CONSTRUCTION AND TESTING OF INJECTION WELLS #1 AND #2 WITH ASSOCIATED DEEP MONITOR WELL #1 BROWARD COUNTY NORTH DISTRICT REGIONAL WASTEWATER TREATMENT PLANT

JUNE 1990

CONSTRUCTION AND TESTING
OF INJECTION WELLS #1 and #2
WITH ASSOCIATED DEEP MONITOR WELL #1
BROWARD COUNTY NORTH DISTRICT REGIONAL
WASTEWATER TREATMENT PLANT
POMPANO BEACH, FLORIDA

June 1990

Prepared for:
James M. Montgomery, Consulting Engineers, Inc.
in association with
Hazen and Sawyer, P.C. Engineers

Prepared by:
Geraghty & Miller, Inc.
Environmental Services
11382 Prosperity Farms Road, Suite 125
Palm Beach Gardens, Florida 33410

CONTENTS

	Page
INTRODUCTION	. 1
FINDINGS	. 2
RECOMMENDATIONS	. 3
DATA COLLECTION	. 4
WELL DRILLING AND CONSTRUCTION	. 9
Injection Wells	. 9
Deep Monitor Well #1	. 10
SUBSURFACE CONDITIONS	. 11
Background	11
Geologic Setting	. 12
Hydrogeologic Setting	. 14
Confining Sequence	. 15
Injection Zone	. 16
Water Quality	. 17
Radioactive Tracer Survey Injection Well #1	. 18
Radioactive Tracer Survey Injection Well #2	. 22
OPERATION AND MAINTENANCE	. 25
Injection-Well Data Collection	. 25
Deep Monitor Well (Dual-Zone) Data Collection	26
Injectivity Testing	. 26
Mechanical Integrity	. 27
Plugging and Abandonment Plan	28
ACKNOWLEDGEMENTS	29

FIGURES

- 1. Site Location Map
- 2. Typical Radioactive Tracer Survey Logging Tool
- 3. Typical Log Presentation of A Radioactive Tracer Survey
- 4. Typical Straddle-Packer Assembly
- 5. Cross-Section Showing Correlation Between Three Injection Wells in South Florida
- 6. Details of Coring and Testing Program
- 7. Details of Testing Program
- 8. Completed Deep Monitor Well Construction Details
- Injection Test-Pressure and Temperature Data Injection Well #1
- 10. Injection Test-Pressure and Temperature Data Injection Well #2

TABLES

Injection Well #1, (IW-1)

- 1. Summary of Straddle-Packer Test Analyses
- 2. Summary of Core Data

Injection Well #2, (IW-2)

1. Summary of Straddle-Packer Test Analyses

APPENDICES

- A. Geologic Log
- B. Core Analyses Core Descriptions Core Photographs
- C. Geophysical Logs
 Injection Well #1
 Injection Well #2
 Deep Monitor Well #1
- D. Hydrostatic Pressure Test Data
- E. Water Quality Laboratory Results
 Injection Well #1
 Water Quality of Straddle-Packer Intervals
 Water Quality of Injection Zone
 Injection Well #2
 Water Quality of Straddle-Packer Intervals
 Water Quality of Injection Zone
 Deep Monitor Well #1
 Water Quality of Shallow Monitor Zone
 Water Quality of Deep Monitor Zone
- F. Well Casing Mill Certificates
- G. Cement Records
 Injection Well #1
 Injection Well #2
 Deep Monitor Well #1

CONSTRUCTION AND TESTING OF INJECTION WELLS #1 and #2 WITH ASSOCIATED DEEP MONITOR WELL #1 BROWARD COUNTY NORTH DISTRICT REGIONAL WASTEWATER TREATMENT PLANT POMPANO BEACH, FLORIDA

INTRODUCTION

In June 1989, the Broward County UIC - North District Regional Wastewater Treatment Plant was issued Permit No. UC-06-154997, by the FDER (Florida Department of Environmental Regulation), to construct four 24-inch-diameter Class I Injection Wells in conjunction with two dual zone Deep Monitor Wells at the County's North District Regional Wastewater Treatment Plant in Pompano Beach, Florida (see Figure 1). Contract documents and specifications were made available to qualified Contractors at the offices of Hazen and Sawyer P.C., Engineers on May 2, 1989. The contract documents were made available in order to obtain bids on the entire injection well construction project.

The first phase of the Contract, consisting of two 24-inch-diameter Injection Wells and associated Dual-Zone Deep Monitor Well, was awarded to Youngquist Brothers Drilling Co. of Fort Meyers, Florida. Notice to proceed was issued on October 23, 1989.

The Contract Specifications contained provisions for the construction and testing of the two injection wells and the associated deep monitor well, by Youngquist Brothers Drilling Co., (referred to nereinafter as "the Contractor"). The Contractor agreed to construct and test two 24-inch-diameter injection wells to a depth of 3500 feet BPL (below pad level) and one dual-zone deep monitor well to a depth of approximately 1600 feet BPL. The provisions within the contract specifications included: 1) conducting straddle-packer tests in discrete zones of the pilot holes of each injection well in order to determine the hydraulic properties of lithologic units; 2) collection and analysis of conventional cores to complement the pump test data with in-situ samples;

3) collection and analysis of water samples in various zones to determine water quality variations with depth; 4) conducting geophysical logs, to confirm lithologic boundaries and gross lithologic properties, 5) conducting hydrostatic pressure tests, cement bond logs, Video (TV) Surveys, and Radioactive Tracer Surveys (see Figures 2 and 3); and 6) conducting injection tests in both completed injection wells to demonstrate the capacity of the injection zone to accept effluent at the designed rate. A plan for the plugging and abandonment of the wells was supplied in the event that suitable conditions were not found.

The Contractor mobilized manpower and equipment to the Broward County Wastewater Treatment Plant (BCWWTP) in Pompano Beach, Florida in the first week of November 1989. The contract completion time was specified as 180 days from the notice-to-proceed date. The contract contained specifications for the deep monitor well to be situated between the two injection wells and 150 feet from each injection well. Monitor Well #1 and Injection Well #2 were completed by March 21, 1990. Injection Well #1 was completed by May 20, 1990.

FINDINGS

- 1. The data demonstrate the existence of an extremely transmissive injection zone saturated with saline water (containing more than 10,000 mg/L TDS) similar to that which exists in locally operating injection wells at the Coral Springs Improvement District (CSID) in Coral Springs, Florida.
- 2. The top of the injection zone occurs at about 3000 feet with its base at 3500 feet, for a total thickness of 500 feet. Fluid will be pumped into the fracture and cavities throughout this interval.

- 3. This zone is capable of accepting the designed rate of effluent from the Broward County North District Regional Wastewater Treatment Plant at an acceptable injection pressure.
- 4. The contact between the waters with less than 10,000 mg/L of TDS and non-potable waters occurs at an approximate depth of 1500 feet.
- 5. Vertical hydraulic conductivities determined from core tests ranged from 0.000063 to 0.00032 cm/sec.
- 6. A monitor well was drilled and two monitor zones were selected. The lower zone is from 2000 feet to 2079 feet and the upper zone is from 1000 feet to 1128 feet.
- 7. The presence of favorable geologic conditions, a highly transmissive injection zone filled with water having greater than 10,000 mg/L TDS a suitable confining sequence, and suitable monitor zones will permit the use of injection wells for disposal of treated effluent at the Broward County North District Regional Wastewater Treatment Plant in accordance with existing State and Federal Underground Injection Control (UIC) Regulations.

RECOMMENDATIONS

The following recommendations are requirements of Chapter 17-28 FAC for the safe operation of an injection well. These procedures should be carried out conscientiously to ensure compliance with all regulatory requirements and to ensure successful operation of the well.

1. Well-head injection pressures should be monitored and recorded

continuously. Monthly averages as well as maximum and minimum daily values should be reported to the FDER on a monthly basis.

- 2. The flow rate into the well should be monitored and recorded continuously. Average daily flow rates as well as the total volume of effluent pumped into the well should be reported to the FDER on a monthly basis.
- 3. Samples from the two monitor well zones should be collected monthly and analyzed for fecal coliform, BOD, specific conductivity, pH, temperature and chlorides. The results of these analyses should be sent to the DER quarterly.
- 4. A specific injectivity test should be performed quarterly. The pumping rates should be established after the well is in operation. Well-head pressures should be recorded during this period. Test results should be reported to the FDER upon completion.
- 5. The well should be tested for mechanical integrity every five years in accordance with Chapter 17-28 FAC.

DATA COLLECTION

Data was collected during the construction of the injection well using various methods. Data collection procedures are described in this section, along with comments on the application and usefulness of each method. Except as noted, measurements of footage in the wells were referenced to the top of the cement pad floor.

Daily progress reports maintained during well construction were compiled by personnel from Geraghty & Miller, Inc., Hazen and Sawyer

P.C., Engineers, and James M. Montgomery, Consulting Engineers, Inc. The inspection staff was comprised of one representative from Hazen and Sawyer P.C., Engineers; one representative from James M. Montgomery, Consulting Engineers, Inc.; and two representatives from Geraghty & Daily footage was recorded, along with other pertinent drilling information such as drilling speed, penetration rates, weight on the drill bit, and relative hardness of the formations. Any problems encountered during drilling were observed and noted. All activities related to the installation of casing or monitor well tubing, cement, or other materials as well as their quantities, were designed in these reports. Detailed descriptions of test procedures and data collection, including results of inclination surveys to monitor hole straightness, were recorded. A separate construction log was used to record material quantities by bid item. The lengths and configurations of any tools introduced into the borehole were noted. Copies of the daily and weekly progress reports were forwarded to the Technical Advisory Committee (TAC) on a weekly basis. Separate reports were kept for the deep monitor well which was constructed, geographically, midway between Injection Well #1 and Injection Well #2.

Samples of drilled cuttings were collected every ten feet and at each change in formation during pilot hole drilling in all wells. Drill cutting samples were also collected from the injection zone boreholes. The samples were described after microscopic examination by the Geraghty & Miller and James M. Montgomery, Consulting Engineers, Inc. on-site personnel, and a geologic log of each sample was prepared. A copy of these logs is included in Appendix A. Circulation time (the time required for drilled cuttings to reach the surface) was calculated regularly to ensure that accurate sample depths were recorded. A set of samples from each well was sent to the Florida Bureau of Geology in Tallahassee, Florida.

During the drilling of the pilot hole on Injection Well #1, five conventional core samples were collected between 2300 and 2730 feet. The core barrel used was 20 feet in length and 4-inches in inside diameter. Each core was described in detail and samples from each core were selected, photographed, and sent to a laboratory. These samples were tested for several parameters including specific gravity and unconfined compressive strength. Laboratory results, core descriptions, and core photographs are included in Appendix B.

During the construction of the three wells, several sets of geophysical logs were conducted. A suite of logs was conducted at the completion of the pilot hole drilling to depths of approximately 2000, 3000, and 3500 feet in both injection wells. The purpose of these logs was to collect data on the presence and nature of both the injection zone and the confining sequence; as well as to help locate potential monitoring zones for the deep monitor well. The geophysical logs run at the above-mentioned intervals were: Dual Induction, Borehole Compensated Sonic, Temperature, Caliper, Natural Gamma-Ray, and Fluid Resistivity and/or Flowmeter surveys. Another log conducted at selected intervals was the Fracture Identification log. In addition, Caliper logs were conducted in each of the nominal 50, 40, 34, and 24-inch-diameter boreholes.

The Dual Induction log was used to differentiate between limestone and dolomite beds, and along with the Gamma Ray Log, aided in the correlation of lithologic units. The Borehole Compensated Sonic log was useful in identifying the injection zone and lower confining sequence, as well as in helping to identify zones which could cause problems during cementing. Temperature logs were used to determine the annular fill-up between cementing stages. The geophysical logs are included in Appendix C.

After the geophysical logs were conducted in the pilot holes, straddle-packer tests were conducted using the logs to select suitable testing intervals. Three intervals were selected for Injection Well #1 and two intervals were selected for Injection Well #2. The straddle-packers were lowered into the pilot hole to the selected interval on 7 5/8-inch (outside) diameter drill pipe, inflated, and seated against the formation. Figure 4 shows a typical straddle-packer assembly. A four-inch-diameter submersible pump was lowered to between 80 and 200 feet (depending on anticipated drawdown). During drawdown and recovery, water level measurements were obtained using a data logger attached to a pressure transducer which was lowered to a known depth above that of the pump.

Water samples obtained during the tests were analyzed in the field for chloride, temperature, and conductivity. Straddle-packer test data and drawdown/recovery are found in Table 1. The water quality results for each straddle-packer pump test are based on the laboratory analysis of samples collected during the drawdown phase of the test. The water quality results are presented in Appendix E. Water quality results are discussed later in this report. The same procedures were followed for the pump tests on Injection Well #2.

Unless otherwise specified, remaining data collection procedures will refer to both injection wells.

When the installation and cementing of the injection casing was completed, a hydrostatic pressure test was conducted (prior to drilling the open borehole through the injection zone). The casing was filled with water and placed under a hydrostatic pressure of 150 pounds per square inch (psi) for one hour. This pressure is over 1.5 times the expected maximum well-head operating pressure. The injection casing for each well held the 150 psi for the required period and therefore passed

the integrity test specified in Section 17-28.24(6)(c) FAC. A copy of the pressure test data is contained in Appendix D.

Once the pressure test was completed, the cement plug at the base of the injection casing was drilled out and the final open borehole drilled to total depth. After completion of each injection well, it was developed (using reverse-air) to obtain water samples from the injection zone. Samples were also obtained from both the shallow and deep monitor zones of Deep Monitor Well #1. The samples were analyzed for a variety of constituents to establish the "natural" or background quality of the water in the various zones, prior to any disposal of treated effluent. Copies of the laboratory results are found in Water Quality - Appendix E.

After water quality sampling was completed, various geophysical logs were conducted on the injection well open borehole. Fresh water from the Pompano Beach City Water supply was used to displace suspended solids from the well prior to performing a television survey. Schlumberger loggers completed the camera surveys to 3500 feet and copies of the VHS tapes have been given to the members of the Technical Advisory Committee (TAC). The purpose of the video survey is to visually inspect the integrity of the injection casing as well as to observe fracture and saltwater-flow zones within the injection zone. The favorable picture clarity obtained in each well provided visual data on the condition of the injection casings and the injection zones surveyed. A controlled Injection Test was then conducted, using the City's water supply, and an injection pressure/temperature profile was obtained.

Finally, a Radioactive Tracer Survey was performed on the final injection casing to evaluate the mechanical integrity of the well. Copies of the Radioactive Tracer Surveys (RTS) are found in Appendix C. The procedure for and results of those surveys are discussed in a subsequent section of this report.

WELL DRILLING AND CONSTRUCTION

Injection Wells

Construction of the injection well(s) began with the drilling of a nominal 58-inch-diameter hole to a depth of 160 feet. Next 50-inchdiameter conductor casing was installed in the nominal 58-inch-diameter hole and cemented in place. A nominal 50-inch-diameter hole was then drilled through the cement plug to a depth of 1000 feet. A string of 42inch-diameter surface casing was set at 1000 feet and cemented in place. At this point, the drilling method was changed from mud-rotary to reverse-air. A nominal 12 1/4-inch-diameter hole was drilled from the cement plug at the base of the 42-inch-diameter casing to 2000 feet. The pilot hole was logged and straddle-packer pump tests were conducted to establish water quality. The pilot hole was then reamed to a nominal 42inch-diameter down to 1960 feet. The string of 34-inch-diameter intermediate casing was set at 1950 feet and cemented in place. The 12 1/4-inch-diameter pilot hole was then extended to 3000 feet. point, on Injection Well #2, the deep zone straddle-packer tests were conducted to establish zones of hydraulic confinement. Following the drilling of the pilot hole to 2300 feet on Injection Well #1, five (5) core samples were collected at about 100 foot intervals. Once the pilot hole was completed at 3000 feet, it was reamed to a nominal 34 inches in diameter. At this stage of construction on Injection Well #1, the driller twisted-off at 2132 feet. The bottom hole assembly was retrieved with 48 hours using an overshot tool and reaming of the 12 1/4-inchdiameter pilot hole section proceeded without incident.

The 24-inch-diameter injection casing was set at 2990 feet and cemented in place. After successfully conducting a hydrostatic pressure

test on the final casing string as per Section 17-28.34(b)(c) FAC, the final 500 feet of open borehole was drilled through the injection zone. The nominal 24-inch-diameter hole was drilled through the cement plug of the injection casing to a total depth of 3500 feet. Upon completion, of the 24-inch-diameter hole, a Cement Bond log was conducted on the 24-inch-diameter casing. A copy of the Cement Bond log is included with all other geophysical logs in Appendix C. Hydrostatic Pressure Test and Water Quality Data are found in Appendices D and E, respectively. Review of the cementing records, temperature logs, pressure test data, and injection test data indicate that: 1) the injection casings are properly cemented, and 2) isolation between the injection horizon and overlying sources of drinking water has been achieved.

Deep Monitor Well #1

Deep Monitor Well #1 was constructed between Injection Well #1 and Injection Well #2. A nominal 30-inch-diameter borehole was drilled to a depth of 170 feet. An X-Y Caliper log was conducted to estimate annular cement volumes. The 24-inch-diameter steel casing was set at a depth of 160 feet and then cemented in place. Florida Geophysical Logging, Inc., conducted temperature logs following each stage of cementing on all casing strings, in order to estimate annular fill.

A nominal 24-inch-diameter hole was then drilled to 1000 feet. Another X-Y Caliper log was conducted prior to setting and cementing 16-inch-diameter casing at 1000 feet.

At this time, the drilling method was changed from mud-rotary to reverse-air. The Contractor was delayed for 50 days prior to receiving notification to proceed beyond 1000 feet. The Florida Department of Environmental Regulation required additional water quality data from the injection well test program in defining the local 10,000 mg/L TDS

interface. When the additional data was obtained, drilling on the deep monitor well continued. A nominal 16-inch-diameter hole was drilled from 1000 feet to 2010 feet. An X-Y Caliper log was conducted prior to setting and cementing 6 5/8-inch-diameter casing at 2000 feet. The final casing's annulus was then cemented up to a depth of 1128 feet, thus defining the shallow monitoring zone between 1000 and 1128 feet. A cement bond log and hydrostatic pressure test were conducted on the final casing string to determine the integrity of the casing and cement. The upper 1200 feet of the 6 5/8-inch-diameter casing was coated with an epoxy-phenolic compound. Copies of the casing mill certificates are found in Appendix F.

A nominal 6-inch-diameter hole was then drilled from the base of the 6 5/8-inch-diameter casing, through the cement plug and to a depth of 2079 feet. The well was disinfected with chlorine prior to the collection of water samples from each zone. The final open borehole from 2000 to 2079 feet defines the lower monitoring zone.

SUBSURFACE CONDITIONS

Background

The final design of the injection wells was based on the information collected during the drilling and testing of the pilot holes. The data from the injection well testing program also determined the final design of the dual zone deep monitor well. The drilling and testing program was designed to provide flexibility in well construction modifications as dictated by local geologic conditions. The drilling specifications were based on available data of regional geologic conditions and on data from existing injection wells in the area. This section presents the local geologic information obtained during this project.

Geologic Setting

A well defined, areally extensive sequence of carbonate sediments is present at the Broward County North District Regional Wastewater Treatment Plant site and throughout the area. The geologic units found during construction of the injection well system satisfy the requirements of Chapter 17-28 FAC. The injection zone is capable of receiving effluent at the designed rate. Disposal of the effluent into this zone should not result in contamination of any Underground Source of Drinking Water (USDW). A brief description of the various geologic units follows.

As shown in Figure 5, from land surface to approximately 390 feet in depth the sediments are comprised of limestone, sandy limestone, clay, and varying amounts of unconsolidated shell and sand. The limestone is a light gray to grayish olive micrite. Various amounts of shell and quartz sand are also present in these sediments. The sandy limestone is generally light gray to grayish olive, medium-grained, and sometimes slightly phosphatic. The solution features and generally poor cementation apparent in the upper 390 feet of sediments give this unit the high permeability characteristic of the Biscayne Aquifer. These sediments are Pleistocene to Miocene in age and correspond to descriptions of the Anastasia and Palmico Sand Formations.

From 390 feet to 590 feet, the sediment is dominantly composed of an olive gray, plastic, clay. From 590 feet to about 880 feet, the sediment is predominantly carbonate mud (marl). The marl is mostly pale or light grayish olive, soft, and composed of silty clay with interbedded limestone present throughout the interval. The limestone varies from grayish olive to dark gray and is micritic. The sediments in the interval between 390 and 880 feet are Miocene to Late Eocene in age and correspond to the descriptions of the Hawthorne Formation.

The limestone between 880 feet and about 2190 feet is typically a pale orange to light gray, medium to coarse grained, sandy, biosparite. The limestone in this sequence is Middle to Late Eocene in age and is delineated as part of the Avon Park Limestone. The upper Floridan aquifer is contained within this section.

In the depth interval from 2190 feet to 3000 feet, the limestone is interbedded with light to moderate yellowish-brown dolomite. Fine to medium grained and hard, these dolomite units comprise less than 9% of the sequence. The limestone in the interval is generally very pale orange, pellodial or micritic, fine to medium grained, and soft. The sonic logs indicate a decrease in porosity in this interval. The section is comprised of sediments of Early to Middle Eocene age of the corresponding Avon Park Limestone.

Owing to the absence of biostratigraphic evidence to determine this formation boundary, the use of the Lake City Limestone as a distinct unit name is abandoned and this report recognizes only the Avon Park Limestone Formation.

The interval between 2190 feet and 3000 feet consists of alternating layers of dolomite and limestone. Below 3000 feet the sequence is composed almost entirely of dolomite. The dolomite in the upper interval is predominantly pale yellowish or moderate brown, massive, fine grained or micritic, and dense with some dissolution features. The interbedded limestone in the upper interval consists of pale orange to tan, fine to medium grained, soft, biosparite. The porosity is fairly regular in the interval between 2300 and 2730 feet. Core samples taken from various locations within this interval revealed total porosities which range from 31% to 38%. This section contains sediments of Early Eocene age corresponding to the Lower Avon Park Limestone Formation.

The injection zone extends from approximately 3000 feet to 3500 feet in depth in the Lower Oldsmar Formation. Results from the television survey indicate the dolomite in this zone exhibits extensive dissolution cavities as well as fracturing.

The depth of each stratigraphically distinct geologic boundary for Injection Well #2 and Deep Monitor Well #1 varies somewhat from those noted above. Geologically speaking, these stratigraphic variations in wells of close geographic proximity are of relatively minor significance and are the expected norm. Exact reference points for all three wells are displayed in Figures 6, 7, and 8.

Hydrogeologic Setting

The upper 390 to 480 feet of rock and sediments are Pleistocene, Oligocene, and Upper Miocene sandstone, limestone, marl and unconsolidated sand and shell. The lithologies represent the surficial aquifer which is used as a source of drinking water throughout South Florida.

Underlying the surficial aquifer are 440 to 520 feet of Miocene clay and marl which form a confining bed between the surficial aquifer and the Oligocene to Eocene limestones and dolomites of the Floridan Aquifer. This confining sequence is called the Hawthorne Formation. Water from the Floridan Aquifer in the area contains concentrations of dissolved solids which exceed drinking water standards. The aquifer is not currently used as a main source of drinking water in Broward County. The Floridan Aquifer's limited use is due to the additional treatment required to meet potable standards and also to the availability of better quality water in the shallow, overlying aquifer.

Another confining sequence is present between 2200 and 3000 feet in the area of the Broward County Injection System. It consists of limestone with interbedded dolomite. This confining sequence overlies a section of the highly permeable dolomite of the Oldsmar Formation, often referred to as the "Boulder Zone". This zone contains highly mineralized water and is used throughout South Florida for the disposal of treated domestic waste effluent.

Confining Sequence

Based on interpretation of the various data, the injection zone is overlain by a confining sequence in the interval located approximately between 2200 and 3000 feet. The most significant section of the confining sequence occurs between 2464 and 2770 feet. The limestone that comprises this sequence is a fine-grained biomicrite which is interbedded with fine to medium-grained dolomite.

Within the confining sequence, five straddle packer tests were conducted. Figure 4 shows a typical straddle-packer assembly. The recovery data from the packer tests were analyzed using a method described by Schaefer (1980) for low yield formations. In particular, the zone between 2464 and 2770 shows the lowest permeability. Drawdown and recovery data obtained from these five tests plus associated water quality analyses can be applied to either well due to the close proximity of the two injection wells.

The values of horizontal hydraulic conductivity determined from these tests (Table 1, Injection Well #1 and Injection Well #2) ranged from 0.00008 cm/sec to 0.00190 cm/sec. Laboratory tests on the cores taken from the confining sequence showed vertical permeabilities ranging from 0.000063 cm/sec to 0.00015 cm/sec. From the core data shown in Table 2 (Injection Well 1), it can be seen that the porosities for

limestone in the confining sequence range from approximately 31 to 38 percent. The vertical permeability of the limestone cores average 0.000157 cm/sec. The horizontal permeabilities determined from the five successful straddle packer tests averaged 0.00071 cm/sec. Considering these low values of permeability, (see Tables) it can be concluded that not all pore spaces are interconnected and the effective porosity must be lower than the values obtained from the core analyses.

Injection Zone

The presence of a suitable injection zone in the Pompano Beach area was assumed on the basis of data from other injection wells in South Florida. A number of injection and exploratory wells have been drilled in Broward and Palm Beach Counties and it was believed that the thick, cavernous dolomites of the Oldsmar Formation existed throughout the area. This idea was confirmed during the drilling of the pilot holes on Injection Wells #1 and #2 at the Broward County North District Regional Wastewater Treatment Plant. The first indications of the presence of an injection zone (Boulder Zone) were found at approximately 3000 feet in the pilot hole of Injection Well #2.

For both injection wells at the Pompano Beach site, the injection zone drill cuttings were mainly composed of hard, cryptocrystalline to finely crystalline dolomite with evidence of dissolution features and fractures. Large cavities are observed on the Caliper logs (Appendix C) of both 24-inch-diameter boreholes below 3000 feet. Fracture zones within each well's injection zone were also visible on the television surveys performed on each injection well following their completion.

The injection zone and the occurrence of dolomite are shown clearly on the Dual Induction and Borehole Compensated Sonic logs presented in Appendix C. The resistivity profile shown on the Dual Induction logs

varies considerably within the respective injection zones for each injection well borehole. This variation is due to the presence of massive, dense dolomite (higher resistivity), along with fractures and cavities containing highly mineralized water (lower resistivity). All the geophysical logs conducted or performed on the three wells constructed by Youngquist Brothers Drilling, Inc., are found in Appendix C of this report. The injection test and pressure/temperature data for Injection Well #1 are found in Figure 9.

Water Quality

Water samples were collected from isolated sections of the boreholes during the straddle-packer tests, from the injection zones prior to the injection testing, and from the deep monitor well's deep and shallow monitor zones. The samples were analyzed for selected ions to establish the depth of the local 10,000 mg/L TDS interface and to verify the background water quality of the injection and monitor zones. Results of these analyses, from Broward Testing Labs, are presented in Appendix E.

During the straddle-packer pump tests, a sample of the formation water from the tested interval was collected just prior to shutting off the pump. Each of these samples were sent to a laboratory and analyzed for TDS, Chloride, Sulfate, and Specific Conductivity. The tests were conducted across intervals considered suitable as monitor zones. Based on the analysis of the straddle-packer and deep monitor well water samples, the 10,000 mg/L interface occurs between 1400 and 1600 feet.

Upon completion of each injection well borehole to total depth, the injection zone was developed and sampled for water quality data on the injection zone. The results of the laboratory analyses of the injection zone water samples show that the injection zone formation water contains

more than 10,000 mg/L of TDS. Therefore, this zone can be used for the disposal of treated wastewater in compliance with Chapter 17-28 FAC.

Following completion of the dual-zone Deep Monitor Well #1, the monitoring zones were developed, disinfected, and sampled. The samples were analyzed by a laboratory for several parameters in order to determine background water quality. As shown on the laboratory test results in Appendix E, the TDS concentration of the upper monitor zone sample (1000 feet to 1128 feet) was 4432 mg/L and the lower zone sample (2000 feet to 2079 feet) was 11514 mg/L. These values compare favorably with results from straddle-packer water samples collected at similar depths. All water quality data is found on the laboratory reports enclosed in Appendix E.

Radioactive Tracer Survey Injection Well #1

A detailed description and interpretation of the Radioactive Tracer Survey (RTS) is presented in the following text.

The test began with Schlumberger conducting a background Gamma-ray Log (GRL) from 3500 feet to 1500 feet. Next, the ejector was positioned at 2,991 feet, one foot below the casing seat. A two-millicurie (MCI) slug of Iodine 131 was released under static conditions, and time-drive monitoring was conducted for 60 minutes after the release. A second GRL was conducted from 2990 feet to 1900 feet. Following the second GRL, the casing was flushed for approximately five minutes using effluent at a rate of 5,000 gallons per minute (gpm). A third GRL was conducted from 3100 feet to 2730 feet. The tool was repositioned at 2985 feet, five feet above the casing seat. A two-MCI slug was ejected while injecting water from the adjacent monitor well into the injection well at 128 gpm. Time-drive monitoring proceeded for the next 61 minutes. A fourth GRL was conducted from 2985 feet to 1900 feet. Once again, the casing was

flushed with effluent for approximately 15 minutes at 5,000 gpm. A fifth GRL was conducted from 3050 feet to 1450 feet. Because a light stain was detected between 1700 feet and 1450 feet, a sixth GRL was conducted over this interval after additional flushing with effluent for 20 minutes at 8,800 gpm.

