SWCC-IW1 SUCC-DZMU1

Program Management at Risk Services for Water, Wastewater & Irrigation Facilities

WW-4C.1 Southwest Plant Class I Deep Injection Well System

Appendices

A through D and F through Q

January 2009

APPENDIX A – FDEP Construction Permit

APPENDIX B – Deviation Surveys

APPENDIX C – Lithologic Logs

APPENDIX D – Cores

APPENDIX E – Geophysical Logs

APPENDIX F – Pilot Hole Water Quality

APPENDIX G – Video Surveys

APPENDIX H – Specific Capacity Testing

APPENDIX I - Packer Test Data and Plots

APPENDIX J – Packer Testing Water Quality Laboratory Results

APPENDIX K – Log Derived Water Quality

APPENDIX L – Casing Mill Certificates

APPENDIX M – Cement Reports

APPENDIX N – Casing and Tubing Pressure Tests

APPENDIX O – Positive Seal Packer

APPENDIX P – Background Water Quality Results

APPENDIX Q – Injection Test Data

FDEP Construction Permit

Department of Environmental Protection

South District P.O. Box 2549 Fort Myers, Florida 33902-2549

Colleen Castille Secretary

BY ELECTRONIC MAIL:

In the Matter of an Application for Permit by:

Governor

November 2, 2006

Charles G. Pavlos, Public Works Director P.O. Box 1500207 1015 Cultural Park Blvd. Cape Coral, FL 33915-0000 <u>cpavlos@capecoral.net</u> <u>Lee County – UIC/IW/DW</u> FDEP File No. 254598-001-UC City of Cape Coral Southwest WTP & WRF IW-1 Class I Injection Well

NOTICE OF PERMIT ISSUANCE

Enclosed is Permit Number 254598-001-UC to construct a Class I Injection Well (IW-1) system, issued pursuant to Section(s) 403.087, Florida Statutes.

Any party to this Order (permit) has the right to seek judicial review of the permit pursuant to Section 120.68, Florida Statutes, by the filing of a Notice of Appeal pursuant to Rule 9.110, Florida Rules of Appellate Procedure, with the Clerk of the Department in the Office of General Counsel, 3900 Commonwealth Boulevard, Mail Station 35, Tallahassee, Florida 32399-3000; and by filing a copy of the Notice of appeal accompanied by the applicable filing fees with the appropriate District Court of Appeal. The Notice of Appeal must be filed within 30 days from the date this Notice is filed with the Clerk of the Department.

Executed in Fort Myers, Florida.

STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION

Jon M. Iglehart Director of District Management

CERTIFICATE OF SERVICE

The undersigned duly designated deputy clerk hereby certifies that this PERMIT and all copies were mailed before the close of business on November 2, 2006 to the listed persons.

Clerk Stamp

FILING AND ACKNOWLEDGMENT

FILED, on this date, pursuant to Section.120.52, Florida Statutes, with the designated Department Clerk, receipt of which is hereby acknowledged.

Regime C. Dick <u>11/2/2006</u> Clerk <u>Date</u>

CC:

Charles Davault charles.davault@dep.state.fl.us Philip Waller philip.waller@mwhglobal.com Nancy Marsh <u>marsh.nancy@epa.gov</u> Steve Anderson sanderso@sfwmd.gov Ron Reese <u>rsreese@usgs.gov</u> Joe Haberfeld joe.haberfeld@dep.state.fl.us

Department of Environmental Protection

Jeb Bush Governor South District P.O. Box 2549 Fort Myers, Florida 33902-2549

Colleen Castille Secretary

BY ELECTRONIC MAIL:

NOTICE OF INTENT TO ISSUE PERMIT

PERMITTEE:

City of Cape Coral P.O. Box 1500207 1015 Cultural Park Boulevard Cape Coral, FL 33915-0000 Permit/Certification Number: 254598-001-UC Date of Issue: November 1, 2006 Expiration Date: October 31, 2006 County: Lee Latitude: 26° 35' 10" N Longitude: 82° 01' 23" W Section/Town/Range: 04/45S/23E Project: City of Cape Coral Southwest WRF & WTP IW-1 Class I Injection Well

This permit is issued under the provisions of Chapter 403, Florida Statutes (F.S.), and Florida Administrative Code (F.A.C.) Rules 62-4, 62-520, 62-528, 62-550, 62-600, 62-601, 62-620, and 62-660. The above named permittee is hereby authorized to perform the work or operate the facility shown on the application and approved drawing(s), plans, and other documents, attached hereto or on file with the Department and made a part hereof and specifically described as follows:

Construct one nominal 16-inch ID diameter tubing and packer Class I injection well (IW-1), with cemented 24" steel casing to approximately 2,400 feet below land surface (bls) and 16.5-inch FRP injection tubing cemented to approximately 2400 feet bls and a total depth of approximately 3,000 feet bls. Injection is into the Oldsmar Formation for the primary means of disposal of non-hazardous secondary treated domestic wastewater from the Southwest WRF and non-hazardous reverse osmosis concentrate from the Southwest WTP for a maximum disposal of 9.6 million gallons per day (MGD) at a maximum injection rate of 6,642 gpm. The dual zone monitoring well (DZMW-1) will be completed from approximately 1300 to 1350 feet bls and from approximately 1800 to 1850 feet bls.

The Application to Construct/Operate/Abandon Class I, III, or V Injection well System, DEP Form 62-528.900(1), was received September 9, 2005, with supporting documents and additional information last received February 13, 2006. The Certificate of Demonstration of Financial Responsibility was approved December 9, 2005. The project is located at the City of Cape Coral Southwest WRF at 3310 S.W. 20th Avenue, Lee County, Florida.

Subject to Specific Conditions 1-14.

1. GENERAL CRITERIA

a. Any permit noncompliance constitutes a violation of the Safe Drinking Water Act and is grounds for enforcement action; for permit termination, revocation and reissuance, or modification; or for denial of a permit renewal application.

b. It shall not be a defense for a permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of this permit.

c. The permittee shall take all reasonable steps to minimize or correct any adverse impact on the environment resulting from noncompliance with this permit.

d. Proper operation and maintenance includes effective performance, adequate funding, adequate operator staffing and training, and adequate laboratory and process controls, including appropriate quality assurance procedures.

e. This permit may be modified, revoked and reissued, or terminated for cause. The filing of a request by the permittee for a permit modification, revocation or reissuance, or termination, or a notification of planned changes or anticipated noncompliance, does not stay any permit condition.

f. When requested by the Department, the permittee shall furnish, within the time specified, any information needed to determine whether cause exists for modifying, revoking and reissuing, or terminating this permit, or to determine compliance with this permit.

g. Signatories and Certification Requirements

(1) All reports and other submittals required to comply with this permit shall be signed by a person authorized under Rules 62-528.340(1) or (2), F.A.C.

(2) In accordance with Rule 62-528.340(4), F.A.C., all reports shall contain the following certification:

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based upon my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

h. The permittee shall notify the Department and obtain approval prior to any physical alterations or additions to the injection or monitor well, including removal of the well head.

i. The permittee shall give advance notice to the Department of any planned changes in the permitted facility or injection activity that may result in noncompliance with permit requirements.

j. The permittee shall report any noncompliance that may endanger health or the environment, including:

(1) Any monitoring or other information which indicates that any contaminant may cause an endangerment to an underground source of drinking water; or

Permit/Cert. No.:254598-001-UCDate of Issue:November 1, 2006Expiration Date:October 31, 2011

SPECIFIC CONDITIONS:

(2) Any noncompliance with a permit condition or malfunction of the injection system which may cause fluid migration into or between underground sources of drinking water.

(3) Any information shall be provided orally within 24 hours from the time the permittee becomes aware of the circumstances. A written submission shall also be provided within 5 days of the time the permittee becomes aware of the circumstances. The written submission shall contain a description of the noncompliance and its cause, the period of noncompliance, including exact dates and times, and if the noncompliance has not been corrected, the anticipated time it is expected to continue; and the steps taken or planned to reduce, eliminate, and prevent reoccurrence of the noncompliance.

k. No underground injection is allowed that causes or allows movement of fluid into an underground source of drinking water.

1. The permittee shall retain all records of all monitoring information concerning the nature and composition of injected fluid until five years after completion of any plugging and abandonment procedures specified under Rule 62-528.435, F.A.C. The permittee shall deliver the records to the Department office that issued the permit at the conclusion of the retention period unless the permittee elects to continue retention of the records.

m. If injection is to continue beyond the expiration date of this permit the permittee shall apply for, and obtain an operation permit. If necessary to complete the two-year operational testing period, the permittee shall apply for renewal of the construction permit at least 60 days prior to the expiration date of this permit.

2. Site Requirements

a. A drilling pad shall be provided to collect spillage of contaminants and to support the heaviest load that will be encountered during drilling.

b. The disposal of drilling fluids, cuttings, formation water or waste shall be in a sound environmental manner that avoids violation of surface and ground water quality standards. The disposal method shall be approved by the Department prior to start of construction.

c. Specific drilling pad dimensions and design details shall be provided to and approved by the Department prior to commencing construction (and shortly after selection of drilling contractor).

d. The water table monitoring wells surrounding the injection well and monitor well pads shall be sampled and analyzed prior to drilling this injection well and then weekly thereafter. Sampling shall include specific conductance, pH, chloride, temperature and water level.

e. Pursuant to Rule 62-528.455(1)(c)6., F.A.C., a survey indicating the exact location in metes and bounds of all wells authorized by this permit shall be provided prior to issuance of an operating permit.

3. Construction and Testing Requirements

a. The permittee shall contact the Technical Advisory Committee (TAC) chairman so that he may schedule progress review meetings at appropriate times with the TAC and permittee for the purpose of reviewing the results of tests, geophysical logging, surveys, drilling records and construction problems.

b. All drilling shall be inside a blow out preventer upon penetration of the Floridan Aquifer.

c. Mechanical integrity testing is a two-part demonstration which includes a pressure test to demonstrate that no leaks are present in the casing, tubing or packer and a temperature or noise log and radioactive tracer survey to demonstrate the absence of leaks behind the casing. Verification of pressure gauge calibration must be provided at the scheduled tests. An interim mechanical integrity test consisting of a pressure test on the cemented tubing will be conducted midway between the standard 5-year mechanical integrity tests.

d. Department approval and Technical Advisory Committee (TAC) review pursuant to F.A.C. Rule 62-528 is required for the following stages of construction:

(1) Intermediate casing seat selection for injection and monitor wells.

(2) Final casing seat selection for injection and monitor wells.

(3) Prior to conducting the 24-hour injection test with reclaimed water.

(4) Prior to operational (long term) testing with effluent.

(5) The permittee shall submit all necessary supporting documentation/data, with interpretation, to the TAC for review.

e. The cementing program, as required in Section 62-528.410(5), Florida Administrative Code, shall be submitted to the Department and the Technical Advisory Committee for review. Cementing shall not commence prior to approval being granted.

f. All temperature surveys (except for mechanical integrity demonstration) shall be run within 48 hours after cementing.

g. TAC meetings are scheduled on the 1st Tuesday of each month subject to a 5 working day prior notice and timely receipt of critical data by all TAC members. Emergency meetings may be arranged when justified to avoid undue construction delay.

h. The Permittee shall insure that safe internal pressures are maintained during the cementing of all casings.

i. The injection zone and monitoring zones shall be sampled for background water quality prior to commencement of any injection testing. Parameters to be measured are the primary and secondary drinking water standards (except asbestos, dioxin, epichlorhydrin, and acrylamide) and the minimum criteria for municipal effluent.

j. The injection and monitor well(s) at the site shall be abandoned when no longer usable for their intended purpose, or when posing potential threat to the quality of the waters of the State. Within 180 days of well abandonment, the permittee shall submit to the Department and the TAC the proposed plugging method, pursuant to Rule 62-528.435, F.A.C.

k. All salt used in well drilling shall be stored in an environmentally sound manner. Accurate records shall be kept on the amount of salt used.

l. All dual induction, sonic and caliper geophysical logs run on the pilot holes of the injection well and monitor wells shall be submitted with scales of one inch equals one hundred feet (1"=100'), two inches equals one hundred feet (2"=100'), and five inches equals one hundred feet (5"=100')

m. An engineering drawing showing the drill pad construction (including material used) and locations of the injection well, dual zone monitor well, and the water table monitor wells shall be provided for Department approval prior to pad construction and well construction.

PERMITTEE: Charles P Pavlos, Director of Public Works City of Cape Coral

Permit/Cert. No.:254598-001-UCDate of Issue:November 1, 2006Expiration Date:October 31, 2011

SPECIFIC CONDITIONS:

4. Quality Assurance/Quality Control Requirements

a. This permit approval is based upon evaluation of the data contained in the application dated August 2005 and the plans and/or specifications submitted in support of the application. Any proposed modifications to this permit shall be submitted in writing to the Underground Injection Control program manager, the TAC for review and clearance prior to implementation. Changes of negligible impact to the environment and staff time will be reviewed by the program manager, cleared when appropriate and incorporated into this permit. Changes or modifications other than those described above will require submission of a completed application and appropriate processing fee as per Rule 62-4.050, F.A.C.

b. A professional engineer registered pursuant to Chapter 471, Florida Statutes shall be retained throughout the construction period to be responsible for the construction operation and to certify the application, specifications, completion report and other related documents. The Department shall be notified immediately of any change of engineer.

c. Where required by Chapter 471 (P.E.) or Chapter 492 (P.G.) F.S., applicable portions of permit applications and supporting documents that are submitted to the Department for public record shall be signed and sealed by the professional(s) who approved or prepared them.

d. The Department shall be notified immediately of any problems that may seriously hinder compliance with this permit, construction progress, or good construction practice. The Department may require a detailed written report describing the problem, remedial measures taken to assure compliance and measures taken to prevent recurrence of the problem.

e. Issuance of a Class I Test/Injection well construction and testing permit does not obligate the Department to authorize operation of the injection well system, unless the wells qualify for an operation permit applied for by the permittee and issued by the Department.

5. Reporting Requirements

a. All reports and surveys required by this permit must be submitted concurrently to all the members of the TAC. The TAC consists of representatives from these agencies:

Florida Department of Environmental Protection South District P.O. Box 2549 Fort Myers, FL 33902-2549

Florida Department of Environmental Protection Bureau of Water Facilities Regulation UIC Program, MS 3530 2600 Blair Stone Rd. Tallahassee, FL 32399-2400

South Florida Water Management District P.O. Box 24860 West Palm Beach, FL 33416-4860

United States Geological Survey 9100 NW 36th Street, Suite 107 Miami, FL 33178

b. Members of the TAC shall receive a weekly summary of the daily log kept by the contractor. The reporting period shall run for seven (7) days and reports shall be mailed or emailed within 48 hours of the last day of the reporting period. The report shall include but is not limited to the following:

(1) Description of daily footage drilled by diameter of bit or size of hole opener or reamer being used;

(2) Description of formation and depth encountered; and specific conductance of water samples collected during drilling. Description of work during installation and cementing of casings; include amounts of casing and actual cement used versus calculated volume required.

(3) Lithological description of drill cuttings collected every ten (10) feet or at every change in formation. Description of work and type of testing accomplished, geophysical logging, pumping tests, deviation survey results, and coring results.

(4) Description of any construction problems that develop and their status to include a description of what is being done or has been done to correct the problem.

(5) Description of the amount of salt used.

(6) Results of any water quality analyses performed as required by this permit, including pad monitor wells

(7) Copies of the driller's log are to be submitted with the weekly summary.

c. The Department must be notified seventy-two (72) hours prior to all testing for mechanical integrity on the injection well. Testing should begin during daylight hours Monday through Friday.

d. Annotated copies of geophysical logs, lithologic descriptions and logs and water quality data (from drilling and packer tests) must be submitted to TAC, with interpretation, for intermediate and final casing seat selection approvals by the Department.

e. An interpretation of all test results must be submitted with all test data and geophysical logs.

f. After completion of construction and testing, a final report, certified by a P.E. and P.G., shall be submitted to the Department and the TAC. The report shall include, but not be limited to, all information and data collected under Rule 62-528.450(2) and Rule 62-528.450(3), F.A.C., with appropriate interpretations. Mill certificates for the casing(s) shall be included in this report. To the extent possible, the transmissivity of the injection zone and maximum injection rate within safe pressure limits shall be estimated.

6. The construction permit includes a period of temporary injection operation for the purposes of long term testing. Prior to commencement of operational testing:

a. Construction of the injection well shall be complete and the permittee shall submit a notice of completion of construction certified by a P.E. to the Department.

b. Each well shall first be tested for integrity of construction, and shall be followed by a short-term injection test of such duration to allow for the prediction of the operating pressure.

c. The permittee shall submit the following information to each member of the Technical Advisory Committee:

(1) A copy of the borehole television survey(s)

- (2) Geophysical logs
- (3) Mechanical integrity test data
- (4) Data obtained during the short term injection testing conducted pursuant to Rules 62-528.405(3)(a) and 62-528.410(7)(e), and 62-528.450(3)(a)2., F.A.C.
- (5) Confining zone data
- (6) Background water quality data for the injection and monitor zones
- (7) Wastestream analysis
- (8) As-built well construction specifications
- (9) Draft operation and maintenance manual with emergency procedures

(10) Other data obtained during well construction needed by the Department to evaluate whether the well will operate in compliance with Department rules.

d. The emergency discharge method shall be fully operational and no emergency discharge shall occur until the permittee has obtained all necessary permits.

e. Any corrective action required under Rule 62-528.300(5)(c)2., F.A.C., has been completed.

f. Written authorization shall be obtained from the Department. Authorization shall be for up to two years or the expiration date of the construction permit, whichever is less, and is nonrenewable. The authorization shall specify the conditions under which operational testing is approved. The authorization shall include:

- (1) Injection pressure limitation
- (2) Injection flow rate limitation
- (3) Monthly specific injectivity testing
- (4) Reporting requirements, and
- (5) An expiration date for the operational testing period not to exceed two years.

g. Before authorizing operational testing the Department shall conduct an inspection of the facility to determine if the conditions of the permit have been met.

7. Operational Testing Requirements

- a. Operational Testing Conditions Injection Well System
 - (1) The injection system shall be monitored in accordance with rule 62-528.425(1)(g) and 62-528.430(2), F.A.C.

(2) The following injection well performance data shall be recorded and reported at the frequency indicated from the injection well instrumentation in the Monthly Operating Report as indicated below. Samples and measurements taken for the purpose of monitoring shall be representative of the monitored activity.

PERMITTEE:		
Charles P Pavlos, Director of Public Works	Permit/Cert. No.:	254598-001-UC
City of Cape Coral	Date of Issue:	November 1, 2006
	Expiration Date:	October 31, 2011

The permittee shall use continuous indicating and recording devices to monitor injection flow rate and injection pressure and annular pressure. In the case of operational failure of any of these instruments for a period of more than 48 hours, the permittee shall report to the Department in writing the remedial action to be taken and the date when the failure will be corrected.

INJECTION WELL IW-I. The proposed specifications for the injection wells are as follows:

Casing <u>Diameter (OD)</u> 48"Steel 40"Steel 24" Steel	Depth (bls) <u>Cased</u> 500' 1400' 2400'	Open <u>Hole (bls)</u>
18" FRP Tbg	2400'	2400-3000'
Parameters_		Reporting Frequency
Injection Pressure (p.s.i) Maximum Injection Pressure Minimum Injection Pressure Average Injection Pressure		Daily/Monthly Daily/Monthly Daily/Monthly Daily/Monthly
Flow Rate (g.p.m.) Maximum Flow Rate Average Flow Rate Minimum Flow Rate		Daily/Monthly Daily/Monthly Daily/Monthly Daily/Monthly
Total Volume WRF Effluent In Total Volume WRF Effluent In Total Volume WTP Concentrat Total Volume WTP Concentrat	ijected (gallons) te Injected (gallons)	Daily Monthly Daily Monthly

Injectate Water Quality

WRF Effluent Water Quality

Ammonia (mg/L)	Monthly
TKN (mg/L)	Monthly
Nitrate and Nitrite as N (mg/l)	Monthly

WTP Concentrate Water Quality

TKN (mg/L)	Monthly
pH (std. units)	Monthly
Specific Conductance (µmhos/cm)	Monthly
Chloride (mg/L)	Monthly
Sulfate (mg/L)	Monthly
Field Temperature (deg. C)	Monthly
Total Dissolved Solids (mg/L)	Monthly
Sodium (mg/L)	Monthly

PERMITTEE:		
Charles P Pavlos, Director of Public Works	Permit/Cert. No .:	254598-001-UC
City of Cape Coral	Date of Issue:	November 1, 2006
	Expiration Date:	October 31, 2011

b. Operational Testing Conditions - Monitor Well System.

(1) The monitor well system will consist of one Dual Zone Monitor Well as described below:

Well	Casing	Depth (bls)	Open
<u>Number</u>	<u>Dia. (OD)</u>	<u>Cased</u>	<u>Hole(bls)</u>
DZMW-1	24" Steel 16" Steel 6.625" FRP	500' 1300' 1800'	1300-1350' 1800-1850'

(2) All monitor wells shall be monitored in accordance with rule 62-528.425 and 62-528.430, F.A.C. The following monitor well performance data shall be recorded and reported at the frequency indicated from the monitor well instrumentation in the Monthly Operating Report as indicated below. Samples and measurements taken for the purpose of monitoring shall be representative of the monitored activity. The permittee shall use continuous indicating and recording devices to monitor the monitor zone pressures or water levels. In the case of operational failure of any of these instruments for a period of more than 48 hours, the permittee shall report to the Department in writing the remedial action to be taken and the date when the failure will be corrected.

DZMW-1	Reporting
Parameters	Frequency
Maximum Water Level or Pressure (Ft. NGV)	D or psi) Daily/Monthly
Minimum Water Level or Pressure	Daily/Monthly
Average Water Level or Pressure	Monthly
Water Quality	
TKN (mg/L) Specific Conductance (μmhos/cm) Total Dissolved Solids (mg/L) pH (std. units) Chloride (mg/L) Sulfate (mg/L) Field Temperature (°C) Ammonia (mg/L) Sodium (mg/L) Calcium (mg/L) Potassium (mg/L) Magnesium (mg/L) Iron (mg/L) Bicarbonate (mg/L)	Weekly Weekly Weekly Weekly Weekly Weekly Weekly Monthly Monthly Monthly Monthly Monthly Monthly

PERMITTEE: Charles P Pavlos, Director of Public Works City of Cape Coral

Permit/Cert. No.:254598-001-UCDate of Issue:November 1, 2006Expiration Date:October 31, 2011

SPECIFIC CONDITIONS:

Gross Alpha	Monthly (deep monitor zone only)
Radium 226	Monthly (deep monitor zone only)
Radium 228	Monthly (deep monitor zone only)

(3) Water quality data may be reduced to monthly analyses after a minimum six months of data if the conditions of Rule 62-528.450(3)(d), F.A.C., have been met and with Department approval.

c. The permittee shall calibrate all pressure gauge(s), flow meter(s), chart recorder(s), and other related equipment associated with the injection well system on a semi-annual basis. The permittee shall maintain all monitoring equipment and shall ensure that the monitoring equipment is calibrated and in proper operating condition at all times. Laboratory equipment, methods, and quality control will follow EPA guidelines as expressed in Standard Methods for the Examination of Water and Wastewater. The pressure gauge(s), flow meter(s), and chart recorder(s) shall be calibrated using standard engineering methods.

d. The permittee shall submit monthly to the Department the results of all injection well and monitor well data required by this permit no later than the last day of the month immediately following the month of record. The results shall be sent to the Department of Environmental Protection, P.O. Box 2549, Fort Myers, Florida 33902-2549. A copy of this report shall also be sent to the Department of Environmental Protection, Underground Injection Control Program, MS 3530, 2600 Blair Stone Road, Tallahassee, Florida 32399-2400.

e. The Engineer of Record or designated qualified representative must be present for the start-up operations and the Department must be notified in writing of the date operational testing commenced for the well.

8. Abnormal Events

a. In the event the permittee is temporarily unable to comply with any conditions of this permit due to breakdown of equipment, power outages, destruction by hazard of fire, wind, or by other cause, the permittee shall notify the Department. Notification shall be made in person, by telephone or by electronic mail within 24 hours of breakdown or malfunction to the UIC Program staff, South District office.

b. A written report of any noncompliance referenced in 1) above shall be submitted to the South District office within five days after its occurrence. The report shall describe the nature and cause of the breakdown or malfunction, the steps being taken or planned to be taken to correct the problem and prevent its reoccurrence, emergency procedures in use pending correction of the problem, and the time when the facility will again be operating in accordance with permit conditions.

9. Emergency Disposal

a. All applicable federal, state and local permits must be in place to allow for any alternate discharges due to emergency or planned outage conditions.

b. Any changes in emergency disposal methods must be submitted for Technical Advisory Committee (TAC) and USEPA review and Department approval.

c. The permittee shall notify the Department within 24 hours whenever an emergency discharge has occurred (Rule 62-528.415(4)(c)1., F.A.C.). Written notification shall be provided to the Department within 5 days after each occurrence. The Permittee shall indicate the location and duration of the discharge and the volume of fluid discharged.

10. Financial Responsibility

a. The permittee shall maintain the resources necessary to close, plug and abandon the injection and associated monitor wells, at all times (Rule 62-528.435(9), F.A.C.).

b. The permittee shall review annually the plugging and abandonment cost estimates. The permittee shall resubmit documentation necessary to demonstrate financial responsibility using the revised cost estimates on or before March 31 of each year.

c. In the event that the mechanism used to demonstrate financial responsibility should become invalid for any reason, the permittee shall notify the Department of Environmental Protection in writing within 14 days of such invalidation. The permittee shall, within 30 days of said notification, submit to the Department for approval, new financial documentation in order to comply with Rule 62-528.435(9), F.A.C., and the conditions of this permit.

11. Mechanical Integrity

a. Injection is prohibited until the permittee affirmatively demonstrates that the well has mechanical integrity. Prior to operational testing the permittee shall establish, and thereafter maintain, mechanical integrity of the well at all times.

b. If the Department determines that the injection well lacks mechanical integrity, written notice shall be given to the permittee.

c. Unless the Department requires the immediate cessation of injection, within 48 hours of receiving written notice from the department that the well lacks mechanical integrity the permittee shall cease injection into the well unless the Department allows continued injection pursuant to (d) below.

d. The Department may allow the permittee to continue operation of a well that lacks mechanical integrity if the permittee demonstrates that fluid movement into or between underground sources of drinking water is not occurring.

12. The permittee is reminded of the necessity to comply with the pertinent regulations of any other regulatory agency, as well as any county, municipal, and federal regulations applicable to the project. These regulations may include, but not limited to, those of the Federal Emergency Management Agency in implementing flood control measures. This permit should not be construed to imply compliance with the rules and regulations of other regulatory agencies.

13. The permittee shall be aware of and operate under the general conditions in Rule 62-528.307(1)(a) through (x) and Rule 62-528.307(2)(a) through (f), F.A.C. These general conditions are binding upon the permittee and enforceable pursuant to Chaper 403 of the Florida Statutes.

PERMITTEE: Charles P Pavlos, Director of Public Works City of Cape Coral

SPECIFIC CONDITIONS:

Permit/Cert. No.:254598-001-UCDate of Issue:November 1, 2006Expiration Date:October 31, 2011

Note: In the event of an emergency the permittee shall contact the Department by calling (850) 488-1320. During normal business hours, the permittee shall call (239) 332-6975.

Issued this <u>1st</u> day of <u>November</u>.

STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION

Jon M. Iglehart Director of District Management

JMI/AMM/rcd

Appendix B

Deviation Surveys

Injection Well IW-1

Deviation Surveys

IW-1 DEVIATION SURVEYS

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

JOB NUMBER: CONTRACTOR: PROJECT MANAGER: OWNER:

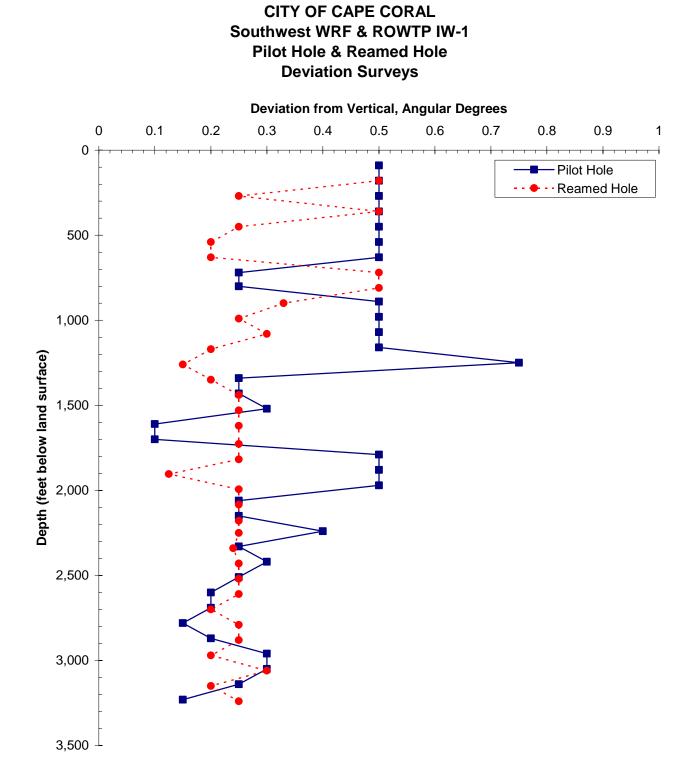
3220269.77010102 Youngquist Brothers, Inc. Neil Johnson City of Cape Coral

PILOT HOLE SURVEYS		
DATE	DEPTH (ft bls)	DEVIATION (degrees)
10/14/2007	90	0.5
10/14/2007	180	0.5
10/15/2007	270	0.5
10/15/2007	360	0.5
10/15/2007	450	0.5
10/26/2007	540	0.5
10/26/2007	630	0.5
10/26/2007	720	0.25
10/26/2007	800	0.25
10/26/2007	890	0.5
10/26/2007	980	0.5
10/27/2007	1,070	0.5
10/27/2007	1,160	0.5
10/27/2007	1,250	0.75
10/27/2007	1,340	0.25
10/28/2007	1,430	0.25
10/27/2007	1,520	0.3
10/27/2007	1,610	0.1
10/28/2007	1,700	0.1
12/1/2007	1,790	0.5
2/8/2007	1,880	0.5

REAMED HOLE SURVEYS		
DATE	DEPTH (ft bls)	DEVIATION (degrees)
10/16/2007	90	0.5
10/17/2007	180	0.5
10/18/2007	270	0.25
10/19/2007	360	0.5
10/20/2007	450	0.25
11/4/2007	540	0.2
11/4/2007	630	0.2
11/8/2007	720	0.5
11/9/2007	810	0.5
11/10/2007	900	0.33
11/10/2007	990	0.25
11/12/2007	1,080	0.3
11/12/2007	1,170	0.2
11/13/2007	1,260	0.15
11/13/2007	1,350	0.2
11/13/2007	1,440	0.25
11/14/2007	1,530	0.25
11/14/2007	1,620	0.25
2/2/2008	1,727	0.25
2/3/2008	1,818	0.25
2/3/2008	1,904	0.125

IW-1 DEVIATION SURVEYS

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM


JOB NUMBER: CONTRACTOR: PROJECT MANAGER: OWNER:

<u>3220269.77010102</u> Youngquist Brothers, Inc. <u>Neil Johnson</u> City of Cape Coral

PILOT HOLE SURVEYS		
DATE	DEPTH (ft bls)	DEVIATION (degrees)
12/14/2007	2,780	0.15
12/14/2007	2,870	0.2
12/17/2007	2,960	0.3
12/18/2007	3,050	0.3
12/18/2007	3,140	0.25
12/19/2007	3,230	0.15

REAMED HOLE SURVEYS DATE DEPTH **DEVIATION** (ft bls) (degrees) 2/22/2008 2,790 0.25 2/24/2008 2,880 0.25 3/1/2008 2,970 0.2 3/9/2008 3,060 0.3 0.2 3/24/2008 3,150 3/23/2008 3,240 0.25

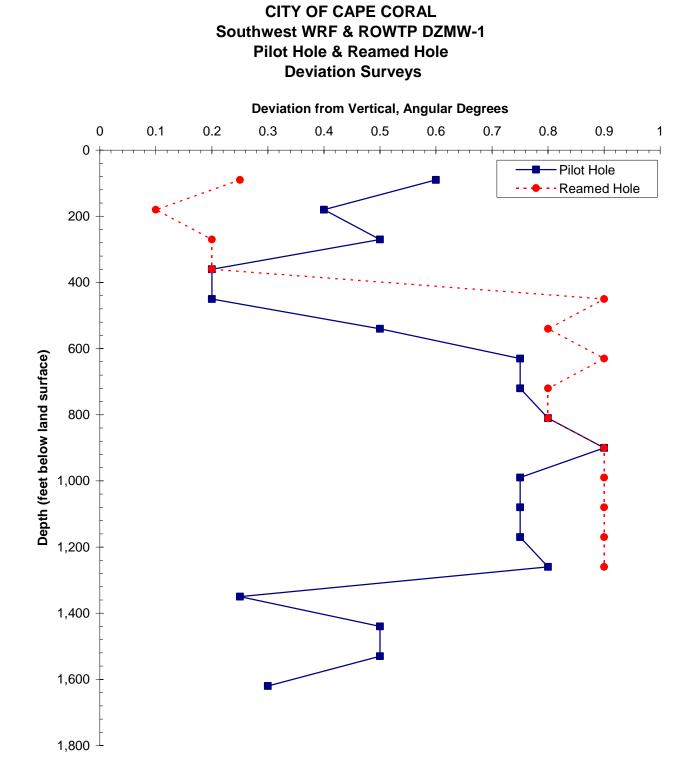
NOTE: ft bls - feet below land surface

Monitor Well DZMW-1

Deviation Surveys

DZMW-1 DEVIATION SURVEYS

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM


JOB NUMBER: CONTRACTOR: PROJECT MANAGER: Neil Johnson OWNER:

3220269.77010102 Youngquist Brothers, Inc. City of Cape Coral

PILOT HOLE SURVEYS			
DATE	DEPTH (ft bls)	DEVIATION (degrees)	
5/9/2008	90	0.6	
5/9/2008	180	0.4	
5/9/2008	270	0.5	
5/10/2008	360	0.2	
5/10/2008	450	0.2	
5/16/2008	540	0.5	
5/17/2008	630	0.75	
5/17/2008	720	0.75	
5/17/2008	810	0.8	
5/18/2008	900	0.9	
5/18/2008	990	0.75	
5/18/2008	1,080	0.75	
5/18/2008	1,170	0.75	
5/18/2008	1,260	0.8	
5/18/2008	1,350	0.25	
5/18/2008	1,440	0.5	
5/20/2008	1,530	0.5	
5/21/2008	1,620	0.3	

REAMED HOLE SURVEYS		
DATE	DEPTH (ft bls)	DEVIATION (degrees)
5/11/2008	90	0.25
5/12/2008	180	0.1
5/12/2008	270	0.2
5/12/2008	360	0.2
5/13/2008	450	0.9
6/11/2008	540	0.8
6/12/2008	630	0.9
6/12/2008	720	0.8
6/12/2008	810	0.8
6/13/2008	900	0.9
6/14/2008	990	0.9
6/15/2008	1,080	0.9
6/16/2008	1,170	0.9
6/16/2008	1,260	0.9

NOTE: ft bls - feet below land surface

Appendix C

Lithologic Logs

Injection Well IW-1

Lithologic Log

LITHOLOGIC DESCRIPTION OF SAMPLES FROM

INJECTION WELL 1

SOUTHWEST WRF AND ROWTP CAPE CORAL, FLORIDA

DEPTH

DESCRIPTION

UNDIFFERENTIATED MARINE TERRACE DEPOSITS

- 0 18 Sand, very pale orange (10 YR 8/2) to black (N1), intergranular porosity, possibly high permeability, fine to medium grained, subrounded, unconsolidated, organics (25%), shell (15%), heavy minerals (trace), mollusks
- Shell Bed, light olive gray (5Y 5/2), intergranular porosity, possibly high permeability, unconsolidated, sand (20%), clay (trace), phosphate (5%), mollusks

HAWTHORN GROUP PEACE RIVER FORMATION

- 30 40 Clayey silt, light olive gray (5Y 5/2), intergranular porosity, low permeability, very fine grained dolomite silt, poor induration with dolosilt, clay, and micrite cements, sand (30%), phosphate (5%), mollusks
- 40 90 Dolosilt/clay, olive gray (5Y 3/2), intergranular porosity, low permeability, very fine grained subhedral crystals, poor induration with dolosilt and clay cements, clay (5%), sand (15%), phosphate (5%)
- 90 100 Clayey sand, olive gray (5Y 3/2), intergranular porosity, low to medium permeability, very fine to coarse grained, subrounded to rounded, poor induration with dolomite and clay cements, phosphate (20%) some coarse size, clay (2%), dolosilt (5%), fossil fragments
- 100 110 Clayey sand, grayish olive (10Y 4/2), intergranular porosity, medium permeability, fine to medium grained, subrounded, poor induration with dolomite and clay cements, dolomite (2%), clay (trace), phosphate (20%), mollusks
- 110-130 Clayey sand, olive gray (5Y 3/2), intergranular porosity, medium permeability, fine to coarse grained, subrounded to rounded, poor induration with clay cement, clay (trace), phosphate (30%), limestone (trace)

- Limestone (wackestone), yellowish gray (5Y 7/2), intergranular porosity, medium permeability, grain types are biogenic, micrite, and skeletal, 35 % allochems, grain size is microcrystalline to fine, poor induration with micrite cement, sand 35 %, phosphate 15 %, mollusks, benthonic foraminifera
- 150 -180 Clayey sand, light olive gray (5Y 5/2), intergranular porosity, medium permeability, fine to coarse grained, subrounded, medium spericity, poor induration with clay and dolomite cements, phosphate 15 %, fossil fragments
- 180 190Clay, grayish olive (10Y 4/2), intergranular porosity, low permeability,
poor induration with clay cement, sand 5 %, phosphate 2 %
- 190 200 Shell bed, yellowish gray (5Y 7/2), intergranular porosity, medium permeability, poor induration, sand 25 %, phosphate 10 %, mollusks
- 200 210 Phosphatic sand, pale greenish yellow (10Y 8/2), intergranular porosity, medium permeability, fine grained, rounded, high spericity, unconsolidated, quartz sand 15 %, limestone 10 %, mollusks
- 210 220 Limestone and phosphate rubble zone, yellowish gray, intergranular porosity, medium permeability, poor induration with micrite cement, phosphate 25 %, limestone fragments 25 %, mollusks
- Sandy Clay, pale olive (10Y 6/2), intergranular porosity, low permeability, poor induration with clay and dolomite cements, sand 25%, phosphate 15%
- 230-240 As above, less sand (10%) and phosphate (5%)
- 240 260 Clayey sand, yellowish gray (5Y 8/1), intergranular porosity, low to medium permeability, very fine to medium grained, poor induration with clay and micrite cements, limestone 30%, clay (trace), phosphate 5%
- 260 270 Clayey sand, medium light gray (N6), intergranular porosity, low to medium permeability, very fine to coarse grained, subrounded to angular, soft, sticky, poor induration with clay and micrite cements, limestone (25%), clay (20%), sand (10%), phosphate (5%).
- Clayey sand, medium light gray (N6), intergranular porosity, low to medium permeability, very fine to medium grained, subrounded to subangular, poor induration with clay and micrite cements, limestone (20%), sand (20%), clay (10%), phosphate (5%).

280 – 290	Dolosilt/Clay, light olive gray (5Y 6/1), intergranular porosity, low to medium permeability, very fine to fine grained, subrounded to rounded, very soft, sticky, poor induration with clay and trace micritic cements, limestone (10%), sand (5%), phosphate (5%).
290 - 300	Dolosilt/Clay, medium light gray (N6), intergranular porosity, low to medium permeability, very fine to coarse grained, subrounded to angular, soft, sticky, poor induration with clay and micrite cements, limestone (25%), clay (20%), sand (10%), phosphate (5%).
300 - 320	Dolosilt/Clay, medium light gray (N6), intergranular porosity, low to medium permeability, very fine to medium grained, sub-rounded to sub-angular, soft, sticky, poor induration with clay and micrite cements, limestone (15%), clay (20%), sand (10%), phosphate (5%).
320 - 330	Dolosilt/Clay, light olive gray (5Y 6/1), intergranular porosity, low to medium permeability, very fine to fine grained, subrounded to rounded, soft, sticky, poor induration with clay and trace micritic cements, limestone (15%), sand (15%), phosphate (5%).
330 - 360	Dolosilt/Clay, light gray (N7), intergranular porosity, low to medium permeability, very fine to medium grained, subrounded to rounded, very soft, sticky, poor induration with clay and trace micritic cements, limestone (15%), sand (20%), clay (15%), phosphate (5%).
360 – 380	Dolosilt/Clay Marl, light gray (N7) to yellowish gray (5Y 8/1), intergranular porosity, low to medium permeability, very fine to medium grained, subrounded to rounded, very soft, sticky, poor induration with clay and trace micritic cements, limestone (25%), sand (10%), clay (10%), phosphate (5%).
	ARCADIA FORMATION
380 - 390	Sandy Limestone (wackestone) vellowish grav (5Y $8/1$) intergranular

- 380 390 Sandy Limestone (wackestone), yellowish gray (5Y 8/1), intergranular porosity, medium porosity, grains are micritic, moderately hard with poor to moderate induration, micrite calcite cement, sand (20%), clay (10%), phosphate (5%), mollusks
- 390 410 Sandy limestone (wackestone), yellowish gray (5Y 8/1), intergranular and vugular porosity, low to medium permeability, grain types are biogenic, micrite, intraclast, fine grained, 25% allochems, microcrystalline to medium grained, poor induration with micrite cement, sand (25%), clay (trace), phosphate (5%), mollusks, bryozoans, benthonic foraminifera

- 410 420 Limestone (wackestone), very pale orange (10YR 8/2), intergranular and vugular porosity, medium permeability, grain types are biogenic, micrite, and crystal, fine grained, 35% allochems, microcrystalline to medium grained, moderate induration with micrite and sparry calcite cements, sand (10%), phosphate (trace), mollusks
- 420 430 Sandy Limestone (wackestone), yellowish gray (5Y 7/2), intergranular and moldic porosity, low to medium permeability, grain types are biogenic, micrite, and crystal, fine grained, 25% allochems, microcrystalline to medium grained, poor induration with micrite, spar and clay cements, clay (trace), sand (30 %), phosphate (3%), mollusks
- Limestone (mudstone), yellowish gray (5Y 7/2), intergranular porosity, low permeability, grain types are biogenic and micrite, very fine grained, 10% allochems, microcrystalline to fine grained, poor induration with micrite cement, sand (15%), phosphate (2%)
- 440 450 Limestone (wackestone), yellowish gray (5Y 7/2), intergranular and vugular porosity, medium permeability, grain types are biogenic, micrite, and skeletal, fine grained, 35% allochems, microcrystalline to medium grained, moderate induration with micrite cement, sand (5%), phosphate (5%), mollusks
- Limestone (mudstone), yellowish gray (5Y 7/2), intergranular porosity, low permeability, grain types are biogenic and micrite, very fine grained, 10% allochems, microcrystalline to very fine grained, poor induration with micrite and clay cements, sand (5%), phosphate (5%)
- 470 482 Limestone (mudstone), yellowish gray (5Y 7/2), intergranular porosity, low permeability, grain types are biogenic and micrite, very fine grained, 5% allochems, microcrystalline to very fine grained, poor induration with micrite and clay cements, sand (10%), phosphate (2%)
- 482 490 Dolostone, yellowish gray (5Y 7/2), intercrystalline and pin point vugular porosity, low permeability, microcrystalline to very fine grained crystals, subhedral, 50 to 90% alteration, good induration with dolomite and sparry calcite cements, sand (trace), phosphate (trace)
- 490 510 Limestone (wackestone), very pale orange (10 YR 8/2), intergranular and moldic porosity, medium to high permeability, grain types are skeletal, biogenic, and micrite, fine to medium grained, 45% allochems, moderate induration with micrite cement, sand (15%), phosphate (5%), mollusks, benthonic foraminifera, bryozoans

- 510 520 no sample
- 520 540 Limestone (wackestone), yellowish gray (5Y 8/1), intergranular porosity, low to medium permeability, moderately hard, grains are biogenic and micrite, 15% allochems, microcrystalline to fine grained, good induration with micrite cement, clay (trace), phosphate (trace), benthic foraminifera.
- 540 550 Limestone (wackestone), very pale orange (10YR 8/2), intergranular and moldic porosity, medium permeability, grain types are biogenic, skeletal, and micrite, moderately indurated with micrite and spar cements, quartz sand (5%), phosphate (trace), mollusks, corals
- Limestone (wackestone), very pale orange (10YR 8/2) to yellowish gray (5Y 8/1), intergranular and moldic porosity, medium permeability, grain types are biogenic, skeletal, and micrite, moderately to well indurated with micrite and spar cements, quartz sand (5%), phosphate (3%), crystalline limestone (20%), mollusks, corals
- 560 570 Limestone (wackestone), very pale orange (10YR 8/2), intergranular and moldic porosity, medium permeability, grain types are biogenic, skeletal, and micrite, moderately indurated with micrite and spar cements, quartz sand (5%), phosphate (10%), mollusks, corals
- 570 590 Limestone (wackestone), yellowish gray (5Y 8/1), intergranular and moldic porosity, medium to low permeability, grain types are biogenic, skeletal, and micrite, very fine grained, about 20 % allochems, moderately indurated with micrite and spar cements, quartz sand (5%), phosphate (5%), mollusks
- 590 600 Limestone (packstone), yellowish gray (5Y 8/1), intergranular and moldic porosity, medium to high permeability, grain types are biogenic, skeletal, and micrite, fine grained, about 65 % allochems, moderately indurated with micrite and spar cements, quartz sand (5%), phosphate (5%), mollusks, benthonic foraminifera
- 600 610 Limestone (mudstone), yellowish gray (5Y 8/1), intergranular and moldic porosity, low permeability, grain types are biogenic, skeletal, and micrite, very fine grained, about 10 % allochems, moderately indurated with micrite and spar cements, quartz sand (5%), phosphate (5%), mollusks, benthonic foraminifera
- 600 610 Limestone (wackestone), yellowish gray (5Y 8/1), intergranular and moldic porosity, low permeability, grain types are biogenic, skeletal, and micrite, very fine grained, about 35 % allochems, moderately indurated with micrite and spar cements, quartz sand (5%), phosphate (5%), mollusks, benthonic foraminifera

- 610 620 Limestone (wackestone), yellowish gray (5Y 8/1), intergranular and moldic porosity, medium permeability, grain types are biogenic, skeletal, and micrite, very fine grained, about 45 % allochems, moderately indurated with micrite and spar cements, quartz sand (5%), phosphate (5%), mollusks, benthonic foraminifera
- 620 640 Dolostone, light olive gray (5Y 5/2), intercrystalline and vugular porosity, possibly low permeability, microcrystalline to very fine grained subhedral crystals, medium alteration, good induration with dolomite and spar cements, carbonate clay in sample
- 640 660 Dolostone (50%), light olive gray (5Y 5/2), intercrystalline and vugular porosity, possibly low permeability, microcrystalline to very fine grained subhedral crystals, medium alteration, good induration with dolomite and spar cements, carbonate clay in sample

Dolomitic Limestone (packstone) (50%), very pale orange (10YR 8/2), intergranular porosity, possibly low permeability, fine to medium grained allochems, moderately altered, moderately indurated with micrite and dolomite cements, trace clay

660 – 700 Limestone (packstone), yellowish gray (5Y 8/1), intergranular and moldic porosity, low to medium permeability, grains are biogenic and skeletal with trace micrite, > 80% allochems, fine to medium grains, moderately indurated with micrite and dolomite cements, moderate alteration, trace dolomite and carbonate clay.

SUWANNEE LIMESTONE

- Limestone (grainstone/calcarenite), yellowish gray (5Y 8/1), intergranular and moldic porosity, medium to high permeability, grains are biogenic and skeletal and crystal, > 90% allochems, medium grained, moderately to well indurated with micrite and dolomite cements, moderate alteration, trace dolomite, benthonic foraminifera, milliolids (Suwannee Limestone)
- 710 720 Limestone (packstone), very pale orange (10YR 8/2), intergranular and moldic porosity, medium permeability, grains types are biogenic, skeletal and micrite, 70% allochems, microcrystalline to medium grains, moderately indurated with micrite and sparry calcite cements, benthonic foraminifera, milliolids, mollusks

- T20 740 Limestone (wackestone), very pale orange (10YR 8/2) to yellowish gray (5Y 8/1), intergranular and vugular porosity, low to medium permeability, grains types are biogenic, skeletal and micrite, 15% allochems, microcrystalline to fine grains, moderately indurated with micrite and sparry calcite cements, benthonic foraminifera, milliolids, mollusks
- Limestone (mudstone), very pale orange (10YR 8/2) to yellowish gray (5Y 8/1), intergranular and vugular porosity, low permeability, grains types are biogenic, skeletal and micrite, 10% allochems, microcrystalline to very fine grained, moderately indurated with micrite and sparry calcite cements, benthonic foraminifera, milliolids
- T50 770 Limestone (grainstone/calcarenite), yellowish gray (5Y 8/1), intergranular and moldic porosity, medium to high permeability, grains are biogenic and skeletal and crystal, 90% allochems, medium grained, moderately to well indurated with micrite and sparry calcite cements, benthonic foraminifera, milliolids, echinoids, mollusks
- Limestone (wackestone), very pale orange (10YR 8/2) to yellowish gray (5Y 8/1), intergranular and vugular porosity, low to medium permeability, grains types are biogenic, skeletal and micrite, 35% allochems, microcrystalline to fine grains, moderately indurated with micrite and sparry calcite cements, benthonic foraminifera (*Rotallia mexicana*), milliolids, mollusks
- 780 800 Limestone (packstone), very pale orange (10YR 8/2), intergranular and moldic porosity, medium permeability, grains types are biogenic, skeletal and micrite, 70% allochems, microcrystalline to medium grains, poorly indurated with micrite and sparry calcite cements, clay (1%), benthonic foraminifera, milliolids, mollusks
- 800 820 Limestone (grainstone/calcarenite), yellowish gray (5Y 8/1), intergranular and moldic porosity, medium to high permeability, grains are biogenic and skeletal and crystal, 90% allochems, medium grained, poorly indurated with micrite and sparry calcite cements, benthonic foraminifera, milliolids, echinoids, mollusks
- Limestone (wackestone), very pale orange (10YR 8/2) to yellowish gray (5Y 8/1), intergranular and vugular porosity, low to medium permeability, grains types are biogenic, skeletal and micrite, 45% allochems, microcrystalline to fine grains, moderately indurated with micrite and sparry calcite cements, benthonic foraminifera, milliolids, mollusks, echinoids

- Limestone (wackestone), yellowish gray (5Y 8/1), intergranular and vugular porosity, medium permeability, grain types are biogenic, skeletal, and micrite, microcrystalline to fine grained, 45% allochems, moderate induration with micrite and sparry calcite cements, benthonic foraminifera
- Limestone (mudstone), very pale orange (10YR 8/2) to yellowish gray (5Y 8/1), intergranular and vugular porosity, low permeability, grains types are biogenic, skeletal and micrite, 10% allochems, microcrystalline to very fine grained, moderately indurated with micrite and sparry calcite cements, benthonic foraminifera, milliolids
- 890 910 Carbonate Clay/Marl, yellowish gray (5Y 8/1), intergranular porosity, low permeability, soft, plastic, grains are very fine and micritic, poor induration, trace limestone from above and trace medium bluish gray (5B 5/1) moderately indurated mudstone.
- 910 940 Limestone (packstone), very pale orange (10YR 8/2), intergranular and moldic porosity, medium permeability, grains types are biogenic, skeletal and micrite, 70% allochems, microcrystalline to medium grains, poorly indurated with micrite and sparry calcite cements, benthonic foraminifera, milliolids, mollusks
- 940 960 Limestone (wackestone), yellowish gray (5Y 8/1), intergranular and vugular porosity, medium permeability, grain types are biogenic, skeletal, and micrite, microcrystalline to fine grained, 45% allochems, moderate induration with micrite and sparry calcite cements, benthonic foraminifera
- 960 980 Limestone (packstone), very pale orange (10YR 8/2), intergranular and moldic porosity, medium permeability, grains types are biogenic, skeletal and micrite, 70% allochems, microcrystalline to medium grains, poorly indurated with micrite and sparry calcite cements, echinoid spines, benthonic foraminifera, milliolids, mollusks
- 980 1000 Limestone (packstone), very pale orange (10YR 8/2), intergranular and moldic porosity, medium to high permeability, grain types are biogenic, intraclast, and micrite, 80% allochems, medium grained, poor to moderate induration with micrite and spar cements, benthonic forams, echinoids
- 1000 1020 Limestone (grainstone/calcarenite), yellowish gray (5Y 8/1), intergranular and moldic porosity, medium to high permeability, grains are biogenic and skeletal and crystal, 90% allochems, medium grained, poorly indurated with micrite and sparry calcite cements, benthonic foraminifera, milliolids, echinoids, mollusks

- 1020 1040 Limestone (packstone), very pale orange (10YR 8/2), intergranular and moldic porosity, medium permeability, grains types are biogenic, skeletal and micrite, 70% allochems, microcrystalline to medium grains, poorly indurated with micrite and sparry calcite cements, benthonic foraminifera, milliolids, mollusks
- 1040 1060 Limestone (packstone), very pale orange (10YR 8/2), intergranular and moldic porosity, medium permeability, grains types are biogenic, skeletal and micrite, 60% allochems, microcrystalline to medium grains, poorly indurated with micrite and sparry calcite cements, benthonic foraminifera, milliolids, mollusks, echinoids
- 1060 1070 Limestone (wackestone), yellowish gray (5Y 8/1), intergranular and vugular porosity, medium permeability, grain types are biogenic, skeletal, and micrite, microcrystalline to fine grained, 45% allochems, moderate induration with micrite and sparry calcite cements, benthonic foraminifera
- 1070 1090 Limestone (wackestone), yellowish gray (5Y 8/1), intergranular and vugular porosity, medium permeability, grain types are biogenic, skeletal, and micrite, microcrystalline to fine grained, 35% allochems, moderate induration with micrite and sparry calcite cements, quartz sand (1%) benthonic foraminifera
- 1090 1120 Limestone (wackestone), very pale orange (10YR 8/2) to yellowish gray (5Y 8/1), intergranular and vugular porosity, medium permeability, grain types are biogenic, skeletal, and micrite, microcrystalline to fine grained, 35% allochems, moderate induration with micrite and sparry calcite cements, benthonic foraminifera
- 1120 1130 Limestone (packstone), very pale orange (10YR 8/2), intergranular and moldic porosity, medium permeability, grains types are biogenic, skeletal and micrite, 60% allochems, microcrystalline to medium grains, poorly indurated with micrite and sparry calcite cements, dolomite fragments (2%), benthonic foraminifera, milliolids, mollusks, echinoids
- 1130 1150 Limestone (wackestone), very pale orange (10YR 8/2), intergranular and vugular porosity, low to medium permeability, grain types are biogenic, skeletal, and micrite, microcrystalline to fine grained, 45% allochems, moderate induration with micrite and sparry calcite cements, pyrite (trace), benthonic foraminifera, echinoids, pellets

- 1150 1180 Limestone (wackestone), very pale orange (10YR 8/2), intergranular and vugular porosity, low to medium permeability, grain types are biogenic, skeletal, and micrite, microcrystalline to fine grained, 35% allochems, moderate induration with micrite and sparry calcite cements, quartz sand (trace), benthonic foraminifera, echinoids, pellets
- 1180 1200 Limestone (wackestone), very pale orange (10YR 8/2), intergranular and vugular porosity, medium permeability, grain types are biogenic, skeletal, and micrite, microcrystalline to fine grained, 45% allochems, moderate induration with micrite and sparry calcite cements, quartz sand (trace), benthonic foraminifera, pellets
- 1200 1210 Limestone (wackestone), very pale orange (10YR 8/2), intergranular and vugular porosity, medium permeability, grain types are biogenic, skeletal, and micrite, microcrystalline to fine grained, 45% allochems, moderate induration with micrite and sparry calcite cements, pyrite (trace), quartz sand (trace), benthonic foraminifera, pellets
- 1210 1220 Limestone (wackestone), very pale orange (10YR 8/2), intergranular and vugular porosity, medium permeability, grain types are biogenic, skeletal, and micrite, microcrystalline to fine grained, 40% allochems, moderate induration with micrite and sparry calcite cements, clay (trace), benthonic foraminifera, pellets

OCALA LIMESTONE

- 1220 1250 Limestone (wackestone packstone), very pale orange (10YR 8/2), intergranular and vugular porosity, medium permeability, grain types are biogenic, skeletal, and micrite, microcrystalline to medium grained, 60% allochems, moderate induration with micrite and sparry calcite cements, benthonic foraminifera (<u>Heterestegina sp. Lepidocyclina</u> <u>ocalana, Operculinoides sp.</u>), pellets
- 1250 1270 Limestone (wackestone packstone), very pale orange (10YR 8/2), intergranular and vugular porosity, medium permeability, grain types are biogenic, skeletal, and micrite, microcrystalline to medium grained, 60% allochems, moderate induration with micrite and sparry calcite cements, slight alteration, quartz sand (trace), benthonic foraminifera, pellets
- 1270 1290 Limestone (wackestone), very pale orange (10YR 8/2), intergranular and vugular porosity, medium permeability, grain types are biogenic, skeletal, and micrite, microcrystalline to fine grained, 40% allochems, moderate induration with micrite and sparry calcite cements, benthonic foraminifera, pellets

- 1290 1300 Limestone (wackestone), very pale orange (10YR 8/2), intergranular and vugular porosity, medium permeability, grain types are biogenic, skeletal, and micrite, microcrystalline to very fine grained, 30% allochems, moderate induration with micrite and sparry calcite cements, soft carbonate clay (10%), quartz sand (trace), benthonic foraminifera, pellets
- 1300 1310 Limestone (wackestone), very pale orange (10YR 8/2), intergranular and vugular porosity, medium permeability, grain types are biogenic, skeletal, and micrite, microcrystalline to medium grained, 30% allochems, moderate induration with micrite and sparry calcite cements, benthonic foraminifera, pellets
- 1310-1320 Limestone (wackestone), very pale orange (10YR 8/2), intergranular and vugular porosity, medium permeability, grain types are biogenic, skeletal, and micrite, microcrystalline to medium grained, 30% allochems, moderate induration with micrite and sparry calcite cements, soft carbonate clay (10%), quartz sand (trace), benthonic foraminifera, pellets
- 1320 -1340 Limestone (wackestone), very pale orange (10YR 8/2), intergranular and vugular porosity, medium permeability, grain types are biogenic, skeletal, and micrite, microcrystalline to medium grained, 30% allochems, moderate induration with micrite and sparry calcite cements, benthonic foraminifera, pellets
- 1340 1380 Limestone (wackestone to packstone), very pale orange (10YR 8/2), intergranular and vugular porosity, medium permeability, grain types are biogenic, skeletal, and micrite, microcrystalline to medium grained, 60% allochems, moderate induration with micrite and sparry calcite cements, benthonic foraminifera, pellets, mollusks
- 1380 1400 Limestone (wackestone), very pale orange (10YR 8/2), intergranular and vugular porosity, medium permeability, grain types are biogenic, skeletal, and micrite, microcrystalline to fine grained, 40% allochems, moderate induration with micrite and sparry calcite cements, benthonic foraminifera, pellets
- 1400 -1420 Limestone (wackestone to packstone), very pale orange (10YR 8/2), intergranular and vugular porosity, medium permeability, grain types are biogenic, skeletal, and micrite, microcrystalline to medium grained, 60% allochems, moderate induration with micrite and sparry calcite cements, benthonic foraminifera, pellets, mollusks

- 1420 1430 Limestone (wackestone), very pale orange (10YR 8/2), intergranular and vugular porosity, medium permeability, grain types are biogenic, skeletal, and micrite, microcrystalline to fine grained, 40% allochems, moderate induration with micrite and sparry calcite cements, benthonic foraminifera, pellets
- 1430 1460 Limestone (wackestone), very pale orange (10YR 8/2), intergranular and vugular porosity, medium permeability, grain types are biogenic, skeletal, and micrite, microcrystalline to fine grained, 30% allochems, moderate induration with micrite and sparry calcite cements, soft carbonate clay (5%), benthonic foraminifera, pellets
- 1460 1470 Calcareous Clay, yellowish gray (5Y 7/2), intergranular porosity, low permeability, poor induration with clay, micrite, and dolomite cements, quartz sand (trace), formation contact

AVON PARK FORMATION

- 1470 1490 Limestone (wackestone), very pale orange (10YR 8/2), intergranular and vugular porosity, medium permeability, grain types are biogenic, skeletal, and micrite, microcrystalline to fine grained, 30% allochems, moderate induration with micrite and sparry calcite cements, soft carbonate clay (5%), benthonic foraminifera (*Operculinoides sp.*)
- 1490 1510 Limestone (packstone), very pale orange (10YR 8/2), intergranular and moldic porosity, medium permeability, grains types are biogenic, skeletal and micrite, 65% allochems, microcrystalline to medium grains, moderately indurated with micrite and sparry calcite cements, benthonic foraminifera (*Dictyoconus cookei*, *Operculinoides sp., Gypsina sp.*), milliolids, mollusks, echinoids
- 1510 1520 As above, benthonic foraminifera (cones)
- 1520 1540 Limestone (packstone), very pale orange (10YR 8/2), intergranular and moldic porosity, medium permeability, grains types are biogenic, skeletal and micrite, 75% allochems, microcrystalline to medium grains, moderately indurated with micrite and sparry calcite cements, benthonic foraminifera (*Dictyoconus cookei*, *Operculinoides sp.*,), milliolids, mollusks, echinoids
- 1540 1560 Limestone (packstone to grainstone), very pale orange (10YR 8/2), intergranular and moldic porosity, medium permeability, grains types are biogenic, skeletal and micrite, 85% allochems, microcrystalline to medium grains, moderately indurated with micrite and sparry calcite cements, benthonic foraminifera (*Dictyoconus cookei, Operculinoides sp.*,), milliolids, mollusks, echinoids, coquinoid (milliolids)

- 1560 1580 Limestone (packstone), very pale orange (10YR 8/2), intergranular and moldic porosity, medium permeability, grains types are biogenic, skeletal and micrite, 55% allochems, microcrystalline to medium grains, moderately to well indurated with micrite and sparry calcite cements, benthonic foraminifera (*Dictyoconus cookei*), milliolids, mollusks, echinoids
- 1580 1610 Limestone (wackestone), very pale orange (10YR 8/2), intergranular and vugular porosity, medium permeability, grain types are biogenic, skeletal, and micrite, microcrystalline to fine grained, 40% allochems, moderate induration with micrite and sparry calcite cements, benthonic foraminifera
- 1610 1630 Limestone (packstone), very pale orange (10YR 8/2), intergranular and moldic porosity, medium permeability, grains types are biogenic, skeletal and micrite, 65% allochems, microcrystalline to medium grains, moderately to well indurated with micrite and sparry calcite cements, benthonic foraminifera (*Dictyoconus cookei*), milliolids, mollusks, echinoids
- 1630 1650 Limestone (packstone), very pale orange (10YR 8/2) to yellowish gray (5Y 7/2), intergranular, vugular and moldic porosity, medium permeability, grains types are biogenic, skeletal and micrite, 75% allochems, microcrystalline to medium grains, well indurated with micrite and sparry calcite cements, benthonic foraminifera (*Dictyoconus cookei*), milliolids, mollusks, echinoids
- 1650 1670 Limestone (wackestone), very pale orange (10YR 8/2), intergranular and vugular porosity, medium permeability, grain types are biogenic, skeletal, and micrite, microcrystalline to fine grained, 50% allochems, moderate induration with micrite and sparry calcite cements, benthonic foraminifera, cones
- 1670 1680 Crystalline limestone, very pale orange (10YR 8/2), intercrystalline and pin point vugular porosity, low permeability, grain types are biogenic, crystal, and micrite, microcrystalline to very fine grained, good induration with sparry calcite and micrite cements, benthonic foraminifera
- 1680 1700 Limestone (packstone), very pale orange (10YR 8/2) to yellowish gray (5Y 7/2), intergranular, vugular and moldic porosity, medium permeability, grains types are biogenic, skeletal and micrite, 65% allochems, microcrystalline to medium grains, moderate induration with micrite and sparry calcite cements, benthonic foraminifera (*Dictyoconus cookei*), milliolids, mollusks, echinoids

- 1700 1710 Limestone (packstone), very pale orange (10YR 8/2) to yellowish gray (5Y 7/2), intergranular, vugular and moldic porosity, medium permeability, grains types are biogenic, skeletal and micrite, 60% allochems, microcrystalline to medium grains, moderate induration with micrite and sparry calcite cements, trace carbonate clay, benthonic foraminifera, milliolids, mollusks, echinoids
- 1710 1730 Limestone (packstone), very pale orange (10YR 8/2) to yellowish gray (5Y 7/2), intergranular and moldic porosity, medium permeability, grains types are biogenic, skeletal and micrite, 70% allochems, microcrystalline to medium grains, slight alteration, trace dolomite rhombs, moderate induration with micrite and sparry calcite cements, benthonic foraminifera, milliolids, mollusks, echinoids
- 1730 1740 Limestone (packstone), very pale orange (10YR 8/2) to yellowish gray (5Y 7/2), intergranular and moldic porosity, medium permeability, grains types are biogenic, skeletal and micrite, 60% allochems, microcrystalline to medium grains, trace dolomite rhombs, moderate induration with micrite and sparry calcite cements, trace carbonate clay, benthonic foraminifera, milliolids
- 1740 1750 Limestone (packstone), very pale orange (10YR 8/2) to yellowish gray (5Y 7/2), intergranular, vugular and moldic porosity, medium permeability, grains types are biogenic, skeletal and micrite, 60% allochems, microcrystalline to medium grains, moderate induration with micrite and sparry calcite cements, trace carbonate clay, benthonic foraminifera, milliolids, mollusks, echinoids
- 1750 1760 Dolomitic Limestone, yellowish gray (5 Y 8/1), intergranular, vugular and moldic porosity, possibly low permeability, grain types are crystalline and micrite, 20% allochems, microcrystalline to very fine grain, good induration with micrite and sparry calcite cement, undistinguishable forams.
- 1760 1770 Dolomitic Limestone, very pale orange (10 YR 8/2) to yellowish gray (5 Y 8/1), intergranular and vugular porosity, possibly low permeability, grain types are crystalline and micrite, 40% allochems, microcrystalline to very fine grain, good induration with micrite and sparry calcite cement, pellets.
- 1770 1780 Dolomitic Limestone, very pale orange (10 YR 8/2) to yellowish gray (5 Y 8/1), intergranular and vugular porosity, possibly low permeability, grain types are crystalline and micrite, 10% allochems, microcrystalline to very fine grain, good induration with micrite and sparry calcite cement.

- 1780 1790 Dolomitic Limestone, very pale orange (10 YR 8/2) to yellowish gray (5 Y 8/1), intergranular and vugular porosity, possibly low permeability, grain types are crystalline and micrite, 20% allochems, microcrystalline to very fine grain, good induration with micrite and sparry calcite cement, pellets.
- 1790 1800 Dolomitic Limestone, very pale orange (10 YR 8/2) to yellowish gray (5 Y 8/1), intergranular and vugular porosity, possibly low permeability, grain types are crystalline and micrite, 10% allochems, microcrystalline to very fine grain, good induration with micrite and sparry calcite cement.
- 1800 1810 Dolomitic Limestone, very pale orange (10 YR 8/2) to yellowish gray (5 Y 8/1), intergranular and vugular porosity, possibly low permeability, grain types are crystalline and micrite, 10% allochems, microcrystalline to very fine grain, good induration with micrite and sparry calcite cement, pellets.
- 1810 1820 Dolomitic Limestone, very pale orange (10 YR 8/2) to yellowish gray (5 Y 8/1), intergranular and vugular porosity, possibly low permeability, grain types are crystalline and micrite, 40% allochems, microcrystalline to very fine grain, good induration with micrite and sparry calcite cement, pellets.
- 1820 1830 Dolomitic Limestone, very pale orange (10 YR 8/2) to yellowish gray (5 Y 8/1), intergranular and vugular porosity, possibly low permeability, grain types are crystalline and micrite, 10% allochems, microcrystalline to very fine grain, good induration with micrite and sparry calcite cement.
- 1830 1840 Dolomitic Limestone, very pale orange (10 YR 8/2) to yellowish gray (5 Y 8/1), intergranular and vugular porosity, possibly low permeability, grain types are crystalline and micrite, 20% allochems, microcrystalline to very fine grain, good induration with micrite and sparry calcite cement, pellets.
- 1840 1850 Dolomitic Limestone, very pale orange (10 YR 8/2) to yellowish gray (5 Y 8/1), intergranular and vugular porosity, possibly low permeability, grain types are crystalline and micrite, 10% allochems, microcrystalline to very fine grain, good induration with micrite and sparry calcite cement.
- 1850 1860 Dolomitic Limestone, very pale orange (10 YR 8/2) to yellowish gray (5 Y 8/1), intergranular and vugular porosity, possibly low permeability, grain types are crystalline and micrite, 50% allochems, microcrystalline to very fine grain, good induration with sparry calcite cement.

- 1860 1870 Dolomitic Limestone, yellowish gray (5 Y 8/1), intergranular and vugular porosity, possibly low permeability, grain type is crystalline, 10% allochems, microcrystalline to very fine grain, good induration with sparry calcite cement.
- 1870 1880 Dolomitic Limestone, yellowish gray (5 Y 8/1), intergranular and vugular porosity, possibly low permeability, grain type is crystalline, 40% allochems, microcrystalline to very fine grain, good induration with sparry calcite cement.
- 1880 1890 Dolomitic Limestone, very pale orange (10 YR 8/2) to yellowish gray (5 Y 8/1), intergranular and vugular porosity, possibly low permeability, grain types are crystalline and micrite, 10% allochems, microcrystalline to very fine grain, good induration with micrite and sparry calcite cement.
- 1890 1900 Dolomitic Limestone, yellowish gray (5 Y 8/1), intergranular and vugular porosity, possibly low permeability, grain type is crystalline, 30% allochems, microcrystalline to very fine grain, good induration with sparry calcite cement.
- 1900 1910 Dolomitic Limestone, yellowish gray (5 Y 8/1), intergranular and vugular porosity, possibly low permeability, grain type is crystalline and biogenic, 30% allochems, microcrystalline to very fine grain, good induration with micrite and sparry calcite cement.
- 1910 1920 Dolomitic Limestone, yellowish gray (5 Y 8/1), intergranular and vugular porosity, possibly low permeability, grain type is crystalline and biogenic, 10% allochems, microcrystalline to very fine grain, good induration with sparry calcite cement.
- 1920 1930 Dolomitic Limestone, yellowish gray (5 Y 8/1), intergranular and vugular porosity, possibly low permeability, grain type is crystalline, 20% allochems, microcrystalline to very fine grain, good induration with sparry calcite cement.
- 1930 1940 Dolomitic Limestone, yellowish gray (5 Y 8/1), intergranular, intercrystalline, and vugular porosity, possibly low permeability, grain type is crystalline and biogenic, 15% allochems, microcrystalline to very fine grain, good induration with sparry calcite cement. Calcareous clay in sample.
- 1940 1950 Dolomitic Limestone, yellowish gray (5 Y 8/1), intergranular, intercrystalline, and vugular porosity, possibly low permeability, grain type is crystalline and biogenic, 10% allochems, microcrystalline to very fine grain, good induration with sparry calcite cement.

- 1950 1970 No sample.
- 1970 1980 Dolomitic limestone, pale yellowish brown (10YR 6/2), intergranular and intercrystalline porosity, possibly low permeability, grain type is crystalline and biogenic, poor induration, high alteration in dolostone, 20% micrite allochems, microcrystalline to medium grain, micrite and sparry calcite cements and dolomite rhombs, forams present.
- 1980 -1990 Lime mud, yellowish gray (5Y 8/1), intergranular porosity, possibly low permeability, grain type is biogenic and micritic, 90% allochems, very fine grains, unconsolidated, 10% indurated wackestone limestone.
- 1990 2000 Dolomitic Limestone, yellowish gray (5 Y 8/1), intergranular and intercrystalline porosity, possibly low permeability, grain type is crystalline and biogenic, 20% allochems, microcrystalline to very fine grain, poor induration with sparry calcite cement, dolomite rhombs present.
- 2000 2030 Dolomitic Limestone, yellowish gray (5 Y 8/1) to dark yellowish brown (10YR 4/2), intergranular and intercrystalline porosity, possibly low permeability, grain type is crystalline, biogenic and micrite, 20% allochems, microcrystalline to fine grain, good induration with sparry calcite cement and dolomite, high alteration, forams present.
- 2030 -2040 Dolomitic Limestone, yellowish gray (5 Y 8/1), intergranular and intercrystalline porosity, possibly low permeability, grain type is crystalline, biogenic and micritic, 50% allochems, microcrystalline to very fine grain, poor induration with sparry calcite cement, dolomite rhombs present.

OLDSMAR FORMATION

- 2040 2050 Dolostone, mottled moderate yellowish brown (10YR 5/4) to dusky yellowish brown, intercrystalline porosity and pin-point vugular porosity, medium permeability, grain type is microcrystalline, high alteration, very good induration, 20% micritic limestone present.
- 2050 2060 Dolostone, mottled moderate yellowish brown (10YR 5/4) to dusky yellowish brown, intercrystalline porosity and pin-point vugular porosity, medium permeability, grain type is microcrystalline, high alteration, very good induration, trace micritic limestone present.
- 2060 2080 Dolostone, dark yellowish brown (10YR 4/2), intercrystalline and pin point vugular porosity, possibly low permeability, microcrystalline to fine grained euhedral crystals, high alteration, good induration with dolomite cement, limestone cavings

- 2080 2120 Dolostone, dusky yellowish brown (10YR 2/2), intercrystalline, intracrystalline, and vugular porosity, possibly low permeability, microcrystalline to fine grained euhedral crystals, high alteration, good induration with dolomite and micrite cements, micrite (trace), sucrosic crystals (trace).
- 2120 2150 Dolostone, dusky yellowish brown (10YR 2/2), intercrystalline, intracrystalline, and vugular porosity, possibly low permeability, microcrystalline to fine grained euhedral crystals, high alteration, good induration with dolomite cement, sucrosic dolomite rhombs.
- 2150 2190 Dolostone, dusky yellowish brown (10YR 2/2), intercrystalline, intracrystalline, and vugular porosity, possibly low permeability, microcrystalline to fine grained euhedral crystals, high alteration, good induration with dolomite cement, sucrosic dolomite rhombs.
- 2190 2230 Dolostone, dusky yellowish brown (10YR 2/2), intercrystalline, intracrystalline, and vugular porosity, possibly low permeability, microcrystalline to fine grained euhedral crystals, high alteration, good induration with dolomite cement, sucrosic dolomite rhombs.
- 2230 2300 Dolostone, dusky yellowish brown (10YR 2/2), intercrystalline, intracrystalline, and vugular porosity, medium permeability, microcrystalline to fine grained euhedral crystals, high alteration, good induration with dolomite cement, sucrosic dolomite rhombs, trace calcite spars.
- 2300 2340 Dolostone, dusky yellowish brown (10YR 2/2), intercrystalline, intracrystalline, and vugular porosity, possibly low permeability, microcrystalline to fine grained euhedral crystals, high alteration, good induration with dolomite cement, sucrosic dolomite rhombs. Gypsum (trace). Limestone (20%).
- 2340 2350 Dolomitic Limestone, yellowish gray (5 Y 8/1), intercrystalline, intracrystalline, and vugular porosity, possibly low permeability, microcrystalline to fine grained euhedral crystals, high alteration, good induration with dolomite cement, sucrosic dolomite rhombs. Gypsum (trace).
- 2350 2410 Limestone, very pale orange (10 YR 8/2 to yellowish gray (5 Y 8/1), intergranular, vugular and moldic porosity, possibly medium permeability, grain types are crystalline and micrite, 40% allochems, microcrystalline to very fine grain, good induration with micrite and sparry calcite cement, undistinguishable forams.

- 2410 2450 Dolostone, dusky yellowish brown (10YR 2/2), intercrystalline, and vugular porosity, possibly low permeability, microcrystalline to fine grained euhedral crystals, high alteration, moderate induration with dolomite cement, sucrosic dolomite rhombs. Limestone cavings in sample.
- 2450 2480 Dolomitic Limestone, very pale orange (10 YR 8/2) to yellowish gray (5 Y 8/1), intercrystalline, and vugular porosity, possibly medium permeability, microcrystalline to fine grained, 60% allochems, unconsolidated to poor induration with micrite, sparry calcite and dolomite cement, lignite in sample (5%), undistinguishable forams (40%).
- 2480 2500 Dolomitic Limestone, very pale orange (10 YR 8/2) to yellowish gray (5 Y 8/1), intercrystalline, and vugular porosity, possibly medium permeability, microcrystalline to fine grained, 50% allochems, unconsolidated to poor induration with micrite, sparry calcite and dolomite cement, lignite in sample (5%), undistinguishable forams (40%).
- 2500 2530 Limestone, very pale orange (10 YR 8/2) to yellowish gray (5 Y 8/1), intercrystalline, and vugular porosity, possibly high permeability, microcrystalline to fine grained, 60% allochems, unconsolidated to poor induration with micrite, and sparry calcite cement, lignite in sample (5%), undistinguishable forams (30%).
- 2530 2565 Limestone, very pale orange (10 YR 8/2) to yellowish gray (5 Y 8/1), intercrystalline, and vugular porosity, possibly high permeability, microcrystalline to fine grained, 60% allochems, unconsolidated to poor induration with micrite, and sparry calcite cement, lignite in sample (5%), undistinguishable forams (30%). Decrease in dolomite quantity with depth.
- 2565 2570 Limestone, very pale orange (10 YR 8/2) to yellowish gray (5 Y 8/1), intercrystalline, and vugular porosity, possibly high permeability, microcrystalline to fine grained, 60% allochems, unconsolidated to poor induration with micrite, and sparry calcite cement, lignite in sample (5%), undistinguishable forams (30%).
- 2570 2590 Limestone, (packstone) very pale orange (10 YR 8/2) to yellowish gray (5 Y 8/1), intercrystalline, porosity, possibly high permeability, microcrystalline to fine grained, 60% allochems, unconsolidated to poor induration with micrite, and sparry calcite cement.

- 2590 2610 Limestone, (packstone) very pale orange (10 YR 8/2) to yellowish gray (5 Y 8/1), intercrystalline porosity, possibly high permeability, microcrystalline to fine grained, 60% allochems, unconsolidated to poor induration with micrite, and sparry calcite cement, lignite in sample (20%), Decrease in lignite quantity with depth. Trace crystalline carbonate.
- 2610 2620 Limestone, (packstone) very pale orange (10 YR 8/2) to yellowish gray (5 Y 8/1), intercrystalline, porosity, possibly high permeability, microcrystalline to fine grained, 60% allochems, unconsolidated to poor induration with micrite, and sparry calcite cement, undistinguishable forams (5%).
- 2620 2630 Limestone, very pale orange (10 YR 8/2) to yellowish gray (5 Y 8/1), intercrystalline, and vugular porosity, possibly high permeability, microcrystalline to fine grained, 60% allochems, unconsolidated to poor induration with micrite, and sparry calcite cement, lignite in sample (5%).
- 2630 2640 Limestone, (packstone) very pale orange (10 YR 8/2) to yellowish gray (5 Y 8/1), intercrystalline, porosity, possibly high permeability, microcrystalline to fine grained, 60% allochems, unconsolidated to poor induration with micrite, and sparry calcite cement.
- 2640 2650 Dolomitic Limestone, yellowish gray (5 Y 8/1), intercrystalline, intracrystalline, and vugular porosity, possibly low permeability, microcrystalline to fine grained euhedral crystals, high alteration, 60% allochems, unconsolidated to poor induration with micrite, and dolomite cement with, sucrosic dolomite rhombs.
- 2650 2670 Limestone, (packstone) very pale orange (10 YR 8/2) to yellowish gray (5 Y 8/1), intercrystalline, intergranular porosity, possibly high permeability, microcrystalline to medium grained, 30% allochems, unconsolidated to poor induration with micrite, and sparry calcite cement, undistinguishable forams (10%).
- 2670 2700 Limestone, (packstone) very pale orange (10 YR 8/2) to yellowish gray (5 Y 8/1), intercrystalline and intergranular porosity, possibly high permeability, microcrystalline to medium grained, 50% allochems, unconsolidated to poor induration with micrite, and sparry calcite cement, undistinguishable forams (5%).

- 2700 2730 Limestone, (packstone) very pale orange (10 YR 8/2) to yellowish gray (5 Y 8/1), intercrystalline and intergranular porosity, possibly high permeability, microcrystalline to fine grained, 40% allochems, unconsolidated to poor induration with micrite, and sparry calcite cement, undistinguishable forams (5%).
- 2730 2760 Limestone, (packstone) very pale orange (10 YR 8/2) to yellowish gray (5 Y 8/1), intercrystalline and intergranular porosity, possibly high permeability, microcrystalline to medium grained, 50% allochems, unconsolidated to poor induration with micrite, and sparry calcite cement, undistinguishable forams (5%).
- 2760 2800 Limestone, (packstone) very pale orange (10 YR 8/2) to yellowish gray (5 Y 8/1), intercrystalline and intergranular porosity, possibly high permeability, microcrystalline to medium grained, 40% allochems, unconsolidated to poor induration with micrite, and sparry calcite cement, undistinguishable forams (10%).
- 2800 2840 Limestone, (packstone) very pale orange (10 YR 8/2) to yellowish gray (5 Y 8/1), intercrystalline and intergranular porosity, possibly high permeability, microcrystalline to medium grained, 50% allochems, unconsolidated to poor induration with micrite, and sparry calcite cement, undistinguishable forams (10%).
- 2840 2860 Limestone, (packstone) yellowish gray (5 Y 7/2), intercrystalline and intergranular porosity, possibly high permeability, microcrystalline to medium grained, 40% allochems, unconsolidated to poor induration with micrite, and sparry calcite cement, undistinguishable forams (5%).
- 2860 2890 Limestone, (packstone) yellowish gray (5 Y 7/2), intercrystalline and intergranular porosity, possibly high permeability, microcrystalline to medium grained, 30% allochems, unconsolidated to poor induration with micrite, sparry calcite, and dolomite cement, undistinguishable forams (10%), slightly dolomitic (5%).
- 2890 2900 Limestone (packstone), yellowish gray (5 Y 7/2) and Dolostone, medium dark gray (N 4), intercrystalline and intergranular porosity, possibly high permeability, microcrystalline to very fine grained, 20% allochems, poor to good induration with micrite, sparry calcite, and dolomite cement.
- 2900 2950 Limestone, (packstone) yellowish gray (5 Y 7/2), intercrystalline and intergranular porosity, possibly high permeability, microcrystalline to fine grained, 20% allochems, unconsolidated to poor induration with micrite, sparry calcite, and dolomite cement, undistinguishable forams (5%), slightly dolomitic (5%).

- 2950 2970 Dolostone, pale yellowish brown (10YR 6/2), intercrystalline and vugular porosity, possibly high permeability, microcrystalline to medium grained euhedral crystals, high alteration, moderate induration with dolomite cement, sucrosic, dolomite rhombs. Limestone cavings in sample.
- 2970 2980 Dolostone, pale yellowish brown (10YR 6/2), intercrystalline porosity, possibly medium to high permeability, microcrystalline, high alteration, moderate induration with dolomite cement, limestone cavings in sample.
- 2980 3000 Dolostone, dusky yellowish brown (10 YR 2/2), intercrystalline porosity, possibly medium permeability, microcrystalline, high alteration, good induration with dolomite cement, massive, no visible secondary permeability.
- 3000 3020 Dolostone, dusky yellowish brown (10 YR 2/2), intercrystalline porosity, possibly medium permeability, cryptocrystalline to microcrystalline, high alteration, good induration with dolomite cement, massive, no visible secondary permeability.
- 3020 3050 Dolostone, dusky yellowish brown (10 YR 2/2), intercrystalline, intracrystalline, and pin point vugular porosity, possibly low permeability, microcrystalline, high alteration, good induration with dolomite cement, massive, no visible secondary permeability.
- 3050 3080 Dolostone, dusky yellowish brown (10 YR 2/2), intercrystalline, intracrystalline, and pin point vugular porosity, possibly low permeability, microcrystalline, high alteration, good induration with dolomite cement, massive, no visible secondary permeability.
- 3080 3100 Dolostone, dusky yellowish brown (10 YR 2/2), intercrystalline, intracrystalline, and pin point vugular porosity, possibly low permeability, microcrystalline, high alteration, good induration with dolomite cement, massive, no visible secondary permeability.
- 3100 3110 Dolostone, pale yellowish brown (10 YR 6/2), intercrystalline, intracrystalline, and pin point vugular porosity, possibly low to medium permeability, microcrystalline to , medium alteration, good induration with dolomite cement, no visible secondary permeability.
- 3110 3220 Dolostone, pale yellowish brown (10 YR 6/2), dusky yellowish brown (10 YR 2/2) and dark gray (N3), intercrystalline and intracrystalline, possibly low to medium permeability, cryptocrystalline to microcrystalline, high alteration, good induration with dolomite cement, massive, no visible secondary permeability.

- 3220 3230 Dolomitic limestone (packstone), light olive gray (5Y 6/1), intergranular porosity, possibly low permeability, fine to medium grained, 25% allochems, poor to good induration with micrite, sparry calcite, and dolomite cement.
- 3230 3240 No sample
- 3240 3270 Dolomitic limestone (packstone), light olive gray (5Y 6/1), intergranular porosity, possibly low permeability, fine to medium grained, 25% allochems, poor to good induration with micrite, sparry calcite, and dolomite cement.

CEDAR KEYS FORMATION

3270 -3280 Anhydrite (gypsum), white (N9) to very light gray (N8), intragranular porosity, low permeability, massive, opaque, soft with good induration, trace dolomitic limestone from above.

Monitor Well DZMW-1

Lithologic Log

LITHOLOGIC DESCRIPTION OF SAMPLES FROM

DUAL ZONE MONITOR WELL

SOUTHWEST WRF AND ROWTP CAPE CORAL, FLORIDA

DEPTH

DESCRIPTION

UNDIFFERENTIATED MARINE TERRACE DEPOSITS

- 0 20 Sand, very pale orange (10 YR 8/2) to black (N1), intergranular porosity, possibly high permeability, fine to medium grained, subrounded, unconsolidated, organics (25%), shell (15%), heavy minerals (trace), mollusks
- 20 30 Shell Bed, light olive gray (5Y 5/2), intergranular porosity, low permeability, poor induration with clay, micrite, and dolosilt cements, sand (20%), clay (10), phosphate (5%), mollusks, benthonic foraminifera (Ammonia beccarii)

HAWTHORN GROUP PEACE RIVER FORMATION

- 30 40 Clayey silt, light olive gray (5Y 5/2), intergranular porosity, low permeability, very fine grained dolomite silt, poor induration with dolosilt, clay, and micrite cements, sand (20%), phosphate (5%), mollusks, benthonic foraminifera
- 40 90 Dolosilt/clay, olive gray (5Y 3/2), intergranular porosity, low permeability, very fine grained subhedral crystals, poor induration with dolosilt and clay cements, clay (5%), sand (10%), phosphate (5%)
- 90 100 Clayey sand, light olive gray (5Y 5/2), intergranular porosity, low to medium permeability, very fine to coarse grained, subrounded to rounded, poor induration with dolomite and clay cements, phosphate (10%) some coarse size, clay (2%), dolosilt (5%), fossil fragments
- 100 120 Clayey sand, yellowish gray (5Y 7/2), intergranular porosity, medium permeability, fine to medium grained, subrounded, poor induration with dolomite, micrite, and clay cements, dolomite (2%), clay (trace), phosphate (5%), mollusks, benthonic foraminifera

- 120 130 Clayey sand, yellowish gray (5Y 7/2), intergranular porosity, medium permeability, fine to coarse grained, subrounded to rounded, poor induration with clay cement, clay (trace), phosphate 20%, limestone (10%)
- Limestone (wackestone), yellowish gray (5Y 7/2), intergranular porosity, medium permeability, grain types are biogenic, micrite, and skeletal, 35 % allochems, grain size is microcrystalline to fine, poor induration with micrite cement, sand 25 %, phosphate 5 %, mollusks, benthonic foraminifera
- 150 -170 Clayey sand, light olive gray (5Y 5/2), intergranular porosity, medium permeability, fine to coarse grained, subrounded, medium spericity, poor induration with clay and dolomite cements, phosphate 15 %, fossil fragments
- 170 180 Limestone (wackestone), yellowish gray (5Y 7/2), intergranular porosity, medium permeability, grain types are biogenic, micrite, and skeletal, 45 % allochems, grain size is microcrystalline to fine, moderate induration with micrite cement, sand 25 %, phosphate 5 %, mollusks, benthonic foraminifera
- 180 190 Clay, grayish olive (10Y 4/2), intergranular porosity, low permeability, poor induration with clay cement, sand 5 %, phosphate 2 %
- 190 200 Phosphatic sand, pale greenish yellow (10Y 8/2), intergranular porosity, medium permeability, fine grained, rounded, high spericity, unconsolidated, quartz sand 15 %, limestone 10 %, mollusks
- 200 210 Limestone (mudstone), grayish yellow (5 Y 8/4), intergranular porosity, low permeability, grain types are biogenic and micrite, 10 % allochem, grain size is microcrystalline to fine, poor induration with micrite cement, phosphate 25 %
- 210 220 Calcareous Clay, pale olive (10Y 6/2), intergranular porosity, low permeability, poor induration with clay and dolomite cements, sand 5%, phosphate 5%
- 220 240 Clayey sand, yellowish gray (5Y 8/1), intergranular porosity, low to medium permeability, very fine to medium grained, poor induration with clay and micrite cements, limestone 30%, clay (trace), phosphate 5%
- 240 250 Limestone (wackestone), yellowish gray (5Y 7/2), intergranular porosity, medium permeability, grain types are biogenic, micrite, and skeletal, 45 % allochems, grain size is microcrystalline to fine, moderate induration with micrite cement, sand 25 %, phosphate 5 %, mollusks, benthonic foraminifera

260 - 280	Sandy clay, medium light gray (N6), intergranular porosity, low permeability, poor induration with clay, dolosilt, and micrite cements, limestone (20%), sand (20%), phosphate (5%).
280 - 300	Dolosilt/Clay, yellowish gray (5 Y 7/2), intergranular porosity, low to medium permeability, very fine to fine grained, very soft, sticky, poor induration with clay and trace micritic cements, limestone (10%), sand (5%), phosphate (5%).
300 - 320	Dolosilt/Clay, pale olive (10 Y 6/2), intergranular porosity, low permeability, poor induration with dolomite, clay, and micrite cements, clay (10%), sand (10%), phosphate (5%).
320 - 340	Dolosilt/Clay, yellowish gray (5 Y 7/2), intergranular porosity, low to medium permeability, poor induration with dolomite, clay, and micrite cements, limestone (5%), clay (10%), sand (10%), phosphate (15%).
340 - 350	Sandy Limestone (wackestone), yellowish gray (5Y 8/1), intergranular porosity, medium porosity, grains are micritic, poor to moderate induration, micrite calcite cement, sand (20%), clay (10%), phosphate (5%), mollusks
350 - 360	Dolosilt/Clay, light olive gray (5Y 6/1), intergranular porosity, low to medium permeability, very fine to fine grained, subrounded to rounded, soft, sticky, poor induration with clay and trace micritic cements, limestone (15%), sand (15%), phosphate (5%).
	ARCADIA FORMATION
360 - 380	Sandy Limestone (wackestone), grayish orange (10 YR 7/4), intergranular porosity, medium porosity, grains are micritic, moderately hard with poor to moderate induration, micrite calcite cement, sand (20%), clay (10%), phosphate (5%), mollusks
380 - 390	Dolosilt/Clay, light olive gray (5Y 6/1), intergranular porosity, low to medium permeability, very fine to fine grained, subrounded to rounded, soft, sticky, poor induration with clay and trace micritic cements, limestone (15%), sand (15%), phosphate (5%).
390 - 400	Sandy limestone (wackestone), yellowish gray (5Y 8/1), intergranular and vugular porosity, low to medium permeability, grain types are biogenic, micrite, intraclast, fine grained, 25% allochems, microcrystalline to medium grained, poor induration with micrite cement, sand (25%), clay (trace), phosphate (5%), mollusks, bryozoans, benthonic foraminifera

- 400 410 Limestone (wackestone), yellowish gray (5 Y 7/2), intergranular and vugular porosity, medium permeability, grain types are biogenic, micrite, and crystal, fine grained, 35% allochems, microcrystalline to medium grained, poor induration with micrite and sparry calcite cements, sand (10%), phosphate (trace), mollusks
- 410 420 Sandy Limestone (wackestone), yellowish gray (5Y 7/2), intergranular and moldic porosity, medium permeability, grain types are biogenic, micrite, and crystal, fine grained, 25% allochems, microcrystalline to medium grained, moderate induration with micrite, spar and clay cements, clay (trace), sand (10 %), phosphate (3%), mollusks
- 420 430 Limestone (mudstone), yellowish gray (5Y 7/2), intergranular porosity, low permeability, grain types are biogenic and micrite, very fine grained, 10% allochems, microcrystalline to fine grained, poor induration with micrite cement, sand (15%), phosphate (2%)
- 430 450 Limestone (wackestone), yellowish gray (5Y 7/2), intergranular and vugular porosity, medium permeability, grain types are biogenic, micrite, and skeletal, fine grained, 35% allochems, microcrystalline to medium grained, moderate induration with micrite cement, sand (5%), phosphate (5%), mollusks
- Limestone (mudstone), yellowish gray (5Y 7/2), intergranular porosity, low permeability, grain types are biogenic and micrite, very fine grained, 10% allochems, microcrystalline to very fine grained, poor induration with micrite and clay cements, sand (5%), phosphate (5%)
- 470 490 Limestone (wackestone), very pale orange (10 YR 8/2), intergranular porosity, medium permeability, grain types are biogenic, micrite, and skeletal, fine grained, 35% allochems, microcrystalline to very fine grained, moderate induration with micrite and sparry calcite cements, sand (5%), phosphate (2%)
- 490 500 Limestone (packstone), very pale orange (10 YR 8/2), intergranular and moldic porosity, medium to high permeability, grain types are skeletal, biogenic, and micrite, fine to medium grained, 65% allochems, moderate induration with micrite cement, sand (15%), phosphate (5%), mollusks, benthonic foraminifera, bryozoans
- 500 510 Limestone (wackestone), yellowish gray (5Y 8/1), intergranular and intercrystalline porosity, low to medium permeability, grain types are biogenic, skeletal, and crystal, fine grained, microcrystalline to fine grained, 25% allochems, good induration with micrite, sparry calcite, and dolomite cements, benthic foraminifera, mollusks.

- 510 530 Dolostone, grayish orange (10 YR 7/4), intercrystalline and vugular porosity, possibly low permeability, medium to high alteration, microcrystalline to very fine grained subhedral crystals, good induration with dolomite and spar cements.
- 530 550 Limestone (wackestone), very pale orange (10YR 8/2) to yellowish gray (5Y 8/1), intergranular and moldic porosity, medium permeability, grain types are biogenic, skeletal, and micrite, 35% allochems, fine grained, microcrystalline to medium grained, moderately to well indurated with micrite and spar cements, quartz sand (1%), phosphate (1%), crystalline limestone (20%), mollusks, corals, benthonic foraminifera.
- 550 570 Limestone (wackestone), very pale orange (10YR 8/2) to light gray (N7), intergranular and moldic porosity, medium permeability, grain types are biogenic, skeletal, and micrite, 45% allochems, microcrystalline to coarse grained, moderately indurated with micrite and spar cements, quartz sand (5%), phosphate (1%), mollusks, corals, benthonic foraminifera.
- 570 590 Limestone (packstone), very pale orange (10 YR 8/2), intergranular and moldic porosity, medium to low permeability, grain types are biogenic, skeletal, and micrite, very fine grained, about 20 % allochems, moderately indurated with micrite and spar cements, quartz sand (5%), phosphate (5%), mollusks, benthonic foraminifera.
- 590 610 Limestone (wackestone), yellowish gray (5Y 8/1), intergranular and moldic porosity, medium permeability, grain types are biogenic, skeletal, and micrite, fine grained, about 65 % allochems, moderately indurated with micrite and spar cements, quartz sand (5%), phosphate (5%), mollusks, benthonic foraminifera.
- 610 620 Limestone (wackestone), yellowish gray (5Y 8/1), intergranular and moldic porosity, moderate permeability, grain types are biogenic and skeletal, fine grained, about 30 % allochems, moderately indurated with micrite and spar cements, quartz sand (5%), phosphate (5%), mollusks, benthonic foraminifera, *Sorites sp.*
- 620 630 Dolostone, medium light gray (N 6), vugular and intercrystalline porosity, low permeability, medium alteration, very fine grained subhedral crystals, microcrystalline to fine grained, good induration with dolomite, micrite and spar cements, quartz sand (5%), phosphate (5%)
- 630 640 Limestone (mudstone), white (N 9), intergranular porosity, low permeability, grain types are biogenic, skeletal, and micrite, very fine grained, about 10 % allochems, poorly indurated with micrite and spar cements, quartz sand (5%), phosphate (2%), mollusks, benthonic foraminifera, looks like formation contact (reworked)

SUWANNEE LIMESTONE

- Limestone (packstone), yellowish gray (5Y 8/1), intergranular and moldic porosity, medium to high permeability, grains are biogenic and skeletal and crystal, 65% allochems, medium grained, moderately to well indurated with micrite and dolomite cements, moderate alteration, trace dolomite, trace quartz sand, benthonic foraminifera, milliolids (Suwannee Limestone)
- 650 670 Limestone (packstone), very pale orange (10YR 8/2), intergranular and moldic porosity, medium to high permeability, grains types are biogenic, skeletal and micrite, 70% allochems, microcrystalline to medium grains, moderately indurated with micrite and sparry calcite cements, benthonic foraminifera, milliolids, mollusks
- 670 690 Limestone (grainstone/calcarenite), very pale orange (10YR 8/2) to yellowish gray (5Y 8/1), intergranular and vugular porosity, possibly high permeability, grains types are biogenic, skeletal and micrite, 85% allochems, microcrystalline to medium grains, moderately indurated with micrite and sparry calcite cements, benthonic foraminifera, milliolids, mollusks, corals, bryozoans
- 690 700 Limestone (packstone), very pale orange (10YR 8/2) to yellowish gray (5Y 8/1), intergranular and vugular porosity, medium permeability, grains types are biogenic, skeletal and micrite, 55% allochems, microcrystalline to fine grained, moderately indurated with micrite and sparry calcite cements, benthonic foraminifera, milliolids
- Limestone (packstone), very pale orange (10 YR 8/2), intergranular and moldic porosity, medium to high permeability, grains are biogenic and skeletal and crystal, 65% allochems, medium grained, moderately to well indurated with micrite and sparry calcite cements, benthonic foraminifera, milliolids, echinoids, mollusks
- Limestone (grainstone/calcarenite), very pale orange (10YR 8/2) to yellowish gray (5Y 8/1), intergranular and vugular porosity, possibly high permeability, grains types are biogenic, skeletal and micrite, 90% allochems, microcrystalline to medium grained, moderately indurated with micrite and sparry calcite cements, benthonic foraminifera (*Rotallia sp.*), milliolids, mollusks

- T30 740 Limestone (wackestone), pale yellowish orange (10YR 8/6), intergranular and moldic porosity, medium permeability, grains types are biogenic, skeletal and micrite, 45% allochems, microcrystalline to medium grains, poorly indurated with micrite and sparry calcite cements, benthonic foraminifera (cones), milliolids, mollusks
- 740 750 Limestone (wackestone), very pale orange (10 Y 8/2), intergranular and vugular porosity, medium permeability, grains are biogenic and skeletal and micrite, 35 % allochems, medium grained, moderately indurated with micrite and sparry calcite cements, benthonic foraminifera, milliolids, echinoids, mollusks
- Limestone (grainstone/calcarenite), very pale orange (10YR 8/2) to yellowish gray (5Y 8/1), intergranular and vugular porosity, possibly high permeability, grains types are biogenic, skeletal and intraclast, 90% allochems, microcrystalline to medium grains, moderately indurated with micrite and sparry calcite cements, benthonic foraminifera, milliolids, mollusks
- Terret Limestone (wackestone), yellowish gray (5Y 8/1), intergranular and vugular porosity, medium permeability, grain types are biogenic, skeletal, and micrite, microcrystalline to fine grained, 45% allochems, moderate induration with micrite and sparry calcite cements, benthonic foraminifera
- Limestone (wackestone), very pale orange (10YR 8/2) to yellowish gray (5Y 8/1), intergranular and vugular porosity, medium permeability, grains types are biogenic, skeletal and micrite, 30% allochems, microcrystalline to very fine grained, moderately indurated with micrite and sparry calcite cements, benthonic foraminifera, milliolids
- 780 790 Limestone (packstone), very pale orange (10YR 8/2), intergranular and moldic porosity, medium permeability, grains types are biogenic, skeletal and micrite, 65% allochems, microcrystalline to medium grains, moderately indurated with micrite and sparry calcite cements, benthonic foraminifera, milliolids, mollusks
- Limestone (wackestone), yellowish gray (5Y 8/1), intergranular and vugular porosity, medium permeability, grain types are biogenic, skeletal, and micrite, microcrystalline to fine grained, 45% allochems, moderate induration with micrite and sparry calcite cements, benthonic foraminifera (Discorinopsis sp.)

- Limestone (packstone), very pale orange (10YR 8/2) to grayish orange (10 YR 7/4), intergranular and moldic porosity, medium permeability, grains types are biogenic, skeletal and micrite, 70% allochems, microcrystalline to medium grains, poorly indurated with micrite and sparry calcite cements, echinoid spines, benthonic foraminifera, milliolids, mollusks
- 810 820 Limestone (wackestone), very pale orange (10YR 8/2), intergranular and vugular porosity, low permeability, grain types are biogenic, crystal, and micrite, 25% allochems, medium grained, poor to moderate induration with micrite and spar cements, calcareous clay (5%), benthonic forams, echinoids.
- Limestone (wackestone), very pale orange (10YR 8/2), intergranular and vugular porosity, low permeability, grain types are biogenic, crystal, and micrite, 25% allochems, medium grained, moderate induration with micrite and spar cements, benthonic forams, echinoids.
- 830 840 Limestone (wackestone), very pale orange (10YR 8/2), intergranular and vugular porosity, low permeability, grain types are biogenic, crystal, and micrite, 25% allochems, medium grained, poor to moderate induration with micrite and spar cements, calcareous clay (5%), benthonic forams, echinoids.
- Limestone (packstone), pale yellowish brown (10 YR 6/2), intergranular, moldic and vugular porosity, moderate permeability, grain types are biogenic, crystal, and micrite, 45% allochems, medium grained, moderate induration with micrite and spar cements, abundant benthonic forams, echinoids, mollusks.
- Limestone (packstone), pale yellowish brown (10 YR 6/2), intergranular, moldic and vugular porosity, grain types are biogenic, skeletal, and micrite, 40% allochems, fine to medium grained, moderate induration with micrite and spar cements, benthonic forams, echinoids.
- Limestone (wackestone), very light gray (N 8), intergranular, moldic and vugular porosity, grain types are biogenic, skeletal, and micrite, 20% allochems, fine to medium grained, moderate induration with micrite and spar cements, calcareous silt and clay (15%), benthonic forams, echinoids.
- Limestone (mudstone), yellowish gray (5 Y 8/1), intergranular, moldic and vugular porosity, low permeability, grain types are biogenic and micrite, 5% allochems, fine to medium grained, moderate induration with micrite and spar cements, benthonic forams.

