

REVIEW OF OPERATIONAL TESTING CYCLES 4, 5, AND 6 FOR THE LEE COUNTY UTILITIES ASR (WELLS 1-5), CORKSCREW WATER TREATMENT PLANT LEE COUNTY, FL

February, 2007

Prepared by:

Water Resource Solutions 428 Pine Island Road, SW Cape Coral, Florida 33991

LIST OF APPENDICES

- APPENDIX A COPY OF CURRENT CONSTRUCTION PERMIT FOR CORKSCREW WELLS ASR-2 THROUGH ASR-5
- APPENDIX B COPY OF CONSTRUCTION PERMIT RENEWAL APPLICATION FOR CORKSCREW WELLS ASR-2 THROUGH ASR-5
- APPENDIX C DAILY INJECTION AND RECOVERY RATE AND VOLUME DATA FOR CYCLE 4
- APPENDIX D DAILY AND WEEKLY INJECTION AND RECOVERY WATER QUALITY DATA FOR CYCLE 4
- APPENDIX E DAILY WATER LEVEL DATA FOR THE STORAGE ZONE OBSERVATION WELLS FOR CYCLE 4
- APPENDIX F WEEKLY WATER QUALITY DATA FOR THE STORAGE ZONE OBSERVATION WELLS FOR CYCLE 4
- APPENDIX G DAILY INJECTION AND RECOVERY RATE AND VOLUME DATA FOR CYCLE 5
- APPENDIX H DAILY AND WEEKLY INJECTION AND RECOVERY WATER QUALITY DATA FOR CYCLE 5
- APPENDIX I DAILY WATER LEVEL DATA FOR THE STORAGE ZONE OBSERVATION WELLS FOR CYCLE 5
- APPENDIX J WEEKLY WATER QUALITY DATA FOR THE STORAGE ZONE OBSERVATION WELLS FOR CYCLE 5
- APPENDIX K DAILY INJECTION RATE AND VOLUME DATA FOR CYCLE 6
- APPENDIX L DAILY AND WEEKLY INJECTION WATER QUALITY DATA FOR CYCLE 6
- APPENDIX M DAILY WATER LEVEL DATA FOR THE STORAGE ZONE OBSERVATION WELLS FOR CYCLE 6
- APPENDIX N WEEKLY WATER QUALITY DATA FOR THE STORAGE ZONE OBSERVATION WELLS FOR CYCLE 6

APPENDIX A

COPY OF CURRENT CONSTRUCTION PERMIT FOR CORKSCREW WELLS ASR-2 THROUGH ASR-5

Department of Environmental Protection

Jeb Bush Governor

BY ELECTRONIC MAIL:

South District P.O. Box 2549 Fort Myers, Florida 33902-2549

Colleen Castille Secretary

May 5, 2005

In the Matter of an Application for Permit by:

Mr. Rick Diaz, P.E., Director of Utilities Lee County Utilities 1500 Monroe Street, 3rd Floor Fort Myers, Florida 33901 <u>diazr@leegov.com</u> Lee County- UIC FDEP File Nos. 142222-007-UC, 142222-008-UC, 142222-009-UC, 142222-010-UC Corkscrew WTP Potable Water Class V Injection Wells ASR-2 through ASR-5 Aquifer Storage and Recovery (ASR)

NOTICE OF PERMIT ISSUANCE

Enclosed are Permit Numbers 142222-007-UC through 142222-010-UC to renew construction permits for four (4) Class V Group Seven Aquifer Storage and Recovery (ASR) injection wells and associated monitor wells, issued pursuant to Section(s) 403.087, Florida Statutes.

Any party to this Order (permit) has the right to seek judicial review of the permit pursuant to Section 120.68, Florida Statutes, by the filing of a Notice of Appeal pursuant to Rule 9.110, Florida Rules of Appellate Procedure, with the Clerk of the Department in the Office of General Counsel, 3900 Commonwealth Boulevard, Mail Station 35, Tallahassee, Florida 32399-3000; and by filing a copy of the Notice of appeal accompanied by the applicable filing fees with the appropriate District Court of Appeal. The Notice of Appeal must be filed within 30 days from the date this Notice is filed with the Clerk of the Department.

Executed in Fort Myers, Florida.

STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION

Jon M. Iglehart Acting Director of District Management

CERTIFICATE OF SERVICE

The undersigned duly designated deputy clerk hereby certifies that this PERMIT and all copies were mailed before the close of business on May 5, 2005 to the listed persons.

Clerk Stamp

FILING AND ACKNOWLEDGMENT

FILED, on this date, pursuant to Section 120.52, Florida Statutes, with the designated Department Clerk, receipt of which is hereby acknowledged.

Clerk

Date

JMI/JBM/rjl

Enclosure

Copies furnished to:

ŧ

Nancy Marsh <u>marsh.nancy@epamail.epa.gov</u> Steve Anderson <u>sanderso@sfwmd.gov</u> Joe Haberfeld joe.haberfeld@dep.state.fl.us Ron Reese <u>rsreese@usgs.gov</u> Lloyd E. Horvath, P.E. <u>lhorvath@wrsolutions.com</u> Gary Maier <u>gary_maier@doh.state.fl.us</u>

Department of Environmental Protection

Jeb Bush Governor South District P.O. Box 2549 Fort Myers, Florida 33902-2549

Colleen Castille Secretary

BY ELECTRONIC MAIL:

PERMIT

PERMITTEE:

Lee County Utilities 1500 Monroe Street, 3rd Floor Fort Myers, FL 33901 Lee County - UIC/PW

Permit File Number: 142222-007-UC, 142222-008-UC, 142222-009-UC, 142222-010-UC Date of Issue: May 5, 2005 Expiration Date: May 4, 2007 County: Lee Latitude: 26° 27' 42" N Longitude: 81° 42' 15" W Section/Town/Range: 22/46S/26E Project: Corkscrew WTP Potable Water Class V ASR Injection Wells ASR-2 through ASR-5

This permit is issued under the provisions of Chapter 403 of the Florida Statutes (F.S.) and rules 62-4, 62-520, 62-528, and 62-550 of the Florida Administrative Code. The above named permittee is hereby authorized to perform the work or operate the facility shown on the application and approved drawing(s), plans, and other documents, attached hereto or on file with the Department and made a part hereof and specifically described as follows:

Renew construction permits for four (4) Class V Group Seven Aquifer Storage and Recovery (ASR) injection wells with five (5) existing storage zone (Mid-Hawthorn Zone I) monitoring wells, one (1) existing Mid-Hawthorn Zone II monitor well, one (1) existing Upper Hawthorn (Sandstone) monitor well, and an existing on-site ASR-1 well under separate permit. The purpose is to store, in the Mid-Hawthorn Zone I aquifer, potable water from the Corkscrew WTP public water supply to be recovered during periods of increased seasonal demands. Each of the ASR wells is designed to inject a maximum of 450 gpm (0.65 million gallons per day). This project is depicted on the Lee County Utilities application and associated documents submitted in support of this project. The location for this project is 16101 Alico Road, Fort Myers, Lee County, Florida.

Subject to Specific Conditions 1-13.

Lee County Utilities

SPECIFIC CONDITIONS:

Permit/Certification Nos: 142222-007-UC through 142222-010-UC Date of Issue: May 5, 2005 Date of Expiration: May 4, 2007

1. General Criteria:

a. The terms, conditions, requirements, limitations and restrictions set forth in this permit are "permit conditions" and are binding and enforceable pursuant to section 403.141, F.S.

b. This permit is valid only for the specific processes and operations applied for and indicated in the approved drawings or exhibits. Any unauthorized deviation from the approved drawings, exhibits, specifications, or conditions of this permit may constitute grounds for revocation and enforcement action.

c. As provided in subsection 403.087(7), F.S., the issuance of this permit does not convey any vested rights or exclusive privileges. Neither does it authorize any injury to public or private property or any invasion of personal rights, nor infringement of federal, state, or local laws or regulations. This permit is not a waiver of or approval of any other Department permit that may be required for other aspects of the total project which are not addressed in this permit.

d. This permit conveys no title to land, water, does not constitute State recognition or acknowledgment of title, and does not constitute authority for the use of submerged lands unless herein provided and the necessary title or leasehold interests have been obtained from the State. Only the Trustees of the Internal Improvement Trust Fund may express State opinion as to title.

e. This permit does not relieve the permittee from liability for harm to human health or welfare, animal, or plant life, or property caused by the construction or operation of this permitted source, or from penalties therefrom; nor does it allow the permittee to cause pollution in contravention of Florida Statutes and Department rules, unless specifically authorized by an order from the Department.

f. The permittee shall properly operate and maintain the facility and systems of treatment and control (and related appurtenances) that are installed and used by the permittee to achieve compliance with the conditions of this permit, or are required by Department rules. This provision includes the operation of backup or auxiliary facilities or similar systems when necessary to achieve compliance with the conditions of the permit and when required by Department rules.

g. The permittee, by accepting this permit, specifically agrees to allow authorized Department personnel, upon presentation of credentials or other documents as may be required by law and at reasonable times, access to the premises where the permitted activity is located or conducted to:

(1) Have access to and copy any records that must be kept under conditions of this permit;

(2) Inspect the facility, equipment, practices, or operations regulated or required under this permit; and

(3) Sample or monitor any substances or parameters at any location reasonably necessary to assure compliance with this permit or Department rules.

(4) Reasonable time will depend on the nature of the concern being investigated.

h. If, for any reason, the permittee does not comply with or will be unable to comply with any condition or limitation specified in this permit, the permittee should immediately provide the Department with the following information:

(1) A description of and cause of noncompliance; and

(2) The period of noncompliance, including dates and times; or, if not corrected the anticipated time the noncompliance is expected to continue, and steps being taken to reduce, eliminate, and prevent the recurrence of the

Department of Environmental Protection

Jeb Bush Governor South District P.O. Box 2549 Fort Myers, Florida 33902-2549

Colleen Castille Secretary

BY ELECTRONIC MAIL:

PERMIT

PERMITTEE:

Lee County Utilities 1500 Monroe Street, 3rd Floor Fort Myers, FL 33901 Lee County - UIC/PW

Permit File Number: 142222-007-UC, 142222-008-UC, 142222-009-UC, 142222-010-UC Date of Issue: May 5, 2005 Expiration Date: May 4, 2007 County: Lee Latitude: 26° 27' 42" N Longitude: 81° 42' 15" W Section/Town/Range: 22/46S/26E Project: Corkscrew WTP Potable Water Class V ASR Injection Wells ASR-2 through ASR-5

This permit is issued under the provisions of Chapter 403 of the Florida Statutes (F.S.) and rules 62-4, 62-520, 62-528, and 62-550 of the Florida Administrative Code. The above named permittee is hereby authorized to perform the work or operate the facility shown on the application and approved drawing(s), plans, and other documents, attached hereto or on file with the Department and made a part hereof and specifically described as follows:

Renew construction permits for four (4) Class V Group Seven Aquifer Storage and Recovery (ASR) injection wells with five (5) existing storage zone (Mid-Hawthorn Zone I) monitoring wells, one (1) existing Mid-Hawthorn Zone II monitor well, one (1) existing Upper Hawthorn (Sandstone) monitor well, and an existing on-site ASR-1 well under separate permit. The purpose is to store, in the Mid-Hawthorn Zone I aquifer, potable water from the Corkscrew WTP public water supply to be recovered during periods of increased seasonal demands. Each of the ASR wells is designed to inject a maximum of 450 gpm (0.65 million gallons per day). This project is depicted on the Lee County Utilities application and associated documents submitted in support of this project. The location for this project is 16101 Alico Road, Fort Myers, Lee County, Florida.

Subject to Specific Conditions 1-13.

PERMITTEE

Lee County Utilities

SPECIFIC CONDITIONS:

Permit/Certification Nos: 142222-007-UC through 142222-010-UC Date of Issue: May 5, 2005 Date of Expiration: May 4, 2007

1. General Criteria:

a. The terms, conditions, requirements, limitations and restrictions set forth in this permit are "permit conditions" and are binding and enforceable pursuant to section 403.141, F.S.

b. This permit is valid only for the specific processes and operations applied for and indicated in the approved drawings or exhibits. Any unauthorized deviation from the approved drawings, exhibits, specifications, or conditions of this permit may constitute grounds for revocation and enforcement action.

c. As provided in subsection 403.087(7), F.S., the issuance of this permit does not convey any vested rights or exclusive privileges. Neither does it authorize any injury to public or private property or any invasion of personal rights, nor infringement of federal, state, or local laws or regulations. This permit is not a waiver of or approval of any other Department permit that may be required for other aspects of the total project which are not addressed in this permit.

d. This permit conveys no title to land, water, does not constitute State recognition or acknowledgment of title, and does not constitute authority for the use of submerged lands unless herein provided and the necessary title or leasehold interests have been obtained from the State. Only the Trustees of the Internal Improvement Trust Fund may express State opinion as to title.

e. This permit does not relieve the permittee from liability for harm to human health or welfare, animal, or plant life, or property caused by the construction or operation of this permitted source, or from penalties therefrom; nor does it allow the permittee to cause pollution in contravention of Florida Statutes and Department rules, unless specifically authorized by an order from the Department.

f. The permittee shall properly operate and maintain the facility and systems of treatment and control (and related appurtenances) that are installed and used by the permittee to achieve compliance with the conditions of this permit, or are required by Department rules. This provision includes the operation of backup or auxiliary facilities or similar systems when necessary to achieve compliance with the conditions of the permit and when required by Department rules.

g. The permittee, by accepting this permit, specifically agrees to allow authorized Department personnel, upon presentation of credentials or other documents as may be required by law and at reasonable times, access to the premises where the permitted activity is located or conducted to:

(1) Have access to and copy any records that must be kept under conditions of this permit;

(2) Inspect the facility, equipment, practices, or operations regulated or required under this permit; and

(3) Sample or monitor any substances or parameters at any location reasonably necessary to assure compliance with this permit or Department rules.

(4) Reasonable time will depend on the nature of the concern being investigated.

h. If, for any reason, the permittee does not comply with or will be unable to comply with any condition or limitation specified in this permit, the permittee should immediately provide the Department with the following information:

(1) A description of and cause of noncompliance; and

(2) The period of noncompliance, including dates and times; or, if not corrected the anticipated time the noncompliance is expected to continue, and steps being taken to reduce, eliminate, and prevent the recurrence of the

PERMITTEE

Lee County Utilities

SPECIFIC CONDITIONS:

Permit/Certification Nos: 142222-007-UC through 142222-010-UC Date of Issue: May 5, 2005 Date of Expiration: May 4, 2007

noncompliance. The permittee shall be responsible for any and all damages that may result and may be subject to enforcement action by the Department for penalties or for revocation of this permit.

i. In accepting this permit, the permittee understands and agrees that all records, notes, monitoring data and other information relating to the construction or operation of this permitted source which are submitted to the Department may be used by the Department as evidence in any enforcement case involving the permitted source arising under the Florida Statutes or Department rules, except where such use is proscribed by sections 403.111 and 403.73, F.S. Such evidence shall only be used to the extent it is consistent with the Florida Rules of Civil Procedure and appropriate evidentiary rules.

j. The permittee agrees to comply with changes in Department rules and Florida Statutes after a reasonable time for compliance; provided, however, the permittee does not waive any other rights granted by Florida Statutes or Department rules.

k. This permit is transferable only upon Department approval in accordance with rules 62-4.120 and 62-528.350, F.A.C. The permittee shall be liable for any non-compliance of the permitted activity until the transfer is approved by the Department.

1. This permit or a copy thereof shall be kept at the work site of the permitted activity.

m. The permittee shall comply with the following;

(1) Upon request, the permittee shall furnish all records and plans required under Department rules. During enforcement actions, the retention period for all records shall be extended automatically unless the Department determines that the records are no longer required.

(2) The permittee shall hold at the facility or other location designated by this permit records of all monitoring information (including calibration and maintenance records and all original strip chart recordings for continuous monitoring instrumentation) required by the permit, copies of all reports required by this permit, and records of all data used to complete the application for this permit. These materials shall be retained at least three years from the date of the sample, measurement, report, or application unless otherwise specified by Department rule.

- (3) Records of monitoring information shall include:
 - (a) the date, exact place, and time of sampling or measurements;
 - (b) the person responsible for performing the sampling or measurements;
 - (c) the dates analyses were performed;
 - (d) the person responsible for performing the analyses;
 - (e) the analytical techniques or methods used;
 - (f) the results of such analyses.

(4) The permittee shall furnish to the Department, within the time requested in writing, any information which the Department requests to determine whether cause exists for modifying, revoking and reissuing, or terminating this permit, or to determine compliance with this permit.

(5) If the permittee becomes aware that relevant facts were not submitted or were incorrect in the permit application or in any report to the Department, such facts or information shall be corrected promptly.

PERMITTEE , '

Lee County Utilities

SPECIFIC CONDITIONS:

Permit/Certification Nos: 142222-007-UC through 142222-010-UC Date of Issue: May 5, 2005 Date of Expiration: May 4, 2007

n. All applications, reports, or information required by the Department shall be certified as being true, accurate, and complete.

o. Reports of compliance or noncompliance with, or any progress reports on, requirements contained in any compliance schedule of this permit shall be submitted no later than 14 days following each scheduled date.

p. Any permit noncompliance constitutes a violation of the Safe Drinking Water Act and is grounds for enforcement action; for permit termination, revocation and reissuance, or modification; or for denial of a permit renewal application.

q. It shall not be a defense for a permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of this permit.

r. The permittee shall take all reasonable steps to minimize or correct any adverse impact on the environment resulting from noncompliance with this permit.

s. This permit may be modified, revoked and reissued, or terminated for cause, as provided in 40 C.F.R. sections 144.39(a), 144.40(a), and 144.41 (1998). The filing of a request by the permittee for a permit modification, revocation or reissuance, or termination, or a notification of planned changes or anticipated noncompliance, does not stay any permit condition.

t. The permittee shall retain all records of all monitoring information concerning the nature and composition of injected fluid until five years after completion of any plugging and abandonment procedures specified under rule 62-528.435, F.A.C. The permittee shall deliver the records to the Department office that issued the permit at the conclusion of the retention period unless the permittee elects to continue retention of the records.

u. All reports and other submittals required to comply with this permit shall be signed by a person authorized under rules 62-528.340(1) or (2), F.A.C. All reports shall contain the certification required in rule 62-528.340(4), F.A.C.

v. The permittee shall notify the Department as soon as possible of any planned physical alterations or additions to the permitted facility. In addition, prior approval is required for activities described in rule 62-528.410(1)(h).

w. The permittee shall give advance notice to the Department of any planned changes in the permitted facility or injection activity that may result in noncompliance with permit requirements.

x. The permittee shall report any noncompliance which may endanger health or the environment including:

(1) Any monitoring or other information which indicates that any contaminant may cause an endangerment to an underground source of drinking water; or

(2) Any noncompliance with a permit condition or malfunction of the injection system that may cause fluid migration into or between underground sources of drinking water.

(3) Any information shall be provided orally within 24 hours from the time the permittee becomes aware of the circumstances. A written submission shall also be provided within 5 days of the time the permittee becomes aware of the circumstances. The written submission shall contain a description of the noncompliance and its cause, the period of noncompliance, including exact dates and times, and if the noncompliance has not been corrected, the anticipated time it is expected to continue; and the steps taken or planned to reduce, eliminate, and prevent reoccurrence of the noncompliance.

PERMITTEE

Lee County Utilities

SPECIFIC CONDITIONS:

Permit/Certification Nos: 142222-007-UC through 142222-010-UC Date of Issue: May 5, 2005 Date of Expiration: May 4, 2007

y. Proper operation and maintenance includes effective performance, adequate funding, adequate operator staffing and training, and adequate laboratory and process controls, including appropriate quality assurance procedures.

z. No underground injection is allowed that causes or allows movement of fluid into an underground source of drinking water if such fluid movement may cause a violation of any primary drinking water standard or may otherwise adversely affect the health of persons.

2. <u>Signatories and Certification Requirements</u>. All reports and other submittals required to comply with this permit shall be signed by a person authorized under Rules 62-528.340(1) or (2), F.A.C.

In accordance with Rule 62-528.340(4), F.A.C., all reports shall contain the following certification:

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based upon my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

3. Drawings, plans, documents or specifications submitted by the Permittee, not attached hereto, but retained on file at the South Florida District Office, are made a part hereof. Any changes, except as provided elsewhere in this permit, must be approved by the Department before implementation.

4. The injection and monitor wells at the site shall be abandoned when posing a potential threat to the quality of the waters of the State. In the event a well must be plugged or abandoned, the permittee shall obtain a permit from the Department as required by Chapter 62-528, F.A.C. The permittee shall notify the Department and obtain approval prior to any well work or modification.

5. The permittee shall notify the Department in the event that any of the conditions of the permit cannot be met, including an emergency discharge, due to breakdown of equipment, power outages or damages by hazard of fires, wind or other causes in accordance with the following:

a. Notification shall be made in person, email, or by telephone within 24 hours of the event.

b. A written report shall be submitted within 5 days which describes the nature and cause of the breakdown or malfunction, the steps being taken to correct the problem and prevent its recurrence, emergency procedures in use pending correction of the problem and the time when the facility will again be operating in compliance with permit conditions.

6. The permittee shall retain the engineer of record or obtain the services of any professional engineer registered in the State of Florida for the inspection of the construction of this project. Upon completion the engineer shall inspect for conformity to construction permit applications and associated documents. The Department shall be notified immediately of any change of engineer.

7. Pumping fluids other than the potable water from the Corkscrew WTP public water supply system into the injection wells will constitute a violation of this permit and shall constitute cause for revocation.

Lee County Utilities

SPECIFIC CONDITIONS:

8. Operational Testing

a. Operational Testing Conditions - ASR Wells

Class V Injection (ASR) Wells

Well	Casing	Depth (bls)	Open
Number	Diameter (OD)	Cased/Total	Hole (bls)
ASR-2	12" PVC	337'/ 397'	337'- 397'
ASR-3	12" PVC	285'/347'	285'- 347'
ASR-4	12" PVC	310'/368'	310'- 368'
ASR-5	12" PVC	253'/291'	253'- 291'

Class V ASR Well under separate authorization

Well	Casing	Depth (bls)	Open
Number	Diameter (OD)	Cased/Total	Hole (bls)
ASR-1	12" PVC	328'/ 397'	328'- 397'

The injection well system shall be monitored in accordance with rule 62-528.615, F.A.C. The following injection well performance data shall be recorded and reported from the injection well instrumentation in the Monthly Operating Report as indicated below during each recharge and recovery cycle. Samples and measurements taken for the purpose of monitoring shall be representative of the monitored activity. During recharge activity, only one sample is necessary; whereas, during recovery activity, samples from each ASR well must be obtained. Injection well pressure and flow rates shall be recorded continuously.

	Reporting
Parameters	Frequency
Injection Pressure (p.s.i)	
Maximum Injection Pressure	Daily/Monthly
Minimum Injection Pressure	Daily/Monthly
Average Injection Pressure	Daily/Monthly
Average Flow Rate	Daily/Monthly
Maximum Flow Rate	Daily/Monthly
Total Volume recharged (Gals.)	Daily/Monthly
Total Volume recovered (Gals.)	Daily/Monthly
Net Storage Volume (MG)	Monthly *
Gross Alpha (pCi/L)	Monthly – Recovery only
Total Trihalomethanes (mg/L)	Weekly
Dissolved Oxygen (mg/L)	Weekly
Total Iron (mg/L)	Weekly
Arsenic (μ g/L)	Weekly **
Total Dissolved Solids (mg/L)	Weekly
Specific Conductivity (µmhos/cm)	Weekly
Total Alkalinity (mg/L)	Weekly
pH (std. units)	Weekly
Chloride (mg/L)	Weekly
Sulfate (mg/L)	Weekly
Field Temperature (°C)	Weekly

Permit/Certification Nos: 142222-007-UC through 142222-010-UC Date of Issue: May 5, 2005 Date of Expiration: May 4, 2007

PERMITTEE

Lee County Utilities

SPECIFIC CONDITIONS:

Monitor Wells

Permit/Certification Nos: 142222-007-UC through 142222-010-UC Date of Issue: May 5, 2005 Date of Expiration: May 4, 2007

Primary and Secondary Drinking Water Standards (Recharge Water Only) Annually ***

* Monthly net storage volume per ASR well and total ASR wellfield.

** Twice weekly during recovery.

*** Plus giardia lamblia, cryptosporidium (count and viability), dissolved oxygen, total iron, total uranium, E. coli, enteroccoci, and fecal coliform (dioxin and asbestos are excluded).

b. Operational Testing Conditions - Monitor Well System

Well <u>Number</u>	Casing <u>Dia. (OD)</u>	Depth (bls) <u>Cased/Total</u>	Group or Formation	Monitoring Interval (bls)
MW-A	8" PVC	340' / 402'	Mid-Hawthorn I	340'- 402'
MW-B	4" PVC	452'/504'	Mid-Hawthorn II	452'- 504'
MW-C	4" PVC	330'/400'	Mid-Hawthorn I	330'- 400'
MW-1	6"PVC	358'/410'	Mid-Hawthorn I	358'- 410'
MW-2	6" PVC	283'/354'	Mid-Hawthorn I	283'- 354'
MW-3	6" PVC	355'/411'	Mid-Hawthorn I	355'-411'
LM-926	4" PVC	155'/195'	Sandstone	155'- 195'

All monitor wells shall be monitored in accordance with rule 62-528.615, F.A.C. The following monitor well performance data shall be recorded and reported from the monitor well instrumentation in the Monthly Operating Report as indicated below during all recharge, storage and recovery cycles of the injection/production wells. Samples and measurements taken for the purpose of monitoring shall be representative of the monitored activity. During extended storage periods (greater than 30 days), the monitor well water quality parameters listed below may be sampled and analyzed monthly (wells C, 1, 2, and 3).

Monitor Wells C, 1, 2, 3 (Monitor Wells A and B report Water Level Or Pressure Only)

Descenteres	Reporting
Parameters	Frequency
Maximum Water Level or Pressure (p.s.i. or NVGD)	Daily/ Monthly
Minimum Water Level or Pressure (p.s.i. or NVGD)	Daily/ Monthly
Average Water Level or Pressure (p.s.i. or NVGD)	Daily/ Monthly
Gross Alpha (pCi/L)	Monthly
Total Trihalomethanes (mg/L)	Weekly
Dissolved Oxygen (mg/L)	Weekly
Total Iron (mg/L)	Weekly
Arsenic (μ g/L)	Weekly
Total Dissolved Solids (mg/L)	Weekly
Specific Conductivity (µmhos/cm)	Weekly
Total Alkalinity (mg/L)	Weekly
pH (std. units)	Weekly
Chloride (mg/L)	Weekly
Sulfate (mg/L)	Weekly
Field Temperature (°C)	Weekly

Lee County Utilities

SPECIFIC CONDITIONS:

Monitor Well LM-926

Total Dissolved Solids (mg/L)

Parameters	Reporting Frequency
Maximum Water Level or Pressure (p.s.i. or NVGD) Minimum Water Level or Pressure (p.s.i. or NVGD) Average Water Level or Pressure (p.s.i. or NVGD)	Daily/ Monthly
pH (std. units) Field Temperature (°C) Total Alkalinity (mg/L) Specific Conductivity (μmhos/cm)	Monthly Monthly Monthly Monthly

c. The permittee shall calibrate all pressure gauge(s), flow meter(s), chart recorder(s), and other related equipment associated with the injection well system on a semi-annual basis. The permittee shall maintain all monitoring equipment and shall ensure that the monitoring equipment is calibrated and in proper operating condition at all times. Laboratory equipment, methods, and quality control will follow EPA guidelines as expressed in Standard Methods for the Examination of Water and Wastewater. The pressure gauge(s), flow meter(s), and chart recorder(s) shall be calibrated using standard engineering methods.

d. If injection is to continue beyond the expiration date of this permit, the permittee shall apply for and obtain an operation permit or a permit extension up to the full five-year period. If necessary to complete the operational testing period, the permittee shall apply for renewal of the construction permit at least 60 days prior to the expiration date of this permit.

Monthly

e. The permittee shall submit monthly to the Department the results of all injection well and monitor well data required by this permit no later than the last day of the month immediately following the month of record. The results shall be sent to the Department of Environmental Protection, P.O. Box 2549, Fort Myers, Florida 33902-2549. A copy of this report shall also be sent to the Department of Environmental Protection, Underground Injection Control Program, MS 3530, 2600 Blair Stone Road, Tallahassee, Florida 32399-2400.

9. This project will be monitored by the Department with the assistance of the U.S. Environmental Protection Agency (USEPA), Region 4, and the Technical Advisory Committee (TAC) that consists of representatives of the following agencies:

Department of Environmental Protection - Fort Myers Department of Environmental Protection - Tallahassee U.S. Geological Survey - Miami South Florida Water Management District – West Palm Beach

10. The permittee shall provide copies of all construction-related correspondence relative to this permit to each member of the TAC and the USEPA. Such correspondence includes but is not limited to reports, schedules, analyses and geophysical logs required by the Department under the terms of this permit. The permittee is not required to provide specific correspondence to any TAC member who submits to the permittee a written request to be omitted as a recipient of specific correspondence.

Lee County Utilities

SPECIFIC CONDITIONS:

Permit/Certification Nos: 142222-007-UC through 142222-010-UC Date of Issue: May 5, 2005 Date of Expiration: May 4, 2007

11. The permittee is reminded of the necessity to comply with the pertinent regulations of any other regulatory agency, as well as any county, municipal, and federal regulations applicable to the project. These regulations may include, but are not limited to, those of the Federal Emergency Management Agency in implementing flood control measures. This permit should not be construed to imply compliance with the rules and regulations of other regulatory agencies.

12. The permittee shall be aware of and operate under General Conditions F.A.C. Rule 62-528.307(1)(a) through (x). General Conditions are binding upon the permittee and enforceable pursuant to Chapter 403 of the Florida Statutes.

13. A variance from requirements in Rule 62.630(3), F.A.C., to allow arsenic concentrations in ground water and recovered water to exceed the State's new drinking water standard of 10 ug/lL was issued under OGC File No. 04-1394. This variance is in effect through January 25, 2006.

Note: In the event of an emergency the permittee shall contact the Department by calling (800) 320-0519. During normal business hours, the permittee shall call (239) 332-6975.

Issued this 5^{μ} day of \underline{mny} 2005.

STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION

Jon M. Iglehart Acting Director of District Management

JMI/JBM/rjl

APPENDIX B

COPY OF CURRENT CONSTRUCTION PERMIT RENEWAL APPLICATION FOR CORKSCREW WELLS ASR-2 THROUGH ASR-5

Florida Department of Environmental Protection

Twin Towers Office Bldg., 2600 Blair Stone Road, Tallahassee, Florida 32399-2400 DEP Form No: 62-528.900(1) Form Title: Application to Construct/ Operate/Abandon Class I, III, or V Injection Well Systems Effective Date: DEP Application No.: (Filled in by DEP)

APPLICATION TO CONSTRUCT/OPERATE/ABANDON CLASS I, III, OR V INJECTION WELL SYSTEMS

Part I. Directions

- A. All applicable items must be completed in full in order to avoid delay in processing this application. Where attached sheets or other technical documentation are utilized in lieu of the blank space provided, indicate appropriate cross-reference in the space and provide copies to the Department in accordance with C. below. Where certain items do not appear applicable to the project, indicate N/A in the appropriate spaces.
- B. All information is to be typed or printed in ink.
- C. Four (4) copies of this application and four (4) copies of supporting information such as plans, reports, drawings and other documents shall be submitted to the appropriate District/Subdistrict office. An engineering report is also required to be submitted to support this application pursuant to the applicable sections of Rule 62-528, F.A.C. The attached list* shall be used to determine completeness of supporting data submitted or previously received. A check for the application fee in accordance with Rule 62-4.050, F.A.C., made payable to the Department shall accompany the application.
- D. For projects involving construction, this application is to be accompanied by four (4) sets of engineering drawings, specifications and design data as prepared by a Professional Engineer registered in Florida, where required by Chapter 471, Florida Statutes.
- E. Attach 8 1/2" x 11" USGS site location map indicating township, range and section and latitude/longitude for the project.

PART II. General Information

A. Applicant Name Mr. Douglas Meurer, P.E.	Title	Utility Director
Address 1500 Monroe Street, Third Floor		
City Ft. Myers State _FL		Zip339020000-
Telephone Number (239) 479-8779		
B. Project Status: 🗌 New 🛛 Existing		
Modification (specify) Extend construction per	rmit for	ASR-2 through -5.

*"Engineering and Hydrogeologic Data Required for Support of Application to Construct, Operate and Abandon Class I, III, or V Injection Wells"

C. Well Type: 🗌 Exploratory Well 🛛 🛛 Test/Injection Well

DEP Form No:		62-528 900(1)
Form Title:	Application	to Construct (
Ûp	erate/Abandon	Class I, III,
	or V Injection	n Well Systems
Effective Dat	e :	
DEP Applicati	on No.:	
	(F11	led in by DEP

....

D.	Type of Permit Application
	Class I Test/Injection Well Construction and Testing Permit
	🗌 Class I Well Operation Permit
	Class I Well Operation Repermitting
	🗌 Class I Well Plugging and Abandonment Permit
	Class III Well Construction/Operation/Plugging and Abandonment Permit
	Class I Exploratory Well Construction and testing Permit
	🔀 Class V Well Construction Permit
	Class V Well Operation Permit
	Class V Well Plugging and Abandonment Permit
	Monitor Well Only
Ε.	Facility Identification:
	Name _ Corkscrew Water Treatment Plant
	Facility Location: Street 16101 Alico Road
	City Ft. Myers County Lee
	SIC Code(s)
F.	Proposed facility located on Indian Lands: Yes 🗌 No 🕅
	Well Identification:
	Well No. 2-5 of 5 Wells (total #)
	Purpose (Proposed Use) Potable water ASR
	Well Location: Latitude: <u> </u>
Subpa	rt B. General Project Description:
H.	General Project Description: Describe the nature, extent and schedule injection well project. Refer to existing and/or future pollution

of the control facilities, expected improvement in performance of the facilities and state whether the project will result in full compliance with the requirements of Chapter 403, F.S., and all rules of the Department. Attach additional sheet(s) if necessary or cross-reference the engineering report.

See Supporting Report

CORKSCREW ASR PROJECT ASR WELL LOCATIONS

Latitude	Longitude
26° 27' 44.9"	81° 42' 15.2"
26° 27' 42.4"	81° 42' 15.5"
26° 28' 11.4"	81° 42' 29.0"
26° 28' 00.6"	81° 42' 23.5"
26° 28' 20.4"	81° 42' 33.5"
	26° 27' 44.9" 26° 27' 42.4" 26° 28' 11.4" 26° 28' 00.6"

DEP Form No: 62-528.903(1) Form Title: Application to Construct/ Operate/Abandon Class 1, III, or V Injection Well Systems Effective Date: DEP Application No.: (Filled in by DEP)

PART III. Statement by Applicant and Engineer

A. Applicant

يردد محموس

I, the owner/authorized representative* of Lee County Utilities , certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment. I understand that this certification also applies to all subsequent reports submitted pursuant to this permit. Where construction is involved, I agree to retain the design engineer, or other professional engineer registered in Florida, to provide inspection of construction in accordance with Rule 62-528.455(1)(c), F.A.C.

S Dogle, Alter	2-28.2007
Signed/	Date

MCCORER Douglas Muerer, P.E., Utility Director Name and Title (Please Type)

(239) 479-8779 Telephone Number

*Attach a Letter of Authorization.

B. Professional Engineer Registered in Florida

This is to certify that the engineering features of this injection well have been designed/examined by me and found to be in conformity with modern engineering principles applicable to the disposal of pollutants characterized in the permit application. There is reasonable assurance, in my professional judgement, that the well, when properly maintained and operated, will discharge the effluent in compliance with all applicable statutes of the State of Florida and the rules of the Department. It is also agreed that the undersigned will furnish the applicant a set of instructions for proper maintenance and operation of the well.

Signed

Lloyd E. Horvath, P.E., Vice President Name (Please Type)

(Please Affix Seal)

Entrix - Water Resource Solutions Company Name (Please Type)

<u>1388 Colonial Boulevard, Ft. Myers, FL 33907</u> Mailing Address(Please Type)

Florida Registration No. 25260 Date 02/28/07 Phone No. (239) 829-7003

DEP Form No: 62-528.903(1) Form Title: Application to Construct/ Operate/Abandon Class I. III, or V Injection Well Systems Effective Date: DEP Application No.: (Filled in by DEP)

ENGINEERING AND HYDROLOGIC DATA REQUIRED FOR SUPPORT OF APPLICATION TO CONSTRUCT, OPERATE, AND ABANDON CLASS I, III, OR V INJECTION WELL SYSTEMS

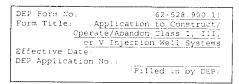
The following information shall be provided for each type of permit application.

A. CLASS I TEST/INJECTION WELL CONSTRUCTION AND TESTING PERMIT

- 1. A map showing the location of the proposed injection wells of well field area for which a permit is sought and the applicable area of review. Within the area of review, the map must show the number or name, and location of all producing wells, injection wells, abandoned wells, dry holes, surface bodies of water, springs, public water systems, mines (surface and subsurface), quarries, water wells and other pertinent surface features including residences and roads. The map should also show faults, if known or suspected. Only information of public record and pertinent information known to the applicant is required to be included on this map.
- 2. A tabulation of data on all wells within the area of review which penetrate into the proposed injection zone, confining zone, or proposed monitoring zone. Such data shall include a description of each well's type, construction, date drilled, location, depth, record of plugging and/or completion, and any additional information the Department may require.
- 3. Maps and cross sections indicating the general vertical and lateral limits within the area of review of all underground sources of drinking water, their position relative to the injection formation and the direction of water movement, where known, in each underground source of drinking water which may be affected by the proposed injection.
- 4. Maps and cross sections detailing the hydrology and geologic structures of the local area.
- 5. Generalized maps and cross sections illustrating the regional geologic setting.
- 6. Proposed operating data.
 - (a) Average and maximum daily rate and volume of the fluid to be injected;
 - (b) Average and maximum injection pressure; and,
 - (c) Source and an analysis of the chemical, physical, radiological and biological characteristics of injection fluids.
- 7. Proposed formation testing program to obtain an analysis of the chemical, physical and radiological characteristics of and other information on the injection zone.
- 8. Proposed stimulation program.
- 9. Proposed injection procedure.
- 10. Engineering drawings of the surface and subsurface construction details of the system.

DEP Form No: 62-528 900(1) Form Title: Application to Construct/ Operate/Abandon Class [, II], or V Injection Well Systems Effective Date: DEP Application No.: (Filled in by DEF)

- 11. Contingency plans to cope with all shut-ins or well failures, so as to protect the quality of the waters of the State as defined in Rule 62-3 and 62-520, F.A.C., including alternate or emergency discharge provisions.
- 12. Plans (including maps) and proposed monitoring data to be reported for meeting the monitoring requirements in Rule 62-528.425, F.A.C.
- 13. For wells within the area of review which penetrate the injection zone but are not properly completed or plugged, the corrective action proposed to be taken under Rule 62-528.300(5), F.A.C.
- 14. Construction procedures including a cementing and casing program, logging procedures, deviation checks, proposed methods for isolating drilling fluids from surficial aquifers, proposed blowout protection (if necessary), and a drilling, testing and coring program.
- 15. A certification that the applicant has ensured, through a performance bond or other appropriate means, the resources necessary to close, plug or abandon the well as required by Rule 62-528.435(9), F.A.C.


B. CLASS I INJECTION WELL OPERATION PERMIT

- 1. A report shall be submitted with each application for a Class I Well operating permit, which shall include, but not be limited to, the following information:
 - (a) Results of the information obtained under the construction permit described in A. CLASS I TEST/INJECTION WELL CONSTRUCTION AND TESTING PERMIT, including:
 - All available logging and testing program data and construction data on the well or well field;
 - (2) A satisfactory demonstration of mechanical integrity for all new wells pursuant to Rule 62-528.300(6), F.A.C;
 - (3) The actual operating data, including injection pressures versus pumping rates where feasible, or the anticipated maximum pressure and flow rate at which the permittee will operate, if approved by the Department;
 - (4) The actual injection procedure;
 - (5) The compatibility of injected waste with fluids in the injection zone and minerals in both the injection zone and the confining zone; and,
 - (6) The status of corrective action on defective wells in the area of review.
 - (b) Record drawings, based upon inspections by the engineer or persons under his direct supervision, with all deviations noted;
 - (c) Certification of completion submitted by the engineer of record;
 - (d) If requested by the Department, operation manual including emergency procedures;

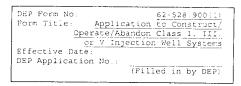
- (e) Proposed monitoring program and data to be submitted;
- (f) Proof that the existence of the well has been recorded on the surveyor's plan at the county courthouse; and,
- (g) Proposed plugging and abandonment plan pursuant to Rule 62-528.435(2), F.A.C.

C. CLASS I WELL OPERATION REPERMITTING

- 1. An updated map showing the location of the injection wells or well field area for which a permit is sought and the applicable area of review. Within the area of review, the map must show the number or name, and location of all producing wells, injection wells, abandoned wells, dry holes, surface bodies of water, springs, public water systems, mines (surface and subsurface), quarries, water wells and other pertinent surface features including residences and roads. The map should also show faults, if known or suspected. Only information of pubic record and pertinent information known to the applicant is required to be included on this map.
- 2. A tabulation of data on all wells within the area of review which penetrate into the injection zone, confining zone, or monitoring zone. Such data shall include a description of each well's type, construction, date drilled, location, depth, record of plugging and/or completion, and any additional information the Department may require.
- 3. Maps and cross sections indicating the general vertical and lateral limits within the area of review of all underground sources of drinking water, their position relative to the injection formation and the direction of water movement, where known, in each underground source of drinking water which may be affected by the injection.
- 4. Maps and cross sections detailing the hydrology and geologic structures of the local area.
- 5. Generalized maps and cross sections illustrating the regional geologic setting.
- 6. Contingency plans to cope with all shut-ins or well failures, so as to protect the quality of the waters of the State as defined in Rule 62-3 and 62-520, F.A.C., including alternate or emergency discharge provisions.
- 7. For wells within the area of review which penetrate the injection zone but are not properly completed or plugged, the corrective action proposed to be taken under Rule 62-528.300(5), F.A.C.
- 8. A certification that the applicant has ensured, through a performance bond or other appropriate means, the resources necessary to close, plug or abandon the well as required by Rule 62-528.435(9), F.A.C.
- 9. A report shall be submitted with each application for repermitting of Class I Well operation which shall include the following information:
 - (a) All available logging and testing program data and construction data on the well or well field;

- (b) A satisfactory demonstration of mechanical integrity for all wells pursuant to Rule 62-528.300(6), F.A.C.;
- (c) The actual operating data, including injection pressures versus pumping rates where feasible, or the anticipated maximum pressure and flow rate at which the permittee will operate, if approved by the Department;
- (d) The actual injection procedure;
- (e) The compatibility of injected waste with fluids in the injection zone and minerals in both the injection zone and the confining zone;
- (f) The status of corrective actin on defective wells in the area of review;
- (g) Record drawings, based upon inspections by the engineer or persons under his direct supervision, with all deviations noted;
- (h) Certification of completion submitted by the engineer of record;
- (i) An updated operation manual including emergency procedures;
- (j) Proposed revisions to the monitoring program or data to be submitted; and,
- (k) Proposed plugging and abandonment plan pursuant to Rule 62-528.435(2), F.A.C.

D. CLASS I WELL PLUGGING AND ABANDONMENT PERMIT


- 1. The reasons for abandonment.
- 2. A proposed plan for plugging and abandonment describing the preferred and alternate methods, and justification for use.
 - (a) The type and number of plugs to be used;
 - (b) The placement of each plug including the elevation of the top and bottom;
 - (c) The type and grade and quantity of cement or any other approved plugging material to be used; and,
 - (d) The method for placement of the plugs.
- 3. The procedure to be used to meet the requirements of Rule 62-528.435, F.A.C.

DEP Form No:		62-528.900(1)
Form Title:	Application	to Construct/
		Class I, III,
or	V Injection	n Well Systems
Effective Date:		
DEP Application	No.:	
	(Fil	led in by DEP;

E. CLASS III WELLS CONSTRUCTION/OPERATION/PLUGGING AND ABANDONMENT PERMIT

Construction Phase

- 1. A map showing the location of the proposed injection wells or well field area for which a permit is sought and the applicable area of review. Within the area of review, the map must show the number or name, and location of all producing wells, injection wells, abandoned wells, dry holes, surface bodies of water, springs, public water system, mines (surface and subsurface), quarries, water wells and other pertinent surface features including residences and roads. The map should also show faults, if known or suspected. Only information of public record and pertinent information known to the applicant is required to be included on this map.
- 2. A tabulation of data on all wells within the area of review which penetrate into the proposed injection zone, confining zone, or proposed monitoring zone. Such data shall include a description of each well's type, construction, date drilled, location, depth, record of plugging and/or completion, and any additional information the Department may require.
- 3. Maps and cross sections indicating the general vertical and lateral limits within the area of review of all underground sources of drinking water, their position relative to the injection formation and the direction of water movement, where known, in each underground source of drinking water which may be affected by the proposed injection.
- 4. Maps and cross sections detailing the hydrology and geologic structures of the local area.
- 5. Generalized maps and cross sections illustrating the regional geologic setting.
- 6. Proposed operating data:
 - (a) Average and maximum daily rate and volume of the fluid to be injected;
 - (b) Average and maximum injection pressure; and,
 - (c) Source and an analysis of the chemical, physical, radiological and biological characteristics of injection fluids, including any additives.
- 7. Proposed formation testing program to obtain an analysis of the chemical, physical and radiological characteristics of and other information on the injection zone.
- 8. Proposed stimulation program.
- 9. Proposed injection procedure.
- 10. Engineering drawings of the surface and subsurface construction details of the system.

- 11. Contingency plans to cope with all shut-ins or well failures or catastrophic collapse, so as to protect the quality of the waters of the State as defined in Rule 62-3 and 62-520, F.A.C., including alternate or emergency discharge provisions.
- 12. Plans (including maps) and proposed monitoring data to be reported for meeting the monitoring requirements in Rule 62-528.425, F.A.C.
- 13. For wells within the area of review which penetrate the injection zone but are not properly completed or plugged, the corrective action proposed to be taken under Rule 62-528.300(5), F.A.C.
- 14. Construction procedures including a cementing and casing program, logging procedures, deviation checks, proposed methods for isolating drilling fluids from surficial aquifers, and a drilling, testing and coring program.
- 15. A certificate that the applicant has ensured, through a performance bond or other appropriate means, the resources necessary to close, plug or abandon the well as required by Rule 62-528.435(9), F.A.C.
- 16. Expected changes in pressure, native fluid displacement, direction of movement of injection fluid.
- 17. A proposed monitoring plan, which includes a plan for detecting migration of fluids into underground sources of drinking water, a plan to detect water quality violation in the monitoring wells, and the proposed monitoring data to be submitted.

peration Phase

- 1. The following information shall be provided to the Department prior to granting approval for the operation of the well or well field:
 - (a) All available logging and testing program data and construction data on the well or well field;
 - (b) A satisfactory demonstration of mechanical integrity for all new wells pursuant to Rule 62-528.300(6), F.A.C.;
 - (c) The actual operating data, including injection pressure versus pumping rate where feasible, or the anticipated maximum pressure and flow rate at which the permittee will operate, if approved by the Department;
 - (d) The results of the formation testing program;
 - (e) The actual injection procedure; and,
 - (f) The status of corrective action on defective wells in the area of review.

Plugging and abandonment Phase

1. The justification for abandonment.

- 2. A proposed plan for plugging and abandonment describing the preferred and alternate methods.
 - (a) The type and number of plugs to be used;
 - (b) The placement of each plug including the elevation of the top and bottom;
 - (c) The type and grade and quantity of cement or any other approved plugging material to be used; and,
 - (d) The method for placement of the plugs.
- 3. The procedure to be used to meet the requirements of Rule 62-528.435, F.A.C.

F. EXPLORATORY WELL CONSTRUCTION AND TESTING PERMIT

- 1. Conceptual plan of the injection project. Include number of injection wells, proposed injection zone, nature and volume of injection fluid, and proposed monitoring program.
- 2. Preliminary Area of Review Study. Include the proposed radius of the area of review with justification for that radius. Provide a map showing the location of the proposed injection well or well field area for which a permit is sought and the applicable area of review. Within the area of review, the map must show the number or name, and location of all producing wells, injection wells, abandoned wells, dry holes, surface bodies of water, springs, public water systems, mines (surface and subsurface), quarries, water wells and other pertinent surface features including residences and roads. The map should also show faults, if known or suspected. Only information of public record and pertinent information known to the applicant is required to be included on this map.
- 3. Proposed other uses of the exploratory well.
- 4. Drilling and testing plan for the exploratory well. The drilling plan must specify the proposed drilling program, sampling, coring, and testing procedures.
- 5. Abandonment Plan.

DEP Form No: Form Title: Application to Construct Operate/Abandon Class I, III, or V Injection Well Systems Effective Date: DEP Application No.: (Filled in by DEP)

G. CLASS V WELL CONSTRUCTION PERMIT

(This form should be used for Class V Wells instead of Form 62-528.900(3), F.A.C., when there is a need for a Technical Advisory Committee and an engineering report.)

- 1. Type and number of proposed Class V Wells:
 - Wells Receiving Domestic Waste
 - Desalination Process Concentrate Wells (Reverse Osmosis, etc.)
 - 4 Aquifer Storage and Recovery Wells
 - Aquifer Remediation Wells
 - Salt-water Intrusion Barrier Wells
 - Cooling Water Return Flow Wells Open-looped System
 - Subsidence Control Wells
 - Sand Backfill Wells
 - Experimental Technology Wells
 - Wells used to inject spent brine after halogen recovery
 - Radioactive Waste Disposal Wells*
 - Borehole Slurry Mining Wells
 - Other non-hazardous Industrial or Commercial Disposal Wells
 - (explain)
 - Other (explain)

*Provided the concentrations of the waste do not exceed drinking water standards contained in Chapter 62-550, F.A.C.

- 2. Project Description:
 - (a) Description and use of proposed injection system;
 - (b) Nature and volume of injected fluid (the Department may require an analysis including bacteriological analysis) in accordance with Rule 62-528.635(2)(b), F.A.C.; and,
 - (c) Proposed pretreatment.
- 3. Water well contractor's name, title, state license number, address, phone number and signature.

DEP Form No:		62-538.900(1)
Form Title:	Application	to Construct/
Oper	ate/Abandon	Class I, III,
or	V Injection	n Well Systems
Effective Date:		
DEP Application	No.:	
	(Fill	ed in by DEP:

- 4. Well Design and Construction Details. (For multi-casing configurations or unusual construction provisions, an elevation drawing of the proposed well should be attached.)
 - (a) Proposed total depth;
 - (b) Proposed depth and type of casing(s);
 - (c) Diameter of well;
 - (d) Cement type, depth, thickness; and,
 - (e) Injection pumps (if applicable): _____ gpm @ _____ psi

Controls:

- 5. Water Supply Wells When required by Rule 62-528.635(1), F.A.C., attach a map section showing the locations of all water supply wells within a one-half (1/2) mile radius of the proposed well. The well depths and casing depths should be included. When required by Rule 62-528.635(2), F.A.C., results of bacteriological examinations of water from all water supply wells within one-half (1/2) mile and drilled to approximate depth of proposed well should be attached.
- 6. Area of review (When required by Rule 62-528.300(4), F.A.C.)

Include the proposed radius of the area of review with justification for that radius. Provide a map showing the location of the proposed injection well or well field area for which a permit is sought and the applicable area of review. Within the area of review, the map must show the number or name, and location of all producing wells, injection wells, abandoned wells, dry holes, surface bodies of water, springs, public water systems, mines (surface and subsurface), quarries, water wells and other pertinent surface features including residences and roads. The map should also show faults, if known or suspected. Only information of public record and pertinent information known to the applicant is required to be included on this map.

H. CLASS V WELL OPERATION PERMIT

(Final report of the construction that includes the following information may be submitted with the application to operate.)

1. Permit Number of Class V Construction Permit:

2. Owner's Name:

3. Type of Wells:

DEP Form No: 62-528.902(1) Form Title: Application to Construct/ Operate/Abandon Class I, III. or V Injection Well Systems Effective Date: DEP Application No.: (Filled in by DEP)

4.	Construction	and	Testing	Summary	γ :
----	--------------	-----	---------	---------	------------

(a) Actual Dimensions: Diameter Well Depth Casing Depth (feet) (inches) (feet) (b) Result of Initial Testing 5. Proposed Operating Data: (a) Injection Rate (GPM); (b) Description of injected waste; and, (c) Injection pressure and pump controls. 6. Proposed Monitoring Plan (if any): Number of monitoring wells; (a) Depth(s); (b) (c) Parameters; (d) Frequency of sampling; and, (e) Instrumentation (if applicable) Flow Pressure

I. CLASS V WELLS PLUGGING AND ABANDONMENT PERMIT

- 1. Permit number of Class V construction or operating permit.
- 2. Type of well.
- 3. Proposed plugging procedures, plans and specifications.
- 4. Reasons for abandonment.

DEP Form No: 62-528.900(1) Form Title: Application to Construct/ Operate/Abandon Class I, III, or V Injection Well Systems Effective Date: DEP Application No.: (Filled in by DEP)

J. MONITOR WELL PERMIT

This section should be used only when application is made for a monitor well only. If a monitor well is to be constructed under a Class I, III, or V injection well construction permit, it is necessary to fill in this section.

- 1. A site map showing the location of the proposed monitor wells for which a permit is sought. The map must be to scale and show the number or name, and location of all producing wells, injection wells, abandoned wells, dry holes, water wells and other pertinent surface features including structures and roads.
- 2. Maps and cross sections indicating the general vertical and lateral limits within the area of review of all underground sources of drinking water, their position relative to the injection formation and the direction of water movement, where known, in each underground source of drinking water which may be affected by the proposed injection.
- 3. Maps and cross sections detailing the hydrology and geologic structures of the local area.
- 4. Generalized maps and cross sections illustrating the regional geologic setting.
- 5. Proposed formation testing program to obtain an anlysis of the chemical, physical and radiological characteristics of and other information on the monitor zone(s).
- 6. Proposed monitoring procedure.
- 7. Engineering drawings of the surface and subsurface construction details of the monitoring system.
- 8. Proposed monitoring data to be reported for meeting the monitoring requirements in Rule 62-528.425, F.A.C.
- 9. Construction procedures including a cementing and casing program, logging procedures, deviation checks, proposed methods for isolating drilling fluids from surficial aquifers, proposed blowout protection (if necessary), and a drilling, testing and coring program
- 10. Monitor Well Information:

	On-site		Multizone		Single-zone
	Regional		Other (spec	ify)
Pro	posed Monit	orin	ng Interval(s	3) _	
Dis	tance and D	irec	tion From As	ssoc	ciated Injection Well

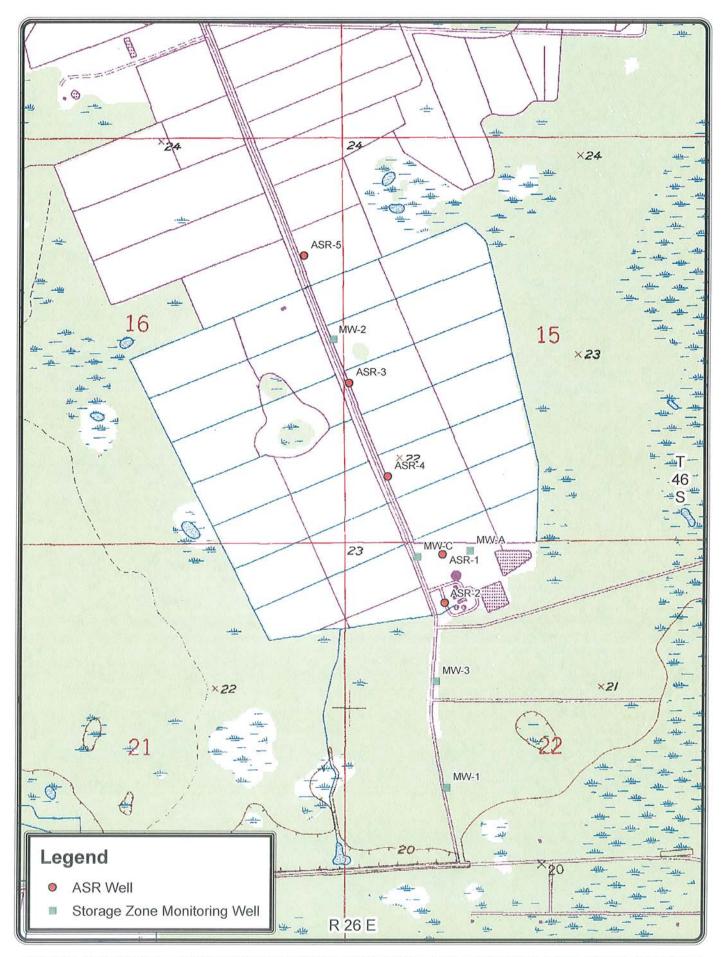


FIGURE 1- USGS MAP FOR CORKSCREW WTP SHOWING LOCATIONS OF ASR AND STORAGE ZONE MONITORING WELLS.