The results of the RTS are presented on the enclosed log. Starting from the back section of the log, the various surveys are presented in the same sequence as discussed above. Descriptions of the multiple logging measurements recorded are as follows:

Measurement	Description
GR	Upper gamma-ray detector
GR [1]	Upper gamma-ray detector (background date previously recorded)
CCL	Casing Collar locator
GRSG	Lower gamma-ray detector
GRTE	Middle gamma-ray detector

The initial background GRL shows a typical response for a new well with slightly higher readings in the open-hole section between 3000 and 3500 feet. Naturally, the middle detector (GRTE) measures much higher radiation levels because of its proximity to the source material.

Following the background log, a time-drive monitoring log of the first release of tracer material (2.0 MCI) is displayed under the heading "Static Test - Outside Casing". The spike mark on the right side of the time (center) track indicates the time at which the tracer slug was ejected.

Near the one-minute mark, the middle detector (located 2.8 feet below the ejector) shows evidence of the slug dispersing outward from the At the seven-minute mark, the upper detector indicates the arrival of the sluq. Seconds later, the lower detector reveals evidence of the slug. Given the distances between the ejector and both the lower and upper detectors are 13.25 feet and 8.92 feet, respectively, the rate of dispersion appears to be greater in the downward direction. Expanded scale plots (0 - 2000 API) are presented as solid lines in the GRSG track for the lower detector and the GRTE track for the upper detector. At the ten-minute mark, the lower detector reaches a maximum reading of 1350 API Four minutes later, the upper detector reaches nearly the identical maximum reading. Near the 23-minute mark, both readings appear to be stabilizing at approximately 1000 API units. During the final 30 minutes of time-drive monitoring, the readings gradually decline to 700 API units for the lower detector and 500 API units for the upper detector. These observations indicate the rate of dispersion under static conditions is greater in the downward direction.

The second GRL results are displayed in the next log section labeled "Static Test - Log Out of Position". Background logs are included for easy reference. With the exception of the stained casing section between 2930 feet and 3000 feet, the upper GRL correlates favorably with the initial background data. The lower detector readings are higher than the background data due to stains on the detector. Given the greater rate of dispersion in the downward direction, this explanation would appear plausible. Additionally, discrepancies in the readings dissipate as the tool is pulled up the well because of the cleaning action of the tool moving through the unaffected water.

Next, the third GRL is presented. Conducted after flushing the casing, this log correlates extremely well with the background data. Typical of most RTS logs, heavy stains appear at the casing seat.

Time-drive monitoring data from the dynamic test are shown in the next log section. The slug reaches the middle detector almost instantaneously. Near the three-minute mark, the slug encounters the lower detector. The slug is completely displaced below the lower detector within the next 20 minutes. Further displacement over the next 25 minutes reduce the readings to within 5 API units of the initial level (25 API units). Readings from the upper detector remained generally constant throughout the monitoring period. These results provide tangible evidence of the injection-wells's integrity because of the lack of any upward migration of the slug at a relatively slow pumping rate (0.1 feet per second).

A fourth GRL is presented in the next section. Readings from the upper detector correlate accurately with the background data. Readings from the lower detector are significantly greater than the background data over the interval between 2985 feet and 2800 feet. For the next 150 feet the lower detector readings correlate favorably with the background data. At approximately 2640 feet, once again the readings are greater than the background data. This cycle is repeated several times over the length of the log. Since the upper detector did not reveal any of these discrepancies, the logical conclusion is that radioactive debris was dislodged from the tool (below the upper detector) at various depths during the ascent of the tool.

Results from the fifth GRL are shown in the next section. Excluding the heavy stains that appear near the casing seat, the log correlates extremely well with the background data over the interval from 2980 feet to 1700 feet. At approximately 1650 feet, the readings from both the upper and lower detectors begin to increase beyond the background data. In order to further investigate this response, the interval between 1700 feet and 1470 feet was logged again after additional flushing. The

results of this log (sixth GRL) are displayed in the final section. This log shows the previously recorded higher readings have completely dissipated. The higher readings were probably due to radioactive debris being jarred loose from the wireline cable during the ascent. Additional flushing rectified the problem.

Radioactive Tracer Survey Injection Well #2

A detailed description and interpretation of the Radioactive Tracer Survey (RTS) is presented in the following text.

The test began with Schlumberger conducting a background Gamma-ray Log (GRL) from 3480 feet to 40 feet. Next, a correlation (tie-in) log was conducted to facilitate positioning of the ejector at 2,990 feet, one foot below the casing seat. A two-millicurie (MCI) slug of Iodine 131 was released under static conditions, and time-drive monitoring was conducted for 60 minutes after the release. A third GRL was conducted from approximately 2990 feet to 2000 feet. Following the third GRL, the casing was flushed for approximately fifteen minutes using fresh water at a rate of 122 gallons per minute (gpm). A fourth GRL was conducted from 3070 feet to 2970 feet. Because of heavy stains, a fifth GRL was conducted over the same interval after flushing for an additional fifteen minutes at 122 gpm. The ejector was repositioned at 2984 feet, five feet above the casing seat. A two-MCI slug was ejected while injecting fresh water into the injection well at 122 gpm. Time-drive monitoring proceeded for the next 60 minutes. A sixth GRL was conducted from 2980 feet to 1880 feet. Because of lingering stains, the casing was flushed with fresh water for approximately four hours at 144 gpm. A seventh and final GRL was conducted from 3050 feet to 1950 feet.

The results of the RTS are presented on the enclosed log. Starting from the back section of the log, the various surveys are presented in

the same sequence as discussed above. Descriptions of the multiple logging measurements recorded are as follows:

Measurement	Description
GR	Upper gamma-ray detector
GR [8]	Upper gamma-ray detector
CCL	Casing Collar locator
GRSG	Lower gamma-ray detector
GRTE	Middle gamma-ray detector

The initial background GRL shows a typical response for a new well with slightly higher readings in the open-hole section between 3100 feet and 3480 feet. Naturally, the middle detector (GRTE) measures much higher radiation levels because of its proximity to the source material. The sharp drop on the middle detector at 200 feet indicates the fluid level in the well.

The next log section shows the second GRL which was used to position the ejector for the static test. Following the second GRL, a time-drive monitoring log of the first release of tracer material (2.0 MCI) is displayed under the label Static Test. The spike mark on the right side of the time (center) track indicates the time at which the tracer slug was ejected. Near the 30 minute mark, the lower detector shows evidence of the slug dispersing downward. At the 55 minute mark, tracer material encounters the upper detector. Upon cessation of time-drive monitoring, the lower detector readings have increased from an initial background level of 8 API units to 60 API units. Alternately, the upper detector readings have only increased from 18 API units to 30 API units, indicating a greater rate of dispersion in the downward direction. Considering that the distances between the ejector and both the lower

upper detectors are 13.3 feet and 8.9 feet, respectively, a higher rate of dispersion in the downward direction is again evident.

The third GRL results are displayed in the next log section labeled "After Static Pass". A background log from the upper detector is included for easy reference. With the exception of the stained section near the casing seat, the upper GRL correlates favorably with the initial background data. Lower detector readings are higher than background levels over the interval from 3000 feet to 2900 feet because the lower detector was pulled up through the slug.

Next, the fourth GRL is presented. This log was conducted for correlating purposes, but because of inadequate flushing the log is of little or no use.

A fifth GRL, conducted after additional flushing is shown in the next log section. Although heavy stains are still apparent, the data is sufficient for correlating purposes. Note the heavy stain at the base of the casing (2989 feet).

Time-drive monitoring data from the dynamic test are shown in the next log section. The slug reaches the middle detector almost instantaneously. Near the three-minute mark, the slug encounters the lower detector. The slug is completely displaced below the lower detector within the next 30 minutes. Further displacement over the next 15 minutes reduce the readings to within 5 API units of the initial level (9 API units). Readings from the upper detector remained generally constant throughout the monitoring period. These results provide tangible evidence of the injection-well's integrity because of the lack of any upward migration of the slug at a relatively slow pumping rate (0.1 feet per second).

A sixth GRL is presented in the next section. This log correlates accurately with the background data except for the interval between 2500 feet and 2600 feet. This slight variation is probably due to tracer material inadvertently deposited in the casing during the testing procedure. After additional flushing, the log was repeated and the results of this log (seventh GRL) are displayed in the final log section. This log reveals the previously recorded discrepancies have completely dissipated.

OPERATION AND MAINTENANCE

When each injection well is operating during long term injection testing and over its operational life, a variety of data will be collected to satisfy statutory/permit requirements and to assist in managing the system. This section discusses the basic requirements for data collection to maintain permit compliance during both the initial testing, and long-term operation of the injection well system.

Injection Well Data Collection

Beginning with the start of injection at the Broward County North District Regional Wastewater Treatment Plant, records of the well-head pressure, injection rate, and cumulative injected volumes will be collected from each well on a continuous basis. Maximum and average injection pressures (psig) and rates (mg/d) will be recorded on a daily basis for monthly submission to the FDER. Monthly maximum, average, and minimum values of injection pressure, rate, and volume will also be reported to the FDER. Measurements of each wells's injection pressure and injection rate will be made simultaneously and recorded to aid in correlating the two values. It is essential that the performance data collection begin upon operational start-up in order to establish baseline

information which both satisfies regulatory requirements, and serves for future data comparison and performance analyses. These records should be maintained permanently.

Deep Monitor Well (Dual-Zone) Data Collection

The purpose of monitor-zone data collection is to detect changes in water quality attributable to the injection of treated effluent into the nearby injection wells. The established parameters for analysis are Fecal Coliform, Chloride, Specific Conductance, Biological Oxygen Demand (BOD), Temperature, Ammonia, and Total Dissolved Solids (TDS). Following initiation of injection, these parameters will be analyzed weekly until the issuance of the operating permit, then monthly for the life of the well. In order to collect the water quality samples, the deep monitor well zones have been equipped with two sampling pumps. At least three well volumes will be pumped from the monitor zones before samples are collected.

Injectivity Testing

A well's injectivity is a function of: 1) friction loss in the casing, 2) the bottom hole pressure (injection zone transmissivity), and 3) the density differential between treated effluent and the formation water in the injection zone. The latter is a constant as long as the temperature and density of the injection fluid remain constant. Friction loss in the casing and bottom hole pressure can vary as a result of changes in the flow rate, physical condition of the injection zone, and physical condition of the pipe. In general, pressure builds slowly with time (for a given pumping rate) as the casing "ages". Similarly, plugging of an injection zone can cause a gradual pressure buildup over time. This effect, however, is not expected at the Broward County Injection System because of the cavernous nature of the injection zone.

Periodic determination of a well's injectivity can be used as a measure of a well's efficiency and is recommended as a management tool for the injection well system. The injectivity test involves injecting fluid into a well at two (or more) injection rates and recording the injection pressure for each rate. The injectivity is calculated by dividing the injection rate by the required injection pressure (well-head injection pressure minus static well-head pressure). The result is expressed as gallons per minute per psi. As noted, testing should be conducted at a minimum of two rates so that future comparisons can be made.

The testing rates for injectivity testing should be established as soon as the well is placed in operation. The procedure should be easily repeatable to ensure that injectivities can be computed for the same injection rates. Testing should be conducted quarterly for the life of the well.

Mechanical Integrity

An injection well has mechanical integrity if there is no leak in the casing and no fluid movement into the underground sources of drinking water through channels adjacent to the well bore. In accordance with the FAC 17-28.13(6) and 17-28.25(1), the mechanical integrity of the injection well must be demonstrated every five years. Mechanical integrity testing will include a pressure test, a radioactive tracer survey, a high resolution temperature log, and a television survey. This testing will be conducted, along with the monitoring of the upper and lower Floridan aquifer monitor zones, to demonstrate the absence of fluid movement through channels adjacent to the injection well bore. The results of the initial mechanical integrity testing are found in Appendix

D (pressure test data), Appendix C (geophysical logs), and on the Video-Cassette copy of the television survey.

Plugging and Abandonment Plan

In the event that any of the injection wells initially constructed for the BCWWTP have to be abandoned, the well(s) in question must be effectively sealed (or plugged) to prevent upward migration of the injection zone fluid; or the interchange of formation water through the borehole or along the casing. In order to effectively plug a well it is necessary to mobilize a drill rig, kill the well, and remove the wellhead valve. Next, a bridge-plug assembly must be set at the bottom of the 24-inch-diameter injection casing. The plug assembly consists of a short section of threaded pipe with a bottom plug and with two cement baskets attached to the outside. Above the plug assembly are approximately 100 feet of threaded pipe with cement ports and several sets of left-hand threaded couplings. These couplings are placed at the top and bottom of the lowermost joint of casing. This entire assembly is then lowered into the well to the approximately depth of the bottom of the injection casing.

The cement baskets are expanded and set by adding crushed limestone to the well and allowing it to settle. A mixture of neat cement is pumped into the casing through the drill pipe, and cement ports, above the cement baskets of the bridge-plug assembly. The quantity of cement used should be equivalent to the volume required to fill the casing from the top of the crushed limestone to one foot below the lowermost left-hand threaded coupling.

The cement is allowed to settle for 24 hours and then tagged with a wireline to determine if fill-up is achieved. If not, additional crushed

limestone is added and another stage of cement is pumped (a single stage of cement is ordinarily sufficient to build the first portion of the bridge-plug). A strain of no more than 1000 pounds above drill string weight is then exerted. If no movement occurs (other than pipe stretching), the plug is considered set and the Contractor disconnects the assembly by rotating the drill pipe and "backing off" (right-hand rotation will unscrew the pipe from the left-hand threaded coupling). At that time, two successive stages of no more than 100 feet of cement (fill-up) are pumped and given time to set. The remainder of the casing is then filled with neat cement.

ACKNOWLEDGEMENTS

The success of this program was due to the hard work and cooperative efforts of a number of persons from Broward County, the Florida Department of Environmental Regulation, the South Florida Water Management District, the U.S. Geological Survey, the U.S. Environmental Protection Agency, Heery Program Management, James M. Montgomery Consulting Engineers, Inc., Hazen and Sawyer P.C., Engineers Inc., and Youngquist Brothers Drilling Co.

Geraghty & Miller, Inc., would like to thank, in particular, each of the following individuals for their guidance and cooperation throughout the entire project.

Broward County

Florida Department of Environmental Regulation

Edward Goscicki

Al Mueller

Margaret Highsmith

Heery Program Management Youngquist Brothers Drilling, Co.

Jim Jones Randy Cape

John Adams James Brantley

Kevin Greuel

Hazen and Sawyer P.C., Engineers

Patrick Davis

Steve Montemayor

James M. Montgomery Consulting Engineers, Inc.

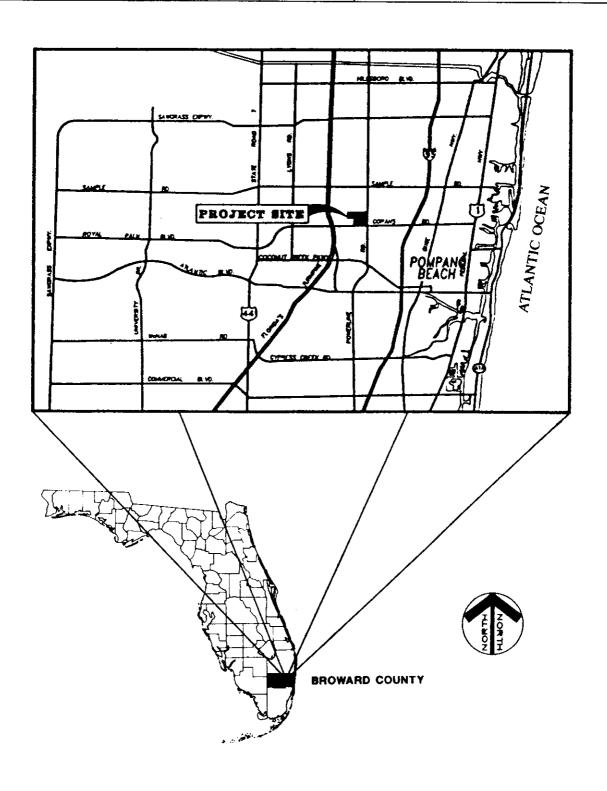
Helen Madeksho Kenneth Roberts

Respectfully submitted, GERAGHTY & MILLER, INC.

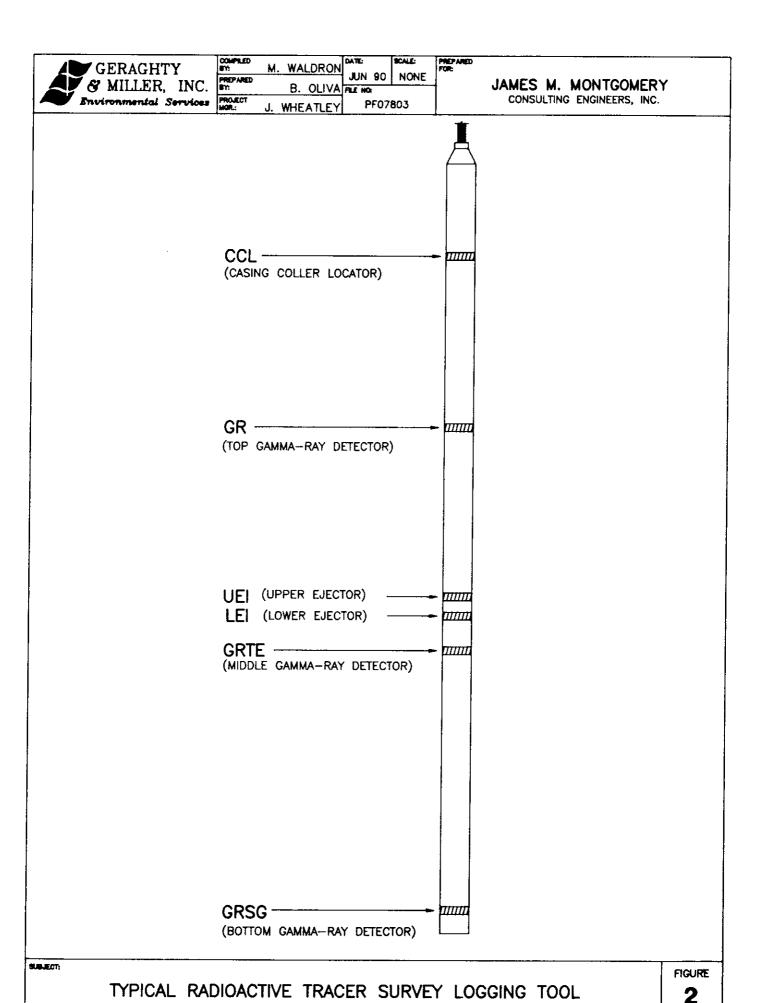
Michael J. Waldron

Scientist

Jamas A. Wheatley, P.G Senior Associate


MJW/JAW:lt

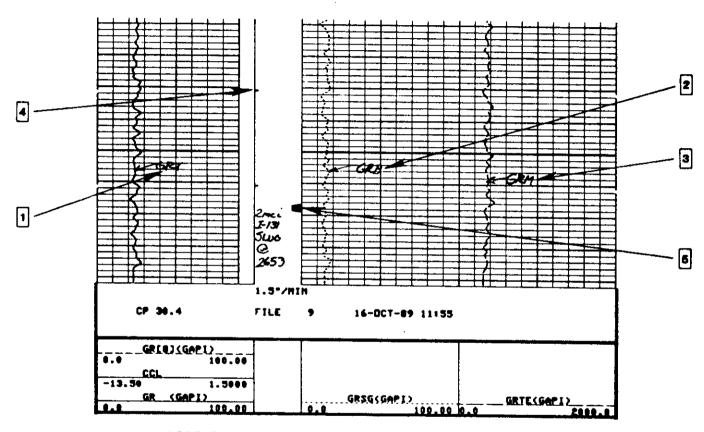
FIGURES



COMPILED SY:	M. WALDRON	DATE:	NONE NONE	
PREPARED BY:	B. OLIVA	FLE HO	NONE	
PROJECT MOR.:	J. WHEATLEY	PF07803		

JAMES M. MONTGOMERY CONSULTING ENGINEERS, INC.

SUBJECT:


COMPLED Sh:	M.	WALDRON
PREPARED SY:		B. OLIVA

J. WHEATLEY

DATE: SCALE JUN 90 PF07803

HOME

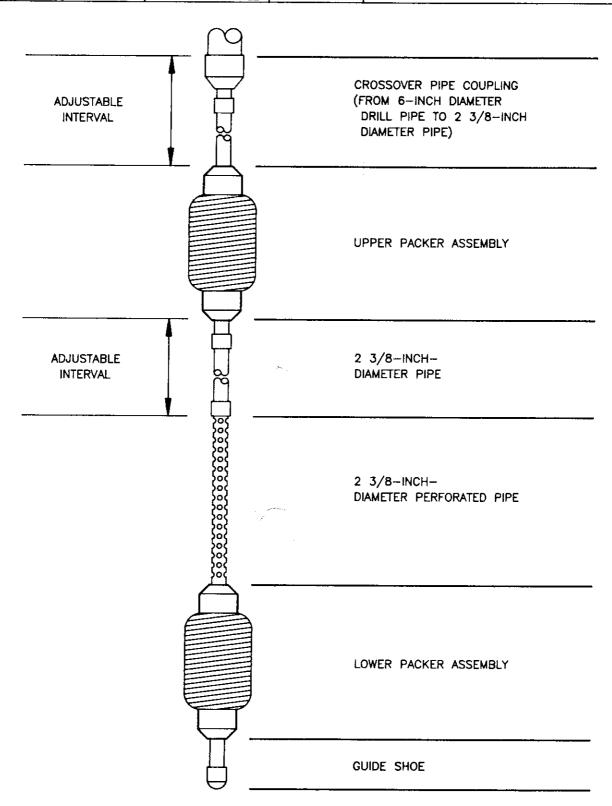
JAMES M. MONTGOMERY CONSULTING ENGINEERS, INC.

LEGEND

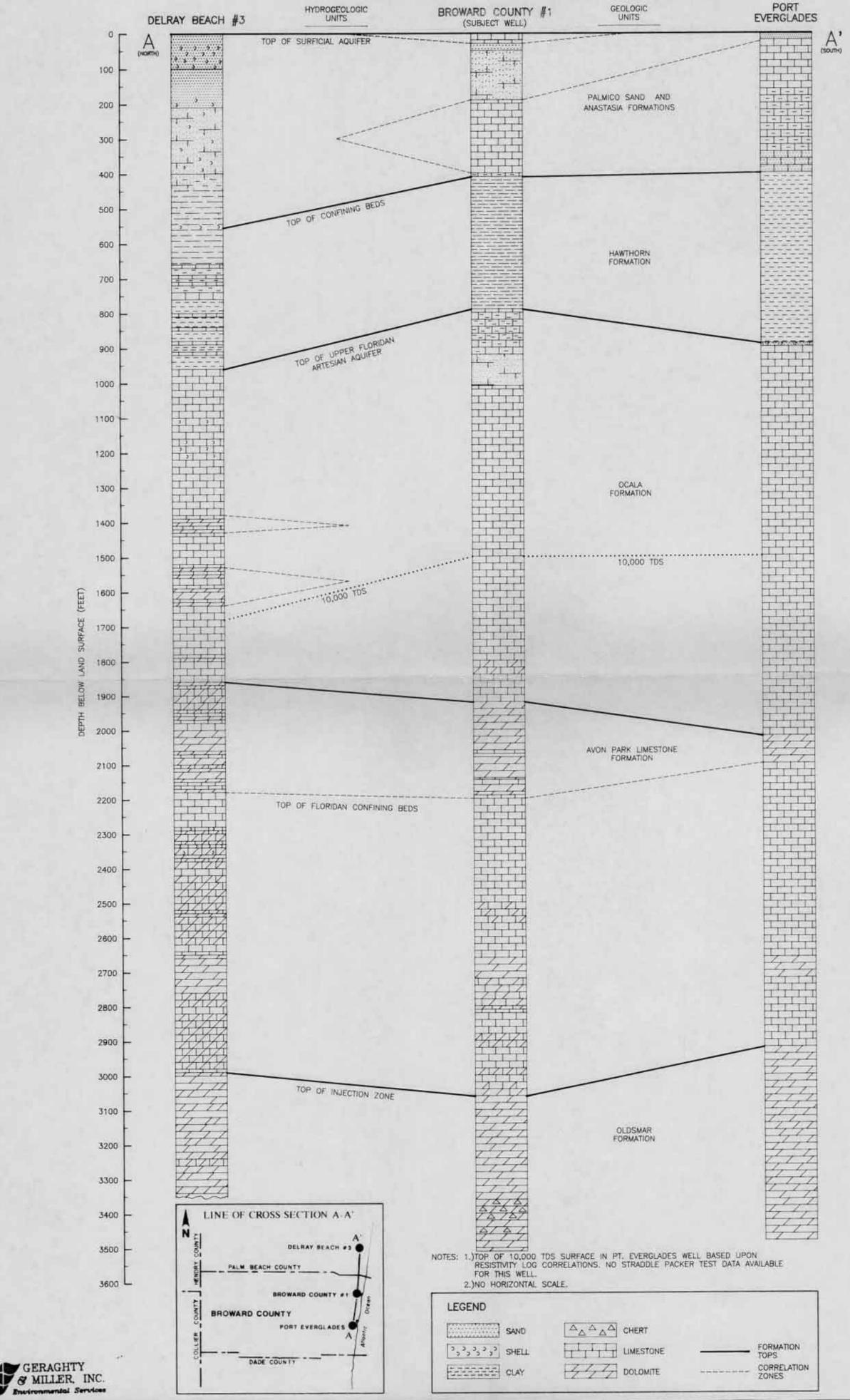
- GRT = GR=TOP OF GAMMA-RAY DETECTOR
- 2 GRB = GRSG = BOTTOM GAMMA-RAY DETECTOR
- 3 GRM=GRTE=MIDDLE GAMMA-RAY DETECTOR
- REPRESENTS ONE MINUTE ELAPSED TIME
- 5 REPRESENTS RELEASE OF RADIOACTIVE MATERIAL

SUBJECT:

TYPICAL LOG PRESENTATION OF A RADIOACTIVE TRACER SURVEY

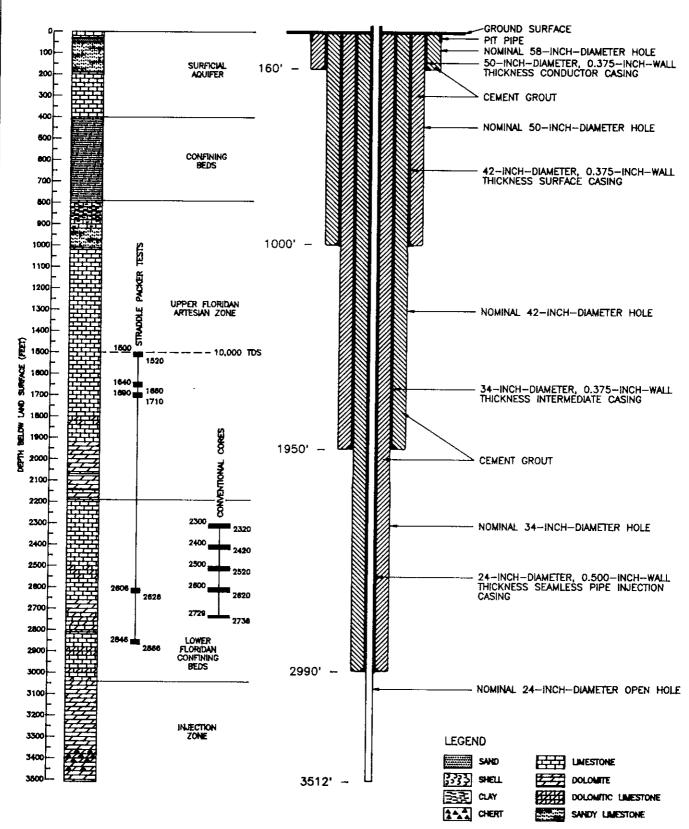

FIGURE

COMPILED BY:	M. WALDRON	DATE	SCALE:
PREPARED BY:	B. OLIVA	JUN 90	NONE
PROJECT MOR.:	J. WHEATLEY	5555	803


JAMES M. MONTGOMERY CONSULTING ENGINEERS, INC.

