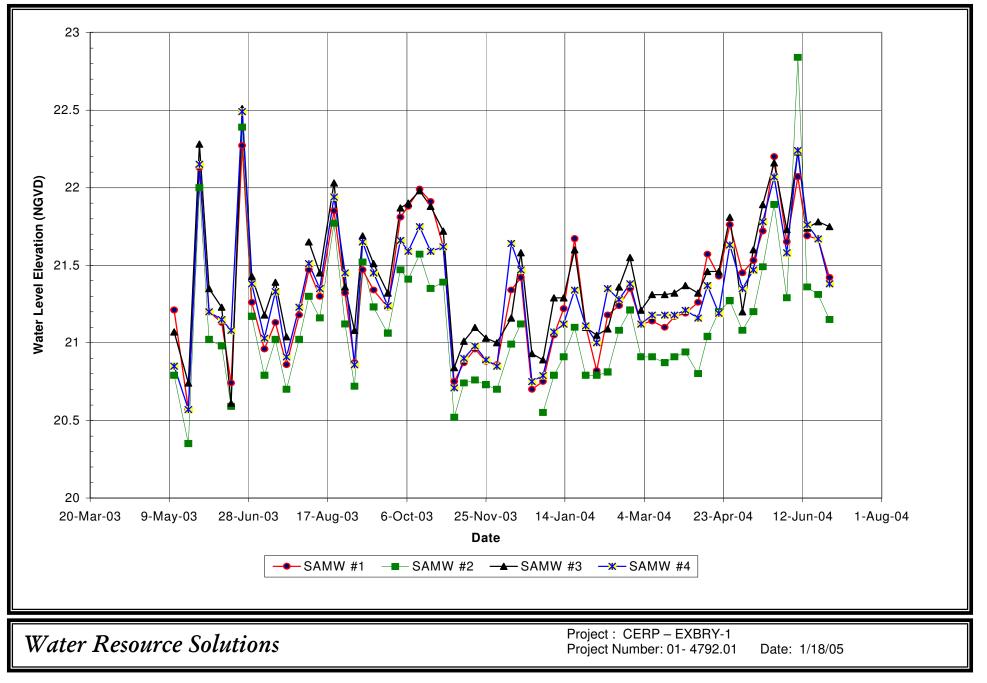
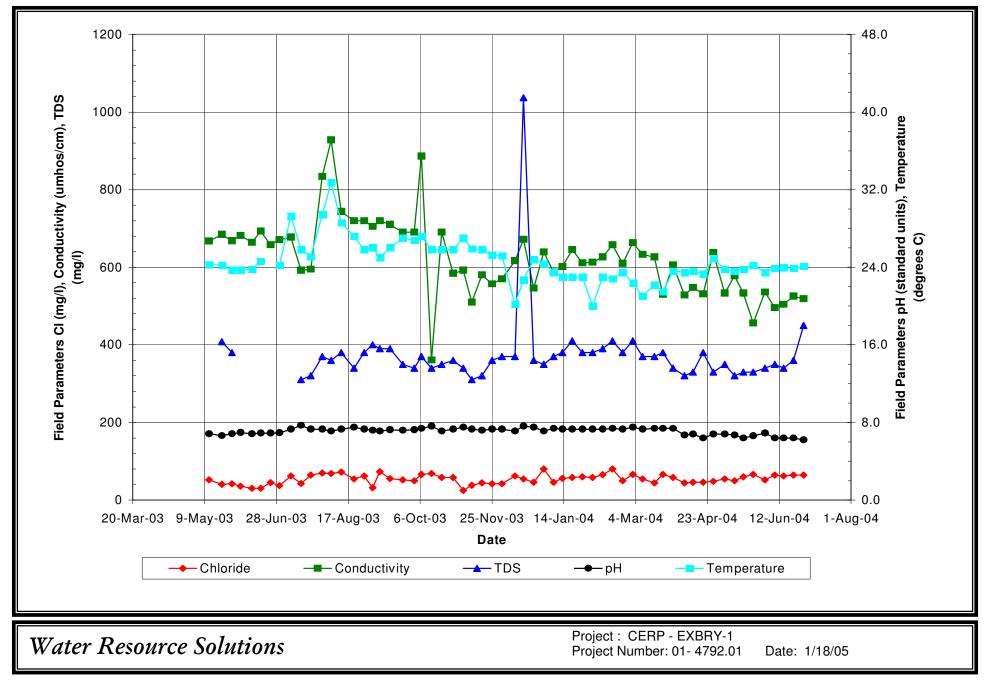

APPENDIX 2-1

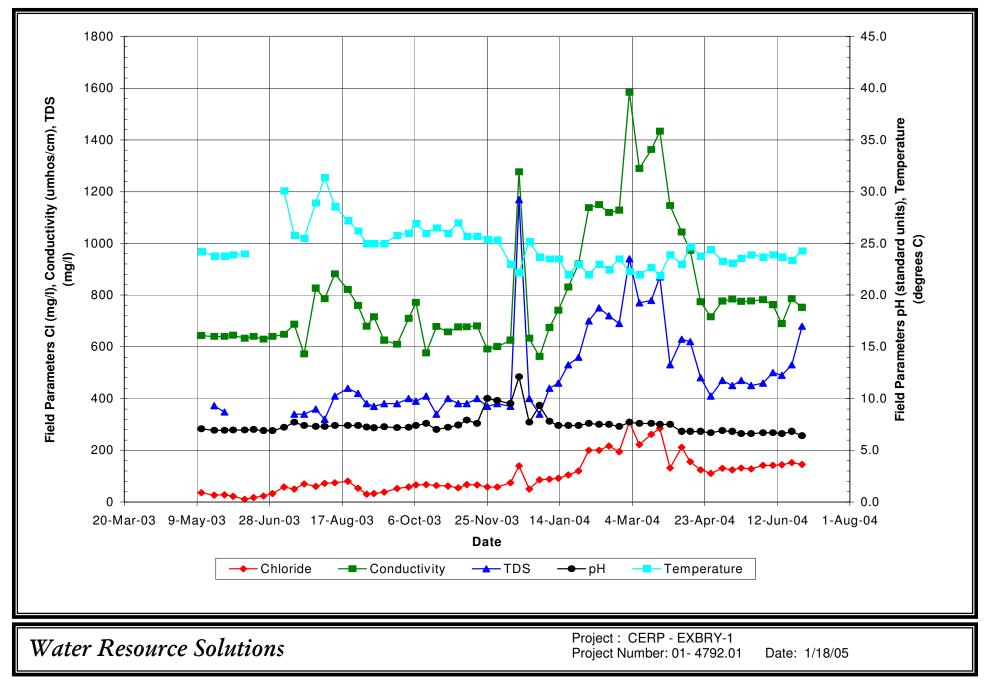
SITE SURVEY – AS-BUILT DRAWINGS


MONITORING WELL

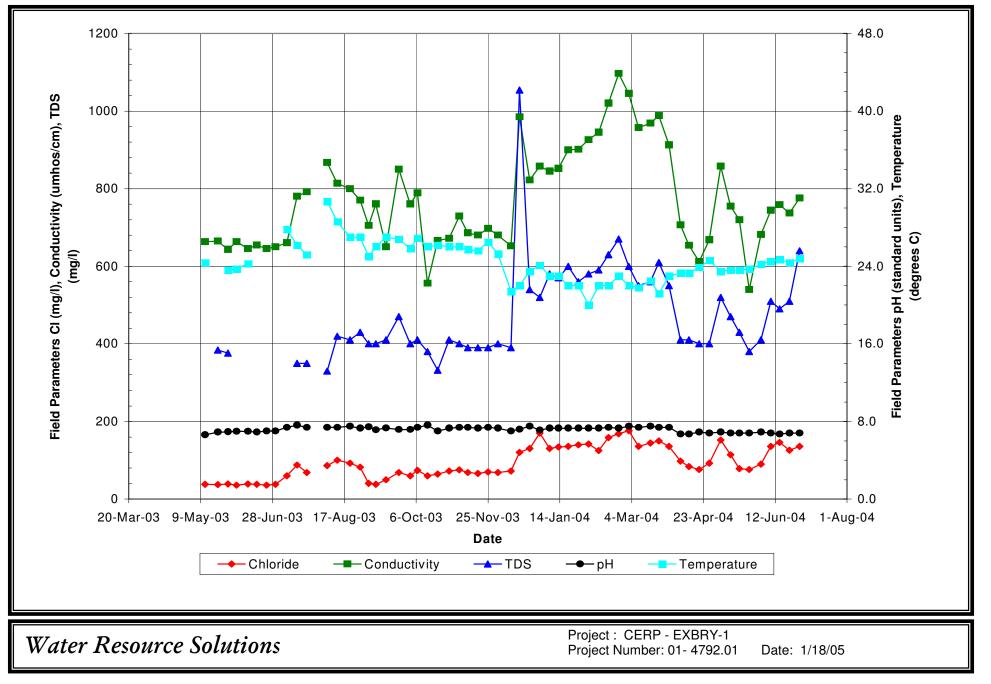
AS-BUILT

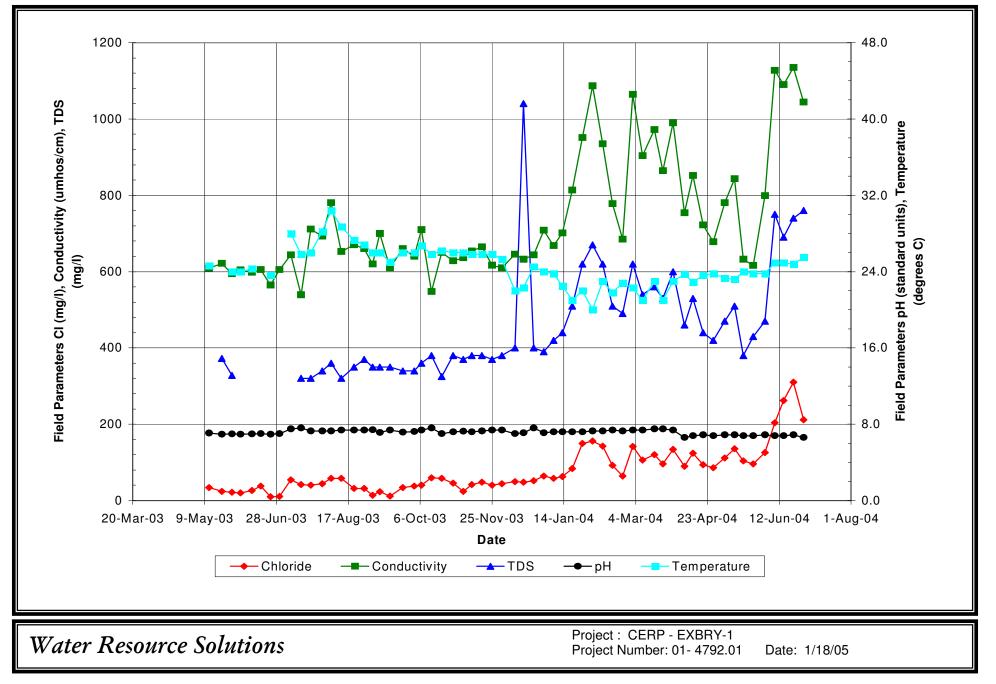
APPENDIX 2-2A


WEEKLY PAD MONITORING WELL WATER LEVEL RESULTS


APPENDIX 2-2A. WEEKLY PAD MONITORING WELL WATER LEVEL RESULTS

APPENDIX 2-2B


WEEKLY PAD MONITORING WELL WATER SAMPLING RESULTS


APPENDIX 2-2B (SAMW #1). WEEKLY PAD MONITORING WELL WATER SAMPLING RESULTS

APPENDIX 2-2B (SAMW #2). WEEKLY PAD MONITORING WELL WATER SAMPLING RESULTS

APPENDIX 2-2B (SAMW #3). WEEKLY PAD MONITORING WELL WATER SAMPLING RESULTS

APPENDIX 2-2B (SAMW #4). WEEKLY PAD MONITORING WELL WATER SAMPLING RESULTS

APPENDIX 2-2C

WEEKLY PAD MONITORING WELL WATER QUALITY SUMMARIES

WATER	RESOURCE	SOLUTIONS,	INC.	
CALOOSAHATCHEE ASR EXPLORATORY WELL EXBRY-1 PAD MONITOR WELL WATER QUALITY (field determined)				
South Florida Water Managem Berry Grove ASR Exploratory.			Project No. 01	-04340.A 11
FDEP Permit No. 201247 -001-0	JC Contra	actor: Diversif	ied Drilling C	Corporation
Prepared by: <u>G. Susdorf</u>	Sample D	ate: <u>5/12/03</u>		Week # 1
WELL NUMBER:	SAMW#1	SAMW#2	SAMW#3	SAMW#4
LOCATION	NE CORNER	NW CORNER	SE CORNER	SW CORNER
ELEVATION OF TOC" (NGVD),	T80**	T80**	T80**	TBD"
DEPTH TO WATER (TOC")	3.46	3.53	3.44	3.84
WATER_LEVEL (NGVD)	T80**	T80**	T80**	T80**
CHLORIDE (mgll)	52	36	38	34
CONDUCTIVITY (umhos/cm)	667	643	663	609
oH (standard units)	6.84	7.08	6.62	708
TOTAL DISSOLVED SOLIDS (moll)	TBD	TBD	TBD	TBD
TEMPERATURE (OC)	24.3	24.2	24.4	24.6

"TOC: indicates the "top of the casing" of the Surficial Aquifer Monitoring Well ""The elevations had not yet been determined at the time of sampling

WATER	RESOURCE	SOLUTIONS,	INC.	
CALOOSAHATCHEE RIVER ASR EXPLORATORY WELL EXBRY-1 PAD MONITOR WELL WATER QUALITY				
South Florida Water Management District Berry Grove ASR Exploratory. Well Project No. 01-04340.A 11				
FDEP Permit No. 201247 -001-0	JC Contr a	actor: Diversi	ied Drilling (Corporation
Prepared by: <u>G. Susdorf</u> Sample Date: <u>5/21/03</u> Week#2				
WELL NUMBER:	SAMW#1	SAMW#2	SAMW#3	SAMW#4
LOCATION	NE CORNER	NW CORNER	SE CORNER	SW CORNER
ELEVATION OF TOC' (NGVD	TBD"	TBD"	T8D**	TBD"
DEPTH TO WATER (TOC'),	4.10	3.97	3.77	4.12
WATER LEVEL (NGVD)	T8D**	TBD"	T8D**	T8D**
CHLORIDE (mgll)	40	27	37	24
CONDUCTIVITY (umhos/cm)	684	640	665	621
pH (standard units)	6.64	6.93	6.90	6.94
TOTAL DISSOLVED SOLIDS (mg/l)	408	372	384	372
TEMPERATURE (OC)	24.2	23.8	NR	NR

'TOC: indicates the "top of the casing" of the Surficial Aquifer Monitoring Well "The elevations had not yet been determined at the time of sampling

WATER RESOURCE SOLUTIONS, INC.				
CALOOSAHATCHEE RIVER ASR EXPLORATORY WELL EXBRY-1 PAD MONITOR WELL WATER QUALITY (laboratory determined)				
South Florida Water Managem Berry Grove ASR Exploratory		I	Project No. 01	-04340.A11
FDEP Permit No. 201247 -001-	UC Contr	actor: Diversi	fied Drilling C	Corporation
Prepared by: <u>G. Susdorf</u> Sample Date: <u>5/28/03</u> Week#3				
WELL NUMBER:	SAMW#1	SAMW#2	SAMW#3	SAMW#4
LOCATION	NE CORNER	NW CORNER	SE CORNER	SW CORNER
ELEVATION OF TOC- (NGVD)	TBD**	TBD-	TBD**	TBD**
DEPTH TO WATER (TOC·)	2.54	2.32	2.23	2.54
WATER LEVEL (NGVDI,	TBD*-	TBD**	TBD-	TBD**
CHLORIDE (mall),	42	28	39	22
CONDUCTIVITY (umhos/cm)	668	640	643	594
I oH (standard units),	6.84	6.91	6.92	6.99
TOTAL DISSOLVED SOLIDS (mall)	380	348	376	328
TEMPERATURE (field 'C),	23.7	23.8	23.6	24.0

"TOC: indicates the "top of the casing" of the Surficial Aquifer Monitoring Well **The elevations had not yet been determined at the time of sampling

WATER	RESOURCE	SOLUTIONS,	INC.	
CALOOSAHATCHEE RIVER ASR EXPLORATORY WELL EXBRY-1 PAD MONITOR WELL WATER QUALITY (field determined)				
South Florida Water Management District Berry Grove ASR Exploratory Well Project No. 01-04340.A11				
FDEP Permit No. 201247 -001-0	JC Contra	ctor: Diversifi	ed Drilling C	Corporation
Prepared by: <u>G. Richardson</u> Sample Date: <u>6/3/03</u> Week#4				
WELL NUMBER:	SAMW#1	SAMW#2	SAMW#3	SAMW#4
LOCATION	NE CORNER	NW CORNER	SE CORNER	SW CORNER
ELEVATION OF TOC' ¦NGVD)	TBD"	TBD"	TBD"	TBD"
DEPTH TO WATER (TOC')	347	3.30	3.16	349
WATER LEVEL (NGVD)	TBD**	TBD**	TBD"	TBD"
CHLORIDE (mg/l)	36	22	36	20
CONDUCTIVITY (umhos/cm)	682	645	663	604
pH (standard units)	6.96	6.94	6.97	6.96
TOTAL DISSOLVED SOLIDS (mg/l)	TBD	TBD	TBD	TBD
TEMPERATURE (OC)	23.72	23.86	23.70	2402

*TOC: indicates the "top of the casing"' of the Surficial Aquifer Monitoring Well '*The elevations had not yet been determined at the time of sampling

WATER	RESOURCE	SOLUTIONS,	INC.	
CALOOSAHATCHEE RIVERASR EXPLORATORY WELL EXBRY-1 PAD MONITOR WELL WATER QUALITY (field determined)				
South Florida Water Management District Berry Grove ASR Exploratory Well Project No. 01-04340.A11				
FDEP Permit No. 201247 -OOI-	UC Contr a	actor: Diversi	fied Drilling C	Corporation
Prepared by: <u>G. Richardson</u> Sample Date: <u>6/11/03</u> Week#5				
WELL NUMBER:	SAMW#I	SAMW#2	SAMW#3	SAMW#4
LOCATION	NE CORNER	NW CORNER	SE CORNER	SW CORNER
ELEVATION OF TOC' (NGVD)	TBD**	TBD"	TBD**	TBD**
DEPTH TO WATER (TOC')	3.54	3.34	3.28	3.54
WATER LEVEL (NGVD)	TBD"	TBD"	TBD**	TBD**
CHLORIDE (mall)	30	10	39	26
CONDUCTIVITY (umhos/cm)	664	633	645	598
pH (standard units),	6.84	6.94	6.97	6.98
TOTAL DISSOLVED SOLIDS (mall)	TBD	TBD	TBD	TBD
TEMPERATURE (OC)	23.79	24.03	24.33	24.25

*TOC: indicates the "top of the casing" of the Surficial Aquifer Monitoring Well *The elevations had not yet been determined at the time of sampling

WATER	RESOURCE	SOLUTIONS,	INC.	
CALOOSAHATCHEE RIVERASR EXPLORATORY WELL EXBRY-1 PAD MONITOR WELL WATER QUALITY (field determined)				
South Florida Water Management District Berry Grove ASR Exploratory Well Project No. 01-04340.A11				
FDEP Permit No. 201247 -001-0	UC Contra	actor: Diversif	ied Drilling C	orporation
Prepared by: <u>G. Richardson</u>	Sample	Date: <u>6/17/03</u>	3	Week#6
WELL NUMBER:	SAMW#1	SAMW#2	SAMW#3	SAMW#4
LOCATION	NE CORNER	NW CORNER	SE CORNER	SW CORNER
ELEVATION OF TOC" (NGVDI,	24.67	24.32	24.51	24.69
DEPTH TO WATER (T <u>OC")</u>	3.93	3.73	3.90	3.61
WATER LEVEL (NGVDI,	20.74	20.59	20.61	21.08
CHLORIDE (mati),	30	18	38	38
CONDUCTIVITY (umhos/cm),	693	640	655	605
pH (standard_units)	6.9	7.0	6.9	7.0
TOTAL DISSOLVED SOLIDS (mQII)	TBD	TBD	TBD	TBD
TEMPERATURE (OC)	24.61	No Data	No Data	No Data

.

