9	8	,	, 4			-		,	1	4	3	ო	
as as (CaCO3)	133	32,	5 5	1 2 5	77	13	30	18	14	125	2 2	2 5	2 6	2 8	3 5	3 8	3 ;	51	107	109	
Ø	440	2 :	2 4	2	124	32	0	102	=	110	2 5	16,	2 8	3 5	3 ;	4 6	2	114	112	110	
e Ö	200	207	27.9	313	325	388	519	310	433	2 8	ROY	8	390	eg s	410	394	510	418	470	486	2
SOT	0300	7697	1827	1681	2023	1745	2122	1803	4005	2001	1835	1965	2149	2143	2196	2156	2571	2309	2419	2062	2002
ä		0.0	0.0	0.0	0.0	0.0	0.0	c		3	0.0	0.0	0.0	00	0.0	0.0	0.0	0.0	0.0	3	7
Hd		8.1	8.1	9.7	9.6	10.3	11.8	0 3	3	10.3	7.7	8.0	7.9	7.9	7.7	7.9	7.7	7.3	7.7	1,1	\ \ \ \
SO4		1191	1247	924	1146	1059	1259	1274	177	1228	1125	1166	1242	1233	1363	1343	1804	1571	16.47		1633
ರ		16	16	12	13	15	19	2 4	2	15	16	4	13	13	14	14	18	18	ä	2	9
Water Density		1,0018	1.0018	1.0014	1.0017	1 0016	1 0021	1700	1.0018	1.0018	1.0017	1.0017	1.0019	1.0019	1.0020	1.0020	1.0026	1.0022	7000		1.0024
Specific Cond. (umohs)		1854	1927	1809	2050	1886	200	7340	1939	1920	1937	2020	2190	2200	2310	2240	2460	2280	907.0	2400	2430
Depth (ft bis)		1058	1090	1120	1120	1151	5 3	1611	1182	1213	1244	1307	1339	1370	1401	1431	1464	1404		czcl	1556
Time		1230	1430	1630	1700	1055	200	800	1045	1420	1750	1510	1710	725	1010	1230	1500	000	3	1000	1305
Date (M/D/Y)		26-Sep-1996	30-Sep-1996	30-Sep-1996	30-Sep-1996	900 000	30-Sep-1990	1-Oct-1996	1-Oct-1996	1-Oct-1996	1-Oct-1996	2-Oct-1996	2-Oct-1996	2-Oct-1996	3-Oct-1996	3-Oct-1996	9 Ort 1006	900	-CC-1330	9-Oct-1996	1008

9-Oct-1996 1305 1556 2430 13 All concentrations reported in mg/l unless otherwise noted NA - Not Analyzed

Table 4 Laboratory Analyses of Ground-water Samples Collected During Exploratory Drilling In Evaporite well (12" Steel Casing 0-870' bls)¹

Liscate Lisc	1554 2310 10022 16 1528 75 0.0 2289 469 97 69 4 14 10 61 1570 2.02 1.56 1.56 1.56 1.57 1.56 1.56 1.57 1.56 1.56 1.57 1.56 1.56 1.57 1.56	1,7	Time	Depth (ft bis)	Specific Cond.	Water Density	ರ	SO4	£	ě	TDS	S	Mg	Bicarb as	¥	Na	ισ	Fe (ug/l)	Total Hardness (CaCO3)	% V Q	Sample Collection Method
2310 10022 16 1528 469 97 699 4 14 10 611 1570 -2.02 2320 10022 16 1479 73 1.0 2122 479 77 45 4 13 9 31 1513 -159 -158 2320 1.0021 15 1460 7.8 0.0 2321 481 96 67 3 15 10 25 1689 -168 3 14 7 1641 1521 -168 -168 3 14 7 1699 -168 -168 3 14 7 1699 -168 -168 3 14 7 1699 -168 -168 3 14 7 1699 -168 -168 -168 3 14 7 1699 -168 -168 -168 3 14 7 1699 -168 -168 -168 -168 -168 -168 <t< th=""><th>0222 16 1528 75 0.0 2299 469 97 69 4 14 10 61 1570 -2.02 0221 1459 77 45 4 13 9 31 1513 -1.59 0222 15 10 2172 479 77 45 9 67 3 15 10 25 169 -1.69<th></th><th></th><th></th><th>(птоня)</th><th></th><th>-</th><th></th><th></th><th></th><th></th><th></th><th></th><th>(cacca)</th><th></th><th>[</th><th></th><th></th><th>•</th><th></th><th></th></th></t<>	0222 16 1528 75 0.0 2299 469 97 69 4 14 10 61 1570 -2.02 0221 1459 77 45 4 13 9 31 1513 -1.59 0222 15 10 2172 479 77 45 9 67 3 15 10 25 169 -1.69 <th></th> <th></th> <th></th> <th>(птоня)</th> <th></th> <th>-</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>(cacca)</th> <th></th> <th>[</th> <th></th> <th></th> <th>•</th> <th></th> <th></th>				(птоня)		-							(cacca)		[•		
2310 1,0022 16 1528 7.5 0.0 2299 469 97 69 4 14 15 97 15 16 16 25 16 16 25 16 16 25 16 16 25 16 16 25 16 16 25 16 16 25 16	002 15 75 0.0 2299 469 97 69 4 11 9 11 9 11 9 11 15 17 15 17 15 17 15 17 15 17 15 17 15 17 15 17 15 17 15 16 15 16 15 16 15 16 25 16 16 25 16 16 25 16 16 25 16 16 25 16 16 25 16 16 25 16 16 25 16 16 25 16 16 25 16 26 16 25 16 25 16 25 16 25 16 25 16 25 16 25 16 25 16 25 16 25 16 25 16 25 16 25 16 25 16 25		4													;	ç	14	1570	-2.02	Discharge
2520 10021 15 1479 75 10 2172 479 77 45 4 13 9 51 150 151 151 151 151 151 151 151 151 151 151 151 152 158 151 152 152 158 152 158 152 152 152 152 152 152 152 152 158 152 152 152 158 152	15 1479 79 10 2172 479 77 45 4 13 9 51 10 216 109 -1.68 2021 15 150 76 0.0 2221 451 99 67 3 15 10 226 10 264 451 99 66 3 15 10 226 160 -16 173 10 226 465 95 120 3 14 7 1441 1521 -269 91 91 12 1 10 226 160 -269 485 95 120 2 13 10 226 160 -269 90 118 2 13 10 223 161 12 9 1223 1613 9 1223 1613 9 1223 1618 180 9 1223 161 161 161 162 9 161 162 161 162	ş	Н	1524	2310	1.0022	16	1528	7.5	0.0	2299	469	/6	Ĝ	4	:	2 0	2	4542	1 50	Discharge
2330 10023 15 1560 76 0.0 2321 481 96 67 3 15 10 25 1603 -1080 <td>0023 15 1560 76 0.0 232.1 481 99 67 3 15 10 25 160 JH - 108 JH</td> <td></td> <td>٠</td> <td>4566</td> <td>0666</td> <td>1 0021</td> <td>15</td> <td>1479</td> <td>7.9</td> <td>0.1</td> <td>2172</td> <td>479</td> <td>11</td> <td>45</td> <td>4</td> <td>2</td> <td>'n</td> <td>2</td> <td>200</td> <td>8</td> <td>Ji-ti-ig</td>	0023 15 1560 76 0.0 232.1 481 99 67 3 15 10 25 160 JH - 108 JH		٠	4566	0666	1 0021	15	1479	7.9	0.1	2172	479	11	45	4	2	'n	2	200	8	Ji-ti-ig
2550 10024 15 120 15 <	0.024 1.5 </td <td>730</td> <td>+</td> <td>1999</td> <td>7777</td> <td>300</td> <td></td> <td>1560</td> <td>47</td> <td>00</td> <td>2321</td> <td>481</td> <td>8</td> <td>29</td> <td>3</td> <td>15</td> <td>9</td> <td>25</td> <td>1609</td> <td>-1.00</td> <td>Oscilarge</td>	730	+	1999	7777	300		1560	47	00	2321	481	8	29	3	15	9	25	1609	-1.00	Oscilarge
1561 2550 1 0024 15 1.53 1.73 1.73 1.73 1.73 1.73 1.73 1.73 1.73 1.73 1.73 1.73 1.73 1.75 1.75 0.0 2702 485 95 120 1 1 2 1 3 1 2 1 3 1 2 1 3 1 2 1 3 1 3 1 3 1 3 1 3 1 3 <th< td=""><td>0024 15 7.3 0.0 270.1 46.5 95 120 3 13 10 226 1602 9.18 0025 16 1760 7.5 0.0 2702 483 93 122 2 13 9 1223 1613 9.42 0026 15 1781 7.3 0.0 2732 495 90 119 2 13 9 1223 1613 9 1423 9 143 9 1423 1413 9 1423 9 143 9 1423 9 143 143 <t< td=""><td>탏</td><td>+</td><td>1587</td><td>2330</td><td>1.0023</td><td>2</td><td>3</td><td>7.0</td><td>6</td><td>2541</td><td>451</td><td>8</td><td>98</td><td>3</td><td>4</td><td>7</td><td>1641</td><td>1521</td><td>-9.89</td><td>Bailer</td></t<></td></th<>	0024 15 7.3 0.0 270.1 46.5 95 120 3 13 10 226 1602 9.18 0025 16 1760 7.5 0.0 2702 483 93 122 2 13 9 1223 1613 9.42 0026 15 1781 7.3 0.0 2732 495 90 119 2 13 9 1223 1613 9 1423 9 143 9 1423 1413 9 1423 9 143 9 1423 9 143 143 <t< td=""><td>탏</td><td>+</td><td>1587</td><td>2330</td><td>1.0023</td><td>2</td><td>3</td><td>7.0</td><td>6</td><td>2541</td><td>451</td><td>8</td><td>98</td><td>3</td><td>4</td><td>7</td><td>1641</td><td>1521</td><td>-9.89</td><td>Bailer</td></t<>	탏	+	1587	2330	1.0023	2	3	7.0	6	2541	451	8	98	3	4	7	1641	1521	-9.89	Bailer
4618 2660 1,0025 16 1760 7.5 0.0 2702 495 93 122 2 13 9 1223 1613 9.42 1650 2680 1,0026 15 1783 7.3 0.0 2792 495 90 119 2 13 9 2433 1606 -869 1651 2680 1,0026 15 178 7.3 0.0 2734 601 91 122 3 13 9 1618 1880 -0.87 1712 2600 1,0026 16 1736 7.3 0.0 2774 602 91 115 3 12 8 2342 1880 -0.0 1772 2600 1,0026 14 1756 7.1 0.0 2764 588 92 123 13 8 2342 1899 -1.67 1772 2630 1,0027 1,0027 1,002 1,002 1,002 <td>0026 16 1760 7.5 0.0 2712 493 93 122 2 13 9 1233 1613 9 1243 9 1243 1606 949 0026 15 1783 7.3 0.0 2734 495 90 119 2 13 9 1816 1606 -969 0026 15 1791 7.3 0.0 2734 601 91 115 3 12 8 243 1860 -0.87 0026 16 1736 7.3 0.0 2774 602 91 115 3 12 8 2342 1880 -0.72 0026 14 1755 7.1 0.0 2767 586 93 123 2 13 8 1473 189 -167 0027 14 1753 7.2 0.0 2767 586 93 123 3 13 8 655<td>1500</td><td>\dashv</td><td>1581</td><td>2550</td><td>1.0024</td><td>2</td><td>1/33</td><td>3</td><td>3</td><td>2700</td><td>485</td><td>8</td><td>120</td><td>3</td><td>13</td><td>10</td><td>226</td><td>1602</td><td>-9.18</td><td>Bailer</td></td>	0026 16 1760 7.5 0.0 2712 493 93 122 2 13 9 1233 1613 9 1243 9 1243 1606 949 0026 15 1783 7.3 0.0 2734 495 90 119 2 13 9 1816 1606 -969 0026 15 1791 7.3 0.0 2734 601 91 115 3 12 8 243 1860 -0.87 0026 16 1736 7.3 0.0 2774 602 91 115 3 12 8 2342 1880 -0.72 0026 14 1755 7.1 0.0 2767 586 93 123 2 13 8 1473 189 -167 0027 14 1753 7.2 0.0 2767 586 93 123 3 13 8 655 <td>1500</td> <td>\dashv</td> <td>1581</td> <td>2550</td> <td>1.0024</td> <td>2</td> <td>1/33</td> <td>3</td> <td>3</td> <td>2700</td> <td>485</td> <td>8</td> <td>120</td> <td>3</td> <td>13</td> <td>10</td> <td>226</td> <td>1602</td> <td>-9.18</td> <td>Bailer</td>	1500	\dashv	1581	2550	1.0024	2	1/33	3	3	2700	485	8	120	3	13	10	226	1602	-9.18	Bailer
1650 2680 1,0026 15 1783 7,3 0,0 2493 90 192 2 13 9 2433 1606 -969 1651 2670 1,0026 15 1791 7,3 0.0 2690 495 90 119 2 13 9 2432 1606 -967 1772 2600 1,0026 16 173 0.0 2734 601 91 115 3 12 2 13 8 1473 1880 -0.72 1773 2800 1,0026 14 1756 7,1 0.0 2749 588 92 123 3 13 8 1473 189 -1.67 1806 2276 1,0026 14 1755 7,1 0.0 2749 588 92 123 3 13 8 2242 189 -1.67 1806 2276 1,0027 14 1753 7,2	0026 15 1783 7.3 0.0 2.432 455 90 172 2 13 9 2433 1606 -969 -969 0026 15 1791 7.3 0.0 2690 495 90 119 2 13 9 1816 1800 -087 0026 16 1736 7.3 0.0 2702 602 91 115 3 12 8 2342 1886 -0.72 0026 15 1740 7.3 0.0 2702 602 91 115 3 12 8 2342 1886 -0.72 0026 14 1756 7.1 0.0 2702 662 93 123 2 13 8 1473 1847 -2.06 0027 14 1756 7.2 0.0 2767 586 93 123 3 13 8 65 189 -1.20 0	1830		1618	2660	1.0025	9	1760	6	200	2012	3 5	8	122		13	6	1223	1613	-9.42	Bailer
1681 2670 1,0026 15 1791 7.3 0.0 2890 495 90 119 2 10 119 2 10 119 2 10 119 2 10 10 10 10 10 10 2734 601 91 115 3 12 8 124 12 3 12 8 124 12 3 12 8 124 12 3 12 8 124 12 8 124 12 8 124 12 8 124 12 3 12 8 1473 1847 -2.06 1772 2670 1,0026 14 175 7 0 2749 586 93 123 2 13 8 1473 1847 -1.56 1806 2276 14 175 72 0 2729 586 93 123 3 13 8 65 189	0026 15 1781 7.3 0.0 2690 455 90 119 2 1.0 2 1816 1880 -0.87 0026 16 1786 7.3 0.0 2724 601 91 112 3 12 8 2342 1886 -0.72 0026 14 1786 7.3 0.0 2702 602 91 115 3 12 8 1473 1847 -2.06 0026 14 1786 7.2 0.0 2749 588 92 123 2 13 8 1473 1847 -2.06 0027 14 1763 7.2 0.0 2767 586 93 123 2 13 8 1276 189 -1.20 0027 14 1776 7.2 0.0 2826 604 95 123 3 12 8 656 120 120 002 27	1210	Г	1650	2680	1.0026	15	1783	7.3	0.0	2/32	483	3 8	155		2	σ	2433	1606	-9.69	Bailer
1712 2600 1,0026 16 1736 73 0.0 2734 601 91 122 3 1.5 9 252 1886 -0.72 1742 2670 1,0026 15 1740 73 0.0 2702 602 91 115 3 13 8 1473 1847 -2.06 1772 2630 1,0026 14 1755 71 0.0 2767 586 93 123 3 13 8 1473 1847 -2.06 1806 2276 1,0027 14 1763 72 0.0 2767 586 93 123 3 13 8 1473 1899 -1.67 1806 2276 1,0027 14 1763 72 0.0 2767 586 93 123 3 13 8 655 1899 -1.67 1886 2650 1,0026 1,0026 1,00 2779	0026 16 1736 7.3 0.0 2734 601 3734 601 3734 601 3734 601 602 602 91 145 3 12 8 2342 1886 -0.72 0026 15 1740 7.3 0.0 2742 586 93 123 3 13 8 1473 1847 -2.06 0027 14 1755 7.2 0.0 2767 586 93 123 3 13 8 2276 1899 -1.67 0027 14 1766 7.2 0.0 2767 586 93 123 3 13 8 2276 1899 -1.67 0027 14 1766 7.2 0.0 2826 604 95 123 3 12 8 579 1894 -1.88 0026 175 7.2 0.0 2774 586 94 125 3	83	Τ	1691	2670	1.0026	15	1791	7.3	0.0	2690	684	3	8	1	5	0	1818	1880	-0.87	Bailer
1742 2670 1,0026 15 174 73 0.0 2702 602 91 115 3 12 0 2532 100 2532 100 2532 100 2532 100 2532 100 2532 100 2532 100 2502 100 2502 100 2502 100 2502 100 2502 100 2502 100 2502 100 2502 100 2502 100 2502 100 2502 100 2502 100 2502 100 2502 100 2502 2502 2502 2502 100 2502	0026 15 1740 7.3 0.0 2702 602 91 115 3 12 0 2542 100 2749 588 92 123 3 12 0 127 2.06 0027 14 1763 72 0.0 2767 93 123 3 13 8 2276 1889 -1.67 0027 14 1776 72 0.0 2767 93 123 3 13 8 2505 1899 -1.67 0026 14 1776 7.3 0.0 2729 583 93 128 3 12 8 65 1864 -1.86 0026 1.4 1766 7.3 0.0 2729 583 94 125 3 14 9 579 1875 -1.58 0027 1.7 0.0 2774 586 94 125 3 14 9 579 1875	5	T	1712	2600	1.0026	16	1736	7.3	0.0	2734	901	91	722	,	2 5	9	250	1886	-0.70	Railer
1772 2630 1,0026 14 1755 7.1 0.0 2749 588 92 123 3 13 8 14/3 190 7.5 1.007 1.002 <td>0026 14 1755 7.1 0.0 2749 588 92 123 3 13 8 14/3 1547 -2.00 0027 14 1763 72 0.0 2767 566 93 123 2 13 8 2276 1899 -1.20 0027 14 1776 7.2 0.0 2729 563 93 126 3 12 8 65 1864 -1.86 0027 14 1756 7.3 0.0 2774 596 94 125 3 14 9 579 1675 -1.58 0027 15 0.0 2774 596 94 125 3 14 9 579 1675 7.57 0023 19 1412 7.9 0.0 2776 579 92 123 3 13 8 161 1825 757</td> <td>3 4</td> <td>†</td> <td>17.43</td> <td>2870</td> <td>1 0026</td> <td>15</td> <td>1740</td> <td>7.3</td> <td>0.0</td> <td>2702</td> <td>602</td> <td>91</td> <td>115</td> <td>8</td> <td>12</td> <td>20</td> <td>2967</td> <td>1000</td> <td>200</td> <td>Pallor</td>	0026 14 1755 7.1 0.0 2749 588 92 123 3 13 8 14/3 1547 -2.00 0027 14 1763 72 0.0 2767 566 93 123 2 13 8 2276 1899 -1.20 0027 14 1776 7.2 0.0 2729 563 93 126 3 12 8 65 1864 -1.86 0027 14 1756 7.3 0.0 2774 596 94 125 3 14 9 579 1675 -1.58 0027 15 0.0 2774 596 94 125 3 14 9 579 1675 7.57 0023 19 1412 7.9 0.0 2776 579 92 123 3 13 8 161 1825 757	3 4	†	17.43	2870	1 0026	15	1740	7.3	0.0	2702	602	91	115	8	12	20	2967	1000	200	Pallor
1772 2500 1,0027 14 1768 72 0.0 2767 595 93 123 2 13 8 2276 1899 -1.67 1806 2276 10027 14 1776 7.2 0.0 2826 604 95 123 3 13 8 2505 1899 -1.50 1807 2700 10027 14 1776 7.3 0.0 2729 593 94 125 3 14 9 579 1854 -1.58 1866 2860 1,0027 15 1761 7.2 0.0 2774 596 94 125 3 14 9 579 1875 -1.58 1866 2860 1,0027 15 1761 7.2 0.0 2774 596 94 125 3 14 9 579 158 7.57 1864 280 1,0027 15 1712 8 161	0027 14 1753 72 0.0 2767 566 93 123 2 13 8 2276 1859 -1.20 0027 14 1776 7.2 0.0 2826 604 95 123 3 12 8 2505 1899 -1.20 0026 14 1776 7.3 0.0 2729 583 93 126 3 12 8 65 1684 -1.86 0027 15 7.2 0.0 2774 596 94 125 3 14 9 579 1875 -1.58 0027 15 176 3 12 3 14 9 579 1875 -1.58 0027 15 10 2726 579 92 123 3 13 8 161 1825 7.57		†	2	0.02	9000	14	1755	7.1	0.0	2749	588	85	123	3	13	8	1473	/881	8.7.	Daller
1806 2276 1,002/1 14 175 7.2 0.0 2826 604 95 123 3 13 8 2505 1899 -120 1837 2700 1,0027 14 1756 7.3 0.0 2729 583 93 126 3 12 8 65 1864 -1.88 1866 2850 1,0026 14 1756 7.3 0.0 2774 596 94 125 3 14 9 579 1875 -1.58 1866 2860 1,0027 15 1761 7.2 0.0 2774 596 94 125 3 14 9 579 1875 -1.58 1864 1027 15 16 0.0 2776 596 94 125 3 14 9 579 175 757 1864 1027 1022 14 102 102 14 14 9	0027 14 1756 7.2 0.0 2826 604 95 123 3 13 8 2505 1899 -1.20 0027 14 1756 7.3 0.0 2729 583 93 126 3 12 8 65 1864 -1.86 0026 14 1756 7.3 0.0 2774 586 94 125 3 14 9 579 1875 -1.58 0027 15 1761 7.9 0.0 2726 579 92 123 3 13 8 161 1825 7.57 0023 19 1412 7.9 0.0 2726 579 92 123 3 13 8 161 1825 7.57	2	†	7///	2027	200.1	:	1769	2,2	00	2767	595	66	123	2	13	80	2276	1869	-1.6/	Daller
1837 2700 10027 14 1776 7.2 0.0 2726 593 93 126 3 12 8 65 1864 -186 1866 2850 1,0027 14 1756 7,3 0,0 2774 596 94 125 3 14 9 579 1875 -1.58 1866 2860 1,0027 15 172 0.0 2774 596 94 125 3 14 9 579 1875 -1.58 1866 2860 1,0027 15 175 7.9 0.0 2776 579 92 123 3 16 1825 757 1867 2860 1,0027 19 0.0 2726 579 92 123 3 13 8 161 1825 757	0027 14 176 7.2 0.0 2520 0.7 156 3 12 8 65 1864 -1.88 0026 14 1756 7.3 0.0 2729 583 94 125 3 14 9 579 1875 -1.58 0027 15 1761 7.2 0.0 2774 596 94 125 3 14 9 579 1825 757 0027 19 0.0 2726 579 92 123 3 13 8 161 1825 757 0023 19 1412 7.9 0.0 2726 579 92 123 3 13 8 161 1825 757	1410	1	1806	2276	1.002/	4	3			9000	808	ş	123	3	13	œ	2505	1899	-1.20	Bailer
1866 2650 1,0026 14 1756 7,3 0,0 2/729 593 93 125 3 14 9 579 1875 -158 1866 2880 1,0027 15 1761 7,2 0,0 2774 596 94 125 3 14 9 579 1875 757 1864 2880 1,0027 15 7,9 0,0 2726 579 92 123 3 13 8 161 1825 757 1864 1,0023 19 1412 7,9 0,0 2726 579 92 123 3 13 8 161 1825 757	0026 14 1756 7.3 0.0 2/79 583 39 125 3 14 9 579 1875 -1.58 0027 15 1761 7.2 0.0 2/74 596 94 125 3 13 8 161 1826 7.57 0023 19 1412 7.9 0.0 2/726 579 92 123 3 13 8 161 1826 7.57 0023 19 1412 7.9 0.0 2/726 579 92 123 3 13 8 161 1826 7.57	8		1837	2700	1.0027	4	1776	7		7070	5 5	3 8	90,7		2	60	65	1864	-1.88	Discharge
1866 2680 1,0027 15 1761 72 0.0 2774 596 94 125 3 14 5 077 157 157 157 16 10023 19 1412 7.9 0.0 2726 579 92 123 3 13 8 161 1825 7.57	0027 15 1761 7.2 0.0 2774 596 94 125 3 14 3 161 1825 7.57 0023 19 1412 7.9 0.0 2726 579 92 123 3 13 8 161 1825 7.57 nnmp231nabusanipmg.meg.meg. 1412 7.9 0.0 2726 579 92 123 3 13 8 161 1825 7.57	Ę		1866	2650	1.0026	14	1756	7.3	0.0	57.28	280	3	071	,	1	9	67.0	1875	-1.58	Bailer
145.4.1945 7660 1,0023 19 1412 7,9 0.0 2726 579 92 123 3 13 8 101 1023 7.0	0023 19 1412 7.9 0.0 2726 579 92 123 3 13 8 10 023 7.31 on pp23table=Bushwigher w62		T	1866	2680	1 0027	15	1921	7.2	0.0	2774	286	8	125	9	4	D C	670	10,0	7.57	Dacker
		3 5	1	1854 1866	L	1 0023	19	1412	6.7	0.0	2726	579	95	123	3	13	χ.	101	1020	10.	200