APPENDIX C

DAILY INJECTION AND RECOVERY RATE AND VOLUME DATA FOR CYCLE 4

۲

CORKSCREW ASR SYSTEM DAILY INJECTION AND RECOVERY RATE AND VOLUME DATA FOR CYCLE 4

WELL IDENTIFICATION: ASR-1 WELL IDENTIFICATION: ASR-2 WELL IDENTIFICATION: ASR-3 WELL IDENTIFICATION: ASR-4 WELL IDENTIFICATION: ASR-5 Date Time Inj. Inj. Cum. Inc. Inj. Inj. Cum. Inc. Inj. lnj. Cum. Inc. Inj. Inj. Cum. Rate Pres. Inc Ini. Inj. Inj. Vol. Inj. Vol. Rate Cum. Inc. Pres. Inj. Vol. Inj. Vol. Rate Pres. Inj. Vol. Inj. Vol. Rate Pres. (gpm) Ini. Vol. Inj. Vol. (psi) Rate Pres. Inj. Vol. (gals.) (gals.) Ini. Vol. (gpm) (psi) (gals.) (gals.) (gpm) (psi) (gals.) (gals.) (gpm) (psi) (gals.) (gais.) 1 (gpm) (psi) (gals.) (gals.) 2 3 4 5 6 7 Start Up 0 0 13,500 13,500 0 0 24,700 24,700 298 0 42,600 42,600 304 0 41,500 8 23:55 41,500 0 0 13,500 300 0 43,100 0 0 43,100 0 24,700 0 200 0 429,600 387,000 9 191 0 432,200 23:55 0 0 13,500 390,700 200 0 431,700 0 0 388,600 0 24,700 0 142 0 688,200 10 258,600 148 0 23:55 0 0 692,000 259,800 152 0 695,600 13,500 0 263,900 0 0 24,700 0 196 0 916,500 228,300 208 0 918,500 11 23:55 0 0 226,500 202 0 921,200 13,500 0 225,600 0 0 24,700 0 0 0 916,500 0 0 0 12 23:55 918,500 0 0 0 0 0 13,500 921,200 0 0 0 0 24,700 0 192 0 966500 50,000 206 0 974300 13 23:55 0 55,800 0 190 0 13,500 0 969400 48,200 Ö 0 24,700 0 354 0 1409300 442,800 358 0 1404600 14 23:55 430,300 0 0 13,500 352 0 1414900 0 445,500 194 6 97,700 73,000 404 0 1,798,100 388,800 350 15 0 1,675,100 23:55 0 0 13,500 270,500 398 0 1,802,600 0 200 387,700 8 381,400 283,700 424 0 2,372,400 574,300 346 0 16 23:55 269 2,170,700 495,600 13 110,100 393 0 2,366,500 96,600 311 20 563,900 814,600 433,200 442 0 3,002,200 629,800 17 23:55 408 3 2,733,500 294 562,800 13 518,300 408,200 450 4 2,997,500 252 17 1,182,600 631,000 368,000 252 0 3,517,600 18 23:55 515,400 245 0 3,187,200 278 15 929,300 453,700 256 0 3,488,500 411,000 304 22 491,000 1,594,400 411,800 302 0 3,923,800 406,200 348 19 23:55 2 3,631,400 314 12 1,356,100 444,200 295 0 3,892,700 426,800 98 404,200 6 1,862,600 268,200 94 0 4,187,900 264,100 20 23:55 108 0 3,903,100 258 15 271,700 90 1,756,800 400,700 0 4,152,400 259,700 300 23 2,260,600 398,000 436 2 4,706,400 518,500 21 23:55 394 4 4,362,000 255 16 2,124,800 368,000 458,900 446 4 4,672,000 519,600 304 24 2,691,100 430,500 432 2 5,324,400 618,000 22 23:55 395 5 4,925,800 259 15 563,800 424 4 2,511,700 386,900 5,280,800 608,800 302 23 3,051,200 360,100 430 2 5,810,800 23 486,400 408 23:55 258 4 5,384,900 459,100 17 2,897,100 428 4 385,400 5,759,100 478,300 301 25 3,489,100 437,900 435 3 6,433,000 622,200 24 23:55 393 5 5,960,400 276 575,500 16 3,278,600 426 5 381,500 6,379,900 620,800 194 17 3,835,800 346,700 345 2 6,984,200 25 551,200 358 23:55 4 6,492,100 292 531,700 18 3,673,000 392 394,400 284 4 6,966,600 586,700 23 4,229,500 393,700 346 0 7,479,300 495,100 346 26 23:55 255 3 6,960,300 468,200 18 4,043,900 370,900 378 3 7,505,200 538,600 304 26 4,658,200 428,700 424 3 8,094,700 615,400 27 406 23:55 253 6 7,538,600 578,300 18 4,406,000 362,100 434 6 8,118,700 613,500 304 27 5,094,000 435,800 424 4 8,706,000 611,300 28 23:55 405 6 8,114,700 252 576,100 18 4,764,200 358,200 428 6 8,733,100 614,400 302 27 5,522,800 428,800 430 4 9,317,700 611,700 29 23:55 406 6 8,684,000 569,300 253 19 422 5,128,000 363,800 6 9,351,800 618,700 302 27 5,954,800 432,000 426 4 9,953,300 30 23:55 635,600 412 6 9,252,000 568,000 272 20 430 5,489,100 361,100 6 9,968,700 293 616,900 27 6,380,600 425,800 10,590,900 428 4 31 637,600 412 23:55 6 9,827,800 250 575,800 19 5,861,400 372,300 422 6 10,584,400 615,700 292 27 6,811,200 430,600 422 4 11,207,000 616,100 402 6 10,395,500 567,700 426 6 11,198,700 614,300 Monthly Minimum Pressure 0 Monthly Minimum Pressure 0 Monthly Minimum Pressure 0 Monthly Minimum Pressure Monthly Minimum Pressure Monthly Maximum Pressure 0 20 Monthly Maximum Pressure Ö 27 Monthly Maximum Pressure Monthly Maximum Pressure 4 Monthly Average Pressure 10 6 Monthly Maximum Pressure Monthly Average Pressure 6 15 Monthly Average Pressure

1

Monthly Average Pressure

3

Monthly Average Pressure

3

MONTH: July, 2004

CORKSCREW ASR SYSTEM DAILY INJECTION AND RECOVERY RATE AND VOLUME DATA FOR CYCLE 4

MONTH: August, 2004

		WELL IDENTIFICATION: ASR-1					WELL IDENTIFICATION: ASR-2					WELL IDENTIFICATION: ASR-3				WELL IDENTIFICATION: ASR-4				WELL IDENTIFICATION: ASR-5			
Date	Time	Inj.	Inj.	Cum.	Inc.	Inj.	lnj.	Cum.	Inc.	Inj.	Inj.	Cum.	Inc.	Inj.	Inj.	Cum.	Inc.	Inj.	Inj.	Cum.	Inc.		
		Rate	Pres.	inj. Vol.	Inj. Vol.	Rate	Pres.	Inj. Vol.	lnj. Vol.	Rate	Pres.	Inj. Vol.	inj. Vol.	Rate	Pres.	Inj. Vol.	Inj. Vol.	Rate	Pres.	Ini. Vol.	Inj. Vol.		
		(gpm)	(psi)	(gals.)	(gals.)	(gpm)	(psi)	(gals.)	(gals.)	(gpm)	(psi)	(gals.)	(gais.)	(gpm)	(psi)	(gals.)	(gals.)	(gpm)	(psi)	(gais.)	(gals.)		
_1	23:55	250	19	6,237,200	375,800	303	28	7,248,200	437,000	424	4	11,820,700	613,700	393	7	10,969,900	574,400	436	6	11,815,000	616,300		
2	23:55	250	19	6,594,200	357,000	296	27	7,670,700	422,500	422	4	12,437,100	616,400	395	7	11,540,300	570,400	432	7	12,427,600	612,600		
3	23:55	254	19	6,952,900	358,700	302	28	8,107,500	436,800	434	5	13,057,000	619,900	402	7	12,123,200	582,900	432	7	13,049,700	622,100		
4	23:55	247	20	7,300,500	347,600	302	28	8,533,900	426,400	426	5	13,665,500	608,500	398	7	12,685,300	562,100	430	7	13,659,900	610,200		
5	23:55	282	22	7,660,000	359,500	298	28	8,963,600	429,700	424	5	14,276,000	610,500	395	8	13,255,100	569,800	432	7	14,273,800	613,900		
6	23:55	295	20	8,088,200	428,200	314	26	9,306,300	342,700	420	2	14,702,500	426,500	365	3	13,669,400	414,300	412	4	14,704,000	430,200		
7	23:55	316	22	8,521,100	432,900	156	18	9,663,200	356,900	158	2	15,158,500	456,000	148	3	14,087,800	418,400	144	0	15,162,000	458,000		
8	23:55	284	21	8,970,500	449,400	296	27	9,958,800	295,600	450	4	15,504,500	346,000	406	7	14,411,600	323,800	448	7	15,497,200	335,200		
9	23:55	302	20	9,418,200	447,700	224	20	10,228,700	269,900	232	0	15,812,100	307,600	232	2	14,712,100	300,500	232	0	15,795,000	297,800		
10	23:55	276	19	9,832,400	414,200	304	26	10,572,700	344,000	420	2	16,244,000	431,900	407	5	15,126,800	414,700	426	5	16,227,700	432,700		
11	23:55	292	22	10,231,600	399,200	306	28	11,007,600	434,900	306	2	16,769,200	525,200	298	5	15,626,100	499,300	302	3	16,756,300	528,600		
12	23:55	320	20	10,678,800	447,200	154	15	11,274,800	267,200	148	0	17,029,200	260,000	158	0	15,895,100	269,000	146	0	17,013,900	257.600		
_13	23:55	190	5	11,132,800	454,000	110	2	11,587,100	312,300	245	0	17,504,200	475,000	90	0	16,267,600	372,500	254	0	17,597,100	583,200		
14	23:55	0	0	11,132,800	0	0	0	11,587,100	0	0	0	17,504,200	0	0	0	16,267,600	0	0	0	17.597.100	0		
15	23:55	0	0	11,132,800	0	0	· 0	11,587,100	0	0	0	17,504,200	0	0	0	16,267,600	0	0	0	17,597,100	0		
16	23:55	0	0	11,132,800	0	0	0	11,587,100	0	0	0	17,504,200	0	0	0	16,267,600	0	0	0	17,597,100	Ō		
17	23:55	0	0	11,132,800	0	0	0	11,587,100	0	0	0	17,519,900	15,700	0	0	16,267,600	0	0	0	17,597,100	0		
18	23:55	0	0	11,132,800	0	0	0	11,587,100	0	0	0	17,519,900	0	0	0	16,267,600	0	0	0	17,597,100	0		
19	23:55	0	0	11,132,800	0	0	0	11,587,100	0	0	0	17,519,900	0	0	0	16,267,600	0	0	0	17,597,100	0		
20	23:55	0	0	11,132,800	0	0	0	11,587,100	0	0	0	17,949,900	430,000	0	0	16,267,600	0	0	0	18,053,100	456,000		
21	23:55	176	10	11,668,700	535,900	145	12	12,166,200	579,100	158	0	18,303,500	353,600	156	0	16,867,400	599,800	198	0	18,418,800	365,700		
22	23:55	183	5	11,695,400	26,700	196	7	12,358,200	192,000	168	0	18,322,100	18,600	176	0	17,075,200	207,800	200	0	18,441,700	22,900		
23	23:55	176	8	11,747,400	52,000	202	12	12,415,500	57,300	168	0	18,377,200		176	0	17,126,200	51,000	198	0	18,507,600	65,900		
24	23:55	175	9	11,995,400	248,000	150	11	12,727,800	312,300	157	0	18,709,600	332,400	151	0	17,427,700	301,500	152	0	18,849,000	341,400		
25	23:55	156	13	12,223,900	228,500	304	26	13,167,200	439,400	446	4	19,246,400	536,800	345	6	17,880,800	453,100	402	6	19,373,400	524,400		
26	23:55	154	14	12,444,700	220,800	304	27	13,601,600	434,400	444	4	19,850,400	604,000	340	6	18,371,200	490,400	402	6	19,957,100	583,700		
27	23:55	168	12	12,678,800	234,100	202	17	13,933,200	331,600	208		20,284,000	433,600	204	2	18,722,000	350,800	208	0	20,338,100	381,000		
28	23:55	153	14	12,918,100	239,300	341	30	14,274,800	341,600	400	4	20,656,400	372,400	247	6	19,071,400	349,400	401	6	20,712,700	374,600		
29 30	23:55 23:55	171	12	13,148,700	230,600	155	14	14,605,700	330,900	154		21,100,400	444,000	148	0	19,462,500	391,100	156	0	21,162,600	449,900		
30	23:55	168	10	13,394,000	245,300	154	13	14,857,700	252,000	155		21,367,700	267,300	149	0	19,708,000	245,500	142	0	21,430,400	267,800		
	23:55	220	17	13,729,800	335,800	252	23	15,227,300	369,600	394	4	21,813,100	445,400	390	7	20,129,800	421,800	446	7	21,909,700	479,300		

Monthly Minimum Pressure		Monthly Minimum Pressure	0	Monthly Minimum Pressure	0	Monthly Minimum Pressure	0	Monthly Minimum Pressure	0
Monthly Maximum Pressur	22	Monthly Maximum Pressure	30	Monthly Maximum Pressure	5	Monthly Maximum Pressure	8	Monthly Maximum Pressure	
Monthly Average Pressure	12	Monthly Average Pressure	16	Monthly Average Pressure		Monthly Average Pressure	3	Monthly Average Pressure	2
		and the second						Intertainty / teologic	

MONTH: September, 2004

Date	Time							NTIFICATION	: ASR-2	WE	LL IDE	NTIFICATIO	N: ASR-3	w	ELL IDE	NTIFICATION	: ASR-4	w	ELL IDE	NTIFICATION	I: ASR-5
Date	Time	Inj. Rate	Inj. Pres.	Cum.	Inc.	Inj.	lnj.	Cum.	Inc.	Inj.	Inj.	Cum.	Inc.	Inj.	Inj.	Cum,	Inc.	Inj.	Inj.	Cum.	Inc.
		(gpm)	pres. (psi)	Inj. Vol.	Inj. Vol.	Rate	Pres.	Inj. Vol.	inj. Vol.	Rate	Pres.	Inj. Vol.	Inj. Vol.	Rate	Pres.	Inj. Vol.	Inj. Vol.	Rate	Pres.	Ini. Vol.	Inj. Vol.
1	23:55	208		(gals.)	(gals.)	(gpm)	(psi)	(gals.)	(gals.)	(gpm)	(psi)	(gals.)	(gals.)	(gpm)	(psi)	(gals.)	(gals.)	(gpm)	(psi)	(gals.)	(gals.)
2	23:55	208	18 17	14,038,200	308,400	298	28	15,635,500	408,200	437	5	22,420,500	607,400	394	8	20,679,600	549,800	422	7	22,534,800	625,100
3	23:55	207	19	14,352,900	314,700	302	27	16,042,800	407,300	446	5	23,003,200	582,700	387	7	21,207,100	527,500	457	8	23,109,600	574,800
4	23:55	200	19	14,660,100	307,200	345	32	16,478,300	435,500	447	6	23,647,200	644,000	369	7	21,772,100	565,000	468	10	23,748,300	638,700
5	23:55	255	19	14,966,900	306,800	210	21	16,894,000	415,700	290	5	24,256,400	609,200	302	6	22,324,900	552,800	301	4	24,360,900	612,600
6	23:55	235	19	15,247,200	280,300	0	10	17,265,100	371,100	0	2	24,763,200	506,800	0	2	22,802,200	477,300	0	0	24,864,600	503,700
7	23:55	230	20	15,491,900	244,700	320	28	17,520,300	255,200	310	2	25,051,900	288,700	310	4	23,074,000	271,800	308	3	25,185,500	320,900
8	23:55	220		15,815,600	323,700	302	30	17,954,200	433,900	432	6	25,595,700	543,800	397	9	23,576,100	502,100	430	8	25,735,200	549,700
9	23:55	218	20 18	16,129,400	313,800	296	30	18,381,300	427,100	424	6	26,217,300	621,600	405	9	24,150,500	574,400	430	8	26,362,000	626,800
10	23:55	230	18	16,463,600	334,200	246	24	18,697,800	316,500	254	2	26,555,200	337,900	254	4	24,475,900	325,400	257	2	26,710,500	348,500
	23:55	241	18	16,806,900	343,300	194	19	19,019,500	321,700	196	0	26,867,900	312,700	200	3	24,790,500	314,600	196	0	27,026,600	316,100
12	23:55	236	20	17,156,500	349,600	302	29	19,394,700	375,200	304	3	27,257,900	390,000	301	5	25,180,000	389,500	308	4	27,426,400	399,800
13	23:55	234	18	17,482,000	325,500	274	28	19,834,100	439,400	298	4	27,777,400	519,500	284	6	25,614,100	434,100	296	4	27,959,200	532,800
14	23:55	198	19	17,804,300	322,300	150	17	20,203,400	369,300	150	0	28,227,200	449,800	152	3	26.012.200	398,100	148	0	28,407,900	448,700
15	23:55	220	19	18,094,900	290,600	292	30	20,624,900	421,500	408	6	28,795,800	568,600	396	9	26,565,800	553,600	428	9	29,015,600	607,700
16	23:55	220	18	18,394,300	299,400	206	23	21,031,300	406,400	300	4	29,357,800	562,000	201	5	27,095,200	529,400	302	5	29,607,300	591,700
17	23:55	230	19	18,726,300	332,000	205	26	21,334,300	303,000	282	2	29,676,200	318,400	270	4	27,391,300	296,100	278	3	29,924,100	316,800
18	23:55	223	20	19,061,100	334,800	301	30	21,681,900	347,600	304	3	30,023,500	347,300	300	5	27,730,100	338,800	304	4	30.267.400	343,300
19	23:55	203	19	19,386,000	324,900	294	31	22,109,700	427,800	426	6	30,610,100	586,600	373	9	28,252,400	522,300	434	9	30,875,200	607,800
20	23:55	221	18	20,086,400	296,700	298	31	22,488,900	379,200	295	4	31,005,100	395,000	308	6	28,643,300	390,900	302	4	31,266,700	391,500
21	23:55	210	10	20,086,400	403,700	258	26	22,878,800	389,900	246	2	31,294,300	289,200	253	4	29,030,500	387,200	246	2	31,564,700	298,000
22	23:55	205	20	20,325,900	239,500	286	29	23,169,700	290,900	412	6	31,696,600	402,300	378	8	29,335,900	305,400	478	9	31,970,000	405,300
23	23:55	198	19	20,903,900	291,700	296	31	23,599,500	429,800	428	6	32,309,600	613,000	348	8	29,845,500	509,600	419	8	32,590,500	620,500
24	23:55	198	20	21,189,700	286,300	300	31	24,028,500	429,000	428	6	32,924,600	615,000	348	8	30,349,400	503,900	426	9	33,204,900	614,400
25	23:55	201	20	21,189,700	285,800	304	32	24,457,200	428,700	436	6	33,545,600	621,000	386	9	30,854,700	505,300	458	10	33,825,000	620,100
26	23:55	201		21,482,000	292,300	292	32	24,890,900	433,700	414	6	33,943,300	397,700	406	9	31,429,900	575,200	449	10	34,470,000	645,000
27	23:55	194		22,062,200	292,700	242	27	25,265,600	374,700	427	6	34,448,300	505,000	354	8	31,942,100	512,200	358	7	35,012,400	542,400
28	23:55	194	20	22,062,200	287,500	293	32	25,661,600	396,000	406	6	35,080,700	632,400	404	10	32,494,900	552,800	430	9	35,592,300	579,900
29	23:55	192	20		276,200	302	33	26,086,000	424,400	404	7	35,725,200	644,500	395	10	33,066,500	571,600	426	9	36,212,300	620,000
30	23:55	218	18	22,616,000 22,911,700	277,600	300	33	26,515,500	429,500	410		36,312,500	587,300	368	9	33,630,000	563,500	421	9	36,831,500	619,200
31	20.00	210	10	22,911,700	295,700	192	22	26,852,900	337,400	442	5	36,926,000	613,500	194	5	34,006,100	376,100	201	2	37,246,100	414,600
				L		الا															
				Pressure	17			n Pressure	10	Monthly	Minimur	m Pressure	0	Monthly	Minimur	n Pressure	2	Monthly	Minimum	n Pressure]
								n Pressure	33			m Pressure	7			m Pressure	10			n Pressure	0
L	<u></u> _	Inionthly A	verage	Pressure	19	Monthly .	Average	Pressure	27			Pressure	4			Pressure	7			Pressure	10
																,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		finioritity i	rverage	Fressure	ь

MONTH: October, 2004

		WE		TIFICATION	ASR-1	we	ELL IDEI	NTIFICATION	ASR-2	WE	LL IDEI	NTIFICATION	N: ASR-3	w	ELL IDE	NTIFICATION	ASR-4	w	ELL IDE	NTIFICATION	1: ASR-5
Date	Time	lnj.	Inj.	Cum.	Inc.	lnj.	Inj.	Cum.	Inc.	Inj.	Inj.	Cum.	Inc.	Inj.	Inj.	Cum.	Inc.	Inj.	Inj.	Cum.	Inc.
		Rate	Pres.	Inj. Vol.	Inj. Vol.	Rate	Pres.	Inj. Vol.	Inj. Vol.	Rate	Pres.	Inj. Vol.	Inj. Vol.	Rate	Pres.	Inj. Vol.	Inj. Vol.	Rate	Pres.	Inj. Vol.	Inj. Vol.
		(gpm)	(psi)	(gals.)	(gais.)	(gpm)	(psi)	(gals.)	(gals.)	(gpm)	(psi)	(gals.)	(gals.)	(gpm)	(psi)	(gals.)	(gals.)	(gpm)	(psi)	(gals.)	(gals.)
1	23:55	202	19	23,212,200	300,500	208	24	27,140,700	287,800	412	6	37,538,500	612,500	394	9	34,491,900	485,800	434	9	37,783,800	537,700
2	23:55	152	15	23,433,800	221,600	160	18	27,342,300	201,600	350	4	38,003,300	464,800	352	7	34,886,800	394,900	401	7	38,224,100	
3	23:55	0	0	23,433,800	0	0	0	27,342,300	0	0	0	38,003,300	0	0	0	34,886,800	0	0	0	38,224,100	0
4	23:55	0	0	23,433,800	0	0	0	27,342,300	0	0	0	38,003,300	0	0	0	34,886,800	0	0	0	38,224,100	0
5	23:55	0	0	23,433,800	0	0	0	27,342,300	0	0	0	38,003,300	0	0	0	34,886,800	0	0	0	38,224,100	0
6	23:55	0	0	23,433,800	0	0	0	27,342,300	0	0	0	38,003,300	0	0	0	34,886,800	0	0	0	38,224,100	0
7	23:55	0	0	23,433,800	0	0	0	27,342,300	0	0	0	38,003,300	0	0	0	34,886,800	0	0	0	38,224,100	
8	23:55	0	0	23,433,800	0	0	0	27,342,300	0	0	0	38,003,300	0	0	0	34,886,800	0	0	0	38,224,100	
9	23:55	252	14	23,449,400	15,600	196	14	27,383,200	40,900	357	0	38,078,700	75,400	392	3	34,969,700	82,900	448	3	38,324,600	
10	23:55	251	14	23,808,000	358,600	152	12	27,637,000	253,800	354	4	38,594,300	515,600	250	3	35,329,900	360,200	252	2	38,698,200	
11	23:55	274	14	23,844,000	36,000	150	10	27,656,700	19,700	388	0	38,650,300	56,000	192	0	35,351,700	21,800	311	0	38,738,000	39,800
12	23:55	240	20	24,191,600	347,600	308	30	28,068,200	411,500	354	4	39,158,100	507,800	406	7	35,901,400	549,700	421	7	39,346,300	
13	23:55	152	10	24,568,900	377,300	108	11	28,291,700	223,500	152	0	39,690,600	532,500	100	0	36,182,100	280,700	97	0	39,635,800	
14	23:55	150	12	24,750,400	181,500	255	23	28,532,200	240,500	151	0	39,928,900	238,300	298	3	36,462,900	280,800	302	2	39,921,900	
15	23:55	292	23	25,128,100	377,700	302	31	28,954,500	422,300	303	3	40,323,700	394,800	354	6	36,951,100	488,200	304	4	40,360,500	
16	23:55	310	15	25,573,300	445,200	203	21	29,263,100	308,600	316	2	40,775,600	451,900	204	3	37,274,600	323,500	195	0	40,661,700	301,200
17	23:55	323	21	26,029,400	456,100	96	11	29,410,000	146,900	323	0	41,235,400	459,800	. 100	0	37,428,000	153,400	104	0	40,821,800	160,100
18	23:55	150	10	26,125,400	96,000	96	11	29,438,300	28,300	152	0	41,333,800	98,400	100	0	37,457,500	29,500	101	0	40,852,300	30,500
19	23:55	323	22	26,585,300	459,900	94	10	29,648,800	210,500	323	0	41,796,500	462,700	90	0	37,685,300	227,800	96	0	41,122,600	270,300
20	23:55	323	19	27,057,000	471,700	96	9	29,786,100	137,300	321	0	42,267,100	470,600	93	0	37,818,700	133,400	98	0	41,263,000	140,400
21	23:55	120	8	27,234,000	177,000	300	24	29,942,400	156,300	108	0	42,429,100	162,000	299	0	37,967,800	149,100	293	0	41,427,300	164,300
22	23:55	139	9	27,643,200	409,200	308	24	30,183,600	241,200	381	0	42,857,800	428,700	255	2	38,210,600	242,800	318	0	41,666,000	238,700
23	23:55	298	20	28,062,600	419,400	109	12	30,423,100	239,500	307		43,289,100		102	0	38,466,300	255,700	106	0	41,938,400	272,400
24	23:55	302	19	28,495,200	432,600	82	9	30,571,500	148,400	306	0	43,728,900	439,800	76	0	38,603,900	137,600	65	0	42,078,100	139,700
25	23:55	150	14	28,590,800	95,600	108	9	30,651,300	79,800	152	0	43,824,700	95,800	100	0	38,627,500	23,600	65	0	42,098,300	20,200
26	23:55	0	0	28,590,800	0	0	0	30,651,300	0	0	0	43,824,700	0	0	0	38,627,500	0	0	0	42,098,300	0
27	23:55	0	0	28,590,800	0	0	0	30,651,300	0	0	0	43,824,700	0	0	0	38,627,500	0	0	0	42,098,300	0
28	23:55	0	0	28,590,800	0	0	0	30,651,300	0	0	0	43,824,700	0	0	0	38,627,500	0	0	0	42,098,300	0
29	23:55	0	0	28,590,800	0	0	0	30,651,300	0	0	0	43,824,700	0	0	0	38,627,500	0	0	0	42,098,300	
30	23:55	0	0	28,590,800	0	0	0	30,651,300	0	0	0	43,824,700	0	0	0	38,627,500	0	0	0	42,098,300	
31	23:55	138	6	28,803,700	212,900	98	6	30,898,800	247,500	252	0	44,209,200	384,500	92	0	38,953,600	326,100	108	0	42,430,300	

Monthly Minimum Pressure	0	Monthly Minimum Pressure	0	Monthly Minimum Pressure	0	Monthly Minimum Pressure	0	Monthly Minimum Pressure	0
Monthly Maximum Pressure	23	Monthly Maximum Pressure	31	Monthly Maximum Pressure	6	Monthly Maximum Pressure	9	Monthly Maximum Pressure	9
Monthly Average Pressure	10	Monthly Average Pressure	10	Monthly Average Pressure	1	Monthly Average Pressure	1	Monthly Average Pressure	1

MONTH: November, 2004

		WE		ITIFICATION	: ASR-1	WE	ELL IDEI	NTIFICATION	ASR-2	WE	LL IDE	NTIFICATION	I: ASR-3	WE	ELL IDE	NTIFICATION	: ASR-4	WE	ELL IDE	NTIFICATION	: ASR-5
Date	Time	lnj.	lnj.	Cum.	Inc.	lnj.	lnj.	Cum.	Inc.	Inj.	Inj.	Cum.	Inc.	inj.	Inj.	Cum.	Inc.	Inj.	lnj.	Cum.	Inc.
		Rate	Pres.	Inj. Vol.	Inj. Vol.	Rate	Pres.	Inj. Vol.	Inj. Vol.	Rate	Pres.	inj. Vol.	inj. Vol.	Rate	Pres.	Inj. Vol.	inj. Vol.	Rate	Pres.	İnj. Vol.	Inj. Vol.
		(gpm)	(psi)	(gals.)	(gals.)	(gpm)	(psi)	(gals.)	(gals.)	(gpm)	(psi)	(gals.)	(gals.)	(gpm)	(psi)	(gals.)	(gals.)	(gpm)	(psi)	(gals.)	(gals.)
1	23:55	146	5	28,981,200	177,500	102	4	31,024,800	126,000	112	0	44,350,000	140,800	108	0	39,078,100	124,500	106	0	42,560,600	130,300
2	23:55	142	6	29,160,400	179,200	242	17	31,179,800	155,000	112	0	44,488,700	138,700	256	0	39,238,200	160,100	244	0	42,718,100	157,500
3	23:55	145	6	29,332,600	172,200	92	5	31,464,200	284,400	112	0	44,627,800	139,100	108	0	39,533,300	295,100	89	0	43,011,100	293,000
4	23:55	100	0	29,440,100	107,500	100	0	31,564,400	100,200	100	0	44,770,400	142,600	100	0	39,646,400	113,100	88	0	43,095,200	84,100
5	23:55	100	2	29,465,200	25,100	153	6	31,593,500	29,100	110	0	44,799,600	29,200	143	0	39,672,900	26,500	144	0	43,125,100	29,900
6	23:55	111	4	29,672,500	207,300	92	5	31,945,800	352,300	156	0	45,020,500	220,900	96	0	40,117,000	444,100	108	0	43,617,000	491,900
7	23:55	102	2	29,820,100	147,600	94	4	32,079,500	133,700	102	0	45,166,600	146,100	97	0	40,256,400	139,400	108	0	43,772,100	155,100
8	23:55	186	6	30,116,700	296,600	200	10	32,539,000	459,500	200	0	45,254,100	87,500	200	0	40,700,600	444,200	206	0	43,864,800	92,700
9	23:55	100	0	30,173,400	56,700	100	0	32,566,900	27,900	100	0	45,313,500	59,400	189	0	41,040,000	339,400	176	0	44,017,700	152,900
10	23:55	148	5	30,177,300	3,900	149	8	32,765,700	198,800	154	0	45,513,400	199,900	158	0	41,267,800	227,800	152	0	44,170,500	152,800
11	23:55	148	6	30,403,500	226,200	147	9	32,992,300	226,600	153	0	45,753,100	239,700	157	0	41,765,300	497,500	152	0	44,375,200	204,700
12	23:55	145	0	30,626,400	222,900	150	0	33,249,800	257,500	158	0	45,992,800	239,700	158	0	42,264,600	499,300	176	0	44,641,100	265,900
13	23:55	0	0	30,626,400	0	0	0	33,249,800	0	0	0	45,992,800	0	0	0	42,264,600	0	0	0	44,641,100	0
14	23:55	150	3	30,629,100	2,700	154	3	33,252,600	2,800	178	0	45,996,100	3,300	156	0	42,267,600	3,000	156	0	44,644,200	3,100
15	23:55	148	5	30,827,800	198,700	148	8	33,451,500	198,900	180	0	46,236,100	240,000	158	0	42,477,200	209,600	155	0	44,851,100	206,900
16	23:55	146	6	31,029,500	201,700	292	19	33,653,500	202,000	181	0	46,482,800	246,700	156	0	42,691,800	214,600	155	0	45,063,000	211,900
17	23:55	132	5	31,325,600	296,100	134	8	33,947,800	294,300	126	0	46,640,200	157,400	130	0	42,953,000	261,200	123	0	45,304,000	241,000
18	23:55	154	6	31,486,800	161,200	137	8	34,116,000	168,200	200	0	46,952,700	312,500	128	0	43,122,400	169,400	123	0	45,466,100	162,100
19	23:55	165	6	31,655,900	169,100	164	6	34,330,000	214,000	176	0	47,028,900	76,200	148	0	43,272,600	150,200	157	0	45,676,500	210,400
20	23:55	246	13	31,986,300	330,400	258	16	34,660,100	330,100	236	0	47,315,800	286,900	152	0	43,536,200	263,600	155	0	45,949,900	273,400
21	23:55	270	17	32,337,000	350,700	266	24	35,002,100	342,000	242	0	47,594,700	278,900	244	0	43,831,800	295,600	245	0	46,243,300	293,400
22	23:55	270	17	32,590,300	253,300	266	23	35,252,500	250,400	240	0	47,816,600	221,900	243	0	44,056,800	225,000	244	0	46,470,100	226,800
23	23:55	147	5	32,822,300	232,000	202	13	35,467,900	215,400	152	0	48,023,900	207,300	146	0	44,265,700	208,900	143	0	46,679,100	209,000
24	23:55	234	12	33,041,700	219,400	226	17	35,758,200	290,300	230	0	48,251,300	227,400	226	0	44,486,100	220,400	228	0	46,899,000	219,900
25	23:55	160	8	33,387,700	346,000	154	12	36,095,200	337,000	155	0	48,653,300	402,000	146	0	44,880,300	394,200	156	0	47,298,500	399,500
26	23:55	304	22	33,798,000	410,300	294	28	36,503,500	408,300	476	2	49,175,100	521,800	355	0	45,345,100	464,800	344	2	47,764,800	466,300
27	23:55	146	9	34,203,300	405,300	146	13	36,902,200	398,700	158	0	49,725,800	550,700	156	0	45,778,000	432,900	154	0	48,199,500	434,700
28	23:55	148	6	34,418,300	215,000	152	10	37,118,800	216,600	158	0	49,955,100	229,300	156	0	46,003,600	225,600	155	0	48,424,300	224,800
29	23:55	200	10	34,681,500	263,200	195	15	37,378,900	260,100	194	0	50,217,700	262,600	203	0	46,272,100	268,500	202	0	48,691,900	267,600
30	23:55	203	12	35,055,700	374,200	195	16	37,753,700	374,800	205	0	50,508,200	290,500	203	0	46,561,600	289,500	200	0	48,980,300	288,400
31																		1			

	Minimum Pressure	0	Monthly Minimum Pressure	0	Monthly Minimum Pressure	0	Monthly Minimum Pressure	0	Monthly Minimum Pressure	0
Monthly	Maximum Pressure	22	Monthly Maximum Pressure	28	Monthly Maximum Pressure	2	Monthly Maximum Pressure	0	Monthly Maximum Pressure	2
Monthly	Average Pressure	7	Monthly Average Pressure	10	Monthly Average Pressure	0	Monthly Average Pressure	0	Monthly Average Pressure	0

MONTH: December, 2004

Date	Time	WE	LL IDE					NTIFICATION	: ASR-2	WE	LL IDE	NTIFICATION	N: ASR-3	w	ELL IDE	NTIFICATION	: ASR-4	WE	ELL IDE	NTIFICATION	I: ASR-5
Duc	inne	Rate	Pres.	Cum. Inj. Vol.	Inc.	lnj.	Inj.	Cum.	inc.	Inj.	lnj.	Cum.	Inc.	Inj.	Inj.	Cum.	Inc.	Inj.	lnj.	Cum.	Inc.
		(gpm)	(psi)	(gals.)	Inj. Vol.	Rate	Pres.	inj. Vol.	Inj. Vol.	Rate	Pres.	Inj. Vol.	Inj. Vol.	Rate	Pres.	Ini, Vol.	Ini. Vol.	Rate	Pres.	Inj. Vol.	inc. Inj. Vol.
	23:55	204			(gals.)	(gpm)	(psi)	(gals.)	(gals.)	(gpm)	(psi)	(gals.)	(gals.)	(gpm)	(psi)	(gals.)	(gals.)	(gpm)	(psi)	(gals.)	(gals.)
2	23:55	204	<u>11</u> 9	35,348,900	293,200	198	16	38,038,600	284,900	200	0	50,801,500	293,300	204	0	46,852,200	290,600	203	0	49,269,700	289,400
3	23:55	208	13	35,612,600 36,015,800	263,700	203	14	38,295,400	256,800	202	0	51,069,200	267,700	198	0	47,111,100	258,900	203	0	49,533,600	263,900
4	23:55	210	12		403,200	200	18	38,694,100	398,700	192	0	51,468,500	399,300	204	0	47,514,700	403,600	198	0	49,938,100	404,500
5	23:55	151	7	36,336,900	321,100	194	16	39,011,100	317,000	194		51,891,900	423,400	200	0	47,910,300	395,600	204	0	50,368,900	430,800
6	23:55	156		36,846,000	287,700	152	11	39,290,000	278,900	154		52,169,200	277,300	156	0	48,194,400	284,100	154	0	50,659,100	290,200
7	23:55	202	10	37,160,100	221,400	156	10	39,511,400	221,400	155		52,391,800	222,600	158	0	48,419,200	224,800	158	0	50,882,700	223,600
8	23:55	195	- 10		314,100	195	15	39,822,400	311,000	203		52,655,500	263,700	210	0	48,692,200	273,000	201	0	51,148,100	265,400
9	23:55	204	8	37,472,300 37,555,600	312,200	191	0	40,123,400	301,000	210		52,942,600	287,100	209	0	48,983,500	291,300	203	0	51,428,800	285,400
10	23:55	157	<u> </u>	37,555,600	83,300	192	12	40,202,600	79,200	195	0	53,022,200	79,600	200	0	49,064,500	81,000	201	0	51,510,900	82,100
11	23:55	158	7	38,090,600	200,500	195	0	40,402,000	199,400	202	0	53,222,900	200,700	197	0	49,262,500	198,000	210	0	51,720,900	210,000
12	23:55	104		38,244,500	334,500 153,900	196	14	40,759,200	357,200	203		53,626,200	403,300	202	0	49,638,700	376,200	304	0	52,159,000	438,100
13	23:55	198	8	38,464,300	219,800	103	3	40,914,100	154,900	108		53,789,800	163,600	94	0	49,781,200	142,500	98	0	52,316,100	157,100
14	23:55	92		38,718,900	254,600	199	13	41,133,200	219,100	204	0	54,013,700	223,900	202	0	49,995,800	214,600	201	0	52,532,600	216,500
15	23:55	208	9	38,961,400	254,600	109 202	5	41,392,500	259,300	95	0	54,276,800	263,100	103	0	50,260,400	264,600	104	0	52,794,500	261,900
16	23:55	197	9	39,257,000	295,600	198	<u>14</u> 14	41,644,800	252,300	204	0	54,572,000	295,200	204	0	50,484,600	224,200	208	0	53,014,200	219,700
17	23:55	204	10	39,551,500	294,500	202	14	41,938,500	293,700	202	0	54,868,000	296,000	199	0	50,779,200	294,600	204	0	53,314,900	300,700
18	23:55	207	10	39,869,200	317,700	202	15	42,234,400 42,548,700	295,900	190	0	55,174,400	306,400	210	0	51,086,600	307,400	206	0	53,656,600	341,700
19	23:55	100	0	40,052,600	183,400	106	4		314,300	202		55,540,800	366,400	206	0	51,448,800	362,200	302	0	54,072,400	415,800
20	23:55	290	14	40,253,300	200,700	300	22	42,735,900	187,200	102		55,726,000	185,200	106	0	51,636,700	187,900	99	0	54,260,500	188,100
21	23:55	204	10	40,597,900	344,600	206	15	43,291,100	205,800	194		55,920,400	194,400	204	0	51,838,300	201,600	204	0	54,456,400	195,900
22	23:55	204	10	40,891,100	293,200	200	15	43,587,200	349,400	194		56,257,100	336,700	199	0	52,175,900	337,600	198	0	54,794,900	338,500
23	23:55	204	10	41,185,600	294,500	204	15	43,587,200	296,100	198		56,537,600	280,500	203	0	52,464,300	288,400	192	0	55,077,700	282,800
24	23:55	298	19	41,617,800	432,200	295	27	44,307,400	297,000	198	0	56,823,700	286,100	203	0	52,756,300	292,000	206	0	55,359,900	282,200
25	23:55	302	18	42,014,600	396,800	306	26	44,307,400	423,200 401,000	298 302		57,263,700	440,000	303	0	53,202,400	446,100	301	0	55,806,000	446,100
26	23:55	242	15	42,424,200	409,600	241	20	45,117,100			0	57,741,500	477,800	299	0	53,692,500	490,100	297	0	56,311,200	505,200
27	23:55	308	21	42,844,100	419,900	302	29	45,537,400	408,700 420,300	250	_0	58,313,400	571,900	246	0	54,200,300	507,800	256	0	56,845,000	533,800
28	23:55	199		43,153,900	309,800	208	17	45,854,000	316,600	297	0	58,743,300	429,900	300	0	54,629,000	428,700	305	0	57,270,600	425,600
29	23:55	198		43,438,400	284,500	205	16	45,854,000	294,600	196		59,045,900	302,600	208	0	54,946,400	317,400	199	0	57,577,700	307,100
30	23:55	200	10	43,745,600	307,200	203	16	46,423,700	294,600	200		59,376,400	330,500	198	0	55,248,100	301,700	198	0	57,906,300	328,600
31	23:55	. 204		44,052,900	307,300	204	16	46,698,800	275,100	198		59,679,000	302,600	196	0	55,539,800	291,700	198	0	58,197,700	291,400
				,,			10 [40,030,000	2/5,100	196	0	59,981,600	302,600	194	0	55,831,100	291,300	196	0	58,489,500	291,800
	1	linimum	Pressure	0	41-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-																
		Monthly Movimum Decement of the Mining Pressure O										n Pressure	0	Monthly I	Minimur	n Pressure	0	Monthly /	Minimun	Pressure	0
		Monthly Average Dressure							29			m Pressure	0			m Pressure	0			n Pressure	
	Monthly Average Pressure 9 Monthly Average						Average	Pressure	14	Monthly	Average	Pressure	0			Pressure	0			Pressure	

-

MONTH: January, 2005

.

		WE		TIFICATION	: ASR-1	WE	ELL IDE	NTIFICATION	ASR-2	WE	LL IDE	NTIFICATION	N: ASR-3	WE	ELL IDE	NTIFICATION	ASR-4	w	ELL IDE	NTIFICATION	I: ASR-5
Date	Time	lnj.	lnj.	Cum.	Inc.	Inj.	Inj.	Cum.	Inc.	Inj.	Inj.	Cum.	Inc.	Inj.	Inj.	Cum.	Inc.	Inj.	Inj.	Cum.	Inc.
		Rate	Pres.	Inj. Vol.	lnj. Vol.	Rate	Pres.	Inj. Vol.	inj. Vol.	Rate	Pres.	Inj. Vol.	Inj. Vol.	Rate	Pres.	Inj. Vol.	lnj. Vol.	Rate	Pres.	inj. Vol.	Ini. Vol.
		(gpm)	(psi)	(gals.)	(gals.)	(gpm)	(psi)	(gals.)	(gals.)	(gpm)	(psi)	(gals.)	(gals.)	(gpm)	(psi)	(gais.)	(gals.)	(gpm)	(psi)	(gals.)	(gals.)
1	23:55	203	10	44,345,700	292,800	202	16	46,992,100	293,300	197	0	60,264,300	282,700	195	0	56,111,200	280,100	194	0	58,771,500	282.000
2	23:55	160	6	44,625,300	279,600	150	10	47,268,100	276,000	148	0	60,531,400	267,100	152	0	56,377,800	266,600	160	ō	59,040,100	268.60
3	23:55	106	0	44,791,100	165,800	107	4	47,433,400	165,300	102	0	60,690,900	159,500	108	0	56,544,700	166,900	91	Ō	59,186,600	146.50
4	23:55	143	3	44,979,200	188,100	156	8	47,626,300	192,900	153	0	60,885,100	194,200	160	0	56,739,900	195,200	154	0	59,375,200	188.60
5	23:55	153	4	45,167,500	188,300	146	7	47,830,300	204,000	152	0	61,085,900	200,800	148	0	56,947,000	207,100	148	0	59,570,600	195,40
6	23:55	96	0	45,367,300	199,800	109	3	48,025,800	195,500	106	0	61,287,300	201,400	104	0	57,143,500	196,500	107	0	59,770,000	199,40
7	23:55	300	13	45,499,200	131,900	296	20	48,152,000	126,200	305	0	61,397,800	110,500	300	0	57,289,900	146,400	307	0	59,933,200	163.20
8	23:55	106	0	45,766,200	267,000	102	3	48,416,900	264,900	99	0	61,666,300	268,500	92	0	57,553,200	263,300	92	0	60,197,400	264.20
9	23:55	150	2	45,977,600	211,400	92	_2	48,603,100	186,200	96	0	61,848,200	181,900	103	0	57,739,900	186,700	102	0	60,381,600	184.20
10	23:55	206	5	46,128,200	150,600	198	9	48,725,000	121,900	354	0	61,977,200	129,000	190	0	57,873,000	133,100	406	0	60,518,200	136.60
11	23:55	197	5	46,207,700	79,500	204	10	48,807,000	82,000	250	0	62,078,500	101,300	210	0	57,955,600	82,600	298	0	60,637,700	119.50
12	23:55	151	0	46,536,100	328,400	102	2	49,052,400	245,400	104	0	62,330,200	251,700	94	0	58,187,100	231,500	91	0	60,879,300	241.60
13	23:55	150	0	46,646,000	109,900	102	0	49,126,500	74,100	104	0	62,406,000	75,800	95	0	58,255,700	68,600	92	0	60,945,500	66.20
14	23:55	152	0	46,755,900	109,900	103	0	49,201,100	74,600	104	0	62,481,900	75,900	95	0	58,324,300	68,600	92	0	61.011.700	66,20
15	23:55	110	0	46,961,300	205,400	103	0	49,349,600	148,500	104	0	62,633,200	151,300	94	0	58,461,100	136,800	91	0	61,144,100	
16	23:55	92	0	47,098,500	137,200	103	0	49,497,800	148,200	104	0	62,783,700	150,500	94	0	58,597,000	135,900	92	0	61,275,500	131.40
17	23:55	92	0	47,231,200	132,700	103	0	49,646,800	149,000	105	0	62,934,700		95	0	58,733,300	136,300	92	0	61,407,500	132,00
18	23:55	92	0	47,380,900	149,700	103	0	49,798,900	152,100	104		63,089,200		95	0	58,884,600	151,300	92	0	61,553,700	146,20
19	23:55	108	0	47,637,900	257,000	102	2	50,052,500	253,600	106	0	63,346,000	256,800	107	0	59,142,900	258,300	110	0	61,809,800	256,10
20	23:55	108	0	47,793,800	155,900	102	2	50,203,200	150,700	106	0	63,513,900		106	0	59,295,200	152,300	94	0	61,945,100	135,30
21	23:55	100	0	47,949,000	155,200	100	0	50,347,200	144,000	104	0	63,681,800		104	0	59,447,500	152,300	94	0	62,089,700	144,60
22	23:55 23:55	40	0	48,088,300	139,300	49	0	50,483,800	136,600	51		63,794,700	112,900	50	0	59,588,800	141,300	40	0	62,157,500	67,800
23		50	0	48,106,200	17,900	51	0	50,502,800	19,000	49		63,846,800		51	0	59,648,500	59,700	42	0	62,213,500	56,000
24 25	23:55 23:55	100	0	48,186,600	80,400	110	0	50,589,300	86,500	105	0	63,898,900	52,100	92	0	59,710,600	62,100	104	0	62,340,300	126,80
25		99		48,329,300	142,700	110	0	50,745,800	156,500	106		64,049,600	150,700	98	0	59,842,700	132,100	103	0	62,488,600	148,30
	23:55 23:55	99	0	48,473,200	143,900	109	0	50,903,300	157,500	106		64,201,500	151,900	98	0	59,982,600	139,900	103	0.	62,637,900	149,30
27	23:55	103	0	48,625,300	152,100	109	0	51,066,400	163,100	97		64,370,700	169,200	101	0	60,156,200	173,600	103	0	62,868,500	230,60
28	23:55	98	0	48,782,200	156,900	107	0	51,233,900	167,500	96		64,543,300	172,600	107	0	60,326,400	170,200	146	0	63,097,300	228,80
29 30		97		48,970,600	188,400	108	2	51,443,600	209,700	104	0	64,737,400	194,100	96	0	60,519,000	192,600	104	0	63,318,200	220,90
30	23:55 23:55	96	0	49,110,500	139,900	109		51,591,800	148,200	106	0	64,890,700	153,300	98	0	60,660,400	141,400	105	0	63,470,300	152,10
31	23:55	90	0	49,205,500	95,000	100	0	51,694,800	103,000	103	0	64,991,300	100,600	97	0	60,756,700	96,300	104	0	63,569,800	99,500

	Monthly Minimum Pressure	0	Monthly Minimum Pressure	0	Monthly Minimum Pressure	0	Monthly Minimum Pressure	0	Monthly Minimum Pressure	0 7
	Monthly Maximum Pressure	13	Monthly Maximum Pressure	20	Monthly Maximum Pressure	0	Monthly Maximum Pressure	0	Monthly Maximum Pressure	
L	Monthly Average Pressure	2	Monthly Average Pressure	3	Monthly Average Pressure	-	Monthly Average Pressure		Monthly Average Pressure	
							Annual			U U

MONTH:

February-05	
-------------	--

		WE		ITIFICATION	: ASR-1	w	ELL IDE	NTIFICATION	I: ASR-2	we	LL IDEN	NTIFICATIO	N: ASR-3	w	ELL IDE	NTIFICATION	I: ASR-4	w	ELL IDE	NTIFICATIO	N: ASR-5
Date	Time	Rec. Rate (gpm)	WL (feet NGVD)	Cum. Rec. Vol. (gals.)	Inc. Rec. Vol. (gals.)	Rec. Rate (gpm)	WL (feet NGVD)	Cum. Rec. Vol. (gals.)	inc. Rec. Vol. (gais.)	Rec. Rate (gpm)	WL (feet NGVD)	Cum. Rec. Vol. (gals.)	Inc. Rec. Vol. (gals.)	Rec. Rate (gpm)	WL (feet NGVD)	Cum. Rec. Vol. (gals.)	Inc. Rec. Vol. (gals.)	Rec. Rate (gpm)	WL (feet NGVD)	Cum. Rec. Vol. (gais.)	Inc. Rec. Vo (gals.)
2															T					<u>[] (guis.)</u>	(gais.)
3		<u> </u>																l			
4						I				L											
5										l								i		İ	
6										 											
7										 											
8														J							
9														╟────							
10														l							
11										l				l							
12																					
13						-															
14														i							
15																		├───┤			
16	23:55	150	-47	46,800	46,800	150	-58	38,200	38,200	148	-35	29,200	29,200					150	-38		
17 18	23:55 23:55	174	-56	288,200	241,400	178	-69	291,500	253,300	180	-40	283,400	254,200	176	-41	139,100	139,100	178	-38	82,800 337,000	82,800
19	23:55	172	-58	541,300	253,100	175	-69	544,300	252,800	172	-41	538,300	254,900	173	-42	394,200	255,100	178	-43	592,000	254,200
20	23:55	220 250	-67	828,700	287,400	220	-81	830,100	285,800	220	-44	823,900	285,600	222	-46	679,900	285,700	220	-47	877,500	255,000
21	23:55	250	-73 -75	1,124,000	295,300	252	-89	1,131,100	301,000	249	-45	1,124,700	300,800	254	-48	981,300	301,400	250	-49	1,178,500	301,000
22	23:55	230	-75	1,483,300	359,300	253	-92	1,492,400	361,300	249	-46	1,485,700	361,000	252	-49	1,342,900	361,600	251	-50	1,539,300	360,800
23	23:55	202	-63	2,096,100	341,800	249	-93	1,836,100	343,700	250	-47	1,829,100	343,400	252	-50	1,686,800	343,900	252	-50	1,849,600	310,300
24	23:55	178	-63	2,096,100	271,000 315,000	202 174	-76	2,108,800	272,700	204		2,106,100	277,000	0	-50	1,686,800	0	204	-45	2,159,400	309,800
25	23:55	0	-63	2,411,100	0	0	-77	2,393,000	284,200	174	-44	2,453,100	347,000	176	-46	2,124,100	437,300	175	-47	2,507,300	347,900
26	23:55	-0-1	-63	2,411,100	0	0	-77 -77	2,393,000	0	149		2,710,100	257,000	150	-42	2,381,300	257,200	148	-43	2,764,400	257,100
27	23:55	0	-63	2,411,100	0	0	-77	2,393,000 2,393,000	0	227		2,983,800	273,700	226	-43	2,622,500	241,200	226	-46	3,038,100	273,700
28	23:55	180	-38	2,774,500	363,400	200	-42	2,792,100	0	152		3,195,200	211,400	151	-39	2866800	244,300	154	-41	3,249,400	211,300
				2,,000 1	000,400	200	-42	2,192,100	399,100	125	-38	3,406,800	211,600	128	-40	3078600	211,800	131	-40	3,461,300	211,900

NA : Not Available

F

~

MONTH: March-05

		WE	LL IDEN	ITIFICATION	: ASR-1	W		ITIFICATION	: ASR-2	WE		ITIFICATION	N: ASR-3	w	ELL IDE	NTIFICATION	: ASR-4	w	ELL IDE	NTIFICATION	: ASR-5
Date	Time	Rec.	WL	Cum.	Inc.	Rec.	WL	Cum.	Inc.	Rec.	WL	Cum.	Inc.	Rec.	WL	Cum.	Inc.	Rec.	WL	Cum.	Inc.
		Rate	(feet	Rec. Vol.	Rec. Vol.	Rate	(feet	Rec. Vol.	Rec. Vol.	Rate	(feet	Rec. Vol.	Rec. Vol.	Rate	(feet	Rec. Vol.	Rec. Vol.	Rate	(feet	Rec. Vol.	Rec. Vol.
		(gpm)	NGVD)	(gals.)	(gals.)	(gpm)	NGVD)	(gals.)	(gals.)	(gpm)	NGVD)	(gals.)	(gals.)	(gpm)	NGVD)	(gals.)	(gals.)	(gpm)	NGVD)		(gals.)
1	23:55	130	-50	2,900,500	126,000	128	-60	2,919,500	127,400	114	-37	3,585,900	179,100	126	-38	3,257,600	179,000	124	-39	3,640,400	179,100
2	23:55	298	-78	3,183,400	282,900	300	-97	3,204,400	284,900	300	-45	3,875,400	289,500	300	-49	3,547,800	290,200	298	-50	3,930,200	289,800
3	23:55	298	-83	3,613,800	430,400	302	-103	3,636,800	432,400	302	-48	4,308,400	433,000	301	-52	3,980,500	432,700	300	-51	4.362,900	432,700
4	23:55	154	-58	3,882,500	268,700	148	-69	3,907,600	270,800	147	-40	4,579,000	270,600	153	-42	4,251,100	270,600	147	-42	4,633,400	270,500
5	23:55	250	-72	4,183,400	300,900	254	-90	4,212,400	304,800	250	-44	4,881,700	302,700	251	-43	4,554,200	303,100	251	-47	4,936,100	302,700
6	23:55	300	-82	4,541,600	358,200	300	-102	4,570,400	358,000	302	-47	5,241,900	360,200	302	-51	4,914,800	360,600	301	-50	5,296,300	360,200
7	23:55	200	-66	4,907,300	365,700	200	-81	4,937,900	367,500	203	-43	5,609,500	367,600	202	-45	5,282,700	367,900	202	-45	5,664,200	367,900
8	23:55	143	-57	5,187,400	280,100	146	-70	5,219,900	282,000	147	-40	5,891,600	282,100	149	-43	5,564,900	282,200	151	-42	5,946,900	282,700
9	23:55	150	-55	5,396,700	209,300	152	-66	5,431,300	211,400	154	-38	6,103,100	211,500	154	-40	5,711,700	146,800	152	-40	6,158,100	211,200
10	23:55	0	-54	5,610,400	213,700	0	-65	5,646,900	215,600	152	-38	6,322,200	219,100	148	-40	5,930,800	219,100	156	-39	6,377,200	219,100
11	23:55	147	-50	5,827,000	216,600	149	-63	5,865,500	218,600	161	-35	6,486,800	164,600	0	-35	6,108,100	177,300	0	-35	6,543,500	166,300
12	23:55	198	-58	6,053,300	226,300	200	-74	6,093,700	228,200	200	-38	6,715,000	228,200	0	-35	6,108,100	0	201	-41	6,718,600	175,100
13	23:55	300	-79	6,422,300	369,000	300	-100	6,464,200	370,500	298	-45	7,085,700	370,700	301	-49	6,311,500	203,400	299	-48	7,122,000	403,400
14	23:55	300	-81	6,857,800	435,500		-101	6,901,500	437,300	301	-46	7,523,200	437,500	301	-50	6,749,600	438,100	300	-49	7,559,800	437,800
15	23:55	202	-64	7,175,200	317,400	198	-78	7,211,500	310,000	198	-42	7,871,200	348,000	200	-44	7,098,300	348,700	200	-43	7,908,500	348,700
16	23:55	198	-62	7,462,500	287,300	200	-78	7,500,600	289,100	202	-41	8,160,300	289,100	200	-43	7,387,800	289,500	200	-43	8,198,400	289,900
17	23:55	0	-35	7,674,100	211,600	0	-40	7,713,400	212,800	0	-33	8,373,000	212,700	150	-36	7,659,100	271,300	0	-34	8,437,200	238,800
18	23:55	152	-49	7,713,400	39,300	150	-60	7,753,200	39,800	149	-35	8,496,200	123,200	152	-37	7,875,300	216,200	152	-37	8,560,600	123,400
19 20	23:55	151	-52	7,931,500	218,100	148	-62	7,973,100	219,900	146	-35	8,716,200	220,000	152	-38	8,095,300	220,000	150	-38	8,780,900	220,300
20	23:55 23:55	250	-70	8,270,200	338,700	252	-88	8,313,500	340,400	250	-42	9,097,700	381,500	251	-45	8,456,800	361,500	250	-44	9,162,900	382,000
22	23:55	248 298	-70	8,628,100	357,900	249	-87	8,673,300	359,800	250	-42	9,457,300	359,600	252	-45	8,817,100	360,300	250	-44	9,522,500	359,600
22	23:55	298	-80 -81	9,032,200	404,100	300	-100	9,079,000	405,700	402	-46	9,946,900	489,600	301	-50	9,223,500	406,400	302	-48	9,928,600	406,100
23	23:55	300	-81 -81	9,461,400	429,200	302	-101	9,509,500	430,500	400	-48	10,520,700	573,800	300	-50	9,654,900	431,400	302	-49	10,359,700	431,100
25	23:55	202	-64	9,861,800	400,400	302	-102	9,911,400	401,900	301		11,045,400	524,700	300	-50	10,076,600	421,700	300	-48	10,827,800	468,100
25	23:55	202	-64 -81	10,211,800	350,000	198	-78	10,262,900	351,500	198		11,396,900	351,500	202	-43	10,428,700	352,100	202	-42	11,179,700	351,900
20	23:55	298	-81	10,564,000	352,200	301	-100	10,621,200	358,300	401		11,784,000	387,100	350	-52	10,801,300	372,600	450	-53	11,550,300	370,600
28	23:55	198	-66		431,500	301	-102	11,049,400	428,200	302		12,328,200	544,200	301	-50	11,279,500	478,200	301	-48	12,143,500	593,200
20	23:55	301	-66	11,386,700	391,200	200		11,442,200	392,800	202		12,721,300	393,100	201	-44	11,673,100	393,600	199	-43	12,537,100	393,600
30	23:55	296	-81	11,779,100	392,400	302		11,836,500	394,300	299		13,115,500	394,200	300	-49	12,067,900	394,800	302	-47	12,931,600	394,500
30	23:55	296	-81	12,209,900	430,800	300		12,269,300	432,800	300		13,548,000	432,500	300	-50	12,501,000	433,100	301	-48	13,364,200	432,600
	23,35	299	-19	12,621,300	411,400	302	-99	12,682,500	413,200	301	-45	13,960,800	412,800	_ 300	-49	12,914,700	413,700	301	-47	13,777,500	413,300

NA : Not Available

MONTH: April, 2005

				ITIFICATION	: ASR-1	w	ELL IDEN	NTIFICATION	: ASR-2	WE		TIFICATIO	N: ASR-3	WE	ELL IDE	NTIFICATION	: ASR-4	w	ELL IDE	NTIFICATION	I: ASR-5
Date	Time	Rec.	WL	Cum.	Inc.	Rec.	WL	Cum.	Inc.	Rec.	WL	Cum.	Inc.	Rec.	WL	Cum.	Inc.	Rec.	WL	Cum.	inc.
1		Rate	(feet	Rec. Vol.	Rec. Vol.	Rate	(feet	Rec. Vol.	Rec. Vol.	Rate	(feet	Rec. Vol.	Rec. Vol.	Rate	(feet	Rec. Vol.	Rec. Vol.	Rate	(feet	Rec. Vol.	Rec. Vol.
		(gpm)	NGVD)	(gals.)	(gals.)	(gpm)	NGVD)	(gals.)	(gals.)	(gpm)	NGVD)	(gals.)	(gals.)	(gpm)	NGVD)	(gals.)	(gals.)	(gpm)	NGVD)		(gals.)
1	23:55	202	-66	13,019,600	398,300	204	-82	13,082,600	400,100	198	-42	14,360,500	399,700	201	-44	13,315,200	400,500	200	-44	14,177,800	400,300
2	23:55	198	-64	13,390,800		204	-81	13,456,100	373,500	202	-41	14,733,800	373,300	200	-43	13,688,800	373,600	200	-43	14,177,800	
3	23:55	201	-62	13,664,800	274,000	202	-78	13,732,000	275,900	204	-40	15,009,600	275,800	201	-42	13,964,800	276,000	200	-42	14,827,900	276,400
4	23:55	301	-80	14,058,400	393,600	302	-100	14,127,700	395,700	300	-45	15,372,300	362,700	300	-49	14,360,900	396,100	300	-47	15,223,700	395,800
5	23:55	300	-81	14,488,300	429,900	300	-101	14,559,500	431,800	301	-46	15,836,700	464,400	300	-50	14,793,200	432,300	301	-48	15,655,400	431,700
6	23:55	300	-82	14,920,000	431,700	302	-102	14,992,900	433,400	298	-46	16,271,000	434,300	300	-50	15,227,200	434,000	301	-48	16.088.800	433,400
7	23:55	300	-82	15,352,700	432,700	300	-102	15,427,300	434,400	300	-46	16,704,400	433,400	301	-50	15,662,300	435,100	300	-48	16,523,500	434,700
8	23:55	300	-75	15,744,900	392,200	302	-93	15,821,800	394,500	300	-43	17,098,500	394,100	300	-46	16,024,200	361,900	301	-45	16,918,100	394,600
9	23:55	300	-81	16,177,700	432,800	302	-102	16,256,600	434,800	300	-46	17,586,200	487,700	301	-50	16,509,800	485,600	302	-48	17,400,500	482,400
10	23:55	298	-81	16,603,500	425,800	302	-102	16,687,900	431,300	300	-46	18,017,000	430,800	304	-50	16,908,500	398,700	300	-48	17,831,500	431,000
11	23:55	301	-84	17,038,400	434,900	302	-104	17,121,000	433,100	401	-50	18,510,400	493,400	352	-53	17,405,100	496,600	402	-53	18,325,400	493,900
12 13	23:55 23:55	300	-84	17,469,900	431,500	302	-104	17,554,500	433,500	400	-50	19,087,600	577,200	350	-54	17,911,000	505,900	402	-53	18,903,100	577,700
13	23:55	300	-84	17,902,100	432,200	302	-105	17,988,500	434,000	401		19,665,600	578,000	350	-54	18,417,600	506,600	399	-53	19,481,700	578,600
14	23:55	298 202	-84	18,334,300	432,200	301	-105	18,422,700	434,200	400		20,243,800	578,200	353	-54	18,924,300	506,700	401	-54	20,062,400	580,700
16	23:55	300	-67	18,731,800	397,500	202	-83	18,822,200	399,500	198		20,748,200	504,400	202	-46	19,376,500	452,200	202	-44	20,565,100	502,700
17	23:55	300		19,145,400	413,600	300	-105	19,237,900	415,700	451		21,331,500	583,300	351	-55	19,856,400	479,900	434	-55	21,135,800	570,700
18	23:55	300		19,577,100	431,700	300	-103	19,671,600	433,700	302		21,788,800	457,300	302	-51	20,298,400	442,000	301	-49	21,590,200	454,400
19	23:55	299		20,007,900 20,439,300	430,800	301	-103	20,104,300	432,700	298		22,221,300	432,500	303	-51	20,731,500	433,100	301	-49	22,022,800	432,600
20	23:55	301		20,439,300	431,400	302	-105	20,537,500	433,200	450		22,738,000	516,700	350	-55	21,193,200	461,700	434	-55	22,530,900	508,100
21	23:55	297		21,258,700	414,700 404,700	300	-105	20,954,000	416,500	450		23,353,000	615,000	350	-55	21,664,600	471,400	434	-56	23,120,600	589,700
22	23:55	302		21,258,700		300	-101	21,360,500	406,500	302		23,896,500	543,500	300	-50	22,117,000	452,400	301	-49	23,650,000	529,400
23	23:55	302		22,103,600	412,800	301 301	-102	21,774,900	414,400	299		24,476,000	579,500	301	-51	22,587,100	470,100	301	-49	24,213,300	563,300
24	23:55	298		22,530,200	432,100	301	-105	22,208,700	433,800	450		25,046,700	570,700	352		23,067,300	480,200	434	-56	24,770,400	557,100
25	23:55	298		22,964,900	434,700	300		22,637,000	428,300	450		25,688,200	641,500	352	-57	23,567,600	500,300	434	-57	25,388,700	618;300
26	23:55	300		23,396,500	434,700	300	-105	23,073,800	436,800	450		26,178,000	489,800	350		24,022,200	454,600	435	-56	25,873,600	484,900
27	23:55	150		23,599,100	202,600	150	-107 -79	23,507,100	433,300	450		26,825,300	647,300	350		24,528,200	506,000	434	-57	26,499,200	625,600
28	23:55	298		24,030,700	431,600	301	-79		200,600	150		27,027,700	202,400	150		24,677,700	149,500	150	-40	26,671,000	171,800
29	23:55	144		24,050,700	337,400	152		24,141,000	433,300	301		27,529,500	501,800	300		25,107,600	429,900	300	-49	27,200,400	529,400
30	23:55	302		24,782,300	414,200	300	-105	24,480,000	339,000	200		27,994,200	464,700	200		25,507,700	400,100	201	-47	27,656,900	456,500
herman da				24,702,0001			-105	24,695,900	415,900	450	-53	28,613,600	619,400	352	-56	25,996,300	488,600	436	-57	28,258,000	601,100

NA : Not Available. Pressure transducer temporarily inoperable.

F

		WELL IDENTIFICATION: ASR-1			: ASR-1	WELL IDENTIFICATION: ASR-2				WE	LL IDE		N: ASR-3	w	ELL IDE	NTIFICATION	: ASR-4	WELL IDENTIFICATION: ASR-5			
Date	Time	Rec.	WL	Cum.	Inc.	Rec.	WL	Cum.	Inc.	Rec.	WL	Cum.	Inc.	Rec.	WL	Cum.	Inc.	Rec.	WL	Cum.	Inc.
		Rate	(feet	Rec. Vol.	Rec. Vol.	Rate	(feet	Rec. Vol.	Rec. Vol.	Rate	(feet	Rec. Vol.	Rec. Vol.	Rate	(feet	Rec. Vol.	Rec. Vol.	Rate	(feet	Rec. Vol.	Rec. Vol.
		(gpm)	NGVD)	(gals.)	(gals.)	(gpm)	NGVD)	(gals.)	(gals.)	(gpm)	NGVD)	(gals.)	(gals.)	(gpm)	NGVD)	(gals.)	(gals.)	(gpm)	NGVD)	(gals.)	(gals.)
1	23:55	300	-83	25,212,000	429,700	300	-104	25,327,400	431,500	302	-48	29,086,900	473,300	301	-52	26,442,200	445,900	301	-50	28,727,300	469,300
2	23:55	298		25,644,900	432,900	302	-104	25,762,100	434,700	302	-48	29,521,200	434,300	302	-52	26,877,400	435,200	301	-50	29,162,000	434,700
3	23:55	302		26,075,200	430,300	300	-104	26,194,100	432,000	450	-52	29,980,000	458,800	352	-55	27,315,700	438,300	438	-55	29,609,800	447,800
4	23:55	300		26,507,800	432,600	302	-107	26,628,500	434,400	451	-54	30,623,900	643,900	352	-57	27,822,800	507,100	434	-57	30,238,100	628,300
5	23:55	298		26,939,200	431,400	301	-107	27,061,900	433,400	450	-55	31,271,800	647,900	351	-58	28,328,600	505,800	435	-57	30,863,700	625,600
6	23:55	302		27,372,100	432,900	300	-108	27,496,500	434,600	450	-55	31,919,500	647,700	352	-58	28,835,900	507,300	434	-58	31,491,000	627,300
I	23:55	302		27,802,600	430,500	300	-108	27,928,800	432,300	450	-55	32,566,700	647,200	352	-58	29,340,500	504,600	434	-58	32,113,800	622,800
8	23:55	302		28,232,300	429,700	300	-108	28,360,200	431,400	450	-55	33,213,900	647,200	350	-58	29,844,000	503,500	434	-58	32,735,400	621,600
9	23:55	302	-88	28,664,800	432,500	302	-108	28,794,400	434,200	450	-55	33,861,600	647,700	350	-59	30,350,900	506,900	433	-58	33,362,000	626,600
10	23:55	300		29,096,600	431,800	302	-109	29,227,800	433,400	451	-56	34,509,500	647,900	352	-59	30,856,800	505,900	434	-59	33,985,200	623,200
12	23:55 23:55	299		29,528,200	431,600	302	-108	29,657,600	429,800	450	-55	35,157,500	648,000	352	-59	31,362,800	506,000	432	-58	34,609,000	623,800
13	23:55	301 300		29,962,200	434,000	302	-108	30,093,200	435,600	442	-56	35,804,100	646,600	350	-59	31,871,400	508,600	434	-59	35,236,400	627,400
14	23:55	300	-88 -88	30,395,000	432,800	301	-109	30,527,700	434,500	440	-55	36,440,500	636,400	350	-58	32,345,900	474,500	434	-58	35,862,500	626,100
15	23:55	300		30,824,700	429,700	302	-109	30,958,900	431,200	440	-55	37,072,300	631,800	352	-59	32,882,200	536,300	434	-58	36,483,900	621,400
16	23:55	300		31,254,900 31,686,700	430,200 431,800	300	-109	31,358,100	399,200	440	-55	37,704,800	632,500	352	-59	33,386,400	504,200	432	-58	37,105,800	621,900
17	23:55	300		32,112,700		302	-109	31,824,200	466,100	440	-56	38,312,900	608,100	351	-59	33,892,500	506,100	433	-59	37,729,800	624,000
18	23:55	300		32,517,700		300	-109	32,251,800	427,600	440	-56	38,960,600	647,700	350	-59	34,389,900	497,400	432	-59	38,340,600	610,800
19	23:55	298		32,952,100		302	-108	32,658,300	406,500	440	-56	39,555,900	595,300	351	-59	34,856,700	466,800	432	-58	38,926,200	585,600
20	23:55	300	-88	33,382,600		<u>302</u> 300	-109	33,094,300	436,000	441	-56	40,194,500	638,600	352	-59	35,365,800	509,100	432	-59	39,553,200	627,000
20	23:55	301		33,816,000	430,500	300	-110	33,526,500	432,200	440	-56	40,827,500	633,000	351	-59	35,870,400	504,600	432	-59	40,174,100	620,900
22	23:55	299		34,240,800	433,400	300	-109	33,924,500	398,000	440	-56	41,464,400	636,900	350	-59	36,378,400	508,000	432	-59	40,799,900	625,800
23	23:55	297		34,240,800	424,800	301	-109	34,350,500	426,000	440	-56	42,088,400	624,000	352	-60	36,875,800	497,400	432	-59	41,411,400	611,500
24	23:55	300		35,107,700	431,800	300	-109	34,787,100	436,600	440	-56	42,728,400	640,000	350		37,386,200	510,400	432	-59	42,038,800	627,400
25	23:55	302		35,539,800		300	-109	35,653,400	432,900	440	-56	43,363,300	634,900	350		37,892,400	506,200	434	-59	42,660,800	622,000
26	23:55	299	-87	35,972,100	432,100	304	-109	35,653,400	433,400	440	-50	43,973,900	610,600	350	-58	38,398,600	506,200	436	-58	43,283,600	622,800
27	23:55	300	-88	36,406,100	434,000	300	-108	36,523,000	434,000	440	-56	44,143,700	169,800	350	-58	38,928,500	529,900	435	-58	43,915,300	631,700
28	23:55	298	-88	36,832,100	426,000	301	-110	36,949,100	435,600	441	-56	44,781,600	637,900	352	-60	39,437,200	508,700	432	-59	44,541,400	626,100
29	23:55	300		37,266,200	434,100	302	-110	36,949,100	426,100	441	-56	45,405,600	624,000	351	-60	39,934,700	497,500	430	-59	45,152,400	611,000
30	23:55	300		37,676,300	410,100	302	-110	37,385,900		440	-57	46,045,400	639,800	350	-60	40,445,100	510,400	432	-60	45,779,300	626,900
31	23:55	298		38,129,400	453,100	302	-110	38,252,100	411,300	440	-57 -57	46,669,400	624,000	352	-60	40,925,300	480,200	432	-60	46,379,200	599,900
		L		00,120,400	100,100		110	30,232,100	454,900	440	-57	47,313,900	644,500	350	-61	41,456,800	531,500	430	-59	47,022,200	643,000

MONTH: May, 2005

NA : Not Available. Pressure transducer temporarily inoperable.

