HYDROLOGIC ASSOCIATES U.S.A., INC. ENVIRONMENTAL CONSULTANTS

February 2, 1995

Mr. Gene McLoughlin, P.E.

MDWASA

P.O. Box 330316

Miami, Florida 33233-0316

Dear Mr. McLoughlin,

The purpose of this letter report is to describe the procedures used and the results obtained from quantitative hydraulic analysis of possible monitoring zones penetrated by Injection well I-

3N. The straddle packer tests and subsequent hydraulic analyses were conducted in the zones

of the aquifer between 2060 to 2120, 1420 to 1480, 1320 to 1380 and 1210 to 1270 feet below

land surface (BLS).

METHOD

A straddle packer was used to isolate the test zone for drawdown and recovery tests.

Stress was imposed on the hydraulic system with a 4 inch submersible pump and water level

changes were measured in the drill stem with a pressure transducer and recorded on a Hermit

1000-C data logger. Prior to each test, the well was developed by pumping the formation fluid

until the specific conductance stabilized. Specific conductance readings taken during

development and the tests are included in Appendix I. Please note that due to the high

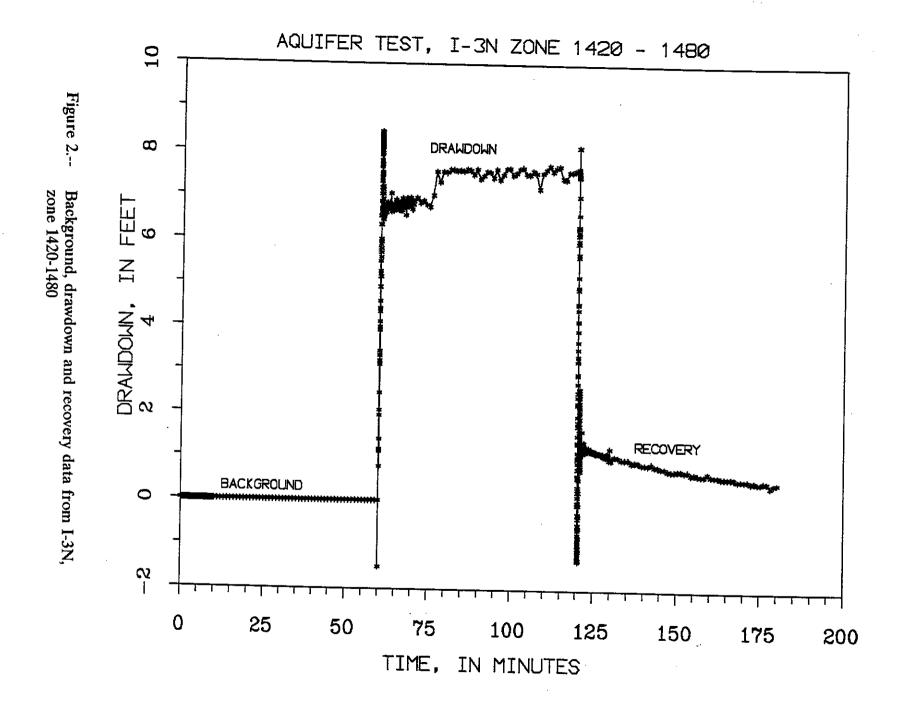
transmissivity of these zones over recovery with subsequent sinusidal oscillations of water levels

occured making analysis difficult. Values should be considered an estimate. The well was

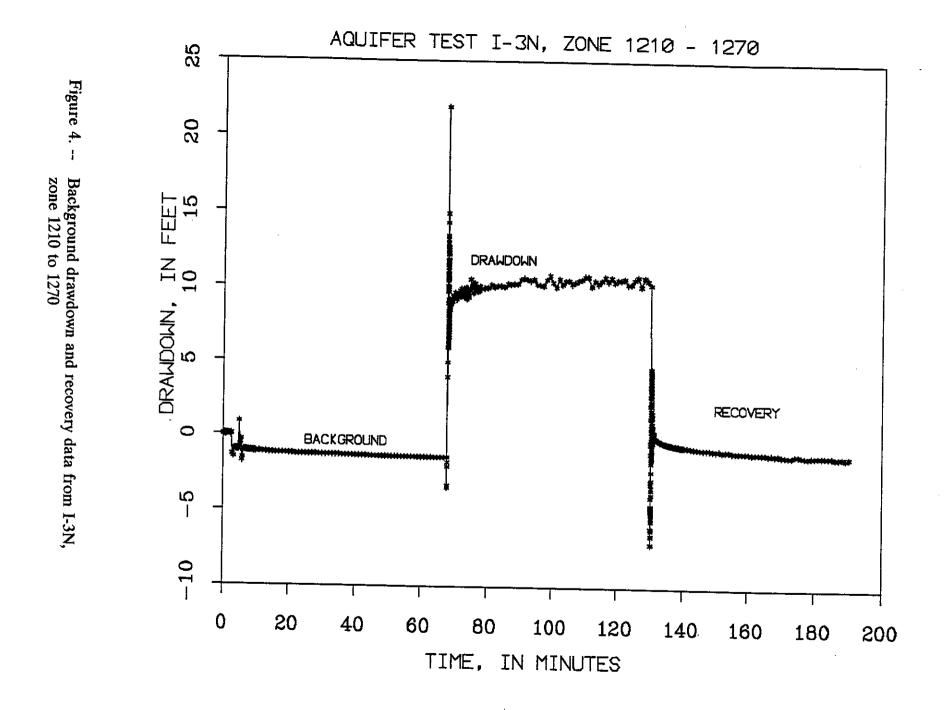
allowed to recover from development before performing the tests.

Water quality samples were collected at the end of each test. Parameters included;

chlorides, total dissolved solids, alkalinity, hydrogen sulfide, all nitrogen species, ammonia, zinc,


sulfate, ph and color. Laboratory analysis sheets are included in Appendix III.

BACKGROUND


A 12 inch pilot hole was drilled below casing to a depth of 2200 feet below land surface. A suite of geophysical logs were run and, together with the borehole cutting samples, the test zones were selected by the WASA project hydrogeologist. Zones were selected between 2060-2120, 1420-1480, 1320-1380 and 1210-1270 feet below land surface. Each zone was isolated with an inflatable straddle packer. The packer is made up of 2, 15 foot packers separated by a 60 foot length of drill stem. Ten feet of perforated drill stem is open to the formation between the two packer elements.

The packer assembly was lowered on the drill stem into the original pilot hole to the tested interval of 2060-2120 feet B.L.S. The packer elements were then inflated. A submersible pump was then installed in the drill stem to develop the formation fluids between the packer elements. After seven hours of pumping, a constant specific conductance of 35,000 umhos was reached. The well was allowed to recover to its initial antecedent conditions. The well was then pumped while drawdown data was recorded. After the pumping was discontinued, recovery data were recorded until formation water level had again reached antecedent conditions. Background, drawdown and recovery water level data is graphed on Figure 1. Raw data are presented in Appendix II.

The packer assembly was then raised to the 1420-1480 feet below land surface zone. The same procedure as above was then followed for this and subsequent zones. Background, drawdown and recovery water level data is graphed on Figure 2, for zone 1420 to 1480, Figure 3 for zone 1320 to 1380 and Figure 4 for zone 1210 to 1270.

DATA ANALYSIS

Two methods of data analysis are used to calculate the transmissivity for each packer setting.

- 1. Cooper-Jacob Analysis
- 2. Theis Recovery Analysis

1. Cooper-Jacob Analysis

The Cooper-Jacob method (figures 5, 6, 7, and 8) (Todd, 1980 p. 129) was used to compute a transmissivity value. The equation is as follows:

$$T = \frac{(2.3) (Q)}{(4) (\pi) (\Delta S_l)}$$
 where Q=discharge in cubic feet per day ΔS_l =drawdown over one log cycleof time

The data were plotted on semi-log paper (s verses log t) and a straight line fitted to the data.

Using the observed drawdown over a single log cycle, (ΔS_{i}), the transmissivity can be determined from the equation given by Todd (1980, p. 130) as:

Zone.2060-2120

Zone 1420-1480

$$T = \frac{(2.3) (18191.2) ft^3/day}{(4) (3.1416) (1.35 ft)}$$

$$T = 2461 ft^2/day$$

$$T = 2461 ft^2/day$$

$$T = 2461 ft^2/day$$

$$T = 11957 ft^2/day$$

Zone 1320-1380

Zone 1210-1270

$$T = \frac{(2.3) (18072.2) ft^3/day}{(4) (3.1416) (1.8 ft)}$$

$$T = \frac{(2.3) (18691.7) ft^3/day}{(4) (3.1416) (1 ft)}$$

$$T = 1836 \text{ ft}^2/\text{day}$$

$$T = 3412 \text{ ft}^2/\text{day}$$

Using a unit thickness of 60 ft., the horizontal hydraulic conductivity is:

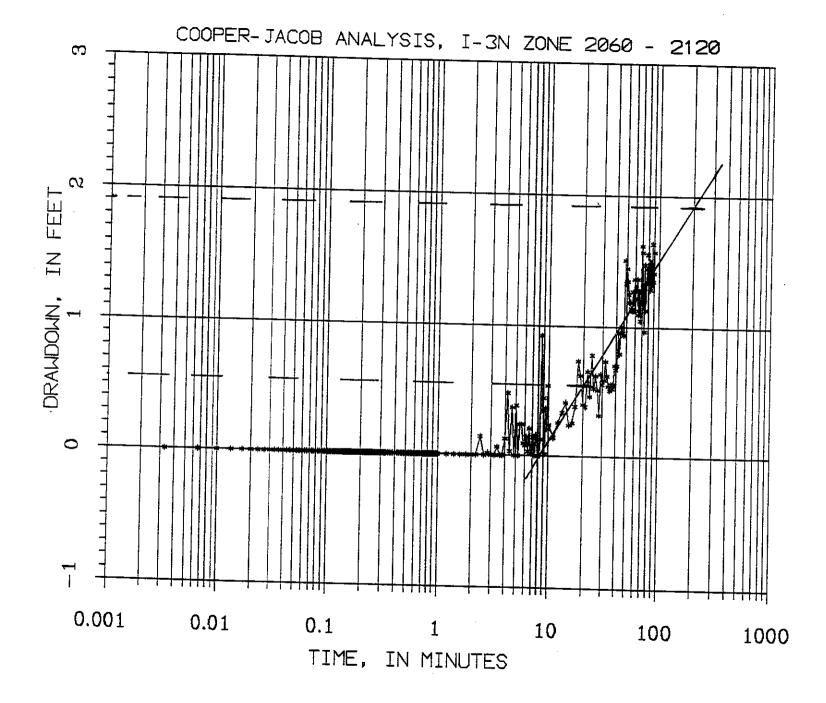
Zone 2060-2120

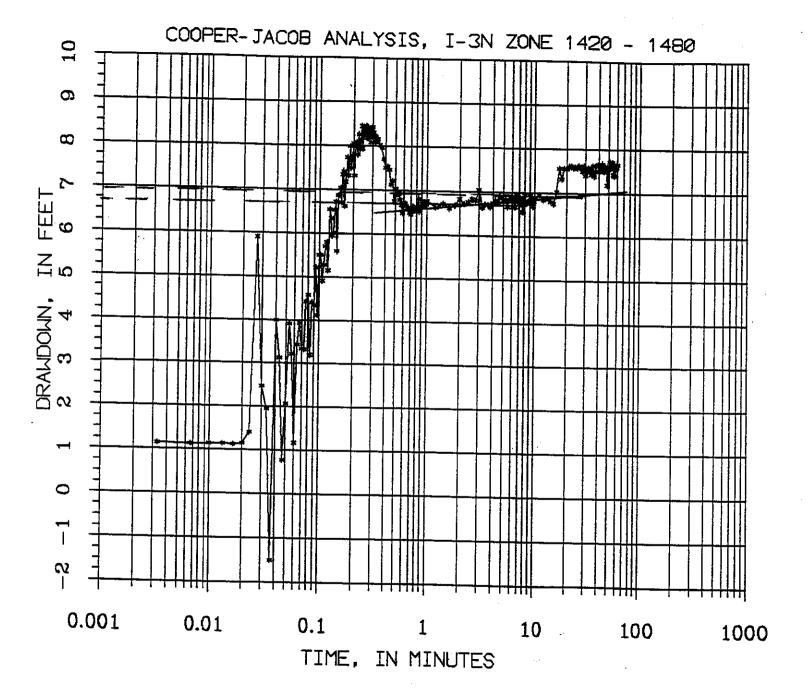
Zone 1420-1480

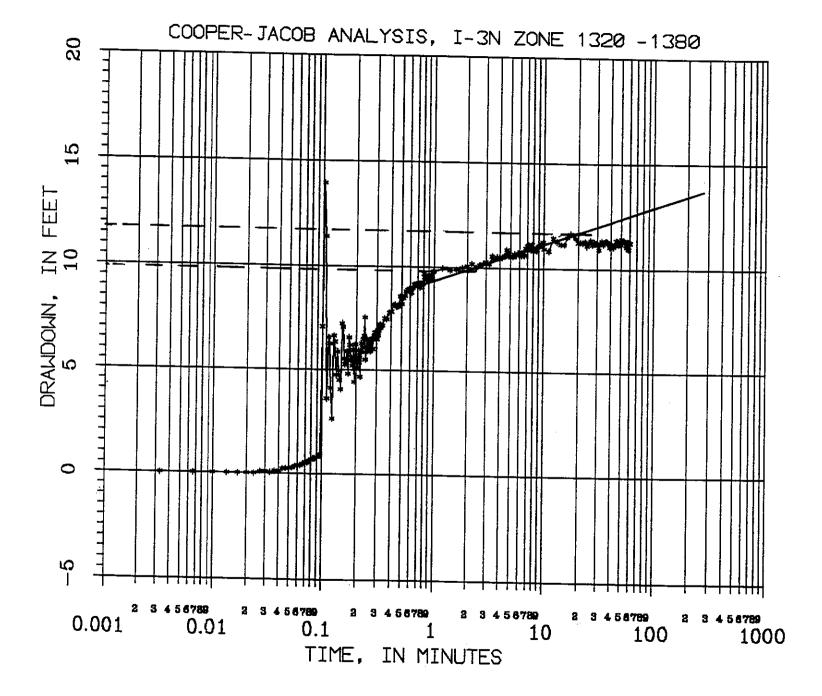
K =41 ft/day K =

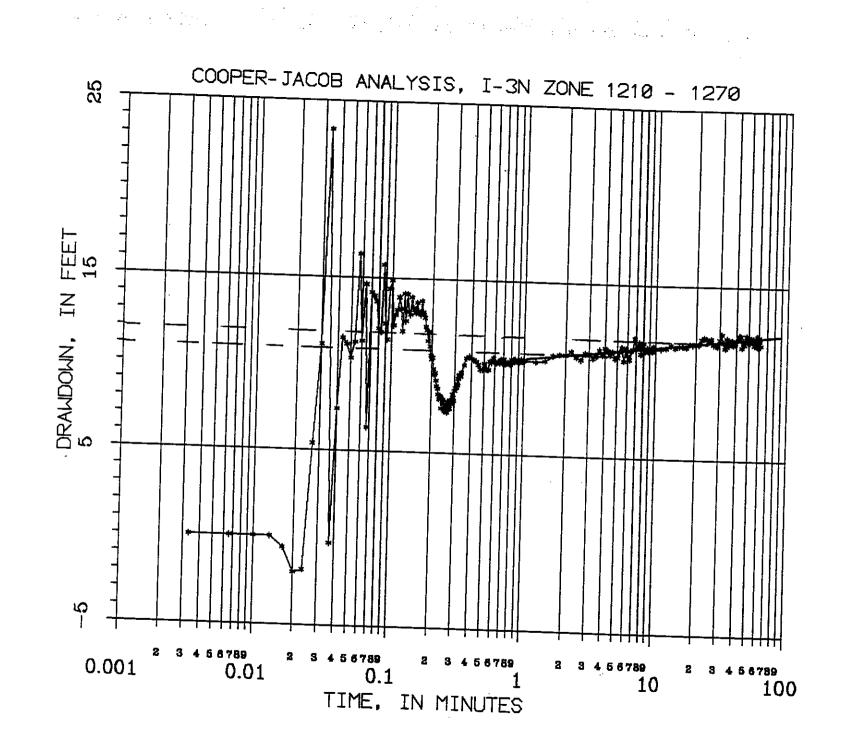
1.5 X 10⁻² cm/sec. K =

199.3 ft/day 7.1 X 10⁻² cm/sec. K =


Zone 1320-1380


Zone 1210-1270


K = 30.6 ft/day $K = 1.1 \times 10^{-2} \text{ cm/sec}$


56.9 ft/day K =

K = 2.0 X 10⁻² cm/sec

2. Theis Recovery Analysis

The Theis Method was used to analyze recovery in the well after the pump was shut down, using the method as described in Todd (1980 p. 133). Residual drawdown, s', was plotted against the log of the ratio of time from the start of pumping to the time of shut down (t/t') (see Figures 9, 10, 11, and 12).

A straight line was fitted to the early time data and the change in residual drawdown over a single log cycle (s') was calculated. Transmissivity was then determined from the equation: Todd (1980, p.134):

$$T = \frac{2.3 \ (Q) \ ft^3/day}{(4)(\pi)(S'/ft)}$$

Zone 2060-2120

Due to rapid recovery, this analysis could not be used for this zone. This indicates a very high T value.

Zone 1320-1380

 $T = \frac{(2.3) (18037.2) ft^3 / day}{(4) (3.1416) (.75 ft)}$

 $T = \frac{4413 \text{ ft}^2}{\text{day}}$

Zone 1420-1480

 $T = \frac{(2.3) (16324) ft^3/day}{(4) (3.1416) (.52 ft)}$

 $T = 5776 \text{ ft}^2/\text{day}$

Zone 1210-1270

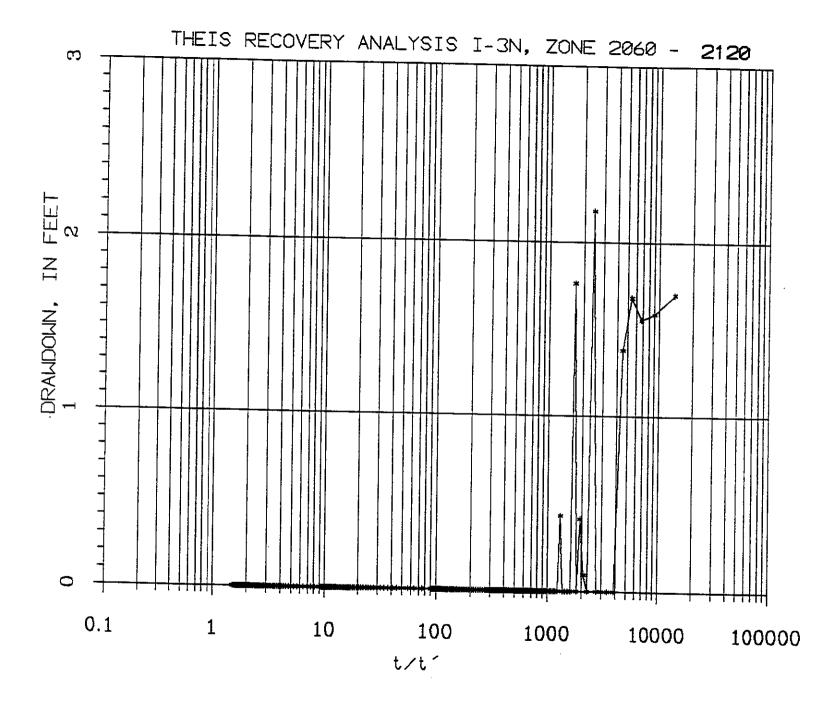
 $T = \frac{(2.3) (18691.7)ft^3/day}{(4) (3.1416) (.65 ft)}$

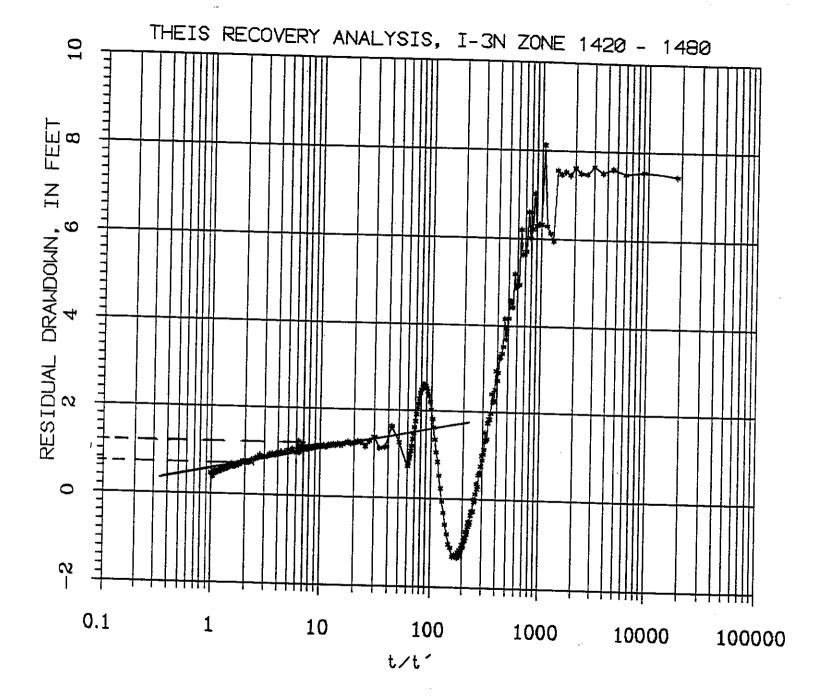
 $\Gamma = 5243 \text{ ft}^2/\text{day}$

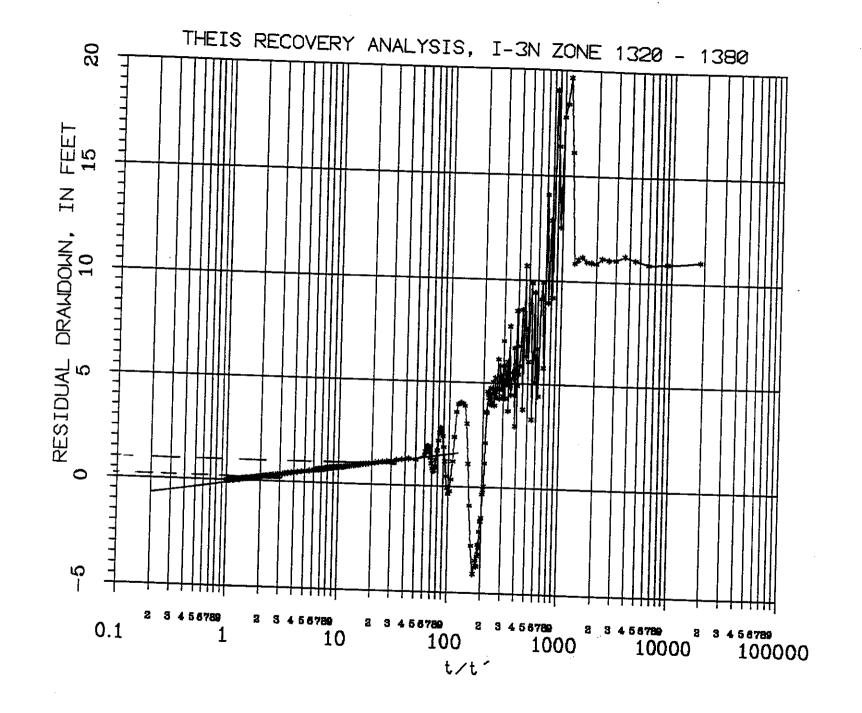
Horizontal hydraulic conductivity is calculated by dividing T by the unit thickness of 60

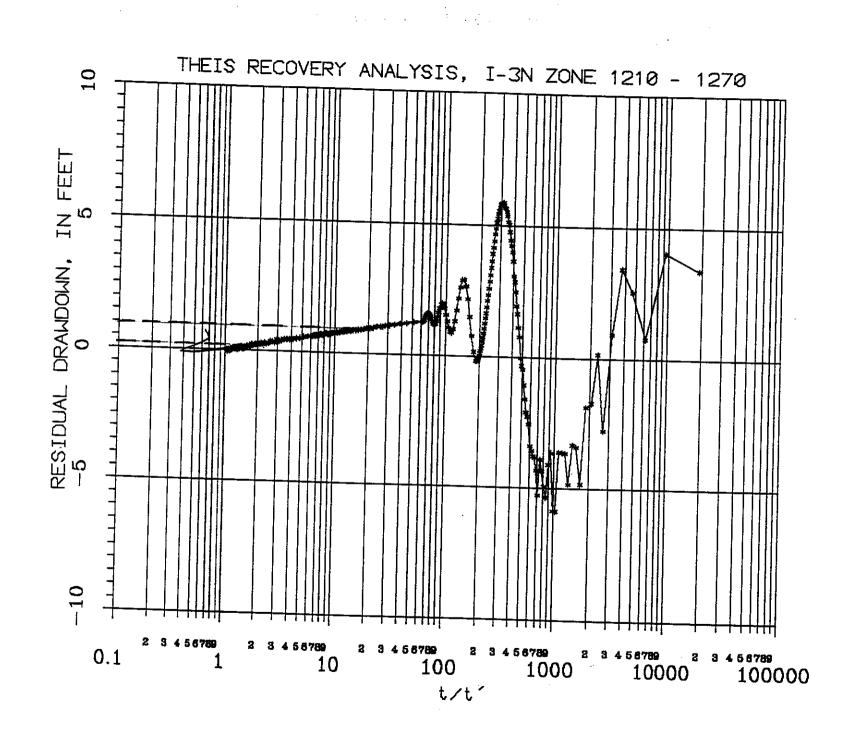
ft.

Zone 2010-2120 Zone 1420-1480


K =N/A


96 ft/day 3.4 X 10⁻² cm/sec K =N/A


Zone 1320-1380 Zone 1210-1270


73.6 ft/day 2.6 X 10⁻² cm/sec $\mathbf{K} =$

87.4 ft/day 3.1 X 10⁻² cm/sec K =

Analytical results of the tests are summarized as follows:

Hydraulic Conductivity

Zon	e 2060-2120		Zone 1420-1480
Cooper-Jacob	= 1.5 X 10 ⁻² cm/sec	=	7.1 X 10 ⁻² cm/sec
Theis Recovery	= N/A		3.4 X 10 ⁻² cm/sec
Zon	e 1320-1380		Zone 1210-1270
Cooper-Jacob	= $1.1 \times 10^{-2} \text{ cm/sec}$	= =	2.0 X 10 ⁻² cm/sec
Theis Recovery	= $2.6 \times 10^{-2} \text{ cm/sec}$		3.1 X 10 ⁻² cm/sec

If you have any questions or comments please feel free to contact me or Leo Swayze.