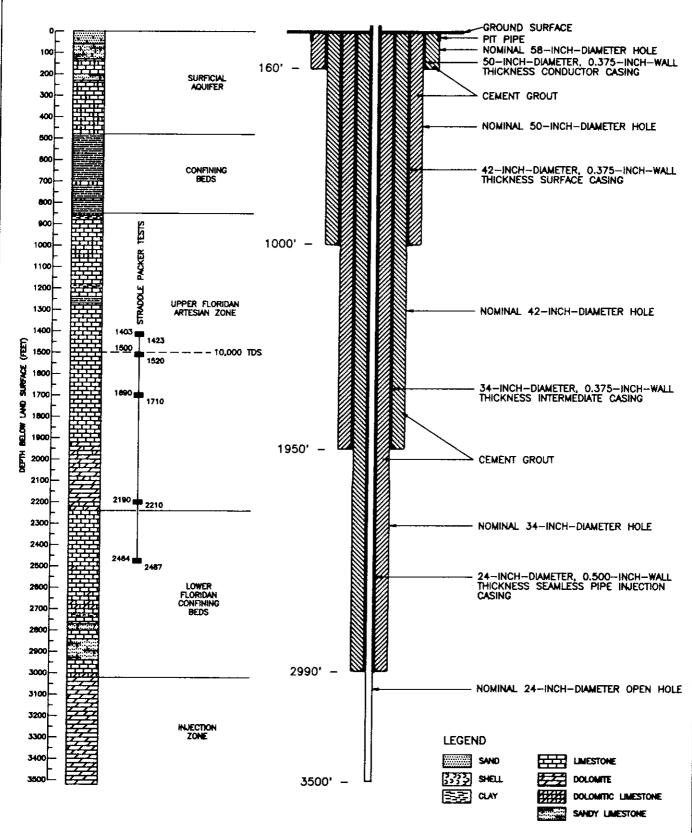
PREPARED FOR:

NOTE: DRAWING NOT TO SCALE.


CROSS-SECTION SHOWING CORRELATION BETWEEN THREE INJECTION WELLS IN SOUTH FLORIDA BROWARD COUNTY #1 (SUBJECT WELL) PALMICO SAND AND

COMPLED BY:	м.	WA	LDRON	DATE		SCALE
PREPARED In:		D.	01.11/4	JUN	90	NONE
3 1 i		<u>B.</u>	OLIVA	FILE NO	t	
PROJECT HGR.:	J. V	VHE	ATLEY	P	F07	803

JAMES M. MONTGOMERY
CONSULTING ENGINEERS, INC.

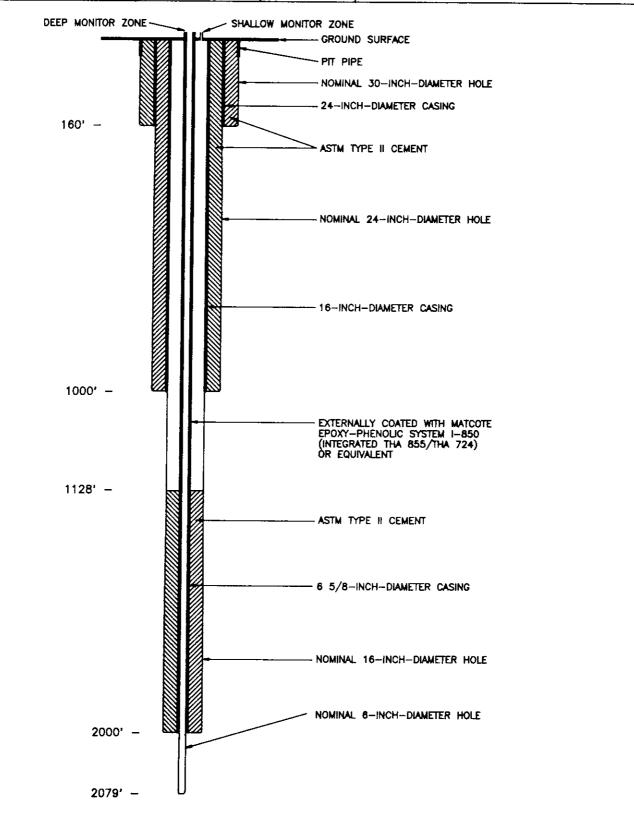


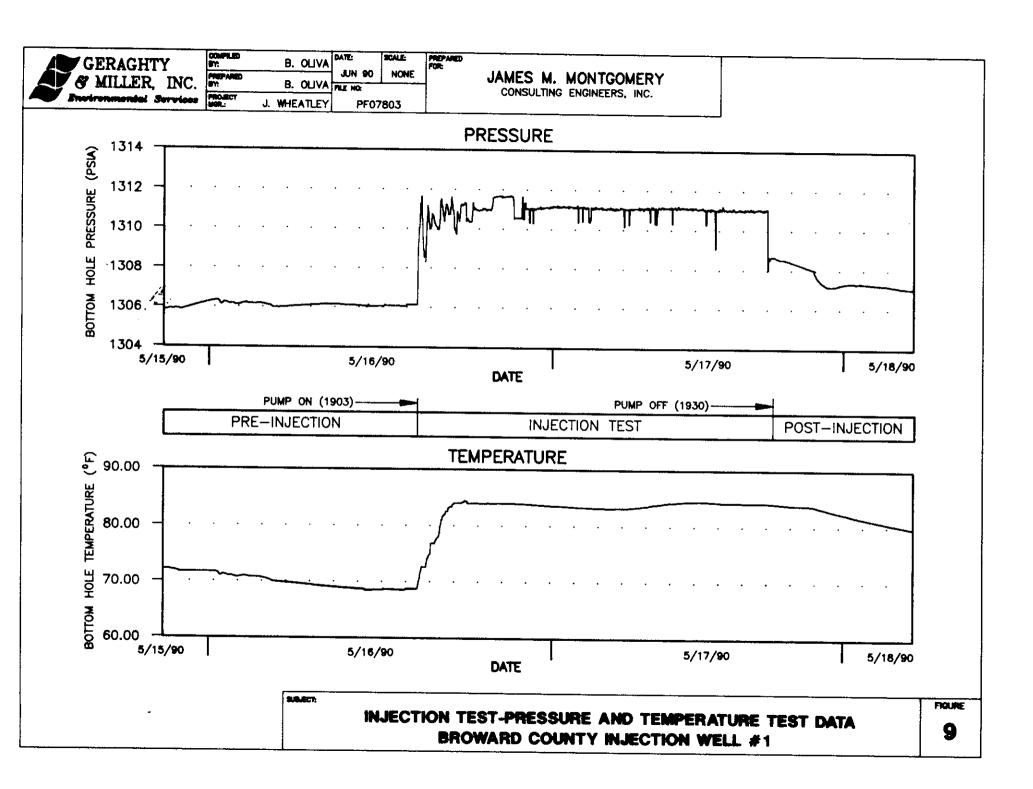


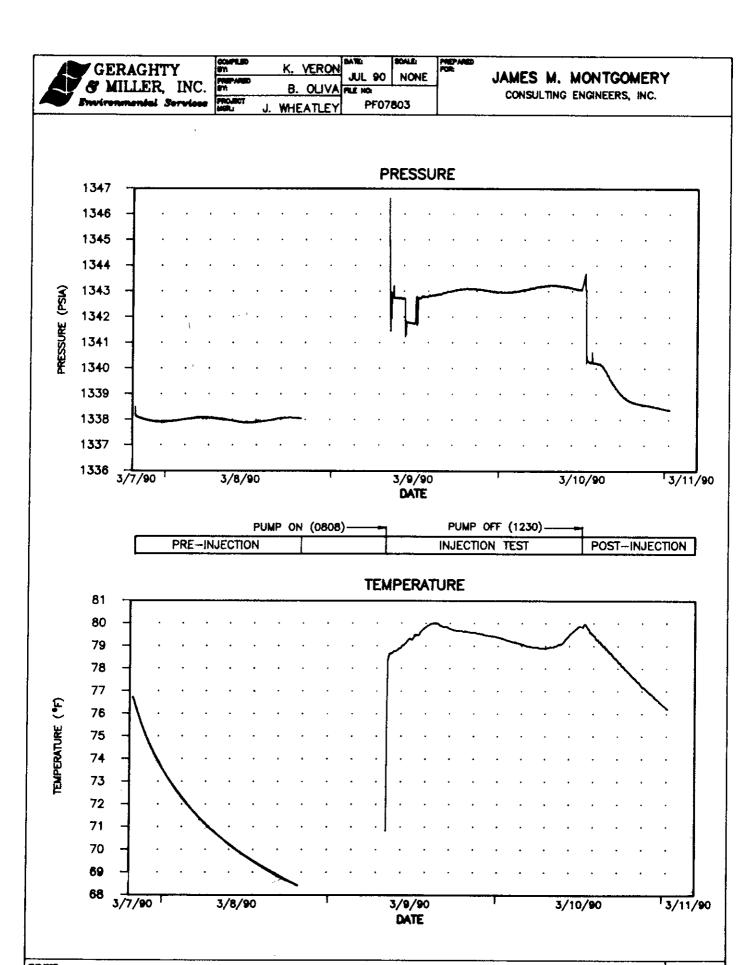
COMPLED BY:	M. WALDR	ON DATE:	SCALE
PREPARED SY:	B. OL	VA FLE HOL	NONE
PROJECT MOR.:	J. WHEATL	EY PFC	7803

JAMES M. MONTGOMERY CONSULTING ENGINEERS, INC.

PREP AMED






COMPLED BY: FREPARED	M. WALDRON	JUN 90	NONE	PREPARED FOR
PROJECT	B. OLIVA			
PROJECT MOR.	J. WHEATLEY	PF07	803	•

JAMES M. MONTGOMERY

CONSULTING ENGINEERS, INC.

TABLES

Table 1. Summary of Straddle-Packer Test Analyses, Injection Well #1, Broward County North District Regional Wastewater Treatment Plant

Test Interval (feet below pad)	Internal Thickness (feet)	Hydraulic (K) Conductivity (cm/sec)	Transmissivity (T) (gpd/ft)
1	(20) 1690 - 1710	1.55 × 10 ⁻⁴	66
2	(20) 1500 - 1520	9.64 × 10 ⁻⁴	409
3	(20) 1640 - 1660	2.05×10^{-4}	87
4	(20) 2846 – 2866	1.90 x 10 ⁻³	807
5	(20) 2606 - 2626	8.50 x 10 ⁻⁵	36

Table 2. Summary of Core Data, Injection Well #1, Broward County North District Regional Wastewater Treatment Plant

						····
Core No.	Depth (ft)		ure Conten ial/Final %	t Final Dry Density (pcf)	Hydraulic Conductivity (cm/sec)	Porosity
1H	2303	13.	9/19.6	109.2	7.2 × 10 ⁻⁴	0.37
1٧	2303	10.	9/13.2	118.4	1.5×10^{-4}	0.32
2H	2405	12.	3/14.8	113.9	4.6×10^{-4}	0.34
2V	2405	13.	0/16.9	109.8	6.3 x 10 ⁻⁵	0.37
3H	2503	11.	5/13.6	118.7	5.1 x 10 ⁻⁵	0.32
3 V	2503	7.	7/10.8	120.8	8.4 x 10 ⁻⁵	0.31
4H	2616	11.	4/13.3	119.8	1.7×10^{-5}	0.31
4V	2616	9.	8/13.1	118.6	1.7×10^{-4}	0.3
5H	2730	17.	2/20.2	105.3	2.5×10^{-4}	0.38
5V	2730	13.	5/16.9	110.8	3.2×10^{-4}	0.35
Core	Depth (ft)	Moisture Content (%)	Dry Density (pcf)	Unconfined Compressive Str (kg/cm2)	ength Porosity	Specific Gravity
1	2303	9.2	119.3	63	0.31	2.78
2	2405	13.8	107.9	34	0.38	2.78
3	2503	9.3	117.7	48	0.33	2.79
4	2616	10.8	115.9	68	0.33	2.77
5	2730	13.4	105.8	56	0.38	2.74

Notes: (1) Four-inch-diameter cores were trimmed to 3.3 cm. diameter.

(2) Analyses performed by Ardaman & Associates, Inc.

Table 1. Summary of Straddle-Packer Test Analyses, Injection Well #2, Broward County District North Regional Wastewater Treatment Plant

Test Interval (feet below pad)	Internal Thickness (feet)	Hydraulic (K) Conductivity (cm/sec)	Transmissivity (T) (gpd/ft)
1	(20) 1690 - 1710	*	*
2	(20) 1403 - 1423	3.3031 × 10-4	140
3	(20) 1500 - 1520	*	*
4	(23) 2464 - 2487	1.4566 x 10-4	71
5	(20) 2190 - 2210	*	*

^{*} Drawdown and recovery data unreliable because of problems with the seal between straddle-packers and formation.

APPENDIX A

Geologic Log

GEOLOGIC LOG OF

BROWARD COUNTY - NORTH DISTRICT REGIONAL WASTEWATER TREATMENT PLANT INJECTION WELL 1 POMPANO BEACH, FLORIDA

Depth Interval (feet)	Thickness (feet)	Sample Description
0 - 30	30	LIMESTONE AND SHELL - Limestone, 90%, tan to pale orange, large fragments, fossiliferous (coral), slightly weathered, moderately well-cemented; Shell, 10%, tan to pale orange, valves, large fragments, angular, unweathered.
30 - 50	20	SAND - Sand, 98%, colorless to very light gray, quartz, medium to coarse-grained, sub-angular, well sorted; Shell, 2%, tan to pale orange, angular, sub-angular, weathered.
50 – 60	10	LIMESTONE AND SAND - Limestone, 50%, tan to pale orange, fossiliferous coral, large fragments, angular, slightly weathered; Sand, 50%, colorless to very light gray, subangular, well sorted.
60 – 70	10	SAND - Sand, 100%, clear to very light gray, little phosphatic, some black-phosphatic, medium- to coarse-grained, sub-angular, well sorted; Limestone, trace, tan to pale orange, medium size fragments, fossiliferous coral.
70 - 80	10	LIMESTONE AND SAND - Limestone, 60%, mostly very light gray to light gray, tan to very pale orange, sandy, medium- to coarse-grained, sucrosic texture, very angular; Sand, 40%, clear to very pale orange, quartz, medium- to coarse-grained, some frosted, much as inclusions in limestone, sub-angular, poorly sorted.

Pompano B	leach		-2-	Injection Well 1
		hickness (feet)	Sample Descrip	otion
80 -	110	30	LIMESTONE AND SAND - light gray to very position medium - to very of sucrosic texture, and clear to frosted, quartz, medium-graine	ale olive, sandy, coarse-grained, gular; Sand, 20%, very light gray,
110 -	140	30	LIMESTONE AND SAND - light to medium light coarse-grained, su medium large to large angular; Sand, 5%, o very light gray, o grained.	gray, medium- to crosic texture, e size fragments, clear to frosted,
140 -	190	50	LIMESTONE - Limesto light gray to ver slightly phosphatic, pale orange, all fi grained, angular.	ry light gray, half-tan to very
190 -	230	40	LIMESTONE - Limesto yellowish gray, to li olive gray, micritic,	ght olive gray to
230 -	290	60	LIMESTONE - Limestone gray to pale olive, mand.	
290 -	310	20	LIMESTONE - Limestone gray to grayish of medium-grained (cos of t; Limesto phospholiferous.	live, fine- to arsing upward),
310 -	390	80	LIMESTONE - Limesto olive, micritic, soft Limestone, trace, phos	; Marl, 2%, soft;
390 -	410	20	CLAY AND LIMESTONE grayish olive, pl Limestone, 50%, grayingrained, silt.	lastic, soft;

Pompano Beach		-3-	Injection Well l
Depth Interval (feet)	Thickness (feet)	Sample Descr	iption
410 - 590	180	CLAY - Clay, 100% plastic, soft.	6, grayish olive,
590 - 770	180	CLAY – Clay, 100%, 1 to dusky yellow, Limestone, trace, ph	plastic, soft;
770 – 790	20	CLAY – Clay, 99%, l to dusky yellow, Limestone, l%, lig very fine-grained, m	plastic, soft; pht grayish olive,
790 – 830	40	LIMESTONE AND CLAY light grayish olive micritic to mediu Clay, 10%, light dusky yellow, plasti	/e, fine-grained, um-grained, soft; grayish olive to
830 - 860	30	CLAY AND LIMESTONE olive to grayish oli Limestone, 10%, med fine-grained, anguhard, well cemented.	ve, plastic, soft; ium to dark gray, ular, moderately
860 - 880	20	CLAY - Clay, 100%, yellow green, p Limestone, trace, r well cemented.	olastic, soft:
880 - 890	10	CLAY AND LIMESTO grayish yellow g plastic, soft; Limesto dark gray, micritlarge fragments, and hard; Limestone, torange, micritic.	reen to olive, stone, 15%, medium tic, very small to ngular, moderately

Pompano Beach		-5-	Injection Well l
Depth Interval (feet)	Thickness _(feet)	Sampl	e Description
950 - 970	20	- Sandy Lime to light gra with calcite sand grains, very pale or grained, so	ONE, LIMESTONE, AND SHELL stone, 70%, grayish orange ay, coarse-grained, sparry e, multi-colored coarse angular; Limestone, 20%, range, micritic to mediumme slightly phosphatic; tan to very pale orange, thered.
970 - 1010	40	100%, much calcareous grained, spa cemented, r	STONE - Sandy Limestone, - light gray, with sand, medium- to coarse- arry with calcite, poorly rest - very pale orange, ed, angular, moderately d.
1010 - 1030	20	gray to pale	Limestone, 100%, light e olive gray, medium- to ed, angular, hard.
1030 - 1050	20	gray to pale	Limestone, 100%, light of olive gray, some pale se-grained, angular, soft y hard.
1050 - 1370	320		imestone, 100%, very pale se-grained, angular, soft.
1370 - 1510	140	orange to m	imestone, 100%, very pale medium gray, fine- to ed, angular, soft.
1510 - 1800	290	orange to m	Limestone 100%, very pale dedium gray, medium to ed, angular, soft.
1800 - 1830	30	very pale or grained, angu	MESTONE - Limestone, 50%, range, fine- to medium- ular, soft; Dolomite, 50%, sh brown, medium-grained,

Pompano Beach		-6-	Injection Well 1
Depth Interval (feet)	Thickness (feet)	Sample	Description
1830 - 1920	90	orange to medium-grain hard; Clay, 2 to very pale o	imestone, 98%, very pale edium gray, fine- to ed, soft to moderately 2%, grayish yellow green orange, plastic, soft, in of interval; Dolomite,
1920 - 1980	60	brown to mode grained, angul very pale oran	Dolomite, 95%, grayish erate brown, very fine-lar, hard; Limestone, 5%, nge to medium gray, fine-to moderately hard.
1980 - 2010	30	brown to medi	Dolomite, 100%, moderate ium gray, fine-grained, few large fragments.
2010 - 2060	50	brown to dark	lomite, 100%, moderately yellowish brown, fine- ntly sparry with calcite, tle to hard.
2060 - 2070	10	very pale or Dolomite, 50%	ESTONE – Limestone, 50%, range, micritic, hard; , moderate brown to dark own, fine– to medium–lar, hard.
2070 - 2150	80	brown to dark	Dolomite, 100%, moderate of yellowish brown, very d, angular hard.
2150 - 2160	10	orange to gr grained, mod 5%, moderate	imestone, 95%, very pale rayish orange, medium- erately soft; Dolomite, brown to dark yellowish coarse-grained, angular,
2160 - 2180	20	yellowish bro	olomite, 100%, moderate wn, to dark yellowish um to coarse-grained,

Pompano Beach		-7 -	Injection Well 1
Depth Interval (feet)	Thickness (feet)	Sampl	le Description
2180 - 2190	10	moderate to medium- to hard; Lime	IMESTONE - Dolomite, 60%, o dark yellowish brown, coarse-grained, angular, stone, 40%, very pale ne-grained, micritic to ned, soft.
2190 - 2240	50		Limestone, 100%, very pale ne-grained, micritic to ned, soft.
2240 - 2500	260	orange, fine	Limestone, 100%, very pale - to medium-grained, soft; trace, in upper half of
2500 - 2510	10	70%, very fine- to m texture, p Dolomite, yellowish t grained,	AND DOLOMITE - Limestone, pale orange, dolomitic, medium-grained, sucrosic boorly cemented, soft; 30%, pale to moderate brown, medium- to fine-sparry with calcite, well-cemented.
2510 - 2530	20	75%, most-dumedium-grai pale orange brown dold cemented, 1 fine- to m 25%, very	ND LIMESTONE - Dolomite, usky brown to olive black, ned, inclusions of very, limestone and yellowish omite, moderately well-rest - yellowish brown, edium-grained; Limestone, pale orange, fine- to med, pellodial, soft.
2530 - 2550	20	60%, most-ye medium-gra cemented, re black, mediu very pale o	ND LIMESTONE - Dolomite, ellowish brown, fine- to ined, moderately well-est - dusky brown to olive m-grained; Limestone, 40%, range, fine- to medium-loidal, soft.

Pompano Beach		-8-	Injection Well 1
Depth Interval (feet)	Thickness (feet)	Sample Descr	iption
2550 - 2620	70	LIMESTONE - Limestor orange, fine- to pellodial, soft; Do upper extreme of int	medium-grained, lomite, little, at
2620 - 2660	40	LIMESTONE AND DOL Limestone, 65%, v fine- to medium-g soft; Dolomitic Lim yellowish brown, sucrosic, poorly ce increases relative lower one-quarter of	ery pale orange, rained, pelloidal, mestone, 35%, pale medium-grained, mented, percentage e to limestone in
2660 - 2690	30	DOLOMITE - Dolom yellowish orange to to medium-grained, with calcite, modera cemented, brittle.	<pre>light brown, fine- sucrosic, sparry</pre>
2690 - 2720	30	DOLOMITE - Dolomite moderate brown, mi sparry with calcite moderately well-ceme	critic, slightly, some vesicular,
2720 - 2740	20	LIMESTONE AND DOLO 65%, pale to very properties to medium-grained, programments, poorly constant of the second process of the second	pale orange, fine- pelloidal, angular emented; Dolomite, n orange to light k, fine-grained,
2740 - 2780	40	LIMESTONE AND DOLO 60%, very pale of argillaceous, some poerly cemente light gray, fine-quangular, hard, entir weathered.	range, slightly elloidal, angular, d; Dolomite, 40%, grained, micritic,

Pompano Beach		-4-	Injection Well l
Depth Interval (feet)	Thickness (feet)	Sample Descri	ption
890 - 900	10	LIMESTONE AND CLAY mostly light gray to medium-grained, mi phosphatic, some torange, all poorly sub-angular, slightly 50%, grayish yellow soft.	very pale olive, critic, slightly an to very pale sorted, angular to y weathered; Clay,
900 - 910	10	LIMESTONE AND CLAY half-tan to very pal grained, fossilife olive, medium-grain calcite, angular, cemented; Clay, 25% green plastic, soft.	e orange, medium- erous, half-pale ned, sparry with moderately well-
910 - 930	20	SANDY LIMESTONE AND Limestone, 95%, gray light gray, medium to sparry with calcinclusions, medium to angular to sub-angular to sub-angular to grains on some fraggrayish yellow green,	ish orange to very to coarse-grained, te and calcite o large fragments, lar, few calcite ored coarse sands ments; Clay, 5%,
930 - 950	20	SANDY LIMESTONE, LIMESTONE, LIMESTONE, 65% to very light gray sparry with calcite coarse sand gray Limestone, 30%, very pale olive, 5%, very pale olive,	6, grayish orange 7, coarse-grained, 8, multi-colored 9 ins, angular; 9 ry pale orange, 9 am-grained, very 9 angular; Clay,

Pompano Beach		-9-	Injection Well 1
Depth Interval (feet)	Thickness (feet)	Sample Descr	iption
2780 - 2800	20	DOLOMITE AND LIME 85%, light to mediu grained, very Limestone, 15%, velloidal, angular, slightly weathered.	m dark gray, fine- angular, hard; ery pale orange,
2800 - 2810	10	DOLOMITIC LIMESTO Dolomitic Limestone to pale yellowis grained, sucrosic, weathered; Dolomit medium gray, fine-quard.	, 70%, pale orange h brown, medium- angular, brittle, te, 30%, light to
2810 - 2880	70	LIMESTONE - Limestor orange, medium-grasub-angular fragm moderately soft, wea	ained, pelloidal, ents, brittle to
2880 - 2920	40	LIMESTONE AND DOLO 85%, very pale orang pelloidal, brittle tweathered; Dolomite brown, fine- to med to medium large frankerd.	ge, medium-grained, to moderately hard, , pale yellowish dium-grained, small
2920 - 2960	40	LIMESTONE - Limestor orange, medium-grasub-angular fragmomoderately soft.	ined, pelloidal,
2960 - 3010	50	LIMESTONE AND DOLO 95%, very pale of yellowish brown, pelloidal, moderated 5%, olive gray to brown, fine-grained, large fragments, and hard, more dolomite interval, absent at	orange to pale medium-grained, ly soft; Dolomite, o pale yellowish, micritic, medium ngular, moderately in upper end of

Pompano Beach		-10-	Injection Well 1
Depth Interval (feet)	Thickness (feet)	Sampl	e Description
3010 - 3040	30	90%, tan to grained, pe angular fraction, pale ye orange, su	ND DOLOMITE - Limestone, very pale orange, medium-elloidal, sub-angular to gments, soft; Dolomite, ellowish brown to grayish acrosic to micritic, medium- to fine-grained, hard.
3040 - 3070	30	93%, grayish brown, fin medium-qrain Limestone, orange, fine	D LIMESTONE - Dolomite, orange to pale yellowish e-grained, micritic to ed, very angular, hard; 7%, tan to very pale - to medium-grained, subngular, soft to moderately
3070 - 3130	60	yellowish br fine- to me medium size	Dolomite, 100%, pale own, little light gray, edium-grained, small to fragments, very angular, very hard, well sorted.
3130 - 3150	20	orange to pa some light t grained, very	Polomite, 100%, very pale all yellowish brown, with to very light gray, fine-y angular, small to medium as, moderately hard.
3150 - 3370	220	yellowish bro fine-grained	Dolomite, 100%, pale own with some light gray, d, small to medium size very angular, hard to ard.
3370 - 3420	50	gray, fine angular, b	ERT - Chert, 60%, tan to to to medium grained, nard; Dolomite, pale rown, fine, to medium lar, hard.

Pompano Beach	-ll- Injection		Injection Well l
Depth Interval (feet)	Thickness (feet)	Sample D	escription
3420 - 3440	20	yellowish brown pale orange, fi irregular to	mite, 100%, mostly pale , some grayish pink to ine- to medium-grained, platy fracture, very o moderately hard.
2440 - 3470	30	moderately yel grained, angul olive black, ve	CHERT - Dolomite, 75%, llowish brown, fine- lar, hard; Chert, 25%, ery fine-grained, very e to hard, interbedded.
3470 - 3512	42+	yellowish brown	olomite, 100%, pale to olive gray, fine- grained, mostly planar angular, hard.
TOTAL DEPTH:	3512		

GEOLOGIC LOG OF

BROWARD COUNTY - NORTH DISTRICT REGIONAL WASTEWATER TREATMENT PLANT

INJECTION WELL 2 POMPANO BEACH, FLORIDA

Depth Interval (feet)	Thickness (feet)	Sample Description
0 - 10	10	SAND, FILL AND SHELL - Sand, 50%, colorless, quartz, fine- to coarse-grained, well rounded to sub-angular, poorly sorted; Organics, 35%, dark brown to black, wood fibers; Shell, 15%, white to tan, mainly fragments; Silt, trace, very pale orange.
10 - 20	10	SAND AND SHELL - Sand, 70%, colorless to very light gray, quartz, medium- to coarse-grained, sub-rounded to rounded, silty, moderately sorted; Shell, 20%, very pale orange, mostly fragments, some whole valves; Organics, 10%, dark brown to black, wood fibers; Oolites, trace, very pale orange, calcareous.
20 - 40	20	SANDSTONE AND SHELL - Sandstone, 60%, light gray to gray, quartz, fine- to coarse-grained, sub-angular to sub-rounded, moderately sorted; Shell, 30%, pale to very pale orange, tests; Organics, 10%, dark brown to black, wood fibers, seeds, bone.
40 - 60	20	SAND AND SHELL - Sand, 70%, clear to light gray, quartz, fine- to very coarse-grained, sub-rounded to angular, poorly to moderately sorted, some silt; Shell, 25%, very pale orange to light gray, tests; Organics, 5%, light brown to black, wood fiber.