WATER	RESOURCE	SOLUTIONS,	INC.	<u> </u>
CALOOSAHATCHEE RIVERASR EXPLORATORY WELL EXBRY-1 PAD MONITOR WELL WATER QUALITY (field determined)				
South Florida Water Management DistrictBerry Grove ASR Exploratory WellProject No. 01-04340.A11				
FDEP Permit No. 201247 -OOI-	UC Contr a	actor: Diversi	ied Drilling C	Corporation
Prepared by: <u>G. Richardson</u>	Sample	Date: <u>6/24/03</u>	3	Week#7
WELL NUMBER	SAMW#1	SAMW#2	SAMW#3	SAMW#4
LOCATION	NE CORNER	NW CORNER	SE CORNER	SW CORNER
ELEVATION OF TOC' (NGVDI,	24.67	24.32	24.51	24.69
DEPTH TO WATER (TOC'),	2.40	1.93	2.00	2.20
WATER LEVEL (NGVDI,	22.27	22.39	22.51	22.49
CHLORIDE (mg/l)	45	23	36	10
CONDUCTIVITY (umhos/cm)	658	630	645	565
pH (standard_units)	6.9	6.9	7.0	6.96
TOTAL DISSOLVED SOLIIDS (molii)	TBD	TBD	TBD	TBD
TEMPERATURE (OC)	No Data	No Data	No Data	23.55

-

WATER	RESOURCE	SOLUTIONS,	INC.	<u> </u>
CALOOSAHATCHEE RIVER ASR EXPLORATORY WELL EXBRY-1 PAD MONITOR WELL WATER QUALITY (field determined)				
South Florida Water Management DistrictBerry Grove ASR Exploratory WellProject No. 01.04340.A 11				
FDEP Permit No. 201247 -001-0	JC Contra	ctor: Diversifi	ed Drilling C	Corporation
Prepared by: <u>G. Richardson</u> Sample Date: <u>6/30/03</u> Week#8				
WELL NUMBER	SAMW#1	SAMW#2	SAMW#3	SAMW#4
LOCATION	NE CORNER	NW CORNER	SE CORNER	SW CORNER
ELEVATION OF TOC' (NGVD),	24.67	24.32	24.51	24.69
DEPTH TO WATER (TOC'),	341	3.15	3.08	3.31
WATER LEVEL (NGVDI)	21.26	2117	2143	21.38
CHLORIDE (mall),	37	32	38	11
CONDUCTIVITY (umhos/cm)	671	640	650	605
oH (standard units),	6.92	6.9	7.0	7.0
TOTAL DISSOLVED SOLIDS (mail);	TBD	TBD	TBD	TBD
TEMPERATURE (OC)	24.15	No Data	No Data	No Data

WATER RESOURCE SOLUTIONS, INC.				
CALOOSAHATCHEE RIVER ASR EXPLORATORY WELL EXBRY-1 PAD MONITOR WELL WATER QUALITY (field determined)				
South Florida Water Management District Berry Grove ASR Exploratory Well Project No. 01-04340.A 11				
FDEP Permit No. 201247 -OOI-	UC Contr a	actor: Diversi	fied Drilling C	Corporation
Prepared by: <u>G. Susdorf</u> Sample Date: <u>7/8103</u> Week # 9				
WELL NUMBER:	SAMW#1	SAMW#2	SAMW#3	SAMW#4
LOCATION	NE CORNER	NW CORNER	SE CORNER	SW CORNER
ELEVATION OF TOC' (NGVD)	24.67	24.32	24.51	24.69
DEPTH TO WATER (TOC')	3.71	3.53	3.33	3.66
WATER LEVEL (NGVD)	20.96	20.79	21.18	21.03
CHLORIDE (mgll)	62	58	60	54
CONDUCTIVITY (umhos/cm)	677	648	660	644
I DH (standard units),	7.3	72	74	7.5
TOTAL DISSOLVED SOLIIDS (mg/l)	N/A	N/A	N/A	N/A
TEMPERATURE (OC)	29.3	30.1	27.8	28.0

WATER	RESOURCE	SOLUTIONS,	INC.	,,
CALOOSAHATCHEE RIVERASR EXPLORATORY WELL EXBRY-1 PAD MONITOR WELL WATER QUALITY (field determined)				
South Florida Water Management District Berry Grove ASR Exploratory. Well Project No. 01-04340.A11				
FDEP Permit No. 201247 -OOI-	UC Contr	actor: Diversi	fied Drilling C	Corporation
Prepared by: <u>G. Susdorf</u> Sample Date: <u>7/15/03</u> Week # 10				
WELL NUMBER:	SAMW#I	SAMW#2	SAMW#3	SAMW#4
LOCATION	NE CORNER	NW CORNER	SE CORNER	SW CORNER
ELEVATION OF TOC"	24.67	24.32	24.51	24.69
DEPTH TO WATER (TOC")	3.54	3.30	3.12	3.43
WATER LEVEL (NGVD),	21.13	21.02	21.39	21.33
CHLORIDE (mgti)	43	50	88	42
CONDUCTIVITY (umhos/cm),	592	686	780	539
pH (standard units)	7.7	7.7	7.6	7.6
TOTAL DISSOLVED SOLIDS (mgll),	310	340	350	320
TEMPERATURE (OC)	25.8	25.8	26.2	25.8

WATER	RESOURCE	SOLUTIONS,	INC.	
CALOOSAHATCHEE RIVER ASR EXPLORATORY WELL EXBRY-1 PAD MONITOR WELL WATER QUALITY (field determined)				
South Florida Water Management District Berry Grove ASR Exploratory Well Project No. 01-04340.A 11				
FDEP Permit No. 201247-001-U	IC Contra	actor: Diversif	ied Drilling C	Corporation
Prepared by: <u>G. Susdorf</u> Sample Date: <u>7/22/03</u> Week#11				
WELL NUMBER:	SAMW#1	SAMW#2	SAMW#3	SAMW#4
LOCATION	NE CORNER	NW CORNER	SE CORNER	SW CORNER
ELEVATION OF TOC' INGVDI	24.67	24.32	24.51	24.69
DEPTH TO WATER (TOC'),	3.81	3.62	3.47	3.78
WATER LEVEL (NGVD)	20.86	20.70	21.04	20.91
CHLORIDE (mg/l)	64	70	68	40
CONDUCTIVITY (~mhos/cm)	595	572	792	711
pH (standard_units)	7.3	7.4	7.4	7.3
TOTAL DISSOLVED SOLIDS (mg/l)	320	340	350	320
TEMPERATURE ('C)	25.1	25.5	25.2	26.0

WATER	RESOURCE	SOLUTIONS,	INC.		
CALOOSAHATCHEE RIVER ASR EXPLORATORY WELL EXBRY-1 PAD MONITOR WELL WATER QUALITY (field determined)					
South Florida Water Management District Berry Grove ASR Exploratory Well Project No. 01-04340.A11					
FDEP Permit No. 201247 -001-0	JC Contra	actor: Diversifi	ed Drilling C	Corporation	
Prepared by: <u>G. Susdorf</u> Sample Date: <u>7/30/03</u> Week # 12					
WELL NUMBER:	SAMW#1	SAMW#2	SAMW#3	SAMW#4	
LOCATION	NE CORNER	NW CORNER	SE CORNER	SW CORNER	
ELEVATION OF TOC' (NGVD),	24.67	24.32	24.51	24.69	
DEPTH TO WATER (TOC'),	349	3.30	ND'	346	
WATER LEVEL (NGVD)	21.18	21.02	NO'	21.23	
CHLORIDE (mQ/I)	70	60	ND'	44	
CONDUCTIVITY (umhos/cm)	834	826	ND'	693	
pH (standard units) 7.3 7.3 ND' 7.3					
TOTAL DISSOLVED	370	360	NO'	340	
TEMPERATURE (OC)	294	28.9	ND'	28.2	

1 The well was damaged and inaccessible for sampling

	DECOUDOE				
VVATER	RESOURCE	SOLUTIONS,	INC.		
CALOOSAHATCHEE RIVERASR EXPLORATORY WELL EXBRY-1 PAD MONITOR WELL WATER QUALITY. (field determined)					
South Florida Water Management District Berry Grove ASR Exploratory Well Project No. 01-04340.A11					
FDEP Permit No. 201247 ·OOI-	UC Contr	actor: Diversi	fied Drilling (Corporation	
Prepared by: <u>S. Kohlmeier/G.</u>	<u>Susdorf.</u> S	ample Date: _	8/5/03	Week # 13	
WELL NUMBER	SAMW#I	SAMW#2	SAMW#3	SAMW#4	
	NE	NW	SE	SW	
LOCATION ELEVATION OF TOC'	CORNER	CORNER	CORNER	CORNER	
(NGVD)	24.67	24.32	24.51'	24.69	
DEPTH TO WATER (TOC')	3.20	3.02	2.86	3.18	
WATER LEVEL (NGVD);	21.47	21.30	21.65'	21.51	
CHLORIDE (mall),	68	72	86	58	
CONDUCTIVITY (umhos/cm),	928	785	867	780	
pH (standard units)	7.1	7.3	7.4	7.3	
TOTAL DISSOLVED SOLIDS (mall),	360	320	330	360	
TEMPERATURE (OC)	32.7	31.4	30.7	30.4	

1 The well was damaged and repaired, the elevations are approximate. The elevation of the casing needs to be resurveyed.

WATER	RESOURCE	SOLUTIONS,	INC.		
CALOOSAHATCHEE RIVER ASR EXPLORATORY WELL EXBRY-1 PAD MONITOR WELL WATER QUALITY. (field determined)					
South Florida Water Management District Berry Grove ASR Exploratory. Well Project No. 01-04340.A11					
FDEP Permit No. 201247-001-L	IC Contra	ctor: Diversifi	ed Drilling (Corporation	
Prepared by: <u>S. Kohlmeier/G. Susdorf.</u> Sample Date: <u>8/12/03</u> Week # 14					
WELL NUMBER:	SAMW#1	SAMW#2	SAMW#3	SAMW#4	
LOCATION	NE CORNER	NW CORNER	SE CORNER	SW CORNER	
ELEVATION OF TOC*	24.67	24.32	24.51'	24.69	
DEPTH TO WATER (TOC*)	3.37	3.16	306	3.34	
WATER LEVEL (NGVDI,	21.30	21.16	21.45'	21.35	
CHLORIDE (mg/l)	72	74	100	58	
CONDUCTIVITY (~mhos/cm)	743	882	814	652	
pH (standard units)	7.3	7.4	7.4	7.4	
TOTAL DISSOLVED SOLIDS (mg/l)	380	410	420	320	
TEMPERATURE (OC)	28.6	28.6	28.6	28.7	

*TOC: indicates the "top of the casing" of the Surficial Aquifer Monitoring Well. 1 **The well was damaged and repaired, the elevations are approximate. The elevation of** the casing needs to be resurveyed.

WATER	RESOURCE	SOLUTIONS,	INC.		
CALOOSAHATCHEE RIVER ASR EXPLORATORY WELL EXBRY-1 PAD MONITOR WELL WATER QUALITY (field determined)					
South Florida Water Management District Berry Grove ASR Exploratory. Well Project No. 01-04340.A11					
FDEP Permit No. 201247 -001-	UC Contra	ctor: Diversifi	ed Drilling C	Corporation	
Prepared by: <u>S. Kohlmeier/G.</u>	Susdorf. S	ample Date:	8/21/03	Week # 15	
WELL NUMBER:	SAMW#1	SAMW#2	SAMW#3	SAMW#4	
LOCATION	NE CORNER	NW CORNER	SE CORNER	SW CORNER	
ELEVATION OF TOC' (NGVD\)	24.67	24.32	24.51'	24.69	
DEPTH TO WATER (TOC'),	2.82	2.55	2.48	2.75	
WATER LEVEL (NGVD),	21.85	21.77	22.03'	21.94	
CHLORIDE (mgll)	54	80	92	32	
CONDUCTIVITY ('l̥mhos/cm) ,	720	821	800	670	
pH Istandard units),	7.5	7.4	7.5	7.4	
TOTAL ;~:SSOLVED SOLIDS ,mgllly	340	440	410	350	
TEMPERATURE (OC,)	27.2	27.2	27.0	27.3	

'TOC: indicates the "top of the casing" of the Surficial Aquifer Monitoring Well 1 The well was damaged and repaired, the elevations are approximate. **The** elevation of the casing needs to be resurveyed.

	RESOURCE			<u></u>
WATER	RESOURCE	SOLUTIONS,	INC.	
CALOOSAHATCHEE RIVER ASR EXPLORATORY WELL EXBRY-1 PAD MONITOR WELL WATER QUALITY (field detennined)				
South Florida Water Management District Berry Grove ASR Exploratory Well. Project No. 01-04340.A11				
FDEP Permit No. 201247 -001-1	UC Contra	actor: Diversif	ied Drilling C	Corporation
Prepared by: <u>G. Susdorf</u>	Sample	Date: <u>8/28/0</u>	<u>03</u>	Week # 16
WELL NUMBER	SAMW#1	SAMW#2	SAMW#3	SAMW#4
LOCATION	NE CORNER	NW CORNER	SE CORNER	SW CORNER
ELEVATION OF TOC' ;NGVD)	24.67	24.32	24.51'	24.69
DEPTH TO WATER (TOC')	3.35	3.20	3.15	3.25
WATER LEVEL (NGVD),	21.32	21.12	21.36'	2145
CHLORIDE (mall),	62	54	82	32
CONDUCTIVITY (umhos/cm)	720	760	770	660
oH (standard units),	7.3	74	7.3	74
TOTAL DISSOLVED SOLIDS (mail),	380	420	430	370
TEMPERATURE (OC)	25.8	26.2	27.0	26.B

The well was damaged and repaired, the elevations are approximate.

.__ __ .

WATER	RESOURCE	SOLUTIONS,	INC.		
CALOOSAHATCHEE RIVER ASR EXPLORATORY WELL EXBRY-1 PAD MONITOR WELL WATER QUALITY (field determined)					
South Florida Water Management District Berry Grove ASR Exploratory Well Project No. 01-04340.A11					
FDEP Permit No. 201247 -001-0	JC Contra	ctor: Diversifi	ed Drilling C	Corporation	
Prepared by: <u>G. Richardson</u> Sample Date: <u>9/3/03</u> Week # 17					
WELL NUMBER:	SAMW#1	SAMW#2	SAMW#3	SAMW#4	
LOCATION	NE CORNER	NW CORNER	SE CORNER	SW CORNER	
ELEVATION OF TOC' (NGVD)	24.67	24.32	24.51'	24.69	
DEPTH TO WATER (TOC')	3.80	3.60	3.43	3.83	
WATER LEVEL (NGVD)	20.87	20.72	21.08'	20.86	
CHLORIDE (ma/l)	32	30	40	14	
CONDUCTIVITY (umhos/cm)	705	680	705	620	
pH (standard units), 7.20 7.25 7.45 7.41					
TOTAL DISSOLVED SOLIDS (mall),	400	380	400	350	
TEMPERATURE (OC)	26	25	25	26	

'TOC: indicates the "top of the casing" of the Surficial Aquifer Monitoring Well The well was damaged and repaired, the elevations are approximate.