		WELL IDENTIFICATION: ASR-1			: ASR-1	WELL IDENTIFICATION: ASR-2			WE	ELL IDEN	NTIFICATIO	N: ASR-3	WE	ELL IDEI	NTIFICATION	: ASR-4	WELL IDENTIFICATION: ASR-5				
Date	Time	Rec.	WL	Cum.	Inc.	Rec.	WL	Cum.	Inc.	Rec.	WL	Cum.	Inc.	Rec.	WL	Cum.	Inc.	Rec.	WL	Cum.	Inc.
		Rate	(feet	Rec. Vol.	Rec. Vol.	Rate	(feet	Rec. Vol.	Rec. Vol.	Rate	(feet	Rec. Vol.	Rec. Vol.	Rate	(feet	Rec. Vol.	Rec. Vol.	Rate	(feet	Rec. Vol.	Rec. Vol.
		(gpm)	NGVD)	(gais.)	(gals.)	(gpm)	NGVD)	(gals.)	(gals.)	(gpm)	NGVD)	(gals.)	(gais.)	(gpm)	NGVD)	(gals.)	(gals.)	(gpm)	NGVD)	(gals.)	(gals.)
1	23:55	302	-88	38,560,900	431,500	300	-110	38,685,500	433,400	441	-57	47,948,800	634,900	352	-60	41,962,800	506,000	431	-59	47,643,300	621,100
2	23:55	300	-88	38,994,600	433,700	301	-110	39,121,100	435,600	442	-57	48,586,700	637,900	352	-60	42,470,900	508,100	432	-59	48,262,000	618,700
3	23:55	300	-88	39,424,500	429,900	298	-108	39,532,800	411,700	440	-56	49,219,500	632,800	351	-59	42,975,000	504,100	432	-58	48,886,800	624,800
4	23:55	302	-87	39,857,400	432,900	300	-109	39,987,200	454,400	440		49,855,900	636,400	351	-58	43,482,200	507,200	434	-58	49,511,500	624,700
5	23:55	301	-87	40,287,400	430,000	301	-108	40,418,600	431,400	440	-55	50,488,000	632,100	350	-58	43,986,100	503,900	432	-58	50,132,500	621,000
6	23:55	301	-86	40,717,900	430,500	302	-108	40,840,500	421,900	442	-55	51,117,900	629,900	350	-57	44,476,400	490,300	434	-57	50,754,700	622,200
7	23:55	300	-84	41,124,000	406,100	302	-105	41,238,800	398,300	441	-54	51,755,200	637,300	351	-57	44,982,600	506,200	436	-56	51,380,300	625,600
8	23:55	298	-86	41,556,000	432,000	302	-107	41,672,800	434,000	440		52,390,100	634,900	350	-57	45,488,800	506,200	434	-57	52,006,500	626,200
9	23:55	300	N/A	41,987,200	431,200	302	-107	42,073,400	400,600	440	-54	53,024,300	634,200	352	-57	45,994,300	505,500	437	-56	52,632,200	625,700
10	23:55	300	N/A	42,419,100	431,900	300	-106	42,539,600	466,200	441		53,659,200	634,900	351	-57	46,500,500	506,200	433	-56	53,257,500	625,300
11	23:55	300	N/A	42,847,400	428,300	303	-107	42,936,200	396,600	441		54,288,100	628,900	352	-56	47,001,700	501,200	434	-55	53,824,800	567,300
12	23:55	298	N/A	43,282,400	435,000	302	-106	43,406,100	469,900	440		54,927,700	639,600	351	-56	47,511,900	510,200	434	-56	54,504,900	680,100
13	23:55	214	N/A	43,670,000	387,600	302	-104	43,840,600	434,500	440		55,563,000	635,300	440	-58	48,063,700	551,800	434	-55	55,131,000	626,100
14	23:55	209	N/A	43,972,400	302,400	302	-104	44,275,000	434,400	440	-53	56,198,100	635,100	442	-57	48,700,400	636,700	435	-55	55,756,600	625,600
15	23:55	212	N/A	44,274,700	302,300	303	-103	44,709,400	434,400	441		56,832,800	634,700	442	-57	49,337,000	636,600	436	-55	56,384,500	627,900
16	23:55	212	N/A	44,577,100	302,400	302	-103	45,143,800	434,400	441		57,468,100	635,300	443	-57	49,973,700	636,700	436	-55	57,010,600	626,100
17	23:55	210	N/A	44,879,400	302,300	303	-102	45,578,200	434,400	440		58,103,200	635,100	444	-57	50,610,300	636,600	438	-55	57,638,400	627,800
18	23:55	213	N/A	45,184,800	305,400	302	-103	46,016,400	438,200	439		58,743,600	640,400	442	-57	51,253,300	643,000	438	-55	58,279,400	641,000
19	23:55	206	N/A	45,482,600	297,800	302	-102	46,444,100	427,700	440		59,369,100	625,500	440	-58	51,880,700	627,400	436	-55	58,899,700	620,300
20	23:55	210	N/A	45,784,500	301,900	301	-103	46,877,900	433,800	440		60,003,700	634,600	442	-58	52,516,800	636,100	435	-55	59,528,700	629,000
21	23:55	209	N/A	46,086,500	302,000	300	-103	47,312,000	434,100	441		60,638,700	635,000	442	-58	53,153,000	636,200	436	-55	60,157,800	629,100
22	23:55	210	N/A	46,389,700	303,200	302	-103	47,747,600	435,600	439		61,276,200	637,500	441	-57	53,791,800	638,800	436	-55	60,789,800	632,000
23	23:55	210	N/A	46,501,200	111,500	302	-39	47,907,700	160,100	439	-30	61,510,200	234,000	441	-31	54,026,000	234,200	436	-31	61,021,400	231,600
24	23:55				-46,501,200				-47,907,700				-61,510,200				-54,026,000				-61,021,400
25	23:55				0				0				0				0				0
26	23:55				0				0				0				0				0
27	23:55				0				0				0				0				0
28	23:55				0				0				0				0			1	0
29	23:55		L		0				0				0				0				0
30	23:55				0	L			0				0				0				0

MONTH: June, 2005

NA : Not Available. Pressure transducer temporarily inoperable.

APPENDIX D

DAILY AND WEEKLY INJECTION AND RECOVERY WATER QUALITY DATA FOR THE ASR WELLS FOR CYCLE 4

DAILY AND WEEKLY INJECTION AND RECOVERY WATER QUALITY DATA FOR THE ASR WELLS FOR CYCLE 4

MONTH: JULY, 2004

PARAMETERS	Unit		INJECTE	DWATER	
		wk1 (7/8/04)	wk2(7/15/04)	wk3(7/22/04)	wk4(7/29/04)
pH (Field)	pH Units	7.26	7,18	7.39	7.68
pH (Lab)	pH Units	6.98	6.76	7.80	6.61
Specific Conductance	umhos/cm	289	301	282	282
Field Temperature	Centigrade	26.4	27.1	27.3	24.8
Dissolved Oxygen (Field)	mg/L	2.51	2.60	2.14	3.35
Dissolved Oxygen (Lab)	mg/L	9.5	9.4	8.4	6.6
Chlorine Residual - Free (Field)	mg/L	0.0	0.0	0.0	0.0
Chlorine Residual - Total (Field)	mg/L	0.0	0.0	0.0	0.0
Color	си	8.9	NT	8.9	8.3
Odor	TON	1	1	1	1
Turbidity	ΝΤυ	0.08	0.05	0.02	0.01
Gross Alpha	pCi/L	ND	NT	NT	NT
Alkalinity (Total)	mg/L	35	35	38	37
Alkalinity (Bicarbonate)	mg/L	35	35	38	37
Hardness (Total)	mg/L	78	76	84	68
Hardness (Calcium)	mg/L	54	60	52	56
Hardness (Carbonate)	mg/L	35	35	38	37
Hardness (Non-Carbonate)	mg/L	43	41	46	31
Aluminum	mg/L	NT	NT	NT	NT
Ammonia	mg/L	NT	NT	NT	NT
Arsenic	ug/L	ND	NT	NT	NT
Chloride	mg/L	36	37	43	37
Coliform Bacteria	col./100mL	NT	NT	NT	NT
Fluoride	mg/L	0.82	0.69	0.73	0.75
Iron	mg/L	0.12	NT	NT	NT
Lead	mg/L	NT	NT	NT	NT
Nitrate	mg/L	NT	NT	NT	NT
Nitrite	mg/L	NT	NT	NT	NT
Sulfate	mg/L	22.6	22.6	24.0	25.9
TDS	mg/L	216	164	206	136
Total Sulfide	mg/L	ND	0.30	0.30	0.30
Trihalomethanes	ug/L	11.2	NT	7.64	NT

DAILY AND WEEKLY INJECTION AND RECOVERY WATER QUALITY DATA FOR THE ASR WELLS FOR CYCLE 4

MONTH: August, 2004

PARAMETERS	Unit		INJECT	DWATER	
		wk1 (8/5/04)	wk2(8/12/04)	wk3(shut down)	wk4(8/26/04)
pH (Field)	pH Units	7.33	7.49	NT	7.34
pH (Lab)	pH Units	7.03	7.40	NT	7.95
Specific Conductance	umhos/cm	294	304	NT	276
Field Temperature	Centigrade	26.6	24.2	NT	27.6
Dissolved Oxygen (Field)	mg/L	2.66	2.56	NT	2.27
Dissolved Oxygen (Lab)	mg/L	9.80	9.20	NŤ	8.60
Chlorine Residual - Free (Field)	mg/L	0.0	0.0	NT	0.0
Chlorine Residual - Total (Field)	mg/L	0.0	0.0	NT	0.0
Color	cu	8.3	10.0	NT	9.2
Odor	TON	1	1	NT	1
Turbidity	NTU	0.06	0.18	NT	0.02
Gross Alpha	pCi/L	ND	NT	NT	ND
Alkalinity (Total)	mg/L	44	43	NT	37
Alkalinity (Bicarbonate)	mg/L	44	43	NT	37
Hardness (Total)	mg/L	70	78	NT	72
Hardness (Calcium)	mg/L	64	78	NT	64
Hardness (Carbonate)	mg/L	44	43	NT	NT
Hardness (Non-Carbonate)	mg/L	26	35	NT	35
Aluminum	mg/L	NT	NT	NT	NT
Ammonia	mg/L	NT	NT	NT	NT
Arsenic	ug/L	ND	ND	NT	ND
Chloride	mg/L	38	65	NT	37
Coliform Bacteria	coi./100mL	NT	NT	NT	NT
Fluoride	mg/L	0.70	0.68	NT	0.70
Iron	mg/L	0.17	NT	NT	NT
Lead	mg/L	NT	NT	NT	NT
Nitrate	mg/L	NT	NT	NT	NT
Nitrite	mg/L	NT	NT	NT	NT
Sulfate	mg/L	26.5	27.7	NT	24.8
TDS	mg/L	168	218	NT	98.8
Total Sulfide	mg/L	0.30	0.30	NT	0.60
Trihalomethanes	ug/L	11.1	NT	NT	10.4

DAILY AND WEEKLY INJECTION AND RECOVERY WATER QUALITY DATA FOR THE ASR WELLS FOR CYCLE 4

MONTH: September, 2004

PARAMETERS	Unit		IN	JECTED WATER		
		wk1 (9/2/04)	wk2(9/9/04)	wk3(9/16/04)	wk4(9/23/04)	wk5(9/30/04)
pH (Field)	pH Units	7.35	7.29	7.10	7.20	7.40
pH (Lab)	pH Units	6.93	7.71	7.31	6.65	6.76
Specific Conductance	umhos/cm	280	283	286	266	270
Field Temperature	Centigrade	27.3	25.4	26.6	24.2	28.6
Dissolved Oxygen (Field)	mg/L	2.51	3.10	3.02	2.34	2.61
Dissolved Oxygen (Lab)	mg/L	9.40	9.40	9.40	9.40	9.40
Chlorine Residual - Free (Field)	mg/L	NT	1.57	1.16	0.13	1.96
Chlorine Residual - Total (Field)	mg/L	4.60	4.66	5.39	5.35	5.15
Color	CU	6.9	8.1	9.2	9.9	8.4
Odor	TON	1	1	1	1	1
Turbidity	NTU	0.03	0.02	0.09	0.38	0.02
Gross Alpha	pCi/L	ND	NT	NT	ND	NT
Alkalinity (Total)	mg/L	46	44	35	34	41
Alkalinity (Bicarbonate)	mg/L	46	44	35	34	41
Hardness (Total)	mg/L	124	82	112	126	122
Hardness (Calcium)	mg/L	62	66	54	82	64
Hardness (Carbonate)	mg/L	NT	44	35	NT	41
Hardness (Non-Carbonate)	mg/L	78	38	77	92	81
Aluminum	mg/L	NT	NT	NT	NT	NT
Ammonia	mg/L	NT	NT	NT	NT	NT
Arsenic	ug/L	ND	ND	ND	ND	ND
Chloride	mg/L	36	34	33	34	35
Coliform Bacteria	col./100mL	NT	NT	NT	NT	NT
Fluoride	mg/L	0.86	0.87	0.78	0.79	0.78
Iron	mg/L	0.06	0.10	0.09	0.14	ND
Lead	mg/L	NT	NT	NT	NT	NT
Nitrate	mg/L	NT	NT	NT	NT	NT
Nitrite	mg/L	NT	NT	NT	NT	NT
Sulfate	mg/L	24.9	25.0	25.4	25.5	27.0
TDS	mg/L	136	194	166	96	168
Total Sulfide	mg/L	ND	0.20	0.20	0.20	0.20
Trihalomethanes	ug/L	9.04	NT	11.33	10.01	NT

MONTH: October, 2004

PARAMETERS	Unit		INJECTED	WATER	
		wk1 (Shut Down)	wk2(10/14/04)	wk3(10/21/04)	wk4(Shut Down
pH (Field)	pH Units	NT	7.69	7.22	NT
pH (Lab)	pH Units	NT	6.66	6.87	NT
Specific Conductance	umhos/cm	NT	279	28.5	NT
Field Temperature	Centigrade	NT	25.3	24.5	NT
Dissolved Oxygen (Field)	mg/L	NT	NT	NT	NT
Dissolved Oxygen (Lab)	mg/L	NT	9.10	8.80	NT
Chlorine Residual - Free (Field)	mg/L	NT	0.0	NT	NT
Chlorine Residual - Total (Field)	mg/L	NT	0.0	NT	NT
Color	CU	NT	7.9	9.40	NT
Odor	TON	NT	1	1	NT
Turbidity	NTU	NT	0.02	0.18	NT
Gross Alpha	pCi/L	NT	0.33	NT	NT
Alkalinity (Total)	mg/L	NT	41	45	NT
Alkalinity (Bicarbonate)	mg/L	NT	41	45	NT
Hardness (Total)	mg/L	NT	82	78	NT
Hardness (Calcium)	mg/L	NT	72	76	NT
Hardness (Carbonate)	mg/L	NT	41	45	NT
Hardness (Non-Carbonate)	mg/L	NT	41	33	NT
Aluminum	mg/L	NT	NT	NT	NT
Ammonia	mg/L	NŤ	NT	NT	NT
Arsenic	ug/L	NT	ND	ND	NT
Chloride	mg/L	NT	36	34	NT
Coliform Bacteria	col./100mL	NT	NT	NT	NT
Fluoride	mg/L	NT	0.71	0.82	NT
Iron	mg/L	NT	ND	0.07	NT
Lead	mg/L	NŤ	NT	NT	NT
Nitrate	mg/L	NT	NT	NT	NT
Nitrite	mg/L	NT	NT	NT	NT
Sulfate	mg/L	NT	28	ND	NT
TDS	mg/L	NT	176	234	NT
Total Sulfide	mg/L	NT	0.20	ND	NT
Trihalomethanes	ug/L	NT	11.14	NT	NT

ND - Not detected NT - Not tested

NA - Not available, lab report pending

DAILY AND WEEKLY INJECTION AND RECOVERY WATER QUALITY DATA FOR THE ASR WELLS FOR CYCLE 4

MONTH: November, 2004

PARAMETERS	Unit	INJECTED WATER								
		wk1 (11/4/04)	wk2(11/12/04)	wk3(11/18/04)	wk4(11/24/04)					
pH (Field)	pH Units	7.38	6.90	7,34	7.20					
pH (Lab)	pH Units	6.51	6.41	6.66	6 59					
Specific Conductance	umhos/cm	244	266	292	309					
Field Temperature	Centigrade	25.8	24.2	24.3	24.2					
Dissolved Oxygen (Field)	mg/L	NT	NT	NT	NT					
Dissolved Oxygen (Lab)	mg/L	8.7	8.3	8.3	9.1					
Chlorine Residual - Free (Field)	mg/L	0.0	0.0	0.0	0.0					
Chlorine Residual - Total (Field)	mg/L	0.0	0.0	0.0	0.0					
Color	CU	9.1	8.5	6.7	7.3					
Odor	TON	2	1	1	1					
Turbidity	NTU	0.04	0.10	0.10	0.03					
Gross Alpha	pCi/L	0.994	NT	NT	NT					
Alkalinity (Total)	mg/L	47	36	38	39					
Alkalinity (Bicarbonate)	mg/L	47	36	38	39					
Hardness (Total)	mg/L	100	126	80	68					
Hardness (Calcium)	mg/L	86	112	70	54					
Hardness (Carbonate)	mg/L	47	36	38	39					
Hardness (Non-Carbonate)	mg/L	53	90	42	29					
Aluminum	mg/L	NT	NT	NT	NT					
Ammonia	mg/L	NT	NT	NT	NT					
Arsenic	ug/L	1.4	1.0	1.0	1.0					
Chloride	mg/L	36	33	37	37					
Coliform Bacteria	col./100mL	NT	NT	NT	NT					
Fluoride	mg/L	0.60	0.70	0.70	0.73					
Iron	mg/L	0.05	ND	0.07	NT					
Lead	mg/L	NT	NT	NT	NT					
Nitrate	mg/L	NT	NT	NT	NT					
Nitrite	mg/L	NT	NT	NT	NT					
Sulfate	mg/L	24.6	26.0	30.0	28.7					
TDS	mg/L	190	212	200	166					
Total Sulfide	mg/L	0.20	0.10	0.10	0.10					
Trihalomethanes	ug/L	11.9	NT	11.4	NT					

ND - Not detected NT - Not tested NA - Not available, lab report pending

ONTH:	DECEMBER,	2004
	DECEMBER,	F004

PARAMETERS	Unit		INJECT	D WATER	
		wk1 (12/2/04)	wk2(12/9/04)	wk3(12/15/04)	wk4(12/21/04)
pH (Field)	pH Units	7.35	7.35	7.30	7.14
pH (Lab)	pH Units	7.44	7.44	7.75	6.39
Specific Conductance	umhos/cm	386	355	357	349
Field Temperature	Centigrade	25.1	25.6	23.2	23.0
Dissolved Oxygen (Field)	mg/L	NT	NT	NT	NT
Dissolved Oxygen (Lab)	mg/L	9.3	9.0	9.3	9.1
Chlorine Residual - Free (Field)	mg/L	NT	NT	NT	NT
Chlorine Residual - Total (Field)	mg/L	NT	NT	NT	NT
Color	cu	7.0	7.9	7.1	8.2
Odor	TON	1	1	1	1
Turbidity	NTU	0.01	0.12	0.10	0.21
Gross Alpha	pCi/L	0.678	NT	NT	NT
Alkalinity (Total)	mg/L	42	50	51	51
Alkalinity (Bicarbonate)	mg/L	42	50	51	51
Hardness (Total)	mg/L	68	88	82	76
Hardness (Calcium)	mg/L	58	56	62	56
Hardness (Carbonate)	mg/L	42	50	51	51
Hardness (Non-Carbonate)	mg/L	26	38	31	25
Aluminum	mg/L	NT	NT	NT	NT
Ammonia	mg/L	NT	NT	NT	NT
Arsenic	ug/L	ND	ND	ND	<1.0
Chloride	mg/L	39	38	41	40
Coliform Bacteria	col./100mL	NT	NT	NT	NT
Fluoride	mg/L	0.73	0.72	0.65	0.66
Iron	mg/L	0.09	0.05	0.05	0.05
Lead	mg/L	NT	NT	NT	NT
Nitrate	mg/L	NT	NT	NT	NT
Nitrite	mg/L	NT	NT	NT	NT
Sulfate	mg/L	29.9	30.0	29.8	30.3
TDS	mg/L	148	154	180	164
Total Sulfide	mg/L	0.10	0.10	0.30	0.10
Trihalomethanes	ug/L	8.80	NT	7.86	NT

мо

ND - Not detected NT - Not tested NA - Not available, lab report pending

MONTH: FEBRUARY, 2005

PARAMETERS	Unit	ASR - 1	ASR - 2	ASR - 3	ASR - 4	ASR - 5	ASR - 1	ASR - 2	ASR - 3	ASR - 4	ASR - 5
		(2/10/05)	(2/10/05)	(2/10/05)	(2/10/05)	(2/10/05)	wk1 (2/17/05)				
pH (Field)	pH Units	7.39	7.34	7.33	7.22	7.23	7.23	7.53	7.39	7.42	7.08
pH (Lab)	pH Units	7.59	7,71	7.69	7.71	7.74	6.66	6.83	7.08	7.08	7.13
Specific Conductance	umhos/cm	447	462	610	569	476	317	344	417	475	420
Field Temperature	Centigrade	24.7	24.9	25.3	25.4	23.7	24.1	23.6	21.9	23.5	21.3
Dissolved Oxygen (Field)	mg/L	NT	NT	NT	NT	NT	1.76	1.37	1.90	1.48	3.04
Dissolved Oxygen (Lab)	mg/L	3.6	2.1	1.5	1.4	4.4	1.60	0.80	0.70	1.20	1.20
Chlorine Residual - Free (Field)	mg/L	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Chlorine Residual - Total (Field)	mg/L	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Color	CU	9.6	9.2	15.5	16.2	10.3	10.0	10.0	13.8	18.2	10.9
Odor	TON	1	1	2	2	2	1	1	2	2	1
Turbidity	NTU	0.61	0.16	0.71	0.96	0.25	0.12	0.14	0.33	0.80	0.10
Gross Alpha	pCi/L	1.06	0.748	3.07	2.40	0.731	2.90	4.02	3.02	4.52	2.30
Alkalinity (Total)	mg/L	124	138	172	180	177	111	114	155	160	118
Alkalinity (Bicarbonate)	mg/L	124	137	171	179	176	111	114	155	160	118
Hardness (Total)	mg/L	144	152	156	156	156	142	144	148	160	162
Hardness (Calcium)	mg/L	138	148	148	154	154	140	142	144	142	158
Hardness (Carbonate)	mg/L	124	138	156	156	156	111	114	148	160	118
Hardness (Non-Carbonate)	mg/L	20	14	0	o	0	31	30	0	0	44
Aluminum	ug/L	NT	10	NT	NT	NT	NT	10.7	NT	NT	NT
Ammonia	mg/L	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Arsenic	ug/L	ND	1.9	2.0	2.7	ND	4.1	1.9	3.0	3.7	1.8
Chloride	mg/L	40	40	45	43	39	40	41	42	44	40
Coliform Bacteria	col./100mL	А	А	А	A	A	A	A	Α	A	A
Fluoride	mg/L	0.78	0.80	0.99	0.94	0.86	0.75	0.72	0.86	0.88	0.72
Iron	mg/L	0.04	0.04	0.10	0.20	0.04	0.04	0.04	0.14	0.30	0.04
Lead	ug/L	1.8	2.0	ND	ND	1.3	1.3	ND	ND	ND	ND
Nitrate	mg/L	0.18	0.09	0.01	. 0.002	0.83	0.12	0.12	0.01	0.01	0.46
Nitrite	mg/L	0.174	0.123	0.002	0.01	0.028	0.17	0.036	0.002	0.002	0.030
Sulfate	mg/L	33.7	28.4	24.5	27.9	33.3	35.5	36.5	32.0	30.2	39.6
TDS	mg/L	248	152	326	310	272	344	234	288	288	252
Total Sulfide	mg/L	0.30	0.30	0.30	0.30	0.30	0.30	1.50	0 90	NT	0.90
Trihalomethanes	ug/L	14.84	12.87	2.03	4.23	12.14	8.8	11.0	3.0	3.1	8.6

ND - Not detected NT - Not tested

MONTH	MARCH,	2005
-------	--------	------

Revised Report

PARAMETERS	Unit	ASR - 1						1	ASR - 2		1	ASR - 3					
		wk1 (3/2/05)	wk2 (3/9/05	wk3 (3/16/05)	wk4 (3/23/05)	wk5 (3/31/05)	wk1 (3/2/05)	wk2 (3/9/05)	wk3 (3/16/05)	wk4 (3/23/05)	wk5 (3/31/05)	wk1 (3/2/05)	wk2 (3/9/05)	wk3 (3/16/05)	wk4 (3/23/05)	wk5 (3/31/05)	
pH (Field)	pH Units	7.18	7.58	8.10	7.97	7.85	7.24	7.53	7.61	7.87	7.94	7.31	7.73	7.69	7.68	7.73	
pH (Lab)	pH Units	7.41	7.58	6.88	7.16	7.85	7.56	7.53	7.32	7.31	7.21	7.61	7.73	7.52	7.40	7.27	
Specific Conductance	umhos/cm	418	382	379	343	346	413	382	375	333	332	470	427	426	384	391	
Field Temperature	Centigrade	16.0	22.4	27.8	28.1	26.2	18.4	22.3	28.6	29.0	26.0	18.2	22.8	28.2	27.6	25.2	
Dissolved Oxygen (Field)	mg/L	1.66	2.56	1.15	0.88	0.80	1.13	1.82	1.15	0.64	1,16	1.26	2.53	0.73	0.81	0.80	
Dissolved Oxygen (Lab)	mg/L	0.40	1.10	1.60	1.20	1.50	0.70	1.20	0.60	0.80	1.00	\$1,10	1.50	0.40	1.40	1,80	
Chlorine Residual - Free (Field)	mg/L	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Chlorine Residual - Total (Field)	mg/L	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Color	CU	8.5	9.7	8.9	8.8	8.1	8.4	10.4	8.9	8.8	7.9	10.8	13.0	10.9	11.7	11.8	
Odor	TON	1	1	1	1	1	1	1	1	1	1	1	2	1	1	1	
Turbidity	NTU	0.05	0.20	0.16	0.01	0.01	0.11	0.20	0.01	0.04	0.20	0.23	0.20	0.07	0.12	0.05	
Gross Alpha	pCi/L	1.86	NT	NT	NT	NT	0.762	NT	NT	NT	NT	2.62	NT	NT	NT	NT	
Alkalinity (Total)	mg/L	.115	91	87	90	89	122	89	71	83	81	162	114	103	115	112	
Alkalinity (Bicarbonate)	mg/L	115	91	87	90	88	122	89	71	83	81	161	113	103	115	112	
Hardness (Total)	mg/L	140	126	138	132	150	146	122	128	122	102	158	152	156	146	146	
Hardness (Calcium)	mg/L	134	118	118	116	112	128	118	120	112	92	142	150	140	140	140	
Hardness (Carbonate)	mg/L	115	91	87	90	89	122	89	71	83	81	158	114	103	115	112	
Hardness (Non-Carbonate)	mg/L	25	35	51	42	61	24	33	57	39	21	0	38	53	31	34	
Aluminum	ug/L	NT	NT	NT	NT	NT	NT	NT	85	NT	NT	NT	NT	NT	NT	NT	
Ammonia	mg/L	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	
Arsenic	ug/L	ND	ND	3.7	3.9	4.9	ND	ND	ND	ND	2.4	2.5	3.5	3.7	3.9	4.9	
Chloride	mg/L	42	40	40	40	40	43	40	40	40	40	44	41	40	43	40	
Coliform Bacteria	col./100mL	A	A	А	А	A	A	А	Α	А	A	А	A	A	A	A	
Fluoride	mg/L	0.79	0.81	0.84	0.82	0.81	0.75	0.79	0.80	0.81	0.85	0.85	0.80	0.78	0.78	0.83	
Iron	mg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.05	ND	ND	ND	ND	
Lead	ug/L	ND	ND	ND	ND	3.1	ND	1.3	ND	ND	ND	ND	ND	ND	ND	ND	
Nitrate	mg/L	NT	NT	0.01	0.02	ND	NT	NT	0.01	ND	NA	NT	NT	0.02	ND	NA	
Nitrite	mg/L	NT	NT	ND	ND	ND	NT	NT	ND	ND	NA	NT	NT	ND	ND	ND	
Sulfate	mg/L	38.9	37.1	36.6	35.7	35.2	38.4	37.7	37.1	35.0	35.2	39.9	42.4	41.0	38.8	38.7	
TDS	mg/L	234	230	254	270	278	230	220	250	246	246	246	254	260	276	290	
Total Sulfide	mg/L	0.50	0.70	0.70	ND	0.20	0.50	0.70	0.70	ND	ND	0.50	0.50	0.7	ND	0.40	
Trihalomethanes	ug/L	2.60	0.55	ND	ND	0.25	6.9	6.2	4.7	5.2	2.7	1	0.23	ND	ND	0.16	

ND - Not detected

MONTH:	MARCH,	2005
--------	--------	------

PARAMETERS	Unit		1	ASR - 4	1	1		t	ASR - 5		
		wk1 (3/2/05)	wk2(3/9/05	wk3 (3/16/05)	wk4 (3/23/05)	wk5 (3/31/05)	wk1 (3/2/05)	wk2(3/9/05	wk3 (3/16/05)	wk4 (3/23/05)	wk5 (3/31/05)
pH (Field)	pH Units	7.35	7.76	7.78	7.84	7.84	7.35	7.73	7.65	7.78	7.56
pH (Lab)	pH Units	7.69	7.76	7.52	7.54	7.26	7.79	7.73	7.56	7.64	7.49
Specific Conductance	umhos/cm	461	428	430	385	400	452	415	398	371	
Field Temperature	Centigrade	16.8	24.4	27.3	27.3	25.8	20.1	22.4	27.1		368
Dissolved Oxygen (Field)	mg/L	1.56	2.57	1.05	1.15	1.21	1.53	3.35	2.01	26.4	24.3
Dissolved Oxygen (Lab)	mg/L	1.40	0.20	0.80	1.00	1.10	1.00	1.60	0.90	0.94	1.64
Chlorine Residual - Free (Field)	mg/L	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.90	0.90	1.10
Chlorine Residual - Total (Field)	mg/L	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0
Color	CU	11.5	14.7	12.1	12.0	11.8	9.5		0.0	0.0	0.0
Odor	TON	1	1	1	1	1	<u> </u>	12.1	10.0	10.0	9.6
Turbidity	NTU	0.26	0.20	0.16	0.98	0.12		1	1	1	1
Gross Alpha	pCi/L	2.22	NT	NT	NT	0.12	0.05	0.20	0.03	0.16	0.04
Alkalinity (Total)	mg/L	174	118	119	122		3.34	NT	NT	NT	NT
Alkalinity (Bicarbonate)	mg/L	173	117	119	122	119	133	105	98	95	93
Hardness (Total)	mg/L	168	146	152		119	132	104	98	95	93
Hardness (Calcium)	mg/L	148	138	136	132	120	166	146	148	132	118
Hardness (Carbonate)	mg/L	168	118	119	128	118	152	140	134	132	116
Hardness (Non-Carbonate)	mg/L	0	28		122	119	133	105	98	95	93
Aluminum	ug/L	NT	2 <u>0</u>	33	10	1	33	41	50	37	25
Ammonia	mg/L	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Arsenic	ug/L	3.2		NT	NT	NT	NT	NT	NT	NT	NT
Chloride	mg/L	43	2.1	3.8	5.2	6.0	2.8	2.5	2.8	4.1	4.0
Coliform Bacteria	col./100mL		42	41	40	41	42	40	40	41	41
Fluoride		A	A	A	Α	A	A	Α	Α	A	Α
Iron	mg/L	0.83	0.77	0.84	0.80	0.80	0.80	0.81	0.76	0.73	0.75
Lead	mg/L	0.10	0.09	ND	ND	ND	ND	ND	ND	ND	ND
Nitrate	mg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nitrite	mg/L	NT	NT	0.01	ND	ND	ND	NT	0.01	ND	ND
	mg/L	NT	NT	ND	ND	ND	0.007	NT	ND	ND	ND
	mg/L	37.2	37.3	36.4	36.4	35.2	41.8	47.8	46.5	44.8	43.0
TDS	mg/L	250	254	282	282	278	240	234	278	262	284
Total Sulfide	mg/L	0.70	0.70	0.70	0.70	0.20	0.50	0.70	0.70	0.00	0.20
Trihalomethanes	ug/L	0.40	ND	ND	ND	ND	1.9	0.79	0.21	0.056	0.49

ND - Not detected NT - Not tested

MONTH: APRIL, 2005

PARAMETERS	Unit	T		ASR - 1		 1		ASR - 2				ASR - 3		
		wk1 (4/6/05)	wk2(4/13/05	wk3 (4/20/05)	wk4 (4/28/05)	 wk1 (4/6/05)	wk2(4/13/05	wk3 (4/20/05)	wk4 (4/28/05)	wk1 (4/6/0	5) wk2 (4/13/	05 wk3 (4/20/05)	wk4 (4/28/05	
pH (Field)	pH Units	7.43	7.68	7.62	7.92	 7.03	7.65	7.68	7.95	7.92	7.88	7.65	7.72	
pH (Lab)	pH Units	7.27	7.35	7.47	7.58	7.43	7.58	7.58	7.65	7.32	7.57	7.45	7.52	
Specific Conductance	umhos/cm	351	384	347	342	333	348	317	320	396	417	382	387	
Field Temperature	Centigrade	28.1	25.8	20.6	24.4	27.2	26.4	21.4	24.3	24.9	25.4	23.2	23.0	
Dissolved Oxygen (Field)	mg/L	1.15	1.46	1.46	1.08	1.15	0.98	1.80	1.31	1.31	1.31	1.05	1.59	
Dissolved Oxygen (Lab)	mg/L	0.5	1.6	1.4	1.2	0.5	1.1	0.9	0.7	0.6	1.4	1.4	1.5	
Chlorine Residual - Free (Field)	mg/L	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Chlorine Residual - Total (Field)	mg/L	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Color	CU	8.0	8.2	7.5	7.7	 7.9	8.0	8.3	7.8	10.8	11.0	10.5	10.6	
Odor	TON	1	1	1	1	1	1	1	1	1	1	1	1	
Turbidity	NTU	0 20	0.09	0.20	0.20	0.20	0.05	0.20	0.20	0.20	0.14	0.20	0.20	
Gross Alpha	pCi/L	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	
Alkalinity (Total)	mg/L	85	90	88	82	80	82	86	86	111	113	114	111	
Alkalinity (Bicarbonate)	mg/L	85	90	88	82	 80	82	86	86	111	113	114	111	
Hardness (Total)	mg/L	130	142	136	148	102	112	110	108	140	150	144	152	
Hardness (Calcium)	mg/L	112	114	112	116	 100	104	104	92	134	132	130	132	
Hardness (Carbonate)	mg/L	85	90	88	82	 80	82	86	86	111	113	114	111	
Hardness (Non-Carbonate)	mg/L	45	52	48	66	 22	30	24	22	29	37	30	41	
Aluminum	mg/L	NT	NT	NT	NT	 33	ND	33	ND	NT	NT	NT	NT	
Ammonia	mg/L	NT	NT	NT	NT	 NT	NT	NT	NT	NT	NT	NT	NT	
Arsenic	ug/L	4.9	6.4	4,9	6.8	 2.1	2.8	3.5	2.4	4.9	5.5	4.9	4.9	
Chloride	mg/L	41	41	41	39	 40	43	40	39	42	42	43	41	
Coliform Bacteria	col./100mL	A	A	A	Α	 A	A	Α	А	A	A	A	A	
Fluoride	mg/L	0.85	0.87	0.85	0.87	 0.87	0.90	0.85	0.90	0.78	0.80	0.75	0.77	
Iron	mg/L	ND	ND	ND	ND	 ND	ND	ND	ND	ND	0.05	ND	ND	
Lead	mg/L	ND	ND	ND	ND	 ND	ND	ND	ND	ND	ND	ND	ND	
Nitrate	mg/L	0.01	ND	ND	ND	 0.01	ND	ND	ND	0.01	0.02	ND	ND	
Nitrite	mg/L	ND	ND	ND	ND	 ND	ND	ND	ND	ND	ND	ND	ND	
Sulfate	mg/L	34.0	32.0	31.5	30.8	 34.1	31.6	31.4	30.2	37.7	35.5	35.5	34.2	
TDS	mg/L	292	240	232	254	 212	280	196	188	256	314	250	254	
Total Sulfide	mg/L	ND	ND	ND	ND	 ND	ND	ND	0.20	ND	ND	0.6	0.20	
Trihalomethanes	ug/L	0.17	0.14	ND	ND	 1.50	0.61	0.6	ND	0.14	0.068	ND	ND	

MONTH APRIL, 2005

PARAMETERS	Unit	I		ASR - 4			· · · · · · · · · · · · · · · · · · ·		MONTH	APRIL, 2005	
		wk1 (4/6/05)	wk2(4/13/05	wk3 (4/20/05)	wk4 (4/28/05)		wk1 (4/6/05)		ASR - 5		
pH (Field)	pH Units	7.92	7.52	7.68				wk2(4/13/05	wk3 (4/20/05)	wk4 (4/28/05)	
pH (Lab)	pH Units	7.37	7.54		7.76		7.98	7.60	7.68	7.70	
Specific Conductance	umhos/cm	400	423	7.46	7.52		7.50	7.62	7.55	7.62	
Field Temperature	Centigrade	27.3		401	394		366	388	359	355	
Dissolved Oxygen (Field)	mg/L	2.27	25.4	23.7	23.8		23.7	24.8	23.7	21.8	
Dissolved Oxygen (Lab)			0.95	1.13	1.22		1.78	0.86	1.18	2.17	
Chlorine Residual - Free (Field)	mg/L	08	1.4	1.3	1.1			2.2	1.4	2.1	
Chlorine Residual - Total (Field)	mg/L	0.0	0,0	0.0	0.0		0.0	0.0	0.0	0.0	·
Color	mg/L	0.0	0.0	0.0	0.0		00	0.0	0.0	0.0	
Odor	CU	12.2	11.9	12.0	11.7		10.2	9.7	13.3	10.0	······
Turbidity	TON	1	1	2	1		11	1	1	1	·····
	NTU	0.21	0.07	0.20	0.20	······	0.20	0.30	0.20	0.20	
Gross Alpha	pCi/L	NT	NT	NT	NT ·		NT	NT	NT	NT	
Alkalinity (Total)	mg/L	113	117	117	118		90	94	93	96	
Alkalinity (Bicarbonate)	mg/L	113	117	117	118		90	94	93	96	
Hardness (Total)	mg/L	144	132	128	134		146	140	138	140	
Hardness (Calcium)	mg/L	136	124	120	120		136	120	118	114	
Hardness (Carbonate)	mg/L	113	117	117	118		56	46	93	96	
Hardness (Non-Carbonate)	mg/L	31	15	11	16		90	94	45	44	
Aluminum	mg/L	NT	NT	NT	NT		NT	NT	NT	NT	
Ammonia	mg/L	NT	NT	NT	NT		NT	NT	NT	NT	
Arsenic	ug/L	5.8	6.2	5.3	5.9		4.2	4.6	5.1	5.0	
Chloride	mg/L	43	42	41	40		42	40	41	39	
Coliform Bacteria	col./100mL	A	A	Α	Α		Α	A	А	A	
Fluoride	mg/L	0.80	0.81	0.76	0.79		0.78	0.78	0.75	0.79	
ron	mg/L	ND	0.11	0.07	0.08		ND	ND	ND	ND	·····
ead	mg/L	ND	ND	ND	ND		ND	ND	ND	ND	
Nitrate	mg/L	0.02	0.01	ND	ND		0.02	0.05	ND	ND	
Nitrite	mg/L	ND	ND	ND	ND		ND	ND	ND	ND	
Sulfate	. mg/L	34.8	32.7	32.6	31.8		40.0	38.7	37.8	36.2	
rds	mg/L	262	352	288	252		272	310	256	272	
Total Sulfide	mg/L	ND	ND	0.60	0.20		ND	ND	0.80	272 ND	
Trihalomethanes	ug/L	ND	ND	ND	ND		0.35	0.23	0.22	ND	

MONTH: MAY, 2005

PARAMETERS	Unit			ASR - 1				ASR - 2					ASR - 3		
		WK1 (5/5/05)	VK2 (5/11/0	WK3 (5/19/05)	WK4 (5/25/05)	WK1 (5/5/05)	NK2 (5/11/05	WK3 (5/19/05	WK4 (5/25/05)		WK1 (5/5/05)	VK2 (5/11/05	WK3 (5/19/05	WK4 (5/25/05)	
pH (Field)	pH Units	7.54	7.4	7.46	7.77	7.59	7.21	7.63	7.68		7.40	7.2	7.50	7.51	
pH (Lab)	pH Units	7.62	7.83	7.61	7.84	 7.77	7,89	7.78	7.72		7.61	7.67	7.58	7.66	
Specific Conductance	umhos/cm	401	362	361	408	 382	333	340	390		445	391	408	450	
Field Temperature	Centigrade	26.7	23.3	27.9	28 7	 26.7	23.2	28	28.8	·	26.5	22.1	28.2	31.1	
Dissolved Oxygen (Field)	mg/L	0.80	1.53	0.88	0.96	1.02	1.72	0.96	1.09		0.63	1.16	0.95	0.94	
Dissolved Oxygen (Lab)	mg/L	1.9	1.2	2.1	0.4	 1.7	0.7	1.1	1.0	,	1.8	1.4	1.0	1.4	
Chlorine Residual - Free (Field)	mg/L	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	
Chlorine Residual - Total (Field)	mg/L	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	
Color	CU	8.7	8.6	9.1	9.0	 8.8	8.4	8.6	8.7		11.8	11.9	11.8	12.1	
Odor	TON	1	1	1	1	 11	1	1	1		1	1	1	1	
Turbidity	NTU	0.04	0.20	0.20	0.20	 0.08	0.20	0.20	0.20		0.14	0.20	0.20	0.20	
Gross Alpha	pCi/L_	1.3	NT	NT	NT	2.3	NT	NT	NT		ND	NT	NT	NT	
Alkalinity (Total)	mg/L	86	118	115	130	 89	106	105	114		112	135	140	145	
Alkalinity (Bicarbonate)	mg/L	86	117	115	129	 88	105	104	113		112	134	139	144	
Hardness (Total)	mg/L	140	142	148	150	 112	116	124	126		148	150	154	152	
Hardness (Calcium)	mg/L	116	140	126	124	 106	114	122	120		132	146	136	132	
Hardness (Carbonate)	mg/L	86	118	115	130	 89	106	105	114	·	112	135	140	145	
Hardness (Non-Carbonate)	mg/L	54	24	33	20	 23	10	19	12		36	15	14	7	
Aluminum	mg/L	NT	NT	NT	NT	ND	34	ND	ND		NT	NT	NT	NT	
Ammonia	mg/L	NT	NT	NT	NT	 NT	NT	NT	NT		NT	NT	NT	NT	
Arsenic	ug/L	6.8	5.7	9.5	11	 2.5	1.8	3.3	4.4		5.2	3.5	5.8	6.8	
Chloride	mg/L	39	40	39	39	 45	40	40	42		46	41	41	41	
Coliform Bacteria	col./100mL	A	A	A	A	 A	A	A	A		A	A	A	A	
Fluoride	mg/L	0.89	0.92	0.95	0.94	 0.9	0.96	1.00	0.99		0.79	0.80	0.82	0.76	
Iron	mg/L	ND	ND	ND	ND	 ND	ND	ND	ND		0.08	0.08	0.05	0.05	
Lead	mg/L	ND	ND	ND	ND	 ND	ND	ND	ND		ND	ND	ND	ND	
Nitrate	mg/L	ND	ND	ND	ND	 ND	ND	ND	ND		ND	ND	ND	ND	
Nitrite	mg/L	ND	0.002	0.007	ND	 ND	0.003	ND	ND		ND	0.003	ND	ND	
Sulfate	mg/L_	30.1	29.2	28.6	28	 29.3	28.3	27.3	26.6		33.4	32.5	31.8	31.4	
TDS	mg/L	348	346	288	176	224	234	258	306		272	286	312	276	
Total Sulfide	mg/L	0.20	0.40	ND	ND	0.20	0.40	ND	ND		0.40	0.80	ND	ND	
Trihalomethanes	ug/L	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	

MONTH MAY, 2005

PARAMETERS	Unit			ASR - 4				ASR - 5		
		WK1 (5/5/05)	WK2 (5/11/05)	WK3 (5/19/05)	WK4 (5/25/05)	WK1 (5/5/05)	WK2 (5/11/05)	WK3 (5/19/05)	WK4 (5/25/05)	
pH (Field)	pH Units	7.45	7.41	7.60	7.52	7.53	7.20	7.49	7.68	
pH (Lab)	pH Units	7.66	7.65	7.60	7.65	7.72	7.67	7.61	7.69	
Specific Conductance	umhos/cm	459	409	428	470	421	372	383	444	-
Field Temperature	Centigrade	26.5	22.9	29	30.9	26.4	22.7	28,5	30.1	
Dissolved Oxygen (Field)	mg/L	0.54	1.82	0.83	0.7	0.99	1.6	1.03	1.57	
Dissolved Oxygen (Lab)	mg/L	1.1	1.1	1.6	1.1	1.4	1.5	1.5	1.6	
Chlorine Residual - Free (Field)	mg/L	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Chlorine Residual - Total (Field)	mg/L	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Color	CU	13.1	12.8	12.9	13.8	10.8	11	11.9	12.2	
Odor	TON	1	1	1	1	1	1	1	1	
Turbidity	NTU	0.22	0.20	0.20	0.43	 0.08	0.20	0.20	0.20	
Gross Alpha	pCi/L	1.7	NT	NT	NT	1.9	NT	NT	NT	
Alkalinity (Total)	mg/L	123	152	145	148	98	125	123	131	
Alkalinity (Bicarbonate)	mg/L	122	151	144	147	 97	124	123	130	
Hardness (Total)	mg/L	130	148	144	148	136	140	142	144	
Hardness (Calcium)	mg/L	118	142	126	122	116	138	124	126	
Hardness (Carbonate)	mg/L	123	148	144	148	 98	125	123	131	
Hardness (Non-Carbonate)	mg/L	7	0	o	0	38	15	19	13	
Aluminum	mg/L	NT	NT	NT	NT	NT	NT	NT	NT	
Ammonia	mg/L	NT	NT	NT	NT	NT	NT	NT	NT	
Arsenic	ug/L	6	4	5.8	7	5.4	4	6.2	9.5	
Chloride	mg/L_	41	42	42	40.	46	40	39	40	
Coliform Bacteria	col./100mL	A	A	A	A	A	А	A	А	
Fluoride	mg/L	0.79	0.80	0.82	0.78	0.77	0.79	0.70	0.77	
Iron	mg/L	0.12	0.13	0.11	0.1	0.06	0.08	0.08	0.06	
Lead	mg/L	ND	ND	ND	ND	ND	ND	ND	ND	
Nitrate	mg/L	ND	ND	ND	ND	ND	ND	ND	ND	
Nitrite	mg/L_	ND	0.002	ND	ND	ND	ND	ND	ND	
Sulfate	mg/L	31.8	30.9	30.6	30.2	35.2	34	33.1	32.2	
TDS	mg/L	272	340	308	282	272	272	276	276	
Total Sulfide	mg/L	0.40	0.60	0.20	0.40	ND	0.40	ND	ND	
Trihalomethanes	ug/L	ND	ND	ND	ND	ND	ND	ND	ND	

MONTH: JUNE, 2005

PARAMETERS	Unit			ASR - 1					ASR - 2					ASR - 3		
		wk1(6/2/05	wk2(6/8/05	wk3(6/15/05	wk4(6/22/05		wk1(6/2/05	wk2(6/8/05	wk3(6/15/05	wk4(6/22/05		wk1(6/2/05	wk2(6/8/05	1	wk4(6/22/05	1
pH (Field)	pH Units	7.63	7.74	7.86	7.65		7.46	7.83	7.93	7.68		7.46	7.61	7.75	7.45	
pH (Lab)	pH Units	7.8	7.84	7.69	7.8		7.87	7.9	7,75	7,84	1. mili 4	7.67	7.7	7.54	7.63	
Specific Conductance	umhos/cm	316	462	462	489		317	413	441	414		407	477	491	468	
Field Temperature	Centigrade	23.9	29	31.2	26		23.8	29.2	32	25.6		23.7	29.3	28.7	25.3	
Dissolved Oxygen (Field)	mg/L	1,54	0.61	1.17	0.95		1.66	0.9	0.98	1.15	- <u></u>	1.56	0.68	1.14	0.98	
Dissolved Oxygen (Lab)	mg/L	1.2	0.4	1.4	1.6		1.4	1.1	1.4	1.1		1.5	1.4	1.1	1.0	
Chlorine Residual - Free (Field)	mg/L	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	
Chlorine Residual - Total (Field)	mg/L	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	
Color	CU	9.4	9.5	9.7	10.2		10	9.4	9.6	9.5		13.4	12.6	12.5	13.4	
Odor	TON	1	ND	ND	ND		1	ND	ND	ND		1	ND	ND	ND	
Turbidity	NTU	0.28	0.20	0.20	0.30		0.20	0.20	0.20	0.20		0.28	0.20	0.20	0.20	
Gross Alpha	pCi/L_	ND	NT	NT	NT		1.8	NT	NT	NT		3.6	NT	NT	NT	
Alkalinity (Total)	mg/L	132	89	137	139		122	88	131	131		152	114	156	155	·····
Alkalinity (Bicarbonate)	mg/L	131	88	136	138		121	87	130	130		151	113	155	155	
Hardness (Total)	mg/L	152	156	140	158		128	132	132	138		152	154	170	154	
Hardness (Calcium)	mg/L	126	122	132	124		116	120	126	122		132	126	162	120	
Hardness (Carbonate)	mg/L	132	89	137	139		122	88	131	131		152	114	156	155	
Hardness (Non-Carbonate)	mg/L	20	67	3	19		6	44	1	7		0	40	14	1	
Aluminum	mg/L	NT	NT	NT	NT	-	ND	ND	18	ND		NT	NT	NT	NT	
Ammonia	mg/L	NT	NT	NT	NT		NT	NT	NT	NT		NT	NT	NT	NT	
Arsenic	ug/L	13.5	13.7	14.1	14.2		7.3	6.3	6.4	7.7		7.4	7	6.8	6.8	
Chloride	mg/L	41	40	39	42		44	40	39	41		42	41	40	42	
Coliform Bacteria	col./100mL	Α	NT	NT	NT		А	NT	NT	NT		A	NT	NT	NT	
Fluoride	mg/L	0.99	0.95	1	1.00		1	0.98	1.00	1.10		0.78	0.75	0.77	0.78	
Iron	mg/L	ND	0.05	0.08	0.07		0.05	ND	0.06	ND		ND	0.12	0.14	0.10	
Lead	mg/L	ND	ND	ND	ND		1	ND	ND	ND		ND	ND	ND	ND	
Nitrate	mg/L	0.01	ND	ND	ND		ND	ND	0.02	ND		ND	ND	0.02	ND	
Nitrite	mg/L	ND	ND	0.007	0.002		ND	ND	0.003	0.002		ND	ND	0.003	0.002	
Sulfate	mg/L	27.8	27.3	27.0	26.7		26	25.3	24.5	23.7		31	30.9	30.7	30.2	
TDS	mg/L	260	240	238	316		246	208	244	242		284	246	280	294	
Total Sulfide	mg/L	0.20	0.20	0.40	0.10		ND	0.20	NT	0.01		0.20	0.60	0.3	0.30	
Trihalomethanes	ug/L	ND	ND	ND	ND		ND	ND	ND	ND		ND	ND	ND	ND	

.

MONTH JUNE, 2005

PARAMETERS	Unit			ASR - 4				ASR - 5		
		wk1(6/2/05	wk2(6/8/05	wk3(6/15/05	wk4(6/22/05	wk1(6/2/05	wk2(6/8/05	wk3(6/15/05	wk4(6/22/05	
pH (Field)	pH Units	7,47	7.65	7.76	7.64	7.51	7.68	7.68	7.31	
pH (Lab)	pH Units	7.66	7.75	7.57	7.64	7.69	7,75	7.59	7.62	
Specific Conductance	umhos/cm	441	485	498	476	399	470	476	455	
Field Temperature	Centigrade	23.6	29.9	29.6	25.6	23.9	23.0	26.6	24.4	
Dissolved Oxygen (Field)	mg/L	1.22	0.84	1.29	0.91	1.29	1.37	1.63	1.12	
Dissolved Oxygen (Lab)	mg/L	1.20	1.00	1.30	1.10	 1.90	1.90	1 40	0.90	
Chlorine Residual - Free (Field)	mg/L	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	
Chlorine Residual - Total (Field)	mg/L	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Color	CU	14.5	13.7	13.4	14.0	12.2	12.7	12.7	14.1	
Odor	TON	1	ND	ND	ND	 1	ND	ND	ND	
Turbidity	NTU	0.38	0.21	0.30	1.20	0.28	0.26	0.30	0.20	
Gross Alpha	pCi/L	ND	NT	NT	NT	 2.2	NT	NT	NT	
Alkalinity (Total)	mg/L	156	127	149	157	141	101	149	153	
Alkalinity (Bicarbonate)	mg/L	155	126	148	156	140	100	148	152	
Hardness (Total)	mg/L	148	150	190	154	146	150	176	152	
Hardness (Calcium)	mg/L	124	120	174	126	124	124	172	122	
Hardness (Carbonate)	mg/L	148	127	149	154	141	101	149	152	
Hardness (Non-Carbonate)	mg/L	0	23	41	0	5	49	27	0	
Aluminum	mg/L	NT	NT	NT	NT	NT	NT	NT	NT	
Ammonia	mg/L	NT	NT	NT	NT	NT	NT	NT	NT	
Arsenic	ug/L	7.4	7.0	6.4	6.2	10.1	8.1	8.0	7.1	
Chloride	mg/L	43	41	41	43	40	42	41	43	
Coliform Bacteria	col./100mL	A	NT	NT	NT	А	NT	NT	NT	
Fluoride	mg/L	0.80	0.78	0.80	0.80	0.79	0.78	0.79	0.79	
Iron	mg/L	0.06	0.15	0.18	0.15	ND	0.11	0.17	0.13	
Lead	mg/L	ND	ND	ND	ND	ND	ND	ND	ND	
Nitrate	mg/L	ND	ND	ND	ND	 ND	ND	ND	ND	
Nitrite	mg/L	ND	ND	ND	ND	ND	ND	ND	ND	
Sulfate	mg/L	30.0	29.7	29.6	29.1	31.7	31.1	31.0	30.3	
TDS	mg/L	298	250	280	300	280	248	256	286	
Total Sulfide	mg/L	3.10	3.10	0.40	0.30	 0.40	0.20	ND	0.10	
Trihalomethanes	ug/L	ND	ND	ND	ND	ND	ND	ND	ND	

APPENDIX E

DAILY WATER LEVEL DATA FOR THE STORAGE ZONE OBSERVATION WELLS FOR CYCLE 4

CORKSCREW SYSTEM DAILY WATER LEVEL DATA FOR THE STORAGE ZONE OBSERVATION WELLS FOR CYCLE 4

			WATER LEVEL	(FEET, NGVD)		MONTH: JULY, 2004	
DAY NO.	MW-1	MW-2	MW-3	MW-A	MW-C	MW-B	LM-926
1	19199-1						
2							
3							
4							
5							
6						······································	
7	NA	12.5	40.4	44.3	44.4	NA	NA
8	NA	11.0	40.7	45.5	44.4	29.2	8.3
9	NA	9.5	40.4	45.0	44.0	NA	NA
10	NA	6.4	40.2	46.9	44.0	NA	NA
10	NA	4.8	39.3	47.3	42.3	NA	NA
12	NA	11.0	40.4	48.1	42.5	NA	NA
13	NA	11.0	40.9	. 48.7	45.8	NA	NA
14	NA	18.7	46.3	48.8	47.7	30.5	8.4
15	NA	21.7	49.9	49.0	49.4	NA	NA
16	NA	24.7	53.9	49.8	55.7	NA	NA
17	NA	20.5	53.3	50.1	55.1	NA	NA
18	NA	19.0	53.1	47.3	56.5	NA	NA
19	NA	20.5	53.7	47.4	52.9	NA	NA
20	NA	26.7	56.1	45.2	57.3	NA	NA
21	NA	27.2	57.1	42.4	58.3	30.5	8.5
22	NA	28.0	57.0	43.8	57.4	NA	NA
23	NA	29.1	NA	49.1	59.1	NA	NA
24	NA	27.7	57.3	42.8	57.7	NA	NA
25	NA	29.3	NA	47.1	58.3	NA	NA
26	NA	30.2	NA	NA	59.8	NA	NA
27	NA	30.7	NA	NA	60.1	NA	NA
28	NA	31.1	NA	NA	60.3	30.7	9.5
29	NA	31.6	NA	NA	60.5	NA	NA
30	NA	32.2	NA	NA	60.8	NA	NA
31	NA	32.5	NA	NA	60.8	NA	NA
M. Min.	NA	4.8	39.3	42.4	42.3	29.2	8.3
M. Max.	NA	32.5	57.3	50.1	60.8	30.7	9.5
M. Avg.	NA	21.9	48.2	46.8	53.4	30.2	8.7

M. Min: Monthly Minimum, M. Max: Monthly Maximum, M. Avg: Monthly Average, NA: Not Available

Static/Injecting

CORKSCRE SYSTEM DAILY WATER LEVEL DATA FOR THE STORAGE ZONE OBSERVATION WELLS FOR CYCLE 4

						MONTH: AUGUST, 2004	l
				(FEET, NGVD)		r	r
DAY NO.	MW-1	MW-2	MW-3	MW-A	MW-C	MW-B	LM-926
1	N/A	32.9	N/A	32.6	61.0	N/A	N/A
2	NA	33.1	N/A	35.1	61.1	N/A	N/A
3	NA	33.6	N/A	16.4	61.4	N/A	N/A
4	NA	33.9	N/A	15,4	61.5	N/A	N/A
5	NA	34.3	N/A	32.9	62.0	35.1	10.8
6	NA	26.9	N/A	39.9	59.4	N/A	N/A
7	NA	25.3	56.9	41.9	60.7	NA	NA
8	NA	26.0	57.2	37.9	60.8	• N/A	N/A
9	NA	32.1	N/A	N/A	58 6	NA	NA
10	NA	32.7	N/A	N/A	59.4	NA	NA
11	NA	26.3	N/A	N/A	61.0	34.0	11.5
12	NA	24.3	55.8	N/A	57.8	NA	NA
13	NA	18.3	49.8	N/A	58.6	NA	NA
14	NA	14.8	46.1	N/A	47.9	NA	NA
15	NA	13.8	44.8	N/A	46.9	NA	NA
16	NA	13.9	44.8	N/A	46.4	NA	NA
17	NA	13.0	43.9	N/A	46.2	NA	NA
18	NA	12.4	43.4	N/A	45.8	NA	NA
19	NA	22.7	51.5	N/A	48.4	30.5	11.9
20	NA	21.9	52.2	N/A	55.9	NA	NA
21	NA	16.7	47.7	N/A	54.9	N/A	N/A
22	NA	13.8	44.7	N/A	47.0	NA	NA
23	NA	21.6	50.9	N/A	51.8	NA	NA
24	NA	27.9	54.6	N/A	54.0	NA	NA
25	NA	31.9	57.4	N/A	58.4	32.8	12.6
26	NA	28.7	57.0	N/A	59.1	NA	NA
27	NA	24.1	53.8	N/A	56.5	NA	NA
28	NA	30.5	57.3	45.9	59.0	N/A	N/A
29	NA	25.2	54.2	46.4	56.4	NA	NA
30	NA	27.8	55.6	45,8	55,4	NA	NA
31	NA	33.7	N/A	49.0	59.7	NA	NA
			•••••••••		· · · · · · · · · · · · · · · · · · ·	4	.
M. Min.	N/A	12.4	43.4	15.4	45.8	30.5	10.8
M. Max.	N/A	34.3	57.4	49.0	62.0	35.1	10.5
M. Avg.	N/A	25.0	51,4	36.6	55.9	33.1	11.7

M. Min: Monthly Minimum, M. Max: Monthly Maximum, M. Avg: Monthly Average, NA: Not Available

CORKSCREW SYSTEM DAILY WATER LEVEL DATA FOR THE STORAGE ZONE OBSERVATION WELLS FOR CYCLE 4

WATE	R LEVEL (FEET, NGV	נסי				MONTH: SEPTEMBER,	2004
DAY NO.	MW-1	MW-2	MW-3	MW-A	MW-C	MW-B	LM-926
1	N/A	35.6	N/A	46.5	61,2	N/A	N/A
2	N/A	35.9	N/A	46.7	60.7	36.3	12.2
3	N/A	36.8	N/A	49.9	62.3	N/A	N/A
4	N/A	32.3	N/A	51.5	61.0	N/A	N/A
5	N/A	30.0	N/A	52.2	59.2	N/A	N/A
6	N/A	31.5	N/A	52.9	59.6	N/A	N/A
7	N/A	36.8	N/A	52.5	62.2	N/A	N/A
8	N/A	31.6	N/A	51.2	62.8	N/A	N/A
9	N/A	29.7	N/A	52.8	59.8	34.1	11.6
10	N/A	31.5	N/A	53.7	59.1	N/A	N/A
11	N/A	34.0	N/A	53.6	60.9	N/A	N/A
12	N/A	35.2	N/A	47.9	62.3	N/A	N/A
13	N/A	36.0	N/A	47.4	59.7	N/A	N/A
14	N/A	37.6	N/A	29.1	62.5	N/A	N/A
15	N/A	30.8	N/A	21.5	61.4	N/A	N/A
16	N/A	29.4	N/A	18.3	60.4	32.8	13.4
17	N/A	35.9	N/A	16.3	61.1	N/A	N/A
18	N/A	32.2	N/A	15.0	62.6	N/A	, N/A
19	N/A	29.9	N/A	14.0	61.9	N/A	N/A
20	N/A	31.2	N/A	13.3	60.4	N/A	N/A
21	N/A	36.8	N/A	32.3	61.8	N/A	N/A
22	N/A	37.7	N/A	21.4	62.8	N/A	N/A
23	N/A	37.9	N/A	35.0	63.0	36.3	13.5
24	N/A	35.9	N/A	42.1	63.3	N/A	N/A
25	N/A	37.8	N/A	27.8	63.4	N/A	N/A
26	N/A	37.8	N/A	42.5	62.7	N/A	N/A
27	N/A	38.5	N/A	46.8	63.6	N/A	N/A
28	N/A	38.8	N/A	42.7	63.7	N/A	N/A
29	N/A	37.8	N/A	31.4	63.7	N/A	N/A
30	N/A	36.4	N/A	33.0	61.4	32.8	11.9
M. Min.	N/A	29.4	N/A	13.3	59.1	32.8	11.6
M. Max.	N/A	38.8	N/A	53.7	63.7	36.3	13.5
M. Avg.	N/A	34.6	N/A	38.0	61.7	34.5	12.5

M. Min: Monthly Minimum, M. Max: Monthly Maximum, M. Avg: Monthly Average, NA: Not Available Static/Injecting

.