Pompano Beach		-2-	Injection Well 2
Depth Interval (feet)	Thickness (feet)	Sample Descri	ption
60 - 100	40	LIMESTONE, SAND AND 70%, light gray t texture; Sand, 30% gray to very pale o to angular; Shell, orange, fragments; brown to black, wood	o gray, sucrosic %, clear to light range, sub-angular trace, very pale Organics, trace,
100 - 130	30	LIMESTONE AND SAND light gray to gray, hard to hard; Sand, pale orange, medium grained, sub-angula Shell, trace, ver fragments.	biomicritic, very 20%, clear to very coarse- r to sub-rounded;
130 - 170	40	LIMESTONE - Limest gray to gray, medic Shell, trace, p limestone.	m-grained, hard;
170 - 200	30	LIMESTONE - Limest light gray to gray, hard; Shell, trace limestone.	medium-grained,
200 - 230	30	LIMESTONE - Limest very pale orange, size fragments with angular, unweathered light to medium gomedium-grained, anguhard, well cemented.	micritic, medium n many tests, all ; Limestone, 50%, ray, phosphatic,
230 - 250	20	SHELL AND LIMESTONE pale orange, tests, size fragments, angulatione, 30%, phosphatic, fine-tangular, moderate cemented; Organic fibers.	small to medium lar, unweathered; light gray, o medium-grained, ly hard, well-

Pompano Beach		-3-	Injection Well 2
Depth Interval (feet)	Thickness (feet)	Sample Descri	ption
250 - 280	30	SHELL AND LIMESTONE pale orange, tests, angular; Limestone, very pale olive, grained, angular well-cemented; Sand, quartz, coarse-grain	small fragments, 50%, light gray to fine- to medium- moderately hard, trace, colorless,
280 - 300	20	LIMESTONE - Limestor orange, micritic, sm fragments, some te mostly unweathered; tan to light gray, to medium-grained, an hard, well cementer black, wood and plant	all to medium size sts, all angular, Limestone, 20%, phosphatic, finengular, moderately d; Organics, 10%,
300 - 440	140	SANDY LIMESTONE AND 140%, pale olive to micritic with so calcite, all angular size fragments; San frosted- light gray to coarse-grained, angular; Shell, 30% gray, small to medangular, slightly to	very pale orange, me sparry with , small to medium- id, 30%, clear to , quartz, medium- angular to sub- , tan, to medium dium-size tests,
440 480	40	LIMESTONE, SHELL Limestone, 75%, very phosphatic respective to fine-grained, moderately hard; Shell very pale orange, to fragments, sub-angumar, 5%, pale olive plastic, soft.	y pale olive to argillaceous and ely, medium-fine very angular, ell, 20%, tan to ests, medium size lar to angular;
480 - 700	220	CLAY - Clay, 100%, p pale olive, plastic,	

Pompano Beach		-4-	Injection Well 2
Depth Interval (feet)	Thickness (feet)	Sampl	e Description
700 - 720	20	to very pal size fragmer Limestone,	IMESTONE - Shell, 85%, tan e orange, small to medium nts, poorly to uncemented; 15%, very pale orange, orly cemented.
720 780	60	plastic, sof orange, poor	t; Shell, trace, very pale olive, t; Shell, trace, very pale ly cemented to uncemented, irds of interval only.
780 - 790	10	80%, tan to cemented; L orange, mic	STONE AND CLAY - Shell, very pale orange, poorly imestone, 10%, very pale ritic, poorly cemented; ale olive, plastic soft.
790 - 840	50	olive, pl Limestone, very pale	, 100%, pale to very pale astic, soft; Shelly little to trace, tan to orange, poorly to found in upper extreme of
840 – 880	40	olive, plast dusky brown	, 95%, pale to very pale ic, soft; Dolomite, 5%, to grayish green, very , well-cemented, angular, rd.
880 - 900	20	olive, plast dusky brown	, 95%, pale to very pale ic, soft; Dolomite, 5%, to grayish green, very well-cemented, angular, rd.
900 - 920	20	tan to very sub-rounded, pale olive,	D CLAY - Limestone, 50%, pale orange, micritic, well-cemented; Clay, 50%, plastic, soft; Shell, y pale orange, small eathered.

Pompano Beach		-5-	Injection Well 2
Depth Interval (feet)	Thickness (feet)	Sample Descri	ption
920 - 930	10	LIMESTONE AND CLAY tan to light gray, medium large fragments sub-angular, well-cepale olive, plastitrace, very pale fragments, weathered	micritic, small to ts, poorly sorted, mented; Clay, 10%, ic, soft; Shell, orange, small
930 - 970	40	LIMESTONE AND SHELL tan to dark olive medium size fragments 10%, small fragments Clay, 7%, pale olive	gray, micritic, s, angular; Shell, , very weathered;
970 - 1010	40	LIMESTONE - Limest medium gray (80%), orange (20%), micrisome pelloidel tegrained), well-cemetan to very pale weathered.	phosphatic; pale tic with calcite, exture (medium- ented; Shell, 7%,
1010 - 1150	140	LIMESTONE - Limeston gray to grayish orang to moderately hard; pale orange, fragment	ge, micritic, hard Shell, 5%, very
1150 - 1180	30	LIMESTONE - Limestone gray to grayish or orange, sucrosic text hard; shell, trace, f	ange, very pale ture, hard to very
1180 - 1200	20	MARL LIMESTONE - Mar gray, fine-graine Limestone, 25%, ye grayish orange, fine-	d, very soft; llowish gray to
1200 - 1300	100	LIMESTONE MARL - yellowish gray to fine-grained, so yellowish gray, fir soft.	grayish orange, ft; Marl, 25%,

Pompano Beach		-6-	Injection Well 2
Depth Interval (feet)	Thickness (feet)	Sampl	le Description
1300 - 1650	350	yellowish	Limestone 100%, moderate brown, fine-grained, o medium-grained, soft; e, hard.
1650 - 1700	50	medium-grain moderate y	STONE - Chert, 50%, gray, ned, hard; Limestone, 50%, ellowish brown, fine- to ned, some micritic, soft.
1700 - 1760	60	yellowish micritic t	Limestone, 100%, moderate brown, fine-grained, o medium-grained, soft; e, gray, hard.
1760 - 1920	160	yellowish micritic t	Limestone, 100%, moderate brown, fine-grained, o medium-grained, soft; , gray, hard.
1920 - 1950	30	dark yellow: very well Limestone, 2 light yello	IMESTONE - Dolomite, 80%, ish brown, fine-grained, -cemented, very hard; 20%, very pale orange to wish brown, fine-grained, ture; Marl, trace.
1950 - 1970	20	very pale o brown, mediu 10%, dark y	MESTONE - Limestone, 90%, trange to light yellowish m-grained, hard; Dolomite, ellowish brown, fine- to ined, very hard; Marl,
1970 - 2100	130	95%, dark y black, mediu hard; Limest	ND LIMESTONE - Dolomite, ellowish brown to olive m- to coarse-grained, very one, 5%, very pale orange, , micritic, soft.
2100 - 2210	110	orange to	Dolomite, 100%, very pale dark yellowish brown, ned, angular, moderately hard.

Pompano Beach		-7-	Injection Well 2
Depth Interval (feet)	Thickness (feet)	Sample Des	cription
2210 - 2240	30	50%, dark yellow grained, angula: 50%, very pale c	MESTONE - Dolomite, vish brown, medium-r, hard; Limestone, brange, fine-grained, m-grained, moderately
2240 - 2290	50		tone, 100%, very pale ained, micritic to oderately hard.
2290 - 2470	180	orange, fine- to fraction, micrit trace to very li	tone, 100%, very pale medium-grained, fine tic, soft; Dolomite, ttle, dark yellowish ined, angular, hard, of interval.
2470 - 2500	30	(95%) very pale medium-grained, soft; little (5%)	estone, 100%, mostly orange, fine- to moderately soft to medium gray, very well-cemented,
2500 - 2550	50	orange and little to medium-grain moderately soft to	tone, 95%, very pale medium gray, fine- ed, well-cemented, soft; Dolomite, 5%, brown, fine-grained,
2550 - 2630	80		cone, 100%, very pale gray, fine-grained,
2630 - 2680	50	80%, very pale ora	OLOMITE - Limestone, ange to medium gray, Oolomite, 20%, light ght olive gray, very erately hard.

Pompano Beach		-8-	Injection Well 2
Depth Interval (feet)	Thickness (feet)	Sa	mple Description
2680 - 2700	20	yellowish	- Dolomite, 100%, dark brown, very fine-grained, y hard to very hard.
2700 - 2770	70	orange to grained, moderately of interv	- Limestone, 100%, very pale medium gray, medium to fine-micritic (coarsing upward), y hard; Clayey Limestone, 13% val, interbedded clay layer, orange, plastic soft.
2770 - 2800	30	60%, very micritic, 40%, medi	AND SANDSTONE - Limestone, pale orange to medium gray, moderately hard; Sandstone, um dark gray to dark gray, -grained, moderately hard to
2800 - 2840	40		- Limestone, 100%, very pale icritic, moderately hard to
2840 - 2940	100	70%, very moderatel 30%, gray	AND SANDSTONE - Limestone, y pale orange, micritic, y hard to hard; Sandstone, to medium dark gray, very ned, moderately hard to hard.
2940 - 3000	60		- Limestone, 100%, very pale ne- to medium-grained, soft.
3000 - 3020	20	60%, pale black, fir to large angular Limestone	AND LIMESTONE - Dolomite, yellowish brown to olive ne- to coarse-grained, small fragments, poorly sorted, to sub-angular, hard; , 40%, very pale orange, medium-grained, moderately lar.

Pompano Beach		-9-	Injection Well 2
Depth Interval (feet)	Thickness (feet)	Sample	Description
3020 - 3050	30	yellowish bro brown, fine- angular, hard;	Dolomite, 100%, pale wn to dusky yellowish - to medium-grained, Limestone, trace, very fine-grained, lower part
3050 - 3090	40	moderate yello gray, fine- to to medium larg	olomite, 100%, pale to wish brown, some medium o medium-grained, small e fragments, moderately-brittle to hard, poorly
3090 - 3130	40	moderate yello medium-graine	olomite, 100%, tan to owish brown, fine- to d, small to very large gular, brittle to hard,
3130 - 3350	220	yellowish bro grained, med	omite, 100%, tan to pale own, fine- to medium- dium to medium small pular, brittle to hard, l sorted.
3350 - 3370	20	yellowish bro grained, med	omite, 100%, tan to pale own, fine- to medium- lium to medium small ular, brittle to hard, l sorted.
3370 - 3390	20	yellowish brown grained, micri	Dolomite, 100%, pale and medium gray, fine- itic to medium-grained, ith calcite, angular,
3390 - 3460	70	yellowish brown	Dolomite, 100%, pale n to olive black, fine- tic to medium-grained,

TOTAL DEPTH: 3521

Pompano Beach		-10-	Injection Well 2
Depth Interval (feet)	Thickness (feet)	Sample Descri	otion
3460 – 3490	30	DOLOMITE - Dolom: yellowish brown, a sucrosic, solution posub-angular, mode brittle.	medium-grained, itting, angular to
3490 - 3521	31+	DOLOMITE - Dolomi yellowish brown, micritic, very angu fragments, hard.	fine-grained,

DEEP MONITOR WELL #1

GEOLOGIC LOG

OF

BROWARD COUNTY - NORTH DISTRICT REGIONAL WASTEWATER TREATMENT PLANT DEEP MONITOR WELL 1 POMPANO BEACH, FLORIDA

Depth Interval (feet)	Thickness (feet)	Sample Description
0 - 20	20	SAND, FILL, AND SHELL - Sand, 40%, colorless to light gray, quartz, fine-to coarse-grained, sub-angular to rounded, poorly sorted; Fill, 40%, dark brown to olive black, wood fibers, also limestone fragments, tan to very pale orange; Shell, 20%, very pale orange, small fragments, angular.
20 - 30	10	SAND, FILL, AND SHELL - Sand, 75%, colorless to very light gray, quartz, medium- to coarse-grained, sub-angular to rounded; Fill, 20%, tan to pale orange, limestone, medium to large fragments; Shell, 5%, tan to pale orange, mostly fragments, angular, weathered; Organics, trace, wood and leaf fibers.
30 - 50	20	SANDSTONE AND SHELL - Sandstone, 60%, colorless to gray, quartz, fine- to coarse-grained, poorly to moderately well-cemented; Shell, 40%, tan to pale orange, small to large fragments, angular; Organics, trace, brown to black, wood fibers.
50 - 60	10	SANDSTONE, SHELL, AND LIMESTONE-Sandstone, 60%, colorless to light gray, quartz, fine- to coarse-grained, poorly to moderately well-cemented; Shell, 20%, tan to pale orange, medium size fragments, angular; Limestone, 20%, light gray, some black, phosphatic, moderately well-cemented.

Pompano Beach		-2- Deep Monitor Well 1
Depth Interval (feet)	Thickness (feet)	Sample Description
60 - 100	40	LIMESTONE AND SAND - Limestone, 75%, light gray to gray, sucrosic texture, angular; Sand, 25%, colorless to light gray, quartz, angular to sub-angular; Shell, trace, very pale orange, small fragments.
100 - 130	30	LIMESTONE - Limestone, 85%, light to medium light gray, slightly phosphatic, biomicritic; Sand, 15%, colorless to very pale orange, mediumto coarse-grained, angular to subangular; Shell, trace, very pale orange.
130 - 360	230	LIMESTONE - Limestone, 100%, mostly light gray to gray, slightly phosphatic, some tan to very pale orange, all medium-grained, sucrosic texture, sub-angular, hard.
360 - 400	40	LIMESTONE, SAND, AND SHELL- Limestone, 90%, tan to pale olive, some light to medium light gray, medium- to coarse-grained, sucrosic texture, angular, hard; Sand, 5%, clear to frosted-light gray, quartz, medium-grained, angular; Shell, 5%, tan to very pale orange, slightly weathered.
400 - 430	30	CLAY AND LIMESTONE - Clay, 60%, very pale to pale olive, plastic, soft; Limestone, 40%, tan to pale olive, medium-grained, sucrosic texture, hard.
430 - 680	250	CLAY - Clay, 100%, very pale to pale olive, plastic, soft.

Pompano Beach		-3-	Deep Monitor Well l
Depth Interval (feet)	Thickness (feet)	Sample	Description
680 - 770	90	pale olive, p 5%, tan to p fine- to me	Y LIMESTONE - Clay, 95%, plastic, soft; Limestone, ale olive, argillaceous, dium-grained, sucrosic lar, moderately soft.
770 – 930	160		100%, very pale olive to w green, plastic, soft.
930 - 980	50	grayish yello	IMESTONE - Clay, 90%, www green, plastic, soft; 10%, tan, micritic,
980 - 1140	160	very pale of sucrosic tex	Limestone, 100%, tan to range, medium-grained, ture, medium to large derately well-cemented,
1140 - 1280	140	orange to pa medium-grain small to med	imestone, 100%, very pale ale yellowish brown, ned, sucrosic texture, dium size fragments, ll-cemented, angular.
1280 - 1380	100	orange to pale to medium-ç	mestone, 100%, very pale e yellowish brown, fine-grained, medium size derately well-cemented.
1380 - 1420	40	pale orange t very fine- moderately wei	CHERT - Limestone, 95%, o pale yellowish brown, to medium-grained, ll-cemented; Chert, 5%, angular, interbedded in bells).
1420 - 1450	30	yellowish brow	Limestone, 100%, pale wn to very pale orange, ned, moderately well-

Pompano Beach		-4-	Deep Monitor Well 1
Depth Interval (feet)	Thickness (feet)	Samp	ple Description
1450 - 1480	30		Chert, 100%, medium gray, ed, very angular.
1480 - 1510	30	yellowish fine-graine	- Limestone, 100%, pale brown to gray, medium- to ed, micritic; Chert, trace, y, very angular.
1510 - 1550	40		Chert, 100%, medium gray, ed, very angular.
1550 - 1880	330	pale yello orange, m chert, 5%, fine-gra interbedded	MESTONE - Limestone, 95%, owish brown to very pale icritic to medium-grained; medium gray, medium- to ained, very angular, d in limestone (thick to with variable composition erval.
1880 - 1910	30	very pale medium- to soft to mo 20%, dark	LIMESTONE - Limestone, 80%, orange to grayish orange, o fine-grained, micritic, oderately soft; Dolomite, yellowish brown to dark - to medium-grained, subangular.
1910 - 1930	20	medium-grai very pale	ESTONE - Chert, 50%, gray, Ined, hard; Limestone, 50%, orange, medium- to fine- critic, moderately soft.
1930 - 1960	30	orange,me	Limestone, 100%, very pale dium- to fine-grained, soft; Dolomite, trace.
1960 - 1970	10	moderate br respectivel respectivel respectivel	- Dolomite, 100%, tan and cown, sucrosic and micritic, by, medium and fine-grained, by, vesicular and platey, by, medium to medium large brittle_to hard.

Pompano Beach		-5- Deep Monitor Well 1
Depth Interval (feet)	Thickness (feet)	Sample Description
1970 - 1990	20	DOLOMITE AND LIMESTONE - Dolomite, 95%, pale yellowish brown and medium dark gray, fine-grained, micritic, angular, hard; Limestone, 5%, very pale orange, micritic, soft.
1990 - 2080	90+	DOLOMITE - Dolomite, 100%, pale to moderate yellowish brown, fine- to medium-grained, angular, hard; Limestone, trace, very pale orange, micritic, soft.
TOTAL DEPTH:	2080	

APPENDIX B

Core Analyses

Core Descriptions

Core Photographs

GERAGHTY & MILLER, INC.

CORE ANALYSES

Ardaman & Associates, Inc.

Consultants in Soils, Hydrogeology, Foundations and Materials Testing

File Number 90-029 March 26, 1990

Youngquist Brothers, Inc. 15000 Pine Ridge Road Ft. Myers, Florida 33908

Attn: Mr. Don Douglas

Subject: Geotechnical Laboratory Test Results

Gentlemen:

As requested, the five core samples you provided us were tested to determine the horizontal and vertical hydraulic conductivity, porosity, specific gravity and unconfined compressive strength.

The specific gravity of the specimens was determined in accordance with ASTM D 854. To obtain the specific gravity of the solids, a representative portion of the rock core was crushed such that the entire portion passed a # 20 U S Standard sieve. The results of the specific gravity determinations were as follows:

	Depth	Specific
<u>Sample</u>	(feet)	(Gravity)
1	2303	2.78
2	2405	2.78
3	2503	2.79
4	2616	2.77
5	2730	2.74

The permeability test specimens from the rock cores were subcored and trimmed to a length between 7.5 and 9.4 cm and a diameter of 3.3 cm. Each specimen was placed within a flexible latex membrane, and mounted in a triaxial-type permeameter. The specimens were consolidated under an isotropic effective consolidation stress of 5 to 10 lbs/in² and permeated with deaired water under a backpressure of at least 92 lb/in². The specimens were permeated using an net hydraulic head ranging between 50 and 200 cm of water. The inflow to and outflow from the specimen were monitored with time, and the coefficient of permeability calculated for each recorded flow increment. The test was continued until steady-state flow was achieved, as evidenced by values of inflow and outflow within ±10% of the mean of the inflow and outflow for each increment, and stable values of the coefficient of permeability were measured. The porosity was calculated from the dry density and the specific

gravity. The results were as follows:

	Initial/Final	Final Dry	Coefficient of	
Depth	Moisture Content	Density	Permeability	
<u>(11)</u>	(%)	(pcf)	(cm/sec)	Porosity
2303	13.9/19.6	109.2	7.2x10 ⁴	0.37
2303	10.9/13.2	118.4	1.5x10 ⁻⁴	0.32 -
2405	12.3/14.8	113.9	4.6x10 ⁻⁴	0.34
2405	13.0/16.9	109.8	$6.3x10^{-8}$	0.37
2503	11.5/13.6	118.7	5.1×10^{-5}	0.32
25 03	7.7/10.8	120.8	8.4x10 ⁵	0.31 ·
2616	11.4/13.3	119.8	1.7×10^{-5}	0.31
2616	9.8/13.1	118.6	1.7x10 ⁻⁴	0.31
2730	17.2/20.2	105.3	2.5×10^{-4}	0.38
2730	13.5/16.9	110.8	3.2x10 ⁻⁴	0.35 -
	(ft) 2303 2303 2405 2405 2503 2503 2616 2616 2730	Depth Moisture Content (ft) (%) 2303 13.9/19.6 2303 10.9/13.2 2405 12.3/14.8 2405 13.0/16.9 2503 11.5/13.6 2503 7.7/10.8 2616 11.4/13.3 2616 9.8/13.1 2730 17.2/20.2	Depth Moisture Content Density (ft) (%) (pcf) 2303 13.9/19.6 109.2 2303 10.9/13.2 118.4 2405 12.3/14.8 113.9 2405 13.0/16.9 109.8 2503 11.5/13.6 118.7 2503 7.7/10.8 120.8 2616 11.4/13.3 119.8 2616 9.8/13.1 118.6 2730 17.2/20.2 105.3	Depth Moisture Content Density Permeability (ft) (%) (pcf) (cm/sec) 2303 13.9/19.6 109.2 7.2x10 ⁻⁴ 2303 10.9/13.2 118.4 1.5x10 ⁻⁴ 2405 12.3/14.8 113.9 4.6x10 ⁻⁴ 2405 13.0/16.9 109.8 6.3x10 ⁻⁸ 2503 11.5/13.6 118.7 5.1x10 ⁻⁸ 2503 7.7/10.8 120.8 8.4x10 ⁻⁸ 2616 11.4/13.3 119.8 1.7x10 ⁻⁴ 2616 9.8/13.1 118.6 1.7x10 ⁻⁴ 2730 17.2/20.2 105.3 2.5x10 ⁻⁴

where: H=horizontal, V=vertical

The specimens for the unconfined compression tests were obtained in the same manner as the permeability specimens. The cores were tested in accordance with ASTM D 2938, Unconfined Compressive Strength of Intact Rock Core Specimens, except that the strain rate was such that failure generally occurred in less than five minutes. The deformation during loading was recorded and the stress was corrected for area change. The stress-strain curves are presented in Figures 1 through 5, and the test data are tabulated in Appendix A. The porosity was calculated from the dry density and the specific gravity. Test results are summarized below:

		Moisture	Dry	Unconfined Compressive	
Corc	Depth	Content	Density	Strength	
<u>Number</u>	(ft).	_(%)_	(pcf)	(kg/cm^2)	Porosity
1	2303	9.2	119.3	63	0.31
2	2405	13.8	107.9	34	0.38
3	2503	9.3	117.7	48	0.33
4	2616	10.8	115.9	68	0.33
5	2730	13.4	105.8	56	0.38

If you have any questions or if you require additional testing, please contact us.

Very Truly Yours,

ARDAMAN & ASSOCIATES, INC.

on C. Wildman

Manager of Technical Services

Nadim F. Fulcihan

Principal

Florida Registration No. 31953

CORE DESCRIPTIONS

SAMPLE/CORE LOG */

Boring/	Well	W-/	Project/No	9FU7803		P	age/	of
Site Location	BCL	WIF	- Pompa	w Beach, FL	Drilling _ Started	Drillir Com	ng pleted	
	-			Hole Diameter /2		Type of Samplel Coring Device	vistiauson	Core Berie
Length of Corir	and Diar ng Device	neter e	20 Feet	long, 4-inch	I.V.	Sampling Interva	al <u>2300-2</u>	3/3 feet
			feet	☐ Surveyed I	☐ Estimated	Datum		
	Fluid Use					•	Rotory	
Drilling Contract	tor <u>Y</u> o	unggi	ist Bros,	.G.	Dril	ler	.Helper	
Prepare By	d Ken ?	Eber	K-T.M.	.G. Montgomeny		Hammer Weight	Hammer Drop	inches
Sample/	Core Depth land surface) To		Time/Hydraulic Pressure or Blows per 6 inches	0 0		ple/Core Description		
2300	23/3	6	46%	LIMESTONE	- Linn	estine 100%	Vens sa	دا
			-	anger fine	to mel	estone, 100% m grainel-pa	elloidal	ceff
				to and to	a had	m gyomax p	-noncea, .	-01 G
ļ				10 Westernier	y ruse.			
								
		<u> </u>						
			<u> </u>					
			<u> </u>	• • • • • • • • • • • • • • • • • • • •				
								
				: 				
						· · · · · · · · · · · · · · · · · · ·		
 								
				! 			-	
								

SAMPLE/CORE LOG %

Boring/\	Well_ <i>IU</i>	<u>1-1</u> F	Project/No. 🗵	<i>PF07803</i> Page / of /
Site Location	BCL	UWII	o - Pomp	Drilling Drilling Completed
Total De	epth Drille	ed	7feet	Hole Diameter 12/4 inches Coring Device Christianson (are Burn
Length of Corin	and Dian g Device	neter	20 feat	long, 4-1hch I.D. Sampling Interval 2400-24/7 feet
				☐ Surveyed ☐ Estimated Datum
	Fluid Use	ed	water	Drilling Method_Rotary
Drilling Contrac	tor <i>You</i>	urggui	& Bros,	Co- Driller Helper
Prepare By	d Ken	OV Roh	erts , T.	Driller Helper Hammer Hammer Weight Drop inches
Sample/0	Core Depth land surface) To		Time/Hydraulic Pressure or Blows per 6 inches	Sample/Core Description
2400	24/7	17	100%	(IMETONE - Cinestone 100% VPM
70-			,	pale orange, fine to medium grained. pelloidal, soft to moderately hand
				yere orange, the to meature granea.
				pelloidal, soft to moderately hard
ļ			<u> </u>	
		<u>'</u>		
	 		:	
		<u> </u>		
		-		
-				

SAMPLE/CORE LOG #3

				PF07803				
Site Location	Bcw	WTP	- Pompo	mo Beach, FL.	DrillingStarted	Dril Co	lling mpleted	
Total Dep	oth Drille	ed/	6feet	Hole Diameter /2	//_inches	Type of Sample/ Coring Device	hristanson	Core Barn
Length a of Coring	nd Dian Device	neter 2	o feet lon	g, 4-inch I	T.D.	Sampling Inter	val 2500-	2516_feet
Land-Sur	face Ele	V	feet U	☐ Surveyed	□ Estimated	Datum		
Drilling F			ater	·		Drilling Method	Rotam	
Drilling Contracto	or <i>You</i>	uggu	ist Bros, C	<u> </u>	Dril	ler	Helper	
Prepared By	M. C	Tûldi Vûldi	ron - Ger	co. ragh ty & Willes	-, he.	Hammer Weight	Hammer Drop	inches
Sample/Co (feet below la From	ve Depth		Time/Hydraulic Pressure or Blows per 6 inches	' /		ple/Core Description	·	
2500	2511.	7	43.8%	/ IN FORM	E - / in.	when Inte	. UP m	ale
	2.6		, , , ,	CINLESTONS Orange, fine Soft. (30		stone, 100	- Cy	1
				orange, tine	e to medic	un grained	-pelloida	<u> </u>
			:	Soft. (30	Egments,	Some as fro	greuts)	
						<u>,</u>	 	
		,						
					·	<u> </u>		
		·						
							-	
								
				· - · <u> </u>				
		-						

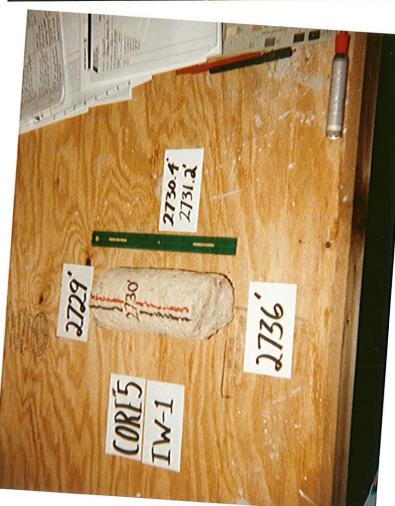
SAMPLE/CORE LOG*

Boring/\	Vell_ <i>Tu</i>	<u>ا ر ر</u>	Project/No	PF07803			Page/	of
Site Location	BCL	VWTF	- Pompa	w Beach, FL	Drilling Started	Drilli Corr	ng npleted	
Total De	pth Drille	ed 20	feet I	Hole Diameter_12	1 inches	Type of Sample/ Coring Device	ristauon (DR Barrel
Length of Corin	and Dian g Device	neter 	s feet lo	ng, 4-inch 1	D .	Sampling Interv	al <u>2600-</u>	2620 feet
Land-Su	rface Ele	W	feet	U Surveyed	☐ Estimated	Datum	<u> </u>	.
	Fluid Use						Rotary	
Drilling Contract	or <u></u>	surga	just Bra	s, Co.	Drille	er Hammer Weight	_ _Helper	
Prepare By	d U.	Walde	un - Gera	ighty and N	liller, Inc	Hammer Weight	Hammer Drop	inches
Sample/0	ore Depth land surface)		Time/Hydraulic Pressure or Blows per 6 inches			sie/Core Description		
2600	2620	8.5	42.5%	LIMESTON	ie – Lines	tone both	ven pak	mar
				fire to me	edium avain	Hone, 100°C, ad-pelkicks,	soft.	75
						1		
							•	
					<u></u>			
				_				
							<u> </u>	
							· · · · · · · · · · · · · · · · · · ·	
				<u> </u>				
							·	

SAMPLE/CORE LOG*5

Boring/\	Well_ <i>Tu</i>) -/	Project/No	PF07803		Pa	age <u>/</u>	of/
Site Location	BCL	UWTP	- Hompa	no Beach , FL	Drilling Started	Drillin Comp	g oleted	
Total De	epth Drille	ed7	feet	Hole Diameter	inches	Type of Sample/ Coring Device		
of Corin	and Diar ig Device	neter 20	feet lo	ng, 4-inch -	E.D.	Sampling Interva	<u> 2729</u>	2736 feet
Land-Su	ırface Ele	ev	feet	□ Surveyeu		Datum		
			water	****	**- •	Drilling Method	Kotany	
Drilling Contract	tor	ounga	ist Bros,	Co.	Dril	ller	(<i>)</i> Helper	
Prepare By	d <i>Ø</i>	4. Wah	lon - Ben	agety & Miller	,Inc.	ller Hammer Weight	Hammer _Drop	inches
Sample/0	Core Depth land surface)		Time/Hydraulic Pressure or Blows per 6 inches	,0		ple/Core Description		
2729	2736	4	57.1%	CIMETONE	- Linest	one 100% vo	ny sak	reuge
				fine to 1	medium on	one, 100%, ve aired-pelloide	of soft	
					7		<u>~ , ~ , , , , , , , , , , , , , , , , ,</u>	
								