WATER	RESOURCE	SOLUTIONS,	INC.		
CALOOSAHATCHEE RIVER ASR EXPLORATORY WELL EXBRY-1 PAD MONITOR WELL WATER QUALITY (field determined)					
South Florida Water Management District Berry Grove ASR Exploratory. Well Project No. 01-04340.A11					
FDEP Permit No. 201247 -001-0	JC Contra	actor: Diversif	ied Drilling (Corporation	
Prepared by: <u>G. Richardson</u> Sample Date: <u>9/8/03</u> Week # 18					
WELL NUMBER:	SAMW#1	SAMW#2	SAMW#3	SAMW#4	
LOCATION	NE CORNER	NW CORNER	SE CORNER	SW CORNER	
ELEVATION OF TOC' (NGVDI)	24.67	24.32	24.51'	24.69	
DEPTH TO WATER (TOC')	3.20	2.80	2.82	303	
WATER LEVEL (NGVDI)	21.47	21.52	21.69'	21.65	
CHLORIDE (ma/l),	73	32	38	23	
CONDUCTIVITY (umhos/cm)	720	715	760	700	
pH (standard units), 7.12 7.15 7.13 714					
TOTAL DISSOLVED SOLIDS (ma/l),	390	370	400	350	
TEMPERATURE (OC)	25	25	26	26	

1 The well was damaged and repaired. the elevations are approximate.

WATER	RESOURCE	SOLUTIONS,	INC.	
CALOOSAHATCHEE RIVER ASR EXPLORATORY WELL EXBRY-1 PAD MONITOR WELL WATER QUALITY (field determined)				
South Florida Water Management District Berry Grove ASR Exploratory. Well Project No. 01-04340.A11				
FDEP Permit No. 201247 -001-	UC Contr a	actor: Diversi	fied Drilling (Corporation
Prepared by: <u>G. Richardson</u> Sample Date: <u>9/15/03</u> Week # 19				
WELL NUMBER	SAMW#1	SAMW#2	SAMW#3	SAMW#4
LOCATION	NE CORNER	NW CORNER	SE CORNER	SW CORNER
ELEVATION OF TOC" IINGVD) ,	24.67	24.32	24.51'	24.69
DEPTH TO WATER (TOC")	3.33	309	3.00	3.24
WATER LEVEL (NGVD);	21.34	21.23	21.51'	2145
CHLORIDE (mgll)	55	38	50	12
CONDUCTIVITY (~mhos/cm)	710	625	650	610
, pH (standard units)	7.24	727	7.31	7.38
TOTAL DISSOLVED SOLIDS (mg/l)	390	380	410	350
TEMPERATURE eC)	26	25	27	25

1 The well was damaged and repaired, the elevations are approximate.

WATER	RESOURCE	SOLUTIONS,	INC.	
CALOOSAHATCHEE RIVER ASR EXPLORATORY WELL EXBRY-1 PAD MONITOR WELL WATER QUALITY. (field determined)				
South Florida Water Management District Berry Grove ASR Exploratory. Well Project No. 01-04340.A11				
FDEP Permit No. 201247-001-U	IC Contra	ctor: Diversifi	ed Drilling C	Corporation
Prepared by: <u>G. Susdorf</u>	Sample	Date: <u>9/24/03</u>	_	Week#20
WELL NUMBER:	SAMW#1	SAMW#2	SAMW#3	SAMW#4
LOCATION	NE CORNER	NW CORNER	SE CORNER	SW CORNER
ELEVATION OF TOC' (NGVD),	24.67	24.32	24.51'	24.69
DEPTH TO WATER (TOC'),	3.44	3.26	3.19	3.45
WATER LEVEL (NGVD),	21.23	21.06	21.32'	21.24
CHLORIDE (mgJI)	52	52	68	34
CONDUCTIVITY (umhos/em),	690	610	850	660
pH (standard units),	7.20	7.18	7.18	7.17
TOTAL DISSOLVED SOLIDS (majl)	350	380	470	340
TEMPERATURE <u>1</u> °C)	27.0	25.8	26.8	26.0

¹ The well was damaged and repaired, the elevations are approximate.

WATER	RESOURCE	SOLUTIONS,	INC.		
CALOOSAHATCHEE RIVERASR EXPLORATORY WELL EXBRY-1 PAD MONITOR WELL WATER QUALITY (field determined)					
South Florida Water Management District Berry Grove ASR Exploratory Well Project No. 01-04340.A 11					
FDEP Permit No. 201247 -OOI-	UC Contr a	actor: Diversi	fied Drilling C	Corporation	
Prepared by: <u>G. Susdon</u> Sample Date: <u>10/2/03</u> Week#21					
WELL NUMBER	SAMW#I	SAMW#2	SAMW#3	SAMW#4	
LOCATION	NE CORNER	NW CORNER	SE CORNER	SW CORNER	
ELEVATION OF TOC'	24.67	24.32	24.51'	24.69	
DEPTH TO WATER (TOC')	2.86	2.85	2.64	303	
WATER LEVEL (NGVD)	21.81	2147	21.87'	21.66	
CHLORIDE (mall),	50	58	60	38	
CONDUCTIVITY (umhos/cm),	690	710	760	640	
oH (standard units), 7.24 7.20 7.18 7.24					
TOTAL DISSOLVED SOLIDS (maji),	340	400	400	340	
TEMPERATURE (OC)	26.8	26.0	25.8	26.0	

'TOC : indicates the "top of the casing" of the Surficial Aquifer Monitoring Well The well was damaged and repaired, the elevations are approximate.

WATER RESOURCE SOLUTIONS, INC.				
WATER RESOURCE SOLUTIONS, INC.				
CALOOSAHATCHEE RIVER ASR EXPLORATORY WELL EXBRY-1 PAD MONITOR WELL WATER QUALITY (field determined)				
South Florida Water Management District Berry Grove ASR Exploratory Well Project No. 01-04340.A 11				
FDEP Permit No. 201247 -001-UC Contractor: Diversified Drilling Corporation Prepared by: <u>G. Susdorf/S. Kohlmeier</u> Sample Date: <u>10m03</u> Week # 22				
WELL NUMBER:	SAMW#1	SAMW#2	SAMW#3	SAMW#4
LOCATION	NE CORNER	NW CORNER	SE CORNER	SW CORNER
ELEVATION OF TOC* (NGVDI,	24.67	24.32	24.51'	24.69
DEPTH TO WATER (TOC*)	2.79	2.91	2.61	3.10
WATER LEVEL (NGVDI)	21.88	2141	21.90'	21.59
CHLORIDE (mg!ll,	66	66	74	40
CONDUCTIVITY ("mhos/cm	886	771	789	710
pH (standard units),	74	74	74	74
TOTAL DISSOLVED SOLIDS (mall)	370	390	410	360
TEMPERATURE <u>1°C)</u>	272	26.9	26.9	26.7

 $\ensuremath{{}^{1}}$ The well was damaged and repaired, the elevations are approximate.

WATER	RESOURCE	SOLUTIONS,	INC.		
CALOOSAHATCHEE RIVER ASR EXPLORATORY WELL EXBRY-1 PAD MONITOR WELL WATER QUALITY (field determined)					
South Florida Water Management District Berry Grove ASR Exploratory Well Project No. 01-04340.A11					
FDEP Permit No. 201247 -001-	JC Contra	actor: Diversifi	ed Drilling C	Corporation	
Prepared by: <u>G. Susdorf</u> Sample Date: <u>10/14/03</u> Week~>					
WELL NUMBER	SAMW#1	SAMW#2	SAMW#3	SAMW#4	
LOCATION	NE CORNER	NW CORNER	SE CORNER	SW CORNER	
ELEVATION OF TOC' ;/NGVD)	24.67	24.32	24.51'	24.69	
DEPTH TO WATER (TOC')	2.68	2.75	2.53	2.94	
WATER LEVEL (NGVD)	21.99	21.57	21.98'	21.75	
CHLORIDE (mg/l)	68	68	60	60	
CONDUCTIVITY (umhos/cm)	361	576	556	548	
oH (standard units), 7.6 7.6 7.6 7.6					
TOTAL DISSOLVED SOLIDS (mgll)	340	410	380	380	
TEMPERATURE (OC)	25.8	26.0	26.0	25.8	

1 The well was damaged and repaired, the elevations are approximate.

WATER	RESOURCE	SOLUTIONS,	INC.	
CALOOSAHATCHEE RIVERASR EXPLORATORY WELL EXBRY-1 PAD MONITOR WELL WATER QUALITY (field determined)				
South Florida Water Management District Berry Grove ASR Exploratory Well Project No. 01-04340.A11				
FDEP Permit No. 201247 -OOI-	UC Contr a	actor: Diversit	ied Drilling C	Corporation
Prepared by: <u>G. SusdorfIS. Ko</u>	ohlmeier Sa	ample Date: <u></u>	10/21103	Week#24
WELL NUMBER	SAMW#I	SAMW#2	SAMW#3	SAMW#4
LOCATION	NE CORNER	NW CORNER	SE CORNER	SW CORNER
ELEVATION OF TOC' {NGVDI	24.67	24.32	24.51'	24.69
DEPTH TO WATER (TOC')	2.76	2.97	2.63	3.10
WATERLEVELINGVDI	21.91	21.35	21.88'	21.59
CHLORIDE (mall)	58	64	64	58
CONDUCTIVITY jumhos/cml	690	678	666	650
oH (standard units),	7.1	7.0	7.0	7.0
TOTAL DISSOLVED SOLIDS (mail),	350	340	332	325
TEMPERATURE (OC)	25.8	26.5	26.2	26.2

, The well was damaged and repaired, the elevations are approximate.

·· ··-

WATER	RESOURCE	SOLUTIONS,	INC.	·····
CALOOSAHATCHEE RIVER ASR EXPLORATORY WELL EXBRY-1 PAD MONITOR WELL WATER QUAL <u>I</u> TY (field determined)				
South Florida Water Management District Berry Grove ASR Exploratory. Well Project No. 01-04340.A 11				
FDEP Permit No. 201247 -001-UC Contractor: Diversified Drilling Corporation				
Prepared by: <u>G. Susdorf</u> Sample Date: <u>10/29/03</u> Week#25				
WELL NUMBER	SAMW#1	SAMW#2	SAMW#3	SAMW#4
LOCATION	NE CORNER	NW CORNER	SE CORNER	SW CORNER
ELEVATION OF TOC' (NGVD	24.67	24.32	24.51'	24.69
DEPTH TO WATER (TOC'),	3.05	2.93	2.79	3.07
WATER LEVEL {NGVD	21.62	21.39	21.72'	21.62
CHLORIDE {mgm	58	62	72	46
CONDUCTIVITY (LJmhos/cm)	584	657	672	628
pH (standard units),	7.3	7.2	7.3	7.2
TOTAL :~~SSOLVED SOLIDS _mg/I),	360	400	410	380
TEMPERATURE ('C)	25.8	26.0	26.0	26.0

, The well was damaged and repaired, the elevations are approximate

WATER	RESOURCE	SOLUTIONS,	INC.	
CALOOSAHATCHEE RIVER ASR EXPLORATORY WELL EXBRY-1 PAD MONITOR WELL WATER QUALITY (field determined)				
South Florida Water Management DistrictBerry Grove ASR Exploratory WellProject No. 01-04340.A 11				
FDEP Permit No. 201247 -001-0	JC Contra	actor: Diversi	fied Drilling (Corporation
Prepared by: <u>G. Richardson</u> Sample Date: <u>11/5/03</u> Week#26				
WELL NUMBER	SAMW#1	SAMW#2	SAMW#3	SAMW#4
LOCATION	NE CORNER	NW CORNER	SE CORNER	SW CORNER
ELEVATION OF TOC' (NGVD)	24,67	24,32	24,51'	24,69
DEPTH TO WATER (TOC'),	3,92	3,80	3,67	3,98
WATER LEVEL (NGVD),	20,75	20,52	20,84'	20,71
CHLORIDE (mall),	25	55	75	24
CONDUCTIVITY (umhos/cm)	592	676	729	636
pH (standard_units),	7,52	7,43	7.40	7,25
TOTAL DISSOLVED SOLIDS (majil),	340	380	400	370
TEMPERATURE (OC)	27	27	26	26

*TOC: indicates the "top of the casing" of the Surficial Aquifer Monitoring Well. The well was damaged and repaired, the elevations are approximate,

WATER	RESOURCE	SOLUTIONS,	INC.	
CALOOSAHATCHEE RIVER ASR EXPLORATORY WELL EXBRY-1 PAD MONITOR WELL WATER QUALITY (field determined)				
South Florida Water Management District Berry Grove ASR Exploratory Well Project No. 01-04340.A 11				
FDEP Permit No. 201247 -001-	UC Contra	actor: Diversif	ied Drilling C	orporation
Prepared by: <u>G. Susdorf</u> Sample Date: <u>11/11/03</u> Week # 27				
WELL NUMBER:	SAMW#1	SAMW#2	SAMW#3	SAMW#4
LOCATION	NE CORNER	NW CORNER	SE CORNER	SW CORNER
ELEVATION OF TOC' (NGVD)	24.67	24.32	24.51'	24.69
DEPTH TO WATER (TOC')	3.80	3.58	3.50	3.79
WATER LEVEL (NGVD)	20.87	20.74	21.01'	20.90
CHLORIDE (mQII)	38	68	68	42
CONDUCTIVITY (umhos/cm)	510	677	686	654
pH (standard_units)	7.3	7.9	74	7.2
TOTAL DISSOLVED SOLIDS (mQII)	310	380	390	380
TEMPERATURE ('C)	25.9	25.7	25.7	25.8

'T.OC: indicates the "top of the casing" of the Surficial Aquifer Monitoring Well 1 The well was damaged and repaired, the elevations are approximate.

- - -

WATER	RESOURCE	SOLUTIONS,	INC.		
CALOOSAHATCHEE RIVERASR EXPLORATORY WELL EXBRY-1 PAD MONITOR WELL WATER QUALITY (field determined)					
South Florida Water Management District Berry Grove ASR Exploratory Well Project No. 01-04340.A11					
FDEP Permit No. 201247 -OOI-	UC Contra	ctor: Diversifi	ed Drilling C	Corporation	
Prepared by: <u>G. Susdorf</u> Sample Date: <u>11/18/03</u> Week#28					
WELL NUMBER	SAMW#I	SAMW#2	SAMW#3	SAMW#4	
LOCATION	NE CORNER	NW CORNER	SE CORNER	SW CORNER	
ELEVATION OF TOC" (NGVD)	24.67	24.32	24.51'	24.69	
DEPTH TO WATER (TOC")	3.71	3.56	3.41	3.71	
WATER LEVEL (NGVD)	20.96	20.76	21.10'	20.98	
CHLORIDE (mą/l)	44	66	66	48	
CONDUCTIVITY (umhos/cm)	580	681	680	665	
oH (standard units), 7.2 7.6 7.3 7.3					
TOTAL DISSOLVED SOLIDS (mall),	320	400	390	380	
TEMPERATURE (OC)	25.8	25.7	25.6	25.8	

"TOC: indicates the "top of the casing" of the Surficial Aquifer Monitoring Well

WATER	RESOURCE	SOLUTIONS,	INC.		
CALOOSAHATCHEE RIVER ASR EXPLORATORY WELL EXBRY-1 PAD MONITOR WELL WATER QUALITY (field determined)					
South Florida Water Management District Berry Grove ASR Exploratory Well Project No. 01-04340.A 11					
FDEP Permit No. 201247-001-L	IC Contra	ctor: Diversifi	ied Drilling (Corporation	
Prepared by: <u>G. Susdorf</u> Sample Date: <u>11/25/03</u> Week # 29					
WELL NUMBER:	SAMW#I	SAMW#2	SAMW#3	SAMW#4	
LOCATION	NE CORNER	NW CORNER	SE CORNER	SW CORNER	
ELEVATION OF TOC' (NGVD),	24.67	24.32	24.51'	24.69	
DEPTH TO WATER <i>!TOC'),</i>	3.79	3.59	3.48	3.80	
WATER LEVEL (NGVD)	20.88	20.73	21.03'	20.89	
CHLORIDE (mglll)	42	58	70	40	
CONDUCTIVITY (umhos/cm	557	591	697	617	
pH (standard units) 7.3 10.0 7.4 7.4					
TOTAL DISSOLVED SOLIDS (mg/l)	360	370	390	370	
TEMPERATURE (OC)	25.3	25.4	26.5	25.8	

'TOC: indicates the "top of the casing" of the Surficial Aquifer Monitoring Well

1 The well was damaged and repaired, the elevations are approximate.

WATER	RESOURCE	SOLUTIONS,	INC.	
CALOOSAHATCHEE RIVERASR EXPLORATORY WELL EXBRY-1 PAD MONITOR WELL WATER QUALITY (field determined)				
South Florida Water Management DistrictBerry Grove ASR Exploratory WellProject No. 01-04340.A11				
FDEP Permit No. 201247 -001-U	JC Contra	actor: Diversif	ied Drilling C	orporation
Prepared by: <u>G. Susdorf</u> Sample Date: <u>12/2/03</u> Week#30				
WELL NUMBER:	SAMW#1	SAMW#2	SAMW#3	SAMW#4
LOCATION	NE CORNER	NW CORNER	SE CORNER	SW CORNER
ELEVATION OF TOC" (NGVDI,	24.67	24.32	24.51'	24.69
DEPTH TO WATER (TOC")	3.81	3.62	3.51	3.84
WATER LEVEL (NGVD),	20.86	20.70	21.00 [,]	20.85
CHLORIDE (mall)	42	58	68	44
CONDUCTIVITY (umhos/em)	570	600	680	610
DH (standard units), 73 9.8 7.3 74				
TOTAL DISSOLVED SOLIDS (majil),	370	380	400	380
TEMPERATURE (OC)	25.2	25.3	25.3	25.3

"TOC: indicates the "top of the casing" of the Surficial Aquifer Monitoring Well The well was damaged and repaired, the elevations are approximate.

WATER	RESOURCE	SOLUTIONS,	INC.	. <u></u>
CALOOSAHATCHEE RIVER ASR EXPLORATORY WELL EXBRY-1 PAD MONITOR WELL WATER QUALITY. (field determined)				
South Florida Water Management District Berry Grove ASR Exploratory Well Project No. 01-04340.A11				
FDEP Permit No. 201247 -001-0	JC Contra	ctor: Diversifi	ied Drilling C	Corporation
Prepared by: <u>G. SusdorfIS Kohlmeier</u> Sample Date: <u>12/11/03</u> Week # 31				
WELL NUMBER:	SAMW#1	SAMW#2	SAMW#3	SAMW#4
LOCATION	NE CORNER	NW CORNER	SE CORNER	SW CORNER
ELEVATION OF TOC' (NGVD)	24.67	24.32	24.51'	24.69
DEPTH TO WATER (TOC')	3.33	3.33	3.35	3.05
WATER LEVEL (NGVD)	21.34	20.99	21.16'	21.64
CHLORIDE (moll)	62	74	72	50
CONDUCTIVITY (wmhos/cm)	617	625	652	645
pH (standard units),	7.1	9.5	7.0	7.0
TOTAL DISSOLVED SOLIDS (moll),	370	370	390	400
TEMPERATURE (OC)	20.2	23.0	21.4	22.0

"TOC: indicates the "top of the casing" of the Surficial Aquifer Monitoring Well 1 The well was damaged and repaired, the elevations are approximate.

