CORE ANALYSIS REPORT

FOR

SOUTH FLORIDA WATER MANAGEMENT DISTRICT

EXBRY-1 & EXPM-1

HENDRY COUNTY, FLORIDA

PETROLEUM SERVICES

CORE ANALYSIS REPORT

FOR

SOUTH FLORIDA WATER MANAGEMENT DISTRICT

EXBRY-1 & EXPM-1

HENDRY COUNTY, FLORIDA

These analyses, opinions or interpretations are based on observations and materials supplied by the client to whom; and for whose exclusive and confidential use; this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories (all errors and omissions excepted); but Core Laboratories and its officers and employees, assume no responsibility and make no warranty or representations, as to the productivity, proper operations, or profitableness of any oil, gas or other mineral well or formation in connection with which such report is used or relied upon.

Petroleum Services Division

2001 Commerce Midland, Texas 79703 Tel: (432) 694-7761 Fax: (432) 694-3191 www.corelab.com

January 26, 2004

SOUTH FLORIDA WATER MANAGEMENT DISTRICT P.O. Box 24680 West Palm Beach, Florida 33416-4680

File No.: 57181-18707

Subject:

Core Analysis

EXBRY-1 & EXPM-1

Hendry County, Florida

Gentlemen:

The subject well was cored using diamond coring equipment and core fluid to obtain 4 inch to 2 5/8 inch diameter cores from EXBRY-1 555 to 1354 feet rom the Tertiary Limestone formation.

Core analysis data is presented in tabular and graphical form for your convenience. A porosity vs. permeability plot was prepared for statistical evaluation. Core analysis data is contained on a 3 1/2 inch computer diskette.

We trust these data will be useful in the evaluation of your property and thank you for the opportunity of serving you.

> Very truly yours, CORE LABORATORIES

John Sebian

Laboratory Supervisor

JS/ym

SOUTH FLORIDA WATER MANAGEMENT DISTRICT EXBRY-1 & EXPM-1 File No. 57181-18707 Procedural Page

The cores were transported to Midland by Core Laboratories from Houston, Texas personnel.

Core analysis was made on selected intervals requested on full diameter samples. Sample number fifteen was plugged for permeability measurements (EXPM-1 well).

Fluid removal was achieved using convection oven drying method.

No saturations data was requested.

Full diameter porosity was determined by direct pore volume measurement using Boyle's law helium expansion. Bulk volume was measured by Archimedes Principle. Grain density was calculated from dry weight, bulk volume and pore volume measurements.

In addition, full diameter direct grain volume measurement was made using Boyle's law helium expansion. Bulk volume was measured by Archimedes Principle on samples after cleaning. Porosity was calculated using bulk volume and grain volume measurements.

Steady State Air Permeability was measured in two horizontal directions and vertically while the core was confined in a Hassler rubber sleeve. Please note sample number fifteen was plugged for permeability measurement (EXPM-1 well).

The core will be returned to Core Laboratories in Houston, Texas upon completion of analysis.

Company : SOUTH FLORIDA WATER MANAGEMENT DISTRICT

: EXBRY-1 & EXPM-1

Field Formation File No.: 57181-18707

Well Location:

Coring Fluid:

Date : 1-22-04 API No. :