FIGURES

ROMP 25 LILY FIGURE 3.

Well Site Location Map

r25fig3 map.apr

FIGURE 9. ROMP25 LILY

Geophysical Logs Run During Exploratory Drilling ROMP 25 Elevation 85 feet NGVD

FIGURE 10. ROMP 25 LILY

Diagram of Site Hydrogeology

R25hyd.wpg

coring phase)

R25 Exploratory Drilling Water Quality Avon Park Well

3000 2500 2000 1500 1000 500 1058 1120 1151 1182 1244 1339 1401 1464 1525 Depth (feet)

R25 Exploratory Drilling Water Quality Evaporite Well

FIGURE 11. ROMP 25 LILY

Graph of Water Quality During Exploratory Drilling

avobasb.wpg 3-30-98

APPENDIX A ROMP 25 LITHOLOGIC LOG

LITHOLOGIC WELL LOG PRINTOUT

SOURCE - FGS

WELL NUMBER: W-17608 TOTAL DEPTH: 1911 FT.

COUNTY -HARDEE LOCATION: T.36S R.23E S.09 NE

SAMPLES - NONE

LAT = 27D 21M 59SLON = 82D OOM 26S

COMPLETION DATE: 06/19/97

ELEVATION: 85 FT

OTHER TYPES OF LOGS AVAILABLE - CALIPER, ELECTRIC, FLUID COND., GAMMA

OWNER/DRILLER: SWFWMD ROMP 25 DRILLED BY TIM LOHNER AND GEORGE DEGROOT

WORKED BY: DOUG RAPPUHN AND TED GATES (SWFWMD GEOLOGIST'S); WIRE LINE ROTARY CORING FROM 0 FT. TO 1048 FT. BLS - COREHOLE #1 AVON PARK WELL EXPLORATORY CUTTINGS FROM 1048 FT. TO 1556 FT. BLS EVAPORITE WELL EXPLORATORY CUTTINGS FROM 1556 FT. TO 1911 FT. BLS CUTTINGS NOT DESCRIBED BETWEEN 1765 - 1911 FT. FGS GEOLOGISTS REPORT THAT TOP OF OCALA MAY BE AS DEEP AS 693 FT. BLS

0.0 -45.0 090UDSC UNDIFFERENTIATED SAND AND CLAY

45.0 - 107.0 122PCRV 107.0 - 313.0 122ARCA PEACE RIVER FM.

ARCADIA FM.

SUWANNEE LIMESTONE

313.0 - 675.0 123SWNN 675.0 - 976.0 1240CAL OCALA GROUP

976.0 - 1911.0 124AVPK AVON PARK FM.

- 0 -0.6 SAND AND SHELL DRILLPAD.
- 0.6-1.6 SAND; GRAYISH BROWN TO DARK YELLOWISH BROWN 35% POROSITY: INTERGRANULAR GRAIN SIZE: MEDIUM; RANGE: VERY FINE TO MEDIUM ROUNDNESS: SUB-ANGULAR TO SUB-ROUNDED; HIGH SPHERICITY UNCONSOLIDATED ACCESSORY MINERALS: ORGANICS-08%, IRON STAIN-02% OTHER FEATURES: VARIEGATED CONTAINS ROOTLETS AND ORGANICS. VARIABLY IRON-STAINED.
- 1.6-SAND; WHITE TO VERY LIGHT ORANGE 40% POROSITY: INTERGRANULAR GRAIN SIZE: MEDIUM; RANGE: VERY FINE TO MEDIUM ROUNDNESS: SUB-ROUNDED TO SUB-ANGULAR; MEDIUM SPHERICITY UNCONSOLIDATED OTHER FEATURES: SUCROSIC VERY CLEAN, MODERATELY WELL-SORTED QUARTZ SAND. WATER TABLE AT 2FT. BLS.
- NO SAMPLES WET SAND, DROPPED OUT OF AUGERS.
- 4 11.4 SAND; GRAYISH BROWN TO DARK BROWN 30% POROSITY: INTERGRANULAR GRAIN SIZE: FINE; RANGE: VERY FINE TO MEDIUM ROUNDNESS: SUB-ANGULAR TO SUB-ROUNDED; MEDIUM SPHERICITY UNCONSOLIDATED ACCESSORY MINERALS: ORGANICS-14%, SILT-04%, IRON STAIN-02% BED AT 10.8 - 11.4 CONTAINS 6-8% IRON AND IS SLIGHTLY CEMENTED.
- SAND; MODERATE BROWN TO GRAYISH BROWN 11.4-35% POROSITY: INTERGRANULAR GRAIN SIZE: FINE; RANGE: VERY FINE TO MEDIUM ROUNDNESS: SUB-ANGULAR TO SUB-ROUNDED; MEDIUM SPHERICITY UNCONSOLIDATED ACCESSORY MINERALS: SILT-08%, IRON STAIN-03%
- SAND; DARK BROWN TO DARK YELLOWISH BROWN 35% POROSITY: INTERGRANULAR GRAIN SIZE: MEDIUM; RANGE: FINE TO COARSE ROUNDNESS: SUB-ANGULAR TO ROUNDED; MEDIUM SPHERICITY POOR INDURATION CEMENT TYPE(S): IRON CEMENT ACCESSORY MINERALS: SILT-08%, IRON STAIN-04%

- 17 25 SAND; MODERATE BROWN TO MODERATE BROWN
 40% POROSITY: INTERGRANULAR
 GRAIN SIZE: MEDIUM; RANGE: FINE TO COARSE
 ROUNDNESS: SUB-ANGULAR TO SUB-ROUNDED; MEDIUM SPHERICITY
 UNCONSOLIDATED
 ACCESSORY MINERALS: SILT-05%, IRON STAIN-02%
- 25 30 SAND; DARK BROWN TO BLACK
 40% POROSITY: INTERGRANULAR
 GRAIN SIZE: MEDIUM; RANGE: VERY FINE TO COARSE
 ROUNDNESS: SUB-ROUNDED TO SUB-ANGULAR; MEDIUM SPHERICITY
 UNCONSOLIDATED
 ACCESSORY MINERALS: IRON STAIN-06%, SILT-04%
 ALTHOUGH GENERALLY IRON-STAINED, UNIT CONTAINS 10-15%
 COARSE, ROUNDED, UNSTAINED QUARTZ SAND.
- 30 35 SAND; GRAYISH BROWN TO LIGHT BROWN
 GRAIN SIZE: MEDIUM; RANGE: VERY FINE TO MEDIUM
 ROUNDNESS: SUB-ANGULAR TO SUB-ROUNDED; MEDIUM SPHERICITY
 UNCONSOLIDATED
 ACCESSORY MINERALS: SILT-04%, IRON STAIN-02%
 LIKELY CONTAINS INTERBEDDED MEDIUM-COARSE ROUNDED QUARTZ
 SAND AND SLIGHTLY IRON-CEMENTED VERY FINE TO MEDIUM QUARTZ
 SAND.
- 35 37 SAND; GRAYISH BROWN TO GRAYISH BROWN
 45% POROSITY: INTERGRANULAR
 GRAIN SIZE: MEDIUM; RANGE: VERY FINE TO COARSE
 ROUNDNESS: SUB-ANGULAR TO ROUNDED; MEDIUM SPHERICITY
 UNCONSOLIDATED
 ACCESSORY MINERALS: IRON STAIN-03%, SILT-02%
 GENERALLY CLEAR QUARTZ SAND WITH INTERBEDS OF IRON-CEMENTED
 VERY FINE QUARTZ SAND.
- 37 40 SAND; VERY LIGHT ORANGE TO GRAYISH BROWN
 40% POROSITY: INTERGRANULAR
 GRAIN SIZE: FINE; RANGE: VERY FINE TO MEDIUM
 ROUNDNESS: SUB-ANGULAR TO SUB-ROUNDED; MEDIUM SPHERICITY
 ACCESSORY MINERALS: SILT-06%, IRON STAIN-01%
 AUGER BLADE SAMPLE FROM 39 FT. CONTAINED 10% WHITE SILT
 (NONCALCAREOUS). CONTAINS SOME IRON-CEMENTED GRAINS.
- 40 45 SAND; LIGHT GRAY TO GRAYISH ORANGE PINK
 40% POROSITY: INTERGRANULAR
 GRAIN SIZE: MEDIUM; RANGE: FINE TO MEDIUM
 ROUNDNESS: SUB-ROUNDED TO SUB-ANGULAR; MEDIUM SPHERICITY
 UNCONSOLIDATED
 ACCESSORY MINERALS: LIMESTONE-01%, IRON STAIN-01%
 FOSSILS: MOLLUSKS, CRUSTACEA, SHARKS TEETH
 CLEAN WELL-SORTED SAND WITH (REWORKED?) CRAB SHELL
 FRAGMENT, SHARK TOOTH AND OPERCULUM. TRACE ROUNDED
 LIMESTONE FRAGMENTS. BASE OF UNDIFFERENTIATED SURFICIAL
 DEPOSITS.
- 45 47 SAND; LIGHT GRAY TO GRAYISH ORANGE PINK
 40% POROSITY: INTERGRANULAR
 GRAIN SIZE: MEDIUM; RANGE: FINE TO MEDIUM
 ROUNDNESS: SUB-ANGULAR TO SUB-ROUNDED; MEDIUM SPHERICITY
 UNCONSOLIDATED
 ACCESSORY MINERALS: LIMESTONE-09%, PHOSPHATIC SAND-01%
 FOSSILS: SHARKS TEETH
 CONTAINS INCREASED PERCENT OF ROUNDED LIMESTONE FRAGMENTS
 AND A SMALL PERCENT OF LEACHED ROUNDED PHOSPHATIC SAND. TOP
 OF HAWTHORN DEPOSITS.
- 47 51 SAND; MODERATE GRAY
 45% POROSITY: INTERGRANULAR, POSSIBLY HIGH PERMEABILITY
 GRAIN SIZE: FINE; RANGE: VERY FINE TO MEDIUM
 ROUNDNESS: SUB-ANGULAR TO SUB-ROUNDED; MEDIUM SPHERICITY
 UNCONSOLIDATED
 CEMENT TYPE(S): IRON CEMENT
 ACCESSORY MINERALS: LIMESTONE-35%, PHOSPHATIC SAND-06%

OTHER FEATURES: SPECKLED
FOSSILS: WORM TRACES, FOSSIL FRAGMENTS
QUARTZ SAND WITH SUBSTANTIAL PERCENT OF WORN LIMESTONE
FRAGMENTS AND INTERBEDDED CALCILUTITE. PHOSPHATE IS BOTH
LEACHED AND UNLEACHED.

- 51 55 SAND; DARK GRAY TO LIGHT GRAY
 45% POROSITY: INTERGRANULAR, POSSIBLY HIGH PERMEABILITY
 GRAIN SIZE: COARSE; RANGE: FINE TO VERY COARSE
 ROUNDNESS: ROUNDED TO SUB-ROUNDED; HIGH SPHERICITY
 UNCONSOLIDATED
 ACCESSORY MINERALS: PHOSPHATIC SAND-35%, CALCILUTITE-04%
 LIMESTONE-02%
 OTHER FEATURES: SPECKLED
 FOSSILS: SHARKS TEETH
 COARSE, WELL-ROUNDED PHOSPHATE-RICH QUARTZ SAND.
 CALCILUTITE TRACES MAY PROVIDE SLIGHT INSITU CEMENTING OF
 UNIT. BOTTOM OF SURFICIAL AQUIFER SYSTEM.
- 55 60 CALCILUTITE; DARK GRAY TO LIGHT GRAY
 18% POROSITY: INTERGRANULAR
 GRAIN TYPE: CALCILUTITE, BIOGENIC
 05% ALLOCHEMICAL CONSTITUENTS
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: CRYPTOCRYSTALLINE TO MICROCRYSTALLINE
 POOR INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 ACCESSORY MINERALS: PHOSPHATIC SAND-25%, QUARTZ SAND-20%
 DOLOMITE-02%
 OTHER FEATURES: SPECKLED
 FOSSILS: MOLLUSKS
 UPPERMOST CARBONATE. RICH IN ROUNDED QUARTZ, PHOSPHATIC
 SANDS. TOP OF INTERMEDIATE AQUIFER SYSTEM.
- 60 65 PHOSPHATE; DARK GRAY TO LIGHT GRAY
 POROSITY: INTERGRANULAR; POOR INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 ACCESSORY MINERALS: CALCILUTITE-25%, QUARTZ SAND-06%
 A CONCENTRATION OF ROUNDED PHOSPHATE GRANULES (4MM) WITH
 LESSER CALCILUTITE MATRIX.
- 65 70 CALCILUTITE; MODERATE DARK GRAY
 14% POROSITY: INTERGRANULAR
 GRAIN TYPE: CALCILUTITE; 05% ALLOCHEMICAL CONSTITUENTS
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: CRYPTOCRYSTALLINE TO MICROCRYSTALLINE
 POOR INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX, CLAY MATRIX
 SEDIMENTARY STRUCTURES: INTERBEDDED
 ACCESSORY MINERALS: CLAY-25%, PHOSPHATIC GRAVEL-15%
 PHOSPHATIC SAND-05%, QUARTZ SAND-03%
 OTHER FEATURES: SPECKLED
 CLAYEY CALCILUTITE WITH MUCH PHOSPHATIC SAND.
- 70 77 CALCILUTITE; OLIVE GRAY TO DARK GRAY
 POROSITY: LOW PERMEABILITY, INTERGRANULAR
 GRAIN TYPE: CALCILUTITE; 05% ALLOCHEMICAL CONSTITUENTS
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: CRYPTOCRYSTALLINE TO MICROCRYSTALLINE
 POOR INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX, CLAY MATRIX
 ACCESSORY MINERALS: CLAY-40%, PHOSPHATIC SAND-04%
 QUARTZ SAND-02%
 VERY CLAYEY CALCILUTITE. CLAY IS DISSEMINATED AND AS
 STREAKS.
- 77 82 CLAY; LIGHT OLIVE GRAY
 POROSITY: LOW PERMEABILITY; MODERATE INDURATION
 CEMENT TYPE(S): CLAY MATRIX
 ACCESSORY MINERALS: CALCILUTITE-15%, QUARTZ SAND-08%
 PHOSPHATIC SAND-03%
 OTHER FEATURES: PARTINGS

VARIABLY CALCAREOUS CLAY CONTAINING SAND STRINGERS AND BURROW FILL.