CORKSCRE (SYSTEM DAILY WATER LEVEL DATA FOR THE STORAGE ZONE OBSERVATION WELLS FOR CYCLE 4

			WATER LEVEL	(FEET, NGVD)			
DAY NO.	MW-1	MW-2	MW-3	MW-A	MW-C	MW-B	LM-926
1	N/A	37.7	N/A	38.2	62.2	N/A	N/A
2	N/A	21.6	N/A	38.9	53.9	N/A	N/A
3	N/A	18.2	N/A	39,1	49,9	N/A	N/A
4	N/A	16.7	N/A	43.8	48.6	25.90	11.80
5	N/A	15.6	N/A	38.1	47.9	N/A	N/A
6	N/A	15.0	N/A	28.9	47.4	N/A	N/A
7	N/A	14.5	N/A	16.6	47.1	N/A	N/A
8	N/A	14.2	N/A		46.8	N/A	N/A
9	N/A	27.2	N/A		54.0	N/A	N/A
10	N/A	17.1	N/A		54.1	N/A	N/A
11	N/A	29.6	N/A		53.3	N/A	N/A
12	N/A	30.1	N/A		60.8	N/A	N/A
13	N/A	21.9	N/A		56.1	N/A	N/A
14	N/A	30.0	N/A		57.1	34.0	13.6
15	N/A	30.2	N/A		62.0	N/A	N/A
16	N/A	27.8	N/A		60.5	N/A	N/A
17	N/A	20.4	N/A		58.2	N/A	N/A
18	N/A	24.2	N/A		50.8	N/A	N/A
19	N/A	25.6	N/A		57.6	N/A	N/A
20	N/A	21.4	N/A		56.3	32.8	13.4
21	N/A	25.6	N/A		54.8	N/A	N/A
22	N/A	27.4	N/A		57.3	N/A	N/A
23	N/A	25.2	N/A		57.4	N/A	N/A
24	N/A	18.5	N/A		56.7	N/A	N/A
25	N/A	13.8	N/A		48.0	N/A	N/A
26	N/A		N/A			N/A	N/A
27	N/A		N/A			N/A	N/A
28	N/A		N/A			N/A	N/A
29	N/A		N/A			25.9	10.9
30	N/A		N/A			N/A	N/A
31	N/A		N/A		· · · · · · · · · · · · · · · · · · ·	N/A	N/A
				4			
M. Min.	N/A	13.8	N/A	16.6	46.8	25.9	10.9
M. Max.	N/A	30.2	N/A	43.8	62.0	34.0	13.6
M. Avg.	N/A	22.2	N/A	34.2	54.0	29.7	12.4

M. Min: Monthly Minimum, M. Max: Monthly Maximum, M. Avg: Monthly Average, NA: Not Available

CORKSCREV. SYSTEM DAILY WATER LEVEL DATA FOR THE STORAGE ZONE OBSERVATION WELLS FOR CYCLE 4

		<u> </u>			MONTH: NOVEMBER, 2004			
WATER	R LEVEL (FEET, NGV	(D)						
DAY NO.	MW-1	MW-2	MW-3	MW-A	MW-C	MW-B	LM-926	
1	N/A	16.0	N/A	N/A	50.5	N/A	N/A	
2	N/A	20.3	N/A	N/A	51.6	N/A	N/A	
3	N/A	15.8	34.6	26.9	51.3	30.5	7.9	
4	N/A	10.7	N/A	N/A	46.7	N/A	N/A	
5	N/A	20.5	N/A	N/A	47.9	N/A	N/A	
6	N/A	16.0	N/A	N/A	52.0	N/A	N/A	
7	N/A	14.8	N/A	N/A	49.9	N/A	N/A	
8	N/A	9.6	N/A	N/A	46.0	N/A	N/A	
9	N/A	16.9	N/A	N/A	49.3	N/A	N/A	
10	N/A	15.7	34,9	28.1	49.5	31.7	6.5	
11	N/A	14.5	N/A	N/A	51.4	N/A	N/A	
12	N/A	12.2	N/A	N/A	48.0	N/A	N/A	
13	N/A	8.6	N/A	N/A	46.3	N/A	N/A	
14	N/A	13.3	N/A	N/A	44.2	N/A	N/A	
15	N/A	14.2	N/A	N/A	50.2	N/A	N/A	
16	N/A	16.4	N/A	N/A	50.8	N/A	N/A	
17	N/A	13.8	37.0	28.1	51.3	32.8	7.21	
18	N/A	16.6	N/A	N/A	49.8	N/A	N/A	
19	N/A	17.0	N/A	N/A	47.4	N/A	N/A	
20	N/A	18.5	N/A	N/A	48.1	N/A	N/A	
21	N/A	11.5	N/A	N/A	56.3	N/A	N/A	
22	N/A	20.2	N/A	N/A	55.8	N/A	N/A	
23	N/A	14.7	N/A	N/A	50.3	N/A	N/A	
24	N/A	20.1	39.3	30.4	53.2	33.8	6.2	
25	N/A	23.0	N/A	N/A	53.6	N/A	N/A	
26	N/A	27.7	N/A	N/A	59.2	N/A	N/A	
27	N/A	18.2	N/A	N/A	55.6	N/A	N/A	
28	N/A	16.8	N/A	N/A	52.3	N/A	N/A	
29	N/A	18.7	N/A	N/A	53.7	N/A	N/A	
30	N/A	18.3	N/A	N/A	54.8	N/A	N/A	
M. Min.	N/A	8.6	34.6	26.9	44.2	30.5	6.2	
M. Max.	N/A	27.7	39.3	30.4	59.2	33.8	7.9	
M. Avg.	N/A	16.4	36.5	28.4	50.9	32.2	7.0	

M. Min: Monthly Minimum, M. Max: Monthly Maximum, M. Avg: Monthly Average, NA: Not Available * Static/Injecting

•

CORKSCREV SYSTEM DAILY WATER LEVEL DATA FOR THE STORAGE ZONE OBSERVATION WELLS FOR CYCLE 4

WATER	LEVEL (FEET, NGV					MONTH: DECEMBER, 20	EMBER, 2004	
DAY NO.	MW-1	MW-2	MW-3	MW-A	MW-C	MW-B	LM-926	
1	N/A	18.0	N/A	N/A	54.2	N/A	N/A	
2	N/A	20.4	34.9	28.1	50.8	31.7	6.5	
3	N/A	23.9	NA	NA	56.2	N/A	N/A	
4	N/A	18.6	NA	NA	55.1	N/A	N/A	
5	N/A	15.9	NA	NA	53.7	N/A	N/A	
6	N/A	15.7	NA	NA	51.7	N/A	N/A	
7	N/A	17.2	NA	NA	53.6	N/A	N/A	
8	N/A	8.8	37.0	26.9	53.8	32.8	4.8	
9	N/A	13.7	NA	NA	50.9	N/A	N/A	
10	N/A	19.3	NA	NA	46.1	N/A	N/A	
11	N/A	12.7	NA	NA	53.0	N/A	N/A	
12	N/A	10.7	NA	NA	48.7	N/A	N/A	
13	N/A	15.4	NA	NA	52.0	N/A	N/A	
14	N/A	14.3	NA	NA	49.8	N/A	N/A	
15	N/A	15.8	NA	NA	52.4	N/A	N/A	
16	N/A	17.4	NA	NA	52.8	N/A	N/A	
17	N/A	20.3	37.0	28.1	53.3	31,7	1.51	
18	N/A	14.3	NA	NA	54.0	N/A	N/A	
19	N/A	10.7	NA	NA	49.0	N/A	N/A	
20	N/A	19.9	NA	NA	52.1	N/A	N/A	
21	N/A	15.6	NA	NA	53.2	N/A	N/A	
22	N/A	15.5	39.3	30.4	53.1	34.0	1.8	
23	N/A	20.1	NA	NA	53.1	N/A	N/A	
24	N/A	24.3	NA	NA	57.6	N/A	N/A	
25	N/A	25.7	NA	NA	56.0	N/A	N/A	
26	N/A	22.7	NA	NA	56.4	N/A	N/A	
27	N/A	19.7	NA	NA	59.0	N/A	N/A	
28	N/A	17.7	34.9	28.9	54.5	32.8	2.1	
29	N/A	17.5	NA	NA	54.2	NA	NA	
30	N/A	17.2	NA	NA	50.8	NA	NA	
31	NA	16.8	NA	NA	53.7	NA	NA	

MONTH	DECEMBER	2004	

.

M. Min. N/A 8.8 34.9 26.9 46.1 31.7 1.5 M. Max. N/A 25.7 39.3 30.4 59.0 34.0 6.5 N/A M. Avg. 17.3 36.6 28.5 53.1 32.6 3.3

M. Min: Monthly Minimum, M. Max: Monthly Maximum, M. Avg: Monthly Average, NA: Not Available

Static/Injecting

CORKSCREW ASR SYSTEM DAILY WATER LEVEL DATA FOR THE STORAGE ZONE OBSERVATION WELLS FOR CYCLE 4

MONTH: JANUARY, 2005

		(D)		Y		MONTH: JANUARY, 2005	
	R LEVEL (FEET, NGV						
DAY NO.	MW-1	MW-2	MW-3	MW-A	MW-C	MW-B	LM-926
1	N/A	16.7	N/A	N/A	53.6	N/A	N/A
2	N/A	12.7	N/A	N/A	52.1	N/A	N/A
3	N/A	11.9	N/A	N/A	49.1	N/A	N/A
4	N/A	13.2	34.8	28.9	49.8	31.7	4.8
5	N/A	12.1	N/A	N/A	49.2	N/A	N/A
6	N/A	6.1	N/A	N/A	48.4	N/A	N/A
7	N/A	15.0	N/A	N/A	49.8	N/A	N/A
8	N/A	11.2	N/A	N/A	48.6	N/A	N/A
9	N/A	9.5	N/A	N/A	48.6	N/A	N/A
10	N/A	4.9	N/A	N/A	46.3	N/A	N/A
11	N/A	10.3	35.8	28.1	49.1	29.3	2.9
12	N/A	7.2	N/A	N/A	43.2	N/A	N/A
13	N/A	7.9	N/A	N/A	47.3	N/A	N/A
14	N/A	8.2	N/A	N/A	47.5	N/A	N/A
15	N/A	8.0	N/A	N/A	47.0	N/A	N/A
16	N/A	8.0	N/A	N/A	46.5	N/A	N/A
17	N/A	8.2	N/A	N/A	46.6	N/A	N/A
18	N/A	12.7	37.0	26.9	44.3	28.2	2.1
19	N/A	9.5	N/A	N/A	48.4	N/A	N/A
20	N/A	9.0	N/A	N/A	47.2	N/A	N/A
21	N/A	8.8	N/A	N/A	47.1	N/A	N/A
22	N/A	4.6	N/A	N/A	46.0	N/A	N/A
23	N/A	2.9	N/A	N/A	42.4	N/A	N/A
24	N/A	7.4	N/A	N/A	45.9	N/A	N/A
25	N/A	7.8	36.2	22.8	46.3	28.2	1.4
26	N/A	7.9	N/A	N/A	46.5	N/A	N/A
27	N/A	8.6	N/A	N/A	46.7	N/A	N/A
28	N/A	8.8	N/A	N/A	46.7	N/A	N/A
29	N/A	8.9	N/A	N/A	47.3	N/A	N/A
30	N/A	8.7	N/A	N/A	46.8	N/A	N/A
31	N/A	3.8	N/A	N/A	43.4	N/A	N/A
					······		
1. Min.	N/A	2.9	34.8	22.8	42.4	28.2	1.4
1. Max.	N/A	16.7	37.0	28.9	53.6	31.7	4.8
I. Avg.	N/A	9.0	36.0	26.7	47.3	29.4	2.8

M. Min: Monthly Minimum, M. Max: Monthly Maximum, M. Avg: Monthly Average, NA: Not Available

* Static/Injecting

CORKSCREW ASR SYSTEM DAILY WATER LEVEL DATA FOR THE STORAGE ZONE OBSERVATION WELLS FOR CYCLE 4

MONTH: FEBRUARY 2005

WATER LEVEL (FEET, NGVD) DAY NO. MW-2 MW-3 MW-A MW-C MW-D LM 000000000000000000000000000000000000								
	WIW-1	MW-2	MW-3	MW-A	MW-C	MW-B	LM-926	
1			· ·					
2								
3								
4		· · · · · · · · · · · · · · · · · · ·					-	
5								
6 7			-	· · ·				
8			····				······	
9 10								
			-			·····		
12								
13								
14								
15								
16						·····		
17	NA	-10.5	NA	NA	-33.9	NA	NA	
18	NA	-11.1	NA	NA	-33.1	NA	NA	
19	NA	-13.4	NA	NA	-31.5	NA	NA	
20	NA	-15.7	NA	NA	-30.6	NA	NA	
21	NA	-17.1	NA	NA	-29.2	5.0	-1.9	
22	NA	-17.5	NA	NA	-28.7	NA	NA	
23	NA	-12.6	NA	NA	-30.8	NA	NA	
24	NA	-15.1	NA	NA	-28.3	NA	NA	
25	NA	-11.8	NA	NA	-31.1	NA	NA	
26	NA	-12.3	NA	NA	-35.2	NA	NA	
27	NA	-9.2	NA	NA	-36.1	NA	NA	
28	N/A	-9.5	N/A	N/A	-33.5	3.2	-2.3	
Min.	N/A	-17.5	0.0	0.0	-36.1	3.2	-2.3	
Max.	N/A	-9.2	0.0	0.0	-28.3	5.0	-1.9	
Avg.	N/A	-13.0	#DIV/0!	#DIV/0!	-31.8	4.1	-2.1	

M. Min: Monthly Minimum, M. Max: Monthly Maximum, M. Avg: Monthly Average, NA: Not Available

* Static/Injecting

CORKSCREW ASR SYSTEM DAILY WATER LEVEL DATA FOR THE STORAGE ZONE OBSERVATION WELLS FOR CYCLE 4

WATER LEVEL (FEET, NGVD)						MONTH: MARCH, 2005		
DAY NO.	MW-1	MW-2	MW-3	MW-A	MW-C	MW-B	LM-926	
1	N/A	-9.0	N/A	N/A	-34.4	N/A	N/A	
2	N/A	-15.7	N/A	N/A	-32.0	16.7	-1.9	
3	N/A	-18.1	N/A	N/A	-27.9	N/A	N/A	
4	N/A	-11.7	N/A	N/A	-31.5	N/A	N/A	
5	N/A	-15.1	N/A	N/A	-30.3	N/A	N/A	
6	N/A	-17.1	N/A	N/A	-29.6	N/A	N/A	
7	N/A	~14.1	N/A	N/A	-28.9	N/A	N/A	
8	N/A	-11.9	N/A	N/A	-30.9	N/A	N/A	
9	N/A	-9.8	N/A	N/A	-33.0	16.1	-2.1	
10	N/A	-9.4	N/A	N/A	-33.4	N/A	N/A	
11	N/A	-6.6	N/A	N/A	-33.6	N/A	N/A	
12	N/A	-10.3	N/A	N/A	-31.4	N/A	N/A	
13	N/A	-15.5	N/A	N/A	-29.4	N/A	N/A	
14	N/A	-16.1	N/A	N/A	-28.2	N/A	N/A	
15	N/A	-12.8	N/A	N/A	-29.0	N/A	N/A	
16	N/A	-12.1	N/A	N/A	-31.3	15.6	-2.2	
17	N/A	-6.0	N/A	N/A	-31.6	N/A	N/A	
18	N/A	-6.6	N/A	N/A	-37.4	N/A	N/A	
19	N/A	-7.2	N/A	N/A	-34.5	N/A	N/A	
20	N/A	-12.8	N/A	N/A	-30.3	N/A	N/A	
21	N/A	-12.7	N/A	N/A	-30.5	N/A	N/A	
22	N/A	-16.4	N/A	N/A	-28.9	N/A	N/A	
23	N/A	-17.1	N/A	N/A	-28.3	15.1	-2.3	
24	N/A	N/A	-20.6	-33.7	-28.6	N/A	N/A	
25	N/A	N/A	-22.3	-35.9	-30.8	N/A	N/A	
26	N/A	N/A	-24.9	-36.8	-30.2	N/A	N/A	
27	N/A	N/A	-20.5	-33.5	-27.6	N/A	N/A	
28	N/A	N/A	-20.7	-33.9	-28.4	N/A	N/A	
29	N/A	N/A	-21.5	-34.5	-28.8	14.9	-2.3	
30	N/A	N/A	-20.4	-33.6	-28.3	N/A	N/A	
31	N/A	N/A	-19.9	-33.3	-28.1	N/A	N/A	
. Min.	N/A	-18.1	N/A	-36.8	-37.4	14.9	-2.3	
l, Max.	N/A	-6.0	N/A	-33,3	-27.6	16.7	-1.9	
l. Avg.	N/A	-12.4	N/A	-34.4	-30.6	15.7	-2.2	

M. Min: Monthly Minimum, M. Max: Monthly Maximum, M. Avg: Monthly Average, NA: Not Available

* Static/Injecting

MONTH: APRIL, 2005

WATE	R LEVEL (FEET, NG					MONTH: APRIL, 2005	
DAY NO.	MW-1	MW-2	MW-3	MW-A	MW-C		
1	-28.9	N/A				MW-B	LM-926
2	-27.4		-20.2	-33.5	-28.2	N/A	N/A
3	-27.4	N/A	-20.5	-33.7	-28.3	15.3	1.7
4	-26.7	N/A	-24.3	-37.5	-31.7	N/A	N/A
5		N/A	-21.9	-34.9	-29.1	N/A	N/A
6	-26.2	N/A	-20.6	-33.8	-28.4	N/A	N/A
7	-25.8	N/A	-18.9	-33.3	-28.2	N/A	N/A
	-25.7	N/A	-20.0	-33.2	-28.1	N/A	N/A
8	-26.4	N/A	-19.9	-33.1	-28.0	15.2	0.7
9	-25.6	N/A	-20.0	-33.2	-28.0	N/A	N/A
10	-25.5	N/A	-19.9	-33.0	-28.0	N/A	N/A
11	-25.3	N/A	-19.7	-32.9	-27.7	N/A	N/A
12	-25.0	N/A	-19.1	-32.2	-27.0	N/A	N/A
13	-24.8	N/A	-18.9	-32.0	-26.9	N/A	N/A
14	-24.7	N/A	-18.8	-31.9	-26.8	N/A	N/A
15	-25.9	N/A	-18.6	-31.7	-26.6	N/A	N/A
16	-24.8	N/A	-19.4	-32.3	-26.9	N/A	N/A
17	-24.8	N/A	-19.0	-32.2	-27.4	N/A	N/A
18	-24.8	N/A	-19.1	-32.3	-27.5	14.9	0.3
19	-24.6	N/A	-19.1	-32.4	-27.2	N/A	N/A
20	-24.5	N/A	-19.2	-32.2	-26.7	N/A	N/A
21	-24.9	N/A	-18.3	-31.4	-26.2	N/A	N/A
22	-24.8	N/A	-18.6	-31.6	-26.2	14.9	-0.4
23	-24.3	N/A	-18.7	-31.8	-26.4	N/A	N/A
24	-23.9	N/A	-18.1	-31.1	-25.9	N/A	N/A
25	-24.0	N/A	-18.3	-31.5	-26.8	N/A	N/A
26	-23.7	N/A	-17.9	-30.9	-25.7	N/A	N/A
27	-27.6	N/A	-27.0	-35.5	-29.5	N/A	N/A
28	-25.9	-17.6	-21.1	-34.1	-28.2	N/A	N/A
29	-26.1	-16.3	-21.6	-34.2	-27.7	15.7	-0.7
30	-24.7	-22.5	-19.2	-32.2	-26.4	N/A	N/A
		·			L	1973	
. Min.	-28.9	-22.5	-27.0	-37.5	-31.7	14.9	-0.7
l. Max.	-23.7	-16.3	-17.9	-30.9	-25.7	15.7	1.7
. Avg.	-25.5	-18.8	-19.9	-32.9	-27.5	15.2	0.3

M. Min: Monthly Minimum, M. Max: Monthly Maximum, M. Avg: Monthly Average, NA: Not Available * Static/Injecting

MO	NTU-	BAAV	2005

WATER LEVEL (FEET, NGVD		/D)					
DAY NO.	MW-1	MW-2	MW-3	MW-A	MW-C	MW-B	LM-926
1	N/A		N/A	N/A		N/A	N/A
2	N/A		N/A	N/A		16.7	-1.9
3	N/A		N/A	N/A		N/A	N/A
4	N/A		N/A	N/A		N/A	N/A
5	N/A		N/A	N/A		N/A	N/A
6	N/A		N/A	N/A		N/A	N/A
7	N/A		N/A	N/A		N/A	N/A
8	N/A		N/A	N/A		N/A	N/A
9	N/A		N/A	N/A		16.1	-2.1
10	N/A		N/A	N/A		N/A	N/A
11	N/A		N/A	N/A		N/A	N/A
12	N/A		N/A	N/A		N/A	N/A
13	N/A		N/A	N/A		N/A	N/A
14	N/A		N/A	N/A		N/A	N/A
15	N/A		N/A	N/A		N/A	N/A
16	N/A		N/A	N/A		15.6	-2.2
17	N/A		N/A	N/A		N/A	N/A
18	N/A		N/A	N/A		N/A	N/A
19	N/A		N/A	N/A		N/A	N/A
20	N/A		N/A	N/A		N/A	N/A
21	N/A		N/A	N/A		N/A	N/A
22	N/A		N/A	N/A		N/A	N/A
23	N/A		N/A	N/A		15.1	-2.3
24	N/A					N/A	N/A
25	N/A					N/A	N/A
26	N/A					N/A	N/A
27	N/A					N/A	N/A
28	N/A					N/A	N/A
29	N/A					14.9	-2.3
30	N/A					N/A	N/A
31	N/A					N/A	N/A

M. Min.	N/A	0.0	N/A	0.0	0.0	14.9	-2.3
M. Max.	N/A	0.0	N/A	0.0	0.0	16.7	-1.9
M. Avg.	N/A	#DIV/0!	N/A	#DIV/0!	#DIV/0!	15.7	-2.2

M. Min: Monthly Minimum, M. Max: Monthly Maximum, M. Avg: Monthly Average, NA: Not Available

APPENDIX F

WEEKLY WATER QUALITY DATA FOR THE STORAGE ZONE OBSERVATION WELLS FOR CYCLE 4

CORKSCREW ASR SYSTEM

WEEKLY WATER QUALITY DATA FOR THE STORAGE ZONE OBSERVATION WELLS FOR CYCLE 4

MONTH: JULY, 2004

PARAMETERS	Unit	MW-2		MW-3		MW-C		LM-926
		wk1 (7/8//04)	wk3(7/22/04)	wk1 (7/8//04)	wk3(7/22/04)	wk1 (7/8//04)	wk3(7/22/04)	wk1 (7/8//04)
pH (Field)	pH Units	7.54	7.32	7.81	7.75	7.81	7.75	7.44
pH (Lab)	pH Units	7.45	7.45	7.66	7.68	7.66	7.75	7.39
Specific Conductance	umhos/cm	647	646	630	628	565	566	699
Field Temperature	Centigrade	28.1	27.6	27.5	28.1	27.4	28.9	27.3
Dissolved Oxygen (Field)	mg/L	1.30	1.28	1.14	1.38	1.15	1.16	1.42
Dissolved Oxygen (Lab)	mg/L	0.1	NT	0.5	NT	0.7	NT	NT
Chlorine Residual - Free (Field)	mg/L	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Chlorine Residual - Total (Field)	mg/L	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Color	CU	NT	NT	NT	NT	NT	NT	NT
Odor	TON	NA	8	NA	4	NA	4	NT
Turbidity	NTU	NT	NT	NT	NT	NT	NT	NT
Gross Alpha	pCi/L	ND	NT	ND	NT	ND	NT	NT
Alkalinity (Total)	mg/L	192	193	206	205	165	158	240
Alkalinity (Bicarbonate)	mg/L	191	192	205	204	164	157	239
Hardness (Total)	mg/L	176	182	134	126	156	146	240
Hardness (Calcium)	mg/L	170	182	134	118	148	126	200
Hardness (Carbonate)	mg/L	176	182	134	126	156	146	240
Hardness (Non-Carbonate)	mg/L	0	0	0	0	0	0	0
Aluminum	mg/L	NT	NT	NT	NT	NT	NT	NT
Ammonia	mg/L	NT	NT	NT	NT	NT	NT	NT
Arsenic	ug/L	ND	ND	ND	ND	ND	ND	NT
Chloride	mg/L	39	48	40	47	41	49	NT
Coliform Bacteria	col./100mL	NT	NT	NT	NT	NT	NT	NT
Fluoride	mg/L	1.00	0.89	1.60	1.30	1.10	1.10	NT
Iron	mg/L	NT	NT	NT	NT	NT	NT	NT
Lead	mg/L	NT	NT	NT	NT	NT	NT	NT
Nitrate	mg/L	NT	NT	NT	NT	NT	NT	NT
Nitrite	mg/L	NT	NT	NT	NT	NT	NT	NT
Sulfate	mg/L	NT	NT	NT	NT	NT	NT	NT
TDS	mg/L	310	356	358	350	302	322	394
Total Sulfide	mg/L	0.10	0.30	0.30	0.40	0.10	0.40	NT
Trihalomethanes	ug/L	ND	ND	ND	ND	ND	ND	NT

ND - Not detected

NT - Not tested

CORKSCREW ASR SYSTEM

WEEKLY WATER QUALITY DATA FOR THE STORAGE ZONE OBSERVATION WELLS FOR CYCLE 4

MONTH: August, 2004

PARAMETERS	Unit	MW-2		MW-3		MW-C		LM-926
		wk1 (8/5/04)	wk4(8/26/04)	wk1 (8/5/04)	wk4(8/26/04)	wk1 (8/5/04)	wk4(8/26/04)	wk1 (8/5/04)
pH (Field)	pH Units	7.52	7.42	7.76	7.63	7.90	7.86	7.49
pH (Lab)	pH Units	7.34	7.45	7.74	7.73	7.75	7.81	NT
Specific Conductance	umhos/cm	652	628	627	623	522	474	692
Field Temperature	Centigrade	27.8	27.4	28.0	29.6	27.4	28.8	27.0
Dissolved Oxygen (Field)	mg/L	0.83	1.15	1.89	1.26	1.20	1.40	.1.43
Dissolved Oxygen (Lab)	mg/L	NT	1.60	NT	1.50	NT	1.30	NT
Chlorine Residual - Free (Field)	mg/L	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Chlorine Residual - Total (Field)	mg/L	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Color	cu	NT						
Odor	TON	8	8	8	16	8	2	NT
Turbidity	NTU	NT						
Gross Alpha	pCi/L	ND	ND	ND	NT	ND	NŤ	NT
Alkalinity (Total)	mg/L	183	183	196	196	130	112	228
Alkalinity (Bicarbonate)	mg/L	183	183	196	195	130	111	228
Hardness (Total)	mg/L	176	172	128	130	128	156	236
Hardness (Calcium)	mg/L	148	170	128	120	114	114	214
Hardness (Carbonate)	mg/L	176	172	128	130	128	112	228
Hardness (Non-Carbonate)	mg/L	0	0	0	0	0	0	0
Aluminum	mg/L_	NT						
Ammonia	mg/L	NT						
Arsenic	ug/L	ND	ND	ND	ND	ND	ND	NT
Chloride	mg/L	45	45	42	41	43	43	NT
Coliform Bacteria	col./100mL	NT	NT	NT	NT	NT	NT	NT
Fluoride	mg/L	0.94	0.86	1.40	1.44	1.15	1.21	NT
Iron	mg/L	NT						
Lead	mg/L	NT						
Nitrate	mg/L	NT						
Nitrite	mg/L	NT						
Sulfate	mg/L	NT						
TDS	mg/L	346	274	342	272	286	212	412
Totai Sulfide	mg/L	0.30	0.20	0.30	0.60	0.30	1.00	NT
Trihalomethanes	ug/L	ND	0.50	ND	0.50	1.20	1.00	NT

ND - Not detected

NT - Not tested

CORKSCREW ASR SYSTEM

WEEKLY WATER QUALITY DATA FOR THE STORAGE ZONE OBSERVATION WELLS FOR CYCLE 4

MONTH: September, 2004

1

PARAMETERS	Unit	м	W-2	MV	V-3	MV	N-C	LM-926
		wk1 (9/2/04)	wk3(9/16/04)	wk1 (9/2/04)	wk3(9/16/04)	wk1 (9/2/04)	wk3(9/16/04)	wk1 (9//04)
pH (Field)	pH Units	7.54	7.42	7.58	7.57	7.66	7.54	NT
pH (Lab)	pH Units	7.20	7.80	7.60	7.88	7.72	8.00	NT
Specific Conductance	umhos/cm	636	683	613	610	463	446	NT
Field Temperature	Centigrade	31.9	28.7	28.0	28.1	20.9	27.7	NT
Dissolved Oxygen (Field)	mg/L	1.26	1,12	0.52	1.13	1.14	1.43	NT
Dissolved Oxygen (Lab)	mg/L	1.1	NŤ	ND	NT	1,1	NT	NT
Chlorine Residual - Free (Field)	mg/L	0.0	0.0	0.0	0.0	0.0	0.0	NT
Chlorine Residual - Total (Field)	mg/L	0.0	0.0	0.0	00	0.0	0.0	NT
Color	cu	NŤ	NT	NT	NT	NT	NT	NT
Odor	TON	16	16	8	8	2	2	NT
Turbidity	NTU	NT						
Gross Alpha	pCi/L	ND	ND	ND	NT	ND	NT	NT
Alkalinity (Total)	mg/L_	190	189	208	191	114	106	NT
Alkalinity (Bicarbonate)	mg/L	190	188	207	190	113	105	NT
Hardness (Total)	mg/L	158	198	120	164	122	150	NT
Hardness (Calcium)	mg/L	146	152	118	122	100	104	NT
Hardness (Carbonate)	mg/L	158	189	120	164	114	106	NT
Hardness (Non-Carbonate)	mg/L	0	9	0	0	8	44	NT
Aluminum	mg/L	NT						
Ammonia	mg/L	NT						
Arsenic	ug/L	ND	ND	ND	ND	ND	ND	NT
Chloride	mg/L	44	45	40	42	41	43	NT
Coliform Bacteria	col./100mL	NT	NT	NT	NT	NT	NT	NT
Fluoride	mg/L	1.03	0.95	1.52	1.30	1.43	1.20	NT
Iron	mg/L	NT						
Lead	mg/L	NT						
Nitrate	mg/L_	NT	, NT	NT	NT	NT	NT	NT
Nitrite	mg/L_	NT						
Sulfate	mg/L	NT						
TDS	mg/L	298	338	314	322	216	250	NT
Total Sulfide	mg/L	0.20	0.60	0 20	0.20	0.40	0.40	NT
Trihalomethanes	ug/L	0.50	NT	0.15	0.22	0.58	0.15	NT

ND - Not detected

NT - Not tested

MONTH: October, 2004

PARAMETERS	Unit	MW-2		MW-3		MW-C		LM-926
		wk1 (Shut down	wk2(10/14/04)	wk1 (Shut Down	wk2(10/14/04)	vk1 (Shut Dowr	wk2(10/14/04)	wk2 (10/14/04
oH (Field)	pH Units	NT	7.20	NT	7.84	NT	7.80	7.45
oH (Lab)	pH Units	NT	7.57	NT	7.68	NT	7.82	7.36
Specific Conductance	umhos/cm	NT	637	NT	601	NT	430	698
Field Temperature	Centigrade	NT	26.0	NT	26.8	NT	26.3	26.1
Dissolved Oxygen (Field)	mg/L	NT	NT	NT	NT	NT	NT	NT
Dissolved Oxygen (Lab)	mg/L	NT	1.50	NT	1.60	NT	0.90	NT
Chlorine Residual - Free (Field)	mg/L	NT	0.0	NT	0.0	NT	0.0	0.0
Chlorine Residual - Total (Field)	mg/L	NT	0.0	NT	0.0	NT	0.0	0.0
Color	CU	NT	NT	NT	NT	NT	NT	NT
Odor	TON	NT	8	NT	4	NT	2	NT
Turbidity	NTU	NT	NT	NT	NT	NT	NT	NT
Gross Alpha	pCi/L	NT	2.35	NT	NT	NT	NT	NT
Alkalinity (Total)	mg/L	NT	188	NT	192	NT	97	235
Alkalinity (Bicarbonate)	mg/L	NT	187	NT	191	NT	96	234
Hardness (Total)	mg/L	NT	168	NT	134	NT	126	238
Hardness (Calcium)	mg/L	NT	152	NT	130	NT	116	218
Hardness (Carbonate)	mg/L	NT	168	NT	134	NT	97	235
Hardness (Non-Carbonate)	mg/L	NT	0	NT	0	NT	29	3
Aluminum	mg/L	NT	NT	NT	NT	NT	NT	NT
Ammonia	mg/L	NT	NT	NT	NT	NT	NT	NT
Arsenic	ug/L	NT	ND	NT	ND	NT	ND	NT
Chloride	mg/L	NT	45	NT	42	NT	39	NT
Coliform Bacteria	col./100mL	NT	NT	NT	NT	NT	NT	NT
Fluoride	mg/L	NT	0.93	NT	1.27	NT	1.16	NT
Iron	mg/L	NT	NT	NT	NT	NT	NT	NT
Lead	mg/L	NT	NT	NT	NT	NT	NT	NT
Nitrate	mg/L	NT	NT	NT	NT	NT	NT	NT
Nitrite	mg/L	NT	NT	NT	NT	NT	NT	NT
Sulfate	mg/L	NT	NT	NT	NT	NT	NT	NT
TDS	mg/L	NT	312	NT	306	NT	208	410
Total Sulfide	mg/L	NT	0.40	NT	0.40	NT	0.40	NT
Trihalomethanes	ug/L	NT	0.07	NT	0.18	NT	0.73	NT

ND - Not detected

NT - Not tested

MONTH: November, 2004

PARAMETERS	Unit	MW-2		MW-3		MW-C		LM-926
		wk1 (11/4/04)	wk3(11/18/04)	wk1 (11/4/04)	wk3(11/18/04)	wk1 (11/4/04)	wk3(11/18/04)	wk1 (11/4/04)
pH (Field)	pH Units	7.62	7.36	7.44	7.64	8.13	7.60	7.50
pH (Lab)	pH Units	7,38	7.43	7.59	7.59	7.85	7.79	7.38
Specific Conductance	umhos/cm	639	645	596	587	407	407	699
Field Temperature	Centigrade	27.3	25.8	27.4	26.9	26.5	25.9	26.3
Dissolved Oxygen (Field)	mg/L	NT						
Dissolved Oxygen (Lab)	mg/L	0.3	NT	1.4	NT	0.4	NT	NT
Chlorine Residual - Free (Field)	mg/L	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Chlorine Residual - Total (Field)	mg/L	0.0	0.0	0,0	0.0	0.0	0.0	0.0
Color	сu	NT						
Odor	TON	16	16	16	8	2	1	NT
Turbidity	NTU	NT						
Gross Alpha	pCi/L	0.246	NT	0.949	NT	ND	NT	NT
Alkalinity (Total)	mg/L	202	216	196	204	92	93	244
Alkalinity (Bicarbonate)	mg/L	202	215	195	203	91	92	243
Hardness (Total)	mg/L	180	158	162	132	160	114	264
Hardness (Calcium)	mg/L	134	126	144	104	130	92	238
Hardness (Carbonate)	mg/L	180	158	162	132	92	93	244
Hardness (Non-Carbonate)	mg/L	0	0	0	0	68	21	20
Aluminum	mg/L	NT						
Ammonia	_mg/L	NT						
Arsenic	ug/L	ND	1.0	ND	1.0	ND	1.0	NT
Chloride	mg/L	47	47.0	43	42	37	38	NT
Coliform Bacteria	col./100mL	NT	NT	NT	NT	NT	NT	NT
Fluoride	mg/L	0.80	1.00	1.20	1.30	1.10	1.10	NT
Iron	mg/L	NT						
Lead	mg/L	NT						
Nitrate	mg/L	NT						
Nitrite	mg/L	NT						
Sulfate	mg/L	NT						
TDS	mg/L	326	384	324	306	230	218	414
Total Sulfide	mg/L	0.20	0.10	0.20	0.40	0.20	0.10	NT
Trihalomethanes	ug/L	0.50	0.50	0.50	0.08	0.42	0.13	NT

ND - Not detected NT - Not tested NA - Not available, lab report pending

						MONTH:	DECEMBER, 20	004
PARAMETERS	Unit	MW-2	1	MW-3	1	MW-C	1	LM-926
		wk1 (12/2/04)	wk3(12/15/04)	wk1 (12/2/04)	wk3(12/15/04)	wk1 (12/2/04)	wk3(12/15/04)	wk1 (12/2/04)
pH (Field)	pH Units	7.31	6.88	7.45	7.18	7.90	7.45	6.70
pH (Lab)	pH Units	7.31	7.53	7.44	7.77	7.60	7.89	7.18
Specific Conductance	umhos/cm	653	667	572	567	402	433	696
Field Temperature	Centigrade	26.2	24.0	26.9	24.8	26.1	23.6	26.2
Dissolved Oxygen (Field)	mg/L_	NT						
Dissolved Oxygen (Lab)	mg/L	0.1	NT	1.2	NT	1.4	NT	NT
Chlorine Residual - Free (Field)	mg/L	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Chlorine Residual - Total (Field)	mg/L	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Color	cυ	NT						
Odor	TON	8	16	16	8	1	1	NT
Turbidity	NTU	NT						
Gross Alpha	pCi/L	ND	NT	ND	NT	ND	NT	NT
Alkalinity (Total)	mg/L	215	201	197	197	92	98	267
Alkalinity (Bicarbonate)	mg/L	215	200	196	196	92	97	267
Hardness (Total)	mg/L	148	144	126	136	116	124	244
Hardness (Calcium)	mg/L	118	122	100	104	92	98	214
Hardness (Carbonate)	mg/L	148	144	126	136	92	98	244
Hardness (Non-Carbonate)	mg/L	00	0	0	0	24	26	0
Aluminum	mg/L	NT						
Ammonia	mg/L	NT						
Arsenic	ug/L	ND						
Chloride	mg/L	50	47	43	42	36	39	NT
Coliform Bacteria	col./100mL	NT	NT	NT	NT	NT	NT	NT
Fluoride	mg/L	1.02	1.01	1.36	1.27	1.21	1.15	NT
Iron	mg/L	NT						
Lead	mg/L	NT						
Nitrate	mg/L	NT						
Nitrite	mg/L	NT						
Sulfate	mg/L	NT						
TDS	mg/L	324	288	288	256	200	170	434
Total Sulfide	mg/L	0.30	0.10	1.50	0.50	0.10	0.30	434
Trihalomethanes	ug/L	ND	ND	ND	ND	ND	ND	NT

ND - Not detected NT - Not tested

•

MONTH: JANUARY, 2005

PARAMETERS	Unit	M	MW-2		1W-3	MV	V-C	LM-926	
		wk1 (1/4/05)	wk 3(1/20/05)	wk1 (1/4/05)	wk 3(1/20/05)	wk1 (1/4/05)	wk 3(1/20/05)	wk1 (1/4/05)	
pH (Field)	pH Units	7.52	7.09	7.55	7.45	7.95	7.41	7.51	
рН (Lab)	pH Units	7.35	7.73	7.60	7.82	7.78	7.69	7.36	
Specific Conductance	umhos/cm	667	648	543	529	412	408	698	
Field Temperature	Centigrade	25.9	25.3	26.6	25.8	25.7	24.3	25.6	
Dissolved Oxygen (Field)	mg/L	NT	NT	NT	NT	NT	NT	NT	
Dissolved Oxygen (Lab)	mg/L	1.3	NT	1.6	NT	1.7	NŤ	NT	
Chlorine Residual - Free (Field)	mg/L	0.0	0.0	0.0	0.0	0.16	0.0	0.0	
Chlorine Residual - Total (Field)	mg/L	0.46	0.0	0.23	0.0	0.24	0.07	0.0	
Color	CU	NT	NT	NT	NT	NT	NT	NT	
Odor	TON	8	8	8	8	1	1	NT	
Turbidity	NTU	NT	NT	NT	NT	NT	NT	NT	
Gross Alpha	pCi/L	0.357	NT	0.955	NT	0.267	NT	NT	
Alkalinity (Total)	mg/L	221	210	177	165	92	87	261	
Alkalinity (Bicarbonate)	mg/L	221	209	176	164	91	87	260	
Hardness (Total)	mg/L	144	156	122	118	112	124	244	
Hardness (Calcium)	mg/L	104	102	94	106	76	66	198	
Hardness (Carbonate)	mg/L	144	156	122	118	92	87	244	
Hardness (Non-Carbonate)	mg/L	0	0	0	0	20	37	0	
Aluminum	mg/L	NT	NT	NT	NT	NT	NT	NT	
Ammonia	mg/L	NT	NT	NT	NT	NT	NT	NT	
Arsenic	ug/L	ND	ND	ND	ND	1.0	ND	NT	
Chloride	mg/L	49	49	42	41	39	39	NT	
Coliform Bacteria	col./100mL	NT	NT	NT	NT	NT	NT	NT	
Fluoride	mg/L	0.94	0.94	1.27	1.20	1.10	0.91	NT	
Iron	mg/L	NT	NT	NT	NT	NT	NT	NT	
Lead	mg/L_	NT	NT	NT	NT	NT	NT	NT	
Nitrate	mg/L	NT	NT	NT	NT	NT	NT	NT	
Nitrite	mg/L	NT	NT	NT	NT	NT	NT	NT	
Sulfate	mg/L	NT	NT	NT	NT	NT	NT	NT	
TDS	mg/L	340	322	294	298	244	234	426	
Total Sulfide	mg/L	2.70	2.70	1.50	1.30	0.30	0.70	NT	
Trihalomethanes	ug/L	ND	ND	ND	ND	ND	ND	NT	

ND - Not detected

NT - Not tested

MONTH: FEBRUARY, 2005

PARAMETERS	Unit	MW-2	м -з	MM-C	LM-926
		wk1 (2/17/05)	wk1 (2/17/05)	wk1 (2/17/05)	wk1 (2/17/05
pH (Field)	pH Units	7.53	7.60	7.62	7.50
pH (Lab)	pH Units	7.34	7.52	7.67	7.24
Specific Conductance	umhos/cm	668	582	417	694
Field Temperature	Centigrade	26.4	29.4	30.0	30.2
Dissolved Oxygen (Field)	mg/L	1.92	1.24	1.33	1.45
Dissolved Oxygen (Lab)	mg/L	0.10	0.40	1.50	NT
Chlorine Residual - Free (Field)	mg/L	0.00	. 0.00	0.00	0.00
Chlorine Residual - Total (Field)	mg/L	0.00	0.00	0.00	0.00
Color	CU [.]	NT	NT	NT	NT
Odor	TON	8	8	2	NT
Turbidity	NTU	NT	NT	NT	NT
Gross Alpha	pCi/L	N/A	N/A	N/A	NT
Alkalinity (Total)	mg/L	219	195	103	257
Alkalinity (Bicarbonate)	mg/L	219	194	103	257
Hardness (Total)	mg/L	156	126	110	240
Hardness (Calcium)	mg/L	128	116	96	232
Hardness (Carbonate)	mg/L	156	126	103	240
Hardness (Non-Carbonate)	mg/L	0	0	7	0
Aluminum	ug/L	NT	NT	NT	NT
Ammonia	mg/L	NT	NT	NT	NT
Arsenic	ug/L	1.8	2.1	1.8	NT
Chloride	mg/L	47	43	45	NT
Coliform Bacteria	col./100mL	NT	NT	NT	NT
Fluoride	mg/L	0.98	1.91	1.14	NT
Iron	mg/L	NT	NT	NT	NT
Lead	mg/L	NT	NT	NT	NT
Nitrate	mg/L	NT	NT	NT	NT
Nitrite	mg/L	NT	NT	NT	NT
Sulfate	mg/L	NT	NT	NT	NT
TDS	mg/L	326	294	416	200
Total Sulfide	mg/L	3.50	2.30	0.70	NT
Trihalomethanes	ug/L	N/A	N/A	N/A	NT

ND - Not detected

NT - Not tested

MONTH: MARCH, 2005

Revised Report

PARAMETERS	Unit			MW - 2					MW - 3					MW - C			LM 926
		wk1 (3/2/05)	wk2 (3/9/05)	wk3 (3/16/05)	wk4 (3/23/05)	wk5 (3/31/05)	wk1 (3/2/05)	wk2 (3/9/05)	wk3 (3/16/05)	wk4 (3/23/05)	wk5 (3/31/05)	wk1 (3/2/05)	wk2 (3/9/05)	wk3 (3/16/05)	wk4 (3/23/05)	wk5 (3/31/05)	wk1 (3/2/05)
pH (Field)	pH Units	7.56	7.66	7.73	7.65	7.43	7.69	7.07	7.90	7.68	7.87	7.30	7.64	7.71	7.89	7.81	7,49
pH (Lab)	pH Units	7.65	7.66	7.67	7.47	7.42	7.87	7.07	7.73	7.66	7.60	7.82	7.64	7.89	7.80	7.76	7.4
Specific Conductance	umhos/cm	602	556	563	496	591	543	507	523	507	559	402	383	399	384	430	678
Field Temperature	Centigrade	21.0	25.8	29.3	31.8	28.0	23.4	26.1	31.3	32.2	29.2	23.4	25.2	31.8	31.7	29.1	24.1
Dissolved Oxygen (Field)	mg/L	1.44	1.70	1.53	1.34	0.88	1.36	1.50	0.92	1.41	1.14	1,49	3.72	0.86	1,19	1.08	1.64
Dissolved Oxygen (Lab)	mg/L	ND	0.30	0.90	0.60	0.50	0.80	1.70	1.10	1.60	0 40	1.20	1.90	2.40	1.80	3.10	NT
Chlorine Residual - Free (Field)	mg/L	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Chlorine Residual - Total (Field)	mg/L	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Color	cu	NT -	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Odor	TON	8	8	8	NT	200	8	8	8	NT	200	2	1	2	NT	4	NT
Turbidity	NTU	NT	0.20	NT	NT	NT	NT	0.20	NT	NT	NT	NT	0.30	NT	NT	NT	NT
Gross Alpha	pCi/L	ND	0.658	NT	ND	ND	ND	-0.236	NT	ND	ND	3.3	0.835	NT	ND	2.9	NT
Alkalinity (Total)	mg/L	213	199	190	191	180	184	187	183	191	183	96	104	93	102	101	257
Alkalinity (Bicarbonate)	mg/L	212	198	189	190	180	183	187	182	190	182	95	104	92	101	100	256
Hardness (Total)	mg/L	158	158	160	NT	154	124	124	126	NT	120	116	114	124	NT	130	242
Hardness (Calcium)	mg/L	132	148	142	NT	126	118	116	116	NT	114	98	110	112	NT	122	224
Hardness (Carbonate)	mg/L	158	158	160	NT	154	124	124	126	NT	94	96	104	93	NT	74	242
Hardness (Non-Carbonate)	mg/L	0	0	0	NT	0	0	0	0	NT	0	20	10	31	NT	0	NT
Aluminum	ug/L	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Ammonia	mg/L	NT	NT	NT.	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Arsenic	ug/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT
Chloride	mg/L	49	47	46	47	45	46	43	42	42	43	45	40	40	40	40	NT
Coliform Bacteria	col./100mL	NT	NT	NT	NT	NT	NT ,	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Fluoride	mg/L	0.97	1.03	0.93	NT	0.92	1.28	1.31	1.28	NT	1.34	1.10	1.06	1.10	NT	1.14	NT
Iron	mg/L	NT	NT	ND	ND	ND	NT	NT	ND	ND	ND	NT	NT	ND	ND	ND	NT
Lead	mg/L	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Nitrate	mg/L	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Nitrite	mg/L	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Sulfate	mg/L	NT	NT	25.2	25.3	25.6	NT	NT	15.2	15.2	16.0	NT	NT	31.0	30.6	30.0	NT
TDS	mg/L	332	318	310	346	334	296	274	288	336	332	208	226	254	248	372	400
Total Sulfide	mg/L	2.90	1.90	2.70	NT	2.50	2.30	0.70	2.50	NT	1.90	09	0.70	1.1	NT	0.60	NT
Trihalomethanes	ug/L	ND	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	ND	ND	NT	NT

ND - Not detected

PARAMETERS	Unit		1	MW - 2				MW - 3				MW - C			LM 926
		wk1 (4/6/05)	wk2 (4/13/05)	wk3 (4/20/05)	wk4 (4/28/05)	wk1 (4/6/05)	wk2 (4/13/05)	wk3 (4/20/05)	wk4 (4/28/05)	wk1 (4/6/05)	wk2 (4/13/05)	wk3 (4/20/05)	wk4 (4/28/05)		wk1 (3/31/05)
pH (Field)	pH Units	7.47	7.44	7.21	7.62	7,70	7.49	7.11	7.64	 7.59	7.53	7.60			1
pH (Lab)	pH Units	7.35	7.50	7.50	7.43	7.55	7.66	7.61	7.57	 7.63	7.78		7.58		7.47
Specific Conductance	umhos/cm	532	504	614	477	514	541	574	461			7.73	7.68		7.16
Field Temperature	Centigrade	28.9	25.7	25.8	27.5	 27.9	23.7	26.7	33.3	 30.0	381	460	379		549
Dissolved Oxygen (Field)	mg/L	2.44	1.69	1.51	1.26	 1.65	1.76	1.52	0.85	 1	24.8	27.8	31.2	<u> </u>	28.4
Dissolved Oxygen (Lab)	mg/L	0.4	0.6	1,1	0.4	 3.4	0.3	0.4	0.3	 1.33 1.8	1.22	1.70	1.13		1.15
Chlorine Residual - Free (Field)	mg/L	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	 0.0	1.1	2.0	0.3	+	NT
Chlorine Residual - Total (Field)	mg/L	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0		0.0	0.0	0.0		0.0
Color	CU	NT	NT	NT	NT	 NT	NT	NT	0.0 NT	0.0	0.0	0.0	0.0		0.0
Odor	TON	NT	8	NT	NT	 NT	8	NT	NT	NT	NT	NT	NT		NT
Turbidity	NTU	NT	NT	NT	NT	 NT	NT	NT	NT	 NT	2	NT	NT		NT
Gross Alpha	pCi/L	ND	NT	NA	NA	 ND	NT	NA	NA	 NT	NT	NT	NT		NT
Alkalinity (Total)	mg/L	135	149	152	156	 135	151	147	-	NT	NT	NA	NA		NT
Alkalinity (Bicarbonate)	mg/L	135	149	152	156	 135	150	147	151	 135	115	126	126		247
Hardness (Total)	mg/L	NT	156	152	NT	 NT	130	124	150 NT	 134	114	125	125		247
Hardness (Calcium)	mg/L	NT	130	128	NT	 NT	112	124	NT	 134	132	136	NT		246
Hardness (Carbonate)	mg/L	NT	149	152	NT	NT	128	124	NT	 106	110	108	NT	·	236
Hardness (Non-Carbonate)	mg/L	NT	7	0	NT	NT	0	0	NT	 134	115	126	NT		246
Aluminum	mg/L	NT	NT	NT	NT	 NT	NT	NT		0	17	10	NT		0
Ammonia	mg/L	NT	NT	NT	NT	NT	NT	NT	NT NT	 NT	NT	NT	NT		NT
Arsenic	ug/L	ND	ND	ND	ND	 ND	ND	ND		 NT	NT	NT	NT		NT
Chloride	mg/L	45	44	42	44	 43	43	ND 45	ND	 ND	ND	ND	ND		ND
Coliform Bacteria	col./100mL	NT	NT	NT	NT	 NT	43 NT		42	 41	41	43	41		NT
Fluoride	mg/L	NT	0.91	0.85	NT	NT	1.21	NT 1.25	NT	 NT	NT	NT	NT		NT
Iron	mg/L	ND	ND	NT	ND	 ND	ND		NT	 1.13	1.29	1.00	NT		NT
Lead	mg/L	NT	NT	NT	NT	 NT	ND NT	NT	ND	 NT	ND	NT	ND		NT
Nitrate	mg/L	NT	NT	NT	NT	 NT	NT		NT	 NT	NT	NT	NT		NT
Nitrite	mg/L	NT	NT	NT	NT	 NT	NT	NT	NT	 NT	NT	NT	NT		NT
Sulfate	mg/L	27.1	23.3	NT	22.7			NT	NT	 NT	NT	NT	NT		NT
TDS	mg/L	342	342	318	310	 <u> 16.1</u> 312	14.1 326	NT	11.3	 NT	28.1	NT	27.7		NT
Total Sulfide	mg/L	NT	2.0	NT	NT	 NT	1.80	314	290	 276	352	346	256		432
Trihalomethanes	ug/L	ND	ND	ND	ND	 ND	1.80 ND	NT ND	NT ND	 NT ND	0.80 ND	NT ND	NT ND		NT NT

MONTH: APRIL, 2005

ND - Not detected

NT - Not tested

MONTH: MAY, 2005

PARAMETERS	Unit		1	MW - 2	1				MW - 3				MW - C		LM 926
		wk1 (5/5/05)	wk2 (5/11/05)	wk3 (5/19/05)	wk4 (5/25/05)		wk1 (5/5/05)	wk2 (5/11/05)	wk3 (5/19/05)	wk4 (5/25/05)	wk1 (5/5/05)	wk2 (5/11/05)	wk3 (5/19/05)	wk4 (5/25/05)	wk1 (5/5/05
pH (Field)	pH Units	7.14	7.53	7.39	7.19		7.30	7.6	7.60	7.38	7.33	7.59	7.80	7.12	7.17
pH (Lab)	pH Units	7.51	7.49	7.51	7.57		7.71	7.64	7.61	7.66	 7.77	7.74	7.7	7,76	7.26
Specific Conductance	umhos/cm	546	477	459	548		534	470	455	541	 460	399	390	467	632
Field Temperature	Centigrade	23.8	25	25.3	30.5		25.9	27.2	25.1	28.8	 26.7	26.9	27.5	26.8	25.8
Dissolved Oxygen (Field)	mg/L	1.40	1,97	1.56	0.86		1.36	1.70	1.41	1.37	1.48	1,44	1.62	1.42	1.49
Dissolved Oxygen (Lab)	mg/L	0.4	0.2	0.6	ND		0.7	2.3	0.9	ND	 0.4	1.4	1.3	0.6	NT
Chlorine Residual - Free (Field)	mg/L	0.0	0.0	0.0	NT		0.0	0.0	0.0	NT	 0.0	0.0	0.0	0.6 NT	0.0
Chlorine Residual - Total (Field)	mg/L	0.0	0.0	0.0	NT		0.0	0.0	0.0	NT	0.0	0.0	0.0	NT	0.0
Color	cu	NT	NT	NT	NT		NT	NT	NT	NT	 NT	0.0 NT	NT	NT	
Odor	TON	8	NT	8	8		4	NT	2	4	 1	NT	2	1	NT
Turbidity	NTU	0.29	0.86	0.51	1,44		0.09	1.13	0.69	0.78	0.18	0.63	0.16	1.40	NT
Gross Alpha	pCi/L	1.4	1.1	NT	ND		ND	ND	NT	1.6	 2.2	2	0.16 NT	1.40	0.34
Alkalinity (Total)	mg/L	152	193	190	189		157	209	209	209	134	141	146	147	NT
Alkalinity (Bicarbonate)	mg/L	152	192	189	188		156	208	208	208	 133	141			256
Hardness (Total)	mg/L	156	NT	152	NT		126	NT	126	NT	 140	NT	145 138	146 NT	256
Hardness (Calcium)	mg/L	122	NT	126	NT		108	NT	112	NT	140	NT	110	NT	250
Hardness (Carbonate)	mg/L	152	NT	152	NT		126	NT	126	NT	 134	NT	138	NT	230
Hardness (Non-Carbonate)	mg/L	4	NT	0	NT		0	NT	0	NT	 6	NT	0	NT	250
Aluminum	mg/L	NT	NT	NT	NT		NT	NT	NT	NT	 NT	NT	NT		0
Ammonia	mg/L	NT	NT	NT	NT		NT	NT	NT	NT	 NT	NT			NT
Arsenic	ug/L	ND	ND	ND	ND		ND	ND	ND	ND	 ND	ND	NT	NT	NT
Chloride	mg/L	39	45	41	42	· · · · · ·	44	42	42	43	 47	42	ND	ND	ND
Coliform Bacteria	col./100mL	NT	NT	NT	NT		NT	NT	NT	NT	 47 NT		41	41	NT
Fluoride	mg/L	0.89	NT	0.9	NT		1.19	NT	1.4	NT		NT	NT	NT	NT
Iron	mg/L	ND	ND	ND	ND		ND	ND	ND	ND	 <u>1.11</u> ND	NT	1.10	NT	NT
Lead	mg/L	NT	NT	NT	NT		NT	NT	NU	NT		ND	ND	ND	NT
Nitrate	mg/L	NT	NT	NT	NT		NT	NT	NT	NT	 NT	NT NT	NT	NT	NT
Nitrite	mg/L	NT	NT	NT	NT		NT	NT	NT	NT	NT	NT	NT	NT	NT
Sulfate	mg/L	27.3	26.9	26.9	27.3		19.1	11.1	14.7	NI 15.2	 NT	NT	TA	NT	NT
TDS	mg/L	318	332	344	320		304	318	352		 29.1	27.1	27.0	28.6	NT
Total Sulfide	mg/L	2.00	NT	2.50	2.00	<u> </u>	2.40			312	 250	320	296	292	398
Trihalomethanes	ug/L	ND	ND	ND	ND		2.40 ND	ND	3.20 ND	2.40 ND	 1.4 ND	NT ND	1.5 ND	1.00 ND	NT

MONTH: JUNE, 2005

PARAMETERS	Unit			MW - 2		<u> </u>		MW - 3				MW - C			LM 926
		wk1 (6/2/05	wk2 (6/8/05	wk3 (6/15/05	wk4 (6/22/05	wk1 (6/2/05	wk2 (6/8/05	wk3 (6/15/05	wk4 (6/22/05	wk1 (6/2/05	wk2 (6/8/05	wk3 (6/15/05	wk4 (6/22/05		wk1 (6/2/05
pH (Field)	pH Units	7.61	7.56	7.56	6.95	7.45	7.26	7.49	7.46	7.58	7.51	7.55	7.35		7.25
pH (Lab)	pH Units	7.60	7.57	7.60	7.40	7.75	7.68	7.71	7.71	7.75	7.75	7.60	7.70		7.29
Specific Conductance	umhos/cm	582	548	549	470	450	552	562	541	412	485	493	478		648
Field Temperature	Centigrade	23.5	32.2	30.4	27.9	23.4	34.6	28.8	28.5	24.4	30.9	36.2	29.1		23.9
Dissolved Oxygen (Field)	mg/L	2.06	1.13	0.89	1.24	1.27	1.08	1.32	1.50	1.58	1.66	1.09	1.69		1.60
Dissolved Oxygen (Lab)	mg/L	0.50	0.10	0.40	0.30	0.40	ND	ND	ND	1.00	0.30	0.40	0.40		NT
Chlorine Residual - Free (Field)	mg/L	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0		0.0
Chlorine Residual - Total (Field)	mg/L	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0
Color	CU	NT	NT	NT	NT	NT	NT	NT	NT	 NT	NT	NT	NT		NT
Odor	TON	8	NT	8	NT	8	NT	16	NT	 2	NT	2	NT		NT
Turbidity	NTU	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT		NT
Gross Alpha	pCi/L	1.5	1.8	NT	1.3	ND	1.9	NT	3.0	 2.8	ND	NT	2.2		NT
Alkalinity (Total)	mg/L	197	153	193	190	204	156	213	212	161	134	160	155		250
Alkalinity (Bicarbonate)	mg/L	196	152	192	189	203	155	212	211	 160	133	159	154		250
Hardness (Total)	mg/L	154	NT	174	NT	130	NT	142	NT	136	NT	142	NT		268
Hardness (Calcium)	mg/L	122	NT	162	NT	 114	NT	138	NT	112	NT	138	NT		200
Hardness (Carbonate)	mg/L	154	NT	174	NT	130	NT	142	NT	 136	NT	142	NT		250
Hardness (Non-Carbonate)	mg/L	0	NT	0	NT	0	NT	0	NT	 0	NT	0	NT		18
Aluminum	mg/L	NT	NT	NT	NT	NT	NT	NT	NT	 NT	NT	NT	NT		NT
Ammonia	mg/L	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT		NT
Arsenic	ug/L	ND	ND	ND	ND	ND	ND	ND	ND	 ND	ND	ND	ND		ND
Chloride	mg/L	41	42	44	45	44	41	42	43	 42	40	41	43 .		NT
Coliform Bacteria	coi./100mL	NT	NT	NT	NT	NT	NT	NT	NT	 NT	NT	NT	NT		NT
Fluoride	mg/L	0.91	NT	0.87	NT	1.40	NT	1.30	NT	1.20	NT	1.10	NT		NT
Iron	mg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		NT
Lead	mg/L	NT	NT	NT	NT	NT	NT	NT	NT	 NT	NT	NT	NT		NT
Nitrate	mg/L	NT	NT	NT	NT	 NT	NT	NT	NT	 NT	NT	NT	NT		NT
Nitrite	mg/L	NT	NT	NT	NT	 NT	NT	NT	NT	 NT	NT	NT	NT		NT
Sulfate	mg/L	23.6	27.8	28.0	23.8	10.8	15.4	15.3	10.9	 27.0	27.0	26.8	26.8		NT
TDS	mg/L	326	294	252	312	 334	286	304	320	 290	27.0	296	286	·····.	410
Total Sulfide	mg/L	2.40	NT	2.20	NT	2.40	200	2.10	NT	 1.40	250 NT	1.40	286 NT		1
Trihalomethanes	ug/L	ND	ND	ND	ND	ND	ND	ND	ND	 ND	ND	ND	ND		NT NT

APPENDIX G

DAILY INJECTION AND RECOVERY RATE AND VOLUME DATA FOR CYCLE 5

Date Tim 1 - 2 - 3 - 4 Start 5 3:30F 6 3:30F 7 3:30F 9 3:30F 10 - 11 - 12 -	Rate (gpm) () (psi) 9 6	Cum. Inj. Vol. (gals.) 18,890 347,700	Inc. Inj. Vol. (gals.) 18.890	Inj. Rate (gpm)	Inj. Pres. (psi)	Cum. Inj. Vol. (gals.)	Inc. Inj. Vol.	Inj. Rate	lnj.	Cum.	Inc.	Inj.	Inj.	Cum.	Inc.	Inj.	Inj.	Cum.	Inc.
3 4 Start 5 3:30F 6 3:30F 6 3:30F 7 3:30F 7 3:30F 9 3:30F 9 3:30F 10 11	0PM 202 0PM 176 0PM 0PM	6	and the second second	18.890				(gals.)	(gpm)	Pres. (psi)	Inj. Vol. (gals.)	inj. Vol. (gals.)	Rate (gpm)	Pres. (psi)	Inj. Vol. (gals.)	Inj. Vol. (gals.)	Rate (gpm)	Pres, (psi)	Inj. Vol. (gals.)	inc. Inj. Vol. (gals.)
3 4 Start 5 3:30F 6 3:30F 6 3:30F 7 3:30F 7 3:30F 9 3:30F 9 3:30F 10 11	0PM 202 0PM 176 0PM 0PM	6	and the second second	18.890											12		(Jap)			<u>(juici)</u>
4 Start 5 3:30F 6 3:30F 7 3:30F 8 3:30F 9 3:30F 10 11	0PM 202 0PM 176 0PM 0PM	6	and the second second	18.890													l	I		
5 3:30F 6 3:30F 7 3:30F 8 3:30F 9 3:30F 10 11	0PM 202 0PM 176 0PM 0PM	6	and the second second	18,890	1					·								I		
6 3:30F 7 3:30F 8 3:30F 9 3:30F 10 11	0PM 176 0PM 0PM		347,700		294	18	9,700	9,700	1				289	0	18,960	Start Up	291	0	18,740	18,740
7 3:30F 8 3:30F 9 3:30F 10 11	OPM	4		328,810	202	11	344,800	335,100					205	0	434,000	3:30PM	206	0	432,300	413,560
8 3:30F 9 3:30F 10 11	OPM		414,100	66,400	260	13	733,200	388,400					254	0	807,100	3:30PM	247	0	805,300	373,000
9 3:30F 10 11					300	14	1,165,200	432,000					254	0	1,180,300	3:30PM	248	0	1,179,000	373,300
10 11					300	14	1,597,200	432,000				-	254	0	1,553,400	3:30PM	246	0	1,552,300	373,300
11	OPM				296	13	2,029,200	432,000					254	0	1,927,400	·				
		_																		
13																				
14									ļ]		
15 16 3:30F	0PM 116	4	620 400	240.000	400		0.100.500	100.000										L		
17 3:30F		- 4	630,100 781,800	216,000	120	8	2,462,500	433,300	120	0	14,500	14,500	128	0	1,961,100	3:30PM	119	0	1,936,800	384,500
18			/01,000	151,700	0	0	2,619,300	156,800	0	0	136,600	122,100	0	0	2,112,300	3:30PM	0	0	2,090,900	154,100
19		-															<u> </u>	l		
20 3:30F	0PM 191	5	835.500	53,700	204	9	2.671.200	52,000	204	0	225,100	88,500	400					<u> </u>		
21 3:30F			1,116,900	281,400	204	12	2,958,600	287,400	193	0	513,100	288,000	196 192	0	2,166,600	3:30PM	192	0	2,143,800	52,900
22 3:30F		_	1,400,900	284,000	198	13	3,249,000	290,400	207	0	793,800	288,000	204	0	2,450,900	3:30PM 3:30PM	200	0	2,422,800	279,000
23 3:30F	the second second second second second second second second second second second second second second second se	0	1,656,400	255,500	0	0	3,509,400	260,400	0	0	856,400	62,600	204	0	2,735,100	3:30PM 3:30PM	198 0	0	2,712,500 2,971,000	289,700
24			1,000,400	200,000	`		3,303,400	200,400		0	830,400	02,000			2,990,100	3.30PM			2,971,000	258,500
25													∥∤				┢∮		┟────┤	
26 3:30F	0PM 300	17	2,110,500	454,100	184	20	3,962,200	452,800	452	3	1.529.100	672,700	3520.7	4	3,520,700	3:30PM	450	6	3.640.600	669,600
27 3:30F	0PM 302	16	2,461,800	351,300	288	25	4,312,900	350,700	300	0	1,936,100	407.600	3884.7	2	3,884,700	3:30PM	294	0	4.036.000	395,400
28 3:30F	0PM 196		2,817,700	355,900	305	22	4,745,100	432,200	200	0	2,337,400	401,300	4382.4	- 2	4.382.400	3:30PM	447	5	4,642,900	606,900
29 3:30F	0PM 203		3,084,000	266,300	252	19	5,125,300	380,200	200	0	2,606,500	269,100	4813	0	4,382,400	3:30PM	254	0	5,162,100	519,200
30 3:30F	OPM 0	0	3,337,500	253,500	0	0	5,419,500	294,200	0	0	2,893,100	286,600	5105	ŏ	5,105,000	3:30PM	0	0	5,456,300	294,200
31					l															

MONTH: AUGUST, 2005

Monthly Minimum Pressure	0	Monthly Minimum Pressure	0	Monthly Minimum Pressure	0	Monthly Minimum Pressure 0
Monthly Maximum Pressure	17	Monthly Maximum Pressure	25	Monthly Maximum Pressure	3	Monthly Maximum Pressure 6
Monthly Average Pressure	7	Monthly Average Pressure	12	Monthly Average Pressure	0	Monthly Average Pressure 1