Co, State: HENDRY COUNTY, FLORIDA

Elevation

Analysts: SEBIAN

CORE ANALYSIS RESULTS

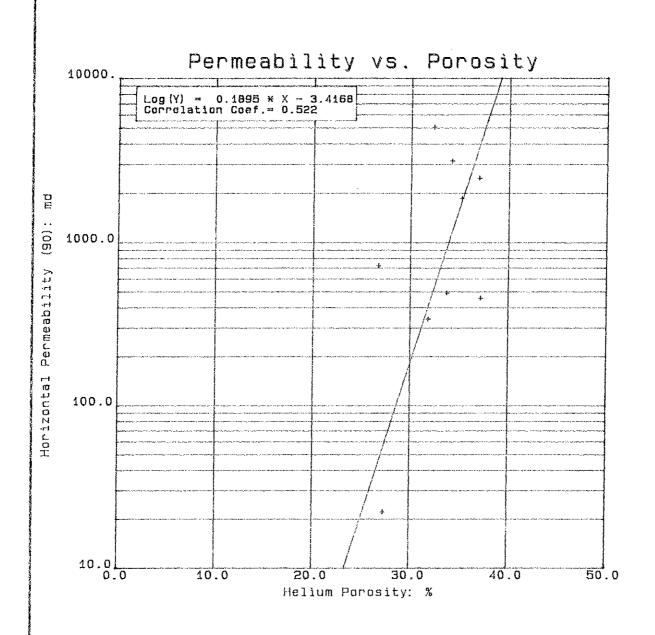
SAMPLE	NEDTH	DEPTH PERMEABILITY		TY	POROSITY GRAIN		DECCRIPTION
SAMPLE NUMBER	DEFIII	(MAXIMUM) Kair	(90 DEG) Kair	(VERTICAL) Kair	(HELIUM)	GRAIN DENSITY	DESCRIPTION
	ft	md	`md	md	%	gm/cc	
				EXBRY - 1			
1	555.9- 56.3	437.	339.	193.	31.9	2.71	Lim, foss, moldic, chalk
2 3 4	555.2- 55.5	679.	587.	399.	37.3	2.71	Lim, foss, moldic, chalk
3	562.0- 62.7	28.7	22.1	10.3	27.3	2.70	Lim, foss, sli moldic, chalk
4	903.3- 03.9	4720.	3145.	2070.	34.2	2.69	Lim, foss, moldic
5	901.6- 01.9	2852.	2470.	998.	37.0	2.71	Lim, foss, moldic, chalk
6	905.4- 05.9	4794.	718.	1809.	26.7	2.70	Lim, foss, moldic
7	906.8- 07.6	488.	455.	243.	37.2	2.71	Lim, foss, sli moldic, chalk
8	910.3- 10.8	1990.	1861.	819.	35.2	2.70	Lim, foss, sli moldic, chalk
9 10	908.7- 09.2	5154.	5044.	60.8	32.3	2.71	Lim, foss, moldic, chalk
10	911.1- 11.8	1070.	489.	297.	33.8	2.71	Lim, foss, sli moldic, chalk
				EXPM - 1			
formal	916.3- 16.9	3652.	3089.	1589.	37.1	2.71	Lim, foss, sli moldic, chalk
2 3	917.7- 17.7	499.	469.	361 <i>.</i>	46.1	2.70	Lim, foss, chalk
3	920.0- 20.4	115.	115.	76.6	41.7	2.70	Lim, foss, chalk
4 5	925.7- 26.2	228.	228.	228.	41.6	2.71	Lim, foss, chalk
5	927.9- 28.3	693.	499.	189.	23.6	2.70	Lim, foss, sli chalk
6 7	931.3- 31.7	33.9	31.7	3.12	40.1	2.70	Lim, foss, chalk
	932.2- 32.8	302.	208.	5.89	26.4	2.73	Lim, foss, rootlet, chalk
8	934.0- 34.4	4.34	3.84	8.98	22.9	2.72	Lim, foss, sli chalk
9	1056.4- 56.8	1557.	1397.	284.	41.0	2.70	Lim, foss, chalk
10	1057.6- 58.1	1052.	989.	286.	45.7	2.70	Lim, foss, chalk
11 12	1059.7- 60.1	124.	81.3	19.1	40.4	2.68	Lim, foss, chalk, sli kerogen
1.2	1060.3- 60.7	272.	258.	36.1	43.1	2.70	Lim, foss, chalk, sli kerogen

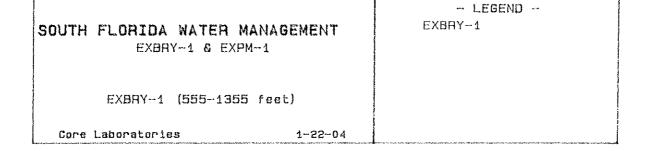
Company : SOUTH FLORIDA WATER MANAGEMENT DISTRICT