- 82 85 CALCILUTITE; LIGHT OLIVE GRAY TO LIGHT GRAY
 16% POROSITY: INTERGRANULAR
 GRAIN TYPE: CALCILUTITE, BIOGENIC
 15% ALLOCHEMICAL CONSTITUENTS
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: CRYPTOCRYSTALLINE TO VERY FINE; MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 ACCESSORY MINERALS: QUARTZ SAND-07%, PHOSPHATIC SAND-03%
- 85 91 CALCILUTITE; YELLOWISH GRAY TO VERY LIGHT GRAY 14% POROSITY: INTERGRANULAR, MOLDIC GRAIN TYPE: CALCILUTITE, BIOGENIC, SKELTAL CAST 35% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO FINE; MODERATE INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX, CLAY MATRIX SEDIMENTARY STRUCTURES: BRECCIATED, MOTTLED ACCESSORY MINERALS: CLAY-20%, PHOSPHATIC SAND-10% QUARTZ SAND-03%, PHOSPHATIC GRAVEL-01% OTHER FEATURES: SPECKLED, PARTINGS MEDIUM RECRYSTALLIZATION FOSSILS: FOSSIL FRAGMENTS, MOLLUSKS UNIT GRADES SOFTER WITH DEPTH. VARIABLY PHOSPHATIC. CLAY IS IN STREAKS, BLEBS, AND DISSEMINATED. A FEW 1-2 CM PHOSPHATE CLASTS. CONTAINS HARDER ALTERED OR DOLOMITIC INCLUSIONS.
- 91 93 CALCILUTITE; LIGHT OLIVE TO YELLOWISH GRAY
 POROSITY: NOT OBSERVED, LOW PERMEABILITY
 GRAIN TYPE: CALCILUTITE; 05% ALLOCHEMICAL CONSTITUENTS
 POOR INDURATION
 CEMENT TYPE(S): CLAY MATRIX
 SEDIMENTARY STRUCTURES: MOTTLED
 ACCESSORY MINERALS: CLAY-35%, PHOSPHATIC SAND-14%
 QUARTZ SAND-01%
 OTHER FEATURES: SPECKLED, MEDIUM RECRYSTALLIZATION
 PARTINGS, GRANULAR
 SOFT VERY CLAYEY PHOSPHATIC CALCILUTITE.
- 93 96.5 NO SAMPLES
 PROBABLY PHOSPHATIC AND QUARTZ SAND (POORLY CONSOLIDATED).
- 96.5- 101.3 CLAY; DARK GREENISH GRAY
 POROSITY: NOT OBSERVED, LOW PERMEABILITY
 MODERATE INDURATION
 CEMENT TYPE(S): CLAY MATRIX
 SEDIMENTARY STRUCTURES: STREAKED
 ACCESSORY MINERALS: CALCILUTITE-07%, PHOSPHATIC SAND-07%
 QUARTZ SAND-02%
 OTHER FEATURES: PARTINGS
 UPPER 1-5 FT. CONTAINS THIN INTERBEDS OF SOMEWHAT
 CALCAREOUS PHOSPHATIC SANDY OLIVE CLAY. 98 101.3 FT IS
 PURE DARK GREEN CLAY.
- 101.3- 103 CALCILUTITE; YELLOWISH GRAY
 14% POROSITY: INTERGRANULAR, LOW PERMEABILITY
 GRAIN TYPE: CALCILUTITE; 05% ALLOCHEMICAL CONSTITUENTS
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: MICROCRYSTALLINE TO FINE; MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX, CLAY MATRIX
 SEDIMENTARY STRUCTURES: NODULAR, MOTTLED
 ACCESSORY MINERALS: CLAY-40%, PHOSPHATIC SAND-08%
 QUARTZ SAND-02%
 OTHER FEATURES: VARIEGATED, MEDIUM RECRYSTALLIZATION
 VERY CLAYEY PHOSPHATIC CALCILUTITE. CLAY IS DISSEMINATED IN
 MATRIX AND ALSO AS INFILL AROUND ROUNDED CLASTS OF
 PHOSPHATIC CALCILUTITE.
- 103 107 CALCILUTITE; YELLOWISH GRAY
 12% POROSITY: INTERGRANULAR, LOW PERMEABILITY

GRAIN TYPE: CALCILUTITE; 10% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: MICROCRYSTALLINE
RANGE: MICROCRYSTALLINE TO FINE; POOR INDURATION
CEMENT TYPE(S): CLAY MATRIX, CALCILUTITE MATRIX
ACCESSORY MINERALS: CLAY-30%, PHOSPHATIC SAND-10%
QUARTZ SAND-02%
OTHER FEATURES: MUDDY
FOSSILS: MOLLUSKS
SEMI-SOFT PHOSPHATIC CLAYEY CALCILUTITE WITH MINOR
LIMESTONE STRINGERS AND BIVALVE CASTS. A RESIDUM? UNIT
RUBBELIZED ON CORING. BOTTOM OF PEACE RIVER FORMATION.

- 107 113.2 CALCILUTITE; VERY LIGHT GRAY TO LIGHT GRAY 16% POROSITY: MOLDIC, INTERGRANULAR GRAIN TYPE: CALCILUTITE, BIOGENIC 30% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO FINE; MODERATE INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX, CLAY MATRIX SEDIMENTARY STRUCTURES: INTERBEDDED ACCESSORY MINERALS: PHOSPHATIC SAND-12%, CLAY-08% QUARTZ SAND-04% OTHER FEATURES: PARTINGS FOSSILS: FOSSIL MOLDS, MOLLUSKS, CORAL TOP OF A VERTICALLY PERSISTENT LIMESTONE SECTION WITH LOWER PERCENT OF CLAY. TOP 1 FT. OF UNIT SHOWS INFILL OF QUARTZ AND PHOSPHATIC SAND (IN DESICCATION CRACKS?). THIN, MUDDY LENSES 108 - 110 FT. MORE VERY FINE PHOSPHATE 111 - 113 FT. AND SMALL MOLDS 111 - 113 FT.
- 113.2- 115 CALCILUTITE; LIGHT GRAY TO MODERATE LIGHT GRAY
 18% POROSITY: MOLDIC, INTERGRANULAR
 GRAIN TYPE: CALCILUTITE, BIOGENIC
 30% ALLOCHEMICAL CONSTITUENTS
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: MICROCRYSTALLINE TO FINE; MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 SEDIMENTARY STRUCTURES: MOTTLED
 ACCESSORY MINERALS: PHOSPHATIC SAND-10%, QUARTZ SAND-04%
 OTHER FEATURES: VARIEGATED, SPECKLED, POOR SAMPLE
 FOSSILS: FOSSIL MOLDS, MOLLUSKS
 VARIEGATED DARK AND LIGHT GRAY. DARKER SECTIONS ARE HARDER
 AND MAY BE DOLOMITIC. STARFISH ARM MOLD AT 113.9 FT.
- 115 115.5 CHERT; MODERATE DARK GRAY
 POROSITY: NOT OBSERVED; GOOD INDURATION
 CEMENT TYPE(S): SILICIC CEMENT
 OTHER FEATURES: GRANULAR
 FOSSILS: FOSSIL FRAGMENTS
- 115.5- 118 CALCILUTITE; VERY LIGHT GRAY TO LIGHT GRAY
 14% POROSITY: INTERGRANULAR, MOLDIC
 GRAIN TYPE: CALCILUTITE, BIOGENIC
 25% ALLOCHEMICAL CONSTITUENTS
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: MICROCRYSTALLINE TO FINE; MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 SEDIMENTARY STRUCTURES: MOTTLED, STREAKED
 ACCESSORY MINERALS: CLAY-10%, PHOSPHATIC SAND-05%
 PHOSPHATIC GRAVEL-01%
 OTHER FEATURES: VARIEGATED
 FOSSILS: FOSSIL MOLDS, MOLLUSKS
 CONTAINS SOFT CLAYEY STREAKS AND INFILLED BURROWS.
- 118 123.1 CALCARENITE; YELLOWISH GRAY TO VERY LIGHT GRAY
 16% POROSITY: INTERGRANULAR
 GRAIN TYPE: CALCILUTITE, BIOGENIC
 55% ALLOCHEMICAL CONSTITUENTS
 GRAIN SIZE: VERY FINE; RANGE: MICROCRYSTALLINE TO FINE
 GOOD INDURATION
 CEMENT TYPE(5): CALCILUTITE MATRIX
 ACCESSORY MINERALS: PHOSPHATIC SAND-07%, QUARTZ SAND-02%

OTHER FEATURES: CHALKY, SPECKLED

- 123.1- 125.5 CALCILUTITE; LIGHT GRAY
 08% POROSITY: PIN POINT VUGS, VUGULAR
 GRAIN TYPE: CALCILUTITE; 01% ALLOCHEMICAL CONSTITUENTS
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: MICROCRYSTALLINE TO VERY FINE; GOOD INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX, DOLOMITE CEMENT
 ACCESSORY MINERALS: PHOSPHATIC GRAVEL-02%
 PHOSPHATIC SAND-01%, DOLOMITE- %
 OTHER FEATURES: CHALKY, LOW RECRYSTALLIZATION
 FOSSILS: MOLIUSKS
 VERY HARD, FEATURELESS. DOLOMITIC?
- 125.5- 128.5 CALCILUTITE; MODERATE LIGHT GRAY TO VERY LIGHT GRAY
 14% POROSITY: INTERGRANULAR
 GRAIN TYPE: CALCILUTITE; 10% ALLOCHEMICAL CONSTITUENTS
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: MICROCRYSTALLINE TO VERY FINE; MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 ACCESSORY MINERALS: QUARTZ SAND-25%, PHOSPHATIC SAND-10%
 OTHER FEATURES: GRANULAR, SPECKLED, PARTINGS
- 128.5- 133.2 CALCILUTITE; YELLOWISH GRAY TO VERY LIGHT GRAY
 16% POROSITY: INTERGRANULAR
 GRAIN TYPE: CALCILUTITE, BIOGENIC
 05% ALLOCHEMICAL CONSTITUENTS
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: MICROCRYSTALLINE TO VERY FINE; MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 ACCESSORY MINERALS: QUARTZ SAND-06%, PHOSPHATIC SAND-05%
 OTHER FEATURES: CHALKY, SPECKLED
 FOSSILS: CORAL, FOSSIL FRAGMENTS
- 138.2 CALCILUTITE; YELLOWISH GRAY TO LIGHT OLIVE GRAY
 14% POROSITY: INTERGRANULAR
 GRAIN TYPE: CALCILUTITE; 05% ALLOCHEMICAL CONSTITUENTS
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: MICROCRYSTALLINE TO VERY FINE; MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX, CLAY MATRIX
 SEDIMENTARY STRUCTURES: INTERBEDDED
 ACCESSORY MINERALS: CLAY-25%, QUARTZ SAND-12%
 PHOSPHATIC SAND-08%
 OTHER FEATURES: SPECKLED, PARTINGS, CHALKY
 FOSSILS: FOSSIL FRAGMENTS, MOLLUSKS
 CLAYEY CALCILUTITE IRREGULARLY BEDDED WITH OR INFILLED
 AROUND QUARTZ PHOSPHATIC SANDY CALCILUTITE.
- 138.2- 143 CALCILUTITE; LIGHT OLIVE GRAY TO GRAYISH GREEN
 10% POROSITY: LOW PERMEABILITY, INTERGRANULAR
 GRAIN TYPE: CALCILUTITE
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: CRYPTOCRYSTALLINE TO MICROCRYSTALLINE
 POOR INDURATION
 CEMENT TYPE(S): CLAY MATRIX, CALCILUTITE MATRIX
 SEDIMENTARY STRUCTURES: INTERBEDDED
 ACCESSORY MINERALS: CLAY-30%, QUARTZ SAND-12%
 PHOSPHATIC SAND-08%
 OTHER FEATURES: SPECKLED, PARTINGS
 CONTAINS SOME SOFTER BEDS.
- 143 160 CALCILUTITE; LIGHT OLIVE GRAY TO LIGHT GRAY
 12% POROSITY: INTERGRANULAR, LOW PERMEABILITY
 GRAIN TYPE: CALCILUTITE
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: CRYPTOCRYSTALLINE TO MICROCRYSTALLINE
 MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX, CLAY MATRIX
 SEDIMENTARY STRUCTURES: MOTTLED
 ACCESSORY MINERALS: CLAY-25%, QUARTZ SAND-20%
 PHOSPHATIC SAND-05%
 UNIT BECOMES SLIGHTLY LESS CALCAREOUS AND MORE CLAYEY AND

QUARTZ SANDY BELOW 150 FT. CHERT INCLUSION AT 151.8 FT.

- 160 163 CLAY; LIGHT OLIVE GRAY TO DARK GREENISH GRAY
 10% POROSITY: LOW PERMEABILITY, INTERGRANULAR
 POOR INDURATION
 CEMENT TYPE(S): CLAY MATRIX, CALCILUTITE MATRIX
 SEDIMENTARY STRUCTURES: INTERBEDDED
 ACCESSORY MINERALS: CALCILUTITE-30%, QUARTZ SAND-15%
 PHOSPHATIC SAND-10%, PHOSPHATIC GRAVEL-02%
 OTHER FEATURES: SPECKLED
 IRREGULARLY BEDDED OR INFILLED OLIVE CLAY AND CLAYEY
 QUARTZ-PHOSPHATE SANDY CALCILUTITE. RUBBLY.
- 163 168.2 CALCILUTITE; YELLOWISH GRAY TO LIGHT OLIVE GRAY
 12% POROSITY: INTERGRANULAR
 GRAIN TYPE: CALCILUTITE; 10% ALLOCHEMICAL CONSTITUENTS
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: MICROCRYSTALLINE TO VERY FINE; MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX, CLAY MATRIX
 SEDIMENTARY STRUCTURES: INTERBEDDED
 ACCESSORY MINERALS: CLAY-20%, CHERT-06%
 PHOSPHATIC SAND-06%, QUARTZ SAND-02%
 OTHER FEATURES: CHALKY
 DISSEMINATED AND INTERBEDDED CLAY FACTION. CHERT AS
 INCLUSIONS AT 163 FT. AND 164.5 FT.
- 168.2- 175.5 CLAY; LIGHT OLIVE GRAY TO OLIVE GRAY

 MODERATE INDURATION

 CEMENT TYPE(S): CLAY MATRIX

 ACCESSORY MINERALS: PHOSPHATIC SAND-01%

 A CLEAN WAXY OLIVE CLAY CONTAINING SOME VEINLETS OF VERY
 FINE ORGANIC SAND OR DARK MINERAL.
- 175.5- 188 CALCILUTITE; LIGHT OLIVE GRAY TO OLIVE GRAY
 15% POROSITY: INTERGRANULAR, MOLDIC
 GRAIN TYPE: CALCILUTITE
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: CRYPTOCRYSTALLINE TO MICROCRYSTALLINE
 MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX, CLAY MATRIX
 SEDIMENTARY STRUCTURES: INTERBEDDED, MOTTLED
 ACCESSORY MINERALS: CLAY-15%, PHOSPHATIC GRAVEL-05%
 QUARTZ SAND-03%, CLAY-02%
 OTHER FEATURES: SPECKLED, MUDDY, FOSSILIFEROUS
 FOSSILS: MOLLUSKS
 CLAY IS DISSEMINATED AND AS INFILL. CHERT INCLUSION AT 181
 FT. DOLOMITIC LENSES AT 184 FT., 185 FT.
- 188 191 SANDSTONE; LIGHT OLIVE GRAY TO OLIVE GRAY
 10% POROSITY: INTERGRANULAR
 GRAIN SIZE: MEDIUM; RANGE: FINE TO COARSE
 ROUNDNESS: SUB-ANGULAR TO SUB-ROUNDED; MEDIUM SPHERICITY
 POOR INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX, CLAY MATRIX
 SEDIMENTARY STRUCTURES: INTERBEDDED, MOTTLED
 ACCESSORY MINERALS: CALCILUTITE-15%, PHOSPHATIC SAND-30%
 PHOSPHATIC GRAVEL-02%, CLAY-01%
 OTHER FEATURES: CALCAREOUS, FROSTED, SPECKLED
 FOSSILIFEROUS
 FOSSILS: MOLLUSKS, FOSSIL FRAGMENTS
 QUARTZ SANDSTONE, ABUNDANT PHOSPHATIC SAND AND GRAVEL.
 NUMEROUS CALCAREOUS AND PHOSPHATIC FOSSILS, SHELLS AND
 TEETH IN CALCAREOUS CLAY MATRIX.
- 191 193 DOLOSTONE; YELLOWISH GRAY TO LIGHT OLIVE GRAY
 05% POROSITY: INTERGRANULAR, MOLDIC
 GOOD INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX, CLAY MATRIX
 SEDIMENTARY STRUCTURES: INTERBEDDED, MOTTLED
 ACCESSORY MINERALS: QUARTZ SAND-05%, PHOSPHATIC SAND-03%
 CLAY-01%
 OTHER FEATURES: SPECKLED, MUDDY, FOSSILIFEROUS

FOSSILS: ECHINOID, MOLLUSKS

- 193 194.3 DOLOSTONE; LIGHT OLIVE GRAY TO OLIVE GRAY
 03% POROSITY: INTERGRANULAR, LOW PERMEABILITY
 10-50% ALTERED; SUBHEDRAL
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: CRYPTOCRYSTALLINE TO MICROCRYSTALLINE
 MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX, CLAY MATRIX
 SEDIMENTARY STRUCTURES: INTERBEDDED
 ACCESSORY MINERALS: QUARTZ SAND-05%, PHOSPHATIC SAND-02%
 PHOSPHATIC GRAVEL-01%, CLAY-01%
 OTHER FEATURES: SPECKLED
 DOLOSTONE, LITTLE QUARTZ. PHOSPHATIC SAND. FEWER FOSSILS.
- 194.3- 198.2 DOLOSTONE; LIGHT OLIVE GRAY TO OLIVE GRAY
 03% POROSITY: INTERGRANULAR, LOW PERMEABILITY
 10-50% ALTERED; SUBHEDRAL
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: CRYPTOCRYSTALLINE TO MICROCRYSTALLINE
 MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX, CLAY MATRIX
 SEDIMENTARY STRUCTURES: INTERBEDDED, MOTTLED
 ACCESSORY MINERALS: QUARTZ SAND-05%, PHOSPHATIC SAND-02%
 PHOSPHATIC GRAVEL-02%, CLAY-03%
 OTHER FEATURES: MEDIUM RECRYSTALLIZATION
 FOSSILS: MOLLUSKS
- 198.2- 199.5 DOLOSTONE; YELLOWISH GRAY TO LIGHT OLIVE GRAY
 02% POROSITY: INTERGRANULAR, MOLDIC
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: CRYPTOCRYSTALLINE TO MICROCRYSTALLINE
 POOR INDURATION
 CEMENT TYPE(S): DOLOMITE CEMENT, CALCILUTITE MATRIX
 CLAY MATRIX
 ACCESSORY MINERALS: CLAY-20%, QUARTZ SAND-03%
 PHOSPHATIC SAND-02%
 FOSSILS: SHARKS TEETH, MOLLUSKS
- 199.5- 204.7 CLAY; LIGHT OLIVE GRAY TO OLIVE GRAY
 O1% POROSITY: NOT OBSERVED; MODERATE INDURATION
 CEMENT TYPE(S): CLAY MATRIX, DOLOMITE CEMENT
 CALCILUTITE MATRIX
 SEDIMENTARY STRUCTURES: INTERBEDDED
 ACCESSORY MINERALS: CALCILUTITE-03%, PHOSPHATIC SAND-02%
 DOLOMITE-02%
 OTHER FEATURES: CALCAREOUS, DOLOMITIC, MUDDY, FOSSILIFEROUS
 FOSSILS: ECHINOID, MOLLUSKS, BENTHIC FORAMINIFERA
 CLAY WITH INTERBEDDED FORAM FRAGMENTS, SOME INTERBEDDED
 DOLOSTONE AND SOME QUARTZ AND PHOSPHATIC SAND.
- 204.7- 210.8 CLAY; LIGHT OLIVE GRAY TO OLIVE GRAY
 02% POROSITY: MOLDIC; POOR INDURATION
 CEMENT TYPE(S): CLAY MATRIX, DOLOMITE CEMENT
 CALCILUTITE MATRIX
 SEDIMENTARY STRUCTURES: INTERBEDDED
 ACCESSORY MINERALS: DOLOMITE-03%, CALCILUTITE-02%
 PHOSPHATIC SAND-02%, QUARTZ SAND-02%
 OTHER FEATURES: CALCAREOUS, DOLOMITIC, MUDDY
 FOSSILS: MOLLUSKS, BENTHIC FORAMINIFERA
- 210.8- 217 DOLOSTONE; LIGHT OLIVE GRAY