		WE			: ASR-1	WE	ELL IDEN	NTIFICATION	ASR-2	WE		NTIFICATION	I: ASR-3	WE	ELL IDE	NTIFICATION	ł: ASR-4	w	ELL IDEI	NTIFICATION	: ASR-5
Date	Time	lnj.	lnj.	Cum.	Inc.	lnj.	lnj.	Cum.	Inc.	Inj.	lnj.	Cum.	Inc.	Inj.	Inj.	Cum.	Inc.	Inj.	Inj.	Cum.	Inc.
		Rate	Pres.	Inj. Vol.	Inj. Vol.	Rate	Pres.	Inj. Vol.	Inj. Vol.	Rate	Pres.	Inj. Vol.	lnj. Vol.	Rate	Pres.	Inj. Vol.	Inj. Vol.	Rate	Pres.	Inj. Vol.	Inj. Vol.
		(gpm)	(psi)	(gals.)	(gals.)	(gpm)	(psi)	(gals.)	(gals.)	(gpm)	(psi)	(gals.)	(gals.)	(gpm)	(psi)	(gals.)	(gals.)	(gpm)	(psi)	(gals.)	(gals.)
1	23:55	195	4	3,347,300	9,800	251	11	5,432,800	13,300	198	0	2,904,400	11,300	245	0	5,166,700		242	0	5,469,800	13,500
2	23:55	292	16	3,800,900	453,600	306	22	5,934,100	501,300	304	0	3,371,100	466,700	294	2	5,607,800		300	0	5,971,200	501,400
3	23:55	298	17	4,116,500	315,600	365	25	6,281,300	347,200	298	0	3,690,100	319,000	300	2	5,917,700		301	0	6289+00	318,500
4	23:55	206	10	4,412,600	296,100	195	14	6,581,500	300,200	196	0	3,980,100	290,000	201	0	6,214,300		208	0	6,586,800	297,100
5	23:55	208	10	4,710,000	297,400	196	14	6,863,200	281,700	196	0	4,261,800	281,700	202	0	6,503,200		203	0	6,882,900	296,100
6	23:55	196	10	4,996,300	286,300	198	14	7,149,900	286,700	196	0	4,547,700	285,900	203	0	6,796,600		203	0	7,178,100	295,200
7	23:55	200	9	5,278,700	282,400	205	15	7,436,200	286,300	202	0	4,835,700	288,000	201	0	7,081,900		202	0	7,464,900	286,800
8	23:55	200	9	5,561,100	282,400	201	15	7,722,500	286,300	200	0	5,123,600	287,900	201	0	7,367,200		201	0	7,751,700	286,800
9	23:55	258	14	5,920,400	359,300	250	20	8,089,400	366,900	260	0	5,560,000	392,400	250	0	7,814,100		250	0	8,236,700	485,000
10	23:55	192	9	6,207,700	287,300	200	15	8,387,400	298,000	200	0	5,864,900	348,900	200	0	8,104,200		200	0	8,335,500	98,800
11	23:55	196	10	6,492,100	284,400	206	15	8,680,500	293,100	207	0	6,159,900	295,000	207	0	8,395,100		209	0	8,830,800	495,300
12	23:55	204	10	6,777,400	285,300	198	14	8,963,800	283,300	204	0	6,453,500	293,600	204	0	8,687,200		204	0	9121700	290900
13	23:55	206	10	7,072,200	294,800	200	14	9,249,200	285,400	202	0	6,743,100	289,600	198	0	8,974,700		202	0	9412000	290300
14	23:55	0	0	7,350,800	278,600	0	0	9,532,900	283,700	150	0	7,019,900	276,800	0	0	9,249,600		150	0	9,662,900	250,900
15	23:55	0	0	7,367,200	16,400	0	0	9,548,900	16,000	0	0	7,034,700	14,800	0	0	9,264,200		100	0	9,678,200	15,300
16	23:55	0	0	7,367,200	0	0	0	9,548,900	0	0	0	7,034,700	0	0	0	9,264,200		0	0	9,678,200	0
17	23:55	0	0	7,367,200	0	0	0	9,548,900	0	0	0	7,034,700	0	0	0	9,264,200		0	0	9,678,200	0
18	23:55	0	0	7,367,200	0	0	0	9,548,900	0	0	0	7,034,700	0	0	0	9,264,200		0	0	9,678,200	0
19	23:55	0	0	7,367,200	0	0	0	9,548,900	0	0	0	7,034,700	0	0	0	9,264,200		0	0	9,678,200	0
20	23:55	0	0	7,367,200	0	0	0	9,548,900	0	0		37,034,700	0	0	0	9,264,200		0	0	9,678,200	0
21	23:55	0	0	7,367,200	0	0	0	9,548,900	0	0	0	7,034,700	0	0	0	9,264,200		0	0	9,678,200	0
22	23:55	296	10	7,367,200	0	327	18	9,548,900	0	300	0	7,034,700	0	298	0	9,264,200		300	0	9,678,200	0
23	23:55	192	8	7,842,500	475,300	206	14	9,995,200	446,300	193	0	7,665,100	630,400	320	0	9,797,900		193	0	10,268,800	590,600
24	23:55	301	15	8,221,200	378,700		22	10,413,400	418,200	298	0	7,948,100	283,000	300	0	10,246,300		298	0	10,636,100	367,300
25	23:55	200	10	8,612,900	391,700	264	22	10,836,400	423,000	196	0	8,336,500	388,400	202	0	10,639,700		196	0	11,031,000	394,900
26	23:55	200	10	8,903,900	291,000	282	20	11,262,600	426,200	192	0	8,614,700	278,200	202	0	10,931,700		192	0	11,322,900	291,900
27	23:55	303	17	9,325,600	421,700	282	24	11,682,600	424,000	424	2	9,098,900	484,200	330	3	11,378,100		424	4	11,810,000	487,100
28	23:55	300	17	9,765,800	440,200	324	29	12,117,300	430,700	446	2	9,676,200	577,300	344	4	11,859,100		446	5	12,318,200	568,200
29	23:55	303	19	10,187,800	422,000	290	26	12,530,700	413,400	448	3	10,310,100	633,900	348	4	12,348,600		448	6	13,016,500	638,300
30	23:55	301	19	10,620,500	432,700	307	28	12,964,100	433,400	447	3	10,950,400	640,300	346	5	12,842,000		447	6	13,660,900	644,400

MONTH: SEPTEMBER, 2005

Monthly Minimum Pressure	6	Monthly Minimum Pressure	10	Monthly Minimum Pressure	0	Monthly Minimum Pressure	Monthly Minimum Pressure	0
Monthly Maximum Pressure	26	Monthly Maximum Pressure	31	Monthly Maximum Pressure	3	Monthly Maximum Pressure	Monthly Maximum Pressure	6
Monthly Average Pressure	9	Monthly Average Pressure	14	Monthly Average Pressure	0	Monthly Average Pressure	Monthly Average Pressure	1

		WE		NTIFICATION	: ASR-1	WE	ELL IDEI	NTIFICATION	: ASR-2	WE	LL IDEI	NTIFICATION	N: ASR-3	w	ELL IDE	NTIFICATION	: ASR-4	w	ELL IDE	NTIFICATION	: ASR-5
Date	Time	lnj.	Inj.	Cum.	Inc.	inj.	lnj.	Cum.	Inc.	Inj.	Inj.	Cum.	Inc.	Inj.	Inj.	Cum.	Inc.	Inj.	Inj.	Cum.	Inc.
		Rate	Pres.	Inj. Vol.	Inj. Vol.	Rate	Pres.	Inj. Vol.	inj. Vol.	Rate	Pres.	Inj. Vol.	Inj. Vol.	Rate	Pres.	Inj. Vol.	Inj. Vol.	Rate	Pres.	Ini. Vol.	Inj. Vol.
		(gpm)	(psi)	(gals.)	(gais.)	(gpm)	(psi)	(gals.)	(gals.)	(gpm)	(psi)	(gals.)	(gals.)	(gpm)	(psi)	(gals.)	(gals.)	(gpm)	(psi)	(gals.)	(gals.)
1	23:55	300	18	11,056,300	435,800	289	26	13,391,400	427,300	299	0	11,553,300	602,900	298	3	13,313,400	23:55	300	2	14,214,800	553,900
2	23:55	298	19	11,483,600	427,300	302	28	13,817,700	426,300	436	3	12,053,700	500,400	334	4	13,786,300	23:55	423	5	14,750,700	535,900
3	23:55	298	19	11,918,900	435,300	295	27	14,245,100	427,400	438	3	12,675,400	621,700	349	5	14,286,700	23:55	423	6	15,364,000	613,300
4	23:55	0	0	12,131,800	212,900	0	0	14,462,900	217,800	0	0	12,906,700	231,300	0	0	14,506,000	23:55	0	0	15,594,100	230,100
5	23:55	298	18	12,543,000	411,200	278	25	14,867,700	404,800	425	2	13,454,800	548,100	346	4	14,961,100	23:55	294	2	16,077,600	483,500
6	23:55	292	19	12,973,900	430,900	291	26	15,291,000	423,300	452	30	14,072,700	617,900	350	5	15,450,800	23:55	438	6	16,519,900	442,300
7	23:55	295	19	13,407,800	433,900	294	28	15,710,100	419,100	444	4	14,719,200	646,500	344	5	15,950,400	23:55	433	6	17,145,700	625,800
8	23:55	298	20	13,831,500	423,700	301	28	16,133,300	423,200	445	4	15,354,800	635,600	348	5	16,444,200	23:55	419	6	17,761,900	606,200
9	23:55	298	20	14,245,400	413,900	306	28	16,546,300	413,000	428	4	15,930,200	575,400	342	5	16,905,000	23:55	429	6	18,371,600	609,700
10	23:55	296	20	14,677,700	432,300	316	28	16,971,800	425,500	433	4	16,555,000	624,800	342	6	17,390,300	23:55	438	7	18,999,100	627,500
11	23:55	288	18	15,050,400	372,300	318	26	17,350,000	378,200	399	3	17,128,300	573,300	338	4	17,825,000	23:55	436	6	19,578,300	579,200
12	23:55	294	19	15,449,700	399,300	290	27	17,741,900	391,900	442	4	17,640,700	512,400	303	5	18,254,400	23:55	436	7	20208600	630300
13	23:55	305	20	15,871,100	421,400	245	29	18,160,600	418,900	438	4	18,272,200	631,500	306	5	18,684,200	23:55	454	7	20835100	626500
14	23:55	211	18	16,329,400	458,300	332	30	18,606,400	445,600	436	4	18,909,100	636,900	302	5	19,136,900	23:55	420	6	21,478,900	643,800
15	23:55	298	20	16,715,600	386,200	305	28	18,984,800	378,400	434	4	19,499,100	590,000	296	5	19,524,600	23:55	425	7	22.058.500	579,600
16	23:55	294	20	17,113,900	398,300	306	28	19,388,100	403,300	438	4	20,114,200	615,100	334	6	19,948,500	23:55	424	7	22,677,800	619,300
17	23:55	299	20	17,519,600	405,700	304	28	19,790,000	401,900	446	4	20,702,600	588,400	348	6	20,401,500	23:55	434	7	23,311,200	633,400
18	23:55	152	8	17,759,900	240,300	154	13	20,032,100	242,100	145	0	20,963,100	260,500	148	0	20,644,900	23:55	466	0	23,856,300	545,100
19	23:55	0	0	17,929,300	169,400	.0	0	20,199,000	166,900	0	0	21,130,700	167,600	0	0	20,810,500	23:55	0	0	24.038.200	181,900
20	23:55	0	0	18,113,100	0	0	0	20,199,000	0	0	0	21,130,700	0	0	0	20,810,500	23:55	0	0	24,038,200	0
21	23:55	304	16	18,523,900	183,800	324	24	20,381,200	182,200	448	2	21,410,000	279,300	346	3	21,027,400	23:55	433	5	24,255,200	217,000
22	23:55	300	19	18,899,800	410,800	302	27	20,777,900	396,700	445	4	22,013,000	603,000	352	5	21,501,100	23:55	428	6	24,832,100	576,900
23	23:55	254	16	18,995,200	375,900	163	20	21,157,400	379,500	292	2	22,502,900	489,900	298	4	21,942,500	23:55	430	6	25,448,600	616,500
24	23:55	0	0	18,995,200	95,400	0	0	21,245,500	88,100	0	0	22,600,700	97,800	0	0	22,037,300	23:55	0	0	25,606,700	158,100
25	23:55	0	0	18,995,200	0	0	0	21,245,500	0	0	0	22,600,700	0	0	0	22,037,300	23:55	0	0	25,606,700	0
26	23:55	0	0	18,995,200	0	0	0	21,245,500	0	0	0	22,600,700	0	0	0	22,037,300	23:55	0	0	25,606,700	0
27	23:55	0	0	18,995,200	0	0	0	21,245,500	0	0	0	22,600,700	0	0	0	22,037,300	23:55	Ō	0	25,606,700	0
28	23:55	0	0	18,995,200	0	0	0	21,245,500	0	0	0	22,600,700	0	0	0	22,037,300	23:55	Ō	0	25,606,700	0
29	23:55	0	0	18,995,200	0	0	0	21,245,500	0	0	0	22,600,700	0	0	0	22,037,300	23:55	Ō	0	25,606,700	0
30	23:55	0	0	18,995,200	0	0	0	21,245,500	0	0	0	22,600,700	0	0	0	22.037.300	23:55	0	0	25,606,700	0
31	23:55	0	0	18,995,200	0	0	0	21,245,500	0	0	0	22,600,700	0	0	0	22,037,300	23:55	Ō	0 0	25,606,700	0
																		·		1 = 2,0000,0001	
		Monthly	Minimun	n Pressure	0	Monthly	Minimur	n Pressure	0	Monthly	Minimary	m Pressure	0	1		n Pressure		1		m Drosoven I	

MONTH: OCTOBER, 2005

Monthly Minimum Pressure	0	Monthly Minimum Pressure	0	Monthly Minimum Pressure	0	Monthly Minimum Pressure	Monthly Minimum Pressure	
Monthly Maximum Pressure	20	Monthly Maximum Pressure	30	Monthly Maximum Pressure	4	Monthly Maximum Pressure	Monthly Maximum Pressure	7
Monthly Average Temperature	12	Monthly Average Pressure	17	Monthly Average Pressure	2	Monthly Average Pressure	Monthly Average Pressure	4

		WE		TIFICATION	: ASR-1	WE	ELL IDEI	NTIFICATION	: ASR-2	WE	LLIDE	NTIFICATIO	N: ASR-3	w	ELL IDE	NTIFICATION	I: ASR-4	w		TIFICATION	N: ASR-5
Date	Time	lnj.	Inj.	Cum.	Inc.	Inj.	lnj.	Cum.	Inc.	Inj.	Inj.	Cum.	Inc.	Inj.	Inj.	Cum.	Inc.	Inj.	lnj.	Cum.	Inc.
		Rate	Pres.	Inj. Vol.	Inj. Vol.	Rate	Pres.	Inj. Vol.	Inj. Vol.	Rate	Pres.	Inj. Vol.	lnj. Vol.	Rate	Pres.	Inj. Vol.	inj. Vol.	Rate	Pres.	Inj. Vol.	Inj. Vol.
		(gpm)	(psi)	(gais.)	(gals.)	(gpm)	(psi)	(gals.)	(gals.)	(gpm)	(psi)	(gals.)	(gals.)	(gpm)	(psi)	(gals.)	(gals.)	(gpm)	(psi)	(gals.)	(gais.)
1	23:55	0	0	18,995,200	0	0	0	21,245,500	0	0	0	22,600,700	22,600,700	0	0	22,037,300	22,037,300	23:55	0	0	25,606,700
2	23:55	0	0	18,995,200	0	0	0	21,245,500	0	0	0	22,600,700	0	0	0	22,037,300	0	23:55	0	0	25,606,700
3	23:55	0	0	18,995,200	0	209	9	21,335,000	89,500	0	0	22,600,700	0	204	0	22,119,900	82,600	23:55	212	0	25,606,700
4	23:55	196	8	18,998,700	3,500	250	16	21,640,800	305,800	248	0	22,702,300	101,600	300	0	22,448,100	328,200	23:55	195	0	25,881,000
5	23:55	200	10	19,268,100	269,400	242	18	21,998,700	357,900	247	0	23,065,900	363,600	294	2	22,873,800	425,700	23:55	202	0	26,163,700
6	23:55	186	10	19,543,300	275,200	252	19	22,359,200	360,500	248	0	23,428,200	362,300	300	2	23,303,100	429,300	23:55	192	0	26,446,500
7	23:55	0	0	19,767,600	224,300	0	0	22,653,900	294,700	0	0	24,074,300	646,100	0	0	23,648,500	345,400	23:55	0	0	26,678,600
8	23:55	0	0	19,767,600	0	0	0	22,653,900	0	0	0	24,074,300	0	0	0	23,648,500	0	23:55	0	0	26,678,600
9	23:55	0	0	19,767,600	0	0	0	22,653,900	0	0	0	24,074,300		0	0	23,648,500	0	23:55	0	0	26,678,600
10	23:55	0	0	19,767,600	0	0	0	22,653,900	0	0	0	24,074,300		0	0	23,648,500	0	23:55	0	0	26,678,600
11	23:55	0	0	19,767,600	0	0	0	22,653,900	0	0	0	24,074,300		0	0	23,648,500	0	23:55	0	0	26,678,600
12	23:55	0	0	19,767,600	0	0	0	22,653,900	0	0	0	24,074,300	0	0	0	23,648,500	0	23:55	0	0	26,678,600
13	23:55	0	0	19,767,600	0	0	0	22,653,900	0	0.	0	24,074,300	0	0	0	23,648,500	0	23:55	0	0	26,678,600
14	23:55 23:55	0	0	19,767,600	0	0	0	22,653,900	0	0	0	24,074,300	0	0	0	23,648,500	0	23:55	0	0	26,678,600
16	23:55	0	0	19,767,600	0	0	0	22,653,900	0	0	0	24,074,300	0	0	0	23,648,500	0	23:55	0	0	26,678,600
17	23:55	0	0	19,767,600	0	0	0	22,653,900	0	0	0	24,074,300	0	0	0	23,648,500	0	23:55	0	0	26,678,600
18	23:55	0	0	19,767,600	0	0	0	22,653,900	0	0	0	24,074,300	0	0	0	23,648,500	0	23:55	0	0	26,678,600
19	23:55	0	0	19,767,600	0	0	0	22,653,900	0	0	0	24,074,300		0	0	23,648,500	0	23:55	0	0	26,678,600
20	23:55	0	0	19,767,600	0	0	0	22,653,900	0	0	0	24,074,300		0	0	23,648,500	0	23:55	0	0	26,678,600
21	23:55	0	0	19,767,600	0	0	0	22,653,900	0	0	0	24,074,300		0	0	23,648,500	0	23:55	0	0	26,678,600
22	23:55	0	0	19,767,600	0	0	0	22,653,900 22,653,900	0	0	0	24,074,300	0	0	0	23,648,500	0	23:55	0	0	26,678,600
23	23:55	0	0	19,767,600	0	0	0	22,653,900	0	0	0	24,074,300	0	0	0	23,648,500	0	23:55	0	0	26,678,600
24	23:55	0	0	19,767,600	0	0	0	22,653,900	0	0	0	24.074,300	0	0	0	23,648,500	0	23:55	0	0	26,678,600
25	23:55	0	0	19,767,600	0	0	0	22,653,900	0	0	0	24,074,300	0	0	0	23,648,500	0	23:55	0	0	26,678,600
26	23:55	0	0	19,767,600	0	0	0	22,653,900	0	0	0	24,074,300 24,074,300	0	0	0	23,648,500	0	23:55	0	0	26,678,600
27	23:55	0	0	19,767,600	0	0	0	22,653,900	0		0		0	0	0	23,648,500	0	23:55	0	0	26,678,600
28	23:55	0	0	19,767,600	0	0	0	22,653,900	0	0	0	24,074,300	0	0	0	23,648,500	0	23:55	0	0	26,678,600
29	23:55	0	0	19,767,600	0	0	0	22,653,900	0	0		24,074,300	0		0	23,648,500	0	23:55	0	0	26,678,600
30	23:55	l õ	0	19,767,600	0	0	0	22,653,900	0	0	0	24,074,300	0	0	0	23,648,500	0	23:55	0	0	26,678,600
31	23:55			10,707,000			<u> </u>	22,033,900		L	<u> </u>	24,074,300	0	0	0	23,648,500	0	23:55	0	0	26,678,600
		L	1	<u></u>		IL		1		ال	L	L	L	I <u></u>	L	<u>l</u>	l	23:55			L
		Manthle				1															

MONTH: November, 2005

Monthly Minimum Pressure	0	Monthly Minimum Pressure	0	Monthly Minimum Pressure	0	Monthly Minimum Pressure	0	Monthly Minimum Pressure
Monthly Maximum Pressure	10	Monthly Maximum Pressure	19	Monthly Maximum Pressure	0	Monthly Maximum Pressure	2	Monthly Maximum Pressure
Monthly Average Pressure	1	Monthly Average Pressure	2	Monthly Average Pressure	0	Monthly Average Pressure	0	Monthly Average Pressure

MONTH: February-06

	1	<u> </u>		IFICATION:	ASR - 1	WE	LL IDEN	TIFICATION:	ASR - 2	WEL	L IDEN	TIFICATION	: ASR - 3	WE	LL IDEN	TIFICATION	: ASR - 4	WE	LL IDEN	ITIFICATION	: ASR - 5
Date	Time	Rec. Rate (gpm)	WL (feet NGVD)	Cum. Rec. Vol. (gals.)	inc. Rec. Vol. (gals.)	Rec. Rate (gpm)	WL (feet NGVD)	Cum. Rec. Vol. (gals.)	inc. Rec. Vol. (gals.)	Rec. Rate (gpm)	WL (feet NGVD)	Cum. Rec. Vol. (gals.)	Inc. Rec. Vol. (gals.)	Rec. Rate	WL (feet NGVD)	Cum. Rec. Vol. (gals.)	Inc. Rec. Vol. (gals.)	Rec. Rate	WL (feet	Cum. Rec. Vol.	Inc. Rec. Vol.
			I				1						19		1.0.0/	(gais.)	(gais.)	(gpm)	NGVD)	(gals.)	(gals.)
2		l												┢───							<u> </u>
4		l																			<u> </u>
5		╢────				ļ								1							
6	t	l																		<u> </u>	<u> </u>
7		l																		<u> </u>	
8																					
9																					
10																					
11														┣────┥							
12								····													
13		L																			ļ
14 15														·							i
16																					r
17		<u> </u>																			
18																					
19				*																	
20																					
21	23:55	299	-150	76,300	76,300	237	-84	74,200	74,200	450											
22	23:55	299	-150	485,300	409,000	225	-99	491,100	416,900	450	-45 -48	96,400	96,400	353	-47	92,300	92,300	435	-49	98,300	98,300
23	23:55	216	-150	663,400	178,100	216	-80	708,400	217,300	216	-48	663,300 934,700	566,900	352	-51	609,900	517,600	432	-52	737,900	639,600
24	23:55	0	0	663,400	Ó	0	0	708,400	0	0	-41	934,700	271,400 0	224	-44	803,400	193,500	211	-43	1,035,000	297,100
25	23:55	0	0	663,400	0	0	0	708,400	0	0	0	934,700	0	0	0	803,400	0	0	0	1,035,000	0
26	23:55	0	0	663,400	0	0	0	708,400	0	0	ō	934,700	0	0	0	803,400 803,400	0	0	0	1,035,000	0
27	23:55	0	0	663,400	0	0	0	708,400	0	0	0	934,700	0	0	0	803,400	0	0	0	1,035,000	0
28	23:55	148	-150	704,100	40,700	157	-65	761,900	53,500	155	-34	973,400	38,700	150	-35	839200	35,800	0 151	-37	1,035,000	0 38,900

		WEL	L IDENT	FICATION:	ASR - 1	WE	LL IDENT	FIFICATION:	ASR - 2	WEL	L IDEN1	IFICATION:	ASR - 3	WE	LL IDEN	TIFICATION:	ASR - 4	WE	LL IDEN	TIFICATION:	ASR - 5
Date	Time	Rec.	WL	Cum.	Inc.	Rec.	WL	Cum.	inc.	Rec.	WL	Cum.	Inc.	Rec.	WL	Cum.	Inc.	Rec.	WL	Cum.	Inc.
		Rate	(feet	Rec. Vol.	Rec. Vol.	Rate	(feet	Rec. Vol.	Rec. Vol.	Rate	(feet	Rec. Vol.	Rec. Vol.	Rate	(feet	Rec. Vol.	Rec. Vol.	Rate	(feet	Rec. Vol.	Rec. Vol.
		(gpm)	NGVD)	(gals.)	(gals.)	(gpm)	NGVD)	(gais.)	(gals.)	(gpm)	NGVD)	(gais.)	(gals.)	(gpm)	NGVD)	(gals.)	(gals.)	(gpm)	NGVD)	(gals.)	(gals.)
1	23:55	156	-150	915,100	211,000	238	-77	1,039,900	278,000	154	-37	1,191,100	217,700	150	-38	1,057,000	217,800	155	-39	1,291,400	217,500
2	23:55	155	-150	1,126,100	211,000	238	-77	1,328,300	288,400	154	-37	1,416,600	225,500	150	-38	1,282,900	225,900	155	-39	1,517,700	226,300
3	23:55	136	-150	1,297,700	171,600	155	-72	1,616,700	288,400	154	-38	1,642,200	225,600	154	-40	1,508,900	226,000	154	40	1,743,900	226,200
4	23:55	138	-150	1,478,100	180,400	210	-80	1,871,700	255,000	148	-38	1,841,900	199,700	152	-40	1,708,900	200,000	149	-40	1,944,300	200,400
5	23:55	135	-150	1,671,600	193,500	240	-73	2,148,700	277,000	151	-38	2,059,300	217,400	148	-40	1,926,600	217,700	154	-40	2,162,300	218,000
6	23:55	293	-15	1,882,200	210,600	289	-89	2,435,800	287,100	293	-42	2,294,400	235,100	292	-45	2,163,200	236,600	291	-45	2,396,600	234,300
7	23:55	295	-150	2,296,400	414,200	290	-97	2,842,700	406,900	442	-50	2,764,900	470,500	344	-52	2,593,700	430,500	443	-55	2,867,600	471,000
8	23:55	289	-129	2,715,000	418,600	282	-99	3,252,700	410,000	440	-52	3,399,600	634,700	337	-54	3,082,000	488,300	440	-56	3,503,900	636,300
9	23:55	180	-150	3,105,400	390,400	205	-84	3,639,600	386,900	188	-46	4,002,100	602,500	229	-50	3,542,300	460,300	189	-48	4,111,300	607,400
10	23:55	192	-150	3,378,600	273,200	215	-82	3,947,100	307,500	198	-44	4,286,700	284,600	240	-46	3,887,100	344,800	196	-45	4,394,100	282,800
11	23:55	192	-150	3,655,500	276,900	218	-82	4,259,300	312,200	200	-43	4,574,100	287,400	243	-46	4,234,200	347,100	198	-45	4,678,200	284,100
12	23:55 23:55	194	-150	3,932,100	276,600	218	-82	4,570,600	311,300	201	-43	4,860,900	286,800	242	-46	4,581,200	347,000	198	-45	4,962,600	284,400
13	23:55	290 288	-150 -150	4,245,200	313,100	288	-97	4,909,500	338,900	294	-47	5,184,200	323,300	302	-50	4,952,500	371,300	300	-49	5,284,500	321,900
14	23:55	288	-150	4,659,600	414,400	294	-101	5,323,100	413,600	446	-52	5,655,600	471,400	338	-54	5,396,800	444,300	446	-55	5,761,300	476,800
15	23:55	286	-150	5,069,700	410,100	240	-96	5,737,600	414,500	443	-54	6,295,000	639,400	332	-56	5,879,600	482,800	446	-56	6,402,700	641,400
17	23:55	283	-150	5,883,100	407,600 405,800	310	-98	6,144,800	407,200	442	-54	6,933,300	638,300	329	-56	6,359,600	480,000	444	-57	7,043,500	640,800
18	23:55	283	-150	6,350,200	405,800	246	-95	6,552,700	407,900	444	-54	7,571,700	638,400	332	-56	6,838,200	478,600	443	-57	7,683,900	640,400
19	23:55	281	-150	6,689,900	339,700	306	-112	7,022,700	470,000	442	-54	8,207,700	636,000	330	-57	7,388,700	550,500	446	-57	8,321,700	637,800
20	23:55	279	-150	7.092.400	402,500	303 321	-97 -111	7,365,400	342,700	442	-55	8,841,800	634,100	332	-57	7,789,700	401,000	446	-58	8,960,700	639,000
21	23:55	278	-150	7,493,900	402,500	272		7. 0	407,000	442	-55	9,477,100	635,300	332	-57	8,264,300	474,600	443	-58	9,598,900	638,200
22	23:55	278	-150	7,895,800	401,500	282	-112 -95	<u>C : 3</u>	406,900	441	-55	10,111,800	634,700	328	-57	8,738,100	473,800	442	-58	10,237,000	638,100
23	23:55	278	-67	8,276,800	381,000	255	-95	<u>8,5</u> 8,9	408,700	440 438	-56	10,748,100	636,300	328	-58	9,212,000	473,900	446	-59	10,876,400	639,400
24	23:55	0	-150	8,580,600	303,800	255	-48	9,287,300	293,700			11,378,200	630,100	330	-58	9,680,500	468,500	440	-58	11,510,200	633,800
25	23:55	0	-150	8,580,600	0	0	-48	9,287,300	293,700	0		11,833,900	455,700	0	-41	10,018,500	338,000	0	-41	11,968,100	457,900
26	23:55	277	-150	8,897,500	316,900	300	-48	9,718,500	431,200	445		11,833,900	0	0	-41	10,018,500	0	0	-41	11,968,100	0
27	23:55	297	-150	9,325,400	427,900	300	-48	10,145,500	431,200	445		12,111,200	277,300	300	-41	10,163,000	144,500	291	-46	12,245,500	277,400
28	23:55	295	-150	9,754,100	428,700	296	-100	10,145,500	410,000	442			640,800	334	-49	10,479,500	316,500	434	-51	12,593,000	347,500
29	23:55	297	-150	10,179,900	425,800	290	-100	10,981,100	410,000	433		13,379,800	627,800 645,300	318	-55	10,936,700	457,200	428	-56	13,211,400	618,400
30	23:55	297	-150	10,607,800	427,900	290		11,404,800	423,800	431		14,025,100		316	-56	11,391,700	455,000	426	-56	13,828,100	616,700
31	23:55	300	-150	11,008,200	400,400	301		11,404,800	423,700	431		15,294,100	641,200	314	-56	11,867,000	475,300	427	-56	14,442,900	614,800
المستغط					400,400		-101	11,031,000	421,000	<u>447</u>	-30	15,294,100	627,800	349	-56	12,335,200	468,200	424	-57	15,053,700	610,800

MONTH: March-06

x

NA : Not Available

r=

MONTH: April, 2006

				IFICATION:	ASR - 1	WE	LL IDEN	TIFICATION:	ASR - 2	WEI	L IDEN	TIFICATION	: ASR - 3	WEI	L IDEN	TIFICATION:	ASR - 4	WE	LL IDEN	TIFICATION	ASR - 5
Date	Time	Rec.	WL	Cum.	Inc.	Rec.	WL	Cum.	Inc.	Rec.	WL	Cum.	Inc.	Rec.	WL	Cum.	Inc.	Rec.	WL	Cum.	Inc
		Rate	(feet	Rec. Vol.	Rec. Vol.	Rate	(feet	Rec. Vol.	Rec. Vol.	Rate	(feet	Rec. Vol.	Rec. Vol.	Rate	(feet	Rec. Vol.	Rec. Vol.	Rate	(feet	Rec. Vol.	Rec. Vol.
		(gpm)	NGVD)	(gais.)	(gals.)	(gpm)	NGVD)	(gals.)	(gals.)	(gpm)	NGVD)	(gals.)	(gals.)	(apm)	NGVD)	(gals.)	(gals.)	(gpm)	NGVD)		(gals.)
1	23:55	294	-150	11,408,700	400,500	266	-94	12,207,800	376,000	452	-56	15,936,000	641,900	350	-59	12,839,200	504,000	450	-59	15.651.200	597,500
2	23:55	320	-150	11,812,800	404,100	245	-109	12,347,800	140,000	452	-57	16,578,300		353	-59	13,347,500	508,300	452	-59	16,261,800	
3	23:55	295		12,135,000	322,200	324	-96	12,673,100	325,300	453		17,226,100		352	-59	13,851,700	504,200	452	-60	16,908,600	646,800
4	23:55	289	-150	12,552,000	417,000	318	-114	13,076,900	403,800	453		17,873,700	647,600	350	-59	14,355,500	503,800	452	-62	17,556,400	
5	23:55	282	-150	12,973,400	421,400	290	-108	13,487,500	410,600	453		18,521,600	647,900	350	-71	14,813,400	457,900	451	-62	18,204,300	647,800
6	23:55	291	-150	13,383,100	409,700	297	-108	13,908,900	421,400	300		19,153,300	631,700	300	-61	15,313,600	500,200	298	-58	18,835,100	
7	23:55	150	-150	13,802,600	419,500	150	-161	14,339,100	430,200	150		19,591,300	438,000	150	-54	15,749,500	435,900	151	-52	19,269,300	
8	23:55	198		13,937,400	134,800	248	-83	14,640,800	301,700	198		19,982,800	391,500	202	-50	16,161,400	411,900	151	-49	19,491,000	
9	23:55	198	-150	14,357,900	420,500	194	-82	14,739,500	98,700	187	-47	20,088,500	105,700	200	-50	16,367,300	205,900	151	-48	19,712,700	
10	23:55	198	-150	14,628,000	270,100	194	-75	15,147,600	408,100	177	-47	20,334,300	245,800	196	-49	16,573,200	205,900	151	-48	19,917,500	
11	23:55	171	-150	14,873,200	245,200	144	-73	15,348,600	201,000	170		20,580,100		166	-48	16,814,300	241,100	151	-48	20,139,200	
12	23:55	168		15,116,200	243,000	146	-73	15,560,300	211,700	151	-46	20,800,600	220,500	159	-47	17,045,800	231,500	152	-47	20,360,600	
13	23:55	162	-150	15,300,333	184,133	150	-53	15,722,600	162,300	155	-43	20,971,500	170,900	158	-44	20,508,300	176,300	151	-44	20,860,200	
14	23:55				-15,300,333				-15,722,600				-20,971,500				-20,508,300			20,000,200	-20,860,200
15	23:55				0				0				0				0				-20,000,200
16	23:55				0				0				0				0			· · ·	0
17	23:55				0				0				0				0				0
18	23:55				0				0				0				0				0
19	23:55				0				0				0				0				0
20	23:55				0				0				0				0				0
21	23:55				0				0				0				0				0
22	23:55				0				0				0				0				0
23	23:55				0				0				0				0				0
24	23:55				0				0				0				0			·	0
25	23:55				0				0				0				0	—			0
26	23:55				0				0				0				0				0
27	23:55	-			0				0				0				0				0
28	23:55				0				0				0				0				0
29	23:55				0				0				0				0				0
30	23:55				0				0				0				0				0

APPENDIX H

DAILY AND WEEKLY INJECTION AND RECOVERY WATER QUALITY DATA FOR THE ASR WELLS FOR CYCLE 5

DAILY AND WEEKLY INJECTION AND RECOVERY WATER QUALITY DATA FOR THE ASR WELLS FOR CYCLE 5

PARAMETERS	UNITS	wk1(8/4/05)	wk3(8/17/050
pH (Field)	pH Units		7.27
pH (Lab)	pH Units		7.68
Specific Conductance	umhos/cm	1.	287
Field Temperature	Centigrade	29.1	29.1
Dissolved Oxygen (Field)	mg/L		2.1
Dissolved Oxygen (Lab)	mg/L		9.2
Chlorine Residual - Free (Field)	mg/L		0.2
Chlorine Residual - Total (Field)	mg/L		3.35
Color	сu		8.90
Odor	TON		1
Turbidity	NTU		<0.2
Gross Alpha	pCi/L		<0.8
Alkalinity (Total)	mg/L		43
Alkalinity (Bicarbonate)	mg/L		43
Hardness (Total)	mg/L		62
Hardness (Calcium)	mg/L		60
Hardness (Carbonate)	mg/L		43
Hardness (Non-Carbonate)	mg/L		19
Aluminum	mg/L		<18
Ammonia	mg/L		N/T
Arsenic	ug/L		<1.0
Chloride	mg/L		36
Coliform Bacteria	col./100mL		N/T
Fluoride	mg/L		0.76
Iron	mg/L		0.09
Lead	mg/L		<1.0
Nitrate	mg/L		0.02
Nitrite	mg/L		<0.002
Sulfate	mg/L		29.9
TDS	mg/L		216
Total Sulfide	mg/L		0.10
Trihalomethanes	ug/L		12.00

INJECTED WATER				SEPTEMBER, 2005	
PARAMETERS	UNIT	wk 1(9/7/05)	wk 2(9/15/05)	WK 3	WK4
pH (Field)	pH Units	7.10	6.50		7.36
рН (Lab)	pH Units	6.36	6.6		
Specific Conductance	umhos/cm	285	267		
Field Temperature	Centigrade	28.6	24		30.6
Dissolved Oxygen (Field)	mg/L	2.31	3.58		1.9
Dissolved Oxygen (Lab)	mg/L	8.1	9.2		
Chlorine Residual - Free (Field)	mg/L	4.1	1.0		1.6
Chlorine Residual - Total (Field)	mg/L	1.68	1.74		4.16
Color	CU	NT	NT		
Odor	TON	1	1		
Turbidity	NTU	<0.2	<0.2		
Gross Alpha	pCi/L	NT	1.9		
Alkalinity (Total)	mg/L	42	44		
Alkalinity (Bicarbonate)	mg/L	42	44		
Hardness (Total)	mg/L	72	76		
Hardness (Calcium)	mg/L	. 56	52		
Hardness (Carbonate)	mg/L	42	44		
Hardness (Non-Carbonate)	mg/L	30	32		
Aluminum	mg/L	NT	NT		
Ammonia	mg/L	NT	NT		
Arsenic	ug/L	<1.0	<1.0		
Chloride	mg/L	33	37		
Coliform Bacteria	col./100mL	NT	NT		
Fluoride	mg/L	0.75	0.073		
Iron	mg/L	<0.04	<0.04		
Lead	mg/L	NT	NT		
Nitrate	mg/L	NT	NT		
Nitrite	mg/L	NT	NT		
Sulfate	mg/L	32.7	32.4		
TDS	mg/L	194	216		
Total Sulfide	mg/L	0.10	0.10		
Trihalomethanes	ug/L	12	10		

ND - Not detected

NT - Not tested

INJECTED WATER	1		OCTOBER, 2005	
PARAMETERS	UNIT	wk1(10/5/05)	wk2(10/13/05)	wk3(10/19/05)
pH (Field)	pH Units	7.34	7.35	8.73
pH (Lab)	pH Units	7.56	6.64	8.09
Specific Conductance	umhos/cm	287	278	315
Field Temperature	Centigrade	27.4	25.9	27.6
Dissolved Oxygen (Field)	mg/L	2.56	2.39	2.0
Dissolved Oxygen (Lab)	mg/L	8.5	8.9	. 8.7
Chlorine Residual - Free (Field)	mg/L	1.5	1.6	0.0
Chlorine Residual - Total (Field)	mg/L	4.20	4.11	3.54
Color	cυ	7.2	6.80	9.90
Odor	TON	1	1	1
Turbidity	NTU	<0.2	<0.2	0.71
Gross Alpha	pCi/L	<1.0	N/T	N/T
Alkalinity (Total)	mg/L	45	47	44
Alkalinity (Bicarbonate)	mg/L	45	. 47	43
Hardness (Total)	mg/L	78	76	70
Hardness (Calcium)	mg/L	52	54	50
Hardness (Carbonate)	mg/L	N/T	47	44
Hardness (Non-Carbonate)	mg/L	33	29	26 [,]
Aluminum	mg/L	N/T	N/T	N/T
Ammonia	mg/L	N/T	N/T	N/T
Arsenic	ug/L	<1.0	N/T	<1.0
Chloride	mg/L	39	37	36
Coliform Bacteria	col./100mL	N/T	N/T	N/T
Fluoride	mg/L	0.71	0.13	0.14
Iron	mg/L	<0.04	<0.04	0.12
Lead	mg/L	N/T	N/T	N/T
Nitrate	mg/L	N/T	N/T	N/T
Nitrite	mg/L	N/T	N/T	N/T
Sulfate	mg/L	32.6	33	34
TDS	mg/L	186	188	232
Total Sulfide	mg/L	0.30	0.10	<0.0
Trihalomethanes	ug/L	8.5	7.9	11.00

ND - Not detected NT - Not tested

		February	2000			
PARAMETERS	Unit	ASR - 1	ASR - 2	ASR - 3	ASR - 4	ASR - 5
		2/23/2006	2/23/2006	2/23/2007	2/23/2008	2/23/2009
pH (Field)	pH Units					
pH (Lab)	pH Units	6.69	7.29	7.33	7.29	7.26
Specific Conductance	umhos/cm	439	461	452	450	426
Field Temperature	Centigrade					420
Dissolved Oxygen (Field)	mg/L					
Dissolved Oxygen (Lab)	mg/L	2.3	3.4	3.3	2.6	2.1
Chlorine Residual - Free (Field)	mg/L				2.0	
Chlorine Residual - Total (Field)	mg/L					1
Color	CU	9.1	9.03	7.96	10.2	10.7
Odor	TON	1	1	1	1	1
Turbidity	NTU	<0.2	<0.2	<0.2	<0.2	<0.2
Gross Alpha	pCi/L	1.1	<1.8	1.5	1.9	2.4
Alkalinity (Total)	mg/L	119	133	130	130	112
Alkalinity (Bicarbonate)	mg/L	119	133	130	130	112
Hardness (Total)	mg/L	156	166	154	166	152
Hardness (Calcium)	mg/L	142	156	140	154	150
Hardness (Carbonate)	mg/L	119	133	130	130	112
Hardness (Non-Carbonate)	mg/L	37	33	21	36	40
Aluminum	ug/L	NT	<18	NT	NT	NT
Ammonia	mg/L	NT	NT	NT	NT	NT
Arsenic	ug/L	3.6	1.4	5.3	4.7	3.3
Chloride	mg/L	43	41	41	42	44
Coliform Bacteria	col./100mL	<1	<1	<1	<1	<1
Fluoride	mg/L	0.62	0.59	0.72	0.77	0.58
ron	mg/L	<0.04	<0.04	<0.04	<0.04	<0.04
Lead	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0
Nitrate	mg/L	0.02	0.01	<0.01	<0.01	<0.01
Nitrite	mg/L	0.005	0.023	<0.002	<0.002	<0.002
Sulfate	mg/L	41.5	41.4	39.5	39.6	46.9
TDS	mg/L	278	332	268	280	272
Total Sulfide	mg/L	<0.0	<0.0	<0.0	0.1	<0.0
Trihalomethanes	ug/L	2.8	4.9	0.8	<0.50	2.8

February, 2006

ND - Not detected

NT - Not tested

MONTH:

MARCH, 2006

PARAMETERS	Unit	ASF	R - 1		ASR - 2	ASI	R - 3		ASR - 4		ASR - 5									
		WK1 (3/2/06)	WK2 (3/9/06)	WK1 (3/2/06)	WK2 (3/9/06)	WK1 (3/2/06)	WK2 (3/9/06)	WK1 (3/2/06)	WK2 (3/9/06)	WK1 (3/2/06)	WK2 (3/9/0									
pH (Field)	pH Units	7.4	7.69	7.48	7.7	7.53	7.62	7.48	7.52	7.39	7.52									
pH (Lab)	pH Units	7.14	7.37	7.31	7.52	7.38	7.41	7.38	7.34	7.35	7.39									
Specific Conductance	umhos/cm	460	394	434	372	455	412	458	414	436	387									
Field Temperature	Centigrade	25	25.3	25.5	25.5	24.5	25	24.6	25.1	25	25.2									
Dissolved Oxygen (Fie	mg/L	0.86	1.13	1.2	1.38	0.76	1.11	0.91	1.19	1.22	1.15									
Dissolved Oxygen (La	mg/L	1.3	0.7	2.2	1.8	2.4	1.4	1.9	1.7	2.9	1.6									
Chlorine Residual - Fr	mg/L	0.06	0.04	0.08	0.1	0.08	0.09	0.08	0.14	0.13	0.05									
Chlorine Residual - To	mg/L	0.15	0.09	0.17	0.12	0.16	0.12	0.32	0.15	0.55	0.18									
Color	CU	8.8	9	8.6	7.9	10.7	10.1	10.8	10.2	9.6	9									
Odor	TON	1	1	1	1	1	1	1	1	1	1									
Turbidity	NTU	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2									
Gross Alpha	pCi/L	NT	Alkalinity (Total)	mg/L	121	99	141	93	141	NT	136	124	124	100						
Alkalinity (Bicarbonate	mg/L	121	99	141	93	141	123	136	124	124	100									
Hardness (Total)	mg/L	150	152	160	158	160	156	158	162	162	168									
Hardness (Calcium)	mg/L	130	136	124	122	124	122	130	132	138	130									
Hardness (Carbonate)	mg/L	121	99	141	123	141	123	136	124	124	100									
Hardness (Non-Carbo	mg/L	29	53	19	33	19	33	22	38	38	68									
Aluminum	ug/L	NT	NT	<5.9	NT	Ammonia	mg/L	NT	Arsenic	ug/L	4.4	4.4	3.5	2.3	3.5	4.3	3.5	3.6	3.6	3.4
Chloride	mg/L	42	42	46	41	46	43	41	40	43	43.5									
Coliform Bacteria	col./100mL	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT									
Fluoride	mg/L	0.63	0.68	0 79	0.56	0.79	0.75	0.79	0.79	0.62	0.64									
Iron	mg/L	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04									
Lead	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0									
Nitrate	mg/L	<0.01	0.01	0.02	0.01	<0.02	0.01	<0.01	0.01	0.01	<0.01									
Nitrite	mg/L	0.005	<0.002	0.005	<0.002	<0.005	<0.002	0.005	<0.002	0.003	<0.002									
Sulfate	mg/L	38.7	39.6	41.3	40.7	37.8	37.2	38.2	36.8	44.7	42.3									
TDS	mg/L	268	228	352	238	278	278	272	270	252	226									
Total Sulfide	mg/L	0.1	<0.0	0.1	<0.0	0.1	0.1	0.1	0.1	0.1	<0.0									
Trihalomethanes	ug/L	<0.50	<0.0	4.4	0.98	<0.50	<0.50	<0.50	3.6	1.8	<0.88									

ND - Not detected NT - Not tested

MONTH:

MARCH, 2006

PARAMETERS	Unit	ASF	R - 1		ASR - 2	ASI	R - 3		ASR - 4		ASR - 5									
		WK1 (3/2/06)	WK2 (3/9/06)	WK1 (3/2/06)	WK2 (3/9/06)	WK1 (3/2/06)	WK2 (3/9/06)	WK1 (3/2/06)	WK2 (3/9/06)	WK1 (3/2/06)	WK2 (3/9/0									
pH (Field)	pH Units	7.4	7.69	7.48	7.7	7.53	7.62	7.48	7.52	7.39	7.52									
pH (Lab)	pH Units	7.14	7.37	7.31	7.52	7.38	7.41	7.38	7.34	7.35	7.39									
Specific Conductance	umhos/cm	460	394	434	372	455	412	458	414	436	387									
Field Temperature	Centigrade	25	25.3	25.5	25.5	24.5	25	24.6	25.1	25	25.2									
Dissolved Oxygen (Fie	mg/L	0.86	1.13	1.2	1.38	0.76	1.11	0.91	1.19	1.22	1.15									
Dissolved Oxygen (La	mg/L	1.3	0.7	2.2	1.8	2.4	1.4	1.9	1.7	2.9	1.6									
Chlorine Residual - Fr	mg/L	0.06	0.04	0.08	0.1	0.08	0.09	0.08	0.14	0.13	0.05									
Chlorine Residual - To	mg/L	0.15	0.09	0.17	0.12	0.16	0.12	0.32	0.15	0.55	0.18									
Color	CU	8.8	9	8.6	7.9	10.7	10.1	10.8	10.2	9.6	9									
Odor	TON	1	1	1	1	1	1	1	1	1	1									
Turbidity	NTU	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2									
Gross Alpha	pCi/L	NT	Alkalinity (Total)	mg/L	121	99	141	93	141	NT	136	124	124	100						
Alkalinity (Bicarbonate	mg/L	121	99	141	93	141	123	136	124	124	100									
Hardness (Total)	mg/L	150	152	160	158	160	156	158	162	162	168									
Hardness (Calcium)	mg/L	130	136	124	122	124	122	130	132	138	130									
Hardness (Carbonate)	mg/L	121	99	141	123	141	123	136	124	124	100									
Hardness (Non-Carbo	mg/L	29	53	19	33	19	33	22	38	38	68									
Aluminum	ug/L	NT	NT	<5.9	NT	Ammonia	mg/L	NT	Arsenic	ug/L	4.4	4.4	3.5	2.3	3.5	4.3	3.5	3.6	3.6	3.4
Chloride	mg/L	42	42	46	41	46	43	41	40	43	43.5									
Coliform Bacteria	col./100mL	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT									
Fluoride	mg/L	0.63	0.68	0 79	0.56	0.79	0.75	0.79	0.79	0.62	0.64									
Iron	mg/L	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04									
Lead	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0									
Nitrate	mg/L	<0.01	0.01	0.02	0.01	<0.02	0.01	<0.01	0.01	0.01	<0.01									
Nitrite	mg/L	0.005	<0.002	0.005	<0.002	<0.005	<0.002	0.005	<0.002	0.003	<0.002									
Sulfate	mg/L	38.7	39.6	41.3	40.7	37.8	37.2	38.2	36.8	44.7	42.3									
TDS	mg/L	268	228	352	238	278	278	272	270	252	226									
Total Sulfide	mg/L	0.1	<0.0	0.1	<0.0	0.1	0.1	0.1	0.1	0.1	<0.0									
Trihalomethanes	ug/L	<0.50	<0.0	4.4	0.98	<0.50	<0.50	<0.50	3.6	1.8	<0.88									

ND - Not detected NT - Not tested

WATE	R LEVEL (FEET, NG	VD)		<u> </u>		MONTH: AUGUST, 2008	5
DAY NO.	MW-1	MW-2	MW-3	MW-A	MW-C	MW-B	LM-926
1	6.2	N/A	14.1	21.7	14.1	N/A	N/A
2	6.3	N/A	14.1	21.7	14.1	N/A	N/A
3	6.5	N/A	14.4	22.1	14.4	N/A	N/A
4	15.5	6"	37.3	42.5	37.3	N/A	14'
5	19.2	N/A	36.6	43	36.6	N/A	N/A
6	16	N/A	23.2	30	23.2	N/A	N/A
7	11.6	N/A	18.8	26.2	18.8	N/A	N/A
8	10.2	N/A	17.6	25.2	17.6	N/A	N/A
9	10.4	· N/A	17.9	25.4	17.9	N/A	N/A
10	17.8	N/A	36.4	41.7	36.4	N/A	N/A
11	14.1	N/A	21.2	28.4	21.2	N/A	N/A
12	17.5	N/A	34.7	39.2	34.7	N/A	N/A
13	21.9	N/A	39	43	39	N/A	N/A
14	23.5	N/A	40.5	44.6	40.5	N/A	N/A
15	24.6	N/A	41.3	45.6	41.3	N/A	N/A
16	23	N/A	35.4	41.5	35.4	N/A	N/A
17	17.5	N/A	24	31	24	N/A	N/A
18	13.9	0.0	20.6	28	20.6	N/A	13'5"
19	12.3	N/A	19.1	26.6	19,1	N/A	N/A
20	18.2	N/A	34.8	41.2	34.8	N/A	N/A
21	22.4	N/A	39.1	45	39.1	N/A	N/A
22	24.3	N/A	40.7	46.4	40.7	N/A	N/A
23	19	N/A	25.3	32	25.3	N/A	N/A
24	14.3	N/A	20.7	28	20.7	N/A	N/A
25	21.2	30.7	42.8	49.4	42.8	N/A	N/A
26	28.7	29.3	45.8	51.2	45.8	N/A	N/A
27	31.1	33.9	52.2	57	52.2	N/A	N/A
28	32.4	31.9	51.7	56	51.7	N/A	N/A
29	31.6	29.8	49.3	53.9	49.3	N/A	N/A
30	22.8	20.0	28.1	34.7	28.1	N/A	N/A
31	17.1	17.5	22.7	29.9	22.7	N/A	N/A
							·
. Min.	6.1	6.0	13.6	21.7	14.1	N/A	13.5
. Max.	33	33.9	52.2	56.0	52.2	N/A	14.0
. Avg.	24.7	22.1	30.9	37.2	30.9	N/A	13.2

M. Min: Monthly Minimum, M. Max: Monthly Maximum, M. Avg: Monthly Average, NA: Not Available

					MONTH: SEPTEMBER, 2	2005	
WATE	ER LEVEL (FEET, NG	VD)					
DAY NO.	MW-1	MW-2	MW-3	MW-A	MW-C	MW-B	LM-926
1	21.5	24.9	39.3	44.8	N/T	N/T	N/T
2	29.5	28.7	49.5	54.4	N/T	N/T	N/T
3	30.5	27.3	46.1	51.1	N/T	N/T	N/T
4	28.6	26.6	43.7	49.4	N/T	N/T	N/T
5	28.3	26.4	43,4	49	N/T	N/T	N/T
6	28.1	26.1	42.9	48.5	N/T	N/T	N/T
7	28.2	26.8	44.8	49.3	N/T	N/T	N/T
8	29.7	30.4	47.8	53.6	N/T	N/T	N/T
9	30.6	27.3	45.7	51	N/T	N/T	N/T
10	29.3	26.5	44.2	49.9	N/T	N/T	N/T
11	28.9	26.4	43.6	49.6	N/T	N/T	N/T
12	28.6	26.1	43.5	49.3	N/T	N/T	N/T
13	29.8	27.5	47.4	53	N/T	N/T	N/T
.14	21.9	18.1	26.7	33.4	N/T	N/T	N/T
15	16.6	16.0	21.8	29	N/T	N/T	N/T
16	13.7	14.8	19.3	26.6	N/T	N/T	N/T
17	12	14.2	17.9	25.3	N/T	N/T	N/T
18	10.7	13.7	16.9	24.4	N/T	N/T	N/T
19	9.8	13.2	16.1	23.6	N/T	N/T	N/T
20	9.1	12.9	15.6	23.1	N/T	N/T	N/T
21	8.5	12.7	15.1	22.7	N/T	N/T	N/T
22	18.7	25.1	40.2	46.5	N/T	N/T	N/T
23	22.6	25.1	41.9	49	N/T	N/T	N/T
24	28.3	27.9	48.9	54.5	N/T	N/T	N/T
25	29.3	25.3	48	51.6	N/T	N/T	N/T
26	30.4	30.6	50.7	56.2	N/T	N/T	N/T
27	33	32.4	N/A	59	N/T	N/T	N/T
28	34.3	33.7	N/A	60.4	N/T	N/T	N/T
29	36	34.5	N/A	62.4	N/T	N/T	N/T
30	37.3	35.1	N/A	63.4	N/T	N/T	N/T
L		<u> </u>			l	L	I
Min	9 E	107	15 1	22.7			

MONTH: SEPTEMBER, 2005

 M. Min.
 8.5
 12.7
 15.1
 22.7

 M. Max.
 37.3
 35.1
 50.7
 63.4

 M. Avg.
 24.8
 24.5
 37.0
 45.5

M. Min: Monthly Minimum, M. Max: Monthly Maximum, M. Avg: Monthly Average, NA: Not Available

WATE	R LEVEL (FEET, NG	VD)		<u> </u>		MONTH: AUGUST, 2008	5
DAY NO.	MW-1	MW-2	MW-3	MW-A	MW-C	MW-B	LM-926
1	6.2	N/A	14.1	21.7	14.1	N/A	N/A
2	6.3	N/A	14.1	21.7	14.1	N/A	N/A
3	6.5	N/A	14.4	22.1	14.4	N/A	N/A
4	15.5	6"	37.3	42.5	37.3	N/A	14'
5	19.2	N/A	36.6	43	36.6	N/A	N/A
6	16	N/A	23.2	30	23.2	N/A	N/A
7	11.6	N/A	18.8	26.2	18.8	N/A	N/A
8	10.2	N/A	17.6	25.2	17.6	N/A	N/A
9	10.4	N/A	17.9	25.4	17.9	N/A	N/A
10	17.8	N/A	36.4	41.7	36.4	N/A	N/A
11	14.1	N/A	21.2	28.4	21.2	N/A	N/A
12	17.5	N/A	34.7	39.2	34.7	N/A	N/A
13	21.9	N/A	39	43	39	N/A	N/A
14	23.5	N/A	40.5	44.6	40.5	N/A	N/A
15	24.6	N/A	41.3	45.6	41.3	N/A	N/A
16	23	N/A	35.4	41.5	35.4	N/A	N/A
17	17.5	N/A	24	31	24	N/A	N/A
18	13.9	0.0	20.6	28	20.6	N/A	13'5"
19	12.3	N/A	19.1	26.6	19,1	N/A	N/A
20	18.2	N/A	34.8	41.2	34.8	N/A	N/A
21	22.4	N/A	39.1	45	39.1	N/A	N/A
22	24.3	N/A	40.7	46.4	40.7	N/A	N/A
23	19	N/A	25.3	32	25.3	N/A	N/A
24	14.3	N/A	20.7	28	20.7	N/A	N/A
25	21.2	30.7	42.8	49.4	42.8	N/A	N/A
26	28.7	29.3	45.8	51.2	45.8	N/A	N/A
27	31.1	33.9	52.2	57	52.2	N/A	N/A
28	32.4	31.9	51.7	56	51.7	N/A	N/A
29	31.6	29.8	49.3	53.9	49.3	N/A	N/A
30	22.8	20.0	28.1	34.7	28.1	N/A	N/A
31	17.1	17.5	22.7	29.9	22.7	N/A	N/A
							·
. Min.	6.1	6.0	13.6	21.7	14.1	N/A	13.5
. Max.	33	33.9	52.2	56.0	52.2	N/A	14.0
. Avg.	24.7	22.1	30.9	37.2	30.9	N/A	13.2

M. Min: Monthly Minimum, M. Max: Monthly Maximum, M. Avg: Monthly Average, NA: Not Available

					MONTH: SEPTEMBER, 2	2005		
WATE	ER LEVEL (FEET, NG	VD)						
DAY NO.	MW-1	MW-2	MW-3	MW-A	MW-C	MW-B	LM-926	
1	21.5	24.9	39.3	44.8	N/T	N/T	N/T	
2	29.5	28.7	49.5	54.4	N/T	N/T	N/T	
3	30.5	27.3	46.1	51.1	N/T	N/T	N/T	
4	28.6	26.6	43.7	49.4	N/T	N/T	N/T	
5	28.3	26.4	43,4	49	N/T	N/T	N/T	
6	28.1	26.1	42.9	48.5	N/T	N/T	N/T	
7	28.2	26.8	44.8	49.3	N/T	N/T	N/T	
8	29.7	30.4	47.8	53.6	N/T	N/T	N/T	
9	30.6	27.3	45.7	51	N/T	N/T	N/T	
10	29.3	26.5	44.2	49.9	N/T	N/T	N/T	
11	28.9	26.4	43.6	49.6	N/T	N/T	N/T	
12	28.6	26.1	43.5	49.3	N/T	N/T	N/T	
13	29.8	27.5	47.4	53	N/T	N/T	N/T	
.14	21.9	18.1	26.7	33.4	N/T	N/T	N/T	
15	16.6	16.0	21.8	29	N/T	N/T	N/T	
16	13.7	14.8	19.3	26.6	N/T	N/T	N/T	
17	12	14.2	17.9	25.3	N/T	N/T	N/T	
18	10.7	13.7	16.9	24.4	N/T	N/T	N/T	
19	9.8	13.2	16.1	23.6	N/T	N/T	N/T	
20	9.1	12.9	15.6	23.1	N/T	N/T	N/T	
21	8.5	12.7	15.1	22.7	N/T	N/T	N/T	
22	18.7	25.1	40.2	46.5	N/T	N/T	N/T	
23	22.6	25.1	41.9	49	N/T	N/T	N/T	
24	28.3	27.9	48.9	54.5	N/T	N/T	N/T	
25	29.3	25.3	48	51.6	N/T	N/T	N/T	
26	30.4	30.6	50.7	56.2	N/T	N/T	N/T	
27	33	32.4	N/A	59	N/T	N/T	N/T	
28	34.3	33.7	N/A	60.4	N/T	N/T	N/T	
29	36	34.5	N/A	62.4	N/T	N/T	N/T	
30	37.3	35.1	N/A	63.4	N/T	N/T	N/T	
	· · · · · · · · · · · · · · · · · · ·	1			1	l.,	<u> </u>	
Min	9 5	10.7	15.1	22.7			Γ	

MONTH: SEPTEMBER, 2005

 M. Min.
 8.5
 12.7
 15.1
 22.7

 M. Max.
 37.3
 35.1
 50.7
 63.4

 M. Avg.
 24.8
 24.5
 37.0
 45.5

M. Min: Monthly Minimum, M. Max: Monthly Maximum, M. Avg: Monthly Average, NA: Not Available

WATER LEVEL (FEET, NGVD)							
DAY NO.	MW-1	MW-2	MW-3	MW-A	MW-C	MW-B	LM-926
1	37.234	33.1	N/A	62.553	N/A	N/A	N/A
2	38.292	35.3	N/A	63.9	N/A	N/A	N/A
3	36.688	29.9	51.682	56.657	N/A	N/A	N/A
4	32.084	32.4	51.703	57.93	N/A	N/A	N/A
5	36.593	33.0	N/A	62.175	N/A	N/A	N/A
6	38.169	36.2	N/A	64.136	N/A	N/A	N/A
7	39.306	36.8	N/A	65.055	N/A	N/A	N/A
8	40.141	36.5	N/A	64.192	N/A	N/A	N/A
9	40.375	37.5	N/A	66.278	N/A	N/A	N/A
10	40.889	37.6	N/A	64.043	N/A	N/A	N/A
11	39.713	35.7	N/A	61.623	N/A	N/A	N/A
12	40.082	37.1	N/A	65.564	N/A	N/A	N/A
13	40.936	37.6	N/A	66.644	N/A	N/A	N/A
14	40.135	37.0	N/A	65.52	N/A	N/A	N/A
15	40.99	36.0	N/A	62.156	N/A	N/A	N/A
16	41.269	9.0	N/A	64.168	N/A	N/A	N/A
17	37.335	32.1	49.687	55.298	N/A	N/A	N/A
18	33.069	27.7	44.8	50.818	N/A	N/A	N/A
19	24.655	20.6	29.236	36.157	N/A	N/A	N/A
20	19.701	18.7	24.809	32.062	N/A	N/A .	N/A
21	30.283	33.5	51.24	57.527	N/A	N/A	N/A
22	35.317	35.1	N/A	58.768	N/A	N/A	N/A
23	31.684	25.3	38.009	44.068	N/A	N/A	N/A
24	22.168	20.7	27.413	33.608	N/A	N/A	N/A
25	18.472	19.6	24,207	30.655	N/A	N/A	N/A
26	16.565	19.0	22.66	29.185	N/A	N/A	N/A
27	15.364	18.7	21.733	28.292	N/A	N/A	N/A
28	14.479	18.4	21.029	27.69	N/A	N/A	N/A
29	13.758	18.1	20.428	27.181	N/A	N/A	N/A
30	13.198	17.9	19.971	26.704	N/A	N/A	N/A
31	12.8	17.6	19.6	26.2	N/A	N/A	N/A
		······	· · · · · · · · · · · · · · · · · · ·	T			1
. Min.	12.8	9.0	19.6	26.2			

66.644

50.9

M. Min: Monthly Minimum, M. Max: Monthly Maximum, M. Avg: Monthly Average, NA: Not Available

37.6

28.5

51.703

32.4

* Static/Injecting

41.269

31.0

M. Max.

M. Avg.

WATER LEVEL (FEET, NGVD)						NOVEMBER, 2005	
DAY NO.	MW-1	MW-2	MW-3	MW-A	MW-C	MW-B	LM-926
1	12.536	17.7	19.4	25.948			
2	12.173	17.7	19.2	25.928			
3	17.196	22.1	31.0	34,749			······
4	23.23	27.7	41.7	45.823			
5	27.076	29.2	45.5	49.385			
6	29.217	30.0	47.2	51.154			
7	22.504	21.3	28.4	34.166			
8	17.362	19.3	23.5	29.78			
9	15.253	18.6	21.711	28.106			
10	14.062	18.0	20.683	27.095			
11	12.856	17.6	19.812	26.413			
12	11.777	17.2	19.012	25.854			
13	10.938	16.9	18.404	25.339		······································	
14	10.3	16.4	17.851	24.788			
15	9.691	15.9	17.291	24.205			
16	8.874	15.0	16.509	23,466			······································
17	7.987	14.2	15.691	22.703			
18	7.251	14.0	15.1	22.176			
19	6.664	13.7	14,653	21.785			
20	6.2	13.6	14.327	21.376			
21	5.836	13.3	14.0	20.973			
22	5.42	12.9	13.6	20.694			
23	5.046	12.5	13.3	20.408			
24	4.732	12.3	13.0	20.167			
25	4.412	12.0	12.7	19.987			
26	4.172	11.8	12.5	19.677			
27	3.959	11.6	12.3	19.367			
28	3.701	11.1	12.0	19.031			
29	3.52	11.2	11.827	18.939			
30	-89.62	13.0	27.018	31.926			