- 200 910 Limestone (wackestone), yellowish gray (5 Y 8/1), intergranular, moldic and vugular porosity, low permeability, grain types are biogenic, skeletal, and micrite, 20% allochems, fine to medium grained, moderate induration with micrite and spar cements, calcareous silt and clay 20%, benthonic forams.
- 910 920 Limestone (wackestone), yellowish gray (5 Y 8/1), intergranular, moldic and vugular porosity, low permeability, grain types are biogenic, skeletal, and micrite, 25% allochems, fine to medium grained, moderate induration with micrite and spar cements, benthonic forams.
- 920 950 Limestone (wackestone), yellowish gray (5 Y 8/1), intergranular, moldic and vugular porosity, low permeability, grain types are biogenic, skeletal, and micrite, 20% allochems, fine to medium grained, moderate induration with micrite and spar cements, calcareous silt and clay 20%, benthonic forams.
- 950 960 Limestone (wackestone), yellowish gray (5 Y 8/1), intergranular, moldic and vugular porosity, low permeability, grain types are biogenic, skeletal, and micrite, 20% allochems, fine to medium grained, moderate induration with micrite and spar cements, calcareous silt and clay 15%, benthonic forams.
- 960 970 Limestone (grainstone), yellowish gray (5 Y 8/1), intergranular, moldic and vugular porosity, grain types are biogenic, skeletal, and micrite, 80% allochems, fine to medium grained, moderate induration with micrite and spar cements, benthonic forams, spicules.
- 970 990 Limestone (packstone), yellowish gray (5 Y 8/1), intergranular, moldic and vugular porosity, grain types are biogenic, skeletal, and micrite, 60% allochems, fine to medium grained, moderate induration with micrite and spar cements, benthonic forams, *(Discorinopsis gunteri, sp.)*
- Limestone (wackestone), yellowish gray (5 Y 8/1), intergranular, moldic and vugular porosity, low permeability, grain types are biogenic, skeletal, and micrite, 20% allochems, fine to medium grained, moderate induration with micrite and spar cements, benthonic forams.
- 1000 1030 Limestone (grainstone), yellowish gray (5 Y 8/1), intergranular, moldic and vugular porosity, grain types are biogenic, skeletal, and micrite, 90% allochems, fine to medium grained, moderate induration with micrite and spar cements, benthonic forams, spicules.

- 1030 1040 Limestone (grainstone), yellowish gray (5 Y 8/1), intergranular, moldic and vugular porosity, grain types are biogenic, skeletal, and micrite, 90% allochems, fine to medium grained, moderate induration with micrite and spar cements, benthonic forams, spicules, (*Dictyoconus cookei, sp.*)
- 1040 1050 Limestone (packstone), grayish orange (10 YR 7/4), intergranular and vugular porosity, medium permeability, grain types are biogenic, crystal, and micrite, 65% allochems, medium grained, moderate induration with micrite and spar cements, benthonic forams, echinoids.
- 1050 1070 Limestone (wackestone), very pale orange (10YR 8/2), intergranular and moldic porosity, medium permeability, grain types are biogenic, skeletal and micrite, 45% allochems, microcrystalline to medium grains, moderately indurated with micrite and sparry calcite cements, benthonic foraminifera, milliolids, mollusks
- 1070 1080 Limestone (mudstone), white (N 9) to very pale orange (10YR 8/2), intergranular porosity, low permeability, grain types are biogenic, skeletal and micrite, 10% allochems, microcrystalline to medium grains, poorly indurated with micrite and sparry calcite cements, benthonic foraminifera, milliolids, mollusks, echinoids
- 1080 1090 Limestone (packstone), yellowish gray (5Y 8/1), intergranular and vugular porosity, possibly high permeability, grain types are biogenic, skeletal, and intraclast, microcrystalline to medium grained, 75% allochems, moderate induration with micrite and sparry calcite cements, benthonic foraminifera (cones)
- 1090 1100 Limestone (mudstone/calcareous clay), white (N 9) to very pale orange (10 YR 8/2), intergranular and vugular porosity, low permeability, grain types are biogenic, skeletal, and micrite, microcrystalline to fine grained, 10% allochems, poor induration with micrite and sparry calcite cements, phosphatic sand (1%), benthonic foraminifera (possible reworked zone near Formation contact)
- 1100 1110 Limestone (packstone), very pale orange (10YR 8/2) to yellowish gray (5Y 8/1), intergranular and vugular porosity, medium permeability, grain types are biogenic, skeletal, and intraclast, microcrystalline to medium grained, 65% allochems, moderate induration with micrite and sparry calcite cements, benthonic foraminifera, milliolids, mollusks
- 1110 1130 Limestone (packstone), very pale orange (10YR 8/2), intergranular and moldic porosity, medium permeability, grains types are biogenic, skeletal and micrite, 60% allochems, microcrystalline to medium grains, poorly

indurated with micrite and sparry calcite cements, dolomite fragments (2%), benthonic foraminifera, milliolids, mollusks, echinoids

- 1130 1140 Limestone (packstone), yellowish gray (5 Y 8/1) to very pale orange (10YR 8/2), intergranular and vugular porosity, medium permeability, grain types are biogenic, skeletal, and micrite, microcrystalline to medium grained, 55% allochems, moderate induration with micrite and sparry calcite cements, quartz sand (trace), benthonic foraminifera, echinoids, pellets, mollusks
- 1140 1160 Limestone (wackestone), very pale orange (10YR 8/2), intergranular and vugular porosity, low to medium permeability, grain types are biogenic, skeletal, and micrite, microcrystalline to fine grained, 35% allochems, moderate induration with micrite and sparry calcite cements, quartz sand (trace), benthonic foraminifera, echinoids, pellets
- 1160 1170 Limestone (wackestone), very pale orange (10YR 8/2), intergranular and vugular porosity, medium permeability, grain types are biogenic, skeletal, and micrite, microcrystalline to fine grained, 45% allochems, moderate induration with micrite and sparry calcite cements, benthonic foraminifera, pellets
- 1170 1180 Limestone (wackestone), very pale orange (10YR 8/2), intergranular and vugular porosity, medium permeability, grain types are biogenic, skeletal, and micrite, microcrystalline to fine grained, 35% allochems, moderate induration with micrite and sparry calcite cements, quartz sand (trace), benthonic foraminifera, pellets
- 1180 1200 Limestone (wackestone), grayish orange (10 YR 7/4) to very pale orange (10 YR 8/2), intergranular and vugular porosity, medium permeability, grain types are biogenic, skeletal, and micrite, microcrystalline to fine grained, 40% allochems, moderate induration with micrite and sparry calcite cements, benthonic foraminifera, pellets
- 1200 1210 Limestone (wackestone), grayish orange (10 YR 7/4) to very pale orange (10 YR 8/2), intergranular and vugular porosity, medium permeability, grain types are biogenic, skeletal, and micrite, microcrystalline to fine grained, 50% allochems, moderate induration with micrite and sparry calcite cements, benthonic foraminifera, pellets

OCALA LIMESTONE

1210 – 1220 Limestone (packstone), very pale orange (10YR 8/2), intergranular and moldic porosity, medium permeability, grains types are biogenic, skeletal and micrite, 65% allochems, microcrystalline to medium grains,

moderately indurated with micrite and sparry calcite cements, benthonic foraminifera

- 1220 1230 Limestone (packstone), very pale orange (10YR 8/2), intergranular and vugular porosity, medium permeability, grain types are biogenic, skeletal, and micrite, microcrystalline to medium grained, 65% allochems, moderate induration with micrite and sparry calcite cements, benthonic foraminifera (*Heterestegina sp. Lepidocyclina ocalana, Operculinoides sp.*), pellets, echinoids, bryozoans
- 1230 1250 Limestone (wackestone packstone), very pale orange (10YR 8/2), intergranular and vugular porosity, medium permeability, grain types are biogenic, skeletal, and micrite, microcrystalline to medium grained, 60% allochems, moderate induration with micrite and sparry calcite cements, slight alteration, quartz sand (trace), benthonic foraminifera (<u>Heterestegina sp., Lepidocyclina ocalana, Operculinoides sp., Gypsina globula</u>), pellets, echinoides
- 1250 1260 Limestone (wackestone), very pale orange (10YR 8/2), intergranular and vugular porosity, medium permeability, grain types are biogenic, skeletal, and micrite, microcrystalline to fine grained, 40% allochems, moderate induration with micrite and sparry calcite cements, benthonic foraminifera (*Amphistegina sp.*), pellets
- 1290 1300 Limestone (wackestone), very pale orange (10YR 8/2), intergranular and vugular porosity, medium permeability, grain types are biogenic, skeletal, and micrite, microcrystalline to very fine grained, 30% allochems, moderate induration with micrite and sparry calcite cements, soft carbonate clay (10%), quartz sand (trace), benthonic foraminifera, pellets
- 1300 1310 Limestone (wackestone), very pale orange (10YR 8/2), intergranular and vugular porosity, medium permeability, grain types are biogenic, skeletal, and micrite, microcrystalline to medium grained, 30% allochems, moderate induration with micrite and sparry calcite cements, benthonic foraminifera, pellets
- 1310-1320 Limestone (wackestone), very pale orange (10YR 8/2), intergranular and vugular porosity, medium permeability, grain types are biogenic, skeletal, and micrite, microcrystalline to medium grained, 30% allochems, moderate induration with micrite and sparry calcite cements, soft carbonate clay (10%), quartz sand (trace), benthonic foraminifera, pellets

- 1320 -1340 Limestone (wackestone), very pale orange (10YR 8/2), intergranular and vugular porosity, medium permeability, grain types are biogenic, skeletal, and micrite, microcrystalline to medium grained, 30% allochems, moderate induration with micrite and sparry calcite cements, benthonic foraminifera, pellets
- 1340 1380 Limestone (wackestone to packstone), very pale orange (10YR 8/2), intergranular and vugular porosity, medium permeability, grain types are biogenic, skeletal, and micrite, microcrystalline to medium grained, 60% allochems, moderate induration with micrite and sparry calcite cements, benthonic foraminifera, pellets, mollusks
- 1380 1400 Limestone (wackestone), very pale orange (10YR 8/2), intergranular and vugular porosity, medium permeability, grain types are biogenic, skeletal, and micrite, microcrystalline to fine grained, 40% allochems, moderate induration with micrite and sparry calcite cements, benthonic foraminifera, pellets
- 1400 -1420 Limestone (wackestone to packstone), very pale orange (10YR 8/2), intergranular and vugular porosity, medium permeability, grain types are biogenic, skeletal, and micrite, microcrystalline to medium grained, 60% allochems, moderate induration with micrite and sparry calcite cements, benthonic foraminifera, pellets, mollusks
- 1420 1430 Limestone (wackestone), very pale orange (10YR 8/2), intergranular and vugular porosity, medium permeability, grain types are biogenic, skeletal, and micrite, microcrystalline to fine grained, 40% allochems, moderate induration with micrite and sparry calcite cements, benthonic foraminifera, pellets
- 1430 1460 Limestone (wackestone), very pale orange (10YR 8/2), intergranular and vugular porosity, medium permeability, grain types are biogenic, skeletal, and micrite, microcrystalline to fine grained, 30% allochems, moderate induration with micrite and sparry calcite cements, soft carbonate clay (5%), benthonic foraminifera, pellets
- 1460 1470 Calcareous Clay, yellowish gray (5Y 7/2), intergranular porosity, low permeability, poor induration with clay, micrite, and dolomite cements, quartz sand (trace), formation contact

AVON PARK FORMATION

- 1470 1490 Limestone (wackestone), very pale orange (10YR 8/2), intergranular and vugular porosity, medium permeability, grain types are biogenic, skeletal, and micrite, microcrystalline to fine grained, 30% allochems, moderate induration with micrite and sparry calcite cements, soft carbonate clay (5%), benthonic foraminifera (*Operculinoides sp.*)
- 1490 1510 Limestone (packstone), very pale orange (10YR 8/2), intergranular and moldic porosity, medium permeability, grains types are biogenic, skeletal and micrite, 65% allochems, microcrystalline to medium grains, moderately indurated with micrite and sparry calcite cements, benthonic foraminifera (*Dictyoconus cookei*, *Operculinoides sp., Gypsina sp.*), milliolids, mollusks, echinoids
- 1510 1520 As above, benthonic foraminifera cones
- 1520 1540 Limestone (packstone), very pale orange (10YR 8/2), intergranular and moldic porosity, medium permeability, grains types are biogenic, skeletal and micrite, 75% allochems, microcrystalline to medium grains, moderately indurated with micrite and sparry calcite cements, benthonic foraminifera (*Dictyoconus cookei*, *Operculinoides sp.*,), milliolids, mollusks, echinoids
- 1540 1560 Limestone (packstone to grainstone), very pale orange (10YR 8/2), intergranular and moldic porosity, medium permeability, grain types are biogenic, skeletal and micrite, 85% allochems, microcrystalline to medium grains, moderately indurated with micrite and sparry calcite cements, benthonic foraminifera (*Dictyoconus cookei*, *Operculinoides sp.*,), milliolids, mollusks, echinoids, coquinoid (milliolids)
- 1560 1580 Limestone (packstone), very pale orange (10YR 8/2), intergranular and moldic porosity, medium permeability, grain types are biogenic, skeletal and micrite, 55% allochems, microcrystalline to medium grains, moderately to well indurated with micrite and sparry calcite cements, benthonic foraminifera (*Dictyoconus cookei*), milliolids, mollusks, echinoids
- 1580 1610 Limestone (wackestone), very pale orange (10YR 8/2), intergranular and vugular porosity, medium permeability, grain types are biogenic, skeletal, and micrite, microcrystalline to fine grained, 40% allochems, moderate induration with micrite and sparry calcite cements, benthonic foraminifera

- 1610 1630 Limestone (packstone), very pale orange (10YR 8/2), intergranular and moldic porosity, medium permeability, grains types are biogenic, skeletal and micrite, 65% allochems, microcrystalline to medium grains, moderately to well indurated with micrite and sparry calcite cements, benthonic foraminifera (*Dictyoconus cookei*), milliolids, mollusks, echinoids
- 1630 1650 Limestone (packstone), very pale orange (10YR 8/2) to yellowish gray (5Y 7/2), intergranular, vugular and moldic porosity, medium permeability, grains types are biogenic, skeletal and micrite, 75% allochems, microcrystalline to medium grains, well indurated with micrite and sparry calcite cements, benthonic foraminifera (*Dictyoconus cookei*), milliolids, mollusks, echinoids
- 1650 1660 Limestone (wackestone), very pale orange (10YR 8/2), intergranular and vugular porosity, medium permeability, grain types are biogenic, skeletal, and micrite, microcrystalline to fine grained, 50% allochems, moderate induration with micrite and sparry calcite cements, benthonic foraminifera, cones

Appendix D

Cores

Injection Well IW-1

Core No. 1 1,760 – 1,771

IW-1 CORING WORKSHEET

DATE(S): 11/30/2007

SOUTHWEST CAPE DEEP INJECTION WELL SYSTEM

JOB NUMBER: <u>3220269.77010102</u>

CONTRACTOR: Youngquist Brothers, Inc.

PROJECT MANAGER: Neil Johnson

OWNER: City of Cape Coral

DRILLER: TYPE OF BIT USED: CORE NUMBER: DIAMETER: Jean Jean Diamond 1 4-inch

 START/ FINISH TIME CORING:
 ####
 TO:
 19:04

 CORED INTERVAL:
 1760
 TO:
 1771

 LENGTH OF CORED INTERVAL:
 11 feet
 6.4

PERCENT OF SAMPLED LENGTH RECOVERED: 58%

DEPTH	CORE DESCRIPTION	RPM of Drill String	PENETRATION TIME (minutes)	WEIGHT ON BIT x1000 (lbs)	PUMP PRESSURE (psi)
1760	Dolomitic Limestone with Dolostone Seams	21	0	3	30
1761	Dolomitic Limestone with Dolostone Seams	26	15	4	30
1762	Dolomitic Limestone with Dolostone Seams	24	20	4	35
1763	Dolomitic Limestone with Dolostone Seams	24	20	4	50
1764	Dolomitic Limestone with Dolostone Seams	26	21	4	50
1765	Dolomitic Limestone with Dolostone Seams	24	20	4	50
1766	Dolomitic Limestone with Dolostone Seams	24	16	4	50
1767	Dolomitic Limestone with Dolostone Seams	24	18	5	50
1768	Dolomitic Limestone with Dolostone Seams	23	25	4-5	50
1769	Dolomitic Limestone with Dolostone Seams	24	16	4-5	50
1770	Dolomitic Limestone with Dolostone Seams	24	10	4	50
1771	Dolomitic Limestone with Dolostone Seams	24	20	7-9	50

IW-1 CORE DESCRIPTION

CITY OF CAPE CORAL

SOUTHWEST CAPE WTP MONITOR WELL IW-1

CORE #1

1,760 feet bls – 1,771 feet bls

Core Diameter (inches): 4	Bit Type: Diamond	Date: 11/30/2007
Cored Interval (feet): 11.0	Recovered Core (feet): 6.4	Recovery: 58%

DEPTH (feet bls)

DESCRIPTION

- 1760 to 1761.8 DOLOMITIC LIMESTONE WITH DOLOSTONE SEAMS very pale orange (10 YR 8/2) to yellowish gray (5Y 7/2), intergranular, intercrystalline, and moldic porosity, possibly low permeability, grain type is crystal, micrite and biogenic, 30% allochems, microcrystalline to very fine grain, good induration with micrite, sparry calcite and dolomite cement, benthic forams and other undistinguishable fossil molds and casts, dolomite rhombs in section, dolostone seams throughout.
- 1761.8 to 1763 DOLOMITIC LIMESTONE WITH DOLOSTONE SEAMS very pale orange (10 YR 8/2) to pale yellowish brown (10YR 6/2), intergranular, intercrystalline, and moldic porosity, possibly low permeability, grain type is crystal, micrite and biogenic, 20% allochems, microcrystalline to very fine grain, good induration with micrite, sparry calcite and dolomite cement, undistinguishable ffossils, increase in dolostone seams. Fossil molds filled with sparry calcite and micrite.
- 1,763 to 1,766.4 DOLOMITIC LIMESTONE WITH DOLOSTONE SEAMS very pale orange (10 YR 8/2) to yellowish gray (5Y 7/2), intergranular, intercrystalline, and moldic porosity, possibly low permeability, grain type is crystal, micrite and biogenic, 30% allochems, microcrystalline to very fine grain, good induration with micrite, sparry calcite and dolomite cement, benthic forams and other undistinguishable fossil molds and casts, dolomite rhombs in section, dolostone seams throughout.

Injection Well IW-1

Core No. 2 1,824 – 1,835

IW-1 CORING WORKSHEET

DATE(S): 12/1/2007

SOUTHWEST CAPE DEEP INJECTION WELL SYSTEM

JOB NUMBER: <u>3220269.77010102</u>

CONTRACTOR: Youngquist Brothers, Inc.

PROJECT MANAGER: Neil Johnson

OWNER: City of Cape Coral

DRILLER: TYPE OF BIT USED: CORE NUMBER: DIAMETER: Jay Swartzentruber Diamond 2 4-inch

 START/ FINISH TIME CORING:
 0101
 TO:
 0216

 CORED INTERVAL:
 1824
 TO:
 1835

 LENGTH OF CORED INTERVAL:
 11 feet
 1

 LENGTH OF CORE SAMPLE RECOVERED:
 1 feet

PERCENT OF SAMPLED LENGTH RECOVERED: 9%

DEPTH	CORE DESCRIPTION	RPM of Drill String	PENETRATION TIME (minutes)	WEIGHT ON BIT x1000 (lbs)	PUMP PRESSURE (psi)
1824	Dolomitic Limestone		5		
1825	Dolomitic Limestone	22	8	2	15
1826	Dolomitic Limestone	23	5	2	15
1827	Dolomitic Limestone	24	6	4	15
1828	Dolomitic Limestone	23	5	3	15
1829	Dolomitic Limestone	24	7	3	15
1830	Dolomitic Limestone	24	5	3	15
1831	Dolomitic Limestone	23	8	4	15
1832	Dolomitic Limestone	22	6	4	20
1833	Dolomitic Limestone	23	8	4	20
1834	Dolomitic Limestone	24	6	5	20
1835	Dolomitic Limestone	23	11	5	25

CITY OF CAPE CORAL

SOUTHWEST CAPE WTP MONITOR WELL IW-1

CORE #2

1,824 feet bls - 1,835 feet bls

Core Diameter (inches): 4 Cored Interval (feet): 11.0 Bit Type: Diamond Recovered Core (feet): 1 Date: 12/1/2007 Recovery: 9%

DEPTH (feet bls)

DESCRIPTION

1,824 ft to 1,835 ft DOLOMITIC LIMESTONE – very pale orange (10 YR 8/2) to pale yellowish brown (10 YR 6/2), intergranular, intercrystalline, and moldic porosity, possibly low permeability, grain type is crystal, micrite and biogenic, 20% allochems, microcrystalline to very fine grain, good induration with primarily sparry calcite cement, micrite and dolomite cement also present, crystalline, dolomite rhombs in section.

Core No. 3 1,845 – 1,858

IW-1 CORING WORKSHEET

DATE(S): 12/3/2007

SOUTHWEST CAPE DEEP INJECTION WELL SYSTEM

JOB NUMBER: <u>3220269.77010102</u>

CONTRACTOR: Youngquist Brothers, Inc.

PROJECT MANAGER: Neil Johnson

OWNER: City of Cape Coral

DRILLER:	Jean Jean
TYPE OF BIT USED:	Diamond
CORE NUMBER:	3
DIAMETER:	4-inch

 START/ FINISH TIME CORING: 1048
 TO: 1210

 CORED INTERVAL: 1845
 TO: 1858

 LENGTH OF CORED INTERVAL: 13 feet

 LENGTH OF CORE SAMPLE RECOVERED: 8 feet

PERCENT OF SAMPLED LENGTH RECOVERED: 62%

		RPM of	PENETRATION TIME	WEIGHT ON BIT	PUMP PRESSURE
DEPTH	CORE DESCRIPTION	Drill String		x1000 (lbs)	
1845	Limestone with Calcareous Sand	20	8	2-4	45
1846	Limestone with Calcareous Sand	16	5	1	40
1847	Limestone with Calcareous Sand	18	5	3	35
1848	Limestone with Calcareous Sand	19	6	3	45
1849	Limestone with Calcareous Sand	18	4	3	45
1850	Limestone with Calcareous Sand	18	5	3	45
1851	Limestone with Calcareous Sand	18	6	2-3	50
1852	Limestone with Calcareous Sand	20	5	2-4	60
1853	Limestone with Calcareous Sand	20	7	2-4	65
1854	Limestone with Calcareous Sand	16	5	2-4	55
1855	Limestone with Calcareous Sand	18	4	1-4	50
1856	Limestone with Calcareous Sand	18	5	2-4	60
1857	Limestone with Calcareous Sand	18	16	4-5	60
1858	Limestone with Calcareous Sand	18		5-9	55

CITY OF CAPE CORAL

SOUTHWEST CAPE WTP MONITOR WELL IW-1

CORE #3

1,845 feet bls – 1,858 feet bls

Core Diameter (inches): 4	Bit Type: Diamond	Date: 12/3/2007
Cored Interval (feet): 13.0	Recovered Core (feet): 8	Recovery: 61%

DEPTH (feet bls)

DESCRIPTION

1845 to 1858 LIMESTONE WITH CALCAREOUS SAND – yellowish gray (5 Y 7/2), intergranular, intercrystalline, and moldic porosity, possibly moderate permeability, grain type is crystal and biogenic, 60% allochems, microcrystalline to very fine grain, unconsolidated to good induration with sparry calcite cement, pellets in sample, limestone nodules in sample are microcrystalline.

Core No. 4 1,880 – 1,891

IW-1 CORING WORKSHEET

DATE(S): 12/4/2007

SOUTHWEST CAPE DEEP INJECTION WELL SYSTEM

JOB NUMBER: <u>3220269.77010102</u>

CONTRACTOR: Youngquist Brothers, Inc.

PROJECT MANAGER: Neil Johnson

OWNER: City of Cape Coral

DRILLER: Doug Drayer START/ FINISH TIME CORING: **TO:** 1509 1301 TYPE OF BIT USED: Diamond CORED INTERVAL: TO: 1891 1880 CORE NUMBER: 4 LENGTH OF CORED INTERVAL: 11 feet DIAMETER: 4-inch LENGTH OF CORE SAMPLE RECOVERED: 7 feet

PERCENT OF SAMPLED LENGTH RECOVERED: 64%

DEPTH	CORE DESCRIPTION	RPM of Drill String	PENETRATION TIME (minutes)	WEIGHT ON BIT x1000 (lbs)	PUMP PRESSURE (psi)
1880	Dolostone with Limestone Intraclasts	20	11	3	20
1881	Dolostone with Limestone Intraclasts	24	10	4	25
1882	Dolostone with Limestone Intraclasts	24	7	4	30
1883	Crystalline Limestone	24	5	4	30
1884	Crystalline Limestone	23	11	4	35
1885	Crystalline Limestone	24	13	4	35
1886	Crystalline Limestone	24	15	4	35
1887	Crystalline Limestone	24	7	4	35
1888	Crystalline Limestone	24	11	4	35
1889	Crystalline Limestone	24	31	4-5	38
1890	Crystalline Limestone	24	7	4-8	50
1891	Crystalline Limestone	24		8	65

CITY OF CAPE CORAL

SOUTHWEST CAPE WTP MONITOR WELL IW-1

CORE #4

1,880 feet bls – 1,891 feet bls

Core Diameter (inches): 4	Bit Type: Diamond	Date: 12/4/2007
Cored Interval (feet): 11.0	Recovered Core (feet): 7	Recovery: 64%

DEF	тн
(feet	bls)

DESCRIPTION

- 1880 to 1881.8 DOLOSTONE WITH LIMESTONE INTRACLASTS, yellowish gray (5 Y 7/2) to pale yellowish brown (10 YR 6/2), intergranular, intercrystalline, and vugular porosity, possibly low permeability, microcrystalline subhedral crystals, medium alteration, good induration with dolomite and sparry calcite cement, dense.
- 1881.8 to 1886.6 CRYSTALLINE LIMESTONE, yellowish gray (5 Y 8/1) to light olive gray (5 Y 6/1), intergranular, intercrystalline,vugular, and moldic porosity, possibly low permeability, grain type is crystal, micrite and biogenic, 10% allochems, microcrystalline to very fine grain, good induration with sparry calcite cement,

Core No. 5 1,945 – 1,956

IW-1 CORING WORKSHEET

DATE(S): 12/6/2007

SOUTHWEST CAPE DEEP INJECTION WELL SYSTEM

JOB NUMBER: <u>3220269.77010102</u>

CONTRACTOR: Youngquist Brothers, Inc.

PROJECT MANAGER: Neil Johnson

OWNER: City of Cape Coral

DRILLER: TYPE OF BIT USED: CORE NUMBER: DIAMETER: Eric Baker Diamond 5 4-inch START/ FINISH TIME CORING:427TO:635CORED INTERVAL:1945TO:1956LENGTH OF CORED INTERVAL:11 feetLENGTH OF CORE SAMPLE RECOVERED:8.5 feet

PERCENT OF SAMPLED LENGTH RECOVERED: 77%

DEPTH	CORE DESCRIPTION	RPM of Drill String	PENETRATION TIME (minutes)	WEIGHT ON BIT x1000 (lbs)	PUMP PRESSURE (psi)
1945	Limestone (mudstone)	20		1 - 2	40
1946	Dolomitic Limestone	20	7	1	40
1947	Dolomitic Limestone	20	13	1 -2	45
1948	Dolomitic Limestone	20	13	2	35
1949	Limestone (wackestone)	20	12	1 - 2	40
1950	Limestone (wackestone)	20	12	1 - 2	40
1951	Limestone (wackestone to packstone)	20	11	1 - 2	40
1952	Limestone (wackestone to packstone)	20	7	1 - 2	35
1953	Limestone (wackestone to packstone)	20	7	1 - 2	40
1954.5	Limes Limestone (as above w/ lignite)	20	7	1 - 2	50

CITY OF CAPE CORAL

SOUTHWEST CAPE WTP MONITOR WELL IW-1

CORE #5

1,945 feet bls – 1,956 feet bls

Core Diameter (inches): 4	Bit Type: Diamond	Date: 12/6/2007
Cored Interval (feet): 11.0	Recovered Core (feet): 8.5	Recovery: 77%

DEPTH (feet bls)	DESCRIPTION
1945 to 1946	LIMESTONE (mudstone), yellowish gray (5 Y 8/1) to light brown (5YR 6/4), intergranular and vugular porosity, possibly low permeability, grain type is crystal, micrite and biogenic, 10% allochems, microcrystalline to very fine grain, moderate induration with sparry calcite and micrite cements, benthonic foraminifera
1946 to 1948	DOLOMITIC LIMESTONE, pale yellowish brown (10 YR 6/2), intergranular, intercrystalline, and vugular porosity, possibly low permeability, microcrystalline to very fine grained subhedral crystals, medium alteration, good induration with dolomite and sparry calcite cement
1948 to 1950	LIMESTONE (wackestone), pale yellowish brfown (10YR 6/2, intergranular, intercrystalline, vugular, and moldic porosity, medium permeability, grain type is crystal, micrite and biogenic, 25% allochems, microcrystalline to medium grained, good induration with sparry calcite cement and micrite cements, benthonic foraminifera,
1950 to 1951	DOLOSTONE, grayish orange (10 YR 7/4), intergranular, intercrystalline,and vugular porosity, possibly low permeability, microcrystalline subhedral crystals, medium alteration, good induration with dolomite and sparry calcite cement, dense.
1951 to 1954	LIMESTONE (wackestone to packstone), very pale orange (10YR 8/2), intergranular, vugular, and moldic porosity, medium permeability, grain type is crystal, micrite and biogenic, 50% allochems, microcrystalline to medium grained, good induration with sparry calcite cement and micrite cements, benthonic foraminifera
1954 to 1954.5	LIMESTONE (AS ABOVE) with lignite beds

Core No. 6 1,985 – 1,996

IW-1 CORING WORKSHEET

DATE(S): 12/7/2007

SOUTHWEST CAPE DEEP INJECTION WELL SYSTEM

JOB NUMBER: <u>3220246.77010102</u>

CONTRACTOR: Youngquist Brothers, Inc.

PROJECT MANAGER: Neil Johnson

OWNER: City of Cape Coral

DRILLER: Eric Baker START/ FINISH TIME CORING: 804 TO: TYPE OF BIT USED: Diamond CORED INTERVAL: **TO:** 1986 1985 LENGTH OF CORED INTERVAL: CORE NUMBER: 6 11 feet DIAMETER: 4-inch LENGTH OF CORE SAMPLE RECOVERED: 2 feet

PERCENT OF SAMPLED LENGTH RECOVERED: 18%

DEPTH	CORE DESCRIPTION	RPM of Drill String	PENETRATION TIME (minutes)	WEIGHT ON BIT x1000 (lbs)	PUMP PRESSURE (psi)
1985	Limestone	20		1 - 2	25 - 30
1986	Limestone	20	17	5 - 6	30
1987	Limestone	24	19	4 - 5	40 - 50
1988		20	20	5 - 6	65
1989		20	15	5	100
1990		20	10	4	100
1991		20	10	5 - 6	90
1992		20	5	5 - 6	100
1993		20	5	5	120
1994		20	5	5	120
1995		20	4	5	120
1996		20	6	2 - 4	150

CITY OF CAPE CORAL

SOUTHWEST CAPE WTP MONITOR WELL IW-1

CORE #6

1,985 feet bls – 1,996 feet bls

Core Diameter (inches): 4	Bit Type: Diamond	Date: 12/7/2007
Cored Interval (feet): 11.0	Recovered Core (feet): 2	Recovery: 18%

DEPTH (feet bls)	DESCRIPTION
1985 to 1985.3	DOLOSTONE, dark yellowish brown (10YR 4/2, vugular and intercrystalline porosity, possibly low permeability, microcrystalline to very fine grained euhedral crystals, high alteration, good induration with dolomite cement
1985.3 to 1986.7	DOLOSTONE, pale yellowish brown (10 YR 6/2), intercrystalline, moldic, and vugular porosity, possibly low permeability, microcrystalline to very fine grained subhedral crystals, medium alteration, good induration with dolomite and sparry calcite cement, intraclasts of limestone nodules (15%0, bioturbated
1986.7 to 1987	LIMESTONE (wackestone), pale yellowish brfown (10YR 6/2, intergranular, intercrystalline,vugular, and moldic porosity, medium permeability, grain type is crystal, micrite and biogenic, 45% allochems, microcrystalline to medium grained, moderate induration with sparry calcite and micrite cements, glauconite flecks, organics, benthonic foraminifera

Core No. 7 2,062 – 2,073

IW-1 CORING WORKSHEET

DATE(S): 12/8/2007

SOUTHWEST CAPE DEEP INJECTION WELL SYSTEM

JOB NUMBER: <u>3220246.77010102</u>

CONTRACTOR: Youngquist Brothers, Inc.

PROJECT MANAGER: Neil Johnson

OWNER: City of Cape Coral

DRILLER: TYPE OF BIT USED: CORE NUMBER: DIAMETER:

Doug Drayer/Jean Jean Diamond 7 4-inch

 START/ FINISH TIME CORING:
 1318
 TO:
 2030

 CORED INTERVAL:
 2062
 TO:
 2073

 LENGTH OF CORED INTERVAL:
 11 feet
 6.2 feet

PERCENT OF SAMPLED LENGTH RECOVERED: 56%

DEPTH	CORE DESCRIPTION	RPM of Drill String	PENETRATION TIME (minutes)	WEIGHT ON BIT x1000 (lbs)	PUMP PRESSURE (psi)
2062	Dolostone	20		7	60
2063	Dolostone	20	45	7	70
2064	Dolostone	20	40	7	70
2065	Dolostone	20	44	7	75
2066	Dolostone	12	48	8	85
2067	Dolostone	12	40	9	60
2068	Dolostone	12	29	9	65
2069	Dolostone	12	44	9	60
2070		12	42	9	60
2071		12	40	11	60 -65
2072		12	35	11	65
2073		12	25	11 - 13	80 - 90

CITY OF CAPE CORAL

SOUTHWEST CAPE WTP MONITOR WELL IW-1

CORE #7

2,062 feet bls - 2,073 feet bls

Core Diameter (inches): 4	Bit Type: Diamond	Date: 12/8/2007
Cored Interval (feet): 11.0	Recovered Core (feet): 6.2	Recovery: 56%

DEPTH (feet bls)	DESCRIPTION
2,062 to 2,063.6	DOLOSTONE, olive gray (5Y 4/1) to light olive gray (5Y 6/1), intercrystalline and vugular porosity, moderate to possibly low permeability, microcrystalline subhedral crystals, very well indurated with sucrosic crystallization and dolomite cement completely or partially filling vugs.
2,063 to 2,068.2	DOLOSTONE, pale yellowish brown (10YR 6/2), intercrystalline and trace vugular porosity, possibly low permeability, microcrystalline subhedral crystals, very well indurated, trace

vugs.

Core No. 8 2,091 – 2,097

IW-1 CORING WORKSHEET

DATE(S): 12/9/2007 12/10/2007

SOUTHWEST CAPE DEEP INJECTION WELL SYSTEM

JOB NUMBER: <u>3220246.77010102</u>

CONTRACTOR: Youngquist Brothers, Inc.

PROJECT MANAGER: Neil Johnson

OWNER: City of Cape Coral

DRILLER: Eric Baker - Jean Jean START/ FINISH TIME CORING: 1530 TO: 600 TYPE OF BIT USED: Diamond CORED INTERVAL: TO: 2097 2091 CORE NUMBER: 8 LENGTH OF CORED INTERVAL: 6 feet DIAMETER: 4-inch LENGTH OF CORE SAMPLE RECOVERED: 5 feet

PERCENT OF SAMPLED LENGTH RECOVERED: 83%

DEPTH	CORE DESCRIPTION	RPM of Drill String	PENETRATION TIME (minutes)	WEIGHT ON BIT x1000 (lbs)	PUMP PRESSURE (psi)
2091	Dolostone	20		5 - 6	32
2092	Dolostone	16	150	10	50
2093	Dolostone	28	140	11	60
2094	Dolostone	28	118	12	55
2095	Dolostone	28	92	13	60
2096	Dolostone	28	170	11	60
2097	Dolostone, stop coring	28	220	15	65

CITY OF CAPE CORAL

SOUTHWEST CAPE WTP MONITOR WELL IW-1

CORE #8

2,091 feet bls - 2,097 feet bls

Core Diameter (inches): 4	Bit Type: Diamond	Date: 12/9/2007
Cored Interval (feet): 6.0	Recovered Core (feet): 4.7	Recovery: 83%

DEPTH	
(feet bls)	

DESCRIPTION

- 2,091 to 2,091.2 DOLOSTONE, dark yellowish brown (10YR 4/2), intracrystalline and pin point vugular porosity, low permeability, microcrystalline to fine euhedral crystals, high alteration, good indurated with dolomite cement, sparry calcite lining vugs.
- 2,091.2 to 2,095.7 DOLOSTONE, dark yellowish brown (10YR 4/2), intracrystalline, vugular, and moldic porosity, possibly low permeability, microcrystalline to very fine euhedral crystals, high alteration, well indurated with dolomite cement, vertical soluction vug from 2091.3 ft to 2091.9 ft, spar filling vugs, fossil molds below 2092 ft

Monitor Well DZMW-1

Core No. 9 1,535 – 1,545

DZMW-1 CORING WORKSHEET

DATE(S): 5/19/2007

SOUTHWEST CAPE DEEP INJECTION WELL SYSTEM

JOB NUMBER: <u>3220269.77010102</u>

CONTRACTOR: Youngquist Brothers, Inc.

PROJECT MANAGER: Neil Johnson

OWNER: City of Cape Coral

DRILLER:	Don Huey	START/ FINISH TIME CORING: 2002 TO: 2251
TYPE OF BIT USED:	Diamond	CORED INTERVAL: 1535 TO: 1545
CORE NUMBER:	9	LENGTH OF CORED INTERVAL: 10 feet
DIAMETER:	4-inch	LENGTH OF CORE SAMPLE RECOVERED: 3 feet

PERCENT OF SAMPLED LENGTH RECOVERED: 30%

DEPTH	CORE DESCRIPTION	RPM of Drill String	PENETRATION TIME (minutes)	WEIGHT ON BIT x1000 (lbs)	PUMP PRESSURE (psi)
1536	Limestone	4	18	1	4
1536	Limestone	4	23	1	12
1537	Limestone	4	20	1	18
1538	Limestone	4 - 6	15	2	40
1539	Limestone	6	12	2	80
1540	Limestone	6	10	2	25
1541	Limestone	6	10	2	25
1542	Limestone	6	6	2	150

CITY OF CAPE CORAL

SOUTHWEST CAPE WTP MONITOR WELL DZMW-1

CORE #9

1,535 feet bls – 1,545 feet bls

Core Diameter (inches): 4	Bit Type: Diamond	Date: 05/9/2007
Cored Interval (feet): 10.0	Recovered Core (feet): 3	Recovery: 30%

DEP	тн
(feet	bls)

DESCRIPTION

- 1535 1535.7 Dolostone, grayish orange (10 YR 7/4), intergranular and vugular porosity, low to medium permeability, 50% to 90% alteration, very fine grained subhedral crystals, microcrystalline to fine grained, moderate induration with dolomite and micrite cements, micrite (35%), peat flecks (1%), unfossilliferous
- 1535.7 1536.2 Dolomitic limestone, grayish orange (10 YR 7/4), intergranular and vugular porosity, low to medium permeability, grain types are biogenic, crystal, and micrite, 25% allochems, microcrystalline to fine grained, moderate induration with micrite and dolomite cements, dolomite (40%), peat flecks (trace), benthonic foraminifera
- 1536.2 1536.6 Dolostone, moderate yellowish brown (10 YR 5/4), intercrystalline and vugular porosity, low to medium permeability, 50% to 90% alteration, very fine grained euhedral crystals, good induration with dolomite and sparry calcite cements, benthonic foraminifera

Monitor Well DZMW-1

Core No. 10 1,410 – 1,420

DZMW-1 CORING WORKSHEET

DATE(S): 5/21/2007

SOUTHWEST CAPE DEEP INJECTION WELL SYSTEM

JOB NUMBER: <u>3220269.77010102</u>

CONTRACTOR: Youngquist Brothers, Inc.

PROJECT MANAGER: Neil Johnson

OWNER: City of Cape Coral

DRILLER:	Don Huey	START/ FINISH TIME CORING: 0030 TO: 400
TYPE OF BIT USED:	Diamond	CORED INTERVAL: 1560 TO: 1571
CORE NUMBER:	10	LENGTH OF CORED INTERVAL: 11 feet
DIAMETER:	4-inch	LENGTH OF CORE SAMPLE RECOVERED: 8 feet

PERCENT OF SAMPLED LENGTH RECOVERED: 73%

DEPTH	CORE DESCRIPTION	RPM of Drill String	PENETRATION TIME (minutes)	WEIGHT ON BIT x1000 (lbs)	PUMP PRESSURE (psi)
1560		6	15	2	7
1561		6	30	3	15
1562		6	15	3	5
1563		6	15	3	5
1564		6	15	3	5
1565		6	15	3	6
1566		6	15	3	4
1567		6	30	3	5

CITY OF CAPE CORAL

SOUTHWEST CAPE WTP MONITOR WELL DZMW-1

CORE #10

1,560 feet bls – 1,570 feet bls

Core Diameter (inches): 4	Bit Type: Diamond	Date: 05/20/2007
Cored Interval (feet): 10.0	Recovered Core (feet): 8	Recovery: 80%

DEPTH (feet bls)	DESCRIPTION
1560 – 1562.0	Limestone (wackestone), grayish orange (10 YR 7/4), intergranular and vugular porosity, low to medium permeability, grain types are biogenic, micrite, and skeletal, 35% allochems, microcrystalline to fine grained, moderate alteration with micrite, sparry calcite, and dolomite cements, dolomite (25%), peat seams (2%), benthonic foraminifera, core in pieces
1562.0 – 1562.4	Limestone (wackestone), very pale orange (10 YR 8/2) to grayish orange (10 YR 7/4), intergranular and vugular porosity, medium permeability, grain types are biogenic, skeletal, and micrite, 45% allochems, microcrystalline to fine grained, moderate induration with micrite and sparry calcite cements, benthonic foraminifera
1562.4 – 1562.8	Limestone (packstone), very pale orange (10 YR 8/2) to grayish orange (10 YR 7/4), intergranular, vugular, and moldic porosity, medium to high permeability, grain types are biogenic, micrite, and skeletal, 65% allochems, moderate induration with micrite and sparry calcite cements, benthonic foraminifera, core broken into 2 pieces
1562.8 – 1563.4	Limestone (wackestone), grayish orange (10 YR 7/4), intergranular, moldic, and vugular porosity, medium permeability, grain types are biogenic, micrite, and skeletal, 45% allochems, microcrystalline to medium grained, moderate induration micrite and sparry calcite cements, benthonic foraminifera
1563.4 – 1563.6	Limestone (wackestone), grayish orange (10 YR 7/4), intergranular and pin point vugular porosity, low to medium permeability, grain types are biogenic, micrite, and crystal, 35% allochems, microcrystalline to fine grained, moderate induration with micrite, sparry calcite, and dolomite cements, dolomite (10%), benthonic foraminifera

- 1563.6 1564.2 Limestone (wackestone), very pale orange (10 YR 8/2) to grayish orange (10 YR 7/4), intergranular, moldic, and vugular porosity, medium permeability, grain types are biogenic, micrite, and skeletal, 40% allochems, microcrystalline to fine grained, moderate induration with micrite and sparry calcite cements, benthonic foraminifera
- 1564.2 1565.0 Limestone (wackestone), very pale orange (10 YR 8/2) to grayish orange (10 YR 7/4), intergranular, moldic, and vugular porosity, low to medium permeability, grain types are biogenic, micrite, and skeletal, 30% allochems, microcrystalline to fine grained, moderate induration with micrite and sparry calcite cements, benthonic foraminifera
- 1565.0 1565.8 Limestone (packstone), very pale orange (10 YR 8/2) to grayish orange (10 YR 7/4), intergranular, vugular, and moldic porosity, medium to high permeability, grain types are biogenic, micrite, and skeletal, 65% allochems, moderate induration with micrite and sparry calcite cements, benthonic foraminifera, semi vertical fracture on upper piece, core in 2 pieces
- 1565.8 1566.4 Limestone (wackestone), grayish orange (10 YR 7/4), intergranular and pin point vugular porosity, low permeability, grain types are biogenic, micrite, and skeletal, 30% allochems, microcrystalline to fine grained, moderate induration with micrite and sparry calcite cements, benthonic foraminifera
- 1566.4 1567.2 Limestone (packstone), very pale orange (10 YR 8/2) to grayish orange (10 YR 7/4), intergranular, vugular, and moldic porosity, medium to high permeability, grain types are biogenic, micrite, and skeletal, 75% allochems, microcrystalline to medium grained, moderate induration with micrite and sparry calcite cements, benthonic foraminifera, fracture on upper piece, core in 2 pieces
- 1567.2 1568.2 Limestone (wackestone), grayish orange (10 YR 7/4), intergranular and pin point vugular porosity, low to medium permeability, grain types are biogenic, micrite, and skeletal, 45% allochems, microcrystalline to fine grained, moderate induration with micrite and sparry calcite cements, benthonic foraminifera, small (1 inch) vertical vugs, lower .2 ft is a packstone
- 1568.2 1568.4 Limestone (wackestone), grayish orange (10 YR 7/4), intergranular and pin point vugular porosity, low permeability, grain types are biogenic, micrite, and skeletal, 30% allochems, microcrystalline to fine grained, moderate induration with micrite and sparry calcite cements, benthonic foraminifera, peat seams in lower 2 inches

Core Analysis Laboratory Reports

Ardaman & Associates, Inc.

Geotechnical, Environmental and Materials Consultants

July 14, 2008 File Number 08-028

Youngquist Brothers, Inc. 15465 Pine Ridge Road Ft. Myers, FL 33908

RECEIVED

JUL 1 7 2008

Attention: Wu Fei

Subject: Rock Core Testing, City of Cape Coral, Florida

Ms. Fei:

As requested, vertical and horizontal permeability and specific gravity tests have been completed on limestone rock cores provided for testing by your firm. The samples were received on 02/05/08. The designations of the 16 samples are listed below.

Core	Depth (feet)
1	1762.0-1763.0
3	1833.0-1833.5
4	1887.7-1888.2
5	1988.5-1989.5
6	1950.0-1950.7
7	1953.0-1953.8
8	2093.0-2093.8
9	2064.0-2064.6
10	2065.0-2065.5
11	2093.8-2094.3
12	2095.0-2095.5
13	2096.0-2097.0
14	1763.7-1764.2
15	1764.2-1765.0
17	1445.5-1446.9
18	1948.5-1949.3

The permeability tests were performed in general accordance with ASTM Standard D 5084 "Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter" using either the constant head test method (Method A) or the falling-head rising-tailwater method (Method C). The permeability test results are presented on the attached hydraulic conductivity test reports.

8008 S. Orange Avenue 32809, Post Office Box 593003, Orlando, Florida 32859-3003 Phone (407) 855-3860 FAX (407) 859-8121 Louisiana: Alexandría, Baton Rouge, Monroe, New Orleans, Shreveport Youngquist Brothers, Inc. File Number 08-028

The measured mineral specific gravities are presented on the attached test reports. The specific gravity tests were performed in general accordance with ASTM Standard D 854 "Specific Gravity of Soil Solids by Water Pycnometer" using 40 to 75 grams specimens ground to pass the U.S. Standard No. 40 sieve.

The specimens were reported to be from the samples designated herein. The test results are indicative of only the specimens that were actually tested. The test results presented are based upon accepted industry practice as well as test method(s) listed. Ardaman & Associates, Inc. neither accepts responsibility for, nor makes claims to the final use and purpose of the material.

The results of unconfined compression tests completed on eight specimens will be submitted by July 18, 2008.

Please contact us if you have any questions about the test results or require additional information.

Very truly yours, ARDAMAN & ASSOCIATES, INC.

Thomas S. Ingra, P.E. Laboratory Director Florida License No. 31987

TSI/ed

C:\Documents and Settings\jan.wildman\Documents\Projects\08\08-028\report01.wpd

CLIENT: Youngquist Brothers, Inc.	INCOMING LABORATORY SAMPLE NO .: Core 1, 1762.0-1763.0'					
PROJECT: City of Cape Coral	City of Cape Coral LABORATORY IDENTIFICATION NO.: 08028/1kV					
FILE NO.: 08-028	SAMPLE DESCRIPTION: Light brown limestone					
DATE SAMPLE RECEIVED: 02/05/08 SET UP: 04/02/08						
DATE REPORTED: 07/14/08						
ASTM D 5084 TEST METHOD: a A - Constant Head B - Falling Head; Constant Tailwater C - Falling Head; Rising Tailwater F - Constant Volume; Falling Head - Rising Tailwater	SPECIMEN DATA: As-Received Diameter (inch): 4 As-Received Length (inch): 17 TEST SPECIMEN ORIENTATION:	Diameter Trimmed: □ Yes ⊠ No Length Trimmed: ⊠ Yes □ No ⊠ Vertical □ Horizontal				
B-FACTOR: <u>80 (stable)</u> % □ Beginning of Test;	SPECIFIC GRAVITY, G _s : <u>2.71</u>	□ Assumed				
Δσ _c (psi): <u>4, 8, 11</u>	PERMANENT:	D Other				

		Initi	al Condition	ıs				T	est Conditio	ons		Final Conditions			Hydraulic Conductivity
H (cm)	D (cm)	V (cm³)	w _c (%)	Y₄ (pcf)	n	S (%)	σ _c (psi)	u _b (psi)	i _{avg}	Q (cm ³)	t (days)	WDS (g)	w. (%)	S (%)	(cm/sec)
10.36	9.75	773.31	14.9	115.0	0.320	86	30	160	22	0.9	2	1424.7	15.8	91	7.3x10 ⁻⁷
The test & Associ	data and all ates, Inc. F	associated	project info electronic	ormation pro	esented he each proje	ereon shall ct are kept	i be held in t for a minin	confidence num of 7 ye	and disclos ars. Test s	sed to other amples are	parties only kept in stora & Associate	with the aul age for at lea	horization	of the Cli	ent or Ardaman after mailing of
Where: I	H = Specime	en height; D ess; u _b = Ba	= Specime ack-pressur	n diameter:	V = Volum	ne: WDS =	Drv mass:	w_ = Moistu	re content	(ASTM D 22	216); γ _d = Dr	y density; S	= Saturatio fuctivity at	n;	otropic effective Total porosity;

CLIENT: Youngquist Brothers, Inc.	INCOMING LABORATORY SAMPLE NO .: Core 1, 1762.0-1763.0'
PROJECT: City of Cape Coral	LABORATORY IDENTIFICATION NO.: 08028/1kH
FILE NO.: 08-028	SAMPLE DESCRIPTION: Light brown limestone
DATE SAMPLE RECEIVED: 02/05/08 SET UP: 04/13/08	
DATE REPORTED: 07/14/08	
ASTM D 5084 TEST METHOD:	SPECIMEN DATA: As-Received Diameter (inch): 4 Diameter Trimmed: Size As-Received Length (inch): 17 Length Trimmed: Size TEST SPECIMEN ORIENTATION: Vertical
B-FACTOR: <u>87 (stable)</u> % □ Beginning of Test;	SPECIFIC GRAVITY, G _s : <u>2.71</u> □ Assumed ⊠ Measured (ASTM D 854)
Δσ _c (psi): <u>3; 5, 8, 12</u>	PERMANENT: Deaired Tap Water Other

H (cm)D (cm)V (cm3) w_c (%) Y_d (pcf)n6.535.01128.7714.9116.00.314COMMENTS: (1) Horizontal permeability test specimen was cross-crThe test data and all associated project information presented hered & Associates, Inc. Physical and electronic records of each project a the test report, prior to being discarded, unless a longer storage per Where: H = Specimen height; D = Specimen diameter; V = Volume;	on shall be held ir are kept for a mini	confidence	and disclosters. Test s	sed to other amples are	kept in stor	age for at lea	W _c (%) 15.8 thorization ast 10 work	S (%) 93 of the Click	Conductivity k ₂₀ (cm/sec) 1.5x10 ⁻⁶ ent or Ardaman after mailing of
COMMENTS: (1) Horizontal permeability test specimen was cross-co The test data and all associated project information presented hereo & Associates, Inc. Physical and electronic records of each project a the test report, prior to being discarded, unless a longer storage per	ored from the cor on shall be held ir are kept for a mini	responding confidence mum of 7 ye	vertical test and disclost ars. Test s	specimen. sed to other amples are	parties only kept in stor	with the aut	thorization	of the Cli	ent or Ardaman
The test data and all associated project information presented hered & Associates, Inc. Physical and electronic records of each project a the test report, prior to being discarded, unless a longer storage per Where: H = Specimen beint: D = Specimen diameter; V = Volume:	on shall be held ir are kept for a mini	confidence	and disclosters. Test s	sed to other amples are	kept in stor	age for at lea	thorization ast 10 work	of the Cli king days	ent or Ardaman after mailing of
Where: H = Specimen height; D = Specimen diameter; V = Volume;			•			es, inc.			
where: H = Specifient height, D = Specifient diameter, V = Volume,		Liture					= Saturatio	on:	otropic effective
confining stress; u _b = Back-pressure; i _{avg} = Average hydrauli and G _s = Specific gravity.	ic gradient; Q = F	low volume;	t = Test du	ration; k ₂₀ =	Saturated h	ydrauliccono	ductivity at	20°Č; n =	 Total porosity;
Checked By:	Date: 07/	14/08							108108-0281k- tests.wpc

5

CLIENT: Youngquist Brothers, Inc.		INCOMING LABORATORY SAMPLE NO .: Core 3, 1833.0-1833.5'						
PROJECT: City of Cape Coral		LABORATORY IDENTIFICATION NO .: 08028/3kV						
FILE NO.: 08-028		SAMPLE DESCRIPTION: Light brown limestone						
DATE SAMPLE RECEIVED: 02/05/	08 SET UP: 03/28/08							
DATE REPORTED: 07/14/08								
□ C - Falling F	t Head lead; Constant Tailwater łead; Rising Tailwater t Volume; Falling Head - Rising Tailwater □ Beginning of Test;	SPECIMEN DATA: As-Received Diameter (inch): <u>4</u> As-Received Length (inch): <u>4.5</u> TEST SPECIMEN ORIENTATION: SPECIFIC GRAVITY, G _s : <u>2.71</u>	Diameter Trimmed: □ Yes ⊠ No Length Trimmed: ⊠ Yes □ No ⊠ Vertical □ Horizontal □ Assumed					
B-FACTOR. 337	B End of Test	·	Measured (ASTM D 854)					
	Δσ _c (psi): <u>3, 6, 9, 12</u>	PERMANENT:	D Other					

		Initia	al Conditio	ns			Test Conditions				Final Conditions			Hydraulic Conductivity	
H (cm)	D (cm)	V (cm ³)	w. (%)	Y _d (pcf)	n	S (%)	σ _c (psi)	u _b (psi)	i _{avg}	Q (cm³)	t (days)	WDS (g)	w _c (%)	S (%)	k ₂₀ (cm/sec)
8.02	9.64	585.31	14.1	121.0	0.285	96	30	160	15	3.5	2	1134.5	14.1	96	5.7x10 ⁻⁵
The test of	data and al	n up while s l associated Physical and to being dis	project inf	ormation pro	esented he each proie	ereon shall ct are kepi	be held in for a minin	confidence num of 7 ye	and disclos ars. Test s	ed to other amples are	parties only kept in store	with the aut	thorization	of the Clie	ent or Ardaman after mailing of
Where: I	H = Specim	en heisht D	= Specime ack-pressu	n diameter	- V = Volun		Dry mass.	w = Moisti	re content	ASTM D 22	216): v. = Dr	v density; S	= Saturatio Juctivity at	n;	otropic effective Total porosity;
Checked Form SR-	By:	PM				Date	07/14	408			C:\Documen	ts and Settings\ja	n.wiidman\Docu	iments\Projec	ts/08/08-028/k- tests.wpc

CLIENT: Youngquist Brothers, Inc.	INCOMING LABORATORY SAMPLE NO.: Core 3, 1833.0-1833.5'					
PROJECT: City of Cape Coral	_ LABORATORY IDENTIFICATION NO.: 08028/3kH					
FILE NO.: 08-028	SAMPLE DESCRIPTION: Light brown limestone					
DATE SAMPLE RECEIVED: 02/05/08 SET UP: 04/11/08						
DATE REPORTED: 07/14/08						
ASTM D 5084 TEST METHOD: a A - Constant Head B - Falling Head; Constant Tailwater C - Falling Head; Rising Tailwater	SPECIMEN DATA: As-Received Diameter (inch): <u>4</u> Diameter Trimmed: ⊠ Yes □ No As-Received Length (inch): <u>4.5</u> Length Trimmed: ⊠ Yes □ No TEST SPECIMEN ORIENTATION: □ Vertical ⊠ Horizontal					
□ F - Constant Volume; Falling Head - Rising Tailwater B-FACTOR: <u>91 (stable)</u> % □ Beginning of Test;	SPECIFIC GRAVITY, G _s : <u>2.71</u> □ Assumed ⊠ Measured (ASTM D 854)					
Δσ _c (psi): <u>3, 7, 10</u>	PERMANENT: ◙ Deaired Tap Water □ Other					

		Initi	al Condition	าร			Test Conditions Final Conditions				ns	Hydraulic Conductivity			
H (cm)	D (cm)	V (cm ³)	w _c (%)	Y₄ (pcf)	л	S (%)	σ _c (psi)	u⊾ (psi)	i _{avg}	Q (cm³)	t (days)	WDS (g)	w _c (%)	S (%)	k ₂₀ (cm/sec)
7.08	5.02	140.08	14.2	121.5	0.281	98	30	160	44	1.5	2	272.79	14.2	98	3.7x10 ⁻⁵
COMMEN	ITS: (1) Hor	izontal pern	neability te	st specimer	was cross	s-cored fro	m the corre	esponding v	ertical test	specimen.					
The test data and all associated project information presented hereon shall be held in confidence and disclosed to other parties only with the authorization of the Client or Ardaman & Associates, Inc. Physical and electronic records of each project are kept for a minimum of 7 years. Test samples are kept in storage for at least 10 working days after mailing of the test report, prior to being discarded, unless a longer storage period is requested in writing and accepted by Ardaman & Associates, Inc.															
Where: H = Specimen height; D = Specimen diameter; V = Volume; WDS = Dry mass; w_c = Moisture content (ASTM D 2216); γ_d = Dry density; S = Saturation; $\overline{\sigma}_c$ = Isotropic effective confining stress; u_b = Back-pressure; i_{avg} = Average hydraulic gradient; Q = Flow volume; t = Test duration; k_{20} = Saturated hydraulicconductivity at 20°C; n = Total porosity; and G_s = Specific gravity.															
Checked Form SR-	By: 2B: Rev. (Ŋ		····	·······	Date	07/	14/08			C:\Documents	and Settings\jan.	wildman\Docum	ents\Projects	108108-0261k- tests.wpd

CLIENT: Youngquist Brothers, Inc.		INCOMING LABORATORY SAMPLE I	NO.: Core 4, 1887.7-1	888.2'			
PROJECT: City of Cape Coral		LABORATORY IDENTIFICATION NO .: 08028/4kV					
FILE NO.: 08-028		SAMPLE DESCRIPTION: Light brown limestone					
DATE SAMPLE RECEIVED: 02/05/0	08 SET UP: <u>03/28/08</u>						
DATE REPORTED: 07/14/08		<u> </u>					
□ C - Falling H	Head ead; Constant Tailwater ead; Rising Tailwater Volume; Falling Head - Rising Tailwater	SPECIMEN DATA: As-Received Diameter (inch): <u>4</u> As-Received Length (inch): <u>5.5</u> TEST SPECIMEN ORIENTATION:	Diameter Trimmed: Length Trimmed: Ø Vertical	□ Yes ⊠ No ⊠ Yes □ No □ Horizontal			
	□ Beginning of Test; ⊠ End of Test	SPECIFIC GRAVITY, G _s : <u>2.73</u>	Assumed Measured (ASTM	D 854)			
	Δσ _c (psi): <u>3, 6, 9, 12</u>	PERMANENT:	Other	. 			

Initial Conditions								T	est Conditio	ons	Fin	Hydraulic Conductivity								
H (cm)	D (cm)	V (cm ³)	w. (%)	Y₄ (pcf)	n	S (%)	ਰ੍ਹ (psi)	u _b (psi)	i _{zvg}	Q (cm³)	t (days)	WDS (g)	w _c (%)	S (%)	k ₂₀ (cm/sec)					
8.61	9.51	611.62	16.1	117.3	0.311	97	30	160	26	3.7	2	1150.1	16.1	97	3.0x10 ⁻⁵					
water from	n the botton data and all	n up while s associated	till under va project info	ormation pro	Final w _c from esented he	om horizor reon shall ct are kept	be held in for a minin	confidence	and disclosers. Test s	sed to other	parties only kept in store	with the autage for at le	thorization	of the Clie	h deaired tap ent or Ardaman after mailing of					
the test report, prior to being discarded, unless a longer storage period is requested in writing and accepted by Ardaman & Associates, Inc. Where: H = Specimen height; D = Specimen diameter; V = Volume; WDS = Dry mass; w _c = Moisture content (ASTM D 2216); y _d = Dry density; S = Saturation; $\overline{\sigma}_c$ = Isotropic effective confining stress; u _b = Back-pressure; i _{wg} = Average hydraulic gradient; Q = Flow volume; t = Test duration; k ₂₀ = Saturated hydraulicconductivity at 20°C; n = Total porosity; and G _c = Specific gravity.																				
Checked Form SR-	By:	<u>1</u> m				Date	07/1	4/08			C:\Documen	ts and Settings\ja	an.wiidman\Docu	ments\Projec	ts\08\08-028\k- tests.wpd					

÷

CLIENT: Youngquist Brothers, inc.	INCOMING LABORATORY SAMPLE NO.: <u>Core 4, 1887.7-1888.2'</u> LABORATORY IDENTIFICATION NO.: <u>08028/4kH</u>							
PROJECT: City of Cape Coral								
FILE NO.: 08-028	SAMPLE DESCRIPTION: Light brown limestone							
DATE SAMPLE RECEIVED: 02/05/08 SET UP: 04/12/08								
DATE REPORTED: 07/14/08		<u> </u>						
ASTM D 5084 TEST METHOD:	SPECIMEN DATA: As-Received Diameter (inch): 4 Diameter Trimmed: As-Received Length (inch): 5.5 TEST SPECIMEN ORIENTATION: SPECIFIC GRAVITY; G₂: 2.73 SPECIFIC GRAVITY; G₂: 2.73 SPECIFIC GRAVITY; G₂: 2.73							
⊠ End of Test Δσ _c (psi): <u>4, 7, 12, 16</u>	PERMANENT:							

Initial Conditions								T	ons	Final Conditions			Hydraulic Conductivity						
H (cm)	D (cm)	V (cm ³)	w. (%)	Y₄ (pcf)	n	S (%)	σ _c (psi)	u _b (psi)	i _{avg}	Q (cm³)	t (days)	WDS (g)	w _c (%)	S (%)	k ₂₀ (cm/sec)				
7.18	5.01	141.48	16.2	118.2	0.306	99	30	160	51	7.0	2	268.10	16.2	99	3.4x10 ⁻⁵				
COMMEN	- νΤŚ: (1) Ηο	rizontal perm	neability te	st specimer	was cross	s-cored fro	m the corre	esponding v	ertical test	specimen.									
the test r	eport, prior	to being dis	carded, uni	less a longe	er storage j	period is re	equested in	writing and	accepted I	ASTM D 22	216): v ₄ = Dr	es, inc. 	= Saturatio	n; o , = Isa	after mailing of				
					Secondo burdo	aulie oradi	ent ⁻ O = Flo	w volume:	t = Test du	ration: k _m ≓	Saturated https://www.com/staturated.com/sta	vdrauliccond	luctivity at	20°C: n =					
		ress; u _b = Ba becific gravit		re; i _{avg} = Ave	erage nyun										Total porosity;				

2

CLIENT: Youngquist Brothers, Inc.	INCOMING LABORATORY SAMPLE NO .: Core 5, 1988.5-1989.5'							
PROJECT: City of Cape Coral	LABORATORY IDENTIFICATION NO .: 08028/5kV							
FILE NO.: 08-028	SAMPLE DESCRIPTION: Light brown limestone							
DATE SAMPLE RECEIVED: 02/05/08 SET UP: 04/02/08								
DATE REPORTED: 07/14/08								
ASTM D 5084 TEST METHOD:	SPECIMEN DATA: As-Received Diameter (inch): 4 Diameter Trimmed: □ Yes As-Received Length (inch): 21.5 Length Trimmed: □ Yes TEST SPECIMEN ORIENTATION: S Vertical							
B-FACTOR: <u>75 (stable)</u> % □ Beginning of Test;	SPECIFIC GRAVITY, G₅: <u>2.80</u>							
Δσ _c (psi): <u>4, 9, 13</u>	PERMANENT:							

Initial Conditions								т	ons	Fina	Hydraulic Conductivity					
H (cm)	D (cm)	V (cm ³)	w. (%)	Y₀ (pcf)	n	S (%)	σ _c (psi)	u _b (psi)	Q t WDS wc S iavg (cm³) (days) (g) (%) (%)							
10.27	9.23	687.23	16.7	111.1	0.364	82	30	160	17	0.8	2	1223.4	17.9	88	1.1x10 ⁻⁵	
& Associa	ates, Inc. F	hysical and to being dis	l electronic	records of	each proje	ct are kept	for a minin	num of 7 ye	ars. Test s	amples are	kept in stor	age for at le	ast 10 work	ing days	ent or Ardaman after mailing of	
Where: H	H = Specim	en height: D	= Specime	n diameter	V = Volun	ne: WDS =	Dry mass:	w. = Moistu	re content	(ASTM D 22	216): v ₄ = Dr	y density; S	= Saturatio luctivity at	n;	otropic effective Total porosity	
		ecific gravit														
hecked	ву: 1	M				Date	07/1	4/98_								
orm SR-	2B: Rev.	0									C:\Documen	ts and Settings∖ja	n.wildman\Docu	ments\Projec	ts\08\08-028\k- tests.	

Ξ.

CLIENT: Youngquist Brothers, Inc.	INCOMING LABORATORY SAMPLE	IO.: Core 5, 1988.5-19	989.5'					
PROJECT: City of Cape Coral	LABORATORY IDENTIFICATION NO.	08028/5kH						
FILE NO.: 08-028	SAMPLE DESCRIPTION: Light brown limestone							
DATE SAMPLE RECEIVED: 02/05/08 SET UP: 04/13/08	· · · · · · · · · · · · · · · · · · ·							
DATE REPORTED: 07/14/08								
ASTM D 5084 TEST METHOD: A - Constant Head B - Falling Head; Constant Tailwater C - Falling Head; Rising Tailwater F - Constant Volume; Falling Head - Rising Tailwater	SPECIMEN DATA: As-Received Diameter (inch): <u>4</u> As-Received Length (inch): <u>21.5</u> TEST SPECIMEN ORIENTATION:		⊠ Yes □ No ⊠ Yes □ No ⊠ Horizontal					
B-FACTOR: <u>81 (stable)</u> % □ Beginning of Test;	SPECIFIC GRAVITY, G _s : <u>2.80</u>	□ Assumed Measured (ASTM D) 854)					
Δσ _c (psi): <u>5, 7, 8, 10</u>	PERMANENT: Ø Deaired Tap Water	Other						

		Initia	al Conditior	ns				Т	est Conditio	ons		Final Conditions			Hydraulic Conductivity
H (cm)	D (cm)	V (cm ³)	w. (%)	Y₄ (pcf)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									k ₂₀ (cm/sec)	
6.41	5.01	126,46	16.7	111.4	0.362	82	30	160	60	1.1	2	225.79	17.9	88	1.7x10 ⁻⁵
the test rep	ort, prior	to being disc	carded, unl	less a longe	er storage p	period is re	equested in	writing and	accepted t	oy Ardaman	& Associat	es, Inc.			after mailing of
cor	nfining str	en height; D ess; u _b = Ba ecific gravity	ack-pressur	en diameter; re; i _{zvg} = Ave	V = Volum erage hydra	ne; WDS = aulic gradi	Dry mass; ent; Q = Fk	w _e = Moistu ow volume; 1	re content (t = Test dur	(ASTM D 22 ration; k ₂₀ =	16); y _e = Dr Saturated h	y density; S ydrauliccond	= Saturation luctivity at 2	n;	otropic effective Total porosity
and			<i>.</i>												

CLIENT: Youngquist Brothers, Inc.	INCOMING LABORATORY SAMPLE NO.: Core 6, 1950.0-1950.7'
PROJECT: City of Cape Coral	LABORATORY IDENTIFICATION NO.: 08028/6kV
FILE NO.: 08-028	SAMPLE DESCRIPTION: Light brown limestone
DATE SAMPLE RECEIVED: 02/05/08 SET UP: 03/27/08	
DATE REPORTED: 07/14/08	
ASTM D 5084 TEST METHOD:	SPECIMEN DATA: As-Received Diameter (inch): 4 Diameter Trimmed: □ Yes Ø No As-Received Length (inch): 7.5 Length Trimmed: Ø Yes □ No TEST SPECIMEN ORIENTATION: Ø Vertical □ Horizontal
B-FACTOR: <u>92 (stable)</u> % □.Beginning of Test;	SPECIFIC GRAVITY, G _s : <u>2.76</u> □ Assumed ⊠ Measured (ASTM D 854)
Δσ _c (psi): <u>4, 7, 9, 13</u>	PERMANENT: Deaired Tap Water Other

Initial Conditions Test Conditions Final Conditi											al Condition	ns	Hydraulic Conductivity		
H (cm)	D (cm)	V (cm ³)	w _c (%)	Y₄ (pcf)	n	S (%)	σ _ς (psi)	u _b (psi)	i _{avg}	Q (cm³)	t (days)	WDS (g)	w _c (%)	S (%)	k ₂₀ (cm/sec)
9.84	9.71	728.80	11.2	130.4	0.243	97	30	160	26	4.5	2	1522.6	11.2	97	6.9x10 ⁻⁵
The test & Associ	data and al ates Inc. F	l associated	project info	ormation pro	esented he	reon shall	be held in for a minin	confidence num of 7 ye	and disclos ars. Test s	ed to other amples are	parties only kept in stora & Associate	with the au age for at le	thorization	of the Clie	ent or Ardaman after mailing of
	confining st	en height; D ress; u _b = Ba pecific gravit	ack-pressu	en diameter re; i _{avg} = Ave	; V ≕ Volun erage hydra	ne; WDS = aulic gradi	Dry mass; ent; Q = Flo	w _e = Moistu ow volume;	ure content t = Test du	(ASTM D 22 ration; k ₂₀ =	216); γ _d = Dr Saturated h	y density; S ydrauliccon	= Saturatio ductivity at	on;	otropic effective Total porosity;
	By:					Date	07/1	4198			C:\Documen	ts and Settings\iz	n wildman\Doci	uments\Projec	ts108\08-028\k- tests.w;

CLIENT: Youngquist Brothers, Inc.	INCOMING LABORATORY SAMPLE NO.: Core 6, 1950.0-1950.7'
PROJECT: City of Cape Coral	LABORATORY IDENTIFICATION NO.: 08028/6kH
FILE NO.: 08-028	SAMPLE DESCRIPTION: Light brown limestone
DATE SAMPLE RECEIVED: 02/05/08 SET UP: 04/11/08	
DATE REPORTED: 07/14/08	
ASTM D 5084 TEST METHOD: A - Constant Head B - Falling Head; Constant Tailwater C - Falling Head; Rising Tailwater F - Constant Volume; Falling Head - Rising Tailwater B-FACTOR: <u>88</u> % Beginning of Test;	SPECIMEN DATA: As-Received Diameter (inch): 4 As-Received Length (inch): 7.5 Diameter Trimmed:
⊠ End of Test Δσ _c (psi): <u>55</u>	PERMANENT:

H (cm)D (cm)V (cm3)wc (%)Yd (pcf)nS (%) $\overline{\sigma_c}$ (%)ub (psi)ima (psi)Q (cm3)t (days)WDS (g)wc (%)S (%)k20 (cm/se7.245.02143.1411.3129.10.2509330160271.62296.1211.3935.8x10COMMENTS: (1) Horizontal permeability test specimen was cross-cored from the corresponding vertical test specimen.The test data and all associated project information presented hereon shall be held in confidence and disclosed to other parties only with the authorization of the Client or Ardau & Associates, Inc. Physical and electronic records of each project are kept for a minimum of 7 years. Test samples are kept in storage for at least 10 working days after mailing the test report, prior to being discarded, unless a longer storage period is requested in writing and accepted by Ardaman & Associates, Inc.Density of the client or Ardau (model)	H (cm)D (cm)V (cm)wc (%)Yd (pcf)nS (%) $\overline{\sigma_c}$ (psi)ub (psi)imgQ (cm)t (days)WDS (g)wc (%)S (%)kzo (cm/sec7.245.02143.1411.3129.10.2509330160271.62296.1211.3935.8x10COMMENTS: (1) Horizontal permeability test specimen was cross-cored from the corresponding vertical test specimen.The test data and all associated project information presented hereon shall be held in confidence and disclosed to other parties only with the authorization of the Client or Ardam & Associates inc.Physical and electronic records of each project are kept for a minimum of 7 years. Test samples are kept in storage for at least 10 working days after mailing			Initia	al Condition	าร				Т	est Conditi	ons		Final Conditions			Hydraulic Conductivity
7.24 5.02 143.14 11.3 129.1 0.250 93 30 160 27 1.6 2 296.12 11.3 93 $5.8x10$ COMMENTS: (1) Horizontal permeability test specimen was cross-cored from the corresponding vertical test specimen.The test data and all associated project information presented hereon shall be held in confidence and disclosed to other parties only with the authorization of the Client or Ardau & Associates, Inc.Physical and electronic records of each project are kept for a minimum of 7 years. Test samples are kept in storage for at least 10 working days after mailing the test report, prior to being discarded, unless a longer storage period is requested in writing and accepted by Ardaman & Associates, Inc.Note: the test is the project information presented hereon shall be held in writing and accepted by Ardaman & Associates, Inc.	7.245.02143.1411.3129.10.2509330160271.62296.1211.3935.8x10COMMENTS: (1) Horizontal permeability test specimen was cross-cored from the corresponding vertical test specimen.The test data and all associated project information presented hereon shall be held in confidence and disclosed to other parties only with the authorization of the Client or Ardam & Associates, Inc.Physical and electronic records of each project are kept for a minimum of 7 years. Test samples are kept in storage for at least 10 working days after mailing the test report, prior to being discarded, unless a longer storage period is requested in writing and accepted by Ardaman & Associates, Inc.Where: H = Specimen height; D = Specimen diameter; V = Volume; WDS = Dry mass; w _c = Moisture content (ASTM D 2216); γ_d = Dry density; S = Saturation; $\overline{\sigma}_c$ = Isotropic effect confining stress; u_b = Back-pressure; i_{avg} = Average hydraulic gradient; Q = Flow volume; t = Test duration; k_{20} = Saturated hydraulicconductivity at 20°C; n = Total pores and G_s = Specific gravity.						Y_d D S O_c U_b France (a) (dama) (a) (96) (96)										
COMMENTS: (1) Horizontal permeability test specimen was cross-cored from the corresponding vertical test specimen. The test data and all associated project information presented hereon shall be held in confidence and disclosed to other parties only with the authorization of the Client or Ardar & Associates, Inc. Physical and electronic records of each project are kept for a minimum of 7 years. Test samples are kept in storage for at least 10 working days after mailin the test report, prior to being discarded, unless a longer storage period is requested in writing and accepted by Ardaman & Associates, Inc.	COMMENTS: (1) Horizontal permeability test specimen was cross-cored from the corresponding vertical test specimen. The test data and all associated project information presented hereon shall be held in confidence and disclosed to other parties only with the authorization of the Client or Ardam & Associates, Inc. Physical and electronic records of each project are kept for a minimum of 7 years. Test samples are kept in storage for at least 10 working days after mailing the test report, prior to being discarded, unless a longer storage period is requested in writing and accepted by Ardaman & Associates, Inc. Where: H = Specimen height; D = Specimen diameter; V = Volume; WDS = Dry mass; w _e = Moisture content (ASTM D 2216); Y _d = Dry density; S = Saturation; of a least 10 working advective and G _g = Specific gravity.		<u> </u>				0.250	93	30	160	27	1.6	2	296.12	11.3	93	5.8x10 ⁻⁵
Where: H = Specimen height; D = Specimen diameter; V = Volume; WDS = Dry mass; w _c = Moisture content (ASTM D 2216); γ _d = Dry density; S = Saturation; $\vec{\sigma_c}$ = Isotropic effective confining stress; u _n = Back-pressure; i _{nee} = Average hydraulic gradient; Q = Flow volume; t = Test duration; k ₂₀ = Saturated hydraulicconductivity at 20°C; n = Total poro	confining stress; $u_b = Back-pressure$; $i_{avg} = Average hydraulic gradient; Q = Flow volume; t = Test duration; k_{20} = Saturated hydraulic conductivity at 20 °C, m = Flow points and G_s = Specific gravity.$	The test	data and al	l associated	project info	ormation or	- ocontod bo	roon shai	be held in	confidence	and disclos	sed to other	parties only kept in stor	with the aut	horization	of the Cli	ent or Ardaman after mailing of
and C = Specific arriver		2 Accori	atos Inc. P	Physical and	electronic	ormation pro	esented he	ereon shail	l be held in t for a minin	confidence num of 7 ye	and disclos ars. Test s	sed to other samples are	kept in stor	age ior ar lea	horization ast 10 work	of the Cli king days	ent or Ardamar after mailing of

.

CLIENT: Youngquist Brothers, Inc.		INCOMING LABORATORY SAMPLE N	NO.: Core 7, 1953.0-1	953.8'
PROJECT: City of Cape Coral		LABORATORY IDENTIFICATION NO.	: 08028/7kV	
FILE NO.: 08-028		SAMPLE DESCRIPTION: Light brown	limestone	<u> </u>
DATE SAMPLE RECEIVED: 02/05/08 SET UF	P: 04/03/08	<u></u>		
DATE REPORTED: 07/14/08				
ASTM D 5084 TEST METHOD: A - Constant Head B - Falling Head; Constant Tailwater C - Falling Head; Rising Tailwater F - Constant Volume; Falling Head - Ri	sing Tailwater	SPECIMEN DATA: As-Received Diameter (inch): 4 As-Received Length (inch): 8.5 TEST SPECIMEN ORIENTATION:	Diameter Trimmed: Length Trimmed: Vertical	□ Yes ⊠ No ⊠ Yes □ No □ Horizontal
B-FACTOR: <u>94 (stable)</u> % □ Beginning of Test; ≌ End of Test	<i>i</i>	SPECIFIC GRAVITY, G _s : <u>2.75</u>	Assumed Measured (ASTM)	D 854)
Δσ _c (psi): <u>3, 6, 9</u>		PERMANENT:	Other	

- -

Initial Conditions										ons		Final Conditions			Hydraulic Conductivity
H (cm)	D (cm)	V (cm³)	w. (%)	Y₀ (pcf)	n	S (%)	σ _ε (psi)	ʻu _⊳ (psi)	^į avg	Q (cm³)	t (days)	WDS (g)	w _c (%)	S (%)	k _{za} (cm/sec)
8.52	9.76	637.13	16.6	117.0	0.318	98	30	160	23	7.0	2	1194.2	16.6	98	5.5x10 ⁻⁴
The test	data and all	n up while s associated Physical and to being dis	project inf	ormation pro	esented he	ereon shall	be held in for a minin	confidence num of 7 ye	and disclos ars. Test s	sed to other amples are	parties only kept in store	with the aut	thorization	of the Clie	ent or Ardaman after mailing of
Where: I	H = Specim confining st	a a h ai abt. D	= Specime ack-pressu	- diamotor			Dry mass:	w = Moisti	ire content	(ASTM D 22	216): v, = Dr	v density; S	= Saturatio ductivity at	n;	otropic effective = Total porosity;
Checked		1 4				Date	07/1	4/98			C:\Documer	its and Settings\ja	n.wildman\Doc.	iments\Projec	ts108108-0281k- tests.wpc

CLIENT: Youngquist Brothers, Inc.		INCOMING LABORATORY SAMPLE	NO.: <u>Core 7, 1953.0-</u>	1953.8'
PROJECT: City of Cape Coral		LABORATORY IDENTIFICATION NO	.: <u>08028/7kH</u>	
FILE NO.: 08-028		SAMPLE DESCRIPTION: Light brown	limestone	
DATE SAMPLE RECEIVED: 02/05	08 SET UP: 04/15/08			
DATE REPORTED: 07/14/08				
C - Falling H	t Head lead; Constant Tailwater lead; Rising Tailwater t Volume; Falling Head - Rising Tailwater	SPECIMEN DATA: As-Received Diameter (inch): <u>4</u> As-Received Length (inch): <u>8.5</u> TEST SPECIMEN ORIENTATION:	Diameter Trimmed: Length Trimmed: □ Vertical	⊠ Yes □ No ⊠ Yes □ No ⊠ Horizontal
B-FACTOR: <u>100</u> %	 □ Beginning of Test; ∞ End of Test 	SPECIFIC GRAVITY, G _s : 2.75	□ Assumed Measured (ASTM	- D 854)
	Δσ _c (psi): <u>33</u>	PERMANENT:	r □ Other	

Initial Conditions								T	est Conditio	ons		Final Conditions			Hydraulic Conductivity
H (cm)	D (cm)	V (cm ³)	w <u>.</u> (%)	Y₄ (pcf)	$\begin{array}{ c c c c c c c c } \hline \Pi & S & \overline{\sigma}_e & u_b & & & & & & & \\ \hline & & & & & & & & \\ \hline & & & &$										k ₂₀ (cm/sec)
7.02	5.02	138.89	16.4	117.1	0.318	97	30	160	41	29.2	2	260.54	16.4	97	5.8x10 ⁻⁴
& Associa the test re	ates, Inc. F eport, prior	Physical and to being dis	electronic carded, un	records of less a longe	each projec er storage p	t are kept period is re	tor a minin equested in	writing and	ars. Tests accepted b	by Ardaman	& Associat	es, Inc.			after mailing of
Where: H	H = Specim confining st		= Specime ack-pressu		.) / -) (a) um	ANDS -	- Dov moce:	w - Moist	ire content i	(ASTM D 22	216): v. = Dr	v densitv: S :	= Saturatio luctivity at	n;	otropic effective Total porosity;
	By:	×	<u>y.</u>	<u> </u>		Date	: 07/14	108							
orm SR-	2B: Rev. (<u>, </u>						•			C:\Documents	and Settings\jan.	wildman\Docum	ents\Projects ¹	08\08-028\k- tests.wpd

CLIENT: Youngquist Brothers, Inc.	INCOMING LABORATORY SAMPLE N	
PROJECT: City of Cape Coral	LABORATORY IDENTIFICATION NO .:	
FILE NO.: 08-028	SAMPLE DESCRIPTION: Brown dolor	itic limestone
DATE SAMPLE RECEIVED: <u>02/05/08</u> SET UP: <u>04/07/08</u>		
DATE REPORTED: 07/14/08		
ASTM D 5084 TEST METHOD:	1231 OF ECHMER OTTERT	Diameter Trimmed: □ Yes ⊗ No Length Trimmed: ⊠ Yes □ No ⊠ Vertical □ Horizontal
B-FACTOR: <u>96</u> % □ Beginning of Test;		□ Assumed Measured (ASTM D 854)
Δσ _c (psi): <u>33</u>	PERMANENT:	Other

Initial Conditions Test Conditions										Fina	ns	Hydraulic Conductivity			
H (cm)	D (cm)	V (cm ³)	w . (%)	(%) (pcf) ''' (%) (psi) (psi) '**g (cm*) (days) (g) (%) (7%)											k ₂₀ (cm/sec)
10.19	10.10	815.95	0.75	172.1	0.029	70	35	155	210	0.7	36	2250.4	0.76	71	3.0x10 ⁻¹⁰
The test of	data and all	associated	project info	ormation pro	esented he	ereon shall	be held in for a minir	confidence	and disclose ars. Test s	sed to other samples are	ated from me parties only kept in stor & Associat	with the aut	thorization	of the Cli	ent or Ardaman after mailing of
Where: I		en height; D ess; u _b = Ba	= Specime ack-pressu				- D	Moiet	ure content		216): v. = Dr	v density: S	= Saturatio ductivity at	n;	otropic effective Total porosity;
Checked Form SR-	By:	M				Date	: 67/1	4/8			C:\Documer	nts and Settings/ja	an,wildman\Doca	uments\Projec	ts108108-0281k- tests.wp

CLIENT: Youngquist Brothers, Inc.	INCOMING LABORATORY SAMPLE							
PROJECT: City of Cape Coral	LABORATORY IDENTIFICATION NO.							
FILE NO.: 08-028	SAMPLE DESCRIPTION: Brown dolomitic limestone							
DATE SAMPLE RECEIVED: 02/05/08 SET UP: 06/20/08								
DATE REPORTED: 07/14/08								
ASTM D 5084 TEST METHOD:	SPECIMEN DATA: As-Received Diameter (inch): <u>4</u> As-Received Length (inch): <u>18,5</u> TEST SPECIMEN ORIENTATION:	Diameter Trimmed: ⊠Yes □No Length Trimmed: ⊠Yes □No □ Vertical ⊠Horizontal						
B-FACTOR: <u>67 (stable)</u> % □ Beginning of Test; ⊠ End of Test	SPECIFIC GRAVITY, G _s : <u>2.84</u>	□ Assumed ⊠ Measured (ASTM D 854)						
Δσ _c (pši): <u>7, 25, 31</u>	PERMANENT:	Other						

	Initial Conditions							Ţ	est Conditio	ons		Final Conditions			Hydraulic Conductivity
H (cm)	D (cm)	V (cm ³)	₩ _c (%)	Y₀ (pcf)	n	S (%)	$\vec{\sigma}_{c}$ u_{b} i_{avg} Q t WDS w (psi) (psi) i_{avg} (cm ³) (days) (g) (%							S (%)	k ₂₀ (cm/sec)
7.06	5.02	139.90	0.60	172.2	0.028	58	30	160	207	0.2	6	386.09	0.75	72	3.4x10 ⁻¹⁰
the test r	eport, prior	to being dis	carded, un	less a longe	er storage p	period is re	equested in	writing and	accepted	by Aluamai	I & ASSOCIAL	<u> </u>			after mailing of
							Del mose:		ire content	(ASTMD 22	216) [.] v. = Dr	v densitv: S	= Saturatio luctivity at	n;	otropic effective Total porosity;
	and $G_s = Sp$	ecific gravit	y.	zvg											
:becked	Ву:	M				Date	:07/14	109							
							· <u>- 18-6-6</u>					and Settings\jan.			

CLIENT: Youngquist Brothers, Inc.		INCOMING LABORATORY SAMPLE		064.6'
PROJECT: City of Cape Coral		LABORATORY IDENTIFICATION NO.		
FILE NO.: 08-028		SAMPLE DESCRIPTION: Brown dolor	nitic limestone	,
DATE SAMPLE RECEIVED: 02/05/0	8SET UP: <u>04/05/08</u>		<u>,</u> ,	· · · · · · · · · · · · · · · · · · ·
DATE REPORTED: 07/14/08				
□ C - Falling He □ F - Constant	ad; Constant Tailwater ad; Rising Tailwater Volume; Falling Head - Rising Tailwater	SPECIMEN DATA: As-Received Diameter (inch): <u>4</u> As-Received Length (inch): <u>9</u> TEST SPECIMEN ORIENTATION: SPECIFIC GRAVITY, G _s : <u>2.83</u>	Diameter Trimmed: Length Trimmed: Ø Vertical	□ Yes ⊠ No ⊠ Yes □ No □ Horizontal
	□ Beginning of Test; ▣ End of Test	51 LOI 10 010 (111, 0 ₅ , <u>-2.00</u> ,	Measured (ASTM	D 854)
	Δσ _c (psi): <u>3, 7, 10, 13</u>	PERMANENT:	Other	

		Initi	al Conditio	ns				Т	est Conditio	ons		Final Conditions			Hydraulic Conductivity
H (cm)	D (cm)	V (cm ³)	w. (%)	Y₄ (pcf)	n	S (%)	σ _c (psi)	k ₂₀ (cm/sec)							
10.19	10.08	814.01	0.82	169.9	0.038	59	30	160	116	1.7	11	2215.9	1.1	79	7.6x10 ⁻¹⁰
The test of	vater from the bottom up while still under vacuum. (2) Final w _c from horizontal permeability test specimen. WDS calculated from measured wet weight and final w _c . The test data and all associated project information presented hereon shall be held in confidence and disclosed to other parties only with the authorization of the Client or Ardaman & Associates, Inc. Physical and electronic records of each project are kept for a minimum of 7 years. Test samples are kept in storage for at least 10 working days after mailing of the test report, prior to being discarded, unless a longer storage period is requested in writing and accepted by Ardaman & Associates, Inc.														
Where: I	H = Specim confining st	en height; D ress; u _b = Ba	= Specime ack-pressu	n diameter	· \/ = \/olun		Dor mass:	w = Moist	ire content	(ASTM D 2	216): v, = Dr	v density; S :	= Saturatio luctivity at	n;	otropic effective - Total porosity;
Checked	,,,,	<u>becific gravit</u>	<u>y.</u>			Date	07/14	108							
	-2B: Rev.	d I									C:\Documer	its and Settings/ja	n.wiidman\Docu	ments\Projec	ts\08\08-028\k- tests.wp

ž

CLIENT: Youngquist Brothers, Inc.	INCOMING LABORATORY SAMPLE NO .: Core 9, 2064.0-2064.6'								
PROJECT: City of Cape Coral	LABORATORY IDENTIFICATION NO.: 08028/9kH								
FILE NO.: 08-028	SAMPLE DESCRIPTION: Brown dolon	nitic limestone							
DATE SAMPLE RECEIVED: 02/05/08 SET UP: 05/06/08									
DATE REPORTED: 07/14/08									
ASTM D 5084 TEST METHOD: A - Constant Head B - Falling Head; Constant Tailwater C - Falling Head; Rising Tailwater F - Constant Volume; Falling Head - Rising Tailwater	SPECIMEN DATA: As-Received Diameter (inch): <u>4</u> As-Received Length (inch): <u>9</u> TEST SPECIMEN ORIENTATION:	Diameter Trimmed: ⊠ Yes □ No Length Trimmed: ⊠ Yes □ No □ Vertical ⊠ Horizontal							
B-FACTOR: <u>65 (stable)</u> % □ Beginning of Test;	SPECIFIC GRAVITY, G _s : <u>2.83</u>	□ Assumed ⊠ Measured (ASTM D 854)							
Δσ _c (psi): <u>39,63</u>	PERMANENT:	Other							

		Initia	al Condition	าร				Т	est Conditio	ons		Fina	Hydraulic Conductivity		
H (cm)	D (cm)	V (cm ³)	w. (%)	Y₄ (pcf)	n	S (%)	σ _c (psi)	u _s (psi)	i _{avg}	Q (cm³)	t (days)	WDS (g)	w _c (%)	S (%)	k ₂₀ (cm/sec)
7.63	5.03	151.37	1.2	170.2	0.036	93	30	70	189	0.7	10	412.76	1.2	93	4.1x10 ⁻¹⁰
& Associa	ites, Inc. F	associated hysical and to being dis	electronic	records of e	each projec	t are kept	for a minin	าum of 7 ye	ars. Test s	amples are	kept in stor	age for at lea	nonzation ast 10 worl	or the Cli king days	ent or Ardaman after mailing of
Where: H	I = Specimo onfining str	n hoight: D	= Specime ack-pressu	n diameter	V = Volum		Dry mass:	w = Moisti	ire content	ASTMD 22	216): v, = Dr	v density; S =	- Saturatio uctivity at	n;	otropic effective • Total porosity;
a	$\operatorname{Ind} G_s = \operatorname{Sp}$		y.				- 1/10								·····

CLIENT: Youngquist Brothers, Inc.		INCOMING LABORATORY SAMPLE NO .: Core 10, 2065.0-2065.5'									
PROJECT: City of Cape Coral		LABORATORY IDENTIFICATION NO.	.: 08028/10kV								
FILE NO.: 08-028		SAMPLE DESCRIPTION: Brown dolomitic limestone (heterogenous - about									
DATE SAMPLE RECEIVED: 02/05	08 SET UP: 04/07/08	half of sample appears porous, while other half is not - contact between									
DATE REPORTED: 07/14/08		different rock types at about 45 degree of specimen in vertical direction.	e angle). Porous sec	tion through length							
C - Falling H	t Head lead; Constant Tailwater lead; Rising Tailwater t Volume; Falling Head - Rising Tailwater	SPECIMEN DATA: As-Received Diameter (inch): <u>4</u> As-Received Length (inch): <u>9</u> TEST SPECIMEN ORIENTATION:	Diameter Trimmed: Length Trimmed: ∞ Vertical								
B-FACTOR: 65 (stable) %	□ Beginning of Test;	SPECIFIC GRAVITY, G _s : <u>2.88</u>	□ Assumed ∞ Measured (ASTM	D 854)							
	Δσ _c (psi): <u>3, 5, 8</u>	PERMANENT: Ø Deaired Tap Water	□ Other								

Initial Conditions								Т	est Conditio	ons		Final Conditions			Hydraulic Conductivity	
H (cm)	D (cm)	V (cm ³)	w. (%)	Y₄ (pcf)	n	S (%)	$ \begin{array}{ c c c c c c c c } \hline \overline{\sigma}_{c} & u_{b} & i_{avg} & Q & t & WDS & w_{c} & S \\ \hline (psi) & (psi) & i_{avg} & (cm^{3}) & (days) & (g) & (\%) & (\%) \end{array} $									
8.36	10.11	671.18	1.4	167.5	0.068	56	30	160	40	2.2	2	1801.6	1.6	64	2.2x10 ⁻⁷	
water from The test of & Associa	n the botton data and all ates, Inc. F	n up while s associated Physical and	till under va project info electronic	ormation pre	Final w _e from esented he each project	reon shall tare kept	be held in	bility test sp confidence num of 7 ye	and disclos	VDS calcula ed to other amples are	nted from me	with the aut	weight and	I final w _e . of the Clie	th deaired tap ent or Ardaman after mailing of	
Where: H	H = Specime	en height: D	= Specime ack-pressu	n diameter	V = Volum	ne: WDS =	Drv mass:	w, = Moistu	ire content (ASTM D 22	216); y _d = Dry	/ density; S	= Saturatio luctivity at 2	n;	otropic effective Total porosity;	
	By: -2B: Rev. (ŢŊ				Date	07/14	18			C:\Documen	ts and Settings∖ja	n,wildman\Docu	ments\Project	ts\08\08-028\k- tests.wpd	

CLIENT: Youngquist Brothers, Inc.	INCOMING LABORATORY SAMPLE NO.: Core 10, 2065.0-2065.5'									
PROJECT: City of Cape Coral	LABORATORY IDENTIFICATION NO.: 08028/10kH									
FILE NO.: 08-028	SAMPLE DESCRIPTION: Brown dolomitic limestone (heterogenous - about									
DATE SAMPLE RECEIVED: 02/05/08 SET UP: 05/07/08	half of sample appears porous, while other half is not - contact between									
DATE REPORTED: 07/14/08	different rock types at about 45 degree angle). Porous section not through									
	length of specimen in horizontal direction.									
ASTM D 5084 TEST METHOD:	SPECIMEN DATA: As-Received Diameter (inch): 4 Diameter Trimmed: Size Yes No As-Received Length (inch): 9 Length Trimmed: Size Yes No TEST SPECIMEN ORIENTATION: Image: Vertical Image: Vertical Image: Vertical									
B-FACTOR: <u>90 (stable)</u> % □ Beginning of Test;	SPECIFIC GRAVITY, G _s : <u>2.88</u> □ Assumed ⊠ Measured (ASTM D 854)									
Δσ _c (psi): 24, 32, 39	PERMANENT:									

		Initia	al Conditio	ns		-		т	est Conditio	ons		Fina	Hydraulic Conductivity						
H (cm)	D (cm)	V (cm ³)	w _c (%)	Y₄ (pcf)	n	S (%)	σ _c (psi)	u _b (psi)	Îavg	Q (cm ³)	t (days)	WDS (g)	w _c (%)	w _c S					
7.47	5.02	147.81	1.7	170.0	0.054	84	45	145	296	0.2	41	402.78	1.7	84	7.8x10 ⁻¹¹				
& Association the test re	ates, Inc. F eport, prior	nysical and to being dis	carded, un	less a longe	each proje er storage j	ct are kept period is re	equested in	writing and	accepted I	by Ardaman	& Associat	es, Inc.		ang duyo	after mailing of				
c	confining str	en height; D ress; u₅ = Ba vecific gravit	ack-pressu	en diarneter re; i _{avg} = Ave	V = Volum erage hydra	ne; WDS = aulic gradi	Dry mass; ent; Q = Flo	w _e = Moistu ow volume;	re content t = Test dui	(ASTM D 22 ration; $k_{20} =$	216); γ _d = Dr Saturated h	y density; S ydrauliccond	= Saturatio luctivity at	n;	otropic effective Total porosity;				
Checked	BV: T	Λ				Date	07/1	+/08											
	2B: Rev. 0	ار				1 1		,			C:\Documents	and Settingsljan	wildman\Docum	ents\Projects ¹	08\08-028\k- tests.wpd				

F

CLIENT: Youngquist Brothers, Inc.	INCOMING LABORATORY SAMPLE NO.: Core 11, 2093.8-2094.3								
PROJECT: City of Cape Coral	LABORATORY IDENTIFICATION NO .: 08028/11kV								
FILE NO.: 08-028	SAMPLE DESCRIPTION: Brown dolomitic limestone with solution cracks								
DATE SAMPLE RECEIVED: <u>02/05/08</u> SET UP: <u>04/09/08</u>	Solution cracks extend through length of specimen in vertical direction.								
DATE REPORTED: 07/14/08									
ASTM D 5084 TEST METHOD: A - Constant Head B - Falling Head; Constant Tailwater C - Falling Head; Rising Tailwater F - Constant Volume; Falling Head - Rising Tailwater	SPECIMEN DATA: As-Received Diameter (inch): 4 Diameter Trimmed: □ Yes I No As-Received Length (inch): 8 Length Trimmed: I Yes I No TEST SPECIMEN ORIENTATION: I Vertical								
B-FACTOR: <u>76 (stable)</u> % □ Beginning of Test;	SPECIFIC GRAVITY, G _s . <u>2.83</u> □ Assumed								
Δσ _c (psi): <u>3,5,8,10</u>	PERMANENT: Deaired Tap Water Other								

Initial Conditions								т	est Conditio	ons		Final Conditions			Hydraulic Conductivity
H (cm)	D (cm)	V (cm ³)	w. (%)	Y₄ (pcf)	n	S (%)	σ _c (psi)	u _s (psi)	j ^j avg	Q (cm³)	t (days)	WDS (g)	w _c (%)	S (%)	k ₂₀ (cm/sec)
10.14	10.07	807.62	0.37	166.1	0.059	16	30	70	2	16.9	3	2150.2	0.68	30	9.2x10 ⁻⁴
The test of & Associa	data and all ates, Inc. F	associated	project info	ormation pre	esented he each proje	reon shall ct are kept	be held in for a minin	confidence num of 7 ye	and disclos ars. Test s	sed to other amples are	ated from me parties only kept in stora & Associate	with the aut	thorization	of the Clie	ent or Ardaman after mailing of
C	confining str	en height; D ress; u _b = Ba ecific gravit	ack-pressur	n diameter; e; i _{avg} = Ave	V = Volun erage hydra	ne; WDS = aulic gradie	Dry mass; ent; Q = Flo	w _e = Moistu w volume;	ire content t = Test dui	(ASTM D 22 ration; k ₂₀ =	216); γ _d = Dṛ Saturated h	y density; S ydrauliccono	= Saturatio ductivity at	n;	otropic effective Total porosity;
Checked Form SR-	By: 2B: Rev.	M				Date	0]/וי	1/08			C:\Documen	ts and Settings\ja	n.wildman\Docu	ments\Projec	ts108108-0281k- tests.wp

CLIENT: Youngquist Brothers, Inc.	INCOMING LABORATORY SAMPLE NO .: Core 11, 2093.8-2094.3'							
PROJECT: City of Cape Coral	LABORATORY IDENTIFICATION NO.: 08028/11kH							
FILE NO.: 08-028	SAMPLE DESCRIPTION: Brown dolomitic limestone with solution cracks.							
DATE SAMPLE RECEIVED: 02/05/08 SET UP: 05/06/08	Solution cracks do not extend through length of specimen in horizontal							
DATE REPORTED: 07/14/08	direction.							
ASTM D 5084 TEST METHOD:	SPECIMEN DATA: As-Received Diameter (inch): 4 Diameter Trimmed: I Yes I No As-Received Length (inch): 8 Length Trimmed: I Yes No TEST SPECIMEN ORIENTATION: I Vertical III Horizontal							
B-FACTOR: <u>92 (stable)</u> % □ Beginning of Test;	SPECIFIC GRAVITY, G _s : <u>2.83</u> □ Assumed ⊠ Measured (ASTM D 854)							
Δσ _c (psi): <u>20, 26, 34</u>	PERMANENT: 🛚 Deaired Tap Water 🗆 Other							

		Initi	al Conditio	าร				<u>.</u> т	est Conditio	ons		Fina	al Condition	ns	Hydraulic Conductivity
H (cm)	D (cm)	V (cm³)	w _c (%)	Y₄ (pcf)	ń	S (%)	σ _c (psi)	u₅ (psi)	Ī _{avg}	Q (cm³)	t (days)	WDS (g)	w. (%)	S (%)	k ₂₀ (cm/sec)
7.14	5.02	141.52	0.33	168.0	0.048	18	35	155	200	0.2	21	381.07	0.68	37	1.7x10 ⁻¹⁰
& Associa	ates, Inc. P	associated Physical and to being dis	electronic	records of e	each projec	ct are kept	for a minin	num of 7 ye	ars. Test s	amples are	kept in stor	age for at lea	horization ast 10 work	of the Clie ting days	ent or Ardaman after mailing of
с	confining str	en height; D ress; u _b = Ba vecific gravit	ack-pressu	en diameter; re; i _{avg} = Ave	; V = Volum erage hydra	ne; WDS = aulic gradi	Dry mass; ent; Q = Flo	w _e = Moistu ow volume;	ire content (t = Test dur	ASTM D 22 ation; k ₂₀ =	216); γ _d = Dr Saturated h	y density; S ydrauliccono	= Saturatio luctivity at 3	n;	otropic effective Total porosity;
Checked I Form SR-	By: 2B: Rev. (M				Date	07/12	+108			C:\Documents	and Settings\jan.v	wiidman\Docum	ents\Projects\	08\08-028\k- tests.wpd

CLIENT: Youngquist Brothers, Inc.	INCOMING LABORATORY SAMPLE NO .: Core 12, 2095.0-2095.5'
PROJECT: City of Cape Coral	LABORATORY IDENTIFICATION NO .: 08028/12kV
FILE NO.: 08-028	SAMPLE DESCRIPTION: Brown dolomitic limestone with vugs and solution
DATE SAMPLE RECEIVED: <u>02/05/08</u> SET UP: <u>04/05/08</u>	cracks. Solution cracks extend through length of specimen in vertical
DATE REPORTED: <u>07/14/08</u>	direction.
ASTM D 5084 TEST METHOD: A - Constant Head B - Falling Head; Constant Tailwater C - Falling Head; Rising Tailwater F - Constant Volume; Falling Head - Rising Tailwater	SPECIMEN DATA: As-Received Diameter (inch): 4 Diameter Trimmed: □ Yes I No As-Received Length (inch): 6 Length Trimmed: I Yes I No TEST SPECIMEN ORIENTATION: I Vertical I Horizontal
B-FACTOR: <u>84 (stable)</u> % □ Beginning of Test;	SPECIFIC GRAVITY, G _s : <u>2.86</u> – □ Assumed
Δσ _c (psi): <u>5, 8, 11</u>	PERMANENT:

		Initia	al Conditio	ıs				Т	est Conditio	ons		Fina	al Condition	ıs	Hydraulic Conductivity
H (cm)	D (cm)	V (cm ³)	w _c (%)	Y₄ (pcf)	n	S (%)	σ _c (psi)	u _⊳ (psi)	i _{avg}	Q (cm³)	t (days)	WDS (g)	w. (%)	S (%)	k ₂₀ (cm/sec)
10.73	10.08	855.76	1.6	167.4	0.062	70	30	160	48	3.1	3	2295.4	1.6	70	5.4x10 ⁻⁶
Water from	data and all	associated	project info	ormation pro	Final w _c fro	om horizor ereon shall ct are kept	tal permea be held in for a minin	confidence num of 7 ye	and disclos	sed to other	parties only	with the aurage for at le	thorization	of the Clie	h deaired tap ent or Ardaman after mailing of
Where: H	H = Specime		= Specime ack-pressu	n diamotor			Dry mass.	w = Moistr	ire content	(ASTM D 22	216): v, = Dr	v density; S	= Saturatio ductivity at	n;	otropic effective Total porosity;
Checked Form SR-	By: -2B: Rev. (M				Date	07/14	108			C:\Documen	nts and Settings\ja	an.wildman\Docu	iments\Projec	ts\08\08-028\k- tests.wpx

CLIENT: Youngquist Brothers, Inc.		INCOMING LABORATORY SAMPLE NO.: Core 12, 2095.0-2095.5'							
PROJECT: City of Cape Coral		LABORATORY IDENTIFICATION NO.							
FILE NO.: 08-028		SAMPLE DESCRIPTION: Brown dolomitic limestone with vugs and							
DATE SAMPLE RECEIVED: 02/05/08	SET UP: 05/07/08	solution cracks. Solution cracks do no	t extend through leng	th of specimen					
DATE REPORTED: 07/14/08		in horizontal direction.							
ASTM D 5084 TEST METHOD: Ø A - Constant Head D B - Falling Head; Constant C - Falling Head; Rising Ta	ailwater	SPECIMEN DATA: As-Received Diameter (inch): <u>4</u> As-Received Length (inch): <u>6</u> TEST SPECIMEN ORIENTATION:	Diameter Trimmed: Length Trimmed: □ Vertical	⊠ Yes □ No ⊠ Yes □ No ⊠ Horizontal					
□ F - Constant Volume; Falli B-FACTOR: <u>74 (stable)</u> % □ Beginning o ⊗ End of Test	of Test;	SPECIFIC GRAVITY, G _s : <u>2.86</u>	□ Assumed Measured (ASTM I	D 854)					
Δσ _c (psi): <u>15,</u>	21, 32	PERMANENT:	Other						

		Initia	al Conditio	ıs				Т	ons	Fina	Hydraulic Conductivity				
H (cm)	D (cm)	V (cm ³)	w _c (%)	Y₄ (pcf)	n	S (%)	σ _c (psi)	u _b (psi)	i _{avg}	Q (cm³)	t (days)	WDS (g)	w. (%)	S (%)	k ₂₀ (cm/sec)
6.63	5.03	131.53	1.2	163.9	0.082	37	30	70	217	0.6	16	345.45	1.5	48	2.1x10 ⁻¹⁰
me test	uata and al	associated	brolect inte	umauon pr	cachieu ne	acon shan		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							
0 00000	otoo loo F	Developing	alactronic	records of a	each proiec	rt are kent	for a minin	num of 7 ve	ars. Test s	amples are	kept in stor	age for at lea	ast 10 worl	king days	after mailing of
the test r	eport, prior	to being dis	carded, un	less a longe	er storage p		for a minin equested in	writing and	ars. Test s	Ardaman	Associate (Associate (216): v. = Dr	es, Inc. v densitv: S =	= Saturatio	$\overline{\sigma}_{s} = 1sc$	otropic effective
the test r Where: I	eport, prior H = Specimi confining st	to being dis	carded, un = Specime ack-pressu	less a longe	er storage p		for a minin equested in	writing and	ars. Test s	Ardaman	Associate (Associate (216): v. = Dr	es, Inc. v densitv: S =	= Saturatio	$\overline{\sigma}_{s} = 1sc$	ent or Ardaman after mailing of otropic effective - Total porosity;

CLIENT: Youngquist Brothers, Inc.	INCOMING LABORATORY SAMPLE NO .: Core 13, 2096.0-2097.0*
PROJECT: City of Cape Coral	LABORATORY IDENTIFICATION NO .: 08028/13kV
FILE NO.: 08-028	SAMPLE DESCRIPTION: Brown dolomitic limestone with vugs
DATE SAMPLE RECEIVED: 02/05/08 SET UP: 04/07/08	
DATE REPORTED: 07/14/08	
ASTM D 5084 TEST METHOD:	SPECIMEN DATA: As-Received Diameter (inch): 4 Diameter Trimmed: □ Yes INO As-Received Length (inch): 12 Length Trimmed: INF TEST SPECIMEN ORIENTATION: Image: Vertical
B-FACTOR: 85 (stable) % □ Beginning of Test;	SPECIFIC GRAVITY, G _s : <u>2.85</u> □ Assumed ⊠ Measured (ASTM D 854)
Δσ _c (psi): <u>3, 5, 8, 10</u>	PERMANENT:

		Initi	al Condition	าร				Т	est Conditio	ons		Fina	al Condition	ns	Hydraulic Conductivity
H (cm)	D (cm)	V (cm ³)	w_ (%)	Y₄ (pcf)	n	S (%)	σ _c (psi)	u _s (psi)	i _{avg}	Q (cm³)	t (days)	WDS (g)	w _c (%)	S (%)	k ₂₀ (cm/sec)
10.04	9.98	786.25	2.2	163.0	0.084	69	30	160	17	2.0	2	2053.2	2.3	73	1.7x10 ⁻⁶
water fron The test of & Associa	n the botton data and all ates, Inc. F	n up while s associated Physical and	till under va project info electronic	ormation pro	Final w _e from esented he each project	reon shall	be held in	bility test sp confidence num of 7 ye	and disclosers. Test s	NDS calcula sed to other amples are	parties only	with the aut	thorization	of the Cli	th deaired tap ent or Ardaman after mailing of
] (confining stu	en height; D ress; u _b = Ba pecific gravit	ack-pressu	en diameter re; i _{avg} = Ave	V = Volum erage hydra	ne; WDS = aulic gradi	: Dry mass; ent; Q = Flo	w _e = Moistu ow volume;	re content t = Test du	(ASTM D 22 ration; k ₂₀ =	216); γ _d = Dr Saturated h	y density; S ydrauliccono	= Saturatio ductivity at	n;	otropic effective Total porosity;
Checked	By:	M				Date	07/11	1/08			C:\Documen	its and Settingslja	n,wildman\Docu	iments\Projec	ts\08\08-028\k- tests.wpc

CLIENT: Youngquist Brothers, Inc.	INCOMING LABORATORY SAMPLE I	NO.: Core 13, 2096.0-	2097.0'				
PROJECT: City of Cape Coral	LABORATORY IDENTIFICATION NO.						
FILE NO.: 08-028	SAMPLE DESCRIPTION: Brown dolomitic limestone with vugs						
DATE SAMPLE RECEIVED: 02/05/08 SET UP: 05/07/08							
DATE REPORTED: 07/14/08							
ASTM D 5084 TEST METHOD:	SPECIMEN DATA: As-Received Diameter (inch): <u>4</u> As-Received Length (inch): <u>12</u> TEST SPECIMEN ORIENTATION:		⊠ Yes □ No ⊠ Yes □ No ⊠ Horizontal				
B-FACTOR: <u>59 (stable)</u> % □ Beginning of Test;	SPECIFIC GRAVITY, G _s : <u>2.85</u>	□ Assumed Measured (ASTM [0 854)				
Δσ _c (psi): <u>4, 8, 11, 14</u>	PERMANENT:	Other					

		Initia	al Condition	าร				Т	est Conditio	ons		Fina	al Conditio	ns	Hydraulic Conductivity
H (cm)	D (cm)	V (cm ³)	w _c (%)	Y₄ (pcf)	n	S (%)	σ _c (psi)	u _b (psi)	Ĺ _{avg}	Q (cm³)	t (days)	WDS (g)	w. (%)	S (%)	k ₂₀ (cm/sec)
6.93	5.03	137.49	2.5	160.3	0.099	66	30	70	3	5.9	3	353.22	2.5	66	1.6x10 ⁻⁴
& Associ	ates, Inc. F	l associated Physical and to being dis	electronic	records of	each projec	ct are kept	for a minin	num of 7 ye	ars. Test s	amples are	kept in stora	age for at le	thorization ast 10 worl	of the Cli king days	ent or Ardaman after mailing of
(confining st	en height; D ress; u _b = Ba secific gravit	ick-pressu	en diameter re; i _{svg} = Ave	; V = Volum erage hydra	ne; WDS = aulic gradi	Dry mass; ent; Q = Flo	w _c = Moistu ow volume;	ire content (t = Test dur	(ASTM D 22 ration; k ₂₀ =	216); γ _d = Dr Saturated h	y density; S ydrauliccono	= Saturatio Juctivity at	וח; סֿ, = Iso 20°C; n =	otropic effective Total porosity;
Checked Form SR-	By: -2B: Rev. 0	<u>M</u>				Date	07/14	108	·		C:\Documents	and Settings\jan.	wildman\Docum	nents\Projects	08\08-028\k- tests.wpd

CLIENT: Youngquist Brothers, Inc.	INCOMING LABORATORY SAMPLE	
PROJECT: City of Cape Coral	LABORATORY IDENTIFICATION NO.	
FILE NO.: 08-028	SAMPLE DESCRIPTION: Light brown	limestone
DATE SAMPLE RECEIVED: 02/05/08 SET UP: 04/05/08		
DATE REPORTED: 07/14/08		
ASTM D 5084 TEST METHOD: A - Constant Head B - Falling Head; Constant Tailwater C - Falling Head; Rising Tailwater F - Constant Volume; Falling Head - Rising Tailwater	SPECIMEN DATA: As-Received Diameter (inch): <u>4</u> As-Received Length (inch): <u>5.5</u> TEST SPECIMEN ORIENTATION:	Diameter Trimmed: □ Yes ⊠ No Length Trimmed: ⊠ Yes □ No ⊠ Vertical □ Horizontal
B-FACTOR: <u>93 (stable)</u> % □ Beginning of Test;	SPECIFIC GRAVITY, G _s : <u>2.65</u>	□ Assumed
Δσ _c (psi): <u>4, 7, 10</u>	PERMANENT:	D Other

		Initia	al Conditior	ıs				Te	est Condition	ons		Final Conditions			Hydraulic Conductivity
H (cm)	D (cm)	V (cm ³)	w _c (%)	Y₄ (pcf)	n	S (%)	σ _c (psi)	u _b (psi)	Ì _{avg}	Q (cm ³)	t (days)	WDS (g)	w _c (%)	S (%)	k ₂₀ (cm/sec)
10.05	9.67	737.89	15.2	117.4	0.290	98	30	160	47	0.9	3	1387.8	15.2	98	5.6x10 ⁻⁷

The test data and all associated project information presented hereon shall be held in confidence and disclosed to other parties only with the authorization of the Client of Ardaman & Associates, Inc. Physical and electronic records of each project are kept for a minimum of 7 years. Test samples are kept in storage for at least 10 working days after mailing of the test report, prior to being discarded, unless a longer storage period is requested in writing and accepted by Ardaman & Associates, Inc.