 02% POROSITY: MOLDIC, LOW PERMEABILITY; 10-50% ALTERED SUBHEDRAL

 GRAIN SIZE: MICROCRYSTALLINE

 RANGE: CRYPTOCRYSTALLINE TO MICROCRYSTALLINE

 GOOD INDURATION

 CEMENT TYPE(S): DOLOMITE CEMENT

 SEDIMENTARY STRUCTURES: INTERBEDDED

 ACCESSORY MINERALS: CLAY-03%, QUARTZ SAND-01%

 PHOSPHATIC SAND-01%, PHOSPHATIC GRAVEL-01%

 OTHER FEATURES: SPECKLED

- 217 218 CLAY; LIGHT OLIVE GRAY TO OLIVE GRAY

 02% POROSITY: MOLDIC, LOW PERMEABILITY; POOR INDURATION

 CEMENT TYPE(S): CLAY MATRIX, DOLOMITE CEMENT

 SEDIMENTARY STRUCTURES: INTERBEDDED

 ACCESSORY MINERALS: DOLOMITE-02%, QUARTZ SAND-02%

 PHOSPHATIC SAND-02%, QUARTZ SAND-02%

 OTHER FEATURES: DOLOMITIC, MUDDY

 FOSSILS: MOLLUSKS, BENTHIC FORAMINIFERA

 CLAY, DOLOMITIC, ABUNDANT PHOSPHATIC GRAVEL.
- 218 233 DOLOSTONE; YELLOWISH GRAY TO LIGHT OLIVE GRAY
 05% POROSITY: INTERGRANULAR, MOLDIC, FRACTURE
 10-50% ALTERED; ANHEDRAL
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: CRYPTOCRYSTALLINE TO MICROCRYSTALLINE
 GOOD INDURATION
 CEMENT TYPE(S): DOLOMITE CEMENT, CALCILUTITE MATRIX
 SEDIMENTARY STRUCTURES: INTERBEDDED
 ACCESSORY MINERALS: LIMESTONE-05%, QUARTZ SAND-01%
 PHOSPHATIC SAND-01%
 OTHER FEATURES: CALCAREOUS
 FOSSILS: MOLLUSKS
- 233.9 CLAY; YELLOWISH GRAY TO LIGHT OLIVE GRAY
 02% POROSITY: MOLDIC, LOW PERMEABILITY, FRACTURE
 MODERATE INDURATION
 CEMENT TYPE(S): CLAY MATRIX, CALCILUTITE MATRIX
 DOLOMITE CEMENT
 SEDIMENTARY STRUCTURES: INTERBEDDED
 ACCESSORY MINERALS: DOLOMITE-20%, QUARTZ SAND-05%
 CALCILUTITE-05%
 OTHER FEATURES: CALCAREOUS
 FOSSILS: MOLLUSKS, BENTHIC FORAMINIFERA
- 233.9- 234.6 CLAY; YELLOWISH GRAY TO LIGHT OLIVE GRAY

 02% POROSITY, LOW PERMEABILITY, FRACTURE; POOR INDURATION

 CEMENT TYPE(S): CLAY MATRIX, CALCILUTITE MATRIX

 DOLOMITE CEMENT

 SEDIMENTARY STRUCTURES: INTERBEDDED

 ACCESSORY MINERALS: CALCILUTITE-10%, QUARTZ SAND-01%

 PHOSPHATIC GRAVEL-01%

 OTHER FEATURES: CALCAREOUS
- 234.6- 238 CLAY; YELLOWISH GRAY TO LIGHT OLIVE GRAY
 O2% POROSITY: INTERGRANULAR, LOW PERMEABILITY, FRACTURE
 POOR INDURATION
 CEMENT TYPE(S): CLAY MATRIX, CALCILUTITE MATRIX
 SEDIMENTARY STRUCTURES: INTERBEDDED
 ACCESSORY MINERALS: QUARTZ SAND-20%, PHOSPHATIC SAND-15%
 OTHER FEATURES: BROWN ANHYDRITE CRYSTALS
 LOW RECRYSTALLIZATION, CALCAREOUS
- 238 246.9 CLAY; YELLOWISH GRAY TO LIGHT OLIVE GRAY
 01% POROSITY: INTERGRANULAR, FRACTURE, LOW PERMEABILITY
 POOR INDURATION
 CEMENT TYPE(S): CLAY MATRIX, CALCILUTITE MATRIX
 SEDIMENTARY STRUCTURES: INTERBEDDED
 ACCESSORY MINERALS: CALCILUTITE-10%, QUARTZ SAND-05%
 PHOSPHATIC SAND-03%, CALCITE-01%
 OTHER FEATURES: CALCAREOUS, FOSSILIFEROUS
 FOSSILS: MOLLUSKS, BENTHIC FORAMINIFERA, ORGANICS
- 248.4 CLAY; YELLOWISH GRAY TO LIGHT OLIVE GRAY
 01% POROSITY: INTERGRANULAR, LOW PERMEABILITY
 POOR INDURATION
 CEMENT TYPE(S): CLAY MATRIX, CALCILUTITE MATRIX
 SEDIMENTARY STRUCTURES: INTERBEDDED
 ACCESSORY MINERALS: PHOSPHATIC SAND-10%, QUARTZ SAND-05%
 CALCILUTITE-02%, PHOSPHATIC GRAVEL-02%
 OTHER FEATURES: CALCAREOUS, SPECKLED, FOSSILIFEROUS
 FOSSILS: MOLLUSKS, FOSSIL FRAGMENTS

CLAY, CALCAREOUS, PHOSPHATIC SAND AND GRAVEL. SOME QUARTZ SAND. MOLLUSK FRAGMENTS ARE CALCAREOUS.

- 248.4- 263 CLAY; LIGHT OLIVE GRAY TO GREENISH GRAY
 01% POROSITY: FRACTURE, LOW PERMEABILITY; POOR INDURATION
 CEMENT TYPE(S): CLAY MATRIX, CALCILUTITE MATRIX
 SEDIMENTARY STRUCTURES: INTERBEDDED
 ACCESSORY MINERALS: CALCILUTITE-05%, PHOSPHATIC SAND-03%
 PHOSPHATIC GRAVEL-01%, QUARTZ SAND-01%
 OTHER FEATURES: CALCAREOUS
 FOSSILS: MOLLUSKS, FOSSIL FRAGMENTS, BENTHIC FORAMINIFERA
- 263 267.8 CALCARENITE; YELLOWISH GRAY TO LIGHT OLIVE GRAY
 10% POROSITY: INTERGRANULAR, FRACTURE, MOLDIC
 GRAIN TYPE: SKELETAL
 GRAIN SIZE: VERY FINE; RANGE: MICROCRYSTALLINE TO MEDIUM
 MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX, CLAY MATRIX
 SEDIMENTARY STRUCTURES: INTERBEDDED
 ACCESSORY MINERALS: CLAY-15%, PHOSPHATIC SAND-03%
 PHOSPHATIC GRAVEL-01%, QUARTZ SAND-01%
 OTHER FEATURES: CHALKY
 FOSSILS: MOLLUSKS, BENTHIC FORAMINIFERA, FOSSIL FRAGMENTS
 CALCARENITE, SOFT, FOSSILIFEROUS (SORITES-FORAM)
 INTERBEDDED CLAY, PHOSPHATIC SAND AND GRAVEL, MINOR QUARTZ
 SAND.
- 267.8- 269 CLAY; YELLOWISH GRAY TO LIGHT OLIVE GRAY
 02% POROSITY: FRACTURE, LOW PERMEABILITY; POOR INDURATION
 CEMENT TYPE(S): CLAY MATRIX, CALCILUTITE MATRIX
 SEDIMENTARY STRUCTURES: INTERBEDDED
 ACCESSORY MINERALS: CALCILUTITE-05%, PHOSPHATIC SAND-03%
 PHOSPHATIC GRAVEL-01%, QUARTZ SAND-01%
 OTHER FEATURES: CALCAREOUS, CHALKY
 FOSSILS: MOLLUSKS, BENTHIC FORAMINIFERA, FOSSIL FRAGMENTS
- 269 270.1 DOLOSTONE; YELLOWISH GRAY TO LIGHT OLIVE GRAY
 10% POROSITY: INTERGRANULAR, MOLDIC, FRACTURE
 10-50% ALTERED; ANHEDRAL
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: CRYPTOCRYSTALLINE TO MICROCRYSTALLINE
 MODERATE INDURATION
 CEMENT TYPE(S): DOLOMITE CEMENT, CLAY MATRIX
 CALCILUTITE MATRIX
 SEDIMENTARY STRUCTURES: INTERBEDDED
 ACCESSORY MINERALS: CLAY-05%, PHOSPHATIC SAND-03%
 PHOSPHATIC GRAVEL-01%, QUARTZ SAND-01%
 OTHER FEATURES: PARTINGS, FOSSILIFEROUS
 FOSSILS: MOLLUSKS, BENTHIC FORAMINIFERA, FOSSIL FRAGMENTS
 FOSSIL MOLDS
 DOLOSTONE, FRACTURES, SOME CLAY INFILLED, INTERBEDDED
 PHOSPHATIC SAND AND GRAVEL, MOLDIC.
- 270.1- 278 CALCARENITE; YELLOWISH GRAY TO LIGHT OLIVE GRAY
 08% POROSITY: FRACTURE
 GRAIN TYPE: BIOGENIC, SKELETAL
 GRAIN SIZE: MEDIUM; RANGE: MEDIUM TO COARSE
 POOR INDURATION
 CEMENT TYPE(S): CLAY MATRIX, CALCILUTITE MATRIX
 SEDIMENTARY STRUCTURES: INTERBEDDED
 ACCESSORY MINERALS: PHOSPHATIC SAND-05%, QUARTZ SAND-05%
 PHOSPHATIC GRAVEL-01%, CLAY-03%
 OTHER FEATURES: GRANULAR, SPECKLED, WEATHERED
 FOSSILIFEROUS
 FOSSILS: MOLLUSKS, FOSSIL MOLDS
- 278 280 CALCILUTITE; WHITE TO YELLOWISH GRAY
 05% POROSITY: FRACTURE, INTERGRANULAR, MOLDIC
 GRAIN TYPE: BIOGENIC, CALCILUTITE
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: CRYPTOCRYSTALLINE TO MICROCRYSTALLINE
 MODERATE INDURATION

CEMENT TYPE(S): CALCILUTITE MATRIX
SEDIMENTARY STRUCTURES: INTERBEDDED
ACCESSORY MINERALS: QUARTZ SAND-01%, PHOSPHATIC SAND-01%
CLAY-01%
OTHER FEATURES: CHALKY, FOSSILIFEROUS
FOSSILS: MOLLUSKS, BENTHIC FORAMINIFERA, FOSSIL MOLDS

- 280 283.4 CLAY; DARK GREENISH GRAY TO DARK GREENISH GRAY
 02% POROSITY: FRACTURE; POOR INDURATION
 CEMENT TYPE(S): CLAY MATRIX
 SEDIMENTARY STRUCTURES: INTERBEDDED
 ACCESSORY MINERALS: PHOSPHATIC SAND-05%, QUARTZ SAND-05%
 PHOSPHATIC GRAVEL-02%, CALCILUTITE-02%
 CLAY, GREEN, INTERBEDDED.
- 283.4- 284.3 CALCARENITE; WHITE TO YELLOWISH GRAY
 05% POROSITY: INTERGRANULAR, MOLDIC, FRACTURE
 GRAIN TYPE: BIOGENIC, PELLET, SKELTAL CAST
 GRAIN SIZE: MEDIUM; RANGE: FINE TO MEDIUM
 MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 SEDIMENTARY STRUCTURES: INTERBEDDED
 ACCESSORY MINERALS: PHOSPHATIC SAND-01%, QUARTZ SAND-01%
 CALCITE-01%
 FOSSILS: MOLLUSKS, BENTHIC FORAMINIFERA, SHARKS TEETH
 FOSSIL MOLDS
- 284.3- 292.8 CALCARENITE; WHITE TO YELLOWISH GRAY
 05% POROSITY: INTERGRANULAR, MOLDIC, FRACTURE
 GRAIN TYPE: BIOGENIC, PELLET, SKELTAL CAST
 GRAIN SIZE: MEDIUM; RANGE: FINE TO MEDIUM
 MODERATE INDURATION
 CEMENT TYPE(5): CALCILUTITE MATRIX
 SEDIMENTARY STRUCTURES: INTERBEDDED
 ACCESSORY MINERALS: PHOSPHATIC SAND-01%, QUARTZ SAND-01%
 CALCITE-01%
 FOSSILS: MOLLUSKS, BENTHIC FORAMINIFERA, SHARKS TEETH
 VERTEBRATE
- 292.8- 294.1 CLAY; WHITE TO YELLOWISH GRAY
 01% POROSITY: FRACTURE; POOR INDURATION
 CEMENT TYPE(S): CLAY MATRIX, CALCILUTITE MATRIX
 SEDIMENTARY STRUCTURES: INTERBEDDED
 ACCESSORY MINERALS: CALCILUTITE-02%, PHOSPHATIC SAND-01%
 QUARTZ SAND-01%, PHOSPHATIC GRAVEL-01%
 FOSSILS: MOLLUSKS
- 294.1- 296.8 CALCARENITE; YELLOWISH GRAY TO LIGHT OLIVE GRAY
 03% POROSITY: INTERGRANULAR, FRACTURE, MOLDIC
 GRAIN TYPE: BIOGENIC, PELLET
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: MICROCRYSTALLINE TO FINE; MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX, CLAY MATRIX
 SEDIMENTARY STRUCTURES: INTERBEDDED
 ACCESSORY MINERALS: QUARTZ SAND-05%, PHOSPHATIC SAND-05%
 PHOSPHATIC GRAVEL-01%, CLAY-01%
 OTHER FEATURES: MUDDY, WEATHERED, FOSSILIFEROUS
 FOSSILS: MOLLUSKS, BENTHIC FORAMINIFERA, ECHINOID
 OSTRACODS
- 296.8- 298 CALCARENITE; GRAYISH BROWN TO LIGHT OLIVE GRAY
 04% POROSITY: INTERGRANULAR, FRACTURE
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: MICROCRYSTALLINE TO FINE; POOR INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX, CLAY MATRIX
 SEDIMENTARY STRUCTURES: INTERBEDDED
 ACCESSORY MINERALS: QUARTZ SAND-10%, PHOSPHATIC SAND-10%
 PHOSPHATIC GRAVEL-03%, CLAY-03%
 OTHER FEATURES: GRANULAR, SPECKLED, FOSSILIFEROUS
 FOSSILS: CORAL, MOLLUSKS, WORM TRACES
 CALCARENITE, SANDY, VERY WEATHERED MOLLUSK FRAGMENTS.

- 298 298.8 CLAY; OLIVE GRAY TO DARK GREENISH GRAY
 01% POROSITY: FRACTURE; POOR INDURATION
 CEMENT TYPE(S): CLAY MATRIX, CALCILUTITE MATRIX
 SEDIMENTARY STRUCTURES: INTERBEDDED, MOTTLED
 ACCESSORY MINERALS: QUARTZ SAND-15%, PHOSPHATIC GRAVEL-10%
 PHOSPHATIC GRAVEL-02%, CALCILUTITE-01%
 OTHER FEATURES: CALCAREOUS, FOSSILIFEROUS
 FOSSILS: MOLLUSKS, FOSSIL FRAGMENTS
- 298.8- 303.8 CALCILUTITE; YELLOWISH GRAY TO LIGHT OLIVE GRAY
 03% POROSITY: FRACTURE, INTERGRANULAR
 GRAIN TYPE: BIOGENIC, CALCILUTITE
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: CRYPTOCRYSTALLINE TO MICROCRYSTALLINE
 MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX, CLAY MATRIX
 SEDIMENTARY STRUCTURES: INTERBEDDED, MOTTLED
 ACCESSORY MINERALS: QUARTZ SAND-10%, PHOSPHATIC GRAVEL-10%
 PHOSPHATIC GRAVEL-01%, CLAY-01%
 OTHER FEATURES: PARTINGS, SPECKLED, WEATHERED
 FOSSILIFEROUS
 FOSSILS: ECHINOID, MOLLUSKS, FOSSIL FRAGMENTS
- 303.8- 308.8 CALCILUTITE; YELLOWISH GRAY TO LIGHT GREENISH GRAY 01% POROSITY: INTERGRANULAR, LOW PERMEABILITY GRAIN TYPE: CALCILUTITE
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: CRYPTOCRYSTALLINE TO MICROCRYSTALLINE
 GOOD INDURATION
 CEMENT TYPE(5): CALCILUTITE MATRIX, DOLOMITE CEMENT
 SEDIMENTARY STRUCTURES: INTERBEDDED, MASSIVE
 ACCESSORY MINERALS: PHOSPHATIC SAND-07%, QUARTZ SAND-05%
 PHOSPHATIC GRAVEL-01%, CALCITE-01%
 OTHER FEATURES: HIGH RECRYSTALLIZATION, PARTINGS, SPECKLED
 FOSSILIFEROUS
 FOSSILS: ECHINOID, MOLLUSKS, FOSSIL MOLDS
 CALCILUTITE, VERY HARD, NUMEROUS FILLED IN MOLDS-SOME
 CALCITE REPLACED. SOME ORGANICS.
- 308.8- 313 CALCARENITE; YELLOWISH GRAY TO LIGHT OLIVE GRAY
 10% POROSITY: INTERGRANULAR, FRACTURE, MOLDIC
 GRAIN TYPE: BIOGENIC, SKELETAL, SKELTAL CAST
 GRAIN SIZE: VERY FINE; RANGE: MICROCRYSTALLINE TO MEDIUM
 MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX, CLAY MATRIX
 SEDIMENTARY STRUCTURES: INTERBEDDED
 ACCESSORY MINERALS: PHOSPHATIC SAND-03%, QUARTZ SAND-02%
 CLAY-02%
 OTHER FEATURES: GRANULAR, CHALKY
 FOSSILS: ECHINOID, MOLLUSKS, FOSSIL MOLDS
- 313 333 CALCARENITE;
 10% POROSITY: INTERGRANULAR, MOLDIC
 POSSIBLY HIGH PERMEABILITY
 GRAIN TYPE: BIOGENIC, SKELETAL, SKELTAL CAST
 GRAIN SIZE: FINE; RANGE: MICROCRYSTALLINE TO MEDIUM
 POOR INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX, CLAY MATRIX
 SEDIMENTARY STRUCTURES: INTERBEDDED
 ACCESSORY MINERALS: CLAY-03%
 OTHER FEATURES: CHALKY
 FOSSILS: ECHINOID, MOLLUSKS, FOSSIL MOLDS
 CALCARENITE, VERY CLEAN, VERY MINOR ORGANICS, POORLY
 INDURATED SUWANNEE LIMESTONE.
- 333 341 CALCARENITE;
 10% POROSITY: INTERGRANULAR, MOLDIC
 POSSIBLY HIGH PERMEABILITY
 GRAIN TYPE: BIOGENIC, SKELETAL, SKELTAL CAST
 GRAIN SIZE: FINE; RANGE: MICROCRYSTALLINE TO FINE
 MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX

FOSSILS: FOSSIL FRAGMENTS CALCARENITE, CREAM-COLORED, VERY CLEAN, FEW INTERBEDDED MINERALS, TYPICAL SUWANNEE LIMESTONE CORE.