WATER	RESOURCE	SOLUTIONS,	INC.	
CALOOSAHATCHEE RIVER ASR EXPLORATORY WELL EXBRY-1 PAD MONITOR WELL WATER QUALITY. (field determined)				
South Florida Water Management District Berry Grove ASR Exploratory Well Project No. 01-04340.A 11				
FDEP Permit No. 201247 -001-U	JC Contra	ctor: Diversifi	ed Drilling C	Corporation
Prepared by: <u>G. Susdorf/S Ko</u>	<u>hlmeier</u> S	Sample Date:	12/17/03	Week#32
WELL NUMBER:	SAMW#1	SAMW#2	SAMW#3	SAMW#4
LOCATION	NE CORNER	NW CORNER	SE CORNER	SW CORNER
ELEVATION OF TOC* (NGVDI,	24.67	24.32	24.51'	24.69
DEPTH TO WATER (TOC*)	3.25	3.20	2.93	3.22
WATER LEVEL (NGVDI,	21.42	21.12	21.58'	21.47
CHLORIDE (mall),	54	140	120	48
CONDUCTIVITY (~mhos/cm)	672	1276	985	632
pH (standard units) 7.6 12.1 7.2 7.1				
TOTAL DISSOLVED SOLIDS (mgll)	1037'	1169'	1054'	1040'
TEMPERATURE (OC)	22.7	22.2	22.0	22.3

*TOC: indicates the "top of the casing" of the Surficial Aquifer Monitoring Well

¹ The well was damaged and repaired, the elevations are approximate.

, The TDS readings were taken with the meter regularly used. However, the values are not consistent with the measured chloride and conductivity or with the historical results.

WATER RESOURCE SOLUTIONS, INC.					
CALOOSAHATCHEE RIVER ASR EXPLORATORY WELL EXBRY-1 PAD MONITOR WELL WATER QUALITY (field determined)					
South Florida Water Management District Berry Grove ASR Exploratory Well Project No. 01-04340.A11					
FDEP Permit No. 201247 -001-0	JC Contra	ctor: Diversifi	ed Drilling (Corporation	
Prepared by: <u>G. Susdorf</u> Sample Date: <u>12/24/03</u> Week#33					
WELL NUMBER:	SAMW#1	SAMW#2	SAMW#3	SAMW#4	
LOCATION	NE CORNER	NW CORNER	SE CORNER	SW CORNER	
ELEVATION OF TOC- (NGVD)	24.67	24.32	24.51'	24.69	
DEPTH TO WATER (TOC·)	3.97	NR'	3.58	3.94	
WATER LEVEL (NGVD)	20.70	NR'	20.93'	20.75	
CHLORIDE (mQII)	46	50	130	52	
CONDUCTIVITY (umhos/cm)	546	633	822	644	
pH (standard units), 748 7.72 748 7.56					
TOTAL DISSOLVED SOLIDS (moll)	360	400	540	400	
TEMPERATURE (OC)	24.8	25.2	23.5	24.5	

*TOC: indicates the "top of the casing" of the Surficial Aquifer Monitoring Well

 $\ensuremath{{}^{\scriptscriptstyle 1}}$ The well was damaged and repaired, the elevations are approximate.

, NR: Not recorded - the well was being air-developed at the time of sampling.

WATER	RESOURCE	SOLUTIONS,	INC.		
CALOOSAHATCHEE RIVERASR EXPLORATORY WELL EXBRY-1 PAD MONITOR WELL WATER QUALITY (field determined)					
South Florida Water Management District Berry Grove ASR Exploratory Well Project No. 01-04340.A11					
FDEP Permit No. 201247 -OOI-	UC Contr a	actor: Diversi	ied Drilling C	Corporation	
Prepared by: <u>G. Susdorf/S. Kohlmeier</u> Sample Date: <u>12/31/03</u> Week#34					
WELL NUMBER	SAMW#I	SAMW#2	SAMW#3	SAMW#4	
LOCATION	NE CORNER	NW CORNER	SE CORNER	SW CORNER	
ELEVATION OF TOC'	24.67	24.32	24.51'	24.69	
DEPTH TO WATER (TOC'),	3.92	3.77	3.62	3.90	
WATERLEVELINĢVDI ,	20.75	20.55	20.89'	20.79	
CHLORIDE (mg/l)	80	86	170	64	
CONDUCTIVITY (umhos/cm)	639	562	858	708	
pH (standard units) 7.1 9.3 7.1 7.1					
TOTAL DISSOLVED SOLIDS (mg/l <u>)</u>	350	340	520	390	
TEMPERATURE (OC)	244	23.7	24.1	24.0	

'TOC: indicates the "top of the casing" of the Surficial Aquifer Monitoring Well **The well was damaged and repaired, the elevations are approximate.**

WATER RESOURCE SOLUTIONS,INC.					
CALOOSAHATCHEE RIVERASR EXPLORATORY WELL EXBRY-1 PAD MONITOR WELL WATER QUALITY (field determined)					
South Florida Water Management District Berry Grove ASR Exploratory Well Project No. 01-04340.A11					
FDEP Permit No. 201247 -OOI-	UC Contra	actor: Diversif	ied Drilling C	Corporation	
Prepared by: <u>G. Susdorf</u> Sample Date: <u>1/7/04</u> Week # 35					
WELL NUMBER:	SAMW#I	SAMW#2	SAMW#3	SAMW#4	
LOCATION	NE CORNER	NW CORNER	SE CORNER	SW CORNER	
ELEVATION OF TOC' (NGVD)	24.67	24.32	24.51'	24.69	
DEPTH TO WATER (TOC')	3.62	3.53	3.32	3.62	
WATER LEVEL (NGVD)	21.05	20.79	21.29'	2107	
CHLORIDE (mgll)	46	88	130	58	
CONDUCTIVITY (umhos/cm)	587	674	845	668	
pH (standard units) 7.37 7.75 7.28 7.20					
TOTAL DISSOLVED SOLIDS (mg/l)	370	440	580	420	
TEMPERATURE (OC)	23.5	23.5	23.0	23.8	

'TOC: indicates the "top of the casing" of the Surficial Aquifer Monitoring Well The well was damaged and repaired, the elevations are approximate.

WATER RESOURCE SOLUTIONS, INC.				
CALOOSAHATCHEE RIVER ASR EXPLORATORY WELL EXBRY-1 PAD MONITOR WELL WATER QUALITY (field determined)				
South Florida Water Management District Berry Grove ASR Exploratory Well Project No. 01-04340.A11				
FDEP Permit No. 201247-001-L	JC Contr a	actor: Diversif	ied Drilling C	Corporation
Prepared by: <u>G. Susdorf/T. Nelson</u> Sample Date: <u>1/13/04</u> Week # 36				
WELL NUMBER:	SAMW#1	SAMW#2	SAMW#3	SAMW#4
LOCATION	NE CORNER	NW CORNER	SE CORNER	SW CORNER
ELEVATION OF TOC' (NGVDI,	24.67	24.32	24.51'	24.69
DEPTH TO WATER (TOC'),	3.45	3.41	3.22	3.57
WATER LEVEL (NGVD)	21.22	20.91	21.29'	21.12
CHLORIDE (mg/l)	56	92	134	63
CONDUCTIVITY (~mhos/cm)	601	741	852	701
pH (standard units) 7.30 7.39 7.28 7.18				
TOTAL DISSOLVED SOLIDS (mgll)	380	460	570	440
TEMPERATURE ('C)	23.0	23.5	23.0	22.5

*TOC. indicates the "top of the casing" of the Surficial Aquifer Monitoring Well

WATER RESOURCE SOLUTIONS, INC.					
CALOOSAHATCHEE RIVERASR EXPLORATORY WELL EXBRY-1 PAD MONITOR WELL WATER QUALITY (field determined)					
South Florida Water Management DistrictBerry Grove ASR Exploratory Well.Project No. 01-04340.A11					
FDEP Permit No. 201247 -OOI-	UC Contra	actor: Diversif	ied Drilling C	orporation	
Prepared by: <u>G. Susdorf/T. Nelson</u> Sample Date: <u>1/20/04</u> Week # 37					
WELL NUMBER:	SAMW#I	SAMW#2	SAMW#3	SAMW#4	
LOCATION	NE CORNER	NW CORNER	SE CORNER	SW CORNER	
ELEVATION OF TOC'	24.67	24.32	24.51'	24.69	
DEPTH TO WATER (TOC'),	3.00	3.22	2.91	3.35	
WATER LEVEL (NGVDI,	21.67	21.10	21.60'	21.34	
CHLORIDE (mojil),	58	105	136	84	
CONDUCTIVITY Jumhos/cm) ,	645	831	900	814	
pH (standard units) 7.30 7.39 7.28 7.18					
TOTAL DISSOLVED SOLIDS (mgll <u>)</u>	410	530	600	510	
TEMPERATURE (OC)	23.0	22.0	22.0	21.0	

'TOC: indicates the "top of the casing" of the Surficial Aquifer Monitoring Well

WATER	RESOURCE	SOLUTIONS,	INC.		
CALOOSAHATCHEE RIVER ASR EXPLORATORY WELL EXBRY-1 PAD MONITOR WELL WATER QUALITY (field determined)					
South Florida Water Management District Berry Grove ASR Exploratory Well Project No. 01-04340.A11					
FDEP Permit No. 201247-001-U	C Contra	actor: Diversi	ied Drilling (Corporation	
Prepared by: <u>G. Susdorf/T. Nelson</u> Sample Date: <u>1/27/04</u> Week#38					
WELL NUMBER:	SAMW#1	SAMW#2	SAMW#3	SAMW#4	
LOCATION	NE CORNER	NW CORNER	SE CORNER	SW CORNER	
ELEVATION OF TOC' (NGVD)	24.67	24.32	24.51'	24.69	
DEPTH TO WATER (TOC')	3.56	3.53	3.41	3.58	
WATER LEVEL (NGVD)	21.11	20.79	21.10'	2111	
CHLORIDE (moll)	60	120	140	150	
CONDUCTIVITY (umhos/em)	611	920	901	951	
IpH (standard units), 7.33 7.41 7.34 7.23					
TOTAL DISSOLVED SOLIDS (moll)	380	560	560	620	
TEMPERATURE (OC)	23.0	23.0	22.0	22.0	

*TOC: indicates the "top of the casing" of the Surficial Aquifer Monitoring Well , The well was damaged and repaired, the elevations are approximate.

WATER	RESOURCE	SOLUTIONS,	INC.	, , , , , , , , , , , , , , , , , , ,
CALOOSAHATCHEE RIVER ASR EXPLORATORY WELL EXBRY-1 PAD MONITOR WELL WATER QUALITY (field determined)				
South Florida Water Management District Berry Grove ASR Exploratory Well Project No. 01-04340.A11				
FDEP Permit No. 201247 -001-0	JC Contr a	actor: Diversif	ied Drilling C	corporation
Prepared by: <u>G. Susdorf/A. McThenia</u> Sample Date: <u>2/3/04</u> Week # 39				
WELL NUMBER:	SAMW#1	SAMW#2	SAMW#3	SAMW#4
LOCATION	NE CORNER	NW CORNER	SE CORNER	SW CORNER
ELEVATION OF TOC' (NGVD),	24.67	24.32	24.51'	24.69
DEPTH TO WATER (TOC')	3.85	3.53	346	3.69
WATER LEVEL (NGVD),	20.82	20.79	21.05'	21.00
CHLORIDE (mall),	58	200	142	156
CONDUCTIVITY (umhos/cm),	613	1138	926	1087
oH (standard Units)	7.28	7.56	7.31	7.26
TOTAL DISSOLVED SOLIDS (mail),	380	700	580	670
TEMPERATURE (OC)	20.0	22.0	20.0	20.0

'TOC: indicates the "top of the casing" of the Surficial Aquifer Monitoring Well , The well was damaged and repaired, the elevations are approximate.

WATER RESOURCE SOLUTIONS, INC.				
CALOOSAHATCHEE RIVERASR EXPLORATORY WELL EXBRY-1 PAD MONITOR WELL WATER QUALITY (field determined)				
South Florida Water Management District Berry Grove ASR Exploratory Well Project No. 01-04340.A 11				
FDEP Permit No. 201247 -OOI-	UC Contra	actor: Diversif	ied Drilling C	Corporation
Prepared by: <u>G. SusdorfIT. Nelson</u> Sample Date: <u>2/10104</u> Week#40				
WELL NUMBER	SAMW#1	SAMW#2	SAMW#3	SAMW#4
LOCATION	NE CORNER	NW CORNER	SE CORNER	SW CORNER
ELEVATION OF TOC' (NGVD)	24.67	24.32	24.51'	24.69
DEPTH TO WATER (TOC')	3.49	3.51	3.42	3.34
WATER LEVEL (NGVD)	21.18	20.81	21.09'	21.35
CHLORIDE (moll)	65	200	125	143
CONDUCTIVITY įumhos/cm)	626	1150	945	935
pH (standard units),	7.34	7.53	7.31	7.27
TOTAL DISSOLVED SOLIDS (mgll)	390	750	590	620
TEMPERATURE (OC)	23.0	23.0	22.0	23.0

*TOC: indicates the "top of the casing" of the Surficial Aquifer Monitoring Well The well was damaged and repaired, the elevations are approximate.

-

WATER RESOURCE SOLUTIONS, INC.						
		E RIVER ASF				
EXPI	EXPLORATORY WELL EXBRY-1 PAD MONITOR WELL WATER QUALITY					
PAD MO	PAD MONITOR WELL WATER QUALITY (field determined)					
South Florida Water Management District Berry Grove ASR Exploratory. Well Project No. 01-04340.A 11						
FDEP Permit No. 201247 -001-0	UC Contra	ctor: Diversifi	ed Drilling C	Corporation		
Prepared by: <u>G. Susdorf.</u>	Sample	Date: <u>2/17/04</u>	-	Week #41		
WELL NUMBER:	SAMW#1	SAMW#2	SAMW#3	SAMW#4		
LOCATION	NE CORNER	NW CORNER	SE CORNER	SW CORNER		
ELEVATION OF TOC" (NGVD)	24.67	24.32	24.51'	24.69		
DEPTH TO WATER (TOC")	3.43	3.24	3.15	3.41		
WATER LEVEL (NGVD)	21.24	21.08	21.36'	21.28		
CHLORIDE (mg/l)	80	216	158	92		
CONDUCTIVITY (~mhos/cm)	658	1119	1020	778		
pH (standard units),	7.40	7.47	7.37	7.43		
TOTAL DISSOLVED SOLIDS (mg/l)	410	720	630	510		
TEMPERATURE (OC)	22.8	22.5	22.0	21.8		

"TOC: indicates the "top of the casing" of the Surficial Aquifer Monitoring Well

1 The well was damaged and repaired, the elevations are approximate.

WATER RESOURCE SOLUTIONS, INC.				
CALOOSAHATCHEE RIVER ASR EXPLORATORY WELL EXBRY-1 PAD MONITOR WELL WATER QUALITY. (field determined)				
South Florida Water Management District Berry Grove ASR Exploratory. Well Project No. 01-04340.A11				
FDEP Permit No. 201247-001-L	IC Contr a	actor: Diversif	ied Drilling C	orporation
Prepared by: <u>G. Susdorf/A. McThenia</u> Sample Date: <u>2/24/04</u> Week#42				
WELL NUMBER:	SAMW#1	SAMW#2	SAMW#3	SAMW#4
LOCATION	NE CORNER	NW CORNER	SE CORNER	SW CORNER
ELEVATION OF TOC' (NGVD)	24.67	24.32	24.51'	24.69
DEPTH TO WATER (TOC' <u>)</u>	3.32	3.11	2.96	3.31
WATER LEVEL (NGVD)	21.35	21.21	21.55'	21.38
CHLORIDE (mg/l)	50	194	168	64
CONDUCTIVITY (umhos/cm)	610	1128	1097	685
pH (standard_unils)	7.30	7.29	7.29	7.27
TOTAL DISSOLVED SOLIDS (mgll)	380	690	670	490
TEMPERATURE (OC)	23.5	23.5	23.0	22.8

ı.

'TOC : indicates the "top of the casing" of the Surficial Aquifer Monitoring Well 1 The well was damaged and repaired, the elevations are approximate.

WATER	RESOURCE	SOLUTIONS,	INC.	<u> </u>	
CALOOSAHATCHEE RIVERASR EXPLORATORY WELL EXBRY-1 PAD MONITOR WELL WATER QUALITY (field determined)					
South Florida Water Management District Berry Grove ASR Exploratory Well. Project No. 01-04340.A11					
FDEP Permit No. 201247-001-U	C Contra	actor: Diversif	ied Drilling C	Corporation	
Prepared by: <u>A. McThenia</u> Sample Date: <u>3/2/04</u> Week#43					
WELL NUMBER:	SAMW#1	SAMW#2	SAMW#3	SAMW#4	
LOCATION	NE CORNER	NW CORNER	SE CORNER	SW CORNER	
ELEVATION OF TOC' (NGVD)	24.67	24.32	24.51'	24.69	
DEPTH TO WATER (TOC')	3.55	3.41	3.30	3.57	
WATER LEVEL (NGVD)	2112	20.91	21.21'	21.12	
CHLORIDE (mQII)	66	310	176	142	
CONDUCTIVITY (wmhos/cm)	663	1584	1045	1064	
pH (standard units),	7.47	7.73	7.47	7.44	
TOTAL DISSOLVED SOLIDS (mQII)	410	940	600	620	
TEMPERATURE ('C)	22.4	22.3	22.0	22.3	

*TOC: indicates the "top of the casing" of the Surficial Aquifer Monitoring Well , The well was damaged and repaired, the elevations are approximate.