M. Min.	-89.6	11.1	11.8	18.9	
M. Max.	29.217	29.997	47.242	51.154	
M. Avg.	7.8	16.6	20.3	26.7	

M. Min: Monthly Minimum, M. Max: Monthly Maximum, M. Avg: Monthly Average, NA: Not Available

WAT	ER LEVEL (FEET, NG		1		MONTH:	DECEMBER, 2005	
DAY NO.	MW-1	MW-2	MW-3	MW-A	MW-C	MW-B	LM-926
1	-89.593	11.661	14.554	21.308			
2	4.075	11.139	12.534	19.672			
3	3.34	11.026	11.964	19.162			· · · · · · · · · · · · · · · · · · ·
4	2.961	10.97	11.688	18.877			······
5	2.54	10.709	11.368	18.499			
6	2.355	10.561	11.16	18.431			
7	2.014	10.709	11.019	18.4			<u> </u>
8	2.056	10.586	11.005	18.325			
9	1.971	10.56	10.945	18.22			
10	1.918	10.645	10.934	18.145			
11	1.86	10.673	10.91	18.109			
12	2.143	10.595	11.157	18.381			
13	1.77	10.496	10.817	18.139			
14	1.519	10.383	10.657	17.829			
15	1.566	10.339	10.64	17.711			
16	1.368	10.213	10.47	17.742			
17	1.261	10.123	10.366	17.668			
18	1.223	10.13	10.305	17.624	· · · · · · · · · · · · · · · · · · ·		
19	1.133	10.074	10.233	17.55		,	
20	1.076	10.11	10.198	17.483			
21	0.75	9.807	9.939	17.352			
22	0.722	9.626	9.854	17.215			
23	0.642	9.487	9.763	16.999			
24	0.579	9.48	9.72	16.8			
25	0.451	9.397	9.606	16.738			
26	0.281	9.27	9.447	16.8			
27	0.206	9.072	9.345	16.614			
28	-0.012	8.818	9.151	16.186			
29	-0.091	8.71	9.021	16.136			
30	-0.238	8.564	8.863	16.056			
31	-0.329	8.564	8.796	16.02			
1-		1	·····		1		1
1. Min.	-89.6	8.6	8.8	16.0			ļ
1. Max.	4.075	11.661	14.554	21.308			

17.7

10.5

M. Min: Monthly Minimum, M. Max: Monthly Maximum, M. Avg: Monthly Average, NA: Not Available

10.1

* Static/Injecting

-1.6

M. Avg.

					MONTH:	JANUARY, 20	06
WATER	LEVEL (FEET	, NGVD)					
DAY NO.	MW-1	MW-2	MW-3	MW-A	MW-C	MW-B	LM-926
1	0	11.7	14.6	21.308			T
2	4.075	11.1	12.5	19.672			
3	3.34	11.0	12.0	19.162			
4	2.961	11.0	11.7	18.877			
5	2.54	10.7	11.4	18.499	1		
6	2.355	10.6	11.2	18.431			1
7	2.014	10.7	11.0	18.4			
8	2.056	10.6	11.0	18.325			1
9	1.971	10.6	10.945	18.22			
10	1.918	10.6	10.934	18.145			-
11	1.86	10.7	10.91	18.109			
12	2.143	10.6	11.157	18.381			
13	1.77	10.5	10.817	18.139			
14	1.519	10.4	10.657	17.829			1
15	1.566	10.3	10.64	17.711			
16	1.368	10.2	10.47	17.742			
17	1.261	10.1	10.366	17.668			
18	1.223	10.1	10.3	17.624			
19	1.133	10.1	10.233	17.55			1
20	1.076	10.1	10.198	17.483			
21	0.75	9.8	9.9	17.352	· · · · · · · · · · · · · · · · · · ·		
22	0.722	9.6	9.9	17.215			
23	0.642	9.5	9.8	16.999			
24	0.579	9.5	9.7	16.8			
25	0.451	9.4	9.6	16.738			
26	0.281	9.3	9.4	16.8			
27	0.206	9.1	9.3	16.614			
28	0	8.8	9.2	16.186	-		1
29	0	8.7	9.021	16.136			
30	0	8.6	8.863	16.056			
31	0.0	8.6	8.8	16.0			
8.4:				1 10 0			
1. Min.	0.0	8.6	8.8	16.0			
1. Max.	4.075	11.7	14.6	21.3			
I. Avg.	1.3	9.8	10.1	17.7			

M. Min: Monthly Minimum, M. Max: Monthly Maximum, M. Avg: Monthly Average, NA: Not Available * Static/Injecting

		· · · · · · · · · · · · · · · · · · ·			MONTH: FEBRUARY, 2006						
DAY NO.	MW-1			L (FEET, NGVE							
		MW-2	MW-3	MW-A	MW-C	MW-B	LM-926				
1	-0.856	1.6									
2	-1.032	1.5									
3	-1.181	1.5									
4	-1.284	1.5									
5	-1.345	1.5									
6	-1.363	1.5									
7	-1.365	1.5									
8	-1.412	1.6									
9	-1.383	1.6									
10	-1.354	1.6									
11	-1.326	1.7									
12	-1.344	1.7									
13	-1.393	1.6					······································				
14	-1.463	1.4									
15	-1.547	1.4									
16	-1.557	1.3									
17	-1.586	1.3									
18	-1.581	1.3									
19	-1.564	1.4									
20	-2.329	-1.2					····				
21	-5.693	-3.5	· · · · · · · · · · · · · · · · · · ·		····						
22	-7.138	-4.1			· · · · · · · · · · · · · · · · · · ·						
23	-7.158	-2.5									
24	-4.859	-0.1									
25	-3.551	-0.4									
26	-3.047	-0.6									
27	-2.783	0.6									
28	-4.227	-1.0	······································				······································				
29	-		·······								
30	-	• • • • • • • • • • • • • • • • • • • •									
31	-										
Min	0.0										
. Min.	-0.9	0.6									
. Max.	-7.158	-4.1									

M. Min: Monthly Minimum, M. Max: Monthly Maximum, M. Avg: Monthly Average, NA: Not Available * Static/Injecting

0.6

M. Avg.

-2.4

MONTH: MARCH, 2006

			WATER LEVEL	(FEET, NGVD)			
DAY NO.	MW-1	MW-2	MW-3	MW-A	MW-C	MW-B	LM-926
1	-5.269	-1.4					
2	-5.791	-1.6					
3	-6.072	-1.7					
4	-6.296	-1.8					·····
5	-6.455	-1.8					
6	-7.536	-3.4					
7	-8.923	-5.0					
8	-9.654	-5.3					· · · · · · · · · · · · · · · · · · ·
9	-9.241	-3.6		1			·····
10	-8.784	-3.3					
11	-0.681	-3.3					
12	-8.643	-3.3					
13	-9.511	-4.3					
14	-10.291	-5.6					** ***
15	-10.796	-5.8					
16	-11.061	-6.0					·····
17	-11.277	-6.0					
18	-11.453	-6.1					
19	-11.6	-6.2					
20	-11.711	-6.3					
21							
22							
23							
24							
25							
26							
27							
28							······
29							
30							
31							····

APRIL, 2006 - NO WATER LEVELS DUE TO EQUIPMENT FAILURE

MAY, 2006 - NO WATER LEVELS DUE TO EQUIPMENT FAILURE

MONTH:

									month.			H, 2008 - CON				
PARAMETERS	Unit	WK3 (3/15/06)	ASR - 1 WK4 (3/22/06)	WK3 (3/15/06)	ASR - 2 WK4 (3/22/06	WK3 (3/15/06)	ASR - 3 WK4 (3/22/06)	WK3 (3/15/06	ASR - 4 WK4 (3/22/06)	WK3 (3/15/06)	ASR - 5 WK4 (3/22/06)	ASR - 1 WK-5 (3/29/06)	ASR - 2 WK-5 (3/29/06)	ASR - 3 WK-5 (3/29/06)	ASR - 4 WK-5 (3/29/06)	ASR - 5 WK-5 (3/29/06)
pH (Field)	pH Units	7.68	7.53	7.72	7.46	7.73	7.63	7.66	7.65	7.43	7.69	7:46	7.46	7,47	7.5	7.38
pH (Lab)	pH Units	7.45	7.55	7.44	7.5	7.31	7.28	7.28	7.17	7.32	7.28	7.59	7.55	7.33	7.34	7.31
Specific Conductance	umhos/cm	362	383	339	365	394	424	391	424	356	384	421	391	456	464	424
Field Temperature	Centigrade	22.9	25.7	24.1	23.1	22.2	28.1	22.5	28.8	25	27.6	24.6	26	27.4	27.5	27.3
Dissolved Oxygen (Fie	mg/L	1.4	1.06	1.38	1.32	1.35	1.14	1.49	1.16	1.39	1.18	1.36	1.26	1.01	1.12	0.92
Dissolved Oxygen (La	mg/L	1.9	1.9	1.7	1,7	1.6	2.2	1.7	2.4	1.9	2.3	1.3	2.2	1.7	1.5	1.4
Chlorine Residual - Fr	mg/L	0.05	0.08	0.1	0.05	0.04	0.05	0.06	0.03	0.1	0	0	0	0	0	0
Chlorine Residual - To	mg/L	0.18	0.12	0.16	0.19	0.12	0.19	0.27	0	0.49	0.27	0	0	0	0	0
Color	CU	7	7.3	7.3	6.8	10	10.2	10	9.8	8.5	9.8	7.7	7	9.5	9.2	9.6
Odor	TON	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Turbidity	NTU	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Gross Alpha	pCi/L	N/T	N/T	N/T	N/T	N/T	N/T	N/T	N/T	N/T	N/T	<2.2	<1.5	3.4	2.2	<1.3
Alkalinity (Total)	mg/L	106	112	112	108	131	134	128	125	114	117	110	106	132	122	112
Alkalinity (Bicarbonate	mg/L	106	112	112	108	131	134	128	125	114	117	110	106	132	122	112
Hardness (Total)	mg/L	154	154	156	160	152	152	162	162	166	160	156	158	150	160	164
Hardness (Calcium)	mg/L	134	130	134	132	122	122	136	130	132	126	132	130	120	132	128
Hardness (Carbonate)	mg/L	106	112	112	108	131	134	128	125	114	117	110	106	132	132	112
Hardness (Non-Carbo	mg/L	48	42	44	52	21	18	34	37	52	43	46	52	18	38	52
Aluminum	mg/L	N/T	N/T	<18	<5.9	N/T	N/T	N/T	N/T	N/T	N/T	N/T	16	N/T	N/T	N/T
Ammonia	mg/L	N/T	N/T	N/T	N/T	N/T	N/T	N/T	N/T	N/T	N/T	N/T	N/T	N/T	N/T	N/T
Arsenic	ug/L	4.5	5.7	2.1	2.5	4.1	4	4.3	4.2	3	3.6	6.3	3.2	4.4	4,9	4.6
Chloride	mg/L	42	42	43	45	40.5	46	41.5	42	42	44	42	45	42	44	43
Coliform Bacteria	col./100mL	N/T	N/T	N/T	N/T	N/T	N/T	N/T	N/T	N/T	N/T	<1	<1	<1	<1	<1
Fluoride	mg/L	0.81	0.89	0.81	0.89	0.79	0.81	0.79	0.85	0.71	0.75	0.81	0.83	0.75	0.77	0.7
Iron	mg/L	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	0.05	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	0.05	<0.04
Lead	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Nitrate	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Nitrite	mg/L	0.005	<0.002	<0.002	<0 002	<0.002	<0.002	<0.002	<0.02	<0.002	<0.002	<0.002	0.011	<0.002	<0.002	<0.002
Sulfate	mg/L	38.2	37.3	40 2	38.5	37.5	36.7	36.8	35.9	41.4	40.6	37.5	37.6	36.4	36.7	41.1
TDS	mg/L	264	270	258	254	250	306	328	284	254	254	244	230	298	274	254
Total Sulfide	mg/L	0.4	0.1	0.1	0.1	0.3	0.1	0.3	0.1	0.1	0.1	0.1	0.1	0.3	0.3	0.1
Trihalomethanes	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50

ND - Not detected

NT - Not tested

NA - Not available, lab report pending

MARCH, 2006 - CONTINUED

MONTH:

APRIL, 2006

PARAMETERS	Unit	ASF	R - 1		ASR - 2	AS	R - 3		ASR - 4		ASR - 5
		WK1 (4/5/06)	WK2 (4/12/06)	WK1 (4/5/06)	WK2 (4/12/06)	WK1 (4/5/06)	WK2 (4/12/06)	WK1 (4/5/06)	WK2 (4/12/06)	WK1 (4/5/06)	WK2 (4/12/06)
pH (Field)	pH Units	7.44	7.58	7.57	7.47	7.46	7.38	7.44	7.49	7.45	7.37
pH (Lab)	pH Units	7.25	7.42	7.4	7.51	7.2	7.24	7.14	7.28	7.15	7.2
Specific Conductance	umhos/cm	360	398	341	361	396	434	395	420	376	416
Field Temperature	Centigrade	23.1	25.4	23.9	24.6	23.7	25.4	23.6	25.5	23.9	25.1
Dissolved Oxygen (Fie	mg/L	1.68	0.89	1.09	1.08	1.24	0.9	1.06	0.99	1.07	0.96
Dissolved Oxygen (La	mg/L	1.3	1.5	1.6	1.9	1.7	1.8	3.5	1.8	2.1	1.6
Chlorine Residual - Fr	mg/L	0	0	0	0	0	0	0	0	0	0
Chlorine Residual - To	mg/L	0	0	0	0	0	0	0	0	0	0
Color	cu	8.3	7.6	7.1	7.4	10	9.8	9.9	10.1	9.5	10
Odor	TON	1	<1	1	<1	1	3	1	<2	1	<1
Turbidity	NTU	0.37	<0.2	0.57	<0.2	0.87	<0.2	0.52	<0.2	0.89	<0.2
Gross Alpha	pCi/L	NT	N/T								
Alkalinity (Total)	mg/L	112	112	108	108	131	134	124	125	115	117
Alkalinity (Bicarbonate	mg/L	112	112	108	108	131	134	124	125	115	117
Hardness (Total)	mg/L	154	154	158	150	152	152	162	162	160	168
Hardness (Calcium)	mg/L	128	128	132	134	122	120	128	130	124	126
Hardness (Carbonate)	mg/L	112	112	108	108	131	134	124	125	115	117
Hardness (Non-Carbo	mg/L	42	42	48	42	21	18	38	37	45	51
Aluminum	ug/L	NT	N/T	18	<100	NT	N/T	NT	N/T	NT	N/T
Ammonia	mg/L	NT	N/T								
Arsenic	ug/L	6.7	8.4	2.8	5.3	4	5.8	4.5	5.3	3.9	6.6
Chloride	mg/L	42	42	45	45	46	44	42	42	44	42
Coliform Bacteria	col./100mL	NT	N/T								
Fluoride	mg/L	0.89	0.88	0.88	0.89	0.86	0.78	0.84	0.78	0.78	0.74
iron	mg/L	<0.04	<0.04	<0.04	<0.04	<0.04	0.08	0.07	<0.09	<0.04	0.06
Lead	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1	<1.0	<1.0	<1.0
Nitrate	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	<0.01	<0.01
Nitrite	mg/L	0.01	<0.002	0.003	<0.002	0.007	<0.002	0.002	<0.002	0.005	<0.002
Sulfate	mg/L mg/L		33.3 228	38 260	34.3	36.4	35.1	37.4	34.4	41.3	37.5
Total Sulfide	mg/L		0.3	<0.0	194 0.4	276 0.1	246 0.3	286 <0.0	322 0.3	260 <0.0	252 0.3
Trihalomethanes	ug/L	<0.50	<0.2	<0.50	<0.2	<0.50	<0.2	<0.50	<0.2	<0.50	<0.2

ND - Not detected

NT - Not tested

NA - Not available, lab report pending

r

APPENDIX I

DAILY WATER LEVEL DATA FOR THE STORAGE ZONE OBSERVATION WELLS FOR CYCLE 5

WATE	R LEVEL (FEET, NG	VD)		<u> </u>		MONTH: AUGUST, 2008	5
DAY NO.	MW-1	MW-2	MW-3	MW-A	MW-C	MW-B	LM-926
1	6.2	N/A	14.1	21.7	14.1	N/A	N/A
2	6.3	N/A	14.1	21.7	14.1	N/A	N/A
3	6.5	N/A	14.4	22.1	14.4	N/A	N/A
4	15.5	6"	37.3	42.5	37.3	N/A	14'
5	19.2	N/A	36.6	43	36.6	N/A	N/A
6	16	N/A	23.2	30	23.2	N/A	N/A
7	11.6	N/A	18.8	26.2	18.8	N/A	N/A
8	10.2	N/A	17.6	25.2	17.6	N/A	N/A
9	10.4	· N/A	17.9	25.4	17.9	N/A	N/A
10	17.8	N/A	36.4	41.7	36.4	N/A	N/A
11	14.1	N/A	21.2	28.4	21.2	N/A	N/A
12	17.5	N/A	34.7	39.2	34.7	N/A	N/A
13	21.9	N/A	39	43	39	N/A	N/A
14	23.5	N/A	40.5	44.6	40.5	N/A	N/A
15	24.6	N/A	41.3	45.6	41.3	N/A	N/A
16	23	N/A	35.4	41.5	35.4	N/A	N/A
17	17.5	N/A	24	31	24	N/A	N/A
18	13.9	0.0	20.6	28	20.6	N/A	13'5"
19	12.3	N/A	19.1	26.6	19,1	N/A	N/A
20	18.2	N/A	34.8	41.2	34.8	N/A	N/A
21	22.4	N/A	39.1	45	39.1	N/A	N/A
22	24.3	N/A	40.7	46.4	40.7	N/A	N/A
23	19	N/A	25.3	32	25.3	N/A	N/A
24	14.3	N/A	20.7	28	20.7	N/A	N/A
25	21.2	30.7	42.8	49.4	42.8	N/A	N/A
26	28.7	29.3	45.8	51.2	45.8	N/A	N/A
27	31.1	33.9	52.2	57	52.2	N/A	N/A
28	32.4	31.9	51.7	56	51.7	N/A	N/A
29	31.6	29.8	49.3	53.9	49.3	N/A	N/A
30	22.8	20.0	28.1	34.7	28.1	N/A	N/A
31	17.1	17.5	22.7	29.9	22.7	N/A	N/A
							·
. Min.	6.1	6.0	13.6	21.7	14.1	N/A	13.5
. Max.	33	33.9	52.2	56.0	52.2	N/A	14.0
. Avg.	24.7	22.1	30.9	37.2	30.9	N/A	13.2

M. Min: Monthly Minimum, M. Max: Monthly Maximum, M. Avg: Monthly Average, NA: Not Available

* Static/Injecting

			MONTH: SEPTEMBER, 2005							
WATE	ER LEVEL (FEET, NG	VD)								
DAY NO.	MW-1	MW-2	MW-3	MW-A	MW-C	MW-B	LM-926			
1	21.5	24.9	39.3	44.8	N/T	N/T	N/T			
2	29.5	28.7	49.5	54.4	N/T	N/T	N/T			
3	30.5	27.3	46.1	51.1	N/T	N/T	N/T			
4	28.6	26.6	43.7	49.4	N/T	N/T	N/T			
5	28.3	26.4	43,4	49	N/T	N/T	N/T			
6	28.1	26.1	42.9	48.5	N/T	N/T	N/T			
7	28.2	26.8	44.8	49.3	N/T	N/T	N/T			
8	29.7	30.4	47.8	53.6	N/T	N/T	N/T			
9	30.6	27.3	45.7	51	N/T	N/T	N/T			
10	29.3	26.5	44.2	49.9	N/T	N/T	N/T			
11	28.9	26.4	43.6	49.6	N/T	N/T	N/T			
12	28.6	26.1	43.5	49.3	N/T	N/T	N/T			
13	29.8	27.5	47.4	53	N/T	N/T	N/T			
.14	21.9	18.1	26.7	33.4	N/T	N/T	N/T			
15	16.6	16.0	21.8	29	N/T	N/T	N/T			
16	13.7	14.8	19.3	26.6	N/T	N/T	N/T			
17	12	14.2	17.9	25.3	N/T	N/T	N/T			
18	10.7	13.7	16.9	24.4	N/T	N/T	N/T			
19	9.8	13.2	16.1	23.6	N/T	N/T	N/T			
20	9.1	12.9	15.6	23.1	N/T	N/T	N/T			
21	8.5	12.7	15.1	22.7	N/T	N/T	N/T			
22	18.7	25.1	40.2	46.5	N/T	N/T	N/T			
23	22.6	25.1	41.9	49	N/T	N/T	N/T			
24	28.3	27.9	48.9	54.5	N/T	N/T	N/T			
25	29.3	25.3	48	51.6	N/T	N/T	N/T			
26	30.4	30.6	50.7	56.2	N/T	N/T	N/T			
27	33	32.4	N/A	59	N/T	N/T	N/T			
28	34.3	33.7	N/A	60.4	N/T	N/T	N/T			
29	36	34.5	N/A	62.4	N/T	N/T	N/T			
30	37.3	35.1	N/A	63.4	N/T	N/T	N/T			
L		<u> </u>			l	L	I			
Min	9 6	107	15 1	22.7						

MONTH: SEPTEMBER, 2005

 M. Min.
 8.5
 12.7
 15.1
 22.7

 M. Max.
 37.3
 35.1
 50.7
 63.4

 M. Avg.
 24.8
 24.5
 37.0
 45.5

M. Min: Monthly Minimum, M. Max: Monthly Maximum, M. Avg: Monthly Average, NA: Not Available

* Static/Injecting

WATE	R LEVEL (FEET, NGV	(D)		1	· · · · · · · · · · · · · · · · · · ·		
DAY NO.	MW-1	MW-2	MW-3	MW-A	MW-C	MW-B	LM-926
1	37.234	33.1	N/A	62.553	N/A	N/A	N/A
2	38.292	35.3	N/A	63.9	N/A	N/A	N/A
3	36.688	29.9	51.682	56.657	N/A	N/A	N/A
4	32.084	32.4	51.703	57.93	N/A	N/A	N/A
5	36.593	33.0	N/A	62.175	N/A	N/A	N/A
6	38.169	36.2	N/A	64.136	N/A	N/A	N/A
7	39.306	36.8	N/A	65.055	N/A	N/A	N/A
8	40.141	36.5	N/A	64.192	N/A	N/A	N/A
9	40.375	37.5	N/A	66.278	N/A	N/A	N/A
10	40.889	37.6	N/A	64.043	N/A	N/A	N/A
11	39.713	35.7	N/A	61.623	N/A	N/A	N/A
12	40.082	37.1	N/A	65.564	N/A	N/A	N/A
13	40.936	37.6	N/A	66.644	N/A	N/A	N/A
14	40.135	37.0	N/A	65.52	N/A	N/A	N/A
15	40.99	36.0	N/A	62.156	N/A	N/A	N/A
16	41.269	9.0	N/A	64.168	N/A	N/A	N/A
17	37.335	32.1	49.687	55.298	N/A	N/A	N/A
18	33.069	27.7	44.8	50.818	N/A	N/A	N/A
19	24.655	20.6	29.236	36.157	N/A	N/A	N/A
20	19.701	18.7	24.809	32.062	N/A	N/A .	N/A
21	30.283	33.5	51.24	57.527	N/A	N/A	N/A
22	35.317	35.1	N/A	58.768	N/A	N/A	N/A
23	31.684	25.3	38.009	44.068	N/A	N/A	N/A
24	22.168	20.7	27.413	33.608	N/A	N/A	N/A
25	18.472	19.6	24,207	30.655	N/A	N/A	N/A
26	16.565	19.0	22.66	29.185	N/A	N/A	N/A
27	15.364	18.7	21.733	28.292	N/A	N/A	N/A
28	14.479	18.4	21.029	27.69	N/A	N/A	N/A
29	13.758	18.1	20.428	27.181	N/A	N/A	N/A
30	13.198	17.9	19.971	26.704	N/A	N/A	N/A
31	12.8	17.6	19.6	26.2	N/A	N/A	N/A
		······	· · · · · · · · · · · · · · · · · · ·	T			1
. Min.	12.8	9.0	19.6	26.2			

66.644

50.9

M. Min: Monthly Minimum, M. Max: Monthly Maximum, M. Avg: Monthly Average, NA: Not Available

37.6

28.5

51.703

32.4

* Static/Injecting

41.269

31.0

M. Max.

M. Avg.

WATE	R LEVEL (FEET, NG	VD)					
DAY NO.	MW-1	MW-2	MW-3	MW-A	MW-C	MW-B	LM-926
1	12.536	17.7	19.4	25.948			
2	12.173	17.7	19.2	25.928			
3	17.196	22.1	31.0	34,749			······
4	23.23	27.7	41.7	45.823			
5	27.076	29.2	45.5	49.385			
6	29.217	30.0	47.2	51.154	· · · · · · · · · · · · · · · · · · ·		
7	22.504	21.3	28.4	34.166			
8	17.362	19.3	23.5	29.78			
9	15.253	18.6	21.711	28.106			
10	14.062	18.0	20.683	27.095			
11	12.856	17.6	19.812	26.413			
12	11.777	17.2	19.012	25.854			
13	10.938	16.9	18.404	25.339			
14	10.3	16.4	17.851	24.788			
15	9.691	15.9	17.291	24.205			
16	8.874	15.0	16.509	23,466	· · · · · · · · · · · · · · · · · · ·		······································
17	7.987	14.2	15.691	22.703		· · · · · · · · · · · · · · · · · · ·	
18	7.251	14.0	15.1	22.176			
19	6.664	13.7	14,653	21.785			
20	6.2	13.6	14.327	21.376			
21	5.836	13.3	14.0	20.973			
22	5.42	12.9	13.6	20.694			
23	5.046	12.5	13.3	20.408			40.1
24	4.732	12.3	13.0	20.167			
25	4.412	12.0	12.7	19.987			
26	4.172	11.8	12.5	19.677			
27	3.959	11.6	12.3	19.367		·······	
28	3.701	11.1	12.0	19.031			
29	3.52	11.2	11.827	18.939			
30	-89.62	13.0	27.018	31.926			

M. Min.	-89.6	11.1	11.8	18.9	
M. Max.	29.217	29.997	47.242	51.154	
M. Avg.	7.8	16.6	20.3	26.7	

M. Min: Monthly Minimum, M. Max: Monthly Maximum, M. Avg: Monthly Average, NA: Not Available

* Static/Injecting

WAT	ER LEVEL (FEET, NG		1		MONTH:	DECEMBER, 2005	
DAY NO.	MW-1	MW-2	MW-3	MW-A	MW-C	MW-B	LM-926
1	-89.593	11.661	14.554	21.308			
2	4.075	11.139	12.534	19.672			
3	3.34	11.026	11.964	19.162			· · · · · · · · · · · · · · · · · · ·
4	2.961	10.97	11.688	18.877			······
5	2.54	10.709	11.368	18.499			
6	2.355	10.561	11.16	18.431			
7	2.014	10.709	11.019	18.4			<u> </u>
8	2.056	10.586	11.005	18.325			
9	1.971	10.56	10.945	18.22			
10	1.918	10.645	10.934	18.145			
11	1.86	10.673	10.91	18.109			
12	2.143	10.595	11.157	18.381			
13	1.77	10.496	10.817	18.139			
14	1.519	10.383	10.657	17.829			
15	1.566	10.339	10.64	17.711			
16	1.368	10.213	10.47	17.742			
17	1.261	10.123	10.366	17.668			
18	1.223	10.13	10.305	17.624	· · · · · · · · · · · · · · · · · · ·		
19	1.133	10.074	10.233	17.55		,	
20	1.076	10.11	10.198	17.483			
21	0.75	9.807	9.939	17.352			
22	0.722	9.626	9.854	17.215			
23	0.642	9.487	9.763	16.999			
24	0.579	9.48	9.72	16.8			
25	0.451	9.397	9.606	16.738			
26	0.281	9.27	9.447	16.8			
27	0.206	9.072	9.345	16.614			
28	-0.012	8.818	9.151	16.186			
29	-0.091	8.71	9.021	16.136			
30	-0.238	8.564	8.863	16.056			
31	-0.329	8.564	8.796	16.02			
1-		1	·····		1		1
1. Min.	-89.6	8.6	8.8	16.0			ļ
1. Max.	4.075	11.661	14.554	21.308			

17.7

10.5

M. Min: Monthly Minimum, M. Max: Monthly Maximum, M. Avg: Monthly Average, NA: Not Available

10.1

* Static/Injecting

-1.6

M. Avg.

					MONTH:	JANUARY, 20	06
WATER	LEVEL (FEET	, NGVD)					
DAY NO.	MW-1	MW-2	MW-3	MW-A	MW-C	MW-B	LM-926
1	0	11.7	14.6	21.308			T
2	4.075	11.1	12.5	19.672			
3	3.34	11.0	12.0	19.162			
4	2.961	11.0	11.7	18.877			
5	2.54	10.7	11.4	18.499	1		
6	2.355	10.6	11.2	18.431			1
7	2.014	10.7	11.0	18.4			
8	2.056	10.6	11.0	18.325			1
9	1.971	10.6	10.945	18.22			
10	1.918	10.6	10.934	18.145			-
11	1.86	10.7	10.91	18.109			
12	2.143	10.6	11.157	18.381			
13	1.77	10.5	10.817	18.139			
14	1.519	10.4	10.657	17.829			1
15	1.566	10.3	10.64	17.711			
16	1.368	10.2	10.47	17.742			
17	1.261	10.1	10.366	17.668			
18	1.223	10.1	10.3	17.624			
19	1.133	10.1	10.233	17.55			1
20	1.076	10.1	10.198	17.483			
21	0.75	9.8	9.9	17.352	· · · · · · · · · · · · · · · · · · ·		
22	0.722	9.6	9.9	17.215			
23	0.642	9.5	9.8	16.999			
24	0.579	9.5	9.7	16.8			
25	0.451	9.4	9.6	16.738			
26	0.281	9.3	9.4	16.8			
27	0.206	9.1	9.3	16.614			
28	0	8.8	9.2	16.186	-		1
29	0	8.7	9.021	16.136			
30	0	8.6	8.863	16.056			
31	0.0	8.6	8.8	16.0			
8.4:				1 10 0			
1. Min.	0.0	8.6	8.8	16.0			
1. Max.	4.075	11.7	14.6	21.3			
I. Avg.	1.3	9.8	10.1	17.7			

M. Min: Monthly Minimum, M. Max: Monthly Maximum, M. Avg: Monthly Average, NA: Not Available * Static/Injecting

		· · · · · · · · · · · · · · · · · · ·			MONTH:	FEBRUARY, 200)6
DAY NO.	MW-1			L (FEET, NGVE			
		MW-2	MW-3	MW-A	MW-C	MW-B	LM-926
1	-0.856	1.6					
2	-1.032	1.5					
3	-1.181	1.5					
4	-1.284	1.5					
5	-1.345	1.5					
6	-1.363	1.5					
7	-1.365	1.5					
8	-1.412	1.6					
9	-1.383	1.6					
10	-1.354	1.6					
11	-1.326	1.7					
12	-1.344	1.7					
13	-1.393	1.6					······································
14	-1.463	1.4					
15	-1.547	1.4					
16	-1.557	1.3					
17	-1.586	1.3					
18	-1.581	1.3					
19	-1.564	1.4					
20	-2.329	-1.2					····
21	-5.693	-3.5	· · · · · · · · · · · · · · · · · · ·		····		
22	-7.138	-4.1			· · · · · · · · · · · · · · · · · · ·		
23	-7.158	-2.5		·			
24	-4.859	-0.1					
25	-3.551	-0.4					
26	-3.047	-0.6					
27	-2.783	0.6					
28	-4.227	-1.0	······································				······································
29	-		·······				
30	-	• • • • • • • • • • • • • • • • • • • •					
31	-						
Min	0.0						
. Min.	-0.9	0.6					
. Max.	-7.158	-4.1					

M. Min: Monthly Minimum, M. Max: Monthly Maximum, M. Avg: Monthly Average, NA: Not Available * Static/Injecting

0.6

M. Avg.

-2.4

MONTH: MARCH, 2006

			WATER LEVEL	(FEET, NGVD)			
DAY NO.	MW-1	MW-2	MW-3	MW-A	MW-C	MW-B	LM-926
1	-5.269	-1.4					
2	-5.791	-1.6					
3	-6.072	-1.7					
4	-6.296	-1.8					·····
5	-6.455	-1.8					
6	-7.536	-3.4					
7	-8.923	-5.0					
8	-9.654	-5.3					· · · · · · · · · · · · · · · · · · ·
9	-9.241	-3.6		1			·····
10	-8.784	-3.3					
11	-0.681	-3.3					
12	-8.643	-3.3					
13	-9.511	-4.3					
14	-10.291	-5.6					** ***
15	-10.796	-5.8					
16	-11.061	-6.0					·····
17	-11.277	-6.0					
18	-11.453	-6.1					
19	-11.6	-6.2					
20	-11.711	-6.3					
21							
22							
23							
24							
25							
26							
27							
28							······
29							
30							
31							····

APRIL, 2006 - NO WATER LEVELS DUE TO EQUIPMENT FAILURE

MAY, 2006 - NO WATER LEVELS DUE TO EQUIPMENT FAILURE

APPENDIX J

WEEKLY WATER QUALITY DATA FOR THE STORAGE ZONE OBSERVATION WELLS FOR CYCLE 5

MONTH: AUGUST, 2005

PARAMETERS	Unit	M	N-2	N	IW-3	MV	v-c	LM-926
		wk1(8/4/05)	wk3(8/17/05)	wk1(8/4/05)	wk3(8/17/05)	wk1(8/4/05)	wk3(8/17/05	wk1(8/4/05)
pH (Field)	pH Units	,	7.53		7.32		7.41	
рН (Lab)	pH Units		7.52		7.72		7.76	
Specific Conductance	umhos/cm		530		556		478	
Field Temperature	Centigrade	25.9	25.9		29.7	26.2	26.2	29.1
Dissolved Oxygen (Field)	mg/L		1.09		1.14		1.12	
Dissolved Oxygen (Lab)	mg/L		1.7		0.4		1.2	
Chlorine Residual - Free (Field)	mg/L		0.1		0.1		0.1	
Chlorine Residual - Total (Field)	mg/L		0.1	······································	0.1		0.16	
Color	CU		N/T		N/T		N/T	
Odor	TON		8		8		1	
Turbidity	NTU		0.75		N/T		0.53	
Gross Alpha	pCi/L		<1.7		1.3		1.6	
Alkalinity (Total)	mg/L		190		213		159	
Alkalinity (Bicarbonate)	mg/L		189		212		158	
Hardness (Total)	mg/L		172		122		140	
Hardness (Calcium)	mg/L		156		100		126	
Hardness (Carbonate)	mg/L		172		122		140	
Hardness (Non-Carbonate)	mg/L		O		0		0	
Aluminum	mg/L		N/T		N/T		N/T	
Ammonia	mg/L		N/T		N/T		N/T	
Arsenic	ug/L		<1.0		<1.0		<1.0	
Chloride	mg/L		44		44		43	
Coliform Bacteria	col./100mL		N/T		N/T		N/T	
Fluoride	mg/L		0.91		1.40		1.2	
Iron	mg/L		<0.04		<0.04		<0.04	
Lead	mg/L		N/T		N/T		N/T	
Nitrate	mg/L		N/T		N/T		N/T	
Nitrite	mg/L		N/T		N/T		N/T	
Sulfate	mg/L		24.9		11.6		27.6	
TDS	mg/L		328		312		288	
Total Sulfide	mg/L		1.60		2.10	1	1.30	
Trihalomethanes	ug/L		<0.50		<0.50	1	<0.50	

MONTH: SEPTEMBER, 2005

PARAMETERS	Unit	M	N-2	N	1W-3	MV	V-C	LM-926
		wk 1 (9/7/05)	wk 2(9/15/05/0	wk 1(9/7/05)	wk 2(9/15/05)	wk 1(9/7/05)	wk 2(9/15/05)	wk 2(9/15/05)
pH (Field)	pH Units	7.34	7.37	7.48	7.40	7.42	7.1	7.32
pH (Lab)	pH Units	7.26	7.82	7,61	8	7.65	8.05	7.61
Specific Conductance	umhos/cm	514	531	531	510	448	440	612
Field Temperature	Centigrade	28.2	28	26.5	29.7	29.1	27	29
Dissolved Oxygen (Field)	mg/L	0.88	1	1.03	1.55	1.26	1.13	1.55
Dissolved Oxygen (Lab)	mg/L	0.4	0.3	0.3	<0.1	1.4	1.6	NT
Chlorine Residual - Free (Field)	mg/L	0.4	0.3	0.2	0.2	0.22	0.2	0.0
Chlorine Residual - Total (Field)	mg/L	0.2	0.1	0.21	0.1	0	0.10	0.0
Color	CU	NT	NT	NT	ŃT	NT	NT	NT
Odor	TON	4	8	4	4	1	1	NT
Turbidity	NTU	0.72	NT	0.36	NT	0.54	NT	NT
Gross Alpha	pCi/L	NT	<1.1	NT	<1.9	NT	<1.8	NT
Alkalinity (Total)	mg/L	193	195	214	210	167	163	242
Alkalinity (Bicarbonate)	mg/L	193	194	213	208	166	161	241
Hardness (Total)	mg/L	174	172	132	134	144	148	258
Hardness (Calcium)	mg/L	130	128	104	106	122	120	224
Hardness (Carbonate)	mg/L	174	172	132	134	144	148	242
Hardness (Non-Carbonate)	mg/L	0	0	0	0	0	0	16
Aluminum	mg/L	NT	NT	NT	NT	NT	NT	NT
Ammonia	mg/L	NT	NT	NT	NT	NT	NT	NT
Arsenic	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloride	mg/L	43	43	44	41	42	45	NT
Coliform Bacteria	col./100mL	NT	NT	NT	NT	NT	NT	NT
Fluoride	mg/L	0.82	0.81	1.4	1.30	1.10	1.1	NT
Iron	mg/L	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	NT
Lead	mg/L	NT	NT	NT	NT	NT	NT	NT
Nitrate	mg/L	NT	NT	NT	NT	NT	NT	NT
Nitrite	mg/L	NT	NT	NT	NT	NT	NT	NT
Sulfate	mg/L	24.8	32.2	11.1	10.4	27.6	27	NT
TDS	mg/L	348	410	328	308	304	302	168
Total Sulfide	mg/L	1.80	1.90	2.30	2.50	1.20	1.00	NT
Trihalomethanes	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	NT

MONTH: OCTOBER, 2005

.

PARAMETERS	Unit		MW - 2			MW - 3			MW - C		LM 926
		wk1(10/5/05)	wk2(10/13/05)	wk3(10/19/05)	wk1(10/5/05)	wk2(10/13/05)	wk3(10/19/05)	wk1(10/5/05)	wk2(10/13/05)	wk3(10/19/05)	
pH (Field)	pH Units	7.15	7.1	7.37	7.31	7.49	7.50	7.22	7.21	7.34	7.25
pH (Lab)	pH Units	7,41	7.24	7.13	7.59	7.29	7.34	7.64	7.39	7.49	7.29
Specific Conductance	umhos/cm	548	525	564	530	501	526	443	413	423	648
Field Temperature	Centigrade	25.9	26.3	26.3	29.6	24.9	27.5	26.7	24.7	26.9	23.9
Dissolved Oxygen (Field)	mg/L	1.41	0.98	0.96	0.84	1.13	0.78	1.19	0.85	0.9	1.60
Dissolved Oxygen (Lab)	mg/L	1.3	0.6	0.2	0.3	0.8	<0.1	1.8	1.4	1.6	NT
Chlorine Residual - Free (Field)	mg/L	0.1	0.1	0.2	0.2	0.1	0.1	0.36	0.07	0.0	0.0
Chlorine Residual - Total (Field)	mg/L	0.23	0.12	0.3	0.06	0.06	0.3	0.08	0.1	0.12	0.0
Color	CU	N/T	N/T	N/T	N/T	N/T	N/T	N/T	N/T	N/T	NT
Odor	TON	8	8	2	2	4	8	1	2	1	NT
Turbidity	NTU	N/T	N/T	N/T	N/T	N/T	N/T	N/T	N/T	N/T	NT
Gross Alpha	pCi/L	<2.2	N/T	N/T	1.6	N/T	N/T	<2.0	N/T	N/T	NT
Alkalinity (Total)	mg/L	191	194	197	212	217	220	165	164	159	250
Alkalinity (Bicarbonate)	mg/L	191	194	197	211	217	220	164	164	159	250
Hardness (Total)	mg/L	172	164	168	138	132	138	142	148	152	268
Hardness (Calcium)	mg/L	122	120	124	106	102	100	122	118	114	200
Hardness (Carbonate)	mg/L	172	164	168	138	132	138	142	148	152	250
Hardness (Non-Carbonate)	mg/L	0	0	0	0	0	0	0	0	0	18
Aluminum	mg/L	N/T	N/T	N/T	N/T	N/T	N/T	N/T	N/T	N/T	NT
Ammonia	mg/L	N/T	N/T	N/T	N/T	N/T	N/T	N/T	N/T	N/T	NT
Arsenic	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	ND
Chloride	mg/L	43	45	42	45	44	45	46	46	41	NT
Coliform Bacteria	coi./100mL	N/T	N/T	N/T	N/T	N/T	N/T	N/T	N/T	N/T	NT
Fluoride	mg/L	0.87	0.86	0.89	1.32	1.32	1.40	1.15	1.11	1.2	NT
Iron	mg/L	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	NT
Lead	mg/L	N/T	N/T	N/T	N/T	N/T	N/T	N/T	N/T	N/T	NT
Nitrate	mg/L	N/T	N/T	N/T	N/T	N/T	N/T	N/T	N/T	N/T	NT
Nitrite	mg/L	N/T	N/T	N/T	N/T	N/T	N/T	N/T	N/T	N/T	NT
Sulfate	mg/L	24.1	24	23	10.7	11	12	29	30	31	NT
TDS	mg/L	308	334	362	282	328	360	362	264	300	410
Total Sulfide	mg/L	2.10	1.80	1.90	2.10	1.90	2.80	0.70	0.60	0.30	NT
Trihalomethanes	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	NT

NOVEMBER, 2005 - NO MONITORING WELL SAMPLE WERE TAKEN ND - Not detected

NT - Not tested

JANUARY, 2006

		JANUART,		REVISED		
PARAMETERS	Unit	MW-1	MW-2	MW-3	MW-C	LM-926
		WK-1(1/4/06)	WK-1(1/4/06)	WK-1(1/4/06)	WK-1(1/4/06)	WK-1(1/4/06)
pH (Field)	pH Units	NT	N/T	N/T	N/T	N/T
pH (Lab)	pH Units	7.29	7.35	7.41	7.54	7.11
Specific Conductance	umhos/cm	593	547	527	419	583
Field Temperature	Centigrade	24.9	28	24.4	25.2	23.8
Dissolved Oxygen (Field)	mg/L	NT	N/T	N/T	N/T	N/T
Dissolved Oxygen (Lab)	mg/L	<0.1	0.3	0.2	1.3	N/T
Chlorine Residual - Free (Field)	mg/L	NT	N/T	N/T	N/T	N/T
Chlorine Residual - Total (Field)	mg/L	NT	N/T	N/T	N/T	N/T
Color	CU	NT	N/T	N/T	N/T	N/T
Odor	TON	4	2	2	2	N/T
Turbidity	NTU	NT	N/T	N/T	N/T	N/T
Gross Alpha	pCi/L	<1.1	<1.6	<1.8	<1.0	N/T
Alkalinity (Total)	· mg/L	230	193	202	116	249
Alkalinity (Bicarbonate)	mg/L	230	193	202	249	249
Hardness (Total)	mg/L	106	160	128	130	240
Hardness (Calcium)	mg/L	64	122	108	120	194
Hardness (Carbonate)	mg/L	106	160	128	116	240
Hardness (Non-Carbonate)	mg/L	0	0	0	2	0
Aluminum	mg/L	NT	N/T	N/T	N/T	N/T
Ammonia	mg/L	NT	N/T	N/T	N/T	N/T
Arsenic	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0
Chloride	mg/L	43	45	44	40	N/T
Coliform Bacteria	col./100mL	NT	N/T	N/T	N/T	N/T
Fluoride	mg/L	1.9	1.1	1.6	1.4	N/T
Iron	mg/L	<0.04	<0.04	<0.04	<0.04	N/T
Lead	ug/L	NT	N/T	N/T	N/T	N/T
Nitrate	mg/L	NT	N/T	N/T	N/T	N/T
Nitrite	mg/L	NT	N/T	N/T	N/T	N/T
Sulfate	mg/L	14.7	23.1	11.8	31.3	N/T
TDS	mg/L	318	308	282	222	358
Total Sulfide	mg/L	2.3	1.7	1.4	0.3	N/T
Trihalomethanes	ug/L	<1.0	<0.50	<0.50	<0.50	N/T

ND - Not detected

NT - Not tested

JANUARY, 2006 - CONTINUED

.

PARAMETERS	Unit	MW-1	MW-2	MW-3	MW-C	LM-926
		WK-2(1/11/06)	WK-2(1/11/06	WK-2(1/11/06)	Wk-2(1/11/06)	wk-2(1/11/06)
pH (Field)	pH Units	7.53	7.43	7.5	7.4	N/T
pH (Lab)	pH Units	7.34	7.21	7.31	7.44	N/T
Specific Conductance	umhos/cm	538	545	510	385	N/T
Field Temperature	Centigrade	26.9	25.1	25.8	23.2	N/T
Dissolved Oxygen (Field)	mg/L	1.02	0.98	0.9	2.1	N/T
Dissolved Oxygen (Lab)	mg/L	<0.1	0.4	<0.1	0.6	N/T
Chlorine Residual - Free (Field)	mg/L	0	0	0	0	N/T
Chlorine Residual - Total (Field)	mg/L	0	0	0	0	N/T
Color	CU	N/T	N/T	N/T	N/T	N/T
Odor	TON	8	8	4	2	N/T
Turbidity	NTU	0.68	0.49	0.7	0.3	N/T
Gross Alpha	pCi/L	N/T	N/T	N/T	N/T	N/T
Alkalinity (Total)	mg/L	233	194	200	116	N/T
Alkalinity (Bicarbonate)	mg/L	233	194	200	116	N/T
Hardness (Total)	mg/L	116	164	124	126	N/T
Hardness (Calcium)	mg/L	86	132	112	106	N/T
Hardness (Carbonate)	mg/L	116	164	124	116	N/T
Hardness (Non-Carbonate)	mg/L	0	0	0	10	N/T
Aluminum	mg/L	N/T	N/T	N/T	N/T	N/T
Ammonia	mg/L	N/T	N/T	N/T	N/T	N/T
Arsenic	mg/L	<1.0	<1.0	<1.0	<1.0	N/T
Chloride	mg/L	43	41	46	40	N/T
Coliform Bacteria	col./100mL	N/T	N/T	N/T	N/T	N/T
Fluoride	mg/L	1.6	0.94	1.4	1.2	N/T
Iron	mg/L	<0.04	<0.04	<0.04	<0.04	N/T
Lead	mg/L	N/T	N/T	N/T	N/T	N/T
Nitrate	mg/L	N/T	N/T	N/T	N/T	N/T
Nitrite	mg/L	N/T	N/T	N/T	N/T	N/T
Sulfate	mg/L	14.2	22.4	11.1	31.2	N/T
TDS	mg/L	378	328	320	248	N/T
Total Sulfide	mg/L	1.7	1.3	1.4	0.3	N/T
Trihalomethanes	ug/L	<0.50	,0.50	<0.50	<0.50	N/T

ND - Not detected NT - Not tested

PARAMETERS	Unit	MW-1	MW-2	MW-3	MW-C	LM-926
		WK-3(1/19/06)	WK-3(1/19/06)	WK-3(1/19/06)	WK-3(1/19/06)	WK-3(1/19/06)
pH (Field)	pH Units	N/T	N/T	N/T	N/T	N/T
pH (Lab)	pH Units	7.33	7 26	7.37	7.49	N/T
Specific Conductance	umhos/cm	548	518	503	389	N/T
Field Temperature	Centigrade	23	21.1	20.9	21.5	N/T
Dissolved Oxygen (Field)	mg/L	N/T	N/T	N/T	N/T	N/T
Dissolved Oxygen (Lab)	mg/L	<0.1	0.3	0.3	1.4	N/T
Chlorine Residual - Free (Field)	mg/L	N/T	N/T	N/T	N/T	N/T
Chlorine Residual - Total (Field)	mg/L	N/T	N/T	N/T	N/T	N/T
Color	CU	N/T	N/T	N/T	N/T	N/T
Odor	TON	140?	100?	200?	12	N/T
Turbidity	NTU	N/T	N/T	N/T	N/T	N/T
Gross Alpha	pCi/L	N/T	N/T	N/T	N/T	N/T
Alkalinity (Total)	mg/L	235	197	205	115	N/T
Alkalinity (Bicarbonate)	mg/L	235	197	205	115	N/T
Hardness (Total)	mg/L	116	158	124	128	N/T
Hardness (Calcium)	mg/L	94	134	108	100	N/T
Hardness (Carbonate)	mg/L	116	158	124	115	N/T
Hardness (Non-Carbonate)	mg/L	0	0	0	13	N/T
Aluminum	mg/L	N/T	N/T	N/T	N/T	N/T
Ammonia	mg/L	N/T	N/T	N/T	N/T	N/T
Arsenic	mg/L	<1.0	<1.0	<1.0	<1.0	N/T
Chloride	mg/L	45	46	44	41	N/T
Coliform Bacteria	col./100mL	N/T	N/T	N/T	N/T	N/T
Fluoride	mg/L	1.6	0.94	1.4	1.2	N/T
Iron	mg/L	<0.04	<0.04	<0.04	<0.04	N/T
Lead	mg/L	N/T	N/T	N/T	N/T	N/T
Nitrate	mg/L	N/T	N/T	N/T	N/T	N/T
Nitrite	mg/L	N/T	N/T	N/T	N/T	N/T
Sulfate	mg/L	20	26.2	15.5	32.3	N/T
TDS	mg/L	340	304	282	210	NN
Total Sulfide	mg/L	3	1.4	1.6	0.6	N
Trihalomethanes	ug/L	<0.50	<0.50	<0.50	<0.50	N

JANUARY, 2006 - CONTINUED

ND - Not detected

NT - Not tested

TABLE 3-2

JANUARY, 2006 - CONTINUED

PARAMETERS	Unit	MW-1	MW-2	MW-3	MW-C	LM-926
······································		WK-4(1/26/06)	WK-4(1/26/06)	WK-4(1/26/06)	WK-4(1/26/06)	WK-4(1/26/06)
pH (Field)	pH Units	7.61	7.39	7.56	7.19	N/T
pH (Lab)	pH Units	7.23	7.25	7.37	7.37	N/T
Specific Conductance	umhos/cm	524	486	453	402	N/T
Field Temperature	Centigrade	21.7	19.6	20.5	21.1	N/T
Dissolved Oxygen (Field)	mg/L	0.97	1.22	1.54	1.5	N/T
Dissolved Oxygen (Lab)	mg/L	<0.1	0.5	0.4	2.1	N/T
Chlorine Residual - Free (Field)	mg/L	0	0	0	0	N/T
Chlorine Residual - Total (Field)	mg/L	0	0	0	0	N/T
Color	cu	N/T	N/T	N/T	N	N/T
Odor	TON	8	16	4	2	N/T
Turbidity	NTU	0.77	0.27	0.38	0.45	N/T
Gross Alpha	pCi/L	N/T	N/T	N/T	N/T	N/T
Alkalinity (Total)	mg/L	231	195	198	114	N/T
Alkalinity (Bicarbonate)	mg/L	231	195	198	114	N/T
Hardness (Total)	mg/L	116	156	122	120	N/T
Hardness (Calcium)	mg/L	90	148	114	106	N/T
Hardness (Carbonate)	mg/L	116	156	122	114	N/T
Hardness (Non-Carbonate)	mg/L	0	0	0	6	N/T
Aluminum	mg/L	N/T	N/T	N/T	N/T	N/T
Ammonia	mg/L	N/T	N/T	N/T	N/T	N/T
Arsenic	mg/L	<1.0	<1.0	<1.0	<1.0	N/T
Chloride	mg/L	43	45	46	40	N/T
Coliform Bacteria	col./100mL	N/T	N/T	N/T	N/T	N/T
Fluoride	mg/L	1.6	0.96	1.4	1.2	N/T
Iron	mg/L	<0.04	<0.04	<0.04	<0.04	N/T
Lead	mg/L	N/T	N/T	N/T	N/T	N/T
Nitrate	mg/L	N/T	N/T	N/T	N/T	N/T
Nitrite	mg/L	N/T	N/T	N/T	N/T	N/T
Sulfate	mg/L	16	27	11	33	N/T
TDS	mg/L	338	330	334	252	N/T
Total Sulfide	mg/L	2.1	2.3	2.1	0.7	N/T
Trihalomethanes	ug/L	<0.50	<0.50	<0.50	<0.50	N/T

ND - Not detected

NT - Not tested

	r	EBRUARY	, 2006			
PARAMETERS	Unit	MW-1	MW-2	MW-3	MW-C	LM926
		2/1/2006	2/1/2006	2/1/2006	2/1/2006	2/1/2006
pH (Field)	pH Units	7.54	7.31	7.36	7.44	7.1
pH (Lab)	pH Units	7.36	7.29	7.38	7.43	7.02
Specific Conductance	umhos/cm	539	502	492	394	516
Field Temperature	Centigrade	22.3	21.9	21.5	22.2	21.8
Dissolved Oxygen (Field)	mg/L	1.15	1.26	1.28	1.48	1.8
Dissolved Oxygen (Lab)	mg/L	<0.1	0.2	0.2	1.9	NT
Chlorine Residual - Free (Field)	mg/L	0	0	0	0	0
Chlorine Residual - Total (Field)	mg/L	0	0	0	0	0
Color	CU	NT	NT	NT	NT	NT
Odor	TON	8	4	4	2	NT
Turbidity	NTU	0.52	0.56	0.52	0.4	0.42
Gross Alpha	pCi/L	<1.2	<1.2	<1.4	<1.2	NT
Alkalinity (Total)	mg/L	232	196	198	115	254
Alkalinity (Bicarbonate)	mg/L	231	196	198	115	254
Hardness (Total)	mg/L	116	150	120	136	244
Hardness (Calcium)	mg/L	90	130	114	118	230
Hardness (Carbonate)	mg/L	116	150	120	115	244
Hardness (Non-Carbonate)	mg/L	0	0	0	21	0
Aluminum	ug/L	NT	NT	NT	NT	NT
Ammonia	mg/L	NT	NT	NT	NT	NT
Arsenic	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0
Chloride	mg/L	40.3	44.7	42.2	40.8	NT
Coliform Bacteria	col./100mL	NT	NT	NT	NT	NT
Fluoride	mg/L	1.7	0.99	1.5	1.2	NT
Iron	mg/L	<0.04	<0.04	<0.04	<0.04	NT
Lead	ug/L	NT	NT	NT	NT	NT
Nitrate	mg/L	NT	NT	NT	NT	NT
Nitrite	mg/L	NT	NT	NT	NT	NT
Sulfate	mg/L	20	23	16	32	NT
TDS	mg/L	370	334	320	258	446
Total Sulfide	mg/L	1.9	1.8	1.6	0.7	NT
Trihalomethanes	ug/L	<0.50	<0.50	<0.50	<0.50	NT

FEBRUARY, 2006

ND - Not detected

NT - Not tested

PARAMETERS	Unit	MW-1	MW-2	MW-3	MW-C	LM926
		2/8/2006	2/8/2006	2/8/2006	2/8/2006	2/8/2006
pH (Field)	pH Units	7.52	7.15	7.06	7.18	NT
pH (Lab)	pH Units	7.24	7.32	7.38	7.17	NT
Specific Conductance	umhos/cm	505	527	413	542	NT
Field Temperature	Centigrade	20.6	21.1	21.4	21	NT
Dissolved Oxygen (Field)	mg/L	1.41	1.51	1.16	1.76	NT
Dissolved Oxygen (Lab)	mg/L	<0.1	0.3	0.4	2.4	NT
Chlorine Residual - Free (Field)	mg/L	0	0	0	0	NT
Chlorine Residual - Total (Field)	mg/L	0	0	0	0	NT
Color	CU	NT	NT	NT	NT	NT
Odor	TON	8	8	8	1	NT
Turbidity	NTU	1.02	0.34	0.45	0.9	NT
Gross Alpha	pCi/L	NT	NT	NT	NT	NT
Alkalinity (Total)	mg/L	228	190	196	118	NT
Alkalinity (Bicarbonate)	mg/L	228	190	196	118	NT
Hardness (Total)	mg/L	116	150	130	146	NT
Hardness (Calcium)	mg/L	112	134	96	102	NT
Hardness (Carbonate)	mg/L	116	150	130	118	NT
Hardness (Non-Carbonate)	mg/L	0	0	0	28	NT
Aluminum	ug/L	NT	NT	NT	NT	NT
Ammonia	mg/L	NT	NT	NT	NT	NT
Arsenic	ug/L	<1.0	<1.0	<1.0	<1.0	NT
Chloride	mg/L	44	46	45	42	NT
Coliform Bacteria	col./100mL	NT	NT	NT	NT	NT
Fluoride	mg/L	1.7	1	1.4	1.2	NT
Iron	mg/L	<0.04	<0.04	<0.04	<0.04	NT
Lead	ug/L	NT	NT	NT	NT	NT
Nitrate	mg/L	NT	NT	NT	NT	NT
Nitrite	mg/L	NT	NT	NT	NT	NT
Sulfate	mg/L	21	27	16	33	NT
TDS	mg/L	432	358	330	300	NT
Total Sulfide	mg/L	1.6	2.2	2.2	0.6	NT
Trihalomethanes	ug/L	<0.50	<0.50	<0.50	<0.50	NT

FEBRUARY, 2006 - CONTINUED

ND - Not detected

NT - Not tested

NA - Not available, lab report pending

.