341 - 348.6 CALCILUTITE;

03% POROSITY: INTERGRANULAR, LOW PERMEABILITY

GRAIN TYPE: CALCILUTITE

GRAIN SIZE: MICROCRYSTALLINE

RANGE: CRYPTOCRYSTALLINE TO FINE; UNCONSOLIDATED CEMENT TYPE(S): CALCILUTITE MATRIX, CLAY MATRIX

SEDIMENTARY STRUCTURES: INTERBEDDED

ACCESSORY MINERALS: CLAY-15%

OTHER FEATURES: CHALKY, MUDDY

FOSSILS: MOLLUSKS, FOSSIL FRAGMENTS

348.6- 353 CALCILUTITE;

03% POROSITY: INTERGRANULAR, FRACTURE, LOW PERMEABILITY

GRAIN TYPE: CALCILUTITE

GRAIN SIZE: MICROCRYSTALLINE

RANGE: CRYPTOCRYSTALLINE TO FINE; MODERATE INDURATION

CEMENT TYPE(S): CALCILUTITE MATRIX SEDIMENTARY STRUCTURES: MASSIVE

ACCESSORY MINERALS: CLAY-01%

OTHER FEATURES: CHALKY

FOSSILS: ORGANICS

353 - 373.3 CALCARENITE;

03% POROSITY: INTERGRANULAR, FRACTURE

GRAIN TYPE: BIOGENIC, SKELETAL, SKELTAL CAST

GRAIN SIZE: FINE; RANGE: CRYPTOCRYSTALLINE TO FINE

MODERATE INDURATION

CEMENT TYPE(S): CALCILUTITE MATRIX

ACCESSORY MINERALS: DOLOMITE-01%

OTHER FEATURES: CHALKY

FOSSILS: CORAL, MOLLUSKS, ECHINOID

373.3- 377 CALCARENITE;

10% POROSITY: INTERGRANULAR, FRACTURE, MOLDIC

GRAIN TYPE: SKELETAL, SKELTAL CAST

GRAIN SIZE: MICROCRYSTALLINE

RANGE: CRYPTOCRYSTALLINE TO FINE; MODERATE INDURATION

CEMENT TYPE(S): CALCILUTITE MATRIX SEDIMENTARY STRUCTURES: MASSIVE

FOSSILS: CORAL

377 - 382.5 CALCILUTITE;

03% POROSITY: INTERGRANULAR, FRACTURE, LOW PERMEABILITY

GRAIN TYPE: BIOGENIC, CALCILUTITE, SKELTAL CAST

GRAIN SIZE: MICROCRYSTALLINE

RANGE: CRYPTOCRYSTALLINE TO MICROCRYSTALLINE

MODERATE INDURATION

CEMENT TYPE(S): CALCILUTITE MATRIX

SEDIMENTARY STRUCTURES: MASSIVE

ACCESSORY MINERALS: CLAY-01%

OTHER FEATURES: CHALKY

FOSSILS: MOLLUSKS, WORM TRACES

382.5- 390.5 CALCARENITE;

05% POROSITY: INTERGRANULAR, FRACTURE, MOLDIC

GRAIN TYPE: BIOGENIC, SKELETAL, SKELTAL CAST

GRAIN SIZE: MICROCRYSTALLINE

RANGE: MICROCRYSTALLINE TO FINE; MODERATE INDURATION

CEMENT TYPE(S): CALCILUTITE MATRIX, CLAY MATRIX SEDIMENTARY STRUCTURES: INTERBEDDED

ACCESSORY MINERALS: CLAY-04%

OTHER FEATURES: CHALKY

FOSSILS: ECHINOID, MOLLUSKS, BENTHIC FORAMINIFERA

CALCARENITE, FRACTURED, RUBBLE. SOME INTERBEDDED GREEN CLAY.

390.5- 402.1 CALCARENITE;

10% POROSITY: INTERGRANULAR, FRACTURE, MOLDIC

MODERATE INDURATION
CEMENT TYPE(S): CALCILUTITE MATRIX
ACCESSORY MINERALS: CALCITE-02%
FOSSILS: ECHINOID, MOLLUSKS, BENTHIC FORAMINIFERA, CORAL
CALCARENITE, MOLDIC, NUMEROUS MOLLUSK MOLDS. APPEARS VERY
PERMEABLE.

402.1- 403 CALCILUTITE;

CARLETACTICE,

02% POROSITY: FRACTURE, LOW PERMEABILITY

GRAIN TYPE: CALCILUTITE

GRAIN SIZE: MICROCRYSTALLINE

RANGE: CRYPTOCRYSTALLINE TO MICROCRYSTALLINE

UNCONSOLIDATED

CEMENT TYPE(S): CALCILUTITE MATRIX, CLAY MATRIX

SEDIMENTARY STRUCTURES: INTERBEDDED

ACCESSORY MINERALS: CLAY-30% FOSSILS: MOLLUSKS, FOSSIL MOLDS

403 - 405 CLAY;

01% POROSITY: FRACTURE, LOW PERMEABILITY; POOR INDURATION CEMENT TYPE(S): CLAY MATRIX, CALCILUTITE MATRIX ACCESSORY MINERALS: CALCILUTITE-02% OTHER FEATURES: CALCAREOUS, CHALKY

405 - 413 CALCILUTITE;

03% POROSITY: INTERGRANULAR, FRACTURE, LOW PERMEABILITY
GRAIN TYPE: CALCILUTITE, BIOGENIC
GRAIN SIZE: MICROCRYSTALLINE
RANGE: CRYPTOCRYSTALLINE TO MICROCRYSTALLINE
POOR INDURATION
CEMENT TYPE(S): CALCILUTITE MATRIX, CLAY MATRIX
SEDIMENTARY STRUCTURES: INTERBEDDED
ACCESSORY MINERALS: CLAY-05%, CHERT-05%
OTHER FEATURES: CHALKY
FOSSILS: MOLLUSKS, FOSSIL MOLDS
CALCILUTITE, RUBBLE. LARGE DOLOMITIC CHERT NODULE AT 412
FT.

413 - 418 CLAY;

01% POROSITY: FRACTURE, LOW PERMEABILITY; UNCONSOLIDATED CEMENT TYPE(S): CLAY MATRIX ACCESSORY MINERALS: CALCILUTITE-05% OTHER FEATURES: CHALKY FOSSILS: FOSSIL MOLDS

418 - 419 CALCARENITE;

05% POROSITY: INTERGRANULAR, FRACTURE
POSSIBLY HIGH PERMEABILITY
GRAIN TYPE: BIOGENIC, CALCILUTITE, SKELETAL
GRAIN SIZE: MICROCRYSTALLINE
RANGE: CRYPTOCRYSTALLINE TO FINE; POOR INDURATION
CEMENT TYPE(S): CLAY MATRIX, CALCILUTITE MATRIX
ACCESSORY MINERALS: CLAY-10%
OTHER FEATURES: CHALKY
FOSSILS: FOSSIL MOLDS

419 - 422.6 CLAY;

02% POROSITY: INTERGRANULAR, LOW PERMEABILITY MODERATE INDURATION
CEMENT TYPE(S): CLAY MATRIX, CALCILUTITE MATRIX ACCESSORY MINERALS: CALCILUTITE-05%
OTHER FEATURES: CHALKY, CALCAREOUS
FOSSILS: FOSSIL MOLDS, MOLLUSKS

422.6- 429 CALCARENITE;

05% POROSITY: INTERGRANULAR, FRACTURE GRAIN TYPE: BIOGENIC, SKELETAL, SKELTAL CAST GRAIN SIZE: FINE; RANGE: MICROCRYSTALLINE TO FINE POOR INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX ACCESSORY MINERALS: CLAY-05% OTHER FEATURES: CHALKY FOSSILS: MOLLUSKS, ECHINOID, BENTHIC FORAMINIFERA

429 - 433 CLAY;

02% POROSITY: FRACTURE, LOW PERMEABILITY; POOR INDURATION CEMENT TYPE(S): CLAY MATRIX, CALCILUTITE MATRIX ACCESSORY MINERALS: CALCILUTITE-05% OTHER FEATURES: CHALKY, CALCAREOUS FOSSILS: MOLLUSKS, BENTHIC FORAMINIFERA

433 - 438.5 CALCARENITE;

ONLOSTONE.

- 438.5- 478.1 CALCARENITE; VERY LIGHT ORANGE TO YELLOWISH GRAY
 15% POROSITY: INTERGRANULAR, FRACTURE, MOLDIC
 GRAIN TYPE: BIOGENIC, SKELETAL, SKELTAL CAST
 GRAIN SIZE: FINE; RANGE: MICROCRYSTALLINE TO MEDIUM
 MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 SEDIMENTARY STRUCTURES: MASSIVE
 ACCESSORY MINERALS: CALCILUTITE-02%
 OTHER FEATURES: GRANULAR, MEDIUM RECRYSTALLIZATION
 FOSSILS: ECHINOID, BENTHIC FORAMINIFERA, MOLLUSKS
 FOSSIL MOLDS, CORAL
 CALCARENITE, MOLDIC, HIGHLY PERMEABLE, POSSIBLE FAULT
 SURFACE AT 447.5 FT.
- 478.1- 482.6 CLAY; WHITE TO YELLOWISH GRAY

 02% POROSITY: INTERGRANULAR, LOW PERMEABILITY
 UNCONSOLIDATED

 CEMENT TYPE(S): CLAY MATRIX, CALCILUTITE MATRIX
 ACCESSORY MINERALS: CALCILUTITE-10%
 OTHER FEATURES: CALCAREOUS, CHALKY
- 482.6- 489

 CALCARENITE; VERY LIGHT ORANGE TO YELLOWISH GRAY 10% POROSITY: INTERGRANULAR, FRACTURE, MOLDIC GRAIN TYPE: BIOGENIC, SKELETAL, SKELTAL CAST GRAIN SIZE: FINE; RANGE: MICROCRYSTALLINE TO MEDIUM MODERATE INDURATION

 CEMENT TYPE(S): CALCILUTITE MATRIX
 SEDIMENTARY STRUCTURES: MASSIVE
 ACCESSORY MINERALS: CLAY-02%
 OTHER FEATURES: GRANULAR
 FOSSILS: BENTHIC FORAMINIFERA, MOLLUSKS
- 489 493 CLAY; WHITE TO YELLOWISH GRAY
 02% POROSITY: INTERGRANULAR, LOW PERMEABILITY
 UNCONSOLIDATED
 CEMENT TYPE(S): CLAY MATRIX, CALCILUTITE MATRIX
 ACCESSORY MINERALS: CALCILUTITE-10%
 OTHER FEATURES: CALCAREOUS, CHALKY
- 493 518.6 CALCARENITE; VERY LIGHT ORANGE TO YELLOWISH GRAY
 10% POROSITY: INTERGRANULAR, FRACTURE, MOLDIC
 GRAIN TYPE: BIOGENIC, SKELETAL, SKELTAL CAST
 GRAIN SIZE: FINE; RANGE: MICROCRYSTALLINE TO MEDIUM
 MODERATE INDURATION
 CEMENT TYPE(S): CLAY MATRIX
 ACCESSORY MINERALS: CALCITE-01%, CLAY-05%
 FOSSILS: CORAL, ECHINOID, MOLLUSKS, BENTHIC FORAMINIFERA
 CALCARENITE, FOSSILIFEROUS, MOLDIC. SOME UNCONSOLIDATED
 CALCAREOUS CLAY LENSES.

- 518.6- 523.6 CLAY; WHITE TO YELLOWISH GRAY
 01% POROSITY: INTERGRANULAR, LOW PERMEABILITY
 UNCONSOLIDATED
 ACCESSORY MINERALS: CALCILUTITE-05%
 OTHER FEATURES: CALCAREOUS, CHALKY
- 523.6- 535 CALCARENITE; VERY LIGHT ORANGE TO YELLOWISH GRAY 05% POROSITY: INTERGRANULAR, FRACTURE GRAIN TYPE: BIOGENIC, SKELETAL, SKELTAL CAST GRAIN SIZE: FINE; RANGE: MICROCRYSTALLINE TO MEDIUM MODERATE INDURATION

 CEMENT TYPE(S): CALCILUTITE MATRIX, CLAY MATRIX ACCESSORY MINERALS: CLAY-10%

 OTHER FEATURES: CHALKY, GRANULAR
 FOSSILS: ECHINOID, BENTHIC FORAMINIFERA, MOLLUSKS
- 535 568 CLAY; WHITE TO YELLOWISH GRAY

 02% POROSITY: INTERGRANULAR, LOW PERMEABILITY

 UNCONSOLIDATED

 CEMENT TYPE(S): CLAY MATRIX, CALCILUTITE MATRIX

 ACCESSORY MINERALS: CALCILUTITE-25%

 OTHER FEATURES: CALCAREOUS, CHALKY

 FOSSILS: BENTHIC FORAMINIFERA, MOLLUSKS

 CLAY, CALCAREOUS, INTERLAYERED WITH CALCARENITE LENSES.
- 568 576 CALCARENITE; YELLOWISH GRAY TO YELLOWISH GRAY
 10% POROSITY: INTERGRANULAR, FRACTURE, MOLDIC
 GRAIN TYPE: BIOGENIC, PELLET, SKELETAL
 GRAIN SIZE: FINE; RANGE: VERY FINE TO COARSE
 MODERATE INDURATION
 CEMENT TYPE(5): CALCILUTITE MATRIX, CLAY MATRIX
 SEDIMENTARY STRUCTURES: INTERBEDDED
 ACCESSORY MINERALS: CLAY-10%, ORGANICS-01%
 OTHER FEATURES: GRANULAR, MUDDY, WEATHERED
 FOSSILS: MOLLUSKS, ECHINOID, BENTHIC FORAMINIFERA
 FOSSIL FRAGMENTS
 CALCARENITE, INCREASING ORGANICS CONTENT, INTERBEDDED GRAY
 CLAY LENSES. VERY WEATHERED.
- 576 593 CLAY; LIGHT GRAY TO YELLOWISH GRAY
 01% POROSITY: INTERGRANULAR, LOW PERMEABILITY
 POOR INDURATION
 CEMENT TYPE(S): CLAY MATRIX, CALCILUTITE MATRIX
 ACCESSORY MINERALS: CALCILUTITE- %
 OTHER FEATURES: CALCAREOUS
- 593 620.5 CALCARENITE; YELLOWISH GRAY TO YELLOWISH GRAY
 10% POROSITY: INTERGRANULAR, VUGULAR
 GRAIN TYPE: BIOGENIC, PELLET, SKELETAL
 GRAIN SIZE: MEDIUM; RANGE: VERY FINE TO COARSE
 MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX, CLAY MATRIX
 ACCESSORY MINERALS: CLAY-10%, ORGANICS-03%
 OTHER FEATURES: GRANULAR, SUCROSIC, FOSSILIFEROUS
 FOSSILS: ECHINOID, BENTHIC FORAMINIFERA, MOLLUSKS
 CALCARENITE, FOSSILIFEROUS, VERY WEATHERED, INTERLAYERED
 WITH CALCAREOUS CLAY ZONES.
- 620.5- 623 CALCARENITE; YELLOWISH GRAY TO YELLOWISH GRAY
 15% POROSITY: INTERGRANULAR, MOLDIC, VUGULAR
 GRAIN TYPE: BIOGENIC, PELLET, SKELETAL
 MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 ACCESSORY MINERALS: CLAY-05%, ORGANICS-03%
 OTHER FEATURES: SUCROSIC, WEATHERED, GRANULAR
 FOSSILS: ECHINOID, BENTHIC FORAMINIFERA, MOLLUSKS
- 623 639 CALCARENITE; YELLOWISH GRAY TO VERY LIGHT GRAY 06% POROSITY: INTERGRANULAR GRAIN TYPE: BIOGENIC, CALCILUTITE, SKELETAL 80% ALLOCHEMICAL CONSTITUENTS

GRAIN SIZE: VERY FINE; RANGE: FINE TO MICROCRYSTALLINE MODERATE INDURATION
CEMENT TYPE(S): CALCILUTITE MATRIX
SEDIMENTARY STRUCTURES: INTERBEDDED, GRADED BEDDING
ACCESSORY MINERALS: CALCILUTITE-20%, ORGANICS-01%
OTHER FEATURES: GRANULAR
FOSSILS: ORGANICS, WORM TRACES, MOLLUSKS
INTERBEDDED GRANULAR VERY FINE CALCARENITE AND POORLY
INDURATED GRAINY CALCILUTITE. MAY DISPLAY FINING-UPWARD
SEQUENCES. ORGANIC SPECKS AND ALTERED CALCARENITE GRAINS
ARE COMMON.

- 639 640 CALCARENITE; VERY LIGHT ORANGE
 24% POROSITY: INTERGRANULAR, MOLDIC
 GRAIN TYPE: SKELETAL, BIOGENIC, CALCILUTITE
 95% ALLOCHEMICAL CONSTITUENTS
 GRAIN SIZE: FINE; RANGE: MEDIUM TO MICROCRYSTALLINE
 MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 ACCESSORY MINERALS: CALCILUTITE-05%
 OTHER FEATURES: FOSSILIFEROUS, GRANULAR
 FOSSILS: FOSSIL FRAGMENTS, MOLLUSKS, WORM TRACES
- 640 644.5 CALCARENITE; YELLOWISH GRAY TO VERY LIGHT GRAY
 16% POROSITY: INTERGRANULAR
 GRAIN TYPE: BIOGENIC, CALCILUTITE, SKELETAL
 90% ALLOCHEMICAL CONSTITUENTS
 GRAIN SIZE: VERY FINE; RANGE: FINE TO MICROCRYSTALLINE
 MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 SEDIMENTARY STRUCTURES: CROSS-BEDDED, BANDED
 ACCESSORY MINERALS: CALCILUTITE-10%, ORGANICS-01%
 OTHER FEATURES: GRANULAR
 FOSSILS: ORGANICS, FOSSIL FRAGMENTS
 GRANULAR VERY FINE CALCARENITE, FAINTLY CROSS-BEDDED WITH
 SLIGHTLY ALTERED LAMINAE. ORGANIC SPECKS COMMON.
- 644.5- 662 CALCARENITE; VERY LIGHT ORANGE
 22% POROSITY: INTERGRANULAR
 GRAIN TYPE: SKELETAL, BIOGENIC, CALCILUTITE
 85% ALLOCHEMICAL CONSTITUENTS
 GRAIN SIZE: FINE; RANGE: MEDIUM TO MICROCRYSTALLINE
 MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 SEDIMENTARY STRUCTURES: INTERBEDDED
 ACCESSORY MINERALS: CALCILUTITE-15%
 OTHER FEATURES: FOSSILIFEROUS, GRANULAR
 FOSSILS: MILIOLIDS, FOSSIL FRAGMENTS
 INTERBEDDED FINE SKELETAL/GRANULAR PACKSTONE AND POORLY
 CONSOLIDATED GRAINY CALCILUTITE. HARD, THIN CALCILUTITE
 STRINGERS AT 659 FT. VARIABLY PERMEABLE.
- 662 668.5 LIMESTONE; VERY LIGHT ORANGE TO WHITE
 20% POROSITY: MOLDIC, INTERGRANULAR
 GRAIN TYPE: BIOGENIC, CALCILUTITE, SKELTAL CAST
 45% ALLOCHEMICAL CONSTITUENTS
 GRAIN SIZE: MEDIUM; RANGE: MEDIUM TO MICROCRYSTALLINE
 MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 ACCESSORY MINERALS: CALCILUTITE-55%, CALCARENITE-45%
 OTHER FEATURES: FOSSILIFEROUS, LOW RECRYSTALLIZATION
 FOSSILS: FOSSIL MOLDS, MOLLUSKS, FOSSIL FRAGMENTS
 VARIABLY HARD, VARIABLY MOLDIC.
- 668.5- 674.5 CALCARENITE; YELLOWISH GRAY TO VERY LIGHT ORANGE
 14% POROSITY: INTERGRANULAR
 GRAIN TYPE: BIOGENIC, CALCILUTITE, SKELETAL
 60% ALLOCHEMICAL CONSTITUENTS
 GRAIN SIZE: VERY FINE; RANGE: VERY FINE TO MICROCRYSTALLINE
 MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 ACCESSORY MINERALS: CALCILUTITE-40%

OTHER FEATURES: GRANULAR FOSSILS: FOSSIL FRAGMENTS VERY FINE CALCARENITE.

674.5- 678 CALCILUTITE; WHITE

12% POROSITY: LOW PERMEABILITY, INTERGRANULAR

GRAIN TYPE: CALCILUTITE, BIOGENIC

05% ALLOCHEMICAL CONSTITUENTS

GRAIN SIZE: MICROCRYSTALLINE

RANGE: VERY FINE TO MICROCRYSTALLINE; POOR INDURATION

CEMENT TYPE(S): CALCILUTITE MATRIX

OTHER FEATURES: CHALKY

CHALKY, POOR TO MODERATELY INDURATED. (OCALA TYPE?)