-								
					 			
								
						·		
						, , , , , , , , , , , , , , , , , , , ,	· <u> </u>	
-								
							· _	
							· · · · · · · · · · · · · · · · · · ·	
								

CORE PHOTOGRAPHS



APPENDIX C Geophysical Logs

INJECTION WELL #1

APPENDIX C

GEOPHYSICAL LOGS

BROWARD COUNTY NORTH DISTRICT REGIONAL WASTEWATER TREATMENT PLANT INJECTION WELL #1

Date	Log	Casing/Hole Diameter and Stage No.	Interval
12/10/89	X-Y Caliper	Nominal 58-inch hole	16 - 164 feet pad level
	Temperature	50-inch Casing, St. l	0 - 160 feet pad level
12/21/89	X - Y Caliper	Nominal 50-inch hole	160 -1007 feet pad level
01/01/90	Flowmeter Survey	Nominal 12 1/4-inch hole	999 -2003 feet pad level
	X-Y Caliper	Nominal 12 1/4-inch hole	999 -2003 feet pad level
	HR Temperature	Nominal 12 1/4-inch hole	999 -1999 feet pad level
	Fracture Identification	Nominal 12 1/4-inch hole	999 -2006 feet pad level
	Dual Induction/SFL	Nominal 12 1/4-inch hole	999 -2000 feet pad level
	Borehole Compensated- Sonic w/VDL	Nominal 12 1/4-inch hole	999 -2000 feet pad level
01/14/90	X-Y Caliper	Nominal 42-inch hole	999 -1968 feet pad level
01/16/90	Temperature	34–inch Casing, St. l	150 -1500 feet pad level
01/17/90	Temperature	34-inch Casing, St. 2 & 3	
01/18/90	Temperature	24-inch Casing, St. 4 & 5	
02/02/90	Flowmeter Survey	Nominal 12 1/4-inch hole	1950 -3010 feet pad level
	Dual Induction/SFL		1950 -3004 feet pad level
	HR Temperature		1950 -3010 feet pad level
	Borehole Compensated- Sonic w/VDL		1950 -3001 feet pad level
02/03/90	X-Y Caliper		1950 - 3006 feet pad level
	Fracture Identification		1950 -3006 feet pad level
02/04/90	Fluid Resistivity	Nominal 12 1/4-inch hole	1950 -3001 feet pad level
02/28/90	X-Y Caliper	Nominal 34-inch hole	1950 -3006 feet pad level
03/03/90	Temperature	24-inch Casing, St. 1 & 2	244 -2750 feet pad level
03/04/90	Temperature	24-inch Casing, St. 3 & 4	
03/05/90	Temperature	24-inch Casing, St. 5 & 6	
03/06/90	Temperature	24-inch Casing, St. 7 & 8	

Injection Well #1

-2-

<u>Date</u>	Log	Casing/Hole Diameter and Stage No.	Interval
03/07/90	Temperature	24-inch Casing, St. 9 & 10	
03/08/90	Temperature	24—inch Casing, St. ll	
03/08/90	Cement Bond/ Variable Density	24-inch Casing	0 -2946 feet pad level
03/28/90	Dual Induction/SFL	Nominal 24-inch Hole	2987 -3501 feet pad level
	Borehole Compensated— Sonic w/VDL		2987 -3501 feet pad level
	Fluid Resistivity		2987 -3505 feet pad level
	X-Y Caliper		2987 -3505 feet pad level
	Flowmeter Survey		2987 -3498 feet pad level
	HR Temperature		2987 -3498 feet pad level
05/18/90	HR Temperature	24-inch Casing	3507 - 0 feet pad level
	Radioactive Tracer Survey	24-inch Casing	3507 - 0 feet pad level

INJECTION WELL #2

APPENDIX C

GEOPHYSICAL LOGS

BROWARD COUNTY NORTH DISTRICT REGIONAL WASTEWATER TREATMENT PLANT INJECTION WELL #2

Date	Log	Casing/Hole Diameter and Stage No.	Interval
11/15/89	X-Y Caliper	Nominal 58-inch hole	0 - 172 feet pad level
11/16/89	Temperature	50-inch Casing, St. 1	0 - 153 feet pad level
11/26/89	X-Y Caliper	Nominal 50-inch hole	160 -1004 feet pad level
11/28/89	Temperature	42-inch Casing, St. 1 & 2	0 - 998 feet pad level
11/29/89	Temperature	St. 3	
12/02/89	Borehole Compensated- Sonic Log	12 1/4-inch pilot hole	990 -2059 feet pad level
	X-Y Caliper	12 1/4-inch pilot hole	950 -2020 feet pad level
	Dual Induction w/SFL	12 1/4—inch pilot hole	998 -2102 feet pad level
12/03/89	Field Resistivity		980 -2010 feet pad level
	Temperature/Flow	12 1/4-inch pilot hole	980 -2010 feet pad level
	Fluid Meter Survey		
12/15/89	X-Y Caliper	Nominal 40-inch hole	998 -1953 feet pad level
12/17/89	Temperature	34-inch Casing, St. l	O -1941 feet pad level
12/18/89	Temperature	34-inch Casing, St. 2 & 3	
12/19/89	Temperature	34-inch Casing, St. 4 & 5	
12/20/89	Temperature	34-inch Casing, St. 6 & 7	
01/01/90	Fracture Identification	12 1/4-inch pilot hole	2080 -2995 feet pad level
	HR Temperature	12 1/4-inch pilot hole	2080 -3001 feet pad level
	Fluid Resistivity	12 1/4-inch pilot hole	2080 -2995 feet pad level
	Flow Meter Survey	12 l/4-inch pilot hole	2080 -3001 feet pad level
	Borehole Compensated w/VDL	12 1/4-inch pilot hole	2080 -3001 feet pad level
	X-Y Caliper	12 1/4-inch pilot hole	1950 -2993 feet pad level
	Dual Induction w/SFL	12 1/4-inch pilot hole	2080 -2995 feet pad level
01/19/90	X-Y Caliper	Nominal 34-inch hole	1950 -2994 feet pad level
01/22/90	Temperature	24-inch Casing, St. 1	2130 -2990 feet pad level

Injection Well #2

-2-

Date	Log	Casing/Hole Diameter and Stage No.	Interval
01/23/90	Temperature	24-inch Casing, St. 2	230 -2990 feet pad level
	Temperature	24-inch Casing, St. 3	
01/24/90	Temperature	24-inch Casing, St. 4	
	Temperature	24-inch Casing. St. 5	
01/25/90	Temperature	24-inch Casing, St. 6	
	Temperature	24-inch Casing, St. 7	
01/26/90	Temperature	24-inch Casing, St. 8	
01/27/90	Temperature	24-inch Casing, St. 9	
	Temperature	24-inch Casing, St. 10	
01/28/90	Cement Bond	24—inch Casing	0 -2990 feet pad level
02/16/90	Dual Induction/SFL	24-inch Casing	2989 -3512 feet pad level
	Borehole Compensated Sonic w/VDL	Nominal 24-inch hole	2989 -3510 feet pad level
	X-Y Caliper	Nominal 24-inch hole	2989 -3517 feet pad level
02/17/90	Fluid Resistivity	Nominal 24-inch hole	2989 -3516 feet pad level
	HR Temperature	Nominal 24-inch hole	2989 -3516 feet pad level
	Flowmeter Survey	Nominal 24-inch hole	2989 -3516 feet pad level
03/12/90	HR Temperature	Nominal 24-inch hole	0 -3514 feet pad level
	Radioactive Tracer Survey	Nominal 24-inch hole	O -3514 feet pad level

DEEP MONITOR WELL #1

APPENDIX C

GEOPHYSICAL LOGS

BROWARD COUNTY NORTH DISTRICT REGIONAL WASTEWATER TREATMENT PLANT MONITOR WELL #1

Date	Log	Casing/Hole Diameter and Stage No.	Interval
12/06/89	X-Y Caliper	Nominal 30-inch hole	0 - 166 feet pad level
12/07/89	HR Temperature	24-inch Casing	0 - 165 feet pad level
12/12/89	X-Y Caliper	Nominal 24-inch hole	29.5 -1012.5 feet pad level
12/13/89	Temperature	16-inch Casing, St. 1	0 - 985 feet pad level
12/14/89	Temperature	16-inch Casing, St. 2	
02/13/90	X-Y Caliper	Nominal 16-inch hole	1002 -2008 feet pad level
02/18/90	Cement Bond/ Variable Density	6 5/8-inch Casing	800 -1991 feet pad level

APPENDIX D

Hydrostatic Pressure Test Data

HYDROSTATIC PRESSURE TEST DATA OF BROWARD COUNTY - NORTH DISTRICT REGIONAL WASTEWATER TREATMENT PLANT INJECTION WELL 1 POMPANO BEACH, FLORIDA

Hydrostatic Pressure Test on 24-inch Injection Casing

Date: 1/30/90

Project: J. M. Montgomery, BCWWTP

Project #: PF07803

<u>Time</u>	<u>Delta Time (min)</u>	<u> Pressure (PSI)</u>
1120	0	150.0
1125	5	149.0
1130	10	149.0
1135	15	149.0
1140	20	149.0
1145	25	148.0
1150	30	148.0
1155	35	148.0
1200	40	148.0
1205	45	148.0
1210	50	148.0
1215	55	148.0
1220	60	148.0

Pressure test completed with a total decrease 2.0 P.S.I., equal to 1.3% pressure drop.

Witnessed by: Michael J. Waldron Margaret Highsmith

Geraghty & Miller, Inc. Florida Dept. of Environ

Florida Dept. of Environmental Reg.

Kevin Grueul Youngquist Brothers, Co.

HYDROSTATIC PRESSURE TEST DATA BROWARD COUNTY - NORTH DISTRICT REGIONAL WASTEWATER TREATMENT PLANT INJECTION WELL 2 POMPANO BEACH, FLORIDA

Hydrostatic Pressure Test on 24-inch Injection Casing

Date: 1/30/90

Project: J. M. Montgomery, BCWWTP

Project #: PF07803

<u>Time</u>	Delta Time (min)	Pressure (PSI)
1105	0	150.0
1110	5	149.5
1115	10	149.0
1120	15	148.5
1125	20	148.0
1130	25	147.5
1135	30	147.0
1140	35	146.5
1145	40	145.5
1150	45	145.5
1155	50	145.0
1200	55	144.0
1205	60	143.5

Witnessed by: Steve Montemayor Hazen & Sawyer Engineers

APPENDIX E

Water Quality Laboratory Results

INJECTION WELL #1

		Onea even.			IUNE	86
ıtı	of order 1/3/90 D Sample code in	oven entry Oto required	INFORMATIO)N		_ 00
-	Sample code	from 83	27 15	thtered	by!	Z
:	omer name and address	Lougan	ist Bret	heas.		13
	ing address					
	Contact				hone	
	1/2:	SAMPLE IN	FUHMATIUN			
201	- 1690' - 1710' - date 1-3-90			mpled by	(1)	i'a d
			ple tima _	Zoo	Bud Cura	GNT
		Rev	lewed by _	6M		
.67	el instructions	_				Management
-	B	USH 1	HARG	E		
	FAX	407 6	,22 63	79	14.1	on Jim Wheat
	РАПАНЕТЕЯ	METHOD	HEBULT	· ·	UATE	
0	TDS 3420	160.1	14.602		 	ANALYST
	Conduction to 3471	120.1	29.600	wants/cm	1-8	reglo
의	- Chlorides 3080	407A	3650	majel	1-3	GM
গ্ৰ	Sulfate 34xa	426C	750	MS	1-2	EGB Sm
7						
4						
4						
-					 .	
+	114					
+	Note TDS as Nacl	12,000	m3/0	1191)		
I	conductivity 1.184 M.	cu e	1:25 olil	etton		
I						
1						
-						
+						
+				-		-
1	· · · · · · · · · · · · · · · · · · ·					
_		4	1		F	

-				1-6		
	· oi	ADER ENTRY	INFORMATIO	ON.		0
Date o	of order 1/5/90 0	ete required		Entered h	<i>A1</i>	-
	Sample code f	rom 005	/2 ::		3. - 1/2	_
Custa		()		1		
	mer hame and addrass	- Young	4vist	SKOTHE	15	
0,111	ng address	<u>O</u> l) File			
	Contact			PH	one	
		SAMPLE IN	FURMATION	^		
Sourc	e IW-I PACKER	1440-16	40' Sa	mpled by	01	· 1+
Samp)	e date	Spin	ple time (2805		GOT
Compl	stion date 1-8			_	in SM	
Spaci	el instructions	Rev	iowed by _	<u>6</u> 14	· · · · · · · · · · · · · · · · · · ·	
	or mathections	62.35	0.4.4.4			
		KUSH	CHARC	E		
		,				
				_		
300	PARAMETER	METHOD	HESULT	UNIT		
10500	TDS 1 MRC				DATE	ANALYST
295	· Controlivity	160.1	10,805	mail	1-15	regla
0440		120.1	17,590	umpresson	1-5	estr
0945	Chlorides 450		6,550	male	1-6	ed
0743	Sultater	426C	1,110	7,	4.6	EM
						
	**					
					,	
						
	TDS as Nacl 8,80	6	-			
						
						
		 				
						
 -						
				W//	 - -	
Ţ						

BROWARD TESTING LABORATORY, INC. POTABLE NATER LABORATORY CERTIFICATION NUMBER 86137 ENVIRONMENTAL LABORATORY CRITIFICATION NUMBER 86035

LABORATORY PARAMETER ANALYSIS REPORT

PROJECT	YOUNGQUIST	BROS.	<u> </u>		
SOURCE I WI NORTH LAB. NUMBER 00-1320 GROUND WATER CLASS SAMPLED BY CLIENT NO. WELL CASING VOL.			SAMPLE SAMPLE COMPLET SAMPLE	TIME ION DATE	28/90 10:30 4/20/90 BACKGROUND SITE ROUNDRY INTERMEDIATE COMPLIANCE

STORES CODE	PARAMETER HONITORED	ANALYSIS NETHOD	ANALYSIS Result	UNIT	DATE	ANALYST
80110	SPECIFIC GRAVITY	213E	10227	G/KG	4/2	E. BERDL
00010	WATER TEMPERATURE	170.1	50	*c	4/2	E. BEROL
00403	PH	150.1	7.76	UNITS	3/29	M. HILL
00076	TURBIDITY	180.1	170	NTU	4/8	E. BEROL
00080	COLOR	110.3	0	UNITS	3/29	M. HILL
00945	SULFATE	426C	759	MG/L	4/4	E. GOLEM
01046	1 RON	236.1	9.20	MG/L	4/18	K. VAGI
70300	TOTAL DISSOLVED SOLIDS	160.1	34,948	MG/L	4/4	M. HILL
00900	101AL HARDNESS	130.2	6,500	MG/L	3/29	E. BEROL
71830	HYDROXIDE .	40GC	0.0	MG/L	4/19	E. BEROL
00746	HYDROGEN SULFIDE	427C	0.038	MG/L	4/2	E. BEROL
00902	NON- CARBONATE HARDNESS	130.2	6,344	MG/L	4/19	E. BEROL
00440	BICARBONATE	406C	95.2	MG/L	4/19	E. SEROL
00930	SDDIUM	273.1	8850	MG/L	4/19	K. VAGI
00665	TOTAL PHOSPHORUS	365.4	0.331	MG/L	4/18	E. BEROL
00625	TOTAL NITROGEN	351.2	0.450	MG/L	4/19	E. BEROL
00630	NITRATE	353.2	0.262	MG/L	4/10	E. BEROL
00615	NITRITE	353.2	0.069	MG/L	4/10	E. BEROL
00625	ORGANIC NITROGEN	351.2	0.0	MG/L	4/19	E. BEROL
00610	AMMON1 A	351.2	0.119	MG/L	4/18	E. BEROL
00095	CONDUCTIVITY	120.1	3761	PMHO2	3/29	M. HILL
00910	CALCIUM	406C	978	MG/L	3/29	E BEROL
00925	MAGNESIUM	242.2	1746	MG/L	4/19	E. BEROL
00405	CARBON DIDXIDE	406C	5.40	MG/L	4/19	E. BEROL
00445	CARBONATE	406C	0.0	MG/L	4/.19	E. BEROL
00935	POTASSIUM	258.1	498	MG/L	4/19	K. VAGI
00941	CHLORIDE	4500-CL-C	20,650	HG/L	3/29	E. BEROL
00410	ALKALINITY	403	156	MG/L	3/29	E. BEROL
00625	TKN	351.2	0.119	MG/L	4/18	E. BEROL
00410	B1CARȘONATE	406C	156	MG/L	4/39	E. BEROL

RENARKS:

INJECTION WELL #2

BROWARD TESTING LABORATORY, INC. POTABLE NATER LABORATORY CERTIFICATION NUMBER 86137 ENVIRONMENTAL LABORATORY CERTIFICATION NUMBER 86035.

LABORATORY PARAMETER ANALYSIS REPORT

Test #1

	PROJECT THUNGGUIST BRU							
SOURCE	STRADDLE PACKER TEST 14	NE C 1423	Sample DA	 ATE				
LAB. N	MBER 89-7928		SAMPLE TIME - COMPLETION DATE 12/13/89					
GROUND	WATER CLASS		COMPLETIC	ON DATE	12/13	789		
Sample	BY CLIENT		SAMPLE TY	(PB ()	BACKG	ROUND		
No. Wei	L CASING VOL. PURGED		1	()		BOUNDRY		
				()		MBDIATE		
				()	COMPL	iance		
STORET CODE	PARAMETER NONITORED	ANALYSIS NETHOD	ANALYSIS RESULT	UNIT	DATE	ANALYST		
70300	TOTAL DISSOLVED SOLIDS	160.1	4850	MG/L	12/13	E.GOLEM		
00940	CHLORIDE	407A	5030	MG/L		E.BEROLD		
00095	CONDUCTIVITY	120.1	8,280	UMHOS/ CM	12/12	E.BEROLD		
00945	SULFATE	426	429	MG/L	12/13	E.GOLEM		
· (************************************								

<u> </u>								
	·							
						······································		
···								
	- · · · · · · · · · · · · · · · · · · ·							
	······································	-						
		-				——————————————————————————————————————		
		-						
								
		 						

BROWARD TESTING LABORATORY, INC.

LABORATORY PARAMETER ANALYSIS REPORT

PROJECT YOUNGQUIST BROS.	
BOURCE I-W-2 INJECTION ZONE	SAMPLE DATE 2/16/90
LAB. NUMBER 90-0784 GROUND WATER CLASS	GAMPLE TIME
BAMPLED BY CLIENT NO. WELL CASING VOL. PURGED	SAMPLE TYPE () BACKGROUND () SITE BOUNDRY
NO. HEDE CROKKS YOU. TORONS	() INTERMEDIATE () COMPLIANCE

STORET CODE	PARAMETER MONITORED	ANALYSIS NETHOD	AMALYSIS RBSULT	UNIT	DATE	ANALYST
80110	SPECIFIC GRAVITY	2710F	1.0212	S/CM3	2/22	E. BEROL
00010	WATER TEMP. (FIELD)	170.1	62	F	IN F	ELD
00403	PH	150.1	7.83	UNIT	2/20	M. HILL
00076	TURBIDITY	180.1	138	NTU	2/20	E, BEROL
00080	COLOR	110.3	10	UNITS	2/20	E. BERDL
00945	SULFATE	426C	2270	MG/L	2/21	E. GOLEM
01046	IRON	236.1	2.01	MG/L	2/19	K. VAGI
70300	TDS	160.1	35,308	MG/L	3/8	M. HILL
00900	TOTAL HARDNESS	130.2	6,900	MG/L	2/21	E. BEROL
71830	HYDROXIDE	406C	0.0	MG/L	3/23	E. BEROL
00746	HYDROGEN SULFIDE	427C	0.057	MG/L	3/19	E. BEROL
00902	NON-CAR HARDNESS	354.1	6,780	MG/L	3/23	E. BEROL
00440	BICARBONATE	496C	73.2	MG/L	3/23	E. BEROL
00930	SODIUM	273.1	7780	MG/L	3/21	K. VAGI
00665	TOTAL PHOSPHORUS	365.4	0.519	MG/L	3/12	E. BEROL
00600	TOTAL NITROGEN	CALC.	1.58	MG/L	3/6	E. BEROL
00630	NITRATE	353.2	0.33	MG/L	3/5	E. BERDL
00615	NITRITE	353.2	<0.05	MG/L	3/5	E. BEROL
00605	DRGANIC NITROGEN	CALC.	0.0	MG/L	3/26	E. BEROL
00625	AMMONIA	351.2	1.23	MG/L	3/26	E. BEROL
00095	CONDUCTIVITY	120.1	50,900	UBHOS	2/20	E. BERDL
00910	CALCIUM	406C	505	MG/L	2/21	E. BEROL
00027	MAGNESTUM	242.1	2425	MG/L	3/23	E. BEROL
DOADE	CARBON DIOXIDE	406C	3.5	MG/L	3/23	E. BEROLI
00445	CARBONATE	406C	0.0	MG/L	3/23	E. BEROL
00935	POTASSIUM	258.1	232	MG/L	2/19	K. VAGI
00941	CHLORIDE	4500CL-C	20544	MG/L	2/21	E. BEROLI
00410	BICARB AS CACO	406C	120	MG/L	3/23	E. BEROLI

REMARKS

DEEP MONITOR WELL #1

BROWARD TESTING LABORATORY, INC.

LAS I.D. NO. 86137 86035

FRANK D. HOBLE POST OFFICE BOX 23541 FORT LAUDERDALE, FLORIDA 33307

TELEPHONE (305) 776-7238

Certified by the Florida State Health-a: Rehabilitative Services Department of

Bacteriology.

NAME AND MAILING ADDRESS OF PERSON/FIRM TO RECEIVE REPORT

YOUNGQUIST BROTHERS
2401 N. POWERLINE RD.,
BLDG 1, RM. 116
POMPANO BEACH, FL 33069

SYSTEM NA	Mt.:	SYSTEM I. D.	. NU.:				
ADDRESS:_		COUNTY:	COLLE	CTOR:			
SAMPLE SITE	E (Locality or Subdivision): 2 ZONES	1 WELL (1100	FT, 2000 FT.)) 			
RAW OR TRI	EATED: TREATED DATE AN	ID TIME COLLECTED:_	3/19/90 16:	20		···	
TYPE OF SUI	PPLY (Clicle one): Community public wat Private well Swi	er system Non-comm mming pool Bottled	unity public water system	Other put	lic water sy:	ile m	
TYPE OF SAR	MPLE (Circle one): Compliance Rech	ick Main Clearance	XWell Survey Other	(specify)			
TOTAL COL	IFORM METHOD 909A FECAL	COLIFORM METHOD 9	****	SIS DATE		90	
 	TO BE COMPLETED BY COLLECTOR OF	SAMPLE	то	BE COMPLET	ED BY LAB		
					COLIFO	RM	_
COLL. SAMPLE POINT	CI PH RES'D	SAMPLE NUMBER	NON COLIFORN	MF/100 ML			
	٧				TOTAL	FECAL	•
1	ZONE 2 (1100 FT.)	2.5	90–1204		1		
2	ZONE 1. (2000 FT.)	1.75	1205		<1		
·				ļ			
				<u> </u>			
							<u></u>
					<u> </u>		
						,	—
EMARKS:				V		n	一

LABORATORY PARAMETER ANALYSIS REPORT

PROJECT YOUNGQUIST BROS.	
SOURCE #2 SHALLOW ZONE	SAMPLE DATE 3/15/90
LAB. NUMBER 90-1205	SAMPLE TIME 1:00
GROUND WATER CLASS	COMPLETION DATE 4/26/90
SAMPLED BY B SHARON	SAMPLE TYPE () BACKGROUND
NO. WELL CASING VOL. PURGED	() SITE BOUNDRY
	() INTERMEDIATE
	() COMPLIANCE

PARAMETER MONITORED	ANALYSIS METHOD	ANALYSIS RBSULT	UNIT	DATE	ANALYST
HYDROGEN SULFIDE	427C	0.034	MG/L	3/19	E. BERO
AMMONIA	351.2	1.22	MG/L	3/26	E. BERO
MBAS	5128	<0.10	MG/L	3/22	E. BERO
PH	150.1	8.0	UNIT	3/15	R. SHAR
TEMPERATURE	170.1	23,4	•c	3/15	R. SHAR
DISSOLVED OXYGEN	360.1	1.5	MG/L	3/15	R. SHAR
TOTAL CHLORINE	330.5	0.0	MG/L	3/15	R. SHAR
ARSENIC	206.2	<0.003	MG/L	3/27	K. VAGI
BARIUM	208.1	<0.3	MG/L	3/22	K. VAGI
CADMIUM	213.2	<0.0005	MG/L	3/29	K. VAGI
CHROMIUM	218.2	0.0105	MG/L	3/26	K. VAGI
LEAD	239.2	<0.002	MG/L	3/26	K. VAGI
MERCURY	245.5	<0.0005	MG/L	4/10	K. VAGI
SELENIUM	270.2		MG/L	4/28	K. VAGI
SILVER	272.2		MG/L	4/9	K. VAGI
SODIUM	273.1	3170	MG/L	4/21	K. VAGI
COPPER	220.1	<0.03	MG/L	3/19	K. VAGI
IRON	236.1	0.45	MG/L	3/19	K. VAGI
ZINC	289.1	<0.03	MG/L	3/19	K. VAGI
MANGANESE	243.2	0.0197	MG/L	3/29	K. YAGI
ANTIMONY	204.2	<0.005	MG/L	4/20	K. YAGI
MAGNESIUM	242.2	361.0	MG/L	4/19	E.BEROLD
POTASSIUM	258.1	56.8	MG/L	4/19	K. YAGI
CONTINUED ON NEXT PAGE]	
	HYDROGEN SULFIDE AMMONIA MBAS PH TEMPERATURE DISSOLVED OXYGEN TOTAL CHLORINE ARSENIC BARIUM CADMIUM CHROMIUM LEAD MERCURY SELENIUM SILVER SODIUM COPPER IRON ZINC MANGANESE ANTIMONY MAGNESIUM POTASSIUM	HYDROGEN SULFIDE 427C AMMONIA 351.2 MBAS 512B PH 150.1 TEMPERATURE 170.1 DISSOLVED OXYGEN 360.1 TOTAL CHLORINE 330.5 ARSENIC 206.2 BARIUM 208.1 CADMIUM 213.2 CHROMIUM 218.2 LEAD 239.2 MERCURY 245.5 SELENIUM 270.2 SILVER 272.2 SODIUM 273.1 COPPER 220.1 IRON 236.1 ZINC 289.1 MANGANESE 243.2 ANTIMONY 204.2 MAGNESIUM 258.1	HYDROGEN SULFIDE 427C 0.034 AMMONIA 351.2 1.22 MBAS 5128 <0.10	HYDROGEN SULFIDE 427C 0.034 MG/L AMMONIA 351.2 1.22 MG/L MBAS 512B <0.10 MG/L PH 150.1 8.0 UNIT TEMPERATURE 170.1 23.4 °C DISSOLVED OXYGEN 360.1 1.5 MG/L ARSENIC 206.2 <0.003 MG/L BARIUM 208.1 <0.3 MG/L CADMIUM 213.2 <0.0005 MG/L CHROMIUM 213.2 <0.0005 MG/L MERCURY 245.5 <0.0005 MG/L SELENIUM 270.2 0.0342 MG/L SODIUM 273.1 3170 MG/L COPPER 220.1 <0.03 MG/L ZINC 289.1 <0.03 MG/L AMMGANESE 243.2 0.0197 MG/L MAGNESIUM 242.2 361.0 MG/L MAGNESIUM 242.2 361.0 MG/L MAGNESIUM 242.2 361.0 MG/L MAGNESIUM 258.1 56.8 MG/L POTASSIUM 258.1 56.8 MG/L	HYDROGEN SULFIDE 427C 0.034 MG/L 3/19 AMMONIA 351.2 1.22 MG/L 3/26 MBAS 512B <0.10 MG/L 3/22 PH 150.1 8.0 UNIT 3/15 TEMPERATURE 170.1 23,4 °C 3/15 DISSOLVED OXYGEN 360.1 1.5 MG/L 3/15 TOTAL CHLORINE 330.5 0.0 MG/L 3/15 ARSENIC 206.2 <0.003 MG/L 3/27 BARIUM 208.1 <0.3 MG/L 3/27 CADMIUM 213.2 <0.0005 MG/L 3/29 CHROMIUM 218.2 0.0105 MG/L 3/26 MERCURY 245.5 <0.0005 MG/L 3/26 MERCURY 245.5 <0.0005 MG/L 4/10 SELENIUM 270.2 0.0342 MG/L 4/28 SILVER 272.2 0.0042 MG/L 4/9 SODIUM 273.1 3170 MG/L 4/9 SODIUM 273.1 3170 MG/L 3/19 IRON 236.1 0.45 MG/L 3/19 IRON 236.1 0.45 MG/L 3/19 ANTIMONY 204.2 <0.005 MG/L 3/19 MANGANESE 243.2 0.0197 MG/L 3/19 MANGANESIUM 242.2 361.0 MG/L 4/19 POTASSIUM 258.1 56.8 MG/L 4/19

REMARKS:

LABORATORY PARAMETER ANALYSIS REPORT

PROJECT YOUNGQUIST BROS.	· · · · · · · · · · · · · · · · · · ·
SOURCE 2 SHALLOW ZONE	SAMPLE DATE3/15/90
LAB. NUMBER_ 90-1205	SAMPLE TIME 1:00
GROUND WATER CLASS	COMPLETION DATE A/26/90
SAMPLED BY R. SHARON	SAMPLE TYPE () BACKGROUND
NO. WELL CASING VOL. PURGED	() SITE BOUNDRY
· · · · · · · · · · · · · · · · · · ·	() INTERMEDIATE
	() COMPLIANCE

STORET CODE	PARAHETER MONITORED		ANALYSIS NETHOD	ANALYSIS RESULT	UNIT	DATE	ANALYST
00910	CALCIUM		406C	153	MG/L	3/29	E. BEROL
01080	STRONTIUM		303A	38.6	MG/L	4/23	K. VAGI
80110	SPECIFIC GRA	VITY	213E	1.0001	G/ML	3/29	E. BEROL
00950	FLOURIDE		340.2	1.20	MG/L	3/21	M. HILL
00630	NITRATE		353.2	0.850	MG/L	3/27	E. BEROLE
00080	COLOR		110.3	0	UNITS	3/16	E. BEROL
00941	CHLORIDES		4500CLC	2333	MG/L	3/22	M. HILL
00900	TOTAL HARDNES	S	130,2	1222	MG/L	3/29	E. BEROLD
00410	ALKALINITY		403	140	MG/L	3/16	E. BEROLE
00901	CALCIUM HARDN	ESS	215.2	382	MG/L	3/29	E. BEROLD
00310	80D		405.1	<2.0	MG/L	3/21	M. HILL
00076	TURBIDITY		180.1	2.30	NTU	3/27	M. HILL
00085	ODOR		140.1	1	TON	3/16	E. BEROLD
00945	SULFATE		426 C	124	MG/L	4/4	E. GOLEM
70300	TOTAL DISSOLV	ED SOLID	160.1	4432	MG/L	3/22	M. HILL
00665	TOTAL PHOSPHA	TE	365.4	<0.20	MG/L	3/26	E. BEROLD
70507	ORTHO PHOSPHA	TE	365.4	<0.20	MG/L	3/26	E. BEROLD
00625	TKN		351.2	1.68	MG/L	3/26	E. BEROLD
00440	BOCARBONATE		406C	85.4	MG/L	4/19	E. BEROLO
00681	TOTAL DRGANIC CAR	BON	415.1	1.46	MG/L	3/23	E. GOLEM
00530	TOTAL SUSPENDED S	OLIDS	160.2	10	MG/L	3/16	M. HILL
01020	BORON		212.3	<0.5	MG/L	4/23	K. VAGI
	625 SCAN	,					
	608 SCAN						
	504 SCAN		SEE ATTAC	HED SHEETS			
	502.2 SCAN					 -	
	GROSS ALPHA						
				·-··			
T						 -	

REMARKS:

374

BROWARD TESTING LABORATORY, INC.