Field

File No.: 57181-18707

Well : EXBRY-1 & EXPM-1


Formation


Date : 1-22-04

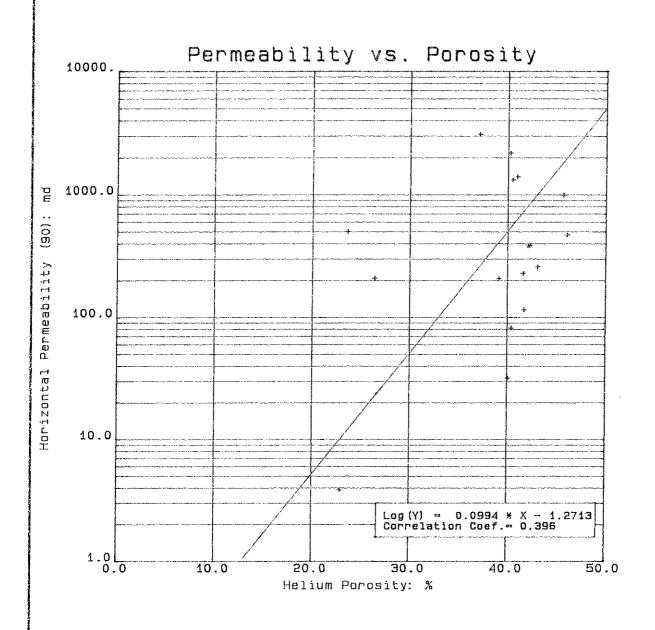
CORE ANALYSIS RESULTS

	CAMPLE	DEPTH	PERMEABILITY			POROSITY (HELIUM)	CDATN	DECCRIPTION	
SAMPLE NUMBER	DCFIG	(MAXIMUM) (90 DE Kair Kair) (VERTICAL) Kair	GRAIN DENSITY		DESCRIPTION		
		ft	md	mď	md	%	gm/cc		
	13	1064.0- 64.3	3182.	2175.	16.2	40.2	2.71	Lim, foss, ool	
	14	1065.4- 65.8	1337.	1313.	305.	40.5	2.71	Lim, foss, ool	
*	15	1350.5- 50.9		382.	437.	42.1	2.72	Lim, foss, ool	
	16	1352.7- 53.1	579.	384.	16.7	42.3	2.68	Lim, foss, chalk, sli kerogen	
	17	1354.0- 54.4	251.	206.	26.4	39.1	2.68	Lim, foss, chalk, tr kerogen	

^{*} INDICATES PLUG ANALYSIS

Company : SOUTH FLORIDA WATER MANAGEMENT DISTRICT

Well : EXBRY-1 & EXPM-1


Field Formation File No.: 57181-18707

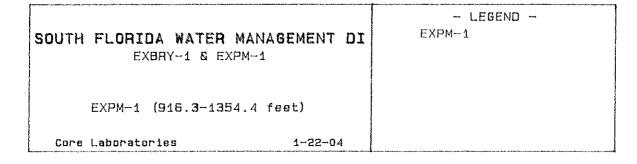

Date : 1-22-04

TABLE I

SUMMARY OF CORE DATA

ZONE:		ZONE:		PERMEABILITY:		
Identification	EXBRY-1	Number of Samples	9			
Top Depth	555.9 ft	Thickness Represented -	5.0 ft	Flow Capacity	7297.4	md-f
Bottom Depth	911.8 ft			Arithmetic Average	1459.	md
Number of Samples9		POROSITY:		Geometric Average	629.	md
				Harmonic Average	134.	md
DATA TYPE:		Storage Capacity	164.0 φ-ft	Minimum	22.1	md
Porosity	(HELIUM)	Arithmetic Average	32.8 %	Maximum	5044.	md
Permeability (90 DEG) Kair		Minimum	26.7 %	Median	718.	md
		Maximum	37.2 %	Standard Dev. (Geom)	K·10 ^{±0} .716	md
CUTOFFS:		Median	33.8 %			
Porosity (Minimum)	0.0 %	Standard Deviation	±3.8 %	HETEROGENEITY (Permeabili	ty):	
Porosity (Maximum)	100.0 %					
Permeability (Minimum)	0.0000 md	GRAIN DENSITY:		Dykstra-Parsons Var	0.750	
Permeability (Maximum)	10000, md			Lorenz Coefficient	0.558	
Water Saturation (Maximum)		Arithmetic Average	2.70 gm/cc			
Oil Saturation (Minimum) -		Minimum	2.69 gm/cc	AVERAGE SATURATIONS (Pore	Volume):	
Grain Density (Minimum)	2.00 gm/cc	Maximum	2.71 gm/cc	,	•	
Grain Density (Maximum)	3.00 gm/cc	Median	2.71 gm/cc	011		
Lithology Excluded	NONE	Standard Deviation	±0.01 gm/cc	Water		

Company : SOUTH FLORIDA WATER MANAGEMENT DISTRICT

Well : EXBRY-1 & EXPM-1

Field :