- 678 683 NO SAMPLES
 CUTTINGS COLLECTED THROUGH INTERVAL SUGGEST POORLY
 INDURATED VERY FINE CALCARENITE, BUT MAY CONSIST OF
 PREVIOUS CHALKY CALCILUTITE.
- 683 686 SHELL BED; LIGHT GRAY TO WHITE
 40% POROSITY: POSSIBLY HIGH PERMEABILITY, MOLDIC
 INTERGRANULAR; POOR INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 SEDIMENTARY STRUCTURES: INTERBEDDED
 ACCESSORY MINERALS: CALCILUTITE-25%
 OTHER FEATURES: FOSSILIFEROUS, SPLINTERY
 MEDIUM RECRYSTALLIZATION
 FOSSILS: MOLLUSKS
 PERMEABLE BED OF RECRYSTALLIZED OYSTER SHELL WITH INTERBEDS
 OF POORLY PERMEABLE, WHITE, POOR TO MEDIUM INDURATED
 CALCILUTITE. (OCALA TYPE?).
- 686 687 LIMESTONE; VERY LIGHT ORANGE TO WHITE
 20% POROSITY: MOLDIC, INTERGRANULAR
 GRAIN TYPE: BIOGENIC, CALCILUTITE, SKELTAL CAST
 45% ALLOCHEMICAL CONSTITUENTS
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: MICROCRYSTALLINE TO VERY FINE; GOOD INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 ACCESSORY MINERALS: CALCILUTITE-55%
 OTHER FEATURES: FOSSILIFEROUS, MEDIUM RECRYSTALLIZATION
 FOSSILS: MOLLUSKS, FOSSIL MOLDS
 MOLLUSK MOLDS AND CASTS IN HARD SOMEWHAT RECRYSTALLIZED
 LIMESTONE. SOME RECRYSTALLIZED OYSTER SHELLS. SUWANNEE-TYPE
 LITHOLOGY.
- 687 708.5 CALCARENITE; YELLOWISH GRAY
 14% POROSITY: INTERGRANULAR, LOW PERMEABILITY
 GRAIN TYPE: BIOGENIC, CALCILUTITE
 55% ALLOCHEMICAL CONSTITUENTS
 GRAIN SIZE: VERY FINE; RANGE: MICROCRYSTALLINE TO VERY FINE
 MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 ACCESSORY MINERALS: CALCILUTITE-45%
 OTHER FEATURES: GRANULAR, CHALKY
 FOSSILS: FOSSIL MOLDS, BENTHIC FORAMINIFERA
 OCALA TYPE LITHOLOGY ALTHOUGH TRACES OF MOLLUSK MOLDS. VERY
 FEW LEPIDOCYCLINA NEAR BOTTOM OF INTERVAL.
- 708.5- 713.8 CALCARENITE; VERY LIGHT ORANGE TO YELLOWISH GRAY
 10% POROSITY: INTERGRANULAR, FRACTURE, PIN POINT VUGS
 GRAIN TYPE: BIOGENIC, CALCILUTITE
 GRAIN SIZE: VERY FINE; RANGE: MICROCRYSTALLINE TO FINE
 POOR INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 ACCESSORY MINERALS: CALCILUTITE-30%
 OTHER FEATURES: GRANULAR, CHALKY
 FOSSILS: MOLLUSKS, BENTHIC FORAMINIFERA, FOSSIL FRAGMENTS
- 713.8- 717.9 CALCARENITE; VERY LIGHT ORANGE TO MODERATE GRAY
 10% POROSITY: INTERGRANULAR, FRACTURE, LOW PERMEABILITY
 GRAIN TYPE: BIOGENIC, CALCILUTITE

GRAIN SIZE: MICROCRYSTALLINE
RANGE: CRYPTOCRYSTALLINE TO VERY FINE; UNCONSOLIDATED
CEMENT TYPE(S): CALCILUTITE MATRIX
ACCESSORY MINERALS: CALCILUTITE-45%, CLAY-05%
OTHER FEATURES: CHALKY
FOSSILS: MOLLUSKS, BENTHIC FORAMINIFERA, FOSSIL FRAGMENTS

- 717.9- 743 CALCARENITE; VERY LIGHT ORANGE TO YELLOWISH GRAY
 10% POROSITY: INTERGRANULAR, FRACTURE, PIN POINT VUGS
 GRAIN TYPE: BIOGENIC, CALCILUTITE
 GRAIN SIZE: VERY FINE; RANGE: MICROCRYSTALLINE TO VERY FINE
 POOR INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 ACCESSORY MINERALS: CALCILUTITE-45%
 OTHER FEATURES: CHALKY
 FOSSILS: MOLLUSKS, BENTHIC FORAMINIFERA, FOSSIL FRAGMENTS
 VERY WEATHERED LEPIDOCYCLINA FRAGMENTS. ALSO MOLLUSK MOLDS.
- 743 748 LIMESTONE; VERY LIGHT ORANGE TO WHITE
 05% POROSITY: INTERGRANULAR, FRACTURE, PIN POINT VUGS
 GRAIN TYPE: BIOGENIC, CALCILUTITE
 GRAIN SIZE: VERY FINE; RANGE: CRYPTOCRYSTALLINE TO FINE
 POOR INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 ACCESSORY MINERALS: CALCILUTITE-40%
 OTHER FEATURES: CHALKY
 FOSSILS: FOSSIL FRAGMENTS
 VERY FINE-GRAINED, NEARLY WHITE IN COLOR. VERY WEATHERED.
- 748 754 CALCARENITE; VERY LIGHT ORANGE
 10% POROSITY: INTERGRANULAR, FRACTURE, MOLDIC
 GRAIN TYPE: BIOGENIC, SKELETAL, SKELTAL CAST
 GRAIN SIZE: VERY FINE; RANGE: CRYPTOCRYSTALLINE TO COARSE
 MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 SEDIMENTARY STRUCTURES: INTERBEDDED
 ACCESSORY MINERALS: CALCILUTITE-25%, QUARTZ SAND-02%
 CALCITE-01%
 OTHER FEATURES: CHALKY, REEFAL, FOSSILIFEROUS
 FOSSILS: ECHINOID, MOLLUSKS, BENTHIC FORAMINIFERA
 FOSSIL MOLDS
- 754 783 CALCARENITE; VERY LIGHT ORANGE
 05% POROSITY: FRACTURE, PIN POINT VUGS
 GRAIN TYPE: BIOGENIC, CALCILUTITE, SKELETAL
 GRAIN SIZE: VERY FINE; RANGE: MICROCRYSTALLINE TO MEDIUM
 POOR INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 ACCESSORY MINERALS: CALCILUTITE-25%, PHOSPHATIC SAND-01%
 OTHER FEATURES: CHALKY
 FOSSILS: ECHINOID, BENTHIC FORAMINIFERA, FOSSIL FRAGMENTS
 VERY FINE-GRAINED NUMEROUS FORAMS. VERY WEATHERED.
- 783 788 SILT; YELLOWISH GRAY TO LIGHT OLIVE GRAY
 20% POROSITY: INTERGRANULAR, POSSIBLY HIGH PERMEABILITY
 UNCONSOLIDATED
 SEDIMENTARY STRUCTURES: INTERBEDDED
 ACCESSORY MINERALS: PHOSPHATIC SAND-20%
 OTHER FEATURES: CALCAREOUS, GRANULAR, SPECKLED
- 788 793.5 LIMESTONE; YELLOWISH GRAY
 03% POROSITY: FRACTURE, LOW PERMEABILITY
 GRAIN TYPE: BIOGENIC, CALCILUTITE
 GRAIN SIZE: VERY FINE; RANGE: MICROCRYSTALLINE TO VERY FINE
 MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 SEDIMENTARY STRUCTURES: MASSIVE
 ACCESSORY MINERALS: CALCILUTITE-40%
 OTHER FEATURES: CHALKY
 FOSSILS: MOLLUSKS, ECHINOID, BENTHIC FORAMINIFERA
- 793.5- 832 CALCARENITE; YELLOWISH GRAY

14% POROSITY: INTERGRANULAR, LOW PERMEABILITY GRAIN TYPE: BIOGENIC, CALCILUTITE, SKELETAL 60% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: VERY FINE; RANGE: MICROCRYSTALLINE TO VERY FINE MODERATE INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX ACCESSORY MINERALS: CALCILUTITE-40% OTHER FEATURES: FOSSILIFEROUS, CHALKY FOSSILS: BENTHIC FORAMINIFERA, FOSSIL FRAGMENTS VERY FINE CALCARENITE WITH MUCH CALCILUTITE MATRIX. VARIABLE CONCENTRATION OF NUMMULITES AND LEPIDOCYCLINA CRYSTALLINE SKELETONS (10-30% OF UNIT).

- 832 834 CALCILUTITE; YELLOWISH GRAY
 10% POROSITY: INTERGRANULAR, LOW PERMEABILITY
 GRAIN TYPE: CALCILUTITE, BIOGENIC, SKELETAL
 15% ALLOCHEMICAL CONSTITUENTS
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: MICROCRYSTALLINE TO VERY FINE; MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 ACCESSORY MINERALS: CALCARENITE-15%, CLAY-05%
 OTHER FEATURES: CHALKY, FOSSILIFEROUS
 FOSSILS: BENTHIC FORAMINIFERA, FOSSIL FRAGMENTS
 THIN BED CONTAINS MINOR CLAY FRACTION. TIGHT. FEWER
 NUMMULITES AND LEPIDOYCLINA.
- 834 852 CALCARENITE; YELLOWISH GRAY
 14% POROSITY: INTERGRANULAR, LOW PERMEABILITY
 GRAIN TYPE: BIOGENIC, CALCILUTITE, SKELETAL
 70% ALLOCHEMICAL CONSTITUENTS
 GRAIN SIZE: VERY FINE; RANGE: MICROCRYSTALLINE TO VERY FINE
 MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 ACCESSORY MINERALS: CALCILUTITE-30%
 OTHER FEATURES: FOSSILIFEROUS, CHALKY
 FOSSILS: BENTHIC FORAMINIFERA, FOSSIL FRAGMENTS
 SIMILAR TO INTERVAL NEAR 832. 10-30% NUMMULITES AND
 LEPIDOCYCLINA SKELETONS (CRYSTALLINE).
- 852 855.5 CALCARENITE; YELLOWISH GRAY
 10% POROSITY: INTERGRANULAR, LOW PERMEABILITY
 GRAIN TYPE: BIOGENIC, CALCILUTITE, SKELETAL
 55% ALLOCHEMICAL CONSTITUENTS
 GRAIN SIZE: VERY FINE; RANGE: MICROCRYSTALLINE TO VERY FINE
 MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 ACCESSORY MINERALS: CALCILUTITE-45%
 OTHER FEATURES: CHALKY, FOSSILIFEROUS
 FOSSILS: BENTHIC FORAMINIFERA, FOSSIL FRAGMENTS
 SOME FAINT BANDING. CRYSTALLINE NUMMULITES AND
 LEPIDOCYCLINA SKELETONS. A FEW GRAY DOLOMITIC(?) SKELETONS
 INCORPORATING ORGANIC SPECKS.
- 855.5- 863.5 CALCARENITE; YELLOWISH GRAY
 14% POROSITY: INTERGRANULAR, LOW PERMEABILITY
 GRAIN TYPE: BIOGENIC, CALCILUTITE, SKELETAL
 75% ALLOCHEMICAL CONSTITUENTS
 GRAIN SIZE: VERY FINE; RANGE: MICROCRYSTALLINE TO VERY FINE
 MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 ACCESSORY MINERALS: CALCILUTITE-25%
 OTHER FEATURES: FOSSILIFEROUS, CHALKY
 FOSSILS: BENTHIC FORAMINIFERA, FOSSIL FRAGMENTS
 GENERALLY 15-25% SKELETAL FRAGMENTS (NUMMULITES AND
 LEPIDOCYCLINA). TRACES OF IRREGULAR GRAY BANDING IN MATRIX.
- 863.5- 878 CALCARENITE; YELLOWISH GRAY
 16% POROSITY: INTERGRANULAR, LOW PERMEABILITY
 GRAIN TYPE: BIOGENIC, CALCILUTITE, SKELETAL
 75% ALLOCHEMICAL CONSTITUENTS
 GRAIN SIZE: VERY FINE; RANGE: MICROCRYSTALLINE TO FINE
 MODERATE INDURATION

CEMENT TYPE(S): CALCILUTITE MATRIX
ACCESSORY MINERALS: CALCILUTITE-25%, ORGANICS-01%
OTHER FEATURES: FOSSILIFEROUS, CHALKY
FOSSILS: BENTHIC FORAMINIFERA, FOSSIL FRAGMENTS, ORGANICS
SIMILAR TO PREVIOUS INTERVAL BUT CONTAINS 2% ALTERED
(DOLOMITIC?) SKELETAL FRAGMENTS. ALTERED FRAGMENTS OFTEN
CONTAIN ORGANIC SPECKS.

- 878 883 CALCARENITE; YELLOWISH GRAY
 12% POROSITY: INTERGRANULAR, LOW PERMEABILITY
 GRAIN TYPE: BIOGENIC, CALCILUTITE, SKELETAL
 60% ALLOCHEMICAL CONSTITUENTS
 GRAIN SIZE: VERY FINE; RANGE: MICROCRYSTALLINE TO VERY FINE
 MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 SEDIMENTARY STRUCTURES: BANDED
 ACCESSORY MINERALS: CALCILUTITE-40%
 OTHER FEATURES: CHALKY, FOSSILIFEROUS
 FOSSILS: BENTHIC FORAMINIFERA, FOSSIL FRAGMENTS
 UNIT CONTAINS LESS FORAMS. FAINT GRAY BANDING MAY INDICATE
 MINOR DOLOMITIZATION.
- 883 901 CALCARENITE; YELLOWISH GRAY
 16% POROSITY: INTERGRANULAR, LOW PERMEABILITY
 GRAIN TYPE: BIOGENIC, CALCILUTITE, SKELETAL
 60% ALLOCHEMICAL CONSTITUENTS
 GRAIN SIZE: VERY FINE; RANGE: MICROCRYSTALLINE TO VERY FINE
 MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 ACCESSORY MINERALS: CALCILUTITE-40%
 OTHER FEATURES: FOSSILIFEROUS, CHALKY
 FOSSILS: BENTHIC FORAMINIFERA, FOSSIL FRAGMENTS
 CONTAINS CRYSTALLINE FORAM TESTS (LEPIDOCYCLINA AND
 NUMMULTIES) IN CONCENTRATIONS OF 20-35%. APPROXIMATELY 1-2%
 OF FORAMS ARE ALTERED TO GRAY COLORED.
- 901 908 CALCARENITE; YELLOWISH GRAY TO LIGHT OLIVE GRAY
 12% POROSITY: INTERGRANULAR, LOW PERMEABILITY
 GRAIN TYPE: BIOGENIC, CALCILUTITE, SKELETAL
 55% ALLOCHEMICAL CONSTITUENTS
 GRAIN SIZE: VERY FINE; RANGE: MICROCRYSTALLINE TO VERY FINE
 MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 ACCESSORY MINERALS: CALCILUTITE-45%
 OTHER FEATURES: CHALKY, FOSSILIFEROUS
 FOSSILS: BENTHIC FORAMINIFERA, FOSSIL FRAGMENTS
 FORAM SKELETONS ARE CHALKIER AND COMPOSE APPROXIMATELY
 10-20% OF UNIT. MOSTLY LEPIDOCYCLINA. ROCK MATRIX DARKENS
 SLIGHTLY.
- 908 928 CALCARENITE; YELLOWISH GRAY TO LIGHT OLIVE GRAY
 05% POROSITY: FRACTURE
 GRAIN TYPE: BIOGENIC, SKELETAL, SKELTAL CAST
 GRAIN SIZE: VERY FINE; RANGE: MICROCRYSTALLINE TO FINE
 MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 ACCESSORY MINERALS: CALCILUTITE-40%
 OTHER FEATURES: CHALKY, FOSSILIFEROUS
 FOSSILS: BENTHIC FORAMINIFERA, FOSSIL FRAGMENTS
 VERY LARGE FORAMS, LEPIDOCYCLINA COMPRISING 25% OF MATRIX.
- 928 932.5 CALCILUTITE; YELLOWISH GRAY
 05% POROSITY: INTERGRANULAR, FRACTURE, LOW PERMEABILITY
 GRAIN TYPE: CALCILUTITE, SKELETAL
 10% ALLOCHEMICAL CONSTITUENTS
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: MICROCRYSTALLINE TO VERY FINE; GOOD INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 SEDIMENTARY STRUCTURES: MASSIVE
 OTHER FEATURES: CHALKY, FOSSILIFEROUS
 FOSSILS: BENTHIC FORAMINIFERA, FOSSIL FRAGMENTS
 FEWER LARGE FORAMS, MATRIX GRAINS FINER, BECOMING

OOLOMITIC.

- 932.5- 934 LIMESTONE; YELLOWISH GRAY
 03% POROSITY: INTERGRANULAR, FRACTURE, LOW PERMEABILITY
 GRAIN TYPE: CALCILUTITE, SKELETAL, SKELTAL CAST
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: MICROCRYSTALLINE TO VERY FINE; GOOD INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 SEDIMENTARY STRUCTURES: MASSIVE
 ACCESSORY MINERALS: CALCILUTITE-30%
 OTHER FEATURES: CHALKY, FOSSILIFEROUS
 FOSSILS: BENTHIC FORAMINIFERA, FOSSIL FRAGMENTS
 SLIGHTLY LARGER GRAIN SIZE, NUMMULITES INCREASING, DARKER.
- 934 939.5 DOLOSTONE; YELLOWISH GRAY TO LIGHT OLIVE GRAY
 05% POROSITY: INTERGRANULAR, FRACTURE, LOW PERMEABILITY
 10-50% ALTERED; ANHEDRAL
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: CRYPTOCRYSTALLINE TO MICROCRYSTALLINE
 POOR INDURATION
 CEMENT TYPE(S): DOLOMITE CEMENT, CALCILUTITE MATRIX
 ACCESSORY MINERALS: CALCILUTITE-30%
 OTHER FEATURES: CALCAREOUS, CHALKY, FOSSILIFEROUS
 FOSSILS: BENTHIC FORAMINIFERA, FOSSIL FRAGMENTS
- 939.5- 941.2 CALCILUTITE; YELLOWISH GRAY
 03% POROSITY: INTERGRANULAR, FRACTURE, LOW PERMEABILITY
 GRAIN TYPE: CALCILUTITE, SKELETAL, SKELTAL CAST
 90% ALLOCHEMICAL CONSTITUENTS
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: CRYPTOCRYSTALLINE TO MICROCRYSTALLINE
 GOOD INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX, DOLOMITE CEMENT
 OTHER FEATURES: CHALKY, FOSSILIFEROUS
 FOSSILS: BENTHIC FORAMINIFERA, FOSSIL FRAGMENTS
- 941.2- 944 CALCILUTITE; YELLOWISH GRAY
 03% POROSITY: INTERGRANULAR, FRACTURE
 GRAIN TYPE: BIOGENIC, CALCILUTITE, SKELETAL
 90% ALLOCHEMICAL CONSTITUENTS
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: CRYPTOCRYSTALLINE TO MICROCRYSTALLINE
 POOR INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 OTHER FEATURES: CHALKY, FOSSILIFEROUS
 FOSSILS: BENTHIC FORAMINIFERA, FOSSIL FRAGMENTS
- 944 949 CALCILUTITE; YELLOWISH GRAY
 03% POROSITY: INTERGRANULAR, FRACTURE, LOW PERMEABILITY
 GRAIN TYPE: BIOGENIC, CALCILUTITE, SKELETAL
 90% ALLOCHEMICAL CONSTITUENTS
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE
 GOOD INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 OTHER FEATURES: CHALKY, FOSSILIFEROUS
 FOSSILS: BENTHIC FORAMINIFERA, FOSSIL FRAGMENTS
- 949 959 CALCILUTITE; YELLOWISH GRAY TO LIGHT OLIVE GRAY
 03% POROSITY: INTERGRANULAR, FRACTURE, LOW PERMEABILITY
 GRAIN TYPE: BIOGENIC, CALCILUTITE, SKELETAL
 GOOD INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 ACCESSORY MINERALS: DOLOMITE-05%
 OTHER FEATURES: CHALKY, FOSSILIFEROUS
 FOSSILS: BENTHIC FORAMINIFERA, FOSSIL FRAGMENTS
 CALCILUTITE, VERY FINE-GRAINED, DOLOMITIC, NUMEROUS
 NUMMULITES, FEWER LEPIDOCYCLINA.
- 959 965.5 DOLOSTONE; LIGHT OLIVE GRAY TO MODERATE OLIVE BROWN
 15% POROSITY: INTERGRANULAR, FRACTURE, MOLDIC
 10-50% ALTERED; SUBHEDRAL

GRAIN SIZE: MEDIUM; RANGE: FINE TO COARSE; GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT SEDIMENTARY STRUCTURES: MASSIVE ACCESSORY MINERALS: FELDSPAR-01% OTHER FEATURES: SUCROSIC, CRYSTALLINE, FOSSILIFEROUS FOSSILS: BENTHIC FORAMINIFERA DOLOSTONE, CRYSTALLINE, NUMEROUS MOLDS. APPEARS HIGHLY PERMEABLE.