POST OFFICE BOX 23541 FORT LAUDERDALE, PLORIDA 33307 TELEPHONE: (305) 776-7236 FAX: (305) 776-0689

CLIENT: YOUNGQUIST BROS.		REPORT NO:LAB ID NO:			
		SAMPLE SITE SHALLOW WELL			
DATE SAMP	LED: 3/15/90	TIME SAMPLED. 12:41			
DATE RECEIVED AT LAB.		TIME RECEIVED AT LAB.			
ALL VALUES	L SERIES: FLORIDA SAI CAL ANALYSIS 17-550.3 S IN PCI/L UNLESS OTH # 90-1205	E DRINKING WATER COMPLIANCE. 10(5). (PWS033) ERWISE NOTED.			
PARAMETER RADIONUCLI	nes.	REPORTED VALUE			
MOTOMOCEI	DEST	0.3+/-1.3 PCI/L			

RANK D. HOBLE, DIRECTOR

ROWARD TESTING LABORATORY, INC.

POTABLE WATER LABORATORY CERTIFICATION NUMBER #6137

METHOD 504 EDB AND DBCP: MICROEXTRACTION/ECGC

LABORATORY PARAMETER ARALYSIS REPORT

PROJECT YOUNGQUIST BROS.

SOURCE	#2 SHALLOW ZONE		_ SAMPLE DI	\TB	3/15/9	0		
GROUND	AB. NUMBER 00-1205 ROUND WATER CLASS			SAMPLE TIME 1:00 COMPLETION DATE 4/26/90				
SAMPLE	D BY R. SHARON		_ COMPLETIO	וגעט ווכ	3 - 4/2 - 11 - 11 - 12 - 12 - 12 - 12 - 12 - 1	6/90		
NO. WEI	D BY R. SHARON LL CASING VOL. PURGED		SAMPLE TY	PB (BACK	3110131113		
			-		SITE	HOUNDRY		
					INTE	MEDIATE		
	•			•	COMPI	TVUCE		
	<u> </u>			1	·			
CAS NO.		. ANALYSIS	ANALYSIS	UNIT	DATE	ANALYS		
	MONITORED	METHOD	RESULT		1			
106-93-4	1,2-DIBROMOETHANE (EDB)	504		UG/L				
			<0.05	0072	3/15	C. AMON		
96-12-8	1,2-DIBROMO-3-CHLOROPROPANE	504	<0.02	UG/L	*	*		
	(DBCP)			· · · · · · ·		·		
		-			 	·		
•		-		<u> </u>		<u></u>		
			_i	ļ	ŀ			
				J	<u> </u>			
			-	<u> </u>	J——			
		-	-	<u> </u>	 			
]			- 	[1		
		_{						
·								
		-	·					
		-	.					
	· · · · · · · · · · · · · · · · · · ·	İ						
						<u> </u>		
		- 	·					
		-	.					
	· · · · · · · · · · · · · · · · · · ·		1					
		·						
		·] 						
]	1				
<u></u>]:					 -[
	-			[
		·	<u>-</u>					
		<u></u>						
]_				——I	I			
	•		I-					
			<u></u>		1	-		
				-				
				-				
				-].			
		[].	<u> </u> _					
				-]-				
				-	[-			
··					_			
			l			_ 		
	······································	<u> </u>			[~	-		
				-	——-[-			
1		_	l_		1	1		
			_	_				
				 -	-			
<u> </u>		 -		_				
marks:			<u>_</u>		- 1			

AL A

POTABLE NATIES LABORATORY CERTIFICATION NUMBER #6137 ENVIRONMENTAL LABORATORY CERTIFICATION NUMBER #6035

METHOD 502.2. VOLATILE ORGANIC COMPOUNDS IN WATER BY PURGE AND TRAP CAPILLARY COLUNN GAS CHROMATOGRAPHY WITH PHOTOLONIZATION AND BLECTROLYTIC CONDUCTIVITY DETECTORS IN SERIES

LABORATORY PARAMETER ANALYSIS REPORT

PROJECT YOUNGQUIST BROS.	
SOURCE #2 SHALLOW ZONE LAB. NUMBER 90-1205 GROUND WATER CLASS SAMPLED BY R. SHARON NO. WELL CASING VOL. PURGED	SAMPLE DATE 3/15/90 SAMPLE TIME 1.00 COMPLETION DATE A/26/90 SAMPLE TYPE () BACKGROUND () SITE BOUNDRY () INTERMEDIATE () COMPLIANCE

				•	,	
CAS NO.	PARAMETER Monitored	ANALYSIS HETHOD	ANALYSIS RESULT	בואט	DATE	ANALYS
71-43-2	BENZENB	502.2	<1.0	UG/L	3/19	C. AMD
108-86-1	BROMOBENZENE	502.2	<1.0	UG/L	, "	
74-97-5	BROMOCHLOROMETHANE	502.2	<1.0	UG/L	, "	-
75-27-4	BROMODICHLOROMETHANE	502.2	<1.0	UG/L		
75-25-2	BROMOFORM	502.2	<1.6	UG/L		
74-83-9	BROMOMETHANE	502.2	<1.1	UG/L	 	-
104-51-8	n-BUTYLBENZENE	502.2	<1.0	UG/L	-	
135-98-8	Sec-BUTYLBENZENE	502.2	<1.0	UG/I	- 	
98-06-6	tert-BUTYLBENZENE	502.2	<1.0	UG/L		
56-23-5	CARBON TETRACIILORIDE	502.2	<1.0	UG/L		
.08-90-7	CHLOROBENZENE	502.2	<1.0	UG/L		
75-00-3	CHLOROETHANE	502.2	<1.0	UG/L		
67-66-3	CHLOROFORM	502.2	<1.0	UG/L		
74-87-3	CHLOROMETHANE	502.2	<1.0	UG/L	 	
95-49-8	2-CHLOROTOLUENE	502.2	<1.0	UG/L	·	
06-43-4	4-CHLOROTOLUENE	502.2	<1.0	UG/L	- <u>-</u>	
24-48-1	DIBROMOCHLOROMEHTANE	502.2	<2.0	UG/L		
	1,2-DIBROMO-3-CHLOROPROPANE	502.2	<3.0	UG/L	 	
	1,2-DIBROMOETHANE	502.2	<0.8	UG/L		
74-95-3	DIBROHOMETHANE	502.2	<2.2	UG/L	 -	
	1,2-DICHLOROBENZENE	502.2	<1.0	UG/L	- <u>-</u>	
41-73-1	1,3-DICHLOROBENZENE	502.2	<1.0			
	1,4-DICHLOROBENZENE	502.2	<1.0	UG/L		
	DICHLORODIFLUOROMETHANE	502.2		UG/L	———I-	
5-34-3 1	.1-DICHLOROETHANE	502.2	<1.0 <1.0	UG/L		
	,2-DICHLOROETHANE	502.2	<1.0	UG/L		
5-35-4 1	,1-DICHLOROETHENE	502.2		UG/L		•
	is-1,2-DICHLOROETHENE	502.2		UG/L	-	
	rans-1,2-DICHLOROETHENE	502.2	·	UG/L		
8-87-5 1	, 2-DICHLOROPROPANE	502.2	44 -	NG/L		· -
······································		302.2	<1.0	UG/L	*	•

REHARKS:

ENVIRONMENTAL LABORATORY CENTIFICATION NUMBER 86035

METHOD 502.2. VOLATILE ORGANIC COMPOUNDS IN WATER BY PURGE AND TRAP CAPILLARY COLUMN GAS CHROMATOGRAPHY BITE PROTOIONIE ATION AND BLECTROLYTIC CONDUCTIVITY DETECTORS IN SERIES LABORATORY PARAMETER ANALYSIS REPORT

PROJECT YOUNGOUIST BROS.	
SOURCE 12 SHALLOW ZONE LAB. NUMBER 90-1205	SAMPLE DATE 3/15/90
GROUND WATER CLASS	SAMPLE TIME 1:00 COMPLETION DATE 4/26/90
HO. WELL CASING VOL. PURGED	SAMPLE TYPE () BACKGROUND
-	() INTERMEDIAT

		٠		τ) COMP	LIVNCE
CAS NO.	PARAHETER Honitored	ANALYSII MBTHOD	ANALYSI. Result	8 UN1	DATE	ANALI
142-28-9	1,3-DICHLOROPROPANE	502.2	<1.0	UG/L	-	-
	2,2-DICHLOROPROPANE	502.2	<1.0	UG/L	3/19	C. AMI
563-58-6	1,1-DICHLOROPROPENE	502.2	<1.0	UG/L		
100-41-4	RTHYLBENZENE	502.2	292	UG/L	- 	
87-68-3	HEXACHLOROBUTADIENE	502.2	<1.0	UG/L		-
98-82-8	ISOPROPYLBENZENE	502.2	<1.0	UG/L	-	
99-87-6	p-ISOPROPYLTOLUENE	502.2	<1.0	UG/L	- -	
	METHYLENE CHLORIDE	502.2	<1.0	UG/L	-/- 	
91-20-3	naphthalene	502.2	<1.0	UG/L	- .	
03-65-1	n-Propylbenzene	502.2		UG/L	-	
00-42-5	STYRENS	502.2	<1.0_	UG/L	-	
30-20-6	1,1,1,2-TETRACHLOROETH AND	502.2	<u> </u>	UG/L	 	
	1,1,2,2-TETRACHLOROETHANE	502.2	<1.0	UG/L		
	TETRACHLOROETHENE	502.2	<u> </u>	UG/L	 	
08-88-3	TOLUENE	502.2	5.35	UG/L	-	
87-61-6	1,2,3-TRICHLOROBENZENE	502.2	 -	-	- <u>-</u>	
	1,2,4-TRICHLOROBENZENE	502.2	<u> </u>	UG/L	- <u>-</u>	<u> </u>
	1,1,1-TRICHLOROETHANE	502.2	<1.0	UG/L	 -	
79-00-5	1.1.2-TRICHLOPOPMUNA	502.2	<1.0_	UG/L		
79-01-6	TRICHLOROETHENE	502.2	<1.0	UG/L		
75-69-4 1	FRICHLOROFLUOROMETHANE	502.2	<1.0	UG/L		
	,2,3-TRICHLOROPROPANE	502.2		UG/L		
	, 2, 4-TRIMETHYLBENZENE	502.2	<u> </u>	UG/L		•
8-67-8 1	,3,5-TRIMETHYLBENZENE].	<1.0	UG/L		•
5-01-4 V	INYL CHLORIDE	502.2	<1.0	UG/L		÷
5-47-6 o		502.2	<\	UG/L	•	
8-38-3 m	-XYLENE	502.2	<1.0	UG/L	•	
5-42-3 p		502.2	<1.0	UG/L		
		502.2	<1.0	UG/L	•	

REHARKS:

BROWARD IEDITING LADGRAY OF A 1117 DOTABLE WATER LABORATORY CERTIFICATION NUMBER 86035

ORGANOCHLORINE PESTICIDES AND PCB'S METHOD - 608

LABORATORY PARAMETER ANALYSIS REPORT

PROJECT	NGQUIST BROS.	.•	-
SOURCE #2 SHALLOW ZONE LAB. NUMBER 90-1205 GROUND WATER CLASS SAMPLED BY R. SHARON NO. WELL CASING VOL. PURC	ED	COMPLETION DATE	1:00

CODE	PARAMETER HONITORED	ANALYSIS METHOD	ANALYSIS RESULT	דואט	DATE	ANALYST
39330	ALDRIN	608	<1.0	UG/L	4/3	C. AMON
39337	A-BHC	608	<1.0	UG/L	*	*
39338	B-BHC	608	<1.0	UG/L	*	*
34259	D-BHC	608	<1.0	UG/L		#
39340	Y-BHC.	608	<1.0	UG/L	и	*
39350	CHLORDANE	608	<1.0	UG/L		н.
39310	4,41-DDD	608	<1.0	UG/L	*	n
39320	4,4'-DDE	608.	<1.0	UG/L	*	**
39300	4.4'-DDT	608	<1.0	UG/L	н	
39380	DIELDRIN	608	<1.0	UG/L	91	*
34361	ENDOSULFAN I	608	<1.0	UG/L	*	
34356	ENDOSULFAN II	608	<1.0	UG/L	H	**
34351	ENDOSULFAN SULFATE	60B	<1.0	UG/L	**	H
39390	ENDRIN	608	<1.0	UG/L	м	*
34366	ENDRIN ALDEHYDE	608	<1.0	UG/L	*	
39410	HEPTACHLOR	608	<1.0	UG/L		w
39420	HEPTACHLOR EPOXIDE	608	<1.0	UG/L	н	W
39400	TOXAPHENE	608	<1.0	UG/L	н	*
34671	PCB-1016	608	<1.0	UG/L		
39488	PCB-1221	608	<1.0	UG/L	н	#
39492	PCB-1232	608	<1.0	UG/L	н	M
39496	PCB-1242	608	<1.0	UG/L	*	
39500	PCB-1248	608	<1.0	UG/L	**	*
39504	PCB-1254	60B	<1.0	UG/L		*
39508	PCB-1260	608	<1.0	UG/L	**	H
39480	METHOXYCHLOR	60B	<1.0	UG/L	*	*
	•					

REMARKS:

METHOD 625 - BASE NEUTRALS LABORATORY PARAMETER ANALYSIS REPORT

PROJECT YOUNGOUIST BROS.	•
SOURCE #2 SHALLOW ZONE LAB. NUMBER 90-1205 GROUND WATER CLASS SAMPLED BY R. SHARON NO. WELL CASING VOL. PURGED	SAMPLE DATE 3/15/90 SAMPLE TIME 1:00 COMPLETION DATE 4/26/90 SAMPLE TYPE () BACKGROUND () SITE BOUNDRY
	() INTERMEDIATE () COMPLIANCE

•						
STORET CODE	PARAMETER MONITORED	ANALYSIS	ANALYSIS RESULT	UNIT	DATE	ANALYS
34205	ACENAPHTHENE	625	<1.9	UG/L	1/9/90	E. BURF
34200	ACENAPHTHYLENE	625	<3.5	UG/L	, , , , , , , , , , , , , , , , , , ,	#
34220	ANTHRACENE	625	<1.9	UG/L	*	**
39330	ALDRIN	625	<1.9	UG/L	-	*
39120	BENZIDINE	625	<44	UG/L		•
34526	BENZO (A) ANTHRACENE	625	<3.7	UG/L	*	*
34230	BENZO (8) FLUORANTHENE	625	<2.5	UG/L		**
34242	BENZO(K)FLUORANTHENE	625	<2.5	UG/L	*	*
34247	BENZO (A) PYRENE	625	<3.7	UG/L	**	69
34521	BENZO(GHI)PERYLENE	625	<4.1	UG/L		
34292	BENZYLBUTYLPHTHALATE	625	<2.5	UG/L	н	**
39337	A-BHC	625	<4.2	UG/L		H
39338	B-BHC	625	<10.0	UG/L		#
34259	D-BHC	625	<10.0	UG/L		
39340	G-BHC	625	<3.1	UG/L	н	**
34273	BIS(2-CHLOROETHYL)ETHER	625	<5.6	UG/L		**
34278	BIS(2-CHLOROETHOXY) METHANE	625	<5.3	UG/L	•	<u> </u>
39100	BIS(2-ETHYLHEXYL) PHTHALATE	625	<2.5	UG/L	**	#
34283	B1\$(2-CHLOROISOPROPYL)ETHER	625	<5.7	UG/L	#1	#
34636	4-BROMOPHENYLPHENYLETHER	625	<1.9	UG/L		***
39350	CHLORDANE	625	<10.0	UG/L		
34581	2-CHLORONAPHTHALENE	625	<1.9	UG/L	-	
34641	4-CHLOROPHENYLPHENYLETHER	625	<4.2	UG/L		
34320	CHRYSENE	625	<2.5	UG/L		
39310	4.4'-DDD	625		UG/L		
39320	4.4'-DDE	625	<2.8 <5.6			
39300	4.4'-DDT	625	<4.7	UG/L		
	DIBENZO(A,H)ANTHRACENE	625		UG/L		 ,
	DI-N-BUTYLPHTHALATE	625	<2.5	UG/L		 -
	1,3-DICHLOROBENZENE	625	<2.5	UG/L		*
	1,2-DICHLOROBENZENE	625	<1.9	UG/L		**
				UG/L		
	1,4-DICHLOROBENZENE	625	<4.4	UG/L		*
	3,3'DICHLOROBENZIDINE	625		UG/L	*	
	DIELDRIN	625		UG/L		**
Remarks:	DIETHYLPHTHALATE	625		UG/L	*	H
·			REVIEWE	D RY.		

REVIEWED BY:

METHOD 625 - BASE NEUTRALS LABORATORY PARAMETER ANALYSIS REPORT

PROJECT YOUNGQUIST BROS.		
SOURCE #2 SHALLOW ZONE LAB. NUMBER 90-1205 GROUND WATER CLASS SAMPLED BY SHARON NO. WELL CASING VOL. PURGED	SAMPLE DATE SAMPLE TIME COMPLETION DA SAMPLE TYPE (3/15/90 1:00 TE

STORES	PARAHETER HONITORED	. ANALYSI METHOD	S ANALYS RESULT	IS UN	11 DA	1.E YHYF
34341	DIMETHYLPHTHALATE	625	<1.1	J UG	_	
34611	2,4-DINITROTOLUENE	625	<5.			E.BU
34626	2,6-DINITROTOLUENE	625	<1.9			
34596	DI-N-OCTYLPHTHALATE	625	<4.6			
34361	ENDROSULFAN I	625	<5.0		<u> </u>	
34356	ENDROSULFAN II	625	<7.5			
34531	ENDROSULFAN SULFATE	625	<5.6			
39390.	ENDRIN	625	<4.5		<u> </u>	
34366	ENDRIN ALDEHYDE	625	<5.0	UG/	<u> </u>	
34376	FLUORANTHENE	625	<2.2	—I——		
34381	FLUORENE	625	<1.9	UG/		
39410	HEPTACHLOR	625	<1.9	— — <u> </u>		
39420	HEPTCHLOR EPOXIDE	625	-	UG/		
39700	HEXACHLOROBENZENE	625	<2.2	UG/I	l_	
34391	HEXACHLOROBUTAD I ENE	625	<1.9	UG/I	I_	
34396	HEXACHLOROETHANE	625	-	UG/I		
	HEXACHLOROCYLOPENTADIENE	625	<1.6	UG/L		- 4
	INDENO(1,2,3-CD)PYRENE	-	<10.0	UG/L		*
	ISOPHORONE	625	<3.7	UG/L		-
	NAPHTHALENE	625	<2.2	UG/L	_ **	-
,	NITROBENZENE	625	<1.6	UG/L	-	_
	N-NITROSODIMETHYLAMINE	625	<1.9	UG/L	*	-
	-NITROSODIPHENYLAMINE	625	<8.0	UG/L	*	- -
		625	<1.9	UG/L		- - -
	-NITROSODI-N-PROPYLAMINE CB-1016	625	<10.0	UG/L		- -
	CB-1016	625	<30.0	UG/L	-	·
	CB-1232	625	<50.0	UG/L	-	
		625	<50.0	UG/L	-	
	CB-1242	625	<30.0	UG/L	· - -	
	CB-1248	625	<40.0	UG/L		
	CB-1254	625	<30.5		 	
	8-1260	625		UG/L	- "	
461 PH	BENANTHRENE	625	<30.5	UG/L		*
469 PY	RENE		<5.4	UG/L	**	
100 TO	XAPHENE	625	<1.9	UG/L	•	
81	2.4-TRICHLOROBENZENE	625		UG/L	-	
IARKS:		625	<1.4	UG/L		

LABORATORY CERTIFICATION NUMBER 86137 E-86035

Method 628 - Acids Laboratory parameter analysis report

PROJECT YOUNGQUIST	T BROS .
SOURCE #2 SHALLOW ZONE LAB. NUMBER 90-1205 GROUND WATER CLASS SAMPLED BY R. SHARON NO. WELL CASING VOL. PURGED	SAMPLE DATE 3/15/90 SAMPLE TIME 1:00 COMPLETION DATE 4/26/90 SAMPLE TYPE () BACKGROUND () SITE BOUNDR () INTERMEDIAT () COMPLIANCE

· L				()	COMP	LIANCE
STORET CODE	PARANETER MONITORED	ANALYSIS HETHOD	ANALYSIS RESULT	UNIT	DATE	ANALY
34452	4-CHLORO-3-METHYLPHENOL	625	<3.0	UG/L	4/9	
34586	2-CHLOROPHENOL	625	<3.3	UG/L	4/ /	E, BU
34601	2,4-DICHLOROPHENOL	625	<2.7	UG/L		
3A606	2,4-DIMETHYLPHENOL	. 625	<2.7	UG/L		
34616	2.4-DINITROPHENOL	625	<42	UG/L	H	"
34657	2-MET'-4,6-DINITROPHENOL	625	<24	UG/L		
34591	2-NITROPHENOL	625	<3.6	UG/L		
34646	4-NITROPHENOL	625	<2.4		**	
39032	PENTACHLOROPHENOL	625	<3.6	UG/L		
34694	PHENOL	625	<1.5	UG/L		
34621	2,4,6-TRICHLOROPHENOL	625	<2.7	UG/L	**	
				UG/L		
						
						
	•	<u> </u>				
<u> </u>						
		<u> </u>				
						
				-		
						
			-			·
		:		-		
				 -	-	
					-	
				 -	-	

RBHARKS:

EPA METHOD 625 SECT. 17 SCREEN FOR 2,3,7,0-TCDD

PROJECT	YOUNGQUIST BROS.	SAMPLE DATE	3/15/90	
Monitor Sampled	ING SITE #2 SHALLOW ZONE BY SHARON	SAMPLE TIME SAMPLE TYPE:		COMPLIANCE DYCKGHONH?
STORET	PARAMETER MONITORED		Pr	esence
34675	2.3.7.B-Tetra chlorodibe	nzo-p-dioxin	indicated	not indicat

BROWARD TESTING LABORATORY, INC. POTABLE NATER LABORATORY CERTIFICATION NUMBER 86137

ENVIRONMENTAL LABORATORY CERTIFICATION NUMBER #6035

LABORATORY PARAMETER ANALYSIS REPORT

PROJECT YOUNGQUIST BROS.	•
SOURCE #1 DEEP ZONE	SAMPLE DATE 3/15/90
LAB. NUMBER 90-1204	SAMPLE TIME 12.41
GROUND WATER CLASS	COMPLETION DATE 4/26/90
SAMPLED BY B SHARON	SAMPLE TYPE () BACKGROUND
NO. WELL CASING VOL. PURGED	() SITE BOUNDRY
	() INTERMEDI ATE
	() COMPLIANCE

STORET CODE	PARAMETER MONITORED	ANALYSIS METHOD	ANALYSIS RESULT	UNIT	DATE	ANALYST
00746	HYDROGEN SULFIDE	427C	0.034	MG/L	3/19	E. BEROL
00610	AMMONIA	351.2	0.612	MG/L	3/26	E. BEROL
38260	MBAS	5128	<0.10	MG/L	3/22	E. BERO
00403	PH	150.1	8.94	UNIT	3/15	R. SHAR
00010	TEMPERATURE	170.1	24.3	•c	3/15	R. SHAR
00299	DISSOLVED OXYGEN	360,1	2.1	MG/L	3/15	R. SHAR
50060	TOTAL CHLORINE	330.5	0.0	MG/L	3/15	R. SHAR
01000	ARSENIC	206.2	<0.003	MG/L	3/27	K. VAGI
01005	BARIUM	208.1	<0.03	MG/L	3/22	K. VAGI
01025	CADMIUM	213.2	<0.0005	MG/L	3/29	K. VAGI
01030	CHROMIUM	218.2	0.0123	MG/L	3/26	K. VAGI
01049	LEAD	239.2	0.0066	MG/L	3/26	K. VAGI
71890	MERCURY	245.5	0.0005	MG/L	4/10	K. VAGI
01145	SELENIUM	270.2	0.0891	MG/L	4/28	K. VAGI
01075	SILVER	272.2	0.0064	MG/L	4/9	K. VAGI
00930	SODIUM	273.1	3180	MG/L	4/21	K. VAGI
01040	COPPER	220.1	<0.03	MG/L	3/19	K. VAGI
01046	IRON	236.1	L;0>	MG/L	3/19	K. VAGI
01090	ZINC	289.1	<0.03	MG/L	3/19	K. VAGI
01056	MANGANESE	243.2	0.0822	MG/L	3/29	K. YAGI
01095	ANTIMONY	204.2	<0.005	MG/L	4/20	K. VAGI
00925	MAGNESIUM	242.2	649.4	MG/L	4/19	E.BEROLO
00935	POTASSIUM	258.1	155	MG/L	4/19	K. VAGI
	CONTINUED ON NEXT PAGE					
						
		<u> </u>			1	

REMARKS:

BROWARD TESTING LABORATORY, INC. POTABLE NATER LABORATORY CERTIFICATION NUMBER 86137

ENVIRONMENTAL LABORATORY CERTIFICATION NUMBER 86035

LABORATORY PARAMETER ANALYSIS REPORT

PROJECT YOUNGQUIST BROS.	•
SOURCE #1 DEEP ZONE	SAMPLE DATE 3/15/90
LAB. NUMBER 90-1204	SAMPLE TIME 12:41
GROUND WATER CLASS	COMPLETION DATE A/26/90
SAMPLED BY R. SHARON	SAMPLE TYPE () BACKGROUND
NO. WELL CASING VOL. PURGED	() SITE BOUNDRY
	() INTERMEDIATE
	() COMPLIANCE

	Danayaraa	T	T		T	
STORET CODE	PARAMETER MONITORED	ANALYSIS METHOD	ANALYSIS RESULT	UNIT	DATE	ANALYST
00910	CALCIUM	406C	258.1	MG/L	3/29	E. BEROL
01080	STRONTIUM	303A	25.7	MG/L	4/23	K. VAGI
80110	SPECIFIC GRAVITY	213E	1.0037	G/ML	3/29	E. BEROL
00950	FLOURIDE	340.2	1.02	MG/L	3/21	M. HILL
00630	NITRATE	353.2	2.06	MG/L	3/27	E. BEROL
00080	COLOR	110.3		UNITS	3/16	E. BEROL
00941	CHLORIDES	4500CLC	6550	MG/L	3/22	M. HILL
00900	TOTAL HARDNESS	130.2	2154	MG/L	3/29	E. BEROL
00410	ALKALINITY	403	56	MG/L	3/16	E. BEROL
00901	CALCIUM HARDNESS	215.2	644	MG/L	3/29	E. BEROL
00310	BOD	405.1	<2.0	MG/L	3/21	M. HILL
00076	TURBIDITY	180.1	1.60	NTU	3/27	M. HILL
00085	ODOR	140.1	1	TON	3/16	E. BEROL
00945	SULFATE	426 C	1970	MG/L	4/4	E, GOLEM
70300	TOTAL DISSOLVED SOLID	160.1	11,514	MG/L	3/22	M. HILL
00665	TOTAL PHOSPHATE	365.4	<0.20	MG/L	3/26	E. BEROL
70507	ORTHO PHOSPHATE	365.4	<0.20	MG/L	3/26	E. BEROL
00625	TKN	351.2	0.75	MG/L	3/26	E. BEROL
00440	BICARBONATE	406C	34,2	MG/L	4/19	E. BEROL
00681	TOTAL ORGANIC CARBON	4.15.1	4.04	MG/L	3/23	E. GOLEM
00530	TOTAL SUSPENDED SOLIDS	160.2	36	MG/L	3/16	M. HILL
1020	BORON	212.3	<0.5	MG/L	4/23	K. VAGI
	625 SCAN } 608 SCAN }					· ,
	504 SCAN	 			 -	
	502.2 SCAN	SEE ATTA	CHED SHEET	-		
	GROSS ALPHA					
						`

BROWARD TESTING LABORATORY, INC.