	FEDRU	ART, 2000	5 - CONTIN		T	· · · · · · · · · · · · · · · · · · ·
PARAMETERS	Unit	MW-1	MW-2	MW-3	MW-C	LM926
		2/15/2006	2/15/2006	2/15/2006	2/15/2006	2/15/2006
pH (Field)	pH Units	7.58	7.08	7.37	7.4	NT
pH (Lab)	pH Units	7.39	7.32	7.42	7.51	NT
Specific Conductance	umhos/cm	530	501	481	382	NT
Field Temperature	Centigrade	24.5	23	22.9	23.4	NT
Dissolved Oxygen (Field)	mg/L	1.08	1.43	1.15	1.38	NT
Dissolved Oxygen (Lab)	mg/L	<0.1	0.4	<0.3	1.9	NT
Chlorine Residual - Free (Field)	mg/L	0	0	0	0	NT
Chlorine Residual - Total (Field)	mg/L	0	0	0	0	NT
Color	CU	NT	NT	NT	NT	NT
Odor	TON	16	8	4	1	NT
Turbidity	NTU	1.28	0.3	0.87	0.76	NT
Gross Alpha	pCi/L	NT	NT	NT	NT	NT
Alkalinity (Total)	mg/L	224	191	194	124	NT
Alkalinity (Bicarbonate)	mg/L	223	191	194	124	NT
Hardness (Total)	mg/L	114	152	126	144	NT
Hardness (Calcium)	mg/L	100	130	98	110	NT
Hardness (Carbonate)	mg/L	114	152	126	124	NT
Hardness (Non-Carbonate)	mg/L	0	0	0	20	NT
Aluminum	ug/L	NT	NT	NT	NT	NT
Ammonia	mg/L	NT	NT	NT	NT	NT
Arsenic	ug/L	<1.0	<1.0	<1.0	<1.0	NT
Chloride	mg/L	42	45	44	41	NT
Coliform Bacteria	col./100mL	NT	NT	NT	NT	NT
Fluoride	mg/L	1.6	1	1.4	1.2	NT
Iron	mg/L	<0.04	<0.04	<0.04	<0.04	NT
Lead	ug/L	NT	NT	NT	NT	NT
Nitrate	mg/L	NT	NT	NT	NT	NT
Nitrite	mg/L	NT	NT	NT	NT	NT
Sulfate	mg/L	15	23	11	33	NT
TDS	mg/L	314	284	126	186	NT
Total Sulfide	mg/L	3.4	2.3	2.3	1.2	NT
Trihalomethanes	ug/L	<0.50	<0.50	<0.50	<0.50	NT

FEBRUARY, 2006 - CONTINUED

ND - Not detected

NT - Not tested

PARAMETERS	Unit	MW-1	MW-2	MW-3	MW-C	LM926
		2/23/2006	2/23/2006	2/23/2006	2/23/2006	2/23/2006
pH (Field)	pH Units					
pH (Lab)	pH Units	7.35	7.13	7.28	7.31	6.94
Specific Conductance	umhos/cm	591	544	537	417	514
Field Temperature	Centigrade	29.9	28.5	28.6	27.1	NT
Dissolved Oxygen (Field)	mg/L					
Dissolved Oxygen (Lab)	mg/L	<0.1	<0.1	<0.1	1.6	NT
Chlorine Residual - Free (Field)	mg/L					
Chlorine Residual - Total (Field)	mg/L					
Color	CU	NT	NT	NT	NT	NT
Odor	TON	16	16	16	1	NT
Turbidity	NTU	NT	NT	NT	NT	NT
Gross Alpha	pCi/L	2	0.8	<2.5	2.2	NT
Alkalinity (Total)	mg/L	240	201	212	121	262
Alkalinity (Bicarbonate)	mg/L	239	201	212	262	262
Hardness (Total)	mg/L	124	160	126	121	258
Hardness (Calcium)	mg/L	112	144	106	118	234
Hardness (Carbonate)	mg/L	124	160	126	121	258
Hardness (Non-Carbonate)	mg/L	0	0	0	25	0
Aluminum	ug/L	NT	NT	NT	NT	NT
Ammonia	mg/L	NT	NT	NT	NT	NT
Arsenic	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0
Chloride	mg/L	44	45	46	41	NT
Coliform Bacteria	col./100mL	NT	NT	NT	NT	NT
Fluoride	mg/L	1.68	0.99	1.46	1.16	NT
Iron	mg/L	<0.04	<0.04	<0.04	<0.04	NT
Lead	ug/L	NT	NT	NT	NT	NT
Nitrate	mg/L	NT	NT	NT	NT	NT
Nitrite	mg/L	NT	NT	NT	NT	NT
Sulfate	mg/L	15.6	26	12.1	33.2	NT
TDS	mg/L	358	340	330	258	414
Total Sulfide	mg/L	1.5	1.9	1.6	0.4	NT
Trihalomethanes	ug/L	<0.50	<0.50	<0.50	<0.50	NT

ND - Not detected

NT - Not tested

MARCH 2006

PARAMETERS	Unit	MW-1		MW-2		MW-3		MW-C		мw-в	LM-926
		WK1(3/2/06)	WK2(3/9/06)	WK1(3/2/06)	WK2(3/9/06)	WK1(3/2/06)	WK2(3/9/06)	WK1(3/2/06)	WK2(3/9/06)		
pH (Field)	pH Units	7.5	7.65	7.28	7.62	7.41	7.61	7.68	7.58	N/T	N/T
pH (Lab)	pH Units	7.24	7.33	7.1	7.19	7.24	7.35	7.34	7.42	N/T	N/T
Specific Conductance	umhos/cm	516	393	559	503	553	504	437	400	N/T	N/T
Field Temperature	Centigrade	27.1	18.6	26	22.8	26.5	22.2	26.3	22.1	N/T	N/T
Dissolved Oxygen (Field)	mg/L	0.95	1.48	0.98	1.57	1.06	1.25	1.43	2.85	N/T	N/T
Dissolved Oxygen (Lab)	mg/L	<0.1	0.1	0.3	0.6	0.4	0.2	1.9	3.1	N/T	N/T
Chlorine Residual - Free (Field)	mg/L	0	0	0	0	0	0	0	0	N/T	N/T
Chlorine Residual - Total (Field)	mg/L	0	0	0	0	0	0	0	0	N/T	N/T
Color	CU	NT	NT	NT	NT	0	NT	NT	NT	N/T	N/T
Odor	TON	NT	N/T	N/T							
Turbidity	NTU	0.58	0.2	0.67	0.63	0.42	0.52	0.89	1.2	N/T	N/T
Gross Alpha	pCi/L	NT	N/T	N/T							
Alkalinity (Total)	mg/L	231	236	197	191	204	213	120	132	N/T	N/T
Alkalinity (Bicarbonate)	mg/L	NT	NT	197	191	204	213	120	132	N/T	N/T
Hardness (Total)	mg/L	NT	N/T	N/T							
Hardness (Calcium)	mg/L	NT	N/T	N/T							
Hardness (Carbonate)	mg/L	NT	N/T	N/T							
Hardness (Non-Carbonate)	mg/L	NT	N/T	N/T							
Aluminum	mg/L	NT	N/T	N/T							
Ammonia	mg/L	NT	N/T	N/T							
Arsenic	ug/L	<1.0	<1.0	<1.0	<1.0	,1.0	<1.0	,1.0	<1.0	N/T	N/T
Chloride	mg/L	44	45	42	45.5	45	44	41	41	N/T	N/T
Coliform Bacteria	col./100mL	NT	NT	NT	NT	NT	NT	NT	NT	N/T	N/T
Fluoride	mg/L	NT	N/T	N/T							
Iron	mg/L	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	N/T	N/T
Lead	mg/L	NT	N/T	N/T							
Nitrate	mg/L	NT	N/T	N/T							
Nitrite	mg/L	NT	N/T	N/T							
Sulfate	mg/L	14.8	19.8	23.8	27.6	15.6	15.2	31.3	30	N/T	N/T
TDS	mg/L	360	334	388	330	320	332	264	286	N/T	N/T
Total Sulfide	mg/L	NT	N/T	N/T							
Trihalomethanes	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	N/T	N/T

ND - Not detected NT - Not tested

MARCH, 2006 - CONTINUED

PARAMETERS	Unit		MW-1	м	W-2	M	W-3	MW-C		
		WK3(3/15/06)	WK4(3/22/06)	WK3(3/15/06)	WK4(3/22/06)	WK3(3/15/06)	WK4(3/22/06)	WK3(3/15/06)	WK4(3/22/06)	
pH (Field)	pH Units	7.61	7,69	7.34	7.5	7.48	7.78	7.53	7.86	
pH (Lab)	pH Units	7.26	7.18	7.21	7.31	7.43	7.45	7.37	7.5	
Specific Conductance	umhos/cm	541	562	476	523	482	526	385	449	
Field Temperature	Centigrade	24	29.4	24.3	30	23.9	27.9	24.5	28.8	
Dissolved Oxygen (Field)	mg/L	0.95	1	1.21	1.08	1.1	1.08	1.38	1.76	
Dissolved Oxygen (Lab)	mg/L	<0.1	<0.1	0.4	0.4	<0.1	<0.1	1.5	1.8	
Chlorine Residual - Free (Field)	mg/L	0	0	0	0	0	0	0	0	
Chlorine Residual - Total (Field)	mg/L	0	0	0	0	0	0	0	0	
Color	cu	N/T								
Odor	TON	8	N/T	4	N/T	8	N/T	1	N/T	
Turbidity	NTU	0.65	0.72	0.23	0.64	0.58	0.94	0.47	1.06	
Gross Alpha	pCi/L	N/t	<1.3	N/T	1.5	N/T	<1.7	N/T	1.6	
Alkalinity (Total)	mg/L	230	228	193	195	209	210	127	129	
Alkalinity (Bicarbonate)	mg/L	230	228	193	195	208	209	127	129	
Hardness (Total)	mg/L	122	N/T	156	N/T	128	N/T	148	N/T	
Hardness (Calcium)	mg/L	106	N/T	136	N/T	102	N/T	114	N/T	
Hardness (Carbonate)	mg/L	122	N/T	156	N/T	128	N/T	127	N/T	
Hardness (Non-Carbonate)	mg/L	0	N/T	0	N/T	0	N/T	21	N/T	
Aluminum	ug/L	N/T								
Ammonia	mg/L	N/T								
Arsenic	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
Chloride	mg/L	44.5	41	45.5	44	45	43	40	41	
Coliform Bacteria	col./100mL	N/T	N/T	N/T	N/T	N/T	N/T	N/T	N/T	
Fluoride	mg/L	1.7	N/T	1	N/T	1.5	N/T	1.3	1.3	
Iron	mg/L	<0.04	<0.04	<0.04	,0.04	<0.04	<0.04	<0.04	<0.04	
Lead	ug/L	N/T								
Nitrate	mg/L	N/T								
Nitrite	mg/L	N/T								
Sulfate	mg/L	19.2	14	27.3	29.5	15	15.3	29.4	29.9	
TDS	mg/L	358	370	318	326	338	322	300	278	
Total Sulfide	mg/L	1.9	N/T	1.6	N/T	2.2	N/T	0.8	N/T	
Trihalomethanes ected	ug/L	<0.50	N/T	<0.50	N/T	<0.50	<0.50	<0.50	<0.50	

ND - Not detected

NT - Not tested

MARCH, 2006 - CONTINUED

PARAMETERS	Unit	MW-1	MW-2	MW-3	MW-C	MW-B LM-926
		WK5(3/29/06)	WK5(3/29/06)	WK5(3/29/06)	WK5(3/29/06)	WK5(3/29/06
pH (Field)	pH Units	7.46	7,46	7.47	7.5	7.38
pH (Lab)	pH Units	7.33	7.16	7.33	7.31	6.9
Specific Conductance	umhos/cm	586	530	546	464	506
Field Temperature	Centigrade	24.6	26	27.4	27.5	27.3
Dissolved Oxygen (Field)	mg/L	1.36	1.26	1.01	1.12	0.92
Dissolved Oxygen (Lab)	mg/L	0.2	<0.1	<0.1	1.3	N/T
Chlorine Residual - Free (Field)	mg/L	0	0	0	o	0
Chlorine Residual - Total (Field)	mg/L	0	0	0	0	0
Color	CU	N/T	N/T	N/T	N/T	N/T
Odor	TON	8	8	8	2	N/T
Turbidity	NTU	N/T	N/T	N/T	N/T	N/T
Gross Alpha	pCi/L	1.2	<2.0	2.1	<1.6	N/T
Alkalinity (Total)	mg/L	226	194	206	125	250
Alkalinity (Bicarbonate)	mg/L	226	194	206	125	250
Hardness (Total)	mg/L	120	158	124	138	248
Hardness (Calcium)	mg/L	108	132	100	116	212
Hardness (Carbonate)	mg/L	120	158	124	125	248
Hardness (Non-Carbonate)	mg/L	0	0	0	13	0
Aluminum	ug/L	N/T	N/T	N/T	N/T	N/T
Ammonia	mg/L	N/T	N/T	N/T	N/T	N/T
Arsenic	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0
Chloride	mg/L	43	45	46	41	N/T
Coliform Bacteria	col./100mL	N/T	N/T	N/T	N/T	N/T
Fluoride	mg/L	1.56	0.87	1.35	1.08	N/T
Iron	mg/L	<0.04	<0.04	<0.04	<0.04	N/T
Lead	mg/L	N/T	N/T	N/T	N/T	N/T
Nitrate	mg/L_	N/T	N/T	N/T	N/T	N/T
Nitrite	mg/L	N/T	N/T	N/T	N/T	N/T
Sulfate	mg/L	15	26.6	11.8	30.7	N/T
TDS	mg/L	360	324	3.6	270	388
Total Sulfide	mg/L	2	1.6	1.4	0.8	N/T
Trihalomethanes	ug/L	<0.50	<0.50	<0.50	<0.50	N/T

ND - Not detected NT - Not tested

APRIL 2006

PARAMETERS	Unit	MW-1		MW-2		MW-3		MW-C		MW-B	LM-926
		WK1(4/5/06)	WK2(4/12/06)	WK1(4/5/06)	WK2(4/12/06)	WK1(4/5/06)	WK2(4/12/06)	WK1(4/5/06)	WK2(4/12/06)		
pH (Field)	pH Units	7.53	7.49	7.43	7.34	7.51	7.27	7.4	7.47		
pH (Lab)	pH Units	7.16	7 22	7.02	7.13	7.11	7.2	7.1	7.29		
Specific Conductance	umhos/cm	122	521	495	485	481	491	425	428		
Field Temperature	Centigrade	24.3	22.8	23.8	23.8	24.6	22.6	24.1	22.6		
Dissolved Oxygen (Field)	mg/L	0.79	1.14	0.87	1.02	0.99	1.2	0.98	1.98		
Dissolved Oxygen (Lab)	mg/L	<0.1	<0.1	0.4	0.8	0.2	<0.1	0.5	1.6		
Chlorine Residual - Free (Field)	mg/L	0	0	0	0	0	0	0.5			
Chlorine Residual - Total (Field)	mg/L	0	0	0	0	0	0	0	0 0		
Color	cu	NT	N/T	NT	N/T	NT	N/T	NT	N/T		
Odor	TON	8	200	8	200	16	200	1	200		
Turbidity	NTU	0.39	0.42	0.52	0.81	0.23	0.49	0.48	0.75		
Gross Alpha	pCi/L	NT	N/T	NT	N/T	NT	N/T	NT	N/T		
Alkalinity (Total)	mg/L	224	228	197	195	209	210	128	129		
Alkalinity (Bicarbonate)	mg/L	224.	228	197	195	209	210	128	129		
Hardness (Total)	mg/L	122	124	154	156	126	126	140	134		
Hardness (Calcium)	mg/L	104	106	126	124	102	104	112	114		
Hardness (Carbonate)	mg/L	122	124	154	156	126	126	128	129		
Hardness (Non-Carbonate)	mg/L	0	<0	0	<0	0	<0	12	5		
Aluminum	mg/L	NT	N/T	NT	N/T	NT	N/T	NT	N/T		
Ammonia	mg/L	NT	N/T	NT	N/T	NT	N/T	NT	N/T		
Arsenic	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		
Chloride	mg/L	41	46	44	43	43	44	41	41		
Coliform Bacteria	col./100mL	NT	N/T	NT	N/T	NT	N/T	NT	N/T		
Fluoride	mg/L	1.78	1.56	1.1	0.86	1.68	1.39	1.37	1.14		
Iron	mg/L	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04		
Lead	mg/L	NT	N/T	NT	N/T	NT	N/T	NT	N/T		
Nitrate	mg/L	NT	N/T	NT	N/T	NT	N/T	NT	N/T		
Nitrite	mg/L	NT	N/T	NT	N/T	NT	N/T	NT	N/T		
Sulfate	mg/L	14.9	14.9	24.5	25.6	14.3	11.4	28.4	27.9		
TDS	mg/L	336	270	296	292	330	290	264	244		
Total Sulfide	mg/L	1.8	2.6	1.3	1.8	1.8	2.7	1	1.3		
Trihalomethanes ND - Not detected	ug/L	<0.50	<0.2	<0.50	<0.2	<0.50	<0.2	<0.50	<0.2		

ND - Not detected NT - Not tested

APRIL,	2006 -	CONTINUE	D
--------	--------	----------	---

PARAMETERS	Unit	MW-1		MW-2		MW-3		MW-C		LM-926
· · · · · · · · · · · · · · · · · · ·		WK3(4/19/06)	WK4(4/26/06)	WK3(4/19/06)	WK4(4/26/06)	WK3(4/19/06)	WK4(4/26/06)	WK3(4/19/06)	WK4(4/26/06)	WK3(4/19/06)
pH (Field)	pH Units	7.32	7.48	7.23	7.05	7.35	7.38	7.22	7.27	7.22
oH (Lab)	pH Units	7.28	7.34	7.14	7.31	7.22	7.4	7.27	7.3	6.88
Specific Conductance	umhos/cm	586	527	536	503	551	507	485	420	520
Field Temperature	Centigrade	26.7	28.4	27	25.3	25.3	25.7	25.7	24.9	29.7
Dissolved Oxygen (Field)	mg/L	0.84	0.88	0.84	1.02	1.05	0.76	0.94	1.17	0.95
Dissolved Oxygen (Lab)	mg/L	<0.1	<0.1	0.7	0.6	0.4	<0.1	1.1	0.9	N/T
Chlorine Residual - Free (Field)	mg/L	0	0	o	0	0	0	0	0	0
Chlorine Residual - Total (Field)	mg/L	0	0	0	0	0	0	0	0	0
Color	cu	N/T								
Odor	TON	8	8	4	8	4	8	<1	4	N/T
Turbidity	NTU	0.89	1.8	0.67	0.67	0.7	1.1	1.27	0.94	1.88
Gross Alpha	pCi/L	<0.8	N/T	<1.6	N/T	1.2	N/T	<2.1	N/T	N/T
Alkalinity (Total)	mg/L	235	225	196	194	213	213	164	146	256
Alkalinity (Bicarbonate)	mg/L	235	225	196	194	213	212	164	146	256
Hardness (Total)	mg/L	126	116	160	160	144	124	150	142	246
Hardness (Calcium)	mg/L	106	106	126	124	104	106	116	114	220
Hardness (Carbonate)	mg/L	126	106	160	160	144	124	150	142	246
Hardness (Non-Carbonate)	mg/L	<0	0	<0	0	<0	0	<0	0	<0
Aluminum	ug/L	N/T								
Ammonia	mg/L	N/T								
Arsenic	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloride	mg/L	42	42	45	43	43	44	43	45	N/T
Coliform Bacteria	col./100mL	N/T	N/T	N/T	N/T	N/T	N/T	N/T	N/T	N/T
Fluoride	mg/L	1.7	1.7	0.91	0.88	1.5	1.5	1.1	1.1	N/T
Iron	mg/L	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	N/T
Lead	ug/L	N/T								
Nitrate	mg/L	N/T								
Nitrite	mg/L	N/T								
Sulfate	mg/L	15.7	14.4	25.9	29.1	14.8	14.4	27.1	26.8	N/T
TDS	mg/L	348	346	334	380	316	302	252	326	410
Total Sulfide	mg/L	2.4	2.4	1.5	1.5	1.7	2.2	1.5	1.1	N/T
Trihalomethanes	ug/L	<0.50	<0.2	<0.50	<0.2	<0.50	<0.2	<0.50	<0.2	N/T

NT - Not tested

APPENDIX K

DAILY INJECTION RATE AND VOLUME DATA FOR CYCLE 6

CORKSCREW ASR SYSTEM DAILY INJECTION AND VOLUME DATA FOR CYCLE 6

		WE	LL IDEN	ITIFICATION	: ASR-1	w		TIFICATION	: ASR-2	WE			I: ASR-3	w	ELL IDE	NTIFICATION	: ASR-4	WELL I	DENTIFI	CATION: ASP	२-5
Date	Time	Inj. Rate	Inj. Pres.	Cum. Inj. Vol.	Inc. Inj. Vol.	Inj. Rate	Inj. Pres.	Cum. Inj. Vol.	Inc. Inj. Vol.	Inj. Rate	Inj. Pres.	Cum. Inj. Vol.	Inc. Inj. Vol.	Inj. Rate	Inj. Pres.	Cum. Inj. Vol.	Inc. Inj. Vol.	Inj. Rate	Inj. Pres.	Cum. Inj. Vol.	Inc. Inj. Vol.
╞───┼		(gpm)	(psi)	(gals.)	(gals.)	(gpm)	(psi)	(gais.)	(gals.)	(gpm)	(psi)	(gals.)	(gals.)	(gpm)	(psi)	(gais.)	(gals.)	(gpm)	(psi)	(gals.)	(gals.)
	12:00																		1		
2	12:00																				
4	12:00 12:00									ļ				<u> </u>							
4	12:00		Deed							l											
		Start	Read =	0		Start	Read =	0		Start	Read =	308,500		Start	Read =	0		Start	Read =	0	
6	12:00 12:00	297	5	448,600	448,600	300	12	452,800	452,800	398	0	884,500	576,000	348	0	510,300	510,300	397	0	634,200	634,200
8	12:00	295	6	865,200	416,600	297	13	874,700	421,900	399	0	1,444,700	560,200	348	0	1,001,100	490,800	399	0	1,193,600	559,400
9	12:00	287 289	6 7	1,269,800	404,600	289	13	1,277,500	402,800	391	0	1,991,600	546,900	344	0	1,480,100	479,000	390	0	1,739,400	545,800
10	12:00			1,637,700	367,900	289	14	1,644,600	367,100	395	0	2,496,300	504,700	347	0	1,921,800	441,700	395	0	2,244,500	505,100
11	12:00	286	7	2,115,600	477,900	286	14	2,123,500	478,900	392	0	3,143,900	647,600	344	0	2,495,400	573,600	389	0	2,891,300	646,800
12	12:00	286 442	7	2,519,900	404,300	287	14	2,527,700	404,200	394	0	3,700,200	556,300	349	0	2,982,900	487,500	394	0	3,447,100	555,800
12	12:00	442	15.8 16	2,956,500	436,600	406	24	2,966,700	439,000	441	0	4,250,400	550,200	438	0	3,482,800	499,900	442	0	3,995,400	548,300
13	12:00	410	16	3,557,100	600,600	367	24	3,501,400	534,700	428	0	4,874,100	623,700	420	0	4,098,200	615,400	426	0	4,616,800	621,400
15	12:00	440	10	4,158,300	601,200	428	27	3,986,300	484,900	434	0	5,500,400	626,300	436	0	4,720,900	622,700	435	0	5,247,300	630,500
16	12:00	442	19	4,783,300	625,000	425	29	4,586,200	599,900	435	0	6,111,800	611,400	441	0	5,340,100	619,200	430	0	5,851,300	604,000
17	12:00	433	19	5,428,000	644,700	413	29	5,219,500	633,300	431	0	6,750,500	638,700	437	0	5,987,300	647,200	440	0	6,497,400	646,100
18	12:00	416	18	6,068,300	640,300	393	27	5,808,800	589,300	- 418	0	7,347,200	596,700	427	0	6,590,000	602,700	435	0	7,093,300	595,900
19	12:00	402	20	6,616,700	548,400	375	27	6,322,200	513,400	408	0	7,943,800	596,600	413	0	7,192,600	602,600	412	0	7,689,200	595,900
20	12:00	430	20	7,192,800	576,100	416	30	6,863,700	541,500	435	0	8,521,600	577;800	440	1	7,776,500	583,900	440	0	8,272,800	583,600
20	12:00	440	20	7,825,700 8,462,600	632,900 636,900	410	29	7,442,500	578,800	430	0	9,138,000	616,400	430	1	8,397,200	620,700	437	0	8,897,700	624,900
22	12:00	430	21	9.081.200		400	30	8,025,400	582,900	429	0	9,757,000	619,000	430	1	9,019,800	622,600	433	0	9,524,900	627,200
22	12:00	447	21		618,600	410	30	8,587,800	562,400	440	0	10,362,500	605,500	440	1	9,628,900	609,100	442	0	10,138,900	614,000
23	12:00	442		9,728,900	647,700	404	30	9,181,600	593,800	424	0	10,995,300	632,800	434	1	10,266,100	637,200	429	0	10,780,500	641,600
24	12:00	441	21	10,358,600	629,700	404	31	9,752,600	571,000	427		11,610,300	615,000	433	1	10,883,800	617,700	434	1	11,404,000	623,500
25	12:00	440	21 22	10,988,400	629,800	401	30	10,323,600	571,000	430		12,225,400	615,100	432	1	11,501,600	617,800	436	1	12,027,500	623,500
20	12:00	449	22	11,613,300	624,900	411	31	10,892,800	569,200	439		12,839,000	613,600	440	2	12,116,500	614,900	442	1	12,648,100	620,600
				12,194,900	581,600	423	32	11,425,100	532,300	446	0	13,415,300	576,300	446	2	12,695,400	578,900	449	1	13,234,100	586,000
28	12:00	440	22	12,836,600	641,700	420	32	12,035,900	610,800	443		14,061,600	646,300	442	2	13,338,800	643,400	445	1	13,881,100	647,000
29	12:00	430	21	13,457,900	621,300	407	31	12,625,100	589,200	435		14,695,700	634,100	436	2	13,971,200	632,400	440	1	14,519,900	638,800
30	12:00	415	20	14,075,100	617,200	393	30	13,216,600	591,500	428	0	15,325,200	629,500	426	2	14,599,700	628,500	431	1	15,153,500	633,600
				[]	····					<u> </u>											
				n Pressure	5			n Pressure	12	Monthly	Minimu	m Pressure	0	Monthly	Minimur	m Pressure	0	Monthly	Minimur	n Pressure	0
				n Pressure	22			m Pressure	32	Monthly	Maximu	m Pressure	0			m Pressure	2			m Pressure	
L		Monthly	Average	Pressure	17	Monthly	Average	Pressure	25	Monthly	Average	e Pressure	0			Pressure	1			Pressure	0

MONTH: Jun-06

CORKSCREW ASR SYSTEM DAILY INJECTION AND VOLUME DATA FOR CYCLE 6

		WELL IDENTIFICATION: ASR-1 WELL IDENTIFICATION: ASR-2					ASR-2	WELL IDENTIFICATION: ASR-3					WELL IDENTIFICATION: ASR-4				WELL IDENTIFICATION: ASR-5				
Date	Time	lnj.	lnj.	Cum.	Inc.	Inj.	lnj.	Cum.	Inc.	Inj.	Inj.	Cum.	Inc.	Inj.	Inj.	Cum.	Inc.	Inj.	Inj.	Cum.	Inc.
		Rate	Pres.	Inj. Vol.	Inj. Vol.	Rate	Pres.	Inj. Vol.	Inj. Vol.	Rate	Pres.	Inj. Vol.	Inj. Vol.	Rate	Pres.	Inj. Vol.	inj. Vol.	Rate	Pres.	Inj. Vol.	inj. Vol.
		(gpm)	(psi)	(gals.)	(gals.)	(gpm)	(psi)	(gals.)	(gals.)	(gpm)	(psi)	(gais.)	(gals.)	(gpm)	(psi)	(gals.)	(gals.)	(gpm)	(psi)	(gals.)	(gals.)
1	23:55	426	21	14,682,800	607,700	413	31	13,790,000	573,400	440	0	15,948,100	622,900	439	2	15,220,500	620,800	439	2	15,779,600	626,100
2	23:55	426	21	15,290,400	607,600	405	31	14,363,300	573,300	439	0	16,571,000	622,900	435	2	15,841,300	620,800	435	1	16,405,700	626,100
3	23:55	428	22	15,879,800	589,400	410	31	14,924,500	561,200	439	1	17,176,200	605,200	435	2	16,444,000	602,700	439	2	17,013,200	607,500
4	23:55	412	21	16,510,300	630,500	389	30	15,525,400	600,900	428	1	17,821,500	645,300	425	2	17,085,800	641,800	428	2	17,660,200	647,000
5	23:55	433	22	17,098,400	588,100	415	32	16,081,900	556,500	441	1	18,428,100	606,600	440	005	17,689,400	603,600	443	2	18,269,000	608,800
6	23:55	440	22	17,708,000	609,600	401	31	16,654,700	572,800	440	1	19,055,000	626,900	438	005	18,313,300	623,900	433	2	18,897,600	628,600
7	23:55	437	22	18,355,200	647,200	396	31	17,236,800	582,100	437	1	19,673,400	618,400	435	oos	18,928,600	615,300	431	2	19,507,200	609,600
8	23:55	440	22	18,932,900	577,700	388	31	17,759,700	522,900	434	1	20,291,800	618,400	433	oos	19,543,800	615,200	429	2	20,116,700	609,500
9	23:55	405	21	19,539,600	606,700	361	29	18,290,600	530,900	415	1	20,894,600	602,800	410	005	20,143,800	600,000	405	1	20,710,400	593,700
10	23:55	454		20,096,800	557,200	405	32	18,786,000	495,400	444	1	21,474,900	580,300	443	oos	20,717,200	573,400	438	2	21,273,000	562,600
11	23:55	441		20,743,700	646,900	391	31	19,366,800	580,800	436	1	22,122,500	647,600	436	oos	21,365,000	647,800	410	2	21,920,700	647,700
12	23:55	439		21,376,600	632,900	379	30	19,908,000	541,200	436	1	22,758,100	635,600	425	oos	21,959,800	594,800	421	2	22,514,900	
13	23:55	414		21,978,200	601,600	326	27	20,428,100	520,100	442	1	23,396,800	638,700	387	005	22,547,900	588,100	381	2	23,091,100	
14	23:55	457		22,626,000	647,800	371	30	20,917,500	489,400	481	2	24,044,000	647,200	476	oos	23,119,700	571,800	415	3	23,664,600	
15	23:55	419		23,273,300	647,300	329	28	21,496,700	579,200	450	2	24,691,000	647,000	440	oos	23,767,300	647,600	386	2	24,298,800	
16	23:55	441	23	23,921,000	647,700	355	29	21,985,100	488,400	450	2	25,338,200	647,200	459	oos	24,403,900	636,600	410	3	24,858,900	the second second second second second second second second second second second second second second second se
17	23:55	448	24	24,538,600	617,600	361	30	22,490,400	505,300	447	2	25,986,100	647,900	448	oos	25,042,300	638,400	408	3	25,422,500	
18	23:55	447	24	25,177,400	638,800	361	30	22,954,200	463,800	446	2	26,633,100	647,000	449	005	25,689,400	647,100	408	3	25,957,500	
19	23:55	440	25	25,824,600	647,200	371	31	23,525,000	570,800	441	2	27,280,500	647,400	444	oos	26,337,300	647,900	426	3	26,599,900	642,400
20	23:55	433	22	26,462,100	637,500	355	30	24,059,900	534,900	435	2	27,927,500	647,000	436	005	26,979,900	642,600	404	3	27,203,200	603,300
21	23:55	442	24	27,109,400	647,300	364	31	24,533,500	473,600	449	2	28,573,000	645,500	450	oos	27,626,500	646,600	413	2	27,783,000	579,800
22	23:55	447	26	27,756,500	647,100	391	33	25,155,200	621,700	433	2	29,220,600	647,600	440	oos	28,274,400	647,900	432	4	28,430,400	647,400
23	23:55	415	22	28,403,800	647,300	355	30	25,687,000	531,800	408	2	29,868,400	647,800	445	005	28,897,700	623,300	405	3	29,019,200	588,800
24	23:55	431	23	28,976,500	572,700	374	31	26,200,000	513,000	430	2	30,464,500	596,100	430	oos	29,490,100	592,400	418	3	29,597,300	578,100
25	23:55	445	25	29,593,000	616,500	401	34	26,731,500	531,500	_ 449	2	31,088,200	623,700	448	5	30,110,500	620,400	417	3	30,203,000	605,700
26	23:55	441	23	30,161,200	568,200	378	31	27,208,600	477,100	440	2	31,668,000	579,800	442	4	30,685,000	574,500	416	3	30,732,400	529,400
27	23:55	449	25	30,800,700	639,500	382	32	27,773,900	565,300	449	2	32,311,500	643,500	448	5	31,331,700	646,700	425	3	31,371,300	638,900
28	23:55	427	23	31,431,100	630,400	359	30	28,303,600	529,700	432	2	32,952,700	641,200	433	5	31,973,600	641,900	407	3	31,975,700	604,400
29	23:55	431	23	32,040,600	609,500	358	30	28,815,800	512,200	430	2	33,571,400	618,700	431	5	32,592,600	619,000	406	3	32,559,200	583,500
30	23:55	444	24	32,642,500	601,900	372	31	29,313,200	497,400	440	3	34,174,600	603,200	440	5	33,195,200	602,600	420	4	33,128,500	569,300
31	23:55	445	24	33,236,600	594,100	371	31	29,805,200	492,000	439	3	34,780,700	606,100	440	5	33,781,400	586,200	414	3	33,680,900	552,400

MONTH: July-06

Monthly Maximum Pressure 26 Monthly Maximum Pressure 34 Monthly Maximum Pressure 3 Monthly Maximum Pressure 5 Monthly Maximum Pressure 4										
Martha and a second a	Monthly Minimum Pressure	20	Monthly Minimum Pressure	27	Monthly Minimum Pressure	0	Monthly Minimum Pressure	2	Monthly Minimum Pressure	1
	Monthly Maximum Pressure	26	Monthly Maximum Pressure	34	Monthly Maximum Pressure	3	Monthly Maximum Pressure	5	Monthly Maximum Pressure	4
Monthly Average Pressure 23 Monthly Average Pressure 31 Monthly Average Pressure 2 Monthly Average Pressure 4 Monthly Average Pressure 3	Monthly Average Pressure	23	Monthly Average Pressure	31	Monthly Average Pressure	2	Monthly Average Pressure	4	Monthly Average Pressure	3

CORKSCREW ASR SYSTEM DAILY INJECTION AND VOLUME DATA FOR CYCLE 6

WELL IDENTIFICATION: ASR-1 WELL IDENTIFICATION: ASR-2 WELL IDENTIFICATION: ASR-3 WELL IDENTIFICATION: ASR-4 WELL IDENTIFICATION: ASR-5 Date Time Inj. Inj. Cum. Inc. Inj. Inj. Cum. Inc. Inj. Inj. Cum. Inc. Inj. Inj. Cum. Inc. Ini. Cum. Inj. Inc. Rate Pres. Ini. Vol. Inj. Vol. Rate Pres. Inj. Vol. Inj. Vol. Rate Pres. Inj. Vol. Inj. Vol. Rate inj. Vol. Pres. Inj. Vol. Ini. Vol. Rate Pres. Inj. Vol. (gpm) (psi) (gals.) (gals.) (gpm) (psi) (gais.) (gals.) (gpm) (psi) (gals.) (gals.) (gpm) (psi) (gals.) (gals.) (gpm) (psi) (gals.) (gals.) 23:55 1 445 24 33,856,300 619,700 371 32 30,314,500 509,300 442 3 35,387,300 606,600 441 5 34,408,200 626,800 420 4 34,272,000 591,100 2 23:55 444 24 34,499,500 643,200 372 31 30,842,000 527,500 440 3 36,026,700 639,400 442 35,048,200 5 640,000 414 4 34,874,900 602,900 3 23:55 447 24 35,093,500 594,000 385 32 31,374,400 532,400 438 3 36,665,100 638,400 439 5 35,649,200 601,000 414 3 35,432,000 557,100 4 23:55 450 25 35,698,200 604,700 31,834,100 346 32 459,700 438 3 37,280,500 615,400 440 5 36,275,100 625,900 414 3 35,989,100 557,100 23:55 5 442 24 36,346,000 647,800 32,386,300 376 32 552,200 438 3 37,897,300 616,800 435 5 36,904,700 629,600 414 36,611,600 3 622,500 6 23:55 424 23 36,987,200 641.200 356 31 32,926,600 540,300 430 3 38,527,100 629,800 431 37,547,900 5 643,200 410 3 37,234,100 622,500 7 23:55 441 25 37,595,700 373 33,444,200 608,500 32 517,600 443 3 39,133,800 606,700 443 5 38,154,500 606,600 418 3 37,806,300 572,200 8 23:55 436 24 38,204,600 608,900 33,957,500 369 32 513,300 440 3 39,753,800 620,000 440 5 38,774,900 620,400 415 3 38,392,000 585,700 9 23:55 447 25 38,825,400 620,800 381 32 34,482,900 525,400 433 3 40,387,100 633,300 447 5 39,408,200 407 633,300 3 38,989,500 597,500 23:55 10 441 25 39,445,900 620,500 376 32 35,005,900 523,000 443 3 41,015,000 627,900 443 5 40,036,100 627,900 419 4 39,582,100 592,600 11 23:55 119 5 39,942,500 496,600 139 10 35,436,200 430,300 103 0 41.514.000 499,000 104 0 40,536,100 500,000 102 0 40,055,800 473,700 12 23:55 118 3 40,116,700 174,200 137 7 35,639,600 203,400 99 0 41,662,100 148,100 102 0 40,693,400 157,300 100 0 40,201,100 145,300 13 23:55 115 1 40,290,800 174,100 135 5 35,842,700 203,100 95 0 41,805,900 143,800 101 0 40,846,900 153,500 95 0 40,344,600 143,500 14 23:55 121 0 40,455,100 164,300 143 5 36,035,100 192,400 100 0 41.941.600 135,700 106 1 40,991,600 144,700 99 0 40,478,800 134,200 15 23:55 450 11 40,615,200 160,100 446 20 36,225,100 190,000 448 42.073.900 0 132,300 445 1 41,132,500 140,900 444 40,609,300 0 130,500 16 23:55 375 18 41,185,900 570,700 355 36,760,100 26 535,000 430 42,718,800 1 644,900 411 3 41,752,400 619,900 428 2 41,254,500 645,200 17 23:55 350 17 41,705,000 519,100 37,247,800 325 25 487,700 410 1 43,320,100 601,300 390 3 42.325.500 573,100 410 2 41,855,500 601,000 23:55 18 438 17 42,233,600 528,600 391 25 37,744,200 496,400 434 1 43,928,900 608,800 413 3 42,904,100 578,600 441 2 42,464,700 609,200 19 23:55 427 22 42,839,400 605,800 340 28 38,270,700 526,500 445 2 44,561,200 632,300 437 4 43,494,900 590,800 440 3 43,100,900 636,200 20 23:55 425 23 43,451,300 38,761,500 611,900 337 29 490,800 448 3 45,200,600 639,400 440 5 44,118,200 623,300 440 4 43,729,600 628,700 21 23:55 208 22 44,068,800 617,500 205 29 39,262,200 500,700 212 2 45,836,100 635,500 214 44,737,000 4 618,800 215 1 44,368,100 638,500 22 23:55 235 10 44,394,100 325,300 248 17 39,598,200 336,000 225 0 46,153,800 317,700 235 45.067.900 1 330,900 222 0 44,672,200 304,100 23 23:55 104 5 44,725,400 331,300 100 NA 39,938,000 339,800 103 0 46,470,400 316,600 104 1 45,401,000 333,100 101 0 44,987,600 315,400 24 23:55 103 0 44,877,400 152,000 102 NA 40,089,800 151,800 105 0 46,612,200 141,800 104 45,541,800 0 140.800 103 0 45,125,900 138,300 25 23:55 0 0 44,991,000 113,600 0 NA 40,201,400 111.600 0 0 46,729,500 117,300 45,656,900 0 0 115,100 0 0 45,239,200 113,300 26 23:55 0 0 44,991,000 0 NA 40,201,400 0 0 0 46,729,500 0 0 0 0 45,656,900 0 0 0 45,239,200 ٥ 27 23:55 0 0 44,991,000 0 0 NA 40,201,400 0 0 0 46,729,500 0 0 0 45,656,900 0 0 0 45,239,200 0 28 23:55 0 0 44,991,000 0 0 NA 40,201,400 45,239,200 0 0 0 46,729,500 0 0 0 45,656,900 0 0 0 0 29 23:55 0 0 44,991,000 0 0 NA 40,201,400 0 0 0 46,729,500 0 0 0 45,656,900 0 0 45,239,200 0 0 30 23:55 0 0 44,991,000 0 0 NA 40,201,400 0 0 0 46,729,500 0 0 0 45,656,900 0 0 45,239,200 0 0 31 23:55 0 0 44,991,000 0 0 NA 40,201,400 0 0 0 46,729,500 0 0 45,656,900 0 0 Ω 0 45,239,200 0

	ONTH:	August, 2006
--	-------	--------------

Ν

Monthly Minimum Pressure	0	Monthly Minimum Pressure	5	Monthly Minimum Pressure	0	Monthly Minimum Pressure	0	Monthly Minimum Pressure	0
Monthly Maximum Pressure	25	Monthly Maximum Pressure	32	Monthly Maximum Pressure	3	Monthly Maximum Pressure	5	Monthly Maximum Pressure	4
Monthly Average Pressure	13	Monthly Average Pressure	25	Monthly Average Pressure	1	Monthly Average Pressure	2	Monthly Average Pressure	2

CORKSCREW ASR SYSTEM DAILY INJECTION AND VOLUME DATA FOR CYCLE 6

		WE	LL IDEN	ITIFICATION:	ASR-1	WE		NTIFICATION:	ASR-2	WE	LL IDE	NTIFICATION	I: ASR-3	WE	ELL IDE	NTIFICATION	: ASR-4	WELL I	DENTIFI	CATION: ASF	₹-5
Date	Time	lnj.	Inj.	Cum.	Inc.	Inj.	Inj.	Cum.	Inc.	Inj.	lnj.	Cum.	Inc.	Inj.	Inj.	Cum.	Inc.	Inj.	Inj.	Cum.	Inc.
		Rate	Pres.	inj. Vol.	Inj. Vol.	Rate	Pres.	Inj. Vol.	inj. Vol.	Rate	Pres.	Inj. Vol.	Inj. Vol.	Rate	Pres.	Inj. Vol.	lnj. Vol.	Rate	Pres.	Inj. Vol.	inj. Vol.
		(gpm)	(psi)	(gals.)	(gais.)	(gpm)	(psi)	(gals.)	(gals.)	(gpm)	(psi)	(gals.)	(gals.)	(gpm)	(psi)	(gals.)	(gals.)	(gpm)	(psi)	(gals.)	(gals.)
1	23:55	0	NA	44,991,000	0	0	NA	40,201,400	0	0	0	46,729,500	0	0	0	45,656,900	0	0	0	45,239,200	0
2	23:55	0	NA	44,991,000	0	0	NA	40,201,400	0	0	0	46,729,500	0	0	0	45,656,900	0	0	0	45,239,200	0
3	23:55	0	NA	44,991,000	0	0	NA	40,201,400	0	0	0	46,729,500	0	0	0	45,656,900	0	0	0	45,239,200	0
4	23:55	0	NA	44,991,000	0	0	NA	40,201,400	0	0	0	46,729,500	0	0	0	45,656,900	0	0	0	45,239,200	0
5	23:55	0	NA	44,991,000	0	0	NA	40,201,400	0	0	0	46,729,500	0	0	0	45,656,900	0	0	0	45,239,200	0
6	23:55	0	NA	44,991,000	0	0	NA	40,201,400	0	0	0	46,729,500	0	0	0	45,656,900	0	0	0	45,239,200	0
7	23:55	213	NA	45,059,200	68,200	209	NA	40,262,600	61,200	216	0	47,012,500	283,000	216	-1	45,728,400	71,500	210	0	45,307,700	68,500
8	23:55	303	NA	45,326,800	267,600	306	NA	40,526,500	263,900	306	0	47,279,900	267,400	304	-1	45,993,300	264,900	313	0	45,568,100	260,400
9	23:55	270	NA	45,789,900	463,100	269	NA	40,988,600	462,100	283	0	47,769,700	489,800	277	-1	46,471,500	478,200	292	0	46,072,800	504,700
10	23:55	268	NA	46,156,500	366,600	267	NA	41,354,200	365,600	285	0	48,149,600	379,900	274	0	46,836,500	365,000	292	0	46,487,700	414,900
11	23:55	445	NA	46,499,200	342,700	443	NA	41,699,700	345,500	450	0	48,506,100	356,500	450	3	47,183,000	346,500	448	2	46,855,700	368,000
12	23:55	403	NA	47,123,900	624,700	391	NA	42,296,000	596,300	402	2	49,153,300	647,200	404	4	47,829,800	646,800	406	3	47,502,900	647,200
13	23:55	405	NA	47,702,800	578,900	349	NA	42,852,300	556,300	413	2	49,740,100	586,800	415	NA	48,435,600	605,800	410	3	48,105,200	602,300
14	23:55	414	NA	48,286,300	583,500	399	NA	43,355,700	503,400	419	2	50,336,100	596,000	413	NA	49,033,500	597,900	421	4	48,696,700	591,500
15	23:55	402	NA	48,858,100	571,800	385	NA	43,901,000	545,300	410	2	50,915,300	579,200	405	NA	49,602,400	568,900_	410	4	49,275,900	579,200
16	23:55	254	NA	49,417,300	559,200	254	NA	44,423,900	522,900	251	1	51,500,300	585,000	257	NA	50,175,800	573,400	249	1	49,861,300	585,400
17	23:55	281	NA	49,820,100	402,800	299	NA	44,849,200	425,300	270	0	51,876,000	375,700	275	NA	50,567,200	391,400	265	0	50,230,900	369,600
18	23:55	400	NA	50,244,000	423,900	365	NA	45,288,800	439,600	410	2	52,280,200	404,200	400	NA	50,982,400	415,200	420	3	50,631,400	400,500
19	23:55	410	NA	50,802,000		361	NA	45,791,200	502,400	412	2	52,860,600	580,400	402	NA	51,546,900	564,500	421	4	51,226,100	594,700
20	23:55	409	NA	51,365,400		358	NA	46,302,000	510,800	405		53,434,800	574,200	416	NA	52,103,400	556,500	409	4	51,814,600	588,500
21	23:55	418	NA	51,954,000	588,600	368	NA	46,815,100	513,100	410		54,018,100	583,300	425	NA	52,706,000	602,600	422	4	52,414,500	599,900
22	23:55	404	NA	52,539,200		351	NA	47,329,800	514,700	400	NA	54,586,700	568,600	414	NA	53,293,300	587,300	412	4	52,997,000	582,500
23	23:55	400	NA	53,185,200		338	NA	47,892,100	562,300	408	NA	55,229,300	642,600	406	NA	53,940,400	647,100	403	4	53,643,800	646,800
24	23:55	370	NA	53,741,900		314	NA	48,366,000	473,900	390	NA	55,796,700	567,400	385	NA	54,519,500	579,100	391	4	54,216,300	572,500
25	23:55	305	NA	54,316,900		303	NA	48,858,500	492,500	296	NA	56,366,800	570,100	299	NA	55,084,500	565,000	298	2	54,780,500	564,200
26	23:55	103	NA	54,759,900		105	NA	49,296,500	438,000	104	NA	56,803,500	436,700	106	NA	55,533,400	448,900	104	0	55,222,500	442,000
27	23:55	106	NA	54,926,300	the second second second second second second second second second second second second second second second s	104	NA	49,476,400	179,900	107	NA	56,955,200	151,700	104	NA	55,691,200	157,800	107	NA	55,373,700	151,200
28	23:55	198	NA	55,080,100		203	NA	49,628,000	151,600	197	NA	57,110,700	155,500	197	NA	55,840,500	149,300	201	NA	55,529,900	156,200
29	23:55	200	NA	55,354,500	the second second second second second second second second second second second second second second second s	197	NA	49,909,800	281,800	200	NA	57,388,800	278,100	200	NA	56,121,900	281,400	197	NA	55,813,700	283,800
30	23:55	202	NA	55,650,700	296,200	203	NA	50,205,500	295,700	203	NA	57,680,800	292,000	204	NA	56,414,900	293,000	200	NA	56,100,400	286,700
			L			1	I								L	1		J	l		

MONTH: September, 2006

Monthly Minimum Pressure	0	Monthly Minimum Pressure	0	Monthly Minimum Pressure	0	Monthly Minimum Pressure	-1	Monthly Minimum Pressure	0
Monthly Maximum Pressure	0	Monthly Maximum Pressure	0	Monthly Maximum Pressure	2	Monthly Maximum Pressure	4	Monthly Maximum Pressure	4
Monthly Average Pressure	NA	Monthly Average Pressure	NA	Monthly Average Pressure	1	Monthly Average Pressure	0	Monthly Average Pressure	2

CORKSCREW ASR SYSTEM DAILY INJECTION AND VOLUME DATA FOR CYCLE 6

		WE		ITIFICATION:	ASR-1	WE			ASR-2	WE	LL IDE	NTIFICATION	N: ASR-3	WE	LL IDE	NTIFICATION	: ASR-4	WELL I	DENTIF	ICATION: ASI	R-5
Date	Time	lnj.	lnj.	Cum.	Inc.	Inj.	Inj.	Cum.	inc.	Inj.	Inj.	Cum.	Inc.	Inj.	lnj.	Cum.	inc.	Inj.	Inj.	Cum.	Inc.
		Rate	Pres.	Inj. Vol.	lnj. Vol.	Rate	Pres.	Inj. Vol.	lnj. Vol.	Rate	Pres.	Inj. Vol.	inj. Vol.	Rate	Pres.	Inj. Vol.	inj. Vol.	Rate	Pres.	Inj. Vol.	Inj. Vol.
		(gpm)	(psi)	(gals.)	(gals.)	(gpm)	(psi)	(gals.)	(gals.)	(gpm)	(psi)	(gals.)	(gals.)	(gpm)	(psi)	(gals.)	(gals.)	(gpm)	(psi)	(gals.)	(gals.)
1	23:55	200		55,930,600	279,900	202	NA	50,484,100	278,600	200	NA	57,967,400	286,600	200	NA	56,700,500	285,600	197	NA	56,383,600	283,200
2	23:55	83	0	56,209,600	279,000	78	0	50,761,900	277,800	62	0	58,248,300	280,900	77	0	56,980,600	280,100	76	0	56,661,300	277,700
3	23:55	48	0	56,336,300	126,700	67	0	50,882,200	120,300	40	0	58,338,100	89,800	44	0	57,090,600	110,000	53	0	56,771,400	110,100
4	23:55	45	0	56,402,000	65,700	49	0	50,996,600	114,400	39	0	58,394,900	56,800	43	0	57,152,200	61,600	51	0	56,845,400	74,000
5	23:55	47	0	56,465,600	63,600	49	0	51,065,000	68,400	41	0	58,451,000	56,100	44	0	57,213,000	60,800	53	0	56,918,900	73,500
6	23:55	45	0	56,532,600	67,000	44	0	51,135,800	70,800	39	0	58,508,600	57,600	42	0	57,275,500	62,500	40	0	56,994,300	75,400
7	23:55	45	0	56,596,900	64,300	44	0	51,197,400	61,600	39	0	58,564,600	56,000	43	0	57,336,400	60,900	40	0	57,051,100	56,800
8	23:55	44	0	56,660,000	63,100	42	0	51,257,700	60,300	38	0	58,619,500	54,900	41	0	57,395,800	59,400	39	0	57,106,600	55,500
9	23:55	47	0	56,722,400	62,400	45	0	51,317,000	59,300	40	0	58,673,800	54,300	44	0	57,454,600	58,800	41	0	57,161,700	55,100
10	23:55	45	0	56,787,500	65,100	43	0	51,379,200	62,200	39	0	58,730,300	56,500	42	0	57,515,900	61,300	39	0	57,219,000	57,300
11	23:55	39	0	56,987,700	200,200	38	0	51,570,300	191,100	42	0	58,933,100	202,800	37	0	57,727,800	211,900	39	0	57,425,300	206,300
12	23:55	400	NA	57,056,300	68,600	398	NA	51,618,500	48,200	400	NA	58,986,200	53,100	400	NA	57,771,600	43,800	398	NA	57,474,200	48,900
13	23:55	380	NA	57,581,200	524,900	382	NA	52,127,900	509,400	385	NA	59,571,400	585,200	396	NA	58,377,000	605,400	393	NA	58,071,700	597,500
14 15	23:55 23:55	399	NA	58,159,100	577,900	390	NA	52,694,800	566,900	389	NA	60,169,800	598,400	396	NA	58,986,500	609,500	397	NA	58,681,100	609,400
16	23:55	386 59	NA	58,740,500	581,400	387	NA	53,266,100	571,300	388		60,773,000		394	NA	59,593,300	606,800	399	NA	59,264,800	583,700
17	23:55	59	0	59,121,100	380,600	63	0	53,604,800	338,700	53		61,105,000	332,000	56	0	59,930,700	337,400	54	0	59,635,100	370,300
18	23:55	58		59,202,100	81,000	45	0	53,692,900	88,100	52		61,178,000	73,000	56	0	60,008,400	77,700	54	0	59,710,500	75,400
19	23:55	186	-0.3	59,289,600 59,553,900	87,500	46	-0.3	53,760,100	67,200	53		61,254,700	76,700	57	0	60,090,700	82,300	55	0	59,789,500	79,000
20	23:55	398	2.7	59,806,400	264,300 252,500	171	5.9	54,002,700	242,600	199		61,539,300	284,600	188	0	60,357,900	267,200	185	0	60,055,800	266,300
21	23:55	401		60,362,100	555,700	399 397	7.1	54,237,000	234,300	395		61,804,300	265,000	400	0	60,607,000	249,100	397	0	60,302,300	246,500
22	23:55	367	16	60,890,000	527,900	397		54,780,000	543,000	399		62,395,300	591,000	399	0.4	61,199,000	592,000	400	0	60,902,300	600,000
23	23:55	379	17.7	61,426,800	536,800	348	24.5 26.9	55,287,500	507,500	380		62,939,500		376	0.9	61,736,400	537,400	379	0	61,447,200	544,900
24	23:55	396		61,954,000	527,200	363	20.9	55,803,500 56,304,200	516,000	397		63,494,500	555,000	387	1.6	62,281,600	545,200	395	0	62,001,900	554,700
25	23:55	394		62,516,000	562,000	392	28.1	56,304,200	500,700	389		64,045,900	551,400	405	1.6	62,821,700	540,100	405	0	62,554,900	553,000
26	23:55	396		63,078,600	562,600	3/9	20.1	56,841,600	537,400	386		64,600,500	554,600	401	1.8	63,397,300	575,600	398	0	63,126,500	571,600
27	23:55	106		63,269,800	191,200	105	3.3		541,700	391		65,153,600		404	2	63,969,200	571,900	408	0	63,696,700	570,200
28	23:55	100		63,419,000	149,200	105	0.9	57,590,700 57,741,000	207,400	106		65,327,600	174,000	108	0	64,151,200	182,000	108	0	63,873,700	177,000
29	23:55	105		63,575,000	156,000	109	0.9	57,741,000	150,300	108		65,476,200	148,600	110	0	64,302,100	150,900	111	0	64,026,000	152,300
30	23:55	1		63,684,500	109,500	0	-0.4	57,898,900		105		65,631,600		108	0	64,459,800	157,700	108	0	64,185,500	159,500
31	23:55			63,684,500	09,500	0	-0.4	58,010,800	<u>111,900</u> 0	0		65,740,000	108,400	7	0	64,570,200	110,400	0	0	64,296,500	111,000
لل			0.0	00,004,0001			-0.4	38,010,8001	<u> </u>		0	65,740,000	0	0	0	64,570,200	00	0	0	64,296,500	0

MONTH: October, 2006

Monthly Minimum Pressure	-1	Monthly Minimum Pressure	0	Monthly Minimum Pressure	0	Monthly Minimum Pressure	0	Monthly Minimum Pressure	
Monthly Maximum Pressure	19	Monthly Maximum Pressure	29	Monthly Maximum Pressure	0	Monthly Maximum Pressure	2	Monthly Maximum Pressure	0
Monthly Average Pressure	4	Monthly Average Pressure	7	Monthly Average Pressure	0	Monthly Average Pressure	0	Monthly Average Pressure	0

APPENDIX L

DAILY AND WEEKLY INJECTION WATER QUALITY DATA FOR THE ASR WELLS FOR CYCLE 6

JUNE, 2006						
PARAMETERS	Unit	Injection Main	Injection Main	Injection Main	Injection Main	Injection Main
DATE		6/1/2006	6/7/2006	6/14/2006	6/21/2006	6/28/2006
pH (Field)	pH Units	N/T	8.1	7.5	7.5	7.68
рН (Lab)	pH Units	N/T	7.72	7.44	7.34	7.39
Specific Conductance	umhos/cm	N/T	321	421	316	336
Field Temperature	Centigrade	N/T	25.5	28.9	30.5	28.1
Dissolved Oxygen (Field)	mg/L	N/T	2.04	1.9	1.74	1.65
Dissolved Oxygen (Lab)	mg/L	N/T	8.6	9.4	9.1	8.9
Chlorine Residual - Free (Field)	mg/L	N/T	1.33	3.07	3.71	2.16
Chlorine Residual - Total (Field)	mg/L	N/T	3.77	1.9	1.68	4.28
Color	CU	N/T	N/T	N/T	N/T	N/T
Odor	TON	N/T	1	1.4	1	1
Turbidity	NTU	N/T	0.2	0.95	0.2	0.2
Gross Alpha	pCi/L	N/T	2.8	N/T	N/T	N/T
Alkalinity (Total)	mg/L	N/T	46	43	45	47
Alkalinity (Bicarbonate)	mg/L	N/T	46	43	45	47
Hardness (Total)	mg/L	N/T	76	70	74	78
Hardness (Calcium)	mg/L	N/T	52	54	50	52
Hardness (Carbonate)	mg/L	N/T	46	43	45	47
Hardness (Non-Carbonate)	mg/L	N/T	30	27	29	31
Aluminum	ug/L	N/T	N/T	N/T	N/T	N/T
Ammonia	mg/L	N/T	N/T	N/T	N/T	N/T
Arsenic	ug/L	N/T	1	1	1	1
Chloride	mg/L	N/T	37	35	N/T	38
Coliform Bacteria	col./100mL	N/T	N/T	N/T	N/T	N/T
Fluoride	mg/L	N/T	0.73	0.77	N/T	0.74
Iron	mg/L	N/T	0.04	0.04	0.04	1
Lead	ug/L	N/T	N/T	N/T	N/T	0.04
Nitrate	mg/L	N/T	N/T	N/T	N/T	N/T
Nitrite	mg/L	N/T	N/T	N/T	N/T	N/T
Sulfate	mg/L	N/T	35.4	32,4		N/T
TDS	mg/L	N/T	33.4	296	N/T 186	35.2
Total Sulfide	mg/L	N/T	0.1	0.1		200
Trihalomethanes	ug/L	N/T	9.6	8.6	12	0.3 6

ND - Not detected

NT - Not tested

JULY, 2006

PARAMETERS	Unit	Injection Main	Injection Main	Injection Main	Injection Main
DATE		7/6/2006	7/12/2006	7/19/2006	7/26/2006
pH (Field)	pH Units	7.4	7.41	7.7	7.34
рН (Lab)	pH Units	7.36	7.44	7.23	7.12
Specific Conductance	umhos/cm	348	298	340	299
Field Temperature	Centigrade	29	25.1	26.5	27.1
Dissolved Oxygen (Field)	mg/L	2.21	2.02	1.78	2.22
Dissolved Oxygen (Lab)	mg/L	9.1	9.2	8.7	9.1
Chlorine Residual - Free (Field)	mg/L	1.68	1.5	1.38	0
Chlorine Residual - Total (Field)	mg/L	3.57	3.5	3.51	4.6
Color	CU	N/T	7.5	N/T	N/T
Odor	TON	1	7.44	1	1
Turbidity	NTU	0.4	0.53	0.89	0.2
Gross Alpha	pCi/L	2.6	N/T	N/T	N/T
Alkalinity (Total)	mg/L	44	53	51	54
Alkalinity (Bicarbonate)	mg/L	44	53	51	54
Hardness (Total)	mg/L_	76	72	68	70
Hardness (Calcium)	mg/L	54	50	48	46
Hardness (Carbonate)	mg/L	44	53	51	54
Hardness (Non-Carbonate)	mg/L	32	19	17	16
Aluminum	ug/L	N/T	N/T	N/T	N/T
Ammonia	mg/L	N/T	N/T	N/T	
Arsenic	ug/L	1	1	1	N/T
Chloride	mg/L	N/T	37	N/T	1
Coliform Bacteria	col./100mL	N/T	л/т	N/T	37
Fluoride	mg/L	N/T	0.71	N/T	N/T
ron	mg/L	0.04	0.04		0.71
Lead	ug/L	N/T	N/T	0.04	0.04
Vitrate	gg, <u></u> mg/L	N/T		N/T	N/T
Vitrite	mg/L	N/T		N/T	N/T
Sulfate	mg/L	N/T	N/T	N/T	N/T
TDS			34.7	N/T	35.3
Fotal Sulfide	mg/L	336	236	242	238
rihalomethanes	mg/L ug/L	<u> </u>	0.3	0.3	0.3

ND - Not detected

NT - Not tested

AUGUST, 2006

PARAMETERS	Unit	Injection Main	Injection Main	Injection Main	Injection Main
DATE		8/2/2006	8/9/2006	8/16/2006	8/23/2006
pH (Field)	pH Units	7.76	7.75	7.32	7.32
pH (Lab)	pH Units	7.25	7.13	7.11	7.12
Specific Conductance	umhos/cm	330	323	331	324
Field Temperature	Centigrade	28.9	27	30.5	28.9
Dissolved Oxygen (Field)	mg/L	1.7	1.74	1.61	1.74
Dissolved Oxygen (Lab)	mg/L	9.4	9.3	8.9	9.1
Chlorine Residual - Free (Field)	mg/L	1.34	1.21	1.68	0
Chlorine Residual - Total (Field)	mg/L	4.33	4.48	3.47	0
Color	CU	N/T	7	4.3	3.9
Odor	TON	1	1	1	1
Turbidity	NTU	0.2	0.2	0.2	0.2
Gross Alpha	pCi/L	2.7	N/T	N/T	N/T
Alkalinity (Total)	mg/L	50	49	52	54
Alkalinity (Bicarbonate)	mg/L	50	49	52	54
Hardness (Total)	mg/L	72	76	74	70
Hardness (Calcium)	mg/L	48	52	50	48
Hardness (Carbonate)	mg/L	50	49	52	54
Hardness (Non-Carbonate)	mg/L	22	27	22	16
Aluminum	ug/L	N/T	N/T	N/T	N/T
Ammonia	mg/L	N/T	N/T	N/T	N/T
Arsenic	ug/L	1	1	1	1
Chloride	mg/L	36	38.5	36	37
Coliform Bacteria	col./100mL	N/T	N/T	N/T	N/T
Fluoride	. mg/L	0.68	0.74	0.83	0.77
ron	mg/L	0.04	0.04	0.04	0.04
_ead	ug/L	N/T	N/T	N/T	N/T
Nitrate	mg/L	N/T	N/T	N/T	N/T
Nitrite	mg/L	N/T	N/T	N/T	N/T
Sulfate	mg/L	35.5	35.9	35.4	36
IDS	mg/L	257	300	233	239
Fotal Sulfide	mg/L	0.3	0.1	0.1	0.1
Trihalomethanes	ug/L	5.8	5	5.7	7.7

ND - Not detected NT - Not tested NA - Not available, lab report pending

SEPTEMBER, 2006

PARAMETERS	Unit	Injection Main	Injection Main	Injection Main
DATE		9/13/2006	9/20/2006	9/27/2006
pH (Field)	pH Units	7.39	7.41	7.44
pH (Lab)	pH Units	7.14	7.67	7.47
Specific Conductance	umhos/cm	322	362	371
Field Temperature	Centigrade	29	28.66	25.3
Dissolved Oxygen (Field)	mg/L	0.76	1.64	2
Dissolved Oxygen (Lab)	mg/L	8.9	8.7	8.4
Chlorine Residual - Free (Field)	mg/L	1.69	1.81	1.61
Chlorine Residual - Total (Field)	mg/L	3.74	4.54	3.91
Color	CU	5	3.2	7.2
Odor	TON	1	1	1
Turbidity	NTU	0.2	0.2	0.2
Gross Alpha	pCi/L	2.5	N/T	N/T
Alkalinity (Total)	mg/L_	57	54	52
Alkalinity (Bicarbonate)	mg/L	57	54	52
Hardness (Total)	mg/L_	72	76	74
Hardness (Calcium)	mg/L	54	50	52
Hardness (Carbonate)	mg/L	57	54	52
Hardness (Non-Carbonate)	mg/L	15	22	22
Aluminum	ug/L	N/T	N/T	N/T
Ammonia	mg/L	N/T	N/T	N/T
Arsenic	ug/L	1	1	1
Chloride	mg/L	36.5	38	39.2
Coliform Bacteria	col./100mL	N/T	N/T	N/T
Fluoride	mg/L	0.7	0.69	0.69
ron	mg/L	0.04	0.04	0.04
_ead	ug/L	N/T	N/T	N/T
Nitrate	mg/L	N/T	N/T	N/T
Nitrite	mg/L	N/T	N/T	N/T
Sulfate	mg/L	35.4	35.5	35.9
TDS	mg/L	243	225	242
Fotal Sulfide	mg/L	0.1	0.1	0.3
Trihalomethanes	ug/L	9.2	9	7.5

ND - Not detected

NT - Not tested

OCTOBER, 2006

PARAMETERS	Unit	Injection Main	Injection Main	Injection Main	Injection Mair
DATE		10/4/2006	10/12/2006	10/19/2006	10/26/2006
Trihalomethanes	ug/L	0.2	7.2	13	13
Aluminum	ug/L	N/T	N/T	N/T	N/T
Arsenic	ug/L	1	1	1	1
Alkalinity (Bicarbonate)	mg/L	58	56	56	53
Hardness (Calcium)	mg/L	54	52	50	48
Chloride	mg/L	38.5	39	35.5	35.5
Hardness (Carbonate)	mg/L	58	56	56	53
Color	CU	7	7.4	7	7.4
Specific Conductance	umhos/cm	302	336	420	332
Dissolved Oxygen (Field)	mg/L	2.04	1.24	1.85	1.94
Dissolved Oxygen (Lab)	mg/L	8.5	9.1	8.6	9.3
ron	mg/L	0.04	0.04	0.04	0.04
Fluoride	mg/L	0.68	0.22	0.78	0.77
Gross Alpha	pCi/L	N/T	2.8	N/T	N/T
Ammonia	mg/L	N/T	N/T	N/T	N/T
Nitrite	mg/L	N/T	N/T	N/T	N/T
Nitrate	mg/L	N/T	N/T	N/T	N/T
lardness (Non-Carbonate)	mg/L	20	16	20	17
Ddor	TON	1	1	1	1
ead	ug/L	N/T	N/T	N/T	N/T
oH (Field)	pH Units	7.41	7.4	7.3	7.46
pH (Lab)	pH Units	7.05	7.05	6.64	7.19
Sulfate	mg/L	35.8	37.9	38	38.3
Alkalinity (Total)	mg/L	58	56	56	53
rds	mg/L	259	220	269	229
Hardness (Total)	mg/L	78	72	76	70
Fotal Sulfide	mg/L	0.1	0.3	0.1	0.1
urbidity	NTU	0.2	0.2	0.2	0.24
Coliform Bacteria	col./100mL	N/T	N/T	N/T	N/T
ield Temperature	Centigrade	31.3	27.7	26.6	29.9
Chlorine Residual - Free (Field)	mg/L	1.67	1.67	N/T	3.68
Chlorine Residual - Total (Field)	mg/L_	3.8	3.54	N/T	1.79

ND - Not detected

NT - Not tested

APPENDIX M

DAILY WATER LEVEL DATA FOR THE STORAGE ZONE OBSERVATION WELLS FOR CYCLE 6

						MONTH:	JUNE, 2006
			WATER LEVEL	(FEET, NGVD)			
DAY NO.	MW-1	MW-2	MW-3	MW-A	MW-C	MW-B	LM-926
1	-13.6	-2.2	N/A	N/T	N/A	N/T	N/T
2	-13.6	-2.0	N/A	N/T	N/A	N/T	N/T
3	-13.5	-1.9	N/A	N/T	N/A	N/T	N/T
4	-13.3	-1.5	N/A	N/T	N/A	N/T	N/T
5	-3.9	11.6	N/A	N/T	N/A	N/T	N/T
6	3.7	13.1	N/A	N/T	N/A	N/T	N/T
7	6.9	14.2	N/A	N/T	N/A	N/T	N/T
8	9.0	14.9	N/A	N/T	N/A	N/T	N/T
9	10.7	15.4	N/A	N/T	N/A	N/T	N/T
10	11.4	15.8	N/A	N/T	N/A	N/T	N/T
11	12.1	16.4	N/A	N/T	N/A	N/T	N/T
12	16.9	19.4	N/A	N/T	N/A	N/T	N/T
13	19.4	21.7	43.1	N/T	46.6	N/T	N/T
14	20.6	22.1	47.6	N/T	47.7	N/T	N/T
15	21.6	22.5	48.3	N/T	47.8	N/T	N/T
16	22.4	22.5	48.4	N/T	47.8	N/T	N/T
17	22.5	23.0	48.4	N/T	47.7	N/T	N/T
18	22.7	23.6	48.6	N/T	48.0	N/T	N/T
19	23.7	24.6	50.7	N/T	48.7	N/T	N/T
20	24.1	25.3	52.4	N/T	49.5	N/T	N/T
21	25.0	24.8	50.4	N/T	48.7	N/T	N/T
22	25.5	25.5	52.8	N/T	49.7	N/T	N/T
23	24.7	25.5	52.4	N/T	49.7	N/T	N/T
24	25.3	26.4	54.0	N/T	50.5	N/T	N/T
25	25.2	26.3	52.4	N/T	50.1	N/T	N/T
26	25.9	27.2	54.5	N/T	51.0	N/T	N/T
27	25.9	27.1	54.1	N/T	50.9	N/T	N/T
28	26.4	27.4	54.8	N/T	51.3	N/T	N/T
29	26.6	27.8	55.1	N/T	51.6	N/T	N/T
30	26.4	27.7	54.4	N/T	51.5	N/T	N/T
	T		1	1	1		1

MONTH: JUNE 2006

	· · · · · · · · · · · · · · · · · · ·					MONTH:	JULY, 2006
			WATER LEVEL (FEET, NGVD)			
DAY NO.	MW-1	MW-2	MW-3	MW-A	MW-C	MW-B	LM-926
11	26.6	28.1	16.6	N/A	51.7	N/A	N/A
2	26.8	28.6	16.8	N/A	52.1	N/A	N/A
3	27.0	28.9	17.0	N/A	52.4	N/A	N/A
4	27.1	29.0	16.9	N/A	52.3	N/A	N/A
5	27.2	29.0	17.1	N/A	52.6	N/A	N/A
6	N/A	N/A	16.9	N/A	52.3	N/A	N/A
7	N/A	N/A	17.1	N/A	52.3	N/A	N/A
8	N/A	N/A	17.1	N/A	52.6	N/A	N/A
9	N/A	N/A	17.0	N/A	52.6	N/A	N/A
10	N/A	N/A	17.4	N/A	53.1	N/A	N/A
11	N/A	N/A	17.4	N/A	53.1	N/A	N/A
12	N/A	N/A	17.1	N/A	52.8	N/A	N/A
13	N/A	N/A	17.7	N/A	53.9	N/A	N/A
14	N/A	N/A	17.5	N/A	53.8	N/A	N/A
15	N/A	N/A	17.2	N/A	53.4	N/A	N/A
16	N/A	N/A	17.7	N/A	54.2	N/A	N/A
17	N/A	N/A	17.8	N/A	54.3	N/A	N/A
18	N/A	N/A	17.9	N/A	54.1	N/A	N/A
19	N/A	N/A	18.4	N/A	54.4	N/A	N/A
20	N/A	N/A	18.3	N/A	54.7	N/A	N/A
21	N/A	N/A	18.3	N/A	54.6	N/A	N/A
22	N/A	N/A	18.6	N/A	54.8	N/A	N/A
23	N/A	N/A	18.3	N/A	54.5	N/A	N/A
24	N/A	N/A	18.1	N/A	54.2	N/A	N/A
25	N/A	N/A	18.4	N/A	54.6	N/A	N/A
26	1.8	N/A	18.2	N/A	54.4	N/A	N/A
27	1.8	N/A	18.1	N/A	54.5	N/A	N/A
28	1.8	N/A	18.1	N/A	54.6	N/A	N/A
29	1.8	N/A	18.2	N/A	54.7	N/A	N/A
30	1.8	N/A	18.2	N/A	54.9	N/A	N/A
31	1.9	N/A	18.4	N/A	54.9	N/A	N/A