Where: H = Specimen height; D = Specimen diameter; V = Volume; WDS = Dry mass; w_c = Moisture content (ASTM D 2216); γ_d = Dry density; S = Saturation; $\overline{\sigma}_c$ = Isotropic effective confining stress; u_b = Back-pressure; i_{avg} = Average hydraulic gradient; Q = Flow volume; t = Test duration; k_{20} = Saturated hydraulicconductivity at 20°C; n = Total porosity; and G_s = Specific gravity.

Date: 07/14/08

Checked By: ______ Form SR-2B: Rev. 0

C:\Documents and Settings\jan.wildman\Documents\Projects\08\08-028\k- tests.wpd

CLIENT: Youngquist Brothers, Inc.	INCOMING LABORATORY SAMPLE	NO.: Core 14, 1763.7	-17 <u>64.2'</u>
PROJECT: City of Cape Coral	LABORATORY IDENTIFICATION NO	: <u>08028/14kH</u>	- 0.0 <u></u>
FILE NO.: 08-028	SAMPLE DESCRIPTION: Light brown	limestone	
DATE SAMPLE RECEIVED: 02/05/08 SET UP: 04/25/08			
DATE REPORTED: 07/14/08			
ASTM D 5084 TEST METHOD: Ø A - Constant Head B - Falling Head; Constant Tailwater C - Falling Head; Rising Tailwater F - Constant Volume; Falling Head - Rising Tailwater	SPECIMEN DATA: As-Received Diameter (inch): <u>4</u> As-Received Length (inch): <u>5.5</u> TEST SPECIMEN ORIENTATION:	Diameter Trimmed: Length Trimmed: □ Vertical	⊠ Yes □ No ⊠ Yes □ No ⊠ Horizontal
B-FACTOR: <u>96</u> % □ Beginning of Test;	SPECIFIC GRAVITY, G.: 2.65	□ Assumed ☑ Measured (ASTM	D 854)
Δσ _c (psi): <u>6, 9, 12</u>	PERMANENT: Seaired Tap Water	□ Other	

		Initia	al Condition	าร				Te	ons	Fina	Hydraulic Conductivity				
H (cm)	D (cm)	V (cm ³)	w _c (%)	Y₄ (pcf)	n	S (%)	σ _ε (psi)	u _b (psi)	Ìavg	Q (cm ³)	t (days)	WDS (g)	w _c (%)	S (%)	k ₂₀ (cm/sec)
6.87	5.02	136.07	15.1	<u> </u>	0.287	100	30	160	39	0.7	2	257.11	15.1	100	2.7x10 ⁻⁶
The feet	الم المحم حفدات	Lessonisted	project inf	ormation or	oconted be	areon shall	be beld in	esponding v confidence	and disclo	sed to other	parties only	with the aut	horization	of the Clie	ent or Ardaman
The test of & Associ	data and all	l associated	project info	ormation pr records of	esented he	ereon shall	l be held in for a minin	confidence num of 7 ye	and disclo: ars. Test s	sed to other samples are	kept in stor	age for at lea	horization ast 10 worl	of the Click	ent or Ardamar after mailing o
The test of & Associa the test ro Where: h	data and all ates, Inc. F eport, prior H = Specimic confining st	l associated Physical and to being dis	project info electronic carded, un = Specime ack-pressu	records of ess a longe	esented he each project er storage (ereon shall ct are kept period is re	l be held in t for a minin equested in	confidence num of 7 ye writing and	and disclos ars. Test s accepted	sed to other samples are by Ardaman	Associat	es, inc.	= Saturatio	$\overline{\sigma}_{c} = 1sc$	ent or Ardaman after mailing of otropic effective Total porosity

CLIENT: Youngquist Brothers, Inc.	INCOMING LABORATORY SAMPLE I	NO.: Core 15, 1764.2-	1765.0'
PROJECT: City of Cape Coral	LABORATORY IDENTIFICATION NO.	: 08028/15kV	
FILE NO.: 08-028	SAMPLE DESCRIPTION: Light brown	limestone	
DATE SAMPLE RECEIVED: 02/05/08 SET UP: 03/27/08			
DATE REPORTED: 07/14/08			
ASTM D 5084 TEST METHOD:	SPECIMEN DATA: As-Received Diameter (inch): 4 As-Received Length (inch): 7 TEST SPECIMEN ORIENTATION:		□ Yes ⊠ No ⊠ Yes □ No □ Horizontal
B-FACTOR: <u>89 (stable)</u> % □ Beginning of Test;	SPECIFIC GRAVITY, G _s : <u>2.66</u>	□ Assumed I Measured (ASTM [) 854)
Δσ _c (psi): <u>3, 7, 9,13</u>	PERMANENT: [®] Deaired Tap Water	□ Other	<u>. </u>

		Initi	al Condition	าร				Т	est Conditio	ons		Fina	al Condition	ıs	Hydraulic Conductivity
H (cm)	D (cm)	V (cm ³)	w. (%)	Y₄ (pcf)	n	S (%)	σ _c (psi)	u _b (psi)	i _{avg}	Q (cm³)	t (days)	WDS (g)	w _c (%)	S (%)	k ₂₀ (cm/sec)
10.34	9.73	768.17	16.6	114.7	0.309	99	30	160	23	0.8	2	1412.4	16.6	99	5.4x10 ⁻⁷
The test	data and al	l associated	project info	ormation pro	esented he	ereon shall ct are kep	l be held in t for a minin	confidence num of 7 ye	and disclos ars. Test s	sed to other amples are	parties only kept in storn & Associate	with the au	thorization	of the Clie	ent or Ardaman after mailing of
Where: I	H = Specim confining st		= Specime ack-pressu	n diamotor			- Dry mass	w = Moisti	re content	(ASTM D 2)	216): v ₄ = Dr	v density; S	= Saturatio ductivity at	n;	otropic effective Total porosity;
Checked	1	M	<u>.</u>			Date	07/1	H8			C:\Documer	nts and Settings\ja	n.wildman\Doca	iments\Projec	15108108-0281k- tests.wp

CLIENT: Youngquist Brothers, Inc.	INCOMING LABORATORY SAMPLE NO .: Core 15, 1764.2-1765.0'
PROJECT: City of Cape Coral	LABORATORY IDENTIFICATION NO.: 08028/15kH
FILE NO.: 08-028	SAMPLE DESCRIPTION: Light brown limestone
DATE SAMPLE RECEIVED: 02/05/08 SET UP: 04/12/08	
DATE REPORTED: 07/14/08	
ASTM D 5084 TEST METHOD: Ø A - Constant Head B - Falling Head; Constant Tailwater C - Falling Head; Rising Tailwater F - Constant Volume; Falling Head - Rising Tailwater	SPECIMEN DATA: As-Received Diameter (inch): 4 Diameter Trimmed: 20 Yes As-Received Length (inch): 7 Length Trimmed: 20 Yes Diameter Trimmed:
B-FACTOR: <u>75 (stable)</u> % □ Beginning of Test; ⊠ End of Test	SPECIFIC GRAVITY, G _s : <u>2.66</u> □ Assumed
Δσ _c (psi): <u>3, 7, 10</u>	PERMANENT:

		Initia	al Condition	ns				Т	est Conditio	ons		Fin	al Condition	ns	Hydraulic Conductivity
H (cm)	D (cm)	V (cm ³)	w _c (%)	Y _d (pcf)	n	S (%)	σ _c (psi)	u _b (psi)	i _{avg}	Q (cm ³)	t (days)	WDS (g)	w. (%)	S (%)	k ₂₀ (cm/sec)
6.88	5.02	136.16	16.5	114.9	0.308	98	30	160	49	0.4	4	250.67	16.5	98	6.9x10 ⁻⁷
The test	data and al	l associated	project info	prmation pr	esented he	reon shall	i de neid in	contidence	and disclos	sea to otner	Danues only	with the au	LIUIZALUUI		
& Associ	ates, Inc. F	Physical and	electronic	records of (each projec	ct are kept	t for a minin	num of 7 ye	ars. Test s	amples are	kept in stor	age for at le	ast 10 work	king days	ent or Ardaman after mailing of
& Associ the test n	ates, Inc. F eport, prior	Physical and to being disc	electronic carded, un	records of o	each projec er storage p	of are kept period is re	t for a minin equested in	num of 7 ye writing and w = Moistu	ars. Test s accepted l	amples are by Ardaman (ASTM D 22	kept in stor & Associati 216): y ₄ = Dr	age for at le es, Inc. y density; S	= Saturatio	n; ō, = lso	atter mailing of
& Associ the test n Where: 1	ates, Inc. F eport, prior H = Specim confining st	Physical and to being disc en height; D ress; $u_b = Bapecific gravit$	electronic carded, un = Specime ack-pressu	records of o	each projec er storage p	ct are kept beriod is re ne; WDS = aulic gradi	t for a minin equested in	num of 7 ye writing and w _c = Moistu ow volume;	ars. Test s accepted l	amples are by Ardaman (ASTM D 22	kept in stor & Associati 216): y ₄ = Dr	age for at le es, Inc. y density; S	= Saturatio	n; ō, = lso	

CLIENT: Youngquist Brothers, Inc.	INCOMING LABORATORY SAMPLE NO .: Core 17, 1445.5-1446.9'
PROJECT: City of Cape Coral	LABORATORY IDENTIFICATION NO.: 08028/17kV
FILE NO.: 08-028	SAMPLE DESCRIPTION: Light brown limestone
DATE SAMPLE RECEIVED: 02/05/08 SET UP: 04/05/08	
DATE REPORTED: 07/14/08	
ASTM D 5084 TEST METHOD:	SPECIMEN DATA: As-Received Diameter (inch): 4 Diameter Trimmed: □ Yes ⊠ No As-Received Length (inch): 4 Length Trimmed: ⊠ Yes □ No TEST SPECIMEN ORIENTATION: ⊠ Vertical
B-FACTOR: <u>94 (stable)</u> % □ Beginning of Test;	SPECIFIC GRAVITY, G _s : <u>2.72</u> □ Assumed ⊠ Measured (ASTM D 854)
Δσ _c (psi): <u>4, 7, 10</u>	PERMANENT:

		Initi	al Conditio	าร				Т	est Conditio	ons		Fin	al Condition	າຮ	Hydraulic Conductivity
H (cm)	D (cm)	V (cm ³)	w _c (%)	Y₄ (pcf)	n	S (%)	σ _c (psi)	u _b (psi)	i _{avg}	Q (cm ³)	t (days)	WDS (g)	w _c (%)	S (%)	k ₂₀ (cm/sec)
9.31	9.75	695.63	12.2	123.4	0.273	89	30	160	24	2.1	3	1375.4	12.2	89	1.2x10 ⁻⁵
& Associa	ates, Inc. F	Physical and	electronic	records of	each proje	ct are kept	for a minin	num of 7 ye	ars. Test s	amples are	kept in stora & Associate	age for at le	ast 10 work	king days	ent or Ardaman after mailing of
Where: H	H = Specim	en height: D	= Specime	en diameter	V = Volun	ne: WDS =	Dry mass:	w. = Moistu	ire content	(ASTM D 22	216); y _d = Dr	y density; S	= Saturatio ductivity at	n; ō, = lso 20°C; n =	otropic effective Total porosity;
		ecific gravit		- avg											
hecked	ву: 1					Date	67/14	108							
orm SR-	2B: Rev.	0						¢			C:\Documen	its and Settings\ja	an.wildman\Docu	ments\Projec	ts\08\08-028\k- tests.wp

CLIENT: Youngquist Brothers, Inc.	INCOMING LABORATORY SAMPLE NO .: Core 17, 1445.5-1446.9'
PROJECT: City of Cape Coral	LABORATORY IDENTIFICATION NO .: 08028/17kH
FILE NO.: 08-028	SAMPLE DESCRIPTION: Light brown limestone
DATE SAMPLE RECEIVED: 02/05/08 SET UP: 05/01/08	
DATE REPORTED: 07/14/08	
ASTM D 5084 TEST METHOD:	SPECIMEN DATA: As-Received Diameter (inch): 4 Diameter Trimmed:
B-FACTOR: <u>70 (stable)</u> % □ Beginning of Test; -	SPECIFIC GRAVITY, G _s : <u>2.72</u> □ Assumed ⊠ Measured (ASTM D 854)
Δα _c (psi): <u>4, 7, 10</u>	PERMANENT:

		Initia	al Conditio	าร				Т	est Conditio	ons		Fina	al Conditio	ıs	Hydraulic Conductivity
H (cm)	D (cm)	V (cm³)	w _c (%)	Y₀ (pcf)	n	S (%)	σ _c (psi)	u _b (psi)	Ĵ _{avg}	Q (cm³)	t (days)	WDS (g)	w _c (%)	S (%)	k ₂₀ (cm/sec)
6.36	5.02	125.87	11.9	127.5	0.249	98	30	70	68	0.6	2	257.28	12.0	99	1.1x10 ⁻⁵
& Associ	ates, Inc. F	hysical and	electronic	records of e	each projec	zt are kept	for a minin	num of 7 ye	ars. Test s	amples are	parties only kept in stor & Associate	age for at le	thorization ast 10 worl	of the Clie ting days	ent or Ardaman after mailing of
	H = Specime confining str and G _s = Sp	ress; u _b = Ba	ack-pressu	en diameter; re; i _{avg} = Ave	; V = Volum erage hydra	ne; WDS = aulic gradie	Dry mass; ent; Q = Flo	w _c = Moistu ow volume;	ire content (t = Test dur	(ASTM D 22 ration; k ₂₀ =	216); γ _d = Dn Saturated h	y density; S ydrauliccond	= Saturatio Juctivity at	n;	tropic effective Total porosity;
Checked	By:	<u>IM</u>				Date:	07/1	4/08			0.10				08\08-028\k- tests.wpd

CLIENT: Youngquist Brothers, Inc.		INCOMING LABORATORY SAMPLE	NO.: Core 18, 1948.5-1949.3'
PROJECT: City of Cape Coral		LABORATORY IDENTIFICATION NO	.: <u>08028/18kV</u>
FILE NO.: 08-028		SAMPLE DESCRIPTION: Light brown	limestone
DATE SAMPLE RECEIVED: 02/05	08SET UP: 04/03/08		
DATE REPORTED: 07/14/08			
□ C - Falling H	t Head lead; Constant Tailwater lead; Rising Tailwater t Volume; Falling Head - Rising Tailwater	SPECIMEN DATA: As-Received Diameter (inch): <u>4</u> As-Received Length (inch): <u>7.5</u> TEST SPECIMEN ORIENTATION:	Diameter Trimmed: □ Yes ⊠ No Length Trimmed: ⊠ Yes □ No ⊠ Vertical □ Horizontal
B-FACTOR: <u>100</u> %	□ Beginning of Test; ◙ End of Test	SPECIFIC GRAVITY, G _s : <u>2.77</u>	□ Assumed
	Δσ _c (psi): <u>3, 6, 9</u>	PERMANENT:	□ Other

		Initi	al Condition	าร				Т	est Conditio	ons		Fina	al Conditior	าร	Hydraulic Conductivity
H (cm)	D (cm)	V (cm ³)	w _c (%)	Y₄ (pcf)	n	S (%)	σ _c (psi)	u _b (psi)	i _{avg}	Q (cm ³)	t (days)	WDS (g)	₩. (%)	S (%)	k ₂₀ (cm/sec)
10.00	9.65	731.51	15.6	118.6	0.314	94	30	160	22	2.0	2	1390.0	15.6	94	3.4x10 ⁻⁵
The test	data and all	Lessonietad	project infr	motion pr	acontod ba	roon chall	be hold in	confidence	and disclos		ated from me		•		ent or Ardaman
& Associa	ates, Inc. F	Physical and	lelectronic	records of e	each projec	t are kept	for a minin	num of 7 ye	ars. Test s	ed to other amples are	parties only	with the aut	horization	of the Cli	ent or Ardamar after mailing o
& Associa the test ro Where: H	ates, Inc. F eport, prior f = Specime confining stu	Physical and to being dis	l electronic carded, unl = Specime ack-pressur	records of ess a longe	each projec er storage p ; V = Volum	t are kept period is re ne; WDS =	for a minin equested in	writing and	ars. Test s accepted t are content (ed to other amples are by Ardaman	parties only kept in stora & Associate 216); γ ₄ = Dry	with the aut age for at leases, Inc. density; S	horization ast 10 work	of the Clicking days $n; \overline{\sigma}_{c} = 1$ so	ent or Ardaman after mailing of ptropic effective Total porosity;

CLIENT: Youngquist Brothers, Inc.	INCOMING LABORATORY SAMPLE NO .: Core 18, 1948.5-1949.3'						
PROJECT: City of Cape Coral	LABORATORY IDENTIFICATION NO .: 08028/18kH						
FILE NO.: 08-028	SAMPLE DESCRIPTION: Light brown	limestone					
DATE SAMPLE RECEIVED: 02/05/08 SET UP: 04/15/08							
DATE REPORTED: 07/14/08							
ASTM D 5084 TEST METHOD: a A - Constant Head B - Falling Head; Constant Tailwater C - Falling Head; Rising Tailwater F - Constant Volume; Falling Head - Rising Tailwater	SPECIMEN DATA: As-Received Diameter (inch): 4 Diameter Trimmed: I Yes As-Received Length (inch): 7.5 Length Trimmed: I Yes TEST SPECIMEN ORIENTATION: □ Vertical						
B-FACTOR: <u>94</u> % Beginning of Test;	SPECIFIC GRAVITY, G _s : <u>2.77</u>	□ Assumed ◎ Measured (ASTM D 854)					
Δσ _c (psi): <u>15</u>	PERMANENT:	D Other					

Initial Conditions						Test Conditions					Final Conditions			Hydraulic Conductivity	
H (cm)	D (cm)	V (cm³)	w _c (%)	Y₄ (pcf)	n	S (%)	σ _c (psi)	u _b (psi)	İ _{avg}	Q (cm³)	t (days)	WDS (g)	w. (%)	S (%)	k ₂₀ (cm/sec)
6.94	5.02	137.40	15.4	118.2	0.316	92	30	160	48	1.3	2	260.23	15.4	92	4.3x10 ⁻⁵
COMMEN	ITS: (1) Ho	rizontal perm	neability te	st specimer	was cross	s-cored fro	om the corre	esponding v	ertical test	specimen.					
& Associ	ates, Inc. F		electronic	records of e	each projec	zt are kept	for a minim	um of 7 yea	ars. Test s	amples are	kept in stor	age for at lea			ent or Ardaman after mailing of
с –	confining stu		ck-pressu												otropic effective Total porosity;
Checked Form SR-	ву: ТИ					Date	07/14	NOS							

Monitor Well DZMW-1

Core Analysis Laboratory Reports

Ardaman & Associates, Inc.

Geotechnical, Environmental and Materials Consultants

RECEIVED

July 16, 2008 File Number 08-028

Youngquist Brothers, Inc. 15465 Pine Ridge Road Ft. Myers, FL 33908 JUL 1.8 2008

Attention: Wu Fei Subject: Rock Core Testing, City of Cape Coral, Florida

Ms. Fei:

As requested, unconfined compression tests have been completed on limestone rock cores provided for testing by your firm. The samples were received on 02/05/08. The designations of the eight samples are listed below.

Core	Depth (feet)
1	1762.0-1763.0
2	1763.0-1763.5
5	1988.5-1989.5
7	1953.0-1953.8
8	2093.0-2093.8
13	2096.0-2097.0
16	1885.0-1885.6
19	1949.3-1950.0

The unconfined compression tests were performed in general accordance with ASTM Standard D 7012 "Compressive Strength and Elastic Moduli of Intact Rock Core Specimens under Varying States of Stress and Temperatures" using the unconfined test method (Method C). The unconfined compression test results are presented on the attached test reports.

The specimens were reported to be from the samples designated herein. The test results are indicative of only the specimens that were actually tested. The test results presented are based upon accepted industry practice as well as test method(s) listed. Ardaman & Associates, Inc. neither accepts responsibility for, nor makes claims to the final use and purpose of the material.

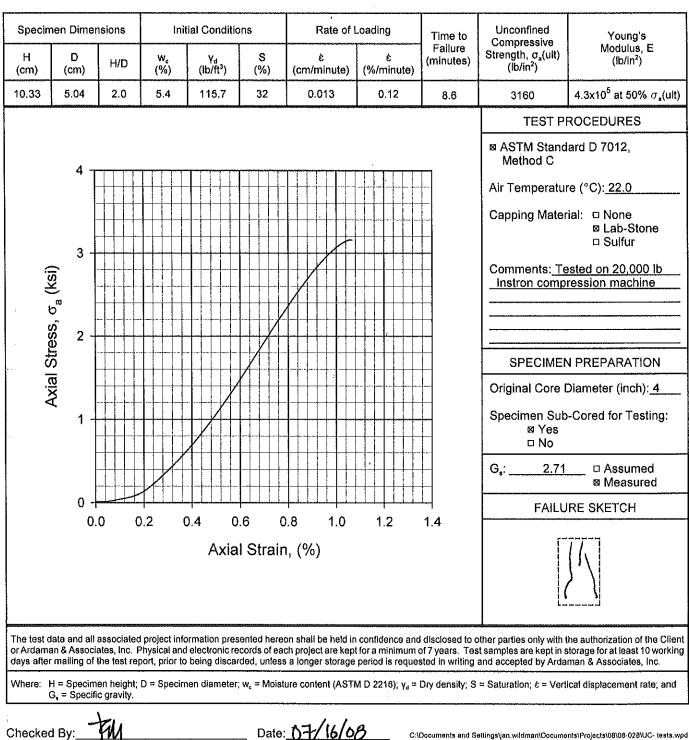
Please contact us if you have any questions about the test results or require additional information.

Very truly yours, ARDAMAN & ASSOCIATES, INC.

Thomas S. Ingra, F.E.

Thomas S. Ingra, R.E. Laboratory Director Florida License No. 31987

C:\Documents and Settings\jan.wildman\Documents\Projects\08\08-028\report02.wpd

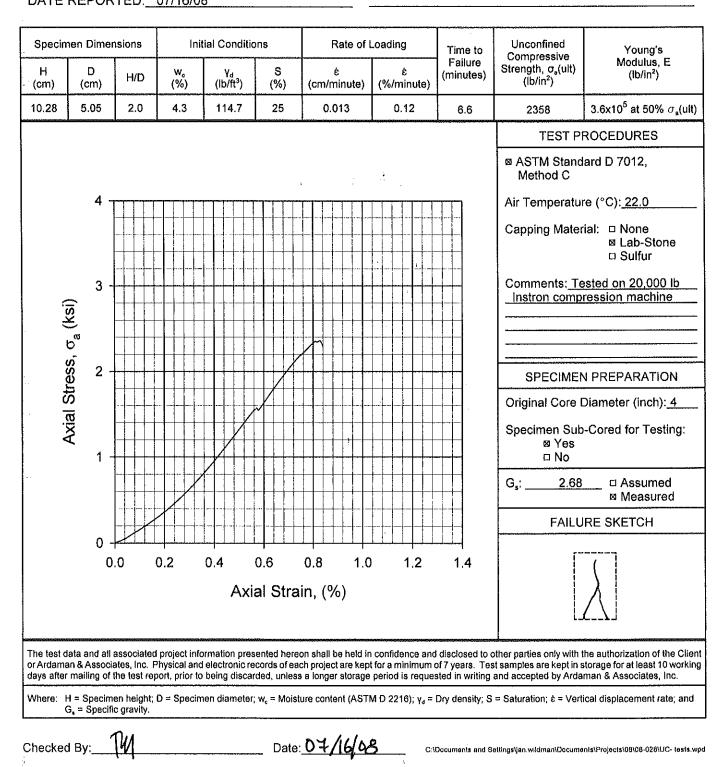

8008 S. Orange Avenue 32809, Post Office Box 593003, Orlande, Florida 32859-3003 Phone (407) 855-3860 FAX (407) 859-8121 Louisiana: Alexandria, Baton Rouge, Monroe, New Orleans, Shreveport

Florida: Bartow, Cocoa, Fort Myers, Miami, Orlando, Port Charlotte, Port St. Lucie, Sarasota, Tallahassee, Tampa, West Palm Beach

CLIENT: Youngquist Brothers, Inc. PROJECT: City of Cape Coral FILE NO : 08-028

DATE SAMPLE RECEIVED: 02/05/08 DATE TEST SET-UP: 07/09/08 DATE REPORTED: 07/16/08

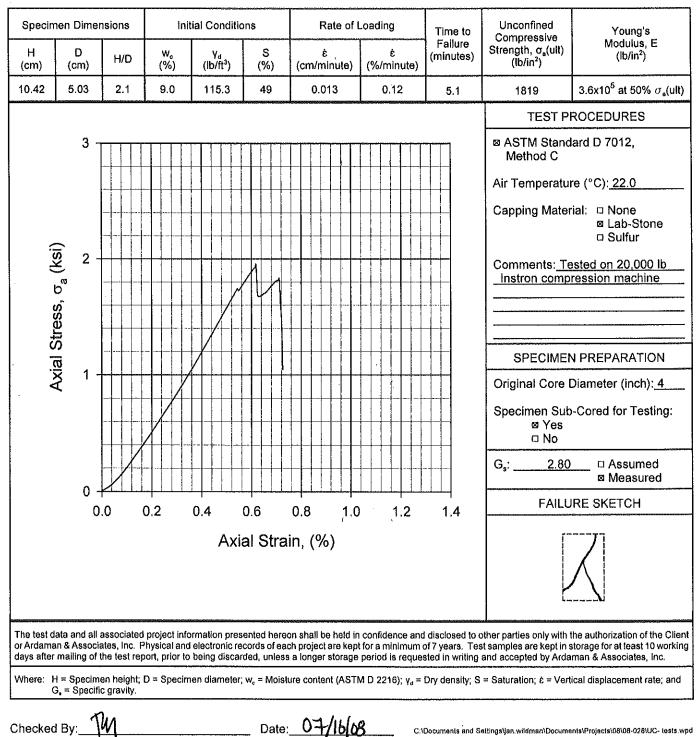
INCOMING SAMPLE NO .: Core 1, 1762.0-1763.0' BORING -SAMPLE Core 1 DEPTH 1762.0-1763.0 ⊠ft:⊡m LABORATORY IDENTIFICATION NO .: 08028/C1 SAMPLE DESCRIPTION: Light brown limestone



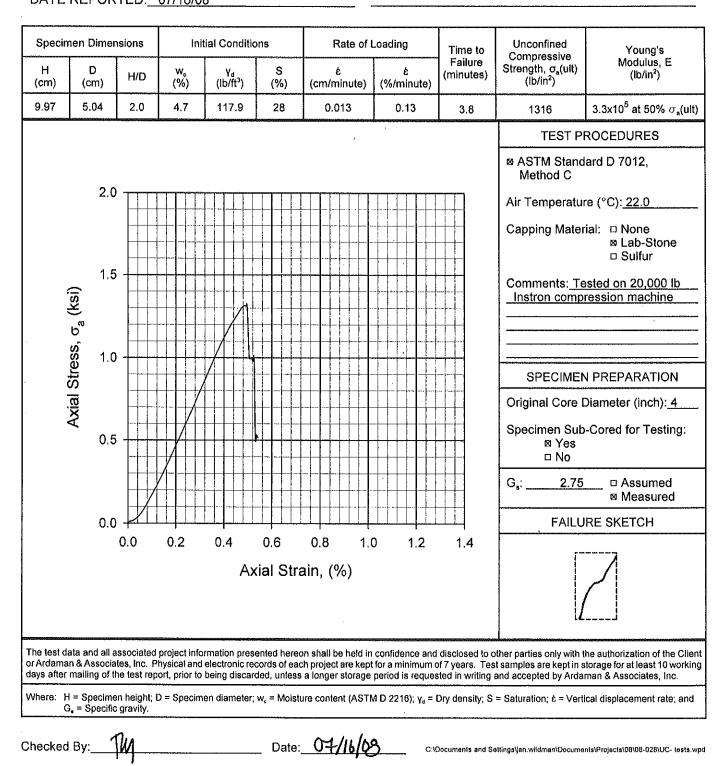
Checked By:

C:\Documents and Settings\jan.wildman\Documents\Projects\08\08-028\UC- tests.wpd

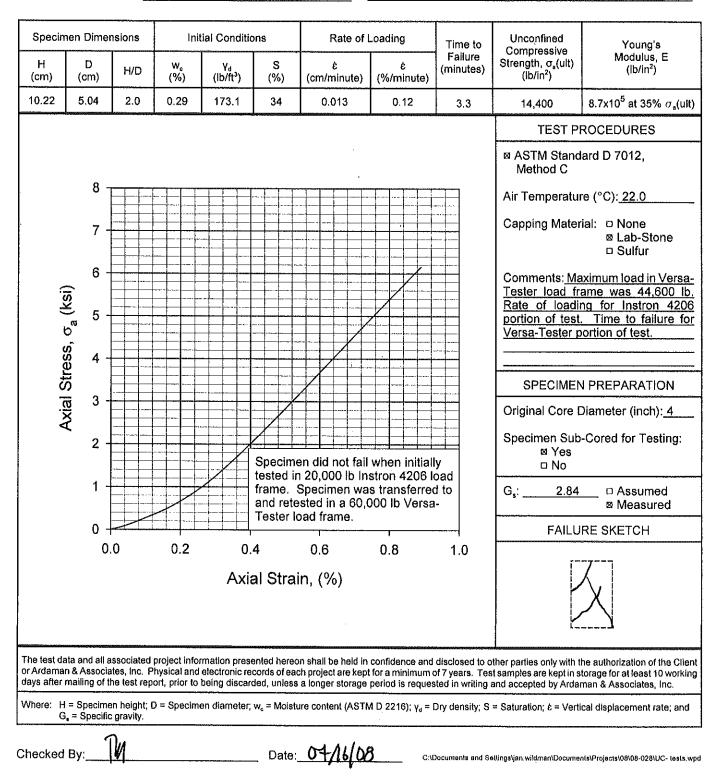
CLIENT: <u>Youngquist Brothers, Inc.</u> PROJECT: <u>City of Cape Coral</u> FILE NO.: 08-028


DATE SAMPLE RECEIVED: 02/05/08 DATE TEST SET-UP: 07/09/08 DATE REPORTED: 07/16/08 INCOMING SAMPLE NO.: <u>Core 2, 1763.0-1763.5'</u> BORING - SAMPLE <u>Core 2</u> DEPTH <u>1763.0-1763.5</u> Ø ft; □ m LABORATORY IDENTIFICATION NO.: <u>08028/C2</u> SAMPLE DESCRIPTION: Light brown limestone

CLIENT: Youngquist Brothers, Inc. PROJECT: City of Cape Coral FILE NO .: 08-028


DATE SAMPLE RECEIVED: 02/05/08 DATE TEST SET-UP: 07/09/08 DATE REPORTED: 07/16/08

INCOMING SAMPLE NO .: Core 5, 1988.5-1989.5' BORING - SAMPLE Core 5 DEPTH 1988.5-1989.5 ⊠ ft; □ m LABORATORY IDENTIFICATION NO .: 08028/C5 SAMPLE DESCRIPTION: Light brown limestone


C:\Documents and Settings\jan.wildman\Documents\Projects\08\08-028\UC- tests.wpd

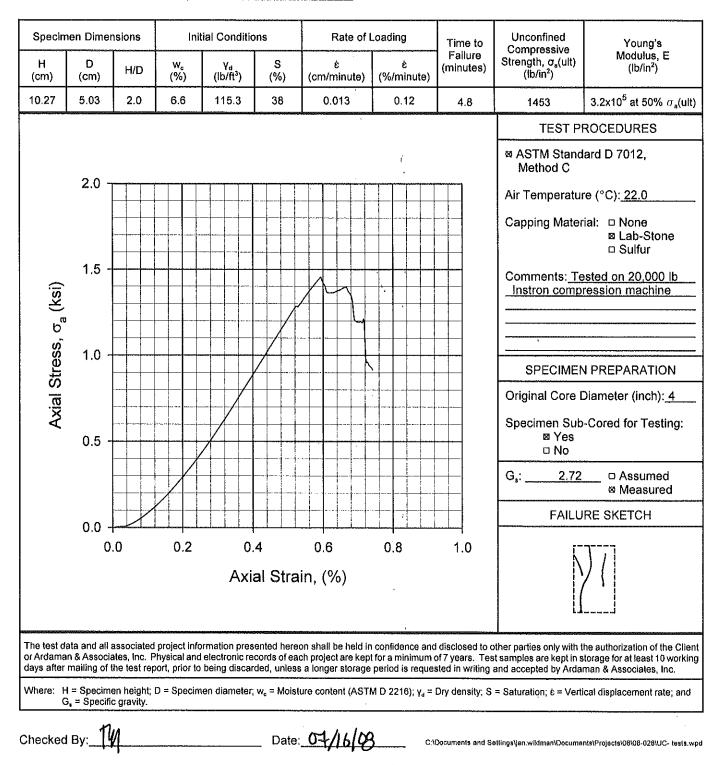
CLIENT: <u>Youngquist Brothers, Inc.</u> PROJECT: <u>City of Cape Coral</u> FILE NO.: <u>08-028</u>

DATE SAMPLE RECEIVED: 02/05/08 DATE TEST SET-UP: 07/09/08 DATE REPORTED: 07/16/08

CLIENT: <u>Youngquist Brothers, Inc.</u> PROJECT: <u>City of Cape Coral</u> FILE NO.: <u>08-028</u>

DATE SAMPLE RECEIVED: 02/05/08 DATE TEST SET-UP: 07/09/08 DATE REPORTED: 07/16/08 LABORATORY IDENTIFICATION NO.: 08028/C8 SAMPLE DESCRIPTION: Dark gray dolomitic limestone

CLIENT: Youngquist Brothers, Inc. PROJECT: City of Cape Coral FILE NO.: 08-028


۰,

DATE SAMPLE RECEIVED: 02/05/08 DATE TEST SET-UP: 07/09/08 DATE REPORTED: 07/16/08 INCOMING SAMPLE NO.: Core 13, 2096.0-2097.0' BORING - SAMPLE Core 13 DEPTH 2096.0-2097.0 ⊠ ft; □ m LABORATORY IDENTIFICATION NO.: 08028/C13 SAMPLE DESCRIPTION: Gray dolomitic limestone with vugs

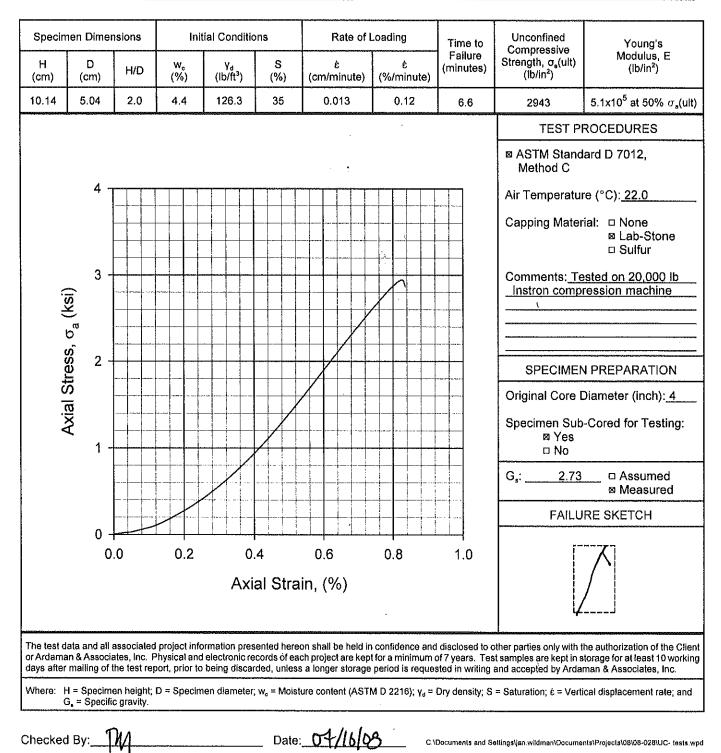
H D WD W, Value S e </th <th>Specim</th> <th>en Dime</th> <th>nsions</th> <th>Ini</th> <th>tial Conditio</th> <th>ons</th> <th>Rate of I</th> <th>oading</th> <th>Time to</th> <th>Unconfined Compressive</th> <th>Young's</th>	Specim	en Dime	nsions	Ini	tial Conditio	ons	Rate of I	oading	Time to	Unconfined Compressive	Young's
TEST PROCEDURES * ASTM Standard D 7012, Method C Air Temperature (°C): <u>22.0</u> Capping Material: D None © Sufur Comments: Maximum load in Verse Tester Load frame was 44,800 M Rate of Loading for Instron 420 portion of test. Specimen with the sub-Stone © Sufur Comments: Maximum load in Verse Tester Load frame was 44,800 M Rate of Loading for Instron 420 portion of test. SPECIMEN PREPARATION Original Core Diameter (inch): <u>4</u> . Specimen sub-Cored for Testing: © No G; <u>2.85</u> Assumed * Measured FAILURE SKETCH No Caption of test. SPECIMEN PREPARATION Original Core Diameter (inch): <u>4</u> . Specimen sub-Cored for Testing: © No Caption of test. SPECIMEN PREPARATION Original Core Diameter (inch): <u>4</u> . Specimen sub-Cored for Testing: © No Caption of test. SPECIMEN PREPARATION Original Core Diameter (inch): <u>4</u> . Specimen sub-Cored for Testing: © No Caption of test. SPECIMEN PREPARATION Original Core Diameter (inch): <u>4</u> . Specimen sub-Cored for Testing: © No Caption of test. SPECIMEN PREPARATION Original Core Diameter (inch): <u>4</u> . Specimen sub-Cored for Testing: © No Caption of test. Specimen sub-Cored for the set deformer of the set monther prove the		_	H/D		Y₀ (Ib/ft³)		-		Failure (minutes)	Strength, o _a (ult)	Modulus, E (lb/in²)
ASTM Standard D 7012, Method C Air Temperature (°C): <u>22.0</u> Capping Material: □ None <u>© Sulfur</u> Comments: <u>Maximum load in Versa</u> Tester load frame. <u>Specimen did not fail when initially</u> tested in 20,000 lb instron 4206 load frame. <u>Specimen valo</u> code for Testing: <u>© Yes</u> <u>© Specimen sub-Cored for Testing:</u> <u>© No</u> <u>Capping Material:</u> <u>None</u> <u>© Sulfur</u> Comments: <u>Maximum load in Versa</u> Tester load frame. <u>Specimen valo</u> code for Testing: <u>© Yes</u> <u>© No</u> <u>Capping Material:</u> <u>© None</u> <u>© Sulfur</u> Comments: <u>Maximum load in Versa</u> Tester load frame. <u>Specimen valo</u> code for Testing: <u>© Yes</u> <u>© No</u> <u>Capping Material:</u> <u>© None</u> <u>© Sulfur</u> Comments: <u>Maximum load in Versa</u> Tester load frame. <u>Specimen valo</u> code for Testing: <u>© Yes</u> <u>© No</u> <u>Capping Material:</u> <u>© None</u> <u>© Specimen sub-Cored for Testing:</u> <u>© No</u> <u>Capping Material:</u> <u>© None</u> <u>© No</u> <u>Capping Material:</u> <u>© None</u> <u>O No</u> <u>Capping Material:</u> <u>O None</u> <u>© None</u> <u>Specimen sub-Cored for Testing:</u> <u>© No</u> <u>O No</u> <u>O None</u> <u>O </u>	10.23	5.04	2.0	0.88	167.1	39	0.013	0.12	2.7	14,500	8.9x10 ⁵ at 35% $\sigma_{ m a}$ (ul
Image: second										TEST P	ROCEDURES
r Ardaman & Associates, Inc. Physical and electronic records of each project are kept for a minimum of 7 years. Test samples are kept in storage for at least 10 worki lays after mailing of the test report, prior to being discarded, unless a longer storage period is requested in writing and accepted by Ardaman & Associates, Inc.	Avial Strace & Ibeil	7 - 6 - 5 - 7	.0	0.2		tested ir frame. \$ and rete Tester lo	20,000 lb In Specimen wa sted in a 60, bad frame. 0.6	stron 4206 I s transferre 000 Ib Versa	oad d to a-	 ASTM Stand Method C Air Temperatur Capping Mater Comments: Ma Tester load fr Rate of loadi portion of test Versa-Tester p SPECIMEN Original Core I Specimen Sub	ard D 7012, re (°C): <u>22.0</u> ial: □ None ⊠ Lab-Stone □ Sulfur aximum load in Versa ame was 44,800 lt ng for Instron 420 . Time to failure for bortion of test. N PREPARATION Diameter (inch): <u>4</u> -Cored for Testing: □ Assumed ⊠ Measured
ays after mailing of the test report, prior to being discarded, unless a longer storage period is requested in writing and accepted by Ardaman & Associates, Inc. /here: Η = Specimen height; D = Specimen diameter; w _e = Moisture content (ASTM D 2216); γ _e = Dry density; S = Saturation; ε = Vertical displacement rate; and	ne test da	ita and all	associated	project info	rmation pres	ented hered	on shall be held in	confidence and	disclosed to c	ther parties only with t	he authorization of the Cliv
G, = Specific gravity.	ays after /here: H	= Specim	he test rep en height; i	ort, prior to	being discar	ded, unless	a longer storage	period is reques	sted in writing	and accepted by Arda	man & Associates, Inc.

CLIENT: <u>Youngquist Brothers, Inc.</u> PROJECT: <u>City of Cape Coral</u> FILE NO.: 08-028

DATE SAMPLE RECEIVED: 02/05/08 DATE TEST SET-UP: 07/09/08 DATE REPORTED: 07/16/08

CLIENT: <u>Youngquist Brothers, Inc.</u> PROJECT: <u>City of Cape Coral</u> FILE NO.: <u>08-028</u>

DATE SAMPLE RECEIVED: 02/05/08 DATE TEST SET-UP: 07/09/08 DATE REPORTED: 07/16/08
 INCOMING SAMPLE NO.: Core 19, 1949.3-1950.0'


 BORING ______ SAMPLE Core 19

 DEPTH 1949.3-1950.0

 ______ Øft; □ m

 LABORATORY IDENTIFICATION NO.: 08028/C19

 SAMPLE DESCRIPTION: Light brown limestone

August 21, 2008 File Number 08-028

Youngquist Brothers, Inc. 15465 Pine Ridge Road Ft. Myers, FL 33908

Attention: Wu Fei

Subject: Rock Core Testing, Cape Coral SW Dual Zone Monitor Well No. 1

Ms. Fei:

As requested, vertical and horizontal permeability, unconfined compression and specific gravity tests have been completed on limestone rock cores provided for testing by your firm. The samples were received on 07/21/08. The designations of the five samples are listed below.

Core	Depth (feet)
9	1535.0-1535.7
9	1536.2-1536.6
10	1563.4-1564.0
10	1564.7-1565.1
10	1565.8-1566.5

The permeability tests were performed in general accordance with ASTM Standard D 5084 "Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter" using the constant head test method (Method A). The permeability test results are presented on the attached hydraulic conductivity test reports.

The unconfined compression tests were performed in general accordance with ASTM Standard D 7012 "Compressive Strength and Elastic Moduli of Intact Rock Core Specimens under Varying States of Stress and Temperatures" using the unconfined test method (Method C). The unconfined compression test results are presented on the attached test reports.

The measured mineral specific gravities are presented on the attached test reports. The specific gravity tests were performed in general accordance with ASTM Standard D 854 "Specific Gravity of Soil Solids by Water Pycnometer" using 50 to 75 gram specimens ground to pass the U.S. Standard No. 40 sieve.

The specimens were reported to be from the samples designated herein. The test results are indicative of only the specimens that were actually tested. The test results presented are based upon accepted industry practice as well as test method(s) listed. Ardaman & Associates, Inc. neither accepts responsibility for, nor makes claims to the final use and purpose of the material.

Please contact us if you have any questions about the test results or require additional information.

Very truly yours, ARDAMAN & ASSOCIATES, INC. Tynomas S. Ingra, Laboratory Director Florida License No. 31987

C:\Documents and Settings\jan.wildman\Documents\Projects\08\08-028\report03.wpd

8008 S. Orange Avenue 32809, Post Office Box 593003, Orlando, Florida 32859-3003 Phone (407) 855-3860 FAX (407) 859-8121

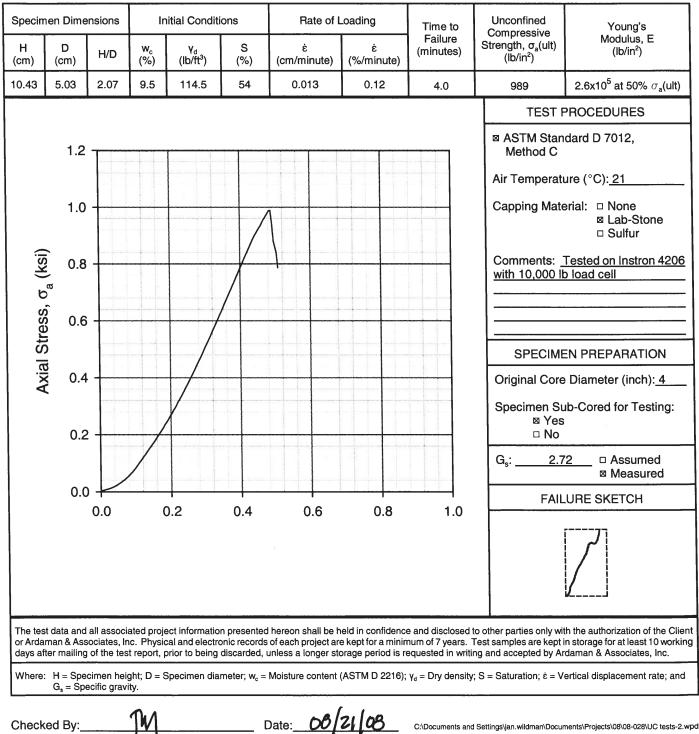
Louisiana: Alexandria, Baton Rouge, Monroe, New Orleans, Shreveport Florida: Bartow, Cocoa, Fort Myers, Miami, Orlando, Port Charlotte, Port St. Lucie, Sarasota, Tallahassee, Tampa, West Palm Beach

ARDAMAN & ASSOCIATES, INC. GEOTECHNICAL TESTING LABORATORY INTACT ROCK CORE UNCONFINED COMPRESSION TEST REPORT

CLIENT: Youngquist Brothers, Inc. PROJECT: Cape Coral SW DZMW No. 1 FILE NO.: 08-028

DATE SAMPLE RECEIVED: 07/21/08 DATE TEST SET-UP: 07/28/08

DATE REPORTED: 08/21/08


INCOMING SAMPLE NO .: Core 9

_SAMPLE -BORING -

DEPTH 1535.0-1535.7

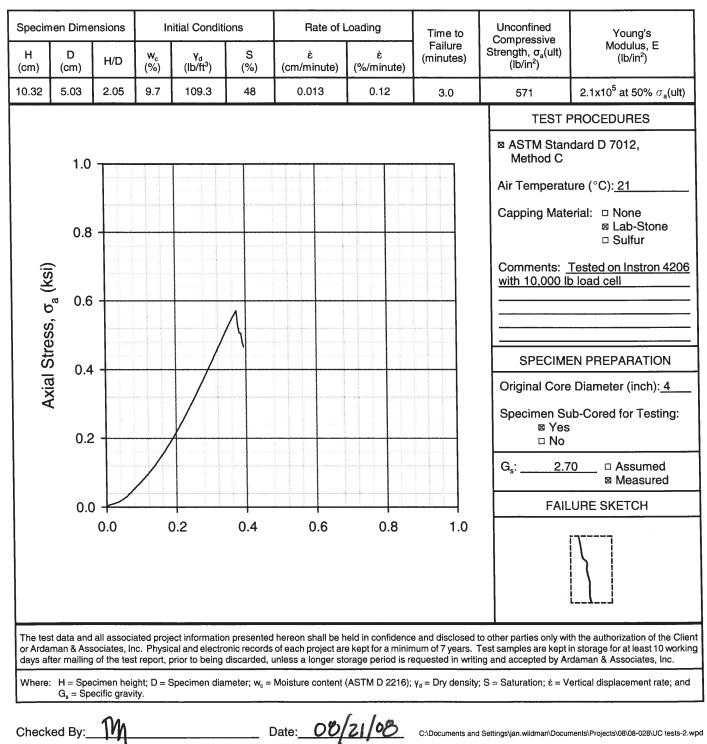
LABORATORY IDENTIFICATION NO.: 08028/C9 SAMPLE DESCRIPTION: Light Brown Limestone

⊠ft:⊡m

ARDAMAN & ASSOCIATES, INC. GEOTECHNICAL TESTING LABORATORY INTACT ROCK CORE UNCONFINED COMPRESSION TEST REPORT

CLIENT: Youngquist Brothers, Inc. PROJECT: Cape Coral SW DZMW No. 1 FILE NO.: 08-028

DATE SAMPLE RECEIVED: 07/21/08 DATE TEST SET-UP: 07/28/08 DATE REPORTED: 08/21/08


INCOMING SAMPLE NO .: Core 10

BORING -_ SAMPLE_-

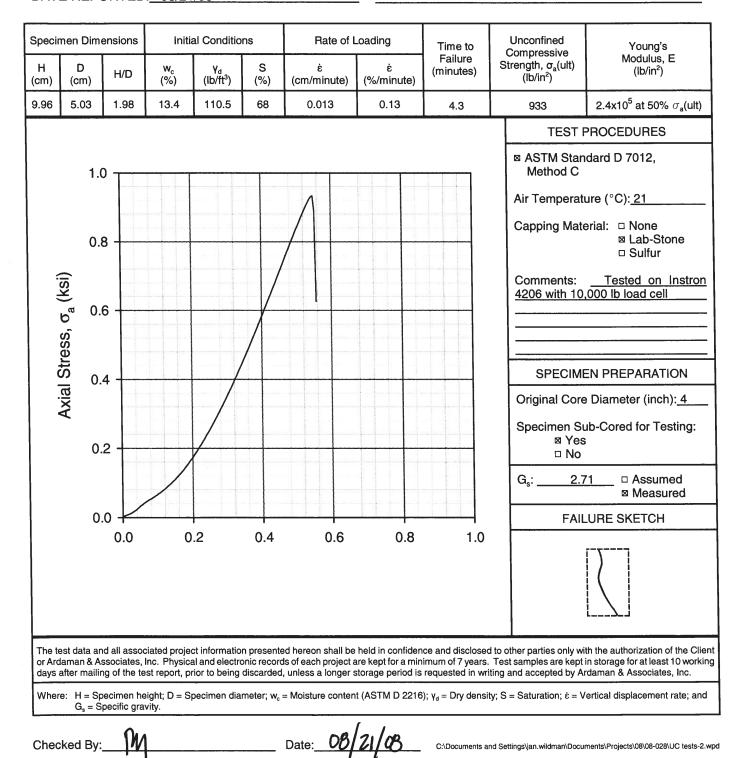
DEPTH 1563.4-1564.0

LABORATORY IDENTIFICATION NO .: 08028/C10A SAMPLE DESCRIPTION: Light Brown Limestone

⊠ ft: □ m

ARDAMAN & ASSOCIATES, INC. GEOTECHNICAL TESTING LABORATORY INTACT ROCK CORE UNCONFINED COMPRESSION TEST REPORT

CLIENT: Youngquist Brothers, Inc. PROJECT: Cape Coral SW DZMW No. 1 FILE NO.: 08-028


DATE SAMPLE RECEIVED: 07/21/08 DATE TEST SET-UP: 07/28/08 DATE REPORTED: 08/21/08 INCOMING SAMPLE NO .: Core 10

BORING - SAMPLE -

DEPTH 1565.8-1566.5

LABORATORY IDENTIFICATION NO.: 08028/C10B SAMPLE DESCRIPTION: Light Brown Limestone

⊠ ft: □ m

CLIENT: Youngquist Brothers, Inc.	INCOMING LABORATORY SAMPLE		536.6'
PROJECT: Cape Coral SW DZMW No. 1	LABORATORY IDENTIFICATION NO.		
FILE NO.: 08-028	SAMPLE DESCRIPTION: Light brown	limestone	
DATE SAMPLE RECEIVED: <u>07/21/08</u> SET UP: <u>07/29/08</u>			
DATE REPORTED: 08/21/08			
ASTM D 5084 TEST METHOD:	SPECIMEN DATA: As-Received Diameter (inch): <u>4</u> As-Received Length (inch): <u>4.0/2.8*</u> TEST SPECIMEN ORIENTATION:	Longar	□ Yes ⊠ No ⊠ Yes □ No □ Horizontal
F - Constant Volume; Falling Head - Rising Tailwater		□ Assumed	
B-FACTOR: <u>95 (stable)</u> % □ Beginning of Test;		Measured (ASTM D) 854)
Δσ _c (psi): <u>14, 25</u>	PERMANENT:	Other	

	Initial Conditions							Т	est Conditio	ons		Fina	IS	Hydraulic Conductivity		
H (cm)	D (cm)	V (cm ³)	w _c (%)	Y₀ (pcf)	n	$ \begin{array}{ c c c c c c c } S & \bar{\sigma}_c & u_b & & & Q & t & WDS & w_c & S \\ (\%) & (psi) & (psi) & & i_{avg} & (cm^3) & (days) & (g) & (\%) & (\%) \end{array} $										
6.87	9.89	528.16	13.5	121.4	0.290	91	30	160	26	1.3	1	1027.3	13.5	91	1.7x10 ⁻⁵	
COMMENTS: (1) Core sample selected for permeability testing was cut to length, air-dried, deaired under vacuum for a minimum of 24 hours, and then saturated with deaired tap water from the bottom up while still under vacuum. (2) Final w _c from horizontal permeability test specimen. WDS calculated from measured wet weight and final w _c . * First length is total sample length. Second length is useable length at full core diameter. The test data and all associated project information presented hereon shall be held in confidence and disclosed to other parties only with the authorization of the Client or Ardaman & Associates, Inc. Physical and electronic records of each project are kept for a minimum of 7 years. Test samples are kept in storage for at least 10 working days after mailing of the test report, prior to being discarded, unless a longer storage period is requested in writing and accepted by Ardaman & Associates, Inc.																
Where: H	H = Specime confining str and G _s = Sp	en height; D ess; u _b = Ba	= Specime ack-pressur				Dry mass; ent; Q = Flo	w – Moietu	ro content (ASTMD 22	216) · v. = Dr	/ density: S	= Saturation ductivity at 2	n; ō _c = Iso 20°C; n =	tropic effective Total porosity;	

1 1 -

7

CLIENT: Youngquist Brothers, Inc.	INCOMING LABORATORY SAMPLE I	NO.: <u>Core 9, 1536.2-1536.6'</u>
PROJECT: Cape Coral SW DZMW No. 1	LABORATORY IDENTIFICATION NO.	: 08028/9kH1536
FILE NO.: 08-028	SAMPLE DESCRIPTION: Light brown	limestone
DATE SAMPLE RECEIVED: 07/21/08 SET UP: 07/31/08		
DATE REPORTED: 08/21/08		
ASTM D 5084 TEST METHOD:	SPECIMEN DATA: As-Received Diameter (inch): <u>4</u> As-Received Length (inch): <u>4.0/2.8*</u> TEST SPECIMEN ORIENTATION: SPECIFIC GRAVITY, G _s : <u>2.74</u>	Diameter Trimmed: ⊠ Yes □ No Length Trimmed: ⊠ Yes □ No □ Vertical ⊠ Horizontal □ Assumed ⊠ Measured (ASTM D 854)
Δσ _c (psi): <u>18, 23, 30</u>	PERMANENT:	Other

		Initia	al Conditior	าร				Te	est Conditio	ons		Fina	al Condition	Hydraulic Conductivity	
H (cm)	D (cm)	V (cm ³)	w _c (%)	Y _d (pcf)	n	S (%)	ō _c (psi)	u _b (psi)	İ _{avg}	Q (cm³)	t (days)	WDS (g)	w _c (%)	S (%)	k ₂₀ (cm/sec)
7.91	5.03	156.89	13.3	124.4	0.273	97	30	70	40	8.1	5	312.67	13.5	99	2.0x10 ⁻⁵

COMMENTS: (1) Horizontal permeability test specimen was cross-cored from the corresponding vertical test specimen. * First length is total sample length. Second length is useable length at full core diameter.

Checked By: _____ Form SR-2B: Rev. 0

The test data and all associated project information presented hereon shall be held in confidence and disclosed to other parties only with the authorization of the Client or Ardaman & Associates, Inc. Physical and electronic records of each project are kept for a minimum of 7 years. Test samples are kept in storage for at least 10 working days after mailing of the test report, prior to being discarded, unless a longer storage period is requested in writing and accepted by Ardaman & Associates, Inc.

Where: H = Specimen height; D = Specimen diameter; V = Volume; WDS = Dry mass; w_c = Moisture content (ASTM D 2216); γ_d = Dry density; S = Saturation; $\overline{\sigma}_c$ = Isotropic effective confining stress; u_b = Back-pressure; i_{avg} = Average hydraulic gradient; Q = Flow volume; t = Test duration; k_{20} = Saturated hydraulicconductivity at 20°C; n = Total porosity; and G_s = Specific gravity.

Date: 08/2

CLIENT: Youngquist Brothers, Inc.	INCOMING LABORATORY SAMPLE NO.: Core 10, 1564.7-1565.1'
PROJECT: Cape Coral SW DZMW No. 1	LABORATORY IDENTIFICATION NO.: 08028/10kV1564
FILE NO.: 08-028	SAMPLE DESCRIPTION: Light brown limestone
DATE SAMPLE RECEIVED: 07/21/08 SET UP: 07/29/08	
DATE REPORTED: 08/21/08	
ASTM D 5084 TEST METHOD:	SPECIMEN DATA: As-Received Diameter (inch): 4 As-Received Length (inch): 5.0/3.0* Diameter Trimmed: SPECIMEN ORIENTATION: SPECIFIC GRAVITY, G _s : 2.73 Assumed Measured (ASTM D 854)
⊠ End of Test ∆σ _c (psi): <u>14, 24</u>	PERMANENT: Deaired Tap Water Other

		Initia	al Conditior	IS				IS	Hydraulic Conductivity						
H (cm)	D (cm)	V (cm ³)	w _c (%)	Y₀ (pcf)	n	S (%)	ō _c (psi)	u _b (psi)	İ _{avg}	Q (cm³)	t (days)	WDS (g)	W _c (%)	S (%)	k ₂₀ (cm/sec)
7.41	9.88	567.71	15.6	119.3	0.300	99	30	160	36	0.9	1	1084.5	15.7	100	1.1x10 ⁻⁵
water from * First leng The test of	COMMENTS: (1) Core sample selected for permeability testing was cut to length, air-dried, deaired under vacuum for a minimum of 24 hours, and then saturated with deaired tap water from the bottom up while still under vacuum. (2) WDS calculated from initial air-dry weight of specimen. * First length is total sample length. Second length is useable length at full core diameter. The test data and all associated project information presented hereon shall be held in confidence and disclosed to other parties only with the authorization of the Client or Ardaman & Associates, Inc. Physical and electronic records of each project are kept for a minimum of 7 years. Test samples are kept in storage for at least 10 working days after mailing of the test report, prior to being discarded, unless a longer storage period is requested in writing and accepted by Ardaman & Associates, Inc.														
the test report, prior to being discarded, unless a longer storage period is requested in which g and decepted by many and decepted by															
Checked I Form SR-2		M				Date:	08/2	1/08	_		C:\Documents	and Settings\jan.v	vildman\Docume	nts\Projects\0	8\08-028\k- tests02.wpd

CLIENT: Youngquist Brothers	s, Inc.	INCOMING LABORATORY SAMPLE		-1565.1'
PROJECT: Cape Coral SW [ZMW No. 1	LABORATORY IDENTIFICATION NO	.: 08028/10kH1564	
FILE NO.: 08-028		SAMPLE DESCRIPTION: Light brown	limestone	
DATE SAMPLE RECEIVED:	07/21/08SET UP: <u>07/31/08</u>			
DATE REPORTED: 08/21/08				
□ B - Fa □ C - Fa	D: Instant Head Iling Head; Constant Tailwater Iling Head; Rising Tailwater Instant Volume; Falling Head - Rising Tailwater	SPECIMEN DATA: As-Received Diameter (inch): <u>4</u> As-Received Length (inch): <u>5.0/3.0*</u> TEST SPECIMEN ORIENTATION:	Diameter Trimmed: Length Trimmed: □ Vertical	⊠ Yes □ No ⊠ Yes □ No ⊠ Horizontal
B-FACTOR:%	 Beginning of Test; End of Test 	SPECIFIC GRAVITY, G _s : <u>2.73</u>	□ Assumed Measured (ASTM	D 854)
	Δσ _c (psi):	PERMANENT:	□ Other	

		Initia	al Conditior					T	est Conditio	ons		Fina	al Conditior	ns	Hydraulic Conductivity
H (cm)	D (cm)	V (cm ³)	W _c (%)	Y₀ (pcf)	n	S (%)	σ _c (psi)	u _b (psi)	i _{avg}	Q (cm ³)	t (days)	WDS (g)	w _c (%)	S (%)	k ₂₀ (cm/sec)
7.96	5.03	158.01	15.9	117.9	0.308	98	30	70	57	8.3	1	298.58	15.9	98	8.8x10 ⁻⁶
* First leng		ample leng	th. Second	I length is u	seable len	gth at full of	core diame	ter.							
0	First length is total sample length. Second length is useable length at full core diameter. The test data and all associated project information presented hereon shall be held in confidence and disclosed to other parties only with the authorization of the Client or Ardaman Associates, Inc. Physical and electronic records of each project are kept for a minimum of 7 years. Test samples are kept in storage for at least 10 working days after mailing of the test report, prior to being discarded, unless a longer storage period is requested in writing and accepted by Ardaman & Associates, Inc.														

Where: H = Specimen height; D = Specimen diameter; V = Volume; WDS = Dry mass; w_c = Moisture content (ASTM D 2216); γ_d = Dry density; S = Saturation; ö_c = Isotropic effective confining stress; u_b = Back-pressure; i_{avg} = Average hydraulic gradient; Q = Flow volume; t = Test duration; k₂₀ = Saturated hydraulicconductivity at 20°C; n = Total porosity; and G_s = Specific gravity.

Date: 08/21/08

M

Checked By:

Form SR-2B: Rev. 0

CLIENT: Youngquist Brothers, Inc.		INCOMING LABORATORY SAMPLE		1566.5'
PROJECT: Cape Coral SW DZMW	No. 1	LABORATORY IDENTIFICATION NO.		
FILE NO.: 08-028		SAMPLE DESCRIPTION: Light brown	limestone	5
DATE SAMPLE RECEIVED: 07/21/	08 SET UP: 07/29/08			
DATE REPORTED: 08/21/08				
	: Head ead; Constant Tailwater lead; Rising Tailwater	SPECIMEN DATA: As-Received Diameter (inch): <u>4</u> As-Received Length (inch): <u>8.0/6.0*</u> TEST SPECIMEN ORIENTATION:		□ Yes ⊠ No ⊠ Yes □ No □ Horizontal
□ F - Constant	Volume; Falling Head - Rising Tailwater	TEST SPECIMEN ORIENTATION.	a vertiour	
B-FACTOR: <u>99</u> %	 Beginning of Test; End of Test 	SPECIFIC GRAVITY, G _s : <u>2.71</u>	□ Assumed Measured (ASTM [) 854)
	Δσ _c (psi): <u>14</u>	PERMANENT: Ø Deaired Tap Water	□ Other	

		Initia	al Conditior	าร				T	est Conditio	ons		Fina	al Condition	1S	Hydraulic Conductivity
H (cm)	D (cm)	V (cm ³)	W _c (%)	Yd (pcf)	$ \begin{array}{ c c c c c c c c } n & S & \bar{\sigma}_c & u_b & i_{avg} & Q & t & WDS & w_c & S \\ (\%) & (psi) & (psi) & i_{avg} & (cm^3) & (days) & (g) & (\%) & (\%) \end{array} $										
7.26	10.00	569.95	21.3	106.0	0.373	97	30	160	39	5.7	1	967.97	21.3	97	5.8x10 ⁻⁵
COMMENTS: (1) Core sample selected for permeability testing was cut to length, air-dried, deaired under vacuum for a minimum of 24 hours, and then saturated with deaired tap water from the bottom up while still under vacuum. (2) Final w _c from horizontal permeability test specimen. WDS calculated from measured wet weight and final w _c . * First length is total sample length. Second length is useable length at full core diameter. The test data and all associated project information presented hereon shall be held in confidence and disclosed to other parties only with the authorization of the Client or Ardaman & Associates, Inc. Physical and electronic records of each project are kept for a minimum of 7 years. Test samples are kept in storage for at least 10 working days after mailing of the test report, prior to being discarded, unless a longer storage period is requested in writing and accepted by Ardaman & Associates, Inc.															
Where: H		en height; D ess; u _b = Ba	= Specime ack-pressur				D	Moiotu	re content /		16): v. = Dn	density: S	= Saturatio ductivity at	n; ö _c = lso 20°C; n =	otropic effective Total porosity;

11

-

OLIENT Management Brothers Inc.	INCOMING LABORATORY SAMPLE NO.: Core 10, 1565.8-1566.5							
CLIENT: Youngquist Brothers, Inc.								
PROJECT: Cape Coral SW DZMW No. 1	LABORATORY IDENTIFICATION NO	.: 08028/10611565						
FILE NO.: 08-028	SAMPLE DESCRIPTION: Light brown	limestone						
DATE SAMPLE RECEIVED: 07/21/08 SET UP: 07/31/08								
DATE REPORTED: 08/21/08								
ASTM D 5084 TEST METHOD:	SPECIMEN DATA: As-Received Diameter (inch): <u>4</u> As-Received Length (inch): <u>8.0/6.0*</u> TEST SPECIMEN ORIENTATION:	Diameter Trimmed: ⊠ Yes □ No Length Trimmed: ⊠ Yes □ No □ Vertical ⊠ Horizontal						
B-FACTOR: <u>83 (stable)</u> % □ Beginning of Test;	SPECIFIC GRAVITY, G _s : <u>2.71</u>	□ Assumed Measured (ASTM D 854)						
Δσ _c (psi): <u>18, 23, 30</u>	PERMANENT:	□ Other						

	Initial Conditions							T	est Conditio	ons		Fina	al Conditior	ns	Hydraulic Conductivity
H (cm)	D (cm)	V (cm ³)	W _c (%)	Y₀ (pcf)	n	S (%)	σ _c (psi)	u _b (psi)	i _{avg}	Q (cm ³)	t (days)	WDS (g)	w _c (%)	S (%)	k ₂₀ (cm/sec)
7.95	5.02	157.22	21.1	107.3	0.365	99	30	70	40	7.8	5	270.45	21.3	100	5.8x10 ⁻⁵
* First len	COMMENTS: (1) Horizontal permeability test specimen was cross-cored from the corresponding vertical test specimen. * First length is total sample length. Second length is useable length at full core diameter. The test data and all associated project information presented hereon shall be held in confidence and disclosed to other parties only with the authorization of the Client or Ardaman & Associates, Inc. Physical and electronic records of each project are kept for a minimum of 7 years. Test samples are kept in storage for at least 10 working days after mailing of the test report, prior to being discarded, unless a longer storage period is requested in writing and accepted by Ardaman & Associates, Inc.														
Where: H		en height; D ess; u _b = Ba	= Specime ack-pressur				Davman	w Moiotu	re contont (216) · v. – Dn	density: S	= Saturation ductivity at 2	n; ō _c = Iso 20°C; n =	tropic effective Total porosity;
Checked		Py				Date:	00/2	108			C:\Documents an	d Settings\jan.wik	dman\Document	s\Projects\08\	08-028\k- tests02.wpd

C:\Documents and Settings\jan.wildman\Documents\Projects\08\08-028\k- tests02.wpd

Appendix E

Geophysical Logs

Pilot Hole Water Quality

Injection Well IW-1

Pilot Hole Water Quality

IW-1 PILOT HOLE WATER QUALITY

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

JOB NUMBER:	3220269.77010102
CONTRACTOR:	Youngquist Brothers, Inc.
PROJECT MANAGER:	Neil Johnson
OWNER:	City of Cape Coral

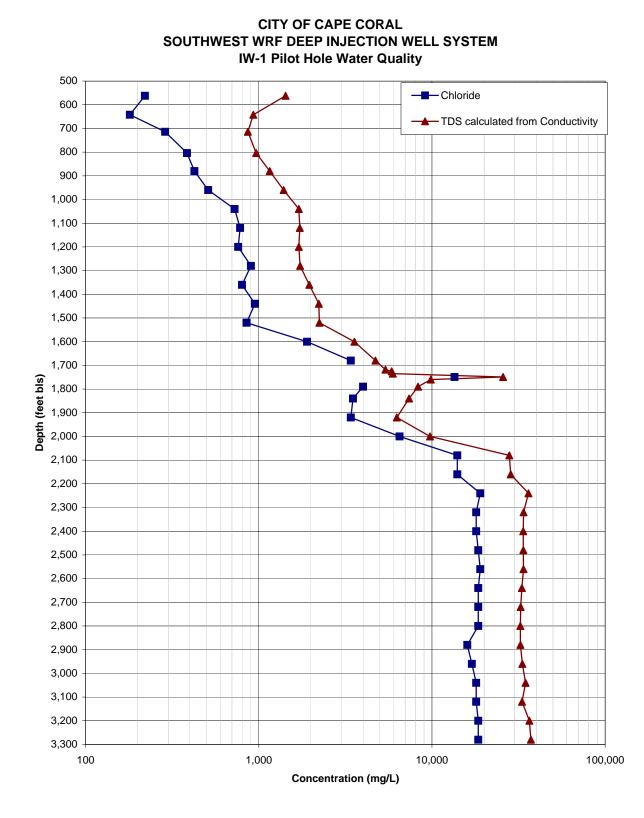
DATE	TIME	DEPTH (ft bls)	TEMP. (°C)	рН	SPECIFIC COND. (µmhos/cm)	TDS field calculated (mg/L)	CHLORIDE (mg/L)	COMMENTS	OBSERVER'S INITIALS
10/25/2007	22:20	562			2,130	1,427	220	after specific capacity test	МК
10/26/2007	4:45	642	25.4	11.30	1,388	930	180	after specific capacity test	МК
10/26/2007	10:00	714	25.7	8.83	1,291	865	288	after specific capacity test	RAW
10/26/2007	14:40	804	27.9	8.64	1,442	966	385	after specific capacity test	RAW
10/26/2007	16:28	880	29.0	8.72	1,726	1,156	425	after specific capacity test	RAW
10/26/2007	21:10	960	27.0	8.88	2,077	1,392	510	after specific capacity test	МК
10/26/2007	0:00	1,040	27.0	8.70	2,541	1,702	725	after specific capacity test	МК
10/27/2007	4:00	1,120	26.7	8.75	2,574	1,725	780	after specific capacity test	МК
10/27/2007	6:20	1,200	27.8	8.67	2,540	1,702	760	after specific capacity test	МК
10/27/2007	9:32	1,280	27.4	8.29	2,585	1,732	900	after specific capacity test	RAW
10/27/2007	13:50	1,360	28.5	8.34	2,920	1,956	800	after specific capacity test	RAW
10/27/2007	17:30	1,440	28.3	8.37	3,314	2,220	950	after specific capacity test	RAW
10/27/2007	21:40	1,520	28.2	8.67	3,340	2,238	850	after specific capacity test	МК
10/28/2007	1:10	1,600	27.8	8.51	5,320	3,564	1,900	after specific capacity test	МК
10/28/2007	5:30	1,680	27.7	8.18	7,040	4,717	3,400	after specific capacity test	МК
10/28/2007	8:10	1,718			8,040	5,387		during drilling/ 12" from pit open	RAW
10/28/2007	8:40	1,725			8,730	5,849		during drilling/ 12" from pit open	RAW

IW-1 PILOT HOLE WATER QUALITY

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

3220269.77010102
Youngquist Brothers, Inc.
Neil Johnson
City of Cape Coral

DATE	TIME	DEPTH (ft bls)	TEMP. (°C)	рН	SPECIFIC COND. (µmhos/cm)	TDS field calculated (mg/L)	CHLORIDE (mg/L)	COMMENTS	OBSERVER'S INITIALS
10/28/2007	9:10	1,735			8,870	5,943		during drilling/ 12" from pit open	RAW
10/28/2007	10:25	1,749	29.4		38,400	25,728	13,500	12" from pit closed for 10 min	RAW
11/29/2007	0:15	1,760	30.7		14,700	9,849		during drilling/ 12" from pit open	ABF
12/1/2007	9:04	1,790	28.6	11.53	12,400	8,308	4,000	after specific capacity test	CLM
12/2/2007	13:15	1,840	30.2	10.99	11,010	7,377	3,500	after specific capacity test	CLM
12/5/2007	02:14	1,920	30.1	6.63	9,356	6,269	3,400	after specific capacity test	ABF
12/7/2007	22:36	2,000	27.2	7.17	14,550	9,749	6,500	after specific capacity test	RAW
12/9/2007	5:53	2,080	27.3	6.57	41,750	27,973	14,000	after specific capacity test	RAW
12/11/2007	5:53	2,160	27.2	6.82	42,550	28,509	14,000	after specific capacity test	ABF
12/11/2007	20:35	2,240	29.8	6.50	53,800	36,046	19,000	after specific capacity test	RAW
12/12/2007	09:47	2,320	28.5	6.44	50,420	33,781	18,000	after specific capacity test	ABF
12/12/2007	22:28	2,400	27.8	6.44	50,230	33,654	18,000	after specific capacity test	JL
12/13/2007	9:26	2,480	27.9	7.47	50,290	33,694	18,500	after specific capacity test	ABF
12/13/2007	16:19	2,560	27.8	7.32	50,400	33,768	19,000	after specific capacity test	ABF
12/13/2007	0:00	2,640	27	7.44	49,330	33,051	18,500	after specific capacity test	Л
12/14/2007	7:17	2,720	27.9	7.52	48,560	32,535	18,500	after specific capacity test	ABF
12/14/2007	16:40	2,800	27.8	6.2	48,340	32,388	18,500	after specific capacity test	ABF


IW-1 PILOT HOLE WATER QUALITY

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

JOB NUMBER:	3220269.77010102
CONTRACTOR:	Youngquist Brothers, Inc.
PROJECT MANAGER:	Neil Johnson
OWNER:	City of Cape Coral

DATE	TIME	DEPTH (ft bls)	TEMP. (°C)	рН	SPECIFIC COND. (µmhos/cm)	TDS field calculated (mg/L)	CHLORIDE (mg/L)	COMMENTS	OBSERVER'S INITIALS
12/17/2007	2:33	2,880	24.9	7.09	48,390	32,421	16,000	after specific capacity test	CLM
12/17/2007	13:24	2,960	26.8	7.36	49,660	33,272	17,000	after specific capacity test	ABF
12/18/2007	3:45	3,040	26.2	7.06	51,800	34,706	18,000	after specific capacity test	CLM
12/18/2007	20:09	3,120	28.6	7.01	49,400	33,098	18,000	after specific capacity test	CLM
12/19/2007	12:22	3,200	6.56	6.56	54,500	36,515	18,500	after specific capacity test	RAW
12/20/2007	8:45	3,280	29.9	6.99	55,600	37,252	18,500	after specific capacity test	RAW

NOTES: ft bls - feet below land surface °C - degrees Celcius µmhos/cm - micro ohms per centimeter mg/L - milligrams per liter

Monitor Well DZMW-1

Pilot Hole Water Quality

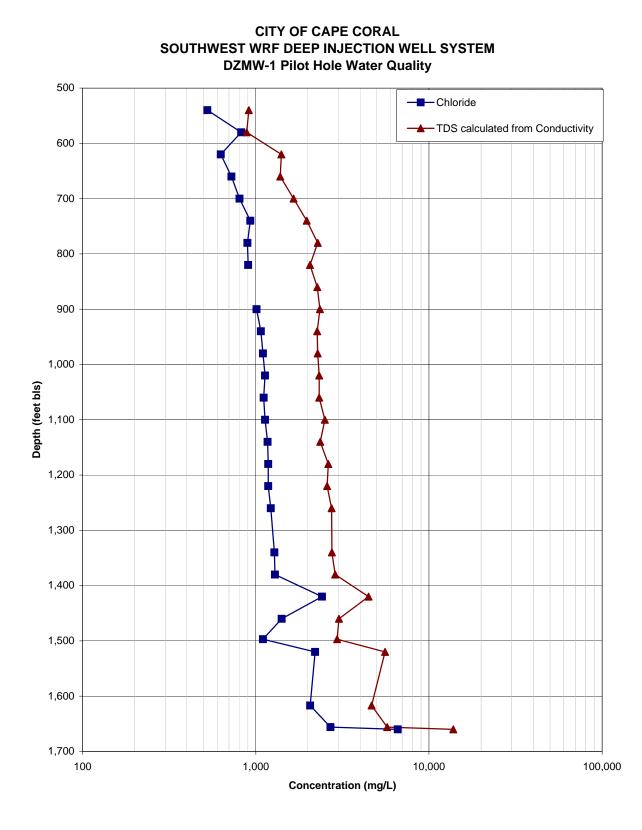
DZMW-1 PILOT HOLE WATER QUALITY

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

JOB NUMBER:	3220269.77010102
CONTRACTOR:	Youngquist Brothers, Inc.
PROJECT MANAGER:	Neil Johnson
OWNER:	City of Cape Coral

DATE	TIME	DEPTH (ft bls)	TEMP. (°C)	рН	SPECIFIC COND. (µmhos/cm)	TDS field calculated (mg/L)	CHLORIDE (mg/L)	COMMENTS	OBSERVERS INITIALS
5/16/2008		540	27.0	8.99	1,359	911	525	drill stem	МК
5/16/2008	6:10	580	27.5	8.65	1,322	886	823	drill stem	МК
5/17/2008	4:50	620	27.2	8.63	2,096	1,404	628	after specific capacity test	ABF
5/17/2008	6:15	660	27.0	8.38	2,066	1,384	723	drill stem	МК
5/17/2008	7:50	700	27.2	8.00	2,466	1,652	805	after specific capacity test	МК
5/17/2008	8:34	740	27.0	7.69	2,936	1,967	930	drill stem	МК
5/17/2008	15:30	780	27.2	7.57	3,402	2,279	895	after specific capacity test	МК
5/17/2008	17:00	820	27.5	7.60	3,067	2,055	903	drill stem	МК
5/17/2008	19:20	860	27.6	7.57	3,379	2,264		after specific capacity test	ABF
5/17/2008	23:05	900	27.3	7.63	3,501	2,346	1,010	drill stem	ABF
5/18/2008	00:05	940	27.6	7.62	3,378	2,263	1,070	after specific capacity test	ABF
5/18/2008	1:02	980	27.7	7.53	3,399	2,277	1,100	drill stem	ABF
5/18/2008	2:23	1,020	27.6	7.62	3,469	2,324	1,130	after specific capacity test	ABF
5/18/2008	4:35	1,060	27.5	7.59	3,469	2,324	1,110	drill stem	ABF
5/18/2008	9:35	1,100	28.4	7.64	3,737	2,504	1,130	after specific capacity test	МК
5/18/2008	11:20	1,140	28.7	7.77	3,514	2,354	1,170	drill stem	МК
5/18/2008	13:40	1,180	28.4	7.45	3,915	2,623	1,180	after specific capacity test	МК

DZMW-1 PILOT HOLE WATER QUALITY


CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

JOB NUMBER:	3220269.77010102
CONTRACTOR:	Youngquist Brothers, Inc.
PROJECT MANAGER:	Neil Johnson
OWNER:	City of Cape Coral

DATE	TIME	DEPTH (ft bls)	TEMP. (°C)	рН	SPECIFIC COND. (µmhos/cm)	TDS field calculated (mg/L)	CHLORIDE (mg/L)	COMMENTS	OBSERVERS INITIALS
5/18/2008	15:30	1,220	28.7	7.37	3,853	2,582	1,180	drill stem	МК
5/18/2008	17:30	1,260	28.9	7.57	4,087	2,738	1,220	after specific capacity test	МК
5/18/2008	20:53	1,340	27.7	8.06	4,105	2,750	1,280	after specific capacity test	ABF
5/18/2008	23:05	1,380	27.7	8.05	4,287	2,872	1,290	drill stem	ABF
5/19/2008	01:15	1,420	27.5	7.69	6,680	4,476	2,410	after specific capacity test	ABF
5/19/2008	02:50	1,460	27.6	8.47	4,508	3,020	1,410	drill stem	ABF
5/19/2008	4:29	1,497			4,400	2,948	1,100	after specific capacity test	ABF
5/21/2008	20:45	1,520			8,320	5,574	2,200	drill stem	JC
5/21/2008	22:10	1,617			6,960	4,663	2,060	after specific capacity test	JC
5/22/2008	0:30	1,656			8,560	5,735	2,700	drill stem	JC
5/22/2008	2:02	1,660			20,620	13,815	6,600	after specific capacity test	JC

Notes:

ft bls - feet below land surface °C - degrees Celcius µmhos/cm - micro ohms per centimeter mg/L - milligrams per liter

Appendix G

Video Surveys

Injection Well IW-1

Open Hole Video Survey

Video Survey of Open Hole Injection Well IW-1 1,700 feet bpl to 3,283 feet below land surface Southwest RO WRF Cape Coral, Florida

Starting Depth	Ending Depth	Description of Video Survey
feet	feet	
1700.0	1744.0	Gauge hole (smooth)
1744.0	1753.0	Gauge hole, highly fractured
1753.0	1754.0	Cavity
1754.0	1756.0	Gauge hole, fractured
1756.0	1765.0	Gauge hole (smooth), possible confinement
1765.0	1772.0	Smooth gauge hole with small cavities and vugs
1772.0	1773.0	Small horizonal cavity
1773.0	1796.0	Smooth gauge hole with small cavities, fractures and vugs
1796.0	1850.0	Gauge hole (alternating rough to smooth), with small
		cavities, and some vertical fracture
1850.0	1860.0	Gauge hole (smooth), few vugs
1860.0	1863.0	Irregular hole, highly fractured
1863.0	1864.0	Gauge hole (smooth)
1864.0	1867.0	Gauge hole (rough), small solution cavity
1867.0	1874.0	Gauge hole (smooth), possible confinement
1874.0	1898.0	Gauge hole (alternating rough to smooth), with vugs and
		some vertical fracture
1898.0	1899.0	Gauge hole, small cavities
1899.0	1911.0	Gauge hole smooth
1911.0	1913.0	Horizontal solution cavity
1913.0	1926.0	Gauge hole (smooth), possible confinement
1926.0	1927.0	Gauge hole (smooth), vugs
1927.0	1939.0	Gauge hole (smooth), possible confinement
1939.0	1940.0	Horizontal solution cavity
1940.0	1943.0	Gauge hole (smooth), possible confinement
1943.0	1945.0	Horizontal solution cavity
1945.0	1958.0	Gauge hole (smooth), possible confinement
1958.0	1970.0	Gauge hole (rough), small solution cavities and vugs
1970.0	1984.0	Gauge hole (smooth), vugs, small discontinuous verticle
		fractures
1984.0	1990.0	Gauge hole (rougher), larger solution cavitities, verticle
		fractures
1990.0	2018.0	Gauge hole (smooth), small solution cavities, small verticle
		fractures
2018.0	2022.0	Horizontal solution cavity
2022.0	2038.0	Gauge hole (smooth), possible confinement
2038.0	2043.0	Gauge hole (rough), solution cavities
2043.0	2046.0	Horizontal solution cavity
2046.0	2069.0	Gauge hole larger solution cavity and vugs
2069.0	2088.0	Larger cavity, verticle fracture
2088.0	2093.0	Irregular hole, highly fractured
2093.0	2101.0	Gauge hole (rough), small solution cavities
2101.0	2112.0	Large cavity, highly fractured
2112.0	2121.0	Irregular hole, highly continuous fractured, with large cavities
2121.0	2126.0	Gauge hole (relatively smooth, but slightly rough), vugs
2126.0	2127.0	Horizontal solution cavity

Starting Depth	Ending Depth	Description of Video Survey
feet	feet	L v
2127.0	2134.0	Gauge hole (smooth), continous fractures verticle and
		horizontal
2134.0	2136.0	Horizontal fracture cavity
2136.0	2142.0	Gauge hole (rough) large vugs, solution cavities, and
		fractures
2142.0	2152.0	Gauge hole (rough), small vugs and continuous verticle
	2 1 (0, 0)	fractures
2152.0	2168.0	Horizontal fracture cavity
2169.0	2186.0	Gauge hole (rough), small vugs and continuous verticle fractures
2186.0	2189.0	Large cavity
2180.0	2189.0	Gauge hole (rough), large vugs, solution cavities, and
2109.0	2172.0	verticle fractures
2192.0	2195.0	Large cavity, highly fractured
2195.0	2224.0	Gauge hole (rough), large vugs, solution cavities, and
		verticle fractures
2224.0	2270.0	Gauge hole (rough), horizontal solution cavities, vugs
2270.0	2290.0	Irregulat to gauge hole, large solution cavities, verticle and
		horizontal
2290.0	2296.0	Gauge hole, vusgs with large solution features
2296.0	2331.0	Gauge hole (relatively smooth, but slightly rough), vugs
2331.0	2358.0	Gauge hole (smooth), possible confinement
2358.0	2358.5	Horizontal solution cavity
2358.5 2360.5	2360.5 2361.0	Gauge hole (smooth), possible confinement Horizontal solution cavity
2361.0	2368.0	Gauge hole (smooth), possible confinement
2368.0	2370.0	Gauge hole (smooth), possible commentent Gauge hole (smooth), vugs, horizontal solution features,
2500.0	2370.0	white
2370.0	2392.0	Gauge hole (smooth), possible confinement, occasional
		horizontal solution features or vugs
2392.0	2404.0	Gauge hole (rough), large vugs, solution cavities, and
		verticle features
2404.0	2416.0	Gauge hole (smooth), possible confinement, occasional
		horizontal solution features or vugs
2416.0	2438.0	Gauge hole (relatively smooth), vugs, horizontal solution
2429.0	2420.0	features, some verticle fracturing
2438.0	2439.0	Horizontal fracture cavity
2439.0	2443.0 2447.0	Gauge hole, (smooth), horizontal fractures
2443.0 2447.0	2447.0	Gauge hole (smooth) Horizontal cavity
2448.0	2559.0	Gauge hole (smooth), possible confinement
2559.0	2561.0	Gauge hole (smooth), small solution cavities
2561.0	2579.0	Gauge hole (smooth), occassional dissolution features,
		possible confinement
2579.0	2586.0	Gauge hole as above with larger more frequent dissolution
		features
2586.0	2665.0	Gauge hole (smooth), occassional dissolution features,
		possible confinement
2665.0	2700.0	Gauge hole (smooth), small to large solution cavities, vugs
2700.0	2703.0	Gauge hole (smooth)
2703.0	2716.0	Gauge hole (smooth), small to large solution cavities, vugs
2716.0	2750.0	Gauge hole (smooth)
2750.0	2866.0	Gauge hole (smooth), occasional horizontal solution cavities, possible confinment
2866.0	2872.0	Irregular hole, solution cavities
2800.0	2876.0	Gauge hole (smooth), occasional horizontal solution
2012.0	2070.0	cavities, possible confinment
1		,possione community

Starting Depth	Ending Depth	Description of Video Survey
feet	feet	
2876.0	2880.0	Large solution cavity
2880.0	2899.0	Gauge hole (smooth), increasing solution cavities, verticle
		fracture
2899.0	2909.0	Gauge hole (smooth), vugs
2909.0	2940.0	Gauge hole (smooth), vugs, verticle fracture
2940.0	2956.0	Roughly gauge, abundant solution features, large verticle
		fracturing
2956.0	2970.0	Irregular hole, highly fractured
2970.0	3001.0	Gauge hole, highly fractured
3001.0	3020.0	Large cavity, highly fractured boulders, obstruction at 3015
3020.0	3026.0	Irregular hole, highly fractured
3026.0	3051.0	Gauge hole, large horizontal solution cavities, vugs
3051.0	3055.0	Irregular hole, horizontal and verticle fractures
3055.0	3074.0	Gauge hole, horizontal and verticle fractures, vugs
3074.0	3077.0	Horizontal fracture cavity
3077.0	3091.0	Gauge hole, horizontal and verticle fractures, vugs
3091.0	3092.0	Horizontal fracture cavity
3092.0	3102.0	Gauge hole, horizontal and verticle fractures, vugs
3102.0	3103.0	Horizontal fracture cavity
3103.0	3111.0	Gauge hole, horizontal and verticle fractures, vugs
3111.0	3112.0	Horizontal fracture cavity
3112.0	3139.0	Gauge hole, horizontal and verticle fractures, vugs
3139.0	3140.0	Horizontal fracture cavity
3140.0	3144.0	Irregular hole highly fractured
3144.0	3158.0	Large cavity, highly fractured with boulders
3158.0	3162.0	Irregular hole, highly fractured
3162.0	3164.0	Large cavity, highly fractured with boulders
3164.0	3175.0	Irregular hole, highly fractured
3175.0	3200.0	Gauge hole, horizontal and verticle fractures, vugs
3200.0	3268.0	visibility poor, appears to be as above
3268.0	3283.0	Mottled white and grey dense formation change, Cedar Key
		Formation anhydrite/gypsum

Injection Well IW-1

FRP Video Survey

Video Survey of IW-1 18-inch FRP Injection Tubing Injection Well IW-1 Southwest RO WRF Cape Coral, Florida

feet		Description of Video Survey
ICCL	feet	
0	12	Stainless Steel Riser
12	12	Stainless steel to FRP coupling
41	41	Threaded FRP joint
44	44	Threaded FRP joint
74	74	Threaded FRP joint
103	103	Threaded FRP joint
133	133	Threaded FRP joint
161	161	Threaded FRP joint
191	191	Threaded FRP joint
220	220	Threaded FRP joint
249	249	Threaded FRP joint
278	278	Threaded FRP joint
307	307	Threaded FRP joint
336	336	Threaded FRP joint
365	365	Threaded FRP joint
393	393	Threaded FRP joint
423	423	Threaded FRP joint
452	452	Threaded FRP joint
481	481	Threaded FRP joint
510	510	Threaded FRP joint
539	539	Threaded FRP joint
568	568	Threaded FRP joint
597	597	Threaded FRP joint
625	625	Threaded FRP joint
654	654	Threaded FRP joint
683	683	Threaded FRP joint
712	712	Threaded FRP joint
741	741	Threaded FRP joint
770	770	Threaded FRP joint
799	799	Threaded FRP joint
827	827	Threaded FRP joint
857	857	Threaded FRP joint
886	886	Threaded FRP joint
915	915	Threaded FRP joint
944 973	<u>944</u> 973	Threaded FRP joint Threaded FRP joint
1002	1002	Threaded FRP joint
1002	1002	Threaded FRP joint
1059	1059	Threaded FRP joint
1039	1039	Threaded FRP joint
1116	1116	Threaded FRP joint
1110	1145	Threaded FRP joint
1174	1174	Threaded FRP joint
1202	1202	Threaded FRP joint
1232	1232	Threaded FRP joint
1261	1261	Threaded FRP joint
1290	1290	Threaded FRP joint
1319	1319	Threaded FRP joint
1348	1348	Threaded FRP joint
1377	1377	Threaded FRP joint

Starting Depth	Ending Depth	Description of Video Survey
feet	feet	
1406	1406	Threaded FRP joint
1435	1435	Threaded FRP joint
1464	1464	Threaded FRP joint
1493	1493	Threaded FRP joint
1521	1521	Threaded FRP joint
1550	1550	Threaded FRP joint
1579	1579	Threaded FRP joint
1608	1608	Threaded FRP joint
1637	1637	Threaded FRP joint
1665	1665	Threaded FRP joint
1694	1694	Threaded FRP joint
1723	1723	Threaded FRP joint
1752	1752	Threaded FRP joint
1781	1781	Threaded FRP joint
1810	1810	Threaded FRP joint
1840	1840	Threaded FRP joint
1869	1869	Threaded FRP joint
1897	1897	Threaded FRP joint
1926	1926	Threaded FRP joint
1955	1955	Threaded FRP joint
1983	1983	Threaded FRP joint
2012	2012	Threaded FRP joint
2042	2042	Threaded FRP joint
2071	2071	Threaded FRP joint
2100	2100	Threaded FRP joint
2129	2129	Threaded FRP joint
2158	2158	Threaded FRP joint
2186	2186	Threaded FRP joint
2215	2215	Threaded FRP joint
2244	2244	Threaded FRP joint
2273	2273	Threaded FRP joint
2302	2302	Threaded FRP joint
2331	2331	Threaded FRP joint
2360	2360	Threaded FRP joint
2389	2389	Threaded FRP joint
2419	2419	Threaded FRP joint
2448	2448	Threaded FRP joint
2477	2477	Threaded FRP joint
2505	2505	Threaded FRP joint
2534	2534	Threaded FRP joint
2564	2564	Threaded FRP joint
2593	2593	Threaded FRP joint
2621	2621	Threaded FRP joint
2650	2650	Threaded FRP joint
2680	2680	Threaded FRP joint
2709	2709	Threaded FRP joint
2738	2738	Threaded FRP joint
2767	2767	Threaded FRP joint
2795	2795	Threaded FRP joint
2825	2825	Threaded FRP joint
2853	2853	Threaded FRP joint
2882	2882	Threaded FRP joint
2911	2911	Threaded FRP joint
2925	2940	cement lining tubing
2940	2943	cementing packer
2943	2953	24-inch casing lines with cement
2953	2970	Gauge hole (smooth), small solution cavities

Starting Depth	Ending Depth	Description of Video Survey
feet	feet	
2970	3001	Gauge hole, horizontal and verticle fractures, vugs
3001	3026	Large cavity, highly fractured, boulders
3026	3065	Gauge hole, large horizontal solution cavities, vugs
3065	3074	Irregular hole, horizontal and verticle fractures
3074	3078	Large cavity, highly fractured, boulders
3078	3085	Gauge hole, horizontal and verticle fractures, vugs
3085	3090	Irregular hole, horizontal and verticle fractures
3090	3136	Gauge hole, large horizontal solution cavities, vugs
3136	3145	Gauge hole, horizontal and verticle fractures, vugs
3145	3162	Large cavity, highly fractured, boulders
3162	3174	Gauge hole, horizontal and verticle fractures, vugs
3174	3207	Gauge hole, solution cavities, vugs
3207	3261	Gauge hole (smooth), small solution cavities
3261	3272	Gauge hole (smooth)

Monitor Well DZMW-1

FRP Video Survey

Video Survey of DZMW-1 6.625-inch FRP Casing Monitor Well DZMW-1 Southwest RO WRF Cape Coral, Florida

Starting Depth	Ending Depth	Description of Video Survey
feet	feet	
0	21	Stainless Steel Riser
12	21	Stainless steel to FRP coupling
51	51	Threaded FRP joint
81	81	Threaded FRP joint
111	111	Threaded FRP joint
140	140	Threaded FRP joint
170	170	Threaded FRP joint
199	199	Threaded FRP joint
229	229	Threaded FRP joint
258	258	Threaded FRP joint
288	288	Threaded FRP joint
317	317	Threaded FRP joint
347	347	Threaded FRP joint
376	376	Threaded FRP joint
406	406	Threaded FRP joint
435	435	Threaded FRP joint
464	464	Threaded FRP joint
494	494	Threaded FRP joint
523	523	Threaded FRP joint
552	552	Threaded FRP joint
582	582	Threaded FRP joint
611	611	Threaded FRP joint
641	641	Threaded FRP joint
670	670	Threaded FRP joint
699	699	Threaded FRP joint
729	729	Threaded FRP joint
758	758	Threaded FRP joint
788	788	Threaded FRP joint
817	817	Threaded FRP joint
847	847	Threaded FRP joint
876	876	Threaded FRP joint
905	905	Threaded FRP joint
935	935	Threaded FRP joint
965	965	Threaded FRP joint
994	994	Threaded FRP joint
1023	1023	Threaded FRP joint
1052	1052	Threaded FRP joint
1082	1082	Threaded FRP joint
1111	1111	Threaded FRP joint
1141	1141	Threaded FRP joint
1170	1170	Threaded FRP joint
1200	1200	Threaded FRP joint
1229	1229	Threaded FRP joint
1258	1258	Threaded FRP joint
1288	1288	Threaded FRP joint
1317	1317	Threaded FRP joint
1346	1346	Threaded FRP joint
1376	1376	Threaded FRP joint
1405	1405	Threaded FRP joint
1377	1377	Threaded FRP joint

Starting Depth	Ending Depth	Description of Video Survey
feet	feet	
1406	1406	Threaded FRP joint
1435	1435	Threaded FRP joint
1464	1464	Threaded FRP joint
1493	1493	Threaded FRP joint
1523	1523	Threaded FRP joint
1553	1553	Threaded FRP joint
1582	1582	Threaded FRP joint
1608	1619	Bottom of FRP casing
1619	1648	Gauge hole (smooth), small solution cavities

Appendix H

Specific Capacity Testing

Injection Well IW-1

Pilot Hole Specific Capacity

IW-1 SPECIFIC CAPACITY TESTING

DURING PILOT HOLE DRILLING

Drawdown not observed due to kill or fresh water pumped for core?