File No.: 57181-18707

Date : 1-22-04

TABLE II

SUMMARY OF CORE DATA

ZONE:		ZONE:		PERMEABILITY:		
Identification	EXPM-1	Number of Samples	17			
Top Depth	916.3 ft	Thickness Represented -	7.9 ft	Flow Capacity	5576.8	md – f
Bottom Depth	1354.4 ft			Arithmetic Average	706.	md .
Number of Samples	17	POROSITY:		Geometric Average	321.	md
				Harmonic Average	56.3	md
DATA TYPE:		Storage Capacity	306,6 <i>φ</i> −ft	Minimum	3,84	md
Porosity		Arithmetic Average	38.8 %	Maximum	3089.	md
Permeability (90	DEG) Kair	Minimum	22.9 %	Median	382.	md
·		Maximum	46.1 %	Standard Dev. (Geom)	K·10 ^{±0.712}	md
CUTOFFS:		Median	40,5 %	·		
Porosity (Minimum)	0.0 %	Standard Deviation	±7.1 %	HETEROGENEITY (Permeabili	tv):	
Porosity (Maximum)	100.0 %			·	- /	
Permeability (Minimum)	0.0000 md	GRAIN DENSITY;		Dykstra-Parsons Var	0.709	
Permeability (Maximum)	10000. md			Lorenz Coefficient	0.578	
Water Saturation (Maximum)		Arithmetic Average	2,70 gm/cc			
Oil Saturation (Minimum) -		Minimum	2.68 gm/cc	AVERAGE SATURATIONS (Pore	Volume):	
Grain Density (Minimum)	2.00 gm/cc	Maximum	2.73 gm/cc	,		
Grain Density (Maximum)	3.00 gm/cc	Median	2.70 gm/cc	011		
Lithology Excluded	NONE	Standard Deviation	±0,01 gm/cc	Water		

CODE KEY - DESCRIPTIONS

R	= Plug from full diameter sample	i	= Intergranular	SCAL	= Removed for special core analysis
anhy	= Anhydrite	incl	= Inclusions	sdy	= Sandy
AST	= Appears similar to	lam	= Laminae (Laminated)	SEM	= Scanning electron microscope analysis
bk	= Break	1my	= Limy	sh	= Shale
bldr	= Boulder	Ìs	= Limestone	shy	= Moderately shaly (20-40%)
C	= Coarse	1v	= Large vug	-	= Siltstone
calc	= Calcite (areous)	m	= Medium	slty	= Silty
carb	= Carbonaceous	mi	= Mud invaded	SP	= Small plug
cbl	= Cobble	mic	= Micaceous	88	= Sandstone
CEC	= Cation exchange capacity	mshy	= Moderately shaly (20-40%)	sshy	= Slightly Shaly (<20%)
cem	= Cemented		= Medium vug	sty	= Stylolite (ic)
cgl	= Conglomerate	NΑ	= Not analysed by request	sulf	= Sulphur
cht	= Chert	NP	= No permeability measurement	sv	= Small vug
coal	= Coal/Coal Inclusion	NR	= Not received	tr	= Trace
do l	= Dolomite	l oo	= Oolitic	TS	= Thin section
f	= Fine	08	= Overburden	uncons	= Unconsolidated
fest	= Ironstone	P	= Preserved for future studies	vfrac	= Vertical fracture
foss	= Fossil (iferous)	ſdq	= Pebble	٧f	= Very fine
frac	= Fracture	PET	= Removed for petrographic analysis	VOB	= Vertical overburden sample
fri	= Friable	POA	= Portion removed for oil analysis	vshy	= Very shaly (>40%)
glauc	= Glauconite (ic)	ppv	= Pinpoint Vug	VSP	= Vertical small plug
grnl	= Granule	PSA	= Particle size analysis	vug	= Vuggy (ular)
дур	= Gypsum	pyr	= Pyrite (ic)	WS	= Water sand
hfrac	= Horizontal fracture	pyrbit	= Pyrobitumen	XRD	= X-ray diffraction
hal	= Halite (Salt)	SA	= Sieve Analysis	****	

DISTRIBUTION OF FINAL REPORTS

2 COPIES

SOUTH FLORIDA WATER
MANAGEMENT DISTRICT
ATTN: MICHAEL BENNETT

PO BOX 24680

WEST PALM BEACH FL 33416-4680

2 COPIES

COLLIER CONSULTING
ATTN: HUGHBERT COLLIER
741 WEST COLLEGE STREET

STEPHENVILLE TX 76401