- 965.5- 966 LIMESTONE; YELLOWISH GRAY TO DARK GRAYISH YELLOW
 05% POROSITY: FRACTURE
 GRAIN TYPE: BIOGENIC; 95% ALLOCHEMICAL CONSTITUENTS
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: CRYPTOCRYSTALLINE TO MICROCRYSTALLINE
 MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX, DOLOMITE CEMENT
 ACCESSORY MINERALS: DOLOMITE-05%
 OTHER FEATURES: DOLOMITIC
- 966 968 CLAY; WHITE TO YELLOWISH GRAY
 03% POROSITY: FRACTURE, LOW PERMEABILITY; UNCONSOLIDATED
 CEMENT TYPE(S): CLAY MATRIX, CALCILUTITE MATRIX
 SEDIMENTARY STRUCTURES: INTERBEDDED
 ACCESSORY MINERALS: CALCILUTITE-30%
 OTHER FEATURES: CALCAREOUS
 CALCAREOUS CLAY, UNCONSOLIDATED.
- 968 969.5 DOLOSTONE; YELLOWISH GRAY TO LIGHT OLIVE GRAY
 03% POROSITY: FRACTURE, LOW PERMEABILITY; 10-50% ALTERED
 ANHEDRAL
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: CRYPTOCRYSTALLINE TO MICROCRYSTALLINE
 GOOD INDURATION
 CEMENT TYPE(S): DOLOMITE CEMENT
 SEDIMENTARY STRUCTURES: MASSIVE
 ACCESSORY MINERALS: LIMESTONE-05%
 OTHER FEATURES: CALCAREOUS, FOSSILIFEROUS
 FOSSILS: FOSSIL MOLDS
 DOLOSTONE, HARD LENS, GRADES INTO A CALCAREOUS CLAY.
- 969.5- 970 CLAY; YELLOWISH GRAY TO LIGHT OLIVE GRAY
 02% POROSITY: FRACTURE, LOW PERMEABILITY; POOR INDURATION
 CEMENT TYPE(S): CLAY MATRIX, CALCILUTITE MATRIX
 DOLOMITE CEMENT
 SEDIMENTARY STRUCTURES: INTERBEDDED
 ACCESSORY MINERALS: LIMESTONE-03%, DOLOMITE-02%
 OTHER FEATURES: CALCAREOUS
- 970 974 CALCARENITE; VERY LIGHT ORANGE TO YELLOWISH GRAY
 15% POROSITY: INTERGRANULAR, FRACTURE, MOLDIC
 GRAIN TYPE: BIOGENIC, SKELETAL, SKELTAL CAST
 50% ALLOCHEMICAL CONSTITUENTS
 GRAIN SIZE: FINE; RANGE: MICROCRYSTALLINE TO MEDIUM
 POOR INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 SEDIMENTARY STRUCTURES: INTERBEDDED
 ACCESSORY MINERALS: CLAY-05%
 FOSSILS: BENTHIC FORAMINIFERA, ECHINOID, FOSSIL FRAGMENTS
 FOSSIL MOLDS
- 974 976 CLAY; YELLOWISH GRAY TO LIGHT OLIVE GRAY
 02% POROSITY: FRACTURE, LOW PERMEABILITY; UNCONSOLIDATED
 CEMENT TYPE(S): CLAY MATRIX, CALCILUTITE MATRIX
 SEDIMENTARY STRUCTURES: INTERBEDDED
 ACCESSORY MINERALS: CALCILUTITE-30%
 OTHER FEATURES: CALCAREOUS
- 976 981.4 DOLOSTONE; LIGHT OLIVE GRAY TO OLIVE GRAY
 20% POROSITY: INTERGRANULAR, FRACTURE, MOLDIC
 50-90% ALTERED; EUHEDRAL
 GRAIN SIZE: FINE; RANGE: VERY FINE TO COARSE
 GOOD INDURATION

CEMENT TYPE(S): DOLOMITE CEMENT
SEDIMENTARY STRUCTURES: MASSIVE
ACCESSORY MINERALS: LIMESTONE-02%
OTHER FEATURES: CRYSTALLINE
FOSSILS: ECHINOID
DOLOMITE, CRYSTALLINE NUMEROUS ECHINOID MOLDS, CASTS AND
FRAGMENTS. TOP OF AVON PARK FORMATION AT 976 FT. BLS.

- 981.4- 988 CALCARENITE; VERY LIGHT ORANGE TO YELLOWISH GRAY
 25% POROSITY: INTERGRANULAR, FRACTURE, MOLDIC
 GRAIN TYPE: BIOGENIC, SKELETAL, SKELTAL CAST
 80% ALLOCHEMICAL CONSTITUENTS
 GRAIN SIZE: FINE; RANGE: VERY FINE TO COARSE
 GOOD INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX, DOLOMITE CEMENT
 SEDIMENTARY STRUCTURES: INTERBEDDED
 ACCESSORY MINERALS: DOLOMITE-15%, CALCITE-05%
 OTHER FEATURES: DOLOMITC, GRANULAR
 FOSSILS: ECHINOID, BENTHIC FORAMINIFERA
 CALCARENITE, SOME INTERBEDDED DOLOSTONE, NUMEROUS LIMESTONE
 AND CALCITE ECHINOID MOLDS.
- 988 992 CALCARENITE; VERY LIGHT ORANGE TO YELLOWISH GRAY
 30% POROSITY: INTERGRANULAR, FRACTURE, MOLDIC
 GRAIN TYPE: BIOGENIC, SKELETAL, SKELTAL CAST
 90% ALLOCHEMICAL CONSTITUENTS
 GRAIN SIZE: FINE; RANGE: MICROCRYSTALLINE TO COARSE
 GOOD INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 SEDIMENTARY STRUCTURES: MASSIVE
 ACCESSORY MINERALS: DOLOMITE-02%
 OTHER FEATURES: GRANULAR, FOSSILIFEROUS
 FOSSILS: ECHINOID, MOLLUSKS, BENTHIC FORAMINIFERA
 CALCARENITE, VERY FOSSILIFEROUS, NUMEROUS ECHINOID MOLDS.
 MATRIX IS MADE UP OF FORAM AND ECHINOID FRAGMENTS. APPEARS
 HIGHLY PERMEABLE.
- 992 996 DOLOSTONE; YELLOWISH GRAY TO LIGHT OLIVE GRAY
 05% POROSITY: FRACTURE, LOW PERMEABILITY; 10-50% ALTERED
 ANHEDRAL
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: CRYPTOCRYSTALLINE TO MICROCRYSTALLINE
 GOOD INDURATION
 CEMENT TYPE(S): DOLOMITE CEMENT, CALCILUTITE MATRIX
 SEDIMENTARY STRUCTURES: MASSIVE, INTERBEDDED
 ACCESSORY MINERALS: CALCILUTITE-25%, CALCITE-02%
 OTHER FEATURES: BROWN ANHYDRITE CRYSTALS
 LOW RECRYSTALLIZATION
 FOSSILS: ECHINOID
- 996 1027 CALCARENITE; VERY LIGHT ORANGE
 20% POROSITY: INTERGRANULAR
 GRAIN TYPE: BIOGENIC, SKELETAL, CALCILUTITE
 70% ALLOCHEMICAL CONSTITUENTS
 GRAIN SIZE: FINE; RANGE: MEDIUM TO VERY FINE
 MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 SEDIMENTARY STRUCTURES: BEDDED, NODULAR
 ACCESSORY MINERALS: CALCILUTITE-30%
 OTHER FEATURES: GRANULAR, CHALKY
 FOSSILS: FOSSIL FRAGMENTS
 SOME ROUNDED CLASTS OR LENSOIDS OF CALCILUTITE.
- 1027 1030 DOLOSTONE; YELLOWISH GRAY TO LIGHT OLIVE GRAY
 12% POROSITY: LOW PERMEABILITY, INTERGRANULAR
 0-10% ALTERED; ANHEDRAL
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: MICROCRYSTALLINE TO FINE; GOOD INDURATION
 CEMENT TYPE(S): DOLOMITE CEMENT, CALCILUTITE MATRIX
 SEDIMENTARY STRUCTURES: STREAKED
 ACCESSORY MINERALS: CALCARENITE-25%, CALCILUTITE-10%
 OTHER FEATURES: CALCAREOUS, VARIEGATED

1030 - 1033 CALCARENITE; VERY LIGHT ORANGE
16% POROSITY: INTERGRANULAR
GRAIN TYPE: BIOGENIC, CALCILUTITE, SKELETAL
60% ALLOCHEMICAL CONSTITUENTS
GRAIN SIZE: VERY FINE; RANGE: VERY FINE TO FINE
MODERATE INDURATION
CEMENT TYPE(S): CALCILUTITE MATRIX
ACCESSORY MINERALS: CALCILUTITE-40%
OTHER FEATURES: GRANULAR, CHALKY
FOSSILS: FOSSIL FRAGMENTS

1033 - 1034.5 CALCILUTITE; YELLOWISH GRAY

08% POROSITY: LOW PERMEABILITY, VUGULAR

GRAIN TYPE: CALCILUTITE, BIOGENIC

10% ALLOCHEMICAL CONSTITUENTS

GRAIN SIZE: MICROCRYSTALLINE

RANGE: MICROCRYSTALLINE TO VERY FINE; GOOD INDURATION

CEMENT TYPE(5): CALCILUTITE MATRIX, DOLOMITE CEMENT

SEDIMENTARY STRUCTURES: BANDED, MOTTLED

ACCESSORY MINERALS: SILT-SIZE DOLOMITE-25%, LIMESTONE- 2%

LIMONITE-2 %

OTHER FEATURES: DOLOMITIC, PARTINGS, STROMATAL

FOSSILS: ORGANICS

VERY WELL INDURATED, IRREGULARLY BANDED BED CONTAINING THIN

ORGANIC PARTINGS. ORGANIC LAMINAE AT TOP.

1034.5- 1038.5 CALCARENITE; VERY LIGHT ORANGE
16% POROSITY: INTERGRANULAR
GRAIN TYPE: BIOGENIC, CALCILUTITE, SKELETAL
60% ALLOCHEMICAL CONSTITUENTS
GRAIN SIZE: VERY FINE; RANGE: VERY FINE TO FINE
MODERATE INDURATION
CEMENT TYPE(S): CALCILUTITE MATRIX
ACCESSORY MINERALS: CALCILUTITE-40%
OTHER FEATURES: GRANULAR, CHALKY
FOSSILS: FOSSIL FRAGMENTS

1038.5- 1042.5 CALCARENITE; GRAYISH ORANGE TO VERY LIGHT ORANGE
18% POROSITY: INTERGRANULAR
GRAIN TYPE: BIOGENIC, CALCILUTITE, SKELETAL
75% ALLOCHEMICAL CONSTITUENTS
GRAIN SIZE: FINE; RANGE: VERY FINE TO FINE
MODERATE INDURATION
CEMENT TYPE(S): CALCILUTITE MATRIX
SEDIMENTARY STRUCTURES: INTERBEDDED
ACCESSORY MINERALS: CALCILUTITE-25%
OTHER FEATURES: GRANULAR, CHALKY, PARTINGS
FOSSILS: FOSSIL FRAGMENTS
GRAINY FINE-GRAINED CALCARENITE WITH THIN INTERBEDS OF
GRAINY CALCILUTITE.

1042.5- 1048 CALCARENITE; GRAYISH ORANGE
26% POROSITY: INTERGRANULAR
GRAIN TYPE: PELLET, SKELETAL, BIOGENIC
95% ALLOCHEMICAL CONSTITUENTS
GRAIN SIZE: FINE; RANGE: VERY FINE TO MEDIUM
MODERATE INDURATION
CEMENT TYPE(S): CALCILUTITE MATRIX
ACCESSORY MINERALS: CALCILUTITE-05%
OTHER FEATURES: GRANULAR
FOSSILS: WORM TRACES, FOSSIL FRAGMENTS
HARD, BRITTLE MODERATELY WELL-SORTED PELLETAL GRAINSTONE.
END OF CORE.

1048 - 1058 CALCARENITE; VERY LIGHT ORANGE TO GRAYISH ORANGE
18% POROSITY: INTERGRANULAR
GRAIN TYPE: BIOGENIC, CALCILUTITE, PELLET
GRAIN SIZE: FINE; RANGE: MICROCRYSTALLINE TO FINE
MODERATE INDURATION
CEMENT TYPE(S): CALCILUTITE MATRIX
SEDIMENTARY STRUCTURES: INTERBEDDED

ACCESSORY MINERALS: CALCILUTITE-20%, DOLOMITE-05% OTHER FEATURES: GRANULAR FOSSILS: FOSSIL FRAGMENTS FINE-GRAINED CALCARENITE WITH LESSER INTERBEDS OF LIMESTONE AND GRANULAR DOLOSTONE. LOW PERMEABILITY. SOMEWHAT SOFT. INITIAL GROUP OF CUTTINGS DESCRIPTION IS FROM PERMANENT AVON PARK MONITOR. CEMENT FRAGMENTS ARE SEEN IN THE CUTTINGS IN MODERATE CONCENTRATIONS THROUGH 1090 FT.

- 1058 1070 LIMESTONE; VERY LIGHT ORANGE
 14% POROSITY: LOW PERMEABILITY, INTERGRANULAR
 GRAIN TYPE: CALCILUTITE, BIOGENIC
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: MICROCRYSTALLINE TO FINE; MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 ACCESSORY MINERALS: CALCILUTITE-80%, CALCARENITE-20%
 FOSSILS: FOSSIL FRAGMENTS
- 1070 1120 CALCARENITE; GRAYISH ORANGE TO VERY LIGHT ORANGE
 20% POROSITY: INTERGRANULAR
 GRAIN TYPE: SKELETAL, BIOGENIC
 GRAIN SIZE: FINE; RANGE: MICROCRYSTALLINE TO MEDIUM
 MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 ACCESSORY MINERALS: CALCILUTITE-15%
 OTHER FEATURES: GRANULAR, FOSSILIFEROUS
 FOSSILS: FOSSIL FRAGMENTS, BENTHIC FORAMINIFERA
 GRANULAR CALCARENITE. DICTYOCONUS. NOT A BIG WATER
 PRODUCER. UPPER 10 20 FT. ARE SOFTER, SLIGHTLY FINER
 GRAINED THAN REST.
- 1120 1130 CALCARENITE; VERY LIGHT ORANGE
 16% POROSITY: INTERGRANULAR
 GRAIN TYPE: CALCILUTITE, BIOGENIC
 GRAIN SIZE: VERY FINE; RANGE: MICROCRYSTALLINE TO FINE
 MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 SEDIMENTARY STRUCTURES: INTERBEDDED
 ACCESSORY MINERALS: CALCILUTITE-35%
 FOSSILS: FOSSIL FRAGMENTS
 SOMEWHAT HARDER THAN CALCARENITES ABOVE. 1125 1130 FT. IS
 VERY FINE-GRAINED.
- 1130 1133 DOLOSTONE; GRAYISH BROWN TO DARK YELLOWISH BROWN
 10% POROSITY: LOW PERMEABILITY; 10-50% ALTERED; ANHEDRAL
 GRAIN SIZE: VERY FINE
 RANGE: CRYPTOCRYSTALLINE TO VERY FINE; GOOD INDURATION
 CEMENT TYPE(S): DOLOMITE CEMENT
 NO APPARENT WATER PRODUCTION FROM BED.
- 1133 1145 CALCARENITE; GRAYISH ORANGE TO VERY LIGHT ORANGE
 20% POROSITY: INTERGRANULAR
 GRAIN TYPE: SKELETAL, BIOGENIC, CALCILUTITE
 GRAIN SIZE: FINE; RANGE: MICROCRYSTALLINE TO MEDIUM
 MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 ACCESSORY MINERALS: CALCILUTITE-25%
 OTHER FEATURES: GRANULAR
 FOSSILS: FOSSIL FRAGMENTS, BENTHIC FORAMINIFERA
 VERY GRANULAR SKELETAL CALCARENITE. DICTYOCONUS. DOLOMITE
 IS PROBABLY FALLING FROM OVERLYING BED.
- 1145 1156 LIMESTONE; VERY LIGHT ORANGE
 14% POROSITY: INTERGRANULAR
 GRAIN TYPE: CALCILUTITE, BIOGENIC, SKELETAL
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: MICROCRYSTALLINE TO FINE; MODERATE INDURATION
 CEMENT TYPE(S): CALCILUTITE MATRIX
 SEDIMENTARY STRUCTURES: INTERBEDDED
 ACCESSORY MINERALS: CALCARENITE-25%
 OTHER FEATURES: CHALKY, GRANULAR
 FOSSILS: FOSSIL FRAGMENTS, BENTHIC FORAMINIFERA

CALCILUTITIC LIMESTONE WITH LESSER AMOUNTS FINE CALCARENITE.

1156 - 1182 CALCARENITE; VERY LIGHT ORANGE TO GRAYISH ORANGE
18% POROSITY: INTERCRANULAR
GRAIN TYPE: BIOGENIC, CALCILUTITE, SKELETAL
GRAIN SIZE: VERY FINE; RANGE: MICROCRYSTALLINE TO FINE
MODERATE INDURATION
CEMENT TYPE(S): CALCILUTITE MATRIX
ACCESSORY MINERALS: CALCILUTITE-35%
OTHER FEATURES: GRANULAR, CHALKY
FOSSILS: FOSSIL FRAGMENTS

FINE TO VERY FINE-GRAINED CALCARENITE. TRACE AMOUNTS OF GRAY LIMESTONE.

1182 - 1190 LIMESTONE; LIGHT GRAY
14% POROSITY: INTERGRANULAR
GRAIN TYPE: CALCILUTITE, BIOGENIC
GRAIN SIZE: VERY FINE; RANGE: MICROCRYSTALLINE TO VERY FINE
MODERATE INDURATION
CEMENT TYPE(S): CALCILUTITE MATRIX
ACCESSORY MINERALS: DOLOMITE-05%, ORGANICS-02%
OTHER FEATURES: CHALKY, SPECKLED
FOSSILS: MILICUIDS
DOLOMITIC PERCENT IS AS TRACE DOLOMITE GRAINS.

1190 - 1207 CALCARENITE; GRAYISH ORANGE
20% POROSITY: INTERGRANULAR
GRAIN TYPE: SKELETAL, BIOGENIC, CALCILUTITE
GRAIN SIZE: FINE; RANGE: MICROCRYSTALLINE TO MEDIUM
MODERATE INDURATION
CEMENT TYPE(S): CALCILUTITE MATRIX
ACCESSORY MINERALS: CALCILUTITE-15%, DOLOMITE-10%
OTHER FEATURES: GRANULAR, FOSSILIFEROUS, DOLOMITIC
FOSSILS: FOSSIL FRAGMENTS, BENTHIC FORAMINIFERA
GRANULAR CALCARENITE. CONTAINS DOLOMITIC GRAINS.
DICTYOCONUS. NOT MUCH PERMEABILITY.

1207 - 1218 LIMESTONE; LIGHT GRAY TO GRAYISH ORANGE
16% POROSITY: INTERGRANULAR
GRAIN TYPE: CALCILUTITE, BIOGENIC, SKELETAL
GRAIN SIZE: VERY FINE; RANGE: MICROCRYSTALLINE TO MEDIUM
MODERATE INDURATION
CEMENT TYPE(S): CALCILUTITE MATRIX
SEDIMENTARY STRUCTURES: INTERBEDDED
ACCESSORY MINERALS: CALCARENITE-40%, DOLOMITE-05%
OTHER FEATURES: CHALKY, GRANULAR
FOSSILS: FOSSIL FRAGMENTS
GRAY CALCILUTITIC LIMESTONE WITH SUBEQUAL BEDS GRANULAR
SKELETAL CALCARENITE.