WATER	RESOURCE	SOLUTIONS,	INC.	
CALOOSAHATCHEE RIVER ASR EXPLORATORY WELL EXBRY-1 PAD MONITOR WELL WATER QUALITY (field determined)				
South Florida Water Management District Berry Grove ASR Exploratory Well Project No. 01-04340.A 11				
FDEP Permit No. 201247 -001-0	JC Contra	ctor: Diversifi	ed Drilling C	Corporation
Prepared by: <u>A. McThenia</u> Sample Date: <u>3/9/04</u> Week #44.				
WELL NUMBER	SAMW#1	SAMW#2	SAMW#3	SAMW#4
LOCATION	NE CORNER	NW CORNER	SE CORNER	SW CORNER
ELEVATION OF TOC' (NGVDI,	24.67	24.32	24.51'	24.69
DEPTH TO WATER (TOC')	3.53	3.41	3.20	3.51
WATER LEVEL (NGVDI)	21.14	20.91	21.31'	21.18
CHLORIDE (malli,	54	222	136	106
CONDUCTIVITY (umhos/cm),	633	1289	957	904
pH (standard units) 7.32 7.60 7.37 7.37				
TOTAL DISSOLVED SOLIDS (mg/l)	370	770	550	540
TEMPERATURE (OC)	21.0	22.0	21.8	21.0

"TOC: indicates the "top of the casing" of the Surficial Aquifer Monitoring Well

WATER RESOURCE SOLUTIONS, INC.					
CALOOSAHATCHEE RIVERASR EXPLORATORY WELL EXBRY-1 PAD MONITOR WELL WATER QUALITY (field determined)					
South Florida Water Management District Berry Grove ASR Exploratory Well. Project No. 01-04340.A11					
FDEP Permit No. 201247 -OOI-UCContractor: Diversified Drilling CorporationPrepared by: A. McTheniaSample Date: 3/17/04Week#45					
WELL NUMBER	SAMW#I	SAMW#2	SAMW#3	SAMW#4	
LOCATION	NE CORNER	NW CORNER	SE CORNER	SW CORNER	
ELEVATION OF TOC'	24.67	24.32	24.51'	24.69	
DEPTH TO WATER (TOC')	3.57	3.45	3.20	3.51	
WATER LEVEL (NGVD)	21.10	20.87	2131'	21.18	
CHLORIDE (mgll)	44	262	144	120	
CONDUCTIVITY (umhos/cm)	626	1363	969	972	
pH (standard units) 7.42 7.62 7.50 7.48					
TOTAL DISSOLVED SOLIDS (mg/l)	370	780	560	560	
TEMPERATURE (OC)	222	22.7	22.5	23.0	

'TOC : indicates the "top of the casing" of the Surficial Aquifer Monitoring Well. The well was damaged and repaired, the elevations are approximate.

WATER RESOURCE SOLUTIONS, INC.				
CALOOSAHATCHEE RIVER ASR EXPLORATORY WELL EXBRY-1 PAD MONITOR WELL WATER QUALITY (field determined)				
South Florida Water Management DistrictBerry Grove ASR Exploratory WellProject No. 01-04340.A 11				
FDEP Permit No. 201247 -001-0	JC Contra	actor: Diversif	ied Drilling C	Corporation
Prepared by: <u>A. McThenia</u> Sample Date: <u>3/23/04</u> Week#46				
WELL NUMBER:	SAMW#1	SAMW#2	SAMW#3	SAMW#4
LOCATION	NE CORNER	NW CORNER	SE CORNER	SW CORNER
ELEVATION OF TOC' !(NGVD)	24.67	24.32	24.51'	24.69
DEPTH TO WATER (TOC')	3.50	3.41	3.19	3.51
WATER LEVEL (NGVDI	21.17	20.91	21.32'	21.18
CHLORIDE (mg/l)	66	285	150	96
CONDUCTIVITY (umhos/cml	530	1434	988	864
pH (standard units),	7.37	7.47	7.43	7.54
TOTAL DISSOLVED SOLIDS (mall)	380	870	610	530
TEMPERATURE (OCI	21.5	21.9	21.2	21.0

'TOC' indicates the "top of the casing" of the Surficial Aquifer Monitoring Well

1 The well was damaged and repaired, the elevations are approximate.

WATER	RESOURCE	SOLUTIONS,	INC.	
CALOOSAHATCHEE RIVER ASR EXPLORATORY WELL EXBRY-1 PAD MONITOR WELL WATER QUALITY (field determined)				
South Florida Water Management District Berry Grove ASR Exploratory Well Project No. 01-04340.A 11				
FDEP Permit No. 201247 -001-U	JC Contra	actor: Diversi	fied Drilling (Corporation
Prepared by: <u>A. McThenia</u> Sample Date: <u>3/30/04</u> Week #47				
WELL NUMBER:	SAMW#1	SAMW#2	SAMW#3	SAMW#4
LOCATION	NE CORNER	NW CORNER	SE CORNER	SW CORNER
ELEVATION OF TOC' (NGVD	24.67	24.32'	24.51'	24.69
DEPTH TO WATER (TOC')	348	3.38	3.14	348
WATER LEVEL (NGVDI,	21.19	20.94	21.37'	21.21
CHLORIDE (mg/l)	58	132	136	134
CONDUCTIVITY (umhos/cm)	606	1146	912	990
pH (standard_units)	7.39	7.50	7.37	743
TOTAL DISSOLVED SOL I DS (mgll) _/	340	530	550	600
TEMPERATURE (OC)	23.6	23.9	23.0	23.0

'TOC: indicates the "top of the casing" of the Surficial Aquifer Monitoring Well , The well was damaged and repaired, the elevations are approximate.

WATER	RESOURCE	SOLUTIONS,	INC.	
CALOOSAHATCHEE RIVER ASR EXPLORATORY WELL EXBRY-1 PAD MONITOR WELL WATER QUALITY (field determined)				
South Florida Water Management District Berry Grove ASR Exploratory Well Project No. 01-04340.A11				
FDEP Permit No. 201247-001-UC Contractor: Diversified Drilling Corporation Prepared by: A. McThenia Sample Date: <u>4/7/04</u> Week #48				
WELL NUMBER	SAMW#1	SAMW#2	SAMW#3	SAMW#4
LOCATION	NE CORNER	NW CORNER	SE CORNER	SW CORNER
ELEVATION OF TOC' [NGVD]	24.67	24.32	24.51'	24.69
DEPTH TO WATER (TOC')	3.41	3.52	3.19	3.53
WATER LEVEL (NGVD)	21.26	20.80'	21.32	21.16
CHLORIDE (mQ/I)	44	212	98	90
CONDUCTIVITY (umhos/cm)	528	1044	707	754
pH (standard units) 6.70 6.82 6.70 6.64				
TOTAL DISSOLVED SOLIDS (mQII)	320	630	410	460
TEMPERATURE (OC)	23.5	23.0	23.3	23.7

*TOC: indicates the "top of the casing" of the Surficial Aquifer Monitoring Well.

The well was damaged and repaired, the elevations are approximate.

WATER	RESOURCE	SOLUTIONS,	INC.		
CALOOSAHATCHEE RIVER ASR EXPLORATORY WELL EXBRY-1 PAD MONITOR WELL WATER QUALITY (field determined)					
South Florida Water Management District Berry Grove ASR Exploratory Well Project No. 01-04340.A11					
FDEP Permit No. 201247 -001-0	JC Contra	actor: Diversi	fied Drilling C	Corporation	
Prepared by: <u>A. McThenia</u> Sample Date: <u>4/13/04</u> Week # 49					
WELL NUMBER	SAMW#1	SAMW#2	SAMW#3	SAMW#4	
LOCATION	NE CORNER	NW CORNER	SE CORNER	SW CORNER	
ELEVATION OF TOC' (NGVD)	24.67	24.32'	24.51 [,]	24.69	
DEPTH TO WATER (TOC')	3.10	3.28	3.05	3.32	
WATER LEVEL (NGVD)	21.57	21.04'	21.46'	21.37	
	46	156	84	124	
CONDUCTIVITY (umhos/cm)	548	973	654	852	
pH (standard units) 6.78 6.76 6.74 6.79					
TOTAL DISSOLVED SOLIDS (mQ/I)	330	620	410	530	
TEMPERATURE (OC)	23.6	24.7	23.3	22.9	

*TOC: indicates the "top of the casing" of the Surficial Aquifer Monitoring Well 1 The well was damaged and repaired, the elevations are approximate.

-- --- ---

WATER RESOURCE SOLUTIONS, INC.						
CALOOSAHATCHEE RIVERASR EXPLORATORY WELL EXBRY-1 PAD MONITOR WELL WATER QUALITY (field determined)						
•	South Florida Water Management District Berry Grove ASR Exploratory. Well Project No. 01-04340.A11					
FDEP Permit No. 201247 -OOI-	UC Contra	actor: Diversifi	ed Drilling (Corporation		
Prepared by: <u>A. McThenia</u> Sample Date: <u>4120/04</u> Week#50						
WELL NUMBER	SAMW#I	SAMW#2	SAMW#3	SAMW#4		
LOCATION	NE CORNER	NW CORNER	SE CORNER	SW CORNER		
ELEVATION OF TOC' (NGVD)	24.67	24.32'	24.51'	24.69		
DEPTH TO WATER (TOC')	3.24	3.12	305	3.50		
WATER LEVEL (NGVD)	2143	21.20'	2146'	21.19		
CHLORIDE (moJI)	46	124	76	94		
CONDUCTIVITY (umhos/cm)	531	774	612	722		
pH (standard units) 644 6.79 6.91 6.88						
TOTAL DISSOLVED SOLIDS (mg/l)	380	480	400	440		
TEMPERATURE (OC)	23.3	23.8	23.9	23.6		

'TOC: indicates the "top of the casing" of the Surficial Aquifer Monitoring Well

¹ The well was damaged and repaired, the elevations are approximate.

WATER RESOURCE SOLUTIONS, INC.					
CALOOSAHATCHEE RIVER ASR EXPLORATORY WELL EXBRY-1 PAD MONITOR WELL WATER QUALITY (field determined)					
South Florida Water Management District Berry Grove ASR Exploratory Well Project No. 01-04340.A11					
FDEP Permit No. 201247 -001-0	JC Contra	actor: Diversifi	ed Drilling C	Corporation	
Prepared by: <u>A. McThenia</u>	Sample	e Date: <u>4/27/0</u>)4	Week # 51	
WELL NUMBER:	SAMW#1	SAMW#2	SAMW#3	SAMW#4	
LOCATION	NE CORNER	NW CORNER	SE CORNER	SW CORNER	
ELEVATION OF TOC" (NGVD	24.67	24.32'	24.51'	24.69	
DEPTH TO WATER (TOC")	2.91	3.05	2.70	3.06	
WATER LEVEL (NGVD)	21.76	21.27'	21.81'	21.63	
CHLORIDE (mall),	48	110	92	86	
CONDUCTIVITY (umhos/cm), 638 715 668 678					
oH (standard unils), 6.80 6.74 6.78 6.79					
TOTAL DISSOLVED SOLIDS (mgJI)	330	410	400	420	
TEMPERATURE (OC)	24.9	24.4	24.6	23.8	

"TOC: indicates the "top of the casing" of the Surficial Aquifer Monitoring Well 1 The well was damaged and repaired, the elevations are approximate.

WATER	RESOURCE	SOLUTIONS,	INC.		
CALOOSAHATCHEE RIVER ASR EXPLORATORY WELL EXBRY-1 PAD MONITOR WELL WATER QUALITY (field determined)					
South Florida Water Management District Berry Grove ASR Exploratory Well Project No. 01-04340.A11					
FDEP Permit No. 201247 -OOI-	UC Contra	ctor: Diversifi	ed Drilling C	Corporation	
Prepared by: <u>A. McThenia</u>	Sample	e Date: <u>5/5/0</u> 4	<u> </u>	Week#52	
WELL NUMBER:	SAMW#1	SAMW#2	SAMW#3	SAMW#4	
LOCATION	NE CORNER	NW CORNER	SE CORNER	SW CORNER	
ELEVATION OF TOC" (NGVD)	24.67	24.32'	24.51'	24.69	
DEPTH TO WATER (TOC")	3.22	3.24	3.31	3.34	
WATER LEVEL (NGVD)	21.45	21.08'	21.20'	21.35	
CHLORIDE (mQ/1)	54	130	152	112	
CONDUCTIVITY (wmhos/cm)	533	776	858	780	
pH (standard unils) 6.75 6.89 6.87 6.87					
TOTAL DISSOLVED SOLIDS (mQ/I)	350	470	520	470	
TEMPERATURE (OC)	23.8	23.3	23.5	23.3	

"TOC: indicales the "top of the casing" of the Surficial Aquifer Monitoring Well 1 The well was damaged and repaired, the elevations are approximate.

WATER	RESOURCE	SOLUTIONS,	INC.		
CALOOSAHATCHEE RIVER ASR EXPLORATORY WELL EXBRY-1 PAD MONITOR WELL WATER QUALITY (field determined)					
South Florida Water Management District Berry Grove ASR Exploratory Well Project No. 01-04340.A11					
FDEP Permit No. 201247 -001-0	JC Contr a	actor: Diversi	fied Drilling C	Corporation	
Prepared by: <u>A. McThenia</u>	Sample	e Date: <u>5/12/0</u>)4	Week # 53	
WELL NUMBER:	SAMW#1	SAMW#2	SAMW#3	SAMW#4	
LOCATION	NE CORNER	NW CORNER	SE CORNER	SW CORNER	
ELEVATION OF TOC'	24.67	24.32'	24.51'	24.69	
DEPTH TO WATER (TOC'),	3.14	3.12	2.91	3.22	
WATER_LEVEL (NGVD)	21.53	21.20'	21.60'	2147	
CHLORIDE (mg/l)	50	124	114	136	
CONDUCTIVITY (umhos/cm)	578	784	755	843	
pH (standard units) 6.68 6.75 6.82 6.86					
TOTAL DISSOLVED SOLIDS (mQ/I)	320	450	470	510	
TEMPERATURE (OC)	23.6	23.1	23.6	23.2	

*TOC: indicates the "top of the casing" of the Surficial Aquifer Monitoring Well

The well was damaged and repaired, the elevations are approximate.

WATER	RESOURCE	SOLUTIONS,	INC.			
CALOOSAHATCHEE RIVER ASR EXPLORATORY WELL EXBRY-1 PAD MONITOR WELL WATER QUALITY (field determined)						
, C	South Florida Water Management District Berry Grove ASR Exploratory Well Project No. 01-04340.A11					
FDEP Permit No. 201247 -001-0	UC Contra	actor: Diversi	fied Drilling C	orporation		
Prepared by: <u>A. McThenia</u> Sample Date: <u>5/18/04</u> Week # 54						
WELL NUMBER:	SAMW#1	SAMW#2	SAMW#3	SAMW#4		
LOCATION	NE CORNER	NW CORNER	SE CORNER	SW CORNER		
ELEVATION OF TOC' (NGVD)	24,67	24,32	24,51'	24,69		
DEPTH TO WATER (TOC')	2,95	2,83	2,62	2,91		
WATER LEVEL (NGVDI	21.72	21.49'	21,89'	21,78		
CHLORIDE (mall),	60	132	78	104		
CONDUCTIVITY (umhos/cm)	533	775	720	632		
pH (standard units) 6.40 6,61 6,76 6,78						
TOTAL DISSOLVED SOLIDS (mg/l)	. 330	470	430	380		
TEMPERATURE (OC)	23,8	23,6	23,6	24,0		

'TOC: indicates the "top of the casing" of the Surficial Aquifer Monitoring Well , The well was damaged and repaired, the elevations are approximate,

WATER RESOURCE SOLUTIONS, INC.						
CALOOSAHATCHEE RIVER ASR EXPLORATORY WELL EXBRY-1 PAD MONITOR WELL WATER QUALITY (field determined)						
	South Florida Water Management DistrictBerry Grove ASR Exploratory.Well.Project No. 01-04340.A11					
FDEP Permit No. 201247 -OOI-	UC Contra	actor: Diversi	fied Drilling (Corporation		
Prepared by: <u>A. McThenia</u>	Sample	e Date: <u>5/25/0</u>)4	Week # 55		
WELL NUMBER	SAMW#I	SAMW#2	SAMW#3	SAMW#4		
LOCATION	NE CORNER	NW CORNER	SE CORNER	SW CORNER		
ELEVATION OF TOC' 'NGVD	24.67	24.32'	24.51'	24.69		
DEPTH TO WATER (TOCO)	247	243	2.35	2.62		
WATER LEVEL (NGVD)	22.20	21.89'	22.16'	22.07		
CHLORIDE (mg/l)	66	128	76	96		
CONDUCTIVITY (~mhos/cm)	456	777	540	616		
pH (standard units) 6.59 6.60 6.77 6.81						
TOTAL DISSOLVED SOLIDS (mg/l)	330	450	380	430		
TEMPERATURE ('C)	24.2	23.9	23.7	23.8		

"TOC: indicates the "top of the casing" of the Surficial Aquifer Monitoring Well

The well was damaged and repaired, the elevations are approximate.

WATER RESOURCE SOLUTIONS, INC.					
CALOOSAHATCHEE RIVER ASR EXPLORATORY WELL EXBRY-1 PAD MONITOR WELL WATER QUALITY. (field determined)					
South Florida Water Management District Berry Grove ASR Exploratory Well. Project No. 01-04340.A11					
FDEP Permit No. 201247 -001-0	JC Contra	actor: Diversif	fied Drilling C	orporation	
Prepared by: <u>A. McThenia</u> Sample Date: <u>6/2104</u> Week # 56					
WELL NUMBER	SAMW#1	SAMW#2	SAMW#3	SAMW#4	
LOCATION	NE CORNER	NW CORNER	SE CORNER	SW CORNER	
ELEVATION OF TOC' (NGVDI,	24.67	24.32'	24.51'	24.69	
DEPTH TO WATER (TOC')	302	3.03	2.78	3.11	
WATER LEVEL (NGVD),	21.65	21.29'	21.73'	21.58	
CHLORIDE (ma/l),	52	142	90	126	
CONDUCTIVITY (umhos/cm),	536	782	682	799	
pH (standard units) 6.85 6.72 6.89 6.89					
TOTAL DISSOLVED SOLIDS (mg/l)	340	460	410	470	
TEMPERATURE (OC)	23.5	23.7	24.2	23.8	

*TOC: indicates the "top of the casing" of the Surficial Aquifer Monitoring Well 1 The well was damaged and repaired, the elevations are approximate.