Sincerely,

Edmand B. Workman, P.G.

EBW/lb

CERTIFICATION

I hereby certify that I have examined this document, and attest that it has been prepared in accordance with good geological practices.

Edmand B. Workman, P.G.

Hydrogeologist/Project Manager

B. 20 A. 145/25 A. 1/31/25

Date: 01/31/95

Registration # 1450

State: Florida

Appendix I Specific Conductance Stabilization Data

I-3N Zone 2060' - 2110 1/16/95

TIME	<u>TEMP ⁰C</u>	SALINITY (ppt NaCl)	CONDUCTIVITY umhos X 100K
10:00	21	24	.35
10:15	20	25	.34
12:30	21	25	.34
12:45	21	26	.36
1:00	21	26	.34
1:15	21	26	.35
1:30	21	26	.35
1:45	21	26	.35
2:00	21	26	.36
2:15	21	26	.36
2:30	20.5	26	.36
2:45	20.5	26	.35
3:00	20	26	.35
3:15	20	26	.35
3:30	20	26	.35
3:45	20	26	.35
4:00	20	26	.35
4:15	20	26	.35
4:30	20	26	.35
4:45	20	26	.35
5:00	20	26	.35

Packer Test

6:41	20	27	.36
6:55	21	27	.36
7:10	19	26	.35
7:25	19	26	.34
7:40	19	27	.34
7:55	19	27	.34
8:05	19	27	.34

I-3N Zone 1420-1480 1/17/95

TIME	TEMP°C	SALINITY (ppt NaCl)	CONDUCTIVITY X 100K
5:15 am	22	23.5	.34
5:30	20	22.5	.32
5:45	20	22.5	.32
6:00	20	22.5	.32
6:15	20	22.5	.32
6:30	20	22.5	.32
7:00	20	22.5	.32
7:15	20	24	.32
7:30	17	25	.33
7:45	17	25	.33
8:00	17	25	.33
8:15	17	25	.33
8:30	17	25	.33
8:45	17	25	.33
9:00	17	25	.33
9:30	17	25	.33
10:00	17	25	.33
10:30	17	25	.33
11:00	18	24	.33
		Packer Test	
1:10	21	24	.34
1:25	21	24	.34
1:40	20	24	.33

Restart

4:55	23	24	.35
5:05	20	22	.32
5:20	19	22	.31
		Restart again	
5:45	19	22	.31
6:00	20	22	.31
6:15	19	22	.31
6:30	19	22	.31
6:45	19	18	.26

I-3N Zone 1320-1380 1/18/95

TIME	<u>TEMP⁰C</u>	SALINITY (NaCl)	CONDUCTIVITY X100K
7:30	16.5	12	.17
7:40	16	12	.17
7:50	16	12	.17
8:00	17	12	.17
8:10	17	12	.17
8:20	17	11	.17
8:30	18	11	.16
8:40	18	11	.16
8:50	18	11	.15
9:00	18	11	.16
9:00	18	11	.16
9:10	18	11	.16
9:20	17	11	.16
9:30	18	11	.16
9:40	18	11	.16
9:50	18	11	.16
10:00	18	11	.16
10:10	18	11	.16
10:20	18	11	.16
10:30	18	11	.16.5
10:40	18	11	.16.5
10:50	18	11	.16.5
11:00	18	11	.16.5
11:10	18	11	.16.5
11:20	18	11	.16.5

Appendix II Raw Aquifer Test Data

SE1000C Environmental Logger 01/17 08:16

Unit# 91513 Test 0

setups:	INPUT 1
Type	Level (F
Mode	TOC
I.D.	00000
Reference	0.000
Linearity	0.090
Scale factor	50.170
Offset	0.120
Delay mSEC	50.000

Step 0	01	/16	17	:3	6:	03
--------	----	-----	----	----	----	----

Clapsed Time	INPUT 1
0.0000	0.000
0.0033	0.000
0.0066	0.000
0.0100	0.000
0.0133	0.000
0.0166	0.000
0.0200	0.000
0.0233	0.000
0.0266	0.000
0.0300	0.000
0.0333	0.000
0.0366	0.000
0.0400	0.000
0.0433	0.000
0.0466	0.000
0.0500	0.000
0.0533 0.0566	0.000
0.0566	0.000
0.0633	0.000 0.000
0.0666	0.000
0.0700	0.000
0.0733	0.000
0.0766	0.000
0.0800	0.000
0.0833	0.000
0.0866	0.000
0.0900	0.000
0.0933	0.000
0.0966	0.000
0.1000	0.000
0.1033	0.000
0.1066	0.000
0.1100	0.000
0.1133	0.000
0.1166	0.000
0.1200	0.000

42.0000	0.000
43.0000	0.000
44.0000	0.000
45.0000	0.000
46.0000	0.000
47.0000	0.000
48.0000	0.000
49.0000	0.000
50.0000	0.000
51.0000	0.000
52.0000	0.000
53.0000	0.000
54.0000	0.000
55.0000	0.000
56.0000	0.000
57.0000	0.000
58.0000	0.000
59.0000	0.000
60.0000	0.000

SE1000C Environmental Logger 01/17 08:20

Unit# 91513 Test 1

Setups:	INPUT	1
Type Mode I.D.	Level TOC 00000	(F)
Reference Linearity Scale factor Offset Delay mSEC	0.0 0.0 50.1 0.1 50.0	90 .70 .20

Step 0 01/16 18:36:55

	•	01,10		-
laps	eđ	Time	INPUT	1
	000			
	003		0.0	
	003		0.0	
	010		0.00	
	013		0.00	
	016		0.00	
	020		0.0	
	023		0.00	
	026	_	0.00	
	030		0.00	
0.	033	3	0.00	
0.	036	6	0.00	00
	040		0.00	00
	043		0.00	
	046		0.00	
	050		0.00	
	053		0.00	
	056		0.00	
	060		0.00	
	063		0.00	
	066		0.00	
	070 073		0.00	
	073 076		0.00	
	080		0.00	
	083		0.00	
	086		0.00	
	090		0.00	
	093		0.00	
	096		0.00	
	100		0.00	
	103		0.00	_
	L06		0.00	
	110		0.00	
	113		0.00	
0.1	L16	6	0.00	
0.1	L20	0	0.00	0

0.1233 0.1266 0.1300 0.1333 0.1366 0.1400 0.1433 0.1466 0.1500 0.1533 0.1566 0.1600 0.1633 0.1666 0.1700 0.1733 0.1766 0.1800 0.1833 0.1866 0.1900 0.1933 0.1966 0.2000 0.2033 0.2066 0.2100 0.2133 0.2166 0.2200 0.2233 0.2266 0.2300 0.2333 0.2466 0.2400 0.2433 0.2466 0.2500 0.2533 0.2666 0.2700 0.2733 0.2666 0.2700 0.2733 0.2666 0.2700 0.2733 0.2666 0.2700 0.2733 0.2666 0.2700 0.2733 0.2666 0.2700 0.2733 0.2666 0.2700 0.2733 0.2666 0.2700 0.2733 0.2666 0.2700 0.2733 0.2666 0.2700 0.2733 0.2666 0.2700 0.2633 0.2666 0.2700 0.2733 0.2666 0.2700 0.2733 0.2666 0.2700 0.2733 0.2666 0.2700 0.2733 0.2666 0.2700 0.2733 0.2666 0.2700 0.2933 0.2966 0.2900 0.2933 0.2966 0.2900	0.000 0.000
0.2933 0.2966	0.000 0.000

0.3233	0.000
0.3266	0.000
0.3300	0.000
0.3333	0.000
0.3500	0.000
0.3666	0.000
0.3833	0.000
0.4000	0.000
0.4166	0.000
0.4333	0.000
0.4500	0.000
0.4666	0.000
0.4833	
0.5000	0.000 0.000
0.5166	0.000
0.5333	0.000
0.5500	
	0.000
0.5666	0.000
0.5833	0.000
0.6000	0.000
0.6166	0.000
0.6333	0.000
0.6500	0.000
0.6666	0.000
0.6833	0.000
0.7000	0.000
0.7166	0.000
0.7333	0.000
0.7500	0.000
0.7666	0.000
0.7833	0.000
0.8000	0.000
0.8166	0.000
0.8333	0.000
0.8500	0.000
0.8666	0.000
0.8833	0.000
0.9000	0.000
0.9166	0.000
0.9333	0.000
0.9500	0.000
0.9666	
0.9833	0.000
1.0000	0.000
	0.000
1.2000	0.000
1.4000	0.000
1.6000	0.000
1.8000	0.000
2.0000	0.000
2.2000	0.000
2.4000	0.142
2.6000	0.000
2.8000	0.016
3.0000	0.000
3.2000	0.000
3.4000	0.064
8.6000	0.000
8.8000	0.000
.0000	0.126
.2000	
2 0 0 0	0.476

4.6000 4.8000 5.0000 5.2000 5.4000 5.6000 5.8000 6.0000 6.2000 6.4000 6.6000 7.0000 7.2000 7.4000 7.6000 7.8000 8.0000 8.0000 8.0000 8.0000 9.2000 9.4000 9.6000 9.8000 10.0000 11.0000 11.0000 12.0000 13.0000 14.0000 15.0000 17.0000 17.0000 18.0000 17.0000 20.0000 21.0000	0.000 0.382 0.000 0.238 0.0238 0.025 0.080 0.0142 0.031 0.020 0.142 0.016 0.142 0.016 0.142 0.016 0.126 0.142 0.016 0.126 0.142 0.016 0.127 0.016 0.128 0.142 0.016 0.142 0.016 0.142 0.016 0.142 0.016 0.142 0.016 0.142 0.016 0.142 0.016 0.142 0.016 0.142 0.016 0.142 0.016 0.142 0.016 0.142 0.016 0.142 0.016 0.142 0.016 0.142 0.016 0.142 0.016
30.0000	0.556
31.0000	0.588
32.0000	0.730
33.0000	0.620

42.0000	0.952
43.0000	0.794
44.0000	0.952
45.0000	1.001
46.0000	0.952
47.0000	0.937
48.0000	1.509
49.0000	1.335
50.0000	1.446
51.0000	1.351
52.0000	1.254
53.0000	1.191
54.0000	1.191
55.0000	
56.0000	1.144
	1.127
57.0000	1.271
58.0000	1.127
59.0000	1.366
60.0000	1.223
61.0000	1.303
62.0000	1.287
63.0000	1.366
64.0000	1.096
65.0000	1.127
66.0000	1.271
67.0000	1.049
68.0000	1.287
69.0000	1.620
70.0000	1.573
71.0000	1.191
72.0000	1.318
73.0000	0.968
74.0000	1.477
75.0000	1.127
76.0000	1.335
77.0000	1.446
78.0000	1.351
79.0000	1.556
80.0000	
81.0000	1.462 1.366
82.0000	1.509
83.0000	1.287
84.0000	
85.0000	1.477
86.0000	1.318
	1.351
87.0000	1.636
88.0000	1.351
89.0000	1.413
90.0000	1.573

SE1000C Environmental Logger 01/17 08:27

Unit# 91513	Test 2
Setups:	INPUT 1
Type Mode I.D.	Level (F)
Reference Linearity Scale factor Offset Delay mSEC	0.000 0.090 50.170 0.120 50.000
Step 0 01/16	20:08:06
Elapsed Time	INPUT 1
0.0000 0.0033 0.0066	1.891 1.446 1.700

rapsea	TIME	INFUL	Т
0.000		1.8	
0.003		1.4	
0.006		1.7	
0.010		1.5	
0.013		1.5	
0.016		1.6	
0.020		1.3	
0.023 0.026		0.0	
0.026		0.0	
0.030		0.00	
0.035		0.00 2.17	
0.040		0.00	
0.043		0.09	
0.046		0.41	
0.050		0.00	
0.053		1.76	
0.056		0.00	
0.060		0.00	
0.0633		0.00	
0.0666	5	0.00	
0.0700		0.42	
0.0733		0.00	
0.0766		0.00	
0.0800		0.00	0
0.0833		0.00	0
0.0866		0.00	
0.0900		0.00	
0.0933		0.00	
0.0966		0.00	
0.1000		0.00	
0.1033		0.00	
0.1066		0.00	
0.1100		0.00	
0.1133		0.00	
0.1166		0.000	
0.1200		0.00	0

4.4000 4.6000 4.8000 5.0000 5.2000 5.4000 5.6000 6.0000 6.2000 6.4000 6.6000 7.0000 7.2000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
8.6000 8.8000 9.0000 9.2000 9.4000 9.6000 9.8000 10.0000 11.0000 12.0000 13.0000 16.0000 17.0000 18.0000 21.0000 21.0000 21.0000 22.0000 23.0000 24.0000 25.0000 26.0000 27.0000 28.0000 29.0000 31.0000	0.000 0.000

42.0000	0.000
43.0000	0.000
44.0000	0.000
45.0000	0.000
46.0000	0.000
47.0000	0.000
48.0000	0.000
49.0000	0.000
50.0000	0.000
51.0000	0.000
52.0000	0.000
53.0000	0.000
54.0000	0.000
55.0000	0.000
56.0000	0.000
57.0000	0.000
58.0000	0.000
59.0000	0.000
60.0000	0.000