1218 - 1228 DOLOSTONE; DARK YELLOWISH BROWN
30% POROSITY: FRACTURE, POSSIBLY HIGH PERMEABILITY
50-90% ALTERED; ANHEDRAL
GRAIN SIZE: MICROCRYSTALLINE
RANGE: CRYPTOCRYSTALLINE TO VERY FINE; GOOD INDURATION
CEMENT TYPE(S): DOLOMITE CEMENT
OTHER FEATURES: CRYSTALLINE
HARD, DARK CRYSTALLINE DOLOMITE. UNIT/SEQUENCE OF DOLOSTONE
BEDS MAKES SUBSTANTIAL WATER. TOP OF AVON PARK FRACTURED
DOLOSTONES.

1228 - 1247 DOLOSTONE; LIGHT OLIVE GRAY TO MODERATE BROWN
35% POROSITY: FRACTURE, POSSIBLY HIGH PERMEABILITY
10-50% ALTERED; ANHEDRAL
GRAIN SIZE: MICROCRYSTALLINE
RANGE: CRYPTOCRYSTALLINE TO VERY FINE; GOOD INDURATION
CEMENT TYPE(S): DOLOMITE CEMENT
OTHER FEATURES: CRYSTALLINE, VARIEGATED
OLIVE-COLORED CRYSTALLINE DOLOSTONE WITH SOME BROWN
(ORGANIC?) STREAKING. WATER PRODUCER.

- 1247 1307 DOLOSTONE; DARK YELLOWISH BROWN TO MODERATE YELLOWISH BROWN 35% POROSITY: FRACTURE, POSSIBLY HIGH PERMEABILITY 10-50% ALTERED; ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO VERY FINE; GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT SEDIMENTARY STRUCTURES: STREAKED OTHER FEATURES: CRYSTALLINE, LOW RECRYSTALLIZATION BROWN DOLOSTONE. SHOWS SMALL AMOUNTS RECRYSTALLIZATION ON CUTTINGS. SOME DARK STREAKING.
- 1307 1344

 DOLOSTONE; DARK YELLOWISH BROWN TO MODERATE YELLOWISH BROWN 35% POROSITY: FRACTURE, POSSIBLY HIGH PERMEABILITY PIN POINT VUGS; 10-50% ALTERED; ANHEDRAL GRAIN SIZE: VERY FINE; RANGE: VERY FINE TO VERY FINE GOOD INDURATION

 CEMENT TYPE(S): DOLOMITE CEMENT SEDIMENTARY STRUCTURES: STREAKED ACCESSORY MINERALS: ORGANICS-01% OTHER FEATURES: CRYSTALLINE HARD BROWN VERY FINE-GRAINED DOLOSTONE. SOME ORGANIC COATINGS ON CUTTINGS. PRODUCES FETID ODOR ON PUMPING. TRACES OF OXIDE IRON SPECKS.
- 1344 1359 DOLOSTONE; GRAYISH BROWN TO MODERATE BROWN
 POROSITY: FRACTURE, POSSIBLY HIGH PERMEABILITY
 PIN POINT VUGS; 10-50% ALTERED; ANHEDRAL
 GRAIN SIZE: VERY FINE; RANGE: CRYPTOCRYSTALLINE TO FINE
 GOOD INDURATION
 CEMENT TYPE(S): DOLOMITE CEMENT
 OTHER FEATURES: CRYSTALLINE, GRANULAR
- 1359 1370 DOLOSTONE; GRAYISH BROWN TO MODERATE BROWN
 POROSITY: FRACTURE, POSSIBLY HIGH PERMEABILITY
 PIN POINT VUGS; 10-50% ALTERED; ANHEDRAL
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: CRYPTOCRYSTALLINE TO VERY FINE; GOOD INDURATION
 CEMENT TYPE(S): DOLOMITE CEMENT
 ACCESSORY MINERALS: ORGANICS-01%
 OTHER FEATURES: CRYSTALLINE, GRANULAR
- 1370 1380 DOLOSTONE; DARK YELLOWISH BROWN TO GRAYISH BROWN
 POROSITY: POSSIBLY HIGH PERMEABILITY, PIN POINT VUGS
 10-50% ALTERED; ANHEDRAL
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: CRYPTOCRYSTALLINE TO VERY FINE; GOOD INDURATION
 CEMENT TYPE(S): DOLOMITE CEMENT
 ACCESSORY MINERALS: ORGANICS-04%
 OTHER FEATURES: CRYSTALLINE, GRANULAR
 FOSSILS: ORGANICS
 ORGANICS ARE AS STREAKS, SPECKS, AND INTERSTITIAL.

1380 - 1421

POROSITY: POSSIBLY HIGH PERMEABILITY; 10-50% ALTERED ANHEDRAL
GOOD INDURATION
CEMENT TYPE(S): DOLOMITE CEMENT, CALCILUTITE MATRIX
SEDIMENTARY STRUCTURES: INTERBEDDED
ACCESSORY MINERALS: CALCILUTITE-15%, ORGANICS-02%
QUARTZ-01%
OTHER FEATURES: CRYSTALLINE, GRANULAR, CALCAREOUS
FOSSILS: ORGANICS
INTERBEDDED MICROCRYSTALLINE VERY FINE-GRAINED CALCAREOUS
DOLOSTONE AND SLIGHTLY ORGANIC VERY FINE-GRAINED DOLOSTONE.
SOME OF ORGANIC UNIT APPEARS TO BE BRECCIATED OR CONTAINS
RIP-UP CLASTS. MINOR SECONDARY QUARTZ IN VUGS.

DOLOSTONE; MODERATE YELLOWISH BROWN TO GRAYISH ORANGE

1421 - 1431 DOLOSTONE; GRAYISH ORANGE TO MODERATE YELLOWISH BROWN POROSITY: INTERGRANULAR; 10-50% ALTERED; ANHEDRAL GRAIN SIZE: VERY FINE; RANGE: CRYPTOCRYSTALLINE TO FINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT, CALCILUTITE MATRIX

ACCESSORY MINERALS: CALCILUTITE-15%, ORGANICS-02% QUARTZ-01% OTHER FEATURES: GRANULAR, CALCAREOUS FOSSILS: ORGANICS

- 1431 1441 DOLOSTONE; MODERATE YELLOWISH BROWN TO GRAYISH BROWN POROSITY: INTERGRANULAR; 10-50% ALTERED; ANHEDRAL GRAIN SIZE: VERY FINE RANGE: CRYPTOCRYSTALLINE TO VERY FINE; GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT, CALCILUTITE MATRIX ACCESSORY MINERALS: CALCILUTITE-10%, ORGANICS-01% OTHER FEATURES: GRANULAR
- 1441 1451 DOLOSTONE; MODERATE YELLOWISH BROWN
 POROSITY: INTERGRANULAR; 10-50% ALTERED; ANHEDRAL
 GRAIN SIZE: FINE; RANGE: CRYPTOCRYSTALLINE TO FINE
 GOOD INDURATION
 CEMENT TYPE(S): DOLOMITE CEMENT
 ACCESSORY MINERALS: CALCILUTITE-05%, ORGANICS-02%
 OTHER FEATURES: GRANULAR
 FOSSILS: ORGANICS
- 1451 1484 DOLOSTONE; MODERATE YELLOWISH BROWN TO GRAYISH ORANGE POROSITY: INTERGRANULAR; 10-50% ALTERED; ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE
 RANGE: CRYPTOCRYSTALLINE TO VERY FINE; GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT, CALCILUTITE MATRIX ACCESSORY MINERALS: CALCILUTITE-15%, QUARTZ-01% ORGANICS-01% OTHER FEATURES: CALCAREOUS, GRANULAR FOSSILS: ORGANICS
- 1484 1499 DOLOSTONE; MODERATE YELLOWISH BROWN TO DARK YELLOWISH BROWN POROSITY: INTERGRANULAR; 10-50% ALTERED; ANHEDRAL GRAIN SIZE: VERY FINE; RANGE: CRYPTOCRYSTALLINE TO FINE GOOD INDURATION

 CEMENT TYPE(S): DOLOMITE CEMENT

 ACCESSORY MINERALS: CALCILUTITE-05%, ORGANICS-02%

 QUARTZ-01%

 OTHER FEATURES: GRANULAR
 FOSSILS: ORGANICS
- 1499 1506 DOLOSTONE; GRAYISH ORANGE TO VERY LIGHT ORANGE
 POROSITY: INTERGRANULAR; 10-50% ALTERED; ANHEDRAL
 GRAIN SIZE: VERY FINE
 RANGE: CRYPTOCRYSTALLINE TO VERY FINE; GOOD INDURATION
 CEMENT TYPE(S): DOLOMITE CEMENT
 SEDIMENTARY STRUCTURES: INTERBEDDED
 ACCESSORY MINERALS: CALCILUTITE-20%
 SUBEQUAL INTERBEDS OF TAN, CRYSTALLINE DOLOSTONE AND
 CREAM-COLORED CALCAREOUS ORTHOCRYSTALLINE DOLOMITE.
- 1506 1514 DOLOSTONE; MODERATE YELLOWISH BROWN
 POROSITY: INTERGRANULAR; 10-50% ALTERED; ANHEDRAL
 GRAIN SIZE: VERY FINE; RANGE: CRYPTOCRYSTALLINE TO FINE
 GOOD INDURATION
 CEMENT TYPE(S): DOLOMITE CEMENT
 ACCESSORY MINERALS: CALCILUTITE-10%, ORGANICS-01%
 OTHER FEATURES: GRANULAR
- 1514 1525 DOLOSTONE; GRAYISH ORANGE TO VERY LIGHT ORANGE FOROSITY: INTERGRANULAR; 10-50% ALTERED; ANHEDRAL GRAIN SIZE: VERY FINE
 RANGE: CRYPTOCRYSTALLINE TO VERY FINE; GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: CALCILUTITE-20%, QUARTZ-02% ORGANICS-01%
 GOLDEN TAN VERY FINE-GRAINED DOLOMITE WITH LESSER INTERBEDDED PALE CALCAREOUS ORTHOCRYSTALLINE DOLOSTONE. FREQUENT QUARTZ PSUEDOMORPHS AFTER RHOMBIC DOLOMITE.
- 1525 1540 DOLOSTONE; MODERATE YELLOWISH BROWN TO GRAYISH ORANGE

POROSITY: INTERGRANULAR; 10-50% ALTERED; ANHEDRAL GRAIN SIZE: VERY FINE; RANGE: MICROCRYSTALLINE TO FINE GOOD INDURATION

CEMENT TYPE(S): DOLOMITE CEMENT

ACCESSORY MINERALS: CALCILUTITE-10%, ORGANICS-03%

OUARTZ-01%

OTHER FEATURES: GRANULAR

1540 - 1556 DOLOSTONE; MODERATE YELLOWISH BROWN TO GRAYISH ORANGE POROSITY: INTERGRANULAR; 10-50% ALTERED: ANHEDRAL GRAIN SIZE: VERY FINE; RANGE: MICROCRYSTALLINE TO FINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT SEDIMENTARY STRUCTURES: INTERBEDDED

ACCESSORY MINERALS: CALCILUTITE-10%, QUARTZ-03%

ORGANICS-02%

OTHER FEATURES: GRANULAR

INTERBEDDED GOLDEN BROWN VERY FINE GRANULAR DOLOMITE AND ORGANIC STREAKED/SPECKED CALCAREOUS PALE DOLOSTONE. QUARTZ PSUEDOMORPHS AFTER RHOMBIC DOLOMITE ON SURFACES OF THE PALE DOLOSTONE.

1556 - 1560 DOLOSTONE; GRAYISH ORANGE POROSITY: INTERCRYSTALLINE; 10-50% ALTERED; ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO VERY FINE; GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT, CALCILUTITE MATRIX ACCESSORY MINERALS: CALCILUTITE-20%, QUARTZ-15% OTHER FEATURES: CALCAREOUS, GRANULAR

GRANULAR CALCAREOUS DOLOMITE WITH MUCH SECONDARY QUARTZ.

1560 - 1575 DOLOSTONE; MODERATE YELLOWISH BROWN TO DARK YELLOWISH BROWN POROSITY: INTERCRYSTALLINE; 10-50% ALTERED; ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO MICROCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: CALCILUTITE-10%, ORGANICS-03% OUARTZ-02% FOSSILS: ORGANICS

CRYSTALLINE LIGHT BROWN DOLOMITE. GRAY AND CREAM-COLORED CALCAREOUS FRAGMENTS (MORE IN UPPER 5 FT.).

1575 - 1595 DOLOSTONE; MODERATE YELLOWISH BROWN POROSITY: INTERCRYSTALLINE; 10-50% ALTERED; ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO VERY FINE; GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT, CALCILUTITE MATRIX ACCESSORY MINERALS: CALCILUTITE-10%, QUARTZ-02% ORGANICS-02% FOSSILS: ORGANICS

CRYSTALLINE GOLDEN BROWN DOLOMITE WITH MINOR SECONDARY QUARTZ AND ORGANIC COATINGS.

DOLOSTONE; GRAYISH ORANGE TO MODERATE YELLOWISH BROWN 1595 - 1623 12% POROSITY: LOW PERMEABILITY, INTERGRANULAR INTERCRYSTALLINE; 0-10% ALTERED; ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO FINE; GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT, CALCILUTITE MATRIX ACCESSORY MINERALS: CALCILUTITE-20%, QUARTZ-03% ORGANICS-03% OTHER FEATURES: CALCAREOUS FOSSILS: ORGANICS CALCAREOUS DOLOSTONE. LIGHTLY BUT VARIABLY SPECKLED WITH

ORGANICS. MINOR VUG-FILL, VEINLETS, AND EUHEDRAL SURFACE COATINGS OF QUARTZ.

1623 - 1633 DOLOSTONE; VERY LIGHT ORANGE TO GRAYISH ORANGE 12% POROSITY: LOW PERMEABILITY, INTERGRANULAR 0-10% ALTERED; ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE

RANGE: CRYPTOCRYSTALLINE TO VERY FINE; GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT, CALCILUTITE MATRIX ACCESSORY MINERALS: CALCILUTITE-40%, QUARTZ-01% ORGANICS-01% OTHER FEATURES: CALCAREOUS, LOW RECRYSTALLIZATION COMPACT VERY CALCAREOUS DOLOSTONE.

1633 - 1638 CALCARENITE; GRAYISH ORANGE TO GRAYISH BROWN 15% POROSITY: LOW PERMEABILITY, INTERGRANULAR GRAIN TYPE: BIOGENIC, CALCILUTITE

60% ALLOCHEMICAL CONSTITUENTS

GRAIN SIZE: VERY FINE; RANGE: MICROCRYSTALLINE TO FINE

GOOD INDURATION

CEMENT TYPE(S): CALCILUTITE MATRIX, DOLOMITE CEMENT ACCESSORY MINERALS: DOLOMITE-20%, CALCILUTITE-25%

QUARTZ-06%, ORGANICS-02%

OTHER FEATURES: DOLOMITIC, GRANULAR

FOSSILS: ORGANICS

VARIABLY DOLOMITIC CALCARENITE WITH MINOR AMOUNTS OF QUARTZ

AS VEINLETS AND DRUSY COATINGS.

1638 - 1660 DOLOSTONE; GRAYISH ORANGE

15% POROSITY: LOW PERMEABILITY, PIN POINT VUGS

0-10% ALTERED; ANHEDRAL

GRAIN SIZE: MICROCRYSTALLINE

RANGE: CRYPTOCRYSTALLINE TO VERY FINE; GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT, CALCILUTITE MATRIX ACCESSORY MINERALS: CALCILUTITE-15%, QUARTZ-02%

OTHER FEATURES: CALCAREOUS, LOW RECRYSTALLIZATION

1660 - 1665 DOLOSTONE; GRAYISH ORANGE

12% POROSITY: LOW PERMEABILITY, INTERGRANULAR

0-10% ALTERED; ANHEDRAL

GRAIN SIZE: MICROCRYSTALLINE

RANGE: CRYPTOCRYSTALLINE TO FINE; GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT, CALCILUTITE MATRIX

ACCESSORY MINERALS: CALCILUTITE-15%, QUARTZ-08%, SHALE-02%

OTHER FEATURES: CALCAREOUS, GRANULAR

FOSSILS: ORGANICS

CALCAREOUS DOLOSTONE CONTAINING DRUSY QUARTZ ON SOME SURFACES. LAMINATED ORGANICS IN SOME OF THE DOLOSTONE.

1665 - 1686 DOLOSTONE; GRAYISH ORANGE

15% POROSITY: LOW PERMEABILITY, PIN POINT VUGS

0-10% ALTERED; ANHEDRAL

GRAIN SIZE: MICROCRYSTALLINE

RANGE: MICROCRYSTALLINE TO VERY FINE; GOOD INDURATION

CEMENT TYPE(S): DOLOMITE CEMENT

ACCESSORY MINERALS: CALCILUTITE-15%, QUARTZ-02%

ORGANICS-02%

OTHER FEATURES: CALCAREOUS, GRANULAR

FOSSILS: ORGANICS

CALCAREOUS DOLOSTONE. DOME ORGANIC LAMILLAE.

1686 - 1701 CALCILUTITE; VERY LIGHT ORANGE

12% POROSITY: LOW PERMEABILITY, INTERGRANULAR

PIN POINT VUGS

GRAIN TYPE: CALCILUTITE, BIOGENIC

25% ALLOCHEMICAL CONSTITUENTS

GRAIN SIZE: MICROCRYSTALLINE

RANGE: MICROCRYSTALLINE TO VERY FINE; MODERATE INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX, DOLOMITE CEMENT

ACCESSORY MINERALS: SILT-SIZE DOLOMITE-20%, QUARTZ-02%

ORGANICS-01%

OTHER FEATURES: DOLOMITIC, LOW RECRYSTALLIZATION

FOSSILS: ORGANICS

MODERATELY INDURATED DOLOMITIC CALCILUTITE. TRACE AMOUNTS ORGANIC LAMELLAE. DREDGING ZONE. LOW PERMEABILITY RESPONSE DURING DRILLING.

DOLOSTONE; VERY LIGHT ORANGE TO GRAYISH ORANGE 1701 - 1742 15% POROSITY: INTERGRANULAR, PIN POINT VUGS

LOW PERMEABILITY; 0-10% ALTERED; ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO MEDIUM; GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT, CALCILUTITE MATRIX SEDIMENTARY STRUCTURES: INTERBEDDED ACCESSORY MINERALS: CALCILUTITE-20%, ORGANICS-01% OTHER FEATURES: CALCAREOUS, GRANULAR FOSSILS: FOSSIL MOLDS, ORGANICS CALCAREOUS DOLOSTONE, VARIABLY GRANULAR INTERBEDDED WITH OOLOMITIC VUGULAR CALCARENITE. SOME ORGANIC VARVES.

1742 - 1765 DOLOSTONE; VERY LIGHT ORANGE TO GRAYISH BROWN
15% POROSITY: LOW PERMEABILITY, PIN POINT VUGS
INTERGRANULAR; 0-10% ALTERED; ANHEDRAL

INTERGRANULAR; 0-10% ALTERED; ANHE GRAIN SIZE: MICROCRYSTALLINE

RANGE: MICROCRYSTALLINE TO FINE; GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT, CALCILUTITE MATRIX

SEDIMENTARY STRUCTURES: INTERBEDDED

ACCESSORY MINERALS: CALCILUTITE-30%, ORGANICS-02%

OTHER FEATURES: CALCAREOUS, LOW RECRYSTALLIZATION, GRANULAR

FOSSILS: FOSSIL MOLDS, ORGANICS

INTERBEDDED PALE CALCILUTITIC DOLOMITE, DOLOMITIC CALCARENITE WITH INTERSTITIAL CALCITE, AND ORGANIC-RICH DOLOMITIC CALCARENITE. MINOR BLACK CHERT AT 1765 FT.

1765 - 1911 CUTTINGS NOT DESCRIBED

1911 TOTAL DEPTH