POST OFFICE BOX 23541 FORT LAUDERDALE, FLORIDA 33307 TELEPHONE: (305) 778-7238 FAX: (305) 778-0689

REPORT NO: LAB ID NO: 86137 PWS ID NO: 87240 SAMPLE SITE: 1 DEEP ZONE
TIME SAMPLED
TIME RECEIVED AT LABI
G WATER COMPLIANCE. (PMS033) TED.
TED VALUE
PCI/L

RANK D. HOBLE, DIRECTOR

ROWARD TESTING LABORATORY, INC.

עוג

Remarks:

POTABLE NATER LABORATORY CERTIFICATION NUMBER #6137 ENVIRONMENTAL LABORATORY CERTIFICATION NUMBER #6035

METHOD 504 EDB AND DBCP: MICROEXTRACTION/ECGC

LABORATORY PARAMETER ANALYSIS REPORT

	PROJECT YOUNGQUIST E	BROS.				
SOURCE LAB. N			SVMPTE T) \ T'E	3/15/9	
GROUND	WATER CLASS		COMPLETI	ON PART	- 12141	
NO. WE	D BY R. SHARON LL CASING VOL. PURGED		SAMPLE 1	YPE () BACKÓ) SITE } INTER	Houndry Houndry Mediate
CAS NO.	Dana Manan	<u> </u>		-1) COMPI	IVHCE
	NONITORED	ANALYSIS METHOD	RESULT	TINU	DATE	ANALYSI
	1,2-DIBROMOETHANE (EDB)	504	<0.02	UG/L	3/15	C. AMON
95-12-8	1,2-DIBROMO-3-CHLOROPROPANE (DBCP)	504	<0.02	UG/L		
			-	-	<u> </u>	
		_	-			
		-	-			
			-	·		
						
		- <u>-</u>	-			
		-	-			
			-			
		·	·			
		·				
		<u> </u>				
						
]-	-	
				-	-	
					-	
		 -		-		
	`			-	-]
				-	-	
		-			_	
					_	
		 -		_	_	

REVIEWED DY! G. MEYER

POTABLE NATER LABORATORY CERTIFICATION NUMBER 86137 ENVIRONMENTAL LABORATORY CERTIFICATION NUMBER 86035

METHOD 502.2. VOLATILE ORGANIC COMPOUNDS IN WATER BY PURGE AND TRAP CAPILLARY COLUMN GAS CHROMATOGRAPHY WITH PHOTOIONIZATION AND ELECTROLYTIC CONDUCTIVITY DETECTORS IN SERIES

LABORATORY PARAMETER ANALYSIS REPORT

PROJECT YOUNGQUIST BROS.	· · · · · · · · · · · · · · · · · · ·
SOURCE 1 DEEP ZONE LAB. NUMBER 90-1204 GROUND WATER CLASS SAMPLED BY R. SHARON NO. WELL CASING VOL. PURGED	SAMPLE DATE 3/15/90 SAMPLE TIME 12:41 COMPLETION DATE A/26/00 SAMPLE TYPE () BACKGROUND () SITE BOUNDRY () INTERMEDIATE () COMPLIANCE

74-97-5 75-27-4 75-25-2 74-83-9 104-51-8 135-98-8	BROMOBENZENE BROMOCHLOROMETHANE BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE n-BUTYLBENZENE sec-BUTYLBENZENE tert-BUTYLBENZENE	ANALYSIS METHOD 502.2 502.2 502.2 502.2 502.2 502.2 502.2 502.2	ANALYSIS RESULT <1.0 <1.0 <1.0 <1.0 <1.0 <1.6 <1.1 <1.0 <1.1	UG/L UG/L UG/L UG/L UG/L UG/L UG/L	3/19 " "	10 10 10 10 10 10 10 10 10 10 10 10 10 1
108-86-1 74-97-5 75-27-4 75-25-2 74-83-9 104-51-8 135-98-8	BROMOBENZENE BROMOCHLOROMETHANE BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE n-BUTYLBENZENE sec-BUTYLBENZENE tert-BUTYLBENZENE	502.2 502.2 502.2 502.2 502.2 502.2	<1.0 <1.0 <1.0 <1.6 <1.1	UG/L UG/L UG/L UG/L	# # # # # # # # # # # # # # # # # # #	10 10 10 10 10 10 10 10 10 10 10 10 10 1
74-97-5 75-27-4 75-25-2 74-83-9 104-51-8 135-98-8	BROMOCHLOROMETHANE BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE n-BUTYLBENZENE sec-BUTYLBENZENE tert-BUTYLBENZENE	502.2 502.2 502.2 502.2 502.2	<1.0 <1.0 <1.0 <1.6 <1.1	UG/L UG/L UG/L	** **	10 10 10
75-27-4 75-25-2 74-83-9 104-51-8 135-98-8	BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE n-BUTYLBENZENE sec-BUTYLBENZENE tert-BUTYLBENZENE	502.2 502.2 502.2 502.2	<1.0 <1.0 <1.6 <1.1	UG/L UG/L	** **	# N
75-25-2 74-83-9 104-51-8 135-98-8	BROMOFORM BROMOMETHANE n-BUTYLBENZENE sec-BUTYLBENZENE tert-BUTYLBENZENE	502.2 502.2 502.2	<1.0 <1.6 <1.1 <1.0	UG/L		11
74-83-9 1 104-51-8 1 135-98-8	BROMOMETHANE n-BUTYLBENZENE sec-BUTYLBENZENE tert-BUTYLBENZENE	502.2 502.2	<1.6 <1.1 <1.0	UG/L		*
104-51-8 1 135-98-8	n-BUTYLBENZENE sec-Butylbenzene tert-Butylbenzene	502.2	<1.0	 		
135-98-8	sec-BUTYLBENZENE tert-BUTYLBENZENE			UG/L		
	tert-BUTYLBENZENE	502.2			1	
_98-06-6			71.0	UG/I	-	
	CARRON MEMBACHIOSES	502.2	<1.0	UG/L		
56-23-5	CARBON TETRACIILORIDE	502.2	<1.0	UG/L		*
108-90-7	CHLOROBENZENE	502.2	<1.0	UG/L		
75-00-3	CHLOROETHANE	502.2	<1.0	UG/L		*
67-66-3	CHLOROFORM	502.2	<1.0	UG/L		-
74-87-3 C	CHLOROMETHANE	502.2	<1.0	UG/L		**
95-49-8 2	2-CHLOROTOLUENE	502.2	<1.0	UG/L		
06-43-4 4	-CHLOROTOLUENE	502.2	<1.0	UG/L		
24-48-1 D	DIBROMOCHLOROMEHTANE	502.2	<2.0	UG/L	-	H
96-12-8 1	,2-DIBROMO-3-CHLOROPROPANE	502.2	<3.0	UG/L	*	
06-93-4 1	,2-DIBROMOETHANE	502.2	<0.8	UG/L	,	H
74-95-3 D	IBROMOMETHANE	502.2	<2.2	UG/L		*
95-50-1 1	,2-DICHLOROBENZENE	502.2	<1.0	UG/L		
41-73-1 1	,3-DICHLOROBENZENE	502.2	<1.0	UG/L		
06-46-7 1	,4-DICHLOROBENZENE	502,2	<1.0	UG/L		
75-71-8 D	ICHLORODIFLUOROMETHANE	502.2	<1.0	UG/L		
75-34-3 1	,1-DICHLOROETHANE	502.2	<1.0	UG/L		*
07-06-2 1	,2-DICHLOROETHANE	502.2	<1.0	UG/L	-	
75-35-4 1,	,1-DICHLOROETHENE	502.2	<1.0	UG/L	-	
6-59-4 ci	is-1,2-DICHLOROETHENE	502.2		UG/L	*	•
6-60-5 tr	rans-1,2-DICHLOROETHENE	502.2		UG/L		,,
	2-DICHLOROPROPANE	502.2		UG/L		

REHARKS:

POTABLE WATER LABORATORY CERTIFICATION NUMBER 86137 ENVIRONMENTAL LABORATORY CERTIFICATION NUMBER 86035

METHOD 502.2. VOLATILE ORGANIC COMPOUNDS IN MATER BY PURGE AND TRAP CAPILLARY COLUMN GAS CHROMATOGRAPHY WITH PROTOIONINATION AND ELECTROLYTIC CONDUCTIVITY DETECTORS IN SENIES LABORATORY PARAMETER ANALYSIS REPORT

PROJECT YOUNGOUIST BROS.	
SOURCE 1 DEEP ZONE LAB. NUMBER 90-1204 GROUND WATER CLASS SAMPLED BY R. SHARON NO. WELL CASING VOL. PURGED	SAMPLE DATE 3/15/90 SAMPLE TIME 12:41 COMPLETION DATE 4/26/90 SAMPLE TYPE () BACKGROUND () SITE BOUNDRY () INTERMEDIATE () COMPLIANCE

				•	,	
CAS NO.	PARANETER Honitored	ANALYSIS NETHOD	ANALYSIS RESULT	UNIS	DATE	ANALY
142-28-9	1,3-DICHLOROPROPANE	502.2	<1.0	ng/r	3/19	C. AMD
590-20-7	2,2-DICHLOROPROPANE	502.2	<1.0	UG/L	13673	· AMO
563-58-6	1,1-DICHLOROPROPENE	502.2	<1.0	UG/L	 . 	
100-41-4	ETHYLBENZENE	502.2	<1.0	UG/L		
87-68-3	HEXACHLOROBUTADIENE	502.2	<1.0	UG/L	•	-
98-82-8	ISOPROPYLBENZENE	502.2	<1.0	UG/L		•
99-87-6	D-ISOPROPYLTOLUENS	502.2	<1.0	UG/L	· -	
	METHYLENE CHLORIDE	502.2	<1.0	UG/L	•	
91-20-3	NAPHTHALENE	502.2	<1.0	UG/L	•	
03-65-1	n-PROPYLBENZENE	502.2	<1.0	UG/L		
00-42-5	STYRENE	502.2	<1.0	UG/L		
30-20-6	1,1,1,2-TETRACHLOROETH AND	502.2	<u><1.0</u>	UG/L		
	1,1,2,2-TETRACHLOROETHANE	502.2	<1.0	UG/L		
	TETRACHLOROETHENE	502.2	<u> </u>	UG/L		
08-88-3	TOLUENE	502.2	<1.0	UG/L		
87-61-6	1,2,3-TRICHLOROBENZENE	502.2	<1.0	UG/L	•	
	1,2,4-TRICHLOROBENZENE	502.2		UG/L		
	1,1,1-TRICHLOROETHANE	502.2	<u></u>	UG/L		
79-00-5	1,1,2-TRICHLORORTHANE	502.2	<u> </u>	UG/L		
79-01-6	TRICHLOROETHENE	502.2	<u> </u>	UG/L		
75-69-4	TRICHLOROFLUOROMETHANE	502.2	<u> </u>	UG/L		
96-18-4	1,2,3-TRICHLOROPROPANE	502.2	<u> </u>	UG/L		
	L, 2, 4-TRIMETHYLBENZENE	502.2	<u></u>	UG/L		
	,3,5-TRIMETHYLBENZENE	502.2	<1.0			
	INYL CHLORIDE			NG/F		•
5-47-6 0		502.2		UG/L		
8-38-3 m	I-XYLENE	502.2		UG/L	<u>-</u>	
6-42-3 p		502.2		UG/L	<u> </u>	
		502.2	<1.0	UG/L	*	•
			[
		<u>l</u>				

REHARKS:

BROWARD LESTING LABORATION NUMBER 86137 ENVIRONMENTAL LABORATORY CERTIFICATION NUMBER 86035

ORGANOCHLORINE PESTICIDES AND PCB'S METHOD - 608

LABORATORY PARAMETER ANALYSIS REPORT

PROJECTY	OUNGQUIST BROS.	•	
SOURCE #1 DEEP ZONE LAB. NUMBER 90-1204 GROUND WATER CLASS SAMPLED BY R. SHARON NO. WELL CASING VOL. PU	RGED	SAMPLE DATE 3/15/90 SAMPLE TIME 12:41 COMPLETION DATE 4/26/90 SAMPLE TYPE () BACKGROUND () SITE BOUNDRY () INTERMEDIATE () COMPLIANCE	- -

STORET CODE	PARAMETER MONITORED	ANALYSIS METHOD	ANALYSIS RESULT	UNIT	DATE	ANALYST
39330	ALDRIN	608	<1.0	UG/L	4/3	C. AMON
39337	A-BHC	608	<1.0	UG/L	Ħ	*
39338	B-BHC	608	<1.0	UG/L	#	
34259	p-BHC	608	<1.0	UG/L		
39340	Y-BHC	608	<1.0	UG/L	n	
39350	CHLORDANE	608	<1.0	UG/L	19	н _
39310	4.4'-DDD	608	<1.0	UG/L	**	н
39320	4,4'-DDE	60B	<1.0	UG/L	н	н
39300	4,4'-DDT	608	<1.0	UG/L	н	H
39380	DIELDRIN	608	<1.0	UG/L	н	
34361	ENDOSULFAN I	608	<1.0	UG/L	31	*
34356	ENDOSULFAN II	608	<1.0	UG/L	10	H
34351	ENDOSULFAN SULFATE	608	<1.0	UG/L	**	
39390	ENDRIN	608	<1.0	UG/L		**
34366	ENDRIN ALDEHYDE	608	<1.0	UG/L		*
39410	HEPTACHLOR	608	<1.0	UG/L	**	н
39420	HEPTACHLOR EPOXIDE	608	<1.0	UG/L	61	#
39400	TOXAPHENE	60B	<1.0	UG/L	91	Ħ
34671	PCB-1016	608	<1.0	UG/L	94	н
39488	PCB-1221	608	<1.0	UG/L	н	
39492	PCB-1232	608	<1.0	UG/L	**	**
39496	PCB-1242	608	<1.0_	UG/L	**	tq.
39500	PCB-1248	608	<1.0	UG/L	н	**
39504	PCB-1254	608	<1.0	UG/L	н	н
39508	PC8-1260	608	<1.0	UG/L	**	н
39480	METHOXYCHLOR	608	<1.0	UG/L	**	*

REMARKS:

POTABLE NATER LABORATORY CERTIFICATION NUMBER 86137 ENVIRONMENTAL LABORATORY CERTIFICATION NUMBER 86035

METHOD 625 - BASE NEUTRALS LABORATORY PARAMETER ANALYSIS REPORT

PROJECT YOUNGOUIST BROS.	<u> </u>
SOURCE #1 DEEP ZONE LAB. NUMBER 90-1204 GROUND WATER CLASS SAMPLED BY R. SHARON NO. WELL CASING VOL. PURGED	SAMPLE DATE 3/15/90 SAMPLE TIME 12.41 COMPLETION DATE 4/26/90 SAMPLE TYPE () BACKGROUND () SITE HOUNDRY () INTERMEDIATE () COMPLIANCE

				` '		
STORET	PARAMETER MONITORED	ANALYSIS METHOD	ANALYSIS RESULT	UNIT	DATE	ANALYST
34205	ACENAPHTHENE	625	<1.9	UG/L	4/3/90	E. BURR
34200	ACENAPHTHYLENE	625	<3.5	UG/L		*
34220	ANTHRACENE	625	<1.9	UG/L	*	
39330	ALDRIN	625	<1.9	UG/L	*	*
39120	BENZIDINE	625	<44	UG/L	#	
34526	BENZO(A)ANTHRACENE	625	<3.7	UG/L	**	
34230	BENZO(B)FLUORANTHENE	625	<2.5	UG/L		*
34242	BENZO(K)FLUORANTHENE	625	<2.5	UG/L	*	
34247	BENZO (A) PYRENE	625	<3.7	UG/L	*	11
34521	BENZO (GHI)PERYLENE	625	<4.1	UG/L	н	*
34292	BENZYLBUTYLPHTHALATE	625	<2.5	UG/L	н	**
39337	A-BHC	625	<4.2	UG/L		**
39338	B-BHC	625	<10.0	UG/L	*	**
34259	D-BHC	625	<10.0	UG/L	Ħ	*
39340	G-BHC	625	<3.1	UG/L		
34:273	BIS(2-CHLOROETHYL)ETHER	625	<5.6	UG/L		
34278	BIS(2-CHLOROETHOXY) METHANE	625	<5.3	UG/L	*	H
39100	BIS(2-ETHYLHEXYL) PHTHALATE	625	<2.5	UG/L	**	10
34283	BIS(2-CHLOROISOPROPYL)ETHER	625	<5.7	UG/L	*	
34636	4-BROMOPHENYLPHENYLETHER	625	<1.9	UG/L	#	M
39350	CHLORDANE	625	<10.0	UG/L	*	**
34581	2-CHLORONAPHTHALENE	625	<1.9	UG/L	81	**
34641	4-CHLOROPHENYLPHENYLETHER	625	<4.2	UG/L	*	
34320	CHRYSENE	625	<2.5	UG/L	•	•
39310	4,4 ¹ DDD	625	<2.8	UG/L	*	*
39320	4,4°-DDE	625	<5.6	UG/L		
39300	4,4 ¹ -DDT	625	<4.7	UG/L	-	
34556	DIBENZO(A,H)ANTHRACENE	625	<2.5	UG/L		M
39110	DI-N-BUTYLPHTHALATE	625	<2.5	UG/L	*	
34566	1,3-DICHLOROBENZENE	625	<1.9	UG/L	-	*
34536	1,2-DICHLOROBENZENE	625	<1.9	UG/L	*	**
34571	1,4-DICHLOROBENZENE	625	<4.4	UG/L	-	*
34631	3,3'DICHLOROBENZIDINE	625	<16.5	UG/L	-	*
39380	DIELDRIN	625	<2.5	UG/L		
34336	DIETHYLPHTHALATE	625		UG/L		
		··	DEVIEWS			

Remarks:

REVIEWED BY:

G. MEYER

METHOD 625 - BASE NEUTRALS

LABORATORY PARAMETER ANALYSIS REPORT

PROJECT YOUNGQUIST BROS.		
SOURCE #1 DEEP ZONE LAB. NUMBER	SAMPLE DATE SAMPLE TIME COMPLETION DATE TYPE	3/15/90 12:41 TE

STORES CODE	PARAMETER HONITORED	ANALYSIS Method	ANALYSI: RESULT	S UN1	T DATE	BANALYS
34341	DIMETHYLPHTHALATE	625	<1.6	UG/I	4/3:	E.BURR
34611	2,4-DINITROTOLUENE	625	<5.7	UG/L		E.BURK
34626	2,6-DINITROTOLUENE	625	<1.9	UGZL		_
34596	DI-N-OCTYLPHTHALATE	625	<4.8	UG/L		- - -
34361	ENDROSULFAN I	625	<5.0	UG/L	<u> </u>	
34356	ENDROSULFAN II	625	<7.5	UG/L		- - -
34531	ENDROSULFAN SULFATE	625	<5.6	UG/L		-
39390	ENDRIN	625	<4.5	UG/L		- - -
34366	ENDRIN ALDEHYDE	625	<5.0	UG/L	_	- - -
34376	FLUORANTHENE	625	<2.2	UG/L	- - " -	-
34381	FLUORENE	625	<1.9	UG/L	- - 	- -
39410	HEPTACHLOR	625	<1.9	UG/L	-	-
39420	HEPTCHLOR EPOXIDE	625	<2.2	-	- -	- -
39700	HEXACHLOROBENZENE	625	<1.9	UG/L	-	- - -
34391	HEXACHLOROBUTADIENE	625	<1.0	UG/L	- ;	- - -
34396	HEXACHLOROETHANE	625	<1.6	-[-
34386	HEXACHLOROCYLOPENTADIENE	625		UG/L		-1
34403	INDENO(1,2,3-CD)PYRENE	625	<10.0	UG/L		
34408	ISOPHORONE	··	<3.7	UG/L	_	
	NAPHTHALENE	625	<2.2	UG/L		*
	NITROBENZENE	625	<1.6	UG/L	<u> </u>	
	N-NITROSODIMETHYLAMINE	625	<1.9	UG/L	*	
	N-NITROSODIPHENYLAMINE	625	<8.0	UG/L	"	*
		625	<1.9	UG/L	**	
	N-NITROSODI-N-PROPYLAMINE	625	<10.0	UG/L	**	•
	PCB-1016 PCB-1221	625	<30.0	UG/L		
		625	<50.0	UG/L	**	*
	CB-1232	625	<50.0	UG/L	39	
	CB-1242	625	<30.0	UG/L		
	CB-1248	625	<40.0	UG/L	*	
	CB-1254	625		UG/L		
508 P	CB-1260	625				
461 P	HENANTHRENE	625		UG/L		
469 P	YRENE			UG/L		
400 TI	DXAPHENE	625	 [-	JG/L	*	**
	2.4-TRICHLOROBENZENE	625		JG/L	•	•
MARKS		625	<1.4	JG/L	- H	

LABORATORY CERTIFICATION NUMBER 86137 E-66035

METHOD 625 - ACIDS LABORATORY PARAMETER ANALYSIS REPORT

PROJECT YOUNGQUIST BROS .	<u> </u>	
SOURCE 01 DEEP ZONE LAB. NUMBER 90-1204 GROUND WATER CLASS SAMPLED BY R. SHARON NO. WELL CASING VOL. PURGED	SAMPLE DATE SAMPLE TIME COMPLETION I SAMPLE TYPE	3/15/90 12141 ATB 4/26/90 () BACKGROUND () SITE BOUNDRY () INTERMEDIATE
		() COMPLIANCE

·				() COMPDIANCE					
STORET CODE	PARAMETER MONITORED	ANALYSIS METHOD	ANALYSIS RESULT	UNIT	DATE	AHALYS			
34452	4-CHLORO-3-METHYLPHENOL	625	<3.0	UG/L	4/3	E. BURR			
34586	2-CHLOROPHENOL	625	<3.3	UG/L	7/3	E. BURK			
34601	2,4-DICHLOROPHENOL	625	<2.7	UG/L		-			
34606	2,4-DIMETHYLPHENOL	• 625	<2.7	UG/L	*				
34616	2,4-DINITROPHENOL	625	<42	UG/L		"			
34657	2-MET'-4,6-DINITROPHENOL	625	<24	UG/L	**	#			
34591	2-NITROPHENOL	625	<3.6	UG/L	*				
34646	4-NITROPHENOL	625	<2.4	UG/L	*				
39032	PENTACHLOROPHENOL	625	<3.6	UG/L	# H				
34694	PHENOL	625	<1.5	UG/L	*				
34621	2,4,6-TRICHLOROPHENOL	625	<2.7	UG/L					
						 			
·		 :		I					
	T- 12								
	•					1			
									
									
									
									
· -	· · · · · · · · · · · · · · · · · · ·	 [
						•			
	•								
 -									
					-				

REHARKSI

PRYTHOUSERTYP PURCHULOUS CENTILICATION NAMES 80032

EPA METHOD 625 SECT. 17 SCREEN FOR 2,3,7,0-TCDD

PROJECT	YOUNGQUIST BROS.	SAMPLE DATE	3/15/90	
MONITOR	ING SITE 1 DEEP WELL BY 8 SHARON	SAMPLE TIME		SVEKGIIONIN COMPLIANCE
STORET CODE	PARAMETER MONITORED		Pr	esence
34675	2.3.7.8-Tetra chlored	ibenzo-p-dioxin	indicated	not indicat
	<u> </u>			·

APPENDIX F Well Casing Mill Certificates

12.1.6 -12.5.6

LETTER OF TRANSMITTAL

HOME OFFICE 15000 PINERIDGE ROAD

YOUNGQUIST BROS., INC. FORT MYERS, FL 33908 DATE: 12-28-89 JOB NO.: ---(813) 489-4444 RE: BCOES Monitor Well Jimmy Brantley FIELD OFFICE (RETURN TO) 2401 N. Powerline Mill Certs Pompano Beach, Fl. 33069 RECEIVED Hazen & Sawyer JAMES M. MONTGOMERY. TO: CONSULTING ENGINEERS, INC. BCOES Field Office ADDRESS: IN ASSOCIATION WITH HAZEN AND SAWYER, P.C. Pompano Beach F1. 33069 CITY: FIELD OFFICE ATTENTION: Ron Courtney PLEASE BE ADVISED: _ THE FOLLOWING: WE ARE SENDING YOU D ATTACHED ☐ UNDER SEPARATE COVER VIA __ ☐ SPECIFICATIONS ☐ SAMPLES ☐ PRINTS ☐ PLANS ☐ SHOP DRAWINGS O COPY OF LETTER ☐ CHANGE ORDER ☐ PROOFS ☐ PHOTOGRAPHS ☐ ARTWORK ☐ Mill Certifications on 6 5/8" Casing DESCRIPTION NO. DATE COPIES Mill Certifications for 6 5/8" Casing 12 - 282 3 4 5 THESE ARE BEING TRANSMITTED AS INDICATED BELOW: 1421 APPROVED AS IS ☐ AS REQUESTED ☐ SUBMIT ____COPIES FOR DISTRIBUTION PETURN ___ **G** FOR APPROVAL APPROVED WITH CORRECTIONS... __CORRECTED._. D RETURNED AFTER LOAN TO US ☐ FOR YOUR USE ☐ RETURNED WITH CORRECTIONS ☐ FOR YOUR COMMENTS ☐ RESUBMIT ____ COPIES FOR APPROVAL: ☐ ___ FOR BID(\$) DUE _ COMMENTS: _____

_ SIGNED: -

(Ass)			METALLURGICAL TEST REPORT
REO, JOB, CONTRACT NO.	B THERE'S THE	1	RCHASE ORDER NO.

UN022-41. FAIRFIELD WARKS SHIPPERS NO. MR.L OPDER NO 17.0. 80X 599 A de P 18580 DR 55 145 FAIRFTELD, AL 35064 VEHICLE 1475 L B FOSTER CO L 8 FOSTER CO TUBULAR PRODUCTS DIV -ORLANDO FL 445 HOLIDAY DRIVE

THIS IS TO CERTIFY THAT THE PRODUCT DESCRIBED HEREIN WAS MEGO., SAMPLEO, TESTED, AND/ DR INSPORTIN ACCORDANCE WITH THE SPECIFICATION AND FUL-FILLS REQUIREMENTS IN SUCH RESPECIS.

PREPARED BY THE DFFICE OF: F.U. MDORE MGR D.A.

MINOICE NO.