 $(x_1,x_2,x_3,\dots,x_n) = (x_1,x_2,\dots,x_n) + (x_1,x$

SE1000C Environmental Logger 01/18 08:20

Unit# 91513 Test 0

Setups:	INPUT 1	
Type	Level (F)	
Mode	TOC	
I.D.	00000	
Reference	0.000	
Linearity Scale factor	0.090	
Offset	50.170 0.120	
Delay mSEC	50.000	
Step 0 01/17	12:03:30	
Elapsed Time	INPUT 1	
0.0000	0.000	
0.0033	0.000	
0.0066	0.000	
0.0100 0.0133	0.000 0.000	
0.0166	0.000	
0.0200	0.000	
0.0233	0.000	
0.0266	0.000	
0.0300 0.0333	0.000 0.000	
0.0366	0.000	
0.0400	0.000	
0.0433	0.000	
0.0466 0.0500	0.000 0.000	
0.0533	0.000	
0.0566	0.000	
0.0600	0.000	
0.0633	0.000	
0.0666 0.0700	0.000 0.000	
0.0733	0.000	
0.0766	0.000	
0.0800	0.000	
0.0833 0.0866	0.000	
0.0866	0.000 0.000	
0.0933	0.000	
0.0966	0.000	
0.1000	0.000	
0.1033 0.1066	0.000 0.000	
0.1100	0.000	
0.1133	0.000	
0.1166	0.000	
0.1200	0.000	
0.1233	0.000	
0.1266 0.1300	0.000	
0.1333	0.000 0.000	
0.1366	0.000	

0.1466 0.1500 0.1533 0.1566 0.1600 0.1633 0.1666 0.1700 0.1733 0.1766 0.1800 0.1833 0.1866 0.1900 0.1933 0.2066 0.2000 0.2133 0.2166 0.2200 0.2133 0.2166 0.2200 0.2233 0.2266 0.2333 0.2266 0.2333 0.2466 0.2400 0.2433 0.2466 0.2500 0.2533 0.2666 0.2500 0.2533 0.2666 0.2700 0.2633 0.2666 0.2700 0.2733 0.2666 0.2700 0.2733 0.2666 0.2700 0.2733 0.2666 0.2700 0.2733 0.2666 0.2700 0.2733 0.2666 0.2700 0.2733 0.2666 0.2700 0.2733 0.2666 0.2700 0.2733 0.2666 0.2700 0.2733 0.2666 0.2700 0.2733 0.2666 0.2700 0.2733 0.2666 0.2700 0.2733 0.2666 0.2700 0.2733 0.2666 0.2700 0.2733 0.2766 0.2800 0.2833 0.2866 0.2900 0.2933 0.2966 0.3000 0.3033 0.3066 0.3000 0.3033 0.3066 0.3000 0.3033 0.3066 0.3000 0.3033 0.3066 0.3000 0.3033 0.3066 0.3000 0.3033 0.3066 0.3000 0.3033 0.3066 0.3000 0.3033 0.3066 0.3000 0.3033 0.3066 0.3000 0.3033 0.3066 0.3000 0.3033 0.3066 0.3000 0.3033 0.3066 0.3000 0.3033 0.3066 0.3000 0.3033 0.3066 0.3000 0.3033 0.3066 0.3103	0.000 0.000
0.3100	0.000
0.3133	0.000
0.3166	0.000
0.3200	0.000
0.3233	0.000
0.3266	0.000
0.3300	0.000
0.3333	0.000
0.3500 0.3666 0.3833	0.000
0.4000 0.4166	0.000 0.000 0.000
0.4333	0.000
0.4500	0.000

	•	
8.2000	0.000	
8.4000	0.000	
8.6000	0.000	
8.8000	0.000	
9.0000	0.000	
9.2000		
	0.000	
9.4000	0.000	
9.6000	0.000	
9.8000	0.000	
10.0000	0.000	
11.0000	0.000	
12.0000	0.000	
13.0000	0.000	
14.0000	0.000	
15.0000	0.000	
16.0000	0.000	
17.0000	0.000	
18.0000	0.000	
19.0000	0.000	
20.0000	0.000	
21.0000	0.000	
22.0000	0.000	
23.0000	0.000	
24.0000	0.000	
25.0000	0.000	
26.0000	0.000	
27.0000	0.000	
28.0000	0.000	
29.0000	0.000	
30.0000	0.000	
31.0000	0.000	
32.0000	0.000	
33.0000	0.000	
34.0000	0.000	
35.0000	0.000	
36.0000	0.000	
37.0000	0.000	
38.0000	0.000	
39.0000	0.000	
40.0000	0.000	
41.0000	0.000	
42.0000	0.000	
43.0000	0.000	
44.0000	0.000	
45.0000	0.000	
46.0000	0.000	
47.0000		
48.0000	0.000	
	0.000	
49.0000	0.000	
50.0000	0.000	
51.0000	0.000	
52.0000	0.000	
53.0000	0.000	
54.0000	0.000	
55.0000	0.000	
56.0000	0.000	
57.0000	0.000	
58.0000	0.000	
59.0000	0.000	
60.0000	0.000	
- • •		

.

SE1000C Environmental Logger 01/18 08:16

and the same

The second secon

Unit# 91513 Test 4

Setups: INPUT 1

Туре		Level (F)
Mode		TOC
I.D.		00000
Reference	e	0.000
Linearit	:y	0.090
Scale fa	ctor	50.170
Offset		0.120
Delay ms	SEC	50.000
•		
Step 0	01/17	17:43:25
Elapsed	Time	INPUT 1
0.000) N	1.140
0.003		1.140
0.006		1.125
0.010		1.140
0.013		1.140
0.016		1.125
0.020		1.156
0.023		1.410
0.026		5.894
0.030		2.471
0.033	3	1.948
0.036		-1.505
0.040		3.992
0.043		3.121
0.046		0.776
0.0500		2.075
0.0533		3.913
0.0566		3.216
0.0600		1.172
0.063	3	3.438
0.066		3.929
0.070		3.343
0.073		3.327
0.076		4.420
0.080		4.579
0.083		3.200
0.086		4.404
0.0900		4.341
0.0933		5.212
0.096		4.119
0.1000		5.498
0.1033		5.498
0.1066		4.911
0.1100		5.276
0.1133		5.703
0.116		5.799
0.120		5.149
0.123	3	6.543
0.126	6	6.337
0.130	0	5.941
0.1333		6.005
0.136		6.527

0.1466	6.860	
0.1500	6.876	
0.1533	7.034	
0.1566	6.702	
0.1600	7.335	
0.1633	7.414	
0.1666	6.622	
0.1700	7.177	
0.1733	7.335	
0.1766	7.731	
0.1800	7.319	
0.1833	7.652	
0.1866 0.1900	7.985 7.494	
0.1900	7.684	
0.1966	7.763	
0.2000	8.048	
0.2033	7.319	
0.2066	7.969	
0.2100	7.985	
0.2133	8.080	
0.2166	7.795	
0.2200	8.096	
0.2233 0.2266	8.254 7.921	
0.2300	8.096	
0.2333	8.254	
0.2366	8.444	
0.2400	7.937	
0.2433	8.333	
0.2466	8.349	
0.2500	8.254	
0.2533	8.286	
0.2566	8.286	
0.2600	8.444	
0.2633 0.2666	8.175 8.412	
0.2700	8.191	
0.2733	8.302	
0.2766	8.254	
0.2800	8.222	
0.2833	8.349	
0.2866	8.080	
0.2900	8.286	
0.2933	8.333	
0.2966	8.428	
0.3000 0.3033	8.191 8.254	
0.3066	8.302	
0.3100	8.191	
0.3133	8.207	
0.3166	8.080	
0.3200	8.207	
0.3233	8.159	
0.3266	8.111	
0.3300	8.127	
0.3333	8.159	
0.3500	8.016	
0.3666	7.953	
0.3833	7.700	
0.4000	7.509	
0.4166	7.525	
0.4333 0.4500	7.462	
0.4500	7.129	

0 5000	7 024	
0.5000 0.5166	7.034 6.923	
0.5333	6.923	
0.5500	6.781	
0.5666	6.670	
0.5833	6.480	
0.6000	6.670	
0.6166	6.702	
0.6333	6.654	
0.6500	6.607	
0.6666	6.575	
0.6833	6.495	
0.7000	6.448	
0.7166	6.543	
0.7333 0.7500	6.638	
0.7666	6.543 6.607	
0.7833	6.559	
0.8000	6.607	
0.8166	6.575	
0.8333	6.813	
0.8500	6.527	
0.8666	6.622	
0.8833	6.638	
0.9000	6.765	
0.9166	6.733	
0.9333	6.654	
0.9500	6.733	
0.9666	6.717	
0.9833 1.0000	6.686	
1.2000	6.765 6.622	
1.4000	6.717	
1.6000	6.607	
1.8000	6.686	
2.0000	6.828	
2.2000	6.717	
2.4000	6.765	
2.6000	6.828	
2.8000	6.797	
3.0000	7.050	
3.2000	6.638	
3.4000	6.717	
3.6000 3.8000	6.702 6.654	
4.0000	6.749	
4.2000	6.813	
4.4000	6.749	
4.6000	6.908	
4.8000	6.860	•
5.0000	6.828	
5.2000	6.813	
5.4000	6.670	
5.6000	6.828	
5.8000	6.844	
6.0000	6.670	
6.2000 6.4000	6.844	
6.6000	6.670 6.939	
6.8000	6.797	
7.0000	6.892	
7.2000	6.749	
7.4000	6.781	
7.6000	6.559	
	0.000	

SE1000C Environmental Logger 01/18 08:11

en en

ولها ومراجعة والمراجعة والمهاد المراجعة والمراجعة والمراجعة والمراجعة والمحتجد والمراجعة

Unit# 91513 Test 5

Setups:	INPUT 1
Type	Level (F)
Mode I.D.	TOC 00000
Reference Linearity	0.000 0.090
Scale factor	50.170
Offset	0.120
Delay mSEC	50.000
Step 0 01/17	18:43:49
Scale factor Offset Delay mSEC Step 0 01/17 Elapsed Time 0.0000 0.0033 0.0066 0.0100 0.0133 0.0166 0.0200 0.0233 0.0266 0.0300 0.0333 0.0366 0.0400 0.0433 0.0466 0.0500 0.0533	INPUT 1
0.0000	7.494
0.0033	7.446 7.541
0.0100	7.494
0.0133	7.604
0.0166	7.509 7.652
0.0233	7.478
0.0266	7.494
0.0300	7.620
0.0333	7.446 7.525
0.0400	7.462
0.0433	7.557
0.0466	5.941
0.0533	6.131 6.290
0.0566	8.127
0.0600 0.0633	6.321
0.0655	6.321 6.290
0.0700	7.018
0.0733	6.210
0.0766 0.0800	6.005 6.591
0.0833	5.703
0.0866	5.640
0.0900 0.0933	5.640 6.195
0.0966	4.943
0.1000	4.943
0.1033	4.895
0.1066 0.1100	5.181 4.420
0.1133	4.547
0.1166	4.563
0.1200 0.1233	4.167
0.1233	3.945 3.691
0.1300	4.151
0.1333	3.517
0.1366	3.359

	0.015	
0.1466	2.915	
0.1500	2.725	
0.1533	2.947	
0.1566	2.519	
0.1600	2.265	
0.1633	2.234	-
0.1666	2.424	
0.1700	1.964	
0.1733	1.838	
0.1766	1.838	
0.1700	1.743	
0.1833		
	1.378	
0.1866	1.346	
0.1900	1.521	
0.1933	1.140	
0.1966	1.030	
0.2000	0.903	
0.2033	0.998	
0.2066	0.760	
0.2100	0.617	
0.2133	0.586	
0.2166	0.554	
0.2200	0.301	
0.2233	0.237	
0.2266	0.348	
0.2300	0.126	
0.2333	-0.015	
0.2366	-0.063	
0.2400	0.000	
0.2433	-0.269	
0.2466	-0.285	
0.2500	-0.285	
0.2533	-0.364	
0.2566	-0.507	
0.2600	-0.570	
0.2633	-0.523	
0.2666	-0.617	
0.2700	-0.729	
0.2733	-0.792	
0.2766	-0.729	
0.2800	-0.871	
0.2833		
0.2833	-0.935 -0.003	
	-0.903	
0.2900	-0.935	
0.2933	-1.045	
0.2966	-1.093	
0.3000	-1.029	
0.3033	-1.109	
0.3066	-1.156	
0.3100	-1.204	•
0.3133	-1.141	
0.3166	-1.220	
0.3200	-1.283	
0.3233	-1.235	
0.3266	-1.204	
0.3300	-1.315	
0.3333	-1.331	
0.3500		
	-1.267	
0.3666	-1.299	
0.3833	-1.109	
0.4000	-1.029	
0.4166	-0.792	
0.4333	-0.586	
0.4500	-0.316	

0.5000	0.522
0.5166	0.839
0.5333	1.061
0.5500	1.346
0.5666	1.616
0.5833	1.822
0.6000	2.028
0.6166	2.202
0.6333	2.345
0.6500	2.455
0.6666	2.519
0.6833	2.582
0.7000	2.598
0.7166	2.598
0.7333	2.535
0.7500	2.487
0.7666 0.7833	2.408 2.408 2.281
0.8000	2.170
0.8166	2.075
0.8333	1.917
0.8500	1.758
0.8666	1.616
0.8833	1.489
0.9000	1.346
0.9166	1.188
0.9333	1.077
0.9500	0.998
0.9666	0.903
0.9833	0.808
1.0000	0.728
1.2000	1.267
1.4000	1.632
1.6000	1.156
1.8000	1.125
2.0000 2.2000	1.125 1.378 1.283
2.4000	1.156
2.6000	1.251
2.8000	1.267
3.0000	1.220
3.2000	1.204
3.4000	1.251
3.6000	1.220
3.8000 4.0000 4.2000	1.188 1.188
4.4000 4.6000	1.204 1.172 1.188
4.8000	1.172
5.0000	1.172
5.2000	1.140
5.4000	1.125
5.6000	1.156
5.8000	1.140
6.0000	1.140
6.2000	1.140
6.4000	1.140
6.6000	1.140
6.8000	1.125
7.0000	1.109
7.2000 7.4000	1.109 1.093 1.109
7.6000	1.125