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

JOB NUMBER:	3220269.77010102
CONTRACTOR:	Youngquist Brothers, Inc.
PROJECT MANAGER:	Neil Johnson
OWNER:	City of Cape Coral

OWNER:	City of Cape Corai				Volume of Tank: 2,500 Gallons				
DATE	TIME TO FILL TANK	WELL DEPTH	STATIC	LEVEL PUMPING	A WATER LEVEL	FLOW	SPECIFIC CAPACITY	COMMENTS	OBSERVER'S
	(min)	(ft)	(ft als)	(ft als)	(ft)	(gpm)	(gpm/ft)		INITIALS
10/25/2007	6.50	562	8.0	-1.7	9.7	385	40		МК
10/26/2007	6.50	642	-38.6	-40.4	1.8	385	214		МК
10/26/2007	5.22	714	-31.5	-36.6	5.1	479	94		RAW
10/26/2007	6.05	804	-25.1	-29.7	4.6	413	91		RAW
10/26/2007	4.33	880	-22.3	-31.6	9.4	577	62		RAW
10/26/2007	5.00	960	-21.1	-34.2	13.1	500	38		МК
10/26/2007	5.00	1,040	-22.4	-35.8	13.4	500	37		МК
10/26/2007	5.00	1,040	-22.4	-35.8	13.4	500	37		МК
10/27/2007	5.00	1,120	-19.0	-36.8	17.8	500	28		МК
10/27/2007	4.50	1,200	-21.7	-37.9	16.2	556	34		МК
10/27/2007	5.17	1,280	-15.9	-33.6	17.7	484	27		RAW
10/27/2007	4.85	1,360	-13.9	-32.8	18.9	515	27		RAW
10/27/2007	4.92	1,440	-18.2	-35.2	17.0	508	30		RAW
10/27/2007	4.90	1,520	-13.2	-16.4	3.2	510	159	Electric tape malfunctioned, may not be a true SC	МК
10/28/2007	5.10	1,600				490		Test error	МК
10/28/2007	5.25	1,680	-7.1	-8.7	1.6	476	298		МК
11/30/2007		1,760	9.0					Too much mud in hole to perform SC test. Well is alive.	ABF
12/1/2007	3.92	1,790	0.0	0.0		638		Drawdown not observed due to kill or fresh water pumped for core?	CLM
		,						i	-

-19.80

11.15

60.10

2.43

5.98

21.70

0.17

0.45

0.50

633

575

545

1,220

667

691

357

590

536

52

9

501

111

32

2,100

1,311

1,072

-0.2

-0.7

-78.20

0.40

-1.58

-21.10

-0.25

-3.35

-2.1

-20.0

10.5

-18.10

2.83

4.40

0.60

-0.08

-2.90

-1.6

1,840

1,920

2,000

2,080

2,160

2,240

2,320

2,400

2,480

3.95

4.35

4.58

2.05

3.75

3.62

7.01

4.24

4.66

12/2/2007

12/5/2007

12/7/2007

12/9/2007

12/11/2007

12/11/2007

12/12/2007

12/12/2007

12/13/2007

CLM

ABF

RAW

RAW

ABF

RAW

ABF

JL

ABF

IW-1 SPECIFIC CAPACITY TESTING

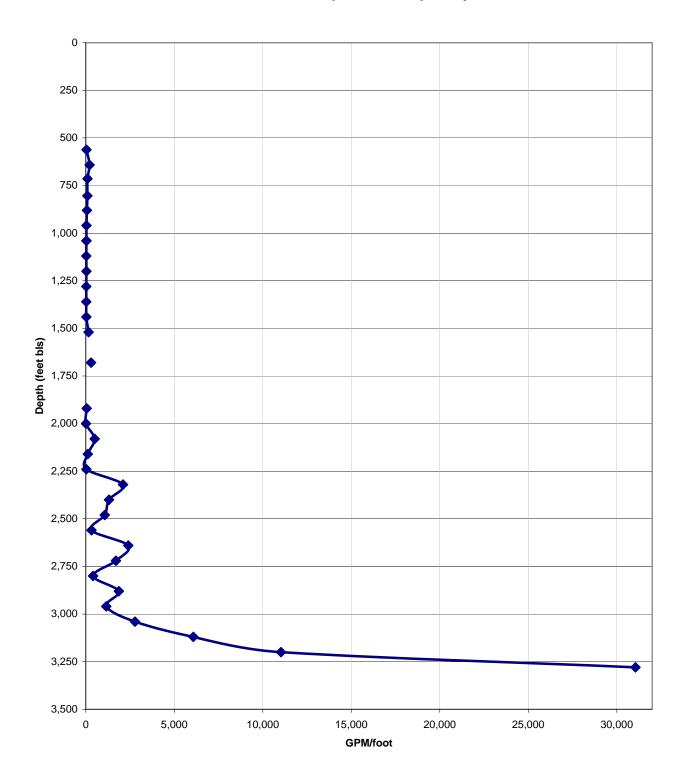
DURING PILOT HOLE DRILLING

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

JOB NUMBER:	3220269.77010102
CONTRACTOR:	Youngquist Brothers, Inc.
PROJECT MANAGER:	Neil Johnson
OWNER:	City of Cape Coral

ison		
ape Coral		

Volume of Tank:


2,500 Gallons

	TIME TO	WELL	WATER	LEVEL	A WATER		SPECIFIC		
DATE	FILL TANK (min)	DEPTH (ft)	STATIC (ft als)	PUMPING (ft als)	LEVEL (ft)	FLOW (gpm)	CAPACITY (gpm/ft)	COMMENTS	OBSERVER'S INITIALS
12/13/2007	4.58	2,560	-1.70	-3.40	1.7	546	321		ABF
12/13/2007	3.47	2,640	-6.70	-7.00	0.3	720	2,400		Л
12/14/2007	3.67	2,720	-7.20	-7.60	0.40	682	1,705		МК
12/14/2007	3.03	2,800	-5.90	-7.90	2.00	824	412		ABF
12/17/2007	4.47	2,880	-5.70	-6.00	0.30	560	1,866		CLM
12/17/2007	3.08	2,960	-9.40	-10.10	0.70	811	1,158		ABF
12/18/2007	4.50	3,040	-0.30	-0.50	0.20	556	2,778		CLM
12/18/2007	4.12	3,120	-3.40	-3.50	0.10	607	6,073		CLM
12/19/2007	4.53	3,200	-1.60	-1.65	0.05	551	11,029		RAW
12/20/2007	8.05	3,280	-5.30	-5.31	0.01	311	31,056		RAW

NOTES:

ft - feet ft als - feet above land surface gpm - gallons per minute min - minutes \varDelta - change

City of Cape Coral Southwest RO WTP Injection Well (IW-1) Pilot Hole Specific Capacity

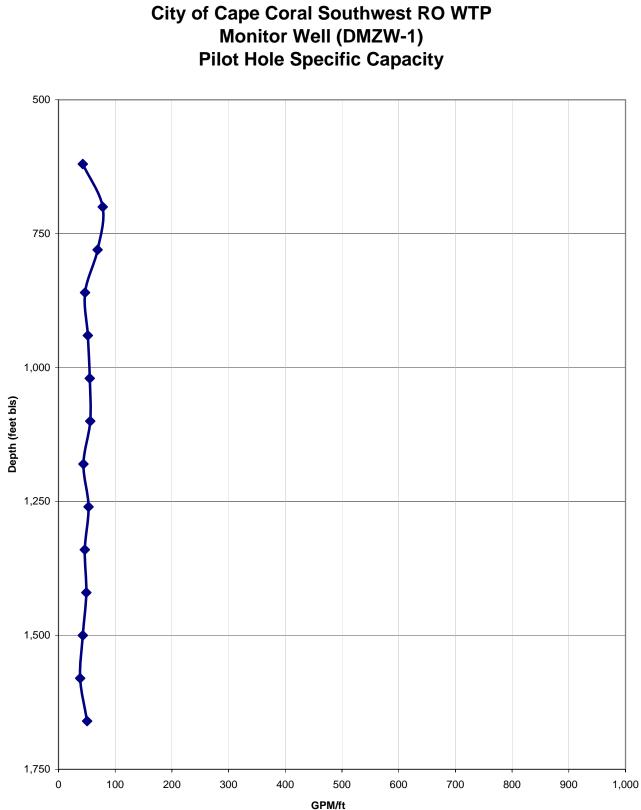
Pilot Hole Specific Capacity

DZMW-1 SPECIFIC CAPACITY TESTING

DURING PILOT HOLE DRILLING

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

JOB NUMBER:	3220269.77010102
CONTRACTOR:	Youngquist Brothers, Inc.
PROJECT MANAGER:	Neil Johnson
OWNER:	City of Cape Coral

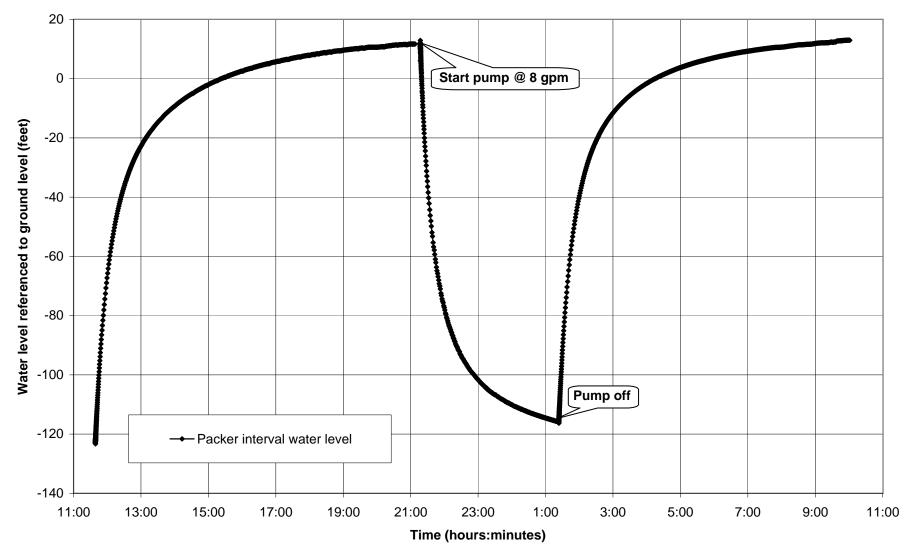

Volume of Tank: 3,00

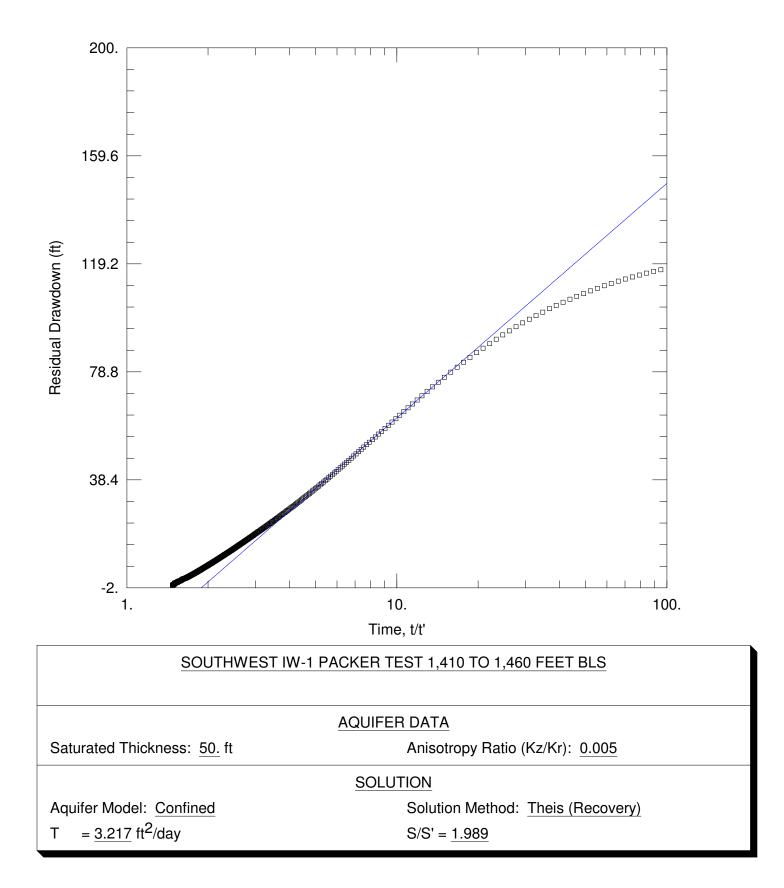
3,000 Gallons

	TIME TO	WELL	WATER	R LEVEL	Δ WATER		SPECIFIC		
DATE	FILL TANK (min)	DEPTH (ft)	STATIC (ft als)	PUMPING (ft als)	LEVEL (ft)	FLOW (gpm)	CAPACITY (gpm/ft)	COMMENTS	OBSERVER'S INITIALS
5/17/2008	14.00	620	-42.4	-47.4	5.0	214	43	manual reading	ABF
5/17/2008	12.00	700	-37.6	-40.8	3.2	250	78	manual reading	МК
5/17/2008	8.00	780	-30.6	-36.0	5.4	375	69	manual reading	МК
5/17/2008	11.00	860	-31.3	-37.1	5.8	273	47	manual reading	ABF
5/17/2008	8.00	940	-31.6	-38.9	7.3	375	52	manual reading	ABF
5/18/2008	7.00	1,020	-30.5	-38.2	7.8	429	55	manual reading	ABF
5/18/2008	7.00	1,100	-28.2	-35.8	7.6	429	56	electric tape	МК
5/18/2008	8.00	1,180	-31.3	-39.8	8.5	375	44	electric tape	МК
5/18/2008	7.00	1,260	-32.9	-41.0	8.1	429	53	electric tape	МК
5/18/2008	7.00	1,340	-29.6	-38.8	9.2	429	46	electric tape	ABF
5/18/2008	6.00	1,420	-28.7	-38.9	10.2	500	49	electric tape	ABF
5/19/2008	7.00	1,500	-28.5	-38.5	10.0	429	43	electric tape	ABF
5/21/2009	8.00	1,580	-28.8	-38.6	9.8	375	38	electric tape	Л
5/22/2008	6.00	1,660	-31.6	-41.5	9.9	500	51	electric tape	Л

NOTES:

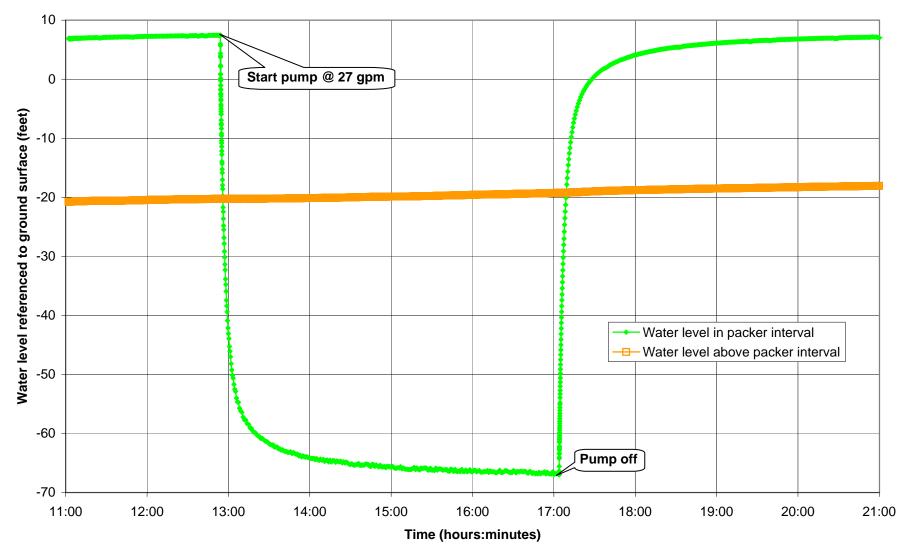
ft - feet ft als - feet above land surface gpm - gallons per minute min - minutes Δ - change

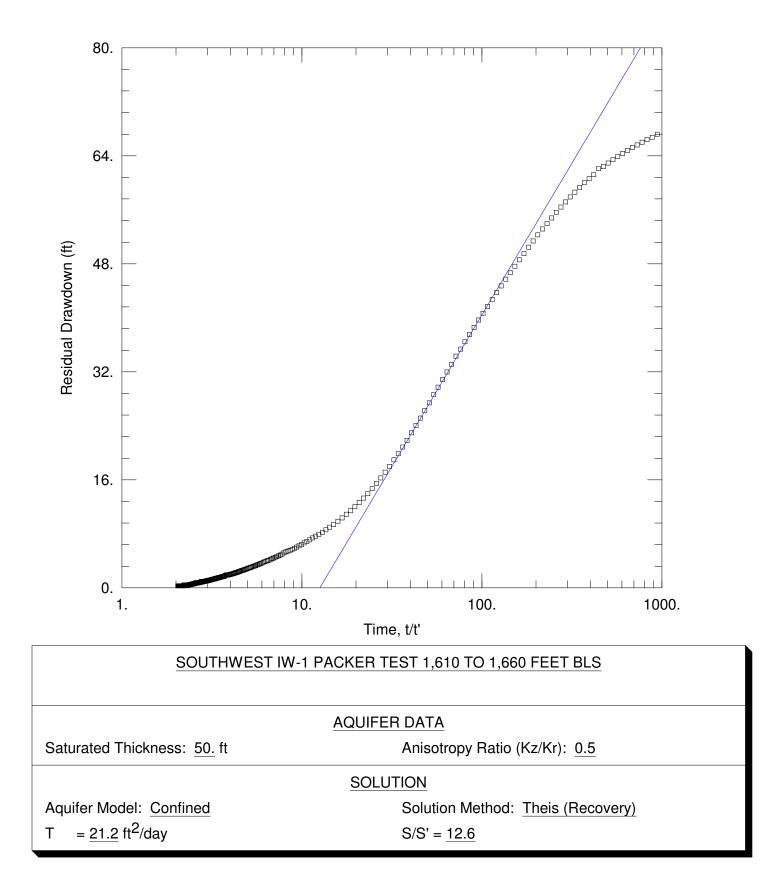

GPIVI/IT



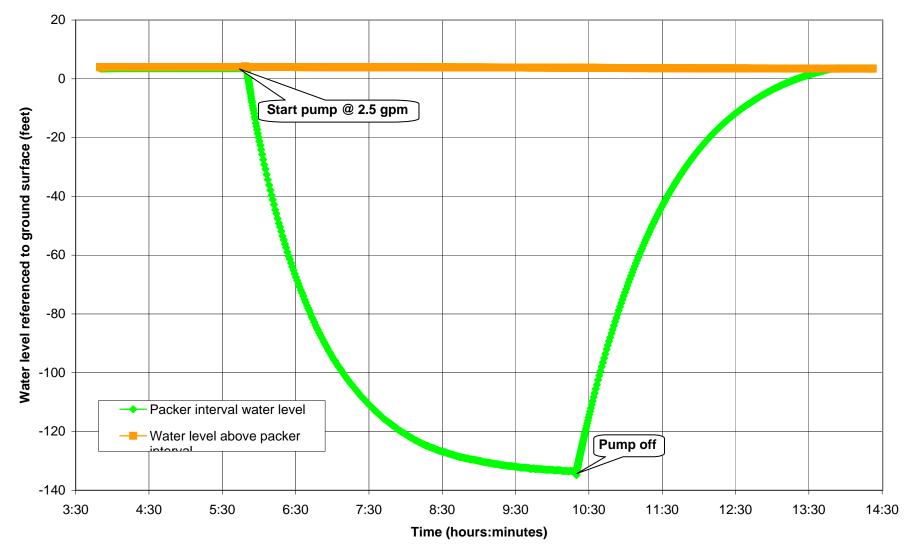
Packer Testing Data and Graphs

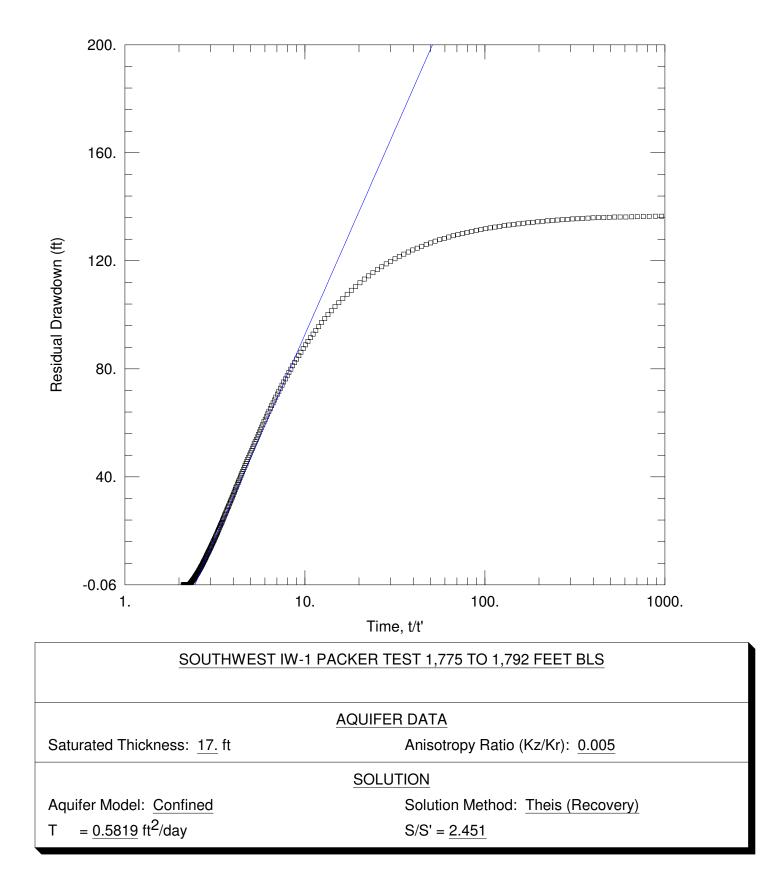
Packer Test - 1,410 to 1,460 feet bls


Southwest IW-1 Packer Test 1,410 to 1,460 feet bls

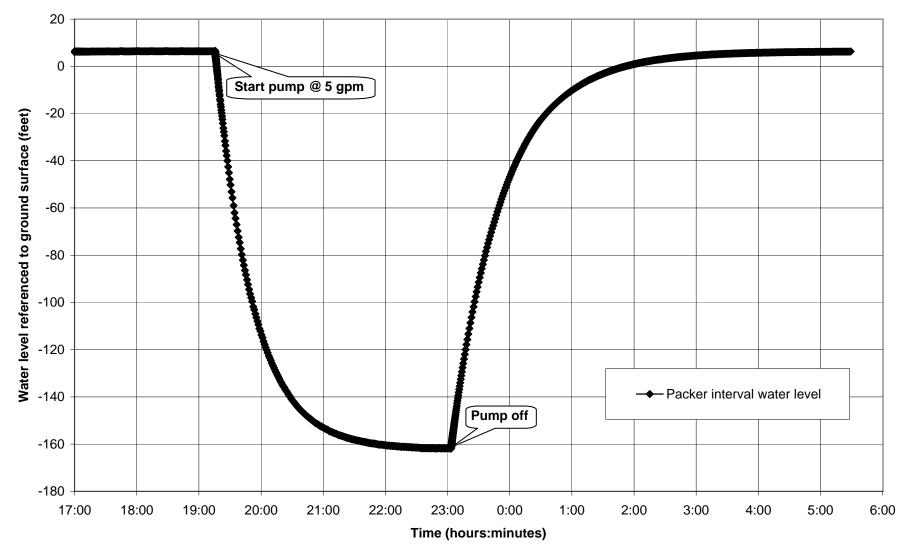


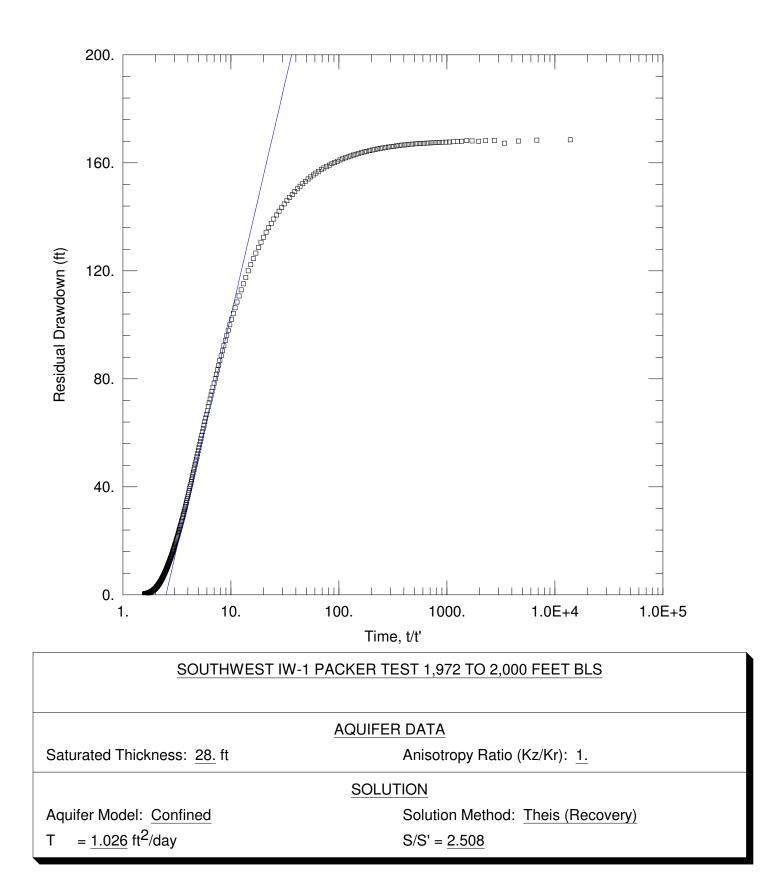
Packer Test - 1,610 to 1,650 feet bls


Southwest IW-1 Packer Test 1,610 to 1,660 Feet bls

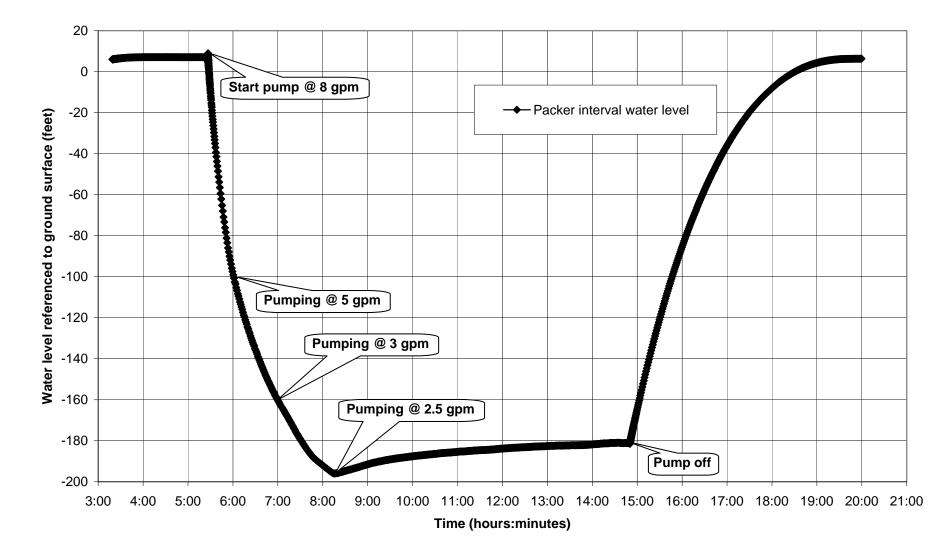


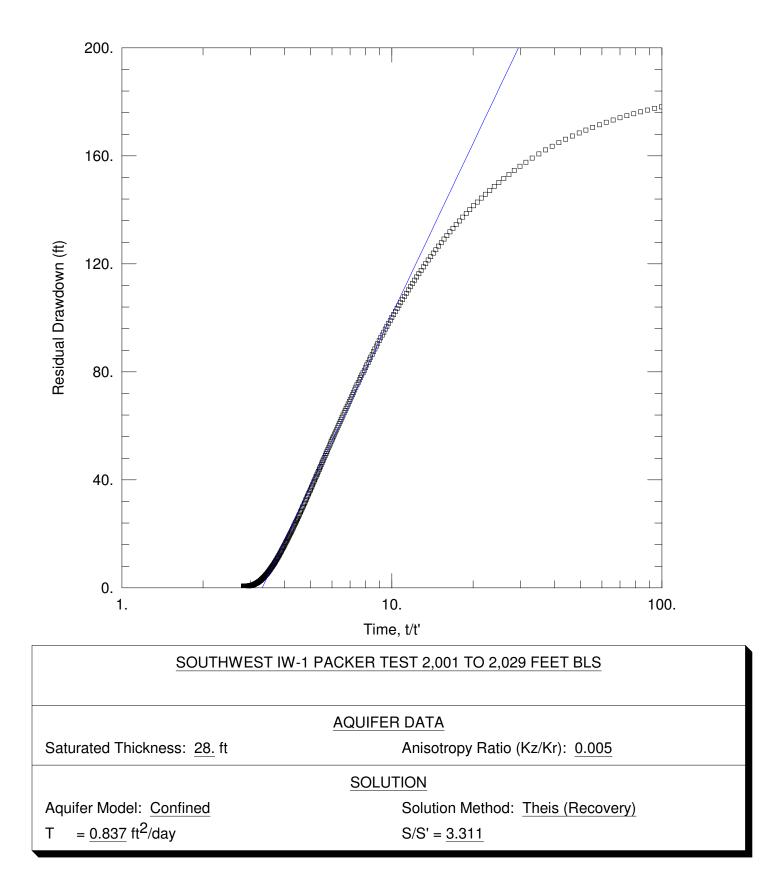
Packer Test – 1,775 to 1,792 feet bls


Southwest IW-1 Packer Test 1,775 to 1,792 feet bls

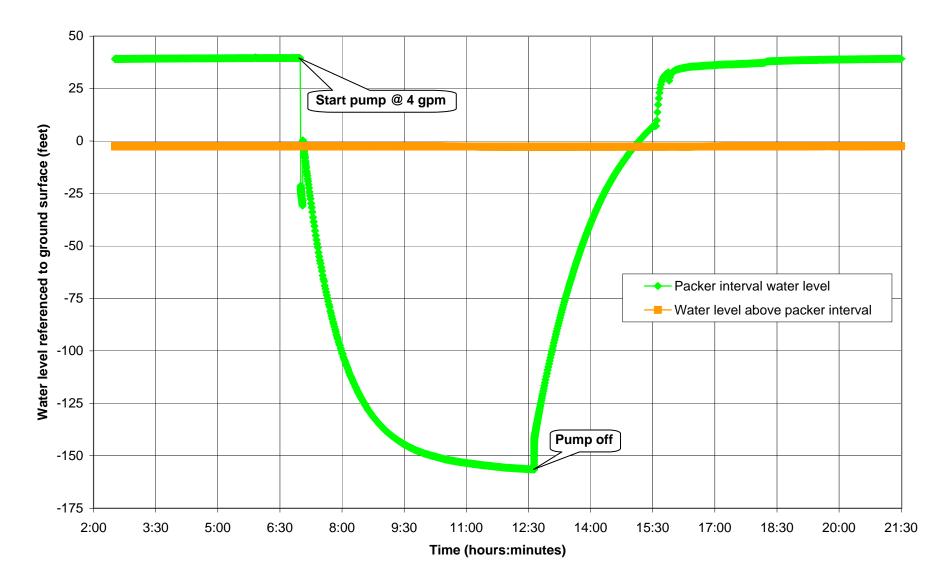


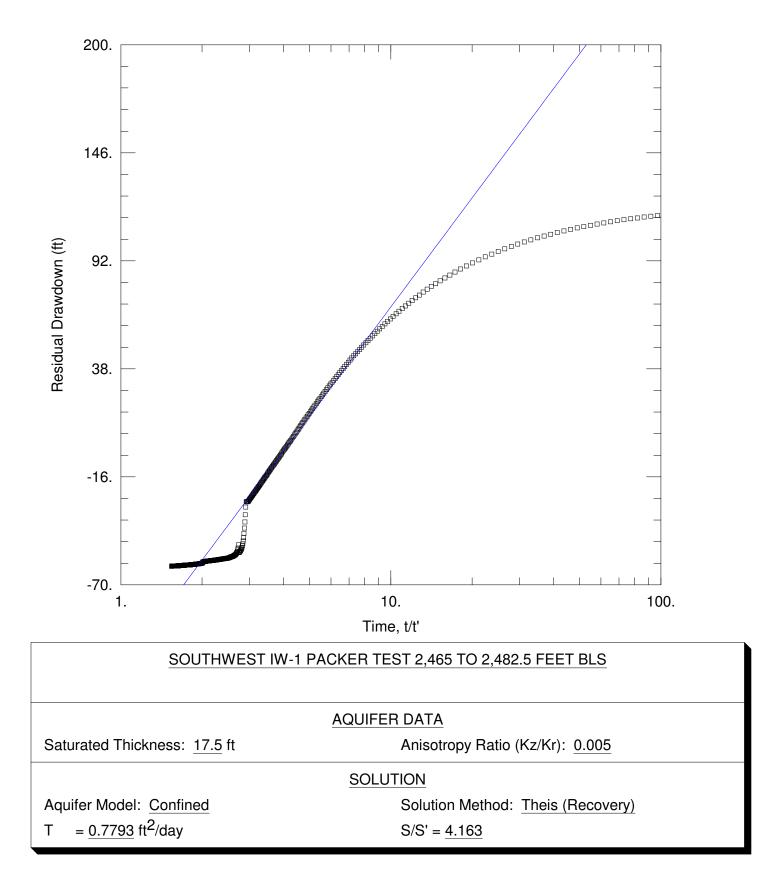
Packer Test – 1,972 to 2,000 feet bls


Southwest IW-1 Packer Test 1,972 to 2,000 feet bls

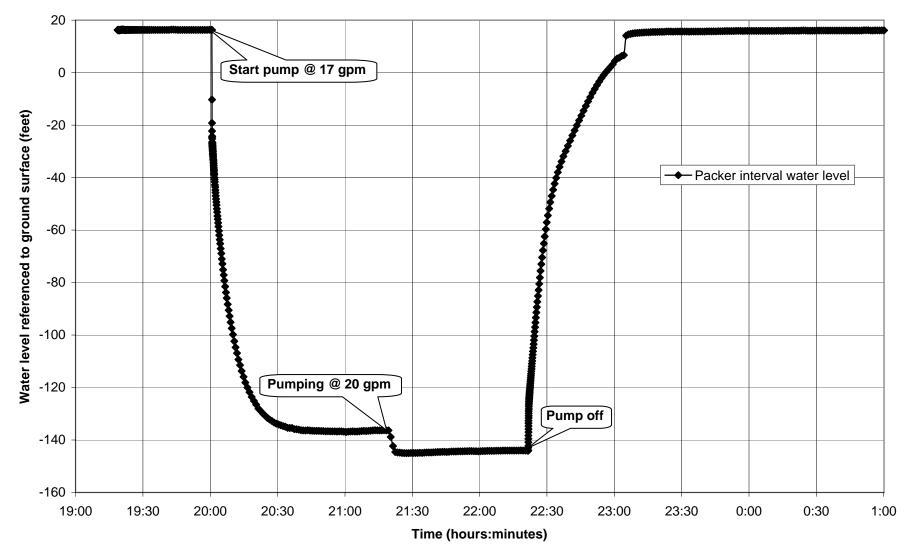


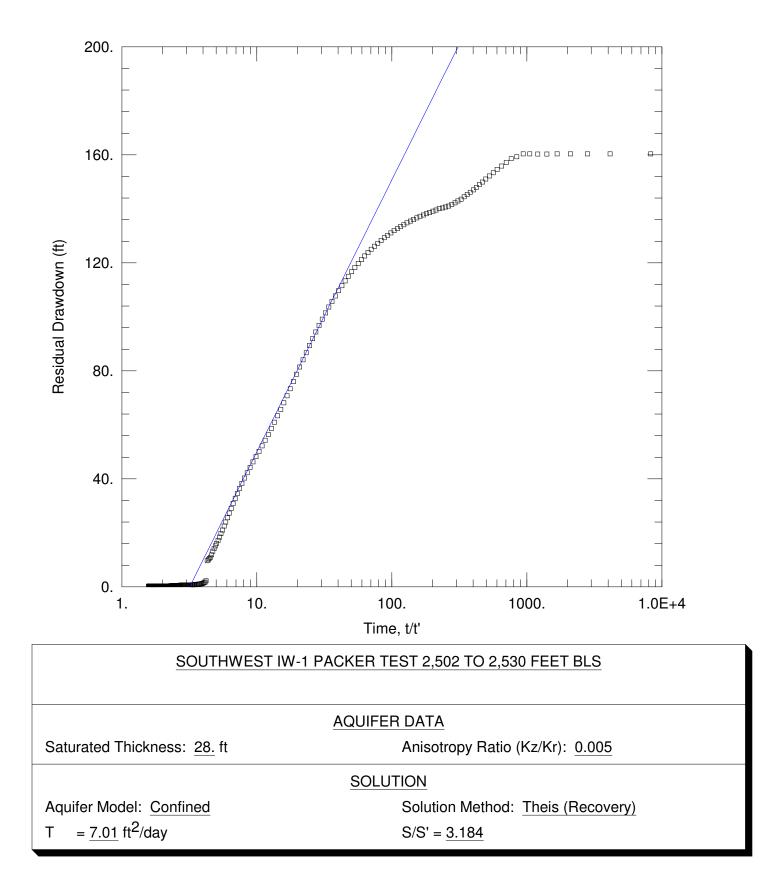
Packer Test – 2,001 to 2,029 feet bls

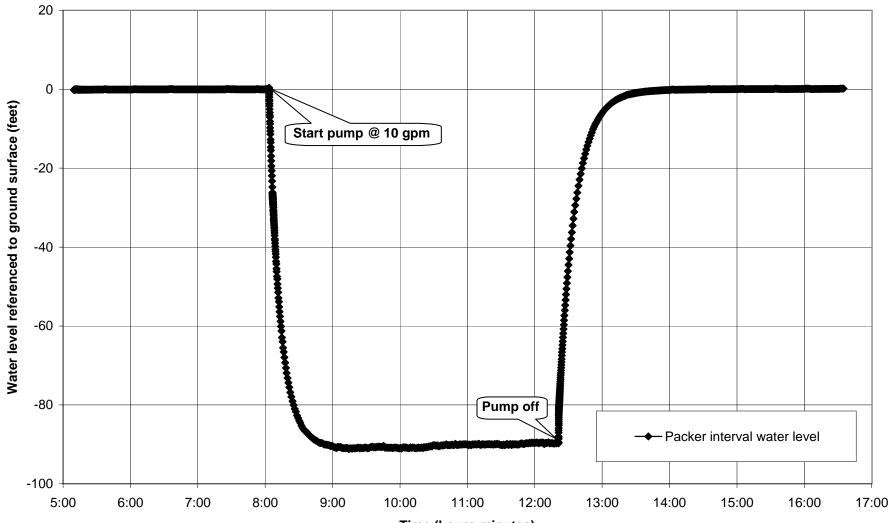

Southwest IW-1 Packer Test 2,001 to 2,029 feet bls



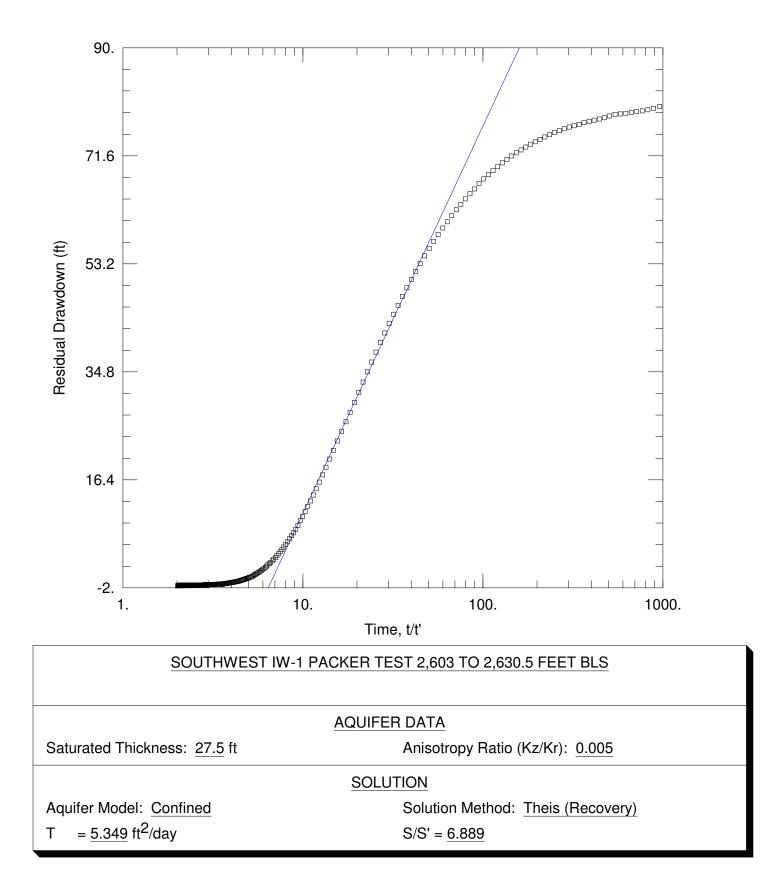
Packer Test - 2,465 to 2,485 feet bls


Southwest IW-1 Packer Test 2,465 to 2,482.5 ft bls

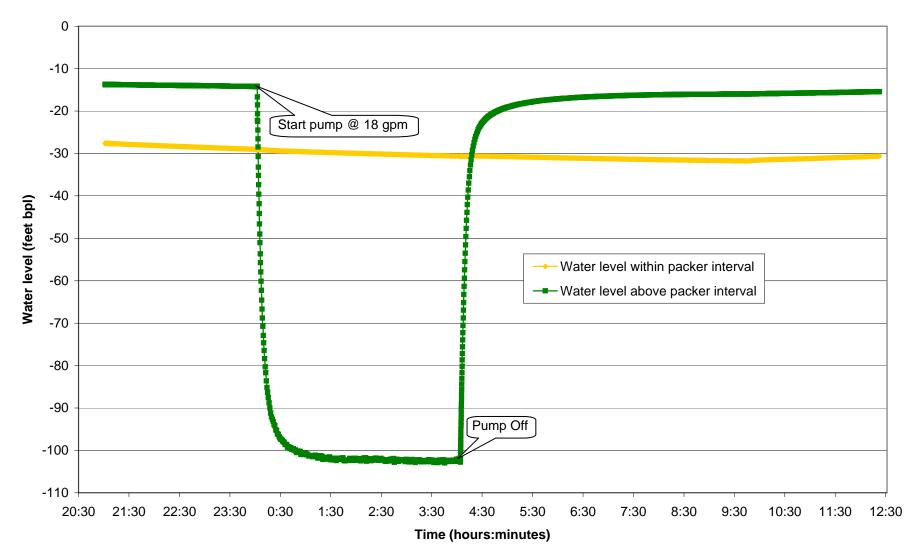


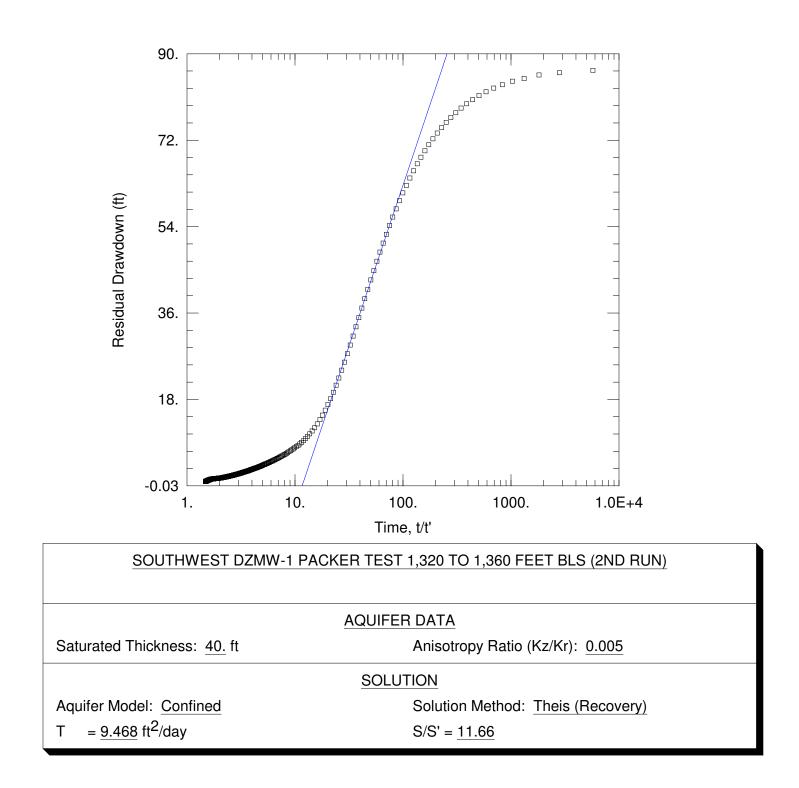

Packer Test - 2,500 to 2,530 feet bls

Southwest IW-1 Packer Test 2,502 to 2,530 feet bls

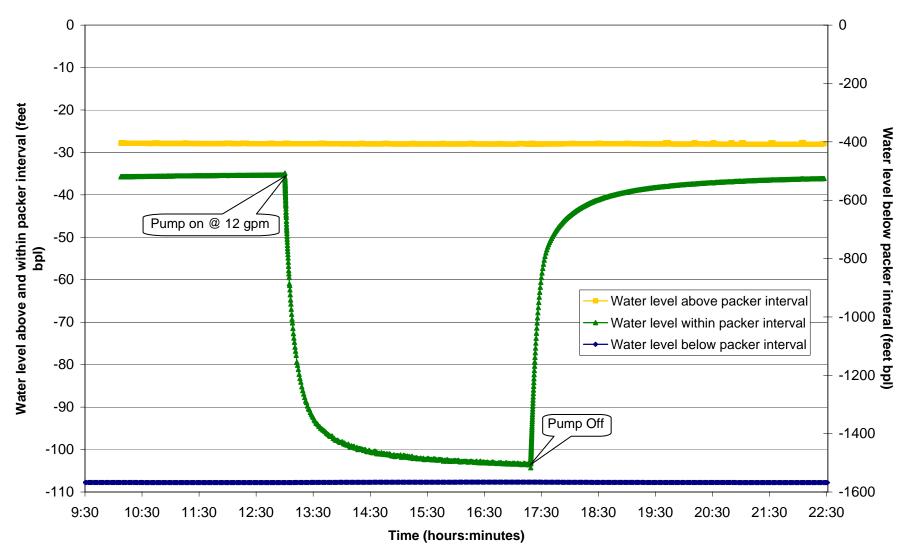


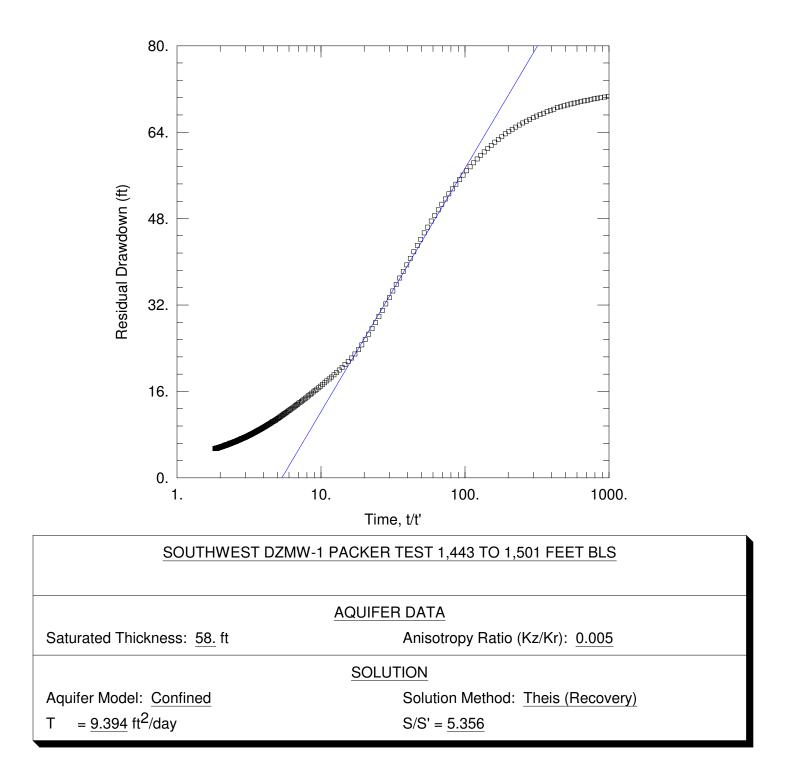
Packer Test - 2,600 to 2,630 feet bls


Southwest IW-1 Packer Test 2,603 to 2,630.5 feet bls

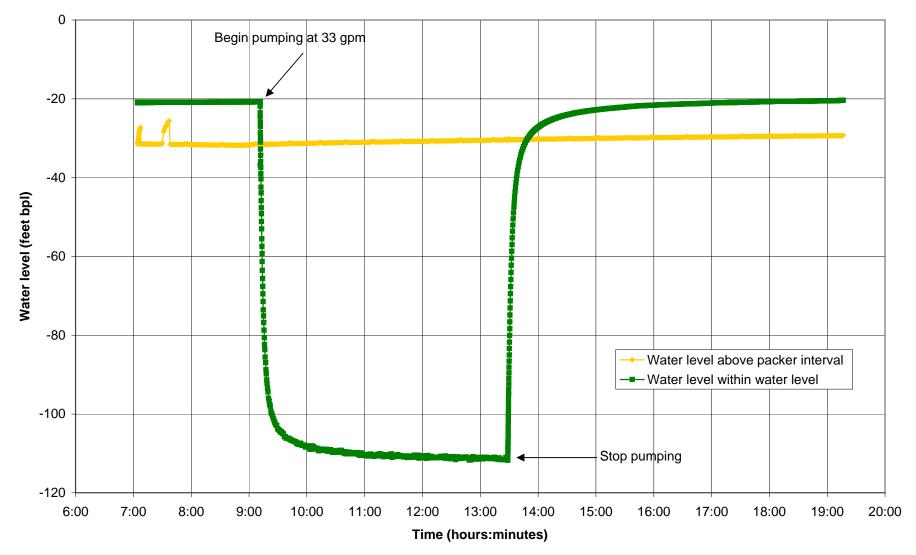

Time (hours:minutes)

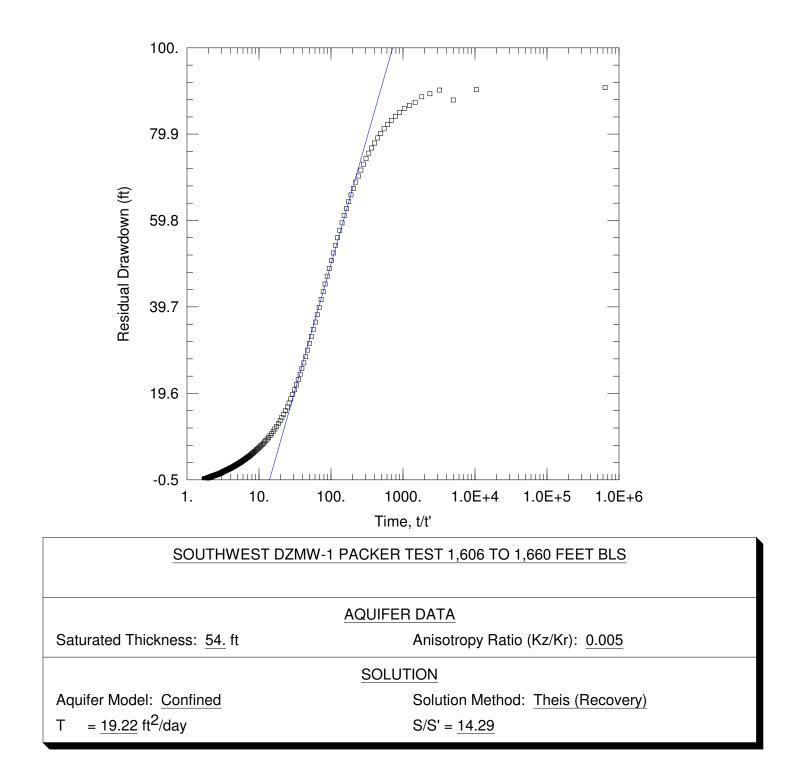
Packer Test – 1,320 to 1,360 feet bls


Southwest DZMW-1 Packer Test 1,320 to 1,360 feet bpl (2nd run)



Packer Test – 1,443 to 1,501 feet bls


Southwest DZMW-1 Packer Test 1,443 to 1,501 feet bpl



Packer Test – 1,606 to 1,660 feet bls

Southwest DZMW-1 Packer Test 1,606 to 1,660 feet bpl

Appendix J

Packer Testing Water Quality Laboratory Results

Packer Test 1,410 – 1,460

Lab Project #: F0711034

Client: Youngquist Brothers, Inc. 15465 Pine Ridge Road

Ft. Myers, FL 33908

Phone:239-489-4444Fax:239-489-4545E-mail:SW CapeCoralClient Project Name:SW CapeCoralLaboratory Contact:Andy Konopacki

Page 1 of 3

All subsequent pages are identified by: F0711034. These pages may include, but are not limited to: Analytical Data, Chains of Custodys, Subcontracted Data and Case Narratives.

QUALIFIER DEFINITIONS

- B: Results based upon colony counts outside the acceptable range.
- I: The reported value is between the laboratory MDL and the laboratory PQL.
- J3: The reported value failed to meet the established quality control criteria.
- J4: The sample matrix interfered with the ability to make an accurate determination.
- J5: The data is questionable because of improper lab or field protocols.
- K: Off scale low, actual value is less than the value given.
- L: Off scale high, actual value is known to be greater than the value given.
- Q: Sample held beyond acceptable holding time.
- U: The compound was analyzed for, but not detected.
- V: The analyte was detected in both the sample and the associated method blank.
- Y: The sample was unpreserved or improperly preserved.
- Z: Too many colonies present (TNTC).
- ** This result does not meet NELAC standards.

HACH results may not meet NELAC standards.

A statement of estimated uncertainty of results is available upon request.

Analytical results provided relate only to the samples received for this project.

Laboratory report shall not be reproduced except in full, without the written approval of Sanders Laboratories.

Sanders Laboratories follows DEP standard operating procedures for field sampling.

Laboratory PQL's are available upon request.

Reports are archived for a minimum of 5 years. Copies of reports which are less than 1 year old are available for a fee of \$25.00 per report. Reports older than 1 year are available for a fee of \$50.00 per report. Copies will be provided within 1 week of the time of the request.

Nokomis Lab ~ 1050 Endeavor Ct. ~ Nokomis, FL 34275-3623 ~ Phone: 941-488-8103 ~ Fax: 941-484-6774 ~ HRS Certification # E84380 Fort Myers Lab ~ 16880 Gator Road ~ Fort Myers, FL 33912 ~ Phone: 239-590-0337 ~ Fax: 239-590-0536 ~ HRS Certification # E85457

Client Project: SW CapeCoral Lab Project: F0711034 Report Date: 11/05/07

Laboratory Results

Youngquist Brothers, Inc. 15465 Pine Ridge Road Ft. Myers, FL 33908

F0711034-01 S	ample Descripti TRADDLE #2 1410- RAB			Sample Source Ground Water		Received Date/Time	Sample Date/Time 11/1/07 1:17		
<u>Analysis</u>	Method	<u>Results</u>	<u>Qual</u>	Detection Limit	<u>Units</u>	AnalysisDate/Time	<u>Analyst</u>	<u>Cert ID</u>	
Ammonia	SM4500-NH3-D	0.52		0.05	mg/L as N	11/2/07 12:15	AG	E84380	
Chloride	SM4500CI-B	1180		1	mg/L	11/5/07 9:00	BB	E84380	
Nitrogen, Total	351.2	0.58	J3	0.10	mg/L as N	11/5/07 8:11	BY	E84380	
Kjeldahl pH	SM4500H-B	8.06	Q	0.01	std units	11/5/07 11:40	AK	E84380	
Specific Conductivity	SM2510B	3950		0.1	µmhos/cm	11/2/07 13:30	BB	E84380	
Sulfate	ASTM-D516-90	351		2	mg/L	11/2/07 15:10	BB	E84380	
Total Dissolved Solids	SM2540C	2770		20	mg/L	11/2/07 14:15	AS	E84380	

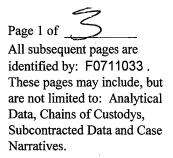
Approved by: Kathrine Bartkiewicz/Lab Manage Fort Myers Andrew Konopacki/Lab Manager Nokomis

Comments:

			CHAI	N-OF-	CUST	OD	Y	RE	COF	RD			PRO	JEC	r [117	211]
	Sande	· ·					-							#	Ļ	<u>T (</u>	<u> </u>	- 1-2	134	
	Laborat																I	Page		of
Address	on FILE	Esting Services	Bill 1 P.O. Proje	ort To: <u> </u> To: # ect Name	31 278	01	\				-		Ci Fi Ki	ustom eld Ri t #	ner Ty eport	pe: _ #:				
	d By (PRINT)	Fax 07 989 9345	Proje	ect Locati	on: <u>2</u> X		<u> </u>			- <u>-</u>			/==>	<u> </u>				E: <u> </u> 	12/0	<u>7</u>
JA Sample	Y SWARTZEN r Signature			Sample	9						ALYSE QUES			ŢË Į						,
Bottle #	SAMPLE DES	CRIPTION	DATE	TIME	TYPE	빙		ONH	ਤੂਂ 🏹		€/	2/4	74		\square	[-[Sal It	mple D#
12	TRADDLE #2	1410-1460	11/07	0117	GW	X	\perp				<u>v v</u>		\checkmark			~			014	4
15	TRADDLE #2	1410 - 1460	11/107	5110	GW	×						V							010	3
		·····																		
		· · · · · · · · · · · · · · · · · · ·	<u> </u>																	
														T						-13
Bottle Lo #)t			RELINO	JISHED B	Y / Af	FIL	ATIO	N	DA	TE	TIME	ACC	EPTE	D BY ,	/ AFFi	LIATIC	ON	DATE	TIME
			ain	ref	natu	10	a	×	lı	11/2	107	75·3		4162	_ L	B	sut	0r-1	11-2:07	6530
	COMMENTS	AS IS	DAY	ELL	Bue	scat	¢¢,			12	-57	130	An	ael		1-0	ara	balk	11-2-07	0230
	EMAIL:	CLIENT INITIAL:	Aar	y Q	~ (/c	0	U	Q	-	11/2	67	300	. (C	ل	Λ	-		11.2	800
	SWARTZJAY	ACL. COM ON ICE * Yes No	KK	ŧ.	\sim			×1-		1 /		1.70) Y		1	<u>]`</u>		2	11/or	11:75
l	THE TR				/.	<u> </u>		<u>a</u>			sr	N=3/	\square	\mathcal{M}	<u>L</u>	Ż	Kr_		19407	1235

1050 Endeavor Ct., Nokomis, FL 34275-3623 • (941)488-8103 • FAX 484-6774 •

16880 Gator Road, Fort Myers, FL 33912 • (239) 590-0337 • FAX (239) 590-0536


Packer Test 1,610 – 1,660

Lab Project #: F0711033 Client: Younaguist

Youngquist Brothers, Inc. 15465 Pine Ridge Road

Ft. Myers, FL 33908

Phone:239-489-4444Fax:239-489-4545E-mail:SW CapeCoralClient Project Name:SW CapeCoralLaboratory Contact:Andy Konopacki

QUALIFIER DEFINITIONS

- B: Results based upon colony counts outside the acceptable range.
- I: The reported value is between the laboratory MDL and the laboratory PQL.
- J3: The reported value failed to meet the established quality control criteria.
- J4: The sample matrix interfered with the ability to make an accurate determination.
- J5: The data is questionable because of improper lab or field protocols.
- K: Off scale low, actual value is less than the value given.
- L: Off scale high, actual value is known to be greater than the value given.
- Q: Sample held beyond acceptable holding time.
- U: The compound was analyzed for, but not detected.
- V: The analyte was detected in both the sample and the associated method blank.
- Y: The sample was unpreserved or improperly preserved.
- Z: Too many colonies present (TNTC).
- ** This result does not meet NELAC standards.

HACH results may not meet NELAC standards.

A statement of estimated uncertainty of results is available upon request.

Analytical results provided relate only to the samples received for this project.

Laboratory report shall not be reproduced except in full, without the written approval of Sanders Laboratories.

Sanders Laboratories follows DEP standard operating procedures for field sampling.

Laboratory PQL's are available upon request.

Reports are archived for a minimum of 5 years. Copies of reports which are less than 1 year old are available for a fee of \$25.00 per report. Reports older than 1 year are available for a fee of \$50.00 per report. Copies will be provided within 1 week of the time of the request.

Nokomis Lab ~ 1050 Endeavor Ct. ~ Nokomis, FL 34275-3623 ~ Phone: 941-488-8103 ~ Fax: 941-484-6774 ~ HRS Certification # E84380 Fort Myers Lab ~ 16880 Gator Road ~ Fort Myers, FL 33912 ~ Phone: 239-590-0337 ~ Fax: 239-590-0536 ~ HRS Certification # E85457

Client Project: SW CapeCoral Lab Project: F0711033 Report Date: 11/05/07

Laboratory Results

Youngquist Brothers, Inc. 15465 Pine Ridge Road Ft. Myers, FL 33908

F0711033-01	0711033-01 STRADDLE #1 1610-1650 GRAV			Sample Source Ground Water		Received Date/Time 11/2/07 8:05	Sample Date/Time 10/30/07 16:55		
<u>Analysis</u>	Method	Results	<u>Qual</u>	Detection Limit	<u>Units</u>	AnalysisDate/Time	<u>Analyst</u>	<u>Cert ID</u>	
Ammonia	SM4500-NH3-D	0.52		0.05	mg/L as N	11/2/07 12:15	AG	E84380	
Chloride	SM4500C1-B	17200		1	mg/L	11/5/07 9:00	BB	E84380	
Nitrogen, Total	351.2	0.83	J3	0.10	mg/L as N	11/5/07 8:11	BY	E84380	
Kjeldahl pH	SM4500H-B	7.20	Q	0.01	std units	11/5/07 11:40	AK	E84380	
Specific Conductivity	SM2510B	39000		0.1	µmhos/cm	11/2/07 13:30	BB	E84380	
Sulfate	ASTM-D516-90	1840		2	mg/L	11/2/07 15:10	BB	E84380	
Total Dissolved Solids	SM2540C	28600		20	mg/L	11/2/07 14:15	AS	E84380	

Approved by: ab Manager Fort Myers Kathrine Bartki vicz/ Andrew Koropacki/Lab Manager Nokomis

Comments: Total Dissolved Solids result is preliminary, final result will be available Tuesday the 6th.

Packer Test 1,775 – 1,792

Sanders Laboratories INC. Environmental Testing Services	CHAIN-OF-CUSTODY RECORD	PROJECT					
Client <u>YBI</u> Address <u>on File</u> Phone <u>239-489-4444</u> Fax <u>239-489-4545</u>	Report To: Mary Beth, JAY, Weil Bill To: <u>VBI</u> PO. # Project Name <u>278011</u> Project Location: SW Cape Cosa	Sample Supply: Customer Type: Field Report #: Kit # REQUESTED DUE DATE: _11/[2/07]					
Sampled By (PRINT) JAN Swartzen fruber Sampler Signature Bottle: # Bottle: # Bottle: #	PRESERVATIVES ANALYSES Sample Image: Second second	Alt of Alt Alt Alt Alt Alt Alt Alt Alt Alt Alt					
STRADDIE 1 1610-1650 1 11 11 1610-1650	1030014.55 GW ~ M V	V 01A 01B					
Bottle Lot # COMMENTS: OKAY TO RUN	aFratarcamer 11/2/07/05	ME ACCEPTED BY/AFFILIATION DATE TIME 30 DANIEL L. BUSCHOL 11.207 0000					
COMMENTS: Eraa. 1 Swartzjery CACI-COM T2 HR TAT	Donniel L. Bischor 112/07 a Dingl A- Cully 112/02 08 R. H. 11/2/07 11 0 1 1 11/4 11	30 9 - 1					

٠

1050 Endeavor Ct., Nokomis, FL 34275-3623 • (941)488-8103 • FAX 484-6774

16880 Gator Road, Fort Myers, FL 33912 • (239) 590-0337 • FAX (239) 590-0536

Lab Project #: Client:	N0801059 Youngquist Brothers, Inc. 15465 Pine Ridge Road Ft. Myers, FL 33908	Page 1 of All subsequent pages are identified by: N0801059. These pages may include, but are not limited to: Analytical Data, Chains of Custodys,
Phone:	239-489-4444	Subcontracted Data and Case
Fax: E-mail:	239-489-4545	Narratives.
Client Project Nam Laboratory Contac		

QUALIFIER DEFINITIONS

- B: Results based upon colony counts outside the acceptable range.
- I: The reported value is between the laboratory MDL and the laboratory PQL.
- J3: The reported value failed to meet the established quality control criteria.
- J4: The sample matrix interfered with the ability to make an accurate determination.
- J5: The data is questionable because of improper lab or field protocols.
- K: Off scale low, actual value is less than the value given.
- L: Off scale high, actual value is known to be greater than the value given.
- Q: Sample held beyond acceptable holding time.
- U: The compound was analyzed for, but not detected.
- V: The analyte was detected in both the sample and the associated method blank.
- Y: The sample was unpreserved or improperly preserved.
- Z: Too many colonies present (TNTC).

** This result does not meet NELAC standards.

HACH results may not meet NELAC standards.

A statement of estimated uncertainty of results is available upon request.

Analytical results provided relate only to the samples received for this project.

Laboratory report shall not be reproduced except in full, without the written approval of Sanders Laboratories.

Sanders Laboratories follows DEP standard operating procedures for field sampling.

Laboratory PQL's are available upon request.

Reports are archived for a minimum of 5 years. Copies of reports which are less than 1 year old are available for a fee of \$25.00 per report. Reports older than 1 year are available for a fee of \$50.00 per report. Copies will be provided within 1 week of the time of the request.

Nokomis Lab ~ 1050 Endeavor Ct. ~ Nokomis, FL 34275-3623 ~ Phone: 941-488-8103 ~ Fax: 941-484-6774 ~ HRS Certification # E84380 Fort Myers Lab ~ 16880 Gator Road ~ Fort Myers, FL 33912 ~ Phone: 239-590-0337 ~ Fax: 239-590-0536 ~ HRS Certification # E85457

Client Project: South Cape Coral Lab Project: N0801059 Report Date: 01/06/08

Laboratory Results

Youngquist Brothers, Inc. 15465 Pine Ridge Road Ft. Myers, FL 33908

Lab ID N0801059-01	Sample Descripti Packer Test grab	ion	1. L	Ground Water		Received Date/Time 1/4/08 17:15	Sample Date/Time 1/4/08 14:55		
<u>Analysis</u>	<u>Method</u>	<u>Results</u>	<u>Qual</u>	Detection Limit	<u>Units</u>	AnalysisDate/Time	<u>Analyst</u>	<u>Cert ID</u>	
Ammonia	SM4500-NH3-D	0.26		0.05	mg/L as N	1/6/08 9:00	AG	E84380	
Chloride	SM4500C1-B	12800		1	mg/L	1/4/08 17:30	BB	E84380	
Nitrogen, Total	EPA351.2	0.31	I,J3	0.10	mg/L as N	1/5/08 9:36	BB	E84380	
Kjeldahl pH	SM4500H-B	7.24	Q	0.01	std units	1/4/08 18:05	AS	E84380	
Specific Conductivity	SM2510B	42000		0.1	µmhos/cm	1/5/08 8:15	BB	E84380	
Sulfate	ASTM-D516-90	1960		2	mg/L	1/4/08 17:42	AG	E84380	
Total Dissolved Solids	S SM2540C	21800		20	mg/L	1/4/08 17:30	AS	E84380	

Comments:

Approved by: Kathrine Bartkiewicz/La Magager Fort Myers ndrew Konopacki/Lab Manager Nokomis

	Sanders Laboratorie Environmental Testing	S INC.	СНА	IN-OF-	-CUST	TOE	ΟY	REC	COF	D			PRO. #		1	70			103	59 lof_1
Client Your	gqvist Bros		Report To: Maeybeth Bill To: P.O. # Project Name Project Location: CAPE Loce J - Scothwest						Sample Supply:											
Sampled By (PRINT) Clicit Sampler Signature Bottle SAMPLE DESCRIPTION # Pack and Test				PRESERVATIVES ANALYSES Sample Image: second					0/											
Bottle Lot	COMMENTS:	OKAY TO RUN AS IS CLIENT INITIAL: SAMPLES ON ICE (es) No		RELING	UISHED E + JZCY			ATION		1.પ		тіме 610 715		РТЕР						TIME 1620 1715

1050 Endeavor Ct., Nokomis, FL 34275-3623 • (941)488-8103 • FAX 484-6774 • 16880 Gator Road, Fort Myers, FL 33912 • (239) 590-0337 • FAX (239) 590-0536

Packer Test 1,973 – 2,000

Lab Project #: Client:	N0712451 Youngquist Brothers, Inc. 15465 Pine Ridge Road Ft. Myers, FL 33908	Page 1 of All subsequent pages are identified by: N0712451. These pages may include, but are not limited to: Analytical
Phone: Fax: E-mail: Client Project Nan Laboratory Conta		Data, Chains of Custodys, Subcontracted Data and Case Narratives.

QUALIFIER DEFINITIONS

- B: Results based upon colony counts outside the acceptable range.
- I: The reported value is between the laboratory MDL and the laboratory PQL.
- J3: The reported value failed to meet the established quality control criteria.
- J4: The sample matrix interfered with the ability to make an accurate determination.
- J5: The data is questionable because of improper lab or field protocols.
- K: Off scale low, actual value is less than the value given.
- L: Off scale high, actual value is known to be greater than the value given.
- Q: Sample held beyond acceptable holding time.
- U: The compound was analyzed for, but not detected.
- V: The analyte was detected in both the sample and the associated method blank.
- Y: The sample was unpreserved or improperly preserved.
- Z: Too many colonies present (TNTC).
- ** This result does not meet NELAC standards.
- HACH results may not meet NELAC standards.

A statement of estimated uncertainty of results is available upon request.

Analytical results provided relate only to the samples received for this project.

Laboratory report shall not be reproduced except in full, without the written approval of Sanders Laboratories.

Sanders Laboratories follows DEP standard operating procedures for field sampling.

Laboratory PQL's are available upon request.

Reports are archived for a minimum of 5 years. Copies of reports which are less than 1 year old are available for a fee of \$25.00 per report. Reports older than 1 year are available for a fee of \$50.00 per report. Copies will be provided within 1 week of the time of the request.

Nokomis Lab ~ 1050 Endeavor Ct. ~ Nokomis, FL 34275-3623 ~ Phone: 941-488-8103 ~ Fax: 941-484-6774 ~ HRS Certification # E84380 Fort Myers Lab ~ 16880 Gator Road ~ Fort Myers, FL 33912 ~ Phone: 239-590-0337 ~ Fax: 239-590-0536 ~ HRS Certification # E85457

Client Project: South Cape Coral Lab Project: N0712451 Report Date: 01/02/08

Laboratory Results

Youngquist Brothers, Inc. 15465 Pine Ridge Road Ft. Myers, FL 33908

<u>Lab ID</u> N0712451-01	Sample Description Packer Test #4			Ground Water		Received Date/Time . 12/31/07 10:45	Sample Date/Time 12/29/07 23:00		
Analysis	grab <u>Method</u>	<u>Results</u>	<u>Qual</u>	Detection Limit	<u>Units</u>	AnalysisDate/Time	<u>Analyst</u>	<u>Cert ID</u>	
Ammonia	SM4500-NH3-D	0.20		0.05	mg/L as N	12/31/07 12:00	AG	E84380	
Chloride	SM4500C1-B	18000		1	mg/L	12/31/07 12:20	BB	E84380	
Nitrogen, Total	EPA351.2	0.37	I	0.10	mg/L as N	12/31/07 15:55	BB	E84380	
Kjeldahl pH	SM4500H-B	6.74	Q	0.01	std units	12/31/07 12:00	BB	E84380	
Specific Conductivity	SM2510B	49500		0.1	µmhos/cm	12/31/07 12:15	BB	E84380	
Sulfate	ASTM-D516-90	2940		2	mg/L	12/31/07 12:51	AG	E84380	
Total Dissolved Solids	s SM2540C	29400		20	mg/L	12/31/07 14:40	AG	E 8 4380	

Approved by: Kathrine Barthewicz/Lab Manager Fort Myers Angrew Kongkacki/ab Manager Nokomis

Comments:

Sanders Laboratories INC. Environmental Testing Services	CHAIN-OF-CUSTODY RECORD PROJECT # 2780// # N0712451 N0712451 Page_/_of_/
Client Young@uist Brothers Inc_ Address 15465 Pine Ridge Rd. Ft. Myers FL. Phone 239-910-6327 Fax 239-489-4545	Project Name SWCC Kit # F Project Location: Capt Coral REQUESTED DUE DATE: ASAP 1/10
Sampled By (PRINT) Sampler Signature Bottle # Packer test # 4	PRESERVATIVES ANALYSES yut
Bottle Lot # C = 512602iL 7 = 124 = 001, COMMENTS: 7 = 124 = 001, COMMENTS: 7 = 124 = 001, COMMENTS: 7 = 124 = 001, COMMENTS: 6 = A = PH, Cond, C1 = , TDS, SOV CLIENT INITIAL: SAMPLES ONICE Yes No	RELINQUISHED BY / AFFILIATION DATE TIME ACCEPTED BY / AFFILIATION DATE TIME Show many 12/30/07 13:15 Harzey Rook 123007 13/5 Harzy CROOK 123/07 1045 March 12/3/07 1045

Packer Test 2,001 – 2,029

Lab Project #: N0712414 Client: Youngquist Brothers, Inc. 15465 Pine Ridge Road

Ft. Myers, FL 33908

Phone:239-489-4444Fax:239-489-4545E-mail:South Cape CoralClient Project Name:South Cape CoralLaboratory Contact:Andy Konopacki

Page 1 of

All subsequent pages are identified by: N0712414. These pages may include, but are not limited to: Analytical Data, Chains of Custodys, Subcontracted Data and Case Narratives.

QUALIFIER DEFINITIONS

- B: Results based upon colony counts outside the acceptable range.
- I: The reported value is between the laboratory MDL and the laboratory PQL.
- J3: The reported value failed to meet the established quality control criteria.
- J4: The sample matrix interfered with the ability to make an accurate determination.
- J5: The data is questionable because of improper lab or field protocols.
- K: Off scale low, actual value is less than the value given.
- L: Off scale high, actual value is known to be greater than the value given.
- Q: Sample held beyond acceptable holding time.
- U: The compound was analyzed for, but not detected.
- V: The analyte was detected in both the sample and the associated method blank.
- Y: The sample was unpreserved or improperly preserved.
- Z: Too many colonies present (TNTC).
- ** This result does not meet NELAC standards.

HACH results may not meet NELAC standards.

A statement of estimated uncertainty of results is available upon request.

Analytical results provided relate only to the samples received for this project.

Laboratory report shall not be reproduced except in full, without the written approval of Sanders Laboratories.

Sanders Laboratories follows DEP standard operating procedures for field sampling.

Laboratory PQL's are available upon request.

Reports are archived for a minimum of 5 years. Copies of reports which are less than 1 year old are available for a fee of \$25.00 per report. Reports older than 1 year are available for a fee of \$50.00 per report. Copies will be provided within 1 week of the time of the request.

Nokomis Lab ~ 1050 Endeavor Ct. ~ Nokomis, FL 34275-3623 ~ Phone: 941-488-8103 ~ Fax: 941-484-6774 ~ HRS Certification # E84380 Fort Myers Lab ~ 16880 Gator Road ~ Fort Myers, FL 33912 ~ Phone: 239-590-0337 ~ Fax: 239-590-0536 ~ HRS Certification # E85457

Client Project: South Cape Coral Lab Project: N0712414 **Report Date:** 12/28/07

Laboratory Results

Youngquist Brothers, Inc. 15465 Pine Ridge Road Ft. Myers, FL 33908

N0712414-01	Sample Descripti Packer Test #3 grab	lon	19 and 19 and 19 Angle States Angle States Angle States	Sample Source Ground Water		Received Date/Time 12/27/07 16:05		ple Date/Time 2/27/07 13:50
<u>Analysis</u>	Method	<u>Results</u>	<u>Qual</u>	Detection Limit	<u>Units</u>	AnalysisDate/Time	<u>Analyst</u>	<u>Cert ID</u>
Ammonia	SM4500-NH3-D	0.15	Ι	0.05	mg/L as N	12/28/07 9:30	AG	E84380
Chloride	SM4500CI-B	17600		1	mg/L	12/28/07 13:45	BB	E84380
Nitrogen, Total Kjeldahl	EPA351.2	0.35	Ι	0.10	mg/L as N	12/28/07 10:36	BB	E84380
pH	SM4500H-B	6.55	Q	0.01	std units	12/27/07 17:00	AG	E84380
Specific Conductivity	SM2510B	51200		0.1	µmhos/cm	12/28/07 11:15	BB	E84380
Sulfate	ASTM-D516-90	2360		2	mg/L	12/27/07 17:03	AG	E84380
Total Dissolved Solids	SM2540C	29100		20	mg/L	12/27/07 16:00	AS	E84380

Approved by: Kathripe Bartkiewicz ab Manager Fort Myers Andrew Konopacki/Lab Manager Nokomis

Comments:

Sanders	CHAIN-OF-CUST	DDY RECORD	PROJECT NO71 JJ	414
Laboratories INC.	1		Page	of
Client Young Quist Brothers Inc. Address Phone Fax 239-489-4545	Report To: <u>Youns</u> Bill To: <u>Mary Beth</u> P:O. # Project Name Project Location:		Sample Supply: ef5.com Customer Type: Field Report #: Kit # REQUESTED DUE DATE:	· · · · · · · · · · · · · · · · · · ·
Sampled By (PRINT)		PRESERVATIVES ANALY		77
Sampler Signature Bottle SAMPLE DESCRIPTION	Sample DATE TIME TYPE	CE Jupreserve 1,50, 100, 100, 100,		Sample ID #
packer Test #3	22707 1350 G			O A
	LLL	1 2	1	OOIB
		╶┼┼┼┼┼┼┼		
		┼┼┼┼┼┼		
		+++++++++++++++++++++++++++++++++++++++		
Bottle Lot # C51202K	RELINQUISHED BY	AFFILIATION DATE		DATE TIME
COMMENTS: OKAY TO RUN AS IS CLIENT INITIAL: SAMPLES	Helsry (2707 145D 227 1605
ON ICE Yes No				

Packer Test 2,465 – 2,483

Client Project: South Cape Coral Lab Project: N0801096 **Report Date: 01/10/08**

Laboratory Results

Youngquist Brothers, Inc. 15465 Pine Ridge Road Ft. Myers, FL 33908

Lab ID N0801096-01	Sample Descripti Packer Test #8	ion	÷.,	Sample Source Ground Water		Received Date/Time	Sam	ple Date/Time 1/8/08 13:36
<u>Analysis</u>	grab <u>Method</u>	<u>Results</u>	<u>Qual</u>	Detection Limit	<u>Units</u>	AnalysisDate/Time	<u>Analyst</u>	<u>Cert ID</u>
Ammonia	SM4500-NH3-D	0.53		0.05	mg/L as N	1/9/08 9:30	AG	E84380
Chloride	SM4500CI-B	6800		1	mg/L	1/9/08 10:30	BB	E84380
Nitrogen, Total	EPA351.2	0.50	J3	0.10	mg/L as N	1/9/08 14:25	BB	E84380
Kjeldahl pH	SM4500H-B	7.00	Q	0.01	std units	1/9/08 8:45	BB	E84380
Specific Conductivity	SM2510B	22500		0.1	µmhos/cm	1/9/08 8:50	BB	E84380
Sulfate	ASTM-D516-90	1150		2	mg/L	1/9/08 9:14	AG	E84380
Total Dissolved Solids	s SM2540C	11400		20	mg/L	1/9/08 16:20	AS	E84380
		\sim						

Approved by: Kathrine Barthewiez/Law Manager Fort Myers Andrew Konopackt Lab Manager Nokomis

Comments:

Sanders	CHAIN-OF-CUST	ר אני (Pf	ROJECT N	Page of
Client YOUNGQUIST BROS, Address Fax	Report To: Bill To: P:O. # Project Name Project Location:		-	Field Report #:	GW ATE: 1/10/8
Sampled By (PRINT) ERIC BAKER Sampler Signature Sampler Signature Sampler DESCRIPTION	Sample Name DATE TIME TYPE		ALYSES QUEST	A A A A A A A A A A A A A A A A A A A	Sample ID #
# PACKER TEST #8	1/8/08/3:36 GW X X XX				10 # 1A 1B
Bottle Lot	RELINQUISHED BY / AFFILIA	ATION DA	TE TIME A	ACCEPTED BY / AFFILIA	TION DATE TIME
COMMENTS: pH: 7.46 Temp 28.4 Cond 23,920 Cond 23,920 Cond 23,920 Cond 23,920	Holes Cook		208 1630 H 58 1800 18 720 C	Jary Crov	K 808 1630 1/8/8 1800 In 1/9/8 720

Packer Test 2,503 – 2,530

Lab Project #:	N0801008
Client:	Youngquist Brothers, Inc. 15465 Pine Ridge Road
	Ft. Myers, FL 33908
Phone:	239-489-4444
Fax:	239-489-4545
E-mail:	
Client Project Name:	
Laboratory Contact:	Andy Konopacki

QUALIFIER DEFINITIONS

- B: Results based upon colony counts outside the acceptable range.
- I: The reported value is between the laboratory MDL and the laboratory PQL.
- J3: The reported value failed to meet the established quality control criteria.
- J4: The sample matrix interfered with the ability to make an accurate determination.
- J5: The data is questionable because of improper lab or field protocols.
- K: Off scale low, actual value is less than the value given.
- L: Off scale high, actual value is known to be greater than the value given.
- Q: Sample held beyond acceptable holding time.
- U: The compound was analyzed for, but not detected.
- V: The analyte was detected in both the sample and the associated method blank.
- Y: The sample was unpreserved or improperly preserved.
- Z: Too many colonies present (TNTC).

** This result does not meet NELAC standards.

HACH results may not meet NELAC standards.

A statement of estimated uncertainty of results is available upon request.

Analytical results provided relate only to the samples received for this project.

Laboratory report shall not be reproduced except in full, without the written approval of Sanders Laboratories.

Sanders Laboratories follows DEP standard operating procedures for field sampling.

Laboratory PQL's are available upon request.

Reports are archived for a minimum of 5 years. Copies of reports which are less than 1 year old are available for a fee of \$25.00 per report. Reports older than 1 year are available for a fee of \$50.00 per report. Copies will be provided within 1 week of the time of the request.

Nokomis Lab ~ 1050 Endeavor Ct. ~ Nokomis, FL 34275-3623 ~ Phone: 941-488-8103 ~ Fax: 941-484-6774 ~ HRS Certification # E84380 Fort Myers Lab ~ 16880 Gator Road ~ Fort Myers, FL 33912 ~ Phone: 239-590-0337 ~ Fax: 239-590-0536 ~ HRS Certification # E85457

Page 1 of _____

All subsequent pages are identified by: N0801008. These pages may include, but are not limited to: Analytical Data, Chains of Custodys, Subcontracted Data and Case Narratives.

Client Project: South Cape Coral Lab Project: N0801008 Report Date: 01/03/08

Laboratory Results

Youngquist Brothers, Inc. 15465 Pine Ridge Road Ft. Myers, FL 33908

STATES FROM THE STATES AND A STATES A

Sample Descripti Packer Test #5	<u>on</u>		Sample Source Ground Water		Received Date/Time	50 C .: X 200800 400 2002 5 X 200 10 200 400 -	ple Date/Time 2/31/07 13:18
grab <u>Method</u>	<u>Results</u>	<u>Qual</u>	Detection Limit	<u>Units</u>	AnalysisDate/Time	<u>Analyst</u>	<u>Cert ID</u>
SM4500-NH3-D	0.39		0.05	mg/L as N	1/3/08 13:15	AG	E84380
SM4500CI-B	13600		1	mg/L	1/3/08 10:45	BB	E84380
EPA351.2	0.47		0.10	mg/L as N	1/3/08 12:03	BB	E84380
SM4500H-B	7.14	Q	0.01	std units	1/2/08 9:15	AG	E84380
SM2510B	37400		0.1	µmhos/cm	1/2/08 16:15	BB	E84380
ASTM-D516-90	2120		2	mg/L	1/2/08 16:49	AG	E84380
SM2540C	22100		20	mg/L	1/2/08 17:00	AS	E84380
	Packer Test #5 strab <u>Method</u> SM4500-NH3-D SM4500CI-B EPA351.2 SM4500H-B SM2510B ASTM-D516-90	Method Results SM4500-NH3-D 0.39 SM4500CI-B 13600 EPA351.2 0.47 SM4500H-B 7.14 SM2510B 37400 ASTM-D516-90 2120	Method Results Qual SM4500-NH3-D 0.39 SM4500CI-B 13600 EPA351.2 0.47 SM4500H-B 7.14 Q SM2510B 37400 ASTM-D516-90 2120	Method Results Qual Detection Limit SM4500-NH3-D 0.39 0.05 SM4500CI-B 13600 1 EPA351.2 0.47 0.10 SM4500H-B 7.14 Q 0.01 SM2510B 37400 0.1 ASTM-D516-90 2120 2	MethodResultsQualDetection LimitUnitsSM4500-NH3-D0.390.05mg/L as NSM4500Cl-B136001mg/LEPA351.20.470.10mg/L as NSM4500H-B7.14Q0.01std unitsSM2510B374000.1µmhos/cmASTM-D516-9021202mg/L	Method Results Qual Detection Limit Units AnalysisDate/Time SM4500-NH3-D 0.39 0.05 mg/L as N 1/3/08 13:15 SM4500CI-B 13600 1 mg/L 1/3/08 10:45 EPA351.2 0.47 0.10 mg/L as N 1/3/08 12:03 SM4500H-B 7.14 Q 0.01 std units 1/2/08 9:15 SM2510B 37400 0.1 µmhos/cm 1/2/08 16:15 ASTM-D516-90 2120 2 mg/L 1/2/08 16:49	Method Results Qual Detection Limit Units AnalysisDate/Time Analyst SM4500-NH3-D 0.39 0.05 mg/L as N 1/3/08 13:15 AG SM4500CI-B 13600 1 mg/L as N 1/3/08 10:45 BB EPA351.2 0.47 0.10 mg/L as N 1/3/08 12:03 BB SM4500H-B 7.14 Q 0.01 std units 1/2/08 9:15 AG SM2510B 37400 0.1 µmhos/cm 1/2/08 16:15 BB ASTM-D516-90 2120 2 mg/L 1/2/08 16:49 AG

Approved by:

Comments:

Kathrine Bartkiewiec/Lab Manager For) Myers Andrew Konopacki/Lab/Manager Nokomis

Sanders	CHAIN-OF-CUSTODY RECORD PROJECT #	
Client <u>BUNGGUIST BEOTHERS INC.</u> Address	Report To: 1000000000000000000000000000000000000	
Phone Fax Sampled By (PRINT) CASEY MAJENSKI Sampler Signature MAM MATERIA Bottle SAMPLE D'ESCRIPTION	Project Location: COCAL REQUESTED DUE DATE:	3/08 7 Sample ID #
1 PACKER TEST #5 1 PACKER TEST #5	12/31/07 1378 G X X X -0 12/31/07 1378 G X X X -0	DIA LB
Bottle Lot # C 5 26021 7-124-001 COMMENTS: OKAY TO RUN AS IS Cand: 38.84 ms Temp 29.3 DH: 7.13 CLIENT INITIAL: SAMPLES ON ICE Yes No	RELINQUISHED BY / AFFILIATION DATE TIME ACCEPTED BY / AFFILIATION DATE WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW	0) 1000

٠

1050 Endeavor Ct., Nokomis, FL 34275-3623 • (941)488-8103 • FAX 484-6774

16880 Gator Road, Fort Myers, FL 33912 • (239) 590-0337 • FAX (239) 590-0536

Packer Test 2,603 – 2,630

Lab Project #: Client:	N0801028 Youngquist Brothers, Inc. 15465 Pine Ridge Road	Page 1 of All subsequent pages are identified by: N0801028. These pages may include, but
	Ft. Myers, FL 33908	are not limited to: Analytical
Phone: Fax: E-mail:	239-489-4444 239-489-4545	Data, Chains of Custodys, Subcontracted Data and Case Narratives.
Client Project Nam Laboratory Contac		

QUALIFIER DEFINITIONS

- B: Results based upon colony counts outside the acceptable range.
- I: The reported value is between the laboratory MDL and the laboratory PQL.
- J3: The reported value failed to meet the established quality control criteria.
- J4: The sample matrix interfered with the ability to make an accurate determination.
- J5: The data is questionable because of improper lab or field protocols.
- K: Off scale low, actual value is less than the value given.
- L: Off scale high, actual value is known to be greater than the value given.
- Q: Sample held beyond acceptable holding time.
- U: The compound was analyzed for, but not detected.
- V: The analyte was detected in both the sample and the associated method blank.
- Y: The sample was unpreserved or improperly preserved.
- Z: Too many colonies present (TNTC).
- ** This result does not meet NELAC standards.
- HACH results may not meet NELAC standards.

A statement of estimated uncertainty of results is available upon request.

Analytical results provided relate only to the samples received for this project.

Laboratory report shall not be reproduced except in full, without the written approval of Sanders Laboratories.

Sanders Laboratories follows DEP standard operating procedures for field sampling.

Laboratory PQL's are available upon request.

Reports are archived for a minimum of 5 years. Copies of reports which are less than 1 year old are available for a fee of \$25.00 per report. Reports older than 1 year are available for a fee of \$50.00 per report. Copies will be provided within 1 week of the time of the request.

Nokomis Lab ~ 1050 Endeavor Ct. ~ Nokomis, FL 34275-3623 ~ Phone: 941-488-8103 ~ Fax: 941-484-6774 ~ HRS Certification # E84380 Fort Myers Lab ~ 16880 Gator Road ~ Fort Myers, FL 33912 ~ Phone: 239-590-0337 ~ Fax: 239-590-0536 ~ HRS Certification # E85457

Client Project: South Cape Coral Lab Project: N0801028 Report Date: 01/03/08

Laboratory Results

Youngquist Brothers, Inc. 15465 Pine Ridge Road Ft. Myers, FL 33908

N0801028-01	Sample Descripti Pack #6 grab	<u>on</u>		Sample Source Ground Water		Received Date/Time	<u>Sam</u>	ple Date/Time
<u>Analysis</u>	<u>Method</u>	<u>Results</u>	Qual	Detection Limit	<u>Units</u>	AnalysisDate/Time	Analyst	<u>Cert ID</u>
Ammonia	SM4500-NH3-D	0.19	Ι	0.05	mg/L as N	1/3/08 13:15	AG	E84380
Chloride	SM4500CI-B	18600		1	mg/L	1/3/08 10:45	BB	E84380
Nitrogen, Total Kjeldahl	EPA351.2	0.39	I	0.10	mg/L as N	1/3/08 12:03	BB	E84380
рН	SM4500H-B	7.00	Q	0.01	std units	1/2/08 16:45	BB	E84380
Specific Conductivity	SM2510B	50800		0.1	µmhos/cm	1/2/08 16:15	BB	E84380
Sulfate	ASTM-D516-90	2860		2	mg/L	1/2/08 16:49	AG	E84380
Total Dissolved Solids	SM2540C	29900		20	mg/L	1/2/08 17:00	AS	E84380

Approved by:

Comments:

Kathrine Bartkiewicz/Lab/Manager Fort Nyers Andrew Konopager/Lab Manager Nokomis

Sanders	CHAIN-OF-CUSTODY RECORD	PROJECT NO80028 # Pagelof(
Client Youngquist Address Phone Fax	Report To: Bill To: PO. # Project Name <u>CC - SCO</u> Project Location: <u>Rack Test</u> #6	Sample Supply:
Sampled By (PRINT) Client Sampler Signature Bottle # SAMPLE DESCRIPTION	PRESERVATIVES ANALYSES Sample Image: state	Sample ID #
Ack # 6	1.2.08 1220 G X b 1 L J m 2 	I JB
Bottle Lot # 5126021 7-124-00 COMMENTS: OKAY TO RUN AS IS CLIENT	RELINQUISHED BY / AFFILIATION DATE TIME A MILLION 1.2.08 1330 HUZPY LOCK 1.208 450	HUZEY CROOK 1.2.08 1330
INITIAL: SAMPLES ON ICE Yes No		

٠

-

1050 Endeavor Ct., Nokomis, FL 34275-3623 • (941)488-8103 • FAX 484-6774

an and a community of the second second second second second second second second second second second second s

-

16880 Gator Road, Fort Myers, FL 33912 • (239) 590-0337 • FAX (239) 590-0536

Monitor Well DZMW-1

Packer Test 1,320 – 1,360

Client Project: South Cape Coral Lab Project: N0806032 Report Date: 06/04/08

Laboratory Results

Youngquist Brothers, Inc. 15465 Pine Ridge Road Ft. Myers, FL 33908

Lab ID N0806032-01	Sample Descript Packer #2 1320-1360	where the second s		Sample Source Ground Water		Received Date/Time 6/3/08 12:00	<u>San</u>	ple Date/Time 6/3/08 4:00
Analysis	grab <u>Method</u>	<u>Results</u>	<u>Qual</u>	Detection Limit	<u>Units</u>	AnalysisDate/Time	<u>Analyst</u>	<u>Cert ID</u>
Ammonia	EPA350.1	0.78		0.01	mg/L as N	6/3/08 14:40	AV	E84380
Chloride	SM4500CI-E	7010		1	mg/L	6/4/08 12:48	AV	E84380
Nitrogen, Total Kjeldahl	EPA351.2	1.22	J3	0.10	mg/L as N	6/4/08 10:45	BB	E84380
pH	SM4500H-B	7.38	Q	0.01	std units	6/3/08 12:50	AS	E84380
Specific Conductivity	SM2510B	22400		0.1	µmhos/cm	6/3/08 15:00	AV	E84380
Sulfate	ASTM-D516-90	338		2	mg/L	6/3/08 17:43	AV	E84380
Total Dissolved Solids	SM2540C	11700		20	mg/L	6/3/08 15:30	AS	E84380

Comments:

Approved by: Kathrine Bartkiewicz/Lab Manager Fort Myers Andrew Konopacki ab Manager Nokomis

Test Results meet all the requirements of the NELAC standards.

Í

SANDERS LABORATORIES, INC. Laboratory Test Report

Lab Project #: N0806032 Client: Youngquist Brothers, Inc. 15465 Pine Ridge Road Ft. Myers, FL 33908 Phone: 239-489-4444 Fax: 239-489-4545

Fax:239-489-4545E-mail:South Cape CoralClient Project Name:South Cape CoralLaboratory Contact:Andy Konopacki

Page 1 of ____

All subsequent pages are identified by: N0806032. These pages may include, but are not limited to: Analytical Data, Chains of Custodys, Subcontracted Data and Case Narratives.