					MONTH:	AUGUST, 2006	
			WATER LEVEL (
DAY NO.	MW-1	MW-2	MW-3	MW-A	MW-C	MW-B	LM-926
1	11.7	N/A	18.6	N/A	55.3	N/A	N/A
2	11.6	N/A	18.5	N/A	55.2	N/A	N/A
3	11.7	N/A	18.4	N/A	55.0	N/A	N/A
4	11.7	N/A	18.6	N/A	55.1	N/A	N/A
5	11.7	N/A	18.8	N/A	55.4	N/A	N/A
6	11.6	N/A	18.4	N/A	54.9	N/A	N/A
7	11.8	N/A	19.0	N/A	55.8	N/A	N/A
8	11.9	N/A	19.2	N/A	56.0	N/A	N/A
9	11.7	N/A	18.8	N/A	55.6	N/A	N/A
10	11.7	N/A	18.5	N/A	55.0	N/A	N/A
11	8.6	N/A	11.2	N/A	44.3	N/A	N/A
12	6.9	N/A	9.5	N/A	42.6	N/A	N/A
13	6.2	N/A	8.8	N/A	41.9	N/A	N/A
14 15	5.8	N/A	8.3	N/A	41.5	N/A	N/A
	7.6	N/A	14.0	N/A	50.3	N/A	N/A
16	9.0	N/A	15.4	N/A	51.4	N/A	N/A
17	9.4	N/A	15.8	N/A	52.0	N/A	N/A
18	10.1	N/A	17.2	N/A	53.8	N/A	N/A
19	10.5	N/A	17.5	N/A	54.4	N/A	N/A
20	10.7	N/A	17.9	N/A	55.0	N/A	N/A
21	9.6	N/A	14.2	N/A	48.6	N/A	N/A
22	8.4	N/A	12.8	N/A	47.0	N/A	N/A
23	6.9	5.8	9.2	N/A	42.2	N/A	N/A
24	5.7	5.3	7.8	N/A	40.7	N/A	N/A
25	4.0	3.9	4.7	N/A	36.7	N/A	N/A
26	2.9	3.5	3.8	N/A	35.9	N/A	N/A
27	2.3	3.3	3.3	N/A	35.5	N/A	N/A
28	2.0	3.2	3.0	N/A	35.2	N/A	N/A
29	1.7	3.2	2.8	N/A	35.0	N/A	N/A
30	1.5	3.2	2.7	N/A	34.9	N/A	N/A
31	1.3	3.2	2.6	N/A	34.9	N/A	N/A

ALIQUIOT DOOD

					MONTH:	September, 2006	
			WATER LEVEL (F	EET, NGVD)			
DAY NO.	MW-1	MW-2	MW-3	MW-A	MW-C	MW-B	LM-926
1	Storage Mode	Storage Mode	Storage Mode	N/A	Storage Mode	Storage Mode	Storage Mod
2	Storage Mode	Storage Mode	Storage Mode	N/A	Storage Mode	N/A	N/A
3	Storage Mode	Storage Mode	Storage Mode	N/A	Storage Mode	N/A	N/A
4	Storage Mode	Storage Mode	Storage Mode	N/A	Storage Mode	N/A	N/A
5	Storage Mode	Storage Mode	Storage Mode	N/A	Storage Mode	N/A	N/A
6	Storage Mode	Storage Mode	Storage Mode	N/A	Storage Mode	N/A	N/A
7	3.1	5.9	7.6	N/A	42.1	N/A	N/A
8	5.2	7.2	10.8	N/A	45.9	N/A	
9	6.1	7.6					N/A
			11.6	N/A	46.5	N/A	N/A
10	6.6	7.8	12.1	N/A	47.1	N/A	N/A
11	8.2	9.7	15,6	N/A	52.0	N/A	N/A
12	9.1	9.8	16.7	N/A	52.8	N/A	N/A
13	9.5	10.3	17.1	N/A	53.6	N/A	N/A
14	9.9	10.2	17.2	N/A	53.3	N/A	N/A
15	10.1	10.2	17.3	N/A	53.3	N/A	N/A
16	9.4	8.8	15.2	N/A	49.9	N/A	N/A
17	9.0	8.6	14.9	N/A	49.7	N/A	N/A
18	9.6	10.0	16.6	N/A	52.7	N/A	N/A
19	10.1	10.2	17.3	N/A	53.4	N/A	N/A
20	10.3	10.3	17.6	N/A	53.8	N/A	N/A
21	10.6	10.4	17.8	N/A	54.0	N/A	N/A
22	10.7	10.4	17.8	N/A	53.9	N/A	N/A
23	10.8	10.5	17.8	N/A	53.9	N/A	N/A
24	10.9	10.6	18.1	N/A	54.3	N/A	N/A
25	10.5	9.4	16.5	N/A	51.5	N/A	N/A
26	8.2	6.9	11.1	N/A	44.2	N/A	N/A
27	6.5	6.1	9.0	N/A	42.0	N/A	N/A
28	6.4	6.8	10.2	N/A	44.0	N/A	N/A
29	6.5	7.0	10.6	N/A	44.6	N/A	N/A
30	6.4	7.0	10.6	N/A	44.6	N/A	N/A

					MONTH:	October, 2006	
			WATER LEVEL (FEET, NGVD)			
DAY NO.	MW-1	MW-2	MW-3	MW-A	MW-C	MW-B	LM-926
1	7.0	N/A	10.6	N/A	44.7	N/A	N/A
2	5.6	N/A	7.8	N/A	40.7	N/A	N/A
3	4.8	N/A	6.5	N/A	39.0	N/A	N/A
4	4.5	N/A	5.4	N/A	38.0	N/A	N/A
5	4.3	N/A	4.9	N/A	37.5	N/A	N/A
6	4.0	N/A	4.6	N/A	37.1	N/A	N/A
7	N/T	N/A	4.3	N/A	36.8	N/A	N/A
8	3.6	N/A	4.0	N/A	36.5	N/A	N/A
9.	0.0	N/A	3.9	N/A	36.3	N/A	N/A
10	4.5	N/A	5.9	N/A	39.2	N/A	N/A
11	3.5	N/A	4.2	N/A	36.4	N/A	N/A
12	7.0	N/A	11.0	N/A	46.2	N/A	N/A
13	8.0	N/A	13.9	N/A	49.1	N/A	N/A
14	8.3	N/A	15.0	N/A	50.2	N/A	N/A
15	8.5	N/A	15.5	N/A	50.6	N/A	N/A
16	4.5	N/A	7.4	N/A	39.4	N/A	N/A
17	3.7	N/A	5.3	N/A	37.4	N/A	N/A
18	4.8	N/A	7.3	N/A	40.7	N/A	N/A
19	5.1	N/A	8.1	N/A	41.4	N/A	N/A
20	7.1	N/A	12.4	N/A	47.2	N/A	N/A
21	7.9	N/A	14.4	N/A	49.5	N/A	N/A
22	8.2	N/A	15.2	N/A	50.2	N/A	N/A
23	8.2	N/A	15.3	N/A	50.1	N/A	N/A
24	8.3	N/A	16.0	N/A	51.0	N/A	N/A
25	8.4	N/A	16.4	N/A	N/A	N/A	N/A
26	5.3	N/A	10.1	N/A	N/A	N/A	N/A
27	4.2	N/A	7.4	N/A	N/A	N/A	N/A
28	3.9	N/A	6.5	N/A	N/A	N/A	N/A
29	3.7	N/A	6.0	N/A	N/A	N/A	N/A
30	2.3	N/A	3.1	N/A	N/A	N/A	N/A
31	2.0	N/A	2.1	N/A	N/A	N/A	N/A

APPENDIX N

WEEKLY WATER QUALITY DATA FOR THE STORAGE ZONE OBSERVATION WELLS FOR CYCLE 6

		JUNE	2006		•	
PARAMETERS	Unit	MW-1	MW-2	MW-3	MW-C	LM926
DATE		6/1/2006	6/1/2006	6/1/2006	6/1/2006	6/1/2006
pH (Field)	pH Units	7.43	7.41	7.85	7.81	N/T
pH (Lab)	pH Units	7.82	7.71	7.83	7.91	N/T
Specific Conductance	umhos/cm	538	501	511	456	N/T
Field Temperature	Centigrade	25.2	26.9	26.6	25.5	N/T
Dissolved Oxygen (Field)	mg/L	1.09	0.17	0.91	1.65	N/T
Dissolved Oxygen (Lab)	mg/L	0.1	1.3	0.3	2.5	N/T
Chlorine Residual - Free (Field)	mg/L	0	0	0	0	N/T
Chlorine Residual - Total (Field)	mg/L	0	0	0	0	N/T
Color	cu	N/T	N/T	N/T	N/T	N/T
Odor	TON	8	8	8	2	N/T
Turbidity	NTU	0.78	0.51	0.78	0.8	N/T
Gross Alpha	pCi/L	2.3	2.9	3	2.6	N/T
Alkalinity (Total)	mg/L	230	198	214	154	N/T
Alkalinity (Bicarbonate)	mg/L	229	197	213	153	N/T
Hardness (Total)	mg/L	128	164	134	144	N/T
Hardness (Calcium)	mg/L	102	124	102	108	N/T
Hardness (Carbonate)	mg/L	128	164	134	144	N/T
Hardness (Non-Carbonate)	mg/L	o	0	0	0	N/T
Aluminum	ug/L	N/T	N/T	N/T	N/T	N/T
Ammonia	mg/L	N/T	N/T	N/T	N/T	N/T
Arsenic	ug/L	1	1	1	1	N/T
Chloride	mg/L	43	45	45	41	N/T
Coliform Bacteria	col./100mL	N/T	N/T	N/T	N/T	N/T
Fluoride	mg/L	1.59	0.91	1.32	1.09	N/T
ron	mg/L	0.04	0.04	0.04	0.04	N/T
.ead	ug/L	N/T	N/T	N/T	N/T	N/T
Nitrate	mg/L	N/T	N/T	N/T	N/T	N/T
Vitrite	mg/L	N/T	N/T	N/T	N/T	N/T
Sulfate	mg/L	14	26.2	13.1	25.6	N/T
TDS	mg/L	398	402	350	278	N/T
Total Sulfide	mg/L	2.1	2.1	1.9	1.1	N/T
Trihalomethanes	ug/L	0.2	0.2	0.2	0.2	N/T

ND - Not detected

NT - Not tested

PARAMETERS	Unit	MW-1	MW-2	MW-3	006 - CONTINUED MW-C	
DATE		6/7/2006	6/7/2006	6/7/2006	6/7/2006	LM926
pH (Field)	pH Units	7.68	7.38	7.57	7.8	6/7/2006
pH (Lab)	pH Units	7.73	7.61	7.76	7.77	7.35
Specific Conductance	umhos/cm	540	482	486	443	7.39
Field Temperature	Centigrade	26.3	26.7	25	26.9	509
Dissolved Oxygen (Field)	mg/L	0.89	0.76	1.09	0.69	30.1
Dissolved Oxygen (Lab)	mg/L	0.1	0.7	0.1		0.91
Chlorine Residual - Free (Field)	mg/L	0	0	0	1.3 0	N/T
Chlorine Residual - Total (Field)	mg/L	0	0	0		0
Color	CU	N/T	N/T		0	0
Odor	TON	8	8	N/T	N/T	N/T
Turbidity		0.97		4	2	<u>N/T</u>
Gross Alpha			0.65	1.1	0.83	0.96
Alkalinity (Total)	pCi/L	2.7	2.2	2.4	2.6	<u>N/T</u>
	mg/L	228	196	213	152	257
Alkalinity (Bicarbonate)	mg/L	227	195	212	151	256
Hardness (Total)	mg/L	130	168	138	146	250
Hardness (Calcium)	mg/L	106	128	106	110	218
Hardness (Carbonate)	mg/L	130	168	138	146	250
Hardness (Non-Carbonate)	mg/L	0	0	0	0	0
Numinum	ug/L	N/T	N/T	N/T	N/T	N/T
Ammonia	mg/L	N/T	N/T	N/T	N/T	N/T
Arsenic	ug/L	1	1	1	1	1
Chloride	mg/L	42	43	41	44.5	N/T
Coliform Bacteria	col./100mL	N/T	N/T	N/T	N/T	N/T
luoride	mg/L	1.63	0.87	1.39	1.11	N/T
on	mg/L	0.04	0.04	0.04	0.04	N/T
ead	ug/L	N/T	N/T	N/T	N/T	
litrate	mg/L	N/T	N/T	N/T	N/T	<u>N/T</u>
litrite	mg/L	N/T	N/T	N/T	N/T	
ulfate	mg/L	14.5	28.9	11.1	26.6	N/T
DS	mg/L	374	328	354	306	N/T
otal Sulfide	mg/L	2.3	1.2	1.2		460
rihalomethanes	ug/L	0.2	0.2	0.2	0.9	N/T N/T

ND - Not detected NT - Not tested

NA - Not available, lab report pending

.

			JU	NE, 2006 - CONTI	NUED	
PARAMETERS	Unit	MW-1	MW-2	MW-3	MW-C	LM926
DATE:		6/14/2006	6/14/2006	6/14/2006	6/14/2006	6/14/2006
pH (Field)	pH Units	7.49	7.41	7.53	7.63	N/T
pH (Lab)	pH Units	7.87	7.62	7.77	7.87	N/T
Specific Conductance	umhos/cm	504	551	467	410	N/T
Field Temperature	Centigrade	26.9	29.9	28.3	29.2	N/T
Dissolved Oxygen (Field)	mg/L	0.98	0.81	0.71	1.26	N/T
Dissolved Oxygen (Lab)	mg/L	0.1	0.3	0.1	3.1	N/T
Chlorine Residual - Free (Field)	mg/L	0	0	0	0	N/T
Chlorine Residual - Total (Field)	mg/L	0	0	0	0	N/T
Color	CU	N/T	N/T	N/T	N/T	N/T
Odor	TON	200	200	200	200	N/T
Turbidity	NTU	0.92	0.81	0.68	0.6	N/T
Gross Alpha	pCi/L	N/T	N/T	N/T	N/T	N/T
Alkalinity (Total)	mg/L	226	191	208	150	N/T
Alkalinity (Bicarbonate)	mg/L	224	190	207	149	N/T
Hardness (Total)	mg/L	128	162	136	144	N/T
Hardness (Calcium)	, mg/L	102	122	104	112	N/T
Hardness (Carbonate)	mg/L	128	162	136	144	N/T
Hardness (Non-Carbonate)	mg/L	0	0	0	0	N/T
Aluminum	ug/L	N/T	N/T	N/T	N/T	N/T
Ammonia	mg/L	N/T	N/T	N/T	N/T	N/T
Arsenic	ug/L	1	1	1	1	N/T
Chloride	mg/L	44.5	42	43.5	41.5	N/T
Coliform Bacteria	col./100mL	N/T	N/T	N/T	N/T	N/T
luoride	mg/L	1.7	0.92	1.4	1.2	N/T
ron	mg/L	0.04	0.04	0.04	0.04	N/T
ead	ug/L	N/T	N/T	N/T	N/T	N/T
litrate	mg/L	N/T	N/T	N/T	N/T	N/T
litrite	mg/L	N/T	N/T	N/T	N/T	N/T
Sulfate	mg/L	14.9	29.7	11.8	28.4	N/T
rds	mg/L	424	414	332	322	N/T
otal Sulfide	mg/L	1.6	1.8	1.6	0.8	N/T
Trihalomethanes	ug/L	0.2	0.2	0.2	0.2	N/T

ND - Not detected

NT - Not tested

	JUNE, 2006 - CONTINUED							
PARAMETERS	Unit	MW-1	MW-2	MW-3	MW-C	LM926		
DATE		6/21/2006	6/21/2006	6/21/2006	6/21/2006	6/21/2006		
pH (Field)	pH Units	7.43	7.31	7.48	7.63	N/T		
pH (Lab)	pH Units	7.82	7.58	7.79	7.95	N/T		
Specific Conductance	umhos/cm	516	464	468	384	N/T		
Field Temperature	Centigrade	28.5	27.1	30.1	31.9	N/T		
Dissolved Oxygen (Field)	mg/L	0.62	0.86	0.63	0.9	N/T		
Dissolved Oxygen (Lab)	mg/L	0.1	0.6	0.3	1.5	N/T		
Chlorine Residual - Free (Field)	mg/L	0	0	0	0	N/T		
Chlorine Residual - Total (Field)	mg/L	0	0	0	0	N/T		
Color	cu	N/T	N/T	N/T	N/T	N/T		
Odor	TON	8	8	8	2	N/T		
Turbidity	NTU	0.64	0.81	0.81	0.54	N/T		
Gross Alpha	pCi/L	N/T	N/T	N/T	N/T	N/T		
Alkalinity (Total)	mg/L	230	194	210	156	N/T		
Alkalinity (Bicarbonate)	mg/L	229	193	209	155	N/T		
Hardness (Total)	mg/L	130	160	132	142	N/T		
Hardness (Calcium)	mg/L	104	124	108	110	N/T		
Hardness (Carbonate)	mg/L	130	160	132	142	N/T		
Hardness (Non-Carbonate)	mg/L	0	o	0	0	N/T		
Aluminum	ug/L	N/T	N/T	N/T	N/T	N/T		
Ammonia	mg/L	N/T	N/T	N/T	N/T	N/T		
Arsenic	ug/L	1	1	1	1	N/T		
Chloride	mg/L	43	44.5	42	40.5	N/T		
Coliform Bacteria	col./100mL	N/T	N/T	N/T	N/T	N/T		
Fluoride	mg/L	1.7	0.94	1.4	1.2	N/T		
Iron	mg/L	0.04	0.04	0.04	0.04	N/T		
Lead	ug/L	N/T	N/T	N/T	N/T	N/T		
Nitrate	mg/L	N/T	N/T	N/T	N/T	N/T		
Nitrite	mg/L	N/T	N/T	N/T	N/T	N/T		
Sulfate	mg/L	13.7	27.8	12.4	30.7	N/T		
TDS	mg/L	370	286	334	228	N/T		
Total Sulfide	mg/L	2.3	1.1	1.1	0.5	N/T		
Trihalomethanes	ug/L	0.2	0.3	0.2	0.89	N/T		

ND - Not detected

NT - Not tested

JUNE, 2006 - CONTINUED									
PARAMETERS	Unit	MW-1	MW-2	MW-3	MW-C	LM926			
DATE		6/28/2006	6/28/2006	6/28/2006	6/28/2006	6/28/2006			
pH (Field)	pH Units	7.64	7.46	7.52	7.67	N/T			
pH (Lab)	pH Units	7.7	7,45	7.64	7.73	N/T			
Specific Conductance	umhos/cm	495	480	440	370	N/T			
Field Temperature	Centigrade	27	27.3	26.7	27.3	N/T			
Dissolved Oxygen (Fie	mg/L	0.79	0.81	0.72	0.73	N/T			
Dissolved Oxygen (La	mg/L	0.1	0.4	0.1	2.1	N/T			
Chlorine Residual - Fr	mg/L	0	0	0	0	N/T			
Chlorine Residual - To	mg/L	0	0	0	0	N/T			
Color	CU	N/T	N/T	N/T	N/T	N/T			
Odor	TON	8	8	4	2	N/T			
Turbidity	NTU	0.65	0.82	0.57	1.34	N/T			
Gross Alpha	pCi/L	N/T	N/T	N/T	N/T	N/T			
Alkalinity (Total)	mg/L	227	193	212	154	N/T			
Alkalinity (Bicarbonate	mg/L	226	192	211	153	N/T			
Hardness (Total)	mg/L	126	164	138	144	N/T			
Hardness (Calcium)	mg/L	102	120	104	108	N/T			
Hardness (Carbonate)	mg/L	126	164	138	144	N/T			
Hardness (Non-Carbo	mg/L	o ·	0	0	0	N/T			
Aluminum	ug/L	N/T	N/T	N/T	N/T	N/T			
Ammonia	mg/L	N/T	N/T	N/T	N/T	N/T			
Arsenic	ug/L	1	1	1	1	N/T			
Chloride	mg/L	44	45	46	42	N/T			
Coliform Bacteria	col./100mL	N/T	N/T	N/T	N/T	N/T			
Fluoride	mg/L	1.53	0.94	1.34	1.1	N/T			
iron	mg/L	0.04	0.04	0.04	0.04	N/T			
ead	ug/L	N/T	N/T	N/T	N/T	N/T			
Nitrate	mg/L	N/T	N/T	N/T	N/T	N/T			
Nitrite	mg/L	N/T	N/T	N/T	N/T	N/T			
Sulfate	mg/L	14	25.6	15.1	34.9	N/T			
rds	mg/L	298	288	282	268	N/T			
Total Sulfide	mg/L	1.4	1.4	1.4	0.4	N/T			
Trihalomethanes	ug/L	0.2	0.2	0.2	2.5	N/T			

JUNE, 2006 - CONTINUED

ND - Not detected

NT - Not tested

PARAMETERS	Unit	MW-1	MW-2	MW-3	MW-C	LM926
DATE		7/6/2006	7/6/2006	7/6/2006	7/6/2006	7/6/2006
pH (Field)	pH Units	7.55	7.46	7.64	7.69	7.35
pH (Lab)	pH Units	7.78	7.7	7.84	7.97	7.43
Specific Conductance	umhos/cm	569	525	504	403	601
Field Temperature	Centigrade	29.9	30.6	30.3	28.3	29.4
Dissolved Oxygen (Field)	mg/L	0.7	0.55	0.63	0.94	1.42
Dissolved Oxygen (Lab)	mg/L	0.1	0.1	0.5	2.2	N/T
Chlorine Residual - Free (Field)	mg/L	o	0	0	0	0
Chlorine Residual - Total (Field)	mg/L	o	0	0	0	0
Color	CU	N/T	N/T	N/T	N/T	N/T
Odor	TON	100	100	100	2	N/T
Turbidity	NTU	0.75	0.7	0.75	0.62	0.8
Gross Alpha	pCi/L	2.6	2.7	2.9	3.6	N/T
Alkalinity (Total)	mg/L	228	196	211	153	252
Alkalinity (Bicarbonate)	mg/L	227	195	210	152	251
Hardness (Total)	mg/L	128	166	134	146	248
Hardness (Calcium)	mg/L	106	122	106	112	222
Hardness (Carbonate)	mg/L	128	166	134	146	248
Hardness (Non-Carbonate)	mg/L	o	0	0	0	0
Aluminum	ug/L	N/T	N/T	N/T	N/T	N/T
Ammonia	mg/L	N/T	N/T	N/T	N/T	N/T
Arsenic	ug/L	1	1	1	1	1
Chloride	mg/L	45	47	48	41	N/T
Coliform Bacteria	col./100mL	N/T	N/T	N/T	N/T	N/T
Fluoride	mg/L	1.49	0.92	1.29	1.13	N/T
Iron	mg/L	0.04	0.04	0.04	0.04	N/T
Lead	ug/L	N/T	N/T	N/T	N/T	N/T
Nitrate	mg/L	N/T	N/T	N/T	N/T	N/T
Vitrite	mg/L	N/T	N/T	N/T	N/T	N/T
Sulfate	mg/L	18.4	25.1	15.5	35.2	N/T
TDS	mg/L	258	302	286	308	314
Total Sulfide	mg/L	1.5	1.4	1.3	0.3	N/T
Trihalomethanes	ug/L	0.2	0.28	0.2	2.9	N/T

ND - Not detected

NT - Not tested

		JULY, 2006 - CONTINUED								
PARAMETERS	Unit	MW-1	MW-2	MW-3	MW-C	LM926				
DATE		7/12/2006	7/12/2006	7/12/2006	7/12/2006	7/12/2006				
pH (Field)	pH Units	7.68	7.61	7.69	7.87	N/T				
pH (Lab)	pH Units	7.63	7.52	7.73	7.89	N/T				
Specific Conductance	umhos/cm	511	520	446	355	N/T				
Field Temperature	Centigrade	26.3	24.9	27.1	24.1	N/T				
Dissolved Oxygen (Field)	mg/L	1.01	0.75	0.71	0.89	N/T				
Dissolved Oxygen (Lab)	mg/L	0.1	0.1	0.3	2.2	N/T				
Chlorine Residual - Free (Field)	mg/L	0	0	0	0	N/T				
Chlorine Residual - Total (Field)	mg/L	0	0	0	0	N/T				
Color	CU	N/T	N/T	N/T	N/T	N/T				
Odor	TON	8	8	16	2	N/T				
Turbidity	NTU	0.89	0.71	0.7	0.79	N/T				
Gross Alpha	pCi/L	N/T	N/T	N/T	N/T	N/T				
Alkalinity (Total)	mg/L	222	195	178	99	N/T				
Alkalinity (Bicarbonate)	mg/L	221	194	177	98	N/T				
Hardness (Total)	mg/L	132	160	138	148	N/T				
Hardness (Calcium)	mg/L	104	126	104	108	N/T				
Hardness (Carbonate)	mg/L	132	160	138	99	N/T				
Hardness (Non-Carbonate)	mg/L	0	0	0	49	N/T				
Aluminum	ug/L	л/т	N/T	N/T	N/T	N/T				
Ammonia	mg/L	N/T	N/T	N/T	N/T	N/T				
Arsenic	ug/L	1	1	1	1	N/T				
Chloride	mg/L	41	45	46	43	N/T				
Coliform Bacteria	col./100mL	N/T	N/T	N/T	N/T	N/T				
Fluoride	mg/L	1.5	0.96	1.33	1.11	N/T				
Iron	mg/L	0.04	0.04	0.04	0.04	N/T				
Lead	ug/L	N/T	N/T	N/T	N/T	N/T				
Nitrate	mg/L	N/T	N/T	N/T	N/T	N/T				
Nitrite	mg/L	N/T	N/T	N/T	N/T	N/T				
Sulfate	mg/L	12.1	18.7	12.1	36.1	N/T				
TDS	mg/L	366	356	223	298	N/T				
Total Sulfide	mg/L	1.7	16	1.1	0.3	N/T				
Trihalomethanes	ug/L	0.2	0.2	0.2	2.3	N/T				

ND - Not detected

NT - Not tested

			JUI	LY, 2006 - CONT	INUED	
PARAMETERS	Unit	MW-1	MW-2	MW-3	MW-C	LM926
DATE		7/19/2006	7/19/2006	7/19/2006	7/19/2006	7/19/2006
pH (Field)	pH Units	7.7	7.66	7.76	7.78	N/T
pH (Lab)	pH Units	7.54	7.52	7.68	7.88	N/T
Specific Conductance	umhos/cm	462	455	440	350	N/T
Field Temperature	Centigrade	28.5	26.6	27.4	26.6	N/T
Dissolved Oxygen (Field)	mg/L	0.74	0.62	0.54	0.77	N/T
Dissolved Oxygen (Lab)	mg/L	0.1	0.1	0.4	1.2	N/T
Chlorine Residual - Free (Field)	mg/L	0	0	0	0.11	N/T
Chlorine Residual - Total (Field)	mg/L	0	0	0	0.45	N/T
Color	cυ	N/T	N/T	N/T	N/T	N/T
Odor	TON	8	8	4	2	N/T
Turbidity	NTU	0.68	0.69	0.75	0.75	N/T
Gross Alpha	pCi/L	N/T	N/T	N/T	N/T	N/T
Alkalinity (Total)	mg/L	224	194	180	100	N/T
Alkalinity (Bicarbonate)	mg/L	223	193	179	99	N/T
Hardness (Total)	mg/L	136	164	142	144	N/T
Hardness (Calcium)	mg/L	106	122	108	104	N/T
Hardness (Carbonate)	mg/L	136	164	142	100	N/T
Hardness (Non-Carbonate)	mg/L	0	0	0	44	N/T
Aluminum	ug/L	N/T	N/T	N/T	N/T	N/T
Ammonia	mg/L	N/T	N/T	N/T	N/T	N/T
Arsenic	ug/L	1	1	1	1	N/T
Chloride	mg/L	43.5	41	46	40	N/T
Coliform Bacteria	col./100mL	N/T	N/T	N/T	N/T	N/T
Fluoride	mg/L	1.43	0.93	1.34	1.08	N/T
Iron	mg/L	0.04	0.04	0.04	0.04	N/T
Lead	ug/L	N/T	N/T	N/T	N/T	N/T
Nitrate	mg/L	N/T	N/T	N/T	N/T	N/T
Nitrite	mg/L	N/T	N/T	N/T	N/T	N/T
Sulfate	mg/L	9.57	18.2	12.4	37.2	N/T
TDS	mg/L	362	364	298	296	N/T
Total Sulfide	mg/L	1.8	1.3	1.2	0.4	N/T
Trihalomethanes	ug/L	0.2	0.25	0.2	1.6	N/T

ND - Not detected NT - Not tested

· · · · · · · · · · · · · · · · · · ·		JULY, 2006 - CONTINUED							
PARAMETERS	Unit	MW-1	MW-2	MW-3	MW-C	LM926			
DATE		7/26/2006	7/26/2006	7/26/2006	7/26/2006	7/26/2006			
pH (Field)	pH Units	7.64	7.46	7.77	7.95	N/T			
рН (Lab)	pH Units	7.71	7.38	7.68	7.6	N/T			
Specific Conductance	umhos/cm	366	452	397	525	N/T			
Field Temperature	Centigrade	28.8	28.7	31.1	31.5	N/T			
Dissolved Oxygen (Field)	mg/L	1.02	0.44	0.55	0.6	N/T			
Dissolved Oxygen (Lab)	mg/L	2.1	0.1	0.6	0.1	N/T			
Chlorine Residual - Free (Field)	mg/L	0	0	0	0	N/T			
Chlorine Residual - Total (Field)	mg/L	0	0	0	0	N/T			
Color	cu	N/T	N/T	N/T	N/T	N/T			
Odor	TON	1	8	4	8	N/T			
Turbidity	NTU	18.2	0.74	82.7	1.25	N/T			
Gross Alpha	pCi/L	N/T	N/T	N/T	м/т	N/T			
Alkalinity (Total)	mg/L	227	196	182	103	N/T			
Alkalinity (Bicarbonate)	mg/L	226	196	181	103	N/T			
Hardness (Total)	mg/L	138	162	144	142	N/T			
Hardness (Calcium)	mg/L	104	120	106	102	N/T			
Hardness (Carbonate)	mg/L	138	162	144	103	N/T			
Hardness (Non-Carbonate)	mg/L	0	0	0	39	N/T			
Aluminum	ug/L	N/T	N/T	N/T	N/T	N/T			
Ammonia	mg/L	N/T	N/T	N/T	N/T	N/T			
Arsenic	ug/L	1	1	1	1	N/T			
Chloride	mg/L	43	44	47	40	N/T			
Coliform Bacteria	col./100mL	N/T	N/T	N/T	N/T	N/T			
Fluoride	mg/L	1.08	0.97	1.3	1.49	N/T			
ron	mg/L	0.04	0.04	0.04	0.04	N/T			
Lead	ug/L	N/T	N/T	N/T	N/T	N/T			
Nitrate	mg/L	N/T	N/T	N/T	N/T	N/T			
Nitrite	mg/L	N/T	N/T	N/T					
Sulfate	mg/L	37.9	23.5		N/T	N/T			
TDS	mg/L	284		15.9	16.1	N/T			
Total Sulfide	mg/L	0.3	352	281	358	N/T			
Trihalomethanes	ug/L	2.8	0.31	0.8	0.2	N/T			

ND - Not detected NT - Not tested NA - Not available, lab report pending .

AUGUST, 2006	······································					
PARAMETERS	Unit	MW-1	MW-2	MW-3	MW-C	LM926
DATE		8/2/2006	8/2/2006	8/2/2006	8/2/2006	8/2/2006
pH (Field)	pH Units	7.57	7.76	7.96	8.11	7.45
pH (Lab)	pH Units	7.57	7.51	7.81	7.88	7.34
Specific Conductance	umhos/cm	538	528	437	394	570
Field Temperature	Centigrade	26.9	28.6	28.3	29.2	28.2
Dissolved Oxygen (Field)	mg/L	0.85	0.75	0.67	0.67	0.88
Dissolved Oxygen (Lab)	mg/L	0.1	0.3	1.4	2.3	N/T
Chlorine Residual - Free (Field)	mg/L	o	0	0	0.08	0
Chlorine Residual - Total (Field)	mg/L	o	0	0	1.19	0
Color	CU	N/T	N/T	N/T	N/T	N/T
Odor	TON	8	8	2	1	N/T
Turbidity	NTU	0.63	1.14	0.94	0.91	1.88
Gross Alpha	pCi/L	2.6	3	2.6	2.6	N/T
Alkalinity (Total)	mg/L	225	193	185	105	254
Alkalinity (Bicarbonate)	mg/L	224	192	184	104	253
Hardness (Total)	mg/L	134	160	140	146	244
Hardness (Calcium)	mg/L	102	124	104	110	220
Hardness (Carbonate)	mg/L	134	160	140	105	244
Hardness (Non-Carbonate)	mg/L	0	0	0	41	0
Aluminum	ug/L	N/T	N/T	N/T	N/T	N/T
Ammonia	mg/L	N/T	N/T	N/T	N/T	N/T
Arsenic	ug/L	1	1	1	1	1
Chloride	mg/L	46	45	44.5	42	N/T
Coliform Bacteria	col./100mL	N/T	N/T	N/T	N/T	N/T
luoride	mg/L	1.48	0.99	1.33	1.1	N/T
ron	mg/L	0.04	0.04	0.04	0.04	N/T
ead	ug/L	N/T	N/T	N/T	N/T	N/T
litrate	mg/L	N/T	N/T	N/T	N/T	N/T
Vitrite	mg/L	N/T	N/T	N/T	N/T	N/T
Sulfate	mg/L	11.5	16.4	14.3	38.7	N/T
DS	mg/L	431	352	297	269	478
Total Sulfide	mg/L	0.8	1.3	0.8	0.3	N/T
Trihalomethanes	ug/L	0.2	0.2	0.2	2.6	N/T

.

ND - Not detected

NT - Not tested

PARAMETERS	Unit	MW-1	MW-2	MW-3	MW-C	LM926
DATE		8/9/2006	8/9/2006	8/9/2006	8/9/2006	8/9/2006
pH (Field)	pH Units	7.71	7.81	7.98	8.08	N/T
pH (Lab)	pH Units	7.69	7.56	7.76	7.8	N/T
Specific Conductance	umhos/cm	498	470	388	370	N/T
Field Temperature	Centigrade	28	27.9	27	27.1	N/T
Dissolved Oxygen (Field)	mg/L	0.69	0.64	0.7	0.66	N/T
Dissolved Oxygen (Lab)	mg/L	0.1	0.3	1.4	1.9	N/T
Chlorine Residual - Free (Field)	mg/L	0	0	0	0.08	N/T
Chlorine Residual - Total (Field)	mg/L	0	0	0	0.16	N/T
Color	cu	N/T	N/T	N/T	N/T	N/T
Odor	TON	8	8	2	1	N/T
Turbidity	NTU	1.08	0.86	1.21	0.94	N/T
Gross Alpha	pCi/L	N/T	N/T	N/T	N/T	N/T
Alkalinity (Total)	mg/L	223	198	181	112	N/T
Alkalinity (Bicarbonate)	mg/L	222	197	180	111	N/T
Hardness (Total)	mg/L	132	166	142	148	N/T
Hardness (Calcium)	mg/L	106	122	102	108	N/T
Hardness (Carbonate)	mg/L	132	166	142	112	N/T
Hardness (Non-Carbonate)	mg/L	0	0	0	36	N/T
Aluminum	ug/L	N/T	N/T	N/T	N/T	N/T
Ammonia	mg/L	N/T	N/T	N/T	N/T	N/T
Arsenic	ug/L	1	1	1	1	N/T
Chloride	mg/L	41	44.5	47	43	N/T
Coliform Bacteria	col./100mL	N/T	N/T	N/T	N/T	N/T
Fluoride	mg/L	1.47	0.99	1.31	1.08	N/T
ron	mg/L	0.04	0.04	0.04	0.04	N/T
Lead	ug/L	N/T	N/T	N/T	N/T	N/T
Vitrate	mg/L	N/T	N/T	N/T	N/T	N/T
Nitrite	mg/L	N/T	N/T	N/T	N/T	N/T
Sulfate	mg/L	11.9	17.3	15.4	39	N/T
TDS	mg/L	351	315	314	290	N/T
Total Sulfide	mg/L	1.2	1.2	Broken, BB	0.1	N/T
Trihalomethanes	ug/L	0.2	0.4	0.35	3.1	N/T

ND - Not detected

NT - Not tested

AUGUST, 2006 -C ON	TINUED					
PARAMETERS	Unit	MW-1	MW-2	MW-3	MW-C	LM926
DATE		8/16/2006	8/16/2006	8/16/2006	8/16/2006	8/16/2006
pH (Field)	pH Units	7.58	7.49	7.62	7.87	N/T
pH (Lab)	pH Units	7.57	7.53	7.82	7.83	N/T
Specific Conductance	umhos/cm	519	510	390	383	N/T
Field Temperature	Centigrade	26.7	31.5	27.7	31.2	N/T
Dissolved Oxygen (Field)	mg/L	1.2	0.76	0.87	0.95	N/T
Dissolved Oxygen (Lab)	mg/L	0.1	0.4	1.1	2	N/T
Chlorine Residual - Free (Field)	mg/L	0	0	0	0	N/T
Chlorine Residual - Total (Field)	mg/L	0	0	0	0	N/T
Color	CU	N/T	N/T	N/T	н- м/т	N/T
Odor	TON	8	8	2	1	N/T
Turbidity	NTU	0.55	0.96	0.5	0.63	N/T
Gross Alpha	pCi/L	N/T	N/T	N/T	N/T	N/T
Alkalinity (Total)	mg/L	226	195	183	107	N/T
Alkalinity (Bicarbonate)	mg/L	225	194	182	106	N/T
Hardness (Total)	mg/L	136	164	138	144	N/T
Hardness (Calcium)	mg/L	104	120	104	106	N/T
Hardness (Carbonate)	mg/L	136	164	138	107	N/T
Hardness (Non-Carbonate)	mg/L	0	0	0	37	N/T
Aluminum	ug/L	N/T	N/T	N/T	N/T	N/T
Ammonia	mg/L	N/T	N/T	N/T	N/T	N/T
Arsenic	ug/L	1	1	1	1	N/T
Chloride	mg/L	44.5	47	43.5	41	N/T
Coliform Bacteria	col./100mL	N/T	N/T	N/T	N/T	N/T
luoride	mg/L	1.62	1.1	1.46	1.2	N/T
ron	mg/L	0.04	0.04	0.04	0.04	N/T
ead	ug/L	N/T	N/T	N/T	N/T	N/T
litrate	mg/L	N/T	N/T	N/T	N/T	N/T
Vitrite	mg/L	N/T	N/T	N/T	N/T	N/T
Sulfate	mg/L	11.6	17.4	15.8	39	N/T
[DS	mg/L	320	326	280	270	N/T
otal Sulfide	mg/L	1.3	1.6	0.7	0.1	N/T
Trihalomethanes	ug/L	0.2	0.2	0.2	38	N/T

ND - Not detected

NT - Not tested

AUGUST, 2006 -C ONT		T			·····	
PARAMETERS	Unit	MW-1	MW-2	MW-3	MW-C	LM926
DATE		8/23/2006	8/23/2006	8/23/2006	8/23/2006	8/23/2006
pH (Field)	pH Units	7.42	7.26	7.29	7.4	N/T
pH (Lab)	pH Units	7.59	7.52	7.83	7.83	N/T
Specific Conductance	umhos/cm	562	528	399	381	N/T
Field Temperature	Centigrade	28	27	27.2	27.9	N/T
Dissolved Oxygen (Field)	mg/L	0.98	0.84	0.62	0.47	N/T
Dissolved Oxygen (Lab)	mg/L	0.1	0.1	1.4	1.5	N/T
Chlorine Residual - Free (Field)	mg/L	0	0	0	0	N/T
Chlorine Residual - Total (Field)	mg/L	0	o	0	0	N/T
Color	cu	N/T	N/T	N/T	N/T	N/T
Odor	TON	8	8	1	1	N/T
Turbidity	ΝΤυ	0.82	1.17	0.72	0.92	N/T
Gross Alpha	pCi/L	N/T	N/T	N/T	N/T	N/T
Alkalinity (Total)	mg/L	224	197	182	108	N/T
Alkalinity (Bicarbonate)	mg/L	223	196	181	107	N/T
Hardness (Total)	mg/L	140	162	134	148	N/T
Hardness (Calcium)	mg/L	102	122	100	102	N/T
Hardness (Carbonate)	mg/L	140	162	134	108	N/T
Hardness (Non-Carbonate)	mg/L	0	0	0	40	N/T
Aluminum	ug/L	N/T	N/T	N/T	N/T	N/T
Ammonia	mg/L	N/T	N/T	N/T	N/T	N/T
Arsenic	ug/L	1	1	1	1	N/T
Chloride	mg/L	44.5	47.5	44	43	N/T
Coliform Bacteria	col./100mL	N/T	N/T	N/T	N/T	N/T
Fluoride	mg/L	1.52	1.02	1.34	1.06	N/T
Iron	mg/L	0.04	0.04	0.04	0.04	N/T
Lead	ug/L	N/T	N/T	N/T	N/T	N/T
Nitrate	mg/L	N/T	N/T	N/T	N/T	N/T
Nitrite	mg/L	N/T	N/T	N/T	N/T	N/T
Sulfate	mg/L	11.9	15.8	17.2	39.1	N/T
TDS	mg/L	350	355	291	255	N/T
Total Sulfide	mg/L	1.7	1.3	0.7	0.1	N/T
Trihalomethanes	ug/L	0.2	0.2	0.2	2.1	N/T

ND - Not detected NT - Not tested

NA - Not available, lab report pending

.

AUGUST, 2006 -	C ONTINUED	1		- <u></u>		
PARAMETERS	Unit	MW-1	MW-2	MW-3	MW-C	LM926
DATE		8/29/2006	8/29/2006	8/29/2006	8/29/2006	8/29/2006
pH (Field)	pH Units	7.31	7.32	7.42	7.34	7.39
pH (Lab)	pH Units	7.82	7.65	7.89	8.01	7.44
Specific Conductance	umhos/cm	530	535	418	378	561
Field Temperature	Centigrade	27.4	27.5	27	29.3	27.7
Dissolved Oxygen (Fie	mg/L	0.84	0.94	0.9	1.32	0.9
Dissolved Oxygen (La	mg/L	0.1	0.1	1.4	2.7	N/T
Chlorine Residual - Fr	mg/L	0	o	0	0	o
Chlorine Residual - To	mg/L	0	0	0	0	0
Color	CU	N/T	N/T	N/T	N/T	N/T
Odor	TON	8	8	1	1	N/T
Turbidity	NTU	0.75	0.86	0.66	0.68	1.79
Gross Alpha	pCi/L	4.2	2.9	3.2	2.6	N/T
Alkalinity (Total)	mg/L	222	194	180	102	253
Alkalinity (Bicarbonate	mg/L	221	193	179	101	252
Hardness (Total)	mg/L	144	168	136	152	246
Hardness (Calcium)	mg/L	106	124	108	106	216
Hardness (Carbonate)	mg/L	144	168	136	102	246
Hardness (Non-Carbo	mg/L	o	0	0	50	0
Aluminum	ug/L	N/T	N/T	N/T	N/T	N/T
Ammonia	mg/L	N/T	N/T	N/T	N/T	N/T
Arsenic	ug/L	1	1	1	1	1
Chloride	mg/L	43	47	43.5	41	N/T
Coliform Bacteria	col./100mL	N/T	N/T	N/T	N/T	N/T
Fluoride	mg/L	1.55	1.04	1.32	1.08	N/T
iron	mg/L	0.04	0.04	0.04	0.04	N/t
Lead	ug/L	N/T	N/T	N/T	N/T	N/T
Nitrate	mg/L	N/T	N/T	N/T	N/T	N/T
Nitrite	mg/L	N/T	N/T	N/T	N/T	N/T
Sulfate	mg/L	13.5	14.6	16.5	36.2	N/T
TDS	mg/L	359	385	297	297	341
Total Sulfide	mg/L	1.3	1.4	0.8	0.3	N/T
Trihalomethanes	ug/L	0.2	0.2	0.2	0.61	N/T

ND - Not detected

NT - Not tested

September, 2006						
PARAMETERS	Unit	MW-1	MW-2	MW-3	MW-C	LM926
DATE		9/6/2006	9/6/2006	9/6/2006	9/6/2006	9/6/2006
pH (Field)	pH Units	7.67	7.32	7.64	7.33	N/T
pH (Lab)	pH Units	7.58	7.59	7.81	7.95	N/T
Specific Conductance	umhos/cm	608	578	464	423	N/T
Field Temperature	Centigrade	27.2	25.9	26.6	26.8	N/T
Dissolved Oxygen (Field)	mg/L	0.63	0.7	0.71	0.87	N/T
Dissolved Oxygen (Lab)	mg/L	0.1	0.3	0.4	2.5	N/T
Chlorine Residual - Free (Field)	mg/L	o	0	0	0	N/T
Chlorine Residual - Total (Field)	mg/L	0	0	0	0	N/T
Color	CU	N/T	N/T	N/T	N/T	N/T
Odor	TON	8	4	1	1	N/T
Turbidity	NTU	0.9	0.66	0.6	0.72	N/T
Gross Alpha	pCi/L	N/T	N/T	N/T	N/T	N/T
Alkalinity (Total)	mg/L	220	197	184	110	N/T
Alkalinity (Bicarbonate)	mg/L	219	196	183	109	N/T
Hardness (Total)	mg/L	140	164	132	154	N/T
Hardness (Calcium)	mg/L	102	120	104	100	N/T
Hardness (Carbonate)	mg/L	140	164	132	110	N/T
Hardness (Non-Carbonate)	mg/L	0	0	0	44	N/T
Aluminum	ug/L	N/T	N/T	N/T	N/T	N/T
Ammonia	mg/L	N/T	N/T	N/T	N/T	N/T
Arsenic	ug/L	1	1	1	1	N/T
Chloride	mg/L	43	46	44.5	42	N/T
Coliform Bacteria	col./100mL	N/T	N/T	N/T	N/T	N/T
Fluoride	mg/L	1.5	1	1.3	1.08	N/T
Iron	mg/L	0.04	0.04	0.04	0.04	N/T
Lead	ug/L	N/T	N/T	N/T	N/T	N/T
Nitrate	mg/L	N/T	N/T	N/T	N/T	N/T
Nitrite	mg/L	N/T	N/T	N/T	N/T	N/T
Sulfate	mg/L	15	14.9	16.3	35.9	N/T
TDS	mg/L	355	327	292	254	N/T
Total Sulfide	mg/L	1.2	1,1	0.7	0.1	N/T
Trihalomethanes	ug/L	0.2	0.2	0.2	0.51	N/T

ND - Not detected NT - Not tested

PARAMETERS	Unit	MW-1	MW-2	MW-3	MW-C	LM926
DATE		9/13/2006	9/13/2006	9/13/2006	9/13/2006	9/13/2006
pH (Field)	pH Units	7.49	7.49	7.44	7.34	7.41
pH (Lab)	pH Units	7.77	7.88	7.97	8.09	7.54
Specific Conductance	umhos/cm	564	525	441	400	576
Field Temperature	Centigrade	27.3	27.5	27	26.8	28.1
Dissolved Oxygen (Field)	mg/L	0.93	0.75	0.68	N/T	0.6
Dissolved Oxygen (Lab)	mg/L	0.1	0.3	1.3	2.9	N/T
Chlorine Residual - Free (Field)	mg/L	0	0.17	0	0.21	0
Chlorine Residual - Total (Field)	mg/L	0	0.05	0	0.11	0
Color	CU	N/T	N/T	N/T	N/T	N/T
Odor	TON	8	8	2	1	N/T
Turbidity	NTU	0.76	0.94	0.74	0.9	0.57
Gross Alpha	pCi/L	2.8	2.9	2.6	2.9	N/T
Alkalinity (Total)	mg/L	227	196	181	105	261
Alkalinity (Bicarbonate)	mg/L	226	195	179	104	260
Hardness (Total)	mg/L	142	166	134	150	248
Hardness (Calcium)	mg/L	104	126	102	104	218
Hardness (Carbonate)	mg/L	142	166	134	105	248
Hardness (Non-Carbonate)	mg/L	0	0	0	45	0
Aluminum	ug/L	N/T	N/T	N/T	N/T	N/T
Ammonia	mg/L	N/T	N/T	N/T	N/T	N/T
Arsenic	ug/L	1	1	1	1	1
Chloride	mg/L	44	46	47	41	N/T
Coliform Bacteria	col./100mL	N/T	N/T	N/T	N/T	N/T
Fluoride	mg/L	1.39	0.99	1.31	1.04	N/T
ron	mg/L	0.04	0.04	0.04	0.04	N/T
Lead	ug/L	N/T	N/T	N/T	N/T	N/T
Nitrate	mg/L	N/T	N/T	N/T	N/T	N/T
Vitrite	mg/L	N/T	N/T	N/T	N/T	N/T
Sulfate	mg/L	11.9	23.5	19.2	38.9	N/T
IDS	mg/L	349	404	299	314	411
Total Sulfide	mg/L	1.2	1.5	0.5	0.8	N/T
Trihalomethanes	ug/L	0.2	0.44	0.2	2.4	N/T

ND - Not detected NT - Not tested

PARAMETERS	Unit	MW-1	MW-2	MW-3	MW-C	LM926
DATE		9/20/2006	9/20/2006	9/20/2006	9/20/2006	9/20/2006
pH (Field)	pH Units	7.58	7.42	7.62	7.5	N/T
pH (Lab)	pH Units	7.93	7.8	8.06	8.12	N/T
Specific Conductance	umhos/cm	548	549	434	420	N/T
Field Temperature	Centigrade	28.2	29.9	28.3	25.9	N/T
Dissolved Oxygen (Field)	mg/L	1.08	0.78	0.75	0.99	N/T
Dissolved Oxygen (Lab)	mg/L	0.1	0.1	1.5	1.6	N/T
Chlorine Residual - Free (Field)	mg/L	0	0.01	0.03	0.17	N/T
Chlorine Residual - Total (Field)	mg/L	0.07	0.1	0	0.08	N/T
Color	cυ	N/T	N/T	N/T	N/T	N/T
Odor	TON	8	4	1	1	N/T
Turbidity	NTU	0.67	0.72	0.66	0.58	N/T
Gross Alpha	pCi/L	N/T	N/T	N/T	N/T	N/T
Alkalinity (Total)	mg/L	225	192	186	109	N/T
Alkalinity (Bicarbonate)	mg/L	223	191	184	108	N/T
Hardness (Total)	mg/L	138	160	138	148	N/T
Hardness (Calcium)	mg/L	106	122	104	108	N/T
Hardness (Carbonate)	mg/L	138	160	138	109	N/T
Hardness (Non-Carbonate)	mg/L	0	0	0	39	N/T
Aluminum	ug/L	N/T	N/T	N/T	N/T	N/T
Ammonia	mg/L	N/T	N/T	N/T	N/T	N/T
Arsenic	ug/L	1	1	1	1	N/T
Chloride	mg/L	44.5	47	46	40.5	N/T
Coliform Bacteria	coi./100mL	N/T	N/T	N/T	N/T	N/T
Fluoride	mg/L	1.42	0.96	1.33	1.03	N/T
Iron	mg/L	0.04	0.04	0.04	0.04	N/T
Lead	ug/L	N/T	N/T	N/T	N/T	N/T
Nitrate	mg/L	N/T	N/T	N/T	N/T	N/T
Nitrite	mg/L	N/T	N/T	N/T	N/T	N/T
Sulfate	mg/L	10.4	17.2	19.8	39.1	N/T
TDS	mg/L	433	420	288	257	N/T
Total Sulfide	mg/L	1.6	1.4	0.4	0.1	N/T
Trihalomethanes	ug/L	0.2	0.2	0.2	2.3	N/T

ND - Not detected

NT - Not tested

SEPTEMBER, 2006 - CO	Unit	MW-1	AU14/ 2	M14/ 2	MIN C	1.40000
DATE			MW-2	MW-3	MW-C	LM926
		9/27/2006	9/27/2006	9/27/2006	9/27/2006	9/27/2006
pH (Field)	pH Units	7.41	7.36	7.56	7.58	N/T
pH (Lab)	pH Units	7.8	7.81	8.08	8.01	N/T
Specific Conductance	umhos/cm	573	564	444	413	N/T
Field Temperature	Centigrade	27.4	27.7	24.5	25.5	N/T
Dissolved Oxygen (Field)	mg/L	0.87	0.85	0.99	0.96	N/T
Dissolved Oxygen (Lab)	mg/L	0.4	0.1	1.3	1.7	N/T
Chlorine Residual - Free (Field)	mg/L	0	0.11	0.01	0.06	N/T
Chlorine Residual - Total (Field)	mg/L	0.05	0.02	0.04	0.1	N/T
Color	cu	N/T	N/T	N/T	N/T	N/T
Odor	TON	4	2	1	1	N/T
Turbidity	NTU	0.81	0.64	0.59	0.61	N/T
Gross Alpha	pCi/L	N/T	N/T	N/T	N/T	N/T
Alkalinity (Total)	mg/L	224	198	184	107	N/T
Alkalinity (Bicarbonate)	mg/L	223	197	182	106	N/T
Hardness (Total)	mg/L	134	162	140	146	N/T
Hardness (Calcium)	mg/L	100	120	102	104	N/T
Hardness (Carbonate)	mg/L	134	162	140	107	N/T
Hardness (Non-Carbonate)	mg/L	0	0	0	39	N/T
Aluminum	ug/L	N/T	N/T	N/T	N/T	N/T
Ammonia	mg/L	N/T	N/T	N/T	N/T	N/T
Arsenic	ug/L	1	1	1	1	N/T
Chloride	mg/L	39.2	42.6	39.7	39.2	N/T
Coliform Bacteria	col./100mL	N/T	N/T	N/T	N/T	N/T
Fluoride	mg/L	1,43	0.99	1.27	1.02	N/T
Iron	mg/L	0.18	0.04	0.04	0.04	N/T
Lead	ug/L	N/T	N/T	N/T		1
Nitrate		N/T			N/T	N/T
Nitrite	mg/L		N/T	N/T	N/T	N/T
	mg/L	N/T	N/T	N/T	N/T	N/T
	mg/L	15.9	18.3	22	38.4	N/T
TDS	mg/L	354	362	266	259	N/T
Total Sulfide	mg/L	1.4	1.6	0.3	0.1	N/T
Trihalomethanes	ug/L	1.4	0.2	0.2	0.38	N/T

SEPTEMBER 2006 - CONTINUED

ND - Not detected

NT - Not tested

PARAMETERS	Unit	MW-1	MW-2	MW-3	MW-C	LM926
DATE		10/4/2006	10/4/2006	10/4/2006	10/4/2006	10/4/2006
Trihalomethanes	ug/L	0.2	0.2	0.2	0.2	N/T
Aluminum	ug/L	N/T	N/T	N/T	N/T	N/T
Arsenic	ug/L	1	1	1	1	N/T
Alkalinity (Bicarbonate)	mg/L	219	189	180	106	N/T
Hardness (Calcium)	mg/L	102	126	106	102	N/T
Chloride	mg/L	41.5	43	40	40.5	N/T
Hardness (Carbonate)	mg/L	140	164	136	108	N/T
Color	CU	N/T	N/T	N/T	N/T	N/T
Specific Conductance	umhos/cm	462	477	370	354	N/T
Dissolved Oxygen (Field)	mg/L	1.08	1.02	0.93	0.96	N/T
Dissolved Oxygen (Lab)	mg/L	0.1	0.1	1.4	1.8	N/T
Iron	mg/L	0.04	0.04	0.04	0.04	N/T
Fluoride	mg/L	1.42	0.98	1.25	0.99	N/T
Gross Alpha	pCi/L	N/T	N/T	N/T	N/T	N/T
Ammonia	mg/L	N/T	N/T	N/T	N/T	N/T
Nitrite	mg/L	N/T	N/T	N/T	N/T	N/T
Nitrate	mg/L	N/T	N/T	N/T	N/T	N/T
Hardness (Non-Carbonate)	mg/L	0	0	0	44	N/T
Odor	TON	8	4	2	1	N/T
Lead	ug/L	N/T	N/T	N/T	N/T	N/T
pH (Field)	pH Units	7.62	7.61	7.77	7.6	N/T
pH (Lab)	pH Units	7.98	7.99	8.3	8.22	N/T
Sulfate	mg/L	17.2	20.3	22.6	37.7	N/T
Alkalinity (Total)	mg/L	221	191	182	108	N/T
TDS	mg/L	382	380	335	285	N/T
Hardness (Total)	mg/L	140	164	136	152	N/T
Total Sulfide	mg/L	0.9	1.2	0.1	0.1	N/T
Turbidity	NTU	0.54	0.73	0.65	0.89	N/T
Coliform Bacteria	col./100mL	N/T	N/T	N/T	N/T	N/T
Field Temperature	Centigrade	28.5	29.7	28.7	32.7	N/T
Chlorine Residual - Free (Field)	mg/L	0	0.08	0.05	0	N/T
Chlorine Residual - Total (Field)	mg/L	0	0.17	0.33	0.12	N/T

ND - Not detected

NT - Not tested

PARAMETERS	Unit	MW-1	MW-2	MW-3	MW-C	LM926
DATE		10/12/2006	10/12/2006	10/12/2006	10/12/2006	10/12/2006
Trihalomethanes	ug/L	0.2	0.2	0.2	0.2	N/T
Aluminum	ug/L	N/T	N/T	N/T	N/T	N/T
Arsenic	ug/L	1	1	1	1	N/T
Alkalinity (Bicarbonate)	mg/L	221	196	183	105	N/T
Hardness (Calcium)	mg/L_	104	124	100	106	N/T
Chloride	mg/L	40.5	40	41	40	N/T
Hardness (Carbonate)	mg/L	136	160	138	106	N/T
Color	CU	N/T	N/T	N/T	N/T	N/T
Specific Conductance	umhos/cm	501	499	385	365	N/T
Dissolved Oxygen (Field)	mg/L	0.93	0.96	0.81	1.01	N/T
Dissolved Oxygen (Lab)	mg/L	0.1	0.3	1.1	1.3	N/T
iron	mg/L	0.04	0.04	0.04	0.04	N/T
Fluoride	mg/L	1.49	0.96	1.28	1.04	N/T
Gross Alpha	pCi/L	2.4	2.3	2.4	2.4	N/T
Ammonia	mg/L	N/T	N/T	N/T	N/T	N/T
Nitrite	mg/L	N/T	N/T	N/T	N/T	N/T
Nitrate	mg/L	N/T	N/T	N/T	N/T	N/T
Hardness (Non-Carbonate)	mg/L	0	0	0	42	N/T
Odor	TON	8	4	1	1	N/T
Lead	ug/L	N/T	N/T	N/T	N/T	N/T
pH (Field)	pH Units	7.64	7.54	7.69	7.59	N/T
pH (Lab)	pH Units	7.44	7.38	7.71	7.85	N/T
Sulfate	mg/L	18.2	21.8	23.4	38.8	N/T
Alkalinity (Total)	mg/L	222	196	184	106	N/T
rds	mg/L	330	329	284	253	N/T
Hardness (Total)	mg/L	136	160	138	148	N/T
Total Sulfide	mg/L	1.2	1.2	0.3	0.1	N/T
Turbidity	NTU	0.75	0.63	0.49	0.5	N/T
Coliform Bacteria	col./100mL	N/T	N/T	N/T	N/T	N/T
Field Temperature	Centigrade	27.7	29.6	30	28.5	N/T
Chlorine Residual - Free (Field)	mg/L	0.03	0.19	0.09	0.23	N/T
Chlorine Residual - Total (Field)	mg/L	0	0.05	0.1	0.1	N/T

OCTOBER, 2006 - CONTINUED

ND - Not detected

NT - Not tested

OCTOBER, 2006 - CONTINUED										
PARAMETERS	Unit	MW-1	MW-2	MW-3	MW-C	LM926				
DATE		10/19/2006	10/19/2006	10/19/2006	10/19/2006	10/19/2006				
Trihalomethanes	ug/L	0.2	0.2	0.2	0.2	N/T				
Aluminum	ug/L	N/T	N/T	N/T	N/T	N/T				
Arsenic	ug/L	1	1	1	1	1				
Alkalinity (Bicarbonate)	mg/L	224	192	179	111	258				
Hardness (Calcium)	mg/L	100	122	102	104	214				
Chloride	mg/L	42	40.5	38	38.5	N/T				
Hardness (Carbonate)	mg/L	138	164	142	112	242				
Color	CU	N/T	N/T	N/T	N/T	N/T				
Specific Conductance	umhos/cm	497	563	406	404	581				
Dissolved Oxygen (Field)	mg/L	0.26	0.69	0.73	1.43	0.88				
Dissolved Oxygen (Lab)	mg/L	0.1	0.1	1.2	2.4	N/T				
ron	mg/L	0.04	0.04	0.04	0.04	N/T				
luoride	mg/L	1.48	1.05	1.37	1.08	N/T				
Gross Alpha	pCi/L	N/T	N/T	N/T	N/T	N/T				
Ammonia	mg/L	N/T	N/T	N/T	N/T	1				
litrite	mg/L	N/T	N/T	N/T	N/T	N/T				
litrate	mg/L	N/T	N/T	N/T	N/T	N/T				
lardness (Non-Carbonate)	mg/L	0	0	0	38	0				
Ddor	TON	8	4	1	1					
ead	ug/L	N/T	N/T	N/T	і N/T	N/T				
H (Field)	pH Units	7.56	7.6	7.67	7.68	N/T				
H (Lab)	pH Units	7.66	7.56	7.82	7.75	7.39				
ulfate	mg/L	15.8	22.2	24.5		7.14				
Ikalinity (Total)	mg/L	225	193		39.3	N/T				
DS	mg/L	323	342	180 259	112	258				
ardness (Total)	mg/L	138	164		255	409				
otal Sulfide	mg/L	1.2	104	142	150	242				
urbidity	NTU		0.81	0.3	0.1	N/T				
oliform Bacteria				0.8	1.2	1.63				
ield Temperature	Centigrade		N/T	<u>N/T</u>	N/T	N/T				
hlorine Residual - Free (Field)	mg/L	26.7 0	26.4	26.4	26.6	25.8				
hlorine Residual - Total (Field)	mg/L		0 0	0 0	N/T	0 0				

OCTOBER, 2006 - CONTINUE

ND - Not detected

NT - Not tested

PARAMETERS	Unit	MW-1	MW-2	MW-3	MW-C	LM926
DATE		10/26/2006	10/26/2007	10/26/2008	10/26/2009	10/26/2010
Trihalomethanes	ug/L	0.2	0.2	0.28	0.3	N/T
Aluminum	ug/L	N/T	N/T	N/T	N/T	N/T
Arsenic	ug/L	1	1	1	1	N/T
Alkalinity (Bicarbonate)	mg/L	228	- 197	185	109	N/T
Hardness (Calcium)	mg/L	102	120	104	100	N/T
Chloride	mg/L	40.5	42	39	40	N/T
Hardness (Carbonate)	mg/L	140	162	140	110	N/T
Color	CU	N/T	N/T	N/T	N/T	N/T
Specific Conductance	umhos/cm	468	465	355	368	N/T
Dissolved Oxygen (Field)	mg/L	1.64	1.19	1.35	0.96	N/T
Dissolved Oxygen (Lab)	mg/L	1.3	0.9	3.4	1.5	N/T
iron	mg/L	0.04	0.04	0.04	0.04	N/T
Fluoride	mg/L	1.45	1.03	1.34	1.06	N/T
Gross Alpha	pCi/L	N/T	N/T	N/T	N/T	N/T
Ammonia	mg/L	N/T	N/T	N/T	N/T	N/T
Nitrite	mg/L	N/T	N/T	N/T	N/T	N/T
Nitrate	mg/L	N/T	N/T	N/T	N/T	N/T
Hardness (Non-Carbonate)	mg/L	0	o	0	44	N/T
Odor	TON	8	4	1	1	N/T
Lead	ug/L	N/T	N/T	N/T	N/T	N/T
pH (Field)	pH Units	7.62	7.54	7.69	7.7	N/T
pH (Lab)	pH Units	7.67	7.71	7.97	7.96	N/T
Sulfate	mg/L	8.95	18.4	26.5	40.3	N/T
Alkalinity (Total)	mg/L	229	198	187	110	N/T
TDS	mg/L	328	350	269	262	N/T
Hardness (Total)	mg/L	140	162	140	154	N/T
Total Sulfide	mg/L	1.3	1.6	0.3	0.1	N/T
Turbidity	NTU	0.16	0.74	0.31	0.77	N/T
Coliform Bacteria	col./100mL	N/T	N/T	N/T	N/T	N/T
Field Temperature	Centigrade	20.2	27.4	24.9	28.7	N/T
Chlorine Residual - Free (Field)	mg/L	0	0	0.06	0	N/T
Chlorine Residual - Total (Field)	mg/L	0	0	0	0	N/T

OCTOBER, 2006 - CONTINUED

ND - Not detected NT - Not tested NA - Not available, lab report pending