8.2000 8.4000 8.6000 9.0000 9.2000 9.4000 9.6000 9.8000 10.0000 11.0000 13.0000 14.0000 15.0000 16.0000 17.0000 20.0000 21.0000 21.0000 22.0000 23.0000 24.0000 25.0000 26.0000 27.0000 28.0000 29.0000 31.0000	1.045 1.109 1.125 1.109 1.014 0.982 1.030 0.966 1.030 0.982 0.982 0.982 0.9919 0.871 0.855 0.829 0.744 0.728 0.744 0.744 0.748 0.633 0.633 0.697 0.688 0.586 0.586 0.586 0.586 0.586 0.587 0.637 0.6475 0.475
51.0000 52.0000 53.0000 54.0000	0.538 0.491 0.507

SE1000C Environmental Logger 01/18 17:17

Unit# 91513 Test 0

Setups:	INPUT 1
Type	Level (F)
Mode	TOC
I.D.	00000
Reference	0.000
Linearity	0.090
Scale factor	50.170
Offset	0.120
Delay mSEC	50.000

Step 0 01/18 12:38:17

Elapsed Time	INPUT 1
0.0000	-20.796
0.0033	-20.796
0.0066	-20.796
0.0100	-20.796
0.0133	-20.796
0.0166	-20.811
0.0200	-20.796
0.0233	-20.796
0.0266	-20.811
0.0300	-20.796
0.0333	-20.796
0.0366	-20.796
0.0400	-20.796
0.0433	-20.796
0.0466	-20.796
0.0500	-20.796
0.0533	-20.796
0.0566	-20.796
0.0600	-20.796
0.0633 0.0666	-20.796
0.0700	-20.796
0.0733	-20.796
0.0766	-20.796 -20.796
0.0800	-20.796
0.0833	-20.796
0.0866	-20.796
0.0900	-20.796
0.0933	-20.796
0.0966	-20.796
0.1000	-20.796
0.1033	-20.796
0.1066	-20.796
0.1100	-20.796
0.1133	-20.796
0.1166	-20.796
0.1200	-20.796
	· · · • •

0.3233 0.3266 0.3300 0.3333 0.3500 0.3666 0.3833 0.4000 0.4166 0.4333 0.4500 0.4666 0.4833 0.5000 0.5166 0.5333 0.5500 0.5666 0.5833 0.6000 0.6166 0.6333 0.6500 0.6666 0.6833 0.7000	-20.796 -20.796
0.8833 0.9000 0.9166 0.9333 0.9500 0.9666 0.9833 1.0000 1.2000 1.4000 1.6000 1.8000 2.0000	-20.796 -20.796 -20.796 -20.796 -20.811 -20.796 -20.811 -20.811 -20.811 -20.811 -20.811 -20.811
2.2000 2.4000 2.6000 2.8000 3.0000 3.2000 3.4000 3.6000 3.8000 4.0000 4.2000	-20.811 -20.811 -20.811 -20.811 -20.811 -20.827 -20.827 -20.827 -20.827 -20.827 -20.827

42.0000	-21.002	
43.0000	-21.002	
44.0000	-21.002	
45.0000	-21.002	
46.0000	-21.018	
47.0000	~21.018	
48.0000	-21.018	
49.0000	-21.018	
50.0000	-21.002	
51.0000	-21.018	
52.0000	-21.034	
53.0000	-21.034	
54.0000	-21.034	
55.0000	-21.034	
56.0000	-21.034	
57.0000	-21.034	
58.0000	-21.049	
59.0000	-21.049	
60.0000	-21.049	
61.0000	-21.049	
62.0000	-21.065	
63.0000	-21.049	
64.0000	-21.065	
65.0000	-21.065	

• .

SE1000C Environmental Logger 01/18 17:13

Unit# 91513 Test 1

Setups:		INPUT	1
Type Mode I.D.		Level TOC 00000	(F)
Reference Linearity Scale factor Offset Delay mSEC		0.0 0.0 50.1 0.1 50.0	90 .70 .20
Step 0	01/18	13:44:	27

Clapsed	Time	INPUT	1
0.000)n	-21.0	
0.003		-21.0 -21.0	
0.006		-21.0	
0.010		-21.0	
0.013		-21.0	
0.016		-21.0	
0.020		-21.0	
0.023		-21.0	
0.026	6	-20.9	
0.030	0	-20.9	
0.033	3	-21.0	
0.036	6	-20.95	54
0.040		-20.95	54
0.043		-20.82	27
0.046		-20.81	L1
0.050		-20.81	
0.053		-20.78	
0.056		-20.70	
0.060		-20.66	
0.063		-20.65	
0.066		-20.60	
0.070		-20.51	
0.073 0.076		-20.51	
0.080		-20.46	
0.083		-20.36 -20.32	
0.086		-20.32	
0.090		-20.25	
0.093		-20.17	
0.096		-20.17	
0.100		-13.97	
0.1033		-7.13	
0.1066		-9.66	
0.1100		-17.45	
0.1133		-14.50	
0.1166		-14.80	
0.1200)	-16.94	

0.3233	-14.026	
0.3266	-13.947	
0.3300	-13.915	
0.3333	-13.915	
0.3500	-13.566	
0.3666	-13.598	
0.3833	-13.281	
0.4000 0.4166	-13.233	
0.4333	-12.916 -12.900	
0.4500	-12.996	
0.4666	-12.964	
0.4833	-12.504	
0.5000	-12.853	
0.5166	-12.568	
0.5333	-12.456	
0.5500 0.5666	-12.250 -13.171	
0.5833	-12.171 -12.124	
0.6000	-12.266	
0.6166	-12.282	
0.6333	-12.060	
0.6500	-11.918	
0.6666	-11.918	
0.6833	-11.886	
0.7000	-11.949	
0.7166 0.7333	-11.854 -12.044	
0.7500	-11.854	
0.7666	-11.918	
0.7833	-11.886	
0.8000	-11.395	
0.8166	-11.696	
0.8333	-11.474	
0.8500	-11.632	
0.8666 0.8833	-11.585 -11.537	
0.9000	-11.601	
0.9166	-11.648	
0.9333	-11.442	
0.9500	-11.442	
0.9666	-11.521	
0.9833	-11.284	
1.0000 1.2000	-11.268	
1.4000	-11.125 -11.204	
1.6000	-11.157	
1.8000	-11.078	
2.0000	-10.998	
2.2000	-10.887	
2.4000	-11.062	
2.6000	-10.951	
2.8000	-10.872 -10.761	
3.0000 3.2000	-10.761 -10.887	
3.4000	-10.887 -10.507	
3.6000	-10.634	
3.8000	-10.534	
4.0000	-10.570	
4.2000	-10.555	

38.0000 -9.825 39.0000 -10.016 40.0000 -9.968 41.0000 -9.920	4.4000 4.6000 4.8000 5.0000 5.2000 5.4000 5.6000 6.2000 6.4000 6.6000 7.0000 7.4000 7.4000 7.6000 8.0000 8.2000 8.4000 8.6000 9.2000 9.4000 9.6000 9.2000 9.4000 9.6000 11.0000 12.0000 13.0000 11.0000 12.0000 13.0000 14.0000 15.0000 15.0000 20.0000 21.0000	-10.459 -10.396 -10.539 -10.539 -10.539 -10.396 -10.396 -10.348 -10.348 -10.443 -10.443 -10.443 -10.095 -10.126 -10.126 -10.126 -10.22
	34.0000 35.0000 36.0000 37.0000 38.0000 39.0000 40.0000	-9.873 -9.778 -9.730 -9.762 -9.825 -10.016 -9.968

42.0000	-10.000
43.0000	-9.889
44.0000	-9.889
45.0000	-9.699
46.0000	-9.730
47.0000	-9.873
48.0000	-9.825
49.0000	-9.857
50.0000	-9.619
51.0000	-9.746
52.0000	-9.683
53.0000	-9.714
54.0000	-9.778
55.0000	-9.889
56.0000	-9.984
57.0000	-9.762
58.0000	-10.095
59.0000	-9.778
60.0000	-9.809

and the second of the second o

SE1000C Environmental Logger 01/18 17:10

Unit# 91513	Test 2
Setups:	INPUT 1
Type Mode I.D.	Level (F) TOC 00000
Reference Linearity Scale factor Offset Delay mSEC	0.000 0.090 50.170 0.120 50.000
Step 0 01/18	14:45:40
0.0000 0.0033 0.0066	INPUT 1 -9.778 -9.778 -9.905
0.0100 0.0133 0.0166	-9.936 -9.746 -9.572

-9.762

-9.762

-9.699

-9.936

-9.905

-9.857

-9.635

-9.762

-9.952

-1.141

-2.408

16.982

-8.240

-4.421

-1.759

-7.924

-6.719

-11.616

-11.854

-14.993

-10.919

-11.696

-16.372

-14.089

-15.690

-11.395

-17.498

-10.951

-11.981

-14.708

-36.909

0.0200

0.0233

0.0266

0.0300

0.0333

0.0366

0.0400

0.0433

0.0466

0.0500

0.0533

0.0566

0.0600

0.0633

0.0666

0.0700

0.0733

0.0766

0.0800

0.0833

0.0866

0.0900

0.0933

0.0966

0.1000

0.1033

0.1066

0.1100

0.1133

0.1166

0.1200

0.1233	-13.170	
0.1266	-14.454	
0.1300	-10.126	
0.1333	-17.022	
0.1366	-12.219	
0.1400	-13.978	
0.1433	-14.914	
0.1466	-15.342	
0.1500	-15.897	
0.1533	-12.298	
0.1566	-17.831	
0.1600		
	-14.089	
0.1633	-15.564	
0.1666	-15.247	
0.1700	-16.341	
0.1733	-15.897	
0.1766	-13.043	
0.1800	-17.117	
0.1833	-14.739	
0.1866	-15.833	
0.1900	-14.929	
0.1933	-16.499	
0.1966	-15.627	
0.2000	-13.757	
0.2033	-16.404	
0.2066	-15.484	
0.2100	-16.055	
0.2133	-14.945	
0.2166	-16.531	
0.2200	-15.722	
0.2233	-14.644	
0.2266	-16.008	
0.2300	-16.214	
0.2333	-16.451	
0.2366	-15.548	
0.2400	-16.864	
0.2433	-16.309	
0.2466	-15.738	
0.2500	-16.087	
0.2533	-16.832	
0.2566	-16.737	
0.2600	-16.039	
0.2633	-16.816	
0.2666	-16.499	
0.2700	-16.309	
0.2733	-16.198	
0.2766	-17.228	
0.2800	-17.165	
0.2833	-18.671	
0.2866	-19.654	
0.2900		
	-20.748	
0.2933	-20.907	
0.2966	-21.113	
0.3000	-22.239	
0.3033	-22.413	
0.3066	-22.397	
0.3100	-22.905	
0.3133	-23.634	
0.3166	-23.951	
0.3200	-23.507	

and the second of the second o

0.3233	-24 000	
0.3266	-24.062 -24.539	
0.3300	-24.538 -24.474	
0.3333	-24.253	
0.3500	-24.253 -24.887	
0.3666	-23.571	
0.3833	-21.668	•
0.4000	-19.686	
0.4166	-17.767	
0.4333	-16.911	
0.4500	-16.816	
0.4666	-16.769	
0.4833	-16.800	
0.5000	-16.832	
0.5166	-17.228	
0.5333	-18.418	
0.5500	-19.591	
0.5666	-20.463	
0.5833	-21.002	
0.6000	-21.145	
0.6166 0.6333	-20.859	
0.6500	-20.320 -19.606	
0.6666	-18.925	
0.6833	-18.386	
0.7000	-18.068	
0.7166	-18.021	
0.7333	-18.243	
0.7500	-18.608	
0.7666	-19.084	
0.7833	-19.543	
0.8000	-19.860	
0.8166	-20.050	
0.8333	-20.066	
0.8500	-19.955	
0.8666	-19.717	
0.8833	-19.448	
0.9000	-19.178	
0.9166	-18.988	
0.9333 0.9500	-18.893 -18.893	
0.9666	~18.988	
0.9833	-19.162	
1.0000	-19.353	
1.2000	-19.559	
1.4000	-19.527	
1.6000	-19.559	
1.8000	-19.606	
2.0000	-19.638	
2.2000	-19.686	
2.4000	-19.702	
2.6000	-19.733	
2.8000	-19.749	
3.0000	-19.781	
3.2000	-19.813	
3.4000	-19.829	
3.6000	-19.844	
3.8000	-19.860	
4.0000	-19.892	
4.2000	-19.892	

4.4000 4.6000 4.8000 5.0000 5.2000 5.4000 5.6000 6.2000 6.4000 6.6000 7.0000 7.2000 7.4000 7.6000 7.8000 8.0000 8.2000 8.4000 8.6000 9.8000 9.8000 9.8000 10.0000 11.0000 12.0000 13.0000 14.0000 15.0000 17.0000 17.0000 20.0000 21.0000	-19.908 -19.924 -19.940 -19.955 -19.971 -19.987 -20.003 -20.019 -20.050 -20.050 -20.050 -20.082 -20.114 -20.130 -20.130 -20.146 -20.146 -20.177 -20.177 -20.177 -20.177 -20.177 -20.288 -20.320 -20.336 -20.352 -20.383 -20.431 -20.447 -20.463 -20.526 -20.542 -20.558 -20.653

42.0000	-20.700
43.0000	-20.716
44.0000	-20.700
45.0000	-20.732
46.0000	-20.748
47.0000	-20.748
48.0000	-20.748
49.0000	-20.748
50.0000	-20.748
51.0000	-20.780
52.0000	-20.796
53.0000	-20.780
54.0000	-20.764
55.0000	-20.780
56.0000	-20.811
57.0000	-20.811
58.0000	-20.796
59.0000	-20.796
60.0000	-20.796

SE1000C Environmental Logger 01/19 10:58

Unit# 91513 Test 0

Setups:		INPUT	1
Type		Level	(F)
Mode		TOC	•
I.D.		00000	
Reference		0.0	000
Linearity		0.0	90
Scale factor		50.1	.70
Offset		0.1	.20
Delay mSEC		50.0	00
Step 0	01/19	05:16:	59
Elapsed	Time	INPUT	1

Clapsed	Time	INPUT	1	
0.000) N	0.0		
0.0033		-0.0		
0.0055		0.0		
0.0100		0.0		
0.0133		0.0		
0.0166		0.0		
0.0200		-0.0		
0.023		-0.03	-	
0.0266		0.047		
0.0300		0.030		
0.0333		0.000		
0.0366		0.015		
0.0400		0.00	0.000	
0.043		0.00	00	
0.046		-0.03	31	
0.050		0.015		
0.053		0.01		
0.0566		-0.01		
0.0600		0.00		
0.063		0.01		
0.0666		-0.01		
0.0700		-0.01		
0.0733		0.04		
0.0766		0.03		
0.0800		0.00		
0.0833		0.04		
0.0866		0.01		
0.0900		0.01		
0.0933		-0.01		
0.0966		0.03		
0.1000		0.04		
0.1033		0.00		
0.1066		0.01	_	
0.1100		0.03		
0.1133		0.04		
0.1166		-0.01		
0.1200	ı	0.03)	

0.1233	0.030	
0.1266	0.015	
0.1300	0.030	
0.1333	0.030	
0.1366	0.000	
0.1400	-0.015	
0.1433	0.015	
0.1466	0.047	
0.1500	0.030	
0.1533	0.030	
0.1566	0.030	
0.1600	0.030	
0.1633	-0.015	
0.1666	0.015	
0.1700	0.047	
0.1733	0.015	
0.1766	0.030	
0.1800	0.047	
0.1833	0.015	
0.1866	-0.015	
0.1900	0.030	
0.1933 0.1966	0.030	
0.2000	0.030 0.015	
0.2033		
0.2066	0.015	
0.2100	0.000	
0.2100	0.000	
0.2166	0.047	
0.2100	0.000	
0.2233	0.015 0.030	
0.2266	-0.031	
0.2300	0.015	
0.2333	0.047	
0.2366	0.030	
0.2400	0.015	
0.2433	0.030	
0.2466	0.030	
0.2500	-0.015	
0.2533	-0.015	
0.2566	0.030	
0.2600	0.047	
0.2633	0.015	
0.2666	0.030	
0.2700	0.047	
0.2733	0.000	
0.2766	-0.015	
0.2800	0.015	
0.2833	0.047	
0.2866	0.030	
0.2900	0.015	
0.2933	0.030	
0.2966	0.015	
0.3000	0.000	
0.3033	0.030	
0.3066	0.047	
0.3100	0.015	
0.3133	0.047	
0.3166	0.047	
0.3200	-0.015	

0.3233 0.3266 0.3300 0.3333 0.3500 0.3666 0.3833 0.4000 0.4166 0.4333 0.4500 0.4666 0.4833 0.5000 0.5166 0.5333 0.5500 0.5666 0.5833 0.6000 0.6166 0.6333 0.6500 0.6666	0.000 0.030 0.047 0.015 0.015 0.000 0.030 0.015 0.030 0.030 0.030 0.015 0.030 0.015 0.062 0.015 0.015 0.015 0.0062 0.015
0.9000 0.9166 0.9333 0.9500 0.9666 0.9833 1.0000 1.2000 1.4000 1.6000 1.8000 2.0000 2.2000 2.4000 2.6000 2.8000 3.0000 3.2000 3.4000 3.6000 3.8000 4.0000 4.2000	0.000 -0.031 0.000 0.000 0.047 0.047 0.047 0.030 0.030 0.030 0.015 0.015 -0.015 -0.031 0.030 -1.333 -1.365 -1.507 -1.015 -0.967 -0.967 -1.015 -0.984

14.0000 -1.174 15.0000 -1.174 16.0000 -1.190 17.0000 -1.190 18.0000 -1.206 19.0000 -1.190 20.0000 -1.222 21.0000 -1.269 23.0000 -1.253 24.0000 -1.253 25.0000 -1.253 27.0000 -1.253 29.0000 -1.253 29.0000 -1.269 31.0000 -1.285 31.0000 -1.285 34.0000 -1.285 35.0000 -1.285 36.0000 -1.317 37.0000 -1.317 38.0000 -1.317 39.0000 -1.317	4.4000 4.6000 4.8000 5.0000 5.2000 5.4000 5.6000 6.0000 6.2000 6.4000 6.6000 7.0000 7.2000 7.4000 7.6000 7.6000 8.0000 8.4000 8.6000 8.8000 9.0000 9.2000 9.4000 9.6000 9.8000 10.0000 11.0000 12.0000 13.0000	-1.015 -1.031 -1.015 0.872 -0.698 -0.555 -0.349 -1.793 -1.555 -1.158 -1.031 -1.031 -1.031 -1.079 -1.047 -1.095 -1.063 -1.110 -1.110 -1.179 -1.063 -1.126 -1.095 -1.095 -1.095 -1.126 -1.095 -1.126 -1.095 -1.142 -1.095 -1.142
	13.0000 14.0000 15.0000 16.0000 17.0000 18.0000 20.0000 21.0000 22.0000 23.0000 24.0000 25.0000 26.0000 27.0000 28.0000 30.0000 31.0000 31.0000 32.0000 34.0000 35.0000 36.0000 37.0000	-1.142 -1.174 -1.174 -1.190 -1.206 -1.190 -1.222 -1.269 -1.253 -1.253 -1.253 -1.253 -1.253 -1.253 -1.253 -1.253 -1.253 -1.253 -1.253 -1.253 -1.253 -1.253 -1.253 -1.253 -1.253 -1.253 -1.253

42.0000	-1.333
43.0000	-1.333
44.0000	-1.349
45.0000	-1.349
46.0000	-1.349
47.0000	-1.365
48.0000	-1.365
49.0000	-1.365
50.0000	-1.365
51.0000	-1.380
52.0000	-1.380
53.0000	-1.380
54.0000	-1.396
55.0000	-1.396
56.0000	-1.396
57.0000	-1.396
58.0000	-1.396
59.0000	-1.412
60.0000	-1.412
61.0000	-1.412
62.0000	-1.412
63.0000	-1.412
64.0000	-1.428
65.0000	-1.428
66.0000	-1.428
67.0000	-1.428
68,0000	-1.428

en en la companya de la companya de

SE1000C Environmental Logger 01/19 10:55

Unit# 91513 Test 1

Setups:	INPUT	1
Type Mode I.D.	Level TOC 00000	(F)
Reference Linearity Scale factor Offset Delay mSEC	0.0 0.0 50.1 0.1	90 170 120

Step 0 01/19 06:27:07

-	
Elapsed Time	INPUT 1
0.0000	
0.0033	-1.428 -1.428
0.0055	-1.428
0.0100	-1.428
0.0133	-1.428
0.0155	-2.062
0.0200	-3.459
0.0233	-3.301
0.0266	3.965
0.0300	9.708
0.0333	21.934
0.0366	-1.761
0.0400	5.980
0.0433	10.104
0.0466	9.739
0.0500	8.930
0.0533	9.850
0.0566	14.894
0.0600	9.929
0.0633	13.181
0.0666	4.949
0.0700	12.737
0.0733	12.515
0.0766	12.214
0.0800	10.659
0.0833	10.453
0.0866	14.291
0.0900	10.945
0.0933	10.041
0.0966	12.943
0.1000	13.435
0.1033	10.850
0.1066	11.468
0.1100	11.770
0.1133	12.483
0.1166	11.817
0.1200	10.548

0.8500 9.104 0.8666 9.009 0.8833 9.009 0.9000 9.041 0.9166 8.946 0.9333 9.009 0.9500 9.120 0.9666 8.993 0.9833 9.026 1.0000 9.073	0.8500 9.104 0.8666 9.009 0.8833 9.009 0.9000 9.041 0.9166 8.946 0.9333 9.009 0.9500 9.120 0.9666 8.993 0.9833 9.026	0.3233 0.3266 0.3300 0.3333 0.3500 0.3666 0.3833 0.4000 0.4166 0.4333 0.4500 0.4666 0.4833 0.5500 0.5166 0.5333 0.5500 0.5666 0.5833 0.6000 0.6166 0.6333 0.6500 0.6666 0.6833 0.7000 0.7166 0.7333 0.7500 0.7666 0.7833 0.8000 0.8166 0.8333	8.074 8.122 8.026 8.249 8.692 9.104 9.200 9.104 9.009 8.930 8.740 8.471 8.819 8.502 8.454 8.946 8.883 9.152 8.915 8.883 9.120 8.883 9.120 8.835 8.851 8.819 9.104 8.883 9.104 8.883
1.2000 8 993	1.4000 9.057 1.6000 9.374 1.8000 9.454 2.0000 9.438 2.2000 9.660 2.4000 9.327 2.6000 9.184 2.8000 9.581 3.0000 9.549 3.2000 9.311 3.4000 9.438 3.6000 9.802 3.8000 9.517 4.0000 9.929	0.9000 0.9166 0.9333 0.9500 0.9666 0.9833 1.0000	9.041 8.946 9.009 9.120 8.993 9.026 9.073

.

4.4000 4.6000	9.533
4.8000	9.724 9.343
5.0000	9.406
5.2000 5.4000	9.724 9.993
5.6000	9.200
5.8000	9.914
6.0000 6.2000	9.533 9.311
6.4000	9.786
6.6000 6.8000	9.898 10.532
7.0000	9.929
7.2000 7.4000	10.025
7.4000	10.279 9.644
7.8000	10.072
8.0000 8.2000	10.263 9.786
8.4000	9.850
8.6000	9.993
8.8000 9.0000	9.802 9.755
9.2000	9.945
9.4000 9.6000	9.786 10.072
9.8000	9.945
10.0000 11.0000	9.945
12.0000	9.945 9.993
13.0000	10.184
14.0000 15.0000	10.025 10.136
16.0000	10.120
17.0000 18.0000	10.056
19.0000	10.263 10.215
20.0000	10.279
21.0000 22.0000	10.247 10.548
23.0000	10.643
24.0000 25.0000	10.564 10.469
26.0000	10.469
27.0000	10.247
28.0000 29.0000	10.215 10.152
30.0000	10.152
31.0000 32.0000	10.850
33.0000	10.390 10.056
34.0000	10.627
35.0000 36.0000	10.247 10.469
37.0000	10.409
38.0000	10.279
39.0000 40.0000	10.405 10.516
41.0000	10.596

42.0000	10.802
43.0000	10.770
44.0000	10.136
45.0000	10.516
46.0000	10.310
47.0000	10.516
48.0000	10.770
49.0000	10.469
50.0000	10.739
51.0000	10.422
52.0000	10.580
53.0000	10.548
54.0000	10.659
55.0000	10.279
56.0000	10.295
57.0000	10.611
58.0000	10.786
59.0000	10.152
60.0000	10.739
61.0000	10.532
62.0000	10.247

SE1000C Environmental Logger 01/19 10:52

-		
Unit# 91513	Test	2
Setups:	INPUT	1
Cype Mode I.D.	Level TOC 00000	(F)
Reference Linearity Scale factor Offset Delay mSEC	50.0	00
Step 0 01/19	07:30:	19
Elapsed Time	INPUT	1
0.0000 0.0033 0.0066 0.0100 0.0133 0.0166 0.0200 0.0233 0.0266 0.0300 0.0333 0.0366 0.0400 0.0433 0.0466 0.0500 0.0533 0.0566 0.0600 0.0633 0.0666 0.0700 0.0733	1NPUT 3.4 2.1 2.8 -0.4 1.3 2.2 -0.3 -3.9 -1.0 -2.9 -3.0 -4.6 -4.5 -6.0 -4.8 -7.0 -4.8 -7.0 -4.8 -7.0 -4.8 -7.0 -6.5	71 16
0.0766 0.0800 0.0833 0.0866 0.0900	-6.19 -5.56 -5.12 -6.47 -5.53	57 59 25 74
0 0022	E 04	