QUALIFIER DEFINITIONS

- B: Results based upon colony counts outside the acceptable range.
- I: The reported value is between the laboratory MDL and the laboratory PQL.
- J3: The reported value failed to meet the established quality control criteria.
- J4: The sample matrix interfered with the ability to make an accurate determination.
- J5: The data is questionable because of improper lab or field protocols.
- K: Off scale low, actual value is less than the value given.
- L: Off scale high, actual value is known to be greater than the value given.
- Q: Sample held beyond acceptable holding time.
- U: The compound was analyzed for, but not detected.
- V: The analyte was detected in both the sample and the associated method blank.
- Y: The sample was unpreserved or improperly preserved.
- Z: Too many colonies present (TNTC).
- ** This result does not meet NELAC standards.

HACH results may not meet NELAC standards.

A statement of estimated uncertainty of results is available upon request.

Analytical results provided relate only to the samples received for this project.

Laboratory report shall not be reproduced except in full, without the written approval of Sanders Laboratories.

Sanders Laboratories follows DEP standard operating procedures for field sampling.

Laboratory PQL's are available upon request.

Reports are archived for a minimum of 5 years. Copies of reports which are less than 1 year old are available for a fee of \$25.00 per report. Reports older than 1 year are available for a fee of \$50.00 per report. Copies will be provided within 1 week of the time of the request.

Nokomis Lab ~ 1050 Endeavor Ct. ~ Nokomis, FL 34275-3623 ~ Phone: 941-488-8103 ~ Fax: 941-484-6774 ~ HRS Certification # E84380 Fort Myers Lab ~ 10090 Bavaria Road ~ Fort Myers, FL 33913 ~ Phone: 239-590-0337 ~ Fax: 239-590-0536 ~ HRS Certification # E85457

Sanders	CHAIN-OF-CUSTODY RECORD PROJECT #	
Caboratories INC. Environmental Testing Services	- Rush - Page _ lof 1	
Client YOUNGQUIST Address Phone Fax	Report To:	
Sampled By (PRINT)	PRESERVATIVES ANALYSES Garder REQUEST Sample Sample	
Bottle SAMPLE DESCRIPTION # PACKER ¹² - 1320-1360	DATE TIME TYPE \square \square \square \square \square \square Sample \square	
Bottle Lot #	RELINGUISHED BY / AFFILIATION DATE TIME ACCEPTED BY / AFFILIATION DATE TIME	
COMMENTS: COMMENTS: CLIENT INITIAL: SAMPLES ON ICE (Yes) No	42 22 CROCK 6308 1200 1200 638 200	

Monitor Well DZMW-1

Packer Test 1,442 – 1,500

Page: Page 1 of 1

Client Project: South Cape Coral Lab Project: N0805377 Report Date: 05/28/08

Laboratory Results

Youngquist Brothers, Inc. 15465 Pine Ridge Road Ft. Myers, FL 33908

Lab ID N0805377-01	Sample Descript Packer Test 1442'-15(grab	· · · · · · · · · · · · · · · · · · ·		Sample Source Ground Water		Received Date/Time 5/27/08 15:00	Sample Date/Time 5/25/08 17:16		
<u>Analysis</u>	Method	<u>Results</u>	<u>Qual</u>	Detection Limit	<u>Units</u>	AnalysisDate/Time	<u>Analyst</u>	<u>Cert ID</u>	
Ammonia	EPA350.1	0.95		0.01	mg/L as N	5/27/08 15:33	AV	 E84380	
Chloride	SM4500CI-E	7760		1	mg/L	5/28/08 9:30	AV	E84380	
Nitrogen, Total Kjeldahl	EPA351.2	1.21		0.10	mg/L as N	5/28/08 10:34	BB	E84380	
рН	SM4500H-B	7.47	Q	0.01	std units	5/27/08 15:20	AV	E84380	
Specific Conductivity	SM2510B	20900		0.1	µmhos/cm	5/28/08 9:20	BB	E84380	
Sulfate	ASTM-D516-90	293		2	mg/L	5/27/08 17:35	AV	E84380	
Total Dissolved Solids	SM2540C	13300		20	mg/L	5/27/08 16:00	AS	E84380	

Approved by: Kathrine Bartkiewcz Lab Manager Fort Myers

Comments:

Andrew Konopacki/Lab Manager Nokomis

Test Results meet all the requirements of the NELAC standards.

Sanders	CHAIN-OF-CUSTODY	RECORD		0805377
Laboratories Inc. Environmental Testing Services			4354	Page of
Client <u>FOUNG QUST BROS</u> INC Address <u>15465 Pine Ridge R</u> FORT Myers Fl. 3390 Phone <u>234-489-4444</u> Fax	Report To:	5+ 5 4. Cape	Sample Supply: Customer Type: Field Report #: _ Kit # REQUESTED DU	GW E DATE: <u>5/28/08</u>
Sampled By (PRINT) Sampler Signature	PRE Sample DATE TIME TYPE U		ES H KEY H ST Q H KEY H A Q C H H H A Q C H H H H A A Q C H H H H H H H H H H H H H H H H H H	Sample *
Packertest @ 1442'TO	1500 5-25 1716 6			-01A
facker test @ 1605'	GI GI	e		-OIB
Bottle Lot				
# 629/	NELINGUISHED BY / AFFI	LIATION DATE 52708		ILIATION DATE TIME ROUK 52708 130
Onsite Temp CLIENT		- 52708		Jer 5/27/08/1500
30,1	PNCE es No			

.

Monitor Well DZMW-1

Packer Test 1606 – 1,660

Page: Page 1 of 1

Client Project: South Cape Coral Lab Project: N0805378 **Report Date: 05/28/08**

Laboratory Results

Youngquist Brothers, Inc. 15465 Pine Ridge Road Ft. Myers, FL 33908

Lab ID	Sample Descript	<u>ion</u>		Sample Source		Received Date/Time	Sam	ple Date/Time	
N0805378-01	Packer 1606-1660 grab		Ground Water			5/27/08 15:00	5/27/08 13:21		
<u>Analysis</u>	Method	<u>Results</u>	Qual	Detection Limit	<u>Units</u>	AnalysisDate/Time	Analyst	<u>Cert ID</u>	
Ammonia	EPA350.1	0.43		0.01	mg/L as N	5/27/08 15:33	AV	E84380	
Chloride	SM4500Cl-E	17400		1	mg/L	5/28/08 9:30	AV	E84380	
Nitrogen, Total	EPA351.2	0.78		0.10	mg/L as N	5/28/08 10:34	BB	E84380	
Kjeldahl pH	SM4500H-B	7.34	Q	0.01	std units	5/27/08 15:20	AV	E84380	
Specific Conductivity	SM2510B	45900		0.1	µmhos/cm	5/28/08 9:20	BB	E84380	
Sulfate	ASTM-D516-90	2630		2	mg/L	5/27/08 17:35	AV	E84380	
Total Dissolved Solids	SM2540C	29300		20	mg/L	5/27/08 16:00	AS	E84380	
		-	~=						

Approved by: Kathrine Bartkiewicz / an Manager Fort Alyers

Comments:

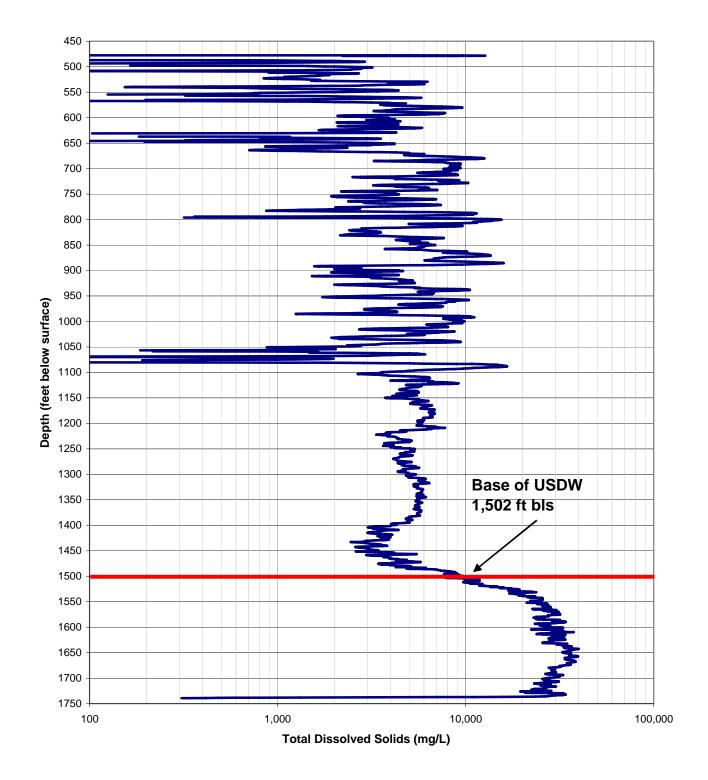
Andrew Konopacki/Lab Manager Nokomis

Test Results meet all the requirements of the NELAC standards.

Sanders Laboratories INC. Environmental Testing Services	CHAIN-OF-CUSTODY RECORD	PROJECT NO805378 # Page of
Client Youngquist Beos Address Phone Fax	Report To: Bill To: PO. # Project Name <u>Rokes_Testing</u> Project Location:CSW	Sample Supply: Supply: Customer Type: Supply: Field Report #: Supply: Kit # Supply: REQUESTED DUE DATE: Supply:
Sampled By (PRINT) Sampler Signature Bottle SAMPLE DESCRIPTION # PACKOR 1606-1660	PRESERVATIVES ANALYS Sample Image: strain s	
Bottle Lot # (6291 -124-00) COMMENTS: Onsit-temp.28.9°C CLIENT INTIAL: SAMPLES ONTIGE Yes No	RELINQUISHED BY / AFFILIATION DATE HARMAN S2708 HAZZPY CROOK 52708	

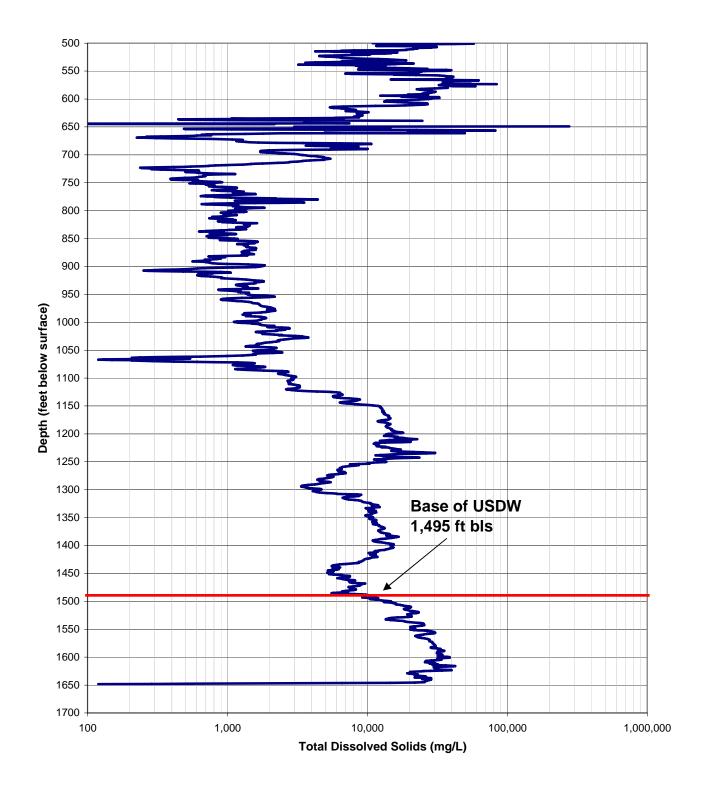
1050 Endeaver Ct., Nokomis, FL 34275-3623 (941)488-8103 • FAX 484-6774 • 10090 Bavaria Rd., Fort Myers, FL 33913 • (239) 590-0337 • FAX (239) 590-0536

/


Appendix K

Log Derived Water Quality

Injection Well IW-1


Log Derived Water Quality

Southwest IW-1 Log Derived TDS

Monitor Well DZMW-1

Log Derived Water Quality

Southwest DZMW-1 Log Derived TDS Determination

Appendix L

Casing Mill Certificates

Injection Well IW-1

Casing and Tubing

Injection Well IW-1

54-inch Pit Pipe

IW-1 54-inch Casing Log

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

JOB NUMBER:	3220269.77010102
CONTRACTOR:	Youngquist Brothers, Inc.
PROJECT MANAGER:	Neil Johnson
OWNER:	City of Cape Coral

Observer:

<u>Mike Knapp</u>

Casing Diameters (inches): <u>O.D. 54.00</u> <u>I.D. 53.25</u> Wall Thickness (inches): <u>0.375</u>

Pipe No. and Install Order	Heat Number	Mill Certification	Length (ft)	Run Depth (ft bls)	Weld Date	Weld Start Time	Weld Completion Time
2			50.10	50.10	10/12/07	17:45	18:20
1			25.00	75.10			

Total length (ft) 75.10

Floor and elevators (ft)

54-inch Casing Seat (ft bls) 75.10

NOTES:

ft - feet ft bls - feet below land surface

Injection Well IW-1

44-inch Casing

IW-1 44-inch Casing Log

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

JOB NUMBER:	3220269.77010102
CONTRACTOR:	Youngquist Brothers, Inc.
PROJECT MANAGER:	Neil Johnson
OWNER:	City of Cape Coral

Observer: Casey Majewski

Casing Diameters (inches): <u>O.D. 44.00</u> <u>I.D. 43.25</u> Wall Thickness (inches): <u>0.375</u>

Pipe No.						Weld	Weld
and Install	Heat	Mill	Length	Run Depth	Weld	Start	Completion
Order	Number	Certification	(f t)	(ft bls)	Date	Time	Time
12	238601	Х	40.15	34.40	10/21/07	17:24	17:50
11	010501	Х	40.17	74.57	10/21/07	16:40	17:06
10	175704	Х	40.14	114.71	10/21/07	16:06	16:27
9	238804	Х	40.18	154.89	10/21/07	15:24	15:52
8	016604	Х	40.07	194.96	10/21/07	14:49	15:13
7	237801	Х	40.14	235.10	10/21/07	13:59	14:23
6	238605	Х	40.25	275.35	10/21/07	13:22	13:41
5	239001	Х	40.10	315.45	10/21/07	12:38	13:05
4	010104	Х	40.22	355.67	10/21/07	12:01	12:25
3	088401	Х	40.12	395.79	10/21/07	11:23	11:45
2	011902	Х	40.17	435.96	10/21/07	10:32	10:54
1	088406	Х	39.66	475.62			

Total length (ft) 481.37

Floor and elevators (ft) -5.75

44-inch Casing Seat (ft bls) 475.62

NOTES:

ft - feet ft bls - feet below land surface

COMMODITY: CARBON STEEL PIPE PER SALES CONTRACT

NO. SEUSFP6C02TD3 DATED DECEMBER 11, 2006.

CUSTOMER:

15465 PINE RIDGE ROAD

FORT MYERS, FL 33908

The CARBON STEEL PIPES are tested according to ASTM A139 GR.B

This is to certify that in accordance with the relevant specifications and contracts.

OZONE INDUSTRIES CORPORATION

The CARBON STEEL PIPES manufactured were tested and qualified by our Quality Control Department. 1

CERTIFICATE NO:PSCNJN6C01TC5 DATE OF ISSUE:4/29/2007

> Invoice No. SEUSFP6C02TD3 LC NUMBER .: 5279996

				Size						1	······			T	ESTING R	ESULTS					
Pipes No.	Heat Numbers	Steel	0.0.	W.7.	Length		Quantity				CHEMICAL PROPERTIES(%)				PHYSICAL PROPERTIES			Walding properties	Hydrostatic Test Holding time:10s	Flattening	UT Test
		Grade	in	in	ft	Pc3	A	MT	Inspection	C	Si	Mn	Р	S	σs(Mpa)	ob(Mpa)	٥٥(%)	ap	P = Psi	Test (B)	Test (B)
205	047905	B	42	0.375	40	2	80	6.055	OK	0.18	0.23	0.46	0.011	0.031	315	430	33	ОК	500	OK .	OK
205	047703	8	4.2	0.375	40	5	200	15.137	ок	0.15	0.19	0.42	0.009	0.029	310	420	32	ОК	500	OK	OK
207	047702	В	42	0.375	40	2	80	6.056	ок	0.19	0.27	0.47	0.015	0,032	300	425	31	OK	500	OK .	OK
208	047701	В	42	0.375	40	2	80	6.056	ακ	0.15	0.16	0.41	0.012	0.029	310	420	32.5	OK	500	OK OK	OK
209	125906	В	42	0.375	40	3	120	9.083	ОК	0.19	0.25	0.50	0.012	0.028	325	440	33	<u>ок</u>	500	ак	OK
210	054200	В	42	0.375	40	2	80	6.056	OK	0.18	0.24	0.49	0.013	0.030	320	435	32.5	OK OK	500	OK	OK
211	175904	B	42	0.375	40	3	120	9.083	OK	0.18	0.20	0.44	0.012	0.031	300	425	31.5	OK OK	500	OK	
212	208801	В	44	0.375	40	2	80	6.346	OK	0.16	0.20	0.43	0.013	0.029	305	425	32	OK			OK
213	238602	8	44	0.375	40	2	80	6.346	OK	0.18	0.21	0.44	0.011	0.023	315	425			500	OK	OK
214	238803	в	44	0.375	40	3	120	9.521	OK	0.18	0.25	0.45	0.014				32	OK	500	OK	OK
215	238804	В	44	0.375	40	2	80	6.346	ОК	0.16	0.24	0.42		0.032	310	425	32	OK	500	ок	OK
216	238604	в	44	0.375	40	2	80	6.346		0.10 D.17				0.027	305	420	32	ОК	500	ок	ок
217	238603	8	44	0.375	40	2	80	6.346			0.24	0.46		0.030	315	420	31.5	ок	500	OX	ок
218	238306	В	44	0.375	40	2			OK	0.19	0.26	0,47		0.033	320	430	31.5	ок	500	OK	οκ
219	175706	8	44	0.375	40		80	6.346	ок	0.16	0.23	0.40	0.008	0.027	305	420	32.5	OK	500	OK	οκ
220	239002	B				3	120	9.521	ок	0.18	0.24	0.46	0.012	0.031	320	435	31.5	OK	500	ок	ок
221	086403	B	44	0.375	40	2	80	6.346	ОК	0.17	0.21	0.45	0.010	0.030	275	425	30.5	ок	500	ок	0K
421	000403		_44	0.375	40	4	160	12.693	ок	0.18	0.20	0.44	0.012	0.031	295	425	31	ОК	500	ок	ок

1

YIEH CORFORATION LIMITED

TOTAL: 746 PCS / 29840FT / 1769.619MT

COMMODITY: CARBON STEEL PIPE PER SALES CONTRACT

NO. SEUSFP6C02TD3 DATED DECEMBER 11, 2006.

CUSTOMER:

15463 PINE RIDGE ROAD

FORT MYERS, FL 33908

The CARBON STEEL PIPES are tested according to ASTM A139 GR.B

This is to certify that in accordance with the relevant specifications and contracts.

OZONE INDUSTRIES CORPORATION

The CARBON STEEL PIPES manufactured were tested and qualified by our Quality Control Department.

CERTIFICATE NO:PSCNJN6C01TC5 DATE OF ISSUE:4/29/2007

> Invoice No. SEUSFP6C02TD3 LC NUMBER.: 5279996

				Size					TESTING RESULTS											<u> </u>	
Pipes No.	Heat Numbers	Steel	O.D.	W.T.	Length		Quantity	Dimensional	(CHEMICAL PROPERTIES(%)				PHYSICAL PROPERTIES			Welding properties	Hydrostatic Test Holding Bine:10s	Flattening	UT Test	
		Grade	in	in	fi	Pas	ît.	MT	Inspection	C	Si	Mn	P	s	os(Mpa)	ob(Mpa)	ō5(%)	đb	P = Psi	Test (E)	Test (5)
222	239001	B	44	0.375	40	2	80	6.346	ox	0.18	0.22	0.45	0.015	0.032	285	420	32	OK	500	οκ	QК
223	088402	B	44	0.375	40	2	80	6.348	OK	0.16	0.20	0,43	0.014	0.030	290	420	31.5	OK	500	ок	ок
224	088406	В	44	0.375	40	2	80	5.346	OK	0.18	0.20	0.44	0.016	0.030	290	425	32	ок	500	OK	OK
225	012401	В	44	0.375	40	3	120	9.521	ОК	0.17	0.22	0.46	0.013	0.032	285	435	32.5	ОК	500	ок	OK
226	010501	8	44	0.375	40	2	80	6.346	OX	0.15	0.17	0.47	0.011	0.032	315	435	31	ок	500	οĸ	ок
227	238405	8	44	0.375	40	2	80	6.346	OK	0.16	0.15	0.45	0.010	0.031	310	435	31.5	ок	500	OK	οκ
228	238805	в	44	0.375	40	2	80	6.346	OK	0.19	0.25	0.50	0.012	0.028	325	440	33	ОК	500	OK	ок
229	016604	В	44	0.375	40	2	28	6.345	ок	0.18	0.24	0.49	0.013	0.030	320	435	32.5	ок	500	ок	ОК
230	238601	в	44	0.375	40	4	160	12.593	ОX	0.18	0.17	0.46	0.010	0.630	315	435	31	OK	500	ок	ок
231	238605	в	44	0.375	40	2	80	6.346	ок	0.20	0.23	0.45	0.007	0.029	305	430	31	ок	500	ок	OX
232	030306	В	44	0.375	40	4	160	12,894	ОК	0.16	0.24	0.47	0.014	0.033	310	425	31	ОК	500	ок	OK
233	088401	в	44	0.375	40	3	120	9.521	ок	0.15	0.22	0.45	0.012	0.032	300	430	31	ox	500	OK	OK
234	010104	В	44	0.375	40	2	80	6.346	ок	0.18	0.18	0.43	0.016	0.022	325	420	32	OK	500	ок	ОК
235	237801	8	44	0.375	40	2	80	6.346	ок	0,17	0.20	0.46	0.014	0.029	315	435	32	ок	500	ОК	ОК
235	175704	6	44	0.375	40	2	50	6.348	OK	0.17	0.17	0.47		0.028	315	430	31	ок	500		OK OK
237	239004	Б	44	0.375	40	2	80	6.346	ОК	0.18	0.21	0.51		0.032	320	440	31.5	ак	500	OK	OK
238	011902	8	44	0.375	40	3	120	9.521	ок	0.17	0.21	0.45		0.030	295	425	30.5	OK	500	ОК	OK

TOTAL : 746 PCS / 29840FT / 1769.619MT

YIEH CORFORATION LIMITED

y.N.

Injection Well IW-1

36-inch Casing

IW-1 36-inch Casing Log

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

3220269.77010102
Youngquist Brothers, Inc.
Neil Johnson
City of Cape Coral

Observer: <u>Aimee Fratarcangelli</u>

Casing Diameters (inches): <u>O.D. 36.00</u> <u>I.D. 35.25</u> Wall Thickness (inches): <u>0.375</u>

Pipe No.						Weld	Weld
and Install	Heat	Mill	Length	Run Depth	Weld	Start	Completion
Order	Number	Certification	(ft)	(ft bls)	Date	Time	Time
43	175902	Х	40.13	40.13	11/18/07	1:45	2:08
42	1-9160	Х	40.15	80.28	11/18/07	0:28	0:53
41	053604	Х	38.41	118.69	11/17/07	20:09	20:42
40	009107	Х	40.15	158.84	11/17/07	18:03	19:44
39	1-9160	Х	38.94	197.78	11/17/07	17:22	17:48
38	1-9160	Х	40.09	237.87	11/17/07	16:23	16:54
37	009107	Х	40.10	277.97	11/17/07	15:40	16:02
36	1-9106	Х	39.08	317.05	11/17/07	15:04	15:15
35	1-9106	Х	39.03	356.08	11/17/07	14:31	14:44
34	175901	Х	40.13	396.21	11/17/07	13:22	13:47
33	048305	Х	40.15	436.36	11/17/07	12:38	12:56
32	238402	Х	40.11	476.47	11/17/07	12:01	12:14
31	101010	Х	40.08	516.55	11/17/07	11:20	11:36
30	014003	Х	40.10	556.65	11/17/07	10:58	11:08
29	238202	Х	40.08	596.73	11/17/07	10:07	10:33
28	1-9106	Х	39.09	635.82	11/17/07	8:53	9:28
27	048507	Х	40.13	675.95	11/17/07	8:01	8:24
26	101010	Х	40.12	716.07	11/17/07	7:14	7:38
25	055201	Х	40.14	756.21	11/17/07	6:17	6:38
24	055405	X	40.09	796.30	11/17/07	5:24	5:49
23	055804	Х	39.99	836.29	11/17/07	4:24	4:50

22	048307	Х	40.12	876.41	11/17/07	3:27	3:50
21	014406	Х	40.16	916.57	11/17/07	2:37	3:06
20	048704	Х	40.09	956.66	11/17/07	1:46	2:11
19	238201	Х	40.13	996.79	11/17/07	0:56	1:16
18	010102	Х	40.12	1,036.91	11/17/07	0:08	0:27
17	014406	Х	40.13	1,077.04	11/16/07	23:19	23:35
16	053604	Х	39.99	1,117.03	11/16/07	22:32	22:54
15	048307	Х	40.10	1,157.13	11/16/07	21:49	22:08
14	048507	Х	40.13	1,197.26	11/16/07	21:08	21:24
13	055405	Х	40.14	1,237.40	11/16/07	20:08	20:26
12	055804	Х	40.09	1,277.49	11/16/07	18:32	19:31
11	055804	Х	40.12	1,317.61	11/16/07	16:16	16:44
10	010102	Х	40.07	1,357.68	11/16/07	14:43	15:59
9	010103	Х	40.11	1,397.79	11/16/07	13:38	14:10
8	014801	Х	40.09	1,437.88	11/16/07	13:12	13:23
7	012201	Х	40.06	1,477.94	11/16/07	12:45	13:01
6	044503	Х	40.09	1,518.03	11/16/07	11:28	11:49
5	055823	Х	40.08	1,558.11	11/16/07	10:44	11:03
4	238202	Х	40.09	1,598.20	11/16/07	9:25	9:42
3	048507	Х	40.14	1,638.34	11/16/07	8:34	
2	044503	Х	40.04	1,678.38			
1	014801	Х	1.66	1,680.04			

Total length (ft) 1,680.04

Floor and elevators (ft) 0.00

36-inch Casing Seat (ft bls) 1,680.04

NOTES:

ft - feet ft bls - feet below land surface

COMMODITY: CARBON STEEL PIPES AS PER ASTM A139 OR B SPIRAL WELDED, NORMAL MILL BLACK LACQUER FOR RUST PROTECTION, ONE END OF THE PIPE SHALL HAVE A BEVEL OF 30 DEGREES WITH A TOLERANCE PLUS FIVE, MINUS ZERO DEGREES. THE OTHER END OF THE PIPE WILL BE PLAIN, RIGHT AND ANGLE CUT. ALL BURRS REMOVED.

CUSTOMER: OZONE INDUSTRIES CORFORATION 15465 PINE RIDGE ROAD FORT MYERS, FL 33908

The CARBON STEEL PIPES are tested according to ASTM A139 GR.B This is to certify that in accordance with the relevant specifications and contracts.

The CARBON STEEL PIPES manufactured were tested and qualified by our Quality Control Department.

1			- · ·		1													1	UTAL 27	1 PCS / 10840	FT/497.8	12 MT
ľ	Pipea No.	Hoat Number		0.D,	W.T.	lenth		Quantily	,	Dimensional	6	HEMICA	L PROPE	RTIES(%	5)	PHYSIC	CAL PROF		Welding .	Hydrostatio Test	Flattening	1
Ļ			Grada	in	In	ft	根(Pos)	苑尺 (ft)	PE(MT)	inspection	~~~~	1. 8	7						properties	Holding Uma:10s	• wetter HIN	UT THEST
L	1	1-9100	8	62	0.378	40	4	40			<u> </u>	81	Mn	P	8	09(Mpa)	ob(Mpa)	ō5(%)	ob	P = Pai	Test (B)	Test (B)
Γ	2	1-9160	В	42	0.375	40			3.767	ок	a,16	0.10	0.48	0.029	0.029	330	460	30	OK	608	OK	OK
1		1-9160	B			,	20	800	60.555	OK	0.16	0.19	0.48	0.029	0.020	330	460	30	OK	805		
+				30	0.375	40	21	840	54.418	OK	0.16	0.19	0.48	0.029	0.029	330					ОК	OK
L	4	7-C03089	В	28	0.375	40	27	1080	84.254	ОК	0.18						480	30	OK	505	OK (OK
	8 · [7-003089	B	20	0.376	40	22	880				0.19	0,33	0.018	0.027	826	466	33	OK	625	Ж	OK
ų.	6 ·	7-003009	B	24	0.875	40			41.007	OK	0,18	0,19	0.33	0.018	0.027	325	465	33	ОК	525	OK	OK
<u>`</u> -	7	7-003099					/1	2840	122.01	OK	0.16	0.19	0.33	0.016	0.027	325	455	33	OK			
			8	20	0.376	40	27	1080	38,843	ОК	0.18	0,19	0.33	0.018	0,027					525	OK	OK
s۴	- 6	1-7888	В	16	0.800	40	82	3280	123.268	ОК						325	456	89	OK	525	OK	OK
	TOTAL						271	10840			0.15	0,18	0.42	0.023	0.022	330	465	31.6	OK	825	ОК	OK
					t		• 1 }	10040	497.812													

YIEH CORPORATION LIMITED

NO 6, E-DA RD, YA AO TOWNSHIP KAOHSIUNG COUNTY YANCHAO, TAIWAN TEL:886-7-615-1000

FAX:886-7-615-3000

CERTIFICATE NO:PSCNJN7601TC5-3 DATE OF IS8UE:10/23/2007

Involce No. SEUSPP7601TD3-3 LC NUMBER.: 64405427

COMMODITY: CARBON STEEL PIPE PER SALES CONTRACT

NO. SEUSPP6C02TD3 DATED DECEMBER 11, 2006. CUSTOMER: OZONE INDUSTRIES CORPORATION

15465 PINE RIDGE ROAD

FORT MYERS, FL 33908

The CARBON STEEL PIPES are tested according to ASTM A139 GR.B

This is to certify that in accordance with the relevant specifications and contracts.

The CARBON STEEL PIPES manufactured were tested and qualified by our Quality Control Department.

CERTIFICATE NO:PSCNIN6C01TC5 DATE OF ISSUE:4/29/2007

> Invoice No. SEUSFP6C02TD3 LC NUMBER .: 5279996

				Size					ty Control Dep	T								IOTAL:	746 PCS / 2984	OFT / 1769	9.619MT
Pipea No.	Heat Numbers	Steel	0.D.	W.T.	Length		Quanti	ŧy	Dimensional						ESTING R	ESULTS		I		Flattening	UT Test
				ļ							CHEMIC	AL PROP	ERTIES(%	6)	PHYSI	CAL PRO	PERTIES	Welding properties	Hydrostatic Test Holding time: 10s	, waranning	UTTES
45.4	170004	Grade	in	in	<u>a</u>	Pcs	ft	MT	Inspection	C	Si	Mn	P	s	os(Moa)	ob(Mpa)	ð5(%)	at	P = Psi	71 (2)	
154	176901	В	34	0.375	40	3	120	7.338	ОК	0.15	0.19	0.39	0.010	0.029	315	425	31	OK		Test (B)	Test (8)
155	176503	В	34	0.375	40	1	40	2.408	OK	0.18	0.26	0.46	0.015	0.032	300				500	ОК	ок
156	014003	В	36	0.375	40	2	80	5.183	ок	0.16	0.24	0.45	0.014			420	30.5	OK	500	ОК	OX
157	009107	8	36	0.375	40	3	120	7.774	ок	0.17	0.19	0.37		0.032	305	435	31	ок	500	ОК	OK
158	048507	ß	36	0.375	40	2	80	5,183	OK	0.15			0.010	0.028	305	425	31.5	OK	500	ок	OK
159	014801	В	36	0.375	40	3	120	7.774			0.23	0.44	0.009	0.031	320	430	33	. ок	500	ок	ОК
160	101010	8	35	0.375	40	3	120	· · · · · · · · · · · · · · · · · · ·	OK	0.14	0.14	0.35	0.014	0.030	305	425	32	OK	500	ОК	OK
161	014406	B	36	0.375	40	2		7.774	ок	0.18	0.21	0.43	0.011	0.031	310	425	31	OK	500	OK	OK
162	010102	в	36	0.375			80	5.183	<u> </u>	0.18	0.25	0.46	0.012	0.032	325	435	31.5	ок	500	OK	OK
163	043704	8			40		120	7.774	ок	0.16	0.24	0.47	0.014	0.031	300	420	31.5	ОК	500	OK	<u>ок</u>
164			36	0.375	40	3	120	7.774	OK	0.18	0.23	0.45	0.012	0.028	310	425	31	ОК	500	OK	
	055807	<u> </u>	36	0.375	40	2	80	5.183	OK	0.17	0.24	0.44	0.011	0.029	310	425	32		500		
165	055201	3	36	0.375	40	3	120	7.774	ок	0.15	0.23	0.42	 	0.029	315	430	32.5			OK	ок
166	055804	В	36	0.375	40	3	120	7.774	ак	0.15	0.21	0.41	ŀł	0.031	290			OX	500	OK	OK
157	044503	В	36	0.375	40	3	120	7.774	OK	0.16	0.17	0.35				430	31	OK	500	ок	ок
168	056001	в	36	0.375	40	2	80	5.163	OK	0.17	0.23			0.031	305	420	32	OK	500	OK	ок
169	048107	8	36	0.375	40	2	80	5.183	OK	0.16		0.45		0.031	310	425	31	OK	500	OK	ОК
170	048307	в	36	0.375	40	3	120	7.774	OK		0.22	0.46	·	0.031	310	425	31	ОК	500	ок	OK
			I	t	<u>_</u>	<u> </u>		1.114		0.15	0.21	0.43	0.013	0.030	290	430	31	OK	500	ОК	OX

VIEH CORPORATION LIMITED

COMMODITY: CARBON STEEL PIPE PER SALES CONTRACT

NO. SEUSFP6C02TD3 DATED DECEMBER 11, 2006.

CUSTOMER: OZONE INDUSTRIES CORPORATION

15465 PINE RIDGE ROAD

FORT MYERS, FL 33908

The CARBON STEEL PIPES are tested according to ASTM A139 GR.B

This is to certify that in accordance with the relevant specifications and contracts.

The CARBON STEEL PIPES manufactured were tested and qualified by our Quality Control Department.

CERTIFICATE NO:PSCNJN6C01TC5 DATE OF ISSUE:4/29/2007

> Invoice No. SEUSFP6C02TD3 LC NUMBER.: 5279996

TOTAL: 746 PCS/29840FT/1769.619MT.

				L	Size								····		TI	ESTING F	ESULTS					1
	Pipas No.	Heat Numbers	Steel		W.T.	Length		Quantity	i	Dimensional	(CHEMICA	L PROPE	RTIES(%	a)	PHYSI	CAL PROF	ERTIES	Welding properties	Hydrosiatic Test Holding time:10s	Flattening	UT Test
.	ļ		Grade	in	in	ft	Pcs	ft	мт	Inspection	С	Si	Mn	P	S	os(Mpa)	ob(Mpa)	ō5(%)	٥b	P ≈ Psì	Test (B)	Test (B)
Ŷ	171	055823	8	36	0.375	40	3	120	7.774	ох	0.14	0.14	0.35	0.018	0.029	305	425	32	OK	500	ок	OK
	172	112002	B	36	0.375	40	2	80	5.183	OK	0.17	0.26	0.46	0.012	0.033	320	430	31.5	OK	500	ок	ОК
V	173	010103	В	36	0.375	40	3	120	7.774	OK	0.15	0.19	0.37	0.009	0.028	305	425	31.5	ОК	500	ок	OK
	174	014402	В	36	0.375	40	з	120	7.274	OK	0.17	0.22	0.44	0.014	0.032	315	420	32	ок	500	OK	ок
	175	014401	B	36	0.375	40	2	80	5.183	ОК	0.16	0.21	0.41	0.012	0.029	290	420	31.5	ок	500	OK	OK
¥	176	012201	8	38	6.375	40	3	120	7.774	ОК	0.18	0.25	0.45	0.015	0.032	285	420	32	ок	500	OK	OK
	177	056002	6	36	0.375	40	3	120	7.774	οκ	0.17	0.24	0.47	0.011	0.031	320	430	31.5	ОК	500	OK	
•	173	048307	В	36	0.375	40	2	05	5.183	OK	0.15	0.19	0.42	0.010	0.028	300	425	31	OK	500	OK	
i.	179	648305	B	36	0.375	40	з	120	7.774	ОК	0.14	0.17	0.39	0.008	0.030	305	425	32.5			OK	
~ (150	053604	8	36	0.375	40	3	120	7.774	ок	0.15	0.24	0.43	0.012	0.032	300				500		OK
- V [161	055405	B	36	0.375	40	3	120	7.774	ОК	0.15	0.22	0,39	0.012			420	32.5	OK	500	OK	OK
Ĩ	162	048701	Б	36	0.375	40	2	80	5.183	ОК	0.17	0.22	0.30		0.029	300	425	31	OK	500	ок	OK
r	183	047504	5	36	0.375	40	2	80	5_183		0.16	0.19			0.031	305	425	32	OK	500	<u> </u>	OK
- V [184	238201	в	36	0.375	40	5	200	12.951	OK			0.41		0.028	310	425	31	OK	500	ок	OK
~ v [185	238402	В	36	0.375	40	2	80	5.183		0.18	0.24	0.45		0.033	320	435	32.5	ок	500	ок	OK
~ / †	186	238202	B	36	0.375	40	3	120		OK	0.17	0.17	0.42	+	0.030	315	430	31	ок	500	ок	OK
-	187	238002	в	36	0.375	40	3		7.774	ОК	0.15	0,19	0.36		0.028	315	420	31.5	<u></u> 0K	500	OK	ок
L				<u> </u>	0.070	<u>"</u>		120	7.774	<u>ок</u>	0.18	0.23	0.45	0.015	0.032	285	420	32	OK	500	OK	ок

YIEH CORPORATION LIMITED

your Ĩ

COMMODITY: CARBON STEEL PIPE PER SALES CONTRACT

NO. SEUSFP6C02TD3 DATED DECEMBER 11, 2006.

CUSTOMER-

15465 PINE RIDGE ROAD

FORT MYERS, FL 33908

The CARBON STEEL PIPES are tested according to ASTM A139 GR.B

This is to certify that in accordance with the relevant specifications and contracts.

OZONE INDUSTRIES CORPORATION

The CARBON STEEL PIPES manufactured were tested and qualified by our Quality Control Department. **F** Т Ŧ

CERTIFICATE NO:PSCNJN6C01TC5 DATE OF ISSUE:4/29/2007

> Invoice No. SEUSFP6C02TD3 LC NUMBER .: 5279996

	ļ	•		Size	·····									T	ESTING F	ESULTS			······································		
Pipes No.	Heal Numbers	Steel	0.D.	W.T.	Langth		Quantib		Dimensional	(CHEMICA	L PROPE	RTIES(%	5}	PHYSI	CAL PROF	ERTIES	Welding properties	Hydrostatic Test, Holding tima: 10s	Flattening	UT Test
ļ	1	Grade	in	in	ît (Pcs	ft	MT	Inspection	С	SI	Mn	Р	S	os(Mpa)	cb(Mpa)	ð5(%)	σb	P = Psi	Test (B)	Test (B)
188	236003	8	36	0.375	40	2	80	5.183	ок	0.16	0.20	0.43	0.014	0.030	290	420	31.5	ок	500	OK	ок
189	175902	В	36	0.375	40	3	120	7.774	ок	0.18	0.24	0.44	0.015	0.033	290	425	. 32	ок	500	ОК	OK
190	175901	В	36	0.375	40	2	80	5.183	ок	0.17	0.20	0.42	0.012	0.031	295	425	31	OK	500	OK	ок
191	237002	В	40	0.375	40	2	90	5.765	ОК	0.19	0.27	0.42	0.016	0.033	300	425	31	OK	500	ок	ок
192	175905	8	40	0.375	40	2	86	5.785	OK	0.18	0.26	0.43	0.013	0.030	305	420	31.5	ОК	500	ОК	ок
193	237004	в	40	0.375	40	2	80	5.765	OK	0,15	0.17	0.33	0.008	0.028	315	425	31	ОК	500	GК	ок
134	237006	В	40	0.375	40	3	120	8,647	· 0K	0.18	0.25	0.45	0.012	0.032	325	435	31.5	OK	500	OX	ох
195	237003	В	40	0.375	40	2	80	5.765	ок	0.16	0.24	0.39	0.014	0.030	310	425	31	ок	500	ОК	οĸ
195	237401	в	40	0.375	40	3	120	8.645	OK	0.17	0.26	0.47	0.011	0.031	320	430	31.5	ОК	500	OK	ок
197	176502	В	40	0.375	40	2	80	5.765	OK	0.18	0.27	0.43	0.014	0.033	300	420	31.5	OK	500	ок	OK
198	237005	в	40	0.375	40	2	80	5.765	ОК	0.17	0.23	0.46	0.012	0.031	290	430	31	OK	500	OK	OK
199	176706	B-	40	0.375	40	3	120	8,645	ок	0.17	0.24	0.44	0.011	0.030	305	435	31	OK	500	OK	OK OK
200	237001	В	40	0.375	40	2	80	5,765	ок	0.15	0.21	0.38	0.013	0.029	290	430	31	ОК	500	ок	<u>ок</u>
201	176501	в	40	0.375	40	2	80	5.765	OK	0.15	0.22	0.39	0.009	0.028	305	420	33	OK I	500	OK OK	ок
- 202	054004	В	42	0.375	40	1	40	3.028	OK	0.18	0.25	0.44	0.014	D.033	300	425	31.5	ОК	500	ок	OK OK
203	055406	в	42	0.375	40	3	120	9.083	OK	0.16	D.21	0.37	0.012	0.030	310	425	31		500	OK	ок
204	047705	В	42	0.375	40	2	80	6.056	ок	0.14	0.17	0.39		0.028	305	425	33	OK	500	OK	OK OK

YIEH CORPORATION LIMITED

TOTAL: 746 PCS / 29840FT / 1769.619MT

Ż

Injection Well IW-1

24-inch Casing

IW-1 24-inch Casing Log

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

3220269.77010102
Youngquist Brothers, Inc.
<u>Neil Johnson</u>
City of Cape Coral

Observer: <u>King/Largey/James</u>

Casing Diameters (inches): <u>O.D. 24.00</u> <u>I.D. 23.00</u> Wall Thickness (inches): <u>0.50</u>

Pipe No. and Install	Heat	Mill	Length	Run Depth	Weld	Weld Start	Weld Completion
Order	Number	Certification	(ft)	(ft bls)	Date	Time	Time
51	070613/070709	X	61.08	54.83	3/27/08	22:20	22:40
50	070709/070688	Х	66.20	121.03	3/27/08	21:17	21:57
49	070688/070709	Х	57.94	178.97	3/27/08	20:18	20:48
48	070688/070709	Х	59.80	238.77	3/27/08	19:23	19:49
47	070688/070613	X	61.29	300.06	3/27/08	16:45	17:00
46	070709/070688	X	60.11	360.17	3/27/08	15:15	15:30
45	070712/070709	Х	61.27	421.44	3/27/08	12:50	13:03
44	070709/070709	X	60.09	481.53	3/27/08	11:55	12:10
43	070613/070688	X	54.30	535.83	3/27/08	11:13	11:28
42	070688/070709	X	60.55	596.38	3/27/08	10:34	10:53
41	070709/070709	X	67.35	663.73	3/27/08	9:45	10:05
40	070709/070709	X	68.08	731.81	3/27/08	8:35	9:15
39	070709/070635	X	62.07	793.88	3/27/08	7:50	8:10
38	070712/070635	Х	59.04	852.92	3/27/08	6:08	6:30
37	070635/070709	X	58.59	911.51	3/27/08	5:20	5:50
36	070688/070709	X	60.82	972.33	3/27/08	4:35	4:50
35	070688/070712	X	53.43	1,025.76	3/27/08	3:56	4:16
34	070712/070712	X	55.61	1,081.37	3/27/08	3:13	3:30
33	070688/070635	X	53.47	1,134.84	3/27/08	2:19	2:45
32	070712/070635	X	52.23	1,187.07	3/27/08	1:39	2:02
31	070688/070635	X	52.87	1,239.94	3/27/08	0:58	1:18

30	070688/070712	Х	53.29	1,293.23	3/27/08	0:09	0:20
29	070635/070635	X	51.98	1,345.21	3/26/08	23:26	23:45
28	070709/070709	X	60.24	1,405.45	3/26/08	22:50	23:05
27	070688/070688	X	50.98	1,456.43	3/26/08	21:35	21:54
26	070635/070635	X	48.85	1,505.28	3/26/08	20:53	21:16
25	070688/070712	X	59.93	1,565.21	3/26/08	20:03	20:15
24	070606/070606	X	52.64	1,617.85	3/26/08	18:50	19:32
23	070635/070635	X	53.57	1,671.42	3/26/08	18:07	18:23
22	070688/070635	X	52.96	1,724.38	3/26/08	17:25	17:42
21	070709/070688	X	59.20	1,783.58	3/26/08	16:45	17:05
20	070635/070688	X	51.95	1,835.53	3/26/08	15:45	16:00
19	070688/070635	X	52.02	1,887.55	3/26/08	15:10	15:28
18	070688/070606	X	54.62	1,942.17	3/26/08	14:15	14:50
17	070688/070712	X	59.41	2,001.58	3/26/08	13:30	13:50
16	070712/070635	X	60.69	2,062.27	3/26/08	12:25	12:40
15	070712/070688	X	52.38	2,114.65	3/26/08	11:55	12:12
14	070688/070613	X	54.02	2,168.67	3/26/08	11:09	11:30
13	070688/070712	X	51.96	2,220.63	3/26/08	10:25	10:50
12	0707012/070712	X	52.49	2,273.12	3/26/08	9:45	10:05
11	070635/070709	X	59.45	2,332.57	3/26/08	9:05	9:25
10	070635/070709	X	60.81	2,393.38	3/26/08	8:15	8:30
9	070635/070712	X	56.27	2,449.65	3/26/08	7:15	7:30
8	070709/070635	X	60.42	2,510.07	3/26/08	5:16	5:53
7	070709/070688	X	60.62	2,570.69	3/26/08	4:24	4:54
6	070712/070709	X	60.20	2,630.89	3/26/08	3:32	3:58
5	070688/070709	X	59.65	2,690.54	3/26/08	2:34	3:03
4	070613/070709	X	59.44	2,749.98	3/26/08	1:38	2:07
3	070709/070709	X	67.07	2,817.05	3/26/08	0:47	1:16
2	070709/070712	X	62.06	2,879.11	3/25/08	22:57	23:17
1	070613/070709	Х	60.50	2,939.61			
YBI Packer			11.03	2,950.64			

Total length (ft) 2,956.89

Floor and elevators (ft) -6.25

24-inch Casing Seat (ft bls) 2,950.64

NOTES:

ft - feet ft bls - feet below land surface

ノロ物態新翔管有限公司 WUXI DEXIN STEEL TUBE CO., LTD.

MILL CERTIFICATE

订货单 CUSTO		CORP BROT	HERS	N/YQUN	GQUIST			产品名和 PRODU(C	无 ARBO	缝钢管 V STEE			D		交货步 ERY Co		ΓΙΟΝ	止火 NORMAI	
收货单 URCH/	ASER		E INDUS ORATIO HERS	STRIES N/YOUN(GQUIST		C	合同号和 ONTRAC	-			WXD	<-2007	0110				质保- FICAT	5号		WXDX07	
标准 ECIFIC	-		A	PI5L-200	0		S	钢级 STEEL GR	ADE			GR	.B PSI	_1			l. A	总支数 TAL PI	(支)		68	
熔炼	¥	批号		格 [ZE		数 QUAN						1	-	学 CAL CO	成 MPOSIT		100)	1		PHYSICA	L 被 作 俞 L PROPERTIE	± :S (
HEAT	1 -	LOT NO.	直径 0. D. IN	壁厚 W.T. IN	、 支数 PIECES	K) Len(M	GTH	重量 WEIGHT T	碳 C	碓 Si	瓴 Mn	硫 S	磷 P	锏 Cu	镍 Ni	锵 Cr	们 Mo	钒 V	铝 . Al	抗拉强废 T.S. MPa	伸长率 E.L. δ%	□ 屈服 度 Y.S
0705	61	5103	18	0.5	8	62.:	23	8.618	21	17	54	0.9	0.9	3	2	5			1	430/435	32.0/32.5	MP 330/
0706	06	5221	24	0.5	60	486.	.49	92.108	22	16	55	1.0	1.1	5	2	3				425/420	31.0/31.5	340/3
^{当声} 波探(U.T,	ji ¥	呙流探伤 E.T	硬度(I HARDN	NESS	热处理工艺 HEAT REATMENT		VISU	外观和尺寸 AL&DIMEN) VSION	5	ان MICRO	- 微组织 STRUC			晶粒度 AINSE			」 三 日 日 王 王 王 王 日 府 日 日 府 日 日 府 日 日 日 日 日 日	NG	水压实验 HYDROST ATIC TEST	冷心 BENDING	》中击 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一
合格 GOOD 注释 JOTES		1	!	-	1			合格 COOD				1			1			合格 GOOD		合格 GOOD	合格 GOOD	<u>≥(</u> 34
101ES 会验者 IVEROR					封造、取样、 TRIAL HER H THE REQI							JRED, AND I	SAMPI PURCH	J.D. F ASE O	ESTED RDER,	AND AND	1	检验」 NSPEC 许可证 LICEN	TDA- - 例目Y		文 <u>英</u> (1) []]]][]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]	

~

٠

产品质量证明书

MILL CERTIFICATE

0	订货单位 CUSTOME	CORI BRO	NE INDU: PORATIO THERS	N/YOUN	GQUIST		产情: PROD					无缝银 ION ST		PE		DELI		状态 CONI	DITION	IE NORM	
P	收货单位 URCHASE		NE INDUS PORATIO THERS		oquist		合同- CONTRA		0.		wx	DX-20	07011	0		CER		k-持号 ATIO	NO.	WXDX	07693
SPI	标准 ECIFICATIO	N		API5L			朝 STEEL C		E			OR.B P	SLI			<u> </u>	送总 JATO	數(文) , PIEC	ES	14	4
序号	熔炼号	批号		格 [28		数 QUAN					1	-	AL CO	成 NPOSIT		份 % •100)	<u>.</u> .	<u></u>		机 披 性 AL PROPERT	
NO ·	HEAT NUMBERS	加工 並径 遼原 支敷 LOT NO. 0. D. W. T. PIECE nm nm S 5286 609.6 12.7 52				米费 LENG H		碳 C	健 Si	SE Kn	喉 S	₽	¶ Cu	<mark>棟</mark> Ni	骼 Cr	11] Mo	钌. V	借 A1	抗拉强皮 T.S. MPa	仲长率 E.L. δ%	加服强度 Y.S. MPa
1	070613	5286	609.6	12.7	52	414.8	35 78.364	21	18	54	1.0	1.0	5	2	5				425/430	31.0/30.5	340/330
2	070613	5287 609.6 12.7 54			435.6	59 81.012	21	18	54	1.0	1.0	5	2	5				425/430	31.0/30.5	340/330	
3	070613	5288	609.6	12.7	38	308.2	28 57.806	21	18	54	1.0	1.0	5	2	5	 			425/430	31.0/30.5	340/330
J	声波探伤 U.T	涡流探伤 E.T	视度() HARD	VESS	热处理工艺 HEAT IREATMEN		外观和尺 VISUAL&DIMI		NS	MICRO	【微组録 STRUC			晶粒度 AINSI			出向 TTENI	NG	水压实验 HYDROST ATIC TEST	冷 왕 BENDIN G	冲击试验 IMPACT TEST AKV(J) ≥(34)
	合格 / GOOD / :释 / TES 放证明本表所列产品,均依标准规定制造						合格 GOOD				/		<u> </u>	1			合格 GOOD		合格 GOOD	合格 GOOD	1 1 1
	EROR AN	HERE CER	TIFY THA ED IN AC	T THE MA	ATERIAL I CE WITH	IEREIN	和 检验,并符 合 I DESCRIBED I REQUIREMENT	HASR	FFN 1	MANUE	ACTUR	ED, S. TIONS	AMPLE AND	ED, TE PURCI	STED HASE	- 1	检验 NSPEC 许可证 LICEN	TOR E号		×武史 5L-0573	

产品质量证明书

MILL CERTIFICATE

	OZONE INDUSTRIES CORPORATION/YOUNGQUIST BROTHERS	产品名称 PRODUCT	无缝钢管 CARBON STEEL PIPE	交货状态 DELIVERY CONDITION	正火 NORMALIZE
PURCHASER	OZONE INDUSTRIES CORPORATION/YOUNGQUIST BROTHERS	合同号码 CONTRACT NO.	WXDX-20070110	质保书号 CERTIFICATION NO.	WXDX07726
标准 SPECIFICATION	APISL	钢级 STEEL GRADE	GR.B PSL1	总支数(支) TOTAL PIECES	65

序号	熔炼号	,批号		格 [ZE		QUANTIT					4	ł Ch en i	¥ CAL CO	成 MPOSIT		8) 100))			机 械 性 AL PROPERTI	能 ES (L)
N0	HEAT NO	D. LOT NO.	直径 0.D. mm	壁厚 ₩.T. 1988	文数 PIECE S	米数 LENGTH M	重量 WEIGHT T	碳 C	磋 Si	t⊊ Mn	硪 S	磷 P	铜 Cu	镍 Ni	铭 Cr	413 No	钒 V	铝 A1	抗拉强度 T.S. MPa	伸长率 E.L. δ%	屈服强度 Y.S. WPa
1	070709	6589	609.6	12.7	65	627.85	113.835	22	27	56	0.4	1.9	1.2	1	2.5		†	<u> </u>	480/475	33.0/32.5	260/275
2												<u> </u>		<u> </u>		<u> </u>					-
3																					
4	·····																				
	■波探伤 U.T 合格	涡流探伤 E.T	硬度(I HARDN	ESS	格处理工艺 HEAT REATMEN	VID	小观和尺 UAL&DIME			AICROS	微组织 TRUC			晶粒度 AINSI2	ZE		压 <u>扁</u> FTENII	4G	水压实验 HYDROST ATIC TEST	冷驾 BENDIN G	冲击试验 IMPACT TEST AKV(J) ≥(34)
	300D	/	/		1		合格 GOOD			ایلی، ا	1			1			合格 300D		合格 GOOD	合格 GOOD	1 1 1
注 NOT																					.
会验 SUVE	ROR A	を近明本表所列行 VE HERE CERT ND INSPECTE RDER, AND TH	D IN ACC	THE MA	IERIAI H	EDENI NE	T GOD TO COV	TAC DE		4.5.12.200.4	CTUR	ED, SA TONS	MPLE AND	D, TES PURCH	STED LASE		VSPEC	日 FOR 号しし	K m (大背 Allo silei	(UUSL-0573)	

产品质量证明书

订货单位 CUSTOMER	OZONE INDUSTRIES CORPORATION/YOUNGQUIST BROTHERS	产品名称 PRODUCT	无缝钢管 CARBON STEEL PIPE	交货状态 DELIVERY CONDITION	正火 NORMALIZE
收货单位 PURCHASER	OZONE INDUSTRIES CORPORATION/YOUNGQUIST BROTHERS	合同号码 CONTRACT NO.	WXDX-20070110*		WXDX07708
标准 SPECIFICATION	API5L	钢级 STEEL GRADE	GR.B PSL1	总支数(支) TOTAL PIECES	72

анну на уулаанаа саруулаануулу усарыныну сарууну интерсететете жиликтереники интерсетики интерсететететететете

序	· · · · · · · · · · · · · · · · · · ·		规 SI	格 ZE		数 QUAN	量 TITY	T			1 1		学 AL CO	从 MPOSIT	f ION (*				∦ PHYSICA	L 叔 性 I L PROPERTI		
号 NO ・	增炼号 HEAT NO		直径 0.D. mm	壁厚 ₩.T.	支数 P1ECE S	米費 LENG	女 重量	碳 C	健 Si	钮 ¥n	硫 S	64 ₽	網 Cu	铁 Ni	铬 Cr	钔 No	भि V	铝 A1	抗拉强度 T.S. MPa	伸长率 E.L. δ%	屈服强度 Y.S. MPa	
1	070688	5883	609.6	12.7	35	287.7	79 53.804	23	29	59	0.4	2.0	1.2	1	1.9				480/480	33.0/32.5	280/275	
2	070688	5885	609.6	12.7	37	302.8	80 56.162	23	29	59	0.4	2.0	1.2	1	1.9				480/480	33.0/32.5	280/275	_
3																		ļ				
4																	<u> </u>					
超	声波探伤 U.T	涡流採伤 E.T	硬度(HARD)	1	热处理工 HEAT TREATME	-	外 规和 片 VISUAL&DIM		NS	ی MICRO	显微组约 STRUG			晶粒度 \AINSI		FLA	压扁 JITENI	NG	水压实验 HYDROST ATIC TEST	冷弯 BENDIN G	冲击试验 IMPACT TEST AKV(J) ≥(34)	
	合格 GOOD	/	/		1		合格 GOOD			······	1			1			合格 GOOD		合格 GOOD	合格 GOOD	1 1	/
	主释 DTES																					
	验者 /EROR	WE HERE CE	RTIFY THA TED IN A(AT THE M	MATERIAL NCE WITH	HEREI	會和檢驗,并符 N DESCRIBED REQUIREMEN	HAS I	BEEN	MANUI	FACTU CIFIC/	RED, S VTIONS	AMPL AND	ED, TH PURC	ESTED CHASE		检验 INSPE 许可i LICE			大改英 51-0573		

产品质量证明书 MILL CERTIFICATE

0	订货单位 CUSTOM		CORP BROT	VE INDUS PORATIO THERS	N/YOUN	GQUIST		产品 PROD					无缝钥 ION ST		IPE		DELI		t状态 CONI	NOITION	正 NORM	
P	收货单位 URCHAS			JE INDUS ORATION HERS		GQUIST		合同· CONTRA	-	0.		wx	DX-20	07011	0		CER		R书号 ATIO	N NO.	WXDX	07695
SPI	标准 ECIFICAT	TION			API5L			钢约 STEEL C		E		(GR.B P	SLI			T	总支 OTAL	数(支) PIEC		72	2
序号	熔炼号		: 号 -	规 SI			教 QUANT					1	-	≇ CAL CO	成 MPOSIT	-	} % 100)				机 械 性 AL PROPERTI	能 ES (L)
NO -	HEAT NUMBERS	10	DT NO.	宜径 0. D. mm	弦序 W.T. ROB	文数 PIECE S	米数 LENGT 以		碳 C	穜 Si	镭 Mn	破 S	僻 P	鋼 Cu	採 Ni	格 Cr	ti Mo	祝 V	留 Al	抗拉强度 T.S. MPa	伸长率 E.L. δ%。	屈服强度 Y.S. MPa
1	070635	5:	395	609.6	12.7	36	291.7	7 54.560	21	17	55	0.9	1.0	5	2	5	1			425/435	31.0/31.5	340/330
2 3	070635	53	396	609.6	12.7	36	290.99	9 54.628	21	17	55	0.9	1.0	5	2	5				425/435	31.0/31.5	340/330
4																						
•	声波探伤 U.T		流探伤 E.T	硬度(H HARDN	187	熱处理工艺 HEAT REATMEN		外观和尺 /ISUAL&DIME		٧S	₩ICRO	微组绑 STRUC			龍拉度 AINSI2	Σ.		压扁 FTENN	٩G	水压实验 HYDROST ATIC TEST	冷迎 BENDIN G	冲击试验 IMPACT TEST AKV(J) ≥(34)
	合格 GOOD		/	/		1		合格 GOOD				1			1			合格 300D		合格 GOOD	合格 GOOD	111
	日本 TES																		,		berranne an d ar	····· t ··· t ····
	KLfi ∣W	e her	e cert	IFY THAT	`THE MA	TERIAL H	EREIN	和検验,并符合 DESCRIBED H	IAS BI	FEN A	ANDE.	ACTUR	ed, sa	MPLE	d, tes	TED	n	検验! NSPEC		-	赵武友	
/ • L		and thes	SPECIE	E REQUIR	LUKDANC	E WITH	THE RE	QUIREMENT	SOF	ABOV	E SPEC	CIFICAT	TONS	AND	PURCH	IASE		许可证 LICEN			5L-0573	····

无锡德新钢管有限公司 WUXI DEXIN STEEL TUBE CO., LTD.

产品质量证明书

١

MILL CERTIFICATE

(订货单 CUSTON		CORI BROT	PORATIC THERS	USTRIES ON/YOUNGQUIST		产品名称 PRODUCT STEEL				雀钢管 MLESS PIPES		交货状态 DELIVERY CONDITION			正 NORM	火 ALIZE					
P	收货单 URCHA	SER	CORF	VE INDU PORATIO THERS	STRIES N/YOUN(GQUIST		合同号码 CONTRACT NO.						质保书号 CERTIFICATION NO.				WXDX	07727			
SPI	标准 ECIFICA				API5L			钢 STEEL(E		(GR.B I	PSL1				总支	数(支 PIEC	<u>}</u>	4:	5
序号	熔炼号	3 1	批号		格 (ZE		数 QUANT		化学成份%。					机 械 性 AL PROPERTI	能 ES (L)							
N0	HEAT NO	0. L	LOT NO.	直径 0. D. 四	壁厚 W.T.	支数 PIECE S	米數 LENGT M		碳 C	硅 Si	€⊈ Min	破 S	磷 P	铜 Cu	镍 Ni	铬 Cr	钥 Mo	钌 V	铝 A1	抗拉强度 T.S. MPa	伸长率 E.L. δ%	屈服强度 Y.S.
1	070712	2	6458	609.6	12.7	45	376.2	2 69.939	22	26	58	0.9	1.5	1.6	2	4				480/485	32.0/31.0	MPa 260/250
3											+											
4																				· · · · · · · · · · · · · · · · · · ·		
	^唐 波探伤 U.T	涡	·流探伤 E.T	硬度(F HARDN	IESS	使理工艺 HEAT EATMEN		外观和尺 /ISUAL&DIME		ıs	。 MICRO	徽组织 STRUC			晶粒度 AINSIZ	E		压扁 TENIN	1G	水压实验 HYDROST ATIC TEST	冷弯 BENDIN G	冲击试验 IMPACT TEST AKV(J) ≥(34)
 注			1	1		1		合格 GOOD				1			1			合格 ЮОD		合格 GOOD	合格 GOOD	/ / /
NO1 会账 UVE	括 W ROR A	ND IN	ISPECTEI	D IN ACC				印检验,并符合 DESCRIBED H QUIREMENTS				CTUR	ED, SA IONS ,	MPLEI AND P	D, TES PURCH	TED ASE		检验 SPECI 午可证		l德新毯 DEXIN STEE	CZZZZR L LISE-60	公司 LTD

Injection Well IW-1

18-inch Injection Tubing

IW-1 18-inch Tubing Log

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

<u>3220269.77010102</u>
Youngquist Brothers, Inc.
Neil Johnson
City of Cape Coral

Observer: Dawn James

Casing Diameters (inches): <u>O.D. 18.04-inch</u> <u>I.D. 16.62-inch</u> Wall Thickness (inches): <u>0.71-inch</u>

Pipe No.	FRP				Field		
and Install	Series	Coupling	Length	Run Depth	Torque	Makeup	Completion
Order	Number	Number	(ft)	(ft bls)	(Ft Lbs)	Date	Time
Stainless Steel			6.80	6.80	4,000	4/10/08	15:39
Pup Joint	300000539	A.4-11	4.56	11.36	3,085	4/10/08	13:24
102	110000106	A.4.17	28.69	40.05	3,080	4/10/08	12:27
101	110000106	A.4-4	29.02	69.07	3,170	4/10/08	13:40
99	110000106	A.4-16	29.20	98.27	3,120	4/10/08	12:19
98	110000106	A.4-17	29.19	127.46	3,065	4/10/08	12:08
97	110000106	A.4-24	29.16	156.62	3,175	4/10/08	12:00
96	110000106	A.4-24	28.87	185.49	3,050	4/10/08	11:52
95	110000106	A.4-8	29.43	214.92	3,090	4/10/08	11:45
94	110000106	A.4-6	29.27	244.19	3,145	4/10/08	11:37
93	110000106	A.4-1	28.98	273.17	3,120	4/10/08	11:30
92	110000106	A.4-5	29.44	302.61	3,185	4/10/08	11:08
91	110000106	A.4-2	29.19	331.80	3,185	4/10/08	11:00
90	110000106	A.4-22	28.90	360.70	3,080	4/10/08	10:54
89	110000106	A.4-10	28.47	389.17	3,120	4/10/08	10:47
88	110000106	A.5-3	29.37	418.54	3,190	4/10/08	10:38
87	110000106	A.4-20	29.36	447.90	3,070	4/10/08	10:30
86	110000106	A.4-23	28.61	476.51	3,089	4/10/08	10:23
85	110000106	A.4-21	29.11	505.62	3,065	4/10/08	10:16
84	110000106	A.4-7	29.31	534.93	3,055	4/10/08	10:04
83	110000106	A.4-15	29.01	563.94	3,190	4/10/08	9:55

82	110000106	A.4-13	28.80	592.74	3,180	4/10/08	9:45
81	110000106	A.4-15	28.76	621.50	3,075	4/10/08	9:38
80	110000106	A.5-1	29.10	650.60	3,185	4/10/08	9:29
79	110000106	A.4-3	29.10	679.27	3,065	4/10/08	9:21
79	110000106	A.4-18	28.68	707.95	3,160	4/10/08	9:14
78	110000106	A.4-18 A.4-14	29.32	737.27	3,025	4/10/08	9:07
76		A.1-16	29.32	766.26	3,023	4/10/08	9:07
76	210000058 210000058	A.1-10 A.3-11	28.99	795.26	,	4/10/08	8:52
73					3,130		
	210000058	A.1-3	28.88	824.14	3,050	4/10/08	8:45
73	210000058	A.1-5	29.11	853.25	3,170	4/10/08	8:37
72	210000058	A.2-6	29.08	882.33	3,200	4/10/08	8:29
71	210000058	A.3-16	29.26	911.59	3,035	4/10/08	8:21
70	210000058	A.1-22	28.99	940.58	3,050	4/10/08	8:13
69	210000058	A.2-5	29.05	969.63	3,035	4/10/08	8:05
68	210000058	A.3-4	29.15	998.78	3,065	4/10/08	7:57
67	210000058	A.1-18	28.85	1,027.63	3,165	4/10/08	7:50
66	210000058	A.1-1	28.30	1,055.93	3,095	4/10/08	7:42
65	210000058	A.3-21	28.92	1,084.85	3,110	4/9/08	17:57
64	210000058	A.1-19	28.87	1,113.72	3,015	4/9/08	17:50
63	210000058	A.1-25	29.03	1,142.75	3,095	4/9/08	17:43
62	210000058	A.1-20	28.78	1,171.53	3,120	4/9/08	17:34
61	210000058	A.3-22	29.06	1,200.59	3,075	4/9/08	17:25
60	210000058	A.3-5	28.99	1,229.58	3,240	4/9/08	17:16
59	210000058	A.2-25	29.00	1,258.58	3,060	4/9/08	17:09
58	210000058	A.3-9	29.03	1,287.61	3,010	4/9/08	16:59
57	210000058	A.3-10	29.06	1,316.67	3,135	4/9/08	16:51
56	210000058	A.3-1	28.93	1,345.60	3,175	4/9/08	16:43
55	210000058	A.2-2	29.13	1,374.73	3,117	4/9/08	16:36
54	210000058	A.3-3	29.15	1,403.88	3,145	4/9/08	16:29
53	210000058	A.3-6	28.75	1,432.63	3,075	4/9/08	16:22
52	210000058	A.1.17	29.18	1,461.81	3,295	4/9/08	16:15
51	210000058	A.2-1	28.89	1,490.70	3,136	4/9/08	16:07
50	210000058	A.3-7	28.85	1,519.55	3,090	4/9/08	15:59
49	210000058	A.1-13	28.24	1,547.79	3,040	4/9/08	15:51
48	210000058	A.3-24	29.09	1,576.88	3,020	4/9/08	15:42
47	210000058	A.1-11	28.98	1,605.86	3,155	4/9/08	15:34
46	210000058	A.3-25	29.22	1,635.08	3,085	4/9/08	15:25
45	210000058	A.2-17	28.95	1,664.03	3,090	4/9/08	15:17
44	210000058	A.1-12	28.46	1,692.49	3,233	4/9/08	15:08
43	210000058	A.2-19	29.09	1,721.58	3,144	4/9/08	14:59

10	210000050		20.00	1 750 55	2 100	4 /0 /00	14.50
42	210000058	A.3-23	28.98	1,750.56	3,190	4/9/08	14:52
41	210000058	A.2-23	29.06	1,779.62	3,111	4/9/08	14:45
40	210000058	A.2-21	28.97	1,808.59	3,200	4/9/08	14;38
39	210000058	A.2-26	28.98	1,837.57	3,150	4/9/08	14:30
38	210000058	A.2-18	29.04	1,866.61	3,060	4/9/08	14:23
37	210000058	A.2-7	28.96	1,895.57	2,970	4/9/08	14:16
36	210000058	A.3-2	28.97	1,924.54	2,965	4/9/08	14:08
35	210000058	A.3-8	28.90	1,953.44	2,950	4/9/08	14:00
34	210000058	A.1-24	29.05	1,982.49	2,995	4/9/08	13:52
33	210000058	A.2-24	28.96	2,011.45	3,040	4/9/08	13:34
32	210000058	A.1-10	28.96	2,040.41	3,070	4/9/08	12:29
31	210000058	A.2-15	28.96	2,069.37	3,035	4/9/08	12:21
30	210000058	A.1-8	28.93	2,098.30	3,085	4/9/08	12:14
29	210000058	A.1-9	28.97	2,127.27	3,190	4/9/08	12:06
28	210000058	A.1-21	29.02	2,156.29	3,150	4/9/08	11:59
27	210000058	A.1-4	28.88	2,185.17	3,020	4/9/08	11:52
26	210000058	A.1-6	28.88	2,214.05	3,125	4/9/08	11:45
25	210000058	A.3-18	29.02	2,243.07	3,060	4/9/08	11:37
24	210000058	A.3-20	28.83	2,271.90	2,970	4/9/08	11:30
23	210000058	A.1-23	29.05	2,300.95	3,120	4/9/08	11:22
22	210000058	A.2-3	29.01	2,329.96	3,250	4/9/08	11:14
21	210000058	A.3-14	29.02	2,358.98	3,075	4/9/08	11:07
20	210000058	A.2-11	29.02	2,388.00	3,200	4/9/08	10:57
19	210000058	A.3-12	29.28	2,417.28	3,195	4/9/08	10:49
18	210000058	A.3-19	29.10	2,446.38	3,185	4/9/08	10:42
17	210000058	A.3-13	28.96	2,475.34	3,060	4/9/08	10:34
16	210000058	A.3-17	28.90	2,504.24	3,170	4/9/08	10:25
15	210000058	A.3-26	29.22	2,533.46	3,010	4/9/08	10:14
14	210000058	A.2-8	28.99	2,562.45	3,150	4/9/08	10:07
13	210000058	A.2-10	29.20	2,591.65	3,145	4/9/08	9:36
12	210000058	A.1-14	28.29	2,619.94	3,200	4/9/08	9:25
11	210000058	A.2-20	29.23	2,649.17	3,055	4/9/08	9:18
10	210000058	A.2-12	29.12	2,678.29	3,090	4/9/08	9:09
9	210000058	A.2-16	29.17	2,707.46	3,015	4/9/08	8:52
8	210000058	A.1-15	29.05	2,736.51	3,025	4/9/08	8:43
7	210000058	A.1-7	28.93	2,765.44	3,100	4/9/08	8:28
6	210000058	A.2-13	28.57	2,794.01	3,100	4/9/08	7:57
5	210000058	A.3-15	29.02	2,823.03	3,100	4/8/08	20:21
4	210000058	A.1-2	29.05	2,852.08	3,245	4/9/08	7:20
3	210000058	A.2-22	29.01	2,881.09	3,035	4/8/08	18:00

2	210000058	A.2-9	29.01	2,910.10	3,205	4/9/08	8:18
1	210000058	A.2-14	29.03	2,939.13	3,000	4/8/08	17:02
		inner mandrel	2.32	2,941.45			

Total length (ft) 2,941.45

Floor and elevators (ft) 0.00

18-inch Casing Seat (ft bls) 2,941.45

NOTES:

ft - feet

Ft-Lbs - foot pounds

ft bls - feet below land surface

FUTURE PIPE INDUSTRIES

Inspection Certificate

<u>Job No</u>: 210000058

Purchaser: Youngquist

January 24, 2008

S<u>O #</u>: 62L000530

Destination: Cape Corral, Florida

Product: 18" RB 1250 TC

Quantity: 2200 Ft

We hereby certify that the materials & fittings supplied have been tested and comply with API 15 HR spec's.

Material Certificate

Material: 18" RB 1250 TC

Test pressure: 1550 psi

Certificate Number: FPI-2007-40

Customer: Youngquist

Sales Order: 62L000530

Produced By: Future Pipe Industries, Inc. - Houston, TX

FPI Order Number: 210000058

Pipe System: Aromatic Amine heat cured epoxy

YOUNGQUIST BROTHERS INL Has Received This Shop Drawing/S bruitter YBI/Section No#_02/33 - 016 -A Date: 1/25/08 Signature: Age Te; **Raw Material Specifications:**

Resin type- Epoxy Curing Agent- Aromatic Amine Glass Fiber- E-Type

Non Destructive Tests:

Dimensional Exam - ASTM D 3567 Visual Standards – API 15 HR Table 2

We hereby certify that the materials described above have been tested and comply with API 15 HR.

Certificate of conformity Statement:

All items delivered under this certificate number were manufactured in accordance with API 15 HR specifications:

We hereby certify that the materials described above have been tested and comply API 15 HR.

QC Supervisor Future Pipe Industries 11811 Proctor Rd Houston TX, 77038

FUTURE PIPE INDUSTRIES

Inspection Certificate

<u>Job No: 110000106</u>

March 3, 2008

Purchaser: Youngquist

SO #: 62L000617

Destination: Cape Corral, Florida

Product: 18" RB T&C 1250

Quantity: 750' Ft

We hereby certify that the materials & fittings supplied have been tested and comply with API 15 HR spec's.

Material Certificate

1

Material: 18" RB T&C 1250

Test pressure: 1500 psi

Certificate Number: FPI-2008-01

Customer: Youngquist

Sales Order: 62L000617

Produced By: Future Pipe Industries, Inc. - Houston, TX

FPI Order Number: 110000106

Pipe System: Aromatic Amine heat cured epoxy

Raw Material Specifications:

Resin type- Epoxy Curing Agent- Aromatic Amine Glass Fiber- E-Type

Non Destructive Tests:

Dimensional Exam - ASTM D 3567 Visual Standards - API 15 HR Table 2

We hereby certify that the materials described above have been tested and comply with API 15 HR.

Certificate of conformity Statement:

All items delivered under this certificate number were manufactured in accordance with API 15 HR specifications:

We hereby certify that the materials described above have been tested and comply API 15 HR.

_Raymond Jones	
QC Supervisor	****
Future Pipe Industries	

FUTURE PIPE INDUSTRIES

Inspection Certificate

<u>Job No</u>: 300000539

March 3, 2008

Purchaser: Youngquist

SQ #: 62L000617

Destination: Cape Corral, Florida

Product: 18" RB T&C 1250

Quantity: 1pc=5ft. Sub Job# 3-539 1pc=10ft. Sub Job# 3-540 1pc=15ft. Sub Job# 3-541

We hereby certify that the materials & fittings supplied have been tested and comply with API 15 HR spec's.

Material Certificate

Material: 18" RB T&C 1250

Test pressure: 1500 psi

Certificate Number: FPI-2008-02

Customer: Youngquist

Sales Order: 62L000617

Produced By: Future Pipe Industries, Inc. - Houston, TX

FPI Order Number: 50000086

Pipe System: Aromatic Amine heat cured epoxy

Raw Material Specifications:

Resin type- Epoxy Curing Agent- Aromatic Amine Glass Fiber- E-Type

Non Destructive Tests:

Dimensional Exam - ASTM D 3567 Visual Standards – API 15 HR Table 2

We hereby certify that the materials described above have been tested and comply with API 15 HR.

Certificate of conformity Statement:

All items delivered under this certificate number were manufactured in accordance with API 15 HR specifications:

We hereby certify that the materials described above have been tested and comply API 15 HR.

_Raymond Jones_____

QC Supervisor Future Pipe Industries 11811 Proctor Rd Houston TX, 77038

Monitor Well DZMW-1

Casing

Monitor Well DZMW-1

34-inch Casing

DZMW-1 34-inch Casing Log

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

JOB NUMBER:	3220269.77010102
CONTRACTOR:	Youngquist Brothers, Inc.
PROJECT MANAGER:	Neil Johnson
OWNER:	City of Cape Coral

Observer: Casey Majewski

Casing Diameters (inches): <u>O.D. 34.00</u> <u>I.D. 33.25</u> Wall Thickness (inches): <u>0.375</u>

Pipe No. and Install Order	Heat Number	Mill Certification	Length (ft)	Run Depth (ft bls)	Weld Date	Weld Start Time	Weld Completion Time
2	R7303773	Х	38.93	38.03	5/7/08	19:52	20:11
1	R7303773	Х	36.97	75.00			

Total length (ft) 75.90

Floor and elevators (ft) -0.90

34-inch Casing Seat (ft bls) 75.0

NOTES:

ft - feet ft bls - feet below land surface

MILL CERTIFICATE

COMMODITY:	CARBON STEEL PIPE PER PURCHASE CONTRACT OZI 10707001
	COST AND FREIGHT MIAMI, FLORIDA USA

CUSTOMER: OZONE INDUSTRIES CORPORATION 15465 PINE RIDGE ROAD

Certificate No.: PSCNJN7B01T FORT MYERS, FL 33908 LC NUMBER .: 644054 (Size) TEST RESULTS Pipas Heat Steel Quantity Dimensional 0.D. W.T. No. Numbers lanth Grade Flattening UT T CHEMICAL PROPERTIES(%) Welding Hydrostatic Test PHYSICAL PROPERTIES properties Holding time: 10s In In fi. (Pca) (#) (MT) Inspection ¢ 81 Mn P S os(Mpa) ob(Mpa) 65(%) P = Pel αþ Test (B) Test 1 R7303773 в 34 0.375 39 104 4056 248.137 OK 0.13 0.14 0.39 0.025 0.031 385 425 31.5 OK 605 OK OF 2 R7303774 в 44 0.375 39 52 2028 160,967 OK 0.14 0.18 0.39 0.013 0.034 365 425 31.5 OK 505 OK O 3 R730378 в 54 0.375 39 51 1989 194.056 oк 0.16 0.16 0.42 0.018 0.031 355 420 32.5 OK 805 OK Oł TOTAL 207 8073 603.160

. 4

Remark:

The CARBON STEEL PIPES are tested according to ASTM A139 GR.B

This is to certify that in accordance with the relevant specifications and contracts.

The CARBON STEEL PIPES manufactured were tested and gualified by our Quality Control Department.

DATE:2007-12-

Invoice No.SEUSFP7B01T

Monitor Well DZMW-1

24-inch Casing

DZMW-1 24-inch Casing Log

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

JOB NUMBER:	3220269.77010102
CONTRACTOR:	Youngquist Brothers, Inc.
PROJECT MANAGER:	Neil Johnson
OWNER:	City of Cape Coral

Observer: Casey Majewski

Casing Diameters (inches): <u>O.D. 24.00</u> <u>I.D. 23.25</u> Wall Thickness (inches): <u>0.375</u>

Pipe No. and Install Order	Heat Number	Mill Certification	Length (ft)	Run Depth (ft bls)	Weld Date	Weld Start Time	Weld Completion Time
13	7-C03099	X	37.13	30.13	5/14/08	7:10	7:21
12	7-C03099	Х	40.10	70.23	5/14/08		
11	7-C03099	Х	40.08	110.31	5/14/08		
10	7-C03099	Х	40.09	150.40	5/14/08	4:34	4:46
9	7-C03099	Х	40.08	190.48	5/14/08	4:05	4:21
8	7-C03099	Х	40.08	230.56	5/14/08	3:30	3:48
7	7-C03099	Х	40.17	270.73	5/14/08	2:59	3:19
6	7-C03099	Х	40.07	310.80	5/14/08	2:26	2:42
5	7-C03099	Х	40.08	350.88	5/14/08	1:47	2:06
4	7-C03099	Х	40.09	390.97	5/14/08	1:08	1:29
3	7-C03099	Х	40.07	431.04	5/14/08	00:32	0:53
2	7-C03099	Х	40.07	471.11	5/13/08	23:20	00:13
1	7-C03099	Х	28.89	500.00			

Total length (ft) 507.00

Floor and elevators (ft) -7.00

24-inch Casing Seat (ft bls) 500.0

NOTES:

ft - feet ft bls - feet below land surface

MILL CERTIFICATE

CARBON STEEL PIPES AS PER ASTM A139 OR.B SPIRAL WELDED, NORMAL MILL BLACK LACQUER FOR COMMODITY: RUST PROTECTION, ONE END OF THE PIPE SHALL HAVE A BEVEL OF 30 DEGREES WITH A TOLERANCE PLUS PIVE, MINUS ZERO DEGREES. THE OTHER END OF THE PIPE WILL BE PLAIN, RIGHT AND ANGLE CUT. ALL BURRS REMOVED.

OZONE INDUSTRIES CORPORATION CUSTOMER: 15465 PINE RIDGE ROAD FORT MYERS, FL 33908

The CARBON STEEL PIPES are tested according to ASTM A139 GR.B This is to certify that in accordance with the relevant specifications and contracts.

The CARBON STEEL PIPES manufactured were tested and qualified by our Quality Control Department.

TOTAL : 271 PCS / 10840 FT / 497.812 MT Steel O.D. W.T. lenth Quantity Pipea No., Heat Number Welding Dimensional CHEMICAL PROPERTIES(%) Hydrostatio Test PHYSICAL PROPERTIES Flattening UT Test properilea Holding time; 10: Grade in In ft 极(Pos) 英尺 (fl) PE(MT) Inspection Ç 81 Mn P 8 OS(MDE) ob(Mpa) õõ(%) σb P = Pel 1 1-9100 8 52 0.378 Test (B) Test (B) 40 1 40 3.787 OK 0.16 0:19 0.48 0.029 0.029 330 460 30 2 ÖK 505 1-9100 OK. OK 8 42 0.375 40 20 800 60,855 OK 0,18 0.10 0.48 0.020 0.020 330 3 480 30 OK 806 1-9100 8 OK OK 36 0.375 40 21 840 64.418 OK 0.18 0.19 0.48 0.029 0.029 330 400 80 OK 4 505 OK 7-C03089 OK B 28 0.375 40 27 1080 84.254 OK 0.18 0.19 0,33 0.018 0.027 328 488 33 OK 625 8 . 7-003099 OK OK B 20 0.375 40 22 880 41.007 OK 0.18 0,19 0.33 0.018 0.027 326 466 33 OK ε. 528 7-003009 8 24 OK OK 0.378 40 71 2840 122.01 OK 0.18 0.19 0.33 0.018 0.027 325 455 33 OK 625 7 7-003098 OK OK B 20 0.376 40 27 1080 38.843 OK 0.18 0.19 0.33 0.018 0.027 326 456 88 OK 8 825 1-7588 B OK OK 16 0.800 40 82 3280 123,268 OK 0.15 0,18 0.42 0.023 0.022 330 486 31.5 TOTAL OK 525 OK OK 271 10840 497.812

.

YIEH CORPORATION LIMITED

NO 6, E-DA RD, YA AO TOWNSHIP KAOHSIUNG COUNTY YANCHAO, TAIWAN TEL:886-7-615-1000 FAX:886-7-615-3000

CERTIFICATE NO:PSCNJN7601TC5-3 DATE OF ISSUE:10/23/2007

Invoice No. SEUSPP7601TD3-3 LC NUMBER.; 64405427

Monitor Well DZMW-1

16-inch Casing

DZMW-1 16-inch Casing Log

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

JOB NUMBER:	3220269.77010102
CONTRACTOR:	Youngquist Brothers, Inc.
PROJECT MANAGER:	Neil Johnson
OWNER:	City of Cape Coral

Observer: Majewski/Crawford

Casing Diameters (inches): <u>O.D. 16.00</u> <u>I.D. 15.00</u> Wall Thickness (inches): <u>0.500</u>

Pipe No. and Install Order	Heat Number	Mill Certification	Length (ft)	Run Depth (ft bls)	Weld Date	Weld Start Time	Weld Completion Time
39	070536	Х	34.71	27.16	6/19/08	4:45	5:05
38	070536	Х	39.09	66.25	6/19/08	4:15	4:30
37	070536	Х	28.37	94.62	6/19/08	3:50	4:07
36	070536	Х	37.90	132.52	6/19/08	3:22	0:00
35	070536	Х	35.71	168.23	6/19/08	3:00	3:12
34	070536	Х	33.82	202.05	6/19/08	2:30	2:45
33	070536	Х	33.06	235.11	6/19/08	2:06	2:17
32	070536	Х	32.89	268.00	6/19/08	1:38	1:58
31	070536	Х	33.93	301.93	6/19/08	1:12	1:27
30	070536	Х	34.79	336.72	6/19/08	0:40	0:58
29	070536	Х	35.43	372.15	6/19/08	0:15	0:30
28	070423	Х	35.06	407.21	6/18/08	23:48	0:05
27	070536	Х	28.17	435.38	6/18/08	22:55	23:12
26	070536	Х	35.62	471.00	6/18/08	22:27	22:45
25	070536	Х	35.51	506.51	6/18/08	22:07	22:17
24	070536	Х	27.57	534.08	6/18/08	21:41	22:00
23	070536	Х	33.59	567.67	6/18/08	21:05	21:25
22	070423	Х	36.44	604.11	6/18/08	20:36	20:51
21	070536	Х	32.54	636.65	6/18/08	20:05	20:20
20	070536	X	36.69	673.34	6/18/08	19:30	19:50
19	070423	X	35.15	708.49	6/18/08	18:36	19:00
18	070536	Х	33.34	741.83	6/18/08	18:07	18:29
17	070536	Х	34.33	776.16	6/18/08	17:41	18:01
16	070536	Х	36.96	813.12	6/18/08	17:08	17:26

15	070536	Х	34.92	848.04	6/18/08	16:30	16:52
14	070536	Х	34.85	882.89	6/18/08	16:05	16:25
13	070423	Х	37.00	919.89	6/18/08	15:34	15:54
12	070423	Х	35.62	955.51	6/18/08	15:06	15:23
11	070423	Х	38.28	993.79	6/18/08	14:37	15:57
10	070423	Х	35.40	1029.19	6/18/08	14:00	14:28
9	070423	Х	35.11	1064.30	6/18/08	12:58	13:17
8	070423	Х	37.23	1101.53	6/18/08	12:12	12:35
7	070423	Х	34.95	1136.48	6/18/08	11:33	12:03
6	070423	Х	33.10	1169.58	6/18/08	11:03	11:25
5	070423	Х	35.53	1205.11	6/18/08	10:32	10:51
4	070536	Х	35.68	1240.79	6/18/08	10:00	10:15
3	070536	Х	34.86	1275.65	6/18/08	9:28	9:50
2	070423	Х	34.86	1310.51	6/18/08	8:45	9:05
1	074023	Х	14.49	1325.00			

Total length (ft) 1,332.55

Floor and elevators (ft) -7.55

16-inch Casing Seat (ft bls) 1,325.0

NOTES:

ft - feet ft bls - feet below land surface

产品质量证明书

INSPECTION CERTIFICATE

YOUNGCUIST BROTHERS, INC. Mas Merophies Hus Brop Growing Summitted VINSoction Non 02633-02)-A State: Aug 21, 200

Signature! Whites

> 江苏省江都市诚德路1号 1 CHENGDE ROAD, JIANGDU CITY JIANGSU PROVINCE TEL: 0514-6529011, 6529012 FAX: 0514-6520240

********	duct		1	无缝钢管 aless stee]					钢号(级 Steel Gr		GR. B	PSL 1	标 准 Specificatio	期, 2007 年 sue:	AP15L-200		制造	方法	 e: 1/1
	捆 數 Total		总 支 Total F	· 数 Pieces	20		总重 (Short T otal We	on)	2'	7.730		交 货 状 Deliver	态	正火 Normalize	1	為处理溫度 leat Temp	Making	Method	Hot Rolled
		长度									<u>l</u>			力学性能	Tensile	-			
茅 弓	规 格 Size	Length	调度 卡号	冶炼号		捆数	支数	重量				In	冲击试验 pact Test(J)	(AKV)					
0,	(IN)	(FT)	Producti on No.	Heat No.	Lot No.	Bundles	Pieces	Weight (Short Ton)	屈服 Y.S MPa	抗拉 T.S 如Pa	伸长率 E.L %	常温		℃低温	压扁 Flatten		∦°⊡ Mansion	冷弯 Bending	环圈拉(Ring Ten Test
	16" *0.5"	680, 58		070536	4896		20	27.730	315 325	440 445	31.0 30.5		1		合格			合格	
۴ - ۱	显微组织	晶粒度	*6 826 788 104		金	·	 相		Metallo	L				<u> </u>	Good			Good	
· \	Aicrostructu	ire GrainSize	总脱碳层 外壁 OutSide	内部 We	就氏组织 eistructu (级)	带状 re Zonaist (约	ructure			非金 Non-na		Inclusion		低倍检验 Macro-	j natu-	外观& 尺寸 Visual&	涡流探		的 的 Hydrost
-									<u>n au</u>		<u>D 瑞</u>	C粗 C细	D粗 D:	18 structure	ness	Dimension	Eddy	U. T	Tes
号					······											合格		合格	合格
-1_	CN								熔炼	成分 9	6	Chemical	Composition			Good	1	Good	Good
(ln Si 56 0.15	S	Р	Cr	Ni	Cu	M	0	AI	v								
		00 0.15	0.01	0.009	0.05	0.03	0.0				<u>v</u>		Nb \	V As	Sn	Pb	В	Sb	Bi
	许可证号		1	1	L			·				+							
	License			······								+	I		1				
	5L-0369																		

Previewed by:

小斑 童 负 资 人, Chief of Previewed by:

蓋 章: Seal:

订货单位:

产品质量证明书

INSPECTION CERTIFICATE

江 苏 省 江 都 市 诚 德 路 1 号 1 CHENGDE ROAD, JIANGDU CITY JIANGSU PROVINCE TEL: 0514-6529011, 6529012 FAX: 0514-6520240

		ARSE	R: (DZONE INI	USTRIES,	YOUNG	QUIST	BROT	HERS				同号 derNo:	WX	DX-200	70110	签 2	支 日 期	· 2007 在	5月15	口 编号:	10000			
	[☆] 品彳 Prod	uct	<u> </u>		Sear	无缝(aless st		bes				钢号 (级 Steel G	٤)	GR. B	PSL 1		标	准	**************************************	AP15L-200		48675 創造		age:1	/1
		捆 数 otai			杉 支 Total F			30		总重: (Short Ti lotal We	on)	4	3. 654			货 状 Nelivery	态	ication	正火	ŧ	的处理温度	Making I	Method		Rolled
				长度							agin								ormalize		eat Temp		~/		
	*	规 Siz		Length	调度	冶炼		: 号	捆数	支数	重量						冲击试 Bact Tes	€ (学性能 AKV)	Tensile	Test				
	0.	(IN		(FT)	Producti on No.	Heat N		.ot Io. I	Bundles	Pieces	Weight (Short Ton)		抗拉 T.S MPa	伸长3 E.L %	Ε.	常溫		°C (I	无漏	压扁 Flatten		す ロ ansion	冷奪 Bending	R	环阁拉伸 ing Tensile Test
		16" *0	. 5"	1069.32		07042		836		30	39. 602	320 325	435 445	31.5 30.5						合格	•		合格		
Nc	序 子 Mi	疑微组 icrostr	1织 ucture	GrainSize	总脱碳层 外壁 OutSide	(mm) 内壁	金 魏氏 Weistr (约	组织 ucture	Zonals	相 组织 tructure		Metallo	ography 非3 Non-m	金属夹杂 nepallic	物 (级) ;	<u> </u>		低倍检验	Good 一硬度 Hard-			Good 5 超声波	5×244	静水压试验
序	12				<u>- aloide</u>	monue	1.4	~)	(3	及)	A 和	A 细	B粗	B细	C粗	C 细	D粗	D 纠I	Macro- structure	1	Visual& Dimension 合格	Eddy	U.	T	Hydrostatic Test
N	<u>, </u>	c T	Mn						.L	L	l	熔煤	病成分	%	Ch	emical	Compos	ition			Good		Go		合格 Good
1 194 RA	0.	21	0. 56		0. 01	0.00		Cr). 05	Ni 0.03	Cu 0.02		Ao 🛛	AI	v	1	1	Nb	w	As	Sn	Pb	в	<u></u>		
复验 备注		许可i Licer							0.03	0.0	د 												Sb	Bi	
lote		5L-0;													_									<u> </u>	
							·····																		
	发) ned t		周维青			审 Prev	核 _	人: by:	Ž	谢				质 1 Chief o	值负 of Previ	實 人 ewed b	:			盖 章 Seal:		孔苏姆云		Ry H	「日本」
																							贝拉与	;用门	

沧州乾成钢管有限公司

产品质量证明书 _{河北省沧州市盐山城} ORIGINAL

CANGZHOU QIANCHENG STEEL PIPE CO., LTD

MILL CERTIFICATE

TEL: 86-317-6322101 FAX: 86-317-6320919

DATE:2008 02 29

		货单位 STOMER	-		COR	OZONE INDUSTRIES CORPORATION/YOUNGQUIST BROTHERS				产品名称 无缝钢管 PRODUCT CARBON STERL PIPE]			交货状态 DELIVERY CONDITION			ION	正火 NORMALIZE			
		:贵单位 CHASER			4	OZONE INDUSTRIES CORPORATION/YOUNGQUIST BROTHERS				合同号码 CONTRACT NO. のZ110707003 CERTIFICAT				1306CO801022						
	SPEC	标准 IFICATION				AI	PI 5L -2000)		级 GR.B PSLI . 总支数(3 GRADE . TOTAL PIE					161					
	序号 NO.		炉号	批号	83	I格 (ZB		教皇 QUANTITY	,		CHE	MICAL		成分% OSITI()N(+1	.00)	,			机械性能 PROPERTIES
· · ·	עו פי ירו. -		heat no.	LOT NO.	宣径 0D IN	和 TW NT	支数 PIECES	长度 LENGTH FT	重量 WEIGHT MT	碳. C	镭	硫 S	鸸 P	镍 Su	倍。	祝 V	铝 A1	抗拉强度 T.S. Mpa	伸长率 B.L.	屈服强度 Y.S. Mpa
	1		174625	80	24**	0. 6"	31	776	44. 18	23	54	1.2	1-8	2.4	2.5			430		\$35
	2		174265	80	24"	0. 5"	17	448. 25	25. 42	28	54	1.0	1.8	-	2.5	+	-	430	31	335
	3		171826	60	18"	0. 5"	14	490	17.81	22	54	17		RX.		7	-	435	35	\$40 ·
	4		074023	80	16"	0. 5"	APR	品傳動加	118 86	23	65	1.2		2.6		-		430	31	335
		Total				7	- Warne	14641:262	200. 20			~	-	7	F	d		J 		
超声波探伤 . U.T	涡轮探伤 B.T	硬度 HARDNE		HT HT		TRUA V		后 唐 正明 王 CROSTRU	TURE		晶粒D AIN 8		T.	医扁 开 他的	麻	成		THE THE	人 部 BERTERIO	冲击试验 IMPACT TEST AK
合格 、GOOD	1	1		1		合格 HOOD	•	· /			1		- ¥	GOOD		ance		+ -+-	合格 GOOD	合格 GOOD
·注释 NOTE	 兹证明本表所列产品,均依标准规定制造。取样,试验和检验,并符合标准及合同要求 注释 NOTE We here certify that material ,herein described has been manufactured, sampled, tested and Inspected in accordance with the requirements of above 新生。 fround-specifications and purchase order, and the requirements the requirements of above 																			

Monitor Well DZMW-1

6.625-inch Casing

DZMW-1 6.625-inch Casing Log

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

JOB NUMBER:	3220269.77010102
CONTRACTOR:	Youngquist Brothers, Inc.
PROJECT MANAGER:	Neil Johnson
OWNER:	City of Cape Coral

Observer: <u>Casey Majewski</u>

Casing Diameters (inches): <u>O.D. 6.625</u> <u>I.D. 5.465</u> Wall Thickness (inches): <u>0.58</u>

Pipe No. and Install Order	FRP Series Number	Coupling Number	Length (ft)	Run Depth (ft bls)	Makeup Date	Field Torque (Ft Lbs)	Completion Time
Stainles	s Steel		26.84	13.06	6/30/2008	1600	14:53
54	110000083		29.42	42.48	6/30/2008	765	14:19
53	110000083		29.42	71.90	6/30/2008	745	14:15
52	110000083		29.43	101.33	6/30/2008	765	14:09
51	110000083		29.42	130.75	6/30/2008	740	14:05
50	110000083		29.42	160.17	6/30/2008	745	14:02
49	110000083		29.42	189.59	6/30/2008	750	13:59
48	110000083		29.41	219.00	6/30/2008	730	13:55
47	110000083		29.44	248.44	6/30/2008	740	13:49
46	110000083		29.44	277.88	6/30/2008	720	13:45
45	110000083		29.42	307.30	6/30/2008	740	13:40
44	110000083		29.43	336.73	6/30/2008	710	13:37
43	110000083		29.43	366.16	6/30/2008	760	13:33
42	110000083		29.42	395.58	6/30/2008	750	13:29
41	110000083		29.43	425.01	6/30/2008	750	12:49
40	110000083		29.43	454.44	6/30/2008	760	12:42
39	110000083		29.42	483.86	6/30/2008	785	12:37
38	110000083		29.43	513.29	6/30/2008	820	12:32
37	110000063		29.45	542.74	6/30/2008	770	12:28
36	110000063		29.45	572.19	6/30/2008	820	12:23
35	110000063		29.45	601.64	6/30/2008	780	12:17
34	110000063		29.44	631.08	6/30/2008	775	11:55
33	110000083		29.43	660.51	6/30/2008	750	11:51
32	110000083		29.41	689.92	6/30/2008	750	11:43

		•				
31	110000063	29.45	719.37	6/30/2008	795	11:39
30	110000063	29.45	748.82	6/30/2008	770	11:30
29	110000063	29.45	778.27	6/30/2008	750	11:27
28	110000063	29.45	807.72	6/30/2008	765	11:19
27	110000063	29.44	837.16	6/30/2008	760	11:14
26	110000063	29.44	866.60	6/30/2008	760	11:10
25	110000083	29.43	896.03	6/30/2008	725	11:03
24	110000083	29.43	925.46	6/30/2008	740	10:58
23	110000083	29.44	954.90	6/30/2008	730	10:52
22	110000083	29.42	984.32	6/30/2008	750	10:47
21	110000083	29.43	1,013.75	6/30/2008	730	10:42
20	110000083	29.43	1,043.18	6/30/2008	730	10:33
19	110000083	29.45	1,072.63	6/30/2008	750	10:29
18	110000083	29.42	1,102.05	6/30/2008	720	10:25
17	110000083	29.43	1,131.48	6/30/2008	730	10:20
16	110000083	29.42	1,160.90	6/30/2008	710	10:15
15	110000083	29.42	1,190.32	6/30/2008	740	10:11
14	110000083	29.44	1,219.76	6/30/2008	720	10:06
13	110000083	29.43	1,249.19	6/30/2008	710	10:00
12	110000083	29.43	1,278.62	6/30/2008	730	9:56
11	110000083	29.42	1,308.04	6/30/2008	730	9:50
10	110000083	29.42	1,337.46	6/30/2008	715	9:46
9	110000083	29.39	1,366.85	6/30/2008	700	9:41
8	110000083	29.40	1,396.25	6/30/2008	720	9:37
7	110000083	29.40	1,425.65	6/30/2008	700	9:32
6	110000083	29.41	1,455.06	6/30/2008	710	9:28
5	110000083	29.43	1,484.49	6/30/2008	710	9:21
4	110000083	29.42	1,513.91	6/30/2008	700	9:17
3	110000083	29.42	1,543.33	6/30/2008	730	9:10
2	110000083	29.43	1,572.76	6/30/2008	700	9:05
1	110000083	29.43	1,602.19	6/30/2008	800	8:55
Californi	a Packer	7.78	1,609.97			

Total length (ft) 1,623.75

Floor and elevators (ft) -13.78

6.625-inch Casing Seat (ft bls) 1,609.97

NOTES:

ft - feet ft bls - feet below land surface Ft Lbs - foot pounds

SUBMITTAL REVIEW

2503 Del Prado Blvd. S. Suite 430 Cape Coral, Florida 33904 (239) 573-5959

Project:	WW-4C.1 Southwest Class I Deep Injection Well	MWHA File Number: 3220269.19.9.1.1					
Owner:	City of Cape Coral						
		MWH					
Submittal No.:	SUL-YOUBRO-2633-028-	NO EXCEPTIONS TAKEN X AMEND = RESUBMIT					
	B0	MAKE CORRECTIONS NOTED REJECTED - RESUBMIT					
		ter and the second second second second second second second second second second second second second second s					
Description:	6.625 FRP Mill Certificate	REVIEWED BY: J. LARGEY M DATE: 10/20/08					
		RECOMMENDED BY: DATE:					
Spec. Section:	02633	CORRECTIONS OR COMMENTS MADE ON CONTRACTORS SHOP DRAWINGS					
Submitting Company:	Youngquist Brothers, Inc.	DURING THIS REVIEW DO NOT RELIEVE THE CONTRACTOR FROM COMPLIAN WITH CONTRACT DRAWINGS AND SPECIFICATIONS. THIS SHOP DRAWING F BEEN REVIEWED FOR CONFROMANCE WITH DESIGN CONCEPT AND GENER COMPLIANCE WITH THE CONTRACT DOCUMENTS ONLY. CONTRACTOR RESPONSIBLE FOR CONFIRMING AND CORRELATING ALL QUANTITIES A DIMENSIONS. FABRICATION PROCESSES AND TECHNIQUES, COORDINATI					
Reviewer:	John Largey	WORK WITH OTHER TRADES. AND SATISFACTORY AND SAFE PERFORMANCE OF THE WORK					

Comments:

CONSTRUCTORS

Submittal Transmittal

Detailed, Grouped by Each Number

CC WW - 4C.1 SW	Class I DIW 20322 Cape Cor	al Project # 7012129 Tel: Fax:	MWH Constructors
Date: 9/26/200	8		Reference Number: 0097
Transmitted To:	John Largey MWH Americas, Inc. 8944 490 Sawgrass Corporate Pkv Suite 300 Sunrise, FL 33325 Tel: (954) 846-0401	Transmitted By:	Brooke Allen MWH Constructors 1200 Kismet Parkway West CAP-5 Cape Coral, FL 33993 Tel: 239-772-1764
Qty Submitt	al Package No Descriptio	n	Due Date Package Action
7 SUL-YO A ~ - 0	JBRO-02633-0033- 6 5/8" FRP	RB 2500	10/24/2008
Transmitted For		Delivered Via	Tracking Number
Review		Federal Express	19.09
Items Qty 001 7	Description 6 5/8" FRP RB25(Notes	Item Action
Cc: Company N		t Name Copies Note	95
Remarks			

Dear John:

Please find the attached submittal for your review, approval and return.