1

WATER RESOURCE SOLUTIONS, INC.					
CALOOSAHATCHEE RIVER ASR EXPLORATORY WELL EXBRY-1 PAD MONITOR WELL WATER QUALITY (field determined)					
South Florida Water Management District Berry Grove ASR Exploratory Well Project No. 01-04340.A11					
FDEP Permit No. 201247 -001-0	UC Contr a	actor: Diversi	fied Drilling C	Corporation	
Prepared by: <u>A. McThenia</u> Sample Date: <u>6/9/04</u> Week # 57					
WELL NUMBER:	SAMW#1	SAMW#2	SAMW#3	SAMW#4	
LOCATION	NE CORNER	NW CORNER	SE CORNER	SW CORNER	
ELEVATION OF TOC' (NGVD)	24.67	24.32'	24.51'	24.69	
DEPTH TO WATER (TOC'),	2.60	248	2.28	245	
WATER LEVEL (NGVD)	22.07	22.84'	22.23'	22.24	
CHLORIDE (mgll)	64	142	136	204	
CONDUCTIVITY (~mhos/cm)	496	762	744	1127	
pH (standard units) 640 6.68 6.76 6.84					
TOTAL DISSOLVED SOLIDS (moll)	350	500	510	750	
TEMPERATURE eC)	23.9	23.9	24.5	24.9	

*TOC: indicates the "top of the casing" of the Surficial Aquifer Monitoring Well

WATER RESOURCE SOLUTIONS, INC.					
CALOOSAHATCHEE RIVER ASR EXPLORATORY WELL EXBRY-1 PAD MONITOR WELL WATER QUALITY (field determined)					
South Florida Water Management District Berry Grove ASR Exploratory Well Project No. 01-04340.A11					
FDEP Permit No. 201247 -OOI-	UC Contr a	actor: Diversi	fied Drilling (Corporation	
Prepared by: <u>A. McThenia</u> Sample Date: <u>6/15/04</u> Week # 58					
WELL NUMBER:	SAMW#I	SAMW#2	SAMW#3	SAMW#4	
LOCATION	NE CORNER	NW CORNER	SE CORNER	SW CORNER	
ELEVATION OF TOC' [NGVD)	24.67	24.32'	24.51'	24.69	
DEPTH TO WATER (TOC')	2.98	2.96	2.77	2.93	
WATER LEVEL (NGVD)	21.69	21.36'	21.74'	21.76	
CHLORIDE (mg/l)	62	144	146	262	
CONDUCTIVITY (~mhos/cm) 504 689 759 1090					
pH (standard units) 6.40 6.63 6.65 6.75					
TOTAL DISSOLVED SOLIDS (mg/II	340	490	490	690	
TEMPERATURE (OCI	24.0	23.7	24.7	24.9	

TOC: indicates the "top of the casing" of the Surficial Aquifer Monitoring Well. The well was damaged and repaired, the elevations are approximate.

WATER RESOURCE SOLUTIONS, INC.							
CALOOSAHATCHEE RIVERASR EXPLORATORY WELL EXBRY-1 PAD MONITOR WELL WATER QUALITY (field determined)							
-	South Florida Water Management District Berry Grove ASR Exploratory Well Project No. 01-04340.A11						
FDEP Permit No. 201247-001-U	IC Contra	ictor: 🖄 Diversif	ied Drilling (Corporation			
Prepared by: <u>A. McThenia</u> Sample Date: <u>6/22/04</u> Week#59							
WELL NUMBER	SAMW#1	SAMW#2	SAMW#3	SAMW#4			
LOCATION	NE CORNER	NW CORNER	SE CORNER	SW CORNER			
ELEVATION OF TOC* (NGVD)	24.67	24.32'	24.51'	24.69			
DEPTH TO WATER (TOC*)	3.00	301	2.73	3.02			
WATER LEVEL (NGVDI,	21.67	21.31'	21.78'	21.67			
CHLORIDE (mg/l)	64	152	126	310			
CONDUCTIVITY (umhos/cm)	525	785	737	1135			
pH (standard units) 6.40 6.77 6.76 6.86							
TOTAL DISSOLVED SOLIDS (moll)	360	530	510	740			
TEMPERATURE (OC)	23.9	23.4	24.4	24.8			

*TOC: indicates the "top of the casing" of the Surficial Aquifer Monitoring Well

¹ The well was damaged and repaired, the elevations are approximate.

WATER RESOURCE SOLUTIONS, INC.					
CALOOSAHATCHEE RIVER ASR EXPLORATORY WELL EXBRY-1 PAD MONITOR WELL WATER QUALITY (field determined)					
South Florida Water Management District Berry Grove ASR Exploratory Well Project No. 01-04340.A11					
FDEP Permit No. 201247-001-U	C Contra	actor: Diversif	ied Drilling C	orporation	
Prepared by: <u>A. McThenia</u>	Sample	Date: <u>6/29/04</u>	4	Week # 60	
WELL NUMBER:	SAMW#I	SAMW#2	SAMW#3	SAMW#4	
LOCATION	NE CORNER	NW CORNER	SE CORNER	SW CORNER	
ELEVATION OF TOC	24.67	24.32'	24.51'	24.69	
DEPTH TO WATER (TOC·)	3.25	3.17	2.76	3.31	
WATER LEVEL (NGVD)	21.42	21.15	21.75'	21.38	
CHLORIDE (mQ/l)	64	146	136	212	
CONDUCTIVITY (umhos/cm)	519	752	776	1044	
pH (standard unils) 6.17 6.41 6.75 6.63					
TOTAL DISSOLVED SOLIDS (mQII)	450	680	640	760	
TEMPERATURE (OC)	24.1	24.3	24.8	25.5	

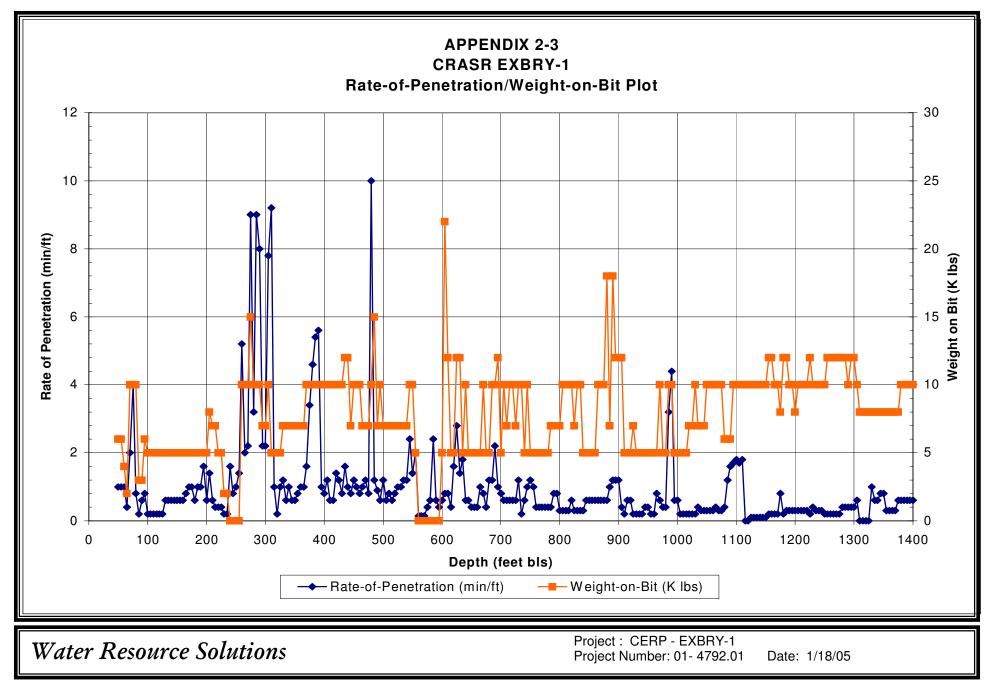
*TOC: indicates the "lop of the casing" of the Surficial Aquifer Monitoring Well

 $\ensuremath{\scriptscriptstyle 1}$ The well was damaged and repaired, the elevations are approximate.

APPENDIX 2-3

RATE-OF-PENETRATION / WEIGHT-ON-BIT SUMMARY AND RATE-OF-PENETRATION / WEIGHT-ON-BIT PLOT

Depth (feet bpl)	Rate-of-Penetration (min/ft)	Weight-on-Bit (K lbs)
50	1	6
55	1	6
60	1	4
65	0.4	2
70	2	10
75	4	10
80	0.8	10
85	0.2	3
90	0.6	3
95	0.8	6
100	0.2	5
105	0.2	5
110	0.2	5
115	0.2	5
120	0.2	5
125	0.2	5
130	0.6	5
135	0.6	5
140	0.6	5
145	0.6	5
150	0.6	5
155	0.6	5
160	0.6	5
165	0.8	5
170	1	5
175	1	5
180	0.6	5
185	1	5
190	1	5
195	1.6	5
200	0.6	5
205	1.4	8
210	0.6	7
215	0.4	7
220	0.4	5
225	0.4	5
230	0.2	2
235	0.2	2
240	1.6	
245	0.8	
250	1	
255	1.4	
260	5.2	10
265	2	10
270	2.2	10
275	9	15
280	3.2	10
285	9	10
283	8	10
290	2.2	7
295	۷.۷	1


Depth (feet bpl)	Rate-of-Penetration (min/ft)	Weight-on-Bit (K lbs)
300	2.2	7
305	7.8	10
310	9.2	5
315	1	5
320	0.2	5
325	1	5
330	1.2	7
335	0.6	7
340	1	7
345	0.6	7
350	0.6	7
355	0.8	7
360	1	7
365	1	7
370	1.6	10
375	3.4	10
380	4.6	10
385	5.4	10
390	5.6	10
395	1	10
400	0.8	10
405	1.2	10
410	0.6	10
415	0.6	10
420	1.4	10
425	1.2	10
430	0.8	10
435	1.6	12
440	1	12
445	0.8	7
450	1.2	10
455	1	10
460	0.8	10
465	1	7
470	1.2	7
470	0.8	7
480	10	10
485	1.2	15
490	0.9	7
495	0.6	10
500	1.2	7
505	0.6	7
510	0.8	7
515	0.6	7
520	0.8	7
525	1	7
530	1	7
535	1.2	7
540	1.2	7
545	2.4	10

Depth (feet bpl)	Rate-of-Penetration (min/ft)	Weight-on-Bit (K lbs)			
550	1.4	10			
555	2	5			
560	0.15				
565	0.15				
570	0.15				
575	0.4				
580	0.6				
585	2.4				
590	0.6				
595	0.4				
600	0.6	5			
605	0.8	22			
610	0.8	12			
615	0.4	5			
620	1.6	5			
625	2.8	12			
630	1.4	12			
635	1.4	5			
640	0.6	10			
645	0.6	5			
650	0.8	5			
655	0.4	5			
660	0.4	5			
665		5			
670	0.8	10			
675	0.4	5			
680	1.2	5			
685	1.2	10			
690	2.2	10			
695	1	12			
700	0.8	5			
705	0.6	10			
710	0.6	7			
715	0.6	10			
720	0.6	10			
725	0.6	7			
730	1.2	10			
735	0.2	10			
740	0.6	5			
745	1	10			
750	1.2	5			
755	1	5			
760	0.4	5			
765	0.4	5			
770	0.4	5			
775	0.4	5			
780	0.4	5			
785	0.4	7			
790	0.8	7			
795	0.8	7			

Depth (feet bpl)	Rate-of-Penetration (min/ft)	Weight-on-Bit (K lbs)
800	0.3	7
805	0.3	10
810	0.3	10
815	0.3	10
820	0.6	10
825	0.3	7
830	0.3	10
835	0.3	10
840	0.3	5
845	0.6	5
850	0.6	5
855	0.6	5
860	0.6	5
865	0.6	10
870	0.6	10
875	0.6	10
880	0.6	10
885	1	7
890	1.2	18
895	1.2	12
900	1.2	12
905	0.4	12
910	0.2	5
915	0.6	5
920	0.6	5
925	0.2	7
930	0.2	5
935	0.2	5
940	0.2	5
945	0.4	5
950	0.4	5
955	0.2	5
960	0.2	5
965	0.8	5
970	0.6	10
975	0.4	5
980	0.4	5
985	3.2	10
990	4.4	10
995	0.6	5
1000	0.6	5
1005	0.2	5
1010	0.2	5
1015	0.2	5
1020	0.2	7
1025	0.2	7
1030	0.2	10
1035	0.4	7
1040	0.3	7
1040	0.3	7

Depth (feet bpl)	Rate-of-Penetration (min/ft)	Weight-on-Bit (K lbs)
1050	0.3	10
1055	0.3	10
1060	0.3	10
1065	0.4	10
1070	0.3	10
1075	0.3	10
1080	0.4	6
1085	1.2	6
1090	1.6	6
1095	1.7	10
1100	1.8	10
1105	1.7	10
1110	1.8	10
1115		10
1120		10
1125	0.1	10
1130	0.1	10
1135	0.1	10
1140	0.1	10
1145	0.1	10
1150	0.1	10
1155	0.2	12
1160	0.2	12
1165	0.2	10
1170	0.2	10
1175	0.8	8
1180	0.2	12
1185	0.3	12
1190	0.3	10
1195	0.3	10
1200	0.3	8
1205	0.3	10
1210	0.3	10
1215	0.3	10
1220	0.3	10
1225	0.2	12
1230	0.4	10
1235	0.3	10
1240	0.3	10
1245	0.3	10
1250	0.2	10
1255	0.2	12
1260	0.2	12
1265	0.2	12
1270	0.2	12
1275	0.2	12
1280	0.4	12
1285	0.4	12
1200	0.4	10
1295	0.4	12
1290	0.4	12

Depth (feet bpl)	Rate-of-Penetration (min/ft)	Weight-on-Bit (K lbs)
1300	0.4	12
1305	0.6	10
1310		8
1315		8
1320		8
1325		8
1330	1	8
1335	0.6	8
1340	0.6	8
1345	0.8	8
1350	0.8	8
1355	0.3	8
1360	0.3	8
1365	0.3	8
1370	0.3	8
1375	0.6	8
1380	0.6	10
1385	0.6	10
1390	0.6	10
1395	0.6	10
1400	0.6	10

APPENDIX 2-3 RATE-OF-PENETRATION/WEIGHT-ON-BIT PLOT

APPENDIX 2-4

CASING MILL CERTIFICATES

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	식 회 사 CO,LTD, CO,LTD, IA (692)3-(6-410) METROPOUTAN, KOREA METROPOUTAN, KOREA METROPOUTAN, KOREA MU, KOREA 7)5-7095	el 1.2 REMARK	•			4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	현 대 강 관 주 식 HYUNDAI PIPE C 1: 조西 1000-0006, D006-60, 0.53444 1: : :조西 1000-0006, D006-60, 0.534446 1: : :조 1000-0006, 0.006-60, 0.0534946 11.: :1001-0006, 0.006-60, 0.006-40 11.: :173-052 5 : #77, MUYO-D006, J006-60, 0.006-40 5 : #77, MUYO-D006, J006-60, 5 11.1.: HD0PIE X 24656, X 22956	甘戸 泉中 点目 旧 (次) ロー (加) ロー (加)	1 75 14 7 6 1 2 1r 1 76 15 9 5 2 1 r	1 77 14 9 6 1 2 1 1 75 18 0 6 1 2 1 1 75 18 0 6 1 2 1 1 76 19 0 6 1 2 1	1 78 17 8 6 2 1 Tr 1 77 20 9 5 2 1 1 1 77 20 9 5 2 1 1 1 73 15 7 6 1 2 1	R H H H H H H H H H H H H H H H H H H H
거 나 등 가 등 11 MILL INSPECTION CBR 11 MILL INSPECTION CBR 11 YOUR P.O.# 11 YOUR P.O.# 12 3.157 13 23.157 13 28.251 13 28.251 13 288.251 13 10 13 110		인 전 시 원 FENSILE TEST 인 전 강 또 두 빠 · TENSILE STREVIGH · · · · · · · · · · · · · · · · · · ·	47.8 50.5 68000 71800 48.9 51.6	49.0 52.3 49.0 52.3 69700 74400 48.2 51.2 68600 72800 47.0 50.2 66900 71400	49.5 52.4 49.5 52.4 47.6 50.6 67700 72000 68700 73100	[초도] G : Good [초대] Oral Test 관풍시험 bittening Test 전체시험 Ladie) Analysis 열린딸석, P : Pro 다. A. MIT Ora
Image: Second state of the second state of	TION CERTIFICAT ESE MILL TEST REPOR UR P.O. # 2301 BIOW STEEL REF. # 6	40 TEST 40 TEST 21일분 제 강변 초 EST HEAT NO.	B57081		1/27/22V	
1 1 11 WE 11 WE 11 WE 11 12 12 2 131 2	검 사 MILL INSPECTINE THE YOU		157 G G G G G 2230 83 G G G G		110 G G G G	
		수 량 우 망) 2 180 3		131	:Galvanced Plan End Square B. Galvanized Plan End Beeeled Galvanized Threaded & Coup :Galvanized Vetaulo: Joml

••

24-INCH CASING

証明書番号 Certificate No.: UE-01-0273

掝 庭

Same: Ing Prequency : 1/ 100P/HEAT

Pase

: 6

				单位		
				Unit		FT-LBS
	Test		nergy	Fractur	re(%)	試片寸法
	Temperature	Min.	Ave.	Min.	Ave.	Specimen Size
TRANSVERSE BODY	16 095					
BODT	14.0°F					10 X 6.7 2mm V Notch
		_				

製造番号 Manufacture 鋼 番		17-1	000									
管理Code-Heat	No.	_										
		Ę		1	E	F.	E	TF	5	F	E	F
	1	2)	• 0	1						1		_
TRANSVERSE	2	22	. 0			1						
BODY	З	22	. 0			1				-		
(CENTER)												
14.0°F	Ave.	22	. 0									
	1											
	2							-		1		
	3											
	Ave.					1		1				
								1	1			
	1							1				
	2											
	Э											
										-		
	Ave.							1			1	
	1 1							-				
	2					1		+				
	3											
	Ave.						\times					
	1					+		+				
	2											
	3											
	Ave.											
	1							1				
	2											-
	3											
	Ave.											
	Ave.					1 1		1				1

010

:Energy

: Fracture

証明書番号

Certificate No. : UE-01-0273

顭	度	
32	歴	

Sampling Frequency : 1/ 50P

Page : 5

								-	
製這番号	鋼番	Be A≂	nd Te 2.6	5 t	製造番号	鋼 番	Be	nd Te	st
		IN	2.0		ACAL IN 1	AN TH			
Manufacture No.	変現 - Heat Code No.	Faco	Root		Manufacture	竹 理 - Heat			
-			LOOL		N o.	Code No.	Faco	Root	
17-00064	1-7528	GOOD	GOOD						
······									
								-	
				,					
ote									

MAY. 16. 2003 11: 19AM VASS pipe 5| 暖 試 験 Tensile Test

. .