0.0933

0.0966

0.1000

0.1033

0.1066

0.1100

0.1133

0.1166

0.1200

-5.062

-4.998

-4.792

-4.617

-3.792

-3.490

-3.316

-2.824

-2.285

•	
0.1233 0.1266 0.1300 0.1333 0.1366 0.1400 0.1433 0.1466 0.1500 0.1533 0.1666 0.1700 0.1733 0.1766 0.1800 0.1833 0.1866 0.1900 0.1933 0.1966 0.2000 0.2033 0.2066 0.2100 0.2133 0.2166 0.2200 0.2333 0.2266 0.2300 0.2333 0.2466 0.2500 0.2533 0.2566 0.2500 0.2533 0.2666 0.2700 0.2533 0.2666 0.2700 0.2733 0.2666 0.2700 0.2733 0.2666 0.2700 0.2733 0.2666 0.2700 0.2733 0.2666 0.2700 0.2733 0.2666 0.2700 0.2733 0.2666 0.2700 0.2733 0.2666 0.2700 0.2733 0.2666 0.2700 0.2733 0.2666 0.2700 0.2733 0.2666 0.2700 0.2733 0.2666 0.2700 0.2733 0.2666 0.2700 0.2733 0.2666 0.2700 0.2733 0.2766 0.2800 0.2933 0.2966 0.2900 0.2933 0.2966 0.2900 0.2933 0.21666 0.2700 0.2733 0.2766 0.2800 0.2933 0.2966 0.2900 0.2933 0.2966 0.2900 0.2933 0.2966 0.2900 0.2933 0.2966 0.2900 0.2933 0.2966 0.2900 0.2933 0.2966 0.3000 0.3033 0.3166 0.3000 0.3133 0.3166 0.3100	-1.698 -1.555 -1.253 -0.444 -0.095 0.427 0.429 1.6555 2.4775 3.2507 3.25

0.3233	-1.412	
0.3266	-1.412	
0.3200	-1.412	
0.3333	-1.412	
0.3500	-1.063	
0.3666	-0.460	
0.3833	0.269	
0.4000	0.951	
0.4166	1.443	
0.4333	1.681	
0.4500	1.665	
0.4666	1.395	
0.4833	0.967	
0.5000	0.507	
0.5166	0.094	
0.5333	-0.206	
0.5500	-0.349	
0.5666	-0.317	
0.5833	-0.159	
0.6000	0.079	
0.6166	0.332	
0.6333 0.6500	0.570	
0.6666	0.713 0.761	
0.6833	0.713	
0.7000	0.570	
0.7166	0.412	
0.7333	0.237	
0.7500	0.079	
0.7666	-0.031	
0.7833	-0.047	
0.8000	-0.031	
0.8166	0.047	
0.8333	0.158	
0.8500	0.253	
0.8666	0.316	
0.8833	0.364	
0.9000	0.364	
0.9166	0.332	
0.9333	0.253	
0.9500	0.189	
0.9666 0.9833	0.110	
1.0000	0.062	
1.2000	0.030 0.015	
1.4000	-0.031	
1.6000	-0.047	
1.8000	-0.095	
2.0000	-0.127	
2.2000	-0.142	
2.4000	-0.190	
2.6000	-0.190	
2.8000	-0.238	
3.0000	-0.270	
3.2000	-0.254	
3.4000	-0.301	
3.6000	-0.317	
3.8000	-0.333	
4.0000	-0.349	
4.2000	-0.349	

4.4000	-0.381
4.6000	-0.349
4.8000	-0.397
5.0000	-0.412
5.2000	-0.428
5.4000	-0.412
5.6000	-0.444
5.8000	-0.476
6.0000	-0.444
6.2000	-0.460
6.4000	-0.476
6.6000	-0.492
6.8000	-0.524
7.0000	-0.524
7.2000	-0.524
7.4000	-0.508
7.6000	-0.508
7.8000	-0.555
8.0000	-0.571
8.2000	-0.555
8.4000	-0.540
8.6000	-0.571
8.8000	-0.587
9.0000	-0.603
9.2000	-0.571
9.4000	-0.603
9.6000	-0.603
9.8000	-0.603
10.0000	-0.619
11.0000	-0.635
12.0000	-0.667
13.0000	-0.714
14.0000	-0.730
15.0000	-0.762
16.0000	-0.778
17.0000	-0.778
18.0000	-0.778
19.0000	-0.825
20.0000	-0.857
21.0000	-0.794
22.0000	-0.920
23.0000	-0.872
24.0000 25.0000	-0.857
26.0000	-0.936 -0.967
27.0000	-0.936
28.0000	-0.967
29.0000	-0.952
30.0000	-0.967
31.0000	-1.015
32.0000	-0.999
33.0000	-0.999
34.0000	-1.031
35.0000	-0.999
36.0000	-1.095
37.0000	-1.031
38.0000	-1.110
39.0000	-1.063
40.0000	-1.142
41.0000	-1.158

42.0000	-1.190	
43.0000	-1.190	
44.0000	-1.079	
45.0000	-1.095	
46.0000	-1.158	
47.0000	-1.190	
48.0000	-1.237	
49.0000	-1.174	
50.0000	-1.190	
51.0000	-1.158	
52.0000	-1.174	
53.0000	-1.174	
54.0000	-1.206	
55.0000	-1.174	
56.0000	-1.269	
57.0000	-1.253	
58.0000	-1.222	
59.0000	-1.301	
60.0000	-1.222	

Appendix III Laboratory Analysis Reports

414 SW 12th Avenue * Deerfield Beach, Florida 33442 * (305) 421-7400 * Fax (305) 421-2584

LOG NO: D5-80229

Received: 18 JAN 95

Mr. Leo Swayze Hydrologic Associates U.S.A., Inc. 8925 S.W. 148th St., Suite 212 Miami, FL 33176

Project: #HA93-379 (WASA North District)

Sampled By: E. Workman

REPORT OF RESULTS

LOG NO SAMPLE DESCRIPTION , LIQUID SAMPLES	DATE SAMPLED	
80229-1 I-3N, 2060-2110	01-16-05	
PADAMETED		
Zinc	**** ******** ******** ******	· - `
Zinc, mg/l	<0.020	
Date Analyzed	01.24.95	
Method Number	EPA 200.7	
Alkalinity (to pH 4.5) as CaCO3 (310.1)	BIN 200, /	
Alkalinity (to pH 4.5) as CaCO3, mg/1	140	
Date Analyzed	01,23,95	
Method Number	EPA 310.1	
Chloride (325.3)	EFA SIV.I	
Chloride (325.3) , mg/l	15000	
Date Analyzed	15000	
Method Number	02.01,95	
Color	EPA 325.3	
Color, c.u.		
Date Analyzed	5.0	
Method Number	01,19,95	
Ammonia-N (350.1)	EPA 110.2	
Ammonia-N, mg/l		
Date Analyzed	<0.030	
Method Number	01.25.95	
Nitrogen Series	EPA 350,1	
Total Kjeldahl Nitrogen-N, mg/l		
Nitrate + Nitrite-N, mg/1	<0.10	
Total Nitrogen (EPA 351.2 + 353.2), mg/1	<0.050	
Method Number	<0.15	
	353/351	

414 SW 12th Avenue • Deerfield Beach, Florida 33442 • (305) 421-7400 • Fax (305) 421-2584

LOG NO: D5-80229

Received: 18 JAN 95

Mr. Leo Swayze Hydrologic Associates U.S.A., Inc. 8925 S.W. 148th St., Suite 212 Miami, FL 33176

Project: #HA93-379 (WASA North District)

Sampled By: E. Workman

REPORT OF RESULTS

		- -0	- 4
LOC NO	SAMPLE DESCRIPTION , LIQUID SAMPLES	DATE SAMPLED	
80229-1	I-3N. 2060-2110		•
		A	
pH , units Date Analyz Method Numb Sulfide	ed er	7.5 Ol.18.95 EPA 150.1	
Sulfide , m Date Analyz Method Numb Sulfate as S	ad er 04	<0.40 01.20.95 EPA 376.2	
Sulfate as Date Analyz Method Numb Solids, Total	ed er	2400 01.31.95 EPA 375.4	
Solids, Total Date Analyza Method Numbe	al Dissolved, mg/l ed	31000 01.23.95 EPA 160.1	

414 SW 12th Avenue • Deerfield Beach, Florida 33442 • (305) 421-7400 • Fax (305) 421-2584

LOG NO: D5-80229

Received: 18 JAN 95

Mr. Leo Swayze Hydrologic Associates U.S.A., Inc. 8925 S.W. 148th St., Suite 212 Miami, FL 33176

Project: #HA93-379 (WASA North District)

Sampled By: E. Workman

REPORT OF RESULTS

Page 3

LOG NO	SAMPLE DESCRIPTION , Q	C REPORT FOR LIQUI	D SAMPLES		
80229-2 80229-3 80229-4 80229-5	Lab Blank Accuracy - % Recovery (Precision - Relative % Detection Limit	(Mean) Difference			· · · · · · · · · · · · · · · · · · ·
					R0229_5
Zinc				*	
Zinc, mg/l Date Analy Method Num	zed	<0.020 01.24.95		3.4 %	0.020
Chloride (3:		EPA 200.7			•••
Chloride () Date Analy	325.3), mg/1	<1.0	97 %	2.1 %	1.0
Method Numb Ammonia-N (3	350.1)	02.01.95 EPA 325.3	× • •	• • •	
Ammonia-N, Date Analyz	ed	<0.030 01.25.95	100 %	9.0 %	0.030
Method Numb Nitrogen Ser	ies	EPA 350.1			- * -
Nitrate + N	lahl Nitrogen-N, mg/l litrite-N, mg/l	<0.10 <0.050	88 % 94 %	4.5 % 0 %	0.10
Method Numb Sulfide	gen (EPA 351.2 + 353.2), er	mg/1 <0.15 353/351		• • •	0.050 0.15
Sulfide , m Date Analyz	ed	<0.40 01,20,95	95 %	9.5 %	0.40
Method Numb Sulfate as S	04	EPA 376.2	~ ~ -		* ^ -
Sulfate as : Date Analyze	ed	<5.0 01.31.95	97 %	1.0 x	5.0
Method Number	er ·•••••	EPA 375.4	• • •	• • -	

SL Environmental HRS Cert. #E86221 and SL Drinking Water HRS Cert. #86371. Method Reference: EPA 600/4-79-020.

Laboretories in Savannah, GA • Tallahassee, FL • Tampa, FL • Deerfield Beach, FL • Mobile, AL • New Orleans, LA

414 SW 12th Avenue • Deerfield Beach, Florida 33442 • (305) 421-7400 • Fax (305) 421-2584

LOG NO: D5-80228

Received: 18 JAN 95

Mr. Leo Swayze Hydrologic Associates U.S.A., Inc. 8925 S.W. 148th St., Suite 212 Miami, FL 33176

Project: #HA93-379 (WASA North District)

Sampled By: E. Workman

REPORT OF RESULTS

100 No			rage 1
LOG NO	SAMPLE DESCRIPTION , LIQUID SAMPLE	S	DATE SAMPLED
80228-1	I-3N, 1420-1480	******	
DADAMEMOD	1-3N, 1420-1480		01-10-95
PARAMETER	•••••••••••••	80228-1	
Zinc, mg/	/1		
Date Anal	lyzed	<0.020	
Method Nu	mber	01.24.95	
Alkalinity	(to pH 4.5) as CaCO3 (310.1)	EPA 200.7	
Alkalinit	y (to pH 4.5) as CaCO3, mg/1		
Date Anal	yzed	150	
Method Nu	mber	01.23.95	
Chloride (325.3)	EPA 310,1	
Chloride	(325.3) , mg/1		
Date Anal	yzed	13000	
Method Nu	mber	02.01.95	
Color		EPA 325.3	
Color, c.	u,		
Date Analy		5.0	
Method Nur	nber	01.19.95	
	trogen as N	EPA 110.2	
Ammonia-N	. mg/1		
Date Analy	/	<0.030	
Method Num	ber	01.26.95	
Nitrogen Se		EPA 350.1	
Total Kiel	dahl Nitrogen-N, mg/1		
Nitrate +	Nitrite-N, mg/l	< 0.10	
Total Nice	ogen (EPA 351.2 + 353.2), mg/1	<0.050	
Method Num	ber (416 331,2 + 333,2), mg/l	<0.15	
		353/351	
		-	

414 SW 12th Avenue • Deerfield Beach, Florida 33442 • (305) 421-7400 • Fax (305) 421-2584

LOG NO: D5-80228

Received: 18 JAN 95

Mr. Leo Swayze Hydrologic Associates U.S.A., Inc. 8925 S.W. 148th St., Suite 212 Miami, FL 33176

Project: #HA93-379 (WASA North District)

Sampled By: E. Workman

REPORT OF RESULTS

		•	A GRE Z
LOG NO	SAMPLE DESCRIPTION , LIQUID SAMPL	ES DATE SAMPLE	D .
0UZZ8-1	I-3N 1420-1490		
*******		01-16-95	
PARAMETER		90000 1	
		00228-1	
рН			
pH , units			
Date Analys	zed	7.3	
Method Numb	ber	01.18.95	
Sulfide (376		EPA 150.1	
Sulfide , n			
Date Analyz	ed	0.60	
Method Numb	ner	01.20.95	
Sulfate as S		EPA 376.2	
Sulfate (Tu	rbidimetric) 375.4, mg/l		
Date Analyz	ed	1300	
Method Numb	or	01,31,95	
Solids, Tota		EPA 375.4	
Splide Total	al pt. 1		
Date Analyz	al Dissolved, mg/l	27000	
Method Number	eu 	01.23.95	
THE CHIOU INUMD	er		

414 SW 12th Avenue • Deerfield Beach, Florida 33442 • (305) 421-7400 • Fax (305) 421-2584

LOG NO: D5-80228

Received: 18 JAN 95

Mr. Leo Swayze Hydrologic Associates U.S.A., Inc. 8925 S.W. 148th St., Suite 212 Miami, FL 33176