488-287 (2

41/02/89

1

T

11/07/89

PSAA PIPE CARBON SMLS STD PIPE API SL/ASTM AS3-88A/ASTM A106-88A GRADE B TRIPLE STENCIL BLK BARE PE BEV 30 DEG SPEC REV NAME 37Th EDITION **UTD 5/88 SPEC DATE 88/88**

INSP 04 MILL CERTIFIED T/R

PITTSBURGH PA 15220

ITEM NO.		MA.	TERIAL DESCRIPTION		HEATT	MIN.	YHELO STR	TEMSILE STA	ELDNG. 4	GAGE		
	\$IZE	WALL	SPECIF CATION & GRADE	MATL.	LOT NO.	HYDRO PSi	PSI	PS1	M 2"	WEDTH IR	FLAT	BEN:
◇◊ 1	6.6250	0.5620	ALSO MEETS THE REQUIREMENT 8 SA 106 - 1989 LONGITUDINAL STRIP TENSILE YIELD STRENGTH @ .OOS EXT.	SPS	ASME SA	4450 END OF 53 1989	45,700 DATA	78.000	42.0	1.5	UK	
TEM NO		TYPE C HEAT :25 PROD :24 PROC :27	93 012 009 24 302 308 30	мо 98 :02 99 :02 99 :02		# V 000 000 000	B TI	Ce Co		,	,	
47600	1010 3	CAA		K610	78-26		:			PAGE 1	UF	1

METALLURGICAL TEST REPORT O. JOB CONTRACT NO. P.O. DATE PURCHASE ORDER NEL THIS IS TO CERTIFY THAT UU022-444 PRODUCT DESCRIBED HEREIN NA FAIRFIELD WORKS SHIPPERS NO. MEL OFFER MO. TH PERCICE NO. MEGD. SAMPLEO, TESTED, AND THE DESIGNATION OF THE PERSON P 18580 DR35145 ORTINSPORTIN ACCORDANCE WIT FAIRFTELD, AL 35064 : VEHICLE 1475 THE SPECIFICATION AND FUL-44702789 FILLS REQUIREMENTS IN SUCH RESPECTS. L B FOSTER CO L 8 FOSTER CO TUBULAR PRODUCTS DIV ORLANDO FL PREPARED BY THE DFFICE OF: 445 HOLIDAY DRIVE F.W. MOORE MGH D.A. PITTSBURGH PA 15220 11/07/89 PSAA PIPE CARBON SMLS STD PIPE API SC/ASTM AS3-88A/ASTM A406-88A GRAPE B TRIPLE STENCIL BLK BARE PE BEV 30 DEG SPEC REV NAME 37T5 EDITEDN DTD 5/88 SPEC DATE 88/88 INSP 04 MILL CERTIFIED T/R MATERIAL DESCRIPTION YHELD STR. TENSILE STAL FTEM NO. HEATI BAGE ELONG. % MATL HYDRO SIZE WALL SPECIF CATION & GRADE LOT NO. FLAT PSI PSI M 2" 700 PSI 6:6250 0.5620 SM: 9 RY 1569 4450 45,700 78,000 12.0 UK END OF DATA ALSO MEETS THE REQUIREMENTS OF ASHE SASS 1989 8 SA 106 - 1989 LONGITUDINAL STRIP TENSILE SPECIMENS UNLESS NOTED YIELD STRENGTH @ .OOS EXT. g_i ITEM NO HEAT NO. CR MO SM AL 001 ν. CO RY 1567 50 10नए एइन 74 :02 Ю. :08 :एट 000 PR0d :24 93 012 009 24 :02 03 :09 :02 600 PROD 27 95 042 069 24 :02 :03 :09:02 σοσ Alfaction ting

K64078-26

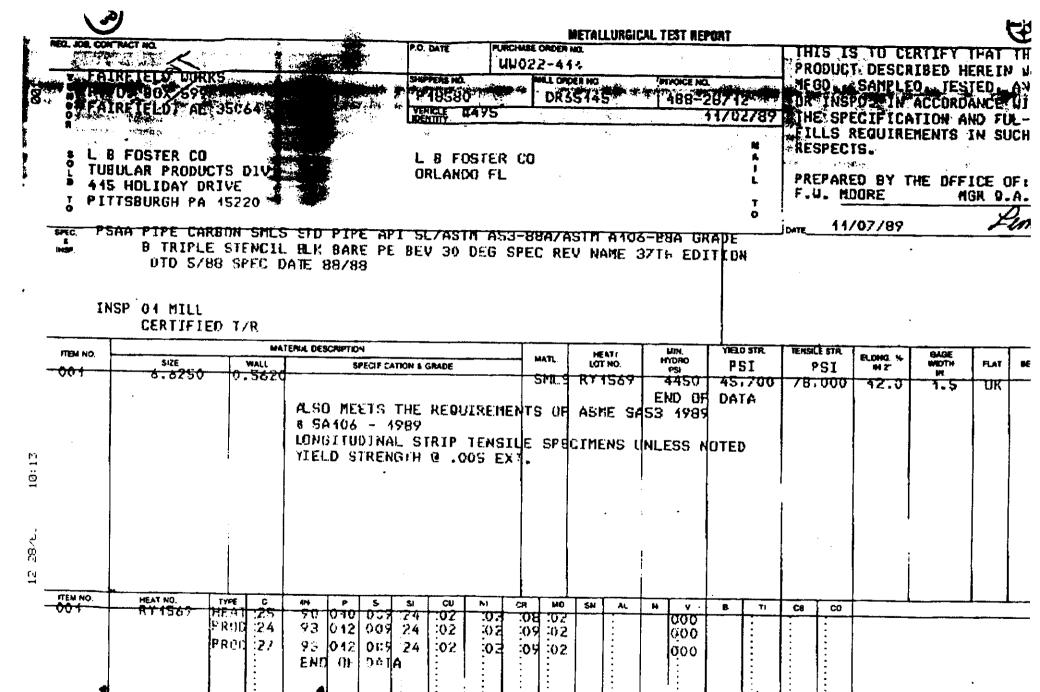
PAGE

1 UF

4**76004040**

METALLURGICAL TEST REPORT REQ. JOB, CONTRACT NO. P.O. DATE PURCHASE ORDER NO. UN022-444 FAIRFIELD DURKS SHUPPERS HEL ON REGRO LINE PHYOICE NO. P" 0. 480X 599 DR35745 P 18580 488-28712 FAIRFTELD, AL 35064 VEHICLE #475 44/02/89 L B FOSTER CO L 8 FOSTERACO TUBULAR PRODUCTS DIV ORLANDO FLÃ 445 HOLIDAY DRIVE PITTSBURGH PA 45220 PSAA PIPE CARBON SMLS STO PIPE AFT SL/ASTM AS3-88A/ASTM A106-88A GRAPE INSP B TRIPLE STENCIL BLK BARE PE BEV 30 DEG SPEC REV NAME 37Th EDITEDN 0TD 5/88 SPEC DATE 88/88

THIS IS TO CERTIFY THAT THE PRODUCT DESCRIBED HEREIN WAS MEGO. SAMPLEO, TESTED, AND/OR INSPO. IN ACCORDANCE WITH THE SPECIFICATION AND FULFILLS REQUIREMENTS IN SUCH RESPECTS.


PREPARED BY THE DEFICE OF: F.U. MDORE MGR 9.A.

11/07/89

Lim

INSP 04 MILL CERTIFIED T/R

ITEM NO.		***	TEMAL DESCRIPT	04			***	HEA	Tr	MM,	•	D STR	WENS	LE STR	ELDHO. 4	GAGE	T	
001	SIZE	WALL		SPECIF CATION &	GRADE		MATL.	LOT		HYDRO PSi	P:	5 I	1 1	PSI	M2	WENTH	FLAT	D€
	6.625 ♥	0.562	ALSO ME 8 SA 100 LONGITE	EETS THE S - 4989 JOINAL S STRENGTH	TRIP TO	ENSIL	E SPE	ASHI	E SA		DAT		78	. 000	42.0	1.5	UK	
ITEM NO	HEAT NO.	TIPE C. HEAT 25 PROD 24 PROD 27	93 042 93 042 93 042 END (I)	009 24	02	04 (мо 08 :02 09 :02 09 :02		AL	# V 000 600 000	В	Ti	Ca	CO				

K61078-26

478001010

PAGE 1 UF

7

L. B. FOSTER COMPANY Route 1, Box 15 Washington, WV 26181

STANDARD CERTIFIED TEST REPORT TUBULAR PRODUCTS

•	Youngquist	Eros.	Inc.
Addres			
	15000 Pine	Ridge	Road
-	 	·	
City 8	State		· · · · · · · · · · · · · · · · · · ·
	Ft. Myers,	Florid	32008

November 8, 1989 Customer's Order No. Phone - Jimmy LBF Involce No. 23H-049721

Material	FOSTE	RWELD		Grade ASTM Al39 Gr.P									
Coil		Wt/Ft.	Min.						CHEMICAL ANALYSIS				
or Lot. No.	Size O.D.	or Wall Thick.	Hydro. Test Pres. P.S.I.	Yield Strength P.S.I. Point	Tenzile Strength P.S.I.	Elong. In 2	С	Mn	P	S	SI		
165056	42"	.375	375	49,700	68,000	31.	.20	.50	.013	.013			
¥66921	42"	.375	375	45,900	64,000	34.	.19	.40	.008	.015			
Y40227	42"	.375	375	52,000	74,500	29.	.21	.44	005	.011			
¥65739	42"	.375	375	55,000	74,500	33.	.23	.48	.011	.012			
W63605	42"	.375	375	52,000	· 70,000	30.	.20	.48	. 008	.012			
¥66972	42"	.375	375	39,800	65,500	33.	.20	.46	. 009	.013			
W63605	50"	.375	315	52,000	70,000	30.	. 20	.48	. 008	.012			
Y40227	50"	. 375	315	52,000	74,500	29.	.21	.44	005	.011			
	574		BLIC IRGINIA dams 171 - 20101										

The undersigned, in behalf of The L. B. Foster Company, hereby certifies that the above materials have been inspected and tested in accordance with the methods prescribed in the applicable specifications and the results of such inspection and tests shown above. In determining properties or characteristics for which no methods of inspecting or testing are prescribed by sold specifications, the standard mill inspection and testing practices of The L. B. Foster Company have been applied. Unless it appears otherwise in the results of such inspection and tests shows above, the undersigned agent of The L. B. Foster Company believes that said materials conform to said specifications.

Subscribed and sworn to before me

Robert E. Blankensop, Office Manager

Agents' None & Title

L.B. Foster Company, Washington,

COMPANY .

L. B. FOSTER COMPANY P. O. BOX 7796 GARDEN CITY, GA 31418-7796

STANDARD CERTIFIED TEST REPORT TUBULAR PRODUCTS

	Heme
1	YOUNGQUIST BROS.
ſ	Address
	2401 N POWERLINE RD,
l	BLD #1-RM #116
ſ	City & State
1	POMPANO BEACH, FL 33069

Date 11-28-89

PHONE: JIMMY

Customer's Order No.
23H010-049720

LBF Invales No.

Meterial 34" OD X .375

A-139 CR B

		Wi/Fi.	Min.						HALYSIS	HALYSIS (%)		
Heat No.	51 z e 0. D.	Wali Thick.	Hydro. Test Press. P.5.1.	Yield Strength F.S.I. Point	Tensile Strangth P.S.1.	Elana; in R	C	Mn	P	Ę	5	
88070	34"	,375	-	43,500	71,100	35.4	22	41	013	022		
88072	34"	.375		44,000	67,900	36.0	20	43	010	017		
88073	34"	.375		42,400	72,900	36.5	21	4.4	011	016		
88076	. 34"	.375		44,700	72,000	11.0	20	39	010	017		
B00910	34"	.375		48,100	70,600	32.4	20	43	025	010		
81790	34"	.375		41,800	62,700	40.0	21	4 6	008	009		
85605	34"	. 375		40,500	61,300	36.5	22	48	010	014		
85604	34"	.375		45,800	72,000	31.0	21	45	009	011		
				,			,					
		-										

The undersigned, in behalf of The L. B. Foster Company, hereby cortilles that the above materials have been inspected and tested in accordance with the methods prescribed in the applicable specifications and the results of such inspection and tests shown above. In determining properties or characteristics for which no methods of inspecting or testing are prescribed by sold specifications, the standard mill inspection and testing properties of The L. B. Foster Company have been applied. Unless it appears otherwise in the results of such inspection and tests shown above, the undersigned agent of The L. B. Foster Company believes that said materials conform to said specifications.

•	(JE1/20 1/14 1/24
Subscribed and swom	10 before ma SE ERT C. STEVER COUNTY, 194 No. 19 SE ERT C. STEVER BAN IN. 194
	A LIME LIMES
Kobert 9	a Cevendor in
Hotory Public	" Agrae outer

Form No. - 5W 4-49

Otis R. KESSLER. PLANT MANAGER
Agents' Name & Title

L. B. FOSTER CO

COMPANY

(VOV

T SNSP.

METALLURGICAL TEST REPORT

THIS IS TO CERTIFY THAT THE Q. JOB. CONTRACT NO. P.O. DATE PURCHASE OHARR NO. PRUDUCT DESCRIBED MERSIN WAS 144-714 MILL ORDER NO. NACIOE NO SHIPPERS NO. MESO., SAMPLED, TESTED, AND! USS FUBLIER PRODUCTS DR INSPO. IN ACCORDANCE WITH DR64925 VEHICLE THE SPECIFICATION AND FULT 12/04/89 FILLS REQUIREMENTS IN SUCH 3 RESPECTS. L & FOSTER CO L + FUSTER CO APPROVED BY THE OFFICE OF: TUBULAR PRODUCTS DIV STUBULAR PRODUCTS DIV D.S. DABKONSKI MGR. MET. & 415 HOLIDAY DRIVE 1415 HOLIDAY DRIVE S.A. USS TUBBLAR PRODUCTS. PITTSBURGH PA 15220 PITTSBURGH PA 15220 12/05/89

YIELO STR. TENSILE STR. GAGE ELONG. % MATERIAL DESCRIPTION HEATI BEY WIDTH FLAT MATL. HYDRO ITEM NO. M 2" LOT NO. PSI SPECIFICATION & GRADE PSI 253 BIZE WALL 75900 40. B 1 1/2 OK .500 ASTMAS388AGREASMESAS3GR886 SMLS 45800 N88352 1090 20 24 1 ED1984ADDASTMA1068BAGRBASMESA1D6GRB86ED1988ADDAP15LGRB37TH ED 5/88 .SDD JASTMAS388AGREASMESAS3GRB86 SMLS N88354 41.0 1 1/2 42600 74400 109U 0.0 24 1 ED1988ADDASTMA10688AGRSASMESA106GR886ED1988ADDAPI5LGR837TH ED 5/88 • • .500 ASTMASSBBAGREASSMESASSGRBBB SMLS N88357 1093 42000 73800 40.0 1 1/2 QK. 24 OΒ ED1988ADD45TMA10688AGR84SMES4106GR886ED1988ADD4P15LGR837TM 7380C 1 1/2 ኃአ BEESBU IZTMA5388RGRBASMESA53GRBBG SMLS N8835B 4390U 54-3 1090 1 24 ED1988ADDASTMA10638AGRBASHESA106GRB86EC1988ADDAPISLGRB37TH ED 5/88

HEAT NO. MO AL. v ITEM NO. TO. MANT 2231** 326 -2 6 C OZ. 106 .02 * HEAT 25 67 UTO. N88352 009 205 :2 **5** G N88352 iPRODI 25 -66 **LESS THAN .U1 02 N88354 REAT 26 :64 011 213 .21U :U2 :06|:02 ** 220 57 011 017 N88354 PRUD 27 **LESS THAN .UI HEAT ZS 02 :0 5 DO D2 14 + **U39** ១៤៩ :23C N88357 ១០១ :230 N88357 PR001 25 26 1303 07 **:**02 ** **LESS THAN .OT HEAT 25 66 010 011 230 เออ N88358 **37 010 01**2 :230 M88358 PROD 24 END OF DATA THUS

LBF Involve He-

L. S. FOSTER COMPANY P. O. BOX 7796 GARDEN CITY, GA 31418-7796

STANDARD CERTIFIED YEST REPORT TUBULAR PRODUCTS

Kome		
YOUNGO	JIST BRO	<u> </u>
Address 1.5000)	PINE RID	GE ROAD
15000		
City & State		

PHONE-JIMKY Customer's Order No. 23R010-049720

A-139 GR B

." 6 2	н х .3	75		Grede -	9 GR						
		Min	MECHANIC	AL PROPERTIE	5	CHEMICAL ANALYSIS (%)					
51== 0.0.	Wi/Fi. Woll Thick.	Hydro. Yest Pres. - P.S.I.	Yield Strength P.S.I. Peint	Tensile Strongth P.S.I.	Elong;	c	Mn		5	\$1 	
1611	.375		58,950	77,700	30	, 22	.76	.008	.020		
24"	.375		40,400	74,200	34	.24	.86	008	,027		
									·		
	51:= 0.0.	51 == W1/F1. 0.D. Woll Thick.	Size O.D. Well Pres. P.S.i.	Size W:/Ft. Min. MECHANIC. O.D. Woll Pres. Yield Strength P.S.i. Point 161 .375 58,900	Size O.D. Woll Toes Pres. P.S.i. Point Tonsile 161 .375 St. 58,900 77,700	Size O.D. Well Pres. P.S.I. Peint Tensile Strength P.S.I. Peint To.S.I. P.S.I.	Size	Size Wi/Fi. Min. Hydro. Yield Strength F.S.I. Peint F.S.I. Peint Strength F.S.I. F.S.I. Peint Strength F.S.I. F.S.I. Peint F.S.I. F.S.	Size Wi/Fi Min. MECHANICAL PROPERTIES CHEMICAL A	Siew Wei/Fe, Min. MECHANICAL PROPERTIES CHEMICAL ANALYSIS	

The undersigned, in behalf of The L. B. Foxer Company, hereby certifies that the above materials have been inspected and tested in accordance with the methods prescribed in the applicable specifications and the results of such inspection and tests shown above. In determining properties er characteristics for which no methods of inspecting or testing are prescribed by sold specifications, the atondard mill inspection and testing or considerationed for which no memory or inspecting or reasing ore prescribed by sold operations, and atomizer ones inspection and tests shows above, practices of The L. B. Poster Company have been applied. Unless it appears otherwise in the results of such inspection and tests shows above, the undersigned agent of The L. B. Foster Company believes that and materials conform to said specifications.

Subscribed and swam to policy for Hotory Public

OTIS R KESSLER, PLANT MANAGER

Agents' Name & Title

L.B. FOSTER, CO.

COMPANY

TUBULAR PRODUCTS

METALLURGICAL TEST REPORT

PURCHASE ORDER NO. EQ., JOB. CONTRACT NO. P.O. DATÉ 19698 01/27/89 INVOICE NO. FAIRFIELD WORKS SHIPPERS NO. MILL ORDER NO. P. O. BOX 599 P 13847 488-40546 DR47685 FAIRFIELD, AL 35064 VEHICLE NU99525 02/22/89 VALLEY STEEL PRODUCTS CO VALLEY STEEL PRODUCTS CO

SPARTA ILL

THIS IS TO CERTIFY THAT THE PRODUCT DESCRIBED HEREIN WA MFGD., SAMPLED, TESTED, AND OR INSPO. IN ACCORDANCE WIT THE SPECIFICATION AND FUL-FILLS REQUIREMENTS IN SUCH RESPECTS:

PREPARED BY THE OFFICE OF: MGR C.A.

02/24/89

VALUEY CITEL DOCUMENTS

F.W. MOORE

SPEC.

INSP.

P 0 B0X 503

ST LOUIS MO 63466

PSAA PIPE CARBON SMLS STO PIPE API SL/ASTM A53-878/ASTM A406-87A GRADE B TRIPLE STENCIL BLK REG MILL COAT PE SC SPEC REV NAME 37TH EDITION DTD 5/88 SPEC DATE 87/87

INSP 04 MILL

CERTIFIED TVR

HEAVY WALT	DEPT.
LMM	3/1/89
By C	Date

	المائلة المائلية :	אלו עו			<u> </u>					<u>**</u>	<u>.</u>	l 🏪 🗀	
ITEM NO.	· 5	MA'	TERIAL DESCRIPTION		MATL.	HEAT!	MIN, HYDRO	YIELD STR.	TENSILE STR.	ELONG. %	GAGE WIDTH	FLAT	BEN
	SIZE	WALL	SPECIFICATION	N & GRADE		LOT NO.	PSI	PSI	PSI	IN 2"	IN.	FLA	BEN
004	6.6250	0.5620	}		SMES	ł .	4450	49,600	80,800	40.9	1.5	OK	
ŀ						X83745	4450	49,200	78,500	43.6	1.5	OK	
1							END OF	DATA		1			
			MEETS THE REG					87A		1			
			ASME SAS3 - 4		106 -	1986 A8	37 & ·					 	
İ			API SL DTD MA	Y 31, 1988									
İ			LONGITUDINAL	STRIP TENSIL	E SPE	CIMENS (NLESS A	OTED					
		ł	YIELD STRENGT	H @ .005 EX1			1						
							·						
1													
							İ						
1													
}													
									ļ				
ITEM NO.	HEAT NO.	TYPE C	MN P S	SI CU NI C	A MO	SN AL	N V	B TI	CB CO	 		<u></u>	
004	086517	HEAT 25	96 006 009 2	2 01 01	03 04	. 	:00	:	: :	-			
		PROD 27			02:04		1 1:00	[
		PROD 27	97 007 008 2		02 04	1 1	00						
	X83745	HEAT 25	94 012 008 2		03:04	1 1 *	:00						
		PROD 25	97 011 009 2		03:04	1 1 -	00	:			•		
<u>}</u>		PROD 24	97 011 009 2		03:01	1 '	1 E :	;		ł			
}			END OF DATA		[2] [2]	' :	00						
· ,							:	:	: :				
					: :			:					
أد مساد ا	10 20 0	 	<u> </u>		1);	, 	ــــــــــــــــــــــــــــــــــــــ	<u> </u>	نـــنــ	<u> </u>			
, · ·		、当ばらNS FC	OR FLEMENTS ARE DE	ac atery by the like	-7 58 87	MAN OF THIS	Contract Contract	1 - OH 1500	CALL DESIGNAT		AGE /	OF.	1

n' 1 ararez oreri palbalarian 01.000.0798 (REV. 7-78)

IUBULAR PRODUCTS

METALLURGICAL TEST REPORT

P.O. DATE PURCHASE ORDER NO. 17566

SHIPPERS NO. P 18250

MILL ORDER NO. DR26706

INVOICE NO. 488-22833

KENSLE NU99923

05/16/88

М

T

0

NALLEY STEEL PRODUCTS CO P 0 BOX 503 ST LOUIS MO 63466

REO., JOB. CONTRACT NO.

FAIRFIELD WORKS

FAIRFIELD, AL 35064

P. O. 80X 599

VALLEY STEEL PRODUCTS CO

SPARTA ILL

THIS IS TO CERTIFY THAT THE PRODUCT DESCRIBED HEREIN WA MFGD., SAMPLED, TESTED, AND OR INSPD. IN ACCORDANCE WIT THE SPECIFICATION AND FUL-FILLS REQUIREMENTS IN SUCH RESPECTS.

PREPARED BY THE OFFICE OF: F.W. MOORE MGR PA.

DATE _ 05/26/88

SPEC. PSAA PIPE CARBON SMLS STD PIPE API SEZASIM ASSZASIM A106 GRADE B TRIPLE SEE PRIOR PAGE FOR FULL SPEC INFORMATION INŠP. VALLEY STEEL PRODUCTS HEAVY WALL DEPT

INSP 01 MILL CERTIFIED T/R

ITEM NO.		MATI	ERIAL DESCRIPTION		HEAT/	MIN.	YIELD STR.	TENSILE STR.			· · · · · ·		
	SIZE	WALL	SPECIFIC/	ATION & GRADE	MATL	LOT NO.	HYDRO PSI	PSI	PSI	ELONG. %	GAGE WIDTH	FLAT	BEI
904	ŭ.6250	0.5620			SMLS	A61688	4450 05SEC	47,700	78,700	40.6	1.5	UK	<u> </u>
					İ	B65913	4450 05SEC	48,800	76.600	43.1	4.5	вк	
						865914	4450 055EC	47,000	77,300	41.4	1.5	ок	
			MEETS THE F	REQUIREMENTS	OF ASTM	A53-84A	END DF	DATA -85,					
			ASME SAS3 8 LONGITUDINA	& SA 106 & AP AL STRIP TEN	I SL DTD SILE SPE	MAY 31	1985	<u> </u>					
			YIELD STREN	IGTH @ .005	EXT.	_							į
ITEM NO.	HEAT NO.	TYPE C	MN P S	SI CU NI	I CB I MO	Ten Lau					_		i

ITEM NO.	HEAT NO.	TYPE	E C	MN	P	8	SI	cu	NI	CR	МО	SN	AL	N	1,	A		-		 L	<u></u>	Щ.
G04	865910 865914	PRO PRO HEA PRO PRO		89 89 94 91 91	007 009 003 009	010 009	4 % % % N.N.N.N.	02 02 05 05 05 05 05 05	D2 D2 D3 D4 D4 D4	ນຣ ນຣ ນຣ ນຣ	02 02 02 03		2	7			TI	СВ	со			
- 17 50 1	(710 <u>2</u> -	PRO	1 *	91	013	007 007	24	02 02	53 53	05 05	02 02	n-5	7							PAGE 7	r UF	-

APPENDIX G

Cement Record

INJECTION WELL #1

CEMENT RECORDS OF BROWARD COUNTY NORTH DISTRICT REGIONAL WASTEWATER TREATMENT PLANT INJECTION WELL 1 POMPANO BEACH, FLORIDA

Casing Size (inches)	Stage No.	Cemented Interval (feet)	Cement Type & Additives	Volume Pumped (cubic feet)			
50	I	21 - 160	Both ASTM Neat & 12% Gel	1016			
	II	0 - 21	12% Ge1	67			
42	I	256 - 1000	Both ASTM Neat & 12% Gel	1909			
	II	0 - 256	12% Gel	898			
34	I	1379 - 1950	Both ASTM Neat & 12% Gel	1909			
	II	1103 - 1379	12% Gel	775			
	III	970 - 1103	12% Gel	775			
	ΙV	690 - 970	12% Gel	775			
	٧	470 – 690	12% Gel	674			
	VI	235 - 470	12% Gel	702			
	VII	0 - 248	12% Gel	718			
24	I	2667 - 2990	Both ASTM Neat & 12 % Gel	1898			
	II	2454 - 2667	12% Gel	1123			
	III	2280 - 2454	12% Gel	1123			
	IV	2122 - 2280	12% Gel	1123			
	V	2065 - 2122	12% Gel	561			
	VI	2042 - 2065	12% Gel	561			
	VII	1976 - 2042	12% Gel	561			
	VIII	1916 - 1976	12% Gel	561			
	IX	1449 - 1916	12% Gel	1460			
	X	849 - 1449	12% Gel	1741			
	XI	240 - 849	12% Gel	1741			
	XII	0 - 240	12% Gel	657			

INJECTION WELL #2

CEMENT RECORDS OF BROWARD COUNTY NORTH DISTRICT REGIONAL WASTEWATER TREATMENT PLANT INJECTION WELL 2 POMPANO BEACH, FLORIDA

Casing Size (inches)	Stage No.	Cemented Interval (feet)	Cement Type & Additives	Volume Pumped (cubic feet)
50	I	24 - 160	Both ASTM Neat & 12% Gel	853
	II	0 - 24	12% Gel	90
42	I	508 - 1000	Both ASTM Neat & 12% Gel	1780
	II	100 - 508	12% Gel	842
	III	4 - 100	12% Ge1	281
34	I	1510 - 1950	Both ASTM Neat & 12% Gel	1516
	II	1284 - 1510	12% Gel	628
	III	1149 - 1284	12% Gel	786
	IV	966 - 1149	12% Gel	702
	٧	723 - 966	12% Gel	842
	VI	449 - 723	12% Gel	730
	VII	210 - 449	12% Gel	730
	VIII	0 - 210	12% Gel	623
24	I	2658 - 2990	Both ASTM Neat & 12 % Gel	2105
	II	2380 - 2658	12% Gel	1123
	III	2170 - 2380	12% Gel	1101
	IV	2033 - 2170	12% Gel	842
	٧	2025 - 2033	12% Gel	562
	VI	1975 - 2025	12% Gel	281
	VII	1887 - 1975	12% Gel	421
	VIII	1404 - 1887	12% Gel	1471
	IX	827 - 1404	12% Gel	1797
	X	230 - 827	12% Gel	1752
	ΧI	0 - 230	12% Gel	618

DEEP MONITOR WELL #1

CEMENT RECORDS OF BROWARD COUNTY NORTH DISTRICT REGIONAL WASTEWATER TREATMENT PLANT MONITOR WELL 1 POMPANO BEACH, FLORIDA

Casing Size (inches)	Stage <u>No.</u>	Cemented Interval (feet)	Cement Type & Additives	Volume Pumped (cubic feet)
24	I	0 - 160	Both ASTM Neat & 12% Gel	309
16	I	360 - 1000	Both ASTM Neat & 12% Gel	814
	II	135 - 360	12% Gel	270
	III	0 - 135	12% Gel	152
6-5/8	I	2004 - 2009	Both ASTM Neat & 6% Gel	505
	II	1940 - 2004	Neat	337
	III	1906 - 1940	Both ASTM Neat & 12% Gel	112
	IV	1749 - 1906	Neat	174
	V	1595 - 1749	6% Gel	202
	VI	1424 - 1595	6% Gel	208
	VII	1228 - 1424	6% Gel	225
	VIII	1128 - 1228	6% Gel	129