..... .

; : .

;

.

.

:

; .

: ;

:

¢

۰.,

, ¹.

Ē		(ROL)							1-0273
i ina	Frequenc	y :1/ 1	HEAT				Page		:4	
ν. t		KSI			_					
武片	記号	耐力	引張強さ	s	伸	U	降伏」	t		
Dec.		eld strenoth T				Ion(%)	YIELD RAT	10(%)		
TS	MID.	42.0	60.0		28		93			
15	MIn.		110.0				95			
	Max.									
	MID.									
	Min.									
	Max.									
一般	道备号	刘 香 1973	武片配号 Spec.	耐	カ	引引	長強さ	伸	U	降伏比
anufi	acture No	Code-Heat N		rield	Strength	Tensil	e Strengt	ELO	heation	Yield Ratio
	00064	1-7528	TS	6	3.2	8	0.8	31		78
· · · · ·										
	· · · · ·	·								
					• • • • • • • • • • • • • • • • • • • •	+				
								+		
								-		
			· · · · · · · · · · · · · · · · · · ·							
•										
					-					
	~~									
						+				
				·						

LW:Loneitudinal in weld THREELEN

MAY. 10. 2003 11: 18AM VASS pipe 武 功定 icnsile Test NO. 1145 F. D.

ЪĽ	明	8	番	号	

Certificate No. : UE-01-0273

: 3

夏度			
amp lina	Frequency	:1/	100P

: KSI

Page

1 位 n1 t

.

试片記号 商 力 引張強さ 伸び 降伏比 Spec. Mark Yield Strength Tenelle Strength Elongation(%) Yield Ratio(%) 60.0 MIN. T₩ Max. 110.0 MID. Max. Min. Max. MIn. Max.

製遺番号	왜 番	武片配号	耐力	引張強さ	伸び	降伏比
	TH.	Speo,				
Manufacture No.	Code-Heat No.		Yield Strength	Tensile Strength	Elongation	Yield Ratio
17-00064	1-7528	TW		85.4		
					_	
			_			
					-	

Note Spoc, Mark: MH23	
TS:Transverse Stock	母性的なと同
L5:Longitudinal Stock	(9478(MCXTT)
TW: Transverse in weld	547月1日日 (11)
Lw:Longitudinal in weld	(אוגנועצעואל)

Max. Min.

:

ate:					証明書番号 Certificate No	UE-01-0273
	Frequ	ency :1/ 10	OP/HEAT		Page	:2
位 i t		: KSI				
試片 1	己号	耐力	引張強さ	伸び	降伏比	
Spec.	Mark		Tensile Strength	-	YIELO RATIO(%)	
	MIn.	42.0	60.0	28		
TS	Max.	72.0	110.0		93	
	MIn.					

Max.						
MIn.						
Max.						
製造番号	- 鋼 - 番 1173	武片記号 Spec.	耐力	引張強さ	伸び	降伏比
Manufacture No.			Yield Strength	Tensile Stronath	Elongation	Yield Ratio
17-00066	1-7528	TS	63.1	80.4	31	78
W BETTERSON PROPERTY AND A SUBMIT						
					····	
	1					
				· · · · · · · · · · · · · · · · · · ·		
		1				
		1				
		1				
				· · · · · ·		
					••	
	1	1				
171100 Control		1				
		1				
		1	1	1		1

Nete Spec. Mark:10408 TS:Transverse Stock #4680000 TS: Strip (W=38.lmm) LS:Longitudinal Stock #4680000 TW:Transverse in Weld (#128900000 LW:Longitudinal in Weld (#128900000) MAY. 10. 2005 II: IOAM · VADD pipe 化学成分 Chemical Composition

ion 証明書番号

BASE METAL

Cortificate No. : UE-01-0273

(195 PP

須 度						-					
illama	ng P	rea	iuency :2	/ 1HE]	Poge :1					
			造番号								
M a	nu		cture	N o .	17-00064	17-00066					
			日番								
管理	聞 C o	de	— Невt	No.	1-7528	1-7528					
			Mín.	Max.							
	1	L		0.22	0.14	0.14					
Ç	%	P		0.22	0.13	0.13					
	1	L		-	0.29	0.29					
S i	%	P		-	0.27	0.28					
		L		1.20	1.16	1.16					
Mn	1	p		1.20	1.15	1.16					
		L		0.025	0.017	0.017					
P	*	Р		0.025	0.018	0.018					
		L		0.015	0.009	0.009					
S	2	P		0.015	0.010	0.010					
		L		-	0.01	0.01					
Cu	%	P		-	0.01	0.01					
		L		-	0.02	0.02					
Ni	%	Р		-	0.02	0.02					
	1	L		-	0.04	0.04					
Cr	1	P		-	0.04	0.04	1				
	1	L		-	0.00	0.00					
Mo	1%	P		-	0.00	0.00					
		L		-	0.006	0.006					
v	%	P		-	0.006	0.006					
		L		- 1	0.000	0.000					
NЬ	%	P		-	0.000	0.000					
		L		-	0.000	0.000					
Τi	*	Р		-	0.000	0.000					
		L		-	0.0000	0.0000					
В	%	P		-	0.0000	0.0000					
NP+A		L		0.15	0.01	0.01					
+Ti	*	P		0.15	0.01	0.01					
Ceq.		L									
78	%	P		0.43	0.33	0.33					
		L									
Pcm.	%	P		0.25	0.20	0.20					
		L									
	_	P									
		L									
		P									
		L									
		P									
		L		1.0							
	_	P									
		L									
		P									
		L									
		P									
	1	L									
		р									
		L									
		Р							1		

Note L:Ladie Analysis - とりべ分析

P:Product Analysis - 魏品分析

Ceq.7B= C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5

NO. 1145 F. 4:

夏 不			NAK	U UNITUR	- Arrend					ON C								9 N	o. :	UE-	01-03	273-		
urchaser		· ·.										Ē	1	付	Date				:	JUL	,23,	2001		
長家管理者								5764				12	V	10.00	-	PAL	enc	P NO	1	002	438	78970	1444	
义者 Tradin 名	J CO.	. : I	TOCI	IU CO	RPORA	1100	1						AB .					NO.			:			
ATTEN		SUBM	ERG	ED AR	C HEL	DED	STE	EL P	IPE	IU.0.	E)							1220						
18		API	SL->	X4Z-P	SL2/B	-PSL									No		κ₩Ţ): 5	4IN	DXD	.375	IN		
becificati 福安家管理番		& CU	STO		S SPEC 和非今-				¥		*		2 1				Ηđ			>	T .	X		*
Purchaser'		der	NO.		tract				ith (<	-)	OT F							n		MABB	Kgs	
				U04	7111-	004	4	OFT							2	6								,596
																-				-				
				+																				
										TAL						6				(9)			63	,596
トレ: とりべいまし								1	K 7	2 展 :	7 (ICD		T COM	91T	(on	<u></u>			57			
P: Bubbits Pr W: Sanst: De					cls	SI N	Mn	PIS			Cr	M		1	71	AL	Ð	N						
B: BAS BO									-															
0:7 56 00	tside	•		Max								T			1-	-	_							
			-	MIN				_						+	+	-		\vdash						
<u>双运苦</u> 号 M1.No.	I He?			MEX ※ 1			<u>,</u>	×100	5		1	6	0	-	×1	000	×10	000						
	1							T	-	T		-	Τ.	T	1	_	_							
												_		-	-	-								
										+	+	+		+		-	-			-				
									_															
										1	1		1		1	1								
																								1
																			_					:
डा	58 I	R 19	(1)	ensli	e Tes					曲牙民			Test)					软	(Ha	rdnes	55 Te		
			TT	開力	8 BASIC					U U U		-				Met Loc						Body	H. A.	
1410		948 84	EK	Y.5	T. 5		1 %	_		Mf. NO		***		120 19					(1)	11		2000		:
Win Win Max						-+-			()		×1 ×	FB	RB	BBF	R			• 2	142		MIN.			
Mt. No. MIT	1.								(Hee	T NO)					()	loat	N),)		_	Max.			
Max			11																	00				
() () () () () () () () () () () () () (-					ī				
NO.)MIT		+	+-+									1								0				-
Max									1											0				
									KE 1	Posl	100	T:e	UTINT C	ans	ver	50 I	: 12	হান্য ১০	nai	tud	Inal			,
		++	++						-			S:E		Se	Met		u:75R	PAN			3:K	AII 4	Jeld I	Mota
									KG 1	POE	TION	0:0	UNCUIT	910	A C	: 090	Can	ter	1:内	831 n	BIDE		and	,
			1 1		1				Bend	d Test		FB:	Face	BO	na	RB Git	:RO	000	and	5	8:51	de Be	2ng	:
			11						-															:
									1				1100	, 00	nu	_								
																							-	• •
新型改成		Py 1	mpa	ct Te	et)	- (7	11 A 5	120:						1		182					dht IPos.	Tear	Test	
	03. ()	ct Te	et)		12 5	120:	 					1		182					Pos.	MIN.		
2017 1000 1000 1000 1000 1000 1000 1000	03. (mper c	ature)	ct Te	est)	(*	TA 5	120:)		152 Tem It:	per	atur	.6	tit	Pos.	MIN. Ave.		OY 54
	03. (mpor c 3%1 %) n.]		152 Tem It:	Der	atur		tit	Pos.	MIN. Ave. MIN.		OY 54
2017 1000 1000 1000 1000 1000 1000 1000	03. (mpor c 3%1 %) n. /e.							ner yy	54%]		152 Tem It:	Der	atur	.6	tin t	Pos.	MIN. Ave.		бу 54
	03. (mpor c 3%1 %) (. /8.							ier ay	54%]		152 Tem It:	Der	atur	.6	tin t	Pos.	MID. Ave. MID. Avo.		бу 54
	03. (mpor c 3%1 %) n. /e.							hêr Qy	5 4 % !]		152 Tem It:	Der	atur	.6	tin t	Pos.	<u>Г. е. г. о</u> , н <u>А</u> <u>А</u> <u>А</u> <u>А</u> <u>А</u> <u>А</u> <u>А</u> <u>А</u> <u>А</u> <u>А</u>		9y 54
	03. (mpor c 3%1 %			Ener						ier gy	54% 1]		152 Tem It:	Der	atur	.6	tin t	Pos.			бу 54
	03. (mpor c 3%1 %			Ener						her ay	54% I]		152 Tem It:	Der	atur	.6	tin t	Pos.	<u>Г. е. г. о</u> , н <u>А</u> <u>А</u> <u>А</u> <u>А</u> <u>А</u> <u>А</u> <u>А</u> <u>А</u> <u>А</u> <u>А</u>		бу 54
	03. (mpor c 3%1 %			Ener						her ty	54%]		152 Tem It:	Der	atur	.6	tin t	Pos.	C. e. C. o. H & G & H		бу 54
XF MIF INFIG MIFIG MF. No. (M S) (Heat No.)				Ener	Qy SA	% En		y 5A	% En			E∩er	¢y 5) A% (IT: IT: IT: Hea	NC T N	atur	9 81 8	13	Pos.	Y Y		бу 54
				Ener	Qy SA	% En		y 5A	% En			E∩er	¢y 5) A% (IT: IT: IT: Hea	NC T N	atur	9 81 8	13	Pos.	Y Y		бу 54
SELEUMIT F				Ener	Qy SA	% En		y SA	% En	Kot-m	KC: Y) A26 (itter i Retter Retter	Tem It: Heo	C IN	atur 0,)	9 811 8		TPOS.	VID. V. Q. V. Q. V. Q. V. Q. V. Q. V. Q. V. Q. V. Q. V. Q. V.		бу 54
XF MIF INFIG MIFIG MF. No. (M S) (Heat No.)				Ener	Qy SA	% En	103/ 後望泉		% En KM:	Kot-m oction	KC: Y	Ener Soft-r	oy 5) A26 (Tem It: Heo	C IN	atur 0,)	9 811 8		TPOS.	VID. V. Q. V. Q. V. Q. V. Q. V. Q. V. Q. V. Q. V. Q. V. Q. V.		бу 54
SELEUMIT F				Ener	Qy SA	% En	105/ 後望報 約1、13			Kot-m oction Jate-	KC: " Resi Hann %2	Ener of -r vits NDI	0 × 5 (G-G N/1 CoA			Tem It: Heo	C IN	atur 0,)	9 811 8		TPOS.	VID. V. Q. V. Q. V. Q. V. Q. V. Q. V. Q. V. Q. V. Q. V. Q. V.		бу 54
SELEUMIT F				Ener	Qy SA	% En	ierg) ies/ 和空和 Na·マ) Suol		KM:	Kot-m oction Deta- 830	KC: Rest Han XZ		0 × 5 (G-G N/1 CoA	2 NN		Tem It: Heo	C IN	atur 0,)	9 811 8		TPOS.	VID. V. Q. V. Q. V. Q. V. Q. V. Q. V. Q. V. Q. V. Q. V. Q. V.		бу 54
SELEUMIT F				Ener	Qy SA	% En	าสาร (03/ (03/ มีเรียง) มีเรียง มีเรียง)		KM:	Kot-m oction Date Sta- test 830 PSI	KC: Resi Harris X2 U R T T		0 × 5 (G-G N/1 CoA			Tem It: Heo	C IN	atur 0,)	9 811 8		TPOS.	VID. V. Q. V. Q. V. Q. V. Q. V. Q. V. Q. V. Q. V. Q. V. Q. V.		бу 54
SELEUMIT F				Ener	Qy SA	% En 	lera) les/ les/ sual mens	y SA y SA cm² cm² cm² si− on		Kot-m oction Deta- 830		Ener Jits NDI NDI T T				Tem It: Heo	C IN	atur 0,)	9 811 8		TPOS.	VID. V. Q. V. Q. V. Q. V. Q. V. Q. V. Q. V. Q. V. Q. V. Q. V.		бу 54
SELEUMIT F	03. (mpero %1 % %1 % %5 : Fto			Jeure	QY SAT	% En	105/ 105/ 105/ 105/ 105/ 105/ 105/ 105/		KM: M M M M M M M M M M M M M	Kot-m ction 830 PSI EC.B	KC: Resu Fax XZ U R T T S S I I TB)		Con Te l			Tem It: Heo	C IN	atur 0,)	9 811 8		TPOS.	VID. V. Q. V. Q. V. Q. V. Q. V. Q. V. Q. V. Q. V. Q. V. Q. V.		бу 54
SELEUMIT F	03. (mpero %1 % %1 % %5 : Fto			Jeure	QY SAT	% En	iero) (63/ الفعاد الفعاد الفعاد الفعاد الفعاد الفعاد الفعاد الفعاد الفعاد الفعاد الفعاد الفعاد الفعاد الفعاد الفعاد المعاد مع المعاد المعاد المعاد مع المعاد مع المعاد مع المعاد المعاد المعاد المعاد مع معاد مع مع معاد مع مع معاد مع مع مع مع معاد مع مع مع معاد مع مع م		KM: STORY KM: STORY KM: STORY KM: STORY KM: STORY	Kot-m ction 330 PSI SEC.B SEC.B	KC: Resu Fax XZ U R T T S S I I TB)		Cy S Gy S IG-G N7 Con Te Page 1 2		11:N- 1:N- 1:N- 1:N- 1:N- 1:N- 1:N-	Tem It: Heo	C IN	atur 0,)	9 811 8		TPOS.	VID. V. Q. V. Q. V. Q. V. Q. V. Q. V. Q. V. Q. V. Q. V. Q. V.		бу 54
SELEUMIT F	03. (mpero %1 % %1 % %5 : Fto			Jeure	QY SAT			V SA VCm ² SR II C L C CAL I TEST		Kot-m ction 330 PSI SEC.B SEC.B			Con Te l			Tem It: Heo	C IN	atur 0,)	9 811 8		TPOS.	VID. V. Q. V. Q. V. Q. V. Q. V. Q. V. Q. V. Q. V. Q. V. Q. V.		бу 54

上記商品は検証の結果指定の規格に合格していることを証明いたします。 We hereby certify that the material herein has been made and tested in accordance with the above specification and also with the requirements called for by the above order.

comoto Manager of Inspection Sec.

NV. 1143 r. 2.

A DEPENDABLE SOURCE YOU CAN COUNT ON

158 THIRD STREET • P.O. BOX 583 • MINEOLA • NY 11501 • TEL: 516.741.8398 • FAX: 516.741.8210

ATTN: JOE

COMPANY: DIVERSIFIED DRILLING CORP.