Project: #HA93-379 (WASA North District)

Sampled By: E. Workman

REPORT OF RESULTS

Page 3

LOG NO	SAMPLE DESCRIPTION , QC R	EPORT FOR LIQUI	D SAMPLES		
00220-3	Lab Blank Accuracy - % Recovery (Me. Precision - Relative % Dis	an) fference		• • - • • • • • •	· • • • • • • • • • • • • • • • • • • •
PARAMETER	*****		80228-3	80228	90000 5
Zinc			• • • • • • • •		00228-5
Zinc, mg/l Date Analy	zed	<0.020	90 %	3.4 x	
Method Num	ber	01.24.95			
Chloride (3)		EPA 200.7			
Chloride () Date Analy:	325.3) , mg/l	<1.0	97 %	2.1 %	1.0
Method Num	per	02.01.95			
Ammonia Niti		EPA 325.3			
Ammonia-N,	mg/1	-0.00			
Date Analyz	ed	<0.030	100 %	7.0 %	0.030
Method Numb	er	01,26.95			
Nitrogen Ser	ies	EPA 350.1			~
Total Kjeld	ahl Nitrogen-N, mg/l	c0 10			
urclace + M	itrite-N. mø/l	<0.10 <0.050	88 %	4.5 %	0.10
Total Nitro	gen (EPA 351 2 + 353 2)	3/1 <0.15	95 %	0 %	0.050
THE CITOR MATTER	er	353/351			0.15
ulfide (376	.2)	773/271		~ ~ ~	
Sulfide , m	g/l	<0.40	0= =		
Date Analyz	əd	01.20.95	95 X	9.5 %	0.40
Method Numb	er	EPA 376.2			
ulfate as S	04 (375.4)			~	
Sulface (Tu	rbidimetric) 375.4, mg/1	<5.0	97 %	1 4 2	
nace Vuelace	ed -	01.31.95	9/ & ^	1.0 %	5.0
Method Numbe		EPA 375 /		-	

SL Environmental HRS Cert. #E86221 and SL Drinking Water HRS Cert. #86371. Method Reference: EPA 600/4-79-020.

Laboratories in Savannah, GA • Tallahassee, FL • Tampa, FL • Deerfield Beach, FL • Mobile, AL • New Orleans, LA

414 SW 12th Avenue • Deerfield Beach, Florida 33442 • (305) 421-7400 • Fax (305) 421-2584

LOG NO: D5-80265

Received: 20 JAN 95

Mr. Leo Swayze Hydrologic Associates U.S.A., Inc. 8925 S.W. 148th St., Suite 212 Miami, FL 33176

Project: #HA93-379 (WASA North District)

Sampled By: E. Workman

REPORT OF RESULTS

pp 4.5) as CaCO3 (310.1)	***********	01-19-95
pp 4.5) as CaCO3 (310.1)	80265-1 <0.020 01.24.95	01-19-95
ppH 4.5) as CaCO3 (310.1)	<0.020 01.24.95	VI-19-95
ppH 4.5) as CaCO3 (310.1)	<0.020 01.24.95	***************************************
o pH 4.5) as CaCO3 (310.1)	<0.020 01.24.95	********
p pH 4.5) as CaCO3 (310.1)	01.24.95	
p pH 4.5) as CaCO3 (310.1)	01.24.95	
pH 4.5) as CaCO3 (310.1)		
O DH 4.5) AA CaCh?/3	EPA 200.7	
O DH 4.5) AA CaCh?/3		
	10-	
•		
	EPA 310.1	
.3) , $mg/1$	7700	
	BFR 323.3	
	 0	
en as N	218 110.2	
'1	0.49	
NA Assessment		
Nitrogen-N, mg/l	0.79	
/PPA 251 A	- * *	
(Era 331.2 + 353.2), mg/1		
	3) .3) , mg/1	01.24.95 BPA 310.1 7700 02.01.95 EPA 325.3 <5.0 01.20.95 EPA 110.2 0.49 01.26.95 EPA 350.1 Nitrogen-N, mg/l 10.79

414 SW 12th Avenue • Deerfield Beach, Florida 33442 • (305) 421-7400 • Fax (305) 421-2584

LOG NO: D5-80265

Received: 20 JAN 95

Mr. Leo Swayze Hydrologic Associates U.S.A., Inc. 8925 S.W. 148th St., Suite 212 Miami, FL 33176

Project: #HA93-379 (WASA North District)

Sampled By: E. Workman

REPORT OF RESULTS

	MOTORI OF RESULTS	Page 2
LOG NO SAMPLE DESCRIPTION , LI	IQUID SAMPLES	DATE SAMPLED
80265-1 I-3N, 1320-1380		01-19-05
PARAMETER		*************
	80265-1	
pH	******	
pH , units Date Analyzed	7.2	
Method Number	01,23,95	
Sulfide (376.2)	EPA 150.1	
Sulfide , mg/l		
Date Analyzed	2.0	
Method Number	01.24.95 FBA 276.0	
Sulfate as SO4 (375.4)	EPA 376.2	
Sulfate (Turbidimetric) 375.4, mg/l Date Analyzed	640	
Method Number	01.31.95	
Splids, Total Dissolved	EPA 375,4	
Solids, Total Dissolved, mg/1		
vate Analyzed	15000	
Method Number	01.23.95 EPA 160.1	

414 SW 12th Avenue • Deerfield Beach, Florida 33442 • (305) 421-7400 • Fax (305) 421-2584

LOG NO: D5-80265

Received: 20 JAN 95

Mr. Leo Swayze Hydrologic Associates U.S.A., Inc. 8925 S.W. 148th St., Suite 212 Miami, FL 33176

Project: #HA93-379 (WASA North District)

Sampled By: E. Workman

REPORT OF RESULTS

Page 3

LOC NO	SAMPLE DESCRIPTION , QC	REPORT FOR LIQUI	D SAMPIRE		rage 3
80265-2 80265-3 80265-4 80265-5	Lab Blank Accuracy - % Recovery (Mo Precision - Relative % Detection limit	ean) Efference	* *	~	••••••
PARAMETER	BIRT	80265-2	80265-3	80265-4	9006 5
Zinc		*** ******			00263-5
Zinc, mg/	l			_	
Date Analy	- /Zed	<0.020		1.1 %	0.020
Method Num	ber	01,24,95			0.020
Chloride (3	125 3)	EPA 200.7			
Chloride (
Date Analy	325.3) , mg/1	<1.0	97 %	2.1 %	1 0
Method Num	ber	02.01.95		2.1 %	1.0
Ammonia Nit		EPA 325.3		•	
Ammonia-N,	me/1				
Date Analy	146/ x 26d	<0.030	98 %	8.2 %	0.030
Method Num	har	01.26.95		V. 2	0.030
Nitrogen Se		EPA 350.1			
Total Kiel	dahi Nima			_	
Nitrate 4	dahl Nitrogen-N, mg/l Nitrite-N, mg/l	<0.10	89 %	0 X	0.10
Total Nitre	Dron (RDA 351 o	<0.050	98 X	9.2 %	0.10
Method Numb	pgen (EPA 351.2 + 353.2), π	g/l <0.15			0.15
Sulfide (376		353/351		• • •	0.15
Sulfide , m	7.				
Date Analyz	lg/ L	<0.40	87 %	4.6 %	0.40
Method Numb		01.24.95			0.40
Sulfate as S		EPA 376.2			
Sulfate (To	V4 (3/3,4) *hidim_k.::				
Date Analyz	rbidimetric) 375.4, mg/l	<5.0	97 %	1.0 %	5 0
Method Numb	eu ^*	01.31.95		1.0 %	5.0
crive numb	er				

SL Environmental HRS Cert. #E86221 and SL Drinking Water HRS Cert. #86371. Method Reference: EPA 600/4-79-020.

Laboratories in Savannah, GA • Tallahassee, FL • Tampa, FL • Deerfield Beach, FL • Mobile, AL • New Orleans, LA

414 SW 12th Avenue • Deerfield Beach, Florida 33442 • (305) 421-7400 • Fax (305) 421-2584

LOG NO: D5-80266

Received: 20 JAN 95

Mr. Leo Swayze Hydrologic Associates U.S.A., Inc. 8925 S.W. 148th St., Suite 212 Miami, FL 33176

Project: #HA93-379 (WASA North District)

Sampled By: E. Workman

REPORT OF RESULTS

I 0 0 10 -		r results	Page 1
LUG NO	SAMPLE DESCRIPTION , LIQUID SAI	MPLES	DATE BANKS TO
	J-3N 1210 1270		~ ~ ~ ~ ~ ~ ~ ~ ~ ~
PARAMETER			01-18-95
***********		80266-1	
Zinc			
Zinc, mg/	1		
Date Anal	vzed	<0.020	
Method Nu	mber	01.24.95	
Alkalinity	(to pH 4.5) as CaCO3 (310.1)	EPA 200.7	
) (LO DH 4 5) on Carra		
mildly	yzeu	. 140	
Method Nun	nber	01.24.95	
Chloride (3	325.3)	EPA 310.1	
Chloride ((325.3) , mg/1		
Date Analy	zed	3100	
Method Num	ber	02.01.95	
Color		EPA 325.3	
Color, c.u	•		
Date Analy	ze d	10	
Method Num	ber	01.20.95	
umonia Nit	rogen as N	EPA 110.2	
Ammonia-N.	mg/1		
Date Analyz	zed	0.37	
Method Numb		01.26.95	
itrogen Ser	iles -	EPA 350.1	
Total Kjeld	lahl Nitrogen-N, mg/l		
DECEMBER 1	Crito-N ma/	0.71	
rocal Nitto	gen (EPA 351 2 ± 352 2)	<0.050	
Method Numb	er mg/1	0.71	
		353/351	

414 SW 12th Avenue • Deerfield Beach, Florida 33442 • (305) 421-7400 • Fax (305) 421-2584

LOG NO: D5-80266

Received: 20 JAN 95

Mr. Leo Swayze Hydrologic Associates U.S.A., Inc. 8925 S.W. 148th St., Suite 212 Miami, FL 33176

Project: #HA93-379 (WASA North District)

Sampled By: E. Workman

REPORT OF RESULTS

tod no				Page 2
LOG NO	SAMPLE DESCRIPTION , LIQUID SAII-3N, 1210-1270	MPLES	DATE SAMPLED	
80266-1	I-3N, 1210-1270			
******	1-34, 1210-12/0		01-18-95	
PARAMETER		90000		
		00206-1		
pH nués				
pH , unit: Date Anal;		7.4		
Method Nu	yzeq Thor	01.23.95		
Sulfide (3)	76 2)	EPA 150.1		
Sulfide,	mg/]			
Date Analy	zed	2.4		
Method Nun	ıber	01.24.95		
Sulfate as	\$04 (375.4)	EPA 376.2		
Sulfate (T	urbidimetric) 375 / may			
AGE WHATA	zea	380		
Method Num	ber	_01.31.95		
Solids, Tot	al Dissolved	EPA 375.4		
Solids, To	tal Dissolved mg/1	***		
Date Analy:	zed	5000		
Method Numl		01.23.95		
		EPA 160.1		

414 SW 12th Avenue • Deerfield Beach, Florida 33442 • (305) 421-7400 • Fax (305) 421-2584

LOG NO: D5-80266

Received: 20 JAN 95

Mr. Leo Swayze Hydrologic Associates U.S.A., Inc. 8925 S.W. 148th St., Suite 212 Miami, FL 33176

Project: #HA93-379 (WASA North District)

Sampled By: E. Workman

REPORT OF RESULTS Page 3 SAMPLE DESCRIPTION , QC REPORT FOR LIQUID SAMPLES 80266-2 Lab Blank 80266-3 Accuracy - % Recovery (Mean) Precision - Relative % Difference 80266-4 80266-5 Detection Limit PARAMETER 80266-2 80266-3 80266-4 80266-5 Zinc Zinc, mg/1 <0.020 92 % 1.1 % 0.020 Date Analyzed 01.24.95 - - ----Method Number EPA 200.7 Chloride (325.3) Chloride (325.3) , mg/l<1.0 97 % 2.1 % 1.0 Date Analyzed 02.01.95 - - -Method Number EPA 325.3 Ammonia Nitrogen as N Ammonia-N, mg/l <0.030 98 % 8.2 X 0.030 Date Analyzed 01.26.95 ---- - 4 Method Number EPA 350.1 - - -Nitrogen Series Total Kjeldahl Nitrogen-N, mg/l 89 % < 0.10 0 X 0.10 Nitrate + Nitrite-N, mg/l < 0.050 98 X 9.2 % 0.050 Total Nitrogen (EPA $35\overline{1}.2 + 353.2$), mg/1 <0.15 ---- - -0.15 Method Number 353/351 - - -Sulfide (376.2) Sulfide , mg/l <0.40 87 % 4.6 % 0.40 Date Analyzed 01,24,95 ---Method Number - - -EPA 376.2 Sulfate as SO4 (375,4) Sulfate (Turbidimetric) 375.4, mg/l <5.0 97 % 1.0 % 5.0 Date Analyzed 01.31.95 Method Number EPA 375.4

SL Environmental HRS Cert. #E86221 and SL Drinking Water HRS Cert. #86371. Method Reference: EPA 600/4-79-020.

Laboratories in Savannah, GA • Tallahassee, FL • Tampa, FL • Deerlield Beach, FL • Mobile, AL • New Orleans, LA