Thank you, Brooke

Signature

Signed Date

Prolog Manager

Printed on: 9/26/2008 Prolog_US_Integrated

Page 1

Submittal Data from Youngquist Brothers, Inc.

RECEIVED MWH CONSTRUCTORS SEP 2 6 2008 CARS OFFICE

15465 Pine Ridge Rd. Ft. Myers, FL. 33908 Tel.: 239-489-4444 Fax: 239-489-4545

Project

Cape Coral SW WRF Class 1 Injection Well

I have reviewed this submittal for general conformance with the design concepts and contract documents. Generally no conflict with materials or dimensions will arise from the approval of this shop drawing submittal.

Date: <u>September 25, 2008</u>	Number of Copies: 8
Submittal Number: 02633-0	028-B
Specification Section Number:02633	
Item Submitted: 6-5/8" FRP RB2500	
New Submittal:	Resubmitted: <u>X</u>
Certification Statements: By this submittal, I hereby field measurements, field construction criteria, mat date and I have checked and coordinated each iter and all Contract requirements.	erials, dimensions, catalog sumbers and similar
Youngquist Brothers, Inc.	Approved Approved with changes
Representative:	Rejected Revise & Resubmit
MINH Constructors	Not Reviewed
Wu Fei CERTIFICATION STATEMENT By this submitted, we have been determined, warfied, reviewed and/or sporoved applicable field accomposited, field construction articria, materials, products, disconsisted, exceedes assumers and similar data and have checked and coordinated reference information for conformation with other applicable approved story drawings and contract Requirements. Project Nesse & Number/WW4C-1 P012129 Storected Phender SUL-YOUCHO-02633-00033-A	By: Firm: Date:
ogenitación braixes: 2633 orientación br: f. f. M. Jakamentores: <u>222:35</u>	

FUTURE PIPE INDUSTRIES

Inspection Certificate

Job No: 110000063 & 110000083

Purchaser: Youngquist

S<u>O #</u>: 62L000530

June 30, 2008

Destination: Cape Corral, Florida

Product: 6 5/8" RB 2500

Quantity: 1800' Ft

We hereby certify that the materials & fittings supplied have been tested and comply with API 15 HR spec's.

Material Certificate

Material: 6 5/8" RB 2500

Test pressure: 2850psi

Certificate Number: FPI-2008-07

Customer: Youngquist

Sales Order: 62L000530

Produced By: Future Pipe Industries, Inc. - Houston, TX

FPI Order Number: 110000063 & 110000083

Pipe System: Aromatic Amine heat cured epoxy

VOUNGOUIST SPOTHERS, INC. Mas Steratives The String Strawing Strangton BUSection Nos 02633-028-B Date: 912708 Signature: US Tei

Raw Material Specifications:

Resin type- Epoxy Curing Agent- Aromatic Amine Glass Fiber- E-Type

Non Destructive Tests:

Dimensional Exam - ASTM D 3567 Visual Standards – API 15 HR Table 2

We hereby certify that the materials described above have been tested and comply with API 15 HR.

Certificate of conformity Statement:

All items delivered under this certificate number were manufactured in accordance with API 15 HR specifications:

We hereby certify that the materials described above have been tested and comply API 15 HR.

_Raymond Jones_____ QC Supervisor Future Pipe Industries 11811 Proctor Rd Houston TX, 77038

Appendix M

Cement Reports

Injection Well IW-1

54-inch Casing

APPENDIX M CEMENT REPORTS CITY OF CAPE CORAL SOUTHWEST WATER TREATMENT PLANT INJECTION WELL IW-1

Conductor Casing

Casing Diameter: 54-inches Casing Depth: 75 feet below pad level Bit Size: Nominal 60-inch diameter Cement Specification: ASTM C 150 Type II Number of Stages: 1 Cement Blend: Neat Cement Density: Neat – 15.6 lb./gal Theoretical Fill From Calculations: 50 cubic feet Volume Pumped: Neat – 103 cubic feet Total – 103 cubic feet Percent Difference: 51.5%

The 54-inch casing was cemented in one stage. The cement was circulated to surface and was visually confirmed. The difference in the theoretical and actual volume pumped is due to small barrel counter inconsistency, mathematical inaccuracy and small irregularities in the borehole wall.

IW-1 CEMENT RECORD

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

JOB NUMBER:	<u>3220269.77010102</u>
CONTRACTOR:	Youngquist Brothers, Inc.
PROJECT MANAGER:	Neil Johnson
OWNER:	City of Cape Coral

CASING SIZE:

54-inch steel casing

DATE	STAGE	TEMPERATURE	CEMENT	YIELD	• •	QUANTITY THEORETICAL PUMPED FILL		TAG DEPTH		ACTUAL FILL		PERCENT FILLED (LINEAR FEET)	PERCENT FILLED (VOLUMETRIC)	CUMULATIVE TOTAL	INSPECTOR'S INITIALS	
	NO.	LOG NO.	(ADDITIVES, BLENDS, MIXTURES)	(ft³/sk)	(BARRELS)	(ft ³)	INTERVAL	FOOTAGE	PAD LEVEL	(BARRELS)	INTERVAL	FOOTAGE	Percent %	Percent %	(ft ³)	
10/12/07	Base Plug		Neat	1.18	103	577.8	80 to 0	80	0.0		80 to 0	80.00	100%	0.0%	577.8	RAW

NOTES: ft³ - cubic feet ft³/sk - cubic feet per sack

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

JOB NUMBER: CONTRACTOR: PROJECT MANAGER: OWNER: 3220269.77010102 Youngquist Brothers, Inc. Neil Johnson City of Cape Coral

Description of Operations:

Pressure Grout 54-inch casing

0.37

29.6

19

0

(psi)

(psi)

(psi)

(psi)

Differential Pressures:

Pressure Increase per Linear Foot of Fill: Pressure Increase With Theoretical Lift: Theoretical Collapse Pressure: Initial Casing Pressure: Date:10/12/2007Stage Number:Base PlugObserver:RAW

TIME	TOTAL TIME (mins)	PUMPING RATE (bbl/min)	CEMENT WEIGHT (Ibs/gal)	VOLUME PUMPED (bbl cement)	CASING PRESSURE (psi)	COMMENTS
20:00	0				0	Pre-flush 3 bbls of water
20:17	17				0	Pump neat
20:20	20	5.2	15.7	10	0	
20:22	22	5.3	15.6	25	2	
20:26	26	5	15.6	50	11	
20:30	30	4.2	15.6	55	17	
20:40	40			103	24	Stop pumping
20:41	41					Chase with 6.3 bbls of water
20:42	42					Pull tubing

NOTES:

Injection Well IW-1

44-inch Casing

APPENDIX M CEMENT REPORTS CITY OF CAPE CORAL SOUTHWEST WATER TREATMENT PLANT INJECTION WELL IW-1

Surface Casing

Casing Diameter: 44-inches Casing Depth: 475 feet below pad level Bit Size: Nominal 52-inch diameter Cement Specification: ASTM C 150 Type II Number of Stages: 1								
Cement Blend:	Neat							
	6% Bentonite							
Cement Density:	Neat – 15.6 lb./gal							
	6% Bentonite – 13.6 lb./gal							
Theoretical Fill From	Caliper Log: 2,205 cubic feet							
Volume Pumped:	Neat – 1,010 cubic feet							
	6% Bentonite – 1,100 cubic feet							
	Total – 2,110 cubic feet							
Percent Difference: 4.3%								

The 44-inch casing was cemented in one stage. The cement was circulated to surface and was visually confirmed. The difference in the theoretical and actual volume pumped is due to caliper tool's limitations and small irregularities in the borehole wall.

IW-1 CEMENT RECORD

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

JOB NUMBER:	3220269.77010102
CONTRACTOR:	Youngquist Brothers, Inc.
PROJECT MANAGER:	Neil Johnson
OWNER:	City of Cape Coral

CASING SIZE:

44-inch steel casing

DATE	STAGE	TEMPERATURE	CEMENT	YIELD	QUAN PUM		-	ETICAL LL	TAG DEPTH		ACTUAL FILL		PERCENT FILLED (LINEAR FEET)	PERCENT FILLED (VOLUMETRIC)	CUMULATIVE TOTAL	INSPECTOR'S INITIALS
	NO.	LOG NO.	(ADDITIVES, BLENDS, MIXTURES)	(ft³/sk)	(BARRELS)	(ft ³)	INTERVAL	FOOTAGE	PAD LEVEL	(BARRELS)	INTERVAL	FOOTAGE	Percent %	Percent %	(ft ³)	
10/21/08	1A		Neat	1.18	180	1,009.8	481 to 255	226					0%	0.0%	1,009.8	MS
10/21/08	1B		6% Gel	1.73	196	1,099.6	255 to surface	255	0.5		481 to 0.5	480.5	188%	0.0%	2,109.4	MS

NOTES:

ft³ - cubic feet ft³/sk - cubic feet per sack

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

JOB NUMBER: CONTRACTOR: PROJECT MANAGER: OWNER: 3220269.77010102 Youngquist Brothers, Inc. Neil Johnson City of Cape Coral

Description of Operations:

Pressure Grout 44-inch casing

Differential Pressures:

Pressure Increase per Linear Foot of Fill: Pressure Increase With Theoretical Lift: Theoretical Collapse Pressure: Initial Casing Pressure: 0.37/0.27 (psi) 152.5 (psi) 33 (psi) 0 (psi)
 Date:
 10/21/2007

 Stage Number:
 1

 Observer:
 GS

TIME	TOTAL TIME	PUMPING RATE	CEMENT WEIGHT	VOLUME PUMPED	CASING PRESSURE	COMMENTS
I HVIL	(mins)	(bbl/min)	(lbs/gal)	(bbl cement)	(psi)	COMMENTS
21:30	0				0	Pre-flush 50 bbls of water
21:45	15	4.0	13.6	33	8	Pump neat
22:00	30	5.0	13.8	97	6	
22:05	35	5.0	13.6	125	17	
22:12	42	5.0	13.7	160	30	
22:19	49	5.0	15.6	196	40	Switch to 6% gel, 196 bbls of neat pumped
22:28	58	5.0	15.7	246	60	
22:36	66	5.2	15.6	286	80	
22:49	79	5.2	15.6	344	90	
22:53	83	5.2	15.6	376	100	Stop pumping
22:55	85					Chase 5 bbls of water
						Pull stands

NOTES:

Injection Well IW-1

36-inch Casing

APPENDIX M CEMENT REPORTS CITY OF CAPE CORAL SOUTHWEST WATER TREATMENT PLANT INJECTION WELL IW-1

Intermediate Casing

Casing Diameter: 36-inches								
Casing Depth: 1,680 feet below pad level								
Bit Size: Nominal 42.5-inch diameter								
Cement Specification	Cement Specification: ASTM C 150 Type II							
Number of Stages: 10								
Cement Blend:	Neat							
	6% Bentonite							
Cement Density:	Neat – 15.6 lb./gal							
	6% Bentonite – 13.6 lb./gal							
Theoretical Fill From	Caliper Log: 8,561 cubic feet							
Volume Pumped:	Neat – 2,087 cubic feet							
	6% Bentonite – 7,489 cubic feet							
	Total – 9,576 cubic feet							
Percent Difference: 10.6%								

The 36-inch casing was cemented in ten stages. After each stage a temperature log was run downhole and the cement physically tagged to determine the actual fill. On the final stage the cement was circulated to surface and was visually confirmed. The difference in the theoretical and actual volume pumped is due to caliper tool's limitations and small irregularities in the borehole wall.

IW-1 CEMENT RECORD

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

JOB NUMBER:	3220269.77010102
CONTRACTOR:	Youngquist Brothers, Inc.
PROJECT MANAGER:	Neil Johnson
OWNER:	City of Cape Coral

CASING SIZE:

36-inch steel casing

DATE	STAGE NO.	TEMPERATURE LOG NO.	CEMENT (ADDITIVES, BLENDS, MIXTURES)	YIELD (ft ³ /sk)	QUAN PUM (BARRELS)		THEOR FI	-	TAG DEPTH PAD LEVEL	(BARRELS)	ACTUAL FILL INTERVAL	FOOTAGE	PERCENT FILLED (LINEAR FEET) Percent %	PERCENT FILLED (VOLUMETRIC) Percent %	CUMULATIVE TOTAL (ft ³)	INSPECTOR'S INITIALS
11/19/07	1A		6% Gel	1.73	150	841.5	1,420 to 1,180	240					0%	0.0%	841.5	ABF
11/19/07	1B	1	Neat	1.18	185	1,037.9	1,680 to 1,420	260	1,464.0	869.6	1,680 to 1,464	216	83%	470.0%	1,879.4	ABF
11/21/07	2	2	Neat	1.18	187	1,049.1	1,464 to 1,172	292	1,196	931.3	1,464 to 1,196	268	92%	498.0%	2,928.4	RAW
11/21/07	3	3	6% Gel	1.73	220	1,234.2	1,196 to 912	284	982	936.9	1,196 to 982	214	75%	425.9%	4,162.6	МК
11/23/07	4	4	6% Gel	1.73	10	56.1	982 to 970	12	962	84.2	982 to 962	20	167%	841.5%	4,218.7	RAW
11/23/07	5	5	6% Gel	1.73	200	1122.0	962 to 718	244	789	718.1	962 to 789	173	71%	359.0%	5,340.7	RAW
11/24/07	6	6	6% Gel	1.73	145	813.5	789 to 680	109	692	600.3	789 to 692	97	89%	414.0%	6,154.2	МК
11/24/07	7	7	6% Gel	1.73	195	1094.0	692 to 515	177	521	1060.3	692 to 521	171	97%	543.7%	7,248.1	RAW
11/24/07	8	8	6% Gel	1.73	143	802.2	521 to 330	191	449	398.3	521 to 449	72	38%	278.5%	8,050.4	МК
11/25/07	9	9	6% Gel	1.73	220	1234.2	449 to 80	369	80	1234.2	449 to 80	369	100%	561.0%	9,284.6	RAW
11/25/08	10	None	6% Gel	1.73	52	291.7	80 to 0	80	0	291.7	80 to 0	80	100%	561.0%	9,576.3	RAW

NOTES:

ft³ - cubic feet ft³/sk - cubic feet per sack

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

JOB NUMBER:3220269.77010102CONTRACTOR:Youngquist Brothers, Inc.PROJECT MANAGER:Neil JohnsonOWNER:City of Cape Coral

Description of Operations:

Pressure Grout 36-inch casing

Differential Pressures:

Pressure Increase per Linear Foot of Fill: Pressure Increase With Theoretical Lift: Theoretical Collapse Pressure: Initial Casing Pressure: 0.37/0.27 (psi) 161.0 (psi) 58 (psi) 0 (psi)
 Date:
 11/19/2007

 Stage Number:
 1

 Observer:
 ABF

TIME	TOTAL TIME (mins)	PUMPING RATE (bbl/min)	CEMENT WEIGHT (lbs/gal)	VOLUME PUMPED (bbl cement)	CASING PRESSURE (psi)	COMMENTS
14:33	0				0	Pre-flush 3 bbls of water
14:54	21	7.0	13.6	0	0	Pump 6% gel
15:01	28	7.0	13.7	50	0	
15:07	34	7.1	13.6	95	0	
15:14	41	7.1	13.7	144	12	Switch to neat, 144 bbls 6% gel pumped
15:19	46	6.9	15.7	225	17	
15:26	53	7.1	15.6	277	26	
15:30	57	7.1	15.6	277	38	
15:41	68	7.1	15.7	335	42	Stop pumping
15:42	69					Chase 9 bbls of water
						Pulled tubing

NOTES:

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

3220269.77010102
Youngquist Brothers, Inc.
Neil Johnson
City of Cape Coral

Description of Operations:

Pressure Grout 36-inch casing

Differential Pressures:

Pressure Increase per Linear Foot of Fill:0.37Pressure Increase With Theoretical Lift:69.2Theoretical Collapse Pressure:58Initial Casing Pressure:90

 Date:
 11/21/2007

 Stage Number:
 2

 Observer:
 RAW

TIME	TOTAL TIME (mins)	PUMPING RATE (bbl/min)	CEMENT WEIGHT (lbs/gal)	VOLUME PUMPED (bbl cement)	CASING PRESSURE (psi)	COMMENTS
9:50	0					Pre-flush 3 bbls of water
10:03	13				90	Pump neat
10:07	17	2.7	15.6	9.7		
10:13	23	2.8	15.6	25		
10:15	25		15.2	31		
10:21	31	2.7	15.8	51		
10:32	42	2.8	15.6	80	95	
10:41	51	2.7	15.6	107		
10:44	54	2.5	15.6	125	100	
10:55	65	1.8	15.6	146	102	
11:07	77	2.4	15.6	162	100	
11:15	85	2.4	15.6	182	102	
11:17	87			187		Stop pumping
11:18	88					Chase 7 bbls of water
11:19	89					Pull 7 stands of tubing

(psi)

(psi)

(psi)

(psi)

NOTES:

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

JOB NUMBER: 3220269.77010102 CONTRACTOR: Youngquist Brothers, Inc. PROJECT MANAGER: Neil Johnson OWNER: City of Cape Coral

Description of Operations:

Pressure Grout 36-inch casing

Differential Pressures:

Pressure Increase per Linear Foot of Fill:	0.27	(psi)
Pressure Increase With Theoretical Lift:	76.7	(psi)
Theoretical Collapse Pressure:	58	(psi)
Initial Casing Pressure:	85	(psi)

Date: 11/21/2007 **Stage Number:** 3 MK **Observer:**

TIME	TOTAL TIME	PUMPING RATE	CEMENT WEIGHT	VOLUME PUMPED	CASING PRESSURE	COMMENTS
	(mins)	(bbl/min)	(lbs/gal)	(bbl cement)	(psi)	
19:00	0					Pre-flush water
19:05	5	2.5	13.6	2.5	85	Pump 6% gel
19:10	10	2.6	13.6	50	85	
19:15	15	3.5	13.6	75	85	
19:20	20	3.7	13.6	100	85	
19:25	25	3.7	13.6	116	85	
19:35	35	3.7	13.6	150	85	
19:50	50	4.0	13.6	192	85	
20:00	60	4.0	13.6	220	85	Stop pumping
20:05	65					Chase water
20:06	66					Pull tubing

NOTES:

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

JOB NUMBER: CONTRACTOR: PROJECT MANAGER: OWNER:	3220269.77010 Youngquist Br Neil Johnson City of Cape C	others, Inc.					
Description of Operations: Pressure Grout 36-inch casing							
Differential Pressures:							
Pressure Increase per Linear H	0.27	(psi)	Date:	11/23/2007			
Pressure Increase With Theore	3.2	(psi)	Stage Number:	4			

(psi)

(psi)

58

70

Pressure Increase With Theoretical Lift: Theoretical Collapse Pressure: Initial Casing Pressure:

Stage Number: 4 RAW **Observer:**

TIME	TOTAL TIME (mins)	PUMPING RATE (bbl/min)	CEMENT WEIGHT (lbs/gal)	VOLUME PUMPED (bbl cement)	CASING PRESSURE (psi)	COMMENTS
10:10	0					Pre-flush 3 bbls of water
10:38	28		13.6	10		Pump 6% gel
10:39						Chase 3 bbls of water
10:41						Pull tubing

NOTES:

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

JOB NUMBER:3220269.77010102CONTRACTOR:Youngquist Brothers, Inc.PROJECT MANAGER:Neil JohnsonOWNER:City of Cape Coral

Description of Operations:

Pressure Grout 36-inch casing

Differential Pressures:

Pressure Increase per Linear Foot of Fill:	0.27	(psi)
Pressure Increase With Theoretical Lift:	54.0	(psi)
Theoretical Collapse Pressure:	58	(psi)
Initial Casing Pressure:	75	(psi)

 Date:
 11/23/2007

 Stage Number:
 5

 Observer:
 RAW

TIME	TOTAL TIME	PUMPING RATE	CEMENT WEIGHT	VOLUME PUMPED	CASING PRESSURE	COMMENTS
	(mins)	(bbl/min)	(lbs/gal)	(bbl cement)	(psi)	
18:00	0					Pre-flush 3 bbls of water
18:20	20	4.1	13.7	24	75	Pump 6% gel
18:24	24		14.2	40	75	
18:27	27	4.7	13.6	51	75	
18:40	40	4.7	13.7	75	75	
18:50	50	4.6	13.6	151	75	
18:55	55	4.5	13.6	175	75	
19:00	60	4.5	13.6	200	75	Stop pumping
19:05	65					Chase 3 bbls of water
19:06	66					Pull tubing

NOTES:

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

JOB NUMBER:	3220269.77010102
CONTRACTOR:	Youngquist Brothers, Inc.
PROJECT MANAGER:	Neil Johnson
OWNER:	City of Cape Coral

Description of Operations:

Pressure Grout 36-inch casing

Differential Pressures:

Pressure Increase per Linear Foot of Fill:	0.27	(psi)
Pressure Increase With Theoretical Lift:	39.2	(psi)
Theoretical Collapse Pressure:	58	(psi)
Initial Casing Pressure:	75	(psi)

 Date:
 11/24/2007

 Stage Number:
 6

 Observer:
 MK

TIME	TOTAL TIME (mins)	PUMPING RATE (bbl/min)	CEMENT WEIGHT (lbs/gal)	VOLUME PUMPED (bbl cement)	CASING PRESSURE (psi)	COMMENTS
3:05	0					Pre-flush 3 bbls of water
3:15	10		13.8	33.7	75	Pump 6% gel
3:20	15	5.1	13.6	51	75	
3:28	23	3.7	13.9	75	75	
3:35	30	3.8	13.6	100	75	
3:40	35			121	75	
3:47	42	4.5	13.6	145	75	Stop pumping
3:51	46					Chase 3 bbls of water
						Pull tubing

NOTES:

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

JOB NUMBER:3220269.77010102CONTRACTOR:Youngquist Brothers, Inc.PROJECT MANAGER:Neil JohnsonOWNER:City of Cape Coral

Description of Operations:

Pressure Grout 36-inch casing

Differential Pressures:

Pressure Increase per Linear Foot of Fill:	0.27
Pressure Increase With Theoretical Lift:	47.8
Theoretical Collapse Pressure:	58
Initial Casing Pressure:	75

 Date:
 11/24/2007

 Stage Number:
 7

 Observer:
 RAW

TIME	TOTAL TIME	PUMPING RATE	CEMENT WEIGHT	VOLUME PUMPED	CASING PRESSURE	COMMENTS
	(mins)	(bbl/min)	(lbs/gal)	(bbl cement)	(psi)	
12:40	0					Pre-flush 4 bbls of water
12:45	5				75	Pump 6% gel
12:49	9	4.9	13.6	46	75	
13:00	20	4.9	13.6	71	75	
13:10	30	5.0	13.7	122	80	
13:16	36	5.0	13.6	151	80	
13:26	46	4.9	13.6	184	78	
13:28	48	4.9	13.6	195	78	Stop pumping
13:28						Chase 1 bbl of water
						Pull 9 stands of tubing

(psi)

(psi)

(psi) (psi)

NOTES:

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

JOB NUMBER:3220269.77010102CONTRACTOR:Youngquist Brothers, Inc.PROJECT MANAGER:Neil JohnsonOWNER:City of Cape Coral

Description of Operations:

Pressure Grout 36-inch casing

Differential Pressures:

Pressure Increase per Linear Foot of Fill:	0.27	(psi)
Pressure Increase With Theoretical Lift:	51.6	(psi)
Theoretical Collapse Pressure:	58	(psi)
Initial Casing Pressure:	75	(psi)

 Date:
 11/24/2007

 Stage Number:
 8

 Observer:
 MK

TIME	TOTAL TIME (mins)	PUMPING RATE (bbl/min)	CEMENT WEIGHT (lbs/gal)	VOLUME PUMPED (bbl cement)	CASING PRESSURE (psi)	COMMENTS
22:25	0					Pre-flush 3 bbls of water
22:30	5	5.7	13.7	22	75	Pump 6% gel
22:33	8	5.7	13.7	31	75	
22:42	17	5.4	13.6	75	75	
22:47	22	5.4	13.7	100	75	
22:50	25	5.4	13.7	121	75	
22:53	28			143	75	Stop pumping
22:54	29					Chase 3 bbls of water
						Pull tubing

NOTES:

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

JOB NUMBER:3220269.77010102CONTRACTOR:Youngquist Brothers, Inc.PROJECT MANAGER:Neil JohnsonOWNER:City of Cape Coral

Description of Operations:

Pressure Grout 36-inch casing

Differential Pressures:

0.27	(psi)	
99.6	(psi)	Stag
58	(psi)	
120	(psi)	
	99.6 58	99.6 (psi) 58 (psi)

11/25/2008
9
RAW

TIME	TOTAL	PUMPING	CEMENT	VOLUME	CASING	
TIME	TIME (mins)	RATE (bbl/min)	WEIGHT (lbs/gal)	PUMPED (bbl cement)	PRESSURE (psi)	COMMENTS
8:45	0					Pre-flush 5 bbls of water
8:53	8		13.6		120	Pump 6% gel
9:02	17	5.7	13.6	50	120	
9:07	22	5.6	13.6	76	120	
9:14	29	5.6	13.6	122	120	
9:20	35	5.4	13.6	154	118	
9:27	42	5.7	13.6	192	120	
9:32	47		13.6	220	120	Stop pumping
						Chase 1 bbl of water
						Pull tubing

NOTES:

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

JOB NUMBER:	3220269.77010102
CONTRACTOR:	Youngquist Brothers, Inc.
PROJECT MANAGER:	Neil Johnson
OWNER:	City of Cape Coral

Description of Operations:

Pressure Grout 36-inch casing

Differential Pressures:

Pressure Increase per Linear Foot of Fill:	0.27	(psi)	
Pressure Increase With Theoretical Lift:	21.6	(psi)	Stag
Theoretical Collapse Pressure:	58	(psi)	
Initial Casing Pressure:	30	(psi)	

 Date:
 11/25/2007

 Stage Number:
 10

 Observer:
 MK

TIME	TOTAL TIME (mins)	PUMPING RATE (bbl/min)	CEMENT WEIGHT (lbs/gal)	VOLUME PUMPED (bbl cement)	CASING PRESSURE (psi)	COMMENTS
18:23	0					Pre-flush 6 bbls of water
18:30	7		13.6		30	Pump 6% gel
18:33	10	6.6	13.6	15	30	
18:38	15	6.6	13.6	44	30	
18:40	17		13.6	52	30	Stop pumping
						Chase 0.5 bbl of water
						Pull tubing

NOTES:

Injection Well IW-1

24-inch casing

APPENDIX M CEMENT REPORTS CITY OF CAPE CORAL SOUTHWEST WATER TREATMENT PLANT INJECTION WELL IW-1

Inner Casing

Casing Diameter: 24- Casing Depth: 2,951 Bit Size: Nominal 34. Cement Specification Number of Stages: 10	feet below pad level 5-inch diameter : ASTM C 150 Type II						
Cement Blend:	Neat with Calcium Chloride						
	12% Bentonite						
Cement Density:	Neat with Calcium Chloride – 15.6 lb./gal						
	12% Bentonite – 12.7 lb./gal						
Theoretical Fill From	Caliper Log: 11,074 cubic feet						
Volume Pumped:	Neat with Calcium Chloride – 1,391 cubic feet						
12% Bentonite – 11,887 cubic feet							
Total – 13,278 cubic feet							
Percent Difference: 16.6%							

The 24-inch casing was cemented in sixteen stages. After each stage a temperature log was run downhole and the cement physically tagged to determine the actual fill. On the final stage the cement was circulated to surface and was visually confirmed. The difference in the theoretical and actual volume pumped is due to caliper tool's limitations and small irregularities in the borehole wall.

IW-1 CEMENT RECORD

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

JOB NUMBER:	3220269.77010102
CONTRACTOR:	Youngquist Brothers, Inc.
PROJECT MANAGER:	Neil Johnson
OWNER:	City of Cape Coral

CASING SIZE:

24-inch steel casing

DATE	STAGE	TEMPERATURE	CEMENT	YIELD	QUAN PUM	TITY PED	THEOR	-	TAG DEPTH		ACTUAL FILL		PERCENT FILLED (LINEAR FEET)	PERCENT FILLED (VOLUMETRIC)	CUMULATIVE TOTAL	INSPECTOR'S INITIALS
	NO.	LOG NO.	(ADDITIVES, BLENDS, MIXTURES)	(ft³/sk)	(BARRELS)	(ft ³)	INTERVAL	FOOTAGE	PAD LEVEL	(BARRELS)	INTERVAL	FOOTAGE	Percent %	Percent %	(ft ³)	
3/28/08	Plug	NA	Neat with calcium chloride	1.18	9	50.5	2,951.5 to 2,925	26.5	2,937.0	8.8	2951.5 to 2937	14.5	55%	97.8%	50.5	DEJ
3/29/08	1	1	Neat with calcium chloride	1.18	12	67.3	2,937 to 2,917	20	2,917.0	10.0	2,937 to 2,917	20.0	100%	83.3%	117.8	DEJ
3/29/08	2	2	Neat with calcium chloride	1.18	129	723.7	2,917 to 2,720	197	2,751.1	129.0	2,919 to 2,751.11	167.9	85%	100.0%	841.5	DK
3/29/08	3	3	Neat and 12% Gel	1.18/2.2	120	673.2	2,751.5 to 2,575	176.5	2,603	100.0	2,751.1 to 2,602.5	148.6	84%	83.3%	1,514.7	DEJ
3/30/08	4	4	12% Gel	2.2	179	1,004.2	2,602.5 to 2,335	267.5	2,393	144.0	2,602.5 to 2,393.2	209.3	78%	80.4%	2,518.9	DK
3/30/08	5	5	12% Gel	2.2	179	1,004.2	2,393.2 to 2,118	275.2	2,186	133.0	2,393.2 to 2,186.28	206.9	75%	74.3%	3,523.1	DK
3/31/08	6	6	12% Gel	2.2	119	667.6	2,186 to 2,025	161	2,137	32.0	2,186.28 to 2,137	49.3	31%	26.9%	4,190.7	DEJ
3/31/08	7	7	12% Gel	2.2	60	336.6	2,137.1 to 2,063	74	2,102	31.0	2,137 to 2,102	35.0	47%	51.7%	4,527.3	DK
4/1/08	8	8	12% Gel	2.2	50	280.5	2,102 to 2,025	77	2,074	29.0	2,102 to 2,074	29.0	38%	58.0%	4,807.8	DEJ
4/1/08	9	9	12% Gel	2.2	184	1,032.2	2,073.5 to 1,801	272.5	1,860	147.0	2,074 to 1,860	214.0	79%	79.9%	5,840.0	DK
4/2/08	10	10	12% Gel	2.2	166	931.3	1,860 to 1,650	210	1,689	130.5	1,860 to 1,689	171.0	81%	78.6%	6,771.3	DEJ
4/2/08	11	11	12% Gel	2.2	75	420.8	1,689 to 1,574	115	1,593	71.0	1,689 to 1,593	96.0	83%	94.7%	7,192.0	CLM
4/3/08	12	12	12% Gel	2.2	179	1,004.2	1,593 to 1,293	300	1,331	170.0	1,593 to 1,331	262.0	87%	95.0%	8,196.2	ABF
4/3/08	13	13	12% Gel	2.2	227	1,273.5	1,331 to 981	350	1,001	214.0	1,331 to 1,001	330.0	94%	94.3%	9,469.7	CLM
4/4/08	14	14	12% Gel	2.2	243	1,363.2	1,001 to 626	375	642	232.0	1,001 to 642	359.0	96%	95.5%	10,832.9	ABF

IW-1 CEMENT RECORD

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

JOB NUMBER:	3220269.77010102
CONTRACTOR:	Youngquist Brothers, Inc.
PROJECT MANAGER:	Neil Johnson
OWNER:	City of Cape Coral

CASING SIZE:

24-inch steel casing

DATE	STAGE	TEMPERATURE	CEMENT	YIELD	QUAN PUM		THEOR FI	ETICAL LL	TAG DEPTH		ACTUAL FILL		PERCENT FILLED (LINEAR FEET)	PERCENT FILLED (VOLUMETRIC)	CUMULATIVE TOTAL	INSPECTOR'S INITIALS
	NO.	LOG NO.	(ADDITIVES, BLENDS, MIXTURES)	(ft³/sk)	(BARRELS)	(ft ³)	INTERVAL	FOOTAGE	PAD LEVEL	(BARRELS)	INTERVAL	FOOTAGE	Percent %	Percent %	(ft ³)	
4/4/08	15	15	12% Gel	2.2	286	1,604.5	626 to 200	426	226	268.0	642 to 226	416.0	98%	93.7%	12,437.4	CLM
4/5/08	16	16	12% Gel	2.2	150	841.5	226 to 0	226	0	146.0	226 to 0	226.0	100%	97.3%	13,278.9	ABF

NOTES:

ft³ - cubic feet ft³/sk - cubic feet per sack

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

JOB NUMBER:322CONTRACTOR:YouPROJECT MANAGER:NeiOWNER:City

<u>3220269.77010102</u> Youngquist Brothers, Inc. Neil Johnson City of Cape Coral

Description of Operations:

Tremmie Grout of 24-inch casing

Differential Pressures:

Pressure Increase per Linear Foot of Fill:	0.37	(psi)	Date:	3/28/2008	_
Pressure Increase With Theoretical Lift:	9.8	(psi)	Stage Number:	Plug	-
Theoretical Collapse Pressure:	355	(psi)	Observer:	DEJ	-
Initial Casing Pressure:	OPEN	(psi)			-

TIME	TOTAL TIME (mins)	PUMPING RATE (bbl/min)	CEMENT WEIGHT (lbs/gal)	VOLUME PUMPED (bbl cement)	CASING PRESSURE (psi)	COMMENTS
20:18	0			0		Pre-flush 20 bbls water
20:28	10			0		Pump neat with calcium chloride
20:38	20			9		Stop pumping
20:42	24	2.5	16			Chase 12 bbls water
20:44	26					Pull 1 single of tubing

NOTES:

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

JOB NUMBER:	3220269.77010102
CONTRACTOR:	Youngquist Brothers, Inc.
PROJECT MANAGER:	Neil Johnson
OWNER:	City of Cape Coral

Description of Operations:

Tremmie Grout of 24-inch casing

Differential Pressures:

Pressure Increase per Linear Foot of Fill:	0.37	(psi)	Date:	3/28/2008
Pressure Increase With Theoretical Lift:	7.4	(psi)	Stage Number:	1
Theoretical Collapse Pressure:	355	(psi)	Observer:	DEJ
Initial Casing Pressure:	OPEN	(psi)		

TIME	TOTAL TIME (mins)	PUMPING RATE (bbl/min)	CEMENT WEIGHT (lbs/gal)	VOLUME PUMPED (bbl cement)	CASING PRESSURE (psi)	COMMENTS
1:28	0			0		Pre-flush 5 bbls water
1:28	0	5.1	12.2	0		Pump neat cement
1:31	3	3.8	15	12		Stop pumping
1:38	10					Chase 12 bbls of water
1:41	13					Pull 1 single

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

JOB NUMBER:	3220269.77010102
CONTRACTOR:	Youngquist Brothers, Inc.
PROJECT MANAGER:	Neil Johnson
OWNER:	City of Cape Coral

Description of Operations:

Tremmie Grout of 24-inch casing

Differential Pressures:

Pressure Increase per Linear Foot of Fill:	0.37	(psi)	Date:	3/29/2008
Pressure Increase With Theoretical Lift:	72.89	(psi)	Stage Number:	2
Theoretical Collapse Pressure:	355	(psi)	Observer:	DK
Initial Casing Pressure:	OPEN	(psi)		

TIME	TOTAL TIME (mins)	PUMPING RATE (bbl/min)	CEMENT WEIGHT (lbs/gal)	VOLUME PUMPED (bbl cement)	CASING PRESSURE (psi)	COMMENTS
9:38	0			0		Pre-flush with water
9:43	5	5.8		0		Pump neat with calcium chloride
9:54	16	5.8	16.4	64		
10:01	23	5.7	15.7	100		
10:06	28	5.8	15.6	126		
10:07	29			129		Stop pumping
10:07	29					Chase with water
10:15	37					Pull 7 stands and a single of tubing

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

JOB NUMBER:3220269.77010102CONTRACTOR:Youngquist Brothers, Inc.PROJECT MANAGER:Neil JohnsonOWNER:City of Cape Coral

Description of Operations:

Tremmie Grout of 24-inch casing

Differential Pressures:

Pressure Increase per Linear Foot of Fill:	0.37	(psi)	Date:	3/29/2008
Pressure Increase With Theoretical Lift:	65.3	(psi)	Stage Number:	3
Theoretical Collapse Pressure:	355	(psi)	Observer:	DEJ
Initial Casing Pressure:	OPEN	(psi)		

TIME	TOTAL TIME (mins)	PUMPING RATE (bbl/min)	CEMENT WEIGHT (lbs/gal)	VOLUME PUMPED (bbl cement)	CASING PRESSURE (psi)	COMMENTS
20:24	0			0		Pre-flush 7 bbls water
20:31	7	5.1	12.2	0		Begin pumping 12% gel
20:36	12	5.8	12.8	22		Switch to neat, 22 bbls 12% pumped
20:40	16	5.8	15.6	56		
20:45	21	5.8	15.6	79		
20:52	28	5.8	15.7	100		
20:55	31	5.0	15.6	120		Stop pumping
20:57	33					Chase 10 bbls water
21:01	37					Pull 6 stands of tubing

NOTES:

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

JOB NUMBER:	3220269.77010102
CONTRACTOR:	Youngquist Brothers, Inc.
PROJECT MANAGER:	Neil Johnson
OWNER:	City of Cape Coral

Description of Operations:

Tremmie Grout of 24-inch casing

Differential Pressures:

Pressure Increase per Linear Foot of Fill:	0.223	(psi)	Date:	3/30/2008
Pressure Increase With Theoretical Lift:	59.65	(psi)	Stage Number:	4
Theoretical Collapse Pressure:	355	(psi)	Observer:	DK
Initial Casing Pressure:	OPEN	(psi)		

TIME	TOTAL TIME (mins)	PUMPING RATE (bbl/min)	CEMENT WEIGHT (lbs/gal)	VOLUME PUMPED (bbl cement)	CASING PRESSURE (psi)	COMMENTS
7:25	0			0		Pre-flush 25 bbls water
7:32	7	5.5	12.6	0		Pump 12% gel
7:45	20	6.0	12.6	72		
7:48	23			100		
7:58	33	6.5	12.8	128		
8:04	39	6.6	12.6	170		
8:05	40			179		Stop pumping
8:05	40					Chase with water
8:08	43					Pull tubing

NOTES:

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

JOB NUMBER:	3220269.77010102
CONTRACTOR:	Youngquist Brothers, Inc.
PROJECT MANAGER:	Neil Johnson
OWNER:	City of Cape Coral

Description of Operations:

Tremmie Grout of 24-inch casing

Differential Pressures:

Pressure Increase per Linear Foot of Fill:	0.223	(psi)	Date:	3/30/2008
Pressure Increase With Theoretical Lift:	61.37	(psi)	Stage Number:	5
Theoretical Collapse Pressure:	355	(psi)	Observer:	DK
Initial Casing Pressure:	OPEN	(psi)		

	TOTAL	PUMPING		VOLUME	CASING	
TIME	TIME (mins)	RATE (bbl/min)	WEIGHT (lbs/gal)	PUMPED (bbl cement)	PRESSURE (psi)	COMMENTS
18:09	0		(100, 841)	0		Pre-flush 12 bbls water
18:15	6	6.0	12.6	0		Pump 12% gel
18:19	10	6.7	12.8	25		
18:23	14	6.8	12.7	52		
18:26	17	6.7	12.8	75		
18:30	21			100		
18:39	30	7.0	12.9	125		
18:43	34	7.0	12.6	150		Stop pumping
18:47	38			179		Begin chase
18:49	40					Pull tubing

NOTES:

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

JOB NUMBER:	3220269.77010102
CONTRACTOR:	Youngquist Brothers, Inc.
PROJECT MANAGER:	Neil Johnson
OWNER:	City of Cape Coral

Description of Operations:

Tremmie Grout of 24-inch casing

Differential Pressures:

Pressure Increase per Linear Foot of Fill:	0.223	(psi)	Date:	3/31/2008
Pressure Increase With Theoretical Lift:	35.9	(psi)	Stage Number:	6
Theoretical Collapse Pressure:	355	(psi)	Observer:	DEJ
Initial Casing Pressure:	OPEN	(psi)		

TIME	TOTAL TIME (mins)	PUMPING RATE (bbl/min)	CEMENT WEIGHT (lbs/gal)	VOLUME PUMPED (bbl cement)	CASING PRESSURE (psi)	COMMENTS
4:54	0			0		Pre-flush 6 bbls water
5:01	7	5.1	12.2	0		Pump 12% gel
5:08	14	6.9	12.8	33		
5:13	19	6.9	12.8	71		
5:16	22	6.9		100		
5:20	26			119		Stop pumping
5:21	27					Chase 8.5 bbls water
5:30	36					Pull 5 stands of tubing

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

JOB NUMBER:	3220269.77010102
CONTRACTOR:	Youngquist Brothers, Inc.
PROJECT MANAGER:	Neil Johnson
OWNER:	City of Cape Coral

Description of Operations:

Tremmie Grout of 24-inch casing

Differential Pressures:

Pressure Increase per Linear Foot of Fill:	0.223	(psi)	Date:	3/31/2008
Pressure Increase With Theoretical Lift:	16.5	(psi)	Stage Number:	7
Theoretical Collapse Pressure:	355	(psi)	Observer:	DK
Initial Casing Pressure:	OPEN	(psi)		

TIME	TOTAL TIME (mins)	PUMPING RATE (bbl/min)	CEMENT WEIGHT (lbs/gal)	VOLUME PUMPED (bbl cement)	CASING PRESSURE (psi)	COMMENTS
15:56	0			0		Pre-flush with water
15:59	3	6.0		0		Pump 12% gel
16:02	6	6.9	12.8	18		
16:09	13		12.5	60		Stop pumping
16:10	14					Chase with water
16:15	19					Pull tubing

NOTES:

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

JOB NUMBER:	3220269.77010102
CONTRACTOR:	Youngquist Brothers, Inc.
PROJECT MANAGER:	Neil Johnson
OWNER:	City of Cape Coral

Description of Operations:

Tremmie Grout of 24-inch casing

Differential Pressures:

Pressure Increase per Linear Foot of Fill:	0.223	(psi)	Date:	3/31/2008
Pressure Increase With Theoretical Lift:	17.17	(psi)	Stage Number:	8
Theoretical Collapse Pressure:	355	(psi)	Observer:	DEJ
Initial Casing Pressure:	OPEN	(psi)		

TIME	TOTAL TIME (mins)	PUMPING RATE (bbl/min)	CEMENT WEIGHT (lbs/gal)	VOLUME PUMPED (bbl cement)	CASING PRESSURE (psi)	COMMENTS
2:10	0			0		Pre-flush 8 bbls water
2:12	2			0		Pump 12% gel
2:15	5	6.2	12.6	32		
2:19	9	5.9	12.6	40		
2:22	12			50		Stop pumping
2:24	14					Chase 8.6 bbls of water
2:30	20					Pull 4 stands of tubing

NOTES:

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

JOB NUMBER:	3220269.77010102
CONTRACTOR:	Youngquist Brothers, Inc.
PROJECT MANAGER:	Neil Johnson
OWNER:	City of Cape Coral

Description of Operations:

Tremmie Grout of 24-inch casing

Differential Pressures:

Pressure Increase per Linear Foot of Fill:	0.223	(psi)	Date:	4/1/2008
Pressure Increase With Theoretical Lift:	60.77	(psi)	Stage Number:	9
Theoretical Collapse Pressure:	355	(psi)	Observer:	DK
Initial Casing Pressure:	OPEN	(psi)		

TIME	TOTAL TIME (mins)	PUMPING RATE (bbl/min)	CEMENT WEIGHT (lbs/gal)	VOLUME PUMPED (bbl cement)	CASING PRESSURE (psi)	COMMENTS
17:13	0			0		Pre-flush 8 bbls water
17:16	3	8.0	12.9	0		Pump 12% gel
17:17	4	5.4	12.6	25		
17:26	13	5.4	12.7	50		
17:35	22			100		
17:49	36	5.4	12.8	156		
17:56	43			184		Stop pumping
17:57	44					Chase 7.5 bbls water
18:01	48					Pull tubing

NOTES:

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

JOB NUMBER:	3220269.77010102
CONTRACTOR:	Youngquist Brothers, Inc.
PROJECT MANAGER:	Neil Johnson
OWNER:	City of Cape Coral

Description of Operations:

Tremmie Grout of 24-inch casing

Differential Pressures:

Pressure Increase per Linear Foot of Fill:	0.223	(psi)	Date:	4/2/2008
Pressure Increase With Theoretical Lift:	46.83	(psi)	Stage Number:	10
Theoretical Collapse Pressure:	355	(psi)	Observer:	DEJ
Initial Casing Pressure:	OPEN	(psi)		

TIME	TOTAL TIME (mins)	PUMPING RATE (bbl/min)	CEMENT WEIGHT (lbs/gal)	VOLUME PUMPED (bbl cement)	CASING PRESSURE (psi)	COMMENTS
5:21	0			0		Pre-flush 6 bbls water
5:25	4	5.6	12.8	24		Pump 12% gel
5:26	5	5.7	12.6			
5:30	9	5.6	12.6	50		
5:38	17	5.8	12.9	100		
5:43	22	5.9	12.7	125		
5:47	26	5.8	12.8	150		
5:50	29			166		Stop pumping
5:50	29					Chase 7.2 bbls water
6:01	40					Pull 5 stands of tubing

NOTES:

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

JOB NUMBER:	3220269.77010102
CONTRACTOR:	Youngquist Brothers, Inc.
PROJECT MANAGER:	Neil Johnson
OWNER:	City of Cape Coral

Description of Operations:

Tremmie Grout of 24-inch casing

Differential Pressures:

Pressure Increase per Linear Foot of Fill:	0.223	(psi)	Date:	4/2/2008
Pressure Increase With Theoretical Lift:	25.64	(psi)	Stage Number:	11
Theoretical Collapse Pressure:	355	(psi)	Observer:	CLM
Initial Casing Pressure:	OPEN	(psi)		

TIME	TOTAL TIME (mins)	PUMPING RATE (bbl/min)	CEMENT WEIGHT (lbs/gal)	VOLUME PUMPED (bbl cement)	CASING PRESSURE (psi)	COMMENTS
16:23	0			0		Pre-flush 5 bbls water
16:41	18	7.3	12.7	28		Pump 12% gel
16:47	24			75		Stop pumping
17:01	38					Chase 6 bbls of water
17:13	50					Pull 5 stands of tubing

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

JOB NUMBER:3220269.77010102CONTRACTOR:Youngquist Brothers, Inc.PROJECT MANAGER:Neil JohnsonOWNER:City of Cape Coral

Description of Operations:

Tremmie Grout of 24-inch casing

Differential Pressures:

Pressure Increase per Linear Foot of Fill:	0.223	(psi)	Date:	4/3/2008
Pressure Increase With Theoretical Lift:	66.9	(psi)	Stage Number:	12
Theoretical Collapse Pressure:	355	(psi)	Observer:	ABF
Initial Casing Pressure:	OPEN	(psi)		

	TOTAL	PUMPING		VOLUME	CASING	
TIME	TIME (mins)	RATE (bbl/min)	WEIGHT (lbs/gal)	PUMPED (bbl cement)	PRESSURE (psi)	COMMENTS
	(mms)		(105/gal)	(DDI Cement)	(psi)	
3:06	0			0		Pre-flush 10 bbls water
3:10	4			0		Pump 12% gel
3:13	7	5.8	12.7	20		Switch to neat, 22 bbls 12% pumpe
3:18	12	6.1	12.7	40		
3:24	18	6.1	12.6	60		
3:27	21	6.1	12.6	120		
3:33	27	5.0	15.6	140		
3:39	33			179		Stop pumping
3:40	34					Chase 5.8 bbls of water
3:41	35					Pull 9 stands of tubing

NOTES:

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

JOB NUMBER: CONTRACTOR: PROJECT MANAGER: OWNER: 3220269.77010102 Youngquist Brothers, Inc. Neil Johnson City of Cape Coral

Description of Operations:

Tremmie Grout of 24-inch casing

Differential Pressures:

Pressure Increase per Linear Foot of Fill: Pressure Increase With Theoretical Lift: Theoretical Collapse Pressure: Initial Casing Pressure:

0.223 (psi) 78.05 (psi) 355 (psi) OPEN (psi)
 Date:
 4/3/2008

 Stage Number:
 13

 Observer:
 CLM

TIME	TOTAL TIME (mins)	PUMPING RATE (bbl/min)	CEMENT WEIGHT (lbs/gal)	VOLUME PUMPED (bbl cement)	CASING PRESSURE (psi)	COMMENTS
13:58	0			0		Pre-flush 6 bbls water
14:00	2			0		
14:05	7	7.3	12.7	25		Pump 12% gel
14:09	11	7.3	12.6	50		
14:12	14	7.3	12.7	75		
14:16	18	7.3	12.6	100		
14:19	21	7.3	12.7	125		
14:26	28		13			Pull 1 stand and one single
14:30	32			150		Resume pumping 12% gel
14:34	36	7.5	12.6	175		
14:37	39	7.5	12.7	200		
14:40	42			227		Stop pumping 12% gel
14:41	43					Chase with 12.6 bbls water
14:42	44					Pull total of 8 stands and 1 single

NOTES:

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

JOB NUMBER: CONTRACTOR: PROJECT MANAGER: OWNER: 3220269.77010102 Youngquist Brothers, Inc. Neil Johnson City of Cape Coral

Description of Operations:

Tremmie Grout of 24-inch casing

Differential Pressures:

Pressure Increase per Linear Foot of Fill: Pressure Increase With Theoretical Lift: Theoretical Collapse Pressure: Initial Casing Pressure: 0.223 (psi) 83.63 (psi) 355 (psi) OPEN (psi)
 Date:
 4/3/2008

 Stage Number:
 14

 Observer:
 ABF

TIME	TOTAL TIME	PUMPING RATE	CEMENT WEIGHT	VOLUME PUMPED	CASING PRESSURE	COMMENTS
	(mins)	(bbl/min)	(lbs/gal)	(bbl cement)	(psi)	
1:00	0			0		Pre-flush 7 bbls water
1:04	4		0	0		Pump 12% gel
1:08	8	7.6	12.7	35		
1:10	10	7.6	12.8	55		
	-60					
1:13	13	7.5	12.7	75		
1:16	16	7.6	12.6	100		
1:20	20	7.5	12.7	125		
1:23	23			150		Stop pumping to pull 1 stand and a single
1:26	26					Resume pumping
1:31	31	7.5	12.7	175		
1:35	35	7.5	12.6	200		
1:38	38	7.5	12.7	225		
1:40	40			243		Stop pumping
1:41	41					Chase 3 bbls of water
1:42	42					Pull 7 stands of tremie (9 total)

NOTES:

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

JOB NUMBER: CONTRACTOR: PROJECT MANAGER: OWNER: <u>3220269.77010102</u> Youngquist Brothers, Inc. Neil Johnson City of Cape Coral

Description of Operations:

Tremmie Grout of 24-inch casing

Differential Pressures:

Pressure Increase per Linear Foot of Fill: Pressure Increase With Theoretical Lift: Theoretical Collapse Pressure: Initial Casing Pressure: 0.223 (psi) 94.99 (psi) 355 (psi) OPEN (psi)
 Date:
 4/4/2008

 Stage Number:
 15

 Observer:
 CLM

TIME	TOTAL TIME (mins)	PUMPING RATE (bbl/min)	CEMENT WEIGHT (lbs/gal)	VOLUME PUMPED (bbl cement)	CASING PRESSURE (psi)	COMMENTS
12:10	0			0		Pre-flush 7 bbls water
12:14	4			0		Pump 12% gel
12:18	8	7.5	12.8	25		Switch to neat, 22 bbls 12% pumped
12:20	10	7.5	12.6	51		
12:24	14	7.5	12.9	75		
12:27	17	7.5	12.7	101		
12:33	23	7.5	12.6	150		Stop pumping
12:36	26	7.5	12.8	170		Chase 6.5 bbls water
12:37	27			180		Pull 200' of tubing
12:42	32			180		
12:45	35	10.6	12.8	200		
12:48	38	7.6	12.8	225		
12:52	42	7.6	12.7	250		
12:57	47			286		Stop pumping
12:58	48					Chase 1.6 bbls water
12:59	49					Pull 640' of tubing

NOTES:

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

JOB NUMBER:3220269.77010102CONTRACTOR:Youngquist Brothers, Inc.PROJECT MANAGER:Neil JohnsonOWNER:City of Cape Coral

Description of Operations:

Tremmie Grout of 24-inch casing

Differential Pressures:

Pressure Increase per Linear Foot of Fill:	0.22	(psi)	Date:	4/5/2008
Pressure Increase With Theoretical Lift:	50	(psi)	Stage Number:	16
Theoretical Collapse Pressure:	355	(psi)	Observer:	ABF
Initial Casing Pressure:	OPEN	(psi)		

TIME	TOTAL TIME (mins)	PUMPING RATE (bbl/min)	CEMENT WEIGHT (lbs/gal)	VOLUME PUMPED (bbl cement)	CASING PRESSURE (psi)	COMMENTS
20:32	0			0		Pre-flush 10 bbls water
20:35	3			0		Pump 12% gel
20:43	11	7.5	12.7	52		Switch to neat, 22 bbls 12% pumpe
20:46	14	7.4	12.6	75		
20:49	17	7.4	12.7	100		
20:53	21	7.4	12.6	125		
20:56	24			150		Stop pumping
20:57	25					Chase 0.8 bbls water
						Pull tubing

NOTES:

Injection Well IW-1

18-inch FRP Injection Tubing

APPENDIX M CEMENT REPORTS CITY OF CAPE CORAL SOUTHWEST WATER TREATMENT PLANT INJECTION WELL IW-1

FRP Tubing

Casing Diameter: 18-inches Casing Depth: feet below pad level Bit Size: Nominal 24-inch diameter Cement Specification: ASTM C 150 Type II							
Number of Stages: 1							
Cement Blend:	Neat						
	12% Bentonite with Cemplex C-37						
Cement Density:	Neat – 15.6 lb./gal						
	12% Bentonite with Cemplex C-37 – 12.3 lb./gal						
Theoretical Fill From	Calculations: 3,265 cubic feet						
Volume Pumped:	Neat – 286 cubic feet						
	12% Bentonite with Cemplex C-37 – 3,506 cubic feet						
	Total – 3,792 cubic feet						
Percent Difference: 1	3.0%						

Percent Difference: 13.9%

The 18-inch FRP tubing was cemented in one stage. The cement was circulated to surface and was visually confirmed. The theoretical volume was over shot to ensure that the annular space was completely filled in one stage as tremmie grouting was not possible. The difference in the theoretical and actual volume pumped is due to this over compensation and small barrel counter inconsistency.

IW-1 CEMENT RECORD

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

JOB NUMBER:	3220269.77010102
CONTRACTOR:	Youngquist Brothers, Inc.
PROJECT MANAGER:	Neil Johnson
OWNER:	City of Cape Coral

CASING SIZE: <u>18-inch FRP tubing</u>

DATE	STAGE	TEMPERATURE	CEMENT	YIELD	QUAN PUMI		THEORI FII		TAG DEPTH		ACTUAL FILL		PERCENT FILLED (LINEAR FEET)	PERCENT FILLED (VOLUMETRIC)	CUMULATIVE TOTAL	INSPECTOR'S INITIALS
	NO.	LOG NO.	(ADDITIVES, BLENDS, MIXTURES)	(ft³/sk)	(BARRELS)	(ft ³)	INTERVAL	FOOTAGE	PAD LEVEL	(BARRELS)	INTERVAL	FOOTAGE	Percent %	Percent %	(ft ³)	
4/17/08	1	NA	Neat and 12% Gel with Cemplex C-37	1.18/2.2	676	3,792.4	2,939 to surface	2,939	0	718.0	2,939 to surface	2,939	100%	106.2%	3,792.4	NAJ/JL/CLM

<u>NOTES:</u> ft³ - cubic feet ft³/sk - cubic feet per sack

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

JOB NUMBER: CONTRACTOR: PROJECT MANAGER: OWNER:

3220269.77010102 Youngquist Brothers, Inc. Neil Johnson City of Cape Coral

Description of Operations:

Pressure Grout of 18-inch final casing

Differential Pressures:

Pressure Increase per Linear Foot of Fill:	0.2
Pressure Increase With Theoretical Lift:	
Theoretical Collapse Pressure:	
Initial Casing Pressure:	

218 / 0.374 (psi) 681 (psi) 450 (psi) 0 (psi)

Date: 4/17/2008 Stage Number: 1

e Number.	1
Observer:	JL/CLM/NAJ

TIME	TOTAL TIME (mins)	PUMPING RATE (bbl/min)	CEMENT WEIGHT (lbs/gal)	VOLUME PUMPED (bbl cement)	CASING PRESSURE (psi)	COMMENTS
15:12	0			0		Start Preflush
15:13	1			0		Preflush 5 bbls of water
15:31	19		12.3	0		Mixing 12% gel batch
15:34	22			0		Start pumping 12% gel
15:38	26				3.5	
15:39	27				9.5	
15:41	29			34	15	
15:42	30	5.2	12.3	38	21	
15:46	34	5.2	12.3	60	40	
15:49	37	5.2	12.3	75	52	
15:53	41	5.3	12.3	100	82	
15:56	44			115		
15:58	46	5.3	12.3	125	106	
15:59	47		12.3			
16:01	49			140	120	
16:03	51	5.3	12.3	150	135	
16:05	53		12.3			
16:08	56	5.3	12.3	175	159	

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

JOB NUMBER: CONTRACTOR: PROJECT MANAGER: OWNER:

3220269.77010102 Youngquist Brothers, Inc. Neil Johnson City of Cape Coral

Description of Operations:

Pressure Grout of 18-inch final casing

Differential Pressures:

Pressure Increase per Linear Foot of Fill:	0.218 / 0.374	(psi)
Pressure Increase With Theoretical Lift:	681	(psi)
Theoretical Collapse Pressure:	450	(psi)
Initial Casing Pressure:	0	(psi)

Date: 4/17/2008 Stage Number: **Observer:** JL/CLM/NAJ

1

TIME	TOTAL TIME (mins)	PUMPING RATE (bbl/min)	CEMENT WEIGHT (lbs/gal)	VOLUME PUMPED (bbl cement)	CASING PRESSURE (psi)	COMMENTS
16:12	60	5.2	12.2	199	189	
16:16	64	5.2	12.5	225	205	
16:22	70	5.2	12.3	250	275	
16:27	75	5.2	12.2	275	275	Collect 12% gel sample for cubes
16:32	80	5.1	12.2	300	280	
16:34	82		12.3			
16:37	85	5.1	12.2	325	304	
16:42	90	5.1	12.2	352	331	
16:46	94	5.5	12.2	375	352	
16:51	99	5.0	12.3	400	380	
16:55	103	5.0	12.4	421	400	
16:59	107			440	425	
17:01	109	5.0	12.3	450	435	
17:07	115	4.9	12.3	478	461	
17:11	119	4.9	12.2	500	489	
17:13	121	4.9	12.4	511	500	
17:17	125	4.9	12.3	527	518	
17:21	129	4.9	12.3	545	538	
17:26	134	4.8	12.2	575	580	

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

JOB NUMBER: CONTRACTOR: PROJECT MANAGER: OWNER: <u>3220269.77010102</u> Youngquist Brothers, Inc. Neil Johnson City of Cape Coral

Description of Operations:

Pressure Grout of 18-inch final casing

Differential Pressures:

Pressure Increase per Linear Foot of Fill:	0.21
Pressure Increase With Theoretical Lift:	
Theoretical Collapse Pressure:	
Initial Casing Pressure:	

0.218 / 0.374 (psi) 681 (psi) 450 (psi) 0 (psi)
 Date:
 4/17/2008

 Stage Number:
 1

 Observer:
 JL/CLM/NAJ

TIME	TOTAL TIME (mins)	PUMPING RATE (bbl/min)	CEMENT WEIGHT (lbs/gal)	VOLUME PUMPED (bbl cement)	CASING PRESSURE (psi)	COMMENTS
17:31	139	4.8	12.3	596	595	
17:34	142			610		
17:37	145			625		Cement returns at surface. Mixing neat
17:45	153			625	610	Pumping neat cement
17:47	155		15.6	649		Collect neat sample for cubes
17:50	158	2.2	15.4	653	630	
17:53	161	2.2	15.5	660		
17:55	163	2.2	15.6	665	660	
18:03	171				675	
18:06	174			676		Stop pumping cement
18:07	175			676		Begin pumping chase
18:19	187			676	679	Chase with 13.5 bbls of water

NOTES:

Monitor Well DZMW-1

34-inch Casing

APPENDIX M CEMENT REPORTS CITY OF CAPE CORAL SOUTHWEST WATER TREATMENT PLANT INJECTION WELL DZMW-1

Conductor Casing

Casing Diameter: 34-inches Casing Depth: 75 feet below pad level Bit Size: Nominal 46-inch diameter Cement Specification: ASTM C 150 Type II Number of Stages: 1 Cement Blend: Neat Cement Density: Neat – 15.6 lb./gal Theoretical Fill From Calculations: 393 cubic feet Volume Pumped: Neat – 639.5 cubic feet Total – 639.5 cubic feet Percent Difference: 38.5%

The 34-inch casing was cemented in one stage. The cement was circulated to surface and was visually confirmed. The difference in the theoretical and actual volume pumped is due to small barrel counter inconsistency, mathematical inaccuracy and small irregularities in the borehole wall.

DZMW-1 CEMENT RECORD

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

JOB NUMBER:	3220269.77010102
CONTRACTOR:	Youngquist Brothers, Inc.
PROJECT MANAGER:	Neil Johnson
OWNER:	City of Cape Coral

CASING SIZE: 34-inch steel casing

DATE	STAGE	TEMPERATURE	CEMENT	YIELD	QUAN PUME		THEORI FII	-	TAG DEPTH		ACTUAL FILL		PERCENT FILLED (LINEAR FEET)	PERCENT FILLED (VOLUMETRIC)	CUMULATIVE TOTAL	INSPECTOR'S INITIALS
	NO.	LOG NO.	(ADDITIVES, BLENDS, MIXTURES)	(ft³/sk)	(BARRELS)	(ft ³)	INTERVAL	FOOTAGE	PAD LEVEL	(BARRELS)	INTERVAL	FOOTAGE	Percent %	Percent %	(ft ³)	
5/7/08	1		Neat	1.18	114	639.5	75 to 0	75	75.0	44.3	75 to 0	75.00	100%	38.9%	639.5	JL

<u>NOTES:</u> ft³ - cubic feet ft³/sk - cubic feet per sack

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

JOB NUMBER: CONTRACTOR: PROJECT MANAGER: OWNER: <u>3220269.77010102</u> Youngquist Brothers, Inc. <u>Neil Johnson</u> City of Cape Coral

Description of Operations:

Pressure Grout of 34-inch casing

0.37

27.75

68

0

(psi)

(psi)

(psi)

(psi)

Differential Pressures:

Pressure Increase per Linear Foot of Fill:	
Pressure Increase With Theoretical Lift:	
Theoretical Collapse Pressure:	
Initial Casing Pressure:	

Date:5/7/2008Stage Number:1Observer:John Largey

TIME	TOTAL TIME (mins)	PUMPING RATE (bbl/min)	CEMENT WEIGHT (lbs/gal)	VOLUME PUMPED (bbl cement)	CASING PRESSURE (psi)	COMMENTS
21:56	0			0		Preflush 20 bbls of water
22:01	5	5.7	15.7	0		Pump neat
22:03	7	5.7	15.7	10		
22:06	10	5.3	15.6	25	6	
22:10	14	5.3	15.7	50	8	
22:15	19	5.3	15.5	75	14	
22:19	23	5.2	15.6	98	16	
22:24	28			114	22	Stop pumping
22:25	29					Chase 2 bbls of water
22:26	30					Pull tubing

NOTES:

Monitor Well DZMW-1

24-inch Casing

APPENDIX M CEMENT REPORTS CITY OF CAPE CORAL SOUTHWEST WATER TREATMENT PLANT INJECTION WELL DZMW-1

Surface Casing

Casing Diameter: 24- Casing Depth: 500 fe Bit Size: Nominal 32. Cement Specification	et below pad level 5-inch diameter
Number of Stages: 1	
Cement Blend:	Neat
	12% Bentonite
Cement Density:	Neat – 15.7 lb./gal
	12% Bentonite – 12.6 lb./gal
Theoretical Fill From	Caliper Log: 1,655 cubic feet
Volume Pumped:	Neat – 892 cubic feet
	12% Bentonite – 746 cubic feet
	Total – 1,638 cubic feet
Percent Difference: 1	

The 24-inch casing was cemented in one stage. The cement was circulated to surface and was visually confirmed. The difference in the theoretical and actual volume pumped is due to caliper tool's limitations and small irregularities in the borehole wall.

DZMW-1 CEMENT RECORD

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

JOB NUMBER:	3220269.77010102
CONTRACTOR:	Youngquist Brothers, Inc.
PROJECT MANAGER:	Neil Johnson
OWNER:	City of Cape Coral

CASING SIZE: 24-inch steel casing

DATE	STAGE	TEMPERATURE	CEMENT	YIELD	QUAN PUME		THEORETICAL FILL		TAG DEPTH	ACTUAL FILL		PERCENT FILLED (LINEAR FEET)	PERCENT FILLED (VOLUMETRIC)	CUMULATIVE TOTAL	INSPECTOR'S INITIALS	
	NO.	LOG NO.	(ADDITIVES, BLENDS, MIXTURES)	(ft³/sk)	(BARRELS)	(ft ³)	INTERVAL	FOOTAGE	PAD LEVEL	(BARRELS)	INTERVAL	FOOTAGE	Percent %	Percent %	(ft ³)	
5/14/08	1		Neat and 12% gel	2,2	292	1,638.1	500 to -126	626	10.0	227.0	500 to 10	490	78%	77.7%	1,638.1	ABF

<u>NOTES:</u> ft³ - cubic feet ft³/sk - cubic feet per sack

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

JOB NUMBER: CONTRACTOR: PROJECT MANAGER: **OWNER**:

3220269.77010102 Youngquist Brothers, Inc. Neil Johnson City of Cape Coral

Description of Operations:

Pressure Grout of 24-inch casing

169

172

0

(psi)

(psi)

(psi)

(psi)

Differential Pressures:

Pressure Increase per Linear Foot of Fill: 0.37/0.21 **Pressure Increase With Theoretical Lift: Theoretical Collapse Pressure: Initial Casing Pressure:**

Date: 5/14/2008 **Stage Number: Observer:** Aimee Fartartangeli

TIME	TOTAL TIME (mins)	PUMPING RATE (bbl/min)	CEMENT WEIGHT (lbs/gal)	VOLUME PUMPED (bbl cement)	CASING PRESSURE (psi)	COMMENTS
11:32	0				0	Pre-flush 20 bbls of water
11:46	14			0	0	Pump 12% gel
11:48	16	6.2	12.6	20	0	
11:52	20	6.2	12.7	40	0	
11:56	24	6.2	12.6	60	0	
11:59	27	6.2	12.6	80	42	
12:02	30	6.2	12.7	100	50	
12:08	36	6.2	12.6	140	53	
12:12	40	6.2	15.7	159	57	Switch to neat
12:15	43	5.9	15.7	183	76	Pumping delay
12:26	54				76	Resume pumping
12:30	58	5.9	15.6	220	94	
12:35	63	5.7	15.7	254	135	
12:38	66	5.5	16	270	150	

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

JOB NUMBER: CONTRACTOR: PROJECT MANAGER: **OWNER**:

3220269.77010102 Youngquist Brothers, Inc. Neil Johnson City of Cape Coral

Description of Operations:

Pressure Grout of 24-inch casing

Differential Pressures:

Pressure Increase per Linear Foot of Fill:	0.37/0.21
Pressure Increase With Theoretical Lift:	169
Theoretical Collapse Pressure:	172
Initial Casing Pressure:	0

Date: 5/14/2008 **Stage Number:** 1 **Observer:** Aimee Fartartangeli

TIME	TOTAL TIME (mins)	PUMPING RATE (bbl/min)	CEMENT WEIGHT (lbs/gal)	VOLUME PUMPED (bbl cement)	CASING PRESSURE (psi)	COMMENTS
12:41	69	5.5		292	145	Stop pumping
12:42	70					Chase 3 bbls of water
12:43	71					Pull tubing

(psi)

(psi)

(psi)

(psi)

NOTES:

Monitor Well DZMW-1

16-inch Casing

APPENDIX M CEMENT REPORTS CITY OF CAPE CORAL SOUTHWEST WATER TREATMENT PLANT INJECTION WELL DZMW-1

Intermediate Casing

Casing Diameter: 16-inches Casing Depth: 1,325 feet below pad level Bit Size: Nominal 22.5-inch diameter Cement Specification: ASTM C 150 Type II						
Number of Stages: 6						
Cement Blend:	Neat					
	6% Bentonite					
	12% Bentonite					
Cement Density:	Neat – 15.7 lb./gal					
•	6% Bentonite – 13.7 lb./gal					
	12% Bentonite – 12.8 lb./gal					
Theoretical Fill From	Caliper Log: 3,787 cubic feet					
Volume Pumped:	Neat – 1,262 cubic feet					
	6% Bentonite – 2,188 cubic feet					
	12% Bentonite – 1,363 cubic feet					
	Total – 4,813 cubic feet					
Percent Difference: 2	1.3%					

The 16-inch casing was cemented in six stages. After each stage a temperature log was run downhole and the cement physically tagged to determine the actual fill. On the final stage the cement was circulated to surface and was visually confirmed. The difference in the theoretical and actual volume pumped is due to caliper tool's limitations and small irregularities in the borehole wall.

DZMW-1 CEMENT RECORD

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

JOB NUMBER:	3220269.77010102
CONTRACTOR:	Youngquist Brothers, Inc.
PROJECT MANAGER:	Neil Johnson
OWNER:	City of Cape Coral

CASING SIZE:

16-inch steel casing

DATE	STAGE NO.	TEMPERATURE LOG NO.	CEMENT (ADDITIVES, BLENDS, MIXTURES)	YIELD (ft ³ /sk)	QUAN PUM (BARRELS)		THEOR FI INTERVAL	ETICAL LL footage	TAG DEPTH PAD LEVEL	(BARRELS)	ACTUAL FILL INTERVAL	FOOTAGE	PERCENT FILLED (LINEAR FEET) Percent %	PERCENT FILLED (VOLUMETRIC) Percent %	CUMULATIVE TOTAL (ft ³)	INSPECTOR'S INITIALS
6/19/08	Plug	N/A	Neat	1.18	(BARRELS)	28.1	1325 to 1310	15	1,311.0	4.0	1325 to 1311	14	93%	80.0%	28.1	CLM/JC
6/20/08	1	1	Neat	1.18	120	673.2	1311 to 1038	273	1,122.0	88.0	1311 to 1122	189	69%	73.3%	701.3	МК
6/20/08	2	2	Neat	1.18	100	561.0	1122 to 986	136	998.0	75.8	1122 to 998	124	91%	75.8%	1,262.3	CLM
6/21/08	3	3	12% Gel/6% Gel	2.2	200	1,122.0	998 to 791	207	842	160.4	998 to 842	156	75%	80.2%	2,384.3	МК
6/21/08	4	4	6% Gel	2	215	1,206.2	842 to 450	392	567	157.8	842 to 567	275	70%	73.4%	3,590.4	JC
6/22/08	5	5	6% Gel	2	75	420.8	567 to 385	182	454	56.7	567 to 454	113	62%	75.6%	4,011.2	JC
6/22/08	6	6	12% Gel	2.2	143	802.2	454 to 0	454	3	98.8	454 to 3	451	99%	69.1%	4,813.4	МК

NOTES:

ft³ - cubic feet ft³/sk - cubic feet per sack

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

JOB NUMBER: CONTRACTOR: PROJECT MANAGER: OWNER: <u>3220269.77010102</u> Youngquist Brothers, Inc. Neil Johnson City of Cape Coral

Description of Operations:

Tremmie Grout of 16-inch Casing

Differential Pressures:

Pressure Increase per Linear Foot of Fill:	0.37	(psi)	Date:	6/19/2008
Pressure Increase With Theoretical Lift:	5.6	(psi)	Stage Number:	Plug
Theoretical Collapse Pressure:	885	(psi)	Observer:	Casey Majewski
Initial Casing Pressure:	0	(psi)	_	

TIME	TOTAL TIME (mins)	PUMPING RATE (bbl/min)	CEMENT WEIGHT (lbs/gal)	VOLUME PUMPED (bbl cement)	CASING PRESSURE (psi)	COMMENTS
17:10	0					Pre-flush 6 bbls water
17:11	1		15.8			Mixing neat
17:15	5	6				Pump neat
17:16	6			5		Stop pumping
17:17	7					Chase 6 bbls of water
17:18	8					Pull 3 singles of tubing

<u>NOTES:</u> mins - minutes

bbl - barrels lbs/gal - pounds per gallon psi - pound per square inch

bbl/min - barrels per minute

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

JOB NUMBER: CONTRACTOR: PROJECT MANAGER: OWNER: 3220269.77010102 Youngquist Brothers, Inc. Neil Johnson City of Cape Coral

Description of Operations:

Tremmie Grout of 16-inch Casing

Differential Pressures:

Pressure Increase per Linear Foot of Fill:	0.37	(psi)	Date:	6/20/2008
Pressure Increase With Theoretical Lift:	101.0	(psi)	Stage Number:	1
Theoretical Collapse Pressure:	885	(psi)	Observer:	Mike Knapp
Initial Casing Pressure:	0	(psi)		

TIME	TOTAL TIME (mins)	PUMPING RATE (bbl/min)	CEMENT WEIGHT (lbs/gal)	VOLUME PUMPED (bbl cement)	CASING PRESSURE (psi)	COMMENTS
4:27	0			0		Pre-flush 6 bbls water
4:31	4			0		Pumping neat
4:35	8	6.4	15.6	20		
4:37	10	6.5	15.7	40		
4:39	12	6.4	15.8	60		
4:41	14	6.5	15.8	70		
4:52	25	6.4	15.6	80		
4:54	27	6.3	15.7	100		
4:57	30	6.4	15.8	120		
4:58	31	6.4				Chase 4 bbls of water
5:00	33					Pull 10 stands of tubing

NOTES:

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

JOB NUMBER: CONTRACTOR: PROJECT MANAGER: OWNER: 3220269.77010102 Youngquist Brothers, Inc. Neil Johnson City of Cape Coral

Description of Operations:

Tremmie Grout of 16-inch Casing

Differential Pressures:

Pressure Increase per Linear Foot of Fill:	0.37	(psi)	Date:	6/20/2008
Pressure Increase With Theoretical Lift:	37	(psi)	Stage Number:	2
Theoretical Collapse Pressure:	885	(psi)	Observer:	Casey Majewski
Initial Casing Pressure:	0	(psi)	_	

TIME	TOTAL TIME (mins)	PUMPING RATE (bbl/min)	CEMENT WEIGHT (lbs/gal)	VOLUME PUMPED (bbl cement)	CASING PRESSURE (psi)	COMMENTS
15:15	0					Pre-flush 6 bbls water
15:20	5					Pump neat
15:24	9	6.9	15.7	25		
15:27	12			50		
15:35	20	7	15.7	75		
15:38	23			100		
15:39	24					Chase 4.5 bbls of water
15:40	25					Pull 6 singles of tubing

NOTES:

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

JOB NUMBER:3220CONTRACTOR:YouPROJECT MANAGER:NeilOWNER:City

3220269.77010102 Youngquist Brothers, Inc. Neil Johnson City of Cape Coral

Description of Operations:

Tremmie Grout of 16-inch Casing

Differential Pressures:

Pressure Increase per Linear Foot of Fill:	0.27/0.21	(psi)	Date:	6/21/2008
Pressure Increase With Theoretical Lift:	49.68	(psi)	Stage Number:	3
Theoretical Collapse Pressure:	885	(psi)	Observer:	Mike Knapp
Initial Casing Pressure:	0	(psi)		

TIME	TOTAL TIME (mins)	PUMPING RATE (bbl/min)	CEMENT WEIGHT (lbs/gal)	VOLUME PUMPED (bbl cement)	CASING PRESSURE (psi)	COMMENTS
2:49	0					Pre-flush 6 bbls water
2:51	2					Pump 12% gel
2:55	6	10	12.7	25		
2:58	9	7	13	50		
3:03	14	7	12.6	75		
3:07	18	7	12.6	100		Pull 45 feet of tremmie
3:14	25	7	13.7	125		Pump 6% gel
3:18	29	7	13.7	150		Pull 90 feet of tremmie
3:27	38	7	13.7	175		
3:32	43	7	13.7	200		Stop pumping
3:33	44					Chase 6 bbls fresh water
3:35	46					Pull 3 singles of tubing

NOTES:

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

JOB NUMBER: CONTRACTOR: PROJECT MANAGER: OWNER: <u>3220269.77010102</u> Youngquist Brothers, Inc. Neil Johnson City of Cape Coral

Description of Operations:

Tremmie Grout of 16-inch Casing

Differential Pressures:

Pressure Increase per Linear Foot of Fill:	0.27	(psi)	Date:	6/21/2008
Pressure Increase With Theoretical Lift:	106.38	(psi)	Stage Number:	4
Theoretical Collapse Pressure:	885	(psi)	Observer:	James Crawford
Initial Casing Pressure:	0	(psi)	_	

TIME	TOTAL TIME (mins)	PUMPING RATE (bbl/min)	CEMENT WEIGHT (lbs/gal)	VOLUME PUMPED (bbl cement)	CASING PRESSURE (psi)	COMMENTS
16:56	0					Pre-flush 8 bbls of water
17:02	6					Pump 6%
17:06	10	7.2	13.7	25		
17:09	13	7.3	13.5	50		
17:12	16	7.3	13.6	75		
17:24	28	7.8	13.4	100		
17:27	31	7.9	13.7	126		
17:39	43	8	13.8	172		
17:42	46	8	13.8	200		
17:45	49			215	160	Stop pumping
17:46	50					Chase 3.5 bbls of water
17:47	51					Pull 8 singles of tubing

NOTES:

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

JOB NUMBER: 3220269.77010102 CONTRACTOR: PROJECT MANAGER: OWNER:

Youngquist Brothers, Inc. Neil Johnson City of Cape Coral

Description of Operations:

Tremmie Grout of 16-inch Casing

Differential Pressures:

Pressure Increase per Linear Foot of Fill:	0.27	(psi)	Date:	6/22/2008
Pressure Increase With Theoretical Lift:	49.14	(psi)	Stage Number:	5
Theoretical Collapse Pressure:	885	(psi)	Observer:	James Crawford
Initial Casing Pressure:	120	(psi)	_	
		_		

TIME	TOTAL TIME (mins)	PUMPING RATE (bbl/min)	CEMENT WEIGHT (lbs/gal)	VOLUME PUMPED (bbl cement)	CASING PRESSURE (psi)	COMMENTS
7:54	0				120	Pre-flush 7 bbls of water
7:57	3					Pump 6% gel
8:01	7	7.7	13.7	25		
8:04	10	7.7	13.4	50		
8:07	13			75	120	Stop pumping
8:08	14					Chase 2 bbls of water
8:09	15					Pull 9 singles of tubing

NOTES:

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

JOB NUMBER:3220CONTRACTOR:YouPROJECT MANAGER:NeilOWNER:City

3220269.77010102 Youngquist Brothers, Inc. Neil Johnson City of Cape Coral

Description of Operations:

Tremmie Grout of 16-inch Casing

Differential Pressures:

Pressure Increase per Linear Foot of Fill:	0.27	(psi)	Date:	6/22/2008
Pressure Increase With Theoretical Lift:	122.58	(psi)	Stage Number:	6
Theoretical Collapse Pressure:	885	(psi)	Observer:	Mike Knapp
Initial Casing Pressure:	0	(psi)		

TIME	TOTAL TIME (mins)	PUMPING RATE (bbl/min)	CEMENT WEIGHT (lbs/gal)	VOLUME PUMPED (bbl cement)	CASING PRESSURE (psi)	COMMENTS
20:47	0					Pre-flush 3 bbls fresh water
20:50	3					Pump 12% gel
20:53	6	7.5	12.7	22.5		
20:56	9	7.5	12.7	45		Pull 5 stands
21:05	18	7.7	12.8	67.5		
21:08	21	7.7	12.8	90		Pull 5 stands
21:16	29	8.1	12.8	112.5		
21:20	33	8.1	12.8	135		
21:23	36	8.1	12.8	143		Cement returns at surface
21:24	37					Chase with .75 bbls of water
21:25	38					Pull tubing

NOTES:

Monitor Well DZMW-1

6⁵/₈-inch FRP Casing

APPENDIX M CEMENT REPORTS CITY OF CAPE CORAL SOUTHWEST WATER TREATMENT PLANT INJECTION WELL DZMW-1

FRP Tubing

Casing Diameter: 6.625-inches Casing Depth: 1,610 feet below pad level Bit Size: Nominal 14.75-inch diameter Cement Specification: ASTM C 150 Type II Number of Stages: 3 Cement Blend: Neat

Cement Density: Neat - 15.7 lb./gal

Theoretical Fill From Caliper Log: 528 cubic feet Volume Pumped: Neat – 555 cubic feet Total – 555 cubic feet Percent Difference: 4.9%

The 6.625-inch FRP tubing was cemented in three stages. After each stage a temperature log was run downhole and the cement physically tagged to determine the actual fill. On the final stage the cement was circulated to surface and was visually confirmed. The difference in the theoretical and actual volume pumped is due to caliper tool's limitations and small irregularities in the borehole wall.

DZMW-1 CEMENT RECORD

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

JOB NUMBER:	<u>3220269.77010102</u>
CONTRACTOR:	Youngquist Brothers, Inc.
PROJECT MANAGER:	Neil Johnson
OWNER:	City of Cape Coral

CASING SIZE:

6.625-inch FRP casing

DATE	STAGE	TEMPERATURE	CEMENT	YIELD	QUAN PUM		THEOR FI	ETICAL LL	TAG DEPTH		ACTUAL FILL		PERCENT FILLED (LINEAR FEET)	PERCENT FILLED (VOLUMETRIC)	CUMULATIVE TOTAL	INSPECTOR'S INITIALS
	NO.	LOG NO.	(ADDITIVES, BLENDS, MIXTURES)	(ft³/sk)	(BARRELS)	(ft ³)	INTERVAL	FOOTAGE	PAD LEVEL	(BARRELS)	INTERVAL	FOOTAGE	Percent %	Percent %	(ft ³)	
6/30/08	Plug	N/A	Neat	1.18	2	11.2	1610 to 1603	7	1,605.0	2.0	1610 to 1605	5	64%	100.0%	11.2	ABF
7/1/08	1	1	Neat	1.18	25	140.3	1603 to 1542	61	1,546.0	22.8	1605 to 1546	59	97%	91.2%	151.5	CLM
7/1/08	2	2	Neat	1.18	65	364.7	1543 to 1408	135	1,412.0	60.0	1543 to 1412	131	97%	92.3%	516.1	CLM
7/2/08	3	3	Neat	1.18	7	39.3	1412 to 1406	6	1,406.0	7.0	1412 to 1406	6	100%	100.0%	555.4	JC

NOTES:

ft³ - cubic feet ft³/sk - cubic feet per sack

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

JOB NUMBER: CONTRACTOR: PROJECT MANAGER: OWNER: <u>3220269.77010102</u> Youngquist Brothers, Inc. Neil Johnson City of Cape Coral

Description of Operations:

Tremmie Grout of 6.625-inch Casing

Differential Pressures:

Pressure Increase per Linear Foot of Fill:
Pressure Increase With Theoretical Lift:
Theoretical Collapse Pressure:
Initial Casing Pressure:

 0.4
 (psi)

 2.6
 (psi)

 973
 (psi)

 0
 (psi)

Date:6/30/2008Stage Number:PlugObserver:Aimee Fratartangeli

TIME	TOTAL TIME (mins)	PUMPING RATE (bbl/min)	CEMENT WEIGHT (lbs/gal)	VOLUME PUMPED (bbl cement)	CASING PRESSURE (psi)	COMMENTS
23:33	0					Pre-flush 7 bbls water
				0		Start pumping neat
				2		Stop pumping
						Chase 7 bbls of water
						Pull tubing

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

JOB NUMBER: CONTRACTOR: PROJECT MANAGER: OWNER: <u>3220269.77010102</u> Youngquist Brothers, Inc. Neil Johnson City of Cape Coral

Description of Operations:

Tremmie Grout of 6.625-inch Casing

Differential Pressures:

Pressure Increase per Linear Foot of Fill:	0.4	(psi)	Date:	7/1/2008
Pressure Increase With Theoretical Lift:	22.6	(psi)	Stage Number:	1
Theoretical Collapse Pressure:	973	(psi)	Observer:	Casey Majewski
Initial Casing Pressure:	0	(psi)		

TIME	TOTAL TIME (mins)	PUMPING RATE (bbl/min)	CEMENT WEIGHT (lbs/gal)	VOLUME PUMPED (bbl cement)	CASING PRESSURE (psi)	COMMENTS
10:36	0					Pre-flush 7 bbls water
10:41	5			0		Start pumping neat
10:46	10	5.2	15.7	25		Stop pumping neat
10:47	11					Chase 7 bbls of water
10:48	12					Pull tubing

NOTES:

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

JOB NUMBER:	3220269.77010102
CONTRACTOR:	Youngquist Brothers, Inc.
PROJECT MANAGER:	Neil Johnson
OWNER:	City of Cape Coral

Description of Operations:

Tremmie Grout of 6.625-inch Casing

Differential Pressures:

Pressure Increase per Linear Foot of Fill:	0.37	(psi)	Date:	7/1/2008
Pressure Increase With Theoretical Lift:	49.95	(psi)	Stage Number:	2
Theoretical Collapse Pressure:	973	(psi)	Observer:	Casey Majewski
Initial Casing Pressure:	0	(psi)	_	

TIME	TOTAL TIME (mins)	PUMPING RATE (bbl/min)	CEMENT WEIGHT (lbs/gal)	VOLUME PUMPED (bbl cement)	CASING PRESSURE (psi)	COMMENTS
21:12	0					Pre-flush 7 bbls water
21:16	4					Start pumping neat
21:18	6	5.4	15.6	16		
21:21	9	5.5	15.7	30		
21:23	11	5.5	15.7	45		
21:26	14			65		Stop pumping neat
21:27	15					
21:28	16					Pull of tubing

NOTES:

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

JOB NUMBER:	3220269.77010102
CONTRACTOR:	Youngquist Brothers, Inc.
PROJECT MANAGER:	Neil Johnson
OWNER:	City of Cape Coral

Description of Operations:

Tremmie Grout of 6.625-inch Casing

Differential Pressures:

Pressure Increase per Linear Foot of Fill:	0.37	(psi)	Date:	7/2/2008
Pressure Increase With Theoretical Lift:	2.22	(psi)	Stage Number:	3
Theoretical Collapse Pressure:	973	(psi)	Observer:	James Crawford
Initial Casing Pressure:	0	(psi)	_	

TIME	TOTAL TIME (mins)	PUMPING RATE (bbl/min)	CEMENT WEIGHT (lbs/gal)	VOLUME PUMPED (bbl cement)	CASING PRESSURE (psi)	COMMENTS
10:00	0					Pre-flush 6 bbls water
10:08	8	4.6	15.7	3		Start pumping neat
10:10	10			7		Stop pumping neat
10:16	16					Chase 6 bbls of water
10:17	17					Pull tubing

NOTES:

Appendix N

Casing and Tubing Pressure Tests

Injection Well IW-1

Casing and Tubing Pressure Tests and Test Gauge Calibration Certifications

Injection Well IW-1

24-inch Casing Pressure Test

DATE(S):

4/7/2008

SOUTHWEST DEEP INJECTION WELL SYSTEM

JOB NUMBER:

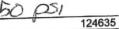
CONTRACTOR:

PROJECT MGR:

OWNER:

Neil Johnson City of Cape Coral

Youngquist Brothers, Inc.


3220269.77010102

START TIME: FINISH TIME: CASING SIZE:

15:15	
1014	
24-inch	

DESCRIPTION OF OPERATIONS: Pressure test of 24-inch final steel casing.

INITIAL PRESSURE: GAUGE SERIAL NUMBER:

TIME	TOTAL MINUTES	PRESSURE (DA)	COMMENTS
13/5	1	150	Witnessed by David Rhodes (FDEP), Neil Johnson (MWH), and
1310	2	150	Shawn Cerecerez (YBI).
317	3	150	
1318	4	150	De las
319	5	150 149,5	per David Rhodes.
1320	6	149,5	
1321	7	149,5	
1322	8	149.5	
1373	9	14915	
1374	10	141.5	
1375	11	149,5	
13210	12	149,5	
1327	13	149,5	
1378	14	149,5	
1329	15	149.5	
1330	16	149,5	
1331	17	149.5	
332	18	149,5	· · · · · · · · · · · · · · · · · · ·
1333	19	149.5	
1334	20	121915	
1335	21	149.5	
1336	22	M915-	
1337	23	149.5	
1338	24	149.5	
1339	25	149.5	
1340	26	149.5	
1341	27	149,5	
1342	28	149,5	

1542

155

DATE(S):

4/7/2008

SOUTHWEST DEEP INJECTION WELL SYSTEM

JOB NUMBER:

Youngquist Brothers, Inc. CONTRACTOR:

PROJECT MGR:

OWNER:

City of Cape Coral

3220269.77010102

Neil Johnson

START TIME:

FINISH TIME:

CASING SIZE:

13:15	
110 ilH	

DESCRIPTION OF OPERATIONS: Pressure test of 24-inch final steel casing

INITIAL PRESSURE: GAUGE SERIAL NUMBER:

Г	TIME	TOTAL MINUTES	PRESSURE (05)		COMMENTS
1543	1343	29	149,5		
1	1344	30	149,5		
l	1345	31	149,5		
	1346	32	149,5		
	1317	33	14915		
	1348	34	149.5		
	1349	35	149.5		
	(350	36	144.5		
	1301	37	149.5		
	1352	38			
	1353	39	14915		
	1354	40	149.5		
	1355 1350	41 42	149.5		
	1357	42	149,5		
	1353	43	149.5		
	1259	45	149.5		
	1400	46	149.5		
	1401	47	149,5		
	1402.	48	149,5		
	1403	49	150		
	1404	50	150		
	1405	51	150		
	1406	52	150		
	1407	53	150		
	1408	54)50	Awries	11/1 5
	1409	55	150	Ahades	149.5
1010	1400	56	150		

1010

DATE(S):

4/7/2008

SOUTHWEST DEEP INJECTION WELL SYSTEM

JOB NUMBER:

CONTRACTOR:

PROJECT MGR:

OWNER:

City of Cape Coral

Neil Johnson

3220269.77010102

Youngquist Brothers, Inc.

START TIME: FINISH TIME: CASING SIZE: 24-inch

DESCRIPTION OF OPERATION	DESCRIPTION OF OPERATIONS:		
Pressure test of 24-inch final st	Pressure test of 24-inch final steel casing.		
INITIAL PRESSURE: GAUGE SERIAL NUMBER:	150 psi	124635	

	TIME	TOTAL MINUTES	PRESSURE (PSI)	COMMENTS
1611	16011	57	150	
	1612	58	120	
	1613	59	150	Durid Gooder 1/10 5
1614	1814	60	150	181Va KIROUS 144.3

PRESSURE BLEED-OFF

TIME	PRESSURE	VOLUME (GAL)	CUMMULATIVE VOLUME (GAL)	COMMENTS
IAIT	150	0	Ø	
1/12		5	5	
1/219	1121	105	10	
101	95	45	15	
11022	75	5	20	
1023	100	5	25	
11074	42	5	30	
10210	200	5	25	
1628	9	5	40	
11027	0	415	44,5	

Witnessed by:

1Aan YB

David BHODES NEIL JOHNSON 4/1/08 SHAWN CEPECEREZ

Certificate of Calibration # KELC-45529

Kimball Electronic Laboratory, Inc. Precision Measurement Equipment Specialists

	Purchase Order # N/A
Calibration Performed By:	For: YOU410
KIMBALL ELECTRONIC LABORATORY, INC	YOUNGQUIST BROTHERS, INC.
8081 W 21 LANE	15465 PINE RIDGE ROAD
HIALEAH, FL. 33016	
Equipment Information KELI I.D.: KEL-124	635 FT MYERS FL 33908
Description: MCDANIEL CONTROLS 300 F	PSI PRESSURE GAUGE
Manufacturer: MCDANIEL CONTROLS Model Number: 300 PSI Part Number: N/A Range: 0-300 PSI	Cal Date: 07-Apr-08 Cal. Due Date: 07-Apr-09 Cal. Interval: 12 MONTHS Received: OUT OF TOL.
Serial Number: 124635 Customer I.D.: N/A Cust. Barcode: N/A Cust. Location: N/A Specifications: +/- 0.25% FULL SCALE	Calibration Result: PASS Environmental Conditions: 74 DEG F / 50 % RH Performed By: BRUCE CABOT Procedure: SYN54

This is to certify that the above listed instrument meets or exceeds all specifications as stated in the referenced procedure at the points tested (unless otherwise noted). It has been calibrated using measurement standards traceable to the National Int titute of Standards and Technology (NIST), or to NIST accepted intrinsic standards of measurement, or derived by the ratio type of self-calibration techniques. This calibration is in accordance with Kimball Electonic Laboratory, Inc Quality Assurance Manual. KELI's Quality system is A2LA-Accredited to ISO/IEC-17025 and compliant with MIL-STD-45662A and ANSI/NCSL Z540-1-1994. TURS when applicable are greater than or equal to 4:1; with expanded uncertainty used to calculate the Test Uncertainty Ratio, with a coverage a ctor of K=2 at a confidence level of approximately 95%, unless otherwise noted. Any number of factors may cause the calibration item to drift out of calibration on before the recommended interval has expired.

Calibration Remarks

THIS UNIT WAS FOUND TO BE OUT OF TOL. AT THE TIME OF CALIBRATION. ADJUSTED UNIT PERFORMED ROUTINE CALIBRATION

-		librate Equipment		Least Cal	O-L D D-t-
Company	I.D.	Description		Last Cal.	Cal. Due Date
KIM001	391	EATON UPS 3000BAA PRESSURE IN	DICATOR	20-Nov-07	30-Nov-09
Signatur	es:				
Certif	ied by: BRUCE	Bruce M Colot	Approved By: JAVIER	ap-	
	CABOT	07-Apr-08 9:20:16 AM	BALCEIRO	07-Apr-08 9:	20:58 AM
This report may	not be reprodu	uced, except in full, unless permission for the pu	blication of an approved abst	tract is obtained in writir	ng from KELI Labs., Inc.
	Tel: 305	Kimball Electronic Laboratory, Inc 3 5-822-5792 - Toll Free: 800-393-1094			bs.com
		Date of issue: 07-Apr-08	Pa	ge 1 of 1	IN LEILA

CONTROL #: KEL-124635

CUSTOMER : YOU410

8081 W. 21 LANE HIALEAH, FL. 33016 PH # 305-822-5792 FAX # 305-362-3125

CALIBRATION DATA FORM

MFR:	MCDANIEL CONTROLS	DESCRIPTION :	300 PSI PRESSURE GAUGE
MODEL # :	300 PSI	TECHNICIAN :	012
SERIAL # :	124635	CAL DATE :	07-APR-08
ID #:	KEL-124635	DUE DATE :	07-APR-09

* IF NO "AS LEFT" READING IS SHOWN ON THIS CHART, IT MEANS THE UNIT WAS IN TOLERANCE AND THERE WERE NO ADJUSTMENTS MADE TO IT.

RANGE	NOMINAL	AS FOUND	AS LEFT *	LOW LIMIT	HIGH LIMIT
300 PSI	50	50.5	50.0	40.05	50.75
300 PSI	50	50.5	50.0	49.25	50.75
	100	100.6	100.0	99.25	100.75
	150	150.6	150.0	149.25	150.75
	200	200.7	200.0	199.25	200.75
	300	303.0	300.6	299.25	300.75

BLANK DATA SHEET

Page of

Injection Well IW-1

18-inch Tubing Pressure Test

IW-1 TUBING PRESSURE TEST

DATE: 3/22/03

JOB NUMBER:	3220269.77010102	
CONTRACTOR:	Youngquist Brothers, Inc.	
PROJECT MGR:	Neil Johnson	
OWNER:	City of Cape Coral	
START TIME:	11:15	
FINISH TIME:	12:13	
CASING SIZE:	18-inch FRP tubing	

INITIAL PRESSURE:	150 psi
GAUGE SERIAL NUMBER:	04105-1
CALCULATED WATER VOLUME:	20.4
OBSERVED WATER VOLUME:	

30

23

2

0

TIME	Δ ΤΙΜΕ	PRESSURE	TIME	Δ ΤΙΜΕ	PRESSURE	TIME	Δ ΤΙΜΕ	PRESSURE
	(minutes)	(psi)		(minutes)	(psi)		(minutes)	(psi)
11:15	0	BOT						
11810	1	150+	11:36	21	150	11:56	41	149,5
11:17	2	150+	11:37	22	150	11:57	42	149.5
11:18	3	150+	11:38	23	150	11:58	43	149,5
11:19	4	150+	11:39	24	150	11:59	44	149.5
11:20	5	150+	11:40	25	50	12:00	45	149.5
11:21	6	150+	11:41	26	150	12:01	46	149.5
11:22	7	150+	11:42	27	B	12:02	47	149.5
11:23	8	150	11:43	28	150	12:03	48	149,5
11:24	9	150	11:44	29	160	12:04	49	149.5
11:25	10	150	11:45	30	0001495	12:05	50	149.5
11:26	11	50	11:46	31	149.5	12:00	51	149.5
11:27	12	150	11:47	32	149,5	12:07	52	149:00+
11:28	13	150	11:48	33	149.5	12:08	53	149:0+
11:29	14	130	11:49	34	149.5	12:09	54	149.07
11:30	15	150	11:50	35	14915	1210	55	149.0+
11:31	16	150	11:51	36	149.5	12:11	56	14955+
11:32	17	150	11:52	37	149.5	10:12	57	1490+
11:33	18	150	11:53	38	149.5	12:13	58	149.8t
11:34	19	150	11:54	39	149,5	12:14	59	149,01
11:35	20	150	11:55	40	14915	12:15	60	149.0+

PRESSSURE BLEED-OFF								
TIME	TIME PRESSURE VOLUME TIME PRESSURE VOLUME TIME PRESSURE VOLUME							
12:018	149.0	0	12:00	96	16	1226	44	20
12:21	120.1	5	12:24	70	15	p28	21	25

Witnessed By:

David Rhodes

FDEP Representative John Largey MWH Representative Shawn Cerecerez

YBI Representative

Monitor Well DZMW-1

Casing Pressure Tests and Test Gauge Calibration Certifications

Monitor Well DZMW-1

16-inch Casing Pressure Test

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

JOB NUMBER:3220269.77010102CONTRACTOR:Youngquist Brothers, Inc.PROJECT MANAGINeil JohnsonOWNER:City of Cape Coral

DATE:	6/25/2008
START TIME:	17:00
FINISH TIME:	18:00
CASING SIZE:	16-inch steel tubing

INITIAL PRESSURE:	50 psi
GAUGE SERIAL NUMBER:	05080-3
CALCULATED WATER VOLUME:	2.9 gallons
OBSERVED WATER VOLUME:	3 gallons

TIME	Δ ΤΙΜΕ	PRESSURE	TIME	Δ ΤΙΜΕ	PRESSURE	TIME	Δ ΤΙΜΕ	PRESSURE
	(minutes)	(psi)		(minutes)	(psi)		(minutes)	(psi)
17:00	0	50.00						
17:01	1	50.00	17:21	21	49.75	17:41	41	49.50
17:02	2	50.00	17:22	22	49.75	17:42	42	49.50
17:03	3	50.00	17:23	23	49.75	17:43	43	49.50
17:04	4	50.00	17:24	24	49.75	17:44	44	49.50
17:05	5	50.00	17:25	25	49.75	17:45	45	49.50
17:06	6	50.00	17:26	26	49.75	17:46	46	49.50
17:07	7	50.00	17:27	27	49.75	17:47	47	49.50
17:08	8	50.00	17:28	28	49.75	17:48	48	49.25
17:09	9	50.00	17:29	29	49.75	17:49	49	49.25
17:10	10	50.00	17:30	30	49.75	17:50	50	49.25
17:11	11	50.00	17:31	31	49.75	17:51	51	49.25

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

JOB NUMBER:3220269.77010102CONTRACTOR:Youngquist Brothers, Inc.PROJECT MANAGINeil JohnsonOWNER:City of Cape Coral

DATE:	6/25/2008
START TIME:	17:00
FINISH TIME:	18:00
CASING SIZE:	16-inch steel tubing

INITIAL PRESSURE:50 psiGAUGE SERIAL NUMBER:05080-3CALCULATED WATER VOLUME:2.9 gallonsOBSERVED WATER VOLUME:3 gallons

PRESSSURE BLEED-OFF

TIME	PRESSURE	VOLUME	TIME	PRESSURE	VOLUME	TIME	PRESSURE	VOLUME
18:00	49	0						
18:05	0	3						
12:22								

Witnessed	By:
-----------	-----

John Largey MWH

Dan Keeley YBI Jeff Bailey

MWH Constructors

KE	Kimball Electronic Labo Precision Measurement Equipment	
Galibration Per	formed By:	Purchase Order # 28719 For: VOU410
KIMBALL ELEC 8081 W 21 LAN HIALEAH, FL. 3	TRONIC LABORATORY, INC	YOUNGQUIST BROTHERS, INC. 15465 PINE RIDGE ROAD FT MYERS FL 33908
	PRESSURE GAUGE	
	MCDANIEL CONTROLS 300 PSI N/A	Cal Date: 06-Jun-08 Cal. Due Date: 06-Jun-09 Cal. Interval: 12 MONTHS Received: IN TOLERANCE
Serial Number: Customer I.D.: Cust. Barcode: Cust. Location: Specifications:	N/A +/- 0.25 % FS	Calibration Result: PASS Environmental Conditions: 72 DEG F / 50 % RH Penormed By: ELIU LAGO Procedure: SYN54

This is to certify that the above listed instrument meets or exceeds all specifications as stated in the referenced procedure at the points tested (unless of unless of exceeds all specifications as stated in the referenced procedure at the points tested (unless of unless of exceeds all specifications as stated in the referenced procedure at the points tested (unless of unless of exceeds all specifications as stated in the referenced procedure at the points tested (unless of unless of exceeds all specifications as stated in the referenced procedure at the points tested (unless of unless of exceeds all specifications as stated in the referenced procedure at the points tested (unless of unless of exceeds all specifications as stated in the referenced procedure at the points tested (unless of unless of exceeds all specifications) as a stated in the referenced procedure at the points tested (unless of the stated in the referenced procedure at the points tested (unless of the stated in the referenced procedure at the points tested (unless of the stated in the referenced procedure at the points tested (unless of the stated in the referenced procedure). It has a set of the stated in the referenced procedure at the points tested (unless of the stated in the referenced procedure) and the stated in the referenced procedure at the points tested (unless of the stated in the referenced procedure). The stated is the resonance of the stated in the referenced procedure at the points tested (unless of the stated in the referenced procedure). This calibration is in accordance with Kimball Electonic (Laboratory, Inc Quality Assurance Manual, KELI's Quality system is A2LA-Accredited to ISO/IEC-17025 and compliant with MIL-STD-45662A and ANSI/NCSL Z540-1-1994. TURS when applicable are greater than or equal to 4:1; with expanded uncertainty used to calculate the Test Uncertainty Ratio, with a coverage factor of K=2 at a confidence level of approximately 95%, unless otherwise noted. Any number of factors may cause the calibration item

Calibration Remarks

THIS UNIT WAS FOUND TO BE IN TOLERANCE AT THE TIME OF CALIBRATION. PERFORMED ROUTINE CALIBRATION/CERTIFICATION

Standards Used To Cali	brate Equipment		•• ••
Company I.D.	Description	Last Cal.	Cal. Due Date
KIM001 7005	EATON UPC5000 PNEUMATIC CALIBRATOR	29-Apr-08	30-Apr-09

his report may not be reproduced, except in full, unless permission for the publication of an approved abstract is obtained in writing from KELI Labs., Kimball Electronic Laboratory, Inc. = 8081 W. 21st Lane - Hialeah, FL. 33016	Certific	ed by:	FJ	<u> </u>	Approved By: JAVIER	a	\sim
Kimball Electronic Laboratory, Inc 8081 W. 21st Lane - Hialeah, FL. 33016 Tel: 305-822-5792 - Toll Free: 800-393-1094 - Fax: 305-362-3125 - Web: www.kelilabs.com					BALCEIRO	06-Jun-08	4:29:29 PM
Tel: 305-822-5792 - Toll Free: 800-393-1094 - Fax: 305-362-3125 - Web: www.kelilabs.com	this report may i	tot be reproc					
KELI Date of issue: 06-Jun-08 Page 1 of 1		Ťel: 30	Kimball Electronic 5-822-5792 - Toll	: Laborato ry, Inc. - 8 Free: 800-393-1094	3081 W. 21st Lane - 1 - Fax: 305-362-3125	Hialeah, FL. 33 - Web: www.k	016 (elilabs.com
	KELI	1 Participation	Date of issue:	06-Jun-08	Provide Provid	age 1 of 1	

Monitor Well DZMW-1

6.625-inch Casing Pressure Test

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

JOB NUMBER:	3220269.77010102
CONTRACTOR:	Youngquist Brothers, Inc.
PROJECT MANAG	I Neil Johnson
OWNER:	City of Cape Coral

DATE:	7/7/2008	
START TIME:	12:49	
FINISH TIME:	13:49	GAU
CASING SIZE:	6.625-inch FRP	CALCULAT

INITIAL PRESSURE:	50 psi
GAUGE SERIAL NUMBER:	KEL-126532
CALCULATED WATER VOLUME:	0.5 gallons
OBSERVED WATER VOLUME:	0.5 gallons

TIME	Δ ΤΙΜΕ	PRESSURE	TIME	Δ ΤΙΜΕ	PRESSURE	TIME	Δ ΤΙΜΕ	PRESSURE
	(minutes)	(psi)		(minutes)	(psi)		(minutes)	(psi)
12:49	0	50.00						
12:50	1	50.00	13:10	21	49.75	13:30	41	49.50
12:51	2	50.00	13:11	22	49.75	13:31	42	49.50
12:52	3	50.00	13:12	23	49.75	13:32	43	49.50
12:53	4	50.00	13:13	24	49.75	13:33	44	49.50
12:54	5	50.00	13:14	25	49.75	13:34	45	49.50
12:55	6	50.00	13:15	26	49.75	13:35	46	49.50
12:56	7	50.00	13:16	27	49.75	13:36	47	49.25
12:57	8	50.00	13:17	28	49.75	13:37	48	49.25
12:58	9	50.00	13:18	29	49.75	13:38	49	49.25
12:59	10	50.00	13:19	30	49.75	13:39	50	49.25
13:00	11	50.00	13:20	31	49.75	13:40	51	49.25
13:01	12	50.00	13:21	32	49.75	13:41	52	49.25
13:02	13	50.00	13:22	33	49.75	13:42	53	49.25
13:03	14	49.75	13:23	34	49.75	13:43	54	49.25
13:04	15	49.75	13:24	35	49.75	13:44	55	49.25
13:05	16	49.75	13:25	36	49.50	13:45	56	49.25
13:06	17	49.75	13:26	37	49.50	13:46	57	49.25
13:07	18	49.75	13:27	38	49.50	13:47	58	49.25
13:08	19	49.75	13:28	39	49.50	13:48	59	49.25
13:09	20	49.75	13:29	40	49.50	13:49	60	49.25

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

 JOB NUMBER:
 3220269.77010102

 CONTRACTOR:
 Youngquist Brothers, Inc.

 PROJECT MANAGE
 Neil Johnson

 OWNER:
 City of Cape Coral

DATE:	7/7/2008		
START TIME:	12:49	INITIAL PRESSURE: 50 psi	
FINISH TIME:	13:49	GAUGE SERIAL NUMBER: KEL-126532	
CASING SIZE:	6.625-inch FRP	CALCULATED WATER VOLUME: 0.5 gallons	_

OBSERVED WATER VOLUME: 0.5 gallons
PRESSSURE BLEED-OFF

	I RESISTIVE DEEED-OFF							
TIME	PRESSURE	VOLUME	TIME	PRESSURE	VOLUME	TIME	PRESSURE	VOLUME
18:00	49	0						
18:05	0	0.5 gallons						
12:22								

Witnessed By:

John Largey

MWH Dan Keeley YBI James Crawford MWH

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

JOB NUMBER:	3220269.77010102
CONTRACTOR:	Youngquist Brothers, Inc.
PROJECT MANAG	I Neil Johnson
OWNER:	City of Cape Coral

DATE:	7/7/2008	
START TIME:	12:49	
FINISH TIME:	13:49	GAU
CASING SIZE:	6.625-inch FRP	CALCULAT

INITIAL PRESSURE:	50 psi
GAUGE SERIAL NUMBER:	KEL-126532
CALCULATED WATER VOLUME:	0.5 gallons
OBSERVED WATER VOLUME:	0.5 gallons

TIME	Δ ΤΙΜΕ	PRESSURE	TIME	Δ ΤΙΜΕ	PRESSURE	TIME	Δ ΤΙΜΕ	PRESSURE
	(minutes)	(psi)		(minutes)	(psi)		(minutes)	(psi)
12:49	0	50.00						
12:50	1	50.00	13:10	21	49.75	13:30	41	49.50
12:51	2	50.00	13:11	22	49.75	13:31	42	49.50
12:52	3	50.00	13:12	23	49.75	13:32	43	49.50
12:53	4	50.00	13:13	24	49.75	13:33	44	49.50
12:54	5	50.00	13:14	25	49.75	13:34	45	49.50
12:55	6	50.00	13:15	26	49.75	13:35	46	49.50
12:56	7	50.00	13:16	27	49.75	13:36	47	49.25
12:57	8	50.00	13:17	28	49.75	13:37	48	49.25
12:58	9	50.00	13:18	29	49.75	13:38	49	49.25
12:59	10	50.00	13:19	30	49.75	13:39	50	49.25
13:00	11	50.00	13:20	31	49.75	13:40	51	49.25
13:01	12	50.00	13:21	32	49.75	13:41	52	49.25
13:02	13	50.00	13:22	33	49.75	13:42	53	49.25
13:03	14	49.75	13:23	34	49.75	13:43	54	49.25
13:04	15	49.75	13:24	35	49.75	13:44	55	49.25
13:05	16	49.75	13:25	36	49.50	13:45	56	49.25
13:06	17	49.75	13:26	37	49.50	13:46	57	49.25
13:07	18	49.75	13:27	38	49.50	13:47	58	49.25
13:08	19	49.75	13:28	39	49.50	13:48	59	49.25
13:09	20	49.75	13:29	40	49.50	13:49	60	49.25

CITY OF CAPE CORAL SOUTHWEST WRF AND ROWTP DEEP INJECTION WELL SYSTEM

 JOB NUMBER:
 3220269.77010102

 CONTRACTOR:
 Youngquist Brothers, Inc.

 PROJECT MANAGE
 Neil Johnson

 OWNER:
 City of Cape Coral

DATE:	7/7/2008		
START TIME:	12:49	INITIAL PRESSURE: 50 psi	
FINISH TIME:	13:49	GAUGE SERIAL NUMBER: KEL-126532	
CASING SIZE:	6.625-inch FRP	CALCULATED WATER VOLUME: 0.5 gallons	_

OBSERVED WATER VOLUME: 0.5 gallons
PRESSSURE BLEED-OFF

	I RESISTING DEELD-OFF											
TIME	PRESSURE	VOLUME	TIME	PRESSURE	VOLUME	TIME	PRESSURE	VOLUME				
18:00	49	0										
18:05	0	0.5 gallons										
12:22												

Witnessed By:

John Largey

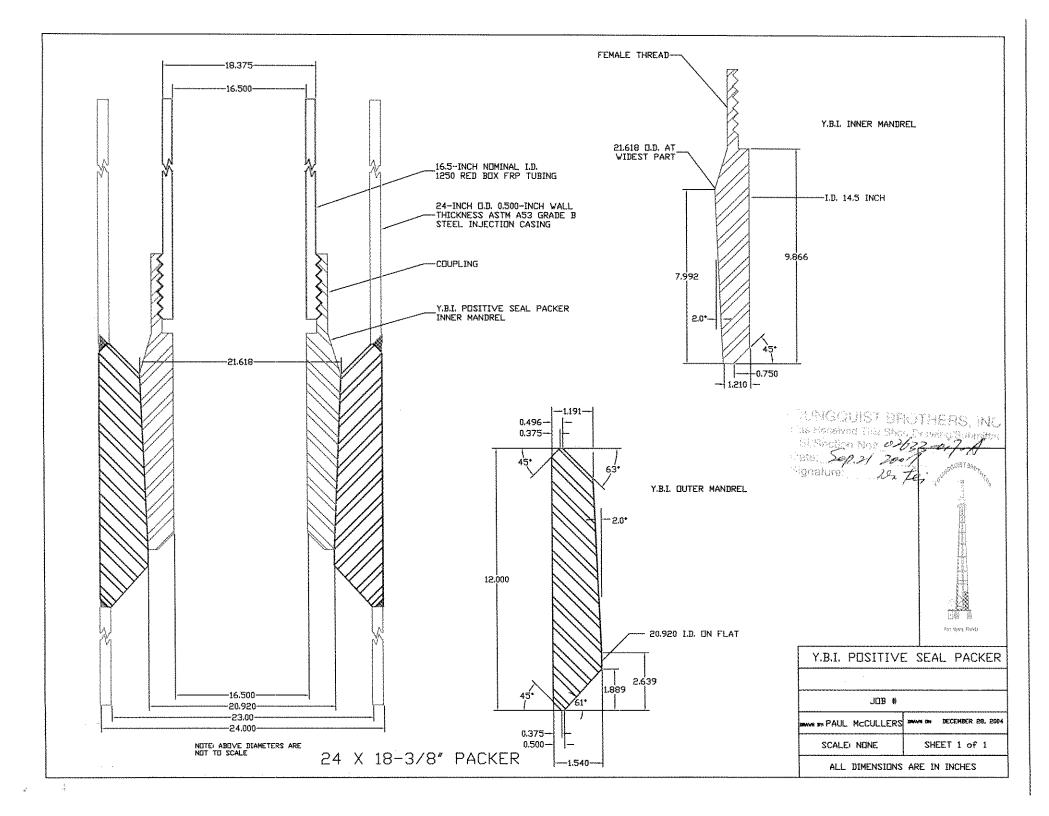
MWH Dan Keeley YBI James Crawford MWH

Appendix O

Positive Seal Packer

Submittal Data from Youngquist Brothers, Inc. 15465 Pine Ridge Rd.

Ft. Myers, FL. 33908 Tel.: 239-489-4444 Fax: 239-489-4545


Project

Cape Coral SW WRF Class 1 Injection Well

I have reviewed this submittal for general conformance with the design concepts and contract documents. Generally no conflict with materials or dimensions will nage off Series off arise from the approval of this shop drawing submittal.

Data: Contembor 21, 2007	Number of Conjegio 40
Date: <u>September 21, 2007</u>	Number of Copies: <u>10</u>
Submittal Number:	D2633-017-A
Specification Section Number: 0	2633-017-A
Item Submitted: YBI PSP, ECP	& California Packers Shop Drawings
New Submittal:X	Resubmitted:
field measurements, field construction crite	I hereby represent that I have determined and verified all eria, materials, dimensions, catalog numbers and similar each item with other applicable approved shop drawings
Youngquist Brothers, Inc.	 Approved Approved with changes
Representative:	Rejected
Wu Fei	 Revise & Resubmit Not Reviewed
CERTIFICATION STATEMENT By this submitted, we benedy represent that we have determined, varified, reviewed and/or approved applicable field measurements, field constructions and states and have abouted and acceptions, catalog aunders and similar data and have abouted and acceptional approved shop drawings and Contract Responses. Project Name & Namber WW4C-1 F012/29 Project Name & Namber WW4C-1 F012/29	By: Firm: Date:
Separation Number 302 - TOUGAGE COURSES	L

Salasiani by

Submittal Transmittal

Detailed, Grouped by Each Number

CC WW - 4C.1 SW Class I DIW 20322 Cape Coral Project # 7012129 Tel: Fax:

Date: 3/3/2008 Reference Number: 0069 Transmitted To: Neil Johnson **Transmitted By:** Brooke Allen MWH Americas, Inc. MWH Constructors 490 Sawgrass Corporate Pkwy. 1200 Kismet Parkway West Suite 300 CAP-5 Sunrise FL 33325 Cape Coral, FL 33993 Tel: (954) 846-0401 Tel: 239-772-1764 Qty Submittal Package No Description Due Date Package Action 7 SUL-YOUBRO-02633-0022- Landing Joint Detail Shop Drawing 3/24/2008 A - - 0 **Transmitted For Delivered Via** Tracking Number Approval Federal Express 7012129 / 19.9.1.1 Items Oty Description Notes Item Action 001 7 Landing Joint Detail Shop Drawing Cc: Company Name Contact Name Copies Notes MWH Americas, Inc. Kelly Bremer 1 Remarks

Dear Neil:

Please review and return a minimum of 4 copies.

Thank you, Brooke

ohe Alle Signature

Signed Date

Prolog Manager

Printed on: 3/3/2008

Prolog_US_Integrated

MWH Constructors

Submittal Data from Youngquist Brothers, Inc.

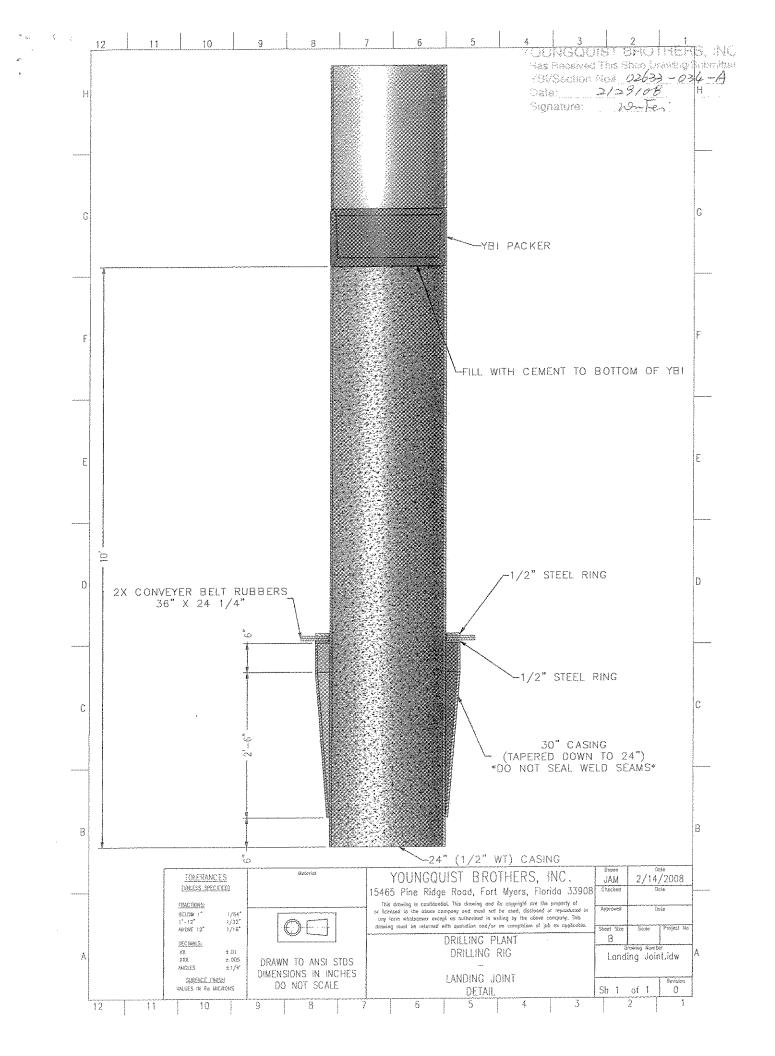
2.5

10*1*0

RECEIVED **MWH CONSTRUCTORS**

MAR 0 3 2008

CAP-5 OFFICE


15465 Pine Ridge Rd. Ft. Myers, FL. 33908 Tel.: 239-489-4444 Fax: 239-489-4545

Project

Cape Coral SW WRF Class 1 Injection Well

I have reviewed this submittal for general conformance with the design concepts and contract documents. Generally no conflict with materials or dimensions will arise from the approval of this shop drawing submittal.

Date: February 29, 2008	Number of Copies:8
Submittal Number: 02633-0)34-A
Specification Section Number: 02633	
Item Submitted: Landing Joint Detail S	Submittal Number: 02633-034-A Specification Section Number: 02633 Item Submitted: Landing Joint Detail Shop Drawing New Submitted: X Resubmitted: X Certification Statements: By this submittal, I hereby represent that I have determined and verified all field measurements, field construction criteria, materials, dimensions, catalog numbers and similar date and I have checked and coordinated each item with other applicable approved shop drawings and all Contract requirements. Youngquist Brothers, Inc. Approved Representative: Approved By: Resided By: By: Firm: Date: Date: Date:
New Submittal: X	Resubmitted:
field measurements, field construction criteria, mate date and I have checked and coordinated each iten	erials, dimensions, catalog numbers and similar
Youngquist Brothers, Inc.	A set of the s
Representative:	□ Rejected
• WITH CONSTRUCTORS	
CERTIFICATION STATEMENT	By:
By this submitted, we hereby represent that we have descendent, varified, reviewed and/or approved applicable field assessments, field securing time of the advected and consideration and the subbars and similar durit and over abected and consideration advected information for cost tunce with other applicable approved along drawings and Contra the advected and the products. Frequent Nexes & Mumber WWHCH Following and the security of the securi	
Solomitani Necesier <u>SUL-NDUBRO-02633</u> -082-A Solomitani an Sonice: 2433	

Appendix P

Background Water Quality Test Results

Injection Well IW-1

Injection Zone Background Water Quality

Page: Page 1 of 2

Client Project: South Cape Coral Lab Project: N0804478 Report Date: 07/17/08

Laboratory Results

Youngquist Brothers, Inc. 15465 Pine Ridge Road Ft. Myers, FL 33908

	Sample Descripti	lon (<u>S</u>	ample Source	<u>R</u>	eceived Date/Time	Sam	ple Date/Time
	grab			Ground Water		5/1/08 14:50		5/1/08 13:20
<u>Analysis</u>	Method	<u>Results</u>	<u>Qual</u>	<u>MDL</u>	<u>Units</u>	nalysisDate/Time	<u>Analyst</u>	<u>Cert ID</u>
Air Temperature-field	170.1	28.2		0.1	с	5/1/08 13:20	НС	E84380
Aluminum	EPA200.7	0.009	U	0.009	mg/L	5/9/08 12:22	JPW	E84380
Ammonia	EPA350.1	0.14		0.01	mg/L as N	5/6/08 13:00	AV	E84380
Antimony	EPA200.7	0.002	U	0.002	mg/L	5/9/08 12:22	JPW	E84380
Arsenic	EPA200.7	0.012		0.002	mg/L	5/9/08 12:22	JPW	E84380
Barium	EPA200.7	0.070		0.001	mg/L	5/9/08 12:22	JPW	E84380
Beryllium	EPA200.7	0.0001	U	0.0001	mg/L	5/9/08 12:22	JPW	E84380
Bicarbonate Alkalinity	SM4500CO2-D	114		3	mg/l CaCO3	5/1/08 15:30	AS	E84380
BOD	SM5210B	2	U		mg/L	5/2/08 11:30	AS/AV	E84380
Cadmium	EPA200.7	0.001	U 🔪	0.001	mg/L	5/9/08 12:22	JPW	E84380
Calcium	EPA200.7	695	\sim	0.006	mg/L	5/9/08 12:22	JPW	E84380
Chemical Oxygen	EPA410.4	1740	* J3	8	mg/L	5/13/08 8:00	BB	E84380
Demand Chloride	SM4500Cl-E	20200		1	mg/L	5/5/08 11:42	AV	E84380
Chromium	EPA200.7	0.001	₩ Ų	0.001	mg/L	5/9/08 12:22	JPW	E84380
Color-True	SM2120B	5		5	C.U.	5/1/08 16:30	AV	E84380
Copper	EPA200.7	0.002	I	0.001	mg/L	5/9/08 12:22	JPW	E84380
Dissolved Oxygen-field	360.1	2.76		0.01	mg/L	5/1/08 13:20	HC	E84380
Fluoride	SM4500F-C	0.9		0.1	mg/L	5/7/08 10:45	AV	E84380
Iron	EPA200.7	0.840		0.015	mg/L	5/9/08 12:22	JPW	E84380
Langelier Saturation	LSI	0.60		0.01	NONE	7/17/08 14:57	AK	E84380
Lead	EPA200.7	0.001	U	0.001	mg/L	5/9/08 12:22	JPW	E84380
Magnesium	EPA200.7	1040		0.007	mg/L	5/9/08 12:22	JPW	E84380
Manganese	EPA200.7	0.009		0.001	mg/L	5/9/08 12:22	JPW	E84380
Mercury	EPA245.1	0.001	U	0.001	mg/L	5/21/08 9:01	JPW	E84380
Nickel	EPA200.7	0.004		0.001	mg/L	5/9/08 12:22	JPW	E84380
Nitrate+Nitrite-N	EPA353.2 1050 Endeavor Cour	0.02 t • Nokom	I iis, FL 34275	0.01 • Phone: (941)	mg/L as N 488-8103 • (80	5/2/08 16:18 10) 255-3108 • Fax: (*	SJ 941) 484-677	E94290

Page: Page 2 of 2

Client Project: South Cape Coral Lab Project: N0804478 **Report Date:** 07/17/08

Laboratory Results

Lab D	Sample Descript	<u>ion</u>	<u>s</u>	ample Source		Received Date/Time	San	<u> iple Date/Time</u>
N0804478-01	Injection Well grab			Ground Water		5/1/08 14:50		5/1/08 13:20
<u>Analysis</u>	<u>Method</u>	<u>Results</u>	<u>Qual</u>	<u>MDL</u>	<u>Units</u>	<u>AnalysisDate/Time</u>	<u>Analyst</u>	<u>Cert ID</u>
Nitrate-N	EPA353.2	0.02		0.01	mg/L as N	5/2/08 16:18	SJ	E84380
Nitrite-N	EPA353.2	0.01	U	0.01	mg/L as N	5/2/08 15:48	SJ	E84380
Nitrogen, Total Kjeldahl	EPA351.2	0.16	I	0.10	mg/L as N	5/15/08 11:28	AV	E84380
Odor @ 30°C	SM2150B	2		1	TON	5/1/08 16:05	AS	E84380
Organic Nitrogen	EPA351.2/350.1	0.10	U	0.10	mg/L as N	5/15/08 11:28	SJ	E84380
Ortho Phosphate	SM4500P-E	0.010	U	0.010	mg/L as P	5/2/08 12:30	AV	E84380
pH - field	150.1	7.30		0.01	std units	5/1/08 13:20	HC	E84380
Phosphorus, Total	EPA365.4	0.025	U	0.025	mg/L as P	5/15/08 17:04	BB/AV	E84380
Potassium	EPA200.7	565		0.052	₩ mg/L	5/9/08 12:22	JPW	E84380
See attached results	Subcontract			S.	1	5/5/08 13:18	SUB	
Selenium	EPA200.7	0.003	I	0.002	mg/L	5/9/08 12:22	JPW	E84380
Silver	EPA200.7	0.001	U, J3	0.001	mg/L	5/9/08 12:22	JPW	E84380
Sodium	EPA200.7	11000	>	0.400	mg/L	5/9/08 12:22	JPW	E84380
Specific Conductance-field	120.1	52800	05	0.1	µmhos/cm	5/1/08 13:20	HC	E84380
Sulfate	ASTM-D516-90	3180	:0	2	mg/L	5/2/08 16:26	AV	E84380
Thallium	EPA279.2	0.008	a^{λ}	0.001	mg/L	5/7/08 9:38	JPW	E84380
Total Coliform, MF	SM9222B	1	U	1	CFU/100ml	5/1/08 15:00	RF	E84380
Total Dissolved Solids	SM2540C	32800		20	mg/L	5/5/08 16:00	AS	E84380
Turbidity - field	EPA180.1	3.4		0.1	NTU	5/1/08 13:20	HC	E84380
Water	170.1	32.7		0.1	С	5/1/08 13:20	HC	E84380
Temperature-field Weather-field	DEPSOP	clear		n/a	none	5/1/08 13:20	HC	E84380
Zinc	EPA200.7	0.065		0.001	mg/L	5/9/08 12:22	JPW	E84380

Approved by:

Comments:

Kathrine Barkiewicz ab Manager Fort Myers Andrew Konopacki Lab Manager Nokomis

Test Results meet all the requirements of the NELAC standards.

SANDERS LABORATORIES, INC. Laboratory Test Report

Lab Project #: N0804478

Client:

Youngquist Brothers, Inc. 15465 Pine Ridge Road

Ft. Myers, FL 33908

Phone:239-489-4444Fax:239-489-4545E-mail:South Cape CoralClient Project Name:South Cape CoralLaboratory Contact:Andy Konopacki

Page 1 of

All subsequent pages are identified by: N0804478. These pages may include, but are not limited to: Analytical Data, Chains of Custodys, Subcontracted Data and Case Narratives.

QUALIFIER DEFINITIONS

- B: Results based upon colony counts outside the acceptable range.
- I: The reported value is between the laboratory MDL and the laboratory PQL.
- J3: The reported value failed to meet the established quality control criteria.
- J4: The sample matrix interfered with the ability to make an accurate determination.
- J5: The data is questionable because of improper lab or field protocols.
- K: Off scale low, actual value is less than the value given.
- L: Off scale high, actual value is known to be greater than the value given.
- Q: Sample held beyond acceptable holding time.
- U: The compound was analyzed for, but not detected.
- V: The analyte was detected in both the sample and the associated method blank.
- Y: The sample was unpreserved or improperly preserved.
- Z: Too many colonies present (TNTC).

** This result does not meet NELAC standards.

HACH results may not meet NELAC standards.

A statement of estimated uncertainty of results is available upon request.

Analytical results provided relate only to the samples received for this project.

Laboratory report shall not be reproduced except in full, without the written approval of Sanders Laboratories.

Sanders Laboratories follows DEP standard operating procedures for field sampling.

Laboratory PQL's are available upon request.

Reports are archived for a minimum of 5 years. Copies of reports which are less than 1 year old are available for a fee of \$25.00 per report. Reports older than 1 year are available for a fee of \$50.00 per report. Copies will be provided within 1 week of the time of the request.

Nokomis Lab ~ 1050 Endeavor Ct. ~ Nokomis, FL 34275-3623 ~ Phone: 941-488-8103 ~ Fax: 941-484-6774 ~ HRS-Gertification # E84380 Fort Myers Lab ~ 10090 Bavaria Road ~ Fort Myers, FL 33913 ~ Phone: 239-590-0337 ~ Fax: 239-590-0536 ~ HRS Certification # E85457

Page: Page 1 of 2

Client Project: South Cape Coral Lab Project: N0804478 Report Date: 05/22/08

Laboratory Results

Youngquist Brothers, Inc. 15465 Pine Ridge Road Ft. Myers, FL 33908

<u>Lab ID</u> N0804478-01	Sample Description Well	<u>on</u>	arsi a H	Sample Source Ground Water		Received Date/Time 5/1/08 14:50		ple Date/Tim 5/1/08 13:20
	grab							5/1/08 13.20
<u>Analysis</u>	<u>Method</u>	<u>Results</u>	<u>Oual</u>	<u>MDL</u>	<u>Units</u>	<u>AnalysisDate/Time</u>	<u>Analyst</u>	<u>Cert ID</u>
Air Temperature-field	170.1	28.2		0.1	C f	5/1/08 13:20	HC	E84380
Aluminum	EPA200.7	0.009	U	0.036	mg∕E	5/9/08 12:22	JPW	E84380
Ammonia	EPA350.1	0.14		0.01	mg/L as N	5/6/08 13:00	AV	E84380
Antimony	EPA200.7	0.002	U	0.008	Ja Angel	5/9/08 12:22	JPW	E84380
Arsenic	EPA200.7	0.012		0.008	of it was mg/L	5/9/08 12:22	JPW	E84380
Barium	EPA200.7	0.070		0.004	میں mg/L	5/9/08 12:22	JPW	E84380
Beryllium	EPA200.7	0.0001	U	م ^{ردر م} ندمی 0.000	mg/L	5/9/08 12:22	JPW	E84380
Bicarbonate Alkalinity	SM4500CO2-D	114		eo Stor	mg/I CaCO3	5/1/08 15:30	AS	E84380
BOD	SM5210B	2	U	2	mg/L	5/2/08 11:30	AS/AV	E84380
Cadmium	EPA200.7	0.001	U 🛔	0.004 في الم	mg/L	5/9/08 12:22	JPW	E84380
Calcium	EPA200.7	695	ملات مستقل مستقل	0.024	mg/L	5/9/08 12:22	JPW	E84380
Chemical Oxygen	EPA410.4	1740	بنه ه نته 13 نته 13	32	mg/L	5/13/08 8:00	BB	E84380
Demand Chloride	SM4500CI-E	20200 🦿		1	mg/L	5/5/08 11:42	AV	E84380
Chromium	EPA200.7	0.001	ل ل	0.004	mg/L	5/9/08 12:22	JPW	E84380
Color-True	SM2120B	5		15	C.U.	5/1/08 16:30	AV	E84380
Copper	EPA200.7	0.002	I	0.004	mg/L	5/9/08 12:22	JPW	E84380
Dissolved Oxygen-field	360.1	2.76		0.01	mg/L	5/1/08 13:20	нс	E84380
Fluoride	SM4500F-C	0.9		0.4	mg/L	5/7/08 10:45	AV	E84380
Iron	EPA200.7	0.840		0.060	mg/L	5/9/08 12:22	JPW	E84380
Langelier Saturation	LSI	0.60		0.01	NONE	7/17/08 14:57	AK	E84380
Index Lead	EPA200.7	0.001	U	0.004	mg/L	5/9/08 12:22	JPW	E84380
Magnesium	EPA200.7	1040		0.028	mg/L	5/9/08 12:22		
Manganese	EPA200.7	0.009		0.004	mg/L	5/9/08 12:22	JPW	E84380
Mercury	EPA245.1	0.001	U	0.0020	mg/L		JPW	E84380
Nickel	EPA200.7	0.004	-	0.001	-	5/21/08 9:01	JPW	E84380
Nitrate+Nitrite-N	EPA353.2	0.02	I Is, f l 342 75	0.04	mg/L mg/L as N 488-8103 • (4	5/9/08 12:22 5/2/08 16:18 800) 255-3108 • Fax: ('	JPW SJ 941) 484-677	E84380 E84380 74

Page: Page 2 of 2

Client Project: South Cape Coral Lab Project: N0804478 Report Date: 05/22/08

Laboratory Results

Lab D	Sample Descript	lon	Start S	ample Source		Received Date/Time	<u>San</u>	iple Date/Time
N0804478-01	Injection Well grab			Ground Water		5/1/08 14:50		5/1/08 13:20
<u>Analysis</u>	<u>Method</u>	<u>Results</u>	<u>Qual</u>	<u>MDL</u>	<u>Units</u>	<u>AnalysisDate/Time</u>	<u>Analyst</u>	Cert ID
Nitrate-N	EPA353.2	0.02		10	mg/L as N	5/2/08 16:18	SJ	E84380
Nitrite-N	EPA353.2	0.01	U	I	mg/L as N	5/2/08 15:48	LS I	E84380
Nitrogen, Total Kjeldahl	EPA351.2	0.16	Ι	0	mg/L as N	5/15/08 11:28	AV	E84380
Odor @ 30°C	SM2150B	2		3	TON	5/1/08 16:05	AS	E84380
Organic Nitrogen	EPA351.2/350.1	0.10	U	0	mg/L as N	5/15/08 11:28	SJ	E84380
Ortho Phosphate	SM4500P-E	0.010	U	0.010	mg/L as P^{*}	5/2/08 12:30	AV	E84380
pH - field	150.1	7.30		0.01	م Stormits	5/1/08 13:20	HC	E84380
Phosphorus, Total	EPA365.4	0.025	U	0.025	and the mg/L as P	5/15/08 17:04	BB/AV	E84380
Potassium	EPA200.7	565		0.208	ر متحقی mg/L	5/9/08 12:22	JPW	E84380
See attached results	Subcontract			شنار من من من من من من من من من من من من من		5/5/08 13:18	SUB	
Selenium	EPA200.7	0.003	I	.0.008 	mg/L	5/9/08 12:22	JPW	E84380
Silver	EPA200.7	0.001	U, J3	مير 0:00 I	mg/L	5/9/08 12:22	JPW	E84380
Sodium	EPA200.7	11000	آمانی	1.60 محمد م	mg/L	5/9/08 12:22	JPW	E84380
Specific Conductance-field	120.1	52800		0.1	µmhos/cm	5/1/08 13:20	HC	E84380
Sulfate	ASTM-D516-90	3180	Contraction of the second second second second second second second second second second second second second s	250	mg/L	5/2/08 16:26	AV	E84380
Thallium	EPA279.2	<i>ف</i> 0.008		0.001	mg/L	5/7/08 9:38	JPW	E84380
Total Coliform, MF	SM9222B	l (U 🧳	1	CFU/100ml	5/1/08 15:00	RF	E84380
Total Dissolved Solids	SM2540C	32800		500	mg/L	5/5/08 16:00	AS	E84380
Turbidity - field	EPA180.1	3.4		0.1	NTU	5/1/08 13:20	HC	E84380
Water Temperature-field	170.1	32.7		0.1	С	5/1/08 13:20	HC	E84380
Weather-field	DEPSOP	clear		0	none	5/1/08 13:20	HC	E84380
Zinc	EPA200.7	0.065		0.004	mg/L	5/9/08 12:22	JPW	E84380

Approved by:

Comments:

.

Kathrine Bartkiewicz/Lab Manager, Fort Myers Andrew Konopacki/Lab Manager Nokomis

Test Results meet all the requirements of the NELAC standards.

Date issued: May 21, 2008

To: Tami Bright Sanders Laboratories, Inc. 1050 Endeavor Court Nokomis, FL 34275

Client:Sanders Laboratories, Inc.Workorder ID:N0804478Received:5/02/08 11:30

[2030789]

Dear Tami Bright;

Analytical results presented in this report have been reviewed for compliance with the HBEL Inc. Quality Systems Manual and have been determined to meet applicable Method guidelines and Standards referenced in the July 2003 National Environmental Laboratory Accreditation Program (NELAP) Quality Manual unless otherwise noted. The Analytical Results within these report pages reflect the values obtained from tests performed on Samples As Received by the laboratory unless indicated differently.

FDOH Safe Drinking Water Act, Clean Water Act and RCRA Certification #'s: E96080, E83509, E84418

Questions regarding this report should be directed to the Report Signatory at (772) 465-2400, Ext. 285 referencing the HBEL Workorder ID [Number].

Respectfully submitted,

Eric Charest HBEL, Inc. Laboratory Manager

Note: This report is not to be copled, except in full, without the expressed written consent of HBEL, Inc.

5600 US 1 North Fort Pierce, FL 34946 FDOH # E96080

4155 St. Johns Pkwy Suile 1300 Sanford, FL 32771 FDOH # E83509 16331 Cortez Blvd Brooksville, FL 34601 FDOH # E84418

Printed: 5/21/08

HBEL, Inc.

- ----

5600 U.S. 1 North, Fort Pierce, FL 34946 Phone: (772) 465-2400 Ext. 285 Fax: (772) 467-1584

Client:Sanders Laboratories, Inc.Workorder ID:N0804478Received:5/02/08 11:30

Quality Control Summary

[2030789]

M8=Me	thod Blank LCS=La	aboratory C	ontrol Sample LCSD=Laboratory Control Sample Duplica	te MS=Matrix Spike MSD=Matrix Spike Duplkate DUP=Sample Duplkate
HBEL San Number	nple	iple ID	Method Narratives (If Ap Analytical Method	
Method EPA 505	HBEL Batch	Analyte	Quality Control Summa Analytical Issue	ry
	PEST5115			

2030789001 Decachlorobiphenyl

Surrogate - Outside acceptance Limits.

5600 US 1 North-Fort Pierce, FL 34946 FDOH # E96080

4155 St. Johns Pkwy Suite 1300 Sanford, FL 32771 FDOH # E83509

16331 Cortez-Blvd Brooksville, FL 34601 FDOH # E84418

Printed: 5/21/08

HBEL, Inc.

.____

5600 U.S. 1 North, Fort Pierce, FL 34946 Phone: (772) 465-2400 Ext. 285 Fax: (772) 467-1584

CERTIFICATE OF ANALYSIS [2030789]

Client: Sanders Laboratories, Inc.

Workorder ID: N0804478

Parameter	Qualifier Result	Units	Reporting Limit	Method	Laboratory Batch	Prep Date/Time	Analyzed Date/Time	Analyst	Lab ID
	2030789001 N0804478-01 Grab			Sampled: 05/01. Matrix: Water		Received reported on	: 05/02/08 Wet Weight J		
Cyanide	Y 0.0047U	mg/L	0.0047	EPA 335.2	WCGE29344		05/8/08 16:35	GG	E96080
Surfactants as LAS, Mol.wt.340	0.064	mg/L	0.022	EPA 425.1	WCGE29315		05/2/08 17:36	GG	E96080
1,2-Dibromo-3- chloropropane	0.0034U	ug/L	0.0034	EPA 504.1	PEST5118	05/8/08 12:00	05/9/08 4:53	WR	E96080
1,2-Dibromoelhane	0.0045U	ug/L	0.0045	EPA 504.1	PEST5118	05/8/08 12:00	05/9/08 4:53	WR	E96080
Aldrin	0.042U	ug/L	0.042	EPA 505	PEST5115	05/6/08 13:00		JL	E96080
Chlordane	0.12U	ug/L	0.12	EPA 505	PEST5115	05/6/08 13:00		JL	E96080
Dieldrin	0.063U	ug/L	0.063	EPA 505	PEST5115	05/6/08 13:00		JL	E96080
Endrin	0.097U	ug/L	0.097	EPA 505	PEST5115	05/6/08 13:00		JL	E96080
gamma-BHC (Lindan	e) 0.019U	ug/L	0.019	EPA 505	PEST5115	05/6/08 13:00		JL.	E96080
Heplachlor	0.035U	ug/L	0.035	EPA 505	PEST5115	05/6/08 13:00		JL	E96080
Heptachlor epoxide	0.026U	ug/L	0.026	EPA 505	PE\$T5115	05/6/08 13:00		JL	E96080
Methoxychlor	0.042U	ug/L	0.042	EPA 505	PEST5115	05/6/08 13:00		JL	E96080
PCB	0.13U	ug/L	0.13	EPA 505	PEST5115	05/6/08 13:00		JL	E96080
Toxaphene	0.58U	ug/L	0.58	EPA 505	PEST5115	05/6/08 13:00		JL	E96080
2,4,5-TP	0.19U	ug/L	0.19	EPA 515.1	PE\$T5116	05/7/08 11:00		JL.	E96080
2,4-D	0.22U	ug/L	0.22	EPA 515.1	PEST5116	05/7/08 11:00		JL.	E96080
Dalapon	2.3U	ug/L	2.3	EPA 515.1	PEST5116	05/7/08 11:00			E96080
Dinoseb	0.23U	ug/L	0.23	EPA 515.1	PEST5116	05/7/08 11:00			E96080
Pentachlorophenol	0.39U	ug/L	0.39	EPA 515.1	PEST5116	05/7/08 11:00			E96080
Picloram	0.23U	ug/L	0.23	EPA 515.1	PEST5116	05/7/08 11:00			E96080
1,1,1,2-Tetrachloroeth	ane 0.24U	ug/L	0.24	EPA 524.2	VOC2912		05/9/08 17:42		E96080
1,1,1-Trichloroethane	0.21U	ug/L	0.21	EPA 524.2	VOC2912		05/9/08 17:42		E96080
1,1,2,2-Tetrachloroeth	ane 0.47U	ug/L	0.47	EPA 524,2	VOC2912		05/9/08 17:42		E96080
1,1,2-Trichloroethane	0.44U	ug/L	0.44	EPA 524.2	VOC2912		05/9/08 17:42		E96080
1,1-Dichloroethane	0.20U	ug/L	0.20	EPA 524.2	VOC2912		05/9/08 17:42		E96080
1,1-Dichloroethene	0.23U	ug/L	0.23	EPA 524.2	VOC2912		05/9/08 17:42		E96080
1,1-Dichloropropene	0.24U	ນg/L	0.24	EPA 524.2	VOC2912		05/9/08 17:42		E96080
1,2,3-Trichloropropane		ug/L	0.30	EPA 524.2	VOC2912		05/9/08 17:42		E96080
1,2,4-Trichlorobenzene	e 0.41U	ug/L	0.41	EPA 524.2	VOC2912		05/9/08 17:42		E96080
1,2-Dichlorobenzena	0.21U	ug/L	0.21	EPA 524.2	VOC2912		05/9/08 17:42		E96080
1,2-Dichloroethane	0.29U	ug/L	0.29	EPA 524.2	VOC2912		05/9/08 17:42		E96080
i,2-Dichloropropane	0.40U	ug/L	0.40	EPA 524.2	VOC2912		05/9/08 17:42		E96080
,3-Dichlorobenzene	0.23U	ug/L	0.23	EPA 524.2	VOC2912		05/9/08 17:42		E96080
1,3-Dichloropropane	0.22U	ug/L	0.22	EPA 524.2	VOC2912		05/9/08 17:42		E96080
,3-Dichloropropene	0.52U	ug/L	0.52	EPA 524.2	VOC2912		05/9/08 17:42		E96080
,4-Dichlorobenzene	0.23U	ug/L	0.23	EPA 524.2	VOC2912		05/9/08 17:42		E96080
,2-Dichloropropane	0.30ป	ug/L	0.30	EPA 524.2	VOC2912		05/9/08 17:42		E96080
-Chlorotoluene	0.20U	ug/L	0.20	EPA 524.2	VOC2912		05/9/08 17:42		E96080
-Chlorotoluene	0.23ป	ug/L	0.23	EPA 524.2	VOG2912		05/9/08 17:42		E96080 E96080

5600 US 1 North Fort Pierce, FL 34946 FDOH # E96080

4155 St. Johns Pkwy Suite-1300 Sanford, FL 32771 FDOH # E83509

16331 Cortez Blvd Brooksville, FL 34601 FDOH # E84418

Printed: 5/21/08

-

5600 U.S. 1 North, Fort Pierce, FL 34946 Phone: (772) 465-2400 Ext. 285 Fax: (772) 467-1584

CERTIFICATE OF ANALYSIS [2030789]

Client: Sanders Laboratories, Inc.

Workorder ID: N0804478

Parameter	Qualifier Result	Units	Reporting Limit	Method	Laboratory Batch	Prep Date/Time	Analyzed Date/Time	Analyst	Lab ID
Benzene	0.20U	ug/L	0.20	EPA 524.2	VOC2912		05/9/08 17:42	WR	506000
Bromobenzene	0.34U	ug/L	0.34	EPA 524.2	V0C2912		05/9/08 17:42	WR	E96080 E96080
Bromodichloromethane	0.25U	ug/L	0.25	EPA 524.2	VOC2912		05/9/08 17:42	WR	
Bromoform	0.41U	ug/L	0.41	EPA 524.2	VOC2912		05/9/08 17:42	WR	E96080
Bromomethane	0.30U	ug/L	0.30	EPA 524,2	VOC2912		05/9/08 17:42	WR	E96080
Carbon letrachloride	· 0.24U	ug/L	0.24	EPA 524.2	VOC2912		05/9/08 17:42	WR	E96080
Chlorobenzena	0.30U	ug/L	0.30	EPA 524.2	VOC2912	•	05/9/08 17:42	WR	E96080
Chloroethane	0.46U	ug/L	0.46	EPA 524.2	VOC2912		05/9/08 17:42	WR	E96080
Chloroform	0.25U	ug/L	0.25	EPA 524.2	VOC2912		05/9/08 17:42	WR	E96080
Chloromethane	0.40U	ug/L	0.40	EPA 524.2	VOC2912		05/9/08 17:42	WR	E96080
cls-1,2-Dichloroethene	0.21U	ug/L	0.21	EPA 524.2	VOC2912		05/9/08 17:42	WR	E96080
Dibromochloromethane	0.30U	ug/L	0.30	EPA 524.2	VOC2912		05/9/08 17:42	WR	E96080
Dibromomelhane	0.35U	ug/L	0.35	EPA 524.2	VOC2912		05/9/08 17:42	WR	E96080
Dichlorodifluoromethane	0.28U	ug/L	0.28	EPA 524.2	VOC2912		05/9/08 17:42	WR	E96080
Ethylbenzene	0.21U	ug/L	0.21	EPA 524.2	VOC2912		05/9/08 17:42		E96080
Methyl-tert-butyl-ether	0.21U	ug/L	0.21	EPA 524.2	V0C2912		05/9/08 17:42	WR	E96080
Melhylene chloride	0.23U	ug/L	0.23	EPA 524.2	VOC2912 VOC2912		05/9/08 17:42	WR	E96080
Styrene	0.21U	ug/L	0.21	EPA 524.2	VOC2912			WR	E96080
Tetrachioroethene	0.24	ug/L	0.24	EPA 524.2	VOC2912		05/9/08 17:42	WR	E96080
Toluene	0.22U	ug/L	0.22	EPA 524.2	VOC2912 VOC2912		05/9/08 17:42	WR	E96080
Total THMs	0.25U	ug/L	0.25	EPA 524.2	VOC2912 VOC2912		05/9/08 17:42	WR	E96080
Total Xylenes	0.46U	ug/L	0.46	EPA 524.2	VOC2912		05/9/08 17:42	WR	E96080
trans-1,2-Dichloroethene	0.35U	ug/L	0.35	EPA 524.2	VOC2912 VOC2912		05/9/08 17:42		E96080
Trichloroethene	0.36U	ug/L	0.36	EPA 524.2	VOC2912 VOC2912		05/9/08 17:42	WR	E96080
Trichlorofluoromethane	0.22U	ug/L	0.22	EPA 524.2	VOC2912 VOC2912		05/9/08 17:42		E96080
Vinyl chloride	0.320	ug/L	0.32	EPA 524.2	VOC2912 VOC2912		05/9/08 17:42	WR	E96080
Alachlor	0.66U	ug/L	0.66	EPA 525.2	\$VOC2912 \$VOC2641	05/000 44-00	05/9/08 17:42	WR	E96080
Atrazine	0.52U	ug/L	0.52	EPA 525.2	SVOC2641		05/7/08 12:23		E96080
Benzo(a)pyrene	0.075U	ug/L	0.075	EPA 525.2	SVOC2641		05/7/08 12:23		E96080
bis(2-ethylhexyl)phthalate	1.7	ug/L	0.91	EPA 525.2	SVOC2641		05/7/08 12:23		E96080
Di(2-ethylhexyl)adipate	0.73U	ug/L	0.73	EPA 525.2			05/7/08 12:23		E96080
Hexachlorobenzene	0.33U	ug/L	0.33	EPA 525.2	SVOC2641		05/7/08 12:23		E96080
Hexachlorocyclopentadien		ug/L	0.25	EPA 525.2	SVOC2641 SVOC2641		05/7/08 12:23		E96080
Simazine	0.68U	ug/L	0.68	EPA 525.2	SVOC2641 SVOC2641		05/7/08 12:23		E96080
Carbofuran	0.41U	ug/L	0.41	EPA 531.1		00/0/08 11:00	05/7/08 12:23		E96080
Oxamyi	0.13U	ug/L	0.13		HPLC2469		05/6/08 18:35		E96080
Glyphosate	13U	ug/L	13	EPA 531.1	HPLC2469		05/6/08 18:35		E96080
Endothall	2.80	ug/L	2.8	EPA 547	HPLC2470		05/7/08 17:13		E96080
Diquat	1.90	-		EPA 548.1	SVOC2640	05/5/08 11:00		WR	E96080
Dibromoacetic Acid		ug/L	1.9	EPA 549.2	HPLC2471	05/7/08 13:00		JJM	E96080
Dichloroacetic Acid	0.18U 0.66U	ug/L vol	0.18	EPA 552.1		05/19/08 15:28		JL	E96080
Monobromoacetic Acid	0.66U	ug/L	0.66	EPA 552.1)5/19/08 15:28		JŁ	E96080
Monochloroacetic Acid	0.280	ug/L	0.28	EPA 552.1		05/19/08 15:28		JL	E96080
	0.88U	ug/L	0.88	EPA 552.1	PEST5121 ()5/19/08 15:28	05/20/08 9:34	JL	E96080

5600 US 1 North Fort Pierce, FL 34946 FDOH # E96080

4155 St. Johns Pkwy Suite 1300 Sanford, FL 32771 FDOH # E83509 16331 Cortez Blvd Brooksville, FL 34601 FDOH # E84418

Printed: 5/21/08

<u>...</u>.

-

6600 U.S. 1 North, Fort Pierce, FL 34946 Phone: (772) 465-2400 Ext. 285 Fax: (772) 467-1584

Client: Sanders Laboratories, Inc.

Workorder ID: N0804478

CERTIFICATE OF ANALYSIS

[2030789]

Parameter	Qualifier Result	Units	Reporting Limit	Method	Laboratory Batch	Prep Date/Time	Analyzed Date/Time	Analyst	Lab ID
Total HAAs	0.180	ug/L	0.18	EPA 552.1	PEST5121	05/19/08 15:28	05/20/08 9:34	JL	FOCOSC
Trichloroacelic acid	0.20U	ug/L	0.20	EPA 552.1	PEST5121	05/19/08 15:28	-		E96080
2,4,6-Trichlorophenol	1.1U	ug/L	1,1	EPA 625	SVOC2643	05/8/08 12:00			E96080
2,4-Dinitrotoluene	0.77U	ug/L	0.77	EPA 625	SVOC2643	05/8/08 12:00			E96080
2-Chlorophenol	0.86U	ug/L	0.86	EPA 625	SVOC2643	05/8/08 12:00			E96080
2-Methyl-4,6-dinitropheno	1.2U	ug/L	1.2	EPA 625	SVOC2643	05/8/08 12:00			
Anlhracene	0.52U	ug/L	0.52	EPA 625	SVOC2643	05/8/08 12:00			E96080
Butylbenzylphthalate	0.57U	ug/L	0.57	EPA 625	SVOC2643			WR	
Di-n-bulyiphthalate	0.76U	ug/L	0.76	EPA 625	SVOC2643	05/8/08 12:00		WR	E96080
Di-n-octylphthalate	0.53U	ug/L	0.53	EPA 625	SVOC2643	05/8/08 12:00		WR	
Diethylphthalate	0.36U	ug/L	0.36	EPA 625	SVOC2643	05/8/08 12:00			E96080 E96080
Dimethyl-phthalate	2.5U	ug/L	2.5	EPA 625	SVOC2643			WR	E96080
sophorone	0.44U	ug/L	0.44	EPA 625	SVOC2643	05/8/08 12:00		WR	
Naphthalene	0.72U	ug/L	0.72	EPA 625	SVOC2643		05/14/08 1:10	WR	E96080
Phenanthrene	0.31U	ug/L	0.31	EPA 625	SVOC2643		05/14/08 1:10		E96080
Phenol	1.0U	ug/L	1.0	EPA 625	SVOC2643		05/14/08 1:10		E96080 E96080

¹Result Qualifiers: U = Not Detected I = Analyte detected between the Laboratory Method Detection Limit and Laboratory Reporting Limit Applicable Florida Department of Environmental Protection Qualifiers defined below. Statement of Estimated Uncertainty available upon request.

Y Analysis performed on an Unpreserved, or Improperly Preserved sample.

5600 US 1 North – Fort Pierce, FL 34946 FDOH # E96080

EMSL Analytical, Inc. 19501 NE 10th Ave. Bay A, N. Miami Beach, F Phone: (305) 650-0577 Fax: (305) 650-0578 Email: 1		TO THE ALL STATESTICS BUILDING BEEL STATESTICS TO ALL ACTION AND ALL AND A
Attn: T. Bright Sanders Laboratories 1050 Endeavor Court Nokomis, FL 34275-3623	Customer ID: Customer PO: Received: EMSL Order:	SAND53 N0804478 05/02/08 9:45 AM 170802256
Fax: (941) 484-6774 Phone: (941) 488-8103 Project: N0804478	EMSL Proj: Analysis Date: Report Date:	5/12/2008 5/12/2008

Determination of Asbestos Structures over 10um in Length in Waste Water Performed by the EPA 100.2 Method

Sample ID	Sample Prep	# Fibers Asbestos	# Fibers Non- Asbestos	Type(s) Of Asbestos	Analytical Sensitivity (MFL)	Confidence Limits	Concentration Of Asbestos Flbers (MFL)	Comments
NO804478-01 170802256-0001	5/2/2008 13:00	0			0.74	0.00-2.70	<0.74	Collection Date 5/1/2008 15:30

Contact Kim Wallace at (305) 650-0577 with any questions.

Analyst(s)

Edgar Rodriguez (1)

Himber 14 a. Wallace

Kimberly Wallace, Laboratory Manager or other approved signatory

Sample collection and containers provided by the client, acceptable bottle blank level is defined as <= 0.01MFL>10um. ND=None Detected. This report may not be reproduced, except in full, without written permission by EMSL Analytical, Inc. The test results contained within this report meet the requirements of NELAC unless otherwise noted. This report relates only to the samples reported above. Samples received in good condition unless otherwise noted.

100.2-V221

THIS IS THE LAST PAGE OF THE REPORT.

...

5600 U.S. 1 North, Fort Pierce, FL 34946 Phone: (772) 465-2400 Ext 285 Fax: (772) 467-1584

SYNTHETIC ORGANICS 62 - 550.310 (4) (b)

Client:	Sanders Laboratories, Inc.	Workorder: N0804478
Sample Location:	N0804478-01 Grab	Sample Number: 2030789001
Sampling Date:	5/01/08 13:20	PWS ID (From Page 1):
Date Received:	5/02/08 11:30	

Contar ID	n Contam Name	MCL	Units	Analysis Result	Qual.	Analytical Method	Lab MDL	RDL	Extraction Date	Analysis Date/Time	Lab Cert #
2005	Endrin	[2]	ug/L	0.097		EPA 505	0.097	0.01	5/06/08	5/07/08 2:25	E96080
2010	gamma-BHC (Lindane)	[0.2]	ug/L	0.019	U	EPA 505	0.019	0.01	5/06/08	5/07/08 2:25	E96080
2015	Methoxychlor	[40]	ug/L	0.042	Ŭ	EPA 505	0.042	0.02	5/06/08	5/07/08 2:25	E96080
2020	Toxaphene	[3]	ug/L	0.58	Ŭ	EPA 505	0.58	1	5/06/08	5/07/08 2:25	E96080
2031	Dalapon	[200]	ug/L	2.3	Ű	EPA 515.1	2.3	1	5/07/08	5/09/08 12:26	E96080
2032	Diquat	[20]	ug/L	1.9	Ŭ	EPA 549.2	1.9	0.4	5/07/08	5/08/08 11:58	E96080
2033	Endothall	[100]	ug/L	2.8	U	EPA 548.1	2.8	9	5/05/08	5/08/08 8:53	E96080
2034	Glyphosate	[700]	ug/L	13	U	EPA 547	13	6	0/00/00	5/07/08 17:13	E96080
2035	Di(2-ethylhexyl)adipate	[400]	ug/L	0.73	U	EPA 525.2	0.73	0.6	5/05/08	5/07/08 12:23	E96080
2036	Oxamyl	[200]	ug/L	0.13	Ŭ	EPA 531.1	0.13	2	0/00/00	5/06/08 18:35	E96080
2037	Simazine	[4]	ug/L	0.68	U	EPA 525.2	0.68	2 0.07	5/05/08	5/07/08 12:23	E96080
2039	bis(2-ethylhexyl)phthalate	[6]	ug/L	1.7	Ĩ	EPA 525.2	0.00	0.6	5/05/08	5/07/08 12:23	E96080
2040	Picloram	[500]	ug/L	0.23	U	EPA 515.1	0.23	0.0	5/07/08	5/09/08 12:26	
2041	Dinoseb	[7]	ug/L	0.23	U	EPA 515.1	0.23	0.1	5/07/08	5/09/08 12:26	E96080 E96080
2042	Hexachlorocyclopentadiene	[50]	ug/L	0.25	U	EPA 525.2	0.25	0.2	5/05/08	5/07/08 12:23	E96080
2046	Carbofuran	[40]	ug/L	0.41	υ	EPA 531.1	0.25	0.9	00000	5/06/08 18:35	E96080
2050	Atrazine	[3]	ug/L	0.52	υ	EPA 525.2	0.52	0.5	5/05/08	5/07/08 12:23	E96080
2051	Alachior	[2]	ug/L	0.66	U		0.66	0.1	5/05/08	5/07/08 12:23	
		I-1	ug/L	0.00	U	LFA 920.2	0.00	0.2	0/00/06	5/07/06 12:23	E96080
2065	Heptachlor	[0.4]	ug/L	0.035	U	EPA 505	0.035	0.04	5/06/08	5/07/08 2:25	E96080
2067	Heptachlor epoxide	[.2]	ug/L	0.026	U	EPA 505	0.026	0.02	5/06/08	5/07/08 2:25	E96080
2105	2,4-D	[70]	ug/L	0,22	U	EPA 515.1	0.22	0.1	5/07/08	5/09/08 12:26	E96080
2110	2,4,5-TP	[50]	ug/L	0.19	U	EPA 515.1	0.19	0.2	5/07/08	5/09/08 12:26	E96080
2274	Hexachlorobenzene	[1]	ug/L	0.33	U	EPA 525.2	0.33	0.1	5/05/08	5/07/08 12:23	E96080
2306	Benzo(a)pyrene	[.2]	ug/L	0.075	U	EPA 525.2	0.075	0.02	5/05/08	5/07/08 12:23	E96080
2326	Pentachlorophenol	[1]	ug/L	0.39	U	EPA 515.1	0.39	0.04	5/07/08	5/09/08 12:26	E96080
2383	PCB	[.5]	ug/L	0.13	U	EPA 505	0.13	0.1	5/06/08	5/07/08 2:25	E96080
2931	1,2-Dibromo-3-chioropropane	[.2]	ug/L	0.0034	U	EPA 504.1	0.0034	0.02	5/08/08	5/09/08 4:53	E96080
2946	1,2-Dibromoethane	[.02]	ug/L	0.0045	Ū	EPA 504.1	0.0045	0.01	5/08/08	5/09/08 4:53	E96080
2959	Chlordane	[2]	ug/L	0.12	U	EPA 505	0.12	0.2	5/06/08	5/07/08 2:25	E96080
D ¹									· · · · · · · · · ·		

Reporting Format 62-550,730 Effective January 1995, Revised January 2007 NOTE: Results indicating non-detection with a reported lab MDL >50% of the MCL will not be accepted for compliance with 62-550,310(4)(b).

* Results must be reported with appropriate qualifiers in accordance with Florida Administrative Code Rule 62-160, Table 1. Results Qualified with A, F, H, N, O, T, Z, ?, *, are unacceptable for compliance with 62-550. Results qualified with a J, Q, R, or Y must be accompanied by written justification and will be evaluated on a case by case basis. To avoid a monitoring violation, unacceptable results must be replaced with acceptable results from samples collected during the same monitoring period.

5600 US 1 North Fort Pierce, FL 34946 FDOH # E96080

Printed; 5/21/08

4155 St. Johns Pkwy Suite 1300 Sanford, FL 32771 FDOH # E83509

16331 Cortez Blvd Brooksville, FL 34601 FDOH # E84418

DOH

INORGANIC CONTAMINANTS 62 - 550.310 (1)

Client:	Sanders Laboratories, Inc.	Workorder: N0804478
Sample Location:	N0804478-01 Grab	Sample Number: 2030789001
Sampling Date:	5/01/08 13:20	PWS ID (From Page 1);
Date Received:	5/02/08 11:30	

Contam ID	Contam Name	MCL	Units	Analysis Result	Qual.	Analytical Method	Lab MDL	Analysis Date/Time	DOH Lab Cert #
				· · · · · · · · · · · · · · · · · · ·					

1024	Cyanide	[0.2]	mg/L 0.0047	UY	EPA 335.2	0.0047	5/08/08 16:35	E96080

Reporting Formal 62-550.730 Effective January 1995, Revised January 2007

* Results must be reported with appropriate qualifiers in accordance with Florida Administrative Code Rule 62-160, Table 1. Results Qualified with A, F, H, N, O, T, Z, ?, *, are unacceptable for compliance with 62-550. Results qualified with a J, Q, R, or Y must be accompanied by written justification and will be evaluated on a case by case basis. To avoid a monitoring violation, unacceptable results must be replaced with acceptable results from samples collected during the same monitoring period.

5600 US 1 North Fort Pierce, FL 34946 FDOH # E96080

16331 Cortez Blvd Brooksville, FL 34601 FDOH # E84418

HBEL, Inc. 5600 U.S. 1 North, Fort Pierce, FL 34946 Phone: (772) 465-2400 Ext. 285 Fax: (772) 467-1584

SECONDARY CONTAMINANTS 62 - 550.320

Client:	Sanders Laboratories, Inc.	Workorder: N0804478
Sample Location:	N0804478-01 Grab	Sample Number: 2030789001
Sampling Date:	5/01/08 13:20	PWS ID (From Page 1):
Date Received:	5/02/08 11:30	

Contam	Contam		Analysis		Analytical		Analvsis	DOH Lab
	Name	Units	Result	Qual.	Method	Lab MDL	Date/Time	Cert #

2905	Foaming Agents	[0.5]	mg/L	0.064	I	EPA 425.1	0.022	5/02/08 17:36	E96080
------	----------------	-------	------	-------	---	-----------	-------	---------------	--------

Reporting Format 62-550.730 Effective January 1995, Revised January 2007

* Results must be reported with appropriate qualifiers in accordance with Florida Administrative Code Rule 62-160, Table 1. Results Qualified with A, F, H, N, O, T, Z, ?, *, are unacceptable for compliance with 62-550. Results qualified with a J, Q, R, or Y must be accompanied by written justification and will be evaluated on a case by case basis. To avoid a monitoring violation, unacceptable results must be replaced with acceptable results from samples collected during the same monitoring period.

5600 US 1 North Fort Pierce, FL 34946 FDOH # E96080

Printed: 5/21/08

4155 St. Johns Pkwy Suite 1300 Sanford, FL 32771 FDOH # E83509

16331 Cortez Blvd Brooksville, FL 34601 FDOH # E84418

5600 U.S. 1 North, Fort Pierce, FL 34946 Phone: (772) 465-2400 Ext. 285 Fax: (772) 467-1584

Unregulated Group I Analysis 62 - 550.405 (PWS035)

<u>ID</u>	Parameter	Result	Method	MDL	Date	Lab ID	
Date Rec	eived:	5/02/08 11:30					
Preservative: Sodium		Sodium thiosulfate, or Monochloro	acetic Acid				
Sampling	Date:	5/01/08 13:20					
Sample N	lumber:	2030789001					
Sample L	ocation:	N0804478-01 Grab					
Client:		Sanders Laboratories, Inc.	Workorder:	N0804478			

2356	Aldrin	0.042U	ug/L	EPA 505	0.042	5/07/08	E96080
2364	Dieldrin	0.063U	ug/L	EPA 505	0.063	5/07/08	E96080

=

16331 Cortez Blvd Brooksville, FL 34601 FDOH # E84418

Unregulated Group III Analysis 62 - 550.415

(PWS036_037)

Workorder: N0804478

Client:	Sanders Laboratories, Inc.
Sample Location:	N0804478-01 Grab
Sample Number:	2030789001
Sampling Date:	5/01/08 13:20
Preservative:	None
Date Received:	5/02/08 11:30

ID	Parameter	Result		Method	MDL	Date	Lab ID
2262	Isophorone	0.44U	ug/L	EPA 625	0.44	5/14/08	E96080
2270	2,4-Dinitrotoluene	0.77U	ug/L	EPA 625	0.77	5/14/08	E96080
2282	Dimethyl-phthalate	2.5U	ug/L	EPA 625	2,5	5/14/08	E96080
2284	Diethylphthalate	0.36U	ug/L	EPA 625	0.36	5/14/08	E96080
2290	Di-n-butylphthalate	0.76U	ug/L	EPA 625	0.76	5/14/08	E96080
2294	Butylbenzylphthalate	0.57U	ug/L	EPA 625	0.57	5/14/08	E96080
9089	Di-n-octylphthalate	0.53U	ug/L	EPA 625	0.53	5/14/08	E96080
9108	2-Chlorophenol	0.86U	ug/L	EPA 625	0.86	5/14/08	E96080
9112	2-Methyl-4,6-dinitrophenol	1.2U	ug/L	EPA 625	1.2	5/14/08	E96080
9115	Phenol	1.0U	ug/L	EPA 625	1.0	5/14/08	E96080
9116	2,4,6-Trichlorophenol	1.1U	ug/L	EPA 625	1.1	5/14/08	E96080

5600 US 1 North Fort Plerce, FL 34946 FDOH # E96080

16331 Cortez Blvd Brooksville, FL 34601 FDOH # E84418

.____

-

Printed: 5/21/08

ſ

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 fax 813-855-2218

Sanders Laboratories 1050 Endeavor Court Nokomis, FL 34275-3623

May 22, 2008 Project No: 82011

Laboratory Report							
Project Name Sample Description Matrix SAL Sample Number Date/Time Collected Date/Time Received	N080	1/08 13:32	•				
Parameters	Units	Results	Method	Detection Limit	Date/Time Analyzed	Date/Time Prep	Analyst
<u>Radiochemistry</u> Gross Alpha (Incl. Uranium) Radium-226 Radium-228 Combined Uranium	рСі/і .рСі/і рСі/і рСі/і	200±7.4 48±0.8 1.2±0.2 0.17	EPA 00-02 EPA 903.1 EPA RA-05 ASTM D5174	2.8 0.08 0.5 0.04	05/08/08 13:40 05/14/08 12:00 05/16/08 11:59 05/20/08 17:41	05/06/08 09:10 05/07/08 12:45 05/14/08 16:30 05/12/08 09:00	ARM AWW AWW

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 fax 813-855-2218

Sanders Laboratories 1050 Endeavor Court Nokomis, FL 34275-3623

Laboratory Report

Footnotes

- * Test results presented in this report meet all the requirements of the NELAC standards.
- ** A statement of estimated uncertainty of test results is available upon request.

*** For methods marked with ***, all QC criteria have been met for this method which is equivalent to a SAL certified method.

Approved By: Francis I. Daniels, Laboratory Director Leslie C. Boardman, Q. A. Manager

May 22, 2008 Project No: 82011

Sanders	CHAIN-OF-CUSTODY RECORD	PROJECT N0804478
Laboratories INC.		Page of 2
Environmental Testing Services		Sample Supply:
Client Youngquist	Report To:	Customer Type:
Address	P.O. #	Field Report #:
	Project Name (ape (oral SW	$\operatorname{Kit} \# \underline{08-8}$
Phone Fax	Project Location: 40, CCSW 1%	REQUESTED DUE DATE: 5/9/08
Sampled By (PRINT) HIARN GROOM	PRESERVATIVES ANALYSES	
Sampler Signature HJZPM CRUZ		
Bottle SAMPLE DESCRIPTION		3/9 3 $3/1/7$ $3/10/7$ $3/10/7$ Samples
Injection Well "Inju		-0/A
		1 B
		1 C
v-		D
		I E
Bottle Lot	RELINQUISHED BY / AFFILIATION DATE - TI	ME ACCEPTED BY / AFFILIATION DATE TIME
n an an the second second second second second second second second second second second second second second s		50 Rreager 5/1/08/1459
COMMENTS: OKAY TO RU	IN PTLICEY - PTO I	Se Mienter - 1100 11 154
As, Ba, Cd, Cv, Pb, Ha CLIENT		
Ni, Se, Ng, Sb, Be, HI SAMPLES		
As, Bq, Cd, Cv, Pb, Hq Ni, Se, Ng, Sb, Be, Al Cu, Fe, Mn, Ag, Zn Ca, K, Mq, TI (279.2) No No		

•

1050 Endeaver Ct., Nokomis, FL 34275-3623 • (941)488-8103 • FAX 484-6774

10090 Bavaria Rd., Fort Myers, FL 33913 • (239) 590-0337 • FAX (239) 590-0536 🕔

2 15

Sanders	CHAIN-OF-CUSTODY RECORD PROJECT N0804478 # N0804478 Page 2 of 2
Caboratories INC. Environmental Testing Services	
client Youngguist	Report To:
Address	P.O. #Field Report #: Project Name <u>Ape (oral SW</u> Kit #
Phone Fax	Project Location: YQCCSW Injection Well REQUESTED DUE DATE:
Sampled By (PRINT) HARY CROOK Sampler Signature SAMPLE DESCRIPTION	PRESERVATIVES ANALYSES REQUEST
Bottle SAMPLE DESCRIPTION	Sample Building Organization DATE TIME TYPE Dig
Injection Well Injwell	151021320 G 11111111 -DIH
•	
····	
-Bottle Lot	RELINQUISHED BY / AFFILIATION DATE TIME ACCEPTED BY / AFFILIATION DATE TIME
COMMENTS: OKAY TO RUN AS IS	Hlzey CROOK 5108 1450 Maagh 5/1/08/145
CLIENT	
SAMPLES ON ICE Yes No	

.

Asheathus

WCE

Specific Conductivity Total Dissolved Solids Chlorides Sulfates

- Analyses requested for the injection and monitoring zones are as follows:
 - A. Primary Drinking Water Standards

Alachlor Aldicarb Aldicarb sulfoxide Aldicarb sulfone Aroclors (Polychlorinated Biphenyls or PCB(s) Alpha, Gross Antimony Arsenic Asbestos Atrazine Barium Benzene Benzo(a)pyrene Beryllium Cadmium Carbofuran Chlordane Chlorobenzene (Monochlorobenzene) Chromium -Coliforms, Total Cyanide 2,4-D (2,4-Dichlorophenoxyacetic acid) Dalapon (2,2-Dichloropropionic acid) Dibromochloropropane (DBCP) 1,2-Dibromoethane (EDB, Ethylene Dibromide) 1,2-Dichlorobenzene (o-Dichlorobenzene) 1,4-Dichlorobenzene (p-dichlorobenzene or Para Dichlorobenzene) 1,2-Dichloroethane (Ethylene dichloride) 1,1 Dichloroethene(Vinylidene chloride) cis-1,2- Dichloroethene (1,2-Dichlorethene) trans-1,2-Dichloroethene (1,2-Dichloroethene) Dichloromethane (Methylene chloride) 1,2-Dichloropropane Di(2-ethylhexyl) adipate (Bis(2-ethylhexyl) adipate) Di(2-ethylhexyl) phthalate (Bis(2-ethylhexyl) phthalate) Dinoseb Diquat Endothall Endrin Ethylbenzene Fluoride Glyphosate (Roundup)

MWH ~ 02/01/2006 Southwest WRF Class I Injection Well ~ IFB (Rev 1) CLASS I INJECTION WELL PAGE 02633-26 Heptachlor

Heptachlor Epoxide Hexachlorobenzene (HCB) gamma-Hexachlorocyclohexane (Lindane) Hexachlorocyclopentadiene Lead Lindane Mercurv Methoxychlor Nickel Nitrate (as N) Nitrite (as N) Total Nitrate + Nitrite (as N) Oxamyl Pentachlorophenol Picloram Radium Selenium Silver Silvex (2,4,5-TP) Simazine Sodium Styrene (Vinyl Benzene) Tetrachloroethene (Perchloroethene) Tetrachloromethane (Carbon Tetrachloride) Thallium Toluene Toxaphene 1,2,4-Trichlorobenzene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene (TCE) Trihalomethanes, Total Vinyl Chloride (Chloroethylene) Xylenes (total)

B. Secondary Drinking Water Standards

Aluminum Chloride Color Copper -Corrosivity Ethylbenzene Fluoride Foaming Agents (MBAS) Iron

MWH – 02/01/2006 Southwest WRF Class I Injection Well – IFB (Rev 1)

Manganese Odor pH Silver

p.4

Sulfate Toluene Total Dissolved Solids (TDS) Zinc

C. Municipal Wastewater Indicator Parameters for Groundwater Monitoring

Ammonia Nitrogen (organic) Total Kjeldahl Nitrogen Total Phosphorus (phosphate) Chloroethane Chloroform Para-Dichlorobenzene (1,4 Dichlorobenzene) 1.2-Dichloroethylene (cis-1,2-Dichloroethylene or trans-1,2-Dichloroethylene Anthracene Butylbenzylphthallate Dimethylphthallate Naphthalene Phenanthrene Aldrin Dieldrin 2-chlorophenol Phenol 2.4,6-trichlorophenol Conductivity **Biochemical Oxygen Demand** ~Chemical Oxygen Demand Temperature \mathbf{P} \sim

3,4 CEMENT

- A. General: Before each cementing operation, the CONTRACTOR shall submit a cementing program to the ENGINEER for approval.
 - 1. 2 SerDMARNS: TKe C21 TRACT2 R's cepenVMg gragnpp sKau (3) Ee Gesigned VA provide an effective seal around the casings.
 - a. 'We C2 1 TRACT2 R's reservable 00% We can Gue VWe cep en Wig ReerDWans in such a manner that the burst strengths of the casing (with safety factor) are not exceeded and the casing is not caused to fail.
 - b. The cement shall be pumped as a slurry of thoroughly mixed components in stages that are designed to fill the annular space without exceeding the collapse pressure of the casing pipe to which the cement is applied.
 - c. Cement will be pumped or placed so that the pressure of the slurry and the pressure applied inside the casing pipe do not affect the bond.

Monitor Well DZMW-1

Upper Monitor Zone Background Water Quality (1,325 to 1,406 feet bls)

SANDERS LABORATORIES, INC. Laboratory Test Report

Lab Project #: Client:	N0807193 Youngquist Brothers, Inc. 15465 Pine Ridge Road	Page 1 of <u>72</u> All subsequent pages are identified by: N0807193. These pages may include, but
	Ft. Myers, FL 33908	are not limited to: Analytical Data, Chains of Custodys,
Phone:	239-489-4444	Subcontracted Data and Case
Fax: E-mail:	239-489-4545	Narratives.
Client Project Name	e: South Cape Coral	
Laboratory Contact	: Andy Konopacki	

QUALIFIER DEFINITIONS

- B: Results based upon colony counts outside the acceptable range.
- I: The reported value is between the laboratory MDL and the laboratory PQL.
- J3: The reported value failed to meet the established quality control criteria.
- J4: The sample matrix interfered with the ability to make an accurate determination.
- J5: The data is questionable because of improper lab or field protocols.
- K: Off scale low, actual value is less than the value given.
- L: Off scale high, actual value is known to be greater than the value given.
- Q: Sample held beyond acceptable holding time.
- U: The compound was analyzed for, but not detected.
- V: The analyte was detected in both the sample and the associated method blank.
- Y: The sample was unpreserved or improperly preserved.
- Z: Too many colonies present (TNTC).
- ** This result does not meet NELAC standards.

HACH results may not meet NELAC standards.

A statement of estimated uncertainty of results is available upon request.

Analytical results provided relate only to the samples received for this project.

Laboratory report shall not be reproduced except in full, without the written approval of Sanders Laboratories.

Sanders Laboratories follows DEP standard operating procedures for field sampling.

Laboratory PQL's are available upon request.

Reports are archived for a minimum of 5 years. Copies of reports which are less than 1 year old are available for a fee of \$25.00 per report. Reports older than 1 year are available for a fee of \$50.00 per report. Copies will be provided within 1 week of the time of the request.

Nokomis Lab ~ 1050 Endeavor Ct. ~ Nokomis, FL 34275-3623 ~ Phone: 941-488-8103 ~ Fax: 941-484-6774 ~ HRS Certification # E84380 Fort Myers Lab ~ 10090 Bavaria Road ~ Fort Myers, FL 33913 ~ Phone: 239-590-0337 ~ Fax: 239-590-0536 ~ HRS Certification # E85457

Page: Page 1 of 2

Client Project: South Cape Coral Lab Project: N0807193 Report Date: 08/11/08

Laboratory Results

Youngquist Brothers, Inc. 15465 Pine Ridge Road Ft. Myers, FL 33908

<u>Lab ID</u> N0807193-01	Sample Descripti Upper Zone grab	<u>on</u>		Sample Source Ground Water		Received Date/Time 7/15/08 11:30		ple Date/Time 7/15/08 9:37
<u>Analysis</u>	Method	<u>Results</u>	<u>Qual</u>	MDL	<u>Units</u>	AnalysisDate/Time	<u>Analyst</u>	<u>Cert ID</u>
Aluminum	EPA200.7	0.114		0.009	mg/L	7/28/08 11:19	JPW	E84380
Ammonia	EPA350.1	0.71		0.01	mg/L as N	7/17/08 16:31	AV	E84380
Antimony	EPA200.7	0.002	U	0.002	mg/L	7/28/08 11:19	JPW	E84380
Arsenic	EPA200.7	0.002	U	0.002	mg/L	7/28/08 11:19	JPW	E84380
Barium	EPA200.7	2.76		0.001	mg/L	7/28/08 11:19	JPW	E84380
Beryllium	EPA200.7	0.0002	I	0.0001	mg/L	7/28/08 11:19	JPW	E84380
Bicarbonate Alkalinity	SM4500CO2-D	82		3	mg/l CaCO3	7/18/08 13:15	AS	E84380
BOD	SM5210B	2	U	2	mg/L	7/15/08 11:45	AS	E84380
Cadmium	EPA200.7	0.001	U	0.001	mg/L	7/28/08 11:19	JPW	E84380
Calcium	* EPA200.7	292		0.006	mg/L	7/28/08 11:19	JPW	E84380
Carbonate Alkalinity	SM4500CO2-D	1.44		0.01	mg/l CaCO3	7/18/08 13:15	AS	E84380
Chemical Oxygen	EPA410.4	620		8	mg/L	7/18/08 10:30	BB	E84380
Demand Chloride	SM4500CI-E	5990		1	mg/L	7/16/08 12:37	AV	E84380
Chromium	EPA200.7	0.001	U	0.001	mg/L	7/28/08 11:19	JPW	E84380
Color-True	SM2120B	10		5	C.U.	7/15/08 14:30	AV	E84380
Copper	EPA200.7	0.001	U	0.001	mg/L	7/28/08 11:19	JPW	E84380
Dissolved Oxygen-field	d 360.1	3.15		0.01	mg/L	7/15/08 9:37	HC	E84380
Fluoride	SM4500F-C	1.8		0.1	mg/L	7/22/08 15:30	AV	E84380
Iron	EPA200.7	1.05		0.015	mg/L	7/28/08 11:19	JPW	E84380
Langelier Saturation Index	LSI	0.41		0.01	NONE	8/4/08 15:18	AK	E84380
Lead	EPA200.7	0.023		0.001	mg/L	7/28/08 11:19	JPW	E84380
Magnesium	EPA200.7	362		0.007	mg/L	7/28/08 11:19	JPW	E84380
Manganese	EPA200.7	0.078		0.001	mg/L	7/28/08 11:19	JPW	E84380
Mercury	EPA245.1	0.001	U	0.001	mg/L	7/23/08 9:47	JPW	E84380
Nickel	EPA200.7	0.001	U	0.001	mg/L	7/28/08 11:19	JPW	E84380
Nitrate+Nitrite-N	EPA353.2 1050 Endeovor Cour	0.01 t • Noko	U mis, FL 3427	0.01 75 • Phone: (941) 4	mg/L as N 188-8103 • (7/16/08 9:40 800) 255-3108 • Fax: (SJ	E84380

Page: Page 2 of 2

Client Project: South Cape Coral Lab Project: N0807193 Report Date: 08/11/08

Laboratory Results

N0807193-01 U	ample Descript pper Zone rab	<u>ion</u>	<u>.</u>	ample Source Ground Water	affa di sana	Received Date/Time 7/15/08 11:30		nple Date/Time 7/15/08 9:37
<u>Analysis</u>	Method	Results	<u>Qual</u>	<u>MDL</u>	<u>Units</u>	AnalysisDate/Time	<u>Analyst</u>	<u>Cert ID</u>
Nitrate-N	EPA353.2	0.01	U	0.01	mg/L as N	7/16/08 9:40	SJ	E84380
Nitrite-N	EPA353.2	0.01	U	0.01	mg/L as N	7/16/08 9:11	SJ	E84380
Nitrogen, Total Kjeldahl	EPA351.2	0.88		0.05	mg/L as N	7/18/08 12:49	AV	E84380
Odor @ 30°C	SM2150B	1.4		1	TON	7/15/08 13:30	BB	E84380
Organic Nitrogen	EPA351.2/350.1	0.17		0.05	mg/L as N	7/18/08 12:49	SJ	E84380
Ortho Phosphate	SM4500P-E	0.016	Ι	0.010	mg/L as P	7/15/08 13:15	AS	E84380
pH - field	150.1	7.59		0.01	std units	7/15/08 9:37	HC	E84380
Phosphorus, Total	EPA365.4	0.043		0.010	mg/L as P	7/18/08 14:39	AV	E84380
Potassium	EPA200.7	101		0.052	mg/L	7/28/08 11:19	JPW	E84380
See attached results	Subcontract					7/15/08 15:06	SUB	
Selenium	EPA200.7	0.002	U	0.002	mg/L	8/9/08 13:37	JPW	E84380
Silver	EPA200.7	0.001	U	0.001	mg/L	7/28/08 11:19	JPW	E84380
Sodium	EPA200.7	3140		0.400	mg/L	7/28/08 11:19	JPW	E84380
Specific Conductance-field	120.1	17700		0.1	µmhos/cm	7/15/08 9:37	HC	E84380
Sulfate	ASTM-D516-90	414		2	mg/L	7/21/08 16:59	BB	E84380
Thallium	EPA279.2	0.001	U	0.001	mg/L	7/20/08 10:05	JPW	E84380
Total Coliform, MF	SM9222B	1	U	1	CFU/100ml	7/15/08 12:00	RF	E84380
Total Dissolved Solids	SM2540C	11000		20	mg/L	7/17/08 15:15	AS	E84380
Turbidity - field	EPA180.1	35.0		0.1	NTU	7/15/08 9:37	HC	E84380
Water Temperature-field	170.1	31.7		0.1	С	7/15/08 9:37	HC	E84380
Weather-field	DEPSOP	rain		n/a	none	7/15/08 9:37	HC	E84380
Zinc	EPA200.7	0.013		0.001	mg/L	7/28/08 11:19	JPW	E84380

Approved by:

Comments:

Kathrine Bartkiewicz/Lab Manager Fort Myers Andrew/Konopacki/Lab Manager Nokomis

Test Results meet all the requirements of the NELAC standards.

SOUTHERN ANALYTICAL LABORATORIES, INC.

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 fax 813-855-2218

Sanders Laboratories 1050 Endeavor Court Nokomis, FL 34275-3623

July 30, 2008 Project No: 84093

Laboratory Report

Project Name Sample Description Matrix SAL Sample Number Date/Time Collected Date/Time Received	N08071 N08071 Ground 84093.0 07/15/08 07/16/08	93-01 Upper Zo water 1 3 09:37					
Parameters	Units	Results	Method	Detection Limit	Date/Time Analyzed	Date/Time Prep	Analyst
Radiochemistry							A) A 11 A 1
Gross Alpha (Incl. Uranium)	pCi/l	20±3.0	EPA 00-02	2.8	07/18/08 17:43		AWW
Radium-226	pCi/l	6.9±0.2	EPA 903.1	0.00	07/24/08 14:30		AWW
Radium-228	pCi/l	1.8±0.2	EPA RA-05	0.6	07/29/08 14:12		AWW
Combined Uranium	pCi/l	0.39	ASTM D5174	0.04	07/25/08 13:21	07/21/08 08:00	AWW

SOUTHERN ANALYTICAL LABORATORIES, INC.

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 fax 813-855-2218

Sanders Laboratories 1050 Endeavor Court Nokomis, FL 34275-3623

July 30, 2008 Project No: 84093

Laboratory Report

Footnotes

Test results presented in this report meet all the requirements of the NELAC standards.
 A statement of estimated uncertainty of test results is available upon request.
 For methods marked with ***, all QC criteria have been met for this method which is equivalent to a SAL certified method.

Leslall

Approved By: Francis I. Daniels, Laboratory Director Leslie C. Boardman, Q. A. Manager

FDOH Laboratory No. E84129 NELAP Accredited

EMSL Analytical, Inc. 19501 NE 10th Ave. Bay A, N. Miami Beach, FL 33179 Phone: (305) 650-0577 Fax: (305) 650-0578 Email: miamilab@emsl.com

Attn:	T. Bright
	Sanders Laboratories
	1050 Endeavor Court
	Nokomis, FL 34275-3623

Fax: (941) 484-6774 Phone: (941) 488-8103 Project: **N0087193** Customer ID: SAND53 Customer PO: N0807193 Received: 07/16/08 11:56 AM EMSL Order: 170803538 EMSL Proj: Analysis Date: 7/16/2008 Report Date: 7/23/2008

Determination of Asbestos Structures in Water Performed by the 100.2 Method (EPA/600/R-94/134)

Sample ID	Sample Prep Date	# Fibers Asbestos	# Fibers Non- Asbestos	Type(s) Of Asbestos	Analytical Sensitivity (MFL)	Confidence Limits	Concentration Of Asbestos Fibers (MFL)	Comments
N0807193-01 170803538-0001	7-16-08 1300	0			0.74	0.00-2.70	<0.74	Collected 7-15-08 0937

Contact Kim Wallace at 305-650-0577 with any questions.

Analyst(s)

Joe McOscar (1)

Himber 14 a Wallace

Kimberly Wallace, Laboratory Manager or other approved signatory

Sample collection and containers provided by the client, acceptable bottle blank level is defined as <=0.01MFL>10um. ND=None Detected. This report may not be reproduced, except in full, without written permission by EMSL Analytical, Inc. The test results contained within this report meet the requirements of NELAC unless otherwise noted. This report relates only to the samples reported above. Samples received in good condition unless otherwise noted. FOH# E86795

100.2-V221

THIS IS THE LAST PAGE OF THE REPORT.

Date issued: July 30, 2008

To: Tami Bright Sanders Laboratories, Inc. 1050 Endeavor Court Nokomis, FL 34275

Client:Sanders Laboratories, Inc.Workorder ID:N0807193 Upper ZoneReceived:7/16/08 10:50

[2031525]

Dear Tami Bright;

Analytical results presented in this report have been reviewed for compliance with the HBEL, Inc. Quality Systems Manual and have been determined to meet applicable Method guidelines and Standards referenced in the July 2003 National Environmental Laboratory Accreditation Program (NELAP) Quality Manual unless otherwise noted. The Analytical Results within these report pages reflect the values obtained from tests performed on Samples As Received by the laboratory unless indicated differently.

FDOH Safe Drinking Water Act, Clean Water Act and RCRA Certification #'s: E96080, E83509

Questions regarding this report should be directed to the Report Signatory at (772) 465-8584 referencing the HBEL Workorder ID [Number].

Respectfully submitted,

Eric Charest HBEL, Inc. Laboratory Manager Note: This report is not to be copied, except in full, without the expressed written consent of HBEL, Inc.

5600 US 1 North Fort Pierce, FL 34946 FDOH # E96080 4155 St. Johns Pkwy Suite 1300 Sanford, FL 32771 FDOH # E83509

Printed: 7/30/08

5600 U.S. I North, Fort Pierce, FL 34946 Phone: (772) 465-8584 Fax: (772) 467-1584

Quality Control Summary

Client:Sanders Laboratories, Inc.Workorder ID:N0807193 Upper ZoneReceived:7/16/08 10:50

[2031525]

MB=Method B	Blank LCS=Laboratory Contro	I Sample LCSD=Laboratory Control Sample Duplicate MS=Matrix S	pike MSD=Matrix Spike Duplicate DUP=Sample Duplicate
HBEL Sample		Method Narratives (If Applicable)	
<u>Number</u>	Sample ID An	alytical Method	Description
		Quality Control Summary	and a state of the second second second second second second second second second second second second second s
<u>Method HB</u>	EL Batch Analyte	Analytical Issue	
EPA 505			
PE	EST5159		
2031525001	Decachlorobiphenyl	Surrogate - Outside acceptance Limits.	

5600 US 1 North Fort Pierce, FL 34946 FDOH # E96080

5600 U.S. | North, Fort Pierce, FL 34946 Phone: (772) 465-8584 Fax: (772) 467-1584

CERTIFICATE OF ANALYSIS

[2031525]

Client: Sanders Laboratories, Inc.

Workorder ID: N0807193 Upper Zone

Parameter	Qualifie	r Result	Units	Reporting Limit	Method	Laboratory Batch	Prep Date/Time	Analyzed Date/Time	Analyst	Lab ID
Laboratory ID: Sample ID:		1 01 Upper Zo	one Grab.		Sampled: 07/15/0 Matrix: Water		Received	: 07/16/08 Wet Weight B		
Cyanide		0.0047U	mg/L	0.0047	EPA 335.2		07/17/08 11:30			E96080
Surfactants as LA Mol.wt.340	.S,	0.22	mg/L	0.022	EPA 425.1	WCGE29672	07/17/08 11:30	07/17/08 16:31	GG	E96080
1,2-Dibromo-3- chloropropane		0.0035U	ug/L	0.0035	EPA 504.1	PEST5158	07/24/08 14:00	07/25/08 0:40	JL	E96080
1,2-Dibromoethan	e	0.0045U	ug/L	0.0045	EPA 504.1	PEST5158	07/24/08 14:00	07/25/08 0:40	JŁ	E96080
Aldrin		0.043U	ug/L	0.043	EPA 505	PEST5159	07/22/08 9:00	07/22/08 19:53	JL	E96080
Chlordane		0.13U	ug/L	0.13	EPA 505	PEST5159	07/22/08 9:00	07/22/08 19:53	JL	E96080
Dieldrin		0.065U	ug/L	0.065	EPA 505	PEST5159	07/22/08 9:00	07/22/08 19:53	JL	E96080
Endrin		0.10U	ug/L	0.10	EPA 505	PEST5159	07/22/08 9:00	07/22/08 19:53	3 JL	E96080
gamma-BHC (Line	dane)	0.020U	ug/L	0.020	EPA 505	PEST5159	07/22/08 9:00	07/22/08 19:53	JL	E96080
Heptachlor		0.035U	ug/L	0.035	EPA 505	PEST5159	07/22/08 9:00	07/22/08 19:53	JL	E96080
Heptachlor epoxic	de	0.027U	ug/L	0.027	EPA 505	PEST5159	07/22/08 9:00	07/22/08 19:53	JL (E96080
Methoxychlor		0.043U	ug/L	0.043	EPA 505	PEST5159	07/22/08 9:00	07/22/08 19:53	3 JL	E96080
PCB		0.14U	ug/L	0.14	EPA 505	PEST5159	07/22/08 9:00	07/22/08 19:53	JL	E96080
Toxaphene		0.59U	ug/L	0.59	EPA 505	PEST5159	07/22/08 9:00	07/22/08 19:53	JL	E96080
2,4,5-TP		0.19U	ug/L	0.19	EPA 515.1	PEST5156	07/21/08 8:00	07/23/08 3:01	JL	E96080
2,4-D		0.22U	ug/L	0.22	EPA 515.1	PEST5156	07/21/08 8:00	07/23/08 3:01	JL	E96080
Dalapon		2.3U	ug/L	2.3	EPA 515.1	PEST5156	07/21/08 8:00	07/23/08 3:01	JL	E96080
Dinoseb		0.23U	ug/L	0.23	EPA 515.1	PEST5156	07/21/08 8:00	07/23/08 3:01	JL	E96080
Pentachloropheno	ol	0.39U	ug/L	0.39	EPA 515.1	PEST5156	07/21/08 8:00	07/23/08 3:01	JL	E96080
Picloram		0.23U	ug/L	0.23	EPA 515.1	PEST5156	07/21/08 8:00	07/23/08 3:01	JL	E96080
1,1,1,2-Tetrachlor	roethane	0.24U	ug/L	0.24	EPA 524.2	VOC2941		07/18/08 18:24	WR	E96080
1,1,1-Trichloroeth	ane	0.21U	ug/L	0.21	EPA 524.2	VOC2941		07/18/08 18:24		E96080
1,1,2,2-Tetrachlor	roethane	0.47U	ug/L	0.47	EPA 524.2	VOC2941		07/18/08 18:24		E96080
1,1,2-Trichloroeth	ane	0.44U	ug/L	0.44	EPA 524.2	VOC2941		07/18/08 18:24		E96080
1,1-Dichloroethan	e	0.20U	ug/L	0.20	EPA 524.2	VOC2941		07/18/08 18:24		E96080
1,1-Dichloroethen	e	0.23U	ug/L	0.23	EPA 524.2	VOC2941		07/18/08 18:24	wr	E96080
1,1-Dichloroprope	me	0.24U	ug/L	0.24	EPA 524.2	VOC2941		07/18/08 18:24		E96080
1,2,3-Trichloropro	pane	0.30U	ug/L	0.30	EPA 524.2	VOC2941		07/18/08 18:24		E96080
1,2,4-Trichlorober	nzene	0.41U	ug/L	0.41	EPA 524.2	VOC2941		07/18/08 18:24		E96080
1,2-Dichlorobenze	ene	0.21U	ug/L	0.21	EPA 524.2	VOC2941		07/18/08 18:24		E96080
1,2-Dichloroethan	e	0.29U	ug/L	0.29	EPA 524.2	VOC2941		07/18/08 18:24		E96080
1,2-Dichloropropa	ine	0.40U	ug/L	0.40	EPA 524.2	VOC2941		07/18/08 18:24		E96080
1,3-Dichlorobenze	ene	0.23U	ug/L	0.23	EPA 524.2	VOC2941	-	07/18/08 18:24		E96080
1,3-Dichloropropa	ne	0.22U	ug/L	0.22	EPA 524.2	VOC2941		07/18/08 18:24		E96080
1,3-Dichloroprope	ne	0.52U	ug/L	0.52	EPA 524.2	VOC2941		07/18/08 18:24		E96080
1,4-Dichlorobenze	ene	0.23U	ug/L	0.23	EPA 524.2	VOC2941		07/18/08 18:24		E96080
2,2-Dichloropropa	ne	0.30U	ug/L	0.30	EPA 524.2	VOC2941		07/18/08 18:24		E96080
2-Chlorotoluene		0.20U	ug/L	0.20	EPA 524.2	VOC2941		07/18/08 18:24		E96080
4-Chlorotoluene		0.23U	ug/L	0.23	EPA 524.2	VOC2941		07/18/08 18:24		E96080

5600 US 1 North Fort Pierce, FL 34946 FDOH # E96080

4155 St. Johns Pkwy Suite 1300 Sanford, FL 32771 FDOH # E83509

Printed: 7/30/08

5600 U.S. I North, Fort Pierce, FL 34946 Phone: (772) 465-8584 Fax: (772) 467-1584

CERTIFICATE OF ANALYSIS

[2031525]

Client: Sanders Laboratories, Inc.

Workorder ID: N0807193 Upper Zone

Parameter	1 Qualifier Result	Units	Reporting Limit	Method	Laboratory Batch	Prep Date/Time	Analyzed Date/Time A	Analyst	Lab ID
Benzene	0.20U	ug/L	0.20	EPA 524.2	VOC2941		07/18/08 18:24	WR	E96080
Bromobenzene	0.34U	ug/L	0.34	EPA 524.2	VOC2941		07/18/08 18:24	WR	E96080
Bromodichloromethane	0.25U	ug/L	0.25	EPA 524.2	VOC2941		07/18/08 18:24	WR	E96080
Bromoform	0.41U	ug/L	0.41	EPA 524.2	VOC2941		07/18/08 18:24	WR	E96080
Bromomethane	0.30U	ug/L	0.30	EPA 524.2	VOC2941		07/18/08 18:24	WR	E96080
Carbon tetrachloride	0.24U	ug/L	0.24	EPA 524.2	VOC2941		07/18/08 18:24	WR	E96080
Chlorobenzene	0.30U	ug/L	0.30	EPA 524.2	VOC2941		07/18/08 18:24	WR	E96080
Chloroethane	0.46U	ug/L	0.46	EPA 524.2	VOC2941		07/18/08 18:24	WR	E96080
Chloroform	0.25U	ug/L	0.25	EPA 524.2	VOC2941		07/18/08 18:24	WR	E96080
Chloromethane	0.40U	ug/L	0.40	EPA 524.2	VOC2941		07/18/08 18:24	WR	E96080
cis-1,2-Dichloroethene	0.21U	ug/L	0.21	EPA 524.2	VOC2941		07/18/08 18:24	WR	E96080
Dibromochloromethane	0.30U	ug/L	0.30	EPA 524.2	VOC2941		07/18/08 18:24	WR	E96080
Dibromomethane	0.35U	ug/L	0.35	EPA 524.2	VOC2941		07/18/08 18:24	WR	E96080
Dichlorodifluoromethane	0.28U	ug/L	0.28	EPA 524.2	VOC2941		07/18/08 18:24	WR	E96080
Ethylbenzene	0.21U	ug/L	0.21	EPA 524.2	VOC2941		07/18/08 18:24	WR	E96080
Methyl-tert-butyl-ether	0.21U	ug/L	0.21	EPA 524.2	VOC2941		07/18/08 18:24	WR	E96080
Methylene chloride	0.23U	ug/L	0.23	EPA 524.2 .	VOC2941		07/18/08 18:24	WR	E96080
Styrene	0.21U	ug/L	0.21	EPA 524.2	VOC2941		07/18/08 18:24	WR	E96080
Tetrachloroethene	0.24U	ug/L	0.24	EPA 524.2	VOC2941		07/18/08 18:24	WR	E96080
Toluene	0.22U	ug/L	0.22	EPA 524.2	VOC2941		07/18/08 18:24	WR	E96080
Total THMs	0.25U	ug/L	0.25	EPA 524.2	VOC2941		07/18/08 18:24	WR	E96080
Total Xylenes	0.46U	ug/L	0.46	EPA 524.2	VOC2941		07/18/08 18:24	WR	E96080
trans-1,2-Dichloroethene	0.35U	ug/L	0.35	EPA 524.2	VOC2941		07/18/08 18:24	WR	E96080
Trichloroethene	0.36U	ug/L	0.36	EPA 524.2	VOC2941		07/18/08 18:24	WR	E96080
Trichlorofluoromethane	0.22U	ug/L	0.22	EPA 524.2	VOC2941		07/18/08 18:24	WR	E96080
Vinyl chloride	0.32U	ug/L	0.32	EPA 524.2	VOC2941		07/18/08 18:24	WR	E96080
Alachlor	0.64U	ug/L	0.64	EPA 525.2	SVOC2663	07/16/08 11:00	07/17/08 22:52	CG	E96080
Atrazine	0.51U	ug/L	0.51	EPA 525.2	SVOC2663	07/16/08 11:00	07/17/08 22:52	CG	E96080
Benzo(a)pyrene	0.073U	ug/L	0.073	EPA 525.2	SVOC2663	07/16/08 11:00	07/17/08 22:52	CG	E96080
bis(2-ethylhexyl)phthalat		ug/L	0.89	EPA 525.2	SVOC2663	07/16/08 11:00	07/17/08 22:52	CG	E96080
Di(2-ethylhexyl)adipate	0.71U	ug/L	0.71	EPA 525.2	SVOC2663	07/16/08 11:00	07/17/08 22:52	CG	E96080
Hexachlorobenzene	0.32U	ug/L	0.32	EPA 525.2	SVOC2663	07/16/08 11:00	07/17/08 22:52	CG	E96080
Hexachlorocyclopentadie		ug/L	0.25	EPA 525.2	SVOC2663	07/16/08 11:00	07/17/08 22:52	CG	E96080
Simazine	0.66U	ug/L	0.66	EPA 525,2	SVOC2663	07/16/08 11:00	07/17/08 22:52	CG	E96080
Aldicarb	0.54U	ug/L	0.54	EPA 531,1	HPLC2500		07/23/08 17:36	JJМ	E96080
Aldicarb sulfone	0.45U	ug/L	0.45	EPA 531.1	HPLC2500		07/23/08 17:36	JJM	E96080
Aldicarb sulfoxide	0.36U	ug/L	0.36	EPA 531.1	HPLC2500		07/23/08 17:36	JJM	E96080
Carbofuran	0.41U	ug/L	0.41	EPA 531.1	HPLC2500		07/23/08 17:36	JJM	E96080
Oxamyl	0.13U	ug/L	0.13	EPA 531.1	HPLC2500		07/23/08 17:36	JJM	E96080
Glyphosate	10U	ug/L	10	EPA 547	SAL1064		07/27/08 3:36	SAL	E84129
Glyphosate	10U	ug/L	10	EPA 547			07/27/08 3:36	SAL	E84129
Endothall	2.8U	ug/L	2.8	EPA 548.1	SVOC2667	07/21/08 8:00	07/28/08 22:54	CG	E96080
Diquat	1.9U	ug/L	1.9	EPA 549.2	HPLC2502	07/21/08 8:00	07/29/08 11:44	JJM	E96080

5600 US 1 North Fort Pierce, FL 34946 FDOH # E96080

4155 St. Johns Pkwy Suite 1300 Sanford, FL 32771 FDOH # E83509

HBEL, Inc. 5500 U.S. I North, Fort Pierce, FL 34946

Phone: (772) 465-8584 Fax: (772) 467-1584

Client: Sanders Laboratories, Inc.

Workorder ID: N0807193 Upper Zone

CERTIFICATE OF ANALYSIS

[2031525]

Parameter	Qualifier Result	Units	Reporting Limit	Method	Laboratory Batch	Prep Date/Time	Analyzed Date/Time	Analyst	Lab ID
Dibromoacetic Acid	0.18U	ug/L	0.18	EPA 552.1	PEST5157	07/23/08 13:06	07/24/08 1:53	JL	E96080
Dichloroacetic Acid	0.66U	ug/L	0.66	EPA 552.1	PEST5157	07/23/08 13:06	07/24/08 1:53	JL	E96080
Monobromoacetic Acid	0.28U	ug/L	0.28	EPA 552.1	PEST5157	07/23/08 13:06	07/24/08 1:53	JL	E96080
Monochloroacetic Acid	0.88U	ug/L	0.88	EPA 552.1	PEST5157	07/23/08 13:06	07/24/08 1:53	JL	E96080
Total HAAs	0.18U	ug/L	0.18	EPA 552.1	PEST5157	07/23/08 13:06	07/24/08 1:53	JL	E96080
Trichloroacetic acid	0.20U	ug/L	0.20	EPA 552.1	PEST5157	07/23/08 13:06	07/24/08 1:53	JL	E96080
2,4,6-Trichlorophenol	1.1U	ug/L	1.1	EPA 625	SVOC2665	07/16/08 11:00	07/21/08 20:58	3 WR	E96080
2-Chlorophenol	0.85U	ug/L	0.85	EPA 625	SVOC2665	07/16/08 11:00	07/21/08 20:58	3 WR	E96080
Anthracene	0.51U	ug/L	0.51	EPA 625	SVOC2665	07/16/08 11:00	07/21/08 20:58	3 WR	E96080
Butylbenzylphthalate	0.56U	ug/L	0.56	EPA 625	SVOC2665	07/16/08 11:00	07/21/08 20:58	3 WR	E96080
Di-n-butylphthalate	0.75U	ug/L	0.75	EPA 625	SVOC2665	07/16/08 11:00	07/21/08 20:58	3 WR	E96080
Di-n-octylphthalate	0.52U	ug/L	0.52	EPA 625	SVOC2665	07/16/08 11:00	07/21/08 20:58	3 WR	E96080
Diethylphthalate	0.36U	ug/L	0.36	EPA 625	SVOC2665	07/16/08 11:00	07/21/08 20:58	3 WR	E96080
Dimethyl-phthalate	2.5U	ug/L	2.5	EPA 625	SVOC2665	07/16/08 11:00	07/21/08 20:58	B WR	E96080
Naphthalene	0.71U	ug/L	0.71	EPA 625	SVOC2665	07/16/08 11:00	07/21/08 20:58	8 WR	E96080
Phenanthrene	0.31U	ug/L	0.31	EPA 625	SVOC2665	07/16/08 11:00	07/21/08 20:58	B WR	E96080
Phenol	0.98U	ug/L	0.98	EPA 625	SVOC2665	07/16/08 11:00	07/21/08 20:58	8 WR	E96080

¹Result Qualifiers: U = Not Detected I = Analyte detected between the Laboratory Method Detection Limit and Laboratory Reporting Limit Applicable Florida Department of Environmental Protection Qualifiers defined below. Statement of Estimated Uncertainty available upon request.

Printed: 7/30/08

Sanders	CHAIN-OF-CUSTODY RECORD	PROJECT N0807193
Client <u>HOUNOGOUIST</u> Address <u>Fax</u>	Report To: Bill To: P.O. # Project Name <u>SOUTH Cape Coral</u> Project Location:	Page of Sample Supply:
Sampled By (PRINT) HILAPY CROOK Sampler Signature HLIZPY CROOK Bottle SAMPLE DESCRIPTION	PRESERVATIVES ANALYSES Sample Image: Sample state	
Upper Zone 7	15080737G1111	$\frac{-0.1A}{B}$
		I D I E I F
Bottle Lot #	RELINQUISHED BY / AFFILIATION DATE TIME	
As Ba Cd, Cr, Pb, Hg Ni, Se, Na, Sb, Be, Al Cu, Fe, Mn, Ag; Zn Ca, K, Mg; TI & 79.2 Ves No	-Helepy Cook 71500 1130	> Meage 7/15/08/132>

Monitor Well DZMW-1

Lower Monitor Zone Background Water Quality (1,610 to 1,650 feet bls)

Page: Page 1 of 3

Client Project: South Cape Coral Lab Project: N0807129 Report Date: 08/04/08

Laboratory Results

Youngquist Brothers, Inc. 15465 Pine Ridge Road Ft. Myers, FL 33908

	Sample Descripti Lower Zone	<u>on</u>		Sample Source Ground Water		Received Date/Time 7/10/08 12:05		ple Date/Time 7/10/08 11:00
	grab							110/00 11:00
<u>Analysis</u>	<u>Method</u>	<u>Results</u>	<u>Qual</u>	<u>MDL</u>	<u>Units</u>	<u>AnalysisDate/Time</u>	<u>Analyst</u>	<u>Cert ID</u>
Air Temperature-field	170.1	31.7		0.1	С	7/10/08 11:00	HC	E84380
Aluminum	EPA200.7	0.101		0.009	mg/L	7/12/08 12:16	JPW	E84380
Ammonia	EPA350.1	0.30		0.01	mg/L as N	7/14/08 17:27	AV	E84380
Antimony	EPA200.7	0.002	U	0.002	mg/L	7/12/08 12:16	JPW	E84380
Arsenic	EPA200.7	0.002	U	0.002	mg/L	7/12/08 12:16	JPW	E84380
Barium	EPA200.7	1.73		0.001	mg/L	7/12/08 12:16	JPW	E84380
Beryllium	EPA200.7	0.0003	I	0.0001	mg/L	7/12/08 12:16	JPW	E84380
Bicarbonate Alkalinity	SM4500CO2-D	14 8		3	mg/I CaCO3	7/18/08 13:15	AS	E84380
Biological Oxygen	SM5210B	2	υ	2	mg/L	7/11/08 14:40	CZ	E85457
Demand Cadmium	EPA200.7	0.001	U	0.001	mg/L	7/12/08 12:16	JPW	E84380
Calcium	EPA200.7	538		0.006	mg/L	7/12/08 12:16	JPW	E84380
Carbonate Alkalinity	SM4500CO2-D	0.40		0.01	mg/I CaCO3	7/18/08 13:15	AS	E84380
Chemical Oxygen	EPA410.4	1830		8	- mg/L	7/18/08 10:30	BB	E84380
Demand Chloride	SM4500C1-E	18400		1	-			
Chromium	EPA200.7	0.001	U	0.001	mg/L	7/16/08 12:37	AV	E84380
Color-True	SM2120B	5	U		mg/L	7/12/08 12:16	JPW	E84380
Copper	EPA200.7	0.001		5	C.U.	7/11/08 12:45	RH/KS	E85457
Dissolved Oxygen-field		2.74	U	0.001	mg/L	7/12/08 12:16	JPW	E84380
Fluoride	SM4500F-C			0.01	mg/L	7/10/08 11:00	HC	E84380
		2.4		0.1	mg/L	7/14/08 14:00	AS	E84380
Iron	EPA200.7	0.372		0.015	mg/L	7/12/08 12:16	JPW	E84380
Langelier Saturation Index	LSI	0.36		0.01	NONE	7/28/08 14:09	AK	E84380
Lead	EPA200.7	0.015		0.001	mg/L	7/12/08 12:16	JPW	E84380
Magnesium	EPA200.7	922		0.007	mg/L	7/12/08 12:16	JPW	E84380
Manganese	EPA200.7	0.025		0.001	mg/L	7/12/08 12:16	JPW	E84380
Mercury	EPA245.1	0.001	U	0.001	mg/L	7/23/08 9:47	JPW	E84380
Nickel	EPA200.7 1050 Endeavor Cour	0.002 t • Nokom	iis, FL 34275	0.001 • Phone: (941) 4		7/12/08 12:16 800) 255-3108 • Fox: (*	JPW 941) 484-677	E84380 4

Page: Page 2 of 3

Client Project: South Cape Coral Lab Project: N0807129 Report Date: 08/04/08

Laboratory Results

Lab ID	Sample Descript	<u>ion</u>		Sample Source		Received Date/Time		ple Date/Time
N0807129-01	grab			Ground Water		7/10/08 12:05		7/10/08 11:00
<u>Analysis</u>	Method	<u>Results</u>	<u>Qual</u>	<u>MDL</u>	<u>Units</u>	AnalysisDate/Time	<u>Analyst</u>	<u>Cert ID</u>
Nitrate+Nitrite-N	EPA353.2	0.02	1	0.01	mg/L as N	7/11/08 15:13	SJ	E84380
Nitrate-N	EPA353.2	0.02		0.01	mg/L as N	7/11/08 15:13	SJ	E84380
Nitrite-N	SM4500NO3-B	0.01	υ	0.01	mg/L as N	7/10/08 15:30	КМ	E85457
Nitrogen, Total	EPA351.2	0.63		0.05	mg/L as N	7/15/08 13:32	BB	E84380
Kjeldahl Odor @ 42° C	SM2150B	27		1	TON	7/10/08 15:30	RH	E85457
Organic Nitrogen	EPA351.2/350.1	0.33		0.05	mg/L as N	7/15/08 13:32	SJ	E84380
Ortho Phosphate	SM4500P-E	0.017	I	0.010	mg/L as P	7/11/08 - 12:30	AS	E84380
oH - field	150.1	7.05		0.01	std units	7/10/08 11:00	HC	E84380
Phosphorus, Total	EPA365.4	0.010	U	0.010	mg/L as P	7/15/08 15:19	BB	E84380
Potassium	EPA200.7	443		0.052	mg/L	7/12/08 12:16	JPW	E84380
See attached results	Subcontract					7/11/08 15:33	SUB	
Selenium	EPA200.7	0.002	U	0.002	mg/L	7/12/08 12:16	JPW	E84380
Silver	EPA200.7	0.001	U	0.001	mg/L	7/12/08 12:16	JPW	E84380
Sodium	EPA200.7	10000		0.400	mg/L	7/12/08 12:16	JPW	E84380
Specific	120.1	50500		0.1	µmhos/cm	7/10/08 11:00	HC	E84380
Conductance-field Sulfate	ASTM-D516-90	3010		2	mg/L	7/21/08 16:59	вв	E84380
hallium	EPA279.2	0.001	U	0.001	mg/L	7/20/08 10:05	JPW	E84380
Fotal Coliform, MF	SM9222B	i	U	1	CFU/100mI	7/10/08 15:10	KS	E85457
Total Dissolved Solids	SM2540C	28800		20	mg/L	7/15/08 16:00	RH	E85457
urbidity - field	EPA180.1	14.4		0.1	NTU	7/10/08 11:00	HC	E84380
Vater	170.1	32.7		0.1	С	7/10/08 11:00	HC	E84380
`emperature-field Veather-field	DEPSOP	p. cloudy		n/a	none	7/10/08 11:00	HC	E84380
linc	EPA200.7	0.016		0.001	mg/L	7/12/08 12:16	JPW	E84380

Page: Page 3 of 3

Client Project: South Cape Coral Lab Project: N0807129 Report Date: 08/04/08

÷

Laboratory Results

Comments:

Approved by: Kathrine Bartkiewicz/ PD Manager Fort Myers Andrew Konopacki/Lab Manager Nokomis

Test Results meet all the requirements of the NELAC standards.

S _ 10	. Bright anders Laboratorie 050 Endeavor Cour okomis, FL 34275-3		Customer ID: Customer PO: Received: EMSL Order:	SAND53 N0807129 07/14/08 4:49 PM 170803494	
Fax: Project:	(941) 484-6774 N0807129	Phone: (941) 488-8103	EMSL Proj: Analysis Date: Report Date:	7/16/2008 7/23/2008

Determination of Asbestos Structures in Water Performed by the 100.2 Method (EPA/600/R-94/134)

Sample ID	Sample Prep Date	# Fibers Asbestos	# Fibers Non- Asbestos	Type(s) Of Asbestos	Analytical Sensitivity (MFL)	Confidence Limits	Concentration Of Asbestos Fibers (MFL)	Comments
N0807129-01	7-16-08 1300	0			0.74	0.00-2.70	< 0.74	Collected 7-10-08 1100
170803494-0001								

Samples filtered out of hold time. Contact Kim Wallace at 305-650-0577 with any questions,

Analyst(s)

Joe McOscar (1)

Himberly a Wallace

Kimberly Wallace, Laboratory Manager or other approved signatory

Sample collection and containers provided by the client, acceptable bottle blank level is defined as <=0.01MFL>10um. ND=None Detected. This report may not be reproduced, except in full, without written permission by EMSL Analytical, Inc. The test results contained within this report meet the requirements of NELAC unless otherwise noted. This report relates only to the samples reported above. Samples received in good condition unless otherwise noted. FOH# E86795

100.2-V221

THIS IS THE LAST PAGE OF THE REPORT.

SOUTHERN ANALYTICAL LABORATORIES, INC.

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 fax 813-855-2218

Sanders Laboratories 1050 Endeavor Court Nokomis, FL 34275-3623

July 25, 2008 Project No: 83991

Laboratory Report

Project Name Sample Description Matrix SAL Sample Number Date/Time Collected Date/Time Received	N08071 N08071 Ground 83991.0 07/10/00 07/11/00	29-01 Lower Zog Iwater 1 8 11:00	ne				
Parameters	Units	Results	Method	Detection Limit	Date/Time Analyzed	Date/Time Prep	Analyst
<u>Radiochemistry</u>							
Gross Alpha (Incl. Uranium)	pCi/l	12±2.6	EPA 00-02	2.8	07/15/08 15:45	07/14/08 09:55	AWW
Radium-226	pCi/l	3.4±0.2	EPA 903.1	0.03	07/22/08 16:20	07/16/08 13:25	AWW
Radium-228	pCi/l	0.4±0.2 U1	EPA RA-05	0.4	07/24/08 17:51		AWW
Combined Uranium	pCi/l	0.64	ASTM D5174	0.04	07/25/08 13:13	07/21/08 08:00	AWW

Date issued: July 30, 2008

To: Tami Bright Sanders Laboratories, Inc. 1050 Endeavor Court Nokomis, FL 34275

 Client:
 Sanders Laboratories, Inc.

 Workorder ID:
 N0807129
 [2031492]

 Received:
 7/11/08 10:45

Dear Tami Bright;

Analytical results presented in this report have been reviewed for compliance with the HBEL, Inc. Quality Systems Manual and have been determined to meet applicable Method guidelines and Standards referenced in the July 2003 National Environmental Laboratory Accreditation Program (NELAP) Quality Manual unless otherwise noted. The Analytical Results within these report pages reflect the values obtained from tests performed on Samples As Received by the laboratory unless indicated differently.

FDOH Safe Drinking Water Act, Clean Water Act and RCRA Certification #'s: E96080, E83509

Questions regarding this report should be directed to the Report Signatory at (772) 465-8584 referencing the HBEL Workorder ID [Number].

Respectfully submitted,

Eric Charest HBEL, Inc. Laboratory Manager Note: This report is not to be copied, except in full, without the expressed written consent of HBEL, Inc.

5600 US 1 North Fort Pierce, FL 34946 FDOH # E96080 4155 St. Johns Pkwy Suite 1300 Sanford, FL 32771 FDOH # E83509

5600 U.S. I North, Fort Pierce, FL 34946 Phone: (772) 465-8584 Fax: (772) 467-1584

Quality Control Summary

Client:	Sanders Laboratories, Inc.
Workorder ID:	N0807129
Received:	7/11/08 10:45

[2031492]

MB=Method Bla	nk LCS=Laboratory Control San	ple LCSD=Laboratory Control Sample Duplicate MS=Matrix Splke MSD=Matrix Spike Duplicate DUP=Sample Duplicate
HBEL Sample		Method Narratives (If Applicable)
<u>Number</u>	<u>Sample ID</u> Analyti	cal Method Description
		Quality Control Summary
Method HBE	L Batch Analyte	Analytical Issue
EPA 505		
PE	ST5153	
2031492001	Decachlorobiphenyl	Surrogate - Outside acceptance Limits.
<u>EPA 515.1</u>		
PE	ST5156	
2031492001	Dinoseb	Accuracy - Outside acceptance limits in the MS.
2031492001	Dinoseb	Accuracy - Outside acceptance limits in the MSD.
2031492001	Dinoseb	Precision - Outside acceptance limits between the MS and MSD.

The above due to matrix effects. Accuracy/Precision demonstrated with other QC samples.

.

.

HBEL, Inc. 5600 U.S. 1 North, Fort Plerce, FL 34946

.

Phone: (772) 465-8584 Fax: (772) 467-1584

Client: Sanders Laboratories, Inc.

CERTIFICATE OF ANALYSIS [2031492]

Laboratory Prep Analvzed Lab Reporting Date/Time Analyst ID Method Batch Date/Time Parameter Qualifier Result Units Limit 2031492001 Laboratory ID: Sampled: 07/10/08 11:00 Received: 07/11/08 10:45 N0807129-01 Lower Zone Grab Sample ID: Matrix: Water Results reported on Wet Weight Basis EPA 335.2 WCGE29679 07/17/08 11:30 07/18/08 13:42 Cyanide 0.0047U mg/L 0.0047 GG E96080 Surfactants as LAS, 0.086 0.022 EPA 425.1 WCGE29671 07/11/08 11:00 07/11/08 15:22 SP mg/L E96080 Mol.wt.340 1.2-Dibromo-3-0.0034U 0.0034 EPA 504.1 PEST5152 07/14/08 13:00 07/15/08 5:48 J٢ ug/L E96080 chloropropane 1.2-Dibromoethane 0.00440 uq/L 0.0044 EPA 504.1 **PEST5152** 07/14/08 13:00 07/15/08 5:48 JL E96080 0.043U 0.043 EP4 505 **PEST5153** 07/15/08 9:00 07/16/08 4:00 JL Aldrin ug/L E96080 0.13U 0.13 EPA 505 **PEST5153** 07/15/08 9:00 07/16/08 4:00 JL. Chlordane ug/L E96080 Dieldrin 0.065U 0.065 EPA 505 **PEST5153** 07/15/08 9:00 07/16/08 4:00 J۲ uq/L E96080 0.099 EPA 505 **PEST5153** 07/15/08 9:00 07/16/08 4:00 JL E96080 Endrin 0.099U ug/L gamma-BHC (Lindane) 0.019U ua/L 0.019 EPA 505 **PEST5153** 07/15/08 9:00 07/16/08 4:00 JL E96080 EPA 505 **PEST5153** 07/15/08 9:00 07/16/08 4:00 JL 0.035U 0.035 Heptachlor ug/L E96080 EPA 505 07/15/08 9:00 07/16/08 4:00 JL 0.027U 0.027 **PEST5153** E96080 Heptachlor epoxide ug/L JL Methoxychlor 0.043U ug/L 0.043 EPA 505 PEST5153 07/15/08 9:00 07/16/08 4:00 E96080 0.13U PCB ug/L 0.13 EPA 505 **PEST5153** 07/15/08 9:00 07/16/08 4:00 JL E96080 0.59U 0.59 EPA 505 **PEST5153** 07/15/08 9:00 07/16/08 4:00 JL Toxaphene ug/L E96080 0.19 **PEST5156** 07/21/08 8:00 07/23/08 1:56 JL 0.19U EPA 515.1 2.4.5-TP ug/L E96080 2.4-D 0.22U ug/L 0.22 EPA 515.1 **PEST5156** 07/21/08 8:00 07/23/08 1:56 JL F96080 JL Dalapon 2.30 ug/L 2.3 EPA 515.1 PEST5156 07/21/08 8:00 07/23/08 1:56 E96080 0.23U ug/L 0.23 EPA 515.1 PEST5156 07/21/08 8:00 07/23/08 1:56 JL E96080 Dinoseb JL 0.39U 0.39 EPA 515.1 PEST5156 07/21/08 8:00 07/23/08 1:56 Pentachlorophenol uq/L E96080 ٦L **PEST5156** 07/21/08 8:00 07/23/08 1:56 Picloram 0.23U 0.23 EPA 515.1 ug/L E96080 0.24U ug/L 0.24 EPA 524.2 VOC2940 07/16/08 17:38 WR E96080 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 0.21U ug/L 0.21 EPA 524.2 VOC2940 07/16/08 17:38 WR E96080 0.47U ug/L 0.47 EPA 524.2 VOC2940 07/16/08 17:38 WR 1,1,2,2-Tetrachloroethane E96080 WR 1,1,2-Trichloroethane 0.44U ug/L 0.44 EPA 524.2 VOC2940 07/16/08 17:38 E96080 0.20U 0.20 EPA 524.2 VOC2940 07/16/08 17:38 WR 1,1-Dichloroethane ug/L E96080 0.23 EPA 524,2 VOC2940 07/16/08 17:38 WR 1,1-Dichloroethene 0.23Uug/L E96080 0.24U 0.24 EPA 524.2 VOC2940 07/16/08 17:38 WR 1,1-Dichloropropene ug/L E96080 0.30U ug/L 0.30 EPA 524.2 VOC2940 07/16/08 17:38 WR 1,2,3-Trichloropropane E96080 1,2,4-Trichlorobenzene 0.41U ug/L 0.41 EPA 524.2 VOC2940 07/16/08 17:38 WR E96080 0.21U 0.21EPA 524.2 VOC2940 07/16/08 17:38 WR 1,2-Dichlorobenzene ug/L E96080 1,2-Dichloroethane 0.29U ug/L 0.29 EPA 524.2 VOC2940 07/16/08 17:38 WR E96080 0.40U 0.40 EPA 524.2 VOC2940 07/16/08 17:38 WR ug/L 1,2-Dichloropropane E96080 1.3-Dichlorobenzene 0.23U ug/L 0.23 EPA 524.2 VOC2940 07/16/08 17:38 WR E96080 0.22U 0.22 EPA 524.2 1,3-Dichloropropane ug/L VOC2940 07/16/08 17:38 WR E96080 0.52U 0.52 EPA 524.2 VOC2940 07/16/08 17:38 WR E96080 1,3-Dichloropropene ug/L 1,4-Dichlorobenzene 0.23U ug/L 0.23 EPA 524.2 VOC2940 07/16/08 17:38 WR E96080 0.30U 2,2-Dichloropropane ug/L 0.30 FPA 524 2 VOC2940 07/16/08 17:38 WR E96080 2-Chlorotoluene 0.20U ug/L 0.20 EPA 524.2 VOC2940 07/16/08 17:38 WR E96080 0.23 4-Chlorotoluene 0.23U ug/L EPA 524.2 VOC2940 07/16/08 17:38 WR E96080

Workorder ID: N0807129

5600 US 1 North Fort Pierce, FL 34946 FDOH # E96080

4155 St. Johns Pkwy Suite 1300 Sanford, FL 32771 FDOH # E83509

HBEL, Inc. 5600 U.S. I North, Fort Pierce, FL 34946

Phone: (772) 465-8584 Fax: (772) 467-1584

Client: Sanders Laboratories, Inc.

CERTIFICATE OF ANALYSIS [2031492]

Laboratory Prep Analyzed Lab Reporting Qualifier Result Limit Method Batch Date/Time Date/Time Analyst ID Parameter Units Benzene 0.20U ug/L 0.20 EPA 524.2 VOC2940 07/16/08 17:38 WR E96080 Bromobenzene 0.34U 0.34 ug/L EPA 524 2 VOC2940 07/16/08 17:38 WR E96080 Bromodichloromethane 0.25U 0.25 EPA 524.2 ug/L VOC2940 07/16/08 17:38 WR E96080 Bromoform 0.41U EPA 524.2 ug/L 0.41 VOC2940 07/16/08 17:38 WR E96080 Bromomethane 0.30U ug/L 0.30 EPA 524.2 VOC2940 07/16/08 17:38 WR E96080 Carbon tetrachloride 0.24U 0.24 EPA 524,2 VOC2940 07/16/08 17:38 ug/L WR E96080 Chlorobenzene 0.30U 0.30 EPA 524.2 VOC2940 ug/L 07/16/08 17:38 WR E96080 Chloroethane 0.46U ug/L 0.46 EPA 524.2 VOC2940 07/16/08 17:38 WR E96080 Chloroform 0.25U 0.25 EPA 524 2 VOC2940 ug/L 07/16/08 17:38 WR E96080 Chloromethane 0.40U 0.40 EPA 524.2 VOC2940 07/16/08 17:38 WR ug/L E96080 cis-1,2-Dichloroethene 0.21U ug/L 0.21 EPA 524.2 VOC2940 07/16/08 17:38 WR F96080 Dibromochloromethane 0.30U 0.30 EPA 524.2 VOC2940 uq/L 07/16/08 17:38 WR E96080 Dibromomethane 0.35U ug/L 0.35 EPA 524.2 VOC2940 07/16/08 17:38 WR E96080 Dichlorodifluoromethane 0.28U 0,28 EPA 524.2 07/16/08 17:38 VOC2940 WR ug/L E96080 Ethylbenzene 0.21U 0.21 EPA 524.2 VOC2940 07/16/08 17:38 WR ug/L E96080 0.21 Methyl-tert-bulyl-ether 0.21U ug/L EPA 524.2 VOC2940 07/16/08 17:38 WR E96080 Methylene chloride 0.23U ug/L 0.23 EPA 524.2 VOC2940 07/16/08 17:38 WR E96080 Styrene 0.21U 0.21 EPA 524,2 VOC2940 ug/L 07/16/08 17:38 WR E96080 **Tetrachloroethene** 0.24U 0.24 EPA 524.2 VOC2940 ug/L 07/16/08 17:38 WR E96080 Toluene ug/L 0.22U0.22EPA 524.2 VOC2940 07/16/08 17:38 WR E96080 Total Xylenes 0.46U ug/L 0.46 EPA 524.2 VOC2940 07/16/08 17:38 WR E96080 trans-1.2-Dichloroethene 0.35U ug/L 0.35 EPA 524.2 VOC2940 07/16/08 17:38 WR E96080 Trichloroethene 0.36U 0.36 EPA 524.2 VOC2940 07/16/08 17:38 WR ug/L E96080 Trichlorofluoromethane 0.22U 0.22 EPA 524.2 VOC2940 ug/L 07/16/08 17:38 WR E96080 Vinyl chloride 0.32U ug/L 0.32 EPA 524.2 VOC2940 07/16/08 17:38 WR E96080 Alachlor 0.62U ug/L 0.62 EPA 525.2 SVOC2663 07/16/08 5:00 07/17/08 21:33 CG E96080 Atrazine 0.49U 0.49 EPA 525.2 SVOC2663 07/16/08 5:00 07/17/08 21:33 ug/L CG E96080 Benzo(a)pyrene 0.0710 0.071 EPA 525.2 SVOC2663 07/16/08 5:00 07/17/08 21:33 CG ug/L E96080 bis(2-ethylhexyl)phthalate 0.86U 0.86 EPA 525.2 07/16/08 5:00 07/17/08 21:33 ug/L SVOC2663 CG E96080 Di(2-ethylhexyl)adipate 0.69U 0.69EPA 525.2 ug/L SVOC2663 07/16/08 5:00 07/17/08 21:33 CG E96080 Hexachlorobenzene 0.31U ug/L 0.31 EPA 525.2 SVOC2663 07/16/08 5:00 07/17/08 21:33 CG E96080 Hexachlorocyclopentadiene 0.24U ug/L 0.24 EPA 525.2 SVOC2663 07/16/08 5:00 07/17/08 21:33 CG E96080 Simazine 0.64U ug/L 0.64 EPA 525.2 SVOC2663 07/16/08 5:00 07/17/08 21:33 CG E96080 Aldicarb 0.54U 0.54 EPA 531.1 HPLC2500 ug/L 07/23/08 16:32 JJM E96080 Aldicarb sulfone 0.45U ug/L 0.45 EPA 531.1 HPLC2500 07/23/08 16:32 JJM E96080 Aldicarb sulfoxide 0.36U ug/L 0.36 EPA 531.1 HPLC2500 07/23/08 16:32 JJM E96080 Carbofuran 0.41U ug/L 0.41 EPA 531.1 HPLC2500 07/23/08 16:32 JJM E96080 Oxamyl 0.13U 0.13 EPA 531.1 ug/L HPLC2500 07/23/08 16:32 JJM E96080 Glyphosate 10U ug/L 10 EPA 547 SAL1064 07/23/08 18:08 SAL E84129 Glyphosate 10U ug/L 10 EPA 547 SAL 07/23/08 18:08 E84129 Endothall 2.8U ug/L 2.8 EPA 548.1 SVOC2664 07/14/08 8:00 07/16/08 2:18 CG E96080 Diquat 1.9U ug/L 1.9 EPA 549.2 HPLC2496 07/14/08 9:00 07/16/08 14:46 JJM E96080

Workorder ID: N0807129

5600 US 1 North Fort Pierce, FL 34946 FDOH # E96080 0.18U

ug/L

0.18

4155 St. Johns Pkwy Suite 1300 Sanford, FL 32771 FDOH # E83509

PEST5157

EPA 552.1

JL

E96080

07/23/08 13:06 07/23/08 21:09

Dibromoacetic Acid

HBEL, Inc. 5600 U.S. I North, Fort Pierce, FL 34946

Phone: (772) 465-8584 Fax: (772) 467-1584

Client: Sanders Laboratories, Inc.

CERTIFICATE OF ANALYSIS [2031492]

es, Inc. Workorder ID: N0807129

Parameter	Qualifier Result	Units	Reporting Limit	Method	Laboratory Batch	Prep Date/Time	Analyzed Date/Time	Analyst	Lab ID
Dichloroacetic Acid	0.66U	ug/L	0.66	EPA 552.1	PEST5157	07/23/08 13:06	07/23/08 21:09	JL	E96080
Monobromoacetic Acid	0.28U	ug/L	0.28	EPA 552.1	PE\$T5157	07/23/08 13:06	07/23/08 21:09) JL	E96080
Monochloroacetic Acid	0.88U	ug/L	0.88	EPA 552.1	PEST5157	07/23/08 13:06	07/23/08 21:09	JL	E96080
Total HAAs	0.18U	ug/L	0.18	EPA 552.1	PEST5157	07/23/08 13:06	07/23/08 21:09	JL	E96080
Trichloroacelic acid	0.20U	ug/L	0.20	EPA 552.1	PEST5157	07/23/08 13:06	07/23/0B 21:09	JL	E96080
2,4,6-Trichlorophenol	1.0U	ug/L	1.0	EPA 625	SVOC2665	07/15/08 11:30	07/21/08 18:41	WR	E96080
2-Chlorophenol	0.77U	ug/L	0.77	EPA 625	SVOC2665	07/15/08 11:30	07/21/08 18:41	WR	E96080
2-Methyl-4,6-dinitropheno	ol 1.1U	ug/L	1.1	EPA 625	SVOC2665	07/15/08 11:30	07/21/08 18:41	WR	E96080
Anthracene	0.46U	ug/L	0.46	EPA 625	SVOC2665	07/15/08 11:30	07/21/08 18:41	WR	E96080
Butylbenzylphthalate	0.51U	ug/L	0.51	EPA 625	SVOC2665	07/15/08 11:30	07/21/0B 18:41	WR	E96080
Di-n-bulyiphthalate	0.68U	ug/L	0.68	EPA 625	SVOC2665	07/15/08 11:30	07/21/0B 18:4	I WR	E96080
Di-n-octylphthalate	0.47U	ug/L	0.47	EPA 625	SVOC2665	07/15/08 11:30	07/21/08 18:41	WR	E96080
Diethylphthalate	0.32U	ug/L	0.32	EPA 625	SVOC2665	07/15/08 11:30	07/21/08 18:4	i wr	E96080
Dimethyl-phthalate	2.2U	ug/L	2.2	EPA 625	SVOC2665	07/15/08 11:30	07/21/08 18:4	I WR	E96080
Naphthalene	0.64U	ug/L	0.64	EPA 625	SVOC2665	07/15/08 11:30	07/21/08 18:4	I WR	E96080
Phenanthrene	0.28U	ug/L	0.28	EPA 625	SVOC2665	07/15/08 11:30	07/21/08 18:4	1 WR	E96080
Phenol	0.89U	ug/L	0.89	EPA 625	SVOC2665	07/15/08 11:30	07/21/0B 18:4	1 WR	E96080

¹Result Qualifiers: U = Not Detected I = Analyte detected between the Laboratory Method Detection Limit and Laboratory Reporting Limit Applicable Florida Department of Environmental Protection Qualifiers defined below. Statement of Estimated Uncertainty available upon request.

Sanders	CHAIN-OF-CUSTODY RECORD PROJECT	7129
Laboratories INC.	Page	of
Client YOUNGQUIST Address	Report To:	
Phone Fax Sampled By (PRINT) HJZRY (POOK Sampler Signature HJARY (POOK	Project Location: REQUESTED DUE DATE:	<u><u> </u></u>
Sampler Signature	Sample BATE TIME TYPE BUNK STATE	Sample
	1008 1100 G 1 111	-01A
		B
		E
		F
		G V H
Bottle Lot #	RELINQUISHED BY / AFFILIATION DATE TIME ACCEPTED BY / AFFILIATION	DATE TIME
COMMENTS: As, Ba, Cd, Cr, Pb, Hg As, Ba, Cd, Cr, Pb, Hg Ni, Se, Ng, Sb, Be, Al Cu, Fe, Mn, Ag, Zn Cu, Fe, Mn, Ag, Zn Cu, Fe, Mn, Ag, Zn Cu, Fe, Mn, Ag, Zn Cu, Fe, No	Historda Hozant 7/1008 1205 Abon Clatter out Londa Hozant 7/19/08 182 	7/10/08 1205 7/0/08 1850 7/4/08 0700

1050 Endeaver Ct., Nokomis, FL 34275-3623 • (941)488-8103 • FAX 484-6774 • 10090 Bavaria Rd., Fort Myers, FL 33913 • (239) 590-0337 • FAX (239) 590-0536

Injection Test Source Water

Page: Page 1 of 3

Client Project: Southwest WWTP Plant Lab Project: N0807225 Report Date: 08/04/08

Laboratory Results

MWH Americas, Inc. 2503 Del Prado Blvd Suite 430 Cape Coral, FL 33904

	ample Descript W Plant	lon		Sample Source Waste Water		Received Date/Time 7/14/08 12:45		ple Date/Time
	omposite					//14/08 12:45		//14/08 11:00
<u>Analysis</u>	<u>Method</u>	<u>Results</u>	<u>Qual</u>	<u>MDL</u>	<u>Units</u>	<u>AnalysisDate/Time</u>	<u>Analyst</u>	<u>Cert ID</u>
Aluminum	EPA200.7	0.009	U	0.009	mg/L	7/28/08 11:19	JPW	E84380
Ammonia	EPA350.1	0.01	U	0.01	mg/L as N	7/17/08 16:31	AV	E84380
Antimony	EPA200.7	0.002	U	0.002	mg/L	7/28/08 11:19	JPW	E84380
Arsenic	EPA200.7	0.002	U	0.002	mg/L	7/28/08 11:19	JPW	E84380
Barium	EPA200.7	0.010		0.001	mg/L	7/28/08 11:19	JPW	E84380
Beryllium	EPA200.7	0.0001	U	0.0001	mg/L	7/28/08 11:19	JPW	E84380
Bicarbonate Alkalinity	SM4500CO2-D	105		3	mg/I CaCO3	7/18/08 13:15	AS	E84380
BOD	SM5210B	2	U	2	mg/L	7/15/08 11:45	AS	E84380
Cadmium	EPA200.7	0.001	U	0.001	mg/L	7/28/08 11:19	JPW	E84380
Calcium	EPA200.7	57.2		0.006	mg/L	7/28/08 11:19	JPW	E84380
Carbonate Alkalinity	SM4500CO2-D	0.51		0.01	mg/l CaCO3	7/18/08 13:15	AS	E84380
Chemical Oxygen Demand	EPA410.4	97		8	mg/L	7/18/08 10:30	BB	E84380
Chloride	SM4500CI-E	375		ì	mg/L	7/16/08 17:28	AV	E84380
Chromium	EPA200.7	0.001	U	0.001	mg/L	7/28/08 11:19	JPW	E84380
Color-True	SM2120B	5		5	C.U.	7/15/08 14:30	AV	E84380
Соррег	EPA200.7	0.001	U	0.001	mg/L	7/28/08 11:19	JPW	E84380
Dissolved Oxygen-field	360.1	9.03		0.01	mg/L	7/14/08 11:00	HC	E84380
Fluoride	SM4500F-C	0.6		0.1	mg/L	7/14/08 14:00	AS	E84380
Iron	EPA200.7	0.015	U	0.015	mg/L	7/28/08 11:19	JPW	E84380
Langelier Saturation	LSI	-0.18		0.01	NONE	8/4/08 15:18	AK	E84380
Lead	EPA200.7	0.001	U	0.001	mg/L	7/28/08 11:19	JPW	E84380
Magnesium	EPA200.7	23.9		0.007	mg/L	7/28/08 11:19	JPW	E84380
Manganese	EPA200.7	0.016		0.001	mg/L	7/28/08 11:19	JPW	E84380
Mercury	EPA245.1	0.001	U	0.001	mg/L	7/23/08 9:47	JPW	E84380
Nic kel	EPA200.7	0.001	U	0.001	mg/L	7/28/08 11:19	JPW	E84380
١	050 Endeavor Cour	t • Nokom	is, FL 34275	• Phone: (941)	488-8103 • (8	800) 255-3108 • Fax: (*		

Page: Page 2 of 3

Client Project: Southwest WWTP Plant Lab Project: N0807225 Report Date: 08/04/08

Laboratory Results

		Results 12.8 12.8 0.01 0.54 1	Qual U	Waste Water <u> MDL</u> 0.01 0.01 0.01 0.10	<u>Units</u> mg/L as N mg/L as N mg/L as N	7/14/08 12:45 <u>AnalysisDate/Time</u> 7/14/08 15:10 7/14/08 15:10	<u>Analyst</u> SJ SJ	7/14/08 11:00 <u>Cert ID</u> E84380
Nitrate+Nitrite-N Nitrate-N Nitrogen, Total Kjeldahl Odor @ 30°C Organic Nitrogen Ef Ortho Phosphate	EPA353.2 EPA353.2 EPA353.2 EPA351.2 SM2150B PA351.2/350.1	12.8 12.8 0.01 0.54 1		0.01 0.01 0.01	mg/L as N	7/14/08 15:10	SJ	E84380
Nitrate-N Nitrogen, Total Sjeldahl Odor @ 30°C Organic Nitrogen EF Ortho Phosphate	EPA353.2 EPA353.2 EPA351.2 SM2150B PA351.2/350.1	12.8 0.01 0.54 1	U	0.01 0.01	mg/L as N			
Nitrite-N Nitrogen, Total Kjeldahl Odor @ 30°C Drganic Nitrogen EF Ortho Phosphate OH - field	EPA353.2 EPA351.2 SM2150B PA351.2/350.1	0.01 0.54 1	U	0.01	-	7/14/08 15:10	SJ	
Vitrogen, Total Kjeldahl Ddor @ 30°C Drganic Nitrogen EF Drtho Phosphate	EPA351.2 SM2150B PA351.2/350.1	0.54 1	U		mg/L as N			E84380
Kjeldahl Ddor @ 30°C Drganic Nitrogen EF Drtho Phosphate H - field	SM2150B PA351.2/350.1	1		0.10		7/14/08 14:00	SJ	E84380
Odor @ 30°C Organic Nitrogen EF Ortho Phosphate H - field	PA351.2/350.1				mg/L as N	7/21/08 15:40	SJ	E84380
Drtho Phosphate				I	TON	7/14/08 14:30	AS	E84380
H - field	SM4500Р-Е	0.54		0.10	mg/L as N	7/21/08 15:40	SJ	E84380
		2.60		0.01	mg/L as P	7/15/08 13:15	AS	E84380
hosphorus, Total	150.1	7.62		0.01	std units	7/14/08 11:00	HC	E84380
	EPA365.4	2.51		0.05	mg/L as P	7/21/08 15:40	SJ	E84380
otassium	EPA200.7	18.2		0.052	mg/L	7/28/08 11:19	JPW	E84380
ee attached results	Subcontract					7/15/08 15:06	SUB	
elenium	EPA200.7	0.002	U	0.002	mg/L	7/28/08 11:19	JPW	E84380
ilver	EPA200.7	0.001	υ	0.001	mg/L	7/28/08 11:19	JPW	E84380
odium	EPA200.7	265		0.400	mg/L	7/28/08 11:19	JPW	E84380
pecific	120.1	1790		0.1	µmhos/cm	7/14/08 11:00	HC	E84380
Conductance-field ulfate AS	STM-D516-90	73		2	mg/L	7/21/08 16:59	BB	E84380
hallium	EPA279.2	0.001	U	0.001	mg/L	7/20/08 10:05	JPW	E84380
otal Coliform, MF	SM9222B	1	U	1	CFU/100ml	7/14/08 14:50	RF	E84380
otal Dissolved Solids	SM2540C	928		20	mg/L	7/17/08 15:15	AS	E84380
otal Suspended Solids	SM2540D	0.8		0.6	mg/L	7/18/08 11:30	AS	E84380
urbidity - field	EPA180.1	2.6		0.1	NTU	7/14/08 11:00	HC	E84380
ater	170.1 R	Refridgerated		0.1	с	7/14/08 11:00	HC	E84380
emperature-field nc								

Page: Page 3 of 3

Client Project: Southwest WWTP Plant Lab Project: N0807225 Report Date: 08/04/08

Laboratory Results

Approved by: Kathrine Barikiëwicz) ab Manager Fort Myers Andrew Konopacki/Lab Manager Nokomis

Comments:

Test Results meet all the requirements of the NELAC standards.

SOUTHERN ANALYTICAL LABORATORIES, INC.

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 fax 813-855-2218

Sanders Laboratories 1050 Endeavor Court Nokomis, FL 34275-3623

July 30, 2008 Project No: 84094

Laboratory Report

Project Name Sample Description Matrix SAL Sample Number Date/Time Collected Date/Time Received	N08 Wa 840 07/	307225 307225-01 SW Plant stewater 94.01 14/08 11:00 16/08 10:09					
Parameters	Units	Results	Method	Detection Limit	Date/Time Analyzed	Date/Time Prep	Analyst
Radiochemistry							
Gross Alpha (Incl. Uranium)	pCi/l	6.9±2.5	EPA 00-02	2.8	07/18/08 17:43	07/17/08 09:00	AWW
Radium-226	pCi/l	1.2±00.09	EPA 903.1	0.00	07/24/08 14:30		AWW
Radium-228	pCi/l	0.4±0.2 U1	EPA RA-05	0.4	07/29/08 14:12		AWW
Combined Uranium	pCi/l	0.50	ASTM D5174	0.04	07/25/08 13:23	07/21/08 08:00	AWW

.

SOUTHERN ANALYTICAL LABORATORIES, INC.

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 fax 813-855-2218

Sanders Laboratories 1050 Endeavor Court Nokomis, FL 34275-3623

July 30, 2008 Project No: 84094

Laboratory Report

Footnotes

Test results presented in this report meet all the requirements of the NELAC standards.
 A statement of estimated uncertainty of test results is available upon request.
 For methods marked with ***, all QC criteria have been met for this method which is equivalent to a SAL certified method.
 Analyte was not detected; indicated concentration is method detection limit. Radiochemistry MDL is sample specific and matrix dependent.

Lesliel

Approved By: Francis I. Daniels, Laboratory Director Leslie C. Boardman, Q. A. Manager

.

EMSL Analytical, Inc. 19501 NE 10th Ave. Bay A, N. Miami Beach, FL 33179 Phone: (305) 650-0577 Fax: (305) 650-0578 Email: miamilab@emsl.com

Attn:	T. Bright
	Sanders Laboratories
	1050 Endeavor Court
	Nokomis, FL 34275-3623

Fax: (941) 484-6774 Project: **N0807225** Phone: (941) 488-8103

 Customer ID:
 SAND53

 Customer PO:
 N0807225

 Received:
 07/15/08 1:03 PM

 EMSL Order:
 170803518

 EMSL Proj:
 7/23/2008

 Report Date:
 7/24/2008

Determination of Asbestos Structures in Water Performed by the 100.2 Method (EPA/600/R-94/134)

Samula ID	Sample Prep	# Fibers	# Fibers Non-	Type(s) Of	Analytical Sensitivity	Confidence	Concentration Of Asbestos Flbers (MFL)	•
Sample ID	Date	Asbestos	Asbestos	Asbestos	(MFL)	Limits	(14171)	Comments
N0807225-01 170803518-0001	7/15/08 14:00	0			0.18	0.00-0.68	<0.18	Collected 7/14/08 1100

Analyst(s)

Joe McOscar (1)

Himberly a Viallace

Kimberly Wallace, Laboratory Manager or other approved signatory

Sample collection and containers provided by the client, acceptable bottle blank level is defined as <=0.01MFL>10um. ND=None Detected. This report may not be reproduced, except in full, without written permission by EMSL Analytical, Inc. The test results contained within this report meet the requirements of NELAC unless otherwise noted. This report relates only to FOH# E86795

100.2-V221

THIS IS THE LAST PAGE OF THE REPORT.

Date issued: July 30, 2008

To: Tami Bright Sanders Laboratories, Inc. 1050 Endeavor Court Nokomis, FL 34275

Client:Sanders Laboratories, Inc.Workorder ID:N0807225 SW PlantReceived:7/15/08 9:45

[2031513]

Dear Tami Bright;

Analytical results presented in this report have been reviewed for compliance with the HBEL, Inc. Quality Systems Manual and have been determined to meet applicable Method guidelines and Standards referenced in the July 2003 National Environmental Laboratory Accreditation Program (NELAP) Quality Manual unless otherwise noted. The Analytical Results within these report pages reflect the values obtained from tests performed on Samples As Received by the laboratory unless indicated differently.

FDOH Safe Drinking Water Act, Clean Water Act and RCRA Certification #'s:

E96080, E83509

Questions regarding this report should be directed to the Report Signatory at (772) 465-8584 referencing the HBEL Workorder ID [Number].

Respectfully submitted,

Eric Charest HBEL, Inc. Laboratory Manager Note: This report is not to be copied, except in full, without the expressed written consent of HBEL, Inc.

5600 US 1 North Fort Pierce, FL 34946 FDOH **#** E96080

4155 St. Johns Pkwy Suite 1300 Sanford, FL 32771 FDOH # E83509

Printed: 7/30/08

HBEL, Inc.

5600 U.S. I North, Fort Plerce, FL 34946 Phone: (772) 465-8584 Fax: (772) 467-1584

Client:Sanders Laboratories, Inc.Workorder ID:N0807225 SW PlantReceived:7/15/08 9:45

Quality Control Summary

[2031513]

MB=Method Blank	LCS=Laboratory Control Sam	nple LCSD=Laboratory Control Sample Duplicate MS=Matrix Spike MSD=Matrix Spike Duplicate DUP=Sample Duplicate
HBEL Sample		Method Narratives (If Applicable)
<u>Number</u>	Sample ID Analytic	cal Method Description
2031513001	N0807225 SW Plant C	Composite
	EPA 625	5 No MS/MSD analyzed in batch. Precision and Accuracy determined with LCS/LCSD
		Quality Control Summary
Method HBEL	Batch Analyte	Analytical Issue
EPA 505		
PEST	5153	
2031513001	Decachlorobiphenyl	Surrogate - Outside acceptance Limits.

HBEL. 5600 U.S. I North, Fort Pierce, FL 34946

Phone: (772) 465-8584 Fax: (772) 467-1584

Client: Sanders Labo

Parameter

Laboratory ID:

Sample ID:

Cyanide

1,1-Dichloropropene

1,2,3-Trichloropropane

1,2,4-Trichlorobenzene

1,2-Dichlorobenzene

1,2-Dichloroethane

1,2-Dichloropropane

1,3-Dichlorobenzene

1,3-Dichloropropane

1,3-Dichloropropene

1,4-Dichlorobenzene

2,2-Dichloropropane

2-Chlorotoluene

4-Chlorotoluene

0.24U

0.30U

0.41U

0.21U

0.29U

0.40U

0.23U

0.22U

0.52U

0.23U

0.30U

0.20U

0.23U

nde	rs Laboratori	es, Inc.	Wa	rkorder ID: N0	807225	SW Plant			
	Qualifier Result	Units	Reporting Limit	Method	Laboratory Batch	Prep Date/Time	Analyzed Date/Time	Analyst	Lab ID
	31513001 807225 SW Plar	nt Composite		Sampled: 07/14/0 Matrix: Water		Received s reported on	: 07/15/08 Wet Weight E		
	0.0047	℃ mg/L	0.0047	EPA 335.2		07/17/08 11:30			E96080
5,	0.070	mg/L	0.022	EPA 425.1	WCGE29672	07/17/08 8:30	07/17/08 16:31	GG	E96080
	0.0035	U ug/L	0.0035	EPA 504.1	PEST5158	07/24/08 14:00	07/25/08 0:07	JL	E96080
9	0.0047	U ug/L	0.0047	EPA 504.1	PEST5158	07/24/08 14:00	07/25/08 0:07	JL	E96080
	0.044L	ug/L	0.044	EPA 505	PEST5153	07/15/08 11:00		JL	E96080
	0.13U	ug/L	0.13	EPA 505	PEST5153	07/15/08 11:00		JL	E96080
	0.0001	·							1.30000

•		a.r	0.0047		WOGE290/9	0//1//08 11:30	07/18/08 13:42	
Surfactants as LAS, Mol.wt.340	0.070	mg/L	0.022	EPA 425.1	WCGE29672		07/17/08 16:31	(
1,2-Dibromo-3- chloropropane	0.0035U	ug/L	0.0035	EPA 504.1	PEST5158	07/24/08 14:00	07/25/08 0:07	,
1,2-Dibromoethane	0.0047U	ug/L	0.0047	EPA 504,1	PEST5158	07/24/08 14:00	07/25/08 0-07	
Aldrin	0.044U	ug/L	0.044	EPA 505		07/15/08 11:00		'
Chlordane	0.13U	ugiL	0.13	EPA 505		07/15/08 11:00		'
Dieldrin	0.066U	ug/L	0.066	EPA 505		07/15/08 11:00		`
Endrin	0.10U	ug/L	0.10	EPA 505		07/15/08 11:00		•
gamma-BHC (Lindane)	0.020U	ug/L	0.020	EPA 505		07/15/08 11:00		`
Heptachior	0.036U	ug/L	0.036	EPA 505		07/15/08 11:00		'
Heptachlor epoxide	0.027U	ug/L	0.027	EPA 505	PEST5153	07/15/08 11:00		`
Melhoxychlor	0.044U	ug/L	0.044	EPA 505		07/15/08 11:00	•••••	`
PCB	0.14U	ug/L	0.14	EPA 505	PEST5153	07/15/08 11:00		`
Toxaphene	0.60U	ug/L	0.60	EPA 505		07/15/08 11:00		•
2,4,5-TP	0.19U	ug/L	0.19	EPA 515.1	PEST5156	07/21/08 8:00		`
2,4-D	0.22U	ug/L	0.22	EPA 515.1	PEST5156	07/21/08 8:00		`
Dalapon	2.3U	ug/L	2.3	EPA 515.1	PEST5156	07/21/08 8:00		`
Dinoseb	0.23U	ug/L	0.23	EPA 515.1	PEST5156	07/21/08 8:00		•
Pentachlorophenot	0.39U	ug/L	0.39	EPA 515.1	PEST5156	07/21/08 8:00		•
Picloram	0.23U	ug/L	0.23	EPA 515.1	PEST5156	07/21/08 8:00		`
1,1,1,2-Tetrachloroethane	0.24U	ug/L	0.24	EPA 524.2	VOC2940	0/12 0/00 0.00	07/17/08 0:18	
1,1,1-Trichloroethane	0.21U	ug/L	0.21	EPA 524.2	VOC2940		07/17/08 0:18	1
1,1,2,2-Tetrachloroethane	0.47U	ug/L	0.47	EPA 524.2	VOC2940		07/17/08 0:18	1
1,1,2-Trichloroethane	0.44U	ug/L	0.44	EPA 524.2	VOC2940		07/17/08 0:18	1
1,1-Dichloroethane	0.20U	ug/L	0.20	EPA 524.2	VOC2940		07/17/08 0:18	1
1,1-Dichloroethene	0.23U	ug/L	0.23	EPA 524.2	VOC2940		07/17/08 0:18	1
4.4 51.1.1		v -	••				0//11/00 0:10	

0.24

0.30

0.41

0.21

0.29

0.40

0.23

0.22

0.52

0.23

0.30

0.20

0.23

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

5600 US 1 North Fort Pierce, FL 34946

FDOH # E96080

Printed: 7/30/08

4155 St. Johns Pkwy Suite 1300 Sanford, FL 32771 FDOH # E83509

EPA 524.2

EPA 524.2

EPA 524.2

EPA 524.2

EPA 524.2

EPA 524.2

EPA 524.2

EPA 524.2

EPA 524.2

EPA 524.2

EPA 524.2

EPA 524.2

EPA 524.2

VOC2940

VOC2940

VOC2940

VOC2940

VOC2940

VOC2940

VOC2940

VOC2940

VOC2940

VOC2940

VOC2940

VOC2940

VOC2940

[2031513]

JL

JL

JL

JL

JL

JL

JL

JL

JL

JL

JL

JL

JI,

JL

WR

WR

WR

WR

WR

WR

WR

WR

WR

WR

WR

WR

WR

WR

WR

WR

WR

WR

WR

07/17/08 0:18

07/17/08 0:18

07/17/08 0:18

07/17/08 0:18

07/17/08 0:18

07/17/08 0:18

07/17/08 0:18

07/17/08 0:18

07/17/08 0:18

07/17/08 0:18

07/17/08 0:18

07/17/08 0:18

07/17/08 0:18

E96080

E96080

E96080

E96080

E96080

E96080

E96080

E96080

E96080

E96080

E96080

E96080

E96080

E96080

E96080

E96080

E96080

E96080

E96080

E96080

E96080

-E96080

E96080

CERTIFICATE OF ANALYSIS

Page 3 of 6

HBEL, Inc. 5600 U.S. I North, Fort Pierce, FL 34946

Phone: (772) 465-8584 Fax: (772) 467-1584

Client: Sanders Laboratories, Inc.

CERTIFICATE OF ANALYSIS [2031513]

Workorder ID: N0807225 SW Plant

					10001220		<u> </u>		
Parameter	Qualifier Result	Units	Reporting Limit	Method	Laboratory Batch	Prep Date/Time	Analyzed Date/Time	Analyst	Lab ID
Benzene	0.20U	ug/L	0.20	EPA 524.2	VOC2940		07/17/08 0:18	WR	506000
Bromobenzene	0.34U	ug/L	0.34	EPA 524.2	VOC2940		07/17/08 0:18	WR	E96080 E96080
Bromodichloromethane	54	ug/L	0.25	EPA 524,2	VOC2940		07/17/08 0:18	WR	E96080
Bromoform	35	ug/L	0.41	EPA 524.2	VOC2940		07/17/08 0:18	WR	E96080
Bromomelhane	0.30U	ug/L	0.30	EPA 524.2	VOC2940		07/17/08 0:18	WR	E96080
Carbon telrachloride	0.24U	ug/L	0.24	EPA 524.2	VOC2940		07/17/08 0:18	WR	E96080
Chlorobenzene	0.30U	ug/L	0.30	EPA 524.2	VOC2940		07/17/08 0:18	WR	E96080
Chloroethane	0.46U	ug/L	0.46	EPA 524.2	VOC2940		07/17/08 0:18	WR	E96080
Chloroform	19	ug/L	0.25	EPA 524.2	VOC2940		07/17/08 0:18	WR	E96080
Chloromethane	0.40U	ug/L	0.40	EPA 524.2	VOC2940		07/17/08 0:18	WR	E96080
cis-1,2-Dichloroethene	0.21U	ug/L	0.21	EPA 524.2	VOC2940		07/17/08 0:18	WR	E96080
Dibromochloromethane	95	ug/L	0.30	EPA 524.2	VOC2940		07/17/08 0:18	WR	E96080
Dibromomethane	0.35U	ug/L	0.35	EPA 524.2	VOC2940		07/17/08 0:18	WR	E96080
Dichlorodilluoromethane	0.28U	ug/L	0.28	EPA 524.2	VOC2940		07/17/08 0:18	WR	E96080
Ethylbenzene	0.21U	ug/L	0.21	EPA 524.2	VOC2940		07/17/08 0:18	WR	E96080
Methyl-tert-butyl-ether	0.21U	ug/L	0.21	EPA 524.2	VOC2940		07/17/08 0:18	WR	E96080
Methylene chloride	0.23U	ug/L	0.23	EPA 524.2	VOC2940		07/17/08 0:18	WR	E96080
Styrene	.0.21U	ug/L	0.21	EPA 524.2	VOC2940		07/17/08 0:18	WR	E96080
Tetrachloroethene	0.24U	ug/L	0.24	EPA 524.2	VOC2940		07/17/08 0:18	WR	E96080
Toluene	0.22U	ug/L	0.22	EPA 524.2	VOC2940		07/17/08 0:18	WR	E96080
Total THMs	200	ug/L	0.25	EPA 524.2	VOC2940		07/17/08 0:18	WR	E96080
Total Xylenes	0.46U	ug/L	0.46	EPA 524.2	VOC2940		07/17/08 0:18	WR	E96080
trans-1,2-Dichloroethene	0.35U	ug/L	0.35	EPA 524.2	VOC2940		07/17/08 0:18	WR	E96080
Trichloroethene	0.36U	ug/L	0.36	EPA 524.2	VOC2940		07/17/08 0:18	WR	E96080
Trichlorofluoromethane	0.22U	ug/L	0.22	EPA 524.2	VOC2940		07/17/08 0:18	WR	E96080
Vinyl chloride	0.32U	ug/L	0.32	EPA 524.2	VOC2940		07/17/08 0:18	WR	E96080
Alachlor	0.63U	ug/L	0.63	EPA 525.2	SVOC2663	07/16/08 5:00	07/17/08 16:58		E96080
Atrazine	0.50U	ug/L	0.50	EPA 525.2	SVOC2563		07/17/08 16:58		E96080
Benzo(a)pyrene	0.073U	ug/L	0.073	EPA 525.2	SVOC2663		07/17/08 16:58		E96080
bis(2-ethylhexyl)phthalate	L 24	ug/L	0.88	EPA 525.2	SVOC2663		07/17/08 16:58		E96080
Di(2-ethylhexyl)adipate	0.70U	ug/L	0.70	EPA 525.2	SVOC2663		07/17/08 16:58		E96080
Hexachlorobenzene	0.32U	ug/L	0.32	EPA 525.2	SVOC2663		07/17/08 16:58		E96080
Hexachlorocyclopentadien	e 0.25U	ug/L	0.25	EPA 525.2	SVOC2663		07/17/08 16:58		E96080
Simazine	0.65U	ug/L	0.65	EPA 525.2	SVOC2663		07/17/08 16:58		
Aldicarb	0.54U	ug/L	0.54	EPA 531.1	HPLC2500		07/23/08 17:04		E96080
Aldicarb sulfone	0.45U	ug/L	0.45	EPA 531.1	HPLC2500		07/23/08 17:04		E96080
AldIcarb sulfoxide	0.36U	ug/L	0.36	EPA 531.1	HPLC2500		07/23/08 17:04		E96080
Carbofuran	0.41U	ug/L	0.41	EPA 531.1	HPLC2500		07/23/08 17:04		E96080
Oxamyl	0.13U	ug/L	0.13	EPA 531.1	HPLC2500		07/23/08 17:04		E96080
Glyphosate	10U	ug/L	10	EPA 547	SAL1064		07/23/08 17:04		E96080
Glyphosate	10U	-⊊-~ ug/L	10	EPA 547	0.121007				E84129
Endothall	2.8U	ug/L	2.8	EPA 548.1	SVOC2667	07/21/00 0-00	07/27/08 3:48 07/28/08 22:31		E84129
Diquat	1.9U	ug/L	1.9	EPA 549.2	HPLC2502		07/29/08 11:26		E96080 E96080

5600 US 1 North Fort Pierce, FL 34946 FDOH # E96080

4155 St. Johns Pkwy Suite 1300 Sanford, FL 32771 FDOH # E83509

Printed: 7/30/08

HBEL, Inc.

5600 U.S. I North, Fort Pierce, FL 34946 Phone: (772) 465-8584 Fax: (772) 467-1584

Client: Sanders Laboratories, Inc.

Workorder ID: N0807225 SW Plant

CERTIFICATE OF ANALYSIS

[2031513]

Parameter	Qualifier Result	Units	Reporting Limit	Method	Laboratory Batch	Prep Date/Time	Analyzed Date/Time	Analyst	Lab ID
Dibromoacelic Acid	20	ug/L	0.18	EPA 552.1	PEST5157	07/23/08 13:06	07/24/08 1:18	JL	E96080
Dichloroacelic Acid	17	ug/L	0.66	EPA 552.1	PEST5157	07/23/08 13:06	07/24/08 1:18	JL	E96080
Monobromoacetic Acid	2.5	ug/L	0.28	EPA 552.1	PEST5157	07/23/08 13:06	07/24/0B 1:18	JL,	E96080
Monochloroacetic Acid	0.88U	ug/L	0.88	EPA 552.1	PEST5157	07/23/08 13:06	07/24/08 1:18	JL	E96080
Total HAAs	49	ug/L	0.18	EPA 552.1	PEST5157	07/23/08 13:06	07/24/08 1:18	JL	E96080
Trichloroacetic acid	9.7	ug/L	0.20	EPA 552.1	PEST5157	07/23/08 13:06	07/24/08 1:18	JL	E96080
2,4,6-Trichlorophenol	1.10	ug/L	1.1	EPA 625	SVOC2665	07/15/08 11:30	07/21/08 20:13	3 WR	E96080
2-Chlorophenol	0.84U	ug/L	0.84	EPA 625	SVOC2665	07/15/08 11:30	07/21/08 20:13	3 WR	E96080
Anlhracene	0.50U	ug/L	0.50	EPA 625	SVOC2665	07/15/08 11:30	07/21/08 20:13	3 WR	E96080
Bulylbenzylphthalate	0.55U	ug/L	0.55	EPA 625	SVOC2665	07/15/08 11:30	07/21/08 20:13	3 WR	E96080
Di-n-butylphthalate	0.74U	ug/L	0.74	EPA 625	SVOC2665	07/15/08 11:30	07/21/08 20:1:	3 WR	E96080
Di-n-octylphthalate	0.51U	ug/L	0.51	EPA 625	SVOC2665	07/15/08 11:30	07/21/08 20:13	3 WR	E96080
Diethylphthalate	0.35U	ug/L	0.35	EPA 625	SVOC2665	07/15/08 11:30	07/21/08 20:13	3 WR	E96080
Dimethyl-phthalate	2.4U	ug/L	2.4	EPA 625	SVOC2665	07/15/08 11:30	07/21/08 20:1:	3 WR	E96080
Naphthalene	0.70U	ug/L	0.70	EPA 625	SVOC2665	07/15/08 11:30	07/21/08 20:13	3 WR	E96080
Phenanthrene	0.30U	ug/L	0.30	EPA 625	SVOC2665	07/15/08 11:30	07/21/08 20:13	3 WR	E96080
Phenol	0.97U	ug/L	0.97	EPA 625	SVOC2665	07/15/08 11:30	07/21/08 20:13	3 WR	E96080

¹Result Qualifiers: U = Not Detected I = Analyte detected between the Laboratory Method Detection Limit and Laboratory Reporting Limit Applicable Florida Department of Environmental Protection Qualifiers defined below. Statement of Estimated Uncertainty available upon request.

L Off-scale high. Actual value is known to be greater than value given.

Sanders Laboratories INC. Environmental Testing Services		of
Client MWH Address PhoneFax Sampled By (PRINT)	Report To:	
Sampler Signature Bottle # SAMPLE DESCRIPTION		Sample ID #
SW Plant		O A B C D E F G
Bottle Lot # COMMENTS: CO	RELINQUISHED BY / AFFILIATION DATE TIME ACCEPTED BY / AFFILIATION DATE H ROSE 71408 125 Will and 714	H TIME (8 1245

Injection Test Data

Calibration Certificates

Flowmeter Calibration Certificate

CERTIFIED TEST REPORT

CUSTOMER: OZONE INDUSTRIES

MODEL NO: ML20-16

METER SERIAL NO: 20081737

CONFIGURATION

METER INSIDE DIAMETER:	15.25	
DIAL:	GAL X 1000	8000 GPM
GEARS:	17 / 45	
TOTALIZER GEARS:	48 / 18-	
ACTUAL METER INDEX:	1.3470	
TEST DATE:	6/24/2008	
TEST FACILITY:	Volumetric	

CALIBRATION DATA

	FLOW RATE GPM	% ACCURACY
1	6257.00	101.98
2	2501.60	101.70
3	502.90	98.23

CERTIFIED BY: Paul Hobbs

DATE: 6/24/2008

This calibration was performed on a primary or secondary test facility, traceable to the National Institute of Standards and Technology, USA. The estimated flow measurement uncertainty of the calibration facilities are: Primary +/- 0.15% Secondary +/- 0.5%

3255 WEST STETSON AVENUE HEMET, CA 92545 USA PHONE (951) 652-6811 / FAX (951) 652-3078 WEB SITE: http://www.mccrometer.com E-MAIL: info@mccrometer.com

Printed by Don Hawley 6/24/2008 9:37:44 AM Version 1.0 (3/9/2007) **In-Situ Pressure Transducer Calibration Certificates**

Calibration Report

221 E. Lincoln Ave, Fort Collins, CO 80524 USA, 970-498-1500, 1-800-446-7488 (Toll Free USA & Canada), FAX: 970-498-1598

Visit us on the Internet at www.in-situ.com!

Report Number: 2008080208005153

Calibration Result:

PASSED

Calibration Date:	2008-08-02
Model:	PXD-261
Full Scale Pressure Range:	206.8 kPa (30 PSI) Gauge
Manufacturer:	In-Situ
Serial Number:	5153

Calibration Procedures and Equipment Used:

Standards used in this calibration are fraceable to the National Institute of Standards and Technology.

1. Digital Multi-Meter, HP 3457A, s/n 3114A15076

2. Multi-Channel Thermometer, Instrulab 4312A-15, s/n 41039

3. Platinum RTD, Instrulab 832, s/n 12084

- 4. 100 PSIG/A Pressure Controller, Ruska 7215xi, s/n 55556
- 5. Automated software calibration procedures used

Range of Applied Temperatures:4.74 C to 29.80 CRange of Applied Pressures:-0.0003 kPa (-0.0000 PSI) to 206.8462 kPa (30.0005 PSI)

Calibration Coefficients:

Linearity	0.2678	
Scale	29.7931	
Offset	-0.1851	
,		A

PASS/FAIL Criteria:

nin a grand and a second second	Applied Pressure	to a chile se se se se	Current mA	
Zero Response	-0.0003 kPa (-0.0000 PSI)		4.100	PASSED
Full Scale Response	206.8462 kPa (30.0	005 PSI)	20.064	PASSED
	Minimum	Maximu	Jm]
Temperature Stability (%FS)	-0.056	0.092		PASSED
Repeatability at 15 C (%FS)	-0.022	0.010		PASSED
Hysteresis (%FS)	0.025			PASSED
Thermal Hysteresis (%FS)	0.027			PASSED

Test Performed By:

Tes

wr'

Test Verified By:

Calibration Report

Visit us on the Internet at www.in-situ.com!

221 E. Lincoln Ave, Fort Collins, CO 80524 USA, 970-498-1500, 1-800-446-7488 (Toll Free USA & Canada), FAX: 970-498-1598

Report Number: 2008021603007550

Calibration Result:

PASSED

Calibration Date:	2008-02-16
Model:	PXD-261
Full Scale Pressure Range:	689.5 kPa (100 PSI) Gauge
Manufacturer:	In-Situ
Serial Number:	7550

Calibration Procedures and Equipment Used:

Standards used in this calibration are fraceable to the National Institute of Standards and Technology.

1. Digital Multi-Meter, HP 3457A, s/n 3114A17597

- 2. Multi-Channel Thermometer, Instrulab 4312A-15, s/n 41039
- 3. Platinum RTD, Instrulab 832, s/n 12159
- 4. 300/100 PSIG Pressure Controller Sensor 1, Mensor PCS-400, s/n 180226
- 5. Automated software calibration procedures used

Range of Applied Temperatures: 4.36 C to 29.43 C

Range of Applied Pressures:

-0.0483 kPa (-0.0070 PSI) to 689.4826 kPa (100.0010 PSI)

Calibration Coefficients:

Linearity	0.3125]
Scale	100.4656	
Offset	0.2903	
<i>{</i>		Querry.

PASS/FAIL Criteria:

	Applied Pressure	[] [] (주) (주) 49 (주) (P) (P)	Current mA	
Zero Response	-0.0483 kPa (-0.007	0 PSI)	3.953	PASSED
Full Scale Response	689.4826 kPa (100.0	0010 PSI)	19.831	PASSED
	Minimum	Maximu	ım	
Temperature Stability (%FS)	-0.022	0.025	**************************************	PASSED
Repeatability at 15 C (%FS)	-0.008	0.008		PASSED
Hysteresis (%FS)	0.010	*****		PASSED
Thermal Hysteresis (%FS)	0.023			PASSED

Test Performed By:

LEH Test

Test Verified By:

n-Situ Inc.

Calibration Report

221 E. Lincoln Ave, Fort Collins, CO 80524 USA, 970-498-1500, 1-800-446-7488 (Toll Free USA & Canada), FAX: 970-498-1598

Visit us on the Internet at www.in-situ.com!

2008080208000264 Report Number:

Calibration Result:

PASSED

Calibration Date:	2008-08-02
Model:	PXD-261
Full Scale Pressure Range:	206.8 kPa (30 PSI) Gauge
Manufacturer:	In-Situ
Serial Number:	264

Calibration Procedures and Equipment Used:

Standards used in this calibration are traceable to the National Institute of Standards and Technology.

- 1. Digital Multi-Meter, HP 3457A, c/n 3114A15076 2. Multi-Channel Thermometer, Instrulab 4312A-15, s/n 41039
- 3. Platinum RTD, Instrulab 832, s/n 12084
- 4. 100 PSIG/A Pressure Controller, Ruska 7215xi, s/n 55556
- 5. Automated software calibration procedures used

4.74 C to 29.80 C Range of Applied Temperatures: -0.0003 kPa (-0.0000 PSI) to 206.8457 kPa (30.0004 PSI) **Range of Applied Pressures:**

Calibration Coefficients:

Linearity	0.2559		
Scale	29.6397		
Offset	-0.0868		
Ling and a planty of the line		(R)	

PASS/FAIL Criteria:

	Applied Pressure	Second and the	Current mA	
Zero Response	-0.0003 kPa (-0.0000 PSI)		4.049	PASSED
Full Scale Response	206.8457 kPa (30.0	004 PSI)	20.101	PASSED
	Minimum	Maxim	Jm	
Temperature Stability (%FS)	-0.094	0.070		PASSED
Repeatability at 15 C (%FS)	-0.013	0.016		PASSED
Hysteresis (%FS)	0.017			PASSED
Thermal Hysteresis (%FS)	0.017		PASSED	

Test Performed By:

wr'

Test Verified By:

Calibration Report

Visit us on the Internet at www.in-situ.com!

221 E. Lincoln Ave, Fort Collins, CO 80524 USA, 970-498-1500, 1-800-446-7488 (Toll Free USA & Canada), FAX: 970-498-1598

Report Number: 2008080208005832

Calibration Result:

PASSED

÷
2008-08-02
PXD-261
206.8 kPa (30 PSI) Gauge
In-Situ
5832

Calibration Procedures and Equipment Used:

Standards used in this calibration are traceable to the National Institute of Standards and Technology.

1. Digital Multi-Meter, HP 3457A, s/n 3114A15076

2. Multi-Channel Thermometer, Instrulab 4312A-15, s/n 41039

3. Platinum RTD, Instrulab 832, s/n 12084

4. 100 PSIG/A - Pressure Controller, Ruska 7215xi, s/n 55556

5. Automated software calibration procedures used

Range of Applied Temperatures: 4.74 C to 29.80 C

Range of Applied Pressures:

-0.0003 kPa (-0.0000 PSI) to 206.8446 kPa (30.0003 PSI)

Calibration Coefficients:

Linearity	0.2543	
Scale	29.5720	
Offset	-0.0988	

PASS/FAIL Criteria:

	Applied Pressure		Current mA	
Zero Response	-0.0003 kPa (-0.0000 PSI)		4.054	PASSED
Full Scale Response	206.8446 kPa (30.0003 PSI)		20.144	PASSED
	Minimum	Maxim	um	
Temperature Stability (%FS)	-0.108	0.059		PASSED
Repeatability at 15 C (%FS)	-0.014	0.007		PASSED
Hysteresis (%FS)	0.014		PASSED	
Thermal Hysteresis (%FS)	0.013		PASSED	

Test Performed By:

Test

wr'

Test Verified By:

Calibration Report

221 E. Lincoln Ave, Fort Collins, CO 80524 USA, 970-498-1500, 1-800-446-7488 (Toll Free USA & Canada), FAX: 970-498-1598

Visit us on the Internet at www.in-situ.com!

Report Number: 2007020802010137

Calibration Result:

PASSED

Calibration Date:	2007-02-08
Model:	PXD-261
Full Scale Pressure Range:	206.8 kPa (30 PSI) Gauge
Manufacturer:	In-Situ
Serial Number:	10137

Calibration Procedures and Equipment Used:

Standards used in this calibration are traceable to the National Institute of Standards and Technology.

1. Digital Multi-Meter, HP 3457A, s/n 3114A16441

- 2. Multi-Channel Thermometer, Instrulab 4312A-15, s/n 41039
- 3. Platinum RTD, Instrulab 832, s/n 12072 (RTD-08)
- 4. 300/100 PSIG Pressure Controller Ext. 30 PSIG (s/n 280485), Mensor PCS-400, s/n 180226
- 5. Automated software calibration procedures used

Range of Applied Temperatures: 4.33 C to 29.37 C

Range of Applied Pressures:

0.0021 kPa (0.0003 PSI) to 206.8455 kPa (30.0004 PSI)

Calibration Coefficients:

Linearity	0.2648	· . !
Scale	29.5798	Ş.
Offset	-0.0602	¥

PASS/FAIL Criteria:

	Applied Pressure		Current mA	
Zero Response	0.0021 kPa (0.0003 PSI)		4.033	PASSE
Full Scale Response	206.8455 kPa (30.0004 PSI)		20.114	PASSE
	Minimum	Maximum		
Temperature Stability (%FS)	-0.066	-0.004		PASSE
Repeatability at 15 C (%FS)	-0.005 0.004		PASSE	
Hysteresis (%FS)	0.005			PASSE
Thermal Hysteresis (%FS)	0.006			PASSE

		~ 1	
Test Performed By:	LEH Test Verified By	. Anim	
		- for any	

DACCED

Calibration Report

221 E. Lincoln Ave, Fort Collins, CO 80524 USA, 970-498-1500, 1-800-446-7488 (Toll Free USA & Canada), FAX: 970-498-1598

Visit us on the Internet at www.in-situ.com!

Report Number: 2008021203010230

In-Situ Inc.

Calibration Result:

ion Result.		Г	1	Ĵ	9		9	
	L			·				
						_		

2008-02-12
PXD-261
689.5 kPa (100 PSI) Gauge
In-Situ
10230

Calibration Procedures and Equipment Used:

Standards used in this calibration are traceable to the National Institute of Standards and Technology.

1. Digital Multi-Meter, HP 3457A, s/n 3114A17597

2. Multi-Channel Thermometer, Instrulab 4312A-15, s/n 41039

3. Platinum RTD, Instrulab 832, s/n 12159

4. 300/100 PSIG Pressure Controller - Sensor 1, Mensor PCS-400, s/n 180226

5. Automated software calibration procedures used

Range of Applied Temperatures:4.30 C to 29.41 CRange of Applied Pressures:-0.0345 kPa (-0.0050 PSI) to 689.4826 kPa (100.0010 PSI)

Calibration Coefficients:

Linearity	0.1986	
Scale	99.2617	
Offset	0.1253	

PASS/FAIL Criteria:

	Applied Pressure		Current mA	
Zero Response	-0.0345 kPa (-0.00	050 PSI)	3.979	PASSED
Full Scale Response	689.4826 kPa (100.0010 PSI)		20.067	PASSED
	Minimum	Maxim	um	
Temperature Stability (%FS)	-0.033	0.019		PASSED
Repeatability at 15 C (%FS)	-0.006	0.012		PASSEE
Hysteresis (%FS)	0.012			PASSED
Thermal Hysteresis (%FS)	0.006		PASSEE	

	17	
		a l
Test Performed By:	LEH Test Verified By:	FEAAN

Calibration Report

221 E. Lincoln Ave, Fort Collins, CO 80524 USA, 970-498-1500, 1-800-446-7488 (Toll Free USA & Canada), FAX: 970-498-1598

Visit us on the Internet at www.in-situ.com!

Understanding the Transducer Calibration Report

Page 1 provides calibration information for your In-Situ pressure transducer. Page 2 provides an explanation of the results and a brief description of our rigid test procedures. We include this information so that you may have a better understanding of our calibration procedures relative to the high accuracy of our products. We take our published specifications seriously, and in most cases, the actual results of our calibration report exceed those specifications.

The Calibration Procedure

We run six separate cycles (nominally 5°C, 15°C, 30°C, 15°C, 15°C, and 15°C) to test the transducer's performance and ability to repeat readings at constant temperatures. For each cycle, the transducer is temperature-stabilized, then pressure readings are taken from 0 to full scale (FS) pressure and back to 0 in 10% FS steps (22 data points).

The transducer is optimized for operation at 15°C, a temperature that characterizes a majority of groundwater applications.

Calibration Coefficients

The transducer's coefficients are also found on the probe's data tag. These are the coefficients to enter into In-Situ's data loggers before running a test. Instructions for programming Linearity, Scale, and Offset may be found in the data logger operator's manual.

PASS/FAIL Criteria

Ĺ

"Deviation" refers to the difference between the transducer readings and our NIST-traceable (National Institute of Standards and Technology) pressure standard. mA = milliAmps, FS = Full Scale.

Zero Response: Response of the probe, in mA, when 0 PSI pressure is applied.

Full Scale Response: Response of the probe, in mA, when full scale pressure is applied.

Temperature Stability: Minimum and maximum % FS deviation over the first four cycles.

Repeatability at 15°C: Minimum and maximum % FS deviation over the last three cycles.

Hysteresis: Maximum difference between % FS deviations over the last three cycles.

Thermal Hysteresis: Maximum difference between % FS deviations between the first two 15°C cycles.

Integra-QR Memory Gauge Calibration Certificate

Electronic Gauge Calibration Data GRC #85A75

÷.-

* • *

. بور ۲۰

· •

Gauge Serial Number: 92321 Sensor Number: 92321 Range: 16,000 Psi Date Calibrated: 11/29/2007 Date Verified: 11/29/2007 Model: Integra QMR Coefficient type: GRC QUARTZ

GEOPHYSICAL RESEARCH CO., LLC

Corporate Office 6540 E. Äpache Tulsa, Oklahoma 74115 USA

Mailing Address

P. O. Box 581570 Tulsa, Oklahoma 74158 USA

> \$.

Telephone: 918-834-9600 FAX: 918-838-8846 E-Mail: sales@grcamerada.com Web Address: www.grcamerada.com

ATTN; JOHN CATHAY

->

No. of Street, or Stre

Electronic Gauge Calibration Data

Gauge	Serial	Number:	92321	
	Sensor	Number:	92321	
		Range:		
Da	te Cali	ibrated:	11/29	/2007
	Date Ve	erified:	11/29	/2007
		Model:		
Coe	fficier	nt type:	GRC Q	UARTZ

Temperature Specifications

Maximum	positive er	ror;	0.0198	°C
Maximum	negative er	ror: -	-0.0337	°C
	Sensitiv	ity:	0.005	°C/Hz
	Sensitiv	ity: 1	82.524	Hz/°C

Pressure Specifications

Maximum positive error: Occurs at:	0.6427 75.19	Psi °C
And at:	12015.73	PsiA
Maximum negative error:	-0.3829	Psi
Occurs at:	75.19	°C
And at:	16015.74	PsiA
Hysteresis:	1.51	Psi
Occurs at:	99.77	°C
And at:	8015.95	PsiA
Long Term Repeatability:	2.52	Psi
Occurs at:	99.77	°C
And at:	12015.72	PsiA
Sensitivity:	0.392	Psi/Hz
Sensitivity:	2.552	Hz/Psi

Iverall Accuracy

Long	Curve Fit:	0.64	Psi
	1/2 Hysteresis:	0.75	Psi
	Term Repeatability:	2.52	Psi
	Overall Accuracy:	3.91	Psi

ote: Overall accuracy is valid only for new gauges from GRC

24 . A.

.

Electronic Gauge Calibration Data

Cauge Serial Number: 92321 Sensor Number: 92321 Range: 16,000 Psi Date Calibrated: 11/29/2007 Date Verified: 11/29/2007 Model: Integra QMR Coefficient type: GRC QUARTZ

Temperature Calculation Errors

Temperature	Temperature		Calculated	Temperature
Data	Frequency	Temperature	Temperature	Error
Point	Hz	Deg. C	Deg. C	Deg. C
1	45665.07	24.89	24.89	-0.0024
2	42008.96	50.49	50.51	0,0179
3	38174.80	75.19	75.16	-0.0337
4	33980.46	99.76	99.77	0,0135
5	29373.49	124.30	124.32	0.0198
6	24279.47	148.89	148.87	-0.0201
7	18248.10	175,10	175.10	0.0050
8	33981.63	99.78	99.77	-0.0131

٠

. .

Electronic Gauge Calibration Data

Gauge Serial Number: 92321 Sensor Number: 92321 Range: 16,000 Psi Date Calibrated: 11/29/2007 Date Verified: 11/29/2007 Model: Integra QMR Coefficient type: GRC QUARTZ

Pressure Calculation Errors

Temperature (#1): 24.89 °C

Pressure Data	Pressure Frequency	Pressure	Calculated Pressure	Pressure Error
Point	Hz	Psia	PsiA	Psi
1	13522.31	15.17	15.15	-0.0240
2	14531.00	415.98	415.92	-0.0563
3	18566.43	2015.94	2016.04	0.0990
4	23627.29	4015.88	4015,70	-0.1849
5	28708.53	6015.95	6016.00	0.0475
6	33806.43	8015.79	8015.93	0.1352
7	38920.30	10015.76	10015.64	-0.1177
8	44051.10	12015.87	12015,92	0.0544
9	49195.28	14015.73	14015.74	0.0108
10	54353.70	16015.74	16015.71	-0.0255
11	33806.49	8015.76	8015.95	0.1887

Temperature (#2): 50.49 °C

Pressure	Pressure		Calculated	Pressure
Data	Frequency	Pressure	Pressure	Error
Point	Hz	PsiA	PsiA	Psi
1	13527.50	15.12	15.17	0.0455
Ż	14518.12	415.98	416.21	0.2262
3	18478.71	2015.95	2016.05	0.0999
4	23450.08	4015.91	4016.01	0.0952
5	28443.42	6015.82	6015.76	-0.0631
б	33459.70	8015.87	8016.05	0.1821
7	38494.35	10015.86	10015.65	-0.2121
8	43548.87	12015.82	12015.77	-0.0513
9	48620.29	14015.71	14015.73	0.0225
10	53709.12	16015.75	16015.91	0.1613
11	33460.07	8015-87	8016.20	0.3300

^remperature (#3): 75.19 °C

Pressura	Pressure		Calculated	Pressure
Data	Frequency	Pressure	Pressure	Error
Point	Hz	PsiA	PsiA	Psi
1	13661.04	15.21	14.91	-0.2981
2	14631.88	416.07	415.91	-0.1592
.3	18513.92	2015.86	2015.51	-0.3547
4	23391.01	4015.86	4015.71	-0.1488
5	28294.57	6015.80	6015.91	0.1089
6	33223.24	8015.89	8015.81	-0.0841
7	38175.38	10015.73	10015.49	-0.2396
8	43152.33	12015.73	12016.37	0.6427
9	48145.55	14015.86	14015.66	-0.1958
10	53160.09	16015.74	16015.36	-0.3829
11	33225.02	8015.90	8016.53	0.6284

4

r

A STATE

Electronic Gauge Calibration Data

Gauge Serial Number: 92321 Sensor Number: 92321 Range: 16,000 Psi Date Calibrated: 11/29/2007 Date Verified: 11/29/2007 Model: Integra QMR Coefficient type: GRC QUARTZ

Pressure Calculation Errors

Temperature (#7): 175.10 ℃

Pressure Data Point	Pressure Frequency Hz	Pressure Psi A	Calculated Pressure PsiA	Pressure Error Psi
1	16488.90	15.08	14.97	-0.1055
2	17336.59	415.87	416.03	0.1627
З	20738.65	2016.04	2016.06	0.0165
4	25036.37	4016.02	4015.98	-0.0352
5	29383.66	6015.93	6015.96	0.0301
6	33778.28	8015.78	8015.83	0.0472
7	38218.27	10015.79	10015.78	-0.0149
8	42701.22	12015.74	12015.72	-0.0162
9	47226.26	14015.84	14015.87	0.0340
10	51792.55	16015.69	16015.67	-0.0226
11	33779.06	8015.77	8016.18	0.4095

Temperature (#8): 99.78 °C

Pressure Data Point	Pressure Frequency	Pressure	Calculated Pressure	Pressure Error
FOIDC	Hz	PsiA	PsiA	Psi
1	13973.09	15.21	16.20	0,9860
2	14920.74	415.98	417.30	1.3190
3	18712.39	2015.95	2017.07	1,1211
4	23480.93	4015.92	4017.39	1.4690
5	28279,48	6015.83	6017.44	1.6146
6	33107.94	8015.88	8017.58	1.7049
7	37963.83	10015.86	10017.46	1.6015
8	42847.61	12015.80	12018.05	
9	47752.36	14015.69	14017.27	2.2475
10	52681.79	16015.72	16017.14	1.5797
11	33107.95	8015.84	8017.59	1.4220 1.7490

5

100

Electronic Gauge Calibration Data

Gauge	Serial	Number:	92321	
	Sensor	Number:	92321	
			16,000 Ps	
Da	ite Cali	brated:	11/29/200	17
	Date Ve	rified:	11/29/200	7
		Model:	Integra 🕻	MR
Coe	efficier	t type:	GRC QUART	Z

Pressure Calculation Errors

Temperature (#4): 99.76 °C

Pressure	Pressure		Calculated	Pressure
Data	Frequency	Pressure	Pressure	Error
Point	Hz	PsiA	Psia	Psi
1	13971.20	15.16	15.35	0.1912
2	14918.95	416.00	416.50	0.4969
3	18710.18	2015.99	2016.11	0.1167
4	23477.91	4015.95	4016.11	0.1580
5	28276.01	6015.88	6016.00	0.1187
6	33103.95	8015.95	8015.95	-0.0044
7	37959.50	10015.76	10015.70	-0.0596
8	42841.38	12015.72	12015.53	-0.1899
9	47748.27	14015.83	14015.65	-0.1831
10	52679.35	16015.68	16016.20	0.5226
11	33107.60	8015.92	8017.45	1.5310

Temperature (#5): 124.30 °C

Pressure Data Point 1	Pressure Frequency Hz 14497.26	Pressure PsiA 15,12	Calculated Pressure PsiA	Pressure Error Psi
2	15417.62		14.77	-0.3503
		415.96	415.95	-0.0112
3	19102.93	2015.92	2015.83	-0.0904
4	23742.83	4015.88	4015.83	-0.0546
5	28418.27	6015.98	6015.89	-0.0944
6	33127.53	8015.82	8015.85	0.0302
7	37869.48	10015,81	10015.85	0.0387
8	42642.33	12015.75	12015.79	0.0359
9	47445.26	14015.83	14016.04	
10	52273.15	16015.66	16015.29	0.2087
11	33127.20	8015.80	8015.71	-0.3688 -0.0873

Temperature (#6): 148.89 °C

Pressure Data Point	Pressure Frequency Hz	Pressure PsiA	Calculated Pressure PsiA	Pressure Error Psi
1	15290.44	15.10	15,16	0.0619
2	16178.58	415.93	416.10	0.1730
Tra la companya de la companya de la companya de la companya de la companya de la companya de la companya de la	19738.59	2015.89	2015.80	-0.0910
4	24227.32	4015.83	4015.86	0.0303
5	28758.10	6015.92	6016.03	0.1108
6	33328.18	8015.77	8015.73	-0.0379
7	37937.07	10015.77	10015.72	-0.0453
8	42581.90	12015.70	12015.73	0.0340
9	47261.06	14015.78	14015.68	-0.0960
10 11	51975.76 33326.47	16015.81	16015.93	0.1188
* *	22226.47	8015.77	8014.99	-0.7808

Test Data

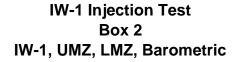
Injection Test Field Data

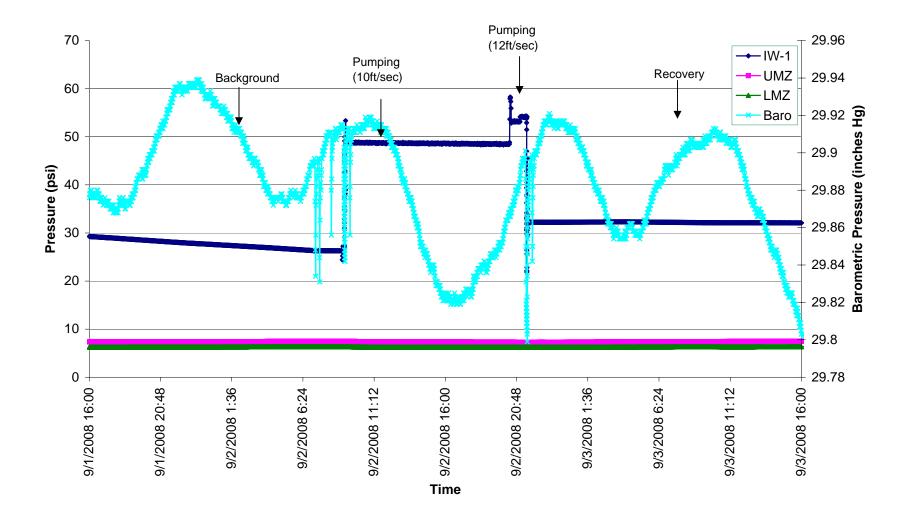
IW-1 INJECTION TEST DATA

September 2, 2008

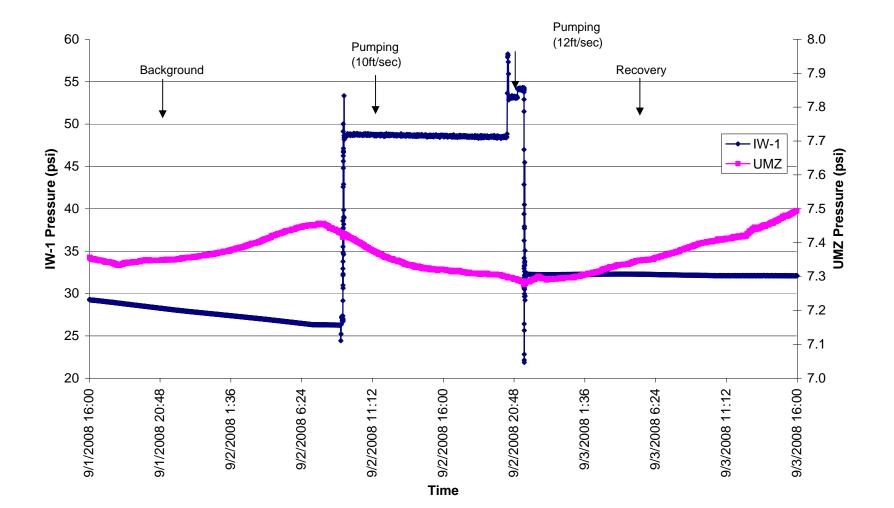
SOUTHWEST CAPE DEEP INJECTION WELL SYSTEM

JOB NUMBER: <u>3220269</u>

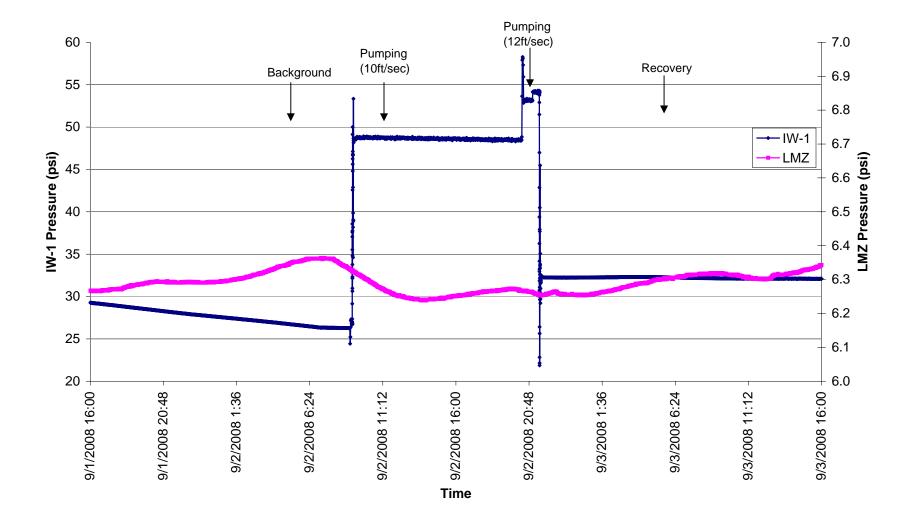

CONTRACTOR: Youngquist Brothers, Inc.


OBSERVERS: Neil Johnson, John Largey

OWNER: City of Cape Coral


TIME	Δ Time	FLOW	METER	WELLHEAD	COMMENTS
	(hr:min)	(gpm)	(gal. x 10,000)	(psi)	
9:14	0:00	0	31,066	27	Begin pumping
9:20	0:06	6,900	31,099	47	
9:28	0:14	6,900	31,157	47	
9:42	0:28	6,900	31,252	47	
10:04	0:50	6,900	31,419	47	
10:28	1:14	6,900	31,584	47	
11:00	1:46	6,900	31,801	47	
11:30	2:16	6,900	32,000	47	
11:49	2:35	6,900	32,130	47	
12:36	3:22	6,900	32,453	47	
13:43	4:29	6,950	32,906	47	
14:18	5:04	6,950	33,137	47	
14:50	5:36	6,950	33,355	47	
15:20	6:06	6,950	33,556	47	
16:00	2:17	6,950	33,800	47	
16:30	7:16	6,950	34,004	47	
16:58	7:44	6,950	34,240	47	
17:29	8:15	6,950	34,450	47	
18:00	8:46	6,950	34,664	47	
18:30	9:16	6,950	34,884	47	
19:05	9:51	6,950	35,091	47	
19:35	10:21	6,950	35,289	47	
20:07	10:53	6,950	35,508	47	
20:21	11:07	6,950	35,599	47	
20:24	11:04	8,000	35,621	56	Increase flow
20:31	11:17	7,800	35,675	51	
20:43	11:29	7,800	35,765	51	
20:59	11:45	7,800	35,894	51	
21:25	12:11	8,000	36,102	51	
21:30	12:16	0	36,135		Stop Pumping
21:33	12:19	0		29	

Exhibits



IW-1 Injection Test Box 2 IW-1 UMZ

IW-1 Injection Test Box 2 IW-1 LMZ

IW-1 Injection Test Box 2 UMZ, Tide Data

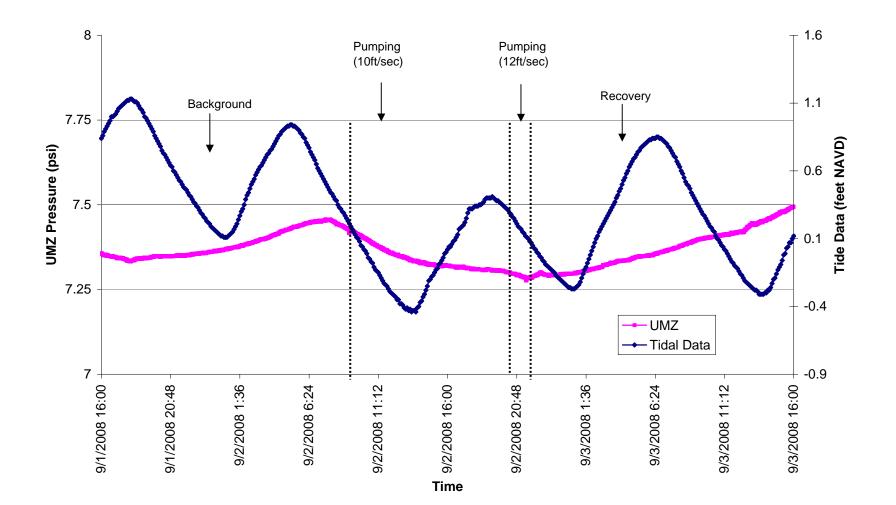
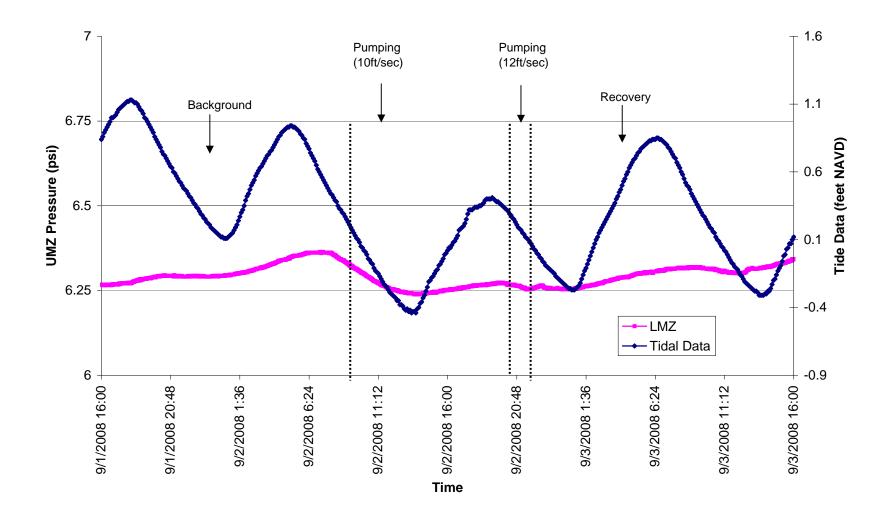
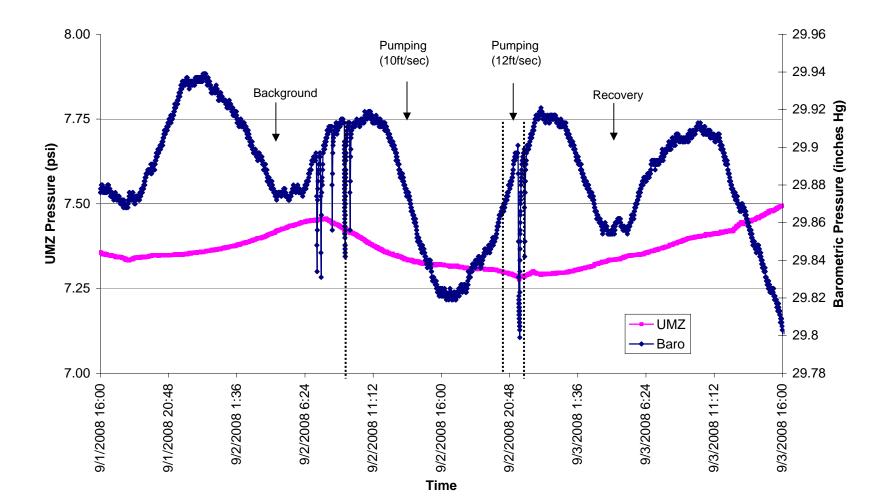
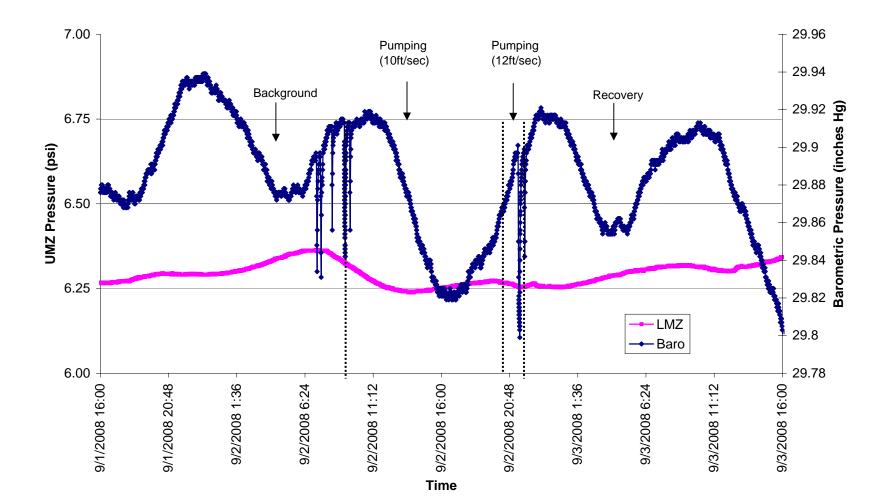
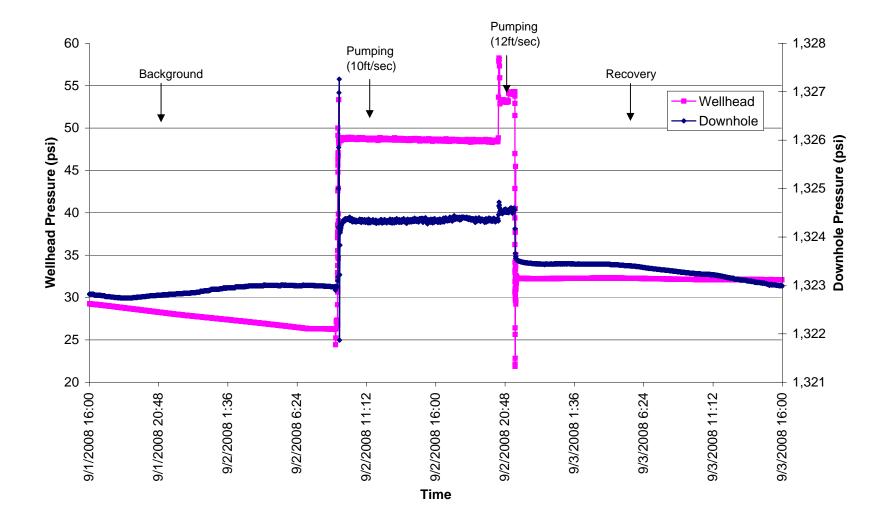




Exhibit 4


IW-1 Injection Test Box 2 LMZ, Tide Data



IW-1 Injection Test Box 2 LMZ, Barometric Pressure