DATE: 5/16/03

FROM: JENNY REYES

÷

FAX #813-917-5563

PIPE TALLY / PACKING SLIP

P.O.#21284 RELEASE#28675

321.6	8 PCS X 40.2' 34" BPE API5LB .375W DSAW	8 X	40.2		
	USAW DSAW				
•				ļ	
			-		

34-INCH CASING

04792RGG.B0105.doc

S0-YAM

42-INCH CASING

04792RGG.B0105.doc

	- (711) - (76)3 - (76)3	※ 이너지 않는 것 이 있다. 것 이 이 있는 것 이 이 있는 것 이 이 있는 것 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이	2016 %					AL MGR. (350 × 280)
HYNDRA HYSRO	: 울신광역시 북구 업표통 265번지 [883] #265. Yeompo-dong Buk-gu. Usan. Kore: TEL:(052)280-0114 FAX:(052)267-891 : 서울특별쇠 종로구 계동 1a0-2번지 [[JJ]] 140-2, Kye-dong Chongro-gu, Seoul. Korea TEL-(02) 746-1114 FAX:(02) 775-709	AF	x 100 x 1000 x 100 x 100 x 100 19 2 78 19 10 2 1 2 1 7 1 1 7 18 2 76 14 7 2 1 2 2 17	19 2 78 19 10 2 1 2 1 Tr 18 1 76 14 3 2 1 1 1 1 Tr				OUAUTY ASSUMANCE TEAM GENERAL MGR.
(A)	ON CERTIFICATE · EAI - 33 THESE MILL TEST REPORTS APPLY I. (ULSWI RART) VOUR P.O. # 3301 · MASAIPA BARTOW STEEL REF. # 2004908 SEQU OFFICE	번 호 행국강도 인 장 시 점 TENSILE TEST TENSILE TEST TENSILE TEST TENSILE TENSILE TENSILE TENSILE TENSILE TENSILE TENSILE TENSILE TENSILE TENSILE	PSI <u>kr (1 m m m m m m m m m m m m m m m m m m </u>	45900 63000 73400 33.5 50.9 33.7 38 47600 72400 76400 34.1 51.1 53.6 38	48500 72700 72700		रस्थ हा मन्द्रियन प्रथम (본 제품은 관련규격에 합격되었음을 보증합니다. WE CERTIFY THAT THE DESCRIBED MATERIAL HAS HEREIN BEEN ACCEPTED IN ACCORDANCE WITH THE PRESCRIBED SPECIFICATION AND ORDER. HVI IMPAIL HVYCTO
日0	MILL INSPECTION CERTIFICATE THESE MILL TEST REPORTS AF THESE MILL TEST REPORTS AF VOUR P.O. # 2301 BARTOW STEEL REF. # 2004		CUMI 1 HHB 1	GUSAM			Oddside Diameter 표၂ UM (또 6 visual (일 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전	본 제품은 관련규격에 합격되었음을 보증합니다. WE CERTIFY THAT THE DESCRIBED MATERIAL HAS HEREIN BEEN TED IN ACCORDANCE WITH THE PRESCRIBED SPECIFICATION ANI HVI IMMAI HVEEN
₩0	INSPECT	116471WEXT 5 4 11641VD 1651 7 4 11641VD 1651 7 4 11651 1531 0 4 11651 1531 7 4 11651 1531 0 4 11651 15 0 4 11651 1 3 4 00101011 1531 0 4 00101011 1531 0 4 0000011 1531 0 4	は、秋心(石) 18. AV26W 石) (各田化山) 13. 14. (名田代山) 13. 14. (日本日) 15. 15. 14. (日本日) 15. 15. 15. 15. 15. 15. 15. 15. 15. 15.	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9			[표 2] NB : Morrinal Bore 호성장. OO: Outside Diameter 표 3] Ur 또 5] C : Good 또 8성자 16:1 용상부 변상자 열 · · · · · · · · · · · · · · · · · ·	본 제품은 관련규격 ERTIFY THAT THE DES(IN ACCORDANCE WITH
π	DER SAFE SAESE	수 광 중 광 HYDRO. OUAN- WEIGHT STATIC TITY WEIGHT TEST	(PCS) (KG) tr 04 PSI 10 8.576 83 2.180	7 6.305 53 180 111 23.943 111	20 39.227		XX PE:Phain End BE:Bevel End TE: Thread End TE: Thread End E1: Chread E1: Chread E1: Chread E1: Chread E1: Chre	WE C ACCEPTED I
	E4116 = a ol al : 1 APR. 22. 2003. E4264507 N E.R.W. Steel Pipe API 5. X42/API 548 PSL1/ASTH A538/ASPE SA538	ENSION 제 × 같 이	×4 × .375 ×20.000 × 9.53 × 6.095H	x .375 x21.000' x 9.53m x 6.401M) x 500' x42.000'	x12.70mm x 12.8024)	residum. Hagnetish test : 0000	X V : Vanish R: Renoval Vanish 0.000 Costing F : PE Costing C : Costing A : Asptiat Costing	
	Harrier Manuel 116 Harrier Manue	ल	× 23 € 00.000 € 00.0000 € 00.00000 € 00.0000 € 00.00000 € 00.0000 € 00.000000 € 00.000000 € 00.00000 € 00.0000 € 00.0000 € 00.0000	4 10.0 1 4 27. 863-8	<pre>6 510.0mm 10114L -></pre>	19912 Wojrse-Mog- 	A Construction of pipe End Past B : Enumeted C : Enumeted E : Enumeted	0001-13- - 8-301-631-0-011

APPENDIX 2-5

CERTIFICATE OF CALIBRATION

FAX (813) 254-7213 PHONE (813) 251-1358/251-1359 504 SOUTH HOWARD AVE. TAMPA, FLORIDA 33606

CERTIFIED CALIBRATION CHART

CUSTOMER DIVERSIFIED DRILLING

CUSTOMER ORDER NO.____DATE 10/21/03 GAUGE NO 300# DURA GAUGE # 18

GAUGE DESCRIPTION 45 1279AS 02L 300# DURA GAUGE

TRUE VALUE	INDICATED VALUE
0	0
50	50
100	100
150	150
200	200
250	250

CALIBRATION STANDARD Dead Weight Tester SERIAL NO. 2MH-27999

TESTED BY: BEN CORVETTE AM A CHARTE DATE 10/21/03

THIS IS TO CERTIFY THAT THIS GAUGE HAS BEEN INSPECTED, ADJUSTED AND TESTED AGAINST PRESSURE STANDARD DEADWEIGHT TESTER TRACEABLE TO THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY. ACCURACY TEST REFERENCE NO. 731-238622-87, COMPENSTATED TO LOCAL ACCELERATION DUE TO GRAVITY WITH ACCURACY OF 1/20 OF 1%.

WATER RESOURCE SOLUTIONS, INC.

CALOOSAHATCHEE RIVER ASR EXPLORATORY WELL EXBRY-1

Well No .: CRASR EXBRY-1 Gauge SN: 2MH. 27999

Starting Date/Time: 10-22-03 12:30 Starting Pressure: 01.5 psi

Casing Diameter: 24-inches

ding December 20 7

Dashig Diameter. 24		Ending Pressure:	<u>_99.7</u> psi
Elapsed Time (minutes)	Pressure (psi)	Pressure Change (psi)	Percent Change
0	101.5	0	0
5	101.5	0	0
10	101.5	0	0
15	101.0	- 0.5	- 0.49
20	100.8	- 0.7	
25	100.4		- 0.70
30	100.2	- / 3	- 1.08
35	100.0	- 1 5	- 1.28
40	99.9		- 1.48
45	99.8	- 1.6	- 1.58
50	998	- 1.7	- 1.67
55	99.7	- 1.7	~ 1.67
60	09.7	- 1.8	- 1.77
	77.1	- 1.8	- 1.77

Witnessed by:

Signature

Approximately 7.5 to 8 galling of water where discharged from the casing during the pressure release.

Signature

We tor Resource Solutions Inc. Firm/Organization

Firm/Organization

Signature

Firm/Organization

APPENDIX 2-6

INITIAL NPDES SCREENING RESULTS

4805 N.W. 2nd Avenue Boca Raton, FL 33431 561-989-5225 edyne@bellsouth.net

CERTIFICATE OF ANALYSIS

Analyses contained herein conform to EPA, Standard Methods and DEP approved methods, unless otherwise noted. Subcontracted analyses are denoted by certification number in the analyst column. All relevant quality assurance samples were within specified control limits unless otherwise stated. Uncertainties for test results are available upon request. Envirodyne certifies its test results meet all requirements of the NELAC Standards, where applicable. For questions, please call the project manager at the number listed above.

This is the last page of the report. See bottom of page for total pages.

Ruhal Kentoums

Project Manager

Swanne Cha

Quality Assurance Officer

U = Analyte not detected DL = Detection Limit

4805 N.W. 2nd Avenue Boca Raton, FL 33431 561-989-5225 edyne@bellsouth.net

CERTIFICATE OF ANALYSIS

Diversified Drilling Corporation 5620 Lee Street Lehigh Acres, FL 33971 October 30, 2003 Report: 2003/10569 Sample No: 2003/10569- 1

Attention: Bill Musseluhite

Project: 2080 Caloosahatchee ASR Well LaBelle, FL

Collected by: Rudy Prescott

Collected on: 10/29/03 Received on: 10/29/03

SAMPLE ID: Reservoir Water

Date of Analysis: 10/30/03 Date of Extraction: 10/29/03

8310 POLYNUCLEAR AROMATIC HYDROCARBONS

PARAMETER	RESULT	DL UNITS	ANALYST	
Acenaphthene	U	0.10 µg/L	КҮТ	
Acenaphthylene	υ	0.10 µg/L	KYT	
Anthracene	U	0.10 µg/L	KYT	
Benzo(a)anthracene	U	0.10 µg/L	KYT	
Benzo(b)fluoranthene	υ	0.10 µg/L	KYT	
Benzo(g,h,i)perylene	υ	0.10 µg/L	KYT	
Benzo(k)fluoranthene	υ	0.10 µg/L	KYT	
Benzo(a)pyrene	υ	0.10 µg/L	KYT	
Chrysene	U	0.10 µg/L	KYT	
Dibenzo(a,h)anthracene	υ	0.10 µg/L	KYT	
Fluoranthene	υ	0.10 µg/L	KYT	
Fluorene	υ	0.10 µg/L	KYT	
Indeno(1,2,3-c,d)pyrene	υ	0.10 µg/L	KYT	
1-Methylnaphthalene	υ	0.10 µg/L	KYT	
2-Methylnaphthalene	υ	0.10 µg/L	KYT	
Naphthalene	U	0.10 µg/L	KYT	
Phenanthrene	U	0.10 µg/L	KYT	
Pyrene	υ	0.10 µg/L	KYT	

U = Analyte not detected DL = Detection Limit

4805 N.W. 2nd Avenue Boca Raton, FL 33431 561-989-5225 edyne@bellsouth.net

CERTIFICATE OF ANALYSIS

Diversified Drilling Corporation 5620 Lee Street Lehigh Acres, FL 33971 October 30, 2003 Report: 2003/10569 Sample No: 2003/10569- 1

Attention: Bill Musseluhite

Project: 2080 Caloosahatchee ASR Well LaBelle, FL

SAMPLE ID: Reservoir Water

Collected by: Rudy Prescott

Collected on: 10/29/03 Received on: 10/29/03

Date of Analysis: 10/29/03

8021B HALOGENATED & AROMATIC VOLATILE ORGANICS

PARAMETER	RESULT	DL UNITS	ANALYST	
1,1,2-Trichloroethane	U	1.0 µg/L	CVM	
Trichloroethylene	U	1.0 µg/L	CVM	
Trichlorofluoromethane	υ	$1.0 \ \mu g/L$	CVM	
1,2,3-Trichloropropane	U	1.0 µg/L	CVM	
Vinyl chloride	U	1.0 µg/L	CVM	
Benzene	υ	1.0 µg/L	CVM	
Ethylbenzene	υ	1.0 µg/L	CVM	
Toluene	υ	1.0 µg/L	CVM	
Xylenes, Total	U	1.0 µg/L	CVM	
Methyl-tert-butyl-ether	Ŭ	1.0 µg/L	CVM	

4805 N.W. 2nd Avenue Boca Raton, FL 33431 561-989-5225 edyne@bellsouth.net

CERTIFICATE OF ANALYSIS

Diversified Drilling Corporation 5620 Lee Street Lehigh Acres, FL 33971 October 30, 2003 Report: 2003/10569 Sample No: 2003/10569- 1

Attention: Bill Musseluhite

Project: 2080 Caloosahatchee ASR Well LaBelle, FL

Collected by: Rudy Prescott

Collected on: 10/29/03 Received on: 10/29/03

SAMPLE ID: Reservoir Water

Date of Analysis: 10/29/03

8021B HALOGENATED & AROMATIC VOLATILE ORGANICS

ARAMETER	RESULT	DL UNITS	ANALYST	
Benzyl chloride	υ	1.0 µg/L	CVM	
Bromodichloromethane	U	0.5 µg/L	CVM	
Bromoform	U	1.0 µg/L	CVM	
Bromomethane	U	1.0 µg/L	CVM	
Bromobenzene	U	1.0 µg/L	CVM	
Carbon tetrachloride	U	$1.0 \ \mu g/L$	CVM	
Chlorobenzene	U	$1.0 \ \mu g/L$	CVM	
Chloroethane	U	1.0 µg/L	CVM	
2-Chloroethylvinyl ether	U	$1.0 \ \mu g/L$	CVM	
Chloroform	U	$1.0 \ \mu g/L$	CVM	
Chloromethane	U	1.0 μ g/L	CVM	
Dibromochloromethane	U	$0.5 \ \mu g/L$	CVM	
Dibromomethane	U	1.0 µg/L	CVM	
1,2-Dichlorobenzene	U	1.0 µg/L	CVM	
1,3-Dichlorobenzene	U	1.0 µg/L	CVM	
1,4-Dichlorobenzene	υ	1.0 µg/L	CVM	
Dichlorodifluoromethane	U	$1.0 \ \mu g/L$	CVM	
1,1-Dichloroethane	U	1.0 µg/L	CVM	
1,2-Dichloroethane	U	$1.0 \ \mu g/L$	CVM	
1,1-Dichloroethene	U	$1.0 \ \mu g/L$	CVM	
cis-1,2-Dichloroethylene	υ	1.0 µg/L	CVM	
trans-1,2-Dichloroethylene	U	1.0 µg/L	CVM	
Dichloromethane	U	5.0 µg/L	CVM	
1,2-Dichloropropane	U	1.0 µg/L	CVM	
cis-1,3-Dichloropropene	U	1.0 μ g/L	CVM	
trans-1,3-Dichloropropene	U	1.0 µg/L	CVM	
1,1,1,2-Tetrachloroethane	U	1.0 µg/L	CVM	
1,1,2,2-Tetrachloroethane	U	0.4 µg/L	CVM	
Tetrachloroethylene	U	1.0 µg/L	CVM	
1,1,1-Trichloroethane	υ	1.0 µg/L	CVM	

U = Analyte not detected DL = Detection Limit

QA/QC Review Laboratory Certification No. E8618

4805 N.W. 2nd Avenue Boca Raton, FL 33431 561-989-5225 edyne@bellsouth.net

CERTIFICATE OF ANALYSIS

Diversified Drilling Corporation 5620 Lee Street Lehigh Acres, FL 33971 October 30, 2003 Report: 2003/10569 Sample No: 2003/10569- 1

Attention: Bill Musseluhite	Р	roject: 2080 Ca LaBelle,	aloosahatchee ASR W FL	/ell	
SAMPLE ID: Reservoir Water	Col	llected by: Rudy	Prescott		i on: 10/29/03 i on: 10/29/03
PARAMETER	RESULT	METHOD	DL UNITS	DATE	ANALYST
Cadmium	υ	200.7	0.0040 mg/L	10/29/03	DNR
Copper	υ	200.7	0.010 mg/L	10/29/03	DNR
Lead	0.0087	200.7	0.0050 mg/L	10/29/03	DNR
Zinc	0.031	200.7	0.010 mg/L	10/29/03	DNR
Mercury	υ	245.1	0.000025 mg/L	10/29/03	DNR
Chromium, Hexavalent	υ	SM3500CR-I	D 0.010 mg/L	10/29/03	JMJ
pH (Laboratory)	8.0	150.1	pH Units	10/29/03	MEM
Total Organic Carbon	0.91	415.1	0.50 mg/L	10/29/03	JMJ

U = Analyte not detected DL = Detection Limit

Envirodvne Inc		CHAIN OF CUSTODY RECORD	ORD		Page 1 of 1
		ANALYSIS REQUEST		4805 NW 2nd Aver (800) 713	4805 NW 2nd Avenue • Boca Raton, FL 33431 (800) 713-7737 • Fax (561) 989-5204 edyne@bellsouth.net
PROJECT NUMBER PROJ	PROJECT NAME CALOOSALA techer ASR	P.O. NUMBER	SAMPLE 40	4 2 2 2 4 4 A PHESERVATIVE	~
OCATION				ANALYSES REQUESTED	
LADE//E, F/DRICH - DERRY (FRONES) CLIENT NAME	- DERRY (THOURS) CLIENT ADDRESS		35/ /		RUSH TAT (SURCHARGE)
ed Deilling	5620 Le e Sati. PHONE(239)363-6414 FAX	100 100 N	2010 12 20 20 20 20 20 20 20 20 20 20 20 20 20	100 100 1000 1000 1000 1000 1000 1000	
	SAMPLE INFORMATION	×	~	1 4 4 1	/ 2/ DATE: UL IIC
ER DATE					A REMARKS
1 10-27-05 3:40am	m lestion work sample	7	777	7	
2					
°.					
4		•			
G					2 2 2
9					
7					
8					
6					
10					
Ruidy Prescott	ARE THESE SAMPLES LISTED OR CHARE THESE SAMPLES FROM DETR	ED OR CHARACTERISTIC HAZARDOUS WASTE? M D PETROLEUM D DRY CLEANER OR D OTHE		D YES D NO 3 SITE?	() TOTAL OF ALL CONTAINERS
SEND REPORT TO (PERSON)	Gerinouishep BY	DATE TIME	RECEI	RECEIVED BY	DATE TIME
Sill MUSSEII WHITE SAMPLES CONDITION	- 1 + there there the	12/20/03 12 48.00	2 Mundal	Magray	8h: CI 80:57.01
intact 4°	3	the set of the	4	20	
2003 /0.5(09	5		9		
